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Abstract

Cellular interactions underpin all biological processes and offer unprecedented insight into
mechanisms of action in steady state and disease. The advent of single-cell and spatial
technologies has allowed us to resolve these interactions across time and space unveiling
novel pathways in infectious and inflammatory disease, yet interpretation and visual-
isation remains challenging in these multi-faceted high-dimensional datasets. This thesis
develops and applies computational and visual approaches to infer, prioritise, and val-
idate cell-cell communication (CCI) in such contexts, demonstrating leveraging spatial
information allows us to hone in on biological hypotheses and reduces false positives in
ligand-receptor analyses. In Chapter 1, I analyse lethal COVID-19 in a Malawian co-
hort using histology, high-dimensional imaging, and single-cell transcriptomics from lung,
blood, and nasal tissues, integrated with datasets from Northern Hemisphere cohorts. This
cellular interaction analysis reveals distinct immune drivers in our cohort: an interferon-
gamma programme in lung-resident alveolar macrophages in Malawi contrasted with type
I/TIT interferon responses in blood-derived monocytes reported in USA /European cohorts.
These results provide mechanistic insight into fatal disease in an under-represented pop-
ulation, and highlight the value of context-aware cellular inference and validation. In
Chapter 2, I introduce cellXplore, a Flask—React interactive visualisation web tool that
unifies widely used CCI packages and leverages single cell RNA sequencing with spa-
tial transcriptomics to investigate computed cellular interactions. Through interactive,
point-and-click workflows, cellXplore streamlines analysis, allowing customisable inter-
active plots, and prioritises spatially plausible interactions by overlaying ligand—receptor
expression with co-localisation of spatial gene expression. I present three end-to-end user
workflows using single cell and spatial transcriptomics data from a 10X Visium parasitic

infection and a 10X Xenium breast cancer dataset to show indirect spatial validation of



cellular interactions can be utilised in a user-friendly manner. Lastly in Chapter 3, I extend
cellular communication inference to complex datasets, validating cellular interactions and
key drivers of inflammation leveraging immunohistochemistry and spatial transcriptomics.
A multifactor macrophage—fibroblast atlas spanning four tissues and inflammatory states
reveals conserved tissue-resident myeloid—stromal circuits through a APOE+/SPARC+ -
SPP1+ axis that underpins inflammation alongside tissue-specific crosstalk reflecting or-
gan microenvironments. A second study applies 10X Visium to intestine "gut-rolls’ across
four time points of Heligmosomoides polygyrus infection. The analysis uncovers epithelial
and immune programs associated with granuloma formation, stem-cell reprogramming,
and parasite-driven immunomodulation within a distorted tissue landscape, with cellular
interactions validated in the spatial context. Together, these studies shine a spotlight on
the power of spatially-aware cellular interaction inference providing insight into COVID-
19, tissue-resident myeloid—stromal communication during inflammation, and helminth
infection in addition to a novel visualisation tool to unlock new insights from cellular

interaction data.
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Chapter 1

Introduction

1.1 Cellular interaction inference in

pathogen mediated disease

The biological motivation of this thesis is emphasising the impact of single cell RNA
sequencing (scRNA) and spatial technologies in the inference of cellular communication
and how it transforms the research landscape of pathogen-mediated disease. Through
leveraging information from scRNA-seq datasets and cells in their spatial context to infer
cellular interactions we have uncovered new mechanisms of action, delineated key drivers
of disease on both the molecular and cellular level and described new potential targets
for immunotherapies. We demonstrate the power of cellular communication inference,
modelling ligand and receptor gene expression at the single-cell resolution in COVID-
19, inflammatory disease, and parasite infection. Furthermore, this thesis touches on the
breadth of tools and visualisation techniques available to interpret cellular communication,
including a novel visualisation tool empower bench biologists to explore their data in both

modalities.



1.1. Cellular interaction inference in pathogen mediated disease 2

1.1.1 Cellular interaction inference in COVID-19

Since the COVID-19 pandemic outbreak SARS-CoV-2 infections are still a challenge with
approximately 700 million cases recorded and 7 million deaths reported worldwide since
2019'. Although the illness is classified as respiratory, the severity in which it affects
patients is highly variable and phenotypically demonstrates itself as a systemic disease
involving multiple organs showing symptoms such as hyperinflammation, cytokine storms
and lung alveolar damage® 9. Recent applications of single-cell and spatial transcrip-
tomics have significantly expanded our understanding of COVID-19 pathology, partic-
ularly in organ-specific and tissue-contextual settings such as the blood and lung. Early
studies during the pandemic utilised single cell transcriptomics to describe the immune
landscape of bronchoalvelolar cells taken from BALF fluid and found that the cytokine
storm is the main driver of creating a proinflammatory macrophage microenvironment
in severe COVID-19 patients, along with notable CD8+ T cell expansion in moderate
cases’. Atlas-level datasets of the lung in fatal COVID-19 have also been developed such
as Melms et al. who found that COVID-19 lungs were characterised by a dense infiltration
of monocyte-derived and alveolar macrophages paired with weakened T cell responses®.
Through cellular interaction inference, they investigated lung remodelling in the stromal-
immune interface, describing a TGF-f signalling mechanism that induces lung fibrosis
increasing the production of IL1-f. Spatial technologies such as IMC have been utilised
to investigate the spatial landscape of the lung unveiling severe immune cell infiltration,
infected alveolar epithelial cells and expansion of stromal cells such as fibroblasts’. An-
other study utilised spatial transcriptomics to reveal a conserved immune signalling circuit
in severely damaged area of the lung, marked by interactions between IFN-y-expressing
cytotoxic lymphocytes and pro-inflammatory macrophages. This [FN-y-driven response
drove upregulation of chemokines such as CXCL9, CXCL10, and CXCL11, facilitating
recruitment of CXCR3+ infiltrating immune cells®. More recently, multimodal analysis
of the COVID-19 immune landscape have been reported leveraging both single cell and
spatial technologies to uncover key cellular interaction pathways. Lee et al.” constructed

a spatial and single-cell atlas of alveolar damage progression in COVID-19 by integrating
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histopathology-defined regions with sc/snRNA-seq and spatial transcriptomics datasets
across 33 lung samples”. The revealed distinct macrophage subsets associated with acute
COVID-19 damage driven IFN-a signatures and collagen-driven proliferative fibroblast
activity in late stage lung fibrosis. Through utilising cellular interaction inference, they
found a SPP1/osteopontin signalling axis in macrophages as a key intercellular driver in
the initial stages of alveolar injury. Together, these studies demonstrate the importance
of single cell and spatial technologies that can provide a detailed, spatial map of cellu-
lar transitions and signalling pathways that underlie pro-inflammatory and pro-fibrotic

processes in COVID-19 lung injury.

1.1.2 Emergence of single cell atlases

Large scale single cell atlases have emerged in recent years not only targeting particular
diseases such as COVID-19 but also whole organisms, tissues and pan-tissue cell types.
Consortia such as the Human Cell Atlas (HCA) were pioneers in the field of creating
single cell atlases that combined multiple studies to standardise atlases that typically
contain millions of cells'’. Since then the emergence of species specific single cell at-
lases have been established such as the Tabula Sapiens!!, Tabula Muris!? and the Fly
Cell Atlas' for humans, mice and drosophila respectively, that span millions of cells
across multiple organs. Tissue-focused atlases demonstrate how integrated references en-
able consensus annotations and case—control comparisons. For example, the Human Lung
Cell Atlas'® spanning over 2.4 million cells in health and disease, while disease-oriented
consortia like the Human Tumour Atlas Network!® provide insights into cellular mech-
anisms of disease. Single cell atlases have also been curated to provide comprehensive
insight into biological processes such as developmental lineages from mouse gastrulation
and early organogenesis'® to comprehensive maps of human foetal gene expression'”. In
addition to providing cell state discovery and disease endotyping, single cell atlases serve
as useful resources for reproducible cell type annotation allowing for reference mapping

and deep-learning approaches of unlabelled single cell datasets. In addition to this, large
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scale integration efforts across multiple studies, donors and modalities allow the devel-
opment of new tools'® and for meta-analyses that may reveal additional insights that
were previously unreported in the original studies'®. Furthermore, single cell atlases have
been utilised to serve as a ground truth, in the absence of single cell RNA data, for spa-
tial deconvolution using cell type signatures to resolve cells captured in space?. Other
consortia aim to answer more targeted questions about the mechanisms of inflammat-
ory disease, such as the Immune-Mediated Inflammatory Disease Biobanks in the UK
(IMID-Bio-UK) consortium (http://www.imidbio.co.uk/) that aims to identify com-
mon pathways in immune-mediated inflammatory diseases such as rheumatoid arthritis,
inflammatory bowel disease and psoriasis. In these contexts, cellular communication in-
ference offers unprecedented insight into potential drivers of disease and ligand-receptor
interactions that may be inferred from atlas-level data. Cellular interaction inference has
been implemented in single-cell tissue atlases to investigate shared mechanisms of action
such as exploring interacting cells in the human intestine?! and their role in intestinal
organisation, and across tissues such as unveiling shared and distinct cellular cross-talk
in cancer??. Thus, by applying cellular interaction inference with atlas-level data, shared
or distict pathways and interactions can be explored providing new insights or potential
immunomodulatory targets. In addition to this, tailored cell-cell interaction databases
have also been developed leveraging single cell atlases, such as scAgeCom?? which curates
its database on cellular interactions inferred from the Tabula Muris Senis?* and Calico
murine ageing cell atlas?® to provide cellular interactions that are directly involved in
ageing and cellular senescence. More recently, cellular communication atlases have been
proposed such as CellCommuNet?® which aggregates multiple single cell atlases and in-
fers cellular communication across tissues, cell types and disease states demonstrating the
breadth of knowledge that can be inferred from single cell atlases through cellular com-
munication inference. Collectively, these resources serve not only as reference datasets but
also as platforms for comparative analysis, and the development of various computational

methods for integration, benchmarking and inference across complex biological systems.
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1.1.3 Cellular interaction inference in helminth infections

In addition to viral and inflammatory diseases, cellular interaction inference can also shine
light on host-parasite interactions and the mechanism of infection. Helminths are multicel-
lular parasitic worms that chronically infect over a billion people worldwide, contributing
significantly to global morbidity through immunomodulation, malnutrition, and tissue
pathology?”. Among them, Heligmosomoides polygyrus is a widely studied system used to
investigate host—parasite interactions and immune regulation mouse models. H. polygyrus
is a murine intestinal nematode that establishes chronic infections in the small intestine
by inducing a type 2 immune response, characterised by interleukin (IL)-4, IL-5, and IL-13
secretion from Th2 cells, goblet cell hyperplasia, eosinophilia, and alternatively activated
macrophages®®. Orally administered larvae invade the small-intestinal wall, develop and
mature in submucosal granulomas and emerge back into the lumen as adults and feed
on host intestinal tissue. The adult worms then anchor themselves to the villi, reproduce
and lay eggs that escape in the host faeces®”. In the murine host, there is a complex
interplay between the gut epithelia and the immune system. The innate immune response
is key to releasing type 2 cytokines that influence the polarisation of the adaptive im-
mune system and gut epithelial physiology?”. Dendritic cells are the main innate immune
cell responsible for priming Th2 responses against active helminth infection, with studies
showing a compromised Th?2 response during infection when this population is depleted3?.
Another key player are alternatively activated macrophages that have high expression of
Yml, RELM-a and arginase-1 in response to helminth-driven Th2 responses®”. In the
gut epithelia, during H. polygyrus infection, epithelial-sensing of the parasite invasion re-
leases alarmins such as IL-25 and IL-33, which activate group-2 innate lymphoid cells
(ILC2s) and primes type 2 immune responses>'. In addition to this, IL-25 derived from
tuft cells drives ILC2 production of IL-13, which in turn expands tuft cells and goblet
cells creating a 'weep-and-sweep’ defence to tackle parasitic infection®?. In addition to
epithelial-immune cell effects, the parasite infection is a potent inducer of regulatory T
cells and is commonly used to explore mechanisms of immune tolerance, host—microbiota—

parasite dynamics, and mucosal immunology®?. In addition to the immune system, a hall-
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mark of H. polygyrus infection is strong immunoregulation by the parasite to the host.
The parasite produces excretory—secretory (HES) products that directly modulate host
pathways to favour survival during chronic infection. An example of this is the molecular
mimicry of TGF-f. The secreted TGF-f mimic (Hp-TGM) engages TGF-f receptors and
CD44 to induce regulatory T cells and dampen anti-parasite immunity®?. Research into
H. polygyrus infection has been instrumental in uncovering how helminths manipulate
host immunity to promote long-term survival and tissue homeostasis. However, to date
the use of single cell and spatial technology to investigate the host response in different
tissue microenviroments is limited. Haber et al. conducted a single-cell transcriptomic
survey of the mouse small intestinal epithelium and assessed how its cellular compos-
ition changes in response to various infections, including Heligmosomoides polygyrus>.
They found that the infection significantly increased the abundance of goblet cells, and
tuft cells, epithelial cells implicated in type 2 immune responses and mucosal defence.
However the study, although profiled the stromal cell landscape of the infected gut, did
not investigate cell-cell interactions that may be associated with remodelling of the gut
epithelium during parasitic infection. Thus, leveraging cellular communication inference
at the single cell transcriptomic level remains an exciting prospect in not only helminth

research but also extracellular parasite host-response mechanisms.

1.2 Introduction to single cell RNA

sequencing

To understand the molecular mechanisms of cellular responses, we can assess cells in a vari-
ety of ways, such as interrogating genomic DNA sequences, messenger RNA (mRNA) se-
quences, and protein expression®®. Biological processes are underpinned by protein-protein
interactions however, simultaneously capturing the thousands of proteins expressed by the

genome in a single cell, more commonly known as the proteome is still challenging. Thus,
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as a proxy for protein expression, we can analyse the transcriptome, a collection of messen-
ger RNA molecules, whose expression can be indicative of protein expression and can be
extrapolated to describe cellular phenotypes and cell states?®. The field of transcriptom-
ics has provided valuable biological insight into gene expression patterns through the use
of hybridisation microarrays to the emergence of ultra-high-throughput sequencing tech-
niques such as bulk RNA sequencing (RNA-seq)3”. Although all cells in the body share
nearly identical genomes, each cell expresses only a subset of genes, resulting in distinct
transcriptomes in different cell types®. This heterogeneity of transcriptomes is further
exemplified in similar cell types that occur within different environmental niches, cellular
processes, and perturbation states®4. Thus, to capture the stochastic nature of gene
expression between cells, conventional bulk RNA sequencing is limited as it only provides
an average expression profile for a set of cells, missing the inherent heterogeneity of cell-
cell variability®®*!. This led to the first single cell RNA sequencing (scRNA-seq) study
in 2009, which revolutionised molecular biology by allowing the measurement of tran-
scriptome profiles for individual cells at an unprecedented scale and resolution*?. Here,
tissues are digested during the single-cell dissociation step, followed by single-cell isola-
tion to profile the mRNA in each cell separately®®. Two main approaches for scRNA-seq
were developed, the first being plate-based approaches, such as Smart-seq, which isolate
individual cells into microwell plates and enable full-length transcript coverage with high
sensitivity. This approach is limited in throughput, requiring lower cell numbers; how-
ever, the increased sensitivity facilitates the discovery of rare cell-type populations®® 4.
In contrast, microfluidic droplet-based methods, including Drop-seq and 10x Genomics
Chromium, scale up single cell profiling by encapsulating thousands of cells with uniquely
barcoded beads in nanolitre droplets®™*®. These platforms provide a cost-efficient and
highly scalable approach to scRNA-seq, but typically capture only the 3’ or 5’ ends of
transcripts with lower sensitivity for rare genes. In this introduction, we will focus on the
10x Genomics Chromium microfluidic system that enables massively parallel scRNA-seq
through gel bead-in-emulsion (GEM) technology, as this approach is the most commonly
adopted and was used to generate the data described in the thesis. With this technique,
individual cells are encapsulated with barcoded gel beads and reverse transcription re-

agents within the droplets. Inside each droplet, the cell is lysed, releasing mRNA molecules
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that hybridise to bead-bound oligonucleotides containing a cell-specific barcode, a unique
molecular identifier (UMI), and a poly-dT sequence. This process uniquely tags each tran-
script with its cell-of-origin and molecule-specific information, enabling the quantification
of transcripts. After reverse transcription, the emulsion is broken and barcoded ¢cDNA is

recovered, amplified, and prepared into sequencing libraries for Illumina platforms36:4%.

However, these technologies come with limitations, namely that single-cell measurements
of transcriptional states inherently carry greater uncertainty than bulk RNA-seq, primar-
ily due to the limited amount of starting material available per cell*’. Because only a
small fraction of transcripts present in a cell are captured during sequencing, technical
biases and noise give rise to a high noise-to-signal ratio. High-throughput droplet-based
techniques typically recover only 5-20% of a cell’s RNA content, while plate-based meth-
ods achieve higher capture efficiencies of 30-40%6°0. The capture efficiency of poly-
adenylated mRNAs and subsequent conversion and amplification of cDNA is still an open-
ended problem®!. This directly impacts the detection of lowly expressed genes whereby
despite the gene being expressed, it is missed by current scRNA-seq technologies leading
to drop-out events where zero counts for a gene occur®®. One factor in scRNA-seq that can
mitigate this effect is altering the sequencing depth of the run by increasing the number
of reads in the run. For tasks such as un-biased cell type classification the standard is to
sequence between 30,000 reads per cell. If the sequencing depth is on the lower end of this
range, populations can be described however, granular details such as gene co-expression,
cellular communication and regulatory networks will be missed®0. Other strategies exist
to reduce techniclal biases and improve true gene detection such as spike-ins where some
protocols can adopt the use of a known mixture of poly-adenylated mRNAs. Through
leveraging the read-out from the spike-ins we can assess how much variation is derived
from technical artefacts, batch effects and true biological signal®>®3. However, spike-ins
suffer from degradation and capture efficiency, thus UMIs were introduced in 3’ sequen-
cing technologies such as 10X Chromium to reduce amplification bias and to facilitate
more accurate estimation of true molecule counts®®, rendering spike-ins redundant. The

concept of this is that the cDNA is amplified before sequencing to increase its probability
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of being measured, the UMI tag allows us to distinguish between amplified copies of the
same mRNA molecule and reads that are derived from separate mRNA molecules that
are transcribed from the same gene®. Despite these strategies, the number of detected
transcripts can still vary dramatically between cells, resulting in some cells having much
less reliable expression profiles than others. For example, most genes are transcribed in a
short amount of time followed by periods of inactive transcription, a phenomenon called
transcriptional bursting, which can cause variation in the total transcripts expressed for
a given cell®®. Thus, as a result of this temporal transcriptional fluctuation, the sparsity
of single cell data are attenuated and lead to a high frequency of drop-out events where
transcripts are not detected resulting in a large number of zero counts®®. In addition to
this, cell size variation can also affect the absolute number of transcripts detected in each
cell, further complicated by cellular processes such as cell cycle and proliferation®°7:58.
However, these intrinsic uncertainties at the single cell level can be mitigated by com-
putational approaches that can take advantage of the information shared between cells,
from evaluating cells at the read-level post-sequencing and at the gene-level post-analysis,
resulting in a more robust and well-resolved view of the underlying transcriptional land-

scape?.

1.3 Introduction to scRNA-seq ana-

lysis

The next section will describe the key steps in the computational pipeline to analyse
scRNA-seq data and how they handle detection of both technical biases and biological
variation shown in Figure 1.1. The pipeline can be divided into three main sections, data
preprocessing steps, identification of different cellular compartments and compositions,

and downstream functional analysis that elucidates molecular mechanisms of action.
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Figure 1.1: Graphical schematic showing the key analysis steps of a single cell RNA
sequencing pipeline. Preprocessing of single cell data encapsulates steps such as vari-
ous quality control steps shown within brackets (Quality Control, SNP Demultiplexing,
Doublet Detection, Ambient RNA Removal), normalisation, variable feature selection and
batch correction and dimensionality reduction. Identification of cellular compartments
comprises clustering, cell type identification, reference mapping and cellular composition.
Downstream functional analysis refers to differential gene expresson, functional gene set
enrichment and pathway analysis, cellular communications and pseudotime and velocity.
Overview figure created in PowerPoint, using icons from the BioRender library.

1.3.1 Pre-processing and Quality Control

Single cell RNA data are subject to inherent and random noise that can obscure the true
biological signal; therefore, adequate preprocessing of the data is necessary to remove
confounding sources of variation. Once reads have been mapped to a reference genome
and the UMIs have been quantified, the output is a digital matrix containing UMI counts
that represent gene expression of each gene in every cell. The next stage is to identify

low-quality cells in each sample or replicate that can be evaluated using three covariates,
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the number of counts per cell, the number of captured genes per cell, and the proportion
of mitochondrial reads per cell®®%. The distributions of these can be visualised using
various plots to determine a threshold cut-off to exclude outliers that may suggest low-
quality cells in the data. For example, cells that exhibit low sequencing depth, a limited
number of detected genes, and a high proportion of mitochondrial gene expression often
indicate damaged or low-quality cells. In such cases, cytoplasmic mRNA may have leaked
due to the cell membrane being damaged during the sequencing, leaving predominantly
mitochondrial mRNA intact®. It is important to consider all three factors in unison when
determining outliers, as observing any one aspect in isolation could result in misinterpret-
ation of the underlying biology. For example, cells with low counts or expressed genes
could indicate quiescent populations or cell types with inherently lower transcriptional

61,62

profiles, such as neutrophils . Likewise, cells with higher mitochondrial counts could

indicate metabolically active cells that may be taking part in respiratory processes’3.
Furthermore, cells with higher transcriptional counts could be explained with the size of
the cell, as mentioned previously. Thus, the underlying biology of the system needs to
be considered so that permissive thresholds can be selected to avoid missing biologically
meaningful cells. Lastly, we can filter on the gene level after we have interrogated cell-level
quality metrics. Raw count matrices for humans and mice can contain more than 65,000
genes with 20,000 protein-coding genes, not all of which will be expressed in many cells
and thus are deemed uninformative of the underlying biological system or cellular hetero-
geneity. These uninformative genes can be filtered away, for example, filtering out genes

expressed in fewer than 10 cells across the dataset. For datasets with high drop-out rates

this parameter should be adjusted accordingly to not exclude too much of the data®.
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1.3.2 Advanced Quality Control

1.3.2.1 Ambient RNA Removal

There are additional quality control measures we can take to ensure we are only selecting
quality cells for our downstream analysis. Technical noise can arise from cell-free RNA
that is present in the cell solution and assigned to another cells native RNA during library
construction, termed ambient RNA3. This can lead to complications in cell type identi-
fication as transcripts of different cell types can contaminate the true cell type signature
of another cell, potentially leading to ambiguous cell type populations downstream©*.
Additionally, noise from cell-free RNA can mask true biological signal and lead to mis-
interpretation of gene expression profiles so therefore should be removed. Ambient RNA
removal methods exist such as SoupX which aims to estimate ambient RNA contamina-
tion by leveraging both the raw matrices that have empty droplet and background noise
information, the filtered matrices containing true cells and clustering information output
by the CellRanger mapping algorithm®. Another algorithm, CellBender, uses an unsu-
pervised Bayesian model that requires no a priori knowledge of cell expression profiles’®.
Ambient RNA removal can be performed as a first step in the computational pipeline

as both tools output a corrected expression matrix where background noise derived from

ambient RNA have been removed, and can therefore be used for all downstream analyses.

1.3.2.2 Doublet Detection

Another quality control consideration is the simple assumption in scRNA-seq analysis
is that each droplet contains the RNA of an intact cell. However low-quality cells can
violate this assumption whereby droplets can fail to capture a cell, capture multiple cells
or capture ambient RNA from a lysed cell*®. During the encapsulation process of a cell in

the nanolitre droplet, cells may fail to be captured leading to an empty droplet that will
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demonstrate zero-counts in the expression matrix. These will usually be filtered out using
the threshold strategies by selecting a lower cut-off for the number of transcript counts.
However in some cases the droplet can capture two cells termed doublets that result in an
increased transcript count compared to that of a droplet that has captured a single cell.
These can be removed using the upper threshold limits however there are computational
methods that have been created to aid in doublet detection. Doublets can be categor-
ised into two groups, heterotypic doublets that are doublets formed by two different cell
types and homotypic doublets, formed by the same cell type. Most doublet detection
methods iteratively generate artificial doublets by randomly sampling cells and combin-
ing them, then compare them against measured cells with a priori knowledge®3. Popular
doublet detection packages used in single cell analysis are DoubletFinder®®, Scrublet5”,
scDblFinder®® and DoubletDecon® that work on these principles labelling each cell in
the data as either a doublet or a singlet and are performed on each sample before further

downstream processing.

1.3.3 Additional preprocessing steps

1.3.3.1 SNP Demultiplexing

Depending on experimental design there may be contexts where additional preprocessing
steps must be performed. One example is this is pooling samples together to reduce tech-
nical variation in scRNA-seq workflows. When multiple patient samples are pooled into
a single scRNA-seq run to reduce costs and minimise technical variation, their donor
identities can be recovered computationally using SNP-based demultiplexing methods.
Tools such as Souporcell” leverage single nucleotide polymorphisms (SNPs) expressed in
RNA to cluster cells by genotype without requiring prior donor genotypes. First, Soupor-
cell identifies candidate SNPs from pooled transcriptomic reads and constructs an allele

count matrix that records the number of reference and alternative alleles detected in
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each cell. It then applies a probabilistic mixture model to group cells with similar allele
fractions into distinct genotype clusters, corresponding to individual donors. Cells that
display mixed SNP profiles spanning two clusters are flagged as sample-level doublets.
Although its accuracy depends on sufficient SNP coverage from sequencing depth and
enough genetic diversity between donors to accurately genotype donor samples. Alternat-
ive SNP demultiplexing tools also exist such as Vireo”' that uses a variational Bayesian
inference model to infer genotypes and methods like Demuxlet that require known donor
genotypes a priori from SNP arrays or whole exome sequencing to match SNPs to the
donor reference™. Once these steps have been completed we can be confident that the
cells we proceed with are of sufficient quality, have been demultiplexed if necessary and
de-noised for technical variation. However, it is important to note that quality control in
scRNA-seq is an iterative process and cell quality cannot be fully determined a a priori.
Downstream steps such as clustering or cell type annotation may indicate that quality

control thresholds or methods may need to be revisited®’.

1.3.3.2 CITE-seq

In 2017 Stoeckius et al. proposed Cellular Indexing of Transcriptomes and Epitopes by
sequencing (CITE-seq), a multi-modal single-cell profiling technology that enables the
simultaneous measurement of RNA expression and surface protein abundance in the same
cell™. CITE-seq overcomes the inability of scRNA-seq in robustly quantifying cell surface
protein levels, which are often functional mediators of cell identity and immune signalling.
By implementing oligonucleotide-barcoded antibodies known as Antibody-Derived Tags
(ADTs), they are captured during standard droplet-based library preparation in sScRNA-
seq and sequenced alongside mRNA to produce a unified multi-modal single-cell molecular
profile. CITE-seq is particularly impactful in single cell transcriptomics, where transcript
levels do not always correlate with protein abundance due to proteomic factors such as
post-transcriptional regulation, protein turnover, and even cell-state dependent surface

marker expression’®. Thus, the technology has enabled higher-resolution cell type clas-
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5 improved identification of rare immune populations and cell states’®"" that

sification”
may have been missed from scRNA-seq alone due to poor protein-level correlation or
drop-out rates in droplet-based approaches. In addition to this, CITE-seq can be utilised
for cell hash tagging approaches (HTO) where unique oligo-antibodies are used against
ubiquitously expressed cell surface proteins to derive cells from multiplexed runs to their
original tissue or sample, identify cell multiplets, and ’super-load’ droplet-based systems
to reduce sequencing costs'®. First, the ADTs are quantified and demultiplexed through
a mapping approach to identify antibody barcodes, cell calling based on the number of
mRNA reads associated with each barcode, and UMI quantification. Many tools exist for
this such as tools embedded in the Seurat pipeline'® and demultiplexing pipelines such
as cellhashR™. ADTs are normalised to correct for non-specific binding, batch effects in
protein libraries through normalisation methods such as centred log ratio (CLR)'®" or
de-noised and scaled by background (dsb)®’. ADT and mRNA levels can then be pro-
jected jointly in the same latent space using dimensionality reduction approaches like
weighted-nearest neighbours (WNN) that leverage both transcriptomic and proteomic in-
formation'®. Downstream, both differential expression on the transcriptomic level can be

conducted and differential abundance analysis on the protein level to comprehensively

characterise single cells in both modalities'®.

1.3.4 Normalisation

The next step in the single cell analysis pipeline is to normalise our data so that the
gene expression profiles of cells are directly comparable to one another while removing
technical variability and preserving biological differences. Technical effects include dif-
ferences in library size (total number of unique molecular identifiers, UMIs, per cell),
capture efficiency, amplification bias, and batch effects from reagents or sequencing runs
as previously described®. If normalisation is not performed cells with higher total RNA
capture would appear to express higher gene levels, and thus bias clustering, dimension-

ality reduction, and differential expression analyses downstream. Many different methods
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have been proposed for normalisation with the most common being library size norm-
alisation adapted from bulk-RNA sequencing where counts are normalised by a uniform
scaling factor that is proportional to the count depth per cell. This method divides gene
counts for a given cell, multiplies it by a scale factor usually 10,000 then applies a nat-
ural log transformation to account for zero-counts. This stabilises variance in the data
and corrects for differences in sequencing depth but assumes that most genes are not
differentially expressed between cells, meaning that only low or medium expressed genes
are accurately normalised®. Furthermore, the log-transformation does not fully stabilise
the mean—variance relationship, and biases arise if a small number of genes dominate the
expression profile of certain cells, distorting the normalisation for other genes®'. Other
methods have been proposed such as scran normalisation which estimates size factors for
pooled cells that have similar transcriptional profiles, and then deconvolves them back to
individual cells. This strategy reduces noise introduced by dropouts and provides more
robust normalisation for heterogeneous cell populations®?. This can be an alternative to
library size normalisation however scran does not explicitly account for high dropout rates,
which can introduce noise into the size factor estimation in extremely sparse datasets. Fur-
thermore, although the method corrects for library size differences, it still does not fully
stabilise the mean—variance relationship in the data, meaning that a log-transformation
step is still required and residual technical variance can remain®'. To directly address
mean-variance stabilisation scTransform was developed which fits a regularised negative
binomial regression model for each gene, and regressing out sequencing depth and other
technical covariates. It then returns Pearson residuals, which are variance-stabilised and
homoscedastic. This method simultaneously normalises and transforms the data, redu-
cing the need for separate scaling steps and has been shown to improve clustering and
integration by mitigating technical artifacts while preserving biological heterogeneity®.
However, there is still open discourse as to which normalisation method to use and should
be chosen carefully depending on the nuances of the biological dataset. A benchmark study
found that a simple two-step approach of proportional fitting of counts by library size fol-
lowed by log-transformation with a pseudocount followed by an additional fitting step

performed consistently well when compared to more complex model-based approaches®*.
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Conversely, another study concluded that variance stabilising methods perform best but
more simplistic library size normalisation is sufficient for scRNA-seq normalisation and
more complex approaches should only be implemented when the dataset demands it, such

as extreme sparsity of the data®.

1.3.5 Feature Selection and Dimensionality Reduction

After completing normalisation, we must handle a large dimensional expression matrix
consisting of thousands of genes and potentially thousands of cells, however many of
these genes are uninformative to the biology of the system. Thus, in this high dimensional
space, single cell data suffers from the curse of dimensionality where distortion of dis-
tances between data points and technical noise can obscure true biological structure®6-57.
Dimensionality reduction mitigates these issues by capturing the most informative sources
of variation while filtering out random fluctuations inherent to sparse scRNA-seq data.
The first step of reducing the dimensionality of scRNA-seq datasets is feature selection
where the dataset is filtered to keep only genes that explain the most variation in the data
called highly variable genes (HVGs)®2. Most methods bin genes in the data according to
their mean expression and HVGs are selected by their highest variance-to-mean ratio®.
These genes ideally drive the biological variation in the data and can be used to separate
main subpopulations downstream without impacting the identification of smaller subpop-
ulations®®. After HVG selection, the dimensions of the data set can be further reduced
by dimensionality reduction algorithms that aim to summarise and visualise the expres-
sion matrix in a low-dimensional space such as principal component analysis (PCA)®.
PCA is a linear approach that aims to summarise a dataset via its top N principal com-
ponents namely orthogonal planes that are statistically uncorrelated perpendicular axes

drawn through the gene expression data that captures distinct non-overlapping sources

of variability®.
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1.3.6 Dimensionality Reduction for sc-RNA visualisation

Although PCA fails to capture the structure of the data when compared to non-linear
methods it is a pre-processing step to pass the embeddings for non-linear dimensional-
ity reduction visualisation techniques such as t-SNE (t-distributed stochastic neighbour
embedding)? or UMAP (Uniform Manifold Approximation and Projection)! and can
adequately summarise key differences in the data®. t-SNE is widely used for visualiz-
ing single-cell RNA-seq data in two or three dimensions and converts pairwise distances
between cells into probabilities that reflect similarity, then optimises the distances in a
low-dimensional embedding that preserves local neighbourhood relationships while main-
taining local structure rather than global distances®“°. UMAP is a newer dimensionality
reduction method that builds a k-nearest neighbour (kNN) graph of local relationships
in the high-dimensional space and then projects it in a low-dimensional embedding”'. A
k-nearest neighbour (kNN) graph is a mathematical representation of the local similarity
structure between cells in a scRNA dataset. Each cell is treated as a node and is connected
by edges to its k most similar neighbours, usually determined by using Euclidean or co-
sine distance in the PCA space”?. The parameter k controls the neighbourhood size, with
smaller values emphasising very local relationships and larger values capturing broader
structures at the expense of fine-grained resolution. For example, if we set k = 3, the kNN
graph would take each cell and find its 3 closest neighbours, iteratively forming a distance
graph that preserves the high-dimensional topology of the dataset. In contrast to t-SNE,
the objective of UMAP is to preserve both local and global structure, facilitating the
representation of continuous biological processes, such as cell differentiation??. Non-linear
dimensionality reduction methods such as t-SNE and UMAP have become the stand-
ard in visualising scRNA-seq data however, there is still scepticism about the reliability
and interpretability of high-dimensional data projected in low-dimensional embeddings.
When projecting high-dimensional gene expression data into two or three dimensions, in-
evitably we lose information and introduce distortions in both local and global structure.
Thus, neighbourhood relationships between cells in the lower-dimensional space often

differ significantly from those in the original high-dimensional space®®. This can lead to
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biological misinterpretation of cell types that appear to be transcriptionally similar but
are distinct subpopulations. Therefore, although these techniques are the accepted prac-
tice, low-dimensional embeddings serve only as a useful visualisation tool and distances

should not be solely interpreted as biological similarity.

1.3.7 Clustering

The next stage of the analysis pipeline is to group cells with similar transcriptional pro-
files to identify distinct cell types, states, or subpopulations within heterogeneous tis-
sues, a process called clustering®. Clustering algorithms exist in many flavours such as
partition-based methods such as k-means clustering? or density-based approaches such
as DBSCAN6. However, the most popular and widely used are graph-based clustering
approaches such as Louvain or Leiden clustering as they are less computationally intensive
and are scalable for large scRNA datasets. The Louvain algorithm works by iteratively
optimising a modularity function, that defines how well a graph is split into clusters,
grouping nodes (cells) into distinct communities that maximize within-cluster connectiv-
ity. However, it suffers from a known limitation where some resulting clusters may be
poorly connected or fragmented internally, leading to suboptimal partitions””. The Leiden
algorithm was introduced as an improvement to handle the partial clustering instability
in Louvain clustering by adding an additional step that merges and splits sub-clusters
based on their internal connectivity”®. The optimised modularity function includes a res-
olution parameter, where the user can choose the granularity of the cluster partitions. By
altering this parameter the lower the resolution the more granular the clusters will be,
the higher the resolution the more finer the clusters will be but are subject to patterns
emrging that are noise-driven®’. Once cells have been clustered, transcriptionally distinct
subpopulations are revealed that can then be interrogated at the gene level to discover

cellular heterogeneity, differential gene expression and trajectory inference. However, the
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results of the clustering can be sensitive to the upstream steps of the analysis such as
normalisation, reduction of dimensionality, and the chosen parameters of the methods®®.
Therefore, clustering should be complemented by marker gene validation and biological

knowledge to ensure that identified populations are meaningful.

1.3.8 Integration and Batch Correction

The above steps are sufficient when analysing data that may come from a single sample
or donor, however, most single cell studies require the analysis of multiple samples de-
riving from different patient-donors, different preparation protocols or disease conditions.
Each of these factors contribute technical differences, also known as batch effects, which
need to be corrected for as they can obscure true biological signal and lead to misleading
clustering or downstream differentially expressed genes®. There have been many differ-
ent methods developed for integration of sScRNA data, the most common being canonical
correlation analysis (CCA)'® and Harmony!'®! which perform well for simple integration
tasks with straightforward batch effects'?. CCA implements an anchor-based strategy
where pairs of transcriptionally similar cells from the different datasets are used to com-
pute a non-linear transformation to the data that is projected into a shared integrated
space'%. Harmony models batch effects in the PCA space as additive factors and corrects

101 Deep learning

them through aligning cells with similar biological profiles across batches
integration methods have emerged such as scVI (single-cell Variational Inference) which
uses a variational autoencoder (VAE) to probabilistically model gene expression counts
to integrate cells from different batches into a harmonized latent space using batch in-

104 The above are examples of unsupervised integration

formation as a latent variable
methods that require no prior labels for the integration task, however there are tools that
can leverage this information and perform semi-supervised integration. One example is
scANVI'® which extends scVI by incorporating partial cell type labels for better align-
ment and label transfer, another is STACAS that leverages cell type label information to

integrate datasets with partial population overlap which preserves dataset-specific biology
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while still aligning common populations!'?®. Despite extensive tool development to handle
batch correction in single cell data, benchmarking single-cell integration methods remains
challenging due to the lack of universally accepted benchmark metrics to measure the
efficiency of the integration. This is mainly derived from the absence of a ground truth in
in biological data, making it difficult to objectively evaluate whether integration preserves
or distorts underlying biology'%”. Another limitation is the confounding of batch effects
with biological variation in datasets. If cell type or condition is correlated with batch,
integration methods may remove true biological signals or under-correct for batch effects.
Finally, evaluation metrics to measure the efficiency of an integration method can differ
substantially and prioritise different aspects of integrations such as batch removal or pre-
serving biological context. There is still ambiguity of which method to use depending on

the biological question at hand, and the inherent properties of the scRNA dataset!07:108,

1.3.9 Cell type classification and composition

Once integration and clustering have been performed, we can now identify what cell
populations are present in the scRNA data based on their gene expression profile. This
process can be performed in a number of different ways that can be categories into un-
supervised, semi-supervised, or supervised approaches. In unsupervised classification, the
clusters are annotated post-hoc using top marker gene expression, by identifying genes
that are highly expressed in each cluster and matching them to known cell type markers
from literature or public databases?”. This approach is flexible and allows for the discov-
ery of novel or unexpected populations, but it depends heavily on correct interpretation,
time intensive and is sensitive to clustering resolution. Conversely, supervised cell type
classification methods rely on a reference dataset in which the cell type labels are already
known. Popular tools such as SingleR'%, scPred'? typically involve mapping query cells
into a shared feature space, for example the PCA space, with the reference and assigning
the most likely label based on a threshold similarity. Supervised classification is generally

faster and more reproducible than manual annotation, but it depends on the quality of
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the reference dataset, and may mislabel cells that are not represented in the reference.
Lastly, semi-supervised approaches combine both approaches by using labelled reference
data to guide the annotation of shared populations, while allowing for de-novo discovery

1105

of novel or dataset-specific cell types. Tools such as scANV and Seurat’s reference

103 allow users to integrate a labelled atlas with new data and transfer cell type

mapping
labels via kNN graphs in a shared embedding space. These methods also provide con-
fidence scores for predictions, to distinguish confidently labelled cells from ambiguous
or novel populations. Once we have identified what cell type populations are present in
our data we can visualise this in terms of relative proportions to understand what cell

type populations are changing across the different co-variates of our data such as disease

condition or patient-to-patient variability.

1.3.10 Pseudotime and velocity

For datasets that capture a dynamic biological process such as cell type development
or parasitic life cycles we can implement methods such as pseudotime and RNA velo-
city to reconstruct and order cells along the process using their transcriptional profiles.
Pseudotime refers to a latent, continuous variable of arbritary time that approximates
the temporal ordering of cells along a biological process—such as differentiation—based
on their transcriptional similarity'!!. Pseudotime algorithms typically leverage the low
dimensional space of scRNA data like the PCA space and then construct a graph or
trajectory that connects cells in this space. Two popular methods are Monocle which con-
structs a minimum spanning tree to represent cell state transitions and Slingshot that
fits simultaneous smooth curves (lineages) through low-dimensional embeddings, using
cluster centroids as anchors' '3 To extend pseudotime analysis RNA velocity methods
can infer the transcriptional dynamics and directionality of each cell using the abundance
of unspliced and spliced transcripts''4. Newly transcribed (unspliced) RNA represents the
up-regulation phase of gene expression, while spliced RNA represents the steady-state or

decay phase. RNA velocity methods such as Velocyto, scVelo and CellRank can model
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splicing kinetics, to estimate the directionality of a differentiation process, identify ter-
minal and initial cell state populations and key genes that drive these processes' 4117
By leveraging the information from RNA velocity and pseudotemporal ordering we can

gain insight beyond the static snapshot of scRNA data and estimate RNA kinetics and

cell differentiation processes.

1.3.11 Differential expression and functional analysis

When we have identified cell type populations we can perform differential expression (DE)
analysis on the raw normalised count data to identify genes whose expression levels vary
significantly between groups, such as clusters, conditions, or pseudotime lineages. Unlike
bulk RNA-seq, scRNA-seq data is sparse, overdispersed, and has a high dropout rate,
requiring specialised statistical models to account for the gene expression distribution.
Common cell-level DE approaches include non-parametric tests such as the Wilcoxon
rank-sum test or MAST which is a generalised mixed effect model that observes expres-
sion using a hurdle model to account for the bimodal distribution of zero and non-zero
values”” 118, Pseudobulk DE can also be performed where by aggregating counts across
cells from the same group or sample can mitigate technical noise, the impact of dro-
pouts and overdispersion''”. By creating pseudo-bulk profiles from scRNA data we can
implement bulk-RNA DE methods such as DESeq2'?’, edgeR'?! and limma'?? which
yield more reliable p-values and better control of false discovery rates compared to single
cell-level methods that often underestimate variance!?3. However, differential expression
is an open-ended problem in scRNA analysis and the consensus between different dif-
ferential expression methods is remarkably low!?4125  Current methods for DE analysis
in single-cell RNA-seq continue have statistical trade-offs between the true positive rate
(TPR) and precision. Methods that are optimised for high TPR tend to identify a larger
number of genes as differentially expressed, but this comes at the cost of an increased
rate of false positives, for example a pitfall of the MAST algorithm. On the other hand,

approaches that prioritise high precision may fail to detect subtle differences, resulting in
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123 a9 seen in methods that

lower TPR and potentially missing biologically relevant genes
implement pseudobulk counts. Pseudoreplication bias is the key driver of this, where in-
dividual cells, rather than biological replicates, are treated as independent observations.
This violates a key assumption of standard statistical tests and leads to a substantial
inflation of the false discovery rate (FDR), as cells derived from the same individual or
sample can share biological and technical variance'?®. Thus, selection of DE methods
is critical to ensure robust statistical inference of genes that are true biological signal
and not false positives. Once differentially expressed genes are identified, functional en-
richment analysis is used to interpret their biological pathways and mechanisms. Tools
such as Gene Ontology (GO) enrichment, KEGG pathway analysis, and Reactome path-
way mapping can identify over-represented biological processes, molecular functions, and
pathways. In single-cell workflows, this is often facilitated by packages such as cluster-
Profiler'?”. Alternatively, methods such as Gene Set Enrichment Analysis (GSEA) can be
applied directly to ranked gene lists, either by log-fold change or p-values, allowing for de-
tection of coordinated gene set expression without relying on strict DE thresholds'?®. For
more context-specific analyses, tools such as AUCell'* and UCell'3" GSVA!3! or Seurat’s
gene module scoring'? can score the activity of gene sets at the single-cell level such as
interferon responses. For example, the Seurat’s gene module scoring function computes
a cell-wise average expression of a target gene set, subtracting the average expression
of control gene sets with matched expression bins to account for background variation.
Newer tools exist such as PROGENy!33 DoRothEA™413% and decoupleR'™% that can
infer pathway and transcription factor activity based on downstream targets. Together,
these methods enable the interpretation of cellular functions and gene regulatory programs

that drive transcriptional heterogeneity in single-cell data.
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1.4 Introduction to cellular interac-

tions and inference methods

Lastly, another functional analysis that can be completed in scRNA data analysis is
the inference of cellular communications, the main focus of this thesis. Cell-cell interac-
tions (CCI) leverage many diverse molecules to coordinate a response across tissues in
both homeostasis and disease such as ligands, receptors, structural proteins and metabol-
ites. Signalling pathways driving cell-cell communications are mediated by various pro-
tein interactions for example between ligand-receptor, receptor-receptor and extracellular
matrix-receptors'®’. Downstream signalling occurs in ‘receiver’ cells that are expressing
a cognate surface receptor to a given ‘sender’ cell triggering a change in transcription
factor activity and gene expression'"138 . Understanding how the modified gene response
ultimately leads to altered interactions between the cell and its native microenvironment,
can provide invaluable insight into functional pathways that contribute to disease and
developmental processes'37. CCI inference can be achieved by using the gene expression
levels of a given ligand and its corresponding receptor as an indirect measure of protein
expression. Many computational tools have been developed utilising manually curated
L-R databases and statistical methods to quantitively evaluate the probability of two cell

types interacting based on this assumption (Figure 1.2).
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Figure 1.2: Graphical schematic showing an overview of cellular interaction inference. A)
Showing the different types of cellular interactions, paracrine where the cell releases ligand
received on the receptor of another cell. Juxtacrine where the interaction is cell-to-cell
contact. Autocrine where the cell is releasing ligand that is received on its own receptor.
Endocrine where the ligand is released into the vasculature and is received by the receptor
of a cell. B) Figure demonstrating the interconnectivity of cellular interaction databases
that contain a priori knowledge, figure taken from Dimitrov et al'3? C) Schematic showing
the expression is taken over the average expression of a cluster. D) Statistical test usually
based on a thresholding of expression of ligand and receptor in cell types and assigned
a significance from techniques such as permutation-testing. E) Spatial validation where
applicable by projecting expression into space. Overview figure created in PowerPoint,
using icons from the BioRender library.

1.4.1 L-R Databases

Ligand-receptor (L-R) interaction databases provide the foundation of cellular inference
by providing a priori knowledge from curated experimentally validated or computation-
ally predicted ligand-receptor pairs. These databases often include additional metadata

about ligand receptor pairs such as complex formation, subunit composition, and func-
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tional pathway information. There are general biological databases such as Reactome*?,

KEGGML142 and STRING!? that feed into the general framework of ligand-receptor
databases but also manually curated databases such as CellPhoneDB'* Ramilowski
(FANTOM5)'® and CellChatDB!6. Moreover, OmniPath'4” provides a cellular inter-
action database that encompasses all the mentioned database sources, allowing the user
to select particular databases of interest, or filter for relevant interactions. Many inter-
action inference methods incorporate one or multiple L-R databases, usually tailored for

mouse or human interactions.

1.4.2 scRNA-seq cellular inference methods

The most popular cell-cell communication inference tools use a permutation-based ap-
proach to identify putative ligand-receptor interactions. Firstly, a communication score for
each L-R pair is computed based on the average expression of a given ligand and receptor
gene across a cell cluster and then a significance value is obtained through cluster label
permutation. Popular permutation-based packages like CellPhoneDB!*8, CellChat!*® and
ICELLNET! also consider multimeric protein complexes, a biological aspect of CCI
that had not addressed. Network based methods use properties of connections between
genes involved in ligand-receptor signalling to build networks of interaction relationships.
NicheNet'? and SoptSC™! not only infer CCI through gene expression networks but also
take into account co-expression of downstream signalling target genes when generating an
interaction score for a given L-R. To handle more complex experimental designs such as
multi-patient multi-condition cohorts NicheNet has been extended to MultiNicheNet!??
which leverages differentially expressed ligand-receptor interactions while taking into con-
sideration experimental design such as multiple samples, conditions and batches. Recently,

153 "which uses a complex math-

tensor-based tools have emerged, for example scTensor
ematical model to predict L-R interactions from matrix operations. The tool considers
all interacting cell pairs simultaneously to model a many-to-many relationship of L-R in-

teractions that can span across multiple cell-type pairs, rather than alternative packages
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that assume L-R co-expression is one-to-one'®"193. Furthermore, emergence of CCI tools
that aim to putative L-R interaction from trajectory inference methods may allow insight
into how cell communication is changing over time or through dynamic developmental
processes. TraSig!®* aims to utilise scRNA information to characterise CCI over dynamic
cell processes such as immune response modelling whereby using average expression of L-R,
genes is inadequate to reflect changes in cellular communication along a trajectory. Most
popular cellular inference tools are written in R, however LIANA+15 a Python based
cellular inference tool aims to bring together tools and databases in a comprehensive Py-
thon framework where the user has the flexibility to choose a singlular or multiple cellular
inference methods and compare their agreement similarity and overlap. Although CCI
tools are becoming more popular in facilitating mechanisms of disease one of the biggest
caveats is that protein abundance does not correlate directly with transcript expression.
CCI packages assume that gene expression reflects protein abundance and that from this
inferred protein abundance we can relate it to protein-protein interaction (PPI) strength
ignoring aspects such as post-translational modifications. This aspect has been mitigated
by packages such as NicheNetR and CellChat that use protein expression datasets to
optimise their framework. Another drawback to inference of CCI from gene expression
is that cell signalling is spatially constrained, a pivotal dimension that is not preserved
in scRNA-seq data. Interacting cells are usually in close proximity to each other due to
limited spatial diffusivity of the expressed ligand, or to achieve activation through phys-
ical contact with adjacent cells!?®. An overview of the tools mentioned here is shown in

Figure 1.3.
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Tool Method Interaction inference Features Language
CellphoneDB Permutation-based Computes L-R score and assigns Includes multimeric protein Python
significance using cluster-label complexes and has a comprehensive
permutation database
CellChat Permutation-based Computes L-R score and assigns Includes multimeric protein R
significance using cluster-label complexes and contains extensive
permutation visualisation functions
ICELLNET Permutation-based Computes L-R score and assigns Can be used on bulk and single cell RNA R
significance using cluster-label datasets
permutation
NicheNet Network-based Constructs gene networks and Leverages downstream targets to infer the R
downstream targets to prioritise L-R importance of a cellular interaction
SoptSC Network-based Constructs gene networks and Leverages downstream targets and builds MATLAB/R
downstream targets to prioritise L-R cell-level and pathway level interaction
networks
MultiNicheNet Network-based Uses differential expression accounting Performs differential expression to R
for co-variates then constructs gene account for multi-sample/multi-condition
networks and downstream targets to experimental designs
prioritise L-R
scTensor Tensor-based Implements tensor/matrix operations to Considers many-to-many relationships R
infer cellular interactions
TraSig Trajectory-based Uses trajectories and pseudotime to Models dynamic CCl processes Python
order interactions
LIANA+ Framework Wrapper for multiple CCl packages and Allows freedom to choose/compare Python
databases different CCl methods and databases

Figure 1.3: Table showing an overview of mentioned cellular interaction inference methods.
Including the statistical basis for the tool, how it infers interactions, features of the tool
and the implemented language.

The output and visualisation strategies of cellular interaction inference tools are widely
conserved and are shown in Figure 1.4. Cellular interaction results are presented in a
tabular data frame and contain fields such as sender/source, i.e. the cell type that is
expressing the ligand, receiver/target i.e the cell type that is expressing the receptor,
the ligand /receptor, an interaction metric such as mean expression of the interaction or
communication probability, a p-value for significance and functional information. Popular
visualisations of cellular interactions consist of a dotplot or circos plot showing interact-
ing cell types and ligand-receptor pairs, a heatmap showing the number or strength of
interactions. Other visualisations can use low-dimensional or spatial embeddings such as

projecting the ligand-receptor expression back to the UMAP or spatial coordinates.
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Figure 1.4: Graphical schematic showing the key output and visualisations of cellular
interactions. Output of interactions is a tabular data frame containing fields pertaining
to quantitive metrics of each interaction per row. Visualisations include a dotplot, circos
plot, heatmap, Upset plot, and contextual visualisation such as ligand /receptor expression
in space or in the UMAP space. Overview figure created in PowerPoint, using icons from
the BioRender library.
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1.5 Introduction to spatial technolo-

gies

1.5.1 Spatial Transcriptomics

Spatial transcriptomics (ST) and proteomics enable the mapping of gene and protein ex-
pression within the spatial context of intact tissues, allowing us to molecularly profile cells
in their native spatial context. Early low-plex methods such as RNAscope use fluorescence
in situ hybridization (FISH) to detect a small number of transcripts (typically less than 20)
at a single-molecule resolution, facilitating validation of specific targets such as ligand and
receptor expression with high precision'®%. Similarly, low-plex proteomic techniques such
as imaging mass cytometry (IMC) extends multiplexing to approximately 40-50 proteins
by combining metal-conjugated antibodies with laser ablation and mass spectrometry, al-
lowing for spatial proteomic profiling at subcellular resolution'®”. These techniques offer
a mechanism to cross-validate findings from cellular inference analysis derived from single
cell transcriptomics at a high spatial resolution but are limited in throughput and avail-
able targets. High-plex spatial methods have emerged that can profile thousands of genes
simultaneously. Technologies such as 10x Genomics Visium combine spatially barcoded
oligonucleotide arrays with RNA-seq and histological imaging to capture the transcrip-
tome across tissue sections at near-single-cell resolution, enabling whole-transcriptome
analysis while preserving spatial information'®®. Each Visium slide contains four capture
areas, each comprising of 5,000 spots (each ~55pm in diameter and spaced ~100pm
apart), where each spot is densely packed with oligonucleotides that contain a spatial
barcode, a unique molecular identifier (UMI), and a poly(dT) tail. The tissue is then per-
meabilised to release the mRNA while preserving tissue structure. Released transcripts
hybridise to the poly(dT) capture probes on the spots that are located directly under-

neath the tissue. The spatial barcode on each probe thus tags the mRNA according to its
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position in the tissue so that when the output gene expression matrices are reconstructed,
each row represents a gene and each column a spot. Then by overlaying the histological
image and spot coordinates, we can visualise whole transcriptome spatial gene expression
patterns across the tissue!®”. Other pseudo-bulk high-plex spatial platforms exist such as
NanoString’s GeoMx Digital Spatial Profiler (DSP) that uses UV-cleaving oligonucleotide
barcodes from selected regions of interest (ROIs) to detect RNA or protein probes'®.
NanoString’s CosMx Spatial Molecular Imager (SMI) and 10x Genomics Xenium are the
latest generation of in-situ spatial transcriptomics platforms that enable high-plex RNA
profiling with true single-cell and subcellular resolution. Both platforms interrogate hun-
dreds to thousands of RNA targets directly in intact tissue sections without requiring
tissue dissociation or capture arrays, thus preserving spatial context while achieving cel-
lular granularity. CosMx operates using a multiplexed fluorescence imaging strategy, in
which RNA targets are detected by hybridisation of oligonucleotide probes that contain
sequence-specific barcodes. These barcodes are revealed over multiple iterative cycles of
fluorescent imaging and probe stripping, with each cycle detecting a subset of targets
using combinatorial barcoding. CosMx currently supports up to 6,000 genes per assay
in both fresh-frozen and FFPE tissues, with additional support for multiplexed protein
detection'®!. In contrast, Xenium employs a hybridisation-based cyclic readout that de-
tects RNA molecules using padlock probes followed by rolling-circle amplification (RCA)
to generate spatially localised fluorescent amplicons that are then decoded over multiple

162 Tissue sections are stained with DAPI and optional membrane mark-

imaging rounds
ers, and image-based segmentation is combined with spatial transcript quantification to

output cell-by-gene matrices with spatial coordinates.
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1.5.2 Spatial Proteomics

Spatial proteomics encompasses a diverse set of in situ protein profiling technologies,
many of which evolved from immunohistochemistry and iterative imaging techniques'3.
Cyclic Immunofluorescence (CycIF) implement repeated rounds of antibody staining and
imaging to measure up to 40-100 proteins while preserving tissue morphology!'%*. CO-
DEX (Co-Detection by Indexing) uses DNA-barcoded antibodies and iterative fluorophore
read-outs to achieve 50-60 protein targets without destruction of the tissue, allowing for
deep mapping of cell types in a range of FFPE or fresh-frozen tissue samples!%>. Other
techniques combine spectrometry with antibody binding such as Multiplexed Ion Beam
Imaging (MIBI-TOF)'66  that quantifies proteins in their spatial context by using isotope-
labelled antibodies detected by time-of-flight mass spectrometry, providing subcellular
resolution for 40-plex panels. Another method, Imaging Mass Cytometry (IMC) similarly
uses metal-conjugated antibodies but detects them using laser ablation coupled to mass
cytometry, allowing the profiling of 30-40+ proteins at cellular resolution with minimal
spectral noise deriving from autofluorescence'®”. These techniques have allowed the pro-

168 and neurode-

teomic profiling of cell type compositions of tumours'?, psoriatic arthritis
generative disease'%’. More recently, high-resolution imaging mass cytometry (HR-IMC)
has emerged to spatially profile proteins within their subcellular spatial context such as
nuclei and mitochondria! 7. This platform detected chemotherapy-induced perturbations
of patient-derived ovarian cancer cells that was previously undetected with conventional
IMC'70. Spatial proteomic technologies however, share a major caveat in the limited
number of antigens they are able to profile, which is unrepresentative of the complete
complexity of the proteome in a cell or tissue. When considering protein processes, the
antigens profile may still not consider biological processes such as alternative splicing and

post-translational modifications!7 172,



1.5. Introduction to spatial technologies 34

1.5.3 Additional analysis steps in spatial technologies

Spatial technologies, both transcriptomic and proteomic, introduce some analysis steps
that differ from standard single-cell RNA-seq (scRNA-seq) due to the addition of the spa-
tial tissue axis. While both modalities begin with normalisation, dimensionality reduction,
and clustering, ST data require additional image integration and spatial quality control
steps (Figure 1.5). In this section 10X technologies will be focused on as these have been
used in the thesis, however fundamental concepts can also be applied to ST methods from

other platforms.
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Figure 1.5: Graphical schematic showing the key analysis steps of a spatial analysis
pipeline. Preprocessing of spatial data encapsulates steps such as cell segmentation and
steps similar to single cell RNA analysis such as normalisation, batch correction and
dimensionality reduction. Additional analysis steps are outlined using variable genes to
cluster in the expression space and spatially variable genes to cluster in the spatial con-
text, neighbourhood analysis and niche identification, cellular deconvolution for pseudo-
buk spatial data, spatially aware cellular communications inference, and image analysis.
Overview figure created in PowerPoint, using icons from the BioRender library.
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1.5.4 Cell Segmentation

The main aim of cell segmentation is to identify single-cell boundaries between cells and
is essential in spatial transcriptomics as transcripts that have spatial coordinates must
be assigned to individual cells to construct the cell-by-gene matrix. There are two main
approaches for cell segmentation algorithms, the first being image-based approaches and
the second being transcript-based. Cellpose is a generalist deep-learning method that pre-
dicts object probabilities from nuclear DAPI and cell membrane staining to reconstruct
cell masks from fluorescence images' ™ 17 but does not assign transcripts to cells. An-
other algorithm, Mesmer, is a large-scale, supervised whole-cell segmentation model that
integrates nuclear and cytoplasmic staining in tissue sections, and leverages existing an-
notated histology datasets'®. In contrast, Baysor is based on transcript information and
fits a Bayesian mixture model over transcript distribution across the tissue along with
nuclei DAPI staining to infer cell assignments and boundaries making it particularly use-
ful when the tissue organisation is dense!””. In practice, these methods are complementary
and can be used together such as image-based models like Cellpose or Mesmer to gain in-
formation on image staining paired with transcript-based approaches such as Baysor that
can leverage the spatial patterning of transcripts themselves. More recently combinatory
approaches have emerged such as segger which is a graph neural network (GNN)-based
method that utilises both image and transcript information to segment subcellular spa-
tial transcriptomic datal™. The question of cell segmentation is an active area of tool
development and impacts all downstream analysis in particular cellular communication
as misinformed segmentation will impact cell distances and boundaries. Other strategies
are being developed such as multi-modal segmentation provided by 10X Genomics that
uses protein markers to delineate the nuclear, interior and boundary regions of a cell
and uses a deep learning model paired with nuclear expansion to segment cells with cell

segmentation masks being output as part of the 10X Xenium workflow! ™,
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1.5.5 Quality Control

ST data require additional quality control metrics such as aligning the gene expression
matrix to histological images, filtering low-quality spots, and evaluating tissue coverage,
often through image-based QC metrics such as spot-tissue overlap. For probe-based tech-
nologies such as Xenium, aspects of the data such as low-confidence transcript assignment
must be examined that indicate unreliable transcripts resulting from non-specific binding
during hybridisation cycles, misreads in the decoding process, and poorly designed probes
that have a low signal-to-noise ratio. At the cellular level, QC metrics derived from the
segmentation output such as the number of transcripts per cell, number of genes, cell
area, and nucleus area are used to filter out low-quality or cells that may be artefacts.
For instance, cells with extremely low transcript counts, low gene complexity, or outlier
cell areas could indicate empty segments that do not contain a cell, tissue/cell debris,
or merged cells that the segmentation could not determine and should be removed from
downstream analysis. An additional technical artifact in Xenium data is the ’border ef-
fect’, which refers to reduced transcript detection accuracy around the edges of the tissue
section. Cells located near the tissue boundary are more likely to be partially captured
due to the physical limitations of tissue sectioning. Moreover, the efficiency of probe hy-
bridisation and transcript amplification is compromised at the tissue margins as a result of
uneven distribution of reagents or optical mistakes during imaging. These factors contrib-
ute to a higher rate of dropouts and an inflated number of zero-count genes in edge cells.
Additionally, segmentation algorithms often struggle to accurately segment incomplete or
irregularly shaped border cells, leading to over- or under-segmentation of the cells. Thus,
visual inspection of transcript density maps and spatial distributions of quality metrics
such as total transcripts and number of genes across the spatial axis can also help identify

and filter out affected regions!'%2.
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1.5.6 Spatially Variable Genes and Neighbourhood Analysis

In order to understand the spatial organisation of cell types within tissues we can identify
spatial niches using neighbourhood analysis. By leveraging the spatial information of
cells or spots, we can compute spatial graphs in which nodes represent cells and edges
define physical proximity, typically based on either a fixed radius or k-nearest neigh-
bour graph!®%8l The graphs provide information for identifying which cell-type pairs
co-occur more or less frequently than expected by chance, so we can detect biologic-
ally meaningful spatial associations or functional tissue microenvironments. Many tools
have been developed to identify spatial niches in ST data, such as network based meth-
ods like CellCharter'®? and BANKSY'®3 to deep learning methods that leverage graph

185 which applies

neural networks (GNNs) such as GraphST'®* and more recently scNiche
multiple GNNs to generate multi-view representations for characterising complex cellular
neighbourhoods. We can also observe which genes in the data are driving these cellular
neighbourhoods by identifying spatially variable genes (SVGs), which are genes whose ex-
pression exhibits spatial correlation across the tissue. Many tools have been developed to
identify SVGs such as SpatialDE'®0 that uses Gaussian processes, SPARK!®7 that imple-
ments generalised linear spatial models, and correlation distance-based methods such as
Moran’s I used by Seurat and Squidpy'®?. Together, these tools provide a comprehensive

framework for dissecting how gene expression and spatial proximity shape the architecture

of tissue microenvironments.

1.5.7 Cellular Deconvolution

In instances where you have low-resolution ST data the identification of cell types and
tissue niches may be challenging. For example, in technologies such as imaging mass cyto-
metry'®” we can use spatial information of potential interacting cells but at the cost of

cellular resolution due to limited marker panels. Conversely, technologies such as Visium,
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where you have full-transcriptome information but pseudobulk spots that contain multiple
different cell types it can be difficult to assign cell type information for niche and cellular
interaction discovery. Therefore, cellular deconvolution techniques that implement integ-
ration of scRNA-seq data and ST data can attempt to overcome these limitations by using
commonly measured genes to estimate a degree of similarity between the two datasets,
assign cell types to the spatial data and infer spatial origins of the scRNA-seq'3®. Machine
learning techniques are pivotal to the integration of scRNA-seq and ST datasets where
computational models can identify common structures in the high dimensional data and
project them into the same latent space for analysis. Many computational tools are under
development to achieve this using underlying machine learning networks to build mod-
els describing gene expression in spatial context. For example, stPlus'®® is a reference
based method that uses an autoencoder which enforces loss of information from the input
spatial and scRNA-seq datasets whereby the model is trained on the cell embeddings
of the scRNA-seq to predict gene expression in the ST dataset via a weighted k-nearest
neighbour. Another reference-based method is cell2location'®”, a Bayesian model, which
aims to integrate ST and scRNA datasets through estimation of cell type signatures from
scRNA data to then be used to decompose mRNA counts at a given spatial location
into the reference cell types. Other popular methods include, RCTD (Robust Cell Type
Decomposition) that models spot-level gene expression as a weighted combination of ref-
erence cell-type profiles!”? and Dampened Weighted Least Squares (DWLS) which uses
a constrained least-squares problem with dampening weights that reduce the impact of

highly expressed genes, allowing for more accurate estimation of both abundant and rare

191 192

cell types'”". Additionally, deep learning methods such as Tangram'”< have emerged that
integrate spatial context and graph-based embeddings to enhance resolution and spatial
accuracy of cell-type mapping. Thus, these deconvolution methods enable high-resolution
reconstruction of tissue architecture from low-resolution spatial data, facilitating down-
stream analysis of cell-type localisation, tissue niches and most importantly cellular in-

teractions.
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1.5.8 Spatial cellular inference methods

Various tools have been developed or extended to incorporate spatial information in cel-

146 now includes a spatial mode in which users can

lular inference for example, CellCha
incorporate cell or spot coordinates with a distance threshold to construct a spatial ad-
jacency matrix. The matrix is then used to filter or weight ligand-receptors so that only
interactions between spatially neighbouring cells are considered. Furthermore, version
2.0 of the CellChat database annotates ligands and receptors as either short-range or
long-range signalling, allowing more power to filter out false positives when spatial dis-
tances are available. In contrast, CellPhoneDB'#* does not currently implement native
spatial functionality, however, it allows for the definition of spatial niches prior to com-
puting interactions and infers interactions only on these neighbouring pairs. Tools such as
Giotto!®!, stLearn'®?, and Squidpy'®” rely on spatial graphs or cell adjacency matrices to
filter ligand-receptor interactions that occur between physically adjacent cell types. More
complex methods have been developed to model spatial gene regulation and cellular in-
teractions beyond classical ligand-receptor co-expression utilising spatial transcriptomic
data only. For example, SpatialDM!?* models ligand and receptor gene expression as spa-
tially variable molecular interactions to test for significant spatial co-occurrence between
gene pairs that co-occur in space more than expected by chance. The tool also tests for
co-occuring genes across conditions allowing for differential gene pair expression. Addi-
tionally there are correlation-based tools such as SVCA, which breaks down variable gene
expression into spatial and cell-intrinsic components, to allow the quantification of how the
microenvironment has an effect on gene expression'?. Another tool is SpaCeNet'?® which
constructs spatial gene regulatory networks by estimating partial correlations between
genes across neighbouring cells, capturing both intra and intercellular interactions. Fi-
nally, spaCI'¥7 applies causal inference to spatial transcriptomics data, modelling how
the gene expression of one cell influences nearby cells using various graphical models and
Granger causality. Most recently however, NicheCompass'?® has been developed which is
a graph-based deep-learning framework that learns interpretable cell embeddings based

on intercellular communications from spatial transcriptomics, both spot-based and single
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cell based, and multi-omics data. By constructing neighbourhood graphs based on phys-
ical proximity and leveraging these interaction embeddings, NicheCompass enables the
quantitative identification and characterisation of spatial niches that are driven by cellular
communications. The development of cellular inference methods based on spatial tran-
scriptomics is still an active area in the field, and over time many methods will emerge
that will not only refine cellular inference of ST data but extend to other technologies

such as spatial proteomics and multiomics.

1.6 Introduction to single cell visu-

alisation tools

As demonstrated above, leveraging both modalities of data to investigate cellular interac-
tions not only has unveiled disease mechanisms but also provides an exciting venture into
other areas of immunobiology. Currently, with the development of various methodologies
and tools to analyse single cell and spatial transcriptomics data, the need for accessible
unified platforms to analyse data following best practices is critical. Many studies have
focused on benchmarking tools that aim to focus on a common task such as integration,
differential expression and cellular interactions. However, there has been limited progress
in the development of interactive visualisation tools that require no coding experience for
bench biologists. Attempts have been made to document and track the number of tools
developed for single cell analysis such as scrna-tools.org!® and The Awesome Single Cell
repository??? that are manually curated databases derived from preprints, publications
and software repositories?®!. As of 2022 there were almost 1,400 tools in the scRNA-tools
repository with speculation this would exceed 3,000 tools by the end of 2025 with an in-
creasing amount moving away from the R programming language and being implemented

1201

in Python. Zappia et al“”* speculate that could be down to a few different reasons, the first

being the scalability of R compared to Python in terms of memory and computational ef-
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ficiency. As the size and complexity of single cell and spatial datasets increases, sometimes
reaching millions of cells, machine learning approaches are becoming favourable usually
built in Python that can handle these types of analyses. Interestingly, another point they
discuss is the increased popularity in Python based scRNA analysis tools could be the
shift in researchers coming from a purely computational background that chose to develop
tools for scRNA and spatial analysis in the language that they prefer. This is echoed by
the fact that two thirds of analysis tools are not available from centralised software re-
positories such as CRAN, Bioconductor or PyPI and are only available on GitHub. This
trend of tool development in the field of single cell further perpetuates the barriers bench
biologist face when trying to implement these tools, if there is a lack of programming
knowledge or how to utilise repository websites such as GitHub. There are in some cases,
tools that are built around an existing framework including workflow managers such as
Snakemake?02:203 and Nextflow?** which aid in distribution and installation. However,
to properly address this issue, the community could shift their focus on developing tools
that bridge the gap between programmer and biologist by implementing interactive web
interfaces that allow biologists to explore their own single cell and spatial data. Out of
the documented tools in the scrna-tool database 78 of them were produced for visualising
single cell data however, only 13 of them contained some element of interactivity, and only

205 was tailored for cellular communication visualisation in single cell

one tool InterCellar
data. InterCellar is an Shinyapp that focuses on the visualisation of cellular interactions
where a fully preprocessed object and precomputed cellular interactions are uploaded,
and it provides multiple visualisation functionalities. The plots are interactive and aim
to facilitate bench biologists to explore their cellular interaction results however does not
extend to spatial technologies incorporating spatial information. Another tool that has
since been developed is ezSingleCell?’0 that extends their functionality beyond cellular
communications and incorporate spatial technologies in their analysis pipeline. ezSingle-
Cell provides multiple modules that focus on different analysis tasks such as differential
expression analysis, cell-cell communication and cellular deconvolution of spatial data. It

is distributed as a web-application that does not require installation and as a shinyApp

that can be installed by a user for offline-analysis. However, maintenance and distribution
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of these tools remains a challenge, such as the URL for ezSingleCell being inaccessible and
the GitHub repository containing little to no documentation about how the tool can be
implemented. In addition to this, the above tools are written and distributed in R, thus

bringing into question their scalability for large scale spatial and atlas-level datasets.

1.7 Aims and Objectives

This thesis aims to demonstrate how we can utilise cellular interactions to further elucidate
molecular mechanisms of action in infectious diseases such as COVID-19, which then
sparked the motivation to develop a visualisation tool to allow the ease of discovery of
these interactions, and application of cellular interaction inference using single cell and
spatial transcriptomic data to investigate shared pathways of inflammatory disease and

host responses during parasitic infection.
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1.7.1 Aim 1: Spatially resolved single-cell atlas unveils a distinct
cellular signature of fatal lung COVID-19 in a Malawian

population

1.7.2 Aim 2: cellXplore: a web tool to interactively explore cel-

lular interactions at the single cell resolution

1.7.3 Aim 3: Dissecting cellular interactions in big data: Contex-
tualising cellular interactions using atlas-level single cell

and sequencing based spatial transcriptomics

1.7.4 Publications

The majority of the work presented in this thesis has been published or is under review

as follows:

Chapter 1:

Spatially resolved single-cell atlas unveils a distinct cellular signature of fatal lung COVID-
19 in a Malawian population - Nature Medicine (2024).207

Chapter 3:

Human Fibroblast—Myeloid cell tissue atlas across lung, synovium, skin and heart - under
review in Arthritis € Rheumatology (2025).2%%

Chapter 3:

Spatial transcriptomics reveals recasting of signalling networks in the small intestine fol-
lowing tissue invasion by the helminth parasite Heligmosomoides polygyrus - under review

in Nature Communications (2025).2%



1.7. Aims and Objectives 44
Other published works where I have provided expertise of cellular interaction inference

include the study below, but was omitted from the thesis:

o Synovial tissue myeloid dendritic cell subsets exhibit distinct tissue-niche localization

and function in health and rheumatoid arthritis - Cell Immunity (2024).210



Chapter 2

Spatially resolved single-cell atlas

unveils a distinct cellular signature
of fatal lung COVID-19 in a

Malawian population

2.1 Abstract

Postmortem single-cell studies have transformed understanding of lower respiratory tract
diseases (LRTD) including COVID-19 but there is almost no data from African settings
where HIV, malaria and other environmental exposures may affect disease pathobiology
and treatment targets. This chapter presents the single cell analysis of lethal COVID-19
in a Malawi cohort in a multi-centre collaborative effort published in Nature Medicine?"".
We used histology and high-dimensional imaging to characterise fatal lung disease in
Malawian adults with (n=9) and without (n=7) COVID-19, and generated single-cell
transcriptomics data from lung, blood and nasal cells. Data integration with other co-
horts showed a conserved COVID-19 histopathological signature, driven by contrasting

immune and inflammatory mechanisms: in the Malawi cohort, by response to interferon-

gamma (IFN-y) in lung-resident alveolar macrophages, in USA and European cohorts

45
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by type I/III interferon responses, particularly in blood-derived monocytes. In addition
to this, our study provides open-source data resources of atlas level single cell data and
highlights the importance of studying the cellular mechanisms, in particular multi-modal
cellular inference, of disease in under-represented populations, indicating shared and dis-

tinct targets for treatment.

2.2 Introduction

There has been significant progress towards the creation of a human cell atlas utilising
scRNA-sequencing (scRNA-seq) and high-dimensional cellular imaging data!®2!!. The
human cell atlas is transforming our understanding of cells and their states in health
and disease and is rapidly becoming a major resource for the development of novel treat-
ments and vaccines?'?. There are currently single cell atlases such as the Tabula Muris!!
and the Tabula Sapiens?'? that aim to profile millions of single cells across multiple or-
gans. Furthermore, there are many reported COVID-19 atlases that aim to profile various
tissues at the single cell level in acute, chronic and fatal settings®*679214 Yet, data
within these human atlases is heavily biased towards populations in the Northern hemi-
sphere. Populations in sub-Saharan Africa (SSA) are particularly under-represented?!.
For the discovery of therapeutic targets, genetic and environmental factors in different
demographic populations may lead to important differences in cell development and cell-
compositions in different organs, thus effecting cellular responses to diseases, vaccines and

therapies?'%217. Capturing data from SSA populations is critical to assure that everyone

can benefit from the treatment advances derived from the human cell atlas.
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Previous single cell studies investigating the mechanisms into COVID-19 pathology have
indicated that immunomodulation plays a critical role in COVID-19 outcomes. Single-
cell data from lung tissue facilitated identification of specific immunomodulatory tar-
getg? H14:212.218,219 “ Anart from our high-dimensional imaging study from a Brazilian co-
hort??” these data are, thus far, exclusively from populations in Northern hemisphere,
similar to most clinical trial data validating their efficacy. For future waves or epidem-
ics of SARS-CoV?2 or related viruses, this knowledge gap needs to be addressed. Indeed,
given minimal intensive care, the benefit of preventing progression to or deterioration
from severe disease by immunomodulation is even more important in SSA due to under-
representation in the literature for immunomodulatory targets and socioeconomic factors
that impact healthcare. While immunomodulatory therapies can be lifesaving, they can
also be harmful??!. Immunomodulation has focused on two opposing strategies: aug-
menting the inflammatory response to aid viral clearance or attenuating inflammatory
response to reduce pathogenic hyperinflammation. Extensive studies in northern hemi-
sphere cohorts have established that, by the time patients present with life-threatening
illness, viral loads are declining, hyperinflammation generally predominates and thus anti-
inflammatory interventions are more effective??1:2?2. Given evidence that repeated expos-

ure to malaria and other parasitic infections can induce immune tolerance?* 229,

we
hypothesised that the balance may be different in patients in SSA where these infections
are more prevalent providing either a protective or more susceptible immune response.
While sometimes this clinical context may be immunoprotective, in those who progress
to severe disease, a tolerance-skewed response might blunt immune-mediated viral clear-
ance, leading to a more viral-driven pathology. However, the reverse is also possible. High
pathogen exposure can induce an accelerated inflammatory response on re-exposure to
pathogens?'%. Either scenario might impact cellular responses driving pathogenesis in the

lung and have important implications for informing which therapy may be effective in

SSA populations.
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To address some of these knowledge gaps we conducted an autopsy study in well-characterised
patients at a large public hospital in Malawi, a low-income country in SSA with high rates
of malaria, TB and HIV. We undertook detailed histopathological analysis and scRNA-
seq on lung, blood and nasal cells and imaging mass cytometry (IMC) to spatially resolve
the immune landscape of the lung. We conducted all tissue processing, cell dissociation
and scRNA-seq library preparation on site in Malawi, with much of the data prepared on
fresh samples. There are so far no studies from any settings that included characterisation
across all these modalities. Thus, to fully understand the context of our data in contrast
to other populations, we needed to use data from patient cohorts from different regions
of the world to enable comparisons (Figure 2.2). Taken together, our data highlight how
COVID-19 has a similar histopathological pattern in our SSA cohort to other Northern
and Southern Hemisphere cohorts. However, we found a contrasting immune response sig-
nature in the SSA cohort, driven by proliferation of lung-resident alveolar macrophages

and interferon gamma (IFN-y).

2.3 Methods

In this section, I will detail all of the methods used in this study both experimental
and analytical that relate to the single cell analysis and cellular interaction inference.
As a disclaimer, the sections pertaining to patient recruitment, autopsy procedure and
preparation of single cell /nuclei libraries were written by Dr. Christopher Moxon and can
be read in full in our Nature paper?’?, in addition to all of these steps being completed
by Dr. Moxon and his team lead by James Nyirenda in Malawi. All analysis involving the
imaging mass cytometry proteomic data was conducted by Dr. Joao Da Silva Filho at the
University of Glasgow and can also be found in more detail in the paper?’”. Orthogonal
validation staining using RNAscope was completed by Dr. Vanessa Herder at the Center
of Viral Research (CVR) at the University of Glasgow. All remaining analysis focusing

on the single cell including preprocessing, demultiplexing of samples, core analysis and
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cellular inference that are detailed in this method section is work carried out by myself and
will be the focus of this chapter with reference to work done by others where necessary.
Comprehensive methods of the work completed outside the scope of my own work can be

read in our paper?07.

2.3.1 Patient Recruitment

We recruited patients aged 45-75 admitted to Queen Elizabeth Central Hospital (QECH),
Blantyre between October 2020 and July 2021 during which there were two epidemiological
waves driven by different variants of SARS-CoV2: Beta (December 2020-February 2021)
and Delta (May-July 2021)%?%. Patients admitted with respiratory signs were routinely
tested for SARS-CoV2 at QECH. We recruited cases into three groups based on clinical
criteria: 1) a Covid-19 group (n=9) with clinical features suggesting acute respiratory
distress (ARDS, oxygen requirement and either respiratory signs on clinical examination
or chest x-ray changes or both) and who had at least one nasal swab positive for SARS-
CoV2 on admission; 2) A non-Covid-19 LRTD (lower respiratory tract disease) group
(n=>5) who had clinical signs of ARDS but were negative for SARS-CoV2 on admission
and during hospitalisation; 3) a no LRTD, COVID-19 negative group (n=2) who had
no oxygen requirement and no clinical signs of LRTD and for whom the admission and
any subsequent nasal swabs were negative for SARS-CoV2 on PCR (Figure 2.2). The
study only recruited cases who died between 12 midnight and 12 noon to minimise the

post-mortem interval and to avoid doing any autopsies at night.
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2.3.2 Minimally invasive autopsy

We used minimally invasive sampling (MITS) to conduct autopsies with large-bore needle
biopsies of organ samples rather than full autopsy®?’. Being more culturally acceptable,

MITS is widely used to determine cause of death in paediatric studies??" 2%

, showing good
concordance with full autopsy?%®. From our ongoing paediatric MITs studies in Malawi, we
adapted protocols for adult patients with Covid-19 to obtain tissue suitable for single cell
RNA-sequencing (scRNA-seq) and imaging mass cytometry (IMC) based on the protocol
from the Child Health and Mortality Prevention Surveillance (CHAMPS) network but
with adaptations. In particular, a larger calibre needle (11 gauge) was used for biopsies
to obtain larger tissue samples. Samples were taken from the brain from supraorbital
sampling from both left and right sides. From each lung, samples were taken from lower
middle and upper zones from a single entry-point, angling the needle to sample different
areas. Nasal cells were collected from the nasal inferior turbinate using curettes (ASL
Rhino-Pro, Arlington Scientific). Two curettes were collected from each nostril and the
cells placed immediately into ice cold Hypothermosol (StemCell). Cells were transported
on ice in a cold box immediately to the lab and were spun at 300g for 5 minutes either
for immediate processing for scRNA-seq or were stored in Cryostor 10. Nasal fluid was

collected using matrix strips (Nasosorption, Hunt Developments) where one strip was used

per nostril.
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2.3.3 Luminex Multiparameter Cytokine Assay

Cytokine levels were measured in plasma and nasal fluid samples using Luminex with
the Inflammation 20-Plex Human ProcartaPlexTM Panel (Thermofisher, EPX200-12185-
901) according to the manufacturers protocol and levels measured with a Luminex MagPix
device. Data were log, transformed and visualised with ComplexHeatmap?3? in R?3! using
a Z-score for each cytokine. For the statistical tests of genes associated with the IFN-y
pathway we used a Welch Two Sample t-test. No significant differences for those genes

were found between the Covid-19 and LRTD samples.

2.3.4 Dissociation of lung cells from frozen samples and single

nuclei preparation

Lung samples were dissociated both from fresh samples and from slow frozen samples
that had been stored in liquid nitrogen. Slow frozen cells were defrosted using a defrost-
ing protocol described previously. Fresh or defrosted frozen cells were then dissociated

232 Briefly, cells were dissociated in a buffer con-

adapting methods developed previously
taining 400mgml~! of Liberase DL (Sigma), 32 U/ml~! of DNAse I (Roche) and 1.5%
BSA in PBS (without calcium and magnesium). The tissue was put in buffer (4 times
weight:volume) in a GentleMACS C-tube (Miltenyi 130-096-334) minced with scissors and
then ran on a GentleMACS dissociator (130-093-235) on programme "C-lung 01__02". Dis-
sociation was achieved by warming tissue on an orbital shaker in a chamber at 37°C for
30 minutes and running "C-lung 01 02" twice more; once at 15 minutes and once at 30
minutes. Enzyme was neutralised by diluting with 10ml of ice cold 20% FBS with 32U /ml
of DNase and the sample was filtered through a 100-pum strainer (352360) and samples
were subsequently kept on ice with all centrifuge and antibody incubation steps at 4°C.

Cells were pelleted by spinning at 300g for 5 minutes and red cells removed by incubation

with ACK buffer for 5 minutes. For frozen cells debris were removed using a debris removal
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solution (Miltenyi, 130-109-398) according to the manufacturers protocol. Single nuclei
were prepared from snap frozen lung samples as described previously®. Briefly, frozen lung
tissue was kept on dry ice/liquid nitrogen until processing was started. Tissue was added
to a gentle MACS C-tube containing 2ml of freshly prepared nuclei extraction buffer which
contained RNAse inhibitors; 0.2 U/uL RNaseIN Plus RNAse inhibitor (Promega) and 0.1
U/uL SUPERasin RNAse inhibitor (Thermofisher scientific). Dissociation was achieved
by running the C-tube on GentleMACs dissociator on program ”"m_ spleen_ 01”7 for 1
minute. The sample was then filtered using a 40 uM strainer. The C-tube and strainer
were rinsed using a buffer containing 0.1% enzymatics RNAse inhibitor (Enzymatics).
Sample was then pelleted by spinning at 500g for 10 minutes at 40°C. Pellet was then
resuspended in 500u! of 1xST without RNAse Inhibitor. The sample was then filtered

using 35UM strainer, a 10 uL volume was loaded on haemocytometer for counting.

2.3.5 Single cell and single nuclei partitioning and library pre-

paration

10X 3’ 3v chemistry was used for all samples. For fresh lung samples we loaded 10,000 cells
into one channel of a 10X chip (1000120). For fresh nasal and blood samples we labelled
the nasal and blood samples with different hashtags and pooled them at a 1:1 ratio and
loaded 10,000 — 20,000 cells. For frozen nuclei and single cell samples we pooled samples
from 3-6 different cases aiming for equal ratios and loaded 20,000 — 40,000 cells per nuclei.
Libraries were prepared according to the manufacturers protocol and sequenced with an
[llumina NextSeq2000. To make these data available for analysis by others, reads were

submitted to ArrayExpress (E-MTAB-13544).


https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13544
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2.3.6 Single cell processing

2.3.6.1 Processing of the raw reads

5" scRNA-seq data along with the 3’ snRNA-seq runs were demultiplexed using Cell
Ranger®® 'mkfastq’. The reads were then aligned with Cell Ranger (v7.0) ‘count’ to gen-
erate transcript count matrices including those that mapped to intronic regions on the
genome. Transcript reads were mapped to the human GRCh38 reference genome which
was concatenated with the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2
isolate Wuhan-Hu-1, complete genome, GenBank MN908947.3) and HIV (human immun-
odeficiency virius 1, GenBank AF033819.3) genome as additional chromosomes aiming to

capture viral reads in our cohort.

2.3.6.2 Ambient RNA removal

To reduce potential noise driven from empty droplets or ambient RNA captured in our
samples we used the tool SoupX (v1.6.2)%. Data were read into R (v4.2)?3! including the
raw unfiltered expression matrices and clustering information required as input. Expres-

sion matrices for each sample were then corrected for and used for downstream analyses.


https://www.ncbi.nlm.nih.gov/search/all/?term=MN908947.3
https://www.ncbi.nlm.nih.gov/search/all/?term=AF033819.3
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2.3.6.3 Quality control and filtering

Data were analysed using the Seurat package (v4.3)'® with quality control carried out
on individual samples. Thresholding for mitochondrial genes that were expressed in our
cells allowed us to exclude dying cells and any doublets that may be present. In addition
to this, we chose to keep cells that were expressing more than 150 genes, to maximise

discovery of cell types that may express lower levels of genes.

2.3.6.4 Normalisation and variance stabilisation

After filtering away cells, the samples were merged and normalised using the SCTrans-
form() function, selecting the top 3,000 variable genes to drive the downstream clustering
and regressing out the effects of mitochondrial gene expression ribosomal gene expression.
The effect of cell cycle were also regressed out using the CellCycleScoring() function to

determine expression of cell cycle related genes across cells.

2.3.6.5 Integration

Integration of samples was performed by first running a principle component analysis
(PCA) on all merged data objects, the embeddings for which were then fed into the

standard Harmony (v0.1.1)!°! integration pipeline.
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2.3.6.6 Clustering and dimensionality reduction

Principle components for each integrated object were then visualised using the ElbowPlot()
function and the appropriate number of principle components were selected to be used to
generate the Uniform Manifold and Approximation projection (UMAP). The same PC’s
were used to determine the k-nearest neighbours for each cell for the shared nearest neigh-
bour (SNN) graph construction followed by clustering at varying resolutions depending

on the dataset.

2.3.6.7 Cluster marker identification and cell type annotation

Identification of cluster markers for cell type annotation for the lung and nasal datasets
were calculated by running FindAllMarkers() on the non-batch normalised expression val-

ues using the MAST differential expression algorithm''®

. We specified that genes must
be expressed in at least 25% of cells (min.pct = 0.25) with a log fold change of 0.25. Cell
types were manually annotated leveraging returned cluster marker genes and canonical
cell type markers reported from existing literature and curated datasets®*14. Cell type
clusters in the peripheral blood dataset were annotated using the consensus label transfer
algorithm SingleR (v2.0.0)'%. Cells in our cohort were mapped against the Azimuth Ref-
erence PBMC atlas'®?33 to obtain cell type label predictions. Cells with mapping scores
below 75% confidence were reanalysed and manually annotated using the cluster marker

identification steps described above. A majority of poorly mapped cells were reannotated

as neutrophils which were an absent cell type in the PBMC reference dataset.
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2.3.6.8 Gene ontology and pathway analysis

Differentially expressed (DE) genes across conditions were calculated using the FindMark-
ers() function using MAST. Genes were defined as DE with a significance threshold of
<0.05 and a log fold change threshold of 0.25. Gene set enrichment analysis (GSEA) was
done using the fgsea package?** to determine what pathways were enriched in COVID-19

out of the 50 canonical hallmark gene sets as described in Msigdb (v.7.5.1)128:235.236,

2.3.6.9 Module scoring

Gene module scoring was calculated using the AddModuleScore() function of gene sets
taken from MsigDB and AmiGO 2237239 Gene sets that were associated with the lambda
(G0O:0034342), alpha (GO:0035455), interferon beta (GO:0035456), interferon gamma
(G0O:0034341) and TNF (HALLMARK_ TNFA SIGNALING_VIA NFKB).

2.3.6.10 Cell-cell communication analysis

Inference of cellular communications was computed using the multinichenetR (v1.0.3)
package!®? that allows the prediction of interacting cells based on differentially expressed
genes across conditions. We set the minimum number of cells per sample/condition to 5
and searched for the top 250 targets with a log fold change cutoff of >0.5 being expressed

in at least 10% of cells.
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2.3.7 Hashtag Demultiplexing

Hashtag reads were quantified using CITE-seq-Count (v1.4.4)%*Y yielding a matrix con-
taining the hashtag counts per cell and subsequently demultiplexed using the consensus
calling algorithm cellHashR (v1.0.1)™. The following methods were tested BFFcluster™,
BFFraw™, GMM-Demux?*!', Seurat HTODemux'%’ and DropletUtils hashedDrops?42:243
to maximise accuracy of the identification of nasal and peripheral blood cells. Of the
methods tested, HTODemux resulted in the highest number of singlets which were then
selected for downstream analysis, filtering away doublets and cells that failed to be clas-

sified by the algorithm.

2.3.8 SNP splitting of multiplexed runs

Demultiplexing of combined sample runs were carried out using the Souporcell”” algorithm
to identify distinct genotypes and assign cells to different individuals. For each run, we
set the number of clusters (k) to the expected number of genotypes in the run (k=2-6),
and cell barcodes were assigned to each cluster. Cluster barcodes were then used to sub-
set the input BAM file across human leukocyte antigen (HLA) loci of the multiplexed
runs, under the assumption that these would be distinct regions of the genome for each

individual. Using Integrative Genomics Viewer (IGV)?44:245

, we visualized single nucle-
otide polymorphism (SNP) distributions at a set allele frequency of 0.2 and compared the
subset BAM files to BAM files from individual runs. Iteratively, Souporcell clusters were
assigned to samples through the following rationale: 1) matching SNP distributions to
independent sequencing runs, 2) through mapping to sex chromosomes or 3) through the
process of elimination where an independent sequencing run genotype was not available.
For some samples we found that multiple cells that had been allocated to a given indi-

vidual shared the same genotype, therefore confirming that the Souporcell algorithm had

failed to identify distinct genotypes for the number of patients we had multiplexed in our
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runs. To further investigate this, we prepared a test BAM file generated from barcodes
belonging to individual runs (Cosl1-L, Cos12-L, Cosl4-L and Cos16-L) and partitioned
the ratio of reads coming from each sample (0.5:2:5:10 respectively). This provided a
ground truth of expected number of cells for the Souporcell algorithm to classify into
the appropriate number of clusters (k=4). Repeating the above strategy, we observed
that the algorithm failed to classify cells belonging to the genotype with the lowest ratio.
Therefore, we concluded that where we had a low number of cells deriving from a case
within a multiplexed run due to technical limitations, there may not have been sufficient
information available for the SNP clustering algorithm to correctly identify the genotype.
In scenarios where Souporcell failed to identify the expected number of genomes, we as-
signed cluster barcodes to matching genotypes from independent sample runs regardless of
expected k. After successful demultiplexing, we identified which cells derived from which

patient and were able to proceed with downstream single-cell analyses as outlined above.

2.3.9 Lung Integration

The Human Lung Cell Atlas (HLCA)?# was downloaded from the cellxgene?*’ data
portal, containing over 2.4 million lung cells in health and disease, including those within
our cohort. The atlas was filtered down to exclude irrelevant datasets that were not dir-
ectly comparable to our cohort, retaining cells that were taken from the lung and lung
parenchyma. This included studies predominantly originating from the northern hemi-
sphere, observing the lung cellular landscape in COVID-19, pneumonia and absence of
lower respiratory tract disease. To mitigate the discordance of unique cell types included
within the HLCA we selected cell types that were broadly annotated at ann_ level 3
that harmonised with our analyses (AT1, AT2, EC arterial, EC capillary, EC venous,
Fibroblasts, Innate lymphoid cell, NK, Macrophages, Monocytes, T cell lineage). These
cell type populations included the immune compartment and stromal populations that
are pivotal for viral response in the lung. After setting these thresholds we yielded an

atlas consisting of over 1 million cells. To avoid lack of power for downstream analyses
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with our cohort, we randomly subsampled each cell type within each disease condition to
create a normalised atlas of 100,000 cells to integrate with our lung atlas. Both atlases
were normalised using SCTransform() regressing out potential confounding features such
as cell cycle effects, mitochondrial and ribosomal gene expression. Next, common vari-
able features were found between the two datasets using SelectIntegrationFeatures() set
at 3,000 genes. The datasets were then combined into a single object and were analysed
using the canonical analysis pipeline including generating PCA embeddings to form the
bases of integration by harmony!?'. UMAP coordinates were obtained using the first 38
principle components and the data were broadly clustered at a resolution of 0.2. Manual
cluster annotation was performed by running FindAllMarkers(), leveraging canonical cell
type markers. To increase the granularity of the T-cell population, these were subset out
and reclustered following the recommended pipeline including re-running SCTransform®?

and reintegration with harmony'!.

2.3.10 Pseudo-bulk

To be able to compare the nasal and blood scRNA-Seq with the Luminex, we pseudo-
bulked the all single-cell data for each tissue, using the Seurat function AverageFExpres-
sion(). All cells were assigned to a unified identifier (‘pseudo_ cluster’) to pool cells be-
longing from different cell type clusters together. After executing the above function, this
generated a pseudo-bulk expression matrix with the average gene expression of the Lu-
minex panel genes across all cell types stratified by case. The data were plotted similar
as the Luminex data, using ComplexHeatmap?3 and a Z-score of the counts, see (Fig-
ure 2.24). For the statistical tests of genes associated with the IFN-y pathway we used a
Welch Two Sample t-test. No significant differences for those genes were found between

the Covid-19 and LRTD samples.
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2.3.11 Exploring viral reads in samples

As mentioned above, we mapped our 10X scRNA-Seq reads against a combined reference
of the human genome with the genomes of human genome and a HIV and Covid-19
reference. We found no reads mapping against the HIV genome. (Figure 2.10) summarizes
the cells with evidence of at least two Covid-19 UMIs within a cell. Interestingly, one
sample (cov12) had over 300,000 reads mapped against the Covid-19 genome, for the nasal
and blood sample, resulting in many cells being Covid positive. After closer inspection,
we realised that this must come from dying cells with very high Covid load, that burst
in the process and contaminated other cells. This explains also why SoupX filtered those

counts out as environmental contamination.

2.3.12 Gene panels defining the IFN-Y response

To investigate the various interferon responses we used genes that are associated with
each gene ontology term. In particular we examined the interferon gamma response which
were defined with the following 125 genes: CD74, TLR2, CCL16, TLRS3, CCL25, SHFL,
CAMK2A, CALCOCO2, HPX, SYNCRIP, CDC42, ADAMTS13, IFITM2, IFITMS3,
ACTRZ2, ACTRS3, STXBP/, SIRPA, SLC26A6, MEFV, RAF1, GBP7, CCL26, IL23R,
WAS, IL12RB1, GBP6, CASP1, IL12B, KYNU, CCL14, CALM1, GBP2, GBP1, MR(C1,
TYK2, CD58, ASS1, DAPK3, CD47, GCH1, RAB7TB, SLC11A1, SNCA, NUB1, RAB20,
STAT1, CCL3, CD40, IRF1, CXCL16, CLDN1, FLNB, XCL2, EDNI1, CDC/2EP/,
CCL15, CCL3, LIGSN, CCL22, GAPDH, CX3CL1, STXBP1, STXBP3, LGALSY, CCL24,
RAB43, CCL19, KIF5B, WNT5A, MYO1C, TP53, GBPS3, IFITM1, CCL11, ACTG1,
TNFSLC30AS8, FASLG, CCL20, VAMP3, CCL17, CCL7, IFNGR2, SLC22A5, CCLS,
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BST2, CCL13, PDE12, DAPK1, XCL1, CITED1, ZYX, CIITA, IFNG, AQP4, CCL21,
AIF1, CDC42EP2, CCL5, CCL2, STX4, IRFS, JAK2, HLA-DPA1, STXS, RPL13A,
IFNGR1, TRIM21, CYP27B1, GBP5, GBP4, VIM, HCK, VPS26B, CCL4, UBD, ACODI1,

CCL18, CCL2, 3NOS2, TLR4, SP100, JAK1, RPS6KBI1.

2.4 Results

Here the results of the study will be presented with a focus on the single cell RNA
sequencing analysis of lung, nasal and blood samples from our Malawi cohort. Outlined in
Figure 2.1 is the full scope of the study where we additionally carried out histopathology of
lung samples comparing lesions from patients with fatal Covid-19 and LRTD. In addition
to this we also completed an imaging mass cytometry analysis of lung samples to profile
the cellular composition of the tissue within its native context using a 40-antibody panel.
The analysis of the imaging mass cytometry will not be covered in this chapter but will
be referenced particularly in the cell-cell interaction part of the results. The additional

analyses carried out in this project can be found in our paper and read in full?7.
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Figure 2.1: Graphical overview showing the complete scope of the study.
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2.4.1 Cohort overview

Below is the clinical characteristics of our Malawi cohort Figure 2.2. We note that com-
pared to existing Covid-19 studies that our cohort is deemed young with a median age
of 56. Furthermore, a proportion of our patients have underlying co-morbidities, in par-
ticular HIV, however we found no reads mapping to the viral genome and no evidence
of impact on T-cell levels due to the small sample size. Detailed in the table is the num-
ber of patients where various modalities of data were collected either for single cell RNA

sequencing, imaging mass cytometry or Luminex analysis.

Age PMI  Obese/ Pre- S.Sto Lung Nasal Blood Lung Nasal Blood

Ca: Di i HIV S
o€ SRS - (yr) (hr) Under morbidity death sc/sn sc sc IMC Lx Lx

3 c19 1 M 55-60 9 T DM2, HT 7 ] L] ° ° °

5 c19 1 M 55-61 5 ™~ DM2, HT 6 ° °

6 Cc19 1 M 50-55 4 ™~ DM2, HT 7 [] ° ° . °

3 7 Cc19 1 F 50-55 5 (M Cancer 4 ° ° ° °

g 8 Cc19 1 F 45-50 6 (M HT,A 8 ° ° °

9 Cc19 0 F 50-55| 5.5 ™~ None 8 ° ° °

12 | Sepsis+C19 0 F | 6065 9 ¢ None [29(2)*| e . . . . .

13 c19 0 F 70-75| 5.5 ™~ DM2, HT 20 [ ° ° ° °

15 c19 0 M 55-60 | 10.5 — None 5 [] ° ° ° ° °

2 e 2 TB 1 M 45-50 9 N2 None 13 L] [ [
5 16 B. Pneum. 0 F 60-65| 2.5 — HT 9 o [

1 TB 1 F 50-55 3 — None 17 [ [

4 L. Cancer 1 F 60-65 3 N2 None 10 ° . . o °

E 10 B. Pneum. 0 M 60-65| 9.5 N3 HT 5 [ ] o [ ] [ [ [
11 Sepsis 1 F 50-55 | 10.5 N2 None 4 ° °

14 Stroke 0 F 50-55 9 — None 2 ° ] ° ] ° °

Figure 2.2: Detailed summary of clinical characteristics of our Malawi cohort. PMI stands
for post-mortem interval measured in hours. Arrows indicate patient weight and are de-
noted as follows: T, overweight; 171, obese; 111, morbidly obese; |, underweight; ||, severely
underweight. Pre-morbidity conditions are abbreviated as follows: DM2, type 2 diabetes
mellitus; HT, hypertension. S.S. to death, indicates symptom start to death, showing the
number of days between the first COVID-19 symptoms and death. Lung IMC, imaging
mass cytometry; Lung sc, lung cell single-cell RNA-seq; Nasal sc, nasal cell single-cell
RNA-seq; Blood sc, blood cell single-cell RNA-seq; Nasal Lx, nasal Luminex, and Blood
Lx, blood Luminex. A dot for each of these parameters indicates that data are available
for that case.
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To investigate the differences between our Malawi cohort and cohorts recruited in the
northern hemisphere we integrated our single cell data with existing studies. The metadata

comparing our cohort to northern hemisphere cohorts is detailed in Figure 2.3.

Cohort Group N= Age SS to death % HIV Lung sc Nasalsc Blood sc
Malawi Covid19 g 56 (48-72) 7 (1-20) 56 5 5 4
LRTD 5 60 (49-60) 10 (5-17) 60 3 2 2
No LRTD 2 51.5(51-52) 3(2-4) 50 1 1 1
Human Lung Covid19 60 50(21-77) NR NR 60 0 0
Cell Atlas LRTD NR NR NR
(Sikkema et al.) s s 2 W
No LRTD 178 49 (20-76) NR NR 178 0 0
USA (TM Covid19 16 NR (30 - >89) 17.5(1-41) NR 16 0 0
Delorey et al.)
USA (JC Melms Covid19 19 72.8 (58-84) (<4-63) NR 19 0 0
etal.)

Figure 2.3: Summary of characteristics of our Malawi cohort versus published cohorts that
we have used as comparators. Abbreviations: SS to death = symptom start to death in
days. Lung sc = lung cell single-cell RNA-seq, denotes the number of cases with scRNA-
seq data from lung tissue. nasal sc = Nasal cell single-cell RNA-seq, denotes the number
of cases with scRNA-seq data from nasal tissue. blood sc = blood cell single-cell RNA-seq,
number of cases with this data.

2.4.2 scRNA mapping results

The below tables outline the mapping results of the single cell/nuclei sequencing runs
where we aimed to sequence at a depth of at least 30,000 mean reads per cell. This was
to ensure that we achieved sufficient depth for the demultiplexing algorithms to identify

individual genotypes of multiplexed patient runs.
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Runs ‘ Number of cells | Mean reads per cell ‘ Median genes per cell ‘ Sequencing Type ‘
001R-003-004L-014R 12788 38659 1254 SN
003-007-Nasal 2180 69519 669 SC
006-001-012-003-007-008-PBMCs 12351 40291 438 SC
008R-006L-015L 39468 39352 2059 SN
C7plusllplusd 47870 38324 1916 SN
Cobplusl-ns 6028 34531 901 SN
Cosl1-L 6044 35652 1634 SC
Cosl1-N 4867 49362 728 SC
Cosl12-L 6933 43463 779 SC
Cos12NplusP 8208 43043 1888 SC
cosl13-L 779 65210 650 SC
Cos13NplusP 4265 36721 1610 SC
Cosl4-L 4294 30924 612 SC
Cos14PbplusN 6294 41647 1043 SC
Cos15PbplusN 9210 34766 1050 SC
Cos16-L 11101 40199 1676 SC
Cos16PbplusN 12493 26802 1155 SC
Co6-Lu 498 49145 1600 SC

Table 2.1: Mapping statistics of the CellRanger output for each individual and multiplexed
runs.

For cases 12-16, we had hashtagged nasal and blood samples that were collected from
the same individual. The table below outlines the results from the quantification of the
hashtag reads and subsequent demultiplexing highlighting how many cells from each tissue

type were recovered.

‘ Sample ‘ % mapped ‘ % unmapped Total cells ‘ Nasal Blood ‘ Negative ‘ Doublet Total HTO Reads ‘ HTO Reads per cell ‘
Cos16PbplusN 98 2 10311 1796 2245 4309 1961 9526733 924.12
Cos15PbplusN 98 2 8127 492 1708 5747 180 12120440 1491.38
Cos14PbplusN 80 20 6164 742 1676 3640 106 8162964 1324.51
Cos13NplusP 96 4 4276 134 237 1630 2275 8032828 1878.58
Cos12NplusP 97 3 7421 648 1543 4979 254 4488264 604.81

Total 36299 3812 7409 20305 4776

Table 2.2: Hashtag demultiplexing summary statistics from CITE-seq-COUNT and Seurat
HTODemux.
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In addition to the multiplexed hashtag runs, we also had sequencing runs that were
multiplexed across patients. The table shows the results from clustering of single nucleotide
polymorphisms (SNPs) and shows how many cells were assigned to each genotype. We
note that not all expected genotypes were recovered and we proceeded with assigned cells

only, filtering away unassigned cells and doublets.

| Sample Singlet | Doublet | Unassigned | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 Cluster 5 Cluster 6 Percentage Doublets | Percentage Unassigned Expected Genotypes | Actual Genotypes | Number of cells | Reads per Cell |
Costiplusl-ns. 2556 22 2664 1176 1380 - - - - 0.42% 50.82% 2 2 5242 14390
008R-006L-015L. 32742 2511 3658 10125 9194 13423 - - - 6.45% 9.40% 3 2 38911 19780
CT7plusl1plusd 24097 3 2778 8074 7962 8081 - - - 0.01% 3 1 47742 8932
003-007-Nasal 1604 44 389 355 1249 - - - - 1.96% 2 2 2237 67748
001R-003-004L-014R 5037 46 7373 1258 1473 1100 1206 - - 0.37% 4 2 12456 28940
006-001-012-003-007-008-PBMCs 8940 805 2621 1038 867 1455 1268 2803 1489 6.50% 6 4 12366 40242

Table 2.3: Summary statistics for the output of the Souporcell algorithm: Summary of
multiplexed sample splitting.

After obtaining the results of the demultiplexing algorithm we assigned each cluster to
a patient genotype. The clusters here refer to the clusters in Table 2.3 which were it-
eratively identified through SNP clustering patterns across variable HLA regions (See
Methods 2.3.8).



2.4. Results

66

‘ Cos6plusl-ns

Number of cells ‘ Case ID

Cluster 1 1176 6
Cluster 2 1380 1
008R-006L-015L
Cluster 1 10125 6
Cluster 2 9194 15
Cluster 3 13423 15
C7plusllplus4
Cluster 1 054 11
Cluster 2 7962 11
Cluster 3 081 11
003-007-Nasal
Cluster 1 355 7
Cluster 2 1249 3
001R-003-004L-014R
Cluster 1 1258 1
Cluster 2 1473 14
Cluster 3 1100 14
Cluster 4 1206 14
006-001-012-003-007-008-PBMCs
Cluster 1 1058 12
Cluster 2 867 6
Cluster 3 1455 12
Cluster 4 1268 1
Cluster 5 2803 6
Cluster 6 1489 3

Table 2.4: Summary statistics for the output of the Souporcell algorithm: Summary of

genotype assignments.

The assignment process was as follows, first samtools was used to filter the CellRanger

output BAM file to the HLA regions on chromosome 6 and then subset the relevant cells

using a barcode list. The BAM file was then indexed to be read into IGV.
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1 samtools view -h /export/III-data/otto/oh21b/COSMIC_fastqs/
COSMIC_Mapping_Results/COSMIC_Cos15PbplusN/outs/
possorted_genome_bam.bam chr6:29941260-33089696 | perl ~tol6r/Bin/
cellranger.filterBAMvalidbarcodes.pl /export/III-data/otto/oh21b/
COSMIC_fastqs/COSMIC_Mapping_Results/COSMIC_Cos15PbplusN/Soup/
barcodes.tsv | samtools view -Sb - > /export/III-data/otto/oh21b/
COSMIC_fastqs/COSMIC_Mapping_Results/COSMIC_Cos15PbplusN/Soup/

bam_cos15.MHC. bam

samtools index /export/III-data/otto/oh21b/COSMIC_fastqs/

COSMIC_Mapping_Results/COSMIC_Cos15PbplusN/Soup/bam_cos15.MHC.bam

Listing 2.1: Code snippet used to filter BAM to HLA regions and valid cell barcodes

After the HLA region BAM files are generated, we navigated to the HLA regions and
viewed the SNP genotype distribution at an allele frequency set to 0.2. As shown in
Figure 2.4 two patient SNP samples are visualised that demonstrate a clear distinct
genotype between the different samples. We can also demonstrate with the Souporcell
algorithm that similar cell numbers are recovered compared with the original cell counts
from CellRanger, 10737 and 6045 respectively, losing less than 50 cells that failed to be

assigned.
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Figure 2.4: Screenshot of the IGV viewer visualising a merged BAM file from Cos16-L and
Cosl1-L to sanity check the performance of Souporcell to recover both genotypes. Upper
tracks show SNP distribution at 0.2 allele frequency of the HLA-B region of Cos16 and
Cosl1 respectively. Lower tracks show the SNP distribution of the cells assigned to each

Souporcell cluster with k=2.

However, we found that for some of the multiplexed samples we were observing duplicate

genotypes shared across multiple samples despite setting the k£ parameter to the number

of expected genotypes as shown in Figure 2.5.
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Figure 2.5: Screenshot of the IGV viewer visualising a BAM file from a multiplexed run
CTplusllplusd that should contain 3 distinct genotypes and independent sample Cos11-L
to attempt to identify the genotypes. Upper tracks show SNP distribution at 0.2 allele
frequency of the HLA-B region of Cosll. Lower tracks show the SNP distribution of the
cells assigned to each Souporcell cluster with k=3. Arrows indicate positive identification
of the Cosl1 genotype, with an ambiguous mixture genotype also annotated.

We suspected the sequencing depth was an issue however despite deeper sequencing the
same effect was still observed. Since we are handling post-mortem tissue that is of lower
starting quality than other tissues we thought the algorithm may not be able to handle
a high level of low-quality cells or that the cells coming from particular patients are lost
by the time sequencing occurs. So investigate this further we created a dummy BAM
file from 4 patients of which were run separately where we knew the genotypes a priori,
Cos16-L, Cosl4-L, Cosl12-L and Cosl1-L, and randomly subsampled the BAM files in a
10:5:2:0.5 ratio (Cosl6-L = 57% total cells, Cosl4-L = 29% total cells, Cos12-L = 11%
total cells, Cosll-L = 3% total cells). We also wanted to observe the effect of varying
the k& parameter in the Souporcell algorithm and see if it affected genotype recovery. We
first set the k parameter to k=3 to observe which genotypes were recovered shown in
Figure 2.6 and recovered three out of the four expected genotypes with Cosl1-L failing

to be identified. We also note that although the percentage of cells are representative of



2.4. Results 70
the true sample cell ratios for Cosl6, the algorithm assigned over double the expected
percentage of cells to Cos12 when compared to Cos14. This could be down to the varying
sequencing depth between the sample with Cosl2 being sequenced deeper than Cosl4

therefore introducing a bias in the algorithm assignment (Table 2.1).
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Figure 2.6: Screenshot of the IGV viewer visualising a merged BAM file from Cos16-L,
Cosl4-L, Cos12-L and Cosl1-L to test varying patient cell ratios against the performance
of Souporecell to recover all genotypes. Table shows the cluster assignments, proportion
of total cells the matched genotype. Lower tracks show SNP distribution at 0.2 allele
frequency of the HLA-B region of Cosl6-L, Cosl14-L, Cos12-L and Cosl1-L respectively.
Upper tracks show the SNP distribution of the cells assigned to each Souporcell cluster
with k=3. Tracks have been annotated with the Souporcell cluster and their respective
genotype match.
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As setting the k parameter to less than the expected genotypes failed to identify all the

patients, we moved to set k=4 to see if we observe the same behaviour (Figure 2.7).

k=4
o 12 3
Cell 3362 5838 4287 5596
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%ofcells 18 31 22 29
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True Sample read ratios
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©0-218
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Figure 2.7: Screenshot of the IGV viewer visualising a merged BAM file from Cos16-L,
Cos14-L, Cos12-L and Cosl1-L to test varying patient cell ratios against the performance
of Souporcell to recover all genotypes. Table shows the cluster assignments, proportion
of total cells the matched genotype. Lower tracks show SNP distribution at 0.2 allele
frequency of the HLA-B region of Cosl16-L, Cosl4-L, Cos12-L and Cosl1-L respectively.
Upper tracks show the SNP distribution of the cells assigned to each Souporcell cluster
with k=4. Tracks have been annotated with the Souporcell cluster and their respective

genotype match.



2.4. Results 73
Despite the k parameter being set to the true number of expected genotypes the same
result was observed where Cosl16 was represented and Cos12 was overrepresented in the
genotype assignment. Similarly to the previous iteration, the Cosll genotype was failed
to be identified with only three genotypes being recovered so we decided to overcluster the
data by setting k=5 to see if we could force the algorithm to resolve rarer populations with
the Cosll genotype (Figure 2.8). Unfortunately, overestimating the number of genotypes
still failed to accurately represent the number of true samples in the data. This then led
to the hypothesis that if the cells deriving from a particular patient are of low quality
or have died resulting in low cell numbers then the Souporcell algorithm is unable to
recover the genotype by clustering SNPs alone and further patient genotype information
is required. Thus, the genotype assignment of cells to patient samples was an iterative
processes leveraging information from independent samples and visually comparing the
SNP distribution over the HLA regions. Where genotypes were identical, as shown in
Figure 2.5, these Souporcell clusters were assigned to the nearest matching genotype and
patients whose genotype was unable to be recovered were excluded from the study moving

forward.
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Figure 2.8: Screenshot of the IGV viewer visualising a merged BAM file from Cos16-L,
Cosl4-L, Cos12-L and Cosl1-L to test varying patient cell ratios against the performance
of Souporecell to recover all genotypes. Table shows the cluster assignments, proportion
of total cells the matched genotype. Lower tracks show SNP distribution at 0.2 allele
frequency of the HLA-B region of Cosl6-L, Cosl14-L, Cos12-L and Cosl1-L respectively.
Upper tracks show the SNP distribution of the cells assigned to each Souporcell cluster
with k=5. Tracks have been annotated with the Souporcell cluster and their respective
genotype match.
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2.4.3 scRNA quality control results

Once all the samples were assigned, the following quality control metrics were performed

on each of the samples for each tissue atlas outlined in the tables below.

Sample nFeature RNA cut-off (lower) nFeature RNA cut-off (upper) Percent MT cut-off

Cos-1.1 150 5000 15
Cos-1.2 150 5000 10
Cos-6.1 150 5000 15
Cos-6.2 150 5000 10
Cos-6.3 150 4000 10
Cos-11.1 150 3000 5
Cos-11.2 150 8000 15
Cos-12.1 150 6000 15
Cos-13.1 150 4000 10
Cos-14.1 150 5000 10
Cos-14.2 150 6000 15
Cos-15.1 150 5000 5
Cos-15.2 150 8000 10
Cos-16.1 150 8000 10

Table 2.5: QC thresholds for each lung sample in the Malawi lung atlas. Samples with
the same number with decimal points (e.g. Cosl.1) are samples that have been retrieved
from SNP clustering genotype assignment with Souporcell and are cells deriving from the
same patient but a different run.

Sample nFeature  RNA cut-off (lower) nFeature. RNA cut-off (upper) Percent MT cut-off

Cos-3 150 7000 15
Cos-7 150 7000 20
Cos-12 150 8000 50
Cos-13 150 3000 15
Cos-14 150 9000 40
Cos-15 150 9000 50
Cos-16 150 7000 25

Table 2.6: QC thresholds for each nasal sample in the Malawi nasal atlas.
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Sample nFeature  RNA cut-off (lower) nFeature RNA cut-off (upper) Percent MT cut-off

Cos-1 150 7000 25
Cos-3 150 3500 25
Cos-6 150 4000 25
Cos-12.1 150 7000 25
Cos-12.2 150 6000 25
Cos-13 150 2500 15
Cos-14 150 6000 10
Cos-15 150 8000 25
Cos-16 150 5000 20

Table 2.7: QC thresholds for each blood sample in the Malawi blood atlas. Samples with
the same number with decimal points (e.g. Cos-12.1) are samples that have been retrieved
from SNP clustering genotype assignment with Souporcell and are cells deriving from the
same patient but a different run.

Once quality control filtering was completed, the resulting tissue atlases used the following

parameters shown in Table 2.8 to obtain the appropriate UMAPs shown in this chapter.

Atlas N dims Resolution
Broad Lung Atlas 32 0.2
Immune Lung Atlas 28 0.5
Nasal Atlas 30 0.3
Blood Atlas 30 0.5
Integrated Lung Atlas 38 0.5

Table 2.8: Number of principal components (N dims) and clustering resolution used for
each tissue atlas.
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2.4.4 Pulmonary cell scRNA-seq reveals low levels of viral RN A

and an IFN-y dominated response in the Malawi cohort

To explore cellular responses in the lung at greater depth in our Malawi cohort, including
in alveolar macrophages, we utilized scRNA-seq and single nuclei-sequencing (snRNA-seq)
from 4 Covid-19 cases, 3 LRTD cases, and 1 non-LRTD case. Integrating over 66,000 cells

resulted in 16 cell clusters composed of a mixture of immune and stromal cells (Figure 2.9).
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Figure 2.9: UMAP visualisation of 66,882 lung cells across our cohort, coloured by broad
cell types.

SARS-CoV2 transcripts have been detected in scRNA-seq data in other postmortem co-
horts. We detected few SARS-CoV2 reads suggesting that at the time of death, there was
minimal replicating virus (Figure 2.10). This is contrary to our initial prediction of toler-
ance and viral escape predominating in SSA populations but is consistent with our other

data supporting inflammatory rather than direct viral-driven pathogenetic mechanisms.
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Figure 2.10: Minimal SARS-CoV2 reads in single-cell data of lung, nasal and blood cells.
(A) Lung reference as in Fig 3a. (B-D) UMAPs indicate the cells in which we found reads
that mapped to the SARS-CoV2 genome, coloured by case. E) Table showing absolute cell
numbers per case that contain expression of UMIs that passed quality control steps that
map to the SARS-CoV2 genome in the lung, peripheral blood and nasal compartment.
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To identify cell types cluster marker analysis was performed which revealed canonical cell
type gene expression in line with existing literature for cell types in the lung immune and
stromal cell compartments (Figure 2.11). A detailed breakdown of cell numbers across

cell types can be found in the Supplemental Tables section (Tables 2.9, 2.10, 2.11).
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Figure 2.11: Top cluster markers characterising immune and stromal cell populations in
the lung in the Malawi cohort. A) Dotplot showing the average expression of top 3 cluster
markers for each cell type in the lung immune compartment (Figure 2.12). B) Dotplot
showing the average expression of top 3 cluster markers for each cell type in the lung
stromal compartment (Figure 2.13).

We then undertook finer annotation of immune (Figure 2.12) and stromal/vascular cell
pools (Figure 2.13). We identified alveolar and interstitial macrophages and monocyte-
derived macrophages, consistent with monocyte/macrophage populations identified by

IMC. Both mature and immature neutrophils were present.
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Figure 2.12: UMAP visualisation of 33,504 lung cells reclustered at a higher resolution to
characterise the immune landscape, coloured by cell type.

Stromal cells included adventitial and alveolar fibroblasts as well as type I and II pneumo-

cytes (AT1, AT2) and basal, secretory, and ciliated epithelial cells (Figure 2.13). Cell pro-

portions should be interpreted with caution given few cases per group, but they showed

cell diversity expansion in the Covid-19 and LRTD groups not observed or absent in the

non-LRTD group.
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Figure 2.13: UMAP visualisation of 33,378 lung cells reclustered at a higher resolution to
characterise the stromal landscape, coloured by cell type. To note, cells assigned ‘soup’
were not able to be clearly defined by canonical cell type markers and were indicative of
multiplets.

Principal differences in Covid-19 compared to LRTD were in myeloid cells, particularly
alveolar macrophages (Figure 2.14), while few genes were expressed at higher levels in
lymphocytes, mast cells, or stromal cells. This could be down to few cell numbers in the
non-LRTD group for which we only had one sample, thus differential gene expression
lacked sufficient power. As our patient cohort had low values of days between symptom
onset to death we decided to focus on the key players in acute COVID-19 infection in-
cluding myeloid cells and T-cells that may contribute to the cytokine storm and immune

cell infiltration to the lungs.
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Figure 2.14: A) Volcano plot showing top differentially expressed genes in alveolar mac-
rophages in COVID-19 compared to LRTD with a significant adjusted p-value (<0.05)
and a log-fold change of more than 0.5 using MAST followed by Bonferroni multiple test
correction. B) Plot shows expression levels of different IFNG module genes in alveolar
macrophages between Covid19 and LRTD cases. Line is at 1:1 ratio hence dots to the left
of the line indicate genes with higher expression in Covid19 cases and to the right of the
line indicates genes with higher expression in LRTD. The IFNG receptors IFNGR1 and
IFNGR2

In alveolar macrophages, top differentially regulated genes included markers of tissue res-
idency (C1QC, C1QB) and factors shown to mediate lung fibrosis (CCL18) and apoptosis
(S1006), as well as activation and recruitment of other myeloid cells (SPPI1). IFN-v re-
sponse protein (/F130) and MHC proteins (HLA-DRA, HLA-DRBI) were all up-regulated,

indicating response to IFN-v.

This IFN-y dominant response contrasts with Type I and III dominant interferon re-
sponses shown to be critical in pathogenesis in Northern hemisphere Covid-19 cohorts.
Given our IMC data®’” indicating a prominence of alveolar macrophages in the immune
response and in alveolar damage, we analysed alveolar macrophage interferon response
modules: IFN-y response pathways were strongly up-regulated in Covid-19 compared to
LRTD. IFN-B, IFN-A, and TNF responses were also up-regulated but to a lesser de-
gree. Across other myeloid cell IFN responses were heterogeneous, and TNF response was

up-regulated in the LRTD group in CD4+ T-cells (Figure 2.15).
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Figure 2.15: A) Dotplot showing the average gene module score of interferon response
pathways across alveolar macrophages in Covid-19 and LRTD. B) Violin plots showing the
gene module score across alveolar macrophages in gene sets associated with the gamma,
alpha, beta, lambda and IL6 response in Covid-19 compared to LRTD. Black lines indicate
the mean value across all cells, with the log fold change between means across conditions
annotated above the plots. C) Heatmap showing the mean gene module score across cells
in gene sets associated with the alpha, beta, gamma, lambda and TNF response. Cell
types have been grouped by Covid-19 and LRTD to show the difference in response and
module score values have been scaled between —1 and 1.
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2.4.5 Integration with Human Lung Cell Atlas (HLCA): IFN-y
driven responses in Malawi cohort and type I/III inter-

feron responses in other cohorts

To validate the IFN-y response in the Malawi cohort compared to type I and III in-
terferon and IL1-dominant responses described in Northern hemisphere cohorts, and to
understand the implications for distinct, therapeutic approaches, we integrated our single-
cell data with multi-cohort Covid-19 (5 cohorts, 60 cases), LRTD (1 cohort, 13 cases),
and non-LRTD (23 cohorts, 178 cases) data from the Human Lung Cell Atlas (HLCA)
(Figure 2.16).
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Figure 2.16: UMAP visualisation of 147,935 lung cells deriving from integrating cells from
Covid-19, LRTD and non-LRTD cases from our cohort with cells from the human lung
cell atlas (HLCA) from non-LRTD, LRTD and Covid-19 cases. Clusters are coloured by

cell type.

Differential expression analysis was completed comparing our Malawi COVID-19 cohort
to the non-LRTD cases in the HLCA atlas with up-regulated antigen presentation genes in
myeloid cells like alveolar macrophages, such as HLA-DRA, HLA-DRB1, HLA-B, HLA-A
expected in lung inflammation and also captured in our previous analysis (Figure 2.14).

Additionally, genes relating to a type II interferon repsonse were also observed to be
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up-regulated, such as IFNGR2 and JAK2. We also wanted to investigate the differences
between COVID-19 cases in our Malawian cohort to COVID-19 cases in the HLCA. Sim-
ilarly, amongst the top differentially expressed genes we had upregulation of MHC class
IT related genes and interferon type II related genes upregulated in immune cell popula-
tions. To gather a more global view of the key differences in Malawian COVID-19 cases
and COVID-19 cases derived from the HLCA, we used pathway analysis to profile cel-
lular response differences between our cohort and cohorts in the HLCA (Figure 2.17).
Pathways indicative of IFN-y response were increased across all cell types in the Malawi
cohort. Furthermore, IFNG (IFN-y gene) was specifically increased in the Malawi cohort
in CD4+4 and CD8+ T-cells versus HLCA Covid-19 and non-LRTD groups, suggest-
ing that macrophages are responding to IFN-y produced by T-cells. Other inflammatory
pathways showed a mixture of up and down-regulation in the Malawi cohort compared to
HLCA cohorts, including IL6/JAK/STAT and TNF-NFKB, key targets for therapies be-
ing used in Covid-19. Many of the other interferon-response genes were more up-regulated
in the HLCA cohorts or had a heterogeneous distribution across cells, although not-
ably monocyte-derived macrophages generally had a higher interferon response in HLCA

Covid-19 cohorts.
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Figure 2.17: A) Heatmap showing pathway analysis for differentially expressed genes in
our COVID-19 cohort compared to the HLCA COVID-19 cohort. Shown are the 50 canon-
ical hallmark gene sets (for list see Supplemental information) coloured by the normalised
enrichment score for each cell type. Gene ontology pathways of interest are indicated by
arrows (IL6 JAK STAT3 SIGNALING, green, TNFA SIGNALING VIA NFKB, blue, IN-

TERFERON GAMMA RESPONSE;, orange). B) Dot plot showing the average expression
of top differentially expressed genes in the lung alveolar macrophages that contribute the
highest in the hallmark gene set “INTERFERON GAMMA RESPONSE” pathway in our

COVID-19 cohort compared to the HLCA COVID-19 cohort.

We also examined the gene expression of known inflammatory mediators to look for cell-
specific expression of cytokines and chemokines in the lung across the Malawi and HLCA
cohorts (Figure 2.18). This revealed increased expression of IFNG by CD4+/CD8+ cells

in the Malawi cohort when compared to, not only the Malawi LRTD cases, but also
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the HLCA Covid-19 cases. This increase of expression is notably absent when comparing
Covid-19 and LRTD cases within the HLCA cohort, indicating the potential production
of IFNG by T-cells and the response by alveolar macrophages is specific to our Malawi

cohort.
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Figure 2.18: A) Heatmaps showing the log fold change of up/down-regulated interferon
response genes taken from immunologic gene sets involved in the immune response. Com-
parisons include the change in interferon response in cells from the HLCA COVID-19
cohort compared to HLCA control cases (left), the Malawi COVID-19 cohort compared
to control cases from the HLCA (middle) and interferon responses from our COVID-19
cohort compared to the HLCA COVID-19 cohort (right).
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These data show many shared inflammatory pathways between Malawi and HLCA cohorts
but with an amplified IFN-y response in the Malawi cohort, highlighting IFN-y production

from CD4+/CD8+ T-cells and response in alveolar macrophages.

To further validate these findings, we wanted to ensure that this IFNG response persisted
in cohorts that were more directly comparable with our study. We found two existing stud-
ies conducted by Melms et al.* and Delorey et al.> where lung autopsy single cell /single
nuclei had been conduced on lethal COVID-19 on patients in the US. This patient cohort
consisted predominantly of Caucasian and Hispanic patients and had comparable clinical
metadata to our Malawi study (Figure 2.19). We integrated our 9 Covid-19 cases with
16 cases from Delorey and 19 cases from Melms, yielding 200,000 lung cells across 21
clusters of immune and stromal compartments, using 38 PCs at a clustering resolution of
0.3 (Table 2.8). Gene module score analysis of the alveolar macrophages showed a marked
increase in response to interferon gamma as seen when compared to the HLCA cohort.
When observing the results from gene ontology analysis we can see an increase in the in-
terferon gamma response in alveolar macrophages as well as response to type II interferon

when compared to northern hemisphere post-mortem cohorts.

Together with these two integrations we can demonstrate that the response to interferon
gamma in the macrophage compartment is increased in the Malawi cohort when compared

to the northern hemisphere cohorts in lethal and non-lethal Covid-19 comparisons.
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Figure 2.19: A) UMAP visualisation of 200,000 lung cells deriving from integrating cells
from Covid19 cases from our cohort with cells from two existing Northern Hemisphere
(USA) lung autopsy study lethal Covid19 cases. Clusters are coloured by cell type. B)
UMAP visualisation to show integration across the three datasets; Malawi being our co-
hort, Delorey and Melms being the two Northern hemisphere cohorts that were combined
and termed ‘Northern hemisphere’ for the additional figure panels. C) Heatmap showing
pathway analysis for differentially expressed genes in our COVID-19 cohort compared to
the Northern hemisphere COVID-19 cohorts. Shown are all Biological Process gene sets
that are affiliated with interferon response taken from MsigDB coloured by the normal-
ised enrichment score for each immune cell type. D) Heatmap showing pathway analysis
for differentially expressed genes in our COVID-19 cohort compared to the Northern
hemisphere COVID-19 cohorts. Shown are relevant filtered canonical hallmark gene sets
coloured by the normalised enrichment score for each cell type. E) Violin plots showing
the gene module score across CD8+ T cells in gene sets associated with the gamma, alpha,
beta, lambda and TNF response in Malawi COVID-19 compared to Northern hemisphere
COVID-19. Black lines indicate the median value across all cells, with asterisks to denote
the significance level (ns = non-significant, **** = p <= 0.0001).
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2.4.6 Single-cell analysis of nasal cells may be a useful proxy for

lung parenchymal responses

While lung is the principal organ involved in severe and fatal Covid-19 disease, lung
samples are not easily accessible during life. For future Covid-19 waves or other emerging
diseases it would be invaluable to predict lung responses using nasal or blood samples that
can readily be obtained. We performed scRNA-seq on nasal cells in 8 cases (5 Covid-19;
2 LRTD and 1 non-LRTD) and peripheral blood mononuclear cells in 7 individuals (4
Covid-19, 2 LRTD and 1 non-LRTD). We recovered 8,098 nasal cells which mapped to
ten clusters composing immune and stromal cells (Figure 2.20) and 13,350 blood cells
(Figure 2.21). Mapping statistics and additional parameters are described in the scRNA

mapping and quality control section in Table 2.7 and Table 2.6.
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Figure 2.20: A) UMAP visualisation of 8,098 nasal cells across our cohort, coloured by
broad cell types. B) Cell type proportion bar plots of cell types from nasal scrapings,
grouped by disease group. C) Dotplot showing the average expression of top 5 cluster
markers for each cell type in the nasal compartment.
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Figure 2.21: A) UMAP visualisation of 13,350 blood cells across our cohort, coloured by
broad cell types. B) Cell type proportion bar plots of cell types from whole blood, grouped
by disease group. C) Dotplot showing the average expression of top 5 cluster markers for
each cell type in the blood compartment.

Nasal macrophages had several similar differentially expressed genes in the Covid-19
versus LRTD cases that mirrored lung alveolar macrophage responses including SPP1
and C1@QB, genes indicative of proliferation (LGALS1, TMSB10) and MHCII genes (HLA-
DPB1, HLA-DQA1) (Figure 2.22).



2.4. Results 93

NS © LogFC © p-value © p-valueandlog, FC

A C .
Upin
Covid-19
[

ALLOGRAFT REJECTION
20 INTERFERON GAMMA RESPONSE
REACTIVE OXYGEN SPECIES PATHWAY
COAGULATION
XENOBIOTIC METABOLISM 1
APICAL SURFACE
BILE ACID METABOLISM
PI3K AKT MTOR SIGNALING 0

2

HLA-DPB1

COMPLEMENT

UV RESPONSE UP -1
APOPTOSIS

UNFOLDED PROTEIN RESPONSE

TMSE10
L|N901 619

~Logyo P

PITPNGT ATP2B1 DNA REPAIR -2

ADIPOGENESIS
E2F TARGETS
INTERFERON ALPHA RESPONSE

b MET o
celr  rvemiss,  FNIP2
ADGRE2

s Y
SLAMF{_ ANPEP...

A

PEROXISOME
PROTEIN SECRETION
MYC TARGETS V2
B OXIDATIVE PHOSPHORYLATION
FATTY ACID METABOLISM
MTORC1 SIGNALING
MYC TARGETS V1
GLYCOLYSIS
HYPOXIA

|
% Fo, ges
¥ it
-2 0 2
B Logs fold change E ESTROGEN RESPONSE LATE

ot

SPERMATOGENESIS
HEME METABOLISM
P53 PATHWAY
20 NOTCH SIGNALING
PANCREAS BETA CELLS
I UV RESPONSE DN
HEDGEHOG SIGNALING
KRAS SIGNALING DN
ESTROGEN RESPONSE EARLY
MITOTIC SPINDLE
WNT BETA CATENIN SIGNALING
ANGIOGENESIS

»
IFITN2

IL2 STAT5 SIGNALING

MYOGENESIS

ANDROGEN RESPONSE

G2M CHECKPOINT

APICAL JUNCTION

EPITHELIAL MESENCHYMAL TRANSITION
IL6 JAK STAT3 SIGNALING

LiNcoTs1 HA B

b
10 FKBPS

PCNX1
4

I INFLAMMATORY RESPONSE
[ TNFA SIGNALING VIA NFKB
I8 TGF BETA SIGNALING
CHOLESTEROL HOMEOSTASIS
KRAS SIGNALING UP

Cop
| SR Gy

s|j9o-1

s|jiydosnaN
sabeydoioepy

Logs fold change

Figure 2.22: A-B) Volcano plots showing top differentially expressed genes in nasal mac-
rophages and T-cells in COVID-19 compared to LRTD with a significant adjusted p-value
(<0.05) and a log-fold change of more than 0.5 using MAST followed by Bonferroni mul-
tiple test correction. C) Heatmap showing pathway analysis for differentially expressed
genes in our COVID-19 cohort compared to the LRTD cohort. Shown are the 50 canon-
ical hallmark gene sets (for list see Supplemental information) coloured by the normalised
enrichment score for each cell type.

MHC class II gene up-regulation is a canonical response to IFN-y and consistent with this
there was IFNG (IFN-y gene) up-regulation in T-cells in the Covid-19 cases in comparison
to LRTD cases (Figure 2.22). Pathway analysis showed higher levels of IFN-v response in
macrophages and T-cells, further validating an IFN-7y response in these cells (Figure 2.22).
Blood monocytes in Covid19 versus LRTD cases had up-regulation of the alarmin S100A12
and of genes involved in inflammation (AREG) and vascular damage (NDRG1) but not in

genes indicative of IFN-y response and IFNG was not up-regulated in T-cells (Figure 2.23).
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Figure 2.23: A-B) Volcano plots showing top differentially expressed genes in blood T-
cells and monocytes in COVID-19 compared to LRTD with a significant adjusted p-value
(<0.05) and a log-fold change of more than 0.5 using MAST followed by Bonferroni
multiple test correction.

Hence, in our small cohort, nasal cells better paralleled lung response than blood cells,
supporting previous Covid-19 and non-Covid-19 studies that highlighted the utility of

nasal cells for understanding respiratory immune responses.

Since scRNA-seq is not available in most settings, we assessed the extent to which cytokine
responses (Luminex) in plasma or nasal fluid could distinguish the inflammatory or IFN-y
response in Covid-19 versus LRTD cases. In nasal fluid there was a trend towards several
cytokines being higher in Covid-19 cases than in LRTD cases, but none significant and

no clear difference for IFN-y (Figure 2.24).
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Figure 2.24: A-B) Heatmaps showing cytokine signatures in different tissues. Values are
plotted as z-score (grey mean not measured). Samples are grouped by their disease type.
Luminex data of Nasal (A) and Plasma (B). Data were transformed with a log2 and for
the visualistion with ComplexHeatmap in R with a Z-score by gene. For the statistical
tests we compared levels of IFN-y, IL6, IL8, TNF and IL1b in nasal fluid and plasma
between the Covid-19 and LRTD samples using a Welch Two Sample t-test which was
non-significant for all comparisons, we did not correct for multiple comparisons. (C-E)
Pseudobulk heatmaps showing cytokines included in the Luminex panel on the tran-
scriptomic level in the peripheral blood, lung and nasal compartment per patient. As for
Luminex we compared levels of IFN-y, IL6, IL8, TNF and IL1b in nasal, blood and lung
cells between the Covid-19 and LRTD samples using a Welch Two Sample t-test which
was non-significant for all comparisons, we did not correct for multiple comparisons.

There was no clear blood circulating cytokine response pattern, and no circulating cy-
tokine levels were significantly higher in Covid-19 compared to other groups (Figure 2.24).
A pseudo-bulk sequencing approach in blood, nasal and lung cells also did not distinguish

a clear IFN-y or any other specific inflammatory cytokine signature between Covid-19
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and LRTD cases (Figure 2.24). Single-cell methods identified an interferon signature and
T-cell-macrophage axis, bulk cytokine and gene expression approaches did not. Given
very small numbers per group this is perhaps unsurprising. It may stem from greater
discriminatory power of single-cell methods and is supportive of the value of single-cell

approaches, particularly in small cohorts.

2.4.7 Stromal cellular interactions are driven by macrophages

and vascular interactions by neutrophils

To validate our findings of the role of IFN-y responding alveolar macrophages in lung
parenchymal pathology and neutrophil interactions in vascular pathology, and to pre-
dict novel molecular interactions to target therapeutically we used cell interaction meth-
ods. First, unbiased receptor-ligand analysis of our scRNA-seq data highlighted that a
large proportion of the imputed interactions in the lung involved alveolar macrophages,
interacting with fibroblasts, epithelial cells and other immune cells including CD4+ T-
cells (Figure 2.25), in keeping with our findings from cell proportions, cellular histology
and scRNA-seq. Many interactions involved with antigen presentation were predicted ex-
pressed by alvelolar macrophages such as HLA-DRA, HLA-DRB1 and particularly HLA-
DMA-CDY interaction with vascular endothelium involved in macrophage activation®#®.
Other interactions related to immune cell infiltration such as ALOX5AP-ALOX5 between
alveolar macrophages and alveolar type II pneumoncytes. Additional interactions such as

ITGAM and ITGB2 integrins expressed by alveolar macrophages indicating immune cell

recruitment up-regulated in COVID-19 when compared to LRTD.



2.4. Results 97

Cell Types

[ Adventitial fibroblasts
[ Alveolar fibroblasts

- Alveolar macrophages

[ At
[C]ar2

[l cD8+ T cells

I:l Interstitial macrophages

E Monocyte-derived macrophages
[lcpa+ T cells

|:| NK cells

i

[] venous endothelium
I:l Neutrophils

Figure 2.25: Circos plot showing the top 50 differentially expressed interactions upregu-
lated in our COVID-19 cohort compared to LRTD. Segments are coloured by cell type with
ligands and receptors labelled on the outside. Direction of the arrows show the senders
of communications i.e. expression of ligand, and receiver of communications. Inner tracks
on sender segments are coloured by the receiving cell type for ease of interpretation.

To validate these interactions in a spatial context we leveraged imaging mass cytometry
analysis completed by Dr. Jodao Da Silva Filho in Covid-19 and LRTD cases in our Malawi
cohort. Here we had 130 representative regions of interest containing specific pathological
lesions or normal lung areas (9 Covid, 3 LRTD, 2 Non-LRTD cases), with cell types de-

lineated with a 39 metal-conjugated antibody panel. Neighbourhood enrichment analysis
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was completed using the IMC data to identify cells located close to each other with greater
than expected frequency as an indicator of their likelihood to be interacting (Figure 2.26).
An additional integrative analysis using IMC data from cohorts of different demographics,

Brazil and USA was also completed and can be read in our paper?"7.

A Co-localized cell types in LRTD B cCo-localized cell types in COVID-19

| : | --
] =
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Figure 2.26: A-B) Heatmaps showing co-localised cell types as shown by the IMC providing
insight into potentially interacting cell types in the lung.

The neighbourhood analysis was critical to hone in on particular cell types of interest
to complete a more targeted cellular interaction approach involving cell types that are
co-localising with each other. In the non-LRTD there were no significant interactions. The
LRTD group was completely dominated by neutrophil interactions (Figure 2.26). In the
Covid-19 group several neighbourhood enrichments were prominent — principally alveolar
macrophages (with and without SARS-CoV2-S and apoptosis) with apoptotic fibroblasts

and to a lesser extent type II pneumocytes (Figure 2.26).

This supports the role in pathogenesis of alveolar macrophages including the apoptotic
population present in Malawi but not USA or Brazil cohorts inferred from previous IMC
integration and analysis. In contrast, the most prominent neighbourhood enrichment for
neutrophils was between SARS-CoV2-S+, Arghigh neutrophils and activated endothelial

cells implicating neutrophils in endothelial /vascular pathology.
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Figure 2.27: A) Heatmap showing up/down-regulated interactions in COVID-19 compared
to LRTD driven by AT2 pneumonocytes to alveolar macrophages. Coloured boxes indicate
cell type with the ligand-expressing cell type followed by the receptor-expressing cell type.
B) Heatmap showing up/down-regulated interactions in COVID-19 compared to LRTD
driven by lung alveolar macrophages to lung epithelial cells and interstitial macrophages.
Coloured boxes indicate cell type with the ligand-expressing cell type followed by the
receptor-expressing cell type. C) Heatmap showing up/down-regulated interactions in
COVID-19 compared to LRTD driven by lung endothelium to neutrophils. Coloured boxes
indicate cell type with the ligand-expressing cell type followed by the receptor-expressing
cell type. D) Heatmap showing up/down-regulated interactions in COVID-19 compared
to LRTD driven by neutrophils to lung endothelium. Coloured boxes indicate cell type
with the ligand-expressing cell type followed by the receptor-expressing cell type.
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We then looked at validated interactions in Covid-19 in closer detail in scRNA-seq data
focusing on the co-localising cell types enriched in the COVID-19 IMC neighbourhood
analysis. Macrophage interactions were frequently from ligands on type II pneumocytes
to receptors on alveolar macrophages (Figure 2.27), in keeping with type I pneumo-
cytes cells generally being a principle infected cell. Several of these interactions involved
macrophage inhibitory factor (MIF) from type II pneumocytes with CD74, CD44 and
CXCR4 on macrophages, a classical response chain in macrophages and a key initiator
of proliferation, chemotaxis and activation. I[CAM-1 on type II pneumocytes was pre-
dicted to signal to integrins (ITGB2-ITGAM) on alveolar macrophages, an interaction
involved in cellular attachment during recruitment. Another strong predicted interaction
was IL-34-CSF1R, involved in triggering macrophage activation and chemotaxis. Recip-
rocally, there were several interactions between alveolar macrophages and epithelial cells
consistent with our IMC data that indicate their role in alveolar pathology. These in-
cluded SPP1 and TGFB with type II pneumonocyte integrins (ITGB6) (Figure 2.27),
interactions implicated in lung pathology and fibrosis. We identified multiple neutrophil
interactions with endothelial cells indicating processes involved in neutrophils attachment
to the vascular wall (e.g., ITGAL-ICAM-1) and of activation by neutrophil granule pro-
teins (GRN-TNFRSF1A) (Figure 2.27), providing molecular validation supporting their

role in coagulation, endothelial activation and vascular pathology indicated by IMC.

To further validate the IFN-y response in Malawian patients, we integrated both the
scRNA-seq and IMC data and mapped gene expression profiles onto IMC cells using a
recently developed pipeline?* to observe projected gene expression onto the IMC protein
data.(Figure 2.28). The integrated output showed upregulation of IFN-y response genes,
includingHLA-DR, IFI130 and APOE, and the inducible component of the [FN-y receptor
(IFNGR2) in tissue-resident CD206high alveolar and interstitial macrophages. Notably,
the IFN-y response was most prominent in the SARS-CoV-2+ and apoptotic CD206high
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macrophage populations, predicted to interact with apoptotic fibroblasts and type II
pneumocytes in the neighborhood analysis. Thus, mapping scRNA-seq data onto our IMC
data not only validates the IFN-y response but also implicates these IFN-y-responding

cells in lung stromal cell damage.

Additionally, with work completed by Dr. Vanessa Herder at the Centre for Virus Research
(CVR), we validated the IFN-y response using in situ hybridization staining across pa-
tients and 138 ROIs which highlighted significantly higher numbers of IFNGR2+ cells in
patients with COVID-19 than in non-LRTD controls but not between non-LRTD patients
and patients with LRTD. IFNGR2 was predominantly in CD206high cells, which could be
observed in diffuse alveolar damage lesions. In contrast, the number of IFNG+ cells was
not significantly increased in patients with COVID-19, validating findings from scRNA-
seq. Thus, multiple orthogonal methods demonstrate an [FN-y response in CD206high
lung-resident macrophages, and this is best explained by the responsiveness of these cells

rather than increased inflammation and IFNG production.

These data highlight the value of a combined scRNA-seq and IMC approach. They provide
spatial and receptor-ligand validation for roles of alveolar macrophages in molecular pro-
cesses that are plausibly involved in alveolar damage and lung fibrosis, and for neutrophils
in endothelial activation. The data predict specific molecular interactions involved in these
processes. If validated by further work, some of these interactions may be plausible targets
for intervention, e.g., MIF' for which several small molecules are in clinical development

for therapy in inflammatory disorders.



2.4. Results 102

B CD206 PanCK VWR

Protein

MRC1 KRT7 VWR

NA

R
a5hs

Spatially mapped

c single cell (RNA)
AT2 cell o000 - -0
Activated endothelial cell c @ e 00 - - e
Alveolar macs @coeoco 0 °
Apoptotic alveolar macs 000000000
Apoptotic fibroblast iasn o L hW
Apoptotic SARS-CoV-2 alveolar macs 000000 0
Arginase''®" activated neuts oo
Arginase™ " activated neuts : 9 -
Arginase " neuts Pt B e, B 8 2
B cells c 00080 -0
CD1ic! cell @000 o0 o ° o
CD3' cell NN I S B D - 0 - - o - °
CD4 Treg cell ° °
5 cosTeell I B M B 2 &BE B B B B8 B [0 00« .o ° Fraction of cells
Classical monocytes ) ° o o in group (%)
MCDATcell AN~ HEEEN BN I B R |0 o e o o o ;e
EMCD8 T cell i cmimifie B i 0000
Endothelial cell c @ oo ° 20 40 60 80100
Epithelial cell -0 00 °
Fibroblast L I
Interstitial macs 00000000
Proliferative endothelial cell oo eo0 o0 - . @
Proliferative CD4 T cell < o000 Y
Proliferative CD8 T cell o e o 0 - e
Proliferative endothelial cell o ®o0 o .- e
Proliferating epitheliam cell @ e o0 —
Proliferating fibroblast AR R °
RS-CoV-2" AT2 cell eeo0o0 e
SARS-CoV-2" Arinase™" activated neuts ° e - "
RS-CoV-2" epithelial cell e o ©  Meanexpression
SARS-CoV-2" interstitial macs 000000000
Smooth muscle cell ° o o °
CcN<T-<wWwo< 0 05 10
285822025
Sz2z2590<=0
LEEg <
T
o
2 2
- =
S g
3 (9]
<] Z
z I
=

Figure 2.28: A) Circos plot showing the top cell—cell interactions from immune cells to alveolar macrophages in Malawian
patients with COVID-19 versus Malawian patients with LRTD. Segments are colored by cell type with ligands and receptors
labeled on the outside. Direction of the arrows shows the senders of communications that are expressing a given ligand to
the receiver cell type expressing its cognate receptor. Inner tracks on sender segments are colored by the receiving cell
type for ease of interpretation. B) UMAP plots to show expression levels of different hallmark proteins in different clusters
by IMC and then below RNA levels from scRNA-seq data imputed by MaxFuse. C) Heatmaps showing co-localized cell
types from IMC data, providing insight into potentially interacting cell types in the lung in patients with COVID-19. D-F)
Quantification of mRNA in situ staining for IFNGR2 and IFNG in tissue. In total, 138 ROIs were taken based on multiple
sampled areas from the left and right lung in patients with COVID-19 (n=9), LRTD (n=3) and non-LRTD (n=2). Separate
TMA sections were dual stained for either IFNGR2 and MRC1 (CD206) or IFNG and CD3E mRNA by in situ hybridization,
and then the number of cells positive for each stain within respective cells of interest IFNGR2 in CD206+ cells and IFNG in
CD3E+ cells was analyzed by automatic quantification. Each dot represents the quantities of positive cells in an independent
tissue core that were used as replicates for analysis in D and F. These data were log transformed and analyzed using one-way
ANOVA and Tukey’s multiple comparison test to adjust for multiple comparisons and a pre-defined alpha level of 0.05.
Coloured bars show the geometric mean, and error bars show the 95% confidence interval. D) Compared to non-LRTD
patients (green), there were significantly higher numbers of IFNGR2+ cells in patients with COVID-19 (orange) but not
in patients with LRTD (blue)(P=0.0441). E) Co-staining of IFNGR2 (red) and CD206 gene (green) using mRNA probes
in lungs of patients infected with SARS-CoV-2. Lung of patients with COVID-19 shows, in the periphery of the damaged
alveolar space fibrin (empty arrows) and in the lumen of the alveoli, cells with macrophage morphology expressing IFNGR2
(red signal, rectangle). The insert shows a higher magnification of the rectangle with a macrophage expressing CD206 in
green (black arrows) and abundant IFNGR2 in red. Scale bars, 60pm and 15um, respectively. F) No significant difference was
observed in quantities of IFNG+ cells among the different groups (Non-COVID-19;green LRTD;blue, COVID-19;orange),
(NS, not significant; P=0.111).
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2.5 Discussion

In a multicentre collaborative approach spanning cross-continents with groups in Malawi
and Glasgow, we conducted minimally invasive autopsies on fatal COVID-19 and other
LRTD and non-LRTD cases in a Malawian population and characterised pulmonary,
blood and nasal immune responses using scRNA-seq and IMC. While other studies have
used these techniques for COVID-19 investigations in other settings, this is the first
such study in a SSA population and to our knowledge some of the first scRNA-seq
data from lung samples in any SSA population. Furthermore, conducting this study
during the pandemic, facing logistical and technical challenges, using novel techniques
for tissue extraction and implementing a multi-modal approach to orthogonally val-
idate findings demonstrate the technical achievement of this unique collaborative ef-
fort. Our de-identified data are provided open access, including tools for visualising
single-cell and histology data, making an important resource for furthering the global
understanding of COVID-19 pathogenesis, immune responses in SSA populations and
more widely for the human cell atlas. Access to all fully annotated objects are inter-
actively hosted for exploration hosted on Glasgow-based servers using the cellxgene-
VIP?* platform here: Lung Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/
view/COSMIC_Lung Atlas.hbad/, Lung Immune Atlas: https://cellatlas-cxg.mvls.
gla.ac.uk/COSMIC/view/COSMIC Lung Immune Atlas.h5ad/, Lung Stromal Atlas: https:
//cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung Stromal_Atlas.hbad/,
Nasal Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC Nasal Atlas.
h5ad/, Blood Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_
Blood_Atlas.hbad/, Histopathology slides on virtual microscope: https://covid-atlas.
cvr.gla.ac.uk, and the IMC: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/

COSMIC_IMC_ Lung.h5ad/.


https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Immune_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Immune_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Stromal_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Stromal_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Nasal_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Nasal_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Blood_Atlas.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Blood_Atlas.h5ad/
https://covid-atlas.cvr.gla.ac.uk
https://covid-atlas.cvr.gla.ac.uk
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_IMC_Lung.h5ad/
https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_IMC_Lung.h5ad/
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Given that many parasitic infections induce immune tolerance we hypothesised that
there might be an attenuated immune response in SSA populations, blunting immune-
mediated viral clearance and leading to high viral-loads in individuals who present with
life-threatening disease. If so, pathology might be driven by direct-viral effects rather than
hyperinflammation, indicating a need for different treatment approaches from Northern
hemisphere cohorts. In fact, we found a robust immune response and comparatively low
levels of virus, surprisingly even in highly immunosuppressed cases with HIV. Our data
indicate that pathology is driven by inflammation, with many similarities to other non-
African cohorts. These similarities are reassuring, indicating that many principles for
diagnosis and treatment can likely be extrapolated from more extensively investigated
populations. However, there were also differences that may have implications for therapy,
in particular IFN-y responses were upregulated in comparison to a large multi-country
integrated HLCA dataset and additional existing fatal Covid-19 lung atlases. IFN-y was
produced by T-cells, with alveolar macrophages the principle responding cells. Spatially-
resolved IMC neighbourhood analysis and scRNA-seq receptor-ligand analysis orthogon-
ally validated these processes alongside further validation using in situ staining of lung
tissue. In contrast IL6 and TNF responses were not as prominent. scRNA-seq of nasal
cells also identified IFNG upregulation in T-cells and evidence of IFN-y response in mac-
rophages in a sample type that is readily accessible, supporting prior data on the utility

of nasal cells as an accessible proxy for lung responses.

There is cross-over between the responses of different interferons and IFN-y signal has been
detected previously in COVID-19 lung?, yet it is interesting to consider why there was
such a marked upregulation in our cohort compared to the large integrated HCLA dataset
and other post-mortem cohorts. IFN-y response has been shown to be a key component
of effective immunity to malaria and is augmented in malaria exposed individuals, in
part through epigenetic changes termed trained immunity?**. Increased IFN-y response
was a key difference in SSA (Gabon) versus European individuals exposed to controlled
human malaria infection and a correlate of protection®??. While type I/TIT interferons

are more typically involved in clearance of SARS-CoV2 and other respiratory viruses?!,
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IFN-7 also plays a role, particularly in macrophages®?. Considering our data with these
prior studies we propose that trained immune responses to prior infections may favour
an accelerated macrophage IFN-y response. We hypothesise that this may be a double-
edged sword in COVID-19 in SSA: such an accelerated trained response may generally
be protective (through more rapid viral clearance), but in a subset of patients it may
lead to accelerated hyperinflammation and collateral tissue damage. This hypothesis is
supported by the short time between symptom onset and death in our cohort already
with a clear hyperinflammatory response. Further exploration of macrophage responses
in both SSA and non-SSA populations is therefore warranted. Considering the potential
for translation the existing therapies for COVID-19 target JAK/STAT (Baricitinib), IL6
(Tocilizumab /sarilumab) or TNF (infliximab)??1222, JAK /STAT signaling is a conserved
pathway for interferon responses including IFN-y Thus our data, if corroborated, support
potential efficacy of Baricitinib over other treatments. Baricitinib is a small molecule

(tablet) and thus highly suited to wide distribution®?2.

Our data have several limitations. Our cohort was small and in a single centre. Although
single-cell methods have a higher capacity to resolve complex data in small sample sizes,
many analyses in our study were underpowered. It is thus unclear how representative
our data are of the wider Malawi or other SSA populations. Studies in other settings and
ideally large multi-centre studies, are needed. While this would be a complex undertaking,
we have demonstrated that single-cell methods are feasible in a SSA setting, and our study
provides useful templates. While lung samples cannot readily be obtained in live patients,
post-mortem studies have limitations: cells may change or degrade; pathological processes
present early in disease are likely missed. Yet, post-mortem studies in northern hemisphere
settings with longer post-mortem intervals identified validated targets®. Furthermore, the
overall quality of our single cell data was impacted due to its post-mortem nature, leading
to a change in sample preparation from fresh/frozen single cell sequencing to frozen single
nuclei sequencing. Quality of the cells were further attenuated due to logistical limitations
of conducting sample collection and processing of post-mortem tissue across two countries

during a global pandemic. The technical impact of this created challenges at various stages
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of the analysis such as introducing batch effects during integrations between not only
patients but also cohorts. Also studies that we used for comparisons also had significant
variation in methods and demographics from ours which may induce noise and bias. We
used data-integration methods which reduce but do not eliminate this. We first adopted
fresh single cell dissociated tissue samples that were collected at the Queen Elizabeth
Central Hospital in Blantyre Malawi during the pandemic. Shallow sequencing of the
initial fresh lung samples was performed in Glasgow and after preliminary mapping and
analysis of the quality of reads it became apparent that the quality of the tissue was
insufficient for downstream analysis. Mapping results indicated that we had a low fraction
of reads within the cells indicating a large amount of ambient RNA and a low fraction
of reads confidently mapping to the reference transcriptome. This prompted investigation
of the quality of the FASTQ reads themselves, where we observed that the read quality
was poor. This suggested that the tissue by the time of sequencing was of very poor
quality and many of the cells had lysed or were degraded making downstream inference
challenging. We then decided to change our tissue protocol to use single nuclei snap frozen
tissue samples after seeking advice from the Delorey et al® authors who found that for post-
mortem tissue this method preserved the integrity of the tissue sufficiently for downstream
analysis. After this, we performed deeper sequencing of the tissue samples and found a
vast improvement in mapping quality of the runs and proceeded with the analysis. Due
to constraints of the study, we opted to multiplex multiple patient samples together and
adopt a SNP clustering approach to try and computationally extract distinct genotypes
to recover our patient samples. We realised that due to the quality of the post-mortem
tissue that not all patient samples could be recovered by the Souporcell algorithm™ and
we lacked genotyping data from individual patients in the study. To overcome this, we
matched SNP distribution patterns over highly variable HLA regions, an approach that is
detailed in the results of this chapter. This method enabled us to recover cells from patients
that were well represented in each run, while cells present only at very low proportions
could not be recovered, likely because the starting material was insufficient to distinguish
them as unique genotypes or because most of those cells coming from those patients had
already died. The SNP matching over the HLA region was performed on a qualitative

basis by the human eye and lacked in quantitative robustness however, we consolidated
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this using a dummy example of merged BAM files from individual patient runs and found
the same affect. For most of the nasal and blood samples we used a hashtag multiplexing
approach where nasal and blood cells from the same patient were pooled and sequenced
in a single run. This required mapping and demultiplexing of the hashtags to separate out
the tissue populations for each patient run. Initially, the demultiplexing of the hashtags
resulted in a large proportion of cells that were assigned as ’Negative’ i.e. unable to
be distinguished by the demultiplexing algorithm. To troubleshoot this I implemented a
pipeline that runs the demultiplexing step using multiple different demultiplexing tools
however the result remained the same irrespective of method. We then increased the depth
of the sequencing of the hashtags to see if this improved the demultiplexing and reduce the
number of negative cells, which marginally improved the proportions of recovered cells in
the two tissues. To investigate this further we attempted an iterative clustering approach
were cells were clustered together to see where they are distributed across the UMAP
using information from the singlet cells that were assigned 'Nasal” or 'Blood’. In addition
to this, there are distinct cell types in each tissue that would aid the separation in the
clustering such as epithelial cell types in the nasal tissue that would be absent in the blood.
This approach still resulted in ambiguous cell type assignment so proceeding we chose to
only include the singlet cells that had successfully been assigned by the demultiplexing
algorithm. This failure to accurately demultiplex the multi-tissue runs meant that we
suffered a reduction in cell numbers for both tissue atlases which made the downstream
analysis of some cell types challenging due to low cell numbers. Furthermore, as a result
of the exclusion of samples either from low-quality fresh runs or failure to identify distinct
genotypes in the multiplexed runs, it meant that overall we had very small sample numbers
for this study. This meant that, we could not make comparisons between our COVID-19
patients and patients that had no reported LRTD as there was only one sample acting
as our 'control’ group across all tissue atlases. Thus, our comparisons were restricted to
comparing our COVID-19 patients and our LRTD patients to find distinct mechanisms
of action within our Malawi cohort. The low sample size effect was less pronounced in the
lung tissue analysis however, in the nasal and blood the sample size was incredibly low,
affecting the power and robustness of the results presented in this chapter. Despite the

limitations, we recovered sufficient cell numbers to complete a robust analysis of the key
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drivers of lethal COVID-19 pathology in our Malawian cohort particularly in the lung
compartment. That being said, this limited us in examining other interesting aspects of
the data such as the impact of HIV infection on COVID-19 pathology. In our patient
cohort we uniquely recruited an even number of patients that tested positive for HIV
and those that were uninfected with the virus. We hypothesised that the influence of the
immune system when faced with COVID-19 may differ when already actively engaged with
an additional viral infection, an infection that interestingly impacts T-cell numbers®>3.
Of the patients we recovered we examined T-cell numbers to investigate this however
T-cell numbers were variable irrespective of HIV status. To attempt to observe viral
reads from either COVID-19 or HIV in our infected patients we mapped our data to a
concatenated genome containing the human, HIV and SARS-CoV-2 genome however we
found no evidence of HIV reads in our tissue atlases and very few SARS-CoV-2 reads.
This could be a result of the preprocessing of the data and running SoupX%? on each
sample to remove ambient RNA. As the mapping of the data indicated that we had
large amounts of ambient RNA in each of our runs, the correction of this effect was
deemed mandatory before proceeding with downstream analysis to avoid the negative
impact of ambient RNA. However, SARS-CoV-2 has been widely reported to promote cell
death in late stage chronic infection though mechanisms such as apoptosis and pyroptosis
causing infected cells to burst and contribute to tissue damage?*. Thus, by correcting for
ambient RNA, the algorithm SoupX may have removed ambient viral reads from lysed
cell contents indirectly influencing the extent of viral reads in our cohort. In addition
to this, we also wanted to investigate the effect of different SARS-CoV-2 variants in our
cohort as we recruited patients over the beta and delta variant waves. However, we only
had one patient that was infected with the beta variant and thus insufficient sample
size impacted power and robustness. Nonetheless, we demonstrate how we can still gain
invaluable insights from post-mortem tissue and how we can leverage spatial data to
perform a targeted cellular interaction analysis. By focusing our cellular inference on co-
localised cell types in the IMC data, we found further evidence that there was a type II
interferon response in alveolar macrophages that was absent from northern hemisphere
cohorts. Furthermore, we orthogonally validated this interaction using RNAscope that

showed an increase of IFNGR2 in our COVID-19 lung samples highlighting the power
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of using multiple modalities of data in cellular interaction inference. The evidence for
this interferon response is clear in our cohort and absent in the northern hemisphere
cohort when we compared our lung data. This could be down to the time frame of the
disease where our cohort had a significantly shorter symptom start to death period due
to lack of accessible ventilation equipment unlike the northern hemisphere cohorts mainly
recruited from hospitals across the US. This shortened window of disease could suggest
that the first responders of the viral infection in the lung was tissue-resident cells that
were already present in the tissue niche at the site of infection. When the viral infection
persists for a longer period of time such as in the northern hemisphere cohort it may
allow sufficient time for monocyte recruitment from the blood and monocyte-derived
macrophage differentiation to occur. However this would need to be further investigated
in time course infection studies and cannot be answered by the results in this chapter alone.
Together, this chapter presents a valuable unique dataset elucidating the mechanisms of
lethal COVID-19 in a demographic cohort that was not represented during the pandemic.
Lastly, our data serves as a single cell resource to be used by the community to investigate
inflammatory mechanisms across three tissues, aided by interactive atlases that are readily

available in the publication?97.
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2.6 Supplemental tables

Cell Type

Alveolar macrophages
Interstitial macrophages
Monocyte-derived macrophages
CD16+ Neutrophils
CD16- Neutrophils
Naive CD4+ T cells
Thl

T reg

CD8+ T cells

NK cells

B cells

Plasma cells

Mast cells

Cycling cells
Erythrocytes

Adventitial fibroblasts
Alveolar fibroblasts
AT1

AT2

Basal

Ciliated cells
Lipofibroblast
Lymphatic endothelium
Mesothelial
Myofibroblast
Ribosomal high cells
Secretory cells
Smooth muscle cells
Venous endothelium

Covid-19 LRTD Non-LRTD

3079
1049
1079
1555
1138
992
920
951
1009
616
653
1251
145
115
241

2327
1695
3376
1483
248
1597
259
323
392
409
2221
734
2927
3985

1748
164
875

1381
262
873
449
202
423
390
137
301

36
40
26

346
805
3356
891
636
808
37
107
1129
79
1651
243
613
1852

814
191
773
3039
254
434
447
278
328
719
37
39
36
14
14

18
121
199

6

17

358
3

32

130
7
o84

57

70
959

110

Table 2.9: This table contains all cell counts for annotated lung cells included in this study

split by disease group.
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Cell Type

Macrophages

Neutrophils

CD4+ T cells

CD8+ T cells

Basal cells

Ciliated cells

Goblet cells

Secretory cells
SPRR2Dhigh Squamous cells
VEGFAhigh Squamous cells
Neurons

111

Covid-19 LRTD Non-LRTD

44
354
121

42
368

84
550
603

84
130
106

286
724
78
62
017
104
1279
885
312
449
85

9
26
35

1
29
48

213
142
16
22
4

Table 2.10: This table contains all cell counts for annotated nasal cells included in this

study split by disease group.

Cell Type Covid-19 LRTD Non-LRTD

Monocytes 782 619
Neutrophils 3297 917
CMP/GMP 184

CD4+ T cells 137 305
CD8+ T cells 888 586
NK cells 564 838
B cells 401 251
Reticulocytes 2303 197
Platelets 80

47
018
2
22
133
101
23
0
3

Table 2.11: This table contains all cell counts for annotated blood cells included in this

study split by disease group.



Chapter 3

cell Xplore: a web tool to
interactively explore cellular
interactions at the single cell

resolution

3.1 Abstract

Cells communicate through many diverse molecules such as ligands, receptors (L-R), struc-
tural proteins and metabolites to coordinate a response across tissues in both homeostasis
and disease. With the advent of single cell RNA-sequencing (scRNA-seq), cell-cell inter-
action (CCI) inference and spatial transcriptomics, many computational tools have been
developed to predict interacting cell types. Examination of CCI’s has been invaluable
within the scope of immunology and cancer in elucidating mechanisms of action within
disease however, a key limitation of existing CCI tools is that the output is often large
and complex which poses a challenge to correct interpretation requiring bioinformatic
analyses. In addition to this, cellular interaction inference leads to many false positives
thus leveraging spatial transcriptomics to observe ligand-receptor expression in space can

allow us to hone in on biologically meaningful signal. To mitigate these problems, we have
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developed a Flask-React web tool cellXplore to facilitate CCI analysis in a user-friendly
manner consisting of a web interface with click and point functionality. This provides a
shared platform bringing together widely-used existing CCI packages, allowing users to
develop customisable analysis pipelines and interpret results with interactive data visual-
isations. We demonstrate the functionalities of cellXplore using three distinct workflows
applied to a Visium and Xenium dataset with matched scRNA-seq data to build a com-
prehensive view of the interactome in its native context in parasitic infection and in the

breast cancer tumour microenvironment.

3.2 Introduction

We demonstrate in the previous chapter that leveraging multi-modal data that provides
ligand-receptor expression and a spatial axis can allow us to orthogonally validate inferred
interactions. Through inference of cellular interactions from the lung single cell data we
could integrate the imaging mass cytometry proteomic data to determine spatially co-
localised cell types and project ligand-receptor expression in a shared dimensional space
unveiling the critical role cellular interaction inference plays in the elucidation of underly-
ing immunomodulatory mechanisms in disease. The advent of single-cell RNA sequencing
(scRNA-seq) has allowed the dissection of cellular heterogeneity in tissues, reflecting the
inherent stochasticity and variability of gene expression in each cell. This technology has
given rise to the development of many computational tools that utilise manually cur-
ated databases and statistical methods to quantitively evaluate the probability of two cell
types interacting based on ligand receptor gene expression!44146:148,150,152 However, cell
signalling is spatially constrained, a pivotal dimension that is not preserved in scRNA-seq
data. Interacting cells are usually in close proximity to each other due to limited spatial
diffusivity of the expressed ligand, or to achieve activation through physical contact with
adjacent cells, thus giving rise to spatial patterns of interaction within tissues. Spatial

transcriptomic methods have revolutionised insight into cellular interactions and function
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by maintaining the spatial localisation of cells within their native context!®%2%5:256 By
preserving the organisation of cells, previously lost through tissue dissociation, elucida-
tion of the effects of the tissue microenvironment allows deeper biological insight that
cannot be answered through single cell-RNA sequencing alone. Identification of CCls in
spatial data utilise spatial location by filtering out returned co-expressing L-R pairs from
existing databases if it is physically impossible for communication to occur!®46_ Other
methods compute probabilistic models of inter-cell variation driving spatially variable
genes which is indicative of a CCI occurring therefore reducing the number of false posit-
ives in scRNA-seq results' #4196 Despite the insights developed from these tools there still
remains uncertainty surrounding the validity of the results, agreement amongst methods
and robustness'??. In addition to this, there is yet to exist a platform that comprehensively
brings together both modalities of data, cellular interaction results to support hypotheses
in a complementary manner with no coding background needed. Although cell-cell in-
teraction visualisation platforms exist, namely Intercellar??®, there are none to date that
address the fundamental limitation of cellular communications inference from scRNA-
seq data; the absence of spatial context. Another tool that has since been developed is
ezSingleCell?® that extends their functionality beyond cellular communications and incor-
porate spatial technologies in their analysis pipeline. It is distributed as a web-application
that does not require installation and as an R shinyApp that can be installed by a user
for offline-analysis. However, the tool is inaccessible such as the URL being broken and
the GitHub repository containing little to no documentation about how the tool can be
implemented. In addition to this, the above tools are written and distributed in R, thus
bringing into question their scalability for large scale spatial and atlas-level datasets. Here
we present cellXplore an interactive visualisation platform that allows exploratory analysis
of CCI localised within its native context with no prior computational skills required. The
primary aim of cellXplore is to provide a shared platform streamlining the downstream
visualisation of pre-computed cell-cell interactions inferred from scRNA-seq and spatial
transcriptomic data. Through allowing the development of customisable interactive data
visualisations, we allow the user to interrogate their data and draw biological conclu-
sions thus bridging the gap between biologist and programmer. cellXplore requires a fully

pre-processed object containing ligand-receptor information from their single-cell data
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that can be generated from supported packages such as CellPhoneDB'4148  CellChat!46
and NicheNetR!0. cellXplore allows for filtering and in-depth examination of L-R pairs
of interest, visualisation of selected L-R pairs at the transcriptomic level then followed
by validation within their spatial context. Lastly, users can export results through mul-
tiple visualisation options ensuring reducibility and application for publications. First,
we detail two iterations of the tool, the legacy cellXplore built in the cellxgeneVIP247:250

257 yigualisation components.

framework and the current cellXplore built using Vitessce
Then we demonstrate three potential analytical workflows in which a user can interrog-
ate their interaction results leveraging information from single cell and spatial data. The
first workflow the user can leverage their spatial data by interactively selecting a region
of interest that contains harmonised annotations with the single cell. Then, cell types
present in the selection will be highlighted in the single cell data and, if they are present,
the cellular interaction results will be filtered for interactions between the cell types of
interest. We then apply this workflow using a single cell dataset of the murine brain
during Trypanosoma brucei infection that also contains patient matched Visium data
at va rious time points post-infection®® to investigate microglia cross-talk. The second
workflow aims to allow the user to be able to search for the presence of a particular
ligand-receptor interaction, validate this in a spatial context, and confirm the expression
in the single cell data. This workflow is implemented to validate cellular interactions of
interest in the Trypanosoma brucei dataset that were previously identified with the first
workflow. Lastly, we demonstrate a third workflow in which we wanted the user to select
cell types of interest in the single cell, investigate the interacting ligand-receptor pairs,
search multiple ligand-receptor pairs in the spatial data and validate again with the single
cell gene expression. To give a working example we applied cellXplore to a publicly avail-
able Breast Cancer dataset where Xenium was performed with patient matched single
cell sequencing data'%? to investigate cellular interactions between epithelial cells and the

tumour microenvironment.
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3.3 Methods

Here the methods first detail the software architecture of the legacy cellXplore, the first
iteration of the tool that was built within the cellxgene framework. The results of this
tool can be viewed and compared to the current version of cellXplore in the Results sec-
tion. Then, the methods proceed to outline the software architecture and functionality of
the current working version of cellXplore with a step-by-step tutorial available in more
detail here (https://cellxplore-app.readthedocs.io/en/latest/). Finally, any ad-
ditional preprocessing steps of the exemplar datasets used to demonstrate functionality

are outlined such as cellular interaction inference.

3.3.1 Legacy cellXplore architecture overview

The front-end of the legacy cellXplore is built with a WebGL library, a Javascript API
that allows interactive 2D and 3D graphics alongside various additional packages such
as D3 that allow complex interactivity functionalities. The app is a client-server model
that involves a Python-based backend design built for Scanpy?? to allow single cell com-
putational tasks. cellxgeneVIP?® is a wrapper over the original cellxgene®*” framework
that uses a client-side JavaScript panel plugin that allows user input to be communicated
through to the server. Developers can add various custom functions to the plugin without
changing the underlying cellxgene source code implementing both Python and R mod-
ules. Here we have installed a custom cellxgeneVIP client on a private development server
with alterations to the source code to allow for compatibility with cell-cell interaction
packages including CellPhoneDB™® and CellChat!¥S. Interactive plotting functionality
is implemented using plotly in the Python back-end and its Javascript implementation

in the front-end. Circos plotting functionality is implemented using rpy2 to allow inter-
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operability across programming languages to allow plotting modules from R packages
including ggplot2 and circlize. The GitHub repository to the codebase can be accessed
here https://github.com/olympiahardy/cellXplore_v1 with the backend code found

in VIPInterface.py and the frontend code found in interface.html.

Legacy backend packages

Category Package Version

Core environment Python 3.8.5

Sc packages Scanpy; AnnData; diffxpy 1.6.1; 0.7.4; 0.7.4

Data handling pandas; NumPy; PyArrow 1.2.1; 1.19.5; 1.0.1
Visualisation Matplotlib; Seaborn; Plotly 3.3.4; 0.11.1; 4.8.1

R interface rpy2 3.3.5

R environment R; Seurat; fgsea; ComplexHeatmap 3.6.3; 3.2.3; Bioconductor;
cellxgene cellxgene 0.15

Table 3.1: Main backend packages used in the legacy cellXplore.

Legacy frontend packages

Category Library Version / Role
Core framework  jQuery; jQuery UI 3.4.1; 1.10.3
Styling Bootstrap; Font Awesome 3.3.7; 4.7.0
Interactive tables DataTables core; DataTables Buttons 1.10.20; 1.6.1
Visualisation d3 3.x
Visualisation Plotly 5.11.0

Table 3.2: Main frontend packages used in the legacy cellXplore.
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3.3.2 cellXplore Software Architecture

The current cellXplore is built as a Flask?*-React web app where the user can cre-
ate multiple interactive cellular interaction visualisations plotted using the D3 Javas-
cript library?®?. Currently, cellXplore is hosted on a development server oh-czg-dev-
muls.gla.ac.uk and can be accessed for each dataset at http://oh-cxg-dev-mvls.gla.
ac.uk/breastcancer and http://oh-cxg-dev-mvls.gla.ac.uk/braintbrucei or can
be launched locally from the GitHub repository (https://github.com/olympiahardy/
cellXplore_App), with all dependencies to be installed with a convenient environment.yml

file and package.json for the backend and frontend installation respectively.
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Figure 3.1: Schematic demonstrating the software architecture of cellXplore

As shown in Figure 3.1, the backend architecture follows the Flask framework and consists
of a single python file that contains multiple REST endpoints for fetching interaction data.
Each endpoint serves JSON payloads for the frontend that function as distinct plotting and

visualisation functions that are described in more detail in the Visualisation Tab section.


http://oh-cxg-dev-mvls.gla.ac.uk/breastcancer
http://oh-cxg-dev-mvls.gla.ac.uk/breastcancer
http://oh-cxg-dev-mvls.gla.ac.uk/braintbrucei
https://github.com/olympiahardy/cellXplore_App
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In addition to this, the backend also contains functions to generate a JSON configuration
file that is parsed by the Vitessce visualisation components®®”. The JSON config file
contains descriptors to inform the frontend what Javascript components are required
and how to access the necessary paths in the Zarr data structure. Additionally, it also
instructs how to link different views together and how they should be laid out on the user
interface. A detailed example of a dummy JSON config file for Vitessce is explained in more
detail in the appendix of this chapter (Appendix 3.1). The frontend architecture adopts a
modular, component-based design using React, enabling reusability of data across different
visualisation tabs. Each plotting function is encapsulated within its own JavaScript file,
facilitating maintainability and further ease of development of the tool. The front end also
handles all plotting functionality and filtering logic, thus implementing this on the client
side, eliminates the need for asynchronous backend-frontend communication. This way,
the tool reduces computational load, resulting in faster response times and a smoother

user experience.

Backend packages

Category Package Version

Core environment Python 3.10.15

Web framework Flask; Flask-CORS; Flask-Caching 3.0.3; 5.0.0; 2.3.0

ASGI server Uvicorn 0.32.0

Data structures AnnData; SpatialData 0.10.9; 0.3.0

Data formats Zarr; OME-Zarr; hbpy 2.18.3; 0.9.0; 3.12.1

Data handling pandas; NumPy; PyArrow; xarray 2.2.3; 1.26.4; 17.0.0; 2024.11.0
sc/Spatial packages Scanpy; Squidpy 1.10.3; 1.6.1

Cell-cell communication LIANA+ 1.4.0

Visualization Plotly; Matplotlib; Seaborn; Vitessce 5.24.1; 3.9.2; 0.13.2; 3.4.1
Distributed computing  Dask; Distributed 2024.10.0; 2024.10.0
Networking Requests; aiohttp 2.32.3; 3.10.10

Table 3.3: Main backend packages used in the current cellXplore.
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Frontend package versions

Category Package Version

Ul framework React; React DOM 18.3.1

Bundling/server Vite; @Qvitejs/plugin-react 5.4.14; 4.3.2

UI components @mui/material; @mui/system; @mui/styled-engine 5.15.14; 5.15.14; 6.4.0

CSS Styling @emotion/styled 11.14.0

sc/Spatial visualisation @vitessce/dev 3.5.11

Interactive plotting d3; 7.9.0;

Ul tab utilities react-select; react-tabs 5.10.1; 6.1.0 — selects/tabs
Exporting html2canvas; jspdf 1.4.1; 3.0.1

Static server http-server 14.1.1

Table 3.4: Main frontend package versions used in the current cellXplore

3.3.3 Development protocol for cellXplore

Development and testing of cellXplore were carried out on a dedicated development server
(oh-cxg-dev.muls.gla.ac.uk), configured with 24 Intel Core CPU cores, 30 GB of RAM, and
running Ubuntu 20.04.5 LTS. cellXplore was initiated from scratch using a Vite-based
build format to establish the frontend and backend components. During development, the
frontend was launched with npm run dev, while the backend was executed as a Python file,
allowing the interface to be tested via a web browser on a local machine. Code changes
were version-controlled with GitHub, organised into two branches: main for stable re-
leases and local dev for ongoing development. Once changes were finalised, the repository
was pushed to GitHub and subsequently deployed to the development server (oh-cxg-
dev.mvls.gla.ac.uk) using git pull. Deployment was performed via SSH tunnelling, where
the repository was cloned, dependencies were installed with npm install, and the fron-
tend was compiled using npm run build. The backend was then launched within a screen
session, enabling the tool to remain accessible after logout from the server. Finally, to
ensure dataset-specific hosting and configuration a separate Git branch was created for
each dataset. To achieve this, the GitHub repository was cloned twice on the develop-

ment server so that each dataset could run from an independent codebase. In addition
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to this, each instance of the application was configured to serve on a distinct local port,
enabling multiple datasets to be hosted simultaneously. Access to these dataset instances
was managed using Nginx as a reverse proxy. For each dataset, a location block was added
to the Nginx configuration file, mapping a unique URL path to the respective local port.
For example, requests to /braintbrucei/ were forwarded to port 5001, while /breastcan-
cer/ was mapped to port 5000. This setup allowed multiple datasets to be accessed in
parallel under the same domain (oh-cxg-dev.mvls.gla.ac.uk) while isolating their backend

processes so that multiple screen sessions can be run in parallel without interference.

3.3.4 Input data requirements

The user must have a fully preprocessed single cell object where cell types have been
annotated, dimensionality reductions computed and cell-cell interaction analysis inferred

saved to a Zarr store.

The table below (Table 3.5) provides an overview of mandatory and optional requirements
for cellXplore. The user must have a precomputed single cell object saved to a Zarr store
that contains dimensionality reductions, categorical annotations such as cell type labels
and cellular interaction results. Spatial data is not mandatory however, where available,
the spatial data must contain spatial locations and harmonised cell type labels with the
single cell data. In addition to this, the user may also include any image data such as

histology slides but are not mandatory for the tool to function.

Input Data Requirement Details

(Mandatory) General Requirements

Accepted Zarr stores Mandatory AnnData or SpatialData

Embeddings stored in obsm
(e.g., UMAP, PCA)

Dimension reductions Mandatory
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Input Data Requirement Details

Cell types, clusters, or
Categorical annotations Mandatory

metadata stored in obs

Interaction matrix must be
Cell-cell interactions Mandatory

stored in .uns

(Optional) Spatial Data Requirements

Location embeddings (e.g.,
Spatial coordinates Mandatory spot or cell centroid) in obs or

spatial metadata

Region or spatial labels stored
Spot/cell-level annotations ~ Mandatory

in obs

H&E or histology images as
OME-TIFF or OME-Zarr

Images Optional

Joint Analysis Requirements (Single Cell + Spatial Data)

Consistent cell type or cluster
Harmonised annotations Mandatory field shared across both

datasets

Table 3.5: This table contains the mandatory and optional requirements for input data
for cellXplore.
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3.3.5 Case study dataset preprocessing

3.3.5.1 10X Visium T.brucet murine brain infection

258

All data were publicly available and were taken from this study“°® investigating changes

in the murine brain during Trypanosoma brucei infection. The raw Visium spatial tran-

181 "4 spatial

scriptomics data and images were downloaded and re-analysed using Giotto
analysis toolbox. First, for each infection time point, a GiottoVisiumObject was created
using filtered Visium counts from the SpaceRanger output and the low-resolution histology
image. Objects were then filtered for only barcodes present within the tissue region, and
spots with gene counts more than 50 and normalised using a scale factor of 6,000. Highly
variable features were then calculated and PCA was computed and UMAP embeddings
were obtained using the 10 principle components. To obtain clusters, a SNN network was
constructed using the createNearestNetwork function and was fed into doLeidenCluster.
To obtain spatial cluster markers findMarkers one wvs all was performed and the top
10 cluster markers were plotted using plotMetaDataHeatmap. Spatial regions were then
annotated using publicly available resources such as the Tabula Muris!! and the Human
Protein Cell Atlas?%!(proteinatlas.org) to check for orthologous gene expression. Once
spatial regions had been annotated and cellular deconvolution analysis was performed us-
ing the Spatial DWLS?0? algorithm that combines cell type enrichment with the dampened
weight least squares algorithm. For this, the fully preprocessed and annotated single cell
RDS object was downloaded from Zenodo and contained the following cell types detailed
in the paper: Microglia 1, Microglia 2, Microglia 3, Microglia 4, Astrocyte 1, Astrocyte 2,
Pericytes/Tanycytes, Endothelial, Ependymocytes, B cells/Oligo, T cells. The data was
read into R and subset for each time point where FindAllMarkers from the Seurat package
was ran to obtain signature marker genes for each cell type. Then, using the top 20 marker
genes for each cell type a signature matrix was constructed using the makeSignMatrixD-
WLSfromMatriz for the Spatial DWLS algorithm. Deconvolution results were obtained

by running runDWLSDeconv and were then exported as a CSV file. Spatial coordinates,


proteinatlas.org

3.3. Methods 124
reduction embeddings, metadata and normalised counts were then extracted from the
Giotto object and exported as CSV files. For cellular inference analysis the preprocessed
single cell object was analysed using CellChat (v1) following the comparative analysis
protocol. Firstly, the dataset was split based on infection status and converted into a
CellChat object was completed separately for each condition. Overexpressed genes were
first identified using identifyOverExpressedGenes followed by overexpressed ligands using
the identifyOverFExpressedInteractions function. Following this the comunication probab-
ility was inferred using computeCommunProb and interactions between cell type groups
containing less than 10 cells were filtered out. The remaining interactions were then in-
ferred on a pathway level using computeCommunProbPathway and the total aggregated
cellular interaction network was calculated using aggregateNet. Finally, the interaction
dataframe results for each object were extracted from the CellChat objects using sub-
setCommunication, with manual addition of a ’condition’ column termed ’Infected’ or
"Uninfected’ to distinguish conditions and exported as a CSV. The preprocessed single
cell RDS object was then converted to a H5AD file compatible with Python using the
SeuratDisk package functions SaveH5Seurat and Convert. Once the spatial, single cell,
deconvolution and interaction results have been exported, all data were read into Python.
An Anndata object was constructed with the single cell data, the spatial data was saved
to the 'uns’ slot along with the deconvolution and interaction results each assigned to
their own layer, ’spatial’, ’deconvolution” and 'CellChat_ Interactions’ respectively. For
the assignment of cell types in the Visium data, cellXplore sets a spot threshold cut-off
at 60% to determine what the dominant cell-type is at that spot location based on the

deconvolution results.
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3.3.5.2 10X Xenium and single cell sequencing of Breast Cancer

The fully preprocessed single cell and Xenium datasets were downloaded from the 10X Ge-
nomics website (https://www.10xgenomics.com/products/xenium-in-situ/preview-
dataset-human-breast) and contained harmonised annotations of cell types across both
datasets. Cellular inference was completed using the LIANA+19° package on the single
cell data using the liana.method.cellchat function, returning a results table of interactions
that were expressed in at least 10% of cells in the cluster. Cellular interaction pathways
were annotated using omnipathDB!47203 package and added to the results table where
available. In the case where ligand-receptor pairs had no functional annotation informa-
tion they were assigned the label 'Unknown’ in the pathway column. Subsequently, the
table was saved to the 'uns’ layer of the data object. Both datasets were then saved to a

Zarr store ready to be used in cellXplore.

3.4 Results

In this section, the functionalities of cellXplore will be demonstrated, using two spatial
transcriptomics datasets with paired scRNA-seq data where cellular interactions have
been precomputed. First, the legacy cellXplore will be presented showing its existing
applications and then the current version of cellXplore will be presented, outlining three

distinct workflows a user may wish to take when utilising the tool.


https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
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3.4.1 Reanalysis of T.brucei dataset

Human African trypanosomiasis (HAT) is a disease caused by the parasite Trypanosoma
brucei that leads to neurological dysfunction, more commonly known as sleeping sick-
ness?04. Quintana et al elaborate on the molecular mechanisms of immune cells during
neuroinflammation at the parasite-host interface in the murine brain during various stages
of infection®8. This dataset serves as an ideal paradigm for the development of cellXplore
as it had sample-matched single cell and Visium data and therefore was selected for ana-
lysis. The single cell data were taken from the murine brain at naive, 25, and 45 days
post-infection with the cellular annotations reported in the paper (Figure 3.2). The data
contains representative homeostatic cell types in the brain such as microglia and astro-

cytes, including an immune cell compartment of T cells and B cells.

rrrrrr

Pericytes/ Taycytes

Figure 3.2: UMAP visualisation of annotated cell types presented in the Quintana et al
paper

The Visium data in the paper were used to validate interesting findings in the single cell
data by projecting gene expression in space. However, to further develop the functionality
of cellXplore I wanted to elucidate cell types likely to be present in the various spatial

regions of the brain using cell-type deconvolution techniques. When doing this we can
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get a more comprehensive understanding of our downstream interaction analysis by not
only defining the different anatomical regions of the brain but also what particular cell
types may reside there. The spatial data was re-analysed and clustered revealing 7 distinct
brain compartments (Figure 3.3) that were annotated using reference datasets detailed in
the Methods section of this chapter. Identified regions included the basal ganglia (Pdel1b,
Gpr88), the hippocampus (Cnih2, Wipf3), the cerebral (Nov, Atp2bj) and upper cerebral
cortex (Clstnl, Egrl), the thalamus (Prked, Ramp3), hypothalamus (Resp18, Nap1l5),
and white matter (Fthl, Tpt1). Defined brain regions were further cross-validated with
anatomical diagrams of the murine brain, that provided additional confidence that the

spatial organisation of the annotated clusters were correct.
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Figure 3.3: Top left) Spatial projection of the naive slide showing annotated regions of
the murine brain. Top right) UMAP of the spot clusters annotated with brain regions.
Bottom) Heatmap showing the top 10 marker genes for each annotated cluster
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Once spatial regions were defined, cell type deconvolution was performed to elucidate
what potential cell types were localised to the brain compartments. This step is critical
when considering cellular inference with pseudo-bulk spatial data, and a prerequisite for
cellXplore when using Visium data. The results of the deconvolution are shown in Fig-

ure 3.4 in naive state to demonstrate the estimated cell type composition at homeostasis.

A1 Naive A1 Naive
. Pericytes/ Tanycytes . Pericytes/ Tanycytes
. Astrocyte 1 » . Astrocyte 1
W ticrogia2 g W vicosia 2
Endothelial ‘.6 Endothelial
% Microglia 1 é Microglia 1
E B cells/ Oligo g B cells/ Oligo
Astrocyte 2 g_ Astrocyle 2
T ealls 2 T cells
W vicoias % W vicogias
Ependymocytes o Ependymocytes
B vieoia s W vicosias

Slide

Figure 3.4: Left) Spatial slide showing the cell type deconvolution of the uninfected murine
brain. Estimated cell type proportions per spot are visualised as a pie chart. Right) Stacked
proportion bar plot showing the overall relative proportion of cell types across the whole
slide using a 60% cut-off to determine spot annotation.

We can now see the structural composition of the murine brain on a cellular level with
astrocytes concentrated in regions such as as the thalamus whereas we observe a more het-
erogenous composition of cell types in areas like the cerebral cortex that has co-localisation
with various adaptive immune cells and microglia. Thus, cell type deconvolution can give
us deeper insights into potential interactors, which cellXplore can utilise to filter out false

positives from precomputed cellular interaction results.
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3.4.2 Analysis of cellular interactions in active Trypanosoma

brucei infection using the legacy cellXplore

Implementing the legacy cellXplore, built within the cellxgene framework, we can first
see how this workflow can be demonstrated using the T.brucei dataset. Once the tool is
launched from the command-line with the dataset we can see the homepage with a view
of the single cell data in a UMAP representation as shown in Figure 3.5. The data can be

coloured by various categorical metadata shown in the sidebar and labels can be toggled

for ease of reading using the top toolbar.

Figure 3.5: Screenshot of the T.brucei single cell dataset implemented in the legacy

cellXplore

The cellXplore visualisation tab can be accessed by clicking ’Cell Cell Interaction Analysis’
located on the top right of the page which opens a window to visualise interaction data.
The legacy cellXplore supported cellular inference analysed with two popular packages

CellPhoneDB and CellChat, where the user selects either the ’CellPhoneDB Interaction
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Analysis’ or 'CellChat Interaction Analysis’ tab (Figure 3.6).



3.4. Results

1000 2000 3000
‘nCount RNA

caucan
Create new category A Sonee! Table view of interaction:
Violin
iokgical Repcates > Stacked Vil SelectConition Anotton
Broad_Cell_Types > Heatmap. Select Condition: [Biological Repiicates v
cellcyle > e (=)
DotPlot
CellSubclusters > ket Plot heatmap of results:
Experimenta|_Groups > LG Choose source cell population(s): &2 Uncheck / Check All
o . Density Scatter
@ infection_status > - O Astrocyte 1 0 Astrocyte 2 ) B cells/ Oligo [ Endothelial () Ependymocytes
S ual Genes Microgiia 2 () Microglia 3 () Microglia 4 ) Pericytes/ Tanycytes () T cells
- Sankey Diagram
. Choose rceiver cllpopulation(s): B Uncheck / Check All
Geme Detectnd O Astrocyte 10 Astrocyte 2] B cells/ Oligo ) Endothelial () Ependymocytes [
oo “ Microgia 2 ) Microglia 3 ) Microgia 4 O Percyts/ Tanycytes ] T cell
Marker Genes —

CellPhoneDB Interaction Ar [ Plot |

Cell Chat Interaction Analy: k,,m dotplot of results:

Spatial Selection

Spatial Transcriptomics.

Command Line Interface

Giobal Setting

7000

500

»

Choose source cell population(s): &2 Uncheck / Check All

O Astrocyte 1 0 Astrocyte 2 ) 8 cells/ Oligo () Endothelial () Ependymocytes
Microgiia 2 (] Microglia 3 C) Microglia 4 () Pericytes; Tanycytes () T cells
SOSp— T}

L R R

¥ % umap: 13195 out of 13195 cells

W & o Genes v
Q

Gene Sets +

ey |
~

W\
Microglia 1
c
Microgia 1
tes
Microglia 1

Figure 3.6: Screenshot of the legacy cellXplore visualisation plugin tabs that offer

isation functionality
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visual-

When selected, the analysis tab offers different visualisation functionalities such as a table

view of interactions for each condition, a heatmap of interacting cell types and a dot plot

of ligand-receptor pairs (Figure 3.7). Users can select or deselect cell type populations of

interest using tick boxes and change the colour maps of the plots for customisation. Once

the user is happy with the selection they can click on the plot button allowing dynamic

rendering of results.
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Using cellXplore to visualise cellular interaction results inferred with the CellChat pack-
age revealed increase micgroglia cross-talk in T.brucei infection compared to naive state
(Figure 3.8). Analysis revealed an increase in chemokine signaling during infection and a
notable increase in interaction strength between microglia and astrocytes, expressing Psap
and Gpr37l1 that plays a part in astrocyte migration and neuroprotective function. Other
interactions of interest include Lgals9-Ighm between microglia and B-cells suggesting a

role that microglia regulate B cell signaling during infection.
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Figure 3.8: Top) Heatmap showing the differential number of interacting cell types in na-
ive state versus infected. The black box highlights the increased cross talk across microglia
subsets. Bottom) Dot plot showing interactions between microglia subsets and other cell
types in the data in naive versus uninfected. Red boxes highlight increased interaction
between microglia and astrocytes and also an infection specific interaction between mi-
croglia and B cells
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The original paper describes microglia-plasma cell crosstalk during infection, so utilising
cellXplore to investigate this, we found that there are different patterns of interactions
between various microglia subsets, a result not fully elucidated in the paper (Figure 3.9).
In particular, we can see that Microglia 3 is more pro-inflammatory interacting with B-
cells through Spp1 and Pecaml, a phenotype absent from the other subsets. We can also
recapitulate interactions reported in the paper using cellXplore, such as /10 hypothesised

to regulate pro-inflammatory responses in microglia.
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Figure 3.9: Dotplot showing interactions between B-cells and various microglia subsets
during infection. Purple boxes highlight microglia subset specific interactions and shared
interactions across all subsets.

Another interaction of interest was a high expression of Mif and Cd7/ between B-cells
and all microglia subsets. We then used cellXplore to visualise the co-expression of this
ligand-receptor in the single cell data. We found that in infection both the expression of

Mif and Cd7j are increased and localised to both microglia and B-cells (Figure 3.10).
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Figure 3.10: Top left) UMAP showing cells coloured by their infection status. Top right)
UMAP showing cells coloured by expression of Mif, Cd74, or both. Left panels) UMAPs
showing Cd74 and "Mif in infected cells. Right panels) UMAPs showing Cd74 and Mif in

uninfected cells.

By applying cellXplore on this dataset we can visualise reported interactions and discover

potential interactions that may not have been previously reported. To further validate

our findings from the single cell analysis we can also leverage spatial data and identify co-

localised cell types. By navigating to the ’Spatial Selection’ tab and selecting the relevant

slide of interest, we can generate an interactive spatial plot of the spot coordinates of the

Visium data coloured by the region annotations (Figure 3.11).
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Figure 3.11: Screenshot of the legacy cellXplore visualisation plugin Spatial Selection tab
that offers lasso selection interactivity

The plot also contains a lasso tool function that allows the user to select a region of
interest in the spatial data. When selected, a UMAP of the single cell data containing the
cell types of interest is dynamically plotted and shown next to the Visium data. If the
user wishes to create another selection both plots will be updated allowing flexibility of

exploration (Figure 3.12).
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Figure 3.12: Screenshot of the legacy cellXplore visualisation plugin Spatial Selection tab
that shows cell types present in the spatial region of interest projected onto their UMAP
coordinates in the single cell data
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We can see that in the area we selected at the boundary of the hypothalamus and basal
ganglia the cell type labels predicted by the cellular deconvolution indicate that microglia
and astrocytes are co-localised during infection. The circos plot shows the Psap-Gpr37l1
interaction we identified earlier in the analysis, giving us more confidence this interaction
is likely to occur at both the scRNA-seq transcriptomic level, but also between cell types

that are indeed co-localising in space. (Figure 3.13).

. | umap: 13195 outof 13195 cells
»

Figure 3.13: Screenshot of the legacy cellXplore visualisation plugin Spatial Selection tab
that shows a circos plot of interactions that are present between the selected cell types of
interest

Below the circos plot we can visualise the interactions between the cell types of interest
in a searchable table (Figure 3.14). This gives us quantitative information of potential
cellular interactions such as the p-value and communication probability. The table can

also be exported to a CSV to be used for further use by the user.
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Figure 3.14: Screenshot of the legacy cellXplore visualisation plugin Spatial Selection tab
that shows a table view of interactions that are present between the selected cell types of
interest

3.4.3 Moving away from legacy cell Xplore to the current cell Xplore

The legacy cellXplore nicely demonstrates how a user can utilise their spatial data by
selecting a region of interest and visualising cellular interactions inferred from paired
single cell data. However, this implementation comes with some downfalls that have been

addressed with the new implementation of cellXplore.

3.4.3.1 cellXplore improves computational efficiency and data

loading by implementing Zarr storage formats

Firstly, the legacy cellXplore faced major issues with large memory datasets being read in
as a H5AD file. When the tool was tested with a 10X Xenium dataset that contains large
memory images the computational cost negatively impacts the lasso selection resulting in

major lag. Thus, we decided to move away from working with H5AD input data formats
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that the legacy cellXplore required to a Zarr storage format. This format allows for effi-
cient, scalable storage of large multidimensional arrays by reading data in chunks handling
datasets that are larger than memory thus optimising it for out-of-core computation. By
allowing this, cellXplore only loads relevant portions of the dataset avoiding complete
loading of the data in memory increasing computational efficiency and speed. In addition
to this, tabular metadata is stored in a uniform structure allowing for fast structured
querying, an example of the directory structure is shown for Anndata (Figure 3.15) and
SpatialData respectively (Figure 3.16). Finally, the Zarr storage conveniently integrates
with the Python single cell and spatial ecosystems such as Scanpy, Squidpy, Anndata and
SpatialData. Commonly used single cell data structures such as AnnData, optimised for
tabular data, can be saved to a Zarr store. Additionally, cellXplore is compatible with
SpatialData formats that are more tailored to the storage of image based spatial tech-
nologies such as Xenium and Cosmx, these can be saved to a Zarr store using wrapper

functions provided in Scanpy or SpatialData-io.

.zattrs
.Zgroup .zattrs
.zgroup
obs/
leiden
anndata.zarr/ 11t
cell_type
obsm/‘AL////'X_umap
X/

uns/ —L/////fcell_interactions

Figure 3.15: Example Zarr directory structure of a AnnData object used for single cell
transcriptomics visualisation.
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.zattrs
.zgroup
images/41/////morphology_focus/
spatial_data.zarr/
shapes/—W/////cell_circles
.zattrs
.Zgroup
tables/AW/////table/ leiden
obs/
clusters
X

Figure 3.16: Example Zarr directory structure of a SpatialData object used for spatial
transcriptomics visualisation.

3.4.3.2 Improvements to design Ul of cellXplore allows ease of

exploration across both data modalities

Another limitation of the legacy cellXplore were the visualisations being limited to the size
of the cellxgeneVIP plugin, which was unsuitable for comfortably viewing high dimensional
spatial data. To improve this, the new version of cellXplore has a ’Single Cell View’ tab
that allows the user to explore and visualise their single cell or spatial data using the whole
webpage. Using visualisation components from the Vitessce library you can visualise both
modalities of data side by side (Figure 3.17), without having to navigate back and forth
between the views. The single cell data is projected in the UMAP embedding space using
the Scatter Plot component and the spatial data is projected as a spot polygon mask
overlaid on the histological image where available using the Spatial component. The Cell
Sets component allows the user to visualise their data with any available categorical
metadata such as Leiden clusters or annotated cell types in both their single cell and
spatial data. Individual or multiple categories of cells can be highlighted by either clicking
the label text or by clicking toggle buttons next to each label. Similarly the same may
also be done for the spatial view using the Spot Sets component that is located adjacent

to the spatial data viewer.
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Figure 3.17: Screenshot showing single cell data coloured by metadata in the Single Cell

View tab of cellXplore

In addition to visualising categorical metadata we can also visualise gene expression in

both the single cell and spatial views using the Gene List component which contains a

searchable list of all genes available in the expression matrix of the datasets, a functionality

not provided by the legacy cellXplore. By clicking a gene the UMAP component will

highlight the genes expression across all cells in the dataset (Figure 3.18). Genes can be

ordered by their appearance in the matrix or alphabetically, and where alternative IDs are

available, the user can toggle whether to sort by or display these instead of the original

gene IDs. Similarly, the same can also be done in the spatial data using the Gene List

component adjacent to the spatial data.
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Figure 3.18: Screenshot showing single cell data coloured by ACTA2 gene expression in

the Single Cell View tab of cellXplore

The Spatial View component allows users to explore their spatial data on the spot or

image level where available. As mentioned above you can colour your spatial data with

metadata variables or by gene expression. Additionally, the Spatial Layers component

provides user control of showing/hiding the spot level mask or histological image as well

as sliders to adjust the opacity of each layer (Figure 3.19).

Spatial

m CD4+T Cells

Spatial Layers

&  Spot

© Imane

None

Colormap: v viridis
greys

Photometr magma Blackls v
jet

Zero Trang  pot

bone

Volumetric  copper aximum |

summer

v

Figure 3.19: Screenshot showing spatial cell data coloured by intensity in the Single Cell

View tab of cellXplore
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The current cellXplore also provides functionality at the image level where available by
allowing the user to utilise the image rather than the spatial embeddings only as imple-
mented in the legacy cellXplore, giving more control over the spatial image settings. By
default, the viewer initially shows both the spots and image with the image contrast set
to 0 so that the spots are visualised more clearly. The user can control the intensity of
the histology image to show staining in various colours or colour maps, simultaneously
retaining control over the spot-level polygons so you can see staining and cells overlaid

together (Figure 3.20).

Spatial 67 nage = Endothelial
IRF7+ DCs

Spatial Layers

('%? Spot
®© Image
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Figure 3.20: Screenshot showing spatial cell data with image and spot mask overlaid
coloured by cell type in the Single Cell View tab of cellXplore

3.4.3.3 cellXplore provides advanced data selection and tabular

filtering strategies

Filtering strategies in the legacy cellXplore were limited to either metadata categories
using tickboxes or spatial selections that refreshes upon each iteration. To improve the
flexibility and reproducability of analysis, the current cellXplore gives the user more con-
trol over complex cell selections and utilises single cell, spatial data or tabular interaction
data. By using the Cell Sets component in the ’Single Cell View’ tab we can create selec-
tions which can then be passed to the plotting tabs for visualisation. This can be done in

two different ways, the first using the toggle buttons of the categorical metadata to select
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cell populations of interest. The second is using a convenient lasso tool where the user can
click and drag a selection of cells which can be saved and passed to other plotting tabs
(Figure 3.21). Once cells are highlighted selections will be stored under "My Selections’

that will appear in the Cell Sets component.

Scatterplot (UMAP)

aoa

Figure 3.21: Screenshot showing lasso selection in the Single Cell View tab of cellXplore

Both selection strategies can be further manipulated using join functions in three distinct
ways (Figure 3.22). The first is a union that takes the union of all selected variables, the
second is the difference where cell populations outside of the selection are stored to a
new selection, and the last being the intersection which can take the intersection of cell

populations in multiple selections.

» My Selections

Figure 3.22: Screenshot showing the three different join operations in the Single Cell View
tab of cellXplore



3.4. Results 143
Selections of interest can also be renamed by the user and exported as a CSV or JSON
which contains the single cell barcodes and the metadata associated with them for further
use and reproducibility. Tabular cellular interaction selections can be made in the 'Inter-
active Table’ view where the user can explore their cellular interaction data in an easy
table format that has many filtering options to find cellular interactions of interest. Both
string and numerical columns can be used to sort the table, with search functionalities
and an interactive paginator to control the number of rows displayed. The table view
offers a wide range of powerful filtering strategies located above the table to delve into
your interaction data (Figure 3.23). These can be performed in two flavours. The first
filtering strategy can be utilised by selecting multi-value manual filtering where unique
values in the string columns are parsed into drop-down menus. This allows the user to
filter on string columns agnostic to the cell-cell interaction package used during the data
pre-processing.

Hide Filters

Manual Table Filters

X | v

Pathway
ACTR2
ADAM10
ADAM12 Saved Table Selections:
ADAM15

Ligand ADAM17 Source Target L-R Probability Interaction Pathway

ADAM28

COL6A3 Endothelial Stromal & T Cell H...  0.00681 COL6A3_CD44 COLLAGEN

COL6A3 CD44 Endothelial Stromal 0.00262 COL6A3_CD44 COLLAGEN

COL6A3 ITGA1 Endothelial Stromal 0.000869 COL6A3_ITGAT_I. COLLAGEN

COL6A3 SDC1 Endothelial Stromal 0.000789 COL6A3_SDC1 COLLAGEN

Rows per page: 10 v 1-40f 4

Figure 3.23: Screenshot showing the filtering functionality in the Interaction Table View
tab of cellXplore

The second is implementing selections created from the Single Cell View tab that are
stored and passed to the Interaction Table View and can be accessed via a convenient
drop-down menu (Figure 3.24). When selected, the table will filter and only interactions

that arise between the selected cell types of interest.
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Complement 1
Intersection 1

Ligand Selection 1 Receptor

Single Cell View tab selections: | Union 1

Figure 3.24: Screenshot showing the stored selections made in the Single Cell View tab
that can be implemented in the Interaction Table View tab of cellXplore

Individual rows can also be selected in addition to filtering strategies and can be saved and

used across additional plotting tabs or exported as a CSV file for further use (Figure 3.25).

Single Cell View t ctions: | Union 1 v | Apply | Reset Export CSV | | Clear Filters
W

Show Filters

Save Row Selection

Saved Table Selections:

COLGAS3 interactions Rename Filter = Delete

Ligand Receptor Source Target L-R Probability P-value Interaction Pathway

COL6A3 CD44 Endothelial Stromal & T Cell H.. 0.00681 0 COL6A3_CD44 COLLAGEN

COL6A3 CD44 Endothelial Stromal 0.00262 0 COL6A3_CD44 COLLAGEN

COL6A3 ITGA1 Endothelial Stromal 0.000869 0 COL6A3_ITGA1_I COLLAGEN

COL6A3 sDC1 Endothelial Stromal 0.000789 0 COL6A3_SDC1 COLLAGEN

Rows per page: 10 ¥ 1-4of 4

Figure 3.25: Screenshot showing saved selections made by selecting rows in the Interaction
Table View tab of cellXplore

Thus, the functionality of saving and setting selections is vastly improved in the current
cellXplore, and is not limited to a single selection made in the 'Spatial Selection’ tab or

static table filtering strategies used in the legacy cellXplore.
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3.4.3.4 cellXplore extends interactive plotting functionalities tailored

to cellular interaction visualisation

Finally, the cellxgeneVIP framework contained existing plotting functionality that was
created for the purpose of differential gene analysis and was inapplicable to cellular inter-
action visualisation. Therefore, the current cellXplore removed these functionalities and
extended plotting visualisations beyond the legacy cellXplore. Each plotting function is
interactive and accessible in its own contained tab where selections can be passed in to
visualise interactions, which can then be exported in a PDF format for high-quality fig-
ure generation. These include a bubble plot, heatmap, circos plot similar to the legacy
cellXplore however the current implementation has two additional visualisation views.
For example, various cellular inference packages, such as CellChat, provide functional
pathway annotations that inform the signalling pathway into which the interaction is
fed. The 'Pathway Proportions’ tab allows the user to understand what key functional
processes occur in our cellular interaction data. The column names of the interaction
dataframe are parsed into a drop-down menu where the user can first select the column
denoting the pathway information and a grouping variable such as condition or sample to
plot a stacked proportion barplot. This shows the relative frequency of the top pathways
split by groups, particularly useful for complex datasets that contain multi-condition or

multi-sample interaction data (Figure 3.26).
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Figure 3.26: Screenshot showing the hover tooltip in the Pathway Proportions View tab

of cellXplore

Another new visualisation functionality is the 'Ligand-Receptor Search’ tab which con-

tains a dual spatial view that allows users to explore ligands and receptors in their spatial

context where available (Figure 3.27). Users can compare two Spatial View components

side-by-side, select different genes in each view using the Gene List components and check

for spatial co-localisation of ligands and/or receptors. For ease of usability when an area

is hovered over in one spatial view then the same location is tracked in the second spatial

view highlighted by a white line tooltip.
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Figure 3.27: Screenshot showing the dual spatial gene expression visualisation in the
Ligand-Receptor Search View tab of cellXplore

A more detailed explanation of each plotting visualisation can be found within the cellXplore
documentation (https://cellxplore-app.readthedocs.io/en/latest/) and are demon-

strated in the workflows outlined below.

3.4.4 Case study: Workflow 1 using T.brucei infection to exam-

ine microglia-plasma cell cross talk

In workflow one, we wanted the user to be able to input their spatial, single cell, and
interaction data and leverage spatial context to filter the interaction table (Figure 3.28).
In this scenario, the user can first select a region of interest in the spatial data that contains
harmonised annotations with the single cell. Then, cell types present in the selection will
be highlighted in the single cell data and, if they are present, the cellular interaction

results will be filtered for interactions between the cell types of interest.


https://cellxplore-app.readthedocs.io/en/latest/
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Workflow 1
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Algorithm 1 Spatial-Transcriptomic Interaction
Query
1: Input: Spatial data ST, scRNA-seq data sc,
interaction table CCI

Symbol Definitions

2: SELECT region r; € ST ST Spatial transcriptomics data
3: if cg,cs € sc then sc Single-cell RNA-seq data
4: SELECT cg,cs in sc CCI Cell-cell interaction table
5: for each (cg,cg) in sc do LR Ligand-receptor pair
6: if CClhyp = (CR,Cs) or (Cs,CR> then and r Region of interest
TYqist < dist cr Receiver cell
7: RETURN matching interactions ¢€s Sender cell
from CCI TYqist Distance of captured area
8: end if IntP Interacting pair ID
9: end for
10: else
11: Throw Error: “No interactions found”
12: end if

Figure 3.28: Overview of user workflow one and analysis query pseudo-code
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Figure 3.29: Screenshot of the current cellXplore visualising the T.brucei murine brain
dataset. Single cell data is coloured by cell type in the top right component. Spatial
Visium data is coloured by deconvolution assigned cell types and brain regions.

This workflow was thoroughly demonstrated in the legacy cellXplore and this can be
repeated as shown above, the same T.brucei dataset is visualised in the current iteration
of the tool with a more accessible view to visualise both the single cell and spatial data
in one view. Users can colour the data from any existing categorical metadata and also
gene expression similar to the legacy cellXplore. Where cellular deconvolution has been
computed, the user can leverage this information to assign cell types to their spatial data.
In Figure 3.29 we can colour data by multiple metadata categories as shown in the Visium
slide. The thalamus region of the brain is highlighted in grey, whereas we can colour other
spots outside this region by their assigned cell types. We can see that the white matter
is the most heterogenous region abundant in immune cells like microglia and T cells.
Using the current implementation of cellXplore we can repeat the analysis of workflow 1
examining microglia and plasma crosstalk, leveraging spatial regions to hone in on cellular
interactions of interest demonstrated in the legacy cellXplore. Furthermore, in the current
version of cellXplore we can extend our analysis by evaluating the difference in cellular

interaction pathways where the data is available (Figure 3.30).
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Figure 3.30: Stacked proportion bar plot showing the different signaling pathways involved
during naive uninfected state and T.brucei murine brain infection.

This gives us a nice global view of how the interactions are changing across conditions or
any grouping variable in our data. Cellular inference tools, such as CellChat, can provide
pathway annotation information that can help guide the user to focus on a particular
signaling pathway. For example, we observe that during infection the complement and
chemokine signaling pathways are activated, as expected during inflammation but are
absent in the naive brain. In addition to this, we see the PSAP pathway is substantially
decreased in active expression compared to naive. Applying these visualisation strategies,
we will now demonstrate how we can complete analysis on the same dataset using workflow

2, to confirm additional interactions between additional cell types we found using workflow

1.
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3.

4.5 Case study: Workflow 2 confirming interactions between

astrocytes and microglia in T.brucet infection
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Algorithm 2 Ligand-Receptor Interaction Query

W o

o

10:
11:
12:
13:
14:
15:
16:
17:
18:

: SELECT ligand-receptor pair LR;
it LR; ;) € CCI then
for each LR; ;) in CCI do
RETURN CCI where CCIL =Ly;,
CCIrR =R )
if CClg,, = True then
SELECT cg, cg in ST where
TYqgist < dist

J) and

RETURN LR},
2 .
for cach LRy; ;) in CCT do Symbol Definitions
: RETURN CCI where CCIp = ST Soatial t tomics dat
L. and CCIx =R;; Spatial transcriptomics data
: 2 sc Single-cell RNA-seq data
for each cg, cg in CCIZ,, do . .
. su CCI Cell-cell interaction table
SELECT cg, cg in sc . .
LR Ligand-receptor pair
end for i .
r Region of interest
end for )
. cr Receiver cell
end if
cs Sender cell
end for .
TYqist Distance of captured area
else IntP Interacting pair ID
Throw Error: “No interactions found” &P
end if

Figure 3.31: Overview of user workflow two and analysis query pseudo-code
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In workflow two, we wanted the user to be able to search for the presence of a particular
ligand-receptor interaction, validate this in a spatial context, and confirm the expression
in the single cell data. Previously in our workflow one analysis, we identified a Psap-
Gpr3711 interaction that occurred between microglia and astrocytes in the brain under
both uninfected and infected conditions (Figure 3.13). We can utilise the ’Interactions

Table’ view to search in our cellular interaction results any interactions that occur between

Psap and Gpr37l1 (Figure 3.32).

Single Cell View  Ligand-Receptor Search [MINGEGUOIREIM Pathway Proportions  Bubble Plot  Heatmap  Circos Plot

Single Cell View tab selections: = All Data v | Apply Reset Export CSV | Clear Filters

Hide Filters

Manual Table Filters

Ligand Receptor Source Target Interaction

Save Row Selection

Saved Table Selections:

Psap_Gpr37I1 Rename Filter  Delete

Ligand Receptor Source Target L-R Probabilty P-value Interaction Pathway Condition

Psap Gpr37I1 Astrocyte 2 Astrocyte 1 0.0175 0 PSAP_GPR37L1  PSAP Uninfected

Psap Gpra7it Microglia 1 Astrocyte 1 0.0199 PSAP_GPR37L1  PSAP Uninfected

Psap Gpr3711 Microglia 2 Astrocyte 1 0.0194 PSAP_GPR37L1  PSAP Uninfected

Psap Gpr3711 Microglia 3 Astrocyte 1 0.019 PSAP_GPI PSAP Uninfected

Psap Gpr3711 Astrocyte 1 Astrocyte 2 0.0176 PSAP_GPR37L1  PSAP Uninfected

Psap Gpr3711 Microglia 1 Astrocyte 2 0.0191 0 PSAP_GPR37L1 PSAP Uninfected

Figure 3.32: Screenshot of the ’Interaction Table’ view showing an example selection of
Psap-Gpr3711 interactions in the uninfected murine brain.

As in this example we loaded the naive Visium slide to visualise, we can also exclude
interactions occuring between this ligand-receptor pair in the infected conditions. Once we
have applied the necessary filtering strategies, we can save the relevant interactions to pass
to the plotting tabs to visualise here named 'Psap Gpr3711. We have now established that
the interaction of interest exists in the cellular interaction table, but we need to validate
the Psap-Gpr37l1 interaction in its spatial context. We can navigate to the ’Ligand-
Receptor Search’ tab and search for the spatial expression of each ligand and receptor in

space (Figure 3.33).
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Figure 3.33: Screenshot of the 'Ligand-Receptor Search’ view showing spatial expression
of Psap (top) and Gpr3711 (bottom)

From the spatial plots, we can see that Psap is ubiquitously expressed across the tissue
whereas Gpr37l1 expression is dimmed in the regions of the basal ganglia and the cereb-
ral cortex. However, if we zoom into the regions of the brain where Gpr37(1 is highly
expressed, we can clearly see co-localisation of Psap expression (Figure 3.34). Using the
interactive hover tip and zoom functionality we can hone in on spots of interest where a
ligand and receptor are both being expressed, increasing our confidence that this ligand-

receptor interaction is a true positive.



3.4. Results 154

Spatial

Spatial

Figure 3.34: Zoomed screenshot of the ’Ligand-Receptor Search’ view showing spatial
expression of Psap (top) and Gpr3711 (bottom) aided by the hover tooltip to identify
spots/regions of interest

Now that we are confident the expression of the ligand and receptor co-localise we need
to ensure that the sender and receiver cell types in the spatial data also co-localise and
are present in the single cell data. For this we can select the sender and receiver cell
types in both datasets and observe if they harmonise with the gene expression patterns
(Figure 3.35). We can see from the localisation of cell types that astrocyte populations
co-localise with the microglia 4 subtype in the same regions that correlate to the spatial
distribution of ligand receptor gene expression. In areas of the brain like the cerebral cortex
and basal ganglia we see less localisation of these cell types and see a more concentrated

distribution in the lower regions of the brain slide.
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Figure 3.35: Screenshot of the ’Single Cell View’ tab showing selected cell types of interest.
Microglia and astrocytes are selected in the single cell view (top) and also co-localisation
of microglia and astrocytes in the spatial view (bottom)

Finally, we want to conclude the validation of this interaction by checking the expression

of Psap and Gpr37l1 in the single cell data. By searching for the expression of these genes

in the "Single Cell View’ tab we can nicely see that Psap expression is high in our microglia

subsets and Gpr371l1 expression is high in our astrocyte populations (Figure 3.36).
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Figure 3.36: Screenshot of the "Single Cell View’ tab scatter plots showing gene expression
of Psap (top) and Gpr3711 (bottom) in the single cell data

Thus, implementing workflow 2 the user can dynamically search for a given ligand-receptor
pair, visualise its spatial expression distribution and validate its co-localisation using single
cell and deconvolution data. Additionally, we can pass the row selection of Psap-Gpr37i1
interactions in our uninfected condition and plot the interactions in a frequency heatmap,

dot plot and circos plot as shown in Figure 3.37.
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Figure 3.37: Left) Dotplot showing Psap-Gpr3711 interactions between microglia and as-
trocyte subsets. Dots are coloured by their interaction probability and size represents
their p-value (p<0.05). Top right) Frequency heatmap showing the number of inter-
actions between microglia and astrocyte subsets. Bottom right) Circos plot of selected
Psap-Gpr37l1 interactions between microglia and astrocytes.

We also wanted to extend the functionality of cellXplore beyond a single spatial tech-
nology, so we implemented a publicly available single cell and patient-matched Xenium

Breast Cancer dataset to demonstrate interoperability across spatial platforms.
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3.

4.6 Case study: Workflow 3 using patient matched single cell

and Xenium of a Breast Cancer tumour

Workflow 3

‘Cell Type B’
1
‘Cell Type A" o

o
— % @
Single cell-RNA

sequencing data

Search:

I 2» L: [
p—
Cell-cellinteractions
Algorithm 3 Cell-to-Cell Interaction Lookup by Cell
and LR Subset Symbol Definitions
1: Select cg, cg in sc ST Spatial transcriptomics data
2: for each (cg,cs) in sc do sc Single-cell RNA-seq data
3 return CCI where CCI., = cg and CCl, = ¢y CCI Cell-cell interaction table
4: Select LR; j from CClyy, LR Ligand-receptor pair
5 if CCl,;, = True then r Region of interest
6: Select cg, cg in ST where Tygist < dist cr Receiver cell
7 return LR%I. ) cs Sender cell
8 for each LR%J] in CCI do TYdist Distan§e of C?:Lptured area
9: return CCI where CCIp = L; ;) and IntP Interacting pair ID
CCIr =R j
10: for each cg, cg in CCIgub do
11: Select cg, cg in sc
12: end for
13: end for
14: else
15: Throw Error: “No interactions found”
16: end if
17: end for

Figure 3.38: Overview of user workflow three and analysis query pseudo-code
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In workflow three, we wanted the user to select cell types of interest in the single cell,
investigate the interacting ligand-receptor pairs, search multiple ligand-receptor pairs in
the spatial data and validate again with the single cell gene expression (Figure 3.38).
Moving on from pseudo-bulk spatial transcriptomics, we demonstrate this on a publicly
available Xenium Breast Cancer dataset with patient matched single cell data shown in

cellXplore in Figure 3.39 where individual cells are observed in their spatial context.
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Figure 3.39: Screenshot of cellXplore visualising the single cell and Xenium breast cancer
datasets.

The original study took samples from FFPE human breast cancer sections and performed
single cell, Visium and Xenium in order to map the tumour microenvironment. They
characterised three distinct cancer domains, invasive tumour and two types of ductal
carcinoma in situ which they term DCIS1/2 alongside stromal and immune compartments.
After computing cellular interaction inference, we can see the key pathways in the tumour
microenvironment are collagen and laminin indicating suggesting epithelial changes such

as epithelial-mesenchymal transition (EMT) and increased cell invasion (Figure 3.40).
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Figure 3.40: Left) Stacked proportion bar plot showing the top 10 interaction signal-
ing pathways in the breast cancer dataset. Right) Frequency heatmap of all interactions
between cell types in the breast cancer dataset

When we plot the frequency of interactions between all the cell types we observe the
highest number of interactions between the Myoepi ACTA2+ cells and the tumour sub-
types. Now we have identified a particular cell type pair of interest we can apply workflow
three to see what interactions are occurring in this context. First, we can check to see if
the cell types exist in the single cell and gain insight to their spatial distribution across

the tissue (Figure 3.41).
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Figure 3.41: Screenshot visualising Myoepi ACTA2+ and DCIS 2 cells in the single cell
and Xenium breast cancer datasets.

Here we select the Myoepi ACTA2+ cluster and one of the tumour subtypes DCIS 2
and clearly show close co-localisation suggesting that this myoepithelium cluster may
play a pivotal role at the tumour microenvironment interface. As the Xenium dataset is a
targeted panel of 313 genes it is useful to be able to filter the cellular interaction results to
only contain ligand-receptors that are present in the panel. This is so that we can validate
ligand-receptors in the data in their spatial context and consider these high confidence
interactions. The Interactions Table tab allows the user to input multiple ligand and
receptors to manually filter the table however, we can pull the whole list of genes present
in the spatial data by clicking the 'Filter for Spatial Genes’ button (Figure 3.42). This
pulls the list of genes in the spatial data object and searches the table for ligand-receptor

pairs that only occur in the spatial data gene panel.
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Figure 3.42: Screenshot showing the filtering of the interaction table by using a list of
spatial genes

Once we apply this filtering, we go from 40,000 interactions to 4,000 substantially exclud-
ing interactions that we cannot orthogonally validate in the Xenium dataset. We can then
use the manual filtering functionality to select interactions that occur between the DCIS

2 and Myoepi ACTA2+ clusters, resulting in two interactions shown in Figure 3.43.
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Figure 3.43: Screenshot of spatially relevant interactions between DCIS 2 and Myoepi

ACTA2+ cells

Taking the first interaction result of CEACAM6 being expressed by DCIS 2 cells and

EGFR being expressed by Myoepi ACTA2+ cells we can check their spatial gene expres-

sion to see if they co-localise at the tumour microenvironment interface. As shown in

Figure 3.44 we can nicely see that indeed CEACAME6 is expressed by DCIS 2 cells and

other tumour subtypes present in the tissue and EGFR is expressed in the surrounding

area around the tumour cells.
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Figure 3.44: Screenshot showing the spatial gene distribution of CEACAM6 and EGFR
in the breast cancer Xenium dataset

When we zoom in and take a closer look, it is clear that the spatial gene expression of this
ligand-receptor interaction is found at the tumour interface indicating that CEACAMG6
and FGFR may play a role in tumour progression. After validating the interaction in
the spatial context, we might want to return and check the expression of this ligand-
receptor pair in the single cell and ensure that it is expressed by our cell types of interest

(Figure 3.45).
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Figure 3.45: Screenshot showing the gene expression of CEACAM6 and EGFR in the
single cell dataset alongside the cell type labels projected onto the UMAP

CEACAMG6 expression is clearly expressed by the DCIS 2 cells along with other tumour

subtypes whereas FGFR expression in the Myoepi ACTA2+ cluster is limited to a propor-

tion of cells in the cluster. However, as we validated the spatial expression of these genes

we can be confident they exist in space in the tissue section. Finally, we can use other

visualisations within cellXplore to quantitively display the interaction such as a bubble

plot in Figure 3.46.
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Figure 3.46: Bubble plot showing the top 25 cellular interactions between DCIS 2 and
Myoepi ACTA2+ cells using a p-value cutoff of 0.05 (p<0.05)

By plotting the top 25 interactions inferred from the single cell data we can see the pres-
ence of CEACAMG6-EGFR between DCIS 2 and Myoepi ACTA2+ cells. CEACAMG6 has
been shown to regulate cell migration through EGFR signaling in various cancers?%®> 267,
thus indicating this interaction is critical in tumour progression. By implementing work-
flow three, we can show how we can use cellXplore to select cell types of interest, use

gene lists to filter our interaction results by prioritising spatial genes and hone in on high

confidence interactions that play an important role in disease.
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3.5 Discussion

In this chapter, we present cellXplore, a novel web tool to facilitate visualisation and in-
terpretation of cellular interactions. We demonstrate using three distinct workflows how
a user may wish to interact with the tool to interrogate cellular interaction results lever-
aging both single cell and spatial data. Furthermore, we show that cellXplore can be
utilised across different spatial platforms providing examples from whole transcriptome
Visium pseudo-bulk spatial to imaging-based single cell technologies such as Xenium.
Through applying cellXplore using these two datasets, we show different visualisations of
cellular interactions such as tabular data, heatmaps, dotplots, circos plots and proportion
bar plots. In addition to this, gene expression and spatial distribution of ligand-receptors
can be visualised to validate cellular interactions of interest. The interactive interface
cellXplore provides flexibility to the user through manual filtering of interactions, selec-
tion of regions or cell types of interest and storage of selections to visualise results with no
prior coding experience necessary. In the first workflow we re-analysed a Visium dataset
with paired single cell data during T'.bruce: infection and recapitulated findings from the
original study and revealed varying patterns of microglia-plasma cell cross-talk that were
not highlighted in the paper. We observed a decrease in interactions involved in the PSAP
signalling pathway in active infection compared to naive controls. This pathway is vital
for maintaining lipid homeostasis by degrading sphingolipids in the brain, with PSAP de-
ficiency being shown to contribute to neurodegradation in neurodegenerative diseases such
as Parkinsons disease?08269 Other pathways were increased that are inline with neuroin-
flammation and disrupted homeostasis such as the MIF and CCL signalling pathways. The
macrophage migration inhibitory factor pathway signals upstream of cytokines and regu-
lated the innate immune response®’?. Studies have reported that the MIF - CD74/CD44
interaction promotes maintenance, proliferation and survival of microglia and B cells®"!.
In addition to this, a cleavage product of this interaction has been reported to induce
cell—cell signalling and cell survival in B cells, recapitulating the important role of B-cells

in the infection?”?. Then through the second workflow we used a different analysis pipeline



3.5. Discussion 168
to validate interactions found between microglia and astrocytes that were co-localised to-
gether in their spatial context. It has been well reported that microglia-astrocyte cross
talk is present in prominent neuroinflammation marked by reactive astrogliosis, microgli-

273 We also reported interactions

osis, and elevated levels of proinflammatory cytokines
such as C3 expressed on astrocytes and C3aR1 on microglia suggesting that astrocytes can
modulate microglial reactivity by activation through the complement signalling pathway
in neuroinflammatory conditions®”*. Finally, in the third workflow we show interactions
between myoepithelial cells and the tumour microenvironment leveraging all modalities
of data, whilst also highlighting the limitation of validating cellular interactions in spatial
technologies that utilise targeted panels. This analysis showed a key interaction between
CEACAMG6 being expressed on DCIS 2 cells and EGFR on myoepithelium. CEACAMG6
can activate the ERK/MAPK pathway directly or through EGFR, promoting tumour
proliferation, invasion, migration and plays a role in resistance to chemotherapy, making
it an attractive target for immunomodulatory therapies?6”-2™ . The second interaction we
identified involved E-cadherin which in most settings has a immunosuppresive role in can-
cers. However, when interacting with EGFR it promotes a hyper-proliferative phenotype
in breast cancer cells and is strongly correlated with breast cancer survival rates?7%. In
conclusion, both novel and reported interactions can be investigating using the tool in a
wide range of contexts and diseases. Here we also presented two iterations of the web tool,
the first being the legacy cellXplore, built within the cellxgene framework, that offered
limited visual functionality of spatial transcriptomic data. I outlined the first iteration of
cellXplore that was implemented within the cellxgene?*” framework and was a module of
the cellxgeneVIP plugin®’ however this was unsuitable for the use-purpose of the tool
due to several factors. This then led to the development of the current implementation
of cellXplore that was build as a Flask-React app using visualisation components from
the Vitessce suite?®” that is tailored to visualise single cell and more importantly spatial
data. Firstly, the cellxgene framework was designed to facilitate analysis of differential
gene expression in single cell data only. It provided useful plotting functions such as
violin plots, gene expression heatmaps, and density plots however, these were not exten-

ded to be suitable for spatial analysis. Furthermore, these plotting functionalities were

limited to a very small viewing area of the visualisation plugin tab. Thus, when trying
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to visualise spatial data, the user is limited to a very small proportion of the available
space on the webpage. Another major limitation of the legacy cellXplore was the structure
and maintainability of the inherited codebase. The platform was originally forked from
the cellxgeneVIP GitHub repository, a visualisation plugin developed by the bxgenomics
group, that extended the functionality of the original cellxgene visualisation platform. The
backend was implemented as a single Python file consisting of thousands of lines, while
the frontend interface was also contained within a large, minimally structured JavaScript
file. This lack of modularity and failure to adhere to several core software architecture
principles made the codebase extremely difficult to navigate, debug, or test. Furthermore,
the code lacked any documentation or commenting of the code, making adding new func-
tionality challenging. Additionally, the simultaneous use of Python, R, and JavaScript in
the same environment created a complex dependency ecosystem, leading to frequent and
difficult-to-resolve package conflicts during installation. Due to these limitations, the fur-
ther development of the legacy cellXplore become constrained and underscored the need

for a more modular, well-documented, and language-consistent system architecture.

The last limitation of the legacy cellXplore was its need for a .hbad file as input, which,
while widely used in single-cell RNA-seq, is inherently optimised for matrix-like, tabu-
lar data. This made it poorly suited for spatial transcriptomics datasets, where high-
resolution image data are essential components. The images would be stored in the uns’
slot of the AnnData object and when attempted to be loaded into the legacy cellXplore it
resulted in computational lag that made spatial viewing challenging. Thus, to overcome
this, only the spatial coordinates stored in obsm could be used and visualised, while the
actual tissue images were unusable. This was achieved by completely overhauling the old
codebase and creating a Flask-React app from scratch, this time aiming to follow correct
coding practices. The new architecture allows visualisation and user interaction to be
handled entirely by the frontend, while the backend serves only to generate the JSON
files needed by the Vitessce visualisation components and serving preprocessed tabular
interaction data. In particular, the frontend has been refactored to manage the interactive

filtering, tab switching, and plotting logic, which is cleanly organised into separate JavaS-
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cript modules that correspond to each visualisation tab. By implementing this modular
structure in the frontend, we improve maintainability and debugging while also facilitating
potential development of new features in the future. Lastly, cellXplore transitioned to us-
ing the Zarr storage format in conjunction with AnnData/SpatialData objects for its data
backend. Zarr is an efficient, scalable format for storing large multidimensional arrays and
is specifically optimised for out-of-core computation. By reading data in chunks, it can
handle datasets that are larger than system memory and only loads relevant portions of the
dataset into memory. This eliminates the need for loading the entire dataset into memory,
a useful feature for high-resolution tissue images and large-scale spatial transcriptomics
data, reducing memory overhead and preventing computational lag. The SpatialData ob-
ject extends AnnData by incorporating additional spatial modalities—such as transcript
coordinates, segmentation masks, geometric shapes, and multichannel images—each or-
ganised in their own distinct layers (points, labels, shapes, images, etc.), and has become
increasingly popular in the spatial community. By implementing these changes cellXplore
now provides a comfortable user experience, adopts better coding practice within its code-
base and finally handles large memory high-dimensional data in formats used by the wider

community.

Despite many improvements to cellXplore there are still some limitations that need to be
addressed by the tool. Some are minor aesthetic improvements of the plotting functions,
however more critically, the manner of data ingestion must be developed. Currently, there
are some manual preprocessing steps that exist to allow the data to be read in the correct
format. This includes ensuring that the cellular interactions are stored in the "uns’ slot
of the data object, formatting any metadata to be visualised as a category type, and
checking what data is available for the user interface layout. In Figure 3.47 we propose a

potential future improvement schema to facilitate data loading into cellXplore.
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Figure 3.47: A) Schematic demonstrating future work with cellXplore

This would consist of a.yml file that validates all elements of the input data object by first
checking the paths to the available data, checking that the metadata is of dtype category
and taking any additional input from the user such as a description of the dataset. Once
this .yml file is loaded into the tool, if necessary single cell or spatial data objects would
be converted to a Zarr store and the Vitessce config would be validated and generated.
The tool is currently hosted on a development server with static URLs to the datasets
presented in this chapter and is not optimised for personal use. We propose in future
work for the user to clone the GitHub repository and then launch the tool using CLI
parameters to take the .yml file and a cellular interaction flag. The cellular interaction
flag would check if cellular interactions had been inferred and in the event they are absent,

+195 package. This package

would compute cellular interactions on the fly using the Liana
provides a collection of useful Python wrappers of popular cellular inference tools such as
CellPhoneDB and CellChat. The CLI flag would also allow the user to select the inference
tool they prefer before proceeding to launch cellXplore with their data. Allowing more

flexibility in launching and implementing cellXplore, would allow accessibility to users

using any dataset, instead of its current state of static URL hosting.
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In addition to this, another limitation of cellXplore is the underutilisation of spatial data.
The spatial data is leveraged during analysis in a qualitative manner, mainly using visual
cues to determine co-localised gene expression. Future development of cellXplore could
include quantitative information from spatial analysis such as neighbourhood analysis
of co-localised cell types and spatially variable genes. By providing additional visualisa-
tions to inform the user of spatial statistics, cellular interaction inference could be more
quantitatively constrained spatially, improving validation of true positive interactions.
Furthermore, cellXplore could provide more quantitative gene expression visualisations
such as violin plots to consolidate gene expression of ligand-receptor pairs in either mod-
ality of data. Finally, since the development of cellXplore there have been many cellular
inference packages that aim to compute cellular interactions on the spatial data instead
of the single cell data only. Although, as demonstrated in this chapter this analysis can
be hindered by available gene panels, the tools functionality could be extended to incor-
porate the results of this type of analysis to allow the user to investigate spatially aware

cellular interactions.

Lastly, a nice feature would be the extension of cellXplore to facilitate cellular interaction
inference and visualisation of other data modalities such as spatial proteomics. As we
observed in the first chapter imaging mass cytometry can be leveraged with single cell
data to hone in on interactions of interest. By using multi-modal integration of the Covid-
19 lung data we could also project transcriptomic and proteomic read-out into a shared low
dimensional space. The potential limitation of utilising cellXplore to visualise the Covid-
19 dataset is the requirement of harmonised cell type labels across both datasets and the
absence of ligand-receptor expression in the protein panel. However, using multi-modal

9 we can potentially work-around these constraints by

integration tools such as Maxfuse?*
using projected expression and cell type labels across both data modalities. Nonetheless,
cellXplore can be utilised to explore interactions of statically hosted datasets that mandate
a JSON file to be created to host on the Glasgow Atlas server. The tool stands as a

useful resource to aid bioinformatic analysis and visualisation of cellular interactions with

no coding background required, bridging the gap between computational biologists and
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bench scientists. Overall, cellXplore is a versatile visualisation tool that can be used to

investigate cellular interaction results. By creating a smooth user interface and experience,

cellXplore can be used to facilitate collaborations of cellular inference on big data amongst

researchers that lack a coding background. We show the functionality of cellXplore on

two distinct datasets and provide different analytical workflows for data interpretation.

In future implementations of cellXplore, we hope it can be launched with any dataset and

facilitate multi-modal single cell cellular inference exploration.

3.6 Appendix

version: "1.0.17", % Version of Vitessce
name: "Breast Cancer Multi-Modal", % Name of the dataset
description: "High resolution mapping of the tumor microenvironment

.", % Short description of the dataset

datasets: [{

uid: "A", % Unique dataset identifier
name: "Single-Cell RNA",
files: [{
fileType: "anndata.zarr", % Type of data store
url: ".../sc FPPE breast _cancer.zarr", % Path to the Zarr
store
options: { % Dictionary defining visualisation components
obsEmbedding: [{ % Defines the dimensionality reductions
path: "obsm/X_umap",
dims: [0, 1],
embeddingType: "UMAP"
,
obsSets: [ % Defines the categorical metadata

{ name: "Clusters", path: "obs/clusters" 7},
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19 { name: "Cell Type", path: "obs/Cell_Type" }

20 1,

21 obsFeatureMatrix: { J Defines the gene expression matrix

22 path: "X" }

23 3,

24 coordinationValues: { % Defines what type of component the
data is

25 obsType: '"cell",

26 obsSetSelection: "obsSetSelectionScope"

27 +1}]

28 +,

29 {

30 uid: "B",

31 name: "Xenium Spatial",

32 files: [{

33 fileType: "spatialdata.zarr",

34 url: ".../Xenium_proper_data.zarr",

35 options: {

36 obsFeatureMatrix: { "path": "tables/table/X" 1},

37 obsSets: {

38 obsSets: [

39 { name: "Clusters",

40 path: "tables/table/obs/leiden" 7,

41 { name: "Cell Type",

42 path: "tables/table/obs/clusters" }

43 1,

44 tablePath: "tables/table"

45 1,

46 obsSpots: { % Defines the spot-level mask

47 path: "shapes/cell_circles",

48 tablePath: "tables/table"

49 3,

50 image: { % Defines the spatial image
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"path": "images/morphology_focus" }
3,
coordinationValues: A{
obsType: "spot",
obsSetSelection: "obsSetSelectionScope"
331
1,
layout: [ % Defines the structural layout of the user interface
{
component: "scatterplot", % Defines the type of visualisation
component
coordinationScopes: { % Links elements of the component to the
defined data types
dataset: "A",
embeddingType: "A",
obsType: "A",
obsSetSelection: "A"
}, % Below defines the component size and layout
x: 0.0, y: 0.0, w: 6.0, h: 6.0
3,
1,
initStrategy: "auto" % Automatic initialisation once all data can
be accessed
b

Listing 3.1: Example JSON file to initialise the Vitessce visualisation components in the

Single Cell View tab.



Chapter 4

Dissecting cellular interactions in big
data: Contextualising cellular
interactions using atlas-level single
cell and sequencing based spatial

transcriptomics

4.1 Abstract

Cellular inference can be extended to large complex datasets where we can implement
indirect validation using single cell and spatial data as demonstrated in cellXplore. Here
we present two user-cases with validated cellular interactions both experimental and
indirect, where cellular interaction inference is applied to an atlas-level dataset and a
spatial transcriptomics dataset where the spatial topology of the tissue is warped. In
more detail, the first case study focuses on a multifactor single-cell atlas of macrophage
and fibroblast populations spanning four tissues in both homeostasis and inflammatory
disease. The size and complexity of the dataset required advanced inference and visu-
alisation strategies to resolve context-specific interactions. Our analysis reveals shared

and tissue-unique myeloid—stromal phenotypes, identifies conserved pathways of tissue
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resident macrophage—fibroblast crosstalk that underpin inflammation, alongside context-
specific interactions that reflect the unique microenvironments of different organs. The
second case study applies 10X Visium spatial transcriptomics to the intestine, where
the non-native orientation of tissue presents challenges in cellular interaction inference.
Using the ’swiss-roll’ technique to capture the crypt—villus axis, we investigated host—
parasite interactions during Heligmosomoides polygyrus infection across four time points.
This analysis identified immune and epithelial cell programs associated with granuloma
formation, stem cell reprogramming, and parasite-driven immunomodulation, providing
insight into helminth infection within a distorted tissue landscape. Together, these stud-
ies demonstrate the intricacies of cellular interaction inference within atypical contexts,
offering new perspectives on myeloid—stromal communication and the spatial dynamics

of parasitic infection in the murine intestine.

4.2 Introduction

In previous chapters, we presented an analysis of how cellular interactions elucidate im-
munomodulatory mechanisms in COVID-19 infection and highlighted the need for an
interactive visualisation tool to facilitate cellular interaction interpretation in single cell
and spatial transcriptomics data. Building on from this, the focus of this chapter shifts
to demonstrate methodological challenges in cellular inference to investigate biological in-
sights in complex datasets. Specifically, we aim to show how cellular interaction analyses
can be adapted to datasets where the nature of the experimental design or the tissue
architecture complicates standard analysis practice. The first use case is a multifactor
single-cell atlas comprising multiple tissues, conditions, and macrophage and fibroblast
cell types. Here, the complexity arises from scale and heterogeneity of the data arising
from different studies, requiring advanced cellular interaction inference across different
biological contexts and coherent visualisation of the interactions of interest. Recently,

the complexity of single cell datasets are increasing with many datasets now containing
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millions of cells profiled from many samples, different disease states®?214, tissues!®277:278
and even species!?!. Single-cell atlases provide comprehensive reference maps of cellular
states across tissues, developmental stages, and disease contexts, generated by integrating
large-scale single-cell RNA sequencing datasets, enabling the discovery of rare cell types'?,
characterisation of lineage hierarchies?™, and cell type specific states that underpin tis-
sue function and pathology?®%2%1 Here we developed a single cell atlas of macrophage
and fibroblast populations across four different tissues in homeostasis and inflammatory
diseases to identify shared and distinct cellular interactions and indicators of common
pathways in inflammation. Tissue-resident macrophages (TRMs) are critical for normal
tissue development, physiology, and homeostasis®®>. The majority of TRMs derive from
embryonic precursors and are established in tissue before birth, where they are primarily

283,284 and possess unique

responsible for efferocytosis of apoptotic cells and tissue debris
tissue-specific physiological functions®®®. The ability of TRM to execute such crucial,
unique functions is determined by signals in their local niche, which is formed by other
tissue resident cells such as fibroblasts and/or epithelial cells as well as soluble medi-
ators?®0. In particular under inflammatory conditions, we observe the infiltration and
maturation of proinflammatory monocyte-derived macrophages and expansion of specific
fibroblast subtypes®®"288 Although separate macrophage®®® and fibroblast single cell at-

281,290,291 have been proposed, tissue-specific interaction between both tissue resident

lases
macrophages and stromal cells are not well characterised up to now and have only been
reported in a single tissue??%2%3. Therefore, the aim of this study was to identify common
and tissue-unique myeloid and stromal phenotypes and to decipher unique and cross-tissue
cells and signals involved in pathogenic tissue activation. In this instance, we demonstrate
a multi-combinatory approach to inferring cellular interactions in homeostasis and dis-
ease across multiple tissues and cell types. The second use case involves a 10X Visium
spatial transcriptomics dataset where the tissue is captured in a non-native orientation.
The spatial axis allows us to spatially confirm predicted interactions in the native tissue
context, filtering out false positives from interactions arising between distant cell types.
Spatial transcriptomics has emerged as a powerful tool to unravel the intricacies of gene

expression patterns within the complex architecture of tissues?’>2%*. However, capturing

large or highly structured tissues such as the intestine within the limited 6.5 mm? cap-
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ture area of the 10x Visium platform presents a significant challenge. To address this,
orientation strategies have been developed, most notably the ’swiss-roll’ technique, in
which the intestinal tissue is longitudinally cut and carefully rolled into a spiral before
sectioning. This approach allows a greater length of the intestine to be represented on a

295 Despite the topology

single Visium slide while preserving the crypt—villus architecture
of the tissue being warped, spatial studies investigating perturbations in the intestine
have been conducted and adopt various techniques of unravelling the intestine such as di-
gital unrolling and calculating an anterior-posterior axis?*%296:297 This reconstruction of
the tissue architecture is critical in cellular interaction inference as interactions that may
seem in close proximity to each other in the tissue plane could in fact be distant when the
tissue has been unrolled. Here we present a spatial transcriptomics analysis to investigate
the localised transcriptional profile within the intestinal epithelium and lamina propria of
both naive mice and mice infected with Heligmosomoides polygyrus over infection across
4 different time points. Helminths, or parasitic worms such as H. polygyrus, are amongst
the most prevalent infectious agents afflicting individuals in developing nations, contrib-
uting to a global disease burden as severe as more recognized conditions like malaria and
tuberculosis®”. Upon oral ingestion, larvae swiftly traverse the small intestine’s epithelial
barrier, establishing in the submucosal tissue by forming granulomas before maturing
into adults and returning to the intestinal lumen®”®. Infection initiates a host type 2
immune response, which plays a crucial role in various physiological processes, ranging
from safeguarding against parasites to contributing to metabolic adaptation, homeostasis,
and tissue regeneration???3%. Despite the host’s robust immune response, H. polygyrus
establishes long-term chronic infections attributed to its immunomodulatory effects that
allow it to evade the immune system. Most notable is its secretion of proteins that mimic
the function of TGF-B3%, a pivotal regulator of the immune system through the induc-
tion of T regulatory cells, which inhibit the inflammatory effects of a variety of immune

301

cells?”*. Until recently, investigations into helminth immunomodulation predominantly

31,302

focused on its downstream impacts on immune cell populations . However, in more

recent studies, attention has shifted towards unravelling the complex interactions between

intestinal helminths and the epithelium, in particular, granuloma formation and epithelial

:.303,304

repair . During this phase, stem cells in the surrounding areas have been observed
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to undergo a "reversal” to a foetal-like repair phenotype and exhibit a compromised ca-
pacity to differentiate into various effector secretory cell subsets, including tuft, goblet,
and Paneth cells??4305 While the interactions and effects of the nematode on the immune
system and epithelium are clearly extensive, it is important to better understand the spa-
tial context in which host-parasite interactions occur and what changes occur across the
infected tissue that may favour parasite establishment or clearance. Thus using spatial
transcriptomics, we pinpointed immune cell types within the granuloma, and identify po-
tential ligand-receptor pairs mediating communication between tissue sites in granuloma
formation and stem cell differentiation providing new insights into the complex interplay
between H. polygyrus and the intestinal environment. Together, these two case studies
demonstrate the application of cellular inference in atypical contexts, providing insight
into tissue resident macrophage-fibroblast interactions in complex atlas-level single cell
data in homeostasis and disease and to spatially profile host-parasite intestinal interac-

tions over H. polygyrus infection.

4.3 Methods

This methods section will detail the methods used to present the results in this chapter
for the two analyses. For information about how the normalised macrophage atlas was
created and integrated please refer to our bioRxiv preprint here (https://www.biorxiv.
org/content/biorxiv/early/2025/03/04/2025.03.04.641204.full.pdf). In the res-
ults section Figure 4.1 was created by Dr. Lucy Macdonald providing a comprehensive
overview of the datasets included in this study. The normalised macrophage-fibroblast
atlas in Figure 4.2 A was created by Dr. Lucy Macdonald after integrating the datasets
together and annotating tissue-resident macrophage and fibroblast subsets. Histological
staining in Figure 4.16 was completed by Caroline Opselt and her team based at the
University of Zurich. Similarly, for methods regarding the sample preparation of the

H. polygyrus Visium dataset please refer to out bioRxiv preprint here: (https://www.
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biorxiv.org/content/10.1101/2024.02.09.579622v1). Mouse experiments and tissue
preparation for sequencing was carried out by Dr. Marta Campillo at the University of
Glasgow. Figure 4.20 A-F were jointly computed by myself and Dr. Ross Laidlaw at the
University of Glasgow. Similarly Figure 4.24 A-C were calculated and plotted by Dr. Ross
Laidlaw using a bespoke sectioning algorithm detailed in the paper. Finally, single cell
reference datasets detailed in the methods below for the cell type deconvolution were

prepared by Dr. Ross Laidlaw.

4.3.1 Annotation of the full atlas dataset

The normalised atlas was read into R and label transfer was performed using SingleR!'%?

(v2.10.0) using the normalised atlas as a reference dataset and using the wilcox method
for marker gene detection: full.atlas <- SingleR (test=full.atlas, ref=normalised.atlas, la-
bels=normalised.atlas$celltype, de.method="wilcox”)’. Cell types were then assigned based
on the highest phred score for each cell type label. All frequency bar plots were plotted

using ggplot2 in R.

4.3.2 Cellular interaction inference of the macrophage-fibroblast

atlas

To interrogate ligand-receptor interactions in the synovial tissue microenvironment, we
applied CellChat'¥6 (1.6.1) which is implemented in R. Each tissue was analysed separ-
ately for each condition as recommended by the standard package pipeline. We pooled
all the inflammatory diseases included in the study into one 'Disease’ condition and the
healthy controls were assigned 'Healthy’ in each tissue. We then performed differential
expression between the two conditions for each tissue to obtain statistically significant

ligand-receptor interactions expressed in at least 20% of cells through running ’identify-
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OverExpressedGenes’. We used a p-value threshold of 0.05 and filtered to obtain ligand
and receptors that had a log fold change value of more than 0.25. Next, we aggregated
all statistically significant cellular interactions for each tissue into a master table of in-
teractions with a ’Tissue’ column to separate out interactions for each tissue. Further
processing of the table was performed by filtering to remove interactions that were oc-
curring between the same broad cell type (e.g. fibroblast — fibroblast) to observe the
interactions exclusively occurring between the myeloid and stromal compartments. Venn
diagrams were plotted with the VennDiagram?®’% package in R (v1.7.3) and used the inter-
section of sender cell type, receiver cell type with their respective interaction appended in
a separate column e.g. 'Fibroblast_ 1’-"Macrophage 1’-’interaction_ pair’. Upset bar plots
showing overlap were plotted with the UpsetR3" package (v1.4.0) computed using the
same column described above and including functional pathway annotation output by the
CellChat package. Plots showing key changes in drivers in homeostasis and disease were
obtained through the CellChat package by running 'netAnalysis_signalingRole scatter’.
Circos plots were plotted using the circlize3%® package (v.0.4.12) implemented in CellChat

and all heatmaps were created using the ComplexHeatmap?3" package (v2.24.1).

4.3.3 H. polygyrus Visium dataset processing

The sample images were analysed and spots were assigned a metadata value according
to the type of tissue the spot captured: Crypt, Villus, Peyer’s Patch and in infected tis-
sues also Granuloma, including spots that captured H. polygyrus. Samples were mapped
against the Mus musculus mm10 reference using 10X Genomics’ Spaceranger version 2.1.1
(10X Genomics) on default parameters except for the loupe alignment JSON file, which
was edited so that unlabelled spots were also included in the final mapping output. The
Spaceranger mapped Naive, D3, D5 and D7 samples were first read into R using Seurat?’
and underwent quality control to remove spots with high UMI counts. Integration was at-

tempted using harmony'%! with Seurat v5 built-in function 'Integrate’ and dimensionality

reduction was performed using 15 dimensions and clustering at a resolution of 0.5. After
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the failed integration attempt the objects were seperately, for each time point, read into
Python and underwent quality control using SCANPY?®?, again with spots with high UMI
counts detected across the samples removed. The quality controlled naive, D3, D5 and
D7 samples were concatenated together into an AnnData object, with only the genes that
were detected in all four of the datasets being present in the concatenated dataset. The
expression values were normalised by their total sum, and each cells normalised counts
scaled to the median UMI count of the concatenated object. These values were then loglp
transformed. A series of differential expressed gene analyses were carried out across the
infection time series. The concatenated object was split into two objects for spots labelled
‘Crypt’ or ‘Villi’. For these datasets, each timepoint of interest was compared to its ad-
jacent time points. For example, the D5 sample was compared against the D3 and D7
samples, while the naive sample was compared against the D3 sample. All differentially
expressed genes in the study were defined as those with a Benjamini-Hochberg corrected
p-value < 0.05, with p-values generated using a Wilcoxon test. Venn diagrams of overlap-
ping genes were performed using the VennDiagram3%® package in R (v1.7.3) and the gene
heatmap in Figure 4.18 was created with the ComplexHeatmap?” package (v2.24.1). To
investigate changing Wnt pathway ligands over time custom functions from the sc-toolbox
GitHub repository3%? were used. To examine the distance of gene expression from the site

296

of granulomas the semla””" package was used (v1.2.1).

4.3.4 Preparing the intestine single-cell RN A sequencing refer-

ence datasets

The raw expression matrices and metadata of the Xu et al?!? and Haber et al*® scRNA-seq
data were downloaded and loaded into Seurat?”. For the Xu data, more quality control of
the samples was carried out. This consisted of removing cells with remarkably high /low
nFeature counts and also those with a high percentage of mitochondrial reads per cell.
The cut-off values can be seen by viewing the relevant code on our GitHub. The metadata

of the Xu cells was then simplified, with the cell types being designated as 'low UMI’
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being merged with their regular UMI counterparts and specific subsets of cell type e.g.
'DC (Cd103+ Cdl1b+)’, 'DC (Cd103+ Cd1l1lb-)" and 'DC (Cd103-C2)’ being simplified
as just 'DC’. Non-immune cells were also removed from the Xu datasets. The Xu and
Haber Seurat objects were then merged and converted into H5AD format to be read into

Python.

4.3.5 Cell2location analysis of H. polygyrus infected and naive

mice intestine

For setting up the model of the Xu and Haber merged scRNA-seq dataset, we used the
sequencing run of each of the datasets as the ’batch_key’ and included the condition of
the datasets (e.g. allergy, parasite infected, naive/control) as a categorical covariate. The
training parameters for the training of the Visium slide model in cell2location'®” were
chosen as follows. Within both the day 7 and naive Visium samples there was variation in
total UMI counts that could not be explained by the tissue, thus the RNA detection sens-
itivity parameter was set to 20, as per the recommendation of the cell2location authors.
The number of cells per location was chosen to be 50, based on visual observation of the
scanned slides. The models were trained on a GPU with 80GB of RAM. The 5% quantile
cell abundance was stored in the Visium anndata objects and used for all subsequent ana-
lysis and visualisation. Non-negative factorization (NMF) analysis in cell2location was

carried out, using the concatenation of the new length and depth coordinates and the

original Visium coordinates as the spatial basis for the NMF.
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4.3.6 Cellular communication inference of H. polygyrus infec-

tion in the murine intestine

Spatial niches defined by the NMF factorisation analysis yielded four distinct spatially
resolved neighbourhoods termed the villi, upper crypt, lower crypt and granuloma niche.
Spots assigned these labels were fed into CellChat!'46 (v.2.1.1) alongside the spatial co-
ordinates from the full resolution tissue image to allow resulting interactions to be within
spatial constraints. The conversion of spatial coordinates from pixels to micrometres was
calculated using the ratio of the theoretical spot size set to 55um over the number of pixels
that cover the diameter of the spot. In addition to this, the communication probability of
two cells interacting was also restricted with a contact range set to 100 as recommended
by the CellChat 10X Visium workflow. The CellChat database used was set to the organ-
ism 'mouse’ and all functional interaction annotations were used except those classified as
"Non-protein Signalling’ to avoid the inclusion of interactions involving synaptic signalling

which lies outside the context of the murine intestinal tissue.

4.4 Results

The results section of this chapter will be broadly split into two sections, the first de-
tailing the analysis of the macrophage-fibroblast atlas, including reference mapping to
expand the full dataset, initial cellular inference analysis of four tissues and the cellular
interaction inference and validation of interactions in tissues that demonstrated high over-
lap in homeostasis and disease. The second section will detail the spatial analysis of the
H. polygyrus dataset and insights gained from cellular interaction inference on epithelial

repair and immunomodulation in parasitic infection over time.
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4.4.1 Section 1: Identifying cellular interactions in complex atlas

level data

This work was a collaborative effort across Glasgow and Zurich aiming to identify dis-
tinct and shared myeloid and stromal cell populations across four different tissues the
lung, skin, synovium and heart. Dataset curation, processing, integration and cellular
annotation was completed by Dr. Lucy MacDonald at the University of Glasgow un-
der the supervision of Professor Mariola Kurowska-Stolarska and Professor Thomas Otto
during her PhD. Downstream validation of identified interactions were performed at the
University Hospital Zurich under the supervision of Professor Caroline Ospelt and col-
leagues. The complete study and details of the single cell atlas creation can be read in
our preprint here (https://www.biorxiv.org/content/biorxiv/early/2025/03/04/
2025.03.04.641204.full.pdf), however, for the scope of this chapter the cellular in-

teraction inference portion of the analysis and my contributions will be detailed below.

4.4.2 Expanding the macrophage-fibroblast atlas to the full data-

set using SingleR

Dr Lucy MacDonald collected scRNAseq data from 14 public datasets (Figure 4.1), span-

314-316 317-319 320—323)
)

ning four distinct tissues (heart3!1 313 lung , skin , and synovium in-
cluding 162 male and female healthy donors and disease patients, with conditions such
as — Heart Failure (HF)3!3, Idiopathic Pulmonary Fibrosis (IPF)3!4, Systemic Sclerosis-
associated Interstitial Lung Disease (SScILD)3'4316  Acne®!®, Leprosy3!®, Psoriasis®!®,
Granuloma Annulare (GA)3'®, Atopic Dermatitis (AD)3'7, Osteoarthritis (OA)323, Rheum-

atoid Arthritis (RA)3?9323 and RA that is in sustained clinical remission®?".
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Dataset Tissue Ci iti tfi Cell types Dpol PMID
Healthy donor,
focstonSpeghic 10x Immune, stromal
Tuckeretal. (2020) ~ Heart  (apex, LA, RA, LA, n=36 Genomics  and cardiomyocyte 10-1161/CIRCULATIONAHA 119.045401 32403949
LV, septum, apex)
n=6 each
Lhiukovaletal Heart  Healthy d =14 n=14 Lox e Jstiomal 10.1038/541586-020-2797-4 32071526
(2020) ca eainylconorlny L Genomics  and cardiomyocyte . = Sk
Wang et al. (2020)  Heart eafthydonor n=14; =>4 gMARTseq2 _IMmmune, stromal 10.1038/541556-019-0446-7 31915373
9 g heart failure, n=6; 92 and cardiomyocyte -
Heallhz d.onor, =25 _ 10x Immune, stromal
Reyfman et al. (2019) Lung IPF, n=5; SSc-ILD, n=14 TS and epithelial 10.1164/rccm.201712-24100C 30554520
n=2
Valenzietal. (2019)  Lung He;'s"glfgng’;fg 5 n=t1s Ge:g;‘ics Stromal 10.1136/annrheumdis-2018-214865 31405848
Madisson et al. (2020) Lung  Healthy donor, n=5 n=5 & e:g:‘"i - '"‘awg"e%if;:i';a' 10.1186/513059-019-1906-x 31892341
Sole-Boldo et al. . Young, n=2 and old, _ 10x
(2020) Skin n=3 healthy donors n=5 Caneites Stromal 10.1038/s42003-020-0922-4 32327715
Healthy donor, n=3;
. Acne, n=4; GA, n=2; _ Immune, stromal -
Hughes et al. (2020) Skin Leprosy, n=4; n=18 Seq-Well S3 and epithelial 10.1016/j.immuni.2020.09.015 33053333
Psoriasis, n=5
. Heal_lhy doflo rl=t.3; _ 10x Immune, stromal -
He et al. (2020) Skin Lesional AD, n=4; n=16 CEEiks andlepithelial 10.1016/j.jaci.2020.01.042 32035984
Non-lesional AD, n=5 2
Stephensonietal¥ (o v ovi RA, n=5 =5 Miorofluidic  'MTune and 10.1038/541467-017-02659 20476078
(2018) ynovium , N= n=. icrofluidic stromal . S - - -X
Zhang et al. (2019)  Synovium OA, n=5; RA, n=16 n=21 CEL-Seq2 Immune 10.1038/s41590-019-0378-1 31061532
Healthy donor, n=4; 10x (D )
Alivernini et al. (2020) Synovium active RA, n=9; RA in n=18 CanEiis il 10.1038/541591-020-0939-8 32601335
remission, n=5
Micheroli et al. (2022) Synovium RA, n=5 n=5 Ger1|gr)|(1ics Stromal 10.1136/rmdopen-2021-001949 34987094

Figure 4.1: Table showing the datasets Dr. Lucy Macdonald included in the study, heart
is coloured in red, lung in green, skin in blue and synovium in purple.

After integration of the tissue atlases with harmony, there were 10 myeloid and 8 stromal
cell populations identified across synovium, skin, lung, and heart (Figure 4.2). Due to
the size of the dataset cellular annotations were completed using a normalised single cell
atlas that contained a subset of the data, 20,000 myeloid cells and 20,000 stromal cells
(Figure 4.2 A). The range of myeloid clusters included monocyte-like precursor popu-
lations (CD14+S100A12+4 and CD16+I1SG15+), proinflammatory (IL1B+ and SPP1+)
and resolving (TREM2+, NR4A1+4 and LYVEI1+) macrophages as well as DC pheno-
types (CCR7+, CDlc+ and CD2074). Stromal cell clusters included lubricin expressing
(PRG4+) fibroblasts, which were the most distinct from all other stromal cell clusters,
along with a VCAMI1+ fibroblast subtype. Additionally, we characterised a population
of CDH19+ fibroblasts, which also expressed transcripts associated with complement
activation (C7, CFD) as marker genes and A2M+ fibroblasts that expressed TCF21.
Other stromal clusters that we identified included collagen-producing (SPARC+), and
pro-inflammatory (APOE+) fibroblasts, producing CXCL12 and C3, as well as a CD34+
fibroblast population (MFAP5+). Finally, we found actin (ACTA2), transgelin (TAGLN)
and myosin light chain (MYL9) expressing myofibroblasts-like cells (ACTA2+).
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A Normalised tissue atlas

LYVE1+ Macrophage
NR4A1+FOLR2+ Macrophage
TREM2+ Macrophage

SPP1+ Macrophage
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CD16+ISG15+ Tissue Monocytes
CCR7+DC

CD1c+DC

Langerhans Cells (CD207+ DC)
PRG4-+ Fibroblast

VCAM1+ Fibroblast

SPARC+ Fibroblast

A2M-+ Fibroblast

APOE-+ Fibroblast

ACTA2+ Fibroblast

MFAPS5.+ Fibroblast

CDH19+ Fibroblast

0
UMAP_1

B SingleR annotated full atlas
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NR4A1+FOLR2+ Macrophage
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=

UMAP_2
0000000000000 0000

Figure 4.2: A) UMAP showing the normalised macrophage fibroblast (20,000 myeloid,
20,000 stromal cells) atlas split by macrophage and fibroblast subtypes. B) UMAP showing
the full cell atlas using SingleR to annotate the rest of the data, split by macrophage and
fibroblast subtypes (136,741 myeloid and 117,102 stromal cells).
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In order to annotate the dataset consisting of 253,843 cells across all four tissues, I took

the normalised annotated atlas Dr MacDonald had preprocessed and used SingleR for

label transfer using the normalised atlas as a reference dataset. After obtaining the cellular

annotation prediction labels I reclustered the full data at 0.3 resolution shown in Figure 4.2

B. The exact cell numbers for each cell type from the normalised atlas to the full annotated

dataset with SingleR can be found in Table 4.1.

Cell type Normalised cell atlas SingleR full cell atlas
LYVE1+ Macrophage 1958 24378
NR4A1+FOLR2+ Macrophage 977 12638
TREM24 Macrophage 3753 45099
SPP1+ Macrophage 1045 11065
IL1B+ Macrophage 2106 11423
CD14+S100A124 Tissue Monocytes 1924 14201
CD16+ISG15+ Tissue Monocytes 825 3867
CDlc+ DC 1245 9170
Langerhans Cells (CD207+ DC) 332 951
CCR7+ DC 825 3474
SPARC+ Fibroblast 2080 10354
A2M+ Fibroblast 1112 3312
PRG4+ Fibroblast 1370 12389
APOE+ Fibroblast 5949 3367
MFAP5+ Fibroblast 1688 17576
CDH19+ Fibroblast 1411 53043
VCAM1+ Fibroblast 926 14873
ACTA2+ Fibroblast 1181 2663

Table 4.1: Cell counts for each cell type in the normalised atlas and full data atlas after

SingleR label transfer.

Next, to ensure the proportion of cell types were still representative of the normalised

atlas we plotted cell type proportions of the myeloid cells split across the tissues for both

atlases (Figure 4.3).
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A Normalised cell atlas B SingleR full cell atlas

Proportion of Cells
Proportion of Cells

0.00- _ -

Heart Lung Skin Synovium Heart Lung Skin Synovium

Cluster
LYVE1+ Macrophage
NR4A1+FOLR2+ Macrophage
TREM2+ Macrophage
SPP1+ Macrophage
IL1B+ Macrophage
CD14+5100A12+ Tissue Monocytes
CD16+ISG15+ Tissue Monocytes
CCR7+DC
CD1c+DC
Langerhans Cells (CD207+ DC)

Figure 4.3: A) Stacked proportion barplot showing the relative proportion of macrophage
subtypes across each tissue in the normalised macrophage fibroblast atlas split by tissue
and coloured by cell type. B) Stacked proportion barplot showing the relative proportion
of macrophage subtypes across each tissue in the full cell atlas annotated with SingleR
split by tissue and coloured by cell type.

Analysis of myeloid cell clusters indicated initially in the normalised atlas that the heart
had a high proportion of CD144+S100A12+ and CD16+ISG154 monocyte-like precursors,
however this decreased in the fully annotated atlas. Instead, we observed an expansion of
LYVE1+ macrophages predominantly in the heart. The lung myeloid cell compartment
was governed by resolving TREM2+ macrophages that remained unchanged in the fully
annotated atlas. Alternatively, the skin myeloid atlas mostly comprised DC phenotypes

including CCR7+ and an expanded CDlc+ population in the fully annotated dataset.
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Also we saw a proportion of langerin-expressing (CD207+) DCs, also known as Langerhans
cells, which were exclusive to the skin. In synovium, we found mixed myeloid fractions
without tissue specific dominance of one cell cluster but a reduction in the proportion of

CCR7+ DCs in the fully annotated dataset.
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Figure 4.4: A) Stacked proportion barplot showing the relative proportion of macrophage
subtypes across each tissue in the normalised macrophage fibroblast atlas split by cell type
and coloured by tissue. B) Stacked proportion barplot showing the relative proportion of

macrophage subtypes across each tissue in the full cell atlas annotated with SingleR split
by cell type and coloured by tissue.
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This myeloid cell distribution was also evident when we visualised the abundance of each
identified myeloid cell population throughout the analysed tissues (Figure 4.4). In both
atlases we see Langerhans (CD207+) DCs were exclusively found in the skin whereas
the other myeloid cell types are more heterogenously distributed across the other tissues.
LYVE1+ and NR4A1+ macrophages were mostly from the synovium and heart, whilst
TREM2+ and SPP1+ phenotypes mainly originated from the lung. We can also see the
reassignment of CD144+-S100A 124 and CD16+ISG154 monocyte-like precursors deriving
from the heart in the fully annotated cell atlas compared to the normalised cell atlas with

them mainly coming from the synovium and lung.

A B

Normalised cell atlas SingleR full cell atlas

0550-

Heart Lung Skin Synovium Heart Lung Skin Synovium

Proportion of Cells

Cluster

PRG4+ Fibroblast
VCAM1+ Fibroblast
SPARC: Fibroblast
A2M+ Fibroblast
APOE: Fibroblast
ACTA2.4 Fibroblast
MFAPS5+ Fibroblast
CDH19. Fibroblast

Figure 4.5: A) Stacked proportion barplot showing the relative proportion of fibroblast
subtypes across each tissue in the normalised macrophage fibroblast atlas split by tissue
and coloured by cell type. B) Stacked proportion barplot showing the relative proportion
of fibroblast subtypes across each tissue in the full cell atlas annotated with SingleR split
by tissue and coloured by cell type.
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Similarly, we performed the same analysis to observe the distribution of stromal cells
across the four tissues in both the normal and fully annotated cell atlas. Analysis of the
relative proportion of stromal cell clusters across tissues revealed that the heart stromal
compartment was predominantly composed of CDH19+4 and APOE+ fibroblasts in the
normalised cell atlas. However in the fully annotated cell atlas we found a huge expansion
of this cell population and observed that CDH19+ fibroblasts were almost exclusively
found in the heart (Figure 4.5). In the lung stromal atlas, mainly A2M+, APOE+ and
ACTA2+, but also SPARC+ and CDH19+ fibroblasts were found. A2M+ and ACTA2+
fibroblasts were lung specific and were preserved across both atlases. The skin and syn-
ovial tissue shared the collagen expressing SPARC+ fibroblasts as well as a proportion
of APOE+ and MFAP5+ populations with no skin-specific fibroblast population iden-
tified. Finally, the synovium contained the PRG4+ and VCAMI1+ populations, which
were exclusive to this tissue however this VCAM1+ population was diminished in the
fully annotated atlas. In summary, our analysis identified populations of macrophages
and fibroblasts that were common to multiple tissues whilst also identifying tissue-unique
clusters. PRG4+/VCAM1+ synovial fibroblasts, ACTA2+ and A2M+ lung fibroblasts
and CDH19+ heart fibroblasts were tissue-specific fibroblasts and Langerhans (CD207+)
DC in the skin tissue specific myeloid cells. When looking at the cell distribution of each
identified stromal cell population throughout the analysed tissues (Figure 4.6) the tissue-
specificity is more apparent. The proportions between the two atlases remains largely
unchanged apart from changes in the proportion of APOE+ and MFAP5+ fibroblasts
labelled in the lung in the fully annotated dataset. After having determined common and
exclusive stromal and myeloid subpopulations and their representation in the full dataset,
we aimed to investigate changes in cell-cell interactions between fibroblasts and macro-
phages in disease states compared to healthy states. In general, tissue-specificity was more

pronounced in the stromal than in the myeloid compartment.
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Figure 4.6: A) Stacked proportion barplot showing the relative proportion of fibroblast
subtypes across each tissue in the normalised macrophage fibroblast atlas split by cell type
and coloured by tissue. B) Stacked proportion barplot showing the relative proportion of
fibroblast subtypes across each tissue in the full cell atlas annotated with SingleR split
by cell type and coloured by tissue.
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4.4.3 Comparing overlap of cellular interactions across the syn-

ovium, lung, skin and heart in homeostasis and disease

Once we had labelled the full atlas dataset we could proceed with cellular interaction
inference to identify dominant drivers and receivers of communication in the atlas. Cel-
lular inference was performed on the full cell atlas with the various inflammatory disease
states pooled into a ’disease’ group and was compared with interactions that maintain
homeostasis in the healthy control group. We investigated how fibroblast-macrophage
interactions vary across tissues in health and disease (Figure 4.7) using the CellChat
package'®. When fibroblasts were considered as senders, i.e. expressing a ligand, (Fig-
ure 4.7 A), we observed tissue-specific differences emerging. In the lung, fibroblasts showed
weak interactions across myeloid subsets with A2M+- fibroblasts being key drivers in in-
teractions with lung macrophage subsets. The most prominent effects were observed in
the skin, where APOE+ and SPARC+ fibroblasts were found to be strongly interacting
with IL1B+, NR4A1 FOLR2 and SPP14 macrophages in inflammatory conditions. Sim-
ilarly, in the synovium, fibroblasts broadly stimulated macrophages across several subsets,
with PRG4+ fibroblasts exclusively showing interactions in the tissue highlighting their
tissue specific role in the synovial niche. However in the heart, fibroblast signalling to-
ward macrophages was weak, with no apparent signalling pattern between fibroblasts and

macrophages in the tissue.



4.4.

196

+ + * + * + * +
v . Y N 3 i N 3 N g 3 ag
[ £ & aQ & & @ & & @ & &
I} z & S g I <} g I I} g I
& ¢ & 0F & ¢ &8 < i & & < P
I VY + 3 [V + 3 [NV + 2 Y
o+ + s + o+ - 2 +
s § i f s 8558 8585858 s85F84%
< 3 2 o K K~ K < 3 2 4 K~ K < 3 2 o K K K < 4 2 4o K K R
A2M+
g APOE+1 ® [ N ]
3
‘f CDH19+1 Direction
é MFAPS n @ Posiive
° W Negative
£ PRG4+VCAM1+]
w Differential Counts.
SPARC+POSTN+1 0
o5 m
ovm
o:H
: £ s £ : £ s F
s 9 s & s & S & oierental sten
gth
g & g ¢ g & g ¢
B . + P . - PR . " P . - s34 High
: 8 £ 53¢ gfé’émggé”é’éwgé?fé’gml
3 g T 8 & T 3 & T 3 & N
2 § § £ & & § 8§ £ & § 2 § 5§ £ & & 2 § § £ & §
IL1B+ o
a_) Low.
S LYVET+
5
@ NR4A1+FOLR2+
°
g SPP1+ u e o o O
g TREM2+
S
S TREM2EMPS:
TREM2+FABP4+

Figure 4.7: A) Bubble plot showing cell interactions where fibroblasts are the source of
signal across heart, lung, skin and synovium. B) Bubble plot showing cell interactions
where macrophages are the source of signal across heart, lung, skin and synovium. The
size of each shape corresponds to the number of differential cell-cell interactions across
homeostasis and disease. The cells are coloured by the strength of the interactions i.e.
the sum of all the interaction weights. Circles represent a positive change in expression
i.e. stronger interactions, squares represent a negative change in expression i.e. weaker

interactions.

When macrophages were considered as senders (Figure 4.7 B), the heart showed strong in-
teractions between IL1B+ and SPP1+ macrophages with PRG4+ fibroblasts which should

only be exclusive to the synovium. In the lung, communication between macrophages and

fibroblast subsets was weak, with TREM2+ macrophages driving communication in dis-
ease. In the skin, macrophages interacted with SPARC+ fibroblasts mainly by IL1B+

and SPP1+4 macrophages. By contrast, in the synovium, macrophages showed stronger
interactions across fibroblast subsets, with SPP1+4+, TREM2+ and IL1B macrophages

interacting with PRG44, MFAP5+ and SPARC+ fibroblasts

Figure 4.7 suggested that there were patterns of similarity and difference in the cell types

that were communicating across the tissues. We observed SPP1+ macrophages being key

drivers across the tissues in particular the synovium and APOE+ and SPARC+ fibroblasts

driving communication from the stromal compartment. To get an understanding about
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the similarity or uniqueness of cellular interactions occurring in each tissue regardless
of whether the sender is myeloid or stromal we wanted to look at the overlap of the
interactions in each condition. This would give us a more global view about tissue specific

interactions irrespective of cell type (Figure 4.8).

Synovium Heart

Lung Skin
551 56

89 0

65 0 0 88

Figure 4.8: Venn diagram showing the total number of cell-cell interactions that are shared
and distinct across tissues. Heart is coloured in red, lung in blue, skin in green and
synovium in yellow.

We saw that the heart was the most unique tissue and shared no interactions in disease
when compared to the other three tissues. The most similar tissues in disease were the
lung and synovium which shared 89 interactions. Similarly, the synovium and skin shared
68 interactions in disease, however, shared no interactions with the lung. Overall, the
synovium had the highest number of unique interactions when compared to the other
tissues suggesting these interactions are specific to the tissue niche in disease. However, to
be noted is the synovium contained significantly more cells that the other tissue datasets

in disease that may have introduced a bias or skew in the number of interactions returned
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with no filtering thresholds (Heart: 240 cells, Lung: 38044, Skin: 14707, Synovium: 63467).
To gain a deeper understanding of what pathways these shared and unique interactions
play in disease we examined the functional annotation of each overlap in the Upset plot

in Figure 4.9.
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Figure 4.9: A) Stacked proportion barplot showing the relative proportion of cellular inter-
action pathways in each intersection of either overlapping or distinct cellular interactions
between the heart, lung, skin and synovium. Segments are coloured by functional pathway
B) Upset plot showing the number of overlapping or distinct interactions in each tissue
comparison for the heart, lung, skin and synovium.

Analysis of the proportional contribution of signalling pathways across tissues revealed
both conserved and tissue-specific patterns of fibroblast—-macrophage communication (Fig-
ure 4.9 A). Collagen signalling was evident in every tissue, suggesting extracellular matrix
remodelling and fibrosis as a conserved feature of stromal-immune crosstalk during inflam-
mation. Shared interactions between the lung and synovium consisted of interactions in
the SPP1 pathway and the FN1 signalling pathway whereas shared interactions between
the synovium and skin were predominantly involved in the LAMININ and THY1 path-
way. The unique interactions in the synovium shared similarities with pathways shared in
the lung and synovium however showed an increase in MHC-II and VISFATIN signalling
unique to the tissue. In the skin there was a marked increase in THBS signalling compared

to the other tissues along with increase COMPLEMENT signalling and a unique PDGF
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signalling absent in the lung, synovium and heart. Similarly, unique interactions in the
lung fed into the MK signalling pathway and the PERIOSTIN pathway which was not
observed in other tissues. Finally, the heart showed the least number of interactions in
disease and demonstrated no overlap with the other tissues (Figure 4.9 B). Alongside col-

lagen and laminin signalling, there was also evidence that suggested PECAMI1 signalling

played a role in heart inflammation.

To investigate the absence of interpretable signalling in the heart tissue when compared
to other tissues, we examined the cell counts of each fine-grained cellular annotation in

our cell atlas (Figure 4.10).
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Figure 4.10: Table showing cell type counts of each finely annotated cell type annotation
split across the four tissues, heart, lung, skin and synovium. Cell type annotations that
have less than 50 cells in the cluster are outlines in red and were insufficient for cellular
communication inference.

By highlighting cell types that have less than 50 cells in the cluster split by condition,
we realised that the heart disease dataset had insufficient cell numbers to complete a
robust cellular inference analysis. Although there were representation of cell types in the
healthy condition of the heart, the numbers were disproportionally low in comparison.
Thus, moving forward the heart was excluded from the rest of the subsequent cellular

inference analysis.
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4.4.4 Focusing cellular inference on lung, skin and synovium in

homeostasis and disease

As the disease heart datasets contained insufficient cell type annotation numbers to run
cellular interaction inference as shown in Figure 4.10 it was removed from further analysis.
To examine overlap of interactions with the heart excluded, we ran CellChat in two ways,
first to find differentially expressed cellular interactions and second to find interactions
based on their communication probability, a metric provided by CellChat (Figure 4.11).
Differential interaction expression was applied to address the difference in total cell num-
bers across the tissues and was run with a ligand logfold change = 0.25 and p-value cut-off
of 0.05. Interactions returned based on the communication probability alone were only
subject to a p-value cut-off of 0.05. We can see that the results of the two thresholding
strategies differ with the number of interactions increased when using the more permissive
communication probability. When examining the overlap of shared and unique cell-cell
interactions between the three tissues we found little overlap in the interactions involved
in a state of homeostasis. However, in disease we observed a higher number of shared
predicted interactions between the skin and synovium than in the lung. This could be
down to the inclusion of inflammatory diseases such as psoriatic arthritis which display a

complex plethora of phenotypes that affects both tissues.
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Figure 4.11: A) Venn diagram showing the number of differentially expressed cell-cell
interactions that are shared and distinct across the synovium, lung and skin based on
ligand and receptor log fold change of above 0.25 and a p-value threshold of 0.05. B)
Venn diagram showing the number of cell-cell interactions that are shared and distinct
across the synovium, lung and skin based on communication probability with a p-value
threshold of 0.05.
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After examining the global overlap of interactions between the three tissues we wanted to
investigate which myeloid and stromal populations were the key drivers of interactions in
homeostasis and disease. To do this we looked at the sum of the number and strength of
the incoming interactions, which cell types were more active in receiving communications
through receptor expression levels, and outgoing interactions of cell types that were more
active at sending communications through ligand expression (Figure 4.12). In homeo-
stasis across the myeloid compartment of the three tissues the activity of CD1lc+ DCs
was prominent at expressing ligand and receptor. However, in disease the myeloid land-
scape shifts with similarities and differences between organs. Most notably, the key drivers
of inflammation in all tissues were SPP1+ macrophages activated by disease states when
compared to homeostasis. The lung had the most drastic change in SPP1+ macrophage
activity increasing in both number and ligand activity when compared to the skin and
synovium. SPP1 producing macrophages have been reported in a wide range of diseases

324,325 and is correlated with

to increase macrophage polarisation and fibrosis in the lung
poor prognosis in lung cancer3?®. Furthermore, the lung had increased incoming activity
by TREM2+ macrophages not observed in the other tissues. It has been reported that
TREM2+ macrophages are pro-fibrotic and regulate alveolar macrophage survival®*’. In
the lung and skin we observed increased signalling activity of NR4A1+ resolving mac-
rophages in disease compared to inflammation with activity levels remaining unchanged

in the synovium. In the skin and synovium, alongside SPP1+4 macrophages we also saw

activation of IL1B+ pro-inflammatory macrophages.
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Figure 4.12: Dot plots show key drivers and receivers of communication with shared cell
types labelled. Along the Y-axis of each dotplot shows the incoming interaction strength
referring to the magnitude of ligands being received on the cell type. Along the x-axis of
each dotplot shows the outgoing interaction strength referring to the magnitude of ligands
being expressed on the cell type. Cell types that move along the Y-axis are receiving more
communication and cell types that move along the X-axis are sending more communic-
ation. Note that the scale of each dotplot varies and is not uniform across all tissues so
some magnitudes of change in communication are higher/lower.
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In the stromal compartment we observed more organ-specific activation of cellular commu-
nication demonstrating tissue-specific stromal niches. SPARC+ fibroblasts emerged key
senders in disease across all analysed tissues, known to sustain fibrosis and promote infilt-
ration of lymphocytes to the site of inflammation®?® along with APOE+ fibroblasts, in the
skin and synovium in particular. In the lung and synovium we found increase VCAM1+
fibroblast activity that have organ-specific phenotypes in inflammation with VCAM1 ex-
pression as a hallmark of RA on synovial fibroblasts, and as a cytokine induced factor on
lung fibroblasts by TGF-B32%330_ Finally, in the synovium and skin we see an increase of
MFAPS5+ fibroblasts both receiving and sending cellular communications. Through the
activity patterns of key drivers of communication, these data suggest more pathogenic
stromal-myeloid interactions in the synovium compared to lung and skin and highlight
SPP14 macrophages as disease relevant stromal activators and APOE+ fibroblasts as

macrophage activators across tissues.

We then took cell types of interest based on the results of the key drivers of communic-
ation to investigate specific differentially expressed ligand receptor interactions in each
tissue in disease (Figure 4.13). In the lung A2M+ fibroblasts expressed ligands associated
with the collagen signalling pathway such as COL1A2, COL6A3 and COL4A1/2 that
were interacting with CD44 on TREM2+ macrophages. These interactions recapitulate
the pro-fibrotic function of TREM2+ macrophages in the lung®?”. SPP1+ macrophages
were expressing SPP1 which was interacting with integrins expressed by MFAP5+ fibro-
blasts. Another notable interaction was CXCL12 on MFAP5+ fibroblasts interacting with
CXCR4 on CD14+S100A12+ macrophages. This interaction is pro-inflammatory that
promotes chemotaxis of immune cells to the site of inflammation and has been reported
in autoinflammatory diseases such as osteoarthritis**!. In the skin we oberved numerous
collagen associated ligands (COL1A1/2, COL6A1/2/3) interacting with CD44 on SPP1+
macrophages. Similar to the lung this indicates tissue remodelling and fibrosis in skin in-
flammation. This is further supported by the expression of thrombospondins (THBS1/2)
interacting with SPP14 macrophages and ¢DC1s which promotes fibroblast migration,

wound healing and tissue repair®>?.
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Figure 4.13: Circos plots show ligand receptor interactions that are differentially expressed
in at least 20% of cells in disease, at a ligand logfold change cut-off of 0.25, p-value cut-
off of 0.05. Heatmaps show the communication probability of interactions plotted in the
circos plots with functional pathway annotation plotted on the side and source/target cell
types along the top. A) Lung, B) Skin, C) Synovium.
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Lastly, in the synovium we find expression of collagen and thrombospondin signalling as
with the other tissues a shared signature of fibrosis and stromal driven inflammation. We
also see SPP1+ macrophages interacting with PRG4+ lubricin producing fibroblasts, a

synovial specific stromal population.

In homeostasis a prominent pathway seen across all three tissues is the collagen path-
way expressed by different fibroblast subsets in each niche (Figure 4.14). In the lung this
is predominantly driven by A2M+ fibroblasts to TREM2+ macrophages, in the skin it
is driven by SPARC+ fibroblasts to SPP1+ macrophages and in the synovium PRG4+
fibroblasts to TREM2+ macrophages. This could be down to normal collagen processes
at homeostasis that are vital for ECM organisation and maintenance in addition to nor-
mal tissue remodelling®33. This is further supported by thrombospondin signalling seen in
the skin and synovium that promotes matrix homeostasis and indirectly influences nor-
mal collagen production feeding into ECM organisation®**. Another shared interaction
that occurs across all tissues are pathways associated with cell migration such as MIF
interacting with CXCR4 that promotes immune cell trafficking. Under homeostatic con-
ditions this suggests a replenishment of immune cells at the tissue niche, or facilitation of
patrolling cell types like dendritic cells. In the synovium we see a large amount of HLA-
related ligands signalling to other myeloid cells that is absent in the other tissues. This
could be because of the inclusion of patients of RA in remission being assigned to the

"Healthy’ group that may be driving this phenotype.
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Figure 4.14: Circos plots show ligand receptor interactions that are differentially expressed
in at least 20% of cells in homeostasis, at a ligand logfold change cut-off of 0.25, p-value
cut-off of 0.05. Heatmaps show the communication probability of interactions plotted in
the circos plots with functional pathway annotation plotted on the side and source/target

cell types along the top. A) Lung, B) Skin, C) Synovium.



4.4. Results 208

ADGRES
SPP1
FN1

e

CD99
CD74

&
=
. M

MPZLI
LGALS9 MPZLI
CD44 j

CDH19+

SYNOVIUM

CXCL12
MIE CXCR4
GASE cD74
PROS1 (L

SPP1
FN1 ITGAS
ADGRES ITGB1
EREG ACKR3
HBEGF
NAPMT

SEMA4A

Figure 4.15: Graphical overview of the results of the Cellchat analysis of ligand receptor
interactions that are differentially expressed in at least 20% of cells, at a ligand logfold
change cut-off of 0.25, p-value cut-off of 0.05 in homeostasis (blue outline) and disease
(red outline). Identified key drivers of communications are labelled and arrows show dir-
ectionality of the interaction. The top ligand and receptors are highlighted in each tissue
ordered by communication probability i.e., the likelihood of the interaction occurring ac-
cording to gene expression. The key interactions in the lung are in the green box, skin in
the blue box, synovium in the purple box. Cell type icons are taken from BioRender and
the figure was created in PowerPoint.
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To summarise in more detail the global landscape of additional interactions we identified
in the the analysis, the key findings are detailed in Figure 4.15. In the lung during homeo-
stasis, we found that the key drivers of signalling were A2M+ and MFAP5+ fibroblasts
mostly interacting with integrin complexes on CD144-S100A124 and CD16+ISG15+
macrophages. IL1B+ macrophages were found to interact with SPARC+ fibroblasts ex-
pressing THBS1 involved in extracellular matrix processes. However, in a disease state we
observed an increase of collagen related genes expressed by various stromal subsets, includ-
ing the lung specific ACTA2+ fibroblasts. These interactions occurred exclusively with
CD44 expressed on TREM2+ macrophages possibly reflecting matrix remodelling in lung
fibrosis. Interestingly, SPP1+ macrophages were the main source of communication out of
the myeloid subsets expressing SPP1 that interacts with integrin complexes on SPARC+
and MFAP5+ fibroblasts. The landscape of interactions in the skin during homeostasis in-
volves APOE+, VCAM1+ and SPARC+- fibroblasts driving interactions with CD1c+ DCs
and Langerhans cells (CD207+ DCs). In the myeloid cells the CD1c+ DCs and SPP1+
macrophages interact through MIF-CD74/CD44 complex with APOE+ fibroblasts. In dis-
ease, similarly to the predicted interactions in the lung, stromal subsets expressed various
collagens that were received by CD44 expressed on ILB14+, NR4A1+FOLR2+ and SPP1+
macrophages. SPP1+4+ macrophages in skin disease states are predicted to be involved in
the laminin pathway interacting with APOE+ fibroblasts, however unlike their role in
the lung they are key receivers of communication from the stromal compartment. In the
synovium we have all fibroblast subsets interacting with CD1c+ DCs through a CXCL12-
CXCRA4 interaction in homeostasis. We also have the APOE+ and VCAM1+ fibroblasts
interacting with dendritic cells through the PROS1-AXL whereas the MFAP5+ fibroblasts
send GAS6 to interact with AXL. In a disease state the synovium showed the highest
number of predicted interactions that are differentially expressed compared to homeo-
stasis. LYVE1+, N4RA1+4+ FOLR2+, and TREM2+ macrophages interact with SPARC+
and VCAMI1+ fibroblasts expressing NAMPT-ITGA5/ITGBI1. They also interact with
PRG4+ and VCAM1+ fibroblasts expressing FN1 that is received by the ITGAV/ITGBS
complex, this is also shared in TREM2+ macs, SPP1+. Many interactions here between
macrophage subsets and fibroblasts are with various integrin complexes. These ligands

sent out by the macrophages vary, SPP1 is expressed by SPP1+4, NR4A1+ and ILB1+
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macrophages that are received by PRG4+, VCAM1+ and SPARC+ fibroblasts. APOE+
fibroblasts and ILB1+SPP14 macs have a MIF-CD74/CD44 complex interaction. SPP1+
and IL1B+ macs also express EREG received by EGFR on VCAMI1+ fibroblasts only.
CDH19+ fibroblasts interact with various macrophage subsets expressing THY1 that are
received by the same ITGAM-ITGB2 integrin complex across all macrophage subsets.
They also express COMP that interacts with CD36 and CD47 on SPP1+ macrophages
and on LYVE1+ TREM2+ macrophages respectively. The synovium returned various in-
teractions that involve tissue-specific cell types such as PRG4+ fibroblasts that expressed
SEMAS3C that is received by the NRP1-NRP2 complex on LYVE+ and SPP1+ macro-
phages. PRG4+ and APOE+ fibroblasts also express HLA-DRBI1 that is received by CD4
on NR4A1+FOLR2+ macrophages.

4.4.5 Validating interactions in skin and synovium

We then set out to identify the specific locations of the dominant, common fibroblast
populations within the skin and synovium and to visualise the identified cell-cell interac-
tions. Our analysis identified the shared role of SPARC+ and APOE+ fibroblasts driving
communication across the lung, skin and synovium in disease along with SPP1+4+ mac-
rophages being a hallmark cell type of inflammation. As the analysis with CellChat is
only a prediction of cellular interactions based on gene expression of each cell type cluster
in the atlas we wanted to experimentally validate whether these cell types co-localise in
diseased tissue. SPARC+ fibroblasts were a common driver of interactions across all three
tissues in our analysis (Figure 4.12) we wanted to stain for the presence of this popula-
tion in healthy and inflamed tissue. To identify SPARC+ fibroblasts in the tissue, we
used periostin (POSTN), which appeared as prominent cell-specific marker gene for this
population. In addition to SPARC+ fibroblasts we also wanted to determine the presence
of APOE+ fibroblasts within tissues, thus we stained for CXCL12. CXCL12, also called
stromal cell-derived factor 1, is highly expressed by APOE+ fibroblasts and is the major

chemokine secreted by fibroblasts. Finally, we stained Microfibrillar-associated protein
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5 (MFAPS5) to detect the MFAP5+ subpopulation that was also a prominent driver of
expression in the skin and synovium as suggested by the cellular interaction analysis.
In skin and synovium, periostin and MFAP5 expression was confined to distinct and re-
motely exclusive compartments (Figure 4.16). In the skin, periostin was localized in the
papillary dermis, while MFAP5 was expressed in the reticular dermis. In the synovium,
periostin expression was found mainly in close association to blood vessels, while MFAP5
was detected throughout the remaining sublining area. This distinct pattern of distribu-
tion was maintained in psoriatic skin and RA synovial tissue. Thus, expression of these
marker proteins supported the presence of two distinct fibroblast subpopulations, creat-
ing specialised tissue niches in skin as well as synovium in health and disease. We also
wanted to validate our interactions between SPP1+ macrophages as they were identified
as key receivers of interactions in disease across all tissues. For this we performed a double
stain of CXCL12 indicating the APOE+ fibroblasts and SPP1 for the macrophages and
found indeed that in psoriatic skin and RA inflammed synovium we found co-localisation
of the stains. This suggests that indeed there is likely cellular communication occurring
between APOE+4 fibroblasts and SPP1+ macrophages that are driving inflammation in

these tissues, validating predicted interacting cell types in the single cell analysis.
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Figure 4.16: A) Immunohistochemical staining of POSTN and MFAP5 in healthy skin,
psoriatic skin, healthy synovium and RA synovium. Magnification 100x for skin and RA
synovium, 200x for healthy synovium. B) Double staining of CXCL12 (brown) and SPP1
(red) in psoriatic skin and RA synoivum. Brown arrows indicate CXCL12+ fibroblasts
whereas red cells point out SPP1+4 macrophages. Magnification 200x and 400x.

These results show that there are shared mechanisms of cellular communication across
different tissue niches in homeostasis and disease, inferred from atlas-level data with com-
plex co-variates. Understanding these shared and unique pathways can further aid our
understanding of the intricate communication between tissue resident cells such as mac-
rophages and fibroblasts and highlight the importance of cellular communication inference
in single cell data. We used low-plex tissue staining to identify co-localised cell types that
were predicted in the cellular interaction analysis to drive inflammation however we still

cannot ascertain the validation of the ligand-interaction pairs that were reported from the
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study. Thus, using newer techniques such as spatial transcriptomics where we have the
whole transcriptome spatially resolved, provides us a new advent of cellular communica-
tion analysis where we can project not only cell types but also ligand-receptor pairs into

space to orthogonally validate predicted interactions.

4.4.6 Section 2: Identifying cellular interactions leveraging spa-

tial transcriptomics during H. polygyrus infection

This work was a collaborative effort at the University of Glasgow where the infection
and Visium preparation was completed by Dr. Marta Campillo under the supervision
of Professor Rick Maizels. Dataset analysis, processing, integration and differential ex-
pression analysis was jointly carried out by myself and Dr. Ross Laidlaw under the su-
pervision of Professor Thomas Otto. Downstream analysis of cellular interactions were
performed by myself and all results shown in this section were analysed independently.
The complete study and details of the study can be read in our preprint here (https:
//www.biorxiv.org/content/10.1101/2024.02.09.579622v1) currently under review
by Nature Communications, which details the comparative analysis of naive against day
7 post infection (with additional time points day 3 and day 5 added after the Biorxiv
paper). This section will expand the preprint and detail analysis of additional time points

and associated functional pathways over the time course of the infection.

4.4.7 Integration of H. polygyrus Visium datasets across time

When infective larvae of H. polygyrus are ingested and migrate to the small intestine, they
cross the epithelial barrier and reside in the submucosa for 8 days before returning to
the lumen?’. To profile the transcriptomic landscape of the small intestine tissue during

this process, we employed the Visium (10X Genomics) platform vl to conduct spatial


https://www.biorxiv.org/content/10.1101/2024.02.09.579622v1
https://www.biorxiv.org/content/10.1101/2024.02.09.579622v1
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transcriptomics on formalin-fixed gut rolls. Here we had full transcriptome sequencing
and mapped the spatial data against the mouse genome as detailed in the methods.
We had four time points during the infection with each gut roll being extracted from a
separate mouse, at naive steady-state in the absence of the parasite, 3 days post-infection
with H. polygyrus, 5 days post-infection and 7 days post-infection. Initially, we attempted
to integrate the data using Harmony'%! using each time point as a co-variate which, after
clustering, resulted in 9 clusters (Figure 4.17). However, when we projected these leiden
clusters back to the spatial coordinates they were not representative of the underlying
architecture of the tissue. As a result, this made it difficult to compare clusters from
the integration across the time points as they failed to harmonise into coherent spatial
niches that were comparable across the different time points. To resolve this, and to
define spatial niches across the time points for comparision, Dr. Marta Campillo manually
annotated using the Loupe Browser (10X Genomics), three factors that encapsulated the
fundamental structure of the small intestine, the crypt zone (including the lamina propria
and the crypts), the villi and the granuloma (only present in H. polygyrus infected mice).
These annotations then represented spatial clusters that were biologically relevant and
shared across time points that we could draw comparisons from. Thus, we used these
histological annotations rather than the clustering from the integration analysis as this
allowed us to compare distinct spatial regions across the tissue rather than incoherent

clustering we generated using the leiden clustering workflow.
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Figure 4.17: A) UMAP visualisation of the Harmony integration of naive, day 3, day
5 and 7 days post H. polygyrus infection Visium datasets coloured by timepoint. B)
UMAP visualisation of the Harmony integration of naive, day 3, day 5 and 7 days post
H. polygyrus infection Visium datasets coloured by leiden clusters at a resolution 0.5. C)
UMAP visualisation of the Harmony integration of naive, day 3, day 5 and 7 days post
H. polygyrus infection Visium datasets coloured by manual histological annotation. D)
Spatial plot of leiden clusters projected back to the spatial coordinates for each timepoint.
E) Spatial plot of manual histological annotations projected back to the spatial coordinates
for each timepoint.

4.4.8 Differential expression analysis reveals temporal gene ex-

pression patterns over infection

We next investigated temporal shifts in signalling pathways, particularly within the crypt
microenvironment at days 3, 5 and 7 following H. polygyrus infection. First, we wanted
to understand what genes were being differentially expressed at each time point, which
revealed a striking temporal pattern of gene expressions on days 3 and 7 compared to

naive and day 5 (Figure 4.18). This shift matches the parasite’s life cycle events: around
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days 3 and 7 post-infection we have a epithelial barrier breach by the parasite and tissue
penetration occurs, while naive and day 5 represent the steady state and the period while
the parasite is encapsulated inside the granuloma. We also wanted to examine the degree
of overlap of differentially expressed genes between the time points and found that the
naive and day 5 post-infection time points shared 951 genes with almost overlap with the
other two time points. Similarly, day 3 and day 7 shared 317 differentially expressed genes
recapitulating the life cycle of the parasite over time. We observe s stark temporal pattern
over the time course of the infection that reflects the different stages of the parasite larvae
maturation. At 3 days post infection where the larvae burrows into the epithelial wall,
we see a pattern of upregulated gene expression that shares a similar profile to 7 days
post infection where the mature parasite breaks out from the granuloma. Remarkably,
at b days post infection we see an expression profile akin to the steady-state uninfected

gut suggesting a mechanism of immunoregulation and suppression at the host-parasite

interface.
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Figure 4.18: A) Venn diagram showing the overlap of up/down differentially expressed
genes across each timepoint, logfold change cutoff of 0.5, p-value of 0.05. B) Heatmap
of gene expression in the crypt across all timepoints. The top 10 most highly expressed
genes are labelled ordered by their average log fold change values.
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4.4.9 Cellular interaction analysis shows decreased Wnt signalling

during H. polygyrus infection

To understand globally how cellular interactions were changing over time, cellular inter-
action inference was carried out on each time point irrespective of tissue location or cell
type. Functional annotations of these interactions were then examined to identify key
functional gene sets that are influenced during infection (Figure 4.19). Global immune
cell genes associated with CD45 became increasingly prominent over the course of infec-
tion, coinciding with the immune cell influx characteristic of early granuloma formation,
where monocytes, neutrophils, and eosinophils begin surrounding the parasite 5, 17. Not-
ably, increased expression of CCL pathway (Ccl6, Ccl7, Ccl8) was observed at later time
points, suggesting continued recruitement of immune cells to the site of the parasite. By
day 7, additional signalling pathways associated with tissue remodelling became domin-
ant, including TGF-B (Tgfbl), osteopontin (Sppl), and thrombospondins. These factors
have been implicated in fibrosis and extracellular matrix remodelling in chronic helminth
infections, potentially facilitating wound healing. In contrast, we observed a complete
loss of Wnt pathway genes from the expression profile by day 7 post-infection. In naive
mice, crypt-to-crypt interactions were dominated by Wnt signalling, consistent with its
role in maintaining intestinal stem cell proliferation and epithelial homeostasis®’*. When
we examined individual Wnt pathway members, a marked reduction in their expression
levels was already evident by day 3. By day 7 post-infection, Wnt gene expression was
almost completely absent, while Notch signalling was strongly upregulated which mirrors
findings from H. polygyrus-infected organoid cultures, where parasite-secreted products

favour foetal-like repair phenotypes>’.
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Figure 4.19: A) Stacked barplot showing the top interaction pathways at each time point
during H. polygyrus infection. ApoA, Apolipoproteins; APP, Amyloid Precursor Protein;
CCL, Chemokines; CD45, Leukocyte Common Antigen; EPHA/EPHB, Ephrin recept-
ors; FGF, Fibroblast Growth Factor; FN1, Fibronectin; IGF, Insulin-like Growth Factor;
ncWNT, non-canonical Wnt; NRG, Neuregulin; PTN, Pleiotophin; SEAMA4, Sema-
phorin 4; SPP1, Secreted Phosphoprotein/Osteopontin 1; TGFb, Transforming Growth
Factor- , THBS, Thrombospondin; VEGF, Vascular Endothelial Growth Factor; WNT,
Wingless/Int-1 (Integration of MMTV). B) Heatmap showing the mean expression of
key ligand-receptor interactions in the Wnt signalling pathway across locations and
timepoints. C) Average expression of each location of key ligand and receptors involved
in the Wnt signalling pathway across time. Lines have been smoothed and fitted using
polynomial regression, shaded regions represent confidence intervals for each fitted value.
Crypts (blue), Villi (green), Granuloma (orange).
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4.4.10 Crypts and villi show changes during H. polygyrus infec-

tion

We then focused on gene expression in samples taken at steady-state and 7 days post-H.
polygyrus infection. We integrated the two time points (naive and day 7) and observed a
clear separation (Figure 4.20). Leveraging the histological annotations, we examined the
gene expression profiles of the the crypt and villous areas of the small intestine in naive and
infected murine tissues and identified specific genetic signatures in each of the tissue niches
during infection. Specifically, after 7 days of infection, crypts show decreased expression
of genes associated with intestinal homeostasis like Zg16, Mucl3, Itlnl and Fcgbp. In
the infected crypts there is also a reduction in factors that maintain the integrity of the
intestinal barrier such as Epcam and Pls133%. On the other hand, a different suite of
genes is upregulated in the infected crypts, with most elevated expression of cell adhesion
proteins (Cldn3, Cdh17) which may indicate epithelial cell proliferation and modification
during early stage of infection. We also observe the up-regulation of the phospholipase
A2 family member Pla2g4c, which is involved in and required for killing of larval H.

336 Within the villi tissues, a similar down-regulation of expression is seen for

polygyrus
pro-homeostatic genes such as Epcam, but distinct from crypt cells, the villi show down-
regulation of metabolic mediators such as Slc25a5, and Cndp2, while upregulating Cldn3

and Pla2g4c within the crypt tissues. Thus, we see extensive epithelial remodelling during

day 7 of the infection in particular in the crypt compartment.
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Figure 4.20: A) A, B Spatial plots of naive (A) and day 7 H. polygyrus infection (B)
highlighting tissue location clusters. C) UMAP based on Harmony integration of naive
and 7 days post H. polygyrus infection Visium datasets coloured by the sample origin of
each of the dots. D) UMAP based on Harmony integration of naive and 7 days post H.
polygyrus infection Visium datasets, coloured by the tissue location of the spots. E-H)
Violin plots of the expression of the top 10 differentially expressed genes in naive and day
7 crypt (E, F) and villi (G, H). Down-regulated genes are shown in E and G, up-regulated
genes in F and H, with normalized expression of naive spots in orange, and day 7 post
infection spots in blue.
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4.4.11 Molecular characterisation of the H. polygyrus granulo-

mas and the surrounding tissue niche

Next, we wanted to understand what is changing at the direct site of the parasite so we
focused on the granulomas surrounding larval parasites in the submucosal tissue (Fig-
ure 4.21). We compared the combined transcriptomic signatures of all granulomas in
comparison to the rest of the intestinal tissue. Interestingly, we found high expression of
Tmsb4x, encoding thymosin beta-4, a small protein that may promote dendritic cell dif-
ferentiation®3”. We also observed high expression of Argl (arginase-1) in the granulomas,
and Retnla (encoding RELM-a), with both genes being closely associated with alternat-
ively activated macrophages. In addition to this, the marked elevation of Ccl8 and Ccl9
is consistent with dominant infiltration by macrophages. Additional upregulated genes
are involved in extracellular matrix (ECM) deposition (Fnl, Collal, and Ctsb) as well
as antigen presentation and immune stimulation (Clqa, Tnfaip2), and lipid metabolism
and oxidative stress regulation (Apoe, Cyba, Psap)?3%339 These upregulated genes sug-
gest a coordinated response involving myeloid immune cells, tissue repair, and activation
of inflammatory and remodelling processes within the granuloma microenvironment. We
then wanted to know what transcriptomic differences there were between granulomas and
the crypt sites. This analysis, confirmed the high levels of Argl and Retnla, as well as
the monocyte chemoattractants Ccl8 and Baspl. In contrast, we see down-regulation of
defensins and Zbtb48. The distribution of these genes was confirmed by a spatial analysis
of expression relative to distance from the site of the granuloma, and by spatially mapping
the distribution of expression of transcripts for Argl, Baspl and Lgalsl which co-localise

exclusively to the granulomas.
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Figure 4.21: Transcriptomic landscape of the site of infection: A) Results of Scanpy marker
gene analysis of the top 10 scoring genes for granuloma 7 days post H. polygyrus infection,
displayed as split violin plots of normalised expression values, with red plots for granuloma
spots and yellow for non-granuloma spots. B) Volcano plot showing the top 5 up/down
regulated genes in the granuloma niche compared to the crypt niche. C) Spatial distribu-
tion plot showing the gene expression of the top 8 upregulated genes in the surrounding
granuloma niche at day 7 post infection. The dotted line denotes the boundary of the
spots that are labelled as granuloma but neighbour non-granuloma spots. D-F) Spatial
plots showing the gene expression of Argl, Baspl and Lgalsl localised exclusively to the
granuloma niches.

We then wanted to know if the granulomas themselves were transcriptionally heterogen-
ous. After subsetting the granuloma spots in day 7 post-infection, we reclustered them,
which resolved into three distinct clusters (Figure 4.22). The spots in cluster 0 represent
granulomas in which no larva is visible, either because the adult is already in the lumen
or because the section failed to capture the worm in the histology. Analysis of differen-

tial gene expression in the 3 clusters, revealed interesting profiles of specific gene sets.
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In cluster 0, there is a higher level of immune cell products including the MHC Class
IT antigen H2-Q2, and proteins involved in interferon responses (Ifi2712b), and immune
regulation (Clec2h). Furthermore, the upregulation of Vill, Zgl6, and Krt20 suggests the
presence of epithelial cells that may contribute to the structure of the granuloma itself.
Interestingly, one of the upregulated genes of cluster 0 granulomas is Zgl6, which is con-
versely down-regulated in infected villi. The observed gene expression within cluster 1 of
granulomas containing larval parasites contains features of both type 1 and type 2 im-
munity. The upregulation of proinflammatory genes such as Tnfaip2 and Ccl9 and Fcerlg
is observed alongside genes such as Argl, Baspl, Clqa, Fnl, Emilinl, and Psap which
point towards alternative macrophage activation and associated angiogenesis, tissue re-
pair and extracellular matrix remodelling. Cluster 2, which represents a single granuloma
which like cluster 0 has no visible larva, but shows a very distinctive gene profile with a
lower level of macrophage activation genes, with high Reg3b, Reg3g and Agr2 expression
indicating resolution and regeneration of the cellular environment??4340  together with

Mxra?7, encoding Matrix remodelling associated 7 protein implicated in wound-healing3*!.
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Figure 4.22: A, B) UMAP of granuloma spots from the mouse intestine 7 days post
infection with H.polygyrus with spots coloured by transcriptome-based Leiden clusters
(A) and by absence or presence of H. polygyrus based on histological annotation (B). C)
Spatial plot of mouse intestine 7 days post infection with H. polygyrus with spots coloured
by transcriptome-based Leiden clusters. D) Scaled expression of the top 10 gene markers
for each granuloma transcriptome-based Leiden cluster.

In addition to defining gene expression patterns within the granulomas, we asked whether
intestinal crypts adjacent to, or distant from, the sites of the granulomas showed distinct
transcriptional profiles. Through manual histological annotation by Dr. Marta Campillo,
sets of crypts were assigned to each category and differential gene expression was per-
formed to identify candidate genes that are modulated by the presence of the parasite.

A number of genes upregulated in the vicinity of granulomas are macrophage-associated
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products also found within the granulomas such as Retnla and Fcerlg, although Argl was
not highlighted. However, we found two genes involved in the Wnt pathway, Dact2 and
Frat2 are locally down-regulated, consistent with the inital cellular interaction pathway

analysis that indicated overall reduction in Wnt signalling.
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Figure 4.23: A) Assignment of crypt areas "close” (blue) or "far” (red) from sites of the
granulomas. B-C) Violin plots of differential gene expression for top 20 genes upregulated
(B) or downregulated (C) in crypts close to parasite locations. D) Dotplot showing gene
expression levels for genes in B and C.
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4.4.12 Using cellular deconvolution to identify spatial niches

Having recreated the original biological spatial context of the intestine using histological
annotations, we wanted to next identify the cell types present and their distribution across
the spatial axis. Dr. Ross Laidlaw implemented cellular deconvolution to deconvolute the
pseudo-bulk Visium spot data, using cell2location and two integrated scRNA-seq datasets
of immune and non-immune cells from the intestines of mice respectively from published
studies?*310 to ensure there would be representation of the immune and epithelial cell
types that comprise the intestine. Leveraging these annotations, we focused on the most
proximal part of the intestine, the duodenum, which is the primary site of H. polygyrus tis-
sue invasion (Figure 4.24). Ensuring that we preserved spatial localisation of the tissue we
used calculated spatial embeddings from a digital unrolling method proposed by Dr. Ross
Laidlaw containing our unrolled length (anterior to posterior) and depth (lower crypt to
villous tip) axes, and the original Visium spatial coordinates, to ensure adjacent segments
in the Visium space are separated from each other. After applying non-negative matrix
factorization to identify which cell types co-localise together in the same spatial niches.
Within the deepest spot layer of the crypts, the lower crypt spatial niche is dominated by
transit amplifying (TA) cells and intestinal stem cells, with the presence of both CD4+
and CD8+ T cell subsets. Directly above, the upper crypt is almost entirely composed
of enterocyte progenitors with a small amount of lymphoid cells. Extending toward the
lumen, the villous niche co-localises enterocytes, B cells, innate lymphoid cells (ILC) 1
and 2, NK cells and Y8 T cells. Focusing on co-localisation signatures that are specific
to infected mice, an accumulation of macrophage, neutrophil, plasmacytoid DC, mast
cell and lymphoid tissue inducer cells localised in the granulomas. While many of the
cell types found to be co-localised around and within granuloma niches (macrophages,
neutrophils, dendritic cells and CD4+4 T cells) have been shown to be associated with
helminth-induced granulomas, the involvement of mast cells, pDCs and lymphoid tissue

inducer (LT1i) cells has yet to be reported.
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Figure 4.24: A) Visium slide of mouse intestine 7 days post H. polygyrus coloured by the
histological tissue location. B-C) Visium slides of mouse intestine 7 days post H. polygyrus
showing spots coloured by the recreated length (B) or depth (C) axis. D) Visium slide of
mouse intestine 7 days post H. polygyrus coloured by spatial niches. E) Heatmap showing
the relative mean expression of each cell type signature present in the Xu/Huber reference
single cell dataset across each spatial niche. F) Spatial projects of the top 2 predicted cell
types in each spatial niche coloured by normalised cell abundance. G) Top 15 highly

expressed genes for each spatial niche in the infected intestine.
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4.4.13 Cell-to-cell interactions and signalling pathways

Following characterisation of cell types and gene expression within each spatially re-
solved niche in the infected murine gut, we wanted to know what interactions are occur-
ring between each spatial niche. Using CellChat we inferred ligand-receptor interactions
between each spatial niche in the day 7 post-infection segment. From the granuloma niche,
all predicted interactions were with the lower crypt, and represented the highest number
of predicted interactions in the whole study (Figure 4.25). Numerous interactions were
also observed between other sites, between the lower crypt and the upper crypt with the
villi that were not predicted to directly interact with granuloma niche. Enriched predicted
signalling between the granuloma and lower crypt niches primarily represented immune
cell activation and differentiation pathways. Dominant chemokines in the granuloma pro-
file are CCL6, CCL7, CCL8 and CCL12, with the CCL8/CCR5 pairing with the lower
crypt likely indcating activated myeloid and lymphoid populations recruited to the granu-
loma. Interestingly, the among the strongest interactions is between the chemokine-like
macrophage migration inhibitory factor (MIF) expressed in both the lower crypt and the
granuloma, and its receptors CD74 and CD44 present in both niches, as this chemokine-
like mediator is known to be essential for immunity to H. polygyrus as well as to the rat
nematode Nippostrongylus brasiliensis>??. As expected for the tissue remodelling involved
in granuloma formation, there are prominent interactions with ligands for extracellular
matrix and proteoglycan including pleiotrophin (Ptn) which binds heparin and the syn-
decin receptors Sdcl, Sde3 and Sdc4 as well as nucleolin (Ncl), and the IL-6-like cytokine
Oncostatin M (Osm). We also observed Sppl which binds CD44 and integrins, which
when compared to the naive 3 tissues sites, was prominent in the granuloma niche. Sppl
can also interact with integrins involved in activation of latent TGF-B. TGF-f signalling
was seen to be high in granuloma-crypt interactions, primarily represented by TGF-B1
from the granuloma, binding the canonical TGF-B receptors, but also signals from the
lower crypt to the upper crypt. It is known that blocking TGF-B signalling promotes
the release of H. polygyrus®®, and more interestingly that the parasite secretes mimics of

TGF-B that bind the same receptors together with CD443*2. Finally we wanted to see if
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we could spatially map the identified key ligand-receptor pairs to see co-localisation to
the spatial niches. We observed that chemoattractant signalling along with TGF-, were
found largely in the sites of granulomas although MIF-CD74/CD44 appeared to be more

generalised through the infected tissue.
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Figure 4.25: A) Heatmap showing the number of ligand-receptor (L-R) interactions in-
ferred by CellChat for each spatial niche at 7 days post infection. Bar plots at top and
side show the sum of all interactions. B) Circos plot visualisation showing upregulated
ligand and receptor pairs between the granuloma (red) and the lower crypt (blue) niche.
Ligands are placed in the lower half and receptors in the upper half, with arrows showing
directionality of the interaction. C) Dot plot showing the communication probability of
each significant ligand receptor interaction between various spatial niches in the murine
gut at 7 days post infection. D) Stacked proportion bar plot showing the interaction path-
ways associated with each location of the murine intestine day 7 post-infection. E) Spatial

projection of key interacting pairs involved between

the granuloma and crypt niche during

H. polygyrus infection, coloured by gene expression.
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Collectively, these findings demonstrate a progressive disruption of epithelial renewal and
immune-epithelial crosstalk during H. polygyrus infection. Early suppression of Wnt sig-
nalling (day 3) results in Notch-dominated differentiation (day 7), a pattern that has
been previously linked to helminth-induced epithelial remodelling. Also we found crypt-
granuloma interactions evolve from inflammatory (IL-6-driven, day 5) to a tissue remod-
elling state (TGF-B, SPP1, day 7), reflecting the dual nature of the host response at-
tempting both parasite clearance and damage repair. These results reinforce the fact that
H. polygyrus actively reshapes its host environment, leveraging immune suppression and
epithelial reprogramming to establish chronic infection. Understanding these spatially dis-
tinct and time-dependent interactions provides deeper insight into how helminth parasites

exploit the gut niche and highlight potential targets for therapeutic intervention.

4.5 Discussion

In this chapter we interrogate how cellular interaction inference can be adapted to atyp-
ical and challenging contexts, specifically in atlas-level single-cell datasets with complex
heterogeneity and size, and spatial transcriptomics data where the tissue architecture is
disrupted. In the first case study, we presented a macrophage—fibroblast atlas spanning
four tissues and multiple disease states to more than 250,000 cells, to observe tissue-
resident myeloid-stromal crosstalk in steady state and disease. Using a reference normal-
ised atlas of 40,000 myeloid and stromal cells we implemented label transfer annotation
to expand the full dataset to run cellular communication inference. We recapitulated cell
type proportions across all tissues from the normalised atlas to the full dataset capturing
representation of myeloid and stromal subtypes and preserving tissue-specific cell types
such as Langerhans cells in the skin, A2M+ fibroblasts in the lung and PRG4+ fibroblasts
in the synovium. After the exclusion of the heart dataset we compared cellular interactions
in disease and homeostasis across the lung, skin and synovium which unveiled patterns of

communication between different cell types. In disease, we found that SPP1 macrophages
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acts as key communicators consistently across tissues interacting with tissue-resident fibro-
blasts. Osteopontin expressing macrophages have been widely reported in inflammatory
disease with roles such as promoting fibrosis, remodelling of the extracellular matrix, and
modulation of the immune response sustaining chronic inflammation. Studies show that

3

SPP1+4 macrophages promote fibrosis in myocardial infarction3#3, contribute to reoccur-

rence and chemo-resistance in breast cancer®

44 and have shared pathways across various
diseases such as rheumatoid arthritis and COVID-19%*>. We went on to experimentally
validate SPP1+ and its co-localisation with SPARC+ and APOE+ fibroblasts in healthy
and disease skin and synovium. Staining revealed that at the site of inflammation in both
tissues CXCL12 and SPP1 co-localise indicating that in psoriasis and RA synovial tissue
interactions between SPP1+ macrophages and APOE+ fibroblasts are interacting. In tis-
sues that are actively inflamed SPP1 acts as a stimulator of fibroblasts, promoting their
activation and proliferation regulating collagen synthesis and ECM remodelling®*®. This
is useful under homeostatic conditions for ECM maintenance and renewal as reported in
the presence of collagen production in homeostasis across the three tissues however when
this mechanism is dysregulated fibrosis exacerbates tissue damage and chronic inflam-
mation accelerating the progression of chronic inflammatory diseases®”. In the lung, we
found that TREM24 macrophage interactions dominated inflammatory pathways inter-
acting with lung specific tissue resident A2M+ fibroblasts. TREM2+ fibroblasts interact-
ing with lung resident fibroblasts have been reported to be pro-fibrotic with recent reports
that inhibition of this TREM2 leading to amelioration of pulmonary inflammation and
fibrosis327348. Despite the popularity of single cell atlases, little progress has been made
in trying to glean additional insights from these datasets such as cellular communica-
tions. Recently, an atlas of cellular communications was proposed called CellCommuNet
that contains cell—cell communication networks inferred from 376 scRNA-seq datasets
from human and mouse tissues in normal and disease states?. In the future we hope
that our dataset can be integrated into multi-faceted resources such as this to facilitate
the identification of shared and distinct interactions between tissue-resident cell types in

inflammatory disease and steady-state.
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Although we report shared signalling pathways across the lung, skin and synovium the
heart dataset was excluded from our analysis due to low cell numbers. As a result, this
forced us to exclude the heart from downstream cellular communication inference as most
cellular interaction packages require at least 10 cells in each cell type annotation to perform
inference between conditions. Since the curation of the atlas by Dr. Lucy Macdonald in
2021, there have been single cell datasets of cardiac tissue in disease published such as

1349 in 2022 who included 6 patient samples of heart failure and more recently

Koenig et a
in 2024, the CardioAtlas curated by Jiang et al®>" which includes 12 human disease heart
tissue datasets. Inclusion of these datasets would have allowed us to gain further insight
into shared and distinct inflammatory and steady state signalling pathways in the heart to
compare against our findings. Reports from other cardiac single cell studies have reported

351 by interacting

a SPP1+ macrophage role in promoting fibrosis in myocardial infarction
through various heart fibroblast subsets, suggesting that our findings presented in the
lung, skin and synovium would have been complementary to inflammatory pathways in

the heart.

During our analysis we also found particular interactions that may have been driven by a
particular dataset such as the presence of multiple MHC-II genes in the synovium during
homeostasis. By pooling the different inflammatory diseases into one umbrella of 'Disease’
we fail to correct for biases introduced by interactions that may be overrepresented in a
given state. This, paired with biases from the cellular interaction databases, caused the
analysis to be dominated by fibrotic signalling pathways when the underlying landscape
of inflammation underpinning these tissues is likely more complex. This could be mitig-
ated by using cellular interaction packages such as multinichenetR'? that is tailored to
cellular inference of more complex experimental designs, correcting for multiple patients
and conditions. In this study, we analysed cells that came from 122 different samples,
across homeostasis and 10 different inflammatory diseases which a more basic cellular
interaction inference tool such as CellChat may not adequately handle. However, mul-
tinichenet first runs a differential expression analysis which requires there to be sufficient

cell types per sample per condition which our data did not meet in all of our myeloid-
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stromal subtypes. This was due to tissue-specific expression of some cell type populations
such as PRG4+ fibroblasts in the synovium and Langerhans cells in the skin which are
not present in other tissues. Thus, as a workaround the analysis would have needed to
implement broader cell type labels which would have affected the granularity of under-
standing how different sub-populations in the data are interacting. This approach would
have been sufficient for investigating cellular interactions across shared cell types across
the tissues, however the analysis would have omitted distinct tissue-specific interactions

that may be of interest.

Finally, the analysis of cellular communications inferred from an atlas-level dataset such
as the one presented in this chapter yielded over 500K interactions between different
combinations of cell types and tissues. This highlights the scale of the results of a cellu-
lar interaction inference analysis can provide, requiring a clear biological question to be
asked before delving into the data. Here, we chose to highlight interactions and signalling
pathways that were shared in disease and followed up with experimental validation with
immunohistochemistry. There are many other aspects of the data yet to be explored to
further understand the complex interplay between tissue-resident myeloid and stromal

populations in inflammatory disease.

Moving away from the cell atlas, we proposed a second use case where we showed that
when spatial topology is warped, as in the ’swiss-rolled’ intestine during Heligmosomoides
polygyrus infection, considerations for the underlying tissue architecture is a prerequis-
ite for cellular inference. By leveraging histological annotations and digitally unrolling
and segmenting the tissue, we asked specific questions to tailor the analysis to regions
of interest reconstructing the crypt—villus axis and interrogating granuloma-associated
cell states. Our analysis revealed a temporal change in early Wnt-driven epithelial re-
newal, that is subsequently suppressed by the parasite during chronic infection, that is
replaced by Notch-driven differentiation and TGF-B/SPP1 regulated tissue remodelling.
When examining the specific tissue niches in the gut during H. polygyrus infection we

found that the crypts and villi at day 7 down-regulate barrier and homeostatic genes like
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Epcam while up-regulating adhesion modules such as Cldn3, Cdh17 and Pla2g4c, con-
sistent with epithelial reprogramming and anti-helminth effector functions. Within the
granuloma microenvironment, transcriptional profiles suggest alternative macrophage ac-
tivation with Argl, Retnla expression, immune recruitment through cytokine signalling,
ECM deposition and tissue remodelling. We also reported transcriptional heterogeneity
within granulomas determined by presence or absence of the parasite, identifying clusters
reflecting active inflammation and repair, immune—epithelial crosstalk, and a resolution-
like state. Cellular interactions during chronic infection revealed increased chemokine sig-
nalling to the sites of the granuloma including the expression of MIF and CD44, critical
for the immunity to H. polygyrus infection®”. Despite potential limitations of deconvo-
lution approaches we leverage spatially resolved neighbourhoods with existing single cell
data to predict cell-to-cell interactions of spatial niches within the small intestine. Com-
mon signatures of cell type colocalisation were identified, particularly in the crypts and
villi, emphasising the coordinated organisation of various cell types within specific tissue
regions. Specific colocalisation patterns in H. polygyrus infection, particularly in the granu-
lomas, highlighted the dynamic cellular interactions occurring during the host response
to parasitic infection. In contrast, in the steady-state there is negligible activity from im-
mune cells and the interactome is rather associated with epithelial cell differentiation and
maintaining tissue integrity of the intestine. Thus, this landscape is dramatically altered

in response to parasitic infection and the formation of granulomas.

Our analysis faced some limitations, for example the initial integration of the time points
proved challenging in this analysis due to high variation in sequencing depth across the
tissues and time points. We noticed that there was a technical artefact in the data where
the centre of the tissues contained significantly a higher number of UMIs and features when
compared to the outer regions of the gut roll. This could be down to the application of the
reagents during processing or that certain regions of the tissue were thicker than others,
affecting the permeability of the tissue. In normal conditions computational techniques
such as normalisation and batch correction should mitigate these effects, however in this

case the bias still persisted and affected downstream tasks such as clustering. Thus, it
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resulted in nonsensical clustering when projected back to the spatial axis providing little
biological insight. Other methods that are tailored more specifically to identifying spatial
niches by implementing spatially aware clustering such as PRECAST?*? also failed to
provide spatial clustering that made sense in the tissue. Thus, as we had histological
annotations that accurately reflected the architecture of the gut we proceeded to utilise

this spatial information for the majority of the analysis.

In order to run cellular communication inference we had to address the warped spatial
axis introduced by the ’swiss-rolling’ technique of the intestine. We attempted to apply
existing methods to digitally unroll the intestine provided by the semla package®?® as
detailed in the Parigi?”* paper. However, this method required the gut roll to be intact
and uninterrupted on the slide in order to accurately recreate the length of the gut. In
our Visium data we did not capture the gut roll in its entirety, with the positioning of the
gut roll sometimes overlapping with the fiducial border meaning it was not captured in
the sequencing or through breakage of the tissue where parts of the gut were segmented.
To try and overcome this, Dr. Ross Laidlaw created a method that allowed partial digital
unrolling of the gut by taking uninterrupted segments and patching them together using
overlapping spatial coordinates between broken sections. This was sufficient for calculating
the anterior-posterior axis and length along the intestine, however for cellular communica-
tion inference the overlap of the different segments rendered the method unsuitable as the
distance metric of ligand diffusivity would have been distorted. As a result, we chose to
focus our cellular interaction analysis on an uninterrupted segment of the intestine during
day 7 post-infection that contained multiple granulomas to understand the host-parasite

interface in more detail.

Additionally, as 10X Visium captures multiple cells within each spot we attempted to
deconvolute the data to try and infer which cell types were occupying the different spatial
areas of the gut. For this we ran cell2location'®” and used two single cell datasets to infer
our cell type signatures. At the time of the analysis there was not a single cell dataset that

described both stromal and immune cells in the murine gut, as a result we concatenated
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two separate datasets one encapsulating the stromal compartment by Haber et al*® and
one for the immune compartment by Xu et al®'%. After running cell2location we found
that multiple cell type signatures are present in overlapping regions across the intestine
making it difficult to assign a spot to a dominant cell type. Thus, we opted to instead
utilise negative matrix factorisation to estimate distinct tissue niches in the gut which
nicely characterised the main spatial compartments of the intestinal segment we focused
our analysis on. These spatial niches became the focus of the cellular interaction analysis
where we opted to use the spatial niches instead of estimated cell types to gather an
understanding of which cellular interactions are occurring in which niche. This meant
that we could not report which cellular interactions were originating from particular cell
types in the gut and adopted a more localised view of interactions between niches. This
highlights the appropriateness of using a pseudo-bulk spatial method such as Visium
on such an intricate tissue like the gut. For example the villi are estimated to be 150-
400um long in mice®®® which when taking into consideration that a Visium spot measures
55um in diameter is spaced so that the distance between the centres of each spot is
100um it is clear that the resolution is unsuitable to capture insight within smaller tissue
architectures. With the advent of higher resolution spatial technologies such as Visium
HD which contains 2um barcoded squares with no spacing and true single cell spatial
platforms like Xenium and Cosmx, perhaps we can gain more granularity in cellular

communication inference in this setting.

Despite this, taken together, our analyses across human tissues, disease accentuates SPP1
driven myeloid-stromal crosstalk with a conserved ECM-remodelling and pro-fibrotic sig-
nature. During helminth infection, we report temporal suppression of Wnt signalling re-
placed by Notch-driven differentiation, and granuloma-specific TGF-B/SPP1 immune re-
cruitment and alternative macrophage activation, alongside epithelial interactions. These
insights interestingly draw parallels in increased collagen production, ECM remodelling
and collagen deposition influenced by a shared SPP1 axis during states of chronic inflam-

mation.



Chapter 5

Discussion

In conclusion, this thesis highlights the powerful technique of cellular interaction analysis
in unveiling novel and shared immunomodulatory mechanisms in diseases such as COVID-
19, inflammatory disease, and parasitic infection using single cell RNA sequencing lever-
aging spatial technology to validate interactions. The field of cellular communication infer-
ence has boomed since the publication of the first cellular interaction tool CellPhoneDB
in 20208, with over 100 bioinformatic tools and 50 database resources published as
of 2024374, Core cellular interaction tools such as CellPhoneDB!*® and CellChat!*® base
their calculations on the average expression of ligand and receptors across cell type clusters
and compute scoring functions such as expression mean or communication probability to
quantify expression but ignore the multifacted biological nature of cellular communica-
tions'37. Nevertheless, these tools have provided insight into novel disease mechanisms

146,355 and cancer3®®. Since then, cellular

such as COVID-19%, developmental processes
interaction tools have started to challenge these basic assumptions adopted by core tools
such as SoptSC™! which computes interactions at the single cell level thus eliminating
the cluster-wide expression of a given ligand /receptor enabling the capture the single-cell
nature of cellular communication and heterogeneity that may be missed by aggregating
expression. Other tools aim to investigate downstream impacts of cellular communica-

t150

tions, such as NicheNe which models downstream intracellular signalling rather than

intercellular signalling. Critically, more recent tools'?357:358 have started to address mul-
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tiple conditions and batch effect by implementing a differential expression step to more
robustly predict interactions that are not an artefact of sample differences such as Mul-
tiNicheNet'®2. This eliminates previous approaches widely adopted by most early cellular

inference tools that required the analysis to be run separately for each condition.

The major downfall of cellular communication inference tools is the absence of a ground-
truth to validate the tool and the identified cellular interactions. Thus, a degree of or-
thogonal validation is necessary to eliminate false positives from predicted cellular in-
teractions inferred from transcriptomic data. In this thesis we demonstrated how using
MultiNicheNet!9? allowed us to correct for patient biases and identify IFNGRI1 being
differentially expressed on alveolar macrophages in lethal COVID-19. We then implemen-
ted RNAscope alongside an integrative analysis with low-plex proteomic imaging mass
cytometry data to validate this which resulted in increased expression of this receptor
supporting the validity of the inferred interaction. Similarly, in Chapter 3 we applied
CellChat'0 to an atlas-level dataset and identified APOE+4 and SPARC+ fibroblasts be-
ing key drivers of inflammation across multiple tissues along with SPP1+ macrophages,
which was supported by immunohistochemical staining of cell type markers showing co-
localisation in diseased tissues. However, experimental validation of this nature is often
limited to a few ligand-receptor pairs and/or few cell types per experiment lacking the
power to simultaneously spatially resolve multiple cellular interactions. With the advent
of spatial transcriptomics, comes an attractive alternative for indirectly validating cellular
interactions as we can profile cells at either full-transcriptome resolution, for sequencing-
based approaches such as 10X Visium, or targeted panels, for probe-based methods such
as 10X Xenium, in their native spatial context. This technology drove the development
of next generation cellular interaction inference methods that considered a spatial axis
in their models for predicting spatially aware ligand-receptor interactions!8%:181,194,197,198
Furthermore, the development of spatial transcriptomics inspired the development for
core cellular interaction tools to introduce spatial constraints as cells in close proximity

are more likely to interact with each other. CellChat v2 offers functionality to spatially
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visualise cellular interactions as shown in Chapter 3 visualising chemokine and TGF-f3
signalling (Figure 4.25 E) such as thresholds for intercellular distance'®. On the other
hand, CellPhoneDB v5 requires a user input of manually defined spatial niches that it

utilises to filter interactions that do not occur within the same niche!#4.

Although the power of cellular interaction analysis is evident, leveraging both single cell
and spatial transcriptomic data, interpretation and visualisation of the results still remains
a computational burden*. Due to the high-dimensional nature of the output interactive
visualisation tools are lacking in the field to facilitate navigation of results. This was ad-
dressed in Chapter 2 presenting cellXplore that allows interrogation and visualisation of
cellular interaction results through a user-friendly web interface. Although some interact-

ive visualisation tools exist202:206

, a tool that appropriately visualise both single cell and
spatial data simultaneously in a uniform view is yet to be seen, mandating the develop-
ment of cellXplore. In particular, as high-dimensional single cell and spatial data continue
to expand the need for easy visualisation without the hindrance of prior bioinformatic
knowledge is becoming increasingly important to extract biologically meaningful interac-
tions from cellular communication data. In addition to this, appropriate visualisation of
multi-dimensional cellular interaction data is an open challenge. Most tools adopt common
plotting functionalities such as dot plots, heatmaps, circos plots and spatial plots however
CellChat amongst all tools provides the most extensive plotting library to comprehens-
ibly and coherently plot cellular interactions. Thus, throughout this thesis, CellChat both
version 1/2 has been implemented to generate a majority of the figures allowing unpre-
cedented flexibility of customisation and control over the data displayed. These plotting
visualisations inspired the interactive plots that are implemented in cellXplore and con-
tinue to outperform other visualisations provided by most cellular interaction packages.
However, cellular interaction inference tools are continuously evolving. More recently, the
database of CellPhoneDB v5 is the most comprehensive, including signalling metabolites
and small molecules and has been used by myself to infer cellular interactions between T

cells and DC subsets in different spatial niches in rheumatoid arthritis?'. Therefore, as
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the field progresses, it is important to select the optimum tool to answer the biological
question, considering the ligand-receptor database the tool adopts and, most importantly,

the visualisation options provided to extract the most information from the dataset at

hand.

Despite the plethora of cellular interaction tools that are currently available and the
multi-faceted nature of complex multimodal datasets that emerge in the fast developing
field of transcriptomics, the work presented in this thesis provides validated interactions
that pertain to mechanisms of disease. Through the application of spatially aware cel-
lular interaction inference we report a type II interferon response in lethal COVID-19
driven by alveolar macrophages, a mechanism of action distinct from represented cohorts
in the Northern Hemisphere, validated using imaging mass cytometry and RNAscope.
This then inspired the development of cellXplore to facilitate interactive visualisation of
cellular interactions inferred from single cell RNA sequencing data leveraging spatial tran-
scriptomic data to indirectly validate interactions of interest. Finally we apply cellular
interaction inference to uncover a shared SPARC+/APOE+ fibroblast and SPP1+4 mac-
rophage driven axis of communication in active inflammation, experimentally validated
by immunohistochemistry. Additionally, we provide insight into the mechanisms of gut
epithelial remodelling and immunoregulation during Heligmosomoides polygyrus infection
over time using spatial transcriptomics to identify cellular interactions occurring in dis-
tinct spatial niches in the gut. Collectively, these findings exercise the power of cellular
interaction inference, critically utilising a spatial axis, to uncover novel mechanisms of

action across immunology.
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