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On quantum graph theory

–non-commutative graph theory–

M. Abu Omar

2025

Abstract

This research paper aims to introduce quantum graphs to newcomers. We adopt a
clear and concise linear algebraic approach to simplify the concepts of quantum graphs.
Our main perspective is viewing a quantum graph as a quantum adjacency matrix oper-
ator on a finite-dimensional C∗-algebra (which can simply be thought of as a direct sum
of matrix algebras), with the inner product defined by choosing a faithful positive linear
functional on each matrix algebra summand of the direct sum. Our main result presents
practical formulae for identifying isomorphic single-edged quantum graphs. An immedi-
ate corollary to this is that there is an infinite number of isomorphisms for a single-edged
quantum graph on Mn(C) for n > 2, which is surprising since all single-edged quantum
graphs are isomorphic to one another for n = 2.

1



On quantum graph theory
-non-commutative graph theory-

M.A.O.
University of Glasgow

B.Sc. Mathematics & Computer Science, 2019
M.Sc. Mathematics, 2021
M.Phil. Mathematics, 2025

Supervised by

Prof. Christian Voigt
University of Glasgow



This essay is dedicated to Luma, Omar, and my parents.



Contents

Introduction.................................................................................................................... 5

A Setting the scene ...................................................................................................... 6
A.I String diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.II The algebraic and co-algebraic structures . . . . . . . . . . . . . . . . . . . . 9
A.III Ket-bra operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.IV From linear maps to matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.V The inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.VI The modular automorphism σ . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.VII KMS inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.VIII Real (star-preserving) maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.IX The symmetry maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.X The Schur product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.XI Automorphisms on B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.XII Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.XIII Bimodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B Quantum graphs....................................................................................................... 70
B.I Quantum adjacency matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.II Quantum graphs as projections on B ⊗Bop . . . . . . . . . . . . . . . . . . 71
B.III Quantum graphs as bimodule projections . . . . . . . . . . . . . . . . . . . . 71
B.IV Quantum graphs as positive maps . . . . . . . . . . . . . . . . . . . . . . . . 75
B.V Number of edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.VI Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.VII (Ir)reflexive complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.VIII Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.IX Quantum isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.X Graph gradient and degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C Single-edged real quantum graphs on B =Mn ................................................... 93
C.I Minimal projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C.II Single-edged real quantum graphs . . . . . . . . . . . . . . . . . . . . . . . . 93
C.III Describing isomorphisms on single-edges . . . . . . . . . . . . . . . . . . . . 96
C.IV Describing isomorphisms of single-edges on tracial functionals . . . . . . . . 97
C.V Isomorphisms on Mn for tracial functionals . . . . . . . . . . . . . . . . . . . 99
C.VI Adding single-edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendices

E String diagrams ........................................................................................................ 103

References ....................................................................................................................... 106

Index ................................................................................................................................ 107

4



INTRODUCTION 5

Introduction

Quantum graphs, also known as non-commutative graphs, extend the notion of classical finite graphs
into the realm of non-commutativity. What began as a subtopic in quantum information theory
introduced in [5], is now a small but rich theory, drawing connections between operator algebras,
quantum groups, non-commutative geometry, and quantum information theory.

The purpose of this thesis is threefold. The first is to give a detailed and deep introduction to
the language that will be used in describing quantum graphs. Namely, we will look at things
from string diagrams, to constructing inner products on finite-dimensional C∗-algebras, to studying
automorphisms on these structures. The second is to give an introduction to quantum graphs.
Finally, the third aim is to give some useful formulae and results pertaining to quantum graphs on
Mn, with the end goal of proving that there are infinitely many non-isomorphisms on single-edged
quantum graphs when n > 2.

This paper approaches the subject from a purely linear algebraic perspective, making it accessible
to a broad range of mathematicians interested in linear algebra and its applications. This work has
been formally verified in Lean [1]. While Lean itself is not discussed here, its presence guarantees
precision and correctness.

The study of quantum graphs has progressed steadily over the past 15 years. Duan, et al. [5]
introduced the concept of non-commutative graphs, drawing inspiration from quantum informa-
tion theory. Shortly after, Weaver [17, 18] reformulated the notion of quantum graphs as quantum
relations, and Musto, et al. [12] connected these perspectives via quantum adjacency matrix oper-
ators, showing their equivalence. Later, Daws [4] provided an accessible expository survey, aimed
at introducing the topic to non-experts. They prove the equivalency between different notions in a
purely algebraic method using operator algebras, while Matsuda [9] and, independently, Gromada
[6], developed concrete examples and classification results on on 2× 2 matrices M2. In particular,
they showed that the isomorphism of simple quantum graphs on M2 is solely determined by the
number of edges. This result prompted our investigation of higher-dimensional analogues.

Our analysis of M3 (i.e., the set of 3× 3 matrices) revealed to us that single-edged simple quantum
graphs over M3 are not always isomorphic. In our attempt to understand why this is not true for
higher dimensions, we found that for almost self-adjoint matrices x, y ∈ Mn (where Mn is the set
of n × n matrices) that have zero trace, we get (Mn,Tr, A(x)) ∼= (Mn,Tr, A(y)) if and only if x
is almost similar to y (see Theorem C.14). This means that, for n > 2, there are infinitely many
non-isomorphisms of simple single-edged quantum graphs.

It is essential for readers to possess a strong background in linear algebra to fully engage with the
content. Our intention is that this essay may serve as both an introduction to the topic of quantum
graphs and as a foundation for further study and generalisation.

Notation

The inner product will be written as ⟨·|·⟩ and is linear in the right variable.

We write L(A,B) for the set of linear maps A → B, and L(A) = L(A,A). We write B(A,B) for
the set of bounded linear maps A→ B and, similarly, B(A) = B(A,A).
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A Setting the scene

In this chapter, we set the scene by first looking at some string diagrams on C-vector spaces
and finite-dimensional Hilbert spaces. This will help us streamline calculations when dealing
with algebraic and co-algebraic properties, such as the Frobenius equations (Theorem A.7).

We quickly go over some notation and recall some well-known results in linear algebra and
Hilbert spaces in Sections A.III and A.IV, which can be quickly skimmed through.

We then define the Hilbert space induced by our finite-dimensional C∗-algebra B in Section
A.V.

In Section A.II, we study the algebraic and co-algebraic structures of our C∗-algebra, where
the co-algebraic structure is unravelled by the endowed Hilbert space. We also look at the
modular automorphism σ on B in Section A.VI.

We then define and study four important maps that are used throughout, namely, the real
map ·r in Section A.VIII, the symmetry maps symm and symm′ in Section A.IX, and the
Schur product map · • · in Section A.X. These maps are the cornerstones of the definition of
a quantum graph taken as a quantum adjacency matrix (Chapter B).

In the penultimate section, we look at projections on B⊗Bop, which will be useful as we can
define quantum graphs as such projections.

Finally, the last section looks at bimodules, which, again, will be useful as we can define
quantum graphs as (B,B)-bimodule projections.

A.I String diagrams

We begin with string diagrams, which are a powerful graphical calculus for simplifying complex
algebraic calculations and will simplify later arguments.

This section is based on the presentations given in [12] and [9].

All string and planar diagrams are to be read from bottom to top.

Let A,C,D,E be C-vector spaces.

• The identity on A is denoted by the string

A

A

.

• A map f : A→ C is denoted by the string f

A

C

.

• Inputting an element x ∈ A can be shown by the string
x

.

• So then f(x) is shown as

x

f

C

=
f(x)

.
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• Given g : D → A, we have f ◦ g is denoted by

g

f

D

C

.

• Given s : D → E, we have f ⊗ s is denoted by f

A

C

s

D

E

.

• Similarly, inputting an element x⊗ y for x ∈ A and y ∈ D, is denoted by
x y

.

• Define κA,D as the identification A ⊗D ∼= D ⊗ A given by x ⊗ y 7→ y ⊗ x. The string

diagram of κA,D is denoted by

DA

AD

.

The red and black strands are meant to highlight the fact that they are not intersecting,
but overlapping (either way).

So then it is clear that for any x ∈ D and y ∈ A, we get,

xy

= x y .

• When A and C are Hilbert spaces, then the adjoint of f ∈ B(A,C) is denoted by the

string diagram f∗

C

A

, in other words, the string diagram of the adjoint of f is given by

vertically reflecting the diagram of f .

Deforming (i.e., stretching, compressing, and/or moving around the strings) the strings retain
equality of the diagrams. This means we can perform planar isotopies (RO), Reidemeister
moves (RII), and Reidemeister moves (RIII) [14] (see [2, 8] for a concise introduction to knot
theory). In knot theory, (RII) and (RIII) moves are shown as follows,

∼

(RII)

∼

(RIII)

For our string diagrams, we alter the above definitions of (RII) and (RIII) so that there are
no over and under crossings.

It is easy to see that string diagrams retain equality under regular isotopy. In particular, (RII)
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moves on string diagrams can be seen by the following,

AD

AD

=

AD

AD

The diagram on the left-hand side is exactly κD,AκA,D, which is the identity, and is exactly
what the diagram on the right-hand side represents. This means κ∗

A,D = κ−1
A,D:

Lemma A.1. κ∗
A,D = κ−1

A,D = κD,A. In other words,
DA

AD


∗

=

AD

DA

.

Proof. Let x,w ∈ A and y, z ∈ D. Then we compute,〈
x⊗ y

∣∣κ∗
A,D(z ⊗ w)

〉
A⊗D = ⟨y ⊗ x|z ⊗ w⟩D⊗A = ⟨y|z⟩D⟨x|w⟩A

= ⟨x⊗ y|w ⊗ z⟩A⊗D =
〈
x⊗ y

∣∣∣κ−1
A,D(z ⊗ w)

〉
A⊗D

.

Thus κ∗
A,D = κ−1

A,D. ■

Similarly, (RIII) can be seen by the following,

ADE

EDA

=

ADE

EDA

The diagram at the left-hand side is exactly (id⊗κE,D)(κE,A ⊗ id)(id⊗κD,A), and the dia-
gram at the right-hand side is exactly (κD,A ⊗ id)(id⊗κE,A)(κE,D ⊗ id). An easy and quick
computation shows that these two expressions are equal (they both flip the first and last
tensor-element and keep the second in place).

The next result is about using heights as a graphical tool and is useful when manipulating
string diagrams. The heights are shown to be algebraically irrelevant. It is simply regarded
as planar isotopy when string diagrams are involved (i.e., we just move the boxes up/down).

Lemma A.2. Given linear maps f : A→ D and g : E → F , we get

(f ⊗ idF )(idA⊗g) = f ⊗ g = (idD ⊗g)(f ⊗ idE).

In other words,

f

A

D

g

E

F

= f

A

D

g

E

F

=

f

A

D

g

E

F

.
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Proof. Obvious. ■

Lemma A.3. Given linear maps T : A→ D and S : E → F , we get

κD,F (T ⊗ S) = (S ⊗ T )κA,E .

In other words,

T

A

F

S

E

D

=

T

D

E

S

F

A

Proof. Straightforward computation. ■

A.II The algebraic and co-algebraic structures

With these diagrammatic conventions in place, we can now turn to algebras and co-algebras,
which we will look at both diagrammatically and algebraically.

Notation. We work with a strict version (see more on this [13, p.37]) of the tensor product,
i.e., for C-vector spaces X,Y, Z, we have,

• (x⊗ y)⊗ w = x⊗ (y ⊗ w) for all x ∈ X, y ∈ Y , and w ∈W ,

• α⊗ x = αx = x⊗ α for all α ∈ C and x ∈ X.

A.II.1 Algebras.

Definition A.4 (Algebra). An algebra is a vector space together with a multiplication
linear map m : A ⊗ A → A and a unit linear map η : C → A, with a unit 1 ∈ A such
that m(1 ⊗ x) = m(x ⊗ 1) = x for all x ∈ A, and with the properties of associativity
m(m⊗ id) = m(id⊗m) and m(η ⊗ id) = id = m(id⊗ η).

We call (A,m, η) an algebra if these properties hold.

In strings, m and η are denoted by:

m

A⊗A

A

=:

AA

A

, η

C

A

=:

A

C

.

Each relation in our algebra corresponds to equivalences on our diagrams. For instance,
associativity of m [9, bottom of page 3] is essentially given by m(m ⊗ id) = m(id⊗m) (in
other words, (xy)z = x(yz)); this is shown diagrammatically by the following,

= .

It is easy to picture the above equivalency by moving the vertical line (coloured in red) with
the empty circle to the other empty circle.
To see this algebraically, we let x, y, z ∈ B, and compute,

m(m⊗ id)(x⊗ y ⊗ z) = m(xy ⊗ z) = (xy)z = x(yz) = m(x⊗ yz) = m(id⊗m)(x⊗ y ⊗ z).
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Thus m(m⊗ id) = m(id⊗m).

Similarly, the relation m(η ⊗ id) = id = m(id⊗ η) in strings is given by,

= = .

Algebraically, let α ∈ C and x ∈ A, then compute m(η⊗ id)(α⊗x) = m(α1⊗x) = αx = α⊗x.
Similarly, m(id⊗ η)(α⊗ x) = m(id⊗ η)(x⊗ α) = αx = α⊗ x.

A.II.2 Co-algebras.

Definition A.5. A vector space A is a co-algebra when it has a co-multiplication linear
map µ : A → A ⊗ A and a co-unit linear map ϖ : A → C such that co-associativity is
satisfied, i.e., (µ ⊗ id)µ = (id⊗µ)µ, and the property (ϖ ⊗ id)µ = id = (id⊗ϖ)µ is
satisfied. We say (A, µ,ϖ) is a co-algebra when those properties are satisfied.

In strings, µ and ϖ are denoted by:

µ

A⊗A

A

=:

A A

A

, ϖ

A

C

=:

A

C

.

The co-associativity property [9, top of page 3] is then shown diagrammatically by,

= .

Finally, the property (ϖ ⊗ id)µ = id = (id⊗ϖ)µ is shown diagrammatically by,

= = .

A.II.3 Algebras and co-algebras. Let (A,m, η, µ,ϖ) be both an algebra and a co-
algebra with multiplication map m, co-multiplication µ, unit map η, and co-unit ϖ. Then

when m is composed with ϖ, we draw

AA

C

=

AA

C

.

Similarly, we draw

µη =

AA

C

=

AA

C

.

We summarise string diagrams and their connections to algebras and co-algebras in Appendix
E.

Lemma A.6. Given a vector space A which is both an algebra and a co-algebra with multipli-
cation m, unit η, co-multiplication µ, and co-unit ϖ, we get ϖm(η ⊗ id) = ϖ = ϖm(id⊗ η):

= =
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and (ϖ ⊗ id)µη = η = (id⊗ϖ)µη:

= = .

Proof. This is done by composing (unit id) and (co unit id) with η and ϖ. Note that (unit id)
and (co unit id) are references to the properties highlighted in Appendix E. ■

The following result highlights the power and usefulness of using string diagrams.

Theorem A.7 (the Frobenius equations). In general, given a vector space A which is both
an algebra and a co-algebra with multiplication map m, unit map η, co-multiplication map µ,
and co-unit map ϖ, then if

(id⊗m)(µ⊗ id) = (m⊗ id)(id⊗µ), (⋄)

which in string diagrams is,

= , (*)

then we get the following equations (the Frobenius equations),

(id⊗m)(µ⊗ id) = µm = (m⊗ id)(id⊗µ),

which in string diagrams is,

= = .

Proof. We show, using the algebraic and co-algebraic structure given in strings in Table 1 in
Appendix E and the hypothesis (Equation (*)), that we get the Frobenius equations. Hence
we compute,

= by (co unit id)

= = by (*)

= = by (co mul assoc)

= = by (*)
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= = by (co unit id).

For the sake of completeness, we will show this algebraically to explore the usefulness and
power of using string diagrams. We do this by demonstrating that it is not as easy to follow
algebraically. “Planar isotopies” correspond to multiple algebraic identities, which can make
the algebraic approach cumbersome.

In the following computation, we denote the identity operator on C by idC (and the identity
operator on A remains as id). The idea is to use the fact that we have α⊗ x = x = x⊗ α for
all α ∈ C and a ∈ X for any algebra X.

We translate the calculations we made with the string diagrams above to compute,

(m⊗ id)(id⊗µ) = (m⊗ id)((ϖ ⊗ id)µ⊗ µ) by (co unit id)

= (m⊗ id)(ϖ ⊗ id⊗3)µ⊗2

= (m(ϖ ⊗ id⊗2)⊗ id)µ⊗2

= ((idC ⊗m)(ϖ ⊗ id⊗2)⊗ id)µ⊗2

= ((ϖ ⊗ id)(id⊗m)⊗ id)µ⊗2 by A.2

= (ϖ ⊗ id⊗2)(id⊗m⊗ id)(µ⊗ id⊗2)(id⊗µ)

= (ϖ ⊗ id⊗2)((id⊗m)(µ⊗ id)⊗ id)(id⊗µ)

= (ϖ ⊗ id⊗2)((m⊗ id)(id⊗µ)⊗ id)(id⊗µ) by (⋄)
= (ϖ ⊗ id⊗2)(m⊗ id⊗2)(id⊗ (µ⊗ id)µ)

= (ϖm⊗ id⊗2)(id⊗ (id⊗µ)µ) by (co mul assoc)

= (ϖ ⊗ id⊗2)(m⊗ id⊗2)(id⊗2 ⊗µ)(id⊗µ)

= (ϖ ⊗ id⊗2)(id⊗µ)(m⊗ id)(id⊗µ) by A.2

= (ϖ ⊗ id⊗2)(id⊗µ)(id⊗m)(µ⊗ id) by (⋄)
= (ϖ ⊗ id⊗2)(id⊗µm)(µ⊗ id)

= (idC ⊗µm)(ϖ ⊗ id⊗2)(µ⊗ id) by A.2

= µm((ϖ ⊗ id)µ⊗ id)

= µm(id⊗ id) by (co unit id)

= µm.

■

Using Theorem A.7, it thus suffices to show Equation (*) in order to show the Frobenius
equation, when we have an algebraic and co-algebraic structure.

We get the following by composing η to the Frobenius equations (when the Frobenius equations
are satisfied).

Proposition A.8 ([6, Corollary 1.6(2)]). Let (A,m, η, µ,ϖ) be an algebra and a co-algebra
such that (m⊗ id)(id⊗µ) = (id⊗m)(µ⊗ id). Then we have,

(i) (m⊗ id)(id⊗µη) = µ = (id⊗m)(µη ⊗ id),
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in other words,

= = ,

(ii) (id⊗ϖm)(µ⊗ id) = m = (ϖm⊗ id)(id⊗µ),
in other words,

= = .

Proof. We only show Part (i), since Part (ii) is shown similarly. We compute,

(m⊗ id)(id⊗µη) = (m⊗ id)(id⊗µ)(id⊗ η)

= µm(id⊗ η) by A.7

= µ by (unit id).

Diagrammatically, the proof corresponds to:

= = by A.7

= by (unit id).

Similarly, we compute,

(id⊗m)(µη ⊗ id) = (id⊗m)(µ⊗ id)(η ⊗ id)

= µm(η ⊗ id) by A.7

= µ by (unit id).

In strings, this is:

= = by A.7

= by (unit id).

Thus (m⊗ id)(id⊗µη) = µ = (id⊗m)(µη ⊗ id). ■

The following result is sometimes referred to as the snake equations, and is given by composing
η∗ and η to the Frobenius equations (when the Frobenius equations are satisfied).

Proposition A.9 (Snake equations). Let (A,m, η, µ,ϖ) be an algebra and a co-algebra such
that (m⊗ id)(id⊗µ) = (id⊗m)(µ⊗ id). Then we get

(ϖm⊗ id)(id⊗µη) = id = (id⊗ϖm)(µη ⊗ id),
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in other words,

= = .

Proof. We compute,

(ϖm⊗ id)(id⊗µη) = (ϖ ⊗ id)(m⊗ id)(id⊗µη)

= (ϖ ⊗ id)µ by A.8(i)

= id by (co unit id).

In strings, this is:

= = by A.8(i)

= by (co unit id).

Similarly, we compute,

(id⊗ϖm)(µη ⊗ id) = (id⊗ϖ)(id⊗m)(µη ⊗ id)

= (id⊗ϖ)µ by A.8(i)

= id by (co unit id).

In strings this is exactly:

= = by A.8(i)

= by (co unit id).

■

Proposition A.10. Let (A1,m1, η1) and (A2,m2, η2) be algebras. Let f : A1 → A2 be a
linear map. Then we have,

(i) m2 ◦ (f ⊗ f) = f ◦m1 ⇔ ∀x, y ∈ A1 : f(xy) = f(x)f(y), in other words,

f f =

f

⇔ f preserves multiplication,



A.II The algebraic and co-algebraic structures 15

(ii) f ◦ η1 = η2 ⇔ f(1) = 1, in other words,

f
= ⇔ f preserves the unit.

Proof.

(i) For any x, y ∈ A1, we have,

m2 ◦ (f ⊗ f)(x⊗ y) = f ◦m1(x⊗ y) ⇔ m2(f(x)⊗ f(y)) = f(xy)

⇔ f(x)f(y) = f(xy).

(ii) We have, f ◦ η1 = η2 ⇔ ∀x ∈ C : f(η1(x)) = η2(x) ⇔ ∀x ∈ C : xf(1) = x1 ⇔ f(1) = 1.

■

From the above proposition, we see that for an algebra homomorphism f : A1 → A2, i.e., a
linear map that preserves multiplication and preserves the unit, we get m2 ◦ (f ⊗ f) = f ◦m1

and f ◦ η1 = η2.

A.II.4 Tensor products of co-algebras. Let (A1,m1, η1) and (A2,m2, η2) be algebras.
Then A1 ⊗A2 is an algebra with multiplication linear map (m1 ⊗m2)(id⊗κ ⊗ id) and unit
linear map η1⊗η2. Similarly, when (A1, µ1, ϖ1) and (A2, µ2, ϖ2) are co-algebras, then A1⊗A2

is also a co-algebra with co-multiplication (id⊗κ ⊗ id)(µ1 ⊗ µ2) and co-unit ϖ1 ⊗ϖ2. It is
left as an exercise to check that this indeed forms a co-algebra.

A.II.5 Finite-dimensional Hilbert space algebras induce a co-algebra. Let (A,m, η)
be a finite-dimensional algebra and a Hilbert space. Then we can letm∗ be the co-multiplication
and η∗ be the co-unit. Recall that by T ∗, we mean the Hilbert space adjoint of T .

Proposition A.11. Let (A,m, η) be a finite-dimensional algebra and Hilbert space. Then we
can form a co-algebra (A,m∗, η∗) by letting m∗ be the co-multiplication and η∗ be the co-unit.

There is also the opposite implication: if we start from a finite-dimensional co-algebra and
Hilbert space (A, µ,ϖ) then we can form an algebra (A, µ∗, ϖ∗).

Proof.

(⇒) comul assoc: We have the following equivalences,

(m∗ ⊗ id)m∗ = (id⊗m∗)m∗ ⇔ (m(m⊗ id))
∗
= (m(id⊗m))

∗

⇔ m(m⊗ id) = m(id⊗m),

which is true since A is an algebra.

counit comul id: Similarly, taking adjoints, we get

(η∗ ⊗ id)m∗ = id = (id⊗ η∗)m∗ ⇔ m(η ⊗ id) = id = m(id⊗ η),

which is true since A is an algebra.

(⇐) We define multiplication on A by (x, y) 7→ µ∗(x⊗ y), which is bilinear. So our multipli-
cation linear map is µ∗. We let the unit linear map be ϖ∗.

We get associativity and µ∗(ϖ∗ ⊗ id) = id = µ∗(id⊗ϖ∗) by following an analogous
proof of the above.

We leave the proof of showing ϖ∗(1) is indeed a unit in A as an exercise to the reader.
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■

Lemma A.12. Let (A,m, η) be a finite-dimensional algebra and Hilbert space. Then η∗ is
given by y 7→ ⟨1|y⟩.

Proof. For y ∈ A and x ∈ C, we have

⟨x|η∗(y)⟩ = ⟨η(x)|y⟩ = x⟨1|y⟩ = ⟨x|⟨1|y⟩⟩.

Thus η∗(y) = ⟨1|y⟩. ■

Corollary A.13. Let (A1,m1, η1), (A2,m2, η2) be finite-dimensional algebras and Hilbert
spaces. Then, for a linear map f : A1 → A2, we get

(f ⊗ f) ◦m∗
1 = m∗

2 ◦ f ⇔ ∀x, y ∈ A2 : f∗(xy) = f∗(x)f∗(y), in other words,

ff =

f

⇔ f∗ preserves multiplication,

moreover, (f∗ ⊗ f∗) ◦m∗
2 = m∗

1 ◦ f∗ ⇔ ∀x, y ∈ A1 : f(xy) = f(x)f(y), i.e.,

f∗f∗ =

f∗
⇔ f preserves multiplication.

Proof. Take adjoints of Proposition A.10. ■

Corollary A.14. Let (A1,m1, η1) and (A2,m2, η2) be finite-dimensional algebras and Hilbert
spaces. Then, given an algebra homomorphism f : A1 → A2, we get

1. m2 ◦ (f ⊗ f) = f ◦m1,

2. f ◦ η1 = η2,

3. (f∗ ⊗ f∗) ◦m∗
2 = m∗

1 ◦ f∗.

Proof. This is immediate from Proposition A.10 and Corollary A.13. ■

Proposition A.15. Let (A1,m1, η1), (A2,m2, η2) be finite-dimensional algebras and Hilbert
spaces, and let f : A1 → A2 be a linear map. Then f is an algebra homomorphism if and only
if f∗ is a co-algebra homomorphism (i.e., a linear map such that (f∗ ⊗ f∗)m∗

2 = m∗
1f

∗ and
η∗1f

∗ = η∗2).

Proof.

f∗ is a co-algebra hom ⇔ (f∗ ⊗ f∗) ◦m∗
2 = m∗

1 ◦ f∗ and η∗1 ◦ f∗ = η∗2

⇔ m2 ◦ (f ⊗ f) = f ◦m1 and f ◦ η1 = η2

⇔ f is an algebra hom.

■
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A.III Ket-bra operators

In this short section, we go over some notation and well-known results in C∗-algebras and
Hilbert spaces.

Let E1, E2 be inner product spaces over C.

Definition A.16 (ket, bra). A ket operator |·⟩ is defined as the linear map E1 → B(C, E1)
given by x 7→ (α 7→ αx). A bra operator ⟨·| is defined as the anti-linear map E1 → B(E1,C)
given by x 7→ (y 7→ ⟨x|y⟩). A ket-bra operator |·⟩⟨·| is given by composing a |·⟩ with a ⟨·|,
i.e., |x⟩⟨y| = |x⟩ ◦ ⟨y|.

So a ket-bra is a linear map from E2 to the anti-linear map E1 → B(E1, E2) and is given by

x 7→ (y 7→ (u 7→ ⟨y|u⟩x)).

It is easy to see that we get |x⟩∗ = ⟨x| for any x ∈ E1. Composing a bra with a ket gives us a
scalar multiplication of the inner product, i.e., ⟨x||y⟩ = |⟨x|y⟩⟩. So then ⟨x||y⟩(1) = ⟨x|y⟩.

Given an orthonormal basis (ui) of a C-inner product space E, we get
∑
i|ui⟩⟨ui| = id.

Lemma A.17. Given Hilbert spaces E1, E2, E3, linear maps T1 ∈ B(E2, E3), T2 ∈ B(E3, E1),
and elements x ∈ E2, y ∈ E1, we get,

(i) T1 ◦ |x⟩ = |T1(x)⟩,

(ii) ⟨y| ◦ T2 = ⟨T ∗
2 (y)|,

(iii) |x⟩⟨y|∗ = |y⟩⟨x|.

Proof. This is a direct computation. ■

Remark A.18. For x in a Hilbert space H, we have |x⟩ = |y⟩ if and only if x = y and similarly
⟨x| = ⟨y| if and only if x = y (straightforward computation). ♢

Proposition A.19. Let H1,H2 be Hilbert spaces, and let a, c ∈ H1 \ {0} and b, d ∈ H2 \ {0}.
Then if |a⟩⟨b| = |c⟩⟨d|, then there exists some 0 ̸= α, β ∈ C such that a = αc and b = αβd.

Proof. As |a⟩⟨b| = |c⟩⟨d|, we get ⟨b|b⟩a = ⟨d|b⟩c, which means a =
⟨d|b⟩
∥b∥2

c (since b ̸= 0). Taking

adjoints of the hypothesis, we get |b⟩⟨a| = |d⟩⟨c|, and as a ̸= 0, we also get

b =
⟨c|a⟩
∥a∥2

d =
⟨d|b⟩ ∥c∥2

∥a∥2 ∥b∥2
d.

Clearly, ⟨d|b⟩ ̸= 0 (otherwise, we get a = 0). Thus we can let α =
⟨d|b⟩
∥b∥2

and β =
∥c∥2

∥a∥2
. ■

Given a finite-dimensional C-inner product space E, we say (ui) is an eigenbasis of x ∈ B(E)
in E with corresponding eigenvalues (λi), when (ui) is an orthonormal basis of E such that
each ui is an eigenvector of x with a corresponding eigenvalue λi, in other words, x(ui) = λiui
for each i.

Theorem A.20 (spectral theorem [3, Theorem 7.9]). Given a finite-dimensional inner product
space E over C and T ∈ B(E), then,

TT ∗ = T ∗T ⇔ there exists an eigenbasis of T in E.

Proof. See [3, Theorem 7.9]. □

Thus any normal operator on a finite-dimensional Hilbert space has an orthonormal eigenbasis.
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Corollary A.21. Given a finite-dimensional inner product space E over C and T ∈ B(E),
then, TT ∗ = T ∗T if and only if T =

∑
i λi|ui⟩⟨ui| for an eigenbasis (ui) of T in E with

corresponding eigenvalues (λi).

Proof. Suppose TT ∗ = T ∗T . Then from Theorem A.20, we know there exists an eigenbasis
(ui) of T in E. This means

∑
i|ui⟩⟨ui| = id. Also T (ui) = λiui for each i, by definition of an

eigenbasis.

So then, for any a ∈ E, we compute,

T (a) =
∑
i

T (|ui⟩⟨ui|(a)) =
∑
i

⟨ui|a⟩T (ui) =
∑
i

⟨ui|a⟩λiui =
∑
i

λi|ui⟩⟨ui|(a).

Thus T =
∑
i λi|ui⟩⟨ui|.

If, on the other hand, T =
∑
i λi|ui⟩⟨ui| for eigenbasis (ui) of T with corresponding eigenvalues

(λi). Then one can easily see that we get TT ∗ = T ∗T . ■

Definition A.22 ([11, pg. 45, 46]). Given a C∗-algebra A and elements a, b ∈ A, we define
the partial order a ≤ b as b− a being self-adjoint and Spectrum(b− a) ⊆ [0,∞).

So, we can then say x ∈ A is positive semi-definite (non-negative) if it is self-adjoint and
Spectrum(x) ⊆ [0,∞).

We say x ∈ A is positive definite if it is self-adjoint and Spectrum(x) ⊆ (0,∞). This is
equivalent to positive semi-definiteness and invertibility. I.e., x ∈ A is positive definite if
and only if 0 ≤ x and x is invertible.

Theorem A.23 ([11, Theorem 2.2.1]). Given 0 ≤ a in a C∗-algebra A, there exists a unique
element 0 ≤ b ∈ A such that a = b2. This is known as the unique positive square root of the
positive semi-definite element a, and can be denoted by

√
a.

Proof. See [11, Theorem 2.2.1]. □

Theorem A.24 ([11, Theorem 2.2.5(1)]). Given any element x in a C∗-algebra A, we get
0 ≤ x if and only if x = y∗y for some y ∈ A.

Proof. See [11, Theorem 2.2.5(1)]. □

Lemma A.25. Given an algebra A over C and x, y ∈ A, we have
Spectrum(xy) \ {0} = Spectrum(yx) \ {0}.

Proof. Let λ ∈ C \ {0}. Then we want to show that λ1−xy is invertible if and only if λ1− yx
is invertible, which is equivalent to showing 1− (λ−1x)y is invertible if and only if 1−y(λ−1x)
is invertible (since λ ̸= 0).

So then it clearly suffices to show that for any a, b ∈ A, we get 1 − ab is invertible implies
1− ba is invertible. Suppose a, b ∈ A, and 1− ab is invertible. Then 1− ba is also invertible
with inverse 1 + b(1− ab)−1a, since,

(1− ba)(1 + b(1− ab)−1a) = 1− ba+ b(1− ab)−1a− bab(1− ab)−1a

= 1− ba+ b(1− ab)(1− ab)−1a

= 1− ba+ ba = 1,

and, analogously,

(1 + b(1− ab)−1a)(1− ba) = 1− ba+ b(1− ab)−1a− b(1− ab)−1aba

= 1− ba+ b(1− ab)−1(1− ab)a

= 1− ba+ ba = 1.

■
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Lemma A.26. Given positive elements x, y ∈ A, we have xy = yx if and only if 0 ≤ xy.

Proof. Firstly, xy is self-adjoint if and only if yx = y∗x∗ = (xy)∗ = xy, as both x and y are
self-adjoint. So if 0 ≤ xy, then we know xy is self-adjoint, and so xy = yx. Suppose that we
have xy = yx. We want to show Spectrum(xy) ⊆ [0,∞).

Now, using Theorem A.24, we let a, b ∈ A such that x = a∗a and y = b∗b. So then we
compute,

Spectrum(xy) \ {0} = Spectrum(a∗ab∗b) \ {0}
= Spectrum(ab∗ba∗){0} by A.25

= Spectrum((ba∗)
∗
ba∗) \ {0} ⊆ [0,∞) \ {0} by A.24.

Thus 0 ≤ xy. ■

Let E be a finite-dimensional inner product space over C. For x ∈ B(E), we say it is positive
semi-definite if 0 ≤ x which means it is self-adjoint and has non-negative spectrum. It is easy
to see that this is equivalent ([11, Theorem 2.3.5]) to 0 ≤ ⟨u|x(u)⟩ for all u ∈ E. We say
x ∈ L(E) is positive definite if 0 < ⟨u|x(u)⟩ for all 0 ̸= u ∈ E (which is clearly equivalent
to positive definite-ness from Definition A.22). Note that we drop the self-adjoint-edness
requirement since we are working on C and is implied by 0 ≤ ⟨a|x(a)⟩ (more specifically,
⟨a|x(a)⟩ ∈ R if and only if x is self-adjoint).

Lemma A.27. Given a finite-dimensional inner product space E over C and T ∈ L(E), we
get

T is positive semi-definite ⇔ T =
∑
i|vi⟩⟨vi| for some tuple (vi) in E.

Proof.

(⇒) Suppose 0 ≤ T . As positive semi-definiteness of T implies TT ∗ = T ∗T , we can use
Theorem A.20 and let (vi) be the eigenbasis of T in E with corresponding eigenvalues
(λi). Note that, by the above discussion, as 0 ≤ T , we also get each 0 ≤ λi. So then let

each xi =
√
λiui. Then we have

∑
i|xi⟩⟨xi| =

∑
i

√
λi
√
λi|ui⟩⟨ui| =

∑
i λi|ui⟩⟨ui| = T ,

where the last equality comes from Corollary A.21.

(⇐) Suppose we have some tuple (vi) in E such that T =
∑
i|vi⟩⟨vi|. Then, for any x ∈ E,

we get ⟨x|T (x)⟩ =
∑
i⟨x|vi⟩⟨vi|x⟩ =

∑
i |⟨x|vi⟩|

2 ≥ 0. Thus T is positive semi-definite.

■

A.IV From linear maps to matrices

In this section, we go over our notation for matrices and then identify our linear operators as
matrices as it is usually easier to work with.

Let n,m ∈ N.

Notation.

• We denote Mn,m to be the set of n×m matrices over C.

• When n = m, we write Mn instead.

• For x ∈ N, we write [x] to mean {1, . . . , x}.

Given any a ∈ Mn,m, we say aij for (i, j)-th entry of a. We write eij ∈ Mn for the standard
basis in matrix form (i.e., (eij)kl = δikδjl, in other words, it has value 1 at (i, j) and 0
elsewhere). So a typical matrix a ∈ Mn is given by a =

∑
i,j aijeij , and Tr(eij) = δij , where

Tr is the trace of a matrix given by the sum of the diagonal, i.e., Tr(a) =
∑
i aii.

We have the following well-known isomorphism.
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Definition A.28. Given orthonormal bases b = (bi), c = (cj) of finite-dimensional Hilbert
spaces H1,H2, respectively, then we define the linear isomorphism

Mb,c : L(H1,H2) ∼=MdimH2,dimH1
,

to be given by the map T 7→ ((k, p) 7→ ⟨ck|T (bp)⟩).
Its inverse is given by A 7→

∑
i,j Aij |ci⟩⟨bj |.

When H = H1 = H2 and b = c, then we write Mb : L(H) ∼= MdimH instead of Mb,b. Mb

is then a ∗-algebra isomorphism.

Example A.29. For example, for Me : L(Cn) ∼=Mn given by the standard orthonormal
basis e = (ei) of Cn. Then we have that our map is given by Me(T )ij = ⟨ei|T (ej)⟩ for
T ∈ L(Cn), and its inverse is given by A 7→ (x 7→ Ax) (see Corollary A.31).

Definition A.30. Given an orthonormal basis b = (bi) of a finite-dimensional Hilbert
space H, we define Rb to be the linear isomorphism H ∼= CdimH given by Rb(x)i = ⟨bi|x⟩
with its inverse given by x 7→

∑
i xibi.

Corollary A.31. Let e = (ei), f = (fj) be the standard orthonormal bases of Cn and Cm,
respectively, where the inner products on Cn and Cm are given by the canonical inner product
⟨x|y⟩ = x∗y. Then Re = id, Rf = id, and M−1

e,f is given by A 7→ (x 7→ Ax).

In other words, M−1
e,f is is simply the matrix identified as a linear map (where the action is

given by multiplying the matrix by column vectors).

Proof. This is clear and straightforward. ■

Remark A.32. Let b = (bi) and c = (cj) be orthonormal bases of finite-dimensional Hilbert
spaces H1,H2. Let Rb, Rc, respectively, be the identifications H1

∼= CdimH1 and H2
∼= CdimH2

given by b, c, as defined above. Then, a direct computation verifies that we get

Mb,c : T 7→ Me,f (RcTR
−1
b ),

where e and f are the standard orthonormal bases of CdimH1 and CdimH2 , respectively, so
that the identification Me,f is exactly the one from Corollary A.31. Similarly, we get

M−1
b,c : A 7→ R−1

c M−1
e,f (A)Rb.

♢

Lemma A.33. Let e = (ei) be an orthonormal basis of a finite-dimensional Hilbert space H.
Then R∗

e = R−1
e . In other words, this is an isometry.

Proof. Let x ∈ H and y ∈ CdimH. Then we compute,

⟨x|R∗
e(y)⟩H = ⟨Re(x)|y⟩CdimH =

∑
i

⟨Re(x)i|yi⟩C =
∑
i

⟨⟨ei|x⟩H|yi⟩C

=
∑
i

⟨x|ei⟩Hyi =
∑
i

⟨x|yiei⟩H =
〈
x
∣∣R−1

e (y)
〉
H.

Thus R∗
e = R−1

e . ■

Lemma A.34. Given orthonormal bases b = (bi) and c = (cj) of finite-dimensional Hilbert
spaces H1,H2, and elements x ∈ H1 and y ∈ H2, we have Mc,b(|x⟩⟨y|) = Rb(x)Rc(y)

∗
.
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Proof. This is a direct computation. For any i ∈ [dimH1], j ∈ [dimH2], we compute,

Mc,b(|x⟩⟨y|)ij = ⟨bi||x⟩⟨y|(cj)⟩ = ⟨bi|x⟩⟨y|cj⟩ = Rb(x)iRc(y)j =
(
Rb(x)Rc(y)

∗)
ij
.

Thus Mc,b(|x⟩⟨y|) = Rb(x)Rc(y)
∗
. ■

Similarly to linear maps, we say (ui) is an eigenbasis of x ∈ Mn in Cn with corresponding
eigenvalues (λi), when (ui) is an orthonormal basis of Cn such that each ui is an eigenvector
of M−1

e (x) with corresponding eigenvalue λi, i.e., xui = M−1
e (x)(ui) = λiui, where e is the

standard orthonormal basis (ei) of Cn.

A matrix U ∈Mn is unitary if U∗U = 1 = UU∗.

Lemma A.35. U ∈ Mn is unitary if and only if its columns form an orthonormal basis of
Cn.

Proof.

(⇒) Suppose U is unitary. Let (ui) be an orthonormal basis of Cn. Then for any i, j ∈ [n]
we get ⟨Uui|Uuj⟩ = ⟨ui|U∗Uuj⟩ = ⟨ui|uj⟩ = δij . So the tuple of the columns of U ,
(Uu1, . . . , Uun), forms an orthonormal basis of Cn.

(⇐) Let (ui) be an orthonormal basis of Cn. Then by (⇒), we know (Uui) is also an or-
thonormal basis. Let x ∈ Cn. Then

∥Ux∥2 =

∥∥∥∥∥∑
i

⟨ui|x⟩Uui

∥∥∥∥∥
2

=
∑
i

|⟨ui|x⟩|2 =

∥∥∥∥∥∑
i

⟨ui|x⟩ui

∥∥∥∥∥
2

= ∥x∥2 .

■

Using Lemma A.34, we can see that if we have A ∈Mn such that AA∗ = A∗A, then Corollary
A.21 tells us that we get A =

∑
i λiuiu

∗
i for an eigenbasis (ui) of A in Cn with corresponding

eigenvalues (λi). And by Lemma A.35, we get a unitary matrix U =
[
u1 · · · un

]
∈Mn. So

then we can write,

A =
∑
i

λiuiu
∗
i =

[
u1 · · · un

]λ1 0
. . .

0 λn


u

∗
1
...
u∗n

 = UDU∗,

where D ∈Mn is a diagonal matrix containing the eigenvalues (λi) of A. This is a specialized
version of the Schur decomposition theorem [7, Theorem 2.3.1].

A.V The inner product

Any finite-dimensional C∗-algebra B can be decomposed as B =
⊕

iMni
for matrix algebras

Mni
over C [15, Theorem 11.2]. In this section, we endow B with an inner product from a

chosen faithful and positive linear functional. We do this by first defining the inner product
on a single summand Mni .

A.V.1 Constructing our inner product on Mn. In this sub-section we construct our
inner product on Mn.

Definition A.36. By a linear functional on an algebra A, we mean a linear map A→ C.

Definition A.37. Given a linear functional ϕ : Mn → C, we define ϕQ =
∑
i,j ϕ(eij)eji.

Lemma A.38. Given a linear functional ϕ : Mn → C, we get ϕ is given by x 7→ Tr(ϕQ x).
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Proof. For any x ∈Mn, we compute,

Tr(ϕQ x) =
∑
i,j

ϕ(eij) Tr(ejix) =
∑
i,j

ϕ(eij)xij =
∑
i,j

ϕ(xijeij) = ϕ(x).

Thus we get ϕ is given by x 7→ Tr(ϕQ x). ■

We have already defined a partial order on a general C∗-algebra in Definition A.22 and in terms
of operators on a Hilbert space (see above Lemma A.27). So then, in matrix terms, x ∈Mn is
positive semi-definite when 0 ≤ M−1

e (x) ∈ B(Cn), where e is the standard orthonormal basis
(ei) of Cn. In other words, 0 ≤ x ∈Mn when 0 ≤ a∗xa for all a ∈ Cn [7, Definition 4.1.9].

Similarly, we say x ∈Mn is positive definite when M−1
e (x) ∈ B(Cn) is positive definite, where

e is the standard orthonormal basis (ei) of Cn (analogue of Definition A.22) In other words,
x ∈ Mn being positive definite is defined by requiring 0 < a∗xa for any non-zero a ∈ Cn
[7, Definition 4.1.9]. Similar to the reason on positive semi-definite-ness, the self-adjoint
requirement can be dropped since we are working in C.

Remark A.39. Given a vector x ∈ Cn, the matrix Me(|x⟩⟨x|) = xx∗ is positive semi-definite.
And, interestingly, when 2 ≤ n, the matrix Me(|x⟩⟨x|) = xx∗ is never positive definite. For a
proof of the latter, it suffices to show that there exists a non-zero orthogonal vector y ∈ Cn
(i.e., ⟨y|x⟩ = y∗x = 0). ♢

Lemma A.40. Let U, x ∈Mn such that U is invertible. Then
UxU∗ is positive-definite ⇔ x is positive-definite.

Analogously, 0 ≤ UxU∗ ⇔ 0 ≤ x.

Proof. We get the following equivalences,

UxU∗ is positive-definite ⇔ ∀0 ̸= v ∈ Cn : 0 < ⟨v|UxU∗v⟩ = ⟨U∗v|xU∗v⟩
⇔ x is positive-definite.

Where the second equivalency follows since U is invertible and so for any v ∈ Cn, we get
U∗v ̸= 0 if and only if v ̸= 0. ■

Given a self-adjoint matrix x ∈Mn and r ∈ R and an orthonormal basis (ui) of Cn consisting
of the eigenvectors of x with corresponding eigenvalues (αi), then we can define xr as the
matrix

∑
i α

r
iuiu

∗
i . Equivalently, via the Schur decomposition theorem (see end of Section

A.IV), xr = UDrU∗ for unitary U ∈Mn and diagonal D ∈Mn. Note that the eigenvalues of
a self-adjoint matrix are real. Moreover, if x is positive semi-definite, then xr is also positive
semi-definite. And if x is positive definite, then so is xr.

Let 0 ≤ x. Then, by the above argument, we have a unitary matrix U ∈ Mn and diagonal
matrix D ∈Mn (with non-negative entries as the eigenvalues of a positive semi-definite matrix
are non-negative1) such that x = x1 = UD1U∗ = UD1/2U∗UD1/2U∗ = x1/2x1/2.

Definition A.41. Given C∗-algebras A,C, we say f : A → C is a positive map when
0 ≤ f(a) for all 0 ≤ a. In other words, f maps positive elements in A to positive elements
in C.

So then, a linear functional f on Mn is a positive map2 when 0 ≤ f(x∗x) for any matrix
x ∈Mn.

Corollary A.42. Given a linear functional ϕ on Mn, we have,
ϕ is a positive map ⇔ ∀ (xi) ∈ Cn : 0 ≤

∑
i ϕ(xix

∗
i ).

In other words, ϕ is a positive map if and only if 0 ≤
∑
i ϕ(xix

∗
i ) for all tuples (xi) in Cn.

1We can instead use Lemma A.40, to see that we also get 0 ≤ D; and as D is diagonal, we get that that all
of its entries are non-negative.

2This is consistent with the current literature; see [11] for example.
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Proof. Let e be the standard orthonormal basis (ei) of Cn. Then, since for any matrix x we
have 0 ≤ x if and only if x = y∗y for some y ∈ Mn by A.24, we have ϕ is positive if and
only if 0 ≤ ϕ(x) for any positive semi-definite matrix x ∈Mn. And so, we have the following
equivalences,

ϕ is positive ⇔ ∀ 0 ≤ x ∈Mn : 0 ≤ ϕ(x)

⇔ ∀(xi) ∈ Cn : 0 ≤
∑
i

ϕ (Me(|xi⟩⟨xi|)) by A.27

⇔ ∀(xi) ∈ Cn : 0 ≤
∑
i

ϕ(xix
∗
i ) by A.34.

Thus ϕ being positive is equivalent to 0 ≤
∑
i ϕ(xix

∗
i ) for any tuple (xi) in Cn. ■

Lemma A.43. Given a linear functional ϕ on Mn, we have,
ϕ is positive ⇔ 0 ≤ ϕQ.

Here, ϕQ is the matrix associated with ϕ defined in Definition A.37.

Proof. By Lemma A.38 we have ϕ(x) = Tr(ϕQ x) for all x ∈Mn.

(⇒) Suppose ϕ is positive. By Corollary A.42, we get 0 ≤
∑
i ϕ(xix

∗
i ) for any tuple (xi) in

Cn. So then for any x ∈ Cn, we have 0 ≤ ϕ(xx∗) = Tr(ϕQ xx
∗) = x∗ϕQ x, which means

ϕQ is positive semi-definite.

(⇐) Suppose Q is positive semi-definite. Then as mentioned above, since ϕQ is positive semi-

definite, we have ϕQ = ϕ
1/2
Q ϕ

1/2
Q , where ϕ

1/2
Q is also positive semi-definite (and so is self-

adjoint). So for any x ∈Mn, we have ϕ(x
∗x) = Tr(ϕQ x

∗x) = Tr
(
(xϕ

1/2
Q )

∗
(xϕ

1/2
Q )

)
≥ 0.

Thus ϕ is positive if and only if our unique matrix ϕQ is positive semi-definite. ■

Definition A.44. We say a linear functional ϕ on A is tracial if ϕ(xy) = ϕ(yx) for all
x, y ∈ A.

Proposition A.45. Given a linear functional ϕ : Mn → C, we have,
ϕ is tracial ⇔ ∃!α ∈ C : ϕQ = α1.

Here, ϕQ is the matrix associated with ϕ defined in Definition A.37.

Proof.

(⇒) Suppose ϕ is tracial. By Lemma A.38 we have ϕ(x) = Tr(ϕQ x) for any x ∈Mn. So then
for any x, y ∈Mn, we have,∑

i,j,k

(ϕQ)ijxjkyki = Tr(ϕQ xy) = ϕ(xy) = ϕ(yx) = Tr(ϕQ yx) =
∑
i,j,k

(ϕQ)ijyjkxki.

Claim: ∀p, q, r ∈ [n] : (ϕQ)pq = δpq(ϕQ)rr.

Let p, q, r ∈ [n]. Then by our hypothesis, we get,

(ϕQ)pq =
∑
i,j,k

(ϕQ)ij(eqr)jk(erp)ki =
∑
i,j,k

(ϕQ)ij(erp)jk(eqr)ki = δpq(ϕQ)rr.

By the claim, we see that our matrix ϕQ is diagonal since (ϕQ)pq = 0 when p ̸= q. And
we also see that for any p, q ∈ [n], we get (ϕQ)pp = (ϕQ)qq. So then let i ∈ [n] and
let α = (ϕQ)ii. Then, by the above claim we get, (ϕQ)jk = δjk(ϕQ)ii = (α1)jk for any
j, k ∈ [n]. Thus ϕQ = α1. Clearly this is unique, since for α, β ∈ C, if αTr(x) = β Tr(x)
for any x ∈Mn, then α = αTr(eii) = β Tr(eii) = β.
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(⇐) Let α ∈ C such that ϕQ = α1. Then for any x, y ∈Mn, we have

ϕ(xy) = αTr(xy) = αTr(yx) = ϕ(yx).

Thus ϕ is tracial if and only if there exists a unique complex number α such that ϕQ = α1. ■

Remark A.46. Using the above Proposition A.45, we get ϕ is tracial and positive if and only
if ϕ is given by x 7→ αTr(x) for some unique non-negative α ∈ C. ♢

Corollary A.47. If A ∈Mn. Then
0 ≤ A and is invertible ⇔ A is positive-definite.

Proof.

(⇒) Suppose 0 ≤ A and A = A1/2A1/2 is invertible. Then A1/2 is also invertible and positive
semi-definite. Let v ∈ Cn be non-zero. Then, we compute,

⟨v|Av⟩ =
〈
v
∣∣∣A1/2A1/2v

〉
=
〈
A1/2v

∣∣∣A1/2v
〉
> 0,

since A1/2v ̸= 0 (as A1/2 is invertible). Note that, in the second equality, we use the
self-adjointedness of A1/2 since it is positive semi-definite. So we are done.

(⇐) Suppose 0 < A. Then obviously 0 ≤ A, so we only need to check if it is invertible.
Suppose the contrary, i.e., A is not invertible. Then there exists a non-zero v ∈ Cn
such that Av = 0. But then, by the hypothesis, we get 0 < ⟨v|Av⟩ = 0, which is a
contradiction. Thus A is invertible.

■

Lemma A.48. Given a positive definite matrix Q ∈ Mn, we have Tr(Qx∗x) = 0 if and only
if x = 0 for any x ∈Mn.

Proof. We have Tr
(
(xQ1/2)

∗
(xQ1/2)

)
= Tr(Qx∗x) = 0 if and only if xQ1/2 = 0. As Q1/2 is

positive definite, we get it is also invertible by Corollary A.47, and so xQ1/2 = 0 if and only
if x = 0. And so we are done. ■

Definition A.49. A positive linear functional f on A is said to be faithful3 if f(x) = 0 if
and only if x = 0 for any non-negative element 0 ≤ x ∈ A.

Lemma A.50. A positive linear functional ϕ on Mn being faithful is equivalent to
ϕ(x∗x) = 0 ⇔ x = 0 for any x ∈Mn.

Proof. This is true since any matrix x ∈ Mn is positive semi-definite if and only if x = y∗y
for some matrix y ∈Mn by Theorem A.24. ■

Proposition A.51. Given a linear functional ϕ : Mn → C, we have
ϕ is a positive and faithful map ⇔ ϕQ is positive-definite.

Again, ϕQ is the matrix associated with ϕ defined in Definition A.37.

Proof. By Lemma A.38, we have ϕ is given by x 7→ Tr(ϕQ x), and by Lemma A.43, we know
ϕ is positive if and only if 0 ≤ ϕQ. So we need to show that faithfulness of a positive linear
functional is equivalent to ϕQ being positive definite.
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(⇒) Suppose ϕ is faithful and positive. So we have ϕ(x) = 0 if and only if x = 0 for any
positive semi-definite matrix x ∈Mn. Let 0 ̸= x ∈ Cn. Then we have xx∗ ̸= 0 as x ̸= 0.
This means, by faithfulness and positivity of ϕ we get ϕ(xx∗) ̸= 0 as xx∗ is a non-zero
positive semi-definite matrix. And so 0 < ϕ(xx∗) = Tr(ϕQ xx

∗) = x∗ϕQ x, which means
ϕQ is positive definite.

(⇐) Suppose ϕQ is positive definite. Then for any x ∈Mn, we get ϕ(x∗x) = Tr(ϕQ xx
∗) = 0

if and only if x = 0 using Lemma A.48.

Thus ϕ is a faithful and positive linear functional if and only if our unique matrix ϕQ is positive
definite. ■

Proposition A.52. Given a linear functional ϕ : Mn → C, we get ϕ is star-preserving (i.e.,
ϕ(x∗) = ϕ(x)

∗
for all x ∈Mn) if and only if ϕQ is self-adjoint.

Here, ϕQ is the matrix associated with ϕ defined in Definition A.37.

Proof.

(⇒) Suppose ϕ(x∗) = ϕ(x) for all x ∈Mn. We let x ∈Mn, and compute using Lemma A.38,

Tr(ϕQ x
∗) = ϕ(x∗) = ϕ(x) = Tr(ϕQ x) = Tr(x∗ϕ∗Q),

And so ϕQ = ϕ∗Q.

(⇐) Suppose ϕQ is self-adjoint. Using Lemma A.38, ϕ is given by x 7→ Tr(ϕQ x). And so for

any x ∈ Mn, we get ϕ(x∗) = Tr(ϕQ x
∗) = Tr((xϕQ)

∗
) = Tr(xϕQ) = ϕ(x). Thus, ϕ is

real.

■

Corollary A.53. Given a linear functional ϕ : Mn → C, then,
ϕ is positive and faithful ⇔ Mn ×Mn → C : (x, y) 7→ ϕ(x∗y) defines an inner product.

Proof. For any x, y ∈Mn, let ⟨x|y⟩ϕ = ϕ(x∗y). Then, clearly,

⟨x|αy + βz⟩ϕ = ϕ(x∗(αy + βz)) = αϕ(x∗y) + βϕ(x∗z) = α⟨x|y⟩ϕ + β⟨x|z⟩ϕ,

by linearity of ϕ, for any x, y, z ∈Mn and α, β ∈ C.

If ϕ is faithful, we have ⟨x|x⟩ϕ = ϕ(x∗x) = 0 if and only if x = 0 for any x ∈ Mn. And ϕ is
positive if and only if 0 ≤ ⟨x|x⟩ϕ for any x ∈Mn. So if ⟨·|·⟩ϕ defines an inner product on Mn,
then we get ϕ is faithful and positive. So it remains to show that, given ϕ is a faithful and
positive linear functional, we get ⟨x|y⟩ϕ = ⟨y|x⟩ϕ for any x, y ∈Mn.

Suppose ϕ is faithful and positive. By Proposition A.51, we get our unique matrix ϕQ is
positive definite (and so is self-adjoint). Using Proposition A.52, we get ϕ is star-preserving,
and so, for any x, y ∈Mn, we get, ⟨x|y⟩ϕ = ϕ(x∗y) = ϕ(y∗x) = ⟨y|x⟩ϕ.

Therefore, ⟨·|·⟩ϕ : (x, y) 7→ ϕ(x∗y) is a well-defined inner product on Mn. ■

Combining Proposition A.51 and Corollary A.53, we get the following.

Theorem A.54. Given a linear functional ϕ : Mn → C, then the following are equivalent,

(i) ϕ is positive and faithful,

(ii) ∃!Q ∈Mn : Q is positive-definite and ∀x ∈Mn : ϕ(x) = Tr(Qx),

(iii) Mn ×Mn → C : (x, y) 7→ ϕ(x∗y) defines an inner product on Mn.

■
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A.V.2 On finite-dimensional C∗-algebras. We can now define the Hilbert space on our
finite-dimensional C∗-algebra B =

⊕
iMni

by choosing linear functionals on each summand
Mni .

Definition A.55. We let B be a multi-matrix algebra
⊕K

i=1Mni
.

(So a general finite-dimensional C∗-algebra [15, Theorem 11.2].)

A typical element x ∈ B is written as x =
⊕

i xi for each xi ∈Mni
. The standard basis of B

is given by the tuple
[
(es,ij)

ns
i,j=1

]K
s=1

where each es,ij is the matrix eij of the s-th summand

of the direct sum
⊕

iMni
.

For each i ∈ [K], we define the projection map pi :
⊕

jMnj
→Mni

given by x 7→ xi. For each
i, we also define the inclusion map ιi : Mni

↪→
⊕

jMnj
given by xi 7→ (0, . . . , 0, xi, 0, . . . , 0).

Clearly piιj(x) = δi,jx for x ∈Mnj . Using this notation, for x ∈ B, we write

x =
∑
i

ιi(xi) =
∑
i,j,k

ιi(xi,jkejk) =
∑
i,j,k

xi,jkei,jk,

where each xi,jk is the input of x at j, k on the i-th summand. Elements of tensor products

of direct sums, say x⊗ y ∈
⊕

i,jMni
⊗Mgj , are given by (x⊗ y)j,cdi,ab = xi,acyj,bd.

Definition A.56. For each i, we fix a faithful and positive linear functional ψi on Mni
,

and we let Qi ∈Mni
be our unique positive definite matrix such that ψi : x 7→ Tr(Qix) (so

each Qi =
∑
j,k ψi(ejk)ekj) – see Proposition A.51.

We let ψ be our faithful positive linear functional on B given by ψ =
∑
i ψi ◦pi, where each

pi is the projection map
⊕

jMnj
→Mni

, and we let Q =
⊕

iQi. So then, given x ∈ B, we
get ψ(x) = Tr(Qx), where Tr here is defined by the sum of the diagonals in each matrix
block.

Using Theorem A.54, we can now define our Hilbert space.

Definition A.57. We define the inner product on each Mni
by

⟨x|y⟩ψi
= ψi(x

∗y) = Tr(Qix
∗y),

for all x, y ∈Mni . We denote (Mni , ψi) to be the Hilbert space given by this inner product.
We define the inner product on B by

⟨x|y⟩ψ = ψ(x∗y) = Tr(Qx∗y),

for all x, y ∈ B, where Tr here is defined by the sum of the diagonals in each matrix block.
We denote (B,ψ) to be the Hilbert space given by this inner product. Note that, unless
necessary, we usually leave out the subscript in the inner product.

Remark A.58. By definition, we obviously have ⟨x|y⟩ψ =
∑
i⟨xi|yi⟩ψi

for x, y ∈ B =
⊕

iMni
.

♢

Let H1,H2 be finite-dimensional Hilbert spaces. Then, given some p ∈ N, x ∈ H1, we write
x⊗p to mean x tensored with itself p times; this element is in H⊗p

1 (i.e., H1 tensored with
itself p times). Given a linear map f : H1 → H2, we write f⊗p to mean the linear map
H⊗p

1 → H⊗p
2 given by f tensored with itself p times. The inner product on H1 ⊗H2 is given

by ⟨x⊗ y|z ⊗ w⟩H1⊗H2
= ⟨x|z⟩H1

⟨y|w⟩H2
.

So then, the inner product on B⊗p is given by ⟨x|y⟩B⊗p = ψ⊗p(x∗y) = Tr(Q⊗px∗y). Similarly,
for positive and faithful linear functionals ψ, ϕ on B,H, respectively, the inner product on
(B,ψ)⊗ (H,ϕ) is given by

⟨x⊗ y|z ⊗ w⟩ψ⊗ϕ = (ψ ⊗ ϕ)(x∗z ⊗ y∗w) = Tr(Qψx
∗z) Tr(Qϕy

∗w).
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Proposition A.59. The adjoint of ψ on (B,ψ) and the canonical inner product space on C
is given by C → B : x 7→ x1. In other words, ψ∗ = |1⟩.

Proof. For any x ∈ C and y ∈ B, we have,

⟨ψ∗(x)|y⟩ψ = ⟨x|ψ(y)⟩C = xψ(y) = x⟨1|y⟩ψ = ⟨x1|y⟩ψ.

Thus ψ∗(x) = x1 for any x ∈ C. ■

Proposition A.60 ([9, Proposition 2.5]). We get f =
[
ιs(eijQ

−1/2
s )ns

i,j=1

]K
s=1

is an orthonor-

mal basis of (B,ψ).
Moreover, we get Rf (see Definition A.30) is given by Rf (x)s,ij = (xQ1/2)s,ij.

Proof. This is linearly independent since for any a ∈ B, we get
∑
s,i,j as,ijes,ijιs(Q

−1/2
s ) = 0

if and only if
∑
s,i,j as,ijes,ij = 0. And since (es,ij) is a basis on B, we get that each as,ij = 0.

For any r, s ∈ [K], a, b ∈ [nr], and c, d ∈ [ns], we get〈
ιr(eabQ

−1/2
r )

∣∣∣ιs(ecdQ−1/2
s )

〉
ψ
= δr,s

〈
eabQ

−1/2
r

∣∣∣ecdQ−1/2
r

〉
ψr

= δr,s Tr(QrQ
−1/2
r ebaecdQ

−1/2
r ) = δr,sδa,cδb,d.

And so this is orthonormal. Thus (ιs(eijQ
−1/2
s )) is an orthonormal basis of B. ■

Note that, using Proposition A.11, we have unravelled the co-algebraic structure of our finite-
dimensional C∗-algebra B.

Lemma A.61. Let i ∈ [K]. Then,

(i) ι∗i = pi, where ιi : Mni
↪→ B and pi : B →Mni

, in other words, ι∗i (x) = xi for x ∈ B,

(ii) m∗ιi = (ιi ⊗ ιi)m
∗, i.e., m∗ιi(xi) = (ιi ⊗ ιi)m

∗(xi) for x ∈ B,

(iii) ιim = m(ιi ⊗ ιi).

Proof.

(i) Let y ∈Mni . Then we compute,

⟨ι∗i (x)|y⟩ψi
= ⟨x|ιi(y)⟩ψ = ⟨xi|y⟩ψi

.

Where the last equality easily follows from Tr(Qx∗ιi(y)) = Tr(Qix
∗
i y).

(ii) Let y, z ∈ B. Then,

⟨m∗ιi(xi)|y ⊗ z⟩ψ⊗2 = ⟨ιi(xi)|yz⟩ψ = ⟨xi|yizi⟩ψi
= ⟨m∗(xi)|yi ⊗ zi⟩ψi

= ⟨m∗(xi)|(ι∗i ⊗ ι∗i )(y ⊗ z)⟩ψi
by (i)

= ⟨(ιi ⊗ ιi)m
∗(xi)|y ⊗ z⟩ψ⊗2 .

(iii) ιim(xi ⊗ yi) = ιi(xiyi) = ιi(xi)ιi(yi) = m(ιi ⊗ ιi)(xi ⊗ yi), for x, y ∈ B.

■

Proposition A.62. The adjoint of the multiplication map m on the Hilbert spaces (Mns
, ψs)

and (Mns ⊗Mns , ψs ⊗ ψs) is given by

x 7→
∑
i,j,k,l

xilQ
−1
s,kj(eij ⊗ ekl).

So then, for x ∈ B, we get m∗(x) =
∑
s,i,j,k,l xs,ilQ

−1
s,kj(es,ij ⊗ es,kl), where x =

⊕
s xs, for

each xs ∈Mns
.
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Proof. Let x, y, z ∈Mns
, and then we compute,

⟨x⊗ y|m∗(z)⟩ψ⊗2
s

= ⟨m(x⊗ y)|z⟩ψs
= ⟨xy|z⟩ψs

= Tr(Qs(xy)
∗
z) = Tr(x∗zQsy

∗)

=
∑
k

(x∗zQsy
∗)kk =

∑
q,k

δkq(x
∗zQsy

∗)qk =
∑
q,k

(Q−1
s Qs)kq(x

∗zQsy
∗)qk

=
∑

i,j,k,l,q,a

zilQ
−1
s,kjQs,jqx

∗
qiQs,lay

∗
ak

=
∑

i,j,k,l,r,p,o,q,a,b

zilQ
−1
s,kjQs,rqx

∗
qoδioδjrQs,pay

∗
abδkbδlp

=
∑

i,j,k,l,r,p

zilQ
−1
s,kj(Qsx

∗eij)rr(Qsy
∗ekl)pp

=
∑
i,j,k,l

zilQ
−1
s,kj Tr(Qsx

∗eij) Tr(Qsy
∗ekl)

=
∑
i,j,k,l

zilQ
−1
s,kj⟨x|eij⟩ψs

⟨y|ekl⟩ψs

=
∑
i,j,k,l

zilQ
−1
s,kj⟨x⊗ y|eij ⊗ ekl⟩ψ⊗2

s
.

Thus m∗(z) =
∑
i,j,k,l zilQ

−1
s,kj(eij ⊗ ekl) for any z ∈Mns

and s ∈ [K].

By extension, we thus get

m∗(x) =
∑
a

m∗ιa(xa) =
∑
a

(ιa ⊗ ιa)m
∗(xa) by A.61(ii)

=
∑

a,i,j,k,l

xa,ilQ
−1
a,kj(ιa ⊗ ιa)(eij ⊗ ekl) by above

=
∑

a,i,j,k,l

xa,ilQ
−1
a,kj(ea,ij ⊗ ea,kl).

■

Lemma A.63. We have mm∗(x) =
∑
iTr(Q

−1
i )ιi(xi) for all x ∈ B.

Proof. Let x ∈ B, then we compute,

mm∗(x) =
∑
a

mm∗ιa(xa)

=
∑
a

ιamm
∗(xa) by A.61(ii),(iii)

=
∑

a,i,j,k,l

xa,ilQ
−1
a,kjιam(eij ⊗ ekl) by A.62

=
∑

a,i,j,k,l

xa,ilQ
−1
a,kjδjkιa(eil) =

∑
a,i,j,l

xa,ilQ
−1
a,jjea,il

=
∑
a,i,l

Tr(Q−1
a )xa,ilea,il =

∑
a

Tr(Q−1
a )ιa(xa).

Thus mm∗ =
∑
i Tr(Q

−1
i )ιipi. ■

Proposition A.64. Given α ∈ C, we get mm∗ = α id if and only if Tr(Q−1
i ) = α for all
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i ∈ [K]. In other words,

= α ⇔ ∀i ∈ [K] : Tr(Q−1
i ) = α.

Proof.

(⇐) If Tr(Q−1
i ) = α for all i ∈ [K], then for all x ∈ B we have,

mm∗(x) =
∑
i

Tr(Q−1
i )ιi(xi) = α

∑
i

ιi(xi) = αx.

(⇒) If mm∗ = α id. Then for i ∈ [K], we get

α1i = mm∗(1)i =
∑
s

Tr(Q−1
s )ιs(1s)i = Tr(Q−1

i )1i.

■

Definition A.65. We call our linear functional ψ a δ-form functional if mm∗ = δ2 id for
some 0 < δ. In other words, ψ is a δ-form when

= δ2 ,

for some 0 < δ.

From this point forward, we assume our linear functional ψ is of δ-form.

Proposition A.66 (Frobenius equation [9, Equation 2.3] & [6, Proposition 1.5]).

= =

Algebraically, we have (m⊗ id)(id⊗m∗) = m∗m = (id⊗m)(m∗ ⊗ id).

Proof. It suffices to show (m ⊗ id)(id⊗m∗) = m∗m, as we get the other equality by taking
adjoints.

Let x, y, z, w ∈ B. Let m∗(y) =
∑
i αi⊗ βi for some tuples (αi), (βi) in B. Then we compute,

⟨(m⊗ id)(id⊗m∗)(x⊗ y)|z ⊗ w⟩ =
∑
i

⟨(m⊗ id)(x⊗ αi ⊗ βi)|z ⊗ w⟩

=
∑
i

⟨xαi ⊗ βi|z ⊗ w⟩ =
∑
i

⟨xαi|z⟩⟨βi|w⟩

=
∑
i

ψ(α∗
i x

∗z)⟨βi|w⟩ =
∑
i

⟨αi|x∗z⟩⟨βi|w⟩

=
∑
i

⟨αi ⊗ βi|x∗z ⊗ w⟩ = ⟨m∗(y)|x∗z ⊗ w⟩

= ⟨y|x∗zw⟩ = ψ(y∗x∗zw) = ⟨xy|zw⟩
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= ⟨m∗m(x⊗ y)|z ⊗ w⟩.

Thus (m⊗ id)(id⊗m∗) = m∗m. ■

Remark A.67. Thus, our Hilbert space (B,ψ) is a Frobenius algebra (i.e., a vector space that
is both an algebra and a co-algebra which satisfies the Frobenius equations). ♢

A.VI The modular automorphism σ

In this section we define the modular automorphism.

Definition A.68 ([4, top of page 9]). Given t ∈ R, we define the algebra automorphism
σt : B ∼= B to be given by a 7→ Q−taQt with inverse a 7→ QtaQ−t (so σ−1

t = σ−t), such
that ψ ◦ σt = ψ.

Lemma A.69. For any t, s ∈ R, we get,

(i) σtσs = σt+s,

(ii) σt(x)
∗
= σ−t(x

∗) for any x ∈ B,

(iii) σ∗
t = σt,

Proof.

(i) We get σtσs(x) = σt(Q
−sxQs) = Q−tQ−sxQsQt = Q−(t+s)xQt+s = σt+s(x) for any

x ∈ B.

(ii) Let x ∈ B. Then σt(x)
∗
= (Q−txQt)

∗
= Qtx∗Q−t = σ−t(x

∗).

(iii) Let x, y ∈ B. Then we compute

⟨x|σ∗
t (y)⟩ = ⟨σt(x)|y⟩ = ψ(σt(x)

∗
y) = ψ(σ−t(x

∗)y) by (ii)

= Tr(Qσ−t(x
∗)y) = Tr(QQtx∗Q−ty)

= Tr(Qx∗Q−tyQt) = ⟨x|σt(y)⟩.

Thus σt is self-adjoint.

■

Lemma A.70. Let x, y, z ∈ B. Then we have,

(i) ⟨x|yz⟩ = ⟨y∗x|z⟩,

(ii) ⟨xy|z⟩ = ⟨y|x∗z⟩,

(iii) ⟨xy|z⟩ = ⟨x|zσ−1(y
∗)⟩,

(iv) ⟨x|yz⟩ = ⟨xσ−1(z
∗)|y⟩,

(v) ⟨x|y⟩ = ⟨y∗|σ−1(x
∗)⟩.

Proof. We quickly compute,

(i) ⟨x|yz⟩ = Tr(Qx∗yz) = Tr(Q(y∗x)
∗
z) = ⟨y∗x|z⟩.

(ii) ⟨xy|z⟩ = Tr(Qy∗x∗z) = ⟨y|x∗z⟩.

(iii) ⟨xy|z⟩ = Tr(Qy∗x∗z) = Tr(Qx∗z(Qy∗Q−1)) = ⟨x|zσ−1(y
∗)⟩.

(iv) ⟨x|yz⟩ = ⟨yz|x⟩ = ⟨y|xσ−1(z∗)⟩ = ⟨xσ−1(z
∗)|y⟩, where we have used (iii) for the second

equality.

(v) This is immediate from parts (i) and (iv).
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■

Remark A.71. For x, y ∈ B, combining Lemma A.70(v) with Lemma A.69(iii), we also get
⟨x|y⟩ =

〈
σ−1/2(y

∗)
∣∣σ−1/2(x

∗)
〉
. ♢

Proposition A.72. Applying a left-handed twist corresponds to applying the automorphism
σ1, i.e.,

= σ1.

To make this clear, this is exactly saying that for any x ∈ B, we have

x

= x = σ1(x).

In other words, (η∗m⊗ id)(id⊗κ)(m∗η ⊗ id) = σ1.

Proof. Let x, y ∈ B, and let m∗(1) =
∑
i αi ⊗ βi for some tuples (αi), (βi) in B. Then we

compute,

⟨(η∗m⊗ id)(id⊗κ)(m∗η ⊗ id)(x)|y⟩

=
∑
i

⟨(η∗m⊗ id)(id⊗κ)(αi ⊗ βi ⊗ x)|y⟩

=
∑
i

⟨(η∗m⊗ id)(αi ⊗ x⊗ βi)|y⟩

=
∑
i

⟨η∗(αix)βi|y⟩ =
∑
i

⟨αix|1⟩⟨βi|y⟩

=
∑
i

⟨αi|σ−1(x
∗)⟩⟨βi|y⟩ by A.70(iii)

=
∑
i

⟨αi ⊗ βi|σ−1(x
∗)⊗ y⟩ = ⟨m∗(1)|σ−1(x

∗)⊗ y⟩

= ⟨1|σ−1(x
∗)y⟩ = ⟨σ1(x)|y⟩ by A.70(i),A.69(ii).

Thus the left-handed twist is exactly σ1. ■

Proposition A.73. Applying a right-handed twist corresponds to applying the automorphism
σ−1, i.e.,

= σ−1.
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To make this clear, this is exactly saying that for any x ∈ B, we have

x

= x = σ−1(x).

In other words, (id⊗ η∗m)(κ ⊗ id)(id⊗m∗η) = σ−1.

Proof. We let x, y ∈ B and m∗(1) =
∑
i αi ⊗ βi for some tuples (αi), (βi) in B. Then we

compute,

⟨(id⊗ η∗m)(κ ⊗ id)(id⊗m∗η)(x)|y⟩

=
∑
i

⟨(id⊗ η∗m)(κ ⊗ id)(x⊗ αi ⊗ βi)|y⟩

=
∑
i

⟨(id⊗ η∗m)(αi ⊗ x⊗ βi)|y⟩

=
∑
i

⟨⟨1|xβi⟩αi|y⟩ =
∑
i

⟨αi|y⟩⟨xβi|1⟩

=
∑
i

⟨αi|y⟩⟨βi|x∗⟩ by A.70(ii)

=⟨m∗(1)|y ⊗ x∗⟩ = ⟨1|yx∗⟩
=⟨σ−1(x)|y⟩ by A.70(iv).

■

Proposition A.74 ([9, Equation 2.6]). We have,

= =

In other words, η∗m(σ1 ⊗ id) = η∗ ◦m ◦ κ = η∗m(id⊗σ−1).

Proof. For any x, y ∈ B, we compute,

η∗m(σ1 ⊗ id)(x⊗ y) = ψ(σ1(x)y) = ψ(xσ−1(y)) = η∗m(id⊗σ−1)(x⊗ y).

And

η∗ ◦m ◦ κ(x⊗ y) = ψ(yx) = ⟨y∗|x⟩ = ⟨x∗|σ−1(y)⟩
= ψ(xσ−1(y)) = η∗m(id⊗σ−1)(x⊗ y).

Thus η∗m(σ1 ⊗ id) = η∗ ◦m ◦ κ = η∗m(id⊗σ−1). ■

Lemma A.75. Given x ∈ B, we have,

η∗m(x∗ ⊗ ·) = x∗ = ⟨x|.
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Proof. This is an obvious and quick computation. ■

Lemma A.76. Given x ∈ B, we have

(⟨x| ⊗ id)m∗η(1) = ⟨x| = x∗.

Proof.

⟨(⟨x| ⊗ id)m∗(1)|y⟩ =
∑
i

⟨(⟨x| ⊗ id)(αi ⊗ βi)|y⟩

=
∑
i

⟨αi|x⟩⟨βi|y⟩

= ⟨m∗(1)|x⊗ y⟩ = ⟨1|xy⟩
= ⟨x∗|y⟩ by A.70(i).

Using strings:

⟨x| = x∗ by A.76

=

x∗

=
x∗

by A.9.

■

Lemma A.77. Given x ∈ B, we have

⟨x| = σ−1(x
∗).

Proof.

⟨(id⊗⟨x|)m∗η(1)|y⟩ =
∑
i

(id⊗⟨x|)(αi ⊗ βi)y

=
∑
i

⟨βi|x⟩⟨αi|y⟩ = ⟨m∗(1)|y ⊗ x⟩

= ⟨1|yx⟩ = ⟨σ−1(x
∗)|y⟩ by A.70(iv).

With strings:

⟨x| = x∗ by A.76
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=

x∗

= σ−1(x
∗) by A.73.

The second equality can be seen by simply pulling the strand with x∗ under/over the other
strand. ■

Corollary A.78. For any t ∈ R, we have,

(i) m(σt ⊗ σt) = σtm,

(ii) (σt ⊗ σt)m
∗ = m∗σt,

(iii) σtη = η,

(iv) η∗σt = η∗.

■

A.VII KMS inner product

Proposition A.79. The following defines an inner product

B ×B → C : (x, y) 7→ ϕ(x∗σ−1/2(y)),

and is called the KMS-inner product. We denote this inner product by ⟨·|·⟩KMS.

Proof. For any x, y ∈ B, let ⟨x|y⟩KMS = ψ(x∗σ−1/2(y)). Now, for any x, y ∈ B we get

⟨x|y⟩B =
〈
σ1/4(x)

∣∣σ1/4(y)〉KMS
and ⟨x|y⟩KMS =

〈
σ−1/4(x)

∣∣σ−1/4(y)
〉
B
.

So then we can easily see that ⟨·|·⟩Mn
defines an inner product on B if and only if ⟨·|·⟩KMS

defines an inner product on B. ■

Given a linear map A : (B1, ψ1) → (B2, ψ2), we can define the canonical KMS map AKMS to
be be between the KMS-spaces.

Lemma A.80. For a ∈ (B1, ψ1) and b ∈ (B2, ψ2), we have |a⟩⟨b|KMS =
∣∣a〉〈σ−1/2(b)

∣∣.
Proof. Let c ∈ B2. Then using Lemma A.69 we get

|a⟩⟨b|KMS(c) = ⟨b|c⟩KMSa =
〈
b
∣∣σ−1/2(c)

〉
a =

∣∣a〉〈σ−1/2(b)
∣∣(c).

Thus |a⟩⟨b|KMS =
∣∣a〉〈σ−1/2(b)

∣∣. ■

A.VIII Real (star-preserving) maps

In this section, we define what it means for a linear map to be real (also known as star-
preserving) on Hilbert spaces H1,H2. Let A1,A2 be star-algebras.

Definition A.81. We define the map ·r as the self-invertible anti-linear automorphism
L(A1,A2) ∼= L(A1,A2) given by

A 7→ (a 7→ A(a∗)
∗
).
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Definition A.82 ([4, Definition 2.5]). We say A ∈ L(A1,A2) is real (or star-preserving)
when A(a∗) = A(a)

∗
for each a ∈ A1.

Lemma A.83. Let A ∈ L(A1,A2). Then A is real if and only if Ar = A.

Proof. Clearly Ar(x) = A(x∗)
∗
= A(x) if and only if A(x∗) = A(x)

∗
for all x ∈ A, which

means A is real. ■

Given star-algebras A1,A2,A3,A4, and linear maps x : A1 → A2 and y : A3 → A4, we clearly
get (x⊗ y)

r
= xr ⊗ yr.

Proposition A.84. Given A ∈ L(A), we get Spectrum(Ar) = Spectrum(A).
In fact, x ∈ ker(A− λ id) if and only if x∗ ∈ ker(Ar − λ̄ id).

Proof. For any x ∈ A, we have Ar(x∗) = A(x)
∗
. So if x is an eigenvector of A with eigenvalue

λ, then clearly Ar(x∗) = λ̄x∗, so x∗ is an eigenvector of Ar with eigenvalue λ̄. If, on the other
hand, x∗ is an eigenvector of Ar with eigenvalue λ̄, then A(x)

∗
= λ̄x∗, and so A(x) = λx,

which means x is an eigenvector of A with eigenvalue λ. ■

Remark A.85. Let A ∈ L(A) be real and let x be an eigenvector of A with corresponding
eigenvalue λ. Then the eigenspaces of each eigenvalue of A are spanned by self-adjoint elements
[10, Lemma 1.11]. ♢

Lemma A.86. If A : (B1, ψ1, σr) → (B2, ψ2, ϑr), then A
∗r = σ1A

r∗ϑ−1.
Here, the ordered pairs (B1, ψ1, σr) and (B2, ψ2, ϑr) mean that we have finite-dimensional
C∗-algebras B1, B2 with respective faithful and positive linear functionals ψ1, ψ2 and modular
automorphisms σr, ϑr.

Proof. Let x ∈ B2 and y ∈ B1, and compute,

⟨A∗r(x)|y⟩B1
=
〈
A∗(x∗)

∗∣∣y〉
B1

= ⟨y∗|σ−1(A
∗(x∗))⟩B1

by A.70(ii),(iv)

= ⟨A(σ−1(y
∗))|x∗⟩B2

by A.69(iii)

=
〈
A(σ1(y)

∗
)
∣∣x∗〉

B2
= ⟨x|ϑ−1A

rσ1(y)⟩B2
by A.70(ii),(iv)

= ⟨σ1Ar∗ϑ−1(x)|y⟩B1
by A.69(iii).

Thus, A∗r = σ1A
r∗ϑ−1. ■

Proposition A.87 ([4, Lemma 5.7]). Given elements b ∈ (B1, ψ1, σr) and a ∈ (B2, ψ2, ϑr),
we get |a⟩⟨b|r = |a∗⟩⟨σ−1(b

∗)|.
The ordered pairs here have the same meaning as in Lemma A.86.

Proof. For any x ∈ B1, we compute,

|a⟩⟨b|r(x) = (|a⟩⟨b|(x∗))∗ = ⟨b|x∗⟩a∗ = ⟨x∗|b⟩a∗

= ⟨1|xb⟩a∗ by A.70(i)

= ⟨σ−1(b
∗)|x⟩a∗ by A.70(iv)

= |a∗⟩⟨σ−1(b
∗)|(x).

Thus |a⟩⟨b|r = |a∗⟩⟨σ−1(b
∗)|. ■

Proposition A.88 ([9, Proposition 2.15]). If A ∈ B(B,ψ) is real, then A∗ is real if and only
if A commutes with σ1.
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Proof. Suppose A ∈ B(B) is real. Firstly, taking adjoints and using Lemma A.69(iii), we get
A commutes with σ1 if and only if A∗ commutes with σ1, so it is enough to show that A∗ is
real if and only if A∗ commutes with σ1.

By Lemma A.86 we have A∗r = σ1A
r∗σ−1, which means A∗rσ1 = σ1A

r∗. Since we know A is
real, we get Ar = A by Lemma A.83, and so A∗rσ1 = σ1A

∗.

If A∗ is real, then we have A∗r = A∗ by Lemma A.83, and so A∗σ1 = σ1A
∗. If, on the other

hand, A∗ commutes with σ1, then A
∗rσ1 = σ1A

∗ = A∗σ1, and so A∗r = A∗, which by Lemma
A.83 means A∗ is real.

Therefore, given A is real, we get A∗ is also real if and only if A commutes with σ1. ■

Lemma A.89.

(i) mr = mκ,

(ii) m∗r = κm∗.

Recall that the map κ is the identification B ⊗B ∼= B ⊗B given by x⊗ y 7→ y ⊗ x.

Proof. (i) Let x, y ∈ B. Then

mr(x⊗ y) = m(x∗ ⊗ y∗)
∗
= (x∗y∗)

∗
= yx = mκ(x⊗ y).

(ii)

m∗r = σ⊗2
1 mr∗σ−1 by A.86

= σ⊗2
1 κm∗σ−1 by Part (i)

= κσ⊗2
1 m∗σ−1 by A.3

= κm∗σ1σ−1 by A.78(ii)

= κm∗

■

A.IX The symmetry maps

In this section we look at the symmetry maps which are found in [4, Equations 2 & 4 in
Definition 2.4]. These maps turn out to correspond to the adjoint of the real map (i.e.,
symm(A) = A∗r and symm′(A) = Ar∗) – see Proposition A.92.

Definition A.90. We define symm as the linear map B(B1, B2) → B(B2, B1) given by

x 7→ (id⊗ η∗2m2)(id⊗x⊗ id)(m∗
1η1 ⊗ id).

In other words,

symm: x 7→ x

We define symm′ as the linear map B(B1, B2) → B(B2, B1) given by

x 7→ (η∗2m2 ⊗ id)(id⊗x⊗ id)(id⊗m∗
1η1).
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In other words,

symm′ : x 7→ x

Proposition A.91 ([4, Proposition 5.3(ii,iii)]). Let a ∈ (B1, ψ1, σr), b ∈ (B2, ψ2, ϑr). Then
we have,

(i) symm(|a⟩⟨b|) = |ϑ−1(b
∗)⟩⟨a∗|,

(ii) symm′(|a⟩⟨b|) = |b∗⟩⟨σ−1(a
∗)|.

The ordered pairs here have the same meaning as in Lemma A.86.

Proof. (i) Let m∗(1) =
∑
j αj ⊗ βj for tuples (αj) and (βj) in B1, so that for any x ∈ B2

and y ∈ B1, we have,

⟨x|symm(|a⟩⟨b|)(y)⟩ = ⟨x|(id⊗ η∗2m2)(id⊗ |a⟩⟨b| ⊗ id)(m∗
1η1 ⊗ id)(y)⟩

=
∑
j

⟨x|(id⊗ η∗2m
∗
2)(id⊗ |a⟩⟨b| ⊗ id)(αj ⊗ βj ⊗ y)⟩

=
∑
j

⟨x|(id⊗ η2m
∗
2)(αj ⊗ ⟨b|βj⟩a⊗ y)⟩

=
∑
j

⟨b|βj⟩⟨x|(αj ⊗ η∗2(ay))⟩

=
∑
j

⟨b|βj⟩⟨1|ay⟩⟨x|αj⟩

=
∑
j

⟨x⊗ b|αj ⊗ βj⟩⟨1|ay⟩

= ⟨x⊗ b|m∗
2(1)⟩⟨1|ay⟩ = ⟨xb|1⟩⟨1|ay⟩

= ⟨x|ϑ−1(b
∗)⟩⟨a∗|y⟩ by A.70(i),(iii)

= ⟨x||ϑ−1(b
∗)⟩⟨a∗|(y)⟩.

So symm(|a⟩⟨b|) = |ϑ−1(b
∗)⟩⟨a∗| as claimed.

(ii) Analogously to the above, we let m∗
1(1) =

∑
j αj ⊗ βj for each αj , βj ∈ B1, so that for

any x ∈ B2 and y ∈ B1 we find,

symm′(|a⟩⟨b|)
= ⟨x|(η∗2m2 ⊗ id)(id⊗ |a⟩⟨b| ⊗ id)(id⊗m∗

1η1)(y)⟩

=
∑
j

⟨x|(η∗2m2 ⊗ id)(id⊗ |a⟩⟨b| ⊗ id)(y ⊗ αj ⊗ βj)⟩

=
∑
j

⟨x|(η∗2m2 ⊗ id)(y ⊗ ⟨b|αj⟩a⊗ βj)⟩

=
∑
j

⟨b|αj⟩⟨x|(η∗2(ya)⊗ βj)⟩

=
∑
j

⟨b|αj⟩⟨1|ya⟩⟨x|βj⟩

=
∑
j

⟨b⊗ x|αj ⊗ βj⟩⟨1|ya⟩
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= ⟨b⊗ x|m∗
1(1)⟩⟨1|ya⟩ = ⟨bx|1⟩⟨1|ya⟩

= ⟨x|b∗⟩⟨σ−1(a
∗)|y⟩ by A.70(ii),(iv)

= ⟨x||b∗⟩⟨σ−1(a
∗)|(y)⟩.

So then symm′(|a⟩⟨b|) = |b∗⟩⟨σ−1(a
∗)|.

■

Proposition A.92. For any operator A ∈ B((B1, ψ1), (B2, ψ2)), we have symm(A) = Ar∗

and symm′(A) = A∗r.

Proof. Comparing part (ii) from Proposition A.95 with Proposition A.87, we see that for any
a ∈ B1 and b ∈ B2, we have symm′(|a⟩⟨b|) = |a⟩⟨b|∗r. And so for any A : B1 → B2, by
writing A =

∑
i|ai⟩⟨bi| for some tuples (ai), (bi) in B2 and B1 respectively, we can conclude

symm′(A) = A∗r.

Analogously, comparing part (i) from Proposition A.91 with Proposition A.87, we see that
for any a ∈ B1, b ∈ B2, we have symm(|a⟩⟨b|) = |a⟩⟨b|r∗. And so for any A : B1 → B2, by
writing A =

∑
i|ai⟩⟨bi| for some tuples (ai), (bi) in B2 and B1 respectively, we can conclude

symm(A) = Ar∗. ■

Remark A.93. So by the above, we have A ∈ B(B) is real if and only if symm′(A∗) = A; this
is exactly [9, Lemma 2.13], but done via diagrams. We also get A ∈ B(B) is real if and only
if symm(A) = A∗; and this is exactly [6, Proposition 1.7(3)]. ♢

Corollary A.94. Given A ∈ B((B1, ψ1), (B2, ψ2)), we get

Ar = A∗

Proof. This is a direct consequence of Proposition A.92. ■

The next result tells us that our linear operators symm and symm′ are both invertible, where
they are both inverses of each other. This means that for any operators A1 : B1 → B2 and
A2 : B2 → B1, we get symm(A1) = A2 if and only if symm′(A2) = A1 ([4, Proposition 5.4]).

Corollary A.95. symm is invertible with inverse symm′.

Proof. For any A : B1 → B2, we get symm(symm′(A)) = symm(A∗r) = (A∗r)
r∗

= A and
symm′(symm(A)) = symm′(Ar∗) = (Ar∗)

∗r
= A using Proposition A.92. ■

Remark A.96. The above equivalency is mentioned, via string diagrams, in [9, Definition 2.19
(self-transpose)], which utilizes the snake-equations [12, II.B (5)] (see Proposition A.9). In
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particular, for any linear operator x, we have

symm(symm′(x)) = x = x

= x by A.9.

Analogously, we can again use the snake-equations from Proposition A.9 to diagrammatically
see that we get symm′(symm(x)) = x. ♢

Corollary A.97. symm r = symm−1.
Note that here, symm is an operator in B(B(B,ψ),B(B,ψ)).

Proof. For any A ∈ B(B,ψ), we have symm r(A) = symm(A∗)
∗
= A∗r = symm−1(A), using

Proposition A.92 and Corollary A.95. ■

Proposition A.98. For A ∈ B((B1, ψ1), (B2, ψ2)) and x ∈ B1, y ∈ B2, we get

ψ2(A(x)y) = ψ1(x symm(A)(y)).

Proof.

ψ2(A(x)y) = ⟨A(x)∗|y⟩B2
= ⟨Ar(x∗)|y⟩B2

= ⟨x∗|Ar∗(y)⟩B1
= ψ1(x symm(A)(y)) by A.92.

■

The following result shows that a linear operator A satisfies symm(A) = A if and only if
ψ(A(x)y) = ψ(xA(y)) for all x and y. So we can think of A satisfying symm(A) = A as being
symmetric with respect to ψ.

Proposition A.99. For A ∈ B(B,ψ), the following are equivalent,

(i) A∗ = Ar,

(ii) symm(A) = A,

(iii) symm′(A) = A,

(iv) ∀x, y ∈ B : ψ(A(x)y) = ψ(xA(y)).

Proof. The equivalence between (ii) and (iii) is already done in Corollary A.95. The equiv-
alence between (i) and (iii) is easily seen using Proposition A.92. So it remains to show the
equivalence between (iv) and the rest.
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(ii) ⇒ (iv) Suppose symm(A) = A. Then, by Proposition A.98, we get that for any x, y ∈ B,

ψ(A(x)y) = ψ(x symm(A)(y)) = ψ(xA(y)).

(iv) ⇒ (i) Now suppose ψ(A(x)y) = ψ(xA(y)) for all x, y ∈ B. Then for any x, y ∈ B, we
compute,

⟨A∗(x)|y⟩ = ⟨x|A(y)⟩ = ψ(x∗A(y)) = ψ(A(x∗)y) =
〈
A(x∗)

∗∣∣y〉 = ⟨Ar(x)|y⟩.

Thus A∗ = Ar.

■

Corollary A.100. For A : (B1, ψ1, σr) → (B2, ψ2, ϑr), we have symm′(A) ◦ ϑ1 = σ1 ◦
symm(A).

The ordered pairs here have the same meaning as in Lemma A.86.

Proof. Combine Lemma A.86 with Proposition A.92. ■

The following result slightly generalises [16, Lemma 2.1].

Corollary A.101. For A ∈ B(B,ψ), we get symm(A) = symm′(A) if and only if Aσ1 = σ1A.
Moreover, if symm(A) = A, then A commutes with σ1.

Proof. We only show the former, since if symm(A) = A, then we get symm′(A) = A (Corollary
A.95), and so symm(A) = symm′(A).

We have the following equivalences,

symm(A) = symm′(A) ⇔ Ar∗ = A∗r by A.92

⇔ σ1A
r∗σ−1 = Ar∗ by A.86

⇔ Ar∗σ−1 = σ−1A
r∗

⇔ σ−1A
r = Arσ−1 by A.69(iii)

⇔ σ1A = Aσ1 by A.69(iv).

Thus symm(A) = symm′(A) if and only if A commutes with σ1. ■

Proposition A.102 ([9, Lemma 2.22]). Let A ∈ B(B,ψ). Then,

(i) if A is self-adjoint and symm(A) = A, then A is real,

(ii) if A is real and symm(A) = A, then A is self-adjoint,

(iii) if A is real and self-adjoint, then symm(A) = A.

Proof. Note that A being real means Ar = A by Lemma A.83.

(i) Suppose A∗ = A and symm(A) = A. Then we clearly get A = Ar, as symm(A) = A is
equivalent to Ar = A∗ by Proposition A.99.

(ii) Suppose A is real and symm(A) = A. Then, by Proposition A.99, we get A∗ = Ar = A.

(iii) Suppose A is real and self-adjoint. Then A∗ = A = Ar, and so by Proposition A.99, we
get symm(A) = A.

■

Lemma A.103. Given any x ∈ B((B1, ψ1), (B2, ψ2)) and y ∈ B((B3, ψ3), (B1, ψ1)), we have

symm(x ◦ y) = symm(y) ◦ symm(x).
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Proof. Using Proposition A.92, we compute,

symm(x ◦ y) = (x ◦ y)r∗ = (xr ◦ yr)∗ = yr∗ ◦ xr∗ = symm(y) ◦ symm(x).

■

Lemma A.104. Given a linear map A ∈ B(B,ψ) and a ∗-homomorphism f : B → B2 such
that f∗r = f∗, we get symm(fAf∗) = f symm(A)f∗.

Proof. Using Proposition A.92, we get

symm(fAf∗) = fAf∗ = (fAf∗)
r∗

= (fArf∗)
∗
= f symm(A)f∗.

■

A.X The Schur product

We now define the Schur product map. Another name this sometimes goes by is the convolu-
tion product map.

Definition A.105. Let A1 be a co-algebra with co-multiplication µ1 and let A2 be an
algebra with multiplication map m2. Then we define the Schur product · • · as the linear
map (A1 → A2) → L(A1 → A2) given by x 7→ (y 7→ m2(x⊗ y)µ∗

1). In other words, for all
linear maps x, y : A1 → A2, we have

x • y = x y .

The following shows the associativity of the Schur product, which follows from the associativity
and co-associativity of their respective multiplication maps.

Corollary A.106. Given linear maps A1, A2, A3 : X1 → X2 on co-algebra X1 and algebra
X2, then • is associative, i.e., we get

(A1 •A2) •A3 = A1 • (A2 •A3) ,

which in diagrams is,

A3A1 A2 = A1 A3A2 .

Proof. This follows from the associativity (mul assoc) and co-associativity (co mul assoc) of
the multiplication maps. ■



A.X The Schur product 42

So we already have a non-unital ring structure on L(A1, A2) for co-algebra A1 and algebra
A2, where the product is given by the Schur product •. Let us now define the unit.

Definition A.107. Let A1 be a co-algebra with co-unit ϖ1 and let A2 be an algebra with
unit η2. Then we let the unit 1 on (L(A1,A2), •) be given by η2ϖ1, which in diagrams is,

1 := η2ϖ1 = .

Lemma A.108. 1 • f = f = f • 1.

Thus (L(A1,A2), •, 1 = η2ϖ1) is a ring.

Proof.

1 • f = m2(η2ϖ1 ⊗ f)µ1

= m2(η2 ⊗ idA2)(idC ⊗ f)(ϖ1 ⊗ idA1)µ1

= idC ⊗ f = f.

The third equality follows from the algebraic and co-algebraic properties. The fourth follows
from our notation (see under Section A.II).

Analogously,

f • 1 = m2(f ⊗ η2ϖ1)µ1

= m2(idA2
⊗ η2)(f ⊗ idC)(idA1

⊗ϖ1)µ1

= f ⊗ idC = f.

■

A ‘quantum adjacency matrix’ (see B.1) is essentially an operator that is an idempotent with
respect to this ring structure. However, as our operator will be from B to B, saying ‘idem-
potent’ will be confusing (since that can mean idempotent with respect to the composition
product), so we will say Schur idempotent to mean idempotent with respect to this ring
structure.

The unit on this ring structure turns out to be our ‘complete quantum adjacency operator’
(see Definition B.32).

Remark A.109. While we are technically working over C, this is all still generally true over
any commutative semiring R. ♢

Proposition A.110. Given f, g, h, k, we get:

(f ⊗ h) • (g ⊗ k) = (f • g)⊗ (h • k).

Proof. We leave the details of this as an exercise to the reader.
Hint: recall how the multiplication co-multiplication maps are defined on tensor products:

mE⊗F = (mE ⊗mF )(id⊗κF,E ⊗ id),

µE⊗F = (id⊗κE,F ⊗ id)(µE ⊗ µF ).

■
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A.X.1 On Hilbert spaces.

Lemma A.111. Let X1, X2, X3, X4 be finite-dimensional algebras with respective multiplica-
tion maps m1,m2,m3,m4 (with the induced co-algebras given by A.11). Then given algebra
homomorphisms f : X2 → X1 and g : X3 → X4, and linear maps A1, A2 : X2 → X3, we have

(gA1f
∗) • (gA2f

∗) = g(A1 •A2)f
∗,

which in diagrams is,

A1 A2

g g

f∗ f∗

= A1 A2

g

f∗

.

Proof. We compute,

(gA1f
∗) • (gA2f

∗) = m4(gA1f
∗ ⊗ gA2f

∗)m∗
1

= m4(g ⊗ g)(A1 ⊗A2)(f
∗ ⊗ f∗)m∗

1

= g ◦m3(A1 ⊗A2)m
∗
2 ◦ f∗ by A.14(i),(iii)

= g ◦ (A1 •A2) ◦ f∗.

■

The following shows that the Schur product on rank-one operators acts as a product on the
left and right variables of the rank-one operators.

Proposition A.112 ([4, Proposition 5.3(iv)]). For Hilbert spaces B1 and B2 which are also
algebras (with the induced co-algebra given by A.11). Then given a, c ∈ B1 and b, d ∈ B2, we
have

|a⟩⟨b| • |c⟩⟨d| = |ac⟩⟨bd|.

Proof.

|a⟩⟨b| • |c⟩⟨d| = m(|a⟩⟨b| ⊗ |c⟩⟨d|)m∗ = m|a⊗ c⟩⟨b⊗ d|m∗

= |m(a⊗ c)⟩⟨m(b⊗ d)| = |ac⟩⟨bd|.

■

Definition A.113. We define the ∗-algebra homomorphism lmul : B → B(B) to be the
left multiplication map given by y 7→ (x 7→ yx). In other words,

lmul : x 7→ x ,

We define the linear map rmul : B → B(B) to be the right multiplication map given by
y 7→ (x 7→ xy). In other words,

rmul : x 7→ x .
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Remark A.114. For any t ∈ R, we can write σt = lmul(Q−t) rmul(Qt). ♢

Lemma A.115. For x, y ∈ (B,ψ), we have,

(i) rmul(xy) = rmul(y) rmul(x),

(ii) rmul(x)
∗
= rmul(σ−1(x

∗)),

(iii) lmul(x) rmul(y) = rmul(y) lmul(x),

(iv) f ◦ lmul(x) ◦ f−1 = lmul(f(x)) for invertible f ∈ B → B2 such that f(ab) = f(a)f(b)
for all a, b ∈ B,

(v) f ◦ rmul(x) ◦ f−1 = rmul(f(x)) for invertible f ∈ B → B2 such that f(ab) = f(a)f(b)
for all a, b ∈ B,

(vi) lmul(x)
r
= rmul(x∗),

(vii) rmul(x)
r
= lmul(x∗).

Let e be the orthonormal basis (ιs(eijQ
−1
s ))s,ij of (B,ψ) from Proposition A.60. Then,

(viii) Me(lmul(x)) =
⊕

i xi ⊗ 1i,

(ix) Me(rmul(x)) =
⊕

i 1i ⊗ σ1/2(xi)
T
.

Proof. Parts (i) and (iii) are straightforward computations and left as exercises.

(ii) Let a, b ∈ B. Then
〈
rmul(x)

∗
(a)
∣∣b〉 = ⟨a|bx⟩ = ⟨aσ−1(x

∗)|b⟩ = ⟨rmul(σ−1(x
∗))(a)|b⟩,

where we have used Lemma A.70(iv) in the second equality.

(iv) Let a ∈ B. Then f lmul(x)f−1(a) = f(xf−1(a)) = f(x)a = lmul(f(x))(a).

(v) Let a ∈ B. Then f rmul(x)f−1(a) = f(f−1(a)x) = af(x) = rmul(f(x))(a).

(vi) Let a ∈ B. Then lmul(x)
r
(a) = lmul(x)(a∗)

∗
= (xa∗)

∗
= ax∗ = rmul(x∗)(a). Thus

lmul(x)
r
= rmul(x∗).

(vii) Using the above, we get rmul(x)
r
= lmul(x∗)

rr
= lmul(x∗).

(viii) For any r, s ∈ [K], and i, j, k, l, we compute,

Me(lmul(x))r,kls,ij =
∑
a

Me(lmul ιa(xa))
r,kl
s,ij

=
∑
a

〈
ιs(eijQ

−1/2
s )

∣∣∣ιa(xa)ιr(eklQ−1/2
r )

〉
= δr,s(xsekl)ij = δr,sxs,ikδl,j

=
⊕
a

(xa ⊗ 1a)
r,kl
s,ij .

Thus Me(lmul(x)) =
⊕

i xi ⊗ 1i =
⊕

iMei(lmul(xi)).

(ix) For any r, s ∈ [K], and i, j, k, l, we compute,

Me(rmul(x))r,kls,ij =
∑
a

Me(rmul ιa(xa))
r,kl
s,ij

=
∑
a

〈
ιs(eijQ

−1/2
s )

∣∣∣ιr(eklQ−1/2
r )ιa(xa)

〉
= δr,s(er,klσ1/2(x))r,ij

= δr,sδk,iσ1/2(x)r,lj =
⊕
a

(1a ⊗ σ1/2(xa)
T
)r,kls,ij .
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Thus Me(rmul(x)) =
⊕

a 1a ⊗ σ1/2(xa)
T
=
⊕

aMea(rmul(xa)).

■

Proposition A.116 ([4, Lemma 5.24]). Let a, b ∈ (B,ψ). Then we have,

(i) |a⟩⟨b| • id = lmul(ab∗),

(ii) id • |a⟩⟨b| = rmul(σ−1(b
∗)a).

Moreover, |a⟩⟨b| • id = id (resp., |a⟩⟨b| • id = 0) if and only if ab∗ = 1 (resp., ab∗ = 0), and,
similarly, id•|a⟩⟨b| = id (resp., id•|a⟩⟨b| = 0) if and only if σ−1(b

∗)a = 1 (resp., σ−1(b
∗)a = 0).

Proof. Let id =
∑
t|ft⟩⟨ft| for some orthonormal basis (ft) in (B,ψ).

(i) For any x, y ∈ B, we compute,

⟨|a⟩⟨b| • id(x)|y⟩ = ⟨m(|a⟩⟨b| ⊗ id)m∗(x)|y⟩

=
∑
t

⟨m(|a⟩⟨b| ⊗ |ft⟩⟨ft|)m∗(x)|y⟩

=
∑
t

⟨|aft⟩⟨bft|(x)|y⟩ by A.112

=
∑
t

⟨x|bft⟩⟨aft|y⟩

=
∑
t

⟨b∗x|ft⟩⟨ft|a∗y⟩ by A.70(i),(ii)

= ⟨b∗x|a∗y⟩ = ⟨ab∗x|y⟩ = ⟨lmul(ab∗)(x)|y⟩ by A.70(ii).

Thus |a⟩⟨b| • id = lmul(ab∗). This equals id (resp., 0) if and only if ab∗ equals 1 (resp.,
0).

(ii) Now, for any x, y ∈ B, we compute,

⟨id • |a⟩⟨b|(x)|y⟩ = ⟨m(id⊗ |a⟩⟨b|)m∗(x)|y⟩

=
∑
t

⟨m(|ft⟩⟨ft| ⊗ |a⟩⟨b|)m∗(x)|y⟩

=
∑
t

⟨|fta⟩⟨ftb|(x)|y⟩ by A.112

=
∑
t

⟨x|ftb⟩⟨fta|y⟩

=
∑
t

⟨xσ−1(b
∗)|ft⟩⟨ft|yσ−1(a

∗)⟩ by A.70(iii),(iv)

= ⟨xσ−1(b
∗)|yσ−1(a

∗)⟩
= ⟨xσ−1(b

∗)a|y⟩ = ⟨rmul(σ−1(b
∗)a)(x)|y⟩ by A.70(iii).

Thus id• |a⟩⟨b| = rmul(σ−1(b
∗)a). This equals id (resp., 0) if and only if σ−1(b

∗)a equals
1 (resp., 0).

■

Remark A.117. Let a, b ∈ B. Using Lemma A.115, we can rewrite the above to say exactly,
|a⟩⟨b| • id = lmul(a)lmul(b)

∗
and id • |a⟩⟨b| = rmul(a)rmul(b)

∗
. So we can see a very nice

correlation between the two formulas, one uses left multiplication, while the other uses right.
♢



A.X The Schur product 46

Lemma A.118. Let B1, B2 be finite-dimensional C∗-algebras with the respective multiplica-
tion maps m1,m2 and faithful and positive linear functionals ψ1, ψ2. Then for linear maps
x, y ∈ B((B1, ψ1), (B2, ψ2)), we have

(i) (x • y)r = yr • xr,

(ii) (x • y)∗ = x∗ • y∗.

Proof.

(i) Let κ1 = κB1,B1
and κ2 = κB2,B2

. Then we compute,

(x • y)r = m2
r(x⊗ y)

r
m∗

1
r

= m2κ2(x
r ⊗ yr)κ1m

∗
1 by A.89

= m2(y
r ⊗ xr)κ1κ1m

∗
1 by A.3

= m2(y
r ⊗ xr)m∗

1 = yr • xr.

(ii) This is again clear from the definition:

(x • y)∗ = (m2(x⊗ y)m∗
1)

∗
= m1(x

∗ ⊗ y∗)m∗
2 = x∗ • y∗.

■

Remark A.119. From Lemma A.118(i), we can deduce that the set of bounded linear operators
on our finite-dimensional C∗-algebra with a faithful and positive linear functional ψ can be
upgraded from a ring (multiplication given by · • · and 1 given by ηη∗, see Lemma A.108) to
a ∗-ring, where the star operation is given by ·r. ♢

The following result generalises parts of [4, Propositions 5.25 & 5.26], and shows this directly
without needing to look at its corresponding projections. In particular, given a real linear
map A ∈ B(B), we show that A is (ir)reflexive, i.e., if A • id = id (respectively, if A • id = 0),
if and only if it is (ir)reflexive′, i.e., if id•A = id (respectively, if id• A = 0). In [4], they show
this by requiring A to be a quantum adjacency matrix, but this is not needed. This result is
passively shown via string diagrams within the proof of [9, Proposition 2.26].

Proposition A.120. Let A1, A2, A3 ∈ B(B1, B2) all be real linear maps. Then
A1 •A2 = A3 ⇔ A2 •A1 = A3.

This means that when A ∈ B(B) is real, then A • id = id if and only if id • A = id, and,
analogously, A • id = 0 if and only if id •A = 0.

Proof. As A1, A2, A3 are all real, we get the following equivalences by using Lemma A.118(i),

A1 •A2 = A3 ⇔ A1
r •A2

r = A3
r ⇔ A2 •A1 = A3.

■

Corollary A.121. Given A1, A2 ∈ B(B) and an algebra homomorphism f : B → B2, we get
(fA1f

∗) • (fA2f
∗) = f(A1 •A2)f

∗.

Proof. Immediate from Lemma A.111. ■

Corollary A.122. Given A1, A2 ∈ B(B1, B2), we get

symm(A1 •A2) = symm(A2) • symm(A1).

Proof. Use Proposition A.92 and Lemma A.118. ■
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A.XI Automorphisms on B

A.XI.1 Automorphisms on Mn. Here we show that any algebra automorphism onMn is
inner (i.e., given by x 7→ yxy−1 for some invertible y ∈Mn) – see Proposition A.124. We then
show that any star-algebra automorphism on Mn is unitarily inner (i.e., given by x 7→ UxU∗

for some unitary matrix U ∈ Un).

Notation.

• GLn: general linear group of degree n (i.e., the set of invertible n× n matrices)

• Un: unitary group of degree n (i.e., the set of n× n unitary matrices)

• SUn: special unitary group of degree n (i.e., the set of unitary n × n matrices with
determinant one)

So SUn ⊂ Un ⊂ GLn.

Definition A.123. An automorphism f on X is said to be inner if it is given by conju-
gation, i.e., f : x 7→ yxy−1 for some invertible y ∈ X.

Recall the identification Mu : L(H) ∼= Mn given by an orthonormal basis u of Hilbert space
H, where Mu(x)ij = ⟨ui|x(uj)⟩ for any x ∈ L(H) and i, j ∈ [n]. (See Definition A.28.)

Theorem A.124. Any algebra automorphism f : Mn
∼=Mn is inner.

Proof. Let f : Mn
∼=a Mn be an algebra automorphism. We want to show that there exists a

matrix y ∈ Mn such that f(x) = yxy−1 for any x ∈ Mn. It suffices to show that there exists
a linear isomorphism y ∈ L(Cn) such that f(x)Me(y) = Me(y)x for all x ∈ Mn, where e is
the standard orthonormal basis (ei) of Cn.

Assume 0 < n, otherwise this is trivial. So we know there exists non-zero vectors in Cn. Let
0 ̸= χ, ζ ∈ Cn. This implies χζ∗ ̸= 0 (since χ, ζ ̸= 0 implies χi, ζj ̸= 0 for some i, j, which
then implies (χζ∗)ij = χiζ

∗
j ̸= 0).

Now let 0 ̸= ξ ∈ Cn such that f(χζ∗)ξ ̸= 0 (this exists since f(χζ∗) ̸= 0 because f is an
isomorphism - and so is injective).
Now we define our linear map T ∈ L(Cn) by x 7→ f(xζ∗)ξ.

This is clearly a well-defined linear map: for any u, v ∈ Cn and α, β ∈ C, we have,

T (αu+ βv) = f((αu+ βv)ζ∗)ξ = f(αuζ∗ + βvζ∗)ξ

= αf(uζ∗)ξ + βf(vζ∗)ξ = αT (u) + βT (v).

Note that for any x ∈ Cn, we get Me(T )x = M−1
e (Me(T ))(x) = T (x) using Corollary A.31.

It remains to show: (i) this linear map is an isomorphism and; (ii) for any x ∈ Mn we have
f(x)Me(T ) = Me(T )x. We begin with the latter.

(ii) For any a ∈Mn and x ∈ Cn, we compute,

(Me(T )a)x = T (ax) = f(axζ∗)ξ = f(a(xζ∗))ξ = f(a)f(xζ∗)ξ

= f(a)T (x) = (f(a)Me(T ))x

Thus, for any a ∈Mn, we have Me(T )a = f(a)Me(T ).

(i) To show that T is an isomorphism, it suffices to show that it is surjective. So we need
to show that for any x ∈ Cn we have x ∈ imT (i.e., there exists some v ∈ Cn such that
x = T (v)).

Let x ∈ Cn.
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We know T (χ) = f(χζ∗)ξ ̸= 0. This means that there exists some k ∈ [n] such that
T (χ)k ̸= 0 (so T (χ)k ∈ C is invertible). Then we can let d ∈ Cn be the vector given by

di =

{
T (χ)−1

i if i = k,
0 otherwise

(i.e., has the inverse of T (χ) at k and 0 elsewhere). Then we clearly have ⟨d|T (χ)⟩ = 1.

Because f is an isomorphism, we know its surjective, and so there exists a matrix b ∈Mn

such that f(b) = xd∗.

And so we get f(b)T (χ) = xd∗T (χ) = x⟨d|T (χ)⟩ = x.

It now remains to show that we have x = T (bχ), which can be seen from the following
computation,

x = f(b)T (χ) = (f(b)Me(T ))χ

= (Me(T )b)χ by (ii) above

= Me(T )(bχ) = T (bχ).

Thus x ∈ imT . And so T is surjective (which then implies T is bijective - and so it is
an isomorphism).

Thus, our algebraic automorphism f is inner. ■

Remark A.125. The above is a purely linear algebraic proof of a specialized version of the
Skolem-Noether theorem [19] which shows that for algebra homomorphisms f and g from a
simple algebra B to a finite-dimensional simple and central algebra A, we get that they differ
by a unit, i.e., g(x) = uf(x)u−1 for some invertible element u ∈ A. ♢

Lemma A.126. Given a Hilbert space H, we have B(H)
′
= {α id : α ∈ C}.

In other words, x ∈ B(H) commutes with all operators y ∈ B(H) if and only if x = α id for
some α ∈ C.

Proof. Let x ∈ B(H). Obviously, if x = α id for some α ∈ C, then it commutes with every
other operator. Now suppose x commutes with every operator in B(H). So this means
|a⟩⟨x∗(b)| = |a⟩⟨b|x = x|a⟩⟨b| = |x(a)⟩⟨b| for all a, b ∈ H. Suppose there exists some non-zero
a ∈ H, otherwise this is trivial. Then, for any b ∈ H, we have

x(b) =
∥a∥2

∥a∥2
x(b) =

1

∥a∥2
|x(b)⟩⟨a|(a) = 1

∥a∥2
|b⟩⟨x∗(a)|(a) = ⟨x∗(a)|a⟩

∥a∥2
b.

Thus x = α id where α = ⟨x∗(a)|a⟩/ ∥a∥2. ■

From an analogue of the above lemma, we can say that the center of Mn is exactly Span(1).

Remark A.127. A more general statement of the above lemma is that the center of the set
of continuous linear operators on a topological vector space E with separating functional is
trivial. The proof follows the fact that it has a separating functional (i.e., for 0 ̸= x ∈ E, there
exists a functional f such that f(x) ̸= 0). Any normed space has a separating functional by
the Hahn-Banach theorem. ♢

Proposition A.128. Any ∗-automorphism on Mn is given by y 7→ xyx∗ for some x ∈ Un.

Proof. We know any algebra automorphism on Mn is inner by Theorem A.124. Let f be a
∗-automorphism on Mn. Then as we know any ∗-automorphism is an algebra automorphism,
we get f is given by y 7→ xyx−1 for some x ∈ GLn. Then for any y ∈Mn, we get the following
equivalences,

f(y∗) = f(y)∗ ⇔ xy∗x−1 = (xyx−1)
∗
= (x∗)

−1
y∗x∗ ⇔ (x∗x)y∗ = y∗(x∗x).
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Then by an analogue of Lemma A.126, we have that there exists a scalar α ∈ C such that
x∗x = α1. We have x∗x is positive semi-definite (since for any vector a ∈ Cn, we get
a∗x∗xa = (xa)

∗
xa ≥ 0). And as x is invertible we get x∗ is invertible, and so x∗x is invertible.

So then by Lemma A.47 we get x∗x is positive definite, and so 0 < α. This means we have
1 = α−1(x∗x) = (α−1/2x)

∗
(α−1/2x), which means α−1/2x is unitary. Thus f is given by

y 7→ xyx−1 = (α−1/2x)y(α−1/2x)
−1

for α−1/2x ∈ Un. ■

Remark A.129. An analogous proof to the above can show an analogue to the Skolem-Noether
for ∗-homomorphisms f and g (where f is surjective) from a simple ∗-algebra B to a simple
finite-dimensional ordered and central ∗-algebra A, i.e., they differ by a unitary element u
such that g(x) = uf(x)u∗. ♢

A.XI.2 Automorphisms on B. Now for B =
⊕

iMni , (
∗-)algebra automorphisms f on

B are not always (unitarily) inner. In particular, if any two of the block matrices in the
multi-matrix have equal dimension, then it would not necessarily be inner. For example, an
algebra automorphism on Mn ⊕Mn given by x⊕ y 7→ y ⊕ x is not inner. In this section, we
see that any (∗-)algebra automorphism on B =

⊕
iMni will either be (unitarily) inner or a

product of an (unitarily) inner automorphism with a permutation on B.

Lemma A.130. An (∗-)algebra automorphism f on B is (unitarily) inner if and only if there
exists (∗-)algebra automorphisms fi on Mni for each i such that f =

⊕
i fi.

Proof. If f is inner, then there is some invertible element U ∈ B such that f is given by
x 7→ UxU−1. So, for any x ∈ B, we get f(x) =

⊕
i UixiU

−1
i . This clearly means it is

decomposable into a direct sum of inner automorphisms.

On the other hand, when we have f =
⊕

i fi for each fi being an automorphism on Mni
,

then we can use Theorem A.124 to get that these are inner, and so obviously f is then also
inner. ■

Lemma A.131. Given an algebra automorphism f on B, we have f(Z(B)) = Z(B), where
Z(B) is the center of B.

Proof. Let x ∈ B. Then we have the following equivalences.

x ∈ Z(B) ⇔ ∀y ∈ B : xy = yx

⇔ ∀y ∈ B : f−1(xy) = f−1(yx)

⇔ ∀y ∈ B : f−1(x)f−1(y) = f−1(y)f−1(x)

⇔ f−1(x) ∈ Z(B)

⇔ x ∈ f(Z(B)).

■

Lemma A.132. Z(B) = {x ∈ B : ∀i : xi ∈ Span(1)}.
In other words, if we let Ei ∈ B be the inclusion of the identities in each summand, i.e.,
Ei = ιi(1) so that we have (Ei)j = δi,j1 ∈ Mnj , then the center of B is exactly the span of
the inclusions Ei’s.

Proof. Follows from the center of each Mni
being equal to Span(1) (which follows from an

analogue of Lemma A.126). ■

Recall that for x ∈ N, we write [x] to mean {1, . . . , x}.
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Notation. We permute the matrix blocks of the same size so that they are grouped together.
More specifically, let B =

⊕k
i=1Bi, where each Bi =

⊕ti
j=1Mni

, such that if ni = nj , then
i = j. So, for x ∈ B, we write x =

∑
i,j ιiιj(xi,j), where each xi,j ∈Mni

.

As we have ni = nj only when i = j, we get that there exists a linear isomorphismMni
∼=Mnj

if and only if i = j.

Similarly, there exists an algebra isomorphism Bi ∼= Bj if and only if i = j (otherwise, if i ̸= j,
then there would exist an algebra isomorphism Mni

∼=Mnj
, which would then imply i = j by

the previous argument). This then means that for an algebra automorphism f : B ∼= B, there
exists algebra automorphisms fi : Bi ∼= Bi such that f =

⊕
i fi.

Lemma A.133. Given an algebra automorphism f in B =
⊕

aBa, there exists an inner
algebra automorphism g : B → B and an outer automorphism h : B → B such that f = gh,
if and only if, for each i, there exists a permutation hi : [ti] → [ti] such that f(ιiιj(1)) =
ιiιhi(j)(1).
Notation: given a permutation σ : [ti] → [ti], the induced automorphism h : Bi → Bi will be
given by h(ιj(x)) = ισ(j)(x) for x ∈Mni

.

Proof. Using the above argument, it suffices to show that for an algebra automorphism
f : Ba → Ba for any a ∈ [k], we get that there exists an inner automorphism g : Ba → Ba and
a permutation h in Ba such that f = gh if and only if f(ιi(1)) = ιh(j)(1) for some permutation
h in [ta].

(⇒) Suppose there exists an inner automorphism g and a permutation h such that f = gh.
Then by Lemma A.130, we get that there exists automorphisms gj in Mna

such that
g =

⊕
j gj . And so we compute,

f(ιj(1)) = gh(ιj(1)) = g(ιh(j)(1))

= ιh(j)(gh(j)(1)) = ιh(j)(1).

(⇐) Suppose f(ιj(1)) = ιh(j)(1) for some permutation h in [ta]. Then for any x ∈ Ba, we
compute,

f(x) =
∑
j

f(ιj(xj)) =
∑
j

f(ιj(1)ιj(xj))

=
∑
j

f(ιj(1))f(ιj(xj))

=
∑
j

ιh(j)(1)f(ιj(xj))

=
∑
j

ιh(j)

(
[f(ιj(xj))]h(j)

)

=

∑
j

ιh(j) ◦ ph(j) ◦ f ◦ ιj ◦ pj

 (x).

Let each gj = pj ◦ f ◦ ιh−1(j). And let g =
∑
j ιj ◦ gj ◦ pj , so that we have g ◦ ιj = ιj ◦ gj .

Then let h =
∑
j ιh(j) ◦ pj . Then we have,

f =
∑
j

ιh(j) ◦ ph(j) ◦ f ◦ ιj ◦ pj

=
∑
j

ιh(j) ◦ gh(j) ◦ pj

= g ◦
∑
j

ιh(j) ◦ pj
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= g ◦ h.

■

Theorem A.134. Given an algebra automorphism f : B ∼= B where B =
⊕k

i=1Bi and each

Bi =
⊕ti

j=1Mni
, there exists an inner automorphism g in B and permutation h =

⊕
i hi in

B, where each hi is a permutation in Bi, such that f = gh.

Proof. It suffices to show that, given an algebra automorphism f in Ba, there exists an inner
automorphism g in Ba and a permutation h in Ba such that f = gh.

For each i ∈ [ta], let Ei ∈ Ba such that (Ei)j = δi,j1 ∈Mna . In other words, each Ei = ιi(1).
It is clear that we have EiEj = δi,jEi.

Using Lemma A.133, it suffices to show that there exists a permutation h on [ta] such that
each f(Ei) = Eh(i).

As each Ei ∈ Z(Ba) (Lemma A.132), we also get each f(Ei) ∈ Z(Ba) (using Lemma A.131).
So then, for each i ∈ [ta], we let αi ∈ Cta such that f(Ei) =

∑
j(αi)jEj .

We also clearly have
∑
iEi = 1, and so we compute,

1 = f(1) = f

(∑
i

Ei

)
=
∑
i

f(Ei) =
∑
i,j

(αi)jEj ,

which is equivalent to saying
∑
i(αi)j = 1 for all j ∈ [ta].

Now for any p, q ∈ [K] such that p ̸= q, we get

0 = f(EpEq) = f(Ep)f(Eq) =
∑
i,j

αp,iαq,jEiEj =
∑
i

αp,iαq,iEi,

which is equivalent to saying αp,jαq,j = 0 for all j ∈ [ta].

As each Ei ̸= 0, we have that for any i ∈ [ta], there exists j ∈ [ta] such that αi,j ̸= 0.

If we take A to be the matrix given by Aij = αi,j , then it suffices to show if αi,j ̸= 0, then
αi,j = 1 and it would be the only non-zero value in its row and column. This is because this
would mean that f(Ei) = Eh(i) for some permutation h.

Suppose αi,j ̸= 0 for some i, j (we know that this exists as each Ei ̸= 0). Then the condition
αp,jαi,j = 0 for all p ̸= i, implies that we have αi,j being the only non-zero value in its column.
And the condition

∑
p αp,j = 1 implies αi,j = 1.

All we now need to show is that it is the only non-zero value in its row. As for each row p ̸= i
we have at least one non-zero value, then we know it cannot be in column j (as αp,j = 0). So
this means αp,q ̸= 0 for q ̸= j, and so αk,q = 0 for all k ̸= p, which means αi,q = 0 for all
q ̸= j, i.e., αi,j is the only non-zero value. ■

Lemma A.135. Given an inner automorphism f on B, we get

f∗ = rmul(Q−1) ◦ (f−1)
r ◦ rmul(Q).

In other words, we get f∗(x) = f−1(Qx∗)
∗
Q−1 for any x ∈ B.

Moreover, when f is a ∗-automorphism on B, we get f∗(x) = f−1(xQ)Q−1 for all x ∈ B.

Proof. Let U ∈ B be the invertible element such that f is given by x 7→ UxU−1. Then, for
any x, y ∈ B, we compute,

⟨f∗(x)|y⟩ = ⟨x|f(y)⟩ = Tr(Qx∗UyU−1) = Tr(QQ−1U−1Qx∗Uy)
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= Tr(QQ−1f−1(Qx∗)y) =
〈(
f−1

)r
(xQ)Q−1

∣∣∣y〉.
Thus f∗ is given by x 7→ (f−1)

r
(xQ)Q−1.

If f is a ∗-automorphism, then (f−1)
r
= f−1, and so the result then follows. ■

Corollary A.136. More generally, given an algebra automorphism f = gh on B, where g is
an inner algebra automorphism on B and h is a permutation on the direct summands of equal
sizes, we get

f∗ = h−1 ◦ rmul(Q−1) ◦ (g−1)
r ◦ rmul(Q).

In other words, we get f∗(x) = h−1(g−1(Qx∗)
∗
Q−1) for any x ∈ B.

Moreover, when f is a ∗-automorphism on B, then we get f∗(x) = f−1(xQ)h−1(Q−1) for all
x ∈ B.

Proof. Let σ be the permutation on [K] such that, for each i, h(ιi(xi)) = ισ(i)(xi) and
h−1(ιi(xi)) = ισ−1(i)(xi). Equally, we have h−1(ισ(i)(xσ(i))) = ιi(xσ(i)) for each i. So then,
for any x, y ∈ B, we compute,

⟨h∗(x)|y⟩ = ⟨x|h(y)⟩ =
∑
i

〈
x
∣∣ισ(i)(yi)〉 =∑

i

〈
xσ(i)

∣∣yi〉
=
∑
i

〈
ιi(xσ(i))

∣∣y〉 =∑
i

〈
h−1(ισ(i)(xσ(i)))

∣∣y〉 = 〈h−1(x)
∣∣y〉.

Thus h∗ = h−1. The result then follows from Lemma A.135. ■

The following result tells us when a ∗-algebra automorphism f in B is an isometry (i.e.,
∥f(x)∥ = ∥x∥ for all x ∈ B).

Lemma A.137. Given a ∗-algebra automorphism f in B, the following are equivalent,

(i) f(Q) = Q,

(ii) f∗ = f−1,

(iii) ψ ◦ f = ψ,

(iv) ∀x, y ∈ B : ⟨f(x)|f(y)⟩ = ⟨x|y⟩,

(v) ∀x ∈ B : ∥f(x)∥ = ∥x∥.

Moreover, by letting f = gh for some inner g and permutation h on the direct summands
(Theorem A.134), then we also have equivalency with,

(vi) g(Q) = Q.

Proof.

(i) ⇔ (iii) First note that we get f is trace-preserving, since f = gh for some inner g and per-
mutation h on the direct summands (Theorem A.134), and clearly h is trace-preserving,
and g is also clearly trace-preserving as g : x 7→ UxU∗ for some unitary U ∈ B. Note
that the trace here, is the usual trace on B =

⊕
iMni

, i.e., Tr(x) =
∑
i,t xi,tt (sum of

the diagonals in each matrix block) for all x.

(⇒) Suppose f(Q) = Q. Then we also have f−1(Q) = Q. And so

ψ(f(x)) = Tr(Qf(x)) = Tr(f−1(Q)x) = Tr(Qx) = ψ(x),

for any x ∈ B.
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(⇐) Suppose ψ ◦ f = ψ. Then for any x ∈ B, we have

ψ(x) = ψ(f(x)) = Tr(Qf(x)) = Tr(f−1(Qf(x))) = Tr(f−1(Q)x).

And so f−1(Q) = Q by uniqueness of Q (see Lemma A.38).

(iii) ⇔ (iv) For any x, y ∈ B, we have ⟨f(x)|f(y)⟩ = ψ(f(x)
∗
f(y)) = ψ ◦ f(x∗y).

(⇒) Suppose ψ ◦ f = ψ. Then ⟨f(x)|f(y)⟩ = ψ ◦ f(x∗y) = ψ(x∗y) = ⟨x|y⟩ for any
x, y ∈ B.

(⇐) Suppose ψ ◦f(x∗y) = ⟨f(x)|f(y)⟩ = ⟨x|y⟩ = ψ(x∗y) for any x, y ∈ B. Then for any
x ∈ B, we have ψ ◦ f(x) = ψ ◦ f(1∗x) = ψ(1∗x) = ψ(x).

(iv) ⇔ (ii)

∀x, y ∈ B : ⟨f(x)|f(y)⟩ = ⟨x|y⟩ ⇔ ∀x, y ∈ B : ⟨f∗f(x)|y⟩ = ⟨x|y⟩
⇔ ∀x ∈ B : f∗f(x) = x

⇔ f∗f = id ⇔ f∗ = f−1.

(v) ⇔ (ii) We have the following equivalences,

∀x ∈ B : ∥f(x)∥ = ∥x∥ ⇔ ∀x ∈ B : ⟨(f∗f − id)(x)|x⟩ = 0

⇔ f∗f = id

⇔ f∗ = f−1.

(ii) ⇔ (vi)

f∗ = f−1 ⇔ ∀x ∈ B : f−1(xQ)h−1(Q−1) = f−1(x) by A.136

⇔ ∀x ∈ B : f−1(xQ) = f−1(x)h−1(Q)

⇔ ∀x ∈ B : xQ = xg(Q)

⇔ Q = g(Q)

■

Remark A.138. Saying f : B → B is both a ∗-algebra and a co-algebra automorphism is
equivalent to saying f is an isometric ∗-algebra automorphism. ♢

Corollary A.139. For a ∗-algebra automorphism f = gh in B, for some inner automorphism
g in B and permutation h on the direct summands, then when f is an isometry, we get
h(Q) = Q.

Proof. Using Lemma A.137, we get f(Q) = Q and g(Q) = Q. So then it is clear that we also
get h(Q) = Q. ■

Corollary A.140. Given a ∗-algebra automorphism f = gh in B, where g : x 7→ UxU∗ for
some unitary U ∈ B, then f is an isometry if and only if UQ = QU .

Proof. By Lemma A.137, we get f is an isometry if and only if g(Q) = Q, which is true if and
only if UQ = UQ. ■

Corollary A.141. Given an isometric ∗-algebra automorphism f = gh in B, such that g is
given by x 7→ UxU∗ for some unitary U ∈ B, we have,

(i) m ◦ (f ⊗ f) = f ◦m,
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(ii) (f ⊗ f) ◦m∗ = m∗ ◦ f ,

(iii) f ◦ η = η,

(iv) η∗ ◦ f = η∗,

(v) UQ = QU .

Proof. As f is an isometry, Lemma A.137 tells us that we get ψ ◦ f = ψ, which is exactly part
(iv). Part (v) is given by Lemma A.140, and the rest is given by Lemma A.14. ■

Proposition A.142. Given C∗-algebras X1, X2, X3, X4, then for a linear map A : X2 → X3,
a surjective ∗-homomorphism f : X1 → X2, and an injective ∗-homomorphism g : X3 → X4,
we get A is real if and only if gAf is real.

Proof. As f and g are both ∗-homomorphisms, we get f r = f and gr = g. So then we have
the following equivalences,

gAf is real ⇔ (gAf)
r
= gAf by Lemma A.83

⇔ grArf r = gAf

⇔ gArf = gAf

⇔ Ar = A⇔ A is real by Lemma A.83.

Note that, in the fourth equivalence, we used the fact that g is injective and f is surjective. ■

Using the above, we get that for a ∗-isomorphism f : X1
∼= X2 and a linear operator A ∈ B(X2),

we get A is real if and only if f−1Af is.

Remark A.143. Given a unitary x ∈ B, if fx is the automorphism on B given by y 7→ xyx∗,
then for U, V ∈ B, we have fU = fV if and only if xU∗V = U∗V x for all x ∈ B, and this is
true if and only if U∗V = α1 for some α ∈ C (see Lemma A.126), which means V = βU for
some β ∈ C. ♢

Lemma A.144. Given a unitary U ∈ B, let fU be the inner ∗-automorphism on B, given by
x 7→ UxU∗. Then we have Me(fU ) =

⊕
i Ui ⊗ σ−1/2(Ui), where e is the orthonormal basis

(ιs(eijQ
−1/2
s ))s,ij of B from Proposition A.60.

Proof. Using Lemma A.115(viii),(ix) we get

Me(fU ) = Me(lmul(U) rmul(U∗)) = Me(lmul(U))Me(rmul(U∗))

=

(⊕
i

Ui ⊗ 1i

)(⊕
i

1i ⊗ σ1/2(U
∗
i )
T

)
=
⊕
i

Ui ⊗ σ1/2(U
∗
i )
T

=
⊕
i

Ui ⊗ σ−1/2(Ui).

■

Using the above lemma, we get the matrix of its inverse is Me(fU∗) =
⊕

i U
∗
i ⊗ σ−1/2(U

∗
i ),

and the matrix of its adjoint is Me(f
∗
U ) = Me(fU )

∗
=
⊕

i U
∗
i ⊗ σ1/2(U

∗
i ).

Remark A.145. When our linear functional ψ is tracial (so Q = α1 for some 0 < α), then
Me(fU ) =

⊕
i Ui ⊗ Ui for some unitary U ∈ B, where e is the same orthonormal basis of B

as above, i.e., (ιs(eijQ
−1/2
s ))s,ij from Proposition A.60. ♢
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Corollary A.146. Let f be an algebra isomorphism between algebras A1 and A2, and let
x ∈ A1. Then

Spectrum(f(x)) = Spectrum(x).

Proof. Let λ ∈ C. Then we have the following equivalences,

λ ∈ Spectrum(f(x)) ⇔ λ1− f(x) is not invertible

⇔ λf(1)− f(x) is not invertible

⇔ f(λ1− x) is not invertible

⇔ λ1− x is not invertible

⇔ λ ∈ Spectrum(x).

■

A.XII Projections

In this section, we go over some well-known results on idempotents and projections.

We assume that scalar multiplication by the natural numbers is always injective here.

A.XII.1 Idempotents.

Lemma A.147. Given idempotent elements p and q in a ring R, we have p+ q is idempotent
if and only if they anti-commute (i.e., pq + qp = 0).

Proof. (p+ q)(p+ q) = p+ q if and only if p+pq+ qp+ q = p+ q if and only if pq+ qp = 0. ■

Lemma A.148. If idempotent a and element b in a ring R anti-commute, then ab = 0,
which implies they commute. So anti-commutativity implies commutativity when one of them
is idempotent.

Proof. Suppose ab+ ba = 0. Then 0 = a(ab+ ba)a = aba+ aba = 2aba which means aba = 0.
And so 0 = a(ab + ba) = ab + aba = ab. And since they anti-commute, ba is also equal to 0.
Thus ab = ba. ■

Lemma A.149. For an element a in a ring R, we get 1− a is idempotent if and only if a is.

Proof. If a is idempotent, then (1−a)(1−a) = 1− 2a+a2 = 1− 2a+a = 1−a, which means
1− a is idempotent.

If, on the other hand, 1− a is idempotent, then we already know 1− (1− a) is idempotent by
the above. And, of course, 1− (1− a) = a, so we are done. ■

Lemma A.150. Given idempotent elements p and q in a ring R where scalar multiplication
by the natural numbers is injective, then

pq = p = qp ⇔ q − p is idempotent.

Proof.

(⇒) Suppose pq = p = qp. Then we have

(q − p)2 = q2 − pq − qp+ p2

= q − pq − qp+ q since p, q are idempotent

= q − p− p+ p by hypothesis, pq = p = qp

= q − p.

Thus p− q is idempotent.
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(⇐) Suppose q − p is idempotent. We want to show pq = p = qp. Now q − p is idempotent
means that we have q − p = (q − p)2 = q2 − qp− pq + p2 = q − qp− pq + p and so

p+ p = qp+ pq. (*)

We also have

q(p+ p) = q(qp+ pq) and (p+ p)q = (qp+ pq)q
⇔ qp+ qp = qp+ qpq and pq + pq = qpq + pq
⇔ qp = qpq and pq = qpq.

Hence qp = pq. And so it suffices to show pq = p. From Equation (*) we get 2p = 2pq.
And so the result then follows.

■

Let E be a vector space for the remainder of this section. Let U, V be subspaces of E such
that E = U ⊕ V . We say p ∈ L(E) is a projection onto U along its complement V if for all
x = u+ v ∈ U ⊕ V , we have p(x) = u. This means U = im p and V = ker p. We usually write
pU,V to mean the projection onto U along its complement V . So if we have two subspaces
U, V of E and write pU,V , then it is assumed that we have E = U ⊕ V . It is clear that we get
pU,V + pV,U = id.

Lemma A.151. Given an idempotent operator p ∈ L(E), i.e., p2 = p and x ∈ E, we have
x ∈ im p ⇔ p(x) = x.

Proof.

(⇒) Suppose x ∈ im p. Then we have that there exists some y ∈ E such that p(y) = x. And
so since p2 = p, we clearly get px = p(p(y)) = p(y) = x.

(⇐) Suppose p(x) = x. Then obviously x = p(x) ∈ im p.

■

Lemma A.152. Given T ∈ L(E), we have,
T 2 = T ⇔ pimT,kerT = T .

In other words, T is idempotent if and only if T is the projection onto its image along its
kernel.

Proof.

(⇒) Suppose T 2 = T .
Claim: imT ∩ kerT = {0}.

We already know {0} ⊆ imT ∩ kerT . So suppose x ∈ imT and x ∈ kerT .
Then there exists some y ∈ E such that T (y) = x and T (x) = 0. So then
x = T (y) = T (T (y)) = T (x) = 0. And so imT ∩ kerT = {0}.

Claim: imT + kerT = E.

We need to show that any element in E can be written as an element of
imT + kerT . Let x ∈ E. Then x− T (x) ∈ kerT since

T (x− T (x)) = T (x)− T (T (x)) = T (x)− T (x) = 0.

And so we get x = T (x) + (x− T (x)) ∈ imT + kerT , as T (x) ∈ imT .

Thus imT ⊕ kerT = E by definition. So we can talk about the projection pimT,kerT .
We now only need to show pimT,kerT = T . Let x ∈ E, then there exists some y ∈ imT
and z ∈ kerT such that x = y + z. Then pimT,kerT (x) = pimT,kerT (y + z) = y and
T (x) = T (y + z) = T (y) + T (z) = y by Lemma A.151 and T (z) = 0 since z ∈ kerT . So
we are done.
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(⇐) Let pimT,kerT = T (and so by definition we have E = imT ⊕ kerT ). Then for any
x ∈ E, there exists some y ∈ imT and z ∈ kerT such that x = y + z. And so
p2imT,kerT (x) = pimT,kerT (y) = y = pimT,kerT (x).

■

Lemma A.153. If p, q ∈ L(E) such that q is idempotent, then
qp = p ⇔ im p ⊆ im q.

Proof. Suppose p, q ∈ L(E) are idempotent. Then

∀x ∈ E : q(p(x)) = p(x) ⇔ p(x) ∈ im q by Lemma A.151.

And so the result then follows. ■

Lemma A.154. Given an idempotent operator T ∈ L(E), we have ker(T ) = im(id−T ).

Proof. Using Lemma A.152, we have im(id−T ) = im(id− pimT,kerT ) = im pkerT,imT = kerT .
■

Lemma A.155. Given p, q ∈ L(E) such that q is idempotent, then pq = p if and only if
ker q ⊆ ker p.

Proof. Using Lemma A.154, it suffices to show im(id− q) ⊆ ker p. It is clear that this is true
if and only if p(id− q) = 0. And so we are done. ■

Lemma A.156. Let p, q ∈ L(E) such that p is idempotent. Then pqp = qp if and only if im p
is invariant under q.

Proof. We have the following equivalences,

pqp = qp⇔ im(qp) ⊆ im p by A.153

⇔ q(im p) ⊆ im p

⇔ im p is invariant under q.

■

Lemma A.157. Let p, q ∈ L(E) such that p is idempotent. Then pqp = pq if and only if
ker p is invariant under q.

Proof. Analogously to Lemma A.156, pqp = pq if and only if ker p ⊆ ker pq using Lemma
A.155, which is true if and only if q(ker p) ⊆ ker p, in other words, ker p is invariant under
q. ■

Corollary A.158. Let p, q ∈ L(E) such that p is idempotent. Then pq = qp if and only if
both im p and ker p are invariant under q.

Proof. This should be clear using both Lemmas A.156 and A.157. ■

Proposition A.159. Two idempotent operators S and T on a vector space E are equal if
and only if their images and kernels are equal, i.e., imS = imT and kerS = kerT .
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Proof. Suppose imS = imT and kerS = kerT . And let x ∈ E. We use Lemma A.152
to get S is the projection onto its image along its kernel, i.e., S = pimS,kerS , which means
E = imS ⊕ kerS.

So then let y ∈ imS and z ∈ kerS such that x = y+z. Then S(x) = S(y+z) = S(y)+S(z) = y
using Lemma A.151 and the fact z ∈ kerS. And as imS = imT and kerS = kerT , we also
get T (x) = T (y + z) = T (y) + T (z) = y. Thus S(x) = T (x) for all x. ■

Now the following result is made easy by the above lemmas. Recall that the commutant of
M ⊆ B(H) is defined byM ′ = {y ∈ B(H) : xy = yx, ∀x ∈M} and the bicommutant is defined
by M ′′ = (M ′)

′
. Then we say a von Neumann algebra is a unital ∗-subalgebra M ⊆ B(H)

such that M =M ′′.

Proposition A.160 ([4, Lemma 5.10]). Let M ⊆ B(H) be a von Neumann algebra and
e ∈ B(H) be idempotent. Then e ∈ M if and only if both im e and ker e are M ′-invariant
subspaces.

Proof. This follows from Lemma A.158. ■

A.XII.2 Projections.

Definition A.161. A projection is a self-adjoint idempotent.

Lemma A.162. Give projections e and f , we have e+f is a projection if and only if ef = 0.

Proof. Using Lemma A.147, we know e + f is idempotent if and only if they anti-commute.
And, of course, e + f is self-adjoint since e and f are. So it suffices to show that elements e
and f anti-commute if and only if ef = 0. If ef = 0, then fe = 0 using adjoints, and so they
anti-commute. If, on the other hand, e and f anti-commute, then using Lemma A.148, we
know ef = 0. ■

Lemma A.163. Given projections e and f , we have f−e is a projection if and only if ef = e
(or, equivalently, if and only if fe = e).

Proof. Left as an exercise to the reader. Hint: use Lemma A.150. ■

Lemma A.164. Given a continuous linear map T ∈ B(H), we get (imT )⊥ = kerT ∗.

Proof. Let x ∈ H. Then,

x ∈ kerT ∗ ⇔ T ∗(x) = 0

⇔ ∀y, ⟨y|T ∗(x)⟩ = 0

⇔ ∀y, ⟨T (y)|x⟩ = 0

⇔ ∀a ∈ imT, ⟨a|x⟩ = 0

⇔ x ∈ (imT )⊥.

■

Lemma A.165. Projection operators e and f on a Hilbert space are equal if and only if their
image is, i.e., e = f if and only if im e = im f .

Proof. Using Lemma A.159, we know e = f if and only if their image and kernel are equal.
And using Lemma A.164, we know ker e = ker e∗ = (im e)⊥ and similarly ker f = (im f)⊥. So
then this is equivalent to only their images being equal. Thus we are done. ■
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Proposition A.166. LetM ⊆ B(H) be a von Neumann algebra and e ∈ B(H) be a projection.
Then e ∈M if and only if im e is a M ′-invariant subspace.

Proof. This is left as an exercise to the reader. Hint: use Proposition A.160 and the fact that
a von Nuemann algebra is a ∗-subalgebra. ■

Lemma A.167. Let T ∈ B(E). Then TT ∗ = T ∗T if and only if ∥T ∗(x)∥ = ∥T (x)∥ for all
x ∈ E.

Proof. We quickly compute,

TT ∗ = T ∗T ⇔ ∀x ∈ E, ⟨x|TT ∗(x)⟩ = ⟨x|T ∗T (x)⟩
⇔ ∀x, ⟨T ∗(x)|T ∗(x)⟩ = ⟨T (x)|T (x)⟩
⇔ ∀x, ∥T ∗(x)∥ = ∥T (x)∥ .

■

Corollary A.168. Let T ∈ B(E) be normal (i.e., TT ∗ = T ∗T ). Then (imT )
⊥
= kerT .

Proof. It suffices to show kerT ∗ = kerT using Lemma A.164. Let x ∈ E. By Lemma A.167,
we know ∥T ∗(x)∥ = ∥T (x)∥. So then we compute,

x ∈ kerT ∗ ⇔ T ∗(x) = 0

⇔ ∥T ∗(x)∥ = 0 ⇔ ∥T (x)∥ = 0

⇔ T (x) = 0 ⇔ x ∈ kerT.

■

Proposition A.169. Let e ∈ B(E) be idempotent. Then the following are equivalent,

(i) (im e)⊥ = ker e,

(ii) e is normal,

(iii) e is self-adjoint,

(iv) 0 ≤ e.

Proof. We already know (iv) ⇒ (iii) ⇒ (ii). And (ii) ⇒ (i) from Corollary A.168.

(i) ⇒ (iii) Suppose (im e)
⊥
= ker e. Let x, y ∈ E. We want to show ⟨x|e(y)⟩ = ⟨e(x)|y⟩. Let

x = a + b and y = c + d such that a, c ∈ im e and b, d ∈ ker e (since e is idempotent,
see Proposition A.152). Using Lemma A.151, we have e(a) = a and e(c) = c. Then
⟨x|e(y)⟩ = ⟨a+ b|e(c+ d)⟩ = ⟨a|c⟩ + ⟨b|c⟩ = ⟨a|c⟩, where the last equality follows from

our hypothesis (i.e., (im e)
⊥

= ker e). Similarly, ⟨e(x)|y⟩ = ⟨a|c⟩ + ⟨a|d⟩ = ⟨a|c⟩. Thus
⟨e(x)|y⟩ = ⟨x|e(y)⟩, as desired.

(ii) ⇒ (iii) Suppose e is normal. Then it suffices to show that e = e∗e (since e∗e is self-
adjoint). Then note that we also get id− e is normal. So then we have the following
equivalences,

e = e∗e⇔ ∀x, ∥(e− e∗e)(x)∥ = 0

⇔ ∀x,
∥∥(id− e)

∗
e(x)

∥∥ = 0

⇔ ∀x, ∥(id− e)e(x)∥ = 0 by A.167

⇔ (id− e)e = 0 ⇔ e2 = e.

And this is true as e is idempotent. Thus e = e∗e, and so e is self-adjoint.
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(iii) ⇒ (iv) Suppose e is self-adjoint, so then e2 = e∗ = e. Then, for any x ∈ E, we get
0 ≤ ⟨e(x)|e(x)⟩ = ⟨x|e∗e(x)⟩ = ⟨x|e(x)⟩. Thus e is positive semi-definite.

■

Now let E be a finite-dimensional C-inner product space. We know for any subspace U ⊆ E,
we have the direct sum decomposition E = U ⊕ U⊥. We denote our orthogonal projection of
E onto U ⊆ E as the operator PU ∈ L(E) given by PU (v) = u where imPU = U is orthogonal
to kerPU = U⊥. So the orthogonal projection onto U is simply the projection onto U along
its complement U⊥.

Lemma A.170. Given a subspace U of E, then if (ui) is an orthonormal basis of U , then
PU =

∑
i|ui⟩⟨ui|.

Proof. Let (ui) be an orthonormal basis of U and let p =
∑
i|ui⟩⟨ui|. Then for any y ∈ E, we

have y = p(y) + (id− p)(y). We compute,

p2 =
∑
i,j

|ui⟩⟨ui||uj⟩⟨uj | =
∑
i,j

⟨ui|uj⟩|ui⟩⟨uj | =
∑
i

|ui⟩⟨ui| = p.

And so p is a projection. Let x ∈ E, then there exists some y ∈ U and z ∈ U⊥ such that
x = y + z ∈ U ⊕ U⊥. Since (ui) is an orthonormal basis of U , we get p(y) = y. So then we
have p(x) = y = PU (x) for any x ∈ E. ■

A.XII.3 Projections on B ⊗Bop.

Definition A.171. Let Bop be the opposite algebra to B, which is the same space as B,
but with B’s reversed product, i.e., aopbop = (ba)

op
for aop, bop ∈ Bop.

So, to be exact, we define op: B ∼=l B
op by a 7→ aop with inverse aop 7→ a.

Taking adjoints on Bop is given by op◦ ∗ ◦op−1. So this means (xop)
∗
= (x∗)

op
.

Given an orthonormal basis (fi) of B, we can let our orthonormal basis of Bop

be given by applying our opposite map op to each element in our orthonormal
basis of B, i.e., (fopi ). We can then define the inner product on Bop to be given
by

⟨aop|bop⟩Bop = Tr(Qa∗b) = ⟨a|b⟩B .

We also define the opposite modular automorphism σop
t on Bop be given by op ◦ σt ◦ op−1.

So σop
t (xop) = σt(x)

op
.

Remark A.172. A direct corollary to Proposition A.69 is that, for any t, s ∈ R and xop ∈ Bop,
we get σop

t σ
op
s = σop

t+s, σ
op
t (xop)

∗
= σop

−t
(
(xop)

∗)
, and (σop

t )
∗
= σop

t . ♢

So then, given an orthonormal basis (fi) of B, we get (fi ⊗ fopj ) is an orthonormal basis of
B ⊗Bop. The inner product on B ⊗Bop is given by

⟨a⊗ bop|c⊗ dop⟩B⊗Bop = ⟨a|c⟩B⟨b
op|dop⟩Bop = ⟨a|c⟩B⟨b|d⟩B = ⟨a⊗ b|c⊗ d⟩B⊗B .

Definition A.173 ([4, Definition 5.2]). We define the tensor swap map ς as the self-
invertible and real (i.e., star-preserving) linear automorphism on B ⊗ Bop which is given
by a⊗ bop 7→ b⊗ aop.

Remark A.174. So ς = (op−1 ⊗ op)κB,Bop . ♢

Lemma A.175. For any x, y ∈ B ⊗Bop, we get ς(xy) = ς(y)ς(x) and ς(x∗) = ς(x)
∗
.

Proof. Direct computation. ■
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Lemma A.176. For any x, y ∈ R, we get ς ◦ (σx ⊗ σop
y ) = (σy ⊗ σop

x ) ◦ ς.

Proof. Let x, y ∈ R and α, β ∈ B. Then, we compute,

ς(σx ⊗ σop
y )(α⊗ βop) = ς(σx(α)⊗ σy(β)

op
) = σy(β)⊗ σx(α)

op

= (σy ⊗ σop
x )(β ⊗ αop) = (σy ⊗ σop

x )ς(α⊗ βop).

Thus ς(σx ⊗ σop
y ) = (σy ⊗ σop

x )ς. ■

Proposition A.177. Given t, s ∈ R, there exists a linear isomorphism B(B,ψ) ∼= B ⊗Bop.

Proof. It is enough to define our maps on rank-one operators and simple tensors, as we can
simply extend this. We define our linear map Ψt,s : |a⟩⟨b| 7→ σt(a)⊗ (σs(b)

∗
)
op

and its inverse
linear map Ψ−1

t,s : a⊗ bop 7→ |σ−t(a)⟩⟨σ−s(b∗)|.

We now check that this is a well-defined inverse.

Ψ−1
t,sΨt,s(|a⟩⟨b|) = Ψ−1

t,s

(
σt(a)⊗ (σs(b)

∗
)
op)

= |σ−t(σt(a))⟩⟨σ−s(σs(b))|
= |σ0(a)⟩⟨σ0(b)| = |a⟩⟨b| by A.69(i).

And, we also compute,

Ψt,sΨ
−1
t,s (a⊗ bop) = Ψt,s(|σ−t(a)⟩⟨σ−s(b∗)|)

= σt(σ−t(a))⊗ (σs(σ−s(b
∗))

∗
)
op

= σtσ−t(a)⊗ σ−sσs(b)
op

by A.69(ii)

= σ0(a)⊗ σ0(b)
op

= a⊗ bop by A.69(i).

Thus Ψt,s is a linear isomorphism. ■

Definition A.178 ([4, middle of page 9]). Given t, s ∈ R, we define the linear iso-
morphism B(B,ψ) ∼= B ⊗ Bop by Ψt,s : |a⟩⟨b| 7→ σt(a) ⊗ (σs(b)

∗
)
op

and its inverse by
Ψ−1
t,s : a⊗ bop 7→ |σ−t(a)⟩⟨σ−s(b∗)|. (See Proposition A.177.)

Lemma A.179. For any s, p, r, t ∈ R, we get (σs ⊗ σop
p ) ◦Ψr,t = Ψs+r,−p+t.

Proof. By linearity, it suffices to show this for |a⟩⟨b| where a, b ∈ B. So let a, b ∈ B and
compute,

(σs ⊗ σop
p )Ψr,t(|a⟩⟨b|) = (σs ⊗ σop

p )
(
σr(a)⊗ (σt(b)

∗
)
op)

= σs+r(a)⊗ σ−p+t(b)
op

by A.69(i),(ii)

= Ψs+r,−p+t(|a⟩⟨b|).

■

Proposition A.180 ([4, Proposition 5.3 & Lemma 5.7]). Let A, T ∈ B(B,ψ) and t, s ∈ R.
Then,

(i) Ψt,s(A
∗) = (σt−s ⊗ σop

t−s)ς(Ψt,s(A)
∗
),

(ii) Ψt,s(symm(A)) = (σt+s−1 ⊗ σop
−(t+s))ς(Ψt,s(A)),

(iii) Ψt,s(symm′(A)) = (σt+s ⊗ σop
1−t−s)ς(Ψt,s(A)),

(iv) Ψt,s(A • T ) = Ψt,s(A)Ψt,s(T ),

(v) Ψt,s(A
r) = (σ2t ⊗ σop

1−2s)Ψt,s(A)
∗
.
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Proof. Since we can write any linear map A ∈ B(B,ψ) as
∑
i|αi⟩⟨βi| for some tuples (αi), (βi)

in B, it is enough to show that these results are true for A = |a⟩⟨b| and T = |c⟩⟨d| for
a, b, c, d ∈ B.

(i) We compute,

(σt−s ⊗ σop
t−s)ς(Ψt,s(|a⟩⟨b|)

∗
) = (σt−s ⊗ σop

t−s)ς(σ−t(a
∗)⊗ σs(b)

op
)

= (σt−s ⊗ σop
t−s)(σs(b)⊗ σ−t(a

∗)
op
)

= σt(b)⊗ σ−s(a
∗)

op
by A.69(i)

= σt(b)⊗ (σs(a)
∗
)
op

by A.69(ii)

= Ψt,s(|b⟩⟨a|)
= Ψt,s(|a⟩⟨b|∗) by A.17(iii).

Thus Ψt,s(A
∗) = (σt−s ⊗ σop

t−s)ς(Ψt,s(A)
∗
).

(ii) We compute,

(σt+s−1 ⊗ σop
−(t+s))ς(Ψt,s(|a⟩⟨b|))

= ς(σ−(t+s) ⊗ σop
t+s−1)Ψt,s(|a⟩⟨b|) by A.176

= ς(Ψ−s,1−t(|a⟩⟨b|)) by A.179

= ς(σ−s(a)⊗ (σ1−t(b)
∗
)
op

= σ1−t(b)
∗ ⊗ σ−s(a)

op

= σt(σ−1(b
∗))⊗ (σs(a

∗)
∗
)
op

by A.69(i),(ii)

= Ψt,s(|σ−1(b
∗)⟩⟨a∗|)

= Ψt,s (symm(|a⟩⟨b|)) by A.91(i).

Thus Ψt,s(symm(A)) = (σt+s−1 ⊗ σop
−(t+s))ς(Ψt,s(A)).

(iii) We compute,

(σt+s ⊗ σop
1−t−s)ς(Ψt,s(|a⟩⟨b|))

= ς(σ1−t−s ⊗ σop
t+s)Ψt,s(|a⟩⟨b|) by A.176

= ς(Ψ1−s,−t(|a⟩⟨b|)) by A.179

= ς(σ1−s(a)⊗ (σ−t(b)
∗
)
op

= σ−t(b)
∗ ⊗ σ1−s(a)

op

= σt(b
∗)⊗ (σs(σ−1(a

∗))
∗
)op by A.69(i),(ii)

= Ψt,s(|b∗⟩⟨σ−1(a
∗)|)

= Ψt,s (symm′(|a⟩⟨b|)) by A.91(ii).

Therefore, Ψt,s(symm′(A)) = (σt+s ⊗ σop
1−t−s)ς(Ψt,s(A)).

(iv) We have

Ψt,s(|a⟩⟨b|)Ψt,s(|c⟩⟨d|) =
(
σt(a)⊗

(
σs(b)

∗)op) (
σt(c)⊗

(
σs(d)

∗)op)
= σt(a)σt(c)⊗

(
(σs(b)σs(d))

∗)op
= σt(ac)⊗ (σs(bd)

∗
)
op

= Ψt,s(|ac⟩⟨bd|)
= Ψt,s (|a⟩⟨b| • |c⟩⟨d|) by A.112.

Thus Ψt,s(A • T ) = Ψt,s(A)Ψt,s(T ).
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(v) Finally, we compute,

(σ2t ⊗ σop
1−2s)(Ψt,s(|a⟩⟨b|))

∗
= (σ2t ⊗ σop

1−2s)(σt(a)
∗ ⊗ σs(b)

op
)

= (σ2t ⊗ σop
1−2s)(σ−t(a

∗)⊗ σs(b)
op
) by A.69(ii)

= σt(a
∗)⊗ σ1−s(b)

op
by A.69(i)

= σt(a
∗)⊗

(
σs (σ−1(b

∗))
∗)op

by A.69(i),(ii)

= Ψt,s(|a∗⟩⟨σ−1(b
∗)|)

= Ψt,s(|a⟩⟨b|r) by A.87(iv).

Thus Ψt,s(A
r) = (σ2t ⊗ σop

1−2s)Ψt,s(A)
∗
.

■

Corollary A.181. Let A ∈ B(B,ψ) and t, s ∈ R. Then,

(i) A∗ = A ⇔ Ψt,s(A) = ς(Ψs,t(A)
∗
),

(ii) symm(A) = A ⇔ Ψt,s(A) = ς(Ψ−s,1−t(A)),

(iii) symm′(A) = A ⇔ Ψt,s(A) = ς(Ψ1−s,−t(A)),

(iv) A •A = A ⇔ Ψt,s(A)
2
= Ψt,s(A),

(v) A is real ⇔ Ψt,s(A)
∗
= Ψ−t,1−s(A).

Proof. These follow directly from Proposition A.180, by combining them with Lemmas A.176
and A.179. ■

Remark A.182. Using the above Corollary A.181(v), we get A is real if and only if Ψ0,1/2(A)
is self-adjoint. (See [4, Proposition 5.21].) ♢

Lemma A.183. For A ∈ B(B,ψ), we have

A = (id⊗ op−1)ςΨ0,1(A).

Proof. It suffices to show this for A = |x⟩⟨y| for x, y ∈ B. Let a, b ∈ B and let m∗(1) =∑
i αi ⊗ βi for tuples (αi), (βi) in B. We compute,

⟨(id⊗ |xop⟩⟨y|)m∗(1)|a⊗ bop⟩ =
∑
i

⟨(id⊗ |xop⟩⟨y|)(αi ⊗ βi)|a⊗ bop⟩

=
∑
i

⟨αi ⊗ ⟨y|βi⟩xop|a⊗ bop⟩

=
∑
i

⟨αi|a⟩⟨βi|y⟩⟨xop|bop⟩

= ⟨m∗(1)|a⊗ y⟩⟨xop|bop⟩
= ⟨1|ay⟩⟨xop|bop⟩
= ⟨σ−1(y

∗)|a⟩⟨xop|bop⟩
= ⟨σ−1(y

∗)⊗ xop|a⊗ bop⟩
=
〈
ς(x⊗ σ1(y)

∗op
)
∣∣a⊗ bop

〉
= ⟨ςΨ0,1(|x⟩⟨y|)|a⊗ bop⟩.

Thus ςΨ0,1(A) = (id⊗ op)(id⊗A)m∗(1). ■
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Proposition A.184. For A ∈ B(B,ψ), we have

A = (id⊗ op−1)Ψ0,0(A).

Proof.

⟨(|x⟩⟨y| ⊗ id)m∗(1)|a⊗ b⟩ =
∑
i

⟨(|x⟩⟨y| ⊗ id)(αi ⊗ βi)|a⊗ b⟩

=
∑
i

⟨αi|y⟩⟨x|a⟩⟨βi|b⟩

= ⟨m∗(1)|y ⊗ b⟩⟨x|a⟩
= ⟨1|yb⟩⟨x|a⟩ = ⟨y∗|b⟩⟨x|a⟩
= ⟨x⊗ y∗|a⊗ b⟩
=
〈
(id⊗ op−1)Ψ0,0(|x⟩⟨y|)

∣∣a⊗ b
〉
.

■

Proposition A.185. Given A ∈ B(B,ψ), we have,

(i) A • id = lmul
(
m(id⊗ op−1)Ψ0,0(A)

)
,

in other words,

A • id = A ,

(ii) id •A = rmul
(
m(id⊗ op−1)ς(Ψ0,1(A))

)
,

in other words,

id •A = A .

Moreover, A• id equals id (resp., 0) if and only if m(id⊗ op−1)Ψ0,0(A) equals 1 (resp., 0) and
id •A equals id (resp., 0) if and only if m(id⊗ op−1)ς(Ψ0,1(A)) equals 1 (resp., 0).

Proof. Let A =
∑
i|ai⟩⟨bi| for some tuples (ai), (bi) in B.

(i) We compute,

A • id =
∑
i

|ai⟩⟨bi| • id =
∑
i

lmul(aib
∗
i ) by A.116(i)

=
∑
i

lmul
(
m(id⊗ op−1)(ai ⊗ (b∗i )

op
)
)

=
∑
i

lmul
(
m(id⊗ op−1)Ψ0,0(|ai⟩⟨bi|)

)
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= lmul
(
m(id⊗ op−1)Ψ0,0(A)

)
.

This equals id (resp., 0) if and only if m(id⊗ op−1)Ψ0,0(A) equals 1 (resp., 0).

(ii) We compute,

id •A =
∑
i

id • |ai⟩⟨bi| =
∑
i

rmul(σ−1(b
∗
i )ai) by A.116(ii)

=
∑
i

rmul(m(id⊗ op−1)(σ−1(b
∗
i )⊗ aopi ))

=
∑
i

rmul
(
m(id⊗ op−1)ς(ai ⊗ σ1(bi)

∗op
)
)

=
∑
i

rmul
(
m(id⊗ op−1)ςΨ0,1(|ai⟩⟨bi|)

)
= rmul

(
m(id⊗ op−1)ςΨ0,1(A)

)
.

And this equals id (resp., 0) if and only if m(id⊗ op−1)ς(Ψ0,1(A)) equals 1 (resp., 0).

■

Proposition A.186 ([9, Definition 1.2]). For A ∈ B(B,ψ), we have

Aσ1/2

op = Ψ0,1/2(A).

Proof. We begin with the following claim.
Claim: κB,Bop = (op⊗ op−1)ς. (1)

(op⊗ op−1)ς(a⊗ bop) = (op⊗ op−1)(b⊗ aop) = bop ⊗ a

= κB,Bop(a⊗ bop).

We then compute,

κBop,B(op⊗ id)(σ1/2 ⊗A)m∗(1)

=κBop,B(op ◦ σ1/2 ⊗ op−1)ςΨ0,1(A) by A.183

=κBop,B(op⊗ op−1)ςΨ0,1/2(A)

=κBop,BκB,BopΨ0,1/2(A) by Claim (1)

=Ψ0,1/2(A).

■

Proposition A.187 ([9, Equation 1.1]). For A ∈ B(B,ψ), we have,

A is real ⇔ A∗ = A .

Proof.

(id⊗ op−1)Ψ0,0(A
∗) = (id⊗ op−1)ςΨ0,1(A) ⇔ Ψ0,0(A

∗) = ςΨ0,1(A)
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⇔ ςΨ0,0(A)
∗
= ςΨ0,1(A)

⇔ Ψ0,0(A)
∗
= Ψ0,1(A)

⇔ A is real.

■

Proposition A.188. Given A ∈ B(B,ψ) and t, s, a, b ∈ R, then
(σa ⊗ σop

b )Ψt,s(A) = Ψt,s(σaAσ−b).

Proof. Let A =
∑
i|xi⟩⟨yi| for some tuples (xi), (yi) in B. Then we compute,

(σa ⊗ σop
b )Ψt,s(A) =

∑
i

σa+t(xi)⊗ σs−b(yi)
∗op

=
∑
i

Ψt,s(|σa(xi)⟩⟨σ−b(yi)|)

=
∑
i

Ψt,s(σa|xi⟩⟨yi|σ−b) by A.69(iii)

= Ψt,s(σaAσ−b).

Thus (σa ⊗ σop
b )Ψt,s(A) = Ψt,s(σaAσ−b). ■

A.XII.4 B =Mn. This subsection contains some computations that will be useful for later
on for when B =Mn in Chapter C.

Lemma A.189. Let e be the orthonormal basis (eijQ
−1/2)ij on Mn (see Proposition A.60).

Then for any x, y ∈Mn, we have

(i) Me(|x⟩⟨y|) = ϱ(xQ1/2)ϱ(yQ1/2)
∗
,

(ii) (id⊗⊤−1)Ψt,s(id) = Me

(∣∣Q−(t+s)−1/2
〉〈
Qt+s−3/2

∣∣) for any t, s ∈ R.

■

Proof. (i) For any i, j, k, l, we compute,

Me(|x⟩⟨y|)klij =
〈
eijQ

−1/2
∣∣∣|x⟩⟨y|(eklQ−1/2))

〉
=
〈
y
∣∣∣eklQ−1/2

〉〈
eijQ

−1/2
∣∣∣x〉

= (yQ1/2)kl(xQ
1/2)ij =

[
ϱ(xQ1/2)ϱ(yQ1/2)

∗]kl
ij
.

Thus Me(|x⟩⟨y|) = ϱ(xQ1/2)ϱ(yQ1/2)
∗
.

(ii) For any t, s ∈ R, and a, b, c, d, we compute,[
(id⊗⊤−1)Ψt,s(id)

]cd
ab

=
∑
i,j

[
(id⊗⊤−1)Ψt,s

(∣∣∣eijQ−1/2
〉〈
eijQ

−1/2
∣∣∣)]cd

ab

=
∑
i,j

Q−teijQ
t−1/2)ac (Q−seijQs−1/2)bd

=
∑
i,j

Q−t
ai Q

t−1/2
jc Q−s

bi Q
s−1/2
jd

= Q
−(t+s)
ab Qt+s−1

cd =
[
ϱ(Q−(t+s))ϱ(Qt+s−1)

∗
]cd
ab

= Me

(∣∣∣Q−(t+s)−1/2
〉〈
Qt+s−3/2

∣∣∣)cd
ab
.
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Where the last equality comes from part (i) above. And so the result then follows.

■

Proposition A.190. Let f be the orthonormal basis (eijQ
−1/2)ij on Mn (see Proposition

A.60). Then,

(i) (id⊗⊤−1)Ψ0,1/2(A) = (A⊗ id)Mf

(∣∣Q−1
〉〈
Q−1

∣∣) for any A ∈ B(Mn),

(ii) M−1
f (id⊗⊤−1)Ψ0,1/2(|x⟩⟨y|) = lmul(x)rmul(y)

∗
for any x, y ∈Mn,

(iii) Ψ−1
0,1/2(id⊗⊤)Mf (|x⟩⟨y|) = lmul(xQ)rmul(Qy)

∗
for any x, y ∈Mn.

Proof.

(i)

(id⊗⊤−1)Ψ0,1/2(A) =
∑
i,j

(id⊗⊤−1)Ψ0,1/2(|A(fij)⟩⟨fij |)

=
∑
i,j

A(fij)⊗ σ1/2(fij)

= (A⊗ id)(id⊗⊤−1)Ψ0,1/2(id)

= (A⊗ id)Mf

(∣∣Q−1
〉〈
Q−1

∣∣) by A.189(ii).

(ii)

Mf

(
lmul(x)rmul(y)

∗)
= Mf (lmul(x))Mf (rmul(y))

∗

= x⊗ σ1/2(y) by A.115(viii),(ix)

= (id⊗⊤−1)Ψ0,1/2(|x⟩⟨y|).

(iii) We let a ∈Mn and compute,

Ψ−1
0,1/2((id⊗⊤)Mf (|x⟩⟨y|))(a)

=
∑
i,j,k,l

Mf (|x⟩⟨y|)klijΨ−1
0,1/2((id⊗⊤)(eik ⊗ ejl))(a)

=
∑
i,j,k,l

(xQ1/2)ij(yQ1/2)kl
∣∣eik〉〈σ−1/2(ejl)

∣∣(a)
=
∑
i,j,k,l

(xQ1/2)ij(yQ1/2)kl

〈
Q1/2ejlQ

−1/2
∣∣∣a〉eik

=
∑
i,j,k,l

(xQ1/2)ij(yQ1/2)kl

〈
ejlQ

−1/2
∣∣∣Q1/2a

〉
eik

=
∑
i,j,k,l

(xQ1/2)ij(yQ1/2)kl(Q
1/2aQ1/2)jleik

=
∑
i,j,k

(xQ1/2)ij(Q
1/2aQ)jkeik

=
∑
i,k

[
xQ1/2Q1/2aQ1/2Q1/2y∗

]
ik
eik

= xQaQy∗ = lmul(xQ) rmul(Qy∗)(a)

= lmul(xQ)rmul(Qy)
∗
(a).

Note that the last equality follows from Lemma A.115(ii), in particular, for any y ∈Mn,
we get rmul(Qy)

∗
= rmul(σ−1(y

∗Q)) = rmul(Qy∗).

■
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A.XIII Bimodules

Bimodules provide another useful perspective for interpreting quantum graphs, as we will see
in Section B.III.

Given rings A,B, we say A is an (A,B)-bimodule when it is both a left A-module given by
the left scalar multiplication ·l and a right B-module given by the right scalar multiplication
·r, such that a ·l (b ·r c) = (a ·l b) ·r c for any b ∈ A, a ∈ A, and c ∈ B (in other words, it is
a vector space equipped with these left and right actions). Given (A,B)-bimodules A,D, we
call a linear map P : A → D an (A,B)-bimodule map if P (a ·l b ·r c) = a ·l P (b) ·r c, for a ∈ A,
c ∈ B, and b ∈ A.

For the purposes of this essay, we will focus on the bimodules that are inferred from our
C∗-algebra B. This algebra naturally gives rise to a (B,B)-bimodule B ⊗ B such that the
left scalar multiplication ·l : B ×B ⊗B → B ⊗B is given by (a, x ⊗ y) 7→ ax ⊗ y and the
right scalar multiplication ·r : B ⊗B ×B → B ⊗B is given by (x⊗ y, a) 7→ x⊗ ya. In other
words, a ·l x = (lmul(a)⊗ id)(x) and x ·r a = (id⊗ rmul(a))(x). So then (B,B)-bimodule maps
P ∈ B(B ⊗B) satisfy the property P ((lmul(x)⊗ rmul(y))(a)) = (lmul(x)⊗ rmul(y))P (a).

Given elements in B⊗B, we can form (B,B)-bimodule maps in B(B⊗B) in the obvious way.
In particular, let x, y ∈ B, then (rmul⊗ lmul)(x⊗ y) is an (B,B)-bimodule map:

(rmul(x)⊗ lmul(y))(g ·l a⊗ b ·r h) = gax⊗ ybh = g ·l (ax⊗ yb) ·r h
= g ·l (rmul(x)⊗ lmul(y))(a⊗ b) ·r h.

Lemma A.191. Let f ∈ B(B ⊗B) and P1, P2 ∈ B(B). Then,

(i) (rmul⊗ lmul)(p)(a⊗ b) = a ·l p ·r b for all p ∈ B ⊗B and a, b ∈ B,

(ii) f is an (B,B)-bimodule map ⇔ (rmul⊗ lmul)(f(1)) = f ,

(iii) P1(ab) = aP1(b) for all a, b ∈ B ⇔ P1 = rmul(P1(1)),

(iv) P1(ab) = P1(a)b for all a, b ∈ B ⇔ P1 = lmul(P1(1)),

(v) Let P1, P2 ̸= 0. Then P1 ⊗ P2 is an (B,B)-bimodule map ⇔ P1 = rmul(P1(1)) and
P2 = lmul(P2(1)).

Proof.

(i) (rmul⊗ lmul)(x⊗ y)(a⊗ b) = ax⊗ yb = a ·l (x⊗ y) ·r b.

(ii) By the above, we know (rmul⊗ lmul)(f(1))(x⊗ y) = x ·l f(1) ·r y for all x, y ∈ B.

(⇒) This is obvious.

(⇐) Suppose (rmul⊗ lmul)(f(1)) = f , which is simply x ·l f(1) ·r y = f(x ⊗ y) for all
x, y ∈ B. Let a, b, c, d ∈ B. Then f(ab ⊗ cd) = ab ·l f(1) ·r cd = a ·l f(b ⊗ c) ·r d.
Thus f is an (B,B)-bimodule map.

(iii) If P1(ab) = aP1(b) for all a, b ∈ B, then obviously P1 = rmul(P1(1)). So suppose
P1 = rmul(P1(1)) and let a, b ∈ B. Then P1(ab) = abP1(1) = aP1(b).

(iv) Analogously to the above, if P1(ab) = P1(a)b for all a, b ∈ B, then we obviously get
P1 = lmul(P1(1)). So suppose P1 = lmul(P1(1)) and let a, b ∈ B. Then P1(ab) =
P1(1)ab = P1(a)b.

(v) Suppose P1, P2 ̸= 0. If P1 = rmul(P1(1)) and P2 = lmul(P2(1)), then we immediately get
P1⊗P2 is an (B,B)-bimodule map. Let a, b ∈ B such that P1(a) ̸= 0 and P2(b) ̸= 0. Now
suppose P1⊗P2 is an (B,B)-bimodule map. Then for all x ∈ B, we get xP1(1)⊗P2(b) =
P1(x) ⊗ P2(b) by the hypothesis. And since P2(b) ̸= 0, we get xP1(1) = P1(x) for all
x ∈ B, which is what we needed.
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Similarly, for all x ∈ B, we get P1(a)⊗ P2(1)x = P1(a)⊗ P2(x) by the hypothesis. And
since P1(a) ̸= 0, we get P2(1)x = P2(x) for all x ∈ B, which is what we needed.

■
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B Quantum graphs

In this chapter, we define a quantum graph. There are multiple ways that one can go about
defining a quantum graph, such as via quantum adjacency matrices, projections, bimodule
maps, and via positive maps.

B.I Quantum adjacency matrices

The following definition is a slightly adapted version of [10, Definition 1.4].

Definition B.1 (quantum adjacency matrix). We say an operator A ∈ B(B,ψ) is a quan-
tum adjacency matrix if it satisfies Schur idempotence (Definition A.105): A •A = A.

In other words, Schur idempotence is,

A A = A .

We say (B,ψ,A) is a quantum graph on B given by the quantum adjacency matrix operator
A ∈ B(B,ψ).

Furthermore, we say,

• (B,ψ,A) is real when A is real (also known as star-preserving) (Definition A.82),

Recall A is real if and only if Ar = A (Proposition A.83), where Ar is given
by x 7→ A(x∗)

∗
.

• (B,ψ,A) is self-adjoint when A is self-adjoint,

• (B,ψ,A) is symmetric if symm(A) = A (Definition A.90),

Recall the definition of symm:

symm(A) := (id⊗ η∗m)(id⊗A⊗ id)(m∗η ⊗ id) = A

Note that symm(A) = A is equivalent to Ar = A∗ (see Proposition A.99).

• (B,ψ,A) is (ir)reflexive if A • id = id (respectively, if A • id = 0).

A = 1 (resp., = 0).

Remark B.2. We later show that (see Proposition B.39) a reflexive quantum adjacency matrix
corresponds to an irreflexive quantum adjacency matrix. ♢

Remark B.3. We also know that given a real quantum graph (B,ψ,A), we get A • id = id
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(resp., A • id = 0) if and only if id •A = id (resp., id •A = 0). See Proposition A.120. ♢

B.II Quantum graphs as projections on B ⊗Bop

In this section we see the bijection between real quantum graphs on B and projections on
B ⊗Bop. We then provide our first formula for a real quantum graph.

Lemma B.4. Given A ∈ B(B,ψ), we have (B,ψ,A) is a real quantum graph if and only if
Ψ0,1/2(A) is a projection.

Proof. Let e = Ψ0,1/2(A). We have A is a quantum adjacency matrix if and only if e2 = e
by Corollary A.181(iv). We also have A is real if and only if e is self-adjoint by Corollary
A.181(v). So it is clear that by Proposition A.169, we get A is idempotent and real if and
only if e is a projection. ■

Let A ∈ B(B, ψ) be real and Schur idempotent (i.e., A•A = A), then by Lemma B.4, we have
Ψ0,1/2(A) is an orthogonal projection element in B⊗Bop. Transposing the second tensor and

applying M−1 ⊗M−1, we get (M−1 ⊗M−1)(id⊗⊤−1)Ψ0,1/2(A) ∈
⊕k

i,j=1 B(Cni ⊗Cnj ) is a
direct sum of orthogonal projection operators. Thus we can choose subspaces Ui,j ⊆ Cni⊗Cnj

for each i, j ∈ [k] as the projected subspaces of the orthogonal projection, and we can let
(ui,j,s)s be an orthonormal basis of each Ui,j , such that each ui,j,s =

∑
t xi,j,s,t ⊗ yi,j,s,t ∈

Cni ⊗ Cnj so that we can write

(M−1 ⊗M−1)(id⊗⊤−1)Ψ0,1/2(A) =
⊕
i,j

∑
s

|ui,j,s⟩⟨ui,j,s|

=
⊕
i,j

∑
s,t,p

|xi,j,s,t⟩⟨xi,j,s,p| ⊗ |yi,j,s,t⟩⟨yi,j,s,p|

and so

(id⊗⊤−1)Ψ0,1/2(A) =

k∑
i,j=1

dimUi,j∑
s=1

∑
t,p

ιi(xi,j,s,tx
∗
i,j,s,p)⊗ ιj(yi,j,s,ty

∗
i,j,s,p) ∈ B ⊗B.

So then

A =
∑

i,j,s,t,p

Ψ−1
0,1/2(id⊗⊤)(ιi(xi,j,s,tx

∗
i,j,s,p)⊗ ιj(yi,j,s,ty

∗
i,j,s,p))

=
∑

i,j,s,t,p

Ψ−1
0,1/2

(
ιi(xi,j,s,tx

∗
i,j,s,p)⊗ ιj

(
(yi,j,s,ty

∗
i,j,s,p)

⊤
)op)

=
∑

i,j,s,t,p

∣∣∣ιi(xi,j,s,tx∗i,j,s,p)〉〈σ−1/2(ιj(yi,j,s,ty
∗
i,j,s,p))

∣∣∣.
B.III Quantum graphs as bimodule projections

In this section, we see

Definition B.5 ([10, Diagram (1.3)]). Let Υ be the linear isomorphism from B(B,ψ) to
B ⊗B given by

A 7→ (id⊗A)m∗(1) = A .

Using Proposition A.183, we get Υ = (id⊗ op−1)ςΨ0,1; so Υ−1 = Ψ−1
0,1ς(id⊗ op). So for

x, y ∈ B, we get Υ(|x⟩⟨y|) = σ−1(y
∗)⊗ x and Υ−1(x⊗ y) = |y⟩⟨σ−1(x

∗)|.
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Lemma B.6. Υ−1m∗ = rmul.

Proof. Let x, y, z ∈ B, and letm∗(x) =
∑
i αi⊗βi for tuples (αi), (βi) in B. Then we compute,〈

Υ−1m∗(x)(y)
∣∣z〉 =∑

i

〈
Υ−1(αi ⊗ βi)(y)

∣∣z〉 =∑
i

⟨|βi⟩⟨σ−1(α
∗
i )|(y)|z⟩

=
∑
i

⟨y|σ−1(α
∗
i )⟩⟨βi|z⟩ =

∑
i

⟨αi|y∗⟩⟨βi|z⟩ by A.70(v)

= ⟨m∗(x)|y∗ ⊗ z⟩ = ⟨x|y∗z⟩ = ⟨yx|z⟩ by A.70(ii)

= ⟨rmul(x)(y)|z⟩.

Thus Υ ◦m∗ = rmul. ■

Lemma B.7. Let A ∈ B(B, ψ). We have

A = (rmul⊗ lmul)Υ(A).

In other words, (id⊗m)(id⊗A⊗ id)(m∗ ⊗ id) = (rmul⊗ lmul)Υ(A).

Proof. It suffices to show this for A = |x⟩⟨y| for x, y ∈ B. We compute,

⟨(id⊗m)(id⊗ |x⟩⟨y| ⊗ id)(m∗ ⊗ id)(a⊗ b)|c⊗ d⟩

=
∑
t

⟨(id⊗m)(id⊗ |x⟩⟨y| ⊗ id)(αt ⊗ βt ⊗ b)|c⊗ d⟩

=
∑
t

⟨αt ⊗ ⟨y|βt⟩xb|c⊗ d⟩ =
∑
t

⟨βt|y⟩⟨αt|c⟩⟨xb|d⟩

= ⟨m∗(a)|c⊗ y⟩⟨xb|d⟩ = ⟨a|cy⟩⟨xb|d⟩
= ⟨aσ−1(y

∗)|c⟩⟨xb|d⟩ = ⟨aσ−1(y
∗)⊗ xb|c⊗ d⟩

= ⟨(rmul(σ−1(y
∗))⊗ lmul(x))(a⊗ b)|c⊗ d⟩

= ⟨(rmul⊗ lmul)Υ(|x⟩⟨y|)(a⊗ b)|c⊗ d⟩.

Thus (id⊗m)(id⊗A⊗ id)(m∗ ⊗ id) = (rmul⊗ lmul)Υ(A) for any A ∈ B(B,ψ). ■

Lemma B.8. ((rmul⊗ lmul)Υ(A))(a) = Υ◦(A•Υ−1(a)) for all A ∈ B(B,ψ) and a ∈ B ⊗B.

Proof. It suffices to show this for when A = |x⟩⟨y| and a = α ⊗ β for x, y, α, β ∈ B. We
compute,

(rmul⊗ lmul)Υ(|x⟩⟨y|)(α⊗ β) = (rmul(y)
∗ ⊗ lmul(x))(α⊗ β) = ασ−1(y

∗)⊗ xβ

= Υ(|xβ⟩⟨yσ−1(α
∗)|) = Υ (|x⟩⟨y| • |β⟩⟨σ−1(α

∗)|)
= Υ

(
|x⟩⟨y| •Υ−1(α⊗ β)

)
.

■

Proposition B.9. There exists a linear isomorphism Φ from B(B,ψ) to (B,B)-bimodule
maps B(B ⊗B) given by x 7→ (rmul⊗ lmul)(Υ(x)), with inverse given by x 7→ Υ−1(x(1)).
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Proof. Let Φ = (rmul⊗ lmul)Υ. Then, clearly, Φ maps onto the set of (B,B)-bimodule maps
B(B ⊗B). And let Φ−1 : x 7→ Υ−1(x(1)).

This is clearly a right-inverse: let x ∈ B(B ⊗B) be a (B,B)-bimodule map, and compute,

ΦΦ−1(x) = (rmul⊗ lmul)ΥΥ−1(x(1)) = (rmul⊗ lmul)(x(1)),

and using Lemma A.191(i), we see that this is exactly equal to x.

Now let A ∈ B(B). We then compute,

Φ−1Φ(A) = Υ−1
[
Υ
[
A •Υ−1(id)

]]
= A •Υ−1(id) = A • |1⟩⟨1| = A.

Thus Φ is also a left-inverse, and so is a linear isomorphism. ■

Definition B.10 ([10, Diagram (1.5) - left diagram]). We define Φ as the linear isomor-
phism

B(B,ψ) ∼= {x ∈ B(B ⊗B) : x is a (B,B)-bimodule map},

given by A 7→ (rmul⊗ lmul)Υ(A) = A , and its inverse given by x 7→ Υ−1(x(1)). So

for x, y ∈ B, we have Φ(|x⟩⟨y|) = rmul(y)
∗ ⊗ lmul(x).

Lemma B.11. Let A1, A2 ∈ B(B,ψ). Then Φ(A1)
∗
= Φ(A1

r) and Φ(A1)Φ(A2) = Φ(A1•A2).
Moreover, (B,ψ,A) is a real quantum graph if and only if Φ(A) is a projection.

Proof. It suffices to show these for when A1 = |a⟩⟨b| and A2 = |c⟩⟨d| for a, b, c, d ∈ B.

(i)

Φ(|a⟩⟨b|)∗ =
(
rmul(b)

∗ ⊗ lmul(a)
)∗

= rmul(σ−1(b
∗))

∗ ⊗ lmul(a∗)

= Φ(|a∗⟩⟨σ−1(b
∗)|) = Φ(|a⟩⟨b|r).

(ii)

Φ(|a⟩⟨b|)Φ(|c⟩⟨d|) = (rmul(b)
∗ ⊗ lmul(a))(rmul(d)

∗ ⊗ lmul(c))

= rmul(d) rmul(b)
∗ ⊗ lmul(a) lmul(c)

= rmul(bd)
∗ ⊗ lmul(ac) = Φ(|ac⟩⟨bd|) = Φ(|a⟩⟨b| • |c⟩⟨d|).

So, if A ∈ B(B,ψ) is a real Schur idempotent (i.e., (B,ψ,A) is a real quantum graph), then we
get Φ(A)

∗
= Φ(Ar) = Φ(A) and Φ(A)Φ(A) = Φ(A •A) = Φ(A). And so Φ(A) is a projection

using Proposition A.169. ■

In Matsuda [10], the inverse of Φ from (B,B)-bimodule maps on B(B ⊗ B) to B(B) is given
by (η∗ ⊗ id)x(id⊗ η). Let us call this map ϖ. We let a ∈ B and compute,

ϖ(P ⊗Q)(a) = (η∗ ⊗ id)(P ⊗Q)(a⊗ 1)

= (η∗ ⊗ id)(P (a)⊗Q(1))

= ⟨1|P (a)⟩Q(1)

= |Q(1)⟩⟨P ∗(1)|(a) = Q|1⟩⟨1|P (a).

The map ϖ is clearly a left-inverse of Φ as ϖΦ(|x⟩⟨y|) = lmul(x)|1⟩⟨1|rmul(y)
∗
= |x⟩⟨y| for all

x, y ∈ B. So, by the uniqueness of the inverse of Φ, we get Φ−1 = ϖ.
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Proposition B.12. Given A ∈ B(B,ψ), we get (η∗ ⊗ id)Φ(A)(id⊗ η) = A, in other words,

Φ(A) = A.

Proof. It suffices to show this for when A = |x⟩⟨y| for x, y ∈ B. We let a ∈ B and compute,

(η∗ ⊗ id)Φ(|x⟩⟨y|)(id⊗ η)(a) = (η∗ ⊗ id)(rmul(y)
∗ ⊗ lmul(x))(a⊗ 1)

= (η∗(rmul(y)
∗
(a))⊗ lmul(x)(1))

= η∗(aσ−1(y
∗))x

= ψ(y∗a)x = |x⟩⟨y|(a).

With strings:

A = A = A by (unit id),(co unit id).

■

The above tells us that there is another way (a pictorial way) to define the inverse of Φ. This
is the definition that Matsuda [10, Diagram (1.5) - right diagram] chose.

However, if we did not know Φ is a linear isomorphism, then how do we go about showing
that ϖ is a right-inverse of Φ? We begin with the following lemma.

Lemma B.13. Let P ∈ B(B,ψ). Then P = rmul(P (1)) if and only if symm(P ) = lmul(P (1)).

Proof. The key idea in this proof is that the inverse of symm is symm′.

symm(P ) = lmul(P (1)) ⇔ P = symm′(lmul(P (1)))

⇔ P = lmul(P (1))
∗r

⇔ P = lmul(P (1)
∗
)
r

⇔ P = rmul(P (1)).

■

Now it is easy to show that ϖ is a right-inverse of Φ. Let P,Q ∈ B(B,ψ) such that P ⊗ Q
is an (B,B)-bimodule map. We assume P,Q are both non-zero, otherwise this is trivial.
Then we get P = rmul(P (1)) and Q = lmul(Q(1)). By the above Lemma, we then get
symm(P ) = lmul(P (1)). And so,

Φϖ(P ⊗Q) = Φ(|Q(1)⟩⟨P ∗(1)|) = rmul(σ−1P
∗r(1))⊗ lmul(Q(1))

= rmul(P r∗(1))⊗Q = rmul(symm(P )(1))⊗Q

= rmul(P (1))⊗Q = P ⊗Q.
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B.III.1 Another formula for the adjacency matrix. Given a real quantum graph
(B,A), we know Φ(A) ∈ B(B⊗B) is a projection, so then we let U ⊆ B⊗B be the projected
subspace and let (ui)i be an orthonormal basis of U .

Φ(A) =
∑
i

|ui⟩⟨ui|.

And so,

A =
∑
i,t

⟨ui|1⟩|bit⟩⟨σ−1(a
∗
it)|,

where we let each ui =
∑
i,t ait ⊗ bit.

B.IV Quantum graphs as positive maps

In this short section, we see how one can also define a quantum graph as a positive linear
operator satisfying Schur idempotence.

Let A be a C∗-algebra in this section and H be a Hilbert space.

We denote the orthogonal projection of H onto U ⊆ H by PU .

Corollary B.14. For all operators T, S ∈ B(H), if TS = 0, then PkerTS = S.

Proof. Suppose TS = 0. Then we get imS ⊆ kerT = imPkerT , and so Lemma A.153 tells us
that we get PkerTS = S. ■

Lemma B.15. A self-adjoint operator x ∈ B(H) can be written as x = x+ − x− for some
positive semi-definite operators x+, x− ∈ B(H) such that x+, x− both commute with x and
x+x− = x−x+ = 0.

Proof. We let
√
x2 be the unique positive square-root of x2 (see Lemma A.23). We then let

x+ =
1

2
(
√
x2 + x) and x− =

1

2
(
√
x2 − x). Then we clearly get x = x+ − x−.

It is clear that both x+ and x− are self-adjoint. We have both x+ and x− commute with x
since

√
x2 commutes with x. So then we get x+x− = 0, and so x−x+ = 0. And by Corollary

B.14, we get Pker x+
x− = x−.

Now 2Pker x+

√
x2 = 2Pker x+

x+ + 2Pker x+
x− = 2Pker x+

x− = 2x− =
√
x2 − x. So then

x = (1− 2Pker x+)
√
x2 and x− = Pker x+

√
x2. And so

x+ =
1

2
(
√
x2 + x) =

1

2
(
√
x2 + (1− 2Pker x+)

√
x2) = (1− Pker x+)

√
x2 = P(ker x+)⊥

√
x2.

As x+ and x− are self-adjoint, we also get x− =
√
x2Pker x+

and x+ =
√
x2P(ker x+)⊥ . So then

x+ and x− are products of commuting positive elements, and by Lemma A.26, this means
both x+ and x− are positive. ■

Now we can state the needed result.

Proposition B.16. Given A ∈ B(H), we get A is real if A is a positive map.

Proof. Suppose A is a positive map.

Claim: if x ∈Mn is self-adjoint, then Ar(x) = A(x). (∗)
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Using Lemma B.15, we get positive semi-definite operators x+, x− ∈ H such that
x = x+ − x−. So then we compute,

Ar(x) = Ar(x+ − x−) = A(x+)
∗ −A(x−)

∗
= A(x+)−A(x−).

The last equality follows from A being a positive map, so A(x+) is positive semi-
definite.

Let x ∈ H. Then we can write x = a+ ib, where a =
1

2
(x+ x∗) and b =

1

2i
(x− x∗). Clearly,

both a and b are self-adjoint. So then by Claim (*), we get

Ar(x) = Ar(a) + iAr(b) = A(a) + iA(b) = A(x).

Thus A is real. ■

Lemma B.17. Given a real Schur idempotent A ∈ B(B,ψ) (i.e., A is real and A • A = A),
we get A is a positive map (i.e., 0 ≤ A(x∗x) for all x ∈ B).

Proof. First, we have,

mm∗ = Φ(id) = Φ(idr) = Φ(id)
∗
=
∑
i

rmul(ui)⊗ lmul(ui)
∗
=
∑
i

rmul(ui)⊗ lmul(u∗i ),

where (ui)i is an orthonormal basis of B.

Let x ∈ B. Then using the above, we compute,

A(x∗x) = (A •A)m(x∗ ⊗ x)

=
∑
i

m(A⊗A)(x∗ui ⊗ u∗i x)

=
∑
i

A(x∗ui)A(u
∗
i x) =

∑
i

A(u∗i x)
∗
A(u∗i x) ≥ 0.

Thus A is a positive map. ■

Theorem B.18 ([9, Proposition 2.23]). Given A ∈ B(B,ψ) such that A •A = A, we get A is
real if and only if A is a positive map.

Proof. This is done by combining Lemma B.17 and Proposition B.16. ■

The above result tells us that there is, yet, another equivalent definition for a quantum graph
via positivity.

Theorem B.19. In summary, for A ∈ B(B,ψ), we have the following are equivalent,

1. A •A = A and Ar = A,

2. A •A = A and A is a positive map,

3. Ψ0,1/2(A) is an orthogonal projection element in B ⊗Bop,

4. Φ(A) = (rmul⊗ lmul)(id⊗ op−1)ςΨ0,1 is an orthogonal projection (B,B)-bimodule map
in B(B ⊗B),

5. there exists an orthonormal basis ((ui,j,p)p)i,j of U ⊆
⊕

i,j Cni ⊗ Cnj such that

(id⊗⊤−1)Ψ0,1/2(A) =
⊕
i,j

∑
p

uij,pu
∗
ij,p
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6. there exists an orthonormal basis (ui)i of U ⊆ B ⊗B such that

Φ(A) =
∑
i

|ui⟩⟨ui|

7. For B =Mn, there exists an orthonormal basis (ui)i of U ⊆Mn such that

A =
∑
i

lmul(uiQ)rmul(Qui)
∗
.

■

B.V Number of edges

In this section, we discuss the number of edges and degree of a quantum graph.

Lemma B.20. If A ∈ B(B,ψ) is real (i.e., star-preserving), then ⟨1|A(1)⟩ ∈ R.

Proof. ⟨1|A(1)⟩ = ψ(A(1)) = ψ(A(1∗)
∗
) = ψ(A(1)) = ⟨1|A(1)⟩. Thus ⟨1|A(1)⟩ is real. ■

Lemma B.21. If A ∈ B(B,ψ), then ⟨1|A(1)⟩ = ⟨1|Ψt,s(A)⟩ for any t, s ∈ R.

Proof. Let t, s ∈ R. Let (αi), (βi) be tuples in B such that A =
∑
i|αi⟩⟨βi|. Then,

⟨1|A(1)⟩ =
∑
i

⟨1|αi⟩⟨βi|1⟩

=
∑
i

⟨1|σt(αi)⟩⟨1|σ−s(β∗
i )⟩

=
∑
i

⟨1|σt(αi)⟩
〈
1
∣∣σs(βi)∗op〉 by A.69(ii)

= ⟨1|Ψt,s(A)⟩.

Note that, in the second equality, we use the fact that the modular automorphism is an algebra
automorphism (so σt(1) = 1) and that it is self-adjoint by Lemma A.69(iii). ■

Lemma B.22. If A ∈ B(B,ψ), then ⟨1|A(1)⟩ = ⟨1|Φ(A)(1)⟩.

Proof. Let (αi), (βi) be tuples in B such that A =
∑
i|αi⟩⟨βi|. Then,

⟨1|A(1)⟩ =
∑
i

⟨1||αi⟩⟨βi|(1)⟩

=
∑
i

⟨1|αi⟩⟨βi|1⟩

=
∑
i

⟨1|αi⟩⟨1|β∗
i ⟩

=
∑
i

⟨1|lmul(αi)(1)⟩
〈
1
∣∣rmul(βi)

∗
(1)
〉

=
∑
i

〈
1
∣∣(rmul(βi)

∗ ⊗ lmul(αi))(1)
〉

=
∑
i

⟨1|Φ(|αi⟩⟨βi|)(1)⟩ = ⟨1|Φ(A)(1)⟩.

■
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Proposition B.23. Given a real quantum graph (B,ψ,A), we have 0 ≤ ⟨1|A(1)⟩ ≤ ∥1∥4.
This is the Hilbert space norm.

Proof. By Theorem B.18, we know (B,ψ,A) is real if and only if A is a positive map. So then
0 ≤ A(1) and so we let A(1) = x∗x for some x ∈ B. Using the above lemma, we compute,

0 ≤ ⟨x|x⟩ = ⟨1|x∗x⟩
= ⟨1|A(1)⟩ = ⟨1|Φ(A)(1)⟩
≤ ⟨1|(id⊗ id)(1)⟩

= ∥1∥4 .

■

Definition B.24. [9] A quantum graph (B,ψ,A) is said to be d-regular, for d ∈ C, if it
satisfies A(1) = d1 = A∗(1). Here, d is defined as the degree of (B,ψ,A).

Lemma B.25. [9] If (B,A) is a d-regular real quantum graph, then 0 ≤ d ≤ ∥1∥2. Similarly
to above, this is the Hilbert space norm.

Proof. We can see that we have ⟨1|A(1)⟩/ ∥1∥2 = d. And so this follows from the above
proposition. ■

B.V.1 Number of edges of real quantum graphs.

For classical graphs: LetG be the classical graph with a vertex set V = {v1, . . . , vn}
and an edge set E ⊆ V × V . Then the classical adjacency matrix A ∈ Mn of G
is given by Aij = 1 if (vi, vj) ∈ E, and 0 otherwise. The number of classical
edges in G is given by

∑
i,j Aij . Identifying the classical adjacency matrix as

M−1(A) =
∑
i,j Aij |ei⟩⟨ej | ∈ B(Cn) (so that it is a real quantum adjacency matrix

operator), then the trace of Ψ0,1/2(M−1(A)) =
∑
i,j Aijei ⊗ ej

∗op is going to be
the number of classical edges.

So then, in the tracial case, it makes sense to talk about the number of edges of real quantum
graphs (B,Tr, A), by letting it be the trace of the orthogonal projection Ψ0,1/2(A). (This
corresponds to our definition of the number of edges of a quantum graph, see Proposition
B.28.)

Definition B.26 ([6]). The number of edges of a quantum graph (B,ψ,A) is given by
⟨1|A(1)⟩.

Corollary B.27. Given any real quantum graph (B,ψ,A), the number of edges of (B,ψ,A)

is 0 if and only if A = 0. Similarly, the number of edges of (B,ψ,A) is ∥1∥4 if and only if
A = |1⟩⟨1|. Again, this is the Hilbert space norm.

Proof. For x, y ∈ B, recall the KMS construction ⟨x|y⟩KMS =
〈
x
∣∣σ−1/2(y)

〉
from Section

A.VII. And let AKMS and ΨKMS,t,s be the respective linear map and identification on this
Hilbert space.

As (B,ψ,A) is a real quantum graph, we have Ψt,s(A) is a projection (similarly, ΨKMS,t,s(AKMS)
is a projection). So then,

⟨1|A(1)⟩ = 0 ⇔ ⟨1|AKMS(1)⟩KMS = 0

⇔ ⟨1|ΨKMS,t,s(AKMS)⟩KMS = 0 by B.21

⇔ η∗(ΨKMS,t,s(AKMS)
∗
ΨKMS,t,s(AKMS)) = 0

⇔ ΨKMS,t,s(AKMS) = 0 ⇔ AKMS = 0 ⇔ A = 0.
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Note that the reason we used the “KMS” construction is because of how we defined things.
With our definition, the counit of A ⊗ Aop is faithful when the inner product is constructed
via KMS.

Now,

⟨1|A(1)⟩ = ∥1∥4 ⇔ ⟨1|(|1⟩⟨1| −A)(1)⟩ = 0

⇔ A = |1⟩⟨1| by the above.

Note that the second equivalence follows from the fact that the operator |1⟩⟨1| − A is a real
quantum graph (Proposition B.39). ■

Proposition B.28. For ψ = Tr (i.e., Tr: x 7→
∑
iTr(xi)), we have that the number of edges

of a quantum graph (B,Tr, A) is exactly the sum of the dimensions of the projected subspaces
of the direct sum of orthogonal projections (M−1 ⊗M−1⊤−1)Ψ0,1/2(A) ∈

⊕
i,j B(Cni ⊗Cnj ).

Proof. Let Ui,j ⊆ Cni ⊗Cnj for each i, j ∈ [k] be the projected subspaces of the direct sum of
the orthogonal projection. Then∑

i,j

dim(Ui,j) = Tr((M−1 ⊗M−1⊤−1)Ψ0,1/2(A))

= (Tr⊗Tr ◦⊤−1)Ψ0,1/2(A)

= (Tr⊗Tr ◦ unop)Ψ0,1/2(A)

=
〈
1
∣∣Ψ0,1/2(A)

〉
= ⟨1|A(1)⟩.

■

Proposition B.29. Let our positive and faithful functional ψ on B =
⊕K

i=1Mni
be a δ-form

trace (i.e., mm∗ = δ id for some positive real number δ ∈ R and ψ = Tr). Then the trivial
graph (mm∗)−1 has K edges.

Proof. From the above proposition we know that the number of edges is exactly the sum of
the dimensions of the projected subspaces. So then we compute,

(Tr⊗Tr ◦ op−1)
(
Ψ0,1/2

(
(mm∗)

−1
))

= δ−2(Tr⊗Tr ◦ op−1)(Ψ0,1/2(id))

= δ−2
∑
i,j,k

(Tr⊗Tr ◦ op−1)
(
Ψ0,1/2

(∣∣∣ek,ijQ−1/2
〉〈
ek,ijQ

−1/2
∣∣∣))

= δ−2
∑
i,j,k

Tr(ek,ijQ
−1/2) Tr(ek,jiQ

−1/2)

= δ−2
∑
i,j,k

Q
−1/2
k,ji Q

−1/2
k,ij

= δ−2
K∑
k=1

Tr(Q−1
k ) = K

■

The number of classical edges of a trivial graph (i.e., a graph with all loops, so the adjacency
matrix is the identity matrix) is equal to n. So each matrix block can be thought of as a
“vertex” in the classical sense.
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Proposition B.30. Let (B =
⊕k

i=1Mni
, ψ,A) be a real quantum graph. For each i, j ∈ [k],

let Uij ⊆ Cni ⊗ Cnj be the projected subspaces of the direct sum of orthogonal projection
operators (ref definition). Then, for any i, j ∈ [k], if the graph is undirected (i.e., A∗ = A),
then dimUij = dimUji.

Proof. Let Ψ0,1/2(A) =
∑
t αt ⊗ βop

t . Then we compute,

dimUij = (Tr⊗Tr ◦ unop)(Ψ0,1/2(A)ij)

= (Tr⊗Tr ◦ unop)((σ−1/2 ⊗ σop
−1/2)ς(Ψ0,1/2(A))

∗
ij)

= (Tr⊗Tr ◦ unop)(ς(Ψ0,1/2(A))ij)

=
∑
t

Tr(βt,i) Tr(αt,j)

= (Tr⊗Tr ◦ unop)(Ψ0,1/2(A)ji) = dimUji.

■

B.VI Some examples

B.VI.1 Complete and trivial quantum graph. We now consider two examples of a
quantum adjacency matrix, namely, the complete quantum graph and the trivial quantum
graph. We also see that subtracting any quantum adjacency matrix from the complete quan-
tum graph will give us a nice correspondence between reflexive quantum graphs and irreflexive
quantum graphs.

Proposition B.31. The operator |1⟩⟨1| is a reflexive, symmetric, real and self-adjoint quan-
tum adjacency matrix.

Proof. We check the axioms from Definition B.1. Using Proposition A.102, it suffices to check
that it is a Schur idempotent, reflexive, symmetric, and self-adjoint operator.

self-adjoint We get |1⟩⟨1|∗ = |1⟩⟨1| by Proposition A.17(iii).

Schur idempotent We get |1⟩⟨1| • |1⟩⟨1| = |1⟩⟨1| by Proposition A.112.

symmetric We get symm(|1⟩⟨1|) = |σ−1(1
∗)⟩⟨1∗| = |1⟩⟨1| by Proposition A.91(i).

reflexive Lastly, we get |1⟩⟨1| • id = lmul(1) = id by Proposition A.116(i).

■

Definition B.32 (Complete quantum graph [4, Definition 2.8]). The complete quan-
tum graph is given by the reflexive, symmetric, real, and self-adjoint quantum graph
(B,ψ, |1⟩⟨1|). In strings, this is:

|1⟩⟨1| = ηη∗ = .

Corollary B.33. We have symm(id) = id.

Proof. This is exactly Lemma A.9. ■

We know mm∗ = δ2 id from Proposition A.63. And so we get mm∗ is invertible with inverse
δ−2 id.
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Proposition B.34. We have that the operator (mm∗)
−1

= δ−2 id is a real, self-adjoint,
symmetric and reflexive quantum adjacency matrix.

Proof. We obviously have δ−2 id is self-adjoint since δ−2 ∈ R. Idempotence and reflexivity is
also clear as,

(mm∗)
−1 • (mm∗)

−1
= δ−4id • id = δ−4mm∗ = (mm∗)

−1
,

(mm∗)
−1 • id = δ−2id • id = δ−2mm∗ = id .

Finally, by Corollary B.33, we have symmetry,

symm
(
(mm∗)

−1
)
= δ−2 symm(id) = δ−2 id = (mm∗)

−1
.

■

Definition B.35 (Trivial quantum graph [4, Definition 2.10]). The trivial quantum graph

is given by the reflexive quantum graph (B,ψ, (mm∗)
−1

).

B.VI.2 Classical finite graphs. We briefly discuss classical finite graphs at the start of
Section B.V.1. A classical finite (un)directed graph is, of course, a quantum graph. Schur
multiplication on B(Cn) corresponds to entry-wise matrix multiplication (näıve matrix multi-
plication, also known as the Hadamard matrix product).

Lemma B.36. Given x ∈ Cn, we have m∗(x) =
∑
i xi(ei ⊗ ei), where (ei)i is the standard

basis on Cn.

Proof. Left as an exercise. ■

Using the above lemma, it should be easy to see that for x, y ∈ B(Cn) and the standard
orthonormal basis e = (ei)i on Cn, we get Me(x • y)ij = Me(x)ijMe(y)ij .

This means for x ∈ B(Cn), x•x = x if and only if M(x)ijM(x)ij = M(x)ij , which just means
that all entries are either 0 or 1. So a quantum graph on Cn corresponds to a classical finite
(un)directed graph.

All quantum graphs on B(Cn) are real as Me(x
r)ij = ⟨ei|xr(ej)⟩ = Me(x)ij for a quantum

graph x ∈ B(Cn), but Me(x)ij is either 0 or 1, so Me(x
r)ij = Me(x)ij .

A quantum graph on Cn being symmetric or self-adjoint both correspond to the classical finite
graph being directed.

B.VI.3 Real quantum graphs. For a real quantum graph (B,ψ,A), we get

(M−1 ⊗M−1⊤−1)Ψ0,1/2(A) ∈
k⊕

i,j=1

B(Cni ⊗ Cnj )

is a direct sum of projection operators. Thus we can choose subspaces Ui,j ⊆ Cni ⊗ Cnj for
each i, j ∈ [k] as the projected subspaces of the orthogonal projection, and we can let (ui,j,s)s
be an orthonormal basis of each Ui,j , such that each ui,j,s =

∑
t xi,j,s,t ⊗ yi,j,s,t ∈ Cni ⊗ Cnj

so that we can write

A =
∑

i,j,s,t,p

∣∣∣ιi(xi,j,s,tx∗i,j,s,p)〉〈σ−1/2(ιj(yi,j,s,ty
∗
i,j,s,p))

∣∣∣.
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Example B.37. Let ψ be tracial with Q = 1.

Let U1,1 = Span(x⊗y), U1,2 = U2,1 = U2,2 = 0, where x, y ∈ C2 such that x∗x = 1 = y∗y.
Then (M2 ⊕M2, A) is a real quantum graph such that

A =

∣∣∣∣(xx∗ 0

)〉〈(
yy∗

0

)∣∣∣∣.
This is a single-edged graph as ⟨1|A(1)⟩ = 1.

Now let U1,1 = Span(x ⊗ y), U1,2 = Span(a ⊗ b), U2,1 = U2,2 = 0, where x, y, a, b ∈ C2

such that x∗x = y∗y = a∗a = b∗b = 1. Then (M2 ⊕M2, A) is a real quantum graph such
that

A =

∣∣∣∣(xx∗ 0

)〉〈(
yy∗

0

)∣∣∣∣+ ∣∣∣∣(aa∗ 0

)〉〈(
0

bb∗

)∣∣∣∣.
The number of edges is 2, as ⟨1|A(1)⟩ = 2.

Another way to describe a real quantum graph (B,A) is via Φ(A), a (B,B)-bimodule orthog-
onal projection map in B(B ⊗B). So then let U ⊆ B ⊗B be the projected subspace and (ui)
be an orthonormal basis of U . Then

A =
∑
i,t

⟨1|ui⟩|b∗it⟩⟨ait|,

where we let each ui =
∑
t ait ⊗ bit.

Example B.38. Let ψ be tracial with Q = 1.

Let U = Span(x ⊗ y) where x, y ∈ M2 ⊕ M2 such that ⟨x|x⟩ = ⟨y|y⟩ = 1. Then
(M2 ⊕M2, A,Tr) is a real quantum graph such that

A = ⟨1|x⊗ y⟩|y∗⟩⟨x|.

Since Φ(A) is a (B,B)-bimodule map, using Lemma A.191(ii) the elements x and y need
to also satisfy

⟨x|a⟩⟨y|b⟩x⊗ y = ⟨x|1⟩⟨y|1⟩ax⊗ yb,

for all a, b.

B.VII (Ir)reflexive complements

Proposition B.39 ([4, Proposition 6.8]). Let A ∈ B(B,ψ). Then, (B,ψ,A) is a (symmetric)
((ir)reflexive) quantum graph if and only if (B,ψ, |1⟩⟨1| − A) is a (symmetric) (irreflexive,
(resp. reflexive)) quantum graph.

Proof. We check A is self-adjoint, idempotent and symmetric if and only if |1⟩⟨1| − A is. We
then check A satisfies reflexivity (respectively, irreflexivity) if and only if |1⟩⟨1| − A satisfies
irreflexivity (respectively, reflexivity). Note that by Definition B.32, we get |1⟩⟨1| is a reflexive
quantum adjacency matrix.

self-adjoint |1⟩⟨1| −A∗ = |1⟩⟨1|∗ −A∗ = (|1⟩⟨1| −A)
∗
= |1⟩⟨1| −A if and only if A∗ = A.

idempotence From Lemma A.108, we know (B, •, 1 = ηη∗ = |1⟩⟨1|) is a ring, and so |1⟩⟨1|−A
is Schur idempotent by Lemma A.149.

symmetry We have the following equivalences,

|1⟩⟨1| −A satisfies symmetry ⇔ symm(|1⟩⟨1| −A) = |1⟩⟨1| −A
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⇔ symm(|1⟩⟨1|)− symm(A) = |1⟩⟨1| −A

⇔ symm(A) = A

⇔ A satisfies symmetry.

Note that the second last equivalence follows since symm(|1⟩⟨1|) = |1⟩⟨1| since it is a
quantum adjacency matrix (Definition B.32).

(ir)reflexive We compute,

(|1⟩⟨1| −A) • id = |1⟩⟨1| • id−A • id = id−A • id.

So then we have the following equivalences,

|1⟩⟨1| −A satisfies (ir)reflexivity ⇔ id−A • id = id (resp., id−A • id = 0)

⇔ A • id = 0 (resp., A • id = id)

⇔ A satisfies irreflexivity (resp., reflexivity).

■

Proposition B.40 ([4, Proposition 6.7]). Let A ∈ B(B,ψ). Denote E as the trivial graph,

i.e., E = (mm∗)
−1

. Then A is a reflexive quantum adjacency matrix if and only if A− E is
an irreflexive quantum adjacency matrix.

Proof. Firstly, we know E is a reflexive quantum adjacency matrix, so E∗ = E and satisfies
Schur idempotence (i.e., E • E = E), symmetry (i.e., symm(E) = E), and reflexivity (i.e.,
E • id = id).

• (A− E)
∗
= A− E ⇔ A∗ − E∗ = A− E ⇔ A∗ − E = A− E ⇔ A∗ = A

• By linearity, we get (A− E) • id = A • id − E • id = A • id − id. Thus, we have
(A− E) • id = 0 if and only if A • id = id.

• Again, by linearity, we get symm(A−E) = symm(A)− symm(E) = symm(A)−E. This
means we have symm(A− E) = A− E if and only if we have symm(A) = A.

• Finally, we only need to check idempotence.

(⇒) Suppose A is a reflexive quantum adjacency matrix. Then, using Proposition A.120,
we get,

(A− E) • (A− E) = A •A− E •A−A • E + E • E
= A •A− δ−2(A • id + id •A) + E

= A− 2δ−2 id+E = A− E.

(⇐) Suppose A−E is an irreflexive quantum adjacency matrix. Then, using Proposition
A.120 again, we get

A •A = ((A− E) + E) • ((A− E) + E)

= (A− E) • (A− E) + (A− E) • E + E • (A− E) + E • E
= A− E + δ−2((A− E) • id + id • (A− E)) + E = A− E + E = A.

Thus A is a reflexive quantum adjacency matrix if and only if A− (mm∗)
−1

is an irreflexive
quantum adjacency matrix. ■
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Corollary B.41 ([4, Corollaries 6.9 & 6.10]). Let A ∈ B(B,ψ). Then |1⟩⟨1| − (mm∗)
−1 − A

is an irreflexive quantum adjacency matrix if and only if A is also an irreflexive quantum
adjacency matrix.
Analogously, |1⟩⟨1| + (mm∗)

−1 − A is a reflexive quantum adjacency matrix if and only if A
is also a reflexive quantum adjacency matrix.

Proof. By Proposition B.39, we get |1⟩⟨1| − ((mm∗)
−1

+ A) is an irreflexive quantum ad-

jacency matrix if and only if (mm∗)
−1

+ A is a reflexive quantum adjacency matrix. And

by Proposition B.40, we get (mm∗)
−1

+ A is a reflexive quantum adjacency matrix if and

only if A = (mm∗)
−1

+ A − (mm∗)
−1

is an irreflexive quantum adjacency matrix. Thus

|1⟩⟨1| − (mm∗)
−1 −A is an irreflexive quantum adjacency matrix if and only if A is.

Analogously, by Proposition B.39 we get |1⟩⟨1| − (A − (mm∗)
−1

) is reflexive if and only if

A− (mm∗)
−1

is irreflexive, which is true if and only if A is reflexive by Proposition B.40. ■

Definition B.42. We define the irreflexive complement of A ∈ B(B,ψ) to be given by

|1⟩⟨1| − (mm∗)
−1 −A.

And we define the reflexive complement of A ∈ B(B,ψ) to be given by |1⟩⟨1|+(mm∗)
−1−A.

We denote the irreflexive complement of A ∈ B(B,ψ) by A∁i . Clearly, taking the irreflexive
complement of A twice gives us exactly A as seen by the following,

A∁i∁i = |1⟩⟨1| − (mm∗)
−1 − (|1⟩⟨1| − (mm∗)

−1 −A) = A.

And for any A1, A2 ∈ B(B,ψ), we get A∁i
1 = A∁i

2 if and only if A1 = A2.

We denote the reflexive complement of A ∈ B(B,ψ) by A∁r . Analogously to the above, taking
the reflexive complement of A twice gives us exactly A. And for any A1, A2 ∈ B(B,ψ), we get
A∁r

1 = A∁r
2 if and only if A1 = A2.

One can then easily notice that the reflexive complement of the complete graph is the trivial

graph, i.e., |1⟩⟨1|∁r = (mm∗)
−1

; and similarly
(
(mm∗)

−1
)∁r

= |1⟩⟨1|.

B.VIII Isomorphisms

Definition B.43 ([10, Definition 3.1]). Let B1, B2 be finite-dimensional C∗-algebras. Let
A1 ∈ B(B1) and A2 ∈ B(B2) such that (B1, A1) and (B2, A2) are quantum graphs. Then a
graph homomorphism from (B1, A1) to (B2, A2) is defined by a ∗-algebra homomorphism
f : B1 → B2 such that A2 • (fA1f

∗) = fA1f
∗.

Remark B.44. If f is an isometric ∗-isomorphism B1
∼= B2 such that fA1 = A2f , then it is a

bijective graph homomorphism since A2 • (fA1f
∗) = A2 •A2 = A2. ♢

Proposition B.45. If A ∈ B(B,ψ) and f is an isometric ∗-automorphism on B, then,
(B,ψ,A) is a(n) (self-adjoint) (real) (symmetric) ((ir)-reflexive) quantum graph if and only
if (B,ψ, f−1Af) is. Moreover, the number of edges are the same.

Proof. We have
(
f−1Af

)
•
(
f−1Af

)
= f−1(A • A)f from Corollary A.121. And so we get

f−1(A • A)f = f−1Af if and only if A • A = A. This means (B,ψ,A) is a quantum graph if
and only if (B,ψ, f−1Af) is.

real We already know f−1Af is real if and only if A is from Lemma A.142.

symmetric We use Lemma A.104 to get A is symmetric if and only if f−1Af is.
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self-adjoint We get f−1Af is self-adjoint if and only if A is self-adjoint, since,

f−1A∗f = f∗A∗(f−1)
∗
= (f−1Af)

∗
= f−1Af ⇔ A∗ = A.

The first equality follows from f being isometric (Lemma A.137).

(ir)reflexive We have
(
f−1Af

)
• id =

(
f−1Af

)
•
(
f−1 id f

)
= f−1(A • id)f from Corollary

A.121. So then f−1(A • id)f = id if and only if A • id = ff−1 = id. Similarly, we get
f−1(A • id)f = 0 if and only if A • id = 0.

Thus it is clear that we get f−1Af is a(n) (self-adjoint) (real) (symmetric) ((ir)reflexive)
quantum adjacency matrix if and only if A is.

Finally, the number of edges are clearly equal:
〈
1
∣∣f−1Af(1)

〉
=
〈
1
∣∣f−1A(1)

〉
= ⟨1|A(1)⟩,

where we used the fact that our automorphism is unital in the first equality, and that our
automorphism is isometric in the second. ■

We can now define what it means for two quantum graphs on B to be isomorphic to each
other. In particular, (B,ψ,A1) ∼= (B,ψ,A2) when there exists an isometric ∗-automorphism
f on B such that fA2 = A1f .

Definition B.46. We say a quantum graph (B,ψ,A1) is isomorphic to a quantum graph
(B,ψ,A2) if there exists an isometric ∗-automorphism f on B such that fA1 = A2f , in
other words, the following diagram commutes,

B B

B B

f

A1 A2

f

We denote this by (B,ψ,A1) ∼= (B,ψ,A2).

B.IX Quantum isomorphisms

Everything in this section is only used in this section. Quantum isomorphisms are not men-
tioned or used outside of this section.

Let B1, B2 be finite-dimensional C∗-algebras with faithful and positive linear functionals ψ1, ψ2

such that they are, respectively, of δ1 and δ2 forms, i.e., m1m
∗
1 = δ21 id and m2m

∗
2 = δ22 id, for

some 0 < δ1, δ2.

Definition B.47 (quantum function [9, Def 2.29], [12, Def 3.11, 4.3]). We say (H,P ) is a
quantum function for a finite-dimensional Hilbert space H and a linear map P : (B1⊗H) →
(H ⊗B2) when it satisfies the following:

1. P (η ⊗ id) = (id⊗ η),

2. (id⊗m)(P ⊗ id)(id⊗P ) = P (m⊗ id),

3. (η∗m⊗ id)(id⊗P ∗ ⊗ id)(id⊗m∗η) = P ,
equivalently, P ∗ = (id⊗ η∗m)(id⊗P ⊗ id)(m∗η ⊗ id).

We say a quantum function (H,P ) is a quantum bijection if

1. (id⊗ η∗)P = (η∗ ⊗ id),

2. (P ⊗ id)(id⊗P )(m∗ ⊗ id) = (id⊗m∗)P .

Lemma B.48. A quantum function (H,P ) satisfies (id⊗ η∗)P = (η∗ ⊗ id) if and only if
P ∗P = id.
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Proof.

(⇒) Suppose (id⊗ η∗)P = (η∗ ⊗ id). Then

P ∗P = (id⊗ η∗m)(id⊗P ⊗ id)(m∗η ⊗ id)P

= (id⊗ η∗m)(id⊗P ⊗ id)(id⊗P )(m∗η ⊗ id)

= (id⊗ (id⊗ η∗)(id⊗m)(P ⊗ id)(id⊗P ))(m∗η ⊗ id)

= (id⊗ (id⊗ η∗)P (m⊗ id))(m∗η ⊗ id)

= (id⊗ (η∗ ⊗ id)(m⊗ id))(m∗η ⊗ id)

= ((id⊗ η∗m)(m∗η ⊗ id)⊗ id)

= (id⊗ id) by A.9

= id

(⇐) Suppose P ∗P = id. Then we have,

(id⊗ η∗)P = (P ∗(id⊗ η))
∗
= (P ∗P (η ⊗ id))

∗
= (η ⊗ id)

∗
= (η∗ ⊗ id).

■

Lemma B.49. A quantum function (H,P ) such that (P ⊗ id)(id⊗P )(m∗⊗ id) = (id⊗m∗)P
has its adjoint as its right-inverse, i.e., PP ∗ = id.

Proof.

PP ∗ = P (id⊗ η∗m)(id⊗P ⊗ id)(m∗η ⊗ id)

= (id⊗ η∗m)(P ⊗ id)(id⊗P ⊗ id)(m∗η ⊗ id)

= (id⊗ η∗m)((P ⊗ id)(id⊗P )(m∗ ⊗ id)(η ⊗ id)⊗ id)

= (id⊗ η∗m)((id⊗m∗)P (η ⊗ id)⊗ id)

= (id⊗ η∗m)((id⊗m∗)(id⊗ η)⊗ id)

= (id⊗ (id⊗ η∗m)(m∗η ⊗ id))

= (id⊗ id) = id .

■

Proposition B.50 ([9, Lemma 2.34]). A quantum function (H,P ) is quantum bijective if and
only if its adjoint is its inverse (i.e., PP ∗ = id and P ∗P = id).

Proof. Using the above two lemmas, it remains to show that if we have P ∗ is the inverse of
P , then it satisfies (P ⊗ id)(id⊗P )(m∗ ⊗ id) = (id⊗m∗)P .

Suppose P ∗ is the inverse of P . Then we compute,

(P ⊗ id)(id⊗P )(m∗ ⊗ id) = ((m⊗ id)(id⊗P ∗)(P ∗ ⊗ id))
∗

= (P ∗P (m⊗ id)(id⊗P ∗)(P ∗ ⊗ id))
∗

= (P ∗(id⊗m)(P ⊗ id)(id⊗P )(id⊗P ∗)(P ∗ ⊗ id))
∗

= (P ∗(id⊗m))
∗
= (id⊗m∗)P.

Thus (H,P ) is quantum bijective if and only if P ∗ is its inverse. ■
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Definition B.51 (quantum isomorphism of quantum graphs [9, Def 2.35], [12, Def 5.11]).
We say quantum graphs (B1, ψ1, A1) and (B2, ψ2, A2) are quantum isomorphic if there
exists a quantum bijective function (H,P ) with P : (B1 ⊗ H) → (H ⊗ B2) and with H
being a finite-dimensional Hilbert space, such that P (A1 ⊗ id) = (id⊗A2)P . In other
words, P (A1 ⊗ id)P ∗ = (id⊗A2). Using Proposition B.50, P being quantum bijective
means it is an isometry (in other words, PP ∗ = id and P ∗P = id).

Proposition B.52. For any finite-dimensional Hilbert space H and quantum bijective func-
tion (H,P ) with P : (B1 ⊗H) → (H ⊗B2), we get

1. P ((mm∗)
−1 ⊗ id)P ∗ =

δ22
δ21

(id⊗ (mm∗)
−1

),

this says that the trivial quantum graph in B1 is quantum isomorphic to a scalar factor
of the trivial quantum graph in B2.

2. P (|1⟩⟨1| ⊗ id)P ∗ = (id⊗ |1⟩⟨1|),
this says that the complete quantum graph in B1 is quantum isomorphic to the complete
quantum graph in B2.

Proof. 1.

P ((mm∗)
−1 ⊗ id)P ∗ = δ−2

1 PP ∗ = δ−2
1 id = δ−2

1 δ22(id⊗ (mm∗)
−1

).

2.

P (|1⟩⟨1| ⊗ id)P ∗ = P (ηη∗ ⊗ id)P ∗

= (P (η ⊗ id))(P (η ⊗ id))
∗

= (id⊗ η)(id⊗ η)
∗

= (id⊗ ηη∗) = (id⊗ |1⟩⟨1|).

■

B.X Graph gradient and degrees

In this section we summarize the notion of graph gradients and degrees that appear in [10,
Section 2].

Definition B.53 ([10, Definition 2.1]). Let ∇ : B(B,ψ) → (B → B ⊗ B) be the graph
gradient, given by

A 7→ (A∗ ⊗ id− id⊗A)m∗.

In other words,

A 7→ A∗ − A

Lemma B.54 ([10, Proposition 2.4(1)]). Let A ∈ B(B,ψ). Then

∇(A) = Φ(Ar)(η ⊗ id)− Φ(A)(id⊗ η).

Proof. It suffices to show this for A = |x⟩⟨y| for x, y ∈ B.

Let a, b, c ∈ B and m∗(a) =
∑
i αi ⊗ βi for some tuples (αi), (βi) in B. So then we compute,

⟨∇(|x⟩⟨y|)(a)|b⊗ c⟩ =
〈
(|x⟩⟨y|∗ ⊗ id− id⊗ |x⟩⟨y|)m∗(a)

∣∣b⊗ c
〉
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=
∑
i

⟨(|y⟩⟨x| ⊗ id− id⊗ |x⟩⟨y|)(αi ⊗ βi)|b⊗ c⟩

=
∑
i

⟨|y⟩⟨x|(αi)⊗ βi|b⊗ c⟩ − ⟨αi ⊗ |x⟩⟨y|(βi)|b⊗ c⟩

=
∑
i

⟨αi|x⟩⟨y|b⟩⟨βi|c⟩ − ⟨βi|y⟩⟨αi|b⟩⟨x|c⟩

=
∑
i

⟨αi ⊗ βi|x⊗ c⟩⟨y|b⟩ − ⟨αi ⊗ βi|b⊗ y⟩⟨x|c⟩

= ⟨m∗(a)|x⊗ c⟩⟨y|b⟩ − ⟨m∗(a)|b⊗ y⟩⟨x|c⟩
= ⟨a|xc⟩⟨y|b⟩ − ⟨a|by⟩⟨x|c⟩
= ⟨x∗a|c⟩⟨y|b⟩ − ⟨aσ−1(y

∗)|b⟩⟨x|c⟩
= ⟨y ⊗ x∗a− aσ−1(y

∗)⊗ x|b⊗ c⟩
=
〈
(rmul(y)⊗ lmul(x)

∗
)(1⊗ a)− (rmul(y)

∗ ⊗ lmul(x))(a⊗ 1)
∣∣b⊗ c

〉
=
〈
(Φ(|x⟩⟨y|)∗(η ⊗ id)τ−1 − Φ(|x⟩⟨y|)(id⊗ η)κ−1τ−1)(a)

∣∣b⊗ c
〉
.

Thus ∇(A) = Φ(Ar)(η ⊗ id)− Φ(A)(id⊗ η) for any A ∈ B(B,ψ). ■

If A is a real Schur idempotent, then we know Φ(A) is an orthogonal projection. And so,
using the above, we get Φ(A)∇(A) = ∇(A), in other words, the range of ∇(A) is contained
in the subspace Φ(A) projects onto.

Lemma B.55 ([10, Proposition 2.3]). Let A ∈ B(B,ψ). Then

Υ−1(∇(A)(x)) = rmul(x)Ar −A rmul(x).

Proof. It suffices to show this for A = |a⟩⟨b| for a, b ∈ B. We compute,

Υ−1(∇(|a⟩⟨b|)(x)) = Υ−1 (Φ(|a⟩⟨b|r)(1⊗ x)− Φ(|a⟩⟨b|)(x⊗ 1))

= Υ−1 (Φ(|a∗⟩⟨σ−1(b
∗)|)(1⊗ x)− Φ(|a⟩⟨b|)(x⊗ 1))

= Υ−1(rmul(σ−1(b
∗))

∗
(1)⊗ lmul(a∗)(x)− rmul(b)

∗
(x)⊗ lmul(a)(1))

= Υ−1(b⊗ a∗x− xσ−1(b
∗)⊗ a)

= |a∗x⟩⟨σ−1(b
∗)| − |a⟩⟨bσ−1(x

∗)|
= |rmul(x)(a∗)⟩⟨σ−1(b

∗)| − |a⟩⟨rmul(σ−1(x
∗))(b)|

= |rmul(x)(a∗)⟩⟨σ−1(b
∗)| −

∣∣a〉〈rmul(x)
∗
(b)
∣∣

= rmul(x)|a⟩⟨b|r − |a⟩⟨b| rmul(x).

Thus Υ−1(∇(A)(x)) = rmul(x)Ar −A rmul(x) for any A ∈ B(B,ψ). ■

If A is real, then, by the above, we get Υ−1(∇(A)(x)) = rmul(x)A−A rmul(x).

Definition B.56 ([10, Definition 2.5]).

• Let Din be the linear map B(B(B,ψ)) given by x 7→ m(x⊗ id)(η⊗ id). In other words,

x 7→ x
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• Let Dout be the anti-linear map B(B(B,ψ)) given by x 7→ m(id⊗x∗)(id⊗ η). In other
words,

x 7→ x∗

Corollary B.57. Given x ∈ B(B,ψ), we get Din(x) = lmul(x(1)) and Dout(x) = rmul(x∗(1)).

Proof. Let a ∈ B and compute,

Din(x)(a) = m(x⊗ id)(η ⊗ id)(a) = m(x⊗ id)(1⊗ a) = x(1)a = lmul(x(1))(a).

Thus Din(x) = lmul(x(1)). We let a ∈ B again and compute,

Dout(x)(a) = m(id⊗x∗)(id⊗ η)(a) = m(id⊗x∗)(a⊗ 1) = ax∗(1) = rmul(x∗(1))(a).

Thus Dout(x) = rmul(x∗(1)), as desired. ■

Proposition B.58. Given x ∈ B(B,ψ), if symm(x) = x, then Din(x)
r
= Dout(x).

Proof. Firstly, Din(x)
r
= lmul(x(1))

r
= rmul(x(1)

∗
) = rmul(xr(1)). So then using Proposition

A.99, we have x∗ = xr, and so the result then follows. ■

Lemma B.59. Let A ∈ B(B,ψ). Then,

(i) (id⊗ η∗)Φ(A)(η ⊗ id) = Ar∗,

A = Ar∗.

(ii) (η∗ ⊗ id)Φ(A)(η ⊗ id) = Din(A),

A = Din(A).

(iii) (id⊗ η∗)Φ(A)(id⊗ η) = Dout(A
r).

A = Dout(A
r).

Proof. It suffices to show this for when A = |x⟩⟨y| for x, y ∈ B.
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(i) Let a ∈ B and compute,

(id⊗ η∗)Φ(|x⟩⟨y|)(η ⊗ id)(a) = (id⊗ η∗)(rmul(y)
∗ ⊗ lmul(x))(1⊗ a)

=
(
rmul(y)

∗
(1)⊗ η∗(lmul(x)(a))

)
= η∗(xa)σ−1(y

∗) = ψ(x∗∗a)σ−1(y
∗)

= |σ−1(y
∗)⟩⟨x∗|(a) = |x∗⟩⟨σ−1(y

∗)|∗(a) = |x⟩⟨y|r∗(a).

With strings:

A = A = symm(A) = Ar∗ by A.92.

(ii) Let a ∈ B and compute,

(η∗ ⊗ id)Φ(|x⟩⟨y|)(η ⊗ id)(a) = (η∗ ⊗ id)(rmul(y)
∗ ⊗ lmul(x))(1⊗ a)

= η∗(rmul(y)
∗
(1)) lmul(x)(a)

= ψ(σ−1(y
∗))xa

= ψ(y∗)xa = lmul(|x⟩⟨y|(1))(a)
= Din(|x⟩⟨y|)(a).

With strings:

A = A = A by A.6.

(iii) Let a ∈ B and compute,

(id⊗ η∗)Φ(|x⟩⟨y|)(id⊗ η)(a) = (id⊗ η∗)(rmul(y)
∗ ⊗ lmul(x))(a⊗ 1)

= η∗(lmul(x)(1))rmul(y)
∗
(a) = ψ(x)aσ−1(y

∗)

= rmul(ψ(x∗∗)σ−1(y
∗))(a)

= rmul(|σ−1(y
∗)⟩⟨x∗|(1))(a)

= rmul(|x∗⟩⟨σ−1(y
∗)|∗(1))(a)

= rmul(|x⟩⟨y|r∗(1))(a) = Dout(|x⟩⟨y|r)(a).

With strings:

A = A =

A

by A.6
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=
A

by A.8(i)

=
A

= A by A.6

= Ar∗ by A.92.

■

Lemma B.60. Din(A1 • A2) =
(
A1A2

r∗) • id and Dout(A1 • A2) = id • (A∗
2A1

r), in other
words,

A1 A2 = A1A2
r∗ , A2A1 = A∗

2A1
r

Proof. It suffices to show these for when A1 = |a⟩⟨b| and A2 = |c⟩⟨d| for a, b, c, d ∈ B. So then
we compute,

Din(|a⟩⟨b| • |c⟩⟨d|) = lmul(|ac⟩⟨bd|(1)) = ⟨bd|1⟩ lmul(ac)

= (⟨bd|1⟩|a⟩⟨c∗|) • id = (⟨b|σ−1(d
∗)⟩|a⟩⟨c∗|) • id

= (|a⟩⟨b||σ−1(d
∗)⟩⟨c∗|) • id =

(
|a⟩⟨b||c⟩⟨d|r∗

)
• id.

Thus Din(A1 •A2) =
(
A1A2

r∗) • id for any A1, A2 ∈ B(B,ψ).

Analogously, we compute,

Dout(|a⟩⟨b| • |c⟩⟨d|) = rmul(|bd⟩⟨ac|(1)) = ⟨ac|1⟩ rmul(bd)

= id • (⟨ac|1⟩|d⟩⟨σ−1(b
∗)|)

= id • (⟨c|a∗⟩|d⟩⟨σ−1(b
∗)|)

= id • (|d⟩⟨c||a∗⟩⟨σ−1(b
∗)|) = id •

(
|c⟩⟨d|∗|a⟩⟨b|r

)
.

Thus Dout(A1 •A2) = id • (A∗
2A1

r) for any A1, A2 ∈ B(B,ψ). ■

Proposition B.61 ([10, Lemma 2.6]). Given A ∈ B(B,ψ), we get,

∇(A)
∗∇(A) = Din(A •Ar)−A •A−A∗ •A∗ +Dout(A

r •A).

Proof. We compute,

∇(A)
∗∇(A) = m(A⊗ id− id⊗A∗)(A∗ ⊗ id− id⊗A)m∗
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= (AA∗) • id−A •A−A∗ •A∗ + id • (A∗A)

= Din(A •Ar)−A •A−A∗ •A∗ +Dout(A
r •A) by B.60.

■

Lemma B.62 ([10, Proposition 2.4(2)]). Given a real Schur-idempotent A ∈ B(B,ψ), we
have ∇(A)(xy) = ∇(A)(x) ·r y + x ·l ∇(A)(y).

Proof.

∇(A)(xy) = Φ(Ar)(1⊗ xy)− Φ(A)(xy ⊗ 1) = Φ(A)(1⊗ xy − xy ⊗ 1)

= Φ(A)(1⊗ xy − x⊗ y) + Φ(A)(x⊗ y − xy ⊗ 1)

= Φ(A)((1⊗ x− x⊗ 1) ·r y) + Φ(A)(x ·l (1⊗ y − y ⊗ 1))

= Φ(A)(1⊗ x− x⊗ 1) ·r y + x ·l Φ(A)(1⊗ y − y ⊗ 1)

= ∇(A)(x) ·r y + x ·l ∇(A)(y).

■
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C Single-edged real quantum graphs on B = Mn

In this chapter, we study the possible isomorphisms for single-edged real quantum graphs over
a faithful and positive linear functional ψ on Mn. By single-edged, here, we mean a quantum
graph such that its projection projects onto a one-dimensional subspace (so is given by a
single element). For tracial functionals, the dimension of the projected subspace is equal to
its number of edges, so in that case, ‘single-edged’ does in fact mean a quantum graph with
one edge (see Proposition B.28).

Let us first summarise what we did before.

Firstly, we fix a faithful and positive linear functional ψ on B, and let Q ∈ B be the positive-
definite matrix such that ψ is given by x 7→ Tr(Qx). A linear map A ∈ B(B,ψ) is a quantum
adjacency matrix when A•A = A. We say (B,ψ,A) is a quantum graph when A is a quantum
adjacency matrix operator on B. We let Ψ be the linear isomorphism from B(B,ψ) to B⊗Bop

given by |x⟩⟨y| 7→ x ⊗ σ1/2(y)
∗op

. We have (B,ψ,A) is a real quantum graph if and only if
Ψ(A) is an orthogonal projection. Applying (id⊗⊤−1) makes it an orthogonal projection on
B ⊗B instead of on B ⊗Bop.

C.I Minimal projections

Definition C.1. We say a projection x ∈ B(B) is minimal if there exists a one-dimensional
subspace V ⊆ B such that x projects onto V .

If x ∈ B(B) is a minimal projection, then there exists a one-dimensional subspace V such
that x projects onto V , i.e., x = PV . So then let (v) be an orthonormal basis of V . Then we

can write x = |v⟩⟨v| by Lemma A.170. So then for any 0 ̸= y ∈ U , we get x =
1

∥y∥2
|y⟩⟨y|.

Then we can define a surjective map B \ {0} → {minimal projections in B(B)}, given by

y 7→ 1

∥y∥2
|y⟩⟨y|. Two minimal projections given by 0 ̸= x, y ∈ B are equal if and only if x and

y are co-linear, i.e.,
1

∥y∥2
|y⟩⟨y| = 1

∥x∥2
|x⟩⟨x| if and only if ∃β ∈ C\{0} : y = βx by Proposition

A.19 (in other words, this map is “almost injective” – discussed more in the next section). So
then this map is bijective up to a scalar multiple (i.e., it is surjective and “almost injective”).

Using Proposition A.190(iii), we get that all single-edged real linear operators on B that satisfy
Schur idempotence are given by,

Ψ−1
0,1/2(id⊗⊤)M

(
1

∥x∥2
|x⟩⟨x|

)
=

1

∥x∥2
lmul(xQ)rmul(Qx)

∗
,

for some x ∈ B \ {0}. Recall M is the identification B(Mn) ∼= Mn×n ∼= Mn ⊗Mn (Section
A.IV).

C.II Single-edged real quantum graphs

In this section we define a surjective function A from the set of non-zero elements in Mn to
the set of single-edged real quantum graphs on Mn. Again, by a single-edged real quantum
graph (Mn, x), we mean a real quantum graph (Mn, x) such that its projection is given by a
single element.

Definition C.2. Let

A : Mn \ {0} → {y ∈ B(Mn, ψ) : (Mn, ψ, y) is a single-edged real quantum graph}
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be given by x 7→ 1

∥x∥2
lmul(xQ)rmul(Qx)

∗
.

In other words, A(x) = Ψ−1
0,1/2(id⊗⊤)M

(
1

∥x∥2
|x⟩⟨x|

)
, where ⊤ : Mn

∼=a M
op
n is given by

x 7→
(
xT
)op

with its inverse given by xop 7→ xT (see Proposition A.190(iii)). Recall, from
Section A.IV, M is the identification B(Mn) ∼=Mn×n ∼=Mn ⊗Mn.

Proposition C.3. Given any 0 ̸= α ∈ C and 0 ̸= x ∈Mn, we have A(αx) = A(x).

Proof. We quickly compute,

A(αx) =
1

∥αx∥2
lmul(αxQ)rmul(αQx)

∗
=

|α|2

|α|2 ∥x∥2
lmul(xQ)rmul(Qx)

∗
= A(x).

■

The above proposition tells us that our map A is not injective. However, it is almost injective
(defined below).

Definition C.4. Given C-vector spaces V1, V2, we say that a function T : V1 \ {0} → V2 is
almost injective if for all 0 ̸= v, w ∈ V1, if T (v) = T (w), then there exists some 0 ̸= β ∈ C
such that v = βw.

Lemma C.5. A : Mn \ {0} → B(Mn, ψ) is an almost injective function.

Proof. Let x, y be non-zero elements in Mn and suppose A(x) = A(y). Then we have

Ψ−1
0,1/2(id⊗⊤)M

(∣∣∣∣ x∥x∥
〉〈

x

∥x∥

∣∣∣∣) = Ψ−1
0,1/2(id⊗⊤)M

(∣∣∣∣ y∥y∥
〉〈

y

∥y∥

∣∣∣∣) .
As Ψ−1

0,1/2, (id⊗⊤) and M are isomorphisms, we have the ket-bras are equal, so using Propo-

sition A.19, we get ∥y∥x = α ∥x∥ y for some non-zero α ∈ C. Thus x =
α ∥x∥
∥y∥

y, and so the

function A is almost injective. ■

We have A(Q−1) is the trivial graph since,

A(Q−1) =
1

∥Q−1∥2
lmul(Q−1Q)rmul(QQ−1)

∗
=

1

∥Q−1∥2
id = Tr(Q−1)

−1
id = (mm∗)

−1
.

Lemma C.6. If x ∈Mn \ {0}, then A(x) is self-adjoint if and only if symm(A(x)) = A(x).

Proof. Since A maps non-zero elements to real single-edged quantum graphs, we can use
Proposition A.102(ii),(iii) to get A(x) is self-adjoint if and only if symm(A(x)) = A(x). ■

C.II.1 Conditions for self-adjoint-edness and (ir)reflexivity. So far, we know that
for any non-zero element x ∈ Mn, we get A(x) is both real and satisfies Schur idempotence
(i.e., A(x)•A(x) = A(x)). In this section we find the conditions we need to put on x ∈Mn\{0}
to get A(x) is self-adjoint/symmetric and (ir)reflexive.

It turns out that we get A(x) is self-adjoint if and only if x is co-linear to some self-adjoint
element and commutes with Q. We define this property (i.e., being co-linear to some self-
adjoint element and commuting with Q) as being almost self-adjoint via restricted Q (see
below).
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Definition C.7 (almost self-adjoint). We say an element x ∈Mn is almost self-adjoint via
restricted Q if there exists some α ∈ C and a self-adjoint element y ∈Mn such that x = αy
and xQ = Qx.

Remark C.8. Let x ∈Mn \ {0} be almost self-adjoint via restricted Q, then x commutes with
Q and x = αy for some α ∈ C and self-adjoint element y ∈ B. Obviously, we also get y
commutes with Q. ♢

Lemma C.9. Let x ∈Mn\{0}. Then A(x) is self-adjoint if and only if x is almost self-adjoint
via restricted Q.

Proof. We have the following equivalences,

A(x) is self-adjoint

⇔ rmul(Qx)lmul(xQ)
∗
= lmul(xQ)rmul(Qx)

∗

⇔ lmul(Qx∗)rmul(Qx∗)
∗
= lmul(xQ)rmul(Qx)

∗
by A.115(ii),(iii)

⇔|Qx∗⟩⟨Qx∗| = |xQ⟩⟨Qx| by A.190(ii)

⇔ lmul(Q)|x∗⟩⟨x∗| lmul(Q) = rmul(Q)|x⟩⟨x| lmul(Q)

⇔σ−1|x∗⟩⟨x∗| = |x⟩⟨x|.

Note that the last equivalence follows as lmul(Q) is invertible and σ−1 = lmul(Q) rmul(Q−1).

(⇒) Suppose A(x) is self-adjoint.
Then, by the above equivalences, we have

σ−1|x∗⟩⟨x∗| = |x⟩⟨x|, (1)

which, by Proposition A.91(i), is exactly symm(|x⟩⟨x|) = |x⟩⟨x|. We then also get
symm′(|x⟩⟨x|) = |x⟩⟨x| by Corollary A.95. So then using Proposition A.91(ii), we get
|x∗⟩⟨x∗| = |x⟩⟨σ1(x)|. By Equation (1), we also have |x∗⟩⟨x∗| = |σ1(x)⟩⟨x|. So then we get

|x⟩⟨σ1(x)| = |σ1(x)⟩⟨x|. And so σ1(x) = αx where α =

∥∥σ1/2(x)∥∥2
∥x∥2

. Clearly, 0 < α ∈ R.

Then |x∗⟩⟨x∗| = |
√
αx⟩⟨

√
αx|, and so, by Proposition A.19, we get a non-zero β ∈ C

such that x∗ = β
√
αx. So then we have x = β

√
αx∗ and x = β−1

√
α
−1
x∗, which means

0 = x−x = (β
√
α−β−1

√
α
−1

)x∗ which is true if and only if ∥β∥2 α = 1. So there exists

some non-zero γ ∈ C such that γ2 = β
√
α. Then ∥γ∥2 = 1 as this is true if and only if∥∥γ2∥∥2 = ∥β

√
α∥2 = ∥β∥2 α = 1.

We have γx is self-adjoint since this is true if and only if γx∗ = γx, which is true if and
only if x∗ = γ2x = β

√
αx. And we know this is true from before, so γx is self-adjoint.

Now let y = γx, then we have x = ∥γ∥2 x = γy. So x is co-linear to a self-adjoint
element.

Now from |x∗⟩⟨x∗| = |x⟩⟨σ1(x)|, we get |y⟩⟨y| = α|y⟩⟨y|, and so (1 − α)|y⟩⟨y| = 0 which
is true if and only if α = 1. Thus σ1(x) = αx = x, which means x commutes with Q.
Thus x is almost self-adjoint via restricted Q.

(⇐) Suppose x is almost self-adjoint via restricted Q. So we have x commutes with Q, and
we let α ∈ C and y ∈Mn such that y∗ = y and x = αy. Then we compute,

|σ−1(x
∗)⟩⟨x∗| = |x∗⟩⟨x∗| = αᾱ|y⟩⟨y| = |x⟩⟨x|.

And by the above equivalences, this means A(x) is self-adjoint, so we are done.

■
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For A(x) to be irreflexive, we need x to have trace zero. For it to be reflexive, x will need to
be co-linear to Q−1. So this means that there is only one single-edged reflexive real quantum
graph and that is exactly the trivial graph (Mn, ψ,A(Q

−1)).

Lemma C.10. Let x ∈Mn \ {0}. Then

(i) A(x) • id = 0 ⇔ Tr(x) = 0,

(ii) A(x) • id = id ⇔ ∃α ∈ C \ {0} : x = αQ−1.

Proof. By applying our linear equivalence Ψ0,1/2 and Propositions A.180(iv) and A.189(iv),
we get

Ψ0,1/2(A(x) • id) = Ψ0,1/2(A(x))Ψ0,1/2(id)

=
1

∥x∥2
(id⊗⊤)M(|x⟩⟨x|)(id⊗⊤)M

(∣∣Q−1
〉〈
Q−1

∣∣)
=

1

∥x∥2
(id⊗⊤)M

(
|x⟩⟨x|

∣∣Q−1
〉〈
Q−1

∣∣)
=

〈
x
∣∣Q−1

〉
∥x∥2

(id⊗⊤)M
(∣∣x〉〈Q−1

∣∣) . (1)

(i) Equation (1) equals 0 if and only if
〈
x
∣∣Q−1

〉
= 0 or

∣∣x〉〈Q−1
∣∣ = 0. And we know

∣∣x〉〈Q−1
∣∣

is non-zero since both x and Q−1 are non-zero. So this is true if and only if
〈
x
∣∣Q−1

〉
= 0.

Obviously, expanding this, we get 0 =
〈
x
∣∣Q−1

〉
= Tr(Qx∗Q−1) = Tr(x∗) = Tr(x), which

is true if and only if Tr(x) = 0, so we are done.

(ii) Note that we have
〈
x
∣∣Q−1

〉
̸= 0, otherwise we get Tr(x) = 0 and so A(x) • id = 0 by

Part (i). Using Proposition A.189(iv), we get Equation (1) equals Ψ0,1/2(id) if and only

if
〈
x
∣∣Q−1

〉∣∣x〉〈Q−1
∣∣ = ∥x∥2

∣∣Q−1
〉〈
Q−1

∣∣.
This is true if and only if

∣∣∣〈x∣∣Q−1
〉
x− ∥x∥2Q−1

〉〈
Q−1

∣∣∣ = 0, which is then true if and

only if
〈
x
∣∣Q−1

〉
x = ∥x∥2Q−1. The result then follows as

〈
x
∣∣Q−1

〉
̸= 0.

■

C.III Describing isomorphisms on single-edges

In this section, we study when we get (Mn, A(x)) ∼= (Mn, A(y)) for non-zero elements x, y ∈
Mn. Theorem C.14 is one of the main results in this thesis, and is a classification for single-
edged real quantum graphs.

Corollary C.11. Let f be an isometric ∗-automorphism on Mn, and let x, y ∈ Mn. Then
f−1 ◦ |x⟩⟨y| ◦ f =

∣∣f−1(x)
〉〈
f−1(y)

∣∣.
Analogously, f ◦ |x⟩⟨y| ◦ f−1 = |f(x)⟩⟨f(y)|.

Proof. This is done using Lemmas A.17(i),(ii) and A.135. ■

Lemma C.12. Let x ∈Mn and f be an isometric ∗-automorphism on Mn. Then
f−1 ◦A(x) ◦ f = A(f−1(x)).

Analogously, f ◦A(x) ◦ f−1 = A(f(x)).

Proof. Let U ∈Mn be the unitary such that f is given by x 7→ UxU∗ (see Proposition A.128).
Then, as f is an isometry, we use Lemma A.137 to get UQ = QU , and also U∗Q = QU∗.

By Lemma A.144, we know M(f) = U ⊗ σ−1/2(U). Also note M(f−1) = M(f)
∗
.

Using Lemma A.137 again, we get ∥x∥ =
∥∥f−1(x)

∥∥.
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Then we compute,

M(f−1A(x)f) = M(f−1)M(A(x))M(f)

=
1

∥x∥2
(
U ⊗ σ−1/2(U)

)∗(
xQ⊗ σ1/2(Qx)

)(
U ⊗ σ−1/2(U)

)
=

1

∥x∥2
(
U∗xQU ⊗Q−1/2U∗Q1/2Q−1/2QxQ1/2Q1/2UQ−1/2

)
=

1

∥x∥2
(
U∗xUQ⊗Q−1/2U∗QxQUQ−1/2

)
=

1

∥x∥2
(
f−1(x)Q⊗Q−1/2QU∗xUQQ−1/2

)
=

1

∥x∥2
(
f−1(x)Q⊗Q1/2f−1(x)Q1/2

)
=

1

∥f−1(x)∥2
(
f−1(x)Q⊗ σ1/2(Qf−1(x))

)
= M(A(f−1(x))).

Thus f−1A(x)f = A(f−1(x)). ■

We finally come to our main result. The following tells us that any two single-edged real
quantum graphs (Mn, ψ,A(x)) and (Mn, ψ,A(y)) given by non-zero elements x, y ∈ Mn are
isomorphic if and only if there exists a non-zero β ∈ C and a unitary U ∈ Mn such that
x = U(βy)U∗ and UQ = QU .

Definition C.13. We say an element x ∈Mn is almost similar via restricted Q to y ∈Mn

if there exists a unitary U ∈ Mn and β ∈ C \ {0} such that x = βUyU∗ and UQ = QU .
Equivalently (see Lemma A.140), x is almost similar via restricted Q to y if there exists a
non-zero β ∈ C and an isometric ∗-automorphism f on Mn such that x = f(βy).

Theorem C.14. Let ψ be a positive and faithful linear functional on Mn, where we endow
Mn with the inner product ⟨a|b⟩ = ψ(a∗b) = Tr(Qa∗b) for all a, b ∈Mn, where Q ∈Mn is the
unique positive definite element such that ψ(a) = Tr(Qa) for all a ∈Mn. Let x, y ∈Mn \ {0}.
Then

x and y are almost similar via restricted Q
⇔ (Mn, ψ,A(x)) ∼= (Mn, ψ,A(y)).

Proof.

(⇒) Suppose there exists some non-zero β ∈ C and an isometric ∗-automorphism f on Mn

such that x = f(βy). Then by Propositions C.12 and C.3 we get

f−1A(x)f = A(f−1(x)) = A(βy) = A(y).

Thus (Mn, ψ,A(x)) ∼= (Mn, ψ,A(y)).

(⇐) Suppose we have an isometric ∗-automorphism f onMn such that A(x)f = fA(y). Then
by Proposition C.12 we get A(f−1(x)) = A(y). And as A is an almost injective function
(see Lemma C.5), we get that there exists some non-zero complex number α such that
f−1(x) = αy. This means we get x = f(αy). So then we are done.

■

C.IV Describing isomorphisms of single-edges on tracial functionals

A nice corollary to Theorem C.14 is that when we have ψ is tracial, then (Mn, ψ,A(x)) is
isomorphic to (Mn, ψ,A(y)) if and only if x and βy, for some β ∈ C, have equal spectra (see
Corollary C.22).
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C.IV.1 Some properties for almost self-adjoint elements. We first quickly recover
some easy well-known results for normal matrices, but instead apply it to almost self-adjoint
matrices.

Lemma C.15. Let x ∈Mn be an almost self-adjoint matrix. Then
x is upper-triangular ⇔ x is diagonal.

Proof. As x is almost self-adjoint, we let α ∈ C and y ∈ Mn such that y is self-adjoint and
x = αy. Now αy being upper-triangular means that for any i, j ∈ [n], if j < i, then αyij = 0.
And αy being diagonal means that for any i, j ∈ [n], if i ̸= j, then αyij = 0.

(⇒) Suppose that we have αy is upper-triangular, i.e., for any i, j ∈ [n], if j < i, then αyij = 0.
Let i, j ∈ [n] such that i ̸= j. We assume i < j, otherwise this is exactly our hypothesis
when j < i. Then by our hypothesis we know αyji = 0. We assume α ̸= 0, otherwise
this is trivial. So then yji = 0. And since y = y∗, we get yij = y∗ij = yji = 0. Thus
αyij = 0.

(⇐) If it is diagonal, then it is already upper-triangular.

■

Definition C.16. We say that two elements x, y ∈ Mn are similar if there exists some
unitary U ∈Mn such that UxU∗ = y.

Proposition C.17. Given two diagonal matrices D1, D2 ∈Mn such that they have the same
diagonal entries with the same multiplicities, then there exists a permutation matrix that
transforms one into the other, i.e.,

∃P ∈ Un : D2 = PD1P
∗. ■

Lemma C.18 (Schur decomposition [7, Theorem 2.3.1(a)]). Let A ∈Mn. Then
∃ (U ∈ Un) (D ∈Mn) : A = UDU∗ and D is upper-triangular. ■

Lemma C.19. Let A1, A2 ∈Mn be almost self-adjoint. Then
A1, A2 have equal eigenvalues with the same multiplicities ⇔ A1, A2 are similar.

Proof.

(⇒) Suppose A1, A2 have equal eigenvalues with the same multiplicities. Since they are
almost self-adjoint, we let α1, α2 ∈ C and y1, y2 ∈ Mn such that y1, y2 are self-adjoint
and A1 = α1y1 and A2 = α2y2.

Using the Schur decomposition Lemma C.18, we write A1 = U1D1U∗
1 and A2 = U2D2U∗

2

where D1, D2 are upper-triangular matrices and U1,U2 are unitary matrices.

Claim: We have D1 = U∗
1A1U1 and D2 = U∗

2A2U2 are almost self-adjoint.

We have D1 = U∗
1A1U1 = α1U∗

1 y1U1, and similarly D2 = α2U∗
2 y2U2. As this

is a ∗-inner automorphism, we get

(U∗
1 y1U1)

∗
= U∗

1 y
∗
1U1 = U∗

1 y1U1

Analogously, (U∗
2 y2U2)

∗
= U∗

2 y2U2. Thus D1 and D2 are almost self-adjoint.

Now, by Lemma C.15, we know an almost self-adjoint matrix is upper triangular if and
only if it is diagonal. So D1 and D2 are diagonal.

Since A1, A2 have equal eigenvalues with the same multiplicities, we know D2 = PD1P
∗,

where P is a permutation matrix (so is unitary) by Proposition C.17. We then compute,

A2 = U2D2U∗
2 = U2(PD1P

∗)U∗
2

= (U2P )D1(U2P )
∗
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= (U2P )(U∗
1A1U1)(U2P )

∗

= (U2PU∗
1 )A1(U2PU∗

1 )
∗
.

Obviously, U2PU∗
1 is unitary since (U2PU∗

1 )(U1P
∗U∗

2 ) = 1 = (U1P
∗U∗

2 )(U2PU∗
1 ). Thus,

we have shown that there exists a unitary matrix U = U2PU∗
1 such that UA1U

∗ = A2.

(⇐) Suppose UA1U
∗ = A2 for some U ∈ Un. Then the result follows from Proposition A.25.

■

Definition C.20.

• We say that two matrices x, y have almost equal spectra if there exists some 0 ̸= β ∈ C
such that x and βy have equal eigenvalues with the same multiplicities.

• We say that two matrices x, y are almost similar if there exists some 0 ̸= β ∈ C such
that x and βy are similar.

By definition, we have that Lemma C.19 corresponds to the following.

Corollary C.21. Let x, y ∈Mn be almost self-adjoint. Then
x and y have almost equal spectra ⇔ x and y are almost similar. ■

Now we are ready to state the corollary to Theorem C.14 for when B =Mn and ψ is tracial.

Corollary C.22. Let x, y ∈ Mn \ {0} such that they are both almost self-adjoint. Then
(Mn,Tr, A(x)) is isomorphic to (Mn,Tr, A(y)) if and only if x is almost similar to y (equiva-
lently, by Corollary C.21, if x and y have almost equal spectra).

Proof. By Proposition A.45 we get Q = α1 for some 0 < α ∈ R (this is positive and real since
Q is positive definite). This means any matrix will obviously commute with Q. So the result
then follows from Theorem C.14. ■

C.V Isomorphisms on Mn for tracial functionals

In this section, we continue working on tracial functionals, so by Proposition A.45, we get
Q = α1 for some 0 < α ∈ R (positivity and realness of α follows from Q being positive
definite). Note that this means we get (Mn,Tr, A(1)) is the trivial graph. Section C.V.2
contains the remaining main results of this thesis, and are classifications for certain types of
quantum graphs.

C.V.1 Isomorphisms on M2. The following result shows that all single-edged irreflexive
quantum graphs on M2 are isomorphic. This has already been done in [6, Theorem 3.11] and
[9, Theorem 3.1], but we give an easier proof.

Proposition C.23. All single-edged self-adjoint (ir)reflexive real quantum graphs on M2 are
isomorphic.
In other words, for any almost self-adjoint matrices x, y ∈ M2 \ {0} that have zero trace, we
get (M2,Tr, A(x)) ∼= (M2,Tr, A(y)).

Proof. By Theorem C.14 it is enough to say that the matrix x is almost similar to y (or,
equivalently, by Corollary C.21, that they have almost equal spectra).

For a two-by-two matrix to be have zero trace, it would need some α ∈ C and −α to be its
eigenvalues. This means that any almost self-adjoint matrix that has zero trace has almost
equal spectra to any other almost self-adjoint matrix that has zero trace. Thus we are done. ■
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C.V.2 Isomorphisms on Mn for n > 2. Now recall that for any non-zero, almost self-
adjoint matrices x, y ∈ Mn that have zero trace, we get (Mn,Tr, A(x)) is isomorphic to
(Mn,Tr, A(y)) if and only if there exists some non-zero β ∈ C such that x and βy have equal
eigenvalues with the same multiplicities (Corollary C.22). When n > 2, there are infinite
possibilities of non-similar matrices x, y, which means there are infinite possibilities of non-
isomorphisms for single-edged self-adjoint, irreflexive, and real quantum graphs on Mn for
tracial functionals.

Theorem C.24. For n > 2, we get infinitely many non-isomorphisms for single-edged self-
adjoint, irreflexive, and real quantum graphs on Mn for tracial ψ = Tr.

Proof. Let x, y ∈ Mn. Propositions C.9 and C.10(i) tell us that we get A(x) and A(y) are
self-adjoint, irreflexive, and real quantum adjacency matrices if and only if x and y are almost
self-adjoint and have zero trace.

Then by Theorem C.14 we have (Mn,Tr, A(x)) ≁= (Mn,Tr, A(y)) if and only if x and y are
not similar (or, equivalently, by Corollary C.21, do not have almost equal spectra).

As the trace equals 0 for both x and y, this means that their eigenvalues add up to 0. Since
n > 2, we do not necessarily get that they are almost equal.

For example, over M3, if we have the spectrum of x equals (−2,−1, 3) and the spectrum of y
equals (−2, 1, 1). Then there does not exist a β such that (−2,−1, 3) = (−2β, β, β). ■

Corollary C.25. For n > 2, we also have infinitely many non-isomorphisms between self-
adjoint reflexive and real quantum graphs on Mn with 2-quantum edges.

Proof. Given A1 ∈ B(Mn,Tr) is a self-adjoint irreflexive and real quantum adjacency matrix,
we get A(1)+A1 is a self-adjoint reflexive and real quantum adjacency matrix by Proposition
B.40. Clearly, if A1 is single-edged, then A(1) + A1 has exactly 2-edges. Given another
single-edged self-adjoint irreflexive and real quantum adjacency matrix A2 ∈ B(Mn,Tr), it is
then clear that we get (Mn,Tr, A(1) + A1) is isomorphic to (Mn,Tr, A(1) + A2) if and only
if (Mn,Tr, A1) is isomorphic to (Mn,Tr, A2). So, it then follows from Theorem C.24 since we
know there are infinitely many non-isomorphisms for single-edged self-adjoint irreflexive and
real quantum graphs. ■

Corollary C.26. For n > 2, there are infinitely many non-isomorphisms between self-adjoint
irreflexive and real quantum graphs on Mn with n2 − 2 edges.

Proof. Similarly to the previous proof, this follows directly from the fact that two self-adjoint
irreflexive and real quantum graphs are isomorphic if and only if their irreflexive complements
are isomorphic; in particular, see Proposition B.41 and Theorem C.24. ■

Corollary C.27. For n > 2, there are infinitely many non-isomorphisms between self-adjoint,
reflexive, and real quantum graphs on Mn with n2 − 1 edges.

Proof. Similarly to the previous proofs, this follows directly from Proposition B.39 and The-
orem C.24. ■

This means, for n = 3, so far, we know that there are infinitely many non-isomorphisms for
quantum graphs with 1, 2, 7, and 8 edges.
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C.VI Adding single-edges

In this section, we discuss adding single-edged self-adjoint and real quantum graphs (Mn, ψ,A(x))
and (Mn, ψ,A(y)). As expected, this only works when x and y are orthogonal.

Proposition C.28. Given self-adjoint real quantum graphs (Mn, ψ,A(x)) and (Mn, ψ,A(y))
for non-zero x, y ∈Mn, we get (Mn, ψ,A(x) +A(y)) is a self-adjoint and real quantum graph
if and only if ⟨x|y⟩ = 0.
In other words, given almost self-adjoint via restricted Q elements 0 ̸= x, y ∈ Mn, we get
(Mn, ψ,A(x)+A(y)) is a self-adjoint and real quantum graph if and only if x is orthogonal to
y, i.e., ⟨x|y⟩ = 0.

Proof. Let x, y ∈ Mn \ {0} be almost self-adjoint via restricted Q. So let α, β ∈ C and
a, b ∈ Mn such that a and b are self-adjoint and x = αa and y = βb. So then we also have a
and b both commute with Q. This means we get,

⟨a|b⟩ = Tr(Qa∗b) = Tr(Qab) = Tr(aQb) = Tr(Qb∗a) = ⟨b|a⟩.

Obviously, ⟨x|y⟩ = 0 if and only if ⟨a|b⟩ = 0 as α, β are non-zero. So it suffices to show that
Equation (1) is equivalent to ⟨a|b⟩ = 0.

We have A(x) +A(y) is Schur idempotent if and only if

A(x) •A(y) +A(y) •A(x) = 0. (1)

Now, applying our linear isomorphism Ψ0,1/2 to Equation (1) and using A.180(iv), we get,

Ψ0,1/2 [A(x) •A(y) +A(y) •A(x)]
=Ψ0,1/2(A(x))Ψ0,1/2(A(y)) + Ψ0,1/2(A(y))Ψ0,1/2(A(x))

=
1

∥x∥2 ∥y∥2
(id⊗⊤)M(|x⟩⟨x||y⟩⟨y|+ |y⟩⟨y||x⟩⟨x|)

=
1

∥x∥2 ∥y∥2
(id⊗⊤)M(⟨x|y⟩|x⟩⟨y|+ ⟨y|x⟩|y⟩⟨x|)

=
∥α∥2 ∥β∥2 ⟨a|b⟩

∥x∥2 ∥y∥2
(id⊗⊤)M(|a⟩⟨b|+ |b⟩⟨a|).

So Equation (1) becomes,
⟨a|b⟩(|a⟩⟨b|+ |b⟩⟨a|) = 0. (2)

So we need to show that Equation (2) is equivalent to ⟨a|b⟩ = 0.

(⇒) Suppose we have Equation (2). Then we get ⟨a|b⟩ = 0 or |a⟩⟨b|+ |b⟩⟨a| = 0. If ⟨a|b⟩ = 0,
then we are done. If, on the other hand, |a⟩⟨b|+|b⟩⟨a| = 0, then we have ⟨b|c⟩a+⟨a|c⟩b = 0

for all c ∈ B. This means we get ∥b∥2 a + ⟨a|b⟩b = 0, and so a =
⟨a|b⟩
∥b∥2

b. So then we

compute,

0 = |a⟩⟨b|+ |b⟩⟨a| = 2⟨a|b⟩
∥b∥2

|b⟩⟨b|.

Which is true if and only if ⟨a|b⟩ = 0, so we are done.

(⇐) Suppose ⟨a|b⟩ = 0. Then we obviously get Equation (2).

■

Corollary C.29. Given a tuple (xi) in Mn such that each (Mn, ψ,A(xi)) is a self-adjoint
and real quantum graph, then

(Mn, ψ,
∑
iA(xi)) is a self-adjoint and real quantum graph

⇔ ∀i, j ∈ [n] : i ̸= j ⇒ ⟨xi|xj⟩ = 0. ■
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Remark C.30. It is clear that we can only add up to n self-adjoint and real quantum graphs
which satisfy the orthogonality requirement. Otherwise, we would not get orthogonality (and
so it would not be a self-adjoint and real quantum graph by the above corollary). ♢

Definition C.31.

• We say a tuple of elements (xi) inMn is simultaneously similar to a tuple of elements
(yi) in Mn if there exists an isometric ∗-automorphism f on Mn such that each
xi = f(yi). We denote this by (xi) ∼Q (yi).

• We say a tuple of elements (xi) in Mn is simultaneously almost similar to a tuple
of elements (yi) in Mn if there exists a tuple of non-zero complex numbers (βi) such
that (xi) ∼Q (βiyi).

Lemma C.32. Given tuples (xi) and (yi) in Mn, if Spectrum(
∑
i xi) ̸= Spectrum(

∑
i yi),

then (xi) ≁Q (yi).

Proof. We show its contrapositive statement. So suppose (xi) ∼Q (yi). Then there ex-
ists an isometric ∗-automorphism f on Mn such that for each xi = f(yi). And so we get
Spectrum(

∑
i xi) = Spectrum(f(

∑
i yi)) = Spectrum(

∑
i yi). ■

Corollary C.33. Let x, y, z, w ∈Mn \ {0} such that (Mn, ψ,A(x)+A(y)) and (Mn, ψ,A(z)+
A(w)) are quantum graphs. Then

(x, y) is simultaneously almost similar to (z, w)
⇒ (Mn, ψ,A(x) +A(y)) ∼= (Mn, ψ,A(z) +A(w)).

Proof. Suppose (x, y) is simultaneously almost similar to (z, w). Then we let f be an isometric
∗-automorphism on Mn and we let α, β ∈ C \ {0} such that x = f−1(αz) and y = f−1(βw).
Then we have

A(x) +A(y) = A(f−1(αz) +A(f−1(βw))

= A(αf−1(z)) +A(βf−1(w))

= A(f−1(z)) +A(f−1(w)) by C.3

= f−1(A(z) +A(w))f by C.12

Which is what we needed. ■
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E String diagrams

In this chapter, we list a summary of the language of our string diagrams, and operations one
can use to manipulate said diagrams.

All diagrams are to be read from bottom to top. All diagrams have outputs (denoted by
labelling the top of the diagram) in a space.

Let A,D,E, F be C-vector spaces. The alphabet of our string diagrams consists of variables
x, y, . . . in our spaces, and functions f, g, . . .. We can concatenate appropriate diagrams to
create new diagrams. We can also tensor the diagrams to create new diagrams. In particular:

• a linear map f : A→ D is given by f

A

D

• inputting x ∈ A is given by
x

A

• We let the identity map id: A→ A be given by id

A

A

=:

A

A

.

• We can concatenate a linear map f : A → D with an element x ∈ A, i.e., we can draw
f(x). This is done by placing the string diagram representing f on top of the diagram
representing x:

x

f

D

=

f(x)

D

• When we concatenate two diagrams that represent linear maps, then this is simply the
composition of the maps. In particular, for f : A→ D and g : D → E, we have,

f

g

A

E

= g ◦ f

A

E

• We can perform planar isotopies on our diagrams. So we can stretch, compress, and
move the strings around.

• To apply a tensor product of x ∈ A with y ∈ D, i.e., x ⊗ y, we place the diagram of y
to the right of the diagram of x:

x

A

y

D

=

x⊗ y

A⊗D
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• Similarly, to apply a tensor product of linear map f : A → D with g : E → F , we place
the diagram of g to the right of f :

f

A

D

g

E

F

= f ⊗ g

A⊗ E

D ⊗ F

• We can overlap the strings. For x ∈ A and y ∈ D, we get,

x y

AD

=
xy

D A

Note that the different colours here are meant to only highlight the fact that they are not
intersecting, but overlapping (either way). Generally, we neither need nor use colours.

• Recall that we defined κA,D to be the tensor swap-map on A⊗D, i.e., κ : A⊗D ∼= D⊗A
and is given by x⊗ y 7→ y ⊗ x. In strings, this is given by,

DA

AD

:= κA,D

A⊗D

D ⊗A

Obviously, κA,D(x⊗ y) is exactly the preceding point.

• We can move strings under/over other strings (also known as the Reidemeister II move
(RII)):

AD

AD

=

AD

AD

.

• We can also perform Reidemeister III moves (RIII):

ADE

EDA

=

ADE

EDA

.

• We can apply the adjoint to a diagram representing a bounded linear map by vertically
reflecting the diagram. So for f ∈ B(H1,H2) for Hilbert spaces H1,H2, we have f

H1

H2


∗

:= f∗

H2

H1
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≃
(mul assoc)

≃
(co mul assoc)

m(m⊗ id) = m(id⊗m) (µ⊗ id)µ = (id⊗µ)µ

≃ ≃ (unit id) ≃ ≃ (co unit id)

m(η⊗ id) = id = m(id⊗ η) (ϖ⊗id)µ = id = (id⊗ϖ)µ

Table 1: algebraic and co-algebraic structures in string diagrams

Now let A be an algebra and a co-algebra, with multiplication map m : A ⊗ A → A, co-
multiplication map µ : A → A ⊗ A, unit map η : C → A, and co-unit map ϖ : A → C. In
strings, we define these as:

m

A⊗A

A

=:

AA

A

, µ

A⊗A

A

=:

A A

A

,

η

C

A

=:

A

C

, ϖ

A

C

=:

A

C

.

When m is composed with ϖ, then we draw this as

ϖ ◦m =

AA

C

=

AA

C

.

Similarly, when composing η with µ, we have

µ ◦ η =

AA

C

=

AA

C

.

The algebraic and co-algebraic properties of A are given by the following,

The above table gives us more operations to use when manipulating diagrams.
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left multiplication lmul, 43
linear map to matrix M , 20
orthogonal projection, 60
minimal, 93

positive definite, 19
positive semi-definite, 19
projection onto along , 56

real, 35
right multiplication rmul, 43

matrix
almost equal spectra, 99
almost self-adjoint via restricted Q,

95
almost similar, 99
almost similar via restriction, 97
eigenbasis, 21
matrix to linear map M−1, 20
raised to a real power, 22
Schur decomposition theorem, 21
similar, 98
unitary, 21

modular automorphism group σt, 30

opposite algebra, 60

positive map, 22
projection, 58

quantum graph
complete, 80
isomorphism, 85
number of edges, 78
quantum adjacency matrix, 70

(ir)reflexivity, 70
Schur idempotence, 70
symmetry, 70

trivial, 81

tensor swap map, 60

von Neumann algebra, 58
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