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Abstract 

As the most productive ecosystems in the world, wetlands play a vital role in carbon cycling, 

climate change mitigation, socio-economic development, and natural disaster protection. The 

Yangtze River Basin (YRB) contains 40% of the national wetlands and the most frequent 

floods in China. In recent decades, the abundant wetland resources in the YRB have 

experienced substantial changes due to the climate change and human activities, significantly 

affecting the flood risk. Due to the lack of a long-term time series wetland dataset with 

comprehensive categories for the YRB, the effects of wetland variations on flood risk, as well 

as improved assessments of past and future flood risk incorporating wetland dynamics, 

remain underexplored. Moreover, wetland-related flood risk mitigation efforts in the YRB are 

less widely adopted. It is crucial to address these gaps for enhancing the sustainable wetland 

management and flood risk mitigation in the YRB. 

 

This thesis aims to achieve three primary objectives: 1) to establish a long-term time series 

wetland classification dataset with the comprehensive categories in the YRB and analyze 

driving forces of their variations; 2) to investigate the long-term wetland effects on the flood 

risk in the YRB based on an improved GIS-based multi-index flood risk assessment model 

incorporating wetlands input; and 3) to predict the future flood risk with wetland effects in the 

middle-lower YRB under climate change and socio-economic scenarios.  

 

The Long-term Wetland Classification Dataset for YRB (LTWCD_YRB) with nine wetland 

categories from 1984 to 2021 was created by using the Random Forest machine learning 

classifier on the Google Earth Engine platform with 30m resolution Landsat images. The 

LTWCD_YRB revealed that: 1) the total wetland area of the YRB in 2021 was larger than 

that in 1984, with a constant increase in human-made wetlands and fluctuating natural 

wetlands; 2) aquaculture ponds expanded the most by 4,987 km2, while inland marshes in the 

source region exhibited the most fluctuations; and 3) seasonal changes in wetlands were 

prominent in the Poyang Lake Basin, Dongting and Honghu Lake Basin, and YRB source 
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region; and 4) human activities were found to be more dominant than natural driving forces in 

affecting wetlands. The LTWCD_YRB offers a consistent agreement of wetland area 

variations with the other satellite-based wetland datasets in the YRB.  

 

To investigate the long-term effects of wetland variations on flood risks in the YRB, this 

thesis developed an improved GIS-based multi-index flood risk assessment model 

incorporating the wetland input obtained from the LTWCD_YRB. The findings indicated that: 

1) wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and 

Honghu Lake Basin could mitigate flood risks, while wetlands in the Sichuan Basin have 

aggravated but limited impacts on flood risks; and 2) Precipitation in the Taihu Lake Basin 

and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu 

Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, 

and the Sichuan Basin are dominant flood risk indicators under wetland effects. The 

wetland-related suggestions to mitigate flood risks including maximizing stormwater storage 

capacity of wetlands and increasing vegetation coverage in urbanized and precipitated regions 

 

The flood risk prediction of the middle-lower YRB applied the improved flood risk model to 

assess the flood risk from 2021 to 2100 under the Shared Socioeconomic Pathways (SSP) 2 - 

Representative Concentration Pathways (RCP) 4.5 and SSP5-RCP8.5 scenarios. The results 

indicated that: 1) the high and very high flood risk areas will totally cover 38% and 40% of 

the total study area under the SSP2-4.5 and SSP5-8.5 scenarios by 2100, respectively; 2) the 

overall flood risk of the MLYRB was predicted to become severer by 2100 under both 

scenarios; and 3) there would be a prominent northward expansion of the high and very high 

flood risk areas in Jiangxi, Hunan and the southern part of the Taihu Lake Basin in Jiangsu.  

 

In summary, this thesis provides the data support for the long-term wetland variations in the 

YRB, develops an improved flood risk model to investigate the long-term wetland effects on 

the flood risk and predicts the future flood risk incorporating wetland dynamics in the YRB. 

The efforts of thesis contribute to the sustainable wetland conservation and flood risk 

mitigation in the YRB, aligning with the United Nations Sustainable Development Goals. 



 iii 

 
 
 
 
 

Table of contents 

Abstract ........................................................................................................................... i 

Table of contents .......................................................................................................... iii 

List of tables .................................................................................................................. vi 

List of figures ............................................................................................................. viii 

List of supplementary materials ................................................................................... xii 

Acknowledgments ...................................................................................................... xiii 

Author’s declaration .................................................................................................... xiv 

Abbreviations .............................................................................................................. xvi 

Chapter 1 Introduction ................................................................................................... 1 

1.1 The importance of wetlands ............................................................................................. 1 
1.1.1 Carbon cycling and climate change mitigation ........................................................ 2 
1.1.2 Economic values ....................................................................................................... 2 
1.1.3 Natural disaster protection ........................................................................................ 3 
1.1.4 Preservation of Indigenous communities ................................................................. 4 
1.1.5 Human livelihoods ................................................................................................... 4 

1.2 The status of global wetlands ........................................................................................... 5 
1.3 Challenges in wetland management .............................................................................. 10 
1.4 The negative impacts of floods ...................................................................................... 13 
1.5 How wetlands influence flood risk ................................................................................ 15 
1.6 Improvements in flood risk assessments ....................................................................... 17 
1.7 The status of wetlands and floods in the Yangtze River Basin ..................................... 21 
1.8 Research aims and objectives ........................................................................................ 24 
1.9 Thesis structure .............................................................................................................. 25 

Chapter 2 Literature review ......................................................................................... 27 

2.1 Wetland-related datasets covering the Yangtze River Basin ......................................... 27 
2.2 Wetland effects on floods in the Yangtze River Basin .................................................. 30 
2.3 Assessing the past and future flood risks in the Yangtze River Basin .......................... 33 

Chapter 3 Research methodology ................................................................................ 38 

3.1 Machine learning algorithm ........................................................................................... 38 
3.2 GIS-based multi-criteria flood risk assessment model .................................................. 39 
3.3 Causality inference algorithm ........................................................................................ 41 

Chapter 4 A long-term (1984-2021) wetland classification dataset for the Yangtze 
River Basin from continuous Landsat image collections ............................................ 43 

4.1 Introduction .................................................................................................................... 44 
4.2 Materials and Methods ................................................................................................... 46 



 iv 

 
 
 
 
 

4.2.1 Study area ............................................................................................................... 46 
4.2.2 Data ........................................................................................................................ 47 
4.2.3 Wetland classification system ................................................................................ 48 
4.2.4 Machine learning classifiers selection .................................................................... 49 
4.2.5 Machine learning structure ..................................................................................... 52 

4.3 Results ............................................................................................................................ 56 
4.3.1 Classification accuracy ........................................................................................... 56 
4.3.2 Classification results ............................................................................................... 58 
4.3.3 Seasonal variations of wetlands .............................................................................. 64 
4.3.4 Natural and human activity drivers’ division of wetland variations ...................... 68 

4.4 Discussion ...................................................................................................................... 70 
4.4.1 Wetland variation drivers ....................................................................................... 70 
4.4.2 Comparison with other wetland datasets ................................................................ 73 
4.4.3 Advantages and limitations .................................................................................... 79 

4.5 Conclusions .................................................................................................................... 80 

Chapter 5 Effects of long-term wetland variations on flood risk assessments in the 
Yangtze River Basin .................................................................................................... 82 

5.1 Introduction .................................................................................................................... 83 
5.2 Materials and methods ................................................................................................... 87 

5.2.1 Study area ............................................................................................................... 87 
5.2.2 GIS-based spatial multi-index model ..................................................................... 88 
5.2.3 Causal relationship based on the PCMCI algorithm .............................................. 94 

5.3 Results ............................................................................................................................ 95 
5.3.1 Comparison of flood risk assessments between two model scenarios ................... 95 
5.3.2 Annual flood risk variations with wetland effects ................................................ 103 
5.3.3 Causal relationships between each flood risk indicator and ΔFR ........................ 108 
5.3.4 Model validation ................................................................................................... 111 

5.4 Discussion .................................................................................................................... 113 
5.4.1Uncertainties of this study ..................................................................................... 113 
5.4.2 Relevance of existing flood management frameworks ........................................ 116 
5.4.3 Wetland-related management suggestions to mitigate flood risks ....................... 117 

5.5 Conclusions .................................................................................................................. 120 

Chapter 6 Future flood risk assessments in the Middle-Lower Yangtze River Basin 
under climate and socio-economic scenarios ............................................................. 121 

6.1 Introduction .................................................................................................................. 122 
6.2 Data and methods ......................................................................................................... 125 

6.2.1 Study area ............................................................................................................. 125 
6.2.2 Data ...................................................................................................................... 126 
6.2.3 Climatic scenarios ................................................................................................ 130 
6.2.4 Future flood risk simulation ................................................................................. 131 

6.3 Results .......................................................................................................................... 136 
6.3.1 Spatial distribution pattern of flood risk in the historical period .......................... 136 



 v 

 
 
 
 
 

6.3.2 Spatial distribution pattern of future flood risk .................................................... 137 
6.3.3 Temporal changes in future flood risk areas ........................................................ 142 

6.4 Discussion .................................................................................................................... 153 
6.4.1 Validation ............................................................................................................. 153 
6.4.2 Uncertainties ......................................................................................................... 154 
6.4.3 Suggestions to mitigate future flood risks ............................................................ 155 

6.5 Conclusions .................................................................................................................. 156 

Chapter 7 Discussion ................................................................................................. 158 

7.1 Major contributions ...................................................................................................... 158 
7.2 Wider implications ....................................................................................................... 160 
7.3 Research limitations ..................................................................................................... 161 
7.4 Uncertainties ................................................................................................................ 164 

7.4.1 Wetland classifier selection .................................................................................. 164 
7.4.2 Data sources of the wetland classification ............................................................ 165 
7.4.3 Uncertainties of the flood risk maps ..................................................................... 166 

Chapter 8 Conclusion ................................................................................................. 169 

8.1 Summary of the thesis .................................................................................................. 169 
8.2 Future work .................................................................................................................. 171 

8.2.1 Applications in other regions of the world ........................................................... 171 
8.2.2 Managing wetlands as multipurpose nature-based solutions ............................... 171 

Supplementary materials ............................................................................................ 173 

References .................................................................................................................. 179 

 

 

 

 

 



 vi 

 
 
 
 
 

List of tables 

Table 2.1: Advantages and disadvantages of the major flood risk assessment approaches. .... 35 

Table 4.1: The wetland classification system adopted in this study (Mao et al., 2020). ......... 49 

Table 4.2: The classification accuracy of three machine learning classifiers in 5 representative 
regions along the YRB. ............................................................................................................ 51 

Table 4.4: Decaded wetland changes in the YRB between 1984 and 2021. ............................ 60 

Table 4.5: Natural and human activity driving factors division of wetland categories with 
significant changes in the five representative regions of the YRB between 1984 and 2021. .. 69 

Table 4.6: Comparison of wetland areas between the LTWCD_YRB and other satellite 
datasets. .................................................................................................................................... 76 

Table 5.1: Weights and data source of flood risk indicators of the improved flood risk 
assessment model ..................................................................................................................... 91 

Table 5.2: The flood risk assessment area (km2) in 1991 and 2005 of the Taihu Lake Basin. 97 

Table 5.3: The flood risk assessment area (km2) in 2003 and 2010 of the Wanjiang Plain. .... 98 

Table 5.4: The flood risk assessment area (km2) in 1994 and 2006 of the Poyang Lake Basin.
 ................................................................................................................................................ 100 

Table 5.5: The flood risk assessment area (km2) in 1998 and 2009 of the Dongting and 
Honghu Lake Basin. ............................................................................................................... 101 

Table 5.6: The flood risk assessment area (km2) in 1998 and 2020 of the Sichuan Basin. ... 103 

Table 6.1: Data sources of flood risk indicators. ................................................................... 128 

Table 6.2: The flood risk assessment model structure and weights of flood risk indicators. 134 

Table 6.3: The classification standard. ................................................................................... 135 

Table 6.4: The predicted area of flood hazard level in the MLYRB in 2040s, 2060s, 2080s, 
and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios. ........................................................ 149 

Table 6.5: The predicted area of flood vulnerability level in the MLYRB in 2040s, 2060s, 
2080s, and 2100s under the SSP2-4.5 and SSP 5-8.5 scenarios. ........................................... 150 

Table 6.6: The predicted area of flood exposure level in the MLYRB in 2040s, 2060s, 2080s, 
and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios. ........................................................ 151 

Table 6.7: The predicted area of flood risk level in the MLYRB in 2040s, 2060s, 2080s, and 
2100s under the SSP2-4.5 and SSP5-8.5 scenarios ................................................................ 152 

Table 7.1: The classification accuracy of different machine learning classifiers in the YRB.
 ................................................................................................................................................ 164 

Table 7.2: The wetland classification accuracy from Landsat and Sentinel-2 between 2019 



 vii 

 
 
 
 
 

and 2021. ................................................................................................................................ 166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 viii 

 
 
 
 
 

List of figures 

Figure 4.1: The location, hydrographical and topographical information of the Yangtze River 

Basin. ........................................................................................................................................ 47 

Figure 4.2: The structure of machine learning method for wetland classification. .................. 52 

Figure 4.3: The example of sample zoning and labeling on the Landsat 8 RGB composite 

images of wetland categories. .................................................................................................. 53 

Figure 4.4. The comparison of typical subsets between the LTWCD_YRB and 

CAS_Wetlands. a)-c): Coastal wetlands in Shanghai; d)-f): aquacultural ponds near 

Yangcheng Lake in the TLB; g)-i): a part of Taihu Lake; j)-l): wetlands in the PLB; and m)-o): 

alpine lakes in the YRB source region. .................................................................................... 57 

Figure 4.5: The long-term variations of natural, human, and total wetland areas in the YRB 

between 1984 and 2021. ........................................................................................................... 59 

Figure 4.6: The wetland classification of a) 1984 b) 2001 c) 2011, and d) 2021 at the YRB 

estuary. ..................................................................................................................................... 61 

Figure 4.7: The wetland classification of a) 1984, b) 2001, c) 2011, and d) 2021 at the Taihu 

Lake Basin. ............................................................................................................................... 62 

Figure 4.8: The wetland classification of a) 1984 b) 2001 c) 2010, and d) 2021 at the Poyang 

Lake Basin. ............................................................................................................................... 63 

Figure 4.9: The wetland classification of a) 1984, b) 2001, c) 2011, and d) 2021 at the 

Dongting Lake and Honghu Lake Basin. ................................................................................. 63 

Figure 4.10: The wetland classification of a)1984, b)2001, c) 2011, and d) 2021 at the YRB 

source region. ........................................................................................................................... 64 

Figure 4.11: Long-term mean monthly areas of various wetland categories in the YRB estuary 

between 1984 and 2021. ........................................................................................................... 65 

Figure 4.12: Long-term mean monthly areas of various wetland categories in the Taihu Lake 



 ix 

 
 
 
 
 

Basin between 1984 and 2021. ................................................................................................. 66 

Figure 4.13: Long-term mean monthly areas of various wetland categories in the Poyang Lake 

Basin between 1984 and 2021. ................................................................................................. 66 

Figure 4.14: Long-term mean monthly areas of various wetland categories in the Dongting 

and Honghu Lake Basin between 1984 and 2021. ................................................................... 67 

Figure 4.15: Long-term mean monthly areas of various wetland categories in the YRB source 

region between 1984 and 2021. ............................................................................................... 67 

Figure 5.1: The location, hydrographical and topographical information of the Yangtze River 

Basin and five flood prone regions. ......................................................................................... 88 

Figure 5.2: The improved flood risk assessment model by incorporating the effects of wetland 

variations. ................................................................................................................................. 90 

Figure 5.3: Flood risk spatial distribution maps in a) 1991 and c) 2005 without wetlands; b) 

1991 and d) 2005 with wetland effects of the Taihu Lake Basin. ............................................ 96 

Figure 5.4: Flood risk spatial distribution maps in a) 2003 and c) 2010 without wetlands; b) 

2003 and d) 2010 with wetland effects of the Wanjiang Plain. ............................................... 98 

Figure 5.5: Flood risk spatial distribution maps in a)1994 and c) 2006 without wetlands; b) 

1994 and d) 2006 with wetland effects of the Poyang Lake Basin. ......................................... 99 

Figure 5.6: Flood risk spatial distribution maps in a) 1998 and c) 2009 without wetlands; 

b)1998 and d) 2009 with wetland effects of the Dongting and Honghu Lake Basin. ............ 101 

Figure 5.7: Flood risk spatial distribution maps in a) 1998 and c) 2020 without wetlands; b) 

1998 and d) 2020 with wetland effects of the Sichuan Basin. ............................................... 102 

Figure 5.8: Spatial distribution maps of wetland categories in corresponding years of the 

Taihu Lake Basin: a) 1991 and b) 2005; Wanjiang Plain: c) 2003 and d) 2010; Poyang Lake 

Basin: e) 1994 and f) 2006; Dongting and Honghu Lake Basin: g) 1998 and h) 2009; Sichuan 

Basin: i)1998 and j) 2020. ...................................................................................................... 103 

Figure 5.9: Annual ΔFR of very low, low, medium, high, very high food risk levels, the 



 x 

 
 
 
 
 

corresponding wetland area and the cumulative maximum three-day precipitation in the a) 

Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu Lake 

Basin; and e) Sichuan Basin from 1985 to 2021. ................................................................... 107 

Figure 5.10: The causal relationships between the ΔFRvery low and indicators in the a) Taihu 

Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; and d) Dongting and Honghu Lake 

Basin. No indicator exhibits a causal relationship with ΔFRvery low in the Sichuan Basin. ..... 108 

Figure 5.11: The causal relationships between the ΔFRhigh and flood risk indicators in the 

a)Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu 

Lake Basin; and e) Sichuan Basin. ......................................................................................... 109 

Figure 5.12: The causal relationships between the ΔFRvery high and flood risk indicators in the a) 

Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu Lake 

Basin; and e) Sichuan Basin. .................................................................................................. 110 

Figure 5.13: The sensitivity test for wetland density in the wetland-related flood risk 

assessment model. The X-axis indicates the weight of the wetland density; the Y-axis of a) 

indicates the corresponding flood risk area, b) indicates the changes in the flood risk areas.

 ................................................................................................................................................ 115 

Figure 6.1: The location, hydrographical and topographical information of the Middle and 

Lower Reaches of Yangtze River Basin (MLYRB), and three important basins including the 

Taihu Lake Basin, Poyang Lake Basin, and Dongting and Honghu Lake Basin. .................. 126 

Figure 6.2: The flowchart for predicting the spatial and temporal changes of flood hazard, 

vulnerability, exposure, and the integrated risk under the SSP2-4.5 and SSP5-8.5 scenarios in 

the MLYRB. ①-④ represents four time periods of the prediction in this study: 2040s 

(2021-2040), 2060s (2041-2060), 2080s (2061-2080), and 2100s (2081-2100). .................. 132 

Figure 6.3: The spatial distribution of MLYRB flood risk indices in the historical period 

(2020s): a) hazard; b) vulnerability; c) exposure; and d) integrated flood risk. .................... 137 

Figure 6.4: The spatial distribution maps of flood hazard level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s; under the SSP5-8.5 scenario 



 xi 

 
 
 
 
 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ....................................................................... 139 

Figure 6.5: The spatial distribution maps of flood vulnerability level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ....................................................................... 140 

Figure 6.6: The spatial distribution maps of flood exposure level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ....................................................................... 141 

Figure 6.7: The spatial distribution maps of flood risk level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ....................................................................... 142 

Figure 6.8: Changes in areas of different flood hazard levels of the MLYRB under SSP2-4.5 

and SSP5-8.5 scenarios from 2040s to 2100s. ....................................................................... 144 

Figure 6.9: Changes in areas of different flood vulnerability levels of the MLYRB under 

SSP2-4.5 and SSP5-8.5 scenarios from 2040s to 2100s. ....................................................... 145 

Figure 6.10: Changes in areas of different flood exposure levels of the MLYRB under 

SSP2-4.5 and SSP5-8.5 scenarios from 2040s to 2100s. ....................................................... 147 

Figure 6.11: Changes in areas of different flood risk levels of the MLYRB under SSP2-4.5 

and SSP5-8.5 scenarios from 2040s to 2100s. ....................................................................... 148 

Figure 6.12: The 2020 spatial distribution of a) MLYRB simulated wetlands with 463m 

resolution; and b) MLYRB existed wetlands with 30m resolution. ....................................... 154 

 

 

 

 

 

 

 

 

 

  



 xii 

 
 
 
 
 

List of supplementary materials 
 

Appendix 5.1: The causal relationships between the ΔFRlow and indicators in the a) Poyang 

Lake Basin; and b) Dongting and Honghu Lake Basin. No indicator exhibits a causal 

relationship with ΔFRlow in the Taihu Lake Basin, Wanjiang Plain, and Sichuan Basin. ...... 173 

Appendix 5.2: The causal relationship between ΔFRmedium and indicators in the a) Taihu Lake 

Basin; b) Wanjiang Plain; c) Poyang Lake Basin; and d) Sichuan Basin. No indicator exhibits 

a causal relationship with ΔFRmedium in the Dongting and Honghu Lake Basin. ................... 173 

Appendix 6.1: The spatial distribution maps of wetlands in the MLYRB under the SSP2-4.5 

scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario in e) 

2040s; f) 2060s; g) 2080s; and h) 2100s. ............................................................................... 174 

Appendix 6.2: The spatial distribution maps of runoff and vegetation cover factor in the 

MLYRB under the SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the 

SSP5-8.5 scenario in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ......................................... 175 

Appendix 6.3: The spatial distribution maps of GDP per capita in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ....................................................................... 176 

Appendix 6.4: The spatial distribution maps of population density in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ....................................................................... 177 

Appendix 6.5: The spatial distribution maps of site contamination risk in the MLYRB under 

the SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 

scenario in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. ......................................................... 178 

 

  



 xiii 

 
 
 
 
 

Acknowledgments  

During these four and a half years journey of my PhD study, I would like to express my 

greatest gratitude to my first supervisor Dr John Xiaogang Shi. He gives me the opportunity 

to pursue my PhD degree at University of Glasgow and is the most important person in my 

academic journey. He always encouraged and supported me to persevere through difficulties 

and challenges, never giving up on me. I also extend the heartfelt thanks to my second 

supervisor Prof Qunshan Zhao for his contributions and support in my academic 

development.  

 

I owe a deep debt of gratitude to my parents and partner. They give me the unconditional 

support and love, which sustained me throughout my PhD journey. I’m also thankful for my 

colleagues and friends Keke Zhou, Dianyu Feng, Dingfan Zhang, and Niantang Liu, for their 

selfless help in my research. 

 

I am thankful for the support provided by the academic, technical, and administrative staff at 

the School of Social & Environmental Sustainability, whose assistance was crucial to my 

work.  

 

I would like to thank my examiners and viva convenor for the time taken to review my thesis 

and for their forthcoming feedback.  

 

Over these years of PhD study, I encountered many difficulties and challenges, but my 

passion for research kept me going. I want to thank myself for my courage and perseverance. 

No matter what path I choose in the future, these years of study will always be the most 

valuable experiences in my life. 

  



 xiv 

 
 
 
 
 

Author’s declaration 

I declare that I am the sole author of the work contained within this thesis, except where 

explicit reference is made to the contribution of others, and that it is of my own composition. 

No part of this work has been submitted for any other degree at the University of Glasgow or 

any other institution. 

 

Chapters 4, 5, and 6 are presented as reformatted versions of research papers that have been 

published or submitted to academic journals. In accordance with the requirements from 

‘Alternative Format Thesis’ guidelines, these chapters collectively represent a coherent and 

interrelated body of work.  

 

The work in Chapter 4 of this thesis has been published as follows: 

Guo, Z., Zhao, Q., & Shi, X. (2024). A long-term (1984–2021) wetland classification dataset 

for the Yangtze River Basin from continuous Landsat image collections. Total Environment 

Advances, 11, 200111. https://doi.org/10.1016/j.teadva.2024.200111 

As the first author and corresponding author of this paper, I confirm that Chapter 4 was 

jointly authored with Qunshan Zhao and Xiaogang Shi, and my contribution to this paper 

accounts for 90%. 

 

The work in Chapter 5 of this thesis has been published as follows: 

Guo, Z., Shi, X., Zhang, D., & Zhao, Q. (2025). Effects of Long-Term Wetland Variations on 

Flood Risk Assessments in the Yangtze River Basin. Environmental Impact Assessment 

Review. 116, 108123. https://doi.org/10.1016/j.eiar.2025.108123. 

As the first author and corresponding author of this paper, I confirm that Chapter 5 was 

jointly authored with Xiaogang Shi, Dingfan Zhang, and Qunshan Zhao, and my contribution 

to this paper accounts for 90%. 

 

The work in Chapter 6 of this thesis has been submitted to the journal: 

https://doi.org/10.1016/j.teadva.2024.200111


 xv 

 
 
 
 
 

Guo, Z., Shi, X., & Zhao, Q. (2025). Future flood risk assessments in the Middle-Lower 

Yangtze River Basin under climate and socio-economic scenarios.  

As the first author and corresponding author of this paper, I confirm that Chapter 6 was 

jointly authored with Xiaogang Shi and Qunshan Zhao, and my contribution to this paper 

accounts for 90%. 

 

Printed Name: Ziying Guo 

 

Date: 12/06/2025 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 xvi 

 
 
 
 
 

Abbreviations 

AHP Analytic Hierarchy Process 

ANN Artificial Neural Network 

CART Classification and Regression Tree 

CAS_Wetlands National Wetland Mapping in China 

CLCD China Land Cover Dataset 

CMIP Coupled Model Intercomparison Project 

CO Site Contamination 

DHB Dongting and Honghu Lake Basin 

DW Dynamic World 

EFZ Ecological Function Zones 

EM-DAT Emergency Events Database 

ESRI_GLC Esri World Cover 

ETM+ Enhanced Thematic Mapper-plus 

ΔFR Flood Risk Difference 

FROM-GLC Finer Resolution Global Land-cover Map 

GCM General Circulation Models 

GDP Gross Domestic Product 

GEE Google Earth Engine 

GHG Greenhouse Gas 

GIS Geographical Information System 

GLC_FCS Global Land-cover Product with Fine Classification System 

GlobeLand 

GPS 

GPU 

Global Land Cover Dataset 

Global Positioning System 

Graphics Processing Unit 

GSW Global Surface Water 

GYRPP Great Yangtze River Protection Program 

HDD Hard Disk Driver 



 xvii 

 
 
 
 
 

HSWDC High Spatial-Temporal Water Body Dataset in China 

IPCC Intergovernmental Panel on Climate Change 

ISWDC Inland Surface Water Dataset in China 

LTWCD_YRB Long-Term Wetland Classification Dataset for YRB 

LULC Land Use and Land Cover 

MCI Momentary Conditional Independence 

MLC Maximum Likelihood Classifier 

MLYRB Middle and Lower Reaches of the YRB 

NB Naïve Bayes 

NbS Nature-based Solutions 

NDMA National Disaster Management Authority 

NDSI Normalized Difference Snow Index 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NRSCC National Remote Sensing Center of China 

OLI Operational Land Imager 

PC Peter and Clark 

Population Density 

Poyang Lake Basin 

PD 

PLB 

PR Cumulative Max-three Day Precipitation 

RCP Representative Concentration Pathways 

RF Random Forest 

RU Runoff and Vegetation Cover Factor 

SAR Synthetic Aperture Radar 

SB Sichuan Basin 

SDG Sustainable Development Goal 

SSP Shared Socioeconomic Pathways 

SVM Support Vector Machines 

TGD Three Gorges Dam 



 xviii 

 
 
 
 
 

TLB Taihu Lake Basin 

TM Thematic Mapper 

UAV Unmanned Aerial Vehicles 

USD United States Dollar 

WHO World Health Organization 

WP Wanjiang Plain 

YRB Yangtze River Basin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 1 

 
 
 
 
 

Chapter 1 Introduction 

1.1 The importance of wetlands 

Wetlands are aquatic systems or landscapes characterized by a seasonal or permanent water 

table throughout the year, positioned in the transition zone between aquatic and terrestrial 

ecosystems (McCauley et al., 2015; Mitsch, 2015). They are among the most productive 

ecosystems, providing a wide array of services that play crucial roles in ecology, 

environments, economies, and societies, especially under changing climate conditions (Greb 

et al., 2009; Karmakar, et al., 2023; Sharma, et al., 2021). Wetland ecosystem services play a 

vital role that can simultaneously benefit the economy and environment, including 

aquaculture, erosion control, sediment transport, groundwater recharge, flow regulation, 

waste assimilation, and the provision of natural products (Jisha and Puthur, 2021; Nayak and 

Bhushan, 2022). They support the environmental health and economic development, 

contributing to nature-based solutions and achieving Sustainable Development Goals (SDGs) 

(Karmakar et al., 2023; Xu et al., 2019a). Ecologically, wetlands provide a natural cycle for 

supporting the wide range of biotas, such as well-managed rice paddies, estuaries, and coastal 

fish farms, and species involved in decomposition, pests, and disease regulations (Ronco et al., 

2020). They are also critical habitats for migratory waterbirds that rely on wetlands 

worldwide for breeding and feeding (Karmakar et al., 2023). Wetlands can support 

hydrological connectivity with other landscapes, linking freshwater ecosystems through 

groundwater, nitrogen, and sulfur cycles, thus helping to aggregate impacts at catchment 

scales (Cunillera-Montcusí et al., 2022). In the climate system, wetlands serve as a natural 

source of blue carbon, acting as a carbon sink that sequesters carbon for millennia, then 

releasing it to the atmosphere as CO2 to energize the hydro-climatic changes in their 

catchments (Mcleod et al., 2011). Given their ecological services, wetlands are vital to human 

livelihoods, particularly for coastal communities (Karmakar et al., 2023). 

 

This section will explore the critical roles of wetlands in carbon cycling and climate change 
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mitigation, economic value, disaster protection, the preservation of Indigenous communities, 

and human livelihoods. 

1.1.1 Carbon cycling and climate change mitigation 

Wetland ecosystems generate substantial amounts of organic matter in semi-decomposed 

forms, which store carbon by absorbing it from the atmosphere through photosynthesis, 

aggregating organic matter in anoxic soil, and storing plant biomass while releasing methane 

due to reduced decomposition rates (Kayranli et al., 2010; Rogers et al., 2019). This process 

of carbon capture and stabilization as a carbon sink or pool is known as carbon sequestration 

(Kayranli et al., 2010; Rogers et al., 2019). Poulter et al. (2021) estimated the global wetland 

carbon stock range between 520 and 710 Pg. Carbon sequestration in wetlands involves 

several functions: respiration of the aerobic zone, methane formation by microbes, 

sedimentation, and biodegradation (Kayranli et al., 2010). Wetlands with a higher water table 

tend to store more carbon in the soil, creating anaerobic soil conditions that contribute to 

carbon-rich wetlands (Karmakar et al., 2023).  

 

Compared to freshwater wetlands, the production rate of methane in coastal wetlands is lower 

due to the inhibition of methane by salinity (Karmakar et al., 2023). Coastal wetlands, such as 

tidal salt marshes, mangrove forests, and seagrass meadows, play an important role in 

mitigating climate change by reducing Greenhouse Gas (GHG) emissions and serving as 

significant blue carbon reservoirs (Gallego-Sala et al., 2018). The 2006 Intergovernmental 

Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas Inventories 

highlight the potential for blue carbon storage in wetlands as a valuable component of climate 

change mitigation and adaptation strategies (IPCC, 2006). 

1.1.2 Economic values 

Freshwater wetlands contain over 40% of the biosphere’s species, serving as crucial nursery 

environments for numerous freshwater fish species of great economic importance (Nayak and 

Bhushan, 2022). Beyond their role as habitats, wetlands have diverse economic value, 

including human habitation, agriculture, energy generation, wildlife conservation, resource 
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gathering, tourism, and recreation, as well as the production of cash crops (Gallego-Sala et al., 

2018). The global value of wetland ecosystem services is 26.4 trillion United States dollars 

(USD) annually, contributing 20% of the global value of ecosystem services, encompassing 

benefits such as flood management, storm attenuation, and recreation (Thorslund et al., 2017).  

 

The economic value of wetlands varies by different wetland types. Meta-regression analyses 

have shown that urban and marine wetlands in coastal developing countries hold higher 

economic value than other wetland types (Chaikumbung et al., 2016; Díaz-Pinzón et al., 

2022). In China, however, the annual total ecosystem service value provided by lake and 

marsh wetlands was calculated to be very high, which is 55% of the total service value of the 

natural grassland ecosystem (USD 2.55 × 1010 and USD 5.63 × 1010 , respectively) (Zhang et 

al., 2014). Values of marsh ecosystem services were concentrated in Heilongjiang, Qinghai, 

and Inner Mongolia. The value of lakes was concentrated in the Tibet autonomous region, 

Heilongjiang, and Qinghai (Zhang et al., 2014). Coastal wetland ecosystem services provided 

by 35 national nature reserves in China are estimated to be USD 3.3 × 1010  per year (Li et al., 

2020). Wetlands that provide water regulation and support biodiversity are generally more 

valuable than those used for recreation, and conserving wetlands yields greater economic 

benefits than converting wetlands for tourism development (Chaikumbung et al., 2016).  

1.1.3 Natural disaster protection 

The frequency and intensity of natural disasters, such as floods, droughts, and storms, have 

significantly increased worldwide in recent years, resulting in loss of life, infrastructure 

damage, and economic loss (Bouwer, 2011; IPCC, 2012). The annual cost of damage caused 

by natural disasters in the United States has exceeded USD 100 billion over the past decade, 

and over 11,000 people died due to floods and landslides in India in 2021 alone (Karmakar et 

al., 2023). Wetlands play a critical role in protecting against natural disasters under a 

changing climate by mitigating impacts on human populations and the environment. In the 

United States, coastal wetlands of New York and New Jersey reduced flood levels by up to 30% 

during Hurricane Sandy in 2012 (Temmerman et al., 2013). Similarly, mangrove forests in 
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Indonesia and Thailand acted as natural barriers against storm surges by absorbing and 

dissipating wave energy to protect coastal communities from the devastating impacts of the 

2004 Indian Ocean Tsunami (Barbier et al., 2011). For the high flood risk regions in the 

northeast Haor region of Bangladesh, lakes in the middle and lower reaches of the Yangtze 

River Basin (YRB), and the Rocuant-Andalién coastal wetlands of Chile, wetlands are the key 

factor in local flood risk mitigation (Cui et al., 2013; Kamal et al., 2018; Rojas et al., 2022). 

Wetlands also act as natural water storage systems, mitigating drought impacts by releasing 

stored water into rivers and streams, thereby maintaining water levels and supporting 

downstream ecosystems (Karmakar et al., 2023). Wetlands have been found to provide 25% 

of the national water resources in South Africa (Mander et al., 2015).  

1.1.4 Preservation of Indigenous communities 

Besides the ecological and economic importance, wetlands hold strong cultural significance, 

particularly for Indigenous communities. The livelihoods of Indigenous communities are 

deeply connected to ecosystem services provided by wetlands. For example, the Baka people 

of Cameroon rely on wetlands for hunting, gathering, and traditional medicine (Sunderland et 

al., 2014). Consequently, the loss of wetlands can have the significant socio-economic 

impacts on Indigenous cultures and livelihoods. A notable example is the Mekong Delta in 

Vietnam, where wetland degradation has led to flooding and water insecurity for local 

communities (Quan et al., 2018). The situation is similar in India, where rising sea levels and 

wetland contamination caused by climate change and human activities have threatened 

mangroves in West Bengal and the Loktak Lake regions, with significant resources for local 

fishing communities (Karmakar et al., 2023). Conversely, wetland restoration in the 

Murray-Darling Basin in Australia has provided employment opportunities for local 

Indigenous communities while enhancing water quality and preserving culturally significant 

sites (Kingsford, 2000). 

1.1.5 Human livelihoods 

Human livelihoods encompass the capacities, socio-economic resources, and activities 

necessary for supporting a way of life. Wetlands offer diverse services that are vital to 
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people’s daily lives, especially those of coastal residents (Barbier, 2019). The contributions of 

wetlands to livelihoods depend on the interaction between their ecological functions and 

society (McCartney et al., 2015). Many communities living near wetlands rely solely on 

natural resources for daily sustenance, particularly coastal fishing communities (Gopal, 2013). 

Wetlands also enhance human well-being by providing groundwater storage for drinking, 

filtration, and the retention of toxins (Sharma and Naik, 2024). However, the wetland 

degradation has led to severe crises in rural, urban, and suburban livelihoods (Adhya and 

Banerjee, 2022). This has led to the reduced incomes and increased poverty among 

communities that rely on wetlands (Kundu et al., 2024). Additionally, wetland degradation 

negatively affects human health and traditional ways of life; degraded wetlands can become 

breeding grounds for disease-carrying parasites, such as those causing schistosomiasis and 

malaria (Karmakar et al., 2023). 

1.2 The status of global wetlands  

As stated in Section 1.1, wetlands are among the most productive ecosystems on the planet, 

playing irreplaceable roles in global climate regulation, carbon and hydrological cycling, 

ecosystem diversity, and human welfare. Nevertheless, global threats to wetlands persist. Due 

to the combined effects of human activities and natural factors, wetland loss and degradation 

threaten wetland sustainability against the climate change (Asselen et al., 2013; Xu et al., 

2019a). Field studies have confirmed that the global wetland area has declined, with the 

quality of remaining wetlands simultaneously deteriorating (Davidson, 2014; Gardner et al., 

2015; Finlayson et al., 2018). In regions with available data, approximately 87% of global 

wetlands have been degraded since 1700, with more than 50% occurring in the middle 20th 

and early 21st centuries (Davidson, 2014; Dugan, 1993; Fluet-Chouinard et al., 2023; OECD, 

1996).  

 

The degradation of most inland wetlands is driven by destructive factors such as agriculture, 

aquaculture, industry, urbanization, water use, and pollution (Asselen et al., 2013; 

Ballut-Dajud et al., 2022; Finlayson et al., 2018; Secretariat, 2010; Vörösmarty et al., 2010). 
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Globally, 25% of wetland loss is attributed to agricultural development, followed by 17% 

from urbanization, 11% from aquaculture, 8% from industry, and other contributing factors 

(Ballut-Dajud et al., 2022). Rivers and lakes are the wetland categories most affected by the 

land occupation, with 87% and 80% of their area affected, respectively (Xu et al., 2019a). 

Water resources management is another major driving factor of inland wetland degradation, 

as many rivers worldwide are strictly controlled by dams to meet the growing demand for 

hydropower and irrigation (Gardner and Finlayson, 1999). Globally, 37% of the world’s 227 

largest rivers are seriously affected by dams, particularly in developing countries, such as the 

YRB in China, the La Plata Basin in South America, and the Tigris and Euphrates River 

Basins in the Middle East (Millennium Ecosystem Assessment, 2005). Natural and 

anthropogenic factors such as climate change, extreme weather, and natural disasters 

contribute significantly to wetland loss and degradation (IPCC 2021).  

 

Coastal wetland is the most vulnerable category to climate change, with 41% affected by 

climate-related factors, particularly mangrove, which is the most impacted coastal wetland 

category. Lake wetlands (24%) and marsh wetlands (23%) follow in terms of vulnerability 

(Ballut-Dajud et al., 2022; Xu et al., 2019a). Blankespoor et al. (2014) quantified that 68% of 

coastal wetlands in 86 developing countries and territories was at risk given a future 1 m 

sea-level rise, with potential economic losses exceeding USD 703 million annually. 

Regarding spatial distribution, Oceania is the most vulnerable continent, with 42% of its 

wetlands affected by climate change and extreme weather (Xu et al., 2019a).  

 

According to the Ramsar Convention, the world’s important wetlands were designated 

reserves (Kim, 2010; Smardon et al., 2009). Today, there are 2303 Wetlands of International 

Importance (Ramsar Sites) across 169 countries around the world, covering 229 million 

hectares, accounting for 19% of the global wetland area (Davidson et al., 2018; Finlayson et 

al., 2018). However, many Ramsar Sites are currently experiencing degradation and facing 

significant threats. 
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Among the 20 Asian Ramsar Sites monitored by the National Remote Sensing Center of 

China (NRSCC) in 2014, the total wetland areas and landscape integrity declined, primarily 

due to the insufficient water supply and climate change (NRSCC, 2014). The Sanjiang Plain, 

China’s largest natural marsh wetland region, serves as a representative Ramsar Site in Asia. 

(Kui et al., 2008). However, the area of wetlands had decreased by 79.4% (about 2.99 million 

hectares) from 1994 to 2015 (Xu et al., 2019a). The primary cause of wetland loss in this 

region was land encroachment by agricultural development, while wetland degradation was 

driven by reduced water supply (NRSCC, 2014). Lake Urmia, one of the world's largest 

permanent high salinity lakes, was shrunk by 40% between 2001 and 2013 — almost half of 

its flooded wetlands have been converted to artificial and barren land (NRSCC, 2014). In 

South Asia, many Ramsar Sites are located in the Mekong River Basin. In recent years, 

wetlands in the Mekong River Basin have been threatened by human activities, such as 

agricultural development, urbanization, and industrialization. The construction of dams and 

reservoirs is the significant factor contributing to wetland degradation in the Mekong River 

Basin (Mitsch and Gosselink, 2015).  

 

In Europe, NRSCC has found that 34% of seasonal marshes and 12% of reservoirs listed as 

Ramsar Sites have degraded into non-wetlands (NRSCC, 2014). The Danube and Volga 

Deltas, both large and inland, contain many of the world’s important inland wetlands on the 

Ramsar List. The Danube Delta has degraded due to drainage and related human activities 

such as agriculture, gravel mining, and dumping (Coleman et al., 2008). In the Volga Delta, 

wetlands are now affected by the dam construction, disrupting natural river hydrology, along 

with a decline in the Caspian Sea water level (Mitsch and Gosselink, 2015). Lake Sevan, one 

of the largest alpine freshwater lakes in the world, faces significant threats due to excessive 

groundwater extraction, despite efforts to artificially replenish the lake (Babayan and 

Adamovich, 2023). The Wadden Sea is the representative coastal wetland of Ramsar Sites in 

Europe. However, it has been cultivated by local residents (Lotze et al., 2005). 

 

The total wetland area of 30 Ramsar Sites in Africa has decreased to just 2000 hectares, all 
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with severe ecosystem degradation. Approximately 20% of inland flooded wetlands and 17% 

of rivers have degraded into non-wetland and other degraded wetland categories (Xu et al., 

2019a). Drought and drainage for irrigation have caused an 89% reduction in seasonal 

herbaceous swamps in Lake Chad (NRSCC, 2014). The Democratic Republic of Congo has 

the largest areas of Ramsar Sites in the world, playing a vital role in the conservation of rare 

and endangered species of plants and animals. However, the civil war and illegal human 

activities in the country have severely affected these wetlands and related flora, highlighting 

the need for international efforts to protect them (Ramsar, 2024). The Okavango Delta System 

in Botswana is one of the largest Ramsar wetlands in the world. Unfortunately, it faces many 

threats from natural burning and intercepting water resources upstream, tourism development, 

and overuse of raw materials (Shinn, 2016). Coastal Ramsar Sites in West Africa, 

predominantly mangroves, are also threatened by desertification, over-exploitation, and 

conversion to rice agriculture (Almar et al., 2023). 

 

Monitoring by the NRSCC found that two major Ramsar Sites in Oceania declined by 80,000 

hectares, with 90% of seasonal marshes transitioning to forest shrubs between 2001 and 2013, 

marking the highest disturbance degradation index among the continents (NRSCC, 2014). 

The number of wetland ecosystems in Kakadu National Park in Australia has declined, with 

wetlands changing to bare lands or artificial lands (Bangalang et al., 2022). Mangroves in 

Shoalwater and Corio Bays in eastern Queensland are threatened by pollution, erosion, pests, 

and recreation (Chamberlain et al., 2021). The Whangamarino peatland on New Zealand’s 

North Island faces threats from reduced river flooding and silt deposition caused by 

agricultural development, increased fire frequency, and alien species invasions (Pronger et al., 

2014). 

 

Everglades National Park is the largest Ramsar Site in the United States. It has lost half of its 

original area due to agricultural activities to its north and urban development to its east and 

west (Mitsch and Gosselink, 2015). Fortunately, restoration efforts to improve water flow 

have been recently implemented positively (NRSCC, 2014). San Francisco Bay is recognized 
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as one of the most important estuaries in North America and one of the most urbanized 

wetlands in the United States. However, 95% of its tidal wetlands have been destroyed, 

primarily for climate change, agricultural development, and salt industry (Parker et al., 2011). 

At present, upstream hydraulic mining is a significant threat due to its impact on sediment 

deposition and erosion (Mitsch et al., 2015).  

 

In South America, the total wetland area of 20 Ramsar Sites decreased by 0.26 million 

hectares by 2013, with most losses occurring in marshes and lakes (NRSCC, 2014). Pantanal, 

one of the largest wetland regions in the world, contains a number of South America’s 

Ramsar Sites (Junk and de Cunha, 2005). Many factors threatened it such as the development 

of the upper Paraguay River for agriculture, water pollution caused by mining, and the 

invasion of exotic species (Boin et al., 2019). Additionally, illegal wildlife trafficking and 

cocaine smuggling make wetland management in this region be difficult and expensive 

(Mitsch and Gosselink, 2015). 

 

Currently, about one-third of the global Ramsar wetland sites have been artificially 

reconstructed (Xu et al., 2019a). In China, wetland conservation is transitional, with 

large-scale restoration and reconstruction projects being implemented in recent years. As a 

result, 42% of inland wetlands and 38% of coastal wetlands in China have been artificially 

reconstructed or altered, much higher than the global average (Xu et al., 2019a). Nevertheless, 

wetland loss and degradation have led to a dramatic reduction in the value of ecosystem 

services. Between 1997 and 2011, the degradation of marsh wetlands caused economic losses 

equivalent to 1.4 times China’s Gross Domestic Product (GDP) in 2011 (Gardner et al., 2015). 

But this economic loss is only part of the issue, as it also contributes significantly to carbon 

emissions, leading to the release of 0.2-1.5 Pg per year; approximately 6–18% annual 

anthropogenic emissions (Karmakar et al., 2023).  

 

The current patterns of global wetland loss and degradation as well as its negative impacts 

lead to a future scenario far from optimistic. Integrated management approaches to wetland 
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protection are essential to ensure the sustainable use of wetland resources and to mitigate the 

effects of climate change and other human activities. However, wetlands continue to face 

significant threats due to the lack of management planning and regulations on wetland 

protection and restoration. Therefore, the next section focuses on challenges in wetland 

management.  

1.3 Challenges in wetland management  

Section 1.2 discusses the Ramsar Convention as a milestone in wetland conservation and 

management by establishing wetland protected areas (Zheng et al., 2012). It enshrines the 

principle of the necessity to understand past and present wetland status, human use, current 

and future impacts, and ways to achieve sustainable wetland use (Chatterjee et al., 2008). To 

address threats faced by global wetlands, an effective wetland management plan plays an 

indispensable role in wetland conservation (Chatterjee et al., 2008). After 1950s, wetland 

management has evolved into a stand-alone science to protect wetlands as the wildlife habitat 

(Mitsch and Gosselink, 2015; Smardon and Faust, 2006). However, wetlands in less 

developed countries still face significant threats due to the lack of management planning and 

regulations on wetland protection and restoration, especially in Asia and Africa (Mitsch and 

Gosselink, 2015). In Africa, nearly 50% of wetland sites do not have management plans. The 

situation in Asia is also not optimistic — 45% of wetland sites in Asia lack management plans 

(Xu et al., 2019a). 

 

Monitoring is the first step in the wetland management and conservation process (Chatterjee 

et al., 2008). Each country should establish a long-term wetland dynamic monitoring system 

to monitor and analyze the wetland status, particularly the large-scale wetlands of 

international importance by using global remote sensing resources (NRSCC, 2014). The 

establishment of monitoring stations, the advanced monitoring technology, the construction 

and open access of monitoring databases are essential for the effective wetland monitoring 

(Demarquet et al., 2023). Remote sensing has been confirmed as an effective technology for 

monitoring wetlands, which can regularly monitor the spatial and temporal distribution and 
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dynamic change in large-scale wetlands in an accurate, objective, and effective way based on 

both satellite images and field observations (Bartsch et al., 2009; Mao et al., 2020; Niu et al., 

2011; Zheng et al., 2015). Remote sensing technology should be continuously improved in 

the data resolution and updating speed when organizations and researchers use it for wetland 

monitoring. 

 

With the support of wetland monitoring, various integrated wetland restoration strategies aim 

to enhance resilience to climate change and help ensure the sustainable use of wetland 

resources. Wetland restoration is the restoration and reconstruction of degraded or 

disappeared wetlands through the ecological technology (Xu et al., 2019a). Restoration 

strategies can be divided into different categories: Maintaining and enhancing hydrologic 

processes, improving water quality, restoring wetland vegetation, facilitating transformation 

of wetland communities, adjusting wetland systems, and creating new wetlands (Johnson and 

Havranek, 2013; Karmakar et al., 2023; Perry et al., 2015). Besides, the long-term wetland 

monitoring can provide the data support for establishing wetland protected areas, natural 

reserves, and wetland parks (Zheng et al., 2012). 

 

Although the implementation of wetland management processes has led to effective outcomes 

in many regions, challenges still exist. Managing coastal wetlands and alpine wetlands is 

typically challenging (Li et al., 2018; Zhao et al., 2020). Coastal wetlands have experienced 

the most serious degradation in the 20th century — world coastal wetlands have lost more than 

50% of their area due to accelerating climate change (Li et al., 2018). The efforts of coastal 

wetlands restoration can be found in different regions around the world, with examples of the 

salt marshes in the Yangtze Estuary in China, the marshes and shellfish aquaculture 

management at San Francisco Bay and the Mississippi River Delta in the United States, and 

the implementation of ‘build with nature’ by nourishing the coast in the Netherlands (Li et al., 

2018). However, challenges remain for coastal wetland management and restoration. For 

example, coastal wetlands are highly dynamic, sometimes within days. As a result, it is 

relatively challenging to map them remotely with the high levels of accuracy and consistency 
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due to the substantial altered reflectance and energy backscatter properties (Gallant, 2015). 

Besides, coastal wetland restoration relates to site-specific biomorphic interactions, especially 

in tidal zones. It is necessary to consider interactions between the ecosystem and the physical 

environment (Li et al., 2018). Additionally, land reclamation is often inevitable to maintain 

the income for coastal residents and support the local economic development, making the 

coastal wetland restoration difficult to implement (Liu et al., 2020). Therefore, community 

participation and technological support need to be strengthened to develop the restoration 

framework that balances economic development and coastal wetland protection (De Oliveira 

et al., 2024; Liu et al., 2020). 

 

Apart from coastal wetlands, alpine wetlands are typically vulnerable to climate change, and 

the wetland management process is challenging (Zhao et al., 2020). For instance, the 

revegetation of wetlands in the Intermountain West of the United States faces limited budgets 

and personnel, difficult water access, invasive plants, drought, and climate change (Henry et 

al., 2024). Managers cannot always find the specific plant materials for wetland revegetation, 

due to poor access and technical knowledge (Henry et al., 2024). Additionally, alpine 

wetlands in the eastern edge of the Qinghai-Tibet Plateau of China have been severely 

disrupted due to the dramatic climate change and the interference of human activities (Zhang 

et al., 2025). The local wetland management remains incomplete because of the lack of 

fundamental monitoring data support and the restorability assessment for alpine wetlands 

(Zhang et al., 2024b). Alpine wetlands are typically monitored using remote sensing methods 

to capture their dynamics, given the complex surface coverage and frequent spatial 

distribution changes (Zhang et al., 2017; Zhao et al., 2024). Therefore, increasing funding and 

human resources for developing the alpine wetland monitoring, along with collaborations 

with more researchers and stakeholders, are essential to address challenges faced in the alpine 

wetland management. 

 

The lacked or limited monitoring data has become a major challenge for the wetland 

management. Therefore, given the importance and the threated status of wetlands worldwide, 
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as discussed in Sections 1.1 and 1.2, the long-term time series wetland monitoring is essential 

to fill data gaps and to support the development or validation of the effective wetland 

management strategies, particularly for vulnerable and dynamic wetlands.  

1.4 The negative impacts of floods  

Floods are defined as the overflowing of normal water bodies and streams, as well as the 

accretion of water over areas that are generally not inundated in the IPCC Special Report on 

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation 

(SREX) (IPCC, 2012). Different mechanisms produce various types of floods, including river 

(fluvial) floods, flash floods, urban floods, pluvial floods, sewer floods, coastal floods, and 

glacial lake outburst floods (IPCC, 2012). As the most common and costly type of natural 

disaster in the world, floods are responsible for 44% of global natural disasters and severely 

lead to a variety of negative impacts across space and time (Petit-Boix et al., 2017; WMO, 

2021; Wu et al., 2020).  

 

The direct economic loss caused by floods is one of the major tangible social impacts and has 

shown an increasing trend globally over the past 20 years (Bubeck et al., 2017; Tanoue et al., 

2020; Willner et al., 2018). According to the two most well-known natural disaster databases 

in the world (Emergency Events Database [EM-DAT] and NatCatService) the flood event 

with the highest economic loss in the last 35 years was the Chao Phraya River Flood in 

Thailand in 2011, accounting up to USD 40 billion in losses (Bubeck et al., 2017). The 

economic loss of the YRB flood event in China in 1998 was the second (USD 30 billion) and 

the third highest (USD 16 billion) in EM-DAT and NatCatService, respectively (Bubeck et al., 

2017). The difference between two databases relate to the difficulties and uncertainties 

associated with collecting the data of disaster loss and different data collection methods (Gall 

et al., 2009; Guha-Sapir & Below, 2002). Between 1980 and 2015, 62% of global flood losses 

occurred in Asia, which was much higher than other continents, followed by Europe (19%) 

and the Americas (15%) (Bubeck et al., 2017). In recent decades, the global trend of 

economic loss brought by floods was increasing in most regions, which was predominantly 
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associated with the accumulation of population and economic assets in flood-prone regions 

(Barredo, 2009; Bouwer, 2011).  

 

The loss of human life is another major direct social impact due to flood disasters (Jonkman, 

2005). According to the EM-DAT, a single flood event causes thousands of deaths (Bubeck et 

al., 2017). The largest number of fatalities between 1980 and 2016 was caused by a single 

flood event that occurred in Venezuela in 1999, with the death of 30,000 in mudslides on the 

steep slope of the Sierra de Avila (Wieczorek et al., 2001). Large flood events occurring in 

China in 1980, 1996, and 1998 killed 12,631 people (Bubeck et al., 2017). Similar to the 

geographical distribution of global economic loss, the human life loss of floods was the 

highest in Asia (67%) since 1980 (UNISDR, 2011). Besides, floods can cause many 

disaster-related injuries and diseases with both direct and indirect consequences during the 

flood event (e.g., injuries caused by cuts, falls, being struck by fast-moving objects in flood 

water, exposure to toxins, communicable diseases), and delayed physical or mental issues 

(Alderman et al., 2012). The World Health Organization (WHO) has noted that a higher risk 

of communicable disease always occurs immediately following floods when the population is 

displaced, infrastructure is damaged, and water supply systems are polluted (Jafari et al., 

2011). Additionally, in some flood-prone regions, such as Bangladesh, and some parts of 

Africa and Australia, floods inundate agricultural land and destroy crops, resulting the severe 

food shortages and malnutrition in rural areas and very high concentration urban 

neighborhoods (Douglas, 2009; Smith et al., 2016). 

 

Floods not only affect the economy and human health but also have serious impacts on the 

environment, generally including water pollution, erosion, and deposition, and impacts on the 

survival of organisms, possibly affecting biodiversity (Baral, 2013; Carrivick et al., 2011; 

Goodwell et al., 2014; Hrdinka et al., 2012; Milani, et al., 2020; Zhang et al., 2024a). For 

example, heavy metals, organic chemicals, and fecal coliform bacteria were detected in the 

floodwater and were widely dispersed after Hurricane Katrina in 2005 (Dortch et al., 2008; 

Foulds et al., 2014).  
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To address those losses brought by flood events, the research related with floods is essential. 

For any given climate conditions, characteristics and variations of wetlands play significant 

roles in the flood generation (Wu et al., 2020). As described in Section 1.1.3, protecting 

against flood disasters is one of the most important ecosystem services of wetlands (Gulbin et 

al., 2019). However, wetland effects on floods are various among different regions worldwide. 

For example, the low-lying floodplain wetlands made the northeastern Bangladesh to be 

typically vulnerable to flash floods (Kamal et al., 2018). In contrast, The water storage 

capacity of lakes in the middle-lower YRB reduces the local flood risk (Cui et al., 2013). 

Rocuant-Andalién coastal wetlands of Chile mitigated the impacts of flood disasters, but this 

ability was diminished due to the reduction of wetland areas caused by urbanization (Rojas et 

al., 2022).  

1.5 How wetlands influence flood risk 

The mechanisms of how wetlands mitigate the flood risk generally include water storage 

capacity, slowing water flow, increasing water infiltration, and sediment trapping and erosion 

control.  

 

Wetlands act as natural water retention systems, temporarily storing the excess water during 

high-precipitation events or river flood peaks. Depressional wetlands, floodplain marshes, 

lakes, and riparian wetlands across the watershed can store large volumes of water. This 

storage capacity reduces the immediate hydraulic load on river channels, helping to reduce 

the downstream flood peaks and mitigating flood risk (Acreman and Holden, 2013). Besides, 

after storm events, wetlands gradually release the stored water through surface outflow, 

subsurface seepage, and evapotranspiration. This delay release ensures that water returns to 

the river system slowly after the critical flood peak period has passed and reduces the 

long-term inundation pressure on the downstream infrastructures (Ferreira et al., 2023).  

 

Wetlands can slow water flow due to the increased hydraulic roughness generated by the 

vegetation coverage, which reduces the velocity of surface water and flood waves (Ballet et 
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al., 2011; Lane and Milledge, 2013). The flood flow velocity is 29% faster in sloughs 

compared to the more densely vegetated wetlands in the Everglades wetlands, USA (Harvey 

et al., 2009). Additionally, vegetation change from wet meadow to shrubs and trees can 

double the size and depth of the inundated area for the exact size of the flood. Particularly, 

wooded wetlands reduce flood peaks and increase peak water transit time (Thomas and Nisbet, 

2007).  

 

Besides, wetlands enhance the infiltration capacity to mitigate floods by allowing water to 

percolate into underlying soils and aquifers. The percolation contributes to groundwater 

recharge, effectively transferring water from surface floodwaters into subsurface aquifers, 

which reduces water volume on the surface during precipitation events, thereby reducing the 

immediate flood hazards (Kebede et al., 2024; Simon et al., 2023). The Sponge City in Jinan 

of China is a representative example of applying this wetland-based mechanism for the 

groundwater recharge and flood mitigation. It uses urban wetlands as the temporary 

stormwater storage space and facilitates groundwater recharge by allowing stormwater to 

infiltrate through wetland systems. (Yin et al., 2021).  

 

Moreover, wetlands effectively trap sediments transported by runoff or river flow, as the 

reduced water velocity promotes sediment deposition. Therefore, wetlands can reduce the 

channel aggradation by keeping the excessive sediment out of the main channel (Blackwell & 

Pilgrim, 2011). At the same time, sediment trapping in wetlands contributes to maintain the 

wetland surface, typically the coastal wetlands. For example, sediment trapping of coastal 

marshes and tidal flats helps maintain wetland elevation, and attenuate waves and storm 

surges, thereby reducing the flood risk (Reed et al., 2018). Furthermore, sediment trapping in 

wetlands provides erosion control benefits by retaining eroded materials within floodplains, 

which reduces bank instability and contributes to the mitigation of local flood risk (Hupp et 

al., 2009). In the Nenjiang River Basin, sediment-trapping wetland solutions have helped 

stabilize floodplains and reduce flood risk over time (Wu et al., 2023). 
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Given that floods have caused massive socio-economic and environmental losses worldwide, 

and wetlands play a key role in influencing the flood risk under different conditions, it is 

crucial to investigate the effects of wetlands on flood risk across different regions of a basin 

to effectively address and reduce the flood risk. 

1.6 Improvements in flood risk assessments 

According to the IPCC report, flood risk is projected to continue increasing throughout the 

21st century due to intensified climate change and human activities (IPCC, 2021). Flood risk 

mitigation has been a global issue for governments and communities. Flood risk mitigation 

activities are dedicated efforts to reduce flood hazards, as well as flood exposure and 

vulnerability (Kron et al., 2019). Generally, flood risk mitigation approaches can be divided 

into two broad categories: structural and nonstructural (Rajkhowa and Sarma, 2021). 

Structural approaches are permanent solutions or facilities to mitigate floods, such as soil 

conversion, surface land restructuring, runoff delay, rise of infiltration, downstream discharge, 

flood attenuation, groundwater control, and construction of dams. However, these approaches 

contain a number of disadvantages, including lowering of floodplain fertility, morphological 

changes, negative ecological impacts, and land subsidence (Rajkhowa and Sarma, 2021). In 

recent years, non-structural approaches, such as flood risk assessment, flood forecasting, 

regulations and policies for flood-proofing, and the improvement of flood awareness and 

education have gradually become the dominant approaches (Chen et al., 2018). Flood risk 

assessment is the crucial aspect of risk management, with the aims to identify high flood risk 

areas and to provide the important references for developing planning, disaster prevention, 

and disaster mitigation scheduling (Disse et al., 2020; Elshorbagy et al., 2017; Li et al., 2023). 

The development and application of the flood risk assessment vary across different countries. 

The flood risk mitigation in Europe and United States generally focuses on the nature-based 

non-structural approaches and strategies (Alexander et al., 2016; Fournier et al., 2016; Hegger 

et al., 2016). The application of flood risk assessments has been well established in these 

countries. Several flood risk guidance and assessments with the more complex probabilistic 

methods have been introduced to improve the resilience of flood risk (Lewis et al., 2024). 
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Therefore, improvements in flood risk assessments are discussed in the context of flood-prone 

countries in Asia with the rapid urbanization. 

 

Countries in South Asia suffer floods that result in massive damages every year, particularly 

in Bangladesh and India, which have been confronted for decades with flooding risk (Abbas 

et al., 2016; Ahmed et al., 2022). Bangladesh has learned lessons from the past flood disasters 

and has developed a relatively effective framework of flood mitigation policy and disaster 

control. After floods occurred in 1987 and 1988, all the structures with strategic importance 

for flood mitigation were built above the 100-year flood elevation and with the temporary 

shelter in flood-prone regions (Abbas et al., 2016). Besides, local policymakers developed 

policies to effectively manage land and water, to reduce river loads for the infrastructure 

protection (such as embankments), and the easy conveyance to the Bay of Bengal through the 

improved river system capacity (Samuels et al., 2006). Strengthening the flood forecasting 

and early warning systems has garnered encouraging results (Pal et al., 2011). However, flood 

risk assessments are still limited in the flood mitigation in Bangladesh, typically in the coastal 

areas (Ahmed et al., 2022; Islam et al., 2019). The over-reliance and poor maintenance of 

structure-based flood controls, such as embankments and polders, have led to internal 

drainage problems, waterlogging, and siltation (Brammer, 2014). Most of flood risk 

assessments conducted the single flood vulnerability indicator such as only the digital 

elevation model or land cover criteria, which ignored several essential indicators (Bhuiyan 

and Dutta, 2012; Bhuiyan and Al Baky, 2014). In recent years, studies related with the flood 

risk assessment in Bangladesh has been improved to consider the roles of urbanization, river 

distribution, and the local medical services in the flood risk. Ahmed et al. (2022) developed 

the flood risk assessment in the Kurigram district of Bangladesh with the much more 

comprehensive categories, which incorporated river density, population density, and health 

facilities.  

 

In India, 12% of its land is prone to flooding (Gol, 2009). With the support of federal 

governments, flood forecasting centers and meteorological departments have effectively 
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saved many lives (Abbas et al., 2016). The National Policy on Disaster Management 

implemented technology-based mitigation measures for flooding, the timely forecasting and 

communication, efficient mechanisms for risk assessment, and the response and recovery 

operation to floods (Gol, 2009). Flood hazard maps of India at the state and district levels 

have been in place since 1997 to help achieve flood mitigation goals, which was the first step 

to assess flood risk (BMTPC, 2010). However, the weakness and inaction of several 

flood-related authorities become a challenge for flood risk mitigation in India. For instance, 

establishing river basin authorities for supporting the flood risk monitoring and assessment 

lacked a legislative and policy focus for many years (Gol, 2011). Following this, the National 

Disaster Management Authority in India was established. As a result, the flood risk 

assessment framework started to be strengthened (Abbas et al., 2016). Currently, the 

multi-criteria flood risk assessments with the comprehensive hazard, vulnerability, and 

exposure indicators have been developed in flood-prone cities, suburban regions, and basins 

in India (Bhere and Reddy, 2025; Pathan et al., 2022; Vegad et al., 2024). 

 

Floods have become commonplace in basins of the large rivers of China, such as the Yangtze 

River, the Yellow River, and the Huai River (Kundzewicz et al., 2019). Increasing attention 

has been paid to further upgrading the flood risk reduction measures in China following a 

series of destructive flood disasters. Generally, flood risk mitigation in China relies on the 

structural approaches. For example, China moved quickly to build large-scale water 

conservancy projects on the YRB and its tributaries after the large flood disaster in 1998, 

including the Three Gorges, Xiluodu, Wudongde, Banqiao, and other hydroelectric power 

generation stations (Jia et al., 2022; Zhang et al., 2020a). The total adjusted storage capacity 

of the Yangtze River and its tributary reservoir groups exceeded 80 billion m3 (Duan et al., 

2016). Tributaries and lakes in the YRB were further reinforced after 1998, constituting a 

robust line of defense against flood disasters, mitigating flood risks in the YRB (Jia et al., 

2022). Besides, the large reservoirs, embanked bends, water transfer projects, and flood 

storage detention areas had been constructed in the Yellow River Basin and Huai River Basin 

as well, which played an important role in reducing the risks of flood disasters (Tang et al., 
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2020a; Feng et al., 2024). However, structural approaches of flood control have started to face 

several problems under climate change. Monsoon regions in China are characterized by their 

annual precipitation, which is mainly concentrated in the rainy season. Therefore, the 

inter-annual variability between monsoons caused greater challenges to flood-control 

facilities because of their inconvenience to daily life and economic activity during the dry 

season (Jia et al., 2022). In addition, the fragmentation, locality, and discontinuity brought 

problems for local governments when constructing dikes in those basins with the complicated 

water networks (Jia et al., 2022). For instance, 39,000 km of non-compliant dikes remain in 

the YRB, which is 46% of the total dike length (Zhang et al., 2020b). 

 

For the non-structural flood mitigation approach, the improved flood risk assessments with 

comprehensive indicators have developed in China (Guo, 2017; Peng et al., 2024; Yu et al., 

2023). Given the basis of these flood risk assessments, nature-based and eco-friendly 

solutions have been implemented in the high flood risk regions. Taking Dongting Lake as an 

example, the reclamation of farmlands into lakes increased lake area by 800 km2 (Jia et al., 

2022). To mitigate urban floods, the concept of ‘Sponge Cities’ has become a national policy 

of China since 2014 (Chan et al., 2018). It acted in various ways to increase the water storage 

capacity of wetlands, improve drainage systems to collect much more rainwater, and use 

filtration and absorption of rain to reduce the surface runoff, thus mitigating flood risk (Chan 

et al., 2018). Urbanization in China has increased rapidly, from 33.4% in 1998 to 60.6% in 

2019 (National Bureau of Statistics, 2024). The rapid urbanization has brought massive 

challenges to flood risk mitigation in the economic developed regions of China, such as the 

Yangtze River Delta, the Pearl River Basin, Zhengzhou, and Chongqing (Chen et al., 2015; 

Guoyi et al., 2023; Li et al., 2013; Li et al., 2024; Yin et al., 2015). The urban heat-island 

effect makes water vapor evaporate more strongly and densely, increasing the probability of 

precipitation and flood risk. High-rise buildings can slow down the water movement and 

vapor speed, and thus extend the period when precipitation falls, increasing the vulnerability 

to floods of such regions (Chan et al., 2021; Jia et al., 2022; Shao et al., 2020). As a result, 

both vulnerability and exposure dimensions of flood risk in China have changed, necessitating 
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the inclusion of more flood-related indicators associated with urbanization to address rapid 

socio-economic growth and urban sprawl (Ding et al., 2022). Besides, urbanization changes 

the Land Use and Land Cover (LULC), leading to the expansion of urban construction lands, 

the loss of arable lands, wetlands, and woodlands, which reduces the water-seepage capacity 

and the flood control function of original lands, especially wetlands (Du et al., 2015; Gulbin 

et al., 2019; Luo and Zhang, 2022). Therefore, incorporating wetland distribution in the flood 

risk assessment is essential in regions with the rapid urbanization.  

 

To sum up, in flood prone regions experiencing rapid urbanization and intensive wetland 

distribution, the indicators influencing flood risk have become increasingly complex. 

Therefore, improving the effectiveness of flood risk assessments that incorporate 

comprehensive indicators, such as wetland dynamics, LULC, and urbanization-related factors, 

is more crucial than relying solely on traditional structural approaches to mitigate flood risk. 

 

1.7 The status of wetlands and floods in the Yangtze River Basin 

The Yangtze River is the longest river in China and the third longest in the world (6,300 km) 

(Zhang et al., 2020a; Zheng et al., 2021). It drains 1.8 million km2 of land, and the drainage 

area represents 18.8% of China's total terrestrial area (Zheng et al., 2021). There are a large 

number of lakes and tributaries in the YRB, forming the complex water system (Lai et al., 

2013; Cai et al., 2016). Lakes account for approximately 22,000 km2, which are generally 

distributed in the middle and lower reaches of the YRB (Zheng et al., 2021). Poyang Lake is 

the largest among them, and controls the inflow of five tributaries, while Dongting Lake is the 

second largest and receives four tributaries (Cheng et al., 2001). These lakes play a significant 

role in regulating floods in the middle and lower reaches of the YRB (Cheng et al., 2001). 

There are more than 7000 tributaries of the Yangtze River with different drainage areas. For 

instance, eight tributaries drain an area of more than 80,000 km2: Yalong River, Minjiang 

River, Jialing River, Hanjiang River, Wujiang River, Yuanshui River, Xiangjiang River, and 

Ganjiang River (Cheng et al., 2001). These tributaries also have the eight most significant 
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average annual flows of more than 1,500 m3 per second (Cheng et al., 2001). Apart from lakes 

and rivers in mid-lower reaches of the YRB, a large area of inland marshes that primarily 

distributes in the YRB source region of the Qinghai-Tibetan Plateau, is a significant alpine 

wetland ecosystem (Zhao et al., 2020). Additionally, Chongming Island of the YRB estuary 

encompasses broad natural coastal wetlands, including coastal marshes and tidal flats, 

covering approximately 847.5 km2, about 212 km2 of which are above sea level (Huang et al., 

2008; Mao et al., 2020). The Chongming Island coastal wetland ecosystem plays an important 

role in maintaining both ecosystem health and ecological security of the island, such as 

protecting the island coastal hazards, providing habitats for invertebrates, fish, and waterfowl, 

purifying the coastal environment, as well as tourism resources and aquatic products for 

residents (Cui et al., 2015; Peng et al., 2021).  

 

Although the abundant wetlands resources across the YRB account for 40% of the national 

wetlands, they have been significantly affected by both climate change and anthropogenic 

activities, thus experiencing dramatic losses in recent decades (Finlayson et al., 2018; Mao et 

al., 2020). During the first 15 years of this century, wetlands shrank substantially of the YRB, 

more than half of lakes experienced the significant decreasing trend (Cai et al., 2016). For the 

lost wetlands, 47.7% were converted to agriculture, 14.5% to grasslands, and 13.8% to urban 

areas (Xu et al., 2019b). The middle and lower reaches of the YRB are not only the largest 

complex wetland ecosystem and the most abundant wetland resource in China, but also one of 

the most developed regions in eastern China with both rapid economic growth and high 

population density (Huang et al., 2008; Li et al., 2014; Ma et al., 2023; Mao et al., 2018). As a 

result, wetlands in the middle and lower reaches of the YRB are facing severe anthropogenic 

damage (Mao et al., 2018). The area of wetlands in the middle reaches of the YRB has 

decreased by 70% from the 1950s to the 2000s (Ma et al., 2023). Between 1930 and 2000, the 

area of Dongting Lake declined by 2433 km2, and Jianghan Plain Lake declined by 4368 km2 

(Du et al., 2011). In contrast, a number of artificial wetlands, such as aquacultural ponds and 

reservoirs, expanded in the middle-lower YRB because of the aquacultural development 

(Meng et al., 2023; Zhu et al., 2022). From 1950 to 2001, about 532 km2 of native wetlands in 
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Chongming Island were cultivated for agricultural production (Huang et al., 2008). Almost all 

the high, middle, and low tidal marshes in Chongming Island have been reclaimed in the past 

few decades (Huang et al., 2008). Alpine wetlands in the source region of the YRB are more 

vulnerable to climate change than wetlands in other regions, with declining marshes and 

expanded lakes (Jiping et al., 2011; Zhang et al., 2011; Zhang et al., 2024b). A large area of 

marsh is threatened by inundation due to the rise of lake water levels caused by recent climate 

change (Xue et al., 2018). As mentioned in Section 1.3, monitoring is the essential first step 

for the wetland conservation and management. Therefore, the long-term monitoring of the 

various wetland categories in the YRB is crucial for guiding the subsequent wetland 

conservation and management. 

 

The YRB is a flood-prone region that experienced severe flood disasters (Jia et al., 2022; 

Zhang et al., 2020a). The YRB experienced seven massive floods in 1860, 1870, 1931, 1935, 

1964, 1998, and 2010. Each caused a large number of casualties and socio-economic losses 

(Kundzewicz et al., 2019; Peng et al., 2020). Generally, floods in the YRB were caused by 

heavy precipitation and have become very common since 1860 (Cheng et al., 2001). The 

spatial distribution of flood risk is uneven across the YRB (Yu et al., 2023). Flood risk has 

been investigated to be relatively high in the middle-lower of the YRB because of the heavy 

precipitation (Peng and Li, 2021). Due to short-term rainfall, most of the central mountainous 

areas of the YRB are medium-level flood risk zones. The low-risk areas of flood disaster in 

the YRB are generally concentrated in the upstream, due to the low rainfall and the relatively 

light impacts of typhoons and tides in western regions dominated by plateau topography (Yu 

et al., 2023; Zhang et al., 2020a). The major rainstorm regions with the high flood risk in the 

YRB including the western part of Sichuan, the Dongting Lake Basin, most areas of Jiangxi 

including the Poyang Lake Basin, and several YRB downstream cities in the Taihu Lake 

Basin, which are affected by both upstream flow and tidal influences (Cheng et al., 2001; Jia 

et al., 2022; Yu et al., 2009). The spatial distribution of flood-prone regions in the YRB 

illustrates that the high flood risk areas are generally concentrated in the major lake basins, 

with the abundant wetlands. As a result, the wetland effects on the flood risk cannot be 
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ignored in the YRB.  

 

The entire YRB is covered by the Yangtze River Economic Belt (YREB), which is the 

strongest socio-economic area in China, including three national level urban agglomerations: 

The Yangtze River Delta, the Middle Reaches of the Yangtze River, and the 

Chengdu-Chongqing city cluster (Peng et al., 2020). As a result, the highest level of 

urbanization contributed to more than 40% of the national population and GDP in the YRB 

(Xu et al., 2025). However, the rapid socio-economic growth and the extensive human 

activities have led to several adverse environmental effects in the YRB (Jin et al., 2019). 

Nearly 80% of the major lakes in the YRB have been affected by human activities, and 

water-related disasters have become more frequent and severe, typically in the middle-lower 

YRB, which experiences the higher precipitation and denser water networks (Peng et al., 

2020; Xu et al., 2018). Therefore, assessing and mitigating water-related disasters, such as 

floods, is of great importance in the YRB, where anthropogenic activities are becoming 

increasingly complex. 

 

Given the frequent flooding, the abundant wetland resources, and the rapid socio-economic 

development in the YRB, this basin can be served as the globally representative case for 

developing the sustainable flood risk management strategies. Due to the lack of a long-term 

time series wetland dataset with comprehensive categories for the YRB, however, significant 

research gaps still remain in the flood risk assessments without incorporating wetland 

dynamics, and long-term effects of wetland changes on flood risk. These gaps pose the 

substantial challenges to the development of the sustainable flood risk management in the 

YRB. 

1.8 Research aims and objectives 

This thesis aims to monitor the long-term variations of different wetland categories, and to 

analyze wetland effects on floods by assessing the flood risk incorporating wetlands in the 

YRB. It can provide the valuable insights to support the local sustainable wetland 
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conversation and the effective flood risk mitigation. The study is structured around a series of 

objectives and questions: 

 

Objective 1 (Chapter 4): To analyze wetland dynamics in the YRB by establishing a 

long-term time series wetland classification dataset with the comprehensive wetland 

categories from 1984 to 2021. Research questions include: 

l How do different wetland categories in the YRB vary over time and across spatial 

areas? 

l Which driving force has the most significant impact on the long-term wetland 

variations of the YRB? Natural driving forces ort human activities? 

Objective 2 (Chapter 5): To investigate the long-term wetland effects on the flood risk in the 

YRB based on an improved flood risk assessment model incorporating the wetlands input. 

Research questions include: 

l How do long-term wetland variations influence flood risks in the YRB? 

l Which flood risk factor is most dominant under wetland effects in the YRB? 

l What wetland-related approaches are suitable to mitigate flood risk in different 

flood-prone regions of the YRB? 

Objective 3 (Chapter 6): To predict the flood indices and flood risk by the end of the 21st 

century under different climatic and socio-economic scenarios in the Middle-lower YRB 

(MLYRB) by applying the improved flood risk model. Research questions include: 

l How will flood hazard, vulnerability, exposure, and integrated flood risk change 

across spatial and temporal dimensions in the future of the MLYRB? 

l What strategies are necessary for the future flood risk prevention in the MLYRB? 

 

1.9 Thesis structure 

This thesis comprises eight chapters. Chapter 1 introduces the background information, 

including the importance and status of global wetlands, challenges of wetland management, 

the relationship between wetlands and floods, the improvement in flood risk assessments, and 
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the status of wetlands and floods in the YRB. Additionally, Chapter 1 states the research gap, 

research aim, and objectives for this study. 

 

Chapter 2 situates this study in the literature and other studies done in the field. It reviews the 

past wetland-related datasets covering the YRB, wetland effects on the YRB floods, and the 

extant flood risk assessments of the YRB. Chapter 3 provides an overview of the 

methodology to generate the results of this thesis. 

 

Chapters 4, 5, and 6 present the comprehensive version of the three papers. Chapter 4 

constructs a long-term wetland classification dataset of the YRB from continuous Landsat 

image collections. It presents how different wetland categories vary in the YRB from 1984 to 

2021 and their corresponding driving factors. Chapter 5 analyses the long-term effects of 

wetland variations on the flood risk of the YRB and the dominant flood risk indicators under 

wetland effects. Chapter 6 predicts the future flood risk in the MLYRB by 2100. Chapters 5 

and 6 provide the wetland-related suggestions to mitigate the flood risk in the YRB.  

 

Chapter 7 discusses implications, contributions, limitations, and uncertainties of this thesis. 

Finally, Chapter 8 summarizes results from three papers and makes the overall conclusion of 

this thesis, as well as looking ahead to future work. Supplementary materials of this thesis are 

arranged as appendices before references. 
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Chapter 2 Literature review 

2.1 Wetland-related datasets covering the Yangtze River Basin  

To quantify and analyze the spatiotemporal dynamics of wetlands, several global and regional 

wetland-related datasets have been developed using remote-sensed data in previous studies 

(Che et al., 2015; Li et al., 2020; Lu et al., 2019; Mao et al., 2020; Pekel et a., 2016; Yang and 

Huang, 2021). These datasets could provide necessary information for decision-makers in the 

wetland restoration and management processes, aiming to reduce the related challenges 

caused by wetland information gaps (Wang et al., 2018). 

 

From a global perspective, the Global Surface Water (GSW) dataset, produced by Pekel et al. 

(2016), is the most comprehensive long-term time series dataset for waterbody worldwide. It 

quantifies long-term changes in global surface water over the past 37 years, monthly and 

annually (the updated data is from 1984 to 2021) at 30m resolution by using the entire 

multi-temporal Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper-plus (ETM+), Landsat 8 Operational Land Imager (OLI) orthorectified, and 

top-of-atmosphere reflectance and brightness temperature images (L1T) (Pekel et al., 2016). 

With advances in remote sensing technology, the GLH-Water dataset, derived from very 

high-resolution optical satellite imagery, mapped global surface waterbodies at a 0.3 m 

resolution from 2011 to 2022. (Li et al., 2024). The GSW dataset investigated that 

approximately 90,000 km2 of the global permanent surface waterbodies disappeared over the 

past 37 years, with the significant changes in geographical distributions (Pekel et al., 2016). 

The GLH-water dataset detected the more accurate variations in small water bodies based on 

the GSW dataset (Li et al., 2024). 

 

Several wetland-related datasets have been developed in China. The Inland Surface Water 

Dataset in China (ISWDC) demonstrates water bodies larger than 0.0625 km2 between 2000 

and 2016 with 250m spatial resolution, derived from the MODIS MOD09Q1 surface 

reflectance archive images (Lu et al., 2019). The ISWDC shows a good consistency and 
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similar change dynamics with the GSWE results. For lake groups in the central Tibetan 

Plateau in 2015, the comparison between the two datasets indicates a close pattern. However, 

for the Poyang Lake Basin, the under-extracted surface water and over-extracted surface 

water of the ISWDC still exist when compared with the GSWE (Lu et al., 2019). Afterwards, 

the High Spatial-Temporal Water Body Dataset in China (HSWDC) developed by Li et al. 

(2020) maps the dynamics of the surface water body in China from 2016 to 2018 with a 

higher monthly spatio-temporal resolution (10m) than both the ISWDC and GSWE by using 

the cloud-based Google Earth Engine (GEE) platform and Sentinel-1 imageries, the overall 

accuracy reaches 93% (Li et al., 2020). The HSWDC develops an extraction method for the 

Sentinel-1 Synthetic Aperture Radar (SAR) data based on a large number of land cover 

samples (Li et al., 2020). The SAR data has the advantage of being unaffected by clouds. 

Thus, they can monitor surface water regularly (Aries et al., 2018; Santoro et al., 2014). With 

the release and application of the GEE platform, it is possible to carry out monitoring and 

mapping of water bodies on a large scale with the high resolution, so that removing the 

limitation of research scale and data processing in the past (Kaplan and Avdan, 2018; Slinski 

et al., 2019; Xing et al., 2018). Taking Dongting Lake as an example, the water area detected 

by the HSWDC is larger than that of the GSW, primarily due to the higher spatial resolution. 

Especially in winter, when water storage decreased, the area of some small waterbodies 

becomes too small for the GSW to detect (Li et al., 2020). Besides, the HSWDC shows higher 

consistency with water levels from 2016 to 2018 compared to the GSW (Li et al., 2020). Li et 

al. (2020) further classified the wetlands of Dongting Lake into permanent waters, seasonal 

marshes, mudflats, and rice fields using the water occurrence information from the HSWDC. 

The classification result is generally consistent with the result in the corresponding year of 

Chen et al. (2016), except the difference between rice fields of Li et al. (2020) and 

agricultural lands (including dry crop lands) of Chen et al. (2016). The HSWDC has the 

advantage of detecting and extracting waterbodies accurately during freezing months with the 

help of the SAR data. For example, compared to the ISWDC, the HSWDC can map a more 

comprehensive water surface of Selinco Lake, located on the Tibetan Plateau, even during 

freezing months (Li et al., 2020). 
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In addition to surface water datasets, several global and national land cover datasets with 30m 

or 10m resolution include wetland or water categories. At the global level, the Global Land 

Cover Dataset (GlobeLand30) (Chen et al., 2015), the Finer Resolution Global Land-cover 

Map (FROM-GLC10) (Gong et al., 2019), the Global Land-cover Product with Fine 

Classification System (GLC_FCS30) (Zhang et al., 2021), the Esri World Cover 

(ESRI_GLC10) (Karra et al., 2021), and the Dynamic World (DW10) (Brown et al., 2022) all 

contain only two categories related to wetlands, including permanent water bodies and 

herbaceous wetlands. Among these datasets, GlobalLand30 and ESRI_GLC10 misrepresent 

the real land cover situation, where many independent aquaculture ponds and paddy fields are 

incorrectly mapped. GLC_FCS30 underestimates water bodies, as most of ponds are not 

indicated as water in the mapping results (Li et al., 2023). For the national perspective of 

China, the China Land Cover Dataset (CLCD) , which provides the annual 30m resolution 

land cover data from 1990 to 2019, is a representative dataset with long-term time series 

national land cover (Yang and Huang, 2021). However, the CLCD faces the challenge of 

capturing short-term fluctuations in water and wetlands. Therefore, it shows a smaller area of 

water and wetlands in Poyang Lake than the monthly GSW dataset (Yang and Huang, 2021). 

In recent years, some high-resolution national land cover datasets have been developed, such 

as Hi-ULCM, which provides 2m resolution data for 42 major cities of China (Huang et al., 

2020), and SinoLC-1, the first 1m resolution national-scale land cover map of China (Li et al., 

2023). Similar to global land cover datasets, all of these national land cover datasets include 

only general categories for water and wetland, without distinguishing subcategories.  

 

The national wetland mapping of China (CAS_Wetlands), developed by Mao et al. (2020), is 

the most comprehensive wetland dataset in China, encompassing a wide range of wetland 

categories. The application of the hybrid object-based hierarchical classification approach 

(HOHC) and the wetland classification system to Landsat 8 OLI data produces a 30m 

resolution wetland map of China in 2015, with an overall classification accuracy of 95% 

(Mao et al., 2020). According to the Ramsar definition of wetlands, it includes marsh, fen, 
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peatland, and water, whether natural or artificial, permanent or temporary, and whether water 

is static or flowing, fresh, brackish or salty, and include marine water with the depth of which 

at low tide does not exceed 6 m (Gong et al., 2010). The wetland classification system of the 

CAS_Wetlands is referred from the Ramsar definition of wetlands and the unprecedented 

amount of field samples in the wetland mapping history of China, as well as considering the 

applicability of moderate resolution images and its practical use for ecosystem management 

of a developed remote sensing wetland classification system (Mao et al., 2020). Therefore, the 

creation of a new designed wetland classification system is one of the most important 

novelties of the CAS_Wetlands, which contains three broad categories and fourteen 

sub-categories (Mao et al., 2020). The CAS_Wetlands gives the result of the total wetland 

area of 451,084 ± 2014 km2 of China in 2015, of which 70.5% are inland wetlands. Among 14 

wetland categories, inland marshes have an area of 152,429 ± 373 km², which accounts for 34% 

of the total wetlands, while coastal swamps have the smallest coverage (259 ± 15 km²) (Mao 

et al., 2020).  

 

Due to its comprehensive wetland classification system, the CAS_Wetlands dataset of Mao et 

al. (2020) reports a larger national wetland area in 2015 compared to other datasets, such as 

the CLCD (Yang and Huang, 2021), the China National Land Cover Database (ChinaCover) 

(Mao et al., 2018), and the earlier wetland-related datasets covered the YRB from Gong et al. 

(2010), Niu et al. (2009), and Niu et al. (2012). Overall, the CAS_Wetlands provides a 

significant wetland data reference and the wetland classification system to establish a 

continuous long-term time series wetland dataset in the YRB. 

 

Given that no existing wetland classification dataset meets the requirements for 

comprehensive wetland categories and a long-term study period covering the YRB, there is a 

research gap in establishing a long-term time series wetland classification dataset for the 

YRB. 

2.2 Wetland effects on floods in the Yangtze River Basin 
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According to Section 1.6, there are abundant wetland resources covering the YRB. The 

Sichuan Basin and most areas in the YRB middle and lower reaches are the typical 

flood-prone regions of the YRB (Jia et al., 2022; Li et al., 2014; Mat et al., 2023; Zhang et al., 

2020). Cui et al. (2013) and Yu et al. (2009) both confirmed that lake shrinkage and 

degradation in the YRB middle and lower reaches have led to the rise of lakebed level and the 

reduction in water storage capacity, especially in the Poyang Lake Basin and the Dongting 

Lake Basin, which are key driving factors of floods in the long term (Cui et al., 2013; Yu et 

al., 2009). For example, during the latest severe flood disaster that occurred in the YRB in 

2020, the five provinces of Hubei, Anhui, Jiangxi, Hunan, and Jiangsu were most severely 

affected by floods due to the vast rivers and lakes (Jia et al., 2022). The continuous rainstorm 

process exceeded the limited carrying capacity of these wetlands, resulting in a high flood risk 

when the water levels of lakes and rivers exceeded their alarm levels (Jia et al., 2022). Not 

only lakes and rivers, but also the water level in reservoirs, affect the flood risk in severe 

flood disasters. For example, the water level reached 22.59m of the Hukou Reservoir in 

Poyang Lake, 35.94m of the Chenglingji Reservoir in Dongting Lake, and 160.17m of the 

Three Gorges Reservoir during the flood disaster in 1998, which were all the highest water 

level in the history of reservoirs (Jia et al., 2022).  

 

Several studies have examined the effects of wetlands on floods in flood-prone regions of the 

YRB. Taihu Lake, the third-largest freshwater lake in China, is located in the YRB 

downstream (Xu and Chen, 2023). The Taihu Lake Basin is one of the most developed 

regions in China, characterized by the highest level of urbanization and the densely populated 

area (Xu and Chen, 2023). Hence, compared with other major freshwater lakes in the YRB, 

the Taihu Lake Basin faces far more complex socio-economic and environmental problems 

(Liang et al., 2011). It has been confirmed that the trend of increased floodwater in the Taihu 

Lake Basin has accelerated faster than in other flood-prone regions, which is heavily 

influenced by lake shrinkage due to rapid urbanization and aquaculture development (Cai et 

al., 2013; Xu and Chen, 2023).  
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The Poyang Lake Basin is situated in the middle and lower reaches of the Yangtze River 

Basin. Poyang Lake is the largest freshwater lake in China, which creates extensive 

floodplains that adjoin the main lake (Feng et al., 2012; Li et al., 2019; Wu et al., 2022). The 

Poyang Lake Basin is a region with the frequent and extensive precipitation affected by both 

the south-east and south-west monsoons. The average annual cumulative precipitation 

frequency is 192 days, and the annual average precipitation is 1638 mm (Liu et al., 2021). Xu 

et al. (2023) monitored the long-term land-use change in the Poyang Lake Basin from 1986 to 

2020. The results showed that the categories of wetlands in Poyang Lake underwent 

significant changes from 1986 to 2020. Mudflats and paddy fields showed an increasing trend, 

while the water area decreased (Xu et al., 2023). The analysis of the long-term and short-term 

flood risk in the Poyang Lake Basin reveals that flood-prone areas are primarily located near 

rivers and lakes, with the majority of these areas concentrated in the northern part of the basin 

(Wu et al., 2022).  

 

Dongting Lake is the second largest freshwater lake in China, which is located in the YRB 

middle reaches. The Dongting and Honghu Lake Basin is a typical wetland region that 

frequently experiences severe flooding due to subtropical monsoons, with the flood risk 

typically high in its northern and central regions (Wang et al., 2011). As one of the most 

important eco-areas in the world, wetlands in the Dongting Lake Basin play the significant 

role in flood storage and regulation in the south-central area of the YRB (Wang et al., 2011). 

Hence, the dynamics of wetlands in the Dongting and Honghu Lake Basin have been studied 

by several researchers. Xing et al. (2018) and Huth et al. (2020) both monitored monthly 

surface water dynamics of Dongting Lake in 2016. The results indicated that the surface water 

area varied the most in April and August, the difference between maximum and minimum 

areas of wetlands in 2016 reached 1301 km2 (Xing et al., 2018; Huth et al., 2020). The annual 

average water flow and water level dynamics of the Dongting Lake wetland ecosystem are 37% 

and 36%, respectively (Wang et al., 2022). Regarding the long-term variation of Dongting 

Lake wetlands, Guo et al. (2022) reported that the wetland area expanded by 66.43 km² 

during the wet season and shrank by 132.86 km² during the dry season between 2001 and 
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2020. 

 

Although there’s no single large freshwater lake in the Wanjiang Plain, a dense group of 

freshwater lakes is distributed along both banks of the Yangtze River, forming the Wanjiang 

Lake group in the middle and lower reaches of the YRB (Dong et al., 2022). In the Wanjiang 

Plain, annual precipitation and river runoff are concentrated between May and October. Lake 

shrinkage has been confirmed to increase flood risk by contributing to elevated warning water 

levels during this period, typically in Chaohu Lake, one of the five largest freshwater lakes in 

China and a flood-prone region with complex natural conditions (Sun et al., 2016; Dong et al., 

2022). Apart from flood-prone regions in the YRB middle and lower reaches, the flood risk in 

the Sichuan Basin has been analyzed as well. The Sichuan Basin has low flood storage 

potential due to its extensive river and cropland areas, as well as the limited lake coverage. As 

a result, it has a relatively low capacity to mitigate flooding (Fu et al., 2013; Liu et al., 2017). 

 

To sum up, previous studies illustrate that wetland variations play a significant role in the 

flood risk of different flood prone regions across the YRB. However, investigations into the 

long-term effects of wetlands on flood risk across the entire YRB based on the comprehensive 

wetland data are still lacking. 

2.3 Assessing the past and future flood risks in the Yangtze River 

Basin 

To evaluate and discuss the flood risk, and to improve the public’s flood risk awareness as 

well as mitigating flood risks in the YRB under climate change, it is essential to conduct the 

integrated flood risk assessment that incorporating various flood risk factors with spatial and 

temporal dynamics (Wu et al., 2022; Zhang et al., 2020). Hence, several studies around the 

world focused on the flood risk assessment at the local, regional, and national scale. Examples 

include the Wadi Nu’man Basin of Saudi Arabia (Abdelkarim and Gaber, 2019), the YRB of 

China (Zhang et al., 2020), coastal regions of China (Sajjad, et al., 2020), urban regions in Sri 

Lanka (Weerasinghe et al., 2018), the United Arab Emirates (Abuzwidah et al., 2024), and 
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European countries (Thaler and Hartmann, 2016).  

 

As a significant flood-prone region, the YRB has received an increasing attention in the flood 

risk assessment research. A number of flood risk assessments have been conducted across the 

YRB, focusing on typical lake basins such as the Poyang Lake Basin (Wu et al., 2022) and 

the Dongting Lake Basin (Wang et al., 2011), as well as flood-prone urban regions like 

Chongqing (Cai et al., 2021) and Wuhan (Fang et al., 2019). Zhang et al. (2020) conducted a 

large-scale flood risk assessment of the entire YRB for the years 1998, 2008, and 2016, which 

experienced major flood events. The flood risk assessment studies in the YRB focused not 

only on the past events. Peng and Li (2021) predicted the future flood risk until 2050 under 

the Coupled Model Intercomparison Project (CMIP6) shared socioeconomic pathways (SSP) 

and representative concentration pathway (RCP) climate change scenarios of the Yangtze 

River Economic Belt.  

 

According to the United Nations Office for Disaster Risk Reduction, flood risk is identified as 

the product of hazard, vulnerability, and exposure (McGlade et al., 2019). Flood hazard 

usually refers to natural events or trends related to climate and their natural influences, while 

flood exposure refers to risk elements affected by floods, typically referring to human, 

buildings, property, and economic activities exposed in unfavored places and settings (Dou et 

al., 2018; Zou et al., 2013). Flood vulnerability is a more complex index than hazard and 

exposure, and it is the main construct in the flood risk assessment (Balica and Wright, 2010; 

Nasiri et al., 2016). The general concept of vulnerability refers to a condition shaped by 

physical, social, economic, and environmental factors that increase people's susceptibility to 

the impacts of hazards. It reflects the interaction among exposure, susceptibility, and 

resilience within each community during a hazardous event (Balica and Wright, 2010; UNDP, 

2004). Therefore, the flood risk assessment is a multi-criteria analysis project that integrates 

the results of flood hazard, vulnerability, and exposure (Wu et al., 2022).  

 

A number of approaches have been applied for the flood risk assessment, such as historical 
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disaster statistical method (Halgamuge and Nirmalathas, 2017; Youssef et al., 2015), scenario 

simulation analysis for future flood risk predictions (Alfieri et al., 2015; Cai et al., 2021; 

Gangrade et al., 2019), index system method (Christie et al., 2018), Set Pair Analysis (SPA) 

combined with variable fuzzy sets (VFS) model (Su et al., 2010; Zhang et al., 2011; Zou et al., 

2013), deep learning mechanisms (Lai et al., 2011; Li et al., 2008; Yosri et al., 2024), and the 

GIS-based approach (Cai et al., 2021; Gigović et al., 2017a; Zhang et al., 2020). Each of these 

methods contains both advantages and disadvantages in the application of the flood risk 

assessment (Table 2). 

 
Table 2.1: Advantages and disadvantages of the major flood risk assessment approaches.  

Approaches Advantages Disadvantages 

Historical disaster statistical 

method 

Provides essential information 

for the long time series 

assessment.  

Refers to the disaster databases 

which have been categorized 

and contained enough details. 

(Zhang et al., 2020). 

The limitation of data 

availability. 

The requirement of high amount 

of data. 

Differences in the ways of data 

recording. 

Most data collections are based 

on cities. Thus, it is hard to get 

the detailed spatial distribution 

of flood risks (Zhang et al., 

2020). 

Multi-Index analysis Multiple indicators of flood 

risks can be considered 

comprehensively, and the 

contribution of each indicator 

can be analyzed accurately 

(Zhang et al., 2020). 

The selection of assessment 

indicators varies depending on 

regional characteristics (Zhang 

et al., 2020). 
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Scenario simulation analysis Make predictions for future 

flood risk assessment under 

different climate change 

scenarios (Gangrade et al., 

2019). 

The results are affected by 

analytic tools and the simulated 

data. Thus, the assessment 

accuracy contains uncertainties 

(Cai et al., 2019). 

SPA-VFS model Simple operation, easy 

computation, clear physical 

meaning as well as reasonable 

results. 

The model has been applied 

more frequently in 

multi-attribute assessment fields 

(Zou et al., 2013). 

Uncertainties in the complicated 

flood disaster risk system under 

the fuzzy environment (Zou et 

al., 2013). 

Deep learning mechanism Complete information 

processing of networks through 

the interaction of neural cells 

with the high fault tolerance (Li 

et al., 2008; Lai et al., 2011).  

The low generalization ability 

and reliability because it is easy 

to fall into over learning and 

local minimum dilemma during 

its learning process (Zou et al., 

2013). 

GIS-based approach Handle the large amount of 

flood risk spatial data. 

Visualized results of flood risk 

spatial distribution maps. 

Analyze the flood risk in the 

large scale. 

The investigation process is 

rapid (Zhang et al., 2020). 

Cannot be used alone, need to 

be applied with other flood risk 

assessment approaches (Zhang 

et al., 2020). 

 

From Table 2.1, integrating the multi-index analysis with the GIS-based approach offers 
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advantages in handling large-scale datasets and incorporating comprehensive indicators into 

flood risk assessments with the greater accuracy. Therefore, given the large spatial scale and 

multiple indicators of the YRB flood risk assessment, the multi-index system method 

combined with the GIS-based approach is the most suitable selection to evaluate flood risks in 

the YRB. The GIS-based spatial multi-index approach has been widely applied in flood risk 

assessments of different basins worldwide, such as the Wadi Nu’man Basin in Saudi Arabia 

(Abdelkarim et al., 2019), the Tapi River Basin in India (Ramkar and Yadav, 2021), the Taihu 

Lake Basin (Yu et al., 2012), the Dongting Lake Basin (Wang et al., 2011), the Poyang Lake 

Basin (Wu et al., 2022), the Lijiang River Basin (Ziwei et al., 2023), and the entire YRB in 

China (Zhang et al., 2020). This approach has also been applied in the flood risk prediction 

worldwide by integrating the scenario simulation analysis, such as the Yangtze River 

Economic Belt of China (Peng and Li, 2021), the Pearl River Delta of China (Chen et al., 

2021a), the Petite Nation River watershed, southern Quebec, Canada (Oubennaceur et al., 

2021), and the United Arab Emirates (Abuzwidah et al., 2024).  

 

Among the previous studies assessing the past and future multi-criteria flood risk covering the 

YRB, none incorporated the long-term variations of wetlands as one of  indicators into the 

flood risk model. Instead, most included only river or drainage density, which represents a 

single wetland category. Given the diverse effects of different wetland categories on flood 

risk in the YRB, as discussed in Section 2.2, an improved multi-criteria flood risk assessment 

model needs to be developed with wetland inputs. 
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Chapter 3 Research methodology  

This chapter provides a general overview of research methods used in the thesis, which are 

used to address the research questions and achieve the research objectives identified in 

Chapter 1. Detailed descriptions of these methods are described in Chapters 4, 5, and 6, 

correspondingly.  

3.1 Machine learning algorithm 

Machine learning is the technology for developing computer algorithms that emulate human 

intelligence (El Naqa and Murphy, 2015). The inception of machine learning can be traced to 

the 17th century, followed by the development of the perceptron as one of the early neural 

network architectures in 1958 (El Naqa and Murphy, 2015; Ifrah, 2000). Google Earth Engine 

(GEE) is a cloud-based geo-computation open source platform for machine learning 

algorithms, offering a high volume of Earth Observational Data such as Landsat and Sentinel 

Data (Gorelick et al., 2017). In recent years, the combination of machine learning algorithms 

and GEE has gained popularity in various satellite data applications, including LULC 

classification, deforestation, drought monitoring, crop monitoring, hydrology, land cover 

mapping, and environmental protection (Belgiu and Drăguţ, 2016; Pokhariya et al., 2023). 

Machine learning can be categorized into supervised, unsupervised, and semi-supervised 

algorithms based on the nature of data labeling (Singh et al., 2016). Supervised machine 

learning algorithms are commonly used as the classifier for LULC classification (Belgiu and 

Drăguţ, 2016; Singh et al., 2016). There are several supervised machine learning classifiers, 

including parameter classifiers like Maximum Likelihood Classifier (MLC) (Liu et al., 2011) 

and Naïve Bayes (NB) (Singh et al., 2016), and non-parametric classifiers, such as Random 

Forest (RF) (Belgiu and Drăguţ, 2016), Support Vector Machines (SVM) (Mountrakis et al., 

2011), Classification and Regression Tree (CART) (Razi and Athappilly, 2005), and Artificial 

Neural Network (ANN) (Mas and Flores, 2008). MCL and NB deliver excellent and fast 

results when training unimodal data, but they have limitations when dealing with multimodal 

input datasets that involve interactions (Liu et al., 2011; Singh et al., 2016). CART, SVM, RF, 

and ANN have become more popular than parameter classifiers for classifying remotely 
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sensed data due to the advantage of requiring no assumptions regarding frequency distribution 

(Belgiu and Drăguţ, 2016).  

 

SVM is well-known in the field of machine learning and has been successfully applied to a 

wide range of remote sensing image classifications with the high accuracy (Castillo et al., 

2008; Chowdhury, 2024; Ghosh and Joshi, 2014; Huang and Zhang, 2010). It utilizes 

classification and regression to identify the optimal hyperplane that separates the data based 

on a given sample (Chowdhury, 2024). ANN is a supervised classifier belonging to the deep 

learning algorithm. It contains a large number of hidden layers compared to traditional 

algorithms (Alshari et al., 2023). Generally, ANN is effective in remote sensing image 

classification, but neural networks are less sensitive to noisy sample data than other 

algorithms (Sidike et al., 2018; Waqas et al., 2023). CART models employ tree-building 

algorithms, which comprise a set of split conditions that enable classifications (Razi and 

Athappilly, 2005). The noticeable advantage of decision-tree-based models, such as CART, is 

that they are scalable to large regions than neural networks (Razi and Athappilly, 2005). The 

RF classifier is an ensemble classifier that utilizes a set of CARTs to generate multiple 

predictors, aggregating the plurality of votes derived from these predictors to make a final 

decision (Chowdhury, 2024). RF has been widely used in remote sensing studies currently 

due to its high classification accuracy (Belgiu and Drăguţ, 2016; Chowdhury, 2024; Ge et al., 

2020; Pokhariya et al., 2023). Chapter 4 of this thesis compares the wetland classification 

accuracy among CART, SVM, and RF in the representative regions of the YRB and finds that 

RF achieves the highest classification accuracy across all the representative regions, which is 

selected as the algorithm for the long-term wetland classification in the YRB. The detailed 

comparison process is presented in Section 4.2.4, Chapter 4. 

 

3.2 GIS-based multi-criteria flood risk assessment model 

Geographical Information System (GIS) is a computer-based technology designed to capture, 

store, manipulate, analyze, and display diverse sets of spatial or georeferenced data (Huabin 
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et al., 2005). Nowadays, the risk analysis of natural disasters is unimaginable without the 

support of GIS (Gigović et al., 2017a). Natural disasters are multidimensional phenomena 

with a spatial dimension, making GIS very applicable for analyzing landslide hazards, flood 

risks, and the potential suitability for infrastructure construction and urban planning due to its 

powerful geostatistical tools to manage the large volume of spatial data (Abuzwidah et al., 

2024; Bathrellos et al., 2012; Cai et al., 2021; Huabin et al., 2005).  

 

To address the shortcomings of GIS in the decision-making process involving multiple 

criteria, it is necessary to integrate tools for multi-criteria decision-making with GIS (Gigović 

et al., 2017a). Multi-criteria analysis is a framework for ranking or scoring the overall 

performance of decision options across multiple objectives from various scientific fields 

(Wang et al., 2011). The input of the multi-criteria analysis model is a set of grouped, 

standardized, and weighted maps with spatial representation of the criteria. The output is one 

or more composite index maps (Wang et al., 2011). In recent decades, the application of 

multi-criteria or multi-index GIS-based models has been successful in various assessments, as 

it enables greater flexibility and accuracy in decision-making (Gigović et al., 2017b; 

Malczewski, 2006; Rahmati et al., 2016; Wang et al., 2011; Zhang et al., 2020). Approaches 

to determine the indicator’s weight include objective and subjective methods, such as 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Simple 

Additive Weighting (SAW) (Meshram, et al., 2020), the analytic hierarchy process 

(AHP) and fuzzy AHP (Roy et al., 2021a;Yang et al., 2013), the entropy weight method 

(Khosravi, et al., 2016), and principal component analysis (Nandi et al., 2016). Several 

studies show that the analytic hierarchy process (AHP) is the most popular method with the 

high accuracy and cost-effectiveness (Abuzwidah et al., 2024; Gigović et al., 2017a; Lyu et 

al., 2018; Ramkar and Yadav, 2021; Zhang et al., 2020; Ziwei et al., 2023). AHP is a flexible 

and practical multi-criteria decision-making method that quickly qualifies qualitative 

problems using simple principles and a rigorous mathematical basis (Zhang et al., 2020; 

Ziwei et al., 2023), proposed by Saaty (1977). An improved GIS-based multi-index flood risk 

assessment model incorporating wetlands is developed in Chapter 5 and applied in Chapter 6 
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of this thesis, along with a detailed explanation of the framework. The model investigates the 

long-term wetland effects on the flood risk from 1984 to 2021 and predicts the future flood 

risk incorporating wetland effects under climatic and socio-economic scenarios by 2100 in the 

YRB.    

3.3 Causality inference algorithm 

Causal inference is the process of determining whether a specific relationship between 

variables is directly causal rather than merely correlational (Guo et al., 2020). It involves 

analyzing the effects of actions, interventions, or natural occurrences on outcomes (Nogueira 

et al., 2022). The application of causal inference is significant across various scientific 

domains, including statistics, computer science, education, public policy, economics, and 

earth and environmental science (Massmann et al., 2021; Nogueira et al., 2022; Runge et al., 

2023). A robust method for inferring causality was first developed in the early 20th century by 

mitigating confounding influences through randomized experiments, which is the 

Neyman-Rubin potential-outcome framework (Rubin, 2005; Pearl, 2010). This framework 

introduces the concept of potential outcomes from different treatment states within the same 

unit (Pearl, 2010). Nowadays, with the development of computational power, causal effects 

can be quantified by combining domain knowledge, machine learning models, and 

observational or interventional datasets (Runge et al., 2019a; Runge et al., 2023). Several 

causal discovery algorithms have been developed, including the Peter Clark (PC) algorithm 

(Spirtes and Glymour, 1991), the linear non-Gaussian model (LiNGAM) (Shimizu et al., 

2006), the Convergent Cross Mapping (CCM) (Sugihara et al., 2012), and the Peter Clark 

Momentary Conditional Independence (PCMCI) algorithm (Runge et al., 2019b).  

 

In this thesis, the PCMCI algorithm is used to determine the causal relations between the 

YRB flood risk indicators and the flood risk area under wetland effects. The PC algorithm 

was applied to analyze the probability of power outage caused by natural disasters in the 

research of Chen et al. (2024). The PCMCI algorithm is further developed by combining the 

PC algorithm with the Momentary Conditional Independence (MCI) test (Runge, 2018). 
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Further details about using the PCMCI algorithm are provided in Section 5.2.3, Chapter 5. 
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Chapter 4 A long-term (1984-2021) wetland classification 

dataset for the Yangtze River Basin from continuous 

Landsat image collections 

 

Highlights: 

l We create a long-term wetland classification dataset in the Yangtze River Basin. 

l The total wetland area is larger in 2021 compared with the starting year of 1984. 

l Man-made wetlands increase constantly but natural wetlands fluctuate over years. 

l The change of aquaculture ponds and inland marsh are the largest. 

l Human activities are more dominant than natural driving forces of wetland changes. 

 

This chapter is a reformatted version of a manuscript published in the Total Environment 

Advances, which is available at https://doi.org/10.1016/j.teadva.2024.200111. The 

LTWCD_YRB classification maps of YRB downstream, middle stream and upstream with 

30m resolution between 1984 and 2021 are available in the figshare repository in the Geotiff 

format: https://doi.org/10.6084/m9.figshare.21859920.v1. They are provided in the 

ESPG:4326 (WGS_1984) spatial reference system. The maps can be visualized in ArcGIS, 

QGIS, or other similar software. JavaScript codes on the GEE platform to process Landsat 

images, implement machine learning method and generate wetland classification maps are 

available: https://doi.org/10.6084/m9.figshare.21859854.v1.  

 

  

https://doi.org/10.1016/j.teadva.2024.200111
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4.1 Introduction 

Wetlands are among the most productive ecosystems that serve as the transition between land 

and water with a variety of ecological and economic benefits (Liang et al., 2020). However, in 

recent decades, wetlands worldwide have experienced dramatic loss and degradation caused 

by climate change and human activities (Asselen et al., 2013). The extensive wetlands across 

the Yangtze River Basin (YRB) in China have been particularly affected, experiencing a 

striking loss (Mao et al., 2020; Xu et al., 2019b), which accounts for nearly 40% of the 

national wetlands (Finlayson et al., 2018). The variation of wetlands in the YRB is complex 

due to several driving forces including climate change, rapid urbanization along the Yangtze 

River Economic Belt, dam construction, and agricultural and livestock activities (Xu et al., 

2019b; Zheng et al., 2020). According to the latest wetland classification system and spatial 

distribution map in China, wetlands along the YRB include nearly all types of wetlands in 

China (Mao et al., 2020). Different reaches of the YRB are covered with various categories of 

wetlands: Swamps and marshes distributed at the source and estuary regions of the YRB, and 

waterbody wetlands mostly centralized at middle-lower reaches (Mao et al., 2020). Overall, 

wetlands remained stable at the source of YRB, expanded at the middle reaches, and shrank at 

the lower reaches of YRB in the first 15 years of the 21st century (Xu et al., 2019b). Wetlands 

management and protection have become a significant issue in the initiative of Yangtze River 

Conservation proposed by the Chinese government in 2016 (Zheng et al., 2020). The study on 

the long-term historical variations of all the wetland categories will provide 

evidence-informed policymaking for stakeholders to formulate more definite wetland 

conservation policies in the YRB. However, there are currently no comprehensive wetland 

datasets in the YRB to support this research. 

 

Several wetland-related datasets have been generated in previous studies (e.g., Pekel et al., 

2016; Lu et al., 2019; Li et al., 2020; Mao et al., 2020). The Chinese Academy of Science 

Wetland (CAS_Wetland) Dataset contains the most comprehensive wetland categories in 

China at the 30m spatial resolution by using the Landsat 8 Operational Land Imager (OLI) 
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(Mao et al., 2020). In this classification system, wetlands are grouped into three broad 

categories and 14 sub-categories: 1) Inland wetland (Inland swamp, Inland marsh, lake, river); 

2) Coastal wetland (coastal swamp, coastal marsh, lagoon, estuary water, tidal flat, shallow 

marine water); and 3) Human-made wetland: (reservoir/pond, channel, salt pan, aquaculture 

pond) (Mao et al., 2020). The limitation of this dataset is that it only demonstrates wetlands 

information in 2015 instead of a longer period. The same issue occurred in the High 

Spatial-temporal Water Body Dataset in China (HSWDC) launched in 2016, even though it 

has a higher spatial resolution at 10m (Li et al., 2020). The representative National waterbody 

datasets with longer time series covered the YRB, including the Landsat-derived annual land 

cover product of China (CLCD) (1980-2019)，the time series of Inland Surface Water Dataset 

in China (ISWDC) (2000-2016) (Yang and Huang, 2021; Lu et al., 2019), and the Global 

Surface Water Explorer (GSWE) maximum water extent map (1984-2021), generated by 

using Landsat 5, 7, and 8 images in the YRB (Pekel et al., 2016). 

 

The overall limitation of the above datasets (except the CAS_Wetland dataset) is that the 

wetland data is just a by-product that needs to be derived from the whole dataset. Most 

importantly, there is no detailed wetland classification in these datasets. The CAS_Wetland 

dataset contains comprehensive wetland categories but only demonstrates wetlands 

information in one year. Therefore, the scarcity of long-term time series of wetland 

distribution and classification datasets in the YRB has resulted in severe limitations on the 

specific policymaking and implementation for the YRB wetlands conservation. Meanwhile, 

such deficiency in the dataset has generated a barrier to evaluating the long-term variations in 

different categories of YRB wetlands for their habitat health, carbon storage, greenhouse gas 

emission, and ecosystem service capacity (Mei et al., 2016; Xu et al., 2008; Zhou and Xia, 

2020).  

 

To support evidence-informed policymaking for wetland management and protection in the 

YRB, this study aims to explore annual and seasonal variations of various wetland categories 

by creating a long-term time series (1984-2021) wetland classification dataset with 



 46 

 
 
 
 
 

comprehensive wetland categories for the YRB. Additionally, this study identifies potential 

driving forces of variations in different wetland categories by analyzing their spatial shifts 

across the YRB in the representative regions. 

4.2 Materials and Methods 

4.2.1 Study area 

The Yangtze River (YR) (Figure 4.1) is the third longest river in the world and the longest 

one in China, stretching over 6,300 km. The YRB is located between 24°27’ to 35° 54’ N and 

93°33’ to 122°19’ E, with a long and narrow shape running from west to east and a shorter 

extent from north to south (Zheng et al., 2021). The topography of the YRB is high in the 

west and low in the east. The river originates in the Tanggula Mountains of the Tibetan 

Plateau, with the flowing direction from the west to the east of the country and finally flows 

to the East China Sea at Chongming Island near Shanghai (Zhang et al., 2020). The YRB 

covers 11 provinces, autonomous regions, and municipalities including Qinghai, Tibet, 

Sichuan, Yunnan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shanghai, with a 

population of approximately 440 million (nearly one-third of China’s population). The YRB 

covers 18.75% of China’s total area, which reaching 1.8 million km2 (Zhang et al., 2020). 

Wetlands account for 40% of the national wetlands in China, with hundreds of tributaries and 

lakes (Finlayson et al., 2018). 
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Figure 4.1: The location, hydrographical and topographical information of the Yangtze River 

Basin.  

4.2.2 Data 

Regarding muti-spectral remote sensing images, the surface reflectance products were derived 

from Landsat 5 Thematic Mapper (TM) (1984-1999), Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) (2000-2013) and Landsat 8 Operational Land Imager (OLI) (2014-2021) images, 

all with a 30m resolution from January 1984 to December 2021. The selected spectral bands 

were 2, 3, 4, 5, 6, and 7 (Gorelick et al., 2017). The starting year of 1984 was selected 

because it marked the proposal of the Yangtze River Economic Belt, an economic region with 

the Yangtze River as its axis, covering more than 40 cities, which led to increased impacts on 

the wetlands due to rapid economic growth (Zhou et al., 2020). The corresponding 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 

(NDWI), and Normalized Difference Snow Index (NDSI) were selected as the datasets for 
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this research. The satellite image interpretation represents the current situation of each 

wetland type after atmospheric correction (surface reflectance products have been 

atmospherically corrected on the Google Earth Engine), cloud filtering, mean compositing (to 

obtain the average image from the image collection and image cropping (Dang et al., 2020). 

4.2.3 Wetland classification system 

The Ramsar Convention on Wetlands defines the traditional global wetland classification 

system as “... areas of marsh, fen, peatland, and water, whether natural or artificial, permanent 

or temporary, and whether water is flowing, fresh, brackish or salty, including areas of marine 

water the depth of which at low tide does not exceed 6 m” (Ramsar Convention Bureau 2001). 

The latest and most comprehensive wetlands classification system in China, known as 

CAS_Wetlands, refers to the Ramsar definition and the wetland mapping history of China 

(Mao et al., 2020). This remote sensing wetland classification system incorporates the 

advantages of moderate-resolution images, providing high acceptability and efficient, 

practical use for ecosystem management (Mao et al., 2020). The YRB study region covers 

extremely complex geographic and hydrological conditions, thus contributing to a wide range 

of wetland categories (Cui et al., 2018). There are two broad categories and nine 

sub-categories of wetlands referring to the CAS_Wetland in the YRB (Table 4.1) (Mao et al., 

2020). Paddy fields and floodplains are excluded from this wetland classification system. 

Paddy fields are more appropriate to be defined as farmland, while floodplains are not 

considered an individual wetland category because they are defined as either inland marshes 

or rivers during the wet season (Mao et al., 2020). 
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Table 4.1: The wetland classification system adopted in this study (Mao et al., 2020). 

Category  Sub-category  Description 

Natural wetland Inland marsh Natural wetland with dominant herbaceous vegetation in 

inland areas. 

Lake  Natural polygon waterbody with flowing water. 

River Natural linear waterbody with flowing water. 

Coastal marsh Natural wetland with dominant herbaceous vegetation in 

coastal areas. 

Estuary water Natural waterbody with flowing water from the 

boundary of inland areas to coastline. 

Tidal flat The inter-tidal flat with no or very low vegetation 

coverage. 

Human made 

wetland 

Reservoir Artificial polygon waterbody with standing water 

generating with obvious dam. 

Aquaculture pond Polygon waterbody used for aquaculture. 

Canal Artificial linear waterbody with flowing water and 

straight boundary. 

4.2.4 Machine learning classifiers selection 

Google Earth Engine (GEE) is a representative cloud-based geo-computation platform for 

machine learning algorithms, offering a centralized and standard framework of Earth 

Observation data (Gorelick et al., 2017). GEE has been leveraged in several remote sensing 

studies (Mayer et al., 2021, Tassi et al., 2020), and this study will use the GEE platform for 

collecting samples and training models.  

 

Machine learning classifiers can be broadly categorized into supervised parametric classifiers, 

such as the Maximum Likelihood Classifier (MLC) and Naïve Bayes, and non-parametric 

classifiers, including Random Forest (RF), Support Vector Machines (SVM), Classification 

and Regression Tree (CART), and Artificial Neural Network (ANN) (Belgiu and Drăgut, 
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2016; Liu et al., 2011; Mas and Flores, 2007). Non-parametric classifiers are preferred for 

classifying remote sensing data because they do not impose assumptions on data distribution 

(Belgiu and Drăgut, 2016). On the other hand, parametric classifiers have limitations 

regarding normal data distribution and are not suitable for this study with multi-modal input 

data (Liu et al., 2011).  

 

Several previous studies have compared RF with other machine learning classifiers in terms 

of classification accuracy, training time, and training stability when study regions or training 

samples change (Chan and Paelinckx, 2008; Gislason et al., 2006; Vetrivel et al., 2015). RF 

has been shown to outperform Binary Hierarchical Classifier (BHC), Linear Discriminant 

Analysis (LDA), and ANN in terms of classification accuracy (Chan and Paelinckx, 2008; 

Ham et al., 2005; Shang and Chisholm, 2014). Although Ghosh and Joshi (2014) stated that 

SVM classification performs slightly better than RF in Object-based Image Analysis (OBIA), 

RF is less sensitive to feature selection, making it more user-friendly (Li et al., 2015; Vetrivel 

et al., 2015). Additionally, RF is computationally efficient, capable of handling 

high-dimensional and multicollinear data, reducing the risk of overfitting, and ensuring robust 

results regardless of the training data quality (Belgiu and Drăgut，2016; Hemmerling et al., 

2021; Mei et al., 2016; Rodriguez-Galiano et al., 2012). In summary, RF achieves better 

classification results compared to other machine learning classifiers, especially with 

hyper-spectral or multi-source data, and it is faster and more stable than SVM and other 

ensemble classifiers (Belgiu and Drăgut，2016).  

 

Therefore, RF is widely used in complex remote sensing image classification involving 

large-scale, multiple categories, and multiple features (Li et al., 2015; Rodriguez-Galiano et 

al., 2012; Talukdar et al., 2020). Corcoran et al., (2013) evaluated that wetland classification 

in northern Minnesota achieved the best results based on the RF classifier with input Landsat 

TM data. Considering the large spatial scale of the YRB, and the time cost of training and 

testing the monthly satellite images in the whole 37 years of 18 divided region patches, the 

deep learning algorithms are not considered in this study due to the disadvantages of 
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time-consuming when training of deep learning models (Jamali et al., 2021). In the selected 

representative regions among the YRB, the comparison results of classification accuracy for 

RF, SVM, and CART were shown in Table 4.2, and RF is selected as the classifier for this 

study because of its highest classification accuracy.  

 
Table 4.2: The classification accuracy of three machine learning classifiers in 5 representative 

regions along the YRB. 

Machine 

learning 

classifier 

Accuracy 

 Estuary TLB PLB DLB Source 

RF 95.80% 90.50% 90.30% 92.90% 93.70% 

SVM 92.30% 89.80% 85.40% 92.70% 81.80% 

CART 92.80% 86.30% 88.00% 90.10% 89.50% 

 

RF consists of a large number of decision trees generated randomly and automatically (Belgiu 

and Drăgu, 2016). Each decision tree is independently produced without any pruning and 

each node is split using a number of features defined by users (Belgiu and Drăgut, 2016; 

Olofsson et al., 2014). The final classification result is determined by averaging the class 

assignment probabilities generated by all the decision trees in the ensemble. When evaluating 

a new unlabelled input data, it is assessed against all the decision trees, and each tree 

contributes its vote for a class membership. The class with the highest number of votes is 

ultimately selected as the final classification result (Belgiu and Drăgut，2016). The training 

dataset is divided into two parts: 80% for bootstrap sampling for each decision tree and 20% 

for testing to evaluate the RF model (Cui et al., 2018). The computing time required to 

establish the RF classification model is: 

𝑇$𝑀𝑁𝑙𝑜𝑔(𝑁) (4.1) 

Where T is the number of trees, M is the number of variables used in each split, and N is the 
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number of training samples (Belgiu and Drăgut，2016). T is a configurable parameter in RF 

and affects the classification accuracy. In this study, the number of trees was 30 for training 

each image patch. 

4.2.5 Machine learning structure 

The machine learning method is divided into 1) Landsat and sample labeling datasets; 2) 

Input data preparation; and 3) Model training and accuracy assessment (Figure 4.2). 

 

Figure 4.2: The structure of machine learning method for wetland classification.  

 

4.2.5.1 Landsat and sample labelling datasets 

Sample labeling for training and testing generally proceeds on Landsat images by the visual 

distinguishing combined with references from the published literature and datasets (e.g. the 

CAS_Wetland dataset, and the China Land Cover dataset from the Resource and Environment 

Science and Data Center) (Mao et al., 2020, Yang and Huang, 2021). We also used the GEE 

platform to calculate different indices of the classification features, including NDVI, NDWI 

and NDSI, which characterize vegetation canopy, water bodies and snow coverage, 

respectively (Feng et al., 2022). The formulas are shown as below:  

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷) (4.2) 

 

𝑁𝐷𝑊𝐼 = (𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅)/(𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅) (4.3) 
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𝑁𝐷𝑆𝐼 = (𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅)/(𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅) (4.4) 

 

NIR, SWIR, RED and GREEN are reflectance values from the near-infrared, short-wave 

infrared, red and green bands of the Landsat imagery, respectively (Feng et al., 2022). The 

examples with nine different wetland categories and labelled samples are shown in Figure 4.3. 

For the wetland categories with clear boundaries, such as lake, river, reservoir, canal, and 

aquaculture pond, samples need to be labelled along the boundary; the wetland categories 

without the boundary like the inland marsh, tidal flat, estuary water, and coastal marsh, just 

drawing squares for samples on Landsat images.  

 

Figure 4.3: The example of sample zoning and labeling on the Landsat 8 RGB composite 

images of wetland categories. 

 

4.2.5.2 Input data preparation 

The preparation of input data involved several steps. Firstly, Landsat imagery of the YRB was 

cropped into 18 sub-images following cloud cover filtering and mean compositing. 

Concurrently, corresponding sub-masks of labelled samples were generated through 

segmentation. Then, the labelled samples were utilized for RF classification, which was 
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allocated 80% for training and validation. the remaining 20% for testing. Once the model 

training was finalized, the classification maps of the sub-images were integrated to obtain the 

final wetland classification maps for the YRB. 

 

4.2.5.3 Validation   

Several wetland classification studies have used the existing datasets as reference sources for 

validation to substitute for ground-truth field data, especially in the large-scale wetland 

classification. For example, Martínez et al. (2021) assessed the classification accuracy of all 

the coastal wetlands in Estonia by measuring the agreement between classified values derived 

from previous studies and the training samples used in their analyses. Huo and Niu (2024) 

validated the wetland map of the Yellow River Basin by comparing it with the existing 

products including the CAS_Wetlands (Mao et al., 2020). Amani et al. (2019) used the visual 

comparison against previous wetland classification maps to assess the wetland classification 

accuracy for entire Canada. Moreover, due to the 37-year temporal span of the LTWCD_YRB, 

no corresponding long-term reference dataset with the consistent wetland categories is 

available for validation. Therefore, the LTWCD_YRB wetland classification dataset is 

validated through the visual comparison with the validation samples for each wetland 

category derived from the 30m resolution CAS_Wetlands dataset developed by Mao et al. 

(2020). The CAS_Wetlands is the only existing wetland dataset with the same spatial 

resolution and consistent classification system as the LTWCD_YRB.  

 

The CAS_Wetlands dataset contains the precise ground-truth field data in the single year of 

2015 derived from field investigations and public databases associated with the national 

projects funded by the Ministry of Science and Technology of China (Mao et al., 2020). 

There are totally 5022 ground-truth field validation samples representing all the wetland 

categories, with their locations recorded using the Global Positioning System (GPS) with the 

positional error of less than 2 m. In addition, the unmanned aerial vehicles (UAVs) equipped 

with real-time kinematic GPS and supported by the high-resolution satellite images were used 

to validate wetlands that were inaccessible on the ground. The overall accuracy of the 
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CAS_Wetlands dataset reached 95%. Given its rigorous validation process and high accuracy, 

the CAS_Wetlands dataset is considered as the suitable reference for validating the 

LTWCD_YRB. The validated samples were randomly selected from all the samples of the 

LTWCD_YRB in 2015 and visually compared with the corresponding wetland categories in 

the CAS_Wetlands. In addition, a confusion matrix was generated to assess the classification 

accuracy of the LTWCD_YRB based on this indirect validation method, including the overall 

accuracy, producer’s accuracy, and user’s accuracy. 

 

In this study, confusion matrices were constructed in the GEE platform to evaluate the 

classification accuracy. The confusion matrix is a commonly used method for assessing 

accuracy in land use and land cover (LULC) studies (Feng et al., 2022). It summarizes the 

number of samples correctly and incorrectly classified for each class, thereby quantifying the 

agreement and differences between the classification result and the reference LULC of the 

study region (Olofsson et al., 2014). The matrix provides quantitative accuracy metrics, 

including the overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA), and 

Kappa coefficient. The OA is a metric for the general evaluation, which is calculated through 

the sum of all the correctly classified sites divided by the total of number of reference site, but 

it only provides the basic accuracy information for the map user and producer (Nehzak, et al., 

2022). The PA and UA are used to measure the quality of the classification for each wetland 

category from the perspectives of map producer and map user, respectively. The PA is the 

map accuracy from the point of view of the map producer. It reflects the probability that the 

real features on the ground of a given class are correctly classified on the map, therefore 

indicating how well the actual wetlands are captured. The PA is calculated as the number of 

validated samples classified accurately divided by the total number of validated samples for 

that class. The UA is the accuracy from the point of view of a map user. It reflects the 

probability that a given class on the map truly belongs to that class on the ground, indicating 

the reliability of the classified wetlands. The UA is calculated by taking the total number of 

the correct classifications for a particular class divided by the total classified samples for that 

class. At last, the Kappa coefficient was applied to assess the difference between the observed 
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wetland classification accuracy and that expected by random chance (Tselka et al., 2023) 

4.3 Results 

4.3.1 Classification accuracy 

The validation results were demonstrated in Table 4.3. It indicates that the LTWCD_YRB 

dataset achieves the overall accuracy of 85%. The natural wetland categories demonstrated 

higher classification accuracy in terms of both UA and PA compared to the human-made 

wetland categories. Among all the wetland categories, estuary water attained the highest UA 

at 98%, followed closely by lakes at 95%, which means these two categories demonstrated 

the highest agreement between the classification result and the actual wetland class. In 

contrast, the UA of canals and aquaculture ponds was relatively lower at 61% and 67%, 

respectively. This can be attributed to the smaller area occupied by these wetland categories 

compared to others, as well as the tendency for canals to be confused with lakes and 

aquaculture ponds with other water bodies. 

Table 4.3: Wetland category accuracy of the LTWCD_YRB. 

Category Sub-category Sample 
testing 

number 

PA UA 

Natural wetland Lake 8362 98% 95% 

River 15762 81% 75% 

Inland marsh 2331 86% 70% 

 Coastal marsh 407 93% 89% 

Tidal flat 2035 85% 82% 

Estuary water 629 99% 98% 

 Total 29526 90% 85% 

Human-made 

wetland 

Reservoir 9398 92% 87% 

Aquaculture 
pond 

6364 79% 67% 

Canal 4588 94% 61% 

 Total 20350 88% 72% 
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Summary  49876 Overall 
accuracy 

85% 

Kappa 
coefficient  

0.84 

Figure 4.4 illustrates the validation samples derived from the LTWCD_YRB and 

CAS_Wetlands datasets, together with the corresponding classification results in 

representative regions. This figure confirms that wetland categories with lower classification 

accuracy in Table 4.3, such as canals, aquaculture ponds, inland marshes, and tidal flats, 

exhibit the greater sample inconsistency between the LTWCD_YRB and CAS_Wetlands 

datasets than other wetland categories, particularly in the coastal regions of Shanghai.  

 

Figure 4.4. The comparison of typical subsets between the LTWCD_YRB and 
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CAS_Wetlands. a)-c): Coastal wetlands in Shanghai; d)-f): aquacultural ponds near 

Yangcheng Lake in the TLB; g)-i): a part of Taihu Lake; j)-l): wetlands in the PLB; and m)-o): 

alpine lakes in the YRB source region. 

 

4.3.2 Classification results  

Table 4.4 presents the annual average change of the nine wetland categories in the YRB 

between 1984 and 2021. Comparing the area in 1984 with 2021, the aquaculture pond 

experienced the most significant expansion and increased by a total of 4987 km2 across the 

YRB. The highest expansion rate occurred from 2000 to 2010, with an increase rate of 199.5 

km2 per year. The area of inland marsh also increased by 2284 km2, although it exhibited with 

a fluctuation trend. Particularly, in the 2010-2021 period, the inland marsh shrunk by 8630 

km2 at a decrease rate of 784.5 km2 per year. Lake and estuary water are the only two wetland 

categories with a smaller area in 2021 than those in 1984, with lake area decreasing more. 

Human-made wetlands in the YRB exhibited a consistently increasing trend from 1984 to 

2021 (161.7 km2 per year), while natural wetland areas displayed more extensive fluctuations 

(as shown in Figure 4.5). Overall, the total wetland area in the YRB was larger in 2021 

compared to 1984, with the most substantial variation from 2000 to 2010. 
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Figure 4.5: The long-term variations of natural, human, and total wetland areas in the YRB 

between 1984 and 2021. 
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Table 4.4: Decaded wetland changes in the YRB between 1984 and 2021. 
Classes Area in 1984 

(km2) 

Area in 2021 

(km2) 

Area change (km2) 

1984-1990 1990-2000 2000-2010 2010-2021 

Lake 16819 15685 -1238 +2540 -3912 +1476 

River 11792 11981 +1656 -1045 +49 -471 

Canal 240 277 +59 -26 -82 +86 

Aquaculture 

pond 

1275 6262 +1180 +1575 +1995 +237 

Reservoir 3682 4640 +189 +35 +436 +339 

Coastal marsh 219 314 +41 -46 +1 +99 

Inland marsh 9361 11645 +3148 +6073 +1693 -8360 

Tidal flat 410 533 +252 -26 -381 +278 

Estuary water 3256 2156 -173 -31 -267 -278 
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Figures 4.6-4.10 show the mapping of classification results and spatial variations in the five 

representative regions across the YRB between 1984 and 2021. Each region includes the 

starting year (1984), the ending year (2021), and two more representative years (2001 and 

2011) of classification results. All other figures for the rest years are available in the Figshare 

repository. The YRB estuary region (Figure 4.6) is located near the East China Sea. This 

region primarily consists of coastal wetlands such as coastal marsh, tidal flats, and estuary 

water. The figure reveals notable changes over time. In the Yaowang Harbor area, the 

aquaculture pond expanded, displacing the tidal flat in 2011 and 2021, which was caused by 

the development of local fish farming industries and related infrastructures. Additionally, the 

tidal flat and coastal marsh on the Dongtan Nature Reserve of Chongming Island exhibited a 

shrinking trend, while they expanded on the reclaimed Changxing and Hengsha Islands. 

Moreover, the disappearance of coastal wetlands along the Yangtze River Delta (YRD) is 

significant in 2011 and 2021, indicating substantial changes in the region's wetland 

composition. Natural driving forces including sea-level rise and slower rate of sedimentation 

play significant roles in the coastal wetlands degradation of Chongming Island and the YRD. 

 

Figure 4.6: The wetland classification of a) 1984 b) 2001 c) 2011, and d) 2021 at the YRB 

estuary. 
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The TLB is in the YRB downstream, as shown in Figure 4.7. The major variation of Taihu 

Lake is shown on the southeast corner. Among the wetland categories, the aquaculture pond 

exhibits the most distinct variation. It is primarily distributed around the eastern corner of 

Taihu Lake and the northern area of Yangcheng Lake, as well as other smaller lakes within 

the TLB. Notably, there was a significant expansion of the aquaculture pond between 2001 

and 2011. However, by 2021, the area covered by the aquaculture pond had contracted 

brought by the implication of fish farming banned in the Taihu Lake and local standardized 

management. 

 
Figure 4.7: The wetland classification of a) 1984, b) 2001, c) 2011, and d) 2021 at the Taihu 

Lake Basin. 

The PLB and DHB are the two central water-body systems of the YRB midstream (Figures 

4.8 and 4.9). In the PLB case, the area of Poyang Lake experienced a decrease between 1984 

and 2011. This decrease was primarily attributed to the expansion of aquaculture ponds and 

flats within the basin. However, by 2021, the lake area showed signs of recovery. Regarding 

the DHB, significant shrinkage of the lake area occurred between 1984 and 2021. This 

shrinkage can be attributed to the expansion of the inland marsh and aquaculture pond within 

and around the lake. However, in contrast to Dongting Lake, Honghu Lake located in the 

northeast of the DHB exhibited continuous expansion over the study period, accompanied by 
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an increase in the aquaculture pond surrounding it.  

 

Figure 4.8: The wetland classification of a) 1984 b) 2001 c) 2010, and d) 2021 at the Poyang 

Lake Basin. 

 

 

Figure 4.9: The wetland classification of a) 1984, b) 2001, c) 2011, and d) 2021 at the 

Dongting Lake and Honghu Lake Basin. 
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Figure 4.10 represents the SR of the YRB. In this region, the inland marsh area exhibited 

continuous shrinkage and variable spatial distribution in the study period. In contrast, lakes 

and rivers in the source region maintain a relatively stable presence without significant 

variations because of the less vulnerability to climate change compared with the inland marsh. 

 

Figure 4.10: The wetland classification of a)1984, b)2001, c) 2011, and d) 2021 at the YRB 

source region. 

4.3.3 Seasonal variations of wetlands 

Figures 4.11 to 4.15 showcase the seasonal change of wetlands in the YRB estuary between 

1984 and 2021. Wetlands exhibit much more prominent seasonal variations in PLB, DHB, 

and SR compared to the estuary and TLB. All the wetland categories stayed in the relatively 

constant area from January to December in the estuary and TLB. In PLB, the lake area 

expands to 4128 km2 in July, which is 2538 km2 larger than that in winter. In contrast, tidal 

flats and inland marsh both shrink in summer months. A similar pattern is observed in the 

DHB, the lake area reaches the peak value in August, and the area of tidal flats keeps a low 

value during the wet months (from May to September). The area of inland marsh in DHB 

expands in April, November, and December but contracts in August and September. While 

unlike the constant value of aquaculture ponds in the PLB, the area of aquaculture ponds in 
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DHB reduces continuously from March to December, which means local aquaculture ponds 

are more affected by dry and wet seasons. The most significant seasonal change of wetlands 

occurring along the YRB is inland marshes in the source region, with the peak value in 

September and much lower values in winter months. These findings highlight the various 

seasonal dynamics of wetlands for different regions along the YRB, experiencing distinct 

patterns of expansion, shrinkage, and stability throughout the year. 

 

Figure 4.11: Long-term mean monthly areas of various wetland categories in the YRB estuary 

between 1984 and 2021. 
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Figure 4.12: Long-term mean monthly areas of various wetland categories in the Taihu Lake 

Basin between 1984 and 2021. 

 

 

Figure 4.13: Long-term mean monthly areas of various wetland categories in the Poyang Lake 

Basin between 1984 and 2021. 
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Figure 4.14: Long-term mean monthly areas of various wetland categories in the Dongting 

and Honghu Lake Basin between 1984 and 2021. 

 
Figure 4.15: Long-term mean monthly areas of various wetland categories in the YRB source 

region between 1984 and 2021. 
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4.3.4 Natural and human activity drivers’ division of wetland variations 

Table 4.5 summarizes the attribution of wetland categories with significant changes to natural 

and anthropogenic drivers in the Estuary, TLB, PLB, DHB, and SR of the YRB from 1984 to 

2021. In the estuary region, tidal flats experienced the most significant changes, shrinking by 

52 km2 and 47 km2 due to natural factors (sea-level rise) and human activities (urbanization 

and fish farming) in the Dongtan Natural Reserve and Yaowang Harbor, respectively. In the 

TLB, the development of fish farming led to the expansion of 2475 km2 of aquaculture ponds 

and the corresponding 655 km2 reduction of lake areas. Soil erosion and flooding caused the 

expansion of 479 km2 of inland marsh and 93 km2 of tidal flats in the PLB. Urbanization and 

fish farming are the main human activities in the PLB, resulting in a reduction of 32 km2 in 

lake area and an increase of 438 km2 in aquaculture ponds. The DHB exhibited a similar 

situation to the PLB, with the expansion of 159 km2 of inland marshes and 193 km2 of tidal 

flats attributed to natural driving forces; human activities led to a shrinkage of 678 km2 in lake 

areas and an expansion of 945 km2 in aquaculture ponds. The total area influenced by human 

activities in these three regions exceeds that affected by natural drivers. In the SR region, the 

shrinkage of 2284 km2 inland marshes was mainly attributed to changes in precipitation and 

temperature, with no significant wetland changes caused by human activities. Overall, human 

activities have a more dominant influence than natural factors on wetland changes in the YRB, 

although the exact influence varies in different regions of YRB. Human activities caused a 

total of 5270 km2 of wetland changes, while natural driving forces affected 3260 km2. 

Detailed analyses of each driving force and their impacts on the corresponding wetland 

categories are discussed in Section 4.4.1. 
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Table 4.5: Natural and human activity driving factors division of wetland categories with significant changes in the five representative regions of the YRB 

between 1984 and 2021. 

 Natural driving forces 
(Sea level rise, soil erosion, flooding, temperature and 

precipitation change) 

Human activities 
(Urbanization, fish farming, sand dredging) 

Estuary Region Tidal flats -52km2 
(Dongtan Natural Reserve of Chongming Island) 

Tidal flats -47km2 

(Yaowang Harbor) 

Taihu Lake Basin - Aquaculture ponds +2475km2 

Lake -655km2 

Poyang Lake Basin Inland marshes +479km2 

Tidal flats +93km2 

Lake -32km2 
Aquaculture pond +438km2 

Dongting Lake Basin Inland marshes +159km2 

Tidal flats +193km2 
Lake -678km2 

Aquaculture pond +945km2 

Source Region Inland marshes: -2284km2 - 
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4.4 Discussion 

4.4.1 Wetland variation drivers 

Urbanization is one of the most non-negligible factors of wetland variations in the YRB 

estuary (Mao et al., 2018). After 2000, the YRD, recognized as China's most economically 

advanced region, witnessed a noticeable reduction in marshes and tidal flats along its coastal 

areas (Mao et al., 2018). This phenomenon can be attributed to the rapid expansion of 

urbanized areas within the YRD (Mao et al., 2018). Urban build-up land was not the only type 

of urbanization that destroyed coastal wetlands, the expansion of industrial and transportation 

lands including roads and harbors indirectly caused the loss of coastal wetlands as well (Mao 

et al., 2018). The disappearance of tidal flats in the Yaowang Harbor between 2001-2021 in 

Figure 4.5 reflects this finding, the tidal flats shrank by nearly half, from 91km2 to 44km2. 

 

Sea level rise is another major driver for the long-term variations of coastal wetlands in the 

YRB estuary due to its low elevation across the estuary region. (Chen et al., 2018). Over the 

past three decades, both Jiangsu Province and Shanghai Municipality have witnessed a sea 

level rise (Chen et al., 2018). According to the SPRC 

(Source-Pathway-Receptor-Consequence) model, the vulnerability of coastal wetlands in the 

YRB estuary to sea level rise is expected to continue rising in the coming decade (Cui et al., 

2015). Furthermore, the construction of the Three Gorges Reservoir and the completion of the 

South to North Transfer projects have resulted in decreased sediment discharge into the YRB 

estuary, leading to a slower rate of sedimentation and subsequent reduction of coastal mud 

flats (Chen et al., 2018). Song and Wang (2014) discovered that the YRD and Dongtan 

Natural Reserve of Chongming Island both experienced an ‘erosion - deposition - erosion’ 

pattern in 1980-1990, 1991-2001, and 2002-2012 (Song and Wang, 2014). This pattern 

corresponds to the variations in tidal flats of the YRD and Dongtan Natural Reserve, as 

shown in Figure 4.5. The area of tidal flats increased from 264km2 to 357km2 in 1985 and 

2021 and then reduced to 130km2 in 2011. 
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The expansion of aquaculture pond areas in the TLB is mainly caused by the rapid 

development of aquaculture farming (Cai et al., 2013). This driving force resulted in the 

expansion of 2475 km2 of aquaculture ponds in the TLB, directly contributing to the overall 

increase in human-made wetlands within the YRB between 1984 and 2021. Wild capture 

fisheries reached the environmental carrying capacity limit in the 1990s, leading the Chinese 

government to encourage aquaculture production since then (Cai et al., 2013). The lakeside 

regions of the TLB and Yangcheng Lake are the key inland aquaculture pond regions due to 

their ideal geography. Consequently, a large number of cages were observed aggregating in 

the lakeside regions of the TLB (Cai et al., 2013). 

 

In 2007, following cyanobacteria blooms in Taihu Lake, the government began addressing the 

environmental issues associated with pond culture in lakes. As a result, more than half of the 

cages in Taihu Lake and Yangcheng Lake were cleared by 2008, and pond culture in lakes 

was subsequently banned (Cai et al., 2013). This is why there are almost no ponds in the 

southeast corner of Taihu Lake in 2021, and the area of ponds in the TLB decreased 

significantly after 2011, continuously reducing from a peak of 3225 km2 in 2011 to 2885 km2 

in 2021. Currently, the majority of aquaculture ponds in the TLB are concentrated to the north 

of Yangcheng Lake and have transitioned towards more intensive and standardized practices, 

moving away from the uncontrolled expansion as in the past (Duan et al., 2020). According to 

Liu et al. (2020), the area of Taihu Lake has increased from 1984 to 2018, with the eastern 

part of Taihu Lake being the main impact area. As shown in Figure 4.6, the southeast corner 

of TLB expanded in 2021 compared with that in 1984. However, this lake region is also 

affected by aquaculture pond coverage and degradation. Therefore, the lake area of TLB has 

experienced shrinkage from 1984 to 2021, decreasing from 2912km2 to 2257km2. 

 

For the wetlands of the PLB and DHB, the long-term annual variations are primarily driven 

by several factors, including increased soil erosion in the upper reaches of the YRB, flooding 

events, and human activities (Mei et al., 2016). Although precipitation from April to October 

between 2003 and 2012 was lower compared to that from 1960 to 2002 in the PLB, it does 
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not directly indicate that climate change is responsible for the changes in annual changes in 

wetland areas (Cui et al., 2013; Mei et al., 2016). Compared with precipitation, soil erosion in 

the upper reaches of the YRB and tributaries contains more significant implications on annual 

variations of wetland area in the YRB middle and lower reaches, especially for natural water 

bodies like Poyang and Dongting Lakes (Cui et al., 2013; Deng et al., 2019). Soil erosion can 

increase the sediment load in lakes, leading to a reduction in the lake area with the expansion 

of marshes and flats. In the PLB and DHB, both of marshes and flats areas expanded in the 

long-term time series. The area of inland marsh increased 479km2 in the PLB and 159km2 in 

the DHB from 1984 to 2021; tidal flats expanded 93 km2 and 193km2 in the PLB and DHB in 

the same time period, respectively. Some experts argue that the increase in soil erosion in the 

YRB was primarily attributed to human activities rather than climate change (Wei et al., 

2011).  

 

Human activities such as fish farming, urbanization along the lakeside, and sand dredging 

have contributed to the lake shrinkage of 32 km2 in PLB and 678 km2 in DHB, as well as the 

expansion of aquaculture ponds with 438 km2 and 945 km2 in the PLB and the DHB, 

respectively between 1984 and 2021 (as shown in Figures 4.7 and 4.8) (Cui et al., 2013; Mei 

et al., 2016; Xie et al., 2017). After 2015, fish farming and sand dredging started to be 

managed and banned by the government, respectively (Met et al., 2016). Consequently, this 

led to the reduction of 475 km2 of aquaculture pond area around Hong Lake (northeast of 

Dongting Lake) and the reduction of 406 km2 of aquaculture pond in the PLB in 2021 

compared with the largest area in 2015. Additionally, severe flooding occurred in the YRB in 

1998, 2008, and 2016, which brought impacts on water body changes in two aspects. Firstly, 

flooding increased the lake area and number; secondly, the large number of sediments in the 

lakes resulted in the shrinkage of lake water storage capacity and extracted water bodies by 

raising lakebed levels (Cui et al., 2013; Zhang et al., 2020). Flooding is a significant driving 

factor behind the seasonal wetland change in PLB and DHB, affecting floodplains and 

seasonal lakes (Li et al., 2019). Both PLB and DHB, with complex floodplains and 

interconnected seasonal lakes, were coupled with the main lake during the wet summer 
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months but became isolated in winter (Li et al., 2019). Meanwhile, the wetland area with 

plant coverage, such as inland marshes, is reduced during the flooding seasons. The area of 

inland marsh reached the lowest value in July (12 km2) and September (100 km2) of the PLB 

and DHB, respectively, as shown in Figures 4.12 and 4.13. 

 

The annual wetland degradation in the source region of the YRB is primarily indicated by the 

shrinkage of inland marsh, which reduced to 7333 km2 in 2021 from 9617 km2 in the 1980s. 

Climate change is identified as the main driving force behind this degradation due to the high 

vulnerability of wetlands in alpine areas to changes in temperature and precipitation (Xue et 

al., 2018). Previous studies have confirmed that both annual temperatures and precipitation 

have increased in the source region of the YRB, and future projections suggest that climate 

warming on the Qinghai-Tibetan Plateau will continue and potentially intensify in the future 

(Guo et al., 2016; Xue et al., 2018). Regarding seasonal changes in wetlands in the source 

region, rising temperatures during summer leads to a reduction in water levels of lakes, with 

the lowest lake area recorded at 1193 km2 in August. Simultaneously, plant coverage replaces 

snow coverage, explaining the observed expansion of inland marshes between May and 

September, with the highest value reaching 9919 km2 in September, as shown in Figure 4.14 

(Xue et al., 2018). 

4.4.2 Comparison with other wetland datasets 

In this study, the LTWCD_YRB was generated from continuous Landsat images collections 

with comprehensive wetland categories. Due to the absence of a dataset offering comparable 

wetland classifications and time series specifically for the YRB, the LTWCD_YRB was 

compared with the YRB wetland classification dataset from 2008, as well as several other 

datasets that cover different regions of the YRB and various years between 1987 and 2021 

(Table 4.6). 

 

The comparison between the LTWCD_YRB with the whole YRB wetland classification in 

2008 demonstrated almost the same natural wetland area (Yan et al., 2013). However, the 
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human-made wetland area appears smaller in the LTWCD_YRB because Yan et al. (2013) 

included paddy fields and artificial farms, which are not considered as part of the wetland 

categories in the LTWCD_YRB. Instead, the LTWCD_YRB has included aquaculture ponds 

rather than artificial farms. 

 

In terms of the wetland area in the YRB estuary, the total wetland area in 1980 and 2015 from 

Chen et al. (2018) is comparable to the corresponding years in the LTWCD_YRB. However, 

due to differences in the zoning of the YRB estuary boundaries, Chen et al. (2018) included 

more human-made wetlands in the TLB but fewer tidal flats along the coastal line. 

Consequently, Chen et al. (2018) reported a larger area of human-made wetlands, but fewer 

natural wetlands compared to the LTWCD_YRB. 

 

The wetland area in the YRB lower stream (LYRB) of LTWCD_YRB is compared with 

multiple datasets because few past datasets cover this region with completed wetland 

categories (Table 4.6). Lake and aquaculture ponds are the two representative wetland 

categories belonging to the natural and human-made wetlands in the LYRB, respectively. Cui 

et al (2013) demonstrated similar wetland area in 1990, 2000, and 2008 with the 

LTWCD_YRB and confirmed that the lake area in the LYRB decreased more rapidly from 

the period of 1990-2000 than that from 2000 to 2008 (Cui et al., 2013). For aquaculture ponds, 

the study region of the compared dataset focuses on Jiangsu province, which partially 

overlaps with the LYRB, as there is a lack of suitable aquaculture pond data specifically for 

the LYRB. And the continuous expansion of the aquaculture pond area from 1988 to 2018 

was confirmed. 

 

The trend of wetland changes in the YRB midstream (MYRB) from 2000 to 2019 (Liu et al., 

2022) is consistent with the LTWCD_YRB, which decreased until 2009, a rebound to the 

highest value in 2015, and finally reduced in 2019 (Liu et al., 2022) (Table 4.6). In the YRB 

source region, the total areas of wetlands and three main wetland categories (lake, river, and 

inland marsh) in the LTWCD_YRB closely align with the findings of Zhang et al. (2011). 
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Zoning differentiation of the research area is the main reason for the differences in wetland 

areas between the LTWCD_YRB and the compared datasets. 
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Table 4.6: Comparison of wetland areas between the LTWCD_YRB and other satellite datasets. 

Research 
report 

Research 
period 

Research 
region 

Data source Wetland area 

Natural Human-made Total 

Yan et al., 2013 2008 YRB Landsat 8 OLI, 

30m 

47,784 33,003 80,787 

LTWCD_YRB 1984-2021 YRB Landsat 5 TM,  

7 ETM, 8OLI, 

30m 

47,817 

(2008) 

10,384 

 (2008) 

 

58,201 

(2008) 

 

Chen et al., 2018 1980 

2015 

YRB 

Estuary 

 

Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

473 

411 

167 

699 

640 

1,110 

 

LTWCD_YRB 1984-2021 YRB 

Estuary 

Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

511(1984) 

712(2015) 

 

115(1984) 

302(2015) 

 

626 (1984) 

1,014 (2015) 

Cui et al., 2013 1990 

2000 

2008 

LYRB Landsat 5 TM,  

7 ETM, 30m 

5,716 (Lake) 

5,015 (Lake) 

4,946 (Lake) 

- 

- 

- 

- 

- 

- 

LTWCD_YRB 1984-2021 LYRB Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

5,657 (Lake 1990) 

5,035 (Lake 2000) 

4,929 (Lake 2008) 

- 

- 

- 

- 

- 

- 

Duan et al., 2020 1988 

1993 

1998 

2003 

Jiangsu 

Province 

Landsat 5 TM, 8 

OLI, TIRS, 30m 

- 

- 

- 

- 

660 (Aquaculture pond) 

1,121(Aquaculture pond) 

1,834(Aquaculture pond) 

3,005(Aquaculture pond) 

- 

- 

- 

- 
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2008 

2013 

2018 

- 

- 

- 

3,107(Aquaculture pond) 

3,853(Aquaculture pond) 

4,098(Aquaculture pond) 

- 

- 

- 

LTWCD_YRB 1984-2021 LYRB Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

- 

- 

- 

- 

- 

- 

- 

832 (1988) 

1,403 (1993) 

1,594 (1998) 

2,460 (2003) 

3,067 (2008) 

3,406 (2013) 

         3,776 (2018) 

- 

- 

- 

- 

- 

- 

- 

Liu et al., 2022 2000 

2006 

2009 

2015 

2019 

MYRB 

 

Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

10,335 

7,182 

7,231 

11,143 

8,290 

LTWCD_YRB 1984-2021 MYRB Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

11,191 (2000) 

10,427 (2006) 

10,027 (2009) 

12,804 (2015) 

12,057 (2019) 

Zhang et al., 

2011 

2000 YRB Source Landsat 5 TM, 

30m 

 

964 (lake) 

4,289 (River) 

5,192 (Inland marsh) 

- 

- 

- 

10,445 
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LTWCD_YRB 1984-2021 YRB Source Landsat 5 TM,  

7 ETM, 8 OLI,  

30m 

1,492(Lake 2000) 

3354(River 2000) 

5235(Inland marsh 2000) 

- 

- 

- 

10,081 

(2000) 



4.4.3 Advantages and limitations 

Researchers and policymakers can use the LTWCD_YRB to analyze both spatial and 

temporal changes for multiple wetland categories along the YRB based on different regions, 

seasons, and period of interest. Additionally, the wetland classification results can be used to 

assess the ecological and environmental impacts of natural and human activities such as 

climate change, urbanization, agriculture, aquaculture, and other driving forces on the YRB 

wetlands, supporting evidence-informed decision-making for sustainable wetland 

management. Moreover, the LTWCD_YRB can be instrumental in monitoring the 

implementation of wetland conservation policies and assessing their effectiveness. By 

comparing the wetland classification results with policy objectives, researchers, policymakers 

and stakeholders can determine whether conservation efforts are achieving the desired 

outcomes and make necessary adjustments. Furthermore, the seasonal change patterns of 

wetlands in different regions of the YRB can provide insights into the hydrological processes 

and ecological dynamics of the wetlands and inform water resource management strategies. 

Overall, the long-term time series of the wetland classification dataset is a valuable tool for 

researchers, policymakers, and stakeholders to better understand the YRB wetlands and 

support sustainable management practices. 

 

The validation process of the LTWCD_YRB dataset has several limitations. This study 

validated the wetland classification accuracy using an existing wetland dataset from Mao et al. 

(2020) rather than field-based ground truth data. As indicated in the literature review, the use 

of existing datasets as the indirect validation has become a common practice in the large-scale 

wetland classification research, because of the practical challenges to obtain the 

comprehensive field-based ground truth data for large-scale wetlands. However, it may 

impose uncertainties on the reliability and interpretation of the indirect validation process. 

Given that the CAS_Wetlands dataset only covers the year of 2015, the classification 

accuracy assessments for other years of the LTWCD_YRB may contain uncertainties. 

Besides, some small, narrow, and temporary wetlands may be underrepresented by the 

CAS_Wetlands. Thus, the validation dataset may fail to capture the wetland features that are 
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correctly identified by the classification, thus potentially leading to the biased accuracy 

assessment. 

 

Additionally, the classification accuracy of some human-made wetland categories (e.g., canals 

and aquaculture ponds) with small areas is relatively low. These categories can be challenging 

to accurately classify due to the difficulty in collecting precise samples from the Landsat 

imagery and the inherent size limitations of the samples. Improving the classification 

accuracy of small-scale human-made wetland categories would require more precise sampling 

techniques and potentially higher-resolution satellite imagery. This could involve ground truth 

data collection, field surveys, or utilizing other data sources such as high-resolution 

Unmanned Aerial Vehicles (UAV) imagery. Incorporating additional ancillary data and 

advanced classification algorithms could also help enhance the accuracy of these specific 

wetland classifications. 

4.5 Conclusions  

In this study, the LTWCD_YRB dataset was generated from continuous Landsat images with 

completed wetland categories, utilizing the RF machine learning method on the GEE platform. 

A thorough investigation of the LTWCD_YRB dataset yielded several significant findings: 1) 

The total wetland area of the YRB in 2021 was larger than that in 1984, with a consistent 

increase in human-made wetlands and fluctuating natural wetland areas. Anthropogenic 

driving forces have a greater impact on the expansion of wetland areas compared to natural 

driving forces; 2) The aquaculture pond was the wetland category that expanded the most in 

2021 compared with that in 1984 due to urbanization and fish industry development. Key 

regions affected include the YRB estuary, TLB, and DHB. Conversely, inland marsh was the 

category with the most fluctuations between 1984 and 2021, particularly in the YRB SR; 3) 

Seasonal changes in wetland areas were prominent in the PLB, DHB, and SR, driven by 

variations of floodplains and inland marsh vegetation coverage. The LTWCD_YRB 

demonstrated a consistent agreement of wetland area variations with the other satellite-based 

wetland datasets of the YRB. It would provide a valuable time series for evaluating historical 
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wetland changes, developing future wetland conservation strategies, and analyzing the 

interactions between natural and human-made driving forces in the YRB. 
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Chapter 5 Effects of long-term wetland variations on flood 

risk assessments in the Yangtze River Basin 

 

Highlights: 

l We analyze flood risks with long-term wetland effects by using the GIS-based model. 

l Wetland expansion leads to flood risk reduction in years with normal rainfall. 

l Causal relation analysis is a useful way to find dominant flood risk indicators. 

l Precipitation is the dominant indicator in all the five flood prone regions. 

l We give wetland-related suggestions for flood risk mitigation. 

 

This chapter is a reformed version of a manuscript published in the Environmental Impact 

Assessment Review, which is available at https://doi.org/10.1016/j.eiar.2025.108123. 

 

 

 

 

  

https://doi.org/10.1016/j.eiar.2025.108123
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5.1 Introduction 

In recent decades, global climate change has brought inevitable consequences, such as sea 

level rise, global warming, seasonal irregularities, droughts, and floods (Rajkhowa and Sarma, 

2021). Among these extreme events, floods have been responsible for 44% of global natural 

disasters (WMO, 2021). The annual deaths and economic losses caused by the floods reached 

1254 people and US$2.5 billion, respectively (Petit-Boix et al., 2017). From 1998 to 2017, 

floods have affected two billion people across the world (Wu et al., 2020). In the Yangtze 

River Basin (YRB) of China, flooding is the most frequent natural disaster with enormous 

socio-economic damages (Xia and Chen, 2020). The YRB has experienced a high proportion 

of flood occurrences, including seven massive floods since 1860. The disastrous flood in 1998 

led to heavy casualties, and ecological and economic losses (Zhang et al., 2020; Zhang et al., 

2023).  

According to the latest wetland classification system from Mao et al. (2020), wetlands  

include various categories, including Inland marsh, inland swamp, lake, river, tidal flats, 

reservoir, canal, and aquaculture pond. As a critical component in the hydrological cycle, the 

wetlands offer numerous ecological and economic advantages, including contributing to the 

global carbon cycle, purifying water, mitigating floods, boosting fish production, and 

sustaining biodiversity (Liang et al., 2020; Xing et al., 2015). Flood control is one of the most 

important ecosystem services of wetlands under climate change (Gulbin et al., 2019). 

Numerous cases of high flood-risk regions around the world have proved that wetland 

variations brought large implications on flood resilience, such as the northeast Haor region of 

Bangladesh, lakes in the middle and lower reaches of the YRB, and Rocuant-Andalién coastal 

wetlands of Chile (Cui et al., 2013; Kamal et al., 2018; Rojas et al., 2022). To reduce the 

negative results brought by flood disasters, the development of nature-based solutions 

regarding wetlands land use and land cover (LULC) in the long-term process has attracted 

increased awareness (Schanze 2017; Thorslund et al., 2017; Wu et al., 2022). The 

effectiveness of wetland-related solutions has been confirmed by several studies (Fournier et 

al., 2016; Qin et al., 2024; Van and Temmerman, 2019; Wu et al., 2020), including 
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developing river restoration projects like the riverside corridor restoration in European 

countries (Fournier et al., 2016), improving hydrological resilience to flood risk by wetlands 

protection and restoration of the Nenjiang River Basin in Northeast China (Van and 

Temmerman, 2019), protecting wetlands from transferring to built-up areas in the 

Guangdong-Hong Kong-Macao Greater Bay Area (Qin et al., 2024), and mitigating coastal 

floods by restoring and creating tidal wetlands in flood-exposed coastal cities around the 

world (Wu et al., 2020). 

The YRB covers 40% of the national wetland area in China with complex variations due to 

various driving forces (e.g., climate change, rapid urbanization along the Yangtze River 

Economic Belt, dam construction, and agricultural and livestock activities) (Finlayson et al., 

2018; Xu et al., 2019b; Zheng et al., 2020). According to the characteristics of wetlands, the 

influence on floods depends on the categories and locations of wetlands (Acreman and 

Holden, 2013). Although the YRB has abundant wetland resources, wetland-based flood risk 

mitigation approaches are less prevalent compared to structural approaches, such as 

large-scale water conservancy projects like the Three Gorges Dam (Jia et al., 2022). To align 

with the ecological civilization development goals outlined in the national strategy for the 

Great Yangtze River Protection Program (GYRPP) launched in 2016 (Sheng et al., 2022), it is 

valuable to develop wetland-based approaches to enhance flood resilience and protect wetland 

resources in the YRB. Analyzing the effects of long-term wetland variations on flood risk 

assessments in the YRB flood prone regions is the basis for policymakers to develop feasible 

wetland-based flood risk management practices. 

The area of middle and lower reaches of the YRB (MLYRB) is only half of the total YRB, 

but it contains the largest and one of the most abundant wetland ecosystems in China (Li et al., 

2014; Yu et al., 2009). Also, the MLYRB is more easily to suffer from large-scale floods (Jia 

et al., 2022). Hence, the selection of flood prone regions gives more focus on the MLYRB in 

this study. Taihu Lake, Poyang Lake, and Dongting Lake are all significant water bodies to 

accommodate floods in the YRB (Yu et al., 2009). However, soil erosion in the upper reaches 

and frequent human activities altered their wetland function to floods in the basins of these 
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water bodies (Ma et al., 2023). Hence, it is valuable to investigate the effects brought by 

wetlands on flood risks of the Taihu Lake Basin (TLB), Poyang Lake Basin (PLB), and 

Dongting and Honghu Lake Basin (DHB). The Wanjiang Plain (WP) is selected as a study 

area due to its extensive alluvial floodplain. It also features a dense cluster of small lakes on 

both sides of the Yangtze River. These characteristics distinguish the WP from other basins 

(Dong et al., 2022). The only flood prone region selected in the YRB upstream is the Sichuan 

Basin (SB). It has been confirmed with the highest flood risk in the province of Sichuan 

because of the complex landform, lower altitude compared with surrounding mountainous 

areas, large precipitation, and dense population (Guo et al., 2023; Liu et al., 2017). Hence, 

five major flood prone regions were selected for this study, including the TLB, WP, PLB, 

DHB, and SB. 

The World Meteorological Organization (WMO) defines risks as the potential loss of lives, 

property damages, disrupted economic activities, caused by a specific hazard within a given 

area and reference period (WMO, 1999). In recent years, flood risk has become increasingly 

complex due to emerging challenges associated with flood disasters. Flood risk factors are 

various because of different socio-economic conditions and ecological environments (Zhang 

et al., 2020). In this study, flood risk is defined based on the Intergovernmental Panel on 

Climate Change (IPCC) report, which encompasses hazards, systemic vulnerability, and 

exposure of human and natural systems (IPCC, 2014). Assessing the integrated flood risk 

with various flood risk indicators is the most effective way to evaluate and discuss the flood 

risk, as well as improving the public awareness of flood risk mitigations in the YRB (Wu et 

al., 2022; Zhang et al., 2020). There have been several studies for flood risk assessments 

covering the YRB: some of them focusing on typical lake basins like the PLB and DHB (Wu 

et al., 2022; Wang et al., 2011), some focusing on typical cities like Chongqing and Wuhan 

(Cai et al., 2021; Fang et al., 2019), Peng and Li (2021) and Zhang et al. (2020) both assess 

the flood risk for the entire YRB. For the study period of these flood risk assessments, most of 

them assess one or a few years, except Wu et al. (2022) that incorporates both short-term and 

long-term flood risk assessments. A number of methods have been applied for the flood risk 
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assessment, such as the historical disaster statistical method (Halgamuge and Nirmalathas, 

2017; Youssef et al., 2015), scenario simulation analysis for future flood risk predictions 

(Alfieri et al., 2015; Cai et al., 2021; Gangrade et al., 2019), index system method (Christie et 

al., 2018), Set Pair Analysis (SPA) combined with variable fuzzy sets (VFS) model (Su et al., 

2010; Zhang et al., 2011; Zou et al., 2013), machine learning method like the Artificial Neural 

Network (ANN) (Li et al., 2008), and the multi-criteria decision making GIS-based approach 

(Cai et al., 2021; Lyu et al., 2023; Peng et al., 2024; Zhang et al., 2020; Ziwei et al., 2023). 

 

Among various flood risk assessment methods, the multi-index GIS-based approach is widely 

used and recognized as an effective method for identifying flood risks. It offers advantages in 

analyzing the large-scale spatial data and comprehensively considering all aspects of flood 

risk indicators (Zhang et al., 2020). Cai et al. (2021) applied the multi-index GIS-based model 

with 11 indicators to assess the flood risk in Chongqing, in which the river density was 

considered as an exposure indicator. Similarly, Ziwei et al. (2023) and Zhang et al. (2020) 

used the river network density as an indicator to make the flood risk assessment in the Lijiang 

River Basin and the YRB. Peng et al. (2024) included the river distribution as an indicator in 

the model to assess flood risks in Beijing. In Lyu et al. (2023), the drainage condition was 

selected as a flood risk indicator in the multi-index GIS-based models to assess the flood risk 

in Lanzhou. Wetlands are abundant and encompass various categories in the YRB, their 

spatial dynamics lead to complex effects on the flood risks (Acreman and Holden, 2013). In 

previous studies, however, wetlands were not well represented in the flood risk assessment 

model and the river or drainage indicator is the only wetland category that has been included. 

Therefore, there is a research gap that exists in incorporating the wetland effects as a flood 

risk indicator into the multi-index GIS-based model.  

 

Through the literature review of flood risk assessment studies, no prior research has been 

found to adopt the comprehensive wetland data as a model input to assess the flood risk of all 

the flood prone regions in the YRB. As a result, investigating the spatial and temporal 

long-term wetland effects on flood risks in the YRB remains a significant research gap. 
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Therefore, the novelty of this study lies in analyzing the long-term annual wetland effects on 

flood risks from 1985 to 2021 in the YRB by using an improved multi-index GIS-based 

model that incorporating the wetland input. Moreover, this improved multi-index GIS-based 

model can be applied to assess the flood risk in flood prone regions of other basins worldwide 

with abundant wetland resources. To address this, this study incorporates the Long-Term 

Wetland Classification Dataset for the YRB (LTWCD_YRB) from Guo et al. (2024) as a 

flood risk indicator, to develop the long-term flood risk assessment with wetland implications. 

The research objectives of this study include: 1) To improve the flood risk assessment model 

by incorporating the effects of wetland variations, and to investigate how long-term wetland 

changes affect flood risk assessments in the YRB; 2) To examine the causal relationships 

among flood risk indicators and identify the dominant indicators for each flood prone region 

under wetland effects; 3) To provide useful suggestions for policymakers on the 

wetland-related flood risk management. 

5.2 Materials and methods 

5.2.1 Study area 

The YRB (Figure 5.1) is located between 24°27’ to 35° 54’ N and 93°33’ to 122°19’ E, 

covering 18.75% of China’s total area, with the area of 1.8 million km2 (Zhang et al., 2020). 

Wetlands in the YRB account for 40% of the national wetlands in China, with hundreds of 

tributaries and lakes (Cui et al., 2018; Xue et al., 2018). Under implications of topography, 

subtropical monsoon climate, and annual precipitation, the flood prone regions are unevenly 

distributed in the YRB (Zhang et al., 2020). 

 

The major flood prone regions are labelled in Figure 5.1, including the TLB, WP, PLB, DHB, 

and SB. The TLB is situated in the Yangtze River Delta, one of the most rapidly developing 

regions in China, and encompasses Taihu Lake, the third-largest freshwater lake in the 

country (Peng et al., 2018). The WP is located within the MLYRB, spanning 416 km of 

Yangtze River on the plain, with several lakes on both sides of Yangtze River (Dong et al., 

2022). The PLB and DHB are situated in the midstream of the YRB, encompassing the first 
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and second largest freshwater lakes in China respectively. These basins feature extensive 

floodplains that adjoin their main lakes (Li et al., 2019; Wang et al., 2022; Wu et al., 2022). 

The SB, located in the central-eastern part of Sichuan province and the upper reaches of the 

YRB, including numerous tributaries, is one of the most densely populated areas in China 

(Guo et al., 2023; Liu et al., 2017).  

 
Figure 5.1: The location, hydrographical and topographical information of the Yangtze River 

Basin and five flood prone regions.  

5.2.2 GIS-based spatial multi-index model 

This study used a GIS-based spatial multi-index model to assess the flood risk in the YRB. 

The model includes two parts: a multi-index system and an analysis procedure in ArcGIS.  

 

5.2.2.1 The multi-index flood risk system 

The multi-index system consists of the index layers including the hazard index (H), 

vulnerability index (V), and exposure index (E), with 13 flood risk indicators for representing 

these index layers, as described in Zhang et al. (2020). The weight of each indicator is 

evaluated by the Analytic Hierarchy Process (AHP) method, which was firstly proposed by 
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Saaty (1977). The AHP method is considered as the practical technique in the multi-index 

flood risk assessment, which produces rapid, reliable, and cost-effective performances by 

subdividing the flood risk into specific factors tailored to different zones (Cai et al., 2021; 

Roy et al., 2021a). It has been widely employed in flood risk assessments and successfully 

applied in a GIS environment to generate flood risk maps in the YRB in our research group 

(Zhang et al., 2020). Firstly, the flood risk assessment framework was established with a 

hierarchical structure based on the flood formation mechanism and relationships between 

indicators. As shown in Figure 5.2, the assessment structure is consisted with the object layer, 

the index layer, and the indicator layer. Secondly, the judgement matrix [aij] in Eq. (5.1) 

between each indicator was used to determine the relative importance of factor ai to factor aj 

from experts’ questionnaire (Zhang et al., 2020). 

𝑎𝑖𝑗 = ;

𝑎!! 𝑎!"… 𝑎!#
𝑎"! 𝑎""… 𝑎"#
⋮ ⋮		⋱			 ⋮

𝑎#! 𝑎#"⋯ 𝑎##

<                                               (5.1) 

Besides, the weight of each indicator in the matrix should meet the following condition, 

which means that the sum of weight from all the indicators should be 1. 

=
∑𝑎$% = 1
𝑎$% = 1/𝑎%$

( 𝑖, 𝑗 = 1, 2,⋯ , 𝑛)                                              (5.2) 

In this study, weights of all the indicators are divided into positive and negative. A positive 

weight means that this indicator can aggravative the flood risk, whereas negative weights 

would reduce the flood risk. The consistency check of the judgment matrix is the third step of 

the AHP. It can be calculated by Eq. (5.3): 

CR = &'
('

                                                                (5.3) 

CR is the consistency ratio, CI=(λmax -n)/(n-1) and λmax is the largest eigenvalue of the 

judgment matrix. RI is the average random consistency index. The test will be passed if CR is 

less than 0.1, otherwise the matrix needs to be reconstructed (Lyu et al., 2018). The weight of 
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each indicator is shown in Table 5.1.The relative importance of each index is obtained by 

adding weights of corresponding indicators. Thirdly, the YRB flood risk can be calculated by 

the following equation: 

 YRBFR = 	H ×W) + V ×W* + E ×W+                (5.4)                                

YRBFR is Yangtze River Basin Flood Risk; WH , WV , and WE  are the weights of hazard 

index, vulnerability index, and exposure index, respectively.  

 
Figure 5.2: The improved flood risk assessment model by incorporating the effects of wetland 

variations. 
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Table 5.1: Weights and data source of flood risk indicators of the improved flood risk assessment model 

Indicator layer Weight of the indicator layer Data source 

Cumulative average maximum 3-day 
precipitation 

+0.469 National Meteorological Information Center (China Surface Climate Data Day 
Value Data Set) (V3.0) 

Absolute elevation -0.053 Resource and Environment Data Cloud Platform 
Relative elevation -0.061 Calculated from absolute elevation data 
Wetland and drainage density +0.039 The Long-Term Wetland Classification Dataset for YRB (LTWCD_YRB) (Guo et 

al., 2024) 
Runoff and vegetation cover factor +0.041 Resource and Environment Data Cloud Platform (Liu et al., 2014) 

Local financial revenue -0.028 China City Statistical Yearbook (http://www.chinayearbooks.com) 

Per capita resident saving -0.025 China City Statistical Yearbook (http://www.chinayearbooks.com) 
Medical service level -0.027 China City Statistical Yearbook (http://www.chinayearbooks.com) 
Monitoring and early warning capability 
 
Population density 

-0.047 
 

+0.046 

National Meteorological Information Center (China Surface Climate Data Day 
Value Data Set) (National, 2019) 
Resource and Environment Data Cloud Platform (Xu, 2020) 

GDP per capita +0.066 Resource and Environment Data Cloud Platform (Liu et al., 2005) 

Soil erosion degree +0.068 
           

Resource and Environment Data Cloud Platform (Wang et al., 2016) 

Site contamination risk                                        +0.030                 Resource and Environment Data Cloud Platform (Liu et al., 2014) 
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The selection of flood risk indicators is referred from Zhang et al. (2020) due to the same 

study region of the YRB, considering the principles of objectivity, operability, and easy 

spatialization, which has been theoretically based on their relevance to the past floods in the 

literature. Flood risks were assessed based on the following two model scenarios: one is 

through the general flood risk model from Zhang et al. (2020) generated with the flood risk 

indicators in the YRB, and the other is the improved flood risk assessment by incorporating 

the effects of wetland variations. In the improved YRBFR scenario as shown in Figure 5.2, 

the drainage density in the vulnerability layer was replaced by the wetland and drainage 

density derived from the LTWCD_YRB data. In the original YRBFR, drainage density is 

defined as the density of main and tributary streams. The improved indicator derived from 

LTWCD_YRB covers comprehensive wetland categories with river networks in the YRB. 

The total area difference for each level of flood risks between these two models (ΔFR) could 

explain how long-term wetland variations would affect flood risks. The uncertainty resulting 

from the indicator replacement is discussed in Section 5.4.1. 

 

5.2.2.2 GIS analysis procedures 

5.2.2.2.1 Data collection and processing 

All the indicators’ data collected has been rasterized before being input into the model, to 

reflect further details of the flood risk spatial distribution. The primary data sources of flood 

risk indicators are shown in Table 5.1. ArcGIS has been used to extract required elements 

from the collected real geographic and socio-economic data. All conversion processes and 

data processing of each index were completed in ArcGIS.  

 

Hazard Index 

Flood hazard is directly related with precipitation intensity, which associated with both of 

frequency and amount of precipitation. Hence, the maximum precipitation for cumulative 

three days of each year from 1985 to 2021 in the YRB is selected as the hazard indicator. The 

point data from the daily meteorological dataset of China National Surface Weather Station 

(V3.0) can be converted to raster data by using the Kriging interpolation method (Zhang et al., 
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2020) in the ArcGIS. 

 

Vulnerability Index 

For vulnerability, we choose absolute elevation, relative elevation, wetland density, runoff 

and vegetation cover factor, local financial revenue, per capita resident saving, medical 

service level, and monitoring capability as assessment indicators. Absolute and relative 

elevation indicate the height and slope, respectively, which are topographic impacts on 

flooding. The standard deviation of 25 grid elevations around the centre grid was calculated 

as the terrain change, then obtaining the terrain standard difference level map by using the 

Focal Statistics tool. The wetland density refers to the ratio of wetland area and drainage area 

to the basin area. Runoff and vegetation cover factor is the velocity coefficient of the land. 

This study assigns values to the vegetation cover factor for each LULC class based on the 

LULC classification map, creating a new vegetation cover factor map. The local financial 

revenue, per capita resident savings, and medical service level indicators reflect the 

self-rescue ability of communities and residents facing the flood disaster. These data are 

rasterized to each grid by connecting with the vector data at the city level. Monitoring and 

early warning capability is defined as the hydrometeorological station density in this study, 

with the purpose to prevent and reduce disaster losses in advance. 

 

Exposure Index 

The exposure aspect contains population density, GDP per capita, soil erosion degree, and site 

contamination risk. The influence of flood risk on people and constructions is examined by 

population density and GDP. Soil types affect flood risk formation, the severe soil erosion can 

aggravate flood disasters. Site contamination risk determines the polluted level of lands and 

waterbodies after floods. Similarly to the vegetation cover factor, the site contamination map 

is generated from the LULC data through value reassignment. 

 

5.2.2.2.2 Data normalization and classification 

In this analysis, 13 flood risk indicators for the YRB are expressed in different units. In this 
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case, data normalization is necessary to enable comparison. The normalization shown in 

equation (5.5) as below: 

i,- =
,!"#$!%.,&'(
,&!).,&'(

                                                                (5.5) 

The data normalization has been done by the Raster Data Calculator tool in ArcGIS. The 

value after normalization is between 0 to 1. When the value is closer to 1, the flood risk is 

higher. 

 

The integrated flood risk is classified into 5 levels: Very low, low, medium, high, and very 

high by using the ‘classified tool’ in the Layer Properties of ArcGIS. With the purpose to 

make the comparison of the flood risk spatial distribution with and without wetlands, the 

classification interval standard of the integrated flood risk with and without wetland density 

should keep consistently. Hence, the classification interval of flood risk assessment results 

with and without wetlands need to be adjusted manually in the ArcGIS. With the reasonable 

standard by considering both years with the minimum and maximum flooding, levels of flood 

risk are defined as very low (0-0.09), low (0.09-0.17), medium (0.17-0.25), high (0.25-0.35), 

and very high (0.35-1.0). 

5.2.3 Causal relationship based on the PCMCI algorithm 

Causal inference plays the significant role to address many open problems with relevant 

environmental, social and economic implications, which are inherently causal (Runge et al., 

2023). This study utilizes the PCMCI algorithm (Runge et al., 2019b), which is based on the 

Python package called TIGRAMITE (Runge et al., 2019b) to detect the strength of the causal 

relationship between the ΔFR and flood risk indicators in the 36-year time series. PCMCI has 

been applied in detecting the time-lagged causal discovery from observational discrete or 

continuous time series data like the climate change data and producing high-quality result 

graphs (Runge, 2018). PCMCI is a two-step approach that combines the PC algorithm (named 

after its inventors Peter and Clark) and the Momentary Conditional Independence (MCI) test, 

to assess the causal structure and to accommodate nonlinear functional dependencies of 

discrete or continuous variables (Krich et al., 2020; Runge, 2018). The first step is PC 
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algorithm, which is established to identify pseudo-links between variables 𝑋/
% ∈ {𝑋/!, . . . , 𝑋/0} 

and their respective sets of causal parent nodes 𝓅̂(X1
%) (Runge et al., 2019b). In this study, 

𝑋/
% represents all the variables including ΔFR and flood risk indicators. 𝓅̂(X1

%) means the 

causal parents (lagged adjacency) for variables. After three interactions, PC algorithm 

adaptively converges to relevant conditions that include the causal parents with the high 

probability. The second step is the MCI test, to test whether there’s a relationship of Eq.(5.6) 

between time-shifted parents of X1.2,  and the parents of X1
% (Runge et al., 2019b).  

MCI: X1.2, ⫫̸ X1
- 	|𝓅̂(X1

-)\_X1.2, `, 𝓅̂(X1.2, )                                       (5.6) 

The MCI test is the most significant difference between the original PC algorithm and 

PCMCI. The additional conditions on the parents 𝓅̂(X1.2, )	in MCI leading to autocorrelations, 

so that controlling false positive rates at the expected level (Runge, 2018; Runge et al., 

2019b). While detecting the causal network structure is the main goal of PCMCI, the MCI test 

can provide a well-interpretable notion of a normalized causal strength (Runge et al., 2019b). 

Hence, the causal link strength in the PCMCI framework is given by the partial correlation 

value (ParCorr) of the MCI test, which is between -1 and 1 (Krich et al., 2020). 

5.3 Results 

5.3.1 Comparison of flood risk assessments between two model scenarios 

The flood risk assessments based on the improved model incorporating the wetland indicator 

produced reasonable results when compared with those from the flood risk assessment model 

without the wetland indicator. Figures 5.3 to 5.7 present the comparisons of flood risk spatial 

distribution between those two models in the selected years, while the corresponding area 

changes are detailed in Tables 5.2 to 5.6. 

 

5.3.1.1 Taihu Lake Basin 

Figures 5.3a, 5.3b and Table 5.2 demonstrate the area with the very high flood risk level 

expanded 819 km2 with wetland effects in the eastern TLB in 1991, which was the year with 
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the highest flood risk. The TLB was confirmed to experience the large flood disaster caused 

by the heavy precipitation in 1991, filling up inlets and outlet channels and lakes, as well as 

lake reclamation (Sun and Mao, 2008). As a result, the combination of high precipitation and 

small wetland areas diminished water storage capacity, contributing to the higher flood risk in 

1991. In 2005, the overall flood risk level in the TLB was much lower than that in 1991 and 

the highest level is medium (Figures 5.3c, 5.3d and Table 5.2). Comparing Figure 5.3d with 

Figure 5.3c, the medium-level flood risk shrank the area of 771 km2 after adding the effects of 

wetlands around Yangcheng Lake and north of Taihu Lake in 2005. At the same time, the 

area of very low flood risk expanded 321 km2 with wetland impacts, mainly concentrated in 

the southeast corner and southern region of the TLB. The differences in flood risk with 

wetland effects between these years are primarily attributed to the significant increase in 

wetland area in 2005, reached 5,168 km2 (Guo et al., 2024), due to the expansion of 

aquaculture ponds around Taihu Lake and Yangcheng Lake (Figures 5.8a and 5.8b). The local 

government started to encourage aquaculture production in these regions due to their ideal 

geography since 1990s, and reached the peak after 2000 (Cai et al., 2013; Liu and Zhang, 

2017). Consequently, the area of aquaculture pond was much larger in 2005, thus playing the 

important role as a sink to reduce the flood risk.  

 
Figure 5.3: Flood risk spatial distribution maps in a) 1991 and c) 2005 without wetlands; b) 
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1991 and d) 2005 with wetland effects of the Taihu Lake Basin. 

 
Table 5.2: The flood risk assessment area (km2) in 1991 and 2005 of the Taihu Lake Basin. 

 

5.3.1.2 Wanjiang Plain 

The comparison between flood risk results of two models in the WP in 2003 and 2010 are 

demonstrated in Table 5.3 and Figure 5.4. It showcases that the very high flood risk area 

expanded 6,069 km2 with wetland effects in the year of 2003 with the high precipitation, 

mainly around Chaohu Lake; the high flood risk region expanded in the central area of the 

WP with an area of 577 km2 in 2003. The Chaohu Lake Basin is a flood prone area located in 

the central part of Anhui Province, the area around Chaohu Lake contains typically low flood 

disaster resilience because of the low-lying terrain (Sun et al., 2016). In Figures 5.4c and 5.4d, 

the spatial distribution of very-high flood-risk areas demonstrates the significant shrinkage 

from 16,027 km2 to 15,194 km2 in the southwestern part of the Chaohu Lake Basin with 

wetlands implications in 2010, which is the area with the relatively higher flood disaster 

resilience than other regions when the local precipitation reduced (Sun et al., 2016). However, 

because of the weak flood disaster resilience around Chaohu Lake, the high flood risk area 

still expanded with the wetland effects in 2010. Although the central WP is vulnerable to 

flood risk because of the low-lying terrain, its isolated lakes have been shown to act as natural 

sinks, storing stormwater under normal conditions (Acreman and Holden, 2013). However, 

the agricultural development in the WP, especially around Chaohu Lake since the 1970s, led 

to significant wetland reclamation, shrinking lakes and tidal flats, and converting them into 

farmland (Dong et al., 2022). Between 2000 and 2010, approximately 58 km² of lakes were 

 1991 1991 with wetland 
effects 

2005 2005 with wetland effects 

Very low 0 0 10778 11099 

Low 0 0 14249 14699 

Medium 7126 7049 1114 343 

High 16457 15715 0 0 

Very high 2375 3194 0 0 
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converted to farmland and construction land (Dong et al., 2022). Consequently, the ability to 

capture and hold rainfall became weak in the floodplain, thus promoting the high flood risk 

surrounding Chaohu Lake (Acreman and Holden, 2013). Comparing wetland distribution in 

2003 and 2010 (Figures 5.8c and 5.8d), the expansion of aquaculture ponds in the eastern 

corner and central WP near the Yangtze River in 2010 contributed to the increased very low 

flood risk area in the eastern corner and the reduced high flood risk area in the WP central 

region near the Yangtze River in Figures 5.4c and 5.4d. 

 

Figure 5.4: Flood risk spatial distribution maps in a) 2003 and c) 2010 without wetlands; b) 

2003 and d) 2010 with wetland effects of the Wanjiang Plain. 

 
Table 5.3: The flood risk assessment area (km2) in 2003 and 2010 of the Wanjiang Plain. 

 2003 2003 with wetland 
effects 

2010 2010 with wetland effects 

Very low 0 0 2158 2265 

Low 0 0 9723 9916 

Medium 16049 10557 5364 5320 

High 15664 15087 8890 9467 

Very high 9510 15579 16027 15194 
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5.3.1.3 Poyang Lake Basin 

PLB experienced severe flooding in 1994, more than half of the PLB (26,308 km2 and 29,093 

km2 out of 54,618 km2 in Table 5.4) was covered by the very high flood risk level spreading 

outward from Poyang Lake as the centre (Figures 5.5a and 5.5b). The year of 1994 is an 

extremely wet year with the very large precipitation, thus coupling all the wetlands to become 

floodplains. The interconnected seasonal lakes surrounding Poyang Lake, which typically 

retain water, contributed to this increased flood risk due to their lower water storage capacity 

compared to permanent lakes (Li et al., 2019). Although lakes generally play a critical role in 

stormwater storage and control in the PLB, the limited capacity of seasonal lakes led to a 

2,585 km² expansion in the very high flood risk area in 1994 under heavy precipitation 

conditions (Li et al., 2019; Shankman et al., 2009). In contrast, comparing Figures 5.6d and 

5.6c, the area of very high flood risk decreased by 1,642 km² in 2006 after accounting for 

wetlands. This reduction was primarily observed in the southwestern region of the PLB, 

where the expansion of water bodies (Figure 5.8f) increased flooding water storage capacity. 

Wu et al. (2022) confirmed that the areas with consistently very-high flood risk are 

concentrated near Poyang Lake and Ganjiang River (southwest of Poyang Lake), aligning 

with the spatial flood risk distributions as shown in Figure 5.5 both models. 

 
Figure 5.5: Flood risk spatial distribution maps in a)1994 and c) 2006 without wetlands; b) 
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1994 and d) 2006 with wetland effects of the Poyang Lake Basin. 

 
Table 5.4: The flood risk assessment area (km2) in 1994 and 2006 of the Poyang Lake Basin. 

 

5.3.1.4 Dongting and Honghu Lake Basin 

In a similar situation to the PLB, the highest flood risk regions in the DHB distribute around 

Dongting Lake as the center, and generally locate near rivers and lakes, has been confirmed 

by results of the GIS-based flood risk assessment in DHB from Wang et al. (2011). In 1998, 

Figure 6a demonstrates that the highest flood risk area is generally distributed in the 

north-eastern, and south-western corner of the DHB, as well as the south of Dongting Lake. 

The very high flood risk area decreased to the high flood risk level with wetlands implications 

in the southern region of Dongting Lake in Figure 5.6b. Table 5.6 supports this finding, 

showing a reduction of 587 km² in very high flood risk areas, alongside an increase of 610 

km² in high flood risk areas in 1998 due to wetland effects. In 2009, Figures 5.6c, 5.6d, and 

Table 5.5 illustrate a significant expansion of high flood risk areas in the northeastern corner 

of the DHB around Dongting Lake, increasing by 6,898 km², with 65 km² transitioning to 

very high flood risk levels with wetlands input. As one of the most eco-areas, Dongting Lake 

plays a similar role in flood storage as Poyang Lake (Wang et al., 2011). Hence, The larger 

size of Dongting Lake in 1998 (Figure 5.8g) compared to 2009 (Figure 5.8h) contributed to 

more effective flood risk mitigation. Besides the large expansion of high flood risk area after 

adding wetlands in the DHB, the small area of very high flood risk observed in 2009 (Figure 

6d) corresponds to regions of lake shrinkage and aquaculture pond expansion around Honghu 

Lake, northeast of Dongting Lake (Figure 5.8h). This suggests that the aquaculture ponds 

 1994 1994 with wetland 
effects 

2006 2006 with wetland effects 

Very low 0 0 22 22 

Low 0 0 2824 3437 

Medium 12969 12469 15938 15763 

High 15341 13056 20492 21696 

Very high 26308 29093 15675 14033 
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around Honghu Lake could not compensate for the lost flood storage capacity caused by lake 

shrinkage. 

 
Figure 5.6: Flood risk spatial distribution maps in a) 1998 and c) 2009 without wetlands; 

b)1998 and d) 2009 with wetland effects of the Dongting and Honghu Lake Basin.  

 
Table 5.5: The flood risk assessment area (km2) in 1998 and 2009 of the Dongting and Honghu 

Lake Basin. 

 

5.3.1.5 Sichuan Basin 

Compared with other regions, the impact on the flood risk area distribution brought by 

wetlands is relatively smaller in the SB, mainly because of the much smaller area of wetlands 

 1998 1998 with wetland 
effects 

2009 2009 with wetland effects 

Very low 0 0 0 0 

Low 1262 1318 5810 4482 

Medium 27048 26969 49808 44173 

High 26808 27418 7268 14166 

Very high 7572 6985 0 65 
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in this region. According to Figure 5.7 and Table 5.6, the high flood risk level area reduced 

780 km2 but expanded 195 km2 in the centre of the SB after adding wetlands in 1998 and 

2020, respectively. Besides, the very high flood risk level experienced a slight expansion with 

an area of 78 km2 due to wetland effects in 2020. The wetland area in SB is limited, and the 

main wetland category is river, which restricts its capacity to function as a stormwater sink 

(Acreman and Holden 2013; Fu et al., 2013). Hence, downstream in the main rivers and river 

confluences of the SB, usually suffers serious flooding (Fu et al., 2013). At the same time, the 

shrinkage of wetlands in 1998 and their expansion in 2020 in the central SB resulted in a 

decrease in high flood risk in 1998 and an increase in 2020. Inland swamp is another major 

wetland category distributed in the YRB upstream (Fu et al., 2013). Figures 5.8i and 5.8j 

show that inland swamps are generally distributed in the western part of SB, which is close to 

the YRB source region. Although inland swamps contain limited impacts on the reduction of 

floods in the SB, the flood regulation and storage function of inland swamps are embodied in 

the upstream floods and slow down flood peak advance (Fu et al., 2013). This process reduces 

flood hazards downstream, which may explain some of the flood risk reduction associated 

with wetland effects in the SB (Fu et al., 2013). 

 

Figure 5.7: Flood risk spatial distribution maps in a) 1998 and c) 2020 without wetlands; b) 

1998 and d) 2020 with wetland effects of the Sichuan Basin.  
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Table 5.6: The flood risk assessment area (km2) in 1998 and 2020 of the Sichuan Basin. 

 

 

Figure 5.8: Spatial distribution maps of wetland categories in corresponding years of the 

Taihu Lake Basin: a) 1991 and b) 2005; Wanjiang Plain: c) 2003 and d) 2010; Poyang Lake 

Basin: e) 1994 and f) 2006; Dongting and Honghu Lake Basin: g) 1998 and h) 2009; Sichuan 

Basin: i)1998 and j) 2020. 

5.3.2 Annual flood risk variations with wetland effects 

Figures 5.9 demonstrates the ΔFR of each flood risk level from 1985 to 2021 in the five flood 

prone regions, derived from the improved flood risk assessment model. It also includes the 

 1998 1998 with wetland 
effects 

2020 2020 with wetland effects 

Very low 0 0 4238 4259 

Low 1448 1229 11545 11437 

Medium 79172 80171 39370 39305 

High 14226 13446 28927 29122 

Very high 0 0 10723 10680 



 104 

 
 
 
 
 

corresponding wetland area from the LTWCD_YRB dataset (Guo et al., 2024) and the 

cumulative maximum three-day precipitation. 

 

The wetland area in the TLB exhibited a growing trend, reaching its peak in 2005. Prior to 

this peak, the relatively limited wetland area contributed to a reduction in low and very low 

flood risk areas, while simultaneously increasing the extent of high and very high flood risk 

areas, particularly for the years with high precipitation. For instance, in 1991 and 1998, high 

precipitation coupled with insufficient wetland area resulted in an increase of very high and 

high flood risk areas by 2.2% and 4.3%, respectively. Conversely, the very low flood risk area 

experienced a significant decline, with a reduction of 14.3% in 1998. When the wetland area 

expanded to the maximum value in 2005, both the very low and low flood risk areas increased 

1.3% and 0.6%, respectively. Notably, the very high and high ΔFR areas were zero, indicating 

that sufficiently large wetland areas will not affect the high and very high flood risk zones 

when the precipitation level is low. In years with both relatively large wetland areas and high 

precipitation, such as 2015 and 2019, the very high and high flood risk areas under wetland 

effects reduced 2.9% and 3.4%, respectively. This demonstrates the significant role of 

expanded wetlands, particularly aquaculture ponds and lakes, in stormwater storage and flood 

risk mitigation. 

 

In the WP, the wetland area increased continuously with fluctuations between 1985 and 2021. 

The area of each flood risk level showed the minimal variation under wetland effects before 

1998 due to the relatively low precipitation. In this period, the notable ΔFR occurred in 1991, 

1996, and 1998. The shrinkage of wetland area and the increase of precipitation caused the 

decrease of 1.1% low flood risk area in 1991 and the increase of 0.8% very high flood risk 

area in 1996, while the high flood risk area expanded 5.8% in 1998. Afterwards, the ΔFR for 

the very high flood risk area peaked at 14.7%, driven by wetland shrinkage. Concurrently, the 

medium flood risk area decreased 13.3% in 2003 with wetland effects, while no ΔFR was 

observed for low and very low flood risk levels due to extremely high precipitation. After 

2005, the wetland area started to increase continuously, mitigating the flood risk. Typical 
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years with the large wetland area include 2013, 2016, 2017, and 2020. The ΔFR area for the 

very high level decreased 2.6%, 2.9% and 0.3% in 2013, 2017, and 2020, respectively. The 

area of very low and low ΔFR increased 7.2% and 1.5% in 2013 and 2017, respectively. 

Despite the large wetland area, the very high ΔFR area in 2006 increased 0.4% under the high 

precipitation. It means that wetlands in the WP lose the flood storage capacity under extreme 

precipitation conditions. 

Wetlands in the PLB fluctuated throughout the period from 1985 to 2021, peaked in 1998, the 

year marked by the extreme precipitation and severe flood disaster. Similar to the condition in 

the WP, wetlands in the PLB transformed into floodplains during this extremely rainy year, 

losing their capacity to store stormwater despite the large wetland area. In other years, 

wetlands in the PLB generally play an important role in mitigating flood risks. For example, 

when the precipitation decreased in 1999 and 2016, the large wetland area contributed 

reductions in very high ΔFR areas by 6.3% and 4.3%, respectively. Meanwhile, it led to a 0.1% 

increase in very low ΔFR areas in 1999 and an 8.7% increase in low ΔFR areas in 2016. 

Oppositely, in years with the relatively smaller wetland area, such as 1994, 1995, and 2011, 

wetlands contributed to expansions of the very high ΔFR area by 5.1%, 4.5%, and 0.6%, 

respectively.  

The variation of high and very high flood risk area caused by wetlands in the DHB primarily 

occurred during the following two periods with high precipitation: 1996-1998, 2007-2021. In 

the rest of years, the high and very high ΔFR kept zero, indicating that changes in wetland 

areas did not affect these flood risk levels. Similar to wetlands in the TLB, WP, and PLB, 

wetlands in the DHB generally served as flood water storage, mitigating flood risks. Wetlands 

expansion in 1998 and 2015 reduced the very high and high flood risk area by 0.9% and 0.5%, 

respectively, while increasing low flood risk areas by 0.09% in 1998 and 0.24% in 2015. 

Conversely, the largest increase in very high ΔFR (2.2%) occurred in 2011, a year with the 

high precipitation but relatively small wetland areas. 

Figure 5.9e shows that both the wetland area and its variation in the SB remained small from 



 106 

 
 
 
 
 

1985 to 2021. When the wetland areas expanded, the high and very high ΔFR increased as 

well. For instance, the wetland expansion in 1996 and 2020 led to a 0.4% increase in the very 

high flood risk area and a 0.3% increase in the high flood risk area, respectively. Unlike the 

other four flood-prone regions, which contain numerous lakes and ponds, river is the main 

wetland category covering most areas of the SB (Figures 8i and 8j). Therefore, due to the 

smaller water storage capacity of rivers and their lower elevation in the SB, the expansion of 

river areas driven by the large precipitation in the upstream, resulted in the increased flood 

risk under the wetland effects in the downstream areas and river confluences of the SB (Fu et 

al., 2013). Conversely, the wetland reduction in 1998 and 2011 decreased the high flood risk 

area by 1.4% and 0.4%, respectively. Comparing 1998 and 2011, wetland areas were 

similarly low, but the higher precipitation in 1998 made the high flood risk area be more 

sensitive to wetland effects than in 2011. Additionally, the low and very low flood risk areas 

showed greater variations in 2011 compared to 1998.
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Figure 5.9: Annual ΔFR of very low, low, medium, high, very high food risk levels, the corresponding wetland area and the cumulative maximum three-day 

precipitation in the a) Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu Lake Basin; and e) Sichuan Basin from 1985 to 

2021. 
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5.3.3 Causal relationships between each flood risk indicator and ΔFR 

The causal relationship between the indicators and ΔFR of all five levels are examined based 

on the PCMCI algorithm. Their causal relation strength are numbers on the arrow. The results 

of ΔFRlow and ΔFRmedium are demonstrated in Appendices 5.1 and 5.2, respectively. Indicators 

that contain the causal relationship with ΔFR low and ΔFRmedium are very limited. Additionally, 

p-values for the causal relation results of ΔFR low and ΔFRmedium are all higher than 0.05 

throughout the statistical significance test (one side t-test), indicating the lack of the statistical 

significance. Hence, this study focuses on causal relation results of dominant flood risk 

indicators with ΔFRvery low, ΔFRhigh, and ΔFRvery high, with values equal to or greater than 0.44 

(Figures 5.10-5.12). The corresponding p-values of them are lower than 0.05, confirming their 

statistical significance. Among all the indicators, cumulative maximum three-day 

precipitation (PR) is the only indicator that has the causal relationship with one of ΔFR levels 

(ΔFRhigh) in all the five flood-prone regions. 

 
Figure 5.10: The causal relationships between the ΔFRvery low and indicators in the a) Taihu 

Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; and d) Dongting and Honghu Lake 

Basin. No indicator exhibits a causal relationship with ΔFRvery low in the Sichuan Basin. 
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Figure 5.11: The causal relationships between the ΔFRhigh and flood risk indicators in the 

a)Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu 

Lake Basin; and e) Sichuan Basin. 
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Figure 5.12: The causal relationships between the ΔFRvery high and flood risk indicators in the a) 

Taihu Lake Basin; b) Wanjiang Plain; c) Poyang Lake Basin; d) Dongting and Honghu Lake 

Basin; and e) Sichuan Basin. 

 

In the TLB, population density (PD), GDP per capita (GDP), and PR display dominant causal 

relationships with ΔFRvery low (0.48), ΔFRhigh (0.44) and ΔFRvery high (0.56), respectively. 

Among these indicators, the strength of the causal relation between PR and ΔFRvery high is the 

largest, with the highest statistical significance (the lowest p-value 1.9×10−11), which means 

PR is the most significant ΔFR indicator in the TLB. The TLB is a region with the large area 

of wetlands and the extreme precipitation in rainy seasons caused by the subtropical monsoon 

climate, which makes the flood risk to be typically sensitive to precipitation (Liang et al., 

2011). In addition, the TLB is the most economically developed region in the YRB, 

characterized by the rapid urbanization, the large PD, and the high GDP (Sun et al., 2023; Xu 

and Chen, 2023). As key flood exposure indicators, the high GDP and the large PD have 

driven rapid industrialization and urbanization, which have significantly increased pressure on 

flood risk (Sun et al., 2023; Xu and Chen, 2023). Consequently, it is reasonable that PD and 

GDP are dominant indicators of the ΔFRvery low and ΔFRhigh in the TLB. 

 
In the WP, RU is the indicator with the dominant causal relation with ΔFRvery low (0.44), 

ΔFRhigh (0.54) and ΔFRvery high (0.55). Due to the large-scale wetland reclamation for the 

cultivation and urban construction in the WP, the local LULC has converted forestlands and 

shrubs to urban lands with the less vegetation coverage and the higher RU (Dong et al., 2022). 

Because of the special terrain in the WP, wetlands are concentrated along streams and the 

Yangtze River in the WP (Dong et al., 2022). As a result, the higher RU in this region more 

readily increases the water level of the Yangtze River compared to other areas, thereby 

exacerbating the flood risk.  

 

In the PLB, PR is the only dominant causal indicator, it shows the strength of causal relation 

of 0.7 with the ΔFRvery high. Hence, precipitation is the dominant flood risk indicator in the 

PLB, primarily due to the extreme annual precipitation driven by both of south-east and 
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south-west monsoons, as well as the more extensive floodplains compared to other regions 

(Liu et al., 2021; Wu et al., 2022). 

 

In the DHB, population density (PD) is the only indicator that has the causal relation with 

ΔFRhigh, and it is most important factor that affects ΔFRvery high (with the causal strength of 

0.53). In recent years, urbanization has accelerated significantly in the DHB, the urbanization 

rate reached 54.8% in 2019 (Xiong et al., 2022). The hotspots cities are mainly located in the 

flood prone regions of the DHB around Dongting Lake (Xiong et al., 2022). As a result, the 

large PD in this region will typically cause the high and very high flood risk.  

 

Similarly, PD in the SB is the dominant factor as well, the causal relationship with ΔFRhigh is 

0.54. The SB is one of the most densely populated regions in China (Liu et al., 2017). Human 

activities are concentrated in the east-central low mountain area, which has been the densely 

populated area throughout the history of China and also a high flood risk zone (Liu et al., 

2017). The relative study has confirmed the strong correlation between human activities and 

floods in the SB (Liu et al., 2017). 

 

Precipitation, runoff and vegetation cover factor, GDP, and population density are the 

dominant indicators not only in the YRB, but also in other flood prone basins of China and 

worldwide. Precipitation is the most common and dominant flood risk indicator in the major 

wetland basins such as the Yellow River Basin and Lijiang River Basin of China, Tapi River 

Basin in India, and Lancang-Mekong River Basin which spans over multiple Southeast Asian 

countries (Ramkar & Yadav, 2021; Sun et al., 2024; Ziwei et al., 2023). Vegetation cover 

changes caused by the rapid urbanization in the Teunom watershed of Indonesia, and the 

watershed north of Charlotte in the United States are the most dominant indicator of local 

flood risk (Banjara et al., 2024; Sugianto et al., 2022). GDP and population density are the 

two key factors that contain strong positive correlations with several flood disasters among a 

number of cities in China, India, and other rapidly urbanizing countries (Wang et al., 2021). 

5.3.4 Model validation 
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Historical statements and data regarding the flood spatial distribution over these five flood 

prone regions in the YRB are used to verify the accuracy of the improved flood risk model in 

this study. In 1991, the levels of high and very high flood risks covered most areas of the TLB 

(Figure 5.3b). It is consistent with the major TLB flood disaster occurred in 1991 because of 

the heavy precipitation and the decline in the capacity of flood water storage and drainage of 

wetlands (Sun and Mao, 2008). Through the flood spatial distribution data, Yu et al. (2012) 

confirmed that most of flooded areas in 1991 were distributed on the eastern side of Taihu 

Lake, as shown in Figure 3b. As a number of drainage projects and aquacultural ponds were 

constructed in 2005, the overall flood risk became relatively low, thus improving the local 

flood control (Cai et al., 2013; Zhang et al., 2019). These changes in 2005 can be 

demonstrated by the flood risk distribution map in Figure 3d that shows the flood risk levels 

of very low, low, and medium in the TLB , and the overall decreasing trend of the very high 

flood risk area under wetland effects as illustrated in Figure 9a. 

 

The lake wetland dynamics analysis of the WP provided by Dong et al. (2022) indicates that 

the high flood risk area in the WP area was generally distributed in regions with a high 

density of lake wetlands, such as the northeastern WP around Chaohu Lake, and the southern 

corner of the WP, which is covered by a number of lakes. These regions lost 120 km2 of lake 

wetlands due to the agricultural development after 2000, leading to an increase in the flood 

risk (Dong et al., 2022). This situation is similar to the expansion of high and very high flood 

risk areas around Chaohu Lake in 2003 and 2010 after the inclusion of wetland input (Figure 

5.4) and verifies the general increase of the high flood risk area with wetland effects after 

2000 in Figure 5.9b. 

 

The flood risk spatial distribution maps of the PLB, generated in this study using the 

improved model, can be verified by previous flood risk assessments of this region. Previous 

research has shown that the higher flood risk areas were distributed around Poyang Lake, 

while the areas with the lower flood risk were found in the surrounding regions during 

2000-2020 (Wu et al., 2022; Zhu et al., 2024), In 1994, an extreme precipitation event 

resulted in widespread very high flood risk across the PLB, primarily due to the relatively low 
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stormwater storage capacity of the interconnected seasonal lakes surrounding Poyang Lake 

(Li et al., 2019). This finding is consistent with the flood risk distribution as shown in Figure 

5b. Under normal conditions, lakes in the PLB serve as stormwater storage areas, allowing the 

low and medium flood risk areas to recover, and accounting for 35.5% of the PLB area (Zhu 

et al., 2024). The flood risk assessment results for 2006 (Table 5.4) further validate this 

finding by comparing their flood risk areas with Zhu et al. (2024). The low and medium flood 

risk areas of this study account for 34.9% of the PLB area, which is generally consistent with 

the findings of Zhu et al. (2024). 

 

The flood risk spatial distribution of the DHB based on the improved model in this study 

(Figures 6b and 6d) is consistent with findings of Wang et al. (2011). Most of the Dongting 

Lake region is at the medium flood risk level, while the high and very high flood risk areas 

are primarily distributed in the northeastern, central, and southwestern parts of the DHB. The 

expansion of the high and very high flood risk area around Honghu Lake after incorporating 

wetland area as a model input was also found by Liu et al. (2013). Our study confirmed the 

flood risk had increased in the Honghu Lake region over the last 50 years due to the 

interacting effects of wetland dynamics caused by the lake reclamation and aquacultural 

development under heavy precipitation conditions. 

 

For the SB, results in Figure 5.7 are supported by the risk assessment of flood disaster in 

Sichuan province from Guo et al. (2023). This indicates that flood risk is higher in the central 

and northeastern parts of the SB, but lower in the western region. According to Fu et al. 

(2013), wetlands have limited impacts on flood risk in the SB because wetlands upstream in 

the YRB are primarily distributed in the source region, where the probability of heavy 

precipitation is low. Consequently, the smaller spatial distribution changes after adding 

wetlands input (Figure 5.7), along with the limited long-term variations of ΔFR in the SB 

(Figure 5.9e), compared with the other basins, can be verified. 

5.4 Discussion 

5.4.1Uncertainties of this study 
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The flood risk assessment in this study includes the entire YRB, making data collection for 

flood risk indicators more complex than if the model was for a specific flood-prone region or 

administrative area. For example, some socio-economic indicators used in the model 

developed of this study, such as local financial revenue, per capita resident savings, and 

medical service level, were obtained from the statistical yearbook and represented total or 

average values for an entire administrative area. These data lack the detailed information 

inside the administrative area and thus cannot reflect the spatial distribution information. 

However, the rasterization process applied in this study helps overcome this limitation by 

breaking down administrative boundaries and enabling the spatial distribution of flood risk 

across the entire study region, thereby reducing this uncertainty. Besides, the flood risk 

assessments at regional or macro-scales require the detailed topographical information, 

different characteristics of flood disasters, and both of direct and indirect socio-economic 

losses in the study region (De Moel et al., 2015; Zhang et al., 2020). Consequently, given the 

complexities involved in modeling the large and dynamic region, indicators in the flood risk 

assessment model in this study may not comprehensively cover all flood risk driving factors 

in the YRB.  

 

Zhang et al. (2020) defined the drainage density as the ratio of main and tributary streams to 

the area. However, in the improved flood risk assessment model, the replacement includes not 

only mainstreams and tributaries but also other water bodies, such as lakes, aquaculture ponds, 

and reservoirs. In our study, the weight of the substituted indicator was kept constant due to 

its minor impact on the flood risk assessment results, given its relatively low assigned weight 

(3.9%). It may introduce potential uncertainties in the model results because of the absence of 

a new AHP questionnaire. To justify this uncertainty, a sensitivity analysis for the replaced 

indicator in the flood risk assessment model was conducted. Sensitivity analysis is used to 

assess the extent to which an output is influenced by variations in a specific input (Chen et al., 

2013). Therefore, it can be applied to determine whether the flood risk result is sensitive to 

weight dynamics of wetland density. The weight range used in the sensitivity test is set 

between 2% and 20% (the equal weight of the 13 flood risk indicators is 7.7%). As shown in 

Figure 5.13a, the results indicate that the changes in the weight of wetland and drainage 
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density can only result in minor variations in the flood risk assessment within the model. The 

largest change in the annual average flood risk areas of the five flood risk levels was 0.2%, 

1.2%, 4.2%, 4.6%, and 1.9% in the TLB, WP, PLB, DHB, and SB, respectively (Figure 

5.13b).The uncertainty is relatively higher in the PLB and DHB regions compared to the TLB, 

WP, and SB regions, due to the more abundant wetlands in those areas. Overall, the flood risk 

results in this study are not sensitive to weight variations of wetland density. This result is 

supported by the sensitivity test of the flood risk assessment in Chongqing, which shows that 

changes in the weight of river network density led to a little modification in the flood risk 

(Cai et al., 2021). 

 

 

 

Figure 5.13: The sensitivity test for wetland density in the wetland-related flood risk 

assessment model. The X-axis indicates the weight of the wetland density; the Y-axis of a) 

indicates the corresponding flood risk area, b) indicates the changes in the flood risk areas.  

 

Beyond that, the use of fixed weights for particular indicators across the entire YRB over the 

long term may introduce uncertainties to the flood risk assessment results. The weights of 

some indicators should be spatially or temporally dynamic. For example, indicators related to 

economic development, such as GDP per capita, population density, local financial revenue, 

per capita resident savings, and medical service level, may carry greater importance in regions 

experiencing rapid economic growth. The TLB area, regarded as the region with the most 
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developed economy and the greatest urbanization in China (Xu and Chen, 2023), may require 

higher weights for relevant flood risk indicators than other flood-prone regions. In addition, 

some indicators may exhibit temporal dynamics. For instance, the weight of precipitation 

should be higher in years when severe flood disasters occurred (e.g., 1998, 2008, and 2016) 

(Zhang et al., 2020). Therefore, incorporating indicator weight dynamics into the AHP 

process should be a key consideration in the model assumption for the large-scale long-term 

flood risk assessment in future studies. 

 

The flood risk assessment at large regional scales will generate different results under variable 

climate scenarios (Shared Socioeconomic Pathways (SSP) and Representative Concentration 

Pathways (RCP)), despite using the same flood risk indicators in the model (Chen et al., 

2021b). It has been estimated that flood risks are higher under the SSP5-RCP8.5 than other 

scenarios using the same multi-index flood risk model. This is primarily due to the larger 

projected precipitation, GDP, and population density under the high emission scenario (Bai et 

al., 2019; Chen et al., 2021b; Peng and Li, 2021). The model of this study focuses solely on 

the YRB flood risk assessment by using the historical data without considering the impacts of 

different climate scenarios. Therefore, the future research should evaluate the YRB flood risk 

under different climate scenarios, to explore climate change effects on flood risk dynamics in 

this region. 

5.4.2 Relevance of existing flood management frameworks  

The Three Gorges Dam (TGD), located in the YRB midstream, is one of the largest dams in 

the world (Guo et al., 2012) and plays a significant role in flood control within the YRB (Hao 

et al., 2019). Since its operation began in 2003, the TGD’s impact on floodplains in the YRB 

middle and lower reaches (including the DHB, PLB, WP, and TLB in this study) has been 

evident (Sun et al., 2020). The general decreasing trend in the high or very high annual flood 

risk area under wetland effects after 2003 in the TLB, WP, PLB, and DHB (Figure 5.9), 

supports the TGD’s role in mitigating flood risk. Taking the WP as an example, the very high 

flood risk area under wetland effects decreased continuously with some small fluctuations 

from +14.7% to -2.8% from 2003 to 2021. The TGD additionally contributes to a reduction in 
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the sediment transport in the Yangtze River, thus decreasing the river discharge (Guo et al., 

2012). Therefore, changes in river discharge and water level of the Yangtze River affect the 

water storage capacity of lakes downstream by changing the blocking force of the river on 

outflows from lakes (Hu et al., 2007). As a result, the very high flood risk area generally 

increased in years with the extreme precipitation, due to the reduction of stormwater capacity 

of major lakes such as Dongting Lake, Poyang Lake, and Taihu Lake. For example, as 

demonstrated in Figure 5.9, the very high flood risk area affected by wetlands in the TLB in 

1991 and the DHB in 2011 both increased 2.2%, corresponding to over 2000mm maximum 

three-day precipitation and the relatively small wetland areas. Additionally, ΔFRvery high in the 

PLB increased 5.1% in 1994, associated with an extreme maximum three-day precipitation of 

3847mm. 

 

In addition to the TGD, land use changes in the YRB plays a significant role in the flood risk 

change. Results of this study show that the vegetation cover change is the dominant indicator 

of flood risk under wetland effects in the WP, with the causal relation strength of 0.55, which 

is higher than other indicators. From an optimistic perspective, both of spatial and temporal 

results of this study confirm that wetlands in the YRB flood prone regions contain the ability 

to mitigate the flood risk during years with large wetland areas and normal precipitation, 

except for the SB, which has a limited number of lakes. For instance, in the TLB (2020), the 

WP (2013), the PLB (1999 and 2016), the DHB (2019), wetland areas were all relatively 

large. In these years, the high or very high flood risk areas affected by wetlands decreased 

significantly, with the ΔFRvery high of -2.2%, -2.6%, -6.3%, -4.3%, and ΔFRhigh of -2.1%. This 

validated the effectiveness of land use management frameworks in China, such as the “Grain 

for Green Program” (Delang and Yuan, 2015) and “Returning Farmland to Lakes” (Ma et al., 

2021) policies, in recovering flood storage capacity and expanding flood retention areas by 

preserving forests and wetlands in the YRB (Liu et al., 2024; Shen et al., 2023). 

5.4.3 Wetland-related management suggestions to mitigate flood risks 
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This study provides some wetland-related management suggestions by considering flood risk 

spatial distribution results and dominant indicators of the flood risk assessment with wetland 

effects in the YRB flood prone regions. 

 

In the TLB, flood risk distribution maps show that the very high flood risk area expanded due 

to heavy precipitation in the eastern TLB by using the improved flood risk model. Therefore, 

the reasonable allocation and management of aquaculture ponds, and the control of lake 

reclamation around Yangcheng Lake, and the southeast region of Taihu Lake are important. 

For example, the thorough groundwater drainage system of aquaculture ponds can be 

constructed to reduce flood risks and increase flood resilience in seasons of heavy 

precipitation. The protection of the Chaohu Lake Basin in the WP is significant because of the 

concentration of high and very high flood risk areas in this region, as indicated by the 

improved flood risk assessment model. Hence, it is essential to uphold the ban on lake 

reclamation caused by agricultural development in this area.  

 

Results from the improved flood risk assessment model indicate that the flood risk around 

Poyang Lake is typically high when considering wetland effects. In this case, the lake 

reclamation caused by human activities such as urbanization and sand dredging around 

Poyang Lake should be controlled. This will ensure that Poyang Lake maintains its large 

stormwater storage capacity in extreme years with high precipitation. In the DHB, the high 

and very high flood risk areas were distributed around Dongting Lake and exhibited 

significant changes with wetland effects. Hence, similar to Poyang Lake, lake reclamation and 

human activities of Dongting Lake should be regulated to mitigate flood risks associated with 

wetland dynamics. Besides, the improved flood risk model finds that aquaculture ponds 

around Honghu Lake lead to a higher flood risk. Therefore, aquaculture ponds need to be 

reasonably managed to minimize the impacts on the water capacity of Honghu Lake, thus 

mitigating the flood risk of this region. The area of aquacultural ponds surrounding Honghu 

Lake expanded 766 km2 from 2016 to 2021 (Han et al., 2023). Figure 5.9d shows that the year 

of 2016 had the lowest overall values of ΔFRvery high and ΔFRhigh from 2016 to 2021. Therefore, 

the 766 km² of aquaculture ponds, accounting for 28% of the total aquaculture pond area in 
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2021, could potentially be restored to lake systems if necessary. In the SB, the expansion of 

high flood risk areas under wetland effects were distributed in the western region. To address 

the limited capacity for stormwater storage due to the scarcity of lakes and ponds in the SB, 

constructing additional artificial ponds and reservoirs in the western SB could improve the 

stormwater storage capacity of water bodies, thereby reducing pressure on rivers during 

periods of heavy precipitation. 

 

Precipitation, vegetation coverage, GDP, and population density are dominant indicators 

contributing to the higher flood risk under wetland influences of the YRB. Hence, regions 

with the high precipitation, population density, and GDP per capita should be reasonably 

managed to mitigate flood risks affected by wetlands. The policy of returning farmland to 

lakes has expanded Dongting Lake by approximately 800 km², contributing to a reduction in 

flood-related losses from USD 39.46 billion in 1998 to USD 27.68 billion in 2020 (Jia et al., 

2022). First of all, maximizing the floodwater storage capacity becomes a key issue for local 

managers to mitigate the flood risk. In addition to preserving the area of natural wetlands, 

constructing artificial ponds and lakes is an effective approach. However, in densely 

populated and economically developed urban areas, space for artificial water bodies may be 

limited. Therefore, the development of a ‘Sponge City’ (Sun et al., 2023) is a recommended 

approach for reducing flood risks in the TLB— a flood prone region characterized by the 

dense population and rapid urbanization (Xu and Chen, 2023). The Sponge City Approach 

has successfully reduced the flood losses of 35%-50% in the Sishui River Basin in Zhengzhou, 

compared to regions without such interventions (Peng et al., 2022). This strategy involves 

collecting and managing rainwater through the sunken green spaces, permeable ground 

materials, and extensive drainage systems (Guan et al., 2021). Similar to the TLB, the 

‘Sponge City’ approach is recommended in the PLB to mitigate the high flood risk resulting 

from the extensive precipitation (Sun et al., 2023). The factor of runoff and vegetation cover 

is the dominant indicator influencing flood risk under wetland effects in the WP. Hence, the 

LULC in the WP area plays a significant role in mitigating flood risk under wetland 

influences. Generally, vegetation-covered land contains a lower runoff factor than 

non-vegetated waterbodies and urban areas (Zhang et al., 2020). Given the significant role of 
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vegetation retention in flood risk mitigation, as demonstrated in the Nenjiang River Basin 

(Wu et al., 2023a), restoring vegetation-covered wetlands in high flood risk areas of the WP 

could be an effective strategy for reducing flood risks associated with the wetland dynamics. 

5.5 Conclusions 

This research analyzes the effects of long-term wetland variations on flood risk assessments 

across the five flood prone regions in the YRB, by using the improved GIS-based spatial 

multi-index flood risk assessment model. The dominant indicators of flood risks under 

wetland effects are identified, alone with the practical suggestions for wetland-based flood 

risk management. 

 

The results highlight that the wetland expansion in the TLB, WP, PLB, and DHB contributes 

to the decrease of high and very high flood risk area and the increase of very low and low 

flood risk area between 1985 and 2021, except some typical years with extreme high 

precipitation in the WP and PLB. While the wetland expansion in the SB has aggravated but 

limited impacts on the flood risk because of the unique wetland category of streams and the 

small area of wetlands. For the spatial distribution of flood risks with wetland effects, the 

eastern TLB demonstrates stormwater storage potential. Chaohu Lake and its surrounding 

areas are regions with high and very high flood risk under wetland effects in the WP. In the 

PLB, high and very high flood risk areas cover more than half of the region. the weak 

stormwater storage capacity of seasonal lakes surrounding Poyang Lake increases flood risks 

during years of heavy precipitation. The northeastern and southwestern regions of the DHB, 

including Honghu Lake, are the highly flood prone regions with wetland effects.  

 

Each flood prone region contains different dominant flood risk indicators under wetland 

effects: Precipitation in the TLB and PLB, runoff and vegetation cover in the WP, GDP in the 

TLB, and population density in the TLB, DHB and the SB. Suggestions for improving the 

flood resilience include reasonably managing local wetlands, maximizing stormwater storage 

capacity in urban regions, controlling lake reclamation, increasing vegetation coverage, and 

prioritizing flood risk managements in highly precipitated and densely populated regions. 
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Chapter 6 Future flood risk assessments in the 

Middle-Lower Yangtze River Basin under climate and 

socio-economic scenarios 

 

Highlights: 

l We predict flood risks by applying a multi-index GIS-based model. 

l Flood risk areas above the medium level will account for 40% of the MLYRB by 2100. 

l There will be a northward expansion of the high and very high flood risk area. 

l Jiangxi, Hunan, and Jiangsu should be prioritized to prevent the future flood risk. 

This chapter is a reformed version of a manuscript submitted to Natural Hazards. 
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6.1 Introduction 

Climate change has increased the frequency and intensity of floods and other natural 

weather-related events around the world (IPCC, 2021). By 2030, floods and other natural 

hazards can lead to significant economic losses, with total estimates reaching up to 415 billion 

USD annually worldwide (Mahmoodi et al., 2023). Therefore, numerous studies have focused 

on assessing the impacts of climate change on flood risks worldwide (Chen et al., 2021a; 

Dottori et al., 2020, Wing et al., 2022). Dottori et al. (2020) predicted that the economic 

losses of river flooding in Europe would be more than six times by the end of this century 

compared to the present at the 3°C global warming scenario if no mitigation and adaptation 

measures were implemented. Wing et al. (2022) showed a 26.4% increase in flood risk in the 

United States between 2020 and 2050 under the moderate climate change scenario. Chen et al. 

(2021a) projected that the area of the highest flood risk level would increase by 8.7% and 

19.8% in the Pearl River Delta of China under the scenarios of Representative Concentration 

Pathway (RCP) 4.5 and RCP 8.5, respectively. In addition to the traditional RCP climate 

change scenarios, Shared Socioeconomic Pathways (SSP) scenarios were used to represent 

five different trends of the socio-economic development and human activities (Riahi et al., 

2017). Several studies illustrated that the future prediction of flood risk must account for both 

climate change and human activities (IPCC, 2021; Li et al., 2020; Luo et al., 2023; Nguyen et 

al., 2022; Yosri et al., 2024; Zhou et al., 2019). Therefore, the combination of SSP and RCP 

scenarios needs to be considered in future flood risk assessments for understanding potential 

future climate change and its impact on society, to provide comprehensive flood mitigation 

and response strategies (Peng and Li, 2021).  

 

The middle and lower reaches of the YRB (MLYRB) are the largest and one of the most 

abundant wetland ecosystems in China, with numerous lakes that play an important role in 

flood storage (Ma et al., 2023). However, the dramatically increased human activities have 

led to the serve shrinkage of lake wetlands in the MLYRB since the last century (Ma et al., 

2023). Land use changes driven by wetland dynamics significantly affect flood regulation 

services in the MLYRB (Shen et al., 2023). Moreover, the annual plum rain season in the 
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MLYRB leads to the persistently high water levels in Dongting Lake, Poyang Lake, and 

Taihu Lake, making the MLYRB particularly vulnerable to large-scale flooding (Jia et al., 

2022). As a result, the MLYRB is the region with the most severe flood disasters in China 

(Liu et al., 2023a). The food event occurred in the summer of 1998 caused the loss of 4150 

people and 166 billion RMB (Liu et al., 2023a). Besides, the MLYRB is comprised by one of 

the most important economic zones in China: The Yangtze River Economic Belt (Pei et al., 

2017). Therefore, due to significant land use changes in the MLYRB caused by the rapid 

urbanization, cities occupy large number of lands near wetlands, making them increasingly 

vulnerable to severe floods (Jia et al., 2022). As a critical region, it is essential to understand 

how future flood risks in the MLYRB will be influenced by both natural and socio-economic 

factors (Liu et al., 2023a; Ma et al., 2023). Given that, the flood prediction and management 

of Yangtze River mainly focuses in on the MLYRB (Jia et al., 2022). 

 

The comprehensive prediction of future flood risk is based on the combination of simulated 

hazard components from climatic projections, as well as predicted vulnerability and exposure 

indicators under future climate scenarios (Liu et al., 2025a). At present, there are various 

methods for projecting the disaster risk, such as artificial intelligence based approaches 

including classic machine learning models (e.g., support vector machine, random forest, and 

multi-layer perceptron) (Chen et al., 2021b), and deep learning models (e.g., convolutional 

neural network and hierarchal deep neural network) (Liu et al., 2025b; Yosri et al., 2024), and 

multi-index decision analysis with the GIS technology (Abuzwidah et al., 2024; Peng et al., 

2024). Among these methods, the GIS-based multi-index model with the fuzzy Analytic 

Hierarchy Process (AHP) was selected for the flood risk assessment in the MLYRB. The 

AHP approach offers the advantage of effectively addressing uncertainties in decision-making 

processes involved in quantitative assessments (Peng and Li, 2021). Besides, the integrated 

flood risk assessment by using the multi-index model enables a comprehensive consideration 

of various natural and socio-economic factors, such as land use changes, GDP per capita, 

resident savings, and the coping capacity of populations, in a large-scale study area with the 

complex topography and socio-economic conditions (Liu et al., 2025a; Zhang et al., 2020). 
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Several studies have assessed flood risk related with the MLYRB by using the GIS-based 

multi-index model, such as the flood risk of the Poyang Lake Basin (Wu et al. (2022), the 

Dongting Lake Basin (Wang et al., 2011), and the flood risk assessments and predictions of 

the entire YRB (Guo et al., 2025; Peng and Li, 2021; Zhang et al., 2020). Among these 

literatures, Peng and Li (2021) was the only one that generated the flood risk prediction under 

future climate scenarios and socioeconomic pathways covering the MLYRB. However, their 

flood risk predictions lacked certain flood vulnerability and exposure indicators that 

incorporated the comprehensive socio-economic factors, such as wetland density (not only 

river density), runoff and vegetation cover factor, site contamination risk, soil erosion degree, 

monitoring and early warning systems, and etc. These indicators have been confirmed to be 

the essential factors for a multi-index flood risk assessment (Guo et al., 2025; Zhang et al., 

2020). Moreover, the study period from 2020 to 2050 was relatively short, limiting the ability 

to analyze long-term trends in flood risks under future climate change after 2050. Therefore, a 

research gap exists in generating long-term scientific flood risk predictions for the MLYRB. 

It includes the need for comprehensive flood risk indicators and the detailed analysis of flood 

vulnerability and exposure under climate change and socio-economic scenarios. Addressing 

this gap can help prevent flood disasters, reduce socio-economic loss, and promote the 

sustainable development of the MLYRB. 

 

The overarching goal of this research is to investigate the flood risk dynamics and predict the 

flood risk under future climate change scenarios in the MLYRB by the end of this century. 

Therefore, the research objectives of this study are: 1) To predict the spatial distribution of 

flood hazard, vulnerability, exposure, and overall integrated flood risk in the MLYRB based 

on a GIS-based multi-index flood risk model with comprehensive indicators under different 

future scenarios by 2100; 2) To analyze the temporal changes of predicted integrated flood 

risk areas and the areas of flood hazard, vulnerability, and exposure; 3) To provide 

suggestions on future flood risk management based on the prediction results of integrated 

flood risks.  
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In this paper, we applied the improved multi-index flood risk assessment model to predict 

flood hazard, vulnerability, exposure, and integrated flood risk in the MLYRB by the end of 

this century under the moderate and high emission climatic scenarios. In Section 6.2, the 

study area, climatic scenarios, data sources, and flowchart of the flood risk prediction are 

described. In Section 6.3, the historical and predicted results for flood hazard, vulnerability, 

exposure, and the integrated flood risk in the MLYRB under the SSP2-4.5 and SSP5-8.5 

scenarios are described and analyzed from both of spatial and temporal perspectives. In 

Section 6.4, the results are further compared with the findings from other related flood risk 

prediction studies. Additionally, the uncertainties in this study and suggestions for future 

flood risk mitigations are discussed in Section 6.4. Finally, conclusions are summarized in 

Section 6.5.   

6.2 Data and methods 

6.2.1 Study area 

The MLYRB (Figure 6.1) is located between 105° 30’ to 122° 30’E and 23° 45’ to 34° 15’N, 

which covers the area of approximately 8 × 105 km2 along the foreland tectonic belt of the 

Dabie Mountain Orogen (Ma et al., 2023). It includes 9 sub-basins of the YRB from the Three 

Gorges to the Yangtze River Estuary (Guan et al., 2019). The Taihu Lake Basin, Poyang Lake 

Basin, as well as Dongting Lake and Honghu Lake Basin are the three major sub-basins in the 

MLYRB. The region belongs to a typical subtropical monsoon climate, with the annual 

average temperature of 13°C and the annual mean precipitation of 1,100 mm (Yuan et al., 

2021). Because of the East Asian subtropical monsoon, the high temperature and abundant 

precipitation are always concentrated in summer (Pei et al., 2017). Both large annual 

precipitation and high frequency of extreme precipitation events could lead to a higher flood 

risk (Ran et al., 2022).  
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Figure 6.1: The location, hydrographical and topographical information of the Middle and 

Lower Reaches of Yangtze River Basin (MLYRB), and three important basins including the 

Taihu Lake Basin, Poyang Lake Basin, and Dongting and Honghu Lake Basin. 

 

The MLYRB encompasses 11 provinces and municipality including Shanghai, Jiangsu, Anhui, 

Zhejiang, Jiangxi, Henan, Hubei, Hunan, and a small part of Guangxi, Shaanxi, and Guizhou. 

Among these provinces and municipality, Shanghai, Jiangsu, and Zhejiang are the most 

developed areas in the East China, characterized by the rapid urbanization due to the high 

population density, developed agricultural bases, and strong socio-economic development 

(Ma et al., 2023; Zhang et al., 2020). 

6.2.2 Data 

The data sources for both projected years from the 2040s to 2100s (2021- 2100) and the base 

line period of the 2020s (2001-2020) of flood risk assessment indicators were demonstrated in 

Table 6.1. The projected cumulative maximum three-day precipitation data at a 1 km 
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resolution, corrected for bias, were utilized in this study. These data cover four future periods: 

the 2040s (2021–2040), 2060s (2041–2060), 2080s (2061–2080), and 2100s (2081–2100), 

under the SSP2-4.5 and SSP5-8.5 climate scenarios. The data were derived from 46 General 

Circulation Models (GCMs) of the Coupled Model Intercomparison Project (CMIP) 6 

database (O’Neill et al., 2017). GCMs are a class of reliable computer-driven models for 

understanding and projecting climate change (Chen et al., 2021b; Yue et al., 2021). 

According to the most complete spatial and temporal capability evaluation of the 46 GCMs 

from CMIP6 in China by Lu et al. (2022), MRI-ESM2-0 had been confirmed as the best 

precipitation simulation model for the YRB, with the least overestimation of the observed 

maximum precipitation among all the GCMs (Lu et al., 2022). The relative bias (PBIAS) of 

the MRI-ESM2-0 over the YRB (10.2%) is lower than other GCMs and the Multi-model 

Ensemble Mean (MEM) of all the ten best-performing models for precipitation projection 

(with the PBIAS of 21%) (Lu et al., 2022). Several studies have confirmed that the 

MRI-ESM2-0 model performs reasonably well in replicating observed extreme precipitation 

in the subtropical humid zone of East China, covering the MLYRB (Jiang et al., 2023; Shiru 

et al., 2022; Song et al., 2023; Yazdandoost et al., 2021). Hence, the predicted precipitation 

data based on the MRI-ESM2-0 model were selected for this study. 
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Table 6.1: Data sources of flood risk indicators. 

No. Indicators Data source of base line years (2020s) Data source of prediction (2040s-2100s) 

1 Cumulative average maximum 3-day 

precipitation 

National Meteorological Information Center (China Surface Climate 

Data Day Value Data Set) (National, 2019) 

CMIP6 database (https://esgf-node.llnl.gov/search/cmip6/) 

 

2 Absolute elevation  Resource and Environment Data Cloud Platform (Jarvis, 2008) Resource and Environment Data Cloud Platform (Jarvis, 2008) 

3 Relative elevation Calculated from absolute elevation data Calculated from absolute elevation data 

4 Wetland and drainage density The Long-Term Wetland Classification Dataset for YRB 

(LTWCD_YRB) (Guo et al., 2024) 

The projection of wetland in the MLYRB under future emission 

scenario (Ma et al., 2023) 

5 Runoff and vegetation cover factor Resource and Environment Data Cloud Platform  

(Liu et al., 2014) 

1km gridded LULC dataset of China under SSP-RCP scenarios (Luo 

et al., 2022) 

6 Local and financial revenue China City Statistical Yearbook   

(http://www.chinayearbooks.com) 

China City Statistical Yearbook (http://www.chinayearbooks.com) 

7 Per capita resident saving China City Statistical Yearbook 

(http://www.chinayearbooks.com) 

China City Statistical Yearbook 

(http://www.chinayearbooks.com)  

8 Medical service level China City Statistical Yearbook 

(http://www.chinayearbooks.com) 

China City Statistical Yearbook  

(http://www.chinayearbooks.com)  

9 Monitoring and early warning 

capability 

National Meteorological Information Center (China Surface Climate 

Data Day Value Data Set) (National, 2019) 

National Meteorological Information Center (China Surface Climate 

Data Day Value Data Set) (National, 2019) 

10 Population density  Resource and Environment Data Cloud Platform (Xu, 2017) Provincial and gridded population projection for China under shared 

socioeconomic pathways (Chen et al., 2020). 

11 GDP per capita Resource and Environment Data Cloud Platform  

(Liu et al., 2005) 

Global gridded GDP dataset under the historical and future scenarios 

from (Wang and Sun, 2022) 
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12 Soil erosion degree Resource and Environment Data Cloud Platform  

(Wang et al., 2016)                                          

Resource and Environment Data Cloud Platform 

(Wang et al., 2016)   

13 Site contamination risk Resource and Environment Data Cloud Platform 

(Liu et al., 2014) 

1km gridded LULC dataset of China under SSP-RCP scenarios  (Luo 

et al., 2022) 
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The predicted GDP and population data were obtained from the global gridded GDP dataset 

(Wang and Sun, 2022) and the provincial gridded population projection dataset for China 

(Chen et al., 2020), respectively. The GDP projection data from the Global gridded GDP 

dataset were estimated for SSP 1-5 in the unit of Purchasing Power Parity international 

dollars, with the spatial resolution of 1km (Wang and Sun, 2022; Xu et al., 2024). The 

population projection data were calculated based on age, sex, and education of each province 

in China under various SSP scenarios and downscaled to the spatial resolution of 1km, 

referring from the RCP urban grid and historical grid (Chen et al., 2020; Xu et al., 2024). The 

data of runoff and vegetation cover factor, and site contamination risk were derived from the 

1km gridded Land Use and Land Cover (LULC) dataset of China under SSP-RCP scenarios 

by using the approach to integrate the Global Change Analysis Model and Future Land Use 

Simulation model (Luo et al., 2022). The wetland projected data in the MLYRB under the 

scenarios of SSP2-4.5 and SSP5-8.5 in 2040s, 2060s, 2080s, and 2100s was based on the 

machine learning method of Adaptive Boosting tree (AdaBoost) algorithm (Ma et al., 2023).  

 

Precipitation, GDP per capita, population density, runoff and vegetation cover factor, site 

contamination risk, and wetland density were the indicators those contain variations and were 

predicted based on the projected data in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 

and SSP5-8.5 scenarios. The rest of the indicators have been confirmed to exhibit minimal 

long-term variations in the MLYRB (Guo et al.,  2024b; Zhang et al., 2020). Hence, they 

were assumed to remain unchanged in the flood risk prediction and were based on the 

historical data in 2020s. 

6.2.3 Climatic scenarios 

CMIP has become a central element of national and international climate change assessment 

to study the past, present and future climate changes globally (Eyring et al., 2016). At present, 

CMIP 6 is the latest phase to provide a multi-model ensemble to capture a range of climate 

change trajectories, with advantages of increasing the reliable reflection of future climate 

status by the higher spatial resolution and the fewer uncertainties because of the more 

complicated physical process (Eyring et al., 2019; Mondal et al., 2021; Xu et al., 2019b). 
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CMIP 6 has proposed a new projection scenario, namely the combination of different RCPs 

and SSPs. SSP1 to SSP5 represent five distinct societal development pathways: SSP1 focuses 

on sustainability; SSP2 reflects moderate development following historical trends; SSP3 

depicts a fragmented world concerned with security and competitiveness; SSP4 highlights 

growing inequality in economics and politics; and SSP5 envisions rapid economic growth 

fueled by fossil-intensive energy use (O’Neill et al., 2017). When combined with the RCP 

scenarios, the new scenarios including SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. In this 

study, SSP2-4.5 and SSP5-8.5 were selected as future scenarios for the flood risk prediction, 

representing moderate and high-emission pathways, respectively. For the SSP2-4.5 scenario, 

global and national institutions work towards but make the slow progress in achieving 

sustainable development goals. For the SSP5-8.5 scenario, fossil fuel resources are exploited 

all around the world (Riahi et al., 2017). In China, flood risk is always projected under the 

SSP2-4.5 and SSP5-8.5 scenarios, which align more closely with China's projected future 

emissions and socio-economic development trends (Liu et al., 2023a). 

6.2.4 Future flood risk simulation 

According to Figure 6.2, the spatial distribution maps and the temporal change of average 

areas in the 2040s, 2060s, 2080s, and 2100s of flood hazard, vulnerability, exposure, and the 

integrated flood risk under the SSP2-4.5 and SSP5-8.5 scenarios in the MLYRB can be 

predicted by applying the improved multi-index flood risk system. The model had been used 

to assess the flood risk with the long-term wetland effects of the YRB between 1985 and 2021 

(Guo et al., 2025).  
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Figure 6.2: The flowchart for predicting the spatial and temporal changes of flood hazard, 

vulnerability, exposure, and the integrated risk under the SSP2-4.5 and SSP5-8.5 scenarios in 

the MLYRB. ①-④ represents four time periods of the prediction in this study: 2040s 

(2021-2040), 2060s (2041-2060), 2080s (2061-2080), and 2100s (2081-2100). 

 

A comprehensive multi-index flood risk assessment system is based on three indices 

identified by the United Nations Office for Disaster Risk Reduction: Hazard, vulnerability, 

and exposure (Liu et al., 2023b; Nguyen et al., 2021). Hazard often refers to climate and its 

influence, precipitation is the main factor of flood hazard (Nguyen et al., 2024). Exposure 

refers to the presence of at-risk elements in a flood zone, such as population, infrastructure, 

property, and economic activity. In contrast, the level of vulnerability to floods is defined as 

the potential influence that flooding contains on an exposed object, which depends on the 

characteristics of the community that make it susceptible to damage during the flood, like 

socio-economic indicators (Nguyen et al., 2024). In this study, the flood hazard (H), 

vulnerability (V), exposure (E) are calculated as the weighted sum of corresponding 

indicators, with each indicator multiplied by its assigned weight. The weights of indicators 

and indices, determined by using the AHP method, were presented in Table 6.2. Afterwards, 

the integrated flood risk can be mapped by the following equation: 
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FR = 	H ×W) + V ×W* + E ×W+                                                                 (6.1) 

 

The area dynamics of flood hazard, vulnerability, exposure, and overall flood risk during 

these four periods were calculated based on the mapped results of the corresponding indices 

and flood risk assessments. To compare flood indices and flood risk across the four time 

periods under two scenarios, the classification results for five levels (very low, low, medium, 

high, and very high) of flood indicators, hazard, vulnerability, exposure, and risk were 

demonstrated in Table 6.3. The classification standards across all scenarios and time periods 

need to be consistent to enable comparison. Therefore, the classification interval of flood 

indicators, flood indices, and the integrated flood risk need to be manually adjusted in ArcGIS 

by considering the minimum and the maximum values. 
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Table 6.2: The flood risk assessment model structure and weights of flood risk indicators. 

 

 

 

 

 Index layer Weight of the index layer Indicator layer Weight of the indicator 
layer 

Integrated flood risk (FR) Hazard (H) +0.469 Cumulative average maximum 3-day 
precipitation (H) 

+0.469 

Vulnerability (V) +0.322 
 
 
 
 
 
 
 
 
 
 
+0.209 

Absolute elevation (V1)            -0.053  
 
 
 
 
 
 
 
 
 
 
Exposure (E) 

Relative elevation (V2) -0.061 
Wetland and drainage density (V3) +0.039  
Runoff and vegetation cover factor 
(V4) 

+0.041  

Local financial revenue (V5) -0.028  

Per capita resident saving (V6) -0.025  

Medical service level (V7) -0.027  
 Monitoring and early warning 

capability (V8) 
Population density (E1)              

-0.047  
 
+0.046 

 GDP per capita (E2) +0.066 

 Soil erosion degree (E3) +0.068 

 Site contamination risk (E4) +0.030 
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Table 6.3: The classification standard. 

 Very low Low Medium High Very high 

Runoff and vegetation 
cover factor 

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 

GDP per capita 
(yuan/km2) 

<27 27-480 480-3,840 3,840-125,408 >125,408 

Population density 
(people/km2) 

<50 50-60 60-237 237-5,000 >5,000 

Site contamination risk 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 

Hazard 0-0.22 0.22-0.39 0.39-0.54 0.54-0.68 0.68-1.0 

Vulnerability 0-0.25 0.25-0.37 0.37-0.55 0.55-0.61 0.61-1.0 

Exposure 0-0.18 0.18-0.25 0.25-0.31 0.31-0.49 0.49-1.0 

Flood risk 0-0.15 0.15-0.27 0.27-0.38 0.38-0.52 0.52-1.0 
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6.3 Results 

6.3.1 Spatial distribution pattern of flood risk in the historical period 

Figure 6.3 illustrated the spatial distribution pattern of integrated flood risk and its associated 

indices, including hazard, vulnerability, and exposure in the historical period (2020s). As 

presented in Figure 6.3a, 22% and 12% of the MLYRB were covered by the high and very 

high flood hazard levels in 2020s. These areas were mainly concentrated in the flood prone 

regions with high precipitation, including the Wanjiang Plain, Poyang Lake Basin, as well as 

Dongting and Honghu Lake Basin. Figure 6.3b illustrated that the areas surrounding Poyang 

Lake and Dongting Lake were much more vulnerable to floods than the other regions of the 

MLYRB. In the flood exposure map (Figure 6.3c), the regions with the very high flood 

exposure were generally concentrated in the eastern MLYRB, typically in Jiangsu and 

Shanghai, where both population density and GDP per capita were notably high. The 

integrated flood risk map (Figure 6.3d) in the historical period showed that 33% of the 

MLYRB was located in the high and very high flood risk areas, with 3% falling into the very 

high category. These high and very high flood risk zones were primarily distributed in Anhui, 

Jiangxi, Hubei, Hunan, and some parts of Jiangsu surrounding Taihu Lake. 
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Figure 6.3: The spatial distribution of MLYRB flood risk indices in the historical period 

(2020s): a) hazard; b) vulnerability; c) exposure; and d) integrated flood risk. 

6.3.2 Spatial distribution pattern of future flood risk   

Figures 6.4 to 6.7 displayed the spatial distribution maps of the predicted flood hazard, 

vulnerability, exposure, integrated risk. Appendices 6.1 to 6.5 demonstrated indicators with 

the significant changes under the SSP2-4.5 and SSP5-8.5 scenarios of the MLYRB in 2040s, 

2060s, 2080s, and 2100s. Results from Figure 6.4 demonstrated that the areas with the high 

and very-high flood hazard level generally located in Hunan, Jiangxi, and the southern part of 

Jiangsu. It showed that there would be an overall northward movement of the high and very 

high level flood hazard regions in the MLYRB by the end of this century, typically in the 

Taihu Lake Basin under the SSP5-8.5. It was attributed to the northward shift in the intensity 

of the East Asian Summer Monsoon rainfall (Huang et al., 2019; Katzenberger and 

Levermann, 2024). 

 

The spatial distribution maps of flood vulnerability prediction in the MLYRB under the 

scenarios of SSP2-4.5 and SSP5-8.5 were illustrated in Figure 6.5. Wetlands density and 

runoff vegetation cover factor were the main indicators with significant variations to predict 

the flood vulnerability. Overall, the regions with very high flood vulnerability were estimated 

to distribute in the Poyang Lake Basin, and Dongting and Honghu Lake Basin, due to the 

concentration of wetlands and the surrounding urban areas with the high runoff vegetation 

cover factor (Ma et al., 2023; Shen et al., 2023). The predicted results were similar to the 

vulnerability results in 1998, 2008, 2016, and 2020 as shown in Zhang et al. (2020) and Jia et 

al. (2022). These studies showed that areas with high flood vulnerability in the MLYRB were 

generally located in Hunan, Hubei, Jiangxi, and Anhui, covering the major lake basins. 

 

The spatial distribution results of flood exposure prediction in the MLYRB under the 

scenarios of SSP2-4.5 and SSP5-8.5 were demonstrated in Figure 6.6. The central and eastern 

parts of the MLYRB were projected to contain the high and very high flood exposure, 

typically in Shanghai and the areas around Taihu Lake in Jiangsu. The GDP per capita, 



 138 

population density, and site contamination risk were the main flood exposure indicators. 

Appendices 6.3 and 6.4 illustrated that the central and eastern regions of the MLYRB were 

projected to contain the higher GDP per capita and population density than those in the 

western region. For the site contamination risk (Appendix 6.5), the high and very high 

contamination regions were projected to distribute in water bodies, typically in Taihu Lake. 

According to the spatial changes in the population projection of China, it indicated that the 

high population density areas were primarily concentrated in the southeast coast region, the 

central part of Jiangsu and Henan (Sang et al., 2024). Besides, Peng and Li (2021) confirmed 

that the YRB eastern region, including Shanghai, Jiangsu, and Zhejiang  was much more 

densely populated than other regions. accounted for more than 50% of the GDP in the entire 

Yangtze River Economic Belt because of the unbalanced economic development and the 

rapid urbanization.  

 

The integrated flood risk assessment predictions were derived by superimposing the layers 

obtained from the flood hazard, vulnerability and exposure predictions. The flood risk results 

were closely related to the hazard results due to the significant weight. Generally, the 

projected flood risks presented a spatial pattern of the low level in the west and high level in 

the east of the MLYRB. Figure 6.7 clearly demonstrated the high and very high flood risk 

areas were predicted to distribute in Jiangxi, Hunan, and the southern part of Jiangsu, 

covering the three main lake basins (Taihu Lake Basin, Poyang Lake Basin, and Dongting 

and Honghu Lake Basin) of the MLYRB. Besides, a significant expansion of the high and 

very high flood risk areas was predicted in Jiangxi, Hunan and Jiangsu. The northward 

expansion was particularly prominent in the southern region of the Taihu Lake Basin, driven 

by the northward shift of the rain belt. 

 



 139 

 

Figure 6.4: The spatial distribution maps of flood hazard level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s; under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Figure 6.5: The spatial distribution maps of flood vulnerability level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Figure 6.6: The spatial distribution maps of flood exposure level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Figure 6.7: The spatial distribution maps of flood risk level in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s.  

 

6.3.3 Temporal changes in future flood risk areas 

Figure 6.8 illustrated that the low and very low flood hazard areas both contained the 

decreasing trend. The total proportion of areas with the high and very high hazard would 

continuously increase from 30% to 39% under the SSP2-4.5 scenario and from 36% to 39% 
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under the SSP5-8.5 scenario from 2040s to 2100s. However, the very high flood hazard area 

under the SSP5-8.5 scenario was projected to decrease 3% (16%-13%) of the total MLYRB 

area from 2080s to 2100s. The extreme precipitation was considered as the most significant 

driving force, making floods to become one of the most costly and dangerous natural hazards 

around the world (Huang et al., 2021). Pei et al. (2017) found that historically, the frequency 

and intensity of extreme daily precipitation in the MLYRB generally increased from 1961 to 

2012. And it has been confirmed that there would be a general increase of extreme 

precipitation frequency and intensity in the YRB by the end of the twenty-first century under 

all the climate change scenarios (Wu et al., 2023b; Xu et al., 2023; Yue et al., 2021). From 

2040s to 2100s, the area with very-high hazard level was predicted to be larger under the 

climate change scenario of SSP5-8.5 than that of SSP2-4.5 except 2100s. Besides, Figure 6.8 

demonstrated that the largest area difference between two scenarios will in the 2040s, the very 

high flood hazard area under SSP5-8.5 would reach three times that under the SSP2-4.5 

scenario. Zou and Zhou (2022) confirmed that the larger fractions of land and population 

would be affected by the larger rainfall under the SSP5-8.5 scenario both in China and the 

global scale.  

 

The very high flood vulnerability areas in the MLYRB were projected to experience a slightly 

reduction from 2040s to 2100s (Figure 6.9). There will be a shrinkage of 3,300 km2 of very 

highly vulnerable area under the SSP2-4.5 scenario and a shrinkage of 9,500 km2 under the 

SSP5-8.5 scenario (Table 6.5). According to the wetland and drainage prediction results in the 

MLYRB from 2040s to 2100s (Appendix 6.1), the areas of wetlands were projected to 

decline— more rapidly under the SSP5-8.5 scenario (Ma et al., 2023), thus reducing the flood 

vulnerability. The runoff and vegetation cover factor (Appendix 6.2) was another significant 

contributor to the flood vulnerability, showing the conversion from the low to the very low 

level over the study period in the MLYRB. According to the LULC prediction data, the areas 

converted from grasslands to forests and shrub would expand until 2100, the areas of other 

land cover categories would generally keep constantly (Luo et al., 2022). Therefore, the 

vegetation coverage growth brought by forests and shrubs would enhance the infiltration rate 
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of precipitation and slowdown flood runoff, thus reducing the flood vulnerability (Zhang et al., 

2020).  

 

 

 
Figure 6.8: Changes in areas of different flood hazard levels of the MLYRB under SSP2-4.5 

and SSP5-8.5 scenarios from 2040s to 2100s. 
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Figure 6.9: Changes in areas of different flood vulnerability levels of the MLYRB under 

SSP2-4.5 and SSP5-8.5 scenarios from 2040s to 2100s. 

 

The very high flood exposure areas from 2040s to 2100s were predicted to increase totally 

100 km2 under the SSP2-4.5 scenario and 500 km2 under the SSP5-8.5 scenario in Table 6.6. 

For the high flood exposure regions, the area showed the prominent decreasing trend (Figure 

6.10), which would shrink 47,800 km2 under the SSP2-4.5 scenario and 38,500 km2 under the 

SSP5-8.5 scenario. Appendix 6.3 showed that the areas of the high and very high level GDP 

were projected to increase under both scenarios of SSP2-4.5 and SSP5-8.5 in the MLYRB, 
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with the more rapid expansion under the SSP5-8.5 scenario (Wang and Sun, 2022). For the 

population prediction in Appendix 6.4, population density would decrease rapidly from 2040s 

to 2100s, typically under the SSP5-8.5 scenario. The result has been confirmed by Chen et al. 

(2020), indicating that the population of China has been shrinking since 2022, marking the 

first population decline in decades. Besides, the high level of the site contamination risk areas 

in the MLYRB, calculated from the LULC data, would expand due to the increase in the 

forest and shrub coverage — LULC categories with the high contamination index (Luo et al., 

2022). Overall, the predicted results of flood exposure indicated that the decline in population 

density would be greater than the expansion of GDP and contamination risk from 2040s to 

2100s under both scenarios. Consequently, it may lead to a slight increase of the very high 

flood exposure area, but a more substantial decrease in the high flood exposure area. 

 

Figure 6.11 indicated that the total areas of high and very high flood risk level would increase 

continuously, while the low and very low flood risk areas both contained the decreasing trend. 

The total areas of high and very high flood risk under the SSP2-4.5 scenario would increase 

from 30% to 38% of the total MLYRB from 2040s to 2100s; and the areas under the 

SSP5-8.5 scenario would expand from 36% to 40% during this period. It means that the 

overall flood risk of the MLYRB will become severer by the end of the 21st century under 

both scenarios of SSP2-4.5 and SSP5-8.5. However, similar to the trend in very high flood 

hazard, the very high flood risk areas were projected to experience a slight shrinkage of 3% 

from 2080s to 2100s under the SSP5-8.5 scenario.  
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Figure 6.10: Changes in areas of different flood exposure levels of the MLYRB under 

SSP2-4.5 and SSP5-8.5 scenarios from 2040s to 2100s. 
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Figure 6.11: Changes in areas of different flood risk levels of the MLYRB under SSP2-4.5 

and SSP5-8.5 scenarios from 2040s to 2100s. 
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Table 6.4: The predicted area of flood hazard level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
  

 Very low (104km2) Low (104km2) Medium (104km2) High (104km2) Very high (104km2) 

 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 

2040s 16.10 14.99 22.19 19.39 16.95 16.41 21.15 18.64 3.42 10.38 

2060s 15.16 14.73 21.86 17.76 16.14 17.48 17.93 19.55 9.61 11.18 

2080s 15.29 14.24 21.86 18.99 16.85 15.83 16.92 17.92 10.70 12.75 

2100s 15.32 13.74 19.83 17.42 14.66 18.32 15.97 20.85 14.84 10.40 
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Table 6.5: The predicted area of flood vulnerability level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP 5-8.5 scenarios. 

 Very low (104km2) Low (104km2) Medium (104km2) High (104km2) Very high (104km2) 

 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 

2040s 6.76 6.90 18.54 18.86 28.49 27.76 17.72 18.25 6.00 5.74 

2060s 6.65 6.85 19.51 19.42 27.55 26.86 18.01 18.57 5.80 5.71 

2080s 6.72 6.49 19.46 18.28 27.30 28.95 18.25 18.68 5.78 5.11 

2100s 6.79 6.67 19.87 18.52 26.81 27.53 17.67 20.00 5.67 4.79 
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Table 6.6: The predicted area of flood exposure level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios. 

 Very low (104km2) Low (104km2) Medium (104km2) High (104km2) Very high (104km2) 

 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 

2040s 0.94 0.96 7.04 7.18 24.86 25.14 43.23 42.57 1.59 1.81 

2060s 0.99 1.02 7.60 7.74 26.16 26.93 

 

41.32 40.16 1.59 1.81 

2080s 1.12 

 

1.09 

 

8.14 

 

7.99 

 

28.04 27.58 38.76 39.19 1.60 1.81 

2100s 1.15 0.33 8.24 4.32 28.22 32.43 38.45 38.72 1.60 1.86 
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Table 6.7: The predicted area of flood risk level in the MLYRB in 2040s, 2060s, 2080s, and 2100s under the SSP2-4.5 and SSP5-8.5 scenarios 

 Very low (104km2) Low (104km2) Medium (104km2) High (104km2) Very high (104km2) 

 SSP2-4.5   SSP5-8.5 SSP2-4.5   SSP5-8.5 SSP2-4.5   SSP5-8.5 SSP2-4.5   SSP5-8.5 SSP2-4.5   SSP5-8.5 

2040s 15.03 14.42 20.54 18.41 15.86 15.37 20.94 17.60 3.58 10.15 

2060s 13.98 13.95 20.16 16.73 14.81 16.60 17.47 18.14 9.54 10.53 

2080s 14.47 13.68 19.66 18.03 15.86 15.03 16.06 16.62 9.90 12.59 

2100s 14.56 13.01 18.52 16.51 13.91 16.54 14.49 19.35 14.47 10.54 
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6.4 Discussion 

6.4.1 Validation 

In this study, all the projected data for flood risk indicators were derived from the historical 

data. However, the simulated wetland data (Ma et al., 2023) were not derived from the 

historical wetland data in the LTWCD_YRB (Guo et al., 2024). Therefore, it is essential to 

validate the consistency between the historical and simulated wetland data, For the area 

comparison, Ma et al. (2023) indicated that the difference between historical wetlands and 

simulated potential wetlands ought to be smaller than 6.3% relative to the total study region, 

which should be less than 24,970 km2. The difference between the historical wetland areas 

and the simulated wetland areas in 2020 is 24,130 km2. It means the simulated wetland data 

contains the consistency with the historical LTWCD_YRB dataset. Figure 6.12 demonstrated 

that the overall wetland spatial distribution in 2020 was generally consistent between the 

historical and the simulated datasets. However, the dataset from Ma et al. (2023) slightly 

overestimates the wetland areas compared to historical records from the LTWCD_YRB, 

particularly in the central MLYRB along the Yangtze River and waterbodies in the eastern 

region of Taihu Lake. Nevertheless, it is not substantial enough to affect the overall spatial 

pattern or temporal area changes of the flood risk prediction in this study. 
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Figure 6.12: The 2020 spatial distribution of a) MLYRB simulated wetlands with 463m 

resolution; and b) MLYRB existed wetlands with 30m resolution. 

 

The baseline period results of this study can be verified by several studies that assessed the 

flood risk in the historical period, indicating that flood risks were generally concentrated in 

the major lake basins of the eastern and central regions of the YRB, typically the Taihu Lake 

Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin (Gao et al., 

2021; Guo et al., 2025; Zhang et al., 2020). Wu et al. (2023b) and Xu et al. (2023) confirmed 

that the extreme precipitation, generally distributed in the southeastern region of the YRB, 

was projected to contain the significant increasing trend by 2100 under both scenarios of 

SSP2-4.5 and SSP5-8.5 based on the CMIP6. Peng and Li (2021) verified that the 

high-middle and high flood risk areas (the top two flood risk levels in the study) were 

predicted to be generally concentrated in the southeastern of the YRB, covering Jiangsu, 

Jiangxi, and Hunan from 2020 to 2050 under the SSP2-4.5 and SSP5-8.5 scenarios. 

Additionally, there existed the northward expansion of the high-middle flood risk area in the 

predicted period of Peng and Li (2021). For the temporal change of flood risk area under the 

moderate and high emission scenarios, Bai et al. (2019) predicted that climate change would 

lead to the increasing flood risk in the future, particularly under the higher emission scenario, 

The predicted results of this study aligned with these findings, projected the high and very 

high flood risk areas to be concentrated in Jiangxi, Hunan, and southern Jiangsu, with an 

overall increasing trend and northward expansion throughout the study period. 

6.4.2 Uncertainties  

In this study, there were some uncertainties existing in the flood risk indicators when using 

the CMIP6 data to predict the future flood risk. Uncertainties caused by the overestimation 

still existed in the precipitation data obtained from the MRI-ESM2-0 model, although it has 

been confirmed with less relative bias in the YRB than other GCMs and ensemble models (Lu 

et al., 2022). Besides, the slight overestimation existed in the projected wetland data as well. 

For the indicators such as GDP, population density, and LULC, future policy uncertainties in 

China may influence their projections and distributions. The implementation of new towns or 
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district construction policies to deal with the rapid urbanization in the future could be an 

example (Chen et al., 2020). In this study, certain indicators such as relative elevation, 

absolute elevation, and monitoring and early warning capacity were assumed to remain 

unchanged  based on the historical data. Although the topography and the meteorological 

station distributions in the MLYRB changed slightly over the historical period, this 

assumption may still introduce some uncertainties into the future flood risk assessment. 

 

Additionally, the use of fixed weights for some indicators across the entire MLYRB over the 

long term may introduce uncertainties to the flood risk prediction results. The weights of 

indicators related to the economic development, such as GDP and population density, may 

carry the greater importance in the regions experiencing rapid economic growth. For example, 

the study regions covering Henan, Jiangsu and Shanghai, were projected to contain the larger 

population density and economic development in the future (Peng and Li, 2021; Sang et al., 

2024), may require the higher weights for the relevant flood risk indicators than other regions. 

Therefore, incorporating indicator weight dynamics should be considered in the future AHP 

process for the flood risk prediction in large-scale study regions. 

6.4.3 Suggestions to mitigate future flood risks  

The flood risk assessment prediction results of this study indicated that Jiangxi, Hunan, and 

southern Jiangsu of the MLYRB would be the key area for the future flood risk mitigation. 

Given the projected increase in the precipitation, along with the rapid economic development 

and population growth in these regions, both nature-based and socio-economic strategies are 

essential for the future flood risk mitigation.  

 

For the expansion of the high and very high flood risk areas in the Poyang Lake Basin as well 

as the Dongting and Honghu Lake Basin, fluvial flood mitigation infrastructures and natural 

ecosystem developments could be helpful to reduce flood disasters (Peng and Li, 2021). For 

instance, constructing more reservoirs and drainage systems, controlling lake reclamations, 

rearranging the local farming and aquacultural development of the flood prone regions, and 

restoring vegetation-covered wetlands. Besides, the high flood risk areas were projected to 
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expand in the southern part of Jiangsu around Taihu Lake, an urban region with the extremely 

high GDP and population density in China (Xu and Chen, 2023). Therefore, the 

implementation of the ‘Sponge City’ need to be further developed in the future (Sun et al., 

2023). It aims to mitigate the flood risk in the populated and urbanized regions by managing 

rainwater through the sunken green spaces, permeable ground materials, and extensive 

drainage systems (Guan et al., 2021). Additionally, the development of satellite technology 

and meteorological monitoring systems can improve the flood resilience by tracking flood 

changes and forecasting extreme weather (Jongman, 2021; Tellman et al., 2021). 

6.5 Conclusions 

This study predicted and analyzed the spatial and temporal changes of flood hazard, 

vulnerability, exposure, and the integrated flood risk in the MLYRB under the SSP2-4.5 and 

SSP5-8.5 scenarios from 2040s to 2100s with a 20-year interval. The spatial distribution of 

the flood risk is projected to be higher in Jiangxi, Hunan, and southern Jiangsu, but lower in 

Shaanxi and Henan provinces, closely aligning the similar spatial distribution of flood hazard 

and flood exposure. The areas surrounding Poyang Lake and Dongting Lake were expected to 

be more vulnerable to floods. There will be a northward expansion of the high flood risk area 

in the southern part of the Taihu Lake Basin. The expansion will be more prominent under the 

SSP5-8.5 scenario. The three major basins of the MLYRB, including the Taihu Lake Basin, 

Poyang Lake Basin, Dongting and Honghu Lake Basin, along with the surrounding provinces 

including Jiangxi, Hunan, and the southern part of Jiangsu, were projected to experience the 

larger areas of the high and very high flood risk level over the next 80 years. For the temporal 

perspective, the highest weight of the increasing high and very high flood hazard led to the 

overall increasing trend in the high and very high flood risk areas by the end of this century 

(except the shrinkage of the very high flood risk in 2100s under the SSP5-8.5 scenario). 

Results illustrated that the total areas of high and very high flood risk level would comprise 

38% and 40% of the total MLYRB by 2100 under the SSP2-4.5 and SSP5-8.5 scenarios, 

respectively.  
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In the future, it is crucial for local governments to enhance the stormwater storage capacity of 

water bodies, to effectively manage the urban drainage systems and wetland distributions, and 

to develop more advanced monitoring and early warning systems for the local meteorology in 

the predicted flood prone regions. Overall, the flood risk assessment prediction under the 

climate change and socio-economic scenarios will help with the future flood risk control and 

management in the MLYRB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 158 

Chapter 7 Discussion 

7.1 Major contributions 

The LTWCD_YRB dataset established in Chapter 4 is available on the Figshare website 

(https://doi.org/10.6084/m9.figshare.21859920.v1). It includes 30m resolution wetland 

classification maps from 1984 to 2021, along with JavaScript code for data processing and 

machine learning on the GEE platform (Guo et al., 2024). This dataset addresses the lack of a 

long-term time series wetland dataset with comprehensive wetland categories in the YRB. 

Compared with other existing wetland datasets covering the YRB, the CAS_Wetland dataset 

only offers a single year (2015) of national wetland classification map (Mao et al., 2020). The 

LTWCD_YRB spans a much longer period (1984-2021). Another major advantage of the 

LTWCD_YRB is that it includes more comprehensive wetland categories than other 

wetland-related datasets in China, such as the Inland Surface Water Dataset (ISWDC) (Lu et 

al., 2019), the High Spatial-Temporal Water Body Dataset (HSWDC) (Li et al., 2020), and 

the China Land Cover Dataset (CLCD) (Yang and Huang, 2021). These non-wetland-focused 

datasets only provide general water or wetland classes without detailed subcategories. In 

addition, unlike several existing wetland datasets that focus primarily on the middle or lower 

reaches of the YRB, such as the long-term Water Middle Reaches of the Yangtze River 

(Water-MRYR) dataset (Ma et al., 2025), the LTWCD_YRB covers the entire YRB, thus 

providing the more comprehensive representation of the spatio-temporal dynamics of 

wetlands across the basin. Therefore, the LTWCD_YRB is the first wetland classification 

dataset for the YRB to combine the long-term time series, the detailed wetland categorization, 

and the basin-wide spatial coverage. Besides, the LTWCD_YRB is extendable when recent 

source datasets are available and could be applied to the larger spatial extent in the future 

depending on the data availability of sufficient data sources. Overall, the LTWCD_YRB 

provides the clear advantages over the existing datasets, thereby fulfilling the first objective 

of this thesis. Researchers and policymakers can search and analyze the spatial and temporal 

dynamics of different wetland categories across seasons, years, and specific areas of interest 

in the YRB between 1984 and 2021. Moreover, the GEE-based machine learning algorithm 
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codes for wetland classification and validation can serve as a reference for researchers, 

allowing them to adapt and apply the methodology to other wetland classification studies with 

necessary modifications.  

 

Based on the calculations of wetland areas of the LTWCD_YRB, it completed the objective 

to compare wetland area changes under their corresponding driving forces. It found that 

anthropogenic driving forces such as urbanization, fish farming development, and sand 

dredging affected a larger area of wetlands than natural factors such as sea-level rise, soil 

erosion, flooding, and temperature or precipitation change. This finding confirmed that as the 

most populated and developed basin in China, human activities are always the main driving 

factor of the long-term wetland variations in the YRB, such as the shrinkage of tidal flats in 

the YRB estuary region, large expansion of aquaculture ponds and shrinkage of lakes in the 

TLB, PLB, and DLB. However, wetlands in the YRB source region, all of which belong to 

natural wetland categories, are typically vulnerable to the natural driving force of climate 

change. Hence, it provides the data support and references for the policymaking of wetland 

conservation and management to deal with the vulnerable wetland categories in different 

regions of the YRB. Additionally, the monthly wetland variation data in the PLB and DLB 

can provide insights into the hydrological process of seasonal floodplains and can support the 

research on the local flood mitigation (Acreman and Holden, 2013; Li et al., 2019).  

 

The long-term flood risk assessment with effects of wetlands dynamics in Chapter 5 fills the 

research gap of incorporating the long-term comprehensive wetland data as an indicator in the 

flood risk assessment. Wetlands in different regions and categories have complex effects on 

flood risks within a basin. The current flood risk in the YRB is particularly severe in densely 

populated areas with the high precipitation, exacerbated by climate change (Acreman and 

Holden, 2013; Cheng et al., 2001; Kundzewicz et al., 2019). Consequently, conducting a 

long-term, multi-index flood risk assessment that incorporates the effects of wetlands is 

crucial. Such an assessment can analyze how wetland categories influence the spatial 

distribution and extent of different flood risk levels in flood-prone regions of the YRB. The 

future flood risk prediction until the end of this century in Chapter 6, along with wetland 
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variations, makes the general prediction of the flood hazard, vulnerability, exposure, and the 

integrated risk at a 20-year interval under different climate change scenarios. The prediction 

can provide the data support and guidance for the future flood risk prevention in the MLYRB, 

helping to reduce the flood losses to some extent. Additionally, it has been confirmed that 

flood risk mitigation approaches in the YRB are primarily rely on the large-scale water 

conservancy projects. Therefore, the wetland-related strategies in Chapters 5 and 6 to mitigate 

flood risks based on the flood risk assessment results and the dominant flood risk indicators 

can serve as a valuable reference for the wetland-related flood risk management in the YRB. 

These strategies can help to fill the gap in applying nature-based approaches to improve the 

flood risk resilience in developing countries, where such methods are less common compared 

to basins in developed countries. (Fournier et al., 2016; Jia et al., 2022). 

7.2 Wider implications 

To reach the goal of the ecological civilization development, the Chinese government has 

taken actions to solve pollution and ecological degradation in the continuous economic 

growth (Hansen et al., 2019; Sheng et al., 2022). The national strategy for the Great Yangtze 

River Protection Program (GYRPP) launched in 2016 is one of the most representative 

actions, with aims to make the conservation and restoration of the YRB ecology under the 

rapid economic growth, and to achieve the long-term sustainable development by balancing 

conservation and development nexus (Han and Sheng, 2024). The research of this thesis 

regarding the long-term variations of wetlands and their effects on the YRB flood risk, as well 

as the future flood risk predictions under the climate change and socio-economic pathways, 

aligns with the goal of GYRPP. The LTWCD_YRB dataset provides the valuable monitoring 

data to the long-term wetland conservation of the YRB, typically the wetland variation data in 

regions experiencing the rapid economic growth. The GYRPP has established 265 key 

Ecological Function Zones (EFZ) to conserve nature in the YREB (Wei et al., 2024). 

Industrial development within these EFZs is restricted and requires state approval (Sheng et 

al., 2022). Among the EFZ types, flood regulation zones are particularly important, aiming to 

enhance the flood regulation and storage capacity by preserving lake and wetland ecosystems, 

including the TLB, PLB, and DLB (Sheng et al., 2022). Hence, the long-term flood risk 
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assessment considering wetland effects on flood regulation zones can provide valuable 

insights for research on floods and wetlands within the EFZs of the GYRPP. Furthermore, 

flood risk predictions under climate change scenarios, incorporating wetland dynamics, will 

support the YRB large-scale ecological restoration projects, which are planned for future 

implementation (Sheng et al., 2022). 

 

As one of the most representative basins in in the world, characterized by the abundant 

wetland resources, severe flood disasters, and complex socio-economic conditions, the YRB 

serves as a key focus for the wetland conservation and flood risk mitigation efforts under 

climate change. These efforts, as presented in this thesis, are directly aligned with the United 

Nations SDGs. This thesis makes implications for seven SDGs: Promoting health and 

well-being for all (SDG 3); ensuring the availability and sustainable management of water 

and sanitation (SDG 6); making cities inclusive, safe, resilient, and sustainable (SDG 11); 

promoting sustainable consumption and production (SDG 12); taking urgent action to combat 

climate change (SDG 13); conserving marine and coastal resources (SDG 14); and protecting, 

restoring, and sustainably using terrestrial ecosystems (SDG 15). (Mohanty et al., 2024; 

Molinari et al., 2023). 

7.3 Research limitations 

The research process to establish the LTWCD_YRB in Chapter 4 was based on the 

remote-sensed satellite imagery of the GEE platform. Although the GEE-based sample 

collection is more efficient for collecting a large number of samples in the extensive study 

region with a long-term time series for this thesis, the lack of fieldwork for ground truth data 

collection still limits the accuracy of the dataset, especially for the validation purposes. The 

classification accuracy of certain wetland categories with smaller areas, such as canals and 

aquaculture ponds, was lower than that of other categories due to challenges in collecting 

precise samples from Landsat imagery, caused by unclear wetland boundaries and size 

limitations. Mao et al. (2020) illustrates that the field survey is an effective way to obtain 

training and validation samples for land cover classifications similar to those used in this 
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thesis. For example, UAVs equipped with a real-time kinematic GPS were used to identify 

the categories of those small and inaccessible wetlands (Mao et al., 2020). 

 

Hydrologically, wetlands provide the temporary storage that reduces and delays flood peaks. 

This additional storage increases lag time and attenuates the flood wave as it travels 

downstream. Wu et al. (2020) showed that the existing wetlands reduced peak flow by about 

24%, flood duration by 1 day, and the total event runoff volume by 17% in the Nenjiang 

River Basin, demonstrating that extensive wetland complexes can substantially reduce 

downstream flood risk at the basin scale. The similar hydrological model of the North 

Carolina Coastal Plain indicated that the vegetation coverage of floodplain wetlands slow the 

flood wave propagation through the enhanced roughness (Hovis et al., 2021). Tull and 

Passalacqua (2025) emphasize that the wider and well-connected floodplains generate the 

stronger attenuation of downstream flood peaks than the narrow or disconnected wetlands. 

However, the influence of wetlands on the downstream flood risk is not universally mitigating. 

Some studies observed the increased flooding downstream where wetlands were highly 

saturated, located lowly in the catchment, or the drawing down storage was too late (Gupta et 

al., 2024; Lane et al., 2018). Overall, wetlands play the important role in regulating 

downstream flood risk, although their effectiveness depends on the location, extent, 

hydrological connectivity, and storage condition of wetlands.  

 

In Chapters 5 and 6, the flood risk was assessed based on three components: hazard, 

vulnerability, and exposure. The maximum cumulative three-day precipitation serves as the 

sole hazard indicator and is assigned a substantially higher weight than the vulnerability and 

exposure indicators. Consequently, the flood risk assessment results are largely dominated by 

precipitation. As this study adopts a GIS-based multi-index spatial assessment approach that 

emphasizes the spatial distribution of relative flood risk levels, it does not explicitly simulate 

the hydrological processes from precipitation to runoff. The potential time lag and routing 

effects of precipitation on downstream discharge are not accounted for, which may lead to an 

underestimation of flood hazards in the lower river reaches under the current assessment 

approach. Additionally, although this study compared the spatial distribution of flood risk 
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before and after incorporating wetland inputs in the representative flood-prone regions 

(Section 5.3.1), it does not fully demonstrate how upstream wetlands influence the 

downstream flood risk and the detailed processes involved. Therefore, more sensitivity tests 

could be conducted in the future research to quantify how variations in wetland characteristics, 

such as the location, extent, hydrological connectivity, storage capacity of various wetlands, 

influence the flood risk downstream. For example, model scenarios may be set up by 

adjusting different wetland storage capacities while keeping other parameters constant to 

evaluate how the increased or decreased water retention of wetlands alters the downstream 

peak flow.” 

 

The GIS-based multi-index flood risk assessment methodology applied in Chapters 5 and 6 

focuses on the spatial distribution of flood risk by integrating a large number of spatial 

indicators. In contrast, flood modelling approaches (e.g., HEC-HMS, MIKE-FLOOD, SWAT, 

and LISFLOOD-FP) (Rajib et al., 2020; Sahu et al., 2023; Tansar et al., 2020) primarily 

emphasize the simulation of hydrological and hydraulic processes (Grimaldi et al., 2019). 

Compared with the model-based methods, the GIS-based multi-index approach has the 

notable advantage of incorporating not only hydrological risks, but also flood vulnerability 

and exposure, rather than focusing solely on flow dynamics, flood depth, and velocity 

(Nkwunonwo et al., 2020), thereby providing a more holistic representation of flood risk. In 

addition, GIS enables detailed spatial analysis and intuitive visualization of flood risk indices 

and outputs across multiple scales, which enhances the interpretability of results for 

policymakers in different regions, whereas such interpretability is often more limited in flood 

modelling approaches. Furthermore, in terms of data accessibility, the GIS-based method 

relies primarily on remote sensing products and existing spatial datasets, which are 

increasingly available and cost-effective.  

 

However, the GIS-based multi-index flood risk assessment method has several limitations 

when compared with the model-based approaches. First, it does not explicitly simulate 

physical flood processes, such as rainfall–runoff dynamics, flow routing, or inundation depth, 

which are commonly represented in hydrological and hydraulic models (Bates et al., 2005). 
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As a result, the downstream impacts of upstream wetlands and precipitation events cannot be 

directly represented in the resulting flood risk maps. In addition, unlike physics-based 

hydrological and hydraulic models that rely on the measurable physical parameters, the 

GIS-based multi-index approach depends heavily on the indicator selection and weighting. 

Consequently, the generated flood risk results may be sensitive to the quality, spatial 

resolution, and subjectivity associated with the chosen indicators.” 

7.4 Uncertainties 

7.4.1 Wetland classifier selection 

As shown in Chapter 4, RF is selected as the primary classifier of the wetland classification 

dataset after taking the classification accuracy, robustness, and computational efficiency 

for the large-scale study region into the consideration. Firstly, RF achieves the better 

classification results compared to other machine learning classifiers, particularly when using 

the hyper-spectral or multi-source data (Belgiu and Drăgut, 2016). In the selected 

representative regions among the YRB, the comparison results of classification accuracy for 

RF, SVM, CART, ANN, and AdaBoost were shown in Table 7.1, demonstrating that RF 

achieved the highest classification accuracy. Besides, RF is less sensitive to feature selection, 

which makes it relatively user-friendly (Li et al., 2015; Vetrivel et al., 2015). Moreover, RF is 

computationally more efficient and more stable than SVM and other ensemble classifiers such 

as AdaBoost when handling high-dimensional and multicollinear data at large spatial scales 

such as the YRB. For ANN, it requires the extensive training cycles and parameter tuning, 

making it to be less efficient for the large multispectral datasets unless implemented with the 

Graphics Processing Unit (GPU) acceleration (Chen and Tsou, 2022; Xu et al., 2018). 

Additionally, SVM and AdaBoost are both sensitive to noise and overfitting, while ANN is 

vulnerable to overfitting and requires the substantial training samples to generalize effectively. 

RF reduces the risk of overfitting and ensures robust classification results, even the training 

data is noise and the class is imbalanced. (Hemmerling et al., 2021; Mei et al., 2016; 

Rodriguez-Galiano et al., 2012).  
Table 7.1: The classification accuracy of different machine learning classifiers in the YRB.  
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Machine 

learning 

classifier 

Accuracy 

 Estuary TLB PLB DHB Source 

RF 95.8% 90.5% 90.3% 92.9% 93.7% 

SVM 92.3% 89.8% 85.4% 92.7% 81.8% 

CART 92.8% 86.3% 88.0% 90.1% 89.5% 

ANN 84.1% 78.6% 77.5% 79.8% 80.5% 

AdaBoost 93.5% 88.6% 86.8% 91.5% 89.8% 

7.4.2 Data sources of the wetland classification 

Over the recent decades, multi-source satellite images with different spatial resolutions been 

widely used for the waterbody extraction and classification, including Landsat, Sentinel-2, 

and MODIS (Jakovljević et al., 2019). In this study, Landsat image collections were selected 

as the primary data source because they provide an irreplaceable long-term time series. 

MODIS was excluded due to its much lower spatial resolution (250m) compared with Landsat 

(30m) and Sentinel-2 (10m). For Sentinel-2, the atmospherically corrected surface reflectance 

products are only available from 2017 and contain data gaps in 2017 and 2018 for several 

regions in the YRB. As a result, Sentinel-2 can only provide the usable data for three years 

(2019-2021) within the long-term time series (1984-2021) wetland classification of the YRB. 

As Landsat and Sentinel-2 differ in several fundamental sensor and data characteristics, such 

as the different spectral band configurations, central wavelengths, spatial resolutions, 

temporal sampling frequencies, and atmospheric correction algorithms, that can introduce 

inconsistencies when they are jointly used in the long-term time series wetland classification 

(Miura et al., 2025; Pahlevan et al., 2019). These inconsistencies may introduce artificial 

discontinuities in long-term time-series analyses. Therefore, to avoid these uncertainties in the 

wetland classification results, Landsat image collections were selected as the sole data source 

in this study. A comparison of wetland classification results for the period 2019–2021 based 



 

 166 

on Landsat and Sentinel-2 data (Table 7.2) indicates that classifications derived from 

Sentinel-2, with its higher spatial and temporal resolution, generally achieve the slightly 

higher accuracy than those based on Landsat 8. This difference is particularly evident in the 

YRB estuary and the TLB, which are characterized by small wetland features such as canals 

and aquaculture ponds that are difficult to distinguish at the coarser spatial resolution. 

 
Table 7.2: The wetland classification accuracy from Landsat and Sentinel-2 between 2019 and 

2021. 

 2019 2020 2021 
 Landsat  Sentinel-2 Landsat  Sentinel-2 Landsat  Sentinel-2 

Estuary  95.7% 98.8% 98.9% 99.7% 99.0% 99.4% 

TLB 86.1% 88.6% 89.2% 90.2% 90.8% 91.1% 

PLB 91.5% 95.6% 87.4% 90.4% 91.8% 90.8% 

DHB 94.7% 95.1% 90.0% 87.2% 93.7% 93.6% 

SR 94.5% 96.6% 93.5% 95.5% 92.7% 93.0% 

For the future study, given the abundance of wetland resources in the YRB and the relatively 

limited resolution of Landsat imagery, it would be feasible to integrate higher-resolution data 

sources in specific regions, particularly for more diverse wetland categories that are difficult 

to distinguish. For example, PlanetScope imagery, with its higher spatial resolution of 3m and 

the daily global coverage including the entire YRB after 2017, it could be applied at the local 

to regional scales to provide the more detailed insights into the rapidly changing lake and 

vegetation dynamics in wetland monitoring studies (Frazier & Hemingway, 2021; Li et al., 

2025; Roy et al., 2021b).  

 

7.4.3 Uncertainties of the flood risk maps 

The uncertainties of the flood risk maps presented in Chapters 5 and 6 arise from several 

aspects. Firstly, uncertainties may occur during data collection and preprocessing. These 
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include the limited selection of indicators, the potential overestimation of projected 

precipitation data, and the inconsistencies between the actual spatial resolution of the flood 

risk patterns and the 1km socio-economic data resolution. Besides, uncertainties associated 

with the model structure and parameters may be introduced due to the absence of updated 

weight evaluation in the indicator substitution, as well as the use of fixed weights for certain 

socio-economic indicators for the long-term flood risk prediction. 

 

The YRB is a macro study region for the flood risk assessment, making the data collection for 

flood risk indicators complex. Detailed topographical information, diverse characteristics of 

flood disasters, and direct and indirect socio-economic losses are all necessary to obtain the 

accurate flood risk assessment results (De Moel et al., 2015; Zhang et al., 2020). As a result, 

indicators in the flood risk assessments in Chapters 5 and 6 may not comprehensively cover 

all the flood risk driving factors due to the complexities in modeling the large and dynamic 

region. 

 

Another uncertainty during the data collection is the overestimation of projected precipitation 

data obtained from the CMIP6 MRI-ESM2-0 model, though it has been confirmed to have a 

lower relative bias than other GCMs and ensemble models in the YRB (Lu et al., 2022). 

Besides, for indicators such as GDP per capita, population density, and LULC, uncertainties 

may exist in the predicted data collection process caused by the future policy change in China, 

such as the implementation of new town and district construction policies to deal with the 

future urbanization (Chen et al., 2020). A part of the indicators, such as relative elevation, 

absolute elevation, and monitoring and early warning capacity, are assumed to remain 

unchanged based on the historical data. It may introduce uncertainties into the flood risk 

prediction results, although the topography and meteorological station distributions in the 

MLYRB have been confirmed to change slightly over the historical period. 

 

In addition, all the indicator data were converted into spatial layers with a 1 km × 1 km spatial 

resolution to ensure the consistency and to facilitate the data processing in GIS. However, this 

process may cause the uncertainties of the flood risk outputs due to the differences in the 
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original formats and spatial scales of different data sources. For example, several 

socio-economic flood risk indicators, such as local financial revenue, per capita resident 

savings, medical service level, were obtained from the China City Statistical Yearbook. These 

indicators were converted into the raster layers by assigning the city-level statistical values to 

each 1km × 1 km grid cell. Given that the source data of these indicators were originally 

complied at administrative unit scales, the conversion to the 1km resolution implied the level 

of the spatial detail that the original data do not actually contain. As a result, the nominal 

resolution of the integrated flood risk map may be inconsistent with the true spatial resolution 

of these socio-economic indicators, and the mapped patterns may reflect grid cell size rather 

than real spatial variability. In future study, the socio-economic data can be spatially 

redistributed based on the land use, nighttime lights, or built-up area datasets instead of the 

unform rasterization, to provide a more realistic spatial representation of the flood risk maps. 

 

In the flood risk assessments in Chapters 5 and 6, substituting the original drainage density 

indicator with the wetland density from the LTWCD_YRB dataset, without developing a new 

AHP weight evaluation of indicators, may introduce uncertainties associated with the model’s 

assumptions. However, a sensitivity analysis of the drainage density weight changes, detailed 

in Section 5.4.1, confirmed that variations in the drainage density weight had minor impacts 

on the flood risk assessment results.  

 

Using fixed weights for certain indicators in the long-term flood risk assessment and 

prediction in the large-scale study region, without considering their spatial and temporal 

dynamics, may also lead to uncertainties of the model assumption in Chapters 5 and 6. The 

GDP per capita, population density, and other socio-economic indicators in the economic 

developed and populated regions such as Henan, Shanghai, and a part of Jiangsu located in 

the TLB, need to be assigned higher weights than other regions (Peng and Li, 2021; Sang et 

al., 2024; Xu and Chen, 2023). For the temporal perspective, the weight of precipitation for 

the years with severe flood disasters should be greater than that in other years to improve the 

accuracy of flood risk assessment results. Therefore, future long-term and large-scale flood 

risk assessments need to consider the weight dynamics of specific indicators. 
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Chapter 8 Conclusion 

8.1 Summary of the thesis  

The YRB is a flood-prone region with the abundant wetland resources. Challenges of wetland 

conservation and flood risk mitigation still existed under the rapid socio-economic 

development and climate change. The existing research did not contain the comprehensive 

analysis regarding the long-term wetland dynamics and flood risks incorporating wetland 

effects in the YRB. The overall objective of this thesis is to fill in this research gap by 

establishing a long-term wetland classification dataset with the comprehensive wetland 

categories for the YRB and assessing flood risks incorporating wetland effects for both 

historical and future periods. All the research questions mentioned in Chapter 1 have been 

solved through the research of Chapters 4, 5, and 6. 

 

Chapter 4 produces the LTWCD_YRB dataset by using the RF machine learning classifier on 

the GEE platform with 30m resolution Landsat 5, 7, and 8 multi-spectral images. The dataset 

reveals that the total wetland area of the YRB in 2021 was larger than that in 1984. Natural 

wetlands fluctuated but human-made wetlands increased consistently during these 37 years. 

Among all the wetland categories, aquaculture ponds exhibited the most significant long-term 

expansion, particularly in the YRB estuary, TLB, and DHB. In contrast, the inland marsh in 

the YRB SR experienced the greatest fluctuations. Seasonal wetland dynamics were typically 

prominent in the PLB, DHB, and SR between May and September. Anthropogenic driving 

forces had a greater impact on the long-term wetland dynamics in the YRB than natural 

drivers. 

 

Chapter 5 analyzes the long-term wetland effects on the flood risk in the YRB from 1985 to 

2021 by developing an improved GIS-based multi-index flood risk assessment model. The 

long-term wetland expansions in the TLB, WP, PLB, and DHB all played the significant role 

in the flood risk mitigation, except during certain years with extreme precipitation events. In 

contrast, wetland expansions in the SB aggravated the flood risk, although the impact was 
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limited. For the spatial distribution of flood risk dynamics influenced by wetlands in these 

flood-prone regions, the eastern TLB demonstrated the stormwater storage potential to 

mitigate the flood risk. Chaohu Lake and its surrounding areas were regions with high and 

very high flood risk under wetland effects. In the PLB, high and very high flood risk areas 

covered more than half of the region, and the weak stormwater storage capacity of seasonal 

lakes surrounding Poyang Lake increased flood risks during years of heavy precipitation. The 

northeastern and southwestern regions of the DHB are highly flood-prone regions with the 

significant wetland effects. Precipitation in the TLB and PLB, runoff and vegetation cover in 

the WP, GDP in the TLB, and population density in the TLB, the DHB, and the SB are 

identified as dominant flood risk indicators under the effects of wetlands by using the PCMCI 

causal inference algorithm. This chapter provides wetland-related suggestions for addressing 

flood risk changes, such as maximizing stormwater storage capacity, controlling lake 

reclamation, and increasing vegetation coverage, typically in areas with the high precipitation 

and dense populations. 

 

Chapter 6 predicts the spatial and temporal dynamics of flood hazard, vulnerability, exposure, 

and the integrated flood risk in the MLYRB under the SSP2-4.5 and SSP5-8.5 scenarios from 

2021 to 2100. The overall flood hazard and the integrated flood risk of the MLYRB are 

predicted to become more severe by 2100 under both scenarios. In contrast, flood 

vulnerability and exposure areas are expected to decrease. The high and very high flood risk 

areas are expected to continue increasing, reaching 38% and 40% of the MLYRB under the 

SSP2-4.5 and SSP5-8.5 scenarios, respectively. Generally, the spatial distribution of the flood 

risk is projected to be higher in the south-eastern region (Jiangxi, Hunan, and Jiangsu) and 

lower in the western region (Shaanxi and Henan) of the MLYRB. The high and very high 

flood risk areas will expand northward in Jiangxi, Hunan, and the southern part of Jiangsu, 

typically in the southern TLB over the next 80 years. This expansion is more prominent under 

the SSP5-8.5 scenario.  

 

The findings of this thesis not only investigate the complex long-term spatial-temporal 

dynamics of wetlands and flood risks, but also demonstrate the significant effects of wetland 
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dynamics on flood risks and highlight the importance of sustainable wetland management for 

mitigating flood risks in the YRB, both now and in the future. The overall framework of this 

thesis can serve as a reference for investigating the hydrological responses of wetland 

variations in the large-scale basins. This thesis  hopes to contribute to the GYRPP under 

China's ecological civilization initiatives and align with the United Nations SDGs. 

8.2 Future work 

8.2.1 Applications in other regions of the world 

From a global perspective, wetland conservation and flood risk mitigation in other regions 

also face emerging challenges, such as the Intermountain West of the United States (Henry et 

al., 2024), San Francisco Bay and the Mississippi River Delta in the United States (Li et al., 

2018), Sanjiang Plain in China (NRSCC, 2014), Lake Urmia in Iran (NRSCC, 2014), the 

Mekong River Basin in South Asia (Abbas et al., 2016), Kakadu National Park in Australia 

(NRSCC, 2014), the Danube Delta and the Volga Delta in Europe (NRSCC, 2014). All of 

these flood-prone regions contain the significant wetland resources listed under the Ramsar 

Convention, which spans both developed and developing countries. Challenges in wetland 

conservation and flood risk mitigation vary globally due to differing ecological and 

socio-economic factors across countries and regions. Therefore, the research on the YRB only 

serves as one of the case studies. In the future, similar or more advanced methodologies can 

be applied to establish the long-term wetland classification datasets and to assess long-term 

flood risks influenced by wetlands in other basins worldwide. These basins, often 

characterized by abundant but threatened wetland resources, high flood risk, and complex 

socio-economic factors, could benefit from such analyses. Comparing results from other 

basins around the world with those from the YRB may offer more inspiration and possibilities 

for the sustainable wetland conservation and wetland-related flood risk mitigation 

management. 

8.2.2 Managing wetlands as multipurpose nature-based solutions 

The awareness of wetlands as nature-based solutions (NbS) for addressing social and 

environmental challenges and enhancing resilience to climate change has increased over the 
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recent years (Gupta et al., 2025; Rizzo, 2025). Future wetland planning needs to consider 

multipurpose NbS, rather than just the single NbS of flood risk mitigation or water pollution 

control (Rizzo, 2025). The influence of the green infrastructure planning on the wetland 

conservation and restoration has been evident worldwide (Moreno et al., 2024). The Minghu 

Wetland Park and the Yanweizhou Wetland Park in China, as well as the South Los Angeles 

Wetland Park in the United States are notable examples of the green infrastructure planning 

(Ganapathi et al., 2024; Moreno et al., 2024). In these cases, the wetland design process 

considered multiple NbS, including the articulation of ecosystems, ecological restoration, 

urban flood resilience management, and the conversion of degraded riverbanks and marsh 

habitats into constructed wetland parks with the high social value (Ganapathi et al., 2024; 

Moreno et al., 2024). In addition to Wetland Parks, the ‘Sponge City’ project in China is 

another effective green infrastructure planning in the multipurpose wetland management 

(Ganapathi et al., 2024). The ‘Sponge City’ manages wetlands as NbS to improve the 

stormwater drainage for flood control and to prevent the degradation of surface water quality 

through the sunken green spaces, permeable ground materials, and extensive drainage systems 

(Guan et al., 2021). For the coastal wetland management, the Houston Coastal Roulette 

Planning for Galveston Bay in Mexico planned and designed the green infrastructure for the 

disaster impact mitigation in coastal regions based on wetland systems. It combined riparian 

vegetation and coastal forests with agricultural areas. Additionally, it established 

infrastructures to implement the NbS of regulating the occupation of risk zones and 

stimulating the conservation of coastal ecosystems (Moreno et al., 2024). As a large basin 

with the complex socio-economic and ecological environment, the YRB encompasses the 

densely populated urban and coastal regions as well as the less developed plateau and 

woodland regions. Therefore, the future work on wetlands in the YRB can focus on designing 

and managing multipurpose wetlands as NbS across different regions based on the results of 

wetland variations and their effects on flood risks of this thesis, as well as other 

environmental impact assessments incorporating wetland effects in the future research.  
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Supplementary materials 

Chapter 5 Section 5.3.3  

 

Appendix 5.1: The causal relationships between the ΔFRlow and indicators in the a) Poyang 

Lake Basin; and b) Dongting and Honghu Lake Basin. No indicator exhibits a causal 

relationship with ΔFRlow in the Taihu Lake Basin, Wanjiang Plain, and Sichuan Basin. 

 

 
Appendix 5.2: The causal relationship between ΔFRmedium and indicators in the a) Taihu Lake 

Basin; b) Wanjiang Plain; c) Poyang Lake Basin; and d) Sichuan Basin. No indicator exhibits 

a causal relationship with ΔFRmedium in the Dongting and Honghu Lake Basin. 
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Chapter 6 Section 6.3.2 

 

Appendix 6.1: The spatial distribution maps of wetlands in the MLYRB under the SSP2-4.5 

scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario in e) 

2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Appendix 6.2: The spatial distribution maps of runoff and vegetation cover factor in the 

MLYRB under the SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the 

SSP5-8.5 scenario in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Appendix 6.3: The spatial distribution maps of GDP per capita in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Appendix 6.4: The spatial distribution maps of population density in the MLYRB under the 

SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 scenario 

in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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Appendix 6.5: The spatial distribution maps of site contamination risk in the MLYRB under 

the SSP2-4.5 scenario in a) 2040s; b) 2060s; c) 2080s; and d) 2100s, under the SSP5-8.5 

scenario in e) 2040s; f) 2060s; g) 2080s; and h) 2100s. 
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