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Abstract

We propose a conjecture for the distribution of the ‘good part’ of the ray class group
Clg (m) of a number field K, for K running over a natural family of Galois extensions
of a fixed base number field F' and fixed modulus m given by an integral ideal of Op. It
can be seen as a generalisation of earlier conjectures by Pagano—Sofos for the family of
imaginary quadratic number fields and by Bartel-Pagano for the family of real quadratic
number fields. Our conjecture is phrased in terms of the Arakelov ray class sequence of
a number field introduced by Bartel-Pagano and postulates that the ‘good part’ of the
latter behaves randomly in the sense of Cohen—Lenstra. To be able to state it, we develop
a commensurability theory for automorphism groups of chain complexes, extending the
commensurability theory of Bartel-Lenstra for automorphism groups of modules.

We show that our conjecture implies the Cohen—Lenstra—Martinet heuristics as refor-
mulated by Bartel-Lenstra and predicts equidistribution of the reduction map (’)IX{ —
(O /m)*. We further obtain from our conjecture a general formula for the average
(-torsion, ¢ a good prime, of Clg(m) in families of abelian extensions. We explicitly
calculate the predicted average f¢-torsion of ray class groups of cyclic cubic fields with
fixed rational modulus for £ # 2, 3.
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1 Introduction

In number theory, the investigation of statistical questions has become an increasingly
important research topic, stretching over many subdisciplines and dealing with objects
of various kinds. Now known as arithmetic statistics, the modern origin of this area
lies in H. Cohen and H. W. Lenstra’s seminal paper [CL84], in which they took a new
perspective on the previously poorly understood ideal class groups of number fields by
studying them through their distribution in natural families of number fields. Their
approach and the conjectures they made, known as the Cohen—Lenstra heuristics, laid
the groundwork for plenty of subsequent research in number theory and beyond.

The present work is closely related to those roots of arithmetic statistics and is concerned
with the distribution of ray class groups, which are a natural generalisation of the ideal
class group and play an important role in global class field theory. First conjectures
about the distribution of ray class groups of imaginary quadratic number fields and real
quadratic number fields have been made by Pagano—Sofos [PS17] and Bartel-Pagano
[BP25], respectively. In this thesis, we seek to generalise their work to the ‘good part’
of ray class groups in families of arbitrary Galois extensions of number fields. Building
on the existing work for both class groups and ray class groups, we develop all theory
necessary in order to make a natural conjecture about the distribution of ray class
groups with fixed modulus. To further support our conjecture, we then derive several
consequences of it, some of which rely on results that may be of independent interest.

1.1 Background

We discuss the context of this thesis in some more detail.

1.1.1 Arithmetic Statistics and the Distribution of Number-Theoretic Objects

The key philosophy of arithmetic statistics is that the statistical behaviour of mathe-
matical objects mirrors their structural properties, the reason being that any structure
will favour certain outcomes and even rule out others. In order to better understand the
structure and nature of the objects one is interested in, the aim is thus to prove results
on their statistics. This is also an instance of the common approach in mathematics to
study objects of interest all at once, compared to individually. The nature of the area
entails that statements in arithmetic statistics generally contain a lot of information
and are not easy to prove, and making a good conjecture is an important part of the
research.

A lot of the time, as is the case also for us with ray class groups, one is interested in
the distribution of number-theoretic objects, since it encodes a great deal of information
about them. What this means explicitly is that given a family of objects of interest X,
i € I, belonging to some set X' — to be thought of as the set of ‘outcomes’ and assumed



to be countable here — one wants to know how often every Y € X occurs among the
X;, i.e. one wants to know what the probability is that for a randomly drawn X; we
have X; =Y. If I is finite, it is clear what that probability should mean. However, if
I is infinite, to make sense of that probability requires a height function h: I — R>q
with the property that |{i € I'|h(i) <n}| < oo for all n € Z~o. Using h to induce an
ordering on I, the probability that a random X; equals Y can then be expressed as

o HieIn(E) <n, X =Y}
Py(X; =Y) = lim {ieI|h()<n}

Note that this probability may depend on h and that the limit may not exist. Studying
the distribution of the X; (with respect to h) means to study Pj. Obtaining meaningful
number-theoretic statements requires sensible choices of family I, outcomes X, height
function h and possibly even objects Xj.

In practice, determining the distribution of objects X; as above requires deep knowledge
about them. A common approach when investigating that distribution is to compare
it with the distribution of a random object of the same kind, provided one can make
sense of the latter. The idea behind this is that if the X; behave like a random object
of a certain type T, this means that all the structure the X; have is that of an object
of type T, since additional structure would cause them to behave differently. In that
case, the structure of the objects X; can be regarded as fully understood! On the other
hand, if the X; do not behave like a random object of type T, this indicates that they
carry additional structure, which had not yet been taken into account. A strategy to
understand the X; from a macroscopic view is thus to ‘extract’ all their structure until
one can prove that they behave like a random object of exactly that structure.

Requisite for the above strategy is to know what the distribution of a random object looks
like. Often, the objects X; will be certain algebraic structures determined up to some
notion of isomorphism and the set of outcomes X will be a full set of representatives for
the set of isomorphism classes of these structures. In that case, there is a well-established
principle for the distribution of random such objects, pioneered by Cohen and Lenstra:

Principle 1.1 (Cohen—Lenstra Principle). Suppose that objects of type T admit a notion
of isomorphism. The probability that a randomly drawn object of type T is isomorphic
to a given object Y of type T is proportional to 1/ |AutY|.

The factor 1/|AutY| is, as Cohen and Lenstra write, ‘a very natural and common
weighting factor’, and the principle conforms with several natural ways of generating
random objects, for example when generating a random group of order n by writing
down a random n x n multiplication table [CL84, page 54] or when generating a random
finite abelian p-group as the cokernel of a random (with respect to Haar measure) full
rank square matrix over Z, [F'W89)].



1.1.2 Previous Work on the Distribution of Ideal Class Groups

Before contemplating the distribution of ray class groups, it is imperative to first under-
stand the situation for the ideal class group Clg of a number field K. This finite abelian
group is a central object in number theory, but — despite its prominent position — for a
long time there had not been known much about its behaviour. Given K, there existed
algorithms to compute Clg, but general structural results were scarce and there was
little hope for advancement. Motivated by this lack of knowledge and by newly available
computational data, Cohen and Lenstra [CL84] began to study the distribution of class
groups in families of number fields, in line with the ideas described above.

In doing so, working in the setting of a Galois extension K /F of number fields with Galois
group G, the class group Clg is subject to the following considerations. First of all, it
naturally is a G-module and therefore should be understood as such rather than merely
as an abelian group. Secondly, it is known that genus theory restricts the structure of the
p-Sylow subgroup Clg [p™] for primes p dividing |K : F| = |G|. For this reason, Cohen
and Lenstra consider only the S-part Clg[S*°] = @D, g Clx[p™] of the class group for
a set S of primes not dividing |K : F|. Finally, for such S, by [Neu99, Proposition
I11.1.6 (ii) and (iv)], extension of ideals gives an isomorphism Clz[S>®] = Clg[S*®]¢ =
(X_gec 9) Clk [, fixing part of Clk [S*°]. Taking the above information into account,
Cohen and Lenstra make conjectures for the distribution of Clg[S*°] for imaginary
quadratic number fields and totally real abelian extensions of F' = Q, ordered by absolute
discriminant.

We describe in some more detail the conjectures for quadratic number fields. Here,
the Galois group acts on Clg by —1, so neither the Galois module structure nor the
Galois fixed points impose any structural restrictions on the group structure on the odd
part of the class group. Hence, the latter is investigated just as an abelian group. The
existing data indicated a close relation of the behaviour of the odd part of Clg to that
of a random finite abelian group of odd order in the sense of Principle 1.1. Cohen and
Lenstra turned this observation into a conjecture as follows. Let S be a set of primes.
Call a group an S-group if the order of every element is a product of primes in .S. For
finite S, u € Z>¢ and Hg a full set of representatives for the isomorphism classes of finite
abelian S-groups, they prove that cg,, := ZHEHS m < 00. Their conjecture for
imaginary quadratic fields then is:

Conjecture 1.2 ([CL84, Fundamental Assumptions 8.1 (1)]). Let S be a finite set of
odd primes. For B € Rxo write KZ5 for the set of imaginary quadratic number fields

with absolute value of their discriminant bounded by B. Let f: Hg — C be ‘reasonable’.
Then

1 1
cso |[Aut H|

- Clg |5
i ez D

B—oo K= B—ro0
<B HeHs,|H|I<B



They do not make precise what ‘reasonable’ should mean. In this form, the conjecture
is more general than just a statement on the distribution of Clg[S°°]; one obtains the
latter by taking f to be the indicator function of H € Hg, in which case the conjecture
reads

HKEICQB’CIK[SOO}%HH ) )

lim = .-
B—oo ‘IC;B‘ CS.0 |Aut H|

In terms of the ideas of Section 1.1.1, Conjecture 1.2 thus postulates that the only
structure on Clg[S*°] for a generic imaginary quadratic number field K is the abelian
group structure. For real quadratic number fields, the conjecture is slightly different.

Conjecture 1.3 ([CL84, Fundamental Assumptions 8.1 (2)]). Let S be a finite set of
odd primes. For B € Rsq write ICIB for the set of real quadratic number fields with

absolute value of their discriminant bounded by B. Let f: Hg — C be ‘reasonable’.
Then

+ Clg S
lim ZKEKSBf( K[ ]) = lim Z f(H)L 1

B—oo ’K;B‘ B0 esioTti< cs1 |H|-|Aut H|

The above indicates that the odd part of the class group of real quadratic fields carries
some sort of additional structure to the abelian group structure. Cohen and Lenstra
attribute the different behaviour to the difference in the rank of O%. They also make
slightly more general versions of the above conjectures allowing infinite S.

The Cohen-Lenstra heuristics have been generalised by Cohen and Martinet [CM90] to
arbitrary Galois extensions of number fields, again ordered by absolute discriminant.
Cohen—Martinet also consider only the S-part Clg[S>°] of the class group for a possibly
infinite set S of so-called ‘good primes’. Here, the general conception is that there is a
notion of such ‘good primes’ for which the ‘good part’ Clx[S*>°] behaves well in the sense
that it has minimal structural restrictions and distribution given by a law of the kind as
proposed by Cohen and Lenstra. The notion of ‘good primes’ that Cohen and Martinet
use is slightly more general than the one used by Cohen and Lenstra. Analogous as
before, their conjectured distribution for the ‘good part’ of the class group weighs an
outcome Y by a factor of the form 1/(|]Y|* - |AutY]) with u determined by the rank
of Oj. Cohen and Martinet moreover outline how to obtain statements on non-Galois
extensions from their conjecture. See also [WW?21], which further discusses their work.

Over time, certain flaws in the Cohen—Lenstra—Martinet heuristics have been found.
Malle [Mal08] indicated that the conjecture for the distribution of Clg [p*°] for K running
over a family of Galois extensions of F' does not seem to hold when the base field F
contains the p-th roots of unity. Later on, Bartel and Lenstra [BL20] gave two explicit
counterexamples to the heuristics, revealing problems with ordering number fields by
discriminant and with allowing infinite .S. They also proposed a corrected version of the
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heuristics, which we are now going to explain in some more detail, as it is one of the
starting points for our conjecture on ray class groups.

Besides dealing with the issues mentioned above, Bartel and Lenstra also achieved to
reformulate the Cohen—Lenstra—Martinet heuristics in a way which captures the influence
of the unit group on the class group that causes the non-random behaviour of the latter.
They do so by considering the Arakelov class group Pic(}( of a number field K in place
of the class group Clg. The Arakelov class group is a compact real abelian Lie group,
whose definition ‘adds’ the infinite places to the class group, and which naturally comes
with a short exact sequence

0 —— O @z R/Z » Pic) » Clgy — 0. (1.4)

Bartel and Lenstra show that the Cohen—Lenstra—Martinet heuristics are equivalent to
the conjecture that the ‘good part’ of the Arakelov class group behaves like a random
object in the sense of Principle 1.1. In the philosophy of Section 1.1.1, Pic(}( thus
incorporates the structure on the ‘good part’ of the class group related to the unit group
— as is also suggested by the short exact sequence (1.4) — and there is no additional
structure. This also conforms with the viewpoint that in order to get a complete picture
in questions regarding number fields, it is necessary to take into account not only the
finite but also the infinite places.

We now discuss some of the aspects and details of Bartel and Lenstra’s conjecture that
we will refer back to later. They work in the following setup.

Setup 1.5. Let F' be a number field and fix an algebraic closure F' of F. Let G be a
finite group. Let A be the quotient of QG by a two-sided ideal containing > gec 9 and
let V' be a finitely generated A-module. Let S be a finite set of primes that are good for
A (see Definition 7.1) and let R :=im(Z(s)G — A), where Zg) denotes the localisation
of Z at Z\ Upe gPZ. Let My be a full set of representatives for the isomorphism classes
of finitely generated R-modules M with A®@r M =2 V.

Let KB be the family of pairs (K,¢) where K C F is a Galois extension of F not
containing a primitive p-th root of unity for any p € S and ¢ is an isomorphism G =
Gal(K/F) that induces an isomorphism A ®zq O = V of A-modules. Assume that
KCBL is infinite. Let C': KBY — R>q be the function which for (K,:) is given by the
absolute norm of the product of the prime ideals of Op that ramify in K. For B € Ry
denote by KBL 5 the set of (K,:) € KBl with C(K, 1) < B.

In the definition of the family CBY, the fields are not allowed to contain primitive p-th
roots of unity for primes p € S in order to avoid the issues with roots of unity discussed
above. The assumption that XBY be infinite is there to be able to reasonably apply
Principle 1.1. Ordering the fields by C' is believed to be better behaved than ordering
by the discriminant, cf. [BL.20, page 929].
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Instead of working with the compact group Pic%, Bartel and Lenstra consider its Pontry-
agin dual (Pic%)Y. If K/F is a Galois extension with Galois group G, then (Pic%)Y
naturally is a G-module. The significance of the ring R is to remove the structural
restrictions on (Pic(}()v given by genus theory and Galois fixed points by considering
R ®z¢ (Pick)V for (K,1) € KBE. The set S is assumed to be finite to circumvent the
problems with infinite S discussed earlier. The requirement that > gecg=0¢ A ensures
that tensoring with R removes the Galois fixed points; in defining A, one may quotient
out more components of QG, which allows to remove the corresponding components of
(Pic%)V if wanted.

We remark that R is flat over ZG and that the dual of (1.4) tensored with R splits,
so that the resulting sequence adds no additional piece of structure to R ®za (Pic(}()v.
Moreover, if (K, 1) € KBY, then R®zq (Pick )Y is a finitely generated R-module satisfying
A®p R®zg (Pic%)Y 2 V, which means that one can uniquely identify R ®zg (Pic%)Y
with an element of My . Thus, the desired conjecture to make is that the ‘good part’
R®z¢ (Pic%)Y of Pic} behaves like a random element of My,. When trying to formalise
this in terms of Principle 1.1, one encounters the major issue that the automorphism
group of R ®za (Pic%)v is in general not finite. Bartel and Lenstra manage to resolve
this problem by developing a theory of commensurability of automorphism groups in
[BL17], which allows to make sense of the index of automorphism groups, even when
those groups are infinite. Their crucial result is [BL17, Theorem 1.2], which in the special
case of the setting above gives the following.

Theorem 1.6. Use Setup 1.5 and let
S := { L finitely generated R-module| AQr L=V }.

There is a unique function ia: S X & — Qs such that:
(i) If L,L/, M,M" € S and L = L' and M = M’, then ia(L, M) =ia(L', M’).
(i) If L,M,N € S, then ia(L, M) -ia(M,N) =ia(L,N).

(iwi) If L, M € S and there is a monomorphism L < M with finite cokernel, then with
H:={peAuwtM|puL =L} and p: H— Aut L, p+> p|; one has

) |Aut M : H| - |ker p|
L, M) =
ia(L, M) |Aut L : im p|

Here, ia stands for ‘index of automorphism groups’. Accordingly, the value ia(L, M)
should be thought of as |Aut M : Aut L|, which it indeed equals if Aut L and Aut M
are finite. With ia(L, M) for fixed M acting as a replacement of 1/|Aut L|, Bartel and
Lenstra then show that >y, ia(IV, M) < oo and construct the probability distribu-
tion

1

PRY: My — [0,1], L :
ZNEMV la(N’ M)

-ia(L, M)

12



that can be thought of as weighing each L € My, by a weight proportional to the inverse
of the size of its automorphism group. Note that PBL is independent of M by part (ii)
of the above theorem. They propose the following conjecture, a corrected version of the
Cohen—Lenstra—Martinet heuristics.

Conjecture 1.7 ([BL20, Conjecture 1.5]). Use Setup 1.5. Let f: My — C be a ‘reas-
onable’ function. Then the limit

Z(K,L)eicggB f(R @zc (Pick)Y)
Av(f):= lim =
po e

exists, the sum

E(f):= ) f(M) P°()

MeMy,

converges absolutely, and both expressions are equal.

Bartel and Lenstra also discuss which functions may be considered reasonable.

In a similar direction, the paper [WW21] also reformulates the Cohen—Lenstra—Martinet
heuristics in a way that aligns with Principle 1.1, but using a different object than
the Arakelov ray class group. Going further, Bartel-Johnston—Lenstra [B.J1.24] make
conjectures for infinite S, and Sawin-Wood [SW23] make conjectures in the case when
p-th roots of unity are present in the base field for p € S.

We remark that for the most part, the conjectures above rely on computational data and
the ideas from Section 1.1.1. To this date, the only proven cases of the Cohen—Lenstra—
Martinet heuristics are those of the average 3-torsion (i.e. for the function f(M) =
|M[3]|) of class groups of quadratic extensions of number fields [DH71, DW88] and of
the average 3-torsion of class groups of certain 2-extensions [LOWW?25].

The conjectures discussed above all deal with the ‘good part’ of the class group, the
analogue of which we will be concerned with in our investigations of ray class groups.
We remark that there has also been research on the ‘bad part’ of Clg. In fact, here,
more statements have been proved. See [Ger87], [FK07], [Smi26a], [Smi26b].

1.1.3 Previous Work on the Distribution of Ray Class Groups

For a number field K and a modulus m in K, that is, a pair m = (mg, ms) where mg is
a nonzero integral ideal of O and m, is a set of real places of K, we denote by Clx(m)
the ray class group of K with modulus m. It is a finite abelian group that generalises the
ideal class group in the sense that Clg(Og, @) = Clg. The ray class group naturally
comes with a short exact sequence

Sf}(n(m): 0 (Ok [mo)* x{£1}m>

13



where p: O — (O /mp)* x {£1}™ sends u to the tuple consisting of @ and the signs
of u under each of the real embeddings in m.,. To be able to ask statistical questions
about Clg(m) for K running over a family of extensions of a number field F, we will
always consider a fixed modulus of the form m = (mp, &), where mp is a nonzero integral
ideal of Op, which for an extension K/F we regard as an ideal of Og by extension of
ideals.

The story of the investigations of the distribution of ray class groups begins with Varma’s
paper [Var22], in which they prove an explicit formula for the average 3-torsion of ray
class groups of imaginary and real quadratic fields with fixed rational modulus. The
result shows that ray class groups with nontrivial modulus behave fundamentally dif-
ferently to class groups, and thus set the task to find a model for the distribution of
ray class groups that both explains this behaviour and naturally extends the Cohen—
Lenstra—Martinet heuristics.

The first work in this direction is that of Pagano and Sofos [’S17], who make a conjecture
for the distribution of ray class groups of imaginary quadratic number fields ordered by
discriminant. Their key idea is to not consider the ray class group on its own, but rather
the whole exact sequence S??(m) naturally associated with it. This again is in line with
the ideas from Section 1.1.1 that all information on the objects of interest has to be taken
into account to determine their distribution, the sequence S{}?(m) imposing restrictions
on the structure of Clg(m). They also make a conjecture for the distribution of the
‘bad’ part at p = 2 and prove a result on the distribution of 4-ranks of ray class groups
of imaginary quadratic fields.

Taking up the work described above, Bartel and Pagano [BP25] examined the good
part of Sf}(n(m) for quadratic fields, rephrasing the conjecture of Pagano and Sofos for
imaginary quadratic K in terms of Principle 1.1, and proposing a conjecture for real
quadratic K. Crucially, they introduce the Arakelov ray class group Pic?{(m) of a number
field K associated to a modulus m in K, a natural generalisation of Pic% that is related
to Clg(m) as Pic% is to Clg. Tt is again a compact real abelian Lie group and has a
natural short exact sequence

Aragy. (O fmo)* x {1}
Sit(m): 0 sy

Pic%(m) — Pic}y —— 0

attached to it. Combining the ideas of [BL20] and [PS17], Bartel and Pagano conjecture
that for K running over either imaginary or real quadratic fields, ordered by conductor,
and modulus given by a fixed rational integer, the S-part S (m)[S*] is distributed like a
random suitable short exact sequence. Here, an automorphism of a short exact sequence
means an automorphism in the category of chain complexes. Besides showing that their
conjecture is consistent with the Cohen—Lenstra—Martinet heuristics for quadratic fields,
Bartel and Pagano derive several other implications of which we briefly describe two.
Once again extending the work of Pagano—Sofos, they deduce from their postulate a
formula for the average p-torsion of Clg(m), p odd, also for real quadratic fields, which
recovers Varma’s result for p = 3. Moreover, they show that the sequence S&#(m) ‘knows
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about’ the reduction map p: O — (Og/mp)* and obtain from this an equidistribution
prediction for the image of the fundamental unit of K under p.

1.2 Main Results

The purpose of this thesis is to extend the work on the distribution of ray class groups
outlined above. We propose a conjecture for the distribution of the good part of Clx (m)
for K running over a natural family of Galois extensions of a fixed base number field F'
and fixed modulus m given by an integral ideal of Or. The conjecture rests on the ideas
described in the previous sections and forms a natural generalisation of the existing
conjectures on the distribution of ideal class groups and ray class groups. The core
principle is to continue the direction of [BP25] and fuse the extensions approach from
[PS17] with the Arakelov approach from [BL20]. In further support of our heuristics,
we deduce several consequences of it, amongst them an equidistribution statement for
the good part of reduction map O — (Ox/m)* and a general formula for the average
¢-torsion of Clg (m) for abelian extensions K/F and good primes /.

1.2.1 The Main Conjecture

We work in a similar setting as Setup 1.5.

Setup 1.8. Fix a number field F, an algebraic closure F' of F and an ideal mp < Op.
Let G be a finite group and let W be a finitely generated QG-module. Let A be the
quotient of QG by a two-sided ideal containing » gec 9 and let S be a finite set of primes
that are good for A in the sense of [B1.20] (see Definition 7.1). Let R := im(Z(5)G — A)
and let V := A ®gg W. Let My be a full set of representatives for the isomorphism
classes of finitely generated R-modules M with A ®@r M = V.

We consider the family IC of Galois extensions of F that is defined as the family BV
from Setup 1.5, except with the condition A ®r Oj = V replaced by the more general
condition that Q ®z O = W as QG-modules. Assume that K is infinite. For (K,:) € K
use the notation m := (mp, @). For nonabelian G let C: K — R>( be the function that
maps (K, ¢) to the absolute norm of the product of the prime ideals of O that ramify in
K. For abelian G let C': K — R>q be any fair counting function as defined in [Woo10]
(see Definition 8.10). Then for B € Ry write Ko<p for the set of (K,t) € K with
C(K,.) <B.

In accordance with the philosophy from Section 1.1.1, our goal is to package all structure
of the good part of Clg(m) for (K, ) € K into one object and then conjecture that this
object behaves randomly in the sense of Principle 1.1. Borrowing from [BP25], we
postulate that the desired object is given by the good part of the Arakelov ray class
sequence S (m) with component of the trivial character removed. We ‘extract’ that
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part from S?{ra(m) as in [BL20]: Consider in a first step equivalently the Pontryagin dual
sequence S#(m)Y. Then form the sequence R ®z¢ Sx'*(m)Y, which is given as

0 — R®z¢ (Pick)Y — R®z¢ Pick (m)Y — R®ze (O /mp)*)Y — 0,

and which is again exact by flatness of R. To formalise our conjecture, we wish to find a
suitable space of outcomes for these sequences and then define a probability distribution
on that space that weighs each outcome proportional to the inverse of the size of its
automorphism group. For this, we make use of the fact that short exact sequences are
parametrised by Ext!. As before, we have that the left hand term R ®zq (Pic%)v is
isomorphic to a unique element of My . Following the previous works [PS17] and [BP25],
we next partition the family C into finitely many natural subfamilies such that the right
hand side of R ®z SA™(m)V constant in each subfamily.

Setup 1.9. Use Setup 1.8. Further let T' = (T})ym, be a collection of degree |G| etale
Fy-algebras T), with an inclusion G < Autp, Ty such that G acts transitively on the set
of primitive idempotents of T},. Assume that T is viable, i.e. that there is an extension
K /F with Galois group isomorphic to G in such a way that for all p | mp there is a G-
equivariant F-algebra isomorphism K ® p F, = T},. Define KT to be the set of (K1) € K
with K ®@p F, 2 T, for all p | mp. For B € Rsq write KL_ 5 for the set of (K,¢) € KT
with C'(K, ) < B. -

We will show that each T}, has a unique maximal Op,-order Or, and that for (K,) € KT
there is a G-equivariant Op-algebra isomorphism Og/mp = Or/mp, where Op :=
Hp\mF OTP' Let Ur = (OT/mF)X and UT,R = R ®za ((’)T/mF)X. We denote by
Autgeeq. alg.(Ujvﬂ’ ) the set of automorphisms of Ujvﬂ’ r that are induced by a G-equivariant
Op-algebra automorphism of Op/mp.

Definition 1.10. Let N € My,.

(a) Let ©,0' € Exty(Uy z, N). Atriple (f1, fo, f-1) is an (Autceq. alg. (Uf. g) X Aut N)-
isomorphism from © to ©' if (f1, fo, f—1) is an isomorphism from © to ©" when
regarding them as chain complexes concentrated in degrees 1, 0 and —1, and if ad-
ditionally f_1 € Autg.eq, alg_(U:}f’ r)- Write [©]¢eq. alg. for the (Autceq, alg,(Ur_\A R) X
Aut N)-isomorphism class of © and write Autg.eq alg.(©) for the group of all
(Autg eq.alg. (U7 g) x Aut N)-automorphisms of ©.

(b) Let E(Uy. g, N) be a full set of representatives for the (Autgeq.alg. (U7, g) X Aut N)-
isomorphism classes in Ext(Uy. p, N). Put E(UY. g, Mv) := [Unre s, EUF 5 N').

We will show that we naturally have R ®zq ((Ox/mr)*)" = (R ®z¢ (Ok/mp)*)".
Thus for (K,:) € KT, via an isomorphism R ®z¢ (Pic%)Y = N for N € My and
a G-equivariant Op-algebra isomorphism Og/mp = Or/mp, we may identify R ®zq
S&%(m)Y with a unique element [R®zg S (m)V] of £ (U}.g» My ), independently of the

>~
~
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choices of isomorphisms made. The space £ (U}/ r» My ) is our space of outcomes for the
sequences R @z Sa(m)Y for (K1) € KT,

When trying to define a probability distribution on E(Uy. z, My ) that weighs each ele-
ment O by the inverse of the size of Autg.eq alg.(©), one runs into the problem that the
latter group typically has infinite order. To resolve this issue, we follow the approach
of [BL20], and in a first step generalise the commensurability theory of automorph-
ism groups from [BL17] to chain complexes. The following statement is obtained as a
consequence of Theorem 5.42:

Theorem 1.11. For N € My denote by T(N) the set of chain complexes of the form

+—0—>0—N—-L—Ulp—0—0—--

where N is in degree 1 and L is a finitely generated R-module, and which become iso-

morphic to 0 — V My 050 after applying A ®p —. Define (Autg.cq. alg. (UT R) X
Aut N)-isomorphism of elements of T(N) as above. Let T Unery, TV). There is
a unique function iag.eq.alg.: T X T — Qo such that:

(i) If ©,A € T(N) are (Autg.eq. alg.(Uy ) X Aut N)-isomorphic and ©',A" € T(M
are (Autg.eq. alg.(U}/’R) x Aut M)-isomorphic, then it holds that iag.cq. alg. (0, ©') =
iaG—eq. alg. (A7 A/) .

(i) If ©,0,0" € T, then iag.eq. alg. (0, 0') - 18Geq. alg. (0, ©”) = iag-eq. a1s. (0, O”).
(111) If ©,0" € T and there is a monomorphism © — ©' with finite cokernel, then with
H = {a € Autgeq alg. (©') ‘ 00 =0,3 7 € Autgeq.alg. (O) : U|6 = T}
and p: H — Autgeeq ale.(©), 0 — ol|g one has

|AutGeq. alg. (©7) : H| - |[ker p
|AutGieq. alg. (©) @ im p)

1aG eq. alg. (@ 9 )

In fact, in Theorem 5.42 we will prove a much more general statement on the com-
mensurability of subgroups of automorphism groups of certain chain complexes. The
theorem above provides us with a function

iavG’-eq. alg. 5(U7\<7R7 MV) X €(U¥,R7MV) — Q>O
which analogously as the function ia from Theorem 1.6 should be thought of as out-

putting iag.eq. alg. (0, 0") = |[Autgeq. alg. (07) : AUtGreq. ale. (©)]. Using iag.eq. alg., We con-
struct the desired probability distribution on £ (Uz\“/ o My).

17



Theorem 1.12 (Theorem 8.34). There is a unique discrete probability distribution Pr
on E(UY g, My) with the property that for all ©,0" € E(UY. , My) we have

7) = iaG—eq. alg.(@7 9,)

This distribution also has the following properties:

(i) If ©,0' S(U¥7R,MV) and @ is a short exact sequence of finite R-modules with
O@ P20, then

P7(0) = |Autgcq. alg. () : Autgcq. alg.(0)] - Pr ()

where the inclusion Autg.eq alg. (©) — AutGieq. ale. (©') is given by f — f @ ide.
(it) If © € E(Uy g, My) is given by

0 > N L » Upp — 0,

then we have

PT(@) — ]P)BL(N) . H@l]G—eq. alg.| .
‘ExtR(U:,Y’R,N)

For f: E(Uy g, My) — C define

E(f):= >  f(©) -Pp(®)

965(U¥’R7Mv)

if the sum converges absolutely. We propose the following conjecture for the distribution
of the good part of Arakelov ray class sequences.

Conjecture 1.13 (Conjecture 8.38). Use Setup 1.9. Let f: E(Uy. g, My) — C be ‘reas-
onable’. Then the limit

Av(f):= lim Z(K7L)E’C£§B f([R®za S}*{ra(m)v])

B—oo "ngB‘

exists and equals E(f).
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1.2.2 Implications of the Main Conjecture and Other Results

Apart from it being a natural prediction to be made, we will further reinforce Conjecture
1.13 by showing that it has many pleasing consequences for the statistical behaviour of
certain of those objects attached to (K,:) € KT, information on which is contained in
the sequence R ®zq SpH(m)V.

Ideal class groups. As an immediate consequence of Theorem 1.12 we obtain that for the
trivial modulus, Conjecture 1.13 reduces to the Cohen—Lenstra—Martinet heuristics.

Corollary 1.14. Assume that Conjecture 1.13 holds. Then Conjecture 1.7 holds.

We also obtain a finer version of Conjecture 1.7, namely for (K, ) running over the
family KT instead of K; see Corollary 9.3.

Equidistribution results. We obtain the following predictions of equidistribution of key
objects related to R ®zq S?(ra(m)v. To avoid much of the glut of technical language
needed for precise statements, we state them in a vague and more conceptual manner
and refer to the statements in brackets and the respective sections of Chapter 9 for the
omitted details.

Corollary 1.15. Use the notation from Section 1.2.1. Assume that Conjecture 1.13
holds. Then the following hold.

(i) (Corollary 9.7.) Let N € My and let KT (N) be the set of (K,1) € KT with
R®zc (Pick )Y = N. As (K, 1) runs over KT(N), the sequence R ®zg S&?(m)Y is
equidistributed in E(Uy, g, N).

(it) (Corollary 9.23.) Let N € My and letw € Hompg(Uy, g, Homz, o (N/Niors, Zsy)").

Let KT(N,w) C KT(N) be as in Definition 9.8. As (K, 1) runs over KT (N,w), the
sequence R ®z¢ SE(m)Y is equidistributed in its space of outcomes.

(iii) (Corollary 9.29.) For (K,i1) € KT let px(m): O%/u(K) — (Ok /mp)*/p(u(K))
be the reduction map. As (K,t) runs over KT, the local reduction map idr ® pg (m)
is equidistributed in its space of outcomes.

(iv) (Proposition 9.30.) As (K,i) runs over KT, the distribution of R®zq (Pic%)Y and
the distribution of idgr ® pr(m) are independent of each other.

Here, we use the term associated space of outcomes to mean the natural respective set
of outcomes from Chapter 9 with the property that for (K, ¢) in the respective subfamily
of KT, the object in question can uniquely be identified with an element of the set of
outcomes. The above statements can be seen as generalisations of the statements (b)
to (e) of [BP25, Theorem 1.8]. They are generally obtained in an analogous manner
as in loc. cit. The hardest to derive from Conjecture 1.13 is statement (iii). It builds
on the remarkable statement from [BP25] mentioned above that the Arakelov ray class
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sequence S#*(m) ‘knows about’ the reduction map px(m). By generalising Bartel and
Pagano’s method, we show in Proposition 7.26 that the local reduction map idg ® p (m)
can be obtained from R ®zg Sp(m)Y by means of a general construction on short
exact sequences. A key ingredient for this construction is an explicit description of
the Pontryagin dual of Zg) regarded with the discrete topology. We provide such a
description in Theorem 4.34 for S being any nonempty subset of the union of {0} and
the set of rational primes. It makes explicit isomorphisms appearing in [CEW97] and
generalises the well-known isomorphisms Z" = R/Z and Q" = Ag/Q.

Average torsion of ray class groups. Analogous as in [PS17] and [BP25], Conjecture 1.13
leads to a prediction for the average torsion of ray class groups. In Corollary 9.43 we
first derive a general formula for certain average torsion of Clg(m) on K” and then as
an immediate consequence obtain the below result.

Corollary 1.16 (Corollary 9.44). Use Setup 1.8 with G abelian and S = {¢} where ¢
is a prime with £ 1 |Clg| - |G|. Denote the simple components of A by Ai,...,A.. For
i €{1,...,c} denote by K; the centre of A; and by V; the i-th isotypical component of the
A-module V. Assume that Conjecture 1.13 holds for all viable collections T' = (1)

Then the limit
C 2(Kwekoep |Clk(m)[E]]
lim =
B—yo0 Ko<l

plmp -

exists and equals

ol T Uz [€i[a*]|
viable /2 qle

where: Ur[{]; denotes the i-th isotypical component of the Z )G -module Ur[¢]; Ur[¢];[q*]
denotes the set of x € Ur[{]; with annp, (z) = q" for some r € Z>o; for T = (T3)

plmp s

‘{(K7L)€,€‘K®FFpng forallp\mF,CQ()SB}‘

Pre(l):= Jin, H(K,L) GIE‘C(K) SBH 7

with K the set of pairs (K,.) where K C F is a Galois extension of F and v is an
isomorphism G = Gal(K/F).

We will show that the limit Pro(7") always exists under the assumptions above and
provide means to calculate it in certain cases. As a special case, the above result recovers
the formulas from [PS17] and [BP25] for the average ¢-torsion, ¢ odd, of Cli(m) for K
imaginary quadratic and K real quadratic, respectively. In particular, Conjecture 1.13
implies Varma’s [Var22] results on the average 3-torsion of ray class groups of quadratic
fields.
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Extending beyond the quadratic case, in Chapter 10 we explicitly calculate all the terms
of the formula in Corollary 1.16 for F' = Q, G = Cy, ¢ prime, and certain values of /. In
particular, we obtain an explicit formula for the average ¢-torsion of the ray class groups
of cyclic cubic fields for ¢ # 2,3. We state the case of / =2 mod 3 below. A formula
for £ =1 mod 3 can also be obtained but is more complicated.

Corollary 1.17 (Corollary 10.25). Denote by K the family of pairs (K, 1) where K C
Q is a Galois extension of Q and ¢ is an isomorphism C3 — Gal(K/Q). Let mg
be a positive integer. For a,b € Z define P(a,b) := {p|mg : p=a modb}. For
(K,1) € K9 let C(K,1) be the norm of the product of the primes of Q that ramify in K.
Let 2 # 0 be a prime with £ = 2 mod 3. Assume that Conjecture 1.13 holds. Then the
limit

% esyexcs,, [Clic(mg, 2)(6)

lim
B—oo ”CgsgB’
exists and equals
P10 1 (0242 |P(26+1,30)] p(2+2)+6 2
E‘ 0 (1 + TQ( 3 ) HpGP(l,B@) 3p+6 ) N’ )me7
P(1,0)|+1 2242\ |P(26+1,30)] (£242)+6 9
E‘ Lok (1 +( 3 ) HpEP(l,SE) £ 3p+6 ) , ! ’m@'

We remark that while Corollary 1.16 is in the same spirit as [PS17, Conjecture 2.15] and
[BP25, Proposition 4.15], to prove it, we introduce some new ideas. What remains the
same is the key ingredient we use, which is the map described below.

Let Z be a commutative ring, let R be a Z-algebra and let a € Z. Let M and N be
R-modules and let © € ExthL(M,N). The snake lemma applied to the commutative
diagram with two rows, each given by ©, and vertical maps given by multiplication by
a, yields a homomorphism 657" (6): M[a] — N/aN. This construction gives rise to a
map

SMN . Exth(M, N) — Homg(M|a], N/aN), © — §MN(0).

In our proof of Corollary 1.16, we use the following new result on sM ’N, which is a
consequence of Theorem 3.26.

Theorem 1.18. Let Z be a Dedekind domain with fraction field K, let A be a separable
K-algebra and let R be a maximal Z-order in A. Let a € Z. Assume that A is commut-
ative, that a has no square prime divisors in Z and that the integral closure of Z in any
simple component of A is unramified over Z at all prime divisors of a in Z. Then SMN
is surjective for all finitely generated R-modules M and N.

In fact, Theorem 3.26 provides a precise characterisation of the surjectivity of SMN in
the same setting as in the theorem above but without the assumptions on A, a and Z,
and may be of independent interest.
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1.3 Organisation of the Material

Chapters 2 through 7 can all be seen as preparations for Conjecture 1.13 and are mostly
self-contained. The first three of these contain some more general background material.
In Chapter 2 we discuss Ext groups and in particular the relation between Ext! and
short exact sequences. Chapter 3 is concerned mainly with modules over maximal orders.
Here, we investigate properties of torsion and torsionfree modules and give a proof of
Theorem 1.18. Chapter 4 discusses Pontryagin duality for locally compact Hausdorff
abelian groups that are also modules over a locally compact ring. This more general
setting of duality is crucial for us as we need to respect Galois module structures when
dualising. We also give some more specific results on duality for modules over a Zg)-
order.

The chapters thereafter are more geared to our context. In Chapter 5 we develop a com-
mensurability theory for subgroups of automorphism groups of chain complexes that
allows us to prove Theorem 1.11. In Chapter 6 we recall the definition and some prop-
erties of the central object for our conjecture, the Arakelov ray class group. Chapter
7 formalises the process of picking out good components from the Arakelov ray class
sequence and establishes important properties of this construction.

In Chapter 8 we establish the setup for Conjecture 1.13, filling in all details omitted
above. We then prove Theorem 1.12 and state the main heuristic again. The final two
chapters are concerned with implications of Conjecture 1.13. In Chapter 9 we derive
Corollaries 1.14, 1.15 and 1.16. Finally, in Chapter 10, we specify to families of cyclic
extensions of prime degree. We explicitly determine all the terms appearing in the
formula for the average torsion in some specific cases and in particular prove Corollary
1.17.

1.4 Notation and Conventions
Rings and Modules

All rings are unital. Unless otherwise specified, by module we mean left module.

For aring R, we denote by R* its unit group and by 3(R) its centre. If o: R — T is aring
homomorphism, then we denote by ¢* the induced group homomorphism R* — T*.

Suppose that R = Ry X - -- X R, is a product of rings and that M is an R-module. Then
for i € {1,...,n} we denote by M; := e;M the i-th isotypical component of M, where
e; =(0,...,0,1,0,...,0) with 1 in i-th position. Note that M; is an R-submodule of M
as well as an R;-module and that M = @, M;.
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Categories

If C is a category, then by writing C' € C we mean that C' is an object of C.

Let C be a category and let L, M, N € C. Let f: L - M and g: N — M be morphisms.
If the fibre product of f and g exists, then we denote it by L x;; N and denote by
n: L Xy N — L and ny: L xpy N — N its associated morphisms. Note that if
C = grMod, then the fibre product exists and is given by

Lxy N={(n)eLxN[f(l)=g(n)}

together with the canonical projections. Now let h: M — L and k: M — N be morph-
isms. If the pushout of h and k exists, then we denote it by L +3; N and denote
by t.: L = L +p N and ty: N — L+ N its associated morphisms. Note that if
C = rMod, then the pushout exists and is given by

L+y N=L&N/{(h(m),—k(m))|me M}
together with the maps induced by the canonical inclusions L — L&N and N — LON.

We use the following notation for categories:

Grp | Groups
Ab | Abelian groups
Ring | Rings (with unit)
rMod | Left modules over the ring R
rmod | Finitely generated left modules over the ring R
Ch(C) | Chain complexes in the abelian category C
Ch(C)® | Bounded chain complexes in the abelian category C
LCA | LCA groups
rLCA | LCA modules over the locally compact ring R

Localisation and Completion

For a commutative ring Z, we denote by Max(Z) the set of maximal ideals of Z. If p
is a prime ideal of Z, then we denote by Z, the localisation of Z at p and by ZJ the
completion of Z at p (if p is maximal, this is the same as the completion of Z, at pZ,).
If further M is a Z-module, then we denote by M, = (Z \ p)~"'M = Z, ®; M the
localisation of M at p and by Mp the completion of M at p. Note that if Z is noetherian
and M is finitely generated, then the natural map Zp Rz M — Mp is an isomorphism
[AMG9, Proposition 10.13].

Let S be a nonempty subset of the union of {0} and the set of rational primes. We
denote the localisation of Z at Z \ g PZ by

Zs) = (Z\Upes ) "2 = { §|a.b € Z.b ¢ UpespZ |
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We always consider Zg) with the discrete topology. The nonzero prime ideals of Zg)
are the pZg) for p € S\ {0}, and the localisation of Z g at pZg) is just Z,. Note that
if 8" C S, then Z(sy C Zgy. Moreover, Zs) = (e Z(p)- If S is the set of all rational
primes, then Zg) = Z, and if S = {0}, then Zg) = Q.

Torsion

Let Z be an integral domain. Let M be a Z-module. We say that an element m € M
is a Z-torsion element if annyz(m) # 0, that is, if there is 0 # z € Z such that zm = 0.
We denote by torsz (M) or simply Mies the Z-torsion submodule of M. We say that M
is Z-torsionfree if Mios = 0 and that it is Z-torsion if M = Migys.

For a € Z we denote by MJa] := {m € M |am = 0} the a-torsion submodule of M. If
Z is a Dedekind domain and p is a maximal ideal of Z, then we denote by

Mp>™] :={m e M|anngz(m) = p" for some r € Z>¢ }

the p-primary component of M. More generally, if S is a set of maximal ideals of Z,
then we write M[S*] for the set of elements of M whose annihilator is a product of
primes in S.

These notions will often come up in the context where R is a Z-order (in some finite
dimensional algebra over the fraction field of Z) and M is an R-module. We make the
convention that in this case, by torsion we always mean Z-torsion.

Maximal Orders over Dedekind Domains

Let Z be a Dedekind domain with fraction field K, let A be a separable K-algebra and
let R be a maximal Z-order in A. In this context, we will use the following notation,
which is based on the one from [CM90].

Let A = A; x --- x A. be the decomposition of A into simple components and let
R = R; x --- X R, be the associated decomposition of R. For i € {1,...,c} define
K; := 3(4;) and let Z; be the integral closure of Z in K;. Then R; is a maximal Z;-
order in A; by [Rei03, Theorem 10.5]. There are a unique /; € Z>; and a unique division
ring D; with centre K; such that A; = Mat;, (D;). In a diagram,

Ki c > Dz c Matli(Di) = Az
] o]
Zi c > RZ',

where ‘m.o.” means maximal order. Now let p be a maximal ideal of Z;. Let K;, be
the completion of K; at p and let Z;, be the completion of Z; at p, a complete discrete
valuation ring. Denote by p the unique maximal ideal of Zip. Let Ajp = K;p ®K, Aj,
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a central simple K p-algebra. There are a unique /;, € Z>1 and a unique division ring
Dy with centre K;y such that A;, = Mat, (Dip)-

Denote by v;, the valuation on Kj;,. By [Rei03, Theorems 12.6 and 12.10], it extends
uniquely to a valuation on D; . Let vp, , = e(D; /K p)-vip be the associated normalised
valuation on D;,. We write €;, := e(D;,/K;p) and f;p = f(D;p/Kip). By [Rei03,
Theorem 12.8], the ring A; p := {2 € D; | vip(x) > 0} is the unique maximal Z’,p—order
Ajp in Djy. Let mp,, € Ay such that vp, (7p,,) = 1 and let p’ := 7p;pAip. By
[Rei03, Theorem 13.2], p’ is the unique maximal left ideal of A;, and every non-zero
one-sided ideal of A; , is a two-sided ideal and is a power of p’.

Let ﬁi,p = Zim ®z, R;, a maximal Zm—order in A;p. By [Rei03, Theorem 17.3] we
may choose the isomorphism A;, = Mat,, (D) in such a way that it carries R;, onto
Maty, ,(Aip). In a diagram,

t. ~
KLP = Dl»p Matlz,p (D%P) AZ7P

[ me] mo] mo]

Zip Ajp — Maty, ,(Aip) —— Riy,

—>
int.cls.
where ‘! m.o.” means unique maximal order. If M is an R-module, write M; for the i-th
isotypical component, which is an R;-module. Further define M;, := Z;, ®z, M;, an
R; y-module.

Topological Groups

If M is a topological group, then we denote by My its connected component of the
identity. If N is another topological group, then we denote by Homs (M, N) the set of
continuous group homomorphisms from M to N. Given a compact subset K C M and
an open subset U C N, define

W(K,U) :={¢ € Hom¢s(M,N) |o(K)CU}.

Then the W(K,U) are a subbasis for a topology on Hom(M, N). This topology
is called the compact-open topology on Homeys(M, N), and we will always consider
Homs(M, N) as a topological space equipped with it.
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2 Ext Groups and Extensions

Throughout this chapter, let R be a ring.

We collect some theorems and definitions from the theory of Ext groups, most of which
are well-known and stated here for convenience and later use. We assume familiarity
with basic properties of Ext groups, for which we refer to [Wei94, Chapter 3]. Having in
mind our later applications to homomorphisms and short exact sequences, we are mostly
concerned with Ext’ = Hom and Ext!.

2.1 Ext Groups

For left R-modules M and N both the functors Hompr(M, —): rMod — Ab as well as
Homp(—, N): rMod°® — Ab are left exact but not right exact. Their right derived
functors are the Ext functors Ext’, (M, —): rMod — Ab and Ext%(—,N): rMod? —
Ab. These constitute bifunctors

Ext%(—,—): rMod® x gMod — Ab

which are the right derived functors of Hompg(—,—): grMod®® x pRMod — Ab. Note
that if S is another ring and M is an (R, S)-bimodule, then Ext% (M, N) is naturally
a left S-module, and if N is an (R, S)-bimodule, then Ext'; (M, N) is naturally a right
S-module, cf. [Rei03, page 9].

If f: M’ — M is an R-module homomorphism, we denote by f* the induced homo-
morphism Ext}(M,N) — Ext}(M',N), and if g: N — N’ is an R-module homo-
morphism, we denote by g, the induced homomorphism Ext} (M, N) — Exti (M, N').

We state the following proposition for convenience as it will be used repeatedly.

Proposition 2.1 ([Rei03, Theorem 2.39]). Let Z be a commutative ring. Let Z' be a
Z-algebra that is flat as a Z-module and let R be a Z-algebra that is left noetherian. Let
M be a finitely generated R-module and let N be any R-module. Then the map

Z' ®7 Homp(M, N) — Hompre,g(Z' ©7 M,Z' ®7 N),
a®p— (bem— ba® p(m)),

is an isomorphism of Z'-bimodules. This isomorphism is the first of a family of Z'-
bimodule isomorphisms

Z' @7 Bxth(M,N) = Extlyy p(Z2'©z M,Z' ®z N)

forn € Zxg.

We will need a different version of change of rings as well.
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Proposition 2.2. Let S — R be a flat ring homomorphism. Let n € Z>o and let M
and N be S-modules. Then the functor R ®g — induces a homomorphism

Ext$(M,N) — Exth(R®s M,R®g N)

which is natural in M and N and compatible with the connecting homomorphisms.

Proof. See [HS97, Section IV.12]. O

2.2 Ext and Extensions

What makes Ext groups so important for us is that Ext}z provides a nice algebraic
framework for working with short exact sequences of R-modules. We now explain this
relation in detail.

Definition 2.3. Let M and N be R-modules.

(a) An extension of M by N is a short exact sequence 0 - N — L — M — 0 of
R-modules.

(b) We say that two extensions 0 + N - L -+ M - 0and 0 - N - L — M — 0
of M by N are equivalent if there is a homomorphism f: L — L’ that makes the

diagram
0 >y N L M > 0
b
0 > N » L' M > 0

commute. We denote by Er(M, N) the set of equivalence classes of extensions of
M by N.

(¢) Given two extensions ©: 0 — N S M s0mde:0oNS L S0
of M by N, their Baer sum is defined to be the extension

0—— N —— (Lxy L)/ {(a(n),—c/(n))|ne N} M > 0,

where the left hand map is given by n — (a(n),0) = (0,a’(n)) and the right hand

map is given by (1,I') — B(1) = f/(I'). We will denote this extension by © + ©’.

Construction 2.4. Let M and N be R-modules. Construct a map ¢: Er(M,N) —
Exth(M,N) as follows. Let ©:0 — N — L — M — 0 be an extension of M by
N. Apply Extgr(M,—) to obtain a connecting homomorphism dg: Hompg(M, M) —
Extk(M, N) and define £(0) := dg(idps).
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Proposition 2.5. Let M and N be R-modules. The set Er(M,N) forms an abelian
group with respect to Baer sum and the map

e: Er(M,N) — Exth(M,N)

18 a group isomorphism.
Proof. See [Wei94, Section 3.4] or [HS97, Section II1.2]. O
This different perspective on Ext}%(M , ) will play a central role in our work.

Remark 2.6. There is a similar description of Ext(M, N) for any n, using so-called
n-extensions, see [HS97, Section IV.9]. We will not need this here, however.

Via the isomorphism from Proposition 2.5, the constructions on Ext} (M, N) from the
previous sections correspond to constructions on extensions, and we now describe the
latter. We will generally omit any notation signifying that the elements of Er(M, N)
are equivalence classes. This is because later we will also work with another, weaker,
equivalence relation on extensions.

The functoriality of Ext behaves in the following way for extensions, cf. [[1S97, Sections
III.1 and II1.2] or [Rot09, Section 7.2.1].
Construction 2.7. Let M and N be R-modules. Let © € Er(M, N) be given by

A M > 0.

0 » N —— L

(a) Let f: M" — M be an R-module homomorphism. Then there is a commutative

diagram
0 —— N —25 Lxy M 5% M —— 0
| [l
0 > N L 3 > M > 0

with exact rows, where o/(m) = (a(m),0). The extension f*(0) € Er(M',N) is
given by the upper sequence.

(b) Let g: N — N’ be an R-module homomorphism. Then there is a commutative

diagram
0 sy N @ L LIV » 0
s [ H
\ / / \ s
0 7 N LN/ N +N L B, 7 M 7 0

with exact rows, where §'((n/,1)) = B(I). The extension g.(0) € Er(M,N’) is
given by the lower sequence.
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The change of rings homomorphism from Proposition 2.2 has the expected description
in terms of extensions:

Proposition 2.8. Let S — R be a flat ring homomorphism. Let M and N be S-modules.
Then under the isomorphism from Proposition 2.5, the map

Es(M,N) — Er(R®s M,R®s N), © — R®g O

corresponds to the homomorphism from Proposition 2.2.

Proof. We have to check that the diagram

Eg(M,N) ——— Ep(R®s M,R®g N)

lgs laR

Ext§(M,N) —— Exth(R®s M,R®s N)

commutes, where 7 is the homomorphism from Proposition 2.2. Let ©: 0 - N — L —
M — 0 be an extension of M by N. Denote by dg: Homg(M, M) — Ext5(M, N) the
connecting homomorphism when applying Extg(M, —) to ©, and by drgse: Homp(R®g
M,R®s M) — Ext}{(R ®s M, R ®g N) the connecting homomorphsim when applying
Extr(R ®s M,—) to R ®g ©. Since 7 is compatible with connecting homomorphisms,
we have a commutative diagram

Homg (M, M) % ExtL (M, N)

|- I

Homp(R @s M, R®g M) 5— Exth(R®s M,R®s N).
R®g

The claim follows immediately from this and the construction of e. O

In the following, when dealing with Exth(M, N) or Er(M, N), we will always use the
notation Ext}%(M , N') and use the homological and the extension description interchange-
ably, without further comment.

2.3 Isomorphism of Extensions

We will later investigate the statistical behaviour of certain homomorphisms and short
exact sequences, whose underlying modules vary over the family under consideration.
In our context, asking statistical questions about these objects will only make sense
when regarding the involved modules up to isomorphism. This leads to the following
notion of isomorphism of homomorphisms and extensions that was already used in the
introduction.

29



Definition 2.9. Let M and N be R-modules. Let H < Aut M x Aut N.

(a) Let p,¢’ € Homg(M,N). An H-isomorphism from ¢ to ¢’ is a pair (u,v) € H
with the property that the diagram

=

M2

=
——
]

=

M ——

/

@

commutes.

(b) Let ©: 0 - N - L - M - 0and ©:0 - N - L' - M — 0 be two
extensions of M by N. An H-isomorphism from O to ©’ is a tuple ((u,v),\) €
H x Homp(L, L') with the property that the diagram

0 > N L M > 0
I
0 > N > L' M > 0

comimutes.

Now let n € {0,1} and let z,2’ € Exty(M, N). If there is an H-isomorphism from z to
a', we say that x and o’ are H-isomorphic and write x 2y 2’. We denote by Auty(x)
the H-automorphism group of z and by [z]g C Ext%(M, N) its H-isomorphism class.
In the case H = Aut M x Aut N, we simply speak of isomorphisms and omit the H in
the notation.

Note that the notion of isomorphism of extensions agrees with the notion of isomorphism
when considering them as objects in the category of chain complexes. It is clear that
being equivalent in the sense of Definition 2.3 implies being H-isomorphic, which in turn
implies being isomorphic. So it makes sense to speak of (H-)isomorphism of extensions
even when considering them as elements of Ext},(M, N).

We now link the notions of isomorphism of homomorphisms and extensions to the fol-

lowing natural action. This is inspired by [PS17] and [BP25].

Definition 2.10. Let n € Z>¢. Let M and N be R-modules. Let (u,v) € Aut M x
Aut N and x € Ext;(M, N). Then we put

(ov)x = () o) = v o ()" (2),

which defines an action of Aut M x Aut N on Ext}(M,N). If H < Aut M x Aut N, we
denote by Stabg(x) and Op(z) the stabiliser and orbit of z, respectively, with respect
to the action of H on Ext}(M, N). As before, we omit the subscript H if H = Aut M x
Aut N.
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Note that in the case n = 0, the action of (u,v) € Aut M x Aut N on ¢ € Ext%(M, N) =
Homp(M, N) is simply given by

(wv)p=vopopu ™.

Hence, ¢’ =g ¢ if and only if ¢’ € Op(p), so that [¢]g = O (p). Moreover, Autg(p) =
Stabg (). We now consider the case of extensions and derive similar results.

Lemma 2.11. Let M and N be R-modules. Let (u,v) € Aut M x Aut N. Let ©,0' €
Exth(M,N) and write ©: 0 - N - L - M - 0and ©:0 - N — L' — M — 0.
Then (p,v).0 is given by the exact sequence

0 O NG ' 0.

In particular, (p,v).0 = O if and only if there is X\ € Hompg(L, L) such that ((p,v), \)
is an isomorphism from © to ©'.

Proof. This follows easily from Construction 2.7. O
Proposition 2.12. Let M and N be R-modules and let ©,0" € Exth(M,N). Let
H < Aut M x Aut N. Then the following hold:
(i) We have © =g © if and only if © € Oy (©). In particular, O]y = O (O).
(ii) Let p: Auty © — H be the natural map. Then imp = Stabpy(©) and kerp =
Homp(M, N).

Proof. Claim (i) and the equality imp = Staby () in part (ii) are immediate from
Lemma 2.11. It remains to prove that ker p = Hompg(M, N). Suppose that © is given

by the extension 0 = N = L i M — 0. It is then easy to check that the map
HOII]R(M,N) — Auty ©, v — (idN,idL + ayp,idar)

is an injective homomorphism whose image is precisely ker p. O

In certain cases, we can compare isomorphism class and stabiliser sizes for different
subgroups of Aut M x Aut V.

Corollary 2.13. Let M and N be R-modules and let © € ExtL(M,N). Let H < H' <
Aut M x Aut N and suppose that |H' : H| < oo. Then

|Stabg/(©) : Staby (0)] = |Auty (©) : Auty(0)| < co.
If moreover one of [©]g and [O|g is finite, then so is the other one, and it holds that

©lwl |
H@]H‘ \AutH/(@) : AUtH(@)’
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Proof. Note that we have a natural injection
AutH/(@)/AutH(@) — HI/H

which shows |[Auty/(©) : Auty(0)| < co. By Proposition 2.12, there is a commutative
diagram

1 —— Homp(M,N) —— Auty(©) —— Staby(©) —— 1

H [ /

1 — HOHlR(M, N) — AutH/(@) — StabH/(@) — 1

of groups with exact rows. The snake lemma then yields the first claim. For the iso-
morphism classes simply note that

|H': StabH/(@)| - [Stabg (©) : Stabgy (©)| = |H' : H| -|H : Stabg (©)].

Then use the orbit-stabiliser theorem and the first claim. O
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3 Torsion and Lattices over (Maximal) Orders

In this chapter, we collect statements related to torsion and lattices, in the context
of (maximal) orders. The first two subsections contain well-known properties of the
torsion submodule and of lattices, which will be useful throughout. For the most part,
these are compiled from [Rei03]. In Section 3.3 we prove a classification of the finitely
generated torsion modules over a maximal order over a complete discrete valuation ring.
This theory will then be used in Section 3.4 as a key foundation for the proof of the
characterisation of surjectivity of the map YN from the introduction. Finally, in the
last subsection, we establish some results on the cardinality of certain Ext groups.

3.1 Torsion and Lattices over Orders

In this section, let Z be an integral domain with fraction field K and let R be a Z-order
(in some finite-dimensional K-algebra).

We collect some basic results on torsion that will be used frequently. See Section 1.4 for
relevant notation regarding torsion and recall that by torsion of an R-module we always
mean Z-torsion.

Lemma 3.1. Let M be a Z-module. Let x € K™ and m € M. Then:
z@m=0c K®; M <— m € Miors.

In particular, Mios is the kernel of M — K Q7 M.

Proof. Suppose that m € Mios. Then there is 0 # z € Z with zm = 0. It follows

a

that r @ m = £ ® zm = 0. Conversely, suppose that x @ m = 0. Write x = § with
a,be Z\ {0}. We have 0 = 4 € (Z\ {0})"'M which means that there is c € Z \ {0}
with cam = 0. Hence, m € Migys. O

Thus, if M is Z-torsionfree, then we can identify it with its image in K ® 7z M.

Lemma 3.2. Let M be a Z-module. Suppose that Z' is an integral domain that is flat
as a Z-module. Then (Z' @z M )iors = Z' @7 Miors and the natural map

(Z/ ®Z M)/(Zl ®Z M)tors — Z/ ®Z M/Mtors

s an tsomorphism.
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Proof. Since Z' is Z-flat, the exact sequence 0 — Mios — M — M/Mios — 0 of
Z-modules gives rise to an exact sequence

0 —— 2Rz Myws —— Z2' @z M —— Z' @7 M /Myors — 0

of Z'-modules. It is clear that Z'®z Miors C (Z2'®z M )tors. The converse follows from the

above exact sequence and the fact that Z' ®z M /Mo is Z'-torsionfree by [Sta25, Tag
0AXM]. The second claim is immediate. O

We now switch perspective to R-modules. Note that if M is an R-module and a € Z,
then Mios and MJa] are R-submodules of M, and M /M;,s is torsionfree. If moreover Z
is a Dedekind domain and p is a maximal ideal of Z, then also the p-primary component
M p®] is an R-submodule of M. We have the following generalisation of the decompos-
ition of a torsion abelian group into the direct sum of its Sylow subgroups (which holds
for any Z-algebra R).

Lemma 3.3. Suppose that Z is a Dedekind domain. Let M be an R-module. Then the
following hold:

(i) We have

Mtors = @ M [poo] y
peMax(Z)

and if zMiors = 0 for z € Z with (z) = pi*---p,F € Z, then Mo = Eszl Mpse].

Assume now that Mo is finitely generated as a Z-module. Let p and q be maximal
ideals of Z. Then we further have:

(it) M[p>] is naturally a Zy-module and an Ry-module.

(iii) There is a natural isomorphism

a®@m— am,
Zy Qg M[p™] =2 M[p],
p @z M([p™] P o e m

of Ry-modules.
() If q # p, then Z, @7 M[q*>] = 0.

(v) We have
Zp ®z Miors = Zp Xz M[poo] = M[poo]

as Ry-modules.

All statements above also hold with Z, replaced by Zp, the completion of Z at p, and R,
replaced by Ry = Z, @7 R.
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Proof. To show that the sum in (i) is direct, let p1, ..., p, be maximal ideals of Z and let
m; € M[p°] with 0 = mq+- - -+m,,. Suppose that annz(m;) = p;* with s; € Z>o. Letl €
{1,...,n}. We show that my = 0. Let w € [[, ,; pi". Then 0 = w(my +---+my) = wmy,
so w € p;'. This shows that [Lia p;" C p;" which forces s; = 0. Hence, m; =1-m; =0.

Next, let m € Mo and let 0 # z € Z with zm = 0. Let (z) = pi*---p,* be the
factorisation of (z) into maximal ideals. Since Z is a Dedekind domain, we can find
zi € H#i p;j with 1 = 21 + -+ 4+ 2z;. Then we see that

m=zm+--+zme MpPl @ & Mpi).

This proves (i).

Now assume that Mg, is finitely generated as a Z-module and let p and q be maximal
ideals of Z. Then there is k € Z>¢ with p*M[p>] = 0. The Z,-module structure on
M [p>] is induced by the isomorphism Z,/p*Z, = Z/pkZ. Since Z is central in R, the
Zy-module structure also gives rise to an Ry-module structure.

For part (iii) note that for a € Z, and m € M[p>] we have that a ® m = 1 ® am: If we
let z € Z such that a — z € p"Z,, then by definition, am = zm, so

l@am=1@zm=zm=a®m—(a—2)@m=a®m.

Claim (iv) is clear as we can invert elements of q in Z,. Finally, (v) is immediate from
(i), (iii) and (iv). O

Finitely generated torsionfree modules will play an important role.

Definition 3.4 ([Rei03, pages 44 and 129]). A Z-lattice is a finitely generated Z-
torsionfree Z-module. An R-lattice is an R-module that is a Z-lattice.

Remark 3.5. Some authors, e.g. [CR81], define a Z-lattice to be a finitely generated
projective Z-module. This definition agrees with the one given above if Z is a Dedekind
domain (see Proposition 3.9 below), which is the case that we will be interested in.

We end this section by briefly discussing the dual of an R-module, a notion especially
useful for lattices. As before, we always regard Z as understood from the context.

Definition 3.6 ([Rci03, Exercise 40.2]). Let M be an R-module. Then the dual of M
is M* := Homg (M, Z).

Proposition 3.7 ([Rei03, Exercise 40.2]). Let M be an R-module. Then M* is an
R°?-module via (r.f)(m) := f(rm) for r € R°®?, f € M* and m € M. Moreover, the
following hold:
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(i) If N is another R-module and ¢: M — N is an R-homomorphism, then the map
" N* — M*, f+— foyp is an R°P-homomorphism, and this construction behaves
functorially.

(i) The map
M — M*™, m— (f — f(m))

is a homomorphism of R-modules, which is natural in M.

(i) M* is Z-torsionfree. In particular, if Z is noetherian and M is an R-lattice, then
M* is an R°P-lattice.

(iv) If Z is a Dedekind domain and M is an R-lattice, then the map from (ii) is an
isomorphism of R-modules.

Note also that taking the dual is clearly compatible with direct sums. Moreover, in a
similar direction, we have:

Lemma 3.8. Let M be an R-module. Suppose that R = Ry X --- X Ry, s a product of
rings and let M = My & - -- & M, be the decomposition into isotypical components.

Then R°P = R{P x --- X RyP and there is an isomorphism of R°P-modules

fe (f‘Mi)i

M* = (M) & @ (M,)*,
( 1) 2] @( ) (m1++mn|_>f1(m1)++fn(mn))H<f1,,fn)

where the duals on the right hand side are taken as R-modules. Moreover, (M;)* lies in
block R;® and we have isomorphisms

fo‘Mi

M*Z’g Mi *7
(M7); = (M;) (m1+ -+ my = fi(mg)) < f;

of R°P-modules.

Proof. This is clear. O

3.2 Lattices over Maximal Orders

In this section, Z is a Dedekind domain with fraction field K and A is a separable K-al-
gebra. We discuss some fundamental results for lattices over maximal Z-orders in A.

Proposition 3.9 ([Rei03, Corollary 21.5]). Let R be a mazimal Z-order in A. Then

every R-lattice is R-projective. In particular, if M is a finitely generated R-module, then
M = Mtors & M/Mtors-
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Proposition 3.10. Suppose that Z only has a finite number of mazximal ideals. Let R
be a Z-order in A and let M and N be R-lattices. Then the following are equivalent:

(i) M = N as R-modules,

(it) Ry ®p M = R, ®p N as Ry-modules for all maximal ideals p of Z,
(i) ?zp ®r M = ﬁp ®r N as }Afp-modules for all mazimal ideals p of Z.
If R is in fact a mazimal Z-order in A, these are also equivalent to:

(iv) Ar M = A®r N as A-modules.

Proof. The equivalence of (i) and (ii) is [Rei03, Exercise 18.3]. The equivalence of (ii)
and (iii) follows from [Rei03, Theorem 18.2].

Now suppose that R is a maximal order and let p be a maximal ideal of Z. Then
R, is a maximal Zy-order in A by [Rei03, Corollary 11.2] and R, ® g M and R, ®r N
are Rp-lattices by Lemma 3.2. Hence, the equivalence of (ii) and (iv) follows from
[Rei03, Theorem 18.10]. O

Corollary 3.11. Suppose that Z only has a finite number of mazimal ideals. Let R be
a mazimal Z-order in A and let M and N be two finitely generated R-modules. Then
the following are equivalent:

(i) M = N as R-modules,
(it) Ry ®p M = R, ® g N as Ry-modules for all maximal ideals p of Z,
(iii) Ep ®r M = ﬁp ®r N as fip-modules for all mazimal ideals p of Z.

Proof. The equivalence of (ii) and (iii) follows from [Rei03, Theorem 18.2]. It is clear
that (i) implies (ii).

We show that (ii) implies (i). Suppose that R, ® g M = R, @ N as Ry-modules for all
maximal ideals p of Z. Then by Lemma 3.2 we have Ry ®r Miors = Ry @r Niors and
Ry, ®p M /Miors = Ry @ N/Niors for all maximal ideals p of Z. By Lemma 3.3, the
former implies that Mios = Niors as R-modules, whereas by Proposition 3.10 the latter
implies that M/Miors = N/Niors as R-modules. We conclude from Proposition 3.9 that
M = N as R-modules. ]

3.3 Torsion Modules over Maximal Orders
We aim to give a description of finitely generated torsion modules over maximal or-

ders over a complete discrete valuation ring that is similar to the description of finitely
generated torsion modules over a PID in terms of elementary divisors.
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3.3.1 Maximal Orders over Dedekind Domains

Proposition 3.12. Let Z be a Dedekind domain with fraction field K, let A be a sep-
arable K-algebra and let R be a mazximal Z-order in A. Let M be a finitely generated
torsion R-module. Then there are n € Z>o and left ideals J; C I; of R, i = 1,...,n,
with KI; = KJ; = A for all i such that

M = ézy/b@

as R-modules. If Z is a discrete valuation ring, then moreover there are x; € RN A

with Ii/Ji = R/RQZZ

Proof. The first claim follows from [Kne67, Satz 1]. Now suppose that Z is a discrete
valuation ring. Then by [Rei03, Theorem 18.10], every left ideal of R is principal, so there
are x;,y; € R such that I; = Ry; and J; = Rx;y;, i = 1,...,n. Since KI, = KJ; = A
and KR = A, we have z;,y; € A*, from which it follows that I;/J; = R/Rux;. O

3.3.2 Matrix Orders over Complete Discrete Valuation Rings

In this subsection, Z is a complete discrete valuation ring with normalised valuation
v and fraction field K. Let further D be a division ring whose centre contains K
with |D: K| < oco. By [Rei03, Theorems 12.6 and 12.10], v extends uniquely to a
valuation on D, which we will also denote by v. Similarly as in Section 1.4 we denote by
A :={z € D|v(z) >0} the unique maximal Z-order in D and by vp the normalised
valuation on D associated to v. Let mp € A be a uniformiser for vp. Let | € Z>; and
let R := Mat;(A).

The following proposition will be crucial.

Proposition 3.13 ([Rei03, Theorem 17.7]). Let x € R. Then there are u,v € GL;(A)
such that
uzv = diag(n}y, ..., 7p0), where 0 < a; < --- < q; < 00

(where % is interpreted as 0). The a; are uniquely determined by x.
Lemma 3.14. The following hold:

(i) For h € Z>o, the set of column vectors (A/7)! is naturally an R-module.

(i) Let x € R and let 0 < a1 < --- < a; < oo be the integers from Proposition 3.13
associated to x. Then

R/Rz = (A/np) @& (A/xh)

as R-modules.
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(iii) Let z,y € R and let 0 < a3 < -+ < aq <00 and 0 < b < --- < b < 0
be the integers from Proposition 3.13 associated to x and y, respectively. Then

R/Rx = R/Ry as R-modules if and only if a; = b; for all i.

Proof. Statement (i) is clear. Now let z and a; be as in (ii). By Proposition 3.13,
there are u,v € GL;(A) such that uzv = diag(n};,..., 7). Notice that the R-module
isomorphism R — R, 7 + rv induces an isomorphism R/Rx — R/Rxv and that

Rzv = Ru™'uzv = Ruzv. So we may from now on assume that « = diag(r},...,mH).
For w € R = Mat;(A) denote by w; the columns of w, so that w = (wy | --- | wy). It is
easy to see that the map w +— (wy, ..., w;) gives the desired isomorphism.

Finally, let x, y, a;, b; be as in (iii). Let X := R/Rx and Y := R/Ry. It is clear from (ii)
that if a; = b; for all 4, then X = Y. Conversely, suppose that we have X =2 Y. Assume
that there is ¢ with a; # b;. Let ¢ be maximal with a; # b;. Without loss of generality,
a; > by. Note that W%X and W%Y are submodules of X and Y, respectively. By (ii) and
assumption, we have

m X = ap(A/r5) @ - @ (A/rp) @ np(A/mp ) @ - @A)
Y Zap(Afrpt) & @ mp (A7)

as R-modules. Then by [Rei03, Exercise 6.7] we must have

(A ) = = al(A /i) = 0.
This implies b; > a¢, a contradiction. ]

Note that if M is an R-module, then by [Rei03, Exercise 6.5], M is indecomposable if
and only if Endr(M) is a local ring. In particular, the Krull-Schmidt Theorem holds
for R-modules (cf. [Rei03, Exercise 6.6] or [Lam91, Theorem 19.21]).

Proposition 3.15. The modules
My, = R/Rdiag(1,...,1,7}),  h€Zs1,
form a full set of representatives for the isomorphism classes of indecomposable finitely

generated torsion R-modules.

Proof. Let h € Z>1. Since M}, is annihilated by 7'['%, it will also be annihilated by a high
enough power of a uniformiser for v in Z, so it is a torsion module. To prove that My, is
indecomposable, we will show that Endg(Mj,) is a local ring. Let z := diag(1,...,1,7p).
We have an isomorphism of abelian groups

E,:={w e R/Rx|7w =0} <> Endg(R/Rx)

given by sending w € E, to the map 7 — 7w and by sending ¢ € Endg(R/Rz) to ¢(1).

This becomes a ring isomorphism with the ring structure on E, defined by v - w := wv
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for v,w € E,. Note that for w = (w;j) € R we have w € E, if and only if vp(w;) > h
fori=1,...,1 —1. We claim that

E) = {@: (wij) € By |vp(wy) = O}.

Suppose that W = (w;j) € E, satisfies vp(wy) = 0. Define v = (v;;) € R by vy = wﬁl
and v;; := 0 otherwise. Then v € E, and one easily checks that vw — 1 € Rz and

wv —1 € Rz, that isw-v =7 -w = 1. Conversely, let w = (w;;) € E. Then there is
U = (vy) € Ey withw-7=71-w = 1. In particular, we have
-1
(vw — 1)” = Zvlkwkl +ogwy —1 € W%A
k=1
But vp(wy) > h for k =1,...,1 — 1, so we must have vp(vywy — 1) > h. This forces
vp(vy) = vp(wy) = 0, and the claim on E is proven. We obtain

vp(wy) >1 } .

It is easily seen that this is a two-sided ideal of F,, so E, is a local ring and therefore
M}, = R/Rz is indecomposable.

B, \ EX :{@:(wzj) € B,

It is clear by Lemma 3.14 (iii) that M}, and My, are not isomorphic if h # h'. Now
suppose that M is an indecomposable finitely generated torsion R-module. By [Rei(3,
Theorem 17.3], R is a maximal Z-order in Mat;(D), so by Proposition 3.12 we have
M = R/Rz for some x € RN Mat;(D)*. Let 0 < a; < --- < a; < oo be the integers
from Proposition 3.13 associated to x; note that a; < oo as x € Mat;(D)*. Since M is
indecomposable, Lemma 3.14 (ii) forces a; = --- = a;—1 = 0. Then by part (iii) of the
same lemma, we have M = M,,. ]

3.3.3 Maximal Orders over Complete Discrete Valuation Rings

Let again Z be a complete discrete valuation ring with normalised valuation v and
fraction field K. Let A be a central simple K-algebra and let R be a maximal Z-order
in A. We generalise the statements above from Mat;(A) to R.

Construction 3.16. We use notation as in Section 1.4: There are a unique [ € Z>1 and
a unique division ring D with centre K such that A = Mat;(D). Let A be the unique
maximal Z-order in D. We may choose the isomorphism A = Mat;(D) in such a way
that it carries R onto Mat;(A), giving us a ring isomorphism ¢: R = Mat;(A).

Let x € R. By Proposition 3.13 we can uniquely associate integers 0 < a1 < --- < aq; < 0
to p(x). These integers are independent of the choice of ring isomorphism R = Mat;(A):
If ¢: R = Mat;(A) is another such isomorphism, then 1) o ¢! is an automorphism of
Mat;(A), so is given by conjugation by an element of GL;(A). It follows that ¢(x) and
P(x) = Pop~(p(z)) have the same associated integers. Thus, we can uniquely associate
integers 0 < a1 < --- < a; < oo to z in this way. Call these the invariants of x.
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Corollary 3.17. The following hold:

(i) Let x,y € R and let 0 < a3 < -+ <aq <00 and 0 < by <--- < b < o0 be the
invariants of x and y, respectively. Then R/Rx = R/Ry as R-modules if and only
if a; = b; for all i.

(ii) For each h € Z>y let " € R be an element whose invariants are 0,...,0, h.
Then the modules R/Rx(h), h € Z>1, form a full set of representatives for the
isomorphism classes of indecomposable finitely generated torsion R-modules.

Proof. After choosing an isomorphism ¢: R = Mat;(A) as in Construction 3.16 to
regard R-modules as Mat;(A)-modules, this follows from the corresponding statements
in Propositions 3.12 and 3.15. O

Definition 3.18. Let M be a finitely generated torsion R-module. Then by the Krull-
Schmidt Theorem and by Corollary 3.17 we may uniquely associate to M a list of
elements of Z>1, namely the labels of its indecomposable summands. Call these the
elementary invariants of M.

By Proposition 3.12, every finitely generated torsion R-module can be decomposed into
a direct sum of modules of the form R/Rx for x € RN A*. From this decomposition,
one can easily read off the elementary invariants as follows:

Lemma 3.19. Letx € RNA*. Then the elementary invariants of R/ Rx are the nonzero
invariants of x.

Proof. We may assume that R = Mat;(A) where [ and A are as in Construction 3.16.
The claim follows immediately from Lemma 3.14 (ii): If

alz-..:at71:0<at§...Sal<oo’
where t > 1, are the invariants of x, then
R/Rngat @@Mal

Hence, the elementary invariants of R/Rx are ay,...,q. O

Remark 3.20. Elementary invariants are related to elementary divisors as follows. Sup-
pose that T is a PID and let M be a finitely generated torsion Z-module. Then we have

M=T/p @ @T/p" @ @ T/p @ @ T/p, "

for distinct maximal ideals p; = (p;) of T' and positive integers 7;,. The elementary
divisors of M are
71,1 T1,tq Tk,1 Tk, ty

pl 7"'7p1 7"'>pk 7"'apk
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Let j € {1,...,k}. Then fpj is a complete discrete valuation ring and we have
— ~ Tt
M ij/prjl '@ij/pjj !

as Tp -modules. In the above language, with Z = R = Tp and A = K the fraction field
of Tp , Lemma 3.19 gives that the elementary invariants of Mp are rj1,...,7Tjt;. SO

knowing the elementary invariants of all ij is equivalent to knowing the elementary
divisors of M.

3.4 The Connecting Homomorphism of Torsion of a Short Exact Sequence

This section is concerned with the map constructed below, which will come into play
later on in the proof of Theorem 9.42 when investigating the average torsion of ray class
groups. It has already appeared in [PS17, Section 2.1] and [BP25, Section 4.2].

Construction 3.21. Let Z be a commutative ring and let R be a Z-algebra. Let a € Z.
Let M and N be R-modules. Let © € Extk(M, N) and write

©: 0 - SN V' 0.

Then we have a commutative diagram of R-modules with exact rows

B

0 »y N —2 5 L M 0
l-a l-a B l-a
0 y N —2%= L M > 0,

from which the snake lemma yields a homomorphism
0a(©) 1= 64,r(©) = 005" (©): M[a] = N/aN

which is defined as follows: Let m € M]la]. Pick | € L with g(l) = Then al €
ker() = im(a), so we may pick n € N with a(n) = al. Then 0,(0)(m ) 7. (This is
well-defined by the snake lemma.)

Naturality of the connecting homomorphism in the snake lemma (cf. [HS97, page 100])
implies that J,(0) does not depend on the chosen representative for ©, so that we get a
map

Sa: Exth(M, N) — Homg(M][a], N/aN), © s §,(0).

We are interested in the question when J, is surjective. First statements in this direc-
tion are [PS17, Proposition 2.7] and [BP25, Lemma 4.12]. Below, we vastly generalise
these results, Workmg with new ideas. We will give a characterisation of surjectivity for
maximal orders over Dedekind domains. We first collect some general properties and
auxiliary results for our endeavour.
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Proposition 3.22. Let Z be a commutative ring and let R be a Z-algebra. Let a € Z.
Let M and N be R-modules. The map d, is a group homomorphism which is natural in
M and N.

Proof. 1t is a straightforward computation to show that d, is a group homomorphism.
Naturality follows from the explicit description of the induced maps on extensions in
Construction 2.7 and from naturality of the connecting homomorphism in the snake
lemma. O

In particular, é, is compatible with direct sums, so for example we have a commutative
diagram

!
SM.N&N

Exth(M, N @ N') 2 » Homp(Mal, (N & N')/a(N & N'))

lz lz
Exth(M, N) @ Exth(M,N') —— )omR(M[a], N/aN) @ Homg(M[a], N'/aN").

( SM.N sM,N

a Ya

Moreover, d, is compatible with flat base change.

Lemma 3.23. Let Z be a commutative ring and let R be a Z-algebra. Let S be an-
other Z-algebra and let S — R be a Z-algebra homomorphism that is flat as a ring
homomorphism. Let a € Z and let M and N be S-modules. Then the diagram

60,,5

Ext(M, N)

» Homg(M[a], N/aN)
R®sfl R®s—

Exth(R®s M,R®g N) 5 Hompg(R ®s M[a], R®s N/aN)

commutes.

Proof. This again follows from naturality of the connecting homomorphism in the snake
lemma. O

We will make use of the following generalisation of [Rot09, Example 7.23 (i)].

Lemma 3.24. Let R be a ring. Let x € R be right regular (i.e. the map R — R, r — rx
is injective). Let N be an R-module. Then there is an isomorphism of abelian groups

N/zN = Exth(R/Rx, N).

Forn € N, the isomorphism maps m € N/xN to the extension

0 sy N 25 NoR/{(rn,—rz)|r e R} —=— R/Rt —— 0

where vy (n) = (n,0) and w((n,r)) =T.
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Proof. By assumption, we have a short exact sequence of R-modules

0 R—/> R R/Rx —— 0.
Applying the functor Extr(—, V) yields an exact sequence
0 — Homp(R/Rz, N) — Homp(R, N) "% Homp(R, N) % Extk(R/Rz, N) — 0.
By [MLG63, page 73] it holds that if ¢ € Hompg(R, N), then w(yp) is given by the extension

0—— N3 NoR/{(p(r),—rz)|r e R} —=— R/Rx —— 0

where (n(n) = (n,0) and 7((n,r)) = 7. Now under the isomorphism of abelian groups

n— (r—nrn),

N = Hompg(R, N),
(1) < o,

we get an exact sequence

0 — Homp(R/Rz, N) N —=5 N - ExthL(R/Rz,N) —— 0
where w'(n) is given by the extension
0 —— N -5 NeR/{(rn,—rz)|r € R} —"— R/Rx — 0.

The claim follows. O

Lemma 3.25. Let Z be a commutative ring and let R be a Z-algebra. Let a € Z and
let x € R be right reqular. Let N be an R-module. Denote by

£: N — N/zN = Exth(R/Rz, N)

the surjective homomorphism of abelian groups which is the concatenation of the natural
projection with the isomorphism from Lemma 3.24. Then for n € N and 7 € R/Rx[a]
it holds that

(85/7N o €)(n)(7) = 7'n

where v’ € R is the unique element such that ar = r'z.

Proof. This is an easy calculation. In the sequence £(n), (0,7) is a preimage of 7. We
have

a-(0,7) = (0,ar) = (0,ar) + (r'n,—r'z) = (r'n,0) = .y (r'n)
from which the claim follows by definition of d,. O
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R/Rx,N R/Rx,N

o & and the fact that d,

o is surjective will be important ingredients in the proof of the main theorem
of this section, which is the following.

The explicit description of d, is surjective if and only

if gft/ RN

Theorem 3.26. Let Z be a Dedekind domain with fraction field K, let A be a separable
K-algebra and let R be a maximal Z-order in A. Let a € Z and let M and N be
finitely generated R-modules. Use the notation from Section 1.4. Then the following are
equivalent:

Ny MN . o
(i) 6,k s surjective.

(ii) For all i € {1,...,c} and all mazximal ideals p of Z; we have that either all
elementary invariants of (Miors)ip or all elementary invariants of (Niors)ip are
> vip(a)eip.

Proof. We split up the proof into six steps.

Step 1: Reduce to the case M torsion If M is Z-torsionfree, then the domain and
codomain of 6 N are both ZEero, SO M a, R is clearly surjective. Thus by compatibility of
0q with dlrect sums and by Propos1t10n 3.9, we may from now on assume that M is a
torsion module.

Step 2: Reduce to the case Z complete discrete valuation ring, A central simple. By
naturality of §, we have that 5 Nis surjective if and only if 5 ”, Ni is surjective for all

ie{l,...,c}. Letie{1,. c} Then by compatibility of d, Wlth direct sums and by

Lemma 3.3 we have that ¢, EN" is surjective if and only if §, l[p Vi 5 surjective for all

maximal ideals p of Z;. Let p be a maximal ideal of Z;. Then by [Wei94, Lemma 3.3.6],
the Z;-modules Ext}% (M;[p>°], N;) and Hompg, (M;[p*°][a], N;/aN;) are annihilated by a

power of p. Hence, by Lemmas 3.3 and 3.23 and Proposition 2.1 it holds that 4, R[p LN

7, p7Nz p

is surjective if and only if & is surjective.

@ fLip

This means that to prove the equivalence we may assume that Z is a complete discrete
valuation ring and A is a central simple K-algebra. We denote by v the valuation on Z,
by 7 a uniformiser in Z and by p = (7) the maximal ideal of Z. We may assume that
a = 7", We have A = Maty(D) for a unique integer | € Z>; and division ring D with
centre K. The valuation v extends uniquely to D and we denote by vp = e(D/K)v the
associated normalised valuation. Write e := e(D/K). Denote by A the unique maximal
Z-order in D. Let mp € A with vp(mp) = 1. We choose the isomorphism A = Mat;(D)
such that it carries R onto Mat;(A). So from now on we may assume that A = Mat;(D)
and R = Mat;(A).

Step 3: Reduce to the case N torsion. We show that SN ig surjective if IV is torsionfree.
For this, by Proposition 3.15 we may assume that M = M}, = R/Rx for some h € Z>1,
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where z = diag(1,...,1,7%). Then by Lemma 3.25, SN is surjective if and only if the
map

6: N — Homp(R/Ra[x" @], N/a"@WN), n— (F — r'n),
is surjective, where ' € R is the unique element such that @y = /g, By [Rei03,
Theorem 17.3], every left ideal of R is principal, so there is y € R with Rx < Ry < R
such that R/Rz[x"(®] = Ry/Rx = (7). Let s € R such that 2 = sy. Note that since
x € A* we also have y € A* and s € A*. It holds that

7_(_v(a)y — 7_{_v(a)yxflx — 7_‘_v(a)sflx
where 1@ g1 = 7v@ya=1 ¢ R as 7v@y € Rx. So 6(n)(y) = n*@s—1n. Now let

¢ € Hompg(R/Rz[r"®], N/7*(® N) and suppose () = 7, where n, € N. We need to
find n € N such that 7v(@s~1n =7, € N/7"@N. We have

0= (@) = sp(y) = 51, € N/m"@N,

so there is n € N with sn, = 7@ p. Since N is torsionfree, Lemma 3.1 shows that the
natural map
t:N—>K®z N=A®r N

provides an embedding of N into an A-module. It holds that
si(ny) = t(sny) = U7 Dn) = 7@y (n)

which implies

ny) = s tsu(ny) = sV @y (n) = o(7¥( @ s 1n)
as m(@s~1 ¢ R. Since ¢ is injective, it follows that n, = 7@ g~1n. Hence, 59/[’]\7 is
surjective if N is torsionfree. So from now on we may assume that N is a torsion module.

Step 4: Reduce to the case M and N indecomposable and rewrite 5. To prove the
equivalence of (i) and (ii), by Proposition 3.15 it suffices to consider the case M = M, =
R/Rx and N = Ny = R/Rz for some h,h’ € Z>1, where x = diag(1,...,1,7%) and
z = diag(1,..., 1,7?’[1)/). We use the notation y, s, § from above; surjectivity of SMN g
equivalent to surjectivity of 5. Note that by definition of e, there are units v/, u” € AX
such that 79(®) = Wga)eu’ and 70(@) = u”ﬂ]vj(a)e. It is then easy to see that we may take

y =diag(1,...,1, w?ax(h*v(a)e’o)).

Accordingly, |
s = a:y—l = diag(1,...,1, ﬂgm(v(a)e’h))
and |
WU(a)S—l = u//ﬂ-UD(a)es—l =" diag(ﬂ'g(ll)e’ . ’wqu(a)37 ﬂ_vD(a)e—mm(v(a)e’h)).

Moreover, we have () (R/Rz) = (7*(“ R + Rz)/Rz, so

R/R> . R R

N/m" N = =~ = .
/™ (TR + Ro)jRe - mOR+Re Rt 4 Rs
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Now
R + Rz = Maty(A)m® + Maty(A) = Maty(A)'

where

2 = diag(1,...,1, ngn(v(a)e’h/)).

Notice also that we have an isomorphism R/Rs — Ry/Rx, 7 — 773. With this, state-
ment (i) is equivalent to surjectivity of the map

6: R/Rz — Hompg(R/Rs, R/R?), 7+ (I — 7@ s 17).

Step 5: Via g, give explicit characterisation of (i) in terms of elements of A. Our

next aim is to explicitly characterise surjectivity of . To do so, we analyse the space
Homp(R/Rs, R/Rz'). There is a bijection

{we R/R|5w =0} — Homp(R/Rs,R/R), W+ (1 — w).

It is easy to see from the explicit descriptions of s and 2’ that for w = (w;;) € R =
Mat;(A) we have sw € Rz’ if and only if

vp(w;y) > min(v(a)e, h') fori=1,...,1-1,
vp(wy) > min(v(a)e, k') — min(v(a)e, h). (3.27)

The element in Hompg(R/Rs, R/R2') defined by such a w is in the image of 4 if and only
if there is r = (ri;) € R = Mat;(A) with 7°(@s™1F =w € R/Rz'. Now

v(a)e v(a)e
7TD 11 — W11 7TD T — Wy
7_[_1)((1)8—1,,, —w=1"
v(a)e v(a)e ’
Tp " Ti—1,1 — Wi-1,1 cee Tp " Ti—1,0 — Wi—-1,
—mi A —mi R
W;)(a)e min(v(a)e )Tll —wyy N 7rvD(a)e min(v(a)e )T” —wy
so there is such an r if and only if there are r;; € A with
vD(ﬂga)em —wy) > min(v(a)e, h') fori=1,...,01—1,
vp(ﬁj(a)e_mm(v(a)e’h)m —wy) > min(v(a)e, h'). (3.28)
Note that by the properties of w we may always choose r;; = 0 for i = 1,...,1 — 1

to satisfy the first set of equations. In conclusion, statement (i) is equivalent to the
following statement: For any wy € A satisfying (3.27) there is r;; € A such that (3.28)
holds.

Step 6: Conclude using step 5. We now finally prove the equivalence of (i) and (ii).
Suppose that (i) holds, that is, either h > wv(a)e or b’ > w(a)e. Suppose first that
h > v(a)e. If wy satisfies (3.27) we may simply take r; = wy. Now suppose that
h' > v(a)e. By the first case, we may assume that h < v(a)e. Then if wy; satisfies (3.27),
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this means vp(wy) > v(a)e — h, so there is wy € A such that wy = Wga)efhﬂm. Now

clearly r; = wy; satisfies (3.28).

Conversely, suppose that (i) holds. Assume that statement (ii) fails, that is, h, A’ < v(a)e.

Consider wy; := wgax(hlfh’o) € A. This clearly satisfies (3.27) by our assumption, so there

is r;; € A such that (3.28) holds. Note that

vp(my "y — w0 = max(h’ — h,0),

which shows

h' > max(h' — h,0) = UD(WUD(a)e_hT” — wy) > min(v(a)e, h') = 1,

a contradiction. So (ii) must hold. O

Corollary 3.29. Let Z be a Dedekind domain with fraction field K, let A be a separable
K-algebra and let R be a mazximal Z-order in A. Let a € Z. Use the notation from
Section 1.4. If vip(a) <1 and e;p =1 for alli € {1,...,¢c} and all mazimal ideals p of
Zi, then 5%}? is surjective for all finitely generated R-modules M and N.

Note that for a € Z we have v;y(a) <1 for all i € {1,...,¢} and all maximal ideals p of
Z; if and only if a has no square prime divisors in Z and Z;/Z is unramified at all prime
divisors of @ in Z for all i € {1,...,c}. Notice also that if A happens to be commutative,
then K; = A; for alli € {1,...,c}, so that e;, =1 for all i € {1,...,c} and all maximal
ideals p of Z;.

We close this section by recording the following special case of Theorem 3.26 for PIDs,
taking into account Remark 3.20.

Corollary 3.30. Suppose that Z is a PID. Let a € Z and let M and N be finitely
generated Z-modules. Then the following are equivalent:

(i) 5féN is surjective.

(ii) For all primes p | a, either the least power with which p occurs as an elementary
diwvisor of M is > vp(a) or the least power with which p occurs as an elementary
divisor of N is > vp(a) (if there is no such power, we take it to be 00 ).

3.5 Cardinality Results for Ext Groups over Maximal Orders

We prove some results on the cardinality of certain Ext groups over maximal orders over
Dedekind domains that will be needed later on.
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Lemma 3.31. Let Z be a Dedekind domain such that Z/p is finite for every mazimal
ideal p of Z. Let R be a Z-algebra that is finitely generated as a Z-module. Let M and N
be finitely generated R-modules and suppose that M or N is a Z-torsion module. Then
Ext'y (M, N) is finite for all n € Z>q.

Proof. Let n € Z>p. By [Rei03, Theorem 2.34], Ext’z(M, N) is a finitely generated Z-
module. But it is also a Z-torsion module by assumption and [Wei94, Lemma 3.3.6].
Hence, there are maximal ideals p1, ..., px of Z and positive integers r1, ..., 7 such that

Extp(M,N) = Z/p]' & --- & Z/p,r.

By assumption, |Z/p.*| = |Z/p;|" is finite for all ¢, so Ext% (M, N) is finite. O

Proposition 3.32. Let Z be a Dedekind domain with fraction field K, let A be a sep-
arable K-algebra and let R be a mazximal Z-order in A. Let M be a finitely generated
R-module that is a Z-torsion module and let N be a finite R-module. Then

[Homp(M, N)| = |Extg(M, N)|.

Proof. By decomposing A into its simple components and using [Rei03, Theorem 10.5],
we can assume that A is simple. Moreover, by replacing K with the centre of A and Z
with its integral closure in the centre of A, we may assume that A is a central simple
K-algebra. By Lemma 3.3, we may assume that M is annihilated by the power of some
maximal ideal p of Z. Then by [Wei94, Lemma 3.3.6], the Z-module Ext’; (M, N) is also
annihilated by a power of p, for all n € Z>¢. It follows that for all n € Z>q, Ext%(M, N)
is naturally a Ep—module and we have

Extf(M, N) 2 Z, @7 Ext}y(M,N) = Ext} (7,07 M, Z, @7 N)

as Z,—modules by Lemma 3.3 and Proposition 2.1. Now letting K, denote the fraction
field of ZJ, we have that K, ®x A is a central simple Kp-algebra and Z\p ®z R is a
maximal Zp—order in K, ®k A. Hence, we are reduced to proving the claim in the case
where Z is a complete discrete valuation ring and A is a central simple K-algebra, which
we are going to assume in the following.

By Proposition 3.12 we may further assume that M = R/Rx for some z € RN A*. In
this case, there is a short exact sequence

0 » R —— R » R/Re —— 0
of R-modules. Applying the functor Extr(—, N) yields an exact sequence

0 —— Hompg(R/Rx,N) N N » Exth(R/Rz,N) —— 0

of abelian groups. Since N is finite, it follows that [Homp(R/Rxz, N)| = |Extp(R/Rz, N)|
which finishes the proof. O
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Remark 3.33. The statement above is false without the assumption that M be a torsion
module: For any n € Z we have Homg(Z,Z/n) = Z/n, but Ext}(Z,7Z/n) = 0. Also,
the statement is false without the assumption that N be finite: For any n € Z we have
Homgz(Z/n,Z) = 0, but Extz(Z/n,Z) = Z/n.

For the proof of the final statement below, we follow the proof of [Wei94, Lemma 3.3.1],
which is the corresponding statement for Ext groups over Z.

Proposition 3.34. Let Z be a Dedekind domain with fraction field K, let A be a sep-
arable K-algebra and let R be a mazimal Z-order in A. Let M and N be R-modules.
Then Exti(M,N) =0 for all n € Z>s.

Proof. Since gpMod has enough injectives, there is an injective R-module I and an in-
jective R-module homomorphism N < I. By [Rei03, Theorem 21.4], the ring R is
hereditary. Hence, by [Lam99, Theorem 3.22], the quotient module I /N is injective. Let
n € Z>2. Applying the functor Extr(M, —) to the short exact sequence

0 y N I sy I/N 0

yields an exact sequence
Extl '(M,I/N) —— Ext}(M,N) —— Ext}(M, ).

From injectivity of I and I/N it follows that Ext’s (M, N) = 0. O
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4 Locally Compact Modules and Pontryagin Duality

Pontryagin duality is an incredibly useful tool when studying locally compact Hausdorff
abelian groups. In our later considerations, we will find ourselves placed in two situations,
in which we want to apply duality to locally compact groups that also have a module
structure that we need to respect:

(1) As we will show, the Arakelov ray class group and related groups that we are in-
terested in are compact topological groups with a continuous ZG-module structure
for some finite group G. To avoid having to worry about the topology, we prefer
to work with the Pontryagin duals of these modules, which are discrete.

(2) As explained in the introduction, for our heuristic we will consider the good com-
ponents of the above duals, which are obtained from the latter by tensoring them
with a certain Zg)-order R. In order to be able to relate the discrete R-modules
thus obtained to the original compact ZG-modules, we then want to dualise back.

Hence, it is necessary to discuss Pontryagin duality in the framework of locally compact
modules over a Zgy-order. This is the purpose of the present chapter. Since it is no
additional work, in the first two subsections we will mostly work in the more general
setting of locally compact modules over a locally compact topological ring. In Section
4.1 we review key aspects of the classical duality theory and show that many of its results
are naturally compatible with continuous module structures. In Section 4.2 we discuss
duality for exact sequences. In the last subsection we specialise to locally compact
modules over a Zg)-order and establish some useful results specific to this context. As
a basis for this, we give an explicit description of the Pontryagin dual of Zg).

4.1 The Duality Theorem for LCA Modules

This section is mostly based on the classical theory of Pontryagin duality for locally
compact Hausdorff abelian groups as for example laid out in [HR79] or [Mor77], and on
the paper [Flo79], which discusses key aspects of duality for locally compact modules
over a locally compact topological ring. See also the related paper [Lev73], which deals
with duality for locally compact modules over a discrete commutative ring.

Let R be a locally compact topological ring. Note that in particular, discrete rings are
locally compact.

Proposition 4.1. Let M and N be topologial groups with N abelian. Then Homeys(M, N)
18 an abelian topological group with respect to the compact-open topology and pointwise
addition of maps. Moreover, we have:

(i) If N is Hausdorff, then so is Homes(M, N).
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(ii) If M is a topological R-module, then Homeis(M,N) is a topological R°P-module
with multiplication defined by (r.f)(m) := f(rm) for f € Homes(M,N), r € R°P
and m € M.

Proof. See [F1o79, Proposition 3]. O
We recall the definition of the Pontryagin dual.

Definition 4.2. Let M be an abelian topological group. Then the Pontryagin dual of
M is M"Y := Homs(M,R/Z).

By Proposition 4.1, MV is a Hausdorff abelian topological group, and if M is a topological
R-module, then MV is a topological R°P-module.

Remark 4.3 ([F1079, Section 4 and Theorem 6]). There is also a different perspective
on duality for a topological left R-module M with the dual of R as the character mod-
ule instead of R/Z. Analogously as in Proposition 4.1, the right R-module structure
of R induces a topological left R-module structure on RV, allowing to consider the set
Homp cts(M, RY) of continuous left R-module homomorphisms, a Hausdorff abelian to-
pological group. Via the right R-module structure on RY, it becomes a topological right
R-module, and one can show that there is a natural isomorphism M"Y = Homp cts(M, RY)
of topological right R-modules.

The most powerful statements on duality are obtained for the following class of groups.

Definition 4.4. An LCA group is a Hausdorff locally compact abelian topological
group. An LCA R-module is an LCA group that is a topological R-module.

Note that if R is discrete, then an LCA group M is an LCA R-module if and only if the
maps M — M, m > rm are continuous for all r € R.

We will always write LCA groups and modules additively. Note that LCA groups are
the same as LCA Z-modules. Thus, the discussion below of duality for LCA R-modules
recovers the classical theory on LCA groups for R = Z.

It is clear that products, closed submodules and quotients by closed submodules of
LCA R-modules are again LCA R-modules. LCA R-modules together with continu-
ous R-module homomorphisms form a category which we will denote by rLCA. We
simply write LCA for zLCA. Note that if M and N are LCA R-modules, then the set
HomRLCA(M ,N) of continuous R-module homomorphisms from M to N is a subgroup
of Homes(M, N) and therefore a Hausdorff abelian topological group with respect to
the subspace topology.

Proposition 4.5. Let M be an LCA R-module. Then MY is an LCA R°P-module.
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Proof. The dual M"Y is an LCA group by [HR79, Theorem 23.15] and a topological
R°P-module by Proposition 4.1. O

We give some important examples of Pontryagin duals that will appear frequently.

Example 4.6 ([[HR79, Example 23.27]). We have the following isomorphisms of LCA
groups:

7Z = (R/Z)Y, nws (T — nx),
R/Z = 7V, T~ (n — 7x),

R 5 RY, o+ (y — 77).

Moreover, if M is a finite LCA group, then M = MV,

We also have a notion of dual for morphisms.

Definition 4.7. Let M and N be LCA R-modules. For ¢ € HomRLCA(M, N) define
"t NY = MY, fr foop,

which is an element of Hom Lca(NY, MVY), see [HR79, Theorem 24.38].

The above definition evidently makes duality a contravariant functor gRLCA — gop LCA.
The main theorem on the duality functor is the following.

Theorem 4.8 (Pontryagin Duality). Let M be an LCA R-module. Then the map
M — MY, mw— (f = f(m))
is an isomorphism of LCA R-modules which is natural in M. In particular, duality
V: RLCA = RorLCA

1 an involutory anti-equivalence of categories.

Proof. See [HR79, Theorem 24.8] or [Mor77, Theorem 23] for the case R = Z. That the
map M — MVV is R-linear is immediately verified. O

Corollary 4.9. Let M and N be LCA R-modules. Then the map
Hom ca(M,N) — HomRopLCA(NV,MV), 0+’

18 an isomorphism of Hausdorff abelian topological groups.
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4.1.1 The Compact-Discrete Duality

Proposition 4.10 ([HR79, Theorem 23.17]). Let M be an LCA group. If M is compact,
then MY is discrete. If M is discrete, then MY is compact.

We will later deal with LCA groups whose dual is not only discrete but also finitely
generated, and now provide a characterisation of such groups.

Definition 4.11. Let M be an LCA group. We say that M has no small subgroups if
there exists a neighbourhood of 0 that does not contain any nontrivial subgroup of M.

For a characterisation of groups with no small subgroups see [Mos67, Theorem 2.4].

Proposition 4.12. Let M be an LCA group. Then the following are equivalent:
(i) M is compact and has no small subgroups,
(i) MV is discrete and finitely generated,

(111) there is an isomorphism of LCA groups M = F & (R/Z)" for some n € Z>o and
a finite abelian group F,

(iv) there is an isomorphism of LCA groups My = (R/Z)" for some n € Z>q, and the
quotient M /My is finite,

(v) M is a compact real abelian Lie group.

Moreover, any continuous group homomorphism between objects of the above type is also
a homomorphism of the associated Lie groups.

Proof. The equivalence of (i), (ii) and (iii) is [Mos67, Corollary 2 on page 366].

That (iv) implies (iii) follows from [Mos67, Theorem 3.2]. Suppose that (iii) holds.
Then the Lie group structure on F'& (R/Z)™ induces a Lie group structure on M, so (v)
holds. Moreover, any continuous group homomorphism between objects of the type in
(iii) must map the toral part into the toral part, as it is the connected component of the
identity. It follows from Corollary 4.9 and Example 4.6 that the morphism restricted to
the toral part is given by an n X n integer matrix and hence smooth, i.e. a Lie group
homomorphism. Hence, also the overall map is a Lie group homomorphism. This proves
the additional statement.

Finally, suppose that M is a compact real abelian Lie group. Then Mj is a compact
connected real abelian Lie group and thus by [Buml3, Proposition 15.3] there is an
isomorphism My = (R/Z)"™ for some n € Z>¢. Moreover, the quotient M /My is both
compact and discrete, hence finite. This shows that (v) implies (iv) and finishes the
proof. O
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4.1.2 Duality for Submodules and Quotient Modules

We collect some results on the duals of the connected component of the identity and of
certain torsion submodules. These will be derived from the following general result on
the duals of submodules and quotient modules.

Definition 4.13. Let M be an LCA group and let @ #= N C M. We define
N+t :={feM’|f(n)=0forallne N}

and call it the annihilator of N in M.

The annihilator is a closed subgroup of MV, cf. [[HR79, Remark 23.24]. If M is an LCA
R-module and N is a closed submodule, then N is a closed submodule of M.

Proposition 4.14. Let M be an LCA R-module and let N < M be a closed submodule.
Then there are isomorphisms

(M/N)Y = Nt fs fom,
where m: M — M/N s the natural projection, and

MY/Nt S NY, fe £l
of LCA R°P-modules which are functorial in M.

Proof. [HR79, Theorems 23.25 and 24.11] state that the maps are isomorphisms of
LCA groups. Compatibility with the R°P-module structure and functoriality are easily
checked. ]

We derive consequences of the above proposition for some submodules of our interest by
computing annihilators.

Proposition 4.15. The following hold.
(i) Let M be a compact LCA group. Then (Mg)* = (M" )iors.
(i) Let M be a discrete LCA group. Then (Mios)™ = (MY)o.

Proof. See [HR79, Corollary 24.20]. O

Corollary 4.16. Let Z be a localisation of Z and suppose that R is a Z-order in some
finite-dimensional Q-algebra. Then the following hold:
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(i) Let M be a compact LCA R-module. Then there are isomorphisms
(M/Mo)" = (MY )iors, f+ fom,
where w: M — M /My is the natural projection, and
(Mo)", f e flu,
of discrete LCA R°P-modules which are functorial in M.

~

MV/(MV)tors —

(i) Let M be a discrete LCA R-module. Then there are isomorphisms
MY/(MY)o = (Miors)”, [ (mi— f(m))

and
(MY)o = (M/Miors)”, f = (> f(m))

of compact LCA R°P-modules which are functorial in M.

Proof. Statement (i) is immediate from Propositions 4.14 and 4.15. Statement (ii) follows
from (i) using the duality isomorphism. O

Proposition 4.17. Let M be an LCA R-module and let v € R. Then (rM)* = MV[r]
and Mr]* = rMV, where MV denotes the topological closure of 7M.

Proof. One can do the same proof as in [HR79, Theorem 24.22]. O

Corollary 4.18. Let Z be a Dedekind domain and suppose that R is a Z-order in some
finite-dimensional algebra over the fraction field of Z. Let M be a finite LCA R-module
and let p € Max(Z). Then the map

MY [p>] = M), o fly ey
18 an isomorphism of finite LCA R°P-modules.
Proof. By Example 4.6 we have M = MV as abelian groups. Write |M| = |[MY| =

pi---pf C Z with p; € Max(Z). Since Z is a Dedekind domain, we can find z; €
[ p;j with 1 =z + -+ + 2. Then ;M = M[p°] and z;(M") = MV [p°]. The map

MY (MY [z]) = z(MY), f e 2if

clearly is an R°P-module isomorphism. Moreover, Propositions 4.14 and 4.17 give an
isomorphism _
MY (MY [z]) = (2:M)”, f = f]

The concatenation
MY[p] = zi(MY) = MY /(MY [z]) = (z:M)" = M[pg°]"

is the map from the claim. O
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We end this section with a result that shows that duality is compatible with isotypical
components.

Lemma 4.19. Let M be an LCA R-module. Suppose that R = Ry X---X Ry, is a product
of locally compact topological rings and let M = M1 & - - - M, be the decomposition into
1sotypical components.

Then each M; is an LCA R;-module. The natural isomorphism of LCA groups

(M)Y & & (My,)" = MY,
(fi,ooosfn) = (ma+ -+ mp = fi(my) + -+ fo(my))

is an R°P-homomorphism, and (M;)Y lies in the block R®. In particular, we have
isomorphisms
i (ma+ -+ mp = fi(my
any =y, 0o Films)

Pl < f
of LCA R°P-modules.

Proof. We have that

My={meM|(ri,...,7-1,0,7541,...,7p)m =0 for all r; € R; }
={meM]|(1,...,1,0,1,....,)m=0}

is a closed subgroup of M and hence an LCA group. Clearly, multiplication R; x M; — M;
is continuous, so M; is an LCA R;-module. It is easy to check that the isomorphism is
an R°P-module homomorphism. Since M; lies in the block R;, it follows immediately
that (M;)" lies in the block R;®. O

4.2 Strict Homomorphisms and Extensions

Let again R be a locally compact ring. Related to our previous discussion of extensions
of abstract modules in Chapter 2, this section is concerned with extensions of LCA
R-modules and their interaction with the duality functor. The material is taken from
[Mos67] and [FG71], to which we also refer for further information and statements.

It turns out that in order to have nice behaviour under dualising, we need to restrict to
so-called strict homomorphisms.

Definition 4.20. Let M and N be LCA groups and let ¢ € Homs(M,N). We say
that ¢ is strict if it is an open map onto its image.
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This terminology is taken from [HS07]. It stems from a more general notion of strict
homomorphisms that can be defined in any additive category with kernels and cokernels
[Sch99]. Note that in the case of LCA groups, a strict homomorphism may also be
called a relatively open homomorphism; we prefer to use the notion strict as it is rooted
in homological algebra. Strict homomorphisms are called proper in [Mos67] and [FG71].
An important condition that ensures strictness is the following.

Proposition 4.21. Let M and N be LCA groups and let ¢ € Homes(M, N). If (M)
is closed and M is the countable union of compact sets, then ¢ is strict.

Proof. This is essentially the so-called open mapping theorem, see [Mos67, page 362]. [

Definition 4.22. A sequence M 5N i) L of LCA R-modules and continuous R-
module homomorphisms is called ezact if imp = kerty. We say that the sequence is
strictly exact if it is exact and both ¢ and v are strict.

Crucially, strictly exact sequences behave well under dualising.

Proposition 4.23 ([Mos67, Theorem 2.1]). Let M, N and L be LCA R-modules. If

A\ \
M5 NS Lisa strictly exact sequence, then also LV YNV 2L MY s strictly
exact.

We now discuss extensions of LCA R-modules. Note that fibre products and pushouts
of strict morphisms of LCA R-modules exist, cf. [FG71, Proposition 2.5].
Definition 4.24. Let M and N be LCA R-modules.

(a) An extension of M by N is a short strictly exact sequence 0 -+ N — L — M — 0
of LCA R-modules.

(b) We say that two extensions 0 = N - L — M — 0and 0 - N — L' — M — 0 of
M by N are equivalent if there is ¢ € Hom ca(L, L") that makes the diagram

0 > N L M > 0
|
0 > N » L' M > 0

commute. We denote by E_ica(M, N) the set of equivalence classes of extensions
of M by N.

(c) The Baer sum of extensions of M by N is defined as in Definition 2.3.

We remark that the map ¢ is bijective by the 5-Lemma and is strict by [F'G71, Corollary
2.2], so it is necessarily an isomorphism of LCA R-modules.
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Proposition 4.25. Let M and N be LCA R-modules. Then ERLCA(M, N) forms an
abelian group with respect to Baer sum, and we have an additive functor

E_1ca(—,—): rRLCA®? x RLCA — Ab.
Moreover, Pontryagin duality induces a natural isomorphism

~ VoV v
ERLCA(M,N) —>EROP|_CA(N , M ), 00— 0.
Proof. This follows as in [F'G71, Section 2]. O

Remark 4.26.

(a) Let M and N be LCA R-modules. If 0 = N — L — M — 0 is a short strictly
exact sequence in which L is just a topological R-module, then L is automatically
locally compact by [HR79, Theorem 5.25]. Moreover, by loc. cit., if M and N
are both compact, then so is L. Dually, using Propositions 4.10 and 4.23, if M
and N are discrete, then so is L. In particular, if M and N are discrete, then
E_Lca(M,N) = Ext(M,N).

(b) In the case R = Z, one can also homologically define Ext functors as derived
functors of Hom on a domain which is slightly smaller than LCA®? x LCA and
prove an analogue of Proposition 2.5, see [Mos67, Section VI].

4.3 The Pontryagin Dual of Zg)

Throughout this section, let S be a nonempty subset of the union of {0} and the set
of rational primes. We consider Zg) with the discrete topology. Moreover, if R is a
Zg)-order in some finite-dimensional Q-algebra, then we also consider any R-lattice —

being isomorphic to Z?S) as a Zg)-module for some n — with the discrete topology.

The first two subsections are concerned with determining the Pontryagin dual of Zg).
On the two ends of the spectrum, the Pontryagin duals are well-known: The Pontryagin
dual of Z is R/Z (see Example 4.6), and the Pontryagin dual of Q is Ag/Q, where
Aqg denotes the rational adeles (see [CF67, Theorem XV.4.1.4], or [Con] for a more
direct proof). It has been observed in [CEW97, Section 3| that the latter isomorphism
generalises to Zg) for any S in a straight forward manner. Since we will later need the
explicit description of the isomorphism between Z g and its dual, and for completeness
and the convenience of the reader, we provide a detailed account of the construction with
all necessary statements and proofs adapted from the case S = {0}. The proofs and
explicit description of the isomorphism have been omitted in [CEW97], which otherwise
contains all the main results from the first two subsections. Our exposition is largely
based on [C'67, Chapter XV] and [Con].

In the final two subsections we use the theory about the dual of Zg) to establish an
isomorphism between certain Ext and Hom groups over a Zg)-algebra and a result on
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the tensor product of a lattice over a Zg)-order with a compact LCA Zg)-module, both
of which will be useful tools later on.

4.3.1 A Generalisation of the Rational Adeles

Definition 4.27. For z € Q, denote by {l‘}p the p-adic fractional part of x. Explicitly,
if

oo
T=b_pp "+ +b_ip P+ Z bip” with m € Z>¢ and 0 < b; < p,
k=0

then {z}, =b_pp™™ +--- + b_ip~ L.
It has the following properties:

Lemma 4.28. Let z,y € Q, and let w € Q. Then:

(i) ©—{x}, € Zy,
(it) {z}, =0 if and only if x € Zy,

(i) {z}, +{y}, —{z +y}, € Z,
() w—>3", o {w}, €Z.

Proof. This is easily verified. Details can be found for example in [Con]. O

Definition 4.29. Define ,
Ay =[] @,
pES
where p runs over rational primes and oo, and where the restricted product is taken with
respect to the subrings Z, for p < oo and R for p = occ.

With slightly different notation and S swapped with its complement in the set of rational
primes, this definition is a special case of [CEW97, Definition 3.1] for £k = Q. Note that
if S is the set of all rational primes, then A(g) =R, and if S = {0}, then A(g) = Ag. So
A(g) can be thought of as a generalisation of the rational adeles. We next show that it
has analogous properties.

Lemma 4.30. It holds that

A(S) = Z(S) + <[0, 1) X H Zp>,

p¢S
p<oo

where the sum is taken inside Agy. Moreover, the expression of an element of Ag as
the sum of two elements as given by the right hand side is unique.
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Proof. Let a € A(g). Let T be the finite set of primes with a, ¢ Z, for p € T. Then
ri=3 periaptp € Zsy and a—r € Rx[] g5, <o Zp- 1t follows that a— (r+ [acc —7]) €
[0,1) X [Tp¢s pcoo Zp With 7+ [ace — 7] € Z(s) Which proves the decomposition of Ag).
To show uniqueness, let b € Zg)N ([O, 1) X [ Tpes peco Zp). Then v, (b) > 0 for all primes
p, which gives b € Z. But then b € [0,1) forces b = 0. ]

Proposition 4.31. Ag) is a locally compact Hausdorff topological ring. Moreover, Zs)
is discrete in A(gy and the quotient A(g)/Z sy is compact.

Proof. That A(g) is a locally compact and Hausdorff topological ring follows exactly as
for the rational adeles, cf. [CF(7, Section I1.14]. To show that Zs) is discrete in Ag),
consider the open set

U:=(-1,1)x [] 2, € Ags).

pEs
p<oo

If a € UNZg), then vy(a) > 0 for all primes p, so a € Z. But also a € (—1,1), whence
a = 0 and so U NZg) = {0}. Discreteness follows. Finally, Lemma 4.30 shows that
A(s)/Z(s) is the image of the compact set [0,1] X [],¢g,<oc Zp under the projection
Ay = A(s)/Zs) and therefore itself compact. O

4.3.2 The Pontryagin Duals of A g and Zg)

Definition 4.32. For p a rational prime, we define
Xp- Qp - R/Z’ T = _{x}p)

and we further put
Xoo: R = R/Z, z+— T.

For a € A(g) we define

Xa: Aggy = R/Z, b Xplaphp) = aocbos — > {apby}p.

p¢S pEsS
p<oo

Theorem 4.33. The map
Ay — A(VS), a+ (b xa(b))

is an isomorphism of LCA Zgy-modules.
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Proof. For p < oo, [CF67, Theorem XV.2.1.1] shows that the map
Q= Qy, vy (2= xp(ay))

is an isomorphism. It follows easily from Lemma 4.28 that it maps Z, onto ZIJ; for
p < oo. Then [CF67, Theorem XV.3.2.1] yields the claim. O

Theorem 4.34. The map

As)/Zis) = Lisy, @ Xaly

is an isomorphism of compact LCA Zg)-modules. In particular, we have a short strictly
ezact sequence of LCA Zg)-modules

0 > Z%S) > A%S) Zzé)AAAA% 0.

Proof. Denote by a: Ag) — AE/S) the isomorphism from Theorem 4.33. In view of the
second isomorphism in Proposition 4.14, it only remains to show that a(Z(S)) = Zé:q).
Let a, 2z € Zg). Then by Lemma 4.28 (iv) and (ii) we have

a(a)(2) = xa(z) = az — _fazh, = > {az}, =0

pES peS
p<oo

which shows a(Z(S)) - Zé:q)- For the converse, we first consider the factor group
oz_l(th))/Z(S) which is a subgroup of A(g)/Zs). By Proposition 4.31, A(g)/Zg) is
compact. Hence, by Propositions 4.14 and 4.10, Z(ls) is discrete, which implies that
also ofl(Z(LS)) /Zs) is discrete. In particular, ofl(Z(LS)) /Zs) is a closed subgroup of
the compact group A(g)/Zg) and therefore also compact. Being compact and discrete,
oz_l(Zé-S))/Z(S) must be finite. Now let f € Zé‘s). Then there isn € Z with nf € a(Zg)),
so there is a € Z(g) with nf = a(a). For b € A(g) it holds that

0= 0-2) =01(2) = (%) = (%) =x

giving [ = « (%) Let ¢ € S and let b := Hpiqpl’?’(") € Z. Then using Lemma 4.28 (iv)
and (ii) we have

) 4 o o

peS p€eES

a

() = (%) ).

n

3le

a
n

Hence, {%(n)} € Z and Lemma 4.28 (i) gives — %y € Z,. This means that vg(%) >0
q4 q q4
and therefore * € Zg), which yields f =« (&) € a(Zs)), as desired.
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Note that if S is the set of all rational primes, then we recover the isomorphism R/Z =
7" from Example 4.6.

Remark 4.35. By adapting the arguments in [Con|, one can also give an elementary
proof of Theorem 4.34 which does not make use of the Pontryagin duality theorem.

4.3.3 An Isomorphism between Ext and Hom Groups

Let R be a Zg)-algebra. In this section, we prove that for a finite R-module M
and a Zg)-torsionfree R-module N there is a natural isomorphism of abelian groups
Exth(M, N) = Homg(M, N ®z5) A(5)/Z(s))- This generalises the corresponding result
from [BP25, page 13] for the case R = Zg) = Z.

We start by specialising to extensions and homomorphisms over Z and below use the
construction from [BP25] to build an isomorphism via group cohomology. By tracing all
the maps occurring in the cohomological argument, we will then be able to upgrade this
isomorphism to an isomorphism between the respective Ext and Hom groups over R.

Remark 4.36. Let M be a finite abelian group and let N be a torsionfree Zg)-module.
We recall some statements from group cohomology. Denote by E.(M,N) the set of
equivalence classes of central extensions of M by N, that is, of extensions

0 > N > L > M 0

where L is a group (not necessarily abelian) and N is central in L. With slight abuse of
notation, we will write L additively; this is justified as later on the group L will always
be abelian. Regard N as an M-module with trivial action. It is well-known that there
is a bijection E.(M,N) +— H?(M,N), cf. [Bro82, Theorem IV.3.12]. It is given as
follows. Suppose that an equivalence class of central extensions is represented by

B

0 » N —2— L M > 0.
Pick a set-theoretic map s: M — L with 8s = idy; and s(0) = 0. Then the map
M x M — N, (a,b) = o (s(a) + s(b) — s(a+ b))

is a normalised 2-cocycle (that is, a 2-cocycle that maps (0, 0) to 0) and hence represents
an element of H2(M, N). Conversely, any element of H?(M, N) can be represented by
a normalised 2-cocycle x: M x M — N. Define L, := N x M, with group operation

(z,a) + (y,b) :== (x +y+ x(a,b),a+b)

for x,y € N and a,b € M. Then a representative for the image of the class of x in
E.(M,N) is given by the central extension

0 > N > Ly > M 0
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where the left hand map is  — (x,0) and the right hand map is (x,a) — a. Moreover,
the set E.(M, N) is an abelian group under Baer sum, and the above bijection is a group
isomorphism, cf. [MLG3, Exercise IV.4.7].

Construction 4.37. Let M be a finite abelian group and let N be a torsionfree Zg-
module. Tt is clear that the map Extl(M,N) — E.(M,N) that sends a class of ex-
tensions represented by 0 — N — L — M — 0 to the class of central extensions
represented by 0 - N — L — M — 0 is an injective group homomorphism. By
[Bro82, Exercise IV.3.8], the commutator pairing gives rise to a group homomorphism
E.(M,N) — Homz(A* M, N), and it is easy to see that the kernel of this homomorphism
is the image of Ext}(M,N) in E.(M,N). Moreover, it follows from [Bros2, Exercise
V.6.5] that the group homomorphism E,(M, N) — Homgz(A* M, N) is surjective. Thus,
there is a short exact sequence

0 —— Exty(M,N) —— E.(M,N) —— Homgz(A\*> M, N) —— 0.

Since /\2 M is finite and N is torsion-free, the right hand term of the above sequence
is zero, so that the left hand map is an isomorphism. This also implies that in every
central extension of M by N, the middle group is abelian, and that for all normalised
2-cocycles x: M x M — N we have x(a,b) = x(b,a) for all a,b € M, which will be used
below.

So far we have achieved isomorphisms Ext} (M, N) & E.(M, N) = H?(M, N). Now since
N is Zg)-torsionfree, it is a flat Z(g)-module, and so there is a short exact sequence

0 —— N LN N®Z(S) A(S) - N®Z(S) A(S)/Z(S) — 0.

Again regarding the modules as trivial M-modules, the long exact cohomology sequence
associated to the above exact sequence gives

> HI(M7N®Z(S) A(S)) E— HI(M7N®Z(S) A(S)/Z(S)) U
J

[ﬁ H2(M,N) — HQ(M,N®Z(S) A(S’))

Since multiplication by | M| is an automorphism of N Rz A(g), it follows from [CF67,
Corollary 1 on page 105] that HY(M, N ®zs) A(S)) = 0 for all ¢ € Z>;. Hence, ¢ is
an isomorphism. Finally, since we regard N ®zs) As) / Zs) as a trivial M-module, we
have H'(M, N ®z) As)/ZL(s)) = Homz (M, N ®z 4 A(s)/Zs)). In summary, we have
established an isomorphism Exty, (M, N) = Homz (M, N @z, As)/Zs))-

In order to be able to trace all intermediate isomorphisms occurring above for the upgrade
to R-extensions and R-homomorphisms, we next give a description of § and its inverse.
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Lemma 4.38. Use the notation from Construction 4.37.
(i) The connecting homomorphism §: H*(M, N®zs As)/ZLs)) — H?(M,N) is given

as follows: Gwen a group homomorphism ¢: M — N @z, As)/Zs), choose a
set-theoretic lift : M — N ®z,4 A(s) with $(0) = 0. Then

Xe: M x M — N, (a,b) — (@ (a) + 3(b) — B(a + D))

is a normalised 2-cocycle, and §() is given by the class of x..

(ii) The map 6~': H*(M,N) — HY(M,N ®zs) As)/ZL(s)) is given as follows: Let
x: M x M — N be a normalised 2-cocycle. Then

|M|—1 -
1
@X:M—>N®Z<S>A ,ar—>z (a,ka) ®

M|

is a group homomorphism and the image of the class of x under 61 is given by
©x -

Proof. Claim (i) is standard, cf. [Wei94, Addendum 1.3.3]. To prove (ii), let x: M x
M — N be a normalised 2-cocycle. It is clear that ¢, = ¢, + @v. If x is a
normalised 2-coboundary, then there is a (set) map #: M — N with 6(0) = 0 such that
x(a,b) = 6(a) + 6(b) — 0(a+b) for all a,b € M. It follows that

M S
|M|—1 I

Z 0(a) + 0(ka) —9((k+1)a)®m

(IM! 0(a) = 0(|M|a)) ®
0(a) ®
0

1
| M]

for any a € M. Hence, x + ¢, is a well-defined map on H?(M, N). We next show that
¢y is a group homomorphism, that is, ¢, € H*(M, N ®z5) A(s)/Z(s))- To this end, let
a,b e M. We first investigate the expression
D, y(a,b) :== x(a, ka) + x(b,kb) — x(a + b, k(a + b))
for k € Z~o. We will rewrite it using the 2-cocycle identity which reads
x(mi,ma) = x(ma, m3) + x(m1, ma + m3) — x(m1 + ma, m3)

for mi, mg, m3 € M. Applying it with m; = a, ma = b, mz = k(a + b) gives

x(a,b) = x(b,k(a+ b)) + x(a,ka+ (k+ 1)b) — x(a + b, k(a + b)),
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whence
D, r(a,b) = x(a, ka) + x(b, kb) + x(a,b) — x(b,k(a + b)) — x(a, ka + (k 4+ 1)b).
The 2-cocycle identity with m; = a, mg = ka, ms = (k + 1)b gives
x(a, ka) = x(ka, (k + 1)b) + x(a, ka + (k 4+ 1)b) — x((k + 1)a, (k + 1)b),

whence
D, 1(a,b) = x(ka, (k+1)b) — x((k + 1)a, (k + 1)b) + x(b, kb) + x(a,b) — x (b, k(a + b)).
The 2-cocycle identity with m; = ka, mg = b, m3 = kb gives

x(ka,b) = x(b, kb) + x(ka, (k + 1)b) — x(ka + b, kb),
whence

D, k(a,b) = x(ka,b) + x(ka + b, kb) — x((k + 1)a, (k + 1)b) + x(a,b) — x(b, k(a +b)).

Finally, the 2-cocycle identity with mq = b, mo = ka, mz = kb gives

X(b, ka) = x(ka, kb) + x (b, k(a + b)) — x(ka + b, kb),
whence

D, k(a,b) = x(ka,b) — x(b, ka) + x(ka, kb) — x((k + 1)a, (k + 1)b) + x(a,b).
Now as remarked above, we have x(ka,b) — x(b, ka) = 0 which gives
D, i(a,b) = x(a,b) + x(ka, kb) — x((k + 1)a, (k + 1)b). (4.39)

It follows that

= (1M x(@b) = x(1M|a, [M|b)) @ 1

=x(a,b) ® 1
=0

which shows that ¢, is a group homomorphism. Thus we get a well-defined map
H*(M,N) = H' (M, N ®z, As)/Zs)), [X] = @x-

We verify that this is precisely 6. Starting with a class [x] € H?(M, N) represented
by a normalised 2-cocycle x: M x M — N, we have to show that d(py) = [x]. It is clear
that

|M|—1 1

Pyt M = N ®z M), a— Z X(a,ka)@)m
k=1
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is a lift of ¢, with ¢, (0) = 0. Using (4.39) again, we have

|M|—1
TN @) + B 0) ~ et )= Y] Deslad) @ |11W|
k=1

=" (x(a,b)®1)
= x(a,b)
for a,b € M, whence 6(py) = [x]. Conversely, suppose that ¢: M — N @z 4 A(s)/Zs)

is a group homomorphism. Let ¢: M — N ®z , A(s) be a lift of ¢ with ¢(0) = 0. Then
for a € M we have

[M|-1 I B |M|—1~ N R 4
; Xola:-ka) ® o = o ; B(a) + @lka) = B((k + Da) | ©

_ - 1
= 7 (IM1B(@) ©

Now it holds that

THIMI(a) @ 1= (T (IM] @(a)) = |M|$(a)

which means that 1
Gla) =1 (IM]@(a) ®
| M|
and therefore
|M]-1 —_

_ ~ 1
ola) = 7 (M1B@) © 7 = 3 xelovke) © [

We conclude that the map H?(M, N) — H'(M, N®z, 4 A(s)/Zs)) given above is indeed
571. O

We now upgrade the isomorphisms from Construction 4.37 to R-extensions and R-
homomorphisms.

Construction 4.40. Let R be a Zg)-algebra. Let M be a finite R-module and let N
be an R-module that is Zg)-torsionfree. We define a map

U: Extp(M, N) = Homg(M, N @z As)/Zs))

as follows: Let

0 y N 2 Py 0
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be an extension of R-modules representing a class © € ExthL(M, N). Pick a set-theoretic
map s: M — L with s =idjs and s(0) = 0. Define

x: M x M — N, (a,b) = a (s(a) + s(b) — s(a + b))

and
|M|-1 — —
1 . 1
p: M — N @z As)/Zesy, arr > x(a,ka) ® o= (IM|s(a)) ® ik
k=1

By Remark 4.36, Construction 4.37 and Lemma 4.38, the map ¢ is a group homo-
morphism and depends neither on the choice of section s, nor on the choice of repres-
entative for ©. We show that ¢ is in fact an R-module homomorphism. To this end, let
a € M and r € R. Then

_ _ 1
o(ra) —ro(a) = (o~ (|M|s(ra)) — ra~ ' (|M|s(a))) ® ]
_ 1
=q ! (|M] s(ra) — |[M|rs(a)) @ M

=a!(s(ra) —rs(a) ®1
=0

where we crucially used that « is an R-module homomorphism and that s(ra) —rs(a) €
ker # = ima. We may thus define ¥(©) := ¢ € Homp(M, N ®z As)/Z(s))-

We furthermore define a map
U’ Homp(M, N @z, As)/Zs)) — Extp(M, N)

as follows: Let ¢ € Homp(M, N ®z A(s)/Z(s)). Choose a set-theoretic lift ¢: M —
N®z, 4 As) of ¢ with 9(0) = 0. Since N is a flat Zs)-module, there is an exact sequence

0 —— N ——= N @z Ag) —— N &z As)/Zs) — 0

of R-modules. Now define Lz := N x M with group operation
(@, a) + (y,b) == (z +y + ¢ (B(a) + §(b) — F(a+ b)), a +b)

for z,y € N and a,b € M. Then by Remark 4.36 and Construction 4.37, (Lgz,+) is an
abelian group and we have an extension

@g: 0 N L[ﬁ M > 0

of abelian groups, where the left hand map is « + (z,0) and the right hand map is
(z,a) — a. We now define an R-module structure on Lgz. Since 7 and ¢ are R-module
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homomorphisms, we have r@(a) — @(ra) € kerm = im¢ for all a € M and r € R. We
may thus define

re(z,a) = (re 4+ (rg(a) — @(ra)), ra)

for r € R and (z,a) € Lg. It is easy to check that this defines an R-module structure
on L. The extension ©z hence is an extension of R-modules. Now suppose that
p: M — N®z 4 As) is another lift of ¢ with ¢(0) = 0. Then ¢(a) —@(a) € kerm = im.
for all @ € M. Define a map

n: Lz = Lg, (x,a) — (m + L_l((ﬁ(a) —o(a)), a) .
Then for (z,a), (y,b) € Lz and 7 € R we have
n((z,a) + (y,0) =n (z+y+ " ($la) + 3(b) — @(a+b)),a+b)
= (z+y+¢ HB(a) + §(b) — Gla+1b)),a+b)
= (z+:7(@(a) = 2(a),a) + (y+ ¢ (2(b) — 2(b)), b)
=n(z,a) + n(y,b)

as well as

0 (r(z,a)) =0 (rz + 0 (rg(a) = §(ra)), ra)
= (T‘CC + 7 (r@(a) — @(ra)), ra)
=7 (z+ 71 (p(a) - B(a)),a)
=rn(z,a)

Hence, 1 is an R-module homomorphism. Moreover, it is clear that the diagram

0 N L; M ——0
| ]
0 N Ly M ——0

commutes. This shows that the extensions O and O3 are equivalent which means that
the assignment W/(p) := O3 € Extj(M, N) is well-defined.

Proposition 4.41. Let R be a Zs)-algebra. Let M be a finite R-module and let N be
an R-module that is Zg)-torsionfree. Then the maps

'
Ethl‘%(My N) <T Homp(M, N Qzs) A(5)/Z(S))

from Construction 4.40 are group homomorphisms and inverse to each other. Moreover,
U and V' are natural in M and N.
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Proof. Note that U is the concatenation of the maps
Extp(M, N) — Exty(M, N) = Homgz(M, N ®z,, As)/Zs))

where the right hand map is the isomorphism from Construction 4.37. It follows that ¥
is a group homomorphism. Furthermore, Remark 4.36, Construction 4.37 and Lemma
4.38 give that ¥ o ¥/ = id.

We now show that ¥/ o W = id. Suppose that

B

O: 0 N —“> L M > 0

is an extension of R-modules. Pick a set-theoretic map s: M — L with 8s = idy; and
5(0) = 0. Define

x: M x M — N, (a,b) = a"(s(a) + s(b) — s(a + b)),
so that
Y= \I/(@) M — N®Z(S) A(S)/Z(S)a
|M|-1 — —

a a, ka L:oz_l s(a —_
= ; x(a, k )®|M| (IM]s(a)) ® -

Then clearly
1

(E; M — N®Z(S) A(S), ar—>a_1(|M|s(a))®M

is a lift of ¢ with ©(0) = 0. Recall the exact sequence
0 ——= N ——= Nagg Ay —— Nz Ag)/Lis) — 0.

As we have shown in the proof of Lemma 4.38, it holds that
H@(a) + 2(b) — P(a + b)) = x(a,b)
for all a,b € N. Moreover, analogously as in Construction 4.40 one sees that
r@(a) — @(ra) = a (rs(a) — s(ra)) @ 1.

Then by definition, ¥/(¥(0)) is given by the extension

0 N L3 M > 0
where Lz = N x M is an R-module with respect to the operations

(z,a) + (y,0) = (x +y + x(a,b),a + ),

r(z,a) = (ro+ o Y(rs(a) — s(ra)), ra),

70



for (x,a), (y,b) € Ly and r € R. Now define
n: Lz = E, (z,a) = a(z) + s(a).

It is immediate that 7 is an R-module homomorphism and that the diagram

0 N Lg,; M s 0
|
0 N —(— F 3 M > 0

commutes. We conclude that U/(¥(0)) = ©. Finally, it is a straightforward calculation
to check naturality of ¥ and W. O

4.3.4 Tensor Products of Lattices with Compact Modules

Inspired by [BJL.24, Section 2.1], we establish an isomorphism for the tensor product of
a lattice over a Zg)-order with a compact LCA Zgy-module. We will frequently apply
it to the expression N ®z 4 A(g) /Zs) from the previous subsection.

Proposition 4.42. Let R be a Zg)-order in some finite-dimensional Q-algebra (as usual
regarded with the discrete topology). Let M be an R-lattice and let n = rkZ<S> M. Let C be
a compact LCA Zg)-module. Topologise M®z g, C via an isomorphism M®z g, c=cn
obtained by choosing a Zs)-basis of M.

Then M Q7 C is a compact LCA R-module and the topology is independent of the
chosen isomorphism. Regarding HomZ<S) (M,CV) as a discrete R°P-module as in Propo-
sition 4.1, there is an isomorphism of compact LCA R-modules

M ®z,, C = Homz(s)(M, CY)Y, m®c ((,0 — cp(m)(c))
which is natural in M. In particular, there is an isomorphism of compact LCA R-modules
M @z, As)/Ls) > (M*)Y, m@a s (f = xa(f(m)))

which is natural in M.

Proof. Let my,...,m, € M be a Zg)-basis for M. Then we have an isomorphism of
Zs)-modules

(z1mi 4 -+ zpmp) @ c = (216, . .., 2n0),

a: M ®gq,. C—C",
(5) (mi@ec1)+-+ (my®cy) < (c1y...,¢n).

If (m},...,my,) is a different basis for M with corresponding isomorphism o': M ®z,
C — C™ and we write m; = Zj aijm; with a;; € Z(gy and A = (a;5), then

o oatey, .. en)=AT(c1,. .. ep)
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is a homeomorphism on C", so the topology on M ®z s, C is independent of the choice
of basis. Now let r € R. We need to check that

MT:M®Z<S>C—>M®Z(S) C,m@c—rmec

is continuous. By definition of the topology, this is the case if and only if the map
apra~t: C" — O™ is continuous.

M®Z(S) cC 2 Cn

o e

M ®Z(S) C —a cn
But writing rm; = Z?Zl bijm; for bj € Zgy and B = (b;;), we have
apra ey, .. en) = Bl (e, ... ep)
which immediately shows that the map is continuous. For the next part, write
B: M @z C — Homg g (M, CY)Y, m®c (¢ — p(m)c)).
We have an isomorphism of discrete LCA Zg)-modules
v: Homg o (M, CY) = (C™)Y, p > ((c1,- -, en) = p(ma)(er) + -+ + g(my)(cn))

whose dual fits into a commutative diagram

M @z,5 C — Homg, ; (M, C")"

o T

Cn (Cm)\/\/

where the lower map is the duality isomorphism. It follows that £ is an isomorphism of
compact abelian groups. Furthermore, form € M,ce€ C,r € Rand ¢ € HomZ(S) (M, CV)
we have

(r-B(m @ c))(p) = fm @ c)(re) = (re)(m)(c) = p(rm)(c) = B(rm @ c)(¢)

which shows that § is an R-homomorphism. If N is another R-lattice and f: M — N
is an R-homomorphism, then one easily sees that the diagram

M®Z(5) cC == HOII]Z(S>(M, C\/)\/

f®idcl l(f*)v

N®Z(S> c = HOHIZ<S)(N, CV)V

commutes, which shows naturality. The final claim follows from the above applied to
C = As)/Zs) together with Theorem 4.34 and the Pontryagin duality isomorphism. [
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Remark 4.43. For LCA groups M and N, the tensor product M Rpca N is defined
to be the Pontryagin dual of the group of continuous bilinear maps from M x N to
R/Z, equipped with the compact-open topology, see [Mos67, Section IV]. Under certain
mild assumptions on M and N it is again an LCA group. If M and N are discrete
abelian groups, then also M ®pca N is discrete and equals the usual tensor product
M ®7 N of abelian groups [Mos67, Theorem 4.4 and Corollary 1 to Theorem 4.7].
Another relation of ®pca with ®yz is given by the above proposition: For a finitely
generated torsionfree discrete abelian group M and a compact abelian group C, it shows
that M ®z C = Homcs(M,CY)Y. On the other hand, [Mos(7, Theorem 4.2] gives
M @rca C = Homes(M,CV)Y, whence M ®@pca C = M @y C.
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5 Commensurability of Automorphism Groups of Chain
Complexes

Recall from the introduction that for our main conjecture we wish to define a probability
distribution on the space of outcomes for the good part of the Arakelov ray class sequence
that weights each sequence in the space of outcomes by the inverse of the size of a certain
subgroup of its automorphism group. One here encounters the problem that the latter
subgroups are in general not finite. The purpose of the present chapter is to resolve this
problem by developing a theory that allows to compare the sizes of certain subgroups
of the automorphism groups of short exact sequences, even when those subgroups are
infinite. This theory will then allow us to prove Theorem 1.11 and to eventually construct
the probability distribution in Theorem 1.12.

We will establish a commensurability theory for automorphism groups of short exact
sequences by extending the work of Bartel and Lenstra [BL17], who developed a theory
that allows to compare the sizes of possibly infinite automorphism groups of suitable
modules. In order to have the notions and tools from an abelian category at our disposal,
we will work in the category of chain complexes of modules, which also has the advantage
of leading to a more general theory. The results are applicable to short exact sequences
by viewing them as chain complexes. Moreover, the theory of [BL.17] can be seen as a
special case of the results from this chapter by viewing a module as a chain complex
concentrated in degree zero.

Roughly speaking, the idea to compare the sizes of the automorphism groups of two
chain complexes L and M is to do so via a third object that is ‘within a finite distance’
of Aut L and Aut M. Such a third object might not always exist but we will show
that if L and M are themselves ‘within finite distance’, then from any object X within
finite distance of both L and M one can construct a natural object A(X) within finite
distance of both Aut I and Aut M. The latter will then be used to define the index of
automorphism groups ia(L, M), which is to be thought of as |Aut M : Aut L|. The main
challenge for this will be to establish independence of the comparing object X.

X A(X)
fin. dV w dist. ~ fin. dV ﬂdist.
L M

Aut L Aut M

Apart from the last subsection, we proceed exactly as in [BL.17] and prove the analogues
of their results for chain complexes. The proofs generalise without too many complica-
tions, and we will usually just explain which steps need to be adapted in order to make
them work in the more general context. We have also stuck to Bartel and Lenstra’s
notation as much as possible. In the last subsection, we take the theory one step further
to allow to also compare sizes of suitable subgroups of automorphism groups of chain
complexes.
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5.1 Categories with Isogenies

Throughout this section, let R be a ring.

The key definition to compare objects of infinite size is the following. It makes precise
what we mean by two objects being ‘within finite distance’.

Definition 5.1 ([BL17, page 2]). An isogeny of groups is a group homomorphism
f: L — M with |ker f| < oo and |M :im f| < oco. Its index is defined to be i(f) :=
|M :im f| / |ker f|. Isogenies of rings and isogenies of R-modules are defined to be morph-
isms in the appropriate category which are group isogenies on the underlying additive
groups.

For our applications, we want to generalise the above to chain complexes. We will use
the following terminology. If C is an abelian category, we write Ch(C) for the category
of chain complexes in C. We will usually write an element L € Ch(C) as L = (L;);cz and
denote the boundary maps L; — L;_1 by 8% or 9; or even just 9. Thus we can visualise
L as

Oit2 Oit1 05 0i—1

» Lia

Lita L;

If f: L — M is a chain map, then we write f = (f;);ez where f;: L; — M; are the
component morphisms. We furthermore denote by Ch(C)® the subcategory of Ch(C) of
bounded chain complexes, that is, of chain complexes L € C for which there are I, u € Z
such that L; = 0 for all 7 <[ and all 7 > u.

Remark 5.2. Let C be an abelian category. Then also Ch(C) is an abelian category. If
f=(fi)i: L — M is a morphism of chain complexes, then its kernel is given by (ker f;);
and its cokernel is given by (cok f;);, where the boundary maps are the natural maps
induced by the boundary maps of L and M, respectively.

If g: X - M and h: Y — M are two morphisms of chain complexes, then the fibre
product X x 7Y is given by (X; Xy, Y;); with boundary maps induced by the universal
property of the fibre product in the diagram below:

Y
0;41°Gi+1

Xit1 XMy Yit1

The category Ch(C)® is an abelian subcategory of Ch(C). The explicit descriptions of
kernels, cokernels and fibre products above also hold in Ch(C)P.
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We will mainly be interested in bounded chain complexes over the category rmod of
finitely generated R-modules, which we note is abelian if and only if R is noetherian
[Wei94, Example 1.6.3]. Some results can also be obtained for chain complexes over
RMOd.

To define isogenies, we first need a notion of finiteness.

Definition 5.3.

(a) A bounded chain complex L € Ch( gpMod)? is called finite if L; is finite for all i.
In this case, we define the cardinality of L to be |L| := [[,., |Li|. We also write
|L| < oo to indicate that L is a finite chain complex.

1€EZL

(b) An isogeny of chain complexes in Ch( gpMod)? is a chain map f: L — M with
|ker f| < oo and |cok f| < co. Its index is defined to be i(f) := |cok f| / |ker f|.

Note that the above definitions reduce to the corresponding definitions for modules when
viewing modules as chain complexes concentrated in degree 0. Importantly, finiteness
behaves well with respect to short exact sequences.

Proposition 5.4. Let0 — L — M — N — 0 be a short exact sequence in Ch( gMod)P.
Then M s finite if and only if both L and N are finite. In that case, we have |M| =
L] - |N].

Proof. This is immediate from [Wei94, Exercise 1.2.4]. O

This in particular implies that subcomplexes and quotient complexes of finite complexes
are finite. To unify notation, we make the following definition.

Definition 5.5. Let C be a category.

(a) We say C is of type I if C has fibre products and there is a functor C — Grp that
preserves fibre products. In this case, an <sogeny in C is a morphism in C that
becomes an isogeny in Grp, and the index of an isogeny in C is defined to be the
index of the corresponding group isogeny.

(b) We say C is of type II if C = Ch( gMod) for some ring R or if C = Ch( gmod) for
some noetherian ring R.

(¢c) We say C has isogenies or is a category with isogenies if it is of type I or type II.

Categories of type I are those for which the theory in Section 2 of [BL17] is developed.
The categories Grp, Ring, rpMod for any ring R and pmod for any noetherian ring R are
all of type I. As a basis for our extended commensurability theory, we will show in the
remainder of this section and in the following section that the statements from Section
2 of [BL.17] also hold for categories of type II.
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Proposition 5.6 ([ML71, Exercise VIIL.4.6]). Let C be an abelian category and let
f:L— M and g: M — N be morphisms in C. Then there is an exact sequence

0 — ker f — ker(gf) — kerg — cok f — cok(gf) — cokg — 0.

The final two statements of this section will be crucial for the theory to be developed in
the following sections.

Proposition 5.7. Let C be a category with isogenies and let f: L — M and g: M — N
be morphisms in C. If two of f, g, gf are isogenies, then so is the third. In that case,

we have i(gf) = i(g)i(f)-

Proof. 1f C is of type I, then this is [BL17, Proposition 2.1]. The proof for C of type II
is analogous — just combine Propositions 5.6 and 5.4. O

Proposition 5.8. Let C be a category and let g: X — M and h: Y — M be morphisms
in C. Suppose that the fibre product X X1 Y of g and h exists.

XxyY 25y

o

X — M
(i) Suppose that C has kernels. Then ker mx = ker h and ker my = ker g.

(ii) Suppose that C has isognies. If h is an isogeny, then so is wx. If g is an isogeny,
then so is Ty .

Proof. Suppose that C has kernels. Using the universal property of the fibre product, it is
straightforward to prove that ker wx together with the morphism ker rx < X x ;Y v,
Y satisfies the universal property of a kernel of h. Then we must have ker mx = ker h.
The proof for ker my =2 ker g is analogous.

Now suppose that C has isogenies. If C is of type I, then claim (ii) is in [BL.17, Proposition
2.4]. Assume that C is of type II. Then it is in particular abelian. We show that there is
a monomorphism cok mx < cok h. For this, by the Freyd—Mitchell Embedding Theorem
[Wei94, Theorem 1.6.1] applied to the smallest abelian subcategory of C containing the
objects and morphisms of the fibre product diagram, we can assume to be working in
the category of modules over some ring. In that case, it is easy to see that the map

X/imnrx — M/imh, T — g(z)

is well-defined and injective. Now if h is an isogeny, then ker wx is finite by part (i),
and cok mx is finite by Proposition 5.4 applied to the monomorphism cok wx < cok h.
Hence, mx is an isogeny. The proof of the second claim is again analogous. O
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5.2 Calculus of Correspondences

While an isogeny f: L — M does not naturally induce a map between the automorphism
groups Aut L and Aut M, there is a natural object a(f) associated to f with maps to
both Aut L and Aut M, discussed in a later section. This is why rather than working with
isogenies, we will mainly work with the following constructions to compare objects.

Definition 5.9. Let C be a category and let L, M € C. A correspondence from L to M
in C is a triple ¢ = (X, f,g) where X € C and f: X — L and g: X — M are morphisms

in C.
X
N
L M
We will denote such a correspondence by c¢: L = M.

Definition 5.10. Let C be a category with isogenies.

(a) A skew correspondence in C is a correspondence ¢ = (X, f,¢) in C in which f is an
isogeny.

(b) A commensurability in C is a correspondence ¢ = (X, f,¢g) in C for which both
f and g are isogenies. The index of such a commensurability is defined to be

i(c) :=i(g)/i(f)-

Definition 5.11. Let C be a category with isogenies. For an isogeny f: L — M in C
we define ¢y := (L,idg, f): L = M, which is a commensurability.

There are natural group-like operations for correspondences and commensurabilities that
will be essential in the following.

Definition 5.12. Let C be a category. Let ¢ = (X, f,g9): L= M andd = (Y, h,j): M =
N be correspondences in C.
(a) The inverse of ¢ is defined to be ¢! := (X, g, f): M = L.
(b) If the fibre product of g and h in C exists, define the composition of ¢ with d to be
doc:=(XxyY,forx,jomy): L=N
where 7x: X Xy Y — X and my: X Xy Y — Y are the canonical morphisms.

XXMY
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In order to obtain the expected properties for composition and inverse, one needs to pass
to equivalence classes.

Definition 5.13. Let C be a category with isogenies. Let ¢ = (X, f,g9): L = M and
d= (Y,h,j): L = M be two correspondences in C.

(a) We say that ¢ and d are equivalent and write ¢ ~ d if there is a commensurability
(W,p,q): X =Y such that fp = hq and gp = jq.

\
/

(b) We say that ¢ and d are isomorphic and write ¢ = d if there is an isomorphism
s5: X =Y with f = hs and g = js.

e
N

X

L

S

N/

Y

Clearly, being isomorphic implies being equivalent. Note that if ¢ ~ d, then c is a skew
correspondence (commensurability) if and only if d is a skew correspondence (commen-
surability).

We now obtain the analogues of the statements from Section 2 of [BL.17]. Close inspection
shows that they only hinge on their Propositions 2.1 and 2.4 and the universal property
of the fibre product, and therefore easily generalise.

Proposition 5.14. Let C be a category with isogenies. Let c,d': L = M, d,d: M = N
and e: N = P be correspondences in C. Then the following hold:
(i) Ifc~c andd~d, thendoc~d od. Ifc= andd=d, then doc=d o(.
(ii) We have (eod)oc=eo(doc).
(iii) We have co (L,idp,idr) = ¢ and (M,idys,idps) o c = e.

(i) If ¢ and d are skew correspondences, then so is d o c.
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(v) If ¢ and d are commensurabilities, then so is doc. In this case, we have i(doc) =
i(d)i(c).
(vi) If ¢ ~ ¢ are commensurabilities, then i(c) = i(c').
(vii) If c ~ ', then ¢! ~ ()7L, If c= ¢, then ¢! &
(viii) We have (doc) ' =2 ctod!.

()~

(iz) If c is a commensurability, then ¢ oc ~ (L,idy,idr) and coc™ ~ (M, idyys,idas).

Proof. For C of type I see Section 2 of [BL17]. For C of type II one can do exactly the
same proofs, replacing every use of [BL17, Proposition 2.1] by Proposition 5.7 and every
use of [BL17, Proposition 2.4] by Proposition 5.8. O

Definition 5.15. Let C be a category with isogenies.

(a) Define Cgew to be the category with the same objects as in C and where for
objects L, M € Cgrew, the morphisms from L to M are the equivalence classes of
skew correspondences L = M.

(b) Define Ccom to be the category with the same objects as in C and where for ob-
jects L, M € Ccom, the morphisms from L to M are the equivalence classes of
commensurabilities L = M.

(c) For an object L in C define G, := Homg
of commensurabilities L = L.

L, L), the group of equivalence classes

com (

By the above we know that Ceon is a groupoid. Even more:

Proposition 5.16. Let C be a category with isogenies. Then the cateqory Ceom 1S the
mazimal subgroupoid of Cgkew -

Proof. The result for a category of type I is [BL.17, Proposition 2.15]. For a category of
type 11, one can do essentially the same proof. Using notation as in the proof of loc. cit.,
the only modifications one needs to make are: Use Propositions 5.6 and 5.4 to conclude
that cok g and ker p) are finite; use Proposition 5.8 (i) to conclude that ker p} = kerg. 0O
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5.3 Skew Correspondences of Chain Complexes

In this section, we use the notation from [BL17, Notation 6.1]:

Setup 5.17. Let Z be an infinite commutative ring satisfying the equivalent conditions
of [BL17, Theorem 4.5], which we recall are the following;:

(i) for each 0 # z € Z, the ring Z/zZ is finite;

(ii) the ring Z is a domain, and each nonzero prime ideal of Z is finitely generated as
an ideal and has finite index in Z;

(iii) either Z is a field, or it is a one-dimensional noetherian domain with the property
that for every maximal ideal p of Z the field Z/p is finite.

Denote by @ the field of fractions of Z. Let A be a finite-dimensional Q-algebra and R
be a left-noetherian Z-subalgebra of A with the property that @ - R = A.

From now on, we specialise to bounded chain complexes of finitely generated R-modules.

In this section we will prove that the category Ch( RmOd)gkew is equivalent to the cat-

egory of bounded chain complexes of finitely generated A-modules. This will be a key
ingredient in the proof of our main commensurability theorem. The results in this sec-
tion are the analogues of the results from Section 6 of [BL17], and as before, the proofs
mainly generalise in a straightforward manner.

Lemma 5.18. Let L € Ch( gpmod)®.

(i) The Z-torsion submodules of the L; constitute a finite chain complexr Lios €
Ch(Rmod)b. There is a natural monomorphism Lio,s < L and a natural epi-
morphism L — L/ Lios.

(ii) L is finite if and only if L = Lioys and if and only if there is 0 # z € Z such that
2L = 0, where zL denotes the chain complex (zL;);.

(i1i) Let 0 # z € Z. Then multiplication by z defines an isogeny L — L.

(iv) Tensoring with QQ over Z gives a chain complex Q ®z L of finitely generated A-
modules. The kernel of the natural map L — Q®z L is Lios. Moreover, QRzL =0
if and only if L is finite.

Proof. All statements follow easily from [BL17, Lemmas 4.1 and 6.2]. For part (iv) cf.
also Lemma 3.1. O

Proposition 5.19. Let L, M € Ch( gmod)?. Then the following are equivalent:
(i) There exists an isogeny L — M,

(ii) there exists a commensurability L = M,
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(iii) there exists an isomorphism Q ®z L = Q ®z M of chain complexes of A-modules.

Proof. Bearing in mind the properties from Lemma 5.18, one can do essentially the same
proof as in [BL17, Theorem 6.3]. With notation as in loc. cit., the only things to note
are: Since we are dealing with bounded chain complexes, there are “global” elements
0 # my, ma, m3 € Z such that mi¢(L) — M, maM — ¢(L) and m3Mies = 0; replace
the use of [BL17, Proposition 2.1] by Proposition 5.7. O

Lemma 5.20. Let L, M € Ch( gmod)®. Suppose that (X, f,g),(Y,h,7): L = M are
equivalent skew correspondences. Then

Q®z9)0(Q®zf) ' =(Q&zj) 0 (Qzh) " .

Proof. The proof of [BL17, Lemma 6.4] immediately generalises, taking again Lemma
5.18 into account. O

The previous lemma allows us to define a functor

F: Ch( gmod)’.., — Ch( 4mod)®

skew

which sends a bounded chain complex L of finitely generated R-modules to @ ® L and
an equivalence class of skew correspondences represented by (X, f,g): L = M to the
chain map (Q®zg)o(Q®z f)~!. It is easy to check that this indeed defines a functor.

We are now going to show that F is an equivalence of categories.

Lemma 5.21. Any element of Ch( amod)® is isomorphic to F(L) for some element
L € Ch( gpmod)®

skew *

Proof. Let V. = (V;,0;); € Ch( amod)?. Without loss of generality, there is m € Zsg
such that V; =0 for ¢ > m and i < 0.

Om—
> 0 N VAL Ve Loy, 0
We now i‘nductively choose A-generating syspems (v’ll,‘. . U;lz) of V;, i =0,...,m, such
that 0;(v) is contained in the R-span of (vj™',... ,vi, 1) for all k. For i = 0 we may

choose any A-generating system of Vy. For i > 0 start by choosing any A-generating
system (wi, ..., wy,, ) of V;. Since A = @ - R, we can find 0 # z € Z such that z0;(w},) is

contained in the R-span of (vi_l, e ,vﬁ;}l) for all k. We then put U]i = zw};.
Define L; to be the R-span of (v, ... ,vf”) for i =0,...,m, and to be 0 otherwise. Then
9;(L;) C Ly for all i € Z, so L := (L;,0;) € Ch( gmod)’, .. It is easy to see that the

map f = (fi)i: Q®z L — V with
firQ®zLi =V, gz — qx

is an isomorphism of chain complexes of A-modules. O
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Lemma 5.22. Let L, M € Ch(gmod)’ ... and let ¢: F(L) — F(M) be a chain map.

skew

Then there exists a skew correspondence c: L = M such that F(c) = ¢.

Proof. Bearing in mind the properties from Lemma 5.18, one can do essentially the same
proof as in [BL17, Lemma 6.7]. With notation as in loc. cit., the only things to note
are: Since we are dealing with bounded chain complexes, there is a “global” element
0 # m € Z such that m¢(L) < M; one can check that F(c) = ¢ componentwise. O

Lemma 5.23. Let L,M € Ch(Rmod)b and suppose that c,d: L = M are skew

skew

correspondences with F(c) = F(d). Then ¢ and d are equivalent.

We give a simplified version of the proof of [BL.17, Lemma 6.8] without case distinction
and correct it slightly, noting that in its second paragraph it only follows that f and
h are injective and that X Xrpn Y — X Xp Y is an injective isogeny rather than an
isomorphism.

Proof. Write ¢ = (X, f,g) and d = (Y, h, j). It suffices to show that in the fibre product

X XpenmY ——Y

wxl l(h,j)

X — LM
(f.9)
both mx and 7y are isogenies. Now by the universal property of the fibre product there
is a unique morphism ¢: X Xron Y — X X Y such that nx = 7t and 7y = 74
where 7y and 7}, are the canonical morphisms as given in the diagram below.

We show that 1) is an isogeny. By Remark 5.2, the components of i are the unique
R-module homomorphisms ¢;: X; Xr,enm, Yi — X; xp, Y; such that (7x); = (7 )it
and (my); = (7} )its, thus sending (z;,v:) € Xi Xr,em;, Yi to (z4,y;). It is clear that
these maps are injective. Let ¢ € Z and let (z;,v;) € X; xr, Y;. By Lemma 5.18 (i) and
(ii) there is 0 # z € Z such that zM;os = 0. The condition F(c) = F(d) implies that

1® gi(z:) = (Q®z g:) 0 (Q @z fi) (1 ® fi(wi))
= (Q®zji) o (Q®z hi) ' (1® hi(y:))
=1® ji(ys),
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and Lemma 5.18 (iv) then yields zg;(x;) = zji(y;). Consequently, z(X; xr, Y;) C im1);.
We conclude from Lemma 5.18 (iii) that v; is an isogeny and then from Remark 5.2 that
1) is an isogeny.

As c and d are skew correspondences, Proposition 5.8 shows that both 7’y and 7} are
isogenies. Hence, also mx and my are isogenies by Proposition 5.7. O

Proposition 5.24. The functor F: Ch( gmod)®_ . — Ch(amod)’ is an equivalence of
categories.

Proof. The functor F is essentially surjective by Lemma 5.21, is full by Lemma 5.22 and
is faithful by Lemma 5.23. Hence it is an equivalence of categories. O

As in [BL17], one obtains the following crucial statement from Propositions 5.24 and
5.16:

Corollary 5.25. Let L € Ch( gmod)®. Then the map

G —Aut(Q®z L), (X,f,9) > (Q®z9) 0 (Qezf)"

18 a group isomorphism.

For an explicit description of the inverse isomorphism, see the proof of Proposition 5.28
below.

5.4 From Commensurabilities of Chain Complexes to Commensurabilities of
Automorphism Groups

Keep using Setup 5.17. We now pass from correspondences of chain complexes to cor-
respondences of their endomorphism rings and automorphism groups.

Definition 5.26. Let ¢ = (X, f,g): L = M be a correspondence in Ch( gmod)®.
(a) Define the endomorphism ring of ¢ to be
Bnde = { (A& g) € (Bnd L) x (Bnd X) x (End M)| Af = /€, g = g€ }.

Write e(¢): End L = End M for the correspondence that consists of the canonical
projections End ¢ — End L and End ¢ — End M.
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(b) Define the automorphism group of ¢ to be Aut ¢ := (End¢)*. Write a(c): Aut L =
Aut M for the correspondence that consists of the canonical projections Autc —
Aut L and Autc — Aut M.

Proposition 5.27. Let L, M, N € Ch(pgmod)®. Let c,c/: L = M and d: M = N be
commensurabilities. Then the following hold:

(i) The correspondence e(c): End L = End M is a ring commensurability and the
correspondence a(c): Aut L = Aut M is a group commensurability.

(ii)) We have e(doc) ~e(d)oe(c) and a(doc) ~ a(d) o a(c).

(iii) If ¢ =2 ¢, then e(c) = e(¢) and a(c) = a(d). If ¢ ~ ¢, then e(c) ~ e(¢) and
a(c) ~a(d).

Proof. The proofs are essentially the same as for the statements 7.1 through 7.4 of [BL.17].
One first proves the analogue statement of [BL.17, Lemma 7.1] for chain complexes. The
proof is exactly the same, replacing [B1.17, Lemma 6.2] by Lemma 5.18. To be able to
apply [BL17, Lemma 4.1] to End L one needs that End L is finitely generated Z-module.
This follows by embedding it into @, End L; and using [Rei03, Theorem 2.34] and the
fact that Z is noetherian.

One then concludes statement (i) as in the proof of [BL.17, Theorem 7.2].

Part (ii) is proved exactly as [BL.17, Theorem 7.3], replacing [B1.17, Propositions 2.6 and
2.1] by Proposition 5.14 (v) and Proposition 5.7, respectively. That the map End ¢Xgnq as
Endd — End(d o ¢) is well-defined, needs to be checked componentwise, using Remark
5.2.

Finally, part (iii) is proved exactly as [BL17, Proposition 7.4], replacing [BL17, Pro-
positions 2.13 and 2.11] by Proposition 5.14 (viii) and (i). The canonical isomorphisms
appearing also hold for chain complexes, using again Remark 5.2. O
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By the above proposition and Proposition 5.14 (v) and (vi), we have two functors of
groupoids

Ch(Rmod)b — Qs0, ¢ ife()),

com

Ch( gmod)?,,, = Qso, ¢+ i(a(c)),

com

where we regard Qs as a groupoid with one object. For any L € Ch( gmod)? we in
particular get group homomorphisms

ioe,ioa:GL:HomCh( L, L) — Qo.

RmOd)l(?OHl (

Now recall that G, = Aut(Q ®z L) by Corollary 5.25. The above two group homo-
morphisms have the following crucial property:

Proposition 5.28. Let L € Ch( gmod)?. Suppose that ¢ € G, corresponds to an element
a € 3(End(Q ®z L))* C Aut(Q ®z L). Then e(c) ~ (End L,id,id). In particular, we
have i(e(c)) =1i(a(c)) = 1.

Proof. We closely follow the proof of [BL17, Proposition 7.8]. By Lemma 5.18, the
natural morphism f: L — L/Liys is an isogeny and hence induces an isomorphism

End(Q ®z L) = End(Q ® L/ Liows), B (Q®z f)ofo(Qez ).
The commensurability ¢f: L = L/ Lo further gives an isomorphism
G = GL/Lyors A cpodo c}l

which fits into a commutative diagram

GL = GL/Ltors

5 i

Aut(Q ®7 L) — Aut(Q @ L/Liors).

This diagram together with Proposition 5.27 (iii) shows that we may assume that Lios =
0. Then by Lemma 5.18 we have monomorphisms L — Q®z L and End L — End(Q ®
L). In the following we will tacitly regard L as a subcomplex of Q ®7 L and End L as a
subring of End(Q ® L) via these maps.

It follows from the proof of [BL17, Proposition 7.8] applied componentwise that ¢ is
equivalent to the commensurability (L Na~'L,i,ai): L = L where i: LNa 'L < L is
the natural morphism and the intersection takes place componentwise in the components
of Q ®z L to form the complex L Na~'L. Thus we have

Ende= {(\& p) € (EndL) x End(L N 'L) x (End L) | Ni = i€, povi = i€ } .
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Let (A, & ) € Ende. Then the above conditions immediately imply that aX\i = pai.
We show that in fact aX = pa. It is enough to check this componentwise, so let j € Z.
Since L; is finitely generated, there is 0 # z € Z such that zo;(L;) C L; which gives
zLj C Ljﬂaj*le. Hence, a;j\j and pjo; agree on zL;. But the latter generates Q ®z L;
over (), so we must have a;\; = pja;. In summary, we have shown that A = a tua
which implies A = p as a € 3(End(Q ®z L))*.

By the above, we have e(¢) = (Ende,pg,pp): End L = End L, with pg an isogeny
by Proposition 5.27 (i). Hence, the commensurability ¢,,: Endc = End L defines an
equivalence between e(c) and (End L, id, id). O

5.5 The Index of Automorphism Groups of Chain Complexes

Again keep using Setup 5.17. We are finally ready to define the index of automorphism
groups of suitable chain complexes, generalising the results from Section 8 of [BL17].

Proposition 5.29. Let L, M € Ch( gmod)?. Then the following hold:

(i) There is a commensurability L = M if and only if the chain complexes of A-
modules QQ ®z L and Q @z M are isomorphic.

(ii) If c: L = M is a commensurability, then e(c): End L = End M is a ring com-
mensurability and a(c): Aut L = Aut M is a group commensurability.

(iii) Suppose that ¢,c’: L = M are commensurabilities. Assume that End(Q ®z L) =
End(Q ®z M) is a semisimple ring. Then

Proof. We argue as in the proof of [BL.17, Theorem 8.1]. Part (i) is Proposition 5.19 and
part (ii) is Proposition 5.27. By Proposition 5.27 (iii) and Proposition 5.14 (v), claim
(iii) is equivalent to the statement

ile(ctod)) =i(a(ctod)) =1
Hence, to conclude it suffices to show that the two group homomorphisms

ioe,ioa:GL:HomCh( L, L) — Qo

RmOd)Eom(

are trivial. Let B := End(Q ®z L). Then B* = G, by Corollary 5.25, and ioe and ioa
factor through B*/3(B)* by Proposition 5.28. Since Q¢ is abelian, they also factor
through B*/[B*, B*]. Soioe and io a factor through B*/(3(B)*[B*, B*]).

By assumption, B is semisimple. We show that B is finitely generated over its centre.
For this first note that 3(A) C 3(B) and that the natural map

B=FEnd(Q®z L) — HEndA(Q ®z L), > (fi)i
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is a 3(A)-algebra homomorphism. The fact that A is a finite-dimensional @Q-algebra
implies that 3(A) is a noetherian ring and that A is a finitely generated 3(A)-module.
Hence, it follows from [Rei03, Theorem 2.34] that End4(Q ®z L;) is a finitely generated
3(A)-module for all 7. But then also B = End(Q ®z L) is a finitely generated 3(A)-
module, since 3(A) is noetherian. In particular, B is finitely generated over 3(B). This
allows us to apply [BL17, Theorem 5.6] which shows that B*/(3(B)*[B*,B*]) is an
abelian group of finite exponent. Hence, any homomorphism B*/(3(B)*[B*,B*]) —
Q=0 is trivial and the claim follows. ]

The following example shows that the semisimplicity assumption in part (iii) is neces-
sary.

Example 5.30. In the above proposition we consider the case Z =7, Q =Q, A=Q =
Q, R=Z =7. Let L be the exact sequence

0 7 s 7.2 A s 0

where Z — Z? sends x to (z,0) and Z? — Z sends (,y) to y. It is easy to see that there

is an isomorphism End L =5 (%Z) given by sending an endomorphism L — L to its

middle map Z? — Z2. In the same way, one has End(Q ®z L) = ( 0 @) In particular,
End(Q ®z L) is not semisimple.

We now give examples of commensurabilities ¢,¢’: L = L for which i(e(c)) # i(e(c))
and i(a(c)) # i(a(c’)). In fact, it will turn out that these values can be arbitrarily far

apart. To this end, let 0 # n,m € Z with ged(n, m) = 1. The map fy, n: L — L given
by

0 Z y 72 Z > 0
[o @ |m
0 Z y 72 Z > 0
is clearly an isogeny. Hence, we get a commensurability ¢y, = (L,id, fnm): L = L.

Under the isomorphism End L = (%4Z), the endomorphism ring End ¢, , corresponds

to
3
7 7

7 3
:{()‘7)‘7M)E Z)

The projection py: £ — ( %) (A, A, 1) — A is clearly injective and by the condition

ged(n, m) = 1 has image (% ”%Z) Analogously, p1: E— (0 Z) (A, A, @) — pis injective

Z
0

7 N\

A1l = p11, A22 = f22, MA21 = M2 } .

and has image (%72). Hence, i(e(cn,m)) = 182(1); =L

88



For the commensurability of automorphism groups, we get that under the isomorphism
End L = (% %), the automorphism group Aut ¢y, ,, corresponds to

3
« +1 Z

Hence, po: E* — (¥ 4), (A, A, ) — X is injective and has image (%' 7%), and

A1l = p11, Ag2 = f22, MA21 = Mo } .

p1: EX — (iol fl) , (A, A\, ) — p is injective and has image (iol ﬁ) Now it is easy
to see that ’(iol fl) : %)’ = 4 and ‘(%1 qf) : ((1]le)| = 4. Moreover, using that

(§%) = Z, one finds that | (§ 7) : (§ ™% )| = m. It follows that i(pg) = m and i(p1) = n.
m

The above proposition allows us to define the index of automorphism groups of chain
complexes which become isomorphic over A with semisimple endomorphism ring as the
index of the automorphism correspondence of any commensurability between the chain
complexes, independently of that chosen commensurability.

Theorem 5.31. Let V € Ch( 4mod)? such that End(V) is a semisimple ring. Define
S:=Sy = {LeCh(Rmod)b Q@ZL%V}.

Then there is a unique function ia: S x § — Q<o such that:

(i) If L,L/, M,M" € S and L = L' and M = M’, then ia(L, M) =ia(L', M’).

(i) If L,M,N € S, then ia(L, M) -ia(M,N) =ia(L,N).
(iwi) If L, M € S and there is a monomorphism L < M with finite cokernel, then with

H:={pecAutM|pL=L}:={pecAutM|uL; =L; for all i}
and

p: H—= Aut L, p= () — M’L = <H1‘L)Z
one has
_ |Aut M : H|- [ker p|

ia(L, M) =
ia(L, M) |Aut L : im p|

Proof. If L, M € S, then by Proposition 5.29 there is a commensurability ¢: L = M,
and we may define ia(L, M) :=i(a(c)), independently of c. That this function uniquely
satisfies properties (i), (ii) and (iii) is proved exactly as in [BL.17, Theorem 8.3], making
use of Lemma 5.18. O

Properties (i), (ii) and (iii) make precise the statement that one should think of ia(L, M)
as |[Aut M : Aut L|. Note that in contrast to [BL17, Section 8], we do not require A to
be semisimple but instead End(V') to be semisimple (and R to be left-noetherian, which
previously was implied by semisimplicity of A). This is because, unlike for modules,
semisimplicity of A does not imply semisimplicity of the endomorphism ring of a bounded
chain complex of finitely generated A-modules, cf. Example 5.30.
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5.6 The Index of Subgroups of Automorphism Groups of Chain Complexes

Again keep using Setup 5.17.

Let L, M € Ch( gmod)® be commensurable. We aim to generalise the results obtained
above such that we may also define an index of certain subgroups I';, < Aut L and
I'ys < Aut M of the automorphism groups of L and M.

Definition 5.32. Let L, M € Ch( gmod)® and let I'y, < Aut L and I'y; < Aut M. Let
c=(X,f,g): L =M be a correspondence in Ch( gmod)’. We define

Aut(o)|p, r,, ={ (A& ) €T x (Aut X) X Pag [Af = f& ng = 9§ }

and write a(c)|p, p,, : ' = Iy for the correspondence that consist of the canonical
projections Aut(c)|p, p,, — I'z and Aut(c)|p, p,, = Im. We call a(c)|r, 1, the auto-
morphism correspondence of ¢ restricted to I'y, and T'yy.

5.6.1 Basic Properties of Restricted Automorphism Correspondences

The restricted and unrestricted automorphism correspondences are related as follows.

Proposition 5.33. Let L, M € Ch( gmod)? and let T'y < Aut L and T'p; < Aut M. Let
c: L = M be a correspondence. Denote by ir: I'y — Aut L and ips: T'py — Aut M the
inclusions. Then

-1
a(c)lp, r,, = ¢, ©alc) o ciy.

12

Proof. One easily checks that
(e AUt(C)h"L’FM — PL XAut L AUt(C) X Aut M FM? ()\757/1’) = (>‘7 ()‘757/1’)7“)

is an isomorphism between a(c)|p, , and c;]; oa(c)oc,. O

Lemma 5.34. Let L,M € Ch(Rmod)b and let Ty, < AutL and Ty < Aut M. Let
c: L = M be a correspondence. Then

~

a(cil)h—‘]w,r[/ (a'(c)h—‘L,F]\/[)il'

Proof. This is readily verified. O

We aim to show that the restricted correspondences a(c)|, r,  inherit some of the prop-
erties from a(c). For this, the following proposition is crucial.
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Proposition 5.35. Let L, M, N € Ch(gmod)? and let Ty, < Aut L, T'py < Aut M and
'y < AwtN. Letc: L = M, d: M = N and e: L = N be correspondences. If

a(d) o a(c) ~ ale), then a(d)|r,, ry ©a(c)lr, r,, ~al€)lr, ry-

Proof. Write a(c) = (Aute,pe, qc), and similarly for a(d) and a(e). Then we have
a(c)lp, r,, = (Aut(c)lp, r,,+Pesqc); where the dashes signify restriction, and analog-
ously for a(d)|r,, r, and a(e)|p, p,- Let (W.k,0): Autc Xauwn Autd = Aute be an
equivalence between a(d) o a(c) and a(e), so that we have the following commutative
diagram:

Autc X aut pr Autd

Autec Autd
w Aut L Aut M Aut N

Aute.

Define

W= k_l(AUt(c)’FL,FM X*Twm AUt(d)‘FM,FN) n l_l(AUt(e)|FLvFN)

and let k': W' — Aut(c)|p, p,, X1y Aut(d)|p,, p, and I's W — Aut(e)[p, p, be the
restrictions of k and [, respectively. We show that &’ is an isogeny; in the same way one
sees that [’ is an isogeny. This will then prove the claim. Since k is an isogeny, it is clear
that ker & is finite. Moreover, it follows that

Aut(c)h—‘l”l—‘]\/[ ><FZ\/I AUt(d)‘FM,FN
(Aut(c)‘FL,F]\,j XF]M AUt(d)‘F]M,FN) N k(W)

is finite. Let o1,...,0n € Aut(c)|p, ,, X1, Aut(d)|p,, 1, be a system of representatives
for the classes in this quotient. Let o € Aut(c)|y, p,, Xry Aut(d)|p,, r, - Then there
isi € {1,...,n} such that oo; ' € k(W). So there is w € W with ¢o; ' = k(w). This
means w € kfl(Aut(c)]FLIM xry Aut(d)|r,, ). By commutativity of the diagram

above, it follows that also w € lil(Aut(e)]FL,FN), so in fact w € W’. Hence, 0 = 0

mod K'(W’). It follows that |Aut(c)|p, r,, Xry Aut(d)|p,, r, @ K (W')]| < oo, so k' is an
isogeny. O

Corollary 5.36. Let L, M,N € Ch(gmod)’. Let I'y < AutL, I'yy < AutM and

I'y < AutN. Lete,d: L = M and d: M = N be commensurabilities. Then the
following hold:
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(i) If c ~ ¢, then a(c)\rLIM ~ a(c’)]FL’FM.

(i) We have a(doc)[p, p, ~a(d)|r,, vy 2alc)lr, r,, -
Proof. This is immediate from Propositions 5.27 and 5.35. O

Corollary 5.37. Let L € Ch(gmod)® and let I'y, < AutL. Suppose that ¢ € G
corresponds to an element o € 3(End(Q ®z L))* € Aut(Q ®z L). Then a(c)|p, p, ~
(I'r,idr,,idr,). In particular, we have i(a(c)|p, p,) = 1.

Proof. This follows from Propositions 5.28 and 5.35. O

5.6.2 Admissible Subgroups

Unlike when considering the full automorphism group, it is not guaranteed for any choice
of 'y < AutL and I'py < Aut M that if ¢: L = M is a commensurability, then also
a(c) ‘FL,F]\/I is a commensurability. One way to see this is to note that necessarily, I';, and
I'pr need to be commensurable as groups. Consider the case where Aut L and Aut M are
both infinite. Choosing I'y, = Aut L and I'j; = 1, we have that for every commensur-
ability c: L = M, the restricted correspondence a(c)|p, 1, is not a commensurability.
Thus, we need to restrict ourselves to suitable subgroups of the automorphism groups,
for which we can feasibly define an index.

Definition 5.38. Let L, M € Ch( gmod)? be commensurable and let T'y, < Aut L and
Iy < Aut M. We say that the pair (I'z,Tas) is admissible for (L, M) if for every
commensurability ¢: L = M we have that a(c)|p, p,,: ' = 'y is a group commensur-
ability.

Proposition 5.39. Let L, M, N € Ch(gmod)® be commensurable and let T'y, < Aut L,
Ty <AutM and 'y < Aut N.
(i) If (Tp,Tar) is admissible for (L, M), then (I'y,T'p) is admissible for (M, L).
(ii) If (T, Tar) and (Tar, Ty) are admissible for (L, M) and (M, N), respectively, then
(T'z,T'n) is admissible for (L, N).

Proof. Statement (i) follows from Lemma 5.34. To prove (ii), suppose that (I'z,T'as)
and (I'pr, T'y) are admissible for (L, M) and (M, N), respectively. Let e: L = N be a
commensurability. Choose any commensurability ¢: L = M. Then eoc™': M = N is
a commensurability by Proposition 5.14 (v). From the assumption and Proposition 5.14
and Corollary 5.36, it follows that

a(e)|FL7FN ~afeo clo C)|FL7FN ~afeo C_1)|FA17FN © a(c)|FL7FM

is a commensurability. O
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Proposition 5.40. Let L, M € Ch( gmod)® be commensurable and let Ty, < Aut L and
Ty < Aut M.

(i) If T'r, and Ty are finite, then (I'r,T'yr) is admissible for (L, M) and moreover we
have the following: If c: L = M is a commensurability, then

. T
l(a(c)’rL,rM) = W

(ii) If T, and T'p; have finite index in Aut L and Aut M, respectively, then (U'p,T )
is admissible for (L, M) and we moreover have the following: If c: L = M 1is a
commensurability, then

. _ |AutL: Ty
l(a(C)’rL,rM) = m -i(a(c)).

Proof. Using Proposition 5.27 (i), statement (i) is immediate. Statement (ii) follows
from Propositions 5.33 and 5.14. O

5.6.3 The Index of Admissible Subgroups

We finally obtain a generalisation of Theorem 5.31 that allows us to define the index of
admissible subgroups of the automorphism groups of suitable chain complexes.

Proposition 5.41. Let L, M € Ch( gmod)® be commensurable. Let Tp < AutL and
Tar < Aut M be such that (T'r,Tar) is admissible for (L, M). Suppose that ¢,c’: L = M
are commensurabilities. Assume that End(Q ®z L) = End(Q ®z M) is a semisimple

ring. Then i(a(c)\FLIM) = i(a(c’)]rL’FM).

Proof. The proof is analogous to that of [BI.17, Theorem 8.1] and Proposition 5.29 (iii).
By Proposition 5.14, Lemma 5.34 and Corollary 5.36, the claim is equivalent to the
statement i(a(c! od)lp, r,) = 1. Since (I'y,I'a) is admissible for (L, M), it follows
from Proposition 5.39 that (I'z,T'1) is admissible for (L, L). Hence,

ioalp, p, 1 Gp = Homey, - modys, (L,L) = Qso

is well-defined, and the claim follows if we can show that this homomorphism is trivial.
Let B := End(Q®z L). Then B* = G, by Corollary 5.25, and ica|p, -, factors through
B*/3(B)* by Corollary 5.37. Since Qs is abelian, it also factors through B* /[B*, B*].
Thus, ioa|p, p, factors through B*/(3(B)*[B*, B*]). It now follows as in the proof of
Proposition 5.29 that ioa|p, p is trivial. O

The main result to be used later on in Section 8.2 is the following.
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Theorem 5.42. Let Z be an infinite commutative ring such that for all 0 # z € Z, the
ring Z/zZ is finite. Denote by Q the field of fractions of Z. Let A be a finite dimensional
Q-algebra and R be a left-noetherian Z-subalgebra of A with the property that Q- R = A.
Let V € Ch( amod)® such that End(V) is a semisimple ring. Define

S:=Sy ::{LECh(Rmod)b Q®ZL%V}
and
T ={(L,MT,Ty)|L,MeS, ('L Iy) admissible for (L, M) }.

Then there is a unique function

ia[: T — Qs0, (L,M,I',Inr) —ia(L, M)y,

NS

with the following properties:

(i) If (L, M,T,Ty) €T and L', M’ € S and there are isomorphisms p: L = L' and
v: M = M, then (L', M, Tt 9T pyp=1) € T and

ia(L7 M) |FL,FM - ia(L,’ M,) |<PFLSO_171/’FMT/’_1 ’

(ii) If (L, M,T,Tar), (M,N,T5;,Tn) € T, then (L,N, T, Ty) € T and
ia‘(L7 M)|FL,F]W ’ ia(M7 N)|FM,FN = ia’(L7 N)|FL,FN

(iii) If (L, M,T'r,Tar) € T and there is a monomorphism L — M with finite cokernel,
then with

H:={pely|pL=L37eTL:p[ =7}

and p: H —T'r, ;o — p|; one has

. [Cas : H] - Jker pl
la‘(L7 M)‘FL,F]M =

T'p, « im p)

Moreover, it has the following additional properties:
(i) If Ly,M € S, then ia(L, M)]AutL’AutM =1ia(L, M).
(v) If L,M € S and T, < Aut L and T'py < Aut M have finite indezx, then

|AutL : FL‘

= B LLL (L, M),
T = [Aut M Ty L M)

ia(L, M)|y,

Proof. Let (L, M,T';,,I'ys) € T. Then by Proposition 5.29, there is a commensurability
c: L = M. We define

ia(L, M)[p, r,, =1@(c)lr, r,);
which is independent of ¢ by Proposition 5.41.
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To prove (i), let (L, M,T'1,T'y;) € T, let L', M’ € S, and suppose that there are iso-
morphisms ¢: L = L' and ¢: M — M'. Let ¢ = (X', f',¢'): L' = M’ be a commen-
surability. Then clearly, ¢ := (X', o 1o f/.9p"t o ¢'): L = M is a commensurability, so
a(c)|r, r,, 1s a commensurability. It is immediate that the map

AUt(C)’rLIM — AUt(CI)‘er@ﬂwerﬁh (A& ) = (90)\9071:577#!“#71)

is an isomorphism. It fits into a commutative diagram

Aut()lp, r,,

FL / \ FM
et \ YT pp!
Aut()|or, -1 0yt

from which claim (i) follows. Statement (ii) is immediate from Proposition 5.39 (ii)
and Corollary 5.36 (ii). For (iii) suppose that (L, M,T'1,Tj;) € T and that there is a
monomorphism i: L < M with finite cokernel. It induces a commensurability ¢;: L =
M, and the isomorphism

AUt(CZ‘)‘FL”F]M % H7 (>\’ )\7#) = lu’

defines an isomorphism between a(¢;)|p, r,, and (H,p,j), where j: H < T’y is the
inclusion. The claim follows.

We next prove uniqueness. Suppose t: T — Qsg is a function satisfying (i), (ii) and
(iii). Let (L, M,T',I'pr) € T. By Lemma 5.18, there are my,mo € Z \ {0} such that
m1Liors = MoMiors = 0. Let i: miL — L be the natural map, which is an isogeny by
loc. cit. Then i~ 'T'zi < AutmL, and we now show that (i 'T'zé,"js) is admissible for
(m1L, M). First we investigate the map

a: T — i T, A= iU,
which is clearly surjective. Let
Or: 0 —— Liogys —— L —— L/Lios —— 0,

a short exact sequence of chain complexes. There is a natural injection

Aut L < Aut O, A — (N, A\ N),

95



where )\ and ) are the automorphisms of Lo and L / Ltoys, respectively, that are induced
by A. Moreover, it follows from the proof of Proposition 2.12 applied componentwise
that the natural map

Aut O, — Aut Liors X Aut L/ Lyoys

has kernel isomorphic to Hom(L/Liors, Ltors). Now if A € ker o, then ) is the identity.
Hence, the concatenation

ker @ < Aut © — Aut Liors X Aut L/ Lioys

has finite image and finite kernel. This shows that ker « is finite and therefore that
« is an isogeny. Now let ¢ = (X, f,g9): miL = M be a commensurability. Then also
d = (X,if,g): L = M is a commensurability, so a(c')|p, p,, is a commensurability.
Define

AUt(C/)’FL,FM - Aut(c)|i*1FLi7FMa (Avéau) = (2_1)\%57#)

This map is surjective and has finite kernel, as o does, so it is an isogeny. It fits into a
commutative diagram

id
Aut(cl) ‘FL,F]\/I
Aut(c’)]rLIM FL FM
|1
Iy

—~

Aut<c) ’i_lrL’L‘,FA{ ’

which together with Proposition 5.7 shows that a(c)|;,-ip,;,, I8 a commensurability.
Thus, (i~'T'zi,T5s) is admissible for (myL, M). In the same manner, when letting
j:maM < M denote the natural map, one sees that (', 'T'j) is admissible for
(L,maM) and that (i7'T'zi,77'Tsj) is admissible for (miL, maM). Then by property
(ii) we have

t(mlLa mQMa iilFLiv jilrM]) ’ t(m2M7 M?jilera FM)
t(mlL, L, i_lrLi, FL)

t(LaMaFLer) =

The values of all three factors on the right hand side are determined by property (iii),
so t must equal ia.

Finally, property (iv) is clearly satisfied, and property (v) follow from Proposition 5.40.
O
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6 Arakelov Ray Class Groups

In this chapter, we introduce the central object of the thesis, the Arakelov ray class
group Pic(}{ (m). It is an ‘Arakelov version’ of the ray class group and has first appeared
in [BP25]. Here, we recall its definition and the properties established in [BP25]. As
Pic) (m) is the main object of our interest, we give a detailed construction and provide
proofs of the relevant statements. First, in Sections 6.1 and 6.2 we review ray class
groups and relevant aspects of Minkowski theory. The Arakelov ray class group and its
associated short exact sequence S?{a(m) are then constructed in Section 6.3. In the final
subsection we discuss some of the information that is carried by the sequence S{(m).

Throughout this chapter, let K be a number field. For an infinite prime p | oo of K
we denote by o,: K — C a representative of the class of embeddings corresponding to
p. We denote by Idgx the group of fractional ideals of K and by Pring the group of
principal fractional ideals. We write Clg = Idg / Pring for the ideal class group.

Note that Aut(K') operates on the infinite primes of K. If 7 € Aut(K) and p | oo, then
a representative for the class of embeddings associated to 7(p) is by definition given by

Or(p) = Op © T 1. Moreover, there is a natural action of Aut(K) on Idg, Pring and

Clg.
Definition 6.1. A modulus in K is a pair m = (mg, my,) where mg is a nonzero integral
ideal of Ok and my is a set of real places of K. If H < Aut(K), then we say that m is

H-stable if T(mp) = mp and 7(ms) = my, for all 7 € H.

For the remainder of this chapter, let m = (mg, ms) be a modulus in K.

6.1 Ray Class Groups

We recall the definition and basic properties of the ray class group. We follow [Coh00,
Section 3.2], but use the notation from [BP25, Section 1.1].

Definition 6.2. We say that a fractional ideal I € Idg is coprime to m if v,(I) = 0 for
all p | mg, and we denote by Idx(m) the group of all such ideals. We define

K'(m) :={a€ K*|vy(a—1) > vy(mp) for all p | mg, op(a) >0 for all p € my }

and put O (m) := K'(m) N O. Finally, we let Pring(m) := { aOk |a € K*(m) } and
define the ray class group of K with modulus m to be Clg(m) := Idx(m)/ Pring (m).

Note that we recover the ideal class group as Clg = Clg (Og, 9).
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Definition 6.3. We say that an element a € K* is coprime to m if aOk is. If a € K*
is coprime to m, then we can write a = g with b,¢ € Ok coprime to m. We have
b, ¢ € (O /mo)* and define @ := b-¢ ! € (O /mp)*, which is independent of the choice
of b and c¢. We define a group homomorphism

p:=pr(m): {a € K*|a coprime tom} — (O /mg)* x {£1}™=,
a — (@, (signoy(a))y),

which is surjective by strong approximation.

Note that when restricted to O, the first component of p is just the map induced by
the reduction map O — Ok /my.

Remark 6.4. Let H < Aut(K) and suppose that m is H-stable. Then it is easy to see
that the objects Id g (m), K!(m), Ok (m), Pring (m), Clg(m), {a € K* | a coprime to m },
Ok /mg, {£1}™> discussed above are H-modules. The action on {£1}™* is given by
7.(ap)pemas = (@r-1(p))pem,, for ay € {+1} and 7 € H.

We always have a natural map Clg(m) — Clg from the ray class group to the class
group. Its kernel can be described by the following exact sequence.

Proposition 6.5 ([Coh00, Proposition 3.2.3]). Suppose that m is H-stable for H <
Aut(K). There is an exact sequence of H-modules

0 — Ok(m) — 0% & (O /mg)* x {F1}™ N Clg(m) — Clg — 0
where the left hand map s inclusion, the right hand map is the natural map, and ¥ maps

p(a), where a € K* is coprime to m, to the class of aO . In particular, ‘(’)[X( : (’)}((m)‘ <
00.

Definition 6.6. We write

Sm): 0 Ol

H(O7) Clg(m) —— Clgy —— 0.

for the short exact sequence coming from Proposition 6.5 and call it the ray class group
sequence.
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6.2 Minkowski Theory

We review some notions from Minkowski theory and set up some notation that will be
used later. The material can be found for example in [Neu99, Section I.5]. A central
role in Minkowski theory is played by the finite etale R-algebra Kg := K ®g R which
offers a way of embedding K into a finite-dimensional real vector space and making use
of the theory of lattices. There is an isomorphism of finite etale R-algebras

KR:K®@R1>HKP, a®x v (az,...,az),
ploo

and we will generally prefer to work with the right hand description of Kg. For each
infinite prime p | oo we denote by |-, : Ky — R>o the associated normalised absolute
value. Thus, if p is real, then after identifying K with R we have ||-[|, = [-|, and if p is

complex, then after identifying K with C we have |||, = 2.

We denote the norm map of the finite etale R-algebra [], . Kp by N: []; o Kp = R.
Explicitly, it is given by N((ap)p) = [I,o [lapll,- On the unit group Kg = ][, K, we
further define a map

Log: HKX%HR (ap)p — (log [lapll,)s-

ploo ploo

Note that we have a decomposition

HK;NHC ) X R

ploo ploc

where c(KpX) denotes the maximal compact subgroup of pr. Explicitly, if p is real, then
c(K) = {£1} and we have an isomorphism R* = {£1} xR~q, & — (ﬁ, |z|), and if p is
complex, then ¢(K,‘) = S and we have an isomorphism C* = S! X Rsq, 2z — (ﬁ, |z]).
The above decomposition induces an isomorphism

HKPX /C(HKPX) S HR>0.
ploo ploo ploo

Since N is trivial on [], c(Ky'), it descends to [ ;00 R>0, where it is given by

N: H Rso = Ry, (2p)p — H :cLKp:Rl. (6.7)

ploo ploo

Similarly, Log descends to Hp| o R>0, where it is given by

Log: HR>U—>HR Tp)p 10gm| b ‘)p:(\Kp:R|-logxp)p

ploc ploc
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and defines an isomorphism. Finally, we have the trace map

Tr: H]R — R, (xp)p — Z:cp.

ploo ploo

The above maps fit into the commutative diagram

Log
K* Hp\oo KPX Hp\ooR

ol [ [

Qo —— Roo —— R

We write ([T, R)? for the set of x € [ ;o0 R for which Tr(z) = 0. Then commutativity

of the diagram gives that Log(Ox) C (ITpj00 R)?. We have the following generalised
version of Dirichlet’s unit theorem.

Theorem 6.8. There is a split exact sequence of abelian groups
0 —— pu(K)NOL(m) —— OL(m) & Log(Ok(m)) —— 0
and Log(O}-(m)) is a complete lattice in (o0 R)?.

Proof. The statement for m = (Og, @) is the classical unit theorem and is proven in
[Neu99, Section 1.7]. It immediately implies the claim on the exact sequence. Since
|O% : Ok (m)| < 0o by Proposition 6.5 and Log(O};) is a complete lattice in (I oo R)?,
it follows that also Log(O} (m)) is a complete lattice in (ITpj00 R)O. O

6.3 Construction of the Arakelov Ray Class Group and Sequence

In this section, we define the Arakelov ray class group Pic?{(m) and establish the natural
short exact sequence S (m) associated to it, as well as a short exact sequence D (m) of
short exact sequences of which S4(m) is the middle term. The construction of Pic% (m)
is analogous to that of the Arakelov class group as a version of the ideal class group that
also incorporates the infinite primes. We review and detail its definition from [BP25],
using a slightly different but equivalent approach in the style of Neukirch’s construction
of the Arakelov class group in [Neu99, Section III.1]. In doing so, we roughly follow the
exposition from [Neu99] and generalise it by taking the modulus m into account. We
give a multiplicative definition here, but one can also define Pic?((m) additively, using
divisors, just as for Pic%-.
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Definition 6.9. We define

Idg(m) == Idg (m) x [ Rso

ploc

and regard it as an LCA group with the discrete topology on Idx(m) and the standard
topology on [, R>o. For a € K!(m) we define

((a)) = (aOk., (lop(@)| ™ pjoc) € ldic(m)

and let Pring (m) := { ((a))|a € K'(m) }.

Note that clearly ((a)) - ((b)) = ((ab)) for a,b € K'(m), so Pring(m) is a subgroup of
Idg (m). Even more:

Proposition 6.10. The kernel of K*(m) — Idg(m), a — ((a)) is p(K) N Ok (m). Its
image Pring (m) is a discrete subgroup of Idg(m) and thus in particular closed.

Proof. We imitate the proof of [Neu99, Proposition I11.1.9], with respect to our notation.
The composition of maps

K'(m) = Idgc(m) — [ Rso ~5 [[ R,

ploo ploo

where the middle map is the projection, is just —Log] K1(m)- It follows from this and
Theorem 6.8 that the kernel of K'(m) — Idx(m) is u(K) N Ok (m).

For the second claim we again make us of Theorem 6.8 which gives in particular that
Log(O}-(m)) is a discrete subgroup of (ITpje0 R)?. Hence, there is an open set U C

[I;joc R such that U NLog(Ok(m)) = {0}. Consider V := {Ok} x @_1(U) C Idg (m),
which is an open set containing 1 € Idg(m). We claim that V N Pring(m) = {1}. If
a € K'(m) is such that ((a)) € V, then a € Ok(m) and —Log(a) = Log(a™!) € U
by our considerations from the first part of the proof. It follows that Log(a) = 0, so
a € p(K) N Ok (m) and therefore ((a)) = 1. This shows that Pring(m) is discrete in
IdK(m) L]

Definition 6.11. We define Picg(m) := Idx (m)/Pring (m), which is an LCA group.

In analogy to the fact that Log(OZk(m)) is contained in the trace-0-hypersurface of
Hp‘ o R with compact quotient, it is more natural to consider a slightly smaller group

than Pickx(m) by restricting to certain elements of Idx(m). This will again yield a
compact object.
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Definition 6.12. The absolute norm N: Idg — Qg on fractional ideals and the norm
map N: leoo R<o — Ryg from (6.7) give rise to yet another norm map

N: Idg(m) = Rso, (1, (2p)p) = N(I) - [ ] 2y

ploo

which is a continuous surjective group homomorphism.

Note that for a € K!(m) we have

N(((a))) = N(aOx) - [ lop()" "™ =T lall,* - T[] lall,* =1

ploc pfoo ploc

by the product formula. Thus the norm map descends to Picg(m).

Definition 6.13. We put
[dr(m) = {X e Tdp (m) ‘N(X) ~1 }

The LCA group

Pic) (m) := Idg(m) /Pring(m) = ker(N: Picg(m) — Rso)

is called the Arakelov ray class group of K with modulus m. We call Pic% := Pic% (Ok, )
the Arakelov class group of K.

The 0 on top is taken from the additive definition of these objects in the language of di-
visors; see [Sch08, Section 2] or [Neu99, Section II1.1] for the corresponding construction
of the Arakelov class group.

Remark 6.14. The action of Aut(K) on {p | oo} induces an action on [, R, which
for 7 € Aut(K) and (zp)p € [[;)o R is given by 7.(zp)p = (#;-1(p))p- The analogous
statement holds for [ ], Rxo.

Let H < Aut(K) and suppose that m is H-stable. Then in addition to the objects

mentioned in Remark 6.4, we have that Idx(m), Pring(m), Pick(m), IdK(m)O and
Pic) (m) are LCA H-modules, and the maps K'(m) — Idx(m) and N are continuous
H-homomorphisms.

The next statement generalises the fact that the Arakelov class group surjects onto
the ideal class group with kernel a compact real torus ([Neu99, Proposition III1.1.11];
[Sch08, Proposition 2.2]).
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Proposition 6.15. Suppose that m is H-stable for H < Aut(K). There is a short
strictly exact sequence of compact LCA H-modules

0 —— Ok(m)®zR/Z —— Pic%(m) —— Clg(m) — 0

where the right hand map is the natural one and the left hand map is given by u @ T +>
(1, (Jop(u)|)p)] for u € Of(m) and x € R.

In particular, Ok-(m) @z R/Z is the connected component of the identity of Pic) (m).
Moreover, Pic}(m) is a compact real abelian Lie group of dimension |{p | co}| — 1, and
the above short exact sequence is an exact sequence of compact real abelian Lie groups.

Proof. We need to investigate the kernel of the natural surjection Pic% (m) — Clg(m)
and start by imitating the proof of [Neu99, Proposition III.1.11]. We consider the map

5: Ok (m) — HR>07 w e (lop(w)[ ™y,

ploo

a multiplicative analogue of the Log map which embeds units in trace-0-space. Note that
it is just the concatenation of the natural map O} (m) — Pring(m) with the projection
Idg(m) = J[;jec R>0. Thus Proposition 6.10 shows that ker(s) = Ok-(m) N pu(K) and
that s has discrete image. We denote by (1_[p|oo R+0)° the set of z € Hp|oo R<o with
N(z) =1, where N is the map from (6.7). Then im(s) € (I, R-0)? by the product
formula, and there is a natural commutative diagram

eF S5 TN .
O}((ni()fwn:j(K) » Pring(m) —— Pring(m) —— 0

; J |

0 —— ([Tyjoo R50)° — Tdxe(m)’ —— Tdg(m) —— 0

with exact rows. The snake lemma gives us a short exact sequence of LCA groups

(o0 B>0)°
S(OL (m)

> Pic% (m) —— Clg(m) — 0.

We now provide a different description of the left hand term. In a first step, we connect
it to the objects from Minkowski theory. For u € O} (m) it holds that Log(s(u)) =
Log(u~1), so that we have a commutative diagram

$(Ok(m)) —— ([Tpje0 R>0)"

. o

Log(Ok (m)) —— (TT,jo0 B)°
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in which the vertical maps are isomorphisms. It follows that Log induces an isomorphism
Liog' (Hp|oo R>0)0 ~ (Hp\oo R)O

s(Ox (m)) Log(Oj (m))
of LCA groups. Next we define a map

(TTypoo B)°
Log(O (m))

Ok (m) 9z R/Z — , u®T — x - Log(u=1).

This is clearly well-defined, and it is continuous, using the topology from Proposition
4.42 on Ok (m)®zR/Z. By Theorem 6.8, Log(OL (m)) is a complete lattice in (ITpjee R)°
which shows that the map is surjective. Moreover, we may pick u1,...,u, € O}( (m) such
that Log(u1),...,Log(u,) are a Z-basis of Log(O} (m)) and an R-basis of (ITpj00 R)O.
Then every element of O%(m) ®z R/Z can be written as > | u; ® T; for some x; € R.
If such an element is contained in the kernel of the above map, then > 7" | —z; Log(u;) €
Log(0O}(m)) and R-linear independence gives x; € Z for all i, so Y~ u; @ T = 0.
Hence, the above map is injective and therefore an isomorphism of LCA groups. By
tracing the given isomorphisms, one obtains the claimed short exact sequence, which is
strictly exact by Proposition 4.21. Being the finite union of compact sets, Pic?((m) is
compact. Note that all maps appearing above are in fact H-homomorphisms.

Since Clg(m) is finite, O} (m) ®z R/Z is a closed subgroup of Pic% (m) of finite index,
hence an open subgroup. It then follows from [[IR79, Theorem 7.8] that Ok (m) @z R/Z
is the connected component of the identity of Pic%(m). The final claim is immediate
from Proposition 4.12. O

As an analogue of Proposition 6.5 we obtain:

Proposition 6.16. Suppose that m is H-stable for H < Aut(K). There is an exact
sequence of compact real abelian Lie groups with an action of H by continuous group
automorphisms

0 — w(K)NOL(m) — u(K) 2 (Ox /me)* x {£1}™ % Pic% (m) — Pick — 0

where the left hand map is inclusion, the right hand map is the natural map, and ¥ maps
p(a), where a € K* is coprime to m, to the class of (aOk, (|0p(a)|71)p).

Proof. The proof of [Coh00, Proposition 3.2.3] immediately generalises. O
Definition 6.17. We write

Spe(m): 0 —— Q™ Y Pick(m) —— Pick —— 0

for the short exact sequence coming from Proposition 6.16 and refer to it as the Arakelov
ray class group sequence.
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The exact sequence S?{ra(m) and the sequence from Proposition 6.15 fit together in a big
commutative diagram which summarises much of the content of this section.

Theorem 6.18. Suppose that m is H-stable for H < Aut(K). There is a commutative
diagram of compact real abelian Lie groups with an action of H by continuous group
automorphisms

0 0 0
o —— 4% Oklm) 62 B/2 — Of e R/Z — ¢
0 (oK/m;)( OZ {)ﬂ}'"w Clgc (m) Clg 0
0 0 0

with exact rows and columns, where: p is the map from Definition 6.3; the middle row is
S&?(m); the bottom row is B (m); the middle and right hand columns are the sequences

it . ; tey L
from Proposition 6.15; the left hand map in the top row maps the class of p(u) to u'® 1,
where u € O and t = |OF : Of(m)]|.

Proof. Commutativity of all four squares of the diagram is immediate from the definition
of the respective maps. All of the exactness is clear except for the top row. Exactness
of the latter follows from the snake lemma. O

Denoting the top row in the diagram above by S}?ri(m), we can write the diagram as a
short exact sequence

Dy (m): 0 —— Sti(m) —— S (m) —— Si(m) —— 0

of short exact sequences of compact real abelian Lie groups.

6.4 Information Carried by the Arakelov Ray Class Sequence

In this section, we show that the Arakelov ray class sequence S&**(m) ‘knows about’
both the diagram Dy (m) and the reduction map px(m) in the sense that the latter two
can be obtained from the former by certain general constructions performed on short
exact sequences. This is taken from [BP25, Section 3].
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6.4.1 Recovering the Diagram Dy (m)

We recall the construction from [BP25, page 11] that shows that the diagram Dy (m)
can be recovered from just the short exact sequence S?(ra(m). We use the slightly more
general setting of LCA modules over a locally compact ring.

Construction 6.19. Let R be locally compact topological ring. Let

r: 0 y 2w 2. x 40

be a short exact sequence of compact LCA R-modules. Note that it is automatically
strictly exact by Proposition 4.21. We show that I' naturally induces a short exact
sequence of short exact sequences of which it is the middle term.

Since W is compact, so are Wy and §(Wy). Strictness of ¢ and [HR79, Theorem 7.12]
imply that §(Wp) = Xo. It follows from this and Proposition 4.21 that there is a short
strictly exact sequence of compact LCA R-modules

Sl

Fo: 0—— ker(é\wo) W() X() 0.

We also get a short strictlyexact sequence of compact LCA R-modules

T: 0 — ker(3) —— W/Wo —— X/Xg —— 0

where ¢ is the natural map induced by 6. Now define a morphism

v Y = ker(d), y— v(y).
It is then easy to see that
—1 ’ _
0 —— ker(d|yy,) L 5y T ker(d) —— 0

is a short strictly exact sequence of compact LCA R-modules. Moreover, we have a
commutative diagram of compact LCA R-modules with strictly exact rows and columns

0 0 0
Sl

F[)Z 0 —— ker(é\wo) W() X() 0
,Y—l

r 0 Y il w—2 X 0
,Y/

T 00— ker(3) —— W/Wy —2— X/Xg — 0
0 0 0
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That is to say, there is a short exact sequence

D.(T): 0 Iy > T T » 0
of short strictly exact sequences of compact LCA R-modules.
Proposition 6.20. It holds that D(S2(m)) = Dy (m).
Proof. This is immediate from Theorem 6.18. O

6.4.2 Recovering the Reduction Map px(m)

Recall the natural reduction map
pi= prc(m): Of = (O /mo)* x {=1}™ , w i (T, (signoy(u))y)

from Definition 6.3. Denote by

p = pr(m): Ok — (Orc/mo)™ x {1}

H(K) p(u(K))

the map induced by p. We discuss the construction from [BP25, page 13] that allows
to recover p from S?(ra(m). We work in the slightly more general setting that takes into
account group actions.

Construction 6.21. Let G be a finite group. Let X be a compact real abelian Lie group
with an action of G by continuous group automorphisms. Let Y be a finite ZG-module.
We construct a map

we = w1 B__Lca(X,Y) = Homza (XY /(XY )tors)*, V),

where we recall that (XY /(X" )tors)* = Homgz (X" /(X" )tors, Z) is the dual lattice from
Definition 3.6 (here, Z = Z and R = ZG). Let I' € E_ 1 ca(X,Y) and suppose that it is
given by the short strictly exact sequence

0 y 2o w 2, Xx s 0

of LCA ZG-modules. Note that W is compact by Remark 4.26 (a). By Pontryagin
duality and Corollary 4.16 (ii) we have a natural isomorphism

Xo = (XY /(X tors) s w= (f = f(2))

of compact LCA ZG-modules and by Propositions 4.42 and 3.7 there is a natural iso-
morphism

(XY /(X tors)* @2 R/Z =5 (XY /(X V)gors)”s h @+ (f = h(f) 1)
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of compact LCA ZG-modules, and analogously with X replaced by W. We moreover
have a short exact sequence

O - Xv/(Xv)tors L) Wv/(Wv)tors - YV/'YV((WV)tors> E— 0
of discrete (Z(G)°P-modules. Since Y is finite, this shows that (0V)* is injective with finite

cokernel. Hence, (0V)* ® idg is an isomorphism of real vector spaces and G-modules.
Now consider the commutative diagram

)* @i 1
(WY (WY )tors)* 92 B XY /(XY )iors)* ®2 R

(WY /(W Y)tors)* @2 R/Z — (XY /(XY )tors)* @2 R/Z
IR | Il
i 1
0 — ker dlyy, Wo %o X ' 0
i | |
0 Y i y W g X 0.

By commutativity, the image of (XV/(X")ors)* in Wy is contained in ker d|y; , so we
may apply 7! to it to land in Y. This gives a map w¢(I") € Homzg (XY /(XY )tors)*, Y),
depicted in green above. One checks that it is independent of the chosen representative
for T.

For ¢ € (XY /(XY )tors)® we can explicitly give the image of v(w.(I')(¢)) € W under any
element of WV, by tracing the isomorphisms above: Let g € WV. Then there is a unique
h € XV /(X")tors such that |Y|g = ¢V (h) and it holds that

s(r(e0))) = o) 1

The construction above is related to Construction 6.19 in the following way.
Proposition 6.22. Let G be a finite group. Let X be a compact real abelian Lie group
with an action of G by continuous group automorphisms. Let'Y be a finite ZG-module.

Suppose that I' € EZGLCA(X, Y') is given by the short strictly exact sequence

0 s Y — s W 5>X > 0

of compact LCA ZG-modules. Then there is a surjective ZG-module homomorphism
o (XV/(XY)tors)* — ker 0|y, with we(T') = v loo.
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Proof. By Construction 6.21 we can write w.(T') = 771 0y 0 w.(T"), where 7 o w.(T) is

a homomorphism from (X /(X")iors)* to kerdly, . It follows from the commutative
diagram in Construction 6.21 that 7 o we(I") is surjective. O

Construction 6.23. Let n be a modulus in K that is H-stable for H < Aut(K). The
short exact sequence from Proposition 6.15 induces an isomorphism

Picj(n)"/(Pick (n))tors = (Ok(n) ®z R/Z)".
Now by Pontryagin duality and Proposition 4.42, there are natural isomorphisms
O ()" = (O ()*)" = (O (n) @z R/Z),
and using further Proposition 3.7 we have natural isomorphisms
(Ok(n) @z R/Z)")* = Ofc(n)™ = Ok (n)/((K) N O (n)).
Overall, we obtain a natural isomorphism
(Pick (n)"/(Pick (n) )tors)* = O (n)/(u(K) N Ok (n))

of H-modules.

Proposition 6.24. Suppose that m is H-stable for H < Aut(K). Then under the
isomorphism
((Pick)" /((Pick) " Jsors)* 2= Ofc/ u(K)

from Construction 6.23 and when considering Spr(m) as a short exact sequence of com-
pact LCA H-modules, we have w(Sp(m)) = pg(m).

Proof. One checks that for any modulus n in K, the isomorphism from Construction
6.23 tensored with idg fits into a commutative diagram

(Pick (n)"/(Pick (n) )sors)* @z R = Op(n)/(u(K) N O (n)) @z R
(Pich(n)"/(Pick (n)")tors)* @2 R/Z
11
Pic-(n)g < Ok (n) @z R/Z

~

where the isomorphism on the left hand side is the one from Construction 6.21 and the
bottom map is the map from Proposition 6.15. Now by Proposition 6.5, the inclusion
Of (m) < O} induces an isomorphism

Ok (m)/(u(K) N Ok (m)) @z R = O /u(K) ©7 R
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whose inverse sends u®x to u'® %, where t = ‘(’)IX{ : Ok (m) ‘ By the above commutative
diagram, in order to prove the claim, we have to show that the concatenation

O /u(K) = O /W(K) @z R
= O (m)/(u(K) N Oj(m)) @z R
— Ok (m) @z R/Z
= Pich (m)o

equals ¥ o pg(m), where 9 is the map from Proposition 6.16. But this is immediate from
the definitions of the respective maps. O
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7 Picking out Good Components

As explained in the introduction, our main conjecture is concerned with the good part
of the Arakelov ray class sequence, which is obtained from S?{ra(m) by tensoring its dual
with a suitable ring R. In the present chapter, we investigate this process of picking out
good components and establish some fundamental properties of the corresponding ring
R. We use the notion of good primes from [BL20]:

Definition 7.1 ([BL20, page 930]). Let G be a finite group and let A = QG/I for some
two-sided ideal I. We call a rational prime p good for A if there is a direct product
decomposition as rings Z,)G = J x J', where J is a maximal Zpy-order in A, and the

quotient map Z,G — A equals the projection Z,)G — J composed with the inclusion
J — A.

If p is good for A, there is thus a commutative diagram

J % J/ = Z(p)G

| |

J —— A,

and it holds that J = im(Z(p)G — A). Most importantly, the good primes include those
coprime to the order of G:

Lemma 7.2. Primes not dividing |G| are good for A.
Proof. This is immediate from [Rei03, Theorems 41.1 and 10.5]. O
For the most part, we will use the following notation.

Setup 7.3. Let G be a finite group and let A = QG/I for some two-sided ideal I. Let
S be a nonempty set of good primes for A and let R := im(Z5)G — A). We denote the
localisation of the Zg)-algebra R at pZg) by R,.

Suppose that eg, ..., e; are the primitive central idempotents of QG, that I is generated
by eo,...,es for some —1 < s <t (where we mean I =0 if s = —1) and that S consists
of rational primes not dividing |G|. Then by [Rei03, Theorems 41.1 and 10.5] we have
R=Zs\G/(e0Z(s)G @ -+ @ esZg)G), and if M is a finite ZG-module, it holds that

R®zg M = M[ST]/(egM[S*] @ - - © es M[S™]).

So by tensoring with R, one picks out the components of the good part M[S*>] that
belong to the blocks of QG not contained in 1.
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7.1 Basic Properties of R and its Localisations

Use Setup 7.3. We prove some basic properties of R that will be used later.

In many situations, we will deal with Pontryagin duals or lattice duals of certain ZG-
modules or R-modules. These duals are a priori modules over the opposite rings. A
convenient property of the specific rings we are working with is that they are self-
opposite which allows to naturally regard modules over their opposite as modules over
the original ring.

Construction 7.4. Let T be a ring and suppose that T" admits an antiautomorphism
7: T — T. Then 7 induces a ring isomorphism 7" = T°P. Hence, if M is a left
T°P-module with action T°P x M — M, (t,m) + t*m, then we may regard M as a
left T-module via t.m := 7(t) * m. This way any homomorphism ¢: M — N of left
T°P-modules is also a homomorphism of left T-modules. Analogously, if M is a right
T°P-module with action given by m = ¢, then we may regard M as a right T-module via
m.t :=m*7(t).

Convention 7.5. In the case of QG, we have the canonical involutory antiautomorph-
ism

7: QG — QG, g|—>g*1.

If Z C Q is a subring, then 7 restricts to an antiautomorphism of ZG. Moreover, if e €
QG is one of the pairwise orthogonal primitive central idempotents, then we have 7(e) =
e by [Lam91, Proposition 8.15] and [Isa76, Theorem 9.21 (c)]. In particular, 7(I) = I,
and 7 induces an antiautomorphism 7: A — A that restricts to antiautomorphisms of R
and R, for p € S. We will always use the antiautomorphisms 7 and 7 to regard left resp.
right modules over the opposite ring of any of the rings mentioned in this paragraph as
left resp. right modules over the ring itself.

A key feature of R is that its localisations at the p € S allow us to make use of the
properties of good primes.

Lemma 7.6. Letpc S andlet p: Jx J = Zp)G be a ring isomorphism, where J is a
mazimal Zy-order in A, and the quotient map Z,)G' — A equals the projection Z,)G —
J composed with the inclusion J — A. Then J = R, and we have a commutative diagram

Ry x J' —'— 7,,G

l 1 (7.7)

Ry— > A

Write e := p(1,0) € Z,)G. The following hold:
(i) (INZyG)-e=0.
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(ii) For all x € Zy)G and w € R, we have p(zw,0) = x - p(w,0) and p(wz,0) =
p(w,0) - x. In particular, p induces an isomorphism R, —» LG - € of left and
right Z ) G-algebras.

(iii) T(e) = e.
(tv) For all w € R, we have T(p(w,0)) = p(T(w),0).

Moreover, if p: R, x J = LG is another ring homomorphism for which the analogue
of (7.7) commutes, and € := p(1,0), then e = € and p|p = p|g  as maps Ry — Z,)G-e.

Proof. We have R, = (Zs) \ pZs)) 'R = im(Z,)G — A), so R, = J.

Let z € (I NZy)G) - e € Zy)G - e. Then there is w € R, with = p(w,0). Using
commutativity of (7.7) and the fact that x € I, it follows that w = 0. So x = 0 and (i)
is proved.

Note that e is a central idempotent of Z(,)G. As such, it commutes with all g € G
which implies that it is also a central idempotent of QG. Hence, e is a sum of certain of
the pairwise orthogonal primitive central idempotents of QG. But then it follows as in
Convention 7.5 that 7(e) = e, proving (iii).

For (iv) let w € R,. Commutativity of (7.7) implies that
7(p(w,0)) = p(T(w),0) = 7(w) = 7(w) = 0
which shows 7(p(w,0)) — p(T(w),0) € I N Z,)G. Moreover, by (iii) we have

T(p(w, 0)) = 7'(,0(1,0) ’ p(w, 0)) = T(,O('U),O)) ) 7'(6) = T(p(w, 0)) 1€

so that
7(p(w,0)) — p(T(w),0) € (I NZ)G) - e.

Claim (iv) now follows from (i).
The identities in (ii) are proved analogously as for (iv): reduce modulo I and use (i).

Finally, suppose that p: R, x J = Zy)G is another ring homomorphism for which
the analogue of (7.7) commutes. Then by (ii) we have Z,G - e = Z,)G - € as Z,)G-
algebras. It thus follows from [Lam9l, Exercise 22.2] that e = e. Furthermore, if
w=71T € R, =im(ZyG — A), where = € Z,G, then

by part (ii). O
In the following, we discuss some more ring theoretic properties of R. When these are
local properties, one can often prove them by either using properties of the maximal order

Ry, =im(Z, G — A), or by obtaining the statement for Z,)G and then transferring it
to R;, using a decomposition Z,)G = R), X le)‘
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Proposition 7.8. R is a mazimal Zg)-order in A.

Proof. By [Rei03, Corollary 11.2], R is a maximal Zg)-order in A if and only if R, is a
maximal Z,-order in A for all p € S. But the latter holds by Lemma 7.6. O

This allows us to use all the statements on maximal orders we proved in the earlier
chapters.

Proposition 7.9. Let V be a finitely generated A-module. Then V =2 V* as A-modules.

Proof. By [CR&1, Exercise 9.13 and page 246], every finitely generated QG-module is
isomorphic to its dual. This implies the claim as A = QG/I. O

Corollary 7.10. Suppose that S is finite. Let M be an R-lattice. Then M = M*
(noncanonically) as R-modules.

Proof. By Propositions 7.9 and 2.1, there are isomorphisms of A-modules
ARrM = (A@r M)* = (Q®Z(S) M)* = Q®Z(S) M*=A®r M*.

Since M™ is an R-lattice by Proposition 3.7, an application of Proposition 3.10 yields
M = M*. O

Note that the statement is clearly false if M is not assumed to be a lattice: If M is any
finite nontrivial R-module, then M* = 0 while M # 0.

Notation 7.11. For p € S, if M is a Z,)G-module, then we denote by Mp, the R)-
isotypical component of M, coming from a ring isomorphism R, x .J' = Zp)G for which
(7.7) commutes. Moreover, for w € R, we denote the element of Z, G corresponding
to (w,0) also simply by (w,0), or by (w,0), if p is not clear from the context. These
notations are justified as by Lemma 7.6 they are independent of the chosen isomorphism
in the definition of a good prime.

Taking these isotypical components interacts well with the antiautomorphisms from
Convention 7.5.

Lemma 7.12. Letp € S. Let M be a left (Z,G)°P-module. Then the RyP-isotypical
component MR;p is a left Rp®-module. Regard it as a left R,-module as in Convention
7.5 and denote the action by w e m for w € R, and m € MR;p.

Regarding M as a left Z,G-module, the Ry-isotypical component Mg, is a left R)-
module and we denote the action by wom for w € R, and m € Mg, .
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Then it holds that MRf,P = Mg, and wem = wom for allw € R, and m € Mpg,, i.e.
the identity
id: (Mg,,0) = (Mg, o)

is an isomorphism of R,-modules.

Proof. Denote the action of Z,)G? on M by x xm for x € Z,)G® and m € M. Then
by Lemma 7.6 (iii) we have

Mpor = (1,0) * M = 7(1,0) * M = MR,
Moreover, for w € R, and m € Mg, Lemma 7.6 (iv) gives
wem = (T(w),0) xm = 7(w,0) *m =wom,

as claimed. O

7.2 Tensoring with R over ZG

Keep using Setup 7.3. As explained at the beginning of this chapter, the reason to con-
sider the ring R is because tensoring a ZG-module M with it picks out good components
of M. In this subsection, we investigate the process of forming this tensor product in
some more detail and prove several compatibility results of it with other constructions.
We start with the crucial property of flatness.

Proposition 7.13. R is a flat left and right ZG-module.

Proof. et 0 - N — L — M — 0 be an exact sequence of left ZG-modules. We need
to show that then also

0 —— R®a N — RRQyua L — RQypa M —— 0

is exact. Treating the sequence as a sequence of Zg)-modules, by [Rei03, Corollary 3.16]
this is equivalent to the statement that

0 — Ry@za N — Ry @ze L —— Ry @z M —— 0 (7.14)

is exact for all p € S. So let p € S. Since Z, is flat over Z and Z,)G = Z,) ®z ZG, it
follows that Z, G is a flat left and right ZG-module. Hence,

0 — Zp)G ®zg N —— Z)G ®zg L —— Z)G @z M —— 0

is exact. Passing to isotypical components and noting Lemma 7.6 (ii), it follows that
(7.14) is exact. So R is a flat right ZG-module. The same proof works for R as a left
ZG-module. O
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Lemma 7.15. Let M be a ZG-module. Then the following hold:
(i) We have (R ®zag M )iors = R @z Miors and the natural map

(R Xza M)/(R Qza M)tors — R Rza M/Mtors

s an tsomorphism of R-modules. In particular, if M is a ZG-lattice, then RQ®zq M
s an R-lattice.

(ii) Let n € Z. Then (R ®zq M)[n] = R ®zq M[n] and the natural map
(R®za M)/n(R @z M) — R®zc M/nM

s an isomorphism of R-modules.

(111) If M 1is finite, then so is R @zq M. Moreover, we then have (R ®zg M)[p>] =
R ®zq M[p™] for any prime p.

Proof. We first show that if M is Z-torsionfree, then R ®zc M is Zg)-torsionfree. By
[Sta25, Tag OAUT], the latter is equivalent to the statement that R, ®zc M is Z-
torsionfree for all p € S. Now by loc. cit., for p € S, the module Z,\G&zcM = Z,)@zM
is Zy)-torsionfree. As R, ®z¢ M is a direct summand of this module, it is also Z,)-
torsionfree. This proves the claim.

Flatness of R gives an exact sequence of R-modules
0 —— R®zg Miors — R®zc M —— R®zg M/Miors — 0,

where R Qza M /Mo is Z(S)—torsionﬁ"ee by what we have proved above. Claim (i)
follows. For (ii) simply apply the exact functor R ®zc — to the exact sequence

0 —— M|n] M —— M > M/nM —— 0.

Finally, suppose that M is finite. Then by (i), R ®zc M is a finitely generated torsion
Z(s)-module, hence finite. If p is a prime, then clearly R ®zc M[p>] C (R ®zc M)[p™].
On the other hand, the decomposition M = P, M[¢™] gives R ®zc M = P, R ®zc
M[q*]. It follows that R ®zq M [p™°] = (R ®zc M)[p*]. O

Tensoring with R behaves well with taking isotypical components with respect to the
localisations of R.

Lemma 7.16. Let M be o finite ZG-module. Let r € R and m € M. Then

r®m=21®(r,0)pmp€R®ZGM,
peS

where m,, denotes the M[p™>]-component of m.
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Proof. Write r = T for x € Z(5)G. Then r@m = Y sr®@my, = 3 o1 @ amy,
using that for p € S, M[p™] has the structure of a Zg)G-module. Now let p € S

and let p: R, x J' = Z )G be a ring isomorphism for which (7.7) commutes. Then
1= (1,0)p + p(O, 1) € Z(p)G and

xmy = x(1,0),my, + 2p(0,1)my, = (r,0)p,my, + xp(0,1)m,,

By commutativity of (7.7) we have p(0,1) € Z¢)G N I, so there is b € Z \ pZ with
bp(0,1) € ZG N 1. It follows that

1
“my, =0 € R®zc M[p™].

Hence, 1 ® xmy, =1 ® (r,0),m,, and the claim follows. O
We now prove compatibility of R ®zc — with Pontryagin duality for finite modules.

Proposition 7.17. Let M be a finite ZG-module. For ¢ € (R @z M)V define
o: M = R/Z, m— p(1®@m).

Then the map
§:=6y: (RRzag M) - R@za MY, o= 12§

is an R-module isomorphism, where we regard M as a ZG-module and (R ®zc M)" as
an R-module as in Convention 7.5. Moreover, this isomorphism is natural in M: If N
1s another finite ZG-module and o: M — N is a ZG-homomorphism, then the diagram

(R@ZgN) *) R®ZgNV

(idR®a)vi J(idR®av

(R ®za M)v *NM R ®7qc MV
commutes.

Proof. 1t is clear that § is Z-linear. We prove that it is an R-module isomorphism by
constructing its inverse. For a prime p, there are isomorphisms of Z,)G-modules

Zp)G @z MY 2 Ty @ MY (Zy G = Zpy @2 ZG)
=~ MY [p™] (Lemma 3.3)
=~ M[p>=]Y (Corollary 4.18)
= (Zpy @z M)V (Lemma 3.3)
& (Z(p)G Rza M)V. (Z (» )G Z ) ®z 7G)
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The overall isomorphism is given by
L) G @z MY — (L) G @za M),
@ f = ((y@m) = f(r(z)ymy)),

where m,, denotes the M [p™]-component of m. Now let p € S. Then there are iso-
morphisms of R,-modules

(R®zc M")[p™) = Ry @76 M" (Lemma 3.3)
= (Zy) G @za MR, (Lemma 7.6 (ii))
= ()G ®zc M)V)RP (above)
= ((Z(p)G Rza M)V)Rgp (Lemma 7.12)
= ((Z(y)G ®za M)g,)" (Lemma 4.19)
= (R, @z M)Y (Lemma 7.6 (ii))
= (R ®za M)[p™]" (Lemma 3.3)
= (R®@zq M)"[p™], (Corollary 4.18)

where in the appropriate places we again regard the Pontryagin duals as modules over the
respective ring rather than its opposite, as per Convention 7.5. Note also that R ®zq M
is finite by Lemma 7.15 (iii), and we regard it with its natural discrete topology to form
the Pontryagin dual. The overall isomorphism above is given by

Wi (R @za MY)[p™] = (R &@zc M)" [p™],
ref— (s Q@ m f((?(r)s,O)pmp)).
The isomorphisms 7, glue together to an R-module isomorphism
v: R@zg MY = (R®zg M)Y.
We show that « is the inverse of d.
Let ¢ € (R®zg M)V and let r € R and m € M. Then using Lemma 7.16 we have

(vo8)(p) (rom) = 3(1® ) (rom)
peS

= Z @p((r,0)pmy)

peES

= Z (1 ® (r,0)pmy)

peS

= p(r ®m),
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50 (7068)(p) = . Conversely, let r € R and f € M. Then

BoNr®f)=> 6(1(re fy)

peS

Here, for m € M we have

where we have used Lemma 7.6 (iv). It follows from this and Lemma 7.16 that
GoNref)=> 1@ @0)pf=ref.
peS
Hence, v is the inverse of § which shows that ¢ is an R-module isomorphism. It is
straightforward to verify naturality of é. O
Ending this section, we show that R ®zc — is compatible with duality for lattices.

Proposition 7.18. Suppose that S is finite. Let M be a ZG-lattice. Define a map

1
d:=dy: (R@ZgM)*—)R®ZgM*, 90'_>g®90b

where b € Z\ U,cgPZ is chosen such that b- (1@ M) C Z and where
op: M =7, m—b-p(l@m).

Then the element % ® pp € RQRza M* is independent of the choice of b and the map dys
is an R-module isomorphism. Moreover, it is natural in M : If N is another ZG-lattice
and o: M — N is a ZG-homomorphism, then the diagram

(R@ZGN)* di) R®ya N*

(idR®C¥)*l lidR®a*
(R ®zc M)* — R®zc M*

M

commutes.

Note that by (R ®z¢ M)* we mean Homg, o (R ®z¢ M,Z(s)) and by M* we mean
Homyz(M,Z).
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Proof. Independence of b is checked immediately. We first show that d is R-linear. Let
¢, € (R®zgM)*. Let b € Z\J,cgPZ such that b-p(1®@M) C Z and b-y(1@ M) C Z.
Then

dp+) =1 8 (E+0) =1 Dgy+ 7 © = dg) +d).

Now let r € R and suppose that this time b € Z\ |J,c g PZ is such that b- (1@ M) C Z
and b- (ro)(1® M) C Z. Write r = uw-w with u € Z(g) and w € ZG. For m € M we
have

(re)o(m) = b - (re)(1 ©m) = bp(T(r) © m) = ubp(r(w) @ m).

Now put ¢g(m) := ¢(1(w) ® m). Without loss of generality, b is such that by € M*.
Then

1 1 ~ 1_ ~

On the other hand,
1

1
rd(g) =3 ® ¢y = LTS WG,

where for m € M,

wep(m) = @p(1(w)m) =b- p(1 @ 7(w)m) = b- (7(w) @ m) = bp(m),

whence rd(p) = d(rp).

We now construct a map R ®zg M* — (R ®zqg M)* that will give rise to the inverse of
d. First, for a prime p, there are isomorphisms of Z,)G-modules

Z(p)G Rz M™ = Lp) @z M* (Z(p)G = Zp) Oz 7@G)
= (Zpy @z M)* (Proposition 2.1)
o (Z(p)G ®za M)*. (Z(p)G = Z(p) ®z ZQG)

The overall isomorphism is given by

ap: LG @z M* — (L) G @z M)*,
g [ (h Q@m f(T(g)hm))

where g,h € G, f € M* and m € M. Next, let p € S. Then there are isomorphisms of
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R,-modules

Ly) @25 R @26 M™ = Ry @26 M
= (Z(p)G by M*)Rp

= (Zp)G ®zc M)y, (above)

= (Zp)G ®za M)Egp (Lemma 7.12)

= ((Z)G @26 M)R,)" (Lemma 3.8)
(Rp ®z¢ M)

= (Zp) ®zs) R Bzc M)*

X L) 5 (R®z6 M)*. (Proposition 2.1)

We denote the overall isomorphism by

Wt Lp) Or5) R®26 M™ = L) @z,5) (R @26 M)".
It factors through the isomorphism

Bp: Z(10) ®Z(S) R ®zc M* — (Z(p) ®Z(s> R ®za M),
a®@r®fr (b®s®m— ap((ar,0), ® f) ((bs,0), @ m)).

Explicitly, if we denote by

ep: Lip) @) (R @26 M)* = (L) ®z,5, R Q26 M)
the isomorphism from Proposition 2.1, then 7, = (g,) 7! 0 3.

Now for p € S choose ¢, € Z with ¢, =1 mod p, ¢, =0 mod g for all ¢ € S\ {p} and
&(1,0), € ZG. Let ¢, := G°. Forr € R and f € M* define

hp(T’, f) R ®zc M — Z(S)7 sQ@m — O‘p(é;)(n O)p ® f) (61/?(370)17 ® m)

It holds that

ep(1® hy(r, f)) = cpfBp(l@ 7 ® f),
which shows that ¢,7,(1 ®r® f) = 1® hy(r, f) and therefore that ¢,y, maps R ®zqc M*
into (R ®zg M)* (we may regard them as submodules of Z,) ®z, R ®zc M* and
L) ®1z,5, (R®za M)*, respectively, by Lemma 3.1). Then by [Rei03, Exercise 18.3], the
map

v = ZCIQD%: R®za M* — (R®zq M)*
peS

is an R-module isomorphism.

We compute yod and do~y. For the former, let ¢ € (R®zc M)* and let b € Z\J,cg pZ
be such that b-p(1 ® M) C Z. Let r € R and m € M. Write r = u-w with u € Zg)
and w € ZG. It follows as in the proof of Lemma 7.16 that

1®cpm =1® cp(1,0),m € R®za M.
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Using this, Lemma 7.6 (iii) and the fact that (1,0), is a central idempotent, we obtain

(yod) (@) (r@m) = cpap(G(1/b,0), @ @) (&(r, 0), @ m)
peES

1 ~ ~
= Z cpguap(cp(l, 0)p ® @) (cpw(1,0)p ® m)
peS

= 3 ey (7@ (1,0),) (1, 0),m)
peS

=" cpup(W @ cp(1,0),m)
peS

= Z cpp(r @ epm)

peES

= (Z cf,) o(r@m).

peES

Now let f € M*. Let b € Z\ U, PZ be such that b-y(1® f)(1®@ M) C Z. Form € M
we have by Lemma 7.6 (iii) and as (1,0), is a central idempotent that
V(1@ flp(m) =b-7(1® f(1©m)

= bz cpap(cp(1,0)p ® f) (cp(1,0)p ® m)
peS

=0 cpf(7(cp(1,0),)E5(1,0)m)

peS

=0 cpf(ep(1,0),m)

peES

=b> cp(cp(1,0)p) .f(m).

peS

One again shows as in the proof of Lemma 7.16 that
1®cpf =1®¢p(1,0),f € R@za M*.

It follows from this and the above that

(doy)(1® f)= % V1@ =) cl@cyf) = (Zcﬁ) 1® f).

peS pES

By R-linearity of d we then have do~y = (Zpe g c%) id, as well as the previously shown

vyod = (Epes 012,) id. Since }_ ¢ € Z(XS) by choice of the ¢,, we infer that d is an
isomorphism. It is straightforward to verify naturality of d. O

122



7.3 Information Carried by the Good Part of a Short Exact Sequence

In Section 6.4 we discussed two constructions on certain short exact sequences of compact
modules and showed that when applied to the Arakelov ray class sequence, they allow
to recover the diagram from Theorem 6.18 and the natural reduction map on the unit
group, respectively. Since our main conjecture will be concerned with R ®zq S?(m(m)v,
the question arises whether one can obtain analogue statements for the latter sequence.
In what follows, we show that the constructions mentioned above are indeed compatible
with duality and the functor R ®zg —, in the sense that from the good part R @z 'V
of a short exact sequence of compact modules I' one can obtain the good part of the
output of the corresponding construction applied to I'. To this end, we first establish
the ‘duals’ of the constructions from Section 6.4 and then show that these behave well
with respect to extending scalars from ZG to R. The dual constructions have already
appeared in [BP25, Section 3] for Z- and ZC-modules; below we discuss them in a more
general setting. The results on compatibility with extension of scalars are new.

7.3.1 Recovering the Good Part of the Diagram

We first consider Construction 6.19. In view of Corollary 4.16, its analogue on the dual
side of sequences of discrete modules is the following.

Construction 7.19. Let Z be an integral domain and let R be a Z-order in some
finite-dimensional algebra over the fraction field of Z. Let

B

A 0 N —“> L M 0

be a short exact sequence of R-modules. Then there are natural short exact sequences
of R-modules

a|Nt
Ators: 0 —— Nions 2% Lypre —— cok(aly, ) —— 0

and
Atorsfree 0 —— N/Niors —>— L/Lors — cok(a) — 0.

By the snake lemma applied to the two left hand columns below, there is a commutative
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diagram of R-modules

0 0 0
aly,
Ators: 0 ——— Niors — 2"+ Lyors — cok(aly, ) — 0
6/
A 0 s N @ > b s M 0
B
Asorsfree: 0 —— N/Niors —>— L/Liors —— cok(@) —— 0
0 0 0

with exact rows and columns, where
B,: COk(a‘Ncors) = Ltors/a(Ntors) — Ma Z'_> /B(l)

and where B : M — cok(@) is defined as follows: _Given m € M, choose a preimage
Iy € L of m under 8. Then fB(m) is the class of I, € L/Lios in cok(@). This means
that there is a short exact sequence

Dd(A): 0 Ators AN ” Atorsfree — 0

of short exact sequences of R-modules.

Proposition 7.20. Let Z be a localisation of Z and suppose that R is a Z-order in
some finite-dimensional Q-algebra.

(i) Let T' be a short exact sequence of compact LCA R-modules. Then there is a
canonical isomorphism D¢(T')Y = Dgq(TV) of short exact sequences of short exact
sequences of R°P-modules.

(ii) Let A be a short exact sequence of discrete R-modules. Then there is a canonical
isomorphism Dq(A)Y = D.(AY) of short exact sequences of short strictly exact
sequences of compact LCA R°P-modules.

Note that by Propositions 4.21, 4.23 and 4.10, T'V is a short exact sequence of discrete
R°P-modules and AV is a short exact sequence of compact LCA R°P-modules, so the
statements make sense.

Proof. This follows easily from Corollary 4.16. O

The construction Dg(—) is compatible with flat base change that respects torsion. In
particular, we obtain:
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Proposition 7.21. Use Setup 7.3. Let A be a short exact sequence of Z.G-modules.
Then there is a canonical isomorphism Dq(R ®@za A) = R Qza Da(A) of short exact
sequences of short exact sequences of R-modules.

Proof. This follows immediately from Lemma 7.15 (i). O

7.3.2 Recovering the Good Part of the Reduction Map

We finally establish the dual of Construction 6.21. We generalise the construction from
[BP25, page 14] by making use of Propositions 4.41 and 4.42.

Construction 7.22. Let S be a nonempty subset of the union of {0} and the set of
rational primes. Let R be a Zg)-order in some finite-dimensional Q-algebra. Let M be
a finite R-module and let N be a finitely generated R-module. Then we have maps

Exth(M, N) — Exth(M, N/Nios) (By functoriality)
= Hompg(M, N/Niors ®7zs) A(S)/Z(S)) (Proposition 4.41)
= Hompg (M, ((N/Niors)*)Y). (Proposition 4.42)

We denote the resulting map by
wa = war =wyp : Exth(M, N) — Homp(M, (N/Nios)*)").
Explicitly, it is given as follows: Let

A: 0 y N Py ' 0

be a short exact sequence of R-modules. Choose a map s: M — L with s(0) = 0 and
Bs = idpy. If I € L, then |M|l € kerf = ima, so there is a unique n; € N with
a(n;) = |M|l. For m € M we then have

wa(A)(m): (N/Niors)" = R/Z, [ = x1/10)(f (Ws(m)))-

Note that we may replace |M| by any positive integer that annihilates M.

Proposition 7.23. Let S be a nonempty subset of the union of {0} and the set of
rational primes. Let R be a Zg)-order in some finite-dimensional Q-algebra A. Let M
be a finite R-module and let N be a finitely generated R-module. Then

wq: Exth(M, N) — Hompg(M, ((N/Niors)™))

s a group homomorphism which is natural in M and N and whose kernel is the image
of the natural injection Ext}%(M, Niors) — Ext}%(M7 N).

If A is a separable Q-algebra and R is a mazimal Zg)-order in A, then wq is surjective.
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Proof. Naturality follows from functoriality of Ext and Propositions 4.41 and 4.42. The
natural map Exth(M, Nios) — Exth(M, N) is injective as M is finite and N/Nioys is
torsionfree, so that Homp (M, N/Nyos) = 0. It is clear that its image is the kernel of wy.
The claim on surjectivity follows from Proposition 3.34. 0

Dually to Proposition 6.22 we have:

Proposition 7.24. Let S be a nonempty subset of the union of {0} and the set of
rational primes. Let R be a Zg)-order in some finite-dimensional Q-algebra. Let M be
a finite R-module and let N be a finitely generated R-module. Let

B

A 0 N —“> L M > 0

be a short exact sequence of R-modules. Then there is an injective R-module homo-
morphism t: cok@ < ((N/Niors)*)Y such that wq(A) = 1o 3, where @ and (3 are defined
as in Construction 7.19.

Proof. We use the notation from Construction 7.22. We first define

- 1
'+ coka@ — N/Niors ®z s Asy/Zsy, I +a(N/Niors) = Ty @ M
One readily checks that this is well-defined and an R-module homomorphism. Now
suppose that [ € L is such that 7 ® ﬁ = 0. Then there is n € N with

1 1
nl@]M\ n® | ‘n®\M| / tors @5y £(5)

It follows that n; — |M |7 =0, so there is ng € Niors with n; = |M|n 4 ng. This implies
|M[l = a(m) = a(|M[n). Working in L/Lios ®zg, As) 2 L/Liors, it follows that

| = @(n), which shows that ¢/ is injective. We then define
v cok@ <= ((N/Niors)*)", T4+ @(N/Niors) = (f = x1y)(f (1))

to be the concatenation of J with the isomorphism from Proposition 4.42. For m € M
we have by definition of g that 5(m) = s(m) + @(N/Niors). It follows that (co 5)(m) =
wa(A)(m). O

Proposition 7.25. Let G be a finite group.

(i) Let X be a compact real abelian Lie group with an action of G by continuous group
automorphisms and let Y be a finite ZG-module. Then there is a commutative
diagram

E, 1ca(X,Y) ——— Homza((XV/(XY)tors)", Y)

Z
\/J’4.25 4.9JV

Ext%ZG)op (YVY, XV) —— Homzayor (VY, (XY /(XY )tors)*)Y)-
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In particular, we is a group homomorphism.

(i) Let M be a finite ZG-module and let N be a finitely generated ZG-module. Then
there is a commutative diagram

Extlo(M,N) ——%—— Homgzg(M, ((N/Nios)*)Y)
H/1.26 4.9\(V
E _ica(M, N) Hom zg)yop (((N/Nyors)*) ", M)
VZ
v|4.25 Homzy0p ((N/Niors)*, M)
2

E )OPLCA(va Mv) T) Hom(ZG)op((N\/V/(NVV)tors)*, MV)

(za
where the unlabelled isomorphisms on the right hand side are induced by the Pontry-
agin duality isomorphism.

Proof. This is a lengthy but straightforward calculation. O

Finally, we show that for an input I' of Construction 6.21 and R as in Setup 7.3 we have
wa(R ®zaTV) = (R ®zg we(T'))" up to natural isomorphism.

Proposition 7.26. Use Setup 7.3. Let X be a compact real abelian Lie group with an
action of G by continuous group automorphisms and let'Y be a finite ZG-module. Then
there s a commutative diagram

E, Lea(X,Y) = Homgzq ((X/(XY)tors)*, )
R®zc—
v|4.25 Hompg(R ®z¢ (XV/E}(V)torS)*, R®7cY)
! 18| (dxV /(xV)ors)”
Extho(YV, XV) Homp((R @z XV /(XY )tors)*, R®z6 Y)
49|V
R®zc—|2.8 Homgr((R®zc Y)Y, (R ®za XV /(XY)tors)*)Y)
7.17/\(5)/)*

hg

Extp(R ®za YV, R ®z6 X¥) —— Hompg(R @z¢ YV, (R®za XY /(XY )iors)*)Y)-

127



Proof. Let I" € E

LoLca(X,Y) and suppose that it is given by the short strictly exact
sequence

0 y 2o w 2, Xx s 0

of compact LCA ZG-modules. We check that when plugging in T" and going right
and down to Homp((R ®z¢ Y)Y, (R ®@zc XV /(X Y)tors)*)V) we get the same element
as when going down, right and up. To this end, further let ¢ € (R ®z¢ Y)Y and let
Y € (R®za XV /(XY )tors)"

Plugging in I', going right and down and plugging in ¢ and then v, we obtain the element

((dxv /(x V)0 )* (idR @ we(T))) ™ () ()
= ¢ ((idr ® we(T)) (dxv/(xV)or?))

= o (5 ® )W)

where b € Z \ U, PZ is such that b- (1 ® XV /(X")ors) € Z. By Lemma 3.3 we have
a decomposition Y = P, s Y[p™] & D,¢s Y [p*] into ZG-submodules, and since R is a
Zs)y-algebra it holds that

R KRza Y = @R KRza Y[poo].
peS

For p | [Y] let ¢, € Z with ¢, = 0 mod ¢""'D for ¢ | |Y| with ¢ # p and such that
1=73%,v|cp- For a prime p with p{ [Y'| we further put ¢, := 0. Moreover, for p € S let
kp € Z with k, = § mod p*»(YDZ,. Then

1 1
g ® wC(F)(wb) = Z g & prc(r)(wb) = Z 1® kpcpwc(r)(wb)-

peS peS

We have ¢ € YV, so there is g € WY with vV(g) = @¢. Further let h € XV with
8Y(h) = |Y| g. Then by the above and Construction 6.21 we have

o5 @ @) = 3 01 @ hyepwe(T) (1)

peS
=" kpepd(we(T) (¥))
pES
=" kpepg (Y(we(T) (¥0)))
peS
=3 kbl ®h>,31/| € R/L.
peS

Plugging in I in the top left of the diagram, going down, right and up, and plugging in
o and then v, we obtain the element

(0y)* (wa(R®za TV)) () (¢¥) = wa(R®za TY)(1 @ @) (¥).
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Let s: R®zcYY — R®zc WY be a map with $(0) = 0 and (idg ® v")s = idrg,eyv-
We may assume that s(1 ® ¢) =1® g. Then

Y|s(1® @) =1®|Y|g= (idp®6')(1® h),

so by Construction 7.22 and Lemma 4.28 (iv) we have

(RO T)1@8) ) = vym@aen) =3 {vaeh )

peS

Since by)(1 ® h) € Z, Lemma 4.28 (iii) gives

’;}p = by(1 ®h){b|1y|} .

p

{vaen)
We now analyse {ﬁ}p for p € S. We have

1 1 1
GIY] = V5] 2 v
q#p
Here, by choice of b and the ¢, the right hand summand is contained in Z,, so Lemma
4.28 gives {ﬁ}p = {cpﬁ}p. Now let w € Z,) with % =k, + pur(¥ D, Then

1
c —_—
"b]Y]

1 vy 1
= ey + P \)wm,

where cpp”P(|Y|)w‘71| € Zp) and {cpkp‘%'}p = kp{cpﬁ}p = pc/pﬁ, both by choice of

cp- It follows that {ﬁ}p = kpcp‘%' and therefore that

Oy)* (wa(R@za TV)) () () = > (1 h)kpcp&',
peS

Hence, both paths in the diagram yield the same element. O
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8 The Main Conjecture

In this chapter, we formulate our main conjecture on the distribution of ray class groups.
More explicitly, we make a conjecture regarding the distribution of the good part of
Clg (m) for K running over a natural family of Galois extensions of a fixed base number
field F' and fixed modulus m given by an integral ideal of Op. It has already been stated
as Conjecture 1.13 in the introduction; here, we provide a detailed account that adds
some more motivation and explanations and fills in all the details and proofs previously
left out.

As explained in the introduction, when investigating the distribution of an object at-
tached to a number field, there are several things to take care of in order to obtain
meaningful statements:

e which family of number fields to run over,

e how to order the number fields in the family,

e which objects exactly to consider,

e what space of outcomes for the objects to consider.

Note that some or all of these aspects may be interdependent. Providing this setup for
our conjecture is the content of Section 8.1. Recall that to make a reasonable conjecture
about the distribution of the good part of Clix(m), we take the approach outlined in
Section 1.1.1 to package all its structure into one object and then propose that this
object is distributed randomly in the sense of Principle 1.1. As part of the setup, we
argue that the desired object is obtained by picking out good components — in the way
outlined in Chapter 7 — from the Arakelov ray class sequence S?{ra(m). We set up our
family of number fields and space of outcomes in a natural way that then also allows us
to construct a probability distribution on the space of outcomes that weighs an object
proportional to the inverse of the size of its automorphism group. The latter will be
achieved using the tools from Chapter 5 and is dealt with in Section 8.2. Finally, in
Section 8.3, we state our main conjecture.

8.1 Setup for the Conjecture

We establish all the setup necessary in order to turn the ideas outlined above into a
precise conjecture.

8.1.1 G-Extensions
Let G be a finite group and let F' be a field. The following definition allows to make

precise the notion of a family of Galois extensions of F' with Galois group G. It is taken
from [Wool0].
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Definition 8.1. A G-extension of F is a Galois extension K/F together with an iso-
morphism ¢: G — Gal(K/F). We regard K as a G-module via g.x := u(g)(x) for
g € G, x € K. An isomorphism of G-extensions is an F-algebra isomorphism that is
G-equivariant. Denote by Eg(F') a full set of representatives for the isomorphism classes
of G-extensions of F'.

We will sometimes suppress ¢ from the notation. In our family, we will later work
with G-extensions inside some fixed algebraic closure. To be able to use results on G-
extensions considered as elements of Eg(F'), we next prove a statement that links the

two approaches. Fix an algebraic closure F of F.

Lemma 8.2. Let (L,t1) be a G-extension of F'. Then the set
{ (K, k) G-extension of F|K C F,(K,ux) = (L,up) }
has cardinality |Homp (L, F)/ ~| where
bl = gl oul € 3(Gal(L/F)).

In particular, if G is abelian, then the cardinality is 1.
Note that ¢(L) = ¢/(L) since L/F is normal, so ¢~ o4/ € Gal(L/F).

Proof. Denote by E the set whose cardinality we have to determine. If 1 € Homp(L, F),
then F C (L) C F and ¢(L)/F is Galois. Define

tyry: G = Gal(y(L)/F), g = ouir(g) oyt

which is clearly an isomorphism. Hence, (¥(L),tyr)) is a G-extension. Moreover,
¥: L — (L) is an F-isomorphism which is easily seen to be compatible with the
G-actions. So (¥(L), ty(r)) = (L,tr) and we can define

Homp (L, F) = E, ¢ = ($(L), (1))

If (K,.x) € E, then there is a G-equivariant F-algebra isomorphism y: L — K and
it follows that x € Homp(L,F) and (x(L),ty(r)) = (K, k). Hence, the map above is
surjective. It remains to show that for ¢, 1)’ € Hompg(L, F) we have ¢ ~ 1’ if and only if
(WV(L), tyry) = (W'(L), tyr(ry), that is, if and only if vyzy = ty(z). But for g € G it holds

by definition that tyr)(g) = Ly (r)(g) if and only if ("1 o¢))our(g) = tr(g) o (v o).
The claim follows. O

Proposition 8.3. Assume that G is abelian. Let P be a property of G-extensions of
F such that if (K,ux) and (L,cr) are isomorphic G-extensions of F, then (K, k) has
property P if and only if (L,tr) does. Suppose that there are only finitely many (L,t1) €
E¢(F) with property P. Then
!{ (K, i) G-extension of F ‘ K C F,(K, i) has property P }‘
= {(L,11) € Ea(F)|(L,1) has property P }|.
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Proof. Note that we can write the first cardinality above as

Z [{ (K, k) G-extension of F | K C F,(K,ux) = (L,u1) }|.
(Lytr)eEG(F)
(L,.r) has property P

The claim then follows from Lemma 8.2. O]

8.1.2 (G-Structured Algebras

In this section, let again G be a finite group and let F' be a field. To define the family of
number fields for our conjecture, we will need to be able to fix the local behaviour of the
fields at certain primes. For this, we will make use of the following algebraic structure,
which was introduced in [Wool0, page 105] for abelian G.

Definition 8.4. A G-structured F-algebra is an etale F-algebra K of degree |G| with
an inclusion G — Autp(K) such that G acts transitively on the set of primitive central
idempotents of K. An isomorphism of two G-structured F-algebras K and K’ is an
F-algebra isomorphism K — K’ that is G-equivariant. Denote by Ag(F) a full set of
representatives for the isomorphism classes of G-structured F-algebras.

Note that the notion of isomorphism above agrees with the one given in [Woo10]. Clearly,
a G-extension is a G-structured algebra. In the remainder of this subsection, we collect
some useful results on G-structured algebras, all of which appear at least implicit in
[Wool0, Sections 1.1 and 2.3].

Construction 8.5. Let H < G and let L be an H-extension of F'. We equip the induced
representation
Indf L=FGerp L= @ yoL
yeG/H

with an algebra structure via the natural isomorphism

P vor= [] L

yeG/H yeG/H

of F-vector spaces. Clearly, dimpg IndgL = |G|. Let yi1,...,y» € G be a system of
representatives for the left cosets of H in (G. The primitive central idempotents of
Ind%L are ¢, = y; ® 1,7 =1,...,7. Each g € G defines a permutation of {1,...,r}
denoted by the same letter which is defined by the fact that for each i € {1,...,r} there
are unique g(i) € {1,...,7} and h; € H with gy; = y4;)hi- Then for z € L we have
9(yi ® T) = yg(;) ® hiz and in particular ge; = eg(;)-

The G-action on Ind% L induces a natural map G — Autp(Ind% L) into the F-vector
space automorphisms. One checks that the map is injective and that its image is in
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fact contained in the F-algebra automorphisms. As G acts transitively on G/H, it
acts transitively on the primitive idempotents of Ind%. Hence, Ind% is a G-structured
F-algebra.

For a subgroup H of G, h € H and a € G use the notations *h := aha™' and *H :=
aHa~'. We have the following analogue of [CRS1, Lemma 10.12 (ii)].

Lemma 8.6. Let H < G and let L be an H-extension of F. Let a € G. Let “L be
the *H -extension consisting of the field L regarded as a ®H-module via “h.x = h.x for
€L and h € H. Then Ind§, L = IndSy; °L as G-structured F-algebras.

Proof. One checks that the map
FG®pepg L - FGRrp L, g®x— ga®@wx

is an isomorphism of G-structured F'-algebras. O

Construction 8.7. Let K = K; x - - x K, be a G-structured F-algebra, where each K;
is a finite separable extension of F'. Since G operates transitively on the set of primitive
central idempotents of K, the stabilisers

Stab(e;) = {g € G|g(e;) =e; }

have index r in G and are all conjugate. Here, e; denotes the tuple (0,...,0,1,0,...,0)
with 1 in position ¢. If G is abelian, then

H := Stab(e;) = - -- = Stab(e,)

and it follows as in the proof of [Wool0, Lemma 2.6] that for each 4, the natural map
H = Stab(e;) — Autp(K;) is an isomorphism. Hence, each K; is an H-extension of F,
and one easily sees that all K; are isomorphic as H-extensions.

We have the following variant of [Wool0, Lemma 2.6].

Proposition 8.8. Assume that G is abelian. Then the maps

(H,L) — Ind% L,

|—| Br(F) = Aa(F), (Stab(e1), K1) + K.

H<G

are tnverse to each other.

For us, the following G-structured algebras arising from extensions of number fields will
be important.

133



Proposition 8.9. Let F' be a number field and let K/F be a G-extension. Let v be a
place of F'. Then K ®p F,, is a G-structured F,-algebra with G acting on the left factor.
If w is a place of K with w | v, then K @ F, = Indgw Ky as G-structured Fy,-algebras.

Proof. For a place w of K denote by t,: (K,|-|,) < K, the continuous embedding
of (K,||,) into its completion. Suppose that o € Gal(K/F) and let w,w’ | v with
o.w = w'. By the universal property of completion, there is a unique continuous field
homomorphism %) : K,, — K, that makes the diagram

5(w,w')

Kw E— Kw’

LwI ILH,,

K —— K
commute. Since F is dense in F,, ") is an F,-algebra homomorphism. Note that if
7 € Gal(K/F) with 7w’ = w”, then (7o ¢)ww") = 7w w") o Glww),
The F,-algebra isomorphism

K ®p F, — HKwa TR ar— (Lw(w)a)wh)

wlv

is G-equivariant with natural action of G on the right hand side given by o.(zy)ww =
(E(U_IM’M)(nglw))ww. The map G — Autp, (K ®p F,), 0 — o ® idp, is injective
as K — K ®p F, is injective. Since G operates transitively on {w | v}, the above
isomorphism shows that G operates transitively on the primitive central idempotents of
K ®p F,. So K ®p F, is a G-structured F,-algebra.

For the second claim let w | v and let 71, ..., 7, be a system of representatives for G/D,,,.
Define

T T
p: dfs, Ko = [[ Ko = [[ Krw 2 K @F Fo, (@) = (757 (@)
=1 =1

which is clearly an F)-algebra isomorphism. One verifies that ¢ is G-equivariant. O

8.1.3 Fair Counting Functions

Let G be a finite abelian group and let F' be a number field. We recall the following way
of obtaining ‘good’ functions to order G-extensions of F'.

Definition 8.10 ([Wool0, Section 2.1]). Let c¢g: G — Z>o be a function such that
for any g € G we have cg(g) = 0 if and only if ¢ = 1, and cg(g) = cg(g¢) for any
e € Z coprime to the order of g. For any place v of F with v | |G| oo let further
cv: Ag(Fy) — Z>o be a function. Extend this to all places of F' in the following way.
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Let v { |G|oo. For H < G and L/F, an H-extension put ¢,(Ind$ L) := cg(y,), where
Yy is any generator of tame inertia in Gal(L/F,) — G. Note that by Proposition 8.8,
any G-structured Fj-algebra is isomorphic to a unique algebra of the form Indg L with
H and L as above. Define

C: Eq(F) = Zso, K~ [ Nejgp)r®ert)
p<OF

and call it the counting function on Eg(F) given by cg and ¢,. We write G, =
{g€Glg" =1} forr € Z>p and mc := mingeq\ (13 ca(g), and call C fair if cgt(me) N
G, generates G, for all r € Z>.

Note that if C' is a counting function on Eg(F), then for any B € R there are only
finitely many K € Eqg(F) with C(K) < B, since such a K must be unramified at
all primes p < Op lying over a rational prime larger than |G| B. The three counting
functions we are mainly interested in are the following.

Example 8.11.
(a) Let
0, g=1,

(el G — Z>0, g —
- 1, else,

and, for v | |G| oo,
1, e(M/F,)>1,

co(IndG M) =
0, else,

where H < G and M/F, is an H-extension. Then the resulting counting function

C is given by
C(K):NF/Q< 11 P)

pdOFp
ramified in K

for K € Eg(F). Here, m¢c =1, so C is fair.
(b) Let
0, g=1,

ca: G — Z>p, g+
- 1, else,

and, for v | |G| oo, ¢,(Ind% M) = §(M/F,) where H < G and M/F, is an H-
extension. Here, f denotes the conductor. Then the resulting counting function C
is given by C(K) = Npo(f(K/F)) for K € Eg(F). Again, m¢ = 1, so (' is fair.

(c) Let

1
cg: G — Z>o, gr—>|G|(1||>,
- g
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where |g| denotes the order of g. Moreover, for v | |G| oo, let

|G 2 H| - vg(disc(M/Fy)), v |G,

0, v | 00,

co(Ind$% M) = {

where H < G, M/F, is an H-extension and p is the maximal ideal of F,. Then
the resulting counting function C is given by C(K) = Np/g(disc(K/F)) for K €
Eg(F). The function C is not fair unless G' has prime exponent [Wool0, page
108].

We collect two results on the densities of certain families of G-extensions when those are
ordered by a fair counting function.

Proposition 8.12. Let C be a fair counting function on Eg(F'). Let P be a finite set of
places of F. For each v € P let T, be a G-structured F,-algebra and write T = (Ty)yecp.
Then the limit

{K € Eq(F)|K ®p F, =T, for all v € P,C(K) < B}|

Pro(T) := 1
ro(T) := Jm {K € Eq(F)|C(K) < B}
exists.
Proof. See [Wool0, Theorem 2.1]. O

Note that by Proposition 8.3, we get the same limit as in the proposition above if we
instead consider G-extensions contained in an algebraic closure of F' in the respective sets
occurring in the definition of Pro (7). The paper [Wool0] also proves an independence
statement on the local probabilities Prc(7"), and in fact provides a way to explicitly
calculate Prco(T"), which is what we will do later on in Section 10.1.1 for the case G = C,
¢ prime.

An important property of fair counting functions for Cohen—Lenstra type conjectures
(cf. [BL20, Sections 1 and 6]) is that when using them to order G-extensions, fixed
nontrivial subfields occur with density zero:

Proposition 8.13. Let C' be a fair counting function on Eg(F). Let P be a set of
infinite places of F (possibly empty). For each v € P let T, be a G-structured F,-
algebra. Fiz an algebraic closure F of F and let L be a field with F C L C F. Denote
by Ko<p the set of G-extensions (K,1) of F with K CF, C(K) < B and K®p F, =T,
as G-structured F,-algebras for all v € P. Then

H(K,L) GECSB‘LQKH

lim — =0.
B—oo ”CCSB‘
Proof. This follows as in [BL20, Proposition 6.6]. O
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8.1.4 Families of Galois Extensions

Based on [BL.20] and [BJL.24], we now formalise what we mean by a natural family of
Galois extensions of a fixed base number field.

We will investigate the distribution of Clg(m) in the following setup.

Setup 8.14. Let F be a number field and fix an algebraic closure F of F. Let 0 #
mp < Op. Let G be a finite group. Let W be a finitely generated QG-module. Let I
be a two-sided ideal of QG with deGg €I and let A = QG/I. Let S be a finite set
of primes that are good for A. If G is abelian, let C' = Cr be a fair counting function
defined on Eg(F). If G is nonabelian, let C' = Cr be the function on Eg(F') that assigns
to K the ideal norm of the product of the prime ideals of O that ramify in K. Let

K :={(K,¢) | (K,¢) is a G-extension of F with K C F,
K contains no primitive p-th root of unity for any p € S,
Q®z O = W as QG-modules}

and, for B € R+,
Koes = {(K,1) € K| C(K) < B}.

Assume that K is infinite. For (K, ¢) € K we use the notation m := (mp, @), a modulus
in K, regarding mp as an ideal of Ok

The family K is the same as the family of number fields occurring in [BJ1.24] and differs
from the family in [BL20] only in that their condition A ®zgc O = V is replaced by
the more general Q @z Oj = W. In both these sources, fields are always ordered by the
function we use in the nonabelian case. We have allowed more general orderings in the
abelian case since [Wool0] indicates that these orderings are all well-behaved.

Note that for (K,:) € K, the modulus m is G-stable, so that all objects appearing in
Theorem 6.18 are compact LCA G-modules. We will later consider only the good part
of Clg(m). The good primes S are contained in the above setup already in order to
remove the relevant roots of unity from the fields we consider. We do this in order
to avoid complications arising from the roots of unity (cf. [Mal0O8], [SW23] and the
introduction).

The condition Q ®z O = W is to fix the behaviour of K at the infinite places. There
are several different ways to phrase it, as given by the below proposition. For a finite
G-set X denote by Q[X] the permutation module over Q associated to X. For a number
field K denote by Q% its set of infinite places.

Proposition 8.15. Let K and K' be G-extensions of F. Then the following are equi-
valent:

(i) Q®z O = Q®z Ok, as QG-modules,
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(ii) Q[Q%] = Q[Q%] as QG-modules,
iii) for every v € and w € QF, w' € Q5 with w,w' | v, the conjugacy classes o
ii) f QOF and w € QF, w' € O, with w,w' | v, the conj I f

D, and D, are equal,

(iv) K@p F, =2 K' ®p F, as G-structured F,-algebras for all v € Q5.

Proof. By splitting up 2% into G-orbits and using the orbit-stabiliser theorem it holds
that

Q] = P Q{w e QF |w|v}]

veQR

P al¢/D,]

veEQY

>~ (P mdf 1p, (8.16)

veQP

1

as QG-modules, where D,, denotes the decomposition group of any w € Q% with w | v.
Then [CM90, Theorem 6.7] yields that (Q ®z Ok ) & Q = Q[Q¥] as QG-modules. This
immediately shows that (i) implies (ii). The converse follows from the isomorphism
(Q®z 0F) @ Q = Q[QF] and [CR81, Corollary 6.15].

The isomorphism (8.16) also shows that (iii) implies (ii). The converse follows from
(8.16) and Artin’s Induction Theorem.

That (iii) implies (iv) follows from Lemma 8.6 and Proposition 8.9. For the converse,
use again the isomorphism from Proposition 8.9 and consider the stabiliser of one of the
primitive central idempotents. O

8.1.5 The Good Part of the Arakelov Ray Class Sequence

Use Setup 8.14. After having established the family of number fields we want to work
with, we now specify the exact object to be considered in the conjecture we aim to
make.

We are interested in the distribution of the good part Clg(m)[S*] of the ray class
group with modulus m as K runs over K. Recall that our strategy towards a reasonable
conjecture is to either remove or incorporate into one object all known obstructions
to randomness of Clg(m)[S°] and then conjecture that the resulting object behaves
randomly according to Principle 1.1. For these structural considerations, we base our
reasoning on the previous work on the distribution of ray class groups of quadratic fields
[PS17,BP25] and the paper [BL20] on the distribution of class groups, the latter having
to be the special case of our prediction for the trivial modulus.

From the case of class groups, we know that in order for a conjecture as above to hold,
we have to consider the Arakelov ray class group instead of the ray class group (cf. the
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introduction). Next, following [PS17], [BP25] and our guiding principle, we have to take
into account the natural short exact sequence S?(ra(m), which imposes restrictions on
the structure of Pic% (m). As in [PS17] and [BP25], we do so by considering the whole
sequence S{**(m) in the conjecture to be made. It contains the term Pic} of which we
know a structural restriction: Its torsion submodule is Clg, and at a prime p with p { |G|
we have that Clg[p>®]® = Clg[p™] is determined by F. We remove this obstruction to
randomness as in [B1.20], which deals with the distribution of the good part of Pic%:
First, by Pontryagin duality, instead of S/}(ra(m) we may equivalently consider S/}(ra(m)v,
which allows us to work with discrete modules rather than compact ones and therefore
not having to worry about the topology. Note that by the results of Chapter 4, S?{ra(m)v
is a short exact sequence of (ZG)°P-modules. As usual, we regard it as a short exact
sequence of ZG-modules via Convention 7.5. We then pick out good and structurally
unobstructed components from SIA{a(m)v via the method from Chapter 7.

Setup 8.17. Use Setup 8.14. Additionally we fix the following notation. Let R :=
im(ZsyG — A) and let V := A ®gg W. Let M be a full set of representatives for
the isomorphism classes of finite R-modules. Let My be a full set of representatives
for the isomorphism classes of finitely generated R-modules M with the property that
ARrM=V.

Note that all of the results from Chapter 7 apply to R. In particular, R is a maximal
Z(g)-order in A (Proposition 7.8) and a flat left and right ZG-module (Proposition 7.13).
Continuing our discussion from above, we are led to consider the short exact sequence
of R-modules R ®zg S (m)Y, which is given by

0 — R®yzq (Pic%-)v — R®za Pic?((m)v — R®yq ((OK/II’LF)X)V — 0.

Note that despite dualising, tensoring with R has indeed had the desired effect regarding
the class group by Proposition 7.17.

Note also that the exact sequence RRz5S%?(m)" still restricts the structure of its middle
term R ®zg PicY(m)Y, as it is generally nonsplit: Any splitting s: R ®z¢g Pic%(m)Y —
R ®z¢ (Pic%)Y induces a splitting of the torsionfree part of R ®zg SE*(m)Y which

xy \ V
is only possible if R ®zq (%) = 0. Hence it is not enough to just consider

R ®za PiC(])( (m)v
Note further that the diagram R ®zg Dx(m)Y, of which R ®z¢ SE(m)Y is part of, does

in turn not restrict the structure of R ®zg Sp®(m)Y: By Propositions 7.21, 7.20 and
6.20 we may recover it from the latter as Dg(R ®zg SE#(m)Y).

We add one more comment on the nature of R®z5 S (m)Y. We first recall the following
lemma from [BL.20] that gives a relation between My and M and will often be useful
when dealing with elements of My, .
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Lemma 8.18 ([BL20, Lemma 3.5]). There is a unique (up to isomorphism) finitely
generated projective R-module Py with A g Py =2 V. If M is a finitely generated
R-module with A @r M =V, then there is a unique My € M with M = Py & M.

We record the following statement found in [BL20] for the trivial modulus.

Lemma 8.19. Let K be a G-extension of F with Q ®z O = W. Let m := (mp, @).
Then
R @26 Pic% (m)Y = Py @ (R @z Clg(m)Y).

V' is isomorphic to a unique element of My .

In particular, R ®zg Pich (m)
Proof. By Proposition 3.9, R ®zg Pic%(m)Y is a direct sum of its torsion part and
torsionfree quotient. Propositions 6.15 and 4.42 and Lemma 7.15 show that R ®zq
Clg(m)Y is the torsion part of R ®zg Pic(m)Y and that the torsionfree quotient is
isomorphic to

R ®76 (0 (m) @ R/Z)Y = R @z Ok (m)*.

Now we have isomorphisms of QG-modules

QG ®z¢ Ok (m)* = Q ®z Ofc(m)*

>~ (Q ®z Ok (m))* (Proposition 2.1)
>~ (Q®z OF)* (Proposition 6.5)
=W (Assumption)
~ W (Proposition 7.9)
which give
A @76 Ok (m)* = A®ge QG @z Ok (m)* 2 A®ge W =V.
Then Lemma 8.18 yields R ®z¢ O} (m)* = Py. O

By the above lemma, Proposition 7.17 and Pontryagin duality we have that for (K,¢) €
K, R ®z¢ Pic% (m)Y carries the same information as R ®zq Clg(m) and R ®z¢ (Pick )Y
carries the same information as R ®7q Clg.

All of the above taken together suggest that on the family X, the sequence R ®zq
S?(ra(m)v incorporates all structure of the good part of the ray class group, that it itself
has no structural restrictions and that the natural conjecture we have set out to make
therefore is that R®zq S (m)"Y behaves like a random sequence in the sense of Principle
1.1.

140



8.1.6 Families of Galois Extensions with Fixed Splitting Behaviour

In this section, we establish a space of outcomes for the sequences R @z S?{ra(m)v
for (K, ) belonging to the family of Galois extensions K. Lemma 8.19 above already
provides us with a space for the left hand module of R ®zg S&?*(m)Y. As in [PS17]
and [BP25] we next partition K into finitely many natural subfamilies such that in each
subfamily, the right hand module of R ®zq S?(ra(m)v is constant, allowing to set up a
space of outcomes over each subfamily in a simple way. We do this by fixing the local
behaviour of the fields in K at the primes of F' dividing mp.

We use the following terminology which has been introduced in [Woo10] for abelian G.

Definition 8.20. Let G be a finite group and let F' be a number field. Let P be a finite
set of places of F' and suppose that for each v € P we have a G-structured F-algebra
T,. We say that the collection T" = (T, )yep is viable for G and F' if there exists a
G-extension K/F with K @ F,, 2T, for all v € P.

For the remainder of this subsection, we use the following setup.

Setup 8.21. Use Setup 8.17. Further, for each prime p of F' dividing mp let T, be a
G-structured Fy-algebra such that the collection T' = (T} )yjm,, is viable. Let

KT = {(K,1) eK|K @p F, 2T, for all p | mp },
where the isomorphism is as G-structured Fy-algebras, and, for B € R,

Kécp :={(K,.)eK"|C(K)<B}.

In the following, when writing p | mp we always mean that p is a prime ideal of Op.

Note that since Fj is a local field of characteristic 0, there are only finitely many G-
structured Fj-algebras up to isomorphism, as there are only finitely many isomorphism
classes of H-extensions of F, for any H < G [Lan94, Proposition I1.14]. Hence, there
are only finitely many viable collections T' = (T},) and corresponding subfamilies KT
of K.

pimp

In suitable contexts, one can obtain a statement on the whole family K from statements
on the subfamilies KT for all T, given the existence of the densities of the individual
subfamilies in . Since K only differs from the type of families with known densities
considered in Proposition 8.12 in that certain roots of unity are not allowed to appear,
the existence of the densities of K” of K can be ensured for abelian G by virtue of
Proposition 8.13:
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Proposition 8.22. Suppose that G is abelian. Then

"CC<B‘

= Pro(T).
B—o0 |’CC§B| C( )

Proof. Denote by K the set of G-extensions (K1) of F with K C F and Q @z Op =W
and denote by K° the set of such G-extensions which additionally satisfy pp € K for

some p € S. Denote by KT and K57 the respective sets of G-extensions as above but
with the added condition that K @p F, = T, for all p | mp. Then K = K\ £° and
KT = KT\ KT and thus

”%ggB‘ "CC<B)
Kbes| \’Cm\ )’Cw\ _ [Rezs| ~ [Reeal
[Ke<s]
K < | ”EgZB‘
By Propositions 8.13 and 8.15, both =<2 and {=—-1 converge to zero as B — oc.
|Kc<s| |Kc<s]
T
Moreover, using Propositions 8.3 and 8.15, [Wool0, Corollary 2.4] shows that KC<B|
C<B
converges to Prco(T') as B — 0o. The claim follows. O

We now show that the right hand side of R ®z5 S&(m)" is constant for (K,1) € KT.

Lemma 8.23. Suppose that p | mp. Then T, has a unique marimal OF,-order Or,, the
integral closure of Op, in Ty. It is invariant under the G-action of Ty, so that G acts by
OF,-algebra automorphisms on O, .

Proof. The first claim is immediate from [Rei03, Theorems 8.6 and 10.5]. If g € G, then
g.OTp is another maximal Op,-order in T}, so g.O0r, = OTw SO OTP is a G-module. O

Definition 8.24. We define

= H OTp7
plmp
which is the integral closure of [ [, OF, in [[,n, Ty, as well as

Ur == (Op/mp)* = H (Og, /pr ™)),

plme

Ur,r = R®zc Ur = R®zq H (Or, /pvrmr))x,

plmp
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Proposition 8.25. Let K be a G-extension of F' with K @ F, = T, as G-structured
Fy-algebras for all p | mp. Then there is a G-equivariant Op-algebra isomorphism

plmp
If ppoe (K) = ppeo (F) for all p € S, then the above isomorphism induces an isomorphism
(Or/mp)*
ps(F)

of R-modules, where ug(F) denotes the set of roots of unity in F whose order is a product
of primes in S.

= R®za

Proof. By the Chinese remainder theorem we have G-equivariant Op-algebra isomorph-

isms
O fmp = [ Ox/p»™) 2= [] [[ Oxc/avstmeva®.
plmp plmp _‘ﬂ!;(

The inclusions K — K for q | p give rise to an isomorphism of Op-algebras

H (QK/qu(mF)Uq(P) A H (QKq/qu(mF)vq(P) (8.26)
qlp qlp
in K in K

=[] Ok, /p>™"

alp
in K

- (ILow) v
alp
in K
Note that the inclusions K < Kj also give rise to an isomorphism of etale Fj-algebras
K ®F F = Hq|p Ky, which is G-equivariant with respect to the natural actions on
both sides (cf. the proof of Proposition 8.9). Hence also (8.26) is G-equivariant. By
assumption and Lemma 8.23 we have that Hq‘p Ok, = Or, as Op,-algebras and as
G-modules, which establishes the desired isomorphism.

Finally, suppose that jiyec (K) = pipee (F') for all p € S. We have p(K) = pg(K) - pg (K)
where pg/(K) is the set of roots of unity in K whose order is coprime to all p € S. Since
R is a Zg)-algebra, the exact sequence

@ x O x
0 > plus () —> (Sl — gl — 0
yields
(Ok/mp)* (Ok/mp)* (Ok/mp)*
R®zc —F—F =2 RQz0 —F——F=+ = ROz ———-
p(u(K)) p(ps(K)) pps(F))
The claim follows from the isomorphism established above. O
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Note that if (K, ) € KT, then pg(F) = us(K) = 1. Hence, the above proposition shows
that the right hand side of R ®z5 S&*(m)" is indeed constant as (K, :) runs over K.

Definition 8.27. We write Autg.eq. alg. (Or/mp) for the set of G-equivariant O p-algebra
automorphisms of Or/mp and define

Auteq. alg. (Ur,r) = {idr ® ©* | ¢ € Autgeq. alg. (Or/mp) },
AUtG—eq. alg.(Uj\“/,R) = { (ldR & SDX)V | 2 S AUtG—eq. alg.(OT/mF) } ’
which are subgroups of Autr(Ur r) and Aut R(UZ\F/, R), respectively.

Construction 8.28. Let (K,¢) € KT. By Lemma 8.19, there is a unique M € My with
R®za(Pic% )Y = M as R-modules. Moreover, the natural isomorphism from Proposition
7.17 together with any G-equivariant O p-algebra isomorphism from Proposition 8.25 give
an isomorphism

(O /mp)*\ " ~ Ok /mp)*\" o v
rem (i) = (Rowe Sy ) = Vin

Using the above isomorphisms, we can identify R ®zg Sp(m)Y with an element of
Ext%%(U%/, r»M). When choosing different isomorphisms at all stages where there is no
natural choice, we end up with an element of Ext}%(U% r» M) that is (Autg.eq. alg. (U7 g) X
Aut N)-isomorphic to the previous one. Thus, via the method described above, we may
uniquely identify R ®@z¢ S (m)Y with an element of

| | Exth(Ufz N)/ Autgeq as. (U7, ) X Aut N,
NeMy

independently of the choices of all noncanonical isomorphisms.

Definition 8.29. For N € My, we let S(U%R,N) be a system of representatives for
the (Autgieq. alg.(U% r) X Aut N)-isomorphism classes in Ext}%(UjVﬂ? > N). Define

EULpMy) = || EULR N).
NeMy

As described in Construction 8.28, for (K,:) € KT we can uniquely identify R ®z¢
S¥(m)Y with an element of £ (U} g, My ), and we will denote that element by [R ®z¢

S&*(m)Y]. Finally, for N € My and © € Ext}%(U:\F/,R,N) we write

[@]G-eq. alg. ‘= [@]Autc,eq'alg'(U}/yR)xAutN

and
AUtG—eq. alg. (@) = AutAutc_eq'alg'(Uj\fYR)XAut N(e)

The set £(Uy. g, My) thus acts as a set of outcomes for the sequences R®z¢ S (m)Y for
(K,1) € KT. Note that since Ext}(U). 5, N) is finite for N € My by Lemma 3.31 and
since My is countable, the set &£ (U}/ R’v My) is countable. We also note that all of the
statements to follow below do not depend on the choice of system of representatives.
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8.2 The Distribution of Random Sequences

Use Setup 8.21. In this section, we construct a probability distribution on £ (Uq\f o Mvy)
that weighs an element © by the inverse of the size of Autg.eq.alg.(©). Since the latter
is generally not finite, we will employ the commensurability theory from Section 5.6 for
this. This is the analogous procedure as in [B1.20], where, when faced with the same sort
of problem, Bartel-Lenstra used their commensurability theory from [B1.17] to construct
on My the probability distribution PB from the introduction.

We set up some more notation that will be used in this section.

Denote by V the short exact sequence

0 v 4y 0 s 0.

Then EndV = End V is semisimple (see the proof of [BL.17, Theorem 8.1]) and for any
0cf (Uq\f > My) it holds that Q ®z © = V. Moreover, since Ur g is finite, we have
|[Aut © : Autgieq alg. (©)] < 0o by Corollary 2.13. Hence, Proposition 5.40 and Theorem
5.42 give us a well-defined function

S(U%/,Pu My) x S(U:\F/,RvMV) — Qx0, (0,0') —ia(®, 9/)‘Autc,eq,alg,(e),Autg,eq, alg. (©)

whose output can be thought of as the index of Autgeq. alg.(©) in Autg.eq. alg.(©'). In
the following, we will use the shorthand notation

iaG_eq' alg' (®’ 9/) = ia(@’ 6,)|AU-tG—qu algA(e)vAUtG—qu algA(Gl)
for ©,0" € E(UF}/’R, My ). Note also that by Theorem 5.31 there is a function
ia: E(UQY’R,MV) X E(UFXR,M\/) — Qso, (0,0) —ia(0,0’)

whose output can be thought of as the index of Aut © in Aut ©" and which is related to
the previous function as described in Theorem 5.42 (v).

The key in constructing the desired probability distribution is to ensure convergence of
ZAGg(UIVﬂ’R’MV) 1aG-eq. alg. (A, IT) for some II. For the latter, we will need to compute the

index iag.cq. alg. (A, IT) in some way. This is achieved by the following two lemmas.

Lemma 8.30. Let © be a short exact sequence of finitely generated R-modules with
AQRrO ZV. Then © is isomorphic to a short exact sequence

~
o

00— Py Ny —— Py Ly My

for unique Ny, Lo, My € M.

Proof. This is immediate from Lemma 8.18. O
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Lemma 8.31. Let Ny, Lo, My € M and suppose that

CF 0*>P\/@NOL>Pv@LO > My 0

is a short exact sequence of R-modules. Further let

Py 0 » Py —9 Py 0

~
e

Then we have

ia(0, Py) =
ia(0, Pv) |Hom(Py, No)| - [Aut No| - [Hom (Mo, No)| - [Aut My|’

where as usual [O] denotes the isomorphism class of © € Exth(Mo, Py © N).

Note that [O] is finite by Lemma 3.31.

Proof. Let m: Py @ Lo — Py be the projection onto the first coordinate. Using Propo-
sition 5.7, we then have that f := (7o, a,0): © — Py is an isogeny.

0 —— PyPp Ny 2> PydLy —— My —— 0

5 ]

0 » Py d_, Py 0 > 0

Hence, ¢y = (0,id, f): © = Py is a commensurability and we have ia(©, Py) = i(a(cy)).
Write a(cy) = (Autcy, po,p1): Aut © = Aut Py and recall that

Autcy = {(0,9,¢) € Aut© x Aut © x Aut&‘lbf = f@}
To prove the claim, we calculate i(a(cy)) = i(p1)/i(po). We first show that
po: Autcy — Aut©, (60,60,v¢) — 0

is an isomorphism. Injectivity is clear by the description of Autcy. For surjectivity
let & € Aut © and write § = (v, A\, u) with v € Aut(Py & Ny), A € Aut(Py & Lg) and
p € Aut M. Since Lo is finite and Py is Z(g)-torsionfree, we have Hom(Lo, Py) = 0
from which it follows that A has the form

_ (A Aut Py B
A= ()\21 )\22) S (Hom(Pv, LO) Aut L0> = Aut(PV D Lo)

It is then clear that A1 € Aut Py = Aut Py satisfies A\;;m = mA. Moreover, this implies
Ao = mAa = o which shows (6,0, A1) € Autcy. Hence, pg is an isomorphism.

Under the isomorphism pg, the second projection p; corresponds to the map

Aut® — Aut Py, 0 = (v, \, 1) — 11,
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which factors as the composition
Aut©® L Aut(Py @ Ly) — Aut Py

of two canonical projections, both of which are isogenies. By Proposition 5.7 we then

have
1

" [Hom(Py, Lo)| - |[Aut Lo|”

It remains to compute i(q), which we will do by employing the commensurability ¢, =
(Py @ No,id,a): Py @ Ng = Py @ Lg. It yields a commensurability

ia(0, Pv) =i(p1) = i(q)

(8.32)

a(ca) = (Aut ca, pp, p)): Aut(Py & No) = Aut(Py & L),
where by definition,
Aut ey, = { (v,v, \) € Aut(Py & Ny) x Aut(Py & Ny) x Aut(Py & Lo) | da = av }.
There is an isomorphism

Aut® = Aute,, 0= (v, \, 1) — (v,v,\)

under which ¢ corresponds to p), so in particular i(q) = i(p}). By definition of ia, we

have
i(p1) =i(alca)) - i(po) = ia(Py ® No, Pv & Lo) - i(pp)- (8.33)
Under the isomorphism Aut © = Aut ¢, from above, pf factors as the composition

Aut © & Aut(Py @ Ny) x Aut My — Aut(Py @ No)

of two canonical projections, which gives i(p;) = i(p)/|Aut My|. Now by Proposition
2.12 we have

() — [AUE(PY © No) x Aut My) : Sab(©)] ____|[0)
P |Hom (Mo, Py © No)| [Hom (Mo, No)|’
whence

i(rf) ol

~ |Hom(Mo, No)| - [Aut M|’

Plugging this and the expression for ia(Py @ Ny, Py @ L) from [BL.20, Proposition 3.4]
into (8.33) yields

_ [Hom(Py, Lo)| - [Aut Lo| - [©]
|[Hom(Py, No)| - |Aut No| - [Hom (Mo, No)| - |Aut M|

/

i(q) =i(p1)

The claim now follows by plugging this expression into (8.32). O
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Note that the expression for ia(©, Py) from the above lemma is precisely what one gets

when ‘calculating’ |Aut ©| using Proposition 2.12 (ii), and ‘cancelling’ |Aut Py/| in the

Aut P
‘fraction’ ’|Aut7 Py . This shows that our theory of commensurability works as expected.
ut ©|

We are finally ready to construct the probability distribution and thereby prove Theorem
1.12.

Theorem 8.34. There is a unique discrete probability distribution Pr on E(UY. p, My)
with the property that for all ©,0" € S(U¥7R,Mv) we have

Pr(0)
Pr(©7)

= iaG—eq. alg. (@7 @,) .

This distribution also has the following properties:

(i) 1f ©,0" € E(Uy. r, Mv) and ® is a short exact sequence of R-modules that is finite
i the sense of Chapter 5 with © ® ® = ©’, then

IP)T(e) = ‘AUtG—eq. alg.(@/) : AUtG—eq. alg.(@)‘ ' ]P)T(@I)
where the inclusion Autc.eq. alg. (©) = AUtGeq. alg.(©') is given by f— f @ ide.

(it) If © € E(Uy g, My) is given by

0 y N L » Uyp —— 0,

then we have

S) -eq. alg.
PT(@) — ]PBL(N) X H ]G q. alg | )
Ext}%(U% N)

In particular, if o: S(U}/’R,MV) — My is the map sending © to the unique
element of My that is isomorphic to N, then o, Pp = PBL.

Proof. Uniqueness of the distribution is clear. Let II € £(Uy,r, My). We show that
ZAeg(UIY LMy 1aG-eq. alg. (A, IT) converges. For A € E(UQY’R,MV) it holds by Theorem

5.42 that
_ ’AU'C A AUtG-eq. alg.(A)| ) ia(A,&)

AUt IT 2 Autgeeq, ag. (TT)| - ia(I1, Py)

iaG-eq. alg. (A, H)
which leads us to investigate

ci= > |Aut A : Autgeq alg (A)] - 1a(A, Py),
AEg(Uj\f’R,Mv)

whose convergence we aim to prove. By Lemma 8.18 we can write

€= Z Z ‘AUt A AUtG—eq. alg.(A)| : ia(A, &)
NoeM A€&(Uy, g, Pv@&No)
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We next rewrite the summands. Let A € Ext}%(Ujvﬂ? > Pv @ No). Then Lemmas 8.30 and
8.31 give

S(A) :== |Aut A : Autgeq alg. (A)] - ia(A, Py)
_ AUt A Atttgieg alg. (A)] - [[A]]
Hom(Py, No)| - |Aut No| - ‘Hom(U%R,NO)‘ : ‘Aut U%R‘

Using Proposition 3.32 we have
|Exty(Ur g, Py @ No)| = |Extr(Uf. g, Pv)| - |ExtR(Uf. g, No)|
= [Extp(Uy z, Pv)| - |[Hom(Uf: g, No)| -
This together with Corollary 2.13 yields

1 \Y
- [Exth(Ug. P 1Al G-cq. a1s|

‘Autg_eq. alg.(Uj\{R)’ ’HOIH(P\/, No)‘ . |Aut N()‘ . ‘Ext}%(UJ\{R, Py @ N())’

s(A)
It follows that

1
c= Z Z s(4) Z |[Hom(Py, No)| - |Aut No|

\
NoEM AEE(UY, Py ®No) ‘AUtG—eq. alg.(UT,R)‘ NoeEM

’Ext}{(UT{R, PV)’

Since S is finite, [CM90, Theorem 3.6] shows that

c= Y ! <o
Noemt |H0m(Pv,N0)’ . |Aut N()’

and therefore also that ¢ < co. Thus, for © € £ (U:,\{ r»My) we may define

iaJG-eq. alg. (67 H)

Pr(©) := : ,
ZAEE(U%WMV) 1aG-eq. alg. (A, 1)

which by Theorem 5.42 (ii) is independent of IT and moreover satisfies Pr(0)/Pr(0') =
i8¢ eq.a1g. (0,0'). It is clear that this defines a discrete probability distribution on
E(UY g, My ). Statement (i) follows easily from Theorem 5.42 (iii).

Finally, for (ii), let © € £ (Uq\f r>»My). By Lemma 8.30, © is isomorphic to a short exact
sequence

0 —— Pd®Ny —— Py DLy —— UI\{R — 0
with Ny, Lo € M. By the above calculations, we have
Pr(0) =s(0) ¢t

— ’ [@]G—eq. alg. |
[Hom(Py, No)| - [Aut No| - |Extp(Uy. z, Py & No)

et
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Now by [BL20, Proposition 3.4] it holds that

1 'Efl o ia(PV@N07PV)
|HOH1(Pv, NO)’ . |Aut No’ ZMOGM ia(PV @ My, Pv) '

The latter expression equals PBY( Py & Ny) by the proof of [B1.20, Proposition 3.6]. [

Remark 8.35. Part (ii) of the above theorem gives a different way of understanding
the distribution Pr, namely in terms of the subspaces (U p, N) of E(UY p, My ): Tt
implies that for © € E(Uy. p, My), N € My and A € E(Uy, g, N) we have

Pr(O € E(UY 5, N)) = BPL(N)

and
| [A] G-eq. alg. |

[Exth (U5 V)|

Pr(0 = A|© € E(UYp N))

Definition 8.36. For f: (U p, My) — C define its expected value to be

E(f):= Y.  f(©) Pr(®)

O€E(UY. . My)

if the sum converges absolutely.

8.3 The Conjecture for the Distribution of Arakelov Ray Class Sequences

We recall the setup that has been established in the previous sections.

Setup 8.37. Let F be a number field and fix an algebraic closure F of F. Let 0 #
mp < Op. Let G be a finite group. Let W be a finitely generated QG-module. Let I
be a two-sided ideal of QG with deGg €I and let A = QG/I. Let S be a finite set
of primes that are good for A. If G is abelian, let C' = Cr be a fair counting function
defined on Eg(F). If G is nonabelian, let C' = Cr be the function on Eg(F') that assigns
to K the ideal norm of the product of the prime ideals of O that ramify in K. Let

K :={(K,.) | (K,.) is a G-extension of F with K C F,
K contains no primitive p-th root of unity for any p € S,
Q®z O = W as QG-modules}
and, for B € R+,
Kosp = {(K.1) € K| C(K) < BY}.

Assume that K is infinite. For (K, :) € K we use the notation m := (mp, @), regarding
mp as an ideal of Og. Let R :=im(Zg)G — A) and let V := A®qg W. Let M be a set
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of representatives for the isomorphism classes of finite R-modules. Let My be a set of
representatives for the isomorphism classes of finitely generated R-modules M with the
property that A@r M = V. For each prime p of F' dividing mpg let T, be a G-structured
Fy-algebra such that the collection T' = (T},)pjm,. is viable. Let

KT = {(K,1) e K|K @p F, 2T, for all p | mp },
where the isomorphism is as G-structured Fy-algebras, and, for B € R,

Kécp:={(K,.)eK"|C(K)<B}.

We principally regard all this notation as fixed, except for possibly 7T, which in some
instances we allow to vary in order to obtain statements on the full family K from the
subfamilies K. This is indicated by the use of a subscript or superscript 7. Our main
conjecture now is the following.

Conjecture 8.38. Use Setup 8.37. Let f: E(UIY,R,MV) — C be ‘reasonable’. Then the

limit A
e, HR @20 S (m)Y)
Av(f):= lim =

B—00 "ngB‘

exists and equals E(f).

Here, for a function f to be called ‘reasonable’, we require the necessary condition that
E(f) exists. Further than that, we do make precise what we mean by a ‘reasonable’
function and refer the reader to the discussion in [BL20, Section 7]. We refer to Av(f)
as the average of f. Taking f to be the indicator function of © € S(U%R,Mv), we
obtain:

Corollary 8.39. Assume that Conjecture 8.38 holds. Let © € S(U%R,MV). Then

o {50 Kby |Rewsim =0} o)
- K

Thus, by definition of Py, the conjecture should be understood as saying that for (K1)
running over K, the sequence R®ZgS/}{a(m)V behaves randomly in the sense of Principle
1.1.
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9 Implications of the Main Conjecture

The aim of this chapter is to derive implications of Conjecture 8.38 for objects attached
to a number field other than R ®zg S (m)Y. This is possible whenever the following
three steps are performable. Say we are interested in the statistical behaviour of object
X attached to (K,:) € KT.

(1) Find a set X only depending on KT such that for (K,:) € KT, the object X can
be identified with a unique element [Xx] € X. This ‘constant’ space of outcomes
makes it possible to formulate statements about the distribution of the objects Xx
which a priori may live in entirely different spaces.

(2) Construct a function §: E(Uy. , My) — X with {([R ®z¢ SEA(m)V]) = [Xg].
(3) For a ‘reasonable’ function h: X — C, compute E(h o).

If all this is possible, then Conjecture 8.38 applied to f := ho& provides the statement

S caexs., MIX)
i ST S o) Bre) (o)

B—oo ’C oce M
C<B es(Uy, TR v)

on the distribution of the objects Xg. If X is countable, then we regard it as a discrete
measurable space and we have

Y. (ho§)(®) = Z h(z) - Pr(©)

Ocs(Uy. p.My) r€X Ot

= h(z) - &Pr(a),

zeX

0 (9.1) becomes
2w wexs, , MIXK])

lim
T
)]CCSB‘ reX

B—oo

This means that the distribution of the objects X is governed by the pushforward
distribution &,.Pr.

In the subsections of this chapter, we will obtain the following items as consequences of
Conjecture 8.38.

e Section 9.1: The distribution of R ®z¢ (Pic%)Y for (K, ) running over KT and K.

e Section 9.2: The distribution of the sequence R ®z¢ Sx#(m)Y for (K, 1) € KT for
which the left hand term R®z¢ (Pic% )Y is isomorphic to a fixed module N € My, .

e Section 9.3: The distribution of R ®z¢ Si¥(m)Y for (K,¢) € KT and for (K,:) in
certain finer subfamilies.
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e Section 9.4: The distribution of the reduction map idg ® px(m) for (K,.) € KT
and for (K,t) € KT such that R ®z¢g (Pic%)V is isomorphic to a fixed module
N € My

e Section 9.5: The average ¢-torsion of Clg(m) for G abelian, ¢ a prime with ¢ {
|G| - |Clg|, and (K, ) running over KT and K defined using S = {¢}.

Unless otherwise stated, we work with Setup 8.37.

9.1 Ideal Class Groups

We consider the case where mp = Op is the trivial modulus. Then there are no p | mp,
so KT = K. Being an empty product, Or is the zero ring, and so Uy and Ur g are trivial
modules. It follows that for any N € My, Ext}%(UjY’ r» V) is trivial. Hence, there is a
canonical bijection between My and E(UY. , My ) which without loss of generality we
can assume to be given by 7

My 55 EUY. g, M), M s M: 0— M % M —0— 0.

By Theorem 8.34 we then have that Pp(M) = PBY(M) for M € My . Moreover, if
f: My — C is a ‘reasonable’ function, then we obtain a corresponding ‘reasonable’
function f: E(Uy. z, My) — C with f(M) = f(M) for M € My . This shows that our
main conJTecture implies the Cohen-Lenstra-Martinet Heuristics as phrased in [BL20,
Conjecture 1.5]:

Corollary 9.2. Conjecture 8.38 implies Conjecture 1.7.

In fact, we do get a stronger statement under slightly stronger assumptions. For (K, () €
K denote by [R ®z¢ (Pic%)V] the unique element of My that is isomorphic to R ®zg
(Pic%)V.

Corollary 9.3. Let f: My — C be ‘reasonable’. Let P be a finite set of primes of
F and let T = (Ty)pep be a viable collection of G-structured F,-algebras. Assume that
Conjecture 8.38 holds for the modulus Hpepp, the collection T and the function f o
o, where o: S(UJ\{R,M\/) — My is the function from Theorem 8.3 for the modulus

[l,epp- Then

T R Pic% )Y
. 2 (K wext, , (1B @zc (Pick) ]): S V) PR,

B—oo T
‘ICC’SB‘ NeMy

Proof. Apply Conjecture 8.38 to f o 0 and use Theorem 8.34 to obtain the expression
above on the right hand side for E(f o o). O
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9.2 Sequences with Fixed Left Hand Side

In our model, we have defined the family X7 in such a way that for (K,:) € KT, the right
hand term of R ®zq S?(ra(m)v is constant, always being isomorphic via a G-equivariant
Op-algebra isomorphism to U}C r»> cf. Proposition 8.25. In this section, we investigate

the situation in which we additionally fix the left hand module in R ®zg S&*(m)".

Definition 9.4. Let N € My. We define KT (N) to be the set of (K,:) € KT with
R ®z6 (Pic%)Y = N.

Note that we have
(K1) € KT(N) — [R @76 SK™(m)Y] € E(UY.p, N)

which means that when modelling R ®zg S&*(m)Y, the subfamily KT (N) of KT corres-
ponds to the subspace &(Uy. g, N) of £(Uy., g, Mv). This observation allows us to derive

a statement about the distribution of R ®z¢ S¥*(m)Y when (K,:) ranges over KT (N)
from our conjecture and the knowledge about the probability distribution induced by
Pr on E(Uf, g, N).

Proposition 9.5. Let N € My. Then the restriction and renormalisation Pt n of Pr
to E(Uf. g, N) is given by

[©]G-eq. alg.|
Ext}%(Ur}/’ rN)

Prn(©) =

for © € E(U} g, N).
Proof. This is immediate from Remark 8.35. O

Corollary 9.6. Let N € My and let f: S(UTVR,N) — C be ‘reasonable’. Assume that

Conjecture 8.38 holds for lewy .y and the function ]7: E(U}/’R,MV) — C that extends
f by zero. Then ’

. - R® SAra \Y,
. 2 (ke v (B @26 S (m)Y]) LY f@)-Pra@).

e "ngB(N)‘ ©€E(UY, p.N)

Proof. We have

E(fy= Y. f(©)-Pp(®)=PPY(N)- > f(©)-Prn(6),

O€&(UY. .N) OEE(UY. .N)

154



while
_ ket s SR 26 KA V) |G (V)|
Av(f) = Blim = : :
e KEcp (V) KE e

Using the function 15(U¥R7 ~) in Conjecture 8.38 gives

]
lim ———

— PBL(N),
B—oo }/C

T
C<B

and the claim follows. O

Corollary 9.7. Assume that Conjecture 8.38 holds. Let N € My and let © € S(U}/J%, N).
Then

. { (5,0 € KL_p(W) | [R @26 852 (m)") = © }]  Olecul
o KE<p (V)] Ext(UY . )

9.3 Ray Class Group Sequences

The aim of this section is to describe the consequences of Conjecture 8.38 for the dis-
tribution of the dual ray class group sequence R ®zq Si}n(m)v, which we recall is given
by

<\ V
0 —— R&ue ClY —— R&ge Clg(m)Y —— R®nc ((Op%“;o)) ) 0.
K
For this, we imitate the approach of [BP25]. We first deal with item (1) from the
beginning of this chapter and investigate by which space the sequences R ®z¢ Si (m)V
are modelled as (K, ¢) runs over K7

Lemma 8.19 shows that for (K,:) € K7, the left hand side of R ®zg Sit(m)V is the
torsion submodule of R®z¢ (Pic%)Y. This means that when running over the subfamily
KT(N) of KT for N € My, then via an isomorphism R ®z¢g (Pic%)Y = N we may
identify R ®z¢ C1Y with Niors.

We also have information on the right hand side of R ®z¢ Si%(m)Y: By Section 7.3.2
and Proposition 7.24, it is given by the kernel of

Ara/__\Vy . M Y R ®z¢a (Pic%)v "\
wa(R ®za Si(m)"): R®ZG< p(u(K)) > - (((R@ZG (PiCOK)v)tors> )

Again, it is useful to first consider the subfamily KT(N) of KT for N € My. Here,
if (K,.) € KT(N), then via an isomorphism R ®zg (Pic%)¥ = N we may identify
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. v *\ V
((( Rg;@j(GP('P (l)c(f))(v))t ) ) with ((N/Niors)*)V and as explained in Construction 8.28, we
1Ck ors
(Ok /mo)*

v
may identify RQzq (W) with U:,vﬂ’ r via a G-equivariant O p-algebra isomorphism.
Thus, we can identify wq(R®zSE?(m)Y) with a homomorphism w € Hom R(U7 gy (N/Ntors)*)"

v
in such a way that the isomorphism R ®za (%) = UQY’ R Trestricts to an iso-

Y
morphism between R ®z¢ (%) and ker w.

wa (R®zaSHE ™ (m)Y )J’ i w

Rozc(Picd)Y  \*\V ~ ANINY
<((R®ZG(PiC?()V)tors> ) —— ((N/Niors)™)

This suggests to subdivide K7 (IV) even further in the following way:

Definition 9.8. Let N € My . Let Hy be a system of representatives for
Homp (Ug, g, (N/Niors)*) ")/ (AtitGeq. alg. (U7, ) * Aut N).

For w € Hy we define K7 (N,w) to be the set of (K,:) € KT with R ®z¢ (Pic%)" = N
and such that there are an R-module isomorphism x: R ®zg (Pic%)¥ = N and an
isomorphism

_ (Ox/mo)*\ " ~ (O /mo)*\"* ~
a'R®ZG< p(u(K)) ) - (R®ZG p(u(K)) > — Ve

where the left hand map is the natural isomorphism from Proposition 7.17 and where the
right hand map is a G-equivariant O p-algebra isomorphism induced from an isomorphism
from Proposition 8.25, that make the diagram

(Ox/mp)*\ " a v
Re (SEG) Ur.r
wd(R®ZGS?<ra(m)v)l lw
R®zq (Pic) )V VY *\V
(((R®ZG(PiC?<§(V)tors> ) ((y)*)\/ ((N/Ntors) )

commute.
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Construction 9.9. Let (K,:) € KT(N,w). Then by choosing isomorphisms y and o
that make the above diagram commute, we can identify R ®zq S (m)Y with an element
of Ext}%(ker w, Niors). While this identification depends on the choice of x and «, we may
uniquely identify R®zq S?(n(m)v with an element of Ext}%(ker w, Niors)/ (Huw X Aut Niors),
where

H, = {Ii € Aut(kerw) ‘ Jv € Autgeeq. alg‘(Uj\f’R) Tk = U‘kew } .

This way, for (K,:) € KT, we may uniquely identify R ®zq Sf}(n(m)v with an element of

| | || Exti(kerw, Niors)/(He x Aut Nigrs).
NeMy weHy

We denote this element by [R ®z¢ Si2(m)V].

Definition 9.10. For N € My and w € Hy we let Etors(U%R,N,w) be a system of
representatives for Ext}%(ker W, Niors)/ (Hyw X Aut Nyops). Define

gtors(Uj\"/,R7N) = |_| gtorS(Uj\'/"RuNaw)a

wEH N

gtOI‘S(UZ\{RaMV) = |_| gtors(Uj\{,RaN)-
NeMy

As explained above, these spaces model the sequence R ®z¢ Sf}(n(m)v for number fields
in the families KT (N,w), KT(N) and K7, respectively. To finish this discussion, we
note the subspace of £(Uy. p, My) that corresponds to KT (N,w) when modelling R ®za

SR (m).
Definition 9.11. Let N € My . Denote by
UV

7N *
wan =wgn" : Extip(Uf g, N) = Homp(Uf g, (N/Niors)*)")

the homomorphism from Construction 7.22 and by @q y the induced map on (Autg.eq. alg. (UTv Rr)X
Aut N)-isomorphism classes, which is well-defined by Proposition 7.23.

Proposition 9.12. Let N € My andw € Hy. Then

(K,1) e KT'(N,w) <=  [R®zcS%*(m)"] € man *([w]).
Proof. This follows from naturality of wq n, see Proposition 7.23. O

Definition 9.13. Let N € My and w € Hy. Denote by E(U%R,N,w) the subset of
E(Uy. g, N) that corresponds to wan H([w]).
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In order to derive implications on the distribution of R ®yzq Sgi{n(m)v from our main
conjecture, we next take care of item (2) from the beginning of this chapter and set out
to define a function

7: E(Uf. g, Mv) = Evors (Ut g, My)

with 7([R ®z¢ S&*(m)V]) = [R ®z¢ S (m)Y]. Then the pushforward distribution of Py
under 7 will give the distribution of R ®zg Si#(m)V.

For the construction of 7 we will work on the subsets & (U}/ N w) that partition
& (Uj\f r»Mv). The map 7 should be given by mapping a short exact sequence to its
torsion sequence, defined in Section 7.3.1. We split the construction into two parts,
where we keep track of the homomorphism whose kernel determines the Ext-space of
the torsion sequence in the first step.

Definition 9.14. Let N € My . Define
S(Ufip: N) = {(w,A) |w € Homp (U7, g, (N/Niors)*)"), A € Extp(ker w, Niors) } -

We have a natural action of Autg.eq. alg,(U¥7 r) X Aut N on Z(U% r» V) defined by

(f)g)'(wv A) = ((f? (g*)v)'wa (gtors)* o (fil‘ker((f,(g*)\/),w))*(A))
for f € Autgreq.alg. (Uy g); 9 € Aut N and (w, A) € B(Uf. z, N). We also define maps
7N B(Uf g, N) = Homp(Uy g, (N/Ntors)*)"), (w, A) = w

and
on: Extp(Ufp, N) = S(Ur g, N), © = (wa,n(©), Osors)-

Here, if © is given by the short exact sequence 0 — N 2 L LN U}C r — 0, we use
Proposition 7.24 to regard Oy as the short exact sequence

We obtain the following generalised version of [BP25, Proposition 3.8].

Proposition 9.15. Let N € My. Then ny and oy are (Autg.eq. alg-(U:\F/,R) X Aut N)-
equivariant and surjective. Moreover, for w € Homg(Uy. g, (N/Niors)*)") it holds that

‘W&l(w)‘ = !Ext}%(kerw,Nmrsﬂ
and for (w,A) € B(Uy. g, N) it holds that

‘Ext}%(Uj\{ 22 Niors)
N ‘Extllq(ker w, Ntors)} )

‘U]:,l(w, A){
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Proof. The claims on 7y are clear, so we just investigate on. To check equivariance, let
O € Extp(Uy p, N), f € AutGeq alg. (U ) and g € Aut N. We know from Proposition
7.23 that wd7}v((f,g).@) = (f, (§*)V).w7d,N(®). To check equivariance in the second
component, write

0: 0 N5 L5 Ul —0

In the following, we use the notation (—)" for maps as laid out in Construction 2.7. One
readily verifies that the map

Niors @ (Ltors Xker wq (0) ker Wd((fa g)@))
{(9(n), =(Vlp,,. ) (0)) [ € Niors

z = (0, (z, f o 6(x))),

Ltors —

makes the diagram

297 i (o)
0 > Niors o Liors ker(wq((f,9).©)) —— 0
0 s Nygps —— Nror®orsXuerg @kt a((/:0).9) ker(wa((f, 9)-0)) — 0

{ (900, = (M) () | PENtons |

commute, in which the upper sequence is ((f, g).0)tors and the lower sequence is (gors )« ©
f_1|ker((f @*)v)_wd(@)))*(@tors). This shows the equivariance of o .

To show surjectivity, let (w,A) € Z(U¥7R, N). Denote by i: Niors < N and j: kerw <
Ujvﬂ’ r the inclusions. We have a commutative diagram

EXt}%(UJ\{Rv Ntors) (Z—*> EXt}%(Ufl\w/’R, N)
b b
EXt}Z(ker W, Ntors) ‘Z—*> EXt}%(keI’ w, N),

in which the vertical maps are surjective by Proposition 3.34 and the horizontal maps
are injective as N/Nyoys is torsionfree.

We claim that for © € Extp(Uy. z, N) with wq,n(©) = w it holds that
Otors = A — ]*(6) = Z*(A) (916)

To prove this statement, write

A: 0 — Nigps —— W —2— kerw — 0

and
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For the forward implication, suppose that ©,s = A. Then there is a homomorphism
1n: W — Liors that makes the diagram

A: 0 — Nigps ——— W —2— kerw —— 0
| K
@tors: 0 —— Ntors l*) Ltors T) kerw —— 0
VNtors

commute. One checks that the map

ST —8(]7\;)?9! nWE N3 7 Lxvy kerw, (nw) = (v(n) +n(w), o (w)

is well-defined and renders the diagram

/

. ) New LI N
ix(A): 0 N (r=2(n)) [nENwr T > ker w 0

| I

75 (O): 0 N L xyy  kerw —— kerw —— 0

/

~

commutative, which proves the forward implication. Conversely, suppose that j*(©) =
ix(A). Then there is a homomorphism x that makes the diagram above commute. Let

tw: W — {(n,—s(g)e)ameNms} and 7y : L XUY, ker w — L be the natural maps and define

n:=mrpokoLy: W — L.

Since Niors and kerw are finite, so is W, whence the image of n is in fact contained in
Liors. One verifies that n defines an equivalence between A and Oios. This completes
the proof of (9.16).

By Proposition 7.23, wq n is surjective with kernel i*(Ext}_z(Uq\f’R, Niors)). Hence, we can
choose ©' ¢ Ext}z(Ujvﬂ’R, N) with wq 5 (0') = w. Define A’ := (0')4ors € Exth(ker w, Niors)-
Since j* is surjective, there is A € Ext}{(U}/,R,NtorS) with j*(A) = A — A’. Define
0 := 0 +i,(A) e Ext}%(U%R, N). Then wyg n(O) = wg n(©") = w and by (9.16) further

J(0) = 5 (0)) 4 j 0 ir(B) = (&) + in(A = A) = L (A).

Using again (9.16), this shows that 0(0) = (w,A). So oy is surjective. The criterion
(9.16) also shows that

N W, A) = wi k(@) N (0(A)) = { O +i.(0) ‘ 6 € ker(j* o iy) }
which gives ‘Ugfl(w, A)| = [ker(j* o i,)|. But by injectivity of i, we have
ker(j* o i,) = ker(iy 0 j*) = ker j*.

The claim on }0&1 (w, A)’ now follows from the first isomorphism theorem. O
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Construction 9.17. Let N € My and let w € Hy. Since my o oy = wq,n and oy is
surjective by Proposition 9.15, we have oy (w7 ([w])) = 75" ([w]). We now define a map

ENw: W&l([w]) — Ext}%(kerw,Nmrs)
as follows: For each ¢ € [w] we fix fy € Autg.eq, alg_(quﬂ, r) and gy € Aut N with
b= (fy,(@5")")w = ((g5")") owo f .

Then fy|, . defines an isomorphism from kerw onto ker and we define ey, (1, A) :=
(6 lere) " (D).

By Proposition 9.15, both maps my and oy factor through the (Autg.eq. alg_(U:}/’R) X
Aut N)-actions on their respective domain and codomain. We denote the induced maps
on the sets of (Aut.eq. alg. (U7 ) X Aut N)-equivalence classes by T and o, respectively.
Moreover, one sees from the definition of the action of Autgieq. alg,(Uq\{ Rr) X Aut N on
Y(U{. g, N) that ex, descends to a map on equivalence classes

ENw: ﬁfl([w]) — Ext}%(kerw, Niors)/(Hy x Aut Nioys).
We define
TNw: Wan H(w]) D5 mn([w]) 22 Exth(ker w, Nigrs)/(He x Aut Niors),
and we denote the associated map €(U}/7R, N,w) — Etors(U%/’R, N,w) by the same letter.

The following is clear by construction:

Proposition 9.18. Let N € My and let w € Hy. Let (K,1) € K'(N,w). Then
™Nw([R ®26 SR (m)"]) = [R @26 S§ (m)"].

We now compute the pushforward distribution under 7.

Proposition 9.19. Let N € My and let w € Hy. Denote by Pr n ., the restriction and
renormalisation of Pr to E(Uy. p, N,w). Then for A € Exors(Uy: g, N,w) it holds that

A
‘Ext}z(ker w, Niors)

)

(TN w)«P1 Nw(A)

where [A] denotes the class of A with respect to the (H, X Aut Nios)-action.
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Proof. We first calculate the distribution Pz ., using the restriction and renormalisation
Py n of Pr to E(Uy. z, N). It holds that

Prn(E(Up g, N,w)) = Z Pr n(O)
OCE(UY, g, )
wa, N ([0])=(w]

‘EXtR(U¥’R7 N)’ @EEXt}Q(U%/,R’N)
[wa,n (©)]=[w]

: )OO

- 1
’ExtR(U¥7R, N)| velvl oewy b @)

Wl [Exth(UY. g, Niors)

[Exth(UY, 5, N)|
where we have used Propositions 9.5 and 7.23. It follows that for © € E(Uy. p, N,w) we

have
= PT’N(@) _ |[@]G—eq. alg.‘ '
PENEULR M) ] - [Exth(UY g, Nior)

PT,N,w(@)

For the pushforward, note first that 7y, is obtained from the map

_ _ EN,w
win (@) 25 w3t ((w]) = Ext(ker w, Niors)
by passing to (Autg.eq. alg_(U% r) X Aut N)-equivalence classes. By Proposition 9.15 and
as £, is surjective with fibres of size |[w]|, we have that ex ., o on]| -1 (lw]) 18 surjective
d4,N

with fibre of size

-1
(ENW ° “N‘wm[wD) (4

at A € Ext}g(ker w, Niors). It follows that for A € <‘,’torS(U:,\f’R7 N,w) we have

(TN W)« P Nw(A) = Z Pr nw(O)
OEE(UyY. g Nw)
T™~,w(©)=A

- 1 Z 1
I[w]| - ‘Ext}[{(U%R,Nm) o™ (o]
(enwoon)(©)E[A]
— 1 Z Z 1
|[w]] - ‘EXt}%(UJ\"/,RaNtorS) A/€[A] -1
@e(sN,woamw;l ([w])) (A"

N

]| - [ExtR(UY, s Niors)
}Ext}%(ker w, Ntors)l

N
‘Ext}%(ker w, Niors)

Y
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as claimed. O

Definition 9.20. Define 7: 5(U¥7R,Mv) — Etors(U%R,Mv) to be the map obtained
by gluing together the maps 7y, : E(U:\F/,R,N,w) — Etors(U:}/’R,N,w) for N € My and
w€E Hp.

As a result of Proposition 9.18 we have:

Corollary 9.21. Assume that Conjecture 8.38 holds. Let f: Eiors(Uf g, My) — C be
‘reasonable’ and assume that f o T is again ‘reasonable’. Then

>(wwexs,, f([R ®zc SE(m)¥])

lim

> f(A) - mPr(A).

B—oo /CT
C<B Aegtors(U¥’Ran)
Here, the distribution 7P is given as follows.

Proposition 9.22. Suppose that A € 8t0rs(U]\1/7R;MV) s given by

0 > Niors L > kerw —— 0

where N € My and w € Hy. Then
|[w]] [A]|

T*]IDT(A) :]P)BL(N) . .
Hompg (U’ g ((N/Ntors)*)\/)‘ ‘Ext}%(kerw, Niors)|

Proof. We have
nPr(A) = Pr(ty,,(A))
= Pr(E(Uf g, N,w)) - Prvw(ty,(A))
= Pr(E(Uf g, N)) - Prn(E(U g, N, w)) - Py (T, (A)).
Now Remark 8.35 gives Pr(E(Uy g, N)) = PBL(N) and Proposition 9.19 shows that

Pr N (T&{U(A)) = B, (k‘fjj‘ Neod)]' By the proof of the latter, we also have

]| - [Exth(UY, g Neors)

Prn(E(Us g, N,w)) = ;
Exth(UY, g, N)|

It follows from Propositions 3.9, 4.41 and 4.42 that

|Exty(Up g, N)| = }Ext}%(U%R,Ntors)‘ . ‘Ext}%(U¥7R,N/Nt0rS)‘
= }EXt}%(UI\“/,RthorS)‘ : ‘HomR(U%/,R? ((N/NtorS)*)v)

)

finishing the proof. O
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As a special case, we have:

Corollary 9.23. Assume that Conjecture 8.38 holds. Let N € My and let w € Hy.
Let A € Stors(Uj\f’R, N,w). Then

. ){ (K1) € KE_p(N,w) \ [R®zc SE(m)Y] = [A] H _ Al ‘
B500 ’ICC<B N,w)‘ ‘Ext}{(kerw, Niors)|

9.4 Reduction Map on the Unit Group

Recall that associated to (K,t) € KT we have the natural reduction map
Ok, (Or/my)*
p(K)  p(u(K))

In the present section, we derive from Conjecture 8.38 that idg® px (m) is equidistributed
over a suitable space. The key for this is the fact that idgr ® px(m) can be recovered
from R @z S (m)Y by the results of Sections 6.4.2 and 7.3.2.

pr(m):

As usual, we first describe by which space the R-module homomorphism idg ® pg(m)
can be modelled as (K, ¢) runs over 7.

Construction 9.24. We consider (K,:) € KT(N) where N € My. By Proposition
8.25 there is a G-equivariant Op-algebra isomorphism

(O /mp)™
p((K))

which allows us to identify the codomain of idr ® px(m) with Ur g. For the domain,
we pick an isomorphism R ®za (Picg()v & N and an isomorphism N/Nios = Py which
together with the isomorphisms from Construction 6.23 and Proposition 7.18 provide us
with an isomorphism

R ®z¢ =Urr

R &z (? K)© e <((}5i1;) ))tors>*

(R ®Z PICK) ) *
P CK) )tors
N/Ntors)
= Py
Using the above isomorphisms, we may uniquely identify idr ® px(m) with an element

of
HomR(P{;, UT,R)/ Aut P{; X Autg_eq. alg.(UT,R)a

regardless of the choice of isomorphisms at all instances where there was one. We will
denote that element by [idr ® px(m)].
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To derive implications on the distribution of [idg ® px(m)] from our main conjecture,
we now define an appropriate function on the probability space (U g, My).

Construction 9.25. For N € My we have maps

Extp(Uf g, N) =% Homp(Uf. g, ((N/Niors)*)") (Construction 7.22)
& Homp((N/Ntors)™, Ur ) (Corollary 4.9)
= Homg(Py, Ur,Rr) (N/Niors = Py)

which by naturality factor through the actions of automorphism groups to give rise to a
map

PN : E(U%/’R, N) — HOII]R(P{;, UT7R)/Aut P{; X Autg_eq. a]g‘(UT7R).
The maps py glue together to a map

p: 5(U¥7R,Mv) — HomR(P{}, UT7R)/Aut P{; X AutG_eq_ alg.(UT,R)-
Crucially, we have:

Proposition 9.26. Let (K,1) € KT. Then

p([R @26 SR (m)"]) = [idr © pr (m)]
Proof. This follows from Propositions 6.24 and 7.26 and naturality of wq and (-)¥. O
We next determine the pushforward distribution under py and p.

Proposition 9.27. Let ¢ € Homg (P, Urr). Let N € My . Then

pPr([e]) = (pn)Pr.n([]) = \HomR|([g{]§| Urr)|

Proof. Let N € My . We denote by

wa: E(Uf g, N) — Homp(Uz g, (N/Neors)")")/ AttGieq. atg. (Ur g) x Aut(N/Niors)*)"
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the map that is induced by the homomorphism from Construction 7.19. Let ¢ €
Homp(Uy. », ((N/Niors)*)¥). Using Propositions 9.5 and 7.23, we have

WaPrn([¢]) = Z Pr n(©)
O€&(Uy g:N)
wa(0)=[]

1
_ >
EXt}%(UZ\{,R’ N)‘ O€Extp(Uy. g N)
[wa (©)]=[¢]

1
iy D DENEED DR
EXtR(UT,R’N) XE[Y] O€cExtL (UY »,N)
©=x
wd@:X

[l
[Exth(UY. g, V)|
) ) |
‘HomR(Ujvﬂ?R, ((N/Ntors)*)v)‘

Ext (U7, g» Niors)

Since the remaining two maps in the construction of py are isomorphisms, it follows
that for ¢ € Hompg(P}, Ur r) we have (pn)«Prn([¢]) = |[¢]| / [Homg (P}, Ur,r)|. For p
we then obtain

pPr(e) = > Pr(©)

@Gg(U¥7R,Mv)
p(©)=l¢]

= Z Z Prn(0) - Pr(E(Uf,g, N))

NeMy ©€E(Uy. 5.N)

pn(©)=l]
= > Pr(€(ULRN) - (pn)-Prn([9))
NeMy
1621

" [Homg(Py, Ur p)|

as claimed. O

Corollary 9.28. Assume that Conjecture 8.38 holds. Let N € My and let ¢ €
Hompg (P, Ur r). Then

. { 00) € KE2p(N) [ idr @ prc(ov)) = ] } | bl
Bsoo ’ KLy N)‘ [Homp (P}, Ur,g)|

166



Corollary 9.29. Assume that Conjecture 8.38 holds. Let ¢ € Hompg(Py;,Ur,r). Then

y H (K1) € KEcp | lidr @ prc(m)] = [¢] H B 11
Bryeo ‘ /CESB\  |Hompg (P, Urg)|

We end this section by showing that the distribution of the reduction map and the
distribution of the Arakelov class group are independent as (K, ¢) runs over . This can
be seen as a generalisation of [3P25, Corollary 4.9]. Recall the map o: E(Uy. p, My) —
My, from Theorem 8.34 that sends © to the unique element of My, that is isomorphic
to the left hand module of ©.

Proposition 9.30. Let
(o,p): E(U%,R,MV) — My x Hompg(Py;,Ur,r)/ Aut Py; X Autg.eq. alg. (U, R)

be the map that sends © to (o(©),p(0)). Then (o, p)Pr equals the product measure of
0Py and p.Pr.

Proof. Let N € My and let ¢ € Hompg(P};,Ur r). Then we have

(Ua p)*PT<N7 [SD]) = Z PT(@)
OeE(UY. poMv)
o(©)=N
P(©)=[y]

=Pr(E(Uf.p, N)) - Z Pr N (©)
OCE(Uy. piN)
pN (©)=[¢]

= 0.Pp(N) - pPr([p]),

where in the final step we have used Theorem 8.34 (ii), Remark 8.35 and Proposition
9.27. O

9.5 Average Torsion of Ray Class Groups

We keep using the notation from Setup 8.37, but we make the following choices. Let
I'=(3,cc9), let £ be aprime with £{ |G|, let S = {¢}. We denote the primitive central
idempotents of QG by eg, e, ..., e. where we let ey := ‘—C{,' deG g, so that I = (ep) and
so that notation for A aligns with the notation from Section 1.4, which we are also going
to use in this section.

We investigate the consequences of Conjecture 8.38 for the function

Jr: E(Uf g, My) = C, (0 N — L — Uy p— 0)— |L[{]],
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which will lead to results on the average torsion of ray class groups. These results
generalise statements from [PS17, Section 2.2] and [BP25, Section 4.2].

We first deal with Av(fr) and describe
Jr([R ®z6 SE™(m)"]) = |(R ©z¢ Pick (m)")[(]]

for (K,t) € KT.

Proposition 9.31. Let (K,1) € K. Then

_ |Gl (m)[e]]

(R ®z¢ Pich (m)")[{]] = [Cle (m)[AC]

Proof. First, by Lemma 8.19 we have
(R ®z¢ Piclk(m)¥)[]] = (R ®z¢ Clik(m)¥)[].

Next, Proposition 7.17, self-duality of finite abelian groups and Lemma 7.15 (ii) give

(R ®z¢ Clg(m)")[f]| = |(R @za Clk (m))[4]]

(m))
= |(R ®z¢ Clg(m))[/]]
= |R ®z¢a Clg(m)[{]].

Now as explained at the beginning of Chapter 7, we have
R ®z6 Clg(m)[¢] = Clg(m)[¢]/eo Clg (m)[£].

One sees directly that eg Clg (m)[{] = Clg (m)[(]%. The claim follows. O

Proposition 9.32. Assume that (1 |Clg|. Let (K,t) € KT. Then
Clg (m)[(¢ = Up[0%

as abelian groups.

Proof. The idea is to chase through the diagram from Theorem 6.18 to show that
(Ok /mo)*
p(u(K))

The short exact sequence S?}“(m) induces an exact sequence of Zy)G-modules

Clg (m)[¢]¢ is isomorphic to [(]¢ and then use Proposition 8.25 to conclude.

0 (OK/n;o)X 4] » Clg(m)[(] —— Clg[].
p(Ox)

Looking at the eg-component, we obtain

0 , Oxc/mo) (G s Clg(m)[(]¢ —— Clg[l]C.
P(OK)
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By assumption and since £ |G|, we have Clx[(]® = Clg[¢] = 0, whence

_ (O /mg)*
Clg (m)[(] = 0% 4.

We next would like to study the effect of the functor (—)[¢]% on the left hand column of

the diagram in Theorem 6.18, in order to link %[E]G to %[6]9 Note that

for a G-module M there is an isomorphism of abelian groups

(9.33)

Homzg (Z/6, M) — M0, ¢ = ¢(1)
where we regard Z /¢ with the trivial G-structure. We infer that the functor
zGMod — Ab, M — M[()¢

is isomorphic to the functor Homgzg(Z/¢, —). Thus, applying (—)[{]¢ to the short exact
sequence

0 p(OF) , (Ok/mg)> (Ok /mo)* s 0
2 ((K)) " oK) p(0%) '

from Theorem 6.18, we obtain a long exact sequence

(OK) 1na (Ok /m0)* 1 1G (Ok /mo)* G 1 p(O%)
0 — Sty ™ — Sy 107 — —oxy 107 — Extyg (z/e. 553k) -

(9.34)
We are going to show that both the left and right hand term of this exact sequence are
zero. First we prove that (O (m) ®zR/Z)[¢]“ = 0 which by the top row of the diagram

in Theorem 6.18 will imply that p?;%g% [(]¢ = 0. By the proof of Proposition 6.15, there
is an isomorphism of ZG-modules
Ofe(m) @z R/Z = = S,
K Log(Oj (m))

where Log(O% (m)) is a complete lattice in (ITpj00 R)? by Theorem 6.8. Note that

(Hp|oo R)O
Log(Oj(m))

7 Log(Of(m)) _ Log(Ok(m))

U7 Tog(Okm) ~ TLos(Of (m)’

G

This leads us to consider the effect of the functor (—)“ on the short exact sequence

, Log(Oj(m) . 0. (9.35)

0 —— ¢ Log(O%(m)) —— Log(Ok(m)) ? TLog(Ol(m) >

We first show that (([]y R)")¢ = 0. To this end, let (zy), € ((Tpjoo R)%). Since
G operates transitively on {p | oo}, there is z € R with z, = « for all p. But 0 =
Tr((zp)p) = [{p | oo}| - #, which gives 2 = 0 and therefore (z,), = 0. Next, note
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1 Log(O (m)) - c e . .
that H (G, TLog(@} (m) (m))) = 0 as multiplication by |G| is both the zero map and an

isomorphism on this group. Hence, applying (=) to the short exact sequence (9.35),
we obtain an exact sequence

Log(Oj (m))

G
img(o}((m))) — HY(G,(Log(OL(m))) — H'(G,Log(Ok(m))) — 0.

-

In this sequence, the middle and right hand term are finite by [CF67, Corollary 2 on
page 105], and they have the same cardinality, since Log(O% (m)) = ¢Log(OL (m)). It

G
follows that (%) = 0 which implies

(1 |OOR)O N Log(O} (m))
(Ok(m) @2 R/Z)A° = e e = ( Toa(OL(m) )
ox

O%) G _
Sttty A% = 0.

Now for the right hand term of (9.34), by Proposition 2.1 we have that

PO\ _ PO Y 1

ciay) = ke (210 s )
= 79 @2 Bt (240, 1055 )

Bk (2/6 i)

Then by the top row of the diagram in Theorem 6.18 we also have

EXt%G <Z/€,

and analogously
P(Ok) G~ om p(Ok) om P(OK) oo
pluicy | = Homzo (W’pm(K))) Homz (W o) ]>

But as £ { |G|, Z)G is a maximal Zy-order in QG by [Rei03, Theorem 41.1], so
Proposition 3.32 shows that

< 1 IO(O[X{> _ « (OIX{) 00
el (276 £.05 ) | = o (270 005100

= [Homz (211, <L<K§>[ )|

_ | POF) e

= |ty

= 1.
Thus, the sequence (9.34) gives

Ok /m0)* e _ (Ox/mo)* q
0% = (5:36)
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Finally, by definition of KT and by Proposition 8.25 we have

(O /m)* (O /mg)* .
p(p(K)) = (e (K)) (] = (Ok /mo)*[(] = Ur[/]

as G-modules which together with (9.33) and (9.36) implies the claim. O

We now determine E(fr). For this, we need a few auxiliary results.

Recall that by definition, Z; is the integral closure of Z,) in Kj;. In particular, Max(Z;)
is finite.

Lemma 9.37. Z;/Z is unramified at ¢ for alli € {1,...,c}.

Proof. Let i € {1,...,c}. Since localisation commutes with integral closure, we have
that Z;/Z is unramified at ¢ if and only if O, /Z is unramified at £. As £ 1 |G|, the
latter follows from [Rei03, Theorem 41.7]. O

Construction 9.38.

(a) As in [BL20, Proposition 3.6 and its proof], we define a probability distribution
Py on M by

-1

1 1
Py (My) = .
(Mo) [Homp(Py, Mo)| - [Aut M| L(;M [Homp(Py, Lo)| - |Aut Lo

for My € M. By loc. cit. it satisfies PBL(Py @ My) = Py (M) for all My € M.

(b) For i € {1,...,c} and p € Max(Z;) let M;;, be a set of representatives of iso-
morphism classes of finite R;,-modules. Use the shorthand P, := (Py);y. In
analogy to the above, we define a probability distribution P;, on M;, by

-1
1 1

Homfzi,p(Pi,paM) [Aut M|\ Lem,, Homﬁi,p(Pi,p,L) - |Aut L]

]P)i,p(M) =

for M € M.
Note that in both cases, the sums appearing converge by [CM90, Theorem 3.6].

Lemma 9.39. Suppose that h: M — R>q and hjp: M;, = R forie {1,...,c} and
p € Max(Z;) are functions which satisfy h(Mo) = [];_; [pemax(z,) hiwp((Mo)igp) for all

My € M. Then .
doon) =1 II D. hw()

MoeM i=1 peMax(Z;) MEM,

if the sum on the left hand side converges.
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Proof. Observe that

Soaon=Y o (1] I[ ¥ 20> 5)

MeMm Mem i=1peMax(Z;) Li,p€M; p

=> II 1I > hip(Lip)1(Mip = Liy).

MeMi=1peMax(Z;) Li p€EM;

Upon changing the order of summation, we see that it remains to show that given
Lip € My foralli e {1,...,c} and p € Max(Z;), it holds that

Z H H 1(]\/4\1',;3 = L@p) =1.

MeM i=1peMax(Z;)

By Lemma 3.3, the left hand side is at most 1. To show that it equals 1, we now
construct a module M € M with M;, = L;, for all i € {1,...,c} and p € Max(Z;).
We may regard each L;, as a finite R;-module via the natural ring homomorphism
R, — Zl p®z, R = R, p- Since L; , is also a finite ZZ p-module, it is annihilated by a power
of p and therefore (as a Z;-module) annihilated by a power of p, s0 L;, = L; ,[p™] as R;-
modules. Note that the natural ﬁ, p-structure on the R;,-module L;, from Lemma 3.3

agrees with the original RZ p-structure. We define M; := @
as explained above. Then Lemma 3.3 gives

qeMax(Z;) Li,qa an erodule

Zip @z, M = Zip ®7, Lip = Liy

as ﬁi,p—modules. Regarding each M; as an R-module in the obvious way, it follows
that the module M := @;_, M; indeed satisfies M;, = L;, for all : € {1,...,¢c} and
p € Max(Z;). O

The lemma in particular shows that

H 11 Pip((Mo)ip)

1=1 peMax(Z;)

for My € M.

Lemma 9.40. Let V and W be finite-dimensional vector spaces over a finite field. Then

Hom(V, W
3 |kerf|—‘|(W,)‘-<rvr+|W1—1>.
feHom(V,W)
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Proof. Note that

S kerfl= ) ) 1(f(v) =0)

feHom(V,W) feHom(V,W) veV

- Y 1w =0)

veV feHom(V,W)

=> " |{f € Hom(V,W)| f(v) =0}

veV

By [FAG6G, Theorem 3|, for 0 # v € V' it holds that

Hom(V, W) ~ W

{f e Hom(V,W)| f(v) =0} '

Hence,
> fker f| = [Hom(V,W)|+ Y [{ f € Hom(V,W)| f(v) =0}
f€Hom(V,W) 0£veV
H
= |[Hom(V, W)| + ([V| = 1) - M7
W]

from which the claim follows. O

Lemma 9.41 ([CL84, Proof of Example 5.12]). Let Z' be a Dedekind domain, let J be
an ideal of Z' and let M be a finite Z'-module. Then

{z e M|anny (z) =J} =|Auty(Z'/ )| - {W <M |W =y, Z'/J }|.

As the main result of this section, we now determine the expected value of fp. This is a
generalisation of [PS17, Proposition 2.11] and [BP25, Lemma 4.16]. As in those results,
the key ingredient in the proof below is the map &y from Section 3.4. Aside from this,
our proof takes a different approach. In order to be able to use Corollary 3.29 and since
it simplifies many calculations in the proof, we assume below that G is abelian. By
suitably adapting the arguments, it may be possible to obtain similar statements also
for nonabelian G for which the assumptions of Corollary 3.29 are satisfied.

Theorem 9.42. Assume that G is abelian. Then

- |Ur[¢]:[q°]]
E(fr)=]11 11 <gf<q|e>‘dimKi<vi)+1 :
i=1geMax(Ok,)
ql¢

where Ur|[l]; denotes the i-th isotypical component of the ZG-module Ur[/].
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Note that Ur[f]; is an e;ZG-module and €;ZG is a Z; = (Z() ®7 Ok;)-order by
[Rei03, Theorem 10.5], so the expression Ur[f];[q*°] makes sense.

Proof. By definition and Theorem 8.34, we have
E(fr) = > fr(©)-Pr(©)

@ES(U:)«/’R,M\/)

= Z Z fT(@) . PBL (N) | [@]G—eq. alg.‘

' 1
NeMy OcE(UY, .N) ‘EXtR(UYV“,Ra N)

BL
-y P EC))

1
Nemy |Extp(Uy p, N )) OCEXt} (UY, p.N)

By Lemma 9.37 it holds that v; ,(¢) < 1foralli € {1,...,c} and p € Max(Z;). Moreover,
since G is abelian, we have A; = K; for all i € {1,...,c} and therefore e;, = 1 for all
ie{l,...,c} and p € Max(Z;). Thus, Corollary 3.29 shows that the map

o Ext}{(U:\ﬁ r»N) — Hompg (U7, z[¢], N/IN)

is surjective for any N € My . We have

Z fr(©) = Z Z fr(©).

O€Exth (Uy. . N) a€Homp (Uy, pll],N/EN) ©€(5))~1(a)

But by definition of 6)¥, if © € (6))"(a), then there is an exact sequence

0 N[/] L[/ » Ur pll]l —— a(Ufgll]) —— 0

where L is the middle term of the short exact sequence ©. It follows that

NI - [0 14
$r(0) = |2[A)] = ———
‘Q(UT,RM))
whence
v
B = Y ) S gy VAV ]
NeMy ‘EXtR(UT\{RvN) acHomp(Uf, p[t],N/EN) ‘Q(U%R[K])‘
PBL(N
= > . () N4 - > [ker o .
Nem, |Hompg(Uy glf], N/EN)’ a€Hom g (Uy. [f],N/¢N)
Using Lemma 8.18 we can rewrite this as
Py (N
E(fr) = Z - va(e ) N - |No[€]] - Z |ker o] .
NoeM ’ 0mR< T,R[ ]7 E(PVGBNO))‘ aeHomR@%ﬂ@{}‘(ﬁ%)
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Now we split up everything into local parts via Lemma 9.39. With the shorthand
notation P := (Pv);p and Usp := (Uy, z[{])i,p we have

SIS Pl e

i=1peMax(Z;) MEM; HOIIl ip (U,p,m
E |ker o] .
P, y®&M
acHomp (Uzpae(p'j,i@m)

We next investigate the sum over a.. Let ¢ € {1,...,c}, let p € Max(Z;) and let M €
M p. Since G is abelian, we have R; = Z; and therefore él P = Z »- By Lemma 9.37 it
holds that (Z; ip = P. Since both U;, and (P, & M)/{(P;, ® M) are annihilated by ¢, it
follows that

Py M
= H =~ U RG] —
OmZi,p < L,p E(Pz’p @M))
_ Pip ®M
= HomZ\z,p//ﬁ <U’L7p7 €(P,L’p @ M))

Hompy (Uip,
O R, ( PPy @ M>)

Thus, Lemma 9.40 gives

Z [ker o]

P; ,®M
~ : L
ozEHornRiyp (Uz,p:g(Pi’p@]\/[) )

_ _PipyoM
_ ‘HomRi,p (U W0 O(P; p @ M)

|-Pi,p/€_PZ7p| ‘M[ ” ’(‘Ui,p‘—F’PZ"p/ﬁPj’p

S| Me)] - 1)

which yields

=11 I % ‘PWP +(Uipl + |Pap/CPsp - [M[A] = 1)

i=1peMax(Z;) MeM; p

T Uip| — 1 |
o H H |Pi,pp/€Pz',p| + Z PZ,P(M) : ‘M[EH

i=1peMax(Z;) MeMi,p

Let i € {1,...,¢c}, let p € Max(Z;) and let M € M,,. Using again that KZ;m =P, we
have

M) = {x GM‘annz_,p(:n) \ﬁ} = {x GM‘annz_,p(:n) zﬁ}U{O}.

Then Lemma 9.41 gives

M| =1+ |Auty, (Zip/B)| - [{W <M | W =2y 5}
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Taking into account that ﬁi,p = ZW by [CM90, Theorem 2.6 and Example 4.5 (ii)] we
have

> R,,(M).HWSM WZ./p ‘z ST ! —
MRty Zipf| " |Auty, (Zip/P)|
1
1z [y, (Zig/B)|

where we use the notation u = (u;); from [CM90, Definition 2.2]. It follows that

H H Wipl =1 .1}
| Pip/CPip] | Z; Jp| i FV)

=1 peMax(Z,

Note that by [CM90, Corollary 2.8] and since G is abelian we have
[Pip/CPip| = |Prp/BPsy| = | Pop/v Piy| = 1 Zifp ") = |2, /p| s

which yields

Uiy )

H 11 ’ +1).

dimg. (Vi
i=1 peMax(Z <|Z/p‘ (V)

Let i € {1,...,c} and p € Max(Z;). By Lemmas 3.3 and 4.19 and Corollary 4.18 we

have

—

= (UY. p)ipll] = (Ur.r)ip)" [0,

which together with self-duality of finite abelian groups gives

Uip = Uy gl

o —

Uipl = ‘((TT,\R)M W‘ = ‘UTvR[E]im :

Now by definition of Ur r and Lemma 7.15 (iii) it holds that

Ur.rlf] = R ®z¢ Urll] = Ur[l), & - - & Ur[d].,

SO m]z p = (E[\g]i,p & Upll];[p>]. The maximal ideals of Z; are in natural bijection
with the maximal ideals of O, lying over ¢, and it is clear that this bijection preserves
residue field degrees and primary components. The claim follows. O

Corollary 9.43. Use Setup 8.37 with G abelian and S = {{} where ¢ is a prime with
04 |Clp| - |G|. Assume that Conjecture 8.38 holds for fr. Then

lim Z(K L)elCC<B |ClK(m)[f]| B |U H H \UT[K]i[qOOH 1
B0 - FT 7T @l0)-dimc, (Vi) '
‘K:C<B‘ i=1 qeMax(Ok;)
qle
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Proof. This is immediate from Propositions 9.31 and 9.32 and Theorem 9.42. O

Taking Proposition 8.22 into account, the above statement immediately implies Corollary
1.16 about the average torsion of Clg(m) on the whole family K:

Corollary 9.44. Use Setup 8.37 with G abelian and S = {€} where { is a prime with
1 |Clp| - |G|, but do not firt T. Assume that for all viable collections of G-structured
Fy-algebras T' = (1) Conjecture 8.38 holds for fr. Then the limit

. Z(K,L)E/Cc<3 |CIK (m) [g] ’
lim =

plmps

exists and equals

ol T [Ur[€)i[a*]|
S e urgf - I1 <WW+1 ,
T=To)p|mp i=1 qgeMax(Ok, )
viable /= qle

where T' runs over viable collections of G-structured Fy-algebras up to isomorphism.
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10 Average Torsion of Ray Class Groups of Cyclic Fields of
Prime Degree

The aim of this chapter is to make explicit the formula for the average torsion of ray
class groups from Corollary 9.44 in the case of cyclic fields of prime degree.

Throughout this chapter let ¢ be a prime number.

10.1 Families of Cyclic Extensions of Prime Degree

Let F be a number field and fix an algebraic closure F of F. Let 0 # mp < Op. We
discuss how to model families of Cy-extensions of F' in terms of Setup 8.37.

Note first that QC, = Q x Q((,), so the only choice for I that leads to nontrivial
statements is I = <Zhecq h). Then A = Q((,). All primes except ¢ are good for A.
In order to obtain a nonempty family C, we may choose for S any finite set of primes
different from g with the property that p, ¢ F for all p € S. With the above choices
and W as the appropriate finitely generated QCy-module, the family K in Setup 8.37
models the family of Cy-extensions of F' with signature given by W.

Later on, we will focus on the case F' = Q. Note that if ¢ > 2, then every Cy-extension
of QQ is necessarily totally real. The family of such extensions in the setup from above
is modelled by taking W = Q({,). If ¢ = 2, then a Cy-extension of Q can be totally
imaginary or totally real. The totally real Cs-extensions of Q, i.e. the real quadratic
number fields, are modelled by W = Q(—1). The totally imaginary Cs-extensions of Q,
i.e. the imaginary quadratic number fields, are modelled W = 0.

10.1.1 Cj-Structured Algebras

We next discuss the viable collections T' = (T} )yjm,, of Cy-structured Fy-algebras.
We have the following general result.
Proposition 10.1. Let F' be a number field. Let P be a finite set of places of F' and let

T = (Ty)vep be a collection of Cy-structured F,-algebras. Then T is viable for Cy and
F. Moreover, for any fair counting function C on Ec, (F) we have

Pro(T) = [ Pro(T)
veEP

and

Pro(T,) = N(,U)—C’U(T'L))/mc . Z N(v)—cv(T{,)/mC
Ty, (Fy)
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Proof. That T is viable follows from [Wool0, page 108]. The second claim follows from
[Wool0, Corollary 2.4] and the third claim from [Wool0, Corollary 2.2]. O

We now classify the Cy-structured F,-algebras and give their probabilities.

Proposition 10.2. Let F' be a field. Then the Cy-structured F-algebras up to iso-
morphism are given by:

o F9 with Cy — Autp(F?) = S, mapping a generator of Cq to (1 2---q),

o the Cy-extensions of F'.
Proof. This is just an application of Proposition 8.8. O

Proposition 10.3. Let F' be a field. Let G be a finite abelian group. Denote by E(,(F')
a system of representatives of G-extensions of F up to isomorphism as F'-algebras. Then
the map

Eg(F) x Auwt(G) = Eg(F), (K, k), a) = (K, 1k 0 a)
s a bijection.
Proof. This is straightforward. O

Proposition 10.4. Let F'/Q,, be a finite extension. We give the number of Cy-extensions
of F up to F-isomorphism.

(i) Suppose that q # p. Then:

(a) There is 1 unramified Cy-extension of F up to F-isomorphism, namely F'((,ra_1)
where f is the residue field degree of F/Qy.

(b) If |pg(F)| = 1, then there is no totally tamely ramified Cy-extension of F'. If
\uq(F)| = q, then there are |0 /(OF)1| = |uq(F)| = q totally tamely ramified
Cq-extensions of F' up to F-isomorphism. If m1 € Of is a uniformiser, these
are given by F({/ur) where u runs over a system of representatives for the

classes in O /(OF)1.
(ii) Suppose that g = p. Then:

(a) There is 1 unramified Cp-extension of F' up to F-isomorphism, namely F((,p_1)
where f is the residue field degree of F'/Q,.

(b) If |pp(F)| = 1, then there are p + --- + pl | many totally wildly ramified
Cp-extensions of F up to F-isomorphism. If |u,(F)| = p, then there are
p+ -+ pF QI many totally wildly ramified Cp-extensions of F up to F-
isomorphism.
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Proof. Note that since ¢ is prime, every Cy-extension K/F' is either unramified or totally
ramified. The statements on unramified extensions are well-known.

Suppose that ¢ # p. If there is a totally tamely ramified Cy-extension K/F', then by
[CF67, Proposition 1 on page 32], we have |uq(F)| = ¢. Now assume that |pq(F)| = g.
By loc. cit. there is a bijection

{uniformisers of Op} / ~ = {tot. tamely ram. Cy-ext. of F'} / 2p, [r] — [F(¥/T)],

where 7' ~ 7 if and only if 7/7—1 € ((Op/p)*)?, where p is the maximal ideal of Op.
As in the proof of Proposition 10.7 below, since ¢ # p, the natural map

05 (Op/p)*
051 ((Or/p)")"

is a bijection, from which it follows that n’ ~ 7 if and only if 7’7~ € (O})9. Hence, if
m € Op is a uniformiser, then the map

05 /(07)? — {uniformisers of Op} / ~, > [mu]
is a bijection. This proves part (b) of (i).
The claims in part (b) of (ii) are [Sha47, Consequence 2| for |u,(F')| = 1 and [Yam95,
Theorem 1] for |u,(F)| = p. O
Proposition 10.5. Let F' be a number field and let p be a prime ideal of Op.

(i) Suppose p t q and |puy(Fp)| = 1. Then the Cy-structured Fy-algebras up to iso-
morphism are given by

q
o Fy,
o 1 unramified Cy-extension L/F, with ¢ — 1 different Cy-structures.

Let C be either the norm of the product of the ramified primes or the norm of the
conductor or the norm of the discriminant. Then in the respective cases we have

° Prc(qu) = %,
e Pro(L) = %

(it) Suppose p t q and |pq(Fp)| = q. Then the Cy-structured Fy-algebras up to iso-
morphism are given by

q
° Fp,
o 1 unramified Cy-extension L/F, with ¢ — 1 different Cy-structures,

e ¢ totally tamely ramified Cy-extensions L/ F, with g—1 different Cy-structures
each.
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Let C be either the norm of the product of the ramified primes or the norm of the
conductor or the norm of the discriminant. Then in the respective cases we have

N
o Pro(F)) = W(quw

N
e Pro(l) = (neyiata

* Pro(L) = IxGriaa T

(iii) Suppose p | q and |uy(Fp)| = 1. Then the Cy-structured Fy-algebras up to iso-
morphism are given by

° qu,
o 1 unramified Cy-extension L/F, with ¢ — 1 different Cy-structures,

o g+ +qFQl totally wildly ramified Cqy-extensions L/ F, with ¢q—1 different
Cy-structures each.

Let C' be the norm of the product of the ramified primes. Then in the respective
cases we have

o N(p)

) PrC(Fp ) - qN(p)+(q+"'q|Fp:Qq|)(q_l) ’
_ N(p)

e Pro(L) = AN )+ (g gy (g—1)’

e Pre¢(L) = ,

N (p)+(g+--gl PP %ly(g-1)"

w) Suppose p | q and |uq(Fy)| = q. Then the Cgy-structured Fy-algebras up to iso-
q\+p q p
morphism are given by

° F;;],
o 1 unramified Cy-extension L/F, with ¢ — 1 different Cy-structures,

o g+ g QlH totally wildly ramified Cy-extensions L F, with g—1 different
Cy-structures each.

Let C' be the norm of the product of the ramified primes. Then in the respective
cases we have

o N(p)

* Prolly) = e e gy
B N(p)

o Pro(L) = GN (p)+(g+--glFpQal+1y (g1’

° Prc(L) = 1

N (p)+(g+ql T2l +1) (g-1) "
Proof. The respective lists of Cy-structured Fj-algebras are obtained from Propositions

10.2, 10.3 and 10.4. The probabilities are easily calculated using Proposition 10.1 and
Example 8.11. 0
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In cases (iii) and (iv) the probabilities for C' the norm of the conductor and the norm
of the discriminant depend on the conductor and the discriminant, respectively, of the
totally wildly ramified Cy-extensions of Fy. Given knowledge of the latter, these prob-
abilities can be calculated explicitly using Proposition 10.1. We will do this below in the
case q = 2.

10.2 Generalities on Average Torsion

Use Setup 8.37 with the specifications G = Cy, I = <Zhecq h), S = {l}, where / is a
prime with ¢ 1 |Clp|- ¢, and do not fix T'. Conditional on Conjecture 8.38, Corollary 9.44

shows that the limit
li Z(KvL)EICC<B |CIK (m) [f]l
im <

B—oco |’CC§B’

exists and equals

- e Uz [{]1[a>]]
Aveo() = Y Pre(@-|Url0% - ] (N(qw)-dim@@q)(wl) +1].
T:(Tlﬂ)ls\m}?/E qua}ng[Cq])
q

Recall here that all collections T' = (Tp)p\mF of Cg-structured Fj-algebras are viable by
Proposition 10.1. Note that in the notation of Section 9.5, A = A1 = Q({y), e0 =
%Zhecq h and e; = %(q —-1- Zl#hecq h). Note further that by Proposition 10.1, all
terms in Avi ¢(¢) involving T' can be expressed as products whose factors only depend
on one Tj at a time.

Our aim in this section is to provide tools to explicitly calculate all terms occurring in
Avy o () for the case F' = Q and for

e ( inert in Q(¢,),
e [ totally split in Q((,), that is, /=1 mod gq.

Note that if F' = Q, then dimgc,)(W1) = 1. The probabilities Prc(T') have already been
discussed in the previous section.

10.2.1 Torsion in Unit Groups of Residue Rings of p-Adic Fields
The following statements can be used to calculate |Ur[¢]| and |UT [¢].

Proposition 10.6. Let K/Q, be a finite extension of degree d with valuation ring Ok .
Let e be the ramification index and f be the residue field degree. Let r € Z>1 and let ¢
be a prime. Then we have

£

oy =P el
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If moreover K/Qy, is Galois with Galois group G, then for ¢ # p it holds that

< o) )G I IAYIVESt

If ptd = |G|, we also have
< o} )G 4, p=2,
©Oxr) |\ p>2

Proof. The first statement is [Neu99, Corollary I1.5.8]. Now assume that K/Q,, is Galois
with Galois group GG. Denote by p the maximal ideal of O . First, we deal with the case
¢ # p. Then by [Neu99, Proposition I1.5.7] ¢-powering is an isomorphism on 1 + pO.
Thus, the snake lemma applied to

1 —— 1+pOgk O » (O /p) —— 1
l(-)f |or l(-)f
1 —— 14 pO0k O » (O /p) —— 1

gives an isomorphism of G-modules

Ok . (Ox/p)
©5)F ~ (On/p) )

Now the inertia subgroup I < G acts trivially on Ok /p, and G/I = Gal(F,; /F,) which

implies that
G Gal(F_; /F,)
<0§> (M)_(M)/g Iy \ T
(Og)* ((Ok/p)*)" ((Ok/p)*)" (FX)"
We have Gal(F,;/F,) = (o) where o is the Frobenius homomorphism, and F; = (() for
some ¢ € FX.. If £4p/ — 1, then F¥, /(F%)* = 1 and also the fixed points are trivial.
P pf \p

From now on assume that ¢ | p/ — 1. Then F;f/ (F;f)e has size £. So the set of fixed
points either has size 1 or £, and we can characterise the latter case as follows:

I

R, CallFy /)
p = - ” :W
<(F;f)é> =  (=0)=C
= ey ="
= SteZ:pl—1|(p-1)—tt
= llp—1
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where for the last equality we have used that £ | p/ — 1. This proves the claim for £ # p.
Finally, assume that ptd = |G|. Consider the exact sequence of G-modules

1 —— pp(K) y OF Sl

(O —— 1.

Since p t |G|, multiplication by |G| is both the zero map and an isomorphism on
HY(G, uy(K)) for all i > 1 which shows that H(G, ju,(K)) =1 for all i > 1. Hence, the
above sequence induces a long exact sequence

s zX B0 1 — HYG,0%) — HYG, (OF)) — 1 — -

We conclude that ((O%)P)% = (ZX)? and H'(G,0F) = H'(G, (OF)P). Note moreover
that the valuation exact sequence

1 » O KX — 7 ——1

of G-modules together with Hilbert 90 shows that H' (G, Oy) = Z/eZ is cyclic of order
e, and in particular finite. Now consider the canonical exact sequence of G-modules

Ok

1l —— (Oii')p ’ OI? ((')Ix()p

Since OF%/(OF)P is a p-group, we have H' (G, 0% /(OF)P) = 1 by the same argument
as before, so that the induced long exact sequence gives an exact sequence

G
7y %
1 ’ (Zg)P ’ ((Of)p) > H1<G7 (O;{)p) E— HI(G7 O[X() — 31
It follows that
() ||
©xr/) | @y
and we conclude using the first statement of the proposition. ]

Proposition 10.7. Let K/Q, be a finite extension of degree d with valuation ring Ok .
Let e be the ramification index and f be the residue field degree. Let r € Z>1 and let £
be a prime.

(i) Suppose that € # p. Then

’ (Ok/p")*
(O /pm)*)*

If moreover K/Q, is Galois with Galois group G, then
<<<9K/p>) I CROVESE
((Ox /pr)*)* 1, (fp—1.
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(ii) For ¢ = p we further distinguish two cases:

(a) Suppose that r > 2. Then

'((OK/pr)X)p (K|, else.

If moreover K/Q, is Galois with Galois group G and p td = |G|, then
( (Ox/p")* )G _
((Ox /p)*)P

(b) Forr =1 we have

(OK/pT)X _{2d7 p:2,7"=2,

2, p=2,r=2,
4, p=2,r > 2,
p, p#F2

‘ Ok/p)* | _ se-12).
((Ok /p)*)P
If moreover K/Qy, is Galois with Galois group G and p{d = |G|, then

(L)

Proof. For any £ and r, the surjective homomorphism O — (Ok /p")* induces an exact
sequence

(0%)-(14p"OK)

, Ok . _(Oxc /v 1
%)

T 05" " (0K /pr)¥)*

Note that for the left hand term it holds that

(0% - (1+pOk) (1+p"Ok)
(O)* (1 +p0k) N (0F)"

so that we have an exact sequence

o o (O X
1 T OO * oLy * (O 7)) r 1. (10.8)

This will be the central object of the proof. If K/Q, is Galois with Galois group G, then
it is an exact sequence of G-modules.

Suppose that ¢ # p. Then [Neu99, Proposition I1.5.7] shows that ¢-powering is an
isomorphism on 1 4+ p" Ok, so that

1+p" O =(1+p"0g) C(1+p" Og)N (0% C1+p Ok.
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Hence, the left hand term in (10.8) is trivial and we have

Ok o (Ox/p)*
0 (Ox/p))"

Claim (i) then follows from Proposition 10.6.

Suppose from now on that ¢ = p. We first fix some notation. We denote by p the
maximal ideal of O and write U™ := 1 + p"Ok for n € Z>1. Note that (p) = p°.
Furthermore let 7 be a uniformiser for O, so that p = (7). We write vk for the
normalised discrete valuation on K. We will repeatedly make use of the following fact,
cf. [Neu99, Proposition I1.5.5]: The p-adic logarithm and exponential function furnish
algebraic and topological isomorphisms

1+ p Ok = UM g7 for n > ]ﬁ. (10.9)

If K/Q, is Galois with Galois group G, then these isomorphisms are also isomorphisms
of G-modules, as can be seen from the definition of the exponential function, using that
the elements of G are continuous. Moreover, we will use that

(O nUY = W)y (10.10)

which follows from [Neu99, Proposition I1.5.3].

e

5—1 In

Suppose that 7 > 2. Then, unless p = 2 and r = 2, we have er > e(r — 1) >
which case the isomorphisms from (10.9) fit into a commutative diagram

1_|_pr—1OK Nﬁ)pr—loK

J J

1+9p" Ok - p"Ok.
Since p(p"'Ok) = p" Ok, this shows that (1 4+ p"'Ok)? =1+ p"O. It follows that
(L+p"Ok) N (OX)P = (1+p LOR)P N (OF)P = (1+p 'Ok)P =1+ p"Ok.

So from (10.8) we get
Ok ~ (Ox/p)*

Ox)r  (Ox/p)< )P’

and we can again conclude using Proposition 10.6.

It remains to deal with the case p = 2 and r = 2. Here, the left hand term in (10.8)
turns out to be nontrivial, and we will now explicitly calculate its size. To begin with,

we claim that
(1+40K) N (0F)? = (1 +20k)>. (10.11)
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It is evident that the right hand set is contained in the left hand set. Conversely, let
z € (14+40K) N (0F%)%. By (10.10) we can write x = (1 + 7y)? for some y € Of. Then
since x € 1 + 40k we must have

v (T y + 72y%) = v (2my + 72Y?) > v (4) = 2e,
or equivalently
v (T y + 4%) > 2e — 2.
If v (y) < e — 1, then vk (y?) = 20k (y) < vk(y) + e — 1 = vg (7 'y) which implies
v (T ly +92) = vk (y?) = 2uk (y) < 2e — 2, a contradiction. So we must have vy (y) >

e — 1 which gives 1 + 7y € 1 + 7Ok = 1 + 20k. Thus, z € (1 + 20k )?, establishing
(10.11).

We will calculate the size of the left hand side of (10.8) using the chain of subgroups
(1440k)% C (1420k)% C 1+ 40k.

First, we have 1 + 40 = 1 + p?¢ = p2¢ = 40k by (10.9). This gives isomorphisms of

abelian groups
1+40x 40 _ Ok Ok

(1 —|-4(9K)2 - 240k - 20k - pe(DK’
showing that the size of the left hand term is |Og/p|® = 2f¢ = 29, Secondly, using
[Neu99, Proposition 11.3.10], we have

. 2e—1 i 2e—1
120 - || - I || - -2 qomn
Thirdly, there is an exact sequence
L I — Eag 5 S — 1
For the left hand term it holds that
e +(11ng4 20 o 12() ?‘fﬁ 105y ~ ) ==

since 1 + 40k = 40k is torsionfree. Hence, the exact sequence and (10.12) give

(1+20K)*| 1 |1+20k| pd—1
(1+405)2| 2 |14+40k| =
Then using (10.11) and all the above results we obtain
1440k _ ’ 1440k
(14+40K) N (052 |(1+20k)?

_ 1+40k (1+20K)2 -1
N (1+40K)2 (1+4OK)2
— 2d . 2—d+1
=2. (10.13)
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The exact sequence (10.8) and Proposition 10.6 therefore give

‘ (Ox/22)* :' O
(Ox/2) 2|~ | (0}

Now assume further that K/Q is Galois with Galois group G, and that 2 { d = |G|.
Then the left hand side of (10.8) has trivial first cohomology, since multiplication by |G|
is both the zero map and an isomorphism on it. Together with (10.11), this means that
we obtain an exact sequence

1o (3595)° - (§5) - ()"~ oo

-1

1+ 40k —9d.9.971 _9od

' ‘(1 +40K) N (0F)?

To compute the size of the left hand term, we proceed as follows: Again, since 2 t |G|,
the exact sequence of G-modules

N2
1 —— po(K) —— 1420k 7, (1420k)? —— 1

induces an exact sequence

N2
1 jo(Q@a) —— 14275 5 (14 20)2)¢ —— 1

which shows that ((1+20g)%)¢ = (1 4+ 2Z5)?. Therefore, from the long exact sequence
associated to the canonical sequence

~
—_

1 —— (1420k)2 —— 1440k » 0

we obtain an injection

1+ 474 1+40k \¢
(1 —+ 2Z2)2 (1 =+ 20]{)2

Now by (10.13), the size of the left hand term is 2, whereas the size of the right hand

term is at most 2. So the size of the right hand term must be 2. We conclude from

(10.14) and Proposition 10.6 that
( (O /22)* >G “ < 1+ 40k )G_l
((Ok/22)%)? (1+420k)?

finishing part (ii) (a) of the proposition.

Suppose finally that »r = 1. The proof in this case follows similar steps as the p = 2,
r = 2 case above. We again explicitly calculate the size of the left hand size of (10.8).
We claim that

(14 pOk) N (OL)P = (1+plrlOk)P. (10.15)
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Ifzxe(l+ pE](’)K)P, then there is y € Ok such that z = (1 + W[i]y)p. It follows that

3 Q) 15 ()t 4

k=0
Since p divides the middle term on the right hand side and p - [%} > e, it follows that
z € 1+ pOg. Conversely, let € (1 + pOgx) N (Of)P. Then by (10.10) we can write
x = (1+ 7my)? for some y € Ok. Expanding this expression yields 7Py? € pOx = 7¢Ok,
whence p + pu (y) > e. It follows that 1+ vk (y) > [£], that is, 1 + 7y € 1+ plplOg.
So (10.15) is proved.

To compute the size of the left hand side of (10.8), we consider the chain of subgroups
(14 pOK)P € (1+p'710K)? C 1+ pOy.

We first compute the size of the quotient of the right hand term by the left hand term.
and (10.9) gives an isomorphism 1+ pOx = pOk. It follows that

1

1+p(9K POk | | Ok | | Ok | e d
5| = === | =0k /p|" = p".
(1+pOk)?P| |p*Ok| [pOk| |p°Ok
If p =2, then (10.12) and (10.13) give
1420k | |1420k| | 1440k _9d. 9 _ gdtl
(14+20K)2|  |1+40k| |(1+20K)2| B '
Next, for arbitrary p again, by [Neu99, Proposition H.3.10] we have
= (Irsn el
Ltpr O (U7 F o pfeTE).
1+ pOx ue |~ ‘111 ) H p=p
=3
Now consider the exact sequence
1y #p()-(14p0) tplploe 07, aplilogr ' 1
T+pO0x I+p0x (I+pOk)P T
Its left hand term is
() - (14 pOk) pp () _ L p=2
1+ pOg pp(K) N (1+p0k) | pp(K), p>2,

where we used that 1 + pOg = pOk is torsionfree if p > 2. Thus the exact sequence
gives

1p(K) - (14 pOg) |
1+ pOx

1+plrlOk)P
(1 —i—pOK)p

Lpltlog|
1+ pOx

of (=51 p=2,
WD ), e 2.
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We now put (10.15) and all these intermediate results together to obtain

1+ pOk _ 1+ pOxk
(1+pOK) N (0Pl |1 +p/plok)P
B ’ 1+pOk | (1+plplog)p|
o (1 —l—pOK)p (1 _|_p(9K)p

2d+1 . g=f(e=T51) p=2,
e TR ()], > 2,
This, (10.8) and Proposition 10.6 give

(10.16)

‘ (Ok/p)* :' Ok ‘ 1+ pOg
((Ok/[p)*)P (O] [(1+pOK)N(OF)P
2d,2,2—d—1 .2f‘(6*(§1)7 p:27
O\ (K| p pl el lp(K)[, p>2,
_ P TED),

Finally, suppose that K/Q, is Galois with Galois group G and p { d = |G|. Then since
the left hand side in (10.8) is a p-group, it has trivial first cohomology, so that there is
an exact sequence

G X G G
140k @<> (Jgg@:»
1= ((1+poK)m(o;()p) - ((o;()p — \@xmr) 1L (10.17)
We calculate the size of the left hand side. Using the fact that ((O%)P)¢ = (Z) )P as
shown in the proof of Proposition 10.6, the exact sequence
1 —— (14 pOk)N(OF)P —— 14 pOy 1+p0r > 1

(1+pOK)N(OF)P

gives rise to an injection

1+ pZ, ( 1+ pOx )G
(1 +pZp) N (Zp )P (1+pOx)N(OR)F)
Now by (10.16), the left hand term has size 4 if p = 2 and size p if p > 2. On the other

hand, by (10.17) and Proposition 10.6, the right hand term has size at most 4 if p = 2
and size at most p if p > 2. It follows that

|< 1+ pOk )G _‘ 1+ pZ, _‘( 0} )G
(1+pOK) N (OF)P (1+pZp) N (Zy )P Oxr) |
Then (10.17) shows that
)( (Oxc/p)* )G _,
((Ok /p)*)P '
This finishes the proof. O
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10.2.2 Primary Components of Ur[/]; for =1 mod ¢

We now discuss how to calculate the terms |Ur[f]1[q*°]| for £ =1 mod ¢ and g a prime
of Z[¢,] above £. It suffices to consider the case T' = T}, where p | mg and T, is a
Cg-structured Qp-algebra. We need a few lemmas.

Lemma 10.18. Let ¢ be a prime with =1 mod gq. Denote by q1,...,qq—1 the primes
of Z[(y) above L. Fix a generator g of Cy. Let M be a ZCy-module that is annihilated
by £. Let n € Z such that n is congruent to a primitive q-th root of unity modulo £. Let
N; = {meM‘ga::nia;} fori=1,...,q—1. Then

{Ml[qcfo]a"'aMl[qgil]} = {va"‘7Nq—1}'

Proof. We have that My = e1 M is an e1Z ) Cy = Zy)[(y]-module, where the isomorphism
is given by

e1ZyCq = Zipy[Cql, er(ao+arg+ -+ ag-19""") = ag + a1y + -+ + ag—1¢I .
This means that the action of Zy)[(,] on M is given as follows: for z € M we have
(-(e17) = (erg)(e1z) = g.(e12).
By definition of n, it holds that
Tt L= (t—n)(t 72 - (t =TT € Fy[t].
Thus, by the Dedekind—Kummer Theorem we have
() = (0,Cg = n)(6,Gg = n®) -+ (£,Gg — nT™h) C Z[G)-

Without loss of generality, q; = (¢,{;, — n’) for i = 1,...,q — 1. Using that £M = 0, for
y € M it holds that

y € Milg;”] <= anng (y) |6 <= (- n' € annge | (y) <= (uy= nly.
It follows that
Mig*]={yeM|gy=ny}={yeM|gy=n'y},

where the right hand equality follow from the fact that 1 +n 4+ --- +n9"! =0 mod ¢,
giving egy = 0 for the y in the right hand sets. O

Lemma 10.19. Let p be a prime with p = 1 mod q. Let L/Q, be cyclic of degree q
with Galois group Gal(L/Q,) = (o). Denote by p the maximal ideal of Or. Then for
each i € {1,...,q— 1} there is x; € O with o(x;) = C;.m,‘ if L is unramified we can
additionally ensure vy(x;) = 1 and if L is totally ramified we can additionally ensure
vp(zs) € {1,...,q—1}.
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Proof. Note that since p =1 mod ¢ we have (; € Q,. Let i € {1,...,¢—1}.

Suppose first that L is unramified. By Kummer theory, there is y; € L with o(y;) = (;yi.
We can write y; = Z—; with a; € O, and b; € Zp. Then o(a;) = ¢ a;. Now since L/Q) is
unramified, p is a uniformiser in Oy. Write a; = u; -pki with u; € Of and k; € Z. We
get o(u;) = Céui and may hence take x; := pu;.

Now suppose L/Q, is totally tamely ramified. Then there is a uniformiser 7 of Z, with
L = Qu(¢/m). We have vy(¥m) =1 and o(¢m) € {(q\q/ﬁ..., 371\‘1/7?}. Hence, one of
97, ..., 7" will do the job. O

Lemma 10.20. Let p be a prime with p =1 mod q. Let L/Q, be cyclic of degree q.
Let n € Z such that n is congruent to a primitive g-th root of unity modulo p. Then for
Cq € L it holds that n = Cé mod pOy, for somei € {1,...,q— 1}.

Proof. Suppose that z € O, is such that 77 = 1 € Op/p. We are going to show that
there is ¢ € pq(L) with = (. Since OF — (Or/p)* is surjective, we may assume that
x € OF. We can write x = (u with ¢ € p,r_1(L) and u € UM where f = f(L/Q,).
We have 27 = (9u? € 1+ pOr, C UW, which forces ¢4 = 1. Hence, u? € 1+ pOp. But
raising to the g-th power is an isomorphism on 1 + pOp, by [Neu99, Proposition I1.5.7],
sou €1+ pOy. It follows that T = ¢ as claimed.

We have F,, C Oy, /p, so by assumption 7 € Or,/p satisfies 7?7 = 1 and 7 # 1. The claim
then follows from what has been shown in the first paragraph. O

We can now obtain the sizes of the primary components of Ur, [(];.

Proposition 10.21. Suppose that ¢ > 3. Let £ be a prime with £ = 1 mod ¢q. Let
p | mg and let T}, be a Cy-structured Qp-algebra.

(i) Suppose that T, = Q}. Then |Ur, [(1[a5°]| = |Ur, [0)°| for alli € {1,...,q—1}.

(ii) Suppose that T, is an unramified Cy-eztension of Qp. Then |Ur,[(]1[a5°]| = 1 for
alli e {1,...,q— 1} unless

o p?=1(¢) andp # 1({), in which case |Ur, [()1[q5°]| = € for onei € {1,...,q — 1}
and |UTp [E]l[qfo]‘ =1 for all otheri; or

UTp[e]l[CI?OH ={ foralli e {1,...,q—1}.

(111) Suppose that T, is a totally ramified Cy-extension of Qp. Then ‘UTP i[g]| =1
forallie{1,...,q— 1} unless

e p=/{andv/(mg) > 2, in which case

o p =1L andvy(mg) = 1, in which case |Ug, [(]1[a5°])| = € for alli € {1,...,q — 1};
or
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e p ={ and vy(mg) > 2, in which case we further distinguish two subcases:
If \pp(Tp)| = p, then |UTP[€]1[qZ@’°H = (2 for onei € {1,...,q—1} and
‘UTP[K]I[qJO-O]‘ = { for all other i. If lup(Ty)| = 1, then |Ug,[0h[q)] = ¢
forallie{1,...,q—1}.

Proof. Let g be a generator of C,,. Suppose first that 7, = Qf. By Proposition 10.2 we
can assume that g acts on T, via (1 2---¢). We have Ur,[(] = ((Z,/p*»(™2))*[]) and
therefore

Uz, [0 = { (ths- -, 1) ’ p € (Zy/p ™)) [(] } :

Let n € Z such that n is congruent to a primitive g-th root of unity modulo ¢ and let
N; = {.CL‘ € Ur,[{] |g:1: = nlx} fori =1,...,q— 1. Then it is easy to see that

i —(q—2)i i
NZ:{(Muu’n 7"'7/’Ln ! 7/’Ln)

€ (Zy/pr ™[0 }.

Claim (i) follows from this and Lemma 10.18.

Now suppose that T, = L for L/Q, cyclic of degree ¢q. In all cases except p = ¢ the
claims in (ii) and (iii) are immediate from Proposition 10.7, which for p # ¢ gives
\Ur, [01] = |Ur, [6]| / |Ur, [)¢] € {1,£}. Assume from now on that p = ¢. Here, Ur, [(] =
vp(m@)yx
(O /p’r™2))*[p]. We instead study %, all of whose isotypical and primary
L/p
components have the same size as the corresponding components of Ur, [£], which follows
from the exact sequence

v v oo1 (0 v (3] (< /Up(m(@))x
0 = (Op/p»™)*[p] » (Op/p**™))*[p>] 5 (O /pr™))*[p>] - ((OLL/;UPW > 0.

Recall the short exact sequence of Cj-modules (10.8) which in the case of our interest
reads

1 \ 1+p* "oy . Of (O /prm)yx
T (14p P00 )P " (OF)r " (O /pP ) x)p

Vv

1. (10.22)

From the snake lemma applied to

1 —— 1+p0Oy » Of » (Op/p) —— 1
l(-)ﬂ |or [or
1 —— 1+p0y » OF » (Op/p) —— 1

we obtain an isomorphism
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of G-modules. Note that the condition / =1 mod ¢ forces £ > ¢+ 1 and even £ > g+ 1
as ¢ # 2. Hence, p=¥¢ > g+ 1. This gives pfl < 1, where e is the ramification index of
L/Q,. Hence, as in the proof of Proposition 10.7, the exponential function furnishes an

isomorphism of G-modules

p o~ U(l)

— = —.

pp (UM
Let n € Z such that n is congruent to a primitive g-th root of unity modulo ¢. By Lemma
10.20 we have n = ¢; mod pQy, for some j € {1,...,q—1}. Now let i € {1,...,q — 1}.
By Lemma 10.19 there is 0 # T € p/pp such that g = Céj:v = n'zT.

Suppose that vg(mg) > 2. Then as in the proof of Proposition 10.6, the left hand side of
(10.22) is trivial. Hence, the above and Lemma 10.18 show that |Ug, [(]1[q5°]| > 1. The
claims for vy(mg) > 2 follow from this and Proposition 10.6.

Suppose finally that vy(mg) = 1. If L/Q, is unramified, then |Uz, [f]| = 1, so clearly
|UTP[€]1[q$°H = 1. Assume now that L/Q, is ramified. Then by Lemma 10.19 we
can choose x such that vy(z) € {1,...,¢—1}. By the arguments above, we have
|Uz,[€]1[a5°]| > 1 provided that

1+ pOp
(14pOL) N (OF )P

exp(r) ¢

Assume for the sake of a contradiction that there is y € 1+ pOp such that exp(x)
7 € OF/(OF)P. Then there is z € (UM)P with exp(z) = yz. It follows that z =
log y + log z € pOy, which gives vy(x) > ¢, a contradiction.

O

10.3 Average Torsion of Ray Class Groups of Quadratic Fields

Following the approach of [PS17, Section 2.2] and [BP25, Section 4.2], we use the results
from the previous section to give explicit formulas for the average f(-torsion, £ odd,
of ray class groups of imaginary and real quadratic fields. In doing so, we restate
[PS17, Conjecture 2.15] and [BP25, Proposition 4.15] and extend those results to the
case where quadratic fields are ordered by the product of the ramified primes

Use Setup 8.37 with F'=Q, G = Cy and I = (3., h) and do not fix T'. Let £ be an
odd prime. If W = 0, then K is the family of imaginary quadratic fields and we have

Avec(®)= Y Pro(@) - [Url0%] - (Ul + 1)
T=(T))pjmg, /=

= Y. Pro(D)-([Urld| +|Ur[0¢
T:(Tp)p\m@/g

);
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where T' runs over collections of Ca-structured Q,-algebras. Using Proposition 10.1 we
can express this as

AV}CC H Z PI"C ‘UTP ‘—i— H Z PI‘C ‘UTP ‘

plmg Tp/= plmg Tp/=

If W =Q(—1), then K is the family of real quadratic fields. Here, one obtains

AV}CC H Z PI"C ‘UTP ‘—l— H Z PI‘C ‘UTP ‘

plmg Tp/= plmg Tp/=

The table below gives the probabilities of the Cs-structured Q,-algebras. The second
column gives the base algebra and the third column how many Ca-structured Q,-algebras
up to isomorphism there are with such a base algebra. This data comes from Proposition
10.5. Except in the case where C' is the discriminant and p = 2, the probabilities can be
read off from the same proposition. In the exceptional cases, we have used Proposition
10.1 to calculate the probabilities. Here, for the ramified extensions of Qs, one calculates
the 2-adic valuation of the discriminants of Qo(y/—1) and Q2(v/3) to be 2 and for the
remaining ramified extensions to be 3.

Number of Prc(Ty) Prc(T))
D T, such T, C prod. of ram. primes | C' discriminant
2

2 Q2 1 @ @

p#2| L/Q, unram. 1 @ @

L/Q, 2ram. 2 @ 1)
@p 1 5 3
L/Q, unram. 1 % %
Bl | iy 7
@2(\/5) 1 TP ?
O I Iy 3
Q2(V6) 1 10 b
Q2(v'—6) 1 10 21

From Proposition 10.7 one further obtains the following table.
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Q;
p#0,+1(¢) L/Qp, unram.
L/Q, ram.
Q
p=—1(¢) L/Qp unram.
L/Q, ram.
Q;
p=1(¢) L/Q, unram.
L/Q, ram.
Q;
p=1Y{, v(mg) =1 | L/Q, unram.
L/Qp ram.
Q;
p =4, v(mg) >2 | L/Q, unram.
L/Qy ram. | & |pu(L)

IS
3
=
S
!

[4¢]

DTV~ R s [P o ===

S S SRR RS S SRR R e

In the p = ¢, v/(mg) > 2 case, note that if L/Q), is unramified, then |py(L)| = 1 as Qp((p)
is totally ramified over @@, and therefore cannot be contained in L. On the other hand,
since Qp((p)/Qp has degree p—1 by [Neu99, Proposition I1.7.13], in order for a quadratic
ramified extension L/Q), to satisfy |u¢(L)| = ¢, it needs to hold that p = ¢ = 3. In the
latter case, there are 2 ramified extensions of Q3 up to isomorphism by Proposition 10.4,
and Q3((3) is the only one to contain the third roots of unity.

Putting the above together, we obtain the following results.

Corollary 10.23. Write K~ for the family of imaginary quadratic number fields. Let
mq be a positive integer and let ¢ be an odd prime. Let C be a fair counting function
on K=. Let Py :={p|mg : p=1 mod ¢} and define P+1 analogously. Assume that
Conjecture 8.38 holds. Then the limit

kex-.., |Clic(mg, 2) (4]

Av.(0) := i
VC( ) Bgnoo Ko
C<B
exists. If C' is the discriminant, then
P (+1)+2
f‘ il 1+ Hpepj:l p2(p+1) ) ) ETmQ7
P 2¢ p(+1)+2
AV—(B) _ g‘ 1| . 1 + m pepil 2(p+1) > ; E H m@,
o\ Py|+1 (£+1)42 2
pIPL+L (1 + ] eps, p2(p+1) ) . £>3,0% | mg,
P 15 2p+1 _ 2
3P (1 + 7 HpePﬂ I]’DJrl ) ) t=3,¢ | mQ-
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If C is the product of the ramified primes, then for £ > 3 we have

(+1)+2
oPil 1+npepﬂ ML) ffmg,
— p(l+1)42
AVG(O) = S0P (14 25 Thep,, Bpn2) . £l ma,

{41)42
(P (1 + gnpepil p(2(p+)1) ) , ’ me,

and for £ = 3 we have

(371 (14 [Tep., 22, 3fmg, 21 m,
3P0 (14 I lepayey 27 ), 31mg,2|mg,
peegzy 437 (L 3 Thers, 351 3l mg, 2 ma,
3P (14 B Mepaney 25 ) . 31 mg, 2| mg,
gPiH1. (14 15 yep,, %) : 32 | mg, 2 f mg,
B3P (14 B [epy vy 25 )0 3 I mg,2 | mg.

Proof. The results are obtained from the formula
Avg(0) H Z Pro(T,) - |Us, [4]] + H Z Pre(Ty) - |Ur, 4] |
plmg Tp/= plmg Tp/=

by plugging in the appropriate values from the two tables. We illustrate this procedure
for the case C' the discriminant and ¢ { mg. Since by the second table, |UTp [E]G‘ only
depends on p and not the individual 7}, we immediately have

I > Pre(@) - |Ur10¢) = 0™,

plmg Tp/=

=Y Pre(ny) U],

Tp /=

For p | mg define

For p | mg with p = —1(¢) and p # 2, the tables give

P D 1 p(l+1)+2
S, = A+ 2 = .
P+ 2+ T 2+ 2p+ D)

For p | mg with p = —1(¢) and p = 2, the tables give

1.1 1 1, _20+4  p(l+1)+2
33 12 24 6 2(p+1) "’

so the p = —1(¢) case can be treated uniformly. For p | mg with p = 1(¢), the tables
give
P 9 P 1 p(l+1)+2
Sy = A+ A+2- A=l —
"2+ 2(p+1) 2(p+1) 2(p+1)

197



It follows that

HSp:€|P1- Hp€+1 +2’
2(p+1)
plmg PEP+1

which proves the statement in the case C' the discriminant and ¢ { mg. The proofs of the
remaining statements follow the same procedure. The case distinction between ¢ = 3
and ¢ > 3 stems from the fact that for p = ¢, there is a quadratic ramified extension of
Qp containing ¢ if and only if p = £ = 3, as explained above. O

The above result for C' the discriminant has already been obtained in [PS17, Section 2.2]
and has been proven for £ = 3 by Varma [Var22, Theorem 1 (b)].

Corollary 10.24. Write Kt for the family of real quadratic number fields. Let mg be a
positive integer and let £ be an odd prime. Let C be a fair counting function on K. Let
P :={p|mg:p=1 mod ¢} and define P+1 analogously. Assume that Conjecture
8.38 holds. Then the limit

> kexy.,, [Clr(mg, 2)[4]

!KC<B!
exists. If C' is the discriminant, then
(Pl (14 %Hpepil p(;(;}r);)r2> - Hme,
AvE(0) = R G per., pge(;-lk);gQ) » tlime,
0P (14 Tep,, B2) . €23, | m,
k3|731|+1 . (1 + 2 [ep., 2;%5) , 0= 3,02 | mg.
If C the product of the ramified primes, then for £ > 3 we have
AP (1 + 7 peps, p(zg(;i)f)ﬂ) ,  l{mg,
AVE) = S 0P (14 2 Tep,, BEE2) 0 £l me,
(P (14 Theps, 550050 ) - € ma
and for £ = 3 we have
3P (14 A TLepy, 25%11) 3t mg, 21 mg,
3Pl . 1+T7E)Hpe7>ﬂ\{2} %) ,  3tmg,2|mg,
NI AR e R
3P (14 5 T pep, () %) ;3| mg, 2| mg,
3P+t (14 %Hpepﬂ 2;>T+11> 7 32 | mg, 2 f mg,
3P (14 E Tepa gy 257 ) s 3 [ mg,2 | mg.
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Proof. The proof is analogous to that of Corollary 10.23. O

The above result for C' the discriminant has already been obtained in [BP25, Section
4.2] and has been proven for £ = 3 by Varma [Var22, Theorem 1 (a)].

10.4 Average Torsion of Ray Class Groups of Cyclic Cubic Fields

Using the results from the previous sections, we show how to obtain explicit formulas
for the average (-torsion, £ # 2, 3, of ray class groups of cyclic cubic fields.

Use Setup 8.37 with ' = Q, G = C3 and I = (3} ¢, h) and do not fix . Then K is the
family of cyclic cubic extensions of Q. Let ¢ be a prime with ¢ # 2,3. If £ =2 mod 3,
then £ is inert in Q({3) and

AV}Qc(E) _ Z Prc(T) . |UT[€]G‘ . <‘UT[£]1‘ + 1)

62
T=(T})pjmgy />

= ) Pre(D) ('U?y” + |UT[6]G\) 7

T=(Ty)plimg /=

where T' runs over collections of Cs-structured Qp-algebras. If / =1 mod 3, then ¢ is
totally split in Q((3), say (¢) = q1q2. Here,

Avic(l) = Z Pro(T) - ‘UT[E]G\ ) (\UTVHCITOH + 1) . <|UT[E]£1[CI§O]| n 1> 7

14
T:(Tp)phﬂ(@/%

where again T runs over collections of C3-structured Q,-algebras. From Proposition 10.5
one reads off the following table for the probabilities of the Cs-structured Q,-algebras,
where again the third column indicates how many Cs-structured Qp-algebras up to
isomorphism there are with base algebra as given in the second column.

Number of Prc(T,)
p T, such T, | C prod. of ram. primes

p=23)| , 0% ; %
L/Q, u3nram. 2 3

Q L ey

p=1(3) | L/Q, unram. 2 #’ﬁ

L/Q, ram. 6 ﬁ

Q, 1 5o

p=3 | L/Q, unram. 2 376

L/Q, ram. 6 ﬁ

From Propositions 10.7 and 10.21 one further obtains the following table.
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In case £ = 1(3)
p T, | U] | U516 | Uil |Un @)L}

@ i i 1)

pP£1(0), p#¢ | L/Q, unram. 1 1 {1}
L/Q, ram. 1 1 {1}

Q3 1 1 {1}
P +p+1=00) | L/Q, unram. 4 1 {1,¢}
L/Q, ram. 1 1 {1}

Q) e 14 {¢}

p=1(¢) L/Q, unram. l l {1}
L/Q, ram. 1 l {1}

@ i i M

p =14, v(mg)=1| L/Q, unram. 1 1 {1}
L/Q, ram. 72 1 {¢}

Q@ & 7 I

p =14, v(mg)>2 | L/Q, unram. /3 14 {¢}
L/Q, ram. & 1 {¢}

Note that the statement p? +p+ 1 = 0(¢) or p = 1(¢) is equivalent to p*> = 1(¢). In
the p = £, vy(mg) > 2 case, further note that if L/Q, is unramified, then |p(L)| =1
as Qp((p) is totally ramified over Q, and therefore cannot be contained in L. Moreover,
since Q,((p)/Qp has degree p—1 by [Neu99, Proposition I1.7.13], even if L/Q, is ramified,
we must have |us(L)| = 1. Hence the factor |pug(L)| from Proposition 10.7 (ii) (a) does
not appear in the case p = ¢, vy(mg) > 2.

The tables lead to explicit formulas for the average ¢-torsion, £ #£ 2, 3, of ray class groups
of cyclic cubic fields. In particular, we obtain Corollary 1.17, which constitutes the case
£ =2 mod 3.

Corollary 10.25. Denote by K the family of pairs (K,.) where K C Q is a Galois
extension of Q and ¢ is an isomorphism Cs — Gal(K/Q). Let mg be a positive integer.
For a,b € Z define P(a,b) :={p|mg : p=a mod b}. For (K,i) € K let C(K,1) be
the norm of the product of the primes of Q that ramify in K. Let 2 #£ £ be a prime with
£ =2 mod 3. Assume that Conjecture 8.38 holds. Then the limit

¥ e, [Clic(me, 2)[4]

lim
B—oo ’Cg:‘,SB‘
exists and equals
P(1,6 1 (6242)IP(20+1,30)] (242)+6 2
E‘ 00 (1 + 67( ;_ ) HpGP(l,SZ) £ 3p+6 ) . )fm(@7
¢ 2242\ |P(26+1,30)] £242)+6
JPLOI+ <1 +(£22) Teps0 p( 3p+% ) . 2| mg.
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Proof. The formulas are obtained in the analogous way as in Corollary 10.23, namely
by plugging the data from the two tables in this subsection into the formula

Aveo(@) = > Pre(T)- (!U;[ +|Urle \)

T=(Ty)pimgy />

— LTSS Py un i)+ T XS Pre() - U, 106

plmg Tp/= plmg Tp/=

for the limit in the statement, where for the final equality we have used Proposition
10.1 and where we recall that T}, runs over Cs-structured Qp-algebras. We note that if
p?>+p+1=0 mod ¢, then 0 = 4p?> +4p+4 = (2p+1)2+3 mod ¢ which gives ( ) =1.
However, (_73) = (_71) (%) = (g) = (%) = —1 by quadratic reciprocity and as ¢ = 2
mod 3. Hence, the case p> +p+1 =0 mod ¢ does not occur. So for p | mg there are

the following nontrivial cases to distinguish:
(1) p=1 mod ¢ and p =2 mod 3, or equivalently, p = 2¢ 4+ 1 mod 3/;
(2)
(3) p=+¢=2 mod 3 and vy(mg) = 1;
(4) p

The statement follows by plugging the respective values from the two tables into the
formula for Avi c(f). O

p=1 mod ¢ and p=1 mod 3, or equivalently, p=1 mod 3¢;

=/¢=2 mod 3 and vy(mg) > 2.

In the same manner, a formula for / = 1 mod 3 can be obtained, albeit that formula
will look more complicated.
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