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Abstract

Medical Image Semantic Segmentation (MISS), the process of assigning a se-
mantic label to each pixel in an image, is a foundational task in computational
medicine, critical for quantitative diagnostics and treatment planning. How-
ever, developing robust MISS models faces two intertwined challenges. First,
there is an architectural dilemma: Convolutional Neural Networks (CNNs),
like U-Net, excel at learning local features but are limited by their recep-
tive fields, failing to capture global context essential for segmenting organs
with large deformations. Conversely, Vision Transformers (ViTs) effectively
model long-range dependencies but lack the inductive biases of CNNs, lead-
ing to poor generalization on the small datasets typical in medicine without
extensive pre-training. Second, the prohibitive cost and expertise required
for creating pixel-level annotations create a severe data scarcity bottleneck.
While Semi-Supervised Learning (SSL) aims to mitigate this by leveraging
unlabeled data, existing methods often fail to learn high-level semantic rela-
tions and are susceptible to confirmation bias from noisy pseudo-labels, class

imbalance, and suboptimal contrastive sample selection.

This thesis presents a comprehensive investigation to systematically address
these challenges, delivering a cohesive suite of novel deep learning frame-

works. The contributions are four-fold:

First, to resolve the architectural trade-off, this work introduces CS-Unet, a
pure Transformer network built upon a U-Net-like architecture. Its core inno-
vation is the Convolutional Swin Transformer (CST) block, which integrates
convolutions directly within the Multi-Head Self-Attention and Feed-Forward
Network modules. This design imbues the Transformer with inherent local-
ized spatial context and strong inductive biases, enabling it to efficiently learn
both local and global features. Without pre-training, CS-Unet outperforms
existing Transformer and CNN-based models on multi-organ and cardiac

datasets, achieving state-of-the-art performance with fewer parameters.

Second, to address data scarcity, a novel Multi-Scale Cross Supervised Con-
trastive Learning (MCSC) framework for SSL is developed. MCSC jointly
trains CNN and Transformer models, using a cross-teaching paradigm where
each network provides pseudo-labels for the other. Crucially, it moves beyond
simple output consistency by applying a contrastive loss to feature maps at

multiple scales, enforcing hierarchical semantic consistency. To handle the



class imbalance endemic to medical imaging, a class-prevalence-aware loss is

used to ensure features for infrequent classes are learned robustly.

Third, to fortify SSL against noisy pseudo-labels, a certainty-guided con-
trastive learning strategy is proposed. This approach mitigates the impact
of inaccurate pseudo-labels by using a certainty metric to guide the selection
of samples for contrastive learning. The framework’s computational efficiency
is enhanced through novel sampling strategies that select a few representa-
tive samples for contrasting, and a negative memory bank is used to increase

sample diversity and eliminate dependence on batch size.

Fourth, this thesis introduces a new paradigm for SSL by leveraging external
anatomical priors through the Contrastive Cross-Teaching with Registration
(CCT-R) framework. CCT-R is the first method to integrate spatial regis-
tration transforms into the learning process. It features two novel modules: a
Registration Supervision Loss (RSL), which uses transforms between labeled
and unlabeled volumes to generate an additional, highly reliable source of
pseudo-labels, and Registration-Enhanced Positive Sampling (REPS), which
uses registration to identify anatomically-corresponding positive pairs across

volumes for contrastive learning.

Overall, these contributions provide a powerful toolkit that significantly
alleviates the annotation bottleneck in medical AI. The proposed meth-
ods demonstrate state-of-the-art performance on challenging segmentation
benchmarks, delivering a pathway to develop accurate, data-efficient models
for real-world clinical applications and opening new avenues for research into

fusing geometric priors with semantic segmentation.
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Chapter 1

Introduction

1.1 Deep Learning on Medical Image Segmentation

Medical imaging plays a critical role in modern healthcare by providing detailed visualiza-
tions of internal body structures, making it essential for diagnosis, treatment planning, and
disease monitoring. Structural imaging, including magnetic resonance imaging (MRI), com-
puted tomography (CT), X-ray and ultrasound, has become indispensable to contemporary
healthcare as it offers high-resolution, macroscopic views of organs and tissues, which are
the focus of this thesis (see Figure 1.1). For instance, MRI is proficient in producing high-
contrast images of soft tissues, CT excels in providing detailed images of bones and organs,
and ultrasound is frequently utilized for real-time imaging. Despite their differences, these
technologies collaborate to provide a comprehensive medical assessment of various body

parts, facilitating the identification and treatment of diseases.

Since the early days of medical imaging, researchers have developed systems to automat-
ically analyze these images. Researchers sequentially applied low-level pixel processing
techniques, such as edge detection and region growing, along with mathematical model-
ing to construct compound rule-based systems that solved specific tasks for medical image
analysis from the 1970s to the 1990s. These systems were similar to the expert systems in
Al at the time, which relied on sets of “if-then-else” rules. Known as Good Old-Fashioned
Artificial Intelligence [5], these systems were often brittle, much like the rule-based methods

used in image processing.

By the late 1990s, supervised techniques that use training data to build systems gained pop-
ularity in medical image analysis. Examples include active shape models for segmentation,
atlas methods for registration, and feature extraction with statistical classifiers for computer-
aided diagnosis. Many successful commercial systems still use this machine learning ap-

proach as their foundation. Over time, we transitioned from fully human-designed systems
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(b) (©) (d)

Figure 1.1: Examples of medical structural images. (a) cardiac MRI (ACDC dataset [1]), (b)
lung CT (ILD Database-MedGIFT [2]), (c) chest X-ray (NIH ChestX-ray14 dataset [3]) and
(d) ultrasound heart image (CAMUS dataset [4]).

to those trained by computers that extract feature vectors from data. However, the crucial
step of extracting discriminative features from images is still performed manually, resulting

in systems with handcrafted features [6, 7, 8].

A vital task in medical image analysis is segmentation, which aims to find the outlines of
anatomical or pathological structures. It is critical in computer-aided diagnosis (CAD) and
smart healthcare, dramatically increasing the speed and accuracy of clinical diagnoses. In
medical imaging, segmentation tasks include brain tumor segmentation [9, 10], cardiac im-
age segmentation [11, 12], liver and tumor segmentation [13, 14], optic disc segmentation
[15], and other applications. These tasks are crucial for assisting physicians in diagnos-
ing conditions, monitoring disease progression, and strategizing surgical interventions. The
enhancement of imaging and segmentation technology increases the precision of medical

practice and expands the scope of diagnostic medicine.

To aid clinicians in achieving accurate diagnoses, it is crucial to segment key structures in
medical images and extract relevant features from these regions. Early segmentation tech-
niques relied on methods such as edge detection, template matching, statistical shape models,
active contours, and traditional machine learning approaches. For instance, a mathematical
morphology edge detection algorithm was developed for lung CT images [16], while another
study applied Hausdorff-based template matching for disc inspection [17]. Template match-
ing was employed for ventricular segmentation in brain CT images [18], and a shape-based
method was introduced for 2D cardiac MRI and 3D prostate MRI segmentation [19]. Liver
tumors from abdominal CT images were segmented using the activity profile model [20],
and a combination of level sets with support vector machine was applied for medical body
data segmentation [21]. Despite the success of these approaches, medical image segmen-
tation remains a challenging area in computer vision, primarily due to the complexities in
feature representation. Extracting meaningful features from medical images is often more
demanding than from standard RGB images, as medical images are frequently affected by

blur, noise, and low contrast, making accurate segmentation particularly difficult.
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(b) (d)

Figure 1.2: Semantic segmentation vs. instance segmentation. (a) Original abdominal CT
image. (b) Ground-truth of semantic segmentation, where each color represents an anatom-
ical structure class (e.g., liver, spleen, kidney). (c) Original microscopy image of cells. (d)
Ground-truth of instance segmentation, where each individual cell is delineated with a dis-
tinct label and boundary, even if they belong to the same class.

Deep learning (DL), a subset of machine learning (ML), has revolutionized feature extraction
by automating the detection of spatial and temporal patterns in images, thereby obviating the
necessity for manual feature selection. The accessibility of high-quality imaging datasets
and enhancements in computational capabilities have driven the swift expansion of DL in
medical imaging. Following the introduction of AlexNet [22] in 2012, convolutional neural
networks (CNNs) have been pivotal in the ImageNet competition, catalyzing a heightened
interest in the application of DL techniques to natural image processing. However, compared
to natural scene images, medical imaging has unique characteristics: 1) The image structure
is relatively fixed, but large deformations occur due to complex imaging protocols, making
precise 3D pixel tracking difficult even with a stable organ position. High-resolution features
are key for identifying target objects. 2) Organ boundaries are blurred with complex gradi-
ents, requiring more low-resolution information for accurate segmentation. 3) The amount

of labeled data is small and imbalanced.

Given these challenges, it is essential to develop models tailored to medical images. Conse-
quently, the success has naturally permeated the medical imaging domain, where DL tech-
niques have been progressively utilized for tasks including classification, detection, segmen-
tation, and registration, markedly improving both accuracy and efficiency. Convolutional
neural networks (CNNs) have emerged as the foundation of medical image segmentation
due to their proficiency in capturing hierarchical image features while exhibiting resilience
to prevalent image deficiencies such as noise, blur, and low contrast. In contrast to con-
ventional techniques that depend on manually designed features, CNNs autonomously ac-
quire representations, rendering them exceptionally appropriate for medical image segmen-
tation—currently a highly dynamic research domain within computer vision and image pro-

cessing.

Medical image segmentation generally falls into two categories: 1) semantic segmentation,



1.1. Deep Learning on Medical Image Segmentation 4

which classifies each pixel with a specific label (e.g., Aorta, Gallbladder, Kidney, Liver as
shown in Figure 1.2 (a & b); and 2) instance segmentation, which extends semantic segmen-
tation by not only classifying pixels but also distinguishing between individual instances of
objects within the same class (e.g., individual cells in Figure 1.2 (¢ & d) [23]. In this thesis,
we focus on semantic segmentation, as it represents the predominant paradigm in medical
image analysis. In contrast to natural images or microscopy data, where multiple objects
of the same category frequently appear and must be individually delineated, medical im-
ages are typically characterized by anatomical structures that occur in predictable locations
and follow a consistent spatial organization. As a result, distinguishing between separate
instances of the same class is generally unnecessary. While instance segmentation plays a
critical role in domains that require object-level discrimination, its application in medical
imaging remains limited, both because of the inherent anatomical regularity and the addi-

tional methodological complexity it entails.

Machine learning typically falls into two categories, supervised and unsupervised, based
on the quantity of labeled data. In supervised learning, we train models on carefully la-
beled data, but obtaining large amounts of labeled medical images can be challenging due to
restricted access to medical data and the high cost of manual annotation. In contrast, unsu-
pervised learning requires no labeled data, increasing the complexity of the learning process
as it focuses on discovering hidden patterns or structures within the data, often through tech-
niques like clustering. Self-supervised learning, a subset of unsupervised learning, aims to
learn representations from unlabeled data that can be used in subsequent supervised tasks,
allowing models to leverage vast amounts of unlabeled data before fine-tuning on smaller
labeled datasets. Between these extremes, weakly supervised and semi-supervised learning
combine elements of both: they require only a small portion of labeled data while the ma-
jority remains unlabeled, making them attractive for medical image tasks where labeling is
costly and time-consuming. In this thesis, we focus on fully and semi-supervised models
for medical segmentation because they allow effective training with minimal labeled data,
addressing the high cost of medical data annotation, while also improving performance and

generalization for accurate organ and lesion segmentation.

Supervised Learning in Medical imaging Segmentation For medical image seg-
mentation tasks, supervised learning remains the predominant approach due to its high accu-
racy and reliance on fully labeled data. Research in this field primarily focuses on improving

neural network architectures and loss function design.

For network architectures, CNNs are widely used in DL for medical image segmentation.
Notable models include encoder-decoder structures like Fully Convolutional Networks (FCN)
[24], U-Net [25, 26, 27, 28], and dilated convolutional models [29, 30, 31]. A major draw-

back of CNNs is their limited ability to model long-range pixel interactions. Transformers,
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originally developed for natural language processing [32], address this issue. Vision Trans-
former (ViT) [33] was the first to adapt transformers for vision tasks, outperforming CNNs
in several areas. Studies [34, 35, 36, 37] have shown promising results using transformers
in medical image segmentation, leveraging either convolutional or transformer-based back-

bones.

A considerable effort has also been dedicated to developing appropriate loss functions to
enhance segmentation accuracy. Cross-entropy loss and Dice loss are two of the most widely
used loss functions, which are particularly effective for multi-class segmentation tasks and
tasks with class imbalance, respectively. Several variants have been proposed to further
enhance segmentation performance for medical imaging by addressing class imbalance [24,
38], boundary precision [39, 40]), hard-to-classify regions [41], and balancing false positives

and false negatives [42].

However, in the medical domain, such full labeled datasets require prohibitive time, cost,
and expertise to obtain. As a result, fully supervised methods are often challenging to apply

in real-world scenarios.

Semi-supervised Learning in Medical imaging Segmentation Semi-supervised
learning has gained increasing interest for reducing reliance on labeled data by leveraging
large amounts of unlabeled data alongside a limited set of labeled data [43]. Deep semi-
supervised methods can be categorized into five main approaches: pseudo-labeling, consis-

tency regularization, contrastive learning, GAN-based methods and hybrid models.

Pseudo-labeling is a widely used and simple method [44] which trains a model on labeled
data, then assigns pseudo-labels to unlabeled data, expanding the labeled set. Some ap-
proaches iteratively fine-tune the model based on predictions [45, 46, 47, 48, 49], while

others use multiple models to generate more robust pseudo-labels [50, 51, 52, 53].

Consistency regularization relies on the smoothness hypothesis, ensuring that perturbations
to input data do not alter the model’s output [54]. It has been applied using data augmentation
[55, 50], network architectures [56], and task configurations [57]. For instance, Bortsova
et al. [55] enforced consistency between predicted masks and input images under spatial

transformations.

Contrastive learning enhances inter-class separability and intra-class compactness by dis-
tinguishing between unlabeled images [58, 59, 60, 61]. Image-level based methods capture
both pixel-level [62, 63, 64, 65] and global features [66, 67], though they tend to be computa-
tionally intensive [66]. Patch-level based approaches focus on localized features by selecting

patches from the same image or across images [68, 67, 65, 69].

GAN-based methods implicitly model data distributions using a generator to create synthetic

samples and a discriminator to distinguish between real and fake samples [70, 71], effectively
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leveraging unlabeled data in semi-supervised learning[72, 73, 74].

1.2 Motivation and Contributions

Motivation for developing new DL models for medical image segmentation
The effectiveness of DL approaches in medical image segmentation is limited by three fac-
tors. First, there is a significant domain gap between computer vision (CV) and medical
imaging, necessitating the adaptation of CV-based DL models to work effectively in the med-
ical domain. These models must also be appropriately sized to avoid over-fitting, especially
given the common challenges of imbalanced and small labeled datasets. Second, supervised
methods heavily depend on high-quality annotations, which are costly and time-consuming
to produce, limiting scalability. Third, the performance of semi-supervised models still lags
significantly behind fully supervised models. These challenges highlight the need for meth-
ods that can accurately capture boundaries of interest areas by leveraging inherent image

features, rather than relying solely on extensive annotations.

UNet and other CNN-based models have dominated the field of medical image segmenta-
tion, delivering impressive performance. CNNs benefit from key properties such as sparse
interactions, weight sharing, and translation equivariance, providing a strong inductive bias
for vision tasks. However, they have a notable limitation: an inability to model long-range
pixel interactions effectively. Transformers, initially designed for sequence modeling in nat-
ural language processing, have gained increasing attention in computer vision to address
this issue. When applied to medical image segmentation, transformers can model global
feature dependencies, capturing relationships across multiple organs. However, directly ap-
plying standard transformer blocks from the CV domain poses challenges: difficulty in ac-
curately delineating organ boundaries due to limited spatial and local information, and poor
robustness on small medical datasets due to their data-hungry nature. Thus, combining the
strengths of CNNs and transformers to create models tailored for medical image segmen-
tation holds enormous potential for overcoming these challenges and further improving the

state-of-the-art performance.

Semi-supervised learning is a promising approach to address the scarcity of labeled data,
leveraging both labeled and unlabeled data. However, many existing methods focus on pre-
diction accuracy for individual slices, neglecting the feature relationships between different
slices. To address this, integrating semi-supervised learning with advanced contrastive learn-
ing approaches can enhance the model’s ability to capture meaningful representations from
unlabeled data. Specifically, supervised contrastive learning brings features of positive pairs
(same class) closer while distancing those of negative pairs. However, comparing positive

and negative pairs using binary supervision would introduce the problem of false negatives
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in representation learning, leading to loss of semantic information and slow convergence.
Currently, contrastive learning for semi-supervised medical image segmentation has yet to

explore the above challenge.

Contributions of this thesis Throughout this thesis, we propose several contributions
to address these issues. we propose a compact and accurate pure-transformer model that
introduces convolutions in a multi-stage design, enhancing fully supervised medical image
segmentation. Our designed new transformer block integrates localized spatial context and
inductive biases. In addition, we introduce a multi-scale supervised contrastive learning
based on a CNN and transformer cross-teaching framework to extract robust representations
across the whole dataset. Furthermore, to alleviate the false negatives and high complexity
issues in contrastive learning, we develop a certainty-guided sampling strategy that selects
accurate and few negative features for contrast. Finally, we propose first registration-guided
semi-supervised medical image segmentation to further enhance the learning of semantic
information and representation from unlabeled data. Overall, this thesis presents innovative
DL models for medical image segmentation, offering solutions for accurately segmenting or-
gan boundaries in fully supervised settings with small and imbalanced labeled datasets, while
also providing strategies to capture meaningful representations in semi-supervised scenarios

using abundant unlabeled data with minimal labeled data.

1.3 Thesis Outline

This thesis is structured in the following chapters:

* Chapter 1 introduces the field of DL on medical image segmentation.

» Chapter 2 presents the background context for fully and semi supervised learning in
medical image segmentation, discussing segmentation architecture, semi-supervised

strategies and contrastive learning.

e In Chapter 3, we propose CS-Unet, a pure-transformer model that introduces con-
volutions in a multi-stage design for fully supervised medical image segmentation on

cardiac MRI images and abdominal CT images.

 In Chapter 4 extends the investigation to semi-supervised learning. We improve on a
cross-teaching framework between CNN and transformer, by introducing a multi-scale
cross supervised contrastive learning (MSCS), which extracts robust feature represen-

tations that reflect intra- and inter-slice relationships across the whole dataset.
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* Chapter S further improves MSCS into MSCSv2 by incorporating a novel certainty-
guided contrastive learning strategy. This new version mitigates the challenges posed
by inaccurate pseudo labels and class imbalance while significantly improving com-
putational efficiency. We conduct extensive evaluations on three challenging bench-
marks, and the experimental results demonstrate that our approach achieves state-of-

the-art performance.

* Chapter 6 proposes CCT-R, the first registration-guided method for semi-supervised
medical image segmentation, by integrating registration with a contrastive cross-teaching
framework. CCT-R achieves SOTA performance across all settings with particularly

impressive gains under minimal supervision conditions.

* Chapter 7 concludes and discusses the research contributions of this thesis.

1.4 List of Publications

The following publications serve as a foundation for the research contributions:

Chapter 3: Optimizing vision transformers for medical image segmentation.

Liu, Q., Kaul, C., Wang, J., Anagnostopoulos, C., Murray-Smith, R., & Deli-
gianni, F. (2023). Optimizing vision transformers for medical image segmen-
tation. In 2023 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE.

Contributions: Qianying Liu designed and executed the experiments, prepared

the manuscript, and wrote the corresponding code.

Chapter 4: Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image

Segmentation.

Liu, Q., Gu, X., Henderson, P, & Deligianni, F. (2023). Multi-Scale Cross
Contrastive Learning for Semi-Supervised Medical Image Segmentation. In 34th
British Machine Vision Conference 2023 (BMVC).

Contributions: Qianying Liu designed and executed the experiments, prepared

the manuscript, and wrote the corresponding code.

Chapter S: Certainty-Guided Cross Contrastive Learning for Semi-Supervised Medical Im-

age Segmentation.
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Liu, Q., Gu, X., Henderson, P, Dai, H., & Deligianni, F. (2024). Certainty-
Guided Cross Contrastive Learning for Semi-Supervised Medical Image Seg-
mentation. Authorea Preprints (Submitted to IEEE Transactions on Biomedical
Engineering (TBME)).

Contributions: Qianying Liu designed and executed the experiments, prepared

the manuscript, and wrote the corresponding code.

Chapter 6: Learning Semi-Supervised Medical Image Segmentation from Spatial Registra-

tion.

Liu, Q., Henderson, P, Gu, X., Dai, H., & Deligianni, F. (2024). Learning
Semi-Supervised Medical Image Segmentation from Spatial Registration. arXiv
preprint arXiv:2409.10422. (Submitted to 2025 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACYV)).

Contributions: Qianying Liu designed and executed the experiments, prepared

the manuscript, and wrote the corresponding code.

1.5 Code and Data Availability

The code and data for this thesis are available at:

Chapter 3: Optimizing vision transformers for medical image segmentation.
https://github.com/kathyliu579/CS-Unet

Chapter 4: Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image

Segmentation.
https://github.com/kathyliu579/MCSC

Chapter S: Certainty-Guided Cross Contrastive Learning for Semi-Supervised Medical Im-

age Segmentation.
https://github.com/kathyliu579/MCSCv2

Chapter 6: Learning Semi-Supervised Medical Image Segmentation from Spatial Registra-

tion.

https://github.com/kathyliu579/Contrastive Crossteaching WithRegistration


https://github.com/kathyliu579/CS-Unet
https://github.com/kathyliu579/MCSC
https://github.com/kathyliu579/MCSCv2
https://github.com/kathyliu579/ContrastiveCrossteachingWithRegistration
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1.6 List of Abbreviations

To improve readability and ensure consistency, Table 1.1,Table 1.2 and Table 1.3 provide a
consolidated list of abbreviations appearing in this thesis, including datasets, method names,

and general technical terms.

Table 1.1: Abbreviations of datasets used in this thesis.

ACDC Automated Cardiac Diagnosis Synapse Multi-Atlas Abdomen Labeling
Challenge Challenge

DSC  Dice Similarity Coefficient HD Hausdorff Distance

Table 1.2: Abbreviations of method names used in this thesis.

CS-Unet  Convolutional Swin-Unet MCSC Multi-Scale Cross Supervised
Contrastive Learning

MCSC-v2 Multi-Scale Cross Supervised CCT-R Cross Teaching Contrastive
Contrastive Learning (version 2) Learning from Registration

Table 1.3: Abbreviations of general terms used in this thesis.

CNN  Convolutional Neural Network ViT  Vision Transformer

MISS Medical Image Semantic Seg- SSL  Semi-Supervised Learning

mentation
ML  Machine Learning DL  Deep Learning
CV  Computer Vision FCN Fully Convolutional Network
MHSA Multi-Head Self-Attention FFN Feed-Forward Network

MLP  Multi-Layer Perceptron LN Layer Normalization
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Chapter 2

Background

2.1 Structural Imaging Modalities and Associated Tasks

Structural imaging like MRI, CT, X-rays, and Ultrasound plays a crucial role in medical
diagnosis by providing detailed anatomical information. Over the years, advancements in
structural imaging techniques have significantly improved the ability to analyze and inter-
pret internal body structures. These imaging modalities, often used in conjunction with DL,
enable image acquisition/reconstruction and post-processing tasks including segmentation
(dividing an image into regions like organs or tumors), registration (aligning images from
different scans), detection (identifying abnormalities such as tumors), and classification (cat-
egorizing images by labels like disease presence). These tasks are essential for diagnosing
diseases, planning treatments, and monitoring patient outcomes, forming the backbone of

modern medical image analysis.

2.1.1 Medical Image Reconstruction

Medical image segmentation is applied to several imaging modalities, each with unique fea-
tures. MRI excels in soft tissue contrast, making it ideal for brain and musculoskeletal seg-
mentation, often used to identify tumors or cardiac structures. CT is known for its high spa-
tial resolution, making it suited for detailed organ segmentation, such as in the liver, lungs,
and bones. Ultrasound, due to its real-time imaging, is frequently used in fetal and cardiac
applications, enabling dynamic segmentation. X-rays are predominantly used for bone and
lung segmentation, particularly for fracture detection and disease diagnosis. Each modality

brings distinct strengths to segmentation tasks, depending on clinical needs.
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2.1.2 Medical Image Segmentation

Due to the increase in radiological examinations and the increase of images that are taken
within one examination, additional segmentation tools for automated image analysis are very
helpful in daily clinical practice. Medical image segmentation is applied to several imaging
modalities such as MRI, CT, Ultrasound and X-rays.

MRI excels in soft tissue contrast, making it ideal for brain tumors segmentation [75, 76, 77],
musculoskeletal segmentation [78, 79], identifying prostate [80, 81, 82] and cardiac struc-
tures [83, 84, 85, 86]. For example, Abd El Kader et al. [75] used deep differential CNN to
categorize brain tumors in MRI images, achieving maximum accuracy of 99.25%. However,
MRI suffers from intensity inhomogeneity and variable acquisition protocols across scan-

ners, leading to inconsistent contrast and posing challenges for robust boundary delineation.

CT is known for its high spatial resolution, making it suited for detailed organ segmentation
and complex anatomy, such as the liver segmentation [87, 88, 89], lungs segmentation (whole
region [90, 91], nodule [92, 93, 94, 95], parenchyma [96, 97, 98] and tumors [99, 100]), and
bones segmentation [101, 102, 103]. For example, a study shows a new way to segment liver
images based on generative adversarial networks (GANs) and mask region-based convolu-
tional neural networks (Mask R-CNN) to alleviate the noisy features in resulting images [89].
Yet CT segmentation must overcome challenges of metal artifacts, phase-specific intensity

variations, and low soft-tissue contrast in certain organs, which can degrade accuracy.

Ultrasound, due to its real-time imaging, is frequently used in fetal brain [104, 105], skull
[106] and abdomen [107, 108], and cardiac regions [109, 110, 111], enabling dynamic seg-
mentation. However, ultrasound images exhibit speckle noise, low contrast, and operator-
dependent variability in probe angle and pressure, making consistent delineation of structures
difficult.

X-rays, on the other hand, offer rapid, 2D imaging at a lower cost and with reduced radiation
exposure, making them ideal for quick assessments. Chest X-rays are predominantly used
for bone [112, 113] and lung [114, 115] segmentation, particularly in fracture detection and
disease diagnosis. Their 2D projection nature causes overlap of anatomical structures and
loss of depth information, which complicates separation of adjacent tissues and accurate

boundary localization.

The main challenges in semantic segmentation for these modalities include inconsistent im-
age quality and contrast (MRI), artifacts and phase dependence (CT), noise and operator
variability (Ultrasound), and structural overlap with depth ambiguity (X-ray). Addressing
these issues is critical for developing robust, generalizable segmentation models across di-

verse clinical settings.
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2.1.3 Medical Image Registration

Medical image registration, also known as image fusion or matching, is the process of align-
ing two or more images based on their appearances to find an optimal spatial transformation
for matching underlying anatomical structures [116]. It is critical in clinical applications
such as image guidance, motion tracking, dose accumulation, and image reconstruction. We
can categorize registration methods from several perspectives. Based on input images, they
may involve unimodal (same imaging modality) or multimodal (different modalities like
MRI-CT) registration, as well as intra-patient (same patient over time) or inter-patient (be-
tween patients) registration. The transformation model can also categorize registration: rigid
for fixed structures, affine for scaling/rotation, or deformable for flexible tissues. Finally,
registration techniques differ in dimensionality, including 3D to 3D, 3D to 2D, and 2D to
2D/3D registration. Recent deep learning advancements have further improved the accuracy
and robustness of these registration tasks. Specifically, MRI is frequently used in brain reg-
istration [117, 118], prostate registration [119, 120], and cardiac cine MRI spatio-temporal
registration [121, 122] for monitoring changes over time or aligning multiple modalities. CT
registration is valuable for preoperative and intraoperative alignment, particularly for organs
like the liver [123, 120] and lungs [124, 125]. Ultrasound registration, while more challeng-
ing, is applied in cardiac [126, 127] and fetal imaging [128] for real-time motion tracking,
enhancing dynamic structure analysis, and Ultrasound/CT/MRI multi modality registration

on prostate [129] and liver tumor [123].

2.1.4 Medical Image Object Detection

Object detection in medical images involves identifying the location of lesions or other struc-
tures and classifying objects within images. This task is essential for detecting the presence
and precise spatial location of abnormalities, such as tumors in organs or tissues, marked
by bounding boxes with confidence scores [130]. Object detection is applied for tasks like
lesion localization, tracking, and classification, with widespread applications across imaging
modalities. MRI is often used in brain [131, 132, 133] and prostate [134, 135, 136] object
detection to identify tumors, cancer, lesion or other abnormalities due to its excellent soft-
tissue contrast. This helps locate brain lesions and assess tumor boundaries in real time.
CT is widely used for detecting lung nodules [137, 138, 139], liver lesions [140, 141, 142],
and other organ abnormalities [143, 144, 145] because of its high spatial resolution. Ultra-
sound is particularly useful in real-time detection tasks, such as identifying fetal structures
[146, 147, 148], nerve detection [149, 150, 151] and cardiac abnormalities [152, 153, 154]
during live imaging. Bone[155, 156, 157], chest [158, 159, 160], and dental [161, 162, 163]
X-rays are frequently used in object detection tasks, including identifying fractures, detect-

ing lung disease, and assessing teeth and prostheses.
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2.1.5 Medical Image Classification

The capabilities of novel DL networks even extend to involving classification tasks, in addi-
tion to sole detection alone. Medical image classification is a task in medical image analysis
that involves classifying medical images, such as X-rays, MRI scans, and CT scans, into
different categories based on the type of image or the presence of specific structures or dis-
eases. The goal is to use computer algorithms to automatically identify and classify medical
images based on their content, which can help in diagnosis, treatment planning, and disease

monitoring.

MRI :brain, brain tumor/mass, bone lesions on routine MRI, Prostate cancer, parotid gland
tumors, breast cancer, Detection and vascular territorial classification of stroke,prostate can-
cer diagnosis, heart disease classification,heart failure, CT Ultra-sound: Prostate cancer X-

rays

2.2 Supervised Learning in Medical Image Segmen-
tation

2.2.1 Medical Image Segmentation Models

For medical image segmentation tasks, supervised learning remains the predominant ap-
proach due to its high accuracy and reliance on fully labeled data. Research in this field
primarily focuses on improving neural network architectures and loss function design. Net-
work architectures: when it comes to network architectures, there are two main categories:

CNNs and Transformers.

CNNs are the most widely used networks in DL for traditional computer vision and med-
ical image segmentation. Researchers have proposed the encoder-decoder structure, which
is a popular end-to-end architecture seen in models like the Fully Convolutional Network
(FCN)[24], U-Net[25, 26, 27, 28], and dilated convolutional models: DeepLab family [29],
densely connected Atrous Spatial Pyramid Pooling (Dense ASPP) [30] and the Efficient Net-
work (ENet) [31]. In these structures, the encoder extracts image features, while the decoder
restores these features to the original image size to produce the final segmentation. Common
structures include CNNs with graphical models[164, 165], multiscale and pyramid-based
networks such as Feature Pyramid Network (FPN) [166], Pyramid Scene Parsing Network
(PSPN) [167, 168], region-based CNNs (R-CNN) [169, 170, 171, 172], and attention-based
models [173]. These approaches aim to enhance feature extraction, spatial resolution, and
model interpretability, ultimately improving segmentation performance in medical imaging
tasks.
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As described above, Unet and other CNN based models have prevailed the domain of med-
ical image segmentation and achieved impressive segmentation performance. This is be-
cause convolutions enjoy important properties such as sparse interactions, weight sharing,
and translation equivariance, giving convnets a strong and useful inductive bias for vision
tasks. However, they also suffer from an important intrinsic drawback: they cannot model
long-range interactions between pixels due the fixed operation performed on each image
sample. The transformer [32], was designed for sequence modeling in the domain of natural
language processing, and has drawn increasing attention from the computer vision commu-
nity. Vision transformer (ViT) [33] was the first transformer model adapted into computer
vision and outperformed convnets on various downstream vision tasks. Then Pyramid Vision
Transformer (PVT) [174] and Swin transformer [175] proposed a spatial reduction attention
and window based attention mechanism respectively to reduce the computational complexity
of ViT. Convolutional vision Transformer (CvT) [176] and Compact Convolutional Trans-
formers (CCT) [177] introduced convolutions to transformer block and dispelled the draw-
back of data hungry of transformer. Some studies [178, 35, 36, 37] exploited transformer in
medical image segmentation tasks with promising results. They can be divided into two cate-
gories depending on their use of either Convolutions or Transformers as a feature processing
backbone.

2.2.2 Medical Image Segmentation Losses

Loss functions: designing new loss functions also resulted in improvements in segmentation
accuracy. A great deal of work has been reported about the design of suitable loss functions.
Cross-entropy loss and Dice loss are two of the most widely used loss functions. Cross-
entropy loss [179] operates by comparing the predicted class probabilities for each pixel with
the true segmentation labels. It is particularly effective for multi-class segmentation tasks.
However, medical images typically exhibit class imbalance, with the foreground representing
a small region like a tumor, surrounded by a large background. Standard cross-entropy may
struggle to provide adequate performance. Dice loss [28], on the other hand, measures the
overlap between the predicted segmentation and the ground truth, making it particularly
useful for tasks with class imbalance. It directly optimizes the region overlap, which is
crucial for accurately delineating small and irregular structures. Dice loss has become a

popular choice because it is better at handling imbalanced data than cross-entropy.

Building on these foundational loss functions, several variants have been proposed to further
enhance segmentation performance for medical imaging by addressing specific challenges
such as class imbalance (Weighted Cross-Entropy Loss [24], Generalized Dice Loss [38]),
boundary precision (Boundary Loss [39], Hausdorff Distance Loss [40]), hard-to-classify
regions (Focal Loss [41]), and Balancing false positives and false negatives (Tversky Loss
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[42]).

However, in the medical domain, such full labeled datasets require prohibitive time, cost,
and expertise to obtain. As a result, fully supervised methods are often challenging to apply

in real-world scenarios.

2.3 Unsupervised Learning in Medical Image Segmen-
tation

Unsupervised ML is used to locate and sort the data according to their associations. It is
advertised as a free learning method and doesn’t need any special training. Unsupervised
machine learning acts only on the input data, without a label or goal, and is beneficial for
data patterns with irregularities. Unsupervised ML also has two subtypes: 1) Clustering: It
is an unsupervised ML technique which is useful for identifying groups or other patterns in
data. To put it simply, the unsupervised task is capable of grouping the unstructured data
into a variety of clusters depending on how similar and unlike they are to one another. 2)
Dimension Reduction: This is an unsupervised ML technique that involves feature selection

through fitness.

With a growing emphasis on avoiding reliance on human expert annotations, researchers
have been exploring unsupervised learning approaches for medical image segmentation.
Most unsupervised image segmentation techniques involve extracting features like color,
brightness, or texture from local patches, followed by pixel-level clustering based on these
features. Three of the most commonly used methods are Felzenszwalb and Huttenlocher’s
graph-based approach [180], Shi and Malik’s Normalized Cuts [181, 182], and Comaniciu
and Meer’s Mean Shift [183]. An edge detection-based method [184, 185] was introduced
to demonstrate superior performance over traditional approaches. More recently, Pont-Tuset
et al. [186] proposed a comprehensive approach for bottom-up multi-scale hierarchical seg-
mentation. DCGN [187] used a constrained Gaussian mixture model to cluster pixel rep-
resentations in histopathology images. It assumes that different tissue types correspond to

different colors, which is not necessarily true in many other medical image modalities.

Atlas-based unsupervised learning is another promising direction. Compared to their tradi-
tional counterparts [8—10], the versions empowered by deep learning [32, 33] have improved
results. When the domain gap is small, they can be highly effective; otherwise, these methods
could fail similarly. Given their requirement for spatial registration, they are more suitable
for clearly defined structures that show little variation among individuals and thus are less

applicable to image domains with greater variability.

However, the application of unsupervised methods in medical image segmentation is lim-
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ited due to the complexity and variability of medical images, along with the high accuracy
demands in clinical settings. Since unsupervised approaches rely on general visual features
like color and texture, they often struggle to capture subtle details such as tissue boundaries
or small lesions. Furthermore, weak or noisy boundaries in medical images reduce their
reliability [188]. As a result, semi-supervised or weakly supervised learning, which utilizes
small amounts of expert-labeled data, has become a prominent area of research for improving

accuracy and reliability.

2.3.1 Self-Supervised Learning in Semantic Segmentation

Self-supervised learning is a subclass of unsupervised learning that leverages pretext tasks to
generate learning signals from unlabeled data. These tasks are handcrafted or automatically
defined to encourage the model to learn meaningful representations. Most of these works
focus on intuitive handcrafted supervision tasks including spatial transform prediction [51],
image impainting [32], patch reordering [27], image colorization [33], difference detection
[52], motion interpolation [53] and so on. Similar methods have been applied to medical
images [38, 54,55,56]. However, most of these works still require a second-stage fine-tuning
after initializing with weights learned from self-supervision. In addition, features learned
from handcrafted tasks may not be sufficiently generalizable to semantic segmentation, as
two tasks might not be strongly related [57]. In contrast, in our work, segmenting superpixel-
based pseudolabels is directly related to segmenting real objects. This is because superpixels
are compact building blocks for semantic masks for real objects. Recent works [48, 58, 59]

on medical imaging rely on second-order optimization [60].

2.3.2 Segment Anything Model (SAM) and Medical Variants

Segment Anything Model (SAM) [44] recently introduced a general-purpose segmentation
tool pre-trained on a gigantic dataset of natural images. As previous researchers have shown
[45], SAM offers an alternative solution to label-free medical image segmentation through
an interface called “zero-shot transfer”, where a single point is provided as a prompt which
is deciphered by a prompt encoder and sent to a mask model to produce a segmentation
mask. Alternative input formats, such as text prompt (written text) or box prompt (bounding
box) are also supported by this framework. To better adapt to medical image applications,
researchers have developed counterparts that are pre-trained on large datasets of medical
images instead of natural images. MedSAM [46] and SAMMed2D [47] are among the most

popular variants.
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2.4 Semi-Supervised Learning in Medical Image Seg-
mentation

The primary objective of semi-supervised learning is to improve the effectiveness of su-
pervised models by exploiting large collections of unlabeled data. Based on the design
of semi-supervised losses and model architectures, deep semi-supervised medical image
segmentation methods can generally be categorized into five groups: pseudo-labeling, con-
sistency regularization, GAN-based approaches, contrastive learning-based approaches. In
this paper, we mainly focus on pseudo-labeling, consistency regularization, and contrastive

learning-based methods (the latter discussed in detail in Section 2.6).

2.4.1 Pseudo-Labeling in Semi-Supervised Medical Image Seg-
mentation

Pseudo-labeling is one of the most widely used semi-supervised learning techniques due to
its simplicity and ease of implementation [44]. The general idea is to first train a model on la-
beled data and then assign pseudo labels—typically using the most confident predictions—to
unlabeled samples. These pseudo-labeled samples are then incorporated into training, effec-
tively enlarging the labeled dataset and enhancing model performance. Self-training and

co-training represent two classic forms of pseudo-labeling.

Self-training is considered the fundamental prototype of pseudo-labeling [45]. A model is
initially trained on labeled data and subsequently fine-tuned or retrained using predictions
on unlabeled data. For example, pseudo labels were applied to expand training data in [189],
though without explicit optimization of their quality. Since the accuracy of pseudo labels
is critical to performance, numerous studies have focused on selecting or refining pseudo
labels. A different perspective was proposed in [190], where new images were synthesized
to match the generated pseudo labels rather than improving the labels themselves. Despite
its simplicity and practicality, self-training can be negatively affected when the initial pseudo
labels are noisy. Nevertheless, it remains a useful approach, especially when no labeled data
is available, where unsupervised methods can be integrated to improve pseudo-label quality
[191].

One limitation of self-training is that pseudo-label quality may fluctuate significantly when
relying on a single model. Co-training addresses this issue by combining multiple models to
generate more reliable pseudo labels. As a classic multi-view learning strategy, co-training
assumes that each data sample can be described from two or more complementary views,
with each view sufficient to train a strong model independently [S1]. During training, if one

model produces a high-confidence prediction exceeding a predefined threshold, that predic-
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tion is added to the training set of the other model. In essence, the models iteratively provide
supervision for each other. To further diversify the learned representations, [50] introduced
a deep co-training method based on adversarial learning, where adversarial samples were

employed to enhance model diversity across different views.

2.4.2 Consistency Regularization in Semi-Supervised Medical
Image Segmentation

One of the most effective ways to deal with the challenge of limited annotations in medical
image segmentation is semi-supervised learning [50, 55, 56, 192, 193]. A key technique in
this approach is to use prediction consistency as a regularizer to exploit the information from
unlabeled data. Different methods have been proposed to achieve this consistency, such
as using different augmentations [55, 50], architectures [56], or tasks [S7]. For example,
Bortsova [55] proposed a semi-supervised framework that enforces the consistency between
the predicted masks and the input images after applying spatial transformations. Peng [50]
trained a group of models with the same architecture to produce similar predictions, while
maintaining their diversity through adversarial learning. A recent work [56] leveraged pow-
erful CNN and Transformer models, aiming to maximize prediction consistency across the
two networks. However, most of these methods focus on output-level consistency on each
single slice under different perturbations [56], without considering the importance of learn-
ing the relationship of features across the slices and cases on the whole dataset, which has
potential to boost segmentation performance. Moreover, on medical image data, these meth-
ods often face the difficulty of dealing with a highly imbalanced class distribution, which can

lead to biased predictions [194]. How to best solve these issues remains an open question.

2.4.3 GAN-Based Methods in Semi-Supervised Medical Image
Segmentation

Generative models can extract latent features from data and learn to generate new sam-
ples based on the underlying distribution [70]. In medical image segmentation, deep semi-
supervised methods often incorporate generative adversarial networks (GANSs) to leverage
unlabeled data. A GAN consists of a generator and a discriminator: the generator syn-
thesizes samples from random noise, while the discriminator distinguishes real from fake
samples [71]. This adversarial framework has been extended to semi-supervised learning
in order to exploit unlabeled data [72], where the discriminator typically acts as a binary

classifier.

Different strategies have been explored for the discriminator. For instance, it may be trained
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to distinguish unlabeled images from generated ones [195], or to differentiate between la-
beled (or feature-level) and unlabeled data [196, 197, 198], with the goal of aligning their
distributions. Other approaches use the discriminator to produce confidence maps that eval-

uate the reliability of segmentation outputs at pixel or region level [199].

Further extensions include adversarial training to distinguish ground-truth masks from pre-
dicted masks [200], or incorporating anatomical priors through constrained adversarial train-
ing (CAT) [201]. However, because GAN training is inherently unstable, most semi-supervised
segmentation methods embed adversarial learning as a component within larger frameworks,

rather than relying on GANSs as standalone architectures.

2.5 Weakly-Supervised Learning in Medical Image Seg-
mentation

Weakly supervised semantic segmentation differs from fully supervised semantic segmenta-
tion in that it leverages weak annotations rather than pixel-level labels. These weak annota-
tions include image-level labels [202, 203], points [204], scribbles [205, 206] and bounding
boxes [207, 208, 209], each offering varying degrees of supervision and providing a balance

between annotation effort and task performance.

Weakly supervised semantic segmentation tasks commonly use image-level labels, which
are the easiest to obtain. They indicate the presence of specific object classes in an image
without specifying their exact location or shape. Medical imaging often employs this form of
annotation for disease classification tasks. For instance, image-level annotations can be used
on the ChestX-ray8 dataset to help with the weakly supervised classification and localization

of common diseases in the thorax [3].

Point annotations provide minimal supervision by marking specific points in the image where
objects of interest are located. Key locations are often identified using point annotation in
medical imaging. For example, point annotations are used to generate coarse labels for

training a deep neural network for nuclei segmentation [210].

Scribbles provide more detailed supervision by roughly outlining regions of interest with
freehand lines. In medical imaging, scribbles are often used for coarse segmentation. For
instance, Wang et al. [211] used scribbles to annotate whole-slide lung cancer images for

weakly supervised segmentation.

Bounding boxes offer stronger supervision by enclosing objects within a rectangular bound-
ary, which indicates the object’s general extent. Bounding boxes are often applied to mark
regions of interest in medical imaging. Mahani et al. [212] propose a weakly supervised con-

volutional neural network using bounding box annotations, guided by predictive uncertainty
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and a conditional random field-based spatial constraint, achieving superior performance on

a skin lesion dataset.

2.6 Contrastive Learning in Medical Image Segmen-
tation

Contrastive learning [34] was proposed as a generic self-supervised method to address the
issue of limited annotations. Conceptually, it allows neural networks to learn meaningful
representations in the embedding space by encouraging similar image pairs to be embedded
closer to each other and vice versa. After a meaningful embedding space is trained, additional
layers can be attached and fine-tuned for downstream tasks. In particular, commonly used
contrastive learning methods such as SImCLR [34], SwaV [35], MoCo [36], BYOL [37],
BarlowTwins [38] and SimSiam [39] focus on extracting image-level representations with
an inter-image contrastive objective. These image-level contrastive learning methods yield
no information about intra-image features and are therefore unsuitable for tasks that require
closer scrutiny within the same image, such as image segmentation. In an attempt to adapt
contrastive learning to tackle the image segmentation task, [40] proposed learning image and
patch representations through global and local contrastive training. In [41], the authors used
a similar approach, although they coined different terminologies. Both methods include a

supervised fine-tuning stage after contrastive pre-training, which still depends on labels.

2.6.1 Unsupervised Medical Image Segmentation with Contrastive
Learning

Two leading unsupervised image segmentation methods, DFC [42] and STEGO [43], both
utilize contrastive learning concepts. STEGO learns feature relationships between an image
and itself, its k most similar images, and dissimilar images. Although STEGO can be trained
without labels, it relies on pre-trained vision backbones for knowledge distillation, which is
not a requirement in our method. DFC is by far the most similar to our approach, yet with two
key differences. First, DFC contrasts on pixels, while we operate on pixel-centered patches.
Pixel-centered patches contain significantly richer semantic and textural information than
pixels. Second, we achieve segmentation through a topological multiscale coarse-graining
method that produces many segmentation maps at various granularities rather than a single
segmentation map. In the medical imaging domain, unsupervised contrastive learning of-
ten leverages domain-specific priors to overcome the lack of annotations. Recent methods
have introduced semantic consistency across different views [213, 214] and context-aware or

scale-invariant mechanisms [215, 216] to address complex anatomical boundaries and varied
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organ sizes. While these approaches improve feature discriminability, they often rely on spe-
cific anatomical priors or operate at fixed granularities. In contrast, our method employs a
topological multiscale coarse-graining strategy, which captures hierarchical structures across

various levels of granularity without requiring pre-defined priors.

2.6.2 Semi-Supervised Medical Image Segmentation with Con-
trastive Learning

Many successful self-supervised methods for representation learning rely on contrastive
learning [58, 59, 60, 61]. The main idea is to make features of positive image pairs more
similar, while making features of negative pairs more different. To apply this for segmen-
tation, which requires dense per-pixel predictions, some recent works have proposed pixel-
level self-supervised contrastive learning [217, 174]. Some works performed the contrast on
the image- or patch-level losses [66], by comparing the whole images or patches for training
to provide image- or patch-wide feature representations. These methods have been extended
to semantic segmentation by incorporating both local and global contrastive losses [218].
To outline the organ boundaries accurately, a contrastive learning method that focuses on
the local features is needed to make predictions for each pixel. In fact, it has also been
shown that using a contrastive loss at both global and local scales improves segmentation
performance [218]. This method is also suitable for partially-supervised instance segmenta-
tion, which aims to combine basic classes with accurately delineated boundaries and novel

classes defined based on bounding boxes.

In the field of natural images, the combination of semi-supervised learning and contrastive
learning has become a popular trend, leading to one-stage end-to-end models that do not

need self-supervised pretraining [219, 220].

Recent works have also focused on extending the supervised contrastive learning to mul-
tiple scales [221, 222]. In contrast, we focus on addressing the typical contrastive-related
issues such as contrastive pair selection across different scales, subnetworks, and levels of
certainty. These challenges are particularly pronounced in semi-supervised medical image

segmentation.

On the other hand, recent studies have explored the application of contrastive learning to
medical image segmentation [223, 66, 224, 68]. However, the existing methods that perform
such integration do not fully address the small-size and class-imbalance challenges typical of
medical datasets, thus limiting their applicability. It remains open how to efficiently leverage

contrastive learning for medical image segmentation.
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2.7 Experimental Datasets and Benchmarks

This chapter provides an overview of representative benchmark datasets that are widely used
in the medical image segmentation literature across different imaging modalities. The spe-
cific datasets adopted for each proposed method and the corresponding experimental proto-

cols are detailed in the relevant chapters.

In the domain of deep learning for medical image segmentation, the choice of datasets is
paramount, as it forms the foundation for validating the performance, generalizability, and
clinical applicability of any novel method. A benchmark dataset serves as a quantitative
quality standard against which the performance of a computational model is measured. The
use of standardized, publicly available benchmark datasets is fundamental for fair compar-
ison and objective validation of new algorithms. This practice ensures that experimental
results are reproducible and can be directly compared to state-of-the-art methods, fostering

transparent and cumulative scientific progress.

To provide a structured overview of commonly adopted and authoritative benchmarks, we

highlight several datasets according to the following principles:

1. Modality Diversity: To reflect the diversity of imaging physics and acquisition char-
acteristics, we cover benchmark datasets spanning four principal modalities: Magnetic

Resonance Imaging (MRI), Computed Tomography (CT), X-ray, and Ultrasound (US).

2. Diversity of Clinical Applications: The selected benchmarks span multiple clini-
cal scenarios, including cardiology (ACDC, CAMUS), neuro-oncology (BraTS), and
abdominal multi-organ segmentation (Synapse). This variety reflects the range of

anatomical and pathological structures studied in the literature.

3. Authoritativeness and Comparability: We prioritize benchmarks originating from
well-established international challenges, particularly those associated with MICCAL
Datasets such as ACDC, BraTS, and Synapse are widely recognized reference stan-

dards and are frequently used for comparison in prior work [178, 56, 36].

4. Graduated Task Complexity: The highlighted benchmarks represent a spectrum
of difficulty, ranging from relatively well-defined anatomical structures (e.g., cardiac
chambers in ACDC), to multi-class organs with ambiguous boundaries (Synapse), to
heterogeneous pathological tissues (BraTS), and to low signal-to-noise ratio (SNR)
scenarios (CAMUYS).

Based on these principles, we present representative benchmark datasets including ACDC,
BraTS, Synapse, the Shenzhen Hospital Chest X-ray set, and CAMUS. A summary is pro-

vided in Table 2.1. Notably, the inclusion of a dataset in this section does not necessarily
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imply that it is used in our experiments; it is intended to reflect commonly used evaluation

benchmarks in the broader literature.

2.7.1 Detailed Dataset Descriptions
2.7.1.1 ACDC: Automated Cardiac Diagnosis Challenge

The ACDC dataset [1], from the 2017 MICCALI challenge, is a leading benchmark for car-
diac MRI analysis. It contains cine-MRI scans from 100-150 patients, encompassing healthy
subjects and patients with four distinct pathologies: myocardial infarction, dilated cardiomy-
opathy, hypertrophic cardiomyopathy, and abnormal right ventricle. The primary task is to
segment the Right Ventricle (RV) blood pool, the Myocardium (MYO), and the Left Ven-
tricle (LV) blood pool at both end-diastolic (ED) and end-systolic (ES) phases. Its value
lies in evaluating a model’s capacity to accurately segment dynamic anatomy and maintain

performance across a diverse spectrum of pathological variations.

2.7.1.2 BraTS: Brain Tumor Segmentation Challenge

The BraTS challenge datasets [225] are the de facto standard for evaluating algorithms
for brain glioma segmentation. We utilize data from the 2019 edition and its successors.
Its defining feature is the multi-modal nature of the data; each patient case includes four
co-registered MRI sequences: TI1-weighted (T1), post-contrast T1-weighted (Tlce), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR). The segmentation task
is to delineate nested tumor subregions: the enhancing tumor (ET), the tumor core (TC, com-
prising ET, necrotic, and non-enhancing parts), and the whole tumor (WT, which includes
the TC and surrounding edema). Success on BraTS is a strong indicator of a model’s abil-
ity to effectively fuse complementary information from multiple sources to segment highly
heterogeneous and infiltrative pathologies. The analysis of brain data has fostered a rich

ecosystem of specialized computational tools.

2.7.1.3 Synapse: Multi-Atlas Abdominal Labeling

The Synapse dataset [226] originates from the MICCAI 2015 "Multi-Atlas Labeling Beyond
the Cranial Vault” challenge. It consists of 30 abdominal CT scans, with expert annotations
for 8 organs: spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, and
pancreas. The core challenge lies in the simultaneous segmentation of multiple organs that
vary greatly in shape and size, and often have indistinct, adjacent boundaries. This dataset
rigorously tests a model’s multi-scale feature representation and its understanding of com-

plex spatial context.
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2.7.1.4 Shenzhen Hospital Chest X-ray Dataset

The publicly available Shenzhen Hospital Chest X-ray dataset [227] is commonly employed
for studies on lung segmentation and tuberculosis screening. Unlike tomographic imaging,
Chest X-rays (CXRs) are 2D projections, resulting in the superposition of anatomical struc-
tures, low overall contrast, and ambiguous boundaries, particularly near the diaphragm and
hilum. This dataset is critical for validating model performance in low-dimensional and low-

SNR scenarios, which is highly relevant for developing widely deployable clinical tools.

2.7.1.5 CAMUS: Cardiac Ultrasound Automated Segmentation

The CAMUS dataset [4] stands as a benchmark for cardiac ultrasound analysis, containing
data from 500 patients. Echocardiography is arguably one of the most challenging modali-
ties for segmentation due to its inherent properties, including strong speckle noise, acoustic
shadowing, and significant operator-dependent variability in image quality. The task is to
segment the LV endocardium and epicardium at the ED and ES phases. CAMUS serves as
an ultimate test of a model’s robustness to noise and its ability to delineate boundaries from

images with extremely poor signal quality.

2.7.2 Discussion on Dataset Limitations

While the benchmark datasets discussed in this section provide a strong and diverse overview
of common evaluation settings in the literature, it is crucial to acknowledge their inherent
limitations to contextualize reported results appropriately. When relevant, additional dataset-
specific considerations for the experiments in this thesis are discussed in the corresponding

chapters.

1. Limited Scale and Diversity: Even the larger public datasets (e.g., CAMUS with 500
patients) remain small compared to clinical archives. Smaller datasets like Synapse
(30 cases) may not capture the full spectrum of anatomical and pathological variability.
Furthermore, data is often sourced from a limited number of institutions and scanner
types, which can lead to a “domain shift” problem and degraded performance when a

model is deployed in a new clinical environment.

2. Annotation Subjectivity and Incompleteness: The “ground truth” provided in these
datasets is the result of manual annotation, which is inherently subjective and prone
to inter-observer variability. This is particularly true for diffuse boundaries, such as
those of infiltrative tumors in BraTS. Moreover, annotations are typically limited to
predefined structures, preventing the model from learning a more holistic anatomical

context.
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3. Information Discrepancy (2D vs. 3D): 2D datasets such as chest X-ray benchmarks
provide a projection of a 3D volume, resulting in a fundamental loss of spatial infor-
mation. Segmentation on such data is an approximation of the underlying 3D anatomy
and is not directly comparable in anatomical fidelity to voxel-wise segmentation from
3D modalities like CT and MRI.

4. Inherent Modality-Specific Artifacts: Certain modalities (e.g., ultrasound) suffer
from physical limitations and operator-dependent factors that introduce non-standardized
artifacts. These issues originate from the acquisition process and may impose an upper

bound on achievable performance, independent of algorithmic improvements.

Acknowledging these limitations is essential for responsible benchmarking and interpreta-
tion. They also motivate future work on domain adaptation, robustness, and validation on

larger, more diverse, multi-center clinical datasets.
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Table 2.1: An overview of representative benchmark datasets commonly used in medical
image segmentation.

Dataset Modality Seg Target Challenge & Dataset Size Dim

Name Value

ACDC  Cardiac MRI  Left Dynamic structure 150 patients 3D
(cine) Ventricle segmentation; (100 training,

(LV), Right  robustness to 50 test)
Ventricle pathological shape

(RV), variations.

Myocardium

MYO)

BraTS  Multi- Tumor Multi-modal 335 training, 3D

2019+ parametric Subregions:  fusion; highly 125
Brain MRI Enhancing heterogeneous validation,

(T1, Tlce, Tumor (ET), tumors with 167 test

T2, FLAIR)  Necrotic/Non- diffuse subjects; 155
Enhancing boundaries. slices per
Core modality
(NCR/NET),
Edema (ED)

Synapse Abdominal 8 Dense organs with 30 volumes; 3D

CT Abdominal ambiguous 3,779 slices
Organs (e.g., boundaries;
Spleen, fine-grained
Liver, multi-class
Kidneys) segmentation.

Shenzhen Chest X-ray = Lung Fields 2D projections 662 images 2D

Chest (CXR) with tissue overlap

X-ray and low contrast;

low-SNR
segmentation.

CAMUS Cardiac Left Robustness to 500 patients 2D+t
Ultrasound Ventricle speckle noise, (450 training,
(Echocardio- (LV) Endo- acoustic artifacts, 50 test)
graphy) cardium & and poor image

Epicardium

quality.
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Chapter 3

Optimizing Vision Transformers for
Medical Image Segmentation

3.1 Introduction

In the previous chapter, we identified that current medical image segmentation methods, in-
cluding emerging Vision Transformer architectures, suffer from a lack of inherent local fea-
ture modeling and often require extensive annotated data or pre-training to generalize well.
These constraints hinder their direct application in settings with limited training data and
fine-grained anatomical details. To address these issues, this chapter introduces an optimized
Vision Transformer architecture called CS-Unet, which integrates convolutional inductive
biases into the Transformer framework to enhance local context modeling. By embedding
convolution-based operations into multi-stage Transformer blocks, CS-Unet aims to achieve
high segmentation accuracy on small medical datasets without the need for large-scale pre-

training.

Medical image semantic segmentation (MISS), which classifies image pixels with semantic
organ labels (e.g. Kidney and Liver) for various imaging modalities, is considered as one
of the most fundamental problems in medical imaging. However, compared to natural scene
images, MISS requires overcoming more challenges to create robust models. For instance,
common benchmark datasets in MISS suffer from large deformation of organs under differ-
ent image acquisition processes. In addition, shortage of costly pixel-level annotations is
another problem leading to a performance gap. To achieve efficient and effective segmen-
tation, models are not only required to have a better understanding of their local semantic
features to capture more subtle organ structures, but also of global feature dependencies to

capture the relationships among multiple organs.

UNet [25] and its variants [26][228][229][230][231] with Convolutional Neural Networks
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(CNNs) as the backbone have found huge success in MISS as they are good at modelling
local attributes inside their receptive field. However, the inherent locality of convolution
operations restricts their ability to model long-range semantic dependencies within the im-
age, and as a result the challenging boundaries of the whole organ may not be effectively
segmented. Attention mechanisms alleviate this issue, but these tend to be ’single head’
mechanisms that only calculate pixel-level similarities, and not multi head” with the abil-
ity to capture patch-level patterns. Moreover, simply scaling up CNN backbones is often
impractical for MISS. Large CNNs introduce substantial parameter counts and optimization
complexity, which can easily overfit small medical datasets where annotations are scarce and
anatomical variations are subtle. While transfer learning from natural-image pre-training is
common, the domain gap between natural scenes and medical imaging (e.g., intensity statis-
tics and fine-grained boundaries) may limit the reliability of such features and can require
heavy adaptation. These limitations motivate a shift towards architectures that can model

long-range dependencies without relying on oversized convolutional backbones.

For alleviating the inherent flaws of CNNSs, there’s a recent shift in the choice of architectures
from CNNs to Vision Transformers (ViTs) due to their ability to model long range semantic
attributes among input tokens (embeddings of image patches) via a linearly projected Multi-
Head Self-Attention (MHSA) operation and a Feed-Forward Network (FFN). Most early
works [178][232][35] treat CNNs as a backbone and exploit the Transformer’s desirable
characteristics in their encoder. They tend to have high complexity as they stack bulky
Transformer blocks on top of convolutional feature extractors (large pretrained CNNS, e.g.
ResNet). Recent research [233][234][36][37][235][236][57][237] has moved towards using
Transformers as the main stem for building the entire segmentation architecture. Swin-UNet
[36] is regarded as the first pure Transformer model. It keeps the familiar U-shape and adds
hierarchical feature extraction using shifted windows proposed by the Swin Transformer
[175]. This drastically reduces the quadratic complexity of traditional self-attention while

achieving better performance.

However, most of these Transformers for MISS use off-the-shelf Transformer blocks from
Computer Vision community and only model and extract linear semantic relations via MHSA
and FFN, leading to the challenge of precisely delineating organ boundaries due to the lack
of spatial and local information as shown in Figure 3.1.(d), although showing small influ-
ence on detection and classification tasks. Besides, these methods require a large dataset to
compensate the lack of inductive biases such as translation equivariance [33], which may
be defected or even lost when fine-tuning on downstream tasks, showing less robustness on

small datasets.

Keeping the current state of the literature in mind, our paper highlights issues that today’s
Transformers in MISS face, followed by our contribution that helps alleviate those draw-

backs. Most current Transformers are bulky and rely on pre-training weights from classical
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vision tasks to be adapted for MISS. To the best of our knowledge, no existing study ex-
plores the effects of adding spatial locality inside Transformer blocks via convolutions for
medical imaging. To this end, we first propose an empirical analysis to show the need for
spatial locality in pure Transformer based MISS. Our insights show the effects of introduc-
ing convolutions to Transformer blocks and multi-stage design of networks on segmentation
performance. We call the final model resulting from our experiments, Convolutional Swin-
Unet (CS-Unet), which is based on purely convolutional Transformer blocks created to make
Transformers model local information better, segment organ boundaries more accurately,
while maintaining a low computational complexity. Experiments on CT and MRI datasets
show CS-Unet (24M parameters) trained from scratch outperforms pre-trained Swin-Unet

(27M) on ImageNet by around 3% dice score, achieving state-of-the-art performance.

. aorta l:l gallbladder . left kidney |:] right kidney . liver |:l pancreas |:] spleen D stomach

GT CST(swin+c_pro+c_att+DSF)  swin+c_pro+convolution swint+c_pro+mlp Swin Unet(swin+mlp)

(a) (b) ©) )

Figure 3.1: Visualization of segmentation results of different methods trained from scratch
on Synapse dataset.

3.2 Related Work

3.2.1 CNN-Based Models for Medical Image segmentation

The U-Net [25], which is an encoder-decoder based architecture with skip connections, has
been shown to handle high-resolution images with small sample-size well. In medical imag-
ing literature, it is the prevailing architecture for semantic segmentation tasks. Many UNet
variants such as U-Net++ [26], Unet 3+ [228], Attn-U-Net [229], FocusNet [230] and Focus-
Net++ [231] have achieved excellent segmentation results through their ability to incorporate
either multi-resolution information, or attention mechanisms (or both) into their feature pro-
cessing. However, all CNNs including UNet are intrinsically local due to the inherent local-
ity of convolution operations. This restricts their ability to model long-range dependencies

within data.



3.2. Related Work 31

3.2.2 Transformer Based Models for Medical Image Segmenta-
tion

Recently, many works try to solve this problem by using the Transformer architecture. Self-
Attention (SA) which is the key component of Transformers, can model long range semantic
relations among all input tokens, which gives Transformers the ability to handle long-range
dependencies in the data. This helps models become more capable of dealing with non-local
interactions. Previous works in the field of medical image segmentation can be divided into
two categories depending on their use of either Convolutions or Transformers as a feature

processing backbone:

Convolution-based stem: TransUNet [178] is the first work to utilize transformers to
encode the global context in a CNNs’ feature for medical image segmentation. They kept
the familiar U shape of the UNet and used transformer layers followed by convnets as a
feature extractor. UNETR [238] use pure transfomers as a feature encoder and use a con-
volutional decoder to obtain a segmentation map, but the entire image processing is on the
same scale. It is interesting to note that most convolution-based networks such as TransUNet
[178] and their successors (TransFuse [232] and TransAttUnet [35]) that treat CNNs as a
backbone, suffer from two major drawbacks. Firstly, they do not leverage the full power of
transformers as shallow (one or two transformer blocks) can not encode long-term depen-
dencies present in convolutional representations [236]. Secondly, most of these models have
high complexity with far more parameters to train as they stack bulky transformer blocks on

top of convolutional feature extractors (which are large pretrained CNN models themselves).

Transformer-based stem: To address the above issue, research has moved towards us-
ing Transformers as the main stem for building the entire segmentation architectures. MedT
[233] proposed a gated axial Transformer layer to build the whole architecture. Karimi et al.
[234] removed the convolutional operations from the UNet and built a ViT-like transformer
based 3D segmentation model. They divide a 3D image into 3D patches, then flattened them
into 1D embedding and fed them into self-attention blocks. Swin-Unet [239] is regarded as
the first pure Transformer model for medical image segmentation. It keeps the familiar U-
shape of the UNet and adds hierarchical feature extraction using shifted windows proposed
by the Swin Transformer [175]. This drastically reduced the quadratic complexity of tra-
ditional self-attention. DS-TransUNet [37] followed Swin-Unet and added another encoder
pathway to input dual-scale images for performing multi-scale information fusion. MISS-
Former [235] followed the pure U-shaped transformer of Swin-Unet but redesigned a new
feed-forward module and added Transformer layers in its skip connection. nnFormer [236]

modified the embedding, up-sampling and down-sampling with convolutions based on the
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Swin-Unet. Tragakis et al. [237] presents a fully convolutional transformer structure based
on classic multi-head attention module. Wang et al. [240] proposed MT-UNet to model

interaction between data points through a local-global attention operation.

Although these architectures have shown promising results, most of them involve large num-
ber of parameters, and extensive pre-training on large datasets like ImageNet before they can
be fine-tuned to downstream tasks like medical image segmentation. This is sub-optimal due
to the lack of large labelled datasets with abnormalities and the prohibitive computational
cost. In addition, these works still use linear layers in the transformer block or other fea-
ture processes, which misses important spatial information. Our work aims to alleviate the
problems that existing transformers-based segmentation models face. We show via extensive
ablation experiments that linear operations inside transformer blocks do not perform well for
medical image segmentation tasks. Following this, we identify the optimal settings of in-
corporating convolutions inside transformers to make them lightweight, efficient, faster and

more accurate than existing transformer based models proposed in literature.

3.3 Methods

Most Transformer based methods in MISS, i.e., encoder-decoder models with a standard U-
shape, use a standard Transfomer block containing linear projections and linear FFNs, which
are essentially MLPs, to process the data. Hence, to create effective image representations
using such a regime requires huge amounts of data for training, as they lack local spatial

information.

The first pure-Transformer based MISS model is the Swin-Unet [36] which adopts Swin
Transformer blocks [175] to add locality information to Transformers. The data representa-
tion created here is still inherently linear as this block contains linear projections and feature
processing. Figure 3.1 shows segmentation visualizations for the Synapse dataset. Swin-
Unet trained from a random weight initialization (Figure 3.1.(d)) does not perform well. It

fails to detect the spleen and misclassifies the left kidney as the right.

Next, we add convolutional projections to this Swin Transformer block structure. The pro-
jections follow the methodology proposed in [176] where tokens are first shaped into a 2D
token map, then processed by a depth-wise separable convolution with kernel size s imple-
mented by: Depth-wise Conv — BatchNorm — Point-wise Conv. Finally,
the tokens are flattened into 1D token input xf/ "7 for Q/K/V matrices. It can be formulated
as: 2%V = Flatten(Conv(Reshape2D(x;), s). Figure 3.1.(c) shows outputs of the resul-
tant Unet trained with this block. It visually demonstrates how spatial locality is essential

for low level pixel labelling tasks. It can be seen that although the convolutional projection
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alleviates a lot of the problems posed by the linearity of Swin-Unet, there are still severe

over-segmentations on pancreas and liver and extremely rough boundaries of right kidney.

Following this, when a 3x3 convolution is used for FFNs instead of MLPs to introduce more
spatial context, we see the full effects of adding complete spatial locality to Transformers
through the boundaries of the left and right kidneys and spleen becoming greatly refined.
The over-segmentation problem of the pancreas however gets worse (as shown in Figure
3.1.(b)). This is due to the limited receptive field not modeling the whole boundary of big

organs effectively.

3.3.1 Convolutional Swin Transformer (CST) Layer

We propose a CST layer to fully explore spatial modeling ability of convolutions in MHSA
and FFN. First, we propose a novel (shifted) window based convolutional multi-head self
attention ((S)W-CMSA) to extract hierarchical semantic features while reducing compu-
tational costs, by combining a shifted windows mechanism and convolutional projection.
Then, we replace the MLP with our novel depthwise separable feed-forward (DSF) module.
From Figure 3.1.(a), we see the Transformer model based on CST handles challenging organ

boundaries more efficiently. The CST layer is formulated as:

A=W -~ CMSA(LN(z1) + 21, (3.1)
2= DSF(3 + 2, (3.2)
A = SW — CMSA(LN(2")) + 2, (3.3)
S — DSF(QIH) + 5141 (3.4)

where 2! and 2! denote the outputs of (S)W-CMSA module and DSF of the I-th block, re-

spectively.
(Shifted) Window based convolutional multi-head self attention

As shown in Figure 3.2, once tokens enter (S)W-CMSA, they are reshaped into a 2D token
map, and partitioned into windows. For each window, we use three depth-wise convolutions
with kernel size s of 3x3, padding of 1 and stride of 1 to create our Q, K and V vectors via:
Flatten(DepthConv(Window(Reshape(z;)), s).

CST is different from [176] as we create a projection based on windows rather than the whole
image, leading to more refined local features as now the kernels learnt on each window are
different. In order to better adapt to medical images with smaller data volumes, point-wise

convolutions are removed to avoid over-fitting. Furthermore, we replace Batch Normaliza-
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Figure 3.2: Convolutional Swin Transformer (CST) Block.

tion with Layer Normalization (LN), providing a performance boost. The token vectors are
fed to MHSA as:

q .k vy _ {E?(l’i{)T v
MHSA(z}, zf, x]) = SoftMax i + B | x; (3.5)

Here d represents the dimension of the query and key. The values in B are the bias.

Then, we replace the linear layer and feed the attention output to a 3x3 depth-wise convolu-
tion for fine-tuning for more spatial information. We follow this by reversing the windows to
2D token maps, resulting in more robust estimations compared to Swin Transformer [175]

removing our dependence on positional encoding.

Depthwise separable feed-forward (DSF) module After computing (S)W-CMSA, the fea-
ture maps are fed into a FFN. Existing Transformers implement this module as an MLP:
IN,d — Linear,4xd — GELU — Linear,d — RC. The d denotes the number
of channels of a reshaped feature map and RC' denotes the residual connection. We pro-
pose a DSF module as a choice of FFN which provides adding spatial context. We use
three depth-wise convolutions instead of two linear layers for utilizing the features between
channels, C'. In addition, we found that adding LN after convolution gives better segmen-
tation results. The DSF is implemented as: 7x7 Depth-wise Conv,d — LN,d —
Point-wise Conv,4xd — GELU — Point-wise Conv,d — RC.

3.3.2 Overall Structure Design

CS-Unet keeps a symmetrical UNet shape. The input of our model is a 2D image slice with
the resolution of H x W x 3 sampled from a 3D volume of images. H, W and 3 denote
the height, width and number of channels of each input. The input images on entering

the encoder are passed through the convolutional token embedding to create a sequence
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embedding on overlapping patches of the image, following which CST and patch merging
layers are applied. Extracted features are then processed by the model’s bottleneck that
consists of two CST blocks. A symmetrical decoder then creates the final segmentation
marks. In addition, skip convolution (SC) modules are added between corresponding feature
pyramids of the encoder and decoder to compensate for the missing information caused by

down-sampling. The overall architecture of the proposed CS-Unet is presented in Figure 3.3.

a. | 2D Image WxHx3 Marks WxHxClass
T Encoder yy Decoder
Convolutional token\ w u Linear projection ) wxHxc
embedding riaries
W H
Patch Expanding ) —-x7xC
CST Block x2
CST Block x2
- —
e
samplin
Stage 1 b
W H
CSTBlock 2 | Mocar CSTBlockx2 | ¥ xixzc
- T <
stage p sampiing
H
CSTBlockx2 | x.xdc CSTBlock>2 [ rexox4c

Patch merging Stage 3

I
Bottleneck |-b CSTBlock x1 [  CSTBlock x1

Up-sampling

w_H
35733 %8C Stage4d

b. c. d.
v v 3Din ¢ d-Din
| LN | | LN | | 33, o2 h 4
* GELU Dw7x7,d
| W-CMSA |SW-CMSA| 3x3, 522, ¢/2 |

Figure 3.3: (a) Overall architecture of CS-Unet, (b) one CST layer, (c) convolutional token

embedding, (d) DSF and (e) skip convolutions. d is the current number of channels, c is an
arbitrary dimension.



3.3. Methods 36

3.3.3 Encoder

The input image is first passed through the convolutional token embedding layer to create

w
4

embedding is fed to three main CST layers and a patch merging module which downsamples

a sequence embedding with the resolution of % X x C' (C' =96 in experiments). This
the image and doubles the number of channels. For example, at the first patch merging
module, an input with size % X % x ('is divided into four parts and concatenated along the
C dimension to create a feature map of size % X % x 4C'. Then a linear layer is applied to

this map to reduce the C' dimension by a factor of 2.

Convolutional Token Embedding layer Existing models use a linear layer to split images
into non-overlapping patches and reduce the size of the image drastically, e.g. by 75%, while
increasing the channel dimension C'. However, as the images’ highest resolution is H x W at
the encoder, using a linear layer to compress these features not only loses high-quality spatial
and local information, but also increases model size. Our embedding layer, is implemented as
four convolutions with overlapping patches to compress features in stages, helping to intro-
duce more spatial dependency between, and inside the patches, while greatly reducing the pa-
rameters (by 6M. See Ablation 4.3, Method 1). Specifically, this layer is implemented as fol-
lows: 3x3 s=1 Conv,d/2 — GELU — 3x3 s=2 Conv,d/2 — GELU+LN —
3x3 s=1 Conv,d — GELU — 3x3 s=2 Conv,d — GELU. Here, s is stride, the
input dimension is 3, and d = C. In the end, 2D reshaped token maps with resolution

4 x & x C are outputted.

Bottleneck The bottleneck contains two CST blocks, based on W-CMSA. The feature map

size here remains unchanged.

3.3.4 Decoder

Our decoder is symmetric to the encoder. Feature representation is created by enlarging
the feature volume through a convolutional up-sampling module and then passing it through
a SC module to compensate for the information lost due to down-sampling. A CST layer
then provides spatial context to the upsampled features. After repeating the above process
three times, the features are fed into the patch expansion layer which up-samples by 4,
followed by a linear projection to fine tune the final segmentation prediction. Specifically,
convolutional up-sampling module employs strided deconvolution to 2x up-sample feature
maps and halves the channel dimension as: LN, d — 2x2 s=2 ConvTranspose,d/2
— GELU.

Skip Convolutions (SC) module The outputs of high-resolution feature maps created from
up-sampling are concatenated with shallow feature representations from the encoder, and

then merged by a SC module. It further enriches both spatial and fine-grained information,
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Table 3.1: Comparison with different models on Synapse. Gallbladder, left Kidney, right
Kidney, Pancreas and Stomach are abbreviated as Gallb, Kid_L, Kid_R, Pancr and Stom.
The performance is reported by class-mean DSC (%) and HD (mm).

Methods DSC | HD | Aorta Gallb Kid-LL Kid.R Liver Pancr Spleen Stom

R50 UNet [178] 74.68 | 36.87 | 84.18 62.84 79.19 7129 9335 48.23 8441 73.92
R50 AttnUNet [178] | 75.57 | 36.97 | 5592 6391 79.20 7271 93.56 49.37 87.19 74.95
UNet [25] 76.85 | 39.70 | 89.07 69.72 77.77 68.60 93.43 5398 86.67 75.58
AttnUNet [229] 77.77 | 36.02 | 89.55 68.88 77.98 7I.11 93,57 58.04 8730 75.75
R50 ViT [178] 71.29 | 32.87 | 73.73 55.13 75.80 7220 91.51 4599 81.99 73.95
TransUnet [178] 7748 | 31.69 | 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
Swin-Unet [36] 79.13 | 21.55 | 8547 66.53 83.28 79.61 94.29 56.58 90.66 76.60
MT-UNet [57] 78.59 | 26.59 | 87.92 6499 8147 7729 93.06 59.46 87.75 76.81
Ours 82.21 | 27.02 | 88.40 72.59 8528 79.52 9435 70.12 91.06 75.72

Table 3.2: Experimental results on ACDC, according to DSC (%).

Methods DSC | RV Myo LV
R50 UNet 87.60 | 84.62 84.52 93.68
R50 AttnUNet | 86.90 | 83.27 84.33 93.53
R50 ViT 86.19 | 82.51 83.01 93.05
TransUnet 89.71 | 86.67 87.27 95.18
Swin-Unet 88.07 | 85.77 84.42 94.03
MT-UNet 90.43 | 86.64 89.04 95.62
Ours 91.37 | 89.20 89.47 95.42

while compensating for the missing information caused by down-sampling. It is imple-
mented as :3x3 s=1 Conv,d/2 — GELU — 3x3 s=1 Conv,d/2 — GELU.

3.4 Results

We use two publicly available datasets to benchmark our method.

Synapse multiorgan segmentation (Synapse): This dataset [226] contains abdominal CT

scans from 30 subjects. Following [178], 18 cases (2212 axial slices) are extracted for train-

ing, while other 12 cases are used for testing. We report the model performance evaluated

with the average Dice score Coefficient (DSC) and average Hausdorff Distance (HD) on

eight abdominal organs.

Automatic Cardiac Diagnosis Challenge (ACDC): ACDC [1] contains MRI images from
100 patients, with right ventricle (RV), left ventricle (LV) and myocardium (MYO) to be

segmented. Using data splits proposed in [57], the dataset is split into 70 (1930 axial slices),

10 and 20 for training, validation and testing, respectively. Evaluation metrics used are

average DSC (%) and HD (mm).
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3.4.1 Implementation Details

We train our models on a single Nvidia RTX3090 GPU with 24GB memory. We use flipping
and rotation augmentations on the training data. The input image size is 224x224. Pre-
trained weights are used for other methods if provided, while our model is trained from
scratch for 300 epochs from a randomly initialized set of weights. A batch size of 24 and
a combination of cross entropy and dice loss are used. Our model is optimized by AdamW
[241] with a weight decay of SE-4 for both datasets. The learning rates for Synapse and
ACDC are le-3 and 5e-3, respectively. We start with a 10-epoch linear warmup. Layer Scale
[242] of initial value 1e-6 is applied.

3.4.2 Experimental Results

As shown in Table 3.1 and Table 3.2, our model consistently surpasses a variety of convolution-
based and Transformer-based methods. CS-Unet outperforms Swin-Unet by 3.08% and 3.3%
DSC on Synapse and ACDC, respectively. In addition, our method gets the highest DSC for
five and two organs of Synapse and ACDC respectively, especially providing large boosts
for challenging organs like gallbladder, pancreas and RV. Overall, compared to pretrained
Swin-Unet (27 M), nnFormer(158 M) and TransUnet (96 M), CS-Unet achieves the best
performance without pretraining while being lightweight (24 M) via introducing more local

perception and inductive bias.

. aorta |:| gallbladder . left kidney E] right kidney . liver [:] pancreas [:] spleen D stomach

[ose)

958D

GT Ours MT-UNet SwinUnet
Figure 3.4: Visualization of segmentation results on two datasets.

Figure 3.4 visualizes segmentation results. In case 1, our method has overwhelming advan-

tage on segmenting the pancreas, stomach and liver. CS-Unet is also more discriminative
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Table 3.3: Ablation study on modules used in CS-Unet on Synapse, according to DSC (%)
and HD (mm).

Methods | DSC | HD | Emb Proj Pos Att DSF SC | #param

0 (Base) | 60.80 | 54.35 V 27.15
1 68.57 | 51.02 | +/ V 21.55
2 7747 | 1854 | / vV Y 21.55
3 7832 | 2543 | / v X 19.63
4 79.04 | 2296 | +/ vV X VY 19.84
5 81.93 | 2459 | / vV VvV Vv V| 2468
6 82.21 | 27.02 | / vV X NV V| 2468

Table 3.4: Ablation study on the impact of different feed forward modules on Synapse,
according to DSC (%) and HD (mm).

Methods DSC | HD | Aorta | Gallb | Kid.L Kid.R Liver Pancr Spleen Stom
Single convolution 79.66 | 27.67 | 88.50 | 67.89 | 83.62 79.75 92.54 6431 87774 72.93
Residual block [243] 79.13 | 28.85 | 87.61 | 70.23 | 80.28 71.54 94.18 63.36 89.70 76.17

Pre-act residual block [244] | 78.19 | 28.86 | 87.09 | 65.36 | 80.90 7491 93.52 60.83 88.17 74.72
ResNeXt block [245] 78.93 | 30.87 | 87.30 | 68.69 | 81.10 75.17 93.37 61.06 89.94 74.83

Ours 82.21 | 27.02 | 88.40 | 72.59 | 85.28 79.52 9435 70.12 91.06 75.72

on the complex shape of RV than other Transformer-based models in case 2 due to its better

ability of spatial context modelling.

3.4.3 Ablation Study

We explore the influence of proposed modules on the performance on Synapse as shown
in Table 3.3. The Swin-Unet trained from scratch is treated as the baseline (method 0)
which cannot adapt to small datasets. Adding convolutional token embedding (method 1)
and convolutional projections (method 2), we observe large improvements of 8% and 9% on
DSC which is competitive with pre-trained Swin-Unet emphasizing the importance of adding
local modeling ability to Transformers. Removing the position embedding in early stages and
using a convolution instead of a linear layer to fine-tune the attention computation (method
3) leads to a slight increase in performance and parameter reduction. Method 4 combines
the CST block with the DSF module leading to an improved DSC and HD without extra
parameters. After utilizing convolutional up-sampling and feature fusion module, SC, for
merging information during skip connection, our best performing model method 6 achieves
3.17% improvements on DSC. A comparison with method 5 shows that fully convolutional
pure Transformers can track the position of pixels better without requiring an extra positional

embedding, and that spatial feature extraction is, in fact, a necessity for Transformers.

In addition, we explore the effect of different convolutional feed-forward modules on our

model. Our results are summarized in Table 3.4. Single convolution refers to a 3x3 convo-
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lution layer with layer normalization instead of batch normalization. Our experiment here

showed that LN helps achieve better results than BN in transformers.

3.5 Conclusion

In this work, we presented the effects of introducing convolutions to Transformer blocks and
to a multi-stage Transformer network to alleviate limitations of non-locality and need for
extensive pre-training that Transformers in MISS face. Extensive experiments demonstrated
that merging Convolutions with MHSAs and FFNs to create our CST layer, provided inherent
local context inside Transformer blocks. Based on CST, our compact, accurate and pure
Transformer architecture, CS-Unet, achieved superior performance without pretraining while

maintaining less parameters.

While the CS-Unet architecture developed in this chapter improves supervised segmenta-
tion performance by fusing convolutional and Transformer strengths, it relies exclusively
on labeled data and processes each scan in isolation. As a result, it does not exploit the
wealth of unlabeled medical images available, nor does it explicitly capture semantic rela-
tionships between different image slices or across patient cases — factors that could further
enrich the learned feature representations. These limitations pave the way for the next chap-
ter, which introduces a semi-supervised framework employing multi-scale cross-supervised
contrastive learning to leverage unlabeled data and enforce feature consistency across slices

and instances.
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Chapter 4

Multi-Scale Cross Contrastive
Learning for Semi-Supervised
Medical Image Segmentation

4.1 Introduction

In Chapter 3, we developed a convolution-enhanced Transformer model (CS-Unet) that im-
proved segmentation performance, yet that supervised approach did not exploit unlabeled
data nor capture semantic relationships across different slices or cases. Such shortcomings
limit its ability to learn robust, generalizable features from the abundant data available in
medical imaging. To overcome these gaps, this chapter presents a semi-supervised segmen-
tation framework based on Multi-Scale Cross-Supervised Contrastive learning (MCSC). This
approach leverages unlabeled images and applies contrastive learning across multiple scales
(between a CNN and a Transformer) to enforce consistent feature representations across

slices and instances, directly addressing the limitations identified in the previous chapter.

Image segmentation serves as a fundamental process in medical image analysis by delineat-
ing organ structures and allowing the quantification of their shape and size, thus providing
essential information for clinical diagnostics, treatment planning, and patient monitoring
[192, 246]. Deep learning approaches have achieved great successes in medical image seg-
mentation in recent years; however, such techniques hinge upon the availability of large-scale
and accurately annotated datasets [247]. In the medical domain, such datasets require pro-
hibitive time, cost, and expertise to obtain. To mitigate this issue, semi-supervised learning
(SSL) aims to minimize the annotation efforts by training with both labelled and unlabelled
data [56, 219, 248].

Several strategies have been proposed for SSL in medical image segmentation. These in-
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clude iterative pseudo-labeling [249], regularization strategies [56, 35, 248, 53, 57], as well
as leveraging domain-specific prior knowledge such as anatomical information [250]. Typ-
ically pseudo-labeling iteratively generates approximate segmentation masks for unlabeled
data. Integrating these pseudo annotations with ground truth labels for model updates neces-
sitates a meticulously designed approach, which remains an open problem. Differently, sev-
eral regularization approaches forgo this process, by enforcing prediction consistency over
different data transformations [35, 53], different model architectures [56, 248], or different
tasks [57]. In particular, recent works [56] have investigated the possibility of making use
of two advanced segmentation backbones, e.g., CNN and Transformer, for cross-teaching
SSL. Despite this progress, two practical gaps remain in cross-teaching SSL for segmen-
tation. First, enforcing consistency only at the prediction level is often insufficient: two
heterogeneous backbones (CNN and Transformer) can agree on a mask while still learning
misaligned or non-discriminative intermediate representations, which harms generalization
across patients and slices. Second, dense prediction makes feature learning particularly sen-
sitive to scale—organ boundaries, thin structures, and contextual cues emerge at different
resolutions—yet most contrastive formulations operate on a single feature level and there-
fore either become over-local or over-smooth. These observations motivate a training scheme
that couples cross pseudo supervision with multi-scale, feature-level contrastive alignment

between a CNN and a Transformer.

Although these methods are promising, their performance is significantly weaker than fully
supervised approaches and thus their practical application in medical image segmentation is
limited [251, 252, 253]. To alleviate this issue, contrastive learning has been extensively
utilized to facilitate robust feature learning. It functions by encouraging feature similarity
of positive pairs, as well as dissimilarity of negative pairs. Positive pairs may be defined
in a self-supervised manner as different augmentations of the same instance [34] or in a
supervised manner based on the actual label [254]. In SSL, pioneering works [68, 218]
have made efforts towards directly applying contrastive learning on unlabelled data, by per-
forming global-level image contrast for training. However, this strategy is mostly suited for
classification tasks, since it extracts global representations that ignore detailed pixel-level in-
formation. To accurately delineate organ boundaries, a local contrastive strategy is required
to enable predictions at a pixel level [219, 218, 255]. In particular, for image segmentation
that inherently relies on dense-wise prediction, Chaitanya highlighted the importance of

complementing the global image-level contrast with local pixel-level contrast [218].

Since self-supervised contrastive learning normally select augmented views of the same sam-
ple data point as positive pairs [34], without prior knowledge of the actual class label and
its prevalence, it is prone to a substantial number of false negative pairs, particularly when
dealing with class-imbalanced medical imaging segmentation datasets [194]. To mitigate

the false negative predictions resulting from self-supervised local contrastive learning, ex-
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isting works have investigated supervised local contrastive learning [66, 223]. Pioneering
works [224, 68] applied supervised contrastive learning only on unlabelled data based on
conventional iterative pseudo annotation. Some studies [66] also attempted to apply super-
vised local contrastive loss on labelled data exclusively, whilst performing self-supervised
training for unlabelled data. However, the discrepancy in positive/negative definitions leads

to divergent optimization objectives, which may yield suboptimal performance.

We propose a novel multi-scale cross contrastive learning framework for semi-supervised
medical image segmentation. Both labelled and unlabelled data are integrated seamlessly
via cross pseudo supervision and balanced, local contrastive learning across features maps

that span multiple spatial scales. Our main contributions are three-fold:

* We introduce a novel SSL framework that combines the benefits of cross-teaching with
a proposed local contrastive learning. This enhances training stability, and beyond this,

ensures semantic consistency in both the output prediction and the feature level.

* We develop the first local contrastive framework defined over multi-scale feature maps,
which accounts for over-locality and over-fitting typical of pixel-level contrast. This ben-

efits from seamlessly unifying pseudo-labels and ground truth via cross-teaching.

* We incorporate a balanced contrastive loss which is normalised based on the prevalence
of each class to enforce unbiased representation learning in SSL. medical image seg-
mentation. This tackles the significant imbalance issue for both pseudo label prediction,

and the concurrent supervised training based on imbalanced (pseudo) labels.

We evaluate our proposed methodology on two challenging benchmarks of radiological
scans: multi-structure MRI segmentation on ACDC [1], and multi-organ CT segmentation on
Synapse [226]. Our approach not only significantly outperforms state-of-the-art SSL meth-
ods, but also closes the gap between fully supervised approaches with just a small fraction of
labelled data. With just 10% labelled data, it achieves remarkable improvement in Hausdorff
Distance (HD) from 8.0 to 2.3mm. Our method is also more resilient to the reduction of
labelled cases, achieving around 10% improvement in Dice Coefficient (DSC) when labelled
data are reduced from 10% to 5% in ACDC and from 20% to 10% in Synapse.

4.2 Related Work

4.2.1 Consistency Regularization in Semi-Supervised Medical
Image Segmentation.

Semi-supervised learning has gained popularity in medical image segmentation due to its

effectiveness in handling scenarios with limited annotations [50, 55, 56, 192]. Among var-
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ious approaches, enforcing prediction consistency has emerged as a crucial regularization
strategy for extracting and leveraging knowledge from unlabelled data. Such regularization
can be based on predictions from different augmentations [55, 50], different architectures
[56], or tasks [57]. For instance, inspired by the fact that the predicted mask should undergo
the same spatial transformations as the input images, Bortsova [55] developed a transforma-
tion consistency based semi-supervised framework. Peng [50] sought to attain prediction
similarity from a batch of co-trained models with identical architectures, while adversarially
preserving each model’s diversity. Recent works [56] has taken advantage of the advanced
U-Net and Tranmer and aimed to achieve the prediction consistency from networks. How-
ever, the medical image datasets are typically imbalanced, which poses great challenges in
learning unbiased predictions with limited annotations [194]. Tackling such issue in con-
sistency settings for unlabelled data remains an open problem. Furthermore, existing works
primarily focus on prediction consistency at the output level [56], neglecting the pursuit of

discriminative feature representations for both labelled and unlabelled data.

4.2.2 Contrastive Learning in Medical Image Segmentation.

Contrastive learning has contributed to most successful self-supervised visual representa-
tion methods [58, 59, 60, 61]. The core idea is to promote the similarity of positive image
pairs, whilst distinguishing negative pairs. To tailor for the needs of dense-wise downstream
segmentation task, pixel-wise self-supervised contrastive learning has been introduced re-
cently [217, 256]. Recent research has also found that integrating the contrastive loss in
both global and local levels, can enhance performance [218]. In the realm of natural im-
ages, there has been a growing interest in merging semi-supervised learning with contrastive
learning, resulting in a one-stage, end-to-end model that forgoes unsupervised pretraining
[219, 220]. This approach has recently been adopted in the medical domain for segmenta-
tion tasks [223, 66, 224, 68]. However, as discussed in the Introduction section, existing
combinations of contrastive learning and semi-supervised learning do not fully address the
inherent challenges posed by size-limited and data-imbalanced medical datasets, thus lack-
ing generality. The question of how to effectively integrate contrastive learning for medical

image segmentation remains open.

4.3 Methods

We adopt a student—student framework based on [56], with cross-teaching between a CNN-
based U-Net and a Transformer-based U-Net. This leverages the advantages of convolution-

based and Transformer-based segmentation networks for learning local semantic information
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Figure 4.1: The overall architecture of our MCSC framework for semi-supervised segmen-
tation. Two networks, a CNN ( ) and Transformer ( ), with complementary inductive
biases, learn together. When training on unlabelled data, each network generates pseudo la-
bels for the other. These labels are used to define a pseudo supervision loss and a novel local
contrastive loss that improves the quality of representations learnt by the models.

and long-range dependencies, and enables the two models to achieve consistency on segmen-
tation prediction. However, this framework has some limitations: (i) it only focuses on the
prediction consistency on each image slice at output level; (ii) it ignores the dissimilarity and
similarity among different and same segmentation categories across the whole dataset. To
overcome this, we propose a Multi-Scale Cross Supervised Contrastive Learning (MCSC)
framework to pull closer the features of the same category and push away the features of dif-
ferent categories from both networks. It not only ensures the consistency of two models on
the feature and output level, but also enhances the distinguishability of features in different
categories, thereby improving the segmentation performance. We illustrate the overall archi-
tecture of our framework in Figure 4.1, and provide pseudocode in supplementary section
S1. The branch of CNN or Transformer includes a feature extractor F,(-), a segmentation
head C\(+), and two feature space projectors H.(-). Both branches only share the parameters

of the last layer in the feature space projectors.

Given a training dataset consisting of a small labelled subset D; = {z!, 4!} X and a large
unlabelled set D, = {x;‘ jj‘il, where M > K, the input to our model is a minibatch
X = X'U X" including labelled images and unlabelled images. The minibatch X is first
fed into the CNN-based and Transformer-based networks to obtain their feature represen-
tations and segmentation logits. In the semi-supervised setting, we employ the following
supervision losses for training: (i) on the output level, we calculate the supervision loss L,
( in Figure 4.1) between the segmentation predictions and the limited

labelled data, as well as the cross pseudo supervision loss L.y, (green dashed lines in Fig-
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ure 4.1) between the segmentation predictions and the pseudo labels from the CNN-based
U-Net or the Transformer-based U-Net in a cross teaching manner on the output level (Sec-
tion 4.3.1); (i1) on the feature level, we employ the proposed multi-scale cross contrastive
loss L,; (black dashed lines in Figure 4.1) to enhance feature consistency of the same seg-
mentation category and feature distinguishability of the different segmentation categories
across the whole dataset (labelled and unlabelled) (Section 4.3.2).

4.3.1 Cross Pseudo Supervision

The CNN and Transformer networks teach each other using the unlabelled data, through
a cross pseudo supervision loss L, [56, 35]. This regularises their respective predictions
to be consistent with each other. Specifically, the predictions made by the CNN become
pseudo labels that supervise the Transformer, and vice-versa. The unlabelled images X" are
fed into the feature extractors £, (-) and classifier heads C., (-) of the two models respectively,
to get class probability maps P = softmax{C,(E.(X"))}, and pseudo one-hot label map
Y = argmax (P!), where * denotes the CNN or Transformer branch. We then define two

consistency loss terms: L,s(cnn) uses the Transformer’s pseudo-labels to supervise the CNN,

and L.,s(1rq) the reverse; these are given by:

Leps(enn) = Ldice(Penm, Yir

cnny “tra

)7 £cps(tra) = ‘Cdice(Pu Yo, ) 4.1)

tra’ ~ cnn

Here L 4. is the standard Dice loss function, but using pseudo-labels instead of ground-truth
segmentation. Note that during training there is no gradient back-propagation between P
and V" | and similar from P*_ to Y

cnn’ tra tra*

4.3.2 Multi-Scale Cross Supervised Contrastive Learning (MCSC)

Cross pseudo supervision does not exploit feature regularities across the whole dataset, e.g.
similarity between representations of the same organ in different slices. We therefore add
a contrastive loss, operating on multi-scale features extracted from the Transformer and the
CNN. This has two advantages: (i) It encourages consistency of the two models’ internal
features (not just outputs) (ii) It captures high-level semantic relationships between distant

regions, and between features on both labelled and unlabelled data.

Our MCSC module (Figure 4.2) is based on local supervised contrastive learning [255],
which learns a compact feature space by reducing the distance in the embedding space be-
tween positive pairs, and increasing the distance between negative pairs. Firstly, it extracts
features from the CNN and Transformer, then projects them into a common embedding
space. This is followed by a novel approach of selecting positive and negative pairs using

the pseudo labels, and a class-balanced contrastive loss calculated on these.
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Figure 4.2: Multi-scale cross supervised contrastive learning. Pseudo labels from cross-
teaching (right) are combined with ground-truth labels where available, and used to define
a local contrastive loss over features of different scales (middle, ). This
contrastive pairs of pixels drawn from either the same or different slices; for efficiency it is
defined over patches. Features of pixels of the same (pseudo-) class are pulled together (left),
while those of different classes are pushed apart.

Feature Embedding. After X = {x;};—;..v is passed into E.,,(-) and E;,,(-) respec-
tively, the resulting features are projected by passing them through projectors H.,,(-) and
Hi.(+) into a unified feature space, where we will sample pairs to contrast. Overall, we get a
feature batch F consisting of 2N feature maps f; = H(E(z;)) € R"™%*¢ where f;. y come

from the CNN and fy. 1. on from the Transformer (middle of Figure 4.2).

Cross Supervised Sampling. For cross supervised sampling, we follow these strate-
gies: (1) We exchange class information from two models to guide the sampling, using the
prediction of Transformer to be the supervisory information for CNN and vice-versa (Figure
4.2, right). This is consistent with the cross-prediction loss L., and implicitly it also makes
the features predicted by the two models on the same slice consistent. (ii) We contrast fea-
tures on both unlabelled and labelled data. Since the pseudo labels are of varying quality,
labelled data is included in the contrastive loss to reduce the noise. (iii) We contrast pixels
both within and between slices. Previous work focuses on inter-slice samples and ignores
useful anatomical information within slices. For example, compared to different slices, the
features of different class of organ boundaries in the image should be more similar. By fo-
cusing on them, we can refine the details of the hardest boundary segmentation. Therefore,
our strategy differs significantly from existing approaches to sampling pairs in supervised
contrastive learning with semi-supervised segmentation, where positive or negative pairs are
selected based on pseudo labels on unlabelled data [224, 68, 223].

The computational complexity and memory for the supervised contrastive loss is very high;
however, comparing many samples is crucial for improving the performance of contrastive

learning [61]. To address this problem, inspired by [66], we compute the local contrastive
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loss over patches. We divide all the feature maps in F' into patches with size of A’ x h'.
Let us assume there are M patches of each f. We randomly select (without replacement) a
patch from each feature map in F', and finally we get M batches of 2N patches. The loss is
evaluated on 2N patches from each batch in turn, until the entire f has been traversed.

Balanced Supervised Local Contrastive Loss. After sampling positive/negative
pairs of pixels, a contrastive loss is introduced to pull positive pairs closer and push negative
pairs apart within the 2/V patches. Given the extreme imbalance between background and
foreground (different organs), a randomly sampled batch tends to consist of a significantly
larger number of positive and negative pairs for the background, compared to the foreground
organs. This inherent imbalance inevitably biases conventional supervised contrastive learn-
ing towards the background, consequently neglecting the differentiation of foreground cate-
gories. Simply eliminating the background during contrastive learning [66] is not an optimal
solution, as (1) the remaining number of foreground pixels is extremely small, and (ii) this

fails to capture the relationship between the background and the foreground.

Inspired by [257], we average both the inter-class (positive) and intra-class (negative) fea-
ture contrast within the pixels of each class, and then forward it to calculate the supervised
contrastive loss. In this way, each class makes an approximately balanced contribution. This

balanced contrastive loss is implemented as follows:

1 1 exp(a; - ap/T)

ft =T ZE:A 4,1 p&%{i} R S T eplan)’ 42
where A is the pixel-level feature sets of the 2NV patches, a; reprjesents the i'" feature, A, is
a subset that contains all samples of class y, A,n{i} represents all the pixels in A, exclud-
ing a;, Y4 represents the set of all the unique classes in current A, and 7 is a temperature
constant. By balancing the contribution of each class during contrastive learning, we avoid
the learned representations being biased towards the dominant background. Note that L,
is calculated over each 2N patches, and then averaged over M batches of 2/NV patches for

back-propagation.

Multi-Scale Contrastive Loss. Existing works on local contrastive learning pass the
features of the last layer before the classifier into the projector. However, the feature maps
from earlier layers focus on coarser geometric information like the shape of organs, and
later feature maps on details; both are important for segmentation, which depends both on
relationships among multiple organs and gross anatomic structure (global) and textures of
the specific tissues (local). We therefore pass features with n different scales from n layers
of extractors and separate projectors, and then calculate each scale balanced contrastive loss
Ly as L ;. The overall loss £ is given by summing over each scale loss: £, = (L1 +
e+ Lan).
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4.3.3 Optimization

The two networks are trained to minimize a weighted sum of the losses described in the

previous sections: Len, = Lgup(cnn) + WepsLeps(enn) + WL e and

Lira = Lsup(tra) T WepsLeps(ira) + waLea, Where w, are weighting factors used to balance
the impact of individual loss terms. w,,s is defined by a Gaussian warm-up function [56]:
Weps(t;) = 0.1 - e(=50—ti/towa)®) where t; is i™ iteration of training and t,0y; is the total
number of iterations, while w,; is set to a constant value of 10~ based on performance of the
validation. Note that the Transformer is used only during training, and does not contribute
to the final inference — the CNN is less computationally expensive, but has distilled the

Transformer’s knowledge.

4.3.4 Pseudocode

Algorithm 1 gives the pseudocode for MCSC processing a single mini-batch of data.

Algorithm 1 Loss calculation for one minibatch with MCSC.

Input: Batch of images X = X' U X* including labelled images and unlabelled images,
ground-truth Y for labelled images, temperature constant 7, and N the number of feature
scales.

Output: Total losses L. for CNN and L; for Transformer.

P = softmax{C, (E.(X"/")}

Y = argmax(P})
# Supervised Supervision
Esup(*) = Edice(Pi, }/:kl) + ‘Cce(Pi7}/;l)

# Cross Pseudo Supervision

‘Ccps(c) - ﬁdice(Pcua Y;u)

[’cps(t) = ‘Cdice<Ptu> }/;u)

# Multi-Scale Cross Supervised Contrastive Learning
n=1...N F, = H,(F.X)), F = concat(F, F})

M = (/W2 {A™ M, = F

Define: Li(A) = — 43, irrbr 3 loge——ople/n
1] i€A Ay|-1 peAynii} ZjeYA ﬁak%;‘j exp(ai-ar/T)

‘Ccl,n = ﬁ Ei\le Lbcl(Am)
Lo=(Las+ ...+ Lan)

»C* = »Csup(*) + wcpsﬁcps(*) + wclﬁcl
Return: L., C;
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4.4 Results

We evaluate our method on two benchmark datasets, ACDC [1] and Synapse [226]. ACDC
contains 200 short-axis cardiac MR images from 100 cases (i.e. patients) with masks of
the left ventricle (LV), myocardium (Myo), and right ventricle (RV) to be segmented; we
follow the data split and the selection of labelled cases in [56]. Synapse contains abdominal
CT scans from 30 cases with eight organs including aorta, gallbladder, spleen, left kidney,
right kidney, liver, pancreas and stomach; the splits follow [178]. To quantitatively assess
performance, we report two popular metrics: Dice coefficient (DSC) and 95% Hausdorff
Distance (HD).

4.4.1 Implementation Details

We implemented our method in PyTorch. We used simple data augmentations to reduce
overfitting: random cropping with a 224 x 224 patch, random flipping and rotations. All
methods were trained till validation-set convergence (which was by 40,000 iterations). We
selected the best checkpoint for evaluation based on validation set performance. Our method
was trained using AdamW [258] with a weight decay of 5 x 10~*. We utilized the poly
learning rate schedule, initialized at 5 X 10~* for CNN and 1 x 10~* for Transformer. The
batch sizes were 4 and 10 respectively, with half labeled and half unlabeled images. For our
MCSC module, each projector , has two linear layers, where the first linear layer changes
the dimension of feature map to 256 channels; the last layer has 128 channels and shares
its parameters between the two models. In Eq.(2), temperature 7 = 0.1. We use multi-
scale feature maps from three layers of E,, with sizes of 256 x 256, 56 x 56, and 28 x 28
respectively, and the size 1’ of a patch was set to 19, 28 and 14 accordingly. All experiments
were run on one (for ACDC) or two (for Synapse) RTX 3090 GPUs.

4.4.2 Comparison with Other Semi-Supervised Methods

We compare our proposed method to several recent SSL methods that use U-Net as back-
bone, including Mean Teacher (MT) [251], Deep Co-Training (DCT) [252], Uncertainty
Aware Mean Teacher (UAMT) [253], Interpolation Consistency Training (ICT) [259], Cross
Consistency Training (CCT) [260], Cross Pseudo Supervision (CPS) [35], and the state-
of-the-art (SOTA) method Cross Teaching Supervision (CTS) [56]. Results for the weaker
methods MT, DCT and ICT are given in the supplementary material. We also compare
against a U-Net trained with full supervision (UNet-FS), and one trained only on the labelled
subset of data (UNet-LS). Finally we compare with the SOTA fully-supervised Transformer
based methods BATFormer [261] on ACDC, and nnFormer [236] on Synapse. We retrained
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Figure 4.3: Qualitative results from our method and the best baseline CTS [56] trained on 4
and 7 labelled cases on ACDC (left) and Synapse (right), respectively.

all the semi-supervised baselines using their original settings (optimizer and batch size), and

report whichever is better of our retrained model or the result quoted in [56].

Table 4.1: Segmentation results on DSC(%) and HD(mm) of our method and baselines on
ACDC, across different numbers of labelled cases.

Mean Myo LV RV

Labelled Methods | s+ Hp| | DSC HDJ | DSCt HD| | DSCt HD|
70 cases (100%) | UNetFS 917 40 | 890 50 | 946 59 | 914 12
BATFormer [261] | 92.8 80 | 90.26 6.8 | 9630 59 | 91.97 113

UNet-LS 750 108 | 782 86 | 855 130 | 639 107

CCT[260] | 840 66 | 823 54 | 886 94 | 81.0 5.1

7 cases (10%) CPS [35] 850 66 | 829 66 | 880 108 | 842 23
CTS [56] 864 86 | 844 69 | 90.0 112 | 848 738

MCSC (Ours) | 894 23 | 876 1.1 | 93.6 35 | 8.1 2.1

UNet-LS 512 312 | 548 244 | 618 243 | 37.0 444

CCT[260] | 586 279 | 647 224 | 704 27.1 | 408 342

3 cases (5%) CPS [35] 603 255 | 652 183 | 720 222 | 438 358
CTS [56] 656 162 | 628 115 | 763 157 | 577 214

MCSC (Ours) | 73.6 105 | 700 88 | 792 149 | 717 1738

UNet-LS 264 601 | 263 512 | 283 520 | 246 77.0

1 case CTS [56] 468 363 | 551 55 | 648 41 | 205 994
MCSC (Ours) | 58.6 312 | 642 133 | 781 122 | 335 68.1

Best is reported as bold, Second Best is underlined.

Results on ACDC. Table 4.1 shows evaluation results of MCSC and the best-performing
baseline under three different levels of supervision (7, 3 and 1 labelled cases). Our MCSC
method trained on 10% of cases improves both DSC and HD metrics compared to previous
best SSL methods by a significant margin (more than 3% on DSC and Smm on HD). More
importantly, it achieves 2.3mm HD, significantly better than even the fully supervised U-Net
and BATFormer, which achieve 4.0 and 8.0 respectively. It also demonstrates competitive
DSC of 89.4 %, compared with 91.7 % and 92.8 % of U-Net and BATFormer. In addition,
MCSC performance is highly resilient to the reduction of labelled data from 10% to 5%,
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outperforming the previous SOTA SSL methods by around 10% on DSC. The improvement
is even more profound for the minority and hardest class, RV, with performance gains of 14
% on DSC and 13.6mm on HD. Figure 4.3 shows qualitative results from UNet-LS, CPS,
CTS and our method. MCSC produces a more accurate segmentation, with fewer under-
segmented regions on minority class- RV (top) and fewer false-positive (bottom). Overall,
results prove that MCSC improving the semantic segmentation capability on unbalanced and

limited-annotated medical image dataset by a large margin.

Analysis of the DSC-HD Gap. As shown in Table 4.1, under the 1-case setting, MCSC
achieves significantly higher DSC than CTS for both the Myo and LV classes, while also
exhibiting larger HD values. To better understand this phenomenon, Figure 4.4 presents
qualitative visualizations, where red and orange arrows indicate localized boundary outliers
in the Myo and LV regions, respectively. We attribute this behavior to the multi-scale con-
trastive supervision in MCSC, which enhances global semantic consistency and promotes
more complete region predictions, thereby improving DSC. However, under extremely lim-
ited supervision, noise in positive and negative sample selection makes it difficult for the
model to distinguish target organs from surrounding soft tissues with similar intensity distri-
butions. Unlike the RV, which typically has clear boundaries against the dark lung cavity, the
Myo and LV are surrounded by tissues with ambiguous contrast or contain internal structures
such as papillary muscles. Consequently, the enhanced sensitivity to semantic features may

lead to localized false-positive predictions in texture-similar regions.

Results on Synapse. Table 4.2 shows the segmentation results of the best-performing
baselines on Synapse with 4 and 2 labelled cases. Compared to ACDC, Synapse is a more
challenging segmentation benchmark as it includes a larger number of labelled regions with
far more imbalanced volumes. Nevertheless, our method outperforms the baselines by a
large margin. This demonstrates the robustness of our proposed framework, and the benefit
of regularising multi-scale features from two models to be semantically consistent across the

whole dataset. This is further highlighted in the qualitative results provided in Figure 4.3.



4.4. Results

53

k—HD of Myo HD of LV

GT CTS

MCSC

Figure 4.4: Qualitative analysis of Myo and LV segmentation results illustrating the discrep-
ancy between DSC and HD on the ACDC dataset under the 1-case setting.

4.4.3 Ablation Study

Table 4.3: Ablation study on the primary components of our model on ACDC (7 labeled
cases), according to DSC (%) and HD (mm). SCL denotes supervised local contrastive loss.
DB denotes discarding background pixels as anchor. CroLab stands for cross label informa-
tion of two models to select contrastive sample. Balanced means averaging the instances of

each class in denominator of SCL. MulSca means contrasting multi-scale feature maps.

SCL DB CroLab Balanced MulSca DSCI%nei—ID ! DTgéngmi_lllll)ei

86.40 8.6 85.22 5.1
Ve v 87.50 7.4 86.02 4.5
Ve v v 88.23 34 86.13 3.2
v v Ve 88.80 4.6 86.53 2.4
Ve v Ve v \ 89.38 2.3 \ 87.28 3.5
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Table 4.2: Comparison with different models on Synapse. The performance is reported by
class-mean DSC (%) and HD (mm), as well as the DSC value for each organ.

Labelled | Methods | DSCt | HD| | Aorta Gallb KidL Kid R Liver Pancr Spleen Stom

UNet-FS 75.6 | 423 | 888 561 789 726 919 558 858 747

18 cases(100 %) nnFormer [236] | 86.6 | 106 | 920 702 866 863 968 834 905 868

UNet-LS 472 | 1223 | 67.6 297 472 507 791 252 568 215
CCT [260] 514 | 1029 | 71.8 312 520 501 83.0 325 655 252
4 cases(20 %) CPS [35] 579 | 626 | 756 414 60.1 53.0 882 262 69.6 489

CTS [56] 64.0 | 564 | 799 389 663 635 86.1 419 753 604
MCSC (Ours) | 68.5 | 248 | 763 444 734 723 918 469 799 629

UNet-LS 452 | 55.6 | 664 272 460 480 826 182 399 334

CCT [260] 469 | 582 | 66.0 266 534 410 829 212 487 35.6

2 cases(10 %) CPS [35] 488 | 656 | 709 213 580 451 80.7 235 580 327
CTS [56] 520 | 63.7 | 732 127 672 647 829 31.7 409 424

MCSC (Ours) | 61.1 | 32.6 | 739 264 699 727 900 332 794 43.0

Best is reported as bold, Second Best is underlined.

Table 4.4: Ablation analysis on the choice of feature maps for the multi-scale contrastive
loss on ACDC (7 labeled cases), according to DSC (%) and HD (mm). Full table is in the
supplementary material.

Branches Mean
256 56 28 | DSCT HDJ
v 88.80 4.6

v 88.88 4.2

v | 8839 45

v v | 89.38 23
o/ 88.92 2.9
v vV Vv | 8835 43

In Table 4.3 we explore the influence of proposed modules on the performance on ACDC
with 7 labelled cases. Starting from CTS [56] (top row), and adding supervised local con-
trastive learning (SCL) with a prior approach for balancing the loss (DB [66]), we observe a
significant improvement of 1.1% on DSC; this emphasizes the importance of enforcing con-
sistency between features of the two models. By exchanging class information from CNN
and Transformer to select contrasted samples (instead of using each model’s own predictions
as pseudo-labels), we see an improvement in DSC and HD from 87.50 to 88.23 and 7.4 to
3.4 respectively. Our approach to balancing different classes (Balanced), instead of just dis-
carding background pixels (DB), improves DSC by 0.7%, since minority classes are better
separated. Finally, utilizing multi-scale instead of just final-layer features further improves
performance by 0.58% and 2.3% DSC and HD respectively. In Table 4.4, we compare re-
sults using different feature maps as input to the contrastive loss; we see best performance is

achieved by using both 256 x 256 and 28 x 28 feature maps. Thus, combining coarser geo-



4.5. Conclusion 55

metric information in global features and detailed local features does indeed benefit medical

image segmentation.

4.4.4 Computational Complexity

Theoretical complexity of patch-level contrastive learning. Existing works sub-
sample a smaller set of pixel coordinates as positive pairs to fit in GPU memory [223]. How-
ever, using more samples to compare is crucial for improving the performance of contrastive
learning [61]. Without subsampling, the overall computational complexity for the supervised
local loss is O(h4), where A is the size of an image, 256 in our case, which would necessitate
O(10%) multiplications. Our proposed approach uses patches with size of A’ x &' to do con-
trastive learning. This reduces the computational complexity from O(h*) to O((h/1')? - ')
and alleviates out-of-memory issues. If we set i/ = 19, complexity will be O(107).

Practical calculation time for different methods. We compare the computational
cost of different methods on ACDC using a single Nvidia RTX 3090 GPU. ‘ForwardT’ refers
to the number of times each image needs to be processed through the network during one
training iteration. ‘BatchT’ refers to the training time (in seconds) for a single minibatch
(two labelled and two unlabelled images) processed during one iteration, including forward
pass, loss calculation, and backward pass. ‘InferenceT’ refers to the inference time for a
single image (in seconds). For our method, we give the inference time of the CNN (pink)

and the Transformer (blue); recall however in practice, we use only the CNN during testing.

Table 4.5: Comparison of the computational cost of different models on ACDC.

MT UAMT CCT CPS CTS Ours
ForwardT/image 2 6 1 2 2 2
BatchT/batch  0.10 0.16 0.21 0.17 0.22 0.83

InferenceT/ case 0.56 0.56 0.75 056 0.56 0.58/0.87
Gflops/image 3.00 3.00 8.77 3.00 3.00 3.00/6.03

Train

Test

4.5 Conclusion

We have presented a novel SSL framework for medical image segmentation based on cross-
teaching between a Transformer and a CNN. This incorporates a supervised local contrastive
loss, named MCSC, that encourages intra-class feature similarity and inter-class discrimina-

tivity across the whole dataset. Furthermore, it addresses class imbalance with a loss that
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eliminates the negative effects of excessive background pixels. Finally, it contrasts multi-
scale feature maps, to combine global and local feature understanding. Our experiments on
two commonly used medical datasets demonstrate that the proposed framework can fully
take advantage of labelled and unlabelled data, and demonstrates remarkably resiliant per-

formance even when the labelled data are significantly reduced.

The semi-supervised MCSC framework presented in this chapter successfully harnesses un-
labeled data and contrastive learning to improve segmentation performance while capturing
cross-context relationships. However, it applies contrastive training uniformly across all
pseudo-labeled samples, lacking any mechanism to focus on the most reliable or informative
examples. This indiscriminate strategy means that noisy or unrepresentative sample pairs can
be included, which in turn limits the method’s scalability and training efficiency. Recogniz-
ing this shortcoming, the next chapter introduces an advanced certainty-guided contrastive
learning approach (MCSC-v2) that adaptively selects high-confidence samples and incorpo-
rates a memory bank to concentrate learning on representative features, thereby enhancing

efficiency and performance on larger datasets.
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Chapter 5

Certainty-Guided Cross Contrastive
Learning for Semi-Supervised
Medical Image Segmentation.

5.1 Introduction

The previous chapter’s MCSC approach significantly improved semi-supervised segmenta-
tion by leveraging unlabeled data and enforcing cross-instance consistency, but it lacked
an adaptive strategy to distinguish trustworthy samples from noisy ones during contrastive
training. This limitation can lead to suboptimal efficiency and effectiveness, especially as the
scale of unlabeled data grows. Building on those insights, this chapter introduces Certainty-
Guided Cross Contrastive Learning (MCSC-v2), which incorporates a certainty-guided sam-
pling mechanism alongside a memory bank to focus contrastive learning on the most reliable
and diverse examples. By dynamically selecting high-certainty features and maintaining a
rich repository of negative samples, the proposed method further enhances segmentation

performance and scalability beyond what MCSC achieved.

Semantic segmentation in medical image analysis enables the precise delineation of different
organs and tissues, providing a quantitative analysis of healthy and pathological structures
[192, 246]. This is vital for numerous clinical applications, including diagnostics, disease
monitoring, treatment planning, and pre-/intra-operative guidance. The past decade has seen
significant advances in deep learning-based segmentation techniques, with supervised learn-
ing being the most commonly adopted solution. However, the success of such methods
hinges on the availability of datasets that are extensive and precisely annotated [247, 262].
In the medical realm, obtaining such annotations demands significant efforts and clinical ex-
pertise. This results in a notable scarcity of high-quality ground truth segmentation masks in

medical imaging datasets [247, 263].
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One approach to mitigate the scarcity of labeled data in medical image segmentation is
semi-supervised learning (SSL); this uses a combination of labeled and unlabeled data for
training [56, 219, 248, 264, 265]. One straightforward strategy is iterative pseudo-labeling,
which generates approximate labels for unlabeled data in an iterative manner [249]. An-
other popular approach is consistency-based regularization, which aims to achieve consis-
tent model predictions across different data augmentations, model architectures, and tasks
[56, 35, 248, 53, 57, 250]. Mean Teacher (MT) [251], a classic method that employs a fixed
teacher-student structure, has limitations in terms of reduced flexibility and susceptibility to
overfitting. This limitation arises as the student network often converges too closely to the
teacher’s probability map, which may embed errors or biases [35]. In contrast, state-of-the-
art (SOTA) methods utilize a student-student paradigm (cross-teaching) [35, 266], where
each network corrects the other’s faulty predictions. The outputs (pseudo-labels) from the
two students naturally differ, fostering diversity in the supervision process and effectively
mitigating the risk of overfitting [35]. One recent approach extends this idea by using two
distinct architectures—a CNN and a Transformer—as the students [56]. This leverages both
pseudo-labeling and consistency strategies — for the unlabeled data, each model’s predictions
provide pseudo annotations for the other, and the models’ predictions are encouraged to be

consistent.

Despite the widespread adoption of pseudo labels in SSL, their accuracy remains a critical
issue [267]. Pseudo labels are prone to inheriting the model’s biases and inaccuracies. Use
of these pseudo labels as a training signal exacerbates the issue, and results in errors being
amplified across successive training iterations. Existing work attempts to mitigate this by
discarding uncertain samples based on a confidence threshold; however, this typically results
in a low utilization rate of the unlabeled data [268]. Therefore, it is essential to develop
more sophisticated methodologies for the utilization of pseudo labels, that make use of all

available unlabelled data.

Another approach to improve the efficacy of SSL, is to integrate it with advanced represen-
tation learning approaches [269]. This aims to improve the discriminativeness of features
within the SSL framework. In particular, contrastive learning [58] draws features of positive
pairs (e.g. samples of the same class) closer together while simultaneously distancing those
of negative pairs. Different definitions of positive/negative pairs result in self-supervised or
supervised contrastive learning strategies. The former selects augmentations of the same
sample points as positive, while the latter selects on the basis of the class labels (or pseudo
labels). For segmentation, self-supervised contrastive learning can be applied at either the
image or pixel level. However, self-supervised local contrastive learning generally does not
incorporate prior knowledge of the actual prevalence of class labels in the sampling criteria,
inherently resulting in significant number of false negative pairs. This issue is particularly

important when handling medical imaging segmentation datasets, which are usually class-
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imbalanced [194].

To cope with a high number of false negative predictions that result from self-supervised
local contrastive learning, previous works have resorted to supervised contrastive learning
[66, 223]. Recent work [224, 68] adopted supervised contrastive learning, based on the
iteratively refined pseudo-annotations on unlabeled data. Some studies [66] also applied
supervised contrastive loss on labeled data exclusively, while performing self-supervised
contrastive learning for unlabeled data. However, the discrepancy in characterising posi-
tive or negative samples results in conflicting optimization goals, which could potentially
yield suboptimal performance. Furthermore, when using supervised contrastive learning for
pixel-wise segmentation, high computational demands often limit the batch size that can
be used. This constraint, coupled with the highly imbalanced class distribution typical in
medical images, tends to result in a lack of diverse negative samples within each mini-
batch. This significantly impedes learning features that effectively discriminate different
classes [224, 68, 223]. Beyond label noise, dense contrastive segmentation is limited by effi-
ciency: pixel-wise contrast induces a rapid growth in pair construction as resolution increases
(e.g., h=256), which constrains batch size in practice. This reduces negative diversity and
can over-weight ambiguous regions (e.g., organ boundaries) under imperfect pseudo labels.
Hence, it is natural to contrast only representative and high-certainty pixels, while using a

memory bank to supply diverse negatives efficiently.

In this work, we introduce a class-balanced local contrastive learning to enhance knowl-
edge exchange between two jointly-trained networks. This builds on previous works that
showed the benefit of one network using its predicted labels to teach another [251] [35] [56].
Our novel contrastive approach operates across feature maps that encompass multiple spatial
scales and network layers, making the two networks more consistent at both feature and out-
put levels. To mitigate false negative pairs while addressing class imbalance, we incorporate
a supervised local contrastive learning objective. Overall, this enables unbiased end-to-end
pixel-wise representation learning on multi-scale feature maps from scarce labeled data and
ample unlabeled data. It not only encourages the consistency in terms of both intermediate
features and final outputs, but also enhances the discriminativeness and similarity of features

among different and same categories, respectively.

Our main contributions are as follows:

* We propose a novel SSL framework to integrate the benefits of cross-teaching with
a novel local contrastive learning module. The proposed contrastive module enhances
training stability and, furthermore, encourages semantic consistency of both predicted
classes and intermediate features. It also has generality as working well on other semi-

supervised methods.
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Figure 5.1: Our methods consistently outperform baselines on ACDC and Synapse with 3
and 2 labeled cases, respectively.

* We develop a local contrastive framework that is operated over multi-scale fea-
ture maps. By seamlessly integrating pseudo-labels and ground truths through cross-
teaching, our framework prevents the over-locality and over-fitting that are typically

seen in pixel-level contrast.

* We incorporate a balanced contrastive loss which normalizes the class-specific con-
tributions based on the frequency of each class, thereby promoting unbiased represen-
tation learning. This approach addresses the issue of class imbalance in both pseudo-
label prediction and the concurrent supervised training using imbalanced (pseudo) an-

notations.

* We develop a certainty-guided strategy for selecting pairs to contrast. Guided
by the certainty of pseudo annotations, it reduces the impact of incorrectly predicted
samples (false negatives). Furthermore, a negative memory bank is constructed online
to allow for more comprehensive and computationally efficient modeling of feature

space.

A preliminary version of this work appeared as [63]. The current article substantially extends

that conference paper in several respects. First, we make additional technical contributions
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that address three limitations of [63]: (i) inaccurate pseudo labels at the start of the opti-
mization lead to confirmation bias that hinders performance; (ii) lack of sufficient diversity
in negative samples, since all negative keys are selected from a mini-batch; and (iii) high
computational complexity that limits the batch size. We achieve this by now exploiting in-
formative semantic information in uncertain samples to achieve high utilization of the whole
unlabeled set in an efficient way. This is a significant advantage over other semi-supervised
methods that filter pseudo-labels heavily to ensure noisy samples are excluded [224, 68, 223].
Moreover, we have substantially extended the evaluation: we now evaluate our method in
conjunction with different SSL frameworks (MT [251], CPS [35] and CTS [56]); we evalu-
ate on more datasets [225, 1, 226]; and we now compare additional recent contrastive losses
(GLCL [66] and ReCo [270]).

We demonstrate that our certainty-guided, local contrastive method improves segmentation
accuracy when integrated with several existing methods [251] [35] [56]. In particular, instan-
tiating our contrastive approach with CTS [56], named Multi-Scale Cross Supervised Learn-
ing version 2 (MCSCv2), consistently achieves SOTA performance on two public medical
datasets (Figure 5.1), for example obtaining a 10.7% improvement in Dice score over CTS
on the ACDC dataset with 5% labeled data.

5.2 Related Work

5.2.1 Consistency Regularization in Semi-Supervised Medical
Image Segmentation

One of the most effective ways to deal with the challenge of limited annotations in medical
image segmentation is semi-supervised learning [50, 55, 56, 192, 193]. A key technique in
this approach is to use prediction consistency as a regularizer to exploit the information from
unlabeled data. Different methods have been proposed to achieve this consistency, such
as using different augmentations [55, 50], architectures [56], or tasks [57]. For example,
Bortsova [55] proposed a semi-supervised framework that enforces the consistency between
the predicted masks and the input images after applying spatial transformations. Peng [50]
trained a group of models with the same architecture to produce similar predictions, while
maintaining their diversity through adversarial learning. A recent work [56] leveraged pow-
erful CNN and Transformer models, aiming to maximize prediction consistency across the
two networks. However, most of these methods focus on output-level consistency on each
single slice under different perturbations [56], without considering the importance of learn-
ing the relationship of features across the slices and cases on the whole dataset, which has

potential to boost segmentation performance. Moreover, on medical image data, these meth-
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ods often face the difficulty of dealing with a highly imbalanced class distribution, which can

lead to biased predictions [194]. How to best solve these issues remains an open question.

5.2.2 Contrastive Learning in Medical Image Segmentation

Many successful self-supervised methods for representation learning rely on contrastive
learning [58, 59, 60, 61]. The main idea is to make features of positive image pairs more
similar, while making features of negative pairs more different. To apply this for segmen-
tation, which requires dense per-pixel predictions, some recent works have proposed pixel-
level self-supervised contrastive learning [217, 174]. Some works performed the contrast on
the image- or patch-level losses [271, 66], by comparing the whole images or patches for
training to provide image- or patch-wide feature representations. These methods have been
extended to semantic segmentation by incorporating both local and global contrastive losses
[218]. To outline the organ boundaries accurately, a contrastive learning method that focuses
on the local features is needed to make predictions for each pixel. In fact, it has also been
shown that using a contrastive loss at both global and local scales improves segmentation
performance [218]. This method is also suitable for partially-supervised instance segmenta-
tion, which aims to combine basic classes with accurately delineated boundaries and novel

classes defined based on bounding boxes.

In the field of natural images, the combination of semi-supervised learning and contrastive
learning has become a popular trend, leading to one-stage end-to-end models that do not
need self-supervised pretraining [219, 220]. Recent works have also focused on extend-
ing the supervised contrastive learning to multiple scales [221, 222]. In contrast, we focus
on addressing the typical contrastive-related issues such as contrastive pair selection across
different scales, subnetworks, and levels of certainty. These challenges are particularly pro-

nounced in semi-supervised medical image segmentation.

On the other hand, recent studies have explored the application of contrastive learning to
medical image segmentation [223, 66, 224, 68]. However, the existing methods that perform
such integration do not fully address the small-size and class-imbalance challenges typical of
medical datasets, thus limiting their applicability. It remains open how to efficiently leverage

contrastive learning for medical image segmentation.

5.2.3 Uncertainty in Semi-Supervised Learning

Capturing uncertainty is important for medical image segmentation models, since it is vi-
tal for trustworthy clinical decision-making. Particularly in pseudo-labelling based semi-

supervised learning, the quantification and incorporation of uncertainty of pseudo labels
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Figure 5.2: The overall architecture of MCSCv2 framework for semi-supervised segmenta-
tion. Two networks, a CNN ( ) and Transformer ( ), with complementary inductive
biases, learn together. When training on unlabeled data, each network generates pseudo la-
bels for the other. These labels are used to define a cross pseudo-supervision loss (

, Lps) and a novel local contrastive loss (black dashed line, £;;) that improves
the quality of features learned by models. MCSC#1 and MCSC#2 are contrastive losses on
global and local feature maps, respectively.

can be pivotal [272]. Existing works have explored various measures for uncertainty, such
as Bayesian neural networks [273], augmentation agreement [274], and prediction entropy
[275]. In this work, rather than focusing on optimizing the (un)certainty estimation strat-
egy, we adopt one popular uncertainty measure, information entropy, for semi-supervised
learning. Using this, recent research [276, 268] has indicated that employing a fixed thresh-
old [277, 224, 68, 223] to select reliable pseudo labels may not yield optimal performance.
Thus there is a need for establishing adaptive thresholds and exploring alternative uses for

uncertain samples.

5.3 Methods

5.3.1 Overview

Provided a training dataset comprising of a small subset with labels D; = {(zf, /)}X, and
a large subset without labels D,, = {z ] 1» where M > K, semi-supervised segmentation
leverages the unlabeled data D, to guide the learning from a small amount of ground-truth
(GT) y!. This avoids the costly annotation of M images needed for a fully supervised ap-

proach.

Figure 5.2 shows an overview of our framework. Two models ( and ) are
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each fed a minibatch X = (X!, X*) including both labeled and unlabeled images. Each
branch includes a feature extractor E, (), a segmentation head/classifier C,(-), and two fea-
ture space projectors H,(-), where x denotes the CNN or Transformer. Only the parameters
of the last layer of the feature space projectors are shared between branches. For training,
we apply losses at two stages of the networks:

1. At the output level, we compute a supervision loss Ls,, (represented by
in Figure 5.2; refer to Sec. 5.3.3.1) by comparing the segmentation predictions
with the GT on labeled data, and a cross pseudo supervision loss L., (represented
by green dashed lines in Figure 5.2; refer to Sec. 5.3.3.2) encouraging consistency
between the segmentation predictions from the two networks on unlabeled images

(i.e. cross-teaching [56], where both networks are ‘students’).

. At the feature level, we introduce a certainty-guided contrastive loss £ over multiple
scales (black dashed lines in Figure 5.2; see Sec. 5.3.2) to regularize the consistency
in feature space and learn better pixel-wise features. Unlike other certainty-guided
methods that blindly discard uncertain pseudo-labels that are likely to be erroneous,
we exploit informative semantic information in these uncertain samples from the less

likely classes, thus making more effective use of the whole unlabeled set.
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Figure 5.3: Multi-scale certainty-guided contrastive learning. CNN and Transformer fea-
tures are guided by crossed masks (pseudo labels from the exchanged network and GT) (top
left) to generate masked features. After certainty estimation, masked unlabeled features are
categorized into certain and uncertain samples. Then it follows negative sample sampling
strategies for labeled features, as well as certain and uncertain unlabeled features (right,
dashed boxes) to construct out-class negative memory bank. This contrasted pairs of pixels
taken from either identical or distinct slices. Pixels belonging to the same (pseudo-) class are
clustered together, whereas pixels of different classes are separated. (bottom left).
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5.3.2 Multi-Scale Cross Supervised Contrastive Learning

We apply a contrastive loss L. on multi-scale feature maps, based on local supervised con-
trastive learning [255] (see Figure 5.3). This considers feature regularities across the entire
dataset and can capture high-level semantic relationships between distant regions of differ-
ent cases. Overall, we propose the following four novel strategies to improve the efficacy of

representation learning:

1. We transfer class information between two models in order to guide the choice of sam-
ples to be contrasted, using predictions of the Transformer as supervisory information
for the CNN and vice-versa (Figure 5.3, left); see Sec. 5.3.2.1. This implicitly makes

the features of the same slice produced by the two models consistent.

2. We reduce the impact of incorrectly predicted samples. Since the pseudo labels are
of varying accuracy, which may hinder training, labeled data is included in the con-
trastive loss to avoid potential noise from pseudo labels. Moreover, instead of simply
discarding uncertain pseudo labels that are likely to be incorrect, we develop a new

strategy to extract information from them; see Sec. 5.3.2.2 and 5.3.2.3.

3. Over multi-scale feature maps, pixels inside and between slices are contrasted; see
Sec. 5.3.2.4. Previous work uses inter-slice samples on single-scale features, and ig-
nores both useful anatomical information within slices and global information in multi-
scale feature maps; this can result in over-locality and over-fitting, which are common

in pixel-level contrast.

4. We incorporate a class-balanced contrastive loss to tackle class imbalance, which is

more efficient than the common strategy of discarding background pixels; see Sec. 5.3.2.4.

5.3.2.1 Feature Embedding

We extract multi-scale features from different layers of F.,, () and Ei,,(+), then project them
into a unified embedding space through projectors H.,, () and Hy,,(+). Overall, we get a fea-
ture batch F' = F,,,UF,,,, where F, = H,(FE.(X)). We will use each branch’s prediction as
class information for the other branch, to guide the sampling of pairs for contrastive learning
Figure 5.3, upper left corner).



5.3. Methods 66

5.3.2.2 Feature Certainty Estimation for Unlabeled Images

We next categorize pseudo-labels into high- and low-certainty groups based on the entropy
of each pixel’s predicted class distribution:

Z P(c) log P! (c). (5.1

ceC

where P! = softmax{C,(E.(n}'))} is the class probability map for ¢ th unlabeled pixel n}
in F. For subsequent processing, we combine all features from both models and treat these

together.

Those pixels with top 3 percentile entropy values in each mini-batch are defined as uncertain
pseudo labels; the remaining are defined as certain. The ~; is the [3-th percentile entropy
value, i.e. the boundary between certain and uncertain samples. Intuitively, we expect the
pseudo-labels to become gradually more reliable during training. Therefore, the proportion
of pixels 5 deemed uncertain is decreased linearly from 5, to 0, i.e. 5 = 5o(1 —t/T'), where
t is the current training iteration and 7' the total. Thus, at the end of the training, we regard

100% of pixel pseudo labels as certain, and none as uncertain.

5.3.2.3 Certainty-Guided Sampling on Keys and Anchors

After classifying each pixel as high or low certainty, we design different sampling strategies
for these two groups. Unlike other SSL. methods that discard low-certainty pseudo-labels
[277, 268, 278, 279], we make use of the discriminative information they provide. For
example, on the far right of Figure 5.3, there is a typical class distribution for an uncertain
pixel. The model cannot distinguish it between class ‘Myo’ and ‘Lv’, but still identifies that it
is unlikely to be of class ‘Background’. We can treat this kind of pixel as a negative sample
for class background. Thus, many ambiguous samples can still provide us with abundant

inter-class information.

In the following sections, we explain the process of (a) selecting anchor pixels; (b) con-
structing a representative positive key for each anchor; (c) selecting negative samples for

each anchor.

Anchor Sampling For every class in the current mini-batch, we sample pixels as an-
chors. The set of features of all labeled and unlabeled anchor pixels belonging to class c is
denoted as A. = A U A“. For labeled data, we select pixels with high top-1 probability
value as anchors, whereas for unlabeled data, we select those with both high top-1 probabil-
ity value and high certainty. This is because the choice of anchors, as the comparison target
of each category, has a great impact on L.;; we therefore try to reduce the number of anchors

with incorrect labels. In particular, there may be samples with high absolute entropy values
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even though the entropy is low relative to the current batch (in other words, if the actual
uncertain proportion is greater than 3, erroneous certain samples would appear). Thus, we

have

AL ={fil(=c) NP > h)}, (5.2)
Ar={fily =) N (P> h) A (H(P") < 7))} (5.3)

where f; is the ¢ th pixel feature in F', and the threshold / for top-1 probability value is set

to 0.9 according to performance of experiments.

Positive Center Sampling A positive key a,, for each anchor is produced by calculating
the average of all possible candidates a; in anchor set A,:

1
ap = > ai (5.4)

Compared with using all samples as positives, this is computationally cheaper (Sec. 5.4.9),

yet still allows reducing the distance between the anchor and all samples of class ¢ [280].

Negative Key Sampling We build a memory bank to use as a source of negative sam-
ples, which provides more diverse samples with richer visual information [61, 281]. In con-
trast, in-batch categorical features can only provide a limited view of the out-class. There-

fore, we are more likely to learn more discriminative features that can distinguish organs.

Specifically, for each class we build a separate negative memory bank, containing features
for pixels of the other classes. For class ¢, the bank B, is updated for each mini-batch in
a first-in, first-out (FIFO) order, while preserving a fixed size K. In each mini-batch, we
first rank the probability distribution of each pixel across categories from largest to smallest,
calculating O; = argsort(F;), where i = 0, ..., C'— 1. Based on the ranking results, the

selection criteria for negative keys set N, = N! U N are as follows.

For labeled data, a negative sample is expected to fulfil the following conditions: (a) its
ground-truth label is not c¢; (b) the pixel is classified as class ¢ with high probability, i.e. In
the probability distribution, class ¢ ranks among the top ones.

N} = {fi

(i # ) A (0< Ol(0) <)}, (55)

where 7! is the low-rank threshold.

For unlabeled data, for low-certainty pixels (entropy higher than v3,), when class c falls at the
bottom of the ranking (smaller than high-rank "), the pixel is selected as a negative sample

of class c. On the other hand, for high-certainty pixels, as long as the top-r! probability is
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not class ¢, it is included in the unlabeled negative set /V!:

[(H(P") > 7)) A (P < O (e) < O)] v

[(H(PY) < 3) A (F <02 . (5.6)

N = {fi

Note that since we are using pixel-level features, just one batch of negative samples may
exceed the maximum capacity K. In order to ensure B, is diverse and includes samples
from across batches, we restrict the number for each update, i.e. if number of keys in /N,
is greater than ¢, /K, we randomly choose ¢,/ keys in N, and push them into B.. We set
t, = 0.25.

5.3.2.4 Multi-Scale Class-Balanced Contrastive Loss

We now describe our novel contrastive loss that uses the above samples. Due of the sig-
nificant imbalance between background and foreground (organs), conventional supervised
contrastive learning is inevitably biased to the background. Although simply eliminating the
background in contrastive learning [66] provides a countermeasure, it is not an ideal way
because: (i) there are extremely few foreground pixels remaining, and (ii) the relationship

between the background and the foreground is not conveyed here.

Inspired by previous work [257], which designed image-level balanced contrastive learning
for natural image recognition, we adapt and extend these concepts with tailored mechanisms
to address the aforementioned challenges of medical image segmentation. In particular, we
average both the intra-class (positive) and inter-class (negative) feature contrast, as shown in
Equation 5.7. This way, the contributions of each class are roughly equal. Given anchors,
positives, and negatives sampled as described in Section 5.3.2.3, the balanced contrastive

loss is defined as:

1 1 exp(a; - a,/T) }
Lo = =775 ) 7 1 - ;
Yol Z jan,| Z s {expwi Lay/T) + 2

Z = Z ! Z exp(a; - ax/T). (5.7)

ol
jov el apen’

Here C' is the number of classes, an, is the current anchor subset, i.e. N randomly sampled
queries from the anchor set A, a; represents the i*" anchor of class ¢, Z is average negative
distance, n. € B, is the current negative set, i.e. M randomly sampled keys from B, (the
negative memory bank of class ¢), Yy is the set of all the unique classes in n., n} € n, is

the subset of negative keys with class j, j # ¢, and 7 represents a temperature constant.
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To prevent the dominating background class from biassing the learnt features, we ensure
that each class makes a balanced contribution during contrastive learning. Note that in our
experiments, N = 1000 and M = 500.

The features of prior to the classifier are passed into the projector in previous research on
local contrastive learning [282, 66, 256, 65]. However, the feature maps from later layers
only include finer details, while earlier feature maps capture broader geometric information
such as organ shapes; both types of information are crucial for segmentation, as it relies on
both the relationships between multiple organs and gross anatomic structure (global), as well
as the textures of the specific tissues (local). Therefore, at each feature scale, we compute
the balanced contrastive loss L after passing features as F (@) with n distinct scales from
n layers of the feature extractors F, to separate projectors. Certainty is calculated by the
prediction of the last layer, whereas the memory bank is built for each scale separately. The
overall loss L is summed over each scale loss: By adding up the losses at each scale, the
overall loss L is obtained: Ly = (Ly(FM) + ... 4 Lo (F™)).

5.3.3 Segmentation Losses

In addition to the contrastive losses, we define supervised and pseudo-supervised (cross-
teaching) losses on the predicted segmentation labels. The minibatch X is first fed into
E.(-) to obtain their features and segmentation logits. For labeled images, we calculate a
supervised loss between predicted and ground-truth labels. For unlabeled images, pseudo-
labels are generated from both models, and using each model’s pseudo labels as the training

signal for the other model. We now describe each of these losses in detail.

5.3.3.1 Ground-Truth Supervision

Given a batch of labeled images D;, two widely-used losses, cross-entropy and Dice loss,

are applied between predicted and ground-truth labels:

K

> (Laiee Py} + Lee(ph 1) | (5.8)

i=1

1
Esup - _?

where pl is the class probability map of the i-th labeled image and 3! is the corresponding

label map.

5.3.3.2 Cross Pseudo Supervision

Through a cross pseudo supervision loss L.,s [56, 35], the CNN and Transformer learn

from each other using the unlabeled data X™“. This regularises their respective predictions
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to ensure consistency between them. Specifically, the Transformer’s predictions turn into

pseudo-labels that guide the CNN and vice-versa.

The class probability maps P! = softmax(C,(FE,(X™))) of the two models are used to
generate online pseudo labels respectively as Y, = argmax (P!). Subsequently, two con-
sistency loss terms L pg(cnn)> Leps(tra) are enforced: the former uses the Transformer’s pseudo

labels to guide the CNN, and vice-versa for latter:
'Ccps(cnn) = Ldice(Pcurmv Y#a)? ‘Ccps(t'ra) = 'Cdice(P#«aa }/c%n) (5.9

Here Lj;.. refers to the standard Dice loss function and it is used to guide learning with
pseudo-labels instead of ground-truth. Note that there is no gradient back-propagation be-

tween P2 and Y} during training, as well as between P, and Y,” .

5.3.4 Overall Losses

Using the loss terms defined in the previous sections, the CNN is trained to minimize a

combined loss L.,,,,, and the Transformer is trained to minimize £,,,, where

£c*rm = Esup(cnn) + wcpsﬁcps(cnn) + wcl/:’cla (510)
'Ctra = Csup(tra) + wcpsﬁcps(tra) + wcl»ccl- (511)

Here w, are weighting factors used to balance each loss term and determined by validation
performance. Specifically, w,,s is defined by a Gaussian warm-up function [56]: wes(i) =
0.1-exp (=5(1 — i /tiota1)?), where i is the index of the current training iteration and o iS

the total number of iterations, while w,; is set to a constant value of 1073.

5.4 Results

5.4.1 Setup
5.4.1.1 Datasets and Metrics

We evaluate our method on two challenging benchmark datasets. ACDC [1] comprises of
200 short-axis cardiac MR images from 100 cases. The images include segmentation masks
for the left ventricle (LV), myocardium (Myo), and right ventricle (RV). Following the data
split and the selection of labeled cases in [56], the dataset is split into 70 cases (1930 slices)
for training, 10 for validation and 20 for testing. Synapse [226] comprises abdominal CT

images from 30 cases, each containing eight organs: aorta, gallbladder, spleen, left kidney,
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Table 5.1: Model sizes and architectures of different baselines

Single-model Dual-model
Architectures U-Net UNet-UNet UNet-SwinUnet
Method DCT [252], ICT [259], CCT [260] MT [251], UAMT [253], CPS[35] CTS [56], MCSCv1, MCSCv2
#param (M) 7.8 15.6 34.8

right kidney, liver, pancreas and stomach. Following [178], we use 18 cases (2212 slices) for

training, and the remaining 12 cases for testing.

To quantitatively measure the performance of 2D segmentation, we utilize two widely-used
metrics: Dice coefficient (DSC) and 95% Hausdorff Distance (HD).

5.4.1.2 Baselines

We compare our proposed method to several recent SSL. methods with the U-Net [25] back-
bone: Mean Teacher (MT) [251], Deep Co-Training (DCT) [252], Uncertainty Aware Mean
Teacher (UAMT) [253], Interpolation Consistency Training (ICT) [259], Cross Consistency
Training (CCT) [260], Cross Pseudo Supervision (CPS) [35], and the SOTA method Cross
Teaching Supervision (CTS) [56] based on SwinUnet [36] (Transformer) and U-Net back-
bone which is same with our methods. In addition, we include the conference version of this
work (MCSCv1), which lacks certainty-guided sampling of anchors and keys.

As shown in Table 5.1, single-model methods including DCT, ICT, and CCT, utilise a pure
U-Net architecture (7.8M parameters). Dual-model methods are further categorised into two
subgroups. One subgroup (MT, UAMT, and CPS) employs a UNet-UNet architecture total-
ing 15.6M parameters. The other subset of methods, which includes CTS and our proposed
methods, leverages a UNet-SwinUnet architecture with a total of 34.8M parameters (7.8M
for U-Net and 27.0M for SwinUnet).

We also performed a comparative analysis between a U-Net model trained under full supervi-
sion (FS) and another trained with limited supervision (LS). The later focuses exclusively on
specific subset of labeled images. Additionally, we evaluated our approach against the SOTA
fully-supervised methods specific to each dataset: BATFormer on ACDC and nnFormer on
Synapse. Adhering to their original configurations for optimizers and batch sizes, we re-
trained all baseline models and documented the best outcome, whether from our retrained

versions or as reported in the existing literature [56].

5.4.1.3 Implementation Details

For all methods we use simple data augmentations to reduce overfitting: random cropping,

random flipping and rotations. All methods were trained till validation-set convergence,



5.4. Results 72

which was before 40,000 iterations. Our method was trained using AdamW [241] with a
weight decay of 5 x 10~*. We utilized the poly learning rate schedule, initialized at 5 x
10~ for the CNN and 1 x 10~ for the Transformer. The batch sizes were 24, with half
labeled and half unlabeled images. For our contrastive module, each projector H, has two
linear layers, where the first linear layer changes the channel of feature to 256; the last
layer has 128 channels and shares its parameters between the two models. In Equation 5.5
and Equation 5.6, 7! is 1, while 7" is 2 for ACDC and 7 for Synapse. In Equation 5.7,
temperature 7 = (0.1. We use multi-scale feature maps from three layers of F,, with sizes
of 256 x 256, 56 x 56, and 28 x 28 respectively. For inference, we show the results of
both CNN and Transformer models. For ACDC we select the best checkpoint for evaluation
based on validation set performance and report results on the test set; for Synapse we report
test set performance from the final checkpoint. We implemented our method in PyTorch. All

experiments were run on one Nvidia RTX 3090 GPU.

5.4.2 Comparison with Existing Semi-Supervised Methods

Thanks to our proposed contrastive learning module, MCSCv1 and MCSCv2 consistently
outperform all baselines including the SOTA (CTS) by a large margin (Figure 5.1).

5.4.21 ACDC

Table 5.2 shows quantitative results for MCSCv1, MCSCv2 and baselines under three dif-
ferent levels of supervision (7, 3 and 1 labeled cases). Compared to previous best SSL
methods, our MCSCv1 and MCSCv?2 trained on 10% labeled cases significantly outperform
them in terms of DSC and HD (more than 3% and 6mm, respectively). It is notable that
MCSCv2 achieves HD of 1.8mm, which is a marked improvement over the fully super-
vised U-Net’s with 4.0mm HD and BATFormer’s with 8.0mm HD. Additionally, our method
shows a strong DSC of 89.4% and 89.5%, nearly matching the 91.7% and 92.8% achieved by
U-Net and BATFormer, respectively. Moreover, the robustness of our method is evident as
it maintains high performance even when the proportion of labeled data is halved from 10%
to 5%, outperforming previous SOTA models by more than 12% in DSC. This improvement
is especially noteworthy for the right ventricle (RV), the smallest and most complex organ
to segment, where we see an increase of about 17.8% in DSC and a reduction of 17.4mm in
HD. When training on just one labeled case, MCSCv?2 surpasses CTS greatly (+12.3% and
-2.5mm); it obtains particularly strong performance on RV (+23.3% and -18.6mm). Mean-
while, the gap between Transformer and CNN in our approach has also widened, which is
expected since CNN has stronger inductive bias, whereas transformer is known to be data-
hungry [283, 284, 285]. Figure 5.4 presents qualitative outcomes from UNet-LS, CPS, CTS



5.4. Results 73

and our proposed methodology. Both variants of MCSC yield enhanced segmentation per-
fromance, with a noticeable reduction in under-segmented areas in the minority class—RV

(top), and a decrease in false positives (bottom).
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Table 5.2: Segmentation results on ACDC for our method and baselines, according to
DSC(%) and HD(mm).

Mean Myo LV RV
Labeled cases Methods
DSCT HDJ DSCt HDJ DSCt HDJ DSCT HDJ
UNet-FS 91.7 4.0 89.0 50 946 59 914 1.2
70 (100%)
BATFormer [261] 92.8 8.0 9026 6.8 963 59 9197 113
UNet-LS 759 108 78.2 8.6 855 13.0 639 10.7
MT [251] 809 11.5 79.1 7.7 86.1 134 77.6 13.3
DCT [252] 80.4 13.8 793 10.7 87.0 155 75.0 153
UAMT [253] 81.1 11.2 80.1 13.7 87.1 18.1 77.6 14.7
ICT [259] 824 7.2 815 78 876 10.6 782 3.2
7 (10%) CCT [260] 840 6.6 823 54 886 94 810 5.1
CPS [35] 850 6.6 829 66 88.0 10.8 842 23
CTS [56] 864 8.6 844 69 90.1 112 84.8 7.8
MCSCv1l 894 23 876 11 93.6 35 871 2.1
MCSCv2(CNN) 89.5 1.8 872 2.0 929 18 884 1.
MCSCv2(Tran) 889 2.0 86.1 14 919 2.7 88.6 2.1
UNet-LS 51.2 31.2 548 244 61.8 243 37.0 444
MT [251] 56.6 34.5 58.6 23.1 709 26.3 40.3 539
DCT [252] 58.2 264 61.7 203 717 27.3 413 31.7
UAMT [253] 61.0 25.8 61.5 193 70.7 22.6 50.8 354
ICT [259] 58.1 22.8 62.0 204 673 24.1 448 23.8
3 (5%) CCT [260] 58.6 27.9 6477 224 704 27.1 40.8 34.2
CPS [35] 60.3 255 652 183 720 222 438 35.8
CTS [56] 65.6 16.2 628 11.5 763 157 57.7 214
MCSCv1 73.6 105 70.0 88 792 149 71.7 1.8
MCSCv2(CNN) 763 54 756 33 809 39 724 9.0
MCSCv2(Tran) 78.1 3.6 76.7 3.1 821 38 755 4.0
264 60.1 263 51.2 283 520 24.6 77.0
47.5 3277 50.7 6.7 60.6 6.9 31.0 84.6
1 (1.4%) 58.6 312 64.2 133 781 122 33.5 68.1
MCSCv2(CNN) 598 30.2 56.2 144 69.1 103 54.3 66.0
MCSCv2(Tran) 554 193 59.2 58 656 43 41.3 479

Best is bold, Second Best is underlined.
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B RV Myo B LV

GT LS CTS MCSCvl MCSCv2

Figure 5.4: Segmentation visualizations from our methods, LS and CTS trained on 7 labeled
cases on ACDC.

5.4.2.2 Synapse

We have evaluated performance on the Synapse dataset using just 4 and 2 labeled instances.
In comparison to ACDC, Synapse presents a tougher test due to greater class imbalance.
Here our method shows even greater gains versus the baselines, than for ACDC. As shown
in Table 5.3, with 4 labeled cases, our MCSCv1 and v2 greatly surpass CTS, from 64.0%
to 68.5% and 73.1% (+4.5% and 9.1%). Similarly, for 2 labeled cases, MCSCv2 outper-
forms the baselines by a large margin (+6.4% and -24.7mm). This confirms the strength
and reliability of our suggested techniques, highlighting the benefit of enforcing consistency
in unbiased features at various scales to ensure semantic uniformity throughout the dataset.
In addition, models that are more able to localize the eight organs (i.e., long-distance rela-
tionship modeling) would perform better on Synapse. As a result, the global Transformer
consistently outperforms the CNN in MCSCv2. For both 4 and 2 labeled cases, previous
SSL methods have a bad performance on varying (location and shape) or small objects:
gallbladder, aorta, stomach and pancreas, while our MCSCv2 further boosts results, due to
certainty-guided contrastive learning. This is demonstrated in Figure 5.5, which summarise
the qualitative results on Synapse dataset. For top case, MCSCv1 and v2 mitigate the over-
segmentation problem on pancreas and under-segmentation on left kidney and aorta. In
bottom case, spleen, which is misclassified as liver by LS and CTS, is now correctly iden-
tified. The complete aorta including walls is correctly identified in both of our methods. In
addition, MCSCv2 segments the stomach very accurately compared to the other three algo-
rithms. Overall, when applied to imbalanced and limited-annotated medical image datasets,

our frameworks significantly enhances the semantic segmentation capability.
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Table 5.3: Segmentation results on Synapse for our method and baselines, according to
DSC(%) and HD(mm).

Labeled cases = Methods  DSCT HDJ Aorta Gallb Kid_ L Kid R Liver Pancr Spleen Stom

UNet-FS 75.6 423 88.8 56.1 789 72.6 919 558 858 74.7

18(100%)
nnFormer [236] 86.6 10.6 92.0 70.2 86.6 863 96.8 834 905 86.8

UNet-LS 472 1223 67.6 29.7 472 50.7 79.1 252 56.8 21.5

UAMTI[253] 519 693 753 334 553 408 82.6 275 559 447

ICT [259] 575 793 742 36.6 583 51.7 86.7 34.7 662 51.6

CCT [260] 514 1029 71.8 31.2 520 50.1 83.0 325 655 252

4(20%) CPS [35] 579 62.6 756 414 60.1 53.0 882 262 69.6 489
CTSI[56] 64.0 564 79.9 389 663 635 86.1 419 753 604

MCSCvl1 68.5 24.8 763 444 734 723 91.8 469 799 629
MCSCv2(CNN) 689 38.1 79.6 454 73.7 700 894 475 715 67.7
MCSCv2(Tran) 73.1 20.2 80.3 45.1 76.1 74.6 93.0 52.1 89.3 74.6

UNet-LS 452 55.6 664 272 46.0 48.0 82.6 182 399 334

UAMT [253] 495 62.6 713 21.1 62.6 514 793 228 582 29.0

ICT [259] 49.0 599 689 199 525 522 83.7 254 532 36.0

CCT [260] 469 582 66.0 26.6 534 41.0 829 212 487 35.6

2(10%) CPS [35] 488 65.6 709 21.3 58.0 45.1 80.7 235 58.0 32.7
CTS [56] 579 529 755 243 668 69.7 874 262 789 34.6

MCSCvl1 61.1 326 739 264 699 7277 90.0 332 794 43.0
MCSCv2(CNN) 61.1 41.3 7522 348 714 694 86.8 31.7 73.1 464
MCSCv2(Tran) 64.3 28.2 76.2 305 732 743 91.0 35.6 83.2 50.3

Best is bold, Second Best is underlined.

I aorta M gallbladder MM left kidney | ' right kidney M liver | pancrea Il spleen  stomach

MCSCv2

GT LS CTS MCSCv1

Figure 5.5: Segmentation visualizations from our methods, LS and CTS trained on 4 labeled
cases on Synapse.
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Table 5.4: Comparisons with the SOTA contrastive learning methods combined with CTS,
on the ACDC and Synapse, according to DSC (%) and HD (mm).

ACDC 5 % /1.4 % Synapse 20 % /110 %
DSCt HD| DSCt HD| DSC{ HD/, DSCt HDJ

Contrastive learning method

Patch-level GLCL [66] 717 3.8 474 358 677 426 597 34.6
Ours CLv1 [63] 73.6 105 586 312 685 248 61.1 326

Slice-level ReCo [270] 702 6.1 483 335 683 259 604 20.7
v Ours CLv2 781 3.6 592 160 731 202 662 233

None (Vanilla CTS) 65.6 162 46.8 363 640 564 572 457

Table 5.5: Benefit of our method combined with different baselines, on Synapse with 20%
labeled data, according to DSC (%) and HD (mm).

MT CPS CTS
DSCt HDJ] DSCt HD|] DSCt HDJ
Baselines 56.1 724 579 626 640 564

+ proposed CLv2 59.2 657 66.1 41.8 731 20.2

5.4.3 Comparison with Alternative Contrastive Learning Losses

We also compare our proposed contrastive learning with several other SOTA patch-level and
slice-level contrastive learning methods in Table 5.4. We consider GLCL [66], ReCo [270],
and the conference version of our loss, denoted CLv1 [63]. GLCL and ReCo were designed
for general contrastive learning (not semi-supervised segmentation); here we re-implement
them within the CTS cross-teaching framework to create semi-supervised methods, for fair
comparison. It can be seen that our method can better take advantage of the CNN and
transformer features, leading to higher segmentation accuracy on almost all datasets and

labelling rates.

5.4.4 Benefit of MCSCv2 Applied on Different Baselines

To show the wide applicability of our proposed class-balanced local contrastive learning, we
measure performance when our method is integrated with three different baseline SSL meth-
ods (Table 5.5). We include MT [251], a classic teacher-student framework (full U-Net struc-
ture), CPS [35], a student-student framework (full U-Net structure) based on cross-teaching,
and CTS [56], which improves CPS by replacing one of the U-Nets with Swin-Unet. We see
that incorporating our contrastive learning consistently improves each of these three base-
line SSL methods. We attribute this large improvement to the fact that these baselines only
encourage consistency at the output level (i.e. predicted labels), and do not achieve efficient

knowledge exchange between deeper layers of the networks. Our method further encourages
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Table 5.6: Ablation on choice of network architectures on Synapse, according to DSC (%)
and HD (mm).

Trans & Trans CNN & CNN CNN & Trans
DSCt HDJ] DSCt HD] DSCt HDJ]

20% MCSCv2 70.1 28.5 66.1 418 731  20.2
10% MCSCv2 59.3 33.8 452 798 66.2 233

Table 5.7: Ablation study for the primary components of our model on Synapse, according
to DSC (%) and HD (mm).

Exp SCL BA CroLab Bal MulS APS NS Bank L%

DSC1 HDJ
1 64.0 564
2 v 669 256
3 v v v v 67.6 243
4 v v 4 4 v 68.5 24.8
5 v 4 v 4 4 4 v 72.7  20.1
6 v v v v 4 v 712 21.8
7 v v v v v v v 72.5 183
8 v v v v v v v v 73.2 206

SCL: supervised local contrastive loss. BA: background pixels are included as anchors.
CroLab: cross label information of two models to select contrastive sample. Bal: averaging
the instances of each class in selected negative samples, denominator of SCL. MulS:
contrasting multi-scale feature maps. APS: selecting low-uncertainty and high-confidence
anchor and positive centre. NS: selecting representative negative keys based per-batch.
Bank: modelling out-class negative feature distribution by memory bank. MCSCv1 is blue.

the consistency of the two networks, from the feature level to the output. Furthermore, the

learned features capture both local and global information.

5.4.5 Ablation Studies

We conduct an ablation study on Synapse with 20% labeled data, measuring the importance
of various aspects of our model in Table 5.7. We use CTS as our baseline, achieving Dice of
64.0% (CTS in Table 5.3), as shown in Exp 1. In Exp 2, adding typical supervised local con-
trastive loss (SCL) which simply discards background as anchors improves the baseline by
+2.9%. To prevent the inherent bias of conventional supervised contrastive learning towards
the dominant class (i.e. background), we attempt to average negative feature contrast within
the pixels of each class. It can be concluded from Exp 3, our balanced loss function (Bal) (see

Eq. 5.7) which includes background as anchors (BA) together with cross class information of
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two models (CroLab), brings an improvement of +3.6% over the baseline. In addition to the
above strategies, MCSCv1 also contrasts multi-scale feature maps (MulS) (see Sec. 5.3.2.4)
and achieves 68.5% (Exp 4). Adding certainty based-anchor and positive keys sampling
(APS) (see Sec. 5.3.2.3.a & b) along with negative keys sampling (NS) (see Sec. 5.3.2.3.c)
not only brings 4.2% increase (Exp 5), but also greatly reduces the computational complexity
(see Sec. 5.4.9); we analyse the impact of the hyperparameters of the sampling strategy in
Sec. 5.4.6. Without our CroLab, the improvement decreased significantly -1.5% as shown in
Exp 6; reintroducing it in the full model (Exp 8) improves by +0.5%. We conjecture that this
is because adding perturbation of class information supervision in SCL further promotes the
consistency of features. We find in Exp 7 that modelling the negative feature distribution by
a memory bank instead of per-batch brings +1.3% improvement. Finally, when combining
all our contributions, our full model MCSCv2 achieves SOTA Dice score of 73.2%.

Ablation on the different student branches. We also investigate the impact of various ar-
chitectural choices for the two cross-teaching networks as presented in Table 5.6, comparing
Transformer and Transformer, CNN and CNN, and CNN and Transformer. Our findings
reveal that the cross-teaching between a CNN and Transformer outperforms the other ar-
chitectural pairings. It demonstrates that achieving feature and prediction of consistency
between CNN and Transformer greatly boosts segmentation performance, by combining the
benefits of the two architectures — locality for the CNN and long range dependencies for the
Transformer. Notably, even the SwinUnet-SwinUnet architecture with even higher model
complexity performs worse than our UNet-SwinUnet approach. When considered along-
side Table 5.4, we infer that other alternative contrastive learning techniques cannot achieve
feature consistency as well as our MCSCv2, due to the lack of effective contrast sample

selection strategy.

5.4.6 Effect of Varying Hyperparameters.

We show the effect of varying important parameters for MCSCv2 on Synapse with 20% and
10% labeled data. We find that our framework is robust and insensitive to these parameters
especially with more labeled data (20%). This may reflect that more unlabeled samples

(10%) would result in more noise if they are not handled appropriately.

Ablation on the multi-scale contrastive feature map. In Table 5.8, it can be observed
that contrasting samples from both the small feature map (28 x 28) and the large feature
map (256 x 256) jointly, improves performance by +1.6% and +1.9% on the basic output
(256 x 256) for the 20% and 10% setting, respectively. In addition, we also examine the
usefulness of MulS in Exp4 of Table 5.7 when APS, NS, and Bank are not employed. Thus,
the integration of coarser geometric information in global features and detailed local features

does indeed benefit medical image segmentation.
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Table 5.8: Ablation study for use of multi-scale feature maps on Synapse, according to DSC
(%) and HD (mm).

Branches 20% 10%
256 56 28 DSCt HD| DSCt HDJ
v 715 213 643 294
v 729 269 632 335
v 720 234 649 24.1
v v 731 202 662 233
v v 72.1 217 66.2 238
v v v 713 26.1 62.7 29.0

The effect of the proportion of uncertain samples. Figure 5.6 (a) studies the impact of
different initial certain vs uncertain percentage thresholds . It can be seen that the perfor-
mance is best when 3y = 20%. Overly large (3, would cause more ambiguous samples to be
mistakenly considered as certain, which introduces false pseudo-label noise in training and

results in reduced performance.

The effect of the rank in negative sample selection. Sec. 5.3.2.3 proposes to use proba-
bility rank threshold to select negative keys with discriminative informativeness. Figure 5.6
(b) provides a verification that such strategy promotes better performance. 7! = 3 and r"* =
5 outperform other options under 10% setting. This expands the scope of selecting negative
samples to avoid missing the correct negative sample. Under 20% setting, models are more
confident, thus the category range would be narrowed down to which each sample must not
belong by using 7! = 1 and r" = 7. So negative candidates tend to become more irrelevant

with anchor.

The effect of the size of negative memory bank. We vary the size of memory bank, the
maximum number of samples saved, for MCSCv2 in Figure 5.6 (c). We found that when the
size of the bank is 60k, the framework achieves best performance for both two settings of
20% and 10%, outperforming small size (10k) by more than 1% and 2%, respectively.

5.4.7 Analyzing the Quality of Pseudo-Labels.

To better illustrate the noisiness of pseudo-labels and how the proposed CLv2 mitigates this
issue, we measured the DSC of pseudo-labels predicted for unlabeled data of ReCo [270]
(ICLR’22) and our novel SCL in early training stages, as shown in Figure 5.7. Specifically,
early in training, cross-teaching models with ReCo [270] (solid lines) yield suboptimal re-
sults due to the insufficient training. This limitation persists even in later training stages,
as the model struggles to generalize and often converges to local optima. In contrast, the

supervision provided by our CLv2 offers consistent and reliable guidance throughout the
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Figure 5.6: The effects on our proposed contrastive learning module of varying (a) percent-
age of certain samples (b) rank threshold, and (c) negative memory-bank size.

Table 5.9: Comparison of the computational cost of various methods on ACDC.

MT UAMT CCT CPS CTS MCSCvl MCSCv2

Trai ForwardT/image 2 6 1 2 2 2 2
T patchT/batch  0.10  0.16 021 0.17 022  0.83 0.27
Test InferenceT/case 0.56 0.56 0.75 0.56 0.56 0.58/0.87 0.70/0.92

Gflops/image  3.00 3.00 8.77 3.00 3.00 3.00/6.03 2.97/6.03

training process (dashed lines), significantly mitigating these issues and enabling more ef-

fective learning from limited data.

5.4.8 Visualizations of Feature Space

Figure 5.8 visualises the feature space from our method and CTS on Synapse. For the top
row (cross-slices), three slices of a case are used for visualisation. For the bottom row we
pick seven slices from three cases. We randomly select 100 pixels per class from each slice.
It can be seen that our MCSCv2 accurately captures feature relationships over long distances
within a case, and indeed across different cases. In contrast, the baseline method, CTS, is
only trained to encourage semantic consistency within individual slices. Without the help of
contrastive learning, conventional SSL methods cannot distinguish well between background
and stomach, and between liver and gallbladder. When considering multiple cases, it is
even clearer that CTS fails to separate classes consistently. This success is consistent with
quantitative results in Table 5.3, where our method shows significant gains in performance

for gallbladder, liver, left kidney, spleen pancreas and stomach.
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Figure 5.7: DSC of pseudo-labels from two models on unlabeled data during the early train-
ing stages, for Synapse 4 labeled cases. Note that model A is U-Net and Model B is Swin-
Unet.

5.4.9 Computational Complexity
5.4.9.1 Theoretical Complexity of Patch-Level Contrastive Learning

Prior studies rely on ad-hoc strategies that reduce positive pairs to fit within the GPU mem-
ory constraints [223]. Nevertheless, contrasting a greater number of samples is essential for
enhancing the performance [61]. Without subsampling, the supervised local loss requires an
overall computational complexity of O(h?*), where h is the image size. Our case requires
O(10°) multiplications since i = 256, which is usually challenging to afford. MCSCv1 uses
patches with size of 4’ x h’ for contrastive learning. This alleviates out-of-memory problems
and lowers the computational complexity from O(h*) to O((h/h')? - W'*). The complexity
would be O(107) if b’ = 19. MCSCv2 is more efficient still, using fewer representative sam-
ples for contrasting, yet obtains even better features. The number of anchors, negative keys
and positive key we used are 1000, 500 and 1 respectively, resulting in O(10°) complexity.

5.4.9.2 Practical Computational Time

We examine the computational cost of several approaches on ACDC and the results are pre-
sented in Table 5.9. The "ForwardT” indicates how many times the network has to process
a given image in a single training iteration. ‘BatchT’ refers to the processing time of a mini-

batch for each iteration that comprises of a forward pass, loss computation and backward
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Figure 5.8: t-SNE [286] visualization of pixel-level features of 9 classes extracted from
Synapse test subset guiding by GT.

pass. A minibatch consists of two labeled and two unlabeled pictures. ‘InferenceT’ denotes
the inference time (in seconds) for one image. It can be seen that the complexity in MC-
SCv2 is relatively low and it compares well with CTS. To provide a more detailed insight of
the complexity of each subnetwork, we show the inference time for both the CNN and the

Transformer in (pink) and (blue), respectively.

5.5 Conclusion

In this paper, we introduce a novel SSL method for medical semantic segmentation utilizing
less demanding annotations. To model feature regularities across the whole dataset and cap-
ture high-level semantic relationships between different cases, we introduce an end-to-end
Transformer and CNN framework with multi-scale certainty-guided cross supervised con-
trastive loss which mitigates the impact of inaccurate pseudo labels and of class imbalance.
Consequently, the proposed MCSCv2 establishes new state of-the-art results on widely used
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benchmark datasets: cardiac MRI (ACDC) and multi-organ CT (Synapse). It significantly
improves the segmentation metrics over the baseline CTS for all settings with different num-
ber of labeled cases. Moreover, we provide an extensive analysis of ablations, parameter
sensitivity, feature space visualization and complexity showing the superiority of MCSCv2

and its ability to segment medical images effectively and efficiently.

Despite these advancements, there are two potential limitations where further improvements
can be made. Firstly, our method uses a linear progression of certainty thresholds, start-
ing from an initial 20% and incrementally increasing to 100% throughout training. This
approach assumes a consistent and predictable improvement in pseudo-label quality, which
may not accurately reflect the complex dynamics of pixel uncertainty during training. A
more sophisticated approach would involve developing an adaptive mechanism that dynam-
ically responds to the evolving quality of pseudo-labels. Secondly, we rely on entropy as an
indicator of uncertainty. Medical imaging often requires understanding the contextual depen-
dencies between pixels, which are not fully reflected by marginal entropy calculations. One
promising approach to address this limitation would be to consider the inter-dependencies

between pixels, moving beyond isolated pixel-level uncertainties.

We hope that this work will inspire and foster future research on contrastive learning for
semi-supervised medical image segmentation. And these remaining challenges highlight
opportunities for further refinement, which are discussed in the concluding chapter of this

thesis.
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Chapter 6

Learning Semi-Supervised Medical
Image Segmentation from Spatial
Registration

6.1 Introduction

Building upon the certainty-guided contrastive framework developed in the previous chapter,
which improved sample selection and contrastive efficiency under limited supervision, sev-
eral important limitations remain unaddressed. Specifically, prior work still depends heavily
on pseudo-labels generated during training, which can be unreliable early on, and lacks
access to external sources of semantic correspondence. Moreover, contrastive learning is
constrained to within-batch sampling, which limits the diversity and anatomical alignment
of positive pairs. To overcome these challenges, this chapter introduces a novel framework,
CCT-R, that integrates off-the-shelf spatial registration into the semi-supervised learning
pipeline. This integration enables the generation of anatomically-consistent pseudo labels

and cross-volume positive pairs, enhancing both supervision quality and feature consistency.

Semantic segmentation is a foundational task in medical image analysis. However, su-
pervised methods require meticulously annotated images, which are expensive and time-
consuming to obtain. Alternatively, Semi-Supervised Semantic Segmentation (S4) minimizes
the need for manual annotation by leveraging a large pool of unlabeled images alongside a
limited set of labeled images [287].

Existing S4 methods try to extract useful information from unlabeled data in various ways.
One line of work [288, 289] first performs self-supervised pretraining on unlabeled data to
learn robust features, then fine-tunes with limited labeled data. Other works learn from un-

labeled images via pseudo-labeling [251, 290, 291] or consistency regularization strategies
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[292, 260, 50], both of which retrain the model using its own predictions on unlabeled im-
ages as pseudo-supervision. Cross-teaching frameworks, like the teacher-student [251] and
student-student paradigms [35, 56], learn from unlabeled data by encouraging consistency of
predictions between different network branches. Supervised contrastive learning endows the
S4 model with a stronger feature-extraction ability [66, 68, 224, 223], encouraging features
of pixels with the same class (positives) to be similar, and features of different classes (nega-
tives) to be dissimilar. State-of-the-art (SOTA) cross-teaching methods [63] also incorporate
pixel-wise contrastive learning on multi-scale feature maps. However, learning a robust rep-
resentation from numerous unlabeled images remains challenging due to potential noise in

pseudo-labels.

Spatial registration is a related task that aims to find dense spatial correspondences between
pairs of 3D image volumes [293, 294]. Many methods, both classical and learning-based,
do not require manual supervision, but are based on comparing pixel intensities or features.
Still, spatial registration yields a wealth of semantic information, as points matched by the
registration transformation should, in principle, have the same semantic labels. Indeed, reg-
istration techniques are commonly used in brain image analysis to directly propagate a seg-
mentation map from a template image to another [295]. Despite the wide use of spatial reg-
istration in medical image analysis, the potential of harnessing registration for S4 remains

under-explored.

In this work, we investigate how to improve S4 by leveraging the rich semantic information
inherently available through off-the-shelf spatial registration methods. By integrating this
information into contrastive cross-teaching frameworks [56, 63] which currently represent
the SOTA in S4 for medical images, we propose a novel method CCT-R, incorporating two

techniques that give substantial improvements in S4 performance for medical images.

Firstly, we use registration-derived semantic information to generate additional pseudo-labels
for unlabeled data, and introduce a new loss allowing these to guide the segmentation pro-
cess. This is beneficial since the accuracy of existing cross-teaching methods is limited by
the quality of pseudo-labels predicted by each network and used to supervise the other; these
pseudo-labels are typically very noisy during the early stages of training. In contrast, reg-
istrations can be computed offline, prior to training, with relatively high accuracy. We can
then use registration transforms to transfer annotations from labeled to unlabeled volumes.
To mitigate poor-quality registrations, we develop a simple yet effective ‘best registration
selection’ (BRS) strategy that uses cycle-consistency to identify the most useful registrations
for generating high-quality labels, without requiring extra supervision. In this way, more
reliable pseudo-labels are available early in the training process, which helps avoid con-
firmation bias from cross-teaching, accelerates learning, and improves final segmentation

performance.
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Secondly, we use registration to optimise the sampling of pairs during pixel-wise contrastive
learning. The SOTA contrastive cross-teaching S4 approach, MCSC [63], selects posi-
tive pairs based on (potentially noisy) pseudo-labels, and only within the current mini-
batch. By employing registration transformations, we can go further, identifying spatially-
corresponding pixels for each anchor point across different volumes. This allows us to sam-
ple spatially positive pairs across volumes for contrast, even when their current pseudo-labels
are incorrect, e.g. early in training. Furthermore, to increase the diversity of registration
guided positives, and avoid the constraints imposed by batch size, we construct a memory-

bank of feature maps from across multiple volumes.
In summary, our main contributions are as follows:

* We propose CCT-R, the first registration-guided method for semi-supervised medical im-

age segmentation, by integrating registration with a contrastive cross-teaching framework.

* We introduce a novel registration supervision loss that enhances cross-teaching, by pro-
viding additional and informative registered pseudo-labels early in training, automatically

selecting the best registered volumes.

* We show how registration can be used to mitigate the noisiness of pseudo labels in super-
vised contrastive learning, by adding anatomically-corresponding positive pairs regardless

the currently predicted class.

Our evaluation demonstrates that each of these strategies enhances accuracy when com-
bined with several recent S4 algorithms including UAMT [253], CPS [35], CTS [56], and
contrastive variants. Implementing both strategies simultaneously proves even more effec-
tive. Our proposed CCT-R (based on CTS) achieves SOTA performance across all settings
with particularly impressive gains under minimal supervision conditions. With just a sin-
gle labeled case, CCT-R improves Dice coefficient (DSC) by 33.6% and reduces Hausdorff
Distance (HD) by 32.8 mm on ACDC cardiac MRI segmentation [1], while on Synapse
abdominal CT [226] it improves DSC by 21.3% and HD by 58.1 mm.

6.2 Related Work

6.2.1 Consistency Regularization in Semi-Supervised Medical
Image Segmentation.

Semi-supervised learning is a very effective approach to address the challenge of limited
annotations in medical image segmentation [50, 55, 56, 192, 193]. Researchers have pro-
posed various consistency regularization approaches that enforce consistency between mul-

tiple branches, either through data augmentations [55, 50], network architectures [56], or
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task configurations [57]. For instance, Bortsova [55] encouraged consistency between the
predicted masks and the input images under spatial transformations. Peng [50] used ad-
versarial learning to encourage diverse predictions among a set of models, while Luo [56]
leveraged Transformer-CNN consistency. However, most of these methods focus on pre-
diction consistency for each single slice, overlooking feature relationships between different
slices [63]. Additionally, relying on models to generate pseudo-labels often results in in-
accurate organ boundaries [280]. Addressing these limitations remains an open challenge.
Our CCT-R encourages both output and feature consistency between two branches [56, 63],

while uniquely using registration to provide richer information beyond cross-teaching alone.

6.2.2 Medical Image Registration.

Spatial registration is the process of aligning images from various sources, times, or pa-
tients to a common coordinate system [293], enabling tasks like automatic segmentation
[296, 297], mathematical modeling [298], and functional imaging [299]. Classical methods,
such as those based on mutual information (MI) [300], and feature-based techniques like
Demons registration [301], align images by optimizing a cost function to minimize misalign-
ment. These approaches rely heavily on pixel intensities and anatomical features. Recent ad-
vances in deep learning have introduced learnt methods [294, 124], which automate feature
extraction and optimization. These methods can be supervised (trained with labeled refer-
ence deformations) [302, 303] or unsupervised (optimize similarity metrics without ground
truth) [294, 304, 305]. Both classical and learnt methods typically take a pair of images
(fixed and moving) as input, and produce a transformation matrix or a dense deformation
field that aligns them.

Building on the registration process, spatial transformation maps a source image to a target
via coordinate adjustments, enabling accurate regional or global anatomical alignment. In
this study, we apply two main types of transformations: affine and deformable. Affine trans-
formation is a linear method that uses a 4 x 4 matrix to manage global spatial normalization
through parameters like rotation, translation, and scale. This approach ensures a rigid yet
scalable adjustment of the source image to align with the target, allowing global alignment
across regions. Deformable transformation, on the other hand, goes beyond rigid alignment,
accommodating complex regional variations. This method uses a high degree of freedom,
typically through a 3D deformation field, to achieve localized matching at the voxel level.
Each voxel in the deformation field represents a 3D translation for more precise alignment,
particularly beneficial in cases where regional anatomical structures vary significantly be-

tween source and target images.
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6.2.3 Combining Segmentation and Registration.

Segmentation and registration are closely related tasks that can complement each other, as
both require extracting similar information from images. Several methods achieve segmen-
tation purely by propagating the labels from an atlas image to another after registration, such
as for gray/white matter [306] or V1/V2/IT [307] regions of brain, cardiac MR images [308]
and liver CT [309]. Conversely, segmentation can provide additional supervision (beyond
image intensities) for registration [310], as well as serve as a mean to evaluate registration
results [311]. Consequently, many studies have explored joint training of deep networks for
registration and segmentation across various supervision levels: unsupervised [312, 313],
fully supervised [314, 315, 316, 317], few shot [318, 319] and semi-supervised [320]. The
most relevant to our CCT-R, DeepAtlas [320], jointly learns registration and S4 using 3D
networks. However, they leverage neither established registration techniques nor modern
S4 strategies like co-training and contrastive learning, limiting their approach to simpler
anatomies (knee and brain). Unlike these works, our approach does not aim to solve regis-
tration itself. Instead, it leverages an existing (imperfect) registration algorithms to boost the

performance of S4.

6.2.4 Contrastive Learning for Segmentation and Registration.

Contrastive learning has been pivotal in self-supervised representation learning [58, 59, 60,
61]. Early contrastive learning approaches focused on image-level (global) representations
[321, 61, 281, 322], increasing similarity between positive pairs while differentiating neg-
ative pairs. To adapt contrastive learning to the segmentation task, which requires dense
predictions, recent research has introduced pixel-level (local) self-supervised contrastive
learning [217, 174]. Some methods [218] incorporate both local and global contrastive
losses in segmentation. These self-supervised methods are prone to false negative predic-
tions [254]; to mitigate this, existing works [66, 223, 63] have explored supervised local
contrastive learning. In the field of natural images, the integration of semi-supervised learn-
ing and contrastive learning has become a popular trend. This has lead to the develop-
ment of one-stage, end-to-end models that eliminate the need for self-supervised pretraining
[219, 220, 323, 324, 325, 326]. This approach has also been successfully applied to medical
image segmentation [66, 68, 224, 223, 327]. Lastly, some works use self-supervised con-
trastive learning for registration, aiming to achieve high mutual information between fixed
and moving images at the level of whole images [328] or patches [329, 330]. Unlike the
above works, our CCT-R is the first to use registration information to guide contrastive sam-

pling for S4.
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Figure 6.1: The overall architecture of our framework for semi-supervised medical image
segmentation.

6.3 Methods

We first describe our problem setup and overall learning framework (Section 6.3.1), which
closely follows SOTA cross-teaching methods [35, 56, 63]. Next, we introduce the main
technical contributions for our CCT-R: incorporating registration into the S4 framework
(Section 6.3.2), followed by a detailed description of how this is accomplished through
a Registration Supervision Loss (RSL) (Section 6.3.3) and by improving the quality of
contrastive pairs with the Registration-Enhanced Positives Sampling (REPS) module (Sec-
tion 6.3.4).

6.3.1 Preliminaries

S4 aims to obtain good segmentation performance by leveraging data comprising of few
labeled 2D slices D; = {(«},4!)}/<, and many unlabeled slices D, = {24}, (M > K).
Let V = {v,}"_, represents the set of all 3D volumes, from which the set D = D; U D, is

extracted.

Our overall learning framework is similar to cross pseudo supervision [35, 56] (Figure 6.1),
and the input is a minibatch X = X' U X" including labeled images and unlabeled images.
It uses two student models that are trained via a standard supervised loss L, on X !, and via
a cross pseudo supervision loss L., on X*“ where each network learns from the predictions
of the other.

The supervised loss combines Dice and cross-entropy terms, similar to [63, 331]:

Esup = ﬁdice(Pi, Yl) + ‘Cce(Pia Yl) (61)
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Here P! is the predicted class probability map of the labeled image batch X', calculated
according to P! = C,(E.(X")) where E.,(-) is a feature extractor, C.(+) is a segmentation
head yielding class probabilities for each pixel, Y' is the ground-truth label maps and *
denotes the model A or B.

The cross pseudo supervision loss L., [35] enables model A and model B teach each other
on the unlabeled X", encouraging their respective predictions to be consistent. Specifically,
we define

Lepsa) = Laice(PA, YE)s  Leps(B) = Laice(Pp, YA)- (6.2)

Here the Dice loss L;.. for model A uses pseudo-labels Y} predicted by model B as its tar-
get, instead of ground-truth labels as in £,,,,. Note that there is no gradient back-propagation
between P} and Y during training, nor between 5 and Y {'. In Section 6.3.3, we will show
how using spatial registration information can improve accuracy by providing additional

pseudo-labels that are often less noisy than the cross teaching predictions.

Supervised contrastive learning. In addition, we optionally incorporate a supervised
contrastive learning loss L, to better capture high-level semantic relationships between dis-
tant regions of different cases across the entire dataset. Our contrastive loss follows [254],
but with the key difference that it contrasts pixel features instead of whole-image features.
We project each pixel to a shared embedding space then regularize in a supervised manner,
encouraging features of anchor pixels to be similar to those of pixels having the same class

(positives), and to be dissimilar to those of different classes (negatives).

Specifically, as shown in Figure 6.1, we extract a feature batch /' = 'y U Fg, where F, =
H.(E.(X))and H.(-) is the projector. The choice of anchors, which serve as the comparison
target of each class, has a great impact on learning; we therefore try to reduce the number
of anchors with incorrect class labels. For every class in the current mini-batch, we sample

pixels with high top-1 probability value as anchors A, for class c, setting

Ac=A{fil i =c) A (pi > h)}, (6.3)

where f; is the i" pixel feature in F, and the threshold / for top-1 probability value is set to
0.5 to only exclude hard samples.

The supervised contrastive loss L is then computed as:

1 1 exp(a; - a,/T) }
Lo=——5S "SI p , 6.4)
: |C] CGZC lan,| a% g{exp(ai-ap/T)—i-Z
Z = Z Z exp(a; - ax/T).
jEC akeni

j#e
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Figure 6.2: Supervised contrastive learning guided by labels vs. registration: In the semi-
supervised setting, for unlabeled data, the supervised contrastive loss uses pseudo-label in-
formation to select pairs. However, pseudo-labels are unreliable, especially early in training.
For example, in the middle panel, the anchor is wrongly labeled as Myo (green), which leads
to an incorrect learning signal, due to contrasting with positives correctly labeled as Myo. In
contrast, registration finds the anatomically-closest point to the anchor in each 3D volume,
without relying on label predictions from models, enabling the contrastive loss to perform
correct comparisons between cases.

Here C'is the number of classes, an. C A, is the current anchor subset, NV randomly sampled
queries from the anchor set A., a; represents the it" anchor of class ¢, n. € N, is the current
negative set, O randomly sampled keys from N, (the negative set of class ¢), nJ € n, is
the subset of negative keys with class j, j # ¢, and 7 is a temperature constant. To prevent
the background class from dominating the learning process, we limit the number of negative
samples for each category. It ensures balanced contributions across classes and reduces
memory usage, unlike [66] which simply discards background features. Note that in our
experiments, N = 1000 and O = 500. The positive key a,, = ai, is given by calculating the

average of all other pixels of the same class, in the anchor set A.:

l 1

Al

aieAC

Contrasting only an average positive instead of all positives is computationally cheaper, yet
still allows reducing the average distance between the anchor and other samples of class ¢
[280]. In Section 6.3.4 we will show how using spatial registration information can provide

additional positives for contrastive learning.
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Training and inference. The two models are trained simultaneously with separate losses.

The total training loss £ 4 for model A is:
EA = ‘Csup(A) + wcpsﬁcps(A) + wclﬁcl- (66)

and similarly for model B. Here w, are weighting factors used to balance each loss term.
Overall, this setup yields comparable performance to the SOTA contrastive cross-teaching
method, MCSC [63], while being significantly simpler, and easier to adapt to use registra-
tion information. For inference, we make predictions by averaging the logits from the two

models.

6.3.2 Learning from Spatial Registration

We now describe how our CCT-R incorporates registration information into the learning
framework described in Section 6.3.1. In CCT-R, spatial correspondences from registration
serve as additional supervision, since points mapped together by an accurate registration

transform share the same anatomical label across volumes.

A registration transform aligns a source to a target volume, by smoothly mapping source co-
ordinates to anatomically-matching target coordinates. We assume pairwise 3D transforms,
affine or deformable, are available between all volumes in V'; these can be calculated us-
ing any standard off-the-shelf method. Affine transforms apply a 3 x 4 transform matrix to
source coordinates (causing a global rotation, translation, scale and shear), while deformable
transforms use a spatially-varying deformation field to achieve precise local alignment. Al-
though the segmentation model remains 2D, operating on individual slices, each slice is now
considered within the 3D space of its original volume. We define the set of registration trans-
forms as T = {T};}, ;_,, where T}; maps points from volume v; to v;, and N is the total

number of volumes.

Our CCT-R uses 7' in two ways. First, we go beyond cross-teaching, introducing a new loss
that uses registration to transfer labels from labeled to unlabeled data (Sec. 6.3.3). Further-
more, traditional supervised contrastive learning typically relies on predicted logits, which
can introduce errors. Our CCT-R mitigates this by using 7" to identify anatomically corre-

sponding features across volumes, providing a complementary set of positives (Sec. 6.3.4).

6.3.3 Registration Supervision Loss

We use spatial transforms obtained by registration as an additional source of pseudo-labels to
supervise the two models. Specifically, by transforming a point from an unlabeled volume to

the corresponding point in a labeled volume, we can assume that these two points correspond
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to the same anatomical location. Thus, the label from the labeled volume can be used as
supervision for the unlabeled slice. This provides much more accurate pseudo-labels early

in training, and also helps to reduce the confirmation bias that can arise from cross-teaching.

Formally, we define a new loss L,,, that encourages each pixel to match the label of its

corresponding location in the paired labeled volume:

1]V[

‘Crs = _M ; (Edice(pi » T ) + ‘Cce(pz‘ » T )) s (67)
where p! is the class probability map of the 7" unlabeled image =¥, and r!* is a new registered

label found by registration. L, is then added to the overall loss function (Eq. 6.6).

Assuming that the slice ;' belongs to the unlabeled volume v}, we define the registered label

r by mapping the ground truth y! from the labeled volume vf]:
i = To(y)), (6.8)

where Ty; is the transform from v} to v!. This transform aligns the label y/ with the corre-
sponding coordinates in the slice z}', resulting in the 7. This greatly improves the model’s
learning performance (see Sec. 6.4.4), especially in cases with minimal supervision (one

labeled volume).

Best registration selection strategy. In practice, registrations are often imperfect,
particularly for complex anatomical regions such as the abdomen. Moreover, the loss in
Eq. 6.7 does not require every image to be paired with all others. We therefore design a
strategy to choose which registered pairs should be used. Importantly, this strategy cannot
rely on ground-truth labels, due to our semi-supervised setting. Specifically, we measure the
cycle-consistency of the transforms from 7" (Sec. 6.3.2) between two volumes, say v;' and vé.
We apply the forward transform 77, (j-to-q) and the reverse transform 77; (q-to-j) on volume

Uj.

B = Ty(Tig(v)). (6.9)

J J

Ideally, v should be equal to the original volume v}, meaning the composition of forward
and reverse transformations approximates the identity function. We calculate the global
similarity between v}’ and v} using both mutual information (MI) [332] and root mean square

error (RMSE), and use these to derive a composite score

S = Wimse - RMSE + wy,; - MI, (6.10)
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where W and wy, weight the importance of RMSE and MI, respectively. We then select
the vé that minimizes this composite score to generate the best additional pseudo-label r}* for

the unlabeled slice z}' in vj'.

6.3.4 Registration-Enhanced Positive Sampling

We next show how to use registration to improve the supervised contrastive learning loss
in Eq. 6.4. Figure 6.2 shows the shortcomings of standard positive sampling in compari-
son to our novel approach integrating registration. Positives a,, derived from (pseudo-)labels
are sampled from any location within the same organ or class as shown in Eq. 6.4. In con-
trast, registration-based positives correspond to the exact same anatomical location within
the organ, albeit in different volumes or patients. Any noise in registration-based positives
stems from registration inaccuracies and is independent of pseudo-label errors. Therefore,
we augment the set of positive samples by incorporating registration-based examples. This

approach reduces the confirmation bias that can arise when learning only from pseudo-labels.

Assume the xyz coordinate of anchor a; in an image from volume v, is denoted by p. We use

a registration transform to get the corresponding positive coordinates p; in v;:

pj = Ty;(p), 6.11)

where j € {1,2,..., N} and j # ¢, i.e. we consider all other training volumes in V. Given

the p;, we extract the positive feature a,; from the corresponding feature maps.

Since our minibatch comprise 2D slices rather than full 3D volumes, there is only a small
probability that the feature map containing a given registered point p; will in fact be available
in the current minibatch. We therefore build a memory bank B to serve as a source of feature
maps, which provides more diverse registered positive samples across different 3D volumes.
The memory bank B stores feature maps of 2D slices. For every slice in each mini-batch,
new feature maps are added to B. If a slice is not yet in B, it is added; otherwise, the existing
slice is updated with the new features. Once B reaches its maximum capacity K, the oldest
slices are removed in a first-in, first-out (FIFO) order. This provides the model with a more

diverse set of features from various 3D volumes.

The positive features a,; are averaged over the available j indices that exist in the memory
bank:

.1
a) = mzapj, (6.12)

jeJ

where .J represents the set of volume indices for which the feature point exists in the memory
bank. Note that J is a subset of the total volume indices {1,2,..., N}.
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Finally, we combine with the pseudo-label-supervised positive key aé from Eq. 6.5 to give a

single combined positive key a,, for a;:
a, = wla; + waa,. (6.13)

We use these positives in the contrastive loss Eq. 6.4, but otherwise keep it unchanged.

6.4 Results

Datasets. We evaluate CCT-R using two challenging benchmark datasets. ACDC [1]
comprises of 200 short-axis cardiac MR volumes from 100 cases, with segmentation masks
provided for the left ventricle (LV), myocardium (Myo), and right ventricle (RV). We allocate
70 cases (1930 slices) for training, 10 for validation, and 20 for testing as in [56], and match
their choice of labeled cases. Synapse [226] consists of abdominal CT volumes from 30
cases, with eight labeled organs: aorta, gallbladder, spleen, left kidney, right kidney, liver,
pancreas, and stomach. As in [178], we use 18 cases (2212 slices) for training and 12 for

testing.

Metrics. For quantitative evaluation, we use two widely-recognized metrics for 2D seg-
mentation: Dice coefficient (DSC) and 95% Hausdorff Distance (HD).

Baselines. We first compare with a registration baseline that is not learning-based—we
use the transforms to propagate labels from the labeled training cases to the test images,
similar to [307, 306, 308], selecting labeled cases with our BRS. We also compare a joint
registration and segmentation model, DeepAtlas [320]; this learns registration from scratch
simultaneously with segmentation. To stay consistent with our CCT-R, we reimplemented
it using a 2D U-Net segmentation model. We evaluate several recent S4 methods with the
U-Net [25] backbone: Mean Teacher (MT) [251], Deep Co-Training (DCT) [252], Uncer-
tainty Aware Mean Teacher (UAMT) [253], Interpolation Consistency Training (ICT) [259],
Cross Consistency Training (CCT) [260], Cross Pseudo Supervision (CPS) [35], and Cross
Teaching Supervision (CTS) [56], which like CCT-R uses Swin-UNet [36] (Transformer)
and U-Net backbones. In addition, we include the SOTA S4 method with contrastive learn-
ing, MCSC [63]. As a reference we also train the U-Net backbone from the S4 methods
on only the labeled subset of cases (LS) without additional tricks. We also include fully-
supervised methods—the same U-Net trained under full supervision (FS), and the SOTA
fully-supervised methods BATFormer [261] (on ACDC) and nnFormer [236] (on Synapse).
We retrain all baseline models using their recommended hyperparameters, and report the

results from [56] or our replication, whichever is better.
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Figure 6.3: Qualitative results from our CCT-R and baselines on ACDC, trained on 3 labeled
cases.

6.4.1 Implementation Details

For all methods we use random cropping, random flipping and rotations to augment. All
methods were trained until convergence, or up to 40,000 iterations. We precomputed a com-
posite pairwise registration (affine for ACDC and affine + B-spline deformable transforma-
tion for Synapse) for all training data prior to training, using ITK [333, 334]. The compute
time required for each affine registration is approximately 2 minutes per pair, while each
deformable pair takes around 3 hours based on 50 CPUs. Consequently, the computational
overhead for affine transformations on the ACDC and Synapse datasets is roughly 161 and
10 hours, respectively. For Synapse, the deformable transformations require approximately
918 hours. However, by parallelizing up to 5 registration tasks, we can reduce the effec-
tive time to 1/5, maximizing CPU utilization. Additionally, if computational resources are
limited, using only affine transformations offers a cost-effective alternative. We used the
AdamW optimizer with a weight decay of 5 x 10~*. The learning rate followed a poly-
nomial schedule, starting at 5 x 10~* for the U-Net and 1 x 10~* for the Swin-Unet. Our
training batches consisted of 8 images for ACDC and 24 images for Synapse, evenly split
between labeled and unlabeled. In the contrastive learning section, each (H,) was composed
of two linear layers, outputting 256 and 128 channels, respectively. In Eq. 6, w,,, is defined
by a Gaussian warm-up function [56]: weps(7) = 0.1 - exp (—=5(1 — i/tota1)?), Where i is the
index of the current training iteration and %) is the total number of iterations, while w,; is
set to a constant value of 1072, In Eq. 4, temperature 7 = 0.1. In REPS module, the bank
size K = (M + K)/5. We implemented our method in PyTorch. All experiments were run
on one RTX 3090 GPU.
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Figure 6.4: Qualitative results from our CCT-R and baselines on Synapse, trained on 2
labeled cases.

6.4.2 Comparison with Existing Methods

ACDC. Table 6.1 presents quantitative results from our CCT-R and baselines, under three
different levels of supervision (7, 3, and 1 labeled cases). When trained on 7 labeled cases
(10%), significantly outperforms the baseline CTS, with more than a 4% improvement in
DSC and a reduction of 7 mm in HD. With just 5% of labeled data (3 cases), our CCT-R
surpasses CTS and SOTA MCSC by an impressive margin of 20% and 12% in DSC and
reduction of 14 mm and 8.5 mm in HD, respectively. When the supervision is reduced to one
labeled case, our approach outperforms the SOTA by an even larger margin (DSC of 80.4 vs.
58.6 for MCSC), highlighting its robustness in scenarios with extremely limited labeled data.
DeepAtlas, a joint registration and segmentation method, underperforms. This may be due
to its lack of advanced S4 techniques, and its online learning of registration, which means
registrations are inaccurate early in training and provide poor guidance for segmentation.
Qualitative results in Figure 6.3 further illustrate the superiority of CCT-R, showing more
accurate segmentation with fewer under-segmented regions for the RV (bottom) and fewer
false positives (top) compared to CTS. In the supplementary (Sec. S3) we also show that

CCT-R outperforms CTS combined with other contrastive losses.
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Table 6.1: Segmentation results on ACDC for our method and baselines, according to DSC
(%) and HD (mm).

Mean Myo LV RV
Labeled Methods
DSCt HDJ| DSCt HD|] DSCt HD| DSCtT HDJ
UNet-FS 91.7 4.0 89.0 50 946 59 914 1.2
70 (100%)
BATFormer [261] 92.8 80 9026 6.8 963 59 9197 113
Reg. only (Aff) 307 164 197 139 420 144 305 2038
DeepAtlas [320] 79.4 80 79.0 117 819 32 773 90
UNet-LS 759 108 782 86 855 13.0 639 107
MT [251] 809 11.5 79.1 7.7 86.1 134 77.6 13.3
DCT [252] 804 13.8 793 107 870 155 750 153
7 (10%) UAMT [253] 81.1 11.2 80.1 13.7 87.1 181 77.6 147
ICT [259] 824 7.2 815 7.8 876 106 782 3.2
CCT [260] 84.0 6.6 82.3 54 886 94 810 5.1
CPS [35] 850 6.6 829 6.6 88.0 10.8 842 23
CTS [56] 86.4 8.6 844 69 90.1 112 848 78
MCSC [63] 894 23 876 11 936 35 87.1 2.1
Ours (Affine) 90.3 1.6 874 14 927 22 909 13
Reg. only (Aff) 320 178 180 157 439 160 340 21.7
DeepAtlas [320] 59.0 86 628 54 678 17 464 126
UNet-LS 512 312 548 244 61.8 243 370 444
MT [251] 56.6 345 586 231 709 263 403 539
DCT [252] 582 264 61.7 203 71.7 273 413 317
3 (5%) UAMT [253] 61.0 258 61.5 193 70.7 226 50.8 354
ICT [259] 58.1 228 620 204 673 241 448 238
CCT [260] 586 279 647 224 704 27.1 408 342
CPS [35] 603 255 652 183 72.0 222 438 358
CTS [56] 656 162 628 11.5 763 157 577 214
MCSC [63] 736 105 700 88 792 149 717 18
Ours (Affine) 857 20 838 14 899 24 835 21
Reg. only (Aff) 234 197 136 187 31.6 190 251 214
DeepAtlas [320] 404 185 422 117 347 292 444 14.6
1 (1.4%) UNet-LS 264 60.1 263 512 283 520 246 770
CTS [56] 46.8 363 551 55 648 41 205 994
MCSC [63] 58.6 312 642 133 78.1 122 335 68.1
Ours (Affine) 804 35 783 32 836 43 793 29

Best is bold, Second Best is underlined.
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Table 6.2: Segmentation results on Synapse for ours method and baselines, according to
DSC (%) and HD (mm).

Labeled Methods DSCt HD| Aorta Gallb Kid_L Kid R Liver Pancr Spleen Stom
18(100%) UNet-FS 75.6 423 88.8 56.1 789 726 919 55.8 858 74.7
’ nnFormer 86.6 10.6 92.0 70.2 86.6 86.3 96.8 83.4 90.5 86.8

Reg. only (Affine) 27.0 396 160 7.5 364 33.0 56.8 13.1 285 25.1
Reg. only (Aff+Def) 325 36.5 29.7 4.8 365 294 655 142 48.0 31.7

DeepAtlas [320] 56.1 853 69.2 433 50.8 552 888 30.5 627 48.0

UNet-LS 472 1223 67.6 29.7 472 50.7 79.1 252 56.8 21.5

UAMT [253] 519 693 753 334 553 40.8 82.6 27.5 559 447

4(20%) CPS [35] 579 62.6 756 414 60.1 53.0 882 262 69.6 489
CTS[56] 64.0 564 79.9 389 663 635 86.1 419 753 604

MCSC [63] 68.5 248 763 444 734 723 918 469 799 629

Ours (Affine) 70.0 232 79.8 345 710 70.7 92.8 49.6 874 744
Ours (Affine+Deform) 71.4 21.1 80.4 423 73.0 70.0 93.7 494 879 74.2

Reg. only (Affine) 254 36.8 175 3.5 327 275 534 126 334 225
Reg. only (Aff+Def) 29.1 44.0 272 113 28.6 265 664 12.7 29.7 303

DeepAtlas [320] 440 67.1 68.0 249 379 460 82.7 184 442 30.6

UNet-LS 452 556 664 272 460 48.0 82.6 182 399 334

UAMT [253] 495 626 713 21.1 62.6 514 793 228 582 290

2(10%) CPS [35] 488 656 709 213 58.0 45.1 80.7 23.5 58.0 327
CTS [56] 552 454 715 256 626 675 782 263 759 343

MCSC [63] 61.1 32.6 739 264 699 7277 900 332 794 43.0

Ours (Affine) 65.1 225 757 284 745 750 91.8 38.0 823 55.1
Ours (Affine+Deform) 66.5 19.7 77.6 344 751 742 92.6 39.5 82.1 56.1

Reg. only (Affine) 264 450 163 6.6 358 328 535 144 28.7 227
Reg. only (Aff+Def) 27.4 522 264 113 305 27.1 61.6 128 263 23.6

DeepAtlas [320] 16.1 723 184 149 12 10.1 57.1 06 144 122

UNet-LS 13.7 1165 11.6 178 0.8 1.8 569 0.1 87 11.6

UAMTI([253] 107 902 80 93 03 81 31.7 1.1 13.1 143

1(5%) CPS [35] 15.0 1235 196 96 56 69 594 23 94 72
CTS [56] 263 965 446 40 112 55 603 9.6 541 212

MCSC [63] 34.0 53.8 509 13.0 17.6 546 643 55 43.1 235

Ours (Affine) 434 408 625 133 179 71.0 77.0 114 654 28.7
Ours (Affine+Deform) 47.6 384 655 93 50.6 702 727 11.1 739 278

Best is bold, Second Best is underlined.
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Synapse. We evaluate performance on the Synapse dataset using 4, 2, and 1 labeled
cases. Although Synapse is more challenging than ACDC due to greater class imbalance
and anatomical variability, CCT-R demonstrates even larger improvements than on ACDC
(Table 6.2). With 4 labeled cases, DSC increases from 64.0% to 71.4%, outperforming CTS
by 7.4% and MCSC by 2.9%. Even with just one labeled case, CCT-R still excels at seg-
menting challenging small organs like the aorta, kidney, and pancreas, where others struggle.
It significantly outperforms MCSC, improving the mean DSC by 13.6% and reducing HD by
15.4 mm. This robustness to extreme class imbalance and limited supervision emphasizes
the value of registration information. Furthermore, our approach is robust across varying reg-
istration qualities. Even with simpler affine registrations, inaccurate for complex abdominal
anatomy, it significantly improves segmentation (Ours (Affine) rows) over not using regis-
tration, though results are better still with deformable transforms (Ours (Affine+Deform)).
Figure 6.4 shows CCT-R accurately segments small structures like the gallbladder and pan-
creas, often missed or over-segmented by LS and CTS. Our approach also correctly identi-
fies the spleen and distinguishes it from the liver, a common error in other methods. It also
provides more precise segmentation of the liver and stomach, significantly outperforming

MCSC. This figure shows the robustness in handling challenging, imbalanced datasets.

Segmentation via registration only. We also test whether simply propagating labels
based on either affine or deformable registration achieves adequate segmentation perfor-
mance (Reg.only rows in Tables 6.1 & 6.2). We see this performs substantially worse than

the learning-based methods.

6.4.3 Benefit of Our Registration-Based Modules Applied on Dif-
ferent Baselines

Our main experiments build on CTS; however to show the wide applicability of our ap-
proach, we measure performance when it is integrated with alternative SSL baselines (Ta-
ble 6.3). We include UAMT [253], a classic teacher-student framework with two U-Nets,
CPS [35], a student-student framework with two cross-teaching U-Nets, and CTS [56], which
improves CPS by replacing one of the U-Nets with Swin-UNet. With each baseline, we mea-
sure the benefit of adding RSL only, and RSL in conjunction with contrastive learning and
registration-based positive selection (SCL + REPS row). Our registration-derived modules
boost all baselines. Enhanced UAMT approaches CTS performance, while improved CPS
surpasses CTS by 4% on DSC. CTS with our modules remains the top performer.
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Table 6.3: Benefit of our modules combined with different baselines, on Synapse with 10%
labeled data, according to DSC (%) and HD (mm).

UAMT [253]  CPS [35] CTS [56]
DSCt HDJ DSCt HD| DSCt HDJ
Baselines 495 62.6 48.8 656 552 454

+ RSL 523 603 573 424 654 285
+RSL+SCL+REPS 546 556 59.1 375 665 19.7

Table 6.4: Ablation study for the primary components of our CCT-R on Synapse, according
to DSC (%) and HD (mm). SCL: typical supervised local contrastive loss. RSL: registration
supervision loss. BRS: best registration selection strategy for registered labels r“. REPS:
registration-enhanced positive sampling module (using positives from registration in SCL).

1(5%) 2 (10%)
DSCt HDJ) DSCt HDJ
263 965 552 454

SCL RSL BRS REPS

v 29.0 469 642 339
v v - - 65.4 285
v 275 598 63.1 29.1
v v v 28.1 539 648 20.6
v v 314 552 639 297
4 v v 4 476 384 665 197

6.4.4 Ablation Studies and Analysis

We conduct an ablation study on Synapse, measuring the importance of various aspects of
our proposed CCT-R (Table 6.4). CTS, as our baseline, achieves Dice of 26.3% and 55.2%
for one and two labeled cases respectively (top row). Our registration supervision loss (RSL)
improves the baseline by +2.7% and 9.0%. The best registration selection strategy (BRS),
which is only applicable for two or more labeled cases, further boosts performance by an
additional +1.2% in DSC and reduces HD by -5.4 mm. Adding a standard supervised lo-
cal contrastive learning (SCL) improves the baseline by +1.2% and 7.9% respectively even
without registration; also incorporating RSL gives further improvements of 0.6% and 1.7%,
indicating that contrastive learning and RSL are complementary strategies. The registration-
enhanced positive sampling (REPS), which mitigates bias towards single pseudo-label su-
pervision in SCL, yields significant improvements: a +3.9% DSC and -4.6 mm HD for one
labeled case and +0.8% for two labeled cases versus just SCL. Lastly, when combining all
components, our full method achieves substantial Dice score improvement compared to the
CTS baseline of 21.3% for 1 labeled case (from 26.3% to 47.6%) and 11.3% for 2 labeled
cases (from 55.2% to 66.5%).
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Figure 6.5: DSC of pseudo-labels from two models on unlabeled data during the early train-
ing stages, for Synapse (a) 1 labeled case, and (b) 2 labeled cases.

Analysing the quality of pseudo-labels. We measured the DSC of pseudo-labels
predicted for unlabeled training data and used for cross-teaching, illustrating the noisiness
of pseudo-labels and demonstrating how the proposed RSL mitigates this issue. Figure 6.5
shows that early in training, cross-teaching models without RSL (dashed lines) yield sub-
optimal results due to the insufficient training. This limitation persists even in later training
stages, as the model struggles to generalize and often converges to local optima, especially
in the 5% labeled setting. In contrast, the supervision provided by registrations, RSL, offers
consistent and reliable guidance throughout the training process (solid lines), significantly

mitigating these issues and enabling more effective learning from limited data.

6.5 Conclusion

We have introduced CCT-R, a registration-guided method for semi-supervised medical im-
age segmentation. This builds on cross-teaching methods, and improves segmentation via
two novel modules: the Registration Supervision Loss and Registration-Enhanced Positive
Sampling module. The RSL uses segmentation knowledge derived from transforms be-
tween labeled and unlabeled volume pairs, providing an additional source of supervision
for the models. With the REPS, supervised contrastive learning can sample anatomically-
corresponding positives across volumes. Without introducing extra training parameters,
CCT-R achieves the new SOTA on popular S4 benchmarks.

This chapter presented CCT-R, a registration-informed cross-teaching framework that sig-
nificantly advances semi-supervised medical image segmentation by introducing registration
supervision and anatomically-aligned contrastive sampling. By leveraging spatial correspon-
dences between image volumes, CCT-R mitigates the limitations of unreliable pseudo-labels
and constrained contrastive pairing, achieving state-of-the-art performance with minimal la-

beled data. Across the thesis, we have progressively enhanced segmentation performance by
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evolving from purely supervised architectures to sophisticated semi-supervised frameworks
that integrate contrastive learning and spatial priors. In the next and final chapter, we con-
clude the thesis by synthesizing the key contributions of all chapters and discussing future

research directions.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

This thesis presents a comprehensive investigation into representation learning frameworks
for medical image segmentation, with a particular focus on improving label efficiency, fea-
ture discriminability, and anatomical consistency under varying supervision regimes. Across
six chapters, the work progresses from architectural optimization for fully supervised seg-
mentation to advanced semi-supervised frameworks that integrate contrastive learning, un-
certainty modeling, and spatial priors to enable high-performance segmentation with limited

annotations.

In Chapter 3, we introduced a baseline supervised segmentation framework based on Vi-
sion Transformers, optimizing their architecture to better capture local semantic features in
medical images. This chapter laid the foundation by enhancing structural inductive bias and
eliminating the need for large-scale pretraining through a hybrid convolution-transformer

design.

Chapter 4 extended the work into the semi-supervised domain by proposing a cross-teaching
strategy based on contrastive learning. It utilized both labeled and unlabeled data and en-
forced feature consistency across a multi-scale feature space, significantly improving the
robustness of learned representations. This chapter addressed the limitations of purely su-

pervised training and explored the benefits of pixel-wise contrastive alignment.

In Chapter 5, we further advanced the framework by introducing a certainty-guided sampling
mechanism that selectively chooses high-confidence pixel features to construct contrastive
pairs. A memory bank was incorporated to enrich negative sample diversity and improve
learning efficiency. The resulting model achieved more stable and scalable performance,

especially in settings with high class imbalance and sparse annotations.



7.2. Limitations 106

Chapter 6 integrated spatial priors into the segmentation framework by leveraging registration-
derived information. We introduced the CCT-R framework, which utilizes spatial correspon-
dence between image volumes to generate anatomically-aligned pseudo-labels and registration-
enhanced contrastive pairs. This approach significantly improved both early-stage training

stability and final segmentation accuracy under extremely low-label regimes.

Overall, these chapters demonstrate a coherent trajectory of methodological innovations—from
architectural optimization to contrastive semi-supervision, certainty-based pair selection, and
registration-informed guidance. Each contribution addresses a critical bottleneck in medical
image segmentation, and collectively, they establish a unified framework for learning reliable

and interpretable representations with minimal annotation effort.

7.2 Limitations

Despite the contributions made in this thesis across architectural optimization, semi-supervised
learning, and contrastive representation design, several limitations constrain the broader ap-
plicability, scalability, and clinical translation of the proposed methods. These limitations

motivate the future research directions discussed below:

* Limitations of semi-supervised learning: Although semi-supervised learning allevi-
ates the need for dense pixel-level annotations, its effectiveness remains sensitive to
pseudo-label quality. In particular, inaccurate pseudo-labels in early training stages
may introduce confirmation bias and amplify errors, while class imbalance can further
cause under-representation of rare structures in the learning signal. In addition, con-
trastive objectives may incur non-trivial computational and memory overhead (e.g.,
sampling strategies or memory banks), which can limit scalability to high-resolution

3D volumes.

* Single modality: The current models operate solely on pixel-level visual information
and do not leverage complementary clinical data such as radiology reports or pathology
records. This restricts semantic understanding and diagnostic relevance in complex

scenarios.

» Task-specific design: Each model is trained under a fixed label space and imaging
modality, lacking pretraining strategies or structural modularity to support transfer

across datasets or clinical tasks.

* Assumed distributional homogeneity: The semi-supervised strategies assume la-
beled and unlabeled data follow the same distribution, which rarely holds in multi-

center, multi-scanner real-world deployment scenarios.
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* Lack of interpretability: No explicit mechanisms are in place for quantifying un-
certainty or explaining model decisions, limiting safety and usability in clinical work-

flows.

* Dependence on annotations: Despite efforts to reduce supervision cost, the current
methods still rely on some labeled samples or pseudo-labeling, and do not support

fully unsupervised segmentation.

* Inadequate modeling of anatomical diversity: The methods struggle to generalize
to rare or atypical anatomies (e.g., congenital abnormalities), which are common in

practice but underrepresented in training data.

* Insufficient generalization evaluation: Model evaluation is confined to intra-dataset
experiments and conventional overlap metrics, lacking cross-site validation or clini-

cally grounded failure case analysis.

* No temporal modeling: All models process images as static entities, ignoring longi-
tudinal dynamics or temporal progression information that is essential for prognostic
tasks.

7.3 Future Directions

In response to the above limitations and informed by recent advances in vision and clinical
Al, several promising research directions emerge. These can extend the contributions of
this thesis toward more generalizable, trustworthy, and clinically integrated segmentation

frameworks:

* Multimodal and multitask learning: One key limitation of current segmentation
methods lies in their modality isolation—most operate solely on pixel data, omit-
ting the wealth of clinical context embedded in textual reports, pathology findings,
and structured health records. Future research can explore multimodal segmentation
frameworks that jointly learn from images and clinical text, enabling richer semantic

understanding and cross-modal reasoning.

For example, integrating radiology reports or pathology descriptions with CT/MRI
scans could enhance segmentation precision, especially in ambiguous or complex
anatomical regions. In semi-supervised settings, text-based pseudo-labeling or cap-
tion alignment could serve as auxiliary supervision when dense masks are unavail-
able. Going further, models could perform image-to-text tasks (e.g., auto-reporting

from segmentations), text-to-image tasks (e.g., generating segmentation masks from
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descriptions), and image-to-image tasks (e.g., translating between modalities or time-
points for progression analysis). Multitask systems may jointly address segmentation,
diagnosis, and prognosis in a unified architecture, learning from shared anatomical and

pathological representations.

Technically, this could involve contrastive alignment between image and text em-
beddings, transformer-based fusion modules for multimodal attention, and cross-task
consistency constraints that encourage predictions to be semantically coherent across
outputs. Such systems could provide end-to-end clinical pipelines: segment lesions,
describe them in human-interpretable terms, and suggest possible diagnostic or prog-

nostic outcomes.

* Foundation models and domain-adaptive pretraining: The rise of foundation mod-
els trained on massive generic or medical datasets has shown significant promise in
vision and language tasks. Future work could investigate the transferability and cus-
tomization of such models (e.g., SAM, ViT-G, BioGPT, or MedCLIP) to medical im-
age segmentation. Techniques such as prompt tuning, lightweight adapters, or self-
supervised domain-specific pretraining (e.g., masked image modeling on CT/MRI vol-
umes) can help bridge the domain gap while preserving generalizable knowledge. Ad-
ditionally, foundation models that are inherently multimodal (e.g., image-text align-
ment) could be repurposed for clinical applications such as zero-shot segmentation,
task-specific generation, or interactive diagnosis. These models would enable scal-
able deployment across institutions with diverse data without the need for extensive

task-specific supervision.

* Robust semi-supervised learning under domain shifts: Although semi-supervised
frameworks in this thesis have demonstrated success under fixed datasets, medical
imaging in practice is highly heterogeneous. Differences in scanners, institutions, pa-
tient demographics, and acquisition protocols can lead to substantial domain shifts.
Future research should address generalization and adaptation across such distributions
through domain-invariant feature learning, test-time adaptation, or continual learn-
ing strategies. Methods that incorporate uncertainty modeling and sample weight-
ing may further enhance robustness. Moreover, combining semi-supervised segmen-
tation with federated learning or privacy-preserving protocols could enable multi-
institutional training without data sharing, thereby improving fairness and data diver-

sity in real-world deployment.

* Trustworthy, Explainable, and Human-Centered AI Systems: For clinical adop-
tion, it is not sufficient for segmentation models to be accurate—they must also be in-
terpretable, transparent, and aligned with human reasoning. Building upon the certainty-

guided and spatially-informed designs in this thesis, future systems can integrate ex-
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plainability modules such as attention visualization, counterfactual prediction, or gradient-
based attribution. Human-in-the-loop frameworks could allow clinicians to interac-
tively correct or verify segmentation results, improving trust and performance simul-
taneously. Additionally, developing rigorous evaluation protocols—including outlier
detection, failure mode analysis, and bias assessment—will be essential for transition-

ing from research prototypes to clinically certified tools.

* Unsupervised learning in label-free settings: Despite advances in semi-supervised
learning, current segmentation systems still require at least a small portion of anno-
tated data or rely on pseudo-labels derived from prior models. This dependency fun-
damentally limits their scalability in real-world scenarios where annotations are ex-
tremely scarce, such as for rare diseases, low-resource institutions, or emerging imag-
ing modalities. A promising frontier is thus the development of entirely unsupervised
segmentation frameworks that do not rely on ground-truth labels at any point during

training.

Unsupervised methods may leverage a variety of self-supervised signals, such as im-
age reconstruction, transformation prediction, or contrastive instance discrimination.
For example, an encoder-decoder network could be trained to inpaint masked image
regions or reorder shuffled patches, forcing the model to learn meaningful spatial struc-
tures. Clustering-based approaches (e.g., DeepCluster or SWAV) can also group im-
age patches into semantically coherent regions without labels, which can be refined
over iterations. Moreover, incorporating anatomical priors — such as shape regu-
larity, bilateral symmetry, or topology constraints — can guide the learning of organ-
specific boundaries even in the absence of supervision. Probabilistic generative models
(e.g., VAEs or diffusion-based shape models) may also serve as regularizers to ensure

anatomical plausibility of segmentations.

From a clinical perspective, fully unsupervised segmentation could enable label-free
workflows for preliminary analysis, anomaly detection, or bootstrapped dataset cre-
ation. In disease detection scenarios, deviations from normal unsupervised segmen-
tations could flag abnormal scans for downstream review. Such systems would be
particularly valuable in under-annotated domains like rare tumors or pediatric imag-
ing. However, challenges remain in evaluating and validating such models: without
ground truth, proxy metrics, visual plausibility, or downstream task performance must
be used. Furthermore, interpretability and stability under noise or domain shifts must
be addressed to ensure safe deployment. Nonetheless, unsupervised segmentation rep-
resents a critical step toward autonomous, self-evolving medical image understanding

systems.

* Modeling anatomical heterogeneity: Another major challenge in medical image
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segmentation lies in the vast anatomical variability across patients, especially when
dealing with rare diseases, developmental abnormalities, or post-surgical alterations.
Most segmentation frameworks are trained on datasets dominated by typical anatom-
ical structures, leading to poor performance on rare or atypical presentations. This
is particularly problematic in settings like congenital heart disease, where anatomical

topology can vary widely and substantially deviate from standard templates.

To address this, future segmentation models must incorporate mechanisms for under-
standing and adapting to anatomical heterogeneity. One approach is to embed anatom-
ical shape priors into the model, using statistical shape models or learned morphologi-
cal encoders that define a distribution over plausible organ structures. These priors can
help detect when an observed anatomy falls outside the expected distribution, trigger-
ing uncertainty estimates or anomaly flags. Alternatively, attention-based mechanisms
can help focus on locally informative regions that may differ structurally from popu-
lation norms. Recent advances in graph-based representations may also help encode

anatomical relationships, enabling better reasoning about topological variations.

Another promising direction is to design segmentation models with built-in anomaly
detection capabilities. These models would not only segment known structures but also
detect when an input scan exhibits unfamiliar or pathological anatomy. This could be
achieved through uncertainty quantification, out-of-distribution detection, or explicit
auxiliary objectives that reward shape-aware learning. Moreover, data augmentation
strategies based on synthetic deformation, rare-case sampling, or generative anatomi-

cal variations could help models become more robust to unseen anatomies.

Clinically, this direction is essential for ensuring fairness and reliability in precision
medicine. Patients with uncommon anatomical configurations — often the most vul-
nerable — should not be excluded from the benefits of segmentation-based automa-
tion. Modeling heterogeneity explicitly will also enhance applications in surgery plan-
ning, intervention simulation, and personalized treatment adaptation, where anatomi-

cal variation is often the norm rather than the exception.

* Generalization-aware evaluation: While most segmentation models report perfor-
mance gains on standard datasets, they are often trained and tested under homogeneous
conditions. In real-world deployments, however, medical data varies significantly
across institutions, imaging devices, acquisition protocols, and patient demograph-
ics. Without rigorous evaluation under such conditions, apparent model improvements
may not translate into actual clinical utility. Thus, there is a pressing need to establish
robust evaluation protocols and benchmarking practices that assess model generaliza-

tion and safety in diverse clinical settings.

Future evaluation frameworks should emphasize cross-institutional validation, where
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models trained on one dataset are tested on data from independent hospitals with differ-
ent imaging environments. This would reveal overfitting to site-specific characteristics
and highlight models that generalize well. In addition to conventional metrics like
Dice score or Hausdorff distance, uncertainty-aware and clinically relevant metrics —
such as boundary plausibility, anatomical correctness, or post-processing robustness
— should be considered. Moreover, evaluation protocols should include systematic
stress testing through noise injection, missing slices, or rare cases to understand fail-

ure modes.

Another promising area is the development of federated evaluation systems, where in-
stitutions can contribute data for testing without sharing patient images. This would
allow benchmarking at scale while preserving privacy. Additionally, interpretability
and explainability of failures should be part of evaluation: when a model fails, can it
provide useful feedback or confidence estimates? Can it flag likely failure cases for
human review? Developing such robust evaluation frameworks is critical for regula-
tory approval, clinical certification, and practitioner trust. Without them, segmentation
models risk becoming brittle academic tools rather than dependable clinical assets. By
raising the bar on generalization and external validation, the field can move toward

real-world deployment with confidence and accountability.

* Longitudinal and temporal segmentation: Medical imaging is increasingly being
used to monitor patients over time — whether for tracking tumor progression, assess-
ing therapy response, or evaluating degenerative diseases. However, most segmen-
tation models treat each scan as an independent sample, ignoring the rich temporal
information embedded in longitudinal imaging sequences. This limits their ability to
model disease trajectories, identify subtle progression patterns, or align spatial changes
with clinical outcomes. Future segmentation research must therefore embrace tempo-
ral modeling and develop methods capable of capturing anatomy in 4D — across space

and time.

A key step is to design segmentation frameworks that explicitly account for temporal
consistency. This could be achieved through recurrent neural networks (e.g., Con-
vLSTM), temporal attention modules, or 3D+time convolutions that process series of
scans simultaneously. For example, a model may learn to segment a tumor at multi-
ple time points and enforce that the segmentation changes smoothly unless pathology
dictates otherwise. Such temporal regularization not only improves accuracy but also

reduces noise and misalignment across visits.

Another promising approach is to model temporal change explicitly, using differential
representations or contrastive change detection. For instance, the model may learn

to predict the difference between two segmentations — capturing growth, shrinkage,
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or deformation — which can serve as input for prognosis or response assessment.
Temporal embeddings can also be used to project a patient’s trajectory in latent space,

enabling early prediction of adverse outcomes.

Clinically, longitudinal segmentation unlocks a new class of applications: disease
monitoring dashboards, dynamic prognosis modeling, or even automatic treatment
recommendation based on historical trends. In radiotherapy or surgery planning, un-
derstanding how a structure has evolved over time is essential for risk assessment and
decision-making. However, challenges include variable scan intervals, missing time
points, and inconsistent image quality. Handling these requires robust temporal align-

ment, interpolation strategies, and probabilistic modeling of progression uncertainty.

In summary, the future of medical image segmentation is poised to advance beyond narrow,
task-specific pipelines toward unified, robust, and context-aware systems. Future frame-
works will integrate multimodal clinical data, adopt transferable foundation models, adapt
to distributional variability, and provide transparent, interpretable outputs. Moreover, seg-
mentation models must evolve to function in fully label-free environments, accommodate
rare and heterogeneous anatomies, generalize across institutions and demographics, and in-
corporate temporal reasoning for longitudinal monitoring. These advances are essential not
only for technical performance but also for ensuring clinical relevance, fairness, and trust.
By embracing these directions, next-generation Al systems can support comprehensive, per-

sonalized, and scalable medical decision-making.
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