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Abstract

This thesis investigates thin-film flows involving deformable and porous interfaces, addressing
both the fundamental fluid mechanics of free-surface flows prone to a novel class of instability
and applications of related flows to biomedical transport.

The first part of this thesis focuses on viscous gravity currents spreading over lubricated
substrates. Such a free-surface flow involves two immiscible viscous fluids, the interface be-
tween them being deformable, with the upper-most surface in contact with the atmosphere. A
theoretical framework is developed for such flows using the principles of lubrication theory. We
find similarity solutions and perform asymptotic analyses to characterise various flow regimes
and a stress singularity near the intrusion front. Building upon this foundation, a linear stability
analysis reveals that such flows are prone to a new class of viscous fingering instabilities, arising
from hydrostatic interactions between the two viscous fluids. Despite fundamental differences
in the type of flow, this new class of fluid-mechanical instabilities curiously resembles a num-
ber of features typical of its closest predecessor: the well-known Saffman-Taylor instability, or
what simply became known as viscous fingering. This challenges the perception that viscous
fingering is limited to porous media, or Hele-Shaw cells, as was popularised in the decades of
research since Saffman and Taylor in the 1950s. This thesis highlights how free-surface flows of
fluids of unequal viscosity can exhibit similar fingering to that seen in porous media, widening
the definition of what the fluid mechanical community perceives to be viscous fingering. We ex-
plore how this new class of instabilities depends on contrasts in the viscosity, density, and source
flux, and what determines wavelength selection. Extending the problem to inclined substrates
demonstrates that the onset and mechanism of instability are robust and not tied to geometric
configuration.

The second part of this thesis turns to biomedical transport in haemodialysis – a treat-
ment option for patients affected by kidney failure. Such treatment, in itself, is a rich fluid-
mechanical problem, involving the flow of two viscous fluids (blood and a sterile solution,
known as dialysate) in an artificial kidney known as a dialyser. Dialysers involve thousands
of long and thin hollow fibres that facilitate the removal of toxins and excess fluid from the
blood. On the scale of a single fibre, the length scales involved are such that both blood and
dialysate behave as thin films of viscous fluid, separated by a semipermeable fibre membrane.
We use lubrication theory to develop a consistent mathematical framework modelling the fluid
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flow and solute transport within a single fibre of a typical dialyser, characterising both diffusive
and convective transport of toxins from the blood to the dialysate. By performing asymptotic
analyses, we obtain analytical expressions for the clearance (characterising treatment efficiency)
and recover classical results from the literature as special cases in various asymptotic limits. By
incorporating fluid flow, our framework is faithful to the underlying hydrodynamics and provides
a systematic foundation for improving dialyser design and exploring new treatment modalities.
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Chapter 1

Introduction

Thin film flows refer to the motion of fluid layers whose thickness is much smaller than their
extent in the other spatial dimensions. When inertial effects are negligible (that is, when the
Reynolds number, describing the relative importance of inertial effects to viscous effects, is
small), the large disparity between the length scales inherent to thin film flows allows for a sig-
nificant simplification of the full Navier–Stokes equations, describing the flow. Such an asymp-
totically consistent simplification leads to a reduced-order framework, which forms the basis of
lubrication theory. First introduced by Reynolds (1886) in work on lubricated bearings, lubrica-
tion theory provides an asymptotic approximation for the dynamics of thin film flows, capturing
the dominant physical effects with significantly reduced complexity.

This thesis investigates low-Reynolds-number thin-film flows involving deformable and porous
interfaces. The thesis is split into two parts by theme. Part I (Chapters 2-4) of this thesis fo-
cuses on thin-film free-surface flows, in which the interfaces between the fluids involved are
free and deformable. Chapter 2 examines a gravity-driven thin film of viscous fluid spread-
ing over a rigid horizontal plate lubricated by another viscous fluid. Chapter 3 demonstrates
that such flows are prone to a novel viscous fingering instability, with a linear stability analysis
identifying conditions under which instability occurs, contrasting with its closest predecessor:
the Saffman-Taylor instability. The analysis of Chapter 4, extending the problem to inclined
substrates, demonstrates that the onset and mechanism of instability is not tied to geometric
configuration alone.

Part II (Chapter 5) of this thesis addresses thin-film flows interacting with porous surfaces,
motivated by biomedical applications. In particular, Chapter 5 develops a mathematical model
of the fluid mechanics and solute transport in haemodialysis and haemodiafiltration – treatment
options for patients with kidney failure. Blood is circulated through an artificial kidney, known
as a dialyser, and purified by contact with a sterile solution, known as dialysate. A dialyser
contains thousands of long, thin, hollow and semi-permeable fibres, through which toxins and
excess water are removed from the blood. At the scale of a single fibre, both blood and dialysate
behave as thin films of viscous fluid, separated by the fibre membrane. We use lubrication theory
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to develop a mathematical framework describing the fluid dynamics and solute transport within
a single fibre.

1.1 Thin films of viscous fluid spreading over lubricated sub-
strates

Flows of thin films of viscous fluid spreading under the action of gravity are ubiquitous in the
world around us, as seen in various industrial (Oron et al., 1997), environmental (Simpson,
1982), and geophysical (Huppert, 2006) applications. These range from the spread of oil on
the sea (Hoult, 1972) to the dynamics of lava flows (Griffiths, 2000), for example. Particularly
striking is the range of possible behaviours when a thin film of viscous fluid spreads under
gravity over a soft-bedded, or liquid-infused, substrate. Small-scale industrial applications of
such lubricated flows include multi-layer thin-film coating processes, such as for electronics
and medical devices (Ying et al., 2015), and 3D printing or additive manufacturing applications
(Mukherjee et al., 2016; Sames et al., 2016), for example. In the latter context, molten material
(liquid) is continually added to soft, solidifying substrates that are partially solid and partially
liquid, and hence, deformable (Khairallah et al., 2016; Kowal et al., 2018).

Other examples on the small scale include physiological applications such as that of nasal
drug and vaccine delivery, in which an intranasally-delivered liquid drug solution or vaccine
interacts with a viscous layer of mucus (Masiuk et al., 2016). A poor understanding of drug-
mucus interactions currently hinders the development of effective nasally-delivered vaccines,
despite their potential to boost effectiveness by targeting respiratory viruses at the point of entry
into the body (Madhavan et al., 2022). A recent clinical trial prompted the need for research
to help such vaccines remain in the nose and to reliably quantify the proportion of the drug or
vaccine that is cleared away down the nasal passages towards the pharynx and gastrointestinal
tract by mucocilliary clearance (Masiuk et al., 2016; Madhavan et al., 2022).

On much larger scales, flows of lubricated viscous fluids are relevant to a range of geophysi-
cal applications such as the flow of ice sheets (Schoof & Hewitt, 2013), which flow over a layer
of unconsolidated, water-saturated subglacial sediment, or till. Till is known to act as a basal
lubricant for the flow of the overlying ice. It has also been found to accelerate the flow of ice,
noticeably flattening its upper surface (Kowal & Worster, 2015). Viscous coupling between ice
and till has also been postulated as a possible cause of the formation of fast-flowing ice streams,
as observed experimentally (Kumar et al., 2021; Gyllenberg & Sayag, 2022). This complements
other ice-stream formation mechanisms, including positive feedback between sliding and basal
melt production (Fowler & Johnson, 1995; Sayag & Tziperman, 2008), a triple-valued sliding
law (Sayag & Tziperman, 2009; Kyrke-Smith et al., 2014) and thermoviscous fingering (Payne
& Dongelmans, 1997; Hindmarsh, 2004, 2006). Subglacial till has also been found to accumu-
late in the grounding zones of ice sheets as observed seismically (Alley et al., 1987; Batchelor
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& Dowdeswell, 2015) and in fluid-mechanical experiments (Kowal & Worster, 2020).
Other geophysical applications of such two-layer flows include magma or lava flows in

which a layer of molten material propagates over a solidifying solid-liquid substrate of higher
viscosity (Griffiths, 2000), two-layer flows resulting from the interaction of dissimilar magmas
(Snyder & Tait, 1995, 1998), ejecta flows of impact craters (Xiao & Komatsu, 2013), and flows
in which molten material solidifies by cooling from above (Balmforth & Craster, 2000). Layered
flows in porous media are another example (Woods & Mason, 2000), though notably, viscous
coupling between the layers – of relevance to the present paper – is absent in the Darcy model
of flow in a porous medium.

Theoretical and experimental investigations of viscous gravity currents to-date include single-
layer (Smith, 1969; Huppert, 1982a,b) and two-layer (Kowal & Worster, 2015; Dauck et al.,
2019; Shah et al., 2021) flows over horizontal and inclined substrates, intrusions at the inter-
face between two dissimilar fluids (Lister & Kerr, 1989), flows over curved surfaces (Takagi
& Huppert, 2010) and topological features (Hinton & Hogg, 2022), as well as thin-film flows
of non-Newtonian viscous fluids (Hewitt & Balmforth, 2013; Hinton, 2022; Christy & Hinton,
2023), to name a few. Such flows are often modelled by applying the principles of lubrication
theory, which is valid when the fluid layers are long and thin, and similarity solutions often exist
in these situations. For example, the frontal position of a viscous gravity current spreading over
a horizontal substrate, fed at constant source flux, propagates as 𝑡4/5 and 𝑡1/2 in two-dimensional
and axisymmetric geometries, respectively (Huppert, 1982b). These scalings are also respected
for two-layer viscous gravity currents (Kowal & Worster, 2015; Dauck et al., 2019), including
when modified by a power-law rheology (Leung & Kowal, 2022a). Frequently, such similarity
solutions serve as global attractors, which other solutions approach at late times, despite the va-
riety of possible initial conditions (Ball & Huppert, 2019). These similarity solutions have been
proven to be stable to small perturbations for single-layer viscous gravity currents propagating
over horizontal substrates and for gravity-driven flows in porous media (Mathunjwa & Hogg,
2006a,b), for example.

In Chapter 2, we examine the gravity-driven flow of a thin film of viscous fluid spreading
over a rigid plate that is lubricated by another viscous fluid. We find, in Chapter 3, that flows
over such a ‘soft’ substrate are prone to a viscous fingering instability. We examine the unper-
turbed base flow in Chapter 2 by applying the principles of lubrication theory, assuming that
vertical shear provides the dominant resistance to the flow. We do so in axisymmetric and two-
dimensional geometries in settings in which the flow is self-similar. A frontal stress singularity
appears near the nose of the intruding layer, which we characterise using asymptotic techniques.
Different flow regimes arise, depending on the values of four key dimensionless parameters,
which we characterise across parameter space.
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Figure 1.1: Vertical cross section of base flows susceptible to (𝑎) classical viscous fingering
instabilities (flows in a Hele-Shaw cell, or other porous medium) and (𝑏–𝑑) non-porous viscous
fingering (free-surface flows). Fluid 1 is less viscous than Fluid 2.

1.2 Viscous fingering

Viscous fingering instabilities involve complex, finger-like patterning that emerges when a less
viscous fluid invades a more viscous fluid in a porous medium or Hele-Shaw cell (Saffman &
Taylor, 1958; Homsy, 1987). What has not been known until recently is that a similar type of vis-
cous fingering instability also occurs in unconfined settings that do not involve porous media or
Hele-Shaw cells. In particular, the interaction of the free-surface flows of two fluids of dissimi-
lar viscosity manifests similar instabilities in various configurations depicted in Figure 1.1(𝑏–𝑑).
A cross-sectional view of the viscous fingering of the last of these flows is depicted in Figure
1.2 in an idealised geometry, in which the fluids spread radially outwards. The configurations
displayed in Figure 1.1(𝑏–𝑑) differ topologically from flows susceptible to classical viscous fin-
gering instabilities, depicted in Figure 1.1(𝑎), through the lack of an upper rigid boundary, which
brings with it the need to depart from the use of Darcy’s law for flow in porous media and the
need to determine the upper free surface as part of the flow. Efforts to suppress this class of
instabilities of free-surface flows whilst maintaining basal lubrication on the large scale led to
the design of a structured substrate – a large-scale analogue of superhydrophobic substrates –
which has been shown to give rise to a Navier-type slip macroscopically (Yan & Kowal, 2024).

The first examined configuration (Figure 1.1𝑏) of flows susceptible to the novel instability
involves the free-surface flow of a thin film of viscous fluid spreading beneath another viscous
fluid, as seen in the experiments of Kowal & Worster (2015, 2019a,b) and Kumar et al. (2021).
Such a flow becomes unstable to a novel cross-flow fingering instability when the intruding
fluid is less viscous. Another configuration (Figure 1.1𝑐), leading to similar instabilities, is
one in which the intruding fluid fully displaces another viscous fluid (Kowal, 2021). The final
configuration (Figure 1.1𝑑) is one in which the intruding fluid spreads above a pre-existing thin
film of viscous fluid, as seen in the experiments of Dauck (2020), which focused on the limit
in which the two layers are of equal density. We examine flows in the final configuration in the
thesis, completing the family of flows susceptible to the novel frontal instability.

Such free-surface flows are relevant to a range of phenomena involving the interaction of
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Figure 1.2: A schematic representation of a typical cross-sectional view of the viscous fingering
of a thin film of fluid spreading over another, more viscous fluid in an idealised geometry in
which the fluids spread radially outwards.

fluids of different viscosity. An example includes the nasal delivery of drugs and vaccines,
which commonly results in what is referred to as nasal dripping in the medical community
(Masiuk et al., 2016). Nasal dripping, or fingering, observed in this context results from the
interaction of a low-viscosity drug solution or vaccine with a more viscous mucus, as depicted
in the schematic representation in the left-hand panel of Figure 1.3. Such fingering is more
pronounced the higher the viscosity ratio between the mucus and drug solution or vaccine, as
observed in experiments involving synthetic mucus and the drug Avicel, displayed in the middle
and right-hand panels of Figure 1.3 (Masiuk et al., 2016). Other examples include the interaction
between liquid sulfide and silicate melt in a partially solidified (or mostly unsolidified) magmatic
system or, more generally, the interaction of lava flows of different viscosity following cooling
(Fink & Griffiths, 1990, 1998; Balmforth & Craster, 2000). Mention has also been made of
a link to the flow of ice sheets over less viscous subglacial till, as explored theoretically and
experimentally (Kumar et al., 2021; Gyllenberg & Sayag, 2022).

The new class of instabilities of such free-surface flows have been termed non-porous viscous

fingering instabilities, to reflect that they are not associated with porous media and that the
mechanism of instability is similar to that of traditional viscous fingering instabilities, despite
the lack of confinement (Kowal, 2021). Such instabilities can be thought of as an ultra-soft
analogue of fingering in soft/deformable porous media. The latter type of instability is partially
suppressed by the elastic deformation of the porous medium or Hele-Shaw cell (Pihler-Puzovic
et al., 2012, 2013). A simple representation of such a deformable porous medium involves a
horizontal Hele-Shaw cell in which its upper wall is replaced by an elastic sheet that is free to
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Figure 1.3: Left-hand panel: A schematic representation of a drug solution spreading over a
layer of nasal mucus. Middle and right-hand panels: Photographs of experiments of a drug so-
lution (3.5% Avicel formulation) flowing over a plate coated with (middle panel) low viscosity,
healthy simulated mucus and (right-hand panel) high viscosity, diseased simulated mucus. A
finger forms when the viscosity contrast between the drug solution and mucus is large. Pho-
tographs reproduced from Masiuk et al. (2016).

deform when a less viscous fluid is injected (Pihler-Puzovic et al., 2012, 2013). Such instabilities
are increasingly suppressed as the thickness of the sheet decreases. In this work, we remove the
elastic sheet completely, falling into the realm of free-surface flows, rather than porous media
flows. Alternatively, we remove the upper wall of a rigid horizontal Hele-Shaw cell depicted in
Figure 1.1𝑎. As a result, Darcy’s law no longer applies.

Non-porous viscous fingering instabilities bring similarities to thermo-viscous fingering of
free-surface flows, in which the viscosity contrast required for onset of instability is driven
thermally (Hindmarsh, 2004, 2009; Algwauish & Naire, 2023). We also find it worthwhile to
note the difference between non-porous viscous fingering instabilities and fingering of a driven
spreading film (Huppert, 1982a; Troian et al., 1989). Although both of these involve frontal
instabilities of free-surface flows, the former requires a viscosity difference between two fluids
and the latter does not, as it involves a single fluid only. The latter instability is, importantly,
one in which surface tension is key. As such, non-porous viscous fingering is more closely
comparable to viscous fingering in porous media, despite no presence of a porous medium itself.

Viscous fingering in porous media, including Hele-Shaw cells, received considerable atten-
tion throughout the last few decades following the seminal work of Saffman & Taylor (1958).
This stemmed mainly from its broad range of applications, ranging from enhanced oil recov-
ery (Orr & Taber, 1984) to coating applications (Taylor, 1963) and carbon sequestration (Cinar
et al., 2009). Similar instabilities are also frequently observed in nature, such as in crystal growth
(Mullins & Sekerka, 1964), the spreading of bacterial colonies (Ben-Jacob, 1997), the dynamics
of fractures (Hull, 1999), and the instability of flame fronts (Ben-Jacob et al., 1992).

Interest has since emerged in the ability to either enhance or suppress these instabilities,
and to manipulate the patterns that emerge, as desired, for industrial applications. Such control
mechanisms have been found to depend upon a number of physical factors, including the injec-
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tion rate of the less viscous fluid (Li et al., 2009; Dias & Miranda, 2010), the miscibility of the
two fluids involved (Perkins et al., 1965) and their rheology (Kondic et al., 1998; Fast et al.,
2001). Other effects that enhance or suppress these instabilities include changes in the viscosity
ratio of the two fluids (Bischofberger et al., 2014) and introducing particles (Luo et al., 2018),
for instance. Alterations in the geometry of the porous medium also influence the fingering
patterns, when the alterations are both static (Nase et al., 2011; Al-Housseiny et al., 2012) and
dynamic (Juel, 2012; Zheng et al., 2015; Morrow et al., 2019; Vaquero-Stainer et al., 2019).

There are a number of similarities between traditional viscous fingering instabilities in porous
media and the recently discovered non-porous viscous fingering instabilities. Stability analyses
(in the configuration of Figure 1.1𝑏) indicate that the latter instabilities emerge when the jump in
hydrostatic pressure gradient across the intrusion front is negative (Kowal & Worster, 2019a,b;
Kowal, 2021). This is similar to, yet contrasts with, traditional viscous fingering instabilities in
porous media (Figure 1.1𝑎), which are instead driven by a jump in dynamic pressure gradient
(Homsy, 1987). Both types of instabilities occur when the intruding viscous fluid is less viscous
than the layer into which it intrudes, as has been seen in experiments in which the injected fluid
intrudes from below (Kowal & Worster, 2015, 2019a, Figure 1.1𝑏) and from above (Dauck,
2020, Figure 1.1𝑑). The latter experiments involved fluids of equal density. However, it has
been found that non-zero density differences between the two layers of viscous fluid can sup-
press these instabilities when the injected fluid intrudes from below (Kowal & Worster, 2019b,
Figure 1.1𝑏). A similar observation has been found when the fluids are non-Newtonian (Leung
& Kowal, 2022b, Figure 1.1𝑏).

We demonstrate similar suppression when the intruding fluid spreads above a pre-existing
thin film of viscous fluid, as depicted in Figure 1.1d. In particular, in Chapter 3, we examine
the stability of a viscous gravity current intruding over a ‘soft’ lubricated substrate, the base
flow of which is considered in Chapter 2. We do so by performing a linear stability analysis
using the axisymmetric similarity solutions of Chapter 2 and characterise the parameter space
over which these instabilities occur. We also compare this instability with other known finger-
ing instabilities, including when the intruding layer is supplied from below, and contrast with
Saffman-Taylor instabilities in a Hele-Shaw cell or other porous medium. We extend our sta-
bility analysis to analogous flows over an inclined substrate in Chapter 4. In particular, we
demonstrate that such flows are similarly prone to the new class of viscous fingering instabil-
ity, and, in fact, the additional component of gravity along an inclined plane promotes such
instabilities further.

We note the additional relevance of non-porous viscous fingering down an inclined plane to
breakouts of lava through levees around molten lava lakes (Orr et al., 2023). In particular, when
a molten lava lake solidifies, a levee forms around its edges, forming a more solid (or more
viscous) barrier around the lava lake. It has been found that a breakout can form through the
levee, resulting in subsequent ‘single-finger’ flow, especially along downwards sloping terrain.
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Figure 1.4: A single-finger ‘a‘ā flow (dotted yellow line, also labelled as "August flow" in the
figure) following an eruption from the levee of a crusted perched lava lake (solid yellow line)
that had been inactive for a month at Kilauea. The single-finger flow advanced downslope over
the following few days. Image reproduced from Orr et al. (2023).

An example is shown in Figure 1.4, reproduced from Orr et al. (2023). Although levees do not
typically behave as a Newtonian viscous fluid on the small scale of tens of centimetres, upon ho-
mogenisation over sufficiently long length and time scales, the levee can be thought of as a layer
of fluid of much higher effective viscosity than that of the molten lava. The flows considered
in Chapter 4 are, in this sense, a relevant viscous analogue. We also note the relevance of such
finger-like free-surface flows to the seepage of lava stored in rootless shields, creating localised
uplift zones (Patrick & Orr, 2012).

1.3 Haemodialysis and Haemodiafiltration

We now turn to the fluid mechanics of haemodialysis (HD) and haemodiafiltration (HDF), form-
ing Part II (Chapter 5) of this thesis. Such treatment involves filtration in two-layer thin-film
flows consisting of blood and sterile solution, known as dialysate, in artificial kidneys, known
as dialysers. Understanding the underlying fluid mechanics and solute transport provides the
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Figure 1.5: The schematic of a patient recieving haemodialysis. Image reproduced from Na-
tional Center for Biotechnology Information (US) (2018).

framework necessary to tackle the main challenges preventing dialysis from being offered to the
vast majority of those who need it.

Chronic kidney disease has emerged as one of the most significant causes of mortality in the
21st century, affecting over 10 percent of the global population, or approximately 850 million
individuals (Jager et al., 2019; Kovesdy, 2022). To put this into perspective, chronic kidney
disease impacts more than twice as many people as diabetes and over 20 times as many people
as HIV/AIDS (Jager et al., 2019). While age-standardized mortality rates for most other chronic
diseases such as cardiovascular disease and cancer have declined globally in recent decades,
chronic kidney disease is now the third fastest-growing cause of death, projected to become the
fifth leading cause of premature death by 2040 (Foreman & et al., 2018), rising from 13th place
in 2016 (Naghavi & et al., 2017).

Current treatment options primarily include dialysis and kidney transplantation. While kid-
ney transplantation is widely recognized as the preferred treatment for eligible patients with the
end-stage renal disease (Tonelli & et al., 2010), several factors such as organ shortage (Matas
et al., 2023) limit its universal applicability, making dialysis the most common form of renal
replacement therapy worldwide. For patients who are not transplant candidates or are awaiting a
suitable donor, dialysis remains a vital and life-sustaining treatment (Chaudhry et al., 2022). It
is often considered a temporary bridge to kidney transplantation when a suitable organ becomes
available. Nevertheless, dialysis is available to only less than 50% of those who need it owning
to prohibitive costs and its reliance on large amounts of sterile water Francis et al. (2024). The
latter is particularly inaccessible in developing countries.

Among dialysis therapies, HD is the most commonly used method, accounting for approx-
imately 69% of all renal replacement therapies and 89% of all dialysis therapies (Bello et al.,
2022). Figure 1.5 shows a schematic of a patient receiving HD, in which the patient’s blood is
circulated outside the body through a device called a dialyser, often referred to as an artificial
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Figure 1.6: Cross-sectional view of a dialyser, showing the bundle of hollow fibre membranes
used for blood purification during HD. Image reproduced from B. Braun (n.d.).

kidney, where waste products and excess fluid are removed from the blood (Sargent & Gotch,
1996). The dialyser is a cylindrical filtration device containing thousands of hollow and porous
fibres (Sakai, 2000), as depicted in Figure 1.6. The fibres are composed of a selective (or semi-
permeable) membrane: it is designed to permit the passage of small solutes and water while
retaining blood cells and large molecules such as albumin (Daugirdas et al., 2012). Blood flows
through the interior of these fibres while an aqueous solution, referred to as dialysate, designed
to mimic extracellular fluid, is pumped in the opposite direction through the space between the
fibres (Pittard, 2017). This counter-current flow, separated by semipermeable membrane walls
of each fibre, allows for efficient removal of waste via diffusion, facilitating the movement of
molecules along a concentration gradient between the blood and dialysate. This process is espe-
cially effective for small molecules (Lang et al., 2023).

HDF is considered to be the most advanced dialysis therapy that is currently available, en-
hancing conventional HD by incorporating convective transport alongside diffusion (Kuhlmann,
2023). In HD, toxin removal primarily occurs through diffusion, which is effective for small
molecules and less effective for large molecules. In contrast with HD, HDF combines diffusion
with convection by introducing additional dialysate either directly before or directly after entry
into the dialyser. These modes of HDF are referred to as pre- and post-dilution HDF, respec-
tively. In convective transport, solutes are carried across the membrane pores from the blood into
the dialysate along with the fluid flow. The extracted fluid volume is then replaced with a sterile
substitution fluid, ensuring haemodynamic stability. Convection is less dependent on molecu-
lar size, meaning that, provided a solute can pass through the membrane, larger molecules can
be removed as effectively as smaller ones (Lang et al., 2023). This makes HDF particularly
advantageous for clearing middle and large molecular weight toxins.

Although HD and HDF have evolved significantly, they continue to present numerous chal-
lenges today. Clinically, it is associated with a wide range of complications, including cardiovas-
cular disease, diabetes, and vascular access-related infections, among others (Bello et al., 2022).
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Partly because of these complications, the mortality rate among patients undergoing dialysis re-
mains relatively high, exceeding that of patients with several common cancers, such as prostate,
breast, and colorectal cancer (Naylor et al., 2019). Of all complications, cardiovascular disease
is especially concerning, as it affects over two-thirds of patients and is responsible for nearly
50% of deaths in this population (Thompson & et al., 2015). This high burden is partly due
to the haemodynamic stress caused by dialysis, which involves significant fluctuations in blood
volume and pressure, placing acute strain on the cardiovascular system (Chirakarnjanakorn &
et al., 2017). Economically, despite their clinical effectiveness, the widespread implementation
of HD and HDF is financially unsustainable, even in high-income countries (Himmelfarb et al.,
2020). In 2010, approximately 2.6 million people worldwide received kidney replacement ther-
apy, while an estimated equal number died due to lack of access (Liyanage et al., 2015; Jager
et al., 2019). From a patient perspective, the burden of care remains substantial. HD and HDF
often require frequent travel to dialysis centers, with treatments typically lasting four hours, at
least three times per week. This routine contributes to a reduced quality of life and imposes sig-
nificant limitations on employment and social participation. These ongoing challenges highlight
the need for dialysis treatment options that are less complication-prone, more cost-effective,
accessible, and patient-centered (Himmelfarb et al., 2020).

Mathematical modelling of dialysis offers a way to tackle these challenges by improving
dialyser design, enhancing treatment performance, reducing costs, and even enabling the de-
velopment of new dialysis modalities. Despite its potential, this area has historically received
limited attention and remains relatively underexplored. One of the earliest and most influential
contributions to this field was made by Michaels (Michaels, 1966), who introduced a founda-
tional model for evaluating dialyser performance when the fluid flux is assumed to be uniform,
focusing solely on diffusive solute transport. Since then, various studies have increased our
understanding of dialysis, including membrane transport in dialysers (Villarroel et al., 1977),
one-dimensional models (Jaffrin et al., 1981; Akcahuseyin et al., 1990; Waniewski et al., 1994;
Chang & Lee, 1988), two-dimensional models (Donato et al., 2017; Osuga et al., 1998), and
more recently, three-dimensional models based on computational fluid dynamics (CFD) (Can-
cilla et al., 2022; Ding et al., 2015). As dialysis technology continues to evolve, mathematical
modelling of dialysis should be viewed not only as a research topic but as a cornerstone of in-
novation in dialysis system design. Therefore, renewed attention and investment in this field are
essential to drive meaningful progress in HD and HDF.

In Chapter 5, we develop a unified modelling framework faithful to the underlying hydrody-
namics of HD and HDF, capturing both diffusive and convective solute transport. Using asymp-
totic techniques, we recover existing classical results found in the literature as special cases, thus
giving credence to prior empirical assumptions being made. Our work serves as a foundation
for testing further ideas for innovation in dialysis treatment, including the development of new
flow modalities that optimise clearance given limited sterile water availability.
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Thin-film flows over a lubricated substrate
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Chapter 2

Dynamics of a thin film of fluid spreading
over a lubricated substrate

The content of this chapter (and the relevant part of Chapter 1) has been published in

• Yang, H., Mottram, N. J. and Kowal, K. N. (2024) Dynamics of a thin film of fluid spread-
ing over a lubricated substrate. J. Fluid Mech., 1001: A47.

2.1 Introduction

We examine the flow of a viscous gravity current spreading under its own weight over a hori-
zontal substrate that is prewetted by another thin film of viscous fluid of different density and
viscosity, as depicted in Figure 2.1. A perhaps unexpected feature of the associated flows is
that they may exhibit symmetry-breaking instabilities, similar to viscous fingering instabilities.
In particular, we will demonstrate in Chapter 3 that viscous gravity currents intruding into an-
other thin film of viscous fluid are susceptible to a novel frontal viscous fingering instability.
The instability is similar to the Saffman-Taylor instability for viscous fluids intruding into one
another in a Hele-Shaw cell or other porous medium, but this time without a Hele-Shaw cell or
any porous medium present.

We assume that the flow of both layers is resisted dominantly by vertical viscous shear
stresses, and that the effects of inertia and surface tension are negligible. In particular, we apply
principles of lubrication theory to model the flow in terms of depth-integrated quantities and
examine similarity solutions describing the flow.

We extend the work of Dauck et al. (2019), in which a version of this problem was examined
theoretically and experimentally, focusing on the limit in which the two layers are of equal
density. This problem is also relevant to the work of Lister & Kerr (1989) on the propagation
of viscous gravity currents at the interface between two dissimilar fluids. Setting the properties
of the uppermost fluid to match that of vapour recovers the present setup under some additional
assumptions made by Lister & Kerr (1989), which we remove. These include setting up a quasi-

15



16 CHAPTER 2. LUBRICATED THIN FILMS OVER A LUBRICATED SUBSTRATE

Figure 2.1: Schematic of a thin film of viscous fluid spreading under gravity over a rigid hori-
zontal substrate pre-wetted by another viscous fluid in an axisymmetric geometry.

steady equilibrium in which there is no net flux of lower fluid through any cross-section of the
flow and assuming that the intruding fluid is of uniform velocity, which is applicable when the
viscosity of the intruding fluid is not much smaller than that of the ambient fluids. We find that
a number of our results are recoverable under these assumptions. Other two-layer flows most
relevant to our work include those of Kowal & Worster (2015), in which the intruding fluid is
supplied from below rather than from above, its generalisation to power-law fluids (Leung &
Kowal, 2022a; Gyllenberg & Sayag, 2022) and related two-layer flows down an inclined plane
(Shah et al., 2021).

We begin with a theoretical development, deriving the governing equations and similarity so-
lutions in two-dimensional and axisymmetric geometries in §2.2. We also characterise a frontal
singularity by performing an asymptotic analysis near the nose of the intruding layer in both ge-
ometries. We use our similarity solutions in the two geometries to map out the range of different
flow behaviours in §2.3, discussing changes in the flow regimes as parameters vary and some
asymptotic limits. Finally, we finish with concluding remarks in §2.4.

2.2 Theoretical development

Consider the flow of two thin films of incompressible, Newtonian viscous fluids of viscosities 𝜇𝑢
and 𝜇𝑙 and densities 𝜌𝑢 and 𝜌𝑙 in the configuration depicted in the schematic of Figure 2.1. The
subscripts 𝑢 and 𝑙 correspond to quantities involving the upper and lower layers, respectively.
The plane 𝑧 = 0 denotes a rigid, horizontal substrate that has been initially pre-wetted with a
uniform depth ℎ∞ of lower-layer fluid. The thicknesses of the upper and lower layers are denoted
by 𝐻 (𝒙, 𝑡) and ℎ(𝒙, 𝑡), respectively, where 𝒙 is the spatial variable, 𝒙 = (𝑟, 𝜃, 𝑧) or (𝑥, 𝑦, 𝑧) in the
axisymmetric and two-dimensional geometry, respectively.

Although the flow is depicted in an axisymmetric geometry in Figure 2.1, we consider both
axisymmetric and two-dimensional geometries in this work. In the axisymmetric geometry, the
two fluids are supplied from a point source at the origin, while in the two-dimensional geometry,
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the fluids are instead supplied from a line source at 𝑥 = 0. The upper viscous fluid occupies a
region from the source up to the intrusion front, denoted by 𝑟 = 𝑟𝑁 (𝑡) in the axisymmetric
geometry and 𝑥 = 𝑥𝑁 (𝑡) in the two-dimensional geometry. The intrusion front is a moving
boundary that splits the domain into two regions: a two-layer region, involving both viscous
fluids (0 < 𝑟 < 𝑟𝑁 (𝑡) and 0 < 𝑥 < 𝑥𝑁 (𝑡) in the axisymmetric and two-dimensional geometries,
respectively), and a single-layer region (𝑟 > 𝑟𝑁 (𝑡) and 𝑥 > 𝑥𝑁 (𝑡) in the axisymmetric and two-
dimensional geometries, respectively) of the same material properties as the lower-layer fluid.

In developing a theoretical framework, we assume negligible inertia and surface tension,
corresponding respectively to small reduced Reynolds and large Bond numbers, so that the flow
is governed by a balance between viscous and buoyancy forces, and interfacial mixing may be
neglected (Huppert, 1982b). We also assume that the horizontal length scale associated with the
two films of viscous fluid is much greater than the corresponding vertical length scale, and that
vertical shear provides the dominant resistance to the flow. We, therefore, apply the approxima-
tions of lubrication theory and obtain the momentum equations

0 = −∇𝑝𝑖 + 𝜌𝑖𝒈+ 𝜇𝑖
𝜕2𝒖𝑖
𝜕𝑧2 , (2.1)

where 𝒖𝑖 = 𝒖𝑖 (𝒙, 𝑡) is the velocity, assumed to be horizontal, the subscript 𝑖 = 𝑢, 𝑙 denotes the
upper and lower layers, respectively, 𝒈 = −𝑔e𝑧 is the acceleration due to gravity, and e𝑧 is the
unit basis vector in the 𝑧-direction.

Our approach is in line with generalised frameworks for two-layer thin film flows (e.g.
Christy & Hinton, 2023; Gyllenberg & Sayag, 2022) and the related work of Dauck et al. (2019).
The latter presented generalised equations for a variation of the problem studied here, later fo-
cusing on the limit in which 𝜌𝑢 = 𝜌𝑙 . Here, we explore flows for which 𝜌𝑢 < 𝜌𝑙 and investigate
additional buoyancy effects present in this scenario, which, in particular, change the behaviour
of the flow near the intrusion front. We note that the equal density limit is a singular limit in
which the order of the equations reduces by one, giving rise to shock-front solutions. These no
longer appear when the densities are unequal.

In what follows, we obtain depth-integrated governing equations modelling the flow in ax-
isymmetric and two-dimensional geometries simultaneously. The main difference between the
two geometries is the orientation of vectors, such as the velocity vector 𝒖𝑖. These vectors are
aligned with the radial and 𝑥-directions in the axisymmetric and two-dimensional geometries,
respectively. We organise the main governing equations by the relevant regions: the two-layer
region and the single-layer region.
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2.2.1 The two-layer region

Given that vertical shear stresses provide the dominant resistance to the flow, the pressure in the
two layers is hydrostatic, so that

𝑝𝑢 = 𝜌𝑢𝑔(𝐻 + ℎ− 𝑧), (2.2)

𝑝𝑙 = 𝜌𝑢𝑔𝐻 + 𝜌𝑙𝑔(ℎ− 𝑧), (2.3)

(see Kowal & Worster, 2015, for example). We assume the upper layer is stress-free at its upper
surface, so that

𝜇𝑢
𝜕𝒖𝑢
𝜕𝑧

= 0 at 𝑧 = 𝐻 + ℎ. (2.4)

We assume that the velocity and shear stress at the interface between the upper and lower fluids
are continuous, so that

𝒖𝑙 = 𝒖𝑢 at 𝑧 = ℎ, (2.5)

𝜇𝑙
𝜕𝒖𝑙
𝜕𝑧

= 𝜇𝑢
𝜕𝒖𝑢
𝜕𝑧

at 𝑧 = ℎ. (2.6)

We also assume that the lower layer satisfies the no-slip condition at the substrate, so that

𝒖𝑙 = 0 at 𝑧 = 0. (2.7)

Solving (2.1) for the velocity field subject to (2.4)–(2.7) gives

𝒖𝑢 =

(
(ℎ− 𝑧) (ℎ+2𝐻 − 𝑧)

2𝜇𝑢
− ℎ𝐻
𝜇𝑙

) (
∇𝑝𝑢

) ��
𝑧=ℎ

− ℎ2

2𝜇𝑙
(
∇𝑝𝑙

) ��
𝑧=ℎ
, (2.8)

𝒖𝑙 = −𝐻𝑧
𝜇𝑙

(
∇𝑝𝑢

) ��
𝑧=ℎ

+ 𝑧(𝑧−2ℎ)
2𝜇𝑙

(
∇𝑝𝑙

) ��
𝑧=ℎ
. (2.9)

Integrating these velocities across the depth of each layer yields the depth-integrated flux of
upper- and lower-layer fluid, per unit width, given by

𝒒𝑢 = −𝜌𝑢𝑔
3𝜇𝑙

[ (
M𝐻3 + 3

2
𝐻ℎ2 +3𝐻2ℎ

)
(∇𝐻 +∇ℎ) + 3

2
D𝐻ℎ2∇ℎ

]
, (2.10)

𝒒𝑙 = −𝜌𝑢𝑔
3𝜇𝑙

[ (
3
2
𝐻ℎ2 + ℎ3

)
(∇𝐻 +∇ℎ) +Dℎ3∇ℎ

]
. (2.11)

These align with the relevant expressions presented in Kowal & Worster (2015) and Dauck
et al. (2019) in two-dimensional and axisymmetric configurations. Here, the dimensionless
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parameters

M =
𝜇𝑙

𝜇𝑢
, (2.12)

D =
𝜌𝑙 − 𝜌𝑢
𝜌𝑢

, (2.13)

define the viscosity ratio and relative density difference, respectively.
The upper surface and the interface between the two fluids evolve in line with the mass

conservation equations,

𝜕𝐻

𝜕𝑡
+∇ · 𝒒𝑢 = 0, (2.14)

𝜕ℎ

𝜕𝑡
+∇ · 𝒒𝑙 = 0, (2.15)

for the upper and lower layers, respectively. These equations, along with the equations (2.10)–
(2.11) for the depth-integrated fluxes, fully specify the evolution of the two free surfaces, subject
to appropriate boundary conditions, which we discuss in §2.2.3 and §2.2.4.

2.2.2 The single-layer region

In the single-layer region, we retain the subscript 𝑙 to reflect that the material properties are the
same as that of the lower layer upstream of the intrusion front. Similarly to the two-layer region,
the pressure is hydrostatic in the single-layer region, so that

𝑝𝑙 = 𝜌𝑙𝑔(ℎ− 𝑧), (2.16)

(see Huppert, 1982b). The upper surface satisfies the stress-free condition,

𝜇𝑙
𝜕𝒖𝑙
𝜕𝑧

= 0 at 𝑧 = ℎ, (2.17)

and we assume the no-slip condition at the substrate,

𝒖𝑙 = 0 at 𝑧 = 0. (2.18)

Solving (2.1) subject to (2.17) and (2.18) for the velocity profile and integrating across the depth
of the current gives rise to the depth-integrated flux

𝒒𝑙 = −𝜌𝑢𝑔
3𝜇𝑙

(D +1)ℎ3∇ℎ, (2.19)
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in line with Huppert (1982b). This is supplemented by the mass conservation equation

𝜕ℎ

𝜕𝑡
+∇ · 𝒒𝑙 = 0, (2.20)

which determines the evolution of the free surface. What remains to do to close the problem is to
specify the remaining boundary conditions and matching conditions to couple the two regions,
which we organise by geometry.

2.2.3 Axisymmetric currents

In the axisymmetric geometry, the upper and lower layers flow radially outwards so that 𝒒𝑢 =
𝑞𝑢𝒆𝒓 and 𝒒𝑙 = 𝑞𝑙𝒆𝒓 , where 𝒆𝑟 is the radial unit basis vector. We outline the corresponding
boundary conditions and matching conditions across the intrusion front below.

Following Kowal & Worster (2015), we assume that the upper and lower layers are supplied
at a constant source flux Q̂𝑢 and Q̂𝑙 , respectively, at the origin, so that

lim
𝑟→0

2𝜋𝑟𝑞𝑢 = Q̂𝑢, (2.21)

lim
𝑟→0

2𝜋𝑟𝑞𝑙 = Q̂𝑙 . (2.22)

The thickness and the flux of the lower layer are continuous across the intrusion front 𝑟 = 𝑟𝑁 (𝑡),
so that

[ℎ]+− =0 at 𝑟 = 𝑟𝑁 , (2.23)

[𝑞𝑙]+− =0 at 𝑟 = 𝑟𝑁 . (2.24)

In addition, the upper-layer flux vanishes at the front, so that

𝑞𝑢 = 0 at 𝑟 = 𝑟𝑁 . (2.25)

The front evolves kinematically, which gives rise to an evolution equation for the frontal posi-
tion,

𝑑𝑟𝑁

𝑑𝑡
= lim
𝑟→𝑟−

𝑁

𝑞𝑢

𝐻
, (2.26)

as in Kowal & Worster (2015, 2019a,b) and Gyllenberg & Sayag (2022), for example. In the far
field, we approach a uniform thickness so that

lim
𝑟→∞

ℎ = ℎ∞. (2.27)

This condition implies that the flux vanishes in the far field.
The boundary conditions and matching conditions specified in this section fully close the
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problem for the evolution of the two liquid layers. This includes the frontal position, which
needs to be determined as part of the solution of the problem.

Self-similar axisymmetric flows

Although there is an externally imposed vertical length scale, ℎ∞, the lack of a horizontal length
scale is sufficient to allow for the existence of a similarity solution, which we can also deduce by
performing a scaling analysis. In the axisymmetric geometry, such similarity solutions exist only
when the source flux is constant, as assumed here. However, as discussed in §2.2.4, similarity
solutions do not exist if the source flux is constant in the two-dimensional geometry. Instead
it is necessary for the source flux to follow a specific power-law, proportional to 𝑡𝑎 for some
constant 𝑎 ≠ 0, in order for similarity solutions to exist in two dimensions. For a related problem
in which a viscous gravity current intrudes at the interface between two dissimilar fluids, it
has been reported that in either geometry, the late-time behaviour of the injected fluid depends
crucially on 𝑎 (Lister & Kerr, 1989). Below a critical value, the injected fluid reduces in height
with time, allowing for one to approximate the lower fluid layer to be uniform in height. Above
the critical value, the injected fluid height increases with time, allowing the effects of the lower
fluid to be neglected, thus recovering the classical single-layer gravity current. At the critical
value, the injected fluid height is constant in time and exact similarity solutions exist (Lister &
Kerr, 1989).

Formally, solutions obtained from specific initial conditions approach a similarity solution
at late times for diffusive problems of the type considered here (Ball & Huppert, 2019). This is
seen also in analogue laboratory experiments, in which flows become self-similar after an initial
transient (Huppert, 1982b).

To formulate the governing equations in terms of similarity variables and to non-dimensionalise
the problem, we introduce the following change of variables

(𝜉, 𝜉𝑁 ) =
(
𝑄𝑡

2𝜋ℎ∞

)−1/2
(𝑟,𝑟𝑁 ) = (2𝜋) 3

8

(
𝜌𝑢𝑔𝑄

3

3𝜇𝑙

)− 1
8

𝑡−
1
2 (𝑟,𝑟𝑁 ), (2.28)

for the spatial variable and the frontal position,

(
𝐹 (𝜉), 𝑓 (𝜉)

)
=

1
ℎ∞

(
𝐻 (𝑟, 𝑡), ℎ(𝑟, 𝑡)

)
= (2𝜋) 1

4

(
𝜌𝑢𝑔

3𝜇𝑙𝑄

) 1
4 (
𝐻 (𝑟, 𝑡), ℎ(𝑟, 𝑡)

)
, (2.29)

for the thicknesses, and

(
𝜙𝑢 (𝜉), 𝜙𝑙 (𝜉)

)
=

√︄
2𝜋𝑡
ℎ∞𝑄

(
𝑞𝑢 (𝑟, 𝑡), 𝑞𝑙 (𝑟, 𝑡)

)
=

(
(2𝜋)5𝜌𝑢𝑔𝑡

4

3𝜇𝑙𝑄5

) 1
8 (
𝑞𝑢 (𝑟, 𝑡), 𝑞𝑙 (𝑟, 𝑡)

)
(2.30)
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for the flux of both layers. Here, we define

𝑄 = 2𝜋ℎ4
∞
𝜌𝑢𝑔

3𝜇𝑙
(2.31)

to be a dimensional measure of the flux associated with a depth of ℎ∞. Using this measure, we
non-dimensionalise the source fluxes as(

Q𝑢,Q𝑙
)
=𝑄−1 (Q̂𝑢, Q̂𝑙 ) . (2.32)

Substituting into the governing equations (2.14–2.15) and (2.20), describing mass conservation,
yields the ordinary differential equations

−1
2
𝐹′𝜉 + 1

𝜉
(𝜉𝜙𝑢)′ = 0, (2.33)

−1
2
𝑓 ′𝜉 + 1

𝜉
(𝜉𝜙𝑙)′ = 0, (2.34)

where the radial components of the fluxes of fluid within the two layers, in both regions of the
domain are given by

𝜙𝑢 =


−

[(
M𝐹3 + 3

2𝐹 𝑓
2 +3𝐹2 𝑓

)
(𝐹′+ 𝑓 ′) + 3

2D𝐹 𝑓
2 𝑓 ′

]
, 0 < 𝜉 < 𝜉𝑁 ,

0, 𝜉 ≥ 𝜉𝑁 ,
(2.35)

and

𝜙𝑙 =


−

[(
3
2𝐹 𝑓

2 + 𝑓 3
)
(𝐹′+ 𝑓 ′) +D 𝑓 3 𝑓 ′

]
, 0 < 𝜉 < 𝜉𝑁 ,

−(D +1) 𝑓 3 𝑓 ′, 𝜉 ≥ 𝜉𝑁 .
(2.36)

These are obtained from equations (2.10–2.11) and (2.19). Here, the prime ′ denotes differenti-
ation with respect to 𝜉. These equations are supplemented by the boundary conditions

𝜉𝜙𝑢 →Q𝑢, 𝜉𝜙𝑙 →Q𝑙 , as 𝜉→ 0+, (2.37)

[ 𝑓 ]+− = 0, [𝜙𝑙]+− = 0, 𝜙𝑢 = 0, at 𝜉 = 𝜉𝑁 , (2.38)
𝜙𝑢

𝐹
→ 1

2
𝜉𝑁 , as 𝜉→ 𝜉−𝑁 , (2.39)

𝑓 → 1, as 𝜉→∞, (2.40)

at the source, at the intrusion front, and in the far field, all derived from the dimensional bound-
ary conditions (2.21)–(2.27). This system of differential equations and corresponding boundary
conditions and matching conditions fully prescribes the evolution of the two layers in similarity
coordinates. These equations were solved using a shooting method implemented using Mathe-
matica’s in-built solver NDSolve. The governing equations were integrated outwards from the
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front on a finite domain. Instead of subtracting the singularities at 𝜉 = 0 and 𝜉 = 𝜉𝑁 analytically,
the domain was truncated to avoid the singular points and auxiliary boundary conditions using
the asymptotic solution of the next section, §2.2.3, were implemented. Numerical tests were
performed to ensure that the computed solutions are independent of all numerical parameters,
including the truncation of the computational domain. In particular, these numerical parameters
were varied over a range of values, with no observable effect on the numerical solutions within
the plotted region. Numerical results are discussed in subsequent sections.

Asymptotic solutions near the nose of axisymmetric intrusions

Near the intrusion front 𝜉 = 𝜉𝑁 , the normal component of the upper-layer flux 𝜙𝑢 and the upper-
layer thickness 𝐹 tend to 0, while thickness gradients and stress diverge. A similar stress sin-
gularity features at the intrusion front of single-layer (Huppert, 1982b) and two-layer (Kowal &
Worster, 2015, 2019b; Gyllenberg & Sayag, 2022; Leung & Kowal, 2022a,b) viscous gravity
currents under the approximations of lubrication theory. The stress singularity arises within the
lubrication formulation and does not represent a genuine physical singularity; rather, it reflects
the breakdown of the lubrication assumptions in the immediate vicinity of the front, where the
underlying asymptotic scalings are no longer valid.

We examine the singular point 𝜉 = 𝜉𝑁 asymptotically by performing a local analysis follow-
ing the approach of Huppert (1982b), Kowal & Worster (2015) and Leung & Kowal (2022a).
As shown in Appendix A, we obtain asymptotic solutions that feature a square-root singularity
of the form

𝐹 ∼ 𝐴1𝛿
1
2 + 𝐴2𝛿+ · · · , (2.41)

𝑓 ∼ 𝑎0 + 𝑎1𝛿
1
2 + 𝑎2𝛿+ · · · , (2.42)

valid for 𝛿 = (1− 𝜉/𝜉𝑁 ) ≪ 1. Equations (A.3) and (A.10)–(A.11) in Appendix A demonstrate
that the coefficients 𝑎1, 𝐴2, and 𝑎2 of the higher-order terms can be written in terms of 𝐴1, 𝑎0

and 𝜉𝑁 . The latter set of coefficients can be determined by matching to the outer numerical
solutions. This square-root singularity is also observed by Lister & Kerr (1989) in a similar
scenario involving a thin current moving over a nearly uniform lower layer, and by Dauck et al.

(2019) in the equal-density limit. The asymptotic solution identified by Lister & Kerr (1989) in
this scenario is in agreement with (2.41)–(2.42) if we set Q𝑙 = 0 to account for the lower layer
remaining uniform.

The asymptotic approximations (2.41)–(2.42) elucidate the behaviour near the front and in-
form an appropriate scheme for the numerical solution of the full system of governing differ-
ential equations. These asymptotic solutions are shown in Figure 2.2a up to O(𝛿1/2) and O(𝛿),
in comparison to the full numerical solutions, which are valid throughout the domain. As ex-
pected, the more terms we include in the asymptotic expansion, the better the agreement with
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the full numerical solution near the front, as can be seen by including terms up to O(𝛿) versus
terms up to O(𝛿1/2). Our asymptotic calculation also indicates that the upper-layer pressure gra-
dient, 𝐹′+ 𝑓 ′, is singular at the front, while the lower-layer pressure gradient, 𝐹′+ (1+D) 𝑓 ′, is
non-singular.

We note that the structure of the frontal singularity at 𝜉 = 𝜉𝑁 differs from that of single-layer
viscous gravity currents propagating over a rigid horizontal substrate, for which the thickness is
O(𝛿1/3), rather than O(𝛿1/2), as 𝛿→ 0 (Huppert, 1982b). This also contrasts with the structure
of the singularity at the front of a thin film of viscous fluid spreading beneath another viscous
gravity current, for which the thickness of the intruding layer is also O(𝛿1/3) as 𝛿→ 0 (Kowal
& Worster, 2015, 2019a,b).

We include O(𝛿) terms in the asymptotic solution (2.41)–(2.42) during the initialization
of the numerical computation, as they play a role in determining the lower-layer flux at the
nose. In particular, replacing quantities associated with the lower layer by their asymptotic
approximations gives rise to the following leading-order asymptotic expression for the lower-
layer flux,

𝜙𝑙 =
3𝑎2

0𝐴
2
1D

4𝜉𝑁 (D +1) +
𝑎3

0
𝜉𝑁
𝐴2 +

𝑎3
0(D +1)
𝜉𝑁

𝑎2 +O(𝛿 1
2 ), (2.43)

which simplifies to

𝜙𝑙 =
𝑎0𝜉𝑁

3
−

𝑎2
0𝐴

2
1D

4𝜉𝑁 (D +1) +O(𝛿 1
2 ), (2.44)

using (A.10)–(A.11). Importantly, (2.43) shows that the leading order contribution to 𝜙𝑙 in-
cludes correction terms involving the second-order coefficients 𝑎2 and 𝐴2. The appearance of
these coefficients in the leading-order expression for the lower-layer flux emphasises the need
to determine them, which is equivalent to determining the O(𝛿) terms in the asymptotic solution
(2.41)–(2.42).

2.2.4 Two-dimensional currents

In the two-dimensional configuration, the upper and lower layers flow in the 𝑥-direction so that
𝒒𝑢 = 𝑞𝑢𝒆𝒙 and 𝒒𝑙 = 𝑞𝑙𝒆𝒙 , where 𝒆𝑥 is the unit basis vector in the 𝑥-direction. Below, we specify
the associated boundary conditions and matching conditions to couple the two regions of the
flow.

For reasons described in §2.2.3, we assume that the upper and lower layers are supplied at a
specified line flux Q̂𝑢𝑡𝑎, Q̂𝑙𝑡𝑎, respectively, where Q̂𝑢, Q̂𝑙 and 𝑎> −1 are constants. Explicitly,

𝑞𝑢 = Q̂𝑢𝑡𝑎, 𝑞𝑙 = Q̂𝑙𝑡𝑎 at 𝑥 = 0. (2.45)

Equivalently, the volume of injected fluid is given by Q̂𝑢𝑡𝑎+1/(𝑎+1) and Q̂𝑙𝑡𝑎+1/(𝑎+1) for the
upper and lower layers, respectively. When −1 < 𝑎 < 0, the two fluids are supplied at a rate that
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(𝑎)
𝐹, 𝑓

(𝑏)
𝐹, 𝑓

Figure 2.2: The full numerical solution versus the asymptotic solutions (2.41)–(2.42) near the
intrusion front in (𝑎) axisymmetric and (𝑏) two-dimensional geometries, for M = 0.1, D = 0.3,
Q𝑢 = 1 and Q𝑙 = 0.5. Solid curves: full numerical solution. Dotted curves: asymptotic solution
containing terms up to 𝑂 (𝛿1/2). Dashed curves: asymptotic solution containing terms up to
𝑂 (𝛿).
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is decreasing with time from a point singularity at 𝑡 = 0, while the volume is increasing with
time. Experimentally, such a flow can be achieved by releasing a finite volume of fluid at 𝑡 = 0,
followed by a time-dependent supply of fluid at the source; however, the imposed release is an
idealisation and may not be realised exactly in practice.

The thickness and the normal flux of the lower layer are assumed to be continuous across
the intrusion front 𝑥 = 𝑥𝑁 (𝑡), so that (2.23)–(2.24) hold but at 𝑥 = 𝑥𝑁 rather than at 𝑟 = 𝑟𝑁 .
In addition, the normal component of the upper-layer flux vanishes at the front, so that (2.25)
holds but at 𝑥 = 𝑥𝑁 . The front evolves kinematically, which yields the evolution equation (2.26)
for the frontal position, with 𝑟𝑁 replaced by 𝑥𝑁 . In the far field, the thin film approaches a
uniform thickness so that (2.27) continues to hold. These boundary/matching conditions and
the two-dimensional version of the system of differential equations (2.10–2.11), (2.14–2.15),
(2.19–2.20) are sufficient to fully specify the evolution of the two-dimensional flow.

Self-similar two-dimensional flows

In contrast to axisymmetric flows, similarity solutions do not exist in the two-dimensional geom-
etry when the flux is constant, as mentioned in §2.2.3. Instead, a specific power-law is required
for a similarity solution to exist, consistently with prior work on related problems (Lister &
Kerr, 1989; Dauck et al., 2019). In particular, the flow becomes self-similar when 𝑎 = −1

2 , as
can be seen through a scaling argument. Such similarity solutions serve as attractors, to which
other two-dimensional solutions, associated with different initial conditions, converge at late
times (Ball & Huppert, 2019). To formulate the governing equations in similarity variables, we
introduce the following change of variables

(𝜉, 𝜉𝑁 ) =
ℎ∞
𝑄𝑡1/2 (𝑥, 𝑥𝑁 ) =

(
3𝜇𝑙
𝜌𝑢𝑔𝑄

3

) 1
5

𝑡−
1
2 (𝑥, 𝑥𝑁 ), (2.46)

for the spatial coordinate and the frontal position,

(
𝐹 (𝜉), 𝑓 (𝜉)

)
=

1
ℎ∞

(
𝐻 (𝑥, 𝑡), ℎ(𝑥, 𝑡)

)
=

(
𝜌𝑢𝑔

3𝜇𝑙𝑄2

) 1
5 (
𝐻 (𝑥, 𝑡), ℎ(𝑥, 𝑡)

)
, (2.47)

for the thicknesses, and (
𝜙𝑢 (𝜉), 𝜙𝑙 (𝜉)

)
=𝑄−1𝑡

1
2
(
𝑞𝑢 (𝑥, 𝑡), 𝑞𝑙 (𝑥, 𝑡)

)
, (2.48)

for the fluxes of the two layers. Here, we define

𝑄 =

(
𝜌𝑢𝑔

3𝜇𝑙

) 1
2

ℎ
5
2
∞ (2.49)
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to be a dimensional measure characterising the flux associated with a thickness of ℎ∞. Using
this measure, we express the two constants describing the source fluxes in dimensionless form
as (

Q𝑢,Q𝑙
)
=𝑄−1 (Q̂𝑢, Q̂𝑙 ) . (2.50)

In similarity coordinates, the governing equations yield the following system of ordinary differ-
ential equations

−1
2
𝐹′𝜉 +𝜙′𝑢 = 0, (2.51)

−1
2
𝑓 ′𝜉 +𝜙′𝑙 = 0, (2.52)

describing conservation of mass within the two layers, where the upper- and lower-layer fluxes
in both regions of the domain, upstream and downstream of the intrusion front, are given by the
same expressions (2.35)–(2.36) as in the axisymmetric geometry.

As we switch to the two-dimesional geometry, the only boundary conditions that change are
the source flux conditions

𝜙𝑢 = Q𝑢, 𝜙𝑙 = Q𝑙 at 𝜉 = 0. (2.53)

The remaining boundary conditions and matching conditions remain the same. This includes
continuity of thickness and flux across the intrusion front (2.38), the kinematic condition for the
evolution of the intrusion front (2.39), and the far-field condition (2.40). These governing equa-
tions and boundary conditions are sufficient to fully determine the two-dimensional similarity
solutions.

Asymptotic solutions near the nose of two-dimensional intrusions

It can be verified that the local analysis of §2.2.3, including the asymptotic solutions (2.41)–
(2.42) and the relationships between 𝑎1, 𝐴2, and 𝑎2 and the quantities 𝐴1, 𝑎0 and 𝜉𝑁 apply to
the two-dimensional geometry without modification. The expansions are identical in the two
geometries as the analysis is local to the front and the governing equations are identical in the
two geometries apart from differences in the divergence in flux (factors of 𝜉 and 1/𝜉), which
only affects the asymptotic solution at higher orders. Apart from differences in the divergence
in flux, the equations are identical because the similarity scalings reflect a non-constant source
flux (proportional to 𝑡−1/2) in the two-dimensional case and a constant source flux in the ax-
isymmetric case. Had the source fluxes in both geometries been constant, there would have
been additional differences in the governing equations, and hence in the asymptotic solutions,
between the two geometries. An illustration of this difference includes prior work in which the
intruding layer is supplied from below (see Kowal & Worster, 2015, for example).

A comparison between the asymptotic solutions up to O(𝛿1/2) and up to O(𝛿) against the
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full numerical solutions, valid throughout the whole domain, is shown in Figure 2.2b in the
two-dimensional geometry. As in the axisymmetric case, it is unsurprising that there is better
agreement between the asymptotic solutions and the full numerical solutions near the front,
the more terms are included in the asymptotic expansion. In particular, including terms up
to O(𝛿) improves the agreement over a wider neighbourhood of the front in comparison to
terms up to O(𝛿1/2). The structure of the singularity remains the same as in the axisymmetric
geometry; namely, the thickness is O(𝛿1/2) as 𝛿→ 0. This contrasts with the structure of the
frontal singularity for single-layer viscous gravity currents propagating over a rigid horizontal
substrate, and for thin films of viscous fluid intruding beneath another viscous gravity current
(Huppert, 1982b; Kowal & Worster, 2015, 2019a,b).

2.3 Results and discussion

As found in §2.2, the flow of thin films of viscous fluid over pre-lubricated substrates depends
upon the four dimensionless parameters M, D, Q𝑢 and Q𝑙 , yielding a range of different flow
regimes. Figure 2.3 depicts typical similarity solutions for the profile thicknesses of the two
layers in axisymmetric and two-dimensional geometries as the viscosity ratio M and fluxes
Q𝑢 and Q𝑙 vary, while the flux ratio Q𝑙/Q𝑢 remains fixed. The main difference in the profiles
between the two geometries is the presence of a logarithmic singularity at the origin, in which
the thickness of both layers diverges, for axisymmetric flows. This is a purely geometric effect,
arising from the fact that axisymmetric flows are supplied at non-zero flux from a point source.
This is also the case for single-layer axisymmetric flows supplied at non-zero flux (Huppert,
1982b).

A range of possible flow profiles across parameter space is displayed in Figures 2.3𝑎, 𝑏 for
the axisymmetric and two-dimensional geometries, respectively. Relative to the lower layer, the
upper layer is thick and of small extent when the viscosity ratio is low and the upper-layer flux
is high, as seen in the top-left panels of Figures 2.3𝑎, 𝑏, and thin when the viscosity ratio is high,
as seen in the top-right panels. Decreasing the upper-layer flux reduces the thickness and extent
of the upper layer, as seen in the bottom-right panels of Figures 2.3𝑎, 𝑏, while decreasing the
viscosity ratio further increases the thickness of the upper layer, and reduces its extent, as seen
in the bottom-left panels of Figures 2.3𝑎, 𝑏. In general, low viscosity ratios correspond to thick
upper layers, while high viscosity ratios correspond to thin upper layers, which coat the lower
layer from above. Such low-viscosity, thin coating films exert negligible traction at the interface
between the two fluids and only negligibly affect the dynamics of the lower layer, save near the
front.

There is a change in behaviour of the flow as we traverse from the origin to the nose, in
that the contribution 𝑞𝑙𝑏 ≡ −(1+D) 𝑓 3 𝑓 ′ to the lower-layer flux from gravitational spreading
under its own weight (associated with lower-layer buoyancy forces) is positive near the source
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(𝑎)

(𝑏)

Figure 2.3: Numerical solutions for the self-similar flow of a thin film of viscous fluid spreading
over another thin film of fluid in (𝑎) axisymmetric and (𝑏) two-dimensional geometries for
various viscosity ratios M and source fluxes Q𝑢 and Q𝑙 , such that Q𝑢 = 5Q𝑙 = Q. The density
difference is fixed at D = 1.
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Figure 2.4: Radial velocity profiles in similarity coordinates (in the axisymmetric geometry),
integrated over a disc of radius 𝜉, for (𝑎) M = 0.1, (𝑏) M = 1, and (𝑐) M = 10, where D = 0.5,
Q𝑢 = 0.5, Q𝑙 = 0.1.

Figure 2.5: Scaled lower-layer radial velocity near the nose as a function of depth in similarity
coordinates in the axisymmetric geometry (solid curves), evaluated at 𝜉 = 0.99𝜉𝑁 for varying
D = 0.5,1,3,10,500 and M = 10, Q𝑢 = 0.1, Q𝑙 = 0.001. The velocity becomes negative near
the lower boundary for large enough density differences. These velocity profiles are compared
against the lower-layer velocity profile predicted by Lister & Kerr (1989), which is valid for
Q𝑢 ≪ 1 and Q𝑙 = 0 (dashed red curve).
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(𝑎)
𝐹, 𝑓

(𝑏)
𝐹, 𝑓

Figure 2.6: Profile thicknesses (solid curves) in (𝑎) axisymmetric and (𝑏) two-dimensional ge-
ometries as the density difference varies, in comparison to the large-D asymptotic solution
(dashed curve). Parameter values used: M = 2, D = 0.05,0.2,0.5,1,3,10,100, Q𝑙 = 0.1 and
Q𝑢 = 0.5.

Figure 2.7: The extent of the intruding layer of fluid as a function of the density difference. The
large D limit is shown as a dashed curve. Parameter values used: M = 2, Q𝑙 = 0.1 and Q𝑢 = 0.5.
Blue: axisymmetric flows. Black: two-dimensional flows.
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and negative near the front, as can be identified by examining the sign of 𝑓 ′. In particular, as
displayed in the top-left panels of Figure 2.3𝑎, 𝑏, for example, the interface slope 𝑓 ′ changes
sign from negative near the source to positive near the front, and hence the opposite sign change
occurs for 𝑞𝑙𝑏. This indicates that lower-layer buoyancy forces tend to decrease the outwards
flow of the lower layer near the front. These buoyancy forces are relatively more important, over
a larger proportion of the domain the more viscous the upper layer (the smaller M is). For very
viscous upper layers, the flow is mainly uniform within the upper layer and the curvature of the
interface between the two layers is relatively small over most of the domain, save for a small
region in which the slope of the interface between the two layers changes sign, as demonstrated
in the top-left panels of Figure 2.3𝑎, 𝑏 and in Figure 2.4. That is, the change in sign of 𝑞𝑙𝑏 is
more pronounced the more viscous the upper layer. This occurs in both axisymmetric and
two-dimensional geometries, which precludes geometric effects, arising from the singularity at
the origin in the axisymmetric geometry.

The flow at low viscosity ratios is equivalent to the upper layer being almost solid and lu-
bricated from below by a much less viscous fluid. Rescaling variables with respect to the upper
layer rather than the lower layer reveals an analogy to the plug flow of a thin film of viscous
fluid over an inviscid layer. This regime is in some degree relevant to experiments involving the
flow of ice shelves floating freely over the ocean, except that here we neglect the resistance of
viscous extensional stress or any transverse shear stress, which would be more important than
shear stress in nature. Examples include experiments of viscous gravity currents over an inviscid
layer in unconfined geometries (Robison et al., 2010; Pegler & Worster, 2012) and in a narrow
channel (Pegler et al., 2013; Kowal & Worster, 2016). Another example involves experiments of
the formation of lava deltas in the limit in which the injected fluid is less dense than the ambient
inviscid layer (Taylor-West et al., 2024).

Radial velocity profiles of the two thin films are depicted in Figure 2.4 in an axisymmetric
geometry for various viscosity ratios. As shown in Figure 2.4𝑎, the velocity profile is mainly
uniform within the upper layer for small viscosity ratios and most of the shear is confined to
the lower layer alone. The flow of the lower layer transitions from a primarily Couette flow,
upstream of the intrusion front, to a parabolic Poiseuille flow ahead of the intrusion front. As
the viscosity ratio increases, the upper layer thins and its velocity increases, as do the velocity
gradients within the upper layer, as shown in Figures 2.4𝑏, 𝑐.

As seen in Figure 2.5, for large enough density differences, the velocity of the lower layer
near the intrusion front becomes negative (the flow reverses) near the lower boundary. This
reflects the existence of a stagnation line (where the velocity is zero), which intersects the bottom
boundary near the front. Similar flow reversals have been reported by Lister & Kerr (1989), in
the limiting scenario in which the lower layer is shallow, which requires Q𝑢 ≪ 1 and Q𝑙 = 0 in
our notation. In fact, the velocity profiles of Figure 2.5 approach that of Lister & Kerr (1989)
(shown in Figure 2.5 as a dashed red curve, from their equation (2.27)) as D → ∞. Such
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Figure 2.8: The extent of the intruding layer of fluid as a function of the viscosity ratio. Pa-
rameter values used: D = 2, Q𝑙 = 0.1 and Q𝑢 = 0.5. Blue: axisymmetric flows. Black: two-
dimensional flows.

𝐹̄

Figure 2.9: The average thickness of upper layer as a function of the viscosity ratio. Parameter
values used: D = 2, Q𝑙 = 0.1 and Q𝑢 = 0.5. Blue: axisymmetric flows. Black: two-dimensional
flows.

flow reversals occur above a critical value of the density difference, above which the lower layer
spreads mainly under its own weight. In particular, in contrast to single-layer flows, gradients of
the lower-layer thickness are positive near the nose, giving rise to negative contributions to the
velocity profile, akin to those of blade coating problems. This effect is more pronounced for low
viscosity ratios, for which the upper layer is relatively more viscous in comparison to the lower
layer and there are greater thickness gradients near the nose. An alternative explanation for this
reverse flow near the front can be understood by considering mass conservation. The negative
velocity near the substrate counteracts higher velocities near the interface, arising from viscous
coupling between the two layers, so as to conserve mass. This is particularly relevant when the
density of the lower layer greatly exceeds that of the upper layer (large D), in which case the
lower-layer thickness gradient and flux become small.

As seen in the numerical solutions displayed in Figure 2.6, it is interesting to note that the
slope of the interface between the two layers steepens as we decrease the density difference
towards zero. The smaller the density difference, the steeper the interface near the intrusion
front. As the density difference decreases, these solutions approach a shock front in which the
thickness of the upper layer is nonzero at the front while the thickness of lower layer is discontin-
uous. These shock-front solutions arise in the equal-density regime under the approximations of
lubrication theory, as described by Dauck et al. (2019), when the viscosity ratio is large enough.
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(𝑎)

(𝑏)

Figure 2.10: Profile thicknesses in (𝑎) axisymmetric and (𝑏) two-dimensional geometries as the
viscosity ratio varies. Parameter values used: D = 2, M = 0,1,10,100, Q𝑙 = 0.1 and Q𝑢 = 0.5.

On the other hand, as the density difference approaches infinity, the lower layer becomes
significantly denser than the upper layer and the interface between the two layers becomes flat to
leading order, as demonstrated through an asymptotic analysis for D ≫ 1, outlined in Appendix
B. Asymptotic solutions valid for D ≫ 1 are overlain in Figure 2.6, depicting a close match to
full numerical solutions when D is large. The higher the density difference D, the flatter the
interface between the two fluids, as depicted in Figure 2.6.

In contrast to changes in the thickness gradients near the nose, the position of the nose
varies only minimally as the density difference varies over three orders of magnitude, as shown
in Figure 2.7. With the chosen scaling for the similarity variable 𝜉 as defined in (2.28) for the
axisymmetric geometry and (2.46) for the two-dimensional geometry, this implies that the speed
of the upper-layer fluid remains largely unchanged by the density of the lower-layer fluid.

There are two asymptotic regimes corresponding to small and large viscosity ratios M as
depicted in Figures 2.8 and 2.9, which display the frontal position 𝜉𝑁 and the average thickness
of the upper layer as a function of the viscosity ratio and how these approach different power
laws in both regimes. We examine these regimes by rescaling the dependent variables with
respect to the lower (or upper) layer for small (or large) viscosity ratios. For large viscosity
ratios (𝜇𝑢 ≪ 𝜇𝑙), the upper layer is much more mobile, undergoing larger deformations than the
lower layer. This gives rise to upper layers that are long and thin as depicted in the right-hand
panels of Figures 2.3𝑎, 𝑏 and in Figure 2.10. In this regime, the deformation of the lower layer
is negligible compared to that of the upper layer, and the nose position can be determined solely
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Figure 2.11: The extent of the intruding layer of fluid as a function of the upper-layer flux.
Asymptotic solutions for Q𝑢 ≪ 1, derived in Appendix C, are shown as dashed lines. Parameter
values used: M = 2, D = 1 and Q𝑙 = 1. Blue: axisymmetric flows. Black: two-dimensional
flows.

(𝑎)

(𝑏)

Figure 2.12: Profile thicknesses in (𝑎) axisymmetric and (𝑏) two-dimensional geometries as the
upper-layer flux varies. Parameter values used: M = 2, D = 1, Q𝑙 = 1 and Q𝑢 = 0.05,1,5,10,20.



36 CHAPTER 2. LUBRICATED THIN FILMS OVER A LUBRICATED SUBSTRATE

Figure 2.13: The extent of the intruding layer of fluid as a function of the lower-layer flux.
Parameter values used: M = 2, D = 1 and Q𝑢 = 1. Blue: axisymmetric flows. Black: two-
dimensional flows.

by the upper layer. Therefore, we expect the nose position to scale with the horizontal length
scale associated with the deformation of the upper layer. That is, it is appropriate to scale the
similarity variable 𝜉 with respect to quantities describing the properties of the upper layer. This
can be done by rescaling the spatial similarity coordinate (2.28) and (2.46) by a factor of M1/8

in the axisymmetric geometry and M1/5 in the two-dimensional geometry, and the thickness
(2.29) and (2.47) by a factor of M−1/4 in the axisymmetric geometry and M−1/5 in the two-
dimensional geometry. As shown in Figure 2.8, the nose position indeed varies as M1/8 and
M1/5 for M ≫ 1, in the axisymmetric and two-dimensional geometries, respectively. Similarly,
the average thickness of the upper layer indeed scales as M−1/4 and M−1/5 for M ≫ 1, in the
axisymmetric and two-dimensional geometries, respectively, as shown in Figure 2.9.

For small viscosity ratios (𝜇𝑢 ≫ 𝜇𝑙), the upper layer is much less mobile, undergoing much
smaller deformations than the lower layer. The upper layer thickness is large relative to the
lower layer and its extent is small as depicted in the left-hand panels of Figure 2.3𝑎, 𝑏 and in
Figure 2.10 for a range of values of the viscosity ratio. In this regime, the lower layer undergoes
significantly greater deformation compared to the upper layer, and so the nose position is solely
determined by lower-layer dynamics. As such, scaling with respect to quantities describing
the properties of the lower layer is appropriate, as in our initial choice of similarity scalings
(2.28)–(2.30) and (2.46)–(2.48). Under this choice of scaling, we expect the nose position to
approach a constant as the viscosity ratio approaches zero (M ≪ 1), which is confirmed in
Figure 2.8. Similarly, the average upper-layer thickness approaches a constant as the viscosity
ratio approaches zero (M ≪ 1), as depicted in Figure 2.9.

As illustrated in Figure 2.11 in both geometries, variations in the upper-layer flux Q𝑢 lead
to two distinct parameter regimes, characterised by whether Q𝑢 ≪ Q𝑙 ∼ Q∞ or Q𝑢 ≫ Q𝑙 ∼ Q∞,
given a fixed value of Q𝑙 ∼ Q∞. Here, Q∞ is a dimensionless measure of flux associated with
the depth of the lower layer in the far-field. Although we find it illuminating to refer to Q∞

explicitly in this discussion, we note that owing to our choice of similarity scalings, we have
Q∞ = 1. Thickness profiles in both of these parameter regimes are depicted in Figure 2.12 for
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(𝑎)

(𝑏)

Figure 2.14: Profile thicknesses in (𝑎) axisymmetric and (𝑏) two-dimensional geometries as the
lower-layer flux varies. Parameter values used: M = 2, D = 1, Q𝑢 = 1 and Q𝑙 = 20,13,8,4,0.01.

a range of values of Q𝑢. In the former regime (Q𝑢 ≪ Q𝑙 ∼ Q∞), the nose position is determined
by the dynamics of the lower layer, which is fed at a specified flux determined by Q𝑙 , so that
𝜉𝑁 tends towards a constant as Q𝑢 → 0. We examine this regime in more detail in Appendix C,
where we arrive at an asymptotic solution for the nose position when Q𝑢 ≪ 1, which compares
well against the full numerical solutions, as shown in Figure 2.11. The upper layer thickness
becomes small in this regime and scales with Q𝑢 ≪ 1. In the latter regime (Q𝑢 ≫ Q𝑙 ∼ Q∞), the
upper layer is much thicker than the lower layer, as shown in Figure 2.12. The nose position in
this regime is determined by the dynamics of the upper layer, for which the effects of the lower
layer are negligible. In effect, the dynamics of the upper layer tend towards that of a single-layer
viscous gravity current fed at a specified flux determined by Q𝑢 as Q𝑢 →∞. Therefore, the nose
position 𝜉𝑁 scales with the upper-layer flux as Q3/5

𝑢 in the two-dimensional geometry and Q3/8
𝑢

in the axisymmetric geometry, as confirmed the power laws depicted in Figure 2.11. These can
be obtained by rescaling the similarity variable 𝜉 in terms of the upper-layer source flux instead
of 𝑄.

Similarly, as illustrated in Figure 2.13 for both geometries, variations in the lower-layer flux
Q𝑙 lead to two slightly different parameter regimes: Q𝑙 ≪ Q𝑢 ∼ Q∞ or Q𝑙 ≫ Q𝑢 ∼ Q∞, given
a fixed value of Q𝑢 ∼ Q∞. In the former regime, 𝜉𝑁 approaches a constant as Q𝑙 → 0. In the
latter regime, the upper layer forms a thin film that coats the underlying fluid from above, as
depicted in Figure 2.14. In this regime, the lower layer drags the upper layer along with it and
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Figure 2.15: The extent of the intruding layer of fluid as a function of both of the upper- and
lower- layer flux. Parameter values used: M = 2, D = 1, and Q𝑢 = Q𝑙 = Q ∈ [0.1,10].
Blue: axisymmetric flows. Black: two-dimensional flows.

.
(𝑎)

(𝑏)

Figure 2.16: Profile thicknesses in (𝑎) axisymmetric and (𝑏) two-dimensional geometries as
both the upper- and lower-layer fluxes vary. Parameter values used: M = 2, D = 1, and Q𝑢 =
Q𝑙 = Q = 0.01,1,4,7,10.
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behaves as a single-layer viscous gravity current fed at a specified flux determined by Q𝑙 , with
a pre-wetting film of small thickness. As such, the nose position 𝜉𝑁 scales with the lower-layer
flux as Q3/5

𝑙
in the two-dimensional geometry and Q3/8

𝑙
in the axisymmetric geometry, which is

confirmed by the power laws depicted in Figure 2.13. These can be obtained by rescaling the
similarity variable 𝜉 in terms of the lower-layer source flux instead of 𝑄.

In contrast to Figures 2.11 and 2.13, Figure 2.15 displays the frontal position 𝜉𝑁 as the upper-
and lower-layer fluxes vary whilst their ratio is kept constant. Specifically, we set Q𝑢 ∼ Q𝑙 ∼ Q
and note that the nose position scales as Q3/5 in the two-dimensional geometry and Q3/8 in
the axisymmetric geometry for both Q ≪ 1 and Q ≫ 1. When Q ≪ 1, both source fluxes are
negligible and so 𝜉𝑁 → 0 as displayed in Figure 2.15. This contrasts with the regimes in which
Q𝑢 ≪Q𝑙 ∼ Q∞ and Q𝑙 ≪Q𝑢 ∼ Q∞, discussed previously. The value of Q effectively determines
the depth of the two layers in comparison to the far field depth. Small values of Q give rise to
flows over a deep lower layer, which is effectively uniform, while large values of Q correspond
to flows over a thin lower layer, where lower-layer fluid prominently accumulates ahead of the
intrusion front as shown in Figure 2.16.

2.4 Conclusions

In this work, we examined the flow of a viscous gravity current spreading over a thin film of
viscous fluid of dissimilar density and viscosity. We considered similarity solutions in axisym-
metric and two-dimensional configurations and characterised the flow across parameter space
spanned by four key dimensionless parameters: the viscosity ratio, the density difference, and
the dimensionless source fluxes for the two layers. In particular, we characterised the thick-
nesses and velocities of the two layers as well as the extent of the upper layer as parameters
vary. We have also conducted an asymptotic analysis of a stress singularity that forms at the
intrusion front when the density difference is nonzero, obtaining asymptotic solutions valid near
the front.

We found that a range of flow behaviours is possible depending on the dimensionless pa-
rameters and we discussed possible asymptotic regimes. In terms of shape, the upper layer is
thick and of small extent for small viscosity ratios and small upper-layer source fluxes, and it
is thin and of large extent for large viscosity ratios and large upper-layer source fluxes. There
are notable differences in the velocity profiles for different viscosity ratios. For small viscos-
ity ratios, the velocity profile is mainly uniform within the upper layer while most of the shear
is confined to the lower layer alone, which is characterised by a primarily Couette (Poiseuille)
flow upstream (downstream) of the intrusion front. This is no longer the case for large viscosity
ratios, for which the velocity of the upper layer and its gradients become relatively large and
most of the shear is instead confined to the upper layer.

Our study also indicates that thickness gradients near the intrusion front steepen as the den-
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sity difference between the two layers decreases, ultimately approaching a shock-front solution
in the equal-density regime. Large density differences give rise to dynamics that would not be
expected in the equal-density regime, including flow reversals near the intrusion front owing
to the gravitational spreading of the lower layer under its own weight. While the frontal posi-
tion changes only gradually with the density difference, the thicknesses of the two layers and,
in particular, the front steepness, undergo more pronounced changes as the density difference
varies.

A particular regime of interest is one in which the viscosity ratio is large, which corresponds
to thin films of viscous fluid spreading over a much more viscous lower layer. These flows mimic
those of thin films spreading over a soft, deformable substrate. As demonstrated in a companion
paper (Yang & Kowal, 2025), these flows are susceptible to a novel viscous fingering instability,
referred to as a non-porous viscous fingering instability. The instability is similar to, yet distinct
from, the Saffman-Taylor viscous fingering instability in that it does not involve a Hele-Shaw
cell or other porous medium.



Chapter 3

Non-porous viscous fingering of a thin film
of fluid spreading over a lubricated
substrate

The content of this chapter (and the relevant part of Chapter 1) has been published in

• Yang, H. and Kowal, K. N. (2025) Non-porous viscous fingering of a thin film of fluid
spreading over a lubricated substrate. J. Fluid Mech., 1013: A32.

3.1 Introduction

In this chapter, we demonstrate that the base flows investigated in Chapter 2 are susceptible to a
novel viscous fingering instability. In particular, we examine the formation of viscous fingering
instabilities that emerge when a viscous gravity current intrudes radially outwards over another
thin film of viscous fluid, where the two fluids are of unequal densities and viscosities. By
conducting a linear stability analysis using the axisymmetric similarity solutions of Chapter 2
as the base flow, we characterise the parameter space over which these instabilities occur. We
also compare it with instabilities that emerge when the injected fluid intrudes from below. To
formulate the problem, we directly build upon the framework of Chapter 2 and Dauck et al.

(2019) by allowing for variations in the azimuthal direction. We also refer to the experiments of
Dauck (2020), where similar frontal instabilities emerge. The linear stability analysis of Dauck
(2020), focusing on the limit in which the two layers are of equal density, also confirms these
instabilities but did not reveal a most unstable wavenumber, much like the equal-density stabil-
ity calculations of Kowal & Worster (2019b) when the less viscous fluid intrudes from below
and growth rates increase with the wavenumber indefinitely. Interestingly, no instabilities were
observed in related experiments of Lister & Kerr (1989), involving a thin film of viscous fluid in-
truding at a fluid interface, save for small-scale frontal patterning attributed to contamination of

41
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Figure 3.1: Schematic of a thin film of viscous fluid spreading over a lubricated substrate in an
axisymmetric geometry. Schematic adapted from Yang et al. (2024).

the fluid surface by dust. We find through our stability calculations that the parameter regime in
which the latter experiments were performed correspond to stable configurations. Other relevant
works include single-layer (Smith, 1969; Huppert, 1982b,a) and two-layer (Kowal & Worster,
2015; Dauck et al., 2019; Shah et al., 2021) flows over horizontal and inclined substrates, and
non-Newtonian analogues (Hewitt, 2013; Gyllenberg & Sayag, 2022; Hinton, 2022; Christy &
Hinton, 2023), to name a few.

We begin with a theoretical development in §3.2, in which the geometry of the problem, the
assumptions, and the governing equations are laid out. We investigate the stability of the flow to
small non-axisymmetric disturbances by performing a linear stability analysis in §3.3, in which
we also derive asymptotic solutions for perturbations around a stress singularity at the injection
front. We solve the resulting perturbation equations numerically, characterise the instability
across parameter space and further discuss our results in §3.4. We finalise with concluding
remarks in §3.5.

3.2 Theoretical development

As depicted in Figure 3.1, we consider the flow of two thin films of incompressible, Newtonian
viscous fluids of constant viscosities 𝜇𝑢 and 𝜇𝑙 and constant densities 𝜌𝑢 and 𝜌𝑙 in an axisym-
metric geometry. The subscripts 𝑢 and 𝑙 correspond to quantities involving the upper and lower
layers, respectively. The subscript 𝑙 also describes quantities ahead of the intrusion front. We
assume that the effects of inertia and surface tension are negligible and that both fluid layers
are long and thin, and are resisted dominantly by vertical shear stresses within the limits of
lubrication theory.

We note that the use of the lubrication approximation reflects an idealised scenario in which
only vertical shear stress appears, and we aim to determine whether or not this suffices to explain
the emergence of instability. Strictly speaking, the approximations of lubrication theory break
down at the nose, where there is a frontal stress singularity, thus warranting the need for the



3.2. THEORETICAL DEVELOPMENT 43

solution of the full Stokes equations near the nose. We do not attempt this in this paper. We note
that the experiments of Dauck (2020), performed in a similar configuration to the present paper,
and their close agreement to theoretical predictions (which make use of lubrication theory) for
their propagation and shape (Dauck, 2020; Dauck et al., 2019), give credence to the use of
lubrication theory at least as a first attempt upon which higher-order corrections can be made
in the future. Another similar example is the experiments and stability analysis of Kowal &
Worster (2019b), which similarly made use of the lubrication approximation, albeit in a different
configuration (in that the less viscous fluid intrudes from below rather than from above).

The two fluids are supplied at constant fluxes Q̂𝑢 and Q̂𝑙 at the origin and spread radially
outwards over a horizontal, rigid substrate, which is pre-wetted by the lower-layer fluid to an
initial, uniform depth ℎ∞. While the two fluids spread radially outwards, we allow for non-
axisymmetric variations in the flow. The upper current extends to the intrusion front 𝑟 = 𝑟𝑁 (𝜃, 𝑡),
which splits the domain into two regions: a two-layer region 0 < 𝑟 < 𝑟𝑁 , involving both viscous
fluids, and a single-layer region 𝑟 > 𝑟𝑁 , involving a single viscous fluid of the same material
properties as the underlying layer of the two-layer region. The thicknesses of the upper and
lower layers are denoted by 𝐻 (𝑟, 𝜃, 𝑡) and ℎ(𝑟, 𝜃, 𝑡), respectively.

Applying the standard lubrication approximation (see Yang et al. (2024) for details of the
derivation in the axisymmetric case) results in the following mass conservation equations

𝜕𝐻

𝜕𝑡
+∇ · 𝒒𝑢 = 0, (3.1)

𝜕ℎ

𝜕𝑡
+∇ · 𝒒𝑙 = 0, (3.2)

within the two layers, where the depth-integrated fluxes of upper- and lower-layer fluid are given
by

𝒒𝑢 =


−𝜌𝑢𝑔

3𝜇𝑙

[(
M𝐻3 + 3

2𝐻ℎ
2 +3𝐻2ℎ

)
(∇𝐻 +∇ℎ) + 3

2D𝐻ℎ
2∇ℎ

]
(0 < 𝑟 < 𝑟𝑁 ),

0 (𝑟 ≥ 𝑟𝑁 ),
(3.3)

𝒒𝑙 =


−𝜌𝑢𝑔

3𝜇𝑙

[(
3
2𝐻ℎ

2 + ℎ3
)
(∇𝐻 +∇ℎ) +Dℎ3∇ℎ

]
(0 < 𝑟 < 𝑟𝑁 ),

−𝜌𝑢𝑔
3𝜇𝑙

(D +1)ℎ3∇ℎ (𝑟 ≥ 𝑟𝑁 ),
(3.4)

in terms of the dimensionless parameters

M =
𝜇𝑙

𝜇𝑢
and D =

𝜌𝑙 − 𝜌𝑢
𝜌𝑢

, (3.5)

which denote the viscosity ratio and relative density difference, respectively. In general, the
quantities described here may vary in 𝜃.

At the origin, 𝑟 = 0, we assume that the upper and lower layers are supplied at a constant
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flux Q̂𝑙 , Q̂𝑢, respectively, so that

lim
𝑟→0

2𝜋𝑟𝒒𝑢 · 𝒆𝑟 = Q̂𝑢, (3.6)

lim
𝑟→0

2𝜋𝑟𝒒𝑙 · 𝒆𝑟 = Q̂𝑙 , (3.7)

where 𝒆𝑟 is the radial unit basis vector.
The thickness and the normal flux of the lower layer are continuous across the intrusion front

𝑟 = 𝑟𝑁 (𝜃, 𝑡), so that

[ℎ]+− =0 at 𝑟 = 𝑟𝑁 , (3.8)

[𝒒𝑙 · 𝒏]+− =0 at 𝑟 = 𝑟𝑁 , (3.9)

where 𝒏 is the outward unit normal vector to the intrusion front. In addition, the normal compo-
nent of the upper-layer flux vanishes at the front, so that

𝒒𝑢 · 𝒏 = 0 at 𝑟 = 𝑟𝑁 . (3.10)

The front evolves kinematically, so that

¤𝑟𝑁 = lim
𝑟→𝑟−

𝑁

𝐻−1𝒒𝑢 · ∇(𝑟 − 𝑟𝑁 ) = lim
𝑟→𝑟−

𝑁

[
𝒒𝑢 · 𝒆𝑟
𝐻

− 𝒒𝑢 · 𝒆𝜽
𝐻𝑟𝑁

𝜕𝑟𝑁

𝜕𝜃

]
. (3.11)

Here, 𝒆𝜃 is the azimuthal unit basis vector. In the far field, we assume that the thickness is
uniform so that

lim
𝑟→∞

ℎ = ℎ∞. (3.12)

These governing equations, boundary conditions, matching conditions, and the evolution equa-
tion for the front, fully specify the moving boundary problem considered in this paper.

3.3 Non-axisymmetric disturbances

We investigate the evolution of non-axisymmetric disturbances of the base flow by expanding
about the zeroth-order axisymmetric similarity solutions of Yang et al. (2024). In the present
study, we restrict attention to real eigenvalues 𝜎. This choice is motivated by experimental
observations of closely related configurations, including those reported in Dauck (2020) and
earlier experiments by Kowal & Worster (2015). In these systems, the instability is observed to
develop monotonically in time, with no evidence of temporal oscillations, suggesting that the
dominant eigenvalues are real. Consequently, there is no a priori physical motivation to expect
complex eigenvalues in the present setting. While it may be of interest in future work to search
explicitly for complex eigenvalues, or to establish rigorously that none exist, for example, by
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demonstrating that the associated linear operator is self-adjoint, this lies beyond the scope of the
current study.

We change the independent variables (𝑟, 𝜃, 𝑡) to (𝜉,𝜗, 𝜏) and nondimensionalize the system
by applying the following transformations

(𝜉, 𝜉𝑁 (𝜗, 𝜏)) =
(

3𝜇𝑙
𝜌𝑢𝑔ℎ

3
∞𝑡

)1/2
(𝑟,𝑟𝑁 (𝜃, 𝑡)), 𝜗 = 𝜃, 𝜏 = log(𝑡/𝑡0), (3.13)(

𝐹 (𝜉,𝜗, 𝜏), 𝑓 (𝜉,𝜗, 𝜏)
)
= ℎ−1

∞
(
𝐻 (𝑟, 𝜃, 𝑡), ℎ(𝑟, 𝜃, 𝑡)

)
, (3.14)(

𝝓𝑢 (𝜉,𝜗, 𝜏),𝝓𝑙 (𝜉,𝜗, 𝜏)
)
=

(
3𝜇𝑙 𝑡
𝜌𝑢𝑔ℎ

5
∞

)1/2 (
𝒒𝑢 (𝑟, 𝜃, 𝑡), 𝒒𝑙 (𝑟, 𝜃, 𝑡)

)
, (3.15)

where 𝑡0 = 3𝜇𝑙/(𝜌𝑢𝑔ℎ∞). We also rescale the two input source fluxes at the origin so that

Q𝑢 = Q̂𝑢/Q̂ and Q𝑙 = Q̂𝑙/Q̂, (3.16)

where
Q̂ = 2𝜋ℎ4

∞
𝜌𝑢𝑔

3𝜇𝑙
(3.17)

is a dimensional measure of the lower-layer flux associated with a depth of ℎ∞. Alternatively, the
parameter Q̂ can be interpreted as the flux required to attain a thickness of ℎ∞ near the source.

The transformation (3.13)–(3.15) into similarity space transforms the base flow (the similar-
ity solutions of Yang et al. (2024)) into a steady solution, which is key to allow a straightforward
stability analysis to be performed. This can be seen by examining the transformed system of par-
tial differential equations

𝜕𝐹

𝜕𝜏
− 1

2
𝜕𝐹

𝜕𝜉
𝜉 + 1

𝜉

𝜕 (𝜉𝜙𝑢𝑟)
𝜕𝜉

+ 1
𝜉

𝜕𝜙𝑢𝜃

𝜕𝜗
= 0, (3.18)

𝜕 𝑓

𝜕𝜏
− 1

2
𝜕 𝑓

𝜕𝜉
𝜉 + 1

𝜉

𝜕 (𝜉𝜙𝑙𝑟)
𝜕𝜉

+ 1
𝜉

𝜕𝜙𝑙𝜃

𝜕𝜗
= 0, (3.19)

describing mass conservation within the two layers of viscous fluid, the coefficients of which
are independent of the transformed time variable 𝜏. Here, the radial and azimuthal components
of the depth-integrated fluxes of the two layers of fluid are given by

(𝜙𝑢𝑟 , 𝜙𝑙𝑟) = (𝝓𝑢 · 𝒆𝑟 , 𝝓𝑙 · 𝒆𝑟), (3.20)

(𝜙𝑢𝜃 , 𝜙𝑙𝜃) = (𝝓𝑢 · 𝒆𝜃 , 𝝓𝑙 · 𝒆𝜃), (3.21)
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where

𝝓𝑢 =


−

[(
M𝐹3 + 3

2𝐹 𝑓
2 +3𝐹2 𝑓

)
(∇𝐹 +∇ 𝑓 ) + 3

2D𝐹 𝑓
2∇ 𝑓

]
(0 < 𝜉 < 𝜉𝑁 )

0 (𝜉 ≥ 𝜉𝑁 ),
(3.22)

𝝓𝑙 =


−

[(
3
2𝐹 𝑓

2 + 𝑓 3
)
(∇𝐹 +∇ 𝑓 ) +D 𝑓 3∇ 𝑓

]
(0 < 𝜉 < 𝜉𝑁 )

−(D +1) 𝑓 3∇ 𝑓 (𝜉 ≥ 𝜉𝑁 ),
(3.23)

for the upper and lower layers, respectively. The operator ∇ is now the gradient operator in the
two-dimensional polar coordinate system spanned by (𝜉,𝜗).

As for the boundary conditions, the source flux boundary conditions reduce to

𝜉𝜙𝑢𝑟 →Q𝑢, 𝜉𝜙𝑙𝑟 →Q𝑙 (𝜉→ 0), (3.24)

while the matching conditions at the intrusion front, describing continuity of lower-layer thick-
ness, continuity of lower-layer flux and the zero-flux condition for the upper layer, are given
by

[ 𝑓 ]+− = 0, [𝝓𝑙 · 𝒏]+− = 0, 𝝓𝑢 · 𝒏 = 0 (𝜉 = 𝜉𝑁 ), (3.25)

respectively, where the normal vector at the intrusion front becomes

𝒏 =

(
𝒆𝒓 −

1
𝜉𝑁

𝜕𝜉𝑁

𝜕𝜗
𝒆𝜽

) (
1+

(
1
𝜉𝑁

𝜕𝜉𝑁

𝜕𝜗

)2
)−1/2

. (3.26)

These are supplemented by the kinematic condition, which reduces to

𝒆𝒓 ·𝝓𝑢
𝐹

− 1
𝜉𝑁

𝜕𝜉𝑁

𝜕𝜗

𝒆𝜽 ·𝝓𝑢
𝐹

→ 𝜕𝜉𝑁

𝜕𝜏
+ 1

2
𝜉𝑁 (𝜉→ 𝜉−𝑁 ), (3.27)

and the far-field condition,

𝑓 → 1 (𝜉→∞), (3.28)

reflecting the choice to scale vertical lengths with respect to the dimensional far-field thickness.
These governing equations are a set of nonlinear partial differential equations describing the

flow of general disturbances to the axisymmetric base flow. In a later section, we will focus on
small-amplitude disturbances and linearise these equations about the base flow. However, the
singular structure of the intrusion front raises problems with formulating the small-amplitude
equations and boundary conditions consistently. To avoid these issues, we first investigate the
structure of the singularity at the intrusion front in the following section, and then use it to make
an informed coordinate transformation that will allow for a consistent set of small-amplitude
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equations and boundary conditions to be formulated.

3.3.1 Frontal singularity and asymptotic solution

Similar to the behaviour of the unperturbed, axisymmetric flow (the basic state considered in
Yang et al. (2024)), there is a frontal singularity inherent to the perturbed flow. We generalise
the asymptotic analysis of Yang et al. (2024) for the unperturbed flow near the intrusion front to
include variations in the azimuthal direction and find a generalised asymptotic solution near the
front, of the form

𝐹 (𝜉,𝜗, 𝜏) ∼ 𝐴1(𝜗, 𝜏)
(
1− 𝜉

𝜉𝑁

) 1
2

+ 𝐴2(𝜗, 𝜏)
(
1− 𝜉

𝜉𝑁

)
+ ...,

𝑓 (𝜉,𝜗, 𝜏) ∼ 𝑎0(𝜗, 𝜏) + 𝑎1(𝜗, 𝜏)
(
1− 𝜉

𝜉𝑁

) 1
2

+ 𝑎2(𝜗, 𝜏)
(
1− 𝜉

𝜉𝑁

)
+ ...,

(3.29)

reflecting a square-root singularity, in contrast to the cube-root frontal singularity of a single-
layer viscous gravity current (Huppert, 1982b). Here, the relationships between the coefficients
𝑎0, 𝑎1, 𝑎2, 𝐴1 and 𝐴2 are given by (see Appendix D for further details)

𝑎1 = − 𝐴1
D+1

, (3.30)

𝐴2 = −
4𝐴2

1
9𝑎0

(
M− 3

D+1

)
, (3.31)

𝑎2 =
1

9(D +1)𝑎2
0

[
3𝜉𝑁

(
𝜉𝑁 +2

𝜕𝜉𝑁

𝜕𝜏

)
+ 𝐴2

1𝑎0

(
4M−9− 3

D+1

) ]
. (3.32)

As the base flow involves a singularity at the intrusion front, singular terms appear also in
the equations governing the perturbations. This prevents one from formulating consistent lin-
earised boundary conditions at the front. A similar problem occurs when linearising about the
Barenblatt-Pattle similarity solution and various methods have been introduced to handle it, in-
cluding the use of the method of strained coordinates (Grundy & McLaughlin, 1982) and a
transformation of the dependent variable (Mathunjwa & Hogg, 2006a). Instead, we follow an
approach similar to that of Kowal & Worster (2019b) by simply mapping the two-layer region
to a fixed interval [0,1] via the coordinate transformation

Λ = 𝜉/𝜉𝑁 . (3.33)

Such a coordinate transformation eliminates the need to perturb the position of the singular
point, which is now fixed at Λ = 1, for the corresponding boundary conditions. We summarise
the equations and boundary conditions for the small-amplitude perturbations in terms of Λ in the
following section. However, to aid numerical integration, we further transform the independent
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variable nonlinearly by defining
Λ̂ = 1− (1−Λ)1/2 (3.34)

in the two-layer region and Λ̂ = Λ in the single layer region. The transformation (3.34) is moti-
vated by our asymptotic solution (3.29), which identifies a square-root singularity near the front.
Under the transformation (3.34), the thicknesses of the two layers are instead linear near the
intrusion front, and hence their gradients no longer diverge. In essence, the frontal singularity is
now a removable singularity, which is simpler to handle numerically.

3.3.2 Small-amplitude perturbations

We wish to examine the evolution of small pertubations to the base, axisymmetric flow, and in
order to do so, we linearise the transformed problem by defining

𝑋 (𝜉,𝜗, 𝜏) ≡ 𝑋 (Λ,Θ,T) = 𝑋0(Λ) + 𝜖 𝑋̃1(Λ,Θ,T) + ..., (3.35)

for variables 𝑋 = 𝑓 , 𝐹, 𝜙𝑢𝑟 , 𝜙𝑢𝜃 , 𝜙𝑙𝑟 , 𝜙𝑙𝜃 ,𝝓𝑙 ,𝝓𝑢, where 𝜖 is an arbitrary small number, Θ = 𝜗,
T = 𝜏 and

𝜒 = 𝜒0 + 𝜖 𝜒̃1(Θ,T) + ..., (3.36)

for variables 𝜒 = 𝜉𝑁 , 𝑎0, 𝑎1, 𝑎2, 𝐴1, 𝐴2, 𝒏. We note that the governing equations and boundary
conditions describing the evolution of the basic state (involving variables with the subscript 0)
are outlined in Yang et al. (2024), which we do not repeat here, for brevity.

To examine the evolution of the perturbations, we search for normal mode solutions of the
form

𝑋̃1(Λ,Θ,T) = 𝑋1(Λ)𝑒𝜎T+𝑖𝑘Θ, (3.37)

𝜒̃1(Θ,T) = 𝜒1𝑒
𝜎T+𝑖𝑘Θ. (3.38)

As the transformed time variable T is logarithmic in the sense T = 𝜏 = log(𝑡/𝑡0), these normal
modes in fact represent algebraic growth/decay of perturbations in physical time 𝑡, since 𝑒𝜎T

is proportional to 𝑡𝜎. We also note that owing to the transformation 𝑟𝑁 ∝ 𝜉𝑁 𝑡1/2, if the growth
rate satisfies −1/2 < 𝜎 < 0 then the perturbations to 𝑟𝑁 will appear to grow even though the
perturbations to 𝜉𝑁 decay.

Substitution into (3.18)–(3.28) yields the following expressions for the perturbed fluxes (see
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Appendix E for the coefficient expressions)

𝜙𝑢𝑟1 = 𝛼𝑢1 𝑓1 +𝛼𝑢2𝐹1 +𝛼𝑢3 𝑓
′
1 +𝛼𝑢4𝐹

′
1 +𝛼𝑢5𝜉𝑁1, (3.39)

𝜙𝑙𝑟1 = 𝛼𝑙1 𝑓1 +𝛼𝑙2𝐹1 +𝛼𝑙3 𝑓 ′1 +𝛼𝑙4𝐹
′
1 +𝛼𝑙5𝜉𝑁1, (3.40)

𝜙𝑢𝜃1 = 𝑖𝑘 (𝛼𝑢3Λ
−1 𝑓1 +𝛼𝑢4Λ

−1𝐹1 +𝛼𝑢5𝜉𝑁1), (3.41)

𝜙𝑙𝜃1 = 𝑖𝑘 (𝛼𝑙3Λ−1 𝑓1 +𝛼𝑙4Λ−1𝐹1 +𝛼𝑙5𝜉𝑁1), (3.42)

and the following perturbed governing equations

𝜎

(
𝐹1 −

𝜉𝑁1
𝜉𝑁0

Λ𝐹′
0

)
− 1

2
Λ𝐹′

1 −
𝜉𝑁1

𝜉2
𝑁0Λ

(Λ𝜙𝑢0)′+
1

𝜉𝑁0Λ
(Λ𝜙𝑢1)′+

𝑖𝑘

𝜉𝑁0Λ
𝜙𝑢𝜃1 = 0, (3.43)

𝜎

(
𝑓1 −

𝜉𝑁1
𝜉𝑁0

Λ 𝑓 ′0

)
− 1

2
Λ 𝑓 ′1 −

𝜉𝑁1

𝜉2
𝑁0Λ

(Λ𝜙𝑙0)′+
1

𝜉𝑁0Λ
(Λ𝜙𝑙1)′+

𝑖𝑘

𝜉𝑁0Λ
𝜙𝑙𝜃1 = 0, (3.44)

reflecting mass conservation within the two layers, where the prime symbol represents the
derivative respect to Λ and 𝛼𝑖 𝑗 are functions of the basic state quantities, including 𝑓0, 𝐹0, 𝑓 ′0,
and 𝐹′

0, as well as the parameters M and D and the unperturbed frontal position 𝜉𝑁0, as given
explicitly in Appendix E.

As for the boundary conditions for the perturbed system, note that the coordinate transfor-
mation (3.33) eliminates the need to perturb the value of Λ at which the boundary conditions are
applied. The perturbations to the frontal position are instead embedded into the governing equa-
tions, and through the appearance of additional terms in some boundary conditions following
the linearisation of the normal vector. In particular, we have

Λ(𝜉𝑁1𝜙𝑢𝑟0 + 𝜉𝑁0𝜙𝑢𝑟1) → 0, Λ(𝜉𝑁1𝜙𝑙𝑟0 + 𝜉𝑁0𝜙𝑙𝑟1) → 0 (Λ→ 0), (3.45)

reflecting that both fluids are supplied at a constant flux at the origin, and so the perturbed source
fluxes vanish as we approach the origin. The frontal matching conditions for the perturbations
reduce to

[ 𝑓1]+− = 0, [𝜙𝑙𝑟1]+− = 0, 𝜙𝑢𝑟1 = 0 (Λ = 1), (3.46)

reflecting the fact that the perturbed lower-layer thickness and flux is continuous and the per-
turbed upper-layer flux vanishes at the intrusion front. In simplifying these conditions, we use
that 𝒏0 = 𝒆𝑟 and that 𝒏1 is proportional to the azimuthal basis vector while the flux (for the base
flow) is proportional to the radial basis vector, so that 𝝓𝑢0 ·𝒏1 = 0 and 𝝓𝑙0 ·𝒏1 = 0. A linearisation
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of the kinematic condition yields the following boundary condition for the perturbations,

𝜙𝑢𝑟1
𝐹0

− 𝐹1𝜙𝑢𝑟0

𝐹2
0

→
(
𝜎+ 1

2

)
𝜉𝑁1 (Λ→ 1−), (3.47)

while the far-field condition requires that the perturbations vanish in the far field,

𝑓1 → 0 (Λ→∞). (3.48)

We note that this is a differential eigenvalue problem, with eigenfunctions (𝑋1, 𝜒1) and
eigenvalues 𝜎. That is, the growth rates 𝜎 can be found numerically for each wavenumber 𝑘 ,
which we discuss in the following section.

3.3.3 Numerical method

We solve the perturbation equations in the variable Λ̂, as defined in (3.34), by shooting back-
wards for 𝜉𝑁1 and 𝑄𝑙1 |Λ̂=𝐿 from the far-field at Λ̂ = 𝐿, where we define 𝑄𝑖1 = Λ𝜙𝑖𝑟 for 𝑖 = 𝑙, 𝑢
and 𝐿 > 1 is a constant that is sufficiently large that Λ̂ = 𝐿 acts as a pseudo infinity. To initiate the
computations for the single-layer region, we start by specifying values of 𝜉𝑁1 and 𝑄𝑙1 |Λ̂=𝐿 and
integrating the equations backwards from Λ̂ = 𝐿 towards the intrusion front Λ̂ = 1. Because the
intrusion front is a singular point for the governing equations of the two-layer region, we use the
asymptotic solutions as matching conditions for our numerical solutions. That is, we calculate
the asymptotic solution at Λ̂ = 1− 𝛿 using the computed numerical solution of the single-layer
region at Λ̂ = 1, where 𝛿 ≪ 1. We integrate the perturbation equations for the two-layer region
numerically, backwards from Λ̂ = 1− 𝛿 towards Λ̂ = Δ, where Δ≪ 1.

By performing an asymptotic analysis for a single-layer viscous gravity current, we find that
the general solution for the perturbed dependent variables is of the form

𝑋1 ∼ (𝑐1Λ̂
−𝑘 + 𝑐2Λ̂

𝑘 )𝑤(Λ̂) (3.49)

as Λ̂→ 0, where 𝑤 is a function that is at most logarithmically singular at the origin and 𝑐1 and
𝑐2 are arbitrary constants. This reflects a singularity at the origin, which is strongest for large
wavenumbers 𝑘 . For the purpose of resolving this singularity for all 𝑘 in our computations, we
use the transformation

𝑋1(Λ̂) ≡
1
𝑥
𝑋̄1(𝑥), (3.50)

where 𝑥 = Λ̂𝑘 , within the two-layer region, and solve for 𝑋̄1 numerically as a function of 𝑥.
As the problem is 2𝜋-periodic in the azimuthal direction, only integer values of 𝑘 are permit-

ted. However, we interpolate for intermediate values of 𝑘 for illustrative purposes in displaying
the results.
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Given a value of the wavenumber 𝑘 , the system admits non-zero solutions for specific growth
rates, or eigenvalues, 𝜎. To find such solutions, we designed an algorithm by exploiting the lin-
earity of the governing equations and boundary conditions. In particular, for a given wavenum-
ber and set of parameter values, we set a guess for the growth rate and shoot backwards as
described above. In doing so, we obtain two test solutions, denoted by 𝑠1 and 𝑠2, where 𝑠1

is calculated by setting 𝜉𝑁1 = 1 and 𝑄𝑙1 |Λ̂=𝐿 = 0 and 𝑠2 is calculated by setting 𝜉𝑁1 = 0 and
𝑄𝑙1 |Λ̂=𝐿 = 1. These two solutions are linearly independent and satisfy the perturbation equations
and boundary conditions except for perhaps the source flux conditions at the origin. Owing to
the linearity of the system, any linear combination of the two solutions is also a solution.

In order to quantify the departure from the source flux boundary conditions, we define a
residual matrix

𝑹 =

[
𝑄𝑙1,1 𝑄𝑙1,2

𝑄𝑢1,1 𝑄𝑢1,2

]
, (3.51)

where the 𝑖th column measures the perturbed source flux at the origin corresponding to the
solution 𝑠𝑖 and 𝑖 = 1,2. If the initial guess for the value of the growth rate 𝜎 is correct, it
is possible to obtain a linear combination of the two test solutions such that the source flux
conditions at the origin are satisfied, i.e. 𝑄𝑙1 = 0 and 𝑄𝑢1 = 0. This is equivalent to det(𝑹) = 0,
and this particular linear combination is the desired solution to the perturbation equations and
all boundary conditions, including the zero source flux boundary conditions. However, if the
guessed value of the growth rate is incorrect, then det𝑹 ≠ 0. That is, the growth rate is an
admissible eigenvalue if and only if det(𝑹) = 0. We, therefore, wish to find values of the growth
rate 𝜎 for which det(𝑹) = 0 to within a specified tolerance. In essence, this reduces to a one-
dimensional root finding problem for 𝜎.

To validate our numerical results, the computations were performed with specified absolute
and relative tolerances controlling the solver accuracy (namely, AbsTol = 10−12 and RelTol =
10−12 in Mathematica’s in-built solver NDSolve, and automatic absolute and relative tolerances
in FindRoot). These tolerances were chosen sufficiently small to ensure convergence of the
computed eigenvalues while avoiding excessive computational cost, and further tightening of
the tolerances produced no discernible change in the results. Additional numerical tests were
carried out by varying other numerical parameters, including the truncation of the computational
domain, confirming that the results are independent of these choices.

At zero wavenumber, that is, for axisymmetric perturbations, there exists a mode correspond-
ing to an exact similarity solution shifted in time. This mode is given by

𝐹1 = 0, 𝑓1 = 0, 𝜉𝑁1 = 1, 𝜎 = −1, 𝑘 = 0.

This analytical solution is known a priori and provides a further test case for validating the
numerical implementation.

We note that in order to assess stability, it suffices to consider the eigensolution that corre-
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Figure 3.2: The unperturbed (solid) and perturbed (dashed and dotted) spatial profiles showing
the shape of the nose when 𝑘 = 12, M = 200, D = 0.1, Q𝑢 = 1, and Q𝑙 = 0.2. The perturbed
profile shown as a dashed (dotted) curve corresponds to intrusions ahead of (behind) the nose of
the base flow.

sponds to the largest growth rate, as this gives rise to the most unstable mode. We make sure
that our computed solutions for 𝜎 are largest by manual inspection of plots of the determinant
of 𝑹 against the growth rate for a range of test cases. In the following section, we discuss results
obtained by tracking the largest eigenvalue branch in the 𝜎–𝑘 plane.

3.4 Discussion

In this section, we discuss the onset of instability and relevant characteristics in terms of the
growth rates, interval of unstable wavenumbers and the critical wavenumber and how these vary
across parameter space. In particular, we map out the behaviour of small disturbances to the base
flow in terms of four key dimensionless quantities: the viscosity ratio M, the density difference
D, the total source flux Q𝑢 +Q𝑙 , and the flux ratio Q𝑙/Q𝑢.

The spatial structure of the perturbation in an unstable configuration is depicted in Figure
3.2 in comparison to the unperturbed base flow. When the intruding layer is perturbed forwards
(backwards), it thickens (thins) and protrudes downwards into (recedes upwards from) the lower
layer and the lower layer thins (thickens) near the nose. As discussed further in §3.4.2, finger
growth requires sufficient protrusion of an intruding less viscous fluid downwards into the more
viscous underlying layer, rather than upwards into the less viscous air.

3.4.1 Thresholds of instability across parameter space

We find that the flow is unstable only for sufficiently large values of the viscosity ratio M. That
is, the intruding layer of viscous fluid needs to be of sufficiently small viscosity for the flow to
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become unstable. This criterion is similar to what is necessary for the onset of Saffman-Taylor
instabilities in porous media, which occur only when the viscosity of the intruding fluid is lower
than that of the ambient fluid (Saffman & Taylor, 1958). Sufficiently large viscosity ratios are
also necessary for the onset of fingering instabilities when the less viscous fluid intrudes from
below a more viscous gravity current (Kowal & Worster, 2019a,b; Leung & Kowal, 2022a,b),
and when it displaces the more viscous current completely (Kowal, 2021). Illustrative values
of the viscosity ratio necessary for the onset of instability when the less viscous fluid intrudes
from above a more viscous gravity current, as examined in this work, can be seen in Figure 3.3.
In particular, Figure 3.3 displays the dispersion relation for the growth rate 𝜎 as a function of
the wavenumber 𝑘 , for illustrative parameter values and various values of the viscosity ratio M.
The growth rate is positive for a bounded interval of wavenumbers only when the viscosity ratio
is large enough. That is, the flow is unstable for a bounded interval of wavenumbers only above
a critical viscosity ratio. We also observe that high-wavenumber perturbations are suppressed
due to the buoyancy force arising from the density difference between the two fluids. This is
evidenced by comparison with Figure 5.8 of Dauck (2020), which shows the 𝜎–𝑘 plane in the
absence of a density difference. In that case, the growth rate appears to diverge, with 𝜎→∞ as
𝑘 →∞.

The interval of unstable wavenumbers is shown in Figure 3.4 as a function of the viscosity
ratio M, where it can be seen that the interval of unstable wavenumbers expands as the viscosity
ratio increases. The boundary between the stable and unstable regions, shown in Figure 3.4,
depicts the neutral viscosity ratio, defined as the value of the viscosity for which the growth
rate is zero. The flow is unstable when the viscosity ratio is above the neutral viscosity ratio.
The critical wavenumber 𝑘𝑐, defined as the wavenumber for which the growth rate is maximal,
gradually increases with the wavenumber as depicted in Figure 3.4.

We find that the instability is most profound for low values of the density difference and that
it is suppressed completely when the density difference is sufficiently large. This is illustrated
in Figure 3.5, depicting an interval of wavenumbers for which the system is unstable below a
critical value of the density difference. This interval expands and the critical wavenumber 𝑘𝑐
increases as the density difference decreases, as shown in Figure 3.5. Figure 3.5 also illustrates
that the instability is suppressed completely above a critical value of the density difference. This
agrees with stability analyses of flows of thin films of viscous fluid intruding underneath another
viscous fluid of various rheologies (Kowal & Worster, 2019b; Leung & Kowal, 2022b).

We condense information in the (M,D)-parameter space further in a contour plot of the
maximal growth rate 𝜎max versus the viscosity ratio and density difference, depicted in Figure
3.6. Maximal growth rates are largest for large viscosity ratios and small density differences,
with viscosity ratios of the order of ten required for the onset of instability when the density dif-
ference is small. This contrasts with instabilities formed when a free-surface flow is penetrated
from below by a less viscous fluid (Kowal & Worster, 2019a,b) and with classical Saffman-
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Figure 3.3: The growth rate versus the wavenumber for various viscosity ratios M =

20,30,40,50 when D = 0.05, Q𝑢 = 1, Q𝑙 = 1.
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Figure 3.4: Neutral stability curve (solid) displaying the interval of unstable wavenumbers as
a function of the viscosity ratio, also showing the critical wavenumber 𝑘𝑐 (dashed), when D =

0.1,Q𝑢 = 1, and Q𝑙 = 1. The flow is unstable (stable) for large (small) viscosity ratios.
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Figure 3.5: Neutral stability curve (solid) displaying the interval of unstable wavenumbers as
a function of the density difference, also showing the critical wavenumber 𝑘𝑐 (dashed), when
M = 120,Q𝑢 = 1, and Q𝑙 = 1. The flow is unstable (stable) for small (large) density differences.
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Figure 3.6: Contour plot of the maximal growth rate 𝜎max versus the viscosity ratio M and
density difference D, with the neutral stability curve (𝜎max = 0) displayed as a thick solid curve.
The remaining parameter values are Q𝑢 = 1, and Q𝑙 = 1. The flow is unstable for high viscosity
ratios and low density differences.
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Figure 3.7: Neutral stability curve (solid) displaying the interval of unstable wavenumbers as
a function of the total source flux, also showing the critical wavenumber 𝑘𝑐 (dashed), when
D = 0.1, M = 120, and Q𝑙/Q𝑢 = 1. The flow is unstable (stable) for large (small) source fluxes.
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Figure 3.8: Neutral stability curve (solid) displaying the neutral flux ratio Q𝑙/Q𝑢 as a function of
the wavenumber, also showing the critical wavenumber 𝑘𝑐 (dashed), when D = 0.1, M = 120,
and Q𝑙 +Q𝑢 = 1. The flow is unstable for flux ratios above this neutral stability curve.
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Taylor instabilities in a Hele-Shaw cell (Saffman & Taylor, 1958), for which the threshold of
instability is of order unity in the viscosity ratio. We discuss why this is to be expected on
physical grounds in §3.4.2.

We find that the instability is suppressed completely for a sufficiently small total flux Q𝑙 +
Q𝑢 and sufficiently large flux ratio Q𝑙/Q𝑢, as depicted in figures 3.7 and 3.8. The interval
of unstable wavenumbers expands as the total source flux increases and the flux ratio decreases.
The critical wavenumber increases with the total source flux and remains approximately constant
with respect to the flux ratio. We can therefore expect to see an increasing number of fingers
when the total source flux increases, which is consistent with recent experiments in which the
intruding fluid is supplied from below (Kumar et al., 2021).

We condense information further in a contour plot of the maximal growth rate 𝜎max versus
the total flux and flux ratio, shown in Figure 3.9. As seen in Figure 3.9, growth rates are largest
when the total flux is large and a sufficiently large total flux (of order unity) is required for the
onset of instability. Equivalently, the onset of instability requires the flux of the upper layer
to be sufficiently large relative to that of the lower layer. This is in line with the experiments
of Lister & Kerr (1989), in which a low viscosity fluid intrudes at the interface between two
other fluids and no instabilities were observed, save for small-scale frontal patterning that the
authors attribute to contamination of the fluid surface by dust. These experiments were carried
out for dimensionless fluxes in the range 8.7× 10−6–5.3× 10−5, which is much less than the
threshold (of order unity) required for instability. The threshold is also consistent with the
experiments of Dauck (2020), for which the dimensionless flux reached up to approximately
160 and instabilities were observed.

The stability thresholds discussed in this section are summarised in the most condensed
contour plot shown in Figure 3.10, displaying the critical total flux required for the onset of
instability in (D,M) space for various values of the flux ratio. Values of the critical viscosity
ratio and critical density difference required for the onset of instability can be read off from
Figure 3.10. Alternatively, Figure 3.10 can be interpreted as a plot of the critical viscosity ratio
versus the density difference for various values of the total flux and flux ratio. The higher the
total flux, the lower the viscosity ratio required for the onset of instability, and the larger the
interval of density differences for which instabilities appear.

3.4.2 Mechanism of instability and suppression

To understand the mechanism of instability physically, it is instructive to compare to classical
viscous fingering in porous-media/Hele-Shaw cells. The mechanisms of instability are similar in
that there is less flow resistance along the fingers of less viscous fluid than in the gaps between
them filled with more viscous fluid, thus resulting in the fingers growing (when the intruding
fluid is less viscous than the ambient). However, in the free-surface case examined here, the
intruding fluid is also advancing into atmosphere (which is less viscous, so the viscosity con-



58 CHAPTER 3. NON-POROUS VISCOUS FINGERING

0.4 0.6 0.8 1.0 1.2

l

u

1.6

1.8

2.0

2.2

l +u

Figure 3.9: Contour plot of the maximal growth rate 𝜎max versus the flux ratio Q𝑙/Q𝑢 and total
flux Q𝑙 +Q𝑢, with the neutral stability curve (𝜎max = 0) displayed as a thick solid curve. The
remaining parameter values are M = 120, and D = 0.1. The flow is unstable when the total flux
is large and flux ratio is small.

trast is stabilising), so finger growth is reliant on the intruding fingers displacing the lubricating
liquid “more” than displacing the atmosphere. In other words, finger growth requires the den-
sity difference D to be sufficiently small (as seen in Figure 3.5) and the upper-layer flux Q𝑢 to
be sufficiently large relative to the lower-layer flux Q𝑙 and relative to unity (as seen in figures
3.7–3.9) that the fingers can sink down into rather than just riding on top of the lubricating layer.

In contrast, when the less viscous fluid intrudes beneath another thin film of viscous fluid
(the setup of Kowal & Worster (2019a,b)), it is not stabilised by its advance into a less viscous
atmosphere and so the instability thresholds are lower than reported here. In particular, the
critical viscosity ratio required for the onset of instability in the setup of Kowal & Worster
(2019a,b) is of order unity when the intruding layer is supplied from below, which is one to
two orders of magnitude smaller than when the less viscous fluid intrudes from above as in the
current work. However, the general trends in the stability thresholds are qualitatively similar as
the parameters vary. For example, for both systems, there is a critical density difference above
which the instabilities are compressed, with the interval of unstable wavenumbers widening as
the density difference decreases. The critical density difference is of order unity (versus one
tenth) when the less viscous fluid intrudes from below (versus above).

To explore the mechanism of suppression further, it is also instructive to focus on contri-
butions that are significant for large density differences. Nonzero density differences between
the two layers of viscous fluid give rise to additional buoyancy forces within the lower layer
near the front of the intruding fluid. These are associated with the gravitational spreading of the
underlying layer under its own weight, dragging the upper layer along with it. As gradients of
the lower-layer thickness are positive near the front when the density difference is nonzero, the
contributions to the flow velocity, arising from the spreading of the lower layer under its own
weight, are negative within the underlying layer. This, in turn, induces an inwards contribution
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Figure 3.10: Contour plot of the critical total flux Q𝑙 +Q𝑢 required for the onset of instability in
(D,M)) space when Q𝑙/Q𝑢=0.4 (solid curves), 0.5 (dashed curves) and 0.6 (dotted curves).

to the flow, seen most clearly in the velocity profiles of Figure 5 of Yang et al. (2024). That is, in
what would have been an unstable configuration, this contribution involves more viscous fluid
intruding (inwards) into less viscous fluid, which is stabilising.

Similar buoyancy forces stabilise the flow of single-layer viscous gravity currents, where a
viscous fluid intrudes into air (less viscous) – a stable viscosity contrast (Mathunjwa & Hogg,
2006a). Small perturbations to single-layer viscous gravity currents, which are driven by buoy-
ancy forces alone, have been found to decay and the flow has been found to approach a similarity
solution at late times (Mathunjwa & Hogg, 2006a; Ball & Huppert, 2019). For two-layer flows,
these buoyancy forces contribute to the flow only when the densities of the two viscous fluids
are unequal. When the density difference increases, so does the effect of these buoyancy forces,
especially near the front, where they are most profound as depicted in Figure 5 of Yang et al.

(2024). As the instability is a frontal instability, the dynamics near the front, and particularly the
effect of these buoyancy forces, are what determines the onset of instability, and hence it is nat-
ural to expect these forces to have a stabilising effect when the density difference is sufficiently
large, as seen in Figure 3.5.

3.5 Conclusions

In this work, we have demonstrated that a free-surface flow consisting of a thin film of viscous
fluid intruding over another layer of fluid of dissimilar viscosity and density is prone to a new
type fingering instability, termed the non-porous viscous fingering instability. This type of in-
stability is most closely related to Saffman-Taylor viscous fingering in a porous medium or a
Hele-Shaw cell, but this time without a porous medium or Hele-Shaw cell present. The sim-
ilarity between these two types of instability is that a viscosity contrast between two fluids is
needed for both instabilities to occur. The difference between them is that the jump in pressure
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gradient driving the instabilities is hydrostatic for the former and dynamic for the latter form of
instability.

We also point out features distinguishing the non-porous viscous fingering instability from
other frontal instabilities, including the fingering of a driven spreading film and thermoviscous
fingering. We found that a free-surface flow of a low-viscosity fluid is more prone to instability
when intruding into a high-viscosity fluid from below (as in Kowal & Worster, 2019a,b) than
from above (as in the present paper). Intuitively, this is because the less viscous fluid also
displaces the atmosphere (an even less viscous fluid) in the latter scenario, which is stabilising.

We have also examined the stabilising influence of buoyancy forces, which form near the
nose of a thin film of viscous fluid as it intrudes into another viscous fluid of different density
and viscosity. These buoyancy forces are greatest near the front of the intruding layer and
feature as the only physical mechanism driving the flow of single-layer viscous gravity currents,
for example. Such buoyancy forces have been shown to be stabilising for single-layer flows
(Grundy & McLaughlin, 1982; Mathunjwa & Hogg, 2006a) and for two-phase flows, when
the intruding layer is supplied from below (Kowal & Worster, 2019a,b) or when it completely
displaces the ambient layer (Kowal, 2021).

We found that a sufficiently large viscosity ratio is required in order for the instability to
occur, and that the instability is suppressed completely for large enough density differences
between the two layers. For large enough density differences, driving buoyancy forces asso-
ciated with the gravitational spreading of the lubricating layer under its own weight become
more pronounced, and stabilise the flow completely. For lower density differences, for which
the system is unstable, this mechanism provides for wavelength selection, stabilising the flow
for large wavenumbers in contrast to intermediate wavenumbers. This indicates that the hydro-
dynamic interactions of the two layers of viscous fluid alone suffice in stabilising the flow for
large wavenumbers, giving rise to wavelength selection. This contrasts with classical Saffman-
Taylor viscous fingering, which is instead stabilised by other mechanisms, such as the effects of
surface tension, or fluid mixing, for example. Such effects, however, may further stabilise the
flow considered in this work, likely leading to smaller growth rates for large wavenumbers and
smaller critical wavenumbers.

We also found evidence of the role of the source flux in the onset of these fingering insta-
bilities. In particular, the flow is unstable only when the source flux of the upper layer is large
enough relative to that of the lower layer, which is consistent with available experimental ob-
servations when the intruding fluid is supplied from below, for various rheologies, and from
above.

Our observations may shed light on the appearance and possible suppression mechanisms
of similar fingering instabilities found in nature and industry at various length and time scales,
modulo the influence of secondary effects such as surface tension, or fluid mixing, for instance.
Examples include drug-mucus interactions in nasal drug/vaccine delivery, the manufacture of
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patterned substrates and the interaction of dissimilar lava flows, for example.
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Chapter 4

Dynamics and stability of a thin film of
fluid spreading over a lubricated inclined
plane

4.1 Introduction

Having investigated the dynamics and instability of axisymmetric viscous gravity currents on
a horizontal plane, we now extend our analysis to consider the behaviour of such currents on
an inclined substrate. Introducing a slope alters the force balance governing the flow: while
on a horizontal plane the motion is driven purely by the hydrostatic pressure gradient owing to
gravity acting vertically, an inclined plane introduces a component of gravity acting tangentially
to the substrate. We find this additional driving force promotes the flow instabilities examined
in Chapter 3.

While similar in setup, we note the difference between non-porous viscous fingering of a
thin film flowing down a lubricated plane, considered in this chapter, and fingering of a driven
spreading film down a non-lubricated substrate (Huppert, 1982a; Troian et al., 1989). While
the former requires a viscosity contrast for instabilities to occur and is independent of surface
tension, for the latter, there is no viscosity contrast and surface tension is key. The experimental
study of Huppert (1982a) demonstrated that a fixed-volume single-layer viscous gravity current
flowing down a slope can break into capillary-controlled rivulets at large times, exhibiting either
finger-like or triangular sawtooth patterns. Building on this, the stability analysis of Troian et al.

(1989) demonstrated that perturbations near the capillary ridge at the intruding front can grow
and evolve into transverse fingering. In the latter analysis, the advancing front was pre-wetted
by a precursor film to resolve the moving contact line problem whilst effectively capturing the
influence of surface tension. Their analysis emphasized the key role of the interaction between
surface tension and viscous forces in selecting the characteristic wavelength of the instability.

We also note the difference between the two-layer fingering instabilities examined in this

63
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chapter, which are frontal instabilities, and instabilities owing to viscosity stratification (Yih,
1967; Balmforth et al., 2003), which are longitudinal instabilities. First examined for two super-
posed layers of Newtonian viscous fluids (Yih, 1967) and later examined for power-law fluids
(Balmforth et al., 2003), it was shown that a that viscosity contrast can drive nonlinear interfacial
wave formation, even in the absence of inertia, i.e., at low Reynolds numbers. These instabilities
are purely longitudinal, with waves forming at the interface between the two layers in the direc-
tion of the flow. In contrast, the instabilities examined in this chapter are frontal instabilities, for
which protrusions grow along the transverse direction, orthogonal to the flow. The instabilities
considered in this chapter extend the analysis of (Kowal, 2021), in which two fluids of equal
density interact through one fluid intruding into and displacing the other. This study revealed
the emergence of transverse interfacial patterns and identified conditions under which fingering
instabilities may arise.

The focus of this chapter is to investigate the instability that arises at the nose of an intruding
fluid advancing over another fluid layer flowing down an inclined plane. The structure of the
chapter is as follows. First, we present the governing equations describing the dynamics of the
two-layer flow down an inclined plane. The equations are equivalent to those of Shah et al.

(2021) except for the difference in setup: here, we focus on flows for which the intruding layer
is supplied from above while Shah et al. (2021) considered flows for which the intruding fluid
is supplied from below. Second, we explore the existence and properties of travelling wave
solutions, which provide a tractable framework for performing a linear stability analysis and
offer insight into the behavior of more general, time-evolving flows. Third, we carry out a linear
stability analysis of these travelling wave solutions to identify the conditions under which the
interface becomes unstable and to characterize the nature of the resulting instabilities across
parameter space.

4.2 Theoretical Development

Consider the flow of two thin layers of incompressible, Newtonian viscous fluid with homoge-
neous viscosities 𝜇𝑢 and 𝜇𝑙 , and densities 𝜌𝑢 and 𝜌𝑙 flowing down an inclined plane as illustrated
in Figure 4.1. Here, the subscripts 𝑢 and 𝑙 correspond to quantities characterising the upper and
lower layers, respectively.

The rigid surface inclined at an angle 𝛼 is initially coated with a uniform depth ℎ𝑠 of
the lower-layer fluid. The total and lower-layer thicknesses are represented by 𝐻 (𝑥, 𝑦, 𝑡) and
ℎ(𝑥, 𝑦, 𝑡), respectively.

The two fluids are supplied from the upstream far field (𝑥 → −∞). The upper-layer fluid
occupies the upstream region up to the intrusion front (nose), denoted by 𝑥 = 𝑥𝑁 (𝑦, 𝑡), while the
lower-layer fluid occupies the whole domain. The intrusion front is a moving boundary dividing
the domain into two regions: a two-layer region, −∞ < 𝑥 < 𝑥𝑁 (𝑡), including both viscous fluids,
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Figure 4.1: Schematic of a thin film of viscous fluid spreading over a lubricated inclined surface.

and a single-layer region, 𝑥 ≥ 𝑥𝑁 (𝑡), involving only the lower-layer fluid.
In developing a theoretical framework, we neglect the effects of inertia, resulting in a bal-

ance between viscous and buoyancy forces. Additionally, we assume that the effects of surface
tension and mixing at the fluid interfaces are negligible (Huppert, 1982a). We also assume that
the horizontal length scale is much greater than the vertical length scale, and vertical shear pro-
vides the primary resistance to flow. With these assumptions, we apply lubrication theory and
obtain the momentum equations

0 = −∇𝑝𝑖 + 𝜌𝑖𝒈+ 𝜇𝑖
𝜕2𝒖𝑖
𝜕𝑧2 , (4.1)

where 𝑝𝑖 = 𝑝𝑖 (𝑥, 𝑦, 𝑧, 𝑡) is the pressure, 𝒖𝑖 = 𝒖𝑖 (𝑥, 𝑦, 𝑧, 𝑡) is the velocity, the subscript 𝑖 = 𝑢, 𝑙
denotes the upper and lower layers, respectively, 𝒈 = 𝑔(sin𝛼e𝑥 − cos𝛼e𝑧) is the acceleration
owing to gravity, and e𝑥 and e𝑧 are the unit basis vectors in the 𝑥- and 𝑧-directions, respectively.

The two-layer region

Assuming that vertical shear stresses provide the primary resistance to the flow, the pressure
within the two layers is hydrostatic so that

𝑝𝑢 = cos𝛼𝜌𝑢𝑔(𝐻 − 𝑧), (4.2)

𝑝𝑙 = cos𝛼[𝜌𝑢𝑔(𝐻 − ℎ) + 𝜌𝑙𝑔(ℎ− 𝑧)] . (4.3)

We assume the upper layer to be stress-free at its upper surface, so that

𝜇𝑢
𝜕𝒖𝑢
𝜕𝑧

= 0 at 𝑧 = 𝐻. (4.4)
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Furthermore, we assume continuity of velocity and shear stress at the interface between the
upper and lower fluids, leading to

𝒖𝑙 = 𝒖𝑢 at 𝑧 = ℎ, (4.5)

𝜇𝑙
𝜕𝒖𝑙
𝜕𝑧

= 𝜇𝑢
𝜕𝒖𝑢
𝜕𝑧

at 𝑧 = ℎ. (4.6)

Additionally, we assume the no-slip condition at the inclined substrate,

𝒖𝑙 = 0 at 𝑧 = 0. (4.7)

By solving the momentum equations (4.1) for the velocity profile under boundary conditions
(4.4)–(4.7) and integrating across the depth of each layer, we derive the following expressions
for the depth-integrated fluxes of upper- and lower-layer fluids, per unit width,

𝒒𝑢 = − 𝜌𝑙𝑔 cos𝛼
𝜇𝑙 (1+D)

[
1
3
M (∇𝐻 − tan𝛼𝒆𝒙) (𝐻 − ℎ)3+

1
2
(D∇ℎ+∇𝐻 − (1+D) tan𝛼𝒆𝒙) (𝐻 − ℎ)ℎ2 + (∇𝐻 − tan𝛼𝒆𝒙) (𝐻 − ℎ)2ℎ

]
, (4.8)

𝒒𝑙 = − 𝜌𝑙𝑔 cos𝛼
𝜇𝑙 (1+D)

[
1
3
(D∇ℎ+∇𝐻 − (1+D) tan𝛼𝒆𝒙) ℎ3 + 1

2
(∇𝐻 − tan𝛼𝒆𝒙) (𝐻 − ℎ)ℎ2

]
, (4.9)

where ∇ = 𝜕/𝜕𝑥𝒆𝒙 + 𝜕/𝜕𝑦𝒆𝒚. Equations (4.8) and (4.9) for the fluxes differ from the equivalent
equations (2.10) and (2.11) for the flow over a horizontal substrate, derived in Chapter 2, in the
tan𝛼𝒆𝑥 terms, with equivalence between them when 𝛼 = 0. These expressions are equivalent to
those of Shah et al. (2021).

The dimensionless parameters

M =
𝜇𝑙

𝜇𝑢
, (4.10)

D =
𝜌𝑙 − 𝜌𝑢
𝜌𝑢

, (4.11)

define the viscosity ratio and relative density difference, respectively, as in Chapters 2–3. The
evolution of the upper surface and the interface between the two fluids is determined by the mass
conservation equations

𝜕 (𝐻 − ℎ)
𝜕𝑡

+∇ · 𝒒𝑢 = 0, (4.12)

𝜕ℎ

𝜕𝑡
+∇ · 𝒒𝑙 = 0, (4.13)

for the upper and lower layers, respectively. These equations, alongside equations (4.8)–(4.9) for
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the depth-integrated fluxes, determine the evolution of the free surfaces in the two-layer region.

The single-layer region

To obtain the flux of fluid in the single-layer region, we set 𝐻 = ℎ in equation (4.9), indicating
that there is no upper-layer fluid, yielding

𝒒𝑙 = −𝜌𝑙𝑔
𝜇𝑙

1
3
(∇ℎ− tan𝛼𝒆𝒙) ℎ3, (4.14)

in line with Huppert (1982a). In addition, the evolution of the free surface is governed by the
usual mass conservation equation

𝜕ℎ

𝜕𝑡
+∇ · 𝒒𝑙 = 0. (4.15)

This equation determines how the free surface changes over time in the single-layer region.

Boundary conditions

To simplify the system, we assume the free surfaces 𝐻 and ℎ do not vary in the 𝑦-direction, so
that 𝒒𝑢 = 𝑞𝑢𝒆𝒙 and 𝒒𝑙 = 𝑞𝑙𝒆𝒙 . Below, we outline the corresponding boundary conditions and
matching conditions across the intrusion front.

At the upstream far field, we assume that both the upper and lower layers approach a uniform
thickness, so that

lim
𝑥→−∞

𝐻 = 𝐻∞, (4.16)

lim
𝑥→−∞

ℎ = ℎ∞. (4.17)

These are equivalent to

lim
𝑥→−∞

𝑞𝑢 = 𝑞𝑢∞, (4.18)

lim
𝑥→−∞

𝑞𝑙 = 𝑞𝑙∞, (4.19)

where

𝑞𝑢∞ =
𝜌𝑙𝑔 sin𝛼
𝜇𝑙 (1+D)

[
1
3
M (𝐻∞− ℎ∞)3 + 1

2
(1+D) (𝐻∞− ℎ∞)ℎ2

∞+ (𝐻∞− ℎ∞)2ℎ∞

]
, (4.20)

𝑞𝑙∞ =
𝜌𝑙𝑔 sin𝛼
𝜇𝑙 (1+D)

[
1
3
(1+D)ℎ3

∞+ 1
2
(𝐻∞− ℎ∞)ℎ2

∞

]
. (4.21)

The thickness and the flux of the lower layer are continuous across the intrusion front 𝑥 =
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𝑥𝑁 (𝑦, 𝑡), so that

[ℎ]+− =0 at 𝑥 = 𝑥𝑁 , (4.22)

[𝑞𝑙]+− =0 at 𝑥 = 𝑥𝑁 . (4.23)

Furthermore, at the front, the flux of the upper layer vanishes, so that

𝑞𝑢 = 0 at 𝑥 = 𝑥𝑁 . (4.24)

The front evolves kinematically, leading to the following evolution equation for the frontal po-
sition

𝜕𝑥𝑁

𝜕𝑡
= lim
𝑥→𝑥−

𝑁

[
𝑞𝑢

𝐻 − ℎ −
𝒒𝑢 · 𝒆𝑦
𝐻 − ℎ

𝜕𝑥𝑛

𝜕𝑦

]
. (4.25)

Lastly, in the downstream far field, we approach a uniform thickness ℎ𝑠, so that:

lim
𝑥→∞

ℎ = ℎ𝑠 . (4.26)

The boundary conditions and matching conditions detailed in this section close the problem for
the evolution of the two liquid layers.

4.3 Nondimensionalization

We proceed by focusing on two-dimensional flows, in which variations in 𝑦 are negligible. To
identify the key dimensionless parameters governing the flow, we non-dimensionalize the system
using the intrinsic length, height, flux and time scales

X =
ℎ𝑠

tan𝛼
, (4.27)

H = ℎ𝑠, (4.28)

Q =
𝜌𝑙𝑔 cos𝛼

𝜇𝑙

1
3
H4

X , (4.29)

T =
XH
Q , (4.30)
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respectively. We define non-dimensional variables by

𝑥 =
𝑥

X , (4.31)

[𝐻̂, ℎ̂] = [𝐻, ℎ]
H , (4.32)

[𝑞𝑢, 𝑞𝑙] =
[𝑞𝑢, 𝑞𝑙]

Q , (4.33)

𝑡 =
𝑡

T . (4.34)

Upon dropping hats, we obtain the dimensionless system

𝜕 (𝐻 − ℎ)
𝜕𝑡

+ 𝜕𝑞𝑢
𝜕𝑥

= 0, (4.35)

𝜕ℎ

𝜕𝑡
+ 𝜕𝑞𝑙
𝜕𝑥

= 0, (4.36)

where

𝑞𝑢 = − 1
1+D

[
M

(
𝜕𝐻

𝜕𝑥
−1

)
(𝐻 − ℎ)3+

3
2

(
D 𝜕ℎ

𝜕𝑥
+ 𝜕𝐻
𝜕𝑥

− (1+D)
)
(𝐻 − ℎ)ℎ2 +3

(
𝜕𝐻

𝜕𝑥
−1

)
(𝐻 − ℎ)2ℎ

]
, (4.37)

𝑞𝑙 = − 1
1+D

[ (
D 𝜕ℎ

𝜕𝑥
+ 𝜕𝐻
𝜕𝑥

− (1+D)
)
ℎ3 + 3

2

(
𝜕𝐻

𝜕𝑥
−1

)
(𝐻 − ℎ)ℎ2

]
, (4.38)

upstream of the intrusion front, −∞ < 𝑥 < 𝑥𝑁 , and

𝑞𝑢 = 0, (4.39)

𝑞𝑙 = −
(
𝜕ℎ

𝜕𝑥
−1

)
ℎ3. (4.40)

downstream of the intrusion front, 𝑥𝑁 ≤ 𝑥 <∞.
The boundary conditions and matching conditions simplify to

𝐻→ 𝐻∞, ℎ→ ℎ∞, as 𝑥→−∞, (4.41)

[ℎ]+− = 0, [𝑞𝑙]+− = 0, 𝑞𝑢 = 0, at 𝑥 = 𝑥𝑁 , (4.42)
𝑑𝑥𝑁

𝑑𝑡
→ 𝑞𝑢

𝐻 − ℎ as 𝑥→ 𝑥−𝑁 , (4.43)

ℎ→ 1 as 𝑥→∞. (4.44)
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4.4 Numerical scheme and results

We obtain the numerical solution of the system (4.35)–(4.44) by discretizing the spatial deriva-
tive using the finite difference method on uniform grids. Specifically, second-order central dif-
ference schemes are employed at interior grid points, while fifth-order one-sided schemes are
used at the boundaries. Following this spatial discretisation, the boundary conditions are im-
posed by enforcing the prescribed boundary fluxes or thicknesses, then we proceed to solve for
the evolution of the free surfaces using the ODE solver ode15s in MATLAB. Numerical ex-
periments suggest that the long-time behaviour of the PDE system is insensitive to the initial
condition. This is evidenced, for example, in Figure 4.2(b) presented later, where a sharp tran-
sient response is observed at very early times (𝑡 ≪ 1), before the solution relaxes towards its
long-time dynamics. Consequently, the numerical solver is initialised using an arbitrary smooth
thickness profile.

The principal difficulty in the numerical integration arises from the singular behaviour in
the two-layer region ahead of the intruding front 𝑥𝑁 , where the spatial derivatives of the layer
thicknesses, 𝜕𝐻/𝜕𝑥 and 𝜕ℎ/𝜕𝑥, diverge, in a manner analogous to the horizontal substrate case
discussed in §2. To resolve this issue, a change of spatial variables is introduced in the PDE
solver, we define new variables 𝑡 = 𝑡 and 𝑥 = (𝑥𝑁 − 𝑥)𝑎, with 𝑎 > 0, and rewrite all dependent
variables in the two-layer region as functions of (𝑥, 𝑡) instead of (𝑥, 𝑡).

Based on the asymptotic analysis for the horizontal substrate case presented in §2, a natural
choice is 𝑎 = 1/2. Numerical experiments confirm that this choice is effective in regularising
the solution near the front. Under this transformation, the layer thicknesses ahead of the nose
behave approximately linearly in 𝑥, and the previously divergent spatial derivatives are rendered
finite.

To ensure a finite computational domain, we replace −∞ in the upstream far-field boundary
condition (4.41) with a moving boundary 𝑥1(𝑡), and ∞ in the downstream condition (4.44) with
𝑥2(𝑡). The speeds of these pseudo-infinity boundaries, d𝑥1/d𝑡 and d𝑥2/d𝑡, are chosen to be mod-
erate so that 𝑥1(𝑡) and 𝑥2(𝑡) remain sufficiently close to the nose position 𝑥𝑁 (𝑡), ensuring that the
computational grid does not become excessively large over time. The initial nose position 𝑥𝑁 (0)
is selected to lie well within the domain bounded by 𝑥1(0) and 𝑥2(0). The system is initialized
with a sufficiently smooth thickness profile.

The robustness of the numerical solutions was verified by varying the numerical parameters,
including, for example, the grid size, the position and speed of the moving boundaries, the
tolerances of ode15s, and confirming that the results are insensitive to these choices.

The numerical solution for an illustrative set of parameters is depicted in Figure 4.2. Fig-
ure 4.2(a) shows the evolution of the thickness profile near the nose over the time interval
1 ≤ 𝑡 ≤ 10. This interval is chosen to be sufficiently away from 0 to eliminate transient effects
from the initial conditions, as our primary interest lies in the long-term behaviour of the PDE.
We observe a square-root singularity at the nose, consistent with the findings of §2. In fact, the
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Figure 4.2: The numerical solutions when M = 2, D = 1, 𝑞𝑢∞ = 1 and 𝑞𝑙∞ = 1. (a) The thickness
profiles for the specified time interval 1≤ 𝑡 ≤ 10. (b) The lower-layer thickness at the nose versus
time. (c) The nose position versus time.
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asymptotic analysis is identical to that presented in Appendix A. Figure 4.2(b) demonstrates that
the lower-layer thickness at the nose approaches a constant value, while Figure 4.2(c) indicates
that the nose propagates at a constant speed, approximately given by 𝑞𝑢∞/(𝐻∞− ℎ∞). Although
it is not conclusive from Figure 4.2(a) whether the waveform converges to a fixed shape, the
observations in Figures 4.2(b) and 4.2(c) provide strong evidence that the system may admit a
travelling-wave solutions. This prompted us to search for travelling-wave solutions around the
intrusion front 𝑥𝑁 .

4.5 Travelling-wave solutions

To search for a travelling-wave solution with constant velocity 𝑣, we recast the equations in the
frame of the front by changing variables 𝜉 = 𝑥 − 𝑥𝑁 (𝑡), where 𝑑𝑥𝑁/𝑑𝑡 = 𝑣. Substituting this
transformation into (4.35)–(4.40) yields

−𝑣(𝐻 − ℎ)′+ 𝑞′𝑢 = 0, (4.45)

−𝑣ℎ′+ 𝑞′𝑙 = 0, (4.46)

where ′ represents 𝑑/𝑑𝜉 and the fluxes are given by

𝑞𝑢 = − 1
1+D

[
M (𝐻′−1) (𝐻 − ℎ)3+

3
2
(Dℎ′+𝐻′− (1+D)) (𝐻 − ℎ)ℎ2 +3(𝐻′−1) (𝐻 − ℎ)2ℎ

]
, (4.47)

𝑞𝑙 = − 1
1+D

[
(Dℎ′+𝐻′− (1+D)) ℎ3 + 3

2
(𝐻′−1) (𝐻 − ℎ)ℎ2

]
, (4.48)

upstream of the intrusion front −∞ < 𝜉 < 0, and

𝑞𝑢 = 0, (4.49)

𝑞𝑙 = − (ℎ′−1) ℎ3, (4.50)

downstream of the intrusion front 0 ≤ 𝜉 <∞.
It can be shown that if we integrate (4.45)–(4.46) with respect to 𝜉, we have

−𝑣(𝐻 − ℎ) + 𝑞𝑢 = 0, (4.51)

−𝑣ℎ+ 𝑞𝑙 = −𝑣+1, (4.52)

where the values on the right-hand-side can be obtained from the boundary conditions (4.43)
and (4.44), respectively.
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Additionally, from the upstream far-field boundary conditions (4.41), we have

−𝑣(𝐻∞− ℎ∞) + 𝑞𝑢∞ = 0, (4.53)

−𝑣ℎ∞+ 𝑞𝑙∞ = −𝑣+1, (4.54)

where the upstream far-field fluxes are given by

𝑞𝑢∞ =
1

1+D

[
M (𝐻∞− ℎ∞)3 + 3

2
(1+D)(𝐻∞− ℎ∞)ℎ2

∞+3(𝐻∞− ℎ∞)2ℎ∞

]
, (4.55)

𝑞𝑙∞ =
1

1+D

[
(1+D)ℎ3

∞+ 3
2
(𝐻∞− ℎ∞)ℎ2

∞

]
. (4.56)

These conditions determine the velocity of the travelling wave, given by

𝑣 =
𝑞𝑢∞

𝐻∞− ℎ∞
=
𝑞𝑙∞−1
ℎ∞−1

. (4.57)

The first equality matches the result obtained in Figure 4.2(c) (demonstrating the velocity of the
nose), while the second equality establishes a necessary condition for the existence of global
travelling wave solutions, ensuring that the wave profile remains invariant over time. The de-
rived condition implies that the values of 𝑞𝑢∞ and 𝑞𝑙∞ need to be chosen carefully to ensure
a travelling-wave solution. Based on numerical solutions of the PDE as shown in Figure 4.2,
one can infer that when the far-field boundary conditions do not satisfy (4.57), the region near
the nose still develops a travelling-wave solution that satisfies (4.57), but with adjusted values
of the upstream and downstream far-field flux. For example, Figure 4.2(a) provides evidence
that the travelling-wave solution near the nose, were it to be extended beyond the vicinity of the
nose, would satisfy the flux conditions at the upstream far field but not at the downstream far
field. Also, in cases where no global travelling-wave solution exists, it is expected that there
are regions away from the nose where the time derivative cannot be eliminated in the governing
equations after transforming to the frame of the nose. A global travelling-wave solution only
emerges when the far-field boundary conditions of the system happen to satisfy the derived con-
dition (4.57), making it a special case. In summary, we find that travelling wave solutions exist
at least locally near the nose.

4.6 Numerical scheme for the base flow

To solve equations (4.47)–(4.56), which are 1st-order ODEs describing the traveling-wave so-
lutions, we impose boundary conditions 𝐻 = 𝐻∞ and ℎ = ℎ∞ at the upstream far field, where
(4.57) must be satisfied. To solve this system numerically, we employ Mathematica’s in-built
numerical solver NDSolve, by performing the following steps.
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Travelling wave solution

Figure 4.3: Comparison between the numerical solutions of the PDE system and travelling-wave
system, parameter used: M = 2, D = 1, 𝑞𝑢∞ = 19, 𝑞𝑙∞ = 6.73705. Solid red: long-term PDE
numerical solution. Dashed blue: travelling-wave ODE numerical solution.

First, we initiate the numerical integration of the two-layer region at an arbitrary value of
𝜉. Since the system consists of only autonomous ODEs, and so the choice of the initial 𝜉 is
arbitrary, the resulting thickness profile can be shifted so that the nose is located at 𝜉 = 0. The
integration is initialized with [𝐻, ℎ] = [𝐻∞, ℎ∞] + 𝝐1, where 𝝐1 is a small 2-dimensional vector
added to perturb the starting thickness from the steady state [𝐻, ℎ] = [𝐻∞, ℎ∞].

If the value of 𝝐1 is appropriately chosen, the numerical integration is expected to approach
a square-root singularity in the thicknesses at the nose position 𝜉 = 0. The integration is termi-
nated just before the nose, at 𝜉 = −𝛿, where 𝛿 is a sufficiently small number, as the gradients
𝐻′ and ℎ′ diverge at the nose. The local asymptotic analysis in Appendix A is then used to
determine the variable values just after the nose, at 𝜉 = 0+, which serve as the initial conditions
for the integration of the single-layer region. This integration is carried out until the lower-layer
thickness ℎ becomes sufficiently close to 1.

The numerically computed travelling wave solutions compare well with the numerical so-
lution of the full PDEs, given that the parameter values are aligned, as depicted in Figure 4.3,
where 𝑞𝑢∞ is fixed and 𝑞𝑙∞ is computed using (4.57). This comparison confirms that, given a
prescribed downstream thickness, a global travelling-wave solution can be obtained by selecting
the upstream far-field thicknesses 𝐻∞ and ℎ∞ to satisfy condition (4.57).

4.7 Discussion of results for the base flow

4.7.1 Existence of multiple solutions

Upon exploring the parameter space, we find that for given values of M and 𝐷, multiple solu-
tions can exist when the upper-layer far-field flux 𝑞𝑢∞ is sufficiently low. For instance, when
M = 2 and 𝐷 = 1, there exists a unique travelling-wave solution when 𝑞𝑢∞ = 19, as shown in
Figure 4.3. In contrast, when 𝑞𝑢∞ = 1, infinitely many solutions appear, three examples of which
are illustrated in Figure 4.4. All of these multiple travelling-wave solutions are of the same wave
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Figure 4.4: Examples of multiple numerical solutions found with the given parameter values
M = 2, D = 1 and 𝑞𝑢∞ = 1.
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Figure 4.5: Phase portraits of the autonomous ODE system (4.51)–(4.52) in two regimes: (a) the
multiple-solution case (Figure 4.4) and (b) the unique-solution case (Figure 4.3). The red (blue)
point denotes the upstream (downstream) far-field fixed point. Solid black curves represent
solution orbits. The dashed line corresponds to the constraint 𝐻 = ℎ, which separates the single-
layer case (𝐻 = ℎ) from the two-layer case (𝐻 > ℎ). The red curves indicate the remaining stable
and unstable manifolds of the saddle fixed point.
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speed.
Mathematically, the multiplicity of travelling-wave solutions originates from a change in the

stability of the upstream far-field fixed point (𝐻∞, ℎ∞) in the phase plane. Figure 4.5 presents
representative phase portraits for two parameter regimes: (a) the multiple-solution case and (b)
the unique-solution case. The red and blue points denote the upstream and downstream far-
field fixed points, respectively, while the solid black curves represent solution trajectories. The
arrows indicate the positive 𝜉-direction. The downstream far-field fixed point, corresponding
to ℎ = 1, remains stable throughout the parameter range considered. In contrast, the upstream
far-field fixed point undergoes a qualitative change in stability as the control parameter 𝑞𝑢∞
varies. Although the Jacobian matrix at this fixed point can be computed analytically, its com-
plexity prevents us from obtaining an explicit criterion for this change in stability. As shown
in Figure 4.5(a), the upstream far-field fixed point is unstable when 𝑞𝑢∞ is sufficiently low.
This instability causes nearby trajectories to diverge and ultimately approach the stable down-
stream far-field fixed point along different paths (the black curves), resulting in multiple valid
travelling-wave solutions. In contrast, as shown in Figure 4.5(b), when 𝑞𝑢∞ is sufficiently high,
the upstream far-field fixed point becomes a saddle point. In this case, the system admits a
unique heteroclinic orbit connecting the two fixed points. All nearby orbits in the vicinity of
the upstream far-field fixed point decay toward this heteroclinic trajectory, resulting in a unique
travelling-wave solution.

4.7.2 Large upper-layer flux limit

Since a unique solution exists when the upper-layer far-field flux 𝑞𝑢∞ is sufficiently large, we
are particularly interested in the asymptotic regime where 𝑞𝑢∞ →∞. By substituting this limit
into the governing equations and performing an asymptotic analysis, we obtain the following
results.

First, the wave speed is given by

𝑣 ∼ 𝑞
2/3
𝑢∞M1/3

(1+D)1/3 . (4.58)

The upstream lower-layer far-field flux becomes

𝑞𝑙∞ ∼ 3𝑞1/3
𝑢∞

2(1+D)2/3M1/3 . (4.59)

The upstream far-field thicknesses satisfy

𝐻∞ ∼ 𝑞
1/3
𝑢∞ (1+D)1/3

M1/3 , (4.60)

ℎ∞ ∼ 1. (4.61)
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(𝑎)

(𝑏)

Figure 4.6: The (a) wave speed 𝑣 and (b) upstream far-field lower-layer flux 𝑞𝑙∞ for 𝑞𝑢∞ ≫
1 when M = 2 and D = 1. The asymptotic scalings (4.58) and (4.59) are displayed via the
reference triangles, confirming consistency with the slope when 𝑞𝑢∞ ≫ 1.

Furthermore, the two eigenvalues of the Jacobian matrix at the upstream far-field fixed point
are given by

𝜆1 ∼ − (3+ (−3+ ℎ∞)𝑣) (1+D)
ℎ∞M

𝐻3
∞, (4.62)

𝜆2 ∼
(3+ (−3+ ℎ∞)𝑣) (1+D)

ℎ∞M
, (4.63)

which confirms that the fixed point is a saddle, as 𝜆1 and 𝜆2 are real and of opposite signs.
Figure 4.6 shows the wave speed 𝑣 and upstream far-field lower-layer flux 𝑞𝑙∞ in the limit

𝑞𝑢∞ →∞. The numerical results verify the above asymptotic predictions.

4.7.3 Flow regimes across parameter space

We now explore the parameter space when the system has a unique solution. Three key param-
eters determine the flow: M, D, and 𝑞𝑢∞. Each of these has a distinct influence on the structure
and behaviour of the flow.

Figure 4.7 shows the thickness profile as the viscosity ratio M varies, where we observe
a noticeable change in the interaction between the upper and lower layers. An increase in M
implies that the lower layer becomes more viscous relative to the upper layer. In this case, the
upper layer exerts negligible shear stress on the underlying layer, resulting in a relatively flat
lower-layer thickness profile away from the nose. Conversely, when M is small, the upper layer
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Figure 4.7: Wave profiles for varies viscosity ratios: (a) M = 0.4, (b) M = 2, (c) M = 10, when
D = 1 and 𝑞𝑢∞ = 100.
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Figure 4.8: Wave profiles for various density differences: (a) D = 0.2, (b) D = 1, (c) D = 5,
when M = 2 and 𝑞𝑢∞ = 100.
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Figure 4.9: Wave profiles for various upper-layer upstream far-field fluxes: (a) 𝑞𝑢∞ = 20, (b)
𝑞𝑢∞ = 60, (c) 𝑞𝑢∞ = 100, when M = 2 and D = 1.
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is more viscous, leading to more pronounced variations in the lower-layer thickness profile. In
addition, at low values of M, the intruding front tends to exhibit a linear rather than a singular
structure, which aligns with the analogous observation reported in Dauck et al. (2019).

Figure 4.8 illustrates how the thickness profile changes with variations in the density dif-
ference D. Decreasing D means that the density difference between the two layers becomes
smaller, and so the upper layer becomes less and less buoyant relative to the lower layer, which
causes a greater proportion of the upper-layer fluid to submerge into and invade the lower layer
near the nose. On the other hand, increasing D results in the opposite effect: a smaller propor-
tion of the upper-layer fluid submerges into the lower layer near the nose. We also observe that
increasing D leads to a flatter upper surface of the lower layer, which is because the gravitational
force within the lower layer outweighs that of the upper layer in this limit.

Finally, Figure 4.9 depicts the effects of varying the upper-layer upstream far-field flux 𝑞𝑢∞.
As 𝑞𝑢∞ increases, the combined thickness of the two layers increases correspondingly, in line
with the asymptotic result (4.60). Furthermore, thickness gradients downstream of the nose be-
come sharper owing to a more substantial contrast in the far-field flux, and, therefore, thickness,
upstream and downstream of the nose.

4.8 Stability analysis

We perform a linear stability analysis in a manner similar to that of §3. We aim to investigate
how small perturbations evolve with the base, travelling-wave flow. For simplicity, we focus
solely on the case where a unique solution exists. Specifically, we consider scenarios in which
the upstream flux in the upper layer is sufficiently greater than the downstream flux in the lower
layer, thereby ensuring the existence of a unique long-time travelling-wave solution.

As in §3, we restrict attention to real eigenvalues, motivated by experimental observations
of closely related configurations that exhibit monotonic temporal behaviour. However, in the
present setting the base state is a travelling wave, and temporal oscillations cannot be ruled
out a priori. Although there is currently no direct experimental evidence indicating oscillatory
instabilities in this regime, the possibility of complex eigenvalues cannot be excluded. Investi-
gating this further, either through targeted experiments or by explicitly searching for complex
eigenvalues, would be a natural direction for future work.

To facilitate this analysis, we linearize the transformed problem by defining

𝑋 (𝑥, 𝑦, 𝑡) ≡ 𝑋 (Λ,𝑌 , 𝜏) = 𝑋0(Λ) + 𝜖 𝑋̃1(Λ,𝑌 , 𝜏) + ... (4.64)

for dependent variables 𝑋 = 𝐻, ℎ, 𝑞𝑢, 𝑞𝑙 , where 𝜖 is an arbitrary small number, 𝑋0 is the basic-
state solution, 𝑋̃1 is the small-amplitude perturbation to 𝑋0 and the independent variable trans-
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formation is given by

Λ =


−(𝑥𝑁 (𝑦, 𝑡) − 𝑥)1/2 when 𝑥 < 𝑥𝑁 (𝑡),

𝑥− 𝑥𝑁 (𝑦, 𝑡) when 𝑥 ≥ 𝑥𝑁 (𝑡),
(4.65)

𝑌 = 𝑦, (4.66)

𝜏 = 𝑡. (4.67)

Here, the transformation of Λ=−(𝑥𝑁 (𝑡) −𝑥)1/2 for 𝑥 < 𝑥𝑁 (𝑡) is introduced to resolve the square-
root singularity of 𝐻 and ℎ that occurs near the intrusion front within the two-layer region.

The intrusion front is linearized as

𝑥𝑁 (𝑦, 𝑡) ≡ 𝑥𝑁 (𝑌, 𝜏) = 𝑣𝜏+ 𝜖𝑥𝑁1(𝑌, 𝜏), (4.68)

where we note that 𝑥𝑁0 = 𝜈𝜏 is the position of the nose of the base flow, given it is a travelling
wave, and 𝑥𝑁1 is the small-amplitude perturbation to the intrusion front.

Furthermore, to analyse the evolution of the perturbations, we seek normal mode solutions
of the form

𝑋̃1(Λ,𝑌 , 𝜏) = 𝑋1(Λ)𝑒𝜎𝜏+𝑖𝑘𝑌 , (4.69)

𝑥𝑁1(𝑌, 𝜏) = 𝑥𝑁1𝑒
𝜎𝜏+𝑖𝑘𝑌 . (4.70)

Substituting the above transformation, we obtain the governing equations for the perturbations
of the form

𝜎𝒗 = 𝑳𝒗, (4.71)

where 𝒗 = [𝐻1, ℎ1, 𝑥𝑁1]𝑇 denotes the thickness perturbation vector, and 𝑳 = 𝑳(𝐻0, ℎ0, 𝐻
′
0, ℎ

′
0, 𝑘)

is a linear operator.
The accompanying boundary conditions are

𝐻1 → 0 as Λ→−∞, (4.72)

ℎ1 → 0 as Λ→−∞, (4.73)

ℎ1 → 0 as Λ→∞, (4.74)

[ℎ1]+− = 0 at Λ = 0, (4.75)

[𝑞𝑙1]+− = 0 at Λ = 0, (4.76)

𝑞𝑢1 → 0 as Λ→ 0−, (4.77)

𝜎𝑥𝑁1 −
𝑞𝑢1

𝐻0 − ℎ0
+ 𝑞𝑢0(𝐻1 − ℎ1)

(𝐻0 − ℎ0)2 → 0 as Λ→ 0−. (4.78)

The equations and boundary conditions specified here form an eigenvalue problem for the un-
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known growth rate 𝜎, which we wish to find numerically, given a specified wavenumber 𝑘 , in
the following section.

4.9 Numerical scheme for the perturbations

The numerical scheme employed here is similar to the one described in §3. The approach in-
volves shooting backwards from the downstream far field, using initial guesses for 𝑥𝑁1, 𝜎, and
𝑞𝑙1(∞). If these guessed values are accurate, the solution will recover the correct boundary con-
ditions at the upstream far field, namely 𝐻1(−∞) = 0 and ℎ1(−∞) = 0, evidenced by the zero
determinant of the corresponding error matrix, as described in §3.

Several challenges arise in implementing this method, which we resolve as follows. First,
although we transformed the independent variable from 𝑥 to Λ to eliminate the square-root
singularity in the thickness profiles 𝐻 and ℎ, the nose position Λ = 0 remains a singular point.
At this location, the expressions for 𝐻′′

1 , ℎ′′1 as well as 𝐻′′
0 , ℎ′′0 exhibit an indeterminate form 0/0.

This issue is resolved by employing an asymptotic approximation to smoothly pass through the
nose position.

Second, just like in §3, we aware that 𝐻1 and ℎ1 can exhibit exponential growth as Λ→±∞,
which can degrade the accuracy of the numerical solution. To mitigate this, we introduce a
rescaling of 𝐻1 and ℎ1 to decouple the exponential behaviour, by setting

[𝐻1, ℎ1] = 𝑒𝛼Λ [𝐻̂1, ℎ̂1] when Λ < 0, (4.79)

ℎ1 = 𝑒
𝛽Λ ℎ̂1 when Λ > 0, (4.80)

where the values of 𝛼 and 𝛽 are determined by solving the eigenvalue problem (4.71) in the limits
Λ→−∞ and Λ→∞, respectively. The values of 𝛼 and 𝛽 are selected as those corresponding to
the fastest growing eigenvalue in each limit. The numerical scheme is then implemented using
variables [𝐻̂1, ℎ̂1], which is of order unity at the two far fields.

To validate the numerical results, we verified that the computed solutions are invariant un-
der changes in numerical parameters, including the solver tolerance and the truncation of the
computational domain.

4.10 Stability Thresholds

In this section, we examine the onset of instability and its key characteristics, including growth
rates, the range of unstable wavenumbers, the critical wavenumber, and how these quantities
vary across the parameter space. In particular, we map the behavior of small disturbances to
the base flow in terms of three key dimensionless parameters: the viscosity ratio M, the density
difference D, and the upstream far-field upper-layer flux 𝑞𝑢∞.
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Figure 4.10: Neutral stability curve (solid) displaying the neutral viscosity ratio as a function of
the wavenumber, also showing the critical wavenumber 𝑘𝑐 (dashed), when D = 0.2 and 𝑞𝑢 = 19.

Figure 4.11: Neutral stability curve (solid) displaying the neutral density difference as a function
of the wavenumber, also showing the critical wavenumber 𝑘𝑐 (dashed), when M = 4, 𝑞𝑢 = 19,
the flow is unstable for density differences below this neutral stability curve. The flow is stable
for density differences above this neutral stability curve.

Figure 4.10 indicates that instability occurs only when the viscosity ratio M is sufficiently
large. This implies that the intruding fluid layer must be sufficiently less viscous than the un-
derlying fluid for the flow to become unstable. The critical wavenumber 𝑘𝑐, defined as the
wavenumber at which the growth rate attains its maximum value, is found to increase monoton-
ically with M.

We find that instabilities arise only when the density difference D is sufficiently small, as
shown in Figure 4.11. This suggests that the intruding fluid layer must be only slightly less dense
than the underlying fluid for the flow to become unstable. That is, buoyancy forces associated
with the upper layer are stabilising, as seen in Chapter 3 for flows over a horizontal substrate.
Additionally, the critical wavenumber 𝑘𝑐 decreases with D.

We find that the flow is unstable only when the upstream far-field upper-layer flux 𝑞𝑢∞ is
sufficiently large, as shown in Figure 4.12. That is, a substantial flux of the intruding fluid is
required for the onset of instability. The critical wavenumber 𝑘𝑐 is also observed to increase with
𝑞𝑢∞. Recalling that the upstream far-field lower-layer flux 𝑞𝑙∞ is determined by condition (4.57)
and scales as 𝑞1/3

𝑢∞ in the limit 𝑞𝑢∞ →∞, as illustrated in Figure 4.6, we note that for large 𝑞𝑢∞,
an increase in 𝑞𝑢∞ leads to a corresponding increase in the total upstream far-field flux. These
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Figure 4.12: Neutral stability curve (solid) displaying the neutral density difference as a function
of the wavenumber, also showing the critical wavenumber 𝑘𝑐 (dashed), when D = 0.4, M = 2.

Figure 4.13: The growth rate versus the wavenumber for various densities differences D =

0.2,0.4,0.6,0.8,1.2,1.6,2 when M = 4, 𝑞𝑢 = 19.

results collectively imply that a large total upstream flux is necessary for the flow to become
unstable.

These findings indicate that the stability threshold exhibits similar trends to that of axisym-
metric intrusions discussed in §3, suggesting a shared underlying mechanism driving the insta-
bility. However, numerical results also reveal that flow on the inclined plate is more prone to
instability than axisymmetric flow on a horizontal substrate. This is evidenced by the fact that
the critical parameter values required to trigger instability are less restrictive for flows down a
plane. For instance, when all other parameters are of order unity, instability on the inclined
plane occurs for viscosity ratios greater than about 1 (Figure 4.10), whereas for axisymmetric
spreading over a horizontal substrate, M must exceed approximately 100 (Figure 3.4).

This observation is analogous to related fingering of gravity-driven single-layer films (Hup-
pert, 1982a), in which a constant-volume flow down an inclined plane becomes unstable and
develops a characteristic fingering pattern. In contrast, single-layer flows over a horizontal sub-
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strate remain stable (Huppert, 1982b), highlighting that a streamwise component of gravity is
necessary to induce fingering of single-layer spreading films. However, we note that fingering
instabilities of gravity-driven single-layer films arise from capillary effects at the contact line,
which is a mechanism that is fundamentally different from the one we consider here. The in-
stability reported in this chapter arises from a viscosity contrast and is independent of capillary
effects.

Lastly, we compare the eigenvalue branches in the two configurations. Figure 4.13 shows
the dependence of the growth rate 𝜎 on the wavenumber 𝑘 for different density differences
D in flow down an inclined plane, while Figure 3.3 presents the corresponding variation of 𝜎
with 𝑘 for different viscosity ratios M in the axisymmetric flow over a horizontal substrate. A
notable distinction between the two cases arises at zero wavenumber. For the two-dimensional
inclined-plane configuration, the growth-rate curve originates at the origin, indicating that the
zero-wavenumber mode has zero growth rate. This behaviour is a direct consequence of the
translational invariance of the travelling-wave base state under uniform shifts along the direction
of propagation, which gives rise to a neutral mode at 𝑘 = 0. In contrast, for the axisymmetric
horizontal-substrate configuration, the growth rate at zero wavenumber is −1. This reflects a
symmetry-induced time-shift mode associated with the self-similar base state, which is invariant
under shifts of the time origin in physical time. The difference in behaviour at 𝑘 = 0 is therefore
purely structural, arising from the distinct symmetries of the two systems. Specifically, the two
formulations employ different time parametrisations. In the inclined-plane case, the growth rate
is defined with respect to physical time, whereas in the axisymmetric horizontal-substrate case
the stability analysis is carried out in logarithmic (similarity) time.

4.11 Conclusions

We explored the dynamics of a viscous gravity current intruding over a denser, underlying thin
film of viscous fluid down an inclined plane, fed by a uniform far-field line source. Both layers
spread as long and thin films of fluid, which we model using lubrication theory.

Numerical simulations of the full system of governing equations reveal the emergence of
a travelling-wave solution: both the thickness and the speed of the intrusion front approach
a constant as time progresses. Motivated by this, we derived a necessary condition for the
existence of travelling-wave solutions in terms of far-field quantities.

These travelling-wave solutions depend upon three key dimensionless parameters: the vis-
cosity ratio and relative density difference between the two layers and the dimensionless flux
of the intruding layer. Interestingly, we observed the presence of multiple solutions when the
upper-layer flux is sufficiently small in the far field. In contrast, a unique solution emerges when
the upper-layer flux is large, as confirmed by examining the eigenvalues of the Jacobian at the
upstream, far-field fixed point. An asymptotic analysis reveals a power-law relationship between
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key quantities in this large-flux limit. A range of flow behaviours is possible, with pronounced
variations in the lower-layer depth near the nose when the density difference between the two
layers is small. The upper layer exerts negligible shear stress on the lower layer when the vis-
cosity ratio is large, leading to a relatively uniform thickness of the lower layer in this limit,
except near the intrusion front. The horizontal length scale of the transition region over which
the film adjusts between the upstream and downstream uniform far-field solutions is largest for
small viscosity ratios, small density differences and small dimensionless upper-layer fluxes.

A linear stability analysis of the travelling wave solutions revealed conditions under which
such flows an prone to viscous fingering. The stability thresholds are qualitatively similar to
those of the axisymmetric, horizontal flow analogue: instabilities occur for large viscosity ratios,
small density differences, and large upstream fluxes. However, flows down an inclined plane are
more susceptible to instability, with low thresholds of instability, which we attribute to higher
hydrostatic pressure gradients owing to a streamwise component of gravity associated with the
slope of the substrate.
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Chapter 5

Mathematical modelling of haemodialysis
and haemodiafiltration

5.1 Introduction

In this chapter, we turn to exploring the fluid mechanics and solute transport of haemodialy-
sis (HD) and haemodiafiltration (HDF) at the scale of a single fibre of a typical dialyser. To
date, non-CFD models of dialysis have not resolved the fluid flow within the dialyser, instead
imposing ad-hoc assumptions on its uniformity. Additionally, these "box" models have not ac-
counted for the geometry of fibres, which are more realistically represented by axisymmetric
hollow cylindrical shells. In this chapter, we develop a mathematical framework in which we
fully model the fluid flow, arrive at a consistent set of reduced equations that capture the key
dynamics and recover existing results from the literature as special cases in different asymptotic
limits. In particular, we extend the existing "box" models for dialysis including HD and HDF,
with an emphasis on rigorous mathematical formulation and the ability to capture both diffusive
and convective transport. In contrast to existing literature, which describes the whole dialyser in
terms of a “box” model, in which fluid flux is assumed to be uniform, we model each fibre as an
axisymmetric hollow cylinder, representative of typical dialysers and resolve spatial variations
in the flow field. For completeness, we also provide an equivalent model for two-dimensional
(flat-layer) fibres, most closely resembling existing "box" models commonly used in the litera-
ture and dialysis industry. We will justify the adequacy of the simple "box" model and outline
the underlying assumptions that support their use. To reduce model complexity and gain ana-
lytical insight, we employ asymptotic techniques for low-permeability fibre membranes. The
underlying fluid mechanics are formulated using lubrication theory as appropriate for the length
and time scales involved, while transport across the semipermeable membrane is modelled using
principles from linear non-equilibrium mass transfer dynamics. In particular, we capture solute
transport within the blood and dialysate using advection-diffusion equations. We aim to for-
malize and extend existing models from the literature into a consistent mathematical framework
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and develop new asymptotic formulae estimating the effectiveness of dialysis therapy for low-
permeability membranes, including convective effects. Our work provides a unifying framework
faithful to the underlying hydrodynamics of the system and gives credence to prior ad-hoc as-
sumptions made in the literature. It also allows for higher-order corrections to be made to the
leading-order results, as required. This work also serves as a foundation for future, more de-
tailed predictive modelling efforts in dialysis research, including exploring dialysis treatment
under non-steady flow, which would not be possible without resolving for the fluid flow as with
other ad-hoc “box” models.

5.2 Anatomy of a dialyser

A dialyser consists of roughly ten thousand hollow fibres, as pictured in Figure 1.6. Blood flows
in the interior of each fibre, while dialysate flows in the exterior, typically in the opposite direc-
tion to the blood flow to maximise diffusive solute transport. We provide estimates of parameter
values describing the dialyser based on the manufacturer’s technical and in-vitro performance
data for the Braun Diacap® Pro 19H Dialyser, laboratory measurements and inferred estimates
in table 5.1.

Quantities describing the dialyser geometry known from the manufacturer’s technical and
in-vitro performance data include the fibre internal radius 𝑟𝑏, fibre external radius 𝑟𝑚, fibre
membrane thickness 𝛿, and membrane surface area 𝑆. Quantities measured in the laboratory
using a Braun Diacap® Pro 19H Dialyser include the dialyser length 𝐿 occupied by blood and
dialysate and the dialyser radius 𝑅.

We infer an estimate for the number 𝑁 of fibres by comparing the manufacturer-provided
membrane surface area, 𝑆, to the total internal surface area of the fibres, 2𝜋𝑟𝑏𝐿𝑁 , which gives
𝑁 = 𝑆/(2𝜋𝑟𝑏𝐿).

The fibres are generally arranged in a hexagonal lattice, as shown in Figure 5.2. We assume
that the fibres are packed sufficiently loosely that the outer hexagonal edge can be approximated
by a circle of radius 𝑟𝑑 , as depicted in figure 5.1. We approximate the outer radius 𝑟𝑑 by relating
the total area of all the compartments, 𝜋𝑟2

𝑑
𝑁 , to the cross-sectional area of the dialyser, 𝜋𝑅2,

which gives the effective outer dialysate radius 𝑟𝑑 = 𝑅/
√
𝑁 .

5.3 Fluid flow

Consider the flow of two thin layers of viscous fluid in a hollow porous fibre, as depicted in the
schematic of Figure 5.1. Blood flows in the interior of the hollow fibre in a domain of cross
section 𝒟𝑏 and outer boundary Γ𝑏, while dialysate flows in the exterior of the fibre in a domain
of cross section 𝒟𝑑 and outer boundary Γ𝑑 . We denote quantities referring to the blood and
dialysate by the subscripts 𝑏 and 𝑑, respectively, and define the velocity of the two fluids by 𝒖𝑙 ,
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Quantity Symbol Value
Dialyser geometry
Dialyser length occupied by blood and dialysate† 𝐿 0.26m
Dialyser radius† 𝑅 0.0225m
Dialyser cross-sectional area† 𝜋𝑅2 1.6×10−3 m2

Number of fibres‡ 𝑁 =𝑉𝑏/(𝜋𝑟2
𝑏
𝐿) 14,691

Total blood volume∗ 𝑉𝑏 120ml

Fibre geometry
Fibre internal radius∗ 𝑟𝑏 100𝜇m
Fibre external radius∗ 𝑟𝑚 137𝜇m
Fibre membrane thickness∗ 𝛿 37𝜇m
Effective outer dialysate radius‡ 𝑟𝑑 = 𝑅/

√
𝑁 186𝜇m

Blood cross-sectional area per fibre 𝐴𝑏 = 𝜋𝑟𝑏
2 3.14×10−8 m2

Dialysate cross-sectional area per fibre 𝐴𝑑 = 𝜋(𝑟2
𝑑
− 𝑟2

𝑚) 6.17×10−8 m2

Membrane properties
Ultrafiltration coefficient∗ 𝐾𝑢 𝑓 97 ml h−1 mmHg−1

Mass transfer-area coefficient for urea∗ 𝐾𝑜𝐴 1415 ml min−1

Total effective membrane hydraulic conductivity(5.26) K = 𝐾𝑢 𝑓 /(𝑁𝐿) 5.3×10−14 m3 s kg−1

Effective membrane diffusivity(5.106) 𝐷 = 𝐾𝑜𝐴/(𝑁𝐿) 6.2×10−9 m2 s−1

Flow rates
Total dialysate flux through the dialyser∗ 𝑁𝑞𝑑0 −500ml/min
Total blood flux through the dialyser∗ 𝑁𝑞𝑏0 300ml/min
Dialysate flux per fibre‡ 𝑞𝑑0 −0.034ml/min
Blood flux per fibre‡ 𝑞𝑏0 0.02 ml/min

Fluid properties
Dialysate kinematic viscosity 𝜈𝑑 10−6 m2 s−1

Blood kinematic viscosity 𝜈𝑏 4×10−6 m2 s−1

Dialysate density 𝜌d 1.000gml−1

Blood density 𝜌b 1.057gml−1

Table 5.1: Parameters describing the flow and solute transport of blood and dialysate through
the dialyser.
∗ Manufacturer’s technical and in-vitro performance data for the Braun Diacap® Pro 19H Dialyser.
† Measured in the laboratory using the Braun Diacap® Pro 19H Dialyser.
‡ Inferred based on the manufacturer’s technical data and laboratory measurements.
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Figure 5.1: Schematic of a single hollow fibre, separating blood and dialysate, in the axisym-
metric geometry. Blood flows from left to right in the interior (𝑟 < 𝑟𝑏, shaded pink) of the fibre
membrane and dialysate flows from right to left in the exterior (𝑟𝑏 < 𝑟 < 𝑟𝑑 , shaded blue) of the
fibre membrane.

rb rd

Dialyser

Fibre
membrane

Blood

Dialysate

Figure 5.2: Schematic representation of the cross-section of a typical dialyser (left-hand panel),
consisting of thousands of hollow fibres arranged in a hexagonal lattice, together with an inset
(right-hand panel) depicting a single hollow fibre, the radius 𝑟𝑏 of the fibre, and the effective
radius 𝑟𝑑 of the hexagonal region surrounding each fibre.
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the pressure by 𝑝𝑙 and the dynamic viscosity by 𝜇𝑙 , where 𝑙 = 𝑏 or 𝑙 = 𝑑. We define a coordinate
system 𝒙̂ = (𝑥, 𝒓) in which the distance along the fibre membrane is measured in 𝑥, while the
coordinate vector 𝒓 is orthogonal to the fibre membrane. We define ∇ as the gradient in 𝒓 and
express the fluid velocity as 𝒖𝑙 = (𝑢𝑙 , 𝒗𝑙), in terms of the axial velocity 𝑢𝑙 , along the fibre, and
the transmembrane velocity 𝒗𝑙 , normal to the fibre membrane. We also define 𝒏𝑙 as the outward
unit normal vector to 𝒟𝑙 .

The fibres in a typical dialyser are arranged in a hexagonal lattice and are of a circular-
cross section so that 𝒟𝑏 is a circle and 𝒟𝑑 a hexagon. However, for loosely-packed fibres, it
is sufficient to assume that 𝒟𝑑 is circular as well. As such, we assume that the flow and solute
transport within the blood and dialysate is axisymmetric. A convenient choice of coordinate
system is, therefore, the cylindrical coordinate system in which the radial position vector 𝒓 is
spanned by the coordinates (𝑟, 𝜃) and the flow is independent of the azimuthal coordinate 𝜃,
so that 𝒗𝑙 = 𝑣𝑙𝒆𝑟 . We denote the outer boundary Γ𝑙 of the blood and dialysate by 𝑟 = 𝑟𝑙 in the
axisymmetric geometry. For completeness, we also refer to the two-dimensional coordinate
system in which the fibre membrane is flat and 𝒓 is spanned by Cartesian coordinates (𝑦, 𝑧),
given its use in the dialysis literature, where the flow is independent of 𝑧, so that 𝒗𝑙 = 𝑣𝑙𝒆𝑦. In
the two-dimensional geometry, we denote the outer boundary Γ𝑙 of the blood and dialysate by
𝑦 = ℎ𝑙 and refer to a typical thickness𝑊 in the 𝑧-direction.

5.3.1 Lubrication theory

Given the thin aspect ratio and the length and time scales of the flow, we assume the effects of
inertia are negligible and that the assumptions of lubrication theory hold. We also assume that
the viscosity of blood plasma and dialysate are equal, so that 𝜇𝑏 = 𝜇𝑑 = 𝜇. Therefore, to leading
order, the flow within the blood and dialysate satisfies the axial momentum equation

0 = −𝜕𝑝𝑙
𝜕𝑥

+ 𝜇∇2𝑢𝑙 , (5.1)

describing a balance of viscous forces. The transmembrane momentum balance yields

0 = −∇𝑝𝑙 , (5.2)

so that the pressure is uniform across the cross section 𝒟𝑙 . As the fluid is incompressible, the
velocity field satisfies the continuity equation

𝜕𝑢𝑙

𝜕𝑥
+∇ · 𝒗𝑙 = 0. (5.3)

For the purpose of examining the fluid flow, we assume that the membrane thickness is
negligible and express boundary conditions either side of the membrane as those applied at Γ𝑏.
However, we note that a precise derivation of bulk equations describing solute transport across
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the fibre membrane requires a treatment in which the membrane thickness is nonzero, for which
we refer the reader to §5.4.

For the blood, we assume that the fluid velocity is bounded within 𝒟𝑏. Alternatively, in the
two-dimensional geometry, we assume that the flow is symmetric about 𝑦 = 0. We also assume
that the blood and dialysate satisfy the no-slip condition at the membrane, so that

𝑢𝑏 = 𝑢𝑑 = 0 on Γ𝑏 . (5.4)

We also assume that the transmembrane velocity satisfies the membrane Darcy law

𝑣𝑏 = 𝑣𝑑 = 𝐾 (Δ𝑝−ΔΠ) on Γ𝑏, (5.5)

when in contact with the porous membrane. Here, Δ𝑝 = 𝑝𝑏 − 𝑝𝑑 refers to the fluid pressure
jump, ΔΠ = Π𝑏 −Π𝑑 refers to the osmotic pressure jump across the membrane, and 𝐾 refers
to the effective hydraulic conductivity through the membrane. For a detailed derivation of the
integrated Darcy’s law (5.5), we refer the reader to §5.4.2, where a version of this equation,
(5.65), was derived in the axisymmetric geometry.

The remaining boundary conditions involve symmetry and no penetration through the outer
boundary of the dialysate, so that

∇𝑢𝑑 · 𝒏𝑑 = 0 and 𝒗𝑑 · 𝒏𝑑 = 0 on Γ𝑑 , (5.6)

Explicitly, at the outer boundary Γ𝑑 , we have 𝒏𝑑 = 𝒆𝑟 in the axisymmetric geometry and 𝒏𝑑 = 𝒆𝑦

in the two-dimensional geometry.
Solving the axial momentum equation (5.1) for the axial velocity subject to the above bound-

ary conditions gives

𝑢𝑏 =


1

4𝜇

(
𝑟2 − 𝑟2

𝑏

) 𝜕𝑝𝑏
𝜕𝑥

(axisymmetric),

1
2𝜇

(
𝑦2 − ℎ2

𝑏

) 𝜕𝑝𝑏
𝜕𝑥

(two-dimensional),
(5.7)

within the blood and

𝑢𝑑 =


1

4𝜇

(
𝑟2 − 𝑟2

𝑏 +2𝑟2
𝑑 log

(𝑟𝑏
𝑟

)) 𝜕𝑝𝑑
𝜕𝑥

(axisymmetric),

1
2𝜇

(𝑦− ℎ𝑏) (𝑦+ ℎ𝑏 −2ℎ𝑑)
𝜕𝑝𝑑

𝜕𝑥
(two-dimensional),

(5.8)

within the dialysate.
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Integrating the continuity equation (5.3) yields the transmembrane velocity

𝑣𝑏 =


− 1

16𝜇
𝑟

(
𝑟2 −2𝑟2

𝑏

) 𝜕2𝑝𝑏

𝜕𝑥2 (axisymmetric),

− 1
6𝜇
𝑦

(
𝑦2 −3ℎ2

𝑏

) 𝜕2𝑝𝑏

𝜕𝑥2 (two-dimensional),

(5.9a)

within the blood and

𝑣𝑑 =


1

16𝜇𝑟

[(
𝑟2
𝑑 − 𝑟

2
) (
𝑟2 −2𝑟2

𝑏 +3𝑟2
𝑑

)
+4𝑟2𝑟2

𝑑 log
(
𝑟

𝑟𝑏

)
+4𝑟4

𝑑 log
(
𝑟𝑏

𝑟𝑑

)]
𝜕2𝑝𝑑

𝜕𝑥2

1
6𝜇

(ℎ𝑑 − 𝑦)
(
𝑦2 −2ℎ𝑑 (𝑦+ ℎ𝑑) +6ℎ𝑏ℎ𝑑 −3ℎ2

𝑏

) 𝜕2𝑝𝑑

𝜕𝑥2

(5.9b)

within the dialysate, for axisymmetric and two-dimensional geometries, respectively.
We note that the pressure condition (5.5) has not been applied to determine the axial and

transmembrane velocities. It will instead be used to determine a global condition on fluid flux,
which we define by

𝑞𝑙 =

∫
𝒟𝑙

𝑢𝑙 d𝐴. (5.10)

Explicitly, integrating the axial velocity yields the fluid flux

𝑞𝑏 = −R−1
𝑏

𝜕𝑝𝑏

𝜕𝑥
, (5.11a)

within the blood and
𝑞𝑑 = −R−1

𝑑

𝜕𝑝𝑑

𝜕𝑥
, (5.11b)

within the dialysate, where

R𝑏 =


8𝜇
𝜋𝑟4

𝑏

(axisymmetric),

3𝜇
𝑊ℎ3

𝑏

(two-dimensional),
(5.11c)

and

R𝑑 =


8𝜇
𝜋

[
4𝑟2
𝑏𝑟

2
𝑑 − 𝑟

4
𝑏 −3𝑟4

𝑑 −4𝑟4
𝑑 log

(
𝑟𝑏

𝑟𝑑

)]−1
(axisymmetric),

3𝜇
𝑊 (ℎ𝑑 − ℎ𝑏)3 (two-dimensional),

(5.11d)

represent the hydraulic resistance per unit length (along the fibre) of the blood and dialysate
channel, respectively.

We derive global mass conservation equations by integrating the continuity equation (5.3)
across the cross-section 𝒟𝑙 and applying the two-dimensional divergence theorem to get that the
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divergence of flux,
𝜕𝑞𝑙

𝜕𝑥
= −

∫
𝜕𝒟𝑙

𝒗𝑙 · 𝒏𝑙 d𝑠, (5.12)

depends on the mass transferred into the domain 𝒟𝑙 . Applying the pressure condition (5.5)
expresses the divergence of flux within the blood,

𝜕𝑞𝑏

𝜕𝑥
= −

∫
Γ𝑏

𝐾 (Δ𝑝−ΔΠ) d𝑠 = −K(Δ𝑝−ΔΠ), (5.13)

in terms of the fluid and osmotic pressure jump across the membrane, and the total effective
membrane hydraulic conductivity, given by

K =

∫
Γ𝑏

𝐾 d𝑠 =


2𝜋𝑟𝑏𝐾 (axisymmetric),

𝑊𝐾 (two-dimensional).
(5.14)

To derive a similar equation for the divergence of flux within the dialysate, we additionally
impose the no-penetration boundary condition (5.6) and find that

𝜕𝑞𝑑

𝜕𝑥
= −

∫
𝜕𝒟𝑑

𝒗𝑑 · 𝒏𝑑 d𝑠 = −
∫
Γ𝑑

𝒗𝑑 · 𝒏𝑑 d𝑠+
∫
Γ𝑏

𝐾 (Δ𝑝−ΔΠ) d𝑠 =K(Δ𝑝−ΔΠ). (5.15)

Therefore, the total flux is conserved – that is,

𝜕𝑞𝑏

𝜕𝑥
+ 𝜕𝑞𝑑
𝜕𝑥

= 0. (5.16)

Integrating once in 𝑥 gives that the total flux is uniform,

𝑞𝑏 + 𝑞𝑑 = 𝑎, (5.17)

where 𝑎 is a function of time 𝑡 only, which can be determined by applying appropriate boundary
conditions at either end of the dialyser.

We eliminate pressure by differentiating the global mass conservation equation (5.13) and
using the relationships (5.11a) and (5.11b) between flux and pressure to obtain the equation

𝜕2𝑞𝑏

𝜕𝑥2 =K
(
R𝑏𝑞𝑏 −R𝑑𝑞𝑑 +

𝜕 (ΔΠ)
𝜕𝑥

)
, (5.18a)

for the fluid flux within the blood and

𝜕2𝑞𝑑

𝜕𝑥2 = −K
(
R𝑏𝑞𝑏 −R𝑑𝑞𝑑 +

𝜕 (ΔΠ)
𝜕𝑥

)
, (5.18b)

within the dialysate.
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Figure 5.3: Schematics depicting the inlet and outlet flows and the inlet concentrations for blood
and dialysate for HD (𝛼 = 𝛽 = 0), pre-dilution HDF (𝛽 = 0) and post-dilution HDF (𝛼 = 0) under
counter-current and co-current configurations.

5.3.2 Fluid flow in HDF

Boundary conditions reflecting mixed pre-dilution and post-dilution HDF are given by

𝑞𝑏 = (𝛼+1)𝑞𝑏0 and 𝑞𝑑 = 𝑞𝑑0 − 𝑞𝑏0(𝛼+ 𝛽) at 𝑥 = 0, (5.19a)

𝑞𝑏 = (1− 𝛽)𝑞𝑏0 and 𝑞𝑑 = 𝑞𝑑0 at 𝑥 = 𝐿, (5.19b)

giving 𝑎 = (1− 𝛽)𝑞𝑏0 + 𝑞𝑑0, for counter-current flow, and

𝑞𝑏 = (𝛼+1)𝑞𝑏0 and 𝑞𝑑 = 𝑞𝑑0 at 𝑥 = 0, (5.19c)

𝑞𝑏 = (1− 𝛽)𝑞𝑏0 and 𝑞𝑑 = 𝑞𝑑0 + (𝛼+ 𝛽)𝑞𝑏0 at 𝑥 = 𝐿, (5.19d)
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giving 𝑎 = (1+𝛼)𝑞𝑏0 + 𝑞𝑑0, for co-current flow. As shown in Figure 5.3, the limit 𝛽 = 0 corre-
sponds to pre-dilution HDF and 𝛼 = 0 corresponds to post-dilution HDF. Note that the boundary
conditions for counter-current and co-current flow are equivalent when 𝛼 = 𝛽 = 0.

5.3.3 Fluid flux

Solving for the fluid flux gives

𝑞𝑏 = 𝑞𝑏0
cosh(𝛾(𝑥/𝐿−1/2))

cosh(𝛾/2) + 𝑞𝑏,conv + 𝑞𝑏,pre + 𝑞𝑏,post, (5.20a)

𝑞𝑑 =


(1− 𝛽)𝑞𝑏0 + 𝑞𝑑0 − 𝑞𝑏 (counter-current),

(1+𝛼)𝑞𝑏0 + 𝑞𝑑0 − 𝑞𝑏 (co-current),
(5.20b)

where

𝑞𝑏,conv =
𝑞𝑏0 + 𝑞𝑑0

1+R𝑏/R𝑑

(
1− sinh(𝛾𝑥/𝐿) + sinh(𝛾(1− 𝑥/𝐿))

sinh(𝛾)

)
+K

∫ 𝐿

0
𝐺 (𝑥, 𝜉) 𝜕ΔΠ

𝜕𝜉
d𝜉, (5.20c)

is the convective contribution owing to flow across the membrane with the integral term reflect-
ing flow owing to a jump in osmotic pressure,

𝑞𝑏,pre =


𝛼𝑞𝑏0

sinh(𝛾(1− 𝑥/𝐿))
sinh(𝛾) (counter-current),

𝛼𝑞𝑏0
1

1+R𝑏/R𝑑

(
R𝑏
R𝑑

sinh(𝛾(1− 𝑥/𝐿))
sinh(𝛾) − sinh(𝛾𝑥/𝐿)

sinh(𝛾) +1
)

(co-current),

(5.20d)
is the contribution owing to pre-dilution HDF and

𝑞𝑏,post =


𝛽𝑞𝑏0

1+R𝑏/R𝑑

(
sinh(𝛾(1− 𝑥/𝐿))

sinh(𝛾) − R𝑏 sinh(𝛾𝑥/𝐿)
R𝑑 sinh(𝛾) −1

)
(counter-current),

−𝛽𝑞𝑏0
sinh(𝛾𝑥/𝐿)

sinh(𝛾) (co-current),
(5.20e)

is the contribution owing to post-dilution HDF. Here, 𝛾 = 𝐿
√︁
K(R

𝑏
+R

𝑑
) and the Green’s func-

tion 𝐺 is given by

𝐺 (𝑥, 𝜉) =


𝐿 sinh(𝛾(𝜉/𝐿−1)) sinh(𝛾𝑥/𝐿)

𝛾 sinh(𝛾) for 𝑥 < 𝜉,

𝐿 sinh(𝛾𝜉/𝐿) sinh(𝛾(𝑥/𝐿−1))
𝛾 sinh(𝛾) for 𝑥 > 𝜉.

(5.21)

In deriving the solution (5.20) for 𝑞𝑏, we applied the boundary conditions 𝑞𝑏 = 𝑞𝑏0 at 𝑥 = 0, 𝐿.
We note that while 𝑞𝑏0 is constant in typical medical settings, the prefactor 𝑎, appearing in
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the second term on the right-hand side of (5.20), may vary in time if the dialysate is delivered
time-dependently.

5.3.4 Membrane fluid flux

In coupling fluid flow to solute transport, it is instructive to express the total flux 𝑉𝑚 of fluid
through the membrane in terms of the fluid flux along the fibre 𝑞𝑏 and 𝑞𝑑 , the former of which
features in the bulk solute transport equations of §5.4. Explicitly, the total membrane fluid flux
per unit axial length is defined by

𝑉𝑚 =

∫
Γ𝑏

𝑣𝑚 d𝑠 =K(Δ𝑝−ΔΠ) =


2𝜋𝑟𝑏𝑣𝑚 (axisymmetric),

𝑊𝑣𝑚 (two-dimensional),
(5.22)

where 𝑣𝑚 is the Darcy velocity through the membrane. Applying continuity of velocity at the
membrane boundary Γ𝑏 on the side of the blood relates the total membrane fluid flux per unit
length to the transmembrane velocity at the membrane, as given by the first equality in the
equation

𝑉𝑚 =


2𝜋𝑟𝑏𝑣𝑚 =

𝜋𝑟4
𝑏

8
𝜕2𝑝𝑏

𝜕𝑥2 = −𝜕𝑞𝑏
𝜕𝑥

(axisymmetric),

𝑊𝑣𝑚 =
𝑊ℎ3

𝑏

3
𝜕2𝑝𝑏

𝜕𝑥2 = −𝜕𝑞𝑏
𝜕𝑥

(two-dimensional).

(5.23)

To derive the remaining equalities in (5.23), we apply the expression (5.9) for the transmembrane
velocity within the blood in terms of the pressure gradient and the expression (5.11) for the flux
in terms of pressure gradient. Equation (5.23) explicitly relates the membrane fluid flux per unit
length to the divergence of flux, thus coupling fluid flow to solute transport as required in §5.4.

5.3.5 Ultrafiltration

The permeability 𝑘 of the fibre membrane and the total effective membrane hydraulic conduc-
tivity K are often expressed in the dialyser manufacturing industry in terms of the ultrafiltration
coefficient 𝐾𝑢 𝑓 – a parameter more commonly used in practice. The ultrafiltration coefficient
quantifies how easily fluid passes through a dialyser membrane under a pressure gradient. In
particular, it quantifies the ratio between the total filtration flux 𝐽𝑢 𝑓 and the pressure difference
across the membrane, and is a key parameter for characterizing the performance of a dialyser.
Explicitly, the ultrafiltration form of Darcy’s law reads

𝐽𝑢 𝑓 = 𝐾𝑢 𝑓 ⟨Δ𝑝−ΔΠ⟩ (5.24)

where ⟨·⟩ = 𝐿−1
∫ 𝐿

0 ·d𝑥 denotes the average along the length of the dialyser.
To determine the ultrafiltration coefficient 𝐾𝑢 𝑓 in terms of the measures of membrane per-
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meability described above, we relate the total dialyser filtration flux 𝐽𝑢 𝑓 to the total membrane
fluid flux 𝑉𝑚 per unit length and per fibre, as

𝐽𝑢 𝑓 = 𝑁𝐿⟨𝑉𝑚⟩, (5.25)

where 𝑁 is the number of fibres in the dialyser. Comparing the ultrafiltration form of the Darcy
law (5.24) to the membrane Darcy law (5.22) relates the ultrafiltration coefficient 𝐾𝑢 𝑓 to the total
effective membrane hydraulic conductivity K via

𝐾𝑢 𝑓 =K𝑁𝐿 =


2𝜋𝑟𝑏𝐾𝑁𝐿 (axisymmetric),

𝑊𝐾𝑁𝐿 (two-dimensional).
(5.26)

5.4 Solute transport

We denote the concentration of solute by 𝐶𝑙 , i.e. the mass of solute per unit volume, where the
subscript 𝑙 = 𝑏 and 𝑙 = 𝑑 reflects quantities evaluated within the blood and dialysate, respectively.
The transport of solute within the blood and dialysate satisfy the advection-diffusion equations

𝜕𝐶𝑙

𝜕𝑡
+ 𝜕 (𝑢𝑙𝐶𝑙)

𝜕𝑥
+∇ · (𝒗𝑙𝐶𝑙) = 𝐷 𝑙

𝜕2𝐶𝑙

𝜕𝑥2 +𝐷 𝑙∇2𝐶𝑙 , (5.27)

reflecting both advection with the flow and diffusion with solute diffusivity 𝐷 𝑙 . While complete,
the three-dimensional advection-diffusion equation is computationally expensive to solve. We,
therefore, integrate this equation across the blood and dialysate to obtain a reduced set of bulk
solute transport equations that capture the dominant transport mechanisms in §5.4.1. These bulk
equations depend upon the bulk solute transport through the membrane, which we model in
§5.4.2. We use the bulk solute flux through the membrane, determined in §5.4.2, to formulate
the bulk solute transport equations explicitly in §5.4.3.

5.4.1 Bulk solute transport

Integrating the advection-diffusion equation (5.27) for the concentration across the cross-section
𝒟𝑙 and noting that 𝒟𝑙 is independent of 𝑥 and 𝑡 gives rise to

𝜕

𝜕𝑡

∫
𝒟𝑙

𝐶𝑙 d𝐴+
𝜕

𝜕𝑥

∫
𝒟𝑙

𝑢𝑙𝐶𝑙 d𝐴 = 𝐷 𝑙

𝜕2

𝜕𝑥2

∫
𝒟𝑙

𝐶𝑙 d𝐴−
∫
𝒟𝑙

∇ · 𝒋𝑙 d𝐴, (5.28)

in terms of the local solute flux, with the contribution from radial convective transport excluded

𝒋𝑙 = 𝒗𝑙𝐶𝑙 −𝐷 𝑙∇𝐶𝑙 . (5.29)
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Applying the two-dimensional divergence theorem gives rise to

𝜕

𝜕𝑡

∫
𝒟𝑙

𝐶𝑙 d𝐴+
𝜕

𝜕𝑥

∫
𝒟𝑙

𝑢𝑙𝐶𝑙 d𝐴 = 𝐷 𝑙

𝜕2

𝜕𝑥2

∫
𝒟𝑙

𝐶𝑙 d𝐴−
∫
𝜕𝒟𝑙

𝒋𝑙 · 𝒏𝑙 d𝑠, (5.30)

where 𝒏𝑙 is the unit outwards normal vector.
We now assume that 𝐶𝑙 is uniform across 𝒟𝑙 (Villarroel et al., 1977), so that

𝐴𝑙
𝜕𝐶𝑙

𝜕𝑡
+ 𝜕 (𝐶𝑙𝑞𝑙)

𝜕𝑥
= 𝐷 𝑙𝐴𝑙

𝜕2𝐶𝑙

𝜕𝑥2 − 𝐽𝑙 , (5.31)

in terms of the membrane solute flux

𝐽𝑙 =

∫
𝜕𝒟𝑙

𝒋𝑙 · 𝒏𝑙 d𝑠, (5.32)

the fluid flux
𝑞𝑙 =

∫
𝒟𝑙

𝑢𝑙 d𝐴 = −R−1
𝑙

𝜕𝑝𝑙

𝜕𝑥
, (5.33)

and the surface area
𝐴𝑙 =

∫
𝒟𝑙

d𝐴. (5.34)

This equation is identical to the one-dimensional theory of haemodialyser in the previous litera-
ture (Waniewski, 2006; Jaffrin et al., 1981),

We now need to determine 𝐽𝑙 and to do so, we need to solve for the concentration 𝐶𝑙 in the
membrane by integrating the three-dimensional conservation equation across the membrane.

5.4.2 Fluid and solute transport within the membrane

We now account for the finite thickness of the membrane; that is, the membrane is treated as a
volumetric domain rather than an infinitesimal surface. The Darcy velocity 𝒗𝑚 and the solute
flux 𝒋𝑚 are therefore defined as fields within the membrane domain, which occupies 𝑥 ∈ [𝑥𝑏, 𝑥𝑚]
in the two-dimensional geometry and 𝑟 ∈ [𝑟𝑏, 𝑟𝑚] in the axisymmetric geometry, respectively.
All quantities within the membrane are assumed to be independent of the axial coordinate, and
hence the axial fluid flux and axial solute flux are zero. Here, we derive an expression for
solute transport across the membrane that involves the transmembrane fluid flux and the solute
concentrations on the blood and dialysate sides.

We model the membrane as a porous medium of local permeability 𝑘 so that the velocity
field is governed by Darcy’s law

𝒗𝑚 = − 𝑘
𝜇
(∇𝑝−∇Π) , (5.35)
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where
Π = 𝜎𝑅𝑇𝐶𝑚, (5.36)

is the osmotic pressure within the membrane. Here, 𝜎 is the reflection coefficient (Waniewski,
2006), 𝑅 is the gas constant and 𝑇 is the temperature. The value of 𝜎 depends on the properties
of the molecule and membrane. When 𝜎 = 1, all molecules are reflected from the membrane;
when 𝜎 = 0, all molecules pass through the membrane. We may thus refer to 1−𝜎 as the sieving
coefficient. The quantity 𝒗𝑚 refers to the Darcy velocity, or the volumetric flow rate per cross
sectional area (including the solid and pores). As such, the interstitial velocity is, in general,
larger, and given by 𝒗𝑚/𝜙, where 𝜙 is the porosity of the membrane. Darcy’s law (5.35) is
supplemented by the incompressibility condition

∇ · 𝒗𝑚 = 0. (5.37)

The solute flux through the membrane is given by

𝒋𝑚 = (1−𝜎)𝒗𝑚𝐶𝑚 −𝜙𝐷𝑚∇𝐶𝑚, (5.38)

In general, the solute satisfies the conservation equation

𝜙
𝜕𝐶𝑚

𝜕𝑡
+∇ · 𝒋𝑚 = 0, (5.39)

though it is common to assume that the flow through the membrane is in hydrodynamic equilib-
rium, so that

∇ · 𝒋𝑚 = 0. (5.40)

When the membrane thickness 𝛿 is small, it is instructive to integrate the three-dimensional
equations (5.37) (5.40) across the membrane, subject to the boundary conditions

𝐶𝑚 = 𝐶𝑏 at 𝒓 = 𝒓𝑏 and 𝐶𝑚 = 𝐶𝑑 at 𝒓 = 𝒓𝑚, (5.41)

where 𝒓 = 𝒓𝑏 and 𝒓 = 𝒓𝑚 refers to the membrane boundary on the side of the blood and dialysate,
respectively. We do so in the axisymmetric and two-dimensional geometries in the following
sections.

Axisymmetric geometry

In the axisymmetric geometry, the Darcy velocity and solute flux are in the radial direction, so
that

𝒗𝑚 = 𝑣𝑚𝒆𝑟 and 𝒋𝑚 = 𝑗𝑚𝒆𝑟 (5.42)
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where
𝑣𝑚 = − 𝑘

𝜇

(
𝜕𝑝

𝜕𝑟
− 𝜕Π
𝜕𝑟

)
and 𝑗𝑚 = (1−𝜎)𝑣𝑚𝐶𝑚 −𝜙𝐷𝑚

𝜕𝐶𝑚

𝜕𝑟
. (5.43)

The quasi-steady conservation equations (5.37) and (5.40) become

1
𝑟

𝜕 (𝑟𝑣𝑚)
𝜕𝑟

= 0 and
1
𝑟

𝜕 (𝑟 𝑗𝑚)
𝜕𝑟

= 0. (5.44)

Integrating in 𝑟 gives that the total flux of fluid and solute through the membrane per unit axial
length,

𝑉𝑚 = 2𝜋𝑟𝑣𝑚 and 𝐽𝑚 = 2𝜋𝑟 𝑗𝑚, (5.45)

respectively, are uniform in 𝑟 ∈ [𝑟𝑏, 𝑟𝑚].
We note that the total membrane solute flux 𝐽𝑚 is equal to the total solute flux 𝐽𝑏 from the

blood into the membrane, since

𝐽𝑏 =

∫
𝜕𝒟𝑏

𝒋𝑏 · 𝒏𝑏 d𝑠 =
∫
𝜕𝒟𝑏

𝒋𝑚 · 𝒏𝑏 d𝑠 =
∫ 2𝜋

0
𝑟 𝑗𝑚 d𝜃 = 2𝜋𝑟 𝑗𝑚 = 𝐽𝑚, (5.46)

and is equal in magnitude and opposite in sign to the total solute flux 𝐽𝑑 from the dialysate into
the membrane, since

𝐽𝑑 =

∫
𝜕𝒟𝑑

𝒋𝑑 · 𝒏𝑑 d𝑠 =
∫
𝜕𝒟𝑑

𝒋𝑚 · 𝒏𝑑 d𝑠 = −
∫ 2𝜋

0
𝑟 𝑗𝑚 d𝜃 = −2𝜋𝑟 𝑗𝑚 = −𝐽𝑚 . (5.47)

Here, we have used that 𝑟 𝑗𝑚 is independent of 𝑟 and that 𝒏𝑙 is the outward normal to 𝒟𝑙 , so that
𝒏𝑏 = 𝒆𝑟 and 𝒏𝑑 = −𝒆𝑟 . We have also applied the solute flux continuity conditions

𝒋𝑏 · 𝒏𝑏 = 𝒋𝑚 · 𝒏𝑏 = 𝑗𝑚 (at 𝑟 = 𝑟𝑏) and 𝒋𝑑 · 𝒏𝑑 = 𝒋𝑚 · 𝒏𝑑 = − 𝑗𝑚 (at 𝑟 = 𝑟𝑚). (5.48)

Next, we determine an explicit expression for the total membrane solute flux 𝐽𝑚. To this
end, we first solve for the solute concentration field 𝐶𝑚 within the membrane. Multiplying both
sides of the second equation in (5.43) by 2𝜋𝑟 yields

𝐽𝑚 = (1−𝜎)𝑉𝑚𝐶𝑚 −2𝜋𝜙𝐷𝑚 𝑟
𝜕𝐶𝑚

𝜕𝑟
. (5.49)

Differentiating both sides with respect to 𝑟 gives

0 = (1−𝜎)𝑉𝑚
𝜕𝐶𝑚

𝜕𝑟
− 𝜕

𝜕𝑟

(
2𝜋𝜙𝐷𝑚 𝑟

𝜕𝐶𝑚

𝜕𝑟

)
, (5.50)

subject to boundary conditions obtained by reduction of (5.41).

𝐶𝑚 = 𝐶𝑏 at 𝑟 = 𝑟𝑏 and 𝐶𝑚 = 𝐶𝑑 at 𝑟 = 𝑟𝑚, (5.51)
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giving the solution

𝐶𝑚 = 𝐶𝑏 − (𝐶𝑏 −𝐶𝑑)
1− (𝑟/𝑟𝑏)𝜆𝑉𝑚/2𝜋𝛿

1− (𝑟𝑚/𝑟𝑏)𝜆𝑉𝑚/2𝜋𝛿 , (5.52)

where
𝜆 =

(1−𝜎)𝛿
𝜙𝐷𝑚

and 𝛿 = 𝑟𝑚 − 𝑟𝑏 . (5.53)

The latter of these constants is the membrane thickness.
The local solute flux 𝑗𝑚, as defined by (5.43), and total solute flux 𝐽𝑚, as defined by (5.45),

can now be evaluated explicitly as

𝑗𝑚 =
𝐷

2𝜋𝑟
(𝐶𝑏 −𝐶𝑑) +

(1−𝜎)𝑉𝑚
2𝜋𝑟

[(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] , (5.54)

and
𝐽𝑚 = 𝐷 (𝐶𝑏 −𝐶𝑑) + (1−𝜎)𝑉𝑚 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] , (5.55)

or, alternatively,
𝐽𝑚 = 𝐷

(
(𝐶𝑏 −𝐶𝑑) +𝑃𝑒 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑]

)
(5.56)

where
𝐹 = 𝑓 ((1−𝜎)𝑉𝑚/𝐷) and 𝑓 (𝑃𝑒) = 1

𝑃𝑒
− 1
𝑒𝑃𝑒 −1

(5.57)

in terms of the effective membrane diffusivity

𝐷 =
2𝜋𝜙𝐷𝑚

log(1+ 𝛿/𝑟𝑏)
. (5.58)

The quantity 𝑃𝑒 = (1−𝜎)𝑉𝑚/𝐷 is a dynamic Peclet number, which characterises the importance
of advection relative to diffusion in the transport of solute across the membrane. The first term
on the right-hand side of (5.55) reflects diffusive transport across the membrane, proportional to
the difference in concentration either side of the membrane. The second term on the right-hand
side of (5.55) reflects convective transport across the membrane, proportional to the total fluid
flux 𝑉𝑚 and the effective membrane concentration

𝐶̄𝑚 = (1−𝐹)𝐶𝑏 +𝐹𝐶𝑑 . (5.59)

In the limit 𝑃𝑒 ≪ 1, advective transport is much less significant than diffusive transport across
the membrane and 𝐹→ 1/2. Therefore, the effective membrane concentration,

𝐶̄𝑚 =
1
2
(𝐶𝑏 +𝐶𝑑) , (5.60)

is the average of the blood and dialysate concentrations, reflecting that the membrane concen-
tration is determined equally by the concentration either side of the membrane.

In the limit 𝑃𝑒 ≫ 1, we have 𝐹 → 0 when 𝑉𝑚 > 0 and 𝐹 → 1 when 𝑉𝑚 < 0 so that the
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effective membrane concentration takes the value of the concentration from the upstream side
of the membrane. Explicitly,

𝐶̄𝑚 =

{
𝐶𝑏 if 𝑉𝑚 > 0
𝐶𝑑 if 𝑉𝑚 < 0

, (5.61)

reflecting that the membrane concentration is determined entirely by the concentration of the
fluid advected with the flow.

In the limit 𝛿≪ 𝑟𝑏, we have log(𝑟𝑚/𝑟𝑏) ∼ 𝛿/𝑟𝑏 and 𝑃𝑒 ∼ 𝜆𝑣𝑚, which reduces (5.54) to

𝑗𝑚 =
𝜙𝐷𝑚

𝛿
(𝐶𝑏 −𝐶𝑑) + (1−𝜎)𝑣𝑚 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] , (5.62)

where 𝐹 = 𝑓 (𝜆𝑣𝑚) and now 𝑣𝑚 is understood to be evaluated at 𝑟 = 𝑟𝑏. Equation (5.62) is
equivalent to the corresponding result (5.72) when the membrane if flat, which we derive in the
two-dimensional geometry in §5.4.2.

We derive the effective Darcy-type boundary condition (5.5) for the transmembrane fluid
velocity 𝑣𝑏 and 𝑣𝑑 either side of the membrane by integrating the equation (5.45) relating the
transmembrane velocity 𝑣𝑚 to the total fluid flux 𝑉𝑚. In particular, integrating the radial velocity
𝑣𝑚 through the membrane yields∫ 𝑟𝑚

𝑟𝑏

1
2𝜋𝑟

𝑉𝑚 d𝑟 = − 𝑘
𝜇
(𝑝−Π)

���𝑟𝑚
𝑟𝑏
, (5.63)

which reduces to
𝑉𝑚 =

2𝜋𝑘
𝜇 log(𝑟𝑚/𝑟𝑏)

(Δ𝑝−ΔΠ), (5.64)

where Δ𝑝 = 𝑝 |𝑟𝑏 − 𝑝 |𝑟𝑚 and ΔΠ =Π |𝑟𝑏 −Π |𝑟𝑚 . In the limit 𝛿≪ 𝑟𝑏, we have log(𝑟𝑚/𝑟𝑏) = log(1+
𝛿/𝑟𝑏) ∼ 𝛿/𝑟𝑏 and 𝑉𝑚 = 2𝜋𝑟𝑏𝑣𝑏 = 2𝜋𝑟𝑏𝑣𝑑 , which yields the effective membrane Darcy law

𝑣𝑏 = 𝑣𝑑 = 𝐾 (Δ𝑝−ΔΠ), (5.65)

where
𝐾 =

𝑘

𝜇𝛿
. (5.66)

The membrane Darcy law (5.65) is an integrated version of Darcy’s law that has been used in
§5.3 as a boundary condition for the radial velocity either side of the membrane.

Two-dimensional geometry

For completeness, we solve for the concentration, and thus for the solute flux within the mem-
brane, in the two-dimensional geometry and compare with the equivalent results in the axisym-
metric geometry. The Darcy velocity and solute flux are in the positive 𝑦-direction in the two-
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dimensional geometry, so that

𝒗𝑚 = 𝑣𝑚𝒆𝑦 and 𝒋𝑚 = 𝑗𝑚𝒆𝑦 (5.67)

where
𝑣𝑚 = − 𝑘

𝜇

(
𝜕𝑝

𝜕𝑦
− 𝜕Π
𝜕𝑦

)
and 𝑗𝑚 = (1−𝜎)𝑣𝑚𝐶𝑚 −𝜙𝐷𝑚

𝜕𝐶𝑚

𝜕𝑦
. (5.68)

The quasi-steady conservation equations (5.37) and (5.40) become

𝜕𝑣𝑚

𝜕𝑦
= 0 and

𝜕 𝑗𝑚

𝜕𝑦
= 0, (5.69)

and so 𝑣𝑚 and 𝑗𝑚 are independent of 𝑦. The boundary conditions (5.41) reduce to

𝐶𝑚 = 𝐶𝑏 at 𝑦 = 𝑦𝑏 and 𝐶𝑚 = 𝐶𝑑 at 𝑦 = 𝑦𝑚, (5.70)

Integrating in 𝑦 yields the solution

𝐶𝑚 = 𝐶𝑏 − (𝐶𝑏 −𝐶𝑑)
1− exp(𝜆𝑣𝑚 (𝑦− 𝑦𝑏)/𝛿)

1− exp(𝜆𝑣𝑚)
(5.71)

where 𝜆 is defined in (5.53) and 𝛿 = 𝑦𝑚 − 𝑦𝑏. The local solute flux (5.68) can now be evaluated
explicitly as (Waniewski, 2006; Villarroel et al., 1977)

𝑗𝑚 =
𝜙𝐷𝑚

𝛿
(𝐶𝑏 −𝐶𝑑) + (1−𝜎)𝑣𝑚 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] , (5.72)

where 𝐹 = 𝑓 (𝑃𝑒) and

𝑃𝑒 = 𝜆𝑣𝑚 =
(1−𝜎)𝛿𝑣𝑚
𝜙𝐷𝑚

=
(1−𝜎)𝛿𝑉𝑚
𝑊𝜙𝐷𝑚

=
(1−𝜎)𝑉𝑚

𝐷
, (5.73)

in terms of the effective two-dimensional membrane diffusivity

𝐷 =
𝜙𝐷𝑚𝑊

𝛿
, (5.74)

which agrees with the equivalent result in the axisymmetric geometry when the membrane is
sufficiently thin. Here, 𝑊 is the width (in the 𝑧-direction) of the membrane and 𝑉𝑚 =𝑊𝑣𝑚 is
the total fluid flux. Equation (5.72) has been derived previously in the literature, for example in
Waniewski (2006). The total membrane solute flux 𝐽𝑚 is given by

𝐽𝑚 =𝑊 𝑗𝑚 = 𝐷 (𝐶𝑏 −𝐶𝑑) + (1−𝜎)𝑉𝑚 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] . (5.75)
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Similarly to equivalent results in the axisymmetric geometry, it can be shown that

𝐽𝑚 = 𝐽𝑏 = −𝐽𝑑 . (5.76)

One can derive the membrane Darcy law by following similar arguments to those used in de-
riving the axisymmetric equivalent (5.65). In particular, integrating the transmembrane velocity
given by Darcy’s law (5.68) across the membrane, and using that the transmembrane velocity
𝑣𝑚 is independent of 𝑦 as given by (5.69), directly yields the same membrane Darcy law as the
axisymmetric equivalent (5.65).

5.4.3 Explicit bulk solute transport equation

Equations governing solute transport are coupled to the fluid flow through the equation (5.23)
relating the total membrane fluid flux 𝑉𝑚 to the gradient 𝜕𝑞𝑏/𝜕𝑥 of the axial flux of blood.
Equation (5.23) also feeds in to the definition of the membrane Peclet number 𝑃𝑒 through (5.57),
thus determining the effective membrane concentration (5.59) appearing as a term describing
the total membrane solute flux 𝐽𝑚 (5.55). The total membrane solute flux 𝐽𝑚 is, therefore, fully
determined in terms of the fluid flow and solute concentration either side of the membrane.

Using (5.46), (5.47) and (5.76), which relate the total solute flux within the blood and
dialysate to that within the membrane, and the explicit expressions (5.55) and (5.75) for the
total membrane solute flux in the axisymmetric and two-dimensional geometries, respectively,
the depth-integrated concentration equations (5.31) reduce to

𝐴𝑏
𝜕𝐶𝑏

𝜕𝑡
+ 𝜕 (𝐶𝑏𝑞𝑏)

𝜕𝑥
= 𝐷𝑏𝐴𝑏

𝜕2𝐶𝑏

𝜕𝑥2 − 𝐽𝑚, (5.77)

𝐴𝑑
𝜕𝐶𝑑

𝜕𝑡
+ 𝜕 (𝐶𝑑𝑞𝑑)

𝜕𝑥
= 𝐷𝑑𝐴𝑑

𝜕2𝐶𝑑

𝜕𝑥2 + 𝐽𝑚 . (5.78)

5.5 Summary of governing equations

For convenience, we summarise the key depth-integrated equations in this section. The fluid
flow is governed by the mass conservation equations

𝜕2𝑞𝑏

𝜕𝑥2 =K
(
R𝑏𝑞𝑏 −R𝑑𝑞𝑑 +

𝜕 (ΔΠ)
𝜕𝑥

)
, (5.79a)

𝜕2𝑞𝑑

𝜕𝑥2 = −K
(
R𝑏𝑞𝑏 −R𝑑𝑞𝑑 +

𝜕 (ΔΠ)
𝜕𝑥

)
, (5.79b)
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within the blood and dialysate, respectively, where

K =


2𝜋𝑟𝑏𝐾 =

2𝜋𝑟𝑏𝑘
𝜇𝛿

(axisymmetric),

𝑊𝐾 =
𝑊𝑘

𝜇𝛿
(two-dimensional),

(5.79c)

ΔΠ = Π𝑏 −Π𝑑 = 𝜎𝑅𝑇 (𝐶𝑏 −𝐶𝑑), (5.79d)

R𝑏 =


8𝜇
𝜋𝑟4

𝑏

,

3𝜇
𝑊ℎ3

𝑏

,

R𝑑 =


8𝜇
𝜋

[
4𝑟2
𝑏𝑟

2
𝑑 − 𝑟

4
𝑏 −3𝑟4

𝑑 −4𝑟4
𝑑 log

(
𝑟𝑏

𝑟𝑑

)]−1
(axisymmetric),

3𝜇
𝑊 (ℎ𝑏 − ℎ𝑑)3 (two-dimensional).

(5.79e)
The concentration within the blood and dialysate satisfies the bulk advection-diffusion equations

𝐴𝑏
𝜕𝐶𝑏

𝜕𝑡
+ 𝜕 (𝐶𝑏𝑞𝑏)

𝜕𝑥
= 𝐷𝑏𝐴𝑏

𝜕2𝐶𝑏

𝜕𝑥2 − 𝐽𝑚, (5.80a)

𝐴𝑑
𝜕𝐶𝑑

𝜕𝑡
+ 𝜕 (𝐶𝑑𝑞𝑑)

𝜕𝑥
= 𝐷𝑑𝐴𝑑

𝜕2𝐶𝑑

𝜕𝑥2 + 𝐽𝑚 . (5.80b)

where

𝐴𝑏 =


𝜋𝑟2

𝑏,

𝑊ℎ𝑏,

𝐴𝑑 =


𝜋𝑟2

𝑑 − 𝜋(𝑟𝑏 + 𝛿)
2 (axisymmetric),

𝑊 (ℎ𝑑 − ℎ𝑏 − 𝛿) (two-dimensional),
(5.80c)

and the total membrane solute flux is given by

𝐽𝑚 = 𝐷 (𝐶𝑏 −𝐶𝑑) + (1−𝜎)𝑉𝑚 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] , (5.80d)

in terms of
𝐹 = 𝑓 ((1−𝜎)𝑉𝑚/𝐷) where 𝑓 (𝑃𝑒) = 1

𝑃𝑒
− 1
𝑒𝑃𝑒 −1

, (5.80e)

and

𝐷 =


2𝜋𝜙𝐷𝑚

log(1+ 𝛿/𝑟𝑏)
,

𝜙𝐷𝑚𝑊

𝛿
,

𝑉𝑚 =


2𝜋𝑟𝑣𝑚 = −𝜕𝑞𝑏

𝜕𝑥
(axisymmetric),

𝑊𝑣𝑚 = −𝜕𝑞𝑏
𝜕𝑥

(two-dimensional).
(5.80f)

For the fluid flow, the boundary conditions are

𝑞𝑏 = 𝑞𝑏0 and 𝑞𝑑 = 𝑞𝑑0 at 𝑥 = 0, 𝐿, (5.81a)
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for HD and (5.19) for HDF. For solute transport, the boundary conditions are

𝐶𝑏 =
𝐶𝑏0

1+𝛼 at 𝑥 = 0 and 𝐶𝑑 = 𝐶𝑑0 at 𝑥 =

𝐿 (counter-current),

0 (co-current),
(5.81b)

with the final boundary condition on 𝐶𝑑 being evaluated at either the right or left endpoint
depending on whether the flows of blood and dialysate are counter-current or co-current, re-
spectively. Henceforth, we perform calculations in the axisymmetric geometry only.

5.6 Model Reduction

In this section, we outline the key assumptions made in reducing the full mathematical model
for fluid flow and solute transport.

5.6.1 Osmotic pressure

We neglect the osmotic pressure terms in the fluid mass conservation equations (5.79a) and
(5.79b) to simplify the model. This decouples the fluid flow equations (5.79a) and (5.79b) from
the bulk solute transport equations (5.80a) and (5.80b) and significantly simplifies the analysis.

This assumption is justified when the molecular weight of the solute is small (i.e., the re-
flection coefficient 𝜎 is relatively small). From the fluid flow equations (5.79a)–(5.79b) and
the definition of osmotic pressure in (5.79d), we find that the osmotic pressure term becomes
negligible when

𝜎𝑅𝑇 [𝐶]
[𝑥] [R] [𝑞] ≪ 1, (5.82)

where [·] denotes the typical value of a quantity: [𝐶] is the typical solute concentration, [𝑞]
is the typical volumetric flux, and [R] represents the typical hydraulic resistance. Under this
condition, the contribution of osmotic pressure is sufficiently small to be omitted from the fluid
flow equations.

A rough order-of-magnitude calculation can be used to verify this assumption. We consider
𝛽2-microglobulin, a representative middle-molecular-weight uremic toxin in dialysis. Accord-
ing to the Braun Diacap® Pro 19H dialyser manual, the reflection coefficient for this solute is
approximately 𝜎 = 0.3. The typical blood concentration of 𝛽2-microglobulin in chronic kidney
disease patients is about 60 mgL−1 (Dung et al., 2019). With a molecular weight of 11,800 Da,
this corresponds to a concentration

[𝐶] ≈ 60
11,800

molm−3.

Using the gas constant 𝑅 = 8.31 Jmol−1 K−1, room temperature 𝑇 = 300 K, characteristic length



112 CHAPTER 5. MATHEMATICAL MODELLING OF HD AND HDF

scale [𝑥] = 0.26 m, characteristic hydraulic resistance [R] = |R𝑏 | ≈ 1 × 1014 m−4 Pas (with
𝜇 = 𝜇𝑏), and a typical flux [𝑞] = 0.034 ml/min, the left-hand side of inequality (5.82) eval-
uates to approximately 2.6× 10−4 ≪ 1. This confirms that the assumption is satisfied under
physiologically relevant conditions, at least when a single representative toxin is considered.
In practice, the full system involves the transport of multiple solutes, and the validity of this
assumption in that more general setting would need to be assessed carefully.

5.6.2 Diffusive solute transport along the fibre

While retaining diffusive transport across the fibre membrane, we neglect diffusive transport
along the fibre, given by the diffusive term 𝐷 𝑙𝐴𝑙𝜕

2𝐶𝑙/𝜕𝑥2 in (5.80a)-(5.80b), based on the rela-
tive magnitude of convective and diffusive transport in the 𝑥-direction.

To justify this, we nondimensionalize the bulk solute transport equations (5.80a)-(5.80b)
and find that the advective term is of order [𝐶] [𝑞]/[𝑥] and the diffusive term is of order
𝐷 𝑙𝐴𝑙 [𝐶] [𝑥]2. Computing the Peclet number (advection divided by diffusion) for both the blood
and the dialysate yields

Pe𝑙 =
[𝑞] [𝑥]
𝐷 𝑙𝐴𝑙

. (5.83)

Using the typical values from Table 5.1, [𝑞] = 0.034 ml/min, [𝑥] = 0.26 m, 𝐴𝑙 ∼ O(10−8) m2,
and a diffusion coefficient 𝐷 𝑙 ∼ O(10−10) m2/s (Nanne et al., 2010) yields a resulting Peclet
number that satisfies Pe𝑙 ∼ O(108) ≫ 1, indicating that convective transport dominates and dif-
fusion is negligible, at least outside of any possible boundary layers.

The bulk solute transport equations (5.80a) and (5.80b) are second-order partial differential
equations in the spatial coordinate 𝑥, which typically require two boundary conditions in 𝑥 for
well-posedness. One boundary condition is provided at the inlet, given by (5.81b), but specifying
a physically meaningful second condition is nontrivial.

Given that Pe𝑙 ≫ 1, the second boundary condition may lead to a boundary layer near the
inlet or outlet. However, such a boundary layer does affect the dynamic of solute transport
within the bulk, so we neglect it.

Neglecting the diffusion terms reduces the governing equations to first-order in 𝑥, requiring
only one boundary condition at the inlet to ensure well-posedness.

5.6.3 Total effective membrane hydraulic conductivity K

A dimensional analysis of fluid flow equations (5.79a) and (5.79b) suggests that if

K[R][𝑥]2 ≪ 1, (5.84)

then the total effective membrane hydraulic conductivity K is relatively small and can be ne-
glected. This allows the application of asymptotic techniques to arrive at explicit estimates of
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dialysis effectiveness.
Substituting the typical values from Table 5.1, [𝑥] = 0.26 m, K = 5.3×10−14 m3 skg−1, and

choosing [R] = |R𝑏 | ≈ 1×1014 m−4 Pas (using 𝜇 = 𝜇𝑏), we obtain:

K[R][𝑥]2 =K|R𝑏 |𝐿2 ≈ 0.36. (5.85)

As this value is reasonably small, we assume that the total effective membrane hydraulic
conductivity K is relatively small in our model and employ asymptotic methods based on this
assumption to analyse and solve the governing equations. Henceforth, we use the shorthand
notation O(K) to mean O(K[R] [𝑥]2) in the context of the full nondimensionalization, and
K ≪ 1 to mean (5.84).

5.7 Steady-state clearance

The efficiency of a HD treatment protocol is measured in terms of the clearance, which is defined
as volume of plasma completely cleared of the solute per unit time,

𝒦 = 𝑞𝑏0(𝐶𝑏0 −𝐶𝑏𝐿)/𝐶𝑏0 (5.86)

where 𝐶𝑏𝐿 = 𝐶𝑏
��
𝑥=𝐿

. For convenience, we also define the relative clearance

𝒦𝑟 =𝒦/𝒦max = (𝐶𝑏0 −𝐶𝑏𝐿)/(𝐶𝑏0 −𝐶𝑑0), (5.87)

where 𝒦max = 𝑞𝑏0(𝐶𝑏0 −𝐶𝑑0)/𝐶𝑏0 is the theoretical maximum clearance a dialyser can achieve
by diffusion. The relative clearance 𝒦𝑟 describes the proportion of toxins cleared during treat-
ment relative to the maximum clearance. The limiting case in which the relative clearance
𝒦𝑟 = 1 (or 0) is one in which the treatment is fully efficient (inefficient).

Likewise, the clearance of HDF is

𝒦 = 𝑞𝑏0 [𝐶𝑏0 −𝐶𝑏𝐿 (1− 𝛽)] /𝐶𝑏0, (5.88)

and the relative clearance is

𝒦𝑟 = [𝐶𝑏0 −𝐶𝑏𝐿 (1− 𝛽)] /(𝐶𝑏0 −𝐶𝑑0) . (5.89)

We calculate the clearance under the assumption that the flow is in steady state and that
diffusion along the fibre is negligible in comparison to diffusion across the fibre, so that the bulk
solute transport equations (5.80a) and (5.80b) reduce to

𝜕 (𝐶𝑏𝑞𝑏)
𝜕𝑥

= −𝐽𝑚, (5.90)
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𝜕 (𝐶𝑑𝑞𝑑)
𝜕𝑥

= 𝐽𝑚, (5.91)

where
𝐽𝑚 = 𝐷 (𝐶𝑏 −𝐶𝑑) + (1−𝜎)𝑉𝑚 [(1−𝐹)𝐶𝑏 +𝐹𝐶𝑑] . (5.92)

5.7.1 Small-K asymptotics of HD

In this section, we aim to determine the relative clearance of HD as an expansion,

𝒦𝑟 =𝒦𝑟 ,0 +K𝒦𝑟 ,1 +O(K2), (5.93)

in K. To do so, we expand the fluid flux

𝑞𝑙 = 𝑞𝑙,0 +K𝑞𝑙,1 +O(K2) (5.94)

and concentration
𝐶𝑙 = 𝐶𝑙,0 +K𝐶𝑙,1 +O(K2), (5.95)

where 𝑙 = 𝑏, 𝑑 and solve the resulting governing equations order by order.
Expanding the solution (5.20) with 𝛼 = 𝛽 = 0 for the fluid flux in K yields the coefficients

𝑞𝑏,0 = 𝑞𝑏0, 𝑞𝑑,0 = 𝑞𝑑0, 𝑞𝑏,1 =
1
2
𝑥(𝐿−𝑥) [𝑎R𝑑 − 𝑞𝑏0(R𝑏 +R𝑑)] and 𝑞𝑑,1 =−𝑞𝑏,1. (5.96)

Expanding the transmembrane velocity,

𝑉𝑚 = −K𝑞′𝑏,1 +O(K2), (5.97)

where the prime represent derivative with respect to 𝑥. We find that 𝑉𝑚 is zero at leading or-
der, reflecting that there is no flow advecting the solute across the membrane in the regime in
which the membrane permeability is zero (K = 0). In this regime, the only transport mechanism
is diffusion of solute across the membrane. The next-order term, proportional to K, reflects
flow through the membrane, and hence advective solute transport across the membrane. The
proportion function,

𝐹 =
1
2
+K 1−𝜎

12𝐷
𝑞′𝑏,1 +O(K2), (5.98)

is equal to a half at leading order, corresponding to a the regime in which the effective mem-
brane concentration is the average of the blood and dialysate concentrations as in (5.60). In
this regime, we have 𝑃𝑒 ≪ 1 and advective transport is negligible in comparison to diffusive
transport across the membrane. The next-order correction term, proportional to K, reflects the
effects of advection across the membrane.

Combining the above expansions gives the following expansion for the total membrane so-
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lute flux,
𝐽𝑚 = 𝐽𝑚,0 +K𝐽𝑚,1 +O(K2), (5.99)

where

𝐽𝑚,0 = 𝐷
(
𝐶𝑏,0 −𝐶𝑑,0

)
and 𝐽𝑚,1 = 𝐷

(
𝐶𝑏,1 −𝐶𝑑,1

)
− 1

2
(1−𝜎)

(
𝐶𝑏,0 +𝐶𝑑,0

)
𝑞′𝑏,1. (5.100)

The leading-order total membrane solute flux reflects solute transport through diffusion alone,
with a contribution from convective transport appearing at O(K).

Diffusive solute transport and the Michaels equation

At leading order in K, the governing solute transport equations (5.90)–(5.92) reduce to

𝑞𝑏0𝐶
′
𝑏,0 = −𝐷

(
𝐶𝑏,0 −𝐶𝑑,0

)
and 𝑞𝑑0𝐶

′
𝑑,0 = 𝐷

(
𝐶𝑏,0 −𝐶𝑑,0

)
. (5.101)

These leading-order governing equations reflect the steady-state transport of solute through dif-
fusion across the membrane alone Michaels (1966). The solution can be found explicitly,

𝐶𝑏,0 = 𝐶𝑑0 + (𝐶𝑏0 −𝐶𝑑0)
𝑞𝑏0 + 𝑞𝑑0E (𝐿−𝑥)/𝐿

𝑞𝑏0 + 𝑞𝑑0E
and 𝐶𝑑,0 = 𝐶𝑑0 + (𝐶𝑏0 −𝐶𝑑0)

𝑞𝑏0 − 𝑞𝑏0E (𝐿−𝑥)/𝐿

𝑞𝑏0 + 𝑞𝑑0E
,

(5.102)
for counter-current flows and

𝐶𝑏,0 = 𝐶𝑑0 + (𝐶𝑏0 −𝐶𝑑0)
𝑞𝑏0 + 𝑞𝑑0E−𝑥/𝐿

𝑞𝑏0 + 𝑞𝑑0
and 𝐶𝑑,0 = 𝐶𝑑0 + (𝐶𝑏0 −𝐶𝑏0)

𝑞𝑏0 − 𝑞𝑏0E−𝑥/𝐿

𝑞𝑏0 + 𝑞𝑑0
,

(5.103)
for co-current flows. from which we find the leading-order relative clearance

𝒦𝑟 ,0 =


𝑞𝑑0E − 𝑞𝑑0
𝑞𝑑0E + 𝑞𝑏0

= 1− 𝑞𝑑0 + 𝑞𝑏0
𝑞𝑑0E + 𝑞𝑏0

(counter-current),

𝑞𝑑0 − 𝑞𝑑0E−1

𝑞𝑏0 + 𝑞𝑑0
= 1− 𝑞𝑏0 + 𝑞𝑑0E−1

𝑞𝑏0 + 𝑞𝑑0
(co-current),

(5.104a)

where
E = exp

(
𝐷𝐿

(
𝑞−1
𝑏0 + 𝑞

−1
𝑑0

))
= exp

(
𝐾𝑜𝐴

(
𝑞−1
𝑏0 + 𝑞

−1
𝑑0

))
, (5.104b)

𝐾𝑜𝐴 is defined in §5.7.1, and 𝑞𝑏0 = 𝑁𝑞𝑏0 and 𝑞𝑑0 = 𝑁𝑞𝑑0 is the total flux of blood and dialysate,
respectively, across the whole dialyser. Equation (5.104) is known as the Michaels equation for
clearance, derived under the assumption that solute is transported across the membrane through
diffusion alone Michaels (1966). The Michaels equation provides excellent agreement with
experimental results for small molecules such as urea and sodium chloride in steady flow.



116 CHAPTER 5. MATHEMATICAL MODELLING OF HD AND HDF

The mass transfer-area coefficient

The dialyser industry and dialysis literature use the mass transfer-area coefficient, 𝐾𝑜𝐴, to char-
acterise clearance. The mass transfer-area coefficient 𝐾𝑜𝐴 is a measure of how efficiently a
solute of low molecular weight, such as urea, passes through a dialyser membrane via diffusion.
The higher the value of 𝐾𝑜𝐴, the more efficient the dialyser is at clearing the solute. The mass
transfer-area coefficient 𝐾𝑜𝐴 is defined through the relationship

𝑁𝐿⟨𝐽𝑚,0⟩ = 𝐾𝑜𝐴⟨𝐶𝑏,0 −𝐶𝑑,0⟩, (5.105)

between the leading-order total solute flux 𝑁𝐿⟨𝐽𝑚,0⟩ through the membrane across the whole
dialyser to the average difference in solute concentration either side of the membrane in the
regime in which solute is transported across the membrane by diffusion only. Here, ⟨·⟩ =
𝐿−1

∫ 𝐿

0 ·d𝑥 denotes the average along the length of the dialyser. Using the expression (5.100) for
the leading-order membrane solute flux 𝐽𝑚,0 in the definition (5.105) of the mass transfer-area
coefficient 𝐾𝑜𝐴 and rearranging gives

𝐾𝑜𝐴 = 𝑁𝐿𝐷. (5.106)

Weak convective solute transport

At next order, the governing solute transport equations (5.90)–(5.92) become

𝑞𝑏0𝐶
′
𝑏,1 + (𝑞𝑏,1𝐶𝑏,0)′ = −𝐷 (𝐶𝑏,1 −𝐶𝑑,1) +

1
2
(1−𝜎)

(
𝐶𝑏,0 +𝐶𝑑,0

)
𝑞′𝑏,1, (5.107)

𝑞𝑑0𝐶
′
𝑑,1 + (𝑞𝑑,1𝐶𝑑,0)′ = 𝐷 (𝐶𝑏,1 −𝐶𝑑,1) −

1
2
(1−𝜎)

(
𝐶𝑏,0 +𝐶𝑑,0

)
𝑞′𝑏,1, (5.108)

from which the O(K) contribution to the relative clearance can be found analytically as

𝒦𝑟 ,1 =


𝐿2 (𝑞𝑏0 + 𝑞𝑑0) (𝑞𝑏0R𝑏 − 𝑞𝑑0R𝑑)

1
(𝑞𝑏0 +E𝑞𝑑0)2

(
𝑞𝑑0/𝑞𝑏0 −1

12
E logE +𝜎C

)
𝐿2 (𝑞𝑏0R𝑏 − 𝑞𝑑0R𝑑)

1
E (𝑞𝑏0 + 𝑞𝑑0)

(
𝑞𝑑0/𝑞𝑏0 −1

12
logE +𝜎C

) (5.109)

for counter- and co-current flows respectively, where

C =


(𝐶𝑏0 +E𝐶𝑑0𝑞𝑑0/𝑞𝑏0) (2−2E + logE +E logE)

2(𝐶𝑏0 −𝐶𝑑0) log2 E
(counter-current),

(𝐶𝑏0 +𝐶𝑑0𝑞𝑑0/𝑞𝑏0) (2−2E + logE +E logE)
2(𝐶𝑏0 −𝐶𝑑0) log2 E

(co-current),
(5.110)

These formulae generalise and are consistent with previous results, in particular, the notion
that clearance is linear in the ultrafiltration coefficient (Green et al., 1976; Waniewski, 2006;
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(𝑎)
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Figure 5.4: A comparison of numerical (solid), asymptotic (dashed, using (5.93),(5.104) and
(5.109)) and Michaels (dash-dotted, using (5.104)) results for the relative clearance for (𝑎)
counter-current and (𝑏) co-current flows. Parameter values used (without units): 𝜇 = 1, 𝜎 = 0.9,
𝐷 = 1, 𝑟𝑏 = 0.4, 𝑟𝑑 = 1, 𝑞𝑏0 = 3, |𝑞𝑑0 | = 5, 𝐿 = 1, 𝐶𝑏0 = 1, 𝐶𝑑0 = 0, and 𝛼 = 𝛽 = 0.

Waniewski et al., 1991).
The asymptotic solution (5.93) for the relative clearance up to O(K), using (5.104) and

(5.109), is compared against the Michaels clearance (5.104), up to O(K0) and full numerical
results for the relative clearance in Figure 5.4. The agreement between asymptotic and full
numerical results highlights the linear nature of the clearance for small values of K, for which
the asymptotic approximations are valid. The Michaels clearance (5.104), though accurate for
K = 0 corresponding to solutes of small molecular weight, fails to reflect this linear change.

5.7.2 Small-K asymptotics for HDF

In the case of HDF, the transmembrane velocity 𝑉𝑚 ∼ 𝑂 (1), in contrast to 𝑉𝑚 ∼ 𝑂 (K) for con-
ventional HD. This difference arises because an order-one fluid flux is advected from blood to
dialysate, as dictated by the boundary conditions (5.19). Applying the same expansions (5.93)–
(5.95), we find that at leading order in K, the governing fluid flow equations (5.79a)–(5.79b)
simplify to

𝑞′′𝑏,0 = 0, and 𝑞′′𝑑,0 = 0, (5.111)
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and the solution can be found explicitly as

𝑞𝑏,0 = − (𝛼+ 𝛽)𝑞𝑏0
𝐿

𝑥+ (1+𝛼)𝑞𝑏0, and 𝑞𝑑,0 =


(𝛼+ 𝛽)𝑞𝑏0

𝐿
𝑥+ 𝑞𝑑0 − (1+𝛼)𝑞𝑏0

(𝛼+ 𝛽)𝑞𝑏0
𝐿

𝑥+ 𝑞𝑑0

(5.112)

for counter- and co-current flows, respectively. The transmembrane velocity, also known as the
ultrafiltration flux, can be found as

𝑉𝑚,0 = −𝑞′𝑏,0 = 𝑞
′
𝑑,0 =

(𝛼+ 𝛽)𝑞𝑏0
𝐿

. (5.113)

The governing solute transport equations (5.90)–(5.92) reduce to

𝑞𝑏0𝐶
′
𝑏,0 −𝑉𝑚,0𝐶𝑏,0 = − (1−𝜎)𝑉𝑚,0

[
(1−F )𝐶𝑏,0 +F𝐶𝑑,0

]
, (5.114)

𝑞𝑑0𝐶
′
𝑑,0 +𝑉𝑚,0𝐶𝑑,0 = (1−𝜎)𝑉𝑚,0

[
(1−F )𝐶𝑏,0 +F𝐶𝑑,0

]
, (5.115)

where we define

F = 𝐹 − 𝐷

(1−𝜎)𝑉𝑚,0
= − 1

𝑒𝑃𝑒0 −1
and 𝑃𝑒0 =

(1−𝜎)𝑉𝑚,0
𝐷

. (5.116)

The solution for the concentration can be obtained analytically when 𝜎 = 0 (small molecules)

𝐶𝑏,0 −𝐶𝑑,0 = 𝐺1𝑞
−F
𝑏,0 |𝑞𝑑,0 |

F−1, (5.117)

𝑞𝑏,0𝐶𝑏,0 + 𝑞𝑑,0𝐶𝑑,0 = 𝐺2, (5.118)

where 𝐺1,𝐺2 are two constants and their values can be calculated by applying the boundary
conditions, in agreement with the results of (Akcahuseyin et al., 1990) for pre-dilution HDF,
although an explicit formula for clearance has not been provided there.

We find the leading-order clearance to be

𝒦𝑟 ,0 =



𝐶𝑏0 −𝐶𝑑0(1− 𝛽)
𝐶𝑏0 −𝐶𝑑0

− [𝐶𝑏0 −𝐶𝑑0(1+𝛼)] (𝑄+ 𝛽−1)
(𝐶𝑏0 −𝐶𝑑0)

[
𝑄1−F (1+𝛼)1−F (1− 𝛽)F−1(𝑄+𝛼+ 𝛽)F −1−𝛼

] ,
𝐶𝑏0

𝐶𝑏0 −𝐶𝑑0
− 1
(𝐶𝑏0 −𝐶𝑑0) (1+𝑄+𝛼)

{
(𝐶𝑏0 +𝐶𝑑0𝑄) (1− 𝛽)

+ [𝐶𝑏0 −𝐶𝑑0(1+𝛼)]𝑄1−F (1+𝛼)F−1(1− 𝛽)1−F (𝑄+𝛼+ 𝛽)F
}
,

(5.119)
for counter-current and co-current cases, respectively, where 𝑄 = |𝑞𝑑0/𝑞𝑏0 |. The advantages
of the asymptotic result (5.119) for the clearance are two-fold. First, it is an explicit formula,
avoiding the need to compute solutions to differential equations to obtain the clearance in real-
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life experiments. Second, it generalises prior results in that it accounts for both pre- and post-
dilution HDF as well as a non-zero inlet dialysate concentration𝐶𝑑0. The latter is useful for real-
life applications in which dialysate is reused. The framework developed here also explains the
assumptions used in prior work, such as (Akcahuseyin et al., 1990), through rigorous asymptotic
arguments. For example, we explain the uniformity of the ultrafiltration flux (5.113) using a
reduction of systems of equations by means of asymptotic arguments.

Remarks

Assuming no toxins in the dialysate at inlet, (𝐶𝑑0 = 0), the clearance reduces to

𝒦𝑟 ,0 =


1− 𝑄+ 𝛽−1

𝑄1−F (1+𝛼)1−F (1− 𝛽)F−1(𝑄+𝛼+ 𝛽)F −1−𝛼
(counter-current),

1− 1− 𝛽+𝑄1−F (1+𝛼)F−1(1− 𝛽)1−F (𝑄+𝛼+ 𝛽)F
1+𝑄+𝛼 (co-current).

(5.120)

The expression can be further reduce to

𝒦𝑟 ,0 =


1− (1−𝑄)𝑄F (1+𝛼)F−1

𝑄F (1+𝛼)F −𝑄(𝑄+𝛼)F
(counter-current),

𝑄+𝛼−𝑄1−F (1+𝛼)F−1(𝑄+𝛼)F
1+𝑄+𝛼 (co-current),

(5.121)

for pre-dilution only (𝛽 = 0), in agreement with (Akcahuseyin et al., 1990), and

𝒦𝑟 ,0 =


1− 𝑄F (𝑄+ 𝛽−1)

𝑄(1− 𝛽)F−1(𝑄+ 𝛽)F −𝑄F (counter-current),

𝑄+ 𝛽−𝑄1−F (1− 𝛽)1−F (𝑄+ 𝛽)F
1+𝑄 (co-current),

(5.122)

for post-dilution only (𝛼 = 0).
It can be shown that the clearance (5.119) for HDF reduces to the Michaels equation (5.104)

as both 𝛼→ 0 and 𝛽→ 0.
In the limit as 𝑄→ 0, the clearance (5.119) simplifies to

𝒦𝑟 ,0 =
𝐶𝑏0(𝛼+ 𝛽)

(𝐶𝑏0 −𝐶𝑑0) (1+𝛼)
, (5.123)

which corresponds to pure haemofiltration, where solute removal is achieved solely by convec-
tion.

In contrast, as 𝑄→∞, the clearance (5.119) approaches

𝒦𝑟 ,0 =
𝐶𝑏0 −𝐶𝑑0(1− 𝛽)

𝐶𝑏0 −𝐶𝑑0
− 𝐶𝑏0 −𝐶𝑑0(1+𝛼)

𝐶𝑏0 −𝐶𝑑0
(1+𝛼)F−1(1− 𝛽)1−F , (5.124)
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𝒦𝑟 𝒦𝑟

(a) Co-current, pre-dilution. (b) Co-current, post-dilution.

(c) Counter-current, pre-dilution. (d) Counter-current, post-dilution.

Figure 5.5: Relative clearance in various forms of HDF for varying values of 𝐾𝑜𝐴, com-
paring numerical results (solid curves) with asymptotic predictions (dots). Parameter val-
ues are given in Table 5.1, with 𝐶𝑑0 = 0, 𝑞𝑏0 = 300ml/min, |𝑞𝑑0 | = 500ml/min, and 𝐾𝑜𝐴 =

10, 150, 300, 500, 1415 ml/min.

which represents the idealized upper limit of HDF, assuming an infinite flux of dialysate.
These asymptotic formulae provide a convenient means to classify dialyser performance in

pre-and post-dilution HDF. In particular, they shed light on what proportion of fluid to add and
subtract in pre- and post-dilution HDF in order to achieve a desired clearance. The asymptotic
formulae are also much more versatile in usage for performing parameter sweeps, in comparison
to full computational fluid dynamic simulations, common in the field. We discuss potential usage
examples in the following section.

5.8 Results and discussion

Figure 5.5 shows the relative clearance as a function of either the pre-dilution filtration fraction,
𝛼, or the post-dilution filtration fraction, 𝛽, for various values of 𝐾𝑜𝐴 for HDF in the form of
pre-dilution only and post-dilution only. Conventional HD corrosponds to 𝛼 = 0 in the case
of pre-dilution only and 𝛽 = 0 in the case of post-dilution only. In Figures 5.5(a) and 5.5(b),
the dialysate flows in the same direction as the blood (𝑞𝑑0/𝑞𝑏0 > 0), whereas Figure 5.5(c)
and Figure 5.5(d) shows the counter-current case, where dialysate and blood flow in opposite
directions (𝑞𝑑0/𝑞𝑏0 < 0). We find that the low-permeability asymptotic result agrees well with
the corresponding numerical simulations.
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(a) Pre-dilution HDF.
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(b) Post-dilution HDF.

Figure 5.6: Relative clearance for pre- and post-dilution HDF for low–molecular-weight
molecules (𝐾𝑜𝐴 = 1415 ml/min) as a function of the flux ratio 𝑞𝑑0/𝑞𝑏0, comparing numerical
results (dots) with asymptotic predictions (solid curves), and the idealized upper limit (dashed-
dotted curves). Parameter values are given in Table 5.1, with 𝐶𝑑0 = 0, 𝛼 = 0.5, 𝛽 = 0 for pre-
dilution and 𝛼 = 0, 𝛽 = 0.5 for post-dilution.

The parameter 𝐾𝑜𝐴 is determined by the molecular weight (or size) of the toxin. For the
dialyser used in our model (Braun Diacap® Pro 19H), the smallest toxin considered is urea,
represented by the value 𝐾𝑜𝐴 = 1415 ml/min, corresponding to the uppermost curve in each plot
in Figure 5.5. The lowest curves correspond to 𝐾𝑜𝐴 = 10 ml/min, representing large-molecular-
weight toxins that are poorly removed by HD due to their very low diffusion coefficients, hence
the low clearance reported in Figure 5.5 for this value of 𝐾𝑜𝐴.

Overall, the relative clearance generally increases with increasing 𝛼 or 𝛽 for all values of
𝐾𝑜𝐴. An exception occurs in the counter-current pre-dilution only case in Figure 5.5(c); as 𝐾𝑜𝐴
increases, the relative clearance changes from increasing with 𝛼 to decreasing with 𝛼. This
highlights that pre-dilution HDF works less well for clearing low molecular weights (high 𝐾𝑜𝐴).
Additionally, we confirm empirical findings that HDF, whether pre- or post-dilution, is more
effective for large, poorly diffusive toxins (low 𝐾𝑜𝐴) than for small, highly diffusive toxins
(high 𝐾𝑜𝐴) (Canaud et al., 2025).

Figure 5.6 shows the relative clearance as a function of the flux ratio 𝑞𝑑0/𝑞𝑏0 for both pre-
dilution only and post-dilution only HDF. Co- and counter-current flows corrospond to the re-
gions in which 𝑞𝑑0/𝑞𝑏0 > 0 and 𝑞𝑑0/𝑞𝑏0 < 0, respectively. The low-permeability asymptotic
result matches the corresponding numerical simulations well. The special case 𝑞𝑑0/𝑞𝑏0 = 0 cor-
responds to haemofiltration, for which the relative clearance agrees with the asymptotic result
(5.123) for pure haemofiltration. We observe that the relative clearance increases as |𝑞𝑑0/𝑞𝑏0 |
increases away from zero. Furthermore, for both 𝑞𝑑0/𝑞𝑏0 < 0 and 𝑞𝑑0/𝑞𝑏0 > 0, the relative
clearance approaches an upper limit as |𝑞𝑑0/𝑞𝑏0 | ≫ 1 , which agrees well with the asymptotic
result (5.124) for the idealized upper limit of HDF. It can be seen from Figure 5.5 and 5.6 that
counter-current flows are more effective, leading to greater clearances, which has also been ob-
served experimentally and used more widely in the dialysis technology industry Davenport et al.

(2008); Kim et al. (2013); Baldwin et al. (2016).
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(a) Low-molecular-weight molecules. (b) High-molecular-weight molecules.

Figure 5.7: Idealised upper limits of HDF clearance for low–molecular-weight molecules (𝐾𝑜𝐴 =
1000 ml/min) and high–molecular-weight molecules (𝐾𝑜𝐴 = 10 ml/min). Parameter values are
listed in Table 5.1 and 𝐶𝑑0 = 0.

As can be seen from the far-left and far-right-hand parts of both panels of Figure 5.6, much
information can be extracted about the clearance in terms of the |𝑞𝑑0/𝑞𝑏0 | ≫ 1 limit alone.
We use the asymptotic result (5.124) for the idealized upper limit for the clearance in the limit
|𝑞𝑑0/𝑞𝑏0 | ≫ 1 for both counter- and co-current flows to explore the (𝛼, 𝛽)-parameter space in
figure 5.7 for various values of 𝐾𝑜𝐴. In particular, we find that an increase in the post-dilution
dialysate fraction 𝛽 consistently enhances the limit for both low- and high–molecular-weight
molecules. In contrast, an increase in the pre-dilution dialysate fraction 𝛼 improves clearance for
high–molecular-weight molecules but reduces clearance for low–molecular-weight molecules.
The latter is consistent with the empirical observation that HDF is generally more effective for
mid-to-high molecular weights only. We note that parameter sweeps of the like of Figure 5.7,
of significantly lower computational cost than full CFD, have the potential to inform dialysis
treatment design for better patient outcomes and more sustainable costs. An example could be
the simple two-stage protocol in which the pre-dilution dialysate fraction 𝛼 is altered from a rel-
atively large value in the initial stage of a treatment, to clear molecules of high molecular weight
first, followed by the second stage of treatment in which the pre-dilution dialysate fraction 𝛼 is
lowered, perhaps even to zero, to clear out toxins of low molecular weight, which are easiest to
clear.

5.9 Conclusions

In this chapter, we have developed a mathematical framework to model the fundamental physical
processes involved in HD and HDF. By considering both cylindrical and flat-layer geometries,
and employing asymptotic simplifications, we derived tractable models that describe the essen-
tial aspects of fluid flow, solute transport, and membrane filtration. Notably, we have obtained
analytical expressions for solute clearance with and without the effects of convection, which are
central to evaluating dialysis performance.

Our framework recovers prior results obtained in the dialysis literature as special cases and
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rigorously explains the ad-hoc assumptions made there. The framework presented here is inten-
tionally modular and extendable. It provides a solid mathematical foundation upon which more
complex and physiologically realistic features can be incorporated in future work. For example,
potential extensions include:

1. Higher-order corrections for the clearance.

2. Time-dependent flow rates: The blood and dialysate fluxes need not be constant. Incor-
porating time-dependent flow allows for the modelling of modern dialysis machines that
use dynamic pumping strategies.

3. Membrane blocking effects: Under steady flow conditions, particles may accumulate
inside the membrane pores, which can hinder the transport of toxins.
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Chapter 6

Conclusions

In this thesis, we have investigated a range of problems involving thin-film flows with de-
formable and porous interfaces, spanning both fundamental fluid-mechanical instabilities and
applications in biomedical transport.

Chapters 2–4 examined the dynamics and stability of viscous gravity currents in systems
where two immiscible fluids interact through deformable interfaces, with the upper layer in con-
tact with the atmosphere. These configurations, though idealized, are representative of many
natural and industrial processes and, perhaps unexpectedly, are prone to a novel viscous finger-
ing instability.

In Chapter 2, we developed a theoretical framework for viscous gravity currents spreading
over lubricated substrates. Using similarity solutions in both axisymmetric and planar geome-
tries, we demonstrated how the viscosity ratio, density contrast, and source fluxes affect the
evolution of the two layers, their thicknesses and velocity fields. An asymptotic analysis near
the intrusion front characterises a stress singularity, arising from the use of lubrication theory.

Chapter 3 extended this framework by analysing the stability of these flows to non-axisymmetric
disturbances, revealing that such flows are prone to a new class of viscous fingering instabili-
ties. Such instabilities are perhaps most closely related to classical Saffman–Taylor instabilities,
emerging solely from hydrodynamic interactions between two viscous fluids. We showed nu-
merically that the instability requires a sufficiently large viscosity ratio (i.e., the intruding fluid
needs to be of sufficiently low viscosity relative to the retreating fluid), is suppressed by density
contrasts, and exhibits wavelength selection even without the effects of surface tension. The
source fluxes were also found to play a central role in determining the onset of instability.

In Chapter 4, we explored the same system on an inclined substrate. Despite the added
downslope gravitational forcing, the onset and mechanism of instability mirrored the horizontal
case, confirming that the phenomenon is intrinsic to viscosity and density contrasts rather than
geometric configuration.

Finally, in Chapter 5, we shifted focus to biomedical transport, exploring the thin-film flow
of blood and dialysate within haemodialysers. Here, the two fluids are separated by a porous,
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semipermeable membrane to aid in the removal of toxins from the blood. We built a unifying
modelling framework faithful to the underlying fluid mechanics, which gives rise to existing
classical results in various asymptotic limits. This work provides not only rigorous justification
for earlier empirical assumptions but also a flexible mathematical foundation for future improve-
ments in dialyser design and innovation in treatment modalities.

In summary, this thesis advances our understanding of thin-film flows across different con-
texts, from the fundamental fluid mechanics of flows susceptible to a previously unrecognised
class of instabilities, to the fluid mechanics of dialysis. The former deepens our theoretical
understanding of how interfacial flows become unstable and evolve, while the latter translates
fluid-mechanical modelling into practical tools for assessing and improving dialysis treatment
efficiency.



Appendix A

Asymptotic expansions near the intrusion
front

We examine the behaviour of the flow near the intrusion front by deriving an asymptotic solution
in the axisymmetric geometry and note that the derivation in the two-dimensional geometry is
similar, leading to an identical solution. In particular, we expand the thicknesses of the two
layers as

𝐹 ∼ 𝐴1𝛿
1
2 + 𝐴2𝛿+ 𝐴3𝛿

3
2 + · · · , (A.1)

𝑓 ∼ 𝑎0 + 𝑎1𝛿
1
2 + 𝑎2𝛿+ 𝑎3𝛿

3
2 + · · · , (A.2)

in the coordinate 𝛿 = (1− 𝜉/𝜉𝑁 ) ≪ 1. Although we aim to derive asymptotic solutions valid up
to O(𝛿), we include the O(𝛿3/2) contributions as they feature in the derivations before ultimately
dropping out in a final solvability condition.

At leading order, specifically O
(
𝛿−3/2) , the governing equation (2.34) for the lower layer

yields the relationship

(D +1)𝑎1 + 𝐴1 = 0, (A.3)

between the coefficients 𝐴1 and 𝑎1. Physically, this condition indicates that the lower-layer
pressure gradient, 𝐹′+ (1+D) 𝑓 ′, is non-singular at the nose.

The leading-order contribution to the governing equation (2.33) for the upper layer is of
O

(
𝛿−1/2) and gives rise to the relationship

(D +1)𝑎2 + 𝐴2 +
𝐴2

1D
𝑎0(D +1) −

𝜉2
𝑁

3𝑎2
0
= 0. (A.4)

At next order, we notice that the governing equations for the two layers yield relationships
that depend on 𝑎3 and 𝐴3 through the combination (D + 1)𝑎3 + 𝐴3. Specifically, the O

(
𝛿−1/2)
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contribution to (2.34) and the O(1) contribution to (2.33) yield

(D +1)𝑎3 + 𝐴3 +𝛾1 = 0, (A.5)

(D +1)𝑎3 + 𝐴3 +𝛾2 = 0, (A.6)

respectively, where 𝛾1 and 𝛾2 are algebraic expressions in terms of 𝑎0, 𝑎2, 𝐴1, 𝐴2 and 𝜉𝑁 . Ex-
plicitly,

𝛾1 = −
𝐴3

1D
𝑎2

0(D +1)2
− 𝐴2𝐴1(2−3D)

2𝑎0(D +1) +
𝐴1𝜉

2
𝑁

3𝑎3
0(D +1)

− 𝑎2𝐴1
𝑎0

, (A.7)

and

𝛾2 =
2𝐴3

1D(DM+M−3)
9𝑎2

0(D +1)2
+ 8𝐴2𝐴1D

3𝑎0(D +1) +
2𝑎2𝐴2(D +1)

3𝐴1
−

2𝐴2𝜉
2
𝑁

9𝑎2
0𝐴1

+
2𝐴2

2
3𝐴1

. (A.8)

The combination (D+1)𝑎3+𝐴3 can be eliminated by subtracting (A.5) from (A.6), which gives

𝛾1 = 𝛾2. (A.9)

Solving (A.4) and (A.9) for 𝑎2 and 𝐴2 yields

𝑎2 =
𝜉2
𝑁

3𝑎2
0(D +1)

+
𝐴2

1(4M−9)
9𝑎0(D +1) −

𝐴2
1

3𝑎0(D +1)2 , (A.10)

𝐴2 =
4𝐴2

1
3𝑎0

(
1

D+1
−M

3

)
. (A.11)

This fully determines the asymptotic solution up to O(𝛿) in terms of 𝑎0, 𝐴1 and 𝜉𝑁 . The values of
these parameters are determined by matching to the outer solution and applying the two source
flux boundary conditions and the far field condition.

We note that this calculation could also be performed in a more general travelling-wave
framework, resulting in a similar asymptotic calculation.



Appendix B

Large D asymptotics

We examine the D ≫ 1 limit by expanding

𝐹 = 𝐹0 +D−1𝐹1 +O
(
D−2) , 𝑓 = 𝑓0 +D−1 𝑓1 +O

(
D−2) , (B.1)

𝜙𝑢 = 𝜙𝑢0 +D−1𝜙𝑢1 +O
(
D−2) , 𝜙𝑙 = 𝜙𝑙0 +D−1𝜙𝑙1 +O

(
D−2) . (B.2)

At O(D), the upper- and lower-layer fluxes vanish so that

0 = −3
2
𝑓 2
0 𝐹0 𝑓

′
0 and 0 = − 𝑓 3

0 𝑓
′
0, (𝐵.3a,b)

from which we deduce that 𝑓 ′0 vanishes. Matching to the single-layer region ahead of the intru-
sion front and applying the far-field boundary condition determines the constant of integration,
which gives 𝑓0 = 1.

At O(D0), we find that the leading-order fluxes reduce to

𝜙𝑢0 = −3
2
𝐹0 𝑓

′
1 −

1
2

(
2𝐹2

0M+6𝐹0 +3
)
𝐹0𝐹

′
0, 𝜙𝑙0 = − 𝑓 ′1 −

3
2
𝐹0𝐹

′
0 −𝐹

′
0, (𝐵.4a,b)

and the mass conservation equations reduce to

1
2
𝜉𝐹′

0 =
1
𝜉𝑛

(𝜉𝑛𝜙𝑢0)′ , 0 =
1
𝜉𝑛

(𝜉𝑛𝜙𝑙0)′ , (𝐵.5a,b)

where 𝑛 = 0 in the two-dimensional geometry and 𝑛 = 1 in the axisymmetric geometry. Integrat-
ing the second of these directly and applying the source flux boundary condition, we obtain the
lower-layer flux explicitly as 𝜙𝑙0 = Q𝑙/𝜉𝑛. Eliminating 𝑓 ′1, we find that the upper-layer flux can
be written in terms of 𝐹0 and its derivative alone. Explicitly,

𝜙𝑢0 = −1
4

(
(4M𝐹0 +3) 𝐹0𝐹

′
0 −6Q𝑙𝜉−𝑛

)
𝐹0 (B.6)

While equations (B.5𝑎) and (B.6) have no closed-form analytic solution, they form a complete
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set of equations, which can be integrated numerically. These asymptotic solutions, valid for
D ≫ 1, are shown in figure 2.6 in comparison to full numerical solutions for a range of values
of D.



Appendix C

Small Q𝑢 asymptotics

We examine the Q𝑢 ≪ 1 limit by expanding

𝐹 = Q𝑢𝐹1 +O
(
Q2
𝑢

)
, 𝑓 = 𝑓0 +Q𝑢 𝑓1 +O

(
Q2
𝑢

)
, (C.1)

𝜙𝑢 = Q𝑢𝜙𝑢1 +O
(
Q2
𝑢

)
, 𝜙𝑙 = 𝜙𝑙0 +Q𝑢𝜙𝑙1 +O

(
Q2
𝑢

)
. (C.2)

We find that the lower layer is independent of the flow of the upper layer at leading order.
Specifically, at O(Q0

𝑢), we find that the governing equations for the lower layer reduce to

𝜙𝑙0 = −(D +1) 𝑓 3
0 𝑓

′
0 and

1
2
𝜉 𝑓 ′0 =

1
𝜉𝑛

(𝜉𝑛𝜙𝑙0)′ , (𝐶.3a,b)

where 𝑛 = 0 in the two-dimensional geometry and 𝑛 = 1 in the axisymmetric geometry. These
form a complete set of equations, which are independent of the upper layer and are identical to
the equations describing the flow ahead of the intrusion front. These are supplemented by the
source flux boundary condition and the far-field boundary condition.

At O(Q𝑢), we find that the governing equations for the upper layer reduce to

𝜙𝑢1 = −3
2
(D +1) 𝑓 2

0 𝐹1 𝑓
′
0 and

1
2
𝜉𝐹′

1 =
1
𝜉𝑛

(𝜉𝑛𝜙𝑢1)′ . (𝐶.4a,b)

These simplify to a single equation

𝐹′
1
𝐹1

= −
3(D +1) 𝑓0

(
𝑓0

(
𝜉𝑛 𝑓 ′0

)′
+2𝜉𝑛

(
𝑓 ′0

)2
)

𝜉𝑛
(
3(D +1) 𝑓 2

0 𝑓
′
0 + 𝜉

) , (C.5)

which involves a singular point at the intrusion front. The position of the intrusion front can,
therefore, be determined by finding the value of 𝜉 for which the denominator vanishes. Specifi-
cally, 𝜉 = 𝜉𝑁 is the solution to 3(D +1) 𝑓 2

0 𝑓
′
0 + 𝜉 = 0, or, equivalently, 𝜉 = 3𝜙𝑙0/ 𝑓0. The position

of the intrusion front is shown to converge to this asymptotic limit as 𝑄𝑢 → 0 in figure 2.11.
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Appendix D

Asymptotic expansions near the intrusion
front

Similar to the base flows of §2, we find that the thicknesses of the two layers can be expanded
as

𝐹 (𝜉,𝜗, 𝜏) ∼ 𝐴1(𝜗, 𝜏)𝛿
1
2 + 𝐴2(𝜗, 𝜏)𝛿+ 𝐴3(𝜗, 𝜏)𝛿

3
2 ...,

𝑓 (𝜉,𝜗, 𝜏) ∼ 𝑎0(𝜗, 𝜏) + 𝑎1(𝜗, 𝜏)𝛿
1
2 + 𝑎2(𝜗, 𝜏)𝛿+ 𝑎3(𝜗, 𝜏)𝛿

3
2 ....

(D.1)

near the intrusion front where 𝛿 = (1− 𝜉/𝜉𝑁 ) ≪ 1.
For the governing equation (3.19) describing the lower layer, the leading-order contribution

is of 𝑂 (𝛿−3/2) and yields the relationship

(D +1)𝑎1 + 𝐴1 = 0 (D.2)

between 𝐴1 and 𝑎1. The leading-order contribution of the governing equation (3.18) for the
upper layer is of 𝑂 (𝛿−1/2) and gives rise to

(D +1)𝑎2 + 𝐴2 +
𝐴2

1D
𝑎0(D +1) −

𝜉2
𝑁

3𝑎2
0
− 2𝜉𝑁

3𝑎2
0

𝜕𝜉𝑁

𝜕𝜏
+𝑂

(
𝜕

𝜕𝜗
× 𝜕

𝜕𝜗

)
= 0, (D.3)

where 𝑂
(
𝜕
𝜕𝜗

× 𝜕
𝜕𝜗

)
represent terms that contain products of two azimuthal derivatives, which

are zero for the base solution and negligible for small-amplitude perturbations. This equation
is identical to the equivalent equation for the base flow apart from the addition of the term
containing a derivative with respect to 𝜏 and the (negligible) higher order terms.

Going to the next order, the 𝑂
(
𝛿−1/2) contribution to (3.19) and the 𝑂 (1) contribution to

133



134 APPENDIX D. ASYMPTOTIC EXPANSIONS NEAR THE INTRUSION FRONT

(3.18) yield

(D +1)𝑎3 + 𝐴3 +𝛾1 +𝑂
(
𝜕

𝜕𝜗
× 𝜕

𝜕𝜗

)
= 0, (D.4)

(D +1)𝑎3 + 𝐴3 +𝛾2 +𝑂
(
𝜕

𝜕𝜗
× 𝜕

𝜕𝜗

)
= 0, (D.5)

respectively, where

𝛾1 = −
𝐴3

1D
𝑎2

0(D +1)2
− 𝐴2𝐴1(2−3D)

2𝑎0(D +1) +
𝐴1𝜉

2
𝑁

3𝑎3
0(D +1)

− 𝑎2𝐴1
𝑎0

+ 2𝐴1𝜉𝑁

3𝑎3
0(1+D)

𝜕𝜉𝑁

𝜕𝜏
, (D.6)

and

𝛾2 =
2𝐴3

1D(DM+M−3)
9𝑎2

0(D +1)2
+ 8𝐴2𝐴1D

3𝑎0(D +1) +
2𝑎2𝐴2(D +1)

3𝐴1

−
2𝐴2𝜉

2
𝑁

9𝑎2
0𝐴1

+
2𝐴2

2
3𝐴1

− 4𝐴2𝜉𝑁

9𝑎2
0𝐴1

𝜕𝜉𝑁

𝜕𝜏
. (D.7)

Similarly to before, these coefficients generalise those describing the base flow through the
addition of terms involving derivatives with respect to 𝜏 and the higher order terms. We note
that (D.4) and (D.5) depend on 𝐴3 and 𝑎3 through the combination (𝐷 + 1)𝑎3 + 𝐴3, which can
be eliminated by subtracting (D.4) from (D.5), which gives

𝛾1 = 𝛾2. (D.8)

Finally, solving (D.3) and (D.8) for 𝐴2 and 𝑎2 yields

𝐴2 = −
4𝐴2

1
9𝑎0

(
M− 3

D+1

)
, (D.9)

𝑎2 =
1

9(D +1)𝑎2
0

[
3𝜉𝑁

(
𝜉𝑁 +2

𝜕𝜉𝑁

𝜕𝜏

)
+ 𝐴2

1𝑎0

(
4M−9− 3

D+1

) ]
, (D.10)

specifying 𝑎2 and 𝐴2 in terms of 𝑎0, 𝐴1, and 𝜉𝑁 .



Appendix E

Perturbed fluxes

Explict expressions for perturbations to the fluxes are given by (3.39)–(3.42), where

𝛼𝑢1 = − 3
𝜉𝑁0

𝐹0
[
𝑓0

(
(D +1) 𝑓 ′0 +𝐹

′
0
)
+𝐹0

(
𝑓 ′0 +𝐹

′
0
) ]
, (E.1)

𝛼𝑢2 = − 3
2𝜉𝑁0

[
𝑓 2
0

(
(D +1) 𝑓 ′0 +𝐹

′
0
)
+2M𝐹2

0
(
𝑓 ′0 +𝐹

′
0
)
+4 𝑓0𝐹0

(
𝑓 ′0 +𝐹

′
0
) ]
, (E.2)

𝛼𝑢3 = − 1
2𝜉𝑁0

𝐹0
[
3(D +1) 𝑓 2

0 +6 𝑓0𝐹0 +2M𝐹2
0
]
, (E.3)

𝛼𝑢4 = − 1
2𝜉𝑁0

𝐹0
[
6 𝑓0𝐹0 +3 𝑓 2

0 +2M𝐹2
0
]
, (E.4)

𝛼𝑢5 =
1

2𝜉2
𝑁0
𝐹0

[
3 𝑓 2

0
(
(D +1) 𝑓 ′0 +𝐹

′
0
)
+2M𝐹2

0
(
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0
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0 (2(D +1) 𝑓0 +3𝐹0) , (E.8)
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𝑓 2
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(
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(
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