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Abstract

As the most productive ecosystems in the world, wetlands play a vital role in carbon cycling,
climate change mitigation, socio-economic development, and natural disaster protection. The
Yangtze River Basin (YRB) contains 40% of the national wetlands and the most frequent
floods in China. In recent decades, the abundant wetland resources in the YRB have
experienced substantial changes due to the climate change and human activities, significantly
affecting the flood risk. Due to the lack of a long-term time series wetland dataset with
comprehensive categories for the YRB, the effects of wetland variations on flood risk, as well
as improved assessments of past and future flood risk incorporating wetland dynamics,
remain underexplored. Moreover, wetland-related flood risk mitigation efforts in the YRB are
less widely adopted. It is crucial to address these gaps for enhancing the sustainable wetland

management and flood risk mitigation in the YRB.

This thesis aims to achieve three primary objectives: 1) to establish a long-term time series
wetland classification dataset with the comprehensive categories in the YRB and analyze
driving forces of their variations; 2) to investigate the long-term wetland effects on the flood
risk in the YRB based on an improved GIS-based multi-index flood risk assessment model
incorporating wetlands input; and 3) to predict the future flood risk with wetland effects in the

middle-lower YRB under climate change and socio-economic scenarios.

The Long-term Wetland Classification Dataset for YRB (LTWCD_YRB) with nine wetland
categories from 1984 to 2021 was created by using the Random Forest machine learning
classifier on the Google Earth Engine platform with 30m resolution Landsat images. The
LTWCD_YRB revealed that: 1) the total wetland area of the YRB in 2021 was larger than
that in 1984, with a constant increase in human-made wetlands and fluctuating natural
wetlands; 2) aquaculture ponds expanded the most by 4,987 km?, while inland marshes in the
source region exhibited the most fluctuations; and 3) seasonal changes in wetlands were

prominent in the Poyang Lake Basin, Dongting and Honghu Lake Basin, and YRB source



region; and 4) human activities were found to be more dominant than natural driving forces in
affecting wetlands. The LTWCD_YRB offers a consistent agreement of wetland area

variations with the other satellite-based wetland datasets in the YRB.

To investigate the long-term effects of wetland variations on flood risks in the YRB, this
thesis developed an improved GIS-based multi-index flood risk assessment model
incorporating the wetland input obtained from the LTWCD_YRB. The findings indicated that:
1) wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and
Honghu Lake Basin could mitigate flood risks, while wetlands in the Sichuan Basin have
aggravated but limited impacts on flood risks; and 2) Precipitation in the Taihu Lake Basin
and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu
Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin,
and the Sichuan Basin are dominant flood risk indicators under wetland effects. The
wetland-related suggestions to mitigate flood risks including maximizing stormwater storage

capacity of wetlands and increasing vegetation coverage in urbanized and precipitated regions

The flood risk prediction of the middle-lower YRB applied the improved flood risk model to
assess the flood risk from 2021 to 2100 under the Shared Socioeconomic Pathways (SSP) 2 -
Representative Concentration Pathways (RCP) 4.5 and SSP5-RCPS8.5 scenarios. The results
indicated that: 1) the high and very high flood risk areas will totally cover 38% and 40% of
the total study area under the SSP2-4.5 and SSP5-8.5 scenarios by 2100, respectively; 2) the
overall flood risk of the MLYRB was predicted to become severer by 2100 under both
scenarios; and 3) there would be a prominent northward expansion of the high and very high

flood risk areas in Jiangxi, Hunan and the southern part of the Taihu Lake Basin in Jiangsu.

In summary, this thesis provides the data support for the long-term wetland variations in the
YRB, develops an improved flood risk model to investigate the long-term wetland effects on
the flood risk and predicts the future flood risk incorporating wetland dynamics in the YRB.
The efforts of thesis contribute to the sustainable wetland conservation and flood risk

mitigation in the YRB, aligning with the United Nations Sustainable Development Goals.
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Chapter 1 Introduction

1.1 The importance of wetlands

Wetlands are aquatic systems or landscapes characterized by a seasonal or permanent water
table throughout the year, positioned in the transition zone between aquatic and terrestrial
ecosystems (McCauley et al., 2015; Mitsch, 2015). They are among the most productive
ecosystems, providing a wide array of services that play crucial roles in ecology,
environments, economies, and societies, especially under changing climate conditions (Greb
et al., 2009; Karmakar, et al., 2023; Sharma, et al., 2021). Wetland ecosystem services play a
vital role that can simultaneously benefit the economy and environment, including
aquaculture, erosion control, sediment transport, groundwater recharge, flow regulation,
waste assimilation, and the provision of natural products (Jisha and Puthur, 2021; Nayak and
Bhushan, 2022). They support the environmental health and economic development,
contributing to nature-based solutions and achieving Sustainable Development Goals (SDGs)
(Karmakar et al., 2023; Xu et al., 2019a). Ecologically, wetlands provide a natural cycle for
supporting the wide range of biotas, such as well-managed rice paddies, estuaries, and coastal
fish farms, and species involved in decomposition, pests, and disease regulations (Ronco et al.,
2020). They are also critical habitats for migratory waterbirds that rely on wetlands
worldwide for breeding and feeding (Karmakar et al, 2023). Wetlands can support
hydrological connectivity with other landscapes, linking freshwater ecosystems through
groundwater, nitrogen, and sulfur cycles, thus helping to aggregate impacts at catchment
scales (Cunillera-Montcusi et al., 2022). In the climate system, wetlands serve as a natural
source of blue carbon, acting as a carbon sink that sequesters carbon for millennia, then
releasing it to the atmosphere as CO; to energize the hydro-climatic changes in their
catchments (Mcleod et al., 2011). Given their ecological services, wetlands are vital to human

livelihoods, particularly for coastal communities (Karmakar et al., 2023).

This section will explore the critical roles of wetlands in carbon cycling and climate change



mitigation, economic value, disaster protection, the preservation of Indigenous communities,

and human livelihoods.

1.1.1 Carbon cycling and climate change mitigation

Wetland ecosystems generate substantial amounts of organic matter in semi-decomposed
forms, which store carbon by absorbing it from the atmosphere through photosynthesis,
aggregating organic matter in anoxic soil, and storing plant biomass while releasing methane
due to reduced decomposition rates (Kayranli et al., 2010; Rogers et al., 2019). This process
of carbon capture and stabilization as a carbon sink or pool is known as carbon sequestration
(Kayranli et al., 2010; Rogers et al., 2019). Poulter et al. (2021) estimated the global wetland
carbon stock range between 520 and 710 Pg. Carbon sequestration in wetlands involves
several functions: respiration of the aerobic zone, methane formation by microbes,
sedimentation, and biodegradation (Kayranli et al., 2010). Wetlands with a higher water table
tend to store more carbon in the soil, creating anaerobic soil conditions that contribute to

carbon-rich wetlands (Karmakar et al., 2023).

Compared to freshwater wetlands, the production rate of methane in coastal wetlands is lower
due to the inhibition of methane by salinity (Karmakar et al., 2023). Coastal wetlands, such as
tidal salt marshes, mangrove forests, and seagrass meadows, play an important role in
mitigating climate change by reducing Greenhouse Gas (GHG) emissions and serving as
significant blue carbon reservoirs (Gallego-Sala et al., 2018). The 2006 Intergovernmental
Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas Inventories
highlight the potential for blue carbon storage in wetlands as a valuable component of climate

change mitigation and adaptation strategies (IPCC, 2006).

1.1.2 Economic values

Freshwater wetlands contain over 40% of the biosphere’s species, serving as crucial nursery
environments for numerous freshwater fish species of great economic importance (Nayak and
Bhushan, 2022). Beyond their role as habitats, wetlands have diverse economic value,

including human habitation, agriculture, energy generation, wildlife conservation, resource



gathering, tourism, and recreation, as well as the production of cash crops (Gallego-Sala et al.,
2018). The global value of wetland ecosystem services is 26.4 trillion United States dollars
(USD) annually, contributing 20% of the global value of ecosystem services, encompassing

benefits such as flood management, storm attenuation, and recreation (Thorslund et al., 2017).

The economic value of wetlands varies by different wetland types. Meta-regression analyses
have shown that urban and marine wetlands in coastal developing countries hold higher
economic value than other wetland types (Chaikumbung et al., 2016; Diaz-Pinzén et al.,
2022). In China, however, the annual total ecosystem service value provided by lake and
marsh wetlands was calculated to be very high, which is 55% of the total service value of the
natural grassland ecosystem (USD 2.55 x 10" and USD 5.63 x 10'° | respectively) (Zhang et
al., 2014). Values of marsh ecosystem services were concentrated in Heilongjiang, Qinghai,
and Inner Mongolia. The value of lakes was concentrated in the Tibet autonomous region,
Heilongjiang, and Qinghai (Zhang et al., 2014). Coastal wetland ecosystem services provided
by 35 national nature reserves in China are estimated to be USD 3.3 x 10'° per year (Li et al.,
2020). Wetlands that provide water regulation and support biodiversity are generally more
valuable than those used for recreation, and conserving wetlands yields greater economic

benefits than converting wetlands for tourism development (Chaikumbung et al., 2016).

1.1.3 Natural disaster protection

The frequency and intensity of natural disasters, such as floods, droughts, and storms, have
significantly increased worldwide in recent years, resulting in loss of life, infrastructure
damage, and economic loss (Bouwer, 2011; IPCC, 2012). The annual cost of damage caused
by natural disasters in the United States has exceeded USD 100 billion over the past decade,
and over 11,000 people died due to floods and landslides in India in 2021 alone (Karmakar et
al., 2023). Wetlands play a critical role in protecting against natural disasters under a
changing climate by mitigating impacts on human populations and the environment. In the
United States, coastal wetlands of New York and New Jersey reduced flood levels by up to 30%

during Hurricane Sandy in 2012 (Temmerman et al., 2013). Similarly, mangrove forests in



Indonesia and Thailand acted as natural barriers against storm surges by absorbing and
dissipating wave energy to protect coastal communities from the devastating impacts of the
2004 Indian Ocean Tsunami (Barbier et al., 2011). For the high flood risk regions in the
northeast Haor region of Bangladesh, lakes in the middle and lower reaches of the Yangtze
River Basin (YRB), and the Rocuant-Andalién coastal wetlands of Chile, wetlands are the key
factor in local flood risk mitigation (Cui et al., 2013; Kamal et al., 2018; Rojas et al., 2022).
Wetlands also act as natural water storage systems, mitigating drought impacts by releasing
stored water into rivers and streams, thereby maintaining water levels and supporting
downstream ecosystems (Karmakar et al., 2023). Wetlands have been found to provide 25%

of the national water resources in South Africa (Mander et al., 2015).

1.1.4 Preservation of Indigenous communities

Besides the ecological and economic importance, wetlands hold strong cultural significance,
particularly for Indigenous communities. The livelihoods of Indigenous communities are
deeply connected to ecosystem services provided by wetlands. For example, the Baka people
of Cameroon rely on wetlands for hunting, gathering, and traditional medicine (Sunderland et
al., 2014). Consequently, the loss of wetlands can have the significant socio-economic
impacts on Indigenous cultures and livelihoods. A notable example is the Mekong Delta in
Vietnam, where wetland degradation has led to flooding and water insecurity for local
communities (Quan et al., 2018). The situation is similar in India, where rising sea levels and
wetland contamination caused by climate change and human activities have threatened
mangroves in West Bengal and the Loktak Lake regions, with significant resources for local
fishing communities (Karmakar et al., 2023). Conversely, wetland restoration in the
Murray-Darling Basin in Australia has provided employment opportunities for local
Indigenous communities while enhancing water quality and preserving culturally significant

sites (Kingsford, 2000).

1.1.5 Human livelihoods

Human livelihoods encompass the capacities, socio-economic resources, and activities

necessary for supporting a way of life. Wetlands offer diverse services that are vital to



people’s daily lives, especially those of coastal residents (Barbier, 2019). The contributions of
wetlands to livelihoods depend on the interaction between their ecological functions and
society (McCartney et al., 2015). Many communities living near wetlands rely solely on
natural resources for daily sustenance, particularly coastal fishing communities (Gopal, 2013).
Wetlands also enhance human well-being by providing groundwater storage for drinking,
filtration, and the retention of toxins (Sharma and Naik, 2024). However, the wetland
degradation has led to severe crises in rural, urban, and suburban livelihoods (Adhya and
Banerjee, 2022). This has led to the reduced incomes and increased poverty among
communities that rely on wetlands (Kundu et al., 2024). Additionally, wetland degradation
negatively affects human health and traditional ways of life; degraded wetlands can become
breeding grounds for disease-carrying parasites, such as those causing schistosomiasis and

malaria (Karmakar et al., 2023).

1.2 The status of global wetlands

As stated in Section 1.1, wetlands are among the most productive ecosystems on the planet,
playing irreplaceable roles in global climate regulation, carbon and hydrological cycling,
ecosystem diversity, and human welfare. Nevertheless, global threats to wetlands persist. Due
to the combined effects of human activities and natural factors, wetland loss and degradation
threaten wetland sustainability against the climate change (Asselen et al., 2013; Xu et al.,
2019a). Field studies have confirmed that the global wetland area has declined, with the
quality of remaining wetlands simultaneously deteriorating (Davidson, 2014; Gardner et al.,
2015; Finlayson et al., 2018). In regions with available data, approximately 87% of global
wetlands have been degraded since 1700, with more than 50% occurring in the middle 20™
and early 21* centuries (Davidson, 2014; Dugan, 1993; Fluet-Chouinard et al., 2023; OECD,

1996).

The degradation of most inland wetlands is driven by destructive factors such as agriculture,
aquaculture, industry, urbanization, water use, and pollution (Asselen et al., 2013;

Ballut-Dajud et al., 2022; Finlayson et al., 2018; Secretariat, 2010; Vorosmarty et al., 2010).



Globally, 25% of wetland loss is attributed to agricultural development, followed by 17%
from urbanization, 11% from aquaculture, 8% from industry, and other contributing factors
(Ballut-Dajud et al., 2022). Rivers and lakes are the wetland categories most affected by the
land occupation, with 87% and 80% of their area affected, respectively (Xu et al., 2019a).
Water resources management is another major driving factor of inland wetland degradation,
as many rivers worldwide are strictly controlled by dams to meet the growing demand for
hydropower and irrigation (Gardner and Finlayson, 1999). Globally, 37% of the world’s 227
largest rivers are seriously affected by dams, particularly in developing countries, such as the
YRB in China, the La Plata Basin in South America, and the Tigris and Euphrates River
Basins in the Middle East (Millennium Ecosystem Assessment, 2005). Natural and
anthropogenic factors such as climate change, extreme weather, and natural disasters

contribute significantly to wetland loss and degradation (IPCC 2021).

Coastal wetland is the most vulnerable category to climate change, with 41% affected by
climate-related factors, particularly mangrove, which is the most impacted coastal wetland
category. Lake wetlands (24%) and marsh wetlands (23%) follow in terms of vulnerability
(Ballut-Dajud et al., 2022; Xu et al., 2019a). Blankespoor et al. (2014) quantified that 68% of
coastal wetlands in 86 developing countries and territories was at risk given a future 1 m
sea-level rise, with potential economic losses exceeding USD 703 million annually.
Regarding spatial distribution, Oceania is the most vulnerable continent, with 42% of its

wetlands affected by climate change and extreme weather (Xu et al., 2019a).

According to the Ramsar Convention, the world’s important wetlands were designated
reserves (Kim, 2010; Smardon et al., 2009). Today, there are 2303 Wetlands of International
Importance (Ramsar Sites) across 169 countries around the world, covering 229 million
hectares, accounting for 19% of the global wetland area (Davidson et al., 2018; Finlayson et
al., 2018). However, many Ramsar Sites are currently experiencing degradation and facing

significant threats.



Among the 20 Asian Ramsar Sites monitored by the National Remote Sensing Center of
China (NRSCC) in 2014, the total wetland areas and landscape integrity declined, primarily
due to the insufficient water supply and climate change (NRSCC, 2014). The Sanjiang Plain,
China’s largest natural marsh wetland region, serves as a representative Ramsar Site in Asia.
(Kui et al., 2008). However, the area of wetlands had decreased by 79.4% (about 2.99 million
hectares) from 1994 to 2015 (Xu et al., 2019a). The primary cause of wetland loss in this
region was land encroachment by agricultural development, while wetland degradation was
driven by reduced water supply (NRSCC, 2014). Lake Urmia, one of the world's largest
permanent high salinity lakes, was shrunk by 40% between 2001 and 2013 — almost half of
its flooded wetlands have been converted to artificial and barren land (NRSCC, 2014). In
South Asia, many Ramsar Sites are located in the Mekong River Basin. In recent years,
wetlands in the Mekong River Basin have been threatened by human activities, such as
agricultural development, urbanization, and industrialization. The construction of dams and
reservoirs is the significant factor contributing to wetland degradation in the Mekong River

Basin (Mitsch and Gosselink, 2015).

In Europe, NRSCC has found that 34% of seasonal marshes and 12% of reservoirs listed as
Ramsar Sites have degraded into non-wetlands (NRSCC, 2014). The Danube and Volga
Deltas, both large and inland, contain many of the world’s important inland wetlands on the
Ramsar List. The Danube Delta has degraded due to drainage and related human activities
such as agriculture, gravel mining, and dumping (Coleman et al., 2008). In the Volga Delta,
wetlands are now affected by the dam construction, disrupting natural river hydrology, along
with a decline in the Caspian Sea water level (Mitsch and Gosselink, 2015). Lake Sevan, one
of the largest alpine freshwater lakes in the world, faces significant threats due to excessive
groundwater extraction, despite efforts to artificially replenish the lake (Babayan and
Adamovich, 2023). The Wadden Sea is the representative coastal wetland of Ramsar Sites in

Europe. However, it has been cultivated by local residents (Lotze et al., 2005).

The total wetland area of 30 Ramsar Sites in Africa has decreased to just 2000 hectares, all



with severe ecosystem degradation. Approximately 20% of inland flooded wetlands and 17%
of rivers have degraded into non-wetland and other degraded wetland categories (Xu et al.,
2019a). Drought and drainage for irrigation have caused an 89% reduction in seasonal
herbaceous swamps in Lake Chad (NRSCC, 2014). The Democratic Republic of Congo has
the largest areas of Ramsar Sites in the world, playing a vital role in the conservation of rare
and endangered species of plants and animals. However, the civil war and illegal human
activities in the country have severely affected these wetlands and related flora, highlighting
the need for international efforts to protect them (Ramsar, 2024). The Okavango Delta System
in Botswana is one of the largest Ramsar wetlands in the world. Unfortunately, it faces many
threats from natural burning and intercepting water resources upstream, tourism development,
and overuse of raw materials (Shinn, 2016). Coastal Ramsar Sites in West Afica,
predominantly mangroves, are also threatened by desertification, over-exploitation, and

conversion to rice agriculture (Almar et al., 2023).

Monitoring by the NRSCC found that two major Ramsar Sites in Oceania declined by 80,000
hectares, with 90% of seasonal marshes transitioning to forest shrubs between 2001 and 2013,
marking the highest disturbance degradation index among the continents (NRSCC, 2014).
The number of wetland ecosystems in Kakadu National Park in Australia has declined, with
wetlands changing to bare lands or artificial lands (Bangalang et al., 2022). Mangroves in
Shoalwater and Corio Bays in eastern Queensland are threatened by pollution, erosion, pests,
and recreation (Chamberlain et al., 2021). The Whangamarino peatland on New Zealand’s
North Island faces threats from reduced river flooding and silt deposition caused by
agricultural development, increased fire frequency, and alien species invasions (Pronger et al.,

2014).

Everglades National Park is the largest Ramsar Site in the United States. It has lost half of its
original area due to agricultural activities to its north and urban development to its east and
west (Mitsch and Gosselink, 2015). Fortunately, restoration efforts to improve water flow

have been recently implemented positively (NRSCC, 2014). San Francisco Bay is recognized



as one of the most important estuaries in North America and one of the most urbanized
wetlands in the United States. However, 95% of its tidal wetlands have been destroyed,
primarily for climate change, agricultural development, and salt industry (Parker et al., 2011).
At present, upstream hydraulic mining is a significant threat due to its impact on sediment

deposition and erosion (Mitsch et al., 2015).

In South America, the total wetland area of 20 Ramsar Sites decreased by 0.26 million
hectares by 2013, with most losses occurring in marshes and lakes (NRSCC, 2014). Pantanal,
one of the largest wetland regions in the world, contains a number of South America’s
Ramsar Sites (Junk and de Cunha, 2005). Many factors threatened it such as the development
of the upper Paraguay River for agriculture, water pollution caused by mining, and the
invasion of exotic species (Boin et al., 2019). Additionally, illegal wildlife trafficking and
cocaine smuggling make wetland management in this region be difficult and expensive

(Mitsch and Gosselink, 2015).

Currently, about one-third of the global Ramsar wetland sites have been artificially
reconstructed (Xu et al., 2019a). In China, wetland conservation is transitional, with
large-scale restoration and reconstruction projects being implemented in recent years. As a
result, 42% of inland wetlands and 38% of coastal wetlands in China have been artificially
reconstructed or altered, much higher than the global average (Xu et al., 2019a). Nevertheless,
wetland loss and degradation have led to a dramatic reduction in the value of ecosystem
services. Between 1997 and 2011, the degradation of marsh wetlands caused economic losses
equivalent to 1.4 times China’s Gross Domestic Product (GDP) in 2011 (Gardner et al., 2015).
But this economic loss is only part of the issue, as it also contributes significantly to carbon
emissions, leading to the release of 0.2-1.5 Pg per year; approximately 6-18% annual

anthropogenic emissions (Karmakar et al., 2023).

The current patterns of global wetland loss and degradation as well as its negative impacts

lead to a future scenario far from optimistic. Integrated management approaches to wetland



protection are essential to ensure the sustainable use of wetland resources and to mitigate the
effects of climate change and other human activities. However, wetlands continue to face
significant threats due to the lack of management planning and regulations on wetland
protection and restoration. Therefore, the next section focuses on challenges in wetland

management.

1.3 Challenges in wetland management

Section 1.2 discusses the Ramsar Convention as a milestone in wetland conservation and
management by establishing wetland protected areas (Zheng et al., 2012). It enshrines the
principle of the necessity to understand past and present wetland status, human use, current
and future impacts, and ways to achieve sustainable wetland use (Chatterjee et al., 2008). To
address threats faced by global wetlands, an effective wetland management plan plays an
indispensable role in wetland conservation (Chatterjee et al., 2008). After 1950s, wetland
management has evolved into a stand-alone science to protect wetlands as the wildlife habitat
(Mitsch and Gosselink, 2015; Smardon and Faust, 2006). However, wetlands in less
developed countries still face significant threats due to the lack of management planning and
regulations on wetland protection and restoration, especially in Asia and Africa (Mitsch and
Gosselink, 2015). In Africa, nearly 50% of wetland sites do not have management plans. The
situation in Asia is also not optimistic — 45% of wetland sites in Asia lack management plans

(Xu et al., 2019a).

Monitoring is the first step in the wetland management and conservation process (Chatterjee
et al., 2008). Each country should establish a long-term wetland dynamic monitoring system
to monitor and analyze the wetland status, particularly the large-scale wetlands of
international importance by using global remote sensing resources (NRSCC, 2014). The
establishment of monitoring stations, the advanced monitoring technology, the construction
and open access of monitoring databases are essential for the effective wetland monitoring
(Demarquet et al., 2023). Remote sensing has been confirmed as an effective technology for

monitoring wetlands, which can regularly monitor the spatial and temporal distribution and
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dynamic change in large-scale wetlands in an accurate, objective, and effective way based on
both satellite images and field observations (Bartsch et al., 2009; Mao et al., 2020; Niu et al.,
2011; Zheng et al., 2015). Remote sensing technology should be continuously improved in
the data resolution and updating speed when organizations and researchers use it for wetland

monitoring.

With the support of wetland monitoring, various integrated wetland restoration strategies aim
to enhance resilience to climate change and help ensure the sustainable use of wetland
resources. Wetland restoration is the restoration and reconstruction of degraded or
disappeared wetlands through the ecological technology (Xu et al., 2019a). Restoration
strategies can be divided into different categories: Maintaining and enhancing hydrologic
processes, improving water quality, restoring wetland vegetation, facilitating transformation
of wetland communities, adjusting wetland systems, and creating new wetlands (Johnson and
Havranek, 2013; Karmakar et al., 2023; Perry et al., 2015). Besides, the long-term wetland
monitoring can provide the data support for establishing wetland protected areas, natural

reserves, and wetland parks (Zheng et al., 2012).

Although the implementation of wetland management processes has led to effective outcomes
in many regions, challenges still exist. Managing coastal wetlands and alpine wetlands is
typically challenging (Li et al., 2018; Zhao et al., 2020). Coastal wetlands have experienced
the most serious degradation in the 20" century — world coastal wetlands have lost more than
50% of their area due to accelerating climate change (Li et al., 2018). The efforts of coastal
wetlands restoration can be found in different regions around the world, with examples of the
salt marshes in the Yangtze Estuary in China, the marshes and shellfish aquaculture
management at San Francisco Bay and the Mississippi River Delta in the United States, and
the implementation of ‘build with nature’ by nourishing the coast in the Netherlands (Li et al.,
2018). However, challenges remain for coastal wetland management and restoration. For
example, coastal wetlands are highly dynamic, sometimes within days. As a result, it is

relatively challenging to map them remotely with the high levels of accuracy and consistency
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due to the substantial altered reflectance and energy backscatter properties (Gallant, 2015).
Besides, coastal wetland restoration relates to site-specific biomorphic interactions, especially
in tidal zones. It is necessary to consider interactions between the ecosystem and the physical
environment (Li et al., 2018). Additionally, land reclamation is often inevitable to maintain
the income for coastal residents and support the local economic development, making the
coastal wetland restoration difficult to implement (Liu et al., 2020). Therefore, community
participation and technological support need to be strengthened to develop the restoration
framework that balances economic development and coastal wetland protection (De Oliveira

et al., 2024; Liu et al., 2020).

Apart from coastal wetlands, alpine wetlands are typically vulnerable to climate change, and
the wetland management process is challenging (Zhao et al., 2020). For instance, the
revegetation of wetlands in the Intermountain West of the United States faces limited budgets
and personnel, difficult water access, invasive plants, drought, and climate change (Henry et
al., 2024). Managers cannot always find the specific plant materials for wetland revegetation,
due to poor access and technical knowledge (Henry et al., 2024). Additionally, alpine
wetlands in the eastern edge of the Qinghai-Tibet Plateau of China have been severely
disrupted due to the dramatic climate change and the interference of human activities (Zhang
et al., 2025). The local wetland management remains incomplete because of the lack of
fundamental monitoring data support and the restorability assessment for alpine wetlands
(Zhang et al., 2024b). Alpine wetlands are typically monitored using remote sensing methods
to capture their dynamics, given the complex surface coverage and frequent spatial
distribution changes (Zhang et al., 2017; Zhao et al., 2024). Therefore, increasing funding and
human resources for developing the alpine wetland monitoring, along with collaborations
with more researchers and stakeholders, are essential to address challenges faced in the alpine

wetland management.

The lacked or limited monitoring data has become a major challenge for the wetland

management. Therefore, given the importance and the threated status of wetlands worldwide,
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as discussed in Sections 1.1 and 1.2, the long-term time series wetland monitoring is essential
to fill data gaps and to support the development or validation of the effective wetland

management strategies, particularly for vulnerable and dynamic wetlands.

1.4 The negative impacts of floods

Floods are defined as the overflowing of normal water bodies and streams, as well as the
accretion of water over areas that are generally not inundated in the [IPCC Special Report on
Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation
(SREX) (IPCC, 2012). Different mechanisms produce various types of floods, including river
(fluvial) floods, flash floods, urban floods, pluvial floods, sewer floods, coastal floods, and
glacial lake outburst floods (IPCC, 2012). As the most common and costly type of natural
disaster in the world, floods are responsible for 44% of global natural disasters and severely
lead to a variety of negative impacts across space and time (Petit-Boix et al., 2017; WMO,

2021; Wu et al., 2020).

The direct economic loss caused by floods is one of the major tangible social impacts and has
shown an increasing trend globally over the past 20 years (Bubeck et al., 2017; Tanoue et al.,
2020; Willner et al., 2018). According to the two most well-known natural disaster databases
in the world (Emergency Events Database [EM-DAT] and NatCatService) the flood event
with the highest economic loss in the last 35 years was the Chao Phraya River Flood in
Thailand in 2011, accounting up to USD 40 billion in losses (Bubeck et al., 2017). The
economic loss of the YRB flood event in China in 1998 was the second (USD 30 billion) and
the third highest (USD 16 billion) in EM-DAT and NatCatService, respectively (Bubeck et al.,
2017). The difference between two databases relate to the difficulties and uncertainties
associated with collecting the data of disaster loss and different data collection methods (Gall
et al., 2009; Guha-Sapir & Below, 2002). Between 1980 and 2015, 62% of global flood losses
occurred in Asia, which was much higher than other continents, followed by Europe (19%)
and the Americas (15%) (Bubeck et al., 2017). In recent decades, the global trend of

economic loss brought by floods was increasing in most regions, which was predominantly
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associated with the accumulation of population and economic assets in flood-prone regions

(Barredo, 2009; Bouwer, 2011).

The loss of human life is another major direct social impact due to flood disasters (Jonkman,
2005). According to the EM-DAT, a single flood event causes thousands of deaths (Bubeck et
al., 2017). The largest number of fatalities between 1980 and 2016 was caused by a single
flood event that occurred in Venezuela in 1999, with the death of 30,000 in mudslides on the
steep slope of the Sierra de Avila (Wieczorek et al., 2001). Large flood events occurring in
China in 1980, 1996, and 1998 killed 12,631 people (Bubeck et al., 2017). Similar to the
geographical distribution of global economic loss, the human life loss of floods was the
highest in Asia (67%) since 1980 (UNISDR, 2011). Besides, floods can cause many
disaster-related injuries and diseases with both direct and indirect consequences during the
flood event (e.g., injuries caused by cuts, falls, being struck by fast-moving objects in flood
water, exposure to toxins, communicable diseases), and delayed physical or mental issues
(Alderman et al., 2012). The World Health Organization (WHO) has noted that a higher risk
of communicable disease always occurs immediately following floods when the population is
displaced, infrastructure is damaged, and water supply systems are polluted (Jafari et al.,
2011). Additionally, in some flood-prone regions, such as Bangladesh, and some parts of
Africa and Australia, floods inundate agricultural land and destroy crops, resulting the severe
food shortages and malnutrition in rural areas and very high concentration urban

neighborhoods (Douglas, 2009; Smith et al., 2016).

Floods not only affect the economy and human health but also have serious impacts on the
environment, generally including water pollution, erosion, and deposition, and impacts on the
survival of organisms, possibly affecting biodiversity (Baral, 2013; Carrivick et al., 2011;
Goodwell et al., 2014; Hrdinka et al., 2012; Milani, et al., 2020; Zhang et al., 2024a). For
example, heavy metals, organic chemicals, and fecal coliform bacteria were detected in the
floodwater and were widely dispersed after Hurricane Katrina in 2005 (Dortch et al., 2008;

Foulds et al., 2014).
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To address those losses brought by flood events, the research related with floods is essential.
For any given climate conditions, characteristics and variations of wetlands play significant
roles in the flood generation (Wu et al., 2020). As described in Section 1.1.3, protecting
against flood disasters is one of the most important ecosystem services of wetlands (Gulbin et
al., 2019). However, wetland effects on floods are various among different regions worldwide.
For example, the low-lying floodplain wetlands made the northeastern Bangladesh to be
typically vulnerable to flash floods (Kamal et al., 2018). In contrast, The water storage
capacity of lakes in the middle-lower YRB reduces the local flood risk (Cui et al., 2013).
Rocuant-Andalién coastal wetlands of Chile mitigated the impacts of flood disasters, but this
ability was diminished due to the reduction of wetland areas caused by urbanization (Rojas et

al., 2022).

1.5 How wetlands influence flood risk

The mechanisms of how wetlands mitigate the flood risk generally include water storage
capacity, slowing water flow, increasing water infiltration, and sediment trapping and erosion

control.

Wetlands act as natural water retention systems, temporarily storing the excess water during
high-precipitation events or river flood peaks. Depressional wetlands, floodplain marshes,
lakes, and riparian wetlands across the watershed can store large volumes of water. This
storage capacity reduces the immediate hydraulic load on river channels, helping to reduce
the downstream flood peaks and mitigating flood risk (Acreman and Holden, 2013). Besides,
after storm events, wetlands gradually release the stored water through surface outflow,
subsurface seepage, and evapotranspiration. This delay release ensures that water returns to
the river system slowly after the critical flood peak period has passed and reduces the

long-term inundation pressure on the downstream infrastructures (Ferreira et al., 2023).

Wetlands can slow water flow due to the increased hydraulic roughness generated by the

vegetation coverage, which reduces the velocity of surface water and flood waves (Ballet et
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al., 2011; Lane and Milledge, 2013). The flood flow velocity is 29% faster in sloughs
compared to the more densely vegetated wetlands in the Everglades wetlands, USA (Harvey
et al.,, 2009). Additionally, vegetation change from wet meadow to shrubs and trees can
double the size and depth of the inundated area for the exact size of the flood. Particularly,

wooded wetlands reduce flood peaks and increase peak water transit time (Thomas and Nisbet,

2007).

Besides, wetlands enhance the infiltration capacity to mitigate floods by allowing water to
percolate into underlying soils and aquifers. The percolation contributes to groundwater
recharge, effectively transferring water from surface floodwaters into subsurface aquifers,
which reduces water volume on the surface during precipitation events, thereby reducing the
immediate flood hazards (Kebede et al., 2024; Simon et al., 2023). The Sponge City in Jinan
of China is a representative example of applying this wetland-based mechanism for the
groundwater recharge and flood mitigation. It uses urban wetlands as the temporary
stormwater storage space and facilitates groundwater recharge by allowing stormwater to

infiltrate through wetland systems. (Yin et al., 2021).

Moreover, wetlands effectively trap sediments transported by runoff or river flow, as the
reduced water velocity promotes sediment deposition. Therefore, wetlands can reduce the
channel aggradation by keeping the excessive sediment out of the main channel (Blackwell &
Pilgrim, 2011). At the same time, sediment trapping in wetlands contributes to maintain the
wetland surface, typically the coastal wetlands. For example, sediment trapping of coastal
marshes and tidal flats helps maintain wetland elevation, and attenuate waves and storm
surges, thereby reducing the flood risk (Reed et al., 2018). Furthermore, sediment trapping in
wetlands provides erosion control benefits by retaining eroded materials within floodplains,
which reduces bank instability and contributes to the mitigation of local flood risk (Hupp et
al., 2009). In the Nenjiang River Basin, sediment-trapping wetland solutions have helped

stabilize floodplains and reduce flood risk over time (Wu et al., 2023).
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Given that floods have caused massive socio-economic and environmental losses worldwide,
and wetlands play a key role in influencing the flood risk under different conditions, it is
crucial to investigate the effects of wetlands on flood risk across different regions of a basin

to effectively address and reduce the flood risk.

1.6 Improvements in flood risk assessments

According to the IPCC report, flood risk is projected to continue increasing throughout the
21st century due to intensified climate change and human activities (IPCC, 2021). Flood risk
mitigation has been a global issue for governments and communities. Flood risk mitigation
activities are dedicated efforts to reduce flood hazards, as well as flood exposure and
vulnerability (Kron et al., 2019). Generally, flood risk mitigation approaches can be divided
into two broad categories: structural and nonstructural (Rajkhowa and Sarma, 2021).
Structural approaches are permanent solutions or facilities to mitigate floods, such as soil
conversion, surface land restructuring, runoff delay, rise of infiltration, downstream discharge,
flood attenuation, groundwater control, and construction of dams. However, these approaches
contain a number of disadvantages, including lowering of floodplain fertility, morphological
changes, negative ecological impacts, and land subsidence (Rajkhowa and Sarma, 2021). In
recent years, non-structural approaches, such as flood risk assessment, flood forecasting,
regulations and policies for flood-proofing, and the improvement of flood awareness and
education have gradually become the dominant approaches (Chen et al., 2018). Flood risk
assessment is the crucial aspect of risk management, with the aims to identify high flood risk
areas and to provide the important references for developing planning, disaster prevention,
and disaster mitigation scheduling (Disse et al., 2020; Elshorbagy et al., 2017; Li et al., 2023).
The development and application of the flood risk assessment vary across different countries.
The flood risk mitigation in Europe and United States generally focuses on the nature-based
non-structural approaches and strategies (Alexander et al., 2016; Fournier et al., 2016; Hegger
et al., 2016). The application of flood risk assessments has been well established in these
countries. Several flood risk guidance and assessments with the more complex probabilistic

methods have been introduced to improve the resilience of flood risk (Lewis et al., 2024).
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Therefore, improvements in flood risk assessments are discussed in the context of flood-prone

countries in Asia with the rapid urbanization.

Countries in South Asia suffer floods that result in massive damages every year, particularly
in Bangladesh and India, which have been confronted for decades with flooding risk (Abbas
et al., 2016; Ahmed et al., 2022). Bangladesh has learned lessons from the past flood disasters
and has developed a relatively effective framework of flood mitigation policy and disaster
control. After floods occurred in 1987 and 1988, all the structures with strategic importance
for flood mitigation were built above the 100-year flood elevation and with the temporary
shelter in flood-prone regions (Abbas et al., 2016). Besides, local policymakers developed
policies to effectively manage land and water, to reduce river loads for the infrastructure
protection (such as embankments), and the easy conveyance to the Bay of Bengal through the
improved river system capacity (Samuels et al., 2006). Strengthening the flood forecasting
and early warning systems has garnered encouraging results (Pal et al., 2011). However, flood
risk assessments are still limited in the flood mitigation in Bangladesh, typically in the coastal
areas (Ahmed et al., 2022; Islam et al., 2019). The over-reliance and poor maintenance of
structure-based flood controls, such as embankments and polders, have led to internal
drainage problems, waterlogging, and siltation (Brammer, 2014). Most of flood risk
assessments conducted the single flood vulnerability indicator such as only the digital
elevation model or land cover criteria, which ignored several essential indicators (Bhuiyan
and Dutta, 2012; Bhuiyan and Al Baky, 2014). In recent years, studies related with the flood
risk assessment in Bangladesh has been improved to consider the roles of urbanization, river
distribution, and the local medical services in the flood risk. Ahmed et al. (2022) developed
the flood risk assessment in the Kurigram district of Bangladesh with the much more
comprehensive categories, which incorporated river density, population density, and health

facilities.

In India, 12% of its land is prone to flooding (Gol, 2009). With the support of federal

governments, flood forecasting centers and meteorological departments have effectively
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saved many lives (Abbas et al., 2016). The National Policy on Disaster Management
implemented technology-based mitigation measures for flooding, the timely forecasting and
communication, efficient mechanisms for risk assessment, and the response and recovery
operation to floods (Gol, 2009). Flood hazard maps of India at the state and district levels
have been in place since 1997 to help achieve flood mitigation goals, which was the first step
to assess flood risk (BMTPC, 2010). However, the weakness and inaction of several
flood-related authorities become a challenge for flood risk mitigation in India. For instance,
establishing river basin authorities for supporting the flood risk monitoring and assessment
lacked a legislative and policy focus for many years (Gol, 2011). Following this, the National
Disaster Management Authority in India was established. As a result, the flood risk
assessment framework started to be strengthened (Abbas et al., 2016). Currently, the
multi-criteria flood risk assessments with the comprehensive hazard, vulnerability, and
exposure indicators have been developed in flood-prone cities, suburban regions, and basins

in India (Bhere and Reddy, 2025; Pathan et al., 2022; Vegad et al., 2024).

Floods have become commonplace in basins of the large rivers of China, such as the Yangtze
River, the Yellow River, and the Huai River (Kundzewicz et al., 2019). Increasing attention
has been paid to further upgrading the flood risk reduction measures in China following a
series of destructive flood disasters. Generally, flood risk mitigation in China relies on the
structural approaches. For example, China moved quickly to build large-scale water
conservancy projects on the YRB and its tributaries after the large flood disaster in 1998,
including the Three Gorges, Xiluodu, Wudongde, Bangiao, and other hydroelectric power
generation stations (Jia et al., 2022; Zhang et al., 2020a). The total adjusted storage capacity
of the Yangtze River and its tributary reservoir groups exceeded 80 billion m* (Duan et al.,
2016). Tributaries and lakes in the YRB were further reinforced after 1998, constituting a
robust line of defense against flood disasters, mitigating flood risks in the YRB (Jia et al.,
2022). Besides, the large reservoirs, embanked bends, water transfer projects, and flood
storage detention areas had been constructed in the Yellow River Basin and Huai River Basin

as well, which played an important role in reducing the risks of flood disasters (Tang et al.,
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2020a; Feng et al., 2024). However, structural approaches of flood control have started to face
several problems under climate change. Monsoon regions in China are characterized by their
annual precipitation, which is mainly concentrated in the rainy season. Therefore, the
inter-annual variability between monsoons caused greater challenges to flood-control
facilities because of their inconvenience to daily life and economic activity during the dry
season (Jia et al., 2022). In addition, the fragmentation, locality, and discontinuity brought
problems for local governments when constructing dikes in those basins with the complicated
water networks (Jia et al., 2022). For instance, 39,000 km of non-compliant dikes remain in

the YRB, which is 46% of the total dike length (Zhang et al., 2020b).

For the non-structural flood mitigation approach, the improved flood risk assessments with
comprehensive indicators have developed in China (Guo, 2017; Peng et al., 2024; Yu et al.,
2023). Given the basis of these flood risk assessments, nature-based and eco-friendly
solutions have been implemented in the high flood risk regions. Taking Dongting Lake as an
example, the reclamation of farmlands into lakes increased lake area by 800 km? (Jia et al.,
2022). To mitigate urban floods, the concept of ‘Sponge Cities’ has become a national policy
of China since 2014 (Chan et al., 2018). It acted in various ways to increase the water storage
capacity of wetlands, improve drainage systems to collect much more rainwater, and use
filtration and absorption of rain to reduce the surface runoff, thus mitigating flood risk (Chan
et al., 2018). Urbanization in China has increased rapidly, from 33.4% in 1998 to 60.6% in
2019 (National Bureau of Statistics, 2024). The rapid urbanization has brought massive
challenges to flood risk mitigation in the economic developed regions of China, such as the
Yangtze River Delta, the Pearl River Basin, Zhengzhou, and Chongqing (Chen et al., 2015;
Guoyi et al., 2023; Li et al., 2013; Li et al., 2024; Yin et al., 2015). The urban heat-island
effect makes water vapor evaporate more strongly and densely, increasing the probability of
precipitation and flood risk. High-rise buildings can slow down the water movement and
vapor speed, and thus extend the period when precipitation falls, increasing the vulnerability
to floods of such regions (Chan et al., 2021; Jia et al., 2022; Shao et al., 2020). As a result,

both vulnerability and exposure dimensions of flood risk in China have changed, necessitating
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the inclusion of more flood-related indicators associated with urbanization to address rapid
socio-economic growth and urban sprawl (Ding et al., 2022). Besides, urbanization changes
the Land Use and Land Cover (LULC), leading to the expansion of urban construction lands,
the loss of arable lands, wetlands, and woodlands, which reduces the water-seepage capacity
and the flood control function of original lands, especially wetlands (Du et al., 2015; Gulbin
et al., 2019; Luo and Zhang, 2022). Therefore, incorporating wetland distribution in the flood

risk assessment is essential in regions with the rapid urbanization.

To sum up, in flood prone regions experiencing rapid urbanization and intensive wetland
distribution, the indicators influencing flood risk have become increasingly complex.
Therefore, improving the effectiveness of flood risk assessments that incorporate
comprehensive indicators, such as wetland dynamics, LULC, and urbanization-related factors,

is more crucial than relying solely on traditional structural approaches to mitigate flood risk.

1.7 The status of wetlands and floods in the Yangtze River Basin

The Yangtze River is the longest river in China and the third longest in the world (6,300 km)
(Zhang et al., 2020a; Zheng et al., 2021). It drains 1.8 million km?* of land, and the drainage
area represents 18.8% of China's total terrestrial area (Zheng et al., 2021). There are a large
number of lakes and tributaries in the YRB, forming the complex water system (Lai et al.,
2013; Cai et al., 2016). Lakes account for approximately 22,000 km* which are generally
distributed in the middle and lower reaches of the YRB (Zheng et al., 2021). Poyang Lake is
the largest among them, and controls the inflow of five tributaries, while Dongting Lake is the
second largest and receives four tributaries (Cheng et al., 2001). These lakes play a significant
role in regulating floods in the middle and lower reaches of the YRB (Cheng et al., 2001).
There are more than 7000 tributaries of the Yangtze River with different drainage areas. For
instance, eight tributaries drain an area of more than 80,000 km?: Yalong River, Minjiang
River, Jialing River, Hanjiang River, Wujiang River, Yuanshui River, Xiangjiang River, and

Ganjiang River (Cheng et al., 2001). These tributaries also have the eight most significant

21



average annual flows of more than 1,500 m® per second (Cheng et al., 2001). Apart from lakes
and rivers in mid-lower reaches of the YRB, a large area of inland marshes that primarily
distributes in the YRB source region of the Qinghai-Tibetan Plateau, is a significant alpine
wetland ecosystem (Zhao et al., 2020). Additionally, Chongming Island of the YRB estuary
encompasses broad natural coastal wetlands, including coastal marshes and tidal flats,
covering approximately 847.5 km?, about 212 km? of which are above sea level (Huang et al.,
2008; Mao et al., 2020). The Chongming Island coastal wetland ecosystem plays an important
role in maintaining both ecosystem health and ecological security of the island, such as
protecting the island coastal hazards, providing habitats for invertebrates, fish, and waterfowl,
purifying the coastal environment, as well as tourism resources and aquatic products for

residents (Cui et al., 2015; Peng et al., 2021).

Although the abundant wetlands resources across the YRB account for 40% of the national
wetlands, they have been significantly affected by both climate change and anthropogenic
activities, thus experiencing dramatic losses in recent decades (Finlayson et al., 2018; Mao et
al., 2020). During the first 15 years of this century, wetlands shrank substantially of the YRB,
more than half of lakes experienced the significant decreasing trend (Cai et al., 2016). For the
lost wetlands, 47.7% were converted to agriculture, 14.5% to grasslands, and 13.8% to urban
areas (Xu et al., 2019b). The middle and lower reaches of the YRB are not only the largest
complex wetland ecosystem and the most abundant wetland resource in China, but also one of
the most developed regions in eastern China with both rapid economic growth and high
population density (Huang et al., 2008; Li et al., 2014; Ma et al., 2023; Mao et al., 2018). As a
result, wetlands in the middle and lower reaches of the YRB are facing severe anthropogenic
damage (Mao et al., 2018). The area of wetlands in the middle reaches of the YRB has
decreased by 70% from the 1950s to the 2000s (Ma et al., 2023). Between 1930 and 2000, the
area of Dongting Lake declined by 2433 km?, and Jianghan Plain Lake declined by 4368 km?
(Du et al., 2011). In contrast, a number of artificial wetlands, such as aquacultural ponds and
reservoirs, expanded in the middle-lower YRB because of the aquacultural development

(Meng et al., 2023; Zhu et al., 2022). From 1950 to 2001, about 532 km? of native wetlands in
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Chongming Island were cultivated for agricultural production (Huang et al., 2008). Almost all
the high, middle, and low tidal marshes in Chongming Island have been reclaimed in the past
few decades (Huang et al., 2008). Alpine wetlands in the source region of the YRB are more
vulnerable to climate change than wetlands in other regions, with declining marshes and
expanded lakes (Jiping et al., 2011; Zhang et al., 2011; Zhang et al., 2024b). A large area of
marsh is threatened by inundation due to the rise of lake water levels caused by recent climate
change (Xue et al., 2018). As mentioned in Section 1.3, monitoring is the essential first step
for the wetland conservation and management. Therefore, the long-term monitoring of the
various wetland categories in the YRB is crucial for guiding the subsequent wetland

conservation and management.

The YRB is a flood-prone region that experienced severe flood disasters (Jia et al., 2022;
Zhang et al., 2020a). The YRB experienced seven massive floods in 1860, 1870, 1931, 1935,
1964, 1998, and 2010. Each caused a large number of casualties and socio-economic losses
(Kundzewicz et al., 2019; Peng et al., 2020). Generally, floods in the YRB were caused by
heavy precipitation and have become very common since 1860 (Cheng et al., 2001). The
spatial distribution of flood risk is uneven across the YRB (Yu et al., 2023). Flood risk has
been investigated to be relatively high in the middle-lower of the YRB because of the heavy
precipitation (Peng and Li, 2021). Due to short-term rainfall, most of the central mountainous
areas of the YRB are medium-level flood risk zones. The low-risk areas of flood disaster in
the YRB are generally concentrated in the upstream, due to the low rainfall and the relatively
light impacts of typhoons and tides in western regions dominated by plateau topography (Yu
et al., 2023; Zhang et al., 2020a). The major rainstorm regions with the high flood risk in the
YRB including the western part of Sichuan, the Dongting Lake Basin, most areas of Jiangxi
including the Poyang Lake Basin, and several YRB downstream cities in the Taihu Lake
Basin, which are affected by both upstream flow and tidal influences (Cheng et al., 2001; Jia
et al.,, 2022; Yu et al., 2009). The spatial distribution of flood-prone regions in the YRB
illustrates that the high flood risk areas are generally concentrated in the major lake basins,

with the abundant wetlands. As a result, the wetland effects on the flood risk cannot be
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ignored in the YRB.

The entire YRB is covered by the Yangtze River Economic Belt (YREB), which is the
strongest socio-economic area in China, including three national level urban agglomerations:
The Yangtze River Delta, the Middle Reaches of the Yangtze River, and the
Chengdu-Chongqing city cluster (Peng et al., 2020). As a result, the highest level of
urbanization contributed to more than 40% of the national population and GDP in the YRB
(Xu et al., 2025). However, the rapid socio-economic growth and the extensive human
activities have led to several adverse environmental effects in the YRB (Jin et al., 2019).
Nearly 80% of the major lakes in the YRB have been affected by human activities, and
water-related disasters have become more frequent and severe, typically in the middle-lower
YRB, which experiences the higher precipitation and denser water networks (Peng et al.,
2020; Xu et al., 2018). Therefore, assessing and mitigating water-related disasters, such as
floods, is of great importance in the YRB, where anthropogenic activities are becoming

increasingly complex.

Given the frequent flooding, the abundant wetland resources, and the rapid socio-economic
development in the YRB, this basin can be served as the globally representative case for
developing the sustainable flood risk management strategies. Due to the lack of a long-term
time series wetland dataset with comprehensive categories for the YRB, however, significant
research gaps still remain in the flood risk assessments without incorporating wetland
dynamics, and long-term effects of wetland changes on flood risk. These gaps pose the
substantial challenges to the development of the sustainable flood risk management in the

YRB.

1.8 Research aims and objectives

This thesis aims to monitor the long-term variations of different wetland categories, and to
analyze wetland effects on floods by assessing the flood risk incorporating wetlands in the

YRB. It can provide the valuable insights to support the local sustainable wetland
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conversation and the effective flood risk mitigation. The study is structured around a series of

objectives and questions:

Objective 1 (Chapter 4): To analyze wetland dynamics in the YRB by establishing a
long-term time series wetland classification dataset with the comprehensive wetland
categories from 1984 to 2021. Research questions include:
® How do different wetland categories in the YRB vary over time and across spatial
areas?
® Which driving force has the most significant impact on the long-term wetland
variations of the YRB? Natural driving forces ort human activities?
Objective 2 (Chapter 5): To investigate the long-term wetland effects on the flood risk in the
YRB based on an improved flood risk assessment model incorporating the wetlands input.
Research questions include:
® How do long-term wetland variations influence flood risks in the YRB?
®  Which flood risk factor is most dominant under wetland effects in the YRB?
® What wetland-related approaches are suitable to mitigate flood risk in different
flood-prone regions of the YRB?
Objective 3 (Chapter 6): To predict the flood indices and flood risk by the end of the 21*
century under different climatic and socio-economic scenarios in the Middle-lower YRB
(MLYRB) by applying the improved flood risk model. Research questions include:
® How will flood hazard, vulnerability, exposure, and integrated flood risk change
across spatial and temporal dimensions in the future of the MLYRB?

® What strategies are necessary for the future flood risk prevention in the MLYRB?

1.9 Thesis structure

This thesis comprises eight chapters. Chapter 1 introduces the background information,
including the importance and status of global wetlands, challenges of wetland management,

the relationship between wetlands and floods, the improvement in flood risk assessments, and
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the status of wetlands and floods in the YRB. Additionally, Chapter 1 states the research gap,

research aim, and objectives for this study.

Chapter 2 situates this study in the literature and other studies done in the field. It reviews the
past wetland-related datasets covering the YRB, wetland effects on the YRB floods, and the
extant flood risk assessments of the YRB. Chapter 3 provides an overview of the

methodology to generate the results of this thesis.

Chapters 4, 5, and 6 present the comprehensive version of the three papers. Chapter 4
constructs a long-term wetland classification dataset of the YRB from continuous Landsat
image collections. It presents how different wetland categories vary in the YRB from 1984 to
2021 and their corresponding driving factors. Chapter 5 analyses the long-term effects of
wetland variations on the flood risk of the YRB and the dominant flood risk indicators under
wetland effects. Chapter 6 predicts the future flood risk in the MLYRB by 2100. Chapters 5

and 6 provide the wetland-related suggestions to mitigate the flood risk in the YRB.

Chapter 7 discusses implications, contributions, limitations, and uncertainties of this thesis.
Finally, Chapter 8 summarizes results from three papers and makes the overall conclusion of
this thesis, as well as looking ahead to future work. Supplementary materials of this thesis are

arranged as appendices before references.
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Chapter 2 Literature review

2.1 Wetland-related datasets covering the Yangtze River Basin

To quantify and analyze the spatiotemporal dynamics of wetlands, several global and regional
wetland-related datasets have been developed using remote-sensed data in previous studies
(Che et al., 2015; Li et al., 2020; Lu et al., 2019; Mao et al., 2020; Pekel et a., 2016; Yang and
Huang, 2021). These datasets could provide necessary information for decision-makers in the
wetland restoration and management processes, aiming to reduce the related challenges

caused by wetland information gaps (Wang et al., 2018).

From a global perspective, the Global Surface Water (GSW) dataset, produced by Pekel et al.
(2016), is the most comprehensive long-term time series dataset for waterbody worldwide. It
quantifies long-term changes in global surface water over the past 37 years, monthly and
annually (the updated data is from 1984 to 2021) at 30m resolution by using the entire
multi-temporal Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper-plus (ETM+), Landsat 8 Operational Land Imager (OLI) orthorectified, and
top-of-atmosphere reflectance and brightness temperature images (L1T) (Pekel et al., 2016).
With advances in remote sensing technology, the GLH-Water dataset, derived from very
high-resolution optical satellite imagery, mapped global surface waterbodies at a 0.3 m
resolution from 2011 to 2022. (Li et al.,, 2024). The GSW dataset investigated that
approximately 90,000 km? of the global permanent surface waterbodies disappeared over the
past 37 years, with the significant changes in geographical distributions (Pekel et al., 2016).
The GLH-water dataset detected the more accurate variations in small water bodies based on

the GSW dataset (Li et al., 2024).

Several wetland-related datasets have been developed in China. The Inland Surface Water
Dataset in China (ISWDC) demonstrates water bodies larger than 0.0625 km?between 2000
and 2016 with 250m spatial resolution, derived from the MODIS MOD09QI1 surface

reflectance archive images (Lu et al., 2019). The ISWDC shows a good consistency and
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similar change dynamics with the GSWE results. For lake groups in the central Tibetan
Plateau in 2015, the comparison between the two datasets indicates a close pattern. However,
for the Poyang Lake Basin, the under-extracted surface water and over-extracted surface
water of the ISWDC still exist when compared with the GSWE (Lu et al., 2019). Afterwards,
the High Spatial-Temporal Water Body Dataset in China (HSWDC) developed by Li et al.
(2020) maps the dynamics of the surface water body in China from 2016 to 2018 with a
higher monthly spatio-temporal resolution (10m) than both the ISWDC and GSWE by using
the cloud-based Google Earth Engine (GEE) platform and Sentinel-1 imageries, the overall
accuracy reaches 93% (Li et al., 2020). The HSWDC develops an extraction method for the
Sentinel-1 Synthetic Aperture Radar (SAR) data based on a large number of land cover
samples (Li et al., 2020). The SAR data has the advantage of being unaffected by clouds.
Thus, they can monitor surface water regularly (Aries et al., 2018; Santoro et al., 2014). With
the release and application of the GEE platform, it is possible to carry out monitoring and
mapping of water bodies on a large scale with the high resolution, so that removing the
limitation of research scale and data processing in the past (Kaplan and Avdan, 2018; Slinski
et al., 2019; Xing et al., 2018). Taking Dongting Lake as an example, the water area detected
by the HSWDC is larger than that of the GSW, primarily due to the higher spatial resolution.
Especially in winter, when water storage decreased, the area of some small waterbodies
becomes too small for the GSW to detect (Li et al., 2020). Besides, the HSWDC shows higher
consistency with water levels from 2016 to 2018 compared to the GSW (Li et al., 2020). Li et
al. (2020) further classified the wetlands of Dongting Lake into permanent waters, seasonal
marshes, mudflats, and rice fields using the water occurrence information from the HSWDC.
The classification result is generally consistent with the result in the corresponding year of
Chen et al. (2016), except the difference between rice fields of Li et al. (2020) and
agricultural lands (including dry crop lands) of Chen et al. (2016). The HSWDC has the
advantage of detecting and extracting waterbodies accurately during freezing months with the
help of the SAR data. For example, compared to the ISWDC, the HSWDC can map a more
comprehensive water surface of Selinco Lake, located on the Tibetan Plateau, even during

freezing months (Li et al., 2020).
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In addition to surface water datasets, several global and national land cover datasets with 30m
or 10m resolution include wetland or water categories. At the global level, the Global Land
Cover Dataset (GlobeLL.and30) (Chen et al., 2015), the Finer Resolution Global Land-cover
Map (FROM-GLC10) (Gong et al., 2019), the Global Land-cover Product with Fine
Classification System (GLC FCS30) (Zhang et al., 2021), the Esri World Cover
(ESRI_GLC10) (Karra et al., 2021), and the Dynamic World (DW10) (Brown et al., 2022) all
contain only two categories related to wetlands, including permanent water bodies and
herbaceous wetlands. Among these datasets, GlobalLand30 and ESRI_GLC10 misrepresent
the real land cover situation, where many independent aquaculture ponds and paddy fields are
incorrectly mapped. GLC_FCS30 underestimates water bodies, as most of ponds are not
indicated as water in the mapping results (Li et al., 2023). For the national perspective of
China, the China Land Cover Dataset (CLCD) , which provides the annual 30m resolution
land cover data from 1990 to 2019, is a representative dataset with long-term time series
national land cover (Yang and Huang, 2021). However, the CLCD faces the challenge of
capturing short-term fluctuations in water and wetlands. Therefore, it shows a smaller area of
water and wetlands in Poyang Lake than the monthly GSW dataset (Yang and Huang, 2021).
In recent years, some high-resolution national land cover datasets have been developed, such
as Hi-ULCM, which provides 2m resolution data for 42 major cities of China (Huang et al.,
2020), and SinoLC-1, the first Im resolution national-scale land cover map of China (Li et al.,
2023). Similar to global land cover datasets, all of these national land cover datasets include

only general categories for water and wetland, without distinguishing subcategories.

The national wetland mapping of China (CAS_Wetlands), developed by Mao et al. (2020), is
the most comprehensive wetland dataset in China, encompassing a wide range of wetland
categories. The application of the hybrid object-based hierarchical classification approach
(HOHC) and the wetland classification system to Landsat 8 OLI data produces a 30m
resolution wetland map of China in 2015, with an overall classification accuracy of 95%

(Mao et al., 2020). According to the Ramsar definition of wetlands, it includes marsh, fen,
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peatland, and water, whether natural or artificial, permanent or temporary, and whether water
is static or flowing, fresh, brackish or salty, and include marine water with the depth of which
at low tide does not exceed 6 m (Gong et al., 2010). The wetland classification system of the
CAS Wetlands is referred from the Ramsar definition of wetlands and the unprecedented
amount of field samples in the wetland mapping history of China, as well as considering the
applicability of moderate resolution images and its practical use for ecosystem management
of a developed remote sensing wetland classification system (Mao et al., 2020). Therefore, the
creation of a new designed wetland classification system is one of the most important
novelties of the CAS Wetlands, which contains three broad categories and fourteen
sub-categories (Mao et al., 2020). The CAS Wetlands gives the result of the total wetland
area of 451,084 + 2014 km? of China in 2015, of which 70.5% are inland wetlands. Among 14
wetland categories, inland marshes have an area of 152,429 + 373 km?, which accounts for 34%
of the total wetlands, while coastal swamps have the smallest coverage (259 + 15 km?) (Mao

et al., 2020).

Due to its comprehensive wetland classification system, the CAS Wetlands dataset of Mao et
al. (2020) reports a larger national wetland area in 2015 compared to other datasets, such as
the CLCD (Yang and Huang, 2021), the China National Land Cover Database (ChinaCover)
(Mao et al., 2018), and the earlier wetland-related datasets covered the YRB from Gong et al.
(2010), Niu et al. (2009), and Niu et al. (2012). Overall, the CAS Wetlands provides a
significant wetland data reference and the wetland classification system to establish a

continuous long-term time series wetland dataset in the YRB.

Given that no existing wetland classification dataset meets the requirements for
comprehensive wetland categories and a long-term study period covering the YRB, there is a
research gap in establishing a long-term time series wetland classification dataset for the

YRB.

2.2 Wetland effects on floods in the Yangtze River Basin
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According to Section 1.6, there are abundant wetland resources covering the YRB. The
Sichuan Basin and most areas in the YRB middle and lower reaches are the typical
flood-prone regions of the YRB (Jia et al., 2022; Li et al., 2014; Mat et al., 2023; Zhang et al.,
2020). Cui et al. (2013) and Yu et al. (2009) both confirmed that lake shrinkage and
degradation in the YRB middle and lower reaches have led to the rise of lakebed level and the
reduction in water storage capacity, especially in the Poyang Lake Basin and the Dongting
Lake Basin, which are key driving factors of floods in the long term (Cui et al., 2013; Yu et
al., 2009). For example, during the latest severe flood disaster that occurred in the YRB in
2020, the five provinces of Hubei, Anhui, Jiangxi, Hunan, and Jiangsu were most severely
affected by floods due to the vast rivers and lakes (Jia et al., 2022). The continuous rainstorm
process exceeded the limited carrying capacity of these wetlands, resulting in a high flood risk
when the water levels of lakes and rivers exceeded their alarm levels (Jia et al., 2022). Not
only lakes and rivers, but also the water level in reservoirs, affect the flood risk in severe
flood disasters. For example, the water level reached 22.59m of the Hukou Reservoir in
Poyang Lake, 35.94m of the Chenglingji Reservoir in Dongting Lake, and 160.17m of the
Three Gorges Reservoir during the flood disaster in 1998, which were all the highest water

level in the history of reservoirs (Jia et al., 2022).

Several studies have examined the effects of wetlands on floods in flood-prone regions of the
YRB. Taihu Lake, the third-largest freshwater lake in China, is located in the YRB
downstream (Xu and Chen, 2023). The Taihu Lake Basin is one of the most developed
regions in China, characterized by the highest level of urbanization and the densely populated
area (Xu and Chen, 2023). Hence, compared with other major freshwater lakes in the YRB,
the Taihu Lake Basin faces far more complex socio-economic and environmental problems
(Liang et al., 2011). It has been confirmed that the trend of increased floodwater in the Taihu
Lake Basin has accelerated faster than in other flood-prone regions, which is heavily
influenced by lake shrinkage due to rapid urbanization and aquaculture development (Cai et

al., 2013; Xu and Chen, 2023).
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The Poyang Lake Basin is situated in the middle and lower reaches of the Yangtze River
Basin. Poyang Lake is the largest freshwater lake in China, which creates extensive
floodplains that adjoin the main lake (Feng et al., 2012; Li et al., 2019; Wu et al., 2022). The
Poyang Lake Basin is a region with the frequent and extensive precipitation affected by both
the south-east and south-west monsoons. The average annual cumulative precipitation
frequency is 192 days, and the annual average precipitation is 1638 mm (Liu et al., 2021). Xu
et al. (2023) monitored the long-term land-use change in the Poyang Lake Basin from 1986 to
2020. The results showed that the categories of wetlands in Poyang Lake underwent
significant changes from 1986 to 2020. Mudflats and paddy fields showed an increasing trend,
while the water area decreased (Xu et al., 2023). The analysis of the long-term and short-term
flood risk in the Poyang Lake Basin reveals that flood-prone areas are primarily located near
rivers and lakes, with the majority of these areas concentrated in the northern part of the basin

(Wu et al., 2022).

Dongting Lake is the second largest freshwater lake in China, which is located in the YRB
middle reaches. The Dongting and Honghu Lake Basin is a typical wetland region that
frequently experiences severe flooding due to subtropical monsoons, with the flood risk
typically high in its northern and central regions (Wang et al., 2011). As one of the most
important eco-areas in the world, wetlands in the Dongting Lake Basin play the significant
role in flood storage and regulation in the south-central area of the YRB (Wang et al., 2011).
Hence, the dynamics of wetlands in the Dongting and Honghu Lake Basin have been studied
by several researchers. Xing et al. (2018) and Huth et al. (2020) both monitored monthly
surface water dynamics of Dongting Lake in 2016. The results indicated that the surface water
area varied the most in April and August, the difference between maximum and minimum
areas of wetlands in 2016 reached 1301 km? (Xing et al., 2018; Huth et al., 2020). The annual
average water flow and water level dynamics of the Dongting Lake wetland ecosystem are 37%
and 36%, respectively (Wang et al., 2022). Regarding the long-term variation of Dongting
Lake wetlands, Guo et al. (2022) reported that the wetland area expanded by 66.43 km?

during the wet season and shrank by 132.86 km? during the dry season between 2001 and
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2020.

Although there’s no single large freshwater lake in the Wanjiang Plain, a dense group of
freshwater lakes is distributed along both banks of the Yangtze River, forming the Wanjiang
Lake group in the middle and lower reaches of the YRB (Dong et al., 2022). In the Wanjiang
Plain, annual precipitation and river runoff are concentrated between May and October. Lake
shrinkage has been confirmed to increase flood risk by contributing to elevated warning water
levels during this period, typically in Chaohu Lake, one of the five largest freshwater lakes in
China and a flood-prone region with complex natural conditions (Sun et al., 2016; Dong et al.,
2022). Apart from flood-prone regions in the YRB middle and lower reaches, the flood risk in
the Sichuan Basin has been analyzed as well. The Sichuan Basin has low flood storage
potential due to its extensive river and cropland areas, as well as the limited lake coverage. As

a result, it has a relatively low capacity to mitigate flooding (Fu et al., 2013; Liu et al., 2017).

To sum up, previous studies illustrate that wetland variations play a significant role in the
flood risk of different flood prone regions across the YRB. However, investigations into the
long-term effects of wetlands on flood risk across the entire YRB based on the comprehensive

wetland data are still lacking.

2.3 Assessing the past and future flood risks in the Yangtze River
Basin

To evaluate and discuss the flood risk, and to improve the public’s flood risk awareness as
well as mitigating flood risks in the YRB under climate change, it is essential to conduct the
integrated flood risk assessment that incorporating various flood risk factors with spatial and
temporal dynamics (Wu et al., 2022; Zhang et al., 2020). Hence, several studies around the
world focused on the flood risk assessment at the local, regional, and national scale. Examples
include the Wadi Nu’man Basin of Saudi Arabia (Abdelkarim and Gaber, 2019), the YRB of
China (Zhang et al., 2020), coastal regions of China (Sajjad, et al., 2020), urban regions in Sri

Lanka (Weerasinghe et al., 2018), the United Arab Emirates (Abuzwidah et al., 2024), and
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European countries (Thaler and Hartmann, 2016).

As a significant flood-prone region, the YRB has received an increasing attention in the flood
risk assessment research. A number of flood risk assessments have been conducted across the
YRB, focusing on typical lake basins such as the Poyang Lake Basin (Wu et al., 2022) and
the Dongting Lake Basin (Wang et al., 2011), as well as flood-prone urban regions like
Chongqing (Cai et al., 2021) and Wuhan (Fang et al., 2019). Zhang et al. (2020) conducted a
large-scale flood risk assessment of the entire YRB for the years 1998, 2008, and 2016, which
experienced major flood events. The flood risk assessment studies in the YRB focused not
only on the past events. Peng and Li (2021) predicted the future flood risk until 2050 under
the Coupled Model Intercomparison Project (CMIP6) shared socioeconomic pathways (SSP)
and representative concentration pathway (RCP) climate change scenarios of the Yangtze

River Economic Belt.

According to the United Nations Office for Disaster Risk Reduction, flood risk is identified as
the product of hazard, vulnerability, and exposure (McGlade et al., 2019). Flood hazard
usually refers to natural events or trends related to climate and their natural influences, while
flood exposure refers to risk elements affected by floods, typically referring to human,
buildings, property, and economic activities exposed in unfavored places and settings (Dou et
al., 2018; Zou et al., 2013). Flood vulnerability is a more complex index than hazard and
exposure, and it is the main construct in the flood risk assessment (Balica and Wright, 2010;
Nasiri et al., 2016). The general concept of vulnerability refers to a condition shaped by
physical, social, economic, and environmental factors that increase people's susceptibility to
the impacts of hazards. It reflects the interaction among exposure, susceptibility, and
resilience within each community during a hazardous event (Balica and Wright, 2010; UNDP,
2004). Therefore, the flood risk assessment is a multi-criteria analysis project that integrates

the results of flood hazard, vulnerability, and exposure (Wu et al., 2022).

A number of approaches have been applied for the flood risk assessment, such as historical
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disaster statistical method (Halgamuge and Nirmalathas, 2017; Youssef et al., 2015), scenario
simulation analysis for future flood risk predictions (Alfieri et al., 2015; Cai et al., 2021;
Gangrade et al., 2019), index system method (Christie et al., 2018), Set Pair Analysis (SPA)
combined with variable fuzzy sets (VFS) model (Su et al., 2010; Zhang et al., 2011; Zou et al.,
2013), deep learning mechanisms (Lai et al., 2011; Li et al., 2008; Yosri et al., 2024), and the
GIS-based approach (Cai et al., 2021; Gigovi¢ et al., 2017a; Zhang et al., 2020). Each of these
methods contains both advantages and disadvantages in the application of the flood risk

assessment (Table 2).

Table 2.1: Advantages and disadvantages of the major flood risk assessment approaches.

Approaches Advantages Disadvantages
Historical disaster statistical Provides essential information The limitation of data
method for the long time series availability.
assessment. The requirement of high amount

Refers to the disaster databases of data.

which have been categorized Differences in the ways of data
and contained enough details. recording.
(Zhang et al., 2020). Most data collections are based

on cities. Thus, it is hard to get
the detailed spatial distribution

of flood risks (Zhang et al.,

2020).

Multi-Index analysis Multiple indicators of flood The selection of assessment
risks can be considered indicators varies depending on
comprehensively, and the regional characteristics (Zhang
contribution of each indicator et al., 2020).

can be analyzed accurately

(Zhang et al., 2020).
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Scenario simulation analysis

SPA-VFS model

Deep learning mechanism

GIS-based approach

Make predictions for future
flood risk assessment under
different climate change
scenarios (Gangrade et al.,
2019).

Simple operation, easy
computation, clear physical
meaning as well as reasonable
results.

The model has been applied
more frequently in
multi-attribute assessment fields
(Zou et al., 2013).

Complete information
processing of networks through
the interaction of neural cells
with the high fault tolerance (Li

et al., 2008; Lai et al., 2011).

Handle the large amount of
flood risk spatial data.
Visualized results of flood risk
spatial distribution maps.
Analyze the flood risk in the
large scale.

The investigation process is

rapid (Zhang et al., 2020).

The results are affected by
analytic tools and the simulated
data. Thus, the assessment
accuracy contains uncertainties
(Caietal., 2019).

Uncertainties in the complicated
flood disaster risk system under
the fuzzy environment (Zou et

al., 2013).

The low generalization ability
and reliability because it is easy
to fall into over learning and
local minimum dilemma during
its learning process (Zou et al.,
2013).

Cannot be used alone, need to
be applied with other flood risk
assessment approaches (Zhang

et al., 2020).

From Table 2.1, integrating the multi-index analysis with the GIS-based approach offers
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advantages in handling large-scale datasets and incorporating comprehensive indicators into
flood risk assessments with the greater accuracy. Therefore, given the large spatial scale and
multiple indicators of the YRB flood risk assessment, the multi-index system method
combined with the GIS-based approach is the most suitable selection to evaluate flood risks in
the YRB. The GIS-based spatial multi-index approach has been widely applied in flood risk
assessments of different basins worldwide, such as the Wadi Nu’man Basin in Saudi Arabia
(Abdelkarim et al., 2019), the Tapi River Basin in India (Ramkar and Yadav, 2021), the Taihu
Lake Basin (Yu et al., 2012), the Dongting Lake Basin (Wang et al., 2011), the Poyang Lake
Basin (Wu et al., 2022), the Lijiang River Basin (Ziwei et al., 2023), and the entire YRB in
China (Zhang et al., 2020). This approach has also been applied in the flood risk prediction
worldwide by integrating the scenario simulation analysis, such as the Yangtze River
Economic Belt of China (Peng and Li, 2021), the Pearl River Delta of China (Chen et al.,
2021a), the Petite Nation River watershed, southern Quebec, Canada (Oubennaceur et al.,

2021), and the United Arab Emirates (Abuzwidah et al., 2024).

Among the previous studies assessing the past and future multi-criteria flood risk covering the
YRB, none incorporated the long-term variations of wetlands as one of indicators into the
flood risk model. Instead, most included only river or drainage density, which represents a
single wetland category. Given the diverse effects of different wetland categories on flood
risk in the YRB, as discussed in Section 2.2, an improved multi-criteria flood risk assessment

model needs to be developed with wetland inputs.
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Chapter 3 Research methodology

This chapter provides a general overview of research methods used in the thesis, which are
used to address the research questions and achieve the research objectives identified in
Chapter 1. Detailed descriptions of these methods are described in Chapters 4, 5, and 6,

correspondingly.

3.1 Machine learning algorithm

Machine learning is the technology for developing computer algorithms that emulate human
intelligence (El Naqa and Murphy, 2015). The inception of machine learning can be traced to
the 17™ century, followed by the development of the perceptron as one of the early neural
network architectures in 1958 (El Naqa and Murphy, 2015; Ifrah, 2000). Google Earth Engine
(GEE) is a cloud-based geo-computation open source platform for machine learning
algorithms, offering a high volume of Earth Observational Data such as Landsat and Sentinel
Data (Gorelick et al., 2017). In recent years, the combination of machine learning algorithms
and GEE has gained popularity in various satellite data applications, including LULC
classification, deforestation, drought monitoring, crop monitoring, hydrology, land cover
mapping, and environmental protection (Belgiu and Dragut, 2016; Pokhariya et al., 2023).
Machine learning can be categorized into supervised, unsupervised, and semi-supervised
algorithms based on the nature of data labeling (Singh et al., 2016). Supervised machine
learning algorithms are commonly used as the classifier for LULC classification (Belgiu and
Dragut, 2016; Singh et al., 2016). There are several supervised machine learning classifiers,
including parameter classifiers like Maximum Likelihood Classifier (MLC) (Liu et al., 2011)
and Naive Bayes (NB) (Singh et al., 2016), and non-parametric classifiers, such as Random
Forest (RF) (Belgiu and Dragut, 2016), Support Vector Machines (SVM) (Mountrakis et al.,
2011), Classification and Regression Tree (CART) (Razi and Athappilly, 2005), and Artificial
Neural Network (ANN) (Mas and Flores, 2008). MCL and NB deliver excellent and fast
results when training unimodal data, but they have limitations when dealing with multimodal
input datasets that involve interactions (Liu et al., 2011; Singh et al., 2016). CART, SVM, RF,

and ANN have become more popular than parameter classifiers for classifying remotely
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sensed data due to the advantage of requiring no assumptions regarding frequency distribution

(Belgiu and Dragut, 2016).

SVM is well-known in the field of machine learning and has been successfully applied to a
wide range of remote sensing image classifications with the high accuracy (Castillo et al.,
2008; Chowdhury, 2024; Ghosh and Joshi, 2014; Huang and Zhang, 2010). It utilizes
classification and regression to identify the optimal hyperplane that separates the data based
on a given sample (Chowdhury, 2024). ANN is a supervised classifier belonging to the deep
learning algorithm. It contains a large number of hidden layers compared to traditional
algorithms (Alshari et al., 2023). Generally, ANN is effective in remote sensing image
classification, but neural networks are less sensitive to noisy sample data than other
algorithms (Sidike et al., 2018; Waqas et al., 2023). CART models employ tree-building
algorithms, which comprise a set of split conditions that enable classifications (Razi and
Athappilly, 2005). The noticeable advantage of decision-tree-based models, such as CART, is
that they are scalable to large regions than neural networks (Razi and Athappilly, 2005). The
RF classifier is an ensemble classifier that utilizes a set of CARTs to generate multiple
predictors, aggregating the plurality of votes derived from these predictors to make a final
decision (Chowdhury, 2024). RF has been widely used in remote sensing studies currently
due to its high classification accuracy (Belgiu and Dragut, 2016; Chowdhury, 2024; Ge et al.,
2020; Pokhariya et al., 2023). Chapter 4 of this thesis compares the wetland classification
accuracy among CART, SVM, and RF in the representative regions of the YRB and finds that
RF achieves the highest classification accuracy across all the representative regions, which is
selected as the algorithm for the long-term wetland classification in the YRB. The detailed

comparison process is presented in Section 4.2.4, Chapter 4.

3.2 GIS-based multi-criteria flood risk assessment model

Geographical Information System (GIS) is a computer-based technology designed to capture,

store, manipulate, analyze, and display diverse sets of spatial or georeferenced data (Huabin
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et al., 2005). Nowadays, the risk analysis of natural disasters is unimaginable without the
support of GIS (Gigovi¢ et al., 2017a). Natural disasters are multidimensional phenomena
with a spatial dimension, making GIS very applicable for analyzing landslide hazards, flood
risks, and the potential suitability for infrastructure construction and urban planning due to its
powerful geostatistical tools to manage the large volume of spatial data (Abuzwidah et al.,

2024; Bathrellos et al., 2012; Cai et al., 2021; Huabin et al., 2005).

To address the shortcomings of GIS in the decision-making process involving multiple
criteria, it is necessary to integrate tools for multi-criteria decision-making with GIS (Gigovi¢
et al., 2017a). Multi-criteria analysis is a framework for ranking or scoring the overall
performance of decision options across multiple objectives from various scientific fields
(Wang et al., 2011). The input of the multi-criteria analysis model is a set of grouped,
standardized, and weighted maps with spatial representation of the criteria. The output is one
or more composite index maps (Wang et al., 2011). In recent decades, the application of
multi-criteria or multi-index GIS-based models has been successful in various assessments, as
it enables greater flexibility and accuracy in decision-making (Gigovi¢ et al., 2017b;
Malczewski, 2006; Rahmati et al., 2016; Wang et al., 2011; Zhang et al., 2020). Approaches
to determine the indicator’s weight include objective and subjective methods, such as
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Simple
Additive Weighting (SAW) (Meshram, et al., 2020), the analytic hierarchy process
(AHP) and fuzzy AHP (Roy et al., 2021a;Yang et al., 2013), the entropy weight method
(Khosravi, et al., 2016), and principal component analysis (Nandi et al., 2016). Several
studies show that the analytic hierarchy process (AHP) is the most popular method with the
high accuracy and cost-effectiveness (Abuzwidah et al., 2024; Gigovic¢ et al., 2017a; Lyu et
al., 2018; Ramkar and Yadav, 2021; Zhang et al., 2020; Ziwei et al., 2023). AHP is a flexible
and practical multi-criteria decision-making method that quickly qualifies qualitative
problems using simple principles and a rigorous mathematical basis (Zhang et al., 2020;
Ziwei et al., 2023), proposed by Saaty (1977). An improved GIS-based multi-index flood risk

assessment model incorporating wetlands is developed in Chapter 5 and applied in Chapter 6
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of this thesis, along with a detailed explanation of the framework. The model investigates the
long-term wetland effects on the flood risk from 1984 to 2021 and predicts the future flood
risk incorporating wetland effects under climatic and socio-economic scenarios by 2100 in the

YRB.

3.3 Causality inference algorithm

Causal inference is the process of determining whether a specific relationship between
variables is directly causal rather than merely correlational (Guo et al., 2020). It involves
analyzing the effects of actions, interventions, or natural occurrences on outcomes (Nogueira
et al.,, 2022). The application of causal inference is significant across various scientific
domains, including statistics, computer science, education, public policy, economics, and
earth and environmental science (Massmann et al., 2021; Nogueira et al., 2022; Runge et al.,
2023). A robust method for inferring causality was first developed in the early 20" century by
mitigating confounding influences through randomized experiments, which is the
Neyman-Rubin potential-outcome framework (Rubin, 2005; Pearl, 2010). This framework
introduces the concept of potential outcomes from different treatment states within the same
unit (Pearl, 2010). Nowadays, with the development of computational power, causal effects
can be quantified by combining domain knowledge, machine learning models, and
observational or interventional datasets (Runge et al., 2019a; Runge et al., 2023). Several
causal discovery algorithms have been developed, including the Peter Clark (PC) algorithm
(Spirtes and Glymour, 1991), the linear non-Gaussian model (LiNGAM) (Shimizu et al.,
2006), the Convergent Cross Mapping (CCM) (Sugihara et al., 2012), and the Peter Clark

Momentary Conditional Independence (PCMCI) algorithm (Runge et al., 2019b).

In this thesis, the PCMCI algorithm is used to determine the causal relations between the
YRB flood risk indicators and the flood risk area under wetland effects. The PC algorithm
was applied to analyze the probability of power outage caused by natural disasters in the
research of Chen et al. (2024). The PCMCI algorithm is further developed by combining the

PC algorithm with the Momentary Conditional Independence (MCI) test (Runge, 2018).
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Further details about using the PCMCI algorithm are provided in Section 5.2.3, Chapter 5.
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Chapter 4 A long-term (1984-2021) wetland classification
dataset for the Yangtze River Basin from continuous

Landsat image collections

Highlights:

® We create a long-term wetland classification dataset in the Yangtze River Basin.
® The total wetland area is larger in 2021 compared with the starting year of 1984.
® Man-made wetlands increase constantly but natural wetlands fluctuate over years.
® The change of aquaculture ponds and inland marsh are the largest.

® Human activities are more dominant than natural driving forces of wetland changes.

This chapter is a reformatted version of a manuscript published in the Total Environment
Advances, which is available at https://doi.org/10.1016/j.teadva.2024.200111. The
LTWCD_YRB classification maps of YRB downstream, middle stream and upstream with
30m resolution between 1984 and 2021 are available in the figshare repository in the Geotiff
format: https://doi.org/10.6084/m9.figshare.21859920.v1. They are provided in the
ESPG:4326 (WGS _1984) spatial reference system. The maps can be visualized in ArcGIS,
QGIS, or other similar software. JavaScript codes on the GEE platform to process Landsat
images, implement machine learning method and generate wetland classification maps are

available: https://doi.org/10.6084/m9.figshare.21859854.v1.

43


https://doi.org/10.1016/j.teadva.2024.200111

4.1 Introduction

Wetlands are among the most productive ecosystems that serve as the transition between land
and water with a variety of ecological and economic benefits (Liang et al., 2020). However, in
recent decades, wetlands worldwide have experienced dramatic loss and degradation caused
by climate change and human activities (Asselen et al., 2013). The extensive wetlands across
the Yangtze River Basin (YRB) in China have been particularly affected, experiencing a
striking loss (Mao et al., 2020; Xu et al., 2019b), which accounts for nearly 40% of the
national wetlands (Finlayson et al., 2018). The variation of wetlands in the YRB is complex
due to several driving forces including climate change, rapid urbanization along the Yangtze
River Economic Belt, dam construction, and agricultural and livestock activities (Xu et al.,
2019b; Zheng et al., 2020). According to the latest wetland classification system and spatial
distribution map in China, wetlands along the YRB include nearly all types of wetlands in
China (Mao et al., 2020). Different reaches of the YRB are covered with various categories of
wetlands: Swamps and marshes distributed at the source and estuary regions of the YRB, and
waterbody wetlands mostly centralized at middle-lower reaches (Mao et al., 2020). Overall,
wetlands remained stable at the source of YRB, expanded at the middle reaches, and shrank at
the lower reaches of YRB in the first 15 years of the 21st century (Xu et al., 2019b). Wetlands
management and protection have become a significant issue in the initiative of Yangtze River
Conservation proposed by the Chinese government in 2016 (Zheng et al., 2020). The study on
the long-term historical variations of all the wetland categories will provide
evidence-informed policymaking for stakeholders to formulate more definite wetland
conservation policies in the YRB. However, there are currently no comprehensive wetland

datasets in the YRB to support this research.

Several wetland-related datasets have been generated in previous studies (e.g., Pekel et al.,
2016; Lu et al., 2019; Li et al., 2020; Mao et al., 2020). The Chinese Academy of Science
Wetland (CAS_Wetland) Dataset contains the most comprehensive wetland categories in

China at the 30m spatial resolution by using the Landsat 8 Operational Land Imager (OLI)
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(Mao et al., 2020). In this classification system, wetlands are grouped into three broad
categories and 14 sub-categories: 1) Inland wetland (Inland swamp, Inland marsh, lake, river);
2) Coastal wetland (coastal swamp, coastal marsh, lagoon, estuary water, tidal flat, shallow
marine water); and 3) Human-made wetland: (reservoir/pond, channel, salt pan, aquaculture
pond) (Mao et al., 2020). The limitation of this dataset is that it only demonstrates wetlands
information in 2015 instead of a longer period. The same issue occurred in the High
Spatial-temporal Water Body Dataset in China (HSWDC) launched in 2016, even though it
has a higher spatial resolution at 10m (Li et al., 2020). The representative National waterbody
datasets with longer time series covered the YRB, including the Landsat-derived annual land
cover product of China (CLCD) (1980-2019), the time series of Inland Surface Water Dataset
in China (ISWDC) (2000-2016) (Yang and Huang, 2021; Lu et al., 2019), and the Global
Surface Water Explorer (GSWE) maximum water extent map (1984-2021), generated by

using Landsat 5, 7, and 8 images in the YRB (Pekel et al., 2016).

The overall limitation of the above datasets (except the CAS Wetland dataset) is that the
wetland data is just a by-product that needs to be derived from the whole dataset. Most
importantly, there is no detailed wetland classification in these datasets. The CAS_Wetland
dataset contains comprehensive wetland categories but only demonstrates wetlands
information in one year. Therefore, the scarcity of long-term time series of wetland
distribution and classification datasets in the YRB has resulted in severe limitations on the
specific policymaking and implementation for the YRB wetlands conservation. Meanwhile,
such deficiency in the dataset has generated a barrier to evaluating the long-term variations in
different categories of YRB wetlands for their habitat health, carbon storage, greenhouse gas
emission, and ecosystem service capacity (Mei et al., 2016; Xu et al., 2008; Zhou and Xia,

2020).

To support evidence-informed policymaking for wetland management and protection in the

YRB, this study aims to explore annual and seasonal variations of various wetland categories

by creating a long-term time series (1984-2021) wetland classification dataset with
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comprehensive wetland categories for the YRB. Additionally, this study identifies potential
driving forces of variations in different wetland categories by analyzing their spatial shifts

across the YRB in the representative regions.

4.2 Materials and Methods

4.2.1 Study area

The Yangtze River (YR) (Figure 4.1) is the third longest river in the world and the longest
one in China, stretching over 6,300 km. The YRB is located between 24°27’ to 35° 54’ N and
93°33” to 122°19’ E, with a long and narrow shape running from west to east and a shorter
extent from north to south (Zheng et al., 2021). The topography of the YRB is high in the
west and low in the east. The river originates in the Tanggula Mountains of the Tibetan
Plateau, with the flowing direction from the west to the east of the country and finally flows
to the East China Sea at Chongming Island near Shanghai (Zhang et al., 2020). The YRB
covers 11 provinces, autonomous regions, and municipalities including Qinghai, Tibet,
Sichuan, Yunnan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shanghai, with a
population of approximately 440 million (nearly one-third of China’s population). The YRB
covers 18.75% of China’s total area, which reaching 1.8 million km?* (Zhang et al., 2020).
Wetlands account for 40% of the national wetlands in China, with hundreds of tributaries and

lakes (Finlayson et al., 2018).
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Figure 4.1: The location, hydrographical and topographical information of the Yangtze River

Basin.

4.2.2 Data

Regarding muti-spectral remote sensing images, the surface reflectance products were derived
from Landsat 5 Thematic Mapper (TM) (1984-1999), Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) (2000-2013) and Landsat 8 Operational Land Imager (OLI) (2014-2021) images,
all with a 30m resolution from January 1984 to December 2021. The selected spectral bands
were 2, 3, 4, 5, 6, and 7 (Gorelick et al., 2017). The starting year of 1984 was selected
because it marked the proposal of the Yangtze River Economic Belt, an economic region with
the Yangtze River as its axis, covering more than 40 cities, which led to increased impacts on
the wetlands due to rapid economic growth (Zhou et al., 2020). The corresponding
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index

(NDWI), and Normalized Difference Snow Index (NDSI) were selected as the datasets for
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this research. The satellite image interpretation represents the current situation of each
wetland type after atmospheric correction (surface reflectance products have been
atmospherically corrected on the Google Earth Engine), cloud filtering, mean compositing (to

obtain the average image from the image collection and image cropping (Dang et al., 2020).

4.2.3 Wetland classification system

The Ramsar Convention on Wetlands defines the traditional global wetland classification
system as “... areas of marsh, fen, peatland, and water, whether natural or artificial, permanent
or temporary, and whether water is flowing, fresh, brackish or salty, including areas of marine
water the depth of which at low tide does not exceed 6 m” (Ramsar Convention Bureau 2001).
The latest and most comprehensive wetlands classification system in China, known as
CAS_ Wetlands, refers to the Ramsar definition and the wetland mapping history of China
(Mao et al., 2020). This remote sensing wetland classification system incorporates the
advantages of moderate-resolution images, providing high acceptability and efficient,
practical use for ecosystem management (Mao et al., 2020). The YRB study region covers
extremely complex geographic and hydrological conditions, thus contributing to a wide range
of wetland categories (Cui et al., 2018). There are two broad categories and nine
sub-categories of wetlands referring to the CAS Wetland in the YRB (Table 4.1) (Mao et al.,
2020). Paddy fields and floodplains are excluded from this wetland classification system.
Paddy fields are more appropriate to be defined as farmland, while floodplains are not
considered an individual wetland category because they are defined as either inland marshes

or rivers during the wet season (Mao et al., 2020).
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Table 4.1: The wetland classification system adopted in this study (Mao et al., 2020).

Category Sub-category

Description

Natural wetland Inland marsh

Lake
River

Coastal marsh

Estuary water

Tidal flat

Human made Reservoir
wetland

Aquaculture pond

Canal

Natural wetland with dominant herbaceous vegetation in
inland areas.

Natural polygon waterbody with flowing water.

Natural linear waterbody with flowing water.

Natural wetland with dominant herbaceous vegetation in
coastal areas.

Natural waterbody with flowing water from the
boundary of inland areas to coastline.

The inter-tidal flat with no or very low vegetation
coverage.

Artificial polygon waterbody with standing water
generating with obvious dam.

Polygon waterbody used for aquaculture.

Artificial linear waterbody with flowing water and

straight boundary.

4.2.4 Machine learning classifiers selection

Google Earth Engine (GEE) is a representative cloud-based geo-computation platform for
machine learning algorithms, offering a centralized and standard framework of Earth
Observation data (Gorelick et al., 2017). GEE has been leveraged in several remote sensing
studies (Mayer et al., 2021, Tassi et al., 2020), and this study will use the GEE platform for

collecting samples and training models.

Machine learning classifiers can be broadly categorized into supervised parametric classifiers,
such as the Maximum Likelihood Classifier (MLC) and Naive Bayes, and non-parametric
classifiers, including Random Forest (RF), Support Vector Machines (SVM), Classification

and Regression Tree (CART), and Artificial Neural Network (ANN) (Belgiu and Dragut,
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2016; Liu et al., 2011; Mas and Flores, 2007). Non-parametric classifiers are preferred for
classifying remote sensing data because they do not impose assumptions on data distribution
(Belgiu and Dragut, 2016). On the other hand, parametric classifiers have limitations
regarding normal data distribution and are not suitable for this study with multi-modal input

data (Liu et al., 2011).

Several previous studies have compared RF with other machine learning classifiers in terms
of classification accuracy, training time, and training stability when study regions or training
samples change (Chan and Paelinckx, 2008; Gislason et al., 2006; Vetrivel et al., 2015). RF
has been shown to outperform Binary Hierarchical Classifier (BHC), Linear Discriminant
Analysis (LDA), and ANN in terms of classification accuracy (Chan and Paelinckx, 2008;
Ham et al., 2005; Shang and Chisholm, 2014). Although Ghosh and Joshi (2014) stated that
SVM classification performs slightly better than RF in Object-based Image Analysis (OBIA),
RF is less sensitive to feature selection, making it more user-friendly (Li et al., 2015; Vetrivel
et al., 2015). Additionally, RF is computationally efficient, capable of handling
high-dimensional and multicollinear data, reducing the risk of overfitting, and ensuring robust
results regardless of the training data quality (Belgiu and Dragut, 2016; Hemmerling et al.,
2021; Mei et al., 2016; Rodriguez-Galiano et al., 2012). In summary, RF achieves better
classification results compared to other machine learning classifiers, especially with
hyper-spectral or multi-source data, and it is faster and more stable than SVM and other

ensemble classifiers (Belgiu and Dragut, 2016).

Therefore, RF is widely used in complex remote sensing image classification involving
large-scale, multiple categories, and multiple features (Li et al., 2015; Rodriguez-Galiano et
al., 2012; Talukdar et al., 2020). Corcoran et al., (2013) evaluated that wetland classification
in northern Minnesota achieved the best results based on the RF classifier with input Landsat
TM data. Considering the large spatial scale of the YRB, and the time cost of training and
testing the monthly satellite images in the whole 37 years of 18 divided region patches, the

deep learning algorithms are not considered in this study due to the disadvantages of
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time-consuming when training of deep learning models (Jamali et al., 2021). In the selected
representative regions among the YRB, the comparison results of classification accuracy for
RF, SVM, and CART were shown in Table 4.2, and RF is selected as the classifier for this

study because of its highest classification accuracy.

Table 4.2: The classification accuracy of three machine learning classifiers in 5 representative

regions along the YRB.
Machine Accuracy

learning
Estuary TLB PLB DLB Source

classifier
RF 95.80% 90.50% 90.30% 92.90% 93.70%
SVM 92.30% 89.80% 85.40% 92.70% 81.80%
CART 92.80% 86.30% 88.00% 90.10% 89.50%

RF consists of a large number of decision trees generated randomly and automatically (Belgiu
and Dragu, 2016). Each decision tree is independently produced without any pruning and
each node is split using a number of features defined by users (Belgiu and Dragut, 2016;
Olofsson et al., 2014). The final classification result is determined by averaging the class
assignment probabilities generated by all the decision trees in the ensemble. When evaluating
a new unlabelled input data, it is assessed against all the decision trees, and each tree
contributes its vote for a class membership. The class with the highest number of votes is
ultimately selected as the final classification result (Belgiu and Dragut, 2016). The training
dataset is divided into two parts: 80% for bootstrap sampling for each decision tree and 20%
for testing to evaluate the RF model (Cui et al., 2018). The computing time required to

establish the RF classification model is:

T./MNlog(N) (4.1)

Where T'is the number of trees, M is the number of variables used in each split, and N is the
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number of training samples (Belgiu and Dragut, 2016). T is a configurable parameter in RF
and affects the classification accuracy. In this study, the number of trees was 30 for training
each image patch.

4.2.5 Machine learning structure

The machine learning method is divided into 1) Landsat and sample labeling datasets; 2)

Input data preparation; and 3) Model training and accuracy assessment (Figure 4.2).
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Figure 4.2: The structure of machine learning method for wetland classification.

4.2.5.1 Landsat and sample labelling datasets

Sample labeling for training and testing generally proceeds on Landsat images by the visual
distinguishing combined with references from the published literature and datasets (e.g. the
CAS_ Wetland dataset, and the China Land Cover dataset from the Resource and Environment
Science and Data Center) (Mao et al., 2020, Yang and Huang, 2021). We also used the GEE
platform to calculate different indices of the classification features, including NDVI, NDWI
and NDSI, which characterize vegetation canopy, water bodies and snow coverage,
respectively (Feng et al., 2022). The formulas are shown as below:

NDVI = (NIR — RED)/(NIR + RED) (4.2)

NDWI = (GREEN — NIR)/(GREEN + NIR) (4.3)
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NDSI = (GREEN — SWIR)/(GREEN + SWIR) (4.4)

NIR, SWIR, RED and GREEN are reflectance values from the near-infrared, short-wave
infrared, red and green bands of the Landsat imagery, respectively (Feng et al., 2022). The
examples with nine different wetland categories and labelled samples are shown in Figure 4.3.
For the wetland categories with clear boundaries, such as lake, river, reservoir, canal, and
aquaculture pond, samples need to be labelled along the boundary; the wetland categories
without the boundary like the inland marsh, tidal flat, estuary water, and coastal marsh, just

drawing squares for samples on Landsat images.

Tidal flat

Reservoir
o

Estuary water

Canal Inland marsh

I samples

Figure 4.3: The example of sample zoning and labeling on the Landsat 8 RGB composite

images of wetland categories.

4.2.5.2 Input data preparation

The preparation of input data involved several steps. Firstly, Landsat imagery of the YRB was
cropped into 18 sub-images following cloud cover filtering and mean compositing.
Concurrently, corresponding sub-masks of labelled samples were generated through

segmentation. Then, the labelled samples were utilized for RF classification, which was
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allocated 80% for training and validation. the remaining 20% for testing. Once the model
training was finalized, the classification maps of the sub-images were integrated to obtain the

final wetland classification maps for the YRB.

4.2.5.3 Validation

Several wetland classification studies have used the existing datasets as reference sources for
validation to substitute for ground-truth field data, especially in the large-scale wetland
classification. For example, Martinez et al. (2021) assessed the classification accuracy of all
the coastal wetlands in Estonia by measuring the agreement between classified values derived
from previous studies and the training samples used in their analyses. Huo and Niu (2024)
validated the wetland map of the Yellow River Basin by comparing it with the existing
products including the CAS Wetlands (Mao et al., 2020). Amani et al. (2019) used the visual
comparison against previous wetland classification maps to assess the wetland classification
accuracy for entire Canada. Moreover, due to the 37-year temporal span of the LTWCD_YRB,
no corresponding long-term reference dataset with the consistent wetland categories is
available for validation. Therefore, the LTWCD_ YRB wetland classification dataset is
validated through the visual comparison with the validation samples for each wetland
category derived from the 30m resolution CAS Wetlands dataset developed by Mao et al.
(2020). The CAS Wetlands is the only existing wetland dataset with the same spatial

resolution and consistent classification system as the LTWCD_YRB.

The CAS_Wetlands dataset contains the precise ground-truth field data in the single year of
2015 derived from field investigations and public databases associated with the national
projects funded by the Ministry of Science and Technology of China (Mao et al., 2020).
There are totally 5022 ground-truth field validation samples representing all the wetland
categories, with their locations recorded using the Global Positioning System (GPS) with the
positional error of less than 2 m. In addition, the unmanned aerial vehicles (UAVs) equipped
with real-time kinematic GPS and supported by the high-resolution satellite images were used

to validate wetlands that were inaccessible on the ground. The overall accuracy of the
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CAS Wetlands dataset reached 95%. Given its rigorous validation process and high accuracy,
the CAS Wetlands dataset is considered as the suitable reference for validating the
LTWCD_YRB. The validated samples were randomly selected from all the samples of the
LTWCD_YRB in 2015 and visually compared with the corresponding wetland categories in
the CAS_Wetlands. In addition, a confusion matrix was generated to assess the classification
accuracy of the LTWCD_YRB based on this indirect validation method, including the overall

accuracy, pI'OdUCCI"S accuracy, and user’s accuracy.

In this study, confusion matrices were constructed in the GEE platform to evaluate the
classification accuracy. The confusion matrix is a commonly used method for assessing
accuracy in land use and land cover (LULC) studies (Feng et al., 2022). It summarizes the
number of samples correctly and incorrectly classified for each class, thereby quantifying the
agreement and differences between the classification result and the reference LULC of the
study region (Olofsson et al., 2014). The matrix provides quantitative accuracy metrics,
including the overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA), and
Kappa coefficient. The OA is a metric for the general evaluation, which is calculated through
the sum of all the correctly classified sites divided by the total of number of reference site, but
it only provides the basic accuracy information for the map user and producer (Nehzak, et al.,
2022). The PA and UA are used to measure the quality of the classification for each wetland
category from the perspectives of map producer and map user, respectively. The PA is the
map accuracy from the point of view of the map producer. It reflects the probability that the
real features on the ground of a given class are correctly classified on the map, therefore
indicating how well the actual wetlands are captured. The PA is calculated as the number of
validated samples classified accurately divided by the total number of validated samples for
that class. The UA is the accuracy from the point of view of a map user. It reflects the
probability that a given class on the map truly belongs to that class on the ground, indicating
the reliability of the classified wetlands. The UA is calculated by taking the total number of
the correct classifications for a particular class divided by the total classified samples for that

class. At last, the Kappa coefficient was applied to assess the difference between the observed
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wetland classification accuracy and that expected by random chance (Tselka et al., 2023)

4.3 Results

4.3.1 Classification accuracy

The validation results were demonstrated in Table 4.3. It indicates that the LTWCD_YRB
dataset achieves the overall accuracy of 85%. The natural wetland categories demonstrated
higher classification accuracy in terms of both UA and PA compared to the human-made
wetland categories. Among all the wetland categories, estuary water attained the highest UA
at 98%, followed closely by lakes at 95%, which means these two categories demonstrated
the highest agreement between the classification result and the actual wetland class. In
contrast, the UA of canals and aquaculture ponds was relatively lower at 61% and 67%,
respectively. This can be attributed to the smaller area occupied by these wetland categories
compared to others, as well as the tendency for canals to be confused with lakes and
aquaculture ponds with other water bodies.

Table 4.3: Wetland category accuracy of the LTWCD_YRB.

Category Sub-category Sample PA UA
testing
number

Natural wetland Lake 8362 98% 95%

River 15762 81% 75%

Inland marsh 2331 86% 70%

Coastal marsh 407 93% 89%

Tidal flat 2035 85% 82%

Estuary water 629 99% 98%

Total 29526 90% 85%

Human-made Reservoir 9398 92% &87%

wetland Aquaculture 6364 79% 67%

pond
Canal 4588 94% 61%
Total 20350 88% 72%
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Summary

49876 Overall Kappa
accuracy coefficient
85% 0.84

Figure 4.4 illustrates the validation samples derived from the LTWCD_YRB and

CAS Wetlands datasets, together with the corresponding classification results

n

representative regions. This figure confirms that wetland categories with lower classification

accuracy in Table 4.3, such as canals, aquaculture ponds, inland marshes, and tidal flats,

exhibit the greater sample inconsistency between the LTWCD_YRB and CAS Wetlands

datasets than other wetland categories, particularly in the coastal regions of Shanghai.
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CAS Wetlands. a)-c): Coastal wetlands in Shanghai; d)-f): aquacultural ponds near
Yangcheng Lake in the TLB; g)-i): a part of Taihu Lake; j)-1): wetlands in the PLB; and m)-o):

alpine lakes in the YRB source region.

4.3.2 Classification results

Table 4.4 presents the annual average change of the nine wetland categories in the YRB
between 1984 and 2021. Comparing the area in 1984 with 2021, the aquaculture pond
experienced the most significant expansion and increased by a total of 4987 km? across the
YRB. The highest expansion rate occurred from 2000 to 2010, with an increase rate of 199.5
km? per year. The area of inland marsh also increased by 2284 km?, although it exhibited with
a fluctuation trend. Particularly, in the 2010-2021 period, the inland marsh shrunk by 8630
km? at a decrease rate of 784.5 km? per year. Lake and estuary water are the only two wetland
categories with a smaller area in 2021 than those in 1984, with lake area decreasing more.
Human-made wetlands in the YRB exhibited a consistently increasing trend from 1984 to
2021 (161.7 km? per year), while natural wetland areas displayed more extensive fluctuations
(as shown in Figure 4.5). Overall, the total wetland area in the YRB was larger in 2021

compared to 1984, with the most substantial variation from 2000 to 2010.
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Figure 4.5: The long-term variations of natural, human, and total wetland areas in the YRB

between 1984 and 2021.
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Table 4.4: Decaded wetland changes in the YRB between 1984 and 2021.

Classes Area in 1984 Area in 2021 Area change (km?)
(km?) (km?) 1984-1990 1990-2000 2000-2010 2010-2021
Lake 16819 15685 -1238 +2540 -3912 +1476
River 11792 11981 +1656 -1045 +49 -471
Canal 240 277 +59 -26 -82 +86
Aquaculture 1275 6262 +1180 +1575 +1995 +237
pond
Reservoir 3682 4640 +189 +35 +436 +339
Coastal marsh 219 314 +41 -46 +1 +99
Inland marsh 9361 11645 +3148 +6073 +1693 -8360
Tidal flat 410 533 +252 -26 -381 +278
Estuary water 3256 2156 -173 -31 -267 =278
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Figures 4.6-4.10 show the mapping of classification results and spatial variations in the five
representative regions across the YRB between 1984 and 2021. Each region includes the
starting year (1984), the ending year (2021), and two more representative years (2001 and
2011) of classification results. All other figures for the rest years are available in the Figshare
repository. The YRB estuary region (Figure 4.6) is located near the East China Sea. This
region primarily consists of coastal wetlands such as coastal marsh, tidal flats, and estuary
water. The figure reveals notable changes over time. In the Yaowang Harbor area, the
aquaculture pond expanded, displacing the tidal flat in 2011 and 2021, which was caused by
the development of local fish farming industries and related infrastructures. Additionally, the
tidal flat and coastal marsh on the Dongtan Nature Reserve of Chongming Island exhibited a
shrinking trend, while they expanded on the reclaimed Changxing and Hengsha Islands.
Moreover, the disappearance of coastal wetlands along the Yangtze River Delta (YRD) is
significant in 2011 and 2021, indicating substantial changes in the region's wetland
composition. Natural driving forces including sea-level rise and slower rate of sedimentation

play significant roles in the coastal wetlands degradation of Chongming Island and the YRD.

121 ?'D'E 122 ?'U'E 127 fD'E 122 ?J'E
a) %] b) % L_egend
[_IYaowang Harbor
Estuary boundary
[JLand
) I River
IS . [ Aquaculture pond
s’ = % [ Inland marsh
\ - B I Tidal flat
/ : & [ Estuarine water
Bl Canal

0'
1
T
32°00°N

31°00°N
1

c) d)

N - W<¢>E

£ = ’? S

o 60 120 km
S S

T
32°00°N

T T
121°00°E 122°00°E 121°00°E 122°00°E

Figure 4.6: The wetland classification of a) 1984 b) 2001 ¢) 2011, and d) 2021 at the YRB

estuary.
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The TLB is in the YRB downstream, as shown in Figure 4.7. The major variation of Taihu
Lake is shown on the southeast corner. Among the wetland categories, the aquaculture pond
exhibits the most distinct variation. It is primarily distributed around the eastern corner of
Taihu Lake and the northern area of Yangcheng Lake, as well as other smaller lakes within
the TLB. Notably, there was a significant expansion of the aquaculture pond between 2001
and 2011. However, by 2021, the area covered by the aquaculture pond had contracted

brought by the implication of fish farming banned in the Taihu Lake and local standardized

management.
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Figure 4.7: The wetland classification of a) 1984, b) 2001, c¢) 2011, and d) 2021 at the Taihu
Lake Basin.

The PLB and DHB are the two central water-body systems of the YRB midstream (Figures
4.8 and 4.9). In the PLB case, the area of Poyang Lake experienced a decrease between 1984
and 2011. This decrease was primarily attributed to the expansion of aquaculture ponds and
flats within the basin. However, by 2021, the lake area showed signs of recovery. Regarding
the DHB, significant shrinkage of the lake area occurred between 1984 and 2021. This
shrinkage can be attributed to the expansion of the inland marsh and aquaculture pond within
and around the lake. However, in contrast to Dongting Lake, Honghu Lake located in the

northeast of the DHB exhibited continuous expansion over the study period, accompanied by
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an increase in the aquaculture pond surrounding it.
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Figure 4.8: The wetland classification of a) 1984 b) 2001 ¢) 2010, and d) 2021 at the Poyang

Lake Basin.
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Figure 4.10 represents the SR of the YRB. In this region, the inland marsh area exhibited
continuous shrinkage and variable spatial distribution in the study period. In contrast, lakes
and rivers in the source region maintain a relatively stable presence without significant
variations because of the less vulnerability to climate change compared with the inland marsh.
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Figure 4.10: The wetland classification of a)1984, b)2001, c) 2011, and d) 2021 at the YRB

source region.

4.3.3 Seasonal variations of wetlands

Figures 4.11 to 4.15 showcase the seasonal change of wetlands in the YRB estuary between
1984 and 2021. Wetlands exhibit much more prominent seasonal variations in PLB, DHB,
and SR compared to the estuary and TLB. All the wetland categories stayed in the relatively
constant area from January to December in the estuary and TLB. In PLB, the lake area
expands to 4128 km? in July, which is 2538 km? larger than that in winter. In contrast, tidal
flats and inland marsh both shrink in summer months. A similar pattern is observed in the
DHB, the lake area reaches the peak value in August, and the area of tidal flats keeps a low
value during the wet months (from May to September). The area of inland marsh in DHB
expands in April, November, and December but contracts in August and September. While

unlike the constant value of aquaculture ponds in the PLB, the area of aquaculture ponds in
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DHB reduces continuously from March to December, which means local aquaculture ponds
are more affected by dry and wet seasons. The most significant seasonal change of wetlands
occurring along the YRB is inland marshes in the source region, with the peak value in
September and much lower values in winter months. These findings highlight the various
seasonal dynamics of wetlands for different regions along the YRB, experiencing distinct

patterns of expansion, shrinkage, and stability throughout the year.
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Figure 4.11: Long-term mean monthly areas of various wetland categories in the YRB estuary

between 1984 and 2021.
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Figure 4.12: Long-term mean monthly areas of various wetland categories in the Taihu Lake

Basin between 1984 and 2021.
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Figure 4.13: Long-term mean monthly areas of various wetland categories in the Poyang Lake

Basin between 1984 and 2021.
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Figure 4.14: Long-term mean monthly areas of various wetland categories in the Dongting

and Honghu Lake Basin between 1984 and 2021.
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Figure 4.15: Long-term mean monthly areas of various wetland categories in the YRB source

region between 1984 and 2021.
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4.3.4 Natural and human activity drivers’ division of wetland variations

Table 4.5 summarizes the attribution of wetland categories with significant changes to natural
and anthropogenic drivers in the Estuary, TLB, PLB, DHB, and SR of the YRB from 1984 to
2021. In the estuary region, tidal flats experienced the most significant changes, shrinking by
52 km? and 47 km?* due to natural factors (sea-level rise) and human activities (urbanization
and fish farming) in the Dongtan Natural Reserve and Yaowang Harbor, respectively. In the
TLB, the development of fish farming led to the expansion of 2475 km? of aquaculture ponds
and the corresponding 655 km? reduction of lake areas. Soil erosion and flooding caused the
expansion of 479 km? of inland marsh and 93 km? of tidal flats in the PLB. Urbanization and
fish farming are the main human activities in the PLB, resulting in a reduction of 32 km? in
lake area and an increase of 438 km? in aquaculture ponds. The DHB exhibited a similar
situation to the PLB, with the expansion of 159 km? of inland marshes and 193 km? of tidal
flats attributed to natural driving forces; human activities led to a shrinkage of 678 km? in lake
areas and an expansion of 945 km? in aquaculture ponds. The total area influenced by human
activities in these three regions exceeds that affected by natural drivers. In the SR region, the
shrinkage of 2284 km?® inland marshes was mainly attributed to changes in precipitation and
temperature, with no significant wetland changes caused by human activities. Overall, human
activities have a more dominant influence than natural factors on wetland changes in the YRB,
although the exact influence varies in different regions of YRB. Human activities caused a
total of 5270 km? of wetland changes, while natural driving forces affected 3260 km?.
Detailed analyses of each driving force and their impacts on the corresponding wetland

categories are discussed in Section 4.4.1.
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Table 4.5: Natural and human activity driving factors division of wetland categories with significant changes in the five representative regions of the YRB

between 1984 and 2021.

Natural driving forces Human activities
(Sea level rise, soil erosion, flooding, temperature and (Urbanization, fish farming, sand dredging)
precipitation change)

Estuary Region Tidal flats -52km? Tidal flats -47km?
(Dongtan Natural Reserve of Chongming Island) (Yaowang Harbor)
Taihu Lake Basin - Aquaculture ponds +2475km’
Lake -655km?
Poyang Lake Basin Inland marshes +479km? Lake -32km?
Tidal flats +93km? Aquaculture pond +438km?
Dongting Lake Basin Inland marshes +159km? Lake -678km?
Tidal flats +193km? Aquaculture pond +945km?
Source Region Inland marshes: -2284km? -
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4.4 Discussion

4.4.1 Wetland variation drivers

Urbanization is one of the most non-negligible factors of wetland variations in the YRB
estuary (Mao et al., 2018). After 2000, the YRD, recognized as China's most economically
advanced region, witnessed a noticeable reduction in marshes and tidal flats along its coastal
areas (Mao et al., 2018). This phenomenon can be attributed to the rapid expansion of
urbanized areas within the YRD (Mao et al., 2018). Urban build-up land was not the only type
of urbanization that destroyed coastal wetlands, the expansion of industrial and transportation
lands including roads and harbors indirectly caused the loss of coastal wetlands as well (Mao
et al., 2018). The disappearance of tidal flats in the Yaowang Harbor between 2001-2021 in

Figure 4.5 reflects this finding, the tidal flats shrank by nearly half, from 91km? to 44km?,

Sea level rise is another major driver for the long-term variations of coastal wetlands in the
YRB estuary due to its low elevation across the estuary region. (Chen et al., 2018). Over the
past three decades, both Jiangsu Province and Shanghai Municipality have witnessed a sea
level rise (Chen et al., 2018). According to the SPRC
(Source-Pathway-Receptor-Consequence) model, the vulnerability of coastal wetlands in the
YRB estuary to sea level rise is expected to continue rising in the coming decade (Cui et al.,
2015). Furthermore, the construction of the Three Gorges Reservoir and the completion of the
South to North Transfer projects have resulted in decreased sediment discharge into the YRB
estuary, leading to a slower rate of sedimentation and subsequent reduction of coastal mud
flats (Chen et al., 2018). Song and Wang (2014) discovered that the YRD and Dongtan
Natural Reserve of Chongming Island both experienced an ‘erosion - deposition - erosion’
pattern in 1980-1990, 1991-2001, and 2002-2012 (Song and Wang, 2014). This pattern
corresponds to the variations in tidal flats of the YRD and Dongtan Natural Reserve, as
shown in Figure 4.5. The area of tidal flats increased from 264km? to 357km?” in 1985 and

2021 and then reduced to 130km? in 2011.
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The expansion of aquaculture pond areas in the TLB is mainly caused by the rapid
development of aquaculture farming (Cai et al., 2013). This driving force resulted in the
expansion of 2475 km? of aquaculture ponds in the TLB, directly contributing to the overall
increase in human-made wetlands within the YRB between 1984 and 2021. Wild capture
fisheries reached the environmental carrying capacity limit in the 1990s, leading the Chinese
government to encourage aquaculture production since then (Cai et al., 2013). The lakeside
regions of the TLB and Yangcheng Lake are the key inland aquaculture pond regions due to
their ideal geography. Consequently, a large number of cages were observed aggregating in

the lakeside regions of the TLB (Cai et al., 2013).

In 2007, following cyanobacteria blooms in Taihu Lake, the government began addressing the
environmental issues associated with pond culture in lakes. As a result, more than half of the
cages in Taihu Lake and Yangcheng Lake were cleared by 2008, and pond culture in lakes
was subsequently banned (Cai et al., 2013). This is why there are almost no ponds in the
southeast corner of Taihu Lake in 2021, and the area of ponds in the TLB decreased
significantly after 2011, continuously reducing from a peak of 3225 km? in 2011 to 2885 km?
in 2021. Currently, the majority of aquaculture ponds in the TLB are concentrated to the north
of Yangcheng Lake and have transitioned towards more intensive and standardized practices,
moving away from the uncontrolled expansion as in the past (Duan et al., 2020). According to
Liu et al. (2020), the area of Taihu Lake has increased from 1984 to 2018, with the eastern
part of Taihu Lake being the main impact area. As shown in Figure 4.6, the southeast corner
of TLB expanded in 2021 compared with that in 1984. However, this lake region is also
affected by aquaculture pond coverage and degradation. Therefore, the lake area of TLB has

experienced shrinkage from 1984 to 2021, decreasing from 2912km? to 2257km?.

For the wetlands of the PLB and DHB, the long-term annual variations are primarily driven
by several factors, including increased soil erosion in the upper reaches of the YRB, flooding
events, and human activities (Mei et al., 2016). Although precipitation from April to October

between 2003 and 2012 was lower compared to that from 1960 to 2002 in the PLB, it does
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not directly indicate that climate change is responsible for the changes in annual changes in
wetland areas (Cui et al., 2013; Mei et al., 2016). Compared with precipitation, soil erosion in
the upper reaches of the YRB and tributaries contains more significant implications on annual
variations of wetland area in the YRB middle and lower reaches, especially for natural water
bodies like Poyang and Dongting Lakes (Cui et al., 2013; Deng et al., 2019). Soil erosion can
increase the sediment load in lakes, leading to a reduction in the lake area with the expansion
of marshes and flats. In the PLB and DHB, both of marshes and flats areas expanded in the
long-term time series. The area of inland marsh increased 479km? in the PLB and 159km?in
the DHB from 1984 to 2021; tidal flats expanded 93 km” and 193km? in the PLB and DHB in
the same time period, respectively. Some experts argue that the increase in soil erosion in the
YRB was primarily attributed to human activities rather than climate change (Wei et al.,

2011).

Human activities such as fish farming, urbanization along the lakeside, and sand dredging
have contributed to the lake shrinkage of 32 km? in PLB and 678 km* in DHB, as well as the
expansion of aquaculture ponds with 438 km® and 945 km? in the PLB and the DHB,
respectively between 1984 and 2021 (as shown in Figures 4.7 and 4.8) (Cui et al., 2013; Mei
et al., 2016; Xie et al., 2017). After 2015, fish farming and sand dredging started to be
managed and banned by the government, respectively (Met et al., 2016). Consequently, this
led to the reduction of 475 km? of aquaculture pond area around Hong Lake (northeast of
Dongting Lake) and the reduction of 406 km® of aquaculture pond in the PLB in 2021
compared with the largest area in 2015. Additionally, severe flooding occurred in the YRB in
1998, 2008, and 2016, which brought impacts on water body changes in two aspects. Firstly,
flooding increased the lake area and number; secondly, the large number of sediments in the
lakes resulted in the shrinkage of lake water storage capacity and extracted water bodies by
raising lakebed levels (Cui et al., 2013; Zhang et al., 2020). Flooding is a significant driving
factor behind the seasonal wetland change in PLB and DHB, affecting floodplains and
seasonal lakes (Li et al, 2019). Both PLB and DHB, with complex floodplains and

interconnected seasonal lakes, were coupled with the main lake during the wet summer
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months but became isolated in winter (Li et al., 2019). Meanwhile, the wetland area with
plant coverage, such as inland marshes, is reduced during the flooding seasons. The area of
inland marsh reached the lowest value in July (12 km?) and September (100 km?) of the PLB

and DHB, respectively, as shown in Figures 4.12 and 4.13.

The annual wetland degradation in the source region of the YRB is primarily indicated by the
shrinkage of inland marsh, which reduced to 7333 km? in 2021 from 9617 km? in the 1980s.
Climate change is identified as the main driving force behind this degradation due to the high
vulnerability of wetlands in alpine areas to changes in temperature and precipitation (Xue et
al., 2018). Previous studies have confirmed that both annual temperatures and precipitation
have increased in the source region of the YRB, and future projections suggest that climate
warming on the Qinghai-Tibetan Plateau will continue and potentially intensify in the future
(Guo et al., 2016; Xue et al., 2018). Regarding seasonal changes in wetlands in the source
region, rising temperatures during summer leads to a reduction in water levels of lakes, with
the lowest lake area recorded at 1193 km? in August. Simultaneously, plant coverage replaces
snow coverage, explaining the observed expansion of inland marshes between May and
September, with the highest value reaching 9919 km? in September, as shown in Figure 4.14

(Xue et al., 2018).

4.4.2 Comparison with other wetland datasets

In this study, the LTWCD_YRB was generated from continuous Landsat images collections
with comprehensive wetland categories. Due to the absence of a dataset offering comparable
wetland classifications and time series specifically for the YRB, the LTWCD YRB was
compared with the YRB wetland classification dataset from 2008, as well as several other
datasets that cover different regions of the YRB and various years between 1987 and 2021

(Table 4.6).

The comparison between the LTWCD_YRB with the whole YRB wetland classification in

2008 demonstrated almost the same natural wetland area (Yan et al., 2013). However, the
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human-made wetland area appears smaller in the LTWCD_YRB because Yan et al. (2013)
included paddy fields and artificial farms, which are not considered as part of the wetland
categories in the LTWCD_YRB. Instead, the LTWCD_YRB has included aquaculture ponds

rather than artificial farms.

In terms of the wetland area in the YRB estuary, the total wetland area in 1980 and 2015 from
Chen et al. (2018) is comparable to the corresponding years in the LTWCD_YRB. However,
due to differences in the zoning of the YRB estuary boundaries, Chen et al. (2018) included
more human-made wetlands in the TLB but fewer tidal flats along the coastal line.
Consequently, Chen et al. (2018) reported a larger area of human-made wetlands, but fewer

natural wetlands compared to the LTWCD_YRB.

The wetland area in the YRB lower stream (LYRB) of LTWCD_YRB is compared with
multiple datasets because few past datasets cover this region with completed wetland
categories (Table 4.6). Lake and aquaculture ponds are the two representative wetland
categories belonging to the natural and human-made wetlands in the LYRB, respectively. Cui
et al (2013) demonstrated similar wetland area in 1990, 2000, and 2008 with the
LTWCD_YRB and confirmed that the lake area in the LYRB decreased more rapidly from
the period of 1990-2000 than that from 2000 to 2008 (Cui et al., 2013). For aquaculture ponds,
the study region of the compared dataset focuses on Jiangsu province, which partially
overlaps with the LYRB, as there is a lack of suitable aquaculture pond data specifically for
the LYRB. And the continuous expansion of the aquaculture pond area from 1988 to 2018

was confirmed.

The trend of wetland changes in the YRB midstream (MYRB) from 2000 to 2019 (Liu et al.,
2022) is consistent with the LTWCD_YRB, which decreased until 2009, a rebound to the
highest value in 2015, and finally reduced in 2019 (Liu et al., 2022) (Table 4.6). In the YRB
source region, the total areas of wetlands and three main wetland categories (lake, river, and

inland marsh) in the LTWCD_YRB closely align with the findings of Zhang et al. (2011).
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Zoning differentiation of the research area is the main reason for the differences in wetland

areas between the LTWCD_YRB and the compared datasets.

75



Table 4.6: Comparison of wetland areas between the LTWCD_YRB and other satellite datasets.

Research Research Research Data source Wetland area
report period region Natural Human-made Total
Yanetal., 2013 2008 YRB Landsat 8 OLI, 47,784 33,003 80,787
30m
LTWCD_YRB 1984-2021 YRB Landsat 5 TM, 47,817 10,384 58,201
7 ETM, 8OLI, (2008) (2008) (2008)
30m
Chen et al., 2018 1980 YRB Landsat 5 TM, 473 167 640
2015 Estuary 7 ETM, 8 OLI, 411 699 1,110
30m
LTWCD_YRB 1984-2021 YRB Landsat 5 TM, 511(1984) 115(1984) 626 (1984)
Estuary 7 ETM, 8 OLI, 712(2015) 302(2015) 1,014 (2015)
30m
Cui et al., 2013 1990 LYRB Landsat 5 TM, 5,716 (Lake) - -
2000 7 ETM, 30m 5,015 (Lake) - -
2008 4,946 (Lake) - -
LTWCD_YRB 1984-2021 LYRB Landsat 5 TM, 5,657 (Lake 1990) - -
7 ETM, 8 OLI, 5,035 (Lake 2000) - -
30m 4,929 (Lake 2008) - -
Duan et al., 2020 1988 Jiangsu Landsat 5 TM, 8 - 660 (Aquaculture pond) -
1993 Province OLI, TIRS, 30m - 1,121(Aquaculture pond) -
1998 - 1,834(Aquaculture pond) -
2003 - 3,005(Aquaculture pond) -
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2008 - 3,107(Aquaculture pond) -
2013 - 3,853 (Aquaculture pond) -
2018 - 4,098(Aquaculture pond) -
LTWCD_YRB 1984-2021 LYRB Landsat 5 TM, - 832 (1988) -
7 ETM, 8 OLI, - 1,403 (1993) -
30m - 1,594 (1998) -
- 2,460 (2003) -
- 3,067 (2008) -
- 3,406 (2013) -
- 3,776 (2018) -
Liu et al., 2022 2000 MYRB Landsat 5 TM, - - 10,335
2006 7 ETM, 8 OLI, - - 7,182
2009 30m - - 7,231
2015 - - 11,143
2019 - - 8,290
LTWCD_YRB 1984-2021 MYRB Landsat 5 TM, - - 11,191 (2000)
7 ETM, 8 OLI, - - 10,427 (2006)
30m - - 10,027 (2009)
- - 12,804 (2015)
- - 12,057 (2019)
Zhang et al., 2000 YRB Source Landsat 5 TM, 964 (lake) - 10,445
2011 30m 4,289 (River) -

5,192 (Inland marsh)
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LTWCD_YRB 1984-2021 YRB Source Landsat 5 TM, 1,492(Lake 2000) - 10,081
7 ETM, 8 OLI, 3354(River 2000) - (2000)
30m 5235(Inland marsh 2000) -
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4.4.3 Advantages and limitations

Researchers and policymakers can use the LTWCD_YRB to analyze both spatial and
temporal changes for multiple wetland categories along the YRB based on different regions,
seasons, and period of interest. Additionally, the wetland classification results can be used to
assess the ecological and environmental impacts of natural and human activities such as
climate change, urbanization, agriculture, aquaculture, and other driving forces on the YRB
wetlands, supporting evidence-informed decision-making for sustainable wetland
management. Moreover, the LTWCD_YRB can be instrumental in monitoring the
implementation of wetland conservation policies and assessing their effectiveness. By
comparing the wetland classification results with policy objectives, researchers, policymakers
and stakeholders can determine whether conservation efforts are achieving the desired
outcomes and make necessary adjustments. Furthermore, the seasonal change patterns of
wetlands in different regions of the YRB can provide insights into the hydrological processes
and ecological dynamics of the wetlands and inform water resource management strategies.
Overall, the long-term time series of the wetland classification dataset is a valuable tool for
researchers, policymakers, and stakeholders to better understand the YRB wetlands and

support sustainable management practices.

The validation process of the LTWCD_YRB dataset has several limitations. This study
validated the wetland classification accuracy using an existing wetland dataset from Mao et al.
(2020) rather than field-based ground truth data. As indicated in the literature review, the use
of existing datasets as the indirect validation has become a common practice in the large-scale
wetland classification research, because of the practical challenges to obtain the
comprehensive field-based ground truth data for large-scale wetlands. However, it may
impose uncertainties on the reliability and interpretation of the indirect validation process.
Given that the CAS Wetlands dataset only covers the year of 2015, the classification
accuracy assessments for other years of the LTWCD_YRB may contain uncertainties.
Besides, some small, narrow, and temporary wetlands may be underrepresented by the

CAS_Wetlands. Thus, the validation dataset may fail to capture the wetland features that are



correctly identified by the classification, thus potentially leading to the biased accuracy

assessment.

Additionally, the classification accuracy of some human-made wetland categories (e.g., canals
and aquaculture ponds) with small areas is relatively low. These categories can be challenging
to accurately classify due to the difficulty in collecting precise samples from the Landsat
imagery and the inherent size limitations of the samples. Improving the classification
accuracy of small-scale human-made wetland categories would require more precise sampling
techniques and potentially higher-resolution satellite imagery. This could involve ground truth
data collection, field surveys, or utilizing other data sources such as high-resolution
Unmanned Aerial Vehicles (UAV) imagery. Incorporating additional ancillary data and
advanced classification algorithms could also help enhance the accuracy of these specific

wetland classifications.

4.5 Conclusions

In this study, the LTWCD_YRB dataset was generated from continuous Landsat images with
completed wetland categories, utilizing the RF machine learning method on the GEE platform.
A thorough investigation of the LTWCD_YRB dataset yielded several significant findings: 1)
The total wetland area of the YRB in 2021 was larger than that in 1984, with a consistent
increase in human-made wetlands and fluctuating natural wetland areas. Anthropogenic
driving forces have a greater impact on the expansion of wetland areas compared to natural
driving forces; 2) The aquaculture pond was the wetland category that expanded the most in
2021 compared with that in 1984 due to urbanization and fish industry development. Key
regions affected include the YRB estuary, TLB, and DHB. Conversely, inland marsh was the
category with the most fluctuations between 1984 and 2021, particularly in the YRB SR; 3)
Seasonal changes in wetland areas were prominent in the PLB, DHB, and SR, driven by
variations of floodplains and inland marsh vegetation coverage. The LTWCD_ YRB
demonstrated a consistent agreement of wetland area variations with the other satellite-based

wetland datasets of the YRB. It would provide a valuable time series for evaluating historical
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wetland changes, developing future wetland conservation strategies, and analyzing the

interactions between natural and human-made driving forces in the YRB.
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Chapter S Effects of long-term wetland variations on flood

risk assessments in the Yangtze River Basin

Highlights:

® We analyze flood risks with long-term wetland effects by using the GIS-based model.
® Wetland expansion leads to flood risk reduction in years with normal rainfall.

® (Causal relation analysis is a useful way to find dominant flood risk indicators.

® Precipitation is the dominant indicator in all the five flood prone regions.

® We give wetland-related suggestions for flood risk mitigation.

This chapter is a reformed version of a manuscript published in the Environmental Impact

Assessment Review, which is available at https://doi.org/10.1016/j.eiar.2025.108123.
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5.1 Introduction

In recent decades, global climate change has brought inevitable consequences, such as sea
level rise, global warming, seasonal irregularities, droughts, and floods (Rajkhowa and Sarma,
2021). Among these extreme events, floods have been responsible for 44% of global natural
disasters (WMO, 2021). The annual deaths and economic losses caused by the floods reached
1254 people and US$2.5 billion, respectively (Petit-Boix et al., 2017). From 1998 to 2017,
floods have affected two billion people across the world (Wu et al., 2020). In the Yangtze
River Basin (YRB) of China, flooding is the most frequent natural disaster with enormous
socio-economic damages (Xia and Chen, 2020). The YRB has experienced a high proportion
of flood occurrences, including seven massive floods since 1860. The disastrous flood in 1998
led to heavy casualties, and ecological and economic losses (Zhang et al., 2020; Zhang et al.,

2023).

According to the latest wetland classification system from Mao et al. (2020), wetlands
include various categories, including Inland marsh, inland swamp, lake, river, tidal flats,
reservoir, canal, and aquaculture pond. As a critical component in the hydrological cycle, the
wetlands offer numerous ecological and economic advantages, including contributing to the
global carbon cycle, purifying water, mitigating floods, boosting fish production, and
sustaining biodiversity (Liang et al., 2020; Xing et al., 2015). Flood control is one of the most
important ecosystem services of wetlands under climate change (Gulbin et al., 2019).
Numerous cases of high flood-risk regions around the world have proved that wetland
variations brought large implications on flood resilience, such as the northeast Haor region of
Bangladesh, lakes in the middle and lower reaches of the YRB, and Rocuant-Andalién coastal
wetlands of Chile (Cui et al., 2013; Kamal et al., 2018; Rojas et al., 2022). To reduce the
negative results brought by flood disasters, the development of nature-based solutions
regarding wetlands land use and land cover (LULC) in the long-term process has attracted
increased awareness (Schanze 2017; Thorslund et al., 2017; Wu et al, 2022). The
effectiveness of wetland-related solutions has been confirmed by several studies (Fournier et

al.,, 2016; Qin et al.,, 2024; Van and Temmerman, 2019; Wu et al., 2020), including
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developing river restoration projects like the riverside corridor restoration in European
countries (Fournier et al., 2016), improving hydrological resilience to flood risk by wetlands
protection and restoration of the Nenjiang River Basin in Northeast China (Van and
Temmerman, 2019), protecting wetlands from transferring to built-up areas in the
Guangdong-Hong Kong-Macao Greater Bay Area (Qin et al., 2024), and mitigating coastal
floods by restoring and creating tidal wetlands in flood-exposed coastal cities around the

world (Wu et al., 2020).

The YRB covers 40% of the national wetland area in China with complex variations due to
various driving forces (e.g., climate change, rapid urbanization along the Yangtze River
Economic Belt, dam construction, and agricultural and livestock activities) (Finlayson et al.,
2018; Xu et al., 2019b; Zheng et al., 2020). According to the characteristics of wetlands, the
influence on floods depends on the categories and locations of wetlands (Acreman and
Holden, 2013). Although the YRB has abundant wetland resources, wetland-based flood risk
mitigation approaches are less prevalent compared to structural approaches, such as
large-scale water conservancy projects like the Three Gorges Dam (Jia et al., 2022). To align
with the ecological civilization development goals outlined in the national strategy for the
Great Yangtze River Protection Program (GYRPP) launched in 2016 (Sheng et al., 2022), it is
valuable to develop wetland-based approaches to enhance flood resilience and protect wetland
resources in the YRB. Analyzing the effects of long-term wetland variations on flood risk
assessments in the YRB flood prone regions is the basis for policymakers to develop feasible

wetland-based flood risk management practices.

The area of middle and lower reaches of the YRB (MLYRB) is only half of the total YRB,
but it contains the largest and one of the most abundant wetland ecosystems in China (Li et al.,
2014; Yu et al., 2009). Also, the MLYRB is more easily to suffer from large-scale floods (Jia
et al., 2022). Hence, the selection of flood prone regions gives more focus on the MLYRB in
this study. Taihu Lake, Poyang Lake, and Dongting Lake are all significant water bodies to
accommodate floods in the YRB (Yu et al., 2009). However, soil erosion in the upper reaches

and frequent human activities altered their wetland function to floods in the basins of these
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water bodies (Ma et al., 2023). Hence, it is valuable to investigate the effects brought by
wetlands on flood risks of the Taihu Lake Basin (TLB), Poyang Lake Basin (PLB), and
Dongting and Honghu Lake Basin (DHB). The Wanjiang Plain (WP) is selected as a study
area due to its extensive alluvial floodplain. It also features a dense cluster of small lakes on
both sides of the Yangtze River. These characteristics distinguish the WP from other basins
(Dong et al., 2022). The only flood prone region selected in the YRB upstream is the Sichuan
Basin (SB). It has been confirmed with the highest flood risk in the province of Sichuan
because of the complex landform, lower altitude compared with surrounding mountainous
areas, large precipitation, and dense population (Guo et al., 2023; Liu et al., 2017). Hence,
five major flood prone regions were selected for this study, including the TLB, WP, PLB,

DHB, and SB.

The World Meteorological Organization (WMO) defines risks as the potential loss of lives,
property damages, disrupted economic activities, caused by a specific hazard within a given
area and reference period (WMO, 1999). In recent years, flood risk has become increasingly
complex due to emerging challenges associated with flood disasters. Flood risk factors are
various because of different socio-economic conditions and ecological environments (Zhang
et al., 2020). In this study, flood risk is defined based on the Intergovernmental Panel on
Climate Change (IPCC) report, which encompasses hazards, systemic vulnerability, and
exposure of human and natural systems (IPCC, 2014). Assessing the integrated flood risk
with various flood risk indicators is the most effective way to evaluate and discuss the flood
risk, as well as improving the public awareness of flood risk mitigations in the YRB (Wu et
al., 2022; Zhang et al., 2020). There have been several studies for flood risk assessments
covering the YRB: some of them focusing on typical lake basins like the PLB and DHB (Wu
et al., 2022; Wang et al., 2011), some focusing on typical cities like Chongqing and Wuhan
(Cai et al., 2021; Fang et al., 2019), Peng and Li (2021) and Zhang et al. (2020) both assess
the flood risk for the entire YRB. For the study period of these flood risk assessments, most of
them assess one or a few years, except Wu et al. (2022) that incorporates both short-term and

long-term flood risk assessments. A number of methods have been applied for the flood risk
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assessment, such as the historical disaster statistical method (Halgamuge and Nirmalathas,
2017; Youssef et al., 2015), scenario simulation analysis for future flood risk predictions
(Alfieri et al., 2015; Cai et al., 2021; Gangrade et al., 2019), index system method (Christie et
al., 2018), Set Pair Analysis (SPA) combined with variable fuzzy sets (VFS) model (Su et al.,
2010; Zhang et al., 2011; Zou et al., 2013), machine learning method like the Artificial Neural
Network (ANN) (Li et al., 2008), and the multi-criteria decision making GIS-based approach

(Cai et al., 2021; Lyu et al., 2023; Peng et al., 2024; Zhang et al., 2020; Ziwei et al., 2023).

Among various flood risk assessment methods, the multi-index GIS-based approach is widely
used and recognized as an effective method for identifying flood risks. It offers advantages in
analyzing the large-scale spatial data and comprehensively considering all aspects of flood
risk indicators (Zhang et al., 2020). Cai et al. (2021) applied the multi-index GIS-based model
with 11 indicators to assess the flood risk in Chongqing, in which the river density was
considered as an exposure indicator. Similarly, Ziwei et al. (2023) and Zhang et al. (2020)
used the river network density as an indicator to make the flood risk assessment in the Lijiang
River Basin and the YRB. Peng et al. (2024) included the river distribution as an indicator in
the model to assess flood risks in Beijing. In Lyu et al. (2023), the drainage condition was
selected as a flood risk indicator in the multi-index GIS-based models to assess the flood risk
in Lanzhou. Wetlands are abundant and encompass various categories in the YRB, their
spatial dynamics lead to complex effects on the flood risks (Acreman and Holden, 2013). In
previous studies, however, wetlands were not well represented in the flood risk assessment
model and the river or drainage indicator is the only wetland category that has been included.
Therefore, there is a research gap that exists in incorporating the wetland effects as a flood

risk indicator into the multi-index GIS-based model.

Through the literature review of flood risk assessment studies, no prior research has been
found to adopt the comprehensive wetland data as a model input to assess the flood risk of all
the flood prone regions in the YRB. As a result, investigating the spatial and temporal

long-term wetland effects on flood risks in the YRB remains a significant research gap.
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Therefore, the novelty of this study lies in analyzing the long-term annual wetland effects on
flood risks from 1985 to 2021 in the YRB by using an improved multi-index GIS-based
model that incorporating the wetland input. Moreover, this improved multi-index GIS-based
model can be applied to assess the flood risk in flood prone regions of other basins worldwide
with abundant wetland resources. To address this, this study incorporates the Long-Term
Wetland Classification Dataset for the YRB (LTWCD YRB) from Guo et al. (2024) as a
flood risk indicator, to develop the long-term flood risk assessment with wetland implications.
The research objectives of this study include: 1) To improve the flood risk assessment model
by incorporating the effects of wetland variations, and to investigate how long-term wetland
changes affect flood risk assessments in the YRB; 2) To examine the causal relationships
among flood risk indicators and identify the dominant indicators for each flood prone region
under wetland effects; 3) To provide useful suggestions for policymakers on the

wetland-related flood risk management.

5.2 Materials and methods

5.2.1 Study area

The YRB (Figure 5.1) is located between 24°27° to 35° 54° N and 93°33” to 122°19’ E,
covering 18.75% of China’s total area, with the area of 1.8 million km? (Zhang et al., 2020).
Wetlands in the YRB account for 40% of the national wetlands in China, with hundreds of
tributaries and lakes (Cui et al., 2018; Xue et al., 2018). Under implications of topography,
subtropical monsoon climate, and annual precipitation, the flood prone regions are unevenly

distributed in the YRB (Zhang et al., 2020).

The major flood prone regions are labelled in Figure 5.1, including the TLB, WP, PLB, DHB,
and SB. The TLB is situated in the Yangtze River Delta, one of the most rapidly developing
regions in China, and encompasses Taihu Lake, the third-largest freshwater lake in the
country (Peng et al., 2018). The WP is located within the MLYRB, spanning 416 km of
Yangtze River on the plain, with several lakes on both sides of Yangtze River (Dong et al.,

2022). The PLB and DHB are situated in the midstream of the YRB, encompassing the first
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and second largest freshwater lakes in China respectively. These basins feature extensive
floodplains that adjoin their main lakes (Li et al., 2019; Wang et al., 2022; Wu et al., 2022).
The SB, located in the central-eastern part of Sichuan province and the upper reaches of the
YRB, including numerous tributaries, is one of the most densely populated areas in China

(Guo et al., 2023; Liu et al., 2017).
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Figure 5.1: The location, hydrographical and topographical information of the Yangtze River

Basin and five flood prone regions.

5.2.2 GIS-based spatial multi-index model

This study used a GIS-based spatial multi-index model to assess the flood risk in the YRB.

The model includes two parts: a multi-index system and an analysis procedure in ArcGIS.

5.2.2.1 The multi-index flood risk system

The multi-index system consists of the index layers including the hazard index (H),
vulnerability index (V), and exposure index (E), with 13 flood risk indicators for representing
these index layers, as described in Zhang et al. (2020). The weight of each indicator is

evaluated by the Analytic Hierarchy Process (AHP) method, which was firstly proposed by
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Saaty (1977). The AHP method is considered as the practical technique in the multi-index
flood risk assessment, which produces rapid, reliable, and cost-effective performances by
subdividing the flood risk into specific factors tailored to different zones (Cai et al., 2021;
Roy et al., 2021a). It has been widely employed in flood risk assessments and successfully
applied in a GIS environment to generate flood risk maps in the YRB in our research group
(Zhang et al., 2020). Firstly, the flood risk assessment framework was established with a
hierarchical structure based on the flood formation mechanism and relationships between
indicators. As shown in Figure 5.2, the assessment structure is consisted with the object layer,
the index layer, and the indicator layer. Secondly, the judgement matrix [aij] in Eq. (5.1)
between each indicator was used to determine the relative importance of factor ai to factor aj

from experts’ questionnaire (Zhang et al., 2020).

a1 Q2 A1m

.. a1  QAzz ... Qyp
ay =1 . T : (5.1)

m1 Amz2°"" Amm

Besides, the weight of each indicator in the matrix should meet the following condition,

which means that the sum of weight from all the indicators should be 1.

{Zai’:l (i,j=1,2-,n) (5.2)

a;; =1/ay
In this study, weights of all the indicators are divided into positive and negative. A positive
weight means that this indicator can aggravative the flood risk, whereas negative weights

would reduce the flood risk. The consistency check of the judgment matrix is the third step of

the AHP. It can be calculated by Eq. (5.3):
CR==— 5.3)

CR is the consistency ratio, C/=(Amax -n)/(n-1) and Amax is the largest eigenvalue of the
judgment matrix. R/ is the average random consistency index. The test will be passed if CR is

less than 0.1, otherwise the matrix needs to be reconstructed (Lyu et al., 2018). The weight of
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each indicator is shown in Table 5.1.The relative importance of each index is obtained by

adding weights of corresponding indicators. Thirdly, the YRB flood risk can be calculated by

the following equation:

YRBFR = H X Wy + V X Wy + E x Wg

(54

YRBEFR is Yangtze River Basin Flood Risk; Wi, Wy , and W are the weights of hazard

index, vulnerability index, and exposure index, respectively.

Flood risk

Object layer

Hazard (H) Vulnerability (V) Exposure (E)

1. Population density (PD)
. Absolute elevation (AE) 2. GDP per capita (GDP)

. Relative elevation (RE) 3. Soil erosion degree (SE)
. Wetland and drainage density (WD)

. Runoff and vegetation cover factor (RU)

Cumulative average maximum

three-day precipitation (PR)

4. Site contamination risk (CO)

. Local financial revenue (RE)

. Per capita resident savings (SA)

. Medical service level (ME)

. Monitoring and early warning capability (MW)

0 N OO A W N

Index layer

Indicator layer

Figure 5.2: The improved flood risk assessment model by incorporating the effects of wetland

variations.
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Table 5.1: Weights and data source of flood risk indicators of the improved flood risk assessment model

Indicator layer

Weight of the indicator layer

Data source

Cumulative average maximum 3-day
precipitation

Absolute elevation

Relative elevation

Wetland and drainage density

Runoff and vegetation cover factor

Local financial revenue
Per capita resident saving
Medical service level

Monitoring and early warning capability

Population density
GDP per capita

Soil erosion degree

Site contamination risk

+0.469

-0.053
-0.061
+0.039

+0.041

-0.028
-0.025
-0.027
-0.047

+0.046
+0.066
+0.068

+0.030

National Meteorological Information Center (China Surface Climate Data Day
Value Data Set) (V3.0)

Resource and Environment Data Cloud Platform

Calculated from absolute elevation data

The Long-Term Wetland Classification Dataset for YRB (LTWCD_YRB) (Guo et
al., 2024)

Resource and Environment Data Cloud Platform (Liu et al., 2014)

China City Statistical Yearbook (http://www.chinayearbooks.com)

China City Statistical Yearbook (http://www.chinayearbooks.com)

China City Statistical Yearbook (http://www.chinayearbooks.com)

National Meteorological Information Center (China Surface Climate Data Day
Value Data Set) (National, 2019)

Resource and Environment Data Cloud Platform (Xu, 2020)

Resource and Environment Data Cloud Platform (Liu et al., 2005)

Resource and Environment Data Cloud Platform (Wang et al., 2016)

Resource and Environment Data Cloud Platform (Liu et al., 2014)
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The selection of flood risk indicators is referred from Zhang et al. (2020) due to the same
study region of the YRB, considering the principles of objectivity, operability, and easy
spatialization, which has been theoretically based on their relevance to the past floods in the
literature. Flood risks were assessed based on the following two model scenarios: one is
through the general flood risk model from Zhang et al. (2020) generated with the flood risk
indicators in the YRB, and the other is the improved flood risk assessment by incorporating
the effects of wetland variations. In the improved YRBFR scenario as shown in Figure 5.2,
the drainage density in the vulnerability layer was replaced by the wetland and drainage
density derived from the LTWCD_YRB data. In the original YRBFR, drainage density is
defined as the density of main and tributary streams. The improved indicator derived from
LTWCD_YRB covers comprehensive wetland categories with river networks in the YRB.
The total area difference for each level of flood risks between these two models (AFR) could
explain how long-term wetland variations would affect flood risks. The uncertainty resulting

from the indicator replacement is discussed in Section 5.4.1.

5.2.2.2 GIS analysis procedures

5.2.2.2.1 Data collection and processing

All the indicators’ data collected has been rasterized before being input into the model, to
reflect further details of the flood risk spatial distribution. The primary data sources of flood
risk indicators are shown in Table 5.1. ArcGIS has been used to extract required elements
from the collected real geographic and socio-economic data. All conversion processes and

data processing of each index were completed in ArcGIS.

Hazard Index

Flood hazard is directly related with precipitation intensity, which associated with both of
frequency and amount of precipitation. Hence, the maximum precipitation for cumulative
three days of each year from 1985 to 2021 in the YRB is selected as the hazard indicator. The
point data from the daily meteorological dataset of China National Surface Weather Station

(V3.0) can be converted to raster data by using the Kriging interpolation method (Zhang et al.,
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2020) in the ArcGIS.

Vulnerability Index

For vulnerability, we choose absolute elevation, relative elevation, wetland density, runoff
and vegetation cover factor, local financial revenue, per capita resident saving, medical
service level, and monitoring capability as assessment indicators. Absolute and relative
elevation indicate the height and slope, respectively, which are topographic impacts on
flooding. The standard deviation of 25 grid elevations around the centre grid was calculated
as the terrain change, then obtaining the terrain standard difference level map by using the
Focal Statistics tool. The wetland density refers to the ratio of wetland area and drainage area
to the basin area. Runoff and vegetation cover factor is the velocity coefficient of the land.
This study assigns values to the vegetation cover factor for each LULC class based on the
LULC classification map, creating a new vegetation cover factor map. The local financial
revenue, per capita resident savings, and medical service level indicators reflect the
self-rescue ability of communities and residents facing the flood disaster. These data are
rasterized to each grid by connecting with the vector data at the city level. Monitoring and
early warning capability is defined as the hydrometeorological station density in this study,

with the purpose to prevent and reduce disaster losses in advance.

Exposure Index

The exposure aspect contains population density, GDP per capita, soil erosion degree, and site
contamination risk. The influence of flood risk on people and constructions is examined by
population density and GDP. Soil types affect flood risk formation, the severe soil erosion can
aggravate flood disasters. Site contamination risk determines the polluted level of lands and
waterbodies after floods. Similarly to the vegetation cover factor, the site contamination map

is generated from the LULC data through value reassignment.

5.2.2.2.2 Data normalization and classification

In this analysis, 13 flood risk indicators for the YRB are expressed in different units. In this
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case, data normalization is necessary to enable comparison. The normalization shown in
equation (5.5) as below:

b = i (55)
The data normalization has been done by the Raster Data Calculator tool in ArcGIS. The
value after normalization is between 0 to 1. When the value is closer to 1, the flood risk is

higher.

The integrated flood risk is classified into 5 levels: Very low, low, medium, high, and very
high by using the ‘classified tool’ in the Layer Properties of ArcGIS. With the purpose to
make the comparison of the flood risk spatial distribution with and without wetlands, the
classification interval standard of the integrated flood risk with and without wetland density
should keep consistently. Hence, the classification interval of flood risk assessment results
with and without wetlands need to be adjusted manually in the ArcGIS. With the reasonable
standard by considering both years with the minimum and maximum flooding, levels of flood
risk are defined as very low (0-0.09), low (0.09-0.17), medium (0.17-0.25), high (0.25-0.35),

and very high (0.35-1.0).

5.2.3 Causal relationship based on the PCMCI algorithm

Causal inference plays the significant role to address many open problems with relevant
environmental, social and economic implications, which are inherently causal (Runge et al.,
2023). This study utilizes the PCMCI algorithm (Runge et al., 2019b), which is based on the
Python package called TIGRAMITE (Runge et al., 2019b) to detect the strength of the causal
relationship between the AFR and flood risk indicators in the 36-year time series. PCMCI has
been applied in detecting the time-lagged causal discovery from observational discrete or
continuous time series data like the climate change data and producing high-quality result
graphs (Runge, 2018). PCMCI is a two-step approach that combines the PC algorithm (named
after its inventors Peter and Clark) and the Momentary Conditional Independence (MCI) test,
to assess the causal structure and to accommodate nonlinear functional dependencies of

discrete or continuous variables (Krich et al., 2020; Runge, 2018). The first step is PC
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algorithm, which is established to identify pseudo-links between variables X t] e {Xt,...., X"}
and their respective sets of causal parent nodes ﬁ(X{ ) (Runge et al., 2019b). In this study,

th represents all the variables including AFR and flood risk indicators. ,;é(X{ ) means the

causal parents (lagged adjacency) for variables. After three interactions, PC algorithm
adaptively converges to relevant conditions that include the causal parents with the high

probability. The second step is the MCI test, to test whether there’s a relationship of Eq.(5.6)

between time-shifted parents of Xi_, and the parents of Xg (Runge et al., 2019b).

MCI: X X} [AED\XE-} AXE-0) (5.6)

The MCI test is the most significant difference between the original PC algorithm and
PCMCI. The additional conditions on the parents £ (X!_;) in MCI leading to autocorrelations,
so that controlling false positive rates at the expected level (Runge, 2018; Runge et al.,
2019b). While detecting the causal network structure is the main goal of PCMCI, the MCI test
can provide a well-interpretable notion of a normalized causal strength (Runge et al., 2019b).

Hence, the causal link strength in the PCMCI framework is given by the partial correlation

value (ParCorr) of the MCI test, which is between -1 and 1 (Krich et al., 2020).

5.3 Results

5.3.1 Comparison of flood risk assessments between two model scenarios

The flood risk assessments based on the improved model incorporating the wetland indicator
produced reasonable results when compared with those from the flood risk assessment model
without the wetland indicator. Figures 5.3 to 5.7 present the comparisons of flood risk spatial
distribution between those two models in the selected years, while the corresponding area

changes are detailed in Tables 5.2 to 5.6.
5.3.1.1 Taihu Lake Basin

Figures 5.3a, 5.3b and Table 5.2 demonstrate the area with the very high flood risk level

expanded 819 km?® with wetland effects in the eastern TLB in 1991, which was the year with
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the highest flood risk. The TLB was confirmed to experience the large flood disaster caused
by the heavy precipitation in 1991, filling up inlets and outlet channels and lakes, as well as
lake reclamation (Sun and Mao, 2008). As a result, the combination of high precipitation and
small wetland areas diminished water storage capacity, contributing to the higher flood risk in
1991. In 2005, the overall flood risk level in the TLB was much lower than that in 1991 and
the highest level is medium (Figures 5.3c, 5.3d and Table 5.2). Comparing Figure 5.3d with
Figure 5.3c, the medium-level flood risk shrank the area of 771 km? after adding the effects of
wetlands around Yangcheng Lake and north of Taihu Lake in 2005. At the same time, the
area of very low flood risk expanded 321 km?with wetland impacts, mainly concentrated in
the southeast corner and southern region of the TLB. The differences in flood risk with
wetland effects between these years are primarily attributed to the significant increase in
wetland area in 2005, reached 5,168 km? (Guo et al., 2024), due to the expansion of
aquaculture ponds around Taihu Lake and Yangcheng Lake (Figures 5.8a and 5.8b). The local
government started to encourage aquaculture production in these regions due to their ideal
geography since 1990s, and reached the peak after 2000 (Cai et al., 2013; Liu and Zhang,
2017). Consequently, the area of aquaculture pond was much larger in 2005, thus playing the

important role as a sink to reduce the flood risk.
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Figure 5.3: Flood risk spatial distribution maps in a) 1991 and c) 2005 without wetlands; b)
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1991 and d) 2005 with wetland effects of the Taihu Lake Basin.

Table 5.2: The flood risk assessment area (km?) in 1991 and 2005 of the Taihu Lake Basin.

1991 1991 with wetland 2005 2005 with wetland effects

effects
Very low 0 0 10778 11099
Low 0 0 14249 14699
Medium 7126 7049 1114 343
High 16457 15715 0 0
Very high 2375 3194 0 0

5.3.1.2 Wanjiang Plain

The comparison between flood risk results of two models in the WP in 2003 and 2010 are
demonstrated in Table 5.3 and Figure 5.4. It showcases that the very high flood risk area
expanded 6,069 km* with wetland effects in the year of 2003 with the high precipitation,
mainly around Chaohu Lake; the high flood risk region expanded in the central area of the
WP with an area of 577 km? in 2003. The Chaohu Lake Basin is a flood prone area located in
the central part of Anhui Province, the area around Chaohu Lake contains typically low flood
disaster resilience because of the low-lying terrain (Sun et al., 2016). In Figures 5.4c and 5.4d,
the spatial distribution of very-high flood-risk areas demonstrates the significant shrinkage
from 16,027 km? to 15,194 km? in the southwestern part of the Chaohu Lake Basin with
wetlands implications in 2010, which is the area with the relatively higher flood disaster
resilience than other regions when the local precipitation reduced (Sun et al., 2016). However,
because of the weak flood disaster resilience around Chaohu Lake, the high flood risk area
still expanded with the wetland effects in 2010. Although the central WP is vulnerable to
flood risk because of the low-lying terrain, its isolated lakes have been shown to act as natural
sinks, storing stormwater under normal conditions (Acreman and Holden, 2013). However,
the agricultural development in the WP, especially around Chaohu Lake since the 1970s, led
to significant wetland reclamation, shrinking lakes and tidal flats, and converting them into

farmland (Dong et al., 2022). Between 2000 and 2010, approximately 58 km? of lakes were
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converted to farmland and construction land (Dong et al., 2022). Consequently, the ability to

capture and hold rainfall became weak in the floodplain, thus promoting the high flood risk

surrounding Chaohu Lake (Acreman and Holden, 2013). Comparing wetland distribution in

2003 and 2010 (Figures 5.8c and 5.8d), the expansion of aquaculture ponds in the eastern

corner and central WP near the Yangtze River in 2010 contributed to the increased very low

flood risk area in the eastern corner and the reduced high flood risk area in the WP central

region near the Yangtze River in Figures 5.4c and 5.4d.
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Figure 5.4: Flood risk spatial distribution maps in a) 2003 and c) 2010 without wetlands; b)

2003 and d) 2010 with wetland effects of the Wanjiang Plain.

Table 5.3: The flood risk assessment area (km?) in 2003 and 2010 of the Wanjiang Plain.

2003 2003 with wetland 2010 2010 with wetland effects

effects
Very low 0 0 2158 2265
Low 0 0 9723 9916
Medium 16049 10557 5364 5320
High 15664 15087 8890 9467
Very high 9510 15579 16027 15194
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5.3.1.3 Poyang Lake Basin

PLB experienced severe flooding in 1994, more than half of the PLB (26,308 km*and 29,093
km? out of 54,618 km? in Table 5.4) was covered by the very high flood risk level spreading
outward from Poyang Lake as the centre (Figures 5.5a and 5.5b). The year of 1994 is an
extremely wet year with the very large precipitation, thus coupling all the wetlands to become
floodplains. The interconnected seasonal lakes surrounding Poyang Lake, which typically
retain water, contributed to this increased flood risk due to their lower water storage capacity
compared to permanent lakes (Li et al., 2019). Although lakes generally play a critical role in
stormwater storage and control in the PLB, the limited capacity of seasonal lakes led to a
2,585 km? expansion in the very high flood risk area in 1994 under heavy precipitation
conditions (Li et al., 2019; Shankman et al., 2009). In contrast, comparing Figures 5.6d and
5.6¢, the area of very high flood risk decreased by 1,642 km? in 2006 after accounting for
wetlands. This reduction was primarily observed in the southwestern region of the PLB,
where the expansion of water bodies (Figure 5.8f) increased flooding water storage capacity.
Wu et al. (2022) confirmed that the areas with consistently very-high flood risk are
concentrated near Poyang Lake and Ganjiang River (southwest of Poyang Lake), aligning

with the spatial flood risk distributions as shown in Figure 5.5 both models.
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1994 and d) 2006 with wetland effects of the Poyang Lake Basin.

Table 5.4: The flood risk assessment area (km?) in 1994 and 2006 of the Poyang Lake Basin.

1994 1994 with wetland 2006 2006 with wetland effects

effects
Very low 0 0 22 22
Low 0 0 2824 3437
Medium 12969 12469 15938 15763
High 15341 13056 20492 21696
Very high 26308 29093 15675 14033

5.3.1.4 Dongting and Honghu Lake Basin

In a similar situation to the PLB, the highest flood risk regions in the DHB distribute around
Dongting Lake as the center, and generally locate near rivers and lakes, has been confirmed
by results of the GIS-based flood risk assessment in DHB from Wang et al. (2011). In 1998,
Figure 6a demonstrates that the highest flood risk area is generally distributed in the
north-eastern, and south-western corner of the DHB, as well as the south of Dongting Lake.
The very high flood risk area decreased to the high flood risk level with wetlands implications
in the southern region of Dongting Lake in Figure 5.6b. Table 5.6 supports this finding,
showing a reduction of 587 km? in very high flood risk areas, alongside an increase of 610
km? in high flood risk areas in 1998 due to wetland effects. In 2009, Figures 5.6¢, 5.6d, and
Table 5.5 illustrate a significant expansion of high flood risk areas in the northeastern corner
of the DHB around Dongting Lake, increasing by 6,898 km?, with 65 km? transitioning to
very high flood risk levels with wetlands input. As one of the most eco-areas, Dongting Lake
plays a similar role in flood storage as Poyang Lake (Wang et al., 2011). Hence, The larger
size of Dongting Lake in 1998 (Figure 5.8g) compared to 2009 (Figure 5.8h) contributed to
more effective flood risk mitigation. Besides the large expansion of high flood risk area after
adding wetlands in the DHB, the small area of very high flood risk observed in 2009 (Figure
6d) corresponds to regions of lake shrinkage and aquaculture pond expansion around Honghu

Lake, northeast of Dongting Lake (Figure 5.8h). This suggests that the aquaculture ponds
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around Honghu Lake could not compensate for the lost flood storage capacity caused by lake

shrinkage.
112°0'0"E 114°0'0"E 112“?'0"5 114”10'0'5
b).
1998 1998
£ Z
° °
o1 e
S 8
8 S N
w¢> E
1 S
z z
S =
o o
ﬁ o~
) 2009 | |%— 2009
z z
5 5
o Fo
3 3
Legend
[J Dongting and Honghu Lake Basin
[JLow
[ TMedium
[ High
4
54 L M Very high
] 112";)'0”E 114"'0‘0"E 112°;)'0"E 114’;)'0"E
0 100 200 km
| I I

Figure 5.6: Flood risk spatial distribution maps in a) 1998 and c) 2009 without wetlands;

b)1998 and d) 2009 with wetland effects of the Dongting and Honghu Lake Basin.

Table 5.5: The flood risk assessment area (km?) in 1998 and 2009 of the Dongting and Honghu
Lake Basin.

1998 1998 with wetland 2009 2009 with wetland effects

effects
Very low 0 0 0 0
Low 1262 1318 5810 4482
Medium 27048 26969 49808 44173
High 26808 27418 7268 14166
Very high 7572 6985 0 65

5.3.1.5 Sichuan Basin
Compared with other regions, the impact on the flood risk area distribution brought by

wetlands is relatively smaller in the SB, mainly because of the much smaller area of wetlands
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in this region. According to Figure 5.7 and Table 5.6, the high flood risk level area reduced
780 km? but expanded 195 km? in the centre of the SB after adding wetlands in 1998 and
2020, respectively. Besides, the very high flood risk level experienced a slight expansion with
an area of 78 km? due to wetland effects in 2020. The wetland area in SB is limited, and the
main wetland category is river, which restricts its capacity to function as a stormwater sink
(Acreman and Holden 2013; Fu et al., 2013). Hence, downstream in the main rivers and river
confluences of the SB, usually suffers serious flooding (Fu et al., 2013). At the same time, the
shrinkage of wetlands in 1998 and their expansion in 2020 in the central SB resulted in a
decrease in high flood risk in 1998 and an increase in 2020. Inland swamp is another major
wetland category distributed in the YRB upstream (Fu et al., 2013). Figures 5.8 and 5.8j
show that inland swamps are generally distributed in the western part of SB, which is close to
the YRB source region. Although inland swamps contain limited impacts on the reduction of
floods in the SB, the flood regulation and storage function of inland swamps are embodied in
the upstream floods and slow down flood peak advance (Fu et al., 2013). This process reduces
flood hazards downstream, which may explain some of the flood risk reduction associated

with wetland effects in the SB (Fu et al., 2013).
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Table 5.6: The flood risk assessment area (km?) in 1998 and 2020 of the Sichuan Basin.

1998 1998 with wetland 2020 2020 with wetland effects

effects
Very low 0 0 4238 4259
Low 1448 1229 11545 11437
Medium 79172 80171 39370 39305
High 14226 13446 28927 29122
Very high 0 0 10723 10680
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Figure 5.8: Spatial distribution maps of wetland categories in corresponding years of the
Taihu Lake Basin: a) 1991 and b) 2005; Wanjiang Plain: ¢) 2003 and d) 2010; Poyang Lake

Basin: e) 1994 and f) 2006; Dongting and Honghu Lake Basin: g) 1998 and h) 2009; Sichuan

Basin: 1)1998 and j) 2020.

5.3.2 Annual flood risk variations with wetland effects

Figures 5.9 demonstrates the AFR of each flood risk level from 1985 to 2021 in the five flood

prone regions, derived from the improved flood risk assessment model. It also includes the
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corresponding wetland area from the LTWCD_ YRB dataset (Guo et al.,, 2024) and the

cumulative maximum three-day precipitation.

The wetland area in the TLB exhibited a growing trend, reaching its peak in 2005. Prior to
this peak, the relatively limited wetland area contributed to a reduction in low and very low
flood risk areas, while simultaneously increasing the extent of high and very high flood risk
areas, particularly for the years with high precipitation. For instance, in 1991 and 1998, high
precipitation coupled with insufficient wetland area resulted in an increase of very high and
high flood risk areas by 2.2% and 4.3%, respectively. Conversely, the very low flood risk area
experienced a significant decline, with a reduction of 14.3% in 1998. When the wetland area
expanded to the maximum value in 2005, both the very low and low flood risk areas increased
1.3% and 0.6%, respectively. Notably, the very high and high AFR areas were zero, indicating
that sufficiently large wetland areas will not affect the high and very high flood risk zones
when the precipitation level is low. In years with both relatively large wetland areas and high
precipitation, such as 2015 and 2019, the very high and high flood risk areas under wetland
effects reduced 2.9% and 3.4%, respectively. This demonstrates the significant role of
expanded wetlands, particularly aquaculture ponds and lakes, in stormwater storage and flood

risk mitigation.

In the WP, the wetland area increased continuously with fluctuations between 1985 and 2021.
The area of each flood risk level showed the minimal variation under wetland effects before
1998 due to the relatively low precipitation. In this period, the notable AFR occurred in 1991,
1996, and 1998. The shrinkage of wetland area and the increase of precipitation caused the
decrease of 1.1% low flood risk area in 1991 and the increase of 0.8% very high flood risk
area in 1996, while the high flood risk area expanded 5.8% in 1998. Afterwards, the AFR for
the very high flood risk area peaked at 14.7%, driven by wetland shrinkage. Concurrently, the
medium flood risk area decreased 13.3% in 2003 with wetland effects, while no AFR was
observed for low and very low flood risk levels due to extremely high precipitation. After

2005, the wetland area started to increase continuously, mitigating the flood risk. Typical
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years with the large wetland area include 2013, 2016, 2017, and 2020. The AFR area for the
very high level decreased 2.6%, 2.9% and 0.3% in 2013, 2017, and 2020, respectively. The
area of very low and low AFR increased 7.2% and 1.5% in 2013 and 2017, respectively.
Despite the large wetland area, the very high AFR area in 2006 increased 0.4% under the high
precipitation. It means that wetlands in the WP lose the flood storage capacity under extreme

precipitation conditions.

Wetlands in the PLB fluctuated throughout the period from 1985 to 2021, peaked in 1998, the
year marked by the extreme precipitation and severe flood disaster. Similar to the condition in
the WP, wetlands in the PLB transformed into floodplains during this extremely rainy year,
losing their capacity to store stormwater despite the large wetland area. In other years,
wetlands in the PLB generally play an important role in mitigating flood risks. For example,
when the precipitation decreased in 1999 and 2016, the large wetland area contributed
reductions in very high AFR areas by 6.3% and 4.3%, respectively. Meanwhile, it led to a 0.1%
increase in very low AFR areas in 1999 and an 8.7% increase in low AFR areas in 2016.
Oppositely, in years with the relatively smaller wetland area, such as 1994, 1995, and 2011,
wetlands contributed to expansions of the very high AFR area by 5.1%, 4.5%, and 0.6%,

respectively.

The variation of high and very high flood risk area caused by wetlands in the DHB primarily
occurred during the following two periods with high precipitation: 1996-1998, 2007-2021. In
the rest of years, the high and very high AFR kept zero, indicating that changes in wetland
areas did not affect these flood risk levels. Similar to wetlands in the TLB, WP, and PLB,
wetlands in the DHB generally served as flood water storage, mitigating flood risks. Wetlands
expansion in 1998 and 2015 reduced the very high and high flood risk area by 0.9% and 0.5%,
respectively, while increasing low flood risk areas by 0.09% in 1998 and 0.24% in 2015.
Conversely, the largest increase in very high AFR (2.2%) occurred in 2011, a year with the

high precipitation but relatively small wetland areas.

Figure 5.9¢ shows that both the wetland area and its variation in the SB remained small from
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1985 to 2021. When the wetland areas expanded, the high and very high AFR increased as
well. For instance, the wetland expansion in 1996 and 2020 led to a 0.4% increase in the very
high flood risk area and a 0.3% increase in the high flood risk area, respectively. Unlike the
other four flood-prone regions, which contain numerous lakes and ponds, river is the main
wetland category covering most areas of the SB (Figures 8i and 8j). Therefore, due to the
smaller water storage capacity of rivers and their lower elevation in the SB, the expansion of
river areas driven by the large precipitation in the upstream, resulted in the increased flood
risk under the wetland effects in the downstream areas and river confluences of the SB (Fu et
al., 2013). Conversely, the wetland reduction in 1998 and 2011 decreased the high flood risk
area by 1.4% and 0.4%, respectively. Comparing 1998 and 2011, wetland areas were
similarly low, but the higher precipitation in 1998 made the high flood risk area be more
sensitive to wetland effects than in 2011. Additionally, the low and very low flood risk areas

showed greater variations in 2011 compared to 1998.
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a) Taihu Lake Basin b) Wanjiang Plain ¢) Poyang Lake Basin d) Dongting Lake and Honghu Lake Basin e) Sichuan Basin
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Figure 5.9: Annual AFR of very low, low, medium, high, very high food risk levels, the corresponding wetland area and the cumulative maximum three-day
precipitation in the a) Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu Lake Basin; and e) Sichuan Basin from 1985 to

2021.
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5.3.3 Causal relationships between each flood risk indicator and AFR

The causal relationship between the indicators and AFR of all five levels are examined based
on the PCMCI algorithm. Their causal relation strength are numbers on the arrow. The results
of AFRy,w and AFRyeqium are demonstrated in Appendices 5.1 and 5.2, respectively. Indicators
that contain the causal relationship with AFR oy and AFRmcdium are very limited. Additionally,
p-values for the causal relation results of AFR 10w and AFRpeqium are all higher than 0.05
throughout the statistical significance test (one side t-test), indicating the lack of the statistical
significance. Hence, this study focuses on causal relation results of dominant flood risk
indicators with AFRyery low, AFRupigh, and AFRyery nigh, With values equal to or greater than 0.44
(Figures 5.10-5.12). The corresponding p-values of them are lower than 0.05, confirming their
statistical significance. Among all the indicators, cumulative maximum three-day
precipitation (PR) is the only indicator that has the causal relationship with one of AFR levels

(AFRuign) in all the five flood-prone regions.

a) Taihu Lake Basin b) Wanjiang Plain
PD R|U
0 :lta 0.44
v |
AFR AFR
0.33 0.40
PR PR
c) Poyang Lake Basin d) Dongting and Honghu
Lake Basin
PR PD
N /
& %
N
AFR N ¥
AFR
! ?
0.38
0.39
PR GDP

Figure 5.10: The causal relationships between the AFRyery 10w and indicators in the a) Taihu
Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; and d) Dongting and Honghu Lake

Basin. No indicator exhibits a causal relationship with AFRyer 10w in the Sichuan Basin.
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Figure 5.11: The causal relationships between the AFRmign and flood risk indicators in the

a)Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu
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Figure 5.12: The causal relationships between the AFRyery nigh and flood risk indicators in the a)
Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu Lake

Basin; and e) Sichuan Basin.

In the TLB, population density (PD), GDP per capita (GDP), and PR display dominant causal
relationships with AFRyery 10w (0.48), AFRuign (0.44) and AFRyery nign (0.56), respectively.
Among these indicators, the strength of the causal relation between PR and AFRyery hign is the
largest, with the highest statistical significance (the lowest p-value 1.9x107'"), which means
PR is the most significant AFR indicator in the TLB. The TLB is a region with the large area
of wetlands and the extreme precipitation in rainy seasons caused by the subtropical monsoon
climate, which makes the flood risk to be typically sensitive to precipitation (Liang et al.,
2011). In addition, the TLB is the most economically developed region in the YRB,
characterized by the rapid urbanization, the large PD, and the high GDP (Sun et al., 2023; Xu
and Chen, 2023). As key flood exposure indicators, the high GDP and the large PD have
driven rapid industrialization and urbanization, which have significantly increased pressure on
flood risk (Sun et al., 2023; Xu and Chen, 2023). Consequently, it is reasonable that PD and

GDP are dominant indicators of the AFRyery 1ow and AFRyign in the TLB.

In the WP, RU is the indicator with the dominant causal relation with AFRyery 10w (0.44),
AFRpigh (0.54) and AFRyery nigh (0.55). Due to the large-scale wetland reclamation for the
cultivation and urban construction in the WP, the local LULC has converted forestlands and
shrubs to urban lands with the less vegetation coverage and the higher RU (Dong et al., 2022).
Because of the special terrain in the WP, wetlands are concentrated along streams and the
Yangtze River in the WP (Dong et al., 2022). As a result, the higher RU in this region more
readily increases the water level of the Yangtze River compared to other areas, thereby

exacerbating the flood risk.

In the PLB, PR is the only dominant causal indicator, it shows the strength of causal relation
of 0.7 with the AFR,y nigh. Hence, precipitation is the dominant flood risk indicator in the

PLB, primarily due to the extreme annual precipitation driven by both of south-east and
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south-west monsoons, as well as the more extensive floodplains compared to other regions

(Liu et al., 2021; Wu et al., 2022).

In the DHB, population density (PD) is the only indicator that has the causal relation with
AFRpign, and it is most important factor that affects AFRvery nigh (With the causal strength of
0.53). In recent years, urbanization has accelerated significantly in the DHB, the urbanization
rate reached 54.8% in 2019 (Xiong et al., 2022). The hotspots cities are mainly located in the
flood prone regions of the DHB around Dongting Lake (Xiong et al., 2022). As a result, the

large PD in this region will typically cause the high and very high flood risk.

Similarly, PD in the SB is the dominant factor as well, the causal relationship with AFRpigh is
0.54. The SB is one of the most densely populated regions in China (Liu et al., 2017). Human
activities are concentrated in the east-central low mountain area, which has been the densely
populated area throughout the history of China and also a high flood risk zone (Liu et al.,
2017). The relative study has confirmed the strong correlation between human activities and

floods in the SB (Liu et al., 2017).

Precipitation, runoff and vegetation cover factor, GDP, and population density are the
dominant indicators not only in the YRB, but also in other flood prone basins of China and
worldwide. Precipitation is the most common and dominant flood risk indicator in the major
wetland basins such as the Yellow River Basin and Lijiang River Basin of China, Tapi River
Basin in India, and Lancang-Mekong River Basin which spans over multiple Southeast Asian
countries (Ramkar & Yadav, 2021; Sun et al., 2024; Ziwei et al., 2023). Vegetation cover
changes caused by the rapid urbanization in the Teunom watershed of Indonesia, and the
watershed north of Charlotte in the United States are the most dominant indicator of local
flood risk (Banjara et al., 2024; Sugianto et al., 2022). GDP and population density are the
two key factors that contain strong positive correlations with several flood disasters among a

number of cities in China, India, and other rapidly urbanizing countries (Wang et al., 2021).

5.3.4 Model validation
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Historical statements and data regarding the flood spatial distribution over these five flood
prone regions in the YRB are used to verify the accuracy of the improved flood risk model in
this study. In 1991, the levels of high and very high flood risks covered most areas of the TLB
(Figure 5.3b). It is consistent with the major TLB flood disaster occurred in 1991 because of
the heavy precipitation and the decline in the capacity of flood water storage and drainage of
wetlands (Sun and Mao, 2008). Through the flood spatial distribution data, Yu et al. (2012)
confirmed that most of flooded areas in 1991 were distributed on the eastern side of Taihu
Lake, as shown in Figure 3b. As a number of drainage projects and aquacultural ponds were
constructed in 2005, the overall flood risk became relatively low, thus improving the local
flood control (Cai et al., 2013; Zhang et al., 2019). These changes in 2005 can be
demonstrated by the flood risk distribution map in Figure 3d that shows the flood risk levels
of very low, low, and medium in the TLB , and the overall decreasing trend of the very high

flood risk area under wetland effects as illustrated in Figure 9a.

The lake wetland dynamics analysis of the WP provided by Dong et al. (2022) indicates that
the high flood risk area in the WP area was generally distributed in regions with a high
density of lake wetlands, such as the northeastern WP around Chaohu Lake, and the southern
corner of the WP, which is covered by a number of lakes. These regions lost 120 km? of lake
wetlands due to the agricultural development after 2000, leading to an increase in the flood
risk (Dong et al., 2022). This situation is similar to the expansion of high and very high flood
risk areas around Chaohu Lake in 2003 and 2010 after the inclusion of wetland input (Figure
5.4) and verifies the general increase of the high flood risk area with wetland effects after

2000 in Figure 5.9b.

The flood risk spatial distribution maps of the PLB, generated in this study using the
improved model, can be verified by previous flood risk assessments of this region. Previous
research has shown that the higher flood risk areas were distributed around Poyang Lake,
while the areas with the lower flood risk were found in the surrounding regions during
2000-2020 (Wu et al., 2022; Zhu et al., 2024), In 1994, an extreme precipitation event
resulted in widespread very high flood risk across the PLB, primarily due to the relatively low

112



stormwater storage capacity of the interconnected seasonal lakes surrounding Poyang Lake
(Li et al., 2019). This finding is consistent with the flood risk distribution as shown in Figure
5b. Under normal conditions, lakes in the PLB serve as stormwater storage areas, allowing the
low and medium flood risk areas to recover, and accounting for 35.5% of the PLB area (Zhu
et al., 2024). The flood risk assessment results for 2006 (Table 5.4) further validate this
finding by comparing their flood risk areas with Zhu et al. (2024). The low and medium flood
risk areas of this study account for 34.9% of the PLB area, which is generally consistent with

the findings of Zhu et al. (2024).

The flood risk spatial distribution of the DHB based on the improved model in this study
(Figures 6b and 6d) is consistent with findings of Wang et al. (2011). Most of the Dongting
Lake region is at the medium flood risk level, while the high and very high flood risk areas
are primarily distributed in the northeastern, central, and southwestern parts of the DHB. The
expansion of the high and very high flood risk area around Honghu Lake after incorporating
wetland area as a model input was also found by Liu et al. (2013). Our study confirmed the
flood risk had increased in the Honghu Lake region over the last 50 years due to the
interacting effects of wetland dynamics caused by the lake reclamation and aquacultural

development under heavy precipitation conditions.

For the SB, results in Figure 5.7 are supported by the risk assessment of flood disaster in
Sichuan province from Guo et al. (2023). This indicates that flood risk is higher in the central
and northeastern parts of the SB, but lower in the western region. According to Fu et al.
(2013), wetlands have limited impacts on flood risk in the SB because wetlands upstream in
the YRB are primarily distributed in the source region, where the probability of heavy
precipitation is low. Consequently, the smaller spatial distribution changes after adding
wetlands input (Figure 5.7), along with the limited long-term variations of AFR in the SB

(Figure 5.9¢), compared with the other basins, can be verified.

5.4 Discussion

5.4.1Uncertainties of this study
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The flood risk assessment in this study includes the entire YRB, making data collection for
flood risk indicators more complex than if the model was for a specific flood-prone region or
administrative area. For example, some socio-economic indicators used in the model
developed of this study, such as local financial revenue, per capita resident savings, and
medical service level, were obtained from the statistical yearbook and represented total or
average values for an entire administrative area. These data lack the detailed information
inside the administrative area and thus cannot reflect the spatial distribution information.
However, the rasterization process applied in this study helps overcome this limitation by
breaking down administrative boundaries and enabling the spatial distribution of flood risk
across the entire study region, thereby reducing this uncertainty. Besides, the flood risk
assessments at regional or macro-scales require the detailed topographical information,
different characteristics of flood disasters, and both of direct and indirect socio-economic
losses in the study region (De Moel et al., 2015; Zhang et al., 2020). Consequently, given the
complexities involved in modeling the large and dynamic region, indicators in the flood risk
assessment model in this study may not comprehensively cover all flood risk driving factors

in the YRB.

Zhang et al. (2020) defined the drainage density as the ratio of main and tributary streams to
the area. However, in the improved flood risk assessment model, the replacement includes not
only mainstreams and tributaries but also other water bodies, such as lakes, aquaculture ponds,
and reservoirs. In our study, the weight of the substituted indicator was kept constant due to
its minor impact on the flood risk assessment results, given its relatively low assigned weight
(3.9%). It may introduce potential uncertainties in the model results because of the absence of
a new AHP questionnaire. To justify this uncertainty, a sensitivity analysis for the replaced
indicator in the flood risk assessment model was conducted. Sensitivity analysis is used to
assess the extent to which an output is influenced by variations in a specific input (Chen et al.,
2013). Therefore, it can be applied to determine whether the flood risk result is sensitive to
weight dynamics of wetland density. The weight range used in the sensitivity test is set
between 2% and 20% (the equal weight of the 13 flood risk indicators is 7.7%). As shown in
Figure 5.13a, the results indicate that the changes in the weight of wetland and drainage
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density can only result in minor variations in the flood risk assessment within the model. The
largest change in the annual average flood risk areas of the five flood risk levels was 0.2%,
1.2%, 4.2%, 4.6%, and 1.9% in the TLB, WP, PLB, DHB, and SB, respectively (Figure
5.13b).The uncertainty is relatively higher in the PLB and DHB regions compared to the TLB,
WP, and SB regions, due to the more abundant wetlands in those areas. Overall, the flood risk
results in this study are not sensitive to weight variations of wetland density. This result is
supported by the sensitivity test of the flood risk assessment in Chongqing, which shows that
changes in the weight of river network density led to a little modification in the flood risk

(Cai et al., 2021).
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Figure 5.13: The sensitivity test for wetland density in the wetland-related—flood risk
assessment model. The X-axis indicates the weight of the wetland density; the Y-axis of a)

indicates the corresponding flood risk area, b) indicates the changes in the flood risk areas.

Beyond that, the use of fixed weights for particular indicators across the entire YRB over the
long term may introduce uncertainties to the flood risk assessment results. The weights of
some indicators should be spatially or temporally dynamic. For example, indicators related to
economic development, such as GDP per capita, population density, local financial revenue,
per capita resident savings, and medical service level, may carry greater importance in regions

experiencing rapid economic growth. The TLB area, regarded as the region with the most
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developed economy and the greatest urbanization in China (Xu and Chen, 2023), may require
higher weights for relevant flood risk indicators than other flood-prone regions. In addition,
some indicators may exhibit temporal dynamics. For instance, the weight of precipitation
should be higher in years when severe flood disasters occurred (e.g., 1998, 2008, and 2016)
(Zhang et al., 2020). Therefore, incorporating indicator weight dynamics into the AHP
process should be a key consideration in the model assumption for the large-scale long-term

flood risk assessment in future studies.

The flood risk assessment at large regional scales will generate different results under variable
climate scenarios (Shared Socioeconomic Pathways (SSP) and Representative Concentration
Pathways (RCP)), despite using the same flood risk indicators in the model (Chen et al.,
2021Db). It has been estimated that flood risks are higher under the SSP5-RCP8.5 than other
scenarios using the same multi-index flood risk model. This is primarily due to the larger
projected precipitation, GDP, and population density under the high emission scenario (Bai et
al., 2019; Chen et al., 2021b; Peng and Li, 2021). The model of this study focuses solely on
the YRB flood risk assessment by using the historical data without considering the impacts of
different climate scenarios. Therefore, the future research should evaluate the YRB flood risk
under different climate scenarios, to explore climate change effects on flood risk dynamics in

this region.

5.4.2 Relevance of existing flood management frameworks

The Three Gorges Dam (TGD), located in the YRB midstream, is one of the largest dams in
the world (Guo et al., 2012) and plays a significant role in flood control within the YRB (Hao
et al., 2019). Since its operation began in 2003, the TGD’s impact on floodplains in the YRB
middle and lower reaches (including the DHB, PLB, WP, and TLB in this study) has been
evident (Sun et al., 2020). The general decreasing trend in the high or very high annual flood
risk area under wetland effects after 2003 in the TLB, WP, PLB, and DHB (Figure 5.9),
supports the TGD’s role in mitigating flood risk. Taking the WP as an example, the very high
flood risk area under wetland effects decreased continuously with some small fluctuations

from +14.7% to -2.8% from 2003 to 2021. The TGD additionally contributes to a reduction in
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the sediment transport in the Yangtze River, thus decreasing the river discharge (Guo et al.,
2012). Therefore, changes in river discharge and water level of the Yangtze River affect the
water storage capacity of lakes downstream by changing the blocking force of the river on
outflows from lakes (Hu et al., 2007). As a result, the very high flood risk area generally
increased in years with the extreme precipitation, due to the reduction of stormwater capacity
of major lakes such as Dongting Lake, Poyang Lake, and Taihu Lake. For example, as
demonstrated in Figure 5.9, the very high flood risk area affected by wetlands in the TLB in
1991 and the DHB in 2011 both increased 2.2%, corresponding to over 2000mm maximum
three-day precipitation and the relatively small wetland areas. Additionally, AFRyery nignh in the
PLB increased 5.1% in 1994, associated with an extreme maximum three-day precipitation of

3847mm.

In addition to the TGD, land use changes in the YRB plays a significant role in the flood risk
change. Results of this study show that the vegetation cover change is the dominant indicator
of flood risk under wetland effects in the WP, with the causal relation strength of 0.55, which
is higher than other indicators. From an optimistic perspective, both of spatial and temporal
results of this study confirm that wetlands in the YRB flood prone regions contain the ability
to mitigate the flood risk during years with large wetland areas and normal precipitation,
except for the SB, which has a limited number of lakes. For instance, in the TLB (2020), the
WP (2013), the PLB (1999 and 2016), the DHB (2019), wetland areas were all relatively
large. In these years, the high or very high flood risk areas affected by wetlands decreased
significantly, with the AFRyery nigh f -2.2%, -2.6%, -6.3%, -4.3%, and AFRyen of -2.1%. This
validated the effectiveness of land use management frameworks in China, such as the “Grain
for Green Program” (Delang and Yuan, 2015) and “Returning Farmland to Lakes” (Ma et al.,
2021) policies, in recovering flood storage capacity and expanding flood retention areas by

preserving forests and wetlands in the YRB (Liu et al., 2024; Shen et al., 2023).

5.4.3 Wetland-related management suggestions to mitigate flood risks
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This study provides some wetland-related management suggestions by considering flood risk
spatial distribution results and dominant indicators of the flood risk assessment with wetland

effects in the YRB flood prone regions.

In the TLB, flood risk distribution maps show that the very high flood risk area expanded due
to heavy precipitation in the eastern TLB by using the improved flood risk model. Therefore,
the reasonable allocation and management of aquaculture ponds, and the control of lake
reclamation around Yangcheng Lake, and the southeast region of Taihu Lake are important.
For example, the thorough groundwater drainage system of aquaculture ponds can be
constructed to reduce flood risks and increase flood resilience in seasons of heavy
precipitation. The protection of the Chaohu Lake Basin in the WP is significant because of the
concentration of high and very high flood risk areas in this region, as indicated by the
improved flood risk assessment model. Hence, it is essential to uphold the ban on lake

reclamation caused by agricultural development in this area.

Results from the improved flood risk assessment model indicate that the flood risk around
Poyang Lake is typically high when considering wetland effects. In this case, the lake
reclamation caused by human activities such as urbanization and sand dredging around
Poyang Lake should be controlled. This will ensure that Poyang Lake maintains its large
stormwater storage capacity in extreme years with high precipitation. In the DHB, the high
and very high flood risk areas were distributed around Dongting Lake and exhibited
significant changes with wetland effects. Hence, similar to Poyang Lake, lake reclamation and
human activities of Dongting Lake should be regulated to mitigate flood risks associated with
wetland dynamics. Besides, the improved flood risk model finds that aquaculture ponds
around Honghu Lake lead to a higher flood risk. Therefore, aquaculture ponds need to be
reasonably managed to minimize the impacts on the water capacity of Honghu Lake, thus
mitigating the flood risk of this region. The area of aquacultural ponds surrounding Honghu
Lake expanded 766 km?* from 2016 to 2021 (Han et al., 2023). Figure 5.9d shows that the year
of 2016 had the lowest overall values of AFRyery high and AFRuyign from 2016 to 2021. Therefore,
the 766 km? of aquaculture ponds, accounting for 28% of the total aquaculture pond area in
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2021, could potentially be restored to lake systems if necessary. In the SB, the expansion of
high flood risk areas under wetland effects were distributed in the western region. To address
the limited capacity for stormwater storage due to the scarcity of lakes and ponds in the SB,
constructing additional artificial ponds and reservoirs in the western SB could improve the
stormwater storage capacity of water bodies, thereby reducing pressure on rivers during

periods of heavy precipitation.

Precipitation, vegetation coverage, GDP, and population density are dominant indicators
contributing to the higher flood risk under wetland influences of the YRB. Hence, regions
with the high precipitation, population density, and GDP per capita should be reasonably
managed to mitigate flood risks affected by wetlands. The policy of returning farmland to
lakes has expanded Dongting Lake by approximately 800 km?, contributing to a reduction in
flood-related losses from USD 39.46 billion in 1998 to USD 27.68 billion in 2020 (Jia et al.,
2022). First of all, maximizing the floodwater storage capacity becomes a key issue for local
managers to mitigate the flood risk. In addition to preserving the area of natural wetlands,
constructing artificial ponds and lakes is an effective approach. However, in densely
populated and economically developed urban areas, space for artificial water bodies may be
limited. Therefore, the development of a ‘Sponge City’ (Sun et al., 2023) is a recommended
approach for reducing flood risks in the TLB— a flood prone region characterized by the
dense population and rapid urbanization (Xu and Chen, 2023). The Sponge City Approach
has successfully reduced the flood losses of 35%-50% in the Sishui River Basin in Zhengzhou,
compared to regions without such interventions (Peng et al., 2022). This strategy involves
collecting and managing rainwater through the sunken green spaces, permeable ground
materials, and extensive drainage systems (Guan et al., 2021). Similar to the TLB, the
‘Sponge City’ approach is recommended in the PLB to mitigate the high flood risk resulting
from the extensive precipitation (Sun et al., 2023). The factor of runoff and vegetation cover
is the dominant indicator influencing flood risk under wetland effects in the WP. Hence, the
LULC in the WP area plays a significant role in mitigating flood risk under wetland
influences. Generally, vegetation-covered land contains a lower runoff factor than
non-vegetated waterbodies and urban areas (Zhang et al., 2020). Given the significant role of
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vegetation retention in flood risk mitigation, as demonstrated in the Nenjiang River Basin
(Wu et al., 2023a), restoring vegetation-covered wetlands in high flood risk areas of the WP

could be an effective strategy for reducing flood risks associated with the wetland dynamics.

5.5 Conclusions

This research analyzes the effects of long-term wetland variations on flood risk assessments
across the five flood prone regions in the YRB, by using the improved GIS-based spatial
multi-index flood risk assessment model. The dominant indicators of flood risks under
wetland effects are identified, alone with the practical suggestions for wetland-based flood

risk management.

The results highlight that the wetland expansion in the TLB, WP, PLB, and DHB contributes
to the decrease of high and very high flood risk area and the increase of very low and low
flood risk area between 1985 and 2021, except some typical years with extreme high
precipitation in the WP and PLB. While the wetland expansion in the SB has aggravated but
limited impacts on the flood risk because of the unique wetland category of streams and the
small area of wetlands. For the spatial distribution of flood risks with wetland effects, the
eastern TLB demonstrates stormwater storage potential. Chaohu Lake and its surrounding
areas are regions with high and very high flood risk under wetland effects in the WP. In the
PLB, high and very high flood risk areas cover more than half of the region. the weak
stormwater storage capacity of seasonal lakes surrounding Poyang Lake increases flood risks
during years of heavy precipitation. The northeastern and southwestern regions of the DHB,

including Honghu Lake, are the highly flood prone regions with wetland effects.

Each flood prone region contains different dominant flood risk indicators under wetland
effects: Precipitation in the TLB and PLB, runoff and vegetation cover in the WP, GDP in the
TLB, and population density in the TLB, DHB and the SB. Suggestions for improving the
flood resilience include reasonably managing local wetlands, maximizing stormwater storage
capacity in urban regions, controlling lake reclamation, increasing vegetation coverage, and

prioritizing flood risk managements in highly precipitated and densely populated regions.
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Chapter 6 Future flood risk assessments in the
Middle-Lower Yangtze River Basin under climate and

socio-economic scenarios

Highlights:

® We predict flood risks by applying a multi-index GIS-based model.

® Flood risk areas above the medium level will account for 40% of the MLYRB by 2100.

There will be a northward expansion of the high and very high flood risk area.

® Jiangxi, Hunan, and Jiangsu should be prioritized to prevent the future flood risk.

This chapter is a reformed version of a manuscript submitted to Natural Hazards.
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6.1 Introduction

Climate change has increased the frequency and intensity of floods and other natural
weather-related events around the world (IPCC, 2021). By 2030, floods and other natural
hazards can lead to significant economic losses, with total estimates reaching up to 415 billion
USD annually worldwide (Mahmoodi et al., 2023). Therefore, numerous studies have focused
on assessing the impacts of climate change on flood risks worldwide (Chen et al., 2021a;
Dottori et al., 2020, Wing et al., 2022). Dottori et al. (2020) predicted that the economic
losses of river flooding in Europe would be more than six times by the end of this century
compared to the present at the 3°C global warming scenario if no mitigation and adaptation
measures were implemented. Wing et al. (2022) showed a 26.4% increase in flood risk in the
United States between 2020 and 2050 under the moderate climate change scenario. Chen et al.
(2021a) projected that the area of the highest flood risk level would increase by 8.7% and
19.8% in the Pearl River Delta of China under the scenarios of Representative Concentration
Pathway (RCP) 4.5 and RCP 8.5, respectively. In addition to the traditional RCP climate
change scenarios, Shared Socioeconomic Pathways (SSP) scenarios were used to represent
five different trends of the socio-economic development and human activities (Riahi et al.,
2017). Several studies illustrated that the future prediction of flood risk must account for both
climate change and human activities (IPCC, 2021; Li et al., 2020; Luo et al., 2023; Nguyen et
al., 2022; Yosri et al., 2024; Zhou et al., 2019). Therefore, the combination of SSP and RCP
scenarios needs to be considered in future flood risk assessments for understanding potential
future climate change and its impact on society, to provide comprehensive flood mitigation

and response strategies (Peng and Li, 2021).

The middle and lower reaches of the YRB (MLYRB) are the largest and one of the most
abundant wetland ecosystems in China, with numerous lakes that play an important role in
flood storage (Ma et al., 2023). However, the dramatically increased human activities have
led to the serve shrinkage of lake wetlands in the MLYRB since the last century (Ma et al.,
2023). Land use changes driven by wetland dynamics significantly affect flood regulation

services in the MLYRB (Shen et al., 2023). Moreover, the annual plum rain season in the
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MLYRB leads to the persistently high water levels in Dongting Lake, Poyang Lake, and
Taihu Lake, making the MLYRB particularly vulnerable to large-scale flooding (Jia et al.,
2022). As a result, the MLYRB is the region with the most severe flood disasters in China
(Liu et al., 2023a). The food event occurred in the summer of 1998 caused the loss of 4150
people and 166 billion RMB (Liu et al., 2023a). Besides, the MLYRB is comprised by one of
the most important economic zones in China: The Yangtze River Economic Belt (Pei et al.,
2017). Therefore, due to significant land use changes in the MLYRB caused by the rapid
urbanization, cities occupy large number of lands near wetlands, making them increasingly
vulnerable to severe floods (Jia et al., 2022). As a critical region, it is essential to understand
how future flood risks in the MLYRB will be influenced by both natural and socio-economic
factors (Liu et al., 2023a; Ma et al., 2023). Given that, the flood prediction and management

of Yangtze River mainly focuses in on the MLYRB (Jia et al., 2022).

The comprehensive prediction of future flood risk is based on the combination of simulated
hazard components from climatic projections, as well as predicted vulnerability and exposure
indicators under future climate scenarios (Liu et al., 2025a). At present, there are various
methods for projecting the disaster risk, such as artificial intelligence based approaches
including classic machine learning models (e.g., support vector machine, random forest, and
multi-layer perceptron) (Chen et al., 2021b), and deep learning models (e.g., convolutional
neural network and hierarchal deep neural network) (Liu et al., 2025b; Yosri et al., 2024), and
multi-index decision analysis with the GIS technology (Abuzwidah et al., 2024; Peng et al.,
2024). Among these methods, the GIS-based multi-index model with the fuzzy Analytic
Hierarchy Process (AHP) was selected for the flood risk assessment in the MLYRB. The
AHP approach offers the advantage of effectively addressing uncertainties in decision-making
processes involved in quantitative assessments (Peng and Li, 2021). Besides, the integrated
flood risk assessment by using the multi-index model enables a comprehensive consideration
of various natural and socio-economic factors, such as land use changes, GDP per capita,
resident savings, and the coping capacity of populations, in a large-scale study area with the

complex topography and socio-economic conditions (Liu et al., 2025a; Zhang et al., 2020).
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Several studies have assessed flood risk related with the MLYRB by using the GIS-based
multi-index model, such as the flood risk of the Poyang Lake Basin (Wu et al. (2022), the
Dongting Lake Basin (Wang et al., 2011), and the flood risk assessments and predictions of
the entire YRB (Guo et al., 2025; Peng and Li, 2021; Zhang et al., 2020). Among these
literatures, Peng and Li (2021) was the only one that generated the flood risk prediction under
future climate scenarios and socioeconomic pathways covering the MLYRB. However, their
flood risk predictions lacked certain flood vulnerability and exposure indicators that
incorporated the comprehensive socio-economic factors, such as wetland density (not only
river density), runoff and vegetation cover factor, site contamination risk, soil erosion degree,
monitoring and early warning systems, and etc. These indicators have been confirmed to be
the essential factors for a multi-index flood risk assessment (Guo et al., 2025; Zhang et al.,
2020). Moreover, the study period from 2020 to 2050 was relatively short, limiting the ability
to analyze long-term trends in flood risks under future climate change after 2050. Therefore, a
research gap exists in generating long-term scientific flood risk predictions for the MLYRB.
It includes the need for comprehensive flood risk indicators and the detailed analysis of flood
vulnerability and exposure under climate change and socio-economic scenarios. Addressing
this gap can help prevent flood disasters, reduce socio-economic loss, and promote the

sustainable development of the MLYRB.

The overarching goal of this research is to investigate the flood risk dynamics and predict the
flood risk under future climate change scenarios in the MLYRB by the end of this century.
Therefore, the research objectives of this study are: 1) To predict the spatial distribution of
flood hazard, vulnerability, exposure, and overall integrated flood risk in the MLYRB based
on a GIS-based multi-index flood risk model with comprehensive indicators under different
future scenarios by 2100; 2) To analyze the temporal changes of predicted integrated flood
risk areas and the areas of flood hazard, vulnerability, and exposure; 3) To provide
suggestions on future flood risk management based on the prediction results of integrated

flood risks.
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In this paper, we applied the improved multi-index flood risk assessment model to predict
flood hazard, vulnerability, exposure, and integrated flood risk in the MLYRB by the end of
this century under the moderate and high emission climatic scenarios. In Section 6.2, the
study area, climatic scenarios, data sources, and flowchart of the flood risk prediction are
described. In Section 6.3, the historical and predicted results for flood hazard, vulnerability,
exposure, and the integrated flood risk in the MLYRB under the SSP2-4.5 and SSP5-8.5
scenarios are described and analyzed from both of spatial and temporal perspectives. In
Section 6.4, the results are further compared with the findings from other related flood risk
prediction studies. Additionally, the uncertainties in this study and suggestions for future
flood risk mitigations are discussed in Section 6.4. Finally, conclusions are summarized in

Section 6.5.

6.2 Data and methods

6.2.1 Study area

The MLYRB (Figure 6.1) is located between 105° 30” to 122° 30’E and 23° 45” to 34° 15°N,
which covers the area of approximately 8 x 105 km2 along the foreland tectonic belt of the
Dabie Mountain Orogen (Ma et al., 2023). It includes 9 sub-basins of the YRB from the Three
Gorges to the Yangtze River Estuary (Guan et al., 2019). The Taihu Lake Basin, Poyang Lake
Basin, as well as Dongting Lake and Honghu Lake Basin are the three major sub-basins in the
MLYRB. The region belongs to a typical subtropical monsoon climate, with the annual
average temperature of 13°C and the annual mean precipitation of 1,100 mm (Yuan et al.,
2021). Because of the East Asian subtropical monsoon, the high temperature and abundant
precipitation are always concentrated in summer (Pei et al., 2017). Both large annual
precipitation and high frequency of extreme precipitation events could lead to a higher flood

risk (Ran et al., 2022).
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Figure 6.1: The location, hydrographical and topographical information of the Middle and
Lower Reaches of Yangtze River Basin (MLYRB), and three important basins including the

Taihu Lake Basin, Poyang Lake Basin, and Dongting and Honghu Lake Basin.

The MLYRB encompasses 11 provinces and municipality including Shanghai, Jiangsu, Anhui,
Zhejiang, Jiangxi, Henan, Hubei, Hunan, and a small part of Guangxi, Shaanxi, and Guizhou.
Among these provinces and municipality, Shanghai, Jiangsu, and Zhejiang are the most
developed areas in the East China, characterized by the rapid urbanization due to the high
population density, developed agricultural bases, and strong socio-economic development

(Ma et al., 2023; Zhang et al., 2020).

6.2.2 Data

The data sources for both projected years from the 2040s to 2100s (2021- 2100) and the base
line period of the 2020s (2001-2020) of flood risk assessment indicators were demonstrated in

Table 6.1. The projected cumulative maximum three-day precipitation data at a 1 km
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resolution, corrected for bias, were utilized in this study. These data cover four future periods:
the 2040s (2021-2040), 2060s (2041-2060), 2080s (2061-2080), and 2100s (2081-2100),
under the SSP2-4.5 and SSP5-8.5 climate scenarios. The data were derived from 46 General
Circulation Models (GCMs) of the Coupled Model Intercomparison Project (CMIP) 6
database (O’Neill et al., 2017). GCMs are a class of reliable computer-driven models for
understanding and projecting climate change (Chen et al., 2021b; Yue et al., 2021).
According to the most complete spatial and temporal capability evaluation of the 46 GCMs
from CMIP6 in China by Lu et al. (2022), MRI-ESM2-0 had been confirmed as the best
precipitation simulation model for the YRB, with the least overestimation of the observed
maximum precipitation among all the GCMs (Lu et al., 2022). The relative bias (PBIAS) of
the MRI-ESM2-0 over the YRB (10.2%) is lower than other GCMs and the Multi-model
Ensemble Mean (MEM) of all the ten best-performing models for precipitation projection
(with the PBIAS of 21%) (Lu et al., 2022). Several studies have confirmed that the
MRI-ESM2-0 model performs reasonably well in replicating observed extreme precipitation
in the subtropical humid zone of East China, covering the MLYRB (Jiang et al., 2023; Shiru
et al., 2022; Song et al., 2023; Yazdandoost et al., 2021). Hence, the predicted precipitation

data based on the MRI-ESM2-0 model were selected for this study.
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Table 6.1: Data sources of flood risk indicators.

No. Indicators Data source of base line years (2020s) Data source of prediction (2040s-2100s)
1 Cumulative average maximum 3-day National Meteorological Information Center (China Surface Climate CMIP6 database (https://esgf-node.llnl.gov/search/cmip6/)
precipitation Data Day Value Data Set) (National, 2019)

2 Absolute elevation Resource and Environment Data Cloud Platform (Jarvis, 2008) Resource and Environment Data Cloud Platform (Jarvis, 2008)

3 Relative elevation Calculated from absolute elevation data Calculated from absolute elevation data

4 Wetland and drainage density The Long-Term Wetland Classification Dataset for YRB The projection of wetland in the MLYRB under future emission
(LTWCD_YRB) (Guo et al., 2024) scenario (Ma et al., 2023)

5 Runoff and vegetation cover factor Resource and Environment Data Cloud Platform 1km gridded LULC dataset of China under SSP-RCP scenarios (Luo
(Liuetal., 2014) et al., 2022)

6 Local and financial revenue China City Statistical Yearbook China City Statistical Yearbook (http://www.chinayearbooks.com)
(http://www.chinayearbooks.com)

7 Per capita resident saving China City Statistical Yearbook China City Statistical Yearbook
(http://www.chinayearbooks.com) (http://www.chinayearbooks.com)

8 Medical service level China City Statistical Yearbook China City Statistical Yearbook
(http://www.chinayearbooks.com) (http://www.chinayearbooks.com)

9 Monitoring and early warning National Meteorological Information Center (China Surface Climate National Meteorological Information Center (China Surface Climate

capability Data Day Value Data Set) (National, 2019) Data Day Value Data Set) (National, 2019)
10  Population density Resource and Environment Data Cloud Platform (Xu, 2017) Provincial and gridded population projection for China under shared
socioeconomic pathways (Chen et al., 2020).
11 GDP per capita Resource and Environment Data Cloud Platform Global gridded GDP dataset under the historical and future scenarios

(Liu et al., 2005)
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12 Soil erosion degree Resource and Environment Data Cloud Platform Resource and Environment Data Cloud Platform

(Wang et al., 2016) (Wang et al., 2016)
13 Site contamination risk Resource and Environment Data Cloud Platform 1km gridded LULC dataset of China under SSP-RCP scenarios (Luo
(Liu et al., 2014) et al., 2022)
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The predicted GDP and population data were obtained from the global gridded GDP dataset
(Wang and Sun, 2022) and the provincial gridded population projection dataset for China
(Chen et al., 2020), respectively. The GDP projection data from the Global gridded GDP
dataset were estimated for SSP 1-5 in the unit of Purchasing Power Parity international
dollars, with the spatial resolution of lkm (Wang and Sun, 2022; Xu et al., 2024). The
population projection data were calculated based on age, sex, and education of each province
in China under various SSP scenarios and downscaled to the spatial resolution of lkm,
referring from the RCP urban grid and historical grid (Chen et al., 2020; Xu et al., 2024). The
data of runoff and vegetation cover factor, and site contamination risk were derived from the
lkm gridded Land Use and Land Cover (LULC) dataset of China under SSP-RCP scenarios
by using the approach to integrate the Global Change Analysis Model and Future Land Use
Simulation model (Luo et al., 2022). The wetland projected data in the MLYRB under the
scenarios of SSP2-4.5 and SSP5-8.5 in 2040s, 2060s, 2080s, and 2100s was based on the

machine learning method of Adaptive Boosting tree (AdaBoost) algorithm (Ma et al., 2023).

Precipitation, GDP per capita, population density, runoff and vegetation cover factor, site
contamination risk, and wetland density were the indicators those contain variations and were
predicted based on the projected data in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5
and SSP5-8.5 scenarios. The rest of the indicators have been confirmed to exhibit minimal
long-term variations in the MLYRB (Guo et al., 2024b; Zhang et al., 2020). Hence, they
were assumed to remain unchanged in the flood risk prediction and were based on the

historical data in 2020s.

6.2.3 Climatic scenarios

CMIP has become a central element of national and international climate change assessment
to study the past, present and future climate changes globally (Eyring et al., 2016). At present,
CMIP 6 is the latest phase to provide a multi-model ensemble to capture a range of climate
change trajectories, with advantages of increasing the reliable reflection of future climate
status by the higher spatial resolution and the fewer uncertainties because of the more

complicated physical process (Eyring et al.,, 2019; Mondal et al., 2021; Xu et al., 2019b).
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CMIP 6 has proposed a new projection scenario, namely the combination of different RCPs
and SSPs. SSP1 to SSP5 represent five distinct societal development pathways: SSP1 focuses
on sustainability; SSP2 reflects moderate development following historical trends; SSP3
depicts a fragmented world concerned with security and competitiveness; SSP4 highlights
growing inequality in economics and politics; and SSP5 envisions rapid economic growth
fueled by fossil-intensive energy use (O’Neill et al., 2017). When combined with the RCP
scenarios, the new scenarios including SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. In this
study, SSP2-4.5 and SSP5-8.5 were selected as future scenarios for the flood risk prediction,
representing moderate and high-emission pathways, respectively. For the SSP2-4.5 scenario,
global and national institutions work towards but make the slow progress in achieving
sustainable development goals. For the SSP5-8.5 scenario, fossil fuel resources are exploited
all around the world (Riahi et al., 2017). In China, flood risk is always projected under the
SSP2-4.5 and SSP5-8.5 scenarios, which align more closely with China's projected future

emissions and socio-economic development trends (Liu et al., 2023a).

6.2.4 Future flood risk simulation

According to Figure 6.2, the spatial distribution maps and the temporal change of average
areas in the 2040s, 2060s, 2080s, and 2100s of flood hazard, vulnerability, exposure, and the
integrated flood risk under the SSP2-4.5 and SSP5-8.5 scenarios in the MLYRB can be
predicted by applying the improved multi-index flood risk system. The model had been used
to assess the flood risk with the long-term wetland effects of the YRB between 1985 and 2021

(Guo et al., 2025).
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Figure 6.2: The flowchart for predicting the spatial and temporal changes of flood hazard,
vulnerability, exposure, and the integrated risk under the SSP2-4.5 and SSP5-8.5 scenarios in
the MLYRB. (1)-(4) represents four time periods of the prediction in this study: 2040s

(2021-2040), 2060s (2041-2060), 2080s (2061-2080), and 2100s (2081-2100).

A comprehensive multi-index flood risk assessment system is based on three indices
identified by the United Nations Office for Disaster Risk Reduction: Hazard, vulnerability,
and exposure (Liu et al., 2023b; Nguyen et al., 2021). Hazard often refers to climate and its
influence, precipitation is the main factor of flood hazard (Nguyen et al., 2024). Exposure
refers to the presence of at-risk elements in a flood zone, such as population, infrastructure,
property, and economic activity. In contrast, the level of vulnerability to floods is defined as
the potential influence that flooding contains on an exposed object, which depends on the
characteristics of the community that make it susceptible to damage during the flood, like
socio-economic indicators (Nguyen et al., 2024). In this study, the flood hazard (H),
vulnerability (V), exposure (E) are calculated as the weighted sum of corresponding
indicators, with each indicator multiplied by its assigned weight. The weights of indicators
and indices, determined by using the AHP method, were presented in Table 6.2. Afterwards,

the integrated flood risk can be mapped by the following equation:
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FR:HXWH+VXWV+EXWE (61)

The area dynamics of flood hazard, vulnerability, exposure, and overall flood risk during
these four periods were calculated based on the mapped results of the corresponding indices
and flood risk assessments. To compare flood indices and flood risk across the four time
periods under two scenarios, the classification results for five levels (very low, low, medium,
high, and very high) of flood indicators, hazard, vulnerability, exposure, and risk were
demonstrated in Table 6.3. The classification standards across all scenarios and time periods
need to be consistent to enable comparison. Therefore, the classification interval of flood
indicators, flood indices, and the integrated flood risk need to be manually adjusted in ArcGIS

by considering the minimum and the maximum values.
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Table 6.2: The flood risk assessment model structure and weights of flood risk indicators.

Index layer

Weight of the index layer

Indicator layer

Weight of the indicator
layer

Integrated flood risk (FR)

Hazard (H)

Vulnerability (V)

Exposure (E)

+0.469

+0.322

+0.209

Cumulative average maximum 3-day
precipitation (H)

Absolute elevation (V1)

Relative elevation (V2)

Wetland and drainage density (V3)
Runoff and vegetation cover factor
(V4

Local financial revenue (V5)

Per capita resident saving (V6)
Medical service level (V7)
Monitoring and early warning
capability (V8)

Population density (E1)

GDP per capita (E2)

Soil erosion degree (E3)

Site contamination risk (E4)

+0.469

-0.053
-0.061
+0.039
+0.041

-0.028

-0.025
-0.027
-0.047

+0.046
+0.066

+0.068
+0.030
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Table 6.3: The classification standard.

Very low Low Medium High Very high
Runoff and vegetation 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
cover factor
GDP per capita <27 27-480 480-3,840 3,840-125,408 >125,408
(yuan/km?)
Population density <50 50-60 60-237 237-5,000 >5,000
(people/km?)
Site contamination risk 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Hazard 0-0.22 0.22-0.39 0.39-0.54 0.54-0.68 0.68-1.0
Vulnerability 0-0.25 0.25-0.37 0.37-0.55 0.55-0.61 0.61-1.0
Exposure 0-0.18 0.18-0.25 0.25-0.31 0.31-0.49 0.49-1.0
Flood risk 0-0.15 0.15-0.27 0.27-0.38 0.38-0.52 0.52-1.0
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6.3 Results

6.3.1 Spatial distribution pattern of flood risk in the historical period

Figure 6.3 illustrated the spatial distribution pattern of integrated flood risk and its associated
indices, including hazard, vulnerability, and exposure in the historical period (2020s). As
presented in Figure 6.3a, 22% and 12% of the MLYRB were covered by the high and very
high flood hazard levels in 2020s. These areas were mainly concentrated in the flood prone
regions with high precipitation, including the Wanjiang Plain, Poyang Lake Basin, as well as
Dongting and Honghu Lake Basin. Figure 6.3b illustrated that the areas surrounding Poyang
Lake and Dongting Lake were much more vulnerable to floods than the other regions of the
MLYRB. In the flood exposure map (Figure 6.3c), the regions with the very high flood
exposure were generally concentrated in the eastern MLYRB, typically in Jiangsu and
Shanghai, where both population density and GDP per capita were notably high. The
integrated flood risk map (Figure 6.3d) in the historical period showed that 33% of the
MLYRB was located in the high and very high flood risk areas, with 3% falling into the very
high category. These high and very high flood risk zones were primarily distributed in Anhui,
Jiangxi, Hubei, Hunan, and some parts of Jiangsu surrounding Taihu Lake.
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Figure 6.3: The spatial distribution of MLYRB flood risk indices in the historical period

(2020s): a) hazard; b) vulnerability; c) exposure; and d) integrated flood risk.

6.3.2 Spatial distribution pattern of future flood risk

Figures 6.4 to 6.7 displayed the spatial distribution maps of the predicted flood hazard,
vulnerability, exposure, integrated risk. Appendices 6.1 to 6.5 demonstrated indicators with
the significant changes under the SSP2-4.5 and SSP5-8.5 scenarios of the MLYRB in 2040s,
2060s, 2080s, and 2100s. Results from Figure 6.4 demonstrated that the areas with the high
and very-high flood hazard level generally located in Hunan, Jiangxi, and the southern part of
Jiangsu. It showed that there would be an overall northward movement of the high and very
high level flood hazard regions in the MLYRB by the end of this century, typically in the
Taihu Lake Basin under the SSP5-8.5. It was attributed to the northward shift in the intensity
of the East Asian Summer Monsoon rainfall (Huang et al., 2019; Katzenberger and

Levermann, 2024).

The spatial distribution maps of flood vulnerability prediction in the MLYRB under the
scenarios of SSP2-4.5 and SSP5-8.5 were illustrated in Figure 6.5. Wetlands density and
runoff vegetation cover factor were the main indicators with significant variations to predict
the flood vulnerability. Overall, the regions with very high flood vulnerability were estimated
to distribute in the Poyang Lake Basin, and Dongting and Honghu Lake Basin, due to the
concentration of wetlands and the surrounding urban areas with the high runoff vegetation
cover factor (Ma et al., 2023; Shen et al., 2023). The predicted results were similar to the
vulnerability results in 1998, 2008, 2016, and 2020 as shown in Zhang et al. (2020) and Jia et
al. (2022). These studies showed that areas with high flood vulnerability in the MLYRB were

generally located in Hunan, Hubei, Jiangxi, and Anhui, covering the major lake basins.

The spatial distribution results of flood exposure prediction in the MLYRB under the
scenarios of SSP2-4.5 and SSP5-8.5 were demonstrated in Figure 6.6. The central and eastern
parts of the MLYRB were projected to contain the high and very high flood exposure,

typically in Shanghai and the areas around Taihu Lake in Jiangsu. The GDP per capita,
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population density, and site contamination risk were the main flood exposure indicators.
Appendices 6.3 and 6.4 illustrated that the central and eastern regions of the MLYRB were
projected to contain the higher GDP per capita and population density than those in the
western region. For the site contamination risk (Appendix 6.5), the high and very high
contamination regions were projected to distribute in water bodies, typically in Taihu Lake.
According to the spatial changes in the population projection of China, it indicated that the
high population density areas were primarily concentrated in the southeast coast region, the
central part of Jiangsu and Henan (Sang et al., 2024). Besides, Peng and Li (2021) confirmed
that the YRB eastern region, including Shanghai, Jiangsu, and Zhejiang was much more
densely populated than other regions. accounted for more than 50% of the GDP in the entire
Yangtze River Economic Belt because of the unbalanced economic development and the

rapid urbanization.

The integrated flood risk assessment predictions were derived by superimposing the layers
obtained from the flood hazard, vulnerability and exposure predictions. The flood risk results
were closely related to the hazard results due to the significant weight. Generally, the
projected flood risks presented a spatial pattern of the low level in the west and high level in
the east of the MLYRB. Figure 6.7 clearly demonstrated the high and very high flood risk
areas were predicted to distribute in Jiangxi, Hunan, and the southern part of Jiangsu,
covering the three main lake basins (Taihu Lake Basin, Poyang Lake Basin, and Dongting
and Honghu Lake Basin) of the MLYRB. Besides, a significant expansion of the high and
very high flood risk areas was predicted in Jiangxi, Hunan and Jiangsu. The northward
expansion was particularly prominent in the southern region of the Taihu Lake Basin, driven

by the northward shift of the rain belt.
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Figure 6.5: The spatial distribution maps of flood vulnerability level in the MLYRB under the
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Figure 6.7: The spatial distribution maps of flood risk level in the MLYRB under the
SSP2-4.5 scenario in a) 2040s; b) 2060s; ¢) 2080s; and d) 2100s, under the SSP5-8.5 scenario
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6.3.3 Temporal changes in future flood risk areas

Figure 6.8 illustrated that the low and very low flood hazard areas both contained the
decreasing trend. The total proportion of areas with the high and very high hazard would

continuously increase from 30% to 39% under the SSP2-4.5 scenario and from 36% to 39%

142



under the SSP5-8.5 scenario from 2040s to 2100s. However, the very high flood hazard area
under the SSP5-8.5 scenario was projected to decrease 3% (16%-13%) of the total MLYRB
area from 2080s to 2100s. The extreme precipitation was considered as the most significant
driving force, making floods to become one of the most costly and dangerous natural hazards
around the world (Huang et al., 2021). Pei et al. (2017) found that historically, the frequency
and intensity of extreme daily precipitation in the MLYRB generally increased from 1961 to
2012. And it has been confirmed that there would be a general increase of extreme
precipitation frequency and intensity in the YRB by the end of the twenty-first century under
all the climate change scenarios (Wu et al., 2023b; Xu et al., 2023; Yue et al., 2021). From
2040s to 2100s, the area with very-high hazard level was predicted to be larger under the
climate change scenario of SSP5-8.5 than that of SSP2-4.5 except 2100s. Besides, Figure 6.8
demonstrated that the largest area difference between two scenarios will in the 2040s, the very
high flood hazard area under SSP5-8.5 would reach three times that under the SSP2-4.5
scenario. Zou and Zhou (2022) confirmed that the larger fractions of land and population
would be affected by the larger rainfall under the SSP5-8.5 scenario both in China and the

global scale.

The very high flood vulnerability areas in the MLYRB were projected to experience a slightly
reduction from 2040s to 2100s (Figure 6.9). There will be a shrinkage of 3,300 km?” of very
highly vulnerable area under the SSP2-4.5 scenario and a shrinkage of 9,500 km? under the
SSP5-8.5 scenario (Table 6.5). According to the wetland and drainage prediction results in the
MLYRB from 2040s to 2100s (Appendix 6.1), the arecas of wetlands were projected to
decline— more rapidly under the SSP5-8.5 scenario (Ma et al., 2023), thus reducing the flood
vulnerability. The runoff and vegetation cover factor (Appendix 6.2) was another significant
contributor to the flood vulnerability, showing the conversion from the low to the very low
level over the study period in the MLYRB. According to the LULC prediction data, the areas
converted from grasslands to forests and shrub would expand until 2100, the areas of other
land cover categories would generally keep constantly (Luo et al., 2022). Therefore, the

vegetation coverage growth brought by forests and shrubs would enhance the infiltration rate
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of precipitation and slowdown flood runoff, thus reducing the flood vulnerability (Zhang et al.,

2020).
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Figure 6.8: Changes in areas of different flood hazard levels of the MLYRB under SSP2-4.5

and SSP5-8.5 scenarios from 2040s to 2100s.
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Figure 6.9: Changes in areas of different flood vulnerability levels of the MLYRB under

SSP2-4.5 and SSP5-8.5 scenarios from 2040s to 2100s.

The very high flood exposure areas from 2040s to 2100s were predicted to increase totally
100 km?* under the SSP2-4.5 scenario and 500 km?* under the SSP5-8.5 scenario in Table 6.6.
For the high flood exposure regions, the area showed the prominent decreasing trend (Figure
6.10), which would shrink 47,800 km? under the SSP2-4.5 scenario and 38,500 km?* under the
SSP5-8.5 scenario. Appendix 6.3 showed that the areas of the high and very high level GDP

were projected to increase under both scenarios of SSP2-4.5 and SSP5-8.5 in the MLYRB,
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with the more rapid expansion under the SSP5-8.5 scenario (Wang and Sun, 2022). For the
population prediction in Appendix 6.4, population density would decrease rapidly from 2040s
to 2100s, typically under the SSP5-8.5 scenario. The result has been confirmed by Chen et al.
(2020), indicating that the population of China has been shrinking since 2022, marking the
first population decline in decades. Besides, the high level of the site contamination risk areas
in the MLYRB, calculated from the LULC data, would expand due to the increase in the
forest and shrub coverage — LULC categories with the high contamination index (Luo et al.,
2022). Overall, the predicted results of flood exposure indicated that the decline in population
density would be greater than the expansion of GDP and contamination risk from 2040s to
2100s under both scenarios. Consequently, it may lead to a slight increase of the very high

flood exposure area, but a more substantial decrease in the high flood exposure area.

Figure 6.11 indicated that the total areas of high and very high flood risk level would increase
continuously, while the low and very low flood risk areas both contained the decreasing trend.
The total areas of high and very high flood risk under the SSP2-4.5 scenario would increase
from 30% to 38% of the total MLYRB from 2040s to 2100s; and the areas under the
SSP5-8.5 scenario would expand from 36% to 40% during this period. It means that the
overall flood risk of the MLYRB will become severer by the end of the 21* century under
both scenarios of SSP2-4.5 and SSP5-8.5. However, similar to the trend in very high flood
hazard, the very high flood risk areas were projected to experience a slight shrinkage of 3%

from 2080s to 2100s under the SSP5-8.5 scenario.
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Figure 6.10: Changes in areas of different flood exposure levels of the MLYRB under

SSP2-4.5 and SSP5-8.5 scenarios from 2040s to 2100s.
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Figure 6.11: Changes in areas of different flood risk levels of the MLYRB under SSP2-4.5

and SSP5-8.5 scenarios from 2040s to 2100s.
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Table 6.4: The predicted area of flood hazard level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios.

Very low (10*%km?) Low (10*km?) Medium (10*km?) High (10*km?) Very high (10°km?)

SSP2-4.5 SSP5-8.5  SSP2-4.5 SSP5-8.5  SSP2-4.5 SSP5-8.5 SSP2-4.5  SSP5-8.5 SSP2-4.5 SSP5-8.5
2040s 16.10 14.99 22.19 19.39 16.95 16.41 21.15 18.64 3.42 10.38
2060s 15.16 14.73 21.86 17.76 16.14 17.48 17.93 19.55 9.61 11.18
2080s 15.29 14.24 21.86 18.99 16.85 15.83 16.92 17.92 10.70 12.75
2100s 15.32 13.74 19.83 17.42 14.66 18.32 15.97 20.85 14.84 10.40
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Table 6.5: The predicted area of flood vulnerability level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP 5-8.5 scenarios.

Very low (10*%km?) Low (10*%km?) Medium (10*km?) High (10%km?) Very high (10*km?)

SSP2-4.5  SSP5-8.5  SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5

2040s 6.76 6.90 18.54 18.86 28.49 27.76 17.72 18.25 6.00 5.74
2060s 6.65 6.85 19.51 19.42 27.55 26.86 18.01 18.57 5.80 5.71
2080s 6.72 6.49 19.46 18.28 27.30 28.95 18.25 18.68 5.78 5.11

2100s 6.79 6.67 19.87 18.52 26.81 27.53 17.67 20.00 5.67 4.79
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Table 6.6: The predicted area of flood exposure level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios.

Very low (10*%km?) Low (10*km?) Medium (10*km?) High (10*km?) Very high (10°km?)

SSP2-4.5 SSP5-8.5 SSP2-4.5  SSP5-8.5  SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5

2040s 0.94 0.96 7.04 7.18 24.86 25.14 43.23 42.57 1.59 1.81
2060s 0.99 1.02 7.60 7.74 26.16 26.93 41.32 40.16 1.59 1.81
2080s 1.12 1.09 8.14 7.99 28.04 27.58 38.76 39.19 1.60 1.81

2100s 1.15 0.33 8.24 4.32 28.22 3243 38.45 38.72 1.60 1.86

151



Table 6.7: The predicted area of flood risk level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios

Very low (10*km?) Low (10*km?) Medium (10*km?) High (10*km?) Very high (10*km?)

SSP2-4.5 SSP5-8.5  SSP2-4.5 SSP5-8.5  SSP2-4.5  SSP5-8.5 SSP2-4.5  SSP5-8.5 SSP2-4.5 SSP5-8.5

2040s 15.03 14.42 20.54 18.41 15.86 15.37 20.94 17.60 3.58 10.15
2060s 13.98 13.95 20.16 16.73 14.81 16.60 17.47 18.14 9.54 10.53
2080s 14.47 13.68 19.66 18.03 15.86 15.03 16.06 16.62 9.90 12.59

2100s 14.56 13.01 18.52 16.51 13.91 16.54 14.49 19.35 14.47 10.54
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6.4 Discussion

6.4.1 Validation

In this study, all the projected data for flood risk indicators were derived from the historical
data. However, the simulated wetland data (Ma et al., 2023) were not derived from the
historical wetland data in the LTWCD_YRB (Guo et al., 2024). Therefore, it is essential to
validate the consistency between the historical and simulated wetland data, For the area
comparison, Ma et al. (2023) indicated that the difference between historical wetlands and
simulated potential wetlands ought to be smaller than 6.3% relative to the total study region,
which should be less than 24,970 km?. The difference between the historical wetland areas
and the simulated wetland areas in 2020 is 24,130 km?. It means the simulated wetland data
contains the consistency with the historical LTWCD_YRB dataset. Figure 6.12 demonstrated
that the overall wetland spatial distribution in 2020 was generally consistent between the
historical and the simulated datasets. However, the dataset from Ma et al. (2023) slightly
overestimates the wetland areas compared to historical records from the LTWCD_YRB,
particularly in the central MLYRB along the Yangtze River and waterbodies in the eastern
region of Taihu Lake. Nevertheless, it is not substantial enough to affect the overall spatial

pattern or temporal area changes of the flood risk prediction in this study.
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Figure 6.12: The 2020 spatial distribution of a) MLYRB simulated wetlands with 463m

resolution; and b) MLYRB existed wetlands with 30m resolution.

The baseline period results of this study can be verified by several studies that assessed the
flood risk in the historical period, indicating that flood risks were generally concentrated in
the major lake basins of the eastern and central regions of the YRB, typically the Taihu Lake
Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin (Gao et al.,
2021; Guo et al., 2025; Zhang et al., 2020). Wu et al. (2023b) and Xu et al. (2023) confirmed
that the extreme precipitation, generally distributed in the southeastern region of the YRB,
was projected to contain the significant increasing trend by 2100 under both scenarios of
SSP2-4.5 and SSP5-8.5 based on the CMIP6. Peng and Li (2021) verified that the
high-middle and high flood risk areas (the top two flood risk levels in the study) were
predicted to be generally concentrated in the southeastern of the YRB, covering Jiangsu,
Jiangxi, and Hunan from 2020 to 2050 under the SSP2-4.5 and SSP5-8.5 scenarios.
Additionally, there existed the northward expansion of the high-middle flood risk area in the
predicted period of Peng and Li (2021). For the temporal change of flood risk area under the
moderate and high emission scenarios, Bai et al. (2019) predicted that climate change would
lead to the increasing flood risk in the future, particularly under the higher emission scenario,
The predicted results of this study aligned with these findings, projected the high and very
high flood risk areas to be concentrated in Jiangxi, Hunan, and southern Jiangsu, with an

overall increasing trend and northward expansion throughout the study period.

6.4.2 Uncertainties

In this study, there were some uncertainties existing in the flood risk indicators when using
the CMIP6 data to predict the future flood risk. Uncertainties caused by the overestimation
still existed in the precipitation data obtained from the MRI-ESM2-0 model, although it has
been confirmed with less relative bias in the YRB than other GCMs and ensemble models (Lu
et al., 2022). Besides, the slight overestimation existed in the projected wetland data as well.
For the indicators such as GDP, population density, and LULC, future policy uncertainties in

China may influence their projections and distributions. The implementation of new towns or
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district construction policies to deal with the rapid urbanization in the future could be an
example (Chen et al., 2020). In this study, certain indicators such as relative elevation,
absolute elevation, and monitoring and early warning capacity were assumed to remain
unchanged based on the historical data. Although the topography and the meteorological
station distributions in the MLYRB changed slightly over the historical period, this

assumption may still introduce some uncertainties into the future flood risk assessment.

Additionally, the use of fixed weights for some indicators across the entire MLYRB over the
long term may introduce uncertainties to the flood risk prediction results. The weights of
indicators related to the economic development, such as GDP and population density, may
carry the greater importance in the regions experiencing rapid economic growth. For example,
the study regions covering Henan, Jiangsu and Shanghai, were projected to contain the larger
population density and economic development in the future (Peng and Li, 2021; Sang et al.,
2024), may require the higher weights for the relevant flood risk indicators than other regions.
Therefore, incorporating indicator weight dynamics should be considered in the future AHP

process for the flood risk prediction in large-scale study regions.

6.4.3 Suggestions to mitigate future flood risks

The flood risk assessment prediction results of this study indicated that Jiangxi, Hunan, and
southern Jiangsu of the MLYRB would be the key area for the future flood risk mitigation.
Given the projected increase in the precipitation, along with the rapid economic development
and population growth in these regions, both nature-based and socio-economic strategies are

essential for the future flood risk mitigation.

For the expansion of the high and very high flood risk areas in the Poyang Lake Basin as well
as the Dongting and Honghu Lake Basin, fluvial flood mitigation infrastructures and natural
ecosystem developments could be helpful to reduce flood disasters (Peng and Li, 2021). For
instance, constructing more reservoirs and drainage systems, controlling lake reclamations,
rearranging the local farming and aquacultural development of the flood prone regions, and

restoring vegetation-covered wetlands. Besides, the high flood risk areas were projected to
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expand in the southern part of Jiangsu around Taihu Lake, an urban region with the extremely
high GDP and population density in China (Xu and Chen, 2023). Therefore, the
implementation of the ‘Sponge City’ need to be further developed in the future (Sun et al.,
2023). It aims to mitigate the flood risk in the populated and urbanized regions by managing
rainwater through the sunken green spaces, permeable ground materials, and extensive
drainage systems (Guan et al., 2021). Additionally, the development of satellite technology
and meteorological monitoring systems can improve the flood resilience by tracking flood

changes and forecasting extreme weather (Jongman, 2021; Tellman et al., 2021).

6.5 Conclusions

This study predicted and analyzed the spatial and temporal changes of flood hazard,
vulnerability, exposure, and the integrated flood risk in the MLYRB under the SSP2-4.5 and
SSP5-8.5 scenarios from 2040s to 2100s with a 20-year interval. The spatial distribution of
the flood risk is projected to be higher in Jiangxi, Hunan, and southern Jiangsu, but lower in
Shaanxi and Henan provinces, closely aligning the similar spatial distribution of flood hazard
and flood exposure. The areas surrounding Poyang Lake and Dongting Lake were expected to
be more vulnerable to floods. There will be a northward expansion of the high flood risk area
in the southern part of the Taihu Lake Basin. The expansion will be more prominent under the
SSP5-8.5 scenario. The three major basins of the MLYRB, including the Taihu Lake Basin,
Poyang Lake Basin, Dongting and Honghu Lake Basin, along with the surrounding provinces
including Jiangxi, Hunan, and the southern part of Jiangsu, were projected to experience the
larger areas of the high and very high flood risk level over the next 80 years. For the temporal
perspective, the highest weight of the increasing high and very high flood hazard led to the
overall increasing trend in the high and very high flood risk areas by the end of this century
(except the shrinkage of the very high flood risk in 2100s under the SSP5-8.5 scenario).
Results illustrated that the total areas of high and very high flood risk level would comprise
38% and 40% of the total MLYRB by 2100 under the SSP2-4.5 and SSP5-8.5 scenarios,

respectively.
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In the future, it is crucial for local governments to enhance the stormwater storage capacity of
water bodies, to effectively manage the urban drainage systems and wetland distributions, and
to develop more advanced monitoring and early warning systems for the local meteorology in
the predicted flood prone regions. Overall, the flood risk assessment prediction under the
climate change and socio-economic scenarios will help with the future flood risk control and

management in the MLYRB.
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Chapter 7 Discussion

7.1 Major contributions

The LTWCD_YRB dataset established in Chapter 4 is available on the Figshare website
(https://doi.org/10.6084/m9.figshare.21859920.v1). It includes 30m resolution wetland
classification maps from 1984 to 2021, along with JavaScript code for data processing and
machine learning on the GEE platform (Guo et al., 2024). This dataset addresses the lack of a
long-term time series wetland dataset with comprehensive wetland categories in the YRB.
Compared with other existing wetland datasets covering the YRB, the CAS Wetland dataset
only offers a single year (2015) of national wetland classification map (Mao et al., 2020). The
LTWCD_YRB spans a much longer period (1984-2021). Another major advantage of the
LTWCD_YRB is that it includes more comprehensive wetland categories than other
wetland-related datasets in China, such as the Inland Surface Water Dataset (ISWDC) (Lu et
al., 2019), the High Spatial-Temporal Water Body Dataset (HSWDC) (Li et al., 2020), and
the China Land Cover Dataset (CLCD) (Yang and Huang, 2021). These non-wetland-focused
datasets only provide general water or wetland classes without detailed subcategories. In
addition, unlike several existing wetland datasets that focus primarily on the middle or lower
reaches of the YRB, such as the long-term Water Middle Reaches of the Yangtze River
(Water-MRYR) dataset (Ma et al., 2025), the LTWCD_YRB covers the entire YRB, thus
providing the more comprehensive representation of the spatio-temporal dynamics of
wetlands across the basin. Therefore, the LTWCD_YRB is the first wetland classification
dataset for the YRB to combine the long-term time series, the detailed wetland categorization,
and the basin-wide spatial coverage. Besides, the LTWCD_YRB is extendable when recent
source datasets are available and could be applied to the larger spatial extent in the future
depending on the data availability of sufficient data sources. Overall, the LTWCD_YRB
provides the clear advantages over the existing datasets, thereby fulfilling the first objective
of this thesis. Researchers and policymakers can search and analyze the spatial and temporal
dynamics of different wetland categories across seasons, years, and specific areas of interest

in the YRB between 1984 and 2021. Moreover, the GEE-based machine learning algorithm
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codes for wetland classification and validation can serve as a reference for researchers,
allowing them to adapt and apply the methodology to other wetland classification studies with

necessary modifications.

Based on the calculations of wetland areas of the LTWCD_ YRB, it completed the objective
to compare wetland area changes under their corresponding driving forces. It found that
anthropogenic driving forces such as urbanization, fish farming development, and sand
dredging affected a larger area of wetlands than natural factors such as sea-level rise, soil
erosion, flooding, and temperature or precipitation change. This finding confirmed that as the
most populated and developed basin in China, human activities are always the main driving
factor of the long-term wetland variations in the YRB, such as the shrinkage of tidal flats in
the YRB estuary region, large expansion of aquaculture ponds and shrinkage of lakes in the
TLB, PLB, and DLB. However, wetlands in the YRB source region, all of which belong to
natural wetland categories, are typically vulnerable to the natural driving force of climate
change. Hence, it provides the data support and references for the policymaking of wetland
conservation and management to deal with the vulnerable wetland categories in different
regions of the YRB. Additionally, the monthly wetland variation data in the PLB and DLB
can provide insights into the hydrological process of seasonal floodplains and can support the

research on the local flood mitigation (Acreman and Holden, 2013; Li et al., 2019).

The long-term flood risk assessment with effects of wetlands dynamics in Chapter 5 fills the
research gap of incorporating the long-term comprehensive wetland data as an indicator in the
flood risk assessment. Wetlands in different regions and categories have complex effects on
flood risks within a basin. The current flood risk in the YRB is particularly severe in densely
populated areas with the high precipitation, exacerbated by climate change (Acreman and
Holden, 2013; Cheng et al., 2001; Kundzewicz et al., 2019). Consequently, conducting a
long-term, multi-index flood risk assessment that incorporates the effects of wetlands is
crucial. Such an assessment can analyze how wetland categories influence the spatial
distribution and extent of different flood risk levels in flood-prone regions of the YRB. The
future flood risk prediction until the end of this century in Chapter 6, along with wetland
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variations, makes the general prediction of the flood hazard, vulnerability, exposure, and the
integrated risk at a 20-year interval under different climate change scenarios. The prediction
can provide the data support and guidance for the future flood risk prevention in the MLYRB,
helping to reduce the flood losses to some extent. Additionally, it has been confirmed that
flood risk mitigation approaches in the YRB are primarily rely on the large-scale water
conservancy projects. Therefore, the wetland-related strategies in Chapters 5 and 6 to mitigate
flood risks based on the flood risk assessment results and the dominant flood risk indicators
can serve as a valuable reference for the wetland-related flood risk management in the YRB.
These strategies can help to fill the gap in applying nature-based approaches to improve the
flood risk resilience in developing countries, where such methods are less common compared

to basins in developed countries. (Fournier et al., 2016; Jia et al., 2022).

7.2 Wider implications

To reach the goal of the ecological civilization development, the Chinese government has
taken actions to solve pollution and ecological degradation in the continuous economic
growth (Hansen et al., 2019; Sheng et al., 2022). The national strategy for the Great Yangtze
River Protection Program (GYRPP) launched in 2016 is one of the most representative
actions, with aims to make the conservation and restoration of the YRB ecology under the
rapid economic growth, and to achieve the long-term sustainable development by balancing
conservation and development nexus (Han and Sheng, 2024). The research of this thesis
regarding the long-term variations of wetlands and their effects on the YRB flood risk, as well
as the future flood risk predictions under the climate change and socio-economic pathways,
aligns with the goal of GYRPP. The LTWCD_YRB dataset provides the valuable monitoring
data to the long-term wetland conservation of the YRB, typically the wetland variation data in
regions experiencing the rapid economic growth. The GYRPP has established 265 key
Ecological Function Zones (EFZ) to conserve nature in the YREB (Wei et al., 2024).
Industrial development within these EFZs is restricted and requires state approval (Sheng et
al., 2022). Among the EFZ types, flood regulation zones are particularly important, aiming to
enhance the flood regulation and storage capacity by preserving lake and wetland ecosystems,

including the TLB, PLB, and DLB (Sheng et al., 2022). Hence, the long-term flood risk
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assessment considering wetland effects on flood regulation zones can provide valuable
insights for research on floods and wetlands within the EFZs of the GYRPP. Furthermore,
flood risk predictions under climate change scenarios, incorporating wetland dynamics, will
support the YRB large-scale ecological restoration projects, which are planned for future

implementation (Sheng et al., 2022).

As one of the most representative basins in in the world, characterized by the abundant
wetland resources, severe flood disasters, and complex socio-economic conditions, the YRB
serves as a key focus for the wetland conservation and flood risk mitigation efforts under
climate change. These efforts, as presented in this thesis, are directly aligned with the United
Nations SDGs. This thesis makes implications for seven SDGs: Promoting health and
well-being for all (SDG 3); ensuring the availability and sustainable management of water
and sanitation (SDG 6); making cities inclusive, safe, resilient, and sustainable (SDG 11);
promoting sustainable consumption and production (SDG 12); taking urgent action to combat
climate change (SDG 13); conserving marine and coastal resources (SDG 14); and protecting,
restoring, and sustainably using terrestrial ecosystems (SDG 15). (Mohanty et al., 2024;

Molinari et al., 2023).

7.3 Research limitations

The research process to establish the LTWCD_YRB in Chapter 4 was based on the
remote-sensed satellite imagery of the GEE platform. Although the GEE-based sample
collection is more efficient for collecting a large number of samples in the extensive study
region with a long-term time series for this thesis, the lack of fieldwork for ground truth data
collection still limits the accuracy of the dataset, especially for the validation purposes. The
classification accuracy of certain wetland categories with smaller areas, such as canals and
aquaculture ponds, was lower than that of other categories due to challenges in collecting
precise samples from Landsat imagery, caused by unclear wetland boundaries and size
limitations. Mao et al. (2020) illustrates that the field survey is an effective way to obtain

training and validation samples for land cover classifications similar to those used in this
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thesis. For example, UAVs equipped with a real-time kinematic GPS were used to identify

the categories of those small and inaccessible wetlands (Mao et al., 2020).

Hydrologically, wetlands provide the temporary storage that reduces and delays flood peaks.
This additional storage increases lag time and attenuates the flood wave as it travels
downstream. Wu et al. (2020) showed that the existing wetlands reduced peak flow by about
24%, flood duration by 1 day, and the total event runoff volume by 17% in the Nenjiang
River Basin, demonstrating that extensive wetland complexes can substantially reduce
downstream flood risk at the basin scale. The similar hydrological model of the North
Carolina Coastal Plain indicated that the vegetation coverage of floodplain wetlands slow the
flood wave propagation through the enhanced roughness (Hovis et al., 2021). Tull and
Passalacqua (2025) emphasize that the wider and well-connected floodplains generate the
stronger attenuation of downstream flood peaks than the narrow or disconnected wetlands.
However, the influence of wetlands on the downstream flood risk is not universally mitigating.
Some studies observed the increased flooding downstream where wetlands were highly
saturated, located lowly in the catchment, or the drawing down storage was too late (Gupta et
al., 2024; Lane et al, 2018). Overall, wetlands play the important role in regulating
downstream flood risk, although their effectiveness depends on the location, extent,

hydrological connectivity, and storage condition of wetlands.

In Chapters 5 and 6, the flood risk was assessed based on three components: hazard,
vulnerability, and exposure. The maximum cumulative three-day precipitation serves as the
sole hazard indicator and is assigned a substantially higher weight than the vulnerability and
exposure indicators. Consequently, the flood risk assessment results are largely dominated by
precipitation. As this study adopts a GIS-based multi-index spatial assessment approach that
emphasizes the spatial distribution of relative flood risk levels, it does not explicitly simulate
the hydrological processes from precipitation to runoff. The potential time lag and routing
effects of precipitation on downstream discharge are not accounted for, which may lead to an
underestimation of flood hazards in the lower river reaches under the current assessment
approach. Additionally, although this study compared the spatial distribution of flood risk
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before and after incorporating wetland inputs in the representative flood-prone regions
(Section 5.3.1), it does not fully demonstrate how upstream wetlands influence the
downstream flood risk and the detailed processes involved. Therefore, more sensitivity tests
could be conducted in the future research to quantify how variations in wetland characteristics,
such as the location, extent, hydrological connectivity, storage capacity of various wetlands,
influence the flood risk downstream. For example, model scenarios may be set up by
adjusting different wetland storage capacities while keeping other parameters constant to
evaluate how the increased or decreased water retention of wetlands alters the downstream

peak flow.”

The GIS-based multi-index flood risk assessment methodology applied in Chapters 5 and 6
focuses on the spatial distribution of flood risk by integrating a large number of spatial
indicators. In contrast, flood modelling approaches (e.g., HEC-HMS, MIKE-FLOOD, SWAT,
and LISFLOOD-FP) (Rajib et al., 2020; Sahu et al., 2023; Tansar et al., 2020) primarily
emphasize the simulation of hydrological and hydraulic processes (Grimaldi et al., 2019).
Compared with the model-based methods, the GIS-based multi-index approach has the
notable advantage of incorporating not only hydrological risks, but also flood vulnerability
and exposure, rather than focusing solely on flow dynamics, flood depth, and velocity
(Nkwunonwo et al., 2020), thereby providing a more holistic representation of flood risk. In
addition, GIS enables detailed spatial analysis and intuitive visualization of flood risk indices
and outputs across multiple scales, which enhances the interpretability of results for
policymakers in different regions, whereas such interpretability is often more limited in flood
modelling approaches. Furthermore, in terms of data accessibility, the GIS-based method
relies primarily on remote sensing products and existing spatial datasets, which are

increasingly available and cost-effective.

However, the GIS-based multi-index flood risk assessment method has several limitations
when compared with the model-based approaches. First, it does not explicitly simulate
physical flood processes, such as rainfall-runoff dynamics, flow routing, or inundation depth,
which are commonly represented in hydrological and hydraulic models (Bates et al., 2005).
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As a result, the downstream impacts of upstream wetlands and precipitation events cannot be
directly represented in the resulting flood risk maps. In addition, unlike physics-based
hydrological and hydraulic models that rely on the measurable physical parameters, the
GIS-based multi-index approach depends heavily on the indicator selection and weighting.
Consequently, the generated flood risk results may be sensitive to the quality, spatial

resolution, and subjectivity associated with the chosen indicators.”

7.4 Uncertainties

7.4.1 Wetland classifier selection

As shown in Chapter 4, RF is selected as the primary classifier of the wetland classification
dataset after taking the classification accuracy, robustness, and computational efficiency
for the large-scale study region into the consideration. Firstly, RF achieves the better
classification results compared to other machine learning classifiers, particularly when using
the hyper-spectral or multi-source data (Belgiu and Dragut, 2016). In the selected
representative regions among the YRB, the comparison results of classification accuracy for
RF, SVM, CART, ANN, and AdaBoost were shown in Table 7.1, demonstrating that RF
achieved the highest classification accuracy. Besides, RF is less sensitive to feature selection,
which makes it relatively user-friendly (Li et al., 2015; Vetrivel et al., 2015). Moreover, RF is
computationally more efficient and more stable than SVM and other ensemble classifiers such
as AdaBoost when handling high-dimensional and multicollinear data at large spatial scales
such as the YRB. For ANN, it requires the extensive training cycles and parameter tuning,
making it to be less efficient for the large multispectral datasets unless implemented with the
Graphics Processing Unit (GPU) acceleration (Chen and Tsou, 2022; Xu et al., 2018).
Additionally, SVM and AdaBoost are both sensitive to noise and overfitting, while ANN is
vulnerable to overfitting and requires the substantial training samples to generalize effectively.
RF reduces the risk of overfitting and ensures robust classification results, even the training
data is noise and the class is imbalanced. (Hemmerling et al., 2021; Mei et al., 2016;

Rodriguez-Galiano et al., 2012).

Table 7.1: The classification accuracy of different machine learning classifiers in the YRB.
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Machine Accuracy

learning
Estuary TLB PLB DHB Source

classifier
RF 95.8% 90.5% 90.3% 92.9% 93.7%
SVM 92.3% 89.8% 85.4% 92.7% 81.8%
CART 92.8% 86.3% 88.0% 90.1% 89.5%
ANN 84.1% 78.6% 77.5% 79.8% 80.5%
AdaBoost 93.5% 88.6% 86.8% 91.5% 89.8%

7.4.2 Data sources of the wetland classification

Over the recent decades, multi-source satellite images with different spatial resolutions been
widely used for the waterbody extraction and classification, including Landsat, Sentinel-2,
and MODIS (Jakovljevic¢ et al., 2019). In this study, Landsat image collections were selected
as the primary data source because they provide an irreplaceable long-term time series.
MODIS was excluded due to its much lower spatial resolution (250m) compared with Landsat
(30m) and Sentinel-2 (10m). For Sentinel-2, the atmospherically corrected surface reflectance
products are only available from 2017 and contain data gaps in 2017 and 2018 for several
regions in the YRB. As a result, Sentinel-2 can only provide the usable data for three years
(2019-2021) within the long-term time series (1984-2021) wetland classification of the YRB.
As Landsat and Sentinel-2 differ in several fundamental sensor and data characteristics, such
as the different spectral band configurations, central wavelengths, spatial resolutions,
temporal sampling frequencies, and atmospheric correction algorithms, that can introduce
inconsistencies when they are jointly used in the long-term time series wetland classification
(Miura et al., 2025; Pahlevan et al., 2019). These inconsistencies may introduce artificial
discontinuities in long-term time-series analyses. Therefore, to avoid these uncertainties in the
wetland classification results, Landsat image collections were selected as the sole data source

in this study. A comparison of wetland classification results for the period 2019-2021 based
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on Landsat and Sentinel-2 data (Table 7.2) indicates that classifications derived from
Sentinel-2, with its higher spatial and temporal resolution, generally achieve the slightly
higher accuracy than those based on Landsat 8. This difference is particularly evident in the
YRB estuary and the TLB, which are characterized by small wetland features such as canals

and aquaculture ponds that are difficult to distinguish at the coarser spatial resolution.

Table 7.2: The wetland classification accuracy from Landsat and Sentinel-2 between 2019 and

2021.

2019 2020 2021

Landsat Sentinel-2 Landsat Sentinel-2  Landsat Sentinel-2
Estuary 95.7% 98.8% 98.9% 99.7% 99.0% 99.4%
TLB 86.1% 88.6% 89.2% 90.2% 90.8% 91.1%
PLB 91.5% 95.6% 87.4% 90.4% 91.8% 90.8%
DHB 94.7% 95.1% 90.0% 87.2% 93.7% 93.6%
SR 94.5% 96.6% 93.5% 95.5% 92.7% 93.0%

For the future study, given the abundance of wetland resources in the YRB and the relatively
limited resolution of Landsat imagery, it would be feasible to integrate higher-resolution data
sources in specific regions, particularly for more diverse wetland categories that are difficult
to distinguish. For example, PlanetScope imagery, with its higher spatial resolution of 3m and
the daily global coverage including the entire YRB after 2017, it could be applied at the local
to regional scales to provide the more detailed insights into the rapidly changing lake and
vegetation dynamics in wetland monitoring studies (Frazier & Hemingway, 2021; Li et al.,

2025; Roy et al., 2021b).

7.4.3 Uncertainties of the flood risk maps

The uncertainties of the flood risk maps presented in Chapters 5 and 6 arise from several

aspects. Firstly, uncertainties may occur during data collection and preprocessing. These
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include the limited selection of indicators, the potential overestimation of projected
precipitation data, and the inconsistencies between the actual spatial resolution of the flood
risk patterns and the 1km socio-economic data resolution. Besides, uncertainties associated
with the model structure and parameters may be introduced due to the absence of updated
weight evaluation in the indicator substitution, as well as the use of fixed weights for certain

socio-economic indicators for the long-term flood risk prediction.

The YRB is a macro study region for the flood risk assessment, making the data collection for
flood risk indicators complex. Detailed topographical information, diverse characteristics of
flood disasters, and direct and indirect socio-economic losses are all necessary to obtain the
accurate flood risk assessment results (De Moel et al., 2015; Zhang et al., 2020). As a result,
indicators in the flood risk assessments in Chapters 5 and 6 may not comprehensively cover
all the flood risk driving factors due to the complexities in modeling the large and dynamic

region.

Another uncertainty during the data collection is the overestimation of projected precipitation
data obtained from the CMIP6 MRI-ESM2-0 model, though it has been confirmed to have a
lower relative bias than other GCMs and ensemble models in the YRB (Lu et al., 2022).
Besides, for indicators such as GDP per capita, population density, and LULC, uncertainties
may exist in the predicted data collection process caused by the future policy change in China,
such as the implementation of new town and district construction policies to deal with the
future urbanization (Chen et al., 2020). A part of the indicators, such as relative elevation,
absolute elevation, and monitoring and early warning capacity, are assumed to remain
unchanged based on the historical data. It may introduce uncertainties into the flood risk
prediction results, although the topography and meteorological station distributions in the

MLYRB have been confirmed to change slightly over the historical period.

In addition, all the indicator data were converted into spatial layers with a 1 km % 1 km spatial
resolution to ensure the consistency and to facilitate the data processing in GIS. However, this
process may cause the uncertainties of the flood risk outputs due to the differences in the
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original formats and spatial scales of different data sources. For example, several
socio-economic flood risk indicators, such as local financial revenue, per capita resident
savings, medical service level, were obtained from the China City Statistical Yearbook. These
indicators were converted into the raster layers by assigning the city-level statistical values to
each lkm x 1 km grid cell. Given that the source data of these indicators were originally
complied at administrative unit scales, the conversion to the 1km resolution implied the level
of the spatial detail that the original data do not actually contain. As a result, the nominal
resolution of the integrated flood risk map may be inconsistent with the true spatial resolution
of these socio-economic indicators, and the mapped patterns may reflect grid cell size rather
than real spatial variability. In future study, the socio-economic data can be spatially
redistributed based on the land use, nighttime lights, or built-up area datasets instead of the

unform rasterization, to provide a more realistic spatial representation of the flood risk maps.

In the flood risk assessments in Chapters 5 and 6, substituting the original drainage density
indicator with the wetland density from the LTWCD_YRB dataset, without developing a new
AHP weight evaluation of indicators, may introduce uncertainties associated with the model’s
assumptions. However, a sensitivity analysis of the drainage density weight changes, detailed
in Section 5.4.1, confirmed that variations in the drainage density weight had minor impacts

on the flood risk assessment results.

Using fixed weights for certain indicators in the long-term flood risk assessment and
prediction in the large-scale study region, without considering their spatial and temporal
dynamics, may also lead to uncertainties of the model assumption in Chapters 5 and 6. The
GDP per capita, population density, and other socio-economic indicators in the economic
developed and populated regions such as Henan, Shanghai, and a part of Jiangsu located in
the TLB, need to be assigned higher weights than other regions (Peng and Li, 2021; Sang et
al., 2024; Xu and Chen, 2023). For the temporal perspective, the weight of precipitation for
the years with severe flood disasters should be greater than that in other years to improve the
accuracy of flood risk assessment results. Therefore, future long-term and large-scale flood
risk assessments need to consider the weight dynamics of specific indicators.
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Chapter 8 Conclusion

8.1 Summary of the thesis

The YRB is a flood-prone region with the abundant wetland resources. Challenges of wetland
conservation and flood risk mitigation still existed under the rapid socio-economic
development and climate change. The existing research did not contain the comprehensive
analysis regarding the long-term wetland dynamics and flood risks incorporating wetland
effects in the YRB. The overall objective of this thesis is to fill in this research gap by
establishing a long-term wetland classification dataset with the comprehensive wetland
categories for the YRB and assessing flood risks incorporating wetland effects for both
historical and future periods. All the research questions mentioned in Chapter 1 have been

solved through the research of Chapters 4, 5, and 6.

Chapter 4 produces the LTWCD_YRB dataset by using the RF machine learning classifier on
the GEE platform with 30m resolution Landsat 5, 7, and 8 multi-spectral images. The dataset
reveals that the total wetland area of the YRB in 2021 was larger than that in 1984. Natural
wetlands fluctuated but human-made wetlands increased consistently during these 37 years.
Among all the wetland categories, aquaculture ponds exhibited the most significant long-term
expansion, particularly in the YRB estuary, TLB, and DHB. In contrast, the inland marsh in
the YRB SR experienced the greatest fluctuations. Seasonal wetland dynamics were typically
prominent in the PLB, DHB, and SR between May and September. Anthropogenic driving
forces had a greater impact on the long-term wetland dynamics in the YRB than natural

drivers.

Chapter 5 analyzes the long-term wetland effects on the flood risk in the YRB from 1985 to
2021 by developing an improved GIS-based multi-index flood risk assessment model. The
long-term wetland expansions in the TLB, WP, PLB, and DHB all played the significant role
in the flood risk mitigation, except during certain years with extreme precipitation events. In

contrast, wetland expansions in the SB aggravated the flood risk, although the impact was
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limited. For the spatial distribution of flood risk dynamics influenced by wetlands in these
flood-prone regions, the eastern TLB demonstrated the stormwater storage potential to
mitigate the flood risk. Chaohu Lake and its surrounding areas were regions with high and
very high flood risk under wetland effects. In the PLB, high and very high flood risk areas
covered more than half of the region, and the weak stormwater storage capacity of seasonal
lakes surrounding Poyang Lake increased flood risks during years of heavy precipitation. The
northeastern and southwestern regions of the DHB are highly flood-prone regions with the
significant wetland effects. Precipitation in the TLB and PLB, runoff and vegetation cover in
the WP, GDP in the TLB, and population density in the TLB, the DHB, and the SB are
identified as dominant flood risk indicators under the effects of wetlands by using the PCMCI
causal inference algorithm. This chapter provides wetland-related suggestions for addressing
flood risk changes, such as maximizing stormwater storage capacity, controlling lake
reclamation, and increasing vegetation coverage, typically in areas with the high precipitation

and dense populations.

Chapter 6 predicts the spatial and temporal dynamics of flood hazard, vulnerability, exposure,
and the integrated flood risk in the MLYRB under the SSP2-4.5 and SSP5-8.5 scenarios from
2021 to 2100. The overall flood hazard and the integrated flood risk of the MLYRB are
predicted to become more severe by 2100 under both scenarios. In contrast, flood
vulnerability and exposure areas are expected to decrease. The high and very high flood risk
areas are expected to continue increasing, reaching 38% and 40% of the MLYRB under the
SSP2-4.5 and SSP5-8.5 scenarios, respectively. Generally, the spatial distribution of the flood
risk is projected to be higher in the south-eastern region (Jiangxi, Hunan, and Jiangsu) and
lower in the western region (Shaanxi and Henan) of the MLYRB. The high and very high
flood risk areas will expand northward in Jiangxi, Hunan, and the southern part of Jiangsu,
typically in the southern TLB over the next 80 years. This expansion is more prominent under

the SSP5-8.5 scenario.

The findings of this thesis not only investigate the complex long-term spatial-temporal
dynamics of wetlands and flood risks, but also demonstrate the significant effects of wetland
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dynamics on flood risks and highlight the importance of sustainable wetland management for
mitigating flood risks in the YRB, both now and in the future. The overall framework of this
thesis can serve as a reference for investigating the hydrological responses of wetland
variations in the large-scale basins. This thesis hopes to contribute to the GYRPP under

China's ecological civilization initiatives and align with the United Nations SDGs.

8.2 Future work

8.2.1 Applications in other regions of the world

From a global perspective, wetland conservation and flood risk mitigation in other regions
also face emerging challenges, such as the Intermountain West of the United States (Henry et
al., 2024), San Francisco Bay and the Mississippi River Delta in the United States (Li et al.,
2018), Sanjiang Plain in China (NRSCC, 2014), Lake Urmia in Iran (NRSCC, 2014), the
Mekong River Basin in South Asia (Abbas et al., 2016), Kakadu National Park in Australia
(NRSCC, 2014), the Danube Delta and the Volga Delta in Europe (NRSCC, 2014). All of
these flood-prone regions contain the significant wetland resources listed under the Ramsar
Convention, which spans both developed and developing countries. Challenges in wetland
conservation and flood risk mitigation vary globally due to differing ecological and
socio-economic factors across countries and regions. Therefore, the research on the YRB only
serves as one of the case studies. In the future, similar or more advanced methodologies can
be applied to establish the long-term wetland classification datasets and to assess long-term
flood risks influenced by wetlands in other basins worldwide. These basins, often
characterized by abundant but threatened wetland resources, high flood risk, and complex
socio-economic factors, could benefit from such analyses. Comparing results from other
basins around the world with those from the YRB may offer more inspiration and possibilities
for the sustainable wetland conservation and wetland-related flood risk mitigation

management.

8.2.2 Managing wetlands as multipurpose nature-based solutions

The awareness of wetlands as nature-based solutions (NbS) for addressing social and

environmental challenges and enhancing resilience to climate change has increased over the
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recent years (Gupta et al., 2025; Rizzo, 2025). Future wetland planning needs to consider
multipurpose NbS, rather than just the single NbS of flood risk mitigation or water pollution
control (Rizzo, 2025). The influence of the green infrastructure planning on the wetland
conservation and restoration has been evident worldwide (Moreno et al., 2024). The Minghu
Wetland Park and the Yanweizhou Wetland Park in China, as well as the South Los Angeles
Wetland Park in the United States are notable examples of the green infrastructure planning
(Ganapathi et al., 2024; Moreno et al., 2024). In these cases, the wetland design process
considered multiple NbS, including the articulation of ecosystems, ecological restoration,
urban flood resilience management, and the conversion of degraded riverbanks and marsh
habitats into constructed wetland parks with the high social value (Ganapathi et al., 2024;
Moreno et al., 2024). In addition to Wetland Parks, the ‘Sponge City’ project in China is
another effective green infrastructure planning in the multipurpose wetland management
(Ganapathi et al., 2024). The ‘Sponge City’ manages wetlands as NbS to improve the
stormwater drainage for flood control and to prevent the degradation of surface water quality
through the sunken green spaces, permeable ground materials, and extensive drainage systems
(Guan et al., 2021). For the coastal wetland management, the Houston Coastal Roulette
Planning for Galveston Bay in Mexico planned and designed the green infrastructure for the
disaster impact mitigation in coastal regions based on wetland systems. It combined riparian
vegetation and coastal forests with agricultural areas. Additionally, it established
infrastructures to implement the NbS of regulating the occupation of risk zones and
stimulating the conservation of coastal ecosystems (Moreno et al., 2024). As a large basin
with the complex socio-economic and ecological environment, the YRB encompasses the
densely populated urban and coastal regions as well as the less developed plateau and
woodland regions. Therefore, the future work on wetlands in the YRB can focus on designing
and managing multipurpose wetlands as NbS across different regions based on the results of
wetland variations and their effects on flood risks of this thesis, as well as other

environmental impact assessments incorporating wetland effects in the future research.
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Supplementary materials

Chapter S Section 5.3.3
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Appendix 5.1: The causal relationships between the AFRow and indicators in the a) Poyang
Lake Basin; and b) Dongting and Honghu Lake Basin. No indicator exhibits a causal

relationship with AFRje in the Taihu Lake Basin, Wanjiang Plain, and Sichuan Basin.

a) Taihu Lake Basin b) Wanijiang Plain
PR
|
0.35
2
AFR AFR
) ?
0.37 0.31
| |
PD PD
c) Poyang Lake Basin d) Sichuan Basin
CIO
0.25
y
AFR AFR
? !
0.36 0.37
| |
PD GDP

Appendix 5.2: The causal relationship between AFRmcdium and indicators in the a) Taihu Lake
Basin; b) Wanjiang Plain; c) Poyang Lake Basin; and d) Sichuan Basin. No indicator exhibits

a causal relationship with AFRnedium in the Dongting and Honghu Lake Basin.
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Chapter 6 Section 6.3.2
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Appendix 6.1: The spatial distribution maps of wetlands in the MLYRB under the SSP2-4.5
scenario in a) 2040s; b) 2060s; c¢) 2080s; and d) 2100s, under the SSP5-8.5 scenario in ¢)
2040s; ) 2060s; g) 2080s; and h) 2100s.
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Appendix 6.2: The spatial distribution maps of runoff and vegetation cover factor in the

MLYRB under the SSP2-4.5 scenario in a) 2040s; b) 2060s; ¢) 2080s; and d) 2100s, under the

SSP5-8.5 scenario in e) 2040s; f) 2060s; g) 2080s; and h) 2100s.
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Appendix 6.3: The spatial distribution maps of GDP per capita in the MLYRB under the

SSP2-4.5 scenario in a) 2040s; b) 2060s; ¢) 2080s; and d) 2100s, under the SSP5-8.5 scenario

in €) 2040s; f) 2060s; g) 2080s; and h) 2100s.

176



IiO'?’D'E HS'?U‘E |20'§TD'E MNE “S“?VE 12000
i M

E :
Fd
: - N
W@‘»E
E I
g 2
z z
1 E
z] &
£ £
2 E
£ I
& &
Legend
§~ § [:l MLYRB boundary

- Very low
- Low
|| Medium
I High
- Very high

0 500 1,000 km
—— ]

30°00°N
1
T
000N

25'00N
1

11000 HSO0E 120°00°E 1000E NSO0E 120°00°E

Appendix 6.4: The spatial distribution maps of population density in the MLYRB under the
SSP2-4.5 scenario in a) 2040s; b) 2060s; ¢) 2080s; and d) 2100s, under the SSP5-8.5 scenario

in €) 2040s; f) 2060s; g) 2080s; and h) 2100s.
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Appendix 6.5: The spatial distribution maps of site contamination risk in the MLYRB under
the SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5

scenario in e) 2040s; f) 2060s; g) 2080s; and h) 2100s.
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