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Abstract

We develop an equivariant version of bivariant periodic cyclic homology for actions of
Hausdorff ample groupoids, extending the classical bivariant theory of Cuntz and Quillen
and its equivariant refinement for groups. For an ample groupoid G, we construct a
monoidal category of modules over its convolution algebra and study structural features
of its objects, the G-modules. In parallel, we present an equivalent comodule formulation
and prove the equivalence between the module and comodule pictures. We introduce
G-algebras and give some important examples. After reviewing pro-categories, we de-
fine the equivariant X-complex, which is central to the construction of the bivariant
equivariant periodic cyclic homology for G-algebras. In analogy with the classical and
group-equivariant settings, we establish homotopy invariance, stability, and excision for

the resulting theory.
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Introduction

One of the guiding ideas in classical geometry is to study spaces through their algebras
of functions. These algebras are typically commutative, since multiplication is defined
pointwise. A cornerstone result in this framework is Gelfand duality, which establishes
a duality between the category of commutative C*-algebras and the category of locally

compact Hausdorff spaces:
Co(-)

{Locally compact Hausdorff spaces} {Commutative C*-algebras}

\/

Spec(-)

The philosophy of noncommutative geometry extends this correspondence: instead of
starting with a geometric space, one takes a noncommutative algebra and interprets it
as the algebra of functions on a hypothetical noncommutative space. In this setting,

algebraic invariants play the role of geometric and topological invariants.

Cyclic homology, and in particular periodic cyclic homology, was introduced by Connes
as the noncommutative analogue of de Rham cohomology. This analogy is made precise
in [Con85, Theorem 46]: if V' is a compact smooth manifold, then for the Fréchet algebra
C>(V) one has

HP,(C=(V)) = @ H;;"(V), +=0,1.

nez
Periodic cyclic homology shares crucial features with K-theory: it is homotopy invariant

and Morita invariant, and it pairs with K-theory via a Chern character.

A major breakthrough came with the bivariant framework of Cuntz and Quillen [CQ95a
CQI95bl [CQI7]. Their approach centers on the X-complex. For a not necessarily unital

or commutative algebra A, with unitarisation A*, the noncommutative differential forms



are
At @ A® if n >0,

A if n=0,

O"(A) =
and the X-complex is the Zs-graded complex defined by
X(A):Q°(4) <%—j> QHA)[01(22(A)),
where
Oo(a) = da, 01([a°da']) = a®a' — a*a®.

Finally, the bivariant periodic cyclic homology of the algebras A and B is defined by the

homology of the Hom-complex associated with the X-complexes of A and B respectively:
HP,(A,B) = H,(Hom(X(TA),X(TB))).

Here T A is the periodic tensor algebra of A and represents a crucial ingredient in this
definition. This approach provided the missing ingredient to establish the six-term exact
sequences in periodic cyclic homology induced by an extension 0 - K - F - ) — 0 of

algebras, namely

HPy(A,K) —— HPy(A,E) —— HP,(A,Q)

[ |

HP (A, Q) «— HP,(AE) «— HP (A K)
and

HPO(Q7A) — HPO(E7A) — HPO(KaA)

[ |

HP(K,A) «— HP,(E,A) «+—— HP(Q,A).

The existence of these sequences is known as the excision problem and was at that time a
longstanding problem, proved only in special cases. This further highlights the connection

with bivariant K-theory.

These techniques were extended to algebras with group actions by Voigt, first for discrete
groups [Voi03] and then for locally compact groups [Voi07]. In the equivariant theory one
works in the monoidal category of G-modules, and constructions are adapted to respect

the action. Given a G-algebra A, the equivariant noncommutative differential forms are
O(A) 1= O © O (A),

where Og = C(G), with G acting diagonally and Og carrying the adjoint action. A



further ingredient in the definition of G-equivariant periodic cyclic homology is given
by the G-algebra K associated to a certain bilinear pairing endowed with diagonal
action. This algebra carries information about the action in the equivariant setting,
while its classic cyclic homology contains no non-trivial information, being isomorphic
to the homology of C. A fundamental difference with the classical setting is that the
equivariant X-complex Xg(A) is typically a paracompler rather than a chain complex,
this means that the square of its differential need not vanish. This is resolved by working
bivariantly from the beginning. Since the vanishing of the differential associated to the
equivariant X-complex is controlled by a canonical map, the resulting Hom-complex is a

genuine chain complex.

Motivated by the goal of extending equivariant periodic cyclic homology to broader al-
gebraic settings, we now turn our attention to groupoids, which have emerged as central
objects in several areas of mathematics, including operator theory, topology, and mathe-
matical physics. Groupoids offer a remarkably flexible framework that generalizes many

familiar structures, such as groups, topological spaces, and dynamical systems.

In particular, algebras associated with étale groupoids have attracted significant interest,
see for example the work of Renault [Ren8()], as they form a rich class of examples of non-
commutative algebras, for instance, they arise naturally in topological dynamics and the
classification of simple C*-algebras as described in [Li20]. Among the key contributions
in this direction are the works of Steinberg. In [Stel(], a connection is established be-
tween inverse semigroups and ample groupoids, including an isomorphism between their
convolution algebras. While, in [Steld], an equivalence between the category of nonde-
generate modules over the convolution algebra of an ample groupoid and the category of
sheaves of modules over the groupoid is proved. In this work we will consider topological

groupoids, in particular locally compact, Hausdorff and ample groupoids G.

A further motivation for this work comes from Matui’s conjecture, see [Mat16, Conjecture
2.6]:
Conjecture (HK). Let G be an essentially principal minimal étale groupoid whose unit

space GO s a Cantor set. Then we have

@H%(g) = Ko(C2(G))

and

@)Hm(@ = K,(C(G)).

The conjecture states a link between the K-theory of the reduced C*-algebra of a certain



class of ample groupoid and the groupoid homology as defined for étale groupoids by
Crainic and Moerdijk in [CMO00]. The conjecture was later shown not to hold in full
generality by Scarparo in [Sca20]. At the same time, it is known to hold for several class
of groupoids, see [Mat12], [FKPS19] and [BDGW23]. This shows how a deeper under-
standing of the relationship between groupoid homology and the K-theory of associated

algebras remains an area of significant interest.

In this setting, to gain eventually insight into the K-theory of ample groupoids via a
bivariant Chern character it is natural to investigate a generalisation of periodic cyclic
homology to convolution algebras of groupoids, with particular emphasis on the class
of ample groupoids. Our approach is inspired by the foundational techniques of both

classical and equivariant periodic cyclic homology, adapted to the groupoid framework.

The primary goal of this work is to define an equivariant version of periodic cyclic ho-
mology for algebras arising from the convolution algebras of ample groupoids. Alongside
this, we aim to develop a general framework suitable for such a generalisation. The con-
struction of the core objects and tools of the theory will rely crucially on the structural
properties of ample groupoids, which are collected in the first part of the thesis. Given
an ample groupoid G, we construct two categories: one is the category of G-modules,
given by essential modules over D(G) the convolution algebra of G, the second is the
category of C(G)-comodules given by essential modules over C°(G(®) and a certain
isomorphism which encodes the information of the groupoid action. We then prove that
these two categories are isomorphic. We introduce anti-Yetter-Drinfeld modules over G
and the canonical automorphism 7" associated to such modules, which is crucial for turn-
ing equivariant differential forms into a paramixed complex and for defining the groupoid

equivariant X-complex Xg(-).

Once we define G-equivariant bivariant periodic cyclic homology H PY for pro-G-algebras,

we investigate its fundamental properties.

The first important property is the homotopy invariance:
Theorem (A). Let A and B be pro-G-algebras and let ® : A - B[0,1] be a G-equivariant
homotopy. Then the elements [®q] and [®,] in HPY (A, B) are equal.

We discuss stability, considering a first result concerning a special case, we call admissible
case, and finally the general case:

Theorem (B). Let E be a G-module equipped with a surjective G-equivariant bilinear
pairing. If C2(G) and E are projective as essential C=(G))-modules then there exists
an tnvertible element in

HP§ (A, A®ce gy K(E))

4



for any pro-G-algebra A. It follows that we have natural isomorphisms
HP(A®ce(gw) K(E),B) 2 HP] (A, B) 2 HP] (A, B ®c=gw)) K(E))
for all pro-G-algebras A and B.

As a consequence of this theorem, we can simplify the computation of the periodic cyclic
homology in the case of a proper groupoid, proving that:
Proposition (C). Let G be a proper ample groupoid with G\G® paracompact. Then we

have a natural isomorphism
HPf(A, B) = H*HOInA(g)(Xg(TA),Xg(TB))
for all G-algebras A, B.

Finally, given an extension of pro-G-algebras, which is admissible in the category of pro-
C(G©)-modules as in Definition [3.8] we prove the existence of a six-term exact sequence
in both variables for the groupoid equivariant case:

Theorem (D). Let A be a pro-G-algebra and let 0 > K - E - Q) — 0 be an extension of
pro-G-algebras which is admissible as an extension of pro-C(G)-modules. Then there

are two natural exact sequences

HPY(A,K) —— HPJ(A,E) —— HPJ(A,Q)

[ |

HPP(A,Q) +—— HPY(AE) +—— HPY(AK)
and

HPS(Q,A) —— HPY(E,A) —— HPJ(K,A)

[ |

HPP (K, A) —— HP{(E,A) «— HP{(Q, A),
where the horizontal maps in these diagrams are induced by the maps in the extension.

The work is organised as follows. Chapter 1 recalls the necessary preliminaries on
groupoids and functions on totally disconnected spaces. Then it introduces the basics
of the convolution algebras of an ample groupoid. In Chapter 2, we construct the cate-
gory of modules over the convolution algebra of an ample groupoid. We study the main
features of this category, focusing in particular on the construction of an internal tensor
product, which turns this into a monoidal category. We also introduce the notion of Anti-

Yetter—Drinfeld modules, which will play a central role. In Chapter 3, we start discussing



about pro-categories, then we introduce the definition of equivariant differential forms
for an ample groupoid and the equivariant X-complex. Finally we present the defini-
tion of bivariant equivariant periodic cyclic homology for ample groupoids, generalising
the classical and equivariant theories. In Chapter 4, we investigate the key homological

properties of this theory, such as homotopy invariance, stability, and excision.



Chapter 1

Preliminaries

In this first chapter, in order to make the work as self-contained as possible, we begin by
reviewing some well-established definitions and results from the literature. In particular,
we first collect some basic facts about topological groupoids. We then consider totally
disconnected spaces, which will play a crucial role in our discussion. Finally, we introduce
convolution algebras of ample groupoids and discuss some important features of proper

groupoids.

§ 1.1 | Topological groupoids

This section provides essential definitions that will be used frequently throughout this

thesis. The definition of a groupoid and its main properties form the starting point.

Groupoids first appeared about one hundred years ago, and a good historical survey
can be found in [Bro87]. Since their introduction, groupoids have found applications
in various fields, ranging from topology to operator algebras. A fundamental step in
their development was the study of C*-algebras associated with groupoids, initiated by
Renault [Ren80], which remains a valuable source for basic definitions of topological
groupoids. Several other good references are available for foundational concepts, such as
[Pat99]. Moreover, an elementary treatment of finite groupoids and their representation
theory can be found in [IR20].

Definition 1.1. A groupoid is a set G with a distinguished subset G2 ¢ GxG, a multipli-
cation (or composition) map m: G - G, («a,B) = af and an inversion map i: G - G,
a — a~! such that the following hold:

(i) multiplication is associative: if (a,B3),(B8,7) € G@ for some a,B,v € G, then
(. 87), (aB,7) €GP and a(By) = (aB)v;

(i) inversion is involutive: for any a € G, we have (=)' = «;

7



(iii) (a7t @) € GO for any a € G, and for all (o, B) € G® we have a ' (af) = 8 and
(aB)B! =a.

As the name suggests, this object is a generalisation of a group. However, as the previous
definition shows, the composition is just partially defined. A consequence of this is that
there are several partial units. The subset GO := {a € G| a = a~! = a?} of G is the base
space of the groupoid or its set of units. We also introduce the source map s:G — G0,
s(a) = ala and the range map r: G - GO r(a) = aa~t. With this definition given, G(2)
can be expressed as the set {(a,3) € G x G | s(a) = r(B)}. The inclusion map G(© - G

will often be denoted by u, and we will refer to it as the unit map.

We now turn to the notion of topological groupoids, which will play a central role through-
out this thesis.

Definition 1.2. A topological groupoid is a groupoid G endowed with a topology such that
the multiplication map m : G2 — G is continuous with respect to the subspace topology
on G@) c G x§G and the inversion map i : G — G is continuous. Moreover, if G is locally
compact and Hausdorff, we will say that it is a locally compact Hausdorff groupoid.
Remark 1.3. In a topological groupoid, the source and range maps s,v: G - GO are
automatically continuous when GO has the subspace topology. Indeed, they have been
defined as s(a) = a~ta and r(a) = aa! using the groupoid operations, and thus inheriting

continuity from the continuity of inversion and multiplication.

Let us observe that a more category-theoretic approach is possible. A groupoid G is a
small category in which all arrows are invertible. We denote by GO the set of objects,
by G the set of all morphisms, and by G(2) the set of all composable pairs of morphisms.
We identify GO with the identity morphisms in G via the map v : G(® - G, x + id,. In
the topological setting, both G and G(© are topological spaces, and the maps m, i, and
u are continuous.

Remark 1.4. The maps u : GO - u(GO) and r : u(G©) - GO are inverse to each
other, and both are continuous. Hence GO is homeomorphic to u(G©)). We may therefore
identify the set of base points GO of the category G with the subset

{aeGla=atl=a}

in Definition endowed with the subspace topology. Accordingly, we will often move
freely between the two, referring to the morphisms of the category as arrows and to the

objects as points in the base space.



Moreover, for any z,y € GO, we define
Go=s'(x), G'=r"'(z), and G¥:=s"'(2)nr(y)

as the sets of all arrows in G starting at x, ending at x, and starting at = and ending at

1y, respectively.

In the general treatment of non-Hausdorff groupoids, the only requirement is often that
just the unit space G(9 ¢ G must be Hausdorff in the relative topology. In this case, we
have the following result.

Lemma 1.5. Let G be a locally compact groupoid with Hausdorff base space, then G2 is
closed in G x G with the product topology.

Proof. Consider the map (s,7) : GxG - GO x GO and observe that G = (s,7) ™ (Agw ),
where Ag) is the diagonal in G xG(©) which is closed in G0 xG(©) since G is Hausdorff
by hypothesis. O]

However, the following elementary lemma explains why dealing with a Hausdorff groupoid
is useful.

Lemma 1.6. Let G be a locally compact groupoid with Hausdorff base space, then GO is
closed in G if and only if GO is Hausdorff.

Proof. Assume that G is Hausdorff and consider the map (ur) x idg : G - G x G, which
is continuous since it is the product of two continuous maps. Then we have GO =
(ur xidg) *(Ag), where Ag is the diagonal in G x G, which is closed in G x G since G is
Hausdorft.

Conversely, to prove G being Hausdorff we will show the uniqueness of nets limit points.
Assume that G(9) is closed in G and there exists a net (7;)s; converging simultaneously
to a and 8 where o, 5 € G. By continuity of the composition and inversion, we get that
viv;t converges to a8, Since each vy, = r(y;) € GO and G is closed, we have that
af=t=r(B) € GO. From this we have a3 = () and hence a = 3, which concludes
the proof. n

From now on, all groupoids we consider, unless otherwise specified, will be locally com-
pact Hausdorff groupoids. In particular, we are interested in a subclass of topological
groupoids, namely the class of étale groupoids.

Definition 1.7. Let X,Y be topological spaces. A function f: X — Y is called a local

homeomorphism if, for every point x € X, there exists an open neighbourhood U of x, such



that the image f(U) is open in'Y and the restriction f|y : U - f(U) is a homeomorphism.
Remark 1.8. A local homeomorphism f: X =Y is automatically a continuous and open
map between the topological spaces X andY .

Definition 1.9. A topological groupoid G is called étale if the range map r: G — GO s
a local homeomorphism.

Remark 1.10. If the range map is a local homeomorphism, it is immediate that the
source map s : G — GO s also a local homeomorphism since it can be written as the

composition of the range map and the inverse map i : G — G, which is a homeomorphism.

In this setting, a central notion that makes étale groupoids distinctive is the definition of
an open bisection.

Definition 1.11. Let G be a topological groupoid. An open bisection of G is an open subset
U of G such that the restriction of the source map s|y : U - s(U) and the restriction of the
range map 7|y : U — r(U) are homeomorphisms. Moreover, the set of all open bisections

will be denoted by Bis(G).

We now state and prove some properties of étale groupoids. Some of these results can be
found in [B618].
Lemma 1.12. Let G be a topological groupoid. If G is étale, then the following hold:

(i) GO is open in G;
(i) G* and G, are discrete (in the subspace topology) for every x € G(O);

(iii) If U and V are open subsets of G, the set
UV :={aBeG|(a,3) eGP (UxV)}
is open in G.

Proof. To prove (i), let x € G and let A € G be an open subset containing x, and
B < G an open subset containing x, such that r(A) = B and |4 : A - B is a homeo-
morphism. Set B’ := An G which is non-empty (since it contains z) and open in G(©)
by construction. Consider A’ := r~}(B’) n A, which is open in G and has the property
that r is injective from A’ to B’. To conclude, we check that A’ € GO, If a € A’, then
r(a) € B’ and a € A. Thus a and r(a) both belong to A and have the same image under

the range map; by injectivity we conclude that a = r(a), hence a € G(©).

We now prove (i7) only for G, as the case of G, is analogous. Let o € G*. Then there
exists an open neighbourhood U ¢ G such that 7 : G — G is injective on U. It follows
that G*nU = {a} is open in G%, so G is discrete.

10



Finally, for (ii7), let U,V ¢ G be open and (a,3) € G n (U x V). Since r: G - GO
is a local homeomorphism, there exists an open neighbourhood W of af in G such that
rlw is a homeomorphism onto its image. As m: G() - G is continuous, there exist open
neighbourhoods U’, V'’ € G of a and 3, respectively, such that U’V’ ¢ WW. By intersecting,
we may assume U’ € U, V' ¢V, and U’ ¢ s71(r(V")). Then r(U'V') = r(U’) is open.
Therefore,

uv' =rt(r(UV')nW

is open and contained in UV, as required. O

Remark 1.13. In many definitions of étale groupoids, one assumes that the range map
r:G — G is a local homeomorphism, meaning in particular that for any open subset U € G,
the image r(U) is open in G, not just in G(O). However, the two definitions are equivalent.
Indeed, if we assume that r: G - GO s a local homeomorphism we get that GO is open
in G (point (i) in Lemmal[1.13), and this ensures that r : G — G is a local homeomorphism

as well. The other implication is trivial by definition of subspace topology.

The class of étale groupoids has several good features. In particular, the set of open
bisections is large enough to form a basis for the topology. More precisely, the following
holds.

Lemma 1.14. Let G be a topological groupoid. Then the following are equivalent:

(i) G is étale;
(i1) The multiplication map m : G® — G is a local homeomorphism;

(iii) The collection Bis(G) of open bisections forms a basis for the topology of G.

Proof. (i) = (ii): Let (o, 8) € GP?, ie. s(a) =7(f). Since G is étale, we can choose open
bisections U, and Up containing o and (3, respectively. Then define V := (U, x Ug) nG?).
This is open in G(?) and contains («, ). We claim that the restriction of the multiplication
map m|y : V - m(V) is a homeomorphism onto its image. Indeed, since U, and Uj are
bisections, the multiplication map is injective on V. If a8 = vd with («,3),(7,9) € V,
then

s(B) = s(ap) = s(76) = 5(0),
and since sy, is a homeomorphism onto its image, this implies 3 = ¢. Similarly, since

7|y, is injective, we also get o = .

Moreover, since composition is continuous, and V' is open in G (by Lemma [1.12} point
(ii7)), it follows that m (V') is open in G . Thus, m|y is a homeomorphism onto an open

subset of G, i.e., m is a local homeomorphism.

11



(ii) = (4i1): Suppose m is a local homeomorphism. We want to show that open bisections

form a basis for the topology of G.

Let v € G. Since m is a local homeomorphism, there exists an open neighbourhood
W c G®? of (v,71) € G? such that m(WW) is open in G and mly : W - m(W) is a

homeomorphism.

Take an open neighbourhood U € G of 7 such that G& n(UxU-1) c W. Let a,3 € U
such that s(a) = s(f), since the multiplication is injective on W then a la = s(«) =
s(B) = 715 implies that o = §. Similarly, we can construct such a set for the range map.
Without loss of generality, we can assume that both the source and the range maps are
injective on U. Additionally, the injectivity of both source and range maps, combined
with the fact that multiplication is open, implies that s(U) = U~'U is open, as is the
case for the range map. Thus U becomes a bisection of G. So, we have found an open
neighbourhood U 5 v which is a bisection. Thus, open bisections containing v form a
neighbourhood basis at «. Hence, taking the collection of these neighbourhood basis for

all the elements in G, we obtain a basis for the topology.

(i1i) = (7): Assume Bis(G) is a basis for the topology. It is sufficient to show that
r:G - GO is a local homeomorphism. Let v € G. By assumption, there is an open
bisection U € G containing . Then, by definition, r(U) is open in G(©) and the restriction
rly : U - r(U) is a homeomorphism. Thus, r is a local homomorphism and G is étale.

This concludes the proof. O

We now introduce a fundamental tool in the study of locally compact Hausdorff groupoids,
analogous to the concept of Haar measure for locally compact groups.
Definition 1.15. Let G be a topological groupoid. A (left) Haar system on G is a family

(A*)peg of positive reqular Borel measures A* on G such that:
(i) the support of \* is G* for all x € G(O);
(ii) for every f e C.(G) the function \(f): G — C given by
MH@) = [ F(B)x(3)
is contained in C,(G));

(7i) we have
/gs(a) F(aB)dN @ () = [gm F(B)AN) ()
for all feCu(G) and a € gG.

12



A first consequence of having a Haar system has been outlined in [Ren80), Proposition 2.4].
Lemma 1.16. Let G be a topological groupoid which admits a Haar system. Then the

range and the source maps are open maps.

The following result, which can be found in [Pat99, Proposition 2.2.5], shows a further
feature of étale groupoids.

Lemma 1.17. Let G be an étale groupoid. For each x € GO let \* be the counting
measure on G=. Then (A*),egw is a Haar system for G. Then for any f € C.(G) we have

M) = 3 f(B).

BeG®

A subclass of étale groupoids of particular interest is given by ample groupoids.

Definition 1.18. A topological groupoid G is called ample if the set
Bis.(G) :={U c G | U is a compact open bisection}

forms a basis for the topology of G.

Remark 1.19. If Bis.(G) forms a basis of compact open bisections for the topology of
G, then G is étale. Indeed, for any U € Bis.(G) the restrictions r|y : U — r(U) and
sly : U - s(U) are homeomorphisms onto open subsets of GO . Since such bisections

form a basis, v and s are local homeomorphisms on G, hence G is étale.

We now show how to characterise ample groupoids in terms of their base space. So, we
need a brief discussion about totally disconnected spaces.

Definition 1.20. A topological space X is called totally disconnected if and only if the
only non-empty connected components of X are the singletons.

Examples 1.21. The Cantor set, the topological space of the rational numbers Q and
the topological space of irrationals R\ Q, all of them endowed with the subset topology of
the usual topology on R, are totally disconnected spaces. Moreover, while the Cantor set

is compact, the latter two are not even locally compact.

The following well-known result, see for instance [Wil04, Theorem 29.7], further charac-
terises totally disconnected spaces.
Proposition 1.22. Let X be a locally compact Hausdorff space. Then X 1is totally

disconnected if and only if it has a basis consisting of compact open sets.

Proof. First, suppose that X has a basis consisting of compact open sets. Let x € X and
let C', denote the connected component of x. Suppose, for the sake of contradiction, that

there exists y € C, with x # y. Then, since the topology has a basis of compact open sets
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and is Hausdorff, we can find a compact open set C' that contains y but not x. Thus,
it follows that C, = (C, ~ C') u (C, n C), where both C, \ C and C, n C are non-empty,
disjoint, and relatively open in C,. This contradicts the connectedness of C,, so we must

have C, = {z} for all x € X, and hence X is totally disconnected.

To prove the other implication, suppose that X is totally disconnected. Let x € X and
let U be an open neighbourhood of x. Since X is locally compact, there exists an open
neighbourhood V' of x such that the closure V ¢ U and V is compact. Since X is totally
disconnected, for each y € V \ V there exists a clopen subset V, of V such that z € V, and
y ¢ V. Then each V,, is closed in X, and {X \V, |y eV \V} is an open cover of V\ V.
Since V \ V is compact, there exists a finite set F ¢ V \ V such that Uyer (XN V) is a
cover of VNV, Let W = Nyer Vy, and observe that it contains x, it is clopen in V and
disjoint from V NV, so W €V c U. Thus, W is closed in the closed set V' and open in
the open set V', hence W is clopen in X. Since every closed subset of a compact set is
compact, we conclude that W is also compact. Therefore, X has a basis consisting of

compact open sets. O

Finally, we provide a link to ample groupoids. The following characterises the ample
groupoids as the étale groupoids with a totally disconnected base space. The proof of
this result can be found in [B61§| while a broad discussion about the topic can be found
in [Exel0].

Proposition 1.23. Let G be an étale groupoid. Then G is ample if and only if GO is

totally disconnected.

Proof. If G is ample, then it has a basis of compact open bisections. So, G(©) being open
and closed in G, it has a basis of compact open subsets. Thus, using Proposition [1.22]

we get that G(O) is totally disconnected.

Conversely, assume that G(© is totally disconnected. In the spirit of the proof of the
Lemma [I.14] we need to show that given av€ A € G, with A open subset of G, there exists
a compact open bisection W of G such that a € W ¢ A. Since G is étale, we start with
an open bisection U ¢ A ¢ G containing «. Using that G is locally compact, we can find a
compact subset V' of G contained in U. Then for r(a) we can find an open and closed set
B c GO contained in the set 7(V') and containing r(«). Since r|y is a homeomorphism
onto its image, the set W =r|j}(B) ¢ V c U ¢ A is the required compact open bisection

containing . O
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§ 1.2 | Examples

In this section, we now illustrate these ideas with some relevant examples of groupoids,
focusing on those that are ample.

Example 1.24 (Sets). Any set X can be viewed as a groupoid in which the only arrows
are the identity arrows id, for x € X. If we consider a locally compact and Hausdorff
topological space, we obtain a topological groupoid, which is automatically étale since the
source and range maps are the identity. Moreover, if that space X is totally disconnected,
then X is an ample groupoid.

Example 1.25 (Groups). Any group T’ can be viewed as a groupoid with just one point,
so that GO = {x}, and the arrows given by the elements of the group. The source and
range maps are trivial, while the inverse and multiplication functions are exactly those of

the group.

If the group is endowed with the discrete topology, then the groupoid is étale and even
ample, since the unit space consists of a single point. It is helpful to remark that, in this

case, the compact open bisections are given by singletons {g}ger.

These two examples represent opposite ends of the spectrum: in the first, the focus lies
entirely on the unit space, while in the second, the morphisms carry all the structure.
Example 1.26 (Disjoint union of groups). Let I be an index set and, for each i€ I, let
I'; be a group. Define a groupoid G by

GO = [{ey2I,  G=|]T,,

iel iel

where e; is the identity of ;. The range and source maps are r(g) = s(g) = e; for g eIy,
and the multiplication is the group product within each component: if g€ I'; and h € I';,
then gh is defined if and only if i = j. In other words, G is the disjoint union of the groups
I;.
Example 1.27. Let G be a groupoid, and define the isotropy subgroupoid G.q by setting

G =69 Gu= L] Gz
2eG(0)
Equivalently, Guq consists of all arrows v € G with r(y) = s(7).
Example 1.28 (Equivalence relation). Let X be a set and R ¢ X x X an equivalence
relation. Define a groupoid G by identifying the unit space with X via GO = {(x,z) €
R} € X x X, and setting G = R. The groupoid operations are induced by the properties of

the equivalence relation. Since R is reflezive, (z,z) € R for all v € X, so GO c G. For

15



any (y,x) € R, define the range and source maps by

r(y,x) =y, s(y,x) =,

and the inverse by i(y,x) = (x,y), which is well-defined because R is symmetric. Finally,
the composition is given by

(z9)(y,2) = (2,2)

whenever (y,x),(z,y) € R, and this is well-defined because R is transitive.

So far, we have seen groupoids arising from spaces and groups; now we introduce an
important source of examples that combines and generalises both constructions.

Example 1.29 (Transformation groupoid). Let X be a set and let T be a group acting
on the left on X. Define the groupoid G with object set GO ={e} x X (where e €T is the
identity) and arrow set G =T x X. We identify GO with X. For x € X and g,h €T, the

source and range maps are

s(g,x):x, T(g,ﬂf):g'l’,

the inverse is i(g,x) = (¢7',g- ), and the composition is

(hv.g CE)(gvl‘) = (hg,ﬁ)

In the literature, this groupoid is often called the transformation groupoid and is denoted
by I'x X.

When T is discrete and X is locally compact Hausdorff, I' x X is étale, and every set of
the form {g} x U, with g € T and U € X open, is an open bisection. Moreover, if X is
totally disconnected, then I' x X is ample.

§ 1.3 | G-spaces

Our next aim is to define groupoid actions on sets.

Definition 1.30 (Pullback). Let X, Y, and Z be sets, and let f: X - Z and g:Y - Z
be maps. The (categorical) pullback of X and Y with respect to f and g is the set
XxpoV={(z,y) e XxY | f(z)=9(y)}. If X, Y, and Z are topological spaces and f, g
are continuous maps, we equip X x¢,Y with the subspace topology inherited from X xY .
This construction is also often called the fibre product.

Example 1.31. Let G be a groupoid with source and range maps s, : G - GO We
often use the set G x5, G ={(a,B) € GxG|s(a)=r(B)}, which coincides with the space
of composable arrows G*. We may also consider the fibre product G .., G = {(«, ) €
GxGlr(a)=r(B)}.
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Lemma 1.32. Let X, Y, and Z be topological spaces with X, Y compact and Z Haus-
dorff, and let f : X - Z and g :' Y - Z be continuous maps. Then the fibre product
X x5,Y is compact.

Proof. Since X and Y are compact, the product X x Y is compact. Consider the map

(f,9): XxY >ZxZ  (2,y)~ (f(2),9(y)),

which is continuous. Then we have

XxpgY =(f,9)"(Az).

Since Ay is closed in Z x Z (because Z is Hausdorff) and (f,g) is continuous, it follows
that X x;,Y is closed in X x Y, and hence compact as a closed subset of a compact

space. ]

Definition 1.33 (Groupoid action). Let G be a groupoid and X a set. A left action of

G on X consists of:
(i) an anchor map 7: X - GO);
(i) a map m:G x,. X - X, denoted m(a,x) = a- x,

such that, for any (o, z) € Gx X and 5 € G withr(a) = s(B), we have (B,a-x) € Gxs . X,
B (a-x)=(fa) z, and u(n(x)) x =z.

A set X equipped with a G-action is called a G-set. If G is a topological groupoid and X
is a topological space, we further require ™ and m to be continuous, and we refer to X as

a G-space. If the anchor map w is a local homeomorphism, X is called an étale G-space.

It is interesting to observe that a G-space is related to the notion of local symmetries,
whereas the group case corresponds to global symmetries.

Lemma 1.34. Let G be an étale groupoid and let X be a G-space with anchor map
7: X = GO, For every open bisection U € G, the map

O : 7 (s(U)) — 71 (r(U)), v (z) = (slv) ™ (m(2)) - =,

is a homeomorphism with inverse 1.

Proof. Fix an open bisection U € G. Since s|y : U - s(U) and r|y : U - r(U) are

homeomorphisms, for each z € 771(s(U)) there is a unique

Oy = (5|U)‘1(7r(x)) eU
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with s(a,) = m(z). Since the action map is continuous, we can define
Oy(z) =a,-zen(r(U)),

which is continuous because x — «, is the composition x — 7(z) followed by (s|y)~* (and

m(ag-x) =r(ay)).

For y e 7=1(r(U)), define
Ou-1(y) = (slo-) " (7(9)) - -
If y = Oy (x) = ay - z, then 7(y) = r(a,) and (s|y-1)""(7(y)) = o', hence

Ou-1(y) = o' - (g 7) =

The converse composition is analogous, so 6y-1 is the inverse of 6. Therefore 6y is a

homeomorphism. O

Example 1.35. Every groupoid G acts canonically on its unit space G(O. The anchor
map is the identity m =idgwy, and for each o € G the action is defined by o - s(a) = r(w).
Example 1.36. Every groupoid G acts on itself by composition of arrows. The anchor
map is the range map r: G — GO and, for (o, ) € G?), the action is given by o = af3.
Example 1.37. The groupoid G acts on its isotropy subgroupoid G.q by conjugation. The
anchor map is the restriction of r (equivalently, of s) to Gug — GO and, for (a,~) €
G Xsr Gaa, the action is given by o -y = aya~t.

Example 1.38. Let G be a locally compact Hausdorff groupoid. The fibre product G x,,§G
is a G-space, where the anchor map is rpry and, for (v,a,3) € G x5, G x5, G, the action
is given by left multiplication on the first component: - («, ) = (ya, 3). Similarly,
Gx,,G s a G-space with anchor map rpr, and action given by diagonal left multiplication:

v (O./,B) = (/704’75)

In analogy with group actions, we define the orbit space of a given G-set.
Definition 1.39. Let G be a groupoid and X a left G-space with anchor map w. We

define the space G\X as the quotient X [~, where the equivalence relation is given by

x~y <= JaeG with m(x) =s(a) and y = a-x.

In the topological setting, when X is a G-space, the orbit space G\X is endowed with
the quotient topology induced by the action. This topology need not be well-behaved: in

particular, G\ X is not necessarily Hausdorff even if X is Hausdorff.

The following lemma outlines key features of the orbit space. A proof can be found in
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[Tu04, Lemma 2.30].

Lemma 1.40. Let G be a locally compact Hausdorff groupoid. The range and source
maps of G are open if and only if, for every G-space X, the quotient map X — G\X is
open. In that case, if X is locally compact, then G\X is locally compact.

§ 1.4 | Algebras and multipliers

Throughout this work, by an algebra we mean a (not necessarily unital) associative algebra
over the complex numbers. We will mostly work with algebras A that are essential, in
the sense that the multiplication map induces an isomorphism A®4 A 2 A. Moreover,
we shall focus on algebras with nondegenerate multiplication, meaning that ab =0 for all
a € A implies b = 0, and similarly, ab = 0 for all b € A implies a = 0. Note that every unital

algebra satisfies both properties: it is essential and has nondegenerate multiplication.

The algebraic multiplier algebra M (A) of an algebra A consists of all two-sided multipliers
(L, R), as discussed for instance in [VD94, Appendix]. A two-sided multiplier is a pair
where L : A — Ais aright A-linear map (a left multiplier), and R: A - A is a left A-linear
map (a right multiplier), such that for all a,b € A we have the compatibility condition

R(a)b=aL(b).

The vector space M(A) forms a unital algebra under composition of maps, with unit
given by the pair (id,id). If the multiplication of A is nondegenerate, we will write ab
for a;(b) and ba for as(b) when a = (ay,bs) € M(A). There is a canonical homomorphism
t: A - M(A) defined by sending a € A to the multiplier (L,, R,), where L,(b) = ab
and R,(b) = ba. When A has nondegenerate multiplication, this map is injective, and we
identify A with its image in M (A).

A (left) A-module M is said to be essential if the canonical map A® 4 M — M induced by
the module structure is an isomorphism. Note that in this case AM, the linear span of all
elements a-m for a € A and m € M, equals M. An algebra homomorphism f: A - M(B)
is said to be essential if B is spanned by elements f(a)b as a left A-module and by
elements bf(a) as a right A-module. When A is unital, these conditions reduce to the
familiar notions: M is essential if and only if it is unital in the usual sense (1-m =m),

and f is essential if and only if it is a unital algebra homomorphism.

The following lemma, compare [VD94l, Proposition A.5], ensures that an essential algebra
homomorphism between algebras with nondegenerate multiplication extends uniquely to
their multiplier algebras.

Lemma 1.41. Let f: A - M(B) be an essential algebra homomorphism. If the mul-
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tiplication in B is mondegenerate there exists a unique unital algebra homomorphism

F:M(A) > M(B) such that Fv= f.
Proof. Suppose F': M(A) - M(B) is an extension of f. Then necessarily

F(e)(f(a)b) = f(ca)b

for all c € M(A), a € A and b € B. Since the elements of the form f(a)b span B by

essentiality of f, this condition determines F' uniquely.

We now define F' on the spanning set by
F(c)(f(a)b) := f(ca)b
for ce M(A), a€ A, and b e B and extend linearly.

To ensure that F'(c) is well-defined on all of B, we must verify that this definition is
independent of the representation of an element in B as a finite sum Y; f(a;)b;. That is,
we must show that Y, f(a;)b; = 0 implies ¥, f(ca;)b; =0 for all ce M(A).

So, suppose ¥; f(a;)b; = 0. For arbitrary c € M(A), d € A, and e € B, we compute
ef(d) ZZ: flca;)b; =e 22: f(dca;)b; = ef(dc) Zi:f(ai)bi =0.
Since the elements ef(d) span B by essentiality of f, it follows that
Zf(ca,»)bi =0.

This shows that the definition of F'(c) is well-defined on B, and therefore defines a linear
map F(c): B - B.

Let ¢1,c0 € M(A). Then for all a € A, b e B, we compute

F(cica)(f(a)b) = f(cicaa)b
= F(c1)(f(c2a)b)
= F(c1)F(co).

Hence, F(cic2) = F(c1)F(c2), so F is multiplicative.

Finally, to check that F' extends f, take a € A. Then for all a € A and be B,

F((a)) f ()b = f(u(a)e)b = flac)b = f(a)f(c)d,
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which shows F'(c(a)) = f(a). O

We say that an algebra A has local units if for every finite set of elements aq,...,a, of A
there exists e € A such that ea; = a; = a;e for all 7. The multiplication in such an algebra
is clearly nondegenerate. We record the following well-known fact.

Lemma 1.42. Let A be an algebra with local units. Then a left A-module M is essential
if and only if AM = M. An analogous statement holds for right modules.

Proof. We prove the statement for left A-modules.

Assume first that M is essential. Then any m € M lies in the image of the canonical

map ¢ : A®4 M - M, so there exist finitely many a; € A and m; € M such that
m=@(X;a; ®m;) =%, a;-m;.

Conversely, suppose AM = M, we need to prove that the canonical map ¢: A®4 M - M
is an isomorphism. Let Y, a; ® m; € A®4 M be in the kernel of the canonical map ¢, i.e.

Y, a;-m; =0. Since A has local units, there exists e € A such that ea; = a; for all . Then
Zai@)mi = Zeaﬂbmi = Ze@ai-mi= Ze®0=0,

so the kernel of ¢ is trivial, and hence ¢ is injective. Since we assume AM = M, for any
m € M there exist finitely many a; € A and m; € M such that m =Y, a;-m; = (¥, a;®@m;),

so it is also surjective, hence an isomorphism. O

Remark 1.43. Given an essential A-module M over an algebra with local units, we

observe that any element m € M can be written as
m = Zai-mi: Zeai-mi: Ze~(ai~mi) =e-m,

for finitely many a; € A, m; € M and e € A such that ea; = a; for all i.
Remark 1.44. Observe that Lemma[I.49 implies, in particular, that an algebra with local

units is essential.

§ 1.5 | Convolution algebra of an ample groupoid

A fundamental step in this chapter is the construction of a function algebra associated
with the ample groupoid G. Specifically, we focus on the algebra of compactly supported,

locally constant functions on G.
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§1.5.1 | Functions on a totally disconnected space

The primary motivation for this section is that ample groupoids are totally disconnected

spaces, as we have seen previously, combining Definition and Proposition [1.22]

Let us begin by recalling what we mean by a locally constant function.

Definition 1.45. Let X be a topological space and'Y a set. A function f: X —Y is said
to be locally constant if for every x € X there exists an open neighbourhood U, € X of x
such that f(U,) = {f(x)}.

Lemma 1.46. Let X be a topological space and Y a set. A function f: X =Y is locally
constant in the sense of Definition[1.4J if and only if f is continuous when'Y is equipped
with the discrete topology.

Proof. Assume f is locally constant. Let V ¢ Y be any subset, which is automatically
open in the discrete topology. For each x € f~1(V'), by local constancy there is an open
set U, > x with f(U,) ={f(z)} ¢V, hence U, ¢ f~1(V'). Therefore

= U ot

zef~1(V)
is open in X. Since this holds for every V ¢ Y, f is continuous.

Conversely, assume f is continuous for the discrete topology on Y. Fix x € X. Then the

singleton {f(x)} is open in Y, so

U= f({f(2)})

is an open neighbourhood of x and f(U,) = {f(z)}. Hence f is locally constant. O

In what follows, by a locally compact space we always mean a locally compact Hausdorft
space.

Definition 1.47. Let X be a locally compact space. Define C*(X) as the space of all
locally constant functions X — C with compact support.

Remark 1.48. For certain topological spaces, the previous definition may yield a trivial
space of functions. For instance, when considering the real line R with the usual topology,
the only locally constant function with compact support is the zero function. This is due

to the fact that R has very few clopen subsets.

More generally, the notion of locally constant functions is intimately connected to the
abundance of clopen sets: the richer the collection of clopen sets in a space, the more

non-trivial locally constant functions it admits.
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Throughout the remainder of this section, we will restrict our attention to topological
spaces that are both totally disconnected and locally compact, since these provide a
natural setting in which the space of compactly supported, locally constant functions is

rich and well-behaved.

A good description of these functions, in the totally disconnected case, can be given by
using compact open subsets. This is made precise in the following lemma.
Lemma 1.49. Let X be a totally disconnected locally compact space. Then every element

feCx(X) can be written as a linear combination
f= Z Ck XUy,
k=1
for a finite family of pairwise disjoint compact open subsets Uy, € X and coefficients ¢y, € C.

Proof. Since f is locally constant and supp(f) is compact, the image f(X) is a finite
subset of C. If we denote by ¢y, ..., ¢, the nonzero elements of f(X) and set Uy = f~1(cy),
then each U, € X is open and closed, being the preimage of a point in the discrete
topology. Moreover, each Uy is compact since it is closed in supp(f), which is compact.

The sets Uy, ..., U, are pairwise disjoint, and we have f =Y}'_; ¢ xv, - O

Lemma 1.50. The vector space C(X) becomes naturally a commutative algebra with

the pointwise multiplication. Moreover, it is an essential algebra with local units.

Proof. Let f,g € C°(X). Then fg is again locally constant with compact support.
Indeed, for any = € X, there exist open neighbourhoods U,,V, € X such that f and g¢
are respectively constant on them. Hence fg is constant on the open set U, NV, so it is

locally constant. The support of fg satisfies

supp(fg) = supp(f) nsupp(g),
which is compact as the intersection of two compact sets. Therefore fg=gf € C>(X).

To show that C'°(X) has local units, take fi,...,f, € C(X). By Lemma [1.49] we
can write each f; as a finite linear combination of characteristic functions of compact
open sets. Let U be the finite union of all those compact open sets that appear in these

decompositions; then U is compact open, and e := xy satisfies e f; = f; = f;e for all ©. Hence

C(X) has local units. Finally, by Lemma [1.42] the algebra C(X) is essential. O

We will write C*°(X) for the algebra of all locally constant functions f: X — C.
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Lemma 1.51. Let X be a totally disconnected, locally compact Hausdorff space. The
algebraic multiplier algebra M(C (X)) can be canonically identified with C*(X), the

algebra of all locally constant functions on X.

Proof. Let me C*=(X) and f,g e C»(X). Then, arguing as in the proof of Lemma [1.50]
we have mf, fm e C>(X). Define a pair (L, Ryn) by L (f) == mf and R, (f) := fm.
Moreover, we check that L,,(fg) = Li.(f)g, Rn(fg) = fRn(g), and R, (f)g = fLn(9g),
SO (L, Rpp) € M(C(X)).

Let (L,R) € M(C(X)). Construct a function my g : X — C as follows: for any x € X,

choose a compact open subset U € X containing x and set

mL,R(a:) = L(XU)(.I)

This does not depend on the choice of U nor on using L instead of R. Indeed, for a
second compact open V' 3 z, using commutativity in C°(X) and the right A-linearity of

L we have

xvL(xv) = L(xv)xv = L(xvxv) = L(xv)xv = xvL(xv),

and by the multiplier identity we get
R(xv)xv = xuvL(xv) = xvL(xv)-
Restricting to U n'V' yields

L(xv)|vav = L(xv)|vav = ROxv)luav = R(xv)|vav,

so my, g is well-defined. Moreover, for each compact open U we have my, gl = L(xv)|v €

C(X), hence my, g is locally constant, i.e. my g e C°(X).

These two constructions are inverse to each other. Starting with m e C*~(X), for any

x € X and compact open subset U > z, we get

M, Ry, (2) = Ln(xv)(2) = (mxv)(x) = m(x).

We now show that L = Ly, .. Let g € C(X) and choose V ¢ X compact open with
g =xvyg (by Lemma [1.50). Then, for all z € X,

L(g)(x) = L(xvg)(x) = Lxv)(x) g(x) = mp r(x) 9(x) = L, (9)(2).

Using the multiplier identity, the same argument shows R = R,,, ,. This concludes the

proof. ]
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The following definition will be used in several further discussions.

Definition 1.52. Let X, Y be locally compact spaces. A continuous map p: X =Y is
proper if and only if o= (K) is compact for every compact subset K €Y.

Lemma 1.53. Let X and Y be totally disconnected locally compact spaces and let ¢ :
X =Y be a continuous map. Then ¢* : C2(Y) - C*(X) = M(C>(X)), o (f) =f¢
is a well-defined essential algebra homomorphism. If ¢ is proper then o*(Ce(Y)) is
contained in C(X).

Proof. For feC>(Y) the function ¢*(f) = fi is locally constant since it is the compo-
sition of a continuous function and a locally constant function, hence a continuous func-
tion to C endowed with the discrete topology. It follows that ¢* : C>(Y) - C>(X) =
M(C(X)) is well-defined. Moreover, this map is clearly an algebra homomorphism.

We show that ¢* is an essential algebra homomorphism. Let f € C°(X) and observe
that p(supp(f)) is compact since supp(f) is compact and ¢ is continuous. We can cover
e(supp(f)) by finitely many compact open subsets of Y, and if y denotes the characteris-
tic function of the union of these sets, then f = ¢* () f is contained in ¢* (C(Y))C (X).

Finally, assume that ¢ is proper. Let g € C(Y") and K = supp(g), which is compact open
in Y. Then the preimage ¢~!(K) is again compact open in X. If we write e € C(X)
for the characteristic function of p=1(K) then we get ¢*(g) = ¢*(g)e = ep*(g) and since
* is essential, ¢*(g) belongs to C=(X) as required. O

Proposition 1.54. Let X and Y be totally disconnected locally compact spaces. Then

the canonical linear map
V:CP(X)@CP(Y) » C2(X xY),
given by v(f ® g)(z,y) = f(x)g(y), is an isomorphism.

Proof. Assume F = ¥, fi ® gi € C2(X) ® C2(Y) satisfies v(F) = 0. By Lemma [1.49)
we can write each f; as a linear combination of characteristic functions xy,, for mutu-
ally disjoint compact open subsets U;; ¢ X, and similarly each g; as a linear combina-
tion of characteristic functions xy;, for mutually disjoint compact open subsets of Y.
Upon taking intersections of these subsets, it follows that F' can be written in the form
F =% cuxu, ® xv,, where Uy, ..., U, and V;,...,V,, are mutually disjoint compact open
subsets of X and Y, respectively. Without loss of generality, we may assume that these

sets are all non-empty. For every index k pick (g, yr) € Ur x Vi. Then the relation

0 =v(F)(wr, yx) = cxXxv, (26)xvi (Yr) = ck
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gives ¢, = 0. Hence F' =0, and it follows that v is injective.

To show surjectivity, it suffices to verify that the characteristic function yy of an arbitrary
compact open subset W ¢ X x Y is contained in the image of 7. For this it is enough to
write W as a disjoint union of sets of the form U xV where U € X and V ¢ Y are compact
open. In order to obtain such a decomposition of W, note first that since X and Y are
totally disconnected and locally compact they both have a basis for their topology made
up of compact open sets. In particular, for every point w = (z,y) € W we find compact
open neighbourhoods U, € X of x and V,, €Y of y such that the rectangle R, = U,, x V,,
is contained in W. Since W is compact we obtain a finite cover of W by rectangles
Ry, ..., Ry, for some wy,...,w, € W. Upon taking intersections of the compact open
sets U,, and V,,, making up the rectangles R,,,, we can refine this to a finite cover of W

consisting of mutually disjoint compact open rectangles as required. O]

Lemma 1.55. Let X be a totally disconnected locally compact space and let K € X be a
closed subset. Then the canonical restriction map C>(X) - C=(K), mapping [ to |k,

18 surjective.

Proof. For any given f e C(K) we have to construct a function F € C°(X) such that
F|k = f. Since every element of C(K) is a linear combination of characteristic functions
it suffices to consider the case that f = xy for some compact open set U ¢ K. Observe
that U is compact in a closed subset, so is again compact in X, and since it is open, there
exists an open set V € X such that V n K = U. Using that V is open and X is totally
disconnected we can write V' as a union of compact open subsets of X. Since we have
U ¢V, these sets are in particular an open cover of the compact set U. This means that
we can find finitely many compact open subsets Wy, ..., W, ¢ X such that W; ¢ V for all
¢ and the union W of the W; satisfies W n K = U. It follows that the function F' = xw
has the desired properties. ]

Let X, Y, Z be totally disconnected locally compact spaces and let p: X - Z,¢q:Y - Z
be continuous maps. The groups C(X) and C2*(Y) become essential C°(Z)-modules
via the pullback algebra homomorphisms p*, ¢* as seen in Lemma [1.53|and the pointwise
multiplication.

Definition 1.56 (Balanced tensor product). Let X, Y, Z be totally disconnected locally
compact spaces and let p: X - Z, q:Y — Z be continuous maps. The balanced tensor
product of C(X) and C>(Y) over C*(Z) with respect to p,q is the quotient

C=(X)'® O (Y) = (C2(X)® C2(Y))/R,
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where R is the linear subspace spanned by all elements of the form

fpr(h)yeg - feq(h)g

for feCe(X), geC>(Y) and he Ce(Z).

Example 1.57. Let G be an ample groupoid. Since s,7: G — GO are continuous maps
between totally disconnected locally compact spaces, the pullbacks s*,r* endow C(G)
with essential C2(G(0)-module structures. We will often consider the balanced tensor

products induced by the source and range maps:
C=(G) ® C2(G) and CF(G) ® C=2(G).

Definition 1.58. Let X, Z be totally disconnected locally compact spaces, let p: X — Z

be a continuous maps and let M be an essential left C(Z)-module. We define
C=(X) '8 M= (C=(X)® M)/R
where R is the linear subspace spanned by all elements of the form
fp*(h)em—fe&h-m,

for feCe(X), meM, he Ce(Z).
Proposition 1.59. Let XY, Z be totally disconnected locally compact spaces and let
p:X = Z,q:Y = Z be continuous maps. Then the canonical C(Z)-linear map

C(X) @ C2(Y) = C2(X %y, Y)
s an isomorphism.

Proof. 1t is straightforward to check that the composition of the canonical homomorphism
v:CP(X)®@Ce(Y) » C(X xY) with the restriction homomorphism C®(X xY') —
O (X %,,4Y) factorises through C°(X) ® C(Y). We shall write v, , for the resulting
C(Z)-linear map C(X) % Ce(Y) » C2(X x,,Y). Due to Proposition |1.54] and

Lemma [I.55] the map v, , is surjective, and it remains only to show that 7, , is injective.

Assume that F' € C®(X) '® C(Y) satisfies 7,,(F) = 0. As explained in the proof
of Proposition , we can represent [’ as a linear combination F' = ), crxu, ® Xv,
where Uy, ...,U, and Vi,...,V, are mutually disjoint compact open subsets of X and Y,
respectively. If there exists an index k and points x € Uy, y € Vj, such that p(x) = ¢(y) then
(z,y) € X %, Y and ¢ = cexu, () xv;, (¥) = Vg (F)(2,y) = 0. Therefore we may assume
without loss of generality that p(U)nq(Vy) = @ for all k. Using that Z is locally compact
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and hence regular we can then find compact open sets Ej € Z such that p(Uy) € Ej and
Erynq(Vk) = @ for all k. It follows that ex = xg, € C=(Z) satisfies xy, - ex = xv, and

er - Xv, =0 for all k. Hence we conclude
F =3 chXu, ® Xvi = ) CkXU, * €k ® X1 — CeXU, ® €k~ Xv; = 0
k k
as required. O

§1.5.2 | Convolution algebra of an ample groupoid

Following the discussion about function algebras on totally disconnected spaces, we are
now ready to introduce the main concept of this section, which serves as a cornerstone
for the rest of this work.

Definition 1.60 (Convolution algebra). Let G be an ample groupoid. Define the vector

space
C2(G):={f:G—C| f islocally constant and compactly supported},

which becomes an algebra with the convolution defined for any f,g€ C*(G) and € G as

(fxa)(@)= > f(Bg(Br )= 3 flay™)g(n)
Begr(=) Y€Gs(a)

Since C=(G) is also an algebra with the pointwise multiplication to mark the difference
when we refer to the convolution product, we denote this convolution algebra by D(G).

Remark 1.61. In the definition of convolution, the sums are finite: for fixed o € G, the
sets supp(f) N G"(®) and supp(g) N Gya) are finite since G is étale and f,g have compact
support. Hence the convolution is well-defined. Moreover, the space C*(G) is closed
under convolution. If (f * g)(«) #0, then o = v for some [ € supp(f) and -y € supp(g)
with s(B) = r(7y), hence supp(f * g) € supp(f)supp(g). The latter being compact since
the product map G — G is continuous. Local constancy of f * g follows from the fact
that f and g are locally constant. Finally, associativity and bilinearity of the convolution

follow straightforwardly. Hence C(G) is an associative algebra under convolution.

In view of the discussion in [Wil07, Section 1.5.1], we endow the algebra C.(G) with the
inductive limit topology. We write
OC(g) = U Ck,
Kcg

compact
open

where C := {f : G — C | f continuous and supp(f) € K}, equipped with the uniform

topology. This forms a directed system of topological vector spaces under inclusions

28



K ¢ L and extensions by zero giy, : Cx - C. We then define the inductive limit of the
previous direct system of topological vector spaces as
li_r)n Ck = P Ck/D,

KcG compact
open

with the linear maps txg : Cxg — li_H)lCK, where D is the vector space generated by
{tk(z) = (trgrr)(z) | © € Cx and K ¢ L}, and endowed with the direct limit topology,

that is the finest topology such that all the linear maps tx : Cx — h_rr)1 C are continuous.
The construction is summarised in the following diagram

CK 9KL CL

o

lim k.

One can show that (C.(G),{sk}), with si : Cx - C.(G) being the extension by zero, is

the inductive limit of this system.

We want to find a dense subalgebra of C.(G).
Proposition 1.62. Let G be an ample groupoid. Then D(G) is a dense subalgebra of
C.(G). Moreover,

D(G) =span{xy :G - C| U € Bis.(G)}.

Proof. We first show that D(G) = span{xy : § - C | U € Bis.(G)}. The inclusion 2
is obvious. For the reverse, let f € C*(G). The same argument used in Lemma [1.49)
shows that f = ), ¢; xv,, where ¢; € C and V; ¢ G are compact open. Since compact
open bisections form a basis for the topology of G, and each V; is compact open, we can
rewrite the sum using finitely many disjoint compact open bisections. Then we can write

f=%,¢ixu;, where ¢; € C and Uj € Bis.(G) for every index j.

Next we check closure under convolution using compact open bisections. If U,V € Bis.(G),
then

xo*xv(®)= > xu(h)xv(k) =xuv(t).
(h,k)eg®
hle=t

If t e UV, there exists a unique pair (h, k) with h e U, k €V, and hk =t, so the sum is 1;

if ¢ ¢ UV, the sum vanishes. The convolution is associative, as it is inherited from C.(G).

For the density, fix f € C.(G) with support in a compact open set K and a real number
e > 0. Since G is ample, K is totally disconnected, hence has a basis of clopen sets
(Proposition [1.22). Cover f(K) in C with finitely many open balls of radius less than
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e > 0. Pulling back via f gives a finite open cover of K that can be refined to a finite
clopen partition {Z;} of K. Define f(x) = f(x;) if x € Z; for some z; € Z;. Then fis

locally constant, has compact support, and | f - f|e < €. ]

We now gather some important structural results about D(G). Many of these can be
found in [Stel0)].
Lemma 1.63. The algebra D(G) is unital if and only if GO is compact.

Proof. If GO is compact, and it is also open by Lemma m then xgw € D(G). For
feCx(G)and aeg

(fxgo) @)= 3 f(B)xgo(7) = f(a),

(B,7)e6?
By=a

because xgw () # 0 only if v = s(/3), hence = . Similarly, we can prove that it is an
identity on the left.

Conversely, if D(G) has a unit e, we show e = xgw. If @ € G~ GO, then for a compact

open set U € GO with s(a) € U, we compute

0=xv(a)=(exxu)(a)= > eB)xv(v)=e(a),
(ﬁ’gv)ii(m

Similarly, for a € GO, e(a) = 1. Hence e = xg0) and G is compact. O

Lemma 1.64. Let G be an ample groupoid. Then the extension-by-zero map ¢ : C2(G)) —

D(G) is a well-defined injective homomorphism of algebras.

Proof. Since G is clopen in G, from Lemmas and the extension ¢(f) of any
f e Ce2(GO) by zero is locally constant and compactly supported in G. In fact, the
support of ¢(f) equals the support of f, and G(© is closed in G. It is locally constant
over G since, for every point z € G(9) there exists an open neighbourhood of z in G(©
on which f is constant, and opens in G are open in G because G(Y is open in G.
If € GNGO then G\ GO is an open neighbourhood of x on which ¢(f) vanishes.
Moreover, convolution is preserved under extension because outside G(®) all terms vanish
and on G convolution reduces to pointwise multiplication. Hence ¢ is a well-defined

homomorphism, which is injective since ¢(f) = 0 implies f = 0. O

Corollary 1.65. The algebra C*(G(®), viewed as a subalgebra of D(G), is abelian.
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Proof. The result follows from the homomorphism ¢ : C2(G(®) - D(G) in Lemma [1.64}
indeed, for any f,ge C®(G®),

o(f) * o(g) = o(f9) = ¢(gf) = d(g) » (/).

Moreover, the convolution reduces to pointwise multiplication on G(®. This concludes
the proof. n

As we have already outlined, the algebras we consider are not always unital. Related to
Lemma [I.50] we have the following.

Lemma 1.66. The algebra D(G) has local units. Moreover, the local units can always be
picked in C*(G©®), viewed as a subalgebra of D(G).

Proof. Let f1,f2,...,fn € D(G) and consider the compact open set U = U, supp(f;)-
Then, construct the set V = r(U) u s(U) € GO, which is again compact open. Finally,

let us consider the characteristic function e = yy € D(G), which is clearly an idempotent
and such that e x f; = f; = f; » e. n

§ 1.6 | Proper groupoids

In this section, we review the definition of proper groupoids and show the existence of

particular cut-off functions for such groupoids.

Recall the definition of a proper map as given in Definition [1.52]
Definition 1.67. Let X and Y be locally compact spaces, and let m : X - Y be a
continuous map. A function f: X — C is said to be properly supported if

71-lsupp(f) : Supp(f) -Y
18 proper.

Properly supported functions, in the context of ample groupoids, behave nicely with
respect to fibre integration. In particular, the following result holds.
Lemma 1.68. Let G be an ample groupoid and let f : G — C be a locally constant function
such that supp(f) nr-Y(K) is compact for all compact sets K ¢ GO, Then the function
A f): GO - C defined by

M) (@)= fa)

aeG?®

is locally constant.

Proof. Let x € G and let V be a compact open neighbourhood of z. By assumption the
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set supp(f)nr~1(V) € G is compact. Hence g = fx,-1(y is contained in Cg°(G). Writing
g as a linear combination of characteristic functions of compact open bisections of G it is
straightforward to check that A\(g) is locally constant. Since by construction the functions
A(g) and A(f) agree on V' it follows that A(f) is locally constant in a neighbourhood of

x, and since x was arbitrary this yields the claim. O]

Let us now introduce the definition of properness for groupoids. Recall that we write s, r
for the source and range maps of G, respectively.
Definition 1.69. An étale groupoid G is called proper if (s,7): G - GO xGO) js a proper

map.

As mentioned in the section about G-spaces, orbit spaces can misbehave in terms of
Hausdorffness. A notable property of proper groupoids is given by the following. A proof
can be found in [B618, Lemma 1.2.11].
Lemma 1.70. Let G be a proper Hausdorff groupoid with open range and source maps.
Then the quotient G\G©® is Hausdorf}.

In particular, since étale groupoids always have the range and source map open, see
Lemma [1.16] we can say that if G is a proper étale groupoid then the quotient space
G\G© is Hausdorff.

Moreover, for ample groupoids we can say more.
Lemma 1.71. Let G be an ample and proper groupoid. Then the quotient space G\G(®

is totally disconnected.

Proof. By Lemma |1.40} the quotient map ¢ : G(® - G\G(® is continuous and open. We
aim to show that G\G(® has a basis of compact and open subsets, which by Proposi-
tion implies that it is totally disconnected.

Let [z] € G\G® and let Af,j be an open neighbourhood of [z]. Then ¢~'(A(,) is an open
neighbourhood of a point y € GO with ¢(y) = [z]. Since G is totally disconnected and
Hausdorff, there exists a compact open subset C, ¢ G(©) such that y € C, ¢ ¢7'(Ap).
Because ¢ is continuous and open, the image ¢(C,) is an compact open subset of G\G(®)
containing [x]. Thus, ¢(Cy) € Af;] is a compact open neighbourhood of [x]. Thus we
have constructed a neighbourhood basis at [x] consisting of open and compact subsets.

Collecting these neighbourhood basis for all classes in G\G(®) gives a basis for the topology.

Finally, since G is proper, the quotient space is Hausdorff by Lemma [1.70] and hence
G\G is totally disconnected. O
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Since g\g<0> is totally disconnected, we can consider the space of locally constant func-
tions on it. Then we have the following.
Proposition 1.72. Let G be an ample and proper groupoid. Then every essential C°(G(0))-

module becomes an essential C*(G\G)-module in a canonical way.

Proof. From Lemma , we have that the quotient map ¢q : GO - G\G© induces
an essential algebra homomorphism ¢* : C*(G\G®) - C=(G©)). Moreover, since the
quotient map is surjective, ¢* is injective. Indeed let f e C(G\G®) such that ¢*(f) =
fq =0, then for every y € G\G(), since ¢ is surjective, there exists a x € G(© such that
f(y) = f(g(z)) =0. Then the map ¢* is an embedding of algebras.

Let M be an essential C2(G(®))-module. We define, for any f € C=(G\G(?), an action
by

f-m=q(f)e-m,
where e € C2(G() is such that e-m =m, and ¢*(f) € C=(G©) = M(Cx(G®)). This
defines an essential C°(G\G(®)-module structure. Indeed, since the algebra C'°(G\G()
has local units, we need to prove that C(G\G( )M = M. Since ¢* is an essential algebra

homomorphism, for any element m € M, we have

m=e-m=y ¢ (fi)gi-m= ¢ (f)e-(gi-m),

where e, g; € C=(G®) and f; e C2(G\G®) for all 7. This concludes the proof. O

Next, we review the concept of a cut-off function for étale groupoids, compare [Tu99,
Definition 6.7].

Definition 1.73. Let G be an étale groupoid. A cut-off function for G is a continuous
function c: GO - [0, 00) such that

(i) for every x € GO we have ¥ ,ege cs(a) = 1;
(ii) the map r :supp(cs) — GO is proper.

The existence of a cut-off function for the groupoid is related to its properness, as shown
in [Tu99, Proposition 6.10 and Proposition 6.11]. We now prove a variant of [Tu99,

Proposition 6.11], which ensures the existence of a locally constant cut-off function.

Let us start by recalling the following definitions.
Definition 1.74. A topological space X is said to be paracompact if it is Hausdorff and
every open cover of X admits an open locally finite refinement that also covers X. That

is, for every open cover {U,}ier of X, there exists a second open cover {V;}jes of X such
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that
(i) for each j € J, there exists i € I such that V; ¢ U;;

(ii) for every x € X, there exists a neighbourhood of x that intersects only finitely many
V;.
Definition 1.75. A topological space X is said to be o-compact if it can be written as a
countable union of compact subsets.
Proposition 1.76. Let G be a proper ample groupoid with G\G®) paracompact. Then G
admits a locally constant cut-off function. If G\G® is compact then G admits a locally

constant cut-off function with compact support.

Proof. The quotient G\G( is a totally disconnected locally compact Hausdorff space.
By assumption it is also paracompact, and hence can be written as a disjoint union of
a family of open o-compact totally disconnected locally compact Hausdorff spaces, see
[Bou66l, Section 9.10, Theorem 5]. Every o-compact totally disconnected locally compact
space X, in turn, can be written as a disjoint union of a countable family of compact
open subsets. Indeed, taking a finite cover made up of compact open subsets of each
compact subset of X by Proposition [.22] using o-compactness we obtain a countable
family (U;);er of compact open subsets that cover X. We can make this cover disjoint
setting Vi := Uy and V,, = U, \ (U;21V;) for n € N. Observe that the union and the
difference of compact open subsets of X is compact open. As a consequence, there is a

cover (V;)ier of G\G(® consisting of mutually disjoint compact open subsets.

Since the quotient map ¢ : GO — G\G® is open we can find n; € N and compact open
subsets Uj1...,U;n, of GO for each i € I such that q(U;;) € 'V; for all j and ¢(U;1) U
U q(U;p,) = Vi. Without loss of generality, we can arrange the sets U; ; to be mutually
disjoint. We then define d : G(©) — [0, c0) by

d= ZZZ:XU”

iel j=1

By construction, d is well-defined and locally constant. In fact, d is the characteristic

function of the union of the sets Uj ;.

If K €GO is compact then ¢(K)nV; is non-empty only for finitely many 7 € I, and hence
supp(d) n ¢ *(¢(K)) is compact. As a consequence,

supp(ds) N~ (K) = (s x 1)~ (supp(d) x K) = (s x 7)™ ((supp(d) n¢~' (¢(K))) x K)

is compact by properness of G. According to Lemma it follows that the function
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A(ds) is locally constant.

Note that for every x € G(O) there exists an index i € I such that q(z) € V;. This implies
that there exists some 1 < j <n; and an element a € G* such that s(«a) € U; ;, and we
conclude that A(ds)(z) = Yaege d(s(a)) > 0. It is then straightforward to check that
c(z) =d(z)/A(ds)(z) is a locally constant cut-off function for G.

Finally, if G\G(® is compact then the index set I in the above construction can be taken

to be a singleton, and then both d and ¢ have compact support. O
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Chapter 2

The category of G-modules

In this chapter, using notions presented previously, we introduce the category of essential
modules over the convolution algebra of an ample groupoid G. To give a different view of
these objects, we introduce a second category, the category of C'*(G)-comodules, which
we will prove to be equivalent to the first one. This alternative viewpoint will help us
prove some of the main properties of these categories, such as being monoidal. Then,
following a categorical approach, we define what a G-algebra is in this context. These
objects will recur from now on and will be the main target of investigation in this thesis.
Finally, we introduce the category of G-anti-Yetter—Drinfeld modules, which turns out to
be the natural setting in which we will develop some of the homological tools in what

follows.

§ 2.1 | G-modules and C*(G)-comodules

In the previous chapter, we defined the algebra of compactly supported locally constant
functions over an ample groupoid G. In this first part of the chapter we introduce two

categories and show an isomorphism between them.
The category of G-modules

We now define the category of modules over this algebra, study some of its properties,
and give examples.

Definition 2.1. Let G-Mod be the category whose objects are essential left D(G)-modules,
and whose morphisms are D(G)-linear maps. Objects in this category are called G-

modules, and morphisms are called G-equivariant linear maps.

To better familiarise ourselves with this category, we start by giving some examples
arising naturally from the definition. The first trivial one is the following.

Example 2.2. The algebra D(G) is a module over itself with the action given by convo-
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lution. Thus, for any f,g € D(G), we have f-g=f *g.

As pointed out in [BDGW23], a good source of examples of G-modules are spaces with a
topological action of G.

Lemma 2.3. Let G be an ample groupoid and let X be a locally compact, Hausdorff and
étale G-space with anchor map m: X - GO . Then C*(X) is a G-module and the action
of feD(G) on F e C>(X) is given by

(f-F)z)= 3 fla)F(at-x). (2.1)

aegﬂ'(m)
Proof. We begin by verifying that the action defined in (2.1)) is well-defined. Since G is
étale, the set G7(#) is discrete (in the subspace topology) for each z € X, and the support
of feD(G) is compact. Hence, for each fixed x € X, the sum involves only finitely many

non-zero terms and is thus well-defined.

To prove that f- F e C(X), we check that it is both compactly supported and locally
constant. We may assume without loss of generality that f = yy, where U € Bis.(G),

since D(G) is spanned by such functions.

In this case, the action simplifies to

(x- F)(x) = 0F(oz1 ~x) if Ja e U with r(«) = w(x),

otherwise.

Let K = supp(F'), which is compact. Consider the subset
U-K={azeX|aelU zeK, s(a)=n(x)} c X.

This is the image under the action map m : G x, » X - X of the fibre product U x, . K.
Since both U and K are compact, and s,7 are continuous maps, the fibre product is
compact, see Lemma [1.32] and hence its image U - K is compact. Since f - F' vanishes

outside this set, we conclude that supp(f - F') is compact.

Since F is locally constant, there exists an open neighbourhood V' ¢ X of a~!-x on which
F' is constant. By shrinking V' and U if necessary and using the same argument as in
Lemma [1.34] we can conclude that the action map

m:UXS,ﬂ'V_)X7 (672)'_)6'27
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is a homeomorphism onto its image, which is precisely
U-V=A{B-zeX|pelU 2V, s(f)=n(2)}.

Therefore, the set U -V is an open neighbourhood of x, and for every y=3-2¢U -V, we

have the constant value
(f-F)(y)=F(B"y)=F(2).
Thus, f- F is locally constant.

Finally, we show that the D(G)-module structure is essential. Let F' ¢ C(X) with
compact support K =supp(F'). Since X is totally disconnected and locally compact, we
can cover K with finitely many disjoint compact open subsets {U;}; of X. For each i, let
V; == w(U;), which is compact open in G(9) since 7 is étale. Then the function xy, € D(G)

satisfies

x) if m(x s
(xv, - F)(x) = xv,(7(2))F(x) = F(x) (r) eV,

otherwise.

Hence, F' =}, xv; - F', and this concludes the proof. O

Example 2.4. In view of Lemma [2.9 we observe that C*(GO) can be endowed with a

G-module structure on the left and the right. The actions are given by

(f-m)(x) = ) fla)m(s(a))

aeg®

and

(m-f)(@) = 3, m(r(a))f(a)

aeGy
for all f € D(G), meCe(G®) and x € GO,
Lemma 2.5. Let G be an ample groupoid. There exists a covariant functor from the
category of locally compact, Hausdorff and étale G-spaces to the category of G-modules.
This functor maps a G-space X to the D(G)-module C*(X), and a G-equivariant and
étale map ¢: X =Y to the D(G)-linear map ¢, : C(X) - C=(Y) given by

F(x), if o7 (y) + 2,
¢« (F)(y) = o™ )

0, otherwise.

Proof. The D(G)-module structure on C°(X) is described in Lemma [2.3] We now show

that the assignment X — C'*(X) and ¢ — ¢, defines a covariant functor.

Let A € X be a compact open subset and consider the characteristic function x4 € C(X).
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Since ¢ is étale, each fibre ¢~!(y) is discrete (in the subspace topology) for y € Y, and
since x4 has compact support, only finitely many points in ¢~'(y) contribute non-zero

terms. Hence the sum defining ¢, (x4)(y) is finite, and ¢, (x4) is well-defined.

To show local constancy of ¢.(xa), fix y € Y, and for each x; € ¢~'(y) n A choose a
compact open neighbourhood U; ¢ X of z; such that x4 is constant on U; and ¢|y, is a
homeomorphism onto an open subset of Y. Then V' := N; ¢(U;) is an open neighbourhood

of y on which ¢,(x4) is constant.

The support of ¢,(xa) is contained in ¢(A) because if y ¢ ¢(A), then ¢~ (y)n A = @,
so ¢«(xa)(y) = 0. Since ¢ is continuous and A is compact, ¢(A) is compact. Thus
supp(¢.(xa)) is a closed subset of a compact set and hence compact. It follows that
¢y C2(X) = C=(Y) is a well-defined linear map.

We now prove D(G)-linearity. Let F'e C°(X) and f e D(G). For y € Y we compute:

o (f-F)w)= > (f-F)x)= 3 ) fla)F(a'2)

zed™ (y) zed™! (y) aegm(®)

Using the G-equivariance of ¢, we have ¢p(a™'-z) = a7 -y, and setting z = o~ - = we get

o (f-F)y)= 3 fla) > F(2)=(f 6.(F)(¥)

aeg™(v) zegp~1(a~1ly)
Hence, ¢.(f-F) = f-¢.(F) and ¢, is D(G)-linear.

For functoriality, let ¢ : X - Y and ¢ : Y - Z be composable G-equivariant and étale
maps. For F'e C»(X) and z € Z, we compute

(et )(F)(2) = ) o(F)w)= > ) Fl@)= >  F()

yey~1(z) yep~(2) zeg™! (y) zep~t (1 (2))

Since ¢~1(¢¥1(2)) = (¢¥¢)~1(2) for every z € Z, we can rewrite it as

(Wb )(F)(2) = > F(2)= (Vo). (F)(2).

ze(Pe)~1(2)

Thus (¥¢). = 1.¢.. Moreover, if idy is the identity on X, then

(idx)«(F)(z) = > F(u)=F(),

ueid3} ()

s0 (idx). = idge(x). This completes the proof. O
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The category of C>(G)-comodules

Our first aim is to provide an alternative description of G-modules, inspired by the dis-
cussion in [BHMIS]. Consider the maps dy, d;,ds : G — G given by

do(a,8) =8, di(a, ) =aB, do(a,f) =

for (o, 8) € G?) = Gx,,.G. Each of these maps can be used to turn C2(G®)) into a C=(G)-
module by pulling back along d; and using pointwise multiplication. Let f e C®(G®))
and g € C°(G) we define the action by

(f’L g)(aaﬂ) = f(aaﬁ)g(dz(aaﬁ)%
for (o, 8) € G® and we write C=(G®,d;) for the resulting C°(G)-module for ¢ =0,1,2.

Hence, if P,Q are C°(G)-modules and T : P — @ is a C°(G)-linear map we get induced
linear maps

id®T: C2(GP,d;) ®ceg) P~ C2 (G, d;) ®cw(gy @ (2.2)

for i = 0,1,2. We will denote these maps by d}(7") in the sequel, to keep track of the
different module structures on C=(G®) used in the construction. Consider the special
case, as introduced in Definition [1.58} of P = C(G) %d M and Q = C=(G) séd M for a
C=(G)-module M, where both P and Q are viewed as C'°(G)-modules with the action

by pointwise multiplication in the first tensor factor.

Lemma 2.6. Using the notation introduced above, there is a canonical isomorphism
r,id rd;,id
between C2(GP),d;) ®c=(g) C(G) ® M and C2(G?) ® M. An analogous result

holds when replacing the range map r with the source map s.

Proof. Since C* (G, d;) is an essential right C'>°(G)-module, there exists a canonical
isomorphism

p: C2(GP) d;) ®ce(g) CF () » CF(GP, di)
defined by ¢(f ® g)(e, 8) = f(a, f)g(di(a, 5)).

We now consider the C°(G(®)-module structure induced on C'*(G®?)) via the compo-
sition rd; : G - GO and the pointwise multiplication, so that for h € C(G(®) and
feCe(g®),

(f -h)(a,B) = f(a, B) h(rdi(e, B)),

and the C(G))-module structure induced on C*(G) via the range map r and the

pointwise multiplication.
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Let us verify that ¢ is C°(G())-linear with respect to these module structures. For all

feCe(G®), ge Ce(G) and h e C2(G®), we compute

(p(f@g)-h)(a,f)=e(f®g)(af)h(rdie, 3))
= f(a, B)g(di(ex, 8)) h(rd;(cx, B))
= f(a, 8)(g-h)(di(e, 5))
=o(fe(g-h))(e,B).
Hence, ¢ is C2(G©)-linear.

Since ¢ is a bijective C®(G(®)-linear map, we obtain an isomorphism of C®(G(®))-
modules. Tensoring with the identity map idy over C2(G(®), we obtain the desired

isomorphism.

The analogous result for the source map follows by symmetry, replacing r and rd; with s

and sd;, respectively. O

In view of Lemma 2.6 writing the following compositions
Vo = le = ng, V1 = Tdo = SdQ, Vo = Sdg = Sdl,

r,id s,id
and recalling that T : C*(G) ® M - C*(G) ® M here is an arbitrary C°(G)-linear
morphism, the maps introduced in ({2.2]),

r,id s,id
d; (T): CZ (6P, d;) ®cx(6) C(G) ® M~ CZ(GP,di) ®cee(c) C(G) ® M
for i =0,1,2 can be written as

v1,id vo,id
d3(T):C(GP) & M »C=(GP) & M,
v2,id

v0,id
di(T):C=(GP) © M~Cz(G®) o M,

v1,id

&5(T) : C=(G) 8" M - C=(6) 8" M.

The following definition introduces the objects we will soon compare to G-modules.
Definition 2.7. A C(G)-comodule is an essential C=(G))-module M together with a

C(G)-linear isomorphism

r,id s,id
Ty:Ce(G) ® M->Cx(G) @ M
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satisfying the coaction identity
dg (Tar)d5(Thr) = di (T ).

A morphism of C®(G)-comodules is a C*(G)-linear map f : M — N such that

We will write C°(G)-Comod for the category of C°(G)-comodules.

In the second part of this section, we will prove that these new objects we have introduced

are the same as G-modules described at the beginning of the chapter.
From G-modules to C(G)-comodules

Let us first explain how to pass from G-modules to C°(G)-comodules. Consider M =
C>(G) =D(G) as a left module over itself.
Lemma 2.8. Let G be an ample groupoid. Then there is a linear isomorphism T :

C=(9) ® C=(G) - C=(G) & C=(G), given by
T(f)(«,B) = f(a,ap)
for f € C=(G) ® C(G) = C=(G %, G-
Proof. The spaces G x;,.G and G x,.,, G are homeomorphic since the map
t:Gx, GG, G, ta,B)=(a,af)
is a continuous map whose inverse is given by
G %, G > G x5 G, t7H(a, B) = (a,07' ).

Since t is a homeomorphism, hence a proper map, using Lemma [1.53], we get the desired

linear isomorphism

Tcgo(g Xpr g) - Cgo(g Xsr g)
feT()(a,B) = f(a,ap),

induced by t. Finally, Proposition [I.59] concludes the proof. ]
Moreover, the map T is left C(G)-linear, as explained in the following.

Lemma 2.9. The map T : C(G) ® C2(G) > C=(G) ® C>(G) is a C=(G)-linear map

with respect to the pointwise multiplication action on the first tensor factor on both sides.
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Proof. Let feC>(G) ® C(G) and g € C°(G). Then we have

T(g-f)(e,p) = (g- (e, ap)
= g(a) f(o, af)
= 9(a)T(f) (e, B)
=(9-T()(,B)

Then we have T'(g- f) = g-T(f) and this concludes the proof. ]

In the following, we will also refer to 7" as the canonical map of M = C(G).

Let us show that the canonical map turns C(G) = D(G) into a C(G)-comodule. To

this end, note that using the definition of v; for 2 = 0,1,2 we have the homeomorphisms

G® gy r (G %5, G) 2GP) %, G,
G %y (G %rr G) 2GP %y, . G,
G gy 2 (%, G) 2GP x,,, G,
G %y 7 (G %r G) 2 GP %y, G,
GP a7 (G %, G) 2GP %, G,
G %y r (G %rr G) 2 G %y, G,

where 7 denotes the projection to the first copy of G in either case. Using these homeo-
morphisms, we can identify the maps induced by the map ¢, introduced in the proof of

Lemma [2.8] on these fibre products as

(id xgont) 1 G2 0y G =GP x G, (id Xy et) (v, B,7) = (a0, B, B7),
(ld Xdl,ﬂ't) : g(2) Xva,r g - g(2) xvo,r g; (ld Xd1,7rt)(aa B’ ’7) = (Oé, 67 Oéﬁ’}/),
(ld ng,ﬂt) : g(2) Xoy,r G- g(Q) Xvo,r g, (ld Xdz,ﬂt)(aa 57 ’7) = (av 67 O./’}/)
From this description it is immediate to check that (id x4, t)(id x4, ~t) = (id x4, «t).

Using Lemma |1.53] as we have done in Lemma , and since d;(7T") is the transpose of
id x4, »t this yields the coaction identity dj(T")d;(T") = d;(T') for T.

Now let M be an arbitrary G-module. We start with some preliminary results.
Lemma 2.10. Let G be an ample groupoid. Then any G-module M is naturally an

essential C(G))-module via the restriction of the action along the inclusion G(©) < G.

Proof. Since M is a G-module, it is by definition an essential D(G)-module. The convo-

lution algebra D(G) contains C*(G(?) as a subalgebra via the inclusion of units G0 ¢ G
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as shown in Lemma [I.64.

Then, we define the action of C®(G(®)) on M by restricting the D(G)-action

f'm::fN'ma

for all f e C®(G®) and m € M, where f denotes the extension-by-zero of f. This defines
a C2(G®)-module structure on M.

To show that this action is essential, we recall that D(G) has local units and these units
can always be picked as elements of C*(G(®), see Lemma |1.66, In particular, in view of
Remark [1.43] we have that for every given m € M, there exists an e € C°(G(®) such that

m=e-m.
Finally, Lemma concludes the proof. O
Lemma 2.11. The map T : C(G) ® C>(G) - C=(G) & C>(G) is D(G)-linear with

respect to the right D(G)-action on the second tensor factor on both sides.

Proof. We equip both tensor products with the right D(G)-action given by convolution
on the second tensor factor. For f e C(G) ® C(G) and g € D(G), we compute

T(f*g)(a,B)=(f*g)(a,aB)
= Y fle,0)g(¢Map).

¢egr(a)

Set ¢ = an, so that n = a=1(. Then ¢ € G"(® implies n € G"(#) and the expression becomes

Y, flayam)g(n'B8) =% T(f)(a,n)g(n'p)

negr(ﬁ) neg’f(ﬁ)

=(T(f) * g)(e, ).

Hence, we have T'(f » g) = T(f) * g, which proves the right D(G)-linearity of T O

Moreover, using the identification D(G) ®py M = M and Lemma [2.11] we obtain a
r,id s,id
C(G)-linear isomorphism Ty, : C(G) ® M - C*(G) ® M as the unique map fitting

into the commutative diagram

(C=(G) ® C=(G)) ®pigy M ~2% (C=(G) & C=(G)) ®pgy M

C=(G)'® M Tar s C=(G) @ M.
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From the above construction, we obtain analogous commutative diagrams linking d; (7;)

and df (T) ®1id for i = 0,1,2. Indeed, for example, taking i = 0, we get

v1,T di(T)®id v2,r
(C=(G™) & C=(G)) ®pgy M "5 (C=(02) '8 C(G)) ®pgy M

v1,id dX(T: v2,id
C2(g™) "8 M B0, o (g®) " M,

and hence the coaction identity dj(Th)ds(Th) = di(Thr) holds. We will refer to Ty as

the canonical map of M in the sequel.

In explicit calculations, the following result is useful.
Lemma 2.12. Let M be a G-module. For any compact open bisection U of G and m € M

we have

Ty(xv®m) =xu ® xy-1 - m.
Proof. Using the essentiality of M and the existence of local units, we have

Tu(xveom)=(T®id)(xy ®e®m)

=T(xy®e)®m,

where e € C(G(®) has the property that e-m =m and without loss of generality, since
we are working a balanced tensor product, we can assume that e = x, 7). Then, recalling

the map 7" as defined in Lemma [2.8) we have

T(xyv®e)®@m=xy®xy-1®m

=Xu ® Xy-1 -,

and this concludes the proof. O

These constructions lead to the following result.

Lemma 2.13. Let M be a G-module. Then M becomes a C=(G)-comodule via the
canonical map Ty defined above. This assignment defines a functor A : G-Mod —
C(G)-Comod.

Proof. The assignment at the level of objects is clear from the discussion so far.

We now verify functoriality. Let f : M — N be a morphism of G-modules, that is, a
D(G)-linear map. We need to show that

(id®f) Ty = T (id®f), (2.3)
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for Ty and T the canonical map associated respectively with M and N. Using the
identification D(G) ®pgy M = M, the diagram in the construction of Ty, and D(G)-
linearity of f, we rewrite the compatibility condition (2.3)) as

(deid®f)(T®idy) = (T ®idy)(ideidef),

which clearly holds. Therefore, f is a morphism of C°(G)-comodules. Let P be a G-
module and g : N - P be a G-equivariant map. Compatibility with the composition of
maps follows from id®(gf) = (id®g)(id®f). Moreover, compatibility with the identity
map idy; : M — M holds trivially. Therefore, the assignment M ~ (M, T);) on objects

and f — f on morphisms defines a functor. ]

From C(G)-comodules to G-modules

The goal of this part is to construct a functor that goes in the opposite direction. Let us
start by considering the integration map \: C®(G) - C°(G()) defined by

NDE@)= T f)

Remark 2.14. This map is clearly surjective, since the integration is the identity map
when restricted to C(G0) c C=(G). Moreover, for any compact open bisection U € G,

we have X(xv) = Xru)-
Lemma 2.15. The integration map X : C2(G) » C=(GO) is C=(GO)-linear with

respect to the action of C(G)) on C2(G) induced by the range map r and the pointwise

multiplication action on C*(G©).
Proof. Let fe(C®(G) and h e C(G(), then we have
A(h- f)(z) = zg:xh(r(a))f(a) = Zg:xh(w)f(a) = h(@)M(f)(2) = (h-A(f))(x)

as required. O

Moreover, we have the following equivariant property.
Lemma 2.16. The integration map X : C=(G) - C2(G®) is G-equivariant with respect
to the left multiplication action on C(G) = D(G).

Proof. Recall that C(G(®)) becomes a G-module with action described in Example [2.4]
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Let fe(C>(G) and let U € G be a compact open bisection. We compute

AMxo * f)(x) = Z (xv * [)(B)

fege

> xw(a)f(a™'p)

a,BeG®

ZXU(Q) Z f()

aeG® ~eGs(e)

> xu(a)A(f)(s(e))

oeG®

= xv - A(f)(2),

and this yields the claim. O

Now assume that M is a C(G)-comodule with canonical map T), and define the map

warr s D(G) ® M — M by the formula
par = (A ®id)Thf qur, (2.4)

s,id
where gy : D(G)@ M = C2(G)® M - C=(G) ® M is the quotient map. Consider the

diagram

Coo(g(2)) v2, 1d as(Ty) Cg(g@)) vgd M a3 (Ty) Coo(g(2)) v%d M
id T_ ]\/Il 13
C2(G) 6 C2(9) & M2 C=(6) % C2(0) o M 2 (C(9) 8 C=()) " M

id ® A\®id id ® A\®id
s,id T;ll rid

Ce(9) ® M > C2(G) ® M
A®id A®id

M = s M.

Here (T} )13 is the map T/ applied to the first and third tensor factors and the identity
on the second. The two top squares are commutative by the definition of dj(7;}) and
d3(Ty1) as in Equation 2.2 The bottom right square commutes trivially since we are

suppressing a factor ignored by the action. As a consequence, we obtain
(A eid)(ideA®id)ds (T )dy(Tit)(f ® g®m) = upy (id@un ) (f ® g ® m)

for all f,g e C>®(G) and m € M. Similarly, we have a commutative diagram
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i (Ty}) vg,id

Cg°(g<2>)v%idM Ce(G?) © M

lT*@id lT’l ®id

smid _ id®T;E

C(9) 6 cx() B MW (C=(0) & C=(6) B M2 (C=(G) 6 C2(G) "8 M

l)@id ®id lk@id ®id lid ®A®id

s,id Tt 7,id r,id
Ce(G) @ M » C°(G) @ M Ce(G) @ M
\L\@id l)\@)id
M — > M,

where 7 is the projection onto the second factor. Observing that

Aeid)T ' (feg)=f*g=n(f®g)
is the convolution product, we obtain

(A eid)(ider e id)d{(T;))(fegem)=(\eid)T;/(A®id®id)(T ' ®id)(f ® g®m)
=pu(p@id)(f®gem),

for all f,g € C(G) and m € M. Applying the coaction identity di (15} )dy(Ty)) = di (Ty)})
we obtain

par (id ®pear) = par (p @ id),
so we conclude that py; turns M into a left D(G)-module. To conclude, we check that

the module structure is essential. Since both A and ¢y, are surjective and Ty, is an
isomorphism we see that py (D(G) ® M) = M. Then, using Lemma [1.42} it follows the

claim.

This discussion leads to the following result.
Lemma 2.17. Let M be a C(G)-comodule. Then M becomes a G-module via the action
wn defined above. This assignment defines a functor B : C(G)-Comod - G-Mod.

Proof. The assignment at the level of objects is clear from the discussion above.

We now verify functoriality. Let M, N be C(G)-comodules, and f : M — N be a
morphism between them. It is a C'°(G(©))-linear map satisfying the compatibility relation
(id®f)Ty = Tn(id®f). We need to show that f is G-equivariant for the corresponding

G-module structures.

Observe that f(A ®id) = (A®id)(id®f) because f is C=(G®)-linear and since both
Ty and Ty are isomorphisms, the relation (id®f)7;} = T (id®f) holds. So, using the
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definition of uys, see Equation 2.4 we have

f((par)(g@m)) = fF(A@id) Ty qu(g ® m)
= (A ®id)(id®f)Th/ qu(g ® m)
= (A @id)Ty' (idef)gv(g®m)
= (A ®id)Ty'gn (9 ® f(m))
= un(g® f(m)),

for any g@ m € D(G) ® M. Let P be a C®(G)-module and g : N - P be a mor-
phism between them. The compatibility with the composition of maps follows from
the relation id®(gf) = (id®g)(id®f). Moreover, the identity map idy : M - M of
C»(G®)-comodules is trivially sent to the identity of G-modules. Therefore, the assign-
ment (M, Ty ) = (M, par) on objects and f — f on morphisms defines a functor. O

Combining together Lemma [2.13| and Lemma we are now ready to establish the
correspondence between G-modules and C(G)-comodules.
Proposition 2.18. Let G be an ample groupoid. The constructions described above im-

plement an isomorphism of categories between the category G-Mod of G-modules and the
category C(G)-Comod of C(G)-comodules.

Proof. We have already constructed functors A : G-Mod - C(G)-Comod and B :
C>(G)-Comod - G-Mod, and it suffices to show that the compositions BA and AB
equal the identity on G-Mod and C2°(G)-Comod, respectively.

For the G-module D(G), the G-module BA(D(G)) is obtained by passing from the
canonical map T : C(G) ® Cx(G) - C=(G) ® C*(G) to the G-module structure
D(9) ® D(G) - D(G) given by

Aeid)T'q(feg)(a) = (Aeid)T ' (fog)(a)= > f(Bg(B )

BeGr(a)

for f,g € D(G) and a € G. This coincides with the left multiplication action of D(G) on
itself. It follows that BA(D(G)) = D(G) as G-modules. For a general G-module M, using
the construction for D(G) and the canonical identification D(G) ®pgy M = M, we have
that A(M, par) = (M, Tacry) 2 (D(G) ®pgy M, T ® id) and the action map induced by
Ta(ary is then

peaon = (A @ideid) (77! @id) (¢ ®id).

Hence, we have that BA(M) = M as G-modules.
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r,id
Conversely, let N be a C(G)-comodule with canonical map Ty : C=(G) ® N —
s,id
Ce(G) ® N. In order to describe the canonical map Typ(n) we start from the module

structure pipnvy = (A ®id)T'qn on B(N). Then, by construction,

Typony(Xu ®n) = Xu ® p(vy (Xu ® 1)
= xv ® (A ®id) Ty qn (xv ® n)
= xv ® (A®id)Ty' (xv ® n)

for any compact open bisection U € G and n € N. Let us write Ty (xv ® n) = X xu, ® n;
for compact open bisections U; € G and elements n; € N. Since Ty is C°(G)-linear we

have

ZXUi ®n; =Ty (xv®n)

=Ty (xuxv ®n)
=xv-Tn'(xv ®n)
=XU- (ZXUZ- ®n;)

= Z XUuXu; ® 1

= Z Xunu; @ 1,
7

where recall that the action of C2°(G) on itself is given by pointwise multiplication. Hence
we can assume without loss of generality that U; € U for all i. With this observation done,

we are ready to continue our calculation, and we have
TA?%(N)(XU ®n)=xy®(\® id)(z Xu, ® 1)
= Z Xu ® A(xu; )
= ZXU Alxo,) ®n;
= Z XU * Xr(U;) ® Ny
= Z Xvunu; ® Ny
=Ty'(xv ®n),

using that the action of C®(G(®) on C'=°(G) in the tensor product is given by the range
map in the penultimate step. Since U and n were arbitrary, we conclude Typ(n) =T as

required. O
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Proposition can be interpreted as stating that a G-module M is equivalently described
by the data of an essential C'®°(G(®))-module structure on M, together with a C'(G)-
linear map

r,id s,id
Ty:Ce(G) @ M—C2(G) @ M

satisfying the coaction identity. This reformulation will be used throughout the sequel
as a criterion to verify that certain objects are G-modules, by constructing a suitable

coaction map and checking the coaction identity.

§ 2.2 | Tensor products

The goal of this section is to show that the category G-Mod admits a natural ten-
sor product operation. More precisely, given two G-modules M and N, their under-
lying C(G()-module structures, obtained by restricting the action along the inclusion
Ce(G) —» C=(G), are essential. We therefore consider the balanced tensor product
M ® e (g(0)) N, and we will construct a natural G-module structure on it. We will then
introduce the notion of monoidal category and prove that G-Mod carries a canonical

monoidal structure induced by this tensor product.

We shall describe this action using the comodule picture developed in the previous section.
According to Proposition [2.18] it suffices to define a C*(G)-linear isomorphism

r,id s5,id
Tren : C2(G) @ (M ®ce(goyy N) = CZ(G) ® (M ®ce gy N),

satisfying the coaction identity. We start with the case M = N = D(G) and consider the

homeomorphism

tgxg : g Xs,r (g Xr,r g) - g Xr,r (g Xr,r g)> tgxg(% (577)) = (Oé, (Oéﬁ, 057))

With the notation used in the proof of Lemma [2.13| we obtain natural identifications

GP x4y (G x5 (G %rr G)) 2 GP (G %, G),
G® Xgom (G %y (G %00 G)) 2 GP x4 (G %0 ),
6P x4 5 (G x5 (G %rr G)) 2GP x4 (G %0 G),
GP gy 7 (G s (G %0 G)) 2 GP %y, (G %00 G),
GP x4, 2 (G x5 (G %rr G)) 2GP xy 1 (G %01 ),

g(2) Xd2,ﬂ' (g Xr,r (g Xr,r g)) = 9(2) ng,r (g Xr,r g)7
and one checks that the induced maps
ld ng,ﬂ*tgxg : g(2) ng,r (g Xr,r g) - g(2) le,r (g Xr,r g)7
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ld Xdl,ﬂtgxg : g(2) ng,r (g Xr,r g) - g(2) Xvo,r (g Xr,r g)7
id Xdz,wtgxg : 9(2) Xoi,r (g Xpr g) - g(2) Xvo,r (g Xpr g)7

are given by

(ld Xdo’ﬂ—tgxg)(@,ﬁ,’}/, 5) = (Oé,ﬁ, (57765))7
(1d Xdl’ﬁtgxg)(Oé?B,’)/, 5) = (a7ﬂa (045% 0466)),
(1d Xdzﬂrtgxg)(avB,'% 5) = (aa B, (O'//% O“S))7

respectively.

From this description it is immediate to verify that

(id Xdy,rlgug ) (Id X4y rtgxg) = (id X4, xtgxg)-

It follows that the linear isomorphism

Tp@yeni) : C () ® (CZ(G) & C2(G)) - C2(G) ® (C=(G) ® C2(G)),
TD(Q)@D(Q)(f)(aa 57 7) = f(aa aﬁa Oé’}/)

induced by the transpose of tg«g, as done in Lemma [2.8| satisfies
d5(Tp(g)9p(9))d5 (Tp(9)en(9)) = di(Tp(9)en(9))
where d; (Tpgyep(g)) is the transpose of id xg, tgxg.

In analogy to Lemma [2.11], we get the following, which can be proved in the same way.
Lemma 2.19. The map Tpg)en(g) is right D(G) ® D(G)-linear with respect to the D(G)-
action on the second and third tensor factors.

Lemma 2.20. Let M and N be G-modules. Then there exists a linear isomorphism
(D(9) & D(9)) @p(g)en(6) (M ® N) > M 8 (gion) N.
Proof. Recall the canonical isomorphism
(D(G) ® D(9)) ®p(g)en(c) (M ® N) > M & N,
given by the essential D(G) ® D(G)-module structure on M ® N, that is,

(f®g) - (men):=(f-m)e(g-n),
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for f, ge D(G), me M and ne N. It induces a map at the level of the quotients
®: (D(G) ® D(G)) ®p(g)en(g) (M @ N) = M ®pee(gory N

by setting
®((feg)e(men)):=(f-m)e(g-n)

This map is well-defined. Indeed, for any h e C2°(G()), we have

P((h-feg)e(men))=(h-f-m)eg-n
:f.m®(h.g.n)
=0 ((feh-g)®(men)).

It remains to show that ® is a bijection.

To prove surjectivity, take m ® n € M ®¢e gy N and observe that it can be written as
f-m®g-n with f,g € D(G) and m € M, n € N, using the essentiality of the module

structures of M and N and the existence of local units for D(G). Then we have m®n =
o((feg)®(men)).

To prove injectivity, we observe that any element of the form f-h@geomen—-feh-
g ® m ® n, which vanishes after passing to the quotient on the left-hand side, is sent to
f-h-m®g-n—-f-me®h-g-n, which is again zero after quotienting on the right-hand
side. Conversely, every element of the form h-m ®n—m ® h-n comes from an element
h-fegem®edn—-fe®h-g®m®n, where now f and g can be picked in C*(G(®) and
are such that f-m = m and ¢g-n = n. This means that we are quotienting the same
subspace on both sides of the original canonical isomorphism. This proves that ® is an

isomorphism and concludes the proof. O

Now let M, N be arbitrary G-modules. Then using Lemma and the left D(G)-action
on D(G) ® D(G) =D(G) ®ce (g D(G) corresponding to the C*(G)-comodule structure
constructed above we obtain the desired G-module structure on M ® e (g(0)) N through

this identification.

For calculations it is useful to know how the tensor product G-module structure looks in
terms of compact open bisections.

Lemma 2.21. Let M, N be G-modules. Then the D(G)-module structure on the tensor
product M ®¢e gy N satisfies

xv-(men)=(xv-m)e®(xv-n),
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for any compact open bisection U of G.

Proof. In view of the construction of the tensor product action it suffices to consider the
case M = N = D(G). Given compact open bisections U, V,W of G and «, 3,y € G such
that r(a) =r(8) =r(v) we compute
To(gyepe) (XU ® Xv ® xw)(a, 8,7) = (xv ® xv ® xw)(@,a™ 5,a7'y)
= xv(@)xv(a™ B)xw(a™y).

It follows that Té%g)gﬂ)(g)()@ ® Xy ® xw ) is the characteristic function of the set U x UV x

UW. Applying the integration map A to the first tensor factor therefore gives

xv-(xv ®xw) =xov ®xow = (xv-xv)® (Xv-Xxw),

and since characteristic functions of compact open bisections span D(G) this yields the

claim. =

Remark 2.22. Observe that for an arbitrary function f € D(G), we first use the decom-
position given by Proposition[1.03, then the linearity of the action with Lemma [2.21]

We will always view the tensor product M ®c¢e(goy N of G-modules M, N as a G-module

with the action defined above.

Let us collect here some definitions about monoidal categories. For a classical reference,
see [ML98, Chapter 7].
Definition 2.23. A category C equipped with the following structures:

(i) a bifunctor ® :C xC - C;
(7i) an object U e Ob(C), called unit object;

(7ii) a natural isomorphism a: (- ® -) ® - - —® (- ® —), with components of the form

axyz: (X®Y)®Z->Xe((Y®Z), where X,Y,Z € Ob(C);

(iv) a natural isomorphism [: U ® — - —, with components of the form lx :U® X - X,
where X € Ob(C);

(v) a natural isomorphism r: —® U — —, with components of the formrx : X U - X,
where X € Ob(C),

such that, for all W, XY, Z € Ob(C), the following diagrams commute:
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(WeX)oY)eZ

AWeX,Y,Z
aw,x,y®idz

We(XeY))eZ WeX)e(Y®2)

law,xcpy,z law,x,)@z

idw ®ax v,z

We(XeY)®Z) >y We(Xe(YeZ))
(XoU)eY ey y Xo(UY)
rx Qidy
\ 1%)(@51/
XeY

is called monoidal category.

Definition 2.24. A symmetric monoidal category is a monoidal category (C,®,U) to-
gether with a natural isomorphism s : — ® — - — ® —, with components of the form
sxy : X®Y - Y ®X, where X,Y € Ob(C) such that, for all X,Y,Z € Ob(C), the

following diagrams commute:

sxyy®idz

(XeY)eZ —— (Y®X)®Z

lax,y,z lay,x,z

Xeo(YoZ) Yo (X®Z)

lSX,Y®Z lidy ®Sx,z

ay,z,X

YoZ)e X — Y (Z0X),

XeoU »y U X

SX,U
X,

xey y X®V

XY
\X,Y sy, x

Y  X.

With these new definition in mind, we summarise our discussion so far as follows.
Proposition 2.25. The category G- Mod with the tensor product operation defined above

is a symmetric monoidal category.

Proof. Let M, N and P be G-modules. Then we have a canonical isomorphism

(M ®Cg°(g(0)) N) ®Cg°(g(0)) P c M ®Ccoo(g(0)) N ®Cg°(g(0)) P = M ®Cg°(g<0)) (N ®Cgo(g(0)) P)
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of C*(G(®)-modules, and using Lemma we see that the action on either side is
given by

xv-(m®n®p)=(xv-m)e (xv-n)e(xv-p)
forme M, ne N, pe Pand U compact open bisection of G. We conclude that the above

isomorphism is G-equivariant, thus giving the required associativity constraint.

The tensor unit is given by the G-module C®(G(®)), with the action f-h := A(f)h for
fe€D(G) and h e C2(G®), compare with Example [2.4]

Due to Lemma it follows that the canonical identifications M ®ce gy C2(G() =
M = C&(G®) ®ce(goy M are G-equivariant for every G-module M.

Finally, since C*(G(?) is a commutative algebra, there exists an obvious isomorphism
M ®Cgo(g(0)) N = N ®Cg°(g(0)) M

of C*(G()-modules, and using Lemma we see that the above isomorphism is G-

equivariant.

With these structures in place, the axioms for a symmetric monoidal category are readily
verified. O

§ 2.3 | G-algebras

Our main objects of study in this thesis are G-algebras over an ample groupoid G in the
following sense.

Definition 2.26. A G-algebra is a G-module A together with a G-equivariant linear map
m: A®ce gy A > A, written m(a®b) = ab, such that (ab)c = a(bc) for all a,b,ce A.

This can be phrased equivalently in a categorical way. Let us recall the following.

Given a monoidal category, we can introduce the definition of algebra object in the fol-
lowing way.

Definition 2.27. Let (C,®,U) be a monoidal category. A non-unital algebra object in C
is an object A € Ob(C) with a multiplication map p: A® A - A such that the following

diagram commutes:
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N

AQ A AQ A
,LL®idAT idg ®/.LT
(A A)® A AL 5 Ae (A A),

With this definition in mind, we equivalently define a G-algebra as a non-unital algebra

object in the monoidal category G- Mod.

By definition, if A, B are G-algebras then a G-equivariant algebra homomorphism ¢ : A —»
B is a G-equivariant linear map of the underlying G-modules such that ¢(ab) = ¢(a)p(b)
for all a,be A.

We now show in detail some examples and constructions with G-algebras that will be

used in the following.
§2.3.1 | Algebras of functions

In Lemma [2.5 we have already proved that a good source of G-modules comes from G-
spaces. In the following we prove that actions of G on totally disconnected locally compact
spaces provide examples of commutative G-algebras.

Proposition 2.28. Let X be a totally disconnected locally compact G-space. Then

C(X) with pointwise multiplication is a G-algebra in a natural way.

Proof. From Lemma [2.3| we have that C'°(X) is an essential G-module. Hence, we need
to prove that pointwise multiplication is a G-equivariant linear map. Indeed, using the
action described in Lemma and Lemma [2.21] for f,g € C>(X) and U compact open

bisection of G, we compute

xv-m(feg)(z)= > xv(a)m(feg)(a™ z)

aeGT(@)

= 2. xw(a)f(a™z)g(a™ 2)

aeGT(x)
= (xv- @) (xv-9)(x)
=m(xv - (f®g))(),

and this concludes the proof. O]

The construction in Proposition [2.28|is compatible with tensor products. More precisely,

if X and Y are totally disconnected locally compact G-spaces, with anchor maps m; and
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o, respectively, then the canonical map
¢:CZ(X) O e (g(0)) C(Y) » C2(X Xy, V)

is an isomorphism of G-algebras, compare Proposition Indeed, using the action
described in Lemma [2.5] and Lemma [2.21] D(G)-linearity comes from the following cal-

culation

xv-o(feg)(zy)= Y xv(o(feg)a™ z,a™ y)

aeg™1 ()

= > xv(a)f(a™-z)g(a™-y)

aeg™1 ()

= (xv - (@) (xv-9)(y)
=o(xv-(feg)(zy),

where f e C>(X), ge C(Y) and U is a compact open bisection of G.

§ 2.3.2 | Algebras associated with pairings

Another class of examples of G-algebras comes from G-modules equipped with G-equivariant
pairings in the following sense.

Definition 2.29. Let E be a G-module. A G-equivariant pairing on E is a G-equivariant
linear map h: E ®ce(goyy E = C2(G).

We may equivalently view a G-equivariant pairing as in Definition as a C(GO)-
bilinear map h: E x E - C*(G®) such that

h(xv-e,xv-f)=xv-h(e, f)

for all e, f € E and all compact open bisections U € G. Given such a pairing, consider the
tensor product
IC(E) = E ®C§o(g(0)) E

as a G-module with the diagonal action. Then K(E) becomes a G-algebra with the
multiplication defined by

(e1® f1)(e2® fo) =e1 ® h(f1,e2) f2 = e1h(f1,€2) ® fo

for ey, e, f1, fo € E. Note that the multiplication in K(FE) depends on the pairing h, so
it would be more accurate to write K(E, h) for the resulting G-algebra. However, in the

sequel the pairings we use will always be clear from the context.

The most important example of a G-equivariant pairing is the following.
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Example 2.30. The regular pairing A : D(G) ®ce gy D(G) = C2(G(?) is defined by

Afeg)(@)= ), fla)g(a),

aeg®

for x € GO We will simply write Kg = K(D(G)) for the associated G-algebra.
Lemma 2.31. Let E and F' be G-modules equipped respectively with G-equivariant pair-

ings hg and hr. Then there is a natural G-equivariant isomorphism of G-algebras
K(E ®ce gy F) 2 K(E) ®ce gy K(F).
Proof. By definition,
K(E ®cegw) F) = (E @cx(go) F) ®ce= gy (E @ce (g F).

Using associativity and symmetry of the tensor product, there is a canonical G-equivariant

isomorphism
(I) . (E ®Ccoo(g(0)) F) ®Cg°(g(0)) (E ®Ccoo(g(0)) F) - (E ®Cgo(g(0)) E) ®Cgo(g(0)) (F ®Cg°(g<0>) F)
Let hggr be the induced G-equivariant pairing on E ® e (GO) F' defined by

heer(e1 ® fi,e2® fo) := hg(er,ea)hp(fi, f2).

The canonical identification is multiplicative, indeed

D((e1® f1) ® (e2® f2)(€3® f3) ® (€4 ® fa)) = P((e1 ® f1) ® h(e2, e3)hr(fa, f3)(€a ® f1))
= (e1 ® hp(ez,e3)es) ® (f1 ® hr(f2, f3)f1)
=((e1®e2) ®(f1® f2))(e3®es) ® (f3® f1)),

for eq,e9,e3,e4 € E and fy, fo, f3, f4 € F'. Hence it defines a G-equivariant isomorphism of
G-algebras. m

§2.3.3 | C(X)-algebras
We will now discuss a construction analogous to the notion of Cy(X)-algebras, where

Co(X) denotes the space of continuous functions vanishing at infinity on a locally compact

Hausdorff space X, in the C*-algebra setting. See [Wil07, Appendix C] for more details.

Given an algebra A we write ZM (A) for the centre of the multiplier algebra of A.
Definition 2.32. Let X be a totally disconnected locally compact space. A C&(X)-
algebra is an algebra A together with an essential algebra homomorphism C(X) - M(A)
which takes values in ZM(A).
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Let us record the following observation, in analogy to the study of groupoid actions in
the C'*-algebra setting.
Lemma 2.33. Let G be an ample groupoid and let A be a G-algebra. If the multiplication

in A is nondegenerate, then A is canonically a C2(G©®))-algebra.

Proof. The essential C*(G(?)-module structure on A determines an essential algebra

homomorphism ¢ : C2(G()) - M(A) defined by ¢(f)a = f-a for all a € A.
Let m € M(A) be arbitrary, we want to show that ¢(f)m =mc(f).

Fix arbitrary a,b € A. Then, using the definition of ¢+ and the linearity of the multiplication
in A, we get

ame(f)b=am(f-b) = f-(amb) =a(f-mb) =ac(f)mb.

Hence, ame(f)b = ac(f)mb for all a,b e A. Since the multiplication in A is nondegenerate,
this implies that me(f) = ¢(f)m in M(A) and ¢(f) belongs to the center ZM(A). O

We also note that if the ample groupoid G = GO = X is obtained by viewing a to-
tally disconnected locally compact space X as a groupoid then every C(X)-algebra is

canonically a G-algebra.
§ 2.3.4 | Unitarisation

Recall that at the beginning of this section we introduced G-algebras as non-unital algebra
objects in the category G-Mod. In the main constructions of this work, it will be necessary
to work with a suitable unitarisation of such algebras. We now turn to a discussion of

this process.

Let us first specify what we mean by unital in this context.

Definition 2.34. A unital G-algebra object is a G-algebra A in the sense of Definition
together with a G-equivariant homomorphism u : C(G©)) - A such that u(f)a =
au(f) = f-a for fe C>(GO) andae A. A G-equivariant algebra homomorphism between
unital G algebra objects is called unital if it commutes with the unit maps in the obvious

way.

The first basic and immediate example is given by the following.

Example 2.35. Let A =C>(G) with the canonical G-action and u = id.

Remark 2.36. The previous example shows already that a unital G-algebra object does
not need to have a unit element in general. For this reason, we speak of unital G-algebra

objects and not of unital G-algebras.
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Definition 2.37. Let A be a G-algebra. The G-unitarisation of A is defined as
A=A C2(GD)

viewed as a G-module with the given action on A and the canonical action on C=(G©)),

and the multiplication given by

(a,f)-(b,g)=(ab+g-a+f-b, fg)

fora,be A and f,ge C(GO). Here the dot product denotes the C2(G))-action on A

induced from its G-module structure.

Let us write Algg (A, B) for the set of all G-equivariant algebra homomorphisms between
G-algebras A, B. If A, B are unital G-algebra objects then we denote by Algs(A, B) the

set of all unital G-equivariant algebra homomorphisms.

With this notation in place, let us show that the G-unitarisation of a G-algebra satisfies
the following universal property.
Lemma 2.38. Let A be a G-algebra. Then A* is a unital G-algebra object, and there is

a natural bijection

Algg(A*,B) = Algg(A, B)
for every unital G-algebra object B.
Proof. The first claim is clear by construction. Indeed, the embedding C=(G(®)) - A*

into the first summand is a G-equivariant homomorphism which turns A* into a unital

G-algebra object.

Suppose ¢ : AT - B is a unital G-equivariant algebra homomorphism. Then its restriction
to A c A* yields a G-equivariant algebra homomorphism ¢|4 : A - B. Conversely, given a
G-equivariant algebra homomorphism ¢ : A - B, we define a unital G-equivariant algebra

homomorphism ¢*: A* - B by

¥ (a, f) = (a) +ulf),
where u : C2(G©)) - B denotes the unit map of the unital G-algebra B.

One checks directly that ¢+ is an algebra homomorphism, is G-equivariant, and extends
1. These constructions are clearly inverse to one another, giving the claimed natural

bijection. [
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§2.3.5 | Crossed products

The algebraic crossed product A x G of a G-algebra A can be defined analogously to the
classical construction for discrete groups. We will give the definition and then prove a
universal property, in analogy with the C'*-algebra setting.

Definition 2.39. Let A be a G-algebra. We define the algebraic crossed product Ax G :=
A®ce gy D(G) as a vector space, with the left action of C(G®) on D(G) induced by

the range map. The multiplication in A x G is determined by

(a®xv)(b®g)=axy-b®xu*g

for a,be A, compact open bisections U € G and g € D(G).
Lemma 2.40. Let A be a G-algebra. The algebraic crossed product A= G is an algebra.

Proof. The only thing we need to check is that the multiplication is associative. Let

a,b,ce A and let U,V,W c G be compact open bisections, we compute

((a®xv)(0®xv))(c®xw) = (alxv - b) ® xv * xv)(c® xw)
= (a(xv b)) (xvv - ¢) ® (xuv * Xw)
=a((xv-b)(xvv - ) ® (xv * Xvw)
= (a® xv)(b(xv - ¢) ® xvw)
= (a®xv)((b®xv)(c®xw)).

O

Definition 2.41. Let A be a G-algebra. A covariant representation of (A,G) on an
algebra B is a pair of essential homomorphisms ¢ : A - M(B) and w : D(G) - M(B)
such that ¢(f -a)m(g) = ¢(a)m(f *g) for all fe Ce(GD) ae A geD(G) and

d(xv-a)m(xv) = m(xv)o(a)

for all compact open bisections U € G and a € A.

The algebraic crossed product admits algebra homomorphisms i4 : A - M(A x G) and
ig : D(G) > M (A xG) such that is(a)ig(f) =a® f for all a € A, f € D(G). Clearly the

maps 4 and ig define a covariant representation of (A4,G) on A% G.

The following result states a universal property for the algebraic crossed products.
Proposition 2.42. Let A be a G-algebra. The algebraic crossed product AxG is universal
for covariant representations of (A,G), that is, for every algebra B and every covariant

representation (¢, m) of (A,G) on B there exists a unique essential algebra homomorphism
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:AxG—> M(B) such that ¢ = ia and 7 = Vig.

Proof. We define ¢(a® f) = ¢(a)w(f). This gives a well-defined linear map AxG - M (B)
by the first part of the covariance condition. Using the second part of the covariance

condition we calculate

Y(a®xv)P(b® xv) = ¢(a)m(xv)e(b)m(xv)
= ¢(a)p(xv - b)m(xv)T(xv) =¥ ((a®xv)(b® xv))

for a,b € A and all compact open bisections U,V ¢ G, and it follows that ¢ is a homo-
morphism. It is straightforward to check that v is essential, satisfying ¢ = ¢i4, ™ = ¥ig,
and since A xG =i4s(A)ig(D(G)) it is uniquely determined. O

§ 2.4 | Anti-Yetter-Drinfeld modules

This section is devoted to the study of anti-Yetter-Drinfeld modules over an ample
groupoid G, a concept inspired by the theory developed in the setting of Hopf alge-
bras and quantum groups [Voi0§]. In our context, these objects will arise naturally when

dealing with noncommutative equivariant differential forms.

Recall from Example that for a given groupoid G its subset of loops
Gaa = {aeG[r(a)=s(a)}

is a subgroupoid of ¢ with the same identities. If G is an ample groupoid, since G4 =
(s,7)"1(A), where A € GO x GO is the diagonal, we see that G,q is a closed subset of G,

and thus a totally disconnected locally compact space with the subspace topology.

Due to Lemma [1.55] a function f € C®(G,q) can be represented as a linear combination
of restrictions to G,q of characteristic functions of compact open bisections of G.

Remark 2.43. However, even if such restriction is no longer a compact open bisection
of G, we will often refer to the characteristic function xy of a compact open bisection

U <G as an element of C°(Guq) without explicitly considering U N Gugq.
As we have already seen in Example [1.37], G,q is a G-space with the adjoint action
a-fB=afat

for a € G, 8 € Goq, with anchor map @ =7 = 5: G,g — GO, According to Proposition m
we therefore obtain a natural G-algebra structure on C°(G,q). We will write Og for this

G-algebra in the sequel.
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Definition 2.44. A G-anti- Yetter-Drinfeld module is a G-module M which is also an
essential Og-module such that the module action induces a G-equivariant linear map
Og ®cee(gyy M — M. A morphism of G-anti-Yetter-Drinfeld modules is a G-equivariant

linear map which is also Og-linear.

A basic example of a G-anti-Yetter-Drinfeld module is obtained by considering M =
Og ®ce (g £ for a G-module E, with the diagonal action of G and the action of Og by

pointwise multiplication on the first tensor factor.

One can view G-anti-Yetter-Drinfeld modules equivalently as essential modules over the
crossed product A(G) = Og x G. This observation is a special case of Proposition [2.42]
note that both Og and D(G) are subalgebras of the multiplier algebra M (A(G)), and
composition with the inclusion maps gives the asserted equivalence. We will frequently
use this identification between G-anti-Yetter-Drinfeld modules and A(G)-modules in the

sequel.

Given a G-anti-Yetter-Drinfeld module M our goal is to define a certain canonical au-
tomorphism T = Ty : M - M. We start with M = A(G) = Og ®ce gy C2(G) =
C(Gaa *xr G), in which case we define T" by the formula

T(f) (e, B) = fa,ap)

for f € C(Gua %xr G), in a similar way as in the discussion of C(G)-comodules.
Lemma 2.45. The map T : A(G) — A(G) defined above is an isomorphism of A(G)-

bimodules.

Proof. Tt is clear that T is bijective with inverse given by T-1(f)(«a, 8) = f(a,a™13). The
left and right Og-module structures on A(G) are given by

(hf)((l/,ﬂ) = h(Oé)f(Oé,ﬂ), (f ’ h)(avﬁ) = h(ﬁ_laﬂ)f(avﬁ)

for h e Og and f € A(G). We thus obtain

(h-T()) (e, B) = h(a) f(a, )
= (h- ), ap)
=T(h-f)(e )

and

(T(f)-h) (e, B) = h(B~ aB) f (o, o)
= (f-h) (e, ap3)
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=T(f-h) (e, B),

which shows that T is both left and right Og-linear. For g € D(G) we have

(- T B)= > gf(v oy, v ayy™B)

,Yggr(a)

=T(g- f)(a,p)

and

(T(f)-9)a.B)= 3. fle,aBr)g(7)

V€9s(8)

= T(fg)(a,ﬁ),

and it follows that T is left and right D(G)-linear. Combining these observations yields
the claim. O

In view of Lemma [2.45 we can define T}, : M — M for a G-anti-Yetter-Drinfeld module
M by

where mys : A(G) ®4¢gy M - M is the canonical isomorphism. This defines an automor-
phism of the G-anti-Yetter-Drinfeld module M.

Lemma 2.46. Let G be an ample groupoid and let ¢ : M — N be a morphism of G-anti-
Yetter-Drinfeld modules. Then Tn¢ = Ty, .

Proof. Using the canonical isomorphisms my;, my and the relation my(id ®¢) = ¢myy,

we compute

Tng =my(T ®id)my ¢
=my(T ®id) (id ®¢p)m;]
=my(id®g)(T ®id)m;]
= ¢omy (T ®id)m;;
= ¢Tnm

as required. O

In calculations, it is useful to have an explicit formula for the action of the canonical
automorphism. We will only need this for G-anti-Yetter-Drinfeld modules of the form
M = Og ®ce gy I for a G-module E. In this case, recalling (2.5 and following the spirit
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of the proof of Lemma [2.12, we get

Tu(xv®e)=xu®xy—1-e (2.6)

for any compact open bisection U € G and e € E.

Example 2.47. Let E = C2(GO©), then the canonical automorphism
T : Og ®ce g0y C*(GP) > Og @ om0y C(G)

is the identity map. Indeed, recalling the Remark([2.43, the Equation[2.6 and the Example
for any open and compact bisection U of G we have (UNG.q)-s(UNGuq) = S(UNGuq).
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Chapter 3

Equivariant periodic cyclic homology

The main goal of this chapter will be the definition of bivariant equivariant periodic cyclic
homology with respect to an ample groupoid G. We start recalling the construction of the
pro-category. In this context, we define paracomplexes and quasifree algebras. Finally,

we state the main definition of this chapter and discuss some consequences.

§ 3.1 | Projective systems

One of the key aspects of the approach developed by Cuntz and Quillen [CQ97] to the
study of periodic cyclic homology is the enlargement of the framework from algebras
to projective systems of algebras. This generalisation proves convenient for discussing
quasifreeness, even when the focus remains on algebras. One of the reasons to consider
projective systems is that one of the main object we will soon define, the periodic tensor
algebra, is a projective system. In this spirit, we will consider projective systems of
G-modules and G-anti-Yetter-Drinfeld modules.

Most of the subsequent results and definitions are well-known and established in the
literature. Our exposition follows the perspective developed in [CQ97], [Mey99] and
[Voi03].

In the remaining part of this section C will denote an arbitrary additive category.
Definition 3.1. A projective system over C consists of a covariant functor F': I°P - C,

where I is a directed index set viewed as a small category.

In more concrete terms, a projective system over C consists of a directed index set I, a
collection of objects (V;);er in C, and morphisms p;; : V; — V; for all j > i, satisfying the
compatibility conditions p;;p;i = pir for all k> j >4 and p; =idy; for all i€ 1.

Definition 3.2. The pro-category pro(C) is the category whose objects are projective
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systems over C, and whose morphism sets are defined by

Moty (V. W) = lim lim More (V;, W),
jeJ el
where V= (V;)ier and W = (W;)jes, and the limits are taken in the category of abelian

groups.

Unpacking the above definition, a morphism ¢ : V — W can be described by the data of
a function j +~ i(j) from J to I, and a family of morphisms {¢; : V;(;y = W,}jcs in C, such
that the following compatibility condition holds: for any j’ > j, there exists ¢’ >i(j),i(j')
such that the diagram

@
Vi —— Vigy —— Wy

N |

Vi) o, W;

commutes.

Moreover, two such families of morphisms {¢; : Vi) = Wj}jes and {¢ : Vi) = Wikjes
define the same morphism in pro(C) if there exists a function j ~ i”(j) such that i"(j) >

i(7),4'(j) for all j € J, and the following diagram

commutes for each j.

Definition 3.3. A constant pro-object in pro(C) is a projective system indexed by a
singleton set.

Remark 3.4. Any object of C can be viewed as a constant pro-object, and this gives rise
to a fully faithful embedding C — pro(C), which identifies C with the full subcategory of

constant pro-objects inside pro(C).

It will be useful to study pro-objects in comparison with constant pro-objects.

Remark 3.5. From the description of morphisms in the pro-category, we observe that
a morphism ¢ : V — C, where V = (V;)ier is a pro-object and C' is a constant pro-object
associated to an object in C, can be represented by a morphism ¢;:V; - C in C, for some

index i€ I.
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In the category pro(C), projective limits always exist. Given a projective system of pro-
objects (V;)er, where each V; is itself a projective system (V;;)jes, in C, the projective
limit of the system (V;); in pro(C) can be described as the pro-object associated to the
double-indexed system (Vi;) (i jyex, where K = {(i,5) | i € I,j € J;} with the ordering
defined by declaring (i,7) < (i',4’) if and only if ¢ < i/, and there exists a morphism
Virjo = Vi; in C induced by the morphism V;; - V;.

Moreover, the category pro(C) is canonically additive. In particular, we can form direct
sums in pro(C). Let V = (V;);er and W = (W;),e; be two pro-objects. Their direct sum
is given by

VeW:=(V,eW,)i, erx;

where the index set I x J is ordered using the product ordering, that is, (7,7) < (¢, ') if
and only if 2 < ¢’ and j < j’. The structure maps in this system are defined component-wise

as the direct sums of the corresponding structure maps of V' and W.

If, in addition, the category (C,®,U) is monoidal, then the pro-category pro(C) inherits
a natural monoidal structure. Given two pro-objects V' = (V;);e; and W = (W) es, their

tensor product is defined as the pro-object
VoW = (V;®W,)i,jerxs;

where the index set I x J is ordered via the product ordering. The structure maps of the
tensor product are given by the tensor products of the corresponding structure maps of

V and W. The unit object in pro(C) is given by the constant pro-object U.

Moreover, any morphism ¢ : V@ W — C in pro(C), where C' is a constant pro-object,
can be written in the form ¢ = ¥(¢y ® ¢y ), where ¢ : V - Cy and ¢y : W - Cy are
morphisms in pro(C) with constant targets and ¢ : Cy ® Cyyy — C' is a morphism between

constant pro-objects.

With this tensor product, the category pro(C) becomes an additive monoidal category,
and the embedding functor C = pro(C) is a monoidal functor. The existence of a tensor
product in pro(C) allows us to define algebra objects within this setting.

Definition 3.6. A pro-algebra is an algebra object in pro(C). A pro-algebra homomor-

phism is a homomorphism between pro-algebra objects.

If we apply these general constructions to the category of G-modules we obtain the cat-
egory pro(G-Mod) of pro-G-modules. A morphism in pro(G-Mod) will be called a G-
equivariant pro-linear map. Similarly, we have the category of pro-G-anti-Yetter-Drinfeld

modules.
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According to Proposition [2.25] the category G-Mod is additive monoidal. We then record
the following definition.

Definition 3.7. A pro-G-algebra is an algebra object in pro(G-Mod), in the same way
as G-algebras are algebra objects in G-Mod. An algebra homomorphism f : A - B in
pro(G-Mod) will simply be called a G-equivariant homomorphism.

Clearly, every G-algebra is a pro-G-algebra in a canonical way.

Occasionally we will encounter unital pro-G-algebras. The G-unitarisation A* of a pro-
G-algebra A is defined in the same way as for G-algebras. Similarly, the construction of

crossed products for G-algebras carries over to pro-G-algebras.

Let C be any additive category.
Definition 3.8. Let K, E and Q be objects in pro(C). An admissible extension is a

diagram of the form

0 —— K ZT—— F — Q ——0
p o
in pro(C) such that pv =idy, 7o =idg and tp+om = idp.
In other words, we require that E decomposes into a direct sum of K and @ in pro(C).

We will write

Ky——F—">Q

or simply 0 - K - F - ) - 0 for an admissible extension.

In the special case where C is G-Mod, we will often use the following.

Definition 3.9. Let K, E and Q be pro-G-algebras. An admissible extension of pro-G-
algebras is an admissible extension 0 > K - E - @ — 0 in pro(G-Mod) such that v and
m are G-equivariant algebra homomorphism.

Remark 3.10. In the following, we will often describe morphisms between pro-objects
by writing explicit formulas involving “elements” of the objects themselves. While such
notation is not strictly rigorous, since pro-objects, being formal inverse systems, do not

generally possess elements in the usual sense, this approach can be categorically justified.

Indeed, any pro-object V = (V;);er naturally gives rise to a contravariant functor

WY :C = Set, T limHome(T,V;),
iel

and the Yoneda Lemma asserts that an object is entirely determined by the hom-functor

it represents. In this perspective, an “element” of V' corresponds to a choice of T' together
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with a compatible family of morphisms T — V.

A morphism between two pro-objects V = (Vi) and W = (W;) is then a natural transfor-
mation

a:hV = h",
which consists of a family of maps

rp @MorC(T, Vi) — @MorC(T, W;),
i j
natural in the object T' € C. Thus, specifying how a morphism sends an “element” x € V to
an element f(x) € W amounts to giving a natural transformation between functors, hence
a well-defined morphism in pro(C). This can be rephrased, saying that in many situations
one can embed the category pro(C) in a concrete category of modules over a certain ring.
This is known as the Freyd-Mitchell’s embedding theorem, see [Wei94), Theorem 1.6.1] for

reference.

§ 3.2 | Paracomplexes

In this section, we introduce the notion of a paracomplex in a para-additive category.
This concept will be crucial for the main definition of this chapter.

Definition 3.11. A para-additive category is an additive category C together with a nat-
ural automorphism T of the identity functor id :C — C.

More concretely, we are given a family of invertible morphisms T}, : M — M indexed by
the objects M in the category C such that ¢T3, = Tx¢ for all morphisms ¢ : M - N. In
the sequel, we will simply write T instead of T, if it is clear from the context.

Remark 3.12. Any additive category is para-additive by setting T = id.

By Lemma [2.46] we know that the category of G-anti-Yetter-Drinfeld modules is para-
additive. This category, together with its pro-category, will serve as the main framework
for our subsequent development.

Definition 3.13. Let C be a para-additive category. A paracomplex C'= Cy @ C; in C
consists of objects Cy and Cy in C, together with morphisms 0y : Cy — C1 and 0y : C; — Cy
such that the differential

0 o
a::( 1):0»01@00;(1
o 0

satisfies the relation
0? =id -T,
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where T : C'— C' is the automorphism associated with C'.

A chain map ¢ : C - D between two paracomplexes is a morphism in C that preserves the
Zo-grading and commutes with the differentials, that is, 0 = 0¢.

Remark 3.14. Since the differential O in the definition of a paracomplex, in general, is
not a differential in the usual sense of homological algebra, in fact it does not square to
zero but instead satisfies 0? =id =T, it does not make sense to speak of the homology of a
paracomplex in the standard way. However, one can still define the notion of homotopy
equivalence between paracomplexes, using the standard formulas for chain homotopies.
That is, two paracomplexes C' and D are said to be homotopy equivalent if there exist
chain maps f:C' - D and g: D - C such that gf and fg are homotopic to the identity
on C' and the identity on D, respectively.

The paracomplexes we are interested in arise from paramixed complexes in the following
sense.

Definition 3.15. Let C be a para-additive category. A paramized complex M in C is
a sequence of objects M, together with differentials b of degree —1 and B of degree +1
satisfying b> =0, B2 =0 and

[b,B] =bB + Bb =id -T.

This definition is crucial, as we will see, in the next section, that the equivariant version
of noncommutative differential forms gives rise to a paracomplex. In that context, it
is still possible to define Hochschild homology in the usual way, since the differential b,
which corresponds to the Hochschild operator, satisfies the identity 6% = 0.

Nevertheless, in this thesis, we are not concerned with Hochschild homology. Our focus

will be entirely on periodic cyclic homology.

§ 3.3 | Equivariant differential forms

We will now define the space of equivariant noncommutative differential forms over a
pro-G-algebra. Throughout this section, we will review constructions that are already
known in the literature. More details and motivations for these topics can be found in
[CQ95a]. We will follow the notation used in [Voi03].

Definition 3.16. Let A be a pro-G-algebra. We define the space of noncommutative
differential n-forms over A by the iterated tensor products over C(G(®) given by

n+1

® oo n ® oo ® oo n
00y (A) = A" ® e g0y ATCE " = AP0z @)™ g APcr @)
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for all n > 0, where A* denotes the G-unitarisation of A as defined in Section [2.53.4] and
we set Qg(o)(A) =A.

Using the definition of G-unitarisation and the essentiality of A, the space of noncommu-

tative n-forms over A decomposes as

[ele) ® oo n ~ ® oo n+1 ® oo n
o (A) = (A0 C2(GD)) @i gy ATFEDT 2 AT @ AT,

Elements of Qg(o) (A) contained in the first summand of the above decomposition, namely,
tensors of the form a° ® a' ® --- ® a® with a°,al,...,a" € A, will usually be written as
a’dal---da™. Similarly, elements in the second summand will be denoted by da'---da™. If
we want to treat both cases simultaneously, we shall write (a®)da'---da™, following the

notation used in [Mey99].
We always view (0, (A) as a pro-G-module with the diagonal action.

The pro-G-module Qg(o)(A) becomes an A-A-bimodule object in pro(G-Mod) with the

left A-module structure given by
a-({a®)da'---da™) = a{a®)da'---da™,
and the right A-module determined by the Leibniz rule, that is,
((a®Yda'---da™) - a = (a®)da---d(a"a) + nz_:l(—l)”‘j(ao)dal-~~d(ajaj+1)~-da”da
j=1
+(-1)"(a®)a'da*--da"da,

for a € A and (a”)da'---da™ € Q7 ) (A).

Remark 3.17. The A-A-bimodule QZ(O)(A) can be identified with the n-fold tensor prod-

uct of QL) (A) over A in the category of pro-Cg(G®)-modules.

According to the Remark [3.17], one defines a map
50 (A) @ Qi) (A) = Qi (A)
by considering the natural projection

Qé(O)(A)&m ® Qé(o)(A)@’Am - Qé(o)(A)@’An ®4 Qé(o)(A)®Am _ Qé(o)(A)®An+m-

Definition 3.18. We define Qg0)(A) as the direct sum @, QZ(O)(A).
Remark 3.19. A noncommutative differential form w is called homogeneous if it belongs

to %, (A) for some n eN.

73



The maps
Q50 (A) @ Qi) (A) = Qi (A)

assemble to give a multiplication over Qg (A), which becomes a pro-G-algebra in a

natural way.

We also set the C°(G())-linear operator d : Q0 (A) ngol) (A) by

d(a’da’---da™) = da’da’---da™ and d(da'---da™) =0,

for a®,al,...,a" € A.
Remark 3.20. Observe that, by construction, one has that d? = 0.

Next, we introduce the G-equivariant version of noncommutative differential forms over
a pro-G-algebra A.
Definition 3.21. We define

Qg(A) = Og ®Ccoo(g(0)) A and Z(A) = Og ®Cg°(g(0)) QZ(O) (A)

for n >0, where we recall that Og is the G-algebra of functions on G.q with the adjoint

action.

This becomes a pro-G-module with the diagonal action, and a pro-Og-module with the
multiplication action on the first tensor factor. These actions turn €23(A) into a pro-G-
anti-Yetter-Drinfeld module. We write Q2g(A) for the direct sum of all Qg(A) for n > 0.

We need several operators on G-equivariant differential forms. We start with the equiv-
ariant version of the differential operator d defined above.
Definition 3.22. We define dg : Q}(A) - Qg (A) by

dg(feow)=fedv,
where f € C(Gaa) and w € Q7 (A).

Next we introduce an equivariant version of the Hochschild operator b.
Definition 3.23. The equivariant Hochschild operator bg : Q(A) - Q' (A) is defined

by
bo(f ®wda) = (-1)"(fewa- (ideu)(T(f ®a) ®w)

for n>1, where i denotes multiplication in Qg (A) and T is the canonical map and by
bg =0 forn =0.
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If U ¢ G is a compact open bisection, then we can write this in the form
bg(xv ®wda) = (-1)"" (xv ®wa - xv ® (xv-1 - a)w),
or, using the Leibniz rule, we can expand this explicitly as
bg(xv ® (a°)da'---da™) = xy ® (a®)a'da*--da™
+ %(—1)%@ ® (a")da'---d(a’a’*!)---da"
j=1
+(-1)"xv ® (xu-1 - a"){a’)da'--da" ",

for (a%)a'da?--da™ € QZ(O)(A).
Lemma 3.24. The operator bg is a differential, that is, bé =0.

Proof. Using the formulas developed above, we can calculate

bg (xv ® wda'da®) =bg((-1)"*"' (xv ® ((wda')a® - (xv-1 - a*)wda')))
=(-1)""'bg(xv ® (wd(a'a®) -~ wa'da® - (xy-1 - a*)wda'))
=(=1)""bg (xv ® wd(a*a?) - xy ® wa'da® - xy ® (xy-1 - a*)wda')
(1) 1) @ (wata® - (e - aa))
— (wa'a® - (xp-+ - a*)wa')

- ((xv—1 - a*)wa' = (xp-1 - a") (xp—1 - a*)w))) = 0,

where U ¢ G is a compact open bisection.

Starting from dg and bg we define two more operators.

Definition 3.25. Define the G-equivariant Karoubi operator kg by
Kg = id —(bgdg + dgbg),
and the G-equivariant Connes operator Bg by
Bg = Z lijgdg
=0

on 0 (A) forn>0.
Lemma 3.26. The operator Bg is a differential, that is, Bé =0.
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Proof. Using dé = (0 we see that dg and kg commute. Indeed we compute

dgrg = dg(id —(bgdg + dgbg))
= dg — dgbgdg ~ d3b
= dg - dgbgdg — b

(id =(bgdg + dgbg) )dg

I{gdg,

and then we conclude that Bé =0. O

We can write explicit formulas for kg and Bg. For n > 0 and a compact open bisection
U c G we obtain

kg(xv ®wda) = (-1)"'xu ® (xp-1 - da)w,

and for n =0 we get kg(xy ® a) = xu ® xy-1 - a. For Bg one calculates

Bg(xv ® a’da’--da™) = > (-1)"xu ® (xp-1 - (da™'"--da™))da’---da" "
=

7

Recalling the discussion of Section [2.4] we remark that the canonical operator T for
Qg(A) is given by
T(xv®w)=xu® Xy-1-Ww.

All the operators introduced above are morphisms of pro-G-anti-Yetter-Drinfeld modules,
and therefore commute with 7" by Lemma [2.46]

The following Lemma, which can be proved in a similar way as in the group case, see
[Voi07, Lemma 7.2], collects some important properties of the operators defined so far.
Lemma 3.27. The following identities hold on Q%(A):

(Z) /€2+1dg = ng,’
(ZZ) Iig =T+bgl€gdg;
(ZZZ) bglig = bgT,‘
(Z’U) I€2+1 = (ld —dgbg)T,‘
(0) (s =T) (s =T) =0;

(1)2) ngg + bng =id-T.

Proof. The first identity follows directly from the explicit formula for kg. Using iteratively
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the explicit formula for kg again, we compute

HZ(XU ® aodal'“dan) = XU ® Xy-1- (dal---da")ao

= xu ® xu-1 - (a°da’---da™) + (-1)"bg(xv ® xu-1 - (da'---da™)da®)

=T(xy ® a’da'---da™) + bgrgdg(xu ® a’dat---da™),
and

KS(XU ® dal"'dan) = XU ® Xy-1- (dalmdan)
=T(xv ®da'---da™),

which prove (ii). To prove the third identity, apply bg to both sides of (i) and use that
bz = 0. To prove (iv), apply g to both sides of (ii) and use (i) to get

n+1

kg = kgl + Kkgbgrgdg
= kgD +bgrydg
=rgT +bgTdg
= kg1 + bgdgT
= (id =dgbg)T,

where we used the fact that bg commutes with kg and dg commutes with 7". The identity

(v) is a consequence of (7i) and (iv). Indeed, using both, we get

(5™ = T)(w = T) = (T = dgbgT ~T)(T + bgrgdg ~ T)
= —dgbgTbg/ﬁlgdg

=0,

since bé = 0. Finally, to prove (vi), using the definition of Bg, we directly compute

n-1 n )
ngg + bng = Z ﬁjgdgbg + Z Hébgdg

J=0 J=0

n-1
= Z /ijg(dgbg + bgdg) + Rgbgdg

50

n-1

= Z lijg(ld —Iig) + ligbgdg
7=0

=id —Hg + /igbgdg

=id —/ig(ld —bgdg)
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=id —/ﬁg(lig + dgbg)
=1id —/ig+1 - Iigdgbg
=id-T + dgbgT - ngbg - bgﬂgdébg

=id -T,
where we use (iv), (i7), and the fact that T commutes with bg and dg. O

Observe that the final formula of Lemma [3.27, with Lemma and Lemma yields
the following.

Proposition 3.28. Let A be a pro-G-algebra. The space Qg(A) together with the opera-
tors bg and Bg defines a paramixed complex in the category of pro-G-anti- Yetter-Drinfeld

modules.

§ 3.4 | Quasifree pro-G-algebras

In [CQ95a], one of the motivations to introduce and study quasifree algebras is that they
are, in a broad sense, a noncommutative analogue of smooth algebras or manifolds. The
link is given by the good behaviour of these algebras with nilpotent extensions. Such
behaviour characterises smooth algebras in the commutative setting. Let us next discuss
the main definitions and facts related to quasifreeness. For further background infor-
mation in the non-equivariant case, we refer to [Mey99]. We are interested in quasifree
pro-G-algebras. In the following, we will review and adapt some of the definitions and
results in [Voi03], [Voi07].

We endow the pro-G-module Qg (A) of differential forms over a pro-G-algebra A with
the Fedosov product, defined by

womn:=wn-(-1)"dwdn

for forms w € Q) (A) and 7 € QF;, (A).

Remark 3.29. The Fedosov product preserves the forms of even degree.

The second ingredient in Cuntz and Quillen’s approach to periodic cyclic homology is the
periodic tensor algebra of a pro-algebra.

Definition 3.30. Let A be a pro-G-algebra. The periodic tensor algebra T A of A is the
pro-G-algebra obtained as the projective limit of the projective system (T A[(TA)™)
where TA/(JA)" = Ae Qé(o) (A)e--o Qé’go)
projections. Similarly one defines the pro-G-algebra JA as the projective limit of the

projective system (T A[(TA)")nen, where JA/(TA)" = Qé(o)(A) O D Qg}o)(A).

neN’

(A) and the structure maps are the canonical
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The natural projection from 7T A to the first term of the projective system gives a G-
equivariant homomorphism 74 : TA - A. Moreover, for every n € N we have natural
inclusions A > A& Qé(o)(A) O D Qg(lo)(A), and these maps assemble to a G-equivariant
pro-linear section o4 for 74. Then we obtain an admissible extension

JA 25 TA % A
of pro-G-algebras.

We discuss some properties of these two objects we have introduced. We will start with
some preliminary definitions.

Definition 3.31. Let N be a pro-G-algebra, and let m™ : N°c=@" = N denote the
n-fold iterated multiplication. We say that N is k-nilpotent for some k € N if mF =0. If
N is k-nilpotent for some k € N, we say that N is nilpotent.

Moreover, we say that N is locally nilpotent if for every G-equivariant pro-linear map
f:+ N - C with constant target C, there exists n € N such that fm" = 0.

Definition 3.32. An admissible extension

K » > I » Q)

of pro-G-algebras is called locally nilpotent (respectively k-nilpotent, nilpotent) if the
kernel K s locally nilpotent (respectively k-nilpotent, nilpotent) as a pro-G-algebra.
Lemma 3.33. The pro-G-algebra J A is locally nilpotent.

Proof. Let | : JA — C be a G-equivariant pro-linear map with constant target. By
Remark [3.5] there exists n € N such that [ factors through the quotient JA/(JA)". By
definition of the Fedosov product, the algebra JA/(J A)™ is n-nilpotent. It follows that

Im”, , =0, as desired. O

Lemma 3.34. Let N be a locally nilpotent pro-G-algebra and let A be any pro-G-algebra.
Then the tensor product A ® e (g IV is locally nilpotent as a pro-G-algebra.

Proof. Let f: A®¢e gy N = C be a G-equivariant pro-linear map with constant target.
By the description of tensor products in the pro-category, this map can be written in the

form

f=9(fa® fn),

where fy : A > Cy and fy : N —» (5 are G-equivariant pro-linear maps with constant

targets, and g : C} ® e (gO) C5 - C' is a morphism of constant pro-G-algebras.
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Since N is locally nilpotent, there exists n € N such that fym?R, = 0. Since the multipli-

cation is well-defined, we write

mﬁ%go(g(o))]v =m'y ® my.
Then it follows that
Fha, o = 9 (amy © Fymiy) = 0.
Hence A ® gy N is locally nilpotent. O

Definition 3.35. A G-equivariant pro-linear map | : A — B between pro-G-algebras is

called a G-lonilcur if its curvature, defined as
wi: A®pe gy A= B,  wi(a,b)=1(ab) - 1(a)l(b),

is locally nilpotent. That s, for every G-equivariant pro-linear map f : B — C with

constant range C, there exists n € N such that
fmipw" = 0.

Example 3.36. Every G-equivariant homomorphism f: A - B between pro-G-algebras
A and B is a G-lonilcur. Indeed, being a homomorphism, one has wg(ay,az) =0 for all
ai,as € A.

Example 3.37. The canonical map o4 : A — T A is a G-lonilcur. Its curvature w, ,(a,b) =
oa(ab) —oa(a) o oa(b) takes values in JA, which is locally nilpotent by Lemma [3.35

Hence, we conclude that o4 is a lonilcur.

The pro-G-algebra T A together with the G-equivariant pro-linear map o4 : A - TA
satisfies the following universal property, which can be compared to the universal property
satisfied by the usual tensor algebra.

Proposition 3.38. Let A and B be pro-G-algebras. For any G-equivariant pro-linear
map | : A - B which is a G-lonilcur, there exists a unique G-equivariant homomorphism
[l]: TA— B of pro-G-algebras such that the diagram

commautes.
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(A) - B by

Proof. Define a G-equivariant pro-linear map ¢¥ : Qé’fo)

o1 ({a")da'+-da®) = 1((a°))wn(a’, a®)-wi(a® ™, a?)

for all k£ >0, where w; is the curvature of [, and [ is extended naturally to a G-equivariant

pro-linear map A* - B*.

Let f : B - C be a G-equivariant pro-linear map with constant range. Define h :
B+®C§o(g(0))B - C by h(bo@bl) = f(bObl) We may write h = g(f1®f2) with fl : Bt > C,
fo:B—(C and g:C®CCw(g(o))C’—>C.

Since [ is a lonilcur, there exists n € N such that fom%w®" = 0. Thus, for k > n,

fof =h(of ™ @ mpw") = g (fiof " ® fampw?™) = 0.

Now write B = (B;); as a projective system. For each i, let f; : B — B; be the natural
projection. By the above, there exists n; € N such that f;¢F =0 for all k£ > n;. Define the

map

n;—1 . n;—1 .
.= £ (@) ¢z) 0, (1)~ B,
j= j=
These maps [{]J; determine a morphism of projective systems (7 A/(JA)"), = (B;);, and

hence define a G-equivariant pro-linear map [I] : TA - B.

It is straightforward to check that [I] is a homomorphism and satisfies [l]o4 = [. Moreover,

the definition of the Fedosov product implies the uniqueness of such a homomorphism. [

The periodic tensor algebra plays a central role in the definition of quasifree pro-G-
algebras.

Definition 3.39. A pro-G-algebra R is called quasifree if there exists a G-equivariant
splitting homomorphism R — T R for the canonical projection Tg.

Proposition 3.40. Let A be any pro-G-algebra. Then the periodic tensor algebra T A is

quasifree.

Proof. We prove the claim by constructing a G-equivariant splitting homomorphism for

the canonical projection 774 : TTA - TA.

To this end, we use the universal property of the periodic tensor algebra 7 A. Consider

the G-equivariant pro-linear map 0% := 07404 : A > TTA.
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We first show that cr?4 is a G-lonilcur. Recall that the Fedosov product satisfies

oa(x)ooa(y) =oca(r)oa(y) —doa(x)doa(y),

where the multiplication o4(x)o4(y) refers to the product in A, viewed as degree zero

forms.

Thus, observing that

oa(r)oa(y) —doa(z)doa(y) = oa(ry) - doa(z)doa(y),

we compute the curvature of 0% as follows

wez (2,y) = 04 (zy) - 0% (x) 0 054 (y)
= ora(oa(zy)) —ora(oa(z) o oa(y)) + doi(x)doi(y)
= 07a(Wo, (2,9)) +doi (x)do’ (y).

Now consider the G-equivariant pro-linear map o4 = T7r40%. Since 774 is a homomor-

phism, we have w,, = TTAWg? -

Let [ : TTA - C be a G-equivariant pro-linear map with constant target C. Composing

with o7 gives k:=lo7a:TA — C. Since 0,4 is a lonilcur, there exists n € N such that
kmip yw3t = kmiy ATI?ZW?E:L = Trakm’y, Awfg =0.
Moreover, since T T A is constructed as a projective limit, the map [ factors through some
quotient TTA/(J(TA))™ for some m e N. Therefore,
lm”f‘?Aw%’:m =0,
showing that o2 is a lonilcur.

By the universal property of T A, there exists a unique G-equivariant homomorphism
lo%] : TA— TTA such that [o%]oa = 0%. It follows that

traloiloa = Traoraca = o4,
and by uniqueness in the universal property of T A, we conclude that 774[0%] = idra.

Hence, T A admits a G-equivariant splitting of 774, which proves that T A is quasifree. [
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We list a number of equivalent characterisations of the class of quasifree pro-G-algebras.

Theorem 3.41. Let R be a pro-G-algebra. Then the following conditions are equivalent:
(i) R is quasifree;

(ii) There exists a G-equivariant pro-linear map ¢ : R — Qé(o)(R) satisfying

¢(zy) = p(x)y + 2 (y) - drdy
forall x,y e R;
(iii) There exists a G-equivariant pro-linear map V : Qé(o)(R) - Qé(o)(R) satisfying
V(rw) = 2V(w), V(wz) = V(w)x - wdz
forallze R, wel, (R);

(iv) The R-bimodule Qé(o)(R) is projective in the category pro(G-Mod).
Remark 3.42. We observe that this result can be extended to a longer list of equivalent
statements. We invite the reader to compare this with [CQ95Y, Proposition 7.1], [Mey99,
Definition and Lemma A.15] and, for the equivariant case, with [Voi(7, Theorem 6.5].
We will give a sketch of the proof, since most of the details are a translation of the group

equivariant case.

Sketch of the proof of Theorem [3.41 (i) < (ii): Assume R is quasifree. Then there
exists a G-equivariant splitting homomorphism v : R — T R of the canonical projection
Tr : TR - R. In particular, v factors through the quotient TR/(JR)? ~ R & Qé(o)(R)
equipped with the Fedosov product. Any section v must be of the form v = o + ¢,
for some G-equivariant pro-linear map ¢ : R — Qé(o)(R). To make this map an algebra

homomorphism, we must require

0=(or+¢)(zy) - (or+¢) () o (or+0) ()
=or(zy) + ¢(xy) - or(2)or(y) + dor(x)dor(y) - or(2)¢(y) + dor(z)dd(y)
- ¢(x)or(y) + dp(x)dor(y) - (x)o(y) + dp(x)de(y)
=p(xy) - xd(y) - (x)y + dady,

where most of the elements vanish because they are higher differential forms. This yields
the identity

o(xy) = ¢p(x)y +x¢(y) — drdy.

Conversely, given such a map ¢, the assignment v = o + ¢ defines a G-equivariant algebra
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homomorphism v : R — TR/(JR)? that splits the projection. Composing with the
canonical inclusion TR/(JR)? - TR gives a splitting R — TR, showing that R is

quasifree.

(i1) < (4ii): Suppose ¢ : R — Qé(o)(R) is a G-equivariant pro-linear map satisfying
¢(zy) = ¢(x)y +2¢(y) - dedy. Then define v : Q/, (R) — Q2 (R) on generators by

V(zdy) = ¢(x)y - zdy,
and extend linearly. One checks that V is well-defined and satisfies the relations
V(zw) = 2V (w), V(wz) = V(w)z - wdz,
which define a bimodule map.

Conversely, if such a map V exists, define ¢ : R — Qé(o)(R) by ¢(z) := V(dz). Then the
bimodule properties of V imply:

¢(zy) = V(d(zy)) = V(zdy + dzy) = 2V (dy) + V(dz)y = 26(y) + ¢(x)y - dzdy.

(i1) < (iv): Consider the short exact sequence of pro-G-modules
with R-R-bimodule homomorphisms defined by
i({z)dydz) = (z)y®z @ xv — (z) @Yz @ XU + () @Y ® 2

and
p({z) @y ®(2)) = ({z)dy)(2),

where U ¢ G(© and its characteristic function is an identity for z, y and z.

Then Q(lj(o) (R) is a projective R-R-bimodule if and only if there exists an R-R-bimodule
homomorphism p: B* ® cee g0y R ®ce (g0 B — Qé(o) (R) such that pi = id.

Moreover, such bimodule homomorphisms p correspond bijectively to G-equivariant pro-
linear maps ¢ : R — ;) (R), via the assignment ¢(z) = p(xv ® z ® xv), for U ¢ G
such that xy -+ = x. This correspondence shows that the existence of a splitting p is

equivalent to the existence of a map ¢ satisfying the identity

P(wy) = p(x)y +2¢(y) — dvdy.
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Thus, the projectivity of Qé(o)(R) is equivalent to the existence of such a G-equivariant

pro-linear map ¢. O

Lemma 3.43. The trivial G-algebra C*(G() is quasifree.

Proof. Let f e C®(G®) and define ¢(f) = 2fdxydxy — df dxy, where xy is the charac-
teristic function of a compact open subset U € GO such that yyf = f. This does not
depend on the choice of U, and one checks that ¢ satisfies condition (i7) in Theorem

B.411 O

We now study universal locally nilpotent extensions of pro-G-algebras. These extensions
play an important conceptual role in the theory of equivariant periodic cyclic homology.
Definition 3.44. Let A be a pro-G-algebra. A universal locally nilpotent extension of A

is an admissible extension of pro-G-algebras

N » > R »

such that N is locally nilpotent and R is quasifree.

We first fix the notion of homotopy in our setting.

Definition 3.45. Let A be a pro-G-algebra. We denote by A[0,1] the pro-G-algebra
A® C>([0,1]) of smooth functions on the unit interval with values in A, equipped with
the G-action on the first element.

Definition 3.46. Let A and B be pro-G-algebras. A G-equivariant homotopy between

two G-equivariant homomorphisms fo, f1: A —> B is a G-equivariant homomorphism
¢:A- B[0,1]

such that for all t € [0,1], the evaluation map ev, : B[0,1] = B induces a G-equivariant
homomorphisms ®; := ev, ® : A - B satisfying ®¢ = fo and ®, = f;. We say that fy and

f1 are G-equivariant homotopic if such a map ® exists.

The terminology ‘universal’ is justified by the following universal property.
Proposition 3.47. Let

N »—— R —T»
be a universal locally nilpotent extension of the pro-G-algebra A. Let

] p
K »—— F » Q

be any other locally nilpotent extension such that there exists a G-equivariant homomor-

phism ¢ : A - Q. Then there exist G-equivariant homomorphisms £ : N - K and
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¥ : R — E such that the following diagram commutes:

0 s N — RT3 A > 0
le bl
0 y K — s F 250 > 0

Moreover, the homomorphisms & and v are unique up to G-equivariant homotopy. Let
(&Y, @) for t = 0,1 be G-equivariant homomorphisms of extensions and let & : A —
Q[0,1] be a G-equivariant homotopy connecting ¢o and ¢1. Then ® can be lifted to a
G-equivariant homotopy (Z, W, ®) between (&, 1o, Po) and (&1,11,¢1).

Proof. Since R is quasifree, let v : R - TR be a G-equivariant splitting of 7. Choose
a G-equivariant pro-linear section s: () - E. Then s¢m: R - E is a G-equivariant pro-
linear map, and since p(s¢m) = ¢ is a homomorphism and the sequence is exact, the
curvature of s¢m takes values in K. As K is locally nilpotent, s¢7 is a G-lonilcur. By the
universal property of TR, there exists a G-equivariant homomorphism [s¢n] : TR - E
with [s¢r]og = s¢m. Define v := [s¢m]v, which satisfies pip = ¢m. Moreover, (N) € K,
so it restricts to a G-equivariant homomorphism £ : N - K, yielding the desired morphism

of extensions.

The assertion that ¢ and & are uniquely defined up to homotopy follows by applying the
first part of the proof to the homotopy ®: A - Q[0, 1]. ]

We can now summarise what we have done in this section with the following result
Proposition 3.48. Let A be a pro-G-algebra. The extension 0 > JA—->TA—-> A -0 is

a universal locally nilpotent extension of A.

§ 3.5 | The equivariant X-complex

A further ingredient in the definition of periodic cyclic homology introduced by Cuntz
and Quillen [CQ95b] is the construction of the X-complex of a pro-algebra A. The
X-complex is obtained by truncating the bicomplex used to define the periodic cyclic
homology in the classical setting. For most pro-algebras A, the chain complex X (A) can
give less information than expected because it ignores all the higher levels. For quasi-free
pro-algebras, however, there is no such additional information above degree 1, and the
X-complex encodes all the relevant information. In this section, we will define the G-
equivariant version of the X-complex. The main sources for this are [Voi03] and [Voi07].
The definition in the groupoid case is similar to the group case. We will give the definition

and state the main interesting features of this object.
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We now return to the paramixed complex Qg(A) of G-equivariant differential forms over
a pro-G-algebra A.

Definition 3.49. Let A be a pro-G-algebra. We define the Hodge tower associated to
Qg(A) by defining the n-th level as

029(4) = B 0(4) © U (A) (0 ().

The operators dg and bg descend to 0"Qg(A) as follows

bg : 0"Qg(A) —» 0"Qg(A)
(W07w17 SRR [wn]) = (bg(wl),bg(WQ), s 7bg(wn)7 [O])7

and

dg : 0"Qg(A) - 6"Qg(A)
(woawlv BRI [wn]) = (07 dg(wo)’ s ’dg(wn_Q)v [dg(wn_l)])a

where wi € Q% (A) for j=0,...,n -1 and [w"] € Q%(A)/bg(Q%(A)). Observe that the
first map is well-defined since bé = (. Similarly, it is true for kg and Bg. Using the natural
grading into even and odd forms together with the last relation in Lemma we see
that #7Qg(A) together with the boundary operator Bg + bg becomes a pro-paracomplex
of G-anti-Yetter-Drinfeld modules.

For m > n there exists a natural chain map 0mQg(A) — 6"Qg(A) given by the obvious
projection. By definition, the Hodge tower 0Qg(A) of A is the projective limit of the
projective system (6"€Qg(A))ney obtained in this way.

Definition 3.50. Let A be a pro-G-algebra. The equivariant X -complex Xg(A) of A is
the pro-paracomplex 0'Qg(A). Explicitly, we have

Xg(A): 25(A) = Q5(A)/bg(%(A))
g
where h: Q5 (A) = Q5(A)[bg(Q%(A)) denotes the canonical projection.
Remark 3.51. An important difference with the classical setting is that the equivariant
X-complex Xg(A) is typically not a chain complex but only a paracomplexr. This is again
a consequence of the relation (iv) in Lemma[3.27

A notable exception to the previous Remark is the case when A = C2(G(®) is the trivial
G-algebra.
Lemma 3.52. The equivariant X -complex Xg(C(G©)) of the trivial G-algebra C(G©))
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identifies canonically with
Og ——0

that is, it is equal to the trivial supercomplex Og[0].

Proof. By definition of the equivariant X-complex, the even part of Xg(C>®(G(®)) is
given by Og ®ce (g C*(G(0) = Og.

Every element in the odd part of Xg(C®(G(?)) can be represented as a linear combination
of terms of the form xy ® dxyy and xy ® xydyxy for compact open bisections U ¢ G
and compact open subsets V ¢ G(®. Moreover, the canonical map T associated with
Og ®ce gy C(G®) = Og equals the identity, compare with the relation [2.6/ and recall
that we are considering the action of loop arrows. This implies that the Hochschild
operator bg : Q2 (C(G)) - QL(C(G©)) satisfies

bg(xv ® (xv)dxvdxv) = —xv ® (xv)d(xv)xv + Xv ® xvdxv.
We therefore obtain that

XU ® xvdxyv = Xu ® xvd(xvxv)
= xv ® xvd(xv)xv + Xxv ® xvdxv
=2xu ® xvdxv

in Xg(C®(G®)) since bg(xv ® {(xv)dxydxy) vanishes, and hence xy ® xydyy = 0.

Similarly,
Xu ® dxv = xv ® d(XvXv)
= Xxv ® d(xv)xv + Xv ® Xvdxv
=2xu ® xvdxv =0,
and we conclude that the odd part of Xg(C(G(®)) vanishes as claimed. O

A central result regarding the equivariant X-complex is the following theorem, compare
[Voi07, Theorem 8.6].

Theorem 3.53. For any pro-G-algebra A the equivariant X -complex Xg(T A) and the
Hodge tower 0Qg(A) are homotopy equivalent as pro-paracomplexes of G-anti-Yetter-
Drinfeld modules.

The proof of Theorem [3.53| is a direct translation of the proof in the group equivariant

case, building on the relations in Lemma [3.27]
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§ 3.6 | Bivariant equivariant periodic cyclic homology

Now that we have all the ingredients, we can give the main definition of this chapter.
Definition 3.54. Let G be an ample groupoid and let A and B be pro-G-algebras. The

bivariant equivariant periodic cyclic homology of A and B is

HP?(A,B) = H,(Hom (g)(Xg(T (A ®pe gy Kg)), Xg(T (B ®ce g0y Kg)))).

We pointed out earlier that the equivariant X-complex is not a chain complex in general.
This marks a crucial difference with the ordinary approach and explains why we start
directly with a bivariant approach. In fact, the Hom-complex in this definition is indeed
an ordinary supercomplex, so that one can take its homology in the standard way. In order
to explain this we write 04 and Op for the differentials of the equivariant X-complexes
in the source and the target, respectively. Recall that k-th element of the Hom-complex

chain is given by
Hk=q—pH0mA(G)(Xg(T(A ® o (g(0) Kg))p, Xg(T(B ® e (g(0) Kg))q),

where we observe that Xg(-)2, = Xg(-)o and Xg(—=)2n+1 = Xg(-)1 for all n € Z since the

X-complex is a supercomplex. Moreover, the differential in the Hom-complex is given by

9(9) = 694 - (-1)19p¢

for a homogeneous element ¢, and we have

0%(¢) = (¢ 04 - (-1)¥1959)
= 608 - (1) 0300~ (~1)¥056 04 + (1) (-1)¥050
=095+ (-1)I(-1)*0E ¢
=¢(id-T) - (id-T)¢
=To¢-oT.
Hence the commutation property showed in Lemma gives the relation 9%(¢) = 0.

It follows directly from the definition that H PY is a bifunctor, contravariant in A and

covariant in B. We define
HPY(B):=HP/(CZ(G),B),  HP;(A):=HPS(A,CZ(GD))

the G-equivariant periodic cyclic homology of B, and the G-equivariant periodic cyclic

cohomology of A, respectively. Every G-equivariant algebra homomorphism f: A - B
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induces naturally an element [f] € HP§ (A, B). We have an associative product
HPJ(A,B)x HPJ(B,C) » HPJ(A,C), (z.y)~z-y

induced by the composition, and this generalises the composition of G-equivariant homo-
morphisms f: A— B and g: B — C in the sense that [f]-[g] = [ge f]. In particular, we
obtain a natural ring structure on HPY (A, A) for every G-algebra A with unit element
given by [id].

Remark 3.55. If the groupoid G is just a point, then we obviously obtain the constructions
defined by Cuntz and Quillen. Moreover, if GO is a singleton, or equivalently, if the
groupoid G is a discrete group, then the above constructions reduce to the theory developed
in [Voi05], [Voi07).

§ 3.7 | Discrete groupoids

In this section, we describe in details how the calculation of HPY can be reduced to the

group equivariant case when the groupoid is discrete.

Start recording the following well-known result about the structure of discrete groupoids.
Lemma 3.56. Any discrete groupoid G can be decomposed into the disjoint union of

transitive groupoids.

Proof. The groupoid G acts on its base space G(9). We denote an orbit in the quotient
space G\G©) by [z], for a chosen representative x in the orbit. The restriction of G to
[x], denoted by g[[;”]] is a transitive subgroupoid of G and since the orbits are disjoint we
can write
G= Ll g
[]eG\G(®
O

Let x € GO and write m, € C®(G(®) for the maximal ideal of all functions vanishing at
x. If A is a pro-G-algebra then A, = A/m, - A is naturally a pro-GZ-algebra.
Proposition 3.57. Let G be a discrete groupoid and let A, B be pro-G-algebras. Then we

have a canonical isomorphism

HPY(A,B)= T[] HP¥(A,,B,),
[+1eG\G)

where each x is an arbitrary representative of the orbit [x] € G\G©.

Proof. Every discrete groupoid can be written as a disjoint union of transitive groupoids
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as seen in [3.56f This induces a direct product decomposition at level of the Hom-

complexes. Therefore it suffices to consider the case that G is transitive.

In this case, given any x € GO one obtains an equivalence between the category of
G-anti-Yetter-Drinfeld modules and the category of G¥-anti-Yetter-Drinfeld modules by
sending a G-anti-Yetter-Drinfeld module M to x - M, where x € M(Og)) = C*(Gua)
denotes the characteristic function of G*. Applying the extension of this functor to the
corresponding pro-categories to the Hom-complex defining H P (A, B) yields the desired

isomorphism. O
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Chapter 4

Homological Properties

This chapter is devoted to the homological aspects of G-equivariant periodic cyclic ho-
mology HPY. We will show that it shares many homological properties analogous to
equivariant K K-theory, including excision, stability, and homotopy invariance. For fur-

ther connections with equivariant K K-theory in a categorical framework, see [BP24].

§ 4.1 | Homotopy invariance

We first establish that HP? is homotopy invariant with respect to G-equivariant homo-
topies in both variables. The discussion about this topic, in the group case, can be found
in [Voi07] and [Voi03]. In this section we will follow the same strategies and adapt the

proofs to our situation.

Let A, B be pro-G-algebras. Recall from the previous chapter the Definition [3.45] of
G-equivariant homotopy between G-equivariant algebra homomorphisms ¢g, ¢; : A - B,
that 07Qg(A) denotes the n-th level of the Hodge tower, and that 8'Qg(A) = Xg(A) is the
G-equivariant X-complex. We have canonical projection maps &, : 0"Qg(A) - 0 1Qg(A)
for all n > 1. The first step toward proving the main result of this section is to show that
the map & is a homotopy equivalence, provided that the pro-G-algebra A is quasifree.

Lemma 4.1. Let A be a quasifree pro-G-algebra. Then the map &5 : 02Qg(A) - Xg(A)

is a homotopy equivalence of pro-paracomplexes of G-anti- Yetter-Drinfeld modules.

Proof. The natural projection map &, is described by the following commutative diagram

Q0(A) @ Q2(A)/bg ((A)) (bg—i> QL(A)

b !

g(4) 3 2 Q(A)/bg (G (A)).
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Since A is quasifree, there exists by Theorem a G-equivariant pro-linear map V :
Qo (A) > Qé(o)(A) such that

V(aw) =aV(w) and V(wa)=V(w)a-wda
forallae A and we Q(lj(o) (A). We extend V to forms of higher degree by setting
v ((a)da'--da™) = v ({(a")da") da®--da™.

Then we have
V(aw) = av(w), V(wn) = V(w)n+ (-1)*wdy

for a € A and w,n € Qg (A). Moreover we set V(a) =0 for a € Qg(o)(A) =A.

One then obtains a map Vg : Q3 (A) - Qg1 (A) of pro-G-anti-Yetter-Drinfeld modules by
setting

Vg(few)=fev(w).

We will use Vg to construct an inverse of & up to homotopy. Let w € Qg(‘ol) (A) withn >2

and a € A. Then an explicit computation gives
[bg, V] (xuv ® wda) = bgVg(xu ® wda) + Vgbg(xu ® wda)

= bg(xv ® V(w)da) + Vg((-1)"" (xv ® (wa - (xv-1 - a)w)))

=(=1)"(w e (V(w)a- (xu-r-a)V(w))
+ (1" (xv ® (V(wa) - V((xv-1 - a)w)))

=(-D)"" (v @ (k-1 - @) V(w) - V(w)a+ V(wa) - V((xv-1 - a)w))

=(-1)"'(xv ® (xv1-a)V(w) - xv ® V(w)a + xu ® V(w)a
+(-1)"'xy @ wda - xu ® (xy-1 - a)V(w))

= xv ® wda.

So this implies that [bg, Vg] = id on QF(A) for n > 2. Since [bg, Vg] commutes with bg
this equality holds on bg(Q%(A)) € Q5(A) as well. As a consequence, we obtain a well-
defined map v : Xg(A) — 62Qg(A) by setting v =id -[Vg, Bg + bg], noting that [Vg, Bg]

increases the degree of differential forms by 2.

Using Lemma with the fact that Vg is a map of pro-G-anti-Yetter-Drinfeld modules

one checks that v is a chain map with respect to d = Bg + bg. Explicitly, we have

v=1id-vgd on 23 (A)
v =id-[Vg,bg] =id-bgVg on QL(A)/bg (Q2(A)),
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and this implies & = id. Moreover, by construction vés = id —[Vg, Bg + bg| is homotopic
to the identity. O]

Definition 4.2. Let A, B be pro-G-algebras and let ® : A — B[0,1] be a G-equivariant
homotopy. Recall that for t € [0,1] we write ®; := ev, ®. We define the derivative of ® as
the G-equivariant pro-linear map ®': A - B[0,1] defined as ®}(a) := %@t(a), foraceA.

Then &’ is a derivation with respect to ®, that is,
O'(ab) = D'(a)P(b) + P(a)d'(b)
for all a,be A.

In the same spirit, using the differential structure inherited by C*([0,1]) we give the
following.

Definition 4.3. Let A, B be pro-G-algebras and let ® : A — B[0,1] be a G-equivariant
homotopy with ® : A — B[0,1] its derivative. We define n: QE(A) - Qi1 (B) by

0(f ® a®da---da™) = /01 £ ® Dy (a®)D! (a1 )dD, (a?)--dd, (a")dt

forn >0 andn=0 on QY(A).

Using the fact that &’ is a derivation with respect to ® one computes
nbg(xv ® a’da’---da™) = (-1)"n(xv ® a’da*---da™'a™ - xy ® (xp-1 - a™)a’da*--da™ ")

n-1
=n(xv ® a’a'da®--da" + )" (1) a’da"--d(a’a’*")---da"
p

+(-1)"xy ® (xp-1 - a™)a’da’---da™")
1
- [ G @ u(aa) ) (a)d,(a?) -y (")
- xv ® ®;(a)®}(a'a?)d®,(a®)---dDP;(a™)

£ 3 (1), (a0) B! (0 ) dDy (0 APy (al T )-wdy (o)

+(=1)" 0y ((xp-r - a™)a’)Py(a')dDy (a®)---dD,(a""))dt
=~ [0 (xv ® ,(a”) @} (a') P (a?)dD(a®)+-dPy(a™)
+Z(_1)j—lq>t(a0)q>g(al)dcpt(cﬂ)---dq>t(aﬂ‘aﬂ'+1)---dq>t(an)

+ (‘1)n_1q)t(XU-1 : an)@t(ao)@{s(al)d@t(GQ)'”dq)t(an_l))dt

= _fol bo(xu ® ®4(a)®(a')d®y(a?)--dd,(a™))dt
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= ~bgn(xv ® a’da*---da™)

for any compact open bisection U ¢ G. We deduce that nbg+bgn = 0 on QE(A) for all n > 0.
In particular, we have nbg(Q%(A)) € bg(Q%(B)), and hence we obtain a G-equivariant
pro-linear map 7 : 02Qg(A) - Xg(B).

Lemma 4.4. Let ®: A — B[0,1] be a G-equivariant homotopy between pro-G-algebras A
and B. Then we have

Xg(®1)& — Xg(Po)&2 = On+n0,

where 1 : 2Qg(A) - Xg(B) is the map introduced in Definition and 0 = Bg + bg.
Hence the chain maps Xg(P¢)&s : 02Qg(A) - Xg(B) fort =0,1 are homotopic.

Proof. For 7 =0 we have

[0.7](f ®a) =n(f®da)
- f01f®c1>;(a)dt
- fody(a) - f® Do(a).

For j =1 we get

[0,n)(xv ® a’da") = dgn(xv ® a’da’) + nBg(xv ® a’da")
= [ (xw @ d(B(a)4(a) + 0 © Bi(a)d(a')
~xv ® P;(xp-1 - a')dP,(a”))dt
= [ (@ dm,()0i(a") + xo 8 B (o))
+xu ® ©(a®)d®;(a') — xu ® P} (xp-1 - a')dP(a®))dt
= [ bl 8 AB(a)dBi(a")) + o (i Do) ()
for any compact open bisection U € G. Since the first term vanishes in Xg(B) we conclude
[0.7](xv ® a’da") = xu ® ©1(a”)d®i(a’) - xv ® Po(a”)dPo(a').

Finally, on QZ(A)/bg(Q%(A)) we have dn +nd = nbg + bgn = 0, with the last equality due
to the calculation just before this Lemma. O

We are now ready to state and prove the following result.
Theorem 4.5 (Homotopy invariance). Let A and B be pro-G-algebras and let & : A -
B[0,1] be a G-equivariant homotopy. Then the elements [®y] and [®,] in HP§ (A, B)
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are equal. More generally, if A is a quasifree pro-G-algebra then the elements [®q] and
[©1] in Hy(Hom gy (Xg(A),Xg(B))) are equal.

Proof. The second part of the Theorem follows directly by combining Lemma [.1] and
Lemma [£.4

In order to show that the first part of the Theorem can be viewed as a special case of
the second, assume that ® : A - B[0,1] is a G-equivariant homotopy. We tensor A
and B with Kg to obtain a G-equivariant homotopy @ ®¢e (g Kg : A ®ce g0y Kg —
(B ®ce(gm) Kg)[0,1]. Passing to the periodic tensor algebras we obtain a G-equivariant
algebra homomorphism T (®® ¢ g0y Kg) : T (A® e (g)Kg) = T ((B®ce(50)Kg)[0, 1]).

Consider the G-equivariant pro-linear map

l(beTe f)=c(beT)® f,

where 0 : B ®cw gy Kg = T(B ®cs gy Kg) is the standard G-equivariant pro-linear

splitting. Then [ is a lonilcur, and we get an associated G-equivariant homomorphism
[1] : T((B ®ce gy Kg)[0,1]) = T (B ®ce gy Kg)[0,1]

by the universal property of the periodic tensor algebra from Proposition Consider

the G-equivariant homotopy
\I’ = [[l]]T((D ®Cgo(g(o)) }Cg) : T(A ®Ccoo(g(0)) ICg) - T(B ®C’go(g(0)) Kg)[o, 1]

and note that W; = T(®; ®cw(gw)) Kg) for all t € [0,1]. Since T(A ®cw gy Kg) is
quasifree we are now in the setting of the second part of the Theorem, and this concludes
the proof. O

We note that, as an application of the homotopy invariance, one can show that Xg(7T A)
is homotopy equivalent to Xg(A) if A is a quasifree pro-G-algebra.
Corollary 4.6. Let 0 > N - R — A — 0 be a universal locally nilpotent extension of the

pro-G-algebra A. Any morphism of extensions

0 s JA > TA s A > 0
[
0 s N > R s> A > 0

induces a homotopy equivalence Xg(p) : Xg(TA) - Xg(R). Moreover, the class of this
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homotopy equivalence in H,(Hom gy (Xg(TA), Xg(R))) does not depend on the choice
of ¢.

Proof. By Proposition we can deduce that ¢ : TA - R is a G-equivariant homo-
topy equivalence of pro-G-algebras. Then we can use Theorem to get a homotopy
equivalence Xg(¢) : Xg(TA) - Xg(R). From the uniqueness of ¢ up to G-equivariant
homotopy, we immediately get the independence of the choice of ¢. n

§ 4.2 | Stability

Next we show that HPY is stable in both variables with respect to tensoring with the
algebra IC( E') associated to a G-module E together with a G-equivariant pairing as defined
in Subsection 2.3.2]

Throughout this section, we denote by h: E®ce gy E = C*(G(0) a given G-equivariant
pairing on F.

Definition 4.7. Let E be a G-module. The twisted trace map ttr : Og ® e gy K(E) —
Og is defined by setting

ttr(f®er®ez) = (iIdh)(T(f ®ex) ®eq)

for feOg and ey,es € E.

Explicitly, we have
ttr(xu ® e1 ®ea) = xu ® h(xy-1-ea® e1) € Og @ gy C=(G) = Og

for any compact open bisection U ¢ G.

Lemma 4.8. The twisted trace map introduced above satisfies

ttr(xu ® LoL1) = ttr(xv ® (xu-1 - L1)Lo)

for any compact open bisection U € G and Ly, Ly € K(E).

Proof. 1t suffices to prove the claim for Ly = e;®e5 and Ly = e3®e¢4 for any e, €5, e3,¢4 € E.
Recall that product in I(E) is given by

LOLl =e1® h(eg ® 63)64.
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With these assumptions, we obtain

ttr(xu ® LoL1) = ttr(xy ® e1 ® h(ex ® e3)ey)
=xv ® h(xv-1 - (h(ex ® e3)es) ® €1)
=xv ® Xxu-1 -h(ea ®e3)h(xy—1-es®eq)
=Xxv ® h(e2 ® e3)h(xy-1-ea ®e)

and

ttr(xu ® (xu-1 - L1)Lo) = ttr(xv ® xu-1 - €3 ® h(Xy-1 - €4 ® e1)ez)
=xv ®h(xu-1 - (M(xu-1-es®er)er) ® xy-1 - €3)
=xv ® xu-1 - h(h(xu-1-es® e1)es ® €3)
=xu ®h(ea®e3)h(xy-1-es®eq).

Observe that we used the G-equivariance of the pairing in the third equality and that
Xu® f=xu®xy--fforall feCx(G®), or equivalently, that the canonical map T of
Og ®ce gy C(G?) equals the identity as shown in Example [2.47 O

§4.2.1 | Admissible pairings

Let us consider a particular class of such pairings.

Definition 4.9. Let E be a G-module. A G-equivariant pairing h on E is said to be
admissible if there exists a G-equivariant linear embedding C»(G)) - E such that the
restriction of h to C*(G)) € E agrees with the canonical isomorphism Cg*(G(0)® e g0
Ce(G) = Cx(G).

Definition 4.10. Let E be a G-module equipped with an admissible G-equivariant pairing.

Define the linear map
L2 CF(G0) 2 CF(G) e (g C(G) = K(E),

as the composition of the canonical isomorphism for C(G(®) with the tensor product of
the embedding by itself.

Remark 4.11. Admissibility, that is the existence of such an embedding, ensures that the
map ¢ defined above is a G-equivariant algebra homomorphism. Indeed, if we denote by e :
Ce(GO) > E the embedding, then the claim follows by observing that both the canonical

isomorphism for C*(G() and the map e®e are G-equivariant algebra homomorphisms.

More generally, we consider the following construction.

Definition 4.12. Let E be a G-module equipped with an admissible G-equivariant bilinear
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pairing, and let A be a G-algebra. We define the map
LA - A = A ®C§o(g(0)) Cgo(g(o)) e A ®C§o(g(0)) ,C(E)

as the tensor product of the identity on A with the map 1: C*(G0) - K(E).
Remark 4.13. The map v4 defined in Definition [[.19 is a G-equivariant algebra homo-

morphism.

With these preparations in place, we can now state one of the main theorems of this
section. This result will serve as a cornerstone for the general stability theorem that will
be presented later in the section.

Theorem 4.14. Let A be a pro-G-algebra, and let E be a G-module equipped with an

admissible G-equivariant bilinear pairing. Then the class
[LA] € HOHOHIA(Q)(XQ(TA),XQ(T(A ®Ccoo(g(0)) ’C(E))))

s invertible.

Proof. We have to find an inverse for [¢4]. First observe that the canonical G-equivariant
linear map A ®ce gy K(E) - TA ®ce(go) K(E) is a lonilcur and hence induces a
G-equivariant homomorphism A4 : T(A ®¢e gy K(E)) = TA ®ce(gwmy K(E), which

concretely acts by
M(fe(a®® Lo)d(a' ® Ly)...d(a*" ® Lay,)) = f® (a®)da ...a®" ® (Lo) L1 ... Loy,
for feOg, a’e Aand L; e C(EF).
Define 14 : Xg(T A ®ce gy K(E)) = Xg(TA) by
tra(fexeL)=tir(feL)®x
on QZ(TA®ce(gmy K(E)) and

tT’A(f ® (J]O ® L(])d(l‘l ® Ll)) = tt?”(f ® L()Ll) ® C(Zodl’l
tT’A(f ® d(ZL‘l ® Ll)) = tt?”(f ® Ll) ® de‘l,

on Qp(TA ®cw gy K(E)) for f e Og, x,20,21 € TA and L, Ly, Ly € K(E). Observe
that we used the twisted trace ttr : Og ® e (goy K(E) = Og as in Definition . By

construction, tr, is a map of G-anti-Yetter-Drinfeld modules. We have

tradg(fex®L)=tra(fed(z®L))
=ttr(f® L) ®dx
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=dg(ttr(f® L)®x)
=dgtra(feze®lL),

and for a compact open bisection U € G we calculate

bgtra(xv @ (zo ® Lo)d(z1 ® L1)) = bg(ttr(xv ® LoL1) ® xodr1)
= ttr(xv ® LoL1) ® (w1 = (Xu-1 - ¥1)%0)
=ttr(xu ® LoLy) ® xox1 — ttr(xu ® (xu-1- L1)Lo) ® (xu-1 - 1)
=tra(xv ® (zor1 ® LoL1) - xv ® (xv-1 - 21)T0 ® (Xu-1 - L1) Lo)
=trabg(xu ® (o ® Lo)d(z1 ® L1)),

using the twisted trace property from Lemma [4.8 Similarly one checks
bgtra(xv ® d(z1® L1)) = trabg(xv ® d(z1 ® L1)).

It follows that tr4 is a chain map of paracomplexes.

We define 74 = traXg(Aa) and claim that [74] is an inverse for [t4]. Since ¢4 is an
G-equivariant algebra homomorphism, we consider Tia : TA —» T(A ®ce gy K(E))
and observe that AaTta = t74. Moreover, because ttr(f ® t(e)) = f for f € Og and
e € Cx(G®), we have that

TaXg(Tta) =traXg(Aa)Xg(Tra)
= t’r’AXg()\ATLA)
= t’/‘AXg(LTA)

=idx,(T4)

Then it follows that [¢4]-[74] =id. It thus remains to show that [74]-[¢4] = id. Consider

the G-equivariant homomorphisms
ij: A®ceo(g0) K(E) = A®ce gy K(E) ®ce gy K(E)
for j =0,1 given by
ip =id®t, i1 = (id ®0 )i,
where we used the canonical identification
A®ce(g0y K(E) 2 A®ce g1y K(E) ®cee gy C* ()
in the definition of 4, and the tensor flip automorphism o of K(E) ® e gy KL(E) given
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by o(Ly ® Ly) = Ly ® Ly in the definition of ;.

Similarly as above, we calculate [io] - [Tagi(r)] = id and [i1] - [Taek(r)] = [7a] - [ta].
Let us show that the maps iy and i; are G-equivariant homotopic. To this end observe
that K(E) ®cw gy K(E) 2 K(E ®cwgo) ) as G-algebras and denote by ¥ the flip
automorphism of £ ®ce gy £ given by ¥(e® f) = f ® e. For t € [0,1] we then obtain a

G-equivariant linear endomorphism ¥; of E ® e (g() E given by
Yy = cos(mt/2)id +sin(7t/2)%,

and we note that %, is invertible with inverse ¥;! = cos(7t/2) id - sin(7t/2)X. Since ¥ is
isometric with respect to the tensor product pairing on £ ®ce gy £, that is, it preserves
the value of the pairing, the same holds for ;. It follows that o, = ¥; ® ¥; defines

G-equivariant algebra automorphism of
IC(E ®C§o(g(0)) E) = (E ®C§o(g(0)) E) ®C§°(g(0)) (E ®C§o(g(0)) E)

The family (Ut)te[o,u depends smoothly on ¢, and by construction we have oy = id and

o1 = 0. Now define
ht : A ®Cgo(g(0)) IC(E) - A ®Cgo(g(0)) ]C(E) ®Cgo(g(0)) IC(E)

by hy = (id®0y)ig for t € [0,1]. Then each h; is a G-equivariant algebra homomorphism,
and by construction h; =i; for j = 0,1. Since the family (h¢)qe[0,1] depends again smoothly
on t we have thus constructed a G-equivariant homotopy between iy and 7;. According
to Theorem [4.5| we obtain [ig] = [¢1], and hence [74]-[ta] = id as required. O

§4.2.2 | A more general case

In order to discuss the implications of Theorem for the stability properties of the
functor HP? in a more general setting, we need some preparation.
Lemma 4.15. Let E,F be G-modules, and suppose that E = F as C=(G©)-modules.
Then . ‘

C*G)'® E=C=(G) ' F

as G-modules.
Proof. Let ¢: E - F be a C®(G()-linear isomorphism. Consider the map
r,id r,id
TR (id®p)Tg : C2(G) ® E—»CX(G) ® F.

r,id r,id
This is a D(G)-linear isomorphism from C*(G) ® E to C=(G) ® F both sides endowed
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with the natural diagonal action. Indeed, for U and V' compact open bisections of G and

e € E/, we compute

xv - (Tp' (id®@9)Ts) (xv ®€) = xvu ® xvu - d(xu-1 - €)
= Xvu ® Xvu - ¢(Xu-1v-1 * Xv - €)
=T (1d®9)Tr(xv - (xv ®€)),

where we have used the definition of the maps Tr and TF as constructed in Section

21 O

For a transformation groupoid G = I' x X, associated to a discrete group I' acting on
a totally disconnected locally compact space X, we have D(G) 2 @, C°(G) as left
C2(G®)-modules. Hence Lemma shows that there is a G-equivariant isomorphism

C(9) ® C(9) 2D (9)
~el’
in this case. The same is true for ample groupoids G which can be covered by a family

of disjoint global range sections.

However, not every ample groupoid admits such a covering. This fails already in the case
of finite groupoids, as the example of a disjoint union of finite groups of different orders
shows. In this case we cannot write the underlying C'°(G(®)-module of D(G) as a direct
sum of copies of C=(G).

The following lemma allows one to circumvent this by passing to infinite direct sums of
copies of D(G). In the sequel we write V@ for a direct sum of copies of V' indexed by a
set of cardinality k.

Lemma 4.16. Let E be a G-module equipped with a G-equivariant bilinear pairing h :
E ®ce(goy B » C2(GO). If C2(GW) and E are projective as essential C*(G())-

modules and the map h is surjective then there exists an isomorphism
EoK ~ O;o(g(o))een

of C(GO)-modules for any infinite cardinal k such that E admits a generating set of

cardinality at most k.

Proof. We fix I with |I| = k and a family (e;);; of elements of E which generate E as
a C=(G®)-module. Then we obtain a surjection C®(G()®* - E of C(G(®)-modules
by mapping (fi)ier to Y;er fi - €i- Since E is projective this surjection splits, so that F

can be written as a direct summand of C»(G(®)®~ By our assumption that x is infinite
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it follows that F®* is a direct summand of (C®(G()er)or ~ Co(G0))er  Explicitly, let

us choose a direct complement P, so that
PoE® = E® @ Pz (C2(G")%".
By writing again C(G(0))®r ~ (C'(G(0))®r)@r we then get
E% g Cgo(g(o))ean ~ FoF g (P ® E@n)@n ~ Cgo(g(o))ean'

Similarly, using that the pairing h is surjective we obtain a surjection E®% — C®(G(©))
of C=(G®)-modules mapping (;)ir to ey h(z; ® €;). Since C2(G®) is projective it
follows that C=(G(®)) is a direct summand in E®*. In the same way as above we can

then write C°(G(0))®* as a direct summand of E®* and construct an isomorphism
E® g C«coo(g(o))@n ~ oK
Combining these considerations, we therefore obtain an isomorphism
E®F ~ [or g C«go(g(o))@n ~ Cg"(g(o))@”
of C*(G®)-modules as required. O

Let us make some comments on Lemma [4.16] Projectivity of C(G(©), viewed as an
essential module over itself, is a mild assumption which is satisfied whenever G(© is
paracompact. This follows easily from the fact that one can write G(©) as a disjoint union
of compact open subsets in this case, compare the discussion in the proof of Proposition
[1.76] If G is paracompact, admitting a covering by mutually disjoint compact open range
sections indexed by a set of cardinality p, then the same argument as in [BDGW23,
Lemma 2.13] shows that D(G), viewed as C(G(®))-module, is projective and admits a
generating set of cardinality p. Since the standard pairing on D(G) is always surjective,
Lemma yields an isomorphism

D(G)™ = O ()

of left C*(G(®)-modules for any infinite cardinal x > p in this case. If G is o-compact
there exists a countable such covering family, so that the countable direct sum of copies

of D(G) is isomorphic to a countable direct sum of copies of C>(G()).

We also note that if G() is discrete then every C(G(9))-module is projective. In contrast,
for a general totally disconnected base space G(9, a module of the form E = C with the

action of C*(G(®) given by point evaluation at some point z € GO will typically fail to
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be projective.
Theorem 4.17 (Stability). Let E be a G-module equipped with a surjective G-equivariant
bilinear pairing. If C=(G©) and E are projective as essential C(G©))-modules then

there exists an invertible element in
HPS (A, A @ g0 K(E))
for any pro-G-algebra A. It follows that we have natural isomorphisms
HPS(A ®ce (g K(E), B) 2 HPY(A,B)x HPY(A,B ®ce (g K(E))
for all pro-G-algebras A and B.

Proof. According to Lemma we obtain an isomorphism E®* = O (G())@x of C'°(G(0))-
modules for some infinite cardinal . Now let us view C®(G(0)@* as a G-module via the

canonical action. Using Lemma [4.15| we obtain an isomorphism
D(G) ®ce= (g B 2 D(G) ®c g0y C*(G)®" 2 D(G)*"

of G-modules. The pairing C*(G(0)®* ® e gy C2(G(0)®r » Ce2(G®) induced from
E®5 gplits as a map of C°(G(?)-modules because C°(G(?)) is projective. Moreover, since
we are considering the canonical G-module structure on C*(G() the pairing splits as
G-equivariant linear map. Then we have that the pairing on the G-module C®(G(0))®x

induced from E®* is admissible.

Hence, the proof of Theorem gives homotopy equivalences

Xg(T(A®cw gy Kg)) = Xg(T(A®c g0y Kg ®c (g K(C2(GD)%)))
2 Xg(T (A ®g g0y K(D(G) @ g0y C(G?))))
2 Xg(T(A®cx gy K(D(G) ®ce gy £7)))
~ Xg(T(A®ce gy K(D(G) ®ce gy E)))
2 Xg(T(A®ce (g Kg ®cee gy K(E))).

This yields the assertion. O]

§ 4.2.3 | Stability for proper groupoids

Let G be a proper ample groupoid such that G\G(® is paracompact. According to Propo-
sition there exists a locally constant cut-off function ¢ for G. It follows that for any
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feC=(G®) the function s*(c)r*(f): G — C given by

s* ()™ (f)(a@) = c(s(a)) f(r(a))
has compact support and is thus contained in C(G).

Now let E, F' be G-modules and let ¢ : E - F be a C*(G(®)-linear map. As in the proof
of Lemma 4.15| we obtain a G-equivariant linear map ¢7 = T (id ®¢)Tg : C=(G) 'S E -
C(G) '® F. Recall moreover from Lemma [2.16] that the integration map A : C(G) —»
C2(G®) is G-equivariant with respect to the left multiplication action on C®(G) = D(G).
Hence we obtain a linear map ¢9 : £ — F' by defining

¢ (f®e)=(Aeid)o" (s*(c)r"(f) ®@e),

using the canonical identification X = C¢*(G(©) ®pw gy X for X = E, F.
Lemma 4.18. Let G be a proper ample groupoid with G\G®) paracompact and let E, F
be G-modules. If ¢: E - F is a C*(GO)-linear map then ¢9: E - F is a G-equivariant

linear map.

Proof. For a compact open bisection U € G and a compact open set V ¢ GO we have

XU * XV = Xr(Uns-1(v)) = Xu-v- Using this we calculate

Alxw * (57 ()" (xv))) () = xuv - A(s™ ()™ (xv)) (x)
= 2 xu(MAG" (@O () (v )

yeG®

= 2 xu(Me(s(B)xv(r(B))

yeGE ﬁeg'y_Lx

=5 S xu(Ne(s(1B)xv (r(v18))

feG* 7<G*

= Y xv(MMxv(r(y™))

~eGe
= Xr(Uns— (v)) (T)
= > es(B)Xrwns1 vy ()
peG®
= A(s™()r" (xvv)) (@)
for all x € GO,

Moreover, observing that ¢7 is C'*(G)-linear on the left with respect to the first factor,
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for f € C°(G), ee E and W a compact open bisection of G such that fyw = f, we have

¢ (fee)=o"(fxw®ee)
=f-¢"(xw®e)
= Oxw ® xw - o(xw-1 - €)
= fxw ® xw - d(xw-1 - €)
= fexw o(xw--e).

Using the previous computations and recalling that A is G-equivariant, for e € E' we then

compute
o (xv - (xv®e)) =¢9(xvv ® xu -e)
=(A@id)¢" (s*(c)r* (xvv) ® xu -€)
= (A@id)¢" (xv * (5" ()" (xv)) ® xv - ¢)
= xv - (A®@id)¢" (s*(c)r*(xv) ® )
= xv-¢9(xv ®e)
as required. O

We remark that if the map ¢ in Lemma is already G-equivariant then ¢9 = ¢. Indeed,
analogously to what done in the proof of Lemma [£.18] choosing a compact open bisection
W of G such that yws*(c)r*(f) = s*(c)r*(f), we have

¢ (foe)=(A@id)’ (s*(c)r(f) ®e)
= (A®id)(s*(c)r(f) ® xw - ¢(xw-1 -€))
= A(s™(c)r(f)) ® ¢(e)
= f®¢(e)
for all fe(Cx(G®) and e € E. In a similar way we get (¢)9 = ¢94 and (0¢)9 = 099 if
1,0 are G-equivariant linear maps.

Proposition 4.19. Let G be a proper ample groupoid with G\G®) paracompact. Then we

have a natural isomorphism
HPY(A,B) 2 H.Homug)(Xg(TA), Xg(TB))

for all G-algebras A, B.

Proof. The integration map defines a G-equivariant surjection A : D(G) —» C(G©),
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compare Lemma Moreover, the extension of functions by zero induces a C*(G(®))-

linear inclusion map ¢: C2(G©®) - D(G). Since

A(f)(x) = u(f)(a) = f(x)
aegG®
we see that C2(G(?) is a direct summand of the C=(G(®)-module D(G). According to
Lemmam it follows that 9 is a G-equivariant splitting of A, so the G-module C'°(G(®)
is a direct summand of D(G) in the category of G-modules as well. We conclude that the
regular pairing on D(G) is admissible, so that the claim follows from Theorem [4.14. [

§ 4.3 | Excision

In the final part of this chapter, we discuss excision. This property was first established
by Cuntz and Quillen in [CQ97], and represents one of the main achievements in their
series of papers on bivariant periodic cyclic homology. Their result provided a further

conceptual link between periodic cyclic homology and K-theory.

We show that equivariant periodic cyclic homology satisfies excision in both variables. An
excellent source for the main ideas of these proofs is [Mey99|, and our argument closely
follows the proof in the group equivariant case presented in [Voi07]. For this reason, we

shall be rather brief and only sketch the main strategy.

We consider an admissible extension

K»——F T

of pro-G-algebras, with a fixed G-equivariant pro-linear splitting o : () - F for the quotient

homomorphism 7: E - ().

Let Xg(TE : TQ) be the kernel of the map Xg(77): Xg(TFE) - Xg(TQ) induced by 7.
The splitting o yields a direct sum decomposition Xg(TFE) = Xg(TE : TQ) @ Xg(TQ)
of pro-G-anti-Yetter-Drinfeld modules. Moreover, since Xg(T7)Xg(7T¢) = 0 there is a
natural map p: Xg(TK) - Xg(TE : TQ) of paracomplexes of pro-G-anti-Yetter-Drinfeld
modules. At this point, if the map p is a homotopy equivalence of paracomplexes, then
the long exact sequence in homology induced by the above extension will give the excision

result.

With this introduction, we see that the key step in the proof of the excision theorem is
the following result.
Theorem 4.20. Let
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K"t F —"%Q

an admissible extension of pro-G-algebras, with a fived G-equivariant pro-linear splitting
o:Q — E for the quotient homomorphism m : E - Q. Then the map p : Xg(TK) -
Xg(TE:TQ) is a homotopy equivalence.

As a consequence of Theorem one obtains excision in both variables for G-equivariant
periodic cyclic homology.

Theorem 4.21 (Excision). Let A be a pro-G-algebra and let 0 > K - E - Q) - 0 be an
extension of pro-G-algebras which is admissible as an extension of pro-C'°(G))-modules.

Then there are two natural exact sequences

HPY(A,K) —— HPJ(A,E) —— HPJ(A,Q)

[ |

HPP(A,Q) +—— HPY(AE) «+—— HPY(AK)
and

HPS(Q,A) —— HPY(E,A) —— HPJ(K,A)

I |

HPJ(K,A) «+— HPJ(E,A) +—— HP{(Q,A),

where the horizontal maps in these diagrams are induced by the maps in the extension.
Remark 4.22. In Theorem[{.21] we only require that the given extension is admissible as
an extension of pro-C(G)-modules, or equivalently, that there exists a pro-C(G©))-

linear splitting for the quotient homomorphism E — Q).
Sketch of the proof of Theorem[4.21. We start considering the extension

K»— F » Q,

and tensoring with g gives the extension
K ®Ccoo(g(0)) ICg — E ®Cg°(g(0)) ,Cg —> Q ®Ccoo(g(0)) ICg

of pro-G-algebras which is admissible as an extension of pro-C®(G(®)-modules. Recalling
that Kg = D(G) ®ce gy P(G) and using twice the same argument as in the proof of
Lemma , first on @ - E and then on @ ® e g0y P(G) = E®ce gy D(G), we obtain
a G-equivariant pro-linear splitting for the quotient map E'®cew g0y Kg > @ ®ce gy Kg-
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Hence, the hypotheses of Theorem are satisfied and the claim follows by considering

long exact sequences in homology in both variables induced by the short exact sequence
ker(Xg(T(m®idky))) = Xg(T(E ®ce gy Kg)) —» Xg(T(Q ®ce(gry Kg))

of paracomplexes and the homotopy invariance of HPY. O

Future directions

The results obtained in this thesis provide a general framework for the study of equivari-
ant bivariant periodic cyclic homology associated with groupoid actions. Having estab-
lished the basic algebraic and homological machinery, a number of directions for further

investigation naturally emerge.

A first important problem is to clarify the relationship between the theory developed
here and equivariant K K-theory. In this work, we have already shown that the two
theories share several common properties. Moreover, a further result in this direction has
already been obtained, proving a homological analogue of the Green—Julg theorem for

the equivariant K-theory of proper groupoids due to Tu; see [PV25, Theorem 6.1].

Secondly, the computation of HP¢ for specific families of G-algebras constitutes a natural
direction for future research. Closely related to this problem is the comparison with other

homological theories, as has been done for example in [Voi03, Chapter 5.

Thirdly, in view of the growing interest in non-Hausdorff groupoids, it would be natural
to investigate possible extensions of the present theory to the more general non-Hausdorff

setting.

Finally, at the end of Chapter 3, we stated Proposition[3.57, which compares G-equivariant
homology with group-equivariant homology in the special case of discrete groupoids. One
could pursue this line of investigation further by proving analogous results under Morita

equivalence of groupoids, thereby extending the discrete case.
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