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Abstract
We develop an equivariant version of bivariant periodic cyclic homology for actions of
Hausdorff ample groupoids, extending the classical bivariant theory of Cuntz and Quillen
and its equivariant refinement for groups. For an ample groupoid G, we construct a
monoidal category of modules over its convolution algebra and study structural features
of its objects, the G-modules. In parallel, we present an equivalent comodule formulation
and prove the equivalence between the module and comodule pictures. We introduce
G-algebras and give some important examples. After reviewing pro-categories, we de-
fine the equivariant X-complex, which is central to the construction of the bivariant
equivariant periodic cyclic homology for G-algebras. In analogy with the classical and
group-equivariant settings, we establish homotopy invariance, stability, and excision for
the resulting theory.
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Introduction

One of the guiding ideas in classical geometry is to study spaces through their algebras
of functions. These algebras are typically commutative, since multiplication is defined
pointwise. A cornerstone result in this framework is Gelfand duality, which establishes
a duality between the category of commutative C∗-algebras and the category of locally
compact Hausdorff spaces:

{Locally compact Hausdorff spaces} {Commutative C∗-algebras}

C0( ⋅ )

Spec( ⋅ )

The philosophy of noncommutative geometry extends this correspondence: instead of
starting with a geometric space, one takes a noncommutative algebra and interprets it
as the algebra of functions on a hypothetical noncommutative space. In this setting,
algebraic invariants play the role of geometric and topological invariants.

Cyclic homology, and in particular periodic cyclic homology, was introduced by Connes
as the noncommutative analogue of de Rham cohomology. This analogy is made precise
in [Con85, Theorem 46]: if V is a compact smooth manifold, then for the Fréchet algebra
C∞(V ) one has

HP∗(C
∞(V )) ≅ ⊕

n∈Z
H∗+2n
dR (V ), ∗ = 0,1.

Periodic cyclic homology shares crucial features with K-theory: it is homotopy invariant
and Morita invariant, and it pairs with K-theory via a Chern character.

A major breakthrough came with the bivariant framework of Cuntz and Quillen [CQ95a,
CQ95b, CQ97]. Their approach centers on the X-complex. For a not necessarily unital
or commutative algebra A, with unitarisation A+, the noncommutative differential forms
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are

Ωn(A) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A+ ⊗A⊗n if n > 0,

A if n = 0,

and the X-complex is the Z2-graded complex defined by

X(A) ∶ Ω0(A) Ω1(A)/∂1(Ω2(A)),
∂0

∂1

where
∂0(a) = da, ∂1([a

0da1]) = a0a1 − a1a0.

Finally, the bivariant periodic cyclic homology of the algebras A and B is defined by the
homology of the Hom-complex associated with the X-complexes of A and B respectively:

HP∗(A,B) =H∗(Hom(X(T A),X(T B))).

Here T A is the periodic tensor algebra of A and represents a crucial ingredient in this
definition. This approach provided the missing ingredient to establish the six-term exact
sequences in periodic cyclic homology induced by an extension 0 → K → E → Q → 0 of
algebras, namely

HP0(A,K) HP0(A,E) HP0(A,Q)

HP1(A,Q) HP1(A,E) HP1(A,K)

and

HP0(Q,A) HP0(E,A) HP0(K,A)

HP1(K,A) HP1(E,A) HP1(Q,A).

The existence of these sequences is known as the excision problem and was at that time a
longstanding problem, proved only in special cases. This further highlights the connection
with bivariant K-theory.

These techniques were extended to algebras with group actions by Voigt, first for discrete
groups [Voi03] and then for locally compact groups [Voi07]. In the equivariant theory one
works in the monoidal category of G-modules, and constructions are adapted to respect
the action. Given a G-algebra A, the equivariant noncommutative differential forms are

Ωn
G(A) ∶= OG ⊗Ωn(A),

where OG = C∞c (G), with G acting diagonally and OG carrying the adjoint action. A
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further ingredient in the definition of G-equivariant periodic cyclic homology is given
by the G-algebra KG associated to a certain bilinear pairing endowed with diagonal
action. This algebra carries information about the action in the equivariant setting,
while its classic cyclic homology contains no non-trivial information, being isomorphic
to the homology of C. A fundamental difference with the classical setting is that the
equivariant X-complex XG(A) is typically a paracomplex rather than a chain complex,
this means that the square of its differential need not vanish. This is resolved by working
bivariantly from the beginning. Since the vanishing of the differential associated to the
equivariant X-complex is controlled by a canonical map, the resulting Hom-complex is a
genuine chain complex.

Motivated by the goal of extending equivariant periodic cyclic homology to broader al-
gebraic settings, we now turn our attention to groupoids, which have emerged as central
objects in several areas of mathematics, including operator theory, topology, and mathe-
matical physics. Groupoids offer a remarkably flexible framework that generalizes many
familiar structures, such as groups, topological spaces, and dynamical systems.

In particular, algebras associated with étale groupoids have attracted significant interest,
see for example the work of Renault [Ren80], as they form a rich class of examples of non-
commutative algebras, for instance, they arise naturally in topological dynamics and the
classification of simple C∗-algebras as described in [Li20]. Among the key contributions
in this direction are the works of Steinberg. In [Ste10], a connection is established be-
tween inverse semigroups and ample groupoids, including an isomorphism between their
convolution algebras. While, in [Ste14], an equivalence between the category of nonde-
generate modules over the convolution algebra of an ample groupoid and the category of
sheaves of modules over the groupoid is proved. In this work we will consider topological
groupoids, in particular locally compact, Hausdorff and ample groupoids G.

A further motivation for this work comes from Matui’s conjecture, see [Mat16, Conjecture
2.6]:
Conjecture (HK). Let G be an essentially principal minimal étale groupoid whose unit
space G(0) is a Cantor set. Then we have

∞
⊕
n=0

H2n(G) ≅K0(C
∗
r (G))

and
∞
⊕
n=0

H2n+1(G) ≅K1(C
∗
r (G)).

The conjecture states a link between the K-theory of the reduced C∗-algebra of a certain
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class of ample groupoid and the groupoid homology as defined for étale groupoids by
Crainic and Moerdijk in [CM00]. The conjecture was later shown not to hold in full
generality by Scarparo in [Sca20]. At the same time, it is known to hold for several class
of groupoids, see [Mat12], [FKPS19] and [BDGW23]. This shows how a deeper under-
standing of the relationship between groupoid homology and the K-theory of associated
algebras remains an area of significant interest.

In this setting, to gain eventually insight into the K-theory of ample groupoids via a
bivariant Chern character it is natural to investigate a generalisation of periodic cyclic
homology to convolution algebras of groupoids, with particular emphasis on the class
of ample groupoids. Our approach is inspired by the foundational techniques of both
classical and equivariant periodic cyclic homology, adapted to the groupoid framework.

The primary goal of this work is to define an equivariant version of periodic cyclic ho-
mology for algebras arising from the convolution algebras of ample groupoids. Alongside
this, we aim to develop a general framework suitable for such a generalisation. The con-
struction of the core objects and tools of the theory will rely crucially on the structural
properties of ample groupoids, which are collected in the first part of the thesis. Given
an ample groupoid G, we construct two categories: one is the category of G-modules,
given by essential modules over D(G) the convolution algebra of G, the second is the
category of C∞c (G)-comodules given by essential modules over C∞c (G(0)) and a certain
isomorphism which encodes the information of the groupoid action. We then prove that
these two categories are isomorphic. We introduce anti-Yetter-Drinfeld modules over G
and the canonical automorphism T associated to such modules, which is crucial for turn-
ing equivariant differential forms into a paramixed complex and for defining the groupoid
equivariant X-complex XG(−).

Once we define G-equivariant bivariant periodic cyclic homology HP G∗ for pro-G-algebras,
we investigate its fundamental properties.

The first important property is the homotopy invariance:
Theorem (A). Let A and B be pro-G-algebras and let Φ ∶ A→ B[0,1] be a G-equivariant
homotopy. Then the elements [Φ0] and [Φ1] in HP G0 (A,B) are equal.

We discuss stability, considering a first result concerning a special case, we call admissible
case, and finally the general case:
Theorem (B). Let E be a G-module equipped with a surjective G-equivariant bilinear
pairing. If C∞c (G(0)) and E are projective as essential C∞c (G(0))-modules then there exists
an invertible element in

HP G0 (A,A⊗C∞c (G(0)) K(E))
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for any pro-G-algebra A. It follows that we have natural isomorphisms

HP G∗ (A⊗C∞c (G(0)) K(E),B) ≅HP
G
∗ (A,B) ≅HP

G
∗ (A,B ⊗C∞c (G(0)) K(E))

for all pro-G-algebras A and B.

As a consequence of this theorem, we can simplify the computation of the periodic cyclic
homology in the case of a proper groupoid, proving that:
Proposition (C). Let G be a proper ample groupoid with G/G(0) paracompact. Then we
have a natural isomorphism

HP G∗ (A,B) ≅H∗HomA(G)(XG(T A),XG(T B))

for all G-algebras A,B.

Finally, given an extension of pro-G-algebras, which is admissible in the category of pro-
C∞c (G

(0))-modules as in Definition 3.8, we prove the existence of a six-term exact sequence
in both variables for the groupoid equivariant case:
Theorem (D). Let A be a pro-G-algebra and let 0→K → E → Q→ 0 be an extension of
pro-G-algebras which is admissible as an extension of pro-C∞c (G(0))-modules. Then there
are two natural exact sequences

HP G0 (A,K) HP G0 (A,E) HP G0 (A,Q)

HP G1 (A,Q) HP G1 (A,E) HP G1 (A,K)

and

HP G0 (Q,A) HP G0 (E,A) HP G0 (K,A)

HP G1 (K,A) HP G1 (E,A) HP G1 (Q,A),

where the horizontal maps in these diagrams are induced by the maps in the extension.

The work is organised as follows. Chapter 1 recalls the necessary preliminaries on
groupoids and functions on totally disconnected spaces. Then it introduces the basics
of the convolution algebras of an ample groupoid. In Chapter 2, we construct the cate-
gory of modules over the convolution algebra of an ample groupoid. We study the main
features of this category, focusing in particular on the construction of an internal tensor
product, which turns this into a monoidal category. We also introduce the notion of Anti-
Yetter–Drinfeld modules, which will play a central role. In Chapter 3, we start discussing
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about pro-categories, then we introduce the definition of equivariant differential forms
for an ample groupoid and the equivariant X-complex. Finally we present the defini-
tion of bivariant equivariant periodic cyclic homology for ample groupoids, generalising
the classical and equivariant theories. In Chapter 4, we investigate the key homological
properties of this theory, such as homotopy invariance, stability, and excision.
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Chapter 1

Preliminaries

In this first chapter, in order to make the work as self-contained as possible, we begin by
reviewing some well-established definitions and results from the literature. In particular,
we first collect some basic facts about topological groupoids. We then consider totally
disconnected spaces, which will play a crucial role in our discussion. Finally, we introduce
convolution algebras of ample groupoids and discuss some important features of proper
groupoids.

§ 1.1 | Topological groupoids
This section provides essential definitions that will be used frequently throughout this
thesis. The definition of a groupoid and its main properties form the starting point.

Groupoids first appeared about one hundred years ago, and a good historical survey
can be found in [Bro87]. Since their introduction, groupoids have found applications
in various fields, ranging from topology to operator algebras. A fundamental step in
their development was the study of C∗-algebras associated with groupoids, initiated by
Renault [Ren80], which remains a valuable source for basic definitions of topological
groupoids. Several other good references are available for foundational concepts, such as
[Pat99]. Moreover, an elementary treatment of finite groupoids and their representation
theory can be found in [IR20].
Definition 1.1. A groupoid is a set G with a distinguished subset G(2) ⊆ G×G, a multipli-
cation (or composition) map m ∶ G(2) → G, (α,β) ↦ αβ and an inversion map i ∶ G → G,
α ↦ α−1 such that the following hold:

(i) multiplication is associative: if (α,β), (β, γ) ∈ G(2) for some α,β, γ ∈ G, then
(α,βγ), (αβ, γ) ∈ G(2) and α(βγ) = (αβ)γ;

(ii) inversion is involutive: for any α ∈ G, we have (α−1)−1 = α;
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(iii) (α−1, α) ∈ G(2) for any α ∈ G, and for all (α,β) ∈ G(2) we have α−1(αβ) = β and
(αβ)β−1 = α.

As the name suggests, this object is a generalisation of a group. However, as the previous
definition shows, the composition is just partially defined. A consequence of this is that
there are several partial units. The subset G(0) ∶= {α ∈ G ∣ α = α−1 = α2} of G is the base
space of the groupoid or its set of units. We also introduce the source map s ∶ G → G(0),
s(α) = α−1α and the range map r ∶ G → G(0), r(α) = αα−1. With this definition given, G(2)

can be expressed as the set {(α,β) ∈ G × G ∣ s(α) = r(β)}. The inclusion map G(0) → G
will often be denoted by u, and we will refer to it as the unit map.

We now turn to the notion of topological groupoids, which will play a central role through-
out this thesis.
Definition 1.2. A topological groupoid is a groupoid G endowed with a topology such that
the multiplication map m ∶ G(2) → G is continuous with respect to the subspace topology
on G(2) ⊆ G × G and the inversion map i ∶ G → G is continuous. Moreover, if G is locally
compact and Hausdorff, we will say that it is a locally compact Hausdorff groupoid.
Remark 1.3. In a topological groupoid, the source and range maps s, r ∶ G → G(0) are
automatically continuous when G(0) has the subspace topology. Indeed, they have been
defined as s(α) = α−1α and r(α) = αα−1 using the groupoid operations, and thus inheriting
continuity from the continuity of inversion and multiplication.

Let us observe that a more category-theoretic approach is possible. A groupoid G is a
small category in which all arrows are invertible. We denote by G(0) the set of objects,
by G the set of all morphisms, and by G(2) the set of all composable pairs of morphisms.
We identify G(0) with the identity morphisms in G via the map u ∶ G(0) → G, x ↦ idx. In
the topological setting, both G and G(0) are topological spaces, and the maps m, i, and
u are continuous.
Remark 1.4. The maps u ∶ G(0) → u(G(0)) and r ∶ u(G(0)) → G(0) are inverse to each
other, and both are continuous. Hence G(0) is homeomorphic to u(G(0)). We may therefore
identify the set of base points G(0) of the category G with the subset

{α ∈ G ∣ α = α−1 = α2}

in Definition 1.1, endowed with the subspace topology. Accordingly, we will often move
freely between the two, referring to the morphisms of the category as arrows and to the
objects as points in the base space.
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Moreover, for any x, y ∈ G(0), we define

Gx ∶= s
−1(x), Gx ∶= r−1(x), and Gyx ∶= s

−1(x) ∩ r−1(y)

as the sets of all arrows in G starting at x, ending at x, and starting at x and ending at
y, respectively.

In the general treatment of non-Hausdorff groupoids, the only requirement is often that
just the unit space G(0) ⊆ G must be Hausdorff in the relative topology. In this case, we
have the following result.
Lemma 1.5. Let G be a locally compact groupoid with Hausdorff base space, then G(2) is
closed in G × G with the product topology.

Proof. Consider the map (s, r) ∶ G×G → G(0)×G(0) and observe that G(2) = (s, r)−1(∆G(0)),
where ∆G(0) is the diagonal in G(0)×G(0), which is closed in G(0)×G(0) since G(0) is Hausdorff
by hypothesis.

However, the following elementary lemma explains why dealing with a Hausdorff groupoid
is useful.
Lemma 1.6. Let G be a locally compact groupoid with Hausdorff base space, then G(0) is
closed in G if and only if G(0) is Hausdorff.

Proof. Assume that G is Hausdorff and consider the map (ur) × idG ∶ G → G × G, which
is continuous since it is the product of two continuous maps. Then we have G(0) =
(ur × idG)−1(∆G), where ∆G is the diagonal in G × G, which is closed in G × G since G is
Hausdorff.

Conversely, to prove G being Hausdorff we will show the uniqueness of nets limit points.
Assume that G(0) is closed in G and there exists a net (γi)i∈I converging simultaneously
to α and β where α,β ∈ G. By continuity of the composition and inversion, we get that
γiγ−1

i converges to αβ−1. Since each γiγ−1
i = r(γi) ∈ G

(0) and G(0) is closed, we have that
αβ−1 = r(β) ∈ G(0). From this we have αβ−1β = r(β)β and hence α = β, which concludes
the proof.

From now on, all groupoids we consider, unless otherwise specified, will be locally com-
pact Hausdorff groupoids. In particular, we are interested in a subclass of topological
groupoids, namely the class of étale groupoids.
Definition 1.7. Let X,Y be topological spaces. A function f ∶ X → Y is called a local
homeomorphism if, for every point x ∈X, there exists an open neighbourhood U of x, such
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that the image f(U) is open in Y and the restriction f ∣U ∶ U → f(U) is a homeomorphism.
Remark 1.8. A local homeomorphism f ∶X → Y is automatically a continuous and open
map between the topological spaces X and Y .
Definition 1.9. A topological groupoid G is called étale if the range map r ∶ G → G(0) is
a local homeomorphism.
Remark 1.10. If the range map is a local homeomorphism, it is immediate that the
source map s ∶ G → G(0) is also a local homeomorphism since it can be written as the
composition of the range map and the inverse map i ∶ G → G, which is a homeomorphism.

In this setting, a central notion that makes étale groupoids distinctive is the definition of
an open bisection.
Definition 1.11. Let G be a topological groupoid. An open bisection of G is an open subset
U of G such that the restriction of the source map s∣U ∶ U → s(U) and the restriction of the
range map r∣U ∶ U → r(U) are homeomorphisms. Moreover, the set of all open bisections
will be denoted by Bis(G).

We now state and prove some properties of étale groupoids. Some of these results can be
found in [Bö18].
Lemma 1.12. Let G be a topological groupoid. If G is étale, then the following hold:

(i) G(0) is open in G;

(ii) Gx and Gx are discrete (in the subspace topology) for every x ∈ G(0);

(iii) If U and V are open subsets of G, the set

UV ∶= {αβ ∈ G ∣ (α,β) ∈ G(2) ∩ (U × V )}

is open in G.

Proof. To prove (i), let x ∈ G(0), and let A ⊆ G be an open subset containing x, and
B ⊆ G(0) an open subset containing x, such that r(A) = B and r∣A ∶ A → B is a homeo-
morphism. Set B′ ∶= A ∩ G(0), which is non-empty (since it contains x) and open in G(0)

by construction. Consider A′ ∶= r−1(B′) ∩ A, which is open in G and has the property
that r is injective from A′ to B′. To conclude, we check that A′ ⊆ G(0). If a ∈ A′, then
r(a) ∈ B′ and a ∈ A. Thus a and r(a) both belong to A and have the same image under
the range map; by injectivity we conclude that a = r(a), hence a ∈ G(0).

We now prove (ii) only for Gx, as the case of Gx is analogous. Let α ∈ Gx. Then there
exists an open neighbourhood U ⊆ G such that r ∶ G → G(0) is injective on U . It follows
that Gx ∩U = {α} is open in Gx, so Gx is discrete.
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Finally, for (iii), let U,V ⊆ G be open and (α,β) ∈ G(2) ∩ (U × V ). Since r ∶ G → G(0)

is a local homeomorphism, there exists an open neighbourhood W of αβ in G such that
r∣W is a homeomorphism onto its image. As m ∶ G(2) → G is continuous, there exist open
neighbourhoods U ′, V ′ ⊆ G of α and β, respectively, such that U ′V ′ ⊆W . By intersecting,
we may assume U ′ ⊆ U , V ′ ⊆ V , and U ′ ⊆ s−1(r(V ′)). Then r(U ′V ′) = r(U ′) is open.
Therefore,

U ′V ′ = r−1(r(U ′V ′)) ∩W

is open and contained in UV , as required.

Remark 1.13. In many definitions of étale groupoids, one assumes that the range map
r ∶ G → G is a local homeomorphism, meaning in particular that for any open subset U ⊆ G,
the image r(U) is open in G, not just in G(0). However, the two definitions are equivalent.
Indeed, if we assume that r ∶ G → G(0) is a local homeomorphism we get that G(0) is open
in G (point (i) in Lemma 1.12), and this ensures that r ∶ G → G is a local homeomorphism
as well. The other implication is trivial by definition of subspace topology.

The class of étale groupoids has several good features. In particular, the set of open
bisections is large enough to form a basis for the topology. More precisely, the following
holds.
Lemma 1.14. Let G be a topological groupoid. Then the following are equivalent:

(i) G is étale;

(ii) The multiplication map m ∶ G(2) → G is a local homeomorphism;

(iii) The collection Bis(G) of open bisections forms a basis for the topology of G.

Proof. (i) ⇒ (ii): Let (α,β) ∈ G(2), i.e. s(α) = r(β). Since G is étale, we can choose open
bisections Uα and Uβ containing α and β, respectively. Then define V ∶= (Uα ×Uβ)∩G(2).
This is open in G(2) and contains (α,β). We claim that the restriction of the multiplication
map m∣V ∶ V → m(V ) is a homeomorphism onto its image. Indeed, since Uα and Uβ are
bisections, the multiplication map is injective on V . If αβ = γδ with (α,β), (γ, δ) ∈ V ,
then

s(β) = s(αβ) = s(γδ) = s(δ),

and since s∣Uβ
is a homeomorphism onto its image, this implies β = δ. Similarly, since

r∣Uα is injective, we also get α = γ.

Moreover, since composition is continuous, and V is open in G(2) (by Lemma 1.12, point
(iii)), it follows that m(V ) is open in G . Thus, m∣V is a homeomorphism onto an open
subset of G, i.e., m is a local homeomorphism.
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(ii) ⇒ (iii): Suppose m is a local homeomorphism. We want to show that open bisections
form a basis for the topology of G.

Let γ ∈ G. Since m is a local homeomorphism, there exists an open neighbourhood
W ⊆ G(2) of (γ, γ−1) ∈ G(2) such that m(W ) is open in G and m∣W ∶ W → m(W ) is a
homeomorphism.

Take an open neighbourhood U ⊆ G of γ such that G(2) ∩ (U × U−1) ⊆ W . Let α,β ∈ U
such that s(α) = s(β), since the multiplication is injective on W then α−1α = s(α) =

s(β) = β−1β implies that α = β. Similarly, we can construct such a set for the range map.
Without loss of generality, we can assume that both the source and the range maps are
injective on U . Additionally, the injectivity of both source and range maps, combined
with the fact that multiplication is open, implies that s(U) = U−1U is open, as is the
case for the range map. Thus U becomes a bisection of G. So, we have found an open
neighbourhood U ∋ γ which is a bisection. Thus, open bisections containing γ form a
neighbourhood basis at γ. Hence, taking the collection of these neighbourhood basis for
all the elements in G, we obtain a basis for the topology.

(iii) ⇒ (i): Assume Bis(G) is a basis for the topology. It is sufficient to show that
r ∶ G → G(0) is a local homeomorphism. Let γ ∈ G. By assumption, there is an open
bisection U ⊆ G containing γ. Then, by definition, r(U) is open in G(0) and the restriction
r∣U ∶ U → r(U) is a homeomorphism. Thus, r is a local homomorphism and G is étale.
This concludes the proof.

We now introduce a fundamental tool in the study of locally compact Hausdorff groupoids,
analogous to the concept of Haar measure for locally compact groups.
Definition 1.15. Let G be a topological groupoid. A (left) Haar system on G is a family
(λx)x∈G(0) of positive regular Borel measures λx on G such that:

(i) the support of λx is Gx for all x ∈ G(0);

(ii) for every f ∈ Cc(G) the function λ(f) ∶ G(0) → C given by

λ(f)(x) = ∫
Gx
f(β)dλx(β)

is contained in Cc(G(0));

(iii) we have
∫
Gs(α)

f(αβ)dλs(α)(β) = ∫
Gr(α)

f(β)dλr(α)(β)

for all f ∈ Cc(G) and α ∈ G.
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A first consequence of having a Haar system has been outlined in [Ren80, Proposition 2.4].
Lemma 1.16. Let G be a topological groupoid which admits a Haar system. Then the
range and the source maps are open maps.

The following result, which can be found in [Pat99, Proposition 2.2.5], shows a further
feature of étale groupoids.
Lemma 1.17. Let G be an étale groupoid. For each x ∈ G(0) let λx be the counting
measure on Gx. Then (λx)x∈G(0) is a Haar system for G. Then for any f ∈ Cc(G) we have

λ(f)(x) = ∑
β∈Gx

f(β).

A subclass of étale groupoids of particular interest is given by ample groupoids.
Definition 1.18. A topological groupoid G is called ample if the set

Bisc(G) ∶= {U ⊆ G ∣ U is a compact open bisection}

forms a basis for the topology of G.
Remark 1.19. If Bisc(G) forms a basis of compact open bisections for the topology of
G, then G is étale. Indeed, for any U ∈ Bisc(G) the restrictions r∣U ∶ U → r(U) and
s∣U ∶ U → s(U) are homeomorphisms onto open subsets of G(0). Since such bisections
form a basis, r and s are local homeomorphisms on G, hence G is étale.

We now show how to characterise ample groupoids in terms of their base space. So, we
need a brief discussion about totally disconnected spaces.
Definition 1.20. A topological space X is called totally disconnected if and only if the
only non-empty connected components of X are the singletons.
Examples 1.21. The Cantor set, the topological space of the rational numbers Q and
the topological space of irrationals R∖Q, all of them endowed with the subset topology of
the usual topology on R, are totally disconnected spaces. Moreover, while the Cantor set
is compact, the latter two are not even locally compact.

The following well-known result, see for instance [Wil04, Theorem 29.7], further charac-
terises totally disconnected spaces.
Proposition 1.22. Let X be a locally compact Hausdorff space. Then X is totally
disconnected if and only if it has a basis consisting of compact open sets.

Proof. First, suppose that X has a basis consisting of compact open sets. Let x ∈X and
let Cx denote the connected component of x. Suppose, for the sake of contradiction, that
there exists y ∈ Cx with x ≠ y. Then, since the topology has a basis of compact open sets
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and is Hausdorff, we can find a compact open set C that contains y but not x. Thus,
it follows that Cx = (Cx ∖C) ∪ (Cx ∩C), where both Cx ∖C and Cx ∩C are non-empty,
disjoint, and relatively open in Cx. This contradicts the connectedness of Cx, so we must
have Cx = {x} for all x ∈X, and hence X is totally disconnected.

To prove the other implication, suppose that X is totally disconnected. Let x ∈ X and
let U be an open neighbourhood of x. Since X is locally compact, there exists an open
neighbourhood V of x such that the closure V ⊆ U and V is compact. Since X is totally
disconnected, for each y ∈ V ∖V there exists a clopen subset Vy of V such that x ∈ Vy and
y ∉ Vy. Then each Vy is closed in X, and {X ∖ Vy ∣ y ∈ V ∖ V } is an open cover of V ∖ V .
Since V ∖ V is compact, there exists a finite set F ⊆ V ∖ V such that ⋃y∈F (X ∖ Vy) is a
cover of V ∖ V . Let W = ⋂y∈F Vy and observe that it contains x, it is clopen in V and
disjoint from V ∖ V , so W ⊆ V ⊆ U . Thus, W is closed in the closed set V and open in
the open set V , hence W is clopen in X. Since every closed subset of a compact set is
compact, we conclude that W is also compact. Therefore, X has a basis consisting of
compact open sets.

Finally, we provide a link to ample groupoids. The following characterises the ample
groupoids as the étale groupoids with a totally disconnected base space. The proof of
this result can be found in [Bö18] while a broad discussion about the topic can be found
in [Exe10].
Proposition 1.23. Let G be an étale groupoid. Then G is ample if and only if G(0) is
totally disconnected.

Proof. If G is ample, then it has a basis of compact open bisections. So, G(0) being open
and closed in G, it has a basis of compact open subsets. Thus, using Proposition 1.22,
we get that G(0) is totally disconnected.

Conversely, assume that G(0) is totally disconnected. In the spirit of the proof of the
Lemma 1.14, we need to show that given α ∈ A ⊆ G, with A open subset of G, there exists
a compact open bisection W of G such that α ∈ W ⊆ A. Since G is étale, we start with
an open bisection U ⊆ A ⊆ G containing α. Using that G is locally compact, we can find a
compact subset V of G contained in U . Then for r(α) we can find an open and closed set
B ⊆ G(0) contained in the set r(V ) and containing r(α). Since r∣V is a homeomorphism
onto its image, the set W = r∣−1

V (B) ⊆ V ⊆ U ⊆ A is the required compact open bisection
containing α.
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§ 1.2 | Examples
In this section, we now illustrate these ideas with some relevant examples of groupoids,
focusing on those that are ample.
Example 1.24 (Sets). Any set X can be viewed as a groupoid in which the only arrows
are the identity arrows idx for x ∈ X. If we consider a locally compact and Hausdorff
topological space, we obtain a topological groupoid, which is automatically étale since the
source and range maps are the identity. Moreover, if that space X is totally disconnected,
then X is an ample groupoid.
Example 1.25 (Groups). Any group Γ can be viewed as a groupoid with just one point,
so that G(0) = {⋆}, and the arrows given by the elements of the group. The source and
range maps are trivial, while the inverse and multiplication functions are exactly those of
the group.

If the group is endowed with the discrete topology, then the groupoid is étale and even
ample, since the unit space consists of a single point. It is helpful to remark that, in this
case, the compact open bisections are given by singletons {g}g∈Γ.

These two examples represent opposite ends of the spectrum: in the first, the focus lies
entirely on the unit space, while in the second, the morphisms carry all the structure.
Example 1.26 (Disjoint union of groups). Let I be an index set and, for each i ∈ I, let
Γi be a group. Define a groupoid G by

G(0) = ⊔
i∈I
{ei} ≅ I, G = ⊔

i∈I
Γi,

where ei is the identity of Γi. The range and source maps are r(g) = s(g) = ei for g ∈ Γi,
and the multiplication is the group product within each component: if g ∈ Γi and h ∈ Γj,
then gh is defined if and only if i = j. In other words, G is the disjoint union of the groups
Γi.
Example 1.27. Let G be a groupoid, and define the isotropy subgroupoid Gad by setting

G
(0)
ad = G

(0), Gad = ⊔
x∈G(0)

Gxx .

Equivalently, Gad consists of all arrows γ ∈ G with r(γ) = s(γ).
Example 1.28 (Equivalence relation). Let X be a set and R ⊆ X ×X an equivalence
relation. Define a groupoid G by identifying the unit space with X via G(0) = {(x,x) ∈
R} ⊆X ×X, and setting G = R. The groupoid operations are induced by the properties of
the equivalence relation. Since R is reflexive, (x,x) ∈ R for all x ∈ X, so G(0) ⊆ G. For
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any (y, x) ∈ R, define the range and source maps by

r(y, x) = y, s(y, x) = x,

and the inverse by i(y, x) = (x, y), which is well-defined because R is symmetric. Finally,
the composition is given by

(z, y)(y, x) = (z, x)

whenever (y, x), (z, y) ∈ R, and this is well-defined because R is transitive.

So far, we have seen groupoids arising from spaces and groups; now we introduce an
important source of examples that combines and generalises both constructions.
Example 1.29 (Transformation groupoid). Let X be a set and let Γ be a group acting
on the left on X. Define the groupoid G with object set G(0) = {e} ×X (where e ∈ Γ is the
identity) and arrow set G = Γ ×X. We identify G(0) with X. For x ∈ X and g, h ∈ Γ, the
source and range maps are

s(g, x) = x, r(g, x) = g ⋅ x,

the inverse is i(g, x) = (g−1, g ⋅ x), and the composition is

(h, g ⋅ x)(g, x) = (hg, x).

In the literature, this groupoid is often called the transformation groupoid and is denoted
by Γ ⋉X.

When Γ is discrete and X is locally compact Hausdorff, Γ ⋉X is étale, and every set of
the form {g} × U , with g ∈ Γ and U ⊆ X open, is an open bisection. Moreover, if X is
totally disconnected, then Γ ⋉X is ample.

§ 1.3 | G-spaces
Our next aim is to define groupoid actions on sets.
Definition 1.30 (Pullback). Let X, Y , and Z be sets, and let f ∶ X → Z and g ∶ Y → Z

be maps. The (categorical) pullback of X and Y with respect to f and g is the set
X ×f,g Y = {(x, y) ∈X × Y ∣ f(x) = g(y)}. If X, Y , and Z are topological spaces and f , g
are continuous maps, we equip X ×f,g Y with the subspace topology inherited from X ×Y .
This construction is also often called the fibre product.
Example 1.31. Let G be a groupoid with source and range maps s, r ∶ G → G(0). We
often use the set G ×s,r G = {(α,β) ∈ G × G ∣ s(α) = r(β)}, which coincides with the space
of composable arrows G(2). We may also consider the fibre product G ×r,r G = {(α,β) ∈
G × G ∣ r(α) = r(β)}.
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Lemma 1.32. Let X, Y , and Z be topological spaces with X, Y compact and Z Haus-
dorff, and let f ∶ X → Z and g ∶ Y → Z be continuous maps. Then the fibre product
X ×f,g Y is compact.

Proof. Since X and Y are compact, the product X × Y is compact. Consider the map

(f, g) ∶X × Y → Z ×Z, (x, y) ↦ (f(x), g(y)),

which is continuous. Then we have

X ×f,g Y = (f, g)
−1(∆Z).

Since ∆Z is closed in Z ×Z (because Z is Hausdorff) and (f, g) is continuous, it follows
that X ×f,g Y is closed in X × Y , and hence compact as a closed subset of a compact
space.

Definition 1.33 (Groupoid action). Let G be a groupoid and X a set. A left action of
G on X consists of:

(i) an anchor map π ∶X → G(0);

(ii) a map m ∶ G ×s,π X →X, denoted m(α,x) = α ⋅ x,

such that, for any (α,x) ∈ G×s,πX and β ∈ G with r(α) = s(β), we have (β,α⋅x) ∈ G×s,πX,
β ⋅ (α ⋅ x) = (βα) ⋅ x, and u(π(x)) ⋅ x = x.

A set X equipped with a G-action is called a G-set. If G is a topological groupoid and X
is a topological space, we further require π and m to be continuous, and we refer to X as
a G-space. If the anchor map π is a local homeomorphism, X is called an étale G-space.

It is interesting to observe that a G-space is related to the notion of local symmetries,
whereas the group case corresponds to global symmetries.
Lemma 1.34. Let G be an étale groupoid and let X be a G-space with anchor map
π ∶X → G(0). For every open bisection U ⊆ G, the map

θU ∶ π
−1(s(U)) Ð→ π−1(r(U)), θU(x) = (s∣U)

−1(π(x)) ⋅ x,

is a homeomorphism with inverse θU−1.

Proof. Fix an open bisection U ⊆ G. Since s∣U ∶ U → s(U) and r∣U ∶ U → r(U) are
homeomorphisms, for each x ∈ π−1(s(U)) there is a unique

αx ∶= (s∣U)
−1(π(x)) ∈ U
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with s(αx) = π(x). Since the action map is continuous, we can define

θU(x) ∶= αx ⋅ x ∈ π
−1(r(U)),

which is continuous because x↦ αx is the composition x↦ π(x) followed by (s∣U)−1 (and
π(αx ⋅ x) = r(αx)).

For y ∈ π−1(r(U)), define
θU−1(y) ∶= (s∣U−1)−1(π(y)) ⋅ y.

If y = θU(x) = αx ⋅ x, then π(y) = r(αx) and (s∣U−1)−1(π(y)) = α−1
x , hence

θU−1(y) = α−1
x ⋅ (αx ⋅ x) = x.

The converse composition is analogous, so θU−1 is the inverse of θU . Therefore θU is a
homeomorphism.

Example 1.35. Every groupoid G acts canonically on its unit space G(0). The anchor
map is the identity π = idG(0), and for each α ∈ G the action is defined by α ⋅ s(α) = r(α).
Example 1.36. Every groupoid G acts on itself by composition of arrows. The anchor
map is the range map r ∶ G → G(0) and, for (α,β) ∈ G(2), the action is given by α ⋅β = αβ.
Example 1.37. The groupoid G acts on its isotropy subgroupoid Gad by conjugation. The
anchor map is the restriction of r (equivalently, of s) to Gad → G(0) and, for (α, γ) ∈
G ×s,r Gad, the action is given by α ⋅ γ = αγα−1.
Example 1.38. Let G be a locally compact Hausdorff groupoid. The fibre product G×s,rG
is a G-space, where the anchor map is r pr1 and, for (γ,α, β) ∈ G ×s,r G ×s,r G, the action
is given by left multiplication on the first component: γ ⋅ (α,β) = (γα,β). Similarly,
G×r,rG is a G-space with anchor map r pr1 and action given by diagonal left multiplication:
γ ⋅ (α,β) = (γα, γβ).

In analogy with group actions, we define the orbit space of a given G-set.
Definition 1.39. Let G be a groupoid and X a left G-space with anchor map π. We
define the space G/X as the quotient X/∼, where the equivalence relation is given by

x ∼ y ⇐⇒ ∃α ∈ G with π(x) = s(α) and y = α ⋅ x.

In the topological setting, when X is a G-space, the orbit space G/X is endowed with
the quotient topology induced by the action. This topology need not be well-behaved: in
particular, G/X is not necessarily Hausdorff even if X is Hausdorff.

The following lemma outlines key features of the orbit space. A proof can be found in
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[Tu04, Lemma 2.30].
Lemma 1.40. Let G be a locally compact Hausdorff groupoid. The range and source
maps of G are open if and only if, for every G-space X, the quotient map X → G/X is
open. In that case, if X is locally compact, then G/X is locally compact.

§ 1.4 | Algebras and multipliers
Throughout this work, by an algebra we mean a (not necessarily unital) associative algebra
over the complex numbers. We will mostly work with algebras A that are essential, in
the sense that the multiplication map induces an isomorphism A ⊗A A ≅ A. Moreover,
we shall focus on algebras with nondegenerate multiplication, meaning that ab = 0 for all
a ∈ A implies b = 0, and similarly, ab = 0 for all b ∈ A implies a = 0. Note that every unital
algebra satisfies both properties: it is essential and has nondegenerate multiplication.

The algebraic multiplier algebra M(A) of an algebra A consists of all two-sided multipliers
(L,R), as discussed for instance in [VD94, Appendix]. A two-sided multiplier is a pair
where L ∶ A→ A is a right A-linear map (a left multiplier), and R ∶ A→ A is a left A-linear
map (a right multiplier), such that for all a, b ∈ A we have the compatibility condition

R(a)b = aL(b).

The vector space M(A) forms a unital algebra under composition of maps, with unit
given by the pair (id, id). If the multiplication of A is nondegenerate, we will write ab
for a1(b) and ba for a2(b) when a = (a1, b2) ∈M(A). There is a canonical homomorphism
ι ∶ A → M(A) defined by sending a ∈ A to the multiplier (La,Ra), where La(b) = ab
and Ra(b) = ba. When A has nondegenerate multiplication, this map is injective, and we
identify A with its image in M(A).

A (left) A-module M is said to be essential if the canonical map A⊗AM →M induced by
the module structure is an isomorphism. Note that in this case AM , the linear span of all
elements a ⋅m for a ∈ A and m ∈M , equals M . An algebra homomorphism f ∶ A→M(B)

is said to be essential if B is spanned by elements f(a)b as a left A-module and by
elements bf(a) as a right A-module. When A is unital, these conditions reduce to the
familiar notions: M is essential if and only if it is unital in the usual sense (1 ⋅m = m),
and f is essential if and only if it is a unital algebra homomorphism.

The following lemma, compare [VD94, Proposition A.5], ensures that an essential algebra
homomorphism between algebras with nondegenerate multiplication extends uniquely to
their multiplier algebras.
Lemma 1.41. Let f ∶ A → M(B) be an essential algebra homomorphism. If the mul-
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tiplication in B is nondegenerate there exists a unique unital algebra homomorphism
F ∶M(A) →M(B) such that Fι = f .

Proof. Suppose F ∶M(A) →M(B) is an extension of f . Then necessarily

F (c)(f(a)b) = f(ca)b

for all c ∈ M(A), a ∈ A and b ∈ B. Since the elements of the form f(a)b span B by
essentiality of f , this condition determines F uniquely.

We now define F on the spanning set by

F (c)(f(a)b) ∶= f(ca)b

for c ∈M(A), a ∈ A, and b ∈ B and extend linearly.

To ensure that F (c) is well-defined on all of B, we must verify that this definition is
independent of the representation of an element in B as a finite sum ∑i f(ai)bi. That is,
we must show that ∑i f(ai)bi = 0 implies ∑i f(cai)bi = 0 for all c ∈M(A).

So, suppose ∑i f(ai)bi = 0. For arbitrary c ∈M(A), d ∈ A, and e ∈ B, we compute

ef(d)∑
i

f(cai)bi = e∑
i

f(dcai)bi = ef(dc)∑
i

f(ai)bi = 0.

Since the elements ef(d) span B by essentiality of f , it follows that

∑
i

f(cai)bi = 0.

This shows that the definition of F (c) is well-defined on B, and therefore defines a linear
map F (c) ∶ B → B.

Let c1, c2 ∈M(A). Then for all a ∈ A, b ∈ B, we compute

F (c1c2)(f(a)b) = f(c1c2a)b

= F (c1)(f(c2a)b)

= F (c1)F (c2).

Hence, F (c1c2) = F (c1)F (c2), so F is multiplicative.

Finally, to check that F extends f , take a ∈ A. Then for all a ∈ A and b ∈ B,

F (ι(a))f(c)b = f(ι(a)c)b = f(ac)b = f(a)f(c)b,
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which shows F (ι(a)) = f(a).

We say that an algebra A has local units if for every finite set of elements a1, . . . , an of A
there exists e ∈ A such that eai = ai = aie for all i. The multiplication in such an algebra
is clearly nondegenerate. We record the following well-known fact.
Lemma 1.42. Let A be an algebra with local units. Then a left A-module M is essential
if and only if AM =M . An analogous statement holds for right modules.

Proof. We prove the statement for left A-modules.

Assume first that M is essential. Then any m ∈ M lies in the image of the canonical
map φ ∶ A ⊗A M → M , so there exist finitely many ai ∈ A and mi ∈ M such that
m = φ(∑i ai ⊗mi) = ∑i ai ⋅mi.

Conversely, suppose AM =M , we need to prove that the canonical map φ ∶ A⊗AM →M

is an isomorphism. Let ∑i ai ⊗mi ∈ A⊗AM be in the kernel of the canonical map φ, i.e.
∑i ai ⋅mi = 0. Since A has local units, there exists e ∈ A such that eai = ai for all i. Then

∑
i

ai ⊗mi = ∑
i

eai ⊗mi = ∑
i

e⊗ ai ⋅mi = ∑
i

e⊗ 0 = 0,

so the kernel of φ is trivial, and hence φ is injective. Since we assume AM =M , for any
m ∈M there exist finitely many ai ∈ A and mi ∈M such that m = ∑i ai ⋅mi = φ(∑i ai⊗mi),
so it is also surjective, hence an isomorphism.

Remark 1.43. Given an essential A-module M over an algebra with local units, we
observe that any element m ∈M can be written as

m = ∑
i

ai ⋅mi = ∑
i

eai ⋅mi = ∑
i

e ⋅ (ai ⋅mi) = e ⋅m,

for finitely many ai ∈ A, mi ∈M and e ∈ A such that eai = ai for all i.
Remark 1.44. Observe that Lemma 1.42 implies, in particular, that an algebra with local
units is essential.

§ 1.5 | Convolution algebra of an ample groupoid
A fundamental step in this chapter is the construction of a function algebra associated
with the ample groupoid G. Specifically, we focus on the algebra of compactly supported,
locally constant functions on G.
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§ 1.5.1 | Functions on a totally disconnected space

The primary motivation for this section is that ample groupoids are totally disconnected
spaces, as we have seen previously, combining Definition 1.18 and Proposition 1.22.

Let us begin by recalling what we mean by a locally constant function.
Definition 1.45. Let X be a topological space and Y a set. A function f ∶X → Y is said
to be locally constant if for every x ∈ X there exists an open neighbourhood Ux ⊆ X of x
such that f(Ux) = {f(x)}.
Lemma 1.46. Let X be a topological space and Y a set. A function f ∶X → Y is locally
constant in the sense of Definition 1.45 if and only if f is continuous when Y is equipped
with the discrete topology.

Proof. Assume f is locally constant. Let V ⊆ Y be any subset, which is automatically
open in the discrete topology. For each x ∈ f−1(V ), by local constancy there is an open
set Ux ∋ x with f(Ux) = {f(x)} ⊆ V , hence Ux ⊆ f−1(V ). Therefore

f−1(V ) = ⋃
x∈f−1(V )

Ux

is open in X. Since this holds for every V ⊆ Y , f is continuous.

Conversely, assume f is continuous for the discrete topology on Y . Fix x ∈X. Then the
singleton {f(x)} is open in Y , so

Ux ∶= f
−1({f(x)})

is an open neighbourhood of x and f(Ux) = {f(x)}. Hence f is locally constant.

In what follows, by a locally compact space we always mean a locally compact Hausdorff
space.
Definition 1.47. Let X be a locally compact space. Define C∞c (X) as the space of all
locally constant functions X → C with compact support.
Remark 1.48. For certain topological spaces, the previous definition may yield a trivial
space of functions. For instance, when considering the real line R with the usual topology,
the only locally constant function with compact support is the zero function. This is due
to the fact that R has very few clopen subsets.

More generally, the notion of locally constant functions is intimately connected to the
abundance of clopen sets: the richer the collection of clopen sets in a space, the more
non-trivial locally constant functions it admits.
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Throughout the remainder of this section, we will restrict our attention to topological
spaces that are both totally disconnected and locally compact, since these provide a
natural setting in which the space of compactly supported, locally constant functions is
rich and well-behaved.

A good description of these functions, in the totally disconnected case, can be given by
using compact open subsets. This is made precise in the following lemma.
Lemma 1.49. Let X be a totally disconnected locally compact space. Then every element
f ∈ C∞c (X) can be written as a linear combination

f =
n

∑
k=1

ck χUk

for a finite family of pairwise disjoint compact open subsets Uk ⊆X and coefficients ck ∈ C.

Proof. Since f is locally constant and supp(f) is compact, the image f(X) is a finite
subset of C. If we denote by c1, . . . , cn the nonzero elements of f(X) and set Uk = f−1(ck),
then each Uk ⊆ X is open and closed, being the preimage of a point in the discrete
topology. Moreover, each Uk is compact since it is closed in supp(f), which is compact.
The sets U1, . . . , Un are pairwise disjoint, and we have f = ∑nk=1 ck χUk

.

Lemma 1.50. The vector space C∞c (X) becomes naturally a commutative algebra with
the pointwise multiplication. Moreover, it is an essential algebra with local units.

Proof. Let f, g ∈ C∞c (X). Then fg is again locally constant with compact support.
Indeed, for any x ∈ X, there exist open neighbourhoods Ux, Vx ⊆ X such that f and g

are respectively constant on them. Hence fg is constant on the open set Ux ∩ Vx, so it is
locally constant. The support of fg satisfies

supp(fg) = supp(f) ∩ supp(g),

which is compact as the intersection of two compact sets. Therefore fg = gf ∈ C∞c (X).

To show that C∞c (X) has local units, take f1, . . . , fn ∈ C∞c (X). By Lemma 1.49, we
can write each fi as a finite linear combination of characteristic functions of compact
open sets. Let U be the finite union of all those compact open sets that appear in these
decompositions; then U is compact open, and e ∶= χU satisfies efi = fi = fie for all i. Hence
C∞c (X) has local units. Finally, by Lemma 1.42, the algebra C∞c (X) is essential.

We will write C∞(X) for the algebra of all locally constant functions f ∶X → C.
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Lemma 1.51. Let X be a totally disconnected, locally compact Hausdorff space. The
algebraic multiplier algebra M(C∞c (X)) can be canonically identified with C∞(X), the
algebra of all locally constant functions on X.

Proof. Let m ∈ C∞(X) and f, g ∈ C∞c (X). Then, arguing as in the proof of Lemma 1.50,
we have mf, fm ∈ C∞c (X). Define a pair (Lm,Rm) by Lm(f) ∶= mf and Rm(f) ∶= fm.
Moreover, we check that Lm(fg) = Lm(f)g, Rm(fg) = fRm(g), and Rm(f)g = fLm(g),
so (Lm,Rm) ∈M(C∞c (X)).

Let (L,R) ∈M(C∞c (X)). Construct a function mL,R ∶ X → C as follows: for any x ∈ X,
choose a compact open subset U ⊆X containing x and set

mL,R(x) ∶= L(χU)(x).

This does not depend on the choice of U nor on using L instead of R. Indeed, for a
second compact open V ∋ x, using commutativity in C∞c (X) and the right A-linearity of
L we have

χUL(χV ) = L(χV )χU = L(χV χU) = L(χU)χV = χVL(χU),

and by the multiplier identity we get

R(χU)χV = χUL(χV ) = χVL(χU).

Restricting to U ∩ V yields

L(χV )∣U∩V = L(χU)∣U∩V = R(χV )∣U∩V = R(χU)∣U∩V ,

so mL,R is well-defined. Moreover, for each compact open U we have mL,R∣U = L(χU)∣U ∈

C∞c (X), hence mL,R is locally constant, i.e. mL,R ∈ C∞(X).

These two constructions are inverse to each other. Starting with m ∈ C∞(X), for any
x ∈X and compact open subset U ∋ x, we get

mLm,Rm(x) = Lm(χU)(x) = (mχU)(x) =m(x).

We now show that L = LmL,R
. Let g ∈ C∞c (X) and choose V ⊆ X compact open with

g = χV g (by Lemma 1.50). Then, for all x ∈X,

L(g)(x) = L(χV g)(x) = L(χV )(x) g(x) =mL,R(x) g(x) = LmL,R
(g)(x).

Using the multiplier identity, the same argument shows R = RmL,R
. This concludes the

proof.

24



The following definition will be used in several further discussions.
Definition 1.52. Let X, Y be locally compact spaces. A continuous map φ ∶ X → Y is
proper if and only if φ−1(K) is compact for every compact subset K ⊆ Y .
Lemma 1.53. Let X and Y be totally disconnected locally compact spaces and let φ ∶
X → Y be a continuous map. Then φ∗ ∶ C∞c (Y ) → C∞(X) = M(C∞c (X)), φ∗(f) = f φ
is a well-defined essential algebra homomorphism. If φ is proper then φ∗(C∞c (Y )) is
contained in C∞c (X).

Proof. For f ∈ C∞c (Y ) the function φ∗(f) = fφ is locally constant since it is the compo-
sition of a continuous function and a locally constant function, hence a continuous func-
tion to C endowed with the discrete topology. It follows that φ∗ ∶ C∞c (Y ) → C∞(X) =

M(C∞c (X)) is well-defined. Moreover, this map is clearly an algebra homomorphism.

We show that φ∗ is an essential algebra homomorphism. Let f ∈ C∞c (X) and observe
that φ(supp(f)) is compact since supp(f) is compact and φ is continuous. We can cover
φ(supp(f)) by finitely many compact open subsets of Y , and if χ denotes the characteris-
tic function of the union of these sets, then f = φ∗(χ)f is contained in φ∗(C∞c (Y ))C∞c (X).

Finally, assume that φ is proper. Let g ∈ C∞c (Y ) and K = supp(g), which is compact open
in Y . Then the preimage φ−1(K) is again compact open in X. If we write e ∈ C∞c (X)
for the characteristic function of φ−1(K) then we get φ∗(g) = φ∗(g)e = eφ∗(g) and since
φ∗ is essential, φ∗(g) belongs to C∞c (X) as required.

Proposition 1.54. Let X and Y be totally disconnected locally compact spaces. Then
the canonical linear map

γ ∶ C∞c (X) ⊗C
∞
c (Y ) → C∞c (X × Y ),

given by γ(f ⊗ g)(x, y) = f(x)g(y), is an isomorphism.

Proof. Assume F = ∑i fi ⊗ gi ∈ C∞c (X) ⊗ C∞c (Y ) satisfies γ(F ) = 0. By Lemma 1.49
we can write each fi as a linear combination of characteristic functions χUij

for mutu-
ally disjoint compact open subsets Uij ⊆ X, and similarly each gi as a linear combina-
tion of characteristic functions χVik

for mutually disjoint compact open subsets of Y .
Upon taking intersections of these subsets, it follows that F can be written in the form
F = ∑k ckχUk

⊗ χVk
, where U1, . . . , Un and V1, . . . , Vn are mutually disjoint compact open

subsets of X and Y , respectively. Without loss of generality, we may assume that these
sets are all non-empty. For every index k pick (xk, yk) ∈ Uk × Vk. Then the relation

0 = γ(F )(xk, yk) = ckχUk
(xk)χVk

(yk) = ck
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gives ck = 0. Hence F = 0, and it follows that γ is injective.

To show surjectivity, it suffices to verify that the characteristic function χW of an arbitrary
compact open subset W ⊆ X × Y is contained in the image of γ. For this it is enough to
write W as a disjoint union of sets of the form U ×V where U ⊆X and V ⊆ Y are compact
open. In order to obtain such a decomposition of W , note first that since X and Y are
totally disconnected and locally compact they both have a basis for their topology made
up of compact open sets. In particular, for every point w = (x, y) ∈ W we find compact
open neighbourhoods Uw ⊆X of x and Vw ⊆ Y of y such that the rectangle Rw = Uw × Vw

is contained in W . Since W is compact we obtain a finite cover of W by rectangles
Rw1 , . . . ,Rwn for some w1, . . . ,wn ∈ W . Upon taking intersections of the compact open
sets Uwi

and Vwi
making up the rectangles Rwi

, we can refine this to a finite cover of W
consisting of mutually disjoint compact open rectangles as required.

Lemma 1.55. Let X be a totally disconnected locally compact space and let K ⊆X be a
closed subset. Then the canonical restriction map C∞c (X) → C∞c (K), mapping f to f ∣K,
is surjective.

Proof. For any given f ∈ C∞c (K) we have to construct a function F ∈ C∞c (X) such that
F ∣K = f . Since every element of C∞c (K) is a linear combination of characteristic functions
it suffices to consider the case that f = χU for some compact open set U ⊆ K. Observe
that U is compact in a closed subset, so is again compact in X, and since it is open, there
exists an open set V ⊆ X such that V ∩K = U . Using that V is open and X is totally
disconnected we can write V as a union of compact open subsets of X. Since we have
U ⊆ V , these sets are in particular an open cover of the compact set U . This means that
we can find finitely many compact open subsets W1, . . . ,Wn ⊆X such that Wi ⊆ V for all
i and the union W of the Wi satisfies W ∩K = U . It follows that the function F = χW

has the desired properties.

Let X, Y , Z be totally disconnected locally compact spaces and let p ∶X → Z, q ∶ Y → Z

be continuous maps. The groups C∞c (X) and C∞c (Y ) become essential C∞c (Z)-modules
via the pullback algebra homomorphisms p∗, q∗ as seen in Lemma 1.53 and the pointwise
multiplication.
Definition 1.56 (Balanced tensor product). Let X, Y , Z be totally disconnected locally
compact spaces and let p ∶ X → Z, q ∶ Y → Z be continuous maps. The balanced tensor
product of C∞c (X) and C∞c (Y ) over C∞c (Z) with respect to p, q is the quotient

C∞c (X)
p,q
⊗ C∞c (Y ) ∶= (C

∞
c (X) ⊗C

∞
c (Y ))/R,
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where R is the linear subspace spanned by all elements of the form

f p∗(h) ⊗ g − f ⊗ q∗(h) g

for f ∈ C∞c (X), g ∈ C∞c (Y ) and h ∈ C∞c (Z).
Example 1.57. Let G be an ample groupoid. Since s, r ∶ G → G(0) are continuous maps
between totally disconnected locally compact spaces, the pullbacks s∗, r∗ endow C∞c (G)

with essential C∞c (G(0))-module structures. We will often consider the balanced tensor
products induced by the source and range maps:

C∞c (G)
s,r
⊗ C∞c (G) and C∞c (G)

r,r
⊗ C∞c (G).

Definition 1.58. Let X, Z be totally disconnected locally compact spaces, let p ∶ X → Z

be a continuous maps and let M be an essential left C∞c (Z)-module. We define

C∞c (X)
p,id
⊗ M ∶= (C∞c (X) ⊗M)/R

where R is the linear subspace spanned by all elements of the form

f p∗(h) ⊗m − f ⊗ h ⋅m,

for f ∈ C∞c (X), m ∈M , h ∈ C∞c (Z).
Proposition 1.59. Let X,Y,Z be totally disconnected locally compact spaces and let
p ∶X → Z, q ∶ Y → Z be continuous maps. Then the canonical C∞c (Z)-linear map

C∞c (X)
p,q
⊗ C∞c (Y ) → C∞c (X ×p,q Y )

is an isomorphism.

Proof. It is straightforward to check that the composition of the canonical homomorphism
γ ∶ C∞c (X) ⊗ C

∞
c (Y ) → C∞c (X × Y ) with the restriction homomorphism C∞c (X × Y ) →

C∞c (X ×p,q Y ) factorises through C∞c (X)
p,q
⊗ C∞c (Y ). We shall write γp,q for the resulting

C∞c (Z)-linear map C∞c (X)
p,q
⊗ C∞c (Y ) → C∞c (X ×p,q Y ). Due to Proposition 1.54 and

Lemma 1.55 the map γp,q is surjective, and it remains only to show that γp,q is injective.

Assume that F ∈ C∞c (X)
p,q
⊗ C∞c (Y ) satisfies γp,q(F ) = 0. As explained in the proof

of Proposition 1.54, we can represent F as a linear combination F = ∑k ckχUk
⊗ χVk

where U1, . . . , Un and V1, . . . , Vn are mutually disjoint compact open subsets of X and Y ,
respectively. If there exists an index k and points x ∈ Uk, y ∈ Vk such that p(x) = q(y) then
(x, y) ∈ X ×p,q Y and ck = ckχUk

(x)χVk
(y) = γp,q(F )(x, y) = 0. Therefore we may assume

without loss of generality that p(Uk)∩q(Vk) = ∅ for all k. Using that Z is locally compact
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and hence regular we can then find compact open sets Ek ⊆ Z such that p(Uk) ⊆ Ek and
Ek ∩ q(Vk) = ∅ for all k. It follows that ek = χEk

∈ C∞c (Z) satisfies χUk
⋅ ek = χUk

and
ek ⋅ χVk

= 0 for all k. Hence we conclude

F = ∑
k

ckχUk
⊗ χVk

= ∑
k

ckχUk
⋅ ek ⊗ χVk

− ckχUk
⊗ ek ⋅ χVk

= 0

as required.

§ 1.5.2 | Convolution algebra of an ample groupoid

Following the discussion about function algebras on totally disconnected spaces, we are
now ready to introduce the main concept of this section, which serves as a cornerstone
for the rest of this work.
Definition 1.60 (Convolution algebra). Let G be an ample groupoid. Define the vector
space

C∞c (G) ∶= {f ∶ G → C ∣ f is locally constant and compactly supported},

which becomes an algebra with the convolution defined for any f, g ∈ C∞c (G) and α ∈ G as

(f ∗ g)(α) = ∑
β∈Gr(α)

f(β)g(β−1α) = ∑
γ∈Gs(α)

f(αγ−1)g(γ)

Since C∞c (G) is also an algebra with the pointwise multiplication to mark the difference
when we refer to the convolution product, we denote this convolution algebra by D(G).
Remark 1.61. In the definition of convolution, the sums are finite: for fixed α ∈ G, the
sets supp(f) ∩ Gr(α) and supp(g) ∩ Gs(α) are finite since G is étale and f, g have compact
support. Hence the convolution is well-defined. Moreover, the space C∞c (G) is closed
under convolution. If (f ∗ g)(α) ≠ 0, then α = βγ for some β ∈ supp(f) and γ ∈ supp(g)
with s(β) = r(γ), hence supp(f ∗ g) ⊆ supp(f) supp(g). The latter being compact since
the product map G(2) → G is continuous. Local constancy of f ∗ g follows from the fact
that f and g are locally constant. Finally, associativity and bilinearity of the convolution
follow straightforwardly. Hence C∞c (G) is an associative algebra under convolution.

In view of the discussion in [Wil07, Section 1.5.1], we endow the algebra Cc(G) with the
inductive limit topology. We write

Cc(G) = ⋃
K⊆G

compact
open

CK ,

where CK ∶= {f ∶ G → C ∣ f continuous and supp(f) ⊆ K}, equipped with the uniform
topology. This forms a directed system of topological vector spaces under inclusions
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K ⊆ L and extensions by zero gKL ∶ CK → CL. We then define the inductive limit of the
previous direct system of topological vector spaces as

lim
Ð→

CK = ⊕
K⊆G compact

open

CK/D,

with the linear maps tK ∶ CK → lim
Ð→

CK , where D is the vector space generated by
{tK(x) − (tLgLK)(x) ∣ x ∈ CK and K ⊆ L}, and endowed with the direct limit topology,
that is the finest topology such that all the linear maps tK ∶ CK → lim

Ð→
CK are continuous.

The construction is summarised in the following diagram

CK CL

lim
Ð→

CK .

gKL

tK
tL

One can show that (Cc(G),{sK}), with sK ∶ CK → Cc(G) being the extension by zero, is
the inductive limit of this system.

We want to find a dense subalgebra of Cc(G).
Proposition 1.62. Let G be an ample groupoid. Then D(G) is a dense subalgebra of
Cc(G). Moreover,

D(G) = span{χU ∶ G → C ∣ U ∈ Bisc(G)}.

Proof. We first show that D(G) = span{χU ∶ G → C ∣ U ∈ Bisc(G)}. The inclusion ⊇
is obvious. For the reverse, let f ∈ C∞c (G). The same argument used in Lemma 1.49
shows that f = ∑i ci χVi

, where ci ∈ C and Vi ⊆ G are compact open. Since compact
open bisections form a basis for the topology of G, and each Vi is compact open, we can
rewrite the sum using finitely many disjoint compact open bisections. Then we can write
f = ∑j cj χUj

, where cj ∈ C and Uj ∈ Bisc(G) for every index j.

Next we check closure under convolution using compact open bisections. If U,V ∈ Bisc(G),
then

χU ∗ χV (t) = ∑
(h,k)∈G(2)
hk=t

χU(h)χV (k) = χUV (t).

If t ∈ UV , there exists a unique pair (h, k) with h ∈ U , k ∈ V , and hk = t, so the sum is 1;
if t ∉ UV , the sum vanishes. The convolution is associative, as it is inherited from Cc(G).

For the density, fix f ∈ Cc(G) with support in a compact open set K and a real number
ϵ > 0. Since G is ample, K is totally disconnected, hence has a basis of clopen sets
(Proposition 1.22). Cover f(K) in C with finitely many open balls of radius less than
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ϵ > 0. Pulling back via f gives a finite open cover of K that can be refined to a finite
clopen partition {Zi} of K. Define f̃(x) ∶= f(xi) if x ∈ Zi for some xi ∈ Zi. Then f̃ is
locally constant, has compact support, and ∥f − f̃∥∞ < ϵ.

We now gather some important structural results about D(G). Many of these can be
found in [Ste10].
Lemma 1.63. The algebra D(G) is unital if and only if G(0) is compact.

Proof. If G(0) is compact, and it is also open by Lemma 1.12, then χG(0) ∈ D(G). For
f ∈ C∞c (G) and α ∈ G

(f ∗ χG(0))(α) = ∑
(β,γ)∈G(2)
βγ=α

f(β)χG(0)(γ) = f(α),

because χG(0)(γ) ≠ 0 only if γ = s(β), hence β = α. Similarly, we can prove that it is an
identity on the left.

Conversely, if D(G) has a unit e, we show e = χG(0) . If α ∈ G ∖ G(0), then for a compact
open set U ⊆ G(0) with s(α) ∈ U , we compute

0 = χU(α) = (e ∗ χU)(α) = ∑
(β,γ)∈G(2)
βγ=α

e(β)χU(γ) = e(α),

Similarly, for α ∈ G(0), e(α) = 1. Hence e = χG(0) and G(0) is compact.

Lemma 1.64. Let G be an ample groupoid. Then the extension-by-zero map ϕ ∶ C∞c (G(0)) →
D(G) is a well-defined injective homomorphism of algebras.

Proof. Since G(0) is clopen in G, from Lemmas 1.6 and 1.12, the extension ϕ(f) of any
f ∈ C∞c (G

(0)) by zero is locally constant and compactly supported in G. In fact, the
support of ϕ(f) equals the support of f , and G(0) is closed in G. It is locally constant
over G since, for every point x ∈ G(0), there exists an open neighbourhood of x in G(0)

on which f is constant, and opens in G(0) are open in G because G(0) is open in G.
If x ∈ G ∖ G(0), then G ∖ G(0) is an open neighbourhood of x on which ϕ(f) vanishes.
Moreover, convolution is preserved under extension because outside G(0) all terms vanish
and on G(0) convolution reduces to pointwise multiplication. Hence ϕ is a well-defined
homomorphism, which is injective since ϕ(f) = 0 implies f = 0.

Corollary 1.65. The algebra C∞c (G(0)), viewed as a subalgebra of D(G), is abelian.
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Proof. The result follows from the homomorphism ϕ ∶ C∞c (G
(0)) → D(G) in Lemma 1.64;

indeed, for any f, g ∈ C∞c (G(0)),

ϕ(f) ∗ ϕ(g) = ϕ(fg) = ϕ(gf) = ϕ(g) ∗ ϕ(f).

Moreover, the convolution reduces to pointwise multiplication on G(0). This concludes
the proof.

As we have already outlined, the algebras we consider are not always unital. Related to
Lemma 1.50, we have the following.
Lemma 1.66. The algebra D(G) has local units. Moreover, the local units can always be
picked in C∞c (G

(0)), viewed as a subalgebra of D(G).

Proof. Let f1, f2, . . . , fn ∈ D(G) and consider the compact open set U = ⋃ni=1 supp(fi).
Then, construct the set V = r(U) ∪ s(U) ⊆ G(0), which is again compact open. Finally,
let us consider the characteristic function e = χV ∈ D(G), which is clearly an idempotent
and such that e ∗ fi = fi = fi ∗ e.

§ 1.6 | Proper groupoids
In this section, we review the definition of proper groupoids and show the existence of
particular cut-off functions for such groupoids.

Recall the definition of a proper map as given in Definition 1.52.
Definition 1.67. Let X and Y be locally compact spaces, and let π ∶ X → Y be a
continuous map. A function f ∶X → C is said to be properly supported if

π∣supp(f) ∶ supp(f) → Y

is proper.

Properly supported functions, in the context of ample groupoids, behave nicely with
respect to fibre integration. In particular, the following result holds.
Lemma 1.68. Let G be an ample groupoid and let f ∶ G → C be a locally constant function
such that supp(f) ∩ r−1(K) is compact for all compact sets K ⊆ G(0). Then the function
λ(f) ∶ G(0) → C defined by

λ(f)(x) = ∑
α∈Gx

f(α)

is locally constant.

Proof. Let x ∈ G(0) and let V be a compact open neighbourhood of x. By assumption the
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set supp(f) ∩ r−1(V ) ⊆ G is compact. Hence g = fχr−1(V ) is contained in C∞c (G). Writing
g as a linear combination of characteristic functions of compact open bisections of G it is
straightforward to check that λ(g) is locally constant. Since by construction the functions
λ(g) and λ(f) agree on V it follows that λ(f) is locally constant in a neighbourhood of
x, and since x was arbitrary this yields the claim.

Let us now introduce the definition of properness for groupoids. Recall that we write s, r
for the source and range maps of G, respectively.
Definition 1.69. An étale groupoid G is called proper if (s, r) ∶ G → G(0)×G(0) is a proper
map.

As mentioned in the section about G-spaces, orbit spaces can misbehave in terms of
Hausdorffness. A notable property of proper groupoids is given by the following. A proof
can be found in [Bö18, Lemma 1.2.11].
Lemma 1.70. Let G be a proper Hausdorff groupoid with open range and source maps.
Then the quotient G/G(0) is Hausdorff.

In particular, since étale groupoids always have the range and source map open, see
Lemma 1.16, we can say that if G is a proper étale groupoid then the quotient space
G/G(0) is Hausdorff.

Moreover, for ample groupoids we can say more.
Lemma 1.71. Let G be an ample and proper groupoid. Then the quotient space G/G(0)

is totally disconnected.

Proof. By Lemma 1.40, the quotient map q ∶ G(0) → G/G(0) is continuous and open. We
aim to show that G/G(0) has a basis of compact and open subsets, which by Proposi-
tion 1.22 implies that it is totally disconnected.

Let [x] ∈ G/G(0) and let A[x] be an open neighbourhood of [x]. Then q−1(A[x]) is an open
neighbourhood of a point y ∈ G(0) with q(y) = [x]. Since G(0) is totally disconnected and
Hausdorff, there exists a compact open subset Cy ⊆ G(0) such that y ∈ Cy ⊆ q−1(A[x]).
Because q is continuous and open, the image q(Cy) is an compact open subset of G/G(0)

containing [x]. Thus, q(Cy) ⊆ A[x] is a compact open neighbourhood of [x]. Thus we
have constructed a neighbourhood basis at [x] consisting of open and compact subsets.
Collecting these neighbourhood basis for all classes in G/G(0) gives a basis for the topology.

Finally, since G is proper, the quotient space is Hausdorff by Lemma 1.70, and hence
G/G(0) is totally disconnected.
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Since G/G(0) is totally disconnected, we can consider the space of locally constant func-
tions on it. Then we have the following.
Proposition 1.72. Let G be an ample and proper groupoid. Then every essential C∞c (G(0))-
module becomes an essential C∞c (G/G(0))-module in a canonical way.

Proof. From Lemma 1.53, we have that the quotient map q ∶ G(0) → G/G(0) induces
an essential algebra homomorphism q∗ ∶ C∞c (G/G

(0)) → C∞(G(0)). Moreover, since the
quotient map is surjective, q∗ is injective. Indeed let f ∈ C∞c (G/G(0)) such that q∗(f) =
fq = 0, then for every y ∈ G/G(0), since q is surjective, there exists a x ∈ G(0) such that
f(y) = f(q(x)) = 0. Then the map q∗ is an embedding of algebras.

Let M be an essential C∞c (G(0))-module. We define, for any f ∈ C∞c (G/G
(0)), an action

by
f ⋅m = q∗(f)e ⋅m,

where e ∈ C∞c (G(0)) is such that e ⋅m = m, and q∗(f) ∈ C∞(G(0)) = M(C∞c (G
(0))). This

defines an essential C∞c (G/G(0))-module structure. Indeed, since the algebra C∞c (G/G(0))
has local units, we need to prove that C∞c (G/G(0))M =M . Since q∗ is an essential algebra
homomorphism, for any element m ∈M , we have

m = e ⋅m = ∑ q∗(fi)gi ⋅m = ∑ q∗(fi)e ⋅ (gi ⋅m),

where e, gi ∈ C∞c (G(0)) and fi ∈ C∞c (G/G
(0)) for all i. This concludes the proof.

Next, we review the concept of a cut-off function for étale groupoids, compare [Tu99,
Definition 6.7].
Definition 1.73. Let G be an étale groupoid. A cut-off function for G is a continuous
function c ∶ G(0) → [0,∞) such that

(i) for every x ∈ G(0) we have ∑α∈Gx cs(α) = 1;

(ii) the map r ∶ supp(cs) → G(0) is proper.

The existence of a cut-off function for the groupoid is related to its properness, as shown
in [Tu99, Proposition 6.10 and Proposition 6.11]. We now prove a variant of [Tu99,
Proposition 6.11], which ensures the existence of a locally constant cut-off function.

Let us start by recalling the following definitions.
Definition 1.74. A topological space X is said to be paracompact if it is Hausdorff and
every open cover of X admits an open locally finite refinement that also covers X. That
is, for every open cover {Ui}i∈I of X, there exists a second open cover {Vj}j∈J of X such
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that

(i) for each j ∈ J , there exists i ∈ I such that Vj ⊆ Ui;

(ii) for every x ∈X, there exists a neighbourhood of x that intersects only finitely many
Vj.

Definition 1.75. A topological space X is said to be σ-compact if it can be written as a
countable union of compact subsets.
Proposition 1.76. Let G be a proper ample groupoid with G/G(0) paracompact. Then G
admits a locally constant cut-off function. If G/G(0) is compact then G admits a locally
constant cut-off function with compact support.

Proof. The quotient G/G(0) is a totally disconnected locally compact Hausdorff space.
By assumption it is also paracompact, and hence can be written as a disjoint union of
a family of open σ-compact totally disconnected locally compact Hausdorff spaces, see
[Bou66, Section 9.10, Theorem 5]. Every σ-compact totally disconnected locally compact
space X, in turn, can be written as a disjoint union of a countable family of compact
open subsets. Indeed, taking a finite cover made up of compact open subsets of each
compact subset of X by Proposition 1.22, using σ-compactness we obtain a countable
family (Ui)i∈I of compact open subsets that cover X. We can make this cover disjoint
setting V1 ∶= U1 and Vn ∶= Un ∖ (⋃j=1 Vj) for n ∈ N. Observe that the union and the
difference of compact open subsets of X is compact open. As a consequence, there is a
cover (Vi)i∈I of G/G(0) consisting of mutually disjoint compact open subsets.

Since the quotient map q ∶ G(0) → G/G(0) is open we can find ni ∈ N and compact open
subsets Ui,1 . . . , Ui,ni

of G(0) for each i ∈ I such that q(Ui,j) ⊆ Vi for all j and q(Ui,1) ∪

⋯ ∪ q(Ui,ni
) = Vi. Without loss of generality, we can arrange the sets Ui,j to be mutually

disjoint. We then define d ∶ G(0) → [0,∞) by

d = ∑
i∈I

ni

∑
j=1
χUi,j

.

By construction, d is well-defined and locally constant. In fact, d is the characteristic
function of the union of the sets Ui,j.

If K ⊆ G(0) is compact then q(K)∩Vi is non-empty only for finitely many i ∈ I, and hence
supp(d) ∩ q−1(q(K)) is compact. As a consequence,

supp(ds) ∩ r−1(K) = (s × r)−1(supp(d) ×K) = (s × r)−1((supp(d) ∩ q−1(q(K))) ×K)

is compact by properness of G. According to Lemma 1.68 it follows that the function
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λ(ds) is locally constant.

Note that for every x ∈ G(0) there exists an index i ∈ I such that q(x) ∈ Vi. This implies
that there exists some 1 ≤ j ≤ ni and an element α ∈ Gx such that s(α) ∈ Ui,j, and we
conclude that λ(ds)(x) = ∑α∈Gx d(s(α)) > 0. It is then straightforward to check that
c(x) = d(x)/λ(ds)(x) is a locally constant cut-off function for G.

Finally, if G/G(0) is compact then the index set I in the above construction can be taken
to be a singleton, and then both d and c have compact support.
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Chapter 2

The category of G-modules

In this chapter, using notions presented previously, we introduce the category of essential
modules over the convolution algebra of an ample groupoid G. To give a different view of
these objects, we introduce a second category, the category of C∞c (G)-comodules, which
we will prove to be equivalent to the first one. This alternative viewpoint will help us
prove some of the main properties of these categories, such as being monoidal. Then,
following a categorical approach, we define what a G-algebra is in this context. These
objects will recur from now on and will be the main target of investigation in this thesis.
Finally, we introduce the category of G-anti-Yetter–Drinfeld modules, which turns out to
be the natural setting in which we will develop some of the homological tools in what
follows.

§ 2.1 | G-modules and C∞c (G)-comodules
In the previous chapter, we defined the algebra of compactly supported locally constant
functions over an ample groupoid G. In this first part of the chapter we introduce two
categories and show an isomorphism between them.

The category of G-modules

We now define the category of modules over this algebra, study some of its properties,
and give examples.
Definition 2.1. Let G -Mod be the category whose objects are essential left D(G)-modules,
and whose morphisms are D(G)-linear maps. Objects in this category are called G-
modules, and morphisms are called G-equivariant linear maps.

To better familiarise ourselves with this category, we start by giving some examples
arising naturally from the definition. The first trivial one is the following.
Example 2.2. The algebra D(G) is a module over itself with the action given by convo-
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lution. Thus, for any f, g ∈ D(G), we have f ⋅ g = f ∗ g.

As pointed out in [BDGW23], a good source of examples of G-modules are spaces with a
topological action of G.
Lemma 2.3. Let G be an ample groupoid and let X be a locally compact, Hausdorff and
étale G-space with anchor map π ∶X → G(0). Then C∞c (X) is a G-module and the action
of f ∈ D(G) on F ∈ C∞c (X) is given by

(f ⋅ F )(x) = ∑
α∈Gπ(x)

f(α)F (α−1 ⋅ x). (2.1)

Proof. We begin by verifying that the action defined in (2.1) is well-defined. Since G is
étale, the set Gπ(x) is discrete (in the subspace topology) for each x ∈X, and the support
of f ∈ D(G) is compact. Hence, for each fixed x ∈X, the sum involves only finitely many
non-zero terms and is thus well-defined.

To prove that f ⋅ F ∈ C∞c (X), we check that it is both compactly supported and locally
constant. We may assume without loss of generality that f = χU , where U ∈ Bisc(G),
since D(G) is spanned by such functions.

In this case, the action simplifies to

(χU ⋅ F )(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F (α−1 ⋅ x) if ∃α ∈ U with r(α) = π(x),

0 otherwise.

Let K = supp(F ), which is compact. Consider the subset

U ⋅K ∶= {α ⋅ x ∈X ∣ α ∈ U, x ∈K, s(α) = π(x)} ⊆X.

This is the image under the action map m ∶ G ×s,π X → X of the fibre product U ×s,π K.
Since both U and K are compact, and s, π are continuous maps, the fibre product is
compact, see Lemma 1.32, and hence its image U ⋅K is compact. Since f ⋅ F vanishes
outside this set, we conclude that supp(f ⋅ F ) is compact.

Since F is locally constant, there exists an open neighbourhood V ⊆X of α−1 ⋅x on which
F is constant. By shrinking V and U if necessary and using the same argument as in
Lemma 1.34, we can conclude that the action map

m ∶ U ×s,π V →X, (β, z) ↦ β ⋅ z,
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is a homeomorphism onto its image, which is precisely

U ⋅ V = {β ⋅ z ∈X ∣ β ∈ U, z ∈ V, s(β) = π(z)}.

Therefore, the set U ⋅V is an open neighbourhood of x, and for every y = β ⋅ z ∈ U ⋅V , we
have the constant value

(f ⋅ F )(y) = F (β−1 ⋅ y) = F (z).

Thus, f ⋅ F is locally constant.

Finally, we show that the D(G)-module structure is essential. Let F ∈ C∞c (X) with
compact support K = supp(F ). Since X is totally disconnected and locally compact, we
can cover K with finitely many disjoint compact open subsets {Ui}i of X. For each i, let
Vi ∶= π(Ui), which is compact open in G(0) since π is étale. Then the function χVi

∈ D(G)

satisfies

(χVi
⋅ F )(x) = χVi

(π(x))F (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F (x) if π(x) ∈ Vi,

0 otherwise.

Hence, F = ∑i χVi
⋅ F , and this concludes the proof.

Example 2.4. In view of Lemma 2.3 we observe that C∞c (G(0)) can be endowed with a
G-module structure on the left and the right. The actions are given by

(f ⋅m)(x) = ∑
α∈Gx

f(α)m(s(α))

and
(m ⋅ f)(x) = ∑

α∈Gx

m(r(α))f(α)

for all f ∈ D(G), m ∈ C∞c (G(0)) and x ∈ G(0).
Lemma 2.5. Let G be an ample groupoid. There exists a covariant functor from the
category of locally compact, Hausdorff and étale G-spaces to the category of G-modules.
This functor maps a G-space X to the D(G)-module C∞c (X), and a G-equivariant and
étale map ϕ ∶X → Y to the D(G)-linear map ϕ∗ ∶ C∞c (X) → C∞c (Y ) given by

ϕ∗(F )(y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
x∈ϕ−1(y)

F (x), if ϕ−1(y) ≠ ∅,

0, otherwise.

Proof. The D(G)-module structure on C∞c (X) is described in Lemma 2.3. We now show
that the assignment X ↦ C∞c (X) and ϕ↦ ϕ∗ defines a covariant functor.

LetA ⊆X be a compact open subset and consider the characteristic function χA ∈ C∞c (X).
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Since ϕ is étale, each fibre ϕ−1(y) is discrete (in the subspace topology) for y ∈ Y , and
since χA has compact support, only finitely many points in ϕ−1(y) contribute non-zero
terms. Hence the sum defining ϕ∗(χA)(y) is finite, and ϕ∗(χA) is well-defined.

To show local constancy of ϕ∗(χA), fix y ∈ Y , and for each xi ∈ ϕ−1(y) ∩ A choose a
compact open neighbourhood Ui ⊆ X of xi such that χA is constant on Ui and ϕ∣Ui

is a
homeomorphism onto an open subset of Y . Then V ∶= ⋂i ϕ(Ui) is an open neighbourhood
of y on which ϕ∗(χA) is constant.

The support of ϕ∗(χA) is contained in ϕ(A) because if y ∉ ϕ(A), then ϕ−1(y) ∩ A = ∅,
so ϕ∗(χA)(y) = 0. Since ϕ is continuous and A is compact, ϕ(A) is compact. Thus
supp(ϕ∗(χA)) is a closed subset of a compact set and hence compact. It follows that
ϕ∗ ∶ C∞c (X) → C∞c (Y ) is a well-defined linear map.

We now prove D(G)-linearity. Let F ∈ C∞c (X) and f ∈ D(G). For y ∈ Y we compute:

ϕ∗(f ⋅ F )(y) = ∑
x∈ϕ−1(y)

(f ⋅ F )(x) = ∑
x∈ϕ−1(y)

∑
α∈Gπ(x)

f(α)F (α−1 ⋅ x).

Using the G-equivariance of ϕ, we have ϕ(α−1 ⋅ x) = α−1 ⋅ y, and setting z = α−1 ⋅ x we get

ϕ∗(f ⋅ F )(y) = ∑
α∈Gπ(y)

f(α) ∑
z∈ϕ−1(α−1⋅y)

F (z) = (f ⋅ ϕ∗(F ))(y).

Hence, ϕ∗(f ⋅ F ) = f ⋅ ϕ∗(F ) and ϕ∗ is D(G)-linear.

For functoriality, let ϕ ∶ X → Y and ψ ∶ Y → Z be composable G-equivariant and étale
maps. For F ∈ C∞c (X) and z ∈ Z, we compute

(ψ∗ϕ∗)(F )(z) = ∑
y∈ψ−1(z)

ϕ∗(F )(y) = ∑
y∈ψ−1(z)

∑
x∈ϕ−1(y)

F (x) = ∑
x∈ϕ−1(ψ−1(z))

F (x).

Since ϕ−1(ψ−1(z)) = (ψϕ)−1(z) for every z ∈ Z, we can rewrite it as

(ψ∗ϕ∗)(F )(z) = ∑
x∈(ψϕ)−1(z)

F (x) = (ψϕ)∗(F )(z).

Thus (ψϕ)∗ = ψ∗ϕ∗. Moreover, if idX is the identity on X, then

(idX)∗(F )(x) = ∑
u∈id−1

X (x)
F (u) = F (x),

so (idX)∗ = idC∞c (X). This completes the proof.
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The category of C∞c (G)-comodules

Our first aim is to provide an alternative description of G-modules, inspired by the dis-
cussion in [BHM18]. Consider the maps d0, d1, d2 ∶ G(2) → G given by

d0(α,β) = β, d1(α,β) = αβ, d2(α,β) = α

for (α,β) ∈ G(2) = G×s,rG. Each of these maps can be used to turn C∞c (G(2)) into a C∞c (G)-
module by pulling back along di and using pointwise multiplication. Let f ∈ C∞c (G(2))
and g ∈ C∞c (G) we define the action by

(f ⋅i g)(α,β) = f(α,β)g(di(α,β)),

for (α,β) ∈ G(2) and we write C∞c (G(2), di) for the resulting C∞c (G)-module for i = 0,1,2.

Hence, if P,Q are C∞c (G)-modules and T ∶ P → Q is a C∞c (G)-linear map we get induced
linear maps

id⊗T ∶ C∞c (G(2), di) ⊗C∞c (G) P → C∞c (G
(2), di) ⊗C∞c (G) Q (2.2)

for i = 0,1,2. We will denote these maps by d∗i (T ) in the sequel, to keep track of the
different module structures on C∞c (G

(2)) used in the construction. Consider the special
case, as introduced in Definition 1.58, of P = C∞c (G)

r,id
⊗ M and Q = C∞c (G)

s,id
⊗ M for a

C∞c (G
(0))-module M , where both P and Q are viewed as C∞c (G)-modules with the action

by pointwise multiplication in the first tensor factor.
Lemma 2.6. Using the notation introduced above, there is a canonical isomorphism
between C∞c (G

(2), di) ⊗C∞c (G) C
∞
c (G)

r,id
⊗ M and C∞c (G

(2))
rdi,id
⊗ M . An analogous result

holds when replacing the range map r with the source map s.

Proof. Since C∞c (G(2), di) is an essential right C∞c (G)-module, there exists a canonical
isomorphism

φ ∶ C∞c (G
(2), di) ⊗C∞c (G) C

∞
c (G) → C∞c (G

(2), di)

defined by φ(f ⊗ g)(α,β) = f(α,β)g(di(α,β)).

We now consider the C∞c (G(0))-module structure induced on C∞c (G
(2)) via the compo-

sition rdi ∶ G(2) → G(0) and the pointwise multiplication, so that for h ∈ C∞c (G(0)) and
f ∈ C∞c (G

(2)),
(f ⋅ h)(α,β) = f(α,β)h(rdi(α,β)),

and the C∞c (G
(0))-module structure induced on C∞c (G) via the range map r and the

pointwise multiplication.
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Let us verify that φ is C∞c (G(0))-linear with respect to these module structures. For all
f ∈ C∞c (G

(2)), g ∈ C∞c (G) and h ∈ C∞c (G
(0)), we compute

(φ(f ⊗ g) ⋅ h) (α,β) = φ(f ⊗ g)(α,β)h(rdi(α,β))

= f(α,β)g(di(α,β))h(rdi(α,β))

= f(α,β)(g ⋅ h)(di(α,β))

= φ(f ⊗ (g ⋅ h))(α,β).

Hence, φ is C∞c (G(0))-linear.

Since φ is a bijective C∞c (G
(0))-linear map, we obtain an isomorphism of C∞c (G(0))-

modules. Tensoring with the identity map idM over C∞c (G(0)), we obtain the desired
isomorphism.

The analogous result for the source map follows by symmetry, replacing r and rdi with s
and sdi, respectively.

In view of Lemma 2.6, writing the following compositions

v0 = rd1 = rd2, v1 = rd0 = sd2, v2 = sd0 = sd1,

and recalling that T ∶ C∞c (G)
r,id
⊗ M → C∞c (G)

s,id
⊗ M here is an arbitrary C∞c (G)-linear

morphism, the maps introduced in (2.2),

d∗i (T ) ∶ C
∞
c (G

(2), di) ⊗C∞c (G) C
∞
c (G)

r,id
⊗ M → C∞c (G

(2), di) ⊗C∞c (G) C
∞
c (G)

s,id
⊗ M

for i = 0,1,2 can be written as

d∗0(T ) ∶ C
∞
c (G

(2))
v1,id
⊗ M → C∞c (G

(2))
v2,id
⊗ M,

d∗1(T ) ∶ C
∞
c (G

(2))
v0,id
⊗ M → C∞c (G

(2))
v2,id
⊗ M,

d∗2(T ) ∶ C
∞
c (G

(2))
v0,id
⊗ M → C∞c (G

(2))
v1,id
⊗ M.

The following definition introduces the objects we will soon compare to G-modules.
Definition 2.7. A C∞c (G)-comodule is an essential C∞c (G(0))-module M together with a
C∞c (G)-linear isomorphism

TM ∶ C
∞
c (G)

r,id
⊗ M → C∞c (G)

s,id
⊗ M

41



satisfying the coaction identity

d∗0(TM)d
∗
2(TM) = d

∗
1(TM).

A morphism of C∞c (G)-comodules is a C∞c (G
(0))-linear map f ∶ M → N such that

(id⊗f)TM = TN(id⊗f).

We will write C∞c (G) -Comod for the category of C∞c (G)-comodules.

In the second part of this section, we will prove that these new objects we have introduced
are the same as G-modules described at the beginning of the chapter.

From G-modules to C∞c (G)-comodules

Let us first explain how to pass from G-modules to C∞c (G)-comodules. Consider M =

C∞c (G) = D(G) as a left module over itself.
Lemma 2.8. Let G be an ample groupoid. Then there is a linear isomorphism T ∶

C∞c (G)
r,r
⊗ C∞c (G) → C∞c (G)

s,r
⊗ C∞c (G), given by

T (f)(α,β) = f(α,αβ)

for f ∈ C∞c (G)
r,r
⊗ C∞c (G) = C

∞
c (G ×r,r G).

Proof. The spaces G ×s,r G and G ×r,r G are homeomorphic since the map

t ∶ G ×s,r G → G ×r,r G, t(α,β) = (α,αβ)

is a continuous map whose inverse is given by

t−1 ∶ G ×r,r G → G ×s,r G, t−1(α,β) = (α,α−1β).

Since t is a homeomorphism, hence a proper map, using Lemma 1.53, we get the desired
linear isomorphism

T ∶ C∞c (G ×r,r G) → C∞c (G ×s,r G)

f ↦ T (f)(α,β) = f(α,αβ),

induced by t. Finally, Proposition 1.59 concludes the proof.

Moreover, the map T is left C∞c (G)-linear, as explained in the following.
Lemma 2.9. The map T ∶ C∞c (G)

r,r
⊗ C∞c (G) → C∞c (G)

s,r
⊗ C∞c (G) is a C∞c (G)-linear map

with respect to the pointwise multiplication action on the first tensor factor on both sides.
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Proof. Let f ∈ C∞c (G)
r,r
⊗ C∞c (G) and g ∈ C∞c (G). Then we have

T (g ⋅ f)(α,β) = (g ⋅ f)(α,αβ)

= g(α)f(α,αβ)

= g(α)T (f)(α,β)

= (g ⋅ T (f))(α,β)

Then we have T (g ⋅ f) = g ⋅ T (f) and this concludes the proof.

In the following, we will also refer to T as the canonical map of M = C∞c (G).

Let us show that the canonical map turns C∞c (G) = D(G) into a C∞c (G)-comodule. To
this end, note that using the definition of vi for i = 0,1,2 we have the homeomorphisms

G(2) ×d0,π (G ×s,r G) ≅ G
(2) ×v2,r G,

G(2) ×d0,π (G ×r,r G) ≅ G
(2) ×v1,r G,

G(2) ×d1,π (G ×s,r G) ≅ G
(2) ×v2,r G,

G(2) ×d1,π (G ×r,r G) ≅ G
(2) ×v0,r G,

G(2) ×d2,π (G ×s,r G) ≅ G
(2) ×v1,r G,

G(2) ×d2,π (G ×r,r G) ≅ G
(2) ×v0,r G,

where π denotes the projection to the first copy of G in either case. Using these homeo-
morphisms, we can identify the maps induced by the map t, introduced in the proof of
Lemma 2.8, on these fibre products as

(id×d0,πt) ∶ G
(2) ×v2,r G → G

(2) ×v1,r G, (id×d0,πt)(α,β, γ) = (α,β, βγ),

(id×d1,πt) ∶ G
(2) ×v2,r G → G

(2) ×v0,r G, (id×d1,πt)(α,β, γ) = (α,β,αβγ),

(id×d2,πt) ∶ G
(2) ×v1,r G → G

(2) ×v0,r G, (id×d2,πt)(α,β, γ) = (α,β,αγ).

From this description it is immediate to check that (id×d2,πt)(id×d0,πt) = (id×d1,πt).
Using Lemma 1.53, as we have done in Lemma 2.8, and since d∗i (T ) is the transpose of
id×di,πt this yields the coaction identity d∗0(T )d∗2(T ) = d∗1(T ) for T .

Now let M be an arbitrary G-module. We start with some preliminary results.
Lemma 2.10. Let G be an ample groupoid. Then any G-module M is naturally an
essential C∞c (G(0))-module via the restriction of the action along the inclusion G(0) ↪ G.

Proof. Since M is a G-module, it is by definition an essential D(G)-module. The convo-
lution algebra D(G) contains C∞c (G(0)) as a subalgebra via the inclusion of units G(0) ⊆ G
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as shown in Lemma 1.64.

Then, we define the action of C∞c (G(0)) on M by restricting the D(G)-action

f ⋅m ∶= f̃ ⋅m,

for all f ∈ C∞c (G(0)) and m ∈M , where f̃ denotes the extension-by-zero of f . This defines
a C∞c (G(0))-module structure on M .

To show that this action is essential, we recall that D(G) has local units and these units
can always be picked as elements of C∞c (G(0)), see Lemma 1.66. In particular, in view of
Remark 1.43, we have that for every given m ∈M , there exists an e ∈ C∞c (G(0)) such that
m = e ⋅m.

Finally, Lemma 1.42 concludes the proof.

Lemma 2.11. The map T ∶ C∞c (G)
r,r
⊗ C∞c (G) → C∞c (G)

s,r
⊗ C∞c (G) is D(G)-linear with

respect to the right D(G)-action on the second tensor factor on both sides.

Proof. We equip both tensor products with the right D(G)-action given by convolution
on the second tensor factor. For f ∈ C∞c (G)

r,r
⊗ C∞c (G) and g ∈ D(G), we compute

T (f ∗ g)(α,β) = (f ∗ g)(α,αβ)

= ∑
ζ∈Gr(α)

f(α, ζ) g(ζ−1αβ).

Set ζ = αη, so that η = α−1ζ. Then ζ ∈ Gr(α) implies η ∈ Gr(β), and the expression becomes

∑
η∈Gr(β)

f(α,αη) g(η−1β) = ∑
η∈Gr(β)

T (f)(α, η)g(η−1β)

= (T (f) ∗ g)(α,β).

Hence, we have T (f ∗ g) = T (f) ∗ g, which proves the right D(G)-linearity of T .

Moreover, using the identification D(G) ⊗D(G) M ≅ M and Lemma 2.11, we obtain a
C∞c (G)-linear isomorphism TM ∶ C∞c (G)

r,id
⊗ M → C∞c (G)

s,id
⊗ M as the unique map fitting

into the commutative diagram

(C∞c (G)
r,r
⊗ C∞c (G)) ⊗D(G)M (C∞c (G)

s,r
⊗ C∞c (G)) ⊗D(G)M

C∞c (G)
r,id
⊗ M C∞c (G)

s,id
⊗ M.

T⊗id

≅ ≅

TM
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From the above construction, we obtain analogous commutative diagrams linking d∗i (TM)
and d∗i (T ) ⊗ id for i = 0,1,2. Indeed, for example, taking i = 0, we get

(C∞c (G
(2))

v1,r
⊗ C∞c (G)) ⊗D(G)M (C∞c (G

(2))
v2,r
⊗ C∞c (G)) ⊗D(G)M

C∞c (G
(2))

v1,id
⊗ M C∞c (G

(2))
v2,id
⊗ M,

d∗0(T )⊗id

≅ ≅

d∗0(TM )

and hence the coaction identity d∗0(TM)d
∗
2(TM) = d

∗
1(TM) holds. We will refer to TM as

the canonical map of M in the sequel.

In explicit calculations, the following result is useful.
Lemma 2.12. Let M be a G-module. For any compact open bisection U of G and m ∈M
we have

TM(χU ⊗m) = χU ⊗ χU−1 ⋅m.

Proof. Using the essentiality of M and the existence of local units, we have

TM(χU ⊗m) = (T ⊗ id)(χU ⊗ e⊗m)
= T (χU ⊗ e) ⊗m,

where e ∈ C∞c (G(0)) has the property that e ⋅m = m and without loss of generality, since
we are working a balanced tensor product, we can assume that e = χr(U). Then, recalling
the map T as defined in Lemma 2.8 we have

T (χU ⊗ e) ⊗m = χU ⊗ χU−1 ⊗m

= χU ⊗ χU−1 ⋅m,

and this concludes the proof.

These constructions lead to the following result.
Lemma 2.13. Let M be a G-module. Then M becomes a C∞c (G)-comodule via the
canonical map TM defined above. This assignment defines a functor A ∶ G -Mod →
C∞c (G) -Comod.

Proof. The assignment at the level of objects is clear from the discussion so far.

We now verify functoriality. Let f ∶ M → N be a morphism of G-modules, that is, a
D(G)-linear map. We need to show that

(id⊗f)TM = TN(id⊗f), (2.3)
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for TM and TN the canonical map associated respectively with M and N . Using the
identification D(G) ⊗D(G) M ≅ M , the diagram in the construction of TM , and D(G)-
linearity of f , we rewrite the compatibility condition (2.3) as

(id⊗ id⊗f)(T ⊗ idM) = (T ⊗ idN)(id⊗ id⊗f),

which clearly holds. Therefore, f is a morphism of C∞c (G)-comodules. Let P be a G-
module and g ∶ N → P be a G-equivariant map. Compatibility with the composition of
maps follows from id⊗(gf) = (id⊗g)(id⊗f). Moreover, compatibility with the identity
map idM ∶ M → M holds trivially. Therefore, the assignment M ↦ (M,TM) on objects
and f ↦ f on morphisms defines a functor.

From C∞c (G)-comodules to G-modules

The goal of this part is to construct a functor that goes in the opposite direction. Let us
start by considering the integration map λ ∶ C∞c (G) → C∞c (G

(0)) defined by

λ(f)(x) = ∑
α∈Gx

f(α).

Remark 2.14. This map is clearly surjective, since the integration is the identity map
when restricted to C∞c (G(0)) ⊆ C∞c (G). Moreover, for any compact open bisection U ⊆ G,
we have λ(χU) = χr(U).
Lemma 2.15. The integration map λ ∶ C∞c (G) → C∞c (G

(0)) is C∞c (G
(0))-linear with

respect to the action of C∞c (G(0)) on C∞c (G) induced by the range map r and the pointwise
multiplication action on C∞c (G

(0)).

Proof. Let f ∈ C∞c (G) and h ∈ C∞c (G
(0)), then we have

λ(h ⋅ f)(x) = ∑
α∈Gx

h(r(α))f(α) = ∑
α∈Gx

h(x)f(α) = h(x)λ(f)(x) = (h ⋅ λ(f))(x)

as required.

Moreover, we have the following equivariant property.
Lemma 2.16. The integration map λ ∶ C∞c (G) → C∞c (G

(0)) is G-equivariant with respect
to the left multiplication action on C∞c (G) = D(G).

Proof. Recall that C∞c (G(0)) becomes a G-module with action described in Example 2.4.
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Let f ∈ C∞c (G) and let U ⊆ G be a compact open bisection. We compute

λ(χU ∗ f)(x) = ∑
β∈Gx

(χU ∗ f)(β)

= ∑
α,β∈Gx

χU(α)f(α
−1β)

= ∑
α∈Gx

χU(α) ∑
γ∈Gs(α)

f(γ)

= ∑
α∈Gx

χU(α)λ(f)(s(α))

= χU ⋅ λ(f)(x),

and this yields the claim.

Now assume that M is a C∞c (G)-comodule with canonical map TM and define the map
µM ∶ D(G) ⊗M →M by the formula

µM = (λ⊗ id)T −1
M qM , (2.4)

where qM ∶ D(G) ⊗M = C∞c (G) ⊗M → C∞c (G)
s,id
⊗ M is the quotient map. Consider the

diagram

C∞c (G
(2))

v2,id
⊗ M C∞c (G

(2))
v1,id
⊗ M C∞c (G

(2))
v0,id
⊗ M

C∞c (G)
s,r
⊗ C∞c (G)

s,id
⊗ M C∞c (G)

s,r
⊗ C∞c (G)

r,id
⊗ M (C∞c (G)

s,r
⊗ C∞c (G))

v0,id
⊗ M

C∞c (G)
s,id
⊗ M C∞c (G)

r,id
⊗ M

M M.

≅

d∗0(T
−1
M )

≅

d∗2(T
−1
M )

≅

id⊗T−1
M

id⊗λ⊗id

(T−1
M )13

id⊗λ⊗id

λ⊗id

T−1
M

λ⊗id

=

Here (T −1
M )13 is the map T −1

M applied to the first and third tensor factors and the identity
on the second. The two top squares are commutative by the definition of d∗0(T −1

M ) and
d∗2(T

−1
M ) as in Equation 2.2. The bottom right square commutes trivially since we are

suppressing a factor ignored by the action. As a consequence, we obtain

(λ⊗ id)(id⊗λ⊗ id)d∗2(T −1
M )d

∗
0(T

−1
M )(f ⊗ g ⊗m) = µM(id⊗µM)(f ⊗ g ⊗m)

for all f, g ∈ C∞c (G) and m ∈M . Similarly, we have a commutative diagram
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C∞c (G
(2))

v2,id
⊗ M C∞c (G

(2))
v0,id
⊗ M

(C∞c (G)
r,r
⊗ C∞c (G))

sπ,id
⊗ M (C∞c (G)

r,r
⊗ C∞c (G))

rπ,id
⊗ M (C∞c (G)

s,r
⊗ C∞c (G))

v0,id
⊗ M

C∞c (G)
s,id
⊗ M C∞c (G)

r,id
⊗ M C∞c (G)

r,id
⊗ M

M M,

T−1⊗id

d∗1(T
−1
M )

T−1⊗id

λ⊗id⊗ id

id⊗T−1
M

λ⊗id⊗ id

T⊗id

id⊗λ⊗id

T−1
M

λ⊗id λ⊗id

=

where π is the projection onto the second factor. Observing that

(λ⊗ id)T −1(f ⊗ g) = f ∗ g = µ(f ⊗ g)

is the convolution product, we obtain

(λ⊗ id)(id⊗λ⊗ id)d∗1(T −1
M )(f ⊗ g ⊗m) = (λ⊗ id)T −1

M (λ⊗ id⊗ id)(T −1 ⊗ id)(f ⊗ g ⊗m)
= µM(µ⊗ id)(f ⊗ g ⊗m),

for all f, g ∈ C∞c (G) and m ∈M . Applying the coaction identity d∗2(T −1
M )d

∗
0(T

−1
M ) = d

∗
1(T

−1
M )

we obtain
µM(id⊗µM) = µM(µ⊗ id),

so we conclude that µM turns M into a left D(G)-module. To conclude, we check that
the module structure is essential. Since both λ and qM are surjective and TM is an
isomorphism we see that µM(D(G) ⊗M) = M . Then, using Lemma 1.42, it follows the
claim.

This discussion leads to the following result.
Lemma 2.17. Let M be a C∞c (G)-comodule. Then M becomes a G-module via the action
µM defined above. This assignment defines a functor B ∶ C∞c (G) -Comod→ G -Mod.

Proof. The assignment at the level of objects is clear from the discussion above.

We now verify functoriality. Let M , N be C∞c (G)-comodules, and f ∶ M → N be a
morphism between them. It is a C∞c (G(0))-linear map satisfying the compatibility relation
(id⊗f)TM = TN(id⊗f). We need to show that f is G-equivariant for the corresponding
G-module structures.

Observe that f(λ ⊗ id) = (λ ⊗ id)(id⊗f) because f is C∞c (G(0))-linear and since both
TM and TN are isomorphisms, the relation (id⊗f)T −1

M = T
−1
N (id⊗f) holds. So, using the
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definition of µM , see Equation 2.4, we have

f((µM)(g ⊗m)) = f(λ⊗ id)T −1
M qM(g ⊗m)

= (λ⊗ id)(id⊗f)T −1
M qM(g ⊗m)

= (λ⊗ id)T −1
N (id⊗f)qN(g ⊗m)

= (λ⊗ id)T −1
N qN(g ⊗ f(m))

= µN(g ⊗ f(m)),

for any g ⊗ m ∈ D(G) ⊗M . Let P be a C∞c (G)-module and g ∶ N → P be a mor-
phism between them. The compatibility with the composition of maps follows from
the relation id⊗(gf) = (id⊗g)(id⊗f). Moreover, the identity map idM ∶ M → M of
C∞c (G

(0))-comodules is trivially sent to the identity of G-modules. Therefore, the assign-
ment (M,TM) ↦ (M,µM) on objects and f ↦ f on morphisms defines a functor.

Combining together Lemma 2.13 and Lemma 2.17 we are now ready to establish the
correspondence between G-modules and C∞c (G)-comodules.
Proposition 2.18. Let G be an ample groupoid. The constructions described above im-
plement an isomorphism of categories between the category G -Mod of G-modules and the
category C∞c (G) -Comod of C∞c (G)-comodules.

Proof. We have already constructed functors A ∶ G -Mod → C∞c (G) -Comod and B ∶

C∞c (G) -Comod → G -Mod, and it suffices to show that the compositions BA and AB

equal the identity on G -Mod and C∞c (G) -Comod, respectively.

For the G-module D(G), the G-module BA(D(G)) is obtained by passing from the
canonical map T ∶ C∞c (G)

r,r
⊗ C∞c (G) → C∞c (G)

s,r
⊗ C∞c (G) to the G-module structure

D(G) ⊗D(G) → D(G) given by

(λ⊗ id)T −1q(f ⊗ g)(α) = (λ⊗ id)T −1(f ⊗ g)(α) = ∑
β∈Gr(α)

f(β)g(β−1α)

for f, g ∈ D(G) and α ∈ G. This coincides with the left multiplication action of D(G) on
itself. It follows that BA(D(G)) = D(G) as G-modules. For a general G-module M , using
the construction for D(G) and the canonical identification D(G) ⊗D(G)M ≅ M , we have
that A(M,µM) = (M,TA(M)) ≅ (D(G) ⊗D(G)M,T ⊗ id) and the action map induced by
TA(M) is then

µBA(M) = (λ⊗ id⊗ id)(T −1 ⊗ id)(q ⊗ id).

Hence, we have that BA(M) =M as G-modules.
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Conversely, let N be a C∞c (G)-comodule with canonical map TN ∶ C∞c (G)
r,id
⊗ N →

C∞c (G)
s,id
⊗ N . In order to describe the canonical map TAB(N) we start from the module

structure µB(N) = (λ⊗ id)T −1
N qN on B(N). Then, by construction,

T −1
AB(N)(χU ⊗ n) = χU ⊗ µB(N)(χU ⊗ n)

= χU ⊗ (λ⊗ id)T −1
N qN(χU ⊗ n)

= χU ⊗ (λ⊗ id)T −1
N (χU ⊗ n)

for any compact open bisection U ⊆ G and n ∈ N . Let us write T −1
N (χU ⊗ n) = ∑i χUi

⊗ ni

for compact open bisections Ui ⊆ G and elements ni ∈ N . Since T −1
N is C∞c (G)-linear we

have

∑
i

χUi
⊗ ni = T

−1
N (χU ⊗ n)

= T −1
N (χUχU ⊗ n)

= χU ⋅ T
−1
N (χU ⊗ n)

= χU ⋅ (∑
i

χUi
⊗ ni)

= ∑
i

χUχUi
⊗ ni

= ∑
i

χU∩Ui
⊗ ni,

where recall that the action of C∞c (G) on itself is given by pointwise multiplication. Hence
we can assume without loss of generality that Ui ⊆ U for all i. With this observation done,
we are ready to continue our calculation, and we have

T −1
AB(N)(χU ⊗ n) = χU ⊗ (λ⊗ id)(∑

i

χUi
⊗ ni)

= ∑
i

χU ⊗ λ(χUi
)ni

= ∑
i

χU ⋅ λ(χUi
) ⊗ ni

= ∑
i

χU ⋅ χr(Ui) ⊗ ni

= ∑
i

χU∩Ui
⊗ ni

= T −1
N (χU ⊗ n),

using that the action of C∞c (G(0)) on C∞c (G) in the tensor product is given by the range
map in the penultimate step. Since U and n were arbitrary, we conclude TAB(N) = TN as
required.
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Proposition 2.18 can be interpreted as stating that a G-moduleM is equivalently described
by the data of an essential C∞c (G(0))-module structure on M , together with a C∞c (G)-
linear map

TM ∶ C
∞
c (G)

r,id
⊗ M Ð→ C∞c (G)

s,id
⊗ M

satisfying the coaction identity. This reformulation will be used throughout the sequel
as a criterion to verify that certain objects are G-modules, by constructing a suitable
coaction map and checking the coaction identity.

§ 2.2 | Tensor products
The goal of this section is to show that the category G -Mod admits a natural ten-
sor product operation. More precisely, given two G-modules M and N , their under-
lying C∞c (G(0))-module structures, obtained by restricting the action along the inclusion
C∞c (G

(0)) ↪ C∞c (G), are essential. We therefore consider the balanced tensor product
M ⊗C∞c (G(0)) N , and we will construct a natural G-module structure on it. We will then
introduce the notion of monoidal category and prove that G -Mod carries a canonical
monoidal structure induced by this tensor product.

We shall describe this action using the comodule picture developed in the previous section.
According to Proposition 2.18, it suffices to define a C∞c (G)-linear isomorphism

TM⊗N ∶ C
∞
c (G)

r,id
⊗ (M ⊗C∞c (G(0))N) → C∞c (G)

s,id
⊗ (M ⊗C∞c (G(0))N),

satisfying the coaction identity. We start with the case M = N = D(G) and consider the
homeomorphism

tG×G ∶ G ×s,r (G ×r,r G) → G ×r,r (G ×r,r G), tG×G(α, (β, γ)) = (α, (αβ,αγ)).

With the notation used in the proof of Lemma 2.13 we obtain natural identifications

G(2) ×d0,π (G ×s,r (G ×r,r G)) ≅ G
(2) ×v2,r (G ×r,r G),

G(2) ×d0,π (G ×r,r (G ×r,r G)) ≅ G
(2) ×v1,r (G ×r,r G),

G(2) ×d1,π (G ×s,r (G ×r,r G)) ≅ G
(2) ×v2,r (G ×r,r G),

G(2) ×d1,π (G ×r,r (G ×r,r G)) ≅ G
(2) ×v0,r (G ×r,r G),

G(2) ×d2,π (G ×s,r (G ×r,r G)) ≅ G
(2) ×v1,r (G ×r,r G),

G(2) ×d2,π (G ×r,r (G ×r,r G)) ≅ G
(2) ×v0,r (G ×r,r G),

and one checks that the induced maps

id×d0,πtG×G ∶ G
(2) ×v2,r (G ×r,r G) → G

(2) ×v1,r (G ×r,r G),
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id×d1,πtG×G ∶ G
(2) ×v2,r (G ×r,r G) → G

(2) ×v0,r (G ×r,r G),

id×d2,πtG×G ∶ G
(2) ×v1,r (G ×r,r G) → G

(2) ×v0,r (G ×r,r G),

are given by

(id×d0,πtG×G)(α,β, γ, δ) = (α,β, (βγ, βδ)),

(id×d1,πtG×G)(α,β, γ, δ) = (α,β, (αβγ,αβδ)),

(id×d2,πtG×G)(α,β, γ, δ) = (α,β, (αγ,αδ)),

respectively.

From this description it is immediate to verify that

(id×d2,πtG×G)(id×d0,πtG×G) = (id×d1,πtG×G).

It follows that the linear isomorphism

TD(G)⊗D(G) ∶ C
∞
c (G)

r,r
⊗ (C∞c (G)

r,r
⊗ C∞c (G)) → C∞c (G)

s,r
⊗ (C∞c (G)

r,r
⊗ C∞c (G)),

TD(G)⊗D(G)(f)(α,β, γ) = f(α,αβ,αγ)

induced by the transpose of tG×G, as done in Lemma 2.8, satisfies

d∗0(TD(G)⊗D(G))d
∗
2(TD(G)⊗D(G)) = d

∗
1(TD(G)⊗D(G)),

where d∗i (TD(G)⊗D(G)) is the transpose of id×di,πtG×G.

In analogy to Lemma 2.11, we get the following, which can be proved in the same way.
Lemma 2.19. The map TD(G)⊗D(G) is right D(G)⊗D(G)-linear with respect to the D(G)-
action on the second and third tensor factors.
Lemma 2.20. Let M and N be G-modules. Then there exists a linear isomorphism

(D(G)
r,r
⊗ D(G)) ⊗D(G)⊗D(G) (M ⊗N) →M ⊗C∞c (G(0))N.

Proof. Recall the canonical isomorphism

(D(G) ⊗D(G)) ⊗D(G)⊗D(G) (M ⊗N) →M ⊗N,

given by the essential D(G) ⊗D(G)-module structure on M ⊗N , that is,

(f ⊗ g) ⋅ (m⊗ n) ∶= (f ⋅m) ⊗ (g ⋅ n),
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for f , g ∈ D(G), m ∈M and n ∈ N . It induces a map at the level of the quotients

Φ ∶ (D(G)
r,r
⊗ D(G)) ⊗D(G)⊗D(G) (M ⊗N) →M ⊗C∞c (G(0))N

by setting
Φ ((f ⊗ g) ⊗ (m⊗ n)) ∶= (f ⋅m) ⊗ (g ⋅ n).

This map is well-defined. Indeed, for any h ∈ C∞c (G(0)), we have

Φ ((h ⋅ f ⊗ g) ⊗ (m⊗ n)) = (h ⋅ f ⋅m) ⊗ g ⋅ n
= f ⋅m⊗ (h ⋅ g ⋅ n)

= Φ ((f ⊗ h ⋅ g) ⊗ (m⊗ n)) .

It remains to show that Φ is a bijection.

To prove surjectivity, take m ⊗ n ∈M ⊗C∞c (G(0)) N and observe that it can be written as
f ⋅m ⊗ g ⋅ n with f, g ∈ D(G) and m ∈ M , n ∈ N , using the essentiality of the module
structures of M and N and the existence of local units for D(G). Then we have m⊗ n =
Φ((f ⊗ g) ⊗ (m⊗ n)).

To prove injectivity, we observe that any element of the form f ⋅ h ⊗ g ⊗m ⊗ n − f ⊗ h ⋅

g ⊗m ⊗ n, which vanishes after passing to the quotient on the left-hand side, is sent to
f ⋅ h ⋅m ⊗ g ⋅ n − f ⋅m ⊗ h ⋅ g ⋅ n, which is again zero after quotienting on the right-hand
side. Conversely, every element of the form h ⋅m ⊗ n −m ⊗ h ⋅ n comes from an element
h ⋅ f ⊗ g ⊗m ⊗ n − f ⊗ h ⋅ g ⊗m ⊗ n, where now f and g can be picked in C∞c (G

(0)) and
are such that f ⋅m = m and g ⋅ n = n. This means that we are quotienting the same
subspace on both sides of the original canonical isomorphism. This proves that Φ is an
isomorphism and concludes the proof.

Now let M,N be arbitrary G-modules. Then using Lemma 2.20 and the left D(G)-action
on D(G)

r,r
⊗ D(G) = D(G)⊗C∞c (G(0))D(G) corresponding to the C∞c (G)-comodule structure

constructed above we obtain the desired G-module structure on M ⊗C∞c (G(0)) N through
this identification.

For calculations it is useful to know how the tensor product G-module structure looks in
terms of compact open bisections.
Lemma 2.21. Let M,N be G-modules. Then the D(G)-module structure on the tensor
product M ⊗C∞c (G(0))N satisfies

χU ⋅ (m⊗ n) = (χU ⋅m) ⊗ (χU ⋅ n),
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for any compact open bisection U of G.

Proof. In view of the construction of the tensor product action it suffices to consider the
case M = N = D(G). Given compact open bisections U,V,W of G and α,β, γ ∈ G such
that r(α) = r(β) = r(γ) we compute

T −1
D(G)⊗D(G)(χU ⊗ χV ⊗ χW )(α,β, γ) = (χU ⊗ χV ⊗ χW )(α,α

−1β,α−1γ)

= χU(α)χV (α
−1β)χW (α

−1γ).

It follows that T −1
D(G)⊗D(G)(χU ⊗χV ⊗χW ) is the characteristic function of the set U ×UV ×

UW . Applying the integration map λ to the first tensor factor therefore gives

χU ⋅ (χV ⊗ χW ) = χUV ⊗ χUW = (χU ⋅ χV ) ⊗ (χU ⋅ χW ),

and since characteristic functions of compact open bisections span D(G) this yields the
claim.

Remark 2.22. Observe that for an arbitrary function f ∈ D(G), we first use the decom-
position given by Proposition 1.62, then the linearity of the action with Lemma 2.21.

We will always view the tensor product M ⊗C∞c (G0)N of G-modules M,N as a G-module
with the action defined above.

Let us collect here some definitions about monoidal categories. For a classical reference,
see [ML98, Chapter 7].
Definition 2.23. A category C equipped with the following structures:

(i) a bifunctor ⊗ ∶ C × C → C;

(ii) an object U ∈ Ob(C), called unit object;

(iii) a natural isomorphism a ∶ (− ⊗ −) ⊗ − → − ⊗ (− ⊗ −), with components of the form
aX,Y,Z ∶ (X ⊗ Y ) ⊗Z →X ⊗ (Y ⊗Z), where X,Y,Z ∈ Ob(C);

(iv) a natural isomorphism l ∶ U⊗ − → −, with components of the form lX ∶ U⊗X →X,
where X ∈ Ob(C);

(v) a natural isomorphism r ∶ −⊗U→ −, with components of the form rX ∶X ⊗U→X,
where X ∈ Ob(C),

such that, for all W,X,Y,Z ∈ Ob(C), the following diagrams commute:
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((W ⊗X) ⊗ Y ) ⊗Z

(W ⊗ (X ⊗ Y )) ⊗Z (W ⊗X) ⊗ (Y ⊗Z)

W ⊗ ((X ⊗ Y ) ⊗Z) W ⊗ (X ⊗ (Y ⊗Z))

aW,X,Y ⊗idZ

aW⊗X,Y,Z

aW,X⊗Y,Z aW,X,Y ⊗Z

idW ⊗aX,Y,Z

(X ⊗U) ⊗ Y X ⊗ (U⊗ Y )

X ⊗ Y

rX⊗idY

aX,U,Y

idX ⊗lY

is called monoidal category.
Definition 2.24. A symmetric monoidal category is a monoidal category (C,⊗,U) to-
gether with a natural isomorphism s ∶ − ⊗ − → − ⊗ −, with components of the form
sX,Y ∶ X ⊗ Y → Y ⊗ X, where X,Y ∈ Ob(C) such that, for all X,Y,Z ∈ Ob(C), the
following diagrams commute:

(X ⊗ Y ) ⊗Z (Y ⊗X) ⊗Z

X ⊗ (Y ⊗Z) Y ⊗ (X ⊗Z)

(Y ⊗Z) ⊗X Y ⊗ (Z ⊗X),

aX,Y,Z

sX,Y ⊗idZ

aY,X,Z

sX,Y ⊗Z idY ⊗sX,Z

aY,Z,X

X ⊗U U⊗X

X,

sX,U

rX

lX

X ⊗ Y X ⊗ Y

Y ⊗X.

idX⊗Y

sX,Y sY,X

With these new definition in mind, we summarise our discussion so far as follows.
Proposition 2.25. The category G- Mod with the tensor product operation defined above
is a symmetric monoidal category.

Proof. Let M,N and P be G-modules. Then we have a canonical isomorphism

(M ⊗C∞c (G(0))N) ⊗C∞c (G(0)) P ≅M ⊗C∞c (G(0))N ⊗C∞c (G(0)) P ≅M ⊗C∞c (G(0)) (N ⊗C∞c (G(0)) P )
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of C∞c (G(0))-modules, and using Lemma 2.21, we see that the action on either side is
given by

χU ⋅ (m⊗ n⊗ p) = (χU ⋅m) ⊗ (χU ⋅ n) ⊗ (χU ⋅ p)

for m ∈M , n ∈ N , p ∈ P and U compact open bisection of G. We conclude that the above
isomorphism is G-equivariant, thus giving the required associativity constraint.

The tensor unit is given by the G-module C∞c (G(0)), with the action f ⋅ h ∶= λ(f)h for
f ∈ D(G) and h ∈ C∞c (G

(0)), compare with Example 2.4.

Due to Lemma 2.21 it follows that the canonical identifications M ⊗C∞c (G(0)) C∞c (G(0)) ≅
M ≅ C∞c (G

(0)) ⊗C∞c (G0)M are G-equivariant for every G-module M .

Finally, since C∞c (G(0)) is a commutative algebra, there exists an obvious isomorphism

M ⊗C∞c (G(0))N ≅ N ⊗C∞c (G(0))M

of C∞c (G(0))-modules, and using Lemma 2.21 we see that the above isomorphism is G-
equivariant.

With these structures in place, the axioms for a symmetric monoidal category are readily
verified.

§ 2.3 | G-algebras
Our main objects of study in this thesis are G-algebras over an ample groupoid G in the
following sense.
Definition 2.26. A G-algebra is a G-module A together with a G-equivariant linear map
m ∶ A⊗C∞c (G(0)) A→ A, written m(a⊗ b) = ab, such that (ab)c = a(bc) for all a, b, c ∈ A.

This can be phrased equivalently in a categorical way. Let us recall the following.

Given a monoidal category, we can introduce the definition of algebra object in the fol-
lowing way.
Definition 2.27. Let (C,⊗,U) be a monoidal category. A non-unital algebra object in C
is an object A ∈ Ob(C) with a multiplication map µ ∶ A ⊗A → A such that the following
diagram commutes:
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A

A⊗A A⊗A

(A⊗A) ⊗A A⊗ (A⊗A),

µ

µ

aA,A,A

µ⊗idA idA⊗µ

With this definition in mind, we equivalently define a G-algebra as a non-unital algebra
object in the monoidal category G- Mod.

By definition, if A,B are G-algebras then a G-equivariant algebra homomorphism ϕ ∶ A→

B is a G-equivariant linear map of the underlying G-modules such that ϕ(ab) = ϕ(a)ϕ(b)
for all a, b ∈ A.

We now show in detail some examples and constructions with G-algebras that will be
used in the following.

§ 2.3.1 | Algebras of functions

In Lemma 2.5 we have already proved that a good source of G-modules comes from G-
spaces. In the following we prove that actions of G on totally disconnected locally compact
spaces provide examples of commutative G-algebras.
Proposition 2.28. Let X be a totally disconnected locally compact G-space. Then
C∞c (X) with pointwise multiplication is a G-algebra in a natural way.

Proof. From Lemma 2.3 we have that C∞c (X) is an essential G-module. Hence, we need
to prove that pointwise multiplication is a G-equivariant linear map. Indeed, using the
action described in Lemma 2.5 and Lemma 2.21, for f, g ∈ C∞c (X) and U compact open
bisection of G, we compute

χU ⋅m(f ⊗ g)(x) = ∑
α∈Gπ(x)

χU(α)m(f ⊗ g)(α
−1 ⋅ x)

= ∑
α∈Gπ(x)

χU(α)f(α
−1 ⋅ x)g(α−1 ⋅ x)

= (χU ⋅ f)(x)(χU ⋅ g)(x)

=m(χU ⋅ (f ⊗ g))(x),

and this concludes the proof.

The construction in Proposition 2.28 is compatible with tensor products. More precisely,
if X and Y are totally disconnected locally compact G-spaces, with anchor maps π1 and
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π2, respectively, then the canonical map

ϕ ∶ C∞c (X) ⊗C∞c (G(0)) C
∞
c (Y ) → C∞c (X ×π1,π2 Y )

is an isomorphism of G-algebras, compare Proposition 1.59. Indeed, using the action
described in Lemma 2.5 and Lemma 2.21, D(G)-linearity comes from the following cal-
culation

χU ⋅ ϕ(f ⊗ g)(x, y) = ∑
α∈Gπ1(x)

χU(α)ϕ(f ⊗ g)(α
−1 ⋅ x,α−1 ⋅ y)

= ∑
α∈Gπ1(x)

χU(α)f(α
−1 ⋅ x)g(α−1 ⋅ y)

= (χU ⋅ f)(x)(χU ⋅ g)(y)

= ϕ(χU ⋅ (f ⊗ g))(x, y),

where f ∈ C∞c (X), g ∈ C∞c (Y ) and U is a compact open bisection of G.

§ 2.3.2 | Algebras associated with pairings

Another class of examples of G-algebras comes from G-modules equipped with G-equivariant
pairings in the following sense.
Definition 2.29. Let E be a G-module. A G-equivariant pairing on E is a G-equivariant
linear map h ∶ E ⊗C∞c (G(0)) E → C∞c (G

(0)).

We may equivalently view a G-equivariant pairing as in Definition 2.29 as a C∞c (G
(0))-

bilinear map h ∶ E ×E → C∞c (G
(0)) such that

h(χU ⋅ e,χU ⋅ f) = χU ⋅ h(e, f)

for all e, f ∈ E and all compact open bisections U ⊆ G. Given such a pairing, consider the
tensor product

K(E) = E ⊗C∞c (G(0)) E

as a G-module with the diagonal action. Then K(E) becomes a G-algebra with the
multiplication defined by

(e1 ⊗ f1)(e2 ⊗ f2) = e1 ⊗ h(f1, e2)f2 = e1h(f1, e2) ⊗ f2

for e1, e2, f1, f2 ∈ E. Note that the multiplication in K(E) depends on the pairing h, so
it would be more accurate to write K(E,h) for the resulting G-algebra. However, in the
sequel the pairings we use will always be clear from the context.

The most important example of a G-equivariant pairing is the following.
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Example 2.30. The regular pairing λ ∶ D(G) ⊗C∞c (G(0)) D(G) → C∞c (G
(0)) is defined by

λ(f ⊗ g)(x) = ∑
α∈Gx

f(α)g(α),

for x ∈ G(0). We will simply write KG = K(D(G)) for the associated G-algebra.
Lemma 2.31. Let E and F be G-modules equipped respectively with G-equivariant pair-
ings hE and hF . Then there is a natural G-equivariant isomorphism of G-algebras

K(E ⊗C∞c (G(0)) F ) ≅ K(E) ⊗C∞c (G(0)) K(F ).

Proof. By definition,

K(E ⊗C∞c (G(0)) F ) = (E ⊗C∞c (G(0)) F ) ⊗C∞c (G(0)) (E ⊗C∞c (G(0)) F ).

Using associativity and symmetry of the tensor product, there is a canonical G-equivariant
isomorphism

Φ ∶ (E ⊗C∞c (G(0)) F ) ⊗C∞c (G(0)) (E ⊗C∞c (G(0)) F ) → (E ⊗C∞c (G(0)) E) ⊗C∞c (G(0)) (F ⊗C∞c (G(0)) F ).

Let hE⊗F be the induced G-equivariant pairing on E ⊗C∞c (G(0)) F defined by

hE⊗F (e1 ⊗ f1, e2 ⊗ f2) ∶= hE(e1, e2)hF (f1, f2).

The canonical identification is multiplicative, indeed

Φ((e1 ⊗ f1) ⊗ (e2 ⊗ f2)(e3 ⊗ f3) ⊗ (e4 ⊗ f4)) = Φ((e1 ⊗ f1) ⊗ hE(e2, e3)hF (f2, f3)(e4 ⊗ f4))

= (e1 ⊗ hE(e2, e3)e4) ⊗ (f1 ⊗ hF (f2, f3)f4)

= ((e1 ⊗ e2) ⊗ (f1 ⊗ f2))((e3 ⊗ e4) ⊗ (f3 ⊗ f4)),

for e1, e2, e3, e4 ∈ E and f1, f2, f3, f4 ∈ F . Hence it defines a G-equivariant isomorphism of
G-algebras.

§ 2.3.3 | C∞c (X)-algebras

We will now discuss a construction analogous to the notion of C0(X)-algebras, where
C0(X) denotes the space of continuous functions vanishing at infinity on a locally compact
Hausdorff space X, in the C∗-algebra setting. See [Wil07, Appendix C] for more details.

Given an algebra A we write ZM(A) for the centre of the multiplier algebra of A.
Definition 2.32. Let X be a totally disconnected locally compact space. A C∞c (X)-
algebra is an algebra A together with an essential algebra homomorphism C∞c (X) →M(A)

which takes values in ZM(A).
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Let us record the following observation, in analogy to the study of groupoid actions in
the C∗-algebra setting.
Lemma 2.33. Let G be an ample groupoid and let A be a G-algebra. If the multiplication
in A is nondegenerate, then A is canonically a C∞c (G(0))-algebra.

Proof. The essential C∞c (G(0))-module structure on A determines an essential algebra
homomorphism ι ∶ C∞c (G

(0)) →M(A) defined by ι(f)a = f ⋅ a for all a ∈ A.

Let m ∈M(A) be arbitrary, we want to show that ι(f)m =mι(f).

Fix arbitrary a, b ∈ A. Then, using the definition of ι and the linearity of the multiplication
in A, we get

amι(f)b = am(f ⋅ b) = f ⋅ (amb) = a(f ⋅mb) = aι(f)mb.

Hence, amι(f)b = aι(f)mb for all a, b ∈ A. Since the multiplication in A is nondegenerate,
this implies that mι(f) = ι(f)m in M(A) and ι(f) belongs to the center ZM(A).

We also note that if the ample groupoid G = G(0) = X is obtained by viewing a to-
tally disconnected locally compact space X as a groupoid then every C∞c (X)-algebra is
canonically a G-algebra.

§ 2.3.4 | Unitarisation

Recall that at the beginning of this section we introduced G-algebras as non-unital algebra
objects in the category G -Mod. In the main constructions of this work, it will be necessary
to work with a suitable unitarisation of such algebras. We now turn to a discussion of
this process.

Let us first specify what we mean by unital in this context.
Definition 2.34. A unital G-algebra object is a G-algebra A in the sense of Definition
2.26 together with a G-equivariant homomorphism u ∶ C∞c (G

(0)) → A such that u(f)a =
au(f) = f ⋅a for f ∈ C∞c (G(0)) and a ∈ A. A G-equivariant algebra homomorphism between
unital G algebra objects is called unital if it commutes with the unit maps in the obvious
way.

The first basic and immediate example is given by the following.
Example 2.35. Let A = C∞c (G(0)) with the canonical G-action and u = id.
Remark 2.36. The previous example shows already that a unital G-algebra object does
not need to have a unit element in general. For this reason, we speak of unital G-algebra
objects and not of unital G-algebras.
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Definition 2.37. Let A be a G-algebra. The G-unitarisation of A is defined as

A+ = A⊕C∞c (G
(0))

viewed as a G-module with the given action on A and the canonical action on C∞c (G
(0)),

and the multiplication given by

(a, f) ⋅ (b, g) = (ab + g ⋅ a + f ⋅ b, fg)

for a, b ∈ A and f, g ∈ C∞c (G(0)). Here the dot product denotes the C∞c (G(0))-action on A

induced from its G-module structure.

Let us write AlgG(A,B) for the set of all G-equivariant algebra homomorphisms between
G-algebras A,B. If A,B are unital G-algebra objects then we denote by AlguG(A,B) the
set of all unital G-equivariant algebra homomorphisms.

With this notation in place, let us show that the G-unitarisation of a G-algebra satisfies
the following universal property.
Lemma 2.38. Let A be a G-algebra. Then A+ is a unital G-algebra object, and there is
a natural bijection

AlguG(A+,B) ≅ AlgG(A,B)

for every unital G-algebra object B.

Proof. The first claim is clear by construction. Indeed, the embedding C∞c (G
(0)) → A+

into the first summand is a G-equivariant homomorphism which turns A+ into a unital
G-algebra object.

Suppose ϕ ∶ A+ → B is a unital G-equivariant algebra homomorphism. Then its restriction
to A ⊂ A+ yields a G-equivariant algebra homomorphism ϕ∣A ∶ A→ B. Conversely, given a
G-equivariant algebra homomorphism ψ ∶ A→ B, we define a unital G-equivariant algebra
homomorphism ψ+ ∶ A+ → B by

ψ+(a, f) ∶= ψ(a) + u(f),

where u ∶ C∞c (G(0)) → B denotes the unit map of the unital G-algebra B.

One checks directly that ψ+ is an algebra homomorphism, is G-equivariant, and extends
ψ. These constructions are clearly inverse to one another, giving the claimed natural
bijection.
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§ 2.3.5 | Crossed products

The algebraic crossed product A ⋊ G of a G-algebra A can be defined analogously to the
classical construction for discrete groups. We will give the definition and then prove a
universal property, in analogy with the C∗-algebra setting.
Definition 2.39. Let A be a G-algebra. We define the algebraic crossed product A ⋊ G ∶=
A⊗C∞c (G(0)) D(G) as a vector space, with the left action of C∞c (G(0)) on D(G) induced by
the range map. The multiplication in A ⋊ G is determined by

(a⊗ χU)(b⊗ g) = aχU ⋅ b⊗ χU ∗ g

for a, b ∈ A, compact open bisections U ⊆ G and g ∈ D(G).
Lemma 2.40. Let A be a G-algebra. The algebraic crossed product A ⋊ G is an algebra.

Proof. The only thing we need to check is that the multiplication is associative. Let
a, b, c ∈ A and let U,V,W ⊆ G be compact open bisections, we compute

((a⊗ χU)(b⊗ χV ))(c⊗ χW ) = (a(χU ⋅ b) ⊗ χU ∗ χV )(c⊗ χW )

= (a(χU ⋅ b))(χUV ⋅ c) ⊗ (χUV ∗ χW )

= a((χU ⋅ b)(χUV ⋅ c)) ⊗ (χU ∗ χVW )

= (a⊗ χU)(b(χV ⋅ c) ⊗ χVW )

= (a⊗ χU)((b⊗ χV )(c⊗ χW )).

Definition 2.41. Let A be a G-algebra. A covariant representation of (A,G) on an
algebra B is a pair of essential homomorphisms ϕ ∶ A → M(B) and π ∶ D(G) → M(B)

such that ϕ(f ⋅ a)π(g) = ϕ(a)π(f ∗ g) for all f ∈ C∞c (G(0)), a ∈ A,g ∈ D(G) and

ϕ(χU ⋅ a)π(χU) = π(χU)ϕ(a)

for all compact open bisections U ⊆ G and a ∈ A.

The algebraic crossed product admits algebra homomorphisms iA ∶ A → M(A ⋊ G) and
iG ∶ D(G) → M(A ⋊ G) such that iA(a)iG(f) = a ⊗ f for all a ∈ A,f ∈ D(G). Clearly the
maps iA and iG define a covariant representation of (A,G) on A ⋊ G.

The following result states a universal property for the algebraic crossed products.
Proposition 2.42. Let A be a G-algebra. The algebraic crossed product A⋊G is universal
for covariant representations of (A,G), that is, for every algebra B and every covariant
representation (ϕ,π) of (A,G) on B there exists a unique essential algebra homomorphism
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ψ ∶ A ⋊ G →M(B) such that ϕ = ψiA and π = ψiG.

Proof. We define ψ(a⊗f) = ϕ(a)π(f). This gives a well-defined linear map A⋊G →M(B)

by the first part of the covariance condition. Using the second part of the covariance
condition we calculate

ψ(a⊗ χU)ψ(b⊗ χV ) = ϕ(a)π(χU)ϕ(b)π(χV )

= ϕ(a)ϕ(χU ⋅ b)π(χU)π(χV ) = ψ((a⊗ χU)(b⊗ χV ))

for a, b ∈ A and all compact open bisections U,V ⊆ G, and it follows that ψ is a homo-
morphism. It is straightforward to check that ψ is essential, satisfying ϕ = ψiA, π = ψiG,
and since A ⋊ G = iA(A)iG(D(G)) it is uniquely determined.

§ 2.4 | Anti-Yetter-Drinfeld modules
This section is devoted to the study of anti-Yetter-Drinfeld modules over an ample
groupoid G, a concept inspired by the theory developed in the setting of Hopf alge-
bras and quantum groups [Voi08]. In our context, these objects will arise naturally when
dealing with noncommutative equivariant differential forms.

Recall from Example 1.27 that for a given groupoid G its subset of loops

Gad = {α ∈ G ∣ r(α) = s(α)}

is a subgroupoid of G with the same identities. If G is an ample groupoid, since Gad =
(s, r)−1(∆), where ∆ ⊆ G(0) ×G(0) is the diagonal, we see that Gad is a closed subset of G,
and thus a totally disconnected locally compact space with the subspace topology.

Due to Lemma 1.55, a function f ∈ C∞c (Gad) can be represented as a linear combination
of restrictions to Gad of characteristic functions of compact open bisections of G.
Remark 2.43. However, even if such restriction is no longer a compact open bisection
of G, we will often refer to the characteristic function χU of a compact open bisection
U ⊆ G as an element of C∞c (Gad) without explicitly considering U ∩ Gad.

As we have already seen in Example 1.37, Gad is a G-space with the adjoint action

α ⋅ β = αβα−1

for α ∈ G, β ∈ Gad, with anchor map π = r = s ∶ Gad → G(0). According to Proposition 2.28
we therefore obtain a natural G-algebra structure on C∞c (Gad). We will write OG for this
G-algebra in the sequel.
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Definition 2.44. A G-anti-Yetter-Drinfeld module is a G-module M which is also an
essential OG-module such that the module action induces a G-equivariant linear map
OG ⊗C∞c (G(0))M →M . A morphism of G-anti-Yetter-Drinfeld modules is a G-equivariant
linear map which is also OG-linear.

A basic example of a G-anti-Yetter-Drinfeld module is obtained by considering M =

OG ⊗C∞c (G(0)) E for a G-module E, with the diagonal action of G and the action of OG by
pointwise multiplication on the first tensor factor.

One can view G-anti-Yetter-Drinfeld modules equivalently as essential modules over the
crossed product A(G) = OG ⋊ G. This observation is a special case of Proposition 2.42,
note that both OG and D(G) are subalgebras of the multiplier algebra M(A(G)), and
composition with the inclusion maps gives the asserted equivalence. We will frequently
use this identification between G-anti-Yetter-Drinfeld modules and A(G)-modules in the
sequel.

Given a G-anti-Yetter-Drinfeld module M our goal is to define a certain canonical au-
tomorphism T = TM ∶ M → M . We start with M = A(G) = OG ⊗C∞c (G(0)) C

∞
c (G) =

C∞c (Gad ×π,r G), in which case we define T by the formula

T (f)(α,β) = f(α,αβ)

for f ∈ C∞c (Gad ×π,r G), in a similar way as in the discussion of C∞c (G)-comodules.
Lemma 2.45. The map T ∶ A(G) → A(G) defined above is an isomorphism of A(G)-
bimodules.

Proof. It is clear that T is bijective with inverse given by T −1(f)(α,β) = f(α,α−1β). The
left and right OG-module structures on A(G) are given by

(h ⋅ f)(α,β) = h(α)f(α,β), (f ⋅ h)(α,β) = h(β−1αβ)f(α,β)

for h ∈ OG and f ∈ A(G). We thus obtain

(h ⋅ T (f))(α,β) = h(α)f(α,αβ)

= (h ⋅ f)(α,αβ)

= T (h ⋅ f)(α,β)

and

(T (f) ⋅ h)(α,β) = h(β−1αβ)f(α,αβ)

= (f ⋅ h)(α,αβ)
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= T (f ⋅ h)(α,β),

which shows that T is both left and right OG-linear. For g ∈ D(G) we have

(g ⋅ T (f))(α,β) = ∑
γ∈Gr(α)

g(γ)f(γ−1αγ, γ−1αγγ−1β)

= T (g ⋅ f)(α,β)

and

(T (f) ⋅ g)(α,β) = ∑
γ∈Gs(β)

f(α,αβγ−1)g(γ)

= T (f ⋅ g)(α,β),

and it follows that T is left and right D(G)-linear. Combining these observations yields
the claim.

In view of Lemma 2.45 we can define TM ∶ M → M for a G-anti-Yetter-Drinfeld module
M by

TM =mM(T ⊗ id)m−1
M , (2.5)

where mM ∶ A(G) ⊗A(G)M →M is the canonical isomorphism. This defines an automor-
phism of the G-anti-Yetter-Drinfeld module M .
Lemma 2.46. Let G be an ample groupoid and let ϕ ∶M → N be a morphism of G-anti-
Yetter-Drinfeld modules. Then TNϕ = ϕTM .

Proof. Using the canonical isomorphisms mM , mN and the relation mN(id⊗ϕ) = ϕmM

we compute

TNϕ =mN(T ⊗ id)m−1
N ϕ

=mN(T ⊗ id)(id⊗ϕ)m−1
M

=mN(id⊗ϕ)(T ⊗ id)m−1
M

= ϕmM(T ⊗ id)m−1
M

= ϕTM

as required.

In calculations, it is useful to have an explicit formula for the action of the canonical
automorphism. We will only need this for G-anti-Yetter-Drinfeld modules of the form
M = OG⊗C∞c (G(0))E for a G-module E. In this case, recalling (2.5) and following the spirit

65



of the proof of Lemma 2.12, we get

TM(χU ⊗ e) = χU ⊗ χU−1 ⋅ e (2.6)

for any compact open bisection U ⊆ G and e ∈ E.
Example 2.47. Let E = C∞c (G(0)), then the canonical automorphism

T ∶ OG ⊗C∞c (G(0)) C
∞
c (G

(0)) → OG ⊗C∞c (G(0)) C
∞
c (G

(0))

is the identity map. Indeed, recalling the Remark 2.43, the Equation 2.6 and the Example
1.35, for any open and compact bisection U of G we have (U∩Gad)⋅s(U∩Gad) = s(U∩Gad).
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Chapter 3

Equivariant periodic cyclic homology

The main goal of this chapter will be the definition of bivariant equivariant periodic cyclic
homology with respect to an ample groupoid G. We start recalling the construction of the
pro-category. In this context, we define paracomplexes and quasifree algebras. Finally,
we state the main definition of this chapter and discuss some consequences.

§ 3.1 | Projective systems
One of the key aspects of the approach developed by Cuntz and Quillen [CQ97] to the
study of periodic cyclic homology is the enlargement of the framework from algebras
to projective systems of algebras. This generalisation proves convenient for discussing
quasifreeness, even when the focus remains on algebras. One of the reasons to consider
projective systems is that one of the main object we will soon define, the periodic tensor
algebra, is a projective system. In this spirit, we will consider projective systems of
G-modules and G-anti-Yetter-Drinfeld modules.

Most of the subsequent results and definitions are well-known and established in the
literature. Our exposition follows the perspective developed in [CQ97], [Mey99] and
[Voi03].

In the remaining part of this section C will denote an arbitrary additive category.
Definition 3.1. A projective system over C consists of a covariant functor F ∶ Iop → C,
where I is a directed index set viewed as a small category.

In more concrete terms, a projective system over C consists of a directed index set I, a
collection of objects (Vi)i∈I in C, and morphisms pij ∶ Vj → Vi for all j ≥ i, satisfying the
compatibility conditions pijpjk = pik for all k ≥ j ≥ i and pii = idVi

for all i ∈ I.
Definition 3.2. The pro-category pro(C) is the category whose objects are projective
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systems over C, and whose morphism sets are defined by

Morpro(C)(V,W ) ∶= lim
←Ð
j∈J

lim
Ð→
i∈I

MorC(Vi,Wj),

where V = (Vi)i∈I and W = (Wj)j∈J , and the limits are taken in the category of abelian
groups.

Unpacking the above definition, a morphism ϕ ∶ V →W can be described by the data of
a function j ↦ i(j) from J to I, and a family of morphisms {ϕj ∶ Vi(j) →Wj}j∈J in C, such
that the following compatibility condition holds: for any j′ ≥ j, there exists i′ ≥ i(j), i(j′)
such that the diagram

Vi′ Vi(j′) Wj′

Vi(j) Wj

ϕj′

ϕj

commutes.

Moreover, two such families of morphisms {ϕj ∶ Vi(j) → Wj}j∈J and {ϕ′j ∶ Vi′(j) → Wj}j∈J

define the same morphism in pro(C) if there exists a function j ↦ i′′(j) such that i′′(j) ≥
i(j), i′(j) for all j ∈ J , and the following diagram

Vi′(j)

Vi′′(j) Wj

Vi(j)

ϕ′j

ϕj

commutes for each j.
Definition 3.3. A constant pro-object in pro(C) is a projective system indexed by a
singleton set.
Remark 3.4. Any object of C can be viewed as a constant pro-object, and this gives rise
to a fully faithful embedding C ↪ pro(C), which identifies C with the full subcategory of
constant pro-objects inside pro(C).

It will be useful to study pro-objects in comparison with constant pro-objects.
Remark 3.5. From the description of morphisms in the pro-category, we observe that
a morphism ϕ ∶ V → C, where V = (Vi)i∈I is a pro-object and C is a constant pro-object
associated to an object in C, can be represented by a morphism ϕi ∶ Vi → C in C, for some
index i ∈ I.
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In the category pro(C), projective limits always exist. Given a projective system of pro-
objects (Vi)i∈I , where each Vi is itself a projective system (Vij)j∈Ji

in C, the projective
limit of the system (Vi)i in pro(C) can be described as the pro-object associated to the
double-indexed system (Vij)(i,j)∈K , where K ∶= {(i, j) ∣ i ∈ I, j ∈ Ji} with the ordering
defined by declaring (i, j) ≤ (i′, j′) if and only if i ≤ i′, and there exists a morphism
Vi′j′ → Vij in C induced by the morphism Vi′ → Vi.

Moreover, the category pro(C) is canonically additive. In particular, we can form direct
sums in pro(C). Let V = (Vi)i∈I and W = (Wj)j∈J be two pro-objects. Their direct sum
is given by

V ⊕W ∶= (Vi ⊕Wj)(i,j)∈I×J ,

where the index set I × J is ordered using the product ordering, that is, (i, j) ≤ (i′, j′) if
and only if i ≤ i′ and j ≤ j′. The structure maps in this system are defined component-wise
as the direct sums of the corresponding structure maps of V and W .

If, in addition, the category (C,⊗,U) is monoidal, then the pro-category pro(C) inherits
a natural monoidal structure. Given two pro-objects V = (Vi)i∈I and W = (Wj)j∈J , their
tensor product is defined as the pro-object

V ⊗W ∶= (Vi ⊗Wj)(i,j)∈I×J ,

where the index set I ×J is ordered via the product ordering. The structure maps of the
tensor product are given by the tensor products of the corresponding structure maps of
V and W . The unit object in pro(C) is given by the constant pro-object U.

Moreover, any morphism ϕ ∶ V ⊗W → C in pro(C), where C is a constant pro-object,
can be written in the form ϕ = ψ(ϕV ⊗ ϕW ), where ϕV ∶ V → CV and ϕW ∶ W → CW are
morphisms in pro(C) with constant targets and ψ ∶ CV ⊗CW → C is a morphism between
constant pro-objects.

With this tensor product, the category pro(C) becomes an additive monoidal category,
and the embedding functor C ↪ pro(C) is a monoidal functor. The existence of a tensor
product in pro(C) allows us to define algebra objects within this setting.
Definition 3.6. A pro-algebra is an algebra object in pro(C). A pro-algebra homomor-
phism is a homomorphism between pro-algebra objects.

If we apply these general constructions to the category of G-modules we obtain the cat-
egory pro(G -Mod) of pro-G-modules. A morphism in pro(G -Mod) will be called a G-
equivariant pro-linear map. Similarly, we have the category of pro-G-anti-Yetter-Drinfeld
modules.
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According to Proposition 2.25, the category G -Mod is additive monoidal. We then record
the following definition.
Definition 3.7. A pro-G-algebra is an algebra object in pro(G -Mod), in the same way
as G-algebras are algebra objects in G -Mod. An algebra homomorphism f ∶ A → B in
pro(G -Mod) will simply be called a G-equivariant homomorphism.

Clearly, every G-algebra is a pro-G-algebra in a canonical way.

Occasionally we will encounter unital pro-G-algebras. The G-unitarisation A+ of a pro-
G-algebra A is defined in the same way as for G-algebras. Similarly, the construction of
crossed products for G-algebras carries over to pro-G-algebras.

Let C be any additive category.
Definition 3.8. Let K, E and Q be objects in pro(C). An admissible extension is a
diagram of the form

0 K E Q 0
ι

ρ

π

σ

in pro(C) such that ρι = idK, πσ = idQ and ιρ + σπ = idE.

In other words, we require that E decomposes into a direct sum of K and Q in pro(C).

We will write

K E Qι π

or simply 0→K → E → Q→ 0 for an admissible extension.

In the special case where C is G -Mod, we will often use the following.
Definition 3.9. Let K,E and Q be pro-G-algebras. An admissible extension of pro-G-
algebras is an admissible extension 0 → K → E → Q → 0 in pro(G -Mod) such that ι and
π are G-equivariant algebra homomorphism.
Remark 3.10. In the following, we will often describe morphisms between pro-objects
by writing explicit formulas involving “elements” of the objects themselves. While such
notation is not strictly rigorous, since pro-objects, being formal inverse systems, do not
generally possess elements in the usual sense, this approach can be categorically justified.

Indeed, any pro-object V = (Vi)i∈I naturally gives rise to a contravariant functor

hV ∶ C → Set, T ↦ lim
←Ð
i∈I

HomC(T,Vi),

and the Yoneda Lemma asserts that an object is entirely determined by the hom-functor
it represents. In this perspective, an “element” of V corresponds to a choice of T together
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with a compatible family of morphisms T → Vi.

A morphism between two pro-objects V = (Vi) and W = (Wj) is then a natural transfor-
mation

α ∶ hV Ô⇒ hW ,

which consists of a family of maps

αT ∶ lim←Ð
i

MorC(T,Vi) Ð→ lim
←Ð
j

MorC(T,Wj),

natural in the object T ∈ C. Thus, specifying how a morphism sends an “element” x ∈ V to
an element f(x) ∈W amounts to giving a natural transformation between functors, hence
a well-defined morphism in pro(C). This can be rephrased, saying that in many situations
one can embed the category pro(C) in a concrete category of modules over a certain ring.
This is known as the Freyd-Mitchell’s embedding theorem, see [Wei94, Theorem 1.6.1] for
reference.

§ 3.2 | Paracomplexes
In this section, we introduce the notion of a paracomplex in a para-additive category.
This concept will be crucial for the main definition of this chapter.
Definition 3.11. A para-additive category is an additive category C together with a nat-
ural automorphism T of the identity functor id ∶ C → C.

More concretely, we are given a family of invertible morphisms TM ∶M →M indexed by
the objects M in the category C such that ϕTM = TNϕ for all morphisms ϕ ∶M → N . In
the sequel, we will simply write T instead of TM if it is clear from the context.
Remark 3.12. Any additive category is para-additive by setting T = id.

By Lemma 2.46, we know that the category of G-anti-Yetter-Drinfeld modules is para-
additive. This category, together with its pro-category, will serve as the main framework
for our subsequent development.
Definition 3.13. Let C be a para-additive category. A paracomplex C = C0 ⊕ C1 in C
consists of objects C0 and C1 in C, together with morphisms ∂0 ∶ C0 → C1 and ∂1 ∶ C1 → C0

such that the differential

∂ ∶=
⎛

⎝

0 ∂1

∂0 0
⎞

⎠
∶ C → C1 ⊕C0 ≅ C

satisfies the relation
∂2 = id−T,
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where T ∶ C → C is the automorphism associated with C.

A chain map ϕ ∶ C →D between two paracomplexes is a morphism in C that preserves the
Z2-grading and commutes with the differentials, that is, ϕ∂ = ∂ϕ.
Remark 3.14. Since the differential ∂ in the definition of a paracomplex, in general, is
not a differential in the usual sense of homological algebra, in fact it does not square to
zero but instead satisfies ∂2 = id−T , it does not make sense to speak of the homology of a
paracomplex in the standard way. However, one can still define the notion of homotopy
equivalence between paracomplexes, using the standard formulas for chain homotopies.
That is, two paracomplexes C and D are said to be homotopy equivalent if there exist
chain maps f ∶ C → D and g ∶ D → C such that gf and fg are homotopic to the identity
on C and the identity on D, respectively.

The paracomplexes we are interested in arise from paramixed complexes in the following
sense.
Definition 3.15. Let C be a para-additive category. A paramixed complex M in C is
a sequence of objects Mn together with differentials b of degree −1 and B of degree +1
satisfying b2 = 0, B2 = 0 and

[b,B] = bB +Bb = id−T.

This definition is crucial, as we will see, in the next section, that the equivariant version
of noncommutative differential forms gives rise to a paracomplex. In that context, it
is still possible to define Hochschild homology in the usual way, since the differential b,
which corresponds to the Hochschild operator, satisfies the identity b2 = 0.

Nevertheless, in this thesis, we are not concerned with Hochschild homology. Our focus
will be entirely on periodic cyclic homology.

§ 3.3 | Equivariant differential forms
We will now define the space of equivariant noncommutative differential forms over a
pro-G-algebra. Throughout this section, we will review constructions that are already
known in the literature. More details and motivations for these topics can be found in
[CQ95a]. We will follow the notation used in [Voi03].
Definition 3.16. Let A be a pro-G-algebra. We define the space of noncommutative
differential n-forms over A by the iterated tensor products over C∞c (G(0)) given by

Ωn
G(0)(A) = A

+ ⊗C∞c (G(0)) A
⊗

C∞c (G(0))
n
≅ A

⊗
C∞c (G(0))

n+1
⊕A

⊗
C∞c (G(0))

n
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for all n > 0, where A+ denotes the G-unitarisation of A as defined in Section 2.3.4 and
we set Ω0

G(0)(A) = A.

Using the definition of G-unitarisation and the essentiality of A, the space of noncommu-
tative n-forms over A decomposes as

Ωn
G(0)(A) = (A⊕C

∞
c (G

(0))) ⊗C∞c (G(0)) A
⊗

C∞c (G(0))
n
≅ A

⊗
C∞c (G(0))

n+1
⊕A

⊗
C∞c (G(0))

n
.

Elements of Ωn
G(0)(A) contained in the first summand of the above decomposition, namely,

tensors of the form a0 ⊗ a1 ⊗ ⋯ ⊗ an with a0, a1, . . . , an ∈ A, will usually be written as
a0da1⋯dan. Similarly, elements in the second summand will be denoted by da1⋯dan. If
we want to treat both cases simultaneously, we shall write ⟨a0⟩da1⋯dan, following the
notation used in [Mey99].

We always view Ωn
G(0)(A) as a pro-G-module with the diagonal action.

The pro-G-module Ωn
G(0)(A) becomes an A-A-bimodule object in pro(G -Mod) with the

left A-module structure given by

a ⋅ (⟨a0⟩da1⋯dan) = a⟨a0⟩da1⋯dan,

and the right A-module determined by the Leibniz rule, that is,

(⟨a0⟩da1⋯dan) ⋅ a = ⟨a0⟩da1⋯d(ana) +
n−1
∑
j=1
(−1)n−j⟨a0⟩da1⋯d(ajaj+1)⋯danda

+ (−1)n⟨a0⟩a1da2⋯danda,

for a ∈ A and ⟨a0⟩da1⋯dan ∈ Ωn
G(0)(A).

Remark 3.17. The A-A-bimodule Ωn
G(0)(A) can be identified with the n-fold tensor prod-

uct of Ω1
G(0)(A) over A in the category of pro-C∞c (G(0))-modules.

According to the Remark 3.17, one defines a map

Ωn
G(0)(A) ⊗Ωm

G(0)(A) → Ωn+m
G(0) (A)

by considering the natural projection

Ω1
G(0)(A)

⊗An ⊗Ω1
G(0)(A)

⊗Am → Ω1
G(0)(A)

⊗An ⊗A Ω1
G(0)(A)

⊗Am = Ω1
G(0)(A)

⊗An+m.

Definition 3.18. We define ΩG(0)(A) as the direct sum ⊕n≥0 Ωn
G(0)(A).

Remark 3.19. A noncommutative differential form ω is called homogeneous if it belongs
to Ωn

G(0)(A) for some n ∈ N.
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The maps
Ωn
G(0)(A) ⊗Ωm

G(0)(A) → Ωn+m
G(0) (A)

assemble to give a multiplication over ΩG(0)(A), which becomes a pro-G-algebra in a
natural way.

We also set the C∞c (G(0))-linear operator d ∶ Ωn
G(0)(A) → Ωn+1

G(0)(A) by

d(a0da1⋯dan) = da0da1⋯dan and d(da1⋯dan) = 0,

for a0, a1, . . . , an ∈ A.
Remark 3.20. Observe that, by construction, one has that d2 = 0.

Next, we introduce the G-equivariant version of noncommutative differential forms over
a pro-G-algebra A.
Definition 3.21. We define

Ω0
G(A) ∶= OG ⊗C∞c (G(0)) A and Ωn

G(A) ∶= OG ⊗C∞c (G(0)) Ωn
G(0)(A)

for n > 0, where we recall that OG is the G-algebra of functions on Gad with the adjoint
action.

This becomes a pro-G-module with the diagonal action, and a pro-OG-module with the
multiplication action on the first tensor factor. These actions turn Ωn

G(A) into a pro-G-
anti-Yetter-Drinfeld module. We write ΩG(A) for the direct sum of all Ωn

G(A) for n ≥ 0.

We need several operators on G-equivariant differential forms. We start with the equiv-
ariant version of the differential operator d defined above.
Definition 3.22. We define dG ∶ Ωn

G(A) → Ωn+1
G (A) by

dG(f ⊗ ω) = f ⊗ dω,

where f ∈ C∞c (Gad) and ω ∈ Ωn
G(0)(A).

Next we introduce an equivariant version of the Hochschild operator b.
Definition 3.23. The equivariant Hochschild operator bG ∶ Ωn

G(A) → Ωn−1
G (A) is defined

by

bG(f ⊗ ωda) = (−1)n−1(f ⊗ ωa − (id⊗µ)(T (f ⊗ a) ⊗ ω)

for n > 1, where µ denotes multiplication in ΩG(0)(A) and T is the canonical map and by
bG = 0 for n = 0.
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If U ⊆ G is a compact open bisection, then we can write this in the form

bG(χU ⊗ ωda) = (−1)n−1(χU ⊗ ωa − χU ⊗ (χU−1 ⋅ a)ω),

or, using the Leibniz rule, we can expand this explicitly as

bG(χU ⊗ ⟨a
0⟩da1⋯dan) = χU ⊗ ⟨a

0⟩a1da2⋯dan

+
n−1
∑
j=1
(−1)jχU ⊗ ⟨a0⟩da1⋯d(ajaj+1)⋯dan

+ (−1)nχU ⊗ (χU−1 ⋅ an)⟨a0⟩da1⋯dan−1,

for ⟨a0⟩a1da2⋯dan ∈ Ωn
G(0)(A).

Lemma 3.24. The operator bG is a differential, that is, b2
G = 0.

Proof. Using the formulas developed above, we can calculate

b2
G(χU ⊗ ωda

1da2) =bG((−1)n+1(χU ⊗ ((ωda
1)a2 − (χU−1 ⋅ a2)ωda1)))

=(−1)n+1bG(χU ⊗ (ωd(a
1a2) − ωa1da2 − (χU−1 ⋅ a2)ωda1))

=(−1)n+1bG(χU ⊗ ωd(a
1a2) − χU ⊗ ωa

1da2 − χU ⊗ (χU−1 ⋅ a2)ωda1)

=(−1)n+1(−1)n(χU ⊗ ((ωa1a2 − (χU−1 ⋅ a1a2)ω)

− (ωa1a2 − (χU−1 ⋅ a2)ωa1)

− ((χU−1 ⋅ a2)ωa1 − (χU−1 ⋅ a1)(χU−1 ⋅ a2)ω))) = 0,

where U ⊆ G is a compact open bisection.

Starting from dG and bG we define two more operators.
Definition 3.25. Define the G-equivariant Karoubi operator κG by

κG = id−(bGdG + dGbG),

and the G-equivariant Connes operator BG by

BG =
n

∑
j=0
κjGdG

on Ωn
G(0)(A) for n ≥ 0.

Lemma 3.26. The operator BG is a differential, that is, B2
G = 0.
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Proof. Using d2
G = 0 we see that dG and κG commute. Indeed we compute

dGκG = dG(id−(bGdG + dGbG))
= dG − dGbGdG − d

2
GbG

= dG − dGbGdG − bGd
2
G

= (id−(bGdG + dGbG))dG
= κGdG,

and then we conclude that B2
G = 0.

We can write explicit formulas for κG and BG. For n > 0 and a compact open bisection
U ⊆ G we obtain

κG(χU ⊗ ωda) = (−1)n−1χU ⊗ (χU−1 ⋅ da)ω,

and for n = 0 we get κG(χU ⊗ a) = χU ⊗ χU−1 ⋅ a. For BG one calculates

BG(χU ⊗ a
0da1⋯dan) =

n

∑
i=0
(−1)niχU ⊗ (χU−1 ⋅ (dan+1−i⋯dan))da0⋯dan−i.

Recalling the discussion of Section 2.4, we remark that the canonical operator T for
ΩG(A) is given by

T (χU ⊗ ω) = χU ⊗ χU−1 ⋅ ω.

All the operators introduced above are morphisms of pro-G-anti-Yetter-Drinfeld modules,
and therefore commute with T by Lemma 2.46.

The following Lemma, which can be proved in a similar way as in the group case, see
[Voi07, Lemma 7.2], collects some important properties of the operators defined so far.
Lemma 3.27. The following identities hold on Ωn

G(A):

(i) κn+1
G dG = TdG;

(ii) κnG = T + bGκ
n
GdG;

(iii) bGκnG = bGT ;

(iv) κn+1
G = (id−dGbG)T ;

(v) (κn+1
G − T )(κnG − T ) = 0;

(vi) BGbG + bGBG = id−T .

Proof. The first identity follows directly from the explicit formula for κG. Using iteratively
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the explicit formula for κG again, we compute

κnG(χU ⊗ a
0da1⋯dan) = χU ⊗ χU−1 ⋅ (da1⋯dan)a0

= χU ⊗ χU−1 ⋅ (a0da1⋯dan) + (−1)nbG(χU ⊗ χU−1 ⋅ (da1⋯dan)da0)

= T (χU ⊗ a
0da1⋯dan) + bGκ

n
GdG(χU ⊗ a

0da1⋯dan),

and

κnG(χU ⊗ da
1⋯dan) = χU ⊗ χU−1 ⋅ (da1⋯dan)

= T (χU ⊗ da
1⋯dan),

which prove (ii). To prove the third identity, apply bG to both sides of (ii) and use that
b2
G = 0. To prove (iv), apply κG to both sides of (ii) and use (i) to get

κn+1
G = κGT + κGbGκ

n
GdG

= κGT + bGκ
n+1
G dG

= κGT + bGTdG

= κGT + bGdGT

= (id−dGbG)T,

where we used the fact that bG commutes with κG and dG commutes with T . The identity
(v) is a consequence of (ii) and (iv). Indeed, using both, we get

(κn+1
G − T )(κnG − T ) = (T − dGbGT − T )(T + bGκ

n
GdG − T )

= −dGbGTbGκ
n
GdG

= −dGb
2
GTκ

n
GdG

= 0,

since b2
G = 0. Finally, to prove (vi), using the definition of BG, we directly compute

BGbG + bGBG =
n−1
∑
j=0

κjGdGbG +
n

∑
j=0
κjGbGdG

=
n−1
∑
j=0

κjG(dGbG + bGdG) + κ
n
GbGdG

=
n−1
∑
j=0

κjG(id−κG) + κnGbGdG

= id−κnG + κnGbGdG
= id−κnG(id−bGdG)
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= id−κnG(κG + dGbG)
= id−κn+1

G − κnGdGbG

= id−T + dGbGT − TdGbG − bGκnGd2
GbG

= id−T,

where we use (iv), (ii), and the fact that T commutes with bG and dG.

Observe that the final formula of Lemma 3.27, with Lemma 3.24 and Lemma 3.26, yields
the following.
Proposition 3.28. Let A be a pro-G-algebra. The space ΩG(A) together with the opera-
tors bG and BG defines a paramixed complex in the category of pro-G-anti-Yetter-Drinfeld
modules.

§ 3.4 | Quasifree pro-G-algebras
In [CQ95a], one of the motivations to introduce and study quasifree algebras is that they
are, in a broad sense, a noncommutative analogue of smooth algebras or manifolds. The
link is given by the good behaviour of these algebras with nilpotent extensions. Such
behaviour characterises smooth algebras in the commutative setting. Let us next discuss
the main definitions and facts related to quasifreeness. For further background infor-
mation in the non-equivariant case, we refer to [Mey99]. We are interested in quasifree
pro-G-algebras. In the following, we will review and adapt some of the definitions and
results in [Voi03], [Voi07].

We endow the pro-G-module ΩG(0)(A) of differential forms over a pro-G-algebra A with
the Fedosov product, defined by

ω ○ η ∶= ωη − (−1)mdωdη

for forms ω ∈ Ωm
G(0)(A) and η ∈ Ωn

G(0)(A).
Remark 3.29. The Fedosov product preserves the forms of even degree.

The second ingredient in Cuntz and Quillen’s approach to periodic cyclic homology is the
periodic tensor algebra of a pro-algebra.
Definition 3.30. Let A be a pro-G-algebra. The periodic tensor algebra T A of A is the
pro-G-algebra obtained as the projective limit of the projective system (T A/(JA)n)n∈N,
where T A/(JA)n = A⊕Ω2

G(0)(A)⊕⋯⊕Ω2n
G(0)(A) and the structure maps are the canonical

projections. Similarly one defines the pro-G-algebra JA as the projective limit of the
projective system (JA/(JA)n)n∈N, where JA/(JA)n = Ω2

G(0)(A) ⊕⋯⊕Ω2n
G(0)(A).
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The natural projection from T A to the first term of the projective system gives a G-
equivariant homomorphism τA ∶ T A → A. Moreover, for every n ∈ N we have natural
inclusions A→ A⊕Ω2

G(0)(A) ⊕⋯⊕Ω2n
G(0)(A), and these maps assemble to a G-equivariant

pro-linear section σA for τA. Then we obtain an admissible extension

JA T A A
ιA τA

of pro-G-algebras.

We discuss some properties of these two objects we have introduced. We will start with
some preliminary definitions.
Definition 3.31. Let N be a pro-G-algebra, and let mn ∶ N

⊗
C∞c (G(0))

n
→ N denote the

n-fold iterated multiplication. We say that N is k-nilpotent for some k ∈ N if mk = 0. If
N is k-nilpotent for some k ∈ N, we say that N is nilpotent.

Moreover, we say that N is locally nilpotent if for every G-equivariant pro-linear map
f ∶ N → C with constant target C, there exists n ∈ N such that fmn = 0.
Definition 3.32. An admissible extension

K E Q

of pro-G-algebras is called locally nilpotent (respectively k-nilpotent, nilpotent) if the
kernel K is locally nilpotent (respectively k-nilpotent, nilpotent) as a pro-G-algebra.
Lemma 3.33. The pro-G-algebra JA is locally nilpotent.

Proof. Let l ∶ JA → C be a G-equivariant pro-linear map with constant target. By
Remark 3.5, there exists n ∈ N such that l factors through the quotient JA/(JA)n. By
definition of the Fedosov product, the algebra JA/(JA)n is n-nilpotent. It follows that
lmn
JA = 0, as desired.

Lemma 3.34. Let N be a locally nilpotent pro-G-algebra and let A be any pro-G-algebra.
Then the tensor product A⊗C∞c (G(0))N is locally nilpotent as a pro-G-algebra.

Proof. Let f ∶ A⊗C∞c (G(0))N → C be a G-equivariant pro-linear map with constant target.
By the description of tensor products in the pro-category, this map can be written in the
form

f = g(fA ⊗ fN),

where fA ∶ A → C1 and fN ∶ N → C2 are G-equivariant pro-linear maps with constant
targets, and g ∶ C1 ⊗C∞c (G(0)) C2 → C is a morphism of constant pro-G-algebras.
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Since N is locally nilpotent, there exists n ∈ N such that fNmn
N = 0. Since the multipli-

cation is well-defined, we write

mn
A⊗

C∞c (G(0))
N =m

n
A ⊗m

n
N .

Then it follows that
fmn

A⊗
C∞c (G(0))

N = g (fAm
n
A ⊗ fNm

n
N) = 0.

Hence A⊗C∞c (G(0))N is locally nilpotent.

Definition 3.35. A G-equivariant pro-linear map l ∶ A → B between pro-G-algebras is
called a G-lonilcur if its curvature, defined as

ωl ∶ A⊗C∞c (G(0)) A→ B, ωl(a, b) = l(ab) − l(a)l(b),

is locally nilpotent. That is, for every G-equivariant pro-linear map f ∶ B → C with
constant range C, there exists n ∈ N such that

fmn
Bω
⊗n
l = 0.

Example 3.36. Every G-equivariant homomorphism f ∶ A → B between pro-G-algebras
A and B is a G-lonilcur. Indeed, being a homomorphism, one has ωf(a1, a2) = 0 for all
a1, a2 ∈ A.
Example 3.37. The canonical map σA ∶ A→ T A is a G-lonilcur. Its curvature ωσA

(a, b) =

σA(ab) − σA(a) ○ σA(b) takes values in JA, which is locally nilpotent by Lemma 3.33.
Hence, we conclude that σA is a lonilcur.

The pro-G-algebra T A together with the G-equivariant pro-linear map σA ∶ A → T A

satisfies the following universal property, which can be compared to the universal property
satisfied by the usual tensor algebra.
Proposition 3.38. Let A and B be pro-G-algebras. For any G-equivariant pro-linear
map l ∶ A → B which is a G-lonilcur, there exists a unique G-equivariant homomorphism
JlK ∶ T A→ B of pro-G-algebras such that the diagram

A T A

B

σA

l
JlK

commutes.
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Proof. Define a G-equivariant pro-linear map ϕkl ∶ Ω2k
G(0)(A) → B by

ϕkl (⟨a
0⟩da1⋯da2k) = l(⟨a0⟩)ωl(a

1, a2)⋯ωl(a
2k−1, a2k)

for all k ≥ 0, where ωl is the curvature of l, and l is extended naturally to a G-equivariant
pro-linear map A+ → B+.

Let f ∶ B → C be a G-equivariant pro-linear map with constant range. Define h ∶

B+⊗C∞c (G(0))B → C by h(b0⊗b1) ∶= f(b0b1). We may write h = g(f1⊗f2) with f1 ∶ B+ → C,
f2 ∶ B → C and g ∶ C ⊗C∞c (G(0)) C → C.

Since l is a lonilcur, there exists n ∈ N such that f2mn
Bω
⊗n
l = 0. Thus, for k ≥ n,

fϕkl = h (ϕ
k−n
l ⊗mn

Bω
⊗n
l ) = g (f1ϕ

k−n
l ⊗ f2m

n
Bω
⊗n
l ) = 0.

Now write B = (Bi)i as a projective system. For each i, let fi ∶ B → Bi be the natural
projection. By the above, there exists ni ∈ N such that fiϕkl = 0 for all k ≥ ni. Define the
map

JlKi ∶= fi (
ni−1
⊕
j=0

ϕjl) ∶
ni−1
⊕
j=0

Ω2j
G(0)(A) → Bi.

These maps JlKi determine a morphism of projective systems (T A/(JA)n)n → (Bi)i, and
hence define a G-equivariant pro-linear map JlK ∶ T A→ B.

It is straightforward to check that JlK is a homomorphism and satisfies JlKσA = l. Moreover,
the definition of the Fedosov product implies the uniqueness of such a homomorphism.

The periodic tensor algebra plays a central role in the definition of quasifree pro-G-
algebras.
Definition 3.39. A pro-G-algebra R is called quasifree if there exists a G-equivariant
splitting homomorphism R → T R for the canonical projection τR.
Proposition 3.40. Let A be any pro-G-algebra. Then the periodic tensor algebra T A is
quasifree.

Proof. We prove the claim by constructing a G-equivariant splitting homomorphism for
the canonical projection τT A ∶ T T A→ T A.

To this end, we use the universal property of the periodic tensor algebra T A. Consider
the G-equivariant pro-linear map σ2

A ∶= σT AσA ∶ A→ T T A.
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We first show that σ2
A is a G-lonilcur. Recall that the Fedosov product satisfies

σA(x) ○ σA(y) = σA(x)σA(y) − dσA(x)dσA(y),

where the multiplication σA(x)σA(y) refers to the product in A, viewed as degree zero
forms.

Thus, observing that

σA(x)σA(y) − dσA(x)dσA(y) = σA(xy) − dσA(x)dσA(y),

we compute the curvature of σ2
A as follows

ωσ2
A
(x, y) = σ2

A(xy) − σ
2
A(x) ○ σ

2
A(y)

= σT A(σA(xy)) − σT A(σA(x) ○ σA(y)) + dσ
2
A(x)dσ

2
A(y)

= σT A(ωσA
(x, y)) + dσ2

A(x)dσ
2
A(y).

Now consider the G-equivariant pro-linear map σA = τT Aσ2
A. Since τT A is a homomor-

phism, we have ωσA
= τT Aωσ2

A
.

Let l ∶ T T A → C be a G-equivariant pro-linear map with constant target C. Composing
with σT A gives k ∶= lσT A ∶ T A→ C. Since σA is a lonilcur, there exists n ∈ N such that

kmn
T Aω

⊗n
σA
= kmn

T Aτ
⊗n
T Aω

⊗n
σ2

A

= τT Akm
n
T T Aω

⊗n
σ2

A

= 0.

Moreover, since T T A is constructed as a projective limit, the map l factors through some
quotient T T A/(J (T A))m for some m ∈ N. Therefore,

lmmn
T T Aω

⊗mn
σ2

A

= 0,

showing that σ2
A is a lonilcur.

By the universal property of T A, there exists a unique G-equivariant homomorphism
Jσ2

AK ∶ T A→ T T A such that Jσ2
AKσA = σ2

A. It follows that

τT AJσ2
AKσA = τT AσT AσA = σA,

and by uniqueness in the universal property of T A, we conclude that τT AJσ2
AK = idT A.

Hence, T A admits a G-equivariant splitting of τT A, which proves that T A is quasifree.
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We list a number of equivalent characterisations of the class of quasifree pro-G-algebras.
Theorem 3.41. Let R be a pro-G-algebra. Then the following conditions are equivalent:

(i) R is quasifree;

(ii) There exists a G-equivariant pro-linear map ϕ ∶ R → Ω2
G(0)(R) satisfying

ϕ(xy) = ϕ(x)y + xϕ(y) − dxdy

for all x, y ∈ R;

(iii) There exists a G-equivariant pro-linear map ∇ ∶ Ω1
G(0)(R) → Ω2

G(0)(R) satisfying

∇(xω) = x∇(ω), ∇(ωx) = ∇(ω)x − ωdx

for all x ∈ R, ω ∈ Ω1
G(0)(R);

(iv) The R-bimodule Ω1
G(0)(R) is projective in the category pro(G-Mod).

Remark 3.42. We observe that this result can be extended to a longer list of equivalent
statements. We invite the reader to compare this with [CQ95b, Proposition 7.1], [Mey99,
Definition and Lemma A.15] and, for the equivariant case, with [Voi07, Theorem 6.5].
We will give a sketch of the proof, since most of the details are a translation of the group
equivariant case.

Sketch of the proof of Theorem 3.41. (i) ⇔ (ii): Assume R is quasifree. Then there
exists a G-equivariant splitting homomorphism v ∶ R → T R of the canonical projection
τR ∶ T R → R. In particular, v factors through the quotient T R/(JR)2 ≅ R ⊕ Ω2

G(0)(R)

equipped with the Fedosov product. Any section v must be of the form v = σR + ϕ,
for some G-equivariant pro-linear map ϕ ∶ R → Ω2

G(0)(R). To make this map an algebra
homomorphism, we must require

0 =(σR + ϕ) (xy) − (σR + ϕ) (x) ○ (σR + ϕ) (y)
=σR(xy) + ϕ(xy) − σR(x)σR(y) + dσR(x)dσR(y) − σR(x)ϕ(y) + dσR(x)dϕ(y)

− ϕ(x)σR(y) + dϕ(x)dσR(y) − ϕ(x)ϕ(y) + dϕ(x)dϕ(y)

=ϕ(xy) − xϕ(y) − ϕ(x)y + dxdy,

where most of the elements vanish because they are higher differential forms. This yields
the identity

ϕ(xy) = ϕ(x)y + xϕ(y) − dxdy.

Conversely, given such a map ϕ, the assignment v = σR+ϕ defines a G-equivariant algebra
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homomorphism v ∶ R → T R/(JR)2 that splits the projection. Composing with the
canonical inclusion T R/(JR)2 ↪ T R gives a splitting R → T R, showing that R is
quasifree.

(ii) ⇔ (iii): Suppose ϕ ∶ R → Ω2
G(0)(R) is a G-equivariant pro-linear map satisfying

ϕ(xy) = ϕ(x)y + xϕ(y) − dxdy. Then define ∇ ∶ Ω1
G(0)(R) → Ω2

G(0)(R) on generators by

∇(xdy) ∶= ϕ(x)y − xdy,

and extend linearly. One checks that ∇ is well-defined and satisfies the relations

∇(xω) = x∇(ω), ∇(ωx) = ∇(ω)x − ωdx,

which define a bimodule map.

Conversely, if such a map ∇ exists, define ϕ ∶ R → Ω2
G(0)(R) by ϕ(x) ∶= ∇(dx). Then the

bimodule properties of ∇ imply:

ϕ(xy) = ∇(d(xy)) = ∇(xdy + dxy) = x∇(dy) + ∇(dx)y = xϕ(y) + ϕ(x)y − dxdy.

(ii) ⇔ (iv): Consider the short exact sequence of pro-G-modules

0Ð→ Ω2
G(0)(R)

i
Ð→ R+ ⊗C∞c (G(0)) R⊗C∞c (G(0)) R

+ p
Ð→ Ω1

G(0)(R) Ð→ 0,

with R-R-bimodule homomorphisms defined by

i(⟨x⟩dydz) = ⟨x⟩y ⊗ z ⊗ χU − ⟨x⟩ ⊗ yz ⊗ χU + ⟨x⟩ ⊗ y ⊗ z

and
p(⟨x⟩ ⊗ y ⊗ ⟨z⟩) = (⟨x⟩dy)⟨z⟩,

where U ⊆ G(0) and its characteristic function is an identity for x, y and z.

Then Ω1
G(0)(R) is a projective R-R-bimodule if and only if there exists an R-R-bimodule

homomorphism ρ ∶ R+ ⊗C∞c (G(0)) R⊗C∞c (G(0)) R
+ → Ω2

G(0)(R) such that ρi = id.

Moreover, such bimodule homomorphisms ρ correspond bijectively to G-equivariant pro-
linear maps ϕ ∶ R → Ω2

G(0)(R), via the assignment ϕ(x) ∶= ρ(χU ⊗ x ⊗ χU), for U ⊆ G(0)

such that χU ⋅ x = x. This correspondence shows that the existence of a splitting ρ is
equivalent to the existence of a map ϕ satisfying the identity

ϕ(xy) = ϕ(x)y + xϕ(y) − dxdy.
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Thus, the projectivity of Ω1
G(0)(R) is equivalent to the existence of such a G-equivariant

pro-linear map ϕ.

Lemma 3.43. The trivial G-algebra C∞c (G(0)) is quasifree.

Proof. Let f ∈ C∞c (G(0)) and define ϕ(f) = 2fdχUdχU − dfdχU , where χU is the charac-
teristic function of a compact open subset U ⊆ G(0) such that χUf = f . This does not
depend on the choice of U , and one checks that ϕ satisfies condition (ii) in Theorem
3.41.

We now study universal locally nilpotent extensions of pro-G-algebras. These extensions
play an important conceptual role in the theory of equivariant periodic cyclic homology.
Definition 3.44. Let A be a pro-G-algebra. A universal locally nilpotent extension of A
is an admissible extension of pro-G-algebras

N R A

such that N is locally nilpotent and R is quasifree.

We first fix the notion of homotopy in our setting.
Definition 3.45. Let A be a pro-G-algebra. We denote by A[0,1] the pro-G-algebra
A ⊗ C∞([0,1]) of smooth functions on the unit interval with values in A, equipped with
the G-action on the first element.
Definition 3.46. Let A and B be pro-G-algebras. A G-equivariant homotopy between
two G-equivariant homomorphisms f0, f1 ∶ A→ B is a G-equivariant homomorphism

Φ ∶ A→ B[0,1]

such that for all t ∈ [0,1], the evaluation map evt ∶ B[0,1] → B induces a G-equivariant
homomorphisms Φt ∶= evt Φ ∶ A → B satisfying Φ0 = f0 and Φ1 = f1. We say that f0 and
f1 are G-equivariant homotopic if such a map Φ exists.

The terminology ‘universal’ is justified by the following universal property.
Proposition 3.47. Let

N R Aι π

be a universal locally nilpotent extension of the pro-G-algebra A. Let

K E Qi p

be any other locally nilpotent extension such that there exists a G-equivariant homomor-
phism ϕ ∶ A → Q. Then there exist G-equivariant homomorphisms ξ ∶ N → K and
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ψ ∶ R → E such that the following diagram commutes:

0 N R A 0

0 K E Q 0

ι

ξ

π

ψ ϕ

i p

Moreover, the homomorphisms ξ and ψ are unique up to G-equivariant homotopy. Let
(ξt, ψt, ϕt) for t = 0,1 be G-equivariant homomorphisms of extensions and let Φ ∶ A →
Q[0,1] be a G-equivariant homotopy connecting ϕ0 and ϕ1. Then Φ can be lifted to a
G-equivariant homotopy (Ξ,Ψ,Φ) between (ξ0, ψ0, ϕ0) and (ξ1, ψ1, ϕ1).

Proof. Since R is quasifree, let v ∶ R → T R be a G-equivariant splitting of τR. Choose
a G-equivariant pro-linear section s ∶ Q → E. Then sϕπ ∶ R → E is a G-equivariant pro-
linear map, and since p(sϕπ) = ϕπ is a homomorphism and the sequence is exact, the
curvature of sϕπ takes values in K. As K is locally nilpotent, sϕπ is a G-lonilcur. By the
universal property of T R, there exists a G-equivariant homomorphism JsϕπK ∶ T R → E

with JsϕπKσR = sϕπ. Define ψ ∶= JsϕπKv, which satisfies pψ = ϕπ. Moreover, ψ(N) ⊆ K,
so it restricts to a G-equivariant homomorphism ξ ∶ N →K, yielding the desired morphism
of extensions.

The assertion that ψ and ξ are uniquely defined up to homotopy follows by applying the
first part of the proof to the homotopy Φ ∶ A→ Q[0,1].

We can now summarise what we have done in this section with the following result
Proposition 3.48. Let A be a pro-G-algebra. The extension 0 → JA → T A → A → 0 is
a universal locally nilpotent extension of A.

§ 3.5 | The equivariant X-complex
A further ingredient in the definition of periodic cyclic homology introduced by Cuntz
and Quillen [CQ95b] is the construction of the X-complex of a pro-algebra A. The
X-complex is obtained by truncating the bicomplex used to define the periodic cyclic
homology in the classical setting. For most pro-algebras A, the chain complex X(A) can
give less information than expected because it ignores all the higher levels. For quasi-free
pro-algebras, however, there is no such additional information above degree 1, and the
X-complex encodes all the relevant information. In this section, we will define the G-
equivariant version of the X-complex. The main sources for this are [Voi03] and [Voi07].
The definition in the groupoid case is similar to the group case. We will give the definition
and state the main interesting features of this object.
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We now return to the paramixed complex ΩG(A) of G-equivariant differential forms over
a pro-G-algebra A.
Definition 3.49. Let A be a pro-G-algebra. We define the Hodge tower associated to
ΩG(A) by defining the n-th level as

θnΩG(A) =
n−1
⊕
j=0

Ωj
G(A) ⊕Ωn

G(A)/bG(Ωn+1
G (A)).

The operators dG and bG descend to θnΩG(A) as follows

bG ∶ θ
nΩG(A) → θnΩG(A)

(ω0, ω1, . . . , [ωn]) ↦ (bG(ω
1), bG(ω

2), . . . , bG(ω
n), [0]),

and

dG ∶ θ
nΩG(A) → θnΩG(A)

(ω0, ω1, . . . , [ωn]) ↦ (0, dG(ω0), . . . , dG(ω
n−2), [dG(ω

n−1)]),

where ωj ∈ Ωj
G(A) for j = 0, . . . , n − 1 and [ωn] ∈ Ωn

G(A)/bG(Ωn+1
G (A)). Observe that the

first map is well-defined since b2
G = 0. Similarly, it is true for κG and BG. Using the natural

grading into even and odd forms together with the last relation in Lemma 3.27, we see
that θnΩG(A) together with the boundary operator BG + bG becomes a pro-paracomplex
of G-anti-Yetter-Drinfeld modules.

For m ≥ n there exists a natural chain map θmΩG(A) → θnΩG(A) given by the obvious
projection. By definition, the Hodge tower θΩG(A) of A is the projective limit of the
projective system (θnΩG(A))n∈N obtained in this way.
Definition 3.50. Let A be a pro-G-algebra. The equivariant X-complex XG(A) of A is
the pro-paracomplex θ1ΩG(A). Explicitly, we have

XG(A) ∶ Ω0
G(A) Ω1

G(A)/bG(Ω2
G(A))

♮dG

bG

where ♮ ∶ Ω1
G(A) → Ω1

G(A)/bG(Ω2
G(A)) denotes the canonical projection.

Remark 3.51. An important difference with the classical setting is that the equivariant
X-complex XG(A) is typically not a chain complex but only a paracomplex. This is again
a consequence of the relation (iv) in Lemma 3.27.

A notable exception to the previous Remark is the case when A = C∞c (G(0)) is the trivial
G-algebra.
Lemma 3.52. The equivariant X-complex XG(C∞c (G(0))) of the trivial G-algebra C∞c (G(0))
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identifies canonically with
OG 0

that is, it is equal to the trivial supercomplex OG[0].

Proof. By definition of the equivariant X-complex, the even part of XG(C∞c (G(0))) is
given by OG ⊗C∞c (G(0)) C∞c (G(0)) ≅ OG.

Every element in the odd part ofXG(C∞c (G(0))) can be represented as a linear combination
of terms of the form χU ⊗ dχV and χU ⊗ χV dχV for compact open bisections U ⊆ G
and compact open subsets V ⊆ G(0). Moreover, the canonical map T associated with
OG ⊗C∞c (G(0)) C

∞
c (G

(0)) ≅ OG equals the identity, compare with the relation 2.6 and recall
that we are considering the action of loop arrows. This implies that the Hochschild
operator bG ∶ Ω2

G(C
∞
c (G

(0))) → Ω1
G(C

∞
c (G

(0))) satisfies

bG(χU ⊗ ⟨χV ⟩dχV dχV ) = −χU ⊗ ⟨χV ⟩d(χV )χV + χU ⊗ χV dχV .

We therefore obtain that

χU ⊗ χV dχV = χU ⊗ χV d(χV χV )

= χU ⊗ χV d(χV )χV + χU ⊗ χV dχV

= 2χU ⊗ χV dχV

in XG(C∞c (G
(0))) since bG(χU ⊗ ⟨χV ⟩dχV dχV ) vanishes, and hence χU ⊗ χV dχV = 0.

Similarly,

χU ⊗ dχV = χU ⊗ d(χV χV )

= χU ⊗ d(χV )χV + χU ⊗ χV dχV

= 2χU ⊗ χV dχV = 0,

and we conclude that the odd part of XG(C∞c (G(0))) vanishes as claimed.

A central result regarding the equivariant X-complex is the following theorem, compare
[Voi07, Theorem 8.6].
Theorem 3.53. For any pro-G-algebra A the equivariant X-complex XG(T A) and the
Hodge tower θΩG(A) are homotopy equivalent as pro-paracomplexes of G-anti-Yetter-
Drinfeld modules.

The proof of Theorem 3.53 is a direct translation of the proof in the group equivariant
case, building on the relations in Lemma 3.27.
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§ 3.6 | Bivariant equivariant periodic cyclic homology
Now that we have all the ingredients, we can give the main definition of this chapter.
Definition 3.54. Let G be an ample groupoid and let A and B be pro-G-algebras. The
bivariant equivariant periodic cyclic homology of A and B is

HP G∗ (A,B) =H∗(HomA(G)(XG(T (A⊗C∞c (G(0)) KG)),XG(T (B ⊗C∞c (G(0)) KG)))).

We pointed out earlier that the equivariant X-complex is not a chain complex in general.
This marks a crucial difference with the ordinary approach and explains why we start
directly with a bivariant approach. In fact, the Hom-complex in this definition is indeed
an ordinary supercomplex, so that one can take its homology in the standard way. In order
to explain this we write ∂A and ∂B for the differentials of the equivariant X-complexes
in the source and the target, respectively. Recall that k-th element of the Hom-complex
chain is given by

Πk=q−pHomA(G)(XG(T (A⊗C∞c (G(0)) KG))p,XG(T (B ⊗C∞c (G(0)) KG))q),

where we observe that XG(−)2n =XG(−)0 and XG(−)2n+1 =XG(−)1 for all n ∈ Z since the
X-complex is a supercomplex. Moreover, the differential in the Hom-complex is given by

∂(ϕ) = ϕ∂A − (−1)∣ϕ∣∂Bϕ

for a homogeneous element ϕ, and we have

∂2(ϕ) = ∂(ϕ∂A − (−1)∣ϕ∣∂Bϕ)
= ϕ∂2

A − (−1)∣ϕ∣−1∂Bϕ∂A − (−1)∣ϕ∣∂Bϕ∂A + (−1)∣ϕ∣−1(−1)∣ϕ∣∂2
Bϕ

= ϕ∂2
A + (−1)∣ϕ∣(−1)∣ϕ∣−1∂2

B ϕ

= ϕ(id−T ) − (id−T )ϕ
= Tϕ − ϕT.

Hence the commutation property showed in Lemma 2.46 gives the relation ∂2(ϕ) = 0.

It follows directly from the definition that HP G∗ is a bifunctor, contravariant in A and
covariant in B. We define

HP G∗ (B) ∶=HP
G
∗ (C

∞
c (G

(0)),B), HP ∗G (A) ∶=HP
G
∗ (A,C

∞
c (G

(0)))

the G-equivariant periodic cyclic homology of B, and the G-equivariant periodic cyclic
cohomology of A, respectively. Every G-equivariant algebra homomorphism f ∶ A → B
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induces naturally an element [f] ∈HP G0 (A,B). We have an associative product

HP G∗ (A,B) ×HP
G
∗ (B,C) →HP G∗ (A,C), (x, y) ↦ x ⋅ y

induced by the composition, and this generalises the composition of G-equivariant homo-
morphisms f ∶ A→ B and g ∶ B → C in the sense that [f] ⋅ [g] = [g ○ f]. In particular, we
obtain a natural ring structure on HP G∗ (A,A) for every G-algebra A with unit element
given by [id].
Remark 3.55. If the groupoid G is just a point, then we obviously obtain the constructions
defined by Cuntz and Quillen. Moreover, if G(0) is a singleton, or equivalently, if the
groupoid G is a discrete group, then the above constructions reduce to the theory developed
in [Voi03], [Voi07].

§ 3.7 | Discrete groupoids
In this section, we describe in details how the calculation of HP G∗ can be reduced to the
group equivariant case when the groupoid is discrete.

Start recording the following well-known result about the structure of discrete groupoids.
Lemma 3.56. Any discrete groupoid G can be decomposed into the disjoint union of
transitive groupoids.

Proof. The groupoid G acts on its base space G(0). We denote an orbit in the quotient
space G/G(0) by [x], for a chosen representative x in the orbit. The restriction of G to
[x], denoted by G[x][x] is a transitive subgroupoid of G and since the orbits are disjoint we
can write

G = ⊔
[x]∈G/G(0)

G
[x]
[x] .

Let x ∈ G(0) and write mx ⊆ C∞c (G
(0)) for the maximal ideal of all functions vanishing at

x. If A is a pro-G-algebra then Ax = A/mx ⋅A is naturally a pro-Gxx -algebra.
Proposition 3.57. Let G be a discrete groupoid and let A,B be pro-G-algebras. Then we
have a canonical isomorphism

HP G∗ (A,B) ≅ ∏
[x]∈G/G(0)

HP
Gx

x
∗ (Ax,Bx),

where each x is an arbitrary representative of the orbit [x] ∈ G/G(0).

Proof. Every discrete groupoid can be written as a disjoint union of transitive groupoids
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as seen in 3.56. This induces a direct product decomposition at level of the Hom-
complexes. Therefore it suffices to consider the case that G is transitive.

In this case, given any x ∈ G(0) one obtains an equivalence between the category of
G-anti-Yetter-Drinfeld modules and the category of Gxx -anti-Yetter-Drinfeld modules by
sending a G-anti-Yetter-Drinfeld module M to χ ⋅M , where χ ∈ M(OG)) = C∞(Gad)

denotes the characteristic function of Gxx . Applying the extension of this functor to the
corresponding pro-categories to the Hom-complex defining HP G∗ (A,B) yields the desired
isomorphism.
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Chapter 4

Homological Properties

This chapter is devoted to the homological aspects of G-equivariant periodic cyclic ho-
mology HP G∗ . We will show that it shares many homological properties analogous to
equivariant KK-theory, including excision, stability, and homotopy invariance. For fur-
ther connections with equivariant KK-theory in a categorical framework, see [BP24].

§ 4.1 | Homotopy invariance
We first establish that HP G∗ is homotopy invariant with respect to G-equivariant homo-
topies in both variables. The discussion about this topic, in the group case, can be found
in [Voi07] and [Voi03]. In this section we will follow the same strategies and adapt the
proofs to our situation.

Let A,B be pro-G-algebras. Recall from the previous chapter the Definition 3.45 of
G-equivariant homotopy between G-equivariant algebra homomorphisms ϕ0, ϕ1 ∶ A → B,
that θnΩG(A) denotes the n-th level of the Hodge tower, and that θ1ΩG(A) =XG(A) is the
G-equivariant X-complex. We have canonical projection maps ξn ∶ θnΩG(A) → θn−1ΩG(A)
for all n ≥ 1. The first step toward proving the main result of this section is to show that
the map ξ2 is a homotopy equivalence, provided that the pro-G-algebra A is quasifree.
Lemma 4.1. Let A be a quasifree pro-G-algebra. Then the map ξ2 ∶ θ2ΩG(A) → XG(A)

is a homotopy equivalence of pro-paracomplexes of G-anti-Yetter-Drinfeld modules.

Proof. The natural projection map ξ2 is described by the following commutative diagram

Ω0
G(A) ⊕Ω2

G(A)/bG (Ω3
G(A)) Ω1

G(A)

Ω0
G(A) Ω1

G(A)/bG(Ω2
G(A)).

pr1

bG+BG

♮
♮d

bG
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Since A is quasifree, there exists by Theorem 3.41 a G-equivariant pro-linear map ∇ ∶
Ω1
G(0)(A) → Ω2

G(0)(A) such that

∇(aω) = a∇(ω) and ∇(ωa) = ∇(ω)a − ωda

for all a ∈ A and ω ∈ Ω1
G(0)(A). We extend ∇ to forms of higher degree by setting

∇(⟨a0⟩da1⋯dan) = ∇(⟨a0⟩da1)da2⋯dan.

Then we have
∇(aω) = a∇(ω), ∇(ωη) = ∇(ω)η + (−1)∣ω∣ωdη

for a ∈ A and ω, η ∈ ΩG(0)(A). Moreover we set ∇(a) = 0 for a ∈ Ω0
G(0)(A) = A.

One then obtains a map ∇G ∶ Ωn
G(A) → Ωn+1

G (A) of pro-G-anti-Yetter-Drinfeld modules by
setting

∇G(f ⊗ ω) = f ⊗∇(ω).

We will use ∇G to construct an inverse of ξ2 up to homotopy. Let ω ∈ Ωn−1
G(0)(A) with n ≥ 2

and a ∈ A. Then an explicit computation gives

[bG,∇G] (χU ⊗ ωda) = bG∇G(χU ⊗ ωda) + ∇GbG(χU ⊗ ωda)

= bG(χU ⊗∇(ω)da) + ∇G((−1)n−1(χU ⊗ (ωa − (χU−1 ⋅ a)ω)))

= (−1)n(χU ⊗ (∇(ω)a − (χU−1 ⋅ a)∇(ω))

+ (−1)n−1(χU ⊗ (∇(ωa) − ∇((χU−1 ⋅ a)ω)))

= (−1)n−1(χU ⊗ ((χU−1 ⋅ a)∇(ω) − ∇(ω)a +∇(ωa) − ∇((χU−1 ⋅ a)ω))

= (−1)n−1(χU ⊗ (χU−1 ⋅ a)∇(ω) − χU ⊗∇(ω)a + χU ⊗∇(ω)a

+ (−1)n−1χU ⊗ ωda − χU ⊗ (χU−1 ⋅ a)∇(ω))

= χU ⊗ ωda.

So this implies that [bG,∇G] = id on Ωn
G(A) for n ≥ 2. Since [bG,∇G] commutes with bG

this equality holds on bG(Ω2
G(A)) ⊆ Ω1

G(A) as well. As a consequence, we obtain a well-
defined map ν ∶ XG(A) → θ2ΩG(A) by setting ν = id−[∇G,BG + bG], noting that [∇G,BG]
increases the degree of differential forms by 2.

Using Lemma 2.46 with the fact that ∇G is a map of pro-G-anti-Yetter-Drinfeld modules
one checks that ν is a chain map with respect to ∂ = BG + bG. Explicitly, we have

ν = id−∇Gd on Ω0
G(A)

ν = id−[∇G, bG] = id−bG∇G on Ω1
G(A)/bG (Ω2

G(A)) ,
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and this implies ξ2ν = id. Moreover, by construction νξ2 = id−[∇G,BG + bG] is homotopic
to the identity.

Definition 4.2. Let A,B be pro-G-algebras and let Φ ∶ A → B[0,1] be a G-equivariant
homotopy. Recall that for t ∈ [0,1] we write Φt ∶= evt Φ. We define the derivative of Φ as
the G-equivariant pro-linear map Φ′ ∶ A→ B[0,1] defined as Φ′t(a) ∶= ∂

∂tΦt(a), for a ∈ A.

Then Φ′ is a derivation with respect to Φ, that is,

Φ′(ab) = Φ′(a)Φ(b) +Φ(a)Φ′(b)

for all a, b ∈ A.

In the same spirit, using the differential structure inherited by C∞([0,1]) we give the
following.
Definition 4.3. Let A,B be pro-G-algebras and let Φ ∶ A → B[0,1] be a G-equivariant
homotopy with Φ′ ∶ A→ B[0,1] its derivative. We define η ∶ Ωn

G(A) → Ωn−1
G (B) by

η(f ⊗ a0da1⋯dan) = ∫
1

0
f ⊗Φt(a

0)Φ′t(a1)dΦt(a
2)⋯dΦt(a

n)dt

for n > 0 and η = 0 on Ω0
G(A).

Using the fact that Φ′ is a derivation with respect to Φ one computes

ηbG(χU ⊗ a
0da1⋯dan) = (−1)nη(χU ⊗ a0da1⋯dan−1an − χU ⊗ (χU−1 ⋅ an)a0da1⋯dan−1)

= η(χU ⊗ a
0a1da2⋯dan +

n−1
∑
j=1
(−1)ja0da1⋯d(ajaj+1)⋯dan

+ (−1)nχU ⊗ (χU−1 ⋅ an)a0da1⋯dan−1)

= ∫

1

0
(χU ⊗Φt(a

0a1)Φ′t(a2)dΦt(a
3)⋯dΦt(a

n)

− χU ⊗Φt(a
0)Φ′t(a1a2)dΦt(a

3)⋯dΦt(a
n)

+
n−1
∑
j=2
(−1)jΦt(a

0)Φ′t(a1)dΦt(a
2)⋯dΦt(a

jaj+1)⋯dΦt(a
n)

+ (−1)nΦt((χU−1 ⋅ an)a0)Φ′t(a1)dΦt(a
2)⋯dΦt(a

n−1))dt

= −∫

1

0
(χU ⊗Φt(a

0)Φ′t(a1)Φt(a
2)dΦt(a

3)⋯dΦt(a
n)

+
n−1
∑
j=2
(−1)j−1Φt(a

0)Φ′t(a1)dΦt(a
2)⋯dΦt(a

jaj+1)⋯dΦt(a
n)

+ (−1)n−1Φt(χU−1 ⋅ an)Φt(a
0)Φ′t(a1)dΦt(a

2)⋯dΦt(a
n−1))dt

= −∫

1

0
bG(χU ⊗Φt(a

0)Φ′t(a1)dΦt(a
2)⋯dΦt(a

n))dt
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= −bGη(χU ⊗ a
0da1⋯dan)

for any compact open bisection U ⊆ G. We deduce that ηbG+bGη = 0 on Ωn
G(A) for all n ≥ 0.

In particular, we have ηbG(Ω3
G(A)) ⊆ bG(Ω2

G(B)), and hence we obtain a G-equivariant
pro-linear map η ∶ θ2ΩG(A) →XG(B).
Lemma 4.4. Let Φ ∶ A→ B[0,1] be a G-equivariant homotopy between pro-G-algebras A
and B. Then we have

XG(Φ1)ξ2 −XG(Φ0)ξ2 = ∂η + η∂,

where η ∶ θ2ΩG(A) → XG(B) is the map introduced in Definition 4.3 and ∂ = BG + bG.
Hence the chain maps XG(Φt)ξ2 ∶ θ2ΩG(A) →XG(B) for t = 0,1 are homotopic.

Proof. For j = 0 we have

[∂, η](f ⊗ a) = η(f ⊗ da)

= ∫

1

0
f ⊗Φ′t(a)dt

= f ⊗Φ1(a) − f ⊗Φ0(a).

For j = 1 we get

[∂, η](χU ⊗ a
0da1) = dGη(χU ⊗ a

0da1) + ηBG(χU ⊗ a
0da1)

= ∫

1

0
(χU ⊗ d(Φt(a

0)Φ′t(a1)) + χU ⊗Φ′t(a0)dΦt(a
1)

− χU ⊗Φ′t(χU−1 ⋅ a1)dΦt(a
0))dt

= ∫

1

0
(χU ⊗ dΦt(a

0)Φ′t(a1) + χU ⊗Φt(a
0)dΦ′t(a1)

+ χU ⊗Φ′t(a0)dΦt(a
1) − χU ⊗Φ′t(χU−1 ⋅ a1)dΦt(a

0))dt

= ∫

1

0
bG(χU ⊗ dΦt(a

0)dΦ′t(a1)) +
∂

∂t
(χU ⊗Φt(a

0)dΦt(a
1))dt

for any compact open bisection U ⊆ G. Since the first term vanishes in XG(B) we conclude

[∂, η](χU ⊗ a
0da1) = χU ⊗Φ1(a

0)dΦ1(a
1) − χU ⊗Φ0(a

0)dΦ0(a
1).

Finally, on Ω2
G(A)/bG(Ω3

G(A)) we have ∂η + η∂ = ηbG + bGη = 0, with the last equality due
to the calculation just before this Lemma.

We are now ready to state and prove the following result.
Theorem 4.5 (Homotopy invariance). Let A and B be pro-G-algebras and let Φ ∶ A →
B[0,1] be a G-equivariant homotopy. Then the elements [Φ0] and [Φ1] in HP G0 (A,B)
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are equal. More generally, if A is a quasifree pro-G-algebra then the elements [Φ0] and
[Φ1] in H0(HomA(G)(XG(A),XG(B))) are equal.

Proof. The second part of the Theorem follows directly by combining Lemma 4.1 and
Lemma 4.4.

In order to show that the first part of the Theorem can be viewed as a special case of
the second, assume that Φ ∶ A → B[0,1] is a G-equivariant homotopy. We tensor A
and B with KG to obtain a G-equivariant homotopy Φ ⊗C∞c (G(0)) KG ∶ A ⊗C∞c (G(0)) KG →
(B ⊗C∞c (G(0))KG)[0,1]. Passing to the periodic tensor algebras we obtain a G-equivariant
algebra homomorphism T (Φ⊗C∞c (G(0))KG) ∶ T (A⊗C∞c (G(0))KG) → T ((B⊗C∞c (G(0))KG)[0,1]).

Consider the G-equivariant pro-linear map

l ∶ B ⊗C∞c (G(0)) KG ⊗C
∞([0,1]) → T (B ⊗C∞c (G(0)) KG) ⊗C

∞([0,1])
l(b⊗ T ⊗ f) = σ(b⊗ T ) ⊗ f,

where σ ∶ B ⊗C∞c (G(0)) KG → T (B ⊗C∞c (G(0)) KG) is the standard G-equivariant pro-linear
splitting. Then l is a lonilcur, and we get an associated G-equivariant homomorphism

JlK ∶ T ((B ⊗C∞c (G(0)) KG)[0,1]) → T (B ⊗C∞c (G(0)) KG)[0,1]

by the universal property of the periodic tensor algebra from Proposition 3.38. Consider
the G-equivariant homotopy

Ψ = JlKT (Φ⊗C∞c (G(0)) KG) ∶ T (A⊗C∞c (G(0)) KG) → T (B ⊗C∞c (G(0)) KG)[0,1]

and note that Ψt = T (Φt ⊗C∞c (G(0)) KG) for all t ∈ [0,1]. Since T (A ⊗C∞c (G(0)) KG) is
quasifree we are now in the setting of the second part of the Theorem, and this concludes
the proof.

We note that, as an application of the homotopy invariance, one can show that XG(T A)
is homotopy equivalent to XG(A) if A is a quasifree pro-G-algebra.
Corollary 4.6. Let 0→ N → R → A→ 0 be a universal locally nilpotent extension of the
pro-G-algebra A. Any morphism of extensions

0 JA T A A 0

0 N R A 0

ξ ϕ id

induces a homotopy equivalence XG(ϕ) ∶ XG(T A) → XG(R). Moreover, the class of this
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homotopy equivalence in H∗(HomA(G)(XG(T A),XG(R))) does not depend on the choice
of ϕ.

Proof. By Proposition 3.48 we can deduce that ϕ ∶ T A → R is a G-equivariant homo-
topy equivalence of pro-G-algebras. Then we can use Theorem 4.5 to get a homotopy
equivalence XG(ϕ) ∶ XG(T A) → XG(R). From the uniqueness of ϕ up to G-equivariant
homotopy, we immediately get the independence of the choice of ϕ.

§ 4.2 | Stability
Next we show that HP G∗ is stable in both variables with respect to tensoring with the
algebra K(E) associated to a G-module E together with a G-equivariant pairing as defined
in Subsection 2.3.2.

Throughout this section, we denote by h ∶ E⊗C∞c (G(0))E → C∞c (G
(0)) a given G-equivariant

pairing on E.
Definition 4.7. Let E be a G-module. The twisted trace map ttr ∶ OG ⊗C∞c (G(0))K(E) →
OG is defined by setting

ttr(f ⊗ e1 ⊗ e2) = (id⊗h)(T (f ⊗ e2) ⊗ e1)

for f ∈ OG and e1, e2 ∈ E.

Explicitly, we have

ttr(χU ⊗ e1 ⊗ e2) = χU ⊗ h(χU−1 ⋅ e2 ⊗ e1) ∈ OG ⊗C∞c (G(0)) C
∞
c (G

(0)) ≅ OG

for any compact open bisection U ⊆ G.
Lemma 4.8. The twisted trace map introduced above satisfies

ttr(χU ⊗L0L1) = ttr(χU ⊗ (χU−1 ⋅L1)L0)

for any compact open bisection U ⊆ G and L0, L1 ∈ K(E).

Proof. It suffices to prove the claim for L0 = e1⊗e2 and L1 = e3⊗e4 for any e1, e2, e3, e4 ∈ E.
Recall that product in K(E) is given by

L0L1 = e1 ⊗ h(e2 ⊗ e3)e4.
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With these assumptions, we obtain

ttr(χU ⊗L0L1) = ttr(χU ⊗ e1 ⊗ h(e2 ⊗ e3)e4)

= χU ⊗ h(χU−1 ⋅ (h(e2 ⊗ e3)e4) ⊗ e1)

= χU ⊗ χU−1 ⋅ h(e2 ⊗ e3)h(χU−1 ⋅ e4 ⊗ e1)

= χU ⊗ h(e2 ⊗ e3)h(χU−1 ⋅ e4 ⊗ e1)

and

ttr(χU ⊗ (χU−1 ⋅L1)L0) = ttr(χU ⊗ χU−1 ⋅ e3 ⊗ h(χU−1 ⋅ e4 ⊗ e1)e2)

= χU ⊗ h(χU−1 ⋅ (h(χU−1 ⋅ e4 ⊗ e1)e2) ⊗ χU−1 ⋅ e3)

= χU ⊗ χU−1 ⋅ h(h(χU−1 ⋅ e4 ⊗ e1)e2 ⊗ e3)

= χU ⊗ h(e2 ⊗ e3)h(χU−1 ⋅ e4 ⊗ e1).

Observe that we used the G-equivariance of the pairing in the third equality and that
χU ⊗ f = χU ⊗ χU−1 ⋅ f for all f ∈ C∞c (G(0)), or equivalently, that the canonical map T of
OG ⊗C∞c (G(0)) C

∞
c (G

(0)) equals the identity as shown in Example 2.47.

§ 4.2.1 | Admissible pairings

Let us consider a particular class of such pairings.
Definition 4.9. Let E be a G-module. A G-equivariant pairing h on E is said to be
admissible if there exists a G-equivariant linear embedding C∞c (G(0)) ↪ E such that the
restriction of h to C∞c (G(0)) ⊆ E agrees with the canonical isomorphism C∞c (G

(0))⊗C∞c (G(0))

C∞c (G
(0)) ≅ C∞c (G

(0)).
Definition 4.10. Let E be a G-module equipped with an admissible G-equivariant pairing.
Define the linear map

ι ∶ C∞c (G
(0)) ≅ C∞c (G

(0)) ⊗C∞c (G(0)) C
∞
c (G

(0)) ↪ K(E),

as the composition of the canonical isomorphism for C∞c (G(0)) with the tensor product of
the embedding by itself.
Remark 4.11. Admissibility, that is the existence of such an embedding, ensures that the
map ι defined above is a G-equivariant algebra homomorphism. Indeed, if we denote by e ∶
C∞c (G

(0)) ↪ E the embedding, then the claim follows by observing that both the canonical
isomorphism for C∞c (G(0)) and the map e⊗ e are G-equivariant algebra homomorphisms.

More generally, we consider the following construction.
Definition 4.12. Let E be a G-module equipped with an admissible G-equivariant bilinear
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pairing, and let A be a G-algebra. We define the map

ιA ∶ A ≅ A⊗C∞c (G(0)) C
∞
c (G

(0)) Ð→ A⊗C∞c (G(0)) K(E)

as the tensor product of the identity on A with the map ι ∶ C∞c (G(0)) → K(E).
Remark 4.13. The map ιA defined in Definition 4.12 is a G-equivariant algebra homo-
morphism.

With these preparations in place, we can now state one of the main theorems of this
section. This result will serve as a cornerstone for the general stability theorem that will
be presented later in the section.
Theorem 4.14. Let A be a pro-G-algebra, and let E be a G-module equipped with an
admissible G-equivariant bilinear pairing. Then the class

[ιA] ∈H0HomA(G)(XG(T A),XG(T (A⊗C∞c (G(0)) K(E))))

is invertible.

Proof. We have to find an inverse for [ιA]. First observe that the canonical G-equivariant
linear map A ⊗C∞c (G(0)) K(E) → T A ⊗C∞c (G(0)) K(E) is a lonilcur and hence induces a
G-equivariant homomorphism λA ∶ T (A ⊗C∞c (G(0)) K(E)) → T A ⊗C∞c (G(0)) K(E), which
concretely acts by

λA(f ⊗ ⟨a
0 ⊗L0⟩d(a

1 ⊗L1) . . . d(a
2n ⊗L2n)) = f ⊗ ⟨a

0⟩da1 . . . a2n ⊗ ⟨L0⟩L1 . . . L2n,

for f ∈ OG, ai ∈ A and Li ∈ K(E).

Define trA ∶XG(T A⊗C∞c (G(0)) K(E)) →XG(T A) by

trA(f ⊗ x⊗L) = ttr(f ⊗L) ⊗ x

on Ω0
G(T A⊗C∞c (G(0)) K(E)) and

trA(f ⊗ (x0 ⊗L0)d(x1 ⊗L1)) = ttr(f ⊗L0L1) ⊗ x0dx1

trA(f ⊗ d(x1 ⊗L1)) = ttr(f ⊗L1) ⊗ dx1,

on Ω1
G(T A ⊗C∞c (G(0)) K(E)) for f ∈ OG, x,x0, x1 ∈ T A and L,L0, L1 ∈ K(E). Observe

that we used the twisted trace ttr ∶ OG ⊗C∞c (G(0)) K(E) → OG as in Definition 4.7. By
construction, trA is a map of G-anti-Yetter-Drinfeld modules. We have

trAdG(f ⊗ x⊗L) = trA(f ⊗ d(x⊗L))

= ttr(f ⊗L) ⊗ dx
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= dG(ttr(f ⊗L) ⊗ x)

= dGtrA(f ⊗ x⊗L),

and for a compact open bisection U ⊆ G we calculate

bGtrA(χU ⊗ (x0 ⊗L0)d(x1 ⊗L1)) = bG(ttr(χU ⊗L0L1) ⊗ x0dx1)

= ttr(χU ⊗L0L1) ⊗ (x0x1 − (χU−1 ⋅ x1)x0)

= ttr(χU ⊗L0L1) ⊗ x0x1 − ttr(χU ⊗ (χU−1 ⋅L1)L0) ⊗ (χU−1 ⋅ x1)x0

= trA(χU ⊗ (x0x1 ⊗L0L1) − χU ⊗ (χU−1 ⋅ x1)x0 ⊗ (χU−1 ⋅L1)L0)

= trAbG(χU ⊗ (x0 ⊗L0)d(x1 ⊗L1)),

using the twisted trace property from Lemma 4.8. Similarly one checks

bGtrA(χU ⊗ d(x1 ⊗L1)) = trAbG(χU ⊗ d(x1 ⊗L1)).

It follows that trA is a chain map of paracomplexes.

We define τA = trAXG(λA) and claim that [τA] is an inverse for [ιA]. Since ιA is an
G-equivariant algebra homomorphism, we consider T ιA ∶ T A → T (A ⊗C∞c (G(0)) K(E))
and observe that λAT ιA = ιT A. Moreover, because ttr(f ⊗ ι(e)) = f for f ∈ OG and
e ∈ C∞c (G

(0)), we have that

τAXG(T ιA) = trAXG(λA)XG(T ιA)

= trAXG(λAT ιA)

= trAXG(ιT A)

= idXG(T A)

Then it follows that [ιA] ⋅ [τA] = id. It thus remains to show that [τA] ⋅ [ιA] = id. Consider
the G-equivariant homomorphisms

ij ∶ A⊗C∞c (G(0)) K(E) → A⊗C∞c (G(0)) K(E) ⊗C∞c (G(0)) K(E)

for j = 0,1 given by

i0 = id⊗ι, i1 = (id⊗σ)i0,

where we used the canonical identification

A⊗C∞c (G(0)) K(E) ≅ A⊗C∞c (G(0)) K(E) ⊗C∞c (G(0)) C
∞
c (G

(0))

in the definition of i0, and the tensor flip automorphism σ of K(E) ⊗C∞c (G(0))K(E) given
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by σ(L1 ⊗L2) = L2 ⊗L1 in the definition of i1.

Similarly as above, we calculate [i0] ⋅ [τA⊗K(E)] = id and [i1] ⋅ [τA⊗K(E)] = [τA] ⋅ [ιA].
Let us show that the maps i0 and i1 are G-equivariant homotopic. To this end observe
that K(E) ⊗C∞c (G(0)) K(E) ≅ K(E ⊗C∞c (G(0)) E) as G-algebras and denote by Σ the flip
automorphism of E ⊗C∞c (G(0)) E given by Σ(e⊗ f) = f ⊗ e. For t ∈ [0,1] we then obtain a
G-equivariant linear endomorphism Σt of E ⊗C∞c (G(0)) E given by

Σt = cos(πt/2) id+ sin(πt/2)Σ,

and we note that Σt is invertible with inverse Σ−1
t = cos(πt/2) id− sin(πt/2)Σ. Since Σ is

isometric with respect to the tensor product pairing on E⊗C∞c (G(0))E, that is, it preserves
the value of the pairing, the same holds for Σt. It follows that σt = Σt ⊗ Σt defines
G-equivariant algebra automorphism of

K(E ⊗C∞c (G(0)) E) = (E ⊗C∞c (G(0)) E) ⊗C∞c (G(0)) (E ⊗C∞c (G(0)) E).

The family (σt)t∈[0,1] depends smoothly on t, and by construction we have σ0 = id and
σ1 = σ. Now define

ht ∶ A⊗C∞c (G(0)) K(E) → A⊗C∞c (G(0)) K(E) ⊗C∞c (G(0)) K(E)

by ht = (id⊗σt)i0 for t ∈ [0,1]. Then each ht is a G-equivariant algebra homomorphism,
and by construction hj = ij for j = 0,1. Since the family (ht)t∈[0,1] depends again smoothly
on t we have thus constructed a G-equivariant homotopy between i0 and i1. According
to Theorem 4.5 we obtain [i0] = [i1], and hence [τA] ⋅ [ιA] = id as required.

§ 4.2.2 | A more general case

In order to discuss the implications of Theorem 4.14 for the stability properties of the
functor HP G∗ in a more general setting, we need some preparation.
Lemma 4.15. Let E,F be G-modules, and suppose that E ≅ F as C∞c (G(0))-modules.
Then

C∞c (G)
r,id
⊗ E ≅ C∞c (G)

r,id
⊗ F

as G-modules.

Proof. Let ϕ ∶ E → F be a C∞c (G(0))-linear isomorphism. Consider the map

T −1
F (id⊗ϕ)TE ∶ C∞c (G)

r,id
⊗ E → C∞c (G)

r,id
⊗ F.

This is a D(G)-linear isomorphism from C∞c (G)
r,id
⊗ E to C∞c (G)

r,id
⊗ F both sides endowed
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with the natural diagonal action. Indeed, for U and V compact open bisections of G and
e ∈ E, we compute

χV ⋅ (T
−1
F (id⊗ϕ)TE)(χU ⊗ e) = χV U ⊗ χV U ⋅ ϕ(χU−1 ⋅ e)

= χV U ⊗ χV U ⋅ ϕ(χU−1V −1 ∗ χV ⋅ e)

= T −1
F (id⊗ϕ)TE(χV ⋅ (χU ⊗ e)),

where we have used the definition of the maps TE and TF as constructed in Section
2.1.

For a transformation groupoid G = Γ ⋉ X, associated to a discrete group Γ acting on
a totally disconnected locally compact space X, we have D(G) ≅ ⊕γ∈ΓC∞c (G

(0)) as left
C∞c (G

(0))-modules. Hence Lemma 4.15 shows that there is a G-equivariant isomorphism

C∞c (G)
r,r
⊗ C∞c (G) ≅⊕

γ∈Γ
C∞c (G)

in this case. The same is true for ample groupoids G which can be covered by a family
of disjoint global range sections.

However, not every ample groupoid admits such a covering. This fails already in the case
of finite groupoids, as the example of a disjoint union of finite groups of different orders
shows. In this case we cannot write the underlying C∞c (G(0))-module of D(G) as a direct
sum of copies of C∞c (G(0)).

The following lemma allows one to circumvent this by passing to infinite direct sums of
copies of D(G). In the sequel we write V ⊕κ for a direct sum of copies of V indexed by a
set of cardinality κ.
Lemma 4.16. Let E be a G-module equipped with a G-equivariant bilinear pairing h ∶

E ⊗C∞c (G(0)) E → C∞c (G
(0)). If C∞c (G(0)) and E are projective as essential C∞c (G(0))-

modules and the map h is surjective then there exists an isomorphism

E⊕κ ≅ C∞c (G
(0))⊕κ

of C∞c (G(0))-modules for any infinite cardinal κ such that E admits a generating set of
cardinality at most κ.

Proof. We fix I with ∣I ∣ = κ and a family (ei)i∈I of elements of E which generate E as
a C∞c (G(0))-module. Then we obtain a surjection C∞c (G

(0))⊕κ → E of C∞c (G(0))-modules
by mapping (fi)i∈I to ∑i∈I fi ⋅ ei. Since E is projective this surjection splits, so that E
can be written as a direct summand of C∞c (G(0))⊕κ. By our assumption that κ is infinite
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it follows that E⊕κ is a direct summand of (C∞c (G(0))⊕κ)⊕κ ≅ C∞c (G(0))⊕κ. Explicitly, let
us choose a direct complement P , so that

P ⊕E⊕κ ≅ E⊕κ ⊕ P ≅ C∞c (G
(0))⊕κ.

By writing again C∞c (G
(0))⊕κ ≅ (C∞c (G

(0))⊕κ)⊕κ we then get

E⊕κ ⊕C∞c (G
(0))⊕κ ≅ E⊕κ ⊕ (P ⊕E⊕κ)⊕κ ≅ C∞c (G

(0))⊕κ.

Similarly, using that the pairing h is surjective we obtain a surjection E⊕κ → C∞c (G
(0))

of C∞c (G(0))-modules mapping (xi)i∈I to ∑i∈I h(xi ⊗ ei). Since C∞c (G(0)) is projective it
follows that C∞c (G(0)) is a direct summand in E⊕κ. In the same way as above we can
then write C∞c (G(0))⊕κ as a direct summand of E⊕κ, and construct an isomorphism

E⊕κ ⊕C∞c (G
(0))⊕κ ≅ E⊕κ.

Combining these considerations, we therefore obtain an isomorphism

E⊕κ ≅ E⊕κ ⊕C∞c (G
(0))⊕κ ≅ C∞c (G

(0))⊕κ

of C∞c (G(0))-modules as required.

Let us make some comments on Lemma 4.16. Projectivity of C∞c (G(0)), viewed as an
essential module over itself, is a mild assumption which is satisfied whenever G(0) is
paracompact. This follows easily from the fact that one can write G(0) as a disjoint union
of compact open subsets in this case, compare the discussion in the proof of Proposition
1.76. If G is paracompact, admitting a covering by mutually disjoint compact open range
sections indexed by a set of cardinality µ, then the same argument as in [BDGW23,
Lemma 2.13] shows that D(G), viewed as C∞c (G(0))-module, is projective and admits a
generating set of cardinality µ. Since the standard pairing on D(G) is always surjective,
Lemma 4.16 yields an isomorphism

D(G)⊕κ ≅ C∞c (G
(0))⊕κ

of left C∞c (G(0))-modules for any infinite cardinal κ ≥ µ in this case. If G is σ-compact
there exists a countable such covering family, so that the countable direct sum of copies
of D(G) is isomorphic to a countable direct sum of copies of C∞c (G(0)).

We also note that if G(0) is discrete then every C∞c (G(0))-module is projective. In contrast,
for a general totally disconnected base space G(0), a module of the form E = C with the
action of C∞c (G(0)) given by point evaluation at some point x ∈ G(0) will typically fail to
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be projective.
Theorem 4.17 (Stability). Let E be a G-module equipped with a surjective G-equivariant
bilinear pairing. If C∞c (G(0)) and E are projective as essential C∞c (G(0))-modules then
there exists an invertible element in

HP G0 (A,A⊗C∞c (G(0)) K(E))

for any pro-G-algebra A. It follows that we have natural isomorphisms

HP G∗ (A⊗C∞c (G(0)) K(E),B) ≅HP
G
∗ (A,B) ≅HP

G
∗ (A,B ⊗C∞c (G(0)) K(E))

for all pro-G-algebras A and B.

Proof. According to Lemma 4.16 we obtain an isomorphism E⊕κ ≅ C∞c (G
(0))⊕κ of C∞c (G(0))-

modules for some infinite cardinal κ. Now let us view C∞c (G
(0))⊕κ as a G-module via the

canonical action. Using Lemma 4.15 we obtain an isomorphism

D(G) ⊗C∞c (G(0)) E
⊕κ ≅ D(G) ⊗C∞c (G(0)) C

∞
c (G

(0))⊕κ ≅ D(G)⊕κ

of G-modules. The pairing C∞c (G
(0))⊕κ ⊗C∞c (G(0)) C

∞
c (G

(0))⊕κ → C∞c (G
(0)) induced from

E⊕κ splits as a map of C∞c (G(0))-modules because C∞c (G(0)) is projective. Moreover, since
we are considering the canonical G-module structure on C∞c (G

(0)) the pairing splits as
G-equivariant linear map. Then we have that the pairing on the G-module C∞c (G(0))⊕κ

induced from E⊕κ is admissible.

Hence, the proof of Theorem 4.14 gives homotopy equivalences

XG(T (A⊗C∞c (G(0)) KG)) ≃XG(T (A⊗C∞c (G(0)) KG ⊗C∞c (G(0)) K(C
∞
c (G

(0))⊕κ)))

≅XG(T (A⊗C∞c (G(0)) K(D(G) ⊗C∞c (G(0)) C
∞
c (G

(0))⊕κ)))

≅XG(T (A⊗C∞c (G(0)) K(D(G) ⊗C∞c (G(0)) E
⊕κ)))

≃XG(T (A⊗C∞c (G(0)) K(D(G) ⊗C∞c (G(0)) E)))

≅XG(T (A⊗C∞c (G(0)) KG ⊗C∞c (G(0)) K(E))).

This yields the assertion.

§ 4.2.3 | Stability for proper groupoids

Let G be a proper ample groupoid such that G/G(0) is paracompact. According to Propo-
sition 1.76 there exists a locally constant cut-off function c for G. It follows that for any
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f ∈ C∞c (G
(0)) the function s∗(c)r∗(f) ∶ G → C given by

s∗(c)r∗(f)(α) = c(s(α))f(r(α))

has compact support and is thus contained in C∞c (G).

Now let E,F be G-modules and let ϕ ∶ E → F be a C∞c (G(0))-linear map. As in the proof
of Lemma 4.15 we obtain a G-equivariant linear map ϕT = T −1

F (id⊗ϕ)TE ∶ C∞c (G)
r,id
⊗ E →

C∞c (G)
r,id
⊗ F . Recall moreover from Lemma 2.16 that the integration map λ ∶ C∞c (G) →

C∞c (G
(0)) is G-equivariant with respect to the left multiplication action on C∞c (G) = D(G).

Hence we obtain a linear map ϕG ∶ E → F by defining

ϕG(f ⊗ e) = (λ⊗ id)ϕT (s∗(c)r∗(f) ⊗ e),

using the canonical identification X ≅ C∞c (G
(0)) ⊗C∞c (G(0))X for X = E,F .

Lemma 4.18. Let G be a proper ample groupoid with G/G(0) paracompact and let E,F
be G-modules. If ϕ ∶ E → F is a C∞c (G(0))-linear map then ϕG ∶ E → F is a G-equivariant
linear map.

Proof. For a compact open bisection U ⊆ G and a compact open set V ⊆ G(0) we have
χU ⋅ χV = χr(U∩s−1(V )) = χU ⋅V . Using this we calculate

λ(χU ∗ (s
∗(c)r∗(χV )))(x) = χU ⋅ λ(s

∗(c)r∗(χV ))(x)

= ∑
γ∈Gx

χU(γ)λ(s
∗(c)r∗(χV ))(γ

−1 ⋅ x)

= ∑
γ∈Gx

∑
β∈Gγ−1 ⋅x

χU(γ)c(s(β))χV (r(β))

= ∑
β∈Gx

∑
γ∈Gx

χU(γ)c(s(γ
−1β))χV (r(γ

−1β))

= ∑
γ∈Gx

χU(γ)χV (r(γ
−1))

= χr(U∩s−1(V ))(x)

= ∑
β∈Gx

cs(β)χr(U∩s−1(V ))(x)

= λ(s∗(c)r∗(χU ⋅V ))(x)

for all x ∈ G(0).

Moreover, observing that ϕT is C∞c (G)-linear on the left with respect to the first factor,
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for f ∈ C∞c (G), e ∈ E and W a compact open bisection of G such that fχW = f , we have

ϕT (f ⊗ e) = ϕT (fχW ⊗ e)

= f ⋅ ϕT (χW ⊗ e)

= f ⋅ (χW ⊗ χW ⋅ ϕ(χW−1 ⋅ e)

= fχW ⊗ χW ⋅ ϕ(χW−1 ⋅ e)

= f ⊗ χW ⋅ ϕ(χW−1 ⋅ e).

Using the previous computations and recalling that λ is G-equivariant, for e ∈ E we then
compute

ϕG(χU ⋅ (χV ⊗ e)) = ϕ
G(χU ⋅V ⊗ χU ⋅ e)

= (λ⊗ id)ϕT (s∗(c)r∗(χU ⋅V ) ⊗ χU ⋅ e)
= (λ⊗ id)ϕT (χU ∗ (s∗(c)r∗(χV )) ⊗ χU ⋅ e)
= χU ⋅ (λ⊗ id)ϕT (s∗(c)r∗(χV ) ⊗ e)
= χU ⋅ ϕ

G(χV ⊗ e)

as required.

We remark that if the map ϕ in Lemma 4.18 is already G-equivariant then ϕG = ϕ. Indeed,
analogously to what done in the proof of Lemma 4.18, choosing a compact open bisection
W of G such that χW s∗(c)r∗(f) = s∗(c)r∗(f), we have

ϕG(f ⊗ e) = (λ⊗ id)ϕT (s∗(c)r∗(f) ⊗ e)
= (λ⊗ id)(s∗(c)r∗(f) ⊗ χW ⋅ ϕ(χW−1 ⋅ e))

= λ(s∗(c)r∗(f)) ⊗ ϕ(e)

= f ⊗ ϕ(e)

for all f ∈ C∞c (G(0)) and e ∈ E. In a similar way we get (ϕψ)G = ϕGψ and (θϕ)G = θϕG if
ψ, θ are G-equivariant linear maps.
Proposition 4.19. Let G be a proper ample groupoid with G/G(0) paracompact. Then we
have a natural isomorphism

HP G∗ (A,B) ≅H∗HomA(G)(XG(T A),XG(T B))

for all G-algebras A,B.

Proof. The integration map defines a G-equivariant surjection λ ∶ D(G) → C∞c (G
(0)),
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compare Lemma 2.16. Moreover, the extension of functions by zero induces a C∞c (G(0))-
linear inclusion map ι ∶ C∞c (G

(0)) → D(G). Since

λι(f)(x) = ∑
α∈Gx

ι(f)(α) = f(x)

we see that C∞c (G(0)) is a direct summand of the C∞c (G(0))-module D(G). According to
Lemma 4.18 it follows that ιG is a G-equivariant splitting of λ, so the G-module C∞c (G(0))
is a direct summand of D(G) in the category of G-modules as well. We conclude that the
regular pairing on D(G) is admissible, so that the claim follows from Theorem 4.14.

§ 4.3 | Excision
In the final part of this chapter, we discuss excision. This property was first established
by Cuntz and Quillen in [CQ97], and represents one of the main achievements in their
series of papers on bivariant periodic cyclic homology. Their result provided a further
conceptual link between periodic cyclic homology and K-theory.

We show that equivariant periodic cyclic homology satisfies excision in both variables. An
excellent source for the main ideas of these proofs is [Mey99], and our argument closely
follows the proof in the group equivariant case presented in [Voi07]. For this reason, we
shall be rather brief and only sketch the main strategy.

We consider an admissible extension

K E Qι π

of pro-G-algebras, with a fixed G-equivariant pro-linear splitting σ ∶ Q→ E for the quotient
homomorphism π ∶ E → Q.

Let XG(T E ∶ T Q) be the kernel of the map XG(T π) ∶XG(T E) →XG(T Q) induced by π.
The splitting σ yields a direct sum decomposition XG(T E) = XG(T E ∶ T Q) ⊕XG(T Q)

of pro-G-anti-Yetter-Drinfeld modules. Moreover, since XG(T π)XG(T ι) = 0 there is a
natural map ρ ∶XG(T K) →XG(T E ∶ T Q) of paracomplexes of pro-G-anti-Yetter-Drinfeld
modules. At this point, if the map ρ is a homotopy equivalence of paracomplexes, then
the long exact sequence in homology induced by the above extension will give the excision
result.

With this introduction, we see that the key step in the proof of the excision theorem is
the following result.
Theorem 4.20. Let
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K E Qι π

an admissible extension of pro-G-algebras, with a fixed G-equivariant pro-linear splitting
σ ∶ Q → E for the quotient homomorphism π ∶ E → Q. Then the map ρ ∶ XG(T K) →

XG(T E ∶ T Q) is a homotopy equivalence.

As a consequence of Theorem 4.20 one obtains excision in both variables for G-equivariant
periodic cyclic homology.
Theorem 4.21 (Excision). Let A be a pro-G-algebra and let 0 → K → E → Q → 0 be an
extension of pro-G-algebras which is admissible as an extension of pro-C∞c (G(0))-modules.
Then there are two natural exact sequences

HP G0 (A,K) HP G0 (A,E) HP G0 (A,Q)

HP G1 (A,Q) HP G1 (A,E) HP G1 (A,K)

and

HP G0 (Q,A) HP G0 (E,A) HP G0 (K,A)

HP G1 (K,A) HP G1 (E,A) HP G1 (Q,A),

where the horizontal maps in these diagrams are induced by the maps in the extension.
Remark 4.22. In Theorem 4.21 we only require that the given extension is admissible as
an extension of pro-C∞c (G(0))-modules, or equivalently, that there exists a pro-C∞c (G(0))-
linear splitting for the quotient homomorphism E → Q.

Sketch of the proof of Theorem 4.21. We start considering the extension

K E Q,

and tensoring with KG gives the extension

K ⊗C∞c (G(0)) KG E ⊗C∞c (G(0)) KG Q⊗C∞c (G(0)) KG

of pro-G-algebras which is admissible as an extension of pro-C∞c (G(0))-modules. Recalling
that KG = D(G) ⊗C∞c (G(0)) D(G) and using twice the same argument as in the proof of
Lemma 4.15, first on Q→ E and then on Q⊗C∞c (G(0))D(G) → E⊗C∞c (G(0))D(G), we obtain
a G-equivariant pro-linear splitting for the quotient map E⊗C∞c (G(0))KG → Q⊗C∞c (G(0))KG.
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Hence, the hypotheses of Theorem 4.20 are satisfied and the claim follows by considering
long exact sequences in homology in both variables induced by the short exact sequence

ker(XG(T (π ⊗ idKG))) XG(T (E ⊗C∞c (G(0)) KG)) XG(T (Q⊗C∞c (G(0)) KG))

of paracomplexes and the homotopy invariance of HP G∗ .

Future directions
The results obtained in this thesis provide a general framework for the study of equivari-
ant bivariant periodic cyclic homology associated with groupoid actions. Having estab-
lished the basic algebraic and homological machinery, a number of directions for further
investigation naturally emerge.

A first important problem is to clarify the relationship between the theory developed
here and equivariant KK-theory. In this work, we have already shown that the two
theories share several common properties. Moreover, a further result in this direction has
already been obtained, proving a homological analogue of the Green–Julg theorem for
the equivariant K-theory of proper groupoids due to Tu; see [PV25, Theorem 6.1].

Secondly, the computation of HP G∗ for specific families of G-algebras constitutes a natural
direction for future research. Closely related to this problem is the comparison with other
homological theories, as has been done for example in [Voi03, Chapter 5].

Thirdly, in view of the growing interest in non-Hausdorff groupoids, it would be natural
to investigate possible extensions of the present theory to the more general non-Hausdorff
setting.

Finally, at the end of Chapter 3, we stated Proposition 3.57, which compares G-equivariant
homology with group-equivariant homology in the special case of discrete groupoids. One
could pursue this line of investigation further by proving analogous results under Morita
equivalence of groupoids, thereby extending the discrete case.
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