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Abstract

We propose a conjecture for the distribution of the ‘good part’ of the ray class group
ClK(m) of a number field K, for K running over a natural family of Galois extensions
of a fixed base number field F and fixed modulus m given by an integral ideal of OF . It
can be seen as a generalisation of earlier conjectures by Pagano–Sofos for the family of
imaginary quadratic number fields and by Bartel–Pagano for the family of real quadratic
number fields. Our conjecture is phrased in terms of the Arakelov ray class sequence of
a number field introduced by Bartel–Pagano and postulates that the ‘good part’ of the
latter behaves randomly in the sense of Cohen–Lenstra. To be able to state it, we develop
a commensurability theory for automorphism groups of chain complexes, extending the
commensurability theory of Bartel–Lenstra for automorphism groups of modules.

We show that our conjecture implies the Cohen–Lenstra–Martinet heuristics as refor-
mulated by Bartel–Lenstra and predicts equidistribution of the reduction map O×

K →
(OK/m)×. We further obtain from our conjecture a general formula for the average
ℓ-torsion, ℓ a good prime, of ClK(m) in families of abelian extensions. We explicitly
calculate the predicted average ℓ-torsion of ray class groups of cyclic cubic fields with
fixed rational modulus for ℓ ̸= 2, 3.
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1 Introduction

In number theory, the investigation of statistical questions has become an increasingly
important research topic, stretching over many subdisciplines and dealing with objects
of various kinds. Now known as arithmetic statistics, the modern origin of this area
lies in H. Cohen and H. W. Lenstra’s seminal paper [CL84], in which they took a new
perspective on the previously poorly understood ideal class groups of number fields by
studying them through their distribution in natural families of number fields. Their
approach and the conjectures they made, known as the Cohen–Lenstra heuristics, laid
the groundwork for plenty of subsequent research in number theory and beyond.

The present work is closely related to those roots of arithmetic statistics and is concerned
with the distribution of ray class groups, which are a natural generalisation of the ideal
class group and play an important role in global class field theory. First conjectures
about the distribution of ray class groups of imaginary quadratic number fields and real
quadratic number fields have been made by Pagano–Sofos [PS17] and Bartel–Pagano
[BP25], respectively. In this thesis, we seek to generalise their work to the ‘good part’
of ray class groups in families of arbitrary Galois extensions of number fields. Building
on the existing work for both class groups and ray class groups, we develop all theory
necessary in order to make a natural conjecture about the distribution of ray class
groups with fixed modulus. To further support our conjecture, we then derive several
consequences of it, some of which rely on results that may be of independent interest.

1.1 Background

We discuss the context of this thesis in some more detail.

1.1.1 Arithmetic Statistics and the Distribution of Number-Theoretic Objects

The key philosophy of arithmetic statistics is that the statistical behaviour of mathe-
matical objects mirrors their structural properties, the reason being that any structure
will favour certain outcomes and even rule out others. In order to better understand the
structure and nature of the objects one is interested in, the aim is thus to prove results
on their statistics. This is also an instance of the common approach in mathematics to
study objects of interest all at once, compared to individually. The nature of the area
entails that statements in arithmetic statistics generally contain a lot of information
and are not easy to prove, and making a good conjecture is an important part of the
research.

A lot of the time, as is the case also for us with ray class groups, one is interested in
the distribution of number-theoretic objects, since it encodes a great deal of information
about them. What this means explicitly is that given a family of objects of interest Xi,
i ∈ I, belonging to some set X – to be thought of as the set of ‘outcomes’ and assumed
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to be countable here – one wants to know how often every Y ∈ X occurs among the
Xi, i.e. one wants to know what the probability is that for a randomly drawn Xi we
have Xi = Y . If I is finite, it is clear what that probability should mean. However, if
I is infinite, to make sense of that probability requires a height function h : I → R≥0

with the property that |{ i ∈ I |h(i) ≤ n }| < ∞ for all n ∈ Z>0. Using h to induce an
ordering on I, the probability that a random Xi equals Y can then be expressed as

Ph(Xi = Y ) = lim
n→∞

|{ i ∈ I |h(i) ≤ n,Xi = Y }|
|{ i ∈ I |h(i) ≤ n }|

.

Note that this probability may depend on h and that the limit may not exist. Studying
the distribution of the Xi (with respect to h) means to study Ph. Obtaining meaningful
number-theoretic statements requires sensible choices of family I, outcomes X , height
function h and possibly even objects Xi.

In practice, determining the distribution of objects Xi as above requires deep knowledge
about them. A common approach when investigating that distribution is to compare
it with the distribution of a random object of the same kind, provided one can make
sense of the latter. The idea behind this is that if the Xi behave like a random object
of a certain type T , this means that all the structure the Xi have is that of an object
of type T , since additional structure would cause them to behave differently. In that
case, the structure of the objects Xi can be regarded as fully understood! On the other
hand, if the Xi do not behave like a random object of type T , this indicates that they
carry additional structure, which had not yet been taken into account. A strategy to
understand the Xi from a macroscopic view is thus to ‘extract’ all their structure until
one can prove that they behave like a random object of exactly that structure.

Requisite for the above strategy is to know what the distribution of a random object looks
like. Often, the objects Xi will be certain algebraic structures determined up to some
notion of isomorphism and the set of outcomes X will be a full set of representatives for
the set of isomorphism classes of these structures. In that case, there is a well-established
principle for the distribution of random such objects, pioneered by Cohen and Lenstra:

Principle 1.1 (Cohen–Lenstra Principle). Suppose that objects of type T admit a notion
of isomorphism. The probability that a randomly drawn object of type T is isomorphic
to a given object Y of type T is proportional to 1/ |AutY |.

The factor 1/ |AutY | is, as Cohen and Lenstra write, ‘a very natural and common
weighting factor’, and the principle conforms with several natural ways of generating
random objects, for example when generating a random group of order n by writing
down a random n×n multiplication table [CL84, page 54] or when generating a random
finite abelian p-group as the cokernel of a random (with respect to Haar measure) full
rank square matrix over Zp [FW89].
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1.1.2 Previous Work on the Distribution of Ideal Class Groups

Before contemplating the distribution of ray class groups, it is imperative to first under-
stand the situation for the ideal class group ClK of a number field K. This finite abelian
group is a central object in number theory, but – despite its prominent position – for a
long time there had not been known much about its behaviour. Given K, there existed
algorithms to compute ClK , but general structural results were scarce and there was
little hope for advancement. Motivated by this lack of knowledge and by newly available
computational data, Cohen and Lenstra [CL84] began to study the distribution of class
groups in families of number fields, in line with the ideas described above.

In doing so, working in the setting of a Galois extensionK/F of number fields with Galois
group G, the class group ClK is subject to the following considerations. First of all, it
naturally is a G-module and therefore should be understood as such rather than merely
as an abelian group. Secondly, it is known that genus theory restricts the structure of the
p-Sylow subgroup ClK [p∞] for primes p dividing |K : F | = |G|. For this reason, Cohen
and Lenstra consider only the S-part ClK [S∞] =

⊕
p∈S ClK [p∞] of the class group for

a set S of primes not dividing |K : F |. Finally, for such S, by [Neu99, Proposition
III.1.6 (ii) and (iv)], extension of ideals gives an isomorphism ClF [S

∞]
∼−→ ClK [S∞]G =

(
∑

g∈G g) ClK [S∞], fixing part of ClK [S∞]. Taking the above information into account,
Cohen and Lenstra make conjectures for the distribution of ClK [S∞] for imaginary
quadratic number fields and totally real abelian extensions of F = Q, ordered by absolute
discriminant.

We describe in some more detail the conjectures for quadratic number fields. Here,
the Galois group acts on ClK by −1, so neither the Galois module structure nor the
Galois fixed points impose any structural restrictions on the group structure on the odd
part of the class group. Hence, the latter is investigated just as an abelian group. The
existing data indicated a close relation of the behaviour of the odd part of ClK to that
of a random finite abelian group of odd order in the sense of Principle 1.1. Cohen and
Lenstra turned this observation into a conjecture as follows. Let S be a set of primes.
Call a group an S-group if the order of every element is a product of primes in S. For
finite S, u ∈ Z≥0 and HS a full set of representatives for the isomorphism classes of finite
abelian S-groups, they prove that cS,u :=

∑
H∈HS

1
|H|u·|AutH| <∞. Their conjecture for

imaginary quadratic fields then is:

Conjecture 1.2 ([CL84, Fundamental Assumptions 8.1 (1)]). Let S be a finite set of
odd primes. For B ∈ R>0 write K−

≤B for the set of imaginary quadratic number fields
with absolute value of their discriminant bounded by B. Let f : HS → C be ‘reasonable’.
Then

lim
B→∞

∑
K∈K−

≤B
f(ClK [S∞])∣∣∣K−
≤B

∣∣∣ = lim
B→∞

∑
H∈HS ,|H|≤B

f(H) · 1

cS,0
· 1

|AutH|
.
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They do not make precise what ‘reasonable’ should mean. In this form, the conjecture
is more general than just a statement on the distribution of ClK [S∞]; one obtains the
latter by taking f to be the indicator function of H ∈ HS , in which case the conjecture
reads

lim
B→∞

∣∣∣{K ∈ K−
≤B

∣∣∣ClK [S∞] ∼= H
}∣∣∣∣∣∣K−

≤B

∣∣∣ =
1

cS,0
· 1

|AutH|
.

In terms of the ideas of Section 1.1.1, Conjecture 1.2 thus postulates that the only
structure on ClK [S∞] for a generic imaginary quadratic number field K is the abelian
group structure. For real quadratic number fields, the conjecture is slightly different.

Conjecture 1.3 ([CL84, Fundamental Assumptions 8.1 (2)]). Let S be a finite set of
odd primes. For B ∈ R>0 write K+

≤B for the set of real quadratic number fields with
absolute value of their discriminant bounded by B. Let f : HS → C be ‘reasonable’.
Then

lim
B→∞

∑
K∈K+

≤B
f(ClK [S∞])∣∣∣K+
≤B

∣∣∣ = lim
B→∞

∑
H∈HS ,|H|≤B

f(H) · 1

cS,1
· 1

|H| · |AutH|
.

The above indicates that the odd part of the class group of real quadratic fields carries
some sort of additional structure to the abelian group structure. Cohen and Lenstra
attribute the different behaviour to the difference in the rank of O×

K . They also make
slightly more general versions of the above conjectures allowing infinite S.

The Cohen–Lenstra heuristics have been generalised by Cohen and Martinet [CM90] to
arbitrary Galois extensions of number fields, again ordered by absolute discriminant.
Cohen–Martinet also consider only the S-part ClK [S∞] of the class group for a possibly
infinite set S of so-called ‘good primes’. Here, the general conception is that there is a
notion of such ‘good primes’ for which the ‘good part’ ClK [S∞] behaves well in the sense
that it has minimal structural restrictions and distribution given by a law of the kind as
proposed by Cohen and Lenstra. The notion of ‘good primes’ that Cohen and Martinet
use is slightly more general than the one used by Cohen and Lenstra. Analogous as
before, their conjectured distribution for the ‘good part’ of the class group weighs an
outcome Y by a factor of the form 1/(|Y |u · |AutY |) with u determined by the rank
of O×

K . Cohen and Martinet moreover outline how to obtain statements on non-Galois
extensions from their conjecture. See also [WW21], which further discusses their work.

Over time, certain flaws in the Cohen–Lenstra–Martinet heuristics have been found.
Malle [Mal08] indicated that the conjecture for the distribution of ClK [p∞] forK running
over a family of Galois extensions of F does not seem to hold when the base field F
contains the p-th roots of unity. Later on, Bartel and Lenstra [BL20] gave two explicit
counterexamples to the heuristics, revealing problems with ordering number fields by
discriminant and with allowing infinite S. They also proposed a corrected version of the
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heuristics, which we are now going to explain in some more detail, as it is one of the
starting points for our conjecture on ray class groups.

Besides dealing with the issues mentioned above, Bartel and Lenstra also achieved to
reformulate the Cohen–Lenstra–Martinet heuristics in a way which captures the influence
of the unit group on the class group that causes the non-random behaviour of the latter.
They do so by considering the Arakelov class group Pic0K of a number field K in place
of the class group ClK . The Arakelov class group is a compact real abelian Lie group,
whose definition ‘adds’ the infinite places to the class group, and which naturally comes
with a short exact sequence

0 O×
K ⊗Z R/Z Pic0K ClK 0. (1.4)

Bartel and Lenstra show that the Cohen–Lenstra–Martinet heuristics are equivalent to
the conjecture that the ‘good part’ of the Arakelov class group behaves like a random
object in the sense of Principle 1.1. In the philosophy of Section 1.1.1, Pic0K thus
incorporates the structure on the ‘good part’ of the class group related to the unit group
– as is also suggested by the short exact sequence (1.4) – and there is no additional
structure. This also conforms with the viewpoint that in order to get a complete picture
in questions regarding number fields, it is necessary to take into account not only the
finite but also the infinite places.

We now discuss some of the aspects and details of Bartel and Lenstra’s conjecture that
we will refer back to later. They work in the following setup.

Setup 1.5. Let F be a number field and fix an algebraic closure F of F . Let G be a
finite group. Let A be the quotient of QG by a two-sided ideal containing

∑
g∈G g and

let V be a finitely generated A-module. Let S be a finite set of primes that are good for
A (see Definition 7.1) and let R := im(Z(S)G→ A), where Z(S) denotes the localisation
of Z at Z \

⋃
p∈S pZ. LetMV be a full set of representatives for the isomorphism classes

of finitely generated R-modules M with A⊗RM ∼= V .

Let KBL be the family of pairs (K, ι) where K ⊆ F is a Galois extension of F not
containing a primitive p-th root of unity for any p ∈ S and ι is an isomorphism G

∼−→
Gal(K/F ) that induces an isomorphism A ⊗ZG O×

K
∼= V of A-modules. Assume that

KBL is infinite. Let C : KBL → R≥0 be the function which for (K, ι) is given by the
absolute norm of the product of the prime ideals of OF that ramify in K. For B ∈ R>0

denote by KBL
C≤B the set of (K, ι) ∈ KBL with C(K, ι) ≤ B.

In the definition of the family KBL, the fields are not allowed to contain primitive p-th
roots of unity for primes p ∈ S in order to avoid the issues with roots of unity discussed
above. The assumption that KBL be infinite is there to be able to reasonably apply
Principle 1.1. Ordering the fields by C is believed to be better behaved than ordering
by the discriminant, cf. [BL20, page 929].
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Instead of working with the compact group Pic0K , Bartel and Lenstra consider its Pontry-
agin dual (Pic0K)∨. If K/F is a Galois extension with Galois group G, then (Pic0K)∨

naturally is a G-module. The significance of the ring R is to remove the structural
restrictions on (Pic0K)∨ given by genus theory and Galois fixed points by considering
R ⊗ZG (Pic0K)∨ for (K, ι) ∈ KBL. The set S is assumed to be finite to circumvent the
problems with infinite S discussed earlier. The requirement that

∑
g∈G g = 0 ∈ A ensures

that tensoring with R removes the Galois fixed points; in defining A, one may quotient
out more components of QG, which allows to remove the corresponding components of
(Pic0K)∨ if wanted.

We remark that R is flat over ZG and that the dual of (1.4) tensored with R splits,
so that the resulting sequence adds no additional piece of structure to R ⊗ZG (Pic0K)∨.
Moreover, if (K, ι) ∈ KBL, then R⊗ZG(Pic

0
K)∨ is a finitely generated R-module satisfying

A⊗R R ⊗ZG (Pic0K)∨ ∼= V , which means that one can uniquely identify R ⊗ZG (Pic0K)∨

with an element of MV . Thus, the desired conjecture to make is that the ‘good part’
R⊗ZG (Pic0K)∨ of Pic0K behaves like a random element ofMV . When trying to formalise
this in terms of Principle 1.1, one encounters the major issue that the automorphism
group of R ⊗ZG (Pic0K)∨ is in general not finite. Bartel and Lenstra manage to resolve
this problem by developing a theory of commensurability of automorphism groups in
[BL17], which allows to make sense of the index of automorphism groups, even when
those groups are infinite. Their crucial result is [BL17, Theorem 1.2], which in the special
case of the setting above gives the following.

Theorem 1.6. Use Setup 1.5 and let

S := {L finitely generated R-module |A⊗R L ∼= V } .

There is a unique function ia : S × S → Q>0 such that:

(i) If L,L′,M,M ′ ∈ S and L ∼= L′ and M ∼=M ′, then ia(L,M) = ia(L′,M ′).

(ii) If L,M,N ∈ S, then ia(L,M) · ia(M,N) = ia(L,N).

(iii) If L,M ∈ S and there is a monomorphism L ↪→M with finite cokernel, then with
H := {µ ∈ AutM |µL = L } and ρ : H → AutL, µ 7→ µ|L one has

ia(L,M) =
|AutM : H| · |ker ρ|
|AutL : im ρ|

.

Here, ia stands for ‘index of automorphism groups’. Accordingly, the value ia(L,M)
should be thought of as |AutM : AutL|, which it indeed equals if AutL and AutM
are finite. With ia(L,M) for fixed M acting as a replacement of 1/ |AutL|, Bartel and
Lenstra then show that

∑
N∈MV

ia(N,M) <∞ and construct the probability distribu-
tion

PBL :MV → [0, 1], L 7→ 1∑
N∈MV

ia(N,M)
· ia(L,M)

12



that can be thought of as weighing each L ∈MV by a weight proportional to the inverse
of the size of its automorphism group. Note that PBL is independent of M by part (ii)
of the above theorem. They propose the following conjecture, a corrected version of the
Cohen–Lenstra–Martinet heuristics.

Conjecture 1.7 ([BL20, Conjecture 1.5]). Use Setup 1.5. Let f :MV → C be a ‘reas-
onable’ function. Then the limit

Av(f) := lim
B→∞

∑
(K,ι)∈KBL

C≤B
f(R⊗ZG (Pic0K)∨)∣∣∣KBL
C≤B

∣∣∣
exists, the sum

E(f) :=
∑

M∈MV

f(M) · PBL(M)

converges absolutely, and both expressions are equal.

Bartel and Lenstra also discuss which functions may be considered reasonable.

In a similar direction, the paper [WW21] also reformulates the Cohen–Lenstra–Martinet
heuristics in a way that aligns with Principle 1.1, but using a different object than
the Arakelov ray class group. Going further, Bartel–Johnston–Lenstra [BJL24] make
conjectures for infinite S, and Sawin–Wood [SW23] make conjectures in the case when
p-th roots of unity are present in the base field for p ∈ S.

We remark that for the most part, the conjectures above rely on computational data and
the ideas from Section 1.1.1. To this date, the only proven cases of the Cohen–Lenstra–
Martinet heuristics are those of the average 3-torsion (i.e. for the function f(M) =
|M [3]|) of class groups of quadratic extensions of number fields [DH71, DW88] and of
the average 3-torsion of class groups of certain 2-extensions [LOWW25].

The conjectures discussed above all deal with the ‘good part’ of the class group, the
analogue of which we will be concerned with in our investigations of ray class groups.
We remark that there has also been research on the ‘bad part’ of ClK . In fact, here,
more statements have been proved. See [Ger87], [FK07], [Smi26a], [Smi26b].

1.1.3 Previous Work on the Distribution of Ray Class Groups

For a number field K and a modulus m in K, that is, a pair m = (m0,m∞) where m0 is
a nonzero integral ideal of OK and m∞ is a set of real places of K, we denote by ClK(m)
the ray class group of K with modulus m. It is a finite abelian group that generalises the
ideal class group in the sense that ClK(OK ,∅) = ClK . The ray class group naturally
comes with a short exact sequence

SfinK (m) : 0 (OK/m0)××{±1}m∞

ρ(O×
K)

ClK(m) ClK 0

13



where ρ : O×
K → (OK/m0)

××{±1}m∞ sends u to the tuple consisting of u and the signs
of u under each of the real embeddings in m∞. To be able to ask statistical questions
about ClK(m) for K running over a family of extensions of a number field F , we will
always consider a fixed modulus of the form m = (mF ,∅), where mF is a nonzero integral
ideal of OF , which for an extension K/F we regard as an ideal of OK by extension of
ideals.

The story of the investigations of the distribution of ray class groups begins with Varma’s
paper [Var22], in which they prove an explicit formula for the average 3-torsion of ray
class groups of imaginary and real quadratic fields with fixed rational modulus. The
result shows that ray class groups with nontrivial modulus behave fundamentally dif-
ferently to class groups, and thus set the task to find a model for the distribution of
ray class groups that both explains this behaviour and naturally extends the Cohen–
Lenstra–Martinet heuristics.

The first work in this direction is that of Pagano and Sofos [PS17], who make a conjecture
for the distribution of ray class groups of imaginary quadratic number fields ordered by
discriminant. Their key idea is to not consider the ray class group on its own, but rather
the whole exact sequence SfinK (m) naturally associated with it. This again is in line with
the ideas from Section 1.1.1 that all information on the objects of interest has to be taken
into account to determine their distribution, the sequence SfinK (m) imposing restrictions
on the structure of ClK(m). They also make a conjecture for the distribution of the
‘bad’ part at p = 2 and prove a result on the distribution of 4-ranks of ray class groups
of imaginary quadratic fields.

Taking up the work described above, Bartel and Pagano [BP25] examined the good
part of SfinK (m) for quadratic fields, rephrasing the conjecture of Pagano and Sofos for
imaginary quadratic K in terms of Principle 1.1, and proposing a conjecture for real
quadraticK. Crucially, they introduce the Arakelov ray class group Pic0K(m) of a number
field K associated to a modulus m in K, a natural generalisation of Pic0K that is related
to ClK(m) as Pic0K is to ClK . It is again a compact real abelian Lie group and has a
natural short exact sequence

SAra
K (m) : 0 (OK/m0)××{±1}m∞

ρ(µ(K)) Pic0K(m) Pic0K 0

attached to it. Combining the ideas of [BL20] and [PS17], Bartel and Pagano conjecture
that for K running over either imaginary or real quadratic fields, ordered by conductor,
and modulus given by a fixed rational integer, the S-part SAra

K (m)[S∞] is distributed like a
random suitable short exact sequence. Here, an automorphism of a short exact sequence
means an automorphism in the category of chain complexes. Besides showing that their
conjecture is consistent with the Cohen–Lenstra–Martinet heuristics for quadratic fields,
Bartel and Pagano derive several other implications of which we briefly describe two.
Once again extending the work of Pagano–Sofos, they deduce from their postulate a
formula for the average p-torsion of ClK(m), p odd, also for real quadratic fields, which
recovers Varma’s result for p = 3. Moreover, they show that the sequence SAra

K (m) ‘knows
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about’ the reduction map ρ : O×
K → (OK/m0)

× and obtain from this an equidistribution
prediction for the image of the fundamental unit of K under ρ.

1.2 Main Results

The purpose of this thesis is to extend the work on the distribution of ray class groups
outlined above. We propose a conjecture for the distribution of the good part of ClK(m)
for K running over a natural family of Galois extensions of a fixed base number field F
and fixed modulus m given by an integral ideal of OF . The conjecture rests on the ideas
described in the previous sections and forms a natural generalisation of the existing
conjectures on the distribution of ideal class groups and ray class groups. The core
principle is to continue the direction of [BP25] and fuse the extensions approach from
[PS17] with the Arakelov approach from [BL20]. In further support of our heuristics,
we deduce several consequences of it, amongst them an equidistribution statement for
the good part of reduction map O×

K → (OK/m)× and a general formula for the average
ℓ-torsion of ClK(m) for abelian extensions K/F and good primes ℓ.

1.2.1 The Main Conjecture

We work in a similar setting as Setup 1.5.

Setup 1.8. Fix a number field F , an algebraic closure F of F and an ideal mF ⊴ OF .
Let G be a finite group and let W be a finitely generated QG-module. Let A be the
quotient of QG by a two-sided ideal containing

∑
g∈G g and let S be a finite set of primes

that are good for A in the sense of [BL20] (see Definition 7.1). Let R := im(Z(S)G→ A)
and let V := A ⊗QG W . Let MV be a full set of representatives for the isomorphism
classes of finitely generated R-modules M with A⊗RM ∼= V .

We consider the family K of Galois extensions of F that is defined as the family KBL

from Setup 1.5, except with the condition A ⊗R O×
K
∼= V replaced by the more general

condition that Q⊗ZO×
K
∼=W as QG-modules. Assume that K is infinite. For (K, ι) ∈ K

use the notation m := (mF ,∅). For nonabelian G let C : K → R≥0 be the function that
maps (K, ι) to the absolute norm of the product of the prime ideals of OF that ramify in
K. For abelian G let C : K → R≥0 be any fair counting function as defined in [Woo10]
(see Definition 8.10). Then for B ∈ R>0 write KC≤B for the set of (K, ι) ∈ K with
C(K, ι) ≤ B.

In accordance with the philosophy from Section 1.1.1, our goal is to package all structure
of the good part of ClK(m) for (K, ι) ∈ K into one object and then conjecture that this
object behaves randomly in the sense of Principle 1.1. Borrowing from [BP25], we
postulate that the desired object is given by the good part of the Arakelov ray class
sequence SAra

K (m) with component of the trivial character removed. We ‘extract’ that
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part from SAra
K (m) as in [BL20]: Consider in a first step equivalently the Pontryagin dual

sequence SAra
K (m)∨. Then form the sequence R⊗ZG SAra

K (m)∨, which is given as

0 R⊗ZG (Pic0K)∨ R⊗ZG Pic0K(m)∨ R⊗ZG ((OK/mF )
×)∨ 0,

and which is again exact by flatness of R. To formalise our conjecture, we wish to find a
suitable space of outcomes for these sequences and then define a probability distribution
on that space that weighs each outcome proportional to the inverse of the size of its
automorphism group. For this, we make use of the fact that short exact sequences are
parametrised by Ext1. As before, we have that the left hand term R ⊗ZG (Pic0K)∨ is
isomorphic to a unique element ofMV . Following the previous works [PS17] and [BP25],
we next partition the family K into finitely many natural subfamilies such that the right
hand side of R⊗ZG SAra

K (m)∨ constant in each subfamily.

Setup 1.9. Use Setup 1.8. Further let T = (Tp)p|mF
be a collection of degree |G| etale

Fp-algebras Tp with an inclusion G ↪→ AutFp Tp such that G acts transitively on the set
of primitive idempotents of Tp. Assume that T is viable, i.e. that there is an extension
K/F with Galois group isomorphic to G in such a way that for all p | mF there is a G-
equivariant Fp-algebra isomorphism K⊗F Fp

∼= Tp. Define KT to be the set of (K, ι) ∈ K
with K ⊗F Fp

∼= Tp for all p | mF . For B ∈ R>0 write KTC≤B for the set of (K, ι) ∈ KT
with C(K, ι) ≤ B.

We will show that each Tp has a unique maximal OFp-order OTp and that for (K, ι) ∈ KT
there is a G-equivariant OF -algebra isomorphism OK/mF

∼= OT /mF , where OT :=∏
p|mF
OTp . Let UT := (OT /mF )

× and UT,R := R ⊗ZG (OT /mF )
×. We denote by

AutG-eq. alg.(U
∨
T,R) the set of automorphisms of U∨

T,R that are induced by a G-equivariant
OF -algebra automorphism of OT /mF .

Definition 1.10. Let N ∈MV .

(a) Let Θ,Θ′ ∈ Ext1R(U
∨
T,R, N). A triple (f1, f0, f−1) is an (AutG-eq. alg.(U

∨
T,R)×AutN)-

isomorphism from Θ to Θ′ if (f1, f0, f−1) is an isomorphism from Θ to Θ′ when
regarding them as chain complexes concentrated in degrees 1, 0 and −1, and if ad-
ditionally f−1 ∈ AutG-eq. alg.(U

∨
T,R). Write [Θ]G-eq. alg. for the (AutG-eq. alg.(U

∨
T,R)×

AutN)-isomorphism class of Θ and write AutG-eq. alg.(Θ) for the group of all
(AutG-eq. alg.(U

∨
T,R)×AutN)-automorphisms of Θ.

(b) Let E(U∨
T,R, N) be a full set of representatives for the (AutG-eq. alg.(U

∨
T,R)×AutN)-

isomorphism classes in Ext1R(U
∨
T,R, N). Put E(U∨

T,R,MV ) :=
⊔
N ′∈MV

E(U∨
T,R, N

′).

We will show that we naturally have R ⊗ZG ((OK/mF )
×)∨ ∼= (R ⊗ZG (OK/mF )

×)∨.
Thus for (K, ι) ∈ KT , via an isomorphism R ⊗ZG (Pic0K)∨ ∼= N for N ∈ MV and
a G-equivariant OF -algebra isomorphism OK/mF

∼= OT /mF , we may identify R ⊗ZG
SAra
K (m)∨ with a unique element [R⊗ZG SAra

K (m)∨] of E(U∨
T,R,MV ), independently of the
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choices of isomorphisms made. The space E(U∨
T,R,MV ) is our space of outcomes for the

sequences R⊗ZG SAra
K (m)∨ for (K, ι) ∈ KT .

When trying to define a probability distribution on E(U∨
T,R,MV ) that weighs each ele-

ment Θ by the inverse of the size of AutG-eq. alg.(Θ), one runs into the problem that the
latter group typically has infinite order. To resolve this issue, we follow the approach
of [BL20], and in a first step generalise the commensurability theory of automorph-
ism groups from [BL17] to chain complexes. The following statement is obtained as a
consequence of Theorem 5.42:

Theorem 1.11. For N ∈MV denote by T (N) the set of chain complexes of the form

· · · 0 0 N L U∨
T,R 0 0 · · ·

where N is in degree 1 and L is a finitely generated R-module, and which become iso-

morphic to 0 → V
id−→ V → 0 → 0 after applying A⊗R −. Define (AutG-eq. alg.(U

∨
T,R)×

AutN)-isomorphism of elements of T (N) as above. Let T :=
⋃
N∈MV

T (N). There is
a unique function iaG-eq. alg. : T × T → Q>0 such that:

(i) If Θ,∆ ∈ T (N) are (AutG-eq. alg.(U
∨
T,R) × AutN)-isomorphic and Θ′,∆′ ∈ T (M)

are (AutG-eq. alg.(U
∨
T,R)×AutM)-isomorphic, then it holds that iaG-eq. alg.(Θ,Θ

′) =
iaG-eq. alg.(∆,∆

′).

(ii) If Θ,Θ′,Θ′′ ∈ T , then iaG-eq. alg.(Θ,Θ
′) · iaG-eq. alg.(Θ

′,Θ′′) = iaG-eq. alg.(Θ,Θ
′′).

(iii) If Θ,Θ′ ∈ T and there is a monomorphism Θ ↪→ Θ′ with finite cokernel, then with

H :=
{
σ ∈ AutG-eq. alg.(Θ

′)
∣∣σΘ = Θ, ∃ τ ∈ AutG-eq. alg.(Θ) : σ

∣∣
Θ
= τ

}
and ρ : H → AutG-eq. alg.(Θ), σ 7→ σ|Θ one has

iaG-eq. alg.(Θ,Θ
′) =

|AutG-eq. alg.(Θ
′) : H| · |ker ρ|

|AutG-eq. alg.(Θ) : im ρ|
.

In fact, in Theorem 5.42 we will prove a much more general statement on the com-
mensurability of subgroups of automorphism groups of certain chain complexes. The
theorem above provides us with a function

iaG-eq. alg. : E(U∨
T,R,MV )× E(U∨

T,R,MV )→ Q>0

which analogously as the function ia from Theorem 1.6 should be thought of as out-
putting iaG-eq. alg.(Θ,Θ

′) = |AutG-eq. alg.(Θ
′) : AutG-eq. alg.(Θ)|. Using iaG-eq. alg., we con-

struct the desired probability distribution on E(U∨
T,R,MV ).
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Theorem 1.12 (Theorem 8.34). There is a unique discrete probability distribution PT
on E(U∨

T,R,MV ) with the property that for all Θ,Θ′ ∈ E(U∨
T,R,MV ) we have

PT (Θ)

PT (Θ′)
= iaG-eq. alg.(Θ,Θ

′).

This distribution also has the following properties:

(i) If Θ,Θ′ ∈ E(U∨
T,R,MV ) and Φ is a short exact sequence of finite R-modules with

Θ⊕ Φ ∼= Θ′, then

PT (Θ) =
∣∣AutG-eq. alg.(Θ

′) : AutG-eq. alg.(Θ)
∣∣ · PT (Θ′)

where the inclusion AutG-eq. alg.(Θ) ↪→ AutG-eq. alg.(Θ
′) is given by f 7→ f ⊕ idΦ.

(ii) If Θ ∈ E(U∨
T,R,MV ) is given by

0 N L U∨
T,R 0,

then we have

PT (Θ) = PBL(N) ·
|[Θ]G-eq. alg.|∣∣∣Ext1R(U∨

T,R, N)
∣∣∣ .

For f : E(U∨
T,R,MV )→ C define

E(f) :=
∑

Θ∈E(U∨
T,R,MV )

f(Θ) · PT (Θ)

if the sum converges absolutely. We propose the following conjecture for the distribution
of the good part of Arakelov ray class sequences.

Conjecture 1.13 (Conjecture 8.38). Use Setup 1.9. Let f : E(U∨
T,R,MV )→ C be ‘reas-

onable’. Then the limit

Av(f) := lim
B→∞

∑
(K,ι)∈KT

C≤B
f([R⊗ZG SAra

K (m)∨])∣∣∣KTC≤B

∣∣∣
exists and equals E(f).
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1.2.2 Implications of the Main Conjecture and Other Results

Apart from it being a natural prediction to be made, we will further reinforce Conjecture
1.13 by showing that it has many pleasing consequences for the statistical behaviour of
certain of those objects attached to (K, ι) ∈ KT , information on which is contained in
the sequence R⊗ZG SAra

K (m)∨.

Ideal class groups. As an immediate consequence of Theorem 1.12 we obtain that for the
trivial modulus, Conjecture 1.13 reduces to the Cohen–Lenstra–Martinet heuristics.

Corollary 1.14. Assume that Conjecture 1.13 holds. Then Conjecture 1.7 holds.

We also obtain a finer version of Conjecture 1.7, namely for (K, ι) running over the
family KT instead of K; see Corollary 9.3.

Equidistribution results. We obtain the following predictions of equidistribution of key
objects related to R ⊗ZG SAra

K (m)∨. To avoid much of the glut of technical language
needed for precise statements, we state them in a vague and more conceptual manner
and refer to the statements in brackets and the respective sections of Chapter 9 for the
omitted details.

Corollary 1.15. Use the notation from Section 1.2.1. Assume that Conjecture 1.13
holds. Then the following hold.

(i) (Corollary 9.7.) Let N ∈ MV and let KT (N) be the set of (K, ι) ∈ KT with
R⊗ZG (Pic0K)∨ ∼= N . As (K, ι) runs over KT (N), the sequence R⊗ZG SAra

K (m)∨ is
equidistributed in E(U∨

T,R, N).

(ii) (Corollary 9.23.) Let N ∈MV and let ω ∈ HomR(U
∨
T,R,HomZ(S)

(N/Ntors,Z(S))
∨).

Let KT (N,ω) ⊆ KT (N) be as in Definition 9.8. As (K, ι) runs over KT (N,ω), the
sequence R⊗ZG SfinK (m)∨ is equidistributed in its space of outcomes.

(iii) (Corollary 9.29.) For (K, ι) ∈ KT let ρK(m) : O×
K/µ(K) → (OK/mF )

×/ρ(µ(K))

be the reduction map. As (K, ι) runs over KT , the local reduction map idR⊗ρK(m)
is equidistributed in its space of outcomes.

(iv) (Proposition 9.30.) As (K, ι) runs over KT , the distribution of R⊗ZG (Pic0K)∨ and
the distribution of idR ⊗ ρK(m) are independent of each other.

Here, we use the term associated space of outcomes to mean the natural respective set
of outcomes from Chapter 9 with the property that for (K, ι) in the respective subfamily
of KT , the object in question can uniquely be identified with an element of the set of
outcomes. The above statements can be seen as generalisations of the statements (b)
to (e) of [BP25, Theorem 1.8]. They are generally obtained in an analogous manner
as in loc. cit. The hardest to derive from Conjecture 1.13 is statement (iii). It builds
on the remarkable statement from [BP25] mentioned above that the Arakelov ray class
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sequence SAra
K (m) ‘knows about’ the reduction map ρK(m). By generalising Bartel and

Pagano’s method, we show in Proposition 7.26 that the local reduction map idR⊗ρK(m)
can be obtained from R ⊗ZG SAra

K (m)∨ by means of a general construction on short
exact sequences. A key ingredient for this construction is an explicit description of
the Pontryagin dual of Z(S) regarded with the discrete topology. We provide such a
description in Theorem 4.34 for S being any nonempty subset of the union of {0} and
the set of rational primes. It makes explicit isomorphisms appearing in [CEW97] and
generalises the well-known isomorphisms Z∨ ∼= R/Z and Q∨ ∼= AQ/Q.

Average torsion of ray class groups. Analogous as in [PS17] and [BP25], Conjecture 1.13
leads to a prediction for the average torsion of ray class groups. In Corollary 9.43 we
first derive a general formula for certain average torsion of ClK(m) on KT and then as
an immediate consequence obtain the below result.

Corollary 1.16 (Corollary 9.44). Use Setup 1.8 with G abelian and S = {ℓ} where ℓ
is a prime with ℓ ∤ |ClF | · |G|. Denote the simple components of A by A1, . . . , Ac. For
i ∈ {1, . . . , c} denote by Ki the centre of Ai and by Vi the i-th isotypical component of the
A-module V . Assume that Conjecture 1.13 holds for all viable collections T = (Tp)p|mF

.
Then the limit

lim
B→∞

∑
(K,ι)∈KC≤B

|ClK(m)[ℓ]|
|KC≤B|

exists and equals

∑
T=(Tp)p|mF
viable /∼=

PrC(T ) ·
∣∣UT [ℓ]G∣∣ · c∏

i=1

∏
q∈Max(OKi

)

q|ℓ

(
|UT [ℓ]i[q∞]|
ℓf(q|ℓ)·dimKi

(Vi)
+ 1

)
,

where: UT [ℓ]i denotes the i-th isotypical component of the Z(ℓ)G-module UT [ℓ]; UT [ℓ]i[q
∞]

denotes the set of x ∈ UT [ℓ]i with annOKi
(x) = qr for some r ∈ Z≥0; for T = (Tp)p|mF

,

PrC(T ) := lim
B→∞

∣∣∣{ (K, ι) ∈ K̃
∣∣∣K ⊗F Fp

∼= Tp for all p | mF , C(K) ≤ B
}∣∣∣∣∣∣{ (K, ι) ∈ K̃

∣∣∣C(K) ≤ B
}∣∣∣ ,

with K̃ the set of pairs (K, ι) where K ⊆ F is a Galois extension of F and ι is an
isomorphism G

∼−→ Gal(K/F ).

We will show that the limit PrC(T ) always exists under the assumptions above and
provide means to calculate it in certain cases. As a special case, the above result recovers
the formulas from [PS17] and [BP25] for the average ℓ-torsion, ℓ odd, of ClK(m) for K
imaginary quadratic and K real quadratic, respectively. In particular, Conjecture 1.13
implies Varma’s [Var22] results on the average 3-torsion of ray class groups of quadratic
fields.
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Extending beyond the quadratic case, in Chapter 10 we explicitly calculate all the terms
of the formula in Corollary 1.16 for F = Q, G = Cq, q prime, and certain values of ℓ. In
particular, we obtain an explicit formula for the average ℓ-torsion of the ray class groups
of cyclic cubic fields for ℓ ̸= 2, 3. We state the case of ℓ ≡ 2 mod 3 below. A formula
for ℓ ≡ 1 mod 3 can also be obtained but is more complicated.

Corollary 1.17 (Corollary 10.25). Denote by KC3 the family of pairs (K, ι) where K ⊆
Q is a Galois extension of Q and ι is an isomorphism C3

∼−→ Gal(K/Q). Let mQ
be a positive integer. For a, b ∈ Z define P(a, b) := { p | mQ : p ≡ a mod b }. For
(K, ι) ∈ KC3 let C(K, ι) be the norm of the product of the primes of Q that ramify in K.
Let 2 ̸= ℓ be a prime with ℓ ≡ 2 mod 3. Assume that Conjecture 1.13 holds. Then the
limit

lim
B→∞

∑
(K,ι)∈KC3

C≤B

|ClK(mQ,∅)[ℓ]|∣∣∣KC3
C≤B

∣∣∣
exists and equalsℓ

|P(1,ℓ)|
(
1 + 1

ℓ2

(
ℓ2+2
3

)|P(2ℓ+1,3ℓ)|∏
p∈P(1,3ℓ)

p(ℓ2+2)+6
3p+6

)
, ℓ2 ∤ mQ,

ℓ|P(1,ℓ)|+1
(
1 +

(
ℓ2+2
3

)|P(2ℓ+1,3ℓ)|∏
p∈P(1,3ℓ)

p(ℓ2+2)+6
3p+6

)
, ℓ2 | mQ.

We remark that while Corollary 1.16 is in the same spirit as [PS17, Conjecture 2.15] and
[BP25, Proposition 4.15], to prove it, we introduce some new ideas. What remains the
same is the key ingredient we use, which is the map described below.

Let Z be a commutative ring, let R be a Z-algebra and let a ∈ Z. Let M and N be
R-modules and let Θ ∈ Ext1R(M,N). The snake lemma applied to the commutative
diagram with two rows, each given by Θ, and vertical maps given by multiplication by
a, yields a homomorphism δM,N

a (Θ): M [a] → N/aN . This construction gives rise to a
map

δM,N
a : Ext1R(M,N)→ HomR(M [a], N/aN), Θ 7→ δM,N

a (Θ).

In our proof of Corollary 1.16, we use the following new result on δM,N
a , which is a

consequence of Theorem 3.26.

Theorem 1.18. Let Z be a Dedekind domain with fraction field K, let A be a separable
K-algebra and let R be a maximal Z-order in A. Let a ∈ Z. Assume that A is commut-
ative, that a has no square prime divisors in Z and that the integral closure of Z in any
simple component of A is unramified over Z at all prime divisors of a in Z. Then δM,N

a

is surjective for all finitely generated R-modules M and N .

In fact, Theorem 3.26 provides a precise characterisation of the surjectivity of δM,N
a in

the same setting as in the theorem above but without the assumptions on A, a and Z,
and may be of independent interest.
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1.3 Organisation of the Material

Chapters 2 through 7 can all be seen as preparations for Conjecture 1.13 and are mostly
self-contained. The first three of these contain some more general background material.
In Chapter 2 we discuss Ext groups and in particular the relation between Ext1 and
short exact sequences. Chapter 3 is concerned mainly with modules over maximal orders.
Here, we investigate properties of torsion and torsionfree modules and give a proof of
Theorem 1.18. Chapter 4 discusses Pontryagin duality for locally compact Hausdorff
abelian groups that are also modules over a locally compact ring. This more general
setting of duality is crucial for us as we need to respect Galois module structures when
dualising. We also give some more specific results on duality for modules over a Z(S)-
order.

The chapters thereafter are more geared to our context. In Chapter 5 we develop a com-
mensurability theory for subgroups of automorphism groups of chain complexes that
allows us to prove Theorem 1.11. In Chapter 6 we recall the definition and some prop-
erties of the central object for our conjecture, the Arakelov ray class group. Chapter
7 formalises the process of picking out good components from the Arakelov ray class
sequence and establishes important properties of this construction.

In Chapter 8 we establish the setup for Conjecture 1.13, filling in all details omitted
above. We then prove Theorem 1.12 and state the main heuristic again. The final two
chapters are concerned with implications of Conjecture 1.13. In Chapter 9 we derive
Corollaries 1.14, 1.15 and 1.16. Finally, in Chapter 10, we specify to families of cyclic
extensions of prime degree. We explicitly determine all the terms appearing in the
formula for the average torsion in some specific cases and in particular prove Corollary
1.17.

1.4 Notation and Conventions

Rings and Modules

All rings are unital. Unless otherwise specified, by module we mean left module.

For a ring R, we denote by R× its unit group and by Z(R) its centre. If φ : R→ T is a ring
homomorphism, then we denote by φ× the induced group homomorphism R× → T×.

Suppose that R = R1×· · ·×Rn is a product of rings and that M is an R-module. Then
for i ∈ {1, . . . , n} we denote by Mi := eiM the i-th isotypical component of M , where
ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in i-th position. Note that Mi is an R-submodule of M
as well as an Ri-module and that M =

⊕n
i=1Mi.
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Categories

If C is a category, then by writing C ∈ C we mean that C is an object of C.

Let C be a category and let L,M,N ∈ C. Let f : L→M and g : N →M be morphisms.
If the fibre product of f and g exists, then we denote it by L ×M N and denote by
πL : L ×M N → L and πN : L ×M N → N its associated morphisms. Note that if
C = RMod, then the fibre product exists and is given by

L×M N = { (l, n) ∈ L×N | f(l) = g(n) }

together with the canonical projections. Now let h : M → L and k : M → N be morph-
isms. If the pushout of h and k exists, then we denote it by L +M N and denote
by ιL : L → L +M N and ιN : N → L +M N its associated morphisms. Note that if
C = RMod, then the pushout exists and is given by

L+M N = L⊕N/ { (h(m),−k(m)) |m ∈M }

together with the maps induced by the canonical inclusions L→ L⊕N andN → L⊕N .

We use the following notation for categories:

Grp Groups
Ab Abelian groups

Ring Rings (with unit)

RMod Left modules over the ring R

Rmod Finitely generated left modules over the ring R
Ch(C) Chain complexes in the abelian category C
Ch(C)b Bounded chain complexes in the abelian category C

LCA LCA groups

RLCA LCA modules over the locally compact ring R

Localisation and Completion

For a commutative ring Z, we denote by Max(Z) the set of maximal ideals of Z. If p
is a prime ideal of Z, then we denote by Zp the localisation of Z at p and by Ẑp the
completion of Z at p (if p is maximal, this is the same as the completion of Zp at pZp).
If further M is a Z-module, then we denote by Mp := (Z \ p)−1M ∼= Zp ⊗Z M the

localisation of M at p and by M̂p the completion of M at p. Note that if Z is noetherian

and M is finitely generated, then the natural map Ẑp ⊗Z M → M̂p is an isomorphism
[AM69, Proposition 10.13].

Let S be a nonempty subset of the union of {0} and the set of rational primes. We
denote the localisation of Z at Z \

⋃
p∈S pZ by

Z(S) := (Z \
⋃
p∈S pZ)−1Z =

{
a
b

∣∣∣ a, b ∈ Z, b /∈
⋃
p∈S pZ

}
.
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We always consider Z(S) with the discrete topology. The nonzero prime ideals of Z(S)

are the pZ(S) for p ∈ S \ {0}, and the localisation of Z(S) at pZ(S) is just Z(p). Note that
if S′ ⊆ S, then Z(S) ⊆ Z(S′). Moreover, Z(S) =

⋂
p∈S Z(p). If S is the set of all rational

primes, then Z(S) = Z, and if S = {0}, then Z(S) = Q.

Torsion

Let Z be an integral domain. Let M be a Z-module. We say that an element m ∈ M
is a Z-torsion element if annZ(m) ̸= 0, that is, if there is 0 ̸= z ∈ Z such that zm = 0.
We denote by torsZ(M) or simply Mtors the Z-torsion submodule of M . We say that M
is Z-torsionfree if Mtors = 0 and that it is Z-torsion if M =Mtors.

For a ∈ Z we denote by M [a] := {m ∈M | am = 0 } the a-torsion submodule of M . If
Z is a Dedekind domain and p is a maximal ideal of Z, then we denote by

M [p∞] := {m ∈M | annZ(m) = pr for some r ∈ Z≥0 }

the p-primary component of M . More generally, if S is a set of maximal ideals of Z,
then we write M [S∞] for the set of elements of M whose annihilator is a product of
primes in S.

These notions will often come up in the context where R is a Z-order (in some finite
dimensional algebra over the fraction field of Z) and M is an R-module. We make the
convention that in this case, by torsion we always mean Z-torsion.

Maximal Orders over Dedekind Domains

Let Z be a Dedekind domain with fraction field K, let A be a separable K-algebra and
let R be a maximal Z-order in A. In this context, we will use the following notation,
which is based on the one from [CM90].

Let A = A1 × · · · × Ac be the decomposition of A into simple components and let
R = R1 × · · · × Rc be the associated decomposition of R. For i ∈ {1, . . . , c} define
Ki := Z(Ai) and let Zi be the integral closure of Z in Ki. Then Ri is a maximal Zi-
order in Ai by [Rei03, Theorem 10.5]. There are a unique li ∈ Z≥1 and a unique division
ring Di with centre Ki such that Ai ∼= Matli(Di). In a diagram,

Ki Di Matli(Di) ∼= Ai

Zi Ri,

m.o.

where ‘m.o.’ means maximal order. Now let p be a maximal ideal of Zi. Let Ki,p be

the completion of Ki at p and let Ẑi,p be the completion of Zi at p, a complete discrete

valuation ring. Denote by p̂ the unique maximal ideal of Ẑi,p. Let Ai,p := Ki,p ⊗Ki Ai,
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a central simple Ki,p-algebra. There are a unique li,p ∈ Z≥1 and a unique division ring
Di,p with centre Ki,p such that Ai,p ∼= Matli,p(Di,p).

Denote by vi,p the valuation on Ki,p. By [Rei03, Theorems 12.6 and 12.10], it extends
uniquely to a valuation onDi,p. Let vDi,p = e(Di,p/Ki,p)·vi,p be the associated normalised
valuation on Di,p. We write ei,p := e(Di,p/Ki,p) and fi,p := f(Di,p/Ki,p). By [Rei03,

Theorem 12.8], the ring ∆i,p := {x ∈ Di,p | vi,p(x) ≥ 0 } is the unique maximal Ẑi,p-order
∆i,p in Di,p. Let πDi,p ∈ ∆i,p such that vDi,p(πDi,p) = 1 and let p′ := πDi,p∆i,p. By
[Rei03, Theorem 13.2], p′ is the unique maximal left ideal of ∆i,p and every non-zero
one-sided ideal of ∆i,p is a two-sided ideal and is a power of p′.

Let R̂i,p := Ẑi,p ⊗Zi Ri, a maximal Ẑi,p-order in Ai,p. By [Rei03, Theorem 17.3] we

may choose the isomorphism Ai,p ∼= Matli,p(Di,p) in such a way that it carries R̂i,p onto
Matli,p(∆i,p). In a diagram,

Ki,p Di,p Matli,p(Di,p) Ai,p

Ẑi,p ∆i,p Matli,p(∆i,p) R̂i,p,

cent. ∼

int.cls.

! m.o. m.o.

∼

m.o.

where ‘! m.o.’ means unique maximal order. If M is an R-module, write Mi for the i-th
isotypical component, which is an Ri-module. Further define M̂i,p := Ẑi,p ⊗Zi Mi, an

R̂i,p-module.

Topological Groups

If M is a topological group, then we denote by M0 its connected component of the
identity. If N is another topological group, then we denote by Homcts(M,N) the set of
continuous group homomorphisms from M to N . Given a compact subset K ⊆ M and
an open subset U ⊆ N , define

W (K,U) := {φ ∈ Homcts(M,N) |φ(K) ⊆ U } .

Then the W (K,U) are a subbasis for a topology on Homcts(M,N). This topology
is called the compact-open topology on Homcts(M,N), and we will always consider
Homcts(M,N) as a topological space equipped with it.
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2 Ext Groups and Extensions

Throughout this chapter, let R be a ring.

We collect some theorems and definitions from the theory of Ext groups, most of which
are well-known and stated here for convenience and later use. We assume familiarity
with basic properties of Ext groups, for which we refer to [Wei94, Chapter 3]. Having in
mind our later applications to homomorphisms and short exact sequences, we are mostly
concerned with Ext0 = Hom and Ext1.

2.1 Ext Groups

For left R-modules M and N both the functors HomR(M,−) : RMod → Ab as well as
HomR(−, N) : RModop → Ab are left exact but not right exact. Their right derived
functors are the Ext functors ExtnR(M,−) : RMod → Ab and ExtnR(−, N) : RModop →
Ab. These constitute bifunctors

ExtnR(−,−) : RModop× RMod→ Ab

which are the right derived functors of HomR(−,−) : RModop× RMod → Ab. Note
that if S is another ring and M is an (R,S)-bimodule, then ExtnR(M,N) is naturally
a left S-module, and if N is an (R,S)-bimodule, then ExtnR(M,N) is naturally a right
S-module, cf. [Rei03, page 9].

If f : M ′ → M is an R-module homomorphism, we denote by f∗ the induced homo-
morphism ExtnR(M,N) → ExtnR(M

′, N), and if g : N → N ′ is an R-module homo-
morphism, we denote by g∗ the induced homomorphism ExtnR(M,N)→ ExtnR(M,N ′).

We state the following proposition for convenience as it will be used repeatedly.

Proposition 2.1 ([Rei03, Theorem 2.39]). Let Z be a commutative ring. Let Z ′ be a
Z-algebra that is flat as a Z-module and let R be a Z-algebra that is left noetherian. Let
M be a finitely generated R-module and let N be any R-module. Then the map

Z ′ ⊗Z HomR(M,N)→ HomZ′⊗ZR(Z
′ ⊗Z M,Z ′ ⊗Z N),

a⊗ φ 7→ (b⊗m 7→ ba⊗ φ(m)),

is an isomorphism of Z ′-bimodules. This isomorphism is the first of a family of Z ′-
bimodule isomorphisms

Z ′ ⊗Z ExtnR(M,N) ∼= ExtnZ′⊗ZR
(Z ′ ⊗Z M,Z ′ ⊗Z N)

for n ∈ Z≥0.

We will need a different version of change of rings as well.
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Proposition 2.2. Let S → R be a flat ring homomorphism. Let n ∈ Z≥0 and let M
and N be S-modules. Then the functor R⊗S − induces a homomorphism

ExtnS(M,N)→ ExtnR(R⊗S M,R⊗S N)

which is natural in M and N and compatible with the connecting homomorphisms.

Proof. See [HS97, Section IV.12].

2.2 Ext and Extensions

What makes Ext groups so important for us is that Ext1R provides a nice algebraic
framework for working with short exact sequences of R-modules. We now explain this
relation in detail.

Definition 2.3. Let M and N be R-modules.

(a) An extension of M by N is a short exact sequence 0 → N → L → M → 0 of
R-modules.

(b) We say that two extensions 0 → N → L → M → 0 and 0 → N → L′ → M → 0
of M by N are equivalent if there is a homomorphism f : L → L′ that makes the
diagram

0 N L M 0

0 N L′ M 0

f

commute. We denote by ER(M,N) the set of equivalence classes of extensions of
M by N .

(c) Given two extensions Θ: 0→ N
α−→ L

β−→M → 0 and Θ′ : 0→ N
α′
−→ L′ β′

−→M → 0
of M by N , their Baer sum is defined to be the extension

0 N (L×M L′)/ { (α(n),−α′(n)) |n ∈ N } M 0,

where the left hand map is given by n 7→ (α(n), 0) = (0, α′(n)) and the right hand
map is given by (l, l′) 7→ β(l) = β′(l′). We will denote this extension by Θ +Θ′.

Construction 2.4. Let M and N be R-modules. Construct a map ε : ER(M,N) →
Ext1R(M,N) as follows. Let Θ: 0 → N → L → M → 0 be an extension of M by
N . Apply ExtR(M,−) to obtain a connecting homomorphism δΘ : HomR(M,M) →
Ext1R(M,N) and define ε(Θ) := δΘ(idM ).
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Proposition 2.5. Let M and N be R-modules. The set ER(M,N) forms an abelian
group with respect to Baer sum and the map

ε : ER(M,N)→ Ext1R(M,N)

is a group isomorphism.

Proof. See [Wei94, Section 3.4] or [HS97, Section III.2].

This different perspective on Ext1R(M,N) will play a central role in our work.

Remark 2.6. There is a similar description of ExtnR(M,N) for any n, using so-called
n-extensions, see [HS97, Section IV.9]. We will not need this here, however.

Via the isomorphism from Proposition 2.5, the constructions on Ext1R(M,N) from the
previous sections correspond to constructions on extensions, and we now describe the
latter. We will generally omit any notation signifying that the elements of ER(M,N)
are equivalence classes. This is because later we will also work with another, weaker,
equivalence relation on extensions.

The functoriality of Ext behaves in the following way for extensions, cf. [HS97, Sections
III.1 and III.2] or [Rot09, Section 7.2.1].

Construction 2.7. Let M and N be R-modules. Let Θ ∈ ER(M,N) be given by

0 N L M 0.α β

(a) Let f : M ′ → M be an R-module homomorphism. Then there is a commutative
diagram

0 N L×M M ′ M ′ 0

0 N L M 0

α′ πM′

πL f

α β

with exact rows, where α′(m) = (α(m), 0). The extension f∗(Θ) ∈ ER(M ′, N) is
given by the upper sequence.

(b) Let g : N → N ′ be an R-module homomorphism. Then there is a commutative
diagram

0 N L M 0

0 N ′ N ′ +N L M 0

α

g

β

ιL

ιN′ β′

with exact rows, where β′((n′, l)) = β(l). The extension g∗(Θ) ∈ ER(M,N ′) is
given by the lower sequence.
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The change of rings homomorphism from Proposition 2.2 has the expected description
in terms of extensions:

Proposition 2.8. Let S → R be a flat ring homomorphism. LetM and N be S-modules.
Then under the isomorphism from Proposition 2.5, the map

ES(M,N)→ ER(R⊗S M,R⊗S N), Θ 7→ R⊗S Θ

corresponds to the homomorphism from Proposition 2.2.

Proof. We have to check that the diagram

ES(M,N) ER(R⊗S M,R⊗S N)

Ext1S(M,N) Ext1R(R⊗S M,R⊗S N)

εS εR

τ

commutes, where τ is the homomorphism from Proposition 2.2. Let Θ: 0→ N → L→
M → 0 be an extension of M by N . Denote by δΘ : HomS(M,M) → Ext1S(M,N) the
connecting homomorphism when applying ExtS(M,−) to Θ, and by δR⊗SΘ : HomR(R⊗S
M,R ⊗S M) → Ext1R(R ⊗S M,R ⊗S N) the connecting homomorphsim when applying
ExtR(R ⊗S M,−) to R ⊗S Θ. Since τ is compatible with connecting homomorphisms,
we have a commutative diagram

HomS(M,M) Ext1S(M,N)

HomR(R⊗S M,R⊗S M) Ext1R(R⊗S M,R⊗S N).

R⊗S−

δΘ

τ

δR⊗SΘ

The claim follows immediately from this and the construction of ε.

In the following, when dealing with Ext1R(M,N) or ER(M,N), we will always use the
notation Ext1R(M,N) and use the homological and the extension description interchange-
ably, without further comment.

2.3 Isomorphism of Extensions

We will later investigate the statistical behaviour of certain homomorphisms and short
exact sequences, whose underlying modules vary over the family under consideration.
In our context, asking statistical questions about these objects will only make sense
when regarding the involved modules up to isomorphism. This leads to the following
notion of isomorphism of homomorphisms and extensions that was already used in the
introduction.
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Definition 2.9. Let M and N be R-modules. Let H ≤ AutM ×AutN .

(a) Let φ,φ′ ∈ HomR(M,N). An H-isomorphism from φ to φ′ is a pair (µ, ν) ∈ H
with the property that the diagram

M N

M N

φ

µ ν

φ′

commutes.

(b) Let Θ: 0 → N → L → M → 0 and Θ′ : 0 → N → L′ → M → 0 be two
extensions of M by N . An H-isomorphism from Θ to Θ′ is a tuple ((µ, ν), λ) ∈
H ×HomR(L,L

′) with the property that the diagram

0 N L M 0

0 N L′ M 0

ν λ µ

commutes.

Now let n ∈ {0, 1} and let x, x′ ∈ ExtnR(M,N). If there is an H-isomorphism from x to
x′, we say that x and x′ are H-isomorphic and write x ∼=H x′. We denote by AutH(x)
the H-automorphism group of x and by [x]H ⊆ ExtnR(M,N) its H-isomorphism class.
In the case H = AutM × AutN , we simply speak of isomorphisms and omit the H in
the notation.

Note that the notion of isomorphism of extensions agrees with the notion of isomorphism
when considering them as objects in the category of chain complexes. It is clear that
being equivalent in the sense of Definition 2.3 implies being H-isomorphic, which in turn
implies being isomorphic. So it makes sense to speak of (H-)isomorphism of extensions
even when considering them as elements of Ext1R(M,N).

We now link the notions of isomorphism of homomorphisms and extensions to the fol-
lowing natural action. This is inspired by [PS17] and [BP25].

Definition 2.10. Let n ∈ Z≥0. Let M and N be R-modules. Let (µ, ν) ∈ AutM ×
AutN and x ∈ ExtnR(M,N). Then we put

(µ, ν).x := (µ−1)∗ ◦ ν∗(x) = ν∗ ◦ (µ−1)∗(x),

which defines an action of AutM ×AutN on ExtnR(M,N). If H ≤ AutM ×AutN , we
denote by StabH(x) and OH(x) the stabiliser and orbit of x, respectively, with respect
to the action of H on Ext1R(M,N). As before, we omit the subscript H if H = AutM ×
AutN .
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Note that in the case n = 0, the action of (µ, ν) ∈ AutM×AutN on φ ∈ Ext0R(M,N) =
HomR(M,N) is simply given by

(µ, ν).φ = ν ◦ φ ◦ µ−1.

Hence, φ′ ∼=H φ if and only if φ′ ∈ OH(φ), so that [φ]H = OH(φ). Moreover, AutH(φ) =
StabH(φ). We now consider the case of extensions and derive similar results.

Lemma 2.11. Let M and N be R-modules. Let (µ, ν) ∈ AutM × AutN . Let Θ,Θ′ ∈
Ext1R(M,N) and write Θ: 0 → N → L → M → 0 and Θ′ : 0 → N → L′ → M → 0.
Then (µ, ν).Θ is given by the exact sequence

0 N L M 0.α◦ν−1 µ◦β

In particular, (µ, ν).Θ = Θ′ if and only if there is λ ∈ HomR(L,L
′) such that ((µ, ν), λ)

is an isomorphism from Θ to Θ′.

Proof. This follows easily from Construction 2.7.

Proposition 2.12. Let M and N be R-modules and let Θ,Θ′ ∈ Ext1R(M,N). Let
H ≤ AutM ×AutN . Then the following hold:

(i) We have Θ′ ∼=H Θ if and only if Θ′ ∈ OH(Θ). In particular, [Θ]H = OH(Θ).

(ii) Let ρ : AutH Θ → H be the natural map. Then im ρ = StabH(Θ) and ker ρ ∼=
HomR(M,N).

Proof. Claim (i) and the equality im ρ = StabH(Θ) in part (ii) are immediate from
Lemma 2.11. It remains to prove that ker ρ ∼= HomR(M,N). Suppose that Θ is given

by the extension 0→ N
α−→ L

β−→M → 0. It is then easy to check that the map

HomR(M,N)→ AutH Θ, γ 7→ (idN , idL + αγβ, idM )

is an injective homomorphism whose image is precisely ker ρ.

In certain cases, we can compare isomorphism class and stabiliser sizes for different
subgroups of AutM ×AutN .

Corollary 2.13. Let M and N be R-modules and let Θ ∈ Ext1R(M,N). Let H ≤ H ′ ≤
AutM ×AutN and suppose that |H ′ : H| <∞. Then

|StabH′(Θ) : StabH(Θ)| = |AutH′(Θ) : AutH(Θ)| <∞.

If moreover one of [Θ]H and [Θ]H′ is finite, then so is the other one, and it holds that

|[Θ]H′ |
|[Θ]H |

=
|H ′ : H|

|AutH′(Θ) : AutH(Θ)|
.
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Proof. Note that we have a natural injection

AutH′(Θ)/AutH(Θ) ↪→ H ′/H

which shows |AutH′(Θ) : AutH(Θ)| < ∞. By Proposition 2.12, there is a commutative
diagram

1 HomR(M,N) AutH(Θ) StabH(Θ) 1

1 HomR(M,N) AutH′(Θ) StabH′(Θ) 1

of groups with exact rows. The snake lemma then yields the first claim. For the iso-
morphism classes simply note that∣∣H ′ : StabH′(Θ)

∣∣ · |StabH′(Θ) : StabH(Θ)| =
∣∣H ′ : H

∣∣ · |H : StabH(Θ)| .

Then use the orbit-stabiliser theorem and the first claim.
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3 Torsion and Lattices over (Maximal) Orders

In this chapter, we collect statements related to torsion and lattices, in the context
of (maximal) orders. The first two subsections contain well-known properties of the
torsion submodule and of lattices, which will be useful throughout. For the most part,
these are compiled from [Rei03]. In Section 3.3 we prove a classification of the finitely
generated torsion modules over a maximal order over a complete discrete valuation ring.
This theory will then be used in Section 3.4 as a key foundation for the proof of the
characterisation of surjectivity of the map δM,N

a from the introduction. Finally, in the
last subsection, we establish some results on the cardinality of certain Ext groups.

3.1 Torsion and Lattices over Orders

In this section, let Z be an integral domain with fraction field K and let R be a Z-order
(in some finite-dimensional K-algebra).

We collect some basic results on torsion that will be used frequently. See Section 1.4 for
relevant notation regarding torsion and recall that by torsion of an R-module we always
mean Z-torsion.

Lemma 3.1. Let M be a Z-module. Let x ∈ K× and m ∈M . Then:

x⊗m = 0 ∈ K ⊗Z M ⇐⇒ m ∈Mtors.

In particular, Mtors is the kernel of M → K ⊗Z M .

Proof. Suppose that m ∈ Mtors. Then there is 0 ̸= z ∈ Z with zm = 0. It follows
that x ⊗ m = x

z ⊗ zm = 0. Conversely, suppose that x ⊗ m = 0. Write x = a
b with

a, b ∈ Z \ {0}. We have 0 = am
b ∈ (Z \ {0})−1M which means that there is c ∈ Z \ {0}

with cam = 0. Hence, m ∈Mtors.

Thus, if M is Z-torsionfree, then we can identify it with its image in K ⊗Z M .

Lemma 3.2. Let M be a Z-module. Suppose that Z ′ is an integral domain that is flat
as a Z-module. Then (Z ′ ⊗Z M)tors = Z ′ ⊗Z Mtors and the natural map

(Z ′ ⊗Z M)/(Z ′ ⊗Z M)tors → Z ′ ⊗Z M/Mtors

is an isomorphism.
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Proof. Since Z ′ is Z-flat, the exact sequence 0 → Mtors → M → M/Mtors → 0 of
Z-modules gives rise to an exact sequence

0 Z ′ ⊗Z Mtors Z ′ ⊗Z M Z ′ ⊗Z M/Mtors 0

of Z ′-modules. It is clear that Z ′⊗ZMtors ⊆ (Z ′⊗ZM)tors. The converse follows from the
above exact sequence and the fact that Z ′ ⊗Z M/Mtors is Z

′-torsionfree by [Sta25, Tag
0AXM]. The second claim is immediate.

We now switch perspective to R-modules. Note that if M is an R-module and a ∈ Z,
thenMtors andM [a] are R-submodules ofM , andM/Mtors is torsionfree. If moreover Z
is a Dedekind domain and p is a maximal ideal of Z, then also the p-primary component
M [p∞] is an R-submodule of M . We have the following generalisation of the decompos-
ition of a torsion abelian group into the direct sum of its Sylow subgroups (which holds
for any Z-algebra R).

Lemma 3.3. Suppose that Z is a Dedekind domain. Let M be an R-module. Then the
following hold:

(i) We have

Mtors =
⊕

p∈Max(Z)

M [p∞],

and if zMtors = 0 for z ∈ Z with (z) = pr11 · · · p
rk
k ⊆ Z, then Mtors =

⊕k
i=1M [p∞i ].

Assume now that Mtors is finitely generated as a Z-module. Let p and q be maximal
ideals of Z. Then we further have:

(ii) M [p∞] is naturally a Zp-module and an Rp-module.

(iii) There is a natural isomorphism

Zp ⊗Z M [p∞] ∼=M [p∞],
a⊗m 7→ am,

1⊗m←[ m

of Rp-modules.

(iv) If q ̸= p, then Zp ⊗Z M [q∞] = 0.

(v) We have
Zp ⊗Z Mtors

∼= Zp ⊗Z M [p∞] ∼=M [p∞]

as Rp-modules.

All statements above also hold with Zp replaced by Ẑp, the completion of Z at p, and Rp

replaced by R̂p = Ẑp ⊗Z R.
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Proof. To show that the sum in (i) is direct, let p1, . . . , pn be maximal ideals of Z and let
mi ∈M [p∞i ] with 0 = m1+· · ·+mn. Suppose that annZ(mi) = psii with si ∈ Z≥0. Let l ∈
{1, . . . , n}. We show that ml = 0. Let w ∈

∏
i̸=l p

si
i . Then 0 = w(m1+ · · ·+mn) = wml,

so w ∈ psll . This shows that
∏
i̸=l p

si
i ⊆ psll which forces sl = 0. Hence, ml = 1 ·ml = 0.

Next, let m ∈ Mtors and let 0 ̸= z ∈ Z with zm = 0. Let (z) = pr11 · · · p
rk
k be the

factorisation of (z) into maximal ideals. Since Z is a Dedekind domain, we can find
zi ∈

∏
j ̸=i p

rj
j with 1 = z1 + · · ·+ zk. Then we see that

m = z1m+ · · ·+ zkm ∈M [p∞1 ]⊕ · · · ⊕M[p
∞
k ].

This proves (i).

Now assume that Mtors is finitely generated as a Z-module and let p and q be maximal
ideals of Z. Then there is k ∈ Z≥0 with pkM [p∞] = 0. The Zp-module structure on
M [p∞] is induced by the isomorphism Zp/p

kZp
∼= Z/pkZ. Since Z is central in R, the

Zp-module structure also gives rise to an Rp-module structure.

For part (iii) note that for a ∈ Zp and m ∈M [p∞] we have that a⊗m = 1⊗ am: If we
let z ∈ Z such that a− z ∈ pnZp, then by definition, am = zm, so

1⊗ am = 1⊗ zm = z ⊗m = a⊗m− (a− z)⊗m = a⊗m.

Claim (iv) is clear as we can invert elements of q in Zp. Finally, (v) is immediate from
(i), (iii) and (iv).

Finitely generated torsionfree modules will play an important role.

Definition 3.4 ([Rei03, pages 44 and 129]). A Z-lattice is a finitely generated Z-
torsionfree Z-module. An R-lattice is an R-module that is a Z-lattice.

Remark 3.5. Some authors, e.g. [CR81], define a Z-lattice to be a finitely generated
projective Z-module. This definition agrees with the one given above if Z is a Dedekind
domain (see Proposition 3.9 below), which is the case that we will be interested in.

We end this section by briefly discussing the dual of an R-module, a notion especially
useful for lattices. As before, we always regard Z as understood from the context.

Definition 3.6 ([Rei03, Exercise 40.2]). Let M be an R-module. Then the dual of M
is M∗ := HomZ(M,Z).

Proposition 3.7 ([Rei03, Exercise 40.2]). Let M be an R-module. Then M∗ is an
Rop-module via (r.f)(m) := f(rm) for r ∈ Rop, f ∈ M∗ and m ∈ M . Moreover, the
following hold:
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(i) If N is another R-module and φ : M → N is an R-homomorphism, then the map
φ∗ : N∗ →M∗, f 7→ f ◦φ is an Rop-homomorphism, and this construction behaves
functorially.

(ii) The map
M →M∗∗, m 7→ (f 7→ f(m))

is a homomorphism of R-modules, which is natural in M .

(iii) M∗ is Z-torsionfree. In particular, if Z is noetherian and M is an R-lattice, then
M∗ is an Rop-lattice.

(iv) If Z is a Dedekind domain and M is an R-lattice, then the map from (ii) is an
isomorphism of R-modules.

Note also that taking the dual is clearly compatible with direct sums. Moreover, in a
similar direction, we have:

Lemma 3.8. Let M be an R-module. Suppose that R = R1 × · · · × Rn is a product of
rings and let M =M1 ⊕ · · · ⊕Mn be the decomposition into isotypical components.

Then Rop = Rop
1 × · · · ×R

op
n and there is an isomorphism of Rop-modules

M∗ ∼= (M1)
∗ ⊕ · · · ⊕ (Mn)

∗,
f 7→

(
f
∣∣
Mi

)
i(

m1 + · · ·+mn 7→ f1(m1) + · · ·+ fn(mn)
)
←[ (f1, . . . , fn)

where the duals on the right hand side are taken as R-modules. Moreover, (Mi)
∗ lies in

block Rop
i and we have isomorphisms

(M∗)i ∼= (Mi)
∗,

f 7→ f
∣∣
Mi(

m1 + · · ·+mn 7→ fi(mi)
)
←[ fi

of Rop-modules.

Proof. This is clear.

3.2 Lattices over Maximal Orders

In this section, Z is a Dedekind domain with fraction field K and A is a separable K-al-
gebra. We discuss some fundamental results for lattices over maximal Z-orders in A.

Proposition 3.9 ([Rei03, Corollary 21.5]). Let R be a maximal Z-order in A. Then
every R-lattice is R-projective. In particular, if M is a finitely generated R-module, then
M ∼=Mtors ⊕M/Mtors.
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Proposition 3.10. Suppose that Z only has a finite number of maximal ideals. Let R
be a Z-order in A and let M and N be R-lattices. Then the following are equivalent:

(i) M ∼= N as R-modules,

(ii) Rp ⊗RM ∼= Rp ⊗R N as Rp-modules for all maximal ideals p of Z,

(iii) R̂p ⊗RM ∼= R̂p ⊗R N as R̂p-modules for all maximal ideals p of Z.

If R is in fact a maximal Z-order in A, these are also equivalent to:

(iv) A⊗RM ∼= A⊗R N as A-modules.

Proof. The equivalence of (i) and (ii) is [Rei03, Exercise 18.3]. The equivalence of (ii)
and (iii) follows from [Rei03, Theorem 18.2].

Now suppose that R is a maximal order and let p be a maximal ideal of Z. Then
Rp is a maximal Zp-order in A by [Rei03, Corollary 11.2] and Rp ⊗R M and Rp ⊗R N
are Rp-lattices by Lemma 3.2. Hence, the equivalence of (ii) and (iv) follows from
[Rei03, Theorem 18.10].

Corollary 3.11. Suppose that Z only has a finite number of maximal ideals. Let R be
a maximal Z-order in A and let M and N be two finitely generated R-modules. Then
the following are equivalent:

(i) M ∼= N as R-modules,

(ii) Rp ⊗RM ∼= Rp ⊗R N as Rp-modules for all maximal ideals p of Z,

(iii) R̂p ⊗RM ∼= R̂p ⊗R N as R̂p-modules for all maximal ideals p of Z.

Proof. The equivalence of (ii) and (iii) follows from [Rei03, Theorem 18.2]. It is clear
that (i) implies (ii).

We show that (ii) implies (i). Suppose that Rp ⊗RM ∼= Rp ⊗R N as Rp-modules for all
maximal ideals p of Z. Then by Lemma 3.2 we have Rp ⊗R Mtors

∼= Rp ⊗R Ntors and
Rp ⊗R M/Mtors

∼= Rp ⊗R N/Ntors for all maximal ideals p of Z. By Lemma 3.3, the
former implies that Mtors

∼= Ntors as R-modules, whereas by Proposition 3.10 the latter
implies that M/Mtors

∼= N/Ntors as R-modules. We conclude from Proposition 3.9 that
M ∼= N as R-modules.

3.3 Torsion Modules over Maximal Orders

We aim to give a description of finitely generated torsion modules over maximal or-
ders over a complete discrete valuation ring that is similar to the description of finitely
generated torsion modules over a PID in terms of elementary divisors.
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3.3.1 Maximal Orders over Dedekind Domains

Proposition 3.12. Let Z be a Dedekind domain with fraction field K, let A be a sep-
arable K-algebra and let R be a maximal Z-order in A. Let M be a finitely generated
torsion R-module. Then there are n ∈ Z≥0 and left ideals Ji ⊆ Ii of R, i = 1, . . . , n,
with KIi = KJi = A for all i such that

M ∼=
n⊕
i=1

Ii/Ji

as R-modules. If Z is a discrete valuation ring, then moreover there are xi ∈ R ∩ A×

with Ii/Ji ∼= R/Rxi.

Proof. The first claim follows from [Kne67, Satz 1]. Now suppose that Z is a discrete
valuation ring. Then by [Rei03, Theorem 18.10], every left ideal of R is principal, so there
are xi, yi ∈ R such that Ii = Ryi and Ji = Rxiyi, i = 1, . . . , n. Since KIi = KJi = A
and KR = A, we have xi, yi ∈ A×, from which it follows that Ii/Ji ∼= R/Rxi.

3.3.2 Matrix Orders over Complete Discrete Valuation Rings

In this subsection, Z is a complete discrete valuation ring with normalised valuation
v and fraction field K. Let further D be a division ring whose centre contains K
with |D : K| < ∞. By [Rei03, Theorems 12.6 and 12.10], v extends uniquely to a
valuation on D, which we will also denote by v. Similarly as in Section 1.4 we denote by
∆ := {x ∈ D | v(x) ≥ 0 } the unique maximal Z-order in D and by vD the normalised
valuation on D associated to v. Let πD ∈ ∆ be a uniformiser for vD. Let l ∈ Z≥1 and
let R := Matl(∆).

The following proposition will be crucial.

Proposition 3.13 ([Rei03, Theorem 17.7]). Let x ∈ R. Then there are u, v ∈ GLl(∆)
such that

uxv = diag(πa1D , . . . , π
al
D ), where 0 ≤ a1 ≤ · · · ≤ al ≤ ∞

(where π∞D is interpreted as 0). The ai are uniquely determined by x.

Lemma 3.14. The following hold:

(i) For h ∈ Z≥0, the set of column vectors (∆/πhD)
l is naturally an R-module.

(ii) Let x ∈ R and let 0 ≤ a1 ≤ · · · ≤ al ≤ ∞ be the integers from Proposition 3.13
associated to x. Then

R/Rx ∼= (∆/πa1D )l ⊕ · · · ⊕ (∆/πalD )l

as R-modules.
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(iii) Let x, y ∈ R and let 0 ≤ a1 ≤ · · · ≤ al ≤ ∞ and 0 ≤ b1 ≤ · · · ≤ bl ≤ ∞
be the integers from Proposition 3.13 associated to x and y, respectively. Then
R/Rx ∼= R/Ry as R-modules if and only if ai = bi for all i.

Proof. Statement (i) is clear. Now let x and ai be as in (ii). By Proposition 3.13,
there are u, v ∈ GLl(∆) such that uxv = diag(πa1D , . . . , π

al
D ). Notice that the R-module

isomorphism R → R, r 7→ rv induces an isomorphism R/Rx
∼−→ R/Rxv and that

Rxv = Ru−1uxv = Ruxv. So we may from now on assume that x = diag(πa1D , . . . , π
al
D ).

For w ∈ R = Matl(∆) denote by wi the columns of w, so that w = (w1 | · · · | wl). It is
easy to see that the map w 7→ (w1, . . . , wl) gives the desired isomorphism.

Finally, let x, y, ai, bi be as in (iii). Let X := R/Rx and Y := R/Ry. It is clear from (ii)
that if ai = bi for all i, then X ∼= Y . Conversely, suppose that we have X ∼= Y . Assume
that there is i with ai ̸= bi. Let t be maximal with at ̸= bt. Without loss of generality,
at > bt. Note that π

bt
DX and πbtDY are submodules of X and Y , respectively. By (ii) and

assumption, we have

πbtDX
∼= πbtD(∆/π

a1
D )l ⊕ · · · ⊕ πbtD(∆/π

at
D )l ⊕ πbtD(∆/π

at+1

D )l ⊕ · · · ⊕ πbtD(∆/π
al
D )l

πbtDY
∼= πbtD(∆/π

at+1

D )l ⊕ · · · ⊕ πbtD(∆/π
al
D )l

as R-modules. Then by [Rei03, Exercise 6.7] we must have

πbtD(∆/π
a1
D )l = · · · = πbtD(∆/π

at
D )l = 0.

This implies bt ≥ at, a contradiction.

Note that if M is an R-module, then by [Rei03, Exercise 6.5], M is indecomposable if
and only if EndR(M) is a local ring. In particular, the Krull–Schmidt Theorem holds
for R-modules (cf. [Rei03, Exercise 6.6] or [Lam91, Theorem 19.21]).

Proposition 3.15. The modules

Mh := R/R diag(1, . . . , 1, πhD), h ∈ Z≥1,

form a full set of representatives for the isomorphism classes of indecomposable finitely
generated torsion R-modules.

Proof. Let h ∈ Z≥1. Since Mh is annihilated by πhD, it will also be annihilated by a high
enough power of a uniformiser for v in Z, so it is a torsion module. To prove that Mh is
indecomposable, we will show that EndR(Mh) is a local ring. Let x := diag(1, . . . , 1, πhD).
We have an isomorphism of abelian groups

Ex := {w ∈ R/Rx |xw = 0 } ∼←→ EndR(R/Rx)

given by sending w ∈ Ex to the map r 7→ rw and by sending φ ∈ EndR(R/Rx) to φ(1).
This becomes a ring isomorphism with the ring structure on Ex defined by v · w := wv
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for v, w ∈ Ex. Note that for w = (wij) ∈ R we have w ∈ Ex if and only if vD(wil) ≥ h
for i = 1, . . . , l − 1. We claim that

E×
x =

{
w = (wij) ∈ Ex

∣∣∣ vD(wll) = 0
}
.

Suppose that w = (wij) ∈ Ex satisfies vD(wll) = 0. Define v = (vij) ∈ R by vll := w−1
ll

and vij := 0 otherwise. Then v ∈ Ex and one easily checks that vw − 1 ∈ Rx and

wv − 1 ∈ Rx, that is w · v = v · w = 1. Conversely, let w = (wij) ∈ E×
x . Then there is

v = (vij) ∈ Ex with w · v = v · w = 1. In particular, we have

(vw − 1)ll =
l−1∑
k=1

vlkwkl + vllwll − 1 ∈ πhD∆.

But vD(wkl) ≥ h for k = 1, . . . , l − 1, so we must have vD(vllwll − 1) ≥ h. This forces
vD(vll) = vD(wll) = 0, and the claim on E×

x is proven. We obtain

Ex \ E×
x =

{
w = (wij) ∈ Ex

∣∣∣ vD(wll) ≥ 1
}
.

It is easily seen that this is a two-sided ideal of Ex, so Ex is a local ring and therefore
Mh = R/Rx is indecomposable.

It is clear by Lemma 3.14 (iii) that Mh and Mh′ are not isomorphic if h ̸= h′. Now
suppose that M is an indecomposable finitely generated torsion R-module. By [Rei03,
Theorem 17.3], R is a maximal Z-order in Matl(D), so by Proposition 3.12 we have
M ∼= R/Rx for some x ∈ R ∩Matl(D)×. Let 0 ≤ a1 ≤ · · · ≤ al < ∞ be the integers
from Proposition 3.13 associated to x; note that al < ∞ as x ∈ Matl(D)×. Since M is
indecomposable, Lemma 3.14 (ii) forces a1 = · · · = al−1 = 0. Then by part (iii) of the
same lemma, we have M ∼=Mal .

3.3.3 Maximal Orders over Complete Discrete Valuation Rings

Let again Z be a complete discrete valuation ring with normalised valuation v and
fraction field K. Let A be a central simple K-algebra and let R be a maximal Z-order
in A. We generalise the statements above from Matl(∆) to R.

Construction 3.16. We use notation as in Section 1.4: There are a unique l ∈ Z≥1 and
a unique division ring D with centre K such that A ∼= Matl(D). Let ∆ be the unique
maximal Z-order in D. We may choose the isomorphism A ∼= Matl(D) in such a way
that it carries R onto Matl(∆), giving us a ring isomorphism φ : R

∼−→ Matl(∆).

Let x ∈ R. By Proposition 3.13 we can uniquely associate integers 0 ≤ a1 ≤ · · · ≤ al ≤ ∞
to φ(x). These integers are independent of the choice of ring isomorphism R ∼= Matl(∆):
If ψ : R

∼−→ Matl(∆) is another such isomorphism, then ψ ◦ φ−1 is an automorphism of
Matl(∆), so is given by conjugation by an element of GLl(∆). It follows that φ(x) and
ψ(x) = ψ◦φ−1(φ(x)) have the same associated integers. Thus, we can uniquely associate
integers 0 ≤ a1 ≤ · · · ≤ al ≤ ∞ to x in this way. Call these the invariants of x.
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Corollary 3.17. The following hold:

(i) Let x, y ∈ R and let 0 ≤ a1 ≤ · · · ≤ al ≤ ∞ and 0 ≤ b1 ≤ · · · ≤ bl ≤ ∞ be the
invariants of x and y, respectively. Then R/Rx ∼= R/Ry as R-modules if and only
if ai = bi for all i.

(ii) For each h ∈ Z≥1 let x(h) ∈ R be an element whose invariants are 0, . . . , 0, h.
Then the modules R/Rx(h), h ∈ Z≥1, form a full set of representatives for the
isomorphism classes of indecomposable finitely generated torsion R-modules.

Proof. After choosing an isomorphism φ : R
∼−→ Matl(∆) as in Construction 3.16 to

regard R-modules as Matl(∆)-modules, this follows from the corresponding statements
in Propositions 3.12 and 3.15.

Definition 3.18. Let M be a finitely generated torsion R-module. Then by the Krull–
Schmidt Theorem and by Corollary 3.17 we may uniquely associate to M a list of
elements of Z≥1, namely the labels of its indecomposable summands. Call these the
elementary invariants of M .

By Proposition 3.12, every finitely generated torsion R-module can be decomposed into
a direct sum of modules of the form R/Rx for x ∈ R ∩ A×. From this decomposition,
one can easily read off the elementary invariants as follows:

Lemma 3.19. Let x ∈ R∩A×. Then the elementary invariants of R/Rx are the nonzero
invariants of x.

Proof. We may assume that R = Matl(∆) where l and ∆ are as in Construction 3.16.
The claim follows immediately from Lemma 3.14 (ii): If

a1 = · · · = at−1 = 0 < at ≤ · · · ≤ al <∞,

where t ≥ 1, are the invariants of x, then

R/Rx ∼=Mat ⊕ · · · ⊕Mal .

Hence, the elementary invariants of R/Rx are at, . . . , al.

Remark 3.20. Elementary invariants are related to elementary divisors as follows. Sup-
pose that T is a PID and let M be a finitely generated torsion Z-module. Then we have

M ∼= T/p
r1,1
1 ⊕ · · · ⊕ T/pr1,t11 ⊕ · · · ⊕ T/prk,1k ⊕ · · · ⊕ T/prk,tkk

for distinct maximal ideals pj = (pj) of T and positive integers rj,n. The elementary
divisors of M are

p
r1,1
1 , . . . , p

r1,t1
1 , . . . , p

rk,1
k , . . . , p

rk,tk
k .
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Let j ∈ {1, . . . , k}. Then T̂pj is a complete discrete valuation ring and we have

M̂pj
∼= T̂pj/p

rj,1
j ⊕ · · · ⊕ T̂pj/p

rj,tj
j

as T̂pj -modules. In the above language, with Z = R = T̂pj and A = K the fraction field

of T̂pj , Lemma 3.19 gives that the elementary invariants of M̂pj are rj,1, . . . , rj,tj . So

knowing the elementary invariants of all M̂pj is equivalent to knowing the elementary
divisors of M .

3.4 The Connecting Homomorphism of Torsion of a Short Exact Sequence

This section is concerned with the map constructed below, which will come into play
later on in the proof of Theorem 9.42 when investigating the average torsion of ray class
groups. It has already appeared in [PS17, Section 2.1] and [BP25, Section 4.2].

Construction 3.21. Let Z be a commutative ring and let R be a Z-algebra. Let a ∈ Z.
Let M and N be R-modules. Let Θ ∈ Ext1R(M,N) and write

Θ: 0 N L M 0.α β

Then we have a commutative diagram of R-modules with exact rows

0 N L M 0

0 N L M 0,

α

·a

β

·a ·a

α β

from which the snake lemma yields a homomorphism

δa(Θ) := δa,R(Θ) := δM,N
a,R (Θ): M [a]→ N/aN

which is defined as follows: Let m ∈ M [a]. Pick l ∈ L with β(l) = m. Then al ∈
ker(β) = im(α), so we may pick n ∈ N with α(n) = al. Then δa(Θ)(m) = n. (This is
well-defined by the snake lemma.)

Naturality of the connecting homomorphism in the snake lemma (cf. [HS97, page 100])
implies that δa(Θ) does not depend on the chosen representative for Θ, so that we get a
map

δa : Ext1R(M,N)→ HomR(M [a], N/aN), Θ 7→ δa(Θ).

We are interested in the question when δa is surjective. First statements in this direc-
tion are [PS17, Proposition 2.7] and [BP25, Lemma 4.12]. Below, we vastly generalise
these results, working with new ideas. We will give a characterisation of surjectivity for
maximal orders over Dedekind domains. We first collect some general properties and
auxiliary results for our endeavour.
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Proposition 3.22. Let Z be a commutative ring and let R be a Z-algebra. Let a ∈ Z.
Let M and N be R-modules. The map δa is a group homomorphism which is natural in
M and N .

Proof. It is a straightforward computation to show that δa is a group homomorphism.
Naturality follows from the explicit description of the induced maps on extensions in
Construction 2.7 and from naturality of the connecting homomorphism in the snake
lemma.

In particular, δa is compatible with direct sums, so for example we have a commutative
diagram

Ext1R(M,N ⊕N ′) HomR(M [a], (N ⊕N ′)/a(N ⊕N ′))

Ext1R(M,N)⊕ Ext1R(M,N ′) HomR(M [a], N/aN)⊕HomR(M [a], N ′/aN ′).

δM,N⊕N′
a

∼ ∼

(δM,N
a ,δM,N′

a )

Moreover, δa is compatible with flat base change.

Lemma 3.23. Let Z be a commutative ring and let R be a Z-algebra. Let S be an-
other Z-algebra and let S → R be a Z-algebra homomorphism that is flat as a ring
homomorphism. Let a ∈ Z and let M and N be S-modules. Then the diagram

Ext1S(M,N) HomS(M [a], N/aN)

Ext1R(R⊗S M,R⊗S N) HomR(R⊗S M [a], R⊗S N/aN)

R⊗S−

δa,S

R⊗S−

δa,R

commutes.

Proof. This again follows from naturality of the connecting homomorphism in the snake
lemma.

We will make use of the following generalisation of [Rot09, Example 7.23 (i)].

Lemma 3.24. Let R be a ring. Let x ∈ R be right regular (i.e. the map R→ R, r 7→ rx
is injective). Let N be an R-module. Then there is an isomorphism of abelian groups

N/xN
∼−→ Ext1R(R/Rx,N).

For n ∈ N , the isomorphism maps n ∈ N/xN to the extension

0 N N ⊕R/ { (rn,−rx) | r ∈ R } R/Rx 0
ιN π

where ιN (n) = (n, 0) and π((n, r)) = r.
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Proof. By assumption, we have a short exact sequence of R-modules

0 R R R/Rx 0.·x

Applying the functor ExtR(−, N) yields an exact sequence

0 HomR(R/Rx,N) HomR(R,N) HomR(R,N) Ext1R(R/Rx,N) 0.
(·x)∗ ω

By [ML63, page 73] it holds that if φ ∈ HomR(R,N), then ω(φ) is given by the extension

0 N N ⊕R/ { (φ(r),−rx) | r ∈ R } R/Rx 0
ιN π

where ιN (n) = (n, 0) and π((n, r)) = r. Now under the isomorphism of abelian groups

N
∼−→ HomR(R,N),

n 7→ (r 7→ rn),

φ(1)←[ φ,

we get an exact sequence

0 HomR(R/Rx,N) N N Ext1R(R/Rx,N) 0x· ω′

where ω′(n) is given by the extension

0 N N ⊕R/ { (rn,−rx) | r ∈ R } R/Rx 0.
ιN π

The claim follows.

Lemma 3.25. Let Z be a commutative ring and let R be a Z-algebra. Let a ∈ Z and
let x ∈ R be right regular. Let N be an R-module. Denote by

ξ : N → N/xN
∼−→ Ext1R(R/Rx,N)

the surjective homomorphism of abelian groups which is the concatenation of the natural
projection with the isomorphism from Lemma 3.24. Then for n ∈ N and r ∈ R/Rx[a]
it holds that

(δR/Rx,Na ◦ ξ)(n)(r) = r′n

where r′ ∈ R is the unique element such that ar = r′x.

Proof. This is an easy calculation. In the sequence ξ(n), (0, r) is a preimage of r. We
have

a · (0, r) = (0, ar) = (0, ar) + (r′n,−r′x) = (r′n, 0) = ιN (r
′n)

from which the claim follows by definition of δa.
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The explicit description of δ
R/Rx,N
a ◦ ξ and the fact that δ

R/Rx,N
a is surjective if and only

if δ
R/Rx,N
a ◦ξ is surjective will be important ingredients in the proof of the main theorem

of this section, which is the following.

Theorem 3.26. Let Z be a Dedekind domain with fraction field K, let A be a separable
K-algebra and let R be a maximal Z-order in A. Let a ∈ Z and let M and N be
finitely generated R-modules. Use the notation from Section 1.4. Then the following are
equivalent:

(i) δM,N
a,R is surjective.

(ii) For all i ∈ {1, . . . , c} and all maximal ideals p of Zi we have that either all

elementary invariants of (M̂tors)i,p or all elementary invariants of (N̂tors)i,p are
≥ vi,p(a)ei,p.

Proof. We split up the proof into six steps.

Step 1: Reduce to the case M torsion. If M is Z-torsionfree, then the domain and
codomain of δM,N

a,R are both zero, so δM,N
a,R is clearly surjective. Thus by compatibility of

δa with direct sums and by Proposition 3.9, we may from now on assume that M is a
torsion module.

Step 2: Reduce to the case Z complete discrete valuation ring, A central simple. By
naturality of δa we have that δM,N

a,R is surjective if and only if δMi,Ni

a,Ri
is surjective for all

i ∈ {1, . . . , c}. Let i ∈ {1, . . . , c}. Then by compatibility of δa with direct sums and by

Lemma 3.3 we have that δMi,Ni

a,Ri
is surjective if and only if δ

Mi[p
∞],Ni

a,Ri
is surjective for all

maximal ideals p of Zi. Let p be a maximal ideal of Zi. Then by [Wei94, Lemma 3.3.6],
the Zi-modules Ext1Ri

(Mi[p
∞], Ni) and HomRi(Mi[p

∞][a], Ni/aNi) are annihilated by a

power of p. Hence, by Lemmas 3.3 and 3.23 and Proposition 2.1 it holds that δ
Mi[p

∞],Ni

a,Ri

is surjective if and only if δ
M̂i,p,N̂i,p

a,R̂i,p
is surjective.

This means that to prove the equivalence we may assume that Z is a complete discrete
valuation ring and A is a central simple K-algebra. We denote by v the valuation on Z,
by π a uniformiser in Z and by p = (π) the maximal ideal of Z. We may assume that
a = πv(a). We have A ∼= Matl(D) for a unique integer l ∈ Z≥1 and division ring D with
centre K. The valuation v extends uniquely to D and we denote by vD = e(D/K)v the
associated normalised valuation. Write e := e(D/K). Denote by ∆ the unique maximal
Z-order in D. Let πD ∈ ∆ with vD(πD) = 1. We choose the isomorphism A ∼= Matl(D)
such that it carries R onto Matl(∆). So from now on we may assume that A = Matl(D)
and R = Matl(∆).

Step 3: Reduce to the case N torsion. We show that δM,N
a is surjective if N is torsionfree.

For this, by Proposition 3.15 we may assume that M =Mh = R/Rx for some h ∈ Z≥1,
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where x = diag(1, . . . , 1, πhD). Then by Lemma 3.25, δM,N
a is surjective if and only if the

map
δ̃ : N → HomR(R/Rx[π

v(a)], N/πv(a)N), n 7→ (r 7→ r′n),

is surjective, where r′ ∈ R is the unique element such that πv(a)r = r′x. By [Rei03,
Theorem 17.3], every left ideal of R is principal, so there is y ∈ R with Rx ≤ Ry ≤ R
such that R/Rx[πv(a)] = Ry/Rx = ⟨y⟩. Let s ∈ R such that x = sy. Note that since
x ∈ A× we also have y ∈ A× and s ∈ A×. It holds that

πv(a)y = πv(a)yx−1x = πv(a)s−1x

where πv(a)s−1 = πv(a)yx−1 ∈ R as πv(a)y ∈ Rx. So δ̃(n)(y) = πv(a)s−1n. Now let
φ ∈ HomR(R/Rx[π

v(a)], N/πv(a)N) and suppose φ(y) = nφ where nφ ∈ N . We need to

find n ∈ N such that πv(a)s−1n = nφ ∈ N/πv(a)N . We have

0 = φ(x) = sφ(y) = snφ ∈ N/πv(a)N,

so there is n ∈ N with snφ = πv(a)n. Since N is torsionfree, Lemma 3.1 shows that the
natural map

ι : N ↪→ K ⊗Z N = A⊗R N

provides an embedding of N into an A-module. It holds that

sι(nφ) = ι(snφ) = ι(πv(a)n) = πv(a)ι(n)

which implies
ι(nφ) = s−1sι(nφ) = s−1πv(a)ι(n) = ι(πv(a)s−1n)

as πv(a)s−1 ∈ R. Since ι is injective, it follows that nφ = πv(a)s−1n. Hence, δM,N
a is

surjective if N is torsionfree. So from now on we may assume that N is a torsion module.

Step 4: Reduce to the case M and N indecomposable and rewrite δ̃. To prove the
equivalence of (i) and (ii), by Proposition 3.15 it suffices to consider the caseM =Mh =
R/Rx and N = Nh′ = R/Rz for some h, h′ ∈ Z≥1, where x = diag(1, . . . , 1, πhD) and

z = diag(1, . . . , 1, πh
′
D ). We use the notation y, s, δ̃ from above; surjectivity of δM,N

a is

equivalent to surjectivity of δ̃. Note that by definition of e, there are units u′, u′′ ∈ ∆×

such that πv(a) = π
v(a)e
D u′ and πv(a) = u′′π

v(a)e
D . It is then easy to see that we may take

y = diag(1, . . . , 1, π
max(h−v(a)e,0)
D ).

Accordingly,

s = xy−1 = diag(1, . . . , 1, π
min(v(a)e,h)
D )

and
πv(a)s−1 = u′′π

v(a)e
D s−1 = u′′ diag(π

v(a)e
D , . . . , π

v(a)e
D , π

v(a)e−min(v(a)e,h)
D ).

Moreover, we have πv(a)(R/Rz) = (πv(a)R+Rz)/Rz, so

N/πv(a)N =
R/Rz

(πv(a)R+Rz)/Rz
∼=

R

πv(a)R+Rz
=

R

Rπ
v(a)e
D +Rz

.
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Now
Rπ

v(a)e
D +Rz = Matl(∆)π

v(a)e
D +Matl(∆)z = Matl(∆)z′

where
z′ = diag(1, . . . , 1, π

min(v(a)e,h′)
D ).

Notice also that we have an isomorphism R/Rs
∼−→ Ry/Rx, r 7→ ry. With this, state-

ment (i) is equivalent to surjectivity of the map

δ̃ : R/Rz → HomR(R/Rs,R/Rz
′), r 7→ (1 7→ πv(a)s−1r).

Step 5: Via δ̃, give explicit characterisation of (i) in terms of elements of ∆. Our
next aim is to explicitly characterise surjectivity of δ̃. To do so, we analyse the space
HomR(R/Rs,R/Rz

′). There is a bijection{
w ∈ R/Rz′

∣∣ sw = 0
}
→ HomR(R/Rs,R/Rz

′), w 7→ (1 7→ w).

It is easy to see from the explicit descriptions of s and z′ that for w = (wij) ∈ R =
Matl(∆) we have sw ∈ Rz′ if and only if

vD(wil) ≥ min(v(a)e, h′) for i = 1, . . . , l − 1,

vD(wll) ≥ min(v(a)e, h′)−min(v(a)e, h). (3.27)

The element in HomR(R/Rs,R/Rz
′) defined by such a w is in the image of δ̃ if and only

if there is r = (rij) ∈ R = Matl(∆) with πv(a)s−1r = w ∈ R/Rz′. Now

πv(a)s−1r − w = u′′


π
v(a)e
D r11 − w11 . . . π

v(a)e
D r1l − w1l

...
...

π
v(a)e
D rl−1,1 − wl−1,1 . . . π

v(a)e
D rl−1,l − wl−1,l

π
v(a)e−min(v(a)e,h)
D rl1 − wl1 . . . π

v(a)e−min(v(a)e,h)
D rll − wll

 ,

so there is such an r if and only if there are rij ∈ ∆ with

vD(π
v(a)e
D ril − wil) ≥ min(v(a)e, h′) for i = 1, . . . , l − 1,

vD(π
v(a)e−min(v(a)e,h)
D rll − wll) ≥ min(v(a)e, h′). (3.28)

Note that by the properties of w we may always choose ril = 0 for i = 1, . . . , l − 1
to satisfy the first set of equations. In conclusion, statement (i) is equivalent to the
following statement: For any wll ∈ ∆ satisfying (3.27) there is rll ∈ ∆ such that (3.28)
holds.

Step 6: Conclude using step 5. We now finally prove the equivalence of (i) and (ii).
Suppose that (ii) holds, that is, either h ≥ v(a)e or h′ ≥ v(a)e. Suppose first that
h ≥ v(a)e. If wll satisfies (3.27) we may simply take rll = wll. Now suppose that
h′ ≥ v(a)e. By the first case, we may assume that h < v(a)e. Then if wll satisfies (3.27),
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this means vD(wll) ≥ v(a)e − h, so there is w̃ll ∈ ∆ such that wll = π
v(a)e−h
D w̃ll. Now

clearly rll = w̃ll satisfies (3.28).

Conversely, suppose that (i) holds. Assume that statement (ii) fails, that is, h, h′ < v(a)e.

Consider wll := π
max(h′−h,0)
D ∈ ∆. This clearly satisfies (3.27) by our assumption, so there

is rll ∈ ∆ such that (3.28) holds. Note that

vD(π
v(a)e−h
D rll − π

max(h′−h,0)
D ) = max(h′ − h, 0),

which shows

h′ > max(h′ − h, 0) = vD(π
v(a)e−h
D rll − wll) ≥ min(v(a)e, h′) = h′,

a contradiction. So (ii) must hold.

Corollary 3.29. Let Z be a Dedekind domain with fraction field K, let A be a separable
K-algebra and let R be a maximal Z-order in A. Let a ∈ Z. Use the notation from
Section 1.4. If vi,p(a) ≤ 1 and ei,p = 1 for all i ∈ {1, . . . , c} and all maximal ideals p of

Zi, then δ
M,N
a,R is surjective for all finitely generated R-modules M and N .

Note that for a ∈ Z we have vi,p(a) ≤ 1 for all i ∈ {1, . . . , c} and all maximal ideals p of
Zi if and only if a has no square prime divisors in Z and Zi/Z is unramified at all prime
divisors of a in Z for all i ∈ {1, . . . , c}. Notice also that if A happens to be commutative,
then Ki = Ai for all i ∈ {1, . . . , c}, so that ei,p = 1 for all i ∈ {1, . . . , c} and all maximal
ideals p of Zi.

We close this section by recording the following special case of Theorem 3.26 for PIDs,
taking into account Remark 3.20.

Corollary 3.30. Suppose that Z is a PID. Let a ∈ Z and let M and N be finitely
generated Z-modules. Then the following are equivalent:

(i) δM,N
a,Z is surjective.

(ii) For all primes p | a, either the least power with which p occurs as an elementary
divisor of M is ≥ vp(a) or the least power with which p occurs as an elementary
divisor of N is ≥ vp(a) (if there is no such power, we take it to be ∞).

3.5 Cardinality Results for Ext Groups over Maximal Orders

We prove some results on the cardinality of certain Ext groups over maximal orders over
Dedekind domains that will be needed later on.
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Lemma 3.31. Let Z be a Dedekind domain such that Z/p is finite for every maximal
ideal p of Z. Let R be a Z-algebra that is finitely generated as a Z-module. Let M and N
be finitely generated R-modules and suppose that M or N is a Z-torsion module. Then
ExtnR(M,N) is finite for all n ∈ Z≥0.

Proof. Let n ∈ Z≥0. By [Rei03, Theorem 2.34], ExtnR(M,N) is a finitely generated Z-
module. But it is also a Z-torsion module by assumption and [Wei94, Lemma 3.3.6].
Hence, there are maximal ideals p1, . . . , pk of Z and positive integers r1, . . . , rk such that

ExtnR(M,N) ∼= Z/pr11 ⊕ · · · ⊕ Z/p
rk
k .

By assumption, |Z/prii | = |Z/pi|
ri is finite for all i, so ExtnR(M,N) is finite.

Proposition 3.32. Let Z be a Dedekind domain with fraction field K, let A be a sep-
arable K-algebra and let R be a maximal Z-order in A. Let M be a finitely generated
R-module that is a Z-torsion module and let N be a finite R-module. Then

|HomR(M,N)| =
∣∣Ext1R(M,N)

∣∣ .
Proof. By decomposing A into its simple components and using [Rei03, Theorem 10.5],
we can assume that A is simple. Moreover, by replacing K with the centre of A and Z
with its integral closure in the centre of A, we may assume that A is a central simple
K-algebra. By Lemma 3.3, we may assume that M is annihilated by the power of some
maximal ideal p of Z. Then by [Wei94, Lemma 3.3.6], the Z-module ExtnR(M,N) is also
annihilated by a power of p, for all n ∈ Z≥0. It follows that for all n ∈ Z≥0, Ext

n
R(M,N)

is naturally a Ẑp-module and we have

ExtnR(M,N) ∼= Ẑp ⊗Z ExtnR(M,N) ∼= Extn
Ẑp⊗ZR

(Ẑp ⊗Z M, Ẑp ⊗Z N)

as Ẑp-modules by Lemma 3.3 and Proposition 2.1. Now letting Kp denote the fraction

field of Ẑp, we have that Kp ⊗K A is a central simple Kp-algebra and Ẑp ⊗Z R is a

maximal Ẑp-order in Kp ⊗K A. Hence, we are reduced to proving the claim in the case
where Z is a complete discrete valuation ring and A is a central simple K-algebra, which
we are going to assume in the following.

By Proposition 3.12 we may further assume that M = R/Rx for some x ∈ R ∩ A×. In
this case, there is a short exact sequence

0 R R R/Rx 0·x

of R-modules. Applying the functor ExtR(−, N) yields an exact sequence

0 HomR(R/Rx,N) N N Ext1R(R/Rx,N) 0

of abelian groups. SinceN is finite, it follows that |HomR(R/Rx,N)| =
∣∣Ext1R(R/Rx,N)

∣∣
which finishes the proof.
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Remark 3.33. The statement above is false without the assumption thatM be a torsion
module: For any n ∈ Z we have HomZ(Z,Z/n) = Z/n, but Ext1Z(Z,Z/n) = 0. Also,
the statement is false without the assumption that N be finite: For any n ∈ Z we have
HomZ(Z/n,Z) = 0, but ExtZ(Z/n,Z) = Z/n.

For the proof of the final statement below, we follow the proof of [Wei94, Lemma 3.3.1],
which is the corresponding statement for Ext groups over Z.

Proposition 3.34. Let Z be a Dedekind domain with fraction field K, let A be a sep-
arable K-algebra and let R be a maximal Z-order in A. Let M and N be R-modules.
Then ExtnR(M,N) = 0 for all n ∈ Z≥2.

Proof. Since RMod has enough injectives, there is an injective R-module I and an in-
jective R-module homomorphism N ↪→ I. By [Rei03, Theorem 21.4], the ring R is
hereditary. Hence, by [Lam99, Theorem 3.22], the quotient module I/N is injective. Let
n ∈ Z≥2. Applying the functor ExtR(M,−) to the short exact sequence

0 N I I/N 0

yields an exact sequence

Extn−1
R (M, I/N) ExtnR(M,N) ExtnR(M, I).

From injectivity of I and I/N it follows that ExtnR(M,N) = 0.
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4 Locally Compact Modules and Pontryagin Duality

Pontryagin duality is an incredibly useful tool when studying locally compact Hausdorff
abelian groups. In our later considerations, we will find ourselves placed in two situations,
in which we want to apply duality to locally compact groups that also have a module
structure that we need to respect:

(1) As we will show, the Arakelov ray class group and related groups that we are in-
terested in are compact topological groups with a continuous ZG-module structure
for some finite group G. To avoid having to worry about the topology, we prefer
to work with the Pontryagin duals of these modules, which are discrete.

(2) As explained in the introduction, for our heuristic we will consider the good com-
ponents of the above duals, which are obtained from the latter by tensoring them
with a certain Z(S)-order R. In order to be able to relate the discrete R-modules
thus obtained to the original compact ZG-modules, we then want to dualise back.

Hence, it is necessary to discuss Pontryagin duality in the framework of locally compact
modules over a Z(S)-order. This is the purpose of the present chapter. Since it is no
additional work, in the first two subsections we will mostly work in the more general
setting of locally compact modules over a locally compact topological ring. In Section
4.1 we review key aspects of the classical duality theory and show that many of its results
are naturally compatible with continuous module structures. In Section 4.2 we discuss
duality for exact sequences. In the last subsection we specialise to locally compact
modules over a Z(S)-order and establish some useful results specific to this context. As
a basis for this, we give an explicit description of the Pontryagin dual of Z(S).

4.1 The Duality Theorem for LCA Modules

This section is mostly based on the classical theory of Pontryagin duality for locally
compact Hausdorff abelian groups as for example laid out in [HR79] or [Mor77], and on
the paper [Flo79], which discusses key aspects of duality for locally compact modules
over a locally compact topological ring. See also the related paper [Lev73], which deals
with duality for locally compact modules over a discrete commutative ring.

Let R be a locally compact topological ring. Note that in particular, discrete rings are
locally compact.

Proposition 4.1. LetM and N be topologial groups with N abelian. Then Homcts(M,N)
is an abelian topological group with respect to the compact-open topology and pointwise
addition of maps. Moreover, we have:

(i) If N is Hausdorff, then so is Homcts(M,N).
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(ii) If M is a topological R-module, then Homcts(M,N) is a topological Rop-module
with multiplication defined by (r.f)(m) := f(rm) for f ∈ Homcts(M,N), r ∈ Rop

and m ∈M .

Proof. See [Flo79, Proposition 3].

We recall the definition of the Pontryagin dual.

Definition 4.2. Let M be an abelian topological group. Then the Pontryagin dual of
M is M∨ := Homcts(M,R/Z).

By Proposition 4.1,M∨ is a Hausdorff abelian topological group, and ifM is a topological
R-module, then M∨ is a topological Rop-module.

Remark 4.3 ([Flo79, Section 4 and Theorem 6]). There is also a different perspective
on duality for a topological left R-module M with the dual of R as the character mod-
ule instead of R/Z. Analogously as in Proposition 4.1, the right R-module structure
of R induces a topological left R-module structure on R∨, allowing to consider the set
HomR,cts(M,R∨) of continuous left R-module homomorphisms, a Hausdorff abelian to-
pological group. Via the right R-module structure on R∨, it becomes a topological right
R-module, and one can show that there is a natural isomorphismM∨ ∼= HomR,cts(M,R∨)
of topological right R-modules.

The most powerful statements on duality are obtained for the following class of groups.

Definition 4.4. An LCA group is a Hausdorff locally compact abelian topological
group. An LCA R-module is an LCA group that is a topological R-module.

Note that if R is discrete, then an LCA group M is an LCA R-module if and only if the
maps M →M, m 7→ rm are continuous for all r ∈ R.

We will always write LCA groups and modules additively. Note that LCA groups are
the same as LCA Z-modules. Thus, the discussion below of duality for LCA R-modules
recovers the classical theory on LCA groups for R = Z.

It is clear that products, closed submodules and quotients by closed submodules of
LCA R-modules are again LCA R-modules. LCA R-modules together with continu-
ous R-module homomorphisms form a category which we will denote by RLCA. We
simply write LCA for ZLCA. Note that if M and N are LCA R-modules, then the set
Hom

RLCA(M,N) of continuous R-module homomorphisms from M to N is a subgroup
of Homcts(M,N) and therefore a Hausdorff abelian topological group with respect to
the subspace topology.

Proposition 4.5. Let M be an LCA R-module. Then M∨ is an LCA Rop-module.
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Proof. The dual M∨ is an LCA group by [HR79, Theorem 23.15] and a topological
Rop-module by Proposition 4.1.

We give some important examples of Pontryagin duals that will appear frequently.

Example 4.6 ([HR79, Example 23.27]). We have the following isomorphisms of LCA
groups:

Z ∼−→ (R/Z)∨, n 7→ (x 7→ nx),

R/Z ∼−→ Z∨, x 7→ (n 7→ nx),

R ∼−→ R∨, x 7→ (y 7→ xy).

Moreover, if M is a finite LCA group, then M ∼=M∨.

We also have a notion of dual for morphisms.

Definition 4.7. Let M and N be LCA R-modules. For φ ∈ Hom
RLCA(M,N) define

φ∨ : N∨ →M∨, f 7→ f ◦ φ,

which is an element of Hom
RopLCA(N

∨,M∨), see [HR79, Theorem 24.38].

The above definition evidently makes duality a contravariant functor RLCA→ RopLCA.
The main theorem on the duality functor is the following.

Theorem 4.8 (Pontryagin Duality). Let M be an LCA R-module. Then the map

M →M∨∨, m 7→ (f 7→ f(m))

is an isomorphism of LCA R-modules which is natural in M . In particular, duality

∨ : RLCA→ RopLCA

is an involutory anti-equivalence of categories.

Proof. See [HR79, Theorem 24.8] or [Mor77, Theorem 23] for the case R = Z. That the
map M →M∨∨ is R-linear is immediately verified.

Corollary 4.9. Let M and N be LCA R-modules. Then the map

Hom
RLCA(M,N)→ Hom

RopLCA(N
∨,M∨), φ 7→ φ∨

is an isomorphism of Hausdorff abelian topological groups.
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4.1.1 The Compact-Discrete Duality

Proposition 4.10 ([HR79, Theorem 23.17]). LetM be an LCA group. IfM is compact,
then M∨ is discrete. If M is discrete, then M∨ is compact.

We will later deal with LCA groups whose dual is not only discrete but also finitely
generated, and now provide a characterisation of such groups.

Definition 4.11. Let M be an LCA group. We say that M has no small subgroups if
there exists a neighbourhood of 0 that does not contain any nontrivial subgroup of M .

For a characterisation of groups with no small subgroups see [Mos67, Theorem 2.4].

Proposition 4.12. Let M be an LCA group. Then the following are equivalent:

(i) M is compact and has no small subgroups,

(ii) M∨ is discrete and finitely generated,

(iii) there is an isomorphism of LCA groups M ∼= F ⊕ (R/Z)n for some n ∈ Z≥0 and
a finite abelian group F ,

(iv) there is an isomorphism of LCA groups M0
∼= (R/Z)n for some n ∈ Z≥0, and the

quotient M/M0 is finite,

(v) M is a compact real abelian Lie group.

Moreover, any continuous group homomorphism between objects of the above type is also
a homomorphism of the associated Lie groups.

Proof. The equivalence of (i), (ii) and (iii) is [Mos67, Corollary 2 on page 366].

That (iv) implies (iii) follows from [Mos67, Theorem 3.2]. Suppose that (iii) holds.
Then the Lie group structure on F ⊕ (R/Z)n induces a Lie group structure on M , so (v)
holds. Moreover, any continuous group homomorphism between objects of the type in
(iii) must map the toral part into the toral part, as it is the connected component of the
identity. It follows from Corollary 4.9 and Example 4.6 that the morphism restricted to
the toral part is given by an n × n integer matrix and hence smooth, i.e. a Lie group
homomorphism. Hence, also the overall map is a Lie group homomorphism. This proves
the additional statement.

Finally, suppose that M is a compact real abelian Lie group. Then M0 is a compact
connected real abelian Lie group and thus by [Bum13, Proposition 15.3] there is an
isomorphism M0

∼= (R/Z)n for some n ∈ Z≥0. Moreover, the quotient M/M0 is both
compact and discrete, hence finite. This shows that (v) implies (iv) and finishes the
proof.
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4.1.2 Duality for Submodules and Quotient Modules

We collect some results on the duals of the connected component of the identity and of
certain torsion submodules. These will be derived from the following general result on
the duals of submodules and quotient modules.

Definition 4.13. Let M be an LCA group and let ∅ ̸= N ⊆M . We define

N⊥ :=
{
f ∈M∨ ∣∣ f(n) = 0 for all n ∈ N

}
and call it the annihilator of N in M∨.

The annihilator is a closed subgroup of M∨, cf. [HR79, Remark 23.24]. If M is an LCA
R-module and N is a closed submodule, then N⊥ is a closed submodule of M∨.

Proposition 4.14. Let M be an LCA R-module and let N ≤M be a closed submodule.
Then there are isomorphisms

(M/N)∨
∼−→ N⊥, f 7→ f ◦ π,

where π : M →M/N is the natural projection, and

M∨/N⊥ ∼−→ N∨, f 7→ f
∣∣
N

of LCA Rop-modules which are functorial in M .

Proof. [HR79, Theorems 23.25 and 24.11] state that the maps are isomorphisms of
LCA groups. Compatibility with the Rop-module structure and functoriality are easily
checked.

We derive consequences of the above proposition for some submodules of our interest by
computing annihilators.

Proposition 4.15. The following hold.

(i) Let M be a compact LCA group. Then (M0)
⊥ = (M∨)tors.

(ii) Let M be a discrete LCA group. Then (Mtors)
⊥ = (M∨)0.

Proof. See [HR79, Corollary 24.20].

Corollary 4.16. Let Z be a localisation of Z and suppose that R is a Z-order in some
finite-dimensional Q-algebra. Then the following hold:
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(i) Let M be a compact LCA R-module. Then there are isomorphisms

(M/M0)
∨ ∼−→ (M∨)tors, f 7→ f ◦ π,

where π : M →M/M0 is the natural projection, and

M∨/(M∨)tors
∼−→ (M0)

∨, f 7→ f
∣∣
M0

of discrete LCA Rop-modules which are functorial in M .

(ii) Let M be a discrete LCA R-module. Then there are isomorphisms

M∨/(M∨)0
∼−→ (Mtors)

∨, f 7→ (m 7→ f(m))

and
(M∨)0

∼−→ (M/Mtors)
∨, f 7→ (m 7→ f(m))

of compact LCA Rop-modules which are functorial in M .

Proof. Statement (i) is immediate from Propositions 4.14 and 4.15. Statement (ii) follows
from (i) using the duality isomorphism.

Proposition 4.17. Let M be an LCA R-module and let r ∈ R. Then (rM)⊥ = M∨[r]
and M [r]⊥ = rM∨, where rM∨ denotes the topological closure of rM∨.

Proof. One can do the same proof as in [HR79, Theorem 24.22].

Corollary 4.18. Let Z be a Dedekind domain and suppose that R is a Z-order in some
finite-dimensional algebra over the fraction field of Z. Let M be a finite LCA R-module
and let p ∈ Max(Z). Then the map

M∨[p∞]→M [p∞]∨, f 7→ f
∣∣
M [p∞]

is an isomorphism of finite LCA Rop-modules.

Proof. By Example 4.6 we have M ∼= M∨ as abelian groups. Write |M | = |M∨| =
pr11 · · · p

rk
k ⊆ Z with pi ∈ Max(Z). Since Z is a Dedekind domain, we can find zi ∈∏

j ̸=i p
rj
j with 1 = z1 + · · ·+ zk. Then ziM =M [p∞i ] and zi(M

∨) =M∨[p∞i ]. The map

M∨/(M∨[zi])→ zi(M
∨), f 7→ zif

clearly is an Rop-module isomorphism. Moreover, Propositions 4.14 and 4.17 give an
isomorphism

M∨/(M∨[zi])
∼−→ (ziM)∨, f 7→ f

∣∣
ziM

.

The concatenation

M∨[p∞i ] = zi(M
∨)

∼−→M∨/(M∨[zi])
∼−→ (ziM)∨ =M [p∞i ]∨

is the map from the claim.

56



We end this section with a result that shows that duality is compatible with isotypical
components.

Lemma 4.19. LetM be an LCA R-module. Suppose that R = R1×· · ·×Rn is a product
of locally compact topological rings and let M =M1⊕· · ·⊕Mn be the decomposition into
isotypical components.

Then each Mi is an LCA Ri-module. The natural isomorphism of LCA groups

(M1)
∨ ⊕ · · · ⊕ (Mn)

∨ ∼−→M∨,

(f1, . . . , fn) 7→
(
m1 + · · ·+mn 7→ f1(m1) + · · ·+ fn(mn)

)
is an Rop-homomorphism, and (Mi)

∨ lies in the block Rop
i . In particular, we have

isomorphisms

(Mi)
∨ ∼= (M∨)i,

fi 7→
(
m1 + · · ·+mn 7→ fi(mi)

)
f
∣∣
Mi
←[ f

of LCA Rop-modules.

Proof. We have that

Mi = {m ∈M | (r1, . . . , ri−1, 0, ri+1, . . . , rn)m = 0 for all rj ∈ Rj }
= {m ∈M | (1, . . . , 1, 0, 1, . . . , 1)m = 0 }

is a closed subgroup ofM and hence an LCA group. Clearly, multiplicationRi×Mi →Mi

is continuous, so Mi is an LCA Ri-module. It is easy to check that the isomorphism is
an Rop-module homomorphism. Since Mi lies in the block Ri, it follows immediately
that (Mi)

∨ lies in the block Rop
i .

4.2 Strict Homomorphisms and Extensions

Let again R be a locally compact ring. Related to our previous discussion of extensions
of abstract modules in Chapter 2, this section is concerned with extensions of LCA
R-modules and their interaction with the duality functor. The material is taken from
[Mos67] and [FG71], to which we also refer for further information and statements.

It turns out that in order to have nice behaviour under dualising, we need to restrict to
so-called strict homomorphisms.

Definition 4.20. Let M and N be LCA groups and let φ ∈ Homcts(M,N). We say
that φ is strict if it is an open map onto its image.
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This terminology is taken from [HS07]. It stems from a more general notion of strict
homomorphisms that can be defined in any additive category with kernels and cokernels
[Sch99]. Note that in the case of LCA groups, a strict homomorphism may also be
called a relatively open homomorphism; we prefer to use the notion strict as it is rooted
in homological algebra. Strict homomorphisms are called proper in [Mos67] and [FG71].
An important condition that ensures strictness is the following.

Proposition 4.21. Let M and N be LCA groups and let φ ∈ Homcts(M,N). If φ(M)
is closed and M is the countable union of compact sets, then φ is strict.

Proof. This is essentially the so-called open mapping theorem, see [Mos67, page 362].

Definition 4.22. A sequence M
φ−→ N

ψ−→ L of LCA R-modules and continuous R-
module homomorphisms is called exact if imφ = kerψ. We say that the sequence is
strictly exact if it is exact and both φ and ψ are strict.

Crucially, strictly exact sequences behave well under dualising.

Proposition 4.23 ([Mos67, Theorem 2.1]). Let M , N and L be LCA R-modules. If

M
φ−→ N

ψ−→ L is a strictly exact sequence, then also L∨ ψ∨
−−→ N∨ φ∨

−−→ M∨ is strictly
exact.

We now discuss extensions of LCA R-modules. Note that fibre products and pushouts
of strict morphisms of LCA R-modules exist, cf. [FG71, Proposition 2.5].

Definition 4.24. Let M and N be LCA R-modules.

(a) An extension of M by N is a short strictly exact sequence 0→ N → L→M → 0
of LCA R-modules.

(b) We say that two extensions 0→ N → L→M → 0 and 0→ N → L′ →M → 0 of
M by N are equivalent if there is φ ∈ Hom

RLCA(L,L
′) that makes the diagram

0 N L M 0

0 N L′ M 0

φ

commute. We denote by E
RLCA(M,N) the set of equivalence classes of extensions

of M by N .

(c) The Baer sum of extensions of M by N is defined as in Definition 2.3.

We remark that the map φ is bijective by the 5-Lemma and is strict by [FG71, Corollary
2.2], so it is necessarily an isomorphism of LCA R-modules.
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Proposition 4.25. Let M and N be LCA R-modules. Then E
RLCA(M,N) forms an

abelian group with respect to Baer sum, and we have an additive functor

E
RLCA(−,−) : RLCA

op × RLCA→ Ab .

Moreover, Pontryagin duality induces a natural isomorphism

E
RLCA(M,N)

∼−→ E
RopLCA(N

∨,M∨), Θ 7→ Θ∨.

Proof. This follows as in [FG71, Section 2].

Remark 4.26.

(a) Let M and N be LCA R-modules. If 0 → N → L → M → 0 is a short strictly
exact sequence in which L is just a topological R-module, then L is automatically
locally compact by [HR79, Theorem 5.25]. Moreover, by loc. cit., if M and N
are both compact, then so is L. Dually, using Propositions 4.10 and 4.23, if M
and N are discrete, then so is L. In particular, if M and N are discrete, then
E

RLCA(M,N) = Ext1R(M,N).

(b) In the case R = Z, one can also homologically define Ext functors as derived
functors of Hom on a domain which is slightly smaller than LCAop× LCA and
prove an analogue of Proposition 2.5, see [Mos67, Section VI].

4.3 The Pontryagin Dual of Z(S)

Throughout this section, let S be a nonempty subset of the union of {0} and the set
of rational primes. We consider Z(S) with the discrete topology. Moreover, if R is a
Z(S)-order in some finite-dimensional Q-algebra, then we also consider any R-lattice –
being isomorphic to Zn(S) as a Z(S)-module for some n – with the discrete topology.

The first two subsections are concerned with determining the Pontryagin dual of Z(S).
On the two ends of the spectrum, the Pontryagin duals are well-known: The Pontryagin
dual of Z is R/Z (see Example 4.6), and the Pontryagin dual of Q is AQ/Q, where
AQ denotes the rational adeles (see [CF67, Theorem XV.4.1.4], or [Con] for a more
direct proof). It has been observed in [CEW97, Section 3] that the latter isomorphism
generalises to Z(S) for any S in a straight forward manner. Since we will later need the
explicit description of the isomorphism between Z(S) and its dual, and for completeness
and the convenience of the reader, we provide a detailed account of the construction with
all necessary statements and proofs adapted from the case S = {0}. The proofs and
explicit description of the isomorphism have been omitted in [CEW97], which otherwise
contains all the main results from the first two subsections. Our exposition is largely
based on [CF67, Chapter XV] and [Con].

In the final two subsections we use the theory about the dual of Z(S) to establish an
isomorphism between certain Ext and Hom groups over a Z(S)-algebra and a result on
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the tensor product of a lattice over a Z(S)-order with a compact LCA Z(S)-module, both
of which will be useful tools later on.

4.3.1 A Generalisation of the Rational Adeles

Definition 4.27. For x ∈ Qp denote by {x}p the p-adic fractional part of x. Explicitly,
if

x = b−mp
−m + · · ·+ b−1p

−1 +
∞∑
k=0

bkp
k with m ∈ Z≥0 and 0 ≤ bi < p,

then {x}p = b−mp
−m + · · ·+ b−1p

−1.

It has the following properties:

Lemma 4.28. Let x, y ∈ Qp and let w ∈ Q. Then:

(i) x− {x}p ∈ Zp,

(ii) {x}p = 0 if and only if x ∈ Zp,

(iii) {x}p + {y}p − {x+ y}p ∈ Z,

(iv) w −
∑

p<∞ {w}p ∈ Z.

Proof. This is easily verified. Details can be found for example in [Con].

Definition 4.29. Define
A(S) :=

∏′

p/∈S

Qp,

where p runs over rational primes and∞, and where the restricted product is taken with
respect to the subrings Zp for p <∞ and R for p =∞.

With slightly different notation and S swapped with its complement in the set of rational
primes, this definition is a special case of [CEW97, Definition 3.1] for k = Q. Note that
if S is the set of all rational primes, then A(S) = R, and if S = {0}, then A(S) = AQ. So
A(S) can be thought of as a generalisation of the rational adeles. We next show that it
has analogous properties.

Lemma 4.30. It holds that

A(S) = Z(S) +

(
[0, 1)×

∏
p/∈S
p<∞

Zp

)
,

where the sum is taken inside A(S). Moreover, the expression of an element of A(S) as
the sum of two elements as given by the right hand side is unique.
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Proof. Let a ∈ A(S). Let T be the finite set of primes with ap /∈ Zp for p ∈ T . Then
r :=

∑
p∈T {ap}p ∈ Z(S) and a−r ∈ R×

∏
p/∈S,p<∞ Zp. It follows that a−(r+⌊a∞−r⌋) ∈

[0, 1)×
∏
p/∈S,p<∞ Zp with r + ⌊a∞ − r⌋ ∈ Z(S) which proves the decomposition of A(S).

To show uniqueness, let b ∈ Z(S)∩
(
[0, 1)×

∏
p/∈S,p<∞ Zp

)
. Then vp(b) ≥ 0 for all primes

p, which gives b ∈ Z. But then b ∈ [0, 1) forces b = 0.

Proposition 4.31. A(S) is a locally compact Hausdorff topological ring. Moreover, Z(S)

is discrete in A(S) and the quotient A(S)/Z(S) is compact.

Proof. That A(S) is a locally compact and Hausdorff topological ring follows exactly as
for the rational adeles, cf. [CF67, Section II.14]. To show that Z(S) is discrete in A(S),
consider the open set

U := (−1, 1)×
∏
p/∈S
p<∞

Zp ⊆ A(S).

If a ∈ U ∩ Z(S), then vp(a) ≥ 0 for all primes p, so a ∈ Z. But also a ∈ (−1, 1), whence
a = 0 and so U ∩ Z(S) = {0}. Discreteness follows. Finally, Lemma 4.30 shows that
A(S)/Z(S) is the image of the compact set [0, 1] ×

∏
p/∈S,p<∞ Zp under the projection

A(S) → A(S)/Z(S) and therefore itself compact.

4.3.2 The Pontryagin Duals of A(S) and Z(S)

Definition 4.32. For p a rational prime, we define

χp : Qp → R/Z, x 7→ −{x}p,

and we further put
χ∞ : R→ R/Z, x 7→ x.

For a ∈ A(S) we define

χa : A(S) → R/Z, b 7→
∑
p/∈S

χp(apbp) = a∞b∞ −
∑
p/∈S
p<∞

{apbp}p.

Theorem 4.33. The map

A(S) → A∨
(S), a 7→ (b 7→ χa(b))

is an isomorphism of LCA Z(S)-modules.
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Proof. For p ≤ ∞, [CF67, Theorem XV.2.1.1] shows that the map

Qp → Q∨
p , y 7→ (x 7→ χp(xy))

is an isomorphism. It follows easily from Lemma 4.28 that it maps Zp onto Z⊥
p for

p <∞. Then [CF67, Theorem XV.3.2.1] yields the claim.

Theorem 4.34. The map

A(S)/Z(S) → Z∨
(S), a 7→ χa

∣∣
Z(S)

is an isomorphism of compact LCA Z(S)-modules. In particular, we have a short strictly
exact sequence of LCA Z(S)-modules

0 Z(S) A(S) Z∨
(S) 0.

Proof. Denote by α : A(S) → A∨
(S) the isomorphism from Theorem 4.33. In view of the

second isomorphism in Proposition 4.14, it only remains to show that α(Z(S)) = Z⊥
(S).

Let a, z ∈ Z(S). Then by Lemma 4.28 (iv) and (ii) we have

α(a)(z) = χa(z) = az −
∑
p/∈S
p<∞

{az}p =
∑
p∈S
{az}p = 0

which shows α(Z(S)) ⊆ Z⊥
(S). For the converse, we first consider the factor group

α−1(Z⊥
(S))/Z(S) which is a subgroup of A(S)/Z(S). By Proposition 4.31, A(S)/Z(S) is

compact. Hence, by Propositions 4.14 and 4.10, Z⊥
(S) is discrete, which implies that

also α−1(Z⊥
(S))/Z(S) is discrete. In particular, α−1(Z⊥

(S))/Z(S) is a closed subgroup of

the compact group A(S)/Z(S) and therefore also compact. Being compact and discrete,

α−1(Z⊥
(S))/Z(S) must be finite. Now let f ∈ Z⊥

(S). Then there is n ∈ Z with nf ∈ α(Z(S)),

so there is a ∈ Z(S) with nf = α(a). For b ∈ A(S) it holds that

f(b) = f
(
n · b

n

)
= nf

( b
n

)
= α(a)

( b
n

)
= χa

( b
n

)
= χ a

n
(b) = α

(a
n

)
(b),

giving f = α
(
a
n

)
. Let q ∈ S and let b :=

∏
p̸=q p

vp(n) ∈ Z. Then using Lemma 4.28 (iv)
and (ii) we have

0 = f(b) = χ a
n
(b) =

∑
p∈S

{
ab

n

}
p

=
∑
p∈S

{
a

qvq(n)

}
p

=

{
a

qvq(n)

}
q

.

Hence,
{

a
qvq(n)

}
q
∈ Z and Lemma 4.28 (i) gives a

qvq(n) ∈ Zq. This means that vq(
a
n) ≥ 0

and therefore a
n ∈ Z(S), which yields f = α

(
a
n

)
∈ α(Z(S)), as desired.
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Note that if S is the set of all rational primes, then we recover the isomorphism R/Z ∼−→
Z∨ from Example 4.6.

Remark 4.35. By adapting the arguments in [Con], one can also give an elementary
proof of Theorem 4.34 which does not make use of the Pontryagin duality theorem.

4.3.3 An Isomorphism between Ext and Hom Groups

Let R be a Z(S)-algebra. In this section, we prove that for a finite R-module M
and a Z(S)-torsionfree R-module N there is a natural isomorphism of abelian groups

Ext1R(M,N) ∼= HomR(M,N ⊗Z(S)
A(S)/Z(S)). This generalises the corresponding result

from [BP25, page 13] for the case R = Z(S) = Z.

We start by specialising to extensions and homomorphisms over Z and below use the
construction from [BP25] to build an isomorphism via group cohomology. By tracing all
the maps occurring in the cohomological argument, we will then be able to upgrade this
isomorphism to an isomorphism between the respective Ext and Hom groups over R.

Remark 4.36. LetM be a finite abelian group and let N be a torsionfree Z(S)-module.
We recall some statements from group cohomology. Denote by Ec(M,N) the set of
equivalence classes of central extensions of M by N , that is, of extensions

0 N L M 0

where L is a group (not necessarily abelian) and N is central in L. With slight abuse of
notation, we will write L additively; this is justified as later on the group L will always
be abelian. Regard N as an M -module with trivial action. It is well-known that there
is a bijection Ec(M,N) ←→ H2(M,N), cf. [Bro82, Theorem IV.3.12]. It is given as
follows. Suppose that an equivalence class of central extensions is represented by

0 N L M 0.α β

Pick a set-theoretic map s : M → L with βs = idM and s(0) = 0. Then the map

M ×M → N, (a, b) 7→ α−1(s(a) + s(b)− s(a+ b))

is a normalised 2-cocycle (that is, a 2-cocycle that maps (0, 0) to 0) and hence represents
an element of H2(M,N). Conversely, any element of H2(M,N) can be represented by
a normalised 2-cocycle χ : M ×M → N . Define Lχ := N ×M , with group operation

(x, a) + (y, b) := (x+ y + χ(a, b), a+ b)

for x, y ∈ N and a, b ∈ M . Then a representative for the image of the class of χ in
Ec(M,N) is given by the central extension

0 N Lχ M 0
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where the left hand map is x 7→ (x, 0) and the right hand map is (x, a) 7→ a. Moreover,
the set Ec(M,N) is an abelian group under Baer sum, and the above bijection is a group
isomorphism, cf. [ML63, Exercise IV.4.7].

Construction 4.37. Let M be a finite abelian group and let N be a torsionfree Z(S)-

module. It is clear that the map Ext1Z(M,N) → Ec(M,N) that sends a class of ex-
tensions represented by 0 → N → L → M → 0 to the class of central extensions
represented by 0 → N → L → M → 0 is an injective group homomorphism. By
[Bro82, Exercise IV.3.8], the commutator pairing gives rise to a group homomorphism
Ec(M,N)→ HomZ(

∧2M,N), and it is easy to see that the kernel of this homomorphism
is the image of Ext1Z(M,N) in Ec(M,N). Moreover, it follows from [Bro82, Exercise
V.6.5] that the group homomorphism Ec(M,N)→ HomZ(

∧2M,N) is surjective. Thus,
there is a short exact sequence

0 Ext1Z(M,N) Ec(M,N) HomZ(
∧2M,N) 0.

Since
∧2M is finite and N is torsion-free, the right hand term of the above sequence

is zero, so that the left hand map is an isomorphism. This also implies that in every
central extension of M by N , the middle group is abelian, and that for all normalised
2-cocycles χ : M ×M → N we have χ(a, b) = χ(b, a) for all a, b ∈M , which will be used
below.

So far we have achieved isomorphisms Ext1Z(M,N) ∼= Ec(M,N) ∼= H2(M,N). Now since
N is Z(S)-torsionfree, it is a flat Z(S)-module, and so there is a short exact sequence

0 N N ⊗Z(S)
A(S) N ⊗Z(S)

A(S)/Z(S) 0.ι π

Again regarding the modules as trivial M -modules, the long exact cohomology sequence
associated to the above exact sequence gives

· · · H1(M,N ⊗Z(S)
A(S)) H1(M,N ⊗Z(S)

A(S)/Z(S))

H2(M,N) H2(M,N ⊗Z(S)
A(S)) · · · .

δ

Since multiplication by |M | is an automorphism of N ⊗Z(S)
A(S), it follows from [CF67,

Corollary 1 on page 105] that Hq(M,N ⊗Z(S)
A(S)) = 0 for all q ∈ Z≥1. Hence, δ is

an isomorphism. Finally, since we regard N ⊗Z(S)
A(S)/Z(S) as a trivial M -module, we

have H1(M,N ⊗Z(S)
A(S)/Z(S)) = HomZ(M,N ⊗Z(S)

A(S)/Z(S)). In summary, we have

established an isomorphism Ext1Z(M,N) ∼= HomZ(M,N ⊗Z(S)
A(S)/Z(S)).

In order to be able to trace all intermediate isomorphisms occurring above for the upgrade
to R-extensions and R-homomorphisms, we next give a description of δ and its inverse.
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Lemma 4.38. Use the notation from Construction 4.37.

(i) The connecting homomorphism δ : H1(M,N⊗Z(S)
A(S)/Z(S))→ H2(M,N) is given

as follows: Given a group homomorphism φ : M → N ⊗Z(S)
A(S)/Z(S), choose a

set-theoretic lift φ̃ : M → N ⊗Z(S)
A(S) with φ̃(0) = 0. Then

χφ : M ×M → N, (a, b) 7→ ι−1(φ̃(a) + φ̃(b)− φ̃(a+ b))

is a normalised 2-cocycle, and δ(φ) is given by the class of χφ.

(ii) The map δ−1 : H2(M,N) → H1(M,N ⊗Z(S)
A(S)/Z(S)) is given as follows: Let

χ : M ×M → N be a normalised 2-cocycle. Then

φχ : M → N ⊗Z(S)
A(S)/Z(S), a 7→

|M |−1∑
k=1

χ(a, ka)⊗ 1

|M |
.

is a group homomorphism and the image of the class of χ under δ−1 is given by
φχ.

Proof. Claim (i) is standard, cf. [Wei94, Addendum 1.3.3]. To prove (ii), let χ : M ×
M → N be a normalised 2-cocycle. It is clear that φχ+χ′ = φχ + φχ′ . If χ is a
normalised 2-coboundary, then there is a (set) map θ : M → N with θ(0) = 0 such that
χ(a, b) = θ(a) + θ(b)− θ(a+ b) for all a, b ∈M . It follows that

φχ(a) =

|M |−1∑
k=1

θ(a) + θ(ka)− θ((k + 1)a)⊗ 1

|M |

=
(
|M | θ(a)− θ(|M | a)

)
⊗ 1

|M |
= θ(a)⊗ 1

= 0

for any a ∈M . Hence, χ 7→ φχ is a well-defined map on H2(M,N). We next show that
φχ is a group homomorphism, that is, φχ ∈ H1(M,N ⊗Z(S)

A(S)/Z(S)). To this end, let
a, b ∈M . We first investigate the expression

Dχ,k(a, b) := χ(a, ka) + χ(b, kb)− χ(a+ b, k(a+ b))

for k ∈ Z>0. We will rewrite it using the 2-cocycle identity which reads

χ(m1,m2) = χ(m2,m3) + χ(m1,m2 +m3)− χ(m1 +m2,m3)

for m1,m2,m3 ∈M . Applying it with m1 = a, m2 = b, m3 = k(a+ b) gives

χ(a, b) = χ(b, k(a+ b)) + χ(a, ka+ (k + 1)b)− χ(a+ b, k(a+ b)),
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whence

Dχ,k(a, b) = χ(a, ka) + χ(b, kb) + χ(a, b)− χ(b, k(a+ b))− χ(a, ka+ (k + 1)b).

The 2-cocycle identity with m1 = a, m2 = ka, m3 = (k + 1)b gives

χ(a, ka) = χ(ka, (k + 1)b) + χ(a, ka+ (k + 1)b)− χ((k + 1)a, (k + 1)b),

whence

Dχ,k(a, b) = χ(ka, (k + 1)b)− χ((k + 1)a, (k + 1)b) + χ(b, kb) + χ(a, b)− χ(b, k(a+ b)).

The 2-cocycle identity with m1 = ka, m2 = b, m3 = kb gives

χ(ka, b) = χ(b, kb) + χ(ka, (k + 1)b)− χ(ka+ b, kb),

whence

Dχ,k(a, b) = χ(ka, b) + χ(ka+ b, kb)− χ((k + 1)a, (k + 1)b) + χ(a, b)− χ(b, k(a+ b)).

Finally, the 2-cocycle identity with m1 = b, m2 = ka, m3 = kb gives

χ(b, ka) = χ(ka, kb) + χ(b, k(a+ b))− χ(ka+ b, kb),

whence

Dχ,k(a, b) = χ(ka, b)− χ(b, ka) + χ(ka, kb)− χ((k + 1)a, (k + 1)b) + χ(a, b).

Now as remarked above, we have χ(ka, b)− χ(b, ka) = 0 which gives

Dχ,k(a, b) = χ(a, b) + χ(ka, kb)− χ((k + 1)a, (k + 1)b). (4.39)

It follows that

φχ(a) + φχ(b)− φχ(a+ b) =

|M |−1∑
k=1

Dχ,k(a, b)⊗
1

|M |

=
(
|M |χ(a, b)− χ(|M | a, |M | b)

)
⊗ 1

|M |
= χ(a, b)⊗ 1

= 0

which shows that φχ is a group homomorphism. Thus we get a well-defined map

H2(M,N)→ H1(M,N ⊗Z(S)
A(S)/Z(S)), [χ] 7→ φχ.

We verify that this is precisely δ−1. Starting with a class [χ] ∈ H2(M,N) represented
by a normalised 2-cocycle χ : M ×M → N , we have to show that δ(φχ) = [χ]. It is clear
that

φ̃χ : M → N ⊗Z(S)
A(S), a 7→

|M |−1∑
k=1

χ(a, ka)⊗ 1

|M |
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is a lift of φχ with φ̃χ(0) = 0. Using (4.39) again, we have

ι−1(φ̃χ(a) + φ̃χ(b)− φ̃χ(a+ b)) = ι−1

|M |−1∑
k=1

Dχ,k(a, b)⊗
1

|M |


= ι−1 (χ(a, b)⊗ 1)

= χ(a, b)

for a, b ∈M , whence δ(φχ) = [χ]. Conversely, suppose that φ : M → N ⊗Z(S)
A(S)/Z(S)

is a group homomorphism. Let φ̃ : M → N ⊗Z(S)
A(S) be a lift of φ with φ̃(0) = 0. Then

for a ∈M we have

|M |−1∑
k=1

χφ(a, ka)⊗
1

|M |
= ι−1

|M |−1∑
k=1

φ̃(a) + φ̃(ka)− φ̃((k + 1)a)

⊗ 1

|M |

= ι−1 (|M | φ̃(a))⊗ 1

|M |
.

Now it holds that

ι−1 (|M | φ̃(a))⊗ 1 = ι
(
ι−1 (|M | φ̃(a))

)
= |M | φ̃(a)

which means that

φ̃(a) = ι−1 (|M | φ̃(a))⊗ 1

|M |
and therefore

φ(a) = ι−1 (|M | φ̃(a))⊗ 1

|M |
=

|M |−1∑
k=1

χφ(a, ka)⊗
1

|M |
.

We conclude that the map H2(M,N)→ H1(M,N⊗Z(S)
A(S)/Z(S)) given above is indeed

δ−1.

We now upgrade the isomorphisms from Construction 4.37 to R-extensions and R-
homomorphisms.

Construction 4.40. Let R be a Z(S)-algebra. Let M be a finite R-module and let N
be an R-module that is Z(S)-torsionfree. We define a map

Ψ: Ext1R(M,N)→ HomR(M,N ⊗Z(S)
A(S)/Z(S))

as follows: Let

0 N L M 0α β
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be an extension of R-modules representing a class Θ ∈ Ext1R(M,N). Pick a set-theoretic
map s : M → L with βs = idM and s(0) = 0. Define

χ : M ×M → N, (a, b) 7→ α−1(s(a) + s(b)− s(a+ b))

and

φ : M → N ⊗Z(S)
A(S)/Z(S), a 7→

|M |−1∑
k=1

χ(a, ka)⊗ 1

|M |
= α−1(|M | s(a))⊗ 1

|M |
.

By Remark 4.36, Construction 4.37 and Lemma 4.38, the map φ is a group homo-
morphism and depends neither on the choice of section s, nor on the choice of repres-
entative for Θ. We show that φ is in fact an R-module homomorphism. To this end, let
a ∈M and r ∈ R. Then

φ(ra)− rφ(a) =
(
α−1(|M | s(ra))− rα−1(|M | s(a))

)
⊗ 1

|M |

= α−1 (|M | s(ra)− |M | rs(a))⊗ 1

|M |
= α−1 (s(ra)− rs(a))⊗ 1

= 0

where we crucially used that α is an R-module homomorphism and that s(ra)− rs(a) ∈
kerβ = imα. We may thus define Ψ(Θ) := φ ∈ HomR(M,N ⊗Z(S)

A(S)/Z(S)).

We furthermore define a map

Ψ′ : HomR(M,N ⊗Z(S)
A(S)/Z(S))→ Ext1R(M,N)

as follows: Let φ ∈ HomR(M,N ⊗Z(S)
A(S)/Z(S)). Choose a set-theoretic lift φ̃ : M →

N⊗Z(S)
A(S) of φ with φ̃(0) = 0. Since N is a flat Z(S)-module, there is an exact sequence

0 N N ⊗Z(S)
A(S) N ⊗Z(S)

A(S)/Z(S) 0ι π

of R-modules. Now define Lφ̃ := N ×M with group operation

(x, a) + (y, b) :=
(
x+ y + ι−1(φ̃(a) + φ̃(b)− φ̃(a+ b)), a+ b

)
for x, y ∈ N and a, b ∈ M . Then by Remark 4.36 and Construction 4.37, (Lφ̃,+) is an
abelian group and we have an extension

Θφ̃ : 0 N Lφ̃ M 0

of abelian groups, where the left hand map is x 7→ (x, 0) and the right hand map is
(x, a) 7→ a. We now define an R-module structure on Lφ̃. Since π and φ are R-module

68



homomorphisms, we have rφ̃(a) − φ̃(ra) ∈ kerπ = im ι for all a ∈ M and r ∈ R. We
may thus define

r · (x, a) :=
(
rx+ ι−1(rφ̃(a)− φ̃(ra)), ra

)
for r ∈ R and (x, a) ∈ Lφ̃. It is easy to check that this defines an R-module structure
on Lφ̃. The extension Θφ̃ hence is an extension of R-modules. Now suppose that
φ̂ : M → N⊗Z(S)

A(S) is another lift of φ with φ̂(0) = 0. Then φ̃(a)− φ̂(a) ∈ kerπ = im ι
for all a ∈M . Define a map

η : Lφ̃ → Lφ̂, (x, a) 7→
(
x+ ι−1(φ̃(a)− φ̂(a)), a

)
.

Then for (x, a), (y, b) ∈ Lφ̃ and r ∈ R we have

η ((x, a) + (y, b)) = η
(
x+ y + ι−1 (φ̃(a) + φ̃(b)− φ̃(a+ b)) , a+ b

)
=
(
x+ y + ι−1(φ̃(a) + φ̃(b)− φ̂(a+ b)), a+ b

)
=
(
x+ ι−1(φ̃(a)− φ̂(a)), a

)
+
(
y + ι−1(φ̃(b)− φ̂(b)), b

)
= η(x, a) + η(y, b)

as well as

η (r(x, a)) = η
(
rx+ ι−1(rφ̃(a)− φ̃(ra)), ra

)
=
(
rx+ ι−1(rφ̃(a)− φ̂(ra)), ra

)
= r

(
x+ ι−1(φ̃(a)− φ̂(a)), a

)
= rη(x, a)

Hence, η is an R-module homomorphism. Moreover, it is clear that the diagram

0 N Lφ̃ M 0

0 N Lφ̂ M 0

η

commutes. This shows that the extensions Θφ̃ and Θφ̂ are equivalent which means that
the assignment Ψ′(φ) := Θφ̃ ∈ Ext1R(M,N) is well-defined.

Proposition 4.41. Let R be a Z(S)-algebra. Let M be a finite R-module and let N be
an R-module that is Z(S)-torsionfree. Then the maps

Ext1R(M,N) HomR(M,N ⊗Z(S)
A(S)/Z(S))

Ψ

Ψ′

from Construction 4.40 are group homomorphisms and inverse to each other. Moreover,
Ψ and Ψ′ are natural in M and N .
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Proof. Note that Ψ is the concatenation of the maps

Ext1R(M,N)→ Ext1Z(M,N)
∼−→ HomZ(M,N ⊗Z(S)

A(S)/Z(S))

where the right hand map is the isomorphism from Construction 4.37. It follows that Ψ
is a group homomorphism. Furthermore, Remark 4.36, Construction 4.37 and Lemma
4.38 give that Ψ ◦Ψ′ = id.

We now show that Ψ′ ◦Ψ = id. Suppose that

Θ: 0 N L M 0α β

is an extension of R-modules. Pick a set-theoretic map s : M → L with βs = idM and
s(0) = 0. Define

χ : M ×M → N, (a, b) 7→ α−1(s(a) + s(b)− s(a+ b)),

so that

φ := Ψ(Θ): M → N ⊗Z(S)
A(S)/Z(S),

a 7→
|M |−1∑
k=1

χ(a, ka)⊗ 1

|M |
= α−1(|M | s(a))⊗ 1

|M |
.

Then clearly

φ̃ : M → N ⊗Z(S)
A(S), a 7→ α−1(|M | s(a))⊗ 1

|M |
is a lift of φ with φ̃(0) = 0. Recall the exact sequence

0 N N ⊗Z(S)
A(S) N ⊗Z(S)

A(S)/Z(S) 0.ι π

As we have shown in the proof of Lemma 4.38, it holds that

ι−1(φ̃(a) + φ̃(b)− φ̃(a+ b)) = χ(a, b)

for all a, b ∈ N . Moreover, analogously as in Construction 4.40 one sees that

rφ̃(a)− φ̃(ra) = α−1(rs(a)− s(ra))⊗ 1.

Then by definition, Ψ′(Ψ(Θ)) is given by the extension

0 N Lφ̃ M 0

where Lφ̃ = N ×M is an R-module with respect to the operations

(x, a) + (y, b) = (x+ y + χ(a, b), a+ b) ,

r(x, a) =
(
rx+ α−1(rs(a)− s(ra)), ra

)
,
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for (x, a), (y, b) ∈ Lφ̃ and r ∈ R. Now define

η : Lφ̃ → E, (x, a) 7→ α(x) + s(a).

It is immediate that η is an R-module homomorphism and that the diagram

0 N Lφ̃ M 0

0 N E M 0

η

α β

commutes. We conclude that Ψ′(Ψ(Θ)) = Θ. Finally, it is a straightforward calculation
to check naturality of Ψ and Ψ.

4.3.4 Tensor Products of Lattices with Compact Modules

Inspired by [BJL24, Section 2.1], we establish an isomorphism for the tensor product of
a lattice over a Z(S)-order with a compact LCA Z(S)-module. We will frequently apply
it to the expression N ⊗Z(S)

A(S)/Z(S) from the previous subsection.

Proposition 4.42. Let R be a Z(S)-order in some finite-dimensional Q-algebra (as usual
regarded with the discrete topology). LetM be an R-lattice and let n = rkZ(S)

M . Let C be
a compact LCA Z(S)-module. Topologise M⊗Z(S)

C via an isomorphism M⊗Z(S)
C ∼= Cn

obtained by choosing a Z(S)-basis of M .

Then M ⊗Z(S)
C is a compact LCA R-module and the topology is independent of the

chosen isomorphism. Regarding HomZ(S)
(M,C∨) as a discrete Rop-module as in Propo-

sition 4.1, there is an isomorphism of compact LCA R-modules

M ⊗Z(S)
C

∼−→ HomZ(S)
(M,C∨)∨, m⊗ c 7→

(
φ 7→ φ(m)(c)

)
which is natural inM . In particular, there is an isomorphism of compact LCA R-modules

M ⊗Z(S)
A(S)/Z(S)

∼−→ (M∗)∨, m⊗ a 7→
(
f 7→ χa(f(m))

)
which is natural in M .

Proof. Let m1, . . . ,mn ∈ M be a Z(S)-basis for M . Then we have an isomorphism of
Z(S)-modules

α : M ⊗Z(S)
C → Cn,

(z1m1 + · · ·+ znmn)⊗ c 7→ (z1c, . . . , znc),

(m1 ⊗ c1) + · · ·+ (mn ⊗ cn)←[ (c1, . . . , cn).

If (m′
1, . . . ,m

′
n) is a different basis for M with corresponding isomorphism α′ : M ⊗Z(S)

C → Cn and we write mi =
∑

j aijm
′
j with aij ∈ Z(S) and A = (aij), then

α′ ◦ α−1(c1, . . . , cn) = AT (c1, . . . , cn)
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is a homeomorphism on Cn, so the topology on M ⊗Z(S)
C is independent of the choice

of basis. Now let r ∈ R. We need to check that

µr : M ⊗Z(S)
C →M ⊗Z(S)

C, m⊗ c 7→ rm⊗ c

is continuous. By definition of the topology, this is the case if and only if the map
αµrα

−1 : Cn → Cn is continuous.

M ⊗Z(S)
C Cn

M ⊗Z(S)
C Cn

α

µr αµrα−1

α

But writing rmi =
∑n

j=1 bijmj for bij ∈ Z(S) and B = (bij), we have

αµrα
−1(c1, . . . , cn) = BT (c1, . . . , cn)

which immediately shows that the map is continuous. For the next part, write

β : M ⊗Z(S)
C → HomZ(S)

(M,C∨)∨, m⊗ c 7→ (φ 7→ φ(m)(c)).

We have an isomorphism of discrete LCA Z(S)-modules

γ : HomZ(S)
(M,C∨)→ (Cn)∨, φ 7→ ((c1, . . . , cn) 7→ φ(m1)(c1) + · · ·+ φ(mn)(cn))

whose dual fits into a commutative diagram

M ⊗Z(S)
C HomZ(S)

(M,C∨)∨

Cn (Cn)∨∨,

β

α γ∨

where the lower map is the duality isomorphism. It follows that β is an isomorphism of
compact abelian groups. Furthermore, form ∈M , c ∈ C, r ∈ R and φ ∈ HomZ(S)

(M,C∨)
we have

(r.β(m⊗ c))(φ) = β(m⊗ c)(r.φ) = (r.φ)(m)(c) = φ(rm)(c) = β(rm⊗ c)(φ)

which shows that β is an R-homomorphism. If N is another R-lattice and f : M → N
is an R-homomorphism, then one easily sees that the diagram

M ⊗Z(S)
C HomZ(S)

(M,C∨)∨

N ⊗Z(S)
C HomZ(S)

(N,C∨)∨

∼

f⊗idC (f∗)∨

∼

commutes, which shows naturality. The final claim follows from the above applied to
C = A(S)/Z(S) together with Theorem 4.34 and the Pontryagin duality isomorphism.
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Remark 4.43. For LCA groups M and N , the tensor product M ⊗LCA N is defined
to be the Pontryagin dual of the group of continuous bilinear maps from M × N to
R/Z, equipped with the compact-open topology, see [Mos67, Section IV]. Under certain
mild assumptions on M and N it is again an LCA group. If M and N are discrete
abelian groups, then also M ⊗LCA N is discrete and equals the usual tensor product
M ⊗Z N of abelian groups [Mos67, Theorem 4.4 and Corollary 1 to Theorem 4.7].
Another relation of ⊗LCA with ⊗Z is given by the above proposition: For a finitely
generated torsionfree discrete abelian groupM and a compact abelian group C, it shows
that M ⊗Z C ∼= Homcts(M,C∨)∨. On the other hand, [Mos67, Theorem 4.2] gives
M ⊗LCA C ∼= Homcts(M,C∨)∨, whence M ⊗LCA C ∼=M ⊗Z C.
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5 Commensurability of Automorphism Groups of Chain
Complexes

Recall from the introduction that for our main conjecture we wish to define a probability
distribution on the space of outcomes for the good part of the Arakelov ray class sequence
that weights each sequence in the space of outcomes by the inverse of the size of a certain
subgroup of its automorphism group. One here encounters the problem that the latter
subgroups are in general not finite. The purpose of the present chapter is to resolve this
problem by developing a theory that allows to compare the sizes of certain subgroups
of the automorphism groups of short exact sequences, even when those subgroups are
infinite. This theory will then allow us to prove Theorem 1.11 and to eventually construct
the probability distribution in Theorem 1.12.

We will establish a commensurability theory for automorphism groups of short exact
sequences by extending the work of Bartel and Lenstra [BL17], who developed a theory
that allows to compare the sizes of possibly infinite automorphism groups of suitable
modules. In order to have the notions and tools from an abelian category at our disposal,
we will work in the category of chain complexes of modules, which also has the advantage
of leading to a more general theory. The results are applicable to short exact sequences
by viewing them as chain complexes. Moreover, the theory of [BL17] can be seen as a
special case of the results from this chapter by viewing a module as a chain complex
concentrated in degree zero.

Roughly speaking, the idea to compare the sizes of the automorphism groups of two
chain complexes L and M is to do so via a third object that is ‘within a finite distance’
of AutL and AutM . Such a third object might not always exist but we will show
that if L and M are themselves ‘within finite distance’, then from any object X within
finite distance of both L and M one can construct a natural object A(X) within finite
distance of both AutL and AutM . The latter will then be used to define the index of
automorphism groups ia(L,M), which is to be thought of as |AutM : AutL|. The main
challenge for this will be to establish independence of the comparing object X.

X

L M

fin. dist. fin. dist. ⇝
A(X)

AutL AutM

fin. dist. fin. dist.

Apart from the last subsection, we proceed exactly as in [BL17] and prove the analogues
of their results for chain complexes. The proofs generalise without too many complica-
tions, and we will usually just explain which steps need to be adapted in order to make
them work in the more general context. We have also stuck to Bartel and Lenstra’s
notation as much as possible. In the last subsection, we take the theory one step further
to allow to also compare sizes of suitable subgroups of automorphism groups of chain
complexes.
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5.1 Categories with Isogenies

Throughout this section, let R be a ring.

The key definition to compare objects of infinite size is the following. It makes precise
what we mean by two objects being ‘within finite distance’.

Definition 5.1 ([BL17, page 2]). An isogeny of groups is a group homomorphism
f : L → M with |ker f | < ∞ and |M : im f | < ∞. Its index is defined to be i(f) :=
|M : im f | / |ker f |. Isogenies of rings and isogenies ofR-modules are defined to be morph-
isms in the appropriate category which are group isogenies on the underlying additive
groups.

For our applications, we want to generalise the above to chain complexes. We will use
the following terminology. If C is an abelian category, we write Ch(C) for the category
of chain complexes in C. We will usually write an element L ∈ Ch(C) as L = (Li)i∈Z and
denote the boundary maps Li → Li−1 by ∂Li or ∂i or even just ∂. Thus we can visualise
L as

· · · Li+1 Li Li−1 · · · .∂i+2 ∂i+1 ∂i ∂i−1

If f : L → M is a chain map, then we write f = (fi)i∈Z where fi : Li → Mi are the
component morphisms. We furthermore denote by Ch(C)b the subcategory of Ch(C) of
bounded chain complexes, that is, of chain complexes L ∈ C for which there are l, u ∈ Z
such that Li = 0 for all i < l and all i > u.

Remark 5.2. Let C be an abelian category. Then also Ch(C) is an abelian category. If
f = (fi)i : L→M is a morphism of chain complexes, then its kernel is given by (ker fi)i
and its cokernel is given by (cok fi)i, where the boundary maps are the natural maps
induced by the boundary maps of L and M , respectively.

If g : X → M and h : Y → M are two morphisms of chain complexes, then the fibre
product X ×M Y is given by (Xi×Mi Yi)i with boundary maps induced by the universal
property of the fibre product in the diagram below:

Xi+1 ×Mi+1 Yi+1

Xi ×Mi Yi Yi

Xi Mi.

∂Xi+1◦pi+1

∂Yi+1◦qi+1

pi

qi

hi

gi

The category Ch(C)b is an abelian subcategory of Ch(C). The explicit descriptions of
kernels, cokernels and fibre products above also hold in Ch(C)b.
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We will mainly be interested in bounded chain complexes over the category Rmod of
finitely generated R-modules, which we note is abelian if and only if R is noetherian
[Wei94, Example 1.6.3]. Some results can also be obtained for chain complexes over

RMod.

To define isogenies, we first need a notion of finiteness.

Definition 5.3.

(a) A bounded chain complex L ∈ Ch(RMod)b is called finite if Li is finite for all i.
In this case, we define the cardinality of L to be |L| :=

∏
i∈Z |Li|. We also write

|L| <∞ to indicate that L is a finite chain complex.

(b) An isogeny of chain complexes in Ch(RMod)b is a chain map f : L → M with
|ker f | <∞ and |cok f | <∞. Its index is defined to be i(f) := |cok f | / |ker f |.

Note that the above definitions reduce to the corresponding definitions for modules when
viewing modules as chain complexes concentrated in degree 0. Importantly, finiteness
behaves well with respect to short exact sequences.

Proposition 5.4. Let 0→ L→M → N → 0 be a short exact sequence in Ch(RMod)b.
Then M is finite if and only if both L and N are finite. In that case, we have |M | =
|L| · |N |.

Proof. This is immediate from [Wei94, Exercise 1.2.4].

This in particular implies that subcomplexes and quotient complexes of finite complexes
are finite. To unify notation, we make the following definition.

Definition 5.5. Let C be a category.

(a) We say C is of type I if C has fibre products and there is a functor C → Grp that
preserves fibre products. In this case, an isogeny in C is a morphism in C that
becomes an isogeny in Grp, and the index of an isogeny in C is defined to be the
index of the corresponding group isogeny.

(b) We say C is of type II if C = Ch(RMod) for some ring R or if C = Ch(Rmod) for
some noetherian ring R.

(c) We say C has isogenies or is a category with isogenies if it is of type I or type II.

Categories of type I are those for which the theory in Section 2 of [BL17] is developed.
The categories Grp, Ring, RMod for any ring R and Rmod for any noetherian ring R are
all of type I. As a basis for our extended commensurability theory, we will show in the
remainder of this section and in the following section that the statements from Section
2 of [BL17] also hold for categories of type II.
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Proposition 5.6 ([ML71, Exercise VIII.4.6]). Let C be an abelian category and let
f : L→M and g : M → N be morphisms in C. Then there is an exact sequence

0 ker f ker(gf) ker g cok f cok(gf) cok g 0.

The final two statements of this section will be crucial for the theory to be developed in
the following sections.

Proposition 5.7. Let C be a category with isogenies and let f : L→M and g : M → N
be morphisms in C. If two of f , g, gf are isogenies, then so is the third. In that case,
we have i(gf) = i(g)i(f).

Proof. If C is of type I, then this is [BL17, Proposition 2.1]. The proof for C of type II
is analogous – just combine Propositions 5.6 and 5.4.

Proposition 5.8. Let C be a category and let g : X →M and h : Y →M be morphisms
in C. Suppose that the fibre product X ×M Y of g and h exists.

X ×M Y Y

X M

πX

πY

h

g

(i) Suppose that C has kernels. Then kerπX ∼= kerh and kerπY ∼= ker g.

(ii) Suppose that C has isognies. If h is an isogeny, then so is πX . If g is an isogeny,
then so is πY .

Proof. Suppose that C has kernels. Using the universal property of the fibre product, it is
straightforward to prove that kerπX together with the morphism kerπX ↪→ X×M Y

πY−−→
Y satisfies the universal property of a kernel of h. Then we must have kerπX ∼= kerh.
The proof for kerπY ∼= ker g is analogous.

Now suppose that C has isogenies. If C is of type I, then claim (ii) is in [BL17, Proposition
2.4]. Assume that C is of type II. Then it is in particular abelian. We show that there is
a monomorphism cokπX ↪→ cokh. For this, by the Freyd–Mitchell Embedding Theorem
[Wei94, Theorem 1.6.1] applied to the smallest abelian subcategory of C containing the
objects and morphisms of the fibre product diagram, we can assume to be working in
the category of modules over some ring. In that case, it is easy to see that the map

X/ imπX →M/ imh, x 7→ g(x)

is well-defined and injective. Now if h is an isogeny, then kerπX is finite by part (i),
and cokπX is finite by Proposition 5.4 applied to the monomorphism cokπX ↪→ cokh.
Hence, πX is an isogeny. The proof of the second claim is again analogous.
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5.2 Calculus of Correspondences

While an isogeny f : L→M does not naturally induce a map between the automorphism
groups AutL and AutM , there is a natural object a(f) associated to f with maps to
both AutL and AutM , discussed in a later section. This is why rather than working with
isogenies, we will mainly work with the following constructions to compare objects.

Definition 5.9. Let C be a category and let L,M ∈ C. A correspondence from L to M
in C is a triple c = (X, f, g) where X ∈ C and f : X → L and g : X →M are morphisms
in C.

X

L M

f g

We will denote such a correspondence by c : L⇌M .

Definition 5.10. Let C be a category with isogenies.

(a) A skew correspondence in C is a correspondence c = (X, f, g) in C in which f is an
isogeny.

(b) A commensurability in C is a correspondence c = (X, f, g) in C for which both
f and g are isogenies. The index of such a commensurability is defined to be
i(c) := i(g)/i(f).

Definition 5.11. Let C be a category with isogenies. For an isogeny f : L → M in C
we define cf := (L, idL, f) : L⇌M , which is a commensurability.

There are natural group-like operations for correspondences and commensurabilities that
will be essential in the following.

Definition 5.12. Let C be a category. Let c = (X, f, g) : L⇌M and d = (Y, h, j) : M ⇌
N be correspondences in C.

(a) The inverse of c is defined to be c−1 := (X, g, f) : M ⇌ L.

(b) If the fibre product of g and h in C exists, define the composition of c with d to be

d ◦ c := (X ×M Y, f ◦ πX , j ◦ πY ) : L⇌ N

where πX : X ×M Y → X and πY : X ×M Y → Y are the canonical morphisms.

X ×M Y

X Y

L M N

πX πY

f g h j
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In order to obtain the expected properties for composition and inverse, one needs to pass
to equivalence classes.

Definition 5.13. Let C be a category with isogenies. Let c = (X, f, g) : L ⇌ M and
d = (Y, h, j) : L⇌M be two correspondences in C.

(a) We say that c and d are equivalent and write c ∼ d if there is a commensurability
(W,p, q) : X ⇌ Y such that fp = hq and gp = jq.

X

W L M

Y

f g

p

q

h j

(b) We say that c and d are isomorphic and write c ∼= d if there is an isomorphism
s : X

∼−→ Y with f = hs and g = js.

X

L M

Y

f g

s

h j

Clearly, being isomorphic implies being equivalent. Note that if c ∼ d, then c is a skew
correspondence (commensurability) if and only if d is a skew correspondence (commen-
surability).

We now obtain the analogues of the statements from Section 2 of [BL17]. Close inspection
shows that they only hinge on their Propositions 2.1 and 2.4 and the universal property
of the fibre product, and therefore easily generalise.

Proposition 5.14. Let C be a category with isogenies. Let c, c′ : L⇌M , d, d′ : M ⇌ N
and e : N ⇌ P be correspondences in C. Then the following hold:

(i) If c ∼ c′ and d ∼ d′, then d ◦ c ∼ d′ ◦ c′. If c ∼= c′ and d ∼= d′, then d ◦ c ∼= d′ ◦ c′.

(ii) We have (e ◦ d) ◦ c ∼= e ◦ (d ◦ c).

(iii) We have c ◦ (L, idL, idL) ∼= c and (M, idM , idM ) ◦ c ∼= c.

(iv) If c and d are skew correspondences, then so is d ◦ c.

79



(v) If c and d are commensurabilities, then so is d ◦ c. In this case, we have i(d ◦ c) =
i(d)i(c).

(vi) If c ∼ c′ are commensurabilities, then i(c) = i(c′).

(vii) If c ∼ c′, then c−1 ∼ (c′)−1. If c ∼= c′, then c−1 ∼= (c′)−1.

(viii) We have (d ◦ c)−1 ∼= c−1 ◦ d−1.

(ix) If c is a commensurability, then c−1 ◦c ∼ (L, idL, idL) and c◦c−1 ∼ (M, idM , idM ).

Proof. For C of type I see Section 2 of [BL17]. For C of type II one can do exactly the
same proofs, replacing every use of [BL17, Proposition 2.1] by Proposition 5.7 and every
use of [BL17, Proposition 2.4] by Proposition 5.8.

Definition 5.15. Let C be a category with isogenies.

(a) Define Cskew to be the category with the same objects as in C and where for
objects L,M ∈ Cskew, the morphisms from L to M are the equivalence classes of
skew correspondences L⇌M .

(b) Define Ccom to be the category with the same objects as in C and where for ob-
jects L,M ∈ Ccom, the morphisms from L to M are the equivalence classes of
commensurabilities L⇌M .

(c) For an object L in C define GL := HomCcom(L,L), the group of equivalence classes
of commensurabilities L⇌ L.

By the above we know that Ccom is a groupoid. Even more:

Proposition 5.16. Let C be a category with isogenies. Then the category Ccom is the
maximal subgroupoid of Cskew.

Proof. The result for a category of type I is [BL17, Proposition 2.15]. For a category of
type II, one can do essentially the same proof. Using notation as in the proof of loc. cit.,
the only modifications one needs to make are: Use Propositions 5.6 and 5.4 to conclude
that cok g and ker p′1 are finite; use Proposition 5.8 (i) to conclude that ker p′1

∼= ker g.

80



5.3 Skew Correspondences of Chain Complexes

In this section, we use the notation from [BL17, Notation 6.1]:

Setup 5.17. Let Z be an infinite commutative ring satisfying the equivalent conditions
of [BL17, Theorem 4.5], which we recall are the following:

(i) for each 0 ̸= z ∈ Z, the ring Z/zZ is finite;

(ii) the ring Z is a domain, and each nonzero prime ideal of Z is finitely generated as
an ideal and has finite index in Z;

(iii) either Z is a field, or it is a one-dimensional noetherian domain with the property
that for every maximal ideal p of Z the field Z/p is finite.

Denote by Q the field of fractions of Z. Let A be a finite-dimensional Q-algebra and R
be a left-noetherian Z-subalgebra of A with the property that Q ·R = A.

From now on, we specialise to bounded chain complexes of finitely generated R-modules.
In this section we will prove that the category Ch(Rmod)bskew is equivalent to the cat-
egory of bounded chain complexes of finitely generated A-modules. This will be a key
ingredient in the proof of our main commensurability theorem. The results in this sec-
tion are the analogues of the results from Section 6 of [BL17], and as before, the proofs
mainly generalise in a straightforward manner.

Lemma 5.18. Let L ∈ Ch(Rmod)b.

(i) The Z-torsion submodules of the Li constitute a finite chain complex Ltors ∈
Ch(Rmod)b. There is a natural monomorphism Ltors ↪→ L and a natural epi-
morphism L↠ L/Ltors.

(ii) L is finite if and only if L = Ltors and if and only if there is 0 ̸= z ∈ Z such that
zL = 0, where zL denotes the chain complex (zLi)i.

(iii) Let 0 ̸= z ∈ Z. Then multiplication by z defines an isogeny L→ L.

(iv) Tensoring with Q over Z gives a chain complex Q ⊗Z L of finitely generated A-
modules. The kernel of the natural map L→ Q⊗ZL is Ltors. Moreover, Q⊗ZL = 0
if and only if L is finite.

Proof. All statements follow easily from [BL17, Lemmas 4.1 and 6.2]. For part (iv) cf.
also Lemma 3.1.

Proposition 5.19. Let L,M ∈ Ch(Rmod)b. Then the following are equivalent:

(i) There exists an isogeny L→M ,

(ii) there exists a commensurability L⇌M ,
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(iii) there exists an isomorphism Q⊗Z L ∼= Q⊗Z M of chain complexes of A-modules.

Proof. Bearing in mind the properties from Lemma 5.18, one can do essentially the same
proof as in [BL17, Theorem 6.3]. With notation as in loc. cit., the only things to note
are: Since we are dealing with bounded chain complexes, there are “global” elements
0 ̸= m1,m2,m3 ∈ Z such that m1ϕ(L) ↪→ M , m2M ↪→ ϕ(L) and m3Mtors = 0; replace
the use of [BL17, Proposition 2.1] by Proposition 5.7.

Lemma 5.20. Let L,M ∈ Ch(Rmod)b. Suppose that (X, f, g), (Y, h, j) : L ⇌ M are
equivalent skew correspondences. Then

(Q⊗Z g) ◦ (Q⊗Z f)−1 = (Q⊗Z j) ◦ (Q⊗Z h)−1.

Proof. The proof of [BL17, Lemma 6.4] immediately generalises, taking again Lemma
5.18 into account.

The previous lemma allows us to define a functor

F : Ch(Rmod)bskew → Ch(Amod)b

which sends a bounded chain complex L of finitely generated R-modules to Q⊗Z L and
an equivalence class of skew correspondences represented by (X, f, g) : L ⇌ M to the
chain map (Q⊗Z g)◦(Q⊗Z f)−1. It is easy to check that this indeed defines a functor.

We are now going to show that F is an equivalence of categories.

Lemma 5.21. Any element of Ch(Amod)b is isomorphic to F(L) for some element
L ∈ Ch(Rmod)bskew.

Proof. Let V = (Vi, ∂i)i ∈ Ch(Amod)b. Without loss of generality, there is m ∈ Z>0

such that Vi = 0 for i > m and i < 0.

· · · 0 Vm Vm−1 · · · V0 0 · · ·∂m ∂m−1 ∂1

We now inductively choose A-generating systems (vi1, . . . , v
i
ni
) of Vi, i = 0, . . . ,m, such

that ∂i(v
i
k) is contained in the R-span of (vi−1

1 , . . . , vi−1
ni−1

) for all k. For i = 0 we may
choose any A-generating system of V0. For i > 0 start by choosing any A-generating
system (wi1, . . . , w

i
ni
) of Vi. Since A = Q ·R, we can find 0 ̸= z ∈ Z such that z∂i(w

i
k) is

contained in the R-span of (vi−1
1 , . . . , vi−1

ni−1
) for all k. We then put vik := zwik.

Define Li to be the R-span of (vi1, . . . , v
i
ni
) for i = 0, . . . ,m, and to be 0 otherwise. Then

∂i(Li) ⊆ Li−1 for all i ∈ Z, so L := (Li, ∂i) ∈ Ch(Rmod)bskew. It is easy to see that the
map f = (fi)i : Q⊗Z L→ V with

fi : Q⊗Z Li → Vi, q ⊗ x 7→ qx

is an isomorphism of chain complexes of A-modules.

82



Lemma 5.22. Let L,M ∈ Ch(Rmod)bskew and let ϕ : F(L) → F(M) be a chain map.
Then there exists a skew correspondence c : L⇌M such that F(c) = ϕ.

Proof. Bearing in mind the properties from Lemma 5.18, one can do essentially the same
proof as in [BL17, Lemma 6.7]. With notation as in loc. cit., the only things to note
are: Since we are dealing with bounded chain complexes, there is a “global” element
0 ̸= m ∈ Z such that mϕ(L) ↪→M ; one can check that F(c) = ϕ componentwise.

Lemma 5.23. Let L,M ∈ Ch(Rmod)bskew and suppose that c, d : L ⇌ M are skew
correspondences with F(c) = F(d). Then c and d are equivalent.

We give a simplified version of the proof of [BL17, Lemma 6.8] without case distinction
and correct it slightly, noting that in its second paragraph it only follows that f and
h are injective and that X ×L⊕M Y → X ×L Y is an injective isogeny rather than an
isomorphism.

Proof. Write c = (X, f, g) and d = (Y, h, j). It suffices to show that in the fibre product

X ×L⊕M Y Y

X L⊕M

πX

πY

(h,j)

(f,g)

both πX and πY are isogenies. Now by the universal property of the fibre product there
is a unique morphism ψ : X ×L⊕M Y → X ×L Y such that πX = π′Xψ and πY = π′Y ψ
where π′X and π′Y are the canonical morphisms as given in the diagram below.

X ×L⊕M Y

X ×L Y Y

X L

πX

πY

ψ

π′
X

π′
Y

h

f

We show that ψ is an isogeny. By Remark 5.2, the components of ψ are the unique
R-module homomorphisms ψi : Xi ×Li⊕Mi Yi → Xi ×Li Yi such that (πX)i = (π′X)iψi
and (πY )i = (π′Y )iψi, thus sending (xi, yi) ∈ Xi ×Li⊕Mi Yi to (xi, yi). It is clear that
these maps are injective. Let i ∈ Z and let (xi, yi) ∈ Xi ×Li Yi. By Lemma 5.18 (i) and
(ii) there is 0 ̸= z ∈ Z such that zMtors = 0. The condition F(c) = F(d) implies that

1⊗ gi(xi) = (Q⊗Z gi) ◦ (Q⊗Z fi)−1(1⊗ fi(xi))
= (Q⊗Z ji) ◦ (Q⊗Z hi)−1(1⊗ hi(yi))
= 1⊗ ji(yi),
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and Lemma 5.18 (iv) then yields zgi(xi) = zji(yi). Consequently, z(Xi ×Li Yi) ⊆ imψi.
We conclude from Lemma 5.18 (iii) that ψi is an isogeny and then from Remark 5.2 that
ψ is an isogeny.

As c and d are skew correspondences, Proposition 5.8 shows that both π′X and π′Y are
isogenies. Hence, also πX and πY are isogenies by Proposition 5.7.

Proposition 5.24. The functor F : Ch(Rmod)bskew → Ch(Amod)b is an equivalence of
categories.

Proof. The functor F is essentially surjective by Lemma 5.21, is full by Lemma 5.22 and
is faithful by Lemma 5.23. Hence it is an equivalence of categories.

As in [BL17], one obtains the following crucial statement from Propositions 5.24 and
5.16:

Corollary 5.25. Let L ∈ Ch(Rmod)b. Then the map

GL → Aut(Q⊗Z L), (X, f, g) 7→ (Q⊗Z g) ◦ (Q⊗Z f)−1

is a group isomorphism.

For an explicit description of the inverse isomorphism, see the proof of Proposition 5.28
below.

5.4 From Commensurabilities of Chain Complexes to Commensurabilities of
Automorphism Groups

Keep using Setup 5.17. We now pass from correspondences of chain complexes to cor-
respondences of their endomorphism rings and automorphism groups.

Definition 5.26. Let c = (X, f, g) : L⇌M be a correspondence in Ch(Rmod)b.

(a) Define the endomorphism ring of c to be

End c := { (λ, ξ, µ) ∈ (EndL)× (EndX)× (EndM) |λf = fξ, µg = gξ } .

Write e(c) : EndL⇌ EndM for the correspondence that consists of the canonical
projections End c→ EndL and End c→ EndM .
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X

L M

L M

X

f g

ξλ µ

f g

(b) Define the automorphism group of c to be Aut c := (End c)×. Write a(c) : AutL⇌
AutM for the correspondence that consists of the canonical projections Aut c →
AutL and Aut c→ AutM .

Proposition 5.27. Let L,M,N ∈ Ch(Rmod)b. Let c, c′ : L ⇌ M and d : M ⇌ N be
commensurabilities. Then the following hold:

(i) The correspondence e(c) : EndL ⇌ EndM is a ring commensurability and the
correspondence a(c) : AutL⇌ AutM is a group commensurability.

(ii) We have e(d ◦ c) ∼ e(d) ◦ e(c) and a(d ◦ c) ∼ a(d) ◦ a(c).

(iii) If c ∼= c′, then e(c) ∼= e(c′) and a(c) ∼= a(c′). If c ∼ c′, then e(c) ∼ e(c′) and
a(c) ∼ a(c′).

Proof. The proofs are essentially the same as for the statements 7.1 through 7.4 of [BL17].
One first proves the analogue statement of [BL17, Lemma 7.1] for chain complexes. The
proof is exactly the same, replacing [BL17, Lemma 6.2] by Lemma 5.18. To be able to
apply [BL17, Lemma 4.1] to EndL one needs that EndL is finitely generated Z-module.
This follows by embedding it into

⊕
i EndLi and using [Rei03, Theorem 2.34] and the

fact that Z is noetherian.

One then concludes statement (i) as in the proof of [BL17, Theorem 7.2].

Part (ii) is proved exactly as [BL17, Theorem 7.3], replacing [BL17, Propositions 2.6 and
2.1] by Proposition 5.14 (v) and Proposition 5.7, respectively. That the map End c×EndM

End d → End(d ◦ c) is well-defined, needs to be checked componentwise, using Remark
5.2.

Finally, part (iii) is proved exactly as [BL17, Proposition 7.4], replacing [BL17, Pro-
positions 2.13 and 2.11] by Proposition 5.14 (viii) and (i). The canonical isomorphisms
appearing also hold for chain complexes, using again Remark 5.2.
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By the above proposition and Proposition 5.14 (v) and (vi), we have two functors of
groupoids

Ch(Rmod)bcom → Q>0, c 7→ i(e(c)),

Ch(Rmod)bcom → Q>0, c 7→ i(a(c)),

where we regard Q>0 as a groupoid with one object. For any L ∈ Ch(Rmod)b we in
particular get group homomorphisms

i ◦ e, i ◦ a: GL = HomCh(Rmod)bcom
(L,L)→ Q>0.

Now recall that GL ∼= Aut(Q ⊗Z L) by Corollary 5.25. The above two group homo-
morphisms have the following crucial property:

Proposition 5.28. Let L ∈ Ch(Rmod)b. Suppose that c ∈ GL corresponds to an element
α ∈ Z(End(Q ⊗Z L))× ⊆ Aut(Q ⊗Z L). Then e(c) ∼ (EndL, id, id). In particular, we
have i(e(c)) = i(a(c)) = 1.

Proof. We closely follow the proof of [BL17, Proposition 7.8]. By Lemma 5.18, the
natural morphism f : L↠ L/Ltors is an isogeny and hence induces an isomorphism

End(Q⊗Z L)
∼−→ End(Q⊗ L/Ltors), β 7→ (Q⊗Z f) ◦ β ◦ (Q⊗Z f)−1.

The commensurability cf : L⇌ L/Ltors further gives an isomorphism

GL
∼−→ GL/Ltors

, d 7→ cf ◦ d ◦ c−1
f

which fits into a commutative diagram

GL GL/Ltors

Aut(Q⊗Z L) Aut(Q⊗ L/Ltors).

∼

∼

∼

∼

This diagram together with Proposition 5.27 (iii) shows that we may assume that Ltors =
0. Then by Lemma 5.18 we have monomorphisms L ↪→ Q⊗Z L and EndL ↪→ End(Q⊗Z
L). In the following we will tacitly regard L as a subcomplex of Q⊗Z L and EndL as a
subring of End(Q⊗Z L) via these maps.

It follows from the proof of [BL17, Proposition 7.8] applied componentwise that c is
equivalent to the commensurability (L ∩ α−1L, i, αi) : L⇌ L where i : L ∩ α−1L ↪→ L is
the natural morphism and the intersection takes place componentwise in the components
of Q⊗Z L to form the complex L ∩ α−1L. Thus we have

End c =
{
(λ, ξ, µ) ∈ (EndL)× End(L ∩ α−1L)× (EndL)

∣∣λi = iξ, µαi = αiξ
}
.
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Let (λ, ξ, µ) ∈ End c. Then the above conditions immediately imply that αλi = µαi.
We show that in fact αλ = µα. It is enough to check this componentwise, so let j ∈ Z.
Since Lj is finitely generated, there is 0 ̸= z ∈ Z such that zαj(Lj) ⊆ Lj which gives
zLj ⊆ Lj∩α−1

j Lj . Hence, αjλj and µjαj agree on zLj . But the latter generates Q⊗ZLj
over Q, so we must have αjλj = µjαj . In summary, we have shown that λ = α−1µα
which implies λ = µ as α ∈ Z(End(Q⊗Z L))×.

By the above, we have e(c) = (End c, p0, p0) : EndL ⇌ EndL, with p0 an isogeny
by Proposition 5.27 (i). Hence, the commensurability cp0 : End c ⇌ EndL defines an
equivalence between e(c) and (EndL, id, id).

5.5 The Index of Automorphism Groups of Chain Complexes

Again keep using Setup 5.17. We are finally ready to define the index of automorphism
groups of suitable chain complexes, generalising the results from Section 8 of [BL17].

Proposition 5.29. Let L,M ∈ Ch(Rmod)b. Then the following hold:

(i) There is a commensurability L ⇌ M if and only if the chain complexes of A-
modules Q⊗Z L and Q⊗Z M are isomorphic.

(ii) If c : L ⇌ M is a commensurability, then e(c) : EndL ⇌ EndM is a ring com-
mensurability and a(c) : AutL⇌ AutM is a group commensurability.

(iii) Suppose that c, c′ : L ⇌ M are commensurabilities. Assume that End(Q ⊗Z L) ∼=
End(Q⊗Z M) is a semisimple ring. Then

i(e(c)) = i(e(c′)), i(a(c)) = i(a(c′)).

Proof. We argue as in the proof of [BL17, Theorem 8.1]. Part (i) is Proposition 5.19 and
part (ii) is Proposition 5.27. By Proposition 5.27 (iii) and Proposition 5.14 (v), claim
(iii) is equivalent to the statement

i(e(c−1 ◦ c′)) = i(a(c−1 ◦ c′)) = 1.

Hence, to conclude it suffices to show that the two group homomorphisms

i ◦ e, i ◦ a: GL = HomCh(Rmod)bcom
(L,L)→ Q>0

are trivial. Let B := End(Q⊗Z L). Then B× ∼= GL by Corollary 5.25, and i ◦ e and i ◦ a
factor through B×/Z(B)× by Proposition 5.28. Since Q>0 is abelian, they also factor
through B×/[B×, B×]. So i ◦ e and i ◦ a factor through B×/(Z(B)×[B×, B×]).

By assumption, B is semisimple. We show that B is finitely generated over its centre.
For this first note that Z(A) ⊆ Z(B) and that the natural map

B = End(Q⊗Z L) ↪→
∏
i

EndA(Q⊗Z Li), f 7→ (fi)i
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is a Z(A)-algebra homomorphism. The fact that A is a finite-dimensional Q-algebra
implies that Z(A) is a noetherian ring and that A is a finitely generated Z(A)-module.
Hence, it follows from [Rei03, Theorem 2.34] that EndA(Q⊗Z Li) is a finitely generated
Z(A)-module for all i. But then also B = End(Q ⊗Z L) is a finitely generated Z(A)-
module, since Z(A) is noetherian. In particular, B is finitely generated over Z(B). This
allows us to apply [BL17, Theorem 5.6] which shows that B×/(Z(B)×[B×, B×]) is an
abelian group of finite exponent. Hence, any homomorphism B×/(Z(B)×[B×, B×]) →
Q>0 is trivial and the claim follows.

The following example shows that the semisimplicity assumption in part (iii) is neces-
sary.

Example 5.30. In the above proposition we consider the case Z = Z, Q = Q, A = Q =
Q, R = Z = Z. Let L be the exact sequence

0 Z Z2 Z 0

where Z→ Z2 sends x to (x, 0) and Z2 → Z sends (x, y) to y. It is easy to see that there
is an isomorphism EndL

∼−→
( Z Z
0 Z
)
given by sending an endomorphism L → L to its

middle map Z2 → Z2. In the same way, one has End(Q⊗Z L) ∼=
(

Q Q
0 Q

)
. In particular,

End(Q⊗Z L) is not semisimple.

We now give examples of commensurabilities c, c′ : L ⇌ L for which i(e(c)) ̸= i(e(c′))
and i(a(c)) ̸= i(a(c′)). In fact, it will turn out that these values can be arbitrarily far
apart. To this end, let 0 ̸= n,m ∈ Z with gcd(n,m) = 1. The map fn,m : L → L given
by

0 Z Z2 Z 0

0 Z Z2 Z 0

·n (n 0
0 m ) ·m

is clearly an isogeny. Hence, we get a commensurability cn,m := (L, id, fn,m) : L ⇌ L.
Under the isomorphism EndL ∼=

( Z Z
0 Z
)
, the endomorphism ring End cn,m corresponds

to

E : =

{
(λ, λ, µ) ∈

(
Z Z
0 Z

)3
∣∣∣∣∣µ
(
n 0
0 m

)
=

(
n 0
0 m

)
λ

}

=

{
(λ, λ, µ) ∈

(
Z Z
0 Z

)3
∣∣∣∣∣λ11 = µ11, λ22 = µ22, nλ21 = mµ21

}
.

The projection p0 : E →
( Z Z
0 Z
)
, (λ, λ, µ) 7→ λ is clearly injective and by the condition

gcd(n,m) = 1 has image
( Z mZ
0 Z

)
. Analogously, p1 : E →

( Z Z
0 Z
)
, (λ, λ, µ) 7→ µ is injective

and has image
( Z nZ
0 Z

)
. Hence, i(e(cn,m)) =

i(p1)
i(p0)

= n
m .
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For the commensurability of automorphism groups, we get that under the isomorphism
EndL ∼=

( Z Z
0 Z
)
, the automorphism group Aut cn,m corresponds to

E× =

{
(λ, λ, µ) ∈

(
±1 Z
0 ±1

)3
∣∣∣∣∣λ11 = µ11, λ22 = µ22, nλ21 = mµ21

}
.

Hence, p0 : E
× →

(±1 Z
0 ±1

)
, (λ, λ, µ) 7→ λ is injective and has image

(±1 mZ
0 ±1

)
, and

p1 : E
× →

(±1 Z
0 ±1

)
, (λ, λ, µ) 7→ µ is injective and has image

(±1 nZ
0 ±1

)
. Now it is easy

to see that
∣∣(±1 Z

0 ±1

)
:
(
1 Z
0 1

)∣∣ = 4 and
∣∣(±1 mZ

0 ±1

)
:
(
1 mZ
0 1

)∣∣ = 4. Moreover, using that(
1 Z
0 1

) ∼= Z, one finds that
∣∣( 1 Z

0 1

)
:
(
1 mZ
0 1

)∣∣ = m. It follows that i(p0) = m and i(p1) = n.
Then by definition, i(a(cn,m)) =

n
m .

The above proposition allows us to define the index of automorphism groups of chain
complexes which become isomorphic over A with semisimple endomorphism ring as the
index of the automorphism correspondence of any commensurability between the chain
complexes, independently of that chosen commensurability.

Theorem 5.31. Let V ∈ Ch(Amod)b such that End(V ) is a semisimple ring. Define

S := SV :=
{
L ∈ Ch(Rmod)b

∣∣∣Q⊗Z L ∼= V
}
.

Then there is a unique function ia : S × S → Q>0 such that:

(i) If L,L′,M,M ′ ∈ S and L ∼= L′ and M ∼=M ′, then ia(L,M) = ia(L′,M ′).

(ii) If L,M,N ∈ S, then ia(L,M) · ia(M,N) = ia(L,N).

(iii) If L,M ∈ S and there is a monomorphism L ↪→M with finite cokernel, then with

H := {µ ∈ AutM |µL = L } := {µ ∈ AutM |µiLi = Li for all i }

and
ρ : H → AutL, µ = (µi) 7→ µ

∣∣
L
:=
(
µi
∣∣
Li

)
i

one has

ia(L,M) =
|AutM : H| · |ker ρ|
|AutL : im ρ|

.

Proof. If L,M ∈ S, then by Proposition 5.29 there is a commensurability c : L ⇌ M ,
and we may define ia(L,M) := i(a(c)), independently of c. That this function uniquely
satisfies properties (i), (ii) and (iii) is proved exactly as in [BL17, Theorem 8.3], making
use of Lemma 5.18.

Properties (i), (ii) and (iii) make precise the statement that one should think of ia(L,M)
as |AutM : AutL|. Note that in contrast to [BL17, Section 8], we do not require A to
be semisimple but instead End(V ) to be semisimple (and R to be left-noetherian, which
previously was implied by semisimplicity of A). This is because, unlike for modules,
semisimplicity of A does not imply semisimplicity of the endomorphism ring of a bounded
chain complex of finitely generated A-modules, cf. Example 5.30.
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5.6 The Index of Subgroups of Automorphism Groups of Chain Complexes

Again keep using Setup 5.17.

Let L,M ∈ Ch(Rmod)b be commensurable. We aim to generalise the results obtained
above such that we may also define an index of certain subgroups ΓL ≤ AutL and
ΓM ≤ AutM of the automorphism groups of L and M .

Definition 5.32. Let L,M ∈ Ch(Rmod)b and let ΓL ≤ AutL and ΓM ≤ AutM . Let
c = (X, f, g) : L⇌M be a correspondence in Ch(Rmod)b. We define

Aut(c)|ΓL,ΓM
:= { (λ, ξ, µ) ∈ ΓL × (AutX)× ΓM |λf = fξ, µg = gξ }

and write a(c)|ΓL,ΓM
: ΓL ⇌ ΓM for the correspondence that consist of the canonical

projections Aut(c)|ΓL,ΓM
→ ΓL and Aut(c)|ΓL,ΓM

→ ΓM . We call a(c)|ΓL,ΓM
the auto-

morphism correspondence of c restricted to ΓL and ΓM .

5.6.1 Basic Properties of Restricted Automorphism Correspondences

The restricted and unrestricted automorphism correspondences are related as follows.

Proposition 5.33. Let L,M ∈ Ch(Rmod)b and let ΓL ≤ AutL and ΓM ≤ AutM . Let
c : L⇌ M be a correspondence. Denote by iL : ΓL ↪→ AutL and iM : ΓM ↪→ AutM the
inclusions. Then

a(c)|ΓL,ΓM

∼= c−1
iM
◦ a(c) ◦ ciL .

Proof. One easily checks that

α : Aut(c)|ΓL,ΓM
→ ΓL ×AutL Aut(c)×AutM ΓM , (λ, ξ, µ) 7→ (λ, (λ, ξ, µ), µ)

is an isomorphism between a(c)|ΓL,ΓM
and c−1

iM
◦ a(c) ◦ ciL .

Lemma 5.34. Let L,M ∈ Ch(Rmod)b and let ΓL ≤ AutL and ΓM ≤ AutM . Let
c : L⇌M be a correspondence. Then

a(c−1)|ΓM ,ΓL

∼= (a(c)|ΓL,ΓM
)−1.

Proof. This is readily verified.

We aim to show that the restricted correspondences a(c)|ΓL,ΓM
inherit some of the prop-

erties from a(c). For this, the following proposition is crucial.
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Proposition 5.35. Let L,M,N ∈ Ch(Rmod)b and let ΓL ≤ AutL, ΓM ≤ AutM and
ΓN ≤ AutN . Let c : L ⇌ M , d : M ⇌ N and e : L ⇌ N be correspondences. If
a(d) ◦ a(c) ∼ a(e), then a(d)|ΓM ,ΓN

◦ a(c)|ΓL,ΓM
∼ a(e)|ΓL,ΓN

.

Proof. Write a(c) = (Aut c, pc, qc), and similarly for a(d) and a(e). Then we have
a(c)|ΓL,ΓM

= (Aut(c)|ΓL,ΓM
, p′c, q

′
c), where the dashes signify restriction, and analog-

ously for a(d)|ΓM ,ΓN
and a(e)|ΓL,ΓN

. Let (W,k, l) : Aut c ×AutM Aut d ⇌ Aut e be an
equivalence between a(d) ◦ a(c) and a(e), so that we have the following commutative
diagram:

Aut c×AutM Aut d

Aut c Aut d

W AutL AutM AutN

Aut e.

pc qc pd qd

k

l

pe qe

Define

W ′ := k−1
(
Aut(c)|ΓL,ΓM

×ΓM
Aut(d)|ΓM ,ΓN

)
∩ l−1

(
Aut(e)|ΓL,ΓN

)
and let k′ : W ′ → Aut(c)|ΓL,ΓM

×ΓM
Aut(d)|ΓM ,ΓN

and l′ : W ′ → Aut(e)|ΓL,ΓN
be the

restrictions of k and l, respectively. We show that k′ is an isogeny; in the same way one
sees that l′ is an isogeny. This will then prove the claim. Since k is an isogeny, it is clear
that ker k′ is finite. Moreover, it follows that

Aut(c)|ΓL,ΓM
×ΓM

Aut(d)|ΓM ,ΓN

(Aut(c)|ΓL,ΓM
×ΓM

Aut(d)|ΓM ,ΓN
) ∩ k(W )

is finite. Let σ1, . . . , σn ∈ Aut(c)|ΓL,ΓM
×ΓM

Aut(d)|ΓM ,ΓN
be a system of representatives

for the classes in this quotient. Let σ ∈ Aut(c)|ΓL,ΓM
×ΓM

Aut(d)|ΓM ,ΓN
. Then there

is i ∈ {1, . . . , n} such that σσ−1
i ∈ k(W ). So there is w ∈ W with σσ−1

i = k(w). This
means w ∈ k−1(Aut(c)|ΓL,ΓM

×ΓM
Aut(d)|ΓM ,ΓN

). By commutativity of the diagram

above, it follows that also w ∈ l−1(Aut(e)|ΓL,ΓN
), so in fact w ∈ W ′. Hence, σ ≡ σi

mod k′(W ′). It follows that
∣∣∣Aut(c)|ΓL,ΓM

×ΓM
Aut(d)|ΓM ,ΓN

: k′(W ′)
∣∣∣ <∞, so k′ is an

isogeny.

Corollary 5.36. Let L,M,N ∈ Ch(Rmod)b. Let ΓL ≤ AutL, ΓM ≤ AutM and
ΓN ≤ AutN . Let c, c′ : L ⇌ M and d : M ⇌ N be commensurabilities. Then the
following hold:
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(i) If c ∼ c′, then a(c)|ΓL,ΓM
∼ a(c′)|ΓL,ΓM

.

(ii) We have a(d ◦ c)|ΓL,ΓN
∼ a(d)|ΓM ,ΓN

◦ a(c)|ΓL,ΓM
.

Proof. This is immediate from Propositions 5.27 and 5.35.

Corollary 5.37. Let L ∈ Ch(Rmod)b and let ΓL ≤ AutL. Suppose that c ∈ GL
corresponds to an element α ∈ Z(End(Q ⊗Z L))× ⊆ Aut(Q ⊗Z L). Then a(c)|ΓL,ΓL

∼
(ΓL, idΓL

, idΓL
). In particular, we have i(a(c)|ΓL,ΓL

) = 1.

Proof. This follows from Propositions 5.28 and 5.35.

5.6.2 Admissible Subgroups

Unlike when considering the full automorphism group, it is not guaranteed for any choice
of ΓL ≤ AutL and ΓM ≤ AutM that if c : L ⇌ M is a commensurability, then also
a(c)|ΓL,ΓM

is a commensurability. One way to see this is to note that necessarily, ΓL and
ΓM need to be commensurable as groups. Consider the case where AutL and AutM are
both infinite. Choosing ΓL = AutL and ΓM = 1, we have that for every commensur-
ability c : L ⇌ M , the restricted correspondence a(c)|ΓL,ΓM

is not a commensurability.
Thus, we need to restrict ourselves to suitable subgroups of the automorphism groups,
for which we can feasibly define an index.

Definition 5.38. Let L,M ∈ Ch(Rmod)b be commensurable and let ΓL ≤ AutL and
ΓM ≤ AutM . We say that the pair (ΓL,ΓM ) is admissible for (L,M) if for every
commensurability c : L⇌M we have that a(c)|ΓL,ΓM

: ΓL ⇌ ΓM is a group commensur-
ability.

Proposition 5.39. Let L,M,N ∈ Ch(Rmod)b be commensurable and let ΓL ≤ AutL,
ΓM ≤ AutM and ΓN ≤ AutN .

(i) If (ΓL,ΓM ) is admissible for (L,M), then (ΓM ,ΓL) is admissible for (M,L).

(ii) If (ΓL,ΓM ) and (ΓM ,ΓN ) are admissible for (L,M) and (M,N), respectively, then
(ΓL,ΓN ) is admissible for (L,N).

Proof. Statement (i) follows from Lemma 5.34. To prove (ii), suppose that (ΓL,ΓM )
and (ΓM ,ΓN ) are admissible for (L,M) and (M,N), respectively. Let e : L ⇌ N be a
commensurability. Choose any commensurability c : L ⇌ M . Then e ◦ c−1 : M ⇌ N is
a commensurability by Proposition 5.14 (v). From the assumption and Proposition 5.14
and Corollary 5.36, it follows that

a(e)|ΓL,ΓN
∼ a(e ◦ c−1 ◦ c)|ΓL,ΓN

∼ a(e ◦ c−1)|ΓM ,ΓN
◦ a(c)|ΓL,ΓM

is a commensurability.
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Proposition 5.40. Let L,M ∈ Ch(Rmod)b be commensurable and let ΓL ≤ AutL and
ΓM ≤ AutM .

(i) If ΓL and ΓM are finite, then (ΓL,ΓM ) is admissible for (L,M) and moreover we
have the following: If c : L⇌M is a commensurability, then

i(a(c)|ΓL,ΓM
) =
|ΓM |
|ΓL|

.

(ii) If ΓL and ΓM have finite index in AutL and AutM , respectively, then (ΓL,ΓM )
is admissible for (L,M) and we moreover have the following: If c : L ⇌ M is a
commensurability, then

i(a(c)|ΓL,ΓM
) =

|AutL : ΓL|
|AutM : ΓM |

· i(a(c)).

Proof. Using Proposition 5.27 (i), statement (i) is immediate. Statement (ii) follows
from Propositions 5.33 and 5.14.

5.6.3 The Index of Admissible Subgroups

We finally obtain a generalisation of Theorem 5.31 that allows us to define the index of
admissible subgroups of the automorphism groups of suitable chain complexes.

Proposition 5.41. Let L,M ∈ Ch(Rmod)b be commensurable. Let ΓL ≤ AutL and
ΓM ≤ AutM be such that (ΓL,ΓM ) is admissible for (L,M). Suppose that c, c′ : L⇌M
are commensurabilities. Assume that End(Q ⊗Z L) ∼= End(Q ⊗Z M) is a semisimple
ring. Then i(a(c)|ΓL,ΓM

) = i(a(c′)|ΓL,ΓM
).

Proof. The proof is analogous to that of [BL17, Theorem 8.1] and Proposition 5.29 (iii).
By Proposition 5.14, Lemma 5.34 and Corollary 5.36, the claim is equivalent to the
statement i(a(c−1 ◦ c′)|ΓL,ΓL

) = 1. Since (ΓL,ΓM ) is admissible for (L,M), it follows
from Proposition 5.39 that (ΓL,ΓL) is admissible for (L,L). Hence,

i ◦ a|ΓL,ΓL
: GL = HomCh(Rmod)bcom

(L,L)→ Q>0

is well-defined, and the claim follows if we can show that this homomorphism is trivial.
Let B := End(Q⊗ZL). Then B× ∼= GL by Corollary 5.25, and i◦a|ΓL,ΓL

factors through

B×/Z(B)× by Corollary 5.37. Since Q>0 is abelian, it also factors through B
×/[B×, B×].

Thus, i ◦ a|ΓL,ΓL
factors through B×/(Z(B)×[B×, B×]). It now follows as in the proof of

Proposition 5.29 that i ◦ a|ΓL,ΓL
is trivial.

The main result to be used later on in Section 8.2 is the following.
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Theorem 5.42. Let Z be an infinite commutative ring such that for all 0 ̸= z ∈ Z, the
ring Z/zZ is finite. Denote by Q the field of fractions of Z. Let A be a finite dimensional
Q-algebra and R be a left-noetherian Z-subalgebra of A with the property that Q ·R = A.
Let V ∈ Ch(Amod)b such that End(V ) is a semisimple ring. Define

S := SV :=
{
L ∈ Ch(Rmod)b

∣∣∣Q⊗Z L ∼= V
}

and
T := { (L,M,ΓL,ΓM ) |L,M ∈ S, (ΓL,ΓM ) admissible for (L,M) } .

Then there is a unique function

ia| : T → Q>0, (L,M,ΓL,ΓM ) 7→ ia(L,M)|ΓL,ΓM

with the following properties:

(i) If (L,M,ΓL,ΓM ) ∈ T and L′,M ′ ∈ S and there are isomorphisms φ : L
∼−→ L′ and

ψ : M
∼−→M ′, then (L′,M ′, φΓLφ

−1, ψΓMψ
−1) ∈ T and

ia(L,M)|ΓL,ΓM
= ia(L′,M ′)|φΓLφ−1,ψΓMψ−1 .

(ii) If (L,M,ΓL,ΓM ), (M,N,ΓM ,ΓN ) ∈ T , then (L,N,ΓL,ΓN ) ∈ T and

ia(L,M)|ΓL,ΓM
· ia(M,N)|ΓM ,ΓN

= ia(L,N)|ΓL,ΓN
.

(iii) If (L,M,ΓL,ΓM ) ∈ T and there is a monomorphism L ↪→M with finite cokernel,
then with

H :=
{
µ ∈ ΓM

∣∣µL = L, ∃ τ ∈ ΓL : µ
∣∣
L
= τ

}
and ρ : H → ΓL, µ 7→ µ|L one has

ia(L,M)|ΓL,ΓM
=
|ΓM : H| · |ker ρ|
|ΓL : im ρ|

.

Moreover, it has the following additional properties:

(iv) If L,M ∈ S, then ia(L,M)|AutL,AutM = ia(L,M).

(v) If L,M ∈ S and ΓL ≤ AutL and ΓM ≤ AutM have finite index, then

ia(L,M)|ΓL,ΓM
=
|AutL : ΓL|
|AutM : ΓM |

· ia(L,M).

Proof. Let (L,M,ΓL,ΓM ) ∈ T . Then by Proposition 5.29, there is a commensurability
c : L⇌M . We define

ia(L,M)|ΓL,ΓM
:= i(a(c)|ΓL,ΓM

),

which is independent of c by Proposition 5.41.
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To prove (i), let (L,M,ΓL,ΓM ) ∈ T , let L′,M ′ ∈ S, and suppose that there are iso-
morphisms φ : L

∼−→ L′ and ψ : M
∼−→ M ′. Let c′ = (X ′, f ′, g′) : L′ ⇌ M ′ be a commen-

surability. Then clearly, c := (X ′, φ−1 ◦ f ′, ψ−1 ◦ g′) : L ⇌ M is a commensurability, so
a(c)|ΓL,ΓM

is a commensurability. It is immediate that the map

Aut(c)|ΓL,ΓM
→ Aut(c′)|φΓLφ−1,ψΓMψ−1 , (λ, ξ, µ) 7→ (φλφ−1, ξ, ψµψ−1)

is an isomorphism. It fits into a commutative diagram

Aut(c)|ΓL,ΓM

ΓL ΓM

φΓLφ
−1 ψΓMψ

−1

Aut(c′)|φΓLφ−1,ψΓMψ−1

from which claim (i) follows. Statement (ii) is immediate from Proposition 5.39 (ii)
and Corollary 5.36 (ii). For (iii) suppose that (L,M,ΓL,ΓM ) ∈ T and that there is a
monomorphism i : L ↪→ M with finite cokernel. It induces a commensurability ci : L⇌
M , and the isomorphism

Aut(ci)|ΓL,ΓM

∼−→ H, (λ, λ, µ) 7→ µ

defines an isomorphism between a(ci)|ΓL,ΓM
and (H, ρ, j), where j : H ↪→ ΓM is the

inclusion. The claim follows.

We next prove uniqueness. Suppose t : T → Q>0 is a function satisfying (i), (ii) and
(iii). Let (L,M,ΓL,ΓM ) ∈ T . By Lemma 5.18, there are m1,m2 ∈ Z \ {0} such that
m1Ltors = m2Mtors = 0. Let i : m1L ↪→ L be the natural map, which is an isogeny by
loc. cit. Then i−1ΓLi ≤ Autm1L, and we now show that (i−1ΓLi,ΓM ) is admissible for
(m1L,M). First we investigate the map

α : ΓL → i−1ΓLi, λ 7→ i−1λi,

which is clearly surjective. Let

ΘL : 0 Ltors L L/Ltors 0,

a short exact sequence of chain complexes. There is a natural injection

AutL ↪→ AutΘL, λ 7→ (λ′, λ, λ),
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where λ′ and λ are the automorphisms of Ltors and L/Ltors, respectively, that are induced
by λ. Moreover, it follows from the proof of Proposition 2.12 applied componentwise
that the natural map

AutΘL → AutLtors ×AutL/Ltors

has kernel isomorphic to Hom(L/Ltors, Ltors). Now if λ ∈ kerα, then λ is the identity.
Hence, the concatenation

kerα ↪→ AutΘL → AutLtors ×AutL/Ltors

has finite image and finite kernel. This shows that kerα is finite and therefore that
α is an isogeny. Now let c = (X, f, g) : m1L ⇌ M be a commensurability. Then also
c′ := (X, if, g) : L ⇌ M is a commensurability, so a(c′)|ΓL,ΓM

is a commensurability.
Define

Aut(c′)|ΓL,ΓM
→ Aut(c)|i−1ΓLi,ΓM

, (λ, ξ, µ) 7→ (i−1λi, ξ, µ).

This map is surjective and has finite kernel, as α does, so it is an isogeny. It fits into a
commutative diagram

Aut(c′)|ΓL,ΓM

Aut(c′)|ΓL,ΓM
ΓL ΓM

i−1ΓLi ΓM

Aut(c)|i−1ΓLi,ΓM
,

id

α id

which together with Proposition 5.7 shows that a(c)|i−1ΓLi,ΓM
is a commensurability.

Thus, (i−1ΓLi,ΓM ) is admissible for (m1L,M). In the same manner, when letting
j : m2M ↪→ M denote the natural map, one sees that (ΓL, j

−1ΓMj) is admissible for
(L,m2M) and that (i−1ΓLi, j

−1ΓMj) is admissible for (m1L,m2M). Then by property
(ii) we have

t(L,M,ΓL,ΓM ) =
t(m1L,m2M, i−1ΓLi, j

−1ΓMj) · t(m2M,M, j−1ΓMj,ΓM )

t(m1L,L, i−1ΓLi,ΓL)
.

The values of all three factors on the right hand side are determined by property (iii),
so t must equal ia.

Finally, property (iv) is clearly satisfied, and property (v) follow from Proposition 5.40.
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6 Arakelov Ray Class Groups

In this chapter, we introduce the central object of the thesis, the Arakelov ray class
group Pic0K(m). It is an ‘Arakelov version’ of the ray class group and has first appeared
in [BP25]. Here, we recall its definition and the properties established in [BP25]. As
Pic0K(m) is the main object of our interest, we give a detailed construction and provide
proofs of the relevant statements. First, in Sections 6.1 and 6.2 we review ray class
groups and relevant aspects of Minkowski theory. The Arakelov ray class group and its
associated short exact sequence SAra

K (m) are then constructed in Section 6.3. In the final
subsection we discuss some of the information that is carried by the sequence SAra

K (m).

Throughout this chapter, let K be a number field. For an infinite prime p | ∞ of K
we denote by σp : K ↪→ C a representative of the class of embeddings corresponding to
p. We denote by IdK the group of fractional ideals of K and by PrinK the group of
principal fractional ideals. We write ClK = IdK /PrinK for the ideal class group.

Note that Aut(K) operates on the infinite primes of K. If τ ∈ Aut(K) and p | ∞, then
a representative for the class of embeddings associated to τ(p) is by definition given by
στ(p) = σp ◦ τ−1. Moreover, there is a natural action of Aut(K) on IdK , PrinK and
ClK .

Definition 6.1. A modulus in K is a pair m = (m0,m∞) where m0 is a nonzero integral
ideal of OK and m∞ is a set of real places of K. If H ≤ Aut(K), then we say that m is
H-stable if τ(m0) = m0 and τ(m∞) = m∞ for all τ ∈ H.

For the remainder of this chapter, let m = (m0,m∞) be a modulus in K.

6.1 Ray Class Groups

We recall the definition and basic properties of the ray class group. We follow [Coh00,
Section 3.2], but use the notation from [BP25, Section 1.1].

Definition 6.2. We say that a fractional ideal I ∈ IdK is coprime to m if vp(I) = 0 for
all p | m0, and we denote by IdK(m) the group of all such ideals. We define

K1(m) :=
{
a ∈ K× ∣∣ vp(a− 1) ≥ vp(m0) for all p | m0, σp(a) > 0 for all p ∈ m∞

}
and put O1

K(m) := K1(m) ∩ O×
K . Finally, we let PrinK(m) :=

{
aOK

∣∣ a ∈ K1(m)
}
and

define the ray class group of K with modulus m to be ClK(m) := IdK(m)/PrinK(m).

Note that we recover the ideal class group as ClK = ClK(OK ,∅).
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Definition 6.3. We say that an element a ∈ K× is coprime to m if aOK is. If a ∈ K×

is coprime to m, then we can write a = b
c with b, c ∈ OK coprime to m. We have

b, c ∈ (OK/m0)
× and define a := b · c−1 ∈ (OK/m0)

×, which is independent of the choice
of b and c. We define a group homomorphism

ρ := ρK(m) :
{
a ∈ K× ∣∣ a coprime to m

}
→ (OK/m0)

× × {±1}m∞ ,

a 7→ (a, (signσp(a))p),

which is surjective by strong approximation.

Note that when restricted to O×
K , the first component of ρ is just the map induced by

the reduction map OK → OK/m0.

Remark 6.4. Let H ≤ Aut(K) and suppose that m is H-stable. Then it is easy to see
that the objects IdK(m),K1(m), O1

K(m), PrinK(m), ClK(m), { a ∈ K× | a coprime to m },
OK/m0, {±1}m∞ discussed above are H-modules. The action on {±1}m∞ is given by
τ.(ap)p∈m∞ = (aτ−1(p))p∈m∞ for ap ∈ {±1} and τ ∈ H.

We always have a natural map ClK(m) → ClK from the ray class group to the class
group. Its kernel can be described by the following exact sequence.

Proposition 6.5 ([Coh00, Proposition 3.2.3]). Suppose that m is H-stable for H ≤
Aut(K). There is an exact sequence of H-modules

0 O1
K(m) O×

K (OK/m0)
× × {±1}m∞ ClK(m) ClK 0

ρ ψ

where the left hand map is inclusion, the right hand map is the natural map, and ψ maps
ρ(a), where a ∈ K× is coprime to m, to the class of aOK . In particular,

∣∣O×
K : O1

K(m)
∣∣ <

∞.

Definition 6.6. We write

SfinK (m) : 0 (OK/m0)××{±1}m∞

ρ(O×
K)

ClK(m) ClK 0.
ψ

for the short exact sequence coming from Proposition 6.5 and call it the ray class group
sequence.
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6.2 Minkowski Theory

We review some notions from Minkowski theory and set up some notation that will be
used later. The material can be found for example in [Neu99, Section I.5]. A central
role in Minkowski theory is played by the finite etale R-algebra KR := K ⊗Q R which
offers a way of embedding K into a finite-dimensional real vector space and making use
of the theory of lattices. There is an isomorphism of finite etale R-algebras

KR = K ⊗Q R ∼−→
∏
p|∞

Kp, a⊗ x 7→ (ax, . . . , ax),

and we will generally prefer to work with the right hand description of KR. For each
infinite prime p | ∞ we denote by ∥·∥p : Kp → R≥0 the associated normalised absolute
value. Thus, if p is real, then after identifying Kp with R we have ∥·∥p = |·|, and if p is

complex, then after identifying Kp with C we have ∥·∥p = |·|
2.

We denote the norm map of the finite etale R-algebra
∏

p|∞Kp by N:
∏

p|∞Kp → R.
Explicitly, it is given by N((ap)p) =

∏
p|∞ ∥ap∥p. On the unit group K×

R
∼=
∏

p|∞K×
p we

further define a map

Log :
∏
p|∞

K×
p →

∏
p|∞

R, (ap)p 7→ (log ∥ap∥p)p.

Note that we have a decomposition∏
p|∞

K×
p
∼=
∏
p|∞

c(K×
p )× R>0

where c(K×
p ) denotes the maximal compact subgroup of K×

p . Explicitly, if p is real, then

c(K×
p ) = {±1} and we have an isomorphism R× ∼−→ {±1}×R>0, x 7→ ( x|x| , |x|), and if p is

complex, then c(K×
p ) = S1 and we have an isomorphism C× ∼−→ S1×R>0, z 7→ ( z|z| , |z|).

The above decomposition induces an isomorphism∏
p|∞

K×
p

/
c

(∏
p|∞

K×
p

)
∼−→
∏
p|∞

R>0.

Since N is trivial on
∏

p|∞ c(K×
p ), it descends to

∏
p|∞R>0, where it is given by

N:
∏
p|∞

R>0 → R>0, (xp)p 7→
∏
p|∞

x
|Kp:R|
p . (6.7)

Similarly, Log descends to
∏

p|∞R>0, where it is given by

Log :
∏
p|∞

R>0 →
∏
p|∞

R, (xp)p 7→ (log x
|Kp:R|
p )p = (|Kp : R| · log xp)p
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and defines an isomorphism. Finally, we have the trace map

Tr:
∏
p|∞

R→ R, (xp)p 7→
∑
p|∞

xp.

The above maps fit into the commutative diagram

K× ∏
p|∞K×

p

∏
p|∞R

Q>0 R>0 R.

|NK/Q|

Log

N Tr

log

We write (
∏

p|∞R)0 for the set of x ∈
∏

p|∞R for which Tr(x) = 0. Then commutativity

of the diagram gives that Log(O×
K) ⊆ (

∏
p|∞R)0. We have the following generalised

version of Dirichlet’s unit theorem.

Theorem 6.8. There is a split exact sequence of abelian groups

0 µ(K) ∩ O1
K(m) O1

K(m) Log(O1
K(m)) 0

Log

and Log(O1
K(m)) is a complete lattice in (

∏
p|∞R)0.

Proof. The statement for m = (OK ,∅) is the classical unit theorem and is proven in
[Neu99, Section I.7]. It immediately implies the claim on the exact sequence. Since∣∣O×

K : O1
K(m)

∣∣ <∞ by Proposition 6.5 and Log(O×
K) is a complete lattice in (

∏
p|∞R)0,

it follows that also Log(O1
K(m)) is a complete lattice in (

∏
p|∞R)0.

6.3 Construction of the Arakelov Ray Class Group and Sequence

In this section, we define the Arakelov ray class group Pic0K(m) and establish the natural
short exact sequence SAra

K (m) associated to it, as well as a short exact sequence DK(m) of
short exact sequences of which SAra

K (m) is the middle term. The construction of Pic0K(m)
is analogous to that of the Arakelov class group as a version of the ideal class group that
also incorporates the infinite primes. We review and detail its definition from [BP25],
using a slightly different but equivalent approach in the style of Neukirch’s construction
of the Arakelov class group in [Neu99, Section III.1]. In doing so, we roughly follow the
exposition from [Neu99] and generalise it by taking the modulus m into account. We
give a multiplicative definition here, but one can also define Pic0K(m) additively, using
divisors, just as for Pic0K .
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Definition 6.9. We define

IdK(m) := IdK(m)×
∏
p|∞

R>0

and regard it as an LCA group with the discrete topology on IdK(m) and the standard
topology on

∏
p|∞R>0. For a ∈ K1(m) we define

((a)) :=
(
aOK , (|σp(a)|−1)p|∞

)
∈ IdK(m)

and let PrinK(m) :=
{
((a))

∣∣ a ∈ K1(m)
}
.

Note that clearly ((a)) · ((b)) = ((ab)) for a, b ∈ K1(m), so PrinK(m) is a subgroup of
IdK(m). Even more:

Proposition 6.10. The kernel of K1(m) → IdK(m), a 7→ ((a)) is µ(K) ∩ O1
K(m). Its

image PrinK(m) is a discrete subgroup of IdK(m) and thus in particular closed.

Proof. We imitate the proof of [Neu99, Proposition III.1.9], with respect to our notation.
The composition of maps

K1(m)→ IdK(m)→
∏
p|∞

R>0
Log−−→

∏
p|∞

R,

where the middle map is the projection, is just −Log|K1(m). It follows from this and

Theorem 6.8 that the kernel of K1(m)→ IdK(m) is µ(K) ∩ O1
K(m).

For the second claim we again make us of Theorem 6.8 which gives in particular that
Log(O1

K(m)) is a discrete subgroup of (
∏

p|∞R)0. Hence, there is an open set U ⊆∏
p|∞R such that U ∩ Log(O1

K(m)) = {0}. Consider V := {OK}× Log
−1

(U) ⊆ IdK(m),

which is an open set containing 1 ∈ IdK(m). We claim that V ∩ PrinK(m) = {1}. If
a ∈ K1(m) is such that ((a)) ∈ V , then a ∈ O1

K(m) and −Log(a) = Log(a−1) ∈ U
by our considerations from the first part of the proof. It follows that Log(a) = 0, so
a ∈ µ(K) ∩ O1

K(m) and therefore ((a)) = 1. This shows that PrinK(m) is discrete in

IdK(m).

Definition 6.11. We define PicK(m) := IdK(m)/PrinK(m), which is an LCA group.

In analogy to the fact that Log(O1
K(m)) is contained in the trace-0-hypersurface of∏

p|∞R with compact quotient, it is more natural to consider a slightly smaller group

than PicK(m) by restricting to certain elements of IdK(m). This will again yield a
compact object.
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Definition 6.12. The absolute norm N: IdK → Q>0 on fractional ideals and the norm
map N:

∏
p|∞R>0 → R>0 from (6.7) give rise to yet another norm map

N: IdK(m)→ R>0, (I, (xp)p) 7→ N(I) ·
∏
p|∞

x
|Kp:R|
p

which is a continuous surjective group homomorphism.

Note that for a ∈ K1(m) we have

N
(
((a))

)
= N(aOK) ·

∏
p|∞

|σp(a)|−|Kp:R| =
∏
p∤∞

∥a∥−1
p ·

∏
p|∞

∥a∥−1
p = 1

by the product formula. Thus the norm map descends to PicK(m).

Definition 6.13. We put

IdK(m)
0
:=
{
X ∈ IdK(m)

∣∣∣N(X) = 1
}
.

The LCA group

Pic0K(m) := IdK(m)
0
/PrinK(m) = ker(N : PicK(m)→ R>0)

is called the Arakelov ray class group of K with modulus m. We call Pic0K := Pic0K(OK ,∅)
the Arakelov class group of K.

The 0 on top is taken from the additive definition of these objects in the language of di-
visors; see [Sch08, Section 2] or [Neu99, Section III.1] for the corresponding construction
of the Arakelov class group.

Remark 6.14. The action of Aut(K) on {p | ∞} induces an action on
∏

p|∞R, which
for τ ∈ Aut(K) and (xp)p ∈

∏
p|∞R is given by τ.(xp)p = (xτ−1(p))p. The analogous

statement holds for
∏

p|∞R>0.

Let H ≤ Aut(K) and suppose that m is H-stable. Then in addition to the objects

mentioned in Remark 6.4, we have that IdK(m), PrinK(m), PicK(m), IdK(m)
0
and

Pic0K(m) are LCA H-modules, and the maps K1(m) → IdK(m) and N are continuous
H-homomorphisms.

The next statement generalises the fact that the Arakelov class group surjects onto
the ideal class group with kernel a compact real torus ([Neu99, Proposition III.1.11];
[Sch08, Proposition 2.2]).
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Proposition 6.15. Suppose that m is H-stable for H ≤ Aut(K). There is a short
strictly exact sequence of compact LCA H-modules

0 O1
K(m)⊗Z R/Z Pic0K(m) ClK(m) 0

where the right hand map is the natural one and the left hand map is given by u⊗ x 7→
[(1, (|σp(u)|−x)p)] for u ∈ O1

K(m) and x ∈ R.

In particular, O1
K(m) ⊗Z R/Z is the connected component of the identity of Pic0K(m).

Moreover, Pic0K(m) is a compact real abelian Lie group of dimension |{p | ∞}| − 1, and
the above short exact sequence is an exact sequence of compact real abelian Lie groups.

Proof. We need to investigate the kernel of the natural surjection Pic0K(m) → ClK(m)
and start by imitating the proof of [Neu99, Proposition III.1.11]. We consider the map

s : O1
K(m)→

∏
p|∞

R>0, u 7→ (|σp(u)|−1)p,

a multiplicative analogue of the Log map which embeds units in trace-0-space. Note that
it is just the concatenation of the natural map O1

K(m)→ PrinK(m) with the projection

IdK(m) →
∏

p|∞R>0. Thus Proposition 6.10 shows that ker(s) = O1
K(m) ∩ µ(K) and

that s has discrete image. We denote by (
∏

p|∞R>0)
0 the set of x ∈

∏
p|∞R>0 with

N(x) = 1, where N is the map from (6.7). Then im(s) ⊆ (
∏

p|∞R>0)
0 by the product

formula, and there is a natural commutative diagram

0
O1

K(m)

O1
K(m)∩µ(K)

PrinK(m) PrinK(m) 0

0 (
∏

p|∞R>0)
0 IdK(m)

0
IdK(m) 0

s

with exact rows. The snake lemma gives us a short exact sequence of LCA groups

0
(
∏

p|∞ R>0)0

s(O1
K(m))

Pic0K(m) ClK(m) 0.

We now provide a different description of the left hand term. In a first step, we connect
it to the objects from Minkowski theory. For u ∈ O1

K(m) it holds that Log(s(u)) =
Log(u−1), so that we have a commutative diagram

s(O1
K(m)) (

∏
p|∞R>0)

0

Log(O1
K(m)) (

∏
p|∞R)0

Log Log
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in which the vertical maps are isomorphisms. It follows that Log induces an isomorphism

Log :
(
∏

p|∞R>0)
0

s(O1
K(m))

∼−→
(
∏

p|∞R)0

Log(O1
K(m))

of LCA groups. Next we define a map

O1
K(m)⊗Z R/Z→

(
∏

p|∞R)0

Log(O1
K(m))

, u⊗ x 7→ x · Log(u−1).

This is clearly well-defined, and it is continuous, using the topology from Proposition
4.42 on O1

K(m)⊗ZR/Z. By Theorem 6.8, Log(O1
K(m)) is a complete lattice in (

∏
p|∞R)0

which shows that the map is surjective. Moreover, we may pick u1, . . . , un ∈ O1
K(m) such

that Log(u1), . . . ,Log(un) are a Z-basis of Log(O1
K(m)) and an R-basis of (

∏
p|∞R)0.

Then every element of O1
K(m)⊗Z R/Z can be written as

∑n
i=1 ui ⊗ xi for some xi ∈ R.

If such an element is contained in the kernel of the above map, then
∑n

i=1−xi Log(ui) ∈
Log(O1

K(m)) and R-linear independence gives xi ∈ Z for all i, so
∑n

i=1 ui ⊗ xi = 0.
Hence, the above map is injective and therefore an isomorphism of LCA groups. By
tracing the given isomorphisms, one obtains the claimed short exact sequence, which is
strictly exact by Proposition 4.21. Being the finite union of compact sets, Pic0K(m) is
compact. Note that all maps appearing above are in fact H-homomorphisms.

Since ClK(m) is finite, O1
K(m) ⊗Z R/Z is a closed subgroup of Pic0K(m) of finite index,

hence an open subgroup. It then follows from [HR79, Theorem 7.8] that O1
K(m)⊗ZR/Z

is the connected component of the identity of Pic0K(m). The final claim is immediate
from Proposition 4.12.

As an analogue of Proposition 6.5 we obtain:

Proposition 6.16. Suppose that m is H-stable for H ≤ Aut(K). There is an exact
sequence of compact real abelian Lie groups with an action of H by continuous group
automorphisms

0 µ(K) ∩ O1
K(m) µ(K) (OK/m0)

× × {±1}m∞ Pic0K(m) Pic0K 0
ρ ψ

where the left hand map is inclusion, the right hand map is the natural map, and ψ maps
ρ(a), where a ∈ K× is coprime to m, to the class of (aOK , (|σp(a)|−1)p).

Proof. The proof of [Coh00, Proposition 3.2.3] immediately generalises.

Definition 6.17. We write

SAra
K (m) : 0 (OK/m0)××{±1}m∞

ρ(µ(K)) Pic0K(m) Pic0K 0
ψ

for the short exact sequence coming from Proposition 6.16 and refer to it as the Arakelov
ray class group sequence.
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The exact sequence SAra
K (m) and the sequence from Proposition 6.15 fit together in a big

commutative diagram which summarises much of the content of this section.

Theorem 6.18. Suppose that m is H-stable for H ≤ Aut(K). There is a commutative
diagram of compact real abelian Lie groups with an action of H by continuous group
automorphisms

0 0 0

0
ρ(O×

K)

ρ(µ(K)) O1
K(m)⊗Z R/Z O×

K ⊗Z R/Z 0

0 (OK/m0)××{±1}m∞

ρ(µ(K)) Pic0K(m) Pic0K 0

0 (OK/m0)××{±1}m∞

ρ(O×
K)

ClK(m) ClK 0

0 0 0

with exact rows and columns, where: ρ is the map from Definition 6.3; the middle row is
SAra
K (m); the bottom row is SfinK (m); the middle and right hand columns are the sequences

from Proposition 6.15; the left hand map in the top row maps the class of ρ(u) to ut⊗ 1
t ,

where u ∈ O×
K and t =

∣∣O×
K : O1

K(m)
∣∣.

Proof. Commutativity of all four squares of the diagram is immediate from the definition
of the respective maps. All of the exactness is clear except for the top row. Exactness
of the latter follows from the snake lemma.

Denoting the top row in the diagram above by StoriK (m), we can write the diagram as a
short exact sequence

DK(m) : 0 StoriK (m) SAra
K (m) SfinK (m) 0

of short exact sequences of compact real abelian Lie groups.

6.4 Information Carried by the Arakelov Ray Class Sequence

In this section, we show that the Arakelov ray class sequence SAra
K (m) ‘knows about’

both the diagram DK(m) and the reduction map ρK(m) in the sense that the latter two
can be obtained from the former by certain general constructions performed on short
exact sequences. This is taken from [BP25, Section 3].
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6.4.1 Recovering the Diagram DK(m)

We recall the construction from [BP25, page 11] that shows that the diagram DK(m)
can be recovered from just the short exact sequence SAra

K (m). We use the slightly more
general setting of LCA modules over a locally compact ring.

Construction 6.19. Let R be locally compact topological ring. Let

Γ: 0 Y W X 0
γ δ

be a short exact sequence of compact LCA R-modules. Note that it is automatically
strictly exact by Proposition 4.21. We show that Γ naturally induces a short exact
sequence of short exact sequences of which it is the middle term.

Since W is compact, so are W0 and δ(W0). Strictness of δ and [HR79, Theorem 7.12]
imply that δ(W0) = X0. It follows from this and Proposition 4.21 that there is a short
strictly exact sequence of compact LCA R-modules

Γ0 : 0 ker(δ|W0
) W0 X0 0.

δ|W0

We also get a short strictlyexact sequence of compact LCA R-modules

Γ: 0 ker(δ) W/W0 X/X0 0δ

where δ is the natural map induced by δ. Now define a morphism

γ′ : Y → ker(δ), y 7→ γ(y).

It is then easy to see that

0 ker(δ|W0
) Y ker(δ) 0

γ−1 γ′

is a short strictly exact sequence of compact LCA R-modules. Moreover, we have a
commutative diagram of compact LCA R-modules with strictly exact rows and columns

0 0 0

Γ0 : 0 ker(δ|W0
) W0 X0 0

Γ: 0 Y W X 0

Γ: 0 ker(δ) W/W0 X/X0 0

0 0 0.

γ−1

δ|W0

γ′

γ δ

δ
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That is to say, there is a short exact sequence

Dc(Γ) : 0 Γ0 Γ Γ 0

of short strictly exact sequences of compact LCA R-modules.

Proposition 6.20. It holds that Dc(S
Ara
K (m)) = DK(m).

Proof. This is immediate from Theorem 6.18.

6.4.2 Recovering the Reduction Map ρK(m)

Recall the natural reduction map

ρ := ρK(m) : O×
K → (OK/m0)

× × {±1}m∞ , u 7→ (u, (signσp(u))p)

from Definition 6.3. Denote by

ρ := ρK(m) :
O×
K

µ(K)
→ (OK/m0)

× × {±1}m∞

ρ(µ(K))

the map induced by ρ. We discuss the construction from [BP25, page 13] that allows
to recover ρ from SAra

K (m). We work in the slightly more general setting that takes into
account group actions.

Construction 6.21. Let G be a finite group. LetX be a compact real abelian Lie group
with an action of G by continuous group automorphisms. Let Y be a finite ZG-module.
We construct a map

ωc := ωX,Yc : E
ZGLCA(X,Y )→ HomZG((X

∨/(X∨)tors)
∗, Y ),

where we recall that (X∨/(X∨)tors)
∗ = HomZ(X

∨/(X∨)tors,Z) is the dual lattice from
Definition 3.6 (here, Z = Z and R = ZG). Let Γ ∈ E

ZGLCA(X,Y ) and suppose that it is
given by the short strictly exact sequence

0 Y W X 0
γ δ

of LCA ZG-modules. Note that W is compact by Remark 4.26 (a). By Pontryagin
duality and Corollary 4.16 (ii) we have a natural isomorphism

X0
∼−→ (X∨/(X∨)tors)

∨, x 7→ (f 7→ f(x))

of compact LCA ZG-modules and by Propositions 4.42 and 3.7 there is a natural iso-
morphism

(X∨/(X∨)tors)
∗ ⊗Z R/Z ∼−→ (X∨/(X∨)tors)

∨, h⊗ t 7→ (f 7→ h(f) · t)
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of compact LCA ZG-modules, and analogously with X replaced by W . We moreover
have a short exact sequence

0 X∨/(X∨)tors W∨/(W∨)tors Y ∨/γ∨((W∨)tors) 0δ∨

of discrete (ZG)op-modules. Since Y is finite, this shows that (δ∨)∗ is injective with finite
cokernel. Hence, (δ∨)∗ ⊗ idR is an isomorphism of real vector spaces and G-modules.
Now consider the commutative diagram

(X∨/(X∨)tors)
∗

(W∨/(W∨)tors)
∗ ⊗Z R (X∨/(X∨)tors)

∗ ⊗Z R

(W∨/(W∨)tors)
∗ ⊗Z R/Z (X∨/(X∨)tors)

∗ ⊗Z R/Z

0 ker δ|W0
W0 X0 0

0 Y W X 0.

⊆

(δ∨)∗⊗idR
∼

∼= ∼=

γ−1

δ|W0

γ δ

By commutativity, the image of (X∨/(X∨)tors)
∗ in W0 is contained in ker δ|W0

, so we
may apply γ−1 to it to land in Y . This gives a map ωc(Γ) ∈ HomZG((X

∨/(X∨)tors)
∗, Y ),

depicted in green above. One checks that it is independent of the chosen representative
for Γ.

For φ ∈ (X∨/(X∨)tors)
∗ we can explicitly give the image of γ(ωc(Γ)(φ)) ∈W under any

element ofW∨, by tracing the isomorphisms above: Let g ∈W∨. Then there is a unique
h ∈ X∨/(X∨)tors such that |Y | g = δ∨(h) and it holds that

g
(
γ(ωc(Γ)(φ))

)
= φ(h) · 1

|Y |
.

The construction above is related to Construction 6.19 in the following way.

Proposition 6.22. Let G be a finite group. Let X be a compact real abelian Lie group
with an action of G by continuous group automorphisms. Let Y be a finite ZG-module.
Suppose that Γ ∈ E

ZGLCA(X,Y ) is given by the short strictly exact sequence

0 Y W X 0
γ δ

of compact LCA ZG-modules. Then there is a surjective ZG-module homomorphism
σ : (X∨/(X∨)tors)

∗ ↠ ker δ|W0
with ωc(Γ) = γ−1 ◦ σ.
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Proof. By Construction 6.21 we can write ωc(Γ) = γ−1 ◦ γ ◦ ωc(Γ), where γ ◦ ωc(Γ) is
a homomorphism from (X∨/(X∨)tors)

∗ to ker δ|W0
. It follows from the commutative

diagram in Construction 6.21 that γ ◦ ωc(Γ) is surjective.

Construction 6.23. Let n be a modulus in K that is H-stable for H ≤ Aut(K). The
short exact sequence from Proposition 6.15 induces an isomorphism

Pic0K(n)∨/(Pic0K(n)∨)tors
∼−→ (O1

K(n)⊗Z R/Z)∨.

Now by Pontryagin duality and Proposition 4.42, there are natural isomorphisms

O1
K(n)∗

∼−→ (O1
K(n)∗)∨∨

∼−→ (O1
K(n)⊗Z R/Z)∨,

and using further Proposition 3.7 we have natural isomorphisms

((O1
K(n)⊗Z R/Z)∨)∗ ∼−→ O1

K(n)∗∗
∼←− O1

K(n)/(µ(K) ∩ O1
K(n)).

Overall, we obtain a natural isomorphism

(Pic0K(n)∨/(Pic0K(n)∨)tors)
∗ ∼= O1

K(n)/(µ(K) ∩ O1
K(n))

of H-modules.

Proposition 6.24. Suppose that m is H-stable for H ≤ Aut(K). Then under the
isomorphism

((Pic0K)∨/((Pic0K)∨)tors)
∗ ∼= O×

K/µ(K)

from Construction 6.23 and when considering SAra
K (m) as a short exact sequence of com-

pact LCA H-modules, we have ωc(S
Ara
K (m)) = ρK(m).

Proof. One checks that for any modulus n in K, the isomorphism from Construction
6.23 tensored with idR fits into a commutative diagram

(Pic0K(n)∨/(Pic0K(n)∨)tors)
∗ ⊗Z R O1

K(n)/(µ(K) ∩ O1
K(n))⊗Z R

(Pic0K(n)∨/(Pic0K(n)∨)tors)
∗ ⊗Z R/Z

Pic0K(n)0 O1
K(n)⊗Z R/Z

∼=

∼=

∼

where the isomorphism on the left hand side is the one from Construction 6.21 and the
bottom map is the map from Proposition 6.15. Now by Proposition 6.5, the inclusion
O1
K(m) ↪→ O×

K induces an isomorphism

O1
K(m)/(µ(K) ∩ O1

K(m))⊗Z R ∼−→ O×
K/µ(K)⊗Z R
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whose inverse sends u⊗x to ut⊗ 1
t , where t =

∣∣O×
K : O1

K(m)
∣∣. By the above commutative

diagram, in order to prove the claim, we have to show that the concatenation

O×
K/µ(K) ↪→ O×

K/µ(K)⊗Z R
∼−→ O1

K(m)/(µ(K) ∩ O1
K(m))⊗Z R

→ O1
K(m)⊗Z R/Z

∼−→ Pic0K(m)0

equals ψ ◦ρK(m), where ψ is the map from Proposition 6.16. But this is immediate from
the definitions of the respective maps.
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7 Picking out Good Components

As explained in the introduction, our main conjecture is concerned with the good part
of the Arakelov ray class sequence, which is obtained from SAra

K (m) by tensoring its dual
with a suitable ring R. In the present chapter, we investigate this process of picking out
good components and establish some fundamental properties of the corresponding ring
R. We use the notion of good primes from [BL20]:

Definition 7.1 ([BL20, page 930]). Let G be a finite group and let A = QG/I for some
two-sided ideal I. We call a rational prime p good for A if there is a direct product
decomposition as rings Z(p)G ∼= J × J ′, where J is a maximal Z(p)-order in A, and the
quotient map Z(p)G→ A equals the projection Z(p)G→ J composed with the inclusion
J ↪→ A.

If p is good for A, there is thus a commutative diagram

J × J ′ Z(p)G

J A,

∼=

and it holds that J = im(Z(p)G→ A). Most importantly, the good primes include those
coprime to the order of G:

Lemma 7.2. Primes not dividing |G| are good for A.

Proof. This is immediate from [Rei03, Theorems 41.1 and 10.5].

For the most part, we will use the following notation.

Setup 7.3. Let G be a finite group and let A = QG/I for some two-sided ideal I. Let
S be a nonempty set of good primes for A and let R := im(Z(S)G→ A). We denote the
localisation of the Z(S)-algebra R at pZ(S) by Rp.

Suppose that e0, . . . , et are the primitive central idempotents of QG, that I is generated
by e0, . . . , es for some −1 ≤ s ≤ t (where we mean I = 0 if s = −1) and that S consists
of rational primes not dividing |G|. Then by [Rei03, Theorems 41.1 and 10.5] we have
R ∼= Z(S)G/(e0Z(S)G⊕ · · · ⊕ esZ(S)G), and if M is a finite ZG-module, it holds that

R⊗ZGM ∼=M [S∞]/(e0M [S∞]⊕ · · · ⊕ esM [S∞]).

So by tensoring with R, one picks out the components of the good part M [S∞] that
belong to the blocks of QG not contained in I.
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7.1 Basic Properties of R and its Localisations

Use Setup 7.3. We prove some basic properties of R that will be used later.

In many situations, we will deal with Pontryagin duals or lattice duals of certain ZG-
modules or R-modules. These duals are a priori modules over the opposite rings. A
convenient property of the specific rings we are working with is that they are self-
opposite which allows to naturally regard modules over their opposite as modules over
the original ring.

Construction 7.4. Let T be a ring and suppose that T admits an antiautomorphism
τ : T → T . Then τ induces a ring isomorphism T

∼−→ T op. Hence, if M is a left
T op-module with action T op ×M → M, (t,m) 7→ t ∗m, then we may regard M as a
left T -module via t.m := τ(t) ∗ m. This way any homomorphism φ : M → N of left
T op-modules is also a homomorphism of left T -modules. Analogously, if M is a right
T op-module with action given by m ∗ t, then we may regard M as a right T -module via
m.t := m ∗ τ(t).

Convention 7.5. In the case of QG, we have the canonical involutory antiautomorph-
ism

τ : QG→ QG, g 7→ g−1.

If Z ⊆ Q is a subring, then τ restricts to an antiautomorphism of ZG. Moreover, if e ∈
QG is one of the pairwise orthogonal primitive central idempotents, then we have τ(e) =
e by [Lam91, Proposition 8.15] and [Isa76, Theorem 9.21 (c)]. In particular, τ(I) = I,
and τ induces an antiautomorphism τ : A→ A that restricts to antiautomorphisms of R
and Rp for p ∈ S. We will always use the antiautomorphisms τ and τ to regard left resp.
right modules over the opposite ring of any of the rings mentioned in this paragraph as
left resp. right modules over the ring itself.

A key feature of R is that its localisations at the p ∈ S allow us to make use of the
properties of good primes.

Lemma 7.6. Let p ∈ S and let ρ : J ×J ′ ∼−→ Z(p)G be a ring isomorphism, where J is a
maximal Z(p)-order in A, and the quotient map Z(p)G→ A equals the projection Z(p)G→
J composed with the inclusion J ↪→ A. Then J = Rp and we have a commutative diagram

Rp × J ′ Z(p)G

Rp A.

ρ

(7.7)

Write e := ρ(1, 0) ∈ Z(p)G. The following hold:

(i) (I ∩ Z(p)G) · e = 0.
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(ii) For all x ∈ Z(p)G and w ∈ Rp we have ρ(xw, 0) = x · ρ(w, 0) and ρ(wx, 0) =

ρ(w, 0) · x. In particular, ρ induces an isomorphism Rp
∼−→ Z(p)G · e of left and

right Z(p)G-algebras.

(iii) τ(e) = e.

(iv) For all w ∈ Rp we have τ(ρ(w, 0)) = ρ(τ(w), 0).

Moreover, if ρ̃ : Rp× J̃ ′ ∼−→ Z(p)G is another ring homomorphism for which the analogue
of (7.7) commutes, and ẽ := ρ̃(1, 0), then e = ẽ and ρ|Rp

= ρ̃|Rp
as maps Rp → Z(p)G ·e.

Proof. We have Rp = (Z(S) \ pZ(S))
−1R = im(Z(p)G→ A), so Rp = J .

Let x ∈ (I ∩ Z(p)G) · e ⊆ Z(p)G · e. Then there is w ∈ Rp with x = ρ(w, 0). Using
commutativity of (7.7) and the fact that x ∈ I, it follows that w = 0. So x = 0 and (i)
is proved.

Note that e is a central idempotent of Z(p)G. As such, it commutes with all g ∈ G
which implies that it is also a central idempotent of QG. Hence, e is a sum of certain of
the pairwise orthogonal primitive central idempotents of QG. But then it follows as in
Convention 7.5 that τ(e) = e, proving (iii).

For (iv) let w ∈ Rp. Commutativity of (7.7) implies that

τ(ρ(w, 0))− ρ(τ(w), 0) = τ(w)− τ(w) = 0

which shows τ(ρ(w, 0))− ρ(τ(w), 0) ∈ I ∩ Z(p)G. Moreover, by (iii) we have

τ(ρ(w, 0)) = τ(ρ(1, 0) · ρ(w, 0)) = τ(ρ(w, 0)) · τ(e) = τ(ρ(w, 0)) · e,

so that
τ(ρ(w, 0))− ρ(τ(w), 0) ∈ (I ∩ Z(p)G) · e.

Claim (iv) now follows from (i).

The identities in (ii) are proved analogously as for (iv): reduce modulo I and use (i).

Finally, suppose that ρ̃ : Rp × J̃ ′ ∼−→ Z(p)G is another ring homomorphism for which
the analogue of (7.7) commutes. Then by (ii) we have Z(p)G · e ∼= Z(p)G · ẽ as Z(p)G-
algebras. It thus follows from [Lam91, Exercise 22.2] that e = ẽ. Furthermore, if
w = x ∈ Rp = im(Z(p)G→ A), where x ∈ Z(p)G, then

ρ(w, 0) = ρ(x · 1, 0) = xe = xẽ = ρ̃(x · 1, 0) = ρ̃(w, 0)

by part (ii).

In the following, we discuss some more ring theoretic properties of R. When these are
local properties, one can often prove them by either using properties of the maximal order
Rp = im(Z(p)G → A), or by obtaining the statement for Z(p)G and then transferring it
to Rp using a decomposition Z(p)G ∼= Rp × J ′

p.
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Proposition 7.8. R is a maximal Z(S)-order in A.

Proof. By [Rei03, Corollary 11.2], R is a maximal Z(S)-order in A if and only if Rp is a
maximal Z(p)-order in A for all p ∈ S. But the latter holds by Lemma 7.6.

This allows us to use all the statements on maximal orders we proved in the earlier
chapters.

Proposition 7.9. Let V be a finitely generated A-module. Then V ∼= V ∗ as A-modules.

Proof. By [CR81, Exercise 9.13 and page 246], every finitely generated QG-module is
isomorphic to its dual. This implies the claim as A = QG/I.

Corollary 7.10. Suppose that S is finite. Let M be an R-lattice. Then M ∼= M∗

(noncanonically) as R-modules.

Proof. By Propositions 7.9 and 2.1, there are isomorphisms of A-modules

A⊗RM ∼= (A⊗RM)∗ = (Q⊗Z(S)
M)∗ ∼= Q⊗Z(S)

M∗ = A⊗RM∗.

Since M∗ is an R-lattice by Proposition 3.7, an application of Proposition 3.10 yields
M ∼=M∗.

Note that the statement is clearly false if M is not assumed to be a lattice: If M is any
finite nontrivial R-module, then M∗ = 0 while M ̸= 0.

Notation 7.11. For p ∈ S, if M is a Z(p)G-module, then we denote by MRp the Rp-

isotypical component ofM , coming from a ring isomorphism Rp×J ′ ∼−→ Z(p)G for which
(7.7) commutes. Moreover, for w ∈ Rp we denote the element of Z(p)G corresponding
to (w, 0) also simply by (w, 0), or by (w, 0)p if p is not clear from the context. These
notations are justified as by Lemma 7.6 they are independent of the chosen isomorphism
in the definition of a good prime.

Taking these isotypical components interacts well with the antiautomorphisms from
Convention 7.5.

Lemma 7.12. Let p ∈ S. Let M be a left (Z(p)G)
op-module. Then the Rop

p -isotypical
component MRop

p
is a left Rop

p -module. Regard it as a left Rp-module as in Convention
7.5 and denote the action by w •m for w ∈ Rp and m ∈MRop

p
.

Regarding M as a left Z(p)G-module, the Rp-isotypical component MRp is a left Rp-
module and we denote the action by w ◦m for w ∈ Rp and m ∈MRp.
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Then it holds that MRop
p

= MRp and w •m = w ◦m for all w ∈ Rp and m ∈ MRp, i.e.
the identity

id : (MRp , ◦)→ (MRop
p
, •)

is an isomorphism of Rp-modules.

Proof. Denote the action of Z(p)G
op on M by x ∗m for x ∈ Z(p)G

op and m ∈M . Then
by Lemma 7.6 (iii) we have

MRop
p

= (1, 0) ∗M = τ(1, 0) ∗M =MRp .

Moreover, for w ∈ Rp and m ∈MRp , Lemma 7.6 (iv) gives

w •m = (τ(w), 0) ∗m = τ(w, 0) ∗m = w ◦m,

as claimed.

7.2 Tensoring with R over ZG

Keep using Setup 7.3. As explained at the beginning of this chapter, the reason to con-
sider the ring R is because tensoring a ZG-moduleM with it picks out good components
of M . In this subsection, we investigate the process of forming this tensor product in
some more detail and prove several compatibility results of it with other constructions.
We start with the crucial property of flatness.

Proposition 7.13. R is a flat left and right ZG-module.

Proof. Let 0 → N → L → M → 0 be an exact sequence of left ZG-modules. We need
to show that then also

0 R⊗ZG N R⊗ZG L R⊗ZGM 0

is exact. Treating the sequence as a sequence of Z(S)-modules, by [Rei03, Corollary 3.16]
this is equivalent to the statement that

0 Rp ⊗ZG N Rp ⊗ZG L Rp ⊗ZGM 0 (7.14)

is exact for all p ∈ S. So let p ∈ S. Since Z(p) is flat over Z and Z(p)G ∼= Z(p) ⊗Z ZG, it
follows that Z(p)G is a flat left and right ZG-module. Hence,

0 Z(p)G⊗ZG N Z(p)G⊗ZG L Z(p)G⊗ZGM 0

is exact. Passing to isotypical components and noting Lemma 7.6 (ii), it follows that
(7.14) is exact. So R is a flat right ZG-module. The same proof works for R as a left
ZG-module.

115



Lemma 7.15. Let M be a ZG-module. Then the following hold:

(i) We have (R⊗ZGM)tors = R⊗ZGMtors and the natural map

(R⊗ZGM)/(R⊗ZGM)tors → R⊗ZGM/Mtors

is an isomorphism of R-modules. In particular, ifM is a ZG-lattice, then R⊗ZGM
is an R-lattice.

(ii) Let n ∈ Z. Then (R⊗ZGM)[n] = R⊗ZGM [n] and the natural map

(R⊗ZGM)/n(R⊗ZGM)→ R⊗ZGM/nM

is an isomorphism of R-modules.

(iii) If M is finite, then so is R ⊗ZG M . Moreover, we then have (R ⊗ZG M)[p∞] =
R⊗ZGM [p∞] for any prime p.

Proof. We first show that if M is Z-torsionfree, then R ⊗ZG M is Z(S)-torsionfree. By
[Sta25, Tag 0AUT], the latter is equivalent to the statement that Rp ⊗ZG M is Z(p)-
torsionfree for all p ∈ S. Now by loc. cit., for p ∈ S, the module Z(p)G⊗ZGM ∼= Z(p)⊗ZM
is Z(p)-torsionfree. As Rp ⊗ZG M is a direct summand of this module, it is also Z(p)-
torsionfree. This proves the claim.

Flatness of R gives an exact sequence of R-modules

0 R⊗ZGMtors R⊗ZGM R⊗ZGM/Mtors 0,

where R ⊗ZG M/Mtors is Z(S)-torsionfree by what we have proved above. Claim (i)
follows. For (ii) simply apply the exact functor R⊗ZG − to the exact sequence

0 M [n] M M M/nM 0.·n

Finally, suppose that M is finite. Then by (i), R ⊗ZGM is a finitely generated torsion
Z(S)-module, hence finite. If p is a prime, then clearly R⊗ZGM [p∞] ⊆ (R⊗ZGM)[p∞].
On the other hand, the decomposition M =

⊕
qM [q∞] gives R ⊗ZG M =

⊕
q R ⊗ZG

M [q∞]. It follows that R⊗ZGM [p∞] = (R⊗ZGM)[p∞].

Tensoring with R behaves well with taking isotypical components with respect to the
localisations of R.

Lemma 7.16. Let M be a finite ZG-module. Let r ∈ R and m ∈M . Then

r ⊗m =
∑
p∈S

1⊗ (r, 0)pmp ∈ R⊗ZGM,

where mp denotes the M [p∞]-component of m.
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Proof. Write r = x for x ∈ Z(S)G. Then r ⊗ m =
∑

p∈S r ⊗ mp =
∑

p∈S 1 ⊗ xmp,
using that for p ∈ S, M [p∞] has the structure of a Z(S)G-module. Now let p ∈ S

and let ρ : Rp × J ′ ∼−→ Z(p)G be a ring isomorphism for which (7.7) commutes. Then
1 = (1, 0)p + ρ(0, 1) ∈ Z(p)G and

xmp = x(1, 0)pmp + xρ(0, 1)mp = (r, 0)pmp + xρ(0, 1)mp.

By commutativity of (7.7) we have ρ(0, 1) ∈ Z(p)G ∩ I, so there is b ∈ Z \ pZ with
bρ(0, 1) ∈ ZG ∩ I. It follows that

1⊗ xρ(0, 1)mp = bρ(0, 1)⊗ x1
b
mp = 0 ∈ R⊗ZGM [p∞].

Hence, 1⊗ xmp = 1⊗ (r, 0)pmp, and the claim follows.

We now prove compatibility of R⊗ZG − with Pontryagin duality for finite modules.

Proposition 7.17. Let M be a finite ZG-module. For φ ∈ (R⊗ZGM)∨ define

φ̃ : M → R/Z, m 7→ φ(1⊗m).

Then the map
δ := δM : (R⊗ZGM)∨ → R⊗ZGM

∨, φ 7→ 1⊗ φ̃

is an R-module isomorphism, where we regard M∨ as a ZG-module and (R⊗ZGM)∨ as
an R-module as in Convention 7.5. Moreover, this isomorphism is natural in M : If N
is another finite ZG-module and α : M → N is a ZG-homomorphism, then the diagram

(R⊗ZG N)∨ R⊗ZG N
∨

(R⊗ZGM)∨ R⊗ZGM
∨

δN

(idR⊗α)∨ idR⊗α∨

δM

commutes.

Proof. It is clear that δ is Z-linear. We prove that it is an R-module isomorphism by
constructing its inverse. For a prime p, there are isomorphisms of Z(p)G-modules

Z(p)G⊗ZGM
∨ ∼= Z(p) ⊗Z M

∨ (Z(p)G ∼= Z(p) ⊗Z ZG)
∼=M∨[p∞] (Lemma 3.3)
∼=M [p∞]∨ (Corollary 4.18)
∼= (Z(p) ⊗Z M)∨ (Lemma 3.3)

∼= (Z(p)G⊗ZGM)∨. (Z(p)G ∼= Z(p) ⊗Z ZG)
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The overall isomorphism is given by

Z(p)G⊗ZGM
∨ → (Z(p)G⊗ZGM)∨,

x⊗ f 7→
(
(y ⊗m) 7→ f(τ(x)ymp)

)
,

where mp denotes the M [p∞]-component of m. Now let p ∈ S. Then there are iso-
morphisms of Rp-modules

(R⊗ZGM
∨)[p∞] ∼= Rp ⊗ZGM

∨ (Lemma 3.3)
∼= (Z(p)G⊗ZGM

∨)Rp (Lemma 7.6 (ii))

∼=
(
(Z(p)G⊗ZGM)∨

)
Rp

(above)

∼=
(
(Z(p)G⊗ZGM)∨

)
Rop

p
(Lemma 7.12)

∼=
(
(Z(p)G⊗ZGM)Rp

)∨
(Lemma 4.19)

∼= (Rp ⊗ZGM)∨ (Lemma 7.6 (ii))
∼= (R⊗ZGM)[p∞]∨ (Lemma 3.3)
∼= (R⊗ZGM)∨[p∞], (Corollary 4.18)

where in the appropriate places we again regard the Pontryagin duals as modules over the
respective ring rather than its opposite, as per Convention 7.5. Note also that R⊗ZGM
is finite by Lemma 7.15 (iii), and we regard it with its natural discrete topology to form
the Pontryagin dual. The overall isomorphism above is given by

γp : (R⊗ZGM
∨)[p∞]→ (R⊗ZGM)∨[p∞],

r ⊗ f 7→
(
s⊗m 7→ f((τ(r)s, 0)pmp)

)
.

The isomorphisms γp glue together to an R-module isomorphism

γ : R⊗ZGM
∨ ∼−→ (R⊗ZGM)∨.

We show that γ is the inverse of δ.

Let φ ∈ (R⊗ZGM)∨ and let r ∈ R and m ∈M . Then using Lemma 7.16 we have

(γ ◦ δ)(φ) (r ⊗m) =
∑
p∈S

γp(1⊗ φ̃p) (r ⊗m)

=
∑
p∈S

φ̃p((r, 0)pmp)

=
∑
p∈S

φ(1⊗ (r, 0)pmp)

= φ(r ⊗m),
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so (γ ◦ δ)(φ) = φ. Conversely, let r ∈ R and f ∈M∨. Then

(δ ◦ γ)(r ⊗ f) =
∑
p∈S

δ(γp(r ⊗ fp))

=
∑
p∈S

1⊗ ˜γp(r ⊗ fp).

Here, for m ∈M we have

˜γp(r ⊗ fp)(m) = γp(r ⊗ fp)(1⊗m)

= fp((τ(r), 0)pmp)

= fp(τ((r, 0)p)mp)

= ((r, 0)pfp)(m)

where we have used Lemma 7.6 (iv). It follows from this and Lemma 7.16 that

(δ ◦ γ)(r ⊗ f) =
∑
p∈S

1⊗ (r, 0)pfp = r ⊗ f.

Hence, γ is the inverse of δ which shows that δ is an R-module isomorphism. It is
straightforward to verify naturality of δ.

Ending this section, we show that R⊗ZG − is compatible with duality for lattices.

Proposition 7.18. Suppose that S is finite. Let M be a ZG-lattice. Define a map

d := dM : (R⊗ZGM)∗ → R⊗ZGM
∗, φ 7→ 1

b
⊗ φb

where b ∈ Z \
⋃
p∈S pZ is chosen such that b · φ(1⊗M) ⊆ Z and where

φb : M → Z, m 7→ b · φ(1⊗m).

Then the element 1
b ⊗φb ∈ R⊗ZGM

∗ is independent of the choice of b and the map dM
is an R-module isomorphism. Moreover, it is natural in M : If N is another ZG-lattice
and α : M → N is a ZG-homomorphism, then the diagram

(R⊗ZG N)∗ R⊗ZG N
∗

(R⊗ZGM)∗ R⊗ZGM
∗

dN

(idR⊗α)∗ idR⊗α∗

dM

commutes.

Note that by (R ⊗ZG M)∗ we mean HomZ(S)
(R ⊗ZG M,Z(S)) and by M∗ we mean

HomZ(M,Z).
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Proof. Independence of b is checked immediately. We first show that d is R-linear. Let
φ,ψ ∈ (R⊗ZGM)∗. Let b ∈ Z\

⋃
p∈S pZ such that b ·φ(1⊗M) ⊆ Z and b ·ψ(1⊗M) ⊆ Z.

Then

d(φ+ ψ) =
1

b
⊗ (φ+ ψ)b =

1

b
⊗ φb +

1

b
⊗ ψb = d(φ) + d(ψ).

Now let r ∈ R and suppose that this time b ∈ Z \
⋃
p∈S pZ is such that b ·φ(1⊗M) ⊆ Z

and b · (rφ)(1 ⊗M) ⊆ Z. Write r = u · w with u ∈ Z(S) and w ∈ ZG. For m ∈ M we
have

(rφ)b(m) = b · (rφ)(1⊗m) = bφ(τ(r)⊗m) = ubφ(τ(w)⊗m).

Now put φ̃(m) := φ(τ(w) ⊗ m). Without loss of generality, b is such that bφ̃ ∈ M∗.
Then

d(rφ) =
1

b
⊗ (rφ)b =

1

b
⊗ ubφ̃ =

1

b
u⊗ bφ̃.

On the other hand,

rd(φ) = r
1

b
⊗ φb =

1

b
u⊗ wφb,

where for m ∈M ,

wφb(m) = φb(τ(w)m) = b · φ(1⊗ τ(w)m) = b · φ(τ(w)⊗m) = bφ̃(m),

whence rd(φ) = d(rφ).

We now construct a map R⊗ZGM
∗ → (R⊗ZGM)∗ that will give rise to the inverse of

d. First, for a prime p, there are isomorphisms of Z(p)G-modules

Z(p)G⊗ZGM
∗ ∼= Z(p) ⊗Z M

∗ (Z(p)G ∼= Z(p) ⊗Z ZG)
∼= (Z(p) ⊗Z M)∗ (Proposition 2.1)

∼= (Z(p)G⊗ZGM)∗. (Z(p)G ∼= Z(p) ⊗Z ZG)

The overall isomorphism is given by

αp : Z(p)G⊗ZGM
∗ → (Z(p)G⊗ZGM)∗,

g ⊗ f 7→
(
h⊗m 7→ f(τ(g)hm)

)
where g, h ∈ G, f ∈ M∗ and m ∈ M . Next, let p ∈ S. Then there are isomorphisms of
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Rp-modules

Z(p) ⊗ZS
R⊗ZGM

∗ ∼= Rp ⊗ZGM
∗

= (Z(p)G⊗ZGM
∗)Rp

∼= (Z(p)G⊗ZGM)∗Rp
(above)

= (Z(p)G⊗ZGM)∗Rop
p

(Lemma 7.12)

∼= ((Z(p)G⊗ZGM)Rp)
∗ (Lemma 3.8)

= (Rp ⊗ZGM)∗

∼= (Z(p) ⊗Z(S)
R⊗ZGM)∗

∼= Z(p) ⊗Z(S)
(R⊗ZGM)∗. (Proposition 2.1)

We denote the overall isomorphism by

γp : Z(p) ⊗Z(S)
R⊗ZGM

∗ → Z(p) ⊗Z(S)
(R⊗ZGM)∗.

It factors through the isomorphism

βp : Z(p) ⊗Z(S)
R⊗ZGM

∗ → (Z(p) ⊗Z(S)
R⊗ZGM)∗,

a⊗ r ⊗ f 7→
(
b⊗ s⊗m 7→ αp((ar, 0)p ⊗ f) ((bs, 0)p ⊗m)

)
.

Explicitly, if we denote by

εp : Z(p) ⊗Z(S)
(R⊗ZGM)∗

∼−→ (Z(p) ⊗Z(S)
R⊗ZGM)∗

the isomorphism from Proposition 2.1, then γp = (εp)
−1 ◦ βp.

Now for p ∈ S choose c̃p ∈ Z with c̃p ≡ 1 mod p, c̃p ≡ 0 mod q for all q ∈ S \ {p} and
c̃p(1, 0)p ∈ ZG. Let cp := c̃p

2. For r ∈ R and f ∈M∗ define

hp(r, f) : R⊗ZGM → Z(S), s⊗m 7→ αp(c̃p(r, 0)p ⊗ f) (c̃p(s, 0)p ⊗m).

It holds that
εp(1⊗ hp(r, f)) = cpβp(1⊗ r ⊗ f),

which shows that cpγp(1⊗ r⊗ f) = 1⊗hp(r, f) and therefore that cpγp maps R⊗ZGM
∗

into (R ⊗ZG M)∗ (we may regard them as submodules of Z(p) ⊗Z(S)
R ⊗ZG M∗ and

Z(p)⊗Z(S)
(R⊗ZGM)∗, respectively, by Lemma 3.1). Then by [Rei03, Exercise 18.3], the

map

γ :=
∑
p∈S

c2pγp : R⊗ZGM
∗ → (R⊗ZGM)∗

is an R-module isomorphism.

We compute γ ◦d and d◦γ. For the former, let φ ∈ (R⊗ZGM)∗ and let b ∈ Z\
⋃
p∈S pZ

be such that b · φ(1 ⊗M) ⊆ Z. Let r ∈ R and m ∈ M . Write r = u · w with u ∈ Z(S)

and w ∈ ZG. It follows as in the proof of Lemma 7.16 that

1⊗ cpm = 1⊗ cp(1, 0)pm ∈ R⊗ZGM.
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Using this, Lemma 7.6 (iii) and the fact that (1, 0)p is a central idempotent, we obtain

(γ ◦ d)(φ) (r ⊗m) =
∑
p∈S

cpαp(c̃p(1/b, 0)p ⊗ φb) (c̃p(r, 0)p ⊗m)

=
∑
p∈S

cp
1

b
uαp(c̃p(1, 0)p ⊗ φb) (c̃pw(1, 0)p ⊗m)

=
∑
p∈S

cp
1

b
uφb(τ(c̃p(1, 0)p)c̃pw(1, 0)pm)

=
∑
p∈S

cpuφ(w ⊗ cp(1, 0)pm)

=
∑
p∈S

cpφ(r ⊗ cpm)

=

(∑
p∈S

c2p

)
φ(r ⊗m).

Now let f ∈M∗. Let b ∈ Z \
⋃
p∈S pZ be such that b · γ(1⊗ f)(1⊗M) ⊆ Z. For m ∈M

we have by Lemma 7.6 (iii) and as (1, 0)p is a central idempotent that

γ(1⊗ f)b(m) = b · γ(1⊗ f)(1⊗m)

= b
∑
p∈S

cpαp(c̃p(1, 0)p ⊗ f) (c̃p(1, 0)p ⊗m)

= b
∑
p∈S

cpf(τ(c̃p(1, 0)p)c̃p(1, 0)pm)

= b
∑
p∈S

cpf(cp(1, 0)pm)

= b
∑
p∈S

cp (cp(1, 0)p) .f(m).

One again shows as in the proof of Lemma 7.16 that

1⊗ cpf = 1⊗ cp(1, 0)pf ∈ R⊗ZGM
∗.

It follows from this and the above that

(d ◦ γ)(1⊗ f) = 1

b
⊗ γ(1⊗ f)b =

∑
p∈S

cp(1⊗ cpf) =

(∑
p∈S

c2p

)
(1⊗ f).

By R-linearity of d we then have d ◦ γ =
(∑

p∈S c
2
p

)
id, as well as the previously shown

γ ◦ d =
(∑

p∈S c
2
p

)
id. Since

∑
p∈S c

2
p ∈ Z×

(S) by choice of the cp, we infer that d is an

isomorphism. It is straightforward to verify naturality of d.
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7.3 Information Carried by the Good Part of a Short Exact Sequence

In Section 6.4 we discussed two constructions on certain short exact sequences of compact
modules and showed that when applied to the Arakelov ray class sequence, they allow
to recover the diagram from Theorem 6.18 and the natural reduction map on the unit
group, respectively. Since our main conjecture will be concerned with R⊗ZG SAra

K (m)∨,
the question arises whether one can obtain analogue statements for the latter sequence.
In what follows, we show that the constructions mentioned above are indeed compatible
with duality and the functor R ⊗ZG −, in the sense that from the good part R ⊗ZG Γ∨

of a short exact sequence of compact modules Γ one can obtain the good part of the
output of the corresponding construction applied to Γ. To this end, we first establish
the ‘duals’ of the constructions from Section 6.4 and then show that these behave well
with respect to extending scalars from ZG to R. The dual constructions have already
appeared in [BP25, Section 3] for Z- and ZC2-modules; below we discuss them in a more
general setting. The results on compatibility with extension of scalars are new.

7.3.1 Recovering the Good Part of the Diagram

We first consider Construction 6.19. In view of Corollary 4.16, its analogue on the dual
side of sequences of discrete modules is the following.

Construction 7.19. Let Z be an integral domain and let R be a Z-order in some
finite-dimensional algebra over the fraction field of Z. Let

∆: 0 N L M 0α β

be a short exact sequence of R-modules. Then there are natural short exact sequences
of R-modules

∆tors : 0 Ntors Ltors cok(α|Ntors
) 0

α|Ntors

and
∆torsfree : 0 N/Ntors L/Ltors cok(α) 0.α

By the snake lemma applied to the two left hand columns below, there is a commutative
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diagram of R-modules

0 0 0

∆tors : 0 Ntors Ltors cok(α|Ntors
) 0

∆: 0 N L M 0

∆torsfree : 0 N/Ntors L/Ltors cok(α) 0

0 0 0

α|Ntors

β′

α β

β̃

α

with exact rows and columns, where

β′ : cok(α
∣∣
Ntors

) = Ltors/α(Ntors)→M, l 7→ β(l)

and where β̃ : M → cok(α) is defined as follows: Given m ∈ M , choose a preimage
lm ∈ L of m under β. Then β̃(m) is the class of lm ∈ L/Ltors in cok(α). This means
that there is a short exact sequence

Dd(∆): 0 ∆tors ∆ ∆torsfree 0

of short exact sequences of R-modules.

Proposition 7.20. Let Z be a localisation of Z and suppose that R is a Z-order in
some finite-dimensional Q-algebra.

(i) Let Γ be a short exact sequence of compact LCA R-modules. Then there is a
canonical isomorphism Dc(Γ)

∨ ∼= Dd(Γ
∨) of short exact sequences of short exact

sequences of Rop-modules.

(ii) Let ∆ be a short exact sequence of discrete R-modules. Then there is a canonical
isomorphism Dd(∆)∨ ∼= Dc(∆

∨) of short exact sequences of short strictly exact
sequences of compact LCA Rop-modules.

Note that by Propositions 4.21, 4.23 and 4.10, Γ∨ is a short exact sequence of discrete
Rop-modules and ∆∨ is a short exact sequence of compact LCA Rop-modules, so the
statements make sense.

Proof. This follows easily from Corollary 4.16.

The construction Dd(−) is compatible with flat base change that respects torsion. In
particular, we obtain:
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Proposition 7.21. Use Setup 7.3. Let ∆ be a short exact sequence of ZG-modules.
Then there is a canonical isomorphism Dd(R ⊗ZG ∆) ∼= R ⊗ZG Dd(∆) of short exact
sequences of short exact sequences of R-modules.

Proof. This follows immediately from Lemma 7.15 (i).

7.3.2 Recovering the Good Part of the Reduction Map

We finally establish the dual of Construction 6.21. We generalise the construction from
[BP25, page 14] by making use of Propositions 4.41 and 4.42.

Construction 7.22. Let S be a nonempty subset of the union of {0} and the set of
rational primes. Let R be a Z(S)-order in some finite-dimensional Q-algebra. Let M be
a finite R-module and let N be a finitely generated R-module. Then we have maps

Ext1R(M,N)→ Ext1R(M,N/Ntors) (By functoriality)
∼−→ HomR(M,N/Ntors ⊗Z(S)

A(S)/Z(S)) (Proposition 4.41)
∼−→ HomR(M, ((N/Ntors)

∗)∨). (Proposition 4.42)

We denote the resulting map by

ωd := ωd,R := ωM,N
d,R : Ext1R(M,N)→ HomR(M, ((N/Ntors)

∗)∨).

Explicitly, it is given as follows: Let

∆: 0 N L M 0α β

be a short exact sequence of R-modules. Choose a map s : M → L with s(0) = 0 and
βs = idM . If l ∈ L, then |M | l ∈ kerβ = imα, so there is a unique nl ∈ N with
α(nl) = |M | l. For m ∈M we then have

ωd(∆)(m) : (N/Ntors)
∗ → R/Z, f 7→ χ1/|M |(f(ns(m))).

Note that we may replace |M | by any positive integer that annihilates M .

Proposition 7.23. Let S be a nonempty subset of the union of {0} and the set of
rational primes. Let R be a Z(S)-order in some finite-dimensional Q-algebra A. Let M
be a finite R-module and let N be a finitely generated R-module. Then

ωd : Ext1R(M,N)→ HomR(M, ((N/Ntors)
∗)∨)

is a group homomorphism which is natural in M and N and whose kernel is the image
of the natural injection Ext1R(M,Ntors) ↪→ Ext1R(M,N).

If A is a separable Q-algebra and R is a maximal Z(S)-order in A, then ωd is surjective.
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Proof. Naturality follows from functoriality of Ext and Propositions 4.41 and 4.42. The
natural map Ext1R(M,Ntors) → Ext1R(M,N) is injective as M is finite and N/Ntors is
torsionfree, so that HomR(M,N/Ntors) = 0. It is clear that its image is the kernel of ωd.
The claim on surjectivity follows from Proposition 3.34.

Dually to Proposition 6.22 we have:

Proposition 7.24. Let S be a nonempty subset of the union of {0} and the set of
rational primes. Let R be a Z(S)-order in some finite-dimensional Q-algebra. Let M be
a finite R-module and let N be a finitely generated R-module. Let

∆: 0 N L M 0α β

be a short exact sequence of R-modules. Then there is an injective R-module homo-
morphism ι : cokα ↪→ ((N/Ntors)

∗)∨ such that ωd(∆) = ι ◦ β̃, where α and β̃ are defined
as in Construction 7.19.

Proof. We use the notation from Construction 7.22. We first define

ι′ : cokα→ N/Ntors ⊗Z(S)
A(S)/Z(S), l + α(N/Ntors) 7→ nl ⊗

1

|M |
.

One readily checks that this is well-defined and an R-module homomorphism. Now

suppose that l ∈ L is such that nl ⊗ 1
|M | = 0. Then there is n ∈ N with

nl ⊗
1

|M |
= n⊗ 1 = |M |n⊗ 1

|M |
∈ N/Ntors ⊗Z(S)

A(S).

It follows that nl − |M |n = 0, so there is n0 ∈ Ntors with nl = |M |n+ n0. This implies
|M | l = α(nl) = α(|M |n). Working in L/Ltors ⊗Z(S)

A(S) ⊇ L/Ltors, it follows that

l = α(n), which shows that ι′ is injective. We then define

ι : cokα ↪→ ((N/Ntors)
∗)∨, l + α(N/Ntors) 7→

(
f 7→ χ1/|M |(f(nl))

)
to be the concatenation of ι′ with the isomorphism from Proposition 4.42. For m ∈ M
we have by definition of β̃ that β̃(m) = s(m) + α(N/Ntors). It follows that (ι ◦ β̃)(m) =
ωd(∆)(m).

Proposition 7.25. Let G be a finite group.

(i) Let X be a compact real abelian Lie group with an action of G by continuous group
automorphisms and let Y be a finite ZG-module. Then there is a commutative
diagram

E
ZGLCA(X,Y ) HomZG((X

∨/(X∨)tors)
∗, Y )

Ext1(ZG)op(Y
∨, X∨) Hom(ZG)op(Y

∨, ((X∨/(X∨)tors)
∗)∨).

ωc

∨ 4.25 ∨4.9

ωd
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In particular, ωc is a group homomorphism.

(ii) Let M be a finite ZG-module and let N be a finitely generated ZG-module. Then
there is a commutative diagram

Ext1ZG(M,N) HomZG(M, ((N/Ntors)
∗)∨)

E
ZGLCA(M,N) Hom(ZG)op(((N/Ntors)

∗)∨∨,M∨)

Hom(ZG)op((N/Ntors)
∗,M∨)

E
(ZG)op

LCA(N
∨,M∨) Hom(ZG)op((N

∨∨/(N∨∨)tors)
∗,M∨)

ωd

4.26 ∨4.9

∨ 4.25

∼
∼

ωc

where the unlabelled isomorphisms on the right hand side are induced by the Pontry-
agin duality isomorphism.

Proof. This is a lengthy but straightforward calculation.

Finally, we show that for an input Γ of Construction 6.21 and R as in Setup 7.3 we have
ωd(R⊗ZG Γ∨) = (R⊗ZG ωc(Γ))

∨ up to natural isomorphism.

Proposition 7.26. Use Setup 7.3. Let X be a compact real abelian Lie group with an
action of G by continuous group automorphisms and let Y be a finite ZG-module. Then
there is a commutative diagram

E
ZGLCA(X,Y ) HomZG((X

∨/(X∨)tors)
∗, Y )

HomR(R⊗ZG (X∨/(X∨)tors)
∗, R⊗ZG Y )

Ext1ZG(Y
∨, X∨) HomR((R⊗ZG X

∨/(X∨)tors)
∗, R⊗ZG Y )

HomR((R⊗ZG Y )∨, ((R⊗ZG X
∨/(X∨)tors)

∗)∨)

Ext1R(R⊗ZG Y
∨, R⊗ZG X

∨) HomR(R⊗ZG Y
∨, ((R⊗ZG X

∨/(X∨)tors)
∗)∨).

∨ 4.25

ωc

R⊗ZG−

(dX∨/(X∨)tors
)∗7.18

R⊗ZG− 2.8

∨4.9

ωd

(δY )∗7.17
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Proof. Let Γ ∈ E
ZGLCA(X,Y ) and suppose that it is given by the short strictly exact

sequence

0 Y W X 0
γ δ

of compact LCA ZG-modules. We check that when plugging in Γ and going right
and down to HomR((R ⊗ZG Y )∨, ((R ⊗ZG X

∨/(X∨)tors)
∗)∨) we get the same element

as when going down, right and up. To this end, further let φ ∈ (R ⊗ZG Y )∨ and let
ψ ∈ (R⊗ZG X

∨/(X∨)tors)
∗.

Plugging in Γ, going right and down and plugging in φ and then ψ, we obtain the element(
(dX∨/(X∨)tors)

∗(idR ⊗ ωc(Γ))
)∨

(φ) (ψ)

= φ
(
(idR ⊗ ωc(Γ)) (dX∨/(X∨)torsψ)

)
= φ

(1
b
⊗ ωc(Γ)(ψb)

)
where b ∈ Z \

⋃
p∈S pZ is such that b · ψ(1⊗X∨/(X∨)tors) ⊆ Z. By Lemma 3.3 we have

a decomposition Y =
⊕

p∈S Y [p∞]⊕
⊕

p/∈S Y [p∞] into ZG-submodules, and since R is a
Z(S)-algebra it holds that

R⊗ZG Y =
⊕
p∈S

R⊗ZG Y [p∞].

For p | |Y | let cp ∈ Z with cp ≡ 0 mod qvq(|Y |) for q | |Y | with q ̸= p and such that
1 =

∑
p||Y | cp. For a prime p with p ∤ |Y | we further put cp := 0. Moreover, for p ∈ S let

kp ∈ Z with kp ≡ 1
b mod pvp(|Y |)Z(p). Then

1

b
⊗ ωc(Γ)(ψb) =

∑
p∈S

1

b
⊗ cpωc(Γ)(ψb) =

∑
p∈S

1⊗ kpcpωc(Γ)(ψb).

We have φ̃ ∈ Y ∨, so there is g ∈ W∨ with γ∨(g) = φ̃. Further let h ∈ X∨ with
δ∨(h) = |Y | g. Then by the above and Construction 6.21 we have

φ
(1
b
⊗ ωc(Γ)(ψb)

)
=
∑
p∈S

φ
(
1⊗ kpcpωc(Γ)(ψb)

)
=
∑
p∈S

kpcpφ̃
(
ωc(Γ)(ψb)

)
=
∑
p∈S

kpcpg
(
γ(ωc(Γ)(ψb))

)
=
∑
p∈S

kpcpbψ(1⊗ h)
1

|Y |
∈ R/Z.

Plugging in Γ in the top left of the diagram, going down, right and up, and plugging in
φ and then ψ, we obtain the element

(δY )
∗(ωd(R⊗ZG Γ∨)

)
(φ) (ψ) = ωd(R⊗ZG Γ∨)(1⊗ φ̃) (ψ).
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Let s : R ⊗ZG Y
∨ → R ⊗ZG W

∨ be a map with s(0) = 0 and (idR ⊗ γ∨)s = idR⊗ZGY ∨ .
We may assume that s(1⊗ φ̃) = 1⊗ g. Then

|Y | s(1⊗ φ̃) = 1⊗ |Y | g = (idR ⊗ δ∨)(1⊗ h),

so by Construction 7.22 and Lemma 4.28 (iv) we have

ωd(R⊗ZG Γ∨)(1⊗ φ̃) (ψ) = χ1/|Y |
(
ψ(1⊗ h)

)
=
∑
p∈S

{
ψ(1⊗ h) 1

|Y |

}
p

.

Since bψ(1⊗ h) ∈ Z, Lemma 4.28 (iii) gives{
ψ(1⊗ h) 1

|Y |

}
p

= bψ(1⊗ h)
{ 1

b |Y |

}
p

.

We now analyse
{

1
b|Y |
}
p
for p ∈ S. We have

1

b |Y |
= cp

1

b |Y |
+
∑
q ̸=p

cq
1

b |Y |
.

Here, by choice of b and the cq, the right hand summand is contained in Zp, so Lemma

4.28 gives
{

1
b|Y |
}
p
=
{
cp

1
b|Y |
}
p
. Now let w ∈ Z(p) with

1
b = kp + pvp(|Y |)w. Then

cp
1

b |Y |
= cpkp

1

|Y |
+ cpp

vp(|Y |)w
1

|Y |
,

where cpp
vp(|Y |)w 1

|Y | ∈ Z(p) and
{
cpkp

1
|Y |
}
p
= kp

{
cp

1
|Y |
}
p
= kpcp

1
|Y | , both by choice of

cp. It follows that
{

1
b|Y |
}
p
= kpcp

1
|Y | and therefore that

(δY )
∗(ωd(R⊗ZG Γ∨)

)
(φ) (ψ) =

∑
p∈S

bψ(1⊗ h)kpcp
1

|Y |
.

Hence, both paths in the diagram yield the same element.
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8 The Main Conjecture

In this chapter, we formulate our main conjecture on the distribution of ray class groups.
More explicitly, we make a conjecture regarding the distribution of the good part of
ClK(m) for K running over a natural family of Galois extensions of a fixed base number
field F and fixed modulus m given by an integral ideal of OF . It has already been stated
as Conjecture 1.13 in the introduction; here, we provide a detailed account that adds
some more motivation and explanations and fills in all the details and proofs previously
left out.

As explained in the introduction, when investigating the distribution of an object at-
tached to a number field, there are several things to take care of in order to obtain
meaningful statements:

• which family of number fields to run over,

• how to order the number fields in the family,

• which objects exactly to consider,

• what space of outcomes for the objects to consider.

Note that some or all of these aspects may be interdependent. Providing this setup for
our conjecture is the content of Section 8.1. Recall that to make a reasonable conjecture
about the distribution of the good part of ClK(m), we take the approach outlined in
Section 1.1.1 to package all its structure into one object and then propose that this
object is distributed randomly in the sense of Principle 1.1. As part of the setup, we
argue that the desired object is obtained by picking out good components – in the way
outlined in Chapter 7 – from the Arakelov ray class sequence SAra

K (m). We set up our
family of number fields and space of outcomes in a natural way that then also allows us
to construct a probability distribution on the space of outcomes that weighs an object
proportional to the inverse of the size of its automorphism group. The latter will be
achieved using the tools from Chapter 5 and is dealt with in Section 8.2. Finally, in
Section 8.3, we state our main conjecture.

8.1 Setup for the Conjecture

We establish all the setup necessary in order to turn the ideas outlined above into a
precise conjecture.

8.1.1 G-Extensions

Let G be a finite group and let F be a field. The following definition allows to make
precise the notion of a family of Galois extensions of F with Galois group G. It is taken
from [Woo10].
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Definition 8.1. A G-extension of F is a Galois extension K/F together with an iso-
morphism ι : G → Gal(K/F ). We regard K as a G-module via g.x := ι(g)(x) for
g ∈ G, x ∈ K. An isomorphism of G-extensions is an F -algebra isomorphism that is
G-equivariant. Denote by EG(F ) a full set of representatives for the isomorphism classes
of G-extensions of F .

We will sometimes suppress ι from the notation. In our family, we will later work
with G-extensions inside some fixed algebraic closure. To be able to use results on G-
extensions considered as elements of EG(F ), we next prove a statement that links the
two approaches. Fix an algebraic closure F of F .

Lemma 8.2. Let (L, ιL) be a G-extension of F . Then the set{
(K, ιK) G-extension of F

∣∣K ⊆ F , (K, ιK) ∼= (L, ιL)
}

has cardinality
∣∣HomF (L,F )/ ∼

∣∣ where
ψ ∼ ψ′ :⇐⇒ ψ−1 ◦ ψ′ ∈ Z(Gal(L/F )).

In particular, if G is abelian, then the cardinality is 1.

Note that ψ(L) = ψ′(L) since L/F is normal, so ψ−1 ◦ ψ′ ∈ Gal(L/F ).

Proof. Denote by E the set whose cardinality we have to determine. If ψ ∈ HomF (L,F ),
then F ⊆ ψ(L) ⊆ F and ψ(L)/F is Galois. Define

ιψ(L) : G→ Gal(ψ(L)/F ), g 7→ ψ ◦ ιL(g) ◦ ψ−1

which is clearly an isomorphism. Hence, (ψ(L), ιψ(L)) is a G-extension. Moreover,
ψ : L → ψ(L) is an F -isomorphism which is easily seen to be compatible with the
G-actions. So (ψ(L), ιψ(L)) ∼= (L, ιL) and we can define

HomF (L,F )→ E, ψ 7→ (ψ(L), ιψ(L)).

If (K, ιK) ∈ E, then there is a G-equivariant F -algebra isomorphism χ : L
∼−→ K and

it follows that χ ∈ HomF (L,F ) and (χ(L), ιχ(L)) = (K, ιK). Hence, the map above is

surjective. It remains to show that for ψ,ψ′ ∈ HomF (L,F ) we have ψ ∼ ψ′ if and only if
(ψ(L), ιψ(L)) = (ψ′(L), ιψ′(L)), that is, if and only if ιψ(L) = ιψ′(L). But for g ∈ G it holds
by definition that ιψ(L)(g) = ιψ′(L)(g) if and only if (ψ−1 ◦ψ′)◦ ιL(g) = ιL(g)◦ (ψ−1 ◦ψ′).
The claim follows.

Proposition 8.3. Assume that G is abelian. Let P be a property of G-extensions of
F such that if (K, ιK) and (L, ιL) are isomorphic G-extensions of F , then (K, ιK) has
property P if and only if (L, ιL) does. Suppose that there are only finitely many (L, ιL) ∈
EG(F ) with property P. Then∣∣{ (K, ιK) G-extension of F

∣∣K ⊆ F , (K, ιK) has property P
}∣∣

= |{ (L, ιL) ∈ EG(F ) | (L, ιL) has property P }| .
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Proof. Note that we can write the first cardinality above as∑
(L,ιL)∈EG(F )

(L,ιL) has property P

∣∣{ (K, ιK) G-extension of F
∣∣K ⊆ F , (K, ιK) ∼= (L, ιL)

}∣∣ .
The claim then follows from Lemma 8.2.

8.1.2 G-Structured Algebras

In this section, let again G be a finite group and let F be a field. To define the family of
number fields for our conjecture, we will need to be able to fix the local behaviour of the
fields at certain primes. For this, we will make use of the following algebraic structure,
which was introduced in [Woo10, page 105] for abelian G.

Definition 8.4. A G-structured F -algebra is an etale F -algebra K of degree |G| with
an inclusion G ↪→ AutF (K) such that G acts transitively on the set of primitive central
idempotents of K. An isomorphism of two G-structured F -algebras K and K ′ is an
F -algebra isomorphism K → K ′ that is G-equivariant. Denote by AG(F ) a full set of
representatives for the isomorphism classes of G-structured F -algebras.

Note that the notion of isomorphism above agrees with the one given in [Woo10]. Clearly,
a G-extension is a G-structured algebra. In the remainder of this subsection, we collect
some useful results on G-structured algebras, all of which appear at least implicit in
[Woo10, Sections 1.1 and 2.3].

Construction 8.5. LetH ≤ G and let L be anH-extension of F . We equip the induced
representation

IndGH L = FG⊗FH L =
⊕

y∈G/H

y ⊗ L

with an algebra structure via the natural isomorphism⊕
y∈G/H

y ⊗ L ∼=
∏

y∈G/H

L

of F -vector spaces. Clearly, dimF IndGH L = |G|. Let y1, . . . , yr ∈ G be a system of
representatives for the left cosets of H in G. The primitive central idempotents of
IndGH L are ei = yi ⊗ 1, i = 1, . . . , r. Each g ∈ G defines a permutation of {1, . . . , r}
denoted by the same letter which is defined by the fact that for each i ∈ {1, . . . , r} there
are unique g(i) ∈ {1, . . . , r} and hi ∈ H with gyi = yg(i)hi. Then for x ∈ L we have
g(yi ⊗ x) = yg(i) ⊗ hix and in particular gei = eg(i).

The G-action on IndGH L induces a natural map G → AutF (Ind
G
H L) into the F -vector

space automorphisms. One checks that the map is injective and that its image is in
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fact contained in the F -algebra automorphisms. As G acts transitively on G/H, it
acts transitively on the primitive idempotents of IndGH . Hence, IndGH is a G-structured
F -algebra.

For a subgroup H of G, h ∈ H and a ∈ G use the notations ah := aha−1 and aH :=
aHa−1. We have the following analogue of [CR81, Lemma 10.12 (ii)].

Lemma 8.6. Let H ≤ G and let L be an H-extension of F . Let a ∈ G. Let aL be
the aH-extension consisting of the field L regarded as a aH-module via ah.x = h.x for
x ∈ aL and h ∈ H. Then IndGH L

∼= IndGaH
aL as G-structured F -algebras.

Proof. One checks that the map

FG⊗F aH
aL→ FG⊗FH L, g ⊗ x 7→ ga⊗ x

is an isomorphism of G-structured F -algebras.

Construction 8.7. Let K = K1×· · ·×Kr be a G-structured F -algebra, where each Ki

is a finite separable extension of F . Since G operates transitively on the set of primitive
central idempotents of K, the stabilisers

Stab(ei) = { g ∈ G | g(ei) = ei }

have index r in G and are all conjugate. Here, ei denotes the tuple (0, . . . , 0, 1, 0, . . . , 0)
with 1 in position i. If G is abelian, then

H := Stab(e1) = · · · = Stab(er)

and it follows as in the proof of [Woo10, Lemma 2.6] that for each i, the natural map
H = Stab(ei) → AutF (Ki) is an isomorphism. Hence, each Ki is an H-extension of F ,
and one easily sees that all Ki are isomorphic as H-extensions.

We have the following variant of [Woo10, Lemma 2.6].

Proposition 8.8. Assume that G is abelian. Then the maps

⊔
H≤G

EH(F )←→ AG(F ),
(H,L) 7→ IndGH L,

(Stab(e1),K1)←[ K.

are inverse to each other.

For us, the following G-structured algebras arising from extensions of number fields will
be important.
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Proposition 8.9. Let F be a number field and let K/F be a G-extension. Let v be a
place of F . Then K ⊗F Fv is a G-structured Fv-algebra with G acting on the left factor.
If w is a place of K with w | v, then K ⊗F Fv ∼= IndGDw

Kw as G-structured Fv-algebras.

Proof. For a place w of K denote by ιw : (K, |·|w) ↪→ Kw the continuous embedding
of (K, |·|w) into its completion. Suppose that σ ∈ Gal(K/F ) and let w,w′ | v with
σ.w = w′. By the universal property of completion, there is a unique continuous field
homomorphism σ̂(w,w

′) : Kw → Kw′ that makes the diagram

Kw Kw′

K K

σ̂(w,w′)

σ

ιw ιw′

commute. Since F is dense in Fv, σ̂
(w,w′) is an Fv-algebra homomorphism. Note that if

τ ∈ Gal(K/F ) with τ.w′ = w′′, then (τ̂ ◦ σ)(w,w′′) = τ̂ (w
′,w′′) ◦ σ̂(w,w′).

The Fv-algebra isomorphism

K ⊗F Fv
∼−→
∏
w|v

Kw, x⊗ a 7→ (ιw(x)a)w|v

is G-equivariant with natural action of G on the right hand side given by σ.(xw)w|v =

(σ̂(σ
−1w,w)(xσ−1w))w|v. The map G → AutFv(K ⊗F Fv), σ 7→ σ ⊗ idFv is injective

as K → K ⊗F Fv is injective. Since G operates transitively on {w | v}, the above
isomorphism shows that G operates transitively on the primitive central idempotents of
K ⊗F Fv. So K ⊗F Fv is a G-structured Fv-algebra.

For the second claim let w | v and let τ1, . . . , τr be a system of representatives for G/Dw.
Define

φ : IndKDw
Kw
∼=

r∏
i=1

Kw →
r∏
i=1

Kτiw
∼= K ⊗F Fv, (xi)i 7→ (τ̂i

(w,τiw)(xi))i.

which is clearly an Fv-algebra isomorphism. One verifies that φ is G-equivariant.

8.1.3 Fair Counting Functions

Let G be a finite abelian group and let F be a number field. We recall the following way
of obtaining ‘good’ functions to order G-extensions of F .

Definition 8.10 ([Woo10, Section 2.1]). Let cG : G → Z≥0 be a function such that
for any g ∈ G we have cG(g) = 0 if and only if g = 1, and cG(g) = cG(g

e) for any
e ∈ Z coprime to the order of g. For any place v of F with v | |G|∞ let further
cv : AG(Fv) → Z≥0 be a function. Extend this to all places of F in the following way.
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Let v ∤ |G|∞. For H ≤ G and L/Fv an H-extension put cv(Ind
G
H L) := cG(yv), where

yv is any generator of tame inertia in Gal(L/Fv) ↪→ G. Note that by Proposition 8.8,
any G-structured Fv-algebra is isomorphic to a unique algebra of the form IndGH L with
H and L as above. Define

C : EG(F )→ Z≥0, K 7→
∏

p⊴OF

NF/Q(p)
cp(K⊗FFp)

and call it the counting function on EG(F ) given by cG and cv. We write Gr :=
{ g ∈ G | gr = 1 } for r ∈ Z≥0 and mC := ming∈G\{1} cG(g), and call C fair if c−1

G (mC) ∩
Gr generates Gr for all r ∈ Z≥0.

Note that if C is a counting function on EG(F ), then for any B ∈ R>0 there are only
finitely many K ∈ EG(F ) with C(K) < B, since such a K must be unramified at
all primes p ⊴ OF lying over a rational prime larger than |G|B. The three counting
functions we are mainly interested in are the following.

Example 8.11.

(a) Let

cG : G→ Z≥0, g 7→

{
0, g = 1,

1, else,

and, for v | |G|∞,

cv(Ind
G
HM) =

{
1, e(M/Fv) > 1,

0, else,

where H ≤ G and M/Fv is an H-extension. Then the resulting counting function
C is given by

C(K) = NF/Q

( ∏
p⊴OF

ramified in K

p

)

for K ∈ EG(F ). Here, mC = 1, so C is fair.

(b) Let

cG : G→ Z≥0, g 7→

{
0, g = 1,

1, else,

and, for v | |G|∞, cv(Ind
G
HM) = f(M/Fv) where H ≤ G and M/Fv is an H-

extension. Here, f denotes the conductor. Then the resulting counting function C
is given by C(K) = NF/Q(f(K/F )) for K ∈ EG(F ). Again, mC = 1, so C is fair.

(c) Let

cG : G→ Z≥0, g 7→ |G|
(
1− 1

|g|

)
,
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where |g| denotes the order of g. Moreover, for v | |G|∞, let

cv(Ind
G
HM) =

{
|G : H| · vp̂(disc(M/Fv)), v | |G| ,
0, v | ∞,

where H ≤ G, M/Fv is an H-extension and p̂ is the maximal ideal of Fv. Then
the resulting counting function C is given by C(K) = NF/Q(disc(K/F )) for K ∈
EG(F ). The function C is not fair unless G has prime exponent [Woo10, page
108].

We collect two results on the densities of certain families of G-extensions when those are
ordered by a fair counting function.

Proposition 8.12. Let C be a fair counting function on EG(F ). Let P be a finite set of
places of F . For each v ∈ P let Tv be a G-structured Fv-algebra and write T = (Tv)v∈P .
Then the limit

PrC(T ) := lim
B→∞

|{K ∈ EG(F ) |K ⊗F Fv ∼= Tv for all v ∈ P,C(K) ≤ B }|
|{K ∈ EG(F ) |C(K) ≤ B }|

exists.

Proof. See [Woo10, Theorem 2.1].

Note that by Proposition 8.3, we get the same limit as in the proposition above if we
instead consider G-extensions contained in an algebraic closure of F in the respective sets
occurring in the definition of PrC(T ). The paper [Woo10] also proves an independence
statement on the local probabilities PrC(T ), and in fact provides a way to explicitly
calculate PrC(T ), which is what we will do later on in Section 10.1.1 for the case G = Cq,
q prime.

An important property of fair counting functions for Cohen–Lenstra type conjectures
(cf. [BL20, Sections 1 and 6]) is that when using them to order G-extensions, fixed
nontrivial subfields occur with density zero:

Proposition 8.13. Let C be a fair counting function on EG(F ). Let P be a set of
infinite places of F (possibly empty). For each v ∈ P let Tv be a G-structured Fv-
algebra. Fix an algebraic closure F of F and let L be a field with F ⊊ L ⊆ F . Denote
by K̃C≤B the set of G-extensions (K, ι) of F with K ⊆ F , C(K) ≤ B and K⊗F Fv ∼= Tv
as G-structured Fv-algebras for all v ∈ P . Then

lim
B→∞

∣∣∣{ (K, ι) ∈ K̃C≤B

∣∣∣L ⊆ K }∣∣∣∣∣∣K̃C≤B

∣∣∣ = 0.

Proof. This follows as in [BL20, Proposition 6.6].
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8.1.4 Families of Galois Extensions

Based on [BL20] and [BJL24], we now formalise what we mean by a natural family of
Galois extensions of a fixed base number field.

We will investigate the distribution of ClK(m) in the following setup.

Setup 8.14. Let F be a number field and fix an algebraic closure F of F . Let 0 ̸=
mF ⊴ OF . Let G be a finite group. Let W be a finitely generated QG-module. Let I
be a two-sided ideal of QG with

∑
g∈G g ∈ I and let A = QG/I. Let S be a finite set

of primes that are good for A. If G is abelian, let C = CF be a fair counting function
defined on EG(F ). If G is nonabelian, let C = CF be the function on EG(F ) that assigns
to K the ideal norm of the product of the prime ideals of OF that ramify in K. Let

K :=
{
(K, ι) | (K, ι) is a G-extension of F with K ⊆ F ,

K contains no primitive p-th root of unity for any p ∈ S,
Q⊗Z O×

K
∼=W as QG-modules

}
and, for B ∈ R>0,

KC≤B := { (K, ι) ∈ K |C(K) ≤ B } .

Assume that K is infinite. For (K, ι) ∈ K we use the notation m := (mF ,∅), a modulus
in K, regarding mF as an ideal of OK .

The family K is the same as the family of number fields occurring in [BJL24] and differs
from the family in [BL20] only in that their condition A ⊗ZG O×

K
∼= V is replaced by

the more general Q⊗ZO×
K
∼=W . In both these sources, fields are always ordered by the

function we use in the nonabelian case. We have allowed more general orderings in the
abelian case since [Woo10] indicates that these orderings are all well-behaved.

Note that for (K, ι) ∈ K, the modulus m is G-stable, so that all objects appearing in
Theorem 6.18 are compact LCA G-modules. We will later consider only the good part
of ClK(m). The good primes S are contained in the above setup already in order to
remove the relevant roots of unity from the fields we consider. We do this in order
to avoid complications arising from the roots of unity (cf. [Mal08], [SW23] and the
introduction).

The condition Q⊗Z O×
K
∼= W is to fix the behaviour of K at the infinite places. There

are several different ways to phrase it, as given by the below proposition. For a finite
G-set X denote by Q[X] the permutation module over Q associated to X. For a number
field K denote by Ω∞

K its set of infinite places.

Proposition 8.15. Let K and K ′ be G-extensions of F . Then the following are equi-
valent:

(i) Q⊗Z O×
K
∼= Q⊗Z O×

K′ as QG-modules,
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(ii) Q[Ω∞
K ] ∼= Q[Ω∞

K′ ] as QG-modules,

(iii) for every v ∈ Ω∞
F and w ∈ Ω∞

K , w′ ∈ Ω∞
K′ with w,w′ | v, the conjugacy classes of

Dw and Dw′ are equal,

(iv) K ⊗F Fv ∼= K ′ ⊗F Fv as G-structured Fv-algebras for all v ∈ Ω∞
F .

Proof. By splitting up Ω∞
K into G-orbits and using the orbit-stabiliser theorem it holds

that

Q[Ω∞
K ] =

⊕
v∈Ω∞

F

Q[{w ∈ Ω∞
K |w | v }]

∼=
⊕
v∈Ω∞

F

Q[G/Dv]

∼=
⊕
v∈Ω∞

F

IndGDv
1Dv (8.16)

as QG-modules, where Dv denotes the decomposition group of any w ∈ Ω∞
K with w | v.

Then [CM90, Theorem 6.7] yields that (Q⊗Z O×
K)⊕Q ∼= Q[Ω∞

K ] as QG-modules. This
immediately shows that (i) implies (ii). The converse follows from the isomorphism
(Q⊗Z O×

K)⊕Q ∼= Q[Ω∞
K ] and [CR81, Corollary 6.15].

The isomorphism (8.16) also shows that (iii) implies (ii). The converse follows from
(8.16) and Artin’s Induction Theorem.

That (iii) implies (iv) follows from Lemma 8.6 and Proposition 8.9. For the converse,
use again the isomorphism from Proposition 8.9 and consider the stabiliser of one of the
primitive central idempotents.

8.1.5 The Good Part of the Arakelov Ray Class Sequence

Use Setup 8.14. After having established the family of number fields we want to work
with, we now specify the exact object to be considered in the conjecture we aim to
make.

We are interested in the distribution of the good part ClK(m)[S∞] of the ray class
group with modulus m as K runs over K. Recall that our strategy towards a reasonable
conjecture is to either remove or incorporate into one object all known obstructions
to randomness of ClK(m)[S∞] and then conjecture that the resulting object behaves
randomly according to Principle 1.1. For these structural considerations, we base our
reasoning on the previous work on the distribution of ray class groups of quadratic fields
[PS17,BP25] and the paper [BL20] on the distribution of class groups, the latter having
to be the special case of our prediction for the trivial modulus.

From the case of class groups, we know that in order for a conjecture as above to hold,
we have to consider the Arakelov ray class group instead of the ray class group (cf. the
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introduction). Next, following [PS17], [BP25] and our guiding principle, we have to take
into account the natural short exact sequence SAra

K (m), which imposes restrictions on
the structure of Pic0K(m). As in [PS17] and [BP25], we do so by considering the whole
sequence SAra

K (m) in the conjecture to be made. It contains the term Pic0K of which we
know a structural restriction: Its torsion submodule is ClK , and at a prime p with p ∤ |G|
we have that ClK [p∞]G = ClF [p

∞] is determined by F . We remove this obstruction to
randomness as in [BL20], which deals with the distribution of the good part of Pic0K :
First, by Pontryagin duality, instead of SAra

K (m) we may equivalently consider SAra
K (m)∨,

which allows us to work with discrete modules rather than compact ones and therefore
not having to worry about the topology. Note that by the results of Chapter 4, SAra

K (m)∨

is a short exact sequence of (ZG)op-modules. As usual, we regard it as a short exact
sequence of ZG-modules via Convention 7.5. We then pick out good and structurally
unobstructed components from SAra

K (m)∨ via the method from Chapter 7.

Setup 8.17. Use Setup 8.14. Additionally we fix the following notation. Let R :=
im(Z(S)G → A) and let V := A ⊗QG W . Let M be a full set of representatives for
the isomorphism classes of finite R-modules. Let MV be a full set of representatives
for the isomorphism classes of finitely generated R-modules M with the property that
A⊗RM ∼= V .

Note that all of the results from Chapter 7 apply to R. In particular, R is a maximal
Z(S)-order in A (Proposition 7.8) and a flat left and right ZG-module (Proposition 7.13).
Continuing our discussion from above, we are led to consider the short exact sequence
of R-modules R⊗ZG SAra

K (m)∨, which is given by

0 R⊗ZG (Pic0K)∨ R⊗ZG Pic0K(m)∨ R⊗ZG ((OK/mF )
×)∨ 0.

Note that despite dualising, tensoring with R has indeed had the desired effect regarding
the class group by Proposition 7.17.

Note also that the exact sequence R⊗ZGS
Ara
K (m)∨ still restricts the structure of its middle

term R ⊗ZG Pic0K(m)∨, as it is generally nonsplit: Any splitting s : R ⊗ZG Pic0K(m)∨ →
R ⊗ZG (Pic0K)∨ induces a splitting of the torsionfree part of R ⊗ZG SAra

K (m)∨ which

is only possible if R ⊗ZG

(
ρ(O×

K)

ρ(µ(K))

)∨
= 0. Hence it is not enough to just consider

R⊗ZG Pic0K(m)∨.

Note further that the diagram R⊗ZGDK(m)∨, of which R⊗ZG SAra
K (m)∨ is part of, does

in turn not restrict the structure of R ⊗ZG SAra
K (m)∨: By Propositions 7.21, 7.20 and

6.20 we may recover it from the latter as Dd(R⊗ZG SAra
K (m)∨).

We add one more comment on the nature of R⊗ZGS
Ara
K (m)∨. We first recall the following

lemma from [BL20] that gives a relation between MV and M and will often be useful
when dealing with elements ofMV .
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Lemma 8.18 ([BL20, Lemma 3.5]). There is a unique (up to isomorphism) finitely
generated projective R-module PV with A ⊗R PV ∼= V . If M is a finitely generated
R-module with A⊗RM ∼= V , then there is a unique M0 ∈M with M ∼= PV ⊕M0.

We record the following statement found in [BL20] for the trivial modulus.

Lemma 8.19. Let K be a G-extension of F with Q ⊗Z O×
K
∼= W . Let m := (mF ,∅).

Then
R⊗ZG Pic0K(m)∨ ∼= PV ⊕ (R⊗ZG ClK(m)∨).

In particular, R⊗ZG Pic0K(m)∨ is isomorphic to a unique element ofMV .

Proof. By Proposition 3.9, R ⊗ZG Pic0K(m)∨ is a direct sum of its torsion part and
torsionfree quotient. Propositions 6.15 and 4.42 and Lemma 7.15 show that R ⊗ZG
ClK(m)∨ is the torsion part of R ⊗ZG Pic0K(m)∨ and that the torsionfree quotient is
isomorphic to

R⊗ZG (O1
K(m)⊗ R/Z)∨ ∼= R⊗ZG O1

K(m)∗.

Now we have isomorphisms of QG-modules

QG⊗ZG O1
K(m)∗ ∼= Q⊗Z O1

K(m)∗

∼= (Q⊗Z O1
K(m))∗ (Proposition 2.1)

∼= (Q⊗Z O×
K)∗ (Proposition 6.5)

∼=W ∗ (Assumption)
∼=W (Proposition 7.9)

which give

A⊗ZG O1
K(m)∗ = A⊗QG QG⊗ZG O1

K(m)∗ ∼= A⊗QGW = V.

Then Lemma 8.18 yields R⊗ZG O1
K(m)∗ ∼= PV .

By the above lemma, Proposition 7.17 and Pontryagin duality we have that for (K, ι) ∈
K, R⊗ZG Pic0K(m)∨ carries the same information as R⊗ZG ClK(m) and R⊗ZG (Pic0K)∨

carries the same information as R⊗ZG ClK .

All of the above taken together suggest that on the family K, the sequence R ⊗ZG
SAra
K (m)∨ incorporates all structure of the good part of the ray class group, that it itself

has no structural restrictions and that the natural conjecture we have set out to make
therefore is that R⊗ZGS

Ara
K (m)∨ behaves like a random sequence in the sense of Principle

1.1.
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8.1.6 Families of Galois Extensions with Fixed Splitting Behaviour

In this section, we establish a space of outcomes for the sequences R ⊗ZG SAra
K (m)∨

for (K, ι) belonging to the family of Galois extensions K. Lemma 8.19 above already
provides us with a space for the left hand module of R ⊗ZG SAra

K (m)∨. As in [PS17]
and [BP25] we next partition K into finitely many natural subfamilies such that in each
subfamily, the right hand module of R ⊗ZG SAra

K (m)∨ is constant, allowing to set up a
space of outcomes over each subfamily in a simple way. We do this by fixing the local
behaviour of the fields in K at the primes of F dividing mF .

We use the following terminology which has been introduced in [Woo10] for abelian G.

Definition 8.20. Let G be a finite group and let F be a number field. Let P be a finite
set of places of F and suppose that for each v ∈ P we have a G-structured Fv-algebra
Tv. We say that the collection T = (Tv)v∈P is viable for G and F if there exists a
G-extension K/F with K ⊗F Fv ∼= Tv for all v ∈ P .

For the remainder of this subsection, we use the following setup.

Setup 8.21. Use Setup 8.17. Further, for each prime p of F dividing mF let Tp be a
G-structured Fp-algebra such that the collection T = (Tp)p|mF

is viable. Let

KT := { (K, ι) ∈ K |K ⊗F Fp
∼= Tp for all p | mF } ,

where the isomorphism is as G-structured Fp-algebras, and, for B ∈ R>0,

KTC≤B :=
{
(K, ι) ∈ KT

∣∣C(K) ≤ B
}
.

In the following, when writing p | mF we always mean that p is a prime ideal of OF .

Note that since Fp is a local field of characteristic 0, there are only finitely many G-
structured Fp-algebras up to isomorphism, as there are only finitely many isomorphism
classes of H-extensions of Fp for any H ≤ G [Lan94, Proposition II.14]. Hence, there
are only finitely many viable collections T = (Tp)p|mF

and corresponding subfamilies KT
of K.

In suitable contexts, one can obtain a statement on the whole family K from statements
on the subfamilies KT for all T , given the existence of the densities of the individual
subfamilies in K. Since K only differs from the type of families with known densities
considered in Proposition 8.12 in that certain roots of unity are not allowed to appear,
the existence of the densities of KT of K can be ensured for abelian G by virtue of
Proposition 8.13:
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Proposition 8.22. Suppose that G is abelian. Then

lim
B→∞

∣∣∣KTC≤B

∣∣∣
|KC≤B|

= PrC(T ).

Proof. Denote by K̃ the set of G-extensions (K, ι) of F with K ⊆ F and Q⊗ZO×
K
∼=W

and denote by K̃S the set of such G-extensions which additionally satisfy µp ⊆ K for

some p ∈ S. Denote by K̃T and K̃S,T the respective sets of G-extensions as above but
with the added condition that K ⊗F Fp

∼= Tp for all p | mF . Then K = K̃ \ K̃S and

KT = K̃T \ K̃S,T and thus

∣∣∣KTC≤B

∣∣∣
|KC≤B|

=

∣∣∣K̃TC≤B

∣∣∣− ∣∣∣K̃S,TC≤B

∣∣∣∣∣∣K̃C≤B

∣∣∣− ∣∣∣K̃SC≤B

∣∣∣ =
|K̃T

C≤B|
|K̃C≤B| −

∣∣∣K̃S,T
C≤B

∣∣∣
|K̃C≤B|

1−
∣∣∣K̃S

C≤B

∣∣∣
|K̃C≤B|

.

By Propositions 8.13 and 8.15, both
|K̃S

C≤B|
|K̃C≤B| and

∣∣∣K̃S,T
C≤B

∣∣∣
|K̃C≤B| converge to zero as B → ∞.

Moreover, using Propositions 8.3 and 8.15, [Woo10, Corollary 2.4] shows that
|K̃T

C≤B|
|K̃C≤B|

converges to PrC(T ) as B →∞. The claim follows.

We now show that the right hand side of R⊗ZG SAra
K (m)∨ is constant for (K, ι) ∈ KT .

Lemma 8.23. Suppose that p | mF . Then Tp has a unique maximal OFp-order OTp, the
integral closure of OFp in Tp. It is invariant under the G-action of Tp, so that G acts by
OFp-algebra automorphisms on OTp.

Proof. The first claim is immediate from [Rei03, Theorems 8.6 and 10.5]. If g ∈ G, then
g.OTp is another maximal OFp-order in Tp, so g.OTp = OTp , so OTp is a G-module.

Definition 8.24. We define

OT :=
∏
p|mF

OTp ,

which is the integral closure of
∏

p|mF
OFp in

∏
p|mF

Tp, as well as

UT := (OT /mF )
× =

∏
p|mF

(OTp/pvp(mF ))×,

UT,R := R⊗ZG UT = R⊗ZG
∏
p|mF

(OTp/pvp(mF ))×.
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Proposition 8.25. Let K be a G-extension of F with K ⊗F Fp
∼= Tp as G-structured

Fp-algebras for all p | mF . Then there is a G-equivariant OF -algebra isomorphism

OK/mF
∼=
∏
p|mF

OTp/pvp(mF ) = OT /mF .

If µp∞(K) = µp∞(F ) for all p ∈ S, then the above isomorphism induces an isomorphism

R⊗ZG
(OK/mF )

×

ρ(µ(K))
∼= R⊗ZG

(OT /mF )
×

µS(F )

of R-modules, where µS(F ) denotes the set of roots of unity in F whose order is a product
of primes in S.

Proof. By the Chinese remainder theorem we have G-equivariant OF -algebra isomorph-
isms

OK/mF
∼=
∏
p|mF

OK/pvp(mF ) ∼=
∏
p|mF

∏
q|p
in K

OK/qvp(mF )vq(p).

The inclusions K ↪→ Kq for q | p give rise to an isomorphism of OF -algebras∏
q|p
in K

OK/qvp(mF )vq(p) ∼−→
∏
q|p
in K

OKq/q
vp(mF )vq(p) (8.26)

=
∏
q|p
in K

OKq/p
vp(mF )

=
(∏

q|p
in K

OKq

)/
pvp(mF ).

Note that the inclusions K ↪→ Kq also give rise to an isomorphism of etale Fp-algebras
K ⊗F Fp

∼−→
∏

q|pKq, which is G-equivariant with respect to the natural actions on
both sides (cf. the proof of Proposition 8.9). Hence also (8.26) is G-equivariant. By
assumption and Lemma 8.23 we have that

∏
q|pOKq

∼= OTp as OFp-algebras and as
G-modules, which establishes the desired isomorphism.

Finally, suppose that µp∞(K) = µp∞(F ) for all p ∈ S. We have µ(K) = µS(K) · µS′(K)
where µS′(K) is the set of roots of unity in K whose order is coprime to all p ∈ S. Since
R is a Z(S)-algebra, the exact sequence

0 ρ(µS′(K)) (OK/mF )×

ρ(µS(K))
(OK/mF )×

ρ(µ(K)) 0

yields

R⊗ZG
(OK/mF )

×

ρ(µ(K))
∼= R⊗ZG

(OK/mF )
×

ρ(µS(K))
= R⊗ZG

(OK/mF )
×

ρ(µS(F ))
.

The claim follows from the isomorphism established above.
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Note that if (K, ι) ∈ KT , then µS(F ) = µS(K) = 1. Hence, the above proposition shows
that the right hand side of R⊗ZG SAra

K (m)∨ is indeed constant as (K, ι) runs over KT .

Definition 8.27. We write AutG-eq. alg.(OT /mF ) for the set of G-equivariant OF -algebra
automorphisms of OT /mF and define

AutG-eq. alg.(UT,R) :=
{
idR ⊗ φ× ∣∣φ ∈ AutG-eq. alg.(OT /mF )

}
,

AutG-eq. alg.(U
∨
T,R) :=

{
(idR ⊗ φ×)∨

∣∣φ ∈ AutG-eq. alg.(OT /mF )
}
,

which are subgroups of AutR(UT,R) and AutR(U
∨
T,R), respectively.

Construction 8.28. Let (K, ι) ∈ KT . By Lemma 8.19, there is a uniqueM ∈MV with
R⊗ZG(Pic

0
K)∨ ∼=M as R-modules. Moreover, the natural isomorphism from Proposition

7.17 together with anyG-equivariantOF -algebra isomorphism from Proposition 8.25 give
an isomorphism

R⊗ZG

(
(OK/mF )

×

ρ(µ(K))

)∨
∼−→
(
R⊗ZG

(OK/mF )
×

ρ(µ(K))

)∨
∼= U∨

T,R.

Using the above isomorphisms, we can identify R ⊗ZG SAra
K (m)∨ with an element of

Ext1R(U
∨
T,R,M). When choosing different isomorphisms at all stages where there is no

natural choice, we end up with an element of Ext1R(U
∨
T,R,M) that is (AutG-eq. alg.(U

∨
T,R)×

AutN)-isomorphic to the previous one. Thus, via the method described above, we may
uniquely identify R⊗ZG SAra

K (m)∨ with an element of⊔
N∈MV

Ext1R(U
∨
T,R, N)/AutG-eq. alg.(U

∨
T,R)×AutN,

independently of the choices of all noncanonical isomorphisms.

Definition 8.29. For N ∈ MV , we let E(U∨
T,R, N) be a system of representatives for

the (AutG-eq. alg.(U
∨
T,R)×AutN)-isomorphism classes in Ext1R(U

∨
T,R, N). Define

E(U∨
T,R,MV ) :=

⊔
N∈MV

E(U∨
T,R, N).

As described in Construction 8.28, for (K, ι) ∈ KT we can uniquely identify R ⊗ZG
SAra
K (m)∨ with an element of E(U∨

T,R,MV ), and we will denote that element by [R⊗ZG

SAra
K (m)∨]. Finally, for N ∈MV and Θ ∈ Ext1R(U

∨
T,R, N) we write

[Θ]G-eq. alg. := [Θ]AutG-eq. alg.(U
∨
T,R)×AutN

and
AutG-eq. alg.(Θ) := AutAutG-eq. alg.(U

∨
T,R)×AutN (Θ).

The set E(U∨
T,R,MV ) thus acts as a set of outcomes for the sequences R⊗ZGS

Ara
K (m)∨ for

(K, ι) ∈ KT . Note that since Ext1R(U
∨
T,R, N) is finite for N ∈ MV by Lemma 3.31 and

sinceMV is countable, the set E(U∨
T,R,MV ) is countable. We also note that all of the

statements to follow below do not depend on the choice of system of representatives.
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8.2 The Distribution of Random Sequences

Use Setup 8.21. In this section, we construct a probability distribution on E(U∨
T,R,MV )

that weighs an element Θ by the inverse of the size of AutG-eq. alg.(Θ). Since the latter
is generally not finite, we will employ the commensurability theory from Section 5.6 for
this. This is the analogous procedure as in [BL20], where, when faced with the same sort
of problem, Bartel–Lenstra used their commensurability theory from [BL17] to construct
onMV the probability distribution PBL from the introduction.

We set up some more notation that will be used in this section.

Denote by V the short exact sequence

0 V V 0 0.id

Then EndV ∼= EndV is semisimple (see the proof of [BL17, Theorem 8.1]) and for any
Θ ∈ E(U∨

T,R,MV ) it holds that Q ⊗Z Θ ∼= V . Moreover, since UT,R is finite, we have
|AutΘ : AutG-eq. alg.(Θ)| <∞ by Corollary 2.13. Hence, Proposition 5.40 and Theorem
5.42 give us a well-defined function

E(U∨
T,R,MV )× E(U∨

T,R,MV )→ Q>0, (Θ,Θ
′) 7→ ia(Θ,Θ′)|AutG-eq. alg.(Θ),AutG-eq. alg.(Θ′)

whose output can be thought of as the index of AutG-eq. alg.(Θ) in AutG-eq. alg.(Θ
′). In

the following, we will use the shorthand notation

iaG-eq. alg.(Θ,Θ
′) := ia(Θ,Θ′)|AutG-eq. alg.(Θ),AutG-eq. alg.(Θ′)

for Θ,Θ′ ∈ E(U∨
T,R,MV ). Note also that by Theorem 5.31 there is a function

ia : E(U∨
T,R,MV )× E(U∨

T,R,MV )→ Q>0, (Θ,Θ
′) 7→ ia(Θ,Θ′)

whose output can be thought of as the index of AutΘ in AutΘ′ and which is related to
the previous function as described in Theorem 5.42 (v).

The key in constructing the desired probability distribution is to ensure convergence of∑
∆∈E(U∨

T,R,MV ) iaG-eq. alg.(∆,Π) for some Π. For the latter, we will need to compute the

index iaG-eq. alg.(∆,Π) in some way. This is achieved by the following two lemmas.

Lemma 8.30. Let Θ be a short exact sequence of finitely generated R-modules with
A⊗R Θ ∼= V . Then Θ is isomorphic to a short exact sequence

0 PV ⊕N0 PV ⊕ L0 M0 0

for unique N0, L0,M0 ∈M.

Proof. This is immediate from Lemma 8.18.
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Lemma 8.31. Let N0, L0,M0 ∈M and suppose that

Θ: 0 PV ⊕N0 PV ⊕ L0 M0 0α

is a short exact sequence of R-modules. Further let

PV : 0 PV PV 0 0.id

Then we have

ia(Θ, PV ) =
|[Θ]|

|Hom(PV , N0)| · |AutN0| · |Hom(M0, N0)| · |AutM0|
,

where as usual [Θ] denotes the isomorphism class of Θ ∈ Ext1R(M0, PV ⊕N0).

Note that [Θ] is finite by Lemma 3.31.

Proof. Let π : PV ⊕ L0 → PV be the projection onto the first coordinate. Using Propo-
sition 5.7, we then have that f := (π ◦ α, α, 0) : Θ→ PV is an isogeny.

Θ: 0 PV ⊕N0 PV ⊕ L0 M0 0

PV : 0 PV PV 0 0

f

α

π◦α π

id

Hence, cf = (Θ, id, f) : Θ⇌ PV is a commensurability and we have ia(Θ, PV ) = i(a(cf )).
Write a(cf ) = (Aut cf , p0, p1) : AutΘ⇌ AutPV and recall that

Aut cf =
{
(θ, θ, ψ) ∈ AutΘ×AutΘ×AutPV

∣∣ψf = fθ
}
.

To prove the claim, we calculate i(a(cf )) = i(p1)/i(p0). We first show that

p0 : Aut cf → AutΘ, (θ, θ, ψ) 7→ θ

is an isomorphism. Injectivity is clear by the description of Aut cf . For surjectivity
let θ ∈ AutΘ and write θ = (ν, λ, µ) with ν ∈ Aut(PV ⊕ N0), λ ∈ Aut(PV ⊕ L0) and
µ ∈ AutM0. Since L0 is finite and PV is Z(S)-torsionfree, we have Hom(L0, PV ) = 0
from which it follows that λ has the form

λ =

(
λ11
λ21 λ22

)
∈
(

AutPV
Hom(PV , L0) AutL0

)
= Aut(PV ⊕ L0).

It is then clear that λ11 ∈ AutPV = AutPV satisfies λ11π = πλ. Moreover, this implies
λ11πα = πλα = παν which shows (θ, θ, λ11) ∈ Aut cf . Hence, p0 is an isomorphism.

Under the isomorphism p0, the second projection p1 corresponds to the map

AutΘ→ AutPV , θ = (ν, λ, µ) 7→ λ11,
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which factors as the composition

AutΘ
q−→ Aut(PV ⊕ L0)→ AutPV

of two canonical projections, both of which are isogenies. By Proposition 5.7 we then
have

ia(Θ, PV ) = i(p1) = i(q) · 1

|Hom(PV , L0)| · |AutL0|
. (8.32)

It remains to compute i(q), which we will do by employing the commensurability cα =
(PV ⊕N0, id, α) : PV ⊕N0 ⇌ PV ⊕ L0. It yields a commensurability

a(cα) = (Aut cα, p
′
0, p

′
1) : Aut(PV ⊕N0)⇌ Aut(PV ⊕ L0),

where by definition,

Aut cα = { (ν, ν, λ) ∈ Aut(PV ⊕N0)×Aut(PV ⊕N0)×Aut(PV ⊕ L0) |λα = αν } .

There is an isomorphism

AutΘ
∼−→ Aut cα, θ = (ν, λ, µ) 7→ (ν, ν, λ)

under which q corresponds to p′1, so in particular i(q) = i(p′1). By definition of ia, we
have

i(p′1) = i(a(cα)) · i(p′0) = ia(PV ⊕N0, PV ⊕ L0) · i(p′0). (8.33)

Under the isomorphism AutΘ ∼= Aut cα from above, p′0 factors as the composition

AutΘ
ρ−→ Aut(PV ⊕N0)×AutM0 → Aut(PV ⊕N0)

of two canonical projections, which gives i(p′0) = i(ρ)/ |AutM0|. Now by Proposition
2.12 we have

i(ρ) =
|(Aut(PV ⊕N0)×AutM0) : Stab(Θ)|

|Hom(M0, PV ⊕N0)|
=

|[Θ]|
|Hom(M0, N0)|

,

whence

i(p′0) =
|[Θ]|

|Hom(M0, N0)| · |AutM0|
.

Plugging this and the expression for ia(PV ⊕N0, PV ⊕L0) from [BL20, Proposition 3.4]
into (8.33) yields

i(q) = i(p′1) =
|Hom(PV , L0)| · |AutL0| · |[Θ]|

|Hom(PV , N0)| · |AutN0| · |Hom(M0, N0)| · |AutM0|

The claim now follows by plugging this expression into (8.32).
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Note that the expression for ia(Θ, PV ) from the above lemma is precisely what one gets
when ‘calculating’ |AutΘ| using Proposition 2.12 (ii), and ‘cancelling’ |AutPV | in the

‘fraction’
|AutPV |
|AutΘ| . This shows that our theory of commensurability works as expected.

We are finally ready to construct the probability distribution and thereby prove Theorem
1.12.

Theorem 8.34. There is a unique discrete probability distribution PT on E(U∨
T,R,MV )

with the property that for all Θ,Θ′ ∈ E(U∨
T,R,MV ) we have

PT (Θ)

PT (Θ′)
= iaG-eq. alg.(Θ,Θ

′).

This distribution also has the following properties:

(i) If Θ,Θ′ ∈ E(U∨
T,R,MV ) and Φ is a short exact sequence of R-modules that is finite

in the sense of Chapter 5 with Θ⊕ Φ ∼= Θ′, then

PT (Θ) =
∣∣AutG-eq. alg.(Θ

′) : AutG-eq. alg.(Θ)
∣∣ · PT (Θ′)

where the inclusion AutG-eq. alg.(Θ) ↪→ AutG-eq. alg.(Θ
′) is given by f 7→ f ⊕ idΦ.

(ii) If Θ ∈ E(U∨
T,R,MV ) is given by

0 N L U∨
T,R 0,

then we have

PT (Θ) = PBL(N) ·
|[Θ]G-eq. alg.|∣∣∣Ext1R(U∨

T,R, N)
∣∣∣ .

In particular, if σ : E(U∨
T,R,MV ) → MV is the map sending Θ to the unique

element ofMV that is isomorphic to N , then σ∗PT = PBL.

Proof. Uniqueness of the distribution is clear. Let Π ∈ E(U∨
T,R,MV ). We show that∑

∆∈E(U∨
T,R,MV ) iaG-eq. alg.(∆,Π) converges. For ∆ ∈ E(U∨

T,R,MV ) it holds by Theorem

5.42 that

iaG-eq. alg.(∆,Π) =
|Aut∆ : AutG-eq. alg.(∆)| · ia(∆, PV )
|AutΠ : AutG-eq. alg.(Π)| · ia(Π, PV )

which leads us to investigate

c :=
∑

∆∈E(U∨
T,R,MV )

|Aut∆ : AutG-eq. alg.(∆)| · ia(∆, PV ),

whose convergence we aim to prove. By Lemma 8.18 we can write

c =
∑
N0∈M

∑
∆∈E(U∨

T,R,PV ⊕N0)

|Aut∆ : AutG-eq. alg.(∆)| · ia(∆, PV ).
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We next rewrite the summands. Let ∆ ∈ Ext1R(U
∨
T,R, PV ⊕N0). Then Lemmas 8.30 and

8.31 give

s(∆) := |Aut∆ : AutG-eq. alg.(∆)| · ia(∆, PV )

=
|Aut∆ : AutG-eq. alg.(∆)| · |[∆]|

|Hom(PV , N0)| · |AutN0| ·
∣∣∣Hom(U∨

T,R, N0)
∣∣∣ · ∣∣∣AutU∨

T,R

∣∣∣ .
Using Proposition 3.32 we have∣∣Ext1R(U∨

T,R, PV ⊕N0)
∣∣ = ∣∣Ext1R(U∨

T,R, PV )
∣∣ · ∣∣Ext1R(U∨

T,R, N0)
∣∣

=
∣∣Ext1R(U∨

T,R, PV )
∣∣ · ∣∣Hom(U∨

T,R, N0)
∣∣ .

This together with Corollary 2.13 yields

s(∆) =

∣∣∣Ext1R(U∨
T,R, PV )

∣∣∣∣∣∣AutG-eq. alg.(U
∨
T,R)

∣∣∣ · |[∆]G-eq. alg.|

|Hom(PV , N0)| · |AutN0| ·
∣∣∣Ext1R(U∨

T,R, PV ⊕N0)
∣∣∣ .

It follows that

c =
∑
N0∈M

∑
∆∈E(U∨

T,R,PV ⊕N0)

s(∆) =

∣∣∣Ext1R(U∨
T,R, PV )

∣∣∣∣∣∣AutG-eq. alg.(U
∨
T,R)

∣∣∣
∑
N0∈M

1

|Hom(PV , N0)| · |AutN0|
.

Since S is finite, [CM90, Theorem 3.6] shows that

c̃ :=
∑
N0∈M

1

|Hom(PV , N0)| · |AutN0|
<∞

and therefore also that c <∞. Thus, for Θ ∈ E(U∨
T,R,MV ) we may define

PT (Θ) :=
iaG-eq. alg.(Θ,Π)∑

∆∈E(U∨
T,R,MV ) iaG-eq. alg.(∆,Π)

,

which by Theorem 5.42 (ii) is independent of Π and moreover satisfies PT (Θ)/PT (Θ′) =
iaG-eq. alg.(Θ,Θ

′). It is clear that this defines a discrete probability distribution on
E(U∨

T,R,MV ). Statement (i) follows easily from Theorem 5.42 (iii).

Finally, for (ii), let Θ ∈ E(U∨
T,R,MV ). By Lemma 8.30, Θ is isomorphic to a short exact

sequence

0 PV ⊕N0 PV ⊕ L0 U∨
T,R 0

with N0, L0 ∈M. By the above calculations, we have

PT (Θ) = s(Θ) · c−1

=
|[Θ]G-eq. alg.|

|Hom(PV , N0)| · |AutN0| ·
∣∣∣Ext1R(U∨

T,R, PV ⊕N0)
∣∣∣ · c̃−1.
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Now by [BL20, Proposition 3.4] it holds that

1

|Hom(PV , N0)| · |AutN0|
· c̃−1 =

ia(PV ⊕N0, PV )∑
M0∈M ia(PV ⊕M0, PV )

.

The latter expression equals PBL(PV ⊕N0) by the proof of [BL20, Proposition 3.6].

Remark 8.35. Part (ii) of the above theorem gives a different way of understanding
the distribution PT , namely in terms of the subspaces E(U∨

T,R, N) of E(U∨
T,R,MV ): It

implies that for Θ ∈ E(U∨
T,R,MV ), N ∈MV and ∆ ∈ E(U∨

T,R, N) we have

PT (Θ ∈ E(U∨
T,R, N)) = PBL(N)

and

PT (Θ = ∆ | Θ ∈ E(U∨
T,R, N)) =

|[∆]G-eq. alg.|∣∣∣Ext1R(U∨
T,R, N)

∣∣∣ .
Definition 8.36. For f : E(U∨

T,R,MV )→ C define its expected value to be

E(f) :=
∑

Θ∈E(U∨
T,R,MV )

f(Θ) · PT (Θ)

if the sum converges absolutely.

8.3 The Conjecture for the Distribution of Arakelov Ray Class Sequences

We recall the setup that has been established in the previous sections.

Setup 8.37. Let F be a number field and fix an algebraic closure F of F . Let 0 ̸=
mF ⊴ OF . Let G be a finite group. Let W be a finitely generated QG-module. Let I
be a two-sided ideal of QG with

∑
g∈G g ∈ I and let A = QG/I. Let S be a finite set

of primes that are good for A. If G is abelian, let C = CF be a fair counting function
defined on EG(F ). If G is nonabelian, let C = CF be the function on EG(F ) that assigns
to K the ideal norm of the product of the prime ideals of OF that ramify in K. Let

K :=
{
(K, ι) | (K, ι) is a G-extension of F with K ⊆ F ,

K contains no primitive p-th root of unity for any p ∈ S,
Q⊗Z O×

K
∼=W as QG-modules

}
and, for B ∈ R>0,

KC≤B := { (K, ι) ∈ K |C(K) ≤ B } .

Assume that K is infinite. For (K, ι) ∈ K we use the notation m := (mF ,∅), regarding
mF as an ideal of OK . Let R := im(Z(S)G→ A) and let V := A⊗QGW . LetM be a set
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of representatives for the isomorphism classes of finite R-modules. LetMV be a set of
representatives for the isomorphism classes of finitely generated R-modules M with the
property that A⊗RM ∼= V . For each prime p of F dividing mF let Tp be a G-structured
Fp-algebra such that the collection T = (Tp)p|mF

is viable. Let

KT := { (K, ι) ∈ K |K ⊗F Fp
∼= Tp for all p | mF } ,

where the isomorphism is as G-structured Fp-algebras, and, for B ∈ R>0,

KTC≤B :=
{
(K, ι) ∈ KT

∣∣C(K) ≤ B
}
.

We principally regard all this notation as fixed, except for possibly T , which in some
instances we allow to vary in order to obtain statements on the full family K from the
subfamilies KT . This is indicated by the use of a subscript or superscript T . Our main
conjecture now is the following.

Conjecture 8.38. Use Setup 8.37. Let f : E(U∨
T,R,MV )→ C be ‘reasonable’. Then the

limit

Av(f) := lim
B→∞

∑
(K,ι)∈KT

C≤B
f([R⊗ZG SAra

K (m)∨])∣∣∣KTC≤B

∣∣∣
exists and equals E(f).

Here, for a function f to be called ‘reasonable’, we require the necessary condition that
E(f) exists. Further than that, we do make precise what we mean by a ‘reasonable’
function and refer the reader to the discussion in [BL20, Section 7]. We refer to Av(f)
as the average of f . Taking f to be the indicator function of Θ ∈ E(U∨

T,R,MV ), we
obtain:

Corollary 8.39. Assume that Conjecture 8.38 holds. Let Θ ∈ E(U∨
T,R,MV ). Then

lim
B→∞

∣∣∣{ (K, ι) ∈ KTC≤B

∣∣∣ [R⊗ZG SAra
K (m)∨] = Θ

}∣∣∣∣∣∣KTC≤B

∣∣∣ = PT (Θ).

Thus, by definition of PT , the conjecture should be understood as saying that for (K, ι)
running overKT , the sequence R⊗ZGS

Ara
K (m)∨ behaves randomly in the sense of Principle

1.1.
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9 Implications of the Main Conjecture

The aim of this chapter is to derive implications of Conjecture 8.38 for objects attached
to a number field other than R ⊗ZG SAra

K (m)∨. This is possible whenever the following
three steps are performable. Say we are interested in the statistical behaviour of object
XK attached to (K, ι) ∈ KT .

(1) Find a set X only depending on KT such that for (K, ι) ∈ KT , the object XK can
be identified with a unique element [XK ] ∈ X . This ‘constant’ space of outcomes
makes it possible to formulate statements about the distribution of the objects XK

which a priori may live in entirely different spaces.

(2) Construct a function ξ : E(U∨
T,R,MV )→ X with ξ([R⊗ZG SAra

K (m)∨]) = [XK ].

(3) For a ‘reasonable’ function h : X → C, compute E(h ◦ ξ).

If all this is possible, then Conjecture 8.38 applied to f := h◦ξ provides the statement

lim
B→∞

∑
(K,ι)∈KT

C≤B
h([XK ])∣∣∣KTC≤B

∣∣∣ =
∑

Θ∈E(U∨
T,R,MV )

(h ◦ ξ)(Θ) · PT (Θ) (9.1)

on the distribution of the objects XK . If X is countable, then we regard it as a discrete
measurable space and we have∑

Θ∈E(U∨
T,R,MV )

(h ◦ ξ)(Θ) · PT (Θ) =
∑
x∈X

∑
Θ∈ξ−1(x)

h(x) · PT (Θ)

=
∑
x∈X

h(x) · ξ∗PT (x),

so (9.1) becomes

lim
B→∞

∑
(K,ι)∈KT

C≤B
h([XK ])∣∣∣KTC≤B

∣∣∣ =
∑
x∈X

h(x) · ξ∗PT (x).

This means that the distribution of the objects XK is governed by the pushforward
distribution ξ∗PT .

In the subsections of this chapter, we will obtain the following items as consequences of
Conjecture 8.38.

• Section 9.1: The distribution of R⊗ZG (Pic0K)∨ for (K, ι) running over KT and K.

• Section 9.2: The distribution of the sequence R ⊗ZG SAra
K (m)∨ for (K, ι) ∈ KT for

which the left hand term R⊗ZG (Pic0K)∨ is isomorphic to a fixed module N ∈MV .

• Section 9.3: The distribution of R ⊗ZG SfinK (m)∨ for (K, ι) ∈ KT and for (K, ι) in
certain finer subfamilies.
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• Section 9.4: The distribution of the reduction map idR ⊗ ρK(m) for (K, ι) ∈ KT
and for (K, ι) ∈ KT such that R ⊗ZG (Pic0K)∨ is isomorphic to a fixed module
N ∈MV .

• Section 9.5: The average ℓ-torsion of ClK(m) for G abelian, ℓ a prime with ℓ ∤
|G| · |ClF |, and (K, ι) running over KT and K defined using S = {ℓ}.

Unless otherwise stated, we work with Setup 8.37.

9.1 Ideal Class Groups

We consider the case where mF = OF is the trivial modulus. Then there are no p | mF ,
so KT = K. Being an empty product, OT is the zero ring, and so UT and UT,R are trivial
modules. It follows that for any N ∈ MV , Ext

1
R(U

∨
T,R, N) is trivial. Hence, there is a

canonical bijection betweenMV and E(U∨
T,R,MV ) which without loss of generality we

can assume to be given by

MV
∼−→ E(U∨

T,R,MV ), M 7→M : 0→M
id−→M → 0→ 0.

By Theorem 8.34 we then have that PT (M) = PBL(M) for M ∈ MV . Moreover, if
f : MV → C is a ‘reasonable’ function, then we obtain a corresponding ‘reasonable’
function f : E(U∨

T,R,MV ) → C with f(M) = f(M) for M ∈ MV . This shows that our
main conjecture implies the Cohen–Lenstra–Martinet Heuristics as phrased in [BL20,
Conjecture 1.5]:

Corollary 9.2. Conjecture 8.38 implies Conjecture 1.7.

In fact, we do get a stronger statement under slightly stronger assumptions. For (K, ι) ∈
K denote by [R ⊗ZG (Pic0K)∨] the unique element of MV that is isomorphic to R ⊗ZG
(Pic0K)∨.

Corollary 9.3. Let f : MV → C be ‘reasonable’. Let P be a finite set of primes of
F and let T = (Tp)p∈P be a viable collection of G-structured Fp-algebras. Assume that
Conjecture 8.38 holds for the modulus

∏
p∈P p, the collection T and the function f ◦

σ, where σ : E(U∨
T,R,MV ) → MV is the function from Theorem 8.34 for the modulus∏

p∈P p. Then

lim
B→∞

∑
(K,ι)∈KT

C≤B
f([R⊗ZG (Pic0K)∨])∣∣∣KTC≤B

∣∣∣ =
∑

N∈MV

f(N) · PBL(N).

Proof. Apply Conjecture 8.38 to f ◦ σ and use Theorem 8.34 to obtain the expression
above on the right hand side for E(f ◦ σ).
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9.2 Sequences with Fixed Left Hand Side

In our model, we have defined the family KT in such a way that for (K, ι) ∈ KT , the right
hand term of R⊗ZG SAra

K (m)∨ is constant, always being isomorphic via a G-equivariant
OF -algebra isomorphism to U∨

T,R, cf. Proposition 8.25. In this section, we investigate

the situation in which we additionally fix the left hand module in R⊗ZG SAra
K (m)∨.

Definition 9.4. Let N ∈ MV . We define KT (N) to be the set of (K, ι) ∈ KT with
R⊗ZG (Pic0K)∨ ∼= N .

Note that we have

(K, ι) ∈ KT (N) ⇐⇒ [R⊗ZG SAra
K (m)∨] ∈ E(U∨

T,R, N)

which means that when modelling R⊗ZG SAra
K (m)∨, the subfamily KT (N) of KT corres-

ponds to the subspace E(U∨
T,R, N) of E(U∨

T,R,MV ). This observation allows us to derive

a statement about the distribution of R ⊗ZG SAra
K (m)∨ when (K, ι) ranges over KT (N)

from our conjecture and the knowledge about the probability distribution induced by
PT on E(U∨

T,R, N).

Proposition 9.5. Let N ∈ MV . Then the restriction and renormalisation PT,N of PT
to E(U∨

T,R, N) is given by

PT,N (Θ) =
|[Θ]G-eq. alg.|∣∣∣Ext1R(U∨

T,R, N)
∣∣∣

for Θ ∈ E(U∨
T,R, N).

Proof. This is immediate from Remark 8.35.

Corollary 9.6. Let N ∈ MV and let f : E(U∨
T,R, N)→ C be ‘reasonable’. Assume that

Conjecture 8.38 holds for 1E(U∨
T,R,N) and the function f̃ : E(U∨

T,R,MV )→ C that extends

f by zero. Then

lim
B→∞

∑
(K,ι)∈KT

C≤B(N) f([R⊗ZG SAra
K (m)∨])∣∣∣KTC≤B(N)

∣∣∣ =
∑

Θ∈E(U∨
T,R,N)

f(Θ) · PT,N (Θ).

Proof. We have

E(f̃) =
∑

Θ∈E(U∨
T,R,N)

f(Θ) · PT (Θ) = PBL(N) ·
∑

Θ∈E(U∨
T,R,N)

f(Θ) · PT,N (Θ),
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while

Av(f̃) = lim
B→∞

∑
(K,ι)∈KT

C≤B(N) f([R⊗ZG SAra
K (m)∨])∣∣∣KTC≤B(N)

∣∣∣ ·

∣∣∣KTC≤B(N)
∣∣∣∣∣∣KTC≤B

∣∣∣ .

Using the function 1E(U∨
T,R,N) in Conjecture 8.38 gives

lim
B→∞

∣∣∣KTC≤B(N)
∣∣∣∣∣∣KTC≤B

∣∣∣ = PBL(N),

and the claim follows.

Corollary 9.7. Assume that Conjecture 8.38 holds. Let N ∈MV and let Θ ∈ E(U∨
T,R, N).

Then

lim
B→∞

∣∣∣{ (K, ι) ∈ KTC≤B(N)
∣∣∣ [R⊗ZG SAra

K (m)∨] = Θ
}∣∣∣∣∣∣KTC≤B(N)

∣∣∣ =
|[Θ]G-eq. alg.|∣∣∣Ext1R(U∨

T,R, N)
∣∣∣ .

9.3 Ray Class Group Sequences

The aim of this section is to describe the consequences of Conjecture 8.38 for the dis-
tribution of the dual ray class group sequence R ⊗ZG SfinK (m)∨, which we recall is given
by

0 R⊗ZG Cl∨K R⊗ZG ClK(m)∨ R⊗ZG

(
(OK/m0)×

ρ(O×
K)

)∨
0.

For this, we imitate the approach of [BP25]. We first deal with item (1) from the
beginning of this chapter and investigate by which space the sequences R ⊗ZG SfinK (m)∨

are modelled as (K, ι) runs over KT .

Lemma 8.19 shows that for (K, ι) ∈ KT , the left hand side of R ⊗ZG SfinK (m)∨ is the
torsion submodule of R⊗ZG (Pic0K)∨. This means that when running over the subfamily
KT (N) of KT for N ∈ MV , then via an isomorphism R ⊗ZG (Pic0K)∨ ∼= N we may
identify R⊗ZG Cl∨K with Ntors.

We also have information on the right hand side of R ⊗ZG SfinK (m)∨: By Section 7.3.2
and Proposition 7.24, it is given by the kernel of

ωd(R⊗ZG SAra
K (m)∨) : R⊗ZG

(
(OK/m0)

×

ρ(µ(K))

)∨
→

((
R⊗ZG (Pic0K)∨

(R⊗ZG (Pic0K)∨)tors

)∗)∨

.

Again, it is useful to first consider the subfamily KT (N) of KT for N ∈ MV . Here,
if (K, ι) ∈ KT (N), then via an isomorphism R ⊗ZG (Pic0K)∨ ∼= N we may identify
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((
R⊗ZG(Pic0K)∨

(R⊗ZG(Pic0K)∨)tors

)∗)∨
with ((N/Ntors)

∗)∨ and as explained in Construction 8.28, we

may identify R⊗ZG

(
(OK/m0)×

ρ(µ(K))

)∨
with U∨

T,R via aG-equivariantOF -algebra isomorphism.

Thus, we can identify ωd(R⊗ZGS
Ara
K (m)∨) with a homomorphism ω ∈ HomR(U

∨
T,R, ((N/Ntors)

∗)∨

in such a way that the isomorphism R ⊗ZG

(
(OK/m0)×

ρ(µ(K))

)∨ ∼= U∨
T,R restricts to an iso-

morphism between R⊗ZG

(
(OK/m0)×

ρ(O×
K)

)∨
and kerω.

0 0

R⊗ZG

(
(OK/m0)×

ρ(O×
K)

)∨
kerω

R⊗ZG

(
(OK/m0)×

ρ(µ(K))

)∨
U∨
T,R

((
R⊗ZG(Pic0K)∨

(R⊗ZG(Pic0K)∨)tors

)∗)∨
((N/Ntors)

∗)∨

∼

ωd(R⊗ZGSAra
K (m)∨)

∼

ω

∼

This suggests to subdivide KT (N) even further in the following way:

Definition 9.8. Let N ∈MV . Let HN be a system of representatives for

HomR(U
∨
T,R, ((N/Ntors)

∗)∨)/(AutG-eq. alg.(U
∨
T,R)×AutN).

For ω ∈ HN we define KT (N,ω) to be the set of (K, ι) ∈ KT with R ⊗ZG (Pic0K)∨ ∼= N
and such that there are an R-module isomorphism χ : R ⊗ZG (Pic0K)∨

∼−→ N and an
isomorphism

α : R⊗ZG

(
(OK/m0)

×

ρ(µ(K))

)∨
∼−→
(
R⊗ZG

(OK/m0)
×

ρ(µ(K))

)∨
∼−→ U∨

T,R,

where the left hand map is the natural isomorphism from Proposition 7.17 and where the
right hand map is aG-equivariantOF -algebra isomorphism induced from an isomorphism
from Proposition 8.25, that make the diagram

R⊗ZG

(
(OK/m0)×

ρ(µ(K))

)∨
U∨
T,R

((
R⊗ZG(Pic0K)∨

(R⊗ZG(Pic0K)∨)tors

)∗)∨
((N/Ntors)

∗)∨

α

ωd(R⊗ZGSAra
K (m)∨) ω

((χ)∗)∨

commute.
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Construction 9.9. Let (K, ι) ∈ KT (N,ω). Then by choosing isomorphisms χ and α
that make the above diagram commute, we can identify R⊗ZG SfinK (m)∨ with an element
of Ext1R(kerω,Ntors). While this identification depends on the choice of χ and α, we may
uniquely identify R⊗ZGS

fin
K (m)∨ with an element of Ext1R(kerω,Ntors)/(Hω×AutNtors),

where
Hω :=

{
κ ∈ Aut(kerω)

∣∣∃ υ ∈ AutG-eq. alg.(U
∨
T,R) : κ = υ

∣∣
kerω

}
.

This way, for (K, ι) ∈ KT , we may uniquely identify R⊗ZG SfinK (m)∨ with an element of⊔
N∈MV

⊔
ω∈HN

Ext1R(kerω,Ntors)/(Hω ×AutNtors).

We denote this element by [R⊗ZG SfinK (m)∨].

Definition 9.10. For N ∈ MV and ω ∈ HN we let Etors(U∨
T,R, N, ω) be a system of

representatives for Ext1R(kerω,Ntors)/(Hω ×AutNtors). Define

Etors(U∨
T,R, N) :=

⊔
ω∈HN

Etors(U∨
T,R, N, ω),

Etors(U∨
T,R,MV ) :=

⊔
N∈MV

Etors(U∨
T,R, N).

As explained above, these spaces model the sequence R ⊗ZG SfinK (m)∨ for number fields
in the families KT (N,ω), KT (N) and KT , respectively. To finish this discussion, we
note the subspace of E(U∨

T,R,MV ) that corresponds to KT (N,ω) when modelling R⊗ZG

SAra
K (m)∨.

Definition 9.11. Let N ∈MV . Denote by

ωd,N := ω
U∨
T,R,N

d,R : Ext1R(U
∨
T,R, N)→ HomR(U

∨
T,R, ((N/Ntors)

∗)∨)

the homomorphism from Construction 7.22 and by ωd,N the induced map on (AutG-eq. alg.(U
∨
T,R)×

AutN)-isomorphism classes, which is well-defined by Proposition 7.23.

Proposition 9.12. Let N ∈MV and ω ∈ HN . Then

(K, ι) ∈ KT (N,ω) ⇐⇒ [R⊗ZG SAra
K (m)∨] ∈ ωd,N

−1([ω]).

Proof. This follows from naturality of ωd,N , see Proposition 7.23.

Definition 9.13. Let N ∈ MV and ω ∈ HN . Denote by E(U∨
T,R, N, ω) the subset of

E(U∨
T,R, N) that corresponds to ωd,N

−1([ω]).
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In order to derive implications on the distribution of R ⊗ZG SfinK (m)∨ from our main
conjecture, we next take care of item (2) from the beginning of this chapter and set out
to define a function

τ : E(U∨
T,R,MV )→ Etors(U∨

T,R,MV )

with τ([R⊗ZG SAra
K (m)∨]) = [R⊗ZG SfinK (m)∨]. Then the pushforward distribution of PT

under τ will give the distribution of R⊗ZG SfinK (m)∨.

For the construction of τ we will work on the subsets E(U∨
T,R, N, ω) that partition

E(U∨
T,R,MV ). The map τ should be given by mapping a short exact sequence to its

torsion sequence, defined in Section 7.3.1. We split the construction into two parts,
where we keep track of the homomorphism whose kernel determines the Ext-space of
the torsion sequence in the first step.

Definition 9.14. Let N ∈MV . Define

Σ(U∨
T,R, N) :=

{
(ω,∆)

∣∣ω ∈ HomR(U
∨
T,R, ((N/Ntors)

∗)∨),∆ ∈ Ext1R(kerω,Ntors)
}
.

We have a natural action of AutG-eq. alg.(U
∨
T,R)×AutN on Σ(U∨

T,R, N) defined by

(f, g).(ω,∆) :=
(
(f, (g∗)∨).ω, (gtors)∗ ◦ (f−1

∣∣
ker((f,(g∗)∨).ω)

)∗(∆)
)

for f ∈ AutG-eq. alg.(U
∨
T,R), g ∈ AutN and (ω,∆) ∈ Σ(U∨

T,R, N). We also define maps

πN : Σ(U∨
T,R, N)→ HomR(U

∨
T,R, ((N/Ntors)

∗)∨), (ω,∆) 7→ ω

and
σN : Ext1R(U

∨
T,R, N)→ Σ(U∨

T,R, N), Θ 7→ (ωd,N (Θ),Θtors).

Here, if Θ is given by the short exact sequence 0 → N
γ−→ L

δ−→ U∨
T,R → 0, we use

Proposition 7.24 to regard Θtors as the short exact sequence

0 Ntors Ltors kerωd,N (Θ) 0.
γ|Ntors

δ|Ltors

We obtain the following generalised version of [BP25, Proposition 3.8].

Proposition 9.15. Let N ∈ MV . Then πN and σN are (AutG-eq. alg.(U
∨
T,R)× AutN)-

equivariant and surjective. Moreover, for ω ∈ HomR(U
∨
T,R, ((N/Ntors)

∗)∨) it holds that∣∣π−1
N (ω)

∣∣ = ∣∣Ext1R(kerω,Ntors)
∣∣

and for (ω,∆) ∈ Σ(U∨
T,R, N) it holds that

∣∣σ−1
N (ω,∆)

∣∣ =
∣∣∣Ext1R(U∨

T,R, Ntors)
∣∣∣∣∣Ext1R(kerω,Ntors)
∣∣ .
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Proof. The claims on πN are clear, so we just investigate σN . To check equivariance, let
Θ ∈ Ext1R(U

∨
T,R, N), f ∈ AutG-eq. alg.(U

∨
T,R) and g ∈ AutN . We know from Proposition

7.23 that ωd,N ((f, g).Θ) = (f, (g∗)∨).ωd,N (Θ). To check equivariance in the second
component, write

Θ: 0 N L U∨
T,R 0.

γ δ

In the following, we use the notation (−)′ for maps as laid out in Construction 2.7. One
readily verifies that the map

Ltors →
Ntors ⊕ (Ltors ×kerωd(Θ) kerωd((f, g).Θ)){

(g(n),−(γ|Ntors
)′(n))

∣∣n ∈ Ntors

} , x 7→ (0, (x, f ◦ δ(x))),

makes the diagram

0 Ntors Ltors ker(ωd((f, g).Θ)) 0

0 Ntors
Ntors⊕(Ltors×kerωd(Θ)kerωd((f,g).Θ)){

(g(n),−(γ|Ntors
)′(n))

∣∣∣n∈Ntors

} ker(ωd((f, g).Θ)) 0

(γ◦g−1)|
Ntors (f◦δ)′

commute, in which the upper sequence is ((f, g).Θ)tors and the lower sequence is (gtors)∗◦
(f−1

∣∣
ker((f,(g∗)∨).ωd(Θ))

)∗(Θtors). This shows the equivariance of σN .

To show surjectivity, let (ω,∆) ∈ Σ(U∨
T,R, N). Denote by i : Ntors ↪→ N and j : kerω ↪→

U∨
T,R the inclusions. We have a commutative diagram

Ext1R(U
∨
T,R, Ntors) Ext1R(U

∨
T,R, N)

Ext1R(kerω,Ntors) Ext1R(kerω,N),

i∗

j∗ j∗

i∗

in which the vertical maps are surjective by Proposition 3.34 and the horizontal maps
are injective as N/Ntors is torsionfree.

We claim that for Θ ∈ Ext1R(U
∨
T,R, N) with ωd,N (Θ) = ω it holds that

Θtors = ∆ ⇐⇒ j∗(Θ) = i∗(∆). (9.16)

To prove this statement, write

∆: 0 Ntors W kerω 0ε φ

and
Θ: 0 N L U∨

T,R 0.
γ δ
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For the forward implication, suppose that Θtors = ∆. Then there is a homomorphism
η : W → Ltors that makes the diagram

∆: 0 Ntors W kerω 0

Θtors : 0 Ntors Ltors kerω 0

ε φ

η

γ|Ntors
δ′

commute. One checks that the map

κ :
N ⊕W

{ (n,−ε(n)) |n ∈ Ntors }
→ L×U∨

T,R
kerω, (n,w) 7→ (γ(n) + η(w), φ(w))

is well-defined and renders the diagram

i∗(∆): 0 N N⊕W
{ (n,−ε(n)) |n∈Ntors } kerω 0

j∗(Θ): 0 N L×U∨
T,R

kerω kerω 0

κ

φ′

γ′

commutative, which proves the forward implication. Conversely, suppose that j∗(Θ) =
i∗(∆). Then there is a homomorphism κ that makes the diagram above commute. Let
ιW : W → N⊕W

{ (n,−ε(n)) |n∈Ntors } and πL : L×U∨
T,R

kerω → L be the natural maps and define

η := πL ◦ κ ◦ ιW : W → L.

Since Ntors and kerω are finite, so is W , whence the image of η is in fact contained in
Ltors. One verifies that η defines an equivalence between ∆ and Θtors. This completes
the proof of (9.16).

By Proposition 7.23, ωd,N is surjective with kernel i∗(Ext
1
R(U

∨
T,R, Ntors)). Hence, we can

choose Θ′ ∈ Ext1R(U
∨
T,R, N) with ωd,N (Θ

′) = ω. Define ∆′ := (Θ′)tors ∈ Ext1R(kerω,Ntors).

Since j∗ is surjective, there is ∆̃ ∈ Ext1R(U
∨
T,R, Ntors) with j∗(∆̃) = ∆ − ∆′. Define

Θ := Θ′ + i∗(∆̃) ∈ Ext1R(U
∨
T,R, N). Then ωd,N (Θ) = ωd,N (Θ

′) = ω and by (9.16) further

j∗(Θ) = j∗(Θ′) + j∗ ◦ i∗(∆̃) = i∗(∆
′) + i∗(∆−∆′) = i∗(∆).

Using again (9.16), this shows that σ(Θ) = (ω,∆). So σN is surjective. The criterion
(9.16) also shows that

σ−1
N (ω,∆) = ω−1

d,N (ω) ∩ j
−1(i∗(∆)) =

{
Θ+ i∗(Θ̃)

∣∣∣ Θ̃ ∈ ker(j∗ ◦ i∗)
}

which gives
∣∣σ−1
N (ω,∆)

∣∣ = |ker(j∗ ◦ i∗)|. But by injectivity of i∗ we have

ker(j∗ ◦ i∗) = ker(i∗ ◦ j∗) = ker j∗.

The claim on
∣∣σ−1
N (ω,∆)

∣∣ now follows from the first isomorphism theorem.
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Construction 9.17. Let N ∈ MV and let ω ∈ HN . Since πN ◦ σN = ωd,N and σN is
surjective by Proposition 9.15, we have σN (ω

−1
d,N ([ω])) = π−1

N ([ω]). We now define a map

εN,ω : π
−1
N ([ω])→ Ext1R(kerω,Ntors)

as follows: For each ψ ∈ [ω] we fix fψ ∈ AutG-eq. alg.(U
∨
T,R) and gψ ∈ AutN with

ψ = (fψ, (gψ
∗)∨).ω = ((gψ

∗)∨) ◦ ω ◦ f−1
ψ .

Then fψ|kerω defines an isomorphism from kerω onto kerψ and we define εN,ω(ψ,∆) :=
(fψ|kerω)

∗(∆).

By Proposition 9.15, both maps πN and σN factor through the (AutG-eq. alg.(U
∨
T,R) ×

AutN)-actions on their respective domain and codomain. We denote the induced maps
on the sets of (AutG-eq. alg.(U

∨
T,R)×AutN)-equivalence classes by πN and σN , respectively.

Moreover, one sees from the definition of the action of AutG-eq. alg.(U
∨
T,R) × AutN on

Σ(U∨
T,R, N) that εN,ω descends to a map on equivalence classes

εN,ω : πN
−1([ω])→ Ext1R(kerω,Ntors)/(Hω ×AutNtors).

We define

τN,ω : ωd,N
−1([ω])

σN−−→ πN
−1([ω])

εN,ω−−−→ Ext1R(kerω,Ntors)/(Hω ×AutNtors),

and we denote the associated map E(U∨
T,R, N, ω)→ Etors(U∨

T,R, N, ω) by the same letter.

The following is clear by construction:

Proposition 9.18. Let N ∈ MV and let ω ∈ HN . Let (K, ι) ∈ KT (N,ω). Then
τN,ω([R⊗ZG SAra

K (m)∨]) = [R⊗ZG SfinK (m)∨].

We now compute the pushforward distribution under τN,ω.

Proposition 9.19. Let N ∈MV and let ω ∈ HN . Denote by PT,N,ω the restriction and
renormalisation of PT to E(U∨

T,R, N, ω). Then for ∆ ∈ Etors(U∨
T,R, N, ω) it holds that

(τN,ω)∗PT,N,ω(∆) =
|[∆]|∣∣Ext1R(kerω,Ntors)

∣∣ ,
where [∆] denotes the class of ∆ with respect to the (Hω ×AutNtors)-action.
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Proof. We first calculate the distribution PT,N,ω using the restriction and renormalisation
PT,N of PT to E(U∨

T,R, N). It holds that

PT,N (E(U∨
T,R, N, ω)) =

∑
Θ∈E(U∨

T,R,N)

ωd,N ([Θ])=[ω]

PT,N (Θ)

=
1∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
∑

Θ∈Ext1R(U∨
T,R,N)

[ωd,N (Θ)]=[ω]

1

=
1∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
∑
ψ∈[ω]

∑
Θ∈ω−1

d,N (ψ)

1

=
|[ω]| ·

∣∣∣Ext1R(U∨
T,R, Ntors)

∣∣∣∣∣∣Ext1R(U∨
T,R, N)

∣∣∣ ,

where we have used Propositions 9.5 and 7.23. It follows that for Θ ∈ E(U∨
T,R, N, ω) we

have

PT,N,ω(Θ) =
PT,N (Θ)

PT,N (E(U∨
T,R, N, ω))

=
|[Θ]G-eq. alg.|

|[ω]| ·
∣∣∣Ext1R(U∨

T,R, Ntors)
∣∣∣ .

For the pushforward, note first that τN,ω is obtained from the map

ω−1
d,N ([ω])

σN−−→ π−1
N ([ω])

εN,ω−−−→ Ext1R(kerω,Ntors)

by passing to (AutG-eq. alg.(U
∨
T,R)×AutN)-equivalence classes. By Proposition 9.15 and

as εN,ω is surjective with fibres of size |[ω]|, we have that εN,ω ◦ σN |ω−1
d,N ([ω]) is surjective

with fibre of size∣∣∣∣∣
(
εN,ω ◦ σN

∣∣
ω−1
d,N ([ω])

)−1

(∆)

∣∣∣∣∣ = |[ω]| ·
∣∣∣Ext1R(U∨

T,R, Ntors)
∣∣∣∣∣Ext1R(kerω,Ntors)

∣∣
at ∆ ∈ Ext1R(kerω,Ntors). It follows that for ∆ ∈ Etors(U∨

T,R, N, ω) we have

(τN,ω)∗PT,N,ω(∆) =
∑

Θ∈E(U∨
T,R,N,ω)

τN,ω(Θ)=∆

PT,N,ω(Θ)

=
1

|[ω]| ·
∣∣∣Ext1R(U∨

T,R, Ntors)
∣∣∣

∑
Θ∈ω−1

d,N ([ω])

(εN,ω◦σN )(Θ)∈[∆]

1

=
1

|[ω]| ·
∣∣∣Ext1R(U∨

T,R, Ntors)
∣∣∣
∑

∆′∈[∆]

∑
Θ∈

(
εN,ω◦σN |

ω−1
d,N

([ω])

)−1

(∆′)

1

=
|[∆]|∣∣Ext1R(kerω,Ntors)

∣∣ ,
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as claimed.

Definition 9.20. Define τ : E(U∨
T,R,MV ) → Etors(U∨

T,R,MV ) to be the map obtained
by gluing together the maps τN,ω : E(U∨

T,R, N, ω) → Etors(U∨
T,R, N, ω) for N ∈ MV and

ω ∈ HN .

As a result of Proposition 9.18 we have:

Corollary 9.21. Assume that Conjecture 8.38 holds. Let f : Etors(U∨
T,R,MV ) → C be

‘reasonable’ and assume that f ◦ τ is again ‘reasonable’. Then

lim
B→∞

∑
(K,ι)∈KT

C≤B
f([R⊗ZG SfinK (m)∨])∣∣∣KTC≤B

∣∣∣ =
∑

∆∈Etors(U∨
T,R,MV )

f(∆) · τ∗PT (∆).

Here, the distribution τ∗PT is given as follows.

Proposition 9.22. Suppose that ∆ ∈ Etors(U∨
T,R,MV ) is given by

0 Ntors L kerω 0

where N ∈MV and ω ∈ HN . Then

τ∗PT (∆) = PBL(N) · |[ω]|∣∣∣HomR(U∨
T,R, ((N/Ntors)∗)∨)

∣∣∣ · |[∆]|∣∣Ext1R(kerω,Ntors)
∣∣ .

Proof. We have

τ∗PT (∆) = PT (τ−1
N,ω(∆))

= PT (E(U∨
T,R, N, ω)) · PT,N,ω(τ−1

N,ω(∆))

= PT (E(U∨
T,R, N)) · PT,N (E(U∨

T,R, N, ω)) · PT,N,ω(τ−1
N,ω(∆)).

Now Remark 8.35 gives PT (E(U∨
T,R, N)) = PBL(N) and Proposition 9.19 shows that

PT,N,ω(τ−1
N,ω(∆)) = |[∆]|

|Ext1R(kerω,Ntors)| . By the proof of the latter, we also have

PT,N (E(U∨
T,R, N, ω)) =

|[ω]| ·
∣∣∣Ext1R(U∨

T,R, Ntors)
∣∣∣∣∣∣Ext1R(U∨

T,R, N)
∣∣∣ .

It follows from Propositions 3.9, 4.41 and 4.42 that∣∣Ext1R(U∨
T,R, N)

∣∣ = ∣∣Ext1R(U∨
T,R, Ntors)

∣∣ · ∣∣Ext1R(U∨
T,R, N/Ntors)

∣∣
=
∣∣Ext1R(U∨

T,R, Ntors)
∣∣ · ∣∣HomR(U

∨
T,R, ((N/Ntors)

∗)∨)
∣∣ ,

finishing the proof.
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As a special case, we have:

Corollary 9.23. Assume that Conjecture 8.38 holds. Let N ∈ MV and let ω ∈ HN .
Let ∆ ∈ Etors(U∨

T,R, N, ω). Then

lim
B→∞

∣∣∣{ (K, ι) ∈ KTC≤B(N,ω)
∣∣∣ [R⊗ZG SfinK (m)∨] = [∆]

}∣∣∣∣∣∣KTC≤B(N,ω)
∣∣∣ =

|[∆]|∣∣Ext1R(kerω,Ntors)
∣∣ .

9.4 Reduction Map on the Unit Group

Recall that associated to (K, ι) ∈ KT we have the natural reduction map

ρK(m) :
O×
K

µ(K)
→ (OK/m0)

×

ρ(µ(K))
.

In the present section, we derive from Conjecture 8.38 that idR⊗ρK(m) is equidistributed
over a suitable space. The key for this is the fact that idR ⊗ ρK(m) can be recovered
from R⊗ZG SAra

K (m)∨ by the results of Sections 6.4.2 and 7.3.2.

As usual, we first describe by which space the R-module homomorphism idR ⊗ ρK(m)
can be modelled as (K, ι) runs over KT .

Construction 9.24. We consider (K, ι) ∈ KT (N) where N ∈ MV . By Proposition
8.25 there is a G-equivariant OF -algebra isomorphism

R⊗ZG
(OK/m0)

×

ρ(µ(K))
∼= UT,R

which allows us to identify the codomain of idR ⊗ ρK(m) with UT,R. For the domain,
we pick an isomorphism R⊗ZG (Pic0K)∨ ∼= N and an isomorphism N/Ntors

∼= PV which
together with the isomorphisms from Construction 6.23 and Proposition 7.18 provide us
with an isomorphism

R⊗ZG
O×
K

µ(K)
∼= R⊗ZG

(
(Pic0K)∨

((Pic0K)∨)tors

)∗

∼=
(
R⊗ZG

(Pic0K)∨

((Pic0K)∨)tors

)∗

∼= (N/Ntors)
∗

∼= P ∗
V .

Using the above isomorphisms, we may uniquely identify idR ⊗ ρK(m) with an element
of

HomR(P
∗
V , UT,R)/AutP

∗
V ×AutG-eq. alg.(UT,R),

regardless of the choice of isomorphisms at all instances where there was one. We will
denote that element by [idR ⊗ ρK(m)].
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To derive implications on the distribution of [idR ⊗ ρK(m)] from our main conjecture,
we now define an appropriate function on the probability space E(U∨

T,R,MV ).

Construction 9.25. For N ∈MV we have maps

Ext1R(U
∨
T,R, N)

ωd−→ HomR(U
∨
T,R, ((N/Ntors)

∗)∨) (Construction 7.22)

∨←− HomR((N/Ntors)
∗, UT,R) (Corollary 4.9)

∼−→ HomR(P
∗
V , UT,R) (N/Ntors

∼= PV )

which by naturality factor through the actions of automorphism groups to give rise to a
map

ρN : E(U∨
T,R, N)→ HomR(P

∗
V , UT,R)/AutP

∗
V ×AutG-eq. alg.(UT,R).

The maps ρN glue together to a map

ρ : E(U∨
T,R,MV )→ HomR(P

∗
V , UT,R)/AutP

∗
V ×AutG-eq. alg.(UT,R).

Crucially, we have:

Proposition 9.26. Let (K, ι) ∈ KT . Then

ρ([R⊗ZG SAra
K (m)∨]) = [idR ⊗ ρK(m)]

Proof. This follows from Propositions 6.24 and 7.26 and naturality of ωd and (·)∨.

We next determine the pushforward distribution under ρN and ρ.

Proposition 9.27. Let φ ∈ HomR(P
∗
V , UT,R). Let N ∈MV . Then

ρ∗PT ([φ]) = (ρN )∗PT,N ([φ]) =
|[φ]|∣∣HomR(P ∗
V , UT,R)

∣∣ .
Proof. Let N ∈MV . We denote by

ωd : E(U∨
T,R, N)→ HomR(U

∨
T,R, ((N/Ntors)

∗)∨)/AutG-eq. alg.(U
∨
T,R)×Aut(N/Ntors)

∗)∨
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the map that is induced by the homomorphism from Construction 7.19. Let ψ ∈
HomR(U

∨
T,R, ((N/Ntors)

∗)∨). Using Propositions 9.5 and 7.23, we have

ωd∗PT,N ([ψ]) =
∑

Θ∈E(U∨
T,R,N)

ωd(Θ)=[ψ]

PT,N (Θ)

=
1∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
∑

Θ∈Ext1R(U∨
T,R,N)

[ωd(Θ)]=[ψ]

1

=
1∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
∑
χ∈[ψ]

∑
Θ∈Ext1R(U∨

T,R,N)

ωd(Θ)=χ

1

=

∣∣∣Ext1R(U∨
T,R, Ntors)

∣∣∣ · |[ψ]|∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
=

|[ψ]|∣∣∣HomR(U∨
T,R, ((N/Ntors)∗)∨)

∣∣∣ .
Since the remaining two maps in the construction of ρN are isomorphisms, it follows
that for φ ∈ HomR(P

∗
V , UT,R) we have (ρN )∗PT,N ([φ]) = |[φ]| / |HomR(P

∗
V , UT,R)|. For ρ

we then obtain

ρ∗PT ([φ]) =
∑

Θ∈E(U∨
T,R,MV )

ρ(Θ)=[φ]

PT (Θ)

=
∑

N∈MV

∑
Θ∈E(U∨

T,R,N)

ρN (Θ)=[φ]

PT,N (Θ) · PT (E(U∨
T,R, N))

=
∑

N∈MV

PT (E(U∨
T,R, N)) · (ρN )∗PT,N ([φ])

=
|[φ]|∣∣HomR(P ∗
V , UT,R)

∣∣ ,
as claimed.

Corollary 9.28. Assume that Conjecture 8.38 holds. Let N ∈ MV and let φ ∈
HomR(P

∗
V , UT,R). Then

lim
B→∞

∣∣∣{ (K, ι) ∈ KTC≤B(N)
∣∣∣ [idR ⊗ ρK(m)] = [φ]

}∣∣∣∣∣∣KTC≤B(N)
∣∣∣ =

|[φ]|∣∣HomR(P ∗
V , UT,R)

∣∣ .
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Corollary 9.29. Assume that Conjecture 8.38 holds. Let φ ∈ HomR(P
∗
V , UT,R). Then

lim
B→∞

∣∣∣{ (K, ι) ∈ KTC≤B

∣∣∣ [idR ⊗ ρK(m)] = [φ]
}∣∣∣∣∣∣KTC≤B

∣∣∣ =
|[φ]|∣∣HomR(P ∗
V , UT,R)

∣∣ .
We end this section by showing that the distribution of the reduction map and the
distribution of the Arakelov class group are independent as (K, ι) runs over KT . This can
be seen as a generalisation of [BP25, Corollary 4.9]. Recall the map σ : E(U∨

T,R,MV )→
MV from Theorem 8.34 that sends Θ to the unique element ofMV that is isomorphic
to the left hand module of Θ.

Proposition 9.30. Let

(σ, ρ) : E(U∨
T,R,MV )→MV ×HomR(P

∗
V , UT,R)/AutP

∗
V ×AutG-eq. alg.(UT,R)

be the map that sends Θ to (σ(Θ), ρ(Θ)). Then (σ, ρ)∗PT equals the product measure of
σ∗PT and ρ∗PT .

Proof. Let N ∈MV and let φ ∈ HomR(P
∗
V , UT,R). Then we have

(σ, ρ)∗PT (N, [φ]) =
∑

Θ∈E(U∨
T,R,MV )

σ(Θ)=N
ρ(Θ)=[φ]

PT (Θ)

= PT (E(U∨
T,R, N)) ·

∑
Θ∈E(U∨

T,R,N)

ρN (Θ)=[φ]

PT,N (Θ)

= σ∗PT (N) · ρ∗PT ([φ]),

where in the final step we have used Theorem 8.34 (ii), Remark 8.35 and Proposition
9.27.

9.5 Average Torsion of Ray Class Groups

We keep using the notation from Setup 8.37, but we make the following choices. Let
I = ⟨

∑
g∈G g⟩, let ℓ be a prime with ℓ ∤ |G|, let S = {ℓ}. We denote the primitive central

idempotents of QG by e0, e1, . . . , ec where we let e0 :=
1
|G|
∑

g∈G g, so that I = ⟨e0⟩ and
so that notation for A aligns with the notation from Section 1.4, which we are also going
to use in this section.

We investigate the consequences of Conjecture 8.38 for the function

fT : E(U∨
T,R,MV )→ C, (0→ N → L→ U∨

T,R → 0) 7→ |L[ℓ]| ,
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which will lead to results on the average torsion of ray class groups. These results
generalise statements from [PS17, Section 2.2] and [BP25, Section 4.2].

We first deal with Av(fT ) and describe

fT ([R⊗ZG SAra
K (m)∨]) =

∣∣(R⊗ZG Pic0K(m)∨)[ℓ]
∣∣

for (K, ι) ∈ KT .

Proposition 9.31. Let (K, ι) ∈ KT . Then∣∣(R⊗ZG Pic0K(m)∨)[ℓ]
∣∣ = |ClK(m)[ℓ]|
|ClK(m)[ℓ]G|

.

Proof. First, by Lemma 8.19 we have

(R⊗ZG Pic0K(m)∨)[ℓ] = (R⊗ZG ClK(m)∨)[ℓ].

Next, Proposition 7.17, self-duality of finite abelian groups and Lemma 7.15 (ii) give∣∣(R⊗ZG ClK(m)∨)[ℓ]
∣∣ = ∣∣(R⊗ZG ClK(m))∨[ℓ]

∣∣
= |(R⊗ZG ClK(m))[ℓ]|
= |R⊗ZG ClK(m)[ℓ]| .

Now as explained at the beginning of Chapter 7, we have

R⊗ZG ClK(m)[ℓ] = ClK(m)[ℓ]/e0ClK(m)[ℓ].

One sees directly that e0ClK(m)[ℓ] = ClK(m)[ℓ]G. The claim follows.

Proposition 9.32. Assume that ℓ ∤ |ClF |. Let (K, ι) ∈ KT . Then

ClK(m)[ℓ]G ∼= UT [ℓ]
G

as abelian groups.

Proof. The idea is to chase through the diagram from Theorem 6.18 to show that

ClK(m)[ℓ]G is isomorphic to (OK/m0)×

ρ(µ(K)) [ℓ]G and then use Proposition 8.25 to conclude.

The short exact sequence SfinK (m) induces an exact sequence of Z(ℓ)G-modules

0 (OK/m0)×

ρ(O×
K)

[ℓ] ClK(m)[ℓ] ClK [ℓ].

Looking at the e0-component, we obtain

0 (OK/m0)×

ρ(O×
K)

[ℓ]G ClK(m)[ℓ]G ClK [ℓ]G.
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By assumption and since ℓ ∤ |G|, we have ClK [ℓ]G = ClF [ℓ] = 0, whence

ClK(m)[ℓ]G =
(OK/m0)

×

ρ(O×
K)

[ℓ]G. (9.33)

We next would like to study the effect of the functor (−)[ℓ]G on the left hand column of

the diagram in Theorem 6.18, in order to link (OK/m0)×

ρ(O×
K)

[ℓ]G to (OK/m0)×

ρ(µ(K)) [ℓ]G. Note that

for a G-module M there is an isomorphism of abelian groups

HomZG(Z/ℓ,M)→M [ℓ]G, φ 7→ φ(1)

where we regard Z/ℓ with the trivial G-structure. We infer that the functor

ZGMod→ Ab, M 7→M [ℓ]G

is isomorphic to the functor HomZG(Z/ℓ,−). Thus, applying (−)[ℓ]G to the short exact
sequence

0
ρ(O×

K)

ρ(µ(K))
(OK/m0)×

ρ(µ(K))
(OK/m0)×

ρ(O×
K)

0

from Theorem 6.18, we obtain a long exact sequence

0
ρ(O×

K)

ρ(µ(K)) [ℓ]
G (OK/m0)×

ρ(µ(K)) [ℓ]G (OK/m0)×

ρ(O×
K)

[ℓ]G Ext1ZG

(
Z/ℓ, ρ(O×

K)

ρ(µ(K))

)
.

(9.34)
We are going to show that both the left and right hand term of this exact sequence are
zero. First we prove that (O1

K(m)⊗ZR/Z)[ℓ]G = 0 which by the top row of the diagram

in Theorem 6.18 will imply that
ρ(O×

K)

ρ(µ(K)) [ℓ]
G = 0. By the proof of Proposition 6.15, there

is an isomorphism of ZG-modules

O1
K(m)⊗Z R/Z ∼=

(
∏

p|∞R)0

Log(O1
K(m))

,

where Log(O1
K(m)) is a complete lattice in (

∏
p|∞R)0 by Theorem 6.8. Note that

(
∏

p|∞R)0

Log(O1
K(m))

[ℓ] =
1
ℓ Log(O

1
K(m))

Log(O1
K(m))

∼=
Log(O1

K(m))

ℓLog(O1
K(m))

.

This leads us to consider the effect of the functor (−)G on the short exact sequence

0 ℓLog(O1
K(m)) Log(O1

K(m))
Log(O1

K(m))

ℓLog(O1
K(m))

0. (9.35)

We first show that ((
∏

p|∞R)0)G = 0. To this end, let (xp)p ∈ ((
∏

p|∞R)0)G. Since
G operates transitively on {p | ∞}, there is x ∈ R with xp = x for all p. But 0 =
Tr((xp)p) = |{p | ∞}| · x, which gives x = 0 and therefore (xp)p = 0. Next, note
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that H1
(
G,

Log(O1
K(m))

ℓLog(O1
K(m))

)
= 0 as multiplication by |G| is both the zero map and an

isomorphism on this group. Hence, applying (−)G to the short exact sequence (9.35),
we obtain an exact sequence

0
(

Log(O1
K(m))

ℓLog(O1
K(m))

)G
H1(G, ℓLog(O1

K(m))) H1(G,Log(O1
K(m))) 0.

In this sequence, the middle and right hand term are finite by [CF67, Corollary 2 on
page 105], and they have the same cardinality, since Log(O1

K(m)) ∼= ℓLog(O1
K(m)). It

follows that
(

Log(O1
K(m))

ℓLog(O1
K(m))

)G
= 0 which implies

(O1
K(m)⊗Z R/Z)[ℓ]G ∼=

(
∏

p|∞R)0

Log(O1
K(m))

[ℓ]G ∼=
(

Log(O1
K(m))

ℓLog(O1
K(m))

)G
= 0.

Then by the top row of the diagram in Theorem 6.18 we also have
ρ(O×

K)

ρ(µ(K)) [ℓ]
G = 0.

Now for the right hand term of (9.34), by Proposition 2.1 we have that

Ext1ZG

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))

)
= Ext1ZG

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))

)
[ℓ∞]

= Z(ℓ) ⊗Z Ext1ZG

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))

)
∼= Ext1Z(ℓ)G

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))
[ℓ∞]

)
,

and analogously

ρ(O×
K)

ρ(µ(K))
[ℓ]G ∼= HomZG

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))

)
∼= HomZ(ℓ)G

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))
[ℓ∞]

)
.

But as ℓ ∤ |G|, Z(ℓ)G is a maximal Z(ℓ)-order in QG by [Rei03, Theorem 41.1], so
Proposition 3.32 shows that∣∣∣∣Ext1ZG(Z/ℓ, ρ(O×

K)

ρ(µ(K))

)∣∣∣∣ = ∣∣∣∣Ext1Z(ℓ)G

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))
[ℓ∞]

)∣∣∣∣
=

∣∣∣∣HomZ(ℓ)G

(
Z/ℓ,

ρ(O×
K)

ρ(µ(K))
[ℓ∞]

)∣∣∣∣
=

∣∣∣∣ ρ(O×
K)

ρ(µ(K))
[ℓ]G

∣∣∣∣
= 1.

Thus, the sequence (9.34) gives

(OK/m0)
×

ρ(O×
K)

[ℓ]G =
(OK/m0)

×

ρ(µ(K))
[ℓ]G. (9.36)
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Finally, by definition of KT and by Proposition 8.25 we have

(OK/m0)
×

ρ(µ(K))
[ℓ] =

(OK/m0)
×

ρ(µℓ′(K))
[ℓ] = (OK/m0)

×[ℓ] ∼= UT [ℓ]

as G-modules which together with (9.33) and (9.36) implies the claim.

We now determine E(fT ). For this, we need a few auxiliary results.

Recall that by definition, Zi is the integral closure of Z(ℓ) in Ki. In particular, Max(Zi)
is finite.

Lemma 9.37. Zi/Z(ℓ) is unramified at ℓ for all i ∈ {1, . . . , c}.

Proof. Let i ∈ {1, . . . , c}. Since localisation commutes with integral closure, we have
that Zi/Z(ℓ) is unramified at ℓ if and only if OKi/Z is unramified at ℓ. As ℓ ∤ |G|, the
latter follows from [Rei03, Theorem 41.7].

Construction 9.38.

(a) As in [BL20, Proposition 3.6 and its proof], we define a probability distribution
PV onM by

PV (M0) :=
1

|HomR(PV ,M0)| · |AutM0|
·

 ∑
L0∈M

1

|HomR(PV , L0)| · |AutL0|

−1

for M0 ∈M. By loc. cit. it satisfies PBL(PV ⊕M0) = PV (M0) for all M0 ∈M.

(b) For i ∈ {1, . . . , c} and p ∈ Max(Zi) let Mi,p be a set of representatives of iso-

morphism classes of finite R̂i,p-modules. Use the shorthand Pi,p := (P̂V )i,p. In
analogy to the above, we define a probability distribution Pi,p onMi,p by

Pi,p(M) :=
1∣∣∣HomR̂i,p

(Pi,p,M)
∣∣∣ · |AutM | ·

 ∑
L∈Mi,p

1∣∣∣HomR̂i,p
(Pi,p, L)

∣∣∣ · |AutL|
−1

for M ∈Mi,p.

Note that in both cases, the sums appearing converge by [CM90, Theorem 3.6].

Lemma 9.39. Suppose that h :M→ R≥0 and hi,p :Mi,p → R≥0 for i ∈ {1, . . . , c} and
p ∈ Max(Zi) are functions which satisfy h(M0) =

∏c
i=1

∏
p∈Max(Zi)

hi,p((M̂0)i,p) for all
M0 ∈M. Then ∑

M0∈M
h(M0) =

c∏
i=1

∏
p∈Max(Zi)

∑
M∈Mi,p

hi,p(M)

if the sum on the left hand side converges.
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Proof. Observe that

∑
M∈M

h(M) =
∑
M∈M

h(M)

 c∏
i=1

∏
p∈Max(Zi)

∑
Li,p∈Mi,p

1(M̂i,p
∼= Li,p)


=
∑
M∈M

c∏
i=1

∏
p∈Max(Zi)

∑
Li,p∈Mi,p

hi,p(Li,p)1(M̂i,p
∼= Li,p).

Upon changing the order of summation, we see that it remains to show that given
Li,p ∈Mi,p for all i ∈ {1, . . . , c} and p ∈ Max(Zi), it holds that

∑
M∈M

c∏
i=1

∏
p∈Max(Zi)

1(M̂i,p
∼= Li,p) = 1.

By Lemma 3.3, the left hand side is at most 1. To show that it equals 1, we now
construct a module M ∈ M with M̂i,p

∼= Li,p for all i ∈ {1, . . . , c} and p ∈ Max(Zi).
We may regard each Li,p as a finite Ri-module via the natural ring homomorphism

Ri → Ẑi,p⊗ZiRi = R̂i,p. Since Li,p is also a finite Ẑi,p-module, it is annihilated by a power
of p̂ and therefore (as a Zi-module) annihilated by a power of p, so Li,p = Li,p[p

∞] as Ri-

modules. Note that the natural R̂i,p-structure on the Ri,p-module Li,p from Lemma 3.3

agrees with the original R̂i,p-structure. We define Mi :=
⊕

q∈Max(Zi)
Li,q, an Ri-module

as explained above. Then Lemma 3.3 gives

Ẑi,p ⊗Zi Mi = Ẑi,p ⊗Zi Li,p
∼= Li,p

as R̂i,p-modules. Regarding each Mi as an R-module in the obvious way, it follows

that the module M :=
⊕c

i=1Mi indeed satisfies M̂i,p
∼= Li,p for all i ∈ {1, . . . , c} and

p ∈ Max(Zi).

The lemma in particular shows that

PV (M0) =
c∏
i=1

∏
p∈Max(Zi)

Pi,p
(
(M̂0)i,p

)
for M0 ∈M.

Lemma 9.40. Let V and W be finite-dimensional vector spaces over a finite field. Then∑
f∈Hom(V,W )

|ker f | = |Hom(V,W )|
|W |

· (|V |+ |W | − 1).
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Proof. Note that ∑
f∈Hom(V,W )

|ker f | =
∑

f∈Hom(V,W )

∑
v∈V

1(f(v) = 0)

=
∑
v∈V

∑
f∈Hom(V,W )

1(f(v) = 0)

=
∑
v∈V
|{ f ∈ Hom(V,W ) | f(v) = 0 }| .

By [FA66, Theorem 3], for 0 ̸= v ∈ V it holds that

Hom(V,W )

{ f ∈ Hom(V,W ) | f(v) = 0 }
∼=W.

Hence, ∑
f∈Hom(V,W )

|ker f | = |Hom(V,W )|+
∑

0̸=v∈V
|{ f ∈ Hom(V,W ) | f(v) = 0 }|

= |Hom(V,W )|+ (|V | − 1) · |Hom(V,W )|
|W |

,

from which the claim follows.

Lemma 9.41 ([CL84, Proof of Example 5.12]). Let Z ′ be a Dedekind domain, let J be
an ideal of Z ′ and let M be a finite Z ′-module. Then

|{x ∈M | annZ′(x) = J }| =
∣∣AutZ′(Z ′/J)

∣∣ · ∣∣{W ≤M ∣∣W ∼=Z′ Z ′/J
}∣∣ .

As the main result of this section, we now determine the expected value of fT . This is a
generalisation of [PS17, Proposition 2.11] and [BP25, Lemma 4.16]. As in those results,
the key ingredient in the proof below is the map δℓ from Section 3.4. Aside from this,
our proof takes a different approach. In order to be able to use Corollary 3.29 and since
it simplifies many calculations in the proof, we assume below that G is abelian. By
suitably adapting the arguments, it may be possible to obtain similar statements also
for nonabelian G for which the assumptions of Corollary 3.29 are satisfied.

Theorem 9.42. Assume that G is abelian. Then

E(fT ) =
c∏
i=1

∏
q∈Max(OKi

)

q|ℓ

(
|UT [ℓ]i[q∞]|
ℓf(q|ℓ)·dimKi

(Vi)
+ 1

)
,

where UT [ℓ]i denotes the i-th isotypical component of the Z(ℓ)G-module UT [ℓ].
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Note that UT [ℓ]i is an eiZ(ℓ)G-module and eiZ(ℓ)G is a Zi = (Z(ℓ) ⊗Z OKi)-order by
[Rei03, Theorem 10.5], so the expression UT [ℓ]i[q

∞] makes sense.

Proof. By definition and Theorem 8.34, we have

E(fT ) =
∑

Θ∈E(U∨
T,R,MV )

fT (Θ) · PT (Θ)

=
∑

N∈MV

∑
Θ∈E(U∨

T,R,N)

fT (Θ) · PBL(N) ·
|[Θ]G-eq. alg.|∣∣∣Ext1R(U∨

T,R, N)
∣∣∣

=
∑

N∈MV

PBL(N)∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
∑

Θ∈Ext1R(U∨
T,R,N)

fT (Θ).

By Lemma 9.37 it holds that vi,p(ℓ) ≤ 1 for all i ∈ {1, . . . , c} and p ∈ Max(Zi). Moreover,
since G is abelian, we have Ai = Ki for all i ∈ {1, . . . , c} and therefore ei,p = 1 for all
i ∈ {1, . . . , c} and p ∈ Max(Zi). Thus, Corollary 3.29 shows that the map

δNℓ : Ext1R(U
∨
T,R, N)→ HomR(U

∨
T,R[ℓ], N/ℓN)

is surjective for any N ∈MV . We have∑
Θ∈Ext1R(U∨

T,R,N)

fT (Θ) =
∑

α∈HomR(U∨
T,R[ℓ],N/ℓN)

∑
Θ∈(δNℓ )−1(α)

fT (Θ).

But by definition of δNℓ , if Θ ∈ (δNℓ )−1(α), then there is an exact sequence

0 N [ℓ] L[ℓ] U∨
T,R[ℓ] α(U∨

T,R[ℓ]) 0α

where L is the middle term of the short exact sequence Θ. It follows that

fT (Θ) = |L[ℓ]| =
|N [ℓ]| ·

∣∣∣U∨
T,R[ℓ]

∣∣∣∣∣∣α(U∨
T,R[ℓ])

∣∣∣ ,

whence

E(fT ) =
∑

N∈MV

PBL(N)∣∣∣Ext1R(U∨
T,R, N)

∣∣∣
∑

α∈HomR(U∨
T,R[ℓ],N/ℓN)

∣∣ker δNℓ ∣∣ · |N [ℓ]| ·
∣∣∣U∨

T,R[ℓ]
∣∣∣∣∣∣α(U∨

T,R[ℓ])
∣∣∣

=
∑

N∈MV

PBL(N)∣∣∣HomR(U∨
T,R[ℓ], N/ℓN)

∣∣∣ · |N [ℓ]| ·
∑

α∈HomR(U∨
T,R[ℓ],N/ℓN)

|kerα| .

Using Lemma 8.18 we can rewrite this as

E(fT ) =
∑
N0∈M

PV (N0)∣∣∣HomR

(
U∨
T,R[ℓ],

PV ⊕N0

ℓ(PV ⊕N0)

)∣∣∣ · |N0[ℓ]| ·
∑

α∈HomR

(
U∨
T,R[ℓ],

PV ⊕N0
ℓ(PV ⊕N0)

) |kerα| .
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Now we split up everything into local parts via Lemma 9.39. With the shorthand

notation Pi,p := (P̂V )i,p and Ui,p := (Û∨
T,R[ℓ])i,p we have

E(fT ) =
c∏
i=1

∏
p∈Max(Zi)

∑
M∈Mi,p

Pi,p(M)∣∣∣HomR̂i,p

(
Ui,p,

Pi,p⊕M
ℓ(Pi,p⊕M)

)∣∣∣ · |M [ℓ]|

·
∑

α∈Hom
R̂i,p

(
Ui,p,

Pi,p⊕M

ℓ(Pi,p⊕M)

) |kerα| .
We next investigate the sum over α. Let i ∈ {1, . . . , c}, let p ∈ Max(Zi) and let M ∈
Mi,p. Since G is abelian, we have Ri = Zi and therefore R̂i,p = Ẑi,p. By Lemma 9.37 it

holds that ℓẐi,p = p̂. Since both Ui,p and (Pi,p⊕M)/ℓ(Pi,p⊕M) are annihilated by ℓ, it
follows that

Hom
R̂i,p

(
Ui,p,

Pi,p ⊕M
ℓ(Pi,p ⊕M)

)
= Hom

Ẑi,p

(
Ui,p,

Pi,p ⊕M
ℓ(Pi,p ⊕M)

)
= Hom

Ẑi,p/p̂

(
Ui,p,

Pi,p ⊕M
ℓ(Pi,p ⊕M)

)
.

Thus, Lemma 9.40 gives∑
α∈Hom

R̂i,p

(
Ui,p,

Pi,p⊕M

ℓ(Pi,p⊕M)

) |kerα|

=

∣∣∣HomR̂i,p

(
Ui,p,

Pi,p⊕M
ℓ(Pi,p⊕M)

)∣∣∣
|Pi,p/ℓPi,p| · |M [ℓ]|

· (|Ui,p|+ |Pi,p/ℓPi,p| · |M [ℓ]| − 1)

which yields

E(fT ) =
c∏
i=1

∏
p∈Max(Zi)

∑
M∈Mi,p

Pi,p(M)

|Pi,p/ℓPi,p|
· (|Ui,p|+ |Pi,p/ℓPi,p| · |M [ℓ]| − 1)

=
c∏
i=1

∏
p∈Max(Zi)

 |Ui,p| − 1

|Pi,p/ℓPi,p|
+

∑
M∈Mi,p

Pi,p(M) · |M [ℓ]|

 .

Let i ∈ {1, . . . , c}, let p ∈ Max(Zi) and let M ∈ Mi,p. Using again that ℓẐi,p = p̂, we
have

M [ℓ] =
{
x ∈M

∣∣∣ annẐi,p
(x) | p̂

}
=
{
x ∈M

∣∣∣ annẐi,p
(x) = p̂

}
∪ {0} .

Then Lemma 9.41 gives

|M [ℓ]| = 1 +
∣∣∣AutẐi,p

(Ẑi,p/p̂)
∣∣∣ · ∣∣∣{W ≤M ∣∣∣W ∼= Ẑi,p/p̂

}∣∣∣ .
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Taking into account that R̂i,p = Ẑi,p, by [CM90, Theorem 2.6 and Example 4.5 (ii)] we
have ∑

M∈Mi,p

Pi,p(M) ·
∣∣∣{W ≤M ∣∣∣W ∼= Ẑi,p/p̂

}∣∣∣ = 1∣∣∣Ẑi,p/p̂∣∣∣u(Pi,p)
·
∣∣∣AutẐi,p

(Ẑi,p/p̂)
∣∣∣

=
1

|Zi/p|ui(PV ) ·
∣∣∣AutẐi,p

(Ẑi,p/p̂)
∣∣∣ ,

where we use the notation u = (ui)i from [CM90, Definition 2.2]. It follows that

E(fT ) =
c∏
i=1

∏
p∈Max(Zi)

(
|Ui,p| − 1

|Pi,p/ℓPi,p|
+ 1 +

1

|Zi/p|ui(PV )

)
.

Note that by [CM90, Corollary 2.8] and since G is abelian we have

|Pi,p/ℓPi,p| =
∣∣Pi,p/p̂Pi,p∣∣ = ∣∣Pi,p/p′Pi,p∣∣ = |Zi/p|ui(PV ) = |Zi/p|dimKi

(Vi) ,

which yields

E(fT ) =
c∏
i=1

∏
p∈Max(Zi)

(
|Ui,p|

|Zi/p|dimKi
(Vi)

+ 1

)
.

Let i ∈ {1, . . . , c} and p ∈ Max(Zi). By Lemmas 3.3 and 4.19 and Corollary 4.18 we
have

Ui,p = Û∨
T,R[ℓ]i,p

= (Û∨
T,R)i,p[ℓ]

∼= ((ÛT,R)i,p)
∨[ℓ],

which together with self-duality of finite abelian groups gives

|Ui,p| =
∣∣∣(ÛT,R)i,p[ℓ]∣∣∣ = ∣∣∣ÛT,R[ℓ]i,p∣∣∣ .

Now by definition of UT,R and Lemma 7.15 (iii) it holds that

UT,R[ℓ] = R⊗ZG UT [ℓ] = UT [ℓ]1 ⊕ · · · ⊕ UT [ℓ]c,

so ÛT,R[ℓ]i,p = ÛT [ℓ]i,p
∼= UT [ℓ]i[p

∞]. The maximal ideals of Zi are in natural bijection
with the maximal ideals of OKi lying over ℓ, and it is clear that this bijection preserves
residue field degrees and primary components. The claim follows.

Corollary 9.43. Use Setup 8.37 with G abelian and S = {ℓ} where ℓ is a prime with
ℓ ∤ |ClF | · |G|. Assume that Conjecture 8.38 holds for fT . Then

lim
B→∞

∑
(K,ι)∈KT

C≤B
|ClK(m)[ℓ]|∣∣∣KTC≤B

∣∣∣ =
∣∣UT [ℓ]G∣∣ · c∏

i=1

∏
q∈Max(OKi

)

q|ℓ

(
|UT [ℓ]i[q∞]|
ℓf(q|ℓ)·dimKi

(Vi)
+ 1

)
.
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Proof. This is immediate from Propositions 9.31 and 9.32 and Theorem 9.42.

Taking Proposition 8.22 into account, the above statement immediately implies Corollary
1.16 about the average torsion of ClK(m) on the whole family K:

Corollary 9.44. Use Setup 8.37 with G abelian and S = {ℓ} where ℓ is a prime with
ℓ ∤ |ClF | · |G|, but do not fix T . Assume that for all viable collections of G-structured
Fp-algebras T = (Tp)p|mF

, Conjecture 8.38 holds for fT . Then the limit

lim
B→∞

∑
(K,ι)∈KC≤B

|ClK(m)[ℓ]|
|KC≤B|

exists and equals

∑
T=(Tp)p|mF
viable /∼=

PrC(T ) ·
∣∣UT [ℓ]G∣∣ · c∏

i=1

∏
q∈Max(OKi

)

q|ℓ

(
|UT [ℓ]i[q∞]|
ℓf(q|ℓ)·dimKi

(Vi)
+ 1

)
,

where T runs over viable collections of G-structured Fp-algebras up to isomorphism.
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10 Average Torsion of Ray Class Groups of Cyclic Fields of
Prime Degree

The aim of this chapter is to make explicit the formula for the average torsion of ray
class groups from Corollary 9.44 in the case of cyclic fields of prime degree.

Throughout this chapter let q be a prime number.

10.1 Families of Cyclic Extensions of Prime Degree

Let F be a number field and fix an algebraic closure F of F . Let 0 ̸= mF ⊴ OF . We
discuss how to model families of Cq-extensions of F in terms of Setup 8.37.

Note first that QCq ∼= Q × Q(ζq), so the only choice for I that leads to nontrivial
statements is I = ⟨

∑
h∈Cq

h⟩. Then A = Q(ζq). All primes except q are good for A.
In order to obtain a nonempty family K, we may choose for S any finite set of primes
different from q with the property that µp ⊈ F for all p ∈ S. With the above choices
and W as the appropriate finitely generated QCq-module, the family K in Setup 8.37
models the family of Cq-extensions of F with signature given by W .

Later on, we will focus on the case F = Q. Note that if q > 2, then every Cq-extension
of Q is necessarily totally real. The family of such extensions in the setup from above
is modelled by taking W = Q(ζq). If q = 2, then a Cq-extension of Q can be totally
imaginary or totally real. The totally real C2-extensions of Q, i.e. the real quadratic
number fields, are modelled by W = Q(−1). The totally imaginary C2-extensions of Q,
i.e. the imaginary quadratic number fields, are modelled W = 0.

10.1.1 Cq-Structured Algebras

We next discuss the viable collections T = (Tp)p|mF
of Cq-structured Fp-algebras.

We have the following general result.

Proposition 10.1. Let F be a number field. Let P be a finite set of places of F and let
T = (Tv)v∈P be a collection of Cq-structured Fv-algebras. Then T is viable for Cq and
F . Moreover, for any fair counting function C on ECq(F ) we have

PrC(T ) =
∏
v∈P

PrC(Tv)

and

PrC(Tv) = N(v)−cv(Tv)/mC ·

 ∑
T ′
v∈ACq (Fv)

N(v)−cv(T
′
v)/mC

−1

.
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Proof. That T is viable follows from [Woo10, page 108]. The second claim follows from
[Woo10, Corollary 2.4] and the third claim from [Woo10, Corollary 2.2].

We now classify the Cq-structured Fv-algebras and give their probabilities.

Proposition 10.2. Let F be a field. Then the Cq-structured F -algebras up to iso-
morphism are given by:

• F q with Cq ↪→ AutF (F
q) = Sq mapping a generator of Cq to (1 2 · · · q),

• the Cq-extensions of F .

Proof. This is just an application of Proposition 8.8.

Proposition 10.3. Let F be a field. Let G be a finite abelian group. Denote by E′
G(F )

a system of representatives of G-extensions of F up to isomorphism as F -algebras. Then
the map

E′
G(F )×Aut(G)→ EG(F ), ((K, ιK), α) 7→ (K, ιK ◦ α)

is a bijection.

Proof. This is straightforward.

Proposition 10.4. Let F/Qp be a finite extension. We give the number of Cq-extensions
of F up to F -isomorphism.

(i) Suppose that q ̸= p. Then:

(a) There is 1 unramified Cq-extension of F up to F -isomorphism, namely F (ζpfq−1)
where f is the residue field degree of F/Qp.

(b) If |µq(F )| = 1, then there is no totally tamely ramified Cq-extension of F . If
|µq(F )| = q, then there are

∣∣O×
F /(O

×
F )

q
∣∣ = |µq(F )| = q totally tamely ramified

Cq-extensions of F up to F -isomorphism. If π ∈ OF is a uniformiser, these
are given by F ( q

√
uπ) where u runs over a system of representatives for the

classes in O×
F /(O

×
F )

q.

(ii) Suppose that q = p. Then:

(a) There is 1 unramified Cp-extension of F up to F -isomorphism, namely F (ζpfp−1)
where f is the residue field degree of F/Qp.

(b) If |µp(F )| = 1, then there are p + · · · + p|F :Qp| many totally wildly ramified
Cp-extensions of F up to F -isomorphism. If |µp(F )| = p, then there are
p + · · · + p|F :Qp|+1 many totally wildly ramified Cp-extensions of F up to F -
isomorphism.
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Proof. Note that since q is prime, every Cq-extension K/F is either unramified or totally
ramified. The statements on unramified extensions are well-known.

Suppose that q ̸= p. If there is a totally tamely ramified Cq-extension K/F , then by
[CF67, Proposition 1 on page 32], we have |µq(F )| = q. Now assume that |µq(F )| = q.
By loc. cit. there is a bijection

{uniformisers of OF } / ∼
∼−→ {tot. tamely ram. Cq-ext. of F} / ∼=F , [π] 7→ [F ( q

√
π)],

where π′ ∼ π if and only if π′π−1 ∈ ((OF /p)×)q, where p is the maximal ideal of OF .
As in the proof of Proposition 10.7 below, since q ̸= p, the natural map

O×
F

(O×
F )

q
→ (OF /p)×

((OF /p)×)q

is a bijection, from which it follows that π′ ∼ π if and only if π′π−1 ∈ (O×
F )

q. Hence, if
π ∈ OF is a uniformiser, then the map

O×
F /(O

×
F )

q → {uniformisers of OF } / ∼, u 7→ [πu]

is a bijection. This proves part (b) of (i).

The claims in part (b) of (ii) are [Sha47, Consequence 2] for |µp(F )| = 1 and [Yam95,
Theorem 1] for |µp(F )| = p.

Proposition 10.5. Let F be a number field and let p be a prime ideal of OF .

(i) Suppose p ∤ q and |µq(Fp)| = 1. Then the Cq-structured Fp-algebras up to iso-
morphism are given by

• F qp ,

• 1 unramified Cq-extension L/Fp with q − 1 different Cq-structures.

Let C be either the norm of the product of the ramified primes or the norm of the
conductor or the norm of the discriminant. Then in the respective cases we have

• PrC(F
q
p ) =

1
q ,

• PrC(L) =
1
q .

(ii) Suppose p ∤ q and |µq(Fp)| = q. Then the Cq-structured Fp-algebras up to iso-
morphism are given by

• F qp ,

• 1 unramified Cq-extension L/Fp with q − 1 different Cq-structures,

• q totally tamely ramified Cq-extensions L/Fp with q−1 different Cq-structures
each.
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Let C be either the norm of the product of the ramified primes or the norm of the
conductor or the norm of the discriminant. Then in the respective cases we have

• PrC(F
q
p ) =

N(p)
qN(p)+q(q−1) ,

• PrC(L) =
N(p)

qN(p)+q(q−1) ,

• PrC(L) =
1

qN(p)+q(q−1) .

(iii) Suppose p | q and |µq(Fp)| = 1. Then the Cq-structured Fp-algebras up to iso-
morphism are given by

• F qp ,

• 1 unramified Cq-extension L/Fp with q − 1 different Cq-structures,

• q+ · · ·+q|Fp:Qq | totally wildly ramified Cq-extensions L/Fp with q−1 different
Cq-structures each.

Let C be the norm of the product of the ramified primes. Then in the respective
cases we have

• PrC(F
q
p ) =

N(p)

qN(p)+(q+···q|Fp:Qq |)(q−1)
,

• PrC(L) =
N(p)

qN(p)+(q+···q|Fp:Qq |)(q−1)
,

• PrC(L) =
1

qN(p)+(q+···q|Fp:Qq |)(q−1)
.

(iv) Suppose p | q and |µq(Fp)| = q. Then the Cq-structured Fp-algebras up to iso-
morphism are given by

• F qp ,

• 1 unramified Cq-extension L/Fp with q − 1 different Cq-structures,

• q+· · ·+q|Fp:Qq |+1 totally wildly ramified Cq-extensions L/Fp with q−1 different
Cq-structures each.

Let C be the norm of the product of the ramified primes. Then in the respective
cases we have

• PrC(F
q
p ) =

N(p)

qN(p)+(q+···q|Fp:Qq |+1)(q−1)
,

• PrC(L) =
N(p)

qN(p)+(q+···q|Fp:Qq |+1)(q−1)
,

• PrC(L) =
1

qN(p)+(q+···q|Fp:Qq |+1)(q−1)
.

Proof. The respective lists of Cq-structured Fp-algebras are obtained from Propositions
10.2, 10.3 and 10.4. The probabilities are easily calculated using Proposition 10.1 and
Example 8.11.
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In cases (iii) and (iv) the probabilities for C the norm of the conductor and the norm
of the discriminant depend on the conductor and the discriminant, respectively, of the
totally wildly ramified Cq-extensions of Fp. Given knowledge of the latter, these prob-
abilities can be calculated explicitly using Proposition 10.1. We will do this below in the
case q = 2.

10.2 Generalities on Average Torsion

Use Setup 8.37 with the specifications G = Cq, I = ⟨
∑

h∈Cq
h⟩, S = {ℓ}, where ℓ is a

prime with ℓ ∤ |ClF | · q, and do not fix T . Conditional on Conjecture 8.38, Corollary 9.44
shows that the limit

lim
B→∞

∑
(K,ι)∈KC≤B

|ClK(m)[ℓ]|
|KC≤B|

exists and equals

AvK,C(ℓ) :=
∑

T=(Tp)p|mF
/∼=

PrC(T ) ·
∣∣UT [ℓ]G∣∣ · ∏

q∈Max(Z[ζq ])
q|ℓ

(
|UT [ℓ]1[q∞]|

ℓf(q|ℓ)·dimQ(ζq)(W1)
+ 1

)
.

Recall here that all collections T = (Tp)p|mF
of Cq-structured Fp-algebras are viable by

Proposition 10.1. Note that in the notation of Section 9.5, A = A1 = Q(ζq), e0 =
1
q

∑
h∈Cq

h and e1 = 1
q (q − 1 −

∑
1̸=h∈Cq

h). Note further that by Proposition 10.1, all

terms in AvK,C(ℓ) involving T can be expressed as products whose factors only depend
on one Tp at a time.

Our aim in this section is to provide tools to explicitly calculate all terms occurring in
AvK,C(ℓ) for the case F = Q and for

• ℓ inert in Q(ζq),

• ℓ totally split in Q(ζq), that is, ℓ ≡ 1 mod q.

Note that if F = Q, then dimQ(ζq)(W1) = 1. The probabilities PrC(T ) have already been
discussed in the previous section.

10.2.1 Torsion in Unit Groups of Residue Rings of p-Adic Fields

The following statements can be used to calculate |UT [ℓ]| and
∣∣UT [ℓ]G∣∣.

Proposition 10.6. Let K/Qp be a finite extension of degree d with valuation ring OK .
Let e be the ramification index and f be the residue field degree. Let r ∈ Z≥1 and let ℓ
be a prime. Then we have ∣∣∣∣ O×

K

(O×
K)ℓ

∣∣∣∣ = pd·vp(ℓ) · |µℓ(K)| .
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If moreover K/Qp is Galois with Galois group G, then for ℓ ̸= p it holds that∣∣∣∣∣
(
O×
K

(O×
K)ℓ

)G∣∣∣∣∣ =
{
ℓ, ℓ | p− 1,

1, ℓ ∤ p− 1.

If p ∤ d = |G|, we also have ∣∣∣∣∣
(
O×
K

(O×
K)p

)G∣∣∣∣∣ =
{
4, p = 2,

p, p > 2.

Proof. The first statement is [Neu99, Corollary II.5.8]. Now assume that K/Qp is Galois
with Galois group G. Denote by p the maximal ideal of OK . First, we deal with the case
ℓ ̸= p. Then by [Neu99, Proposition II.5.7] ℓ-powering is an isomorphism on 1 + pOK .
Thus, the snake lemma applied to

1 1 + pOK O×
K (OK/p)× 1

1 1 + pOK O×
K (OK/p)× 1

(·)ℓ (·)ℓ (·)ℓ

gives an isomorphism of G-modules

O×
K

(O×
K)ℓ
∼=

(OK/p)×

((OK/p)×)ℓ
.

Now the inertia subgroup I ⊴ G acts trivially on OK/p, and G/I ∼= Gal(Fpf /Fp) which
implies that

(
O×
K

(O×
K)ℓ

)G
∼=
(

(OK/p)×

((OK/p)×)ℓ

)G
=

(
(OK/p)×

((OK/p)×)ℓ

)G/I
∼=

(
F×
pf

(F×
pf
)ℓ

)Gal(F
pf
/Fp)

.

We have Gal(Fpf /Fp) = ⟨σ⟩ where σ is the Frobenius homomorphism, and F×
pf

= ⟨ζ⟩ for
some ζ ∈ F×

pf
. If ℓ ∤ pf − 1, then F×

pf
/(F×

pf
)ℓ = 1 and also the fixed points are trivial.

From now on assume that ℓ | pf − 1. Then F×
pf
/(F×

pf
)ℓ has size ℓ. So the set of fixed

points either has size 1 or ℓ, and we can characterise the latter case as follows:∣∣∣∣∣∣
(

F×
pf

(F×
pf
)ℓ

)Gal(F
pf
/Fp)
∣∣∣∣∣∣ = ℓ ⇐⇒ ζ = σ(ζ) = ζ

p

⇐⇒ ζp−1 ∈ (F×
pf
)ℓ = ⟨ζℓ⟩

⇐⇒ ∃t ∈ Z : pf − 1 | (p− 1)− tℓ
⇐⇒ ℓ | p− 1

183



where for the last equality we have used that ℓ | pf − 1. This proves the claim for ℓ ̸= p.

Finally, assume that p ∤ d = |G|. Consider the exact sequence of G-modules

1 µp(K) O×
K (O×

K)p 1.
(·)p

Since p ∤ |G|, multiplication by |G| is both the zero map and an isomorphism on
H i(G,µp(K)) for all i ≥ 1 which shows that H i(G,µp(K)) = 1 for all i ≥ 1. Hence, the
above sequence induces a long exact sequence

· · · Z×
p ((O×

K)p)G 1 H1(G,O×
K) H1(G, (O×

K)p) 1 · · ·(·)p

We conclude that ((O×
K)p)G = (Z×

p )
p and H1(G,O×

K) ∼= H1(G, (O×
K)p). Note moreover

that the valuation exact sequence

1 O×
K K× Z 1

of G-modules together with Hilbert 90 shows that H1(G,O×
K) ∼= Z/eZ is cyclic of order

e, and in particular finite. Now consider the canonical exact sequence of G-modules

1 (O×
K)p O×

K
O×

K

(O×
K)p

1.

Since O×
K/(O

×
K)p is a p-group, we have H1(G,O×

K/(O
×
K)p) = 1 by the same argument

as before, so that the induced long exact sequence gives an exact sequence

1
Z×
p

(Z×
p )p

(
O×

K

(O×
K)p

)G
H1(G, (O×

K)p) H1(G,O×
K) 1

It follows that ∣∣∣∣∣
(
O×
K

(O×
K)p

)G∣∣∣∣∣ =
∣∣∣∣∣ Z×

p

(Z×
p )p

∣∣∣∣∣ ,
and we conclude using the first statement of the proposition.

Proposition 10.7. Let K/Qp be a finite extension of degree d with valuation ring OK .
Let e be the ramification index and f be the residue field degree. Let r ∈ Z≥1 and let ℓ
be a prime.

(i) Suppose that ℓ ̸= p. Then∣∣∣∣ (OK/pr)×

((OK/pr)×)ℓ

∣∣∣∣ = |µℓ(K)| =

{
ℓ, ℓ | pf − 1,

1, ℓ ∤ pf − 1.

If moreover K/Qp is Galois with Galois group G, then∣∣∣∣∣
(

(OK/pr)×

((OK/pr)×)ℓ

)G∣∣∣∣∣ =
{
ℓ, ℓ | p− 1,

1, ℓ ∤ p− 1.
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(ii) For ℓ = p we further distinguish two cases:

(a) Suppose that r ≥ 2. Then∣∣∣∣ (OK/pr)×

((OK/pr)×)p

∣∣∣∣ =
{
2d, p = 2, r = 2,

pd · |µp(K)| , else.

If moreover K/Qp is Galois with Galois group G and p ∤ d = |G|, then

∣∣∣∣∣
(

(OK/pr)×

((OK/pr)×)p

)G∣∣∣∣∣ =

2, p = 2, r = 2,

4, p = 2, r > 2,

p, p ̸= 2.

(b) For r = 1 we have ∣∣∣∣ (OK/p)×

((OK/p)×)p

∣∣∣∣ = p
f(e−⌈ e

p
⌉)
.

If moreover K/Qp is Galois with Galois group G and p ∤ d = |G|, then∣∣∣∣∣
(

(OK/p)×

((OK/p)×)p

)G∣∣∣∣∣ = 1.

Proof. For any ℓ and r, the surjective homomorphism O×
K → (OK/pr)× induces an exact

sequence

1
(O×

K)ℓ·(1+prOK)

(O×
K)ℓ

O×
K

(O×
K)ℓ

(OK/p
r)×

((OK/pr)×)ℓ
1.

Note that for the left hand term it holds that

(O×
K)ℓ · (1 + prOK)

(O×
K)ℓ

∼=
(1 + prOK)

(1 + prOK) ∩ (O×
K)ℓ

,

so that we have an exact sequence

1 1+prOK

(1+prOK)∩(O×
K)ℓ

O×
K

(O×
K)ℓ

(OK/p
r)×

((OK/pr)×)ℓ
1. (10.8)

This will be the central object of the proof. If K/Qp is Galois with Galois group G, then
it is an exact sequence of G-modules.

Suppose that ℓ ̸= p. Then [Neu99, Proposition II.5.7] shows that ℓ-powering is an
isomorphism on 1 + prOK , so that

1 + prOK = (1 + prOK)ℓ ⊆ (1 + prOK) ∩ (O×
K)ℓ ⊆ 1 + prOK .
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Hence, the left hand term in (10.8) is trivial and we have

O×
K

(O×
K)ℓ
∼=

(OK/pr)×

((OK/pr)×)ℓ
.

Claim (i) then follows from Proposition 10.6.

Suppose from now on that ℓ = p. We first fix some notation. We denote by p the
maximal ideal of OK and write U (n) := 1 + pnOK for n ∈ Z≥1. Note that (p) = pe.
Furthermore let π be a uniformiser for OK , so that p = (π). We write vK for the
normalised discrete valuation on K. We will repeatedly make use of the following fact,
cf. [Neu99, Proposition II.5.5]: The p-adic logarithm and exponential function furnish
algebraic and topological isomorphisms

1 + pnOK = U (n) ∼= pn for n >
e

p− 1
. (10.9)

If K/Qp is Galois with Galois group G, then these isomorphisms are also isomorphisms
of G-modules, as can be seen from the definition of the exponential function, using that
the elements of G are continuous. Moreover, we will use that

(O×
K)p ∩ U (1) = (U (1))p (10.10)

which follows from [Neu99, Proposition II.5.3].

Suppose that r ≥ 2. Then, unless p = 2 and r = 2, we have er > e(r − 1) > e
p−1 in

which case the isomorphisms from (10.9) fit into a commutative diagram

1 + pr−1OK pr−1OK

1 + prOK prOK .

∼

∼

Since p(pr−1OK) = prOK , this shows that (1 + pr−1OK)p = 1 + prOK . It follows that

(1 + prOK) ∩ (O×
K)p = (1 + pr−1OK)p ∩ (O×

K)p = (1 + pr−1OK)p = 1 + prOK .

So from (10.8) we get
O×
K

(O×
K)p
∼=

(OK/pr)×

((OK/pr)×)p
,

and we can again conclude using Proposition 10.6.

It remains to deal with the case p = 2 and r = 2. Here, the left hand term in (10.8)
turns out to be nontrivial, and we will now explicitly calculate its size. To begin with,
we claim that

(1 + 4OK) ∩ (O×
K)2 = (1 + 2OK)2. (10.11)
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It is evident that the right hand set is contained in the left hand set. Conversely, let
x ∈ (1 + 4OK) ∩ (O×

K)2. By (10.10) we can write x = (1 + πy)2 for some y ∈ OK . Then
since x ∈ 1 + 4OK we must have

vK(πe+1y + π2y2) = vK(2πy + π2y2) ≥ vK(4) = 2e,

or equivalently
vK(πe−1y + y2) ≥ 2e− 2.

If vK(y) < e − 1, then vK(y2) = 2vK(y) < vK(y) + e − 1 = vK(πe−1y) which implies
vK(πe−1y+ y2) = vK(y2) = 2vK(y) < 2e− 2, a contradiction. So we must have vK(y) ≥
e − 1 which gives 1 + πy ∈ 1 + πeOK = 1 + 2OK . Thus, x ∈ (1 + 2OK)2, establishing
(10.11).

We will calculate the size of the left hand side of (10.8) using the chain of subgroups

(1 + 4OK)2 ⊆ (1 + 2OK)2 ⊆ 1 + 4OK .

First, we have 1 + 4OK = 1 + p2e ∼= p2e = 4OK by (10.9). This gives isomorphisms of
abelian groups

1 + 4OK
(1 + 4OK)2

∼=
4OK

2 · 4OK
∼=
OK
2OK

=
OK
peOK

,

showing that the size of the left hand term is |OK/p|e = 2f ·e = 2d. Secondly, using
[Neu99, Proposition II.3.10], we have∣∣∣∣1 + 2OK

1 + 4OK

∣∣∣∣ =
∣∣∣∣∣ U (e)

U (2e)

∣∣∣∣∣ =
2e−1∏
i=e

∣∣∣∣∣ U (i)

U (i+1)

∣∣∣∣∣ =
2e−1∏
i=e

2f = 2f ·e = 2d. (10.12)

Thirdly, there is an exact sequence

1 µ2(K)·(1+4OK)
1+4OK

1+2OK
1+4OK

(1+2OK)2

(1+4OK)2
1.

(·)2

For the left hand term it holds that

µ2(K) · (1 + 4OK)

1 + 4OK
∼=

µ2(K)

µ2(K) ∩ (1 + 4OK)
= µ2(K) = {±1}

since 1 + 4OK ∼= 4OK is torsionfree. Hence, the exact sequence and (10.12) give∣∣∣∣(1 + 2OK)2

(1 + 4OK)2

∣∣∣∣ = 1

2
·
∣∣∣∣1 + 2OK
1 + 4OK

∣∣∣∣ = 2d−1.

Then using (10.11) and all the above results we obtain∣∣∣∣ 1 + 4OK
(1 + 4OK) ∩ (O×

K)2

∣∣∣∣ = ∣∣∣∣ 1 + 4OK
(1 + 2OK)2

∣∣∣∣
=

∣∣∣∣ 1 + 4OK
(1 + 4OK)2

∣∣∣∣ · ∣∣∣∣(1 + 2OK)2

(1 + 4OK)2

∣∣∣∣−1

= 2d · 2−d+1

= 2. (10.13)
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The exact sequence (10.8) and Proposition 10.6 therefore give∣∣∣∣ (OK/22)×

((OK/22)×)2

∣∣∣∣ = ∣∣∣∣ O×
K

(O×
K)2

∣∣∣∣ · ∣∣∣∣ 1 + 4OK
(1 + 4OK) ∩ (O×

K)2

∣∣∣∣−1

= 2d · 2 · 2−1 = 2d.

Now assume further that K/Q2 is Galois with Galois group G, and that 2 ∤ d = |G|.
Then the left hand side of (10.8) has trivial first cohomology, since multiplication by |G|
is both the zero map and an isomorphism on it. Together with (10.11), this means that
we obtain an exact sequence

1
(

1+4OK
(1+2OK)2

)G (
O×

K

(O×
K)2

)G (
(OK/2

2)×

((OK/22)×)2

)G
1. (10.14)

To compute the size of the left hand term, we proceed as follows: Again, since 2 ∤ |G|,
the exact sequence of G-modules

1 µ2(K) 1 + 2OK (1 + 2OK)2 1
(·)2

induces an exact sequence

1 µ2(Q2) 1 + 2Z2 ((1 + 2OK)2)G 1
(·)2

which shows that ((1 + 2OK)2)G = (1+ 2Z2)
2. Therefore, from the long exact sequence

associated to the canonical sequence

1 (1 + 2OK)2 1 + 4OK 1+4OK
(1+2OK)2

1

we obtain an injection

1 + 4Z2

(1 + 2Z2)2
↪→
(

1 + 4OK
(1 + 2OK)2

)G
.

Now by (10.13), the size of the left hand term is 2, whereas the size of the right hand
term is at most 2. So the size of the right hand term must be 2. We conclude from
(10.14) and Proposition 10.6 that∣∣∣∣∣

(
(OK/22)×

((OK/22)×)2

)G∣∣∣∣∣ =
∣∣∣∣∣
(
O×
K

(O×
K)2

)G∣∣∣∣∣ ·
∣∣∣∣∣
(

1 + 4OK
(1 + 2OK)2

)G∣∣∣∣∣
−1

= 4 · 2−1

= 2,

finishing part (ii) (a) of the proposition.

Suppose finally that r = 1. The proof in this case follows similar steps as the p = 2,
r = 2 case above. We again explicitly calculate the size of the left hand size of (10.8).
We claim that

(1 + pOK) ∩ (O×
K)p = (1 + p

⌈ e
p
⌉OK)p. (10.15)
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If x ∈ (1 + p
⌈ e
p
⌉OK)p, then there is y ∈ OK such that x = (1 + π

⌈ e
p
⌉
y)p. It follows that

x =

p∑
k=0

(
p

k

)
(π

⌈ e
p
⌉
y)k = 1 +

p−1∑
k=1

(
p

k

)
(π

⌈ e
p
⌉
y)k + π

p·⌈ e
p
⌉
yp.

Since p divides the middle term on the right hand side and p · ⌈ ep⌉ ≥ e, it follows that

x ∈ 1 + pOK . Conversely, let x ∈ (1 + pOK) ∩ (O×
K)p. Then by (10.10) we can write

x = (1+ πy)p for some y ∈ OK . Expanding this expression yields πpyp ∈ pOK = πeOK ,

whence p+ pvK(y) ≥ e. It follows that 1 + vK(y) ≥ ⌈ ep⌉, that is, 1 + πy ∈ 1 + p
⌈ e
p
⌉OK .

So (10.15) is proved.

To compute the size of the left hand side of (10.8), we consider the chain of subgroups

(1 + pOK)p ⊆ (1 + p
⌈ e
p
⌉OK)p ⊆ 1 + pOK .

We first compute the size of the quotient of the right hand term by the left hand term.
If p > 2, then e > e

p−1 and (10.9) gives an isomorphism 1+ pOK ∼= pOK . It follows that∣∣∣∣ 1 + pOK
(1 + pOK)p

∣∣∣∣ = ∣∣∣∣ pOKp2OK

∣∣∣∣ = ∣∣∣∣ OKpOK

∣∣∣∣ = ∣∣∣∣ OKpeOK

∣∣∣∣ = |OK/p|e = pd.

If p = 2, then (10.12) and (10.13) give∣∣∣∣ 1 + 2OK
(1 + 2OK)2

∣∣∣∣ = ∣∣∣∣1 + 2OK
1 + 4OK

∣∣∣∣ · ∣∣∣∣ 1 + 4OK
(1 + 2OK)2

∣∣∣∣ = 2d · 2 = 2d+1.

Next, for arbitrary p again, by [Neu99, Proposition II.3.10] we have∣∣∣∣∣1 + p
⌈ e
p
⌉OK

1 + pOK

∣∣∣∣∣ =
∣∣∣∣∣U (⌈ e

p
⌉)

U (e)

∣∣∣∣∣ =
e−1∏
i=⌈ e

p
⌉

∣∣∣∣∣ U (i)

U (i+1)

∣∣∣∣∣ =
e−1∏
i=⌈ e

p
⌉

pf = p
f ·(e−⌈ e

p
⌉)
.

Now consider the exact sequence

1
µp(K)·(1+pOK)

1+pOK

1+p
⌈ e
p ⌉OK

1+pOK

(1+p
⌈ e
p ⌉OK)p

(1+pOK)p 1.
(·)p

Its left hand term is

µp(K) · (1 + pOK)

1 + pOK
∼=

µp(K)

µp(K) ∩ (1 + pOK)
=

{
1, p = 2

µp(K), p > 2,

where we used that 1 + pOK ∼= pOK is torsionfree if p > 2. Thus the exact sequence
gives ∣∣∣∣∣(1 + p

⌈ e
p
⌉OK)p

(1 + pOK)p

∣∣∣∣∣ =
∣∣∣∣∣1 + p

⌈ e
p
⌉OK

1 + pOK

∣∣∣∣∣ ·
∣∣∣∣µp(K) · (1 + pOK)

1 + pOK

∣∣∣∣−1

=

{
2f ·(e−⌈ e

2
⌉), p = 2,

p
f ·(e−⌈ e

p
⌉) · |µp(K)|−1 , p > 2.
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We now put (10.15) and all these intermediate results together to obtain∣∣∣∣ 1 + pOK
(1 + pOK) ∩ (O×

K)p

∣∣∣∣ =
∣∣∣∣∣ 1 + pOK
(1 + p

⌈ e
p
⌉OK)p

∣∣∣∣∣
=

∣∣∣∣ 1 + pOK
(1 + pOK)p

∣∣∣∣ ·
∣∣∣∣∣(1 + p

⌈ e
p
⌉OK)p

(1 + pOK)p

∣∣∣∣∣
−1

=

{
2d+1 · 2−f ·(e−⌈ e

2
⌉), p = 2,

pd · p−f ·(e−⌈ e
p
⌉) · |µp(K)| , p > 2.

(10.16)

This, (10.8) and Proposition 10.6 give∣∣∣∣ (OK/p)×

((OK/p)×)p

∣∣∣∣ = ∣∣∣∣ O×
K

(O×
K)p

∣∣∣∣ · ∣∣∣∣ 1 + pOK
(1 + pOK) ∩ (O×

K)p

∣∣∣∣−1

=

{
2d · 2 · 2−d−1 · 2f ·(e−⌈ e

2
⌉), p = 2,

pd · |µp(K)| · p−d · pf ·(e−⌈ e
p
⌉) · |µp(K)|−1 , p > 2,

= p
f ·(e−⌈ e

p
⌉)
.

Finally, suppose that K/Qp is Galois with Galois group G and p ∤ d = |G|. Then since
the left hand side in (10.8) is a p-group, it has trivial first cohomology, so that there is
an exact sequence

1
(

1+pOK

(1+pOK)∩(O×
K)p

)G (
O×

K

(O×
K)p

)G (
(OK/p)

×

((OK/p)×)p

)G
1. (10.17)

We calculate the size of the left hand side. Using the fact that ((O×
K)p)G = (Z×

p )
p as

shown in the proof of Proposition 10.6, the exact sequence

1 (1 + pOK) ∩ (O×
K)p 1 + pOK 1+pOK

(1+pOK)∩(O×
K)p

1

gives rise to an injection

1 + pZp
(1 + pZp) ∩ (Z×

p )p
↪→
(

1 + pOK
(1 + pOK) ∩ (O×

K)p

)G
.

Now by (10.16), the left hand term has size 4 if p = 2 and size p if p > 2. On the other
hand, by (10.17) and Proposition 10.6, the right hand term has size at most 4 if p = 2
and size at most p if p > 2. It follows that∣∣∣∣∣

(
1 + pOK

(1 + pOK) ∩ (O×
K)p

)G∣∣∣∣∣ =
∣∣∣∣ 1 + pZp
(1 + pZp) ∩ (Z×

p )p

∣∣∣∣ =
∣∣∣∣∣
(
O×
K

(O×
K)p

)G∣∣∣∣∣ .
Then (10.17) shows that ∣∣∣∣∣

(
(OK/p)×

((OK/p)×)p

)G∣∣∣∣∣ = 1.

This finishes the proof.
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10.2.2 Primary Components of UT [ℓ]1 for ℓ ≡ 1 mod q

We now discuss how to calculate the terms |UT [ℓ]1[q∞]| for ℓ ≡ 1 mod q and q a prime
of Z[ζq] above ℓ. It suffices to consider the case T = Tp, where p | mQ and Tp is a
Cq-structured Qp-algebra. We need a few lemmas.

Lemma 10.18. Let ℓ be a prime with ℓ ≡ 1 mod q. Denote by q1, . . . , qq−1 the primes
of Z[ζq] above ℓ. Fix a generator g of Cq. Let M be a Z(ℓ)Cq-module that is annihilated
by ℓ. Let n ∈ Z such that n is congruent to a primitive q-th root of unity modulo ℓ. Let
Ni :=

{
x ∈M

∣∣ gx = nix
}
for i = 1, . . . , q − 1. Then{

M1[q
∞
1 ], . . . ,M1[q

∞
q−1]

}
= {N1, . . . , Nq−1} .

Proof. We have thatM1 = e1M is an e1Z(ℓ)Cq ∼= Z(ℓ)[ζq]-module, where the isomorphism
is given by

e1Z(ℓ)Cq
∼−→ Z(ℓ)[ζq], e1(a0 + a1g + · · ·+ aq−1g

q−1) 7→ a0 + a1ζq + · · ·+ aq−1ζ
q−1
q .

This means that the action of Z(ℓ)[ζq] on M1 is given as follows: for x ∈M we have

ζq.(e1x) = (e1g)(e1x) = g.(e1x).

By definition of n, it holds that

tq−1 + · · ·+ t+ 1 = (t− n)(t− n2) · · · (t− nq−1) ∈ Fℓ[t].

Thus, by the Dedekind–Kummer Theorem we have

(ℓ) = (ℓ, ζq − n)(ℓ, ζq − n2) · · · (ℓ, ζq − nq−1) ⊆ Z[ζq].

Without loss of generality, qi = (ℓ, ζq − ni) for i = 1, . . . , q − 1. Using that ℓM = 0, for
y ∈M1 it holds that

y ∈M1[q
∞
i ] ⇐⇒ annZ[ζq ](y) | qi ⇐⇒ ζq − ni ∈ annZ[ζq ](y) ⇐⇒ ζqy = niy.

It follows that

M1[q
∞
i ] =

{
y ∈M1

∣∣ g.y = niy
}
=
{
y ∈M

∣∣ g.y = niy
}
,

where the right hand equality follow from the fact that 1 + n + · · · + nq−1 ≡ 0 mod ℓ,
giving e0y = 0 for the y in the right hand sets.

Lemma 10.19. Let p be a prime with p ≡ 1 mod q. Let L/Qp be cyclic of degree q
with Galois group Gal(L/Qp) = ⟨σ⟩. Denote by p the maximal ideal of OL. Then for
each i ∈ {1, . . . , q − 1} there is xi ∈ OL with σ(xi) = ζiqxi; if L is unramified we can
additionally ensure vp(xi) = 1 and if L is totally ramified we can additionally ensure
vp(xi) ∈ {1, . . . , q − 1}.
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Proof. Note that since p ≡ 1 mod q we have ζq ∈ Qp. Let i ∈ {1, . . . , q − 1}.

Suppose first that L is unramified. By Kummer theory, there is yi ∈ L with σ(yi) = ζiqyi.
We can write yi =

ai
bi

with ai ∈ OL and bi ∈ Zp. Then σ(ai) = ζiqai. Now since L/Qp is

unramified, p is a uniformiser in OL. Write ai = ui · pki with ui ∈ O×
L and ki ∈ Z. We

get σ(ui) = ζiqui and may hence take xi := pui.

Now suppose L/Qp is totally tamely ramified. Then there is a uniformiser π of Zp with

L = Qp( q
√
π). We have vp( q

√
π) = 1 and σ( q

√
π) ∈

{
ζq q
√
π, . . . , ζq−1

q
q
√
π
}
. Hence, one of

q
√
π, . . . , q

√
π
q−1

will do the job.

Lemma 10.20. Let p be a prime with p ≡ 1 mod q. Let L/Qp be cyclic of degree q.
Let n ∈ Z such that n is congruent to a primitive q-th root of unity modulo p. Then for
ζq ∈ L it holds that n ≡ ζiq mod pOL for some i ∈ {1, . . . , q − 1}.

Proof. Suppose that x ∈ OL is such that xq = 1 ∈ OL/p. We are going to show that
there is ζ ∈ µq(L) with x = ζ. Since O×

L → (OL/p)× is surjective, we may assume that
x ∈ O×

L . We can write x = ζu with ζ ∈ µpf−1(L) and u ∈ U (1) where f = f(L/Qp).

We have xq = ζquq ∈ 1 + pOL ⊆ U (1), which forces ζq = 1. Hence, uq ∈ 1 + pOL. But
raising to the q-th power is an isomorphism on 1 + pOL by [Neu99, Proposition II.5.7],
so u ∈ 1 + pOL. It follows that x = ζ as claimed.

We have Fp ⊆ OL/p, so by assumption n ∈ OL/p satisfies nq = 1 and n ̸= 1. The claim
then follows from what has been shown in the first paragraph.

We can now obtain the sizes of the primary components of UTp [ℓ]1.

Proposition 10.21. Suppose that q ≥ 3. Let ℓ be a prime with ℓ ≡ 1 mod q. Let
p | mQ and let Tp be a Cq-structured Qp-algebra.

(i) Suppose that Tp = Qq
p. Then

∣∣UTp [ℓ]1[q∞i ]
∣∣ = ∣∣UTp [ℓ]G∣∣ for all i ∈ {1, . . . , q − 1}.

(ii) Suppose that Tp is an unramified Cq-extension of Qp. Then
∣∣UTp [ℓ]1[q∞i ]

∣∣ = 1 for
all i ∈ {1, . . . , q − 1} unless

• pq ≡ 1(ℓ) and p ̸≡ 1(ℓ), in which case
∣∣UTp [ℓ]1[q∞i ]

∣∣ = ℓ for one i ∈ {1, . . . , q − 1}
and

∣∣UTp [ℓ]1[q∞i ]
∣∣ = 1 for all other i; or

• p = ℓ and vℓ(mQ) ≥ 2, in which case
∣∣UTp [ℓ]1[q∞i ]

∣∣ = ℓ for all i ∈ {1, . . . , q − 1}.

(iii) Suppose that Tp is a totally ramified Cq-extension of Qp. Then
∣∣UTp [ℓ]1[q∞i ]

∣∣ = 1
for all i ∈ {1, . . . , q − 1} unless

• p = ℓ and vℓ(mQ) = 1, in which case
∣∣UTp [ℓ]1[q∞i ]

∣∣ = ℓ for all i ∈ {1, . . . , q − 1};
or
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• p = ℓ and vℓ(mQ) ≥ 2, in which case we further distinguish two subcases:
If |µp(Tp)| = p, then

∣∣UTp [ℓ]1[q∞i ]
∣∣ = ℓ2 for one i ∈ {1, . . . , q − 1} and∣∣∣UTp [ℓ]1[q∞j ]

∣∣∣ = ℓ for all other i. If |µp(Tp)| = 1, then
∣∣UTp [ℓ]1[q∞i ]

∣∣ = ℓ

for all i ∈ {1, . . . , q − 1}.

Proof. Let g be a generator of Cq. Suppose first that Tp = Qq
p. By Proposition 10.2 we

can assume that g acts on Tp via (1 2 · · · q). We have UTp [ℓ] = ((Zp/pvp(mQ))×[ℓ])q and
therefore

UTp [ℓ]
G =

{
(µ, . . . , µ)

∣∣∣µ ∈ (Zp/pvp(mQ))×[ℓ]
}
.

Let n ∈ Z such that n is congruent to a primitive q-th root of unity modulo ℓ and let
Ni :=

{
x ∈ UTp [ℓ]

∣∣ gx = nix
}
for i = 1, . . . , q − 1. Then it is easy to see that

Ni =
{
(µ, µn

−i
, . . . , µn

−(q−2)i
, µn

i
)
∣∣∣µ ∈ (Zp/pvp(mQ))×[ℓ]

}
.

Claim (i) follows from this and Lemma 10.18.

Now suppose that Tp = L for L/Qp cyclic of degree q. In all cases except p = ℓ the
claims in (ii) and (iii) are immediate from Proposition 10.7, which for p ̸= ℓ gives∣∣UTp [ℓ]1∣∣ = ∣∣UTp [ℓ]∣∣ / ∣∣UTp [ℓ]G∣∣ ∈ {1, ℓ}. Assume from now on that p = ℓ. Here, UTp [ℓ] =

(OL/pvp(mQ))×[p]. We instead study (OL/p
vp(mQ))×

((OL/p
vp(mQ))×)p

, all of whose isotypical and primary

components have the same size as the corresponding components of UTp [ℓ], which follows
from the exact sequence

0 (OL/pvp(mQ))×[p] (OL/pvp(mQ))×[p∞] (OL/pvp(mQ))×[p∞] (OL/p
vp(mQ))×

((OL/p
vp(mQ))×)p

0.
(·)p

Recall the short exact sequence of Cq-modules (10.8) which in the case of our interest
reads

1 1+pvp(mQ)OL

(1+pvp(mQ)OL)∩(O×
L )p

O×
L

(O×
L )p

(OL/p
vp(mQ))×

((OL/p
vp(mQ))×)p

1. (10.22)

From the snake lemma applied to

1 1 + pOL O×
L (OL/p)× 1

1 1 + pOL O×
L (OL/p)× 1

(·)p (·)p (·)p

we obtain an isomorphism
U (1)

(U (1))p
∼−→
O×
L

(O×
L )

p
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of G-modules. Note that the condition ℓ ≡ 1 mod q forces ℓ ≥ q+1 and even ℓ > q+1
as q ̸= 2. Hence, p = ℓ > q + 1. This gives e

p−1 < 1, where e is the ramification index of
L/Qp. Hence, as in the proof of Proposition 10.7, the exponential function furnishes an
isomorphism of G-modules

p

pp

∼−→ U (1)

(U (1))p
.

Let n ∈ Z such that n is congruent to a primitive q-th root of unity modulo ℓ. By Lemma
10.20 we have n ≡ ζjq mod pOL for some j ∈ {1, . . . , q − 1}. Now let i ∈ {1, . . . , q − 1}.
By Lemma 10.19 there is 0 ̸= x ∈ p/pp such that gx = ζijq x = nix.

Suppose that vℓ(mQ) ≥ 2. Then as in the proof of Proposition 10.6, the left hand side of
(10.22) is trivial. Hence, the above and Lemma 10.18 show that

∣∣UTp [ℓ]1[q∞i ]
∣∣ > 1. The

claims for vℓ(mQ) ≥ 2 follow from this and Proposition 10.6.

Suppose finally that vℓ(mQ) = 1. If L/Qp is unramified, then
∣∣UTp [ℓ]∣∣ = 1, so clearly∣∣UTp [ℓ]1[q∞i ]

∣∣ = 1. Assume now that L/Qp is ramified. Then by Lemma 10.19 we
can choose x such that vp(x) ∈ {1, . . . , q − 1}. By the arguments above, we have∣∣UTp [ℓ]1[q∞i ]

∣∣ > 1 provided that

exp(x) /∈ 1 + pOL
(1 + pOL) ∩ (O×

L )
p
.

Assume for the sake of a contradiction that there is y ∈ 1 + pOL such that exp(x) =
y ∈ O×

L/(O
×
L )

p. Then there is z ∈ (U (1))p with exp(x) = yz. It follows that x =
log y + log z ∈ pOL which gives vp(x) ≥ q, a contradiction.

10.3 Average Torsion of Ray Class Groups of Quadratic Fields

Following the approach of [PS17, Section 2.2] and [BP25, Section 4.2], we use the results
from the previous section to give explicit formulas for the average ℓ-torsion, ℓ odd,
of ray class groups of imaginary and real quadratic fields. In doing so, we restate
[PS17, Conjecture 2.15] and [BP25, Proposition 4.15] and extend those results to the
case where quadratic fields are ordered by the product of the ramified primes

Use Setup 8.37 with F = Q, G = C2 and I = ⟨
∑

h∈C2
h⟩ and do not fix T . Let ℓ be an

odd prime. If W = 0, then K is the family of imaginary quadratic fields and we have

AvK,C(ℓ) =
∑

T=(Tp)p|mQ/
∼=

PrC(T ) ·
∣∣UT [ℓ]G∣∣ · (|UT [ℓ]1|+ 1)

=
∑

T=(Tp)p|mQ/
∼=

PrC(T ) · (|UT [ℓ]|+
∣∣UT [ℓ]G∣∣),
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where T runs over collections of C2-structured Qp-algebras. Using Proposition 10.1 we
can express this as

AvK,C(ℓ) =
∏
p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]∣∣+ ∏

p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]G∣∣ .

If W = Q(−1), then K is the family of real quadratic fields. Here, one obtains

AvK,C(ℓ) =
1

ℓ

∏
p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]∣∣+ ∏

p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]G∣∣ .

The table below gives the probabilities of the C2-structured Qp-algebras. The second
column gives the base algebra and the third column how many C2-structured Qp-algebras
up to isomorphism there are with such a base algebra. This data comes from Proposition
10.5. Except in the case where C is the discriminant and p = 2, the probabilities can be
read off from the same proposition. In the exceptional cases, we have used Proposition
10.1 to calculate the probabilities. Here, for the ramified extensions of Q2, one calculates
the 2-adic valuation of the discriminants of Q2(

√
−1) and Q2(

√
3) to be 2 and for the

remaining ramified extensions to be 3.

Number of
such Tp

PrC(Tp)

C prod. of ram. primes

PrC(Tp)

C discriminantp Tp

p ̸= 2
Q2
p 1 p

2(p+1)
p

2(p+1)

L/Qp unram. 1 p
2(p+1)

p
2(p+1)

L/Qp ram. 2 1
2(p+1)

1
2(p+1)

p = 2

Q2
p 1 1

5
1
3

L/Qp unram. 1 1
5

1
3

Q2(
√
−1) 1 1

10
1
12

Q2(
√
3) 1 1

10
1
12

Q2(
√
2) 1 1

10
1
24

Q2(
√
−2) 1 1

10
1
24

Q2(
√
6) 1 1

10
1
24

Q2(
√
−6) 1 1

10
1
24

From Proposition 10.7 one further obtains the following table.
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p Tp
∣∣UTp [ℓ]∣∣ ∣∣UTp [ℓ]G∣∣

p ̸≡ 0,±1(ℓ)
Q2
p 1 1

L/Qp unram. 1 1
L/Qp ram. 1 1

p ≡ −1(ℓ)
Q2
p 1 1

L/Qp unram. ℓ 1
L/Qp ram. 1 1

p ≡ 1(ℓ)
Q2
p ℓ2 ℓ

L/Qp unram. ℓ ℓ
L/Qp ram. ℓ ℓ

p = ℓ, vℓ(mQ) = 1
Q2
p 1 1

L/Qp unram. 1 1
L/Qp ram. ℓ 1

p = ℓ, vℓ(mQ) ≥ 2
Q2
p ℓ2 ℓ

L/Qp unram. ℓ2 ℓ
L/Qp ram. ℓ2 · |µℓ(L)| ℓ

In the p = ℓ, vℓ(mQ) ≥ 2 case, note that if L/Qp is unramified, then |µℓ(L)| = 1 as Qp(ζp)
is totally ramified over Qp and therefore cannot be contained in L. On the other hand,
since Qp(ζp)/Qp has degree p−1 by [Neu99, Proposition II.7.13], in order for a quadratic
ramified extension L/Qp to satisfy |µℓ(L)| = ℓ, it needs to hold that p = ℓ = 3. In the
latter case, there are 2 ramified extensions of Q3 up to isomorphism by Proposition 10.4,
and Q3(ζ3) is the only one to contain the third roots of unity.

Putting the above together, we obtain the following results.

Corollary 10.23. Write K− for the family of imaginary quadratic number fields. Let
mQ be a positive integer and let ℓ be an odd prime. Let C be a fair counting function
on K−. Let P1 := { p | mQ : p ≡ 1 mod ℓ } and define P±1 analogously. Assume that
Conjecture 8.38 holds. Then the limit

Av−C(ℓ) := lim
B→∞

∑
K∈K−

C≤B
|ClK(mQ,∅)[ℓ]|∣∣∣K−
C≤B

∣∣∣
exists. If C is the discriminant, then

Av−C(ℓ) =



ℓ|P1| ·
(
1 +

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∤ mQ,

ℓ|P1| ·
(
1 + 2ℓ

ℓ+1

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∥ mQ,

ℓ|P1|+1 ·
(
1 + ℓ

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ > 3, ℓ2 | mQ,

3|P1|+1 ·
(
1 + 15

4

∏
p∈P±1

2p+1
p+1

)
, ℓ = 3, ℓ2 | mQ.
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If C is the product of the ramified primes, then for ℓ > 3 we have

Av−C(ℓ) =


ℓ|P1| ·

(
1 +

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∤ mQ,

ℓ|P1| ·
(
1 + 2ℓ

ℓ+1

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∥ mQ,

ℓ|P1|+1 ·
(
1 + ℓ

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ2 | mQ,

and for ℓ = 3 we have

Av−C(3) =



3|P1| ·
(
1 +

∏
p∈P±1

2p+1
p+1

)
, 3 ∤ mQ, 2 ∤ mQ,

3|P1| ·
(
1 + 7

5

∏
p∈P±1\{2}

2p+1
p+1

)
, 3 ∤ mQ, 2 | mQ,

3|P1| ·
(
1 + 3

2

∏
p∈P±1

2p+1
p+1

)
, 3 ∥ mQ, 2 ∤ mQ,

3|P1| ·
(
1 + 21

10

∏
p∈P±1\{2}

2p+1
p+1

)
, 3 ∥ mQ, 2 | mQ,

3|P1|+1 ·
(
1 + 15

4

∏
p∈P±1

2p+1
p+1

)
, 32 | mQ, 2 ∤ mQ,

3|P1|+1 ·
(
1 + 21

4

∏
p∈P±1\{2}

2p+1
p+1

)
, 32 | mQ, 2 | mQ.

Proof. The results are obtained from the formula

Av−C(ℓ) =
∏
p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]∣∣+ ∏

p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]G∣∣

by plugging in the appropriate values from the two tables. We illustrate this procedure
for the case C the discriminant and ℓ ∤ mQ. Since by the second table,

∣∣UTp [ℓ]G∣∣ only
depends on p and not the individual Tp, we immediately have∏

p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]G∣∣ = ℓ|P1|.

For p | mQ define

Sp :=
∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]∣∣ .

For p | mQ with p ≡ −1(ℓ) and p ̸= 2, the tables give

Sp =
p

2(p+ 1)
+

p

2(p+ 1)
· ℓ+ 2 · 1

2(p+ 1)
=
p(ℓ+ 1) + 2

2(p+ 1)
.

For p | mQ with p ≡ −1(ℓ) and p = 2, the tables give

Sp =
1

3
+

1

3
· ℓ+ 1

12
· 2 + 1

24
· 4 =

2ℓ+ 4

6
=
p(ℓ+ 1) + 2

2(p+ 1)
,

so the p ≡ −1(ℓ) case can be treated uniformly. For p | mQ with p ≡ 1(ℓ), the tables
give

Sp =
p

2(p+ 1)
· ℓ2 + p

2(p+ 1)
· ℓ+ 2 · 1

2(p+ 1)
· ℓ = ℓ · p(ℓ+ 1) + 2

2(p+ 1)
.
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It follows that ∏
p|mQ

Sp = ℓ|P1| ·
∏

p∈P±1

p(ℓ+ 1) + 2

2(p+ 1)
,

which proves the statement in the case C the discriminant and ℓ ∤ mQ. The proofs of the
remaining statements follow the same procedure. The case distinction between ℓ = 3
and ℓ > 3 stems from the fact that for p = ℓ, there is a quadratic ramified extension of
Qp containing ζℓ if and only if p = ℓ = 3, as explained above.

The above result for C the discriminant has already been obtained in [PS17, Section 2.2]
and has been proven for ℓ = 3 by Varma [Var22, Theorem 1 (b)].

Corollary 10.24. Write K+ for the family of real quadratic number fields. Let mQ be a
positive integer and let ℓ be an odd prime. Let C be a fair counting function on K+. Let
P1 := { p | mQ : p ≡ 1 mod ℓ } and define P±1 analogously. Assume that Conjecture
8.38 holds. Then the limit

Av+C(ℓ) := lim
B→∞

∑
K∈K+

C≤B
|ClK(mQ,∅)[ℓ]|∣∣∣K+
C≤B

∣∣∣
exists. If C is the discriminant, then

Av+C(ℓ) =



ℓ|P1| ·
(
1 + 1

ℓ

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∤ mQ,

ℓ|P1| ·
(
1 + 2

ℓ+1

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∥ mQ,

ℓ|P1|+1 ·
(
1 +

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ > 3, ℓ2 | mQ,

3|P1|+1 ·
(
1 + 5

4

∏
p∈P±1

2p+1
p+1

)
, ℓ = 3, ℓ2 | mQ.

If C the product of the ramified primes, then for ℓ > 3 we have

Av+C(ℓ) =


ℓ|P1| ·

(
1 + 1

ℓ

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∤ mQ,

ℓ|P1| ·
(
1 + 2

ℓ+1

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ ∥ mQ,

ℓ|P1|+1 ·
(
1 +

∏
p∈P±1

p(ℓ+1)+2
2(p+1)

)
, ℓ2 | mQ,

and for ℓ = 3 we have

Av+C(3) =



3|P1| ·
(
1 + 1

3

∏
p∈P±1

2p+1
p+1

)
, 3 ∤ mQ, 2 ∤ mQ,

3|P1| ·
(
1 + 7

15

∏
p∈P±1\{2}

2p+1
p+1

)
, 3 ∤ mQ, 2 | mQ,

3|P1| ·
(
1 + 1

2

∏
p∈P±1

2p+1
p+1

)
, 3 ∥ mQ, 2 ∤ mQ,

3|P1| ·
(
1 + 7

10

∏
p∈P±1\{2}

2p+1
p+1

)
, 3 ∥ mQ, 2 | mQ,

3|P1|+1 ·
(
1 + 5

4

∏
p∈P±1

2p+1
p+1

)
, 32 | mQ, 2 ∤ mQ,

3|P1|+1 ·
(
1 + 7

4

∏
p∈P±1\{2}

2p+1
p+1

)
, 32 | mQ, 2 | mQ.
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Proof. The proof is analogous to that of Corollary 10.23.

The above result for C the discriminant has already been obtained in [BP25, Section
4.2] and has been proven for ℓ = 3 by Varma [Var22, Theorem 1 (a)].

10.4 Average Torsion of Ray Class Groups of Cyclic Cubic Fields

Using the results from the previous sections, we show how to obtain explicit formulas
for the average ℓ-torsion, ℓ ̸= 2, 3, of ray class groups of cyclic cubic fields.

Use Setup 8.37 with F = Q, G = C3 and I = ⟨
∑

h∈C3
h⟩ and do not fix T . Then K is the

family of cyclic cubic extensions of Q. Let ℓ be a prime with ℓ ̸= 2, 3. If ℓ ≡ 2 mod 3,
then ℓ is inert in Q(ζ3) and

AvK,C(ℓ) =
∑

T=(Tp)p|mQ/
∼=

PrC(T ) ·
∣∣UT [ℓ]G∣∣ · ( |UT [ℓ]1|

ℓ2
+ 1

)

=
∑

T=(Tp)p|mQ/
∼=

PrC(T ) ·
(
|UT [ℓ]|
ℓ2

+
∣∣UT [ℓ]G∣∣) ,

where T runs over collections of C3-structured Qp-algebras. If ℓ ≡ 1 mod 3, then ℓ is
totally split in Q(ζ3), say (ℓ) = q1q2. Here,

AvK,C(ℓ) =
∑

T=(Tp)p|mQ/
∼=

PrC(T ) ·
∣∣UT [ℓ]G∣∣ · ( |UT [ℓ]1[q∞1 ]|

ℓ
+ 1

)
·
(
|UT [ℓ]1[q∞2 ]|

ℓ
+ 1

)
,

where again T runs over collections of C3-structured Qp-algebras. From Proposition 10.5
one reads off the following table for the probabilities of the C3-structured Qp-algebras,
where again the third column indicates how many C3-structured Qp-algebras up to
isomorphism there are with base algebra as given in the second column.

Number of
such Tp

PrC(Tp)

C prod. of ram. primesp Tp

p ≡ 2(3)
Q3
p 1 1

3

L/Qp unram. 2 1
3

p ≡ 1(3)
Q3
p 1 p

3p+6

L/Qp unram. 2 p
3p+6

L/Qp ram. 6 1
3p+6

p = 3
Q3
p 1 p

3p+6

L/Qp unram. 2 p
3p+6

L/Qp ram. 6 1
3p+6

From Propositions 10.7 and 10.21 one further obtains the following table.
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In case ℓ ≡ 1(3){∣∣UTp [ℓ]1[q∞1 ]
∣∣ , ∣∣UTp [ℓ]1[q∞2 ]

∣∣}p Tp
∣∣UTp [ℓ]∣∣ ∣∣UTp [ℓ]G∣∣

p3 ̸≡ 1(ℓ), p ̸= ℓ
Q3
p 1 1 {1}

L/Qp unram. 1 1 {1}
L/Qp ram. 1 1 {1}

p2 + p+ 1 ≡ 0(ℓ)
Q3
p 1 1 {1}

L/Qp unram. ℓ 1 {1, ℓ}
L/Qp ram. 1 1 {1}

p ≡ 1(ℓ)
Q3
p ℓ3 ℓ {ℓ}

L/Qp unram. ℓ ℓ {1}
L/Qp ram. ℓ ℓ {1}

p = ℓ, vℓ(mQ) = 1
Q3
p 1 1 {1}

L/Qp unram. 1 1 {1}
L/Qp ram. ℓ2 1 {ℓ}

p = ℓ, vℓ(mQ) ≥ 2
Q3
p ℓ3 ℓ {ℓ}

L/Qp unram. ℓ3 ℓ {ℓ}
L/Qp ram. ℓ3 ℓ {ℓ}

Note that the statement p2 + p + 1 ≡ 0(ℓ) or p ≡ 1(ℓ) is equivalent to p3 ≡ 1(ℓ). In
the p = ℓ, vℓ(mQ) ≥ 2 case, further note that if L/Qp is unramified, then |µℓ(L)| = 1
as Qp(ζp) is totally ramified over Qp and therefore cannot be contained in L. Moreover,
since Qp(ζp)/Qp has degree p−1 by [Neu99, Proposition II.7.13], even if L/Qp is ramified,
we must have |µℓ(L)| = 1. Hence the factor |µℓ(L)| from Proposition 10.7 (ii) (a) does
not appear in the case p = ℓ, vℓ(mQ) ≥ 2.

The tables lead to explicit formulas for the average ℓ-torsion, ℓ ̸= 2, 3, of ray class groups
of cyclic cubic fields. In particular, we obtain Corollary 1.17, which constitutes the case
ℓ ≡ 2 mod 3.

Corollary 10.25. Denote by KC3 the family of pairs (K, ι) where K ⊆ Q is a Galois
extension of Q and ι is an isomorphism C3

∼−→ Gal(K/Q). Let mQ be a positive integer.
For a, b ∈ Z define P(a, b) := { p | mQ : p ≡ a mod b }. For (K, ι) ∈ KC3 let C(K, ι) be
the norm of the product of the primes of Q that ramify in K. Let 2 ̸= ℓ be a prime with
ℓ ≡ 2 mod 3. Assume that Conjecture 8.38 holds. Then the limit

lim
B→∞

∑
(K,ι)∈KC3

C≤B

|ClK(mQ,∅)[ℓ]|∣∣∣KC3
C≤B

∣∣∣
exists and equalsℓ

|P(1,ℓ)|
(
1 + 1

ℓ2

(
ℓ2+2
3

)|P(2ℓ+1,3ℓ)|∏
p∈P(1,3ℓ)

p(ℓ2+2)+6
3p+6

)
, ℓ2 ∤ mQ,

ℓ|P(1,ℓ)|+1
(
1 +

(
ℓ2+2
3

)|P(2ℓ+1,3ℓ)|∏
p∈P(1,3ℓ)

p(ℓ2+2)+6
3p+6

)
, ℓ2 | mQ.
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Proof. The formulas are obtained in the analogous way as in Corollary 10.23, namely
by plugging the data from the two tables in this subsection into the formula

AvK,C(ℓ) =
∑

T=(Tp)p|mQ/
∼=

PrC(T ) ·
(
|UT [ℓ]|
ℓ2

+
∣∣UT [ℓ]G∣∣)

=
1

ℓ2

∏
p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]∣∣+ ∏

p|mQ

∑
Tp/∼=

PrC(Tp) ·
∣∣UTp [ℓ]G∣∣

for the limit in the statement, where for the final equality we have used Proposition
10.1 and where we recall that Tp runs over C3-structured Qp-algebras. We note that if
p2+p+1 ≡ 0 mod ℓ, then 0 ≡ 4p2+4p+4 = (2p+1)2+3 mod ℓ which gives

(−3
ℓ

)
= 1.

However,
(−3
ℓ

)
=
(−1
ℓ

) (
3
ℓ

)
=
(
ℓ
3

)
=
(
2
3

)
= −1 by quadratic reciprocity and as ℓ ≡ 2

mod 3. Hence, the case p2 + p + 1 ≡ 0 mod ℓ does not occur. So for p | mQ there are
the following nontrivial cases to distinguish:

(1) p ≡ 1 mod ℓ and p ≡ 2 mod 3, or equivalently, p ≡ 2ℓ+ 1 mod 3ℓ;

(2) p ≡ 1 mod ℓ and p ≡ 1 mod 3, or equivalently, p ≡ 1 mod 3ℓ;

(3) p = ℓ ≡ 2 mod 3 and vℓ(mQ) = 1;

(4) p = ℓ ≡ 2 mod 3 and vℓ(mQ) ≥ 2.

The statement follows by plugging the respective values from the two tables into the
formula for AvK,C(ℓ).

In the same manner, a formula for ℓ ≡ 1 mod 3 can be obtained, albeit that formula
will look more complicated.
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