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Abstract

Remote-sensing technology is widely used in Earth observation, from everyday weather fore-
casting to long-term monitoring of the air, sea and land. The remarkable coverage and
resolution of remote sensing data are extremely beneficial to the investigation of environ-
mental problems, such as the state and function of lakes under climate change. However, the
attractive features of remote-sensing data bring new challenges to statistical analysis. The
wide coverage and high resolution means that data are usually of large volume. The orbit
track of the satellite and the occasional obscuring of the instruments due to atmospheric
factors could result in substantial missing observations. Applying conventional statistical
methods to this type of data can be ineffective and computationally intensive due to its
volume and dimensionality. Modifications to existing methods are often required in order to
incorporate the missingness. There is a great need of novel statistical approaches to tackle

these challenges.

This thesis aims to investigate and develop statistical approaches that can be used in the anal-
ysis of the sparse remote-sensing image time series of environmental data. Specifically, three
aspects of the data are considered, (a) the high dimensionality, which is associated with the
volume and the dimension of data, (b) the sparsity, in the sense of high missing percentages

and (c) the spatial/temporal structures, including the patterns and the correlations.

Initially, methods for temporal and spatial modelling are explored and implemented with
care, e.g. harmonic regression and bivariate spline regression with residual correlation struc-
tures. In recognizing the drawbacks of these methods, functional data analysis is employed
as a general approach in this thesis. Specifically, functional principal component analysis
(FPCA) is used to achieve the goal of dimension reduction. Bivariate basis functions are
proposed to transform the satellite image data, which typically consists of thousands/mil-
lions of pixels, into functional data with low dimensional representations. This approach has
the advantage of identifying spatial variation patterns through the principal component (PC)
loadings, i.e. eigenfunctions. To overcome the high missing percentages that might invalidate
the standard implementation of the FPCA, the mixed model FPCA (MM-FPCA) was inves-
tigated in Chapter 3. Through estimating the PCs using a mixed effect model, the influence

of sparsity could be accounted for appropriately. Data imputation can be obtained from the



fitted model using the (truncated) Karhunen-Loéve expansion. The method’s applicability

to sparse image series is examined through a simulation study.

To incorporate the temporal dependence into the MM-FPCA, a novel spatio-temporal model
consisting of a state space component and a FPCA component is proposed in Chapter 4.
The model, referred to as SS-FPCA in the thesis, is developed based on the dynamic spatio-
temporal model framework. The SS-FPCA exploits a flexible hierarchical design with (a)
a data model consisting of a time varying mean function and random component for the
common spatial variation patterns formulated as the FPCA, (b) a process model specifying
the type of temporal dynamic of the mean function and (c) a parameter model ensuring
the identifiability of the model components. A 2-cycle alternating expectation - conditional
maximization (AECM) algorithm is proposed to estimate the SS-FPCA model. The AECM
algorithm allows different data augmentations and parameter combinations in various cycles
within an iteration, which in this case results in analytical solutions for all the MLEs of model
parameters. The algorithm uses the Kalman filter/smoother to update the system states
according to the data model and the process model. Model investigations are carried out in
Chapter 5, including a simulation study on a 1-dimensional space to assess the performance
of the model and the algorithm. This is accompanied by a brief summary of the asymptotic
results of the EM-type algorithm, some of which can be used to approximate the standard

errors of model estimates.

Applications of the MM-FPCA and SS-FPCA to the remote-sensing lake surface water tem-
perature and Chlorophyll data of Lake Victoria (obtained from the European Space Agency’s
Envisat mission) are presented at the end of Chapter 3 and 5. Remarks on the implications
and limitations of these two methods are provided in Chapter 6, along with the potential
future extensions of both methods. The Appendices provide some additional theorems, com-

putation and derivation details of the methods investigated in the thesis.
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Chapter 1

Introduction

Remote-sensing technology is widely used in Earth observation, from everyday weather fore-
casting to long-term monitoring of the air, sea and land. ‘The objective and continuous
views of our planet supplied by satellite images and data provide scientists and decision
makers with the information they need to understand and protect our environment’ (Eu-
ropean Space Agency (ESA) Earth Observation Mission, https://earth.esa.int/web/
guest/missions). The remarkable coverage and resolution of remote sensing data are ex-
tremely beneficial in the investigation of the impacts of environmental change, especially for

those inaccessible remote areas on Earth.

In 2002, ESA launched its Earth observation mission, Envisat. It was ESA’s successor to
the European Remote Sensing satellite, which was retired in 2001. With 10 instruments
aboard and at eight tons, Envisat was the largest civilian Earth observation mission. The
advanced radio/spectrometers on board were designed to measure the ocean surface tem-
perature, atmospheric ozone, wind fields, land features, etc (https://earth.esa.int/web/
guest/missions/esa-operational-eo-missions/envisat). Unfortunately, the satellite
lost contact with the Earth in May 2012, thus ending the mission. However, during its ten-
years’ mission, Envisat has provided scientists with some of the most valuable observations
and a novel source of information for understanding environmental change. Its successors,
Sentinel-1, 2 and 3, were launched between 2014 and 2017, continuing the mission of Earth

observation.

The appealing features of remote-sensing data bring new problems to the processing and
modelling of data. The wide coverage and high resolution means the data are usually of
large volume. The occasional obscuring of the Earth due to cloud cover means that data

1
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can be missing from time to time. Therefore, conventional statistical methods may not be
appropriate for this new source of data and there is a great demand for novel approaches to
the analysis of the remote-sensing data. This thesis develops statistical methods to address
these challenges. The research is motivated by remote-sensing image time series data of lakes
across the world obtained by two of the radio/spectrometers on board the Envisat, Advanced
Along-Track Scanning Radiometer (AATSR) and the Medium-spectral Resolution Imaging
Spectrometer (MERIS).

1.1 Remote-sensing measurements of lakes

As described in the overview of the Globolakes project (http://www.globolakes.ac.uk),
‘the Earth’s freshwater ecosystems are vital components of the global biosphere, yet they are
vulnerable to the forces of climate and human induced change’. So far, peoples’ understanding
of lakes’ response to these changes and their impacts on the status of lakes are still limited.
Recent developments in remote-sensing and data retrieval technology provide an opportu-
nity to study the ecological condition of lakes from a brand-new perspective. Scientists are
interested in the study of various remote-sensing measurements of lake ecology, such as lake
surface water temperature (LSWT) and Chlorophyll a (Chl). LSWT reflects the physical
dynamics of lakes. The data are retrieved from the measurements of AATSR, for 2002 onward
and ATSR (the predecessor of AATSR) prior to 2002 (MacCallum & Merchant, 2013). Both
ATSR and AATSR are imaging multi-spectral radiometers, primarily designed to measure
sea surface temperature (SST) and the spatial resolution of the infra red ocean channels is
1km x 1km (Hout et al., 2001) (here ‘km’ stands for kilometer). Chlorophyll a is an indicator
of lake ecosystem condition and change. The data are retrieved from the measurements of
MERIS (Doerffer & Schiller, 2008), a programmable, medium-spectral resolution, imaging
spectrometer operating in the solar reflective spectral range. The spatial resolution of the
ocean channels is 1040m x 1200m (here ‘m’ stands for meter); that of the land and coast
channels is 260m x 300m (Hout et al., 2001). The next two subsections provide a detailed
description of the LSWT and Chl data.

1.1.1 Lake surface water temperature and Chlorophyll data

First note that the phrase ‘remote-sensing data’ in this thesis refers to the satellite pro-

cessed data, such as the LSWT and Chl data. They are different from the satellite raw
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measurements, which are often recorded as intensity of the radiance per unit area. These
raw measurements are transformed into ‘remote-sensing data’ using advanced retrieval al-
gorithms, which associates the radiation measurements with the reflectance characteristics
of different objects on Earth. For example, the SST retrieval algorithm requires a radiative
transfer model, accompanied by observed radiance and other calibration data, to define the
optimal retrieval coefficients (Merchant & Le Borgne, 2004). During the process of LSWT
retrieval, there is also the need for cloud detection based on a Bayesian approach (MacCal-
lum & Merchant, 2012). There are various types of uncertainty associated to this process
(Rodgers, 1990). Some of them have been quantified, but the rest are still unknown. These
uncertainties are not considered in this research, i.e. the analyses in this thesis do not account

for the measurement errors of the retrieved data due to data availability.

The LSWT data were derived from the (A)ATSR observations. The ARC-Lake project pro-
cessed the (A)ATSR data to obtain the LSWT for more than 900 lakes across the world, from
June 1995 to April 2012. The spatial resolution of the retrieved LSWT data is 0.05° x 0.05°
(here ‘o’ stands for degree in the geographical coordinates). Data sets typically consist of
monthly aggregated measurements as spatial images, spatially aggregated lake mean prod-
ucts, etc (MacCallum & Merchant, 2013). They are available from the ARC-Lake v3.0
database (http://www.geos.ed.ac.uk/arclake/data.html). Reconstructed LSWT using
geographical empirical orthogonal functions (EOFs) (Alvera-Azarate et al., 2005) are also
provided by the ARC-Lake project. The LSWT data was originally recorded in Kelvin and
can be converted to Celsius by adding 273.15. The monthly aggregated LSWT data of Lake
Victoria are used throughout the thesis. The lake, named by explorer John Hanning Speke
after Queen Victoria, is the second largest fresh water lake on Earth. It is located between
31°39’E — 34°53'E and 03°00’S — 00°20'N, covering an area of of 68,800 km?. The ARC-Lake
retrieved LSWT of Lake Victoria is defined on a grid of 65 x 66 = 4290 pixels, among which
2313 are identified as lake pixels. For monthly aggregated LSWT, this gives a data set of
dimension 2313 x 203, or effectively an array of 65 x 66 x 203, if the entire grid is considered.
The Lake Victoria LSWT data show strong seasonality in individual pixels. In the meantime,

there is large variation across the pixels, displaying interesting spatial /temporal patterns.

The Chlorophyll data, recorded in mg/ m?®, were processed by the Diversity II project (http:
//www.diversity2.info/products/) using the MERIS measurements. The Diversity II
demonstration sites include 340 large perennial inland waters distributed around the world.
The spatial resolution of the monthly Chl data is 300m x 300m and the temporal coverage is

from 2002 to 2012. Monthly, yearly and decadal aggregates are available from the database
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(Brokeman Consult GmbH, 2015). The Globolakes project (http://www.globolakes.ac.
uk/) covers a wider range of lakes globally, of more than 1000 lakes over 20 years. However,
data are not fully accessible to the public currently. As the research in this thesis is associated
with the Globolakes project, permission is given to use the Chl data of Lake Victoria as
illustrations in this thesis. There are 732,585 pixels in the Lake Victoria Chl data set. The
time coverage is from July 2002 to May 2012, giving 119 months in total. While sharing
some common physical features as the LSWT data, the spatial/temporal dynamics of the
Chl data behave in a slightly different way than the LSWT data. This difference helps to

highlight some properties of the statistical methods investigated in this thesis.

1.1.2 Features of data and their influence on statistical analysis

One distinctive feature of the remote-sensing data is its dimensionality and large volume. The
data are usually recorded as 3-dimensional arrays, defined by three coordinates, longitude,
latitude and time. Observations may be densely recorded for either coordinate. The number
of observations along each coordinate, when multiplied together, could result in thousands
or millions of observations, presenting challenges to data analysis. This problem is referred
to as ‘high-dimensionality’ in this thesis, although it is actually a combination of dimension
and volume, not necessarily corresponding to data in a high dimensional space. Typically,
there are two perspectives to investigate this type of data, (i) as a collection of time series,
observed over a vast number of spatial locations, (ii) as a time series of spatial images, each
consisting of a large number of pixels. Each has its own advantages according to the purposes
of the analysis. However, neither perspective is straightforward to reveal the spatio-temporal
features of the data due to the dimensionality. It would be attractive to develop a modelling

framework to carry out the investigations of a large number of time series/images.

The second feature is the high percentage of missing observations per image/time series,
which is referred as ‘sparsity’ in this thesis. It is a result of, e.g. cloud cover and the
satellite orbit, and is common to the majority of remote-sensing data (Brokeman Consult
GmbH, 2015, MacCallum & Merchant, 2013). For example, there are 7 months without a
single observation in the Lake Victoria LSWT data set. For the rest of the months, the
average missing percentage reaches almost 50%. Table 1.1 summarises the percentage of
data available for the monthly images in the data set. 47 images show substantive missing,
where less than 30% of the data are observed. To fully illustrate the sparsity in the LSWT

data, plots using two perspectives (i) and (ii) described above, were produced. Figure 1.1


http://www.globolakes.ac.uk/
http://www.globolakes.ac.uk/
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provides examples of the time series in 4 different pixels; Figure 1.2 presents images recorded
at 8 different time points. The colours reflect the values of the LSWT, with the green end
of the palette indicating low values and the blue end indicating high values'. Figure 1.1
suggests that there can be long periods of no observation in certain pixel locations; whereas
Figure 1.2 suggests that the missing in space often appears as missing regions. Conventional
statistical methods may not be applicable due to the missing data. There is often a need to
modify the specification or the algorithm in order to accommodate the sparsity.

TABLE 1.1: A summary of the percentage of data available for 203 LSWT images of Lake
Victoria.

% data available < 30% 30% — 50% 50% — 80% > 80%

image counts 47 (7 blank) 50 68 38
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FIGURE 1.1: Examples of the sparse LSWT time series of Lake Victoria from 1995 to 2012
recorded at four different pixel locations.

Finally, the spatial/temporal dependence of the remote-sensing data is worth mentioning.
This is not a feature unique to remote-sensing data, but is common to all spatio-temporal
data. However, the dimensionality and sparsity of remote-sensing data make the spatial /tem-
poral dependence especially interesting. On the one hand, these features complicate the
modelling of the spatial/temporal correlation, as a result of the computational intensity, the

adaptability of model specification and the estimation algorithm. On the other hand, the

'The same colour scheme is used throughout the thesis for displaying the image data (LSWT and Chl).
The ranges of the values varies from figure to figure, but the green end of the palette is always for low values
and the blue end for high values.



Chapter 1. Introduction 6

L -
- ] - . - - "
o | 10 0 0 o
T 7 i Ay ? ] = B ? 7| Whe RN ? =¥’
1 | - { e ol |
0 g 0 : w | g e 0 )
T = T -'l':.ﬂf . - T
1i & ] g ) M
0 L ) i = [1o) wn [ -
SR R 31 l o I O i
T T T T T T T T T T T T T T T T T T T T T T T T
320 330 340 320 330 340 320 330 340 320 330 340
T
1 T ¥
0 ) . B ) ‘ N0
?_'-'ﬂ-- _m ?_r'n.; g " %] . 1 =
ik ) iEe_ = 1 ﬁ N by
10 0 | g 10 4 -
T s il T ;i Sl
P = = BT et
o |REE e o o [#a R
D A Y : D
T T T T T T T T T T T T T T T T T T
320 330 340 320 330 340 320 330 340 320 330 340

FIGURE 1.2: Examples of the sparse LSWT images of Lake Victoria from eight different
time points. The green end of the palette indicates low values and the blue end indicates high
values. The horizontal and the vertical axes represent longitude and latitude respectively.

process of dimension reduction and missing data imputation may benefit immensely from

such a dependence structure.

1.2 Aims and objectives

The aim of this thesis is to provide novel statistical approaches to the analysis of the remote-
sensing lake environmental data, so that the results may be used by ecologists to study
the functions of lakes under climate change. It is of special interest to identify the general
spatial /temporal patterns in the remote-sensing data for individual lakes. Specifically, there

are three main objectives of this research.

(a) Dimension reduction. The aim is to reduce the complexity in the data whilst
identifying the main spatial/temporal features in the data. To achieve this, smoothing
and functional data analysis techniques, using both univariate and bivariate functions,

are investigated and developed.

(b) Missing data imputation. Reliable imputations can improve the analyses of the
data. To provide better data imputations, statistical methods based on mixed effect

models are investigated. In particular, methods that combine the mixed effect model
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and the functional data representations are developed to impute the missing values

through a lower dimensional model with higher computational efficiency.

(¢) Spatial-temporal modelling. To model the spatial /temporal structures in the remote-
sensing image time series, a classic spatio-temporal modelling framework using hierar-
chical design is investigated and a novel spatio-temporal model is proposed by extending
existing models for sparse, high-dimensional data. The new model improves the data

imputation and the extraction of the spatial/temporal patterns.

In the next section, statistical methods that are fundamental to the objectives of this research

are introduced briefly.

1.3 Preliminary methodologies

1.3.1 Dimension reduction, smoothing and functional data analysis

The approaches to dimension reduction in this thesis are smoothing and functional data rep-
resentation. Smoothing is a non-parametric technique for flexible modelling of non-linearity
in curves, images, etc. Ruppert et al. (2003) described it as a method of ‘freeing oneself of
the restriction of parametric regression models’. Without loss of generality, consider a model
involving one univariate smooth function f(x), expressed through a collection of K basis

functions ¢y (z) and basis coefficients Sy,

K
Zi=f(zm:)+e=Y énzi)B+ei, (1.1)
k=1
where Z;, 1 = 1,--- ,n, are the observed data and z; is the function argument associated with

Z;. Various data features can be modelled using appropriately chosen basis functions, e.g.
Fourier basis for periodical patterns, natural cubic spline and B-spline bases for curvature.
The basis coefficients are often estimated using ordinary least squares. A penalty is sometimes
added to the estimation for more flexibility on the smoothness of function f(z). In these

situations, the estimation criterion can be written as (Wood, 2006)
| Z—-28 | +wB'SB (1.2)

where Z is the vector of data Z;, i = 1,--- ,n; ® is the basis matrix, whose columns are

basis functions ¢y (z), k = 1,--- , K, evaluated at x = x;, ¢ = 1,--- ,n; B is the vector of
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basis coefficients Bx, £k = 1,--- , K; § is a penalty matrix, such as the second derivatives
of f(z), and w is a smoothing parameter controlling the smoothness of the fit. Typically,
w — 0 indicates no penalty, resulting in a wiggly fit; whereas w — oo would force B87S3 to
0 so that criterion (1.2) can be minimized (as anything else would make it co), producing a

smooth fit. The general estimation equation for 8 can be written as
. -1
3= (<I>T<I>+w8> 7. (1.3)

Methods for selecting smoothing parameter w include (generalized) cross validation, infor-

mation criteria, restricted maximum likelihood, etc (Reiss & Ogden, 2009, Wood, 2006).

Smoothing itself is not intended for dimension reduction. However, when it is paired with
functional data analysis (FDA), the effect of dimension reduction becomes almost instant.
FDA views the observations of individual objects in the data set as realizations of certain
smooth functions, e.g. univariate functions for curves, bivariate functions for images. In
other words, the ‘observation’ in FDA is a function and statistical analysis is carried out
at the function level. Continuing the above example, consider now that the data collection
process is carried out 7T times and at each time n observations are obtained, giving data Z;,
t=1,---,T,9=1,---,n. Treat the T repeated measures as the ‘individual objects’ and
assume that data are smooth by nature. Functions, fi(x), t = 1,---,T, can be obtained
by smoothing the data Z;, i = 1,--- ,n, at time ¢ respectively using model (1.1). Applying
FDA on these functions means that a high-dimensional problem of T" x n observations is
transformed into a low-dimensional problem of 7' smooth function. This is very appealing
for remote-sensing data, which often have much higher dimension in space than in time
(n > T). Some frequently used FDA methods include, functional regression, functional
clustering, functional PCA, etc (Ramsay & Silverman, 1997). The technique used in this
thesis is the functional principal component analysis (FPCA). Details on the estimation and

interpretation of the FPCA are provided in Chapter 2.

1.3.2 Missing data imputation, mixed effect model and EM algorithm

There are typically regarded to be three categories of missing data, missing completely at
random (MCAR), missing at random (MAR) and not missing at random (NMAR) (Little
& Rubin, 2002). The first category assumes that the probability of an observation being

missing is independent of the observed and missing values of data. The second category
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describes a situation where the probability an observation is missing is independent of the
values that are missing, but may depend on the values of the data that are observed. In the
third category, there is often a missing data mechanism associated with the missingness. In
practice, data which are categorized as MCAR or MAR are often modelled with the missing
data mechanism ignored. Discussion on the ignorability of the missing data mechanism and

its modelling strategies can be found in Lu & Copas (2004), Seaman et al. (2013), etc.

Due to the complexity of the satellite measurements and retrieval algorithm, there is no
universal agreement on whether the missingness should be treated as random or systematic.
The missingness in the remote-sensing data considered in this thesis (LSWT and Chl) is
associated with cloud cover and satellite orbit tracks (Brokeman Consult GmbH, 2015, Mac-
Callum & Merchant, 2013), two factors that are independent of the unobserved values of the
variable. There are situations where the missingness is a result of the data retrieval algo-
rithm. As some algorithms perform better in certain spectral range than others, the value of
an observation (a realization of the observed spectrum) may actually affect the probability it
is missing. However, as the retrieval algorithms are often complicated and the data product
may even be a blend of several algorithms, it is impractical to form a missing data mechanism
based on these and incorporate it into the modelling. Therefore, the missing data mechanism

is not considered and the missing data are treated as MAR in this thesis'.

Under the scenario of MAR, the missing data mechanism may be ignored in the modelling
process (for likelihood inference and Bayesian inference alike), if the parameters governing
the missing data mechanism are distinct from the parameters in the model (Heitjan & Rubin,
1991, Lu & Copas, 2004). In this thesis, the distinctness of parameters is assumed. Statis-
tical methods based on the mixed effect modelling framework using likelihood inference are
adopted to impute data that are MAR. This approach offers the possibility of utilizing the
entire data set to improve data imputation. A general linear mixed effect model can be

written (using matrix notation) as

Z=X;b+X,mn+e, (1.4)

where Z is a vector of observations, X is matrix of the fixed effect covariates and X is the
design matrix of the random effect. X, is usually specified based on the type of random effect,

such as individual effect and group effect. Distributional assumptions are often assigned

iFor data as combinations of different algorithms, the blending process would reduce the chance of an
observation being missing due to algorithm failure. This reduces the influence of the missing data mechanism.
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to both the random effect coefficient n and the model residual € as, n ~ N (0, R) and

€ ~ N(0,V). This gives the covariance matrix of the model
¥ =Cov[X,n+¢€ =X,RX, +V. (1.5)

According to Ruppert et al. (2003), given X, the fixed effect coefficient can be estimated
using generalized least squares; given 8 and X, the random effect 17 can be obtained as the

best linear predictor based on conditional distribution of n|Z. That is

~ —1
b—(x/=7'X;) x/z7'z, (1.6)

n=RX,'X(Z - X;b). (1.7)

Model parameters R and V' can be estimated using maximum likelihood (ML) or restricted
maximum likelihood (REML), which is an averaged version of ML over all possible values of

b. The corresponding log-likelihood based on the observed data are
1
L(¥;2) = -3 {1n(]2|) +(Z-X;b) 2 (Z - be)} + constant
for ML and

Le(V; Z) = {1n(|z:\) +(Z - Xsb)' Z7H(Z - X;b) + X]Tz—le} + constant

1
2
for REML, where ¥ = {R, V'} is the parameter collection. On substituting equations (1.5)
and (1.6) into the log-likelihood functions, the maximum likelihood estimates (MLEs) of R

and V' can be obtained (Ruppert et al., 2003).

In some situations, it is easier to maximize the joint log-likelihood of the observed data
and the random effect component £(V; Z,n) based on f(Z,n) = f(Z|n)f(n) than the log-
likelihood of the observed data alone £(W; Z). This is due to the complexity in evaluating the
derivatives of the observed log-likelihood L(W; Z) to obtain the MLEs. One way to implement
the estimation using £(V; Z,n) is the expectation-maximization (EM) algorithm. It is a
general method for obtaining MLEs in incomplete data problems (Little & Rubin, 2002). The
algorithm, first formalized in statistical literature by Dempster et al. (1977), consists of two
iterative steps, (a) an expectation step (E-step), where the missing information is estimated
based on a conditional distribution evaluated at the current parameter estimates and the

expectation of the complete data log-likelihood is computed accordingly, (b) a maximization
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step (M-step), where the parameters are updated through maximizing the expectation of the

complete data log-likelihood.

In terms of a mixed effect model, the complete data are often defined to be the joint of the
observations and the random effect {Z,n}, with the random effect n treated as the missing
information. This gives an incomplete data problem which can be estimated using the EM
algorithm. Specifically, in the it-th iteration, the E-step calculates the expectation of the
joint log-likelihood

8) (\1/; \I!(”’l)) - E [/:(xp; Z.n) ‘Z, Wf*l)} .

The M-step then updates the parameter estimation to W) such that the condition
Q (v W) > g (w; w1}, vwew

is satisfied, where W is the parameter space. The iteration terminates when certain con-
vergence criterion is met. Various extensions have been developed based on this general

framework. This is discussed in detail in later chapters.

1.3.3 Spatial/temporal dependence and dynamic models

The spatial/temporal patterns in environmental data are usually of great interest, as they
help to answer questions about long term change, spatial clustering of environmental vari-
ables, coherent evolution under climate change, etc. In order to model these patterns, the

spatial/temporal dependence needs to be assessed appropriately.

One way of describing the spatial /temporal dependence is through some descriptive functions
of correlation/covariance. The autocorrelation function (ACF) is one of the most important
measures of the temporal dependence. Typically, for a temporal process {Z;}, t € T, a lag-7
ACF measures the linear dependence of the series at time ¢ on the observation at time ¢ — 7.
For a second-order stationary process, the ACF is determined through the time lag 7 only,
denoted as p(7) (Shumway & Stoffer, 2006). A frequently used measure to quantify spatial
dependence is a (semi-)variogram. For a spatial process {Zs}, s € D, the semi-variogram is

defined as (Cressie, 1993)

v(s,7r) = %Var[Zs — Zy) (1.8)

1
=3 (Var[Zs] + Var[Z,| — 2Cov|Zs, Zy]) , s,7€D.
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For a second order stationary spatial process, v(s,r) is determined only through the spatial

difference h = s — r, giving
~v(h) = Var|Zs] — Cov[Zs, Zsin] .

Furthermore, for an isotropic spatial process where the spatial correlation being the same
whichever direction it takes, the spatial lag can be replaced by the Euclidean distance ||h|| =
|ls — 7||. The semi-variogram can be linked to a correlation function p(h), which describe

the type of the spatial dependence, e.g. Gaussian, exponential and Matérn.

For a spatio-temporal process, {Z(&t)} defined on s € D, t € T, the covariance function
is often written as Cov[Z (), Z(r.)] = C((8;t), (r;u)) for some positive-definite function
C((s;t), (r;u)) on R? x R, for d-dimensional spatial domain D and 1-dimensional temporal
domain 7 (Cressie & Wikle, 2011). Depending on different assumptions, various types of

covariance models can be constructed, such as
Cov[Z(sit)s Ziriu)] = C6 (s —rit —u)
for a second-order stationary spatio-temporal process and
Cov[Z(at), Ziray) = C(s,7)CD (¢, )

for a space-time separable covariance structure, where C®)(.,.) and C'(!)(.,.) are valid spatial
and temporal covariance functions respectively. A separable covariance function is perhaps
the easiest to implement, hence received extensive study over the years. However, such a
setting is not always realistic in practice. Readers are referred to Cressie & Wikle (2011) for a
review. For non-separable covariance structures, methodologies such as the spatio-temporal
variogram, spectral representation (Cressie & Huang, 1999) and Taylor’s hypothesis in fluid
dynamic (Gneiting, 2006), have been developed to model the covariance functions. However,
as pointed out in Cressie & Wikle (2011), these models usually play ‘a descriptive role in
representing the spatio-temporal dependence in the process... That is, it is very difficult
to look at a covariance function and determine the etiology of the spatio-temporal process
under study’. An alternative method to construct a valid covariance function directly is
to model the spatial/temporal covariance structure based on a specific type of stochastic
partial differential equations (SPDE), which can be linked to the Gaussian Markov random
fields (Lindgren et al., 2011). The authors established the connections between the SPDEs
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and the precision matrices of a wide variety of spatial/temporal processes, including non-
stationary, non-separable, anisotropic processes, etc. This is a flexible approach, though its

interpretation is again non-trivial.

A slightly different way of describing the spatio-temporal dependence is through a dynamic
model, where the dependence is motivated by the evolution of, e.g. physical, chemical and
economic processes. Such models are usually built on the conditional distributions describing
how the current state behaves given the ‘nearby’ current and past values (Cressie & Wikle,
2011). For example, a general model for the dependence of a spatial process at time ¢ on

that of time ¢t — 7, for a positive real value 7, can be written as
Zisity = Mi (8, Z(i0-r)) + sty (1.9)

where function My(.,.) depends on both the spatial location s and the observations at
time t — 7, Z(4_r). The function M;(.,.) is possibly non-linear and can be either time
dependent or invariant, providing enough flexibility to generate the (non)stationary spatio-
temporal processes. Some examples of the discrete time M,(.,.) function are first-order

vector autoregressive model, or VAR(1) model
Z(st) = MZ(u—1) + €6y
and stochastic integro-difference equation (IDE)

Z(s;t) = /D m(s, m)Z(m;t—l)dCc + €(s;t) -

Note that both examples use 7 = 1, which is the unit of the discretization of time. Cressie &
Wikle (2011) encourage the use of scientific knowledge to motivate the design of the M,(., ),
in the sense of a ‘physical statistical’ model. A review on this topic can be found in Wikle

& Hooten (2010).

In this thesis, a particular type of spatio-temporal process, referred to as the ‘time series of
spatial process’ in Cressie & Wikle (2011), receives in-depth investigation. The process can
be written as

Zy()={Zsy : s€D}, t=1,2,--

with the index ¢ in D, emphasising that the spatial index set is allowed to change with time.

The dynamic model (1.9) for this type of process thus becomes
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Zi(8) = My (8,Zi-1(+)) + e(s), s €Dy (1.10)

It is straightforward to see that the remote-sensing image time series can be viewed as a time
series of spatial process. Therefore, model (1.10) can be used to describe the spatio-temporal
dependence of the data studied in this thesis. Perhaps an even more attractive feature is the
model’s potential to achieve dimension reduction through appropriate design of the system
dynamics (Wikle & Cressie, 1999). Investigation with respect to this route is carried out in

Chapter 4.

1.4 Thesis structure

This remainder of the thesis is made up of five chapters. Chapter 2 presents the exploratory
analysis of the spatial and temporal features of the remote-sensing data, using the Lake
Victoria LSWT data as an example. Studies from both the temporal curves and spatial
images perspectives were carried out. Classic techniques, such as harmonic regression and
autoregressive models, spatial smoothing and covariogram models are used to investigate the
spatial and temporal properties of the data. The chapter also presents an initial investigation
of the data using FPCA. Based on the exploratory analysis, a baseline model for analysing
the sparse image time series is introduced in Chapter 3. The model inherits the specifications
of FPCA, but is parameterized as a mixed effect model. Model estimation exploits the EM
algorithm, so that the missing data problem can be overcome. However, this model assumes
that there is no temporal dependence between images, which could be problematic in some
situations. Therefore, methodologies for incorporating the temporal correlations between
the images are explored in Chapter 4. In particular, a dynamic spatio-temporal modelling
framework is investigated, with special attention paid to model specification and computa-
tion details. Based on these studies, a spatio-temporal model that updates the mixed model
FPCA is proposed to analyse the sparse image time series, along with an estimation method
making use of an extension of the EM algorithm. Chapter 5 is dedicated to the investigation
of the proposed model, using both simulated and real remote-sensing data. A study on the
asymptotic behaviors of the estimation algorithm is presented, followed by an application
of the proposed model to the Lake Victoria LSWT and Chl data. Final remarks on these

methodologies and potential future works are provided in Chapter 6.
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Before leaving this chapter, a list of subsets of the Lake Victoria LSWT and Chlorophyll

data used in the thesis for illustration purposes is presented here.

(a)

The ‘Re LSWT’ data set. This is a subset of the ARC-Lake reconstructed LSWT of
Lake Victoria. It is defined on a grid of size 26 x 27 and consists of 203 monthly images
with no missing observations. The data set is used where complete data are required

in order to implement the method.

The ‘LSWT section’ data set. This is extracted from the sparse LSWT data of Lake
Victoria. It is defined on a grid of size 34 x 24 and consists of 202 monthly images with

missing observations. This data set is used in the thesis for general illustrations.

The ‘Artificial section ’ data set. This is constructed using the reconstructed LSWT
data of Lake Victoria. It is defined on the same grid as the ‘LSWT section’ data set,
with sparsity imposed using the missing patterns of the ‘LSWT section’ data set. This
data set is used in model investigation because it provides ‘true values’ for the missing

observations, which is helpful in assess the quality of data imputation.

The ‘Chl section’ data set. This is a subset of the 3 x 3 spatially aggregated Lake
Victoria Chlorophyll data, defined on a 36 x 36 grid, including 119 monthly images.
The spatial aggregation is carried out by taking the average of the values from 9 pixels
in a 3 x 3 grid and then using this averaged value as the observation of the larger pixel
which covers the 3 x 3 grid''. This data set is used in model investigations because the
Chl data display different spatio-temporal feature as compared to the LSWT data and
can thus highlight model properties that cannot be discovered using the LSW'T data.

The applications of the main statistical methods in this thesis are carried out on larger
date sets, for both the LSWT (size: 47 x 57 x 202) and Chlorophyll (size: 72 x 72 x 119)
data of Lake Victoria. Details of the two application data sets are provided in the

corresponding sections of Chapter 3 and 5.

HiThis can be done using the R package raster.



Chapter 2

Exploratory analysis

Nothing puzzles me more than space and time.

Charles Lamb (1810)

This chapter presents the exploratory analysis of the remote-sensing image time series. The
data used as illustrations are the LSWT data of Lake Victoria. Standard time series and
spatial analysis are carried out to investigate the data from two perspectives (a) temporal
curves recorded for 2313 pixels in a 65 x 66 grid, (b) spatial images recorded monthly from
May 1995 to April 2012. Functional principal component analysis is applied to explore
the general spatial and temporal patterns in the data set. Drawbacks of these methods on
applying to remote-sensing data are discussed and potential solutions to these problems are

reviewed at the end of the chapter.

2.1 Investigating temporal patterns

Exploratory analysis was first carried out from the temporal perspective, that is, modelling
the time series of LSWT in individual pixels. The aim was to investigate the long-term tem-
poral patterns in the time series other than the obvious seasonal patterns. The main approach
used here was harmonic regression with residual autocorrelation structure incorporated as

an auto-regressive (AR) model.

16
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2.1.1 Harmonic regression

Harmonic regression is frequently used to model periodic data (Pigorsch & Bailer, 2005). The
model considered in this analysis consists of a harmonic component and a general temporal
trend component, to capture the strong seasonal patterns and the potential long-term trend

in the data. A general harmonic regressors can be written as a sinusoid signal
Acos(2mvt + @),

where ¢ is the time covariate, A represents the amplitude, v is a parameter associated with
the frequency and ¢ is the phase parameter. Since the majority of the LSWT time series
have one peak and one trough within a 12-month cycle, v = % was used in this problem. Ex-

panding the above sinusoid and re-parameterizing the coefficients gives the specific harmonic

27t . 27t
Aj cos (12> + As sin <12) .

The general temporal trend component can be formulated using polynomials of covariate t.

regressors,

To allow more flexibility, a smoothed function of ¢t was considered here, giving

Zy = Aj cos (217;t> + Ay sin (217;t> + f(t) + e (2.1)

In the above model, Z; is the LSWT at time ¢. Smooth function f(t) is constructed using a
cubic spline basis as f(t) = ®(t)3, with basis ®(t) = (¢1(t), - , Pk (t)) and basis coefficient
vector 3. Note that the intercept term of the model is incorporated in the basis, correspond-
ing to ¢1(t) = 1. The smoothness of function f(¢) is penalized by the integrated squared
second derivative (Wood, 2006)

P(f) = /F 7 (1) dt.

The above penalty can be written in the form of 37S3 as described in section 1.3.2. In
this case, the matrix & is determined by the second derivative of the basis matrix ®. The

minimization criterion of this problem thus becomes
27t 27t 2
Z [Zt — Aj cos <12> — Agsin <12> — @(t)ﬁ} + wB'SB.
t

Additionally, the model residuals are assumed to be independently and identically distributed
(i.i.d) with ¢ ~ N(0,02). The time point ¢ = 0 is taken to be the January 1995, which is
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the first month of the year when the observing began.

The effective degrees of freedom (EDF) was used to measure the smoothness of function f(t)
in model (2.1). In a simple regression model, the degrees of freedom are determined by the
dimension of the design matrix. Whereas in a regression model using smooth functions, such
as Z = ®3+¢, the dimension of the basis matrix ® usually does not reflect the actual degrees
of freedom of the model. According to Wood (2006), ‘the basis dimension is only setting an
upper bound on the flexibility of a term: it is the smoothing parameter that controls the actual
effective degrees of freedom.’. For a smooth term ®3, with associated penalty P(f) = B8'SB

and smoothing parameter w, the EDF can be computed as
T LT
EDF = tr {@ (@ P+ w8> P } : (2.2)

where tr{.} denotes the trace of the matrix. Due to the existence of the penalty, the EDF
is always smaller or equal to the dimension of the basis, with equality holding when w = 0.
In addition, the above trace does not need to be an integer, neither does the EDF. In
fact, it can take any real value between 1 and the number of parameters. For example, in
terms of model (2.1), EDF = 1 would suggest a constant (or intercept) term and EDF = 2
corresponds to a linear function of . The EDF is sometimes used in model selection for the

optimal smoothness of the fitted function.

As mentioned in section 1.3.1, the smoothing parameter w also needs to be selected. Some

frequently used methods include cross validation,
C _ ! Z; — fl1 :
v<w>—T;[ - W)

and generalized cross validation,

I >V L) e L OV A

GOV(w) tr{I — P)] (I — P))?

where fI-1] (t) is the smooth function, with smoothing parameter w, fitted to all the data
except Zj, f (t) is the smooth function, with smoothing parameter w, fitted to all the data,
P=%& (@T@ + wS)fl ® " is the influence (or projection) matrix and Z is the vector of all Z;,
t=1,---,T. Alternatively, various information criteria can be used in the selection. These

criteria are often formulated as twice the negative log-likelihood of the model (a measure of

distance between the candidate model and the ‘true’ model) plus certain forms of penalty on
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the degrees of freedom. Two of the most frequently used information criteria are

AIC = —2L(V,w; Z) + 2q, (2.3)

BIC = —2£(W, w; Z) + log(n)q , (2.4)

where E(\Tl; Z) is the log-likelihood evaluated at U with smoothing parameter w, ¢ is the
dimension of the parameter collection ¥ and n is the number of observations'. The w value
minimizing equation (2.3) and (2.4) is considered as the solution. Although sometimes,
the AIC/BIC values may only be used as a guide, as the results can be misleading when the
number of observations is not large enough compared to the dimension of the model (Hurvich

et al., 1998), or when the data are highly correlated.

In this analysis, all the LSWT time series of Lake Victoria of pixels with over 50% observa-
tions available were investigated using model (2.1). Function gam in R package mgcv (Wood,
2011) was used to fit the models. The model was estimated using REML, where the smooth-
ing parameter w was selected by re-parameterizing the higher order smooth component as
random effect and incorporating the smoothing parameter into the model covariance struc-
ture. In the package mgcv, the influence of the intercept is not counted in the output of the
EDF. It gives the value of (2.2) minus 1. That is, EDF = 1 from the gam output corresponds
to a linear function of t. It is found that 94.8% of the fitted smooth functions have EDF
between 1 and 2, the majority of which have EDF just slightly larger than 1. This means
that most of the estimated f (t) are nothing more than a linear function of t. Additionally,
the p-values based on the pseudo-inverse of the covariance matrix of the estimated basis
coefficient B (i.e. the approximated significance of the fitted smooth function) are large in

most of the cases, suggesting that f (t) have very limited influence on these models.

Figure 2.1 is a map showing whether the time series in a pixel is considered to have a temporal
trend or not. The dark grey dots represent pixels with EDF < 2; the red dots represent pixels
with EDF > 2. The majority of the dark grey pixels have approximated p-values greater
than 0.05, suggesting that no distinctive linear temporal trend is found in the majority of
the pixels. The red pixels may be considered as to exhibit certain non-linear temporal trend,
although some of them still have relatively large approximated p-values. Two examples of
the fitted harmonic regression models (2.1) are given in Table 2.1. The models were applied

to two dark grey pixels in the map, each with more than 80% of the data observed. Both

!Note that for a model involves smoothing, the dimension of the parameters associated with the smooth
term is determined by the effective degrees of freedom, not the number of elements in the parameter collection.
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models have EDF slightly over 1 and approximated p-values greater than 0.05. Based on
these results, it can be concluded that there is no clear long-term trend in the LSWT time
series for the majority of the pixels of Lake Victoria. Therefore, in the rest of the analysis,

the harmonic regression model (2.1) is replaced by a model without trend component,
2mt 2mt
Zy = Ag + Aj cos (;;) + As sin (;;) + €, (2.5)

for simplicity and ease of comparison.
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FIGURE 2.1: Map of pixels (with > 50% data available) investigated using model (2.1). The
dark grey dots represent pixels without temporal trend and the red dots represent pixels with
a temporal trend. The horizontal and vertical axes are longitude and latitude respectively.

TABLE 2.1: Results from the harmonic regression model (2.1) fitted to the LSWT time
series in two pixels, located at (33.275E°, —2.375N°) and (33.925E°, —0.125N°) respectively.

Location | Intercept  A; Ay 6% EDF of f(t) p-value of f(t)
33.275E°, —2.375N° 24.81 0.29 1.02 0.42 1.001 0.362
33.925E°, —0.125N° 25.58 0.34 0.49 0.32 1.317 0.793

2.1.2 Temporal autocorrelation

In the previous analysis, the model residuals were assumed to be independent and identically
distributed (i.i.d.). This is an assumption made to simplify the initial investigation and could
be inappropriate to model time series data. Therefore, the autocorrelations in the residu-
als from fitting model (2.5) are examined here using empirical (or sample) autocorrelation

functions (ACF) and variograms.
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For fully observed time series, under the second-order stationary assumption, the empirical

autocorrelation function can be computed as

it (%= 2) (Ziyr = Z)
YL (20— 2)?

where 7 is the time difference (or time lag) and Z = %Zthl Z;. However, for sparse or

p(r) =

, (2.6)

irregularly observed time series, the computation of the empirical ACF can be difficult.
Alternatively, a method based on the idea of the variagrom in spatial statistics may be used
(Haslett, 1997). Variograms are often constructed as a function of the distance in space
(Cressie, 1993, Pigorsch & Bailer, 2005). Recall equation (1.8) from section 1.3.3 about the
variogram of a spatial process. The same formula can be adopted to examine the correlation
between two residuals with certain time difference apart. Rescaling the variogram formula
(1.8) by the variance of the residuals, a measure of the autocorrelation between the pair of

residuals, €; and €;4., can be constructed as

o(r) = ~(T) _ Varle¢,] + Var[e -] — 2Cov]ey, €441]

~ Varle] Var|e;] 27)

The component (7) in equation (2.7) is referred to as the ‘temporal variogram’ in the rest
of the thesis. A general procedure to compute the empirical ‘temporal variogram’, 4(7),

consists of the following steps.
(a) Calculate the time difference 7;; between each pairs of residuals ¢ and j; group the time
differences into M intervals, denoted as L,,,, m=1,--- , M.

(b) Calculate the empirical variance within each interval Ly,.

m Tij €Lm
where n,, is the number of residual pairs in interval L,

(c) Plot 4, against the median of each interval L,,.

The resulting plot can be used to investigate how the temporal correlation changes with the
increasing time lag. For example, if a process displays a first order auto-regressive (or AR(1))
structure, ¢; = ¥e;1 + vy, then the empirical temporal variogram should be able to match
the theoretical ACF of an AR(1) process, p(7) = 1 — %7, rescaled by a factor of 0 = Var[e]

or its sample version (Haslett, 1997).
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FIGURE 2.2: (Left) The ACF plot of the residuals from model (2.5) fitted to the LSWT
time series of the pixels located at (33.275E°, —2.375N°). (Right) The plot of the first-order
difference between the adjacent residuals.

In this analysis, the empirical ACF as defined in equation (2.6) was used to investigate the
autocorrelations of time series from pixels with more than 75% data observed. The empirical
version of the temporal variogram (2.7) was applied to the time series with less data available.
Unfortunately, the sample variograms did not provide much useful information of correlation
structures of the LSWT time series. Most of the plots were too wiggly to draw any conclusions
from. This was the result of the relatively limited and unbalanced number of observations
within each interval L,,,, m = 1,--- , M. Therefore, only the sample ACF's computed directly
using the R function acf from pixel locations with > 75% observations were investigated.
Figure 2.2 presents the ACF plot of the residuals from fitting model (2.5) to the LSWT time
series of a pixel located at (33.275E°, —2.375N°) in the left panel and the corresponding plot
of the first-order difference, ¢; — €;—1, in the right panel. The ACF plot shows that, the
autocorrelations of the majority of the time lags 7 fall within the 95% confidence interval
(indicated by the two dashed lines), apart from the lag-1 autocorrelation. This suggests that
the autocorrelations for all 7 > 1 can be regarded as statistically not significant, which also
eliminates the necessity of accounting for the subtle periodic features in the ACF plot. In
this case, an AR(1) structure appears to be appropriate for the majority of the residual time

series under study.

Based on the above information, the harmonic regression model was refitted with an addi-

tional AR(1) residual correlation structure

2mt 2wt
Zy = Ay + Aj cos <17;> + As sin <17;> + € (2.8)

€ = Ye—1 + v,
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where v; are i.i.d N'(0,02) distributed. It can be easily shown that model (2.8) has a struc-

tured residual covariance matrix

1 w wal
5 02 w 1 wT—Q
wT—l wT—2 . 1

This means that Ag, Ay, As can be estimated using generalized least squares described in
section 1.3.2. The MLEs of ¢ and ¢ can be obtained accordingly as parameters of a mixed
effect model. In this analysis, the 1me function from R package nlme (Pinheiro et al., 2016)
was used to fit model (2.8). Continuing the example of the time series in the pixel located at
(33.275E°, —2.375N°), the estimated AR(1) coefficient of the residual model is ¢) = 0.3368.
As shown in Table 2.2, the changes in the model coefficients are subtle, but estimates from
model (2.8) have larger standard deviations. These changes in standard deviations are the
result of accounting for the residual autocorrelation structure. It provides more reliable
confidence intervals for statistical inference. The same analysis was carried out on pixels
with > 75% data available.

TABLE 2.2: A comparison of the temporal regression model (2.5) and model (2.8) fitted to
the LSWT time series from a pixel located at (33.275E°, —2.375N°)

‘ Intercept/flo std AO 141 std 141 AQ std AQ

model (2.5) 24.81 0.0513 0.29 0.0731 1.01 0.0715
model (2.8) 24.81 0.1551 0.31 0.0904 1.01 0.0882

2.1.3 Temporal analysis summary

In general, model (2.8) is capable of capturing the main seasonal patterns in the LSWT data

in individual pixels. An AR(1) structure is suitable for most of the residual series. However,

such an analysis does not provide much information of the spatio-temporal patterns of the

data. It is possible to compare the model results to examine how things change spatially.

For example, the estimated coefficients, Ag, A1 and A, from models fitted to different pixels

can be compared, as well as the estimated AR(1) coefficient ¢ and the residual variance
2

o“. However, little information about spatial patterns can be concluded from this type of

comparison. To some extent, the time series model (2.8) is only a basic interpretation of
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the data. More advanced modelling techniques are required to uncover the spatio-temporal

patterns in the LSWT data.

2.2 Investigating spatial patterns

Exploratory analysis of the remote-sensing LSW'T data can also be carried out from the
second perspective of modelling the spatial images. In this section, spatial patterns for
individual LSWT images were investigated. Since most of the LSWT images are spatially
smooth, spline regression models were considered. Analogous to section 2.1, the spatial

autocorrelations were investigated using empirical variograms.

2.2.1 Bivariate spline regression

The modelling of the general spatial trend of the LSWT images was carried out using the

spline regression technique. The model can be written as

Ziey) = [(@,Y) T €y) = P(2,Y)B + €ay) » (2.9)

where Z(, . represents the LSWT in the pixel indexed with geographical coordinate (, y)i,
f(z,y) is a smooth function, ®(z,y) = (¢1(z,y),...,dx(x,y)) is a vector of bivariate basis
functions and 3 is the vector of basis coefficients f;, £k = 1,--- , K. Again the intercept of
the model is included in the basis system, i.e. ¢i(x,y) = 1. Various options are available
for ®(z,y), such as tensor spline basis and 2-dimensional Fourier basis. In this exploratory
analysis, bivariate (or 2-dimensional) thin-plate regression splines were applied. Thin-plate
spline is known for its adaptability to different dimensions. In terms of a 2-dimensional
space, it has been shown to be equivalent to a kriging estimate of a spatial process with a
special covariance function (Nychka, 2000). For this reason, it is an appropriate choice for

modelling the spatial patterns.

The construction of the thin-plate regression splines begins with the basis and penalty of the
full rank thin-plate splines. The full basis is then truncated to obtain a low rank smoother
that ‘optimally’ approximates the full basis solution (Wood, 2003). Thin-plate spline smooth-

ing finds the estimation of the smooth function f(z), for = (z1,--- ,z4), by minimizing

iiTt is appropriate to use the geographical coordinate directly here because Lake Victoria sits on the equator.
Transformation would be needed for lakes in higher latitude, such as using the spherical trigonometry.
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1Z — £ 17 +wPmqg(f), (2.10)

where Z is the vector of observations, f is the vector of evaluated smooth functions, w is the

smoothing parameter and

m! oy 2d d 2.11
,PmQ(f)_/'”/Rq Z vl vy (8%‘11)1---8373‘1) Ly Adq (2.11)

V1t Fvg

is the thin-plate penalty. Here RY is the g-dimensional range space for  and m is chosen to

satisfy 2m > ¢. The minimizer of (2.10) is a function of the form

N J
D biomg (| =i ) + ) ajé;()
i=1 j=1

with basis ¢y,4(.) defined as in Wood (2003) and basis ¢;(.) being orthogonal to coefficient
vector b = (by,---,by)". By further introducing matrix notations, ® = (¢1,---,¢s) ",
a=(ay. -+ ,ay)" and E with the (4, j)-th element E;; = ¢, (| Z; — x; ||), the minimization
criterion (2.10) becomes a constrained problem

min || Z — Eb— ®a |?4+wb"Eb st. ®'b=0 (2.12)
,a

To achieve an ‘optimal’ low rank representation in the sense that minimal change is induced
in the shape of the smooth function as determined by criterion (2.12), Wood (2003) showed
that for a specific rank k, the appropriate solution is to set b = UMbk with U®) being
the first k& columns of the eigenvector matrix U from the eigen-decomposition E = UDU .
Further constrain the vector b%) to the space satisfying ® b = 0 by setting b(®) = A(®)p,
where ® TU®A®) = 0 for a certain column orthogonal matrix A®*). Problem (2.12) can
then be transformed into an unconstrained problem, with D®) denoting the top left k x k

sub matrix of D, which is

min | Z — UPDOADG _ g |2 +wbT AKTDOADG. (2.13)
b,a

Solving this optimization problem would give the thin-plate regression spline with degrees
of freedom k. The selection of k is sometimes not very critical due to the presence of the
smoothing parameter w (Wood, 2003), as the actual EDF would be controlled by w, which
can be selected using methods such as (G)CV, REML and information criteria. Thin-plate

regression splines can be implemented using the function gam in R package mgcv.
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The investigation of LSWT images of Lake Victoria was carried out using model (2.9). The

default setting in gam gives ¢ = 2, m = 2 and the thin-plate penalty

B 92f\> 2FN\: 9%\
Pati)= [ [ (M) +<axay> +<ay2> ey

A maximum basis degrees of freedom of k& = 20 was used as input. The model estimation

was again carried out using the REML method, where the smooth parameter was estimated
as part of the random effect component. According to Wood (2011), this method is ‘less
prone to local minima than the other criteria, and may therefore be preferable’. More details
on the REML estimation of smooth component is given in section 2.2.3. The resulting EDF
of the models range from 15 to 19, which produces a reasonable level of smoothness for the
majority of the fitted images. The variance explained by the spline regressors ranges from
50% to 80%. Figure 2.3 shows a plot of the LSWT data in June 1997 in the left panel and
the fitted LSWT from the thin-plate spline regression model in the right panel. The two
plots were created using the same colour scheme, so that comparison of the spatial patterns
can be made easier through colours. The estimated model has EDF = 18.48 and 75.1% of
the variance is captured by the spline regressors. It can be said that the thin-plate regression

spline generated a smooth image which captured the main patterns in the data.
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FIGURE 2.3: (Left) Image of the LSWT data in June 1997. (Right) The fitted image
from the thin-plate spline regression model (2.9). The horizontal and vertical axes represent
longitude and latitude respectively; the unit of the legend is C°.

2.2.2 Spatial correlation

While the bivariate spline regression model accounts for a substantial part of the spatial

structure in the data, the residuals may still display a certain level of spatial correlation.
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Ignoring this may lead to an under or overestimation of the standard errors and would have
certain impact on statistical inference. Therefore, the model residuals were investigated for
spatial correlation structures. This was achieved by examining the empirical variograms,
under the second-order stationary assumption. Recall the definition of a (semi-)variogram
as equation (1.8) in section 1.3.3. Its empirical version can be produced in the same way as
that of the ‘temporal variogram’ 4(7) in section 2.1.1, with the distance in time 7 replaced
by the distance in space h. However, unlike 7, which can only point to one direction, h can
point to any direction in the spatial domain. That is, being the same distance apart from
the north and from the east could be different. In consequence, the spatial correlations in
different directions may have different natures. This property of a spatial process is referred
to as anisotropic. Whereas an isotropic spatial process would display the same correlation

structure for all directions.

Initially, directional variograms were produced to examine the isotropic property. Four di-
rections, 0, 7/4, /2 and 3w /4, were considered and empirical variograms were computed
for each of these directions. The left panels of Figures 2.4 and 2.5 show two examples of
the directional variograms computed using the residuals from the thin-plate spline regression
model (2.9) fitted to the LSWT data in June 1997 and September 2006. The distances are
measured using degrees in geographical coordinate. The variograms of four directions also
appear to diverge at distances > 1.5° (i.e. 150km in the equatorial region). However, con-
sidering the distance the divergence begins and the unbalanced number of observations in
different directions at very large distances, it is perhaps appropriate to truncate the empirical
variogram and treat the spatial process as isotropic. To some extent, it makes little sense to
expect strong spatial correlation of LSWT in two pixels more than 100 km apart, especially
in a huge lake with a long retention time like Lake Victoria (Kayombo & Jorgensen, 2006).
Since most of the directional variograms of the LSWT images show similar features as in

Figures 2.4 and 2.5, the directional variograms are replaced by an isotropic variogram (|| h||)

in the remainder of the analysis, where

denote h = ||h|| and v(h) = v(||k||) for all that follows.

represents the Euclidean norm. For simplicity,

The right panels of Figure 2.4 and 2.5 present the empirical variograms computed without
distinguishing directions. The black curves are the variograms and the red curves are the
Monte Carlo envelopes computed based on 100 permutations. The envelopes set the limits
of the behavior of a random spatial process without significant spatial correlation. As the
two variograms from the June 1997 and September 2006 models exceed the envelopes, it is

sufficient to say that there is evidence of spatial correlation in both residual processes. Again,
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FIGURE 2.4: (Left) The directional variograms of residuals from model (2.9) fitted to the

LSWT data in June 1997. The distances are measured in degrees. The four black curves

show the directional variograms for 0, m/4, 7w/2 and 37/4. (Right) The omnidirectional

variogram of residuals from the June 1997 model. The red curves represent the Monte Carlo
envelop computed based on permutations.
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FIGURE 2.5: (Left) The directional variograms of residuals from the September 2006 model.

The four black curves show the directional variograms for 0, /4, 7/2 and 37/4. (Right)

The omnidirectional variogram of residuals from the September 2006 model. The red curves
represent the Monte Carlo envelop computed based on permutations.

it is found that the majority of the variograms of the Lake Victoria LSWT images display
similar patterns. Hence, the residual spatial correlations is to be incorporated to the spatial

regression model (2.9).

There are a wide range of variogram models available for a stationary, isotropic spatial

process. The general form of a variogram model can be written as

v(h) =0}, + ohsp (Z) - (2.14)

In (2.14), 0,4 is the nugget effect, representing the variability at distances smaller than the

sample spacing (including measurement errors). The parameter azs is sometimes referred to
as the partial sill, which is the vertical distance between the the nugget and the value of v(h)
as the distance h — oo. Function p (%) describes the type of spatial correlation structure,
with the range parameter d reflecting the distance from which the spatial correlation becomes

zero (Cressie, 1993, Pinheiro & Bates, 2000). The most frequently used correlation functions
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include the exponential, Gaussian, spherical and rational quadratic. A class of variogram

models that offer great flexibility in modelling is the Matérn family,

v(h) =07, + op {1 - F(Qy) (;;)V K, <Z>} : (2.15)

The model is indexed by parameter v, which governs the shape of the curve through the

gamma function I'(v) and the modified Bessel function of order v, K, (-). Two special cases

of the Matérn model are exponential (v = 0.5) and Gaussian (v — oo) (Cressie, 1993).

Model (2.15) was fitted to the empirical variograms of the residuals from the spline regression
model (2.9) using function variog and variofit in the geoR package (Ribeiro Jr & Diggle,
2016). The results tend to be very sensitive to the initial inputs of v, d and Jfbg. However,
a relatively stable estimate can be achieved using a grid search of the optimal values of one
or two parameters, so function variofit does not need to perform the optimization of all
three parameters simultaneously. For example, to examine the residuals from the thin-plate
regression model (2.9) of June 1997, a grid search of the optimal values v and U%g was carried

out and function variofit only estimated the range parameter d.

The investigation of the LSWT images with > 77.8% observations (1800 out of 2313 pixels)
available showed that the majority of the models have an estimated index of the Matérn
model at around 0.5, suggesting that an exponential correlation structure is appropriate for
most of the LSWT images. Therefore, the exponential model was taken as representative of
the residual spatial correlation structures of the Lake Victoria LSWT data. The following

equations give the correlation and covariance functions of an exponential model,

o(h) = exp <—Z> , (2.16)

v(h) =07, + 0p, {1 — exp <—Z>} .

Model (2.16) is used in the modelling of the LSWT images with added spatial covariance

structure in the next stage.

2.2.3 Bivariate spline regression with spatial covariance

In the previous model (2.9), the residuals were assumed to be i.i.d. A(0,0?) distributed.

In this section, a spatial correlation structure was imposed on the residuals based on the
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evidence obtained from the variogram modelling, giving the new model

Z(a:,y) = <I>(x, y)ﬁ + €z,y) — <I>(33, y)ﬂ + S(aj, y) + Vizy) - (2'17)

Here S(z,y) is a zero mean stationary spatial process and the covariance matrix of the model
is Cov[S + v] = X, where S and v are the vectors of S(z,y) and v, ) respectively. The
(2, 7)-th element of 3., is determined by ~(hsj), where hi; =|| (x4, y:) — (x},y;) ||. Specifically,

2

the covariance matrix of the nugget effect component v is o,

oI and the covariance matrix of
S has its (i, j)-th element evaluated using function o2 p(hs;). Model (2.17) can be regarded
as a generalized additive mixed model (GAMM), which can be estimated using function
gamm in the R package mgcv. The function is capable of modelling various spatial correlation

structures, such as exponential, Gaussian, and spherical (Wood, 2011).

Some computational details are presented here. The estimation of the GAMM is carried
out under the mixed model framework (Wood, 2006). The spline regressors ®(x,y)3 are
first divided into two parts, the fixed effect component ®¢(x,y)3¢, which describe the linear
spatial patten, and the random effect component @, (x,y)3,, which accounts for the spatial

variation as higher order polynomials. This gives a model of the form

Z(x:y) = (I)f($7 y)le + (I)T(xa y)IBT’ + 6(:):,y) . (218)

The random effect coefficient is assumed to follow the distribution 3, ~ A/(0,18,), where
w is the smoothing parameter and S; is a matrix associated with the eigen decomposition
of the penalty matrix S. The residuals are assumed to be normally distributed as N'(0, 3,).

Under this setting, the log-likelihood of the model can be written as

L£(Z;--)= {10g(|2]) +(Z-®:8;)' 27z - @fﬁf)} + constant (2.19)

1

2
where X = %(I’SgI'T + X¢. The smoothing parameter can be selected using cross validation
or the likelihood based methods. Imposing a spatial correlation structure on the residual
process is equivalent to further decomposing €, ) into a spatial random component and a
noise component as S(; ) + V(;) and parameterizing the covariance matrix ¥, as ¥,. For
the purpose of model fitting, S is written as a product of a random effect design matrix T’
and coefficient vector 1, where the elements of T' are determined through a spatial correla-
tion function p(h) associated with v(h) (Kammann & Wand, 2003). As a result, in practice,
model (2.17) becomes
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1

161” ~ N(Ov 7S+)
w

n ~N(0,0.1)

v ~N(0,07,I).

It can be seen that the only thing that needs to be changed in the log-likelihood function
(2.19) is the covariance matrix, which is now X = %@SJF(I)T + X,. In other words, the
additive model with spatial covariance structure as in model (2.20), or equivalently model
(2.17), can be estimated using the same approach as that of the more general additive model
(2.18). This is an elegant method, but its application to the Lake Victoria LSWT data did
not necessarily result in a conclusive model. Below are two examples from applying model

(2.17) to the LSWT images.

In the first example, model (2.17) with an exponential covariance structure was fitted to the

LSWT data in June 1997. The initial values of o2, and d were gauged from the empirical

g
variogram. The computation time of the model was about 1 hour 15 minutes. The estimated
parameters are d = 0.1194 and (},219 = 6.5 x 107?. The EDF of the additive model is 13.3,
which is smaller than that of the spline regression model (2.9). This is expected as part of
the spatial variation has now been accounted for by the spatial covariance model. Table 2.3
provides a detailed comparison of some statistics from model (2.9) and (2.17). The fitted
LSWT images are not presented because the difference between the images is small.

TABLE 2.3: A comparison of the spline regression model (2.9) and the spline regression
model with spatial covariance structure (2.17), fitted to the LSWT data of June 1997.

‘ EDF variance of ¢ adjusted R> ranged nugget O'?lg

simple model (2.9) 18.48 0.0832 0.749 X X
spatial model (2.17) | 13.3 0.1155 0.739 0.1194 6.5e-9

To further assess the fit of the spatial covariance model, the normalized residuals were ex-
amined. Normalized residuals are model residuals after taking into account the covariance
structure. In terms of model (2.17), the model residuals are 7 = Z — <I>f,(§f — ®,0, and
the corresponding normalized residuals are r* = 2; 1 27*, where 7 are assumed to follow the
distribution N (0, fl,y) If the spatial covariance structure in 27 truly reflects the spatial

structure of 7, then the normalized residuals should follow the standard normal distribution,
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FIGURE 2.6: (Left) The empirical variogram of the model residuals (black dots at the

bottom) and the normalized residuals (black dots at the top). The black curve represents

the fitted variogram. (Right) The histogram of the normalized residuals. The black curve
represents the N(0, 1) density.

i.e. r* should be a vector of white noises. Figure 2.6 provides a comparison of the spatial
correlation structures of the model residuals and the normalized residuals for the model fitted
to the June 1997 data. The left panel shows the empirical variograms of the model residuals
(dots at the bottom) and the normalized residuals (dots at the top), with the fitted variogram
plotted as a black curve. The right panel shows the histogram of the normalized residuals,
with the imposed N(0,1) density as the black curve. Based on the information from the
plots, it is sufficient to say that the normalized residuals are free from spatial structure and

are approximately A (0, 1) distributed.

The second example is an unsatisfactory fit as a result of the trade-off between various
model components. It is taken from applying model (2.17) to the LSWT data in May 2007.
Table 2.4 shows the comparison of the some statistics from model (2.17) and (2.9). In the
model with spatial covariance structure, the spline regressors has EDF = 2 and residual
variance 1.7043. Whereas the model without covariance structure has EDF = 18.27 and a
much smaller residual variance of 0.1068. The estimated range parameter is 1.97 (~ 200km),
which seems rather impractical for the Lake Victoria LSWT data.

TABLE 2.4: A comparison of the spline regression model (2.9) and the spline regression
model with spatial covariance structure (2.17), fitted to the LSWT data of May 2007.

‘ EDF variance of ¢ adjusted R> ranged nugget O'?lg

simple model (2.9) 18.27 0.1068 0.67 X X
spatial model (2.17) 2 1.7043 0.248 1.9727 8.9e-11

This problem is associated with the identifiability of ® 3, ®, 3, and I'n+v, a phenomenon
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linked to the spatial confounding of the covariates and random effects. In some situations,
when spatially correlated errors (i.e. spatial random effect) are used to account for the spatial
structure not explained by the model covariates (i.e. fixed effect), the parameter estimates
would change substantially. This happens to many spatial regression models, including those
estimated using a Bayesian approach. Discussion with respect to this issue can be found in
Paciorek (2010), Reich & Hodges (2008), Wakefield (2007), etc. Hodges & Reich (2010)
summarised several different interpretations of this phenomenon, including situations where
the spatial random effects introduce or remove bias in the fixed effect coefficient, where
there exists collinearity between the design matrices of the spatial random component and
the fixed effect component, where the errors are correlated with the fixed effect, etc. It is
not easy to attribute the identifiability problem in this exploratory analysis to one of these

interpretations, especially when it applies to some, but not all LSWT images.

Strategies have been proposed over the years to deal with this issue, such as restricting
the spatial random effect in a space orthogonal to the covariate space (Hodges & Reich,
2010, Hughes & Haran, 2013), investigating the scales of spatial variations of covariates and
random effect to avoid spatial confounding (Paciorek, 2010) and the global /local smoothness
of the spatial component (Lee et al., 2014). However, it takes a lot of computational effort
to implement these methods, which might not be practical when it comes to hundreds of
high-resolution remote-sensing images. In addition, the results may not always improve the

fit of the model (Pannullo et al., 2016).

2.2.4 Spatial analysis summary

Due to the long computation time, 10 images with > 65% of data observed were analysed.
Applying model (2.17) produced sensible results for most of the LSWT images investigated.
Model computation time ranges from 40 minutes to 1 hour 20 minutes. EDF of the spline
regressors ranges from 12 to 18 and is generally smaller than that of the model without
covariance structure. An exponential variogram model is appropriate for the majority of the
models. Model initialization appears to have a big influence on the final results, but robust
estimates can be reached after trial and error. However, problems as illustrated in Table 2.4
could occur. In this investigation, 3 out of 10 images appeared to have this problem, where
the fitted smooth function only contains the linear terms. The drawbacks with respect to
the application of model (2.17) to the remote-sensing data, such as the Lake Victoria LSWT

data, are summarised as follows.
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First of all, the application of this model on sparse image data can be a problem. If there is
a large area in the image without observations, then the estimation of the basis coefficients
can be difficult due to the lack of information, which could affect the entire model fitting
process. That is why the exploratory analysis was only conducted on images with relatively

low percentages of missing observations.

Secondly, the identifiability problem presents another disadvantage. To some extent, it is
hard to distinguish between the fixed and random effects due to spatial confounding and
the complexity of the algorithm, even with distinct assumptions on each model component.
Since the aim of the analysis is to understand the spatial and temporal patterns, a conclusive

result would be far more appealing than a result which only provides a good fit to the data.

Finally, with the images explained by different models as a result of varying degrees of
smoothness and covariance structures, the investigation of spatial patterns and their evolu-
tion is difficult. Just as the problems with the harmonic regression models in section 2.1.1,
it makes little sense to compare the coeflicients and the residual covariance structure from
models fitted separately with no universal assumptions. Meanwhile, the computation time
for these models is relatively long. As the size of remote-sensing data scales up quickly in

both space and time, this method could eventually become computationally infeasible.

Therefore, more efficient methods are required to model the remote-sensing image time se-
ries. In particular, two aspects needs to be considered in terms of the alternative modelling
strategy. (a) It helps to seek a more flexible and computationally efficient method to describe
the covariance structure of the data. (b) It is better that the entire remote-sensing image
time series can be handled simultaneously, i.e. to build a spatio-temporal model. One could
follow the route of modelling the spatial or spatio-temporal covariance functions further.
Lindgren & Rue (2015) described a flexible and efficient method based on the connection of
the stochastic PDEs and the Gaussian fields. However, despite its fast computation using
integrated nested Laplace approximation (INLA), the interpretation of the fitted model is
not straightforward, which could be a problem of this analysis. In view of this, a different
approach to investigating the spatial /temporal variation is proposed, the functional principal

component analysis.
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2.3 Functional principal component analysis (FPCA)

As introduced in section 1.3.1, the ‘observation’ in functional data analysis (FDA) is a
smooth function representing the observations of an individual object. Statistical analysis
is carried out at the function level. In terms of the remote-sensing data, this means the
time series or images are first transformed into a collection of smooth univariate or bivariate
functions. FDA techniques are then applied to these functions. With this approach, all the
time series or images can be studied simultaneously, instead of ‘one at a time’. Examples of
the application of FDA to spatio-temporal environmental data include functional principal
component analysis (FPCA) in Di Salvo et al. (2015), functional regression in Giraldo et al.
(2009) and functional clustering in Haggarty et al. (2015). Among the statistical methods
in the FDA family, FPCA is taken as the main approach to the investigation of the remote-

sensing lake data.

FPCA is designed to provide an ‘indication of the complexity of the data’ in the sense of
the characteristics of functions (Ramsay & Silverman, 1997). This is a model-free approach
for investigating the patterns of variations in the data and is often accompanied by a lower
dimensional representation using the leading principal components (PCs). Although the in-
terpretation may not be straightforward, the method is helpful in identifying the sources of
variations in the data. The estimated results can be regarded as a non-parametric represen-

tation of the covariance structure of the data and may be used in further analysis.

2.3.1 The FPCA approach

Without loss of generality, consider data represented using univariate functions, Z;(t), i =
1,--+,n. According to Ramsay & Silverman (1997), the analysis begins with finding such a
representation. A frequently used approach is to express the unknown function as a linear

combination of a set of known basis functions ¢(t),

K
Zi(t) = Bade(t), i=1,....n.
k=1

This representation can be written using matrix notation as Z(t) = B ®(t), where Z(t)
is a vector of data functions Z;(t), i = 1,...,n, ®(t) is a vector of basis functions ¢ (t),
k=1,...,K and B is a n x K coefficient matrix with its i-th row being 8; = (51, ..., Bik)-

Different continuous and periodic constraints can be added to the basis representation. The
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coefficients (3; are usually estimated by minimizing the (weighted) least squares criterion.
Some frequently used bases include the Fourier basis, spline basis, polynomial basis, wavelet
basis, etc. Attention is paid to how many features are to be retained from the data. This is
often determined by the resolution and the curvature of the data and the type of question
addressed with respect to the modelling. Model selection criteria may apply and some trade-

offs might be required as well.

Analogous to a conventional PCA, the ‘variables’ in the FPCA are Z(t) evaluated at all
possible values of t. In theory, this means the number of ‘variables’ is infinite for continuous .
While in practice, there are usually a finite number of observations available at t1,--- ,tr, so
the ‘variables’ in the FPCA are Z(t1),..., Z(t7). Assuming zero mean for Z(t1),---, Z(tr),

the covariance function for each pair of ‘variables’ Z(t;) and Z(t,,) can be written as
V(tjtm) = *Z i(tj) = 0 [Zi(tm) = O]
= —Z Zﬁm Z&mk :
i=1 Lk=1
or in matrix notation,
1
Vtjtm) = —®(t;)  B'Bd(t,) . (2.21)
n

The covariance matrix is then a square matrix with its elements being V' (t;,t,,), for j,m =

1,...T. The main idea of FPCA is to solve the eigenproblem

/V(tj,t)f(t)dt = A(t5) , (2.22)

subject to the orthonormal conditions, [&(t)2dt = 1 and [ &,(t)&,(t)dt = 0 for all p # q.
Solving equation (2.22) requires another finite approximation of the eigenfunction £(t). This
is done through another basis expansion using often the same basis as the one for constructing
the functional data, i.e. &(t) = Z,If_l cror(t) = ®(t)Te. Define the K x K matrix W =
[ ®(t)®(t) " dt. The left hand side of equation (2.22) can be written as

1 1
/@(tj)TBTBq>(t)q>(t)Tc dt = ~®(t;)'B"BWec.
n n

Hence the approximated eigenproblem becomes

1
Ecb(tj)TBTBWc =\0(t)"e. (2.23)
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Using the fact that the above equation holds for all values of t;, along with the substitution

u = WY 2¢, the equivalent symmetric eigenproblem to equation (2.23) would be
1
—~W'2BTBW 2y = \u . (2.24)
n

The maximum number of eigenvalues A and eigenfunctions £(¢) that can be extracted from
equation (2.24) is K (the degrees of freedom of the basis). The coefficient vector ¢ in equation
(2.23) can be obtained using ¢ = W ~1/24 and the eigenfunction using £(t) = ®(t)"c. The

principal component score associated with the i-th function can be computed as

ai:/g(t)Zi(t)dt, i=1,...,n, (2.25)

In general, eigenfunctions £(t) would carry information about the sources of variation in the
data. FEigenvalues A would indicate the proportion of variation explained by each princi-
pal component. Principal component scores «;, which are mathematical realizations of the

variation pattern, reflect the strength of the pattern in the i-th functional object Z;(t).

2.3.2 Extension to 2-dimensional data

The FPCA described above can be applied to 2-dimensional functional data through a

straightforward generalization. Replace the univariate basis with a bivariate basis as
Z(z,y) = B®(z,y)
and update the variance functions accordingly as
V(xﬁyj?mmvym) = %(I)(xjvyj)TBTBq)(wm7ym)-

The eigenproblem with respect to bivariate functions becomes

which can be solved using exactly the same approach as that used in solving eigenproblem
(2.22). The code for computing the 2-dimensional FPCA was developed based on func-
tion pca.fd in the R package fda (Ramsay et al., 2013). The trapezoidal rule is adopted

here to approximate the double integrals essential to solving eigenproblem (2.26). Denote
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Za Yb
W = / / W(z,y)dzdy (2.27)
1 Jy

a—1b—1

1
Ry Z[W(l'layl) + W(wn,m) + W(wa, y1) + W(2a, o)) + Y Y Wi, y;)
i=2 j=2

b—1 a—1

W (1,5) + W (ay53)] + 5 W (i, 00) + W G o)
=2 i=2

where (z1,y1), (x2,91),- -, (z1,92), (2,92), ..., (Ta,yp) are quadrature points and A, and
Ay are the lengths of the intervals. While this is an approximation, a sensitivity analysis on
univariate functions shows that there is no significant difference between the results using

the trapezoidal rule and those using functions in package fda.

2.3.3 2-dimensional FPCA for reconstructed LSWT data

There are two ways of conducting FPCA on remote-sensing image time series data such as
the LSWT, (a) transforming the time series data in each pixel into univariate functions and
performing an analysis on the temporal curves, i.e. 1-dimensional FPCA, (b) constructing a
collection of bivariate functions for the image at each time point and conducting an analysis
on spatial images, i.e. 2-dimensional FPCA. The preference in this thesis is the second
approach, as the 2-dimensional analysis has advantages over the 1-dimensional analysis in

terms of the questions the thesis is trying to answer.

First of all, the majority of the remote-sensing images studied in this thesis are smooth by
nature, so it is feasible to find a bivariate functional representation for the data. For example,
it has been illustrated in section 2.2 that the patterns in the LSWT images can be captured
using bivariate thin-plate regression splines. The situation might be slightly different for the
Chlorophyll images with an algal bloom, but a smooth representation can be constructed for

the majority of the images.

Secondly, as the remote-sensing data analysed in this thesis are more densely recorded in
space than in time, bivariate functions are favoured in terms of dimension reduction. For
example, for the Lake Victoria LSWT data, the representation of images using bivariate
functions would result in 203 functional observations; whereas the representation of time

series using univariate functions would give 2313 functional observations.
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In addition, the influence of the basis needs to be considered. Since many environmental data
appear to have a periodic pattern, the most straightforward choice of basis for the FPCA
on temporal curves would be a Fourier basis. However, this would result in cyclical eigen-
functions that are only capable of identifying periodic patterns. Other interesting patterns,
such as the long-term trend, would be beyond the capacity of the Fourier basis. It is possible
to use other univariate bases, such as a spline basis, but this would require much higher
degrees of freedom, which can be problematic for time series that covers a long period but is
infrequently observed. This problem can be overcome by using a bivariate basis. As long as
the images are relatively smooth, the degrees of freedom of the bivariate basis can be kept
at a value much smaller than the number of observations per image. At the same time, the
resulting eigenfunctions would have the flexibility to describe various types of spatial pattern

in the data; the PC scores may also carry some information about the temporal patterns.

For an illustration, the 2-dimensional FPCA was applied to the ‘Re LSW'T’ data set intro-
duced at the end of Chapter 1. It is extracted from the ARC-Lake reconstructed LSWT
data of Lake Victoria and is of dimension 26 x 27 x 203. It was used here to avoid the com-
putational problems brought to the FPCA by the high percentages of missing observations.

Additional information on this issue is given in section 2.3.4.

The ‘Re LSWT’ data set was first centered by removing a monthly mean. Bivariate functional
data were constructed as Z;(z,y) = Eszl Bk dr(x,y), where Z;(z,y) is the reconstructed
LSWT in the pixel indexed by longitude x, latitude y, at time point . The bivariate basis
used in this example is the tensor spline basis ®(x,y), produced by meshing two univariate
B-spline bases ®,(x) and ®,(y) through the Kronecker product. That is, ® = &, ® ®,,
where ®, and ®, are the matrices of the univariate bases ®,(x) and ®,(y) respectively. For
demonstration purpose, one knot each was placed in the median of the two coordinates x
and y. This gives degrees of freedom of 5 to both ®,(x) and ®,(y) and degrees of freedom
K =25to ®(x,y). A formal way of selecting the basis dimension would involve methods such
as cross-validation, information criteria, penalized regression, etc. This topic is discussed in
detail in Chapter 3. Also note that the tensor spline basis is only one type of bases available
for the 2-dimensional FPCA; other basis systems may be used for different data. In this
example, 203 smooth bivariate functions were constructed using the tensor spline basis.
Mlustrations of constructing the functional representations Z;(z,y) from the LSWT data in

June 1997 and September 2006 are shown in Figure 2.7.
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Ficure 2.7: Illustrations of constructing functional representations using bivariate basis
®(z,y) from June 1997 (left) and September 2006 (right). The dark grey dots represent the
LSWT data and the light grey surfaces represent the functional observations.

The basis dimension K = 25 also suggests that the maximum number of PCs that can
be extracted from the FPCA is 25. Applying the 2-dimensional FPCA algorithm gave the
following results. Table 2.5 presents the eigenvalues of the first five functional PCs, along with
their contributions towards the total variance explained. In this case, the first two PCs play
a dominant role, accounting for 36.89% and 31.94% of the total variation respectively. The
first five PCs together explain 92.80% of the total variation, which is sufficient to represent
the entire data. Using the first five PCs to reconstruct the images results in a residual sum
of squares (RSS) of 0.0078. Given that the variance in the centered data is 0.3514, this RSS
value can be considered as relatively small. Note that a smaller RSS can be achieved by
increasing the number of PCs used in the reconstruction.

TABLE 2.5: Eigenvalues of the first five functional principal components and their contri-
bution towards the total variations evaluated in proportions.

| PC1 PC2 PC3  PC4  PC5

Eigenvalues 0.0223  0.0193  0.0077 0.0049 0.0020
Variance proportions | 36.89% 31.94% 12.66% 8.08% 3.23%

The top two panels of Figure 2.8 present the eigenfunctions (or PC loadings) of the first two
functional PCs, & (z,y) and &(x,y). In both plots, the blue end of the palette corresponds
to positive loadings and the green end corresponds to negative loadings. A straightforward
interpretation would be, the first eigenfunction displays a contrast between the north and
south of the grid; the second eigenfunction shows a contrast between the east and west. In
other words, PC1 and PC2 highlight the difference in the variation patterns between different
parts of the lake area under study. The bottom two panels of Figure 2.8 display the scores

of PC1 and PC2 obtained using the discretized version of equation (2.25). The scores can
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FIGURE 2.8: (Top) Illustrations of the eigenfunctions of PC1 and PC2. The horizontal and
vertical axes are longitude and latitude respectively. (Bottom) Illustrations of the scores of
PC1 and PC2 over time.

be regarded as indications of the temporal variations of the patterns shown in & (z,y) and
& (z,y). Time series models may be applied to the scores to detect the existence of long-
term trend, change points, etc. In this example, the score time series do not appear to show

distinctive trend or change point.

As shown above, the 2-dimensional FPCA provides an efficient way to analyse the remote-
sensing image time series. The analysis can be applied to the entire data set, not just a single
time series or image and the computation of the example above took only 1 second. Even
if the selection of the degrees of freedom of the basis is considered, the computational cost
would still be much lower than that of the spatial regression model in section 2.2. Through
functional data representation and keeping only the leading functional PCs, a dimension
reduction can be achieved. For the above analysis, if the first five PCs are retained, then all
the information required to reconstruct the original data are simply 25 x 5 basis coefficients
and 5 x 203 PC scores. This is a significant reduction compared to the original data, which
is of dimension 26 x 27 x 203. In addition, the 2-dimensional FPCA can help to identify the
common spatial patterns in the image time series using the extracted PCs. The temporal

evolution of these spatial patterns may also be investigated through the PC scores.
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2.3.4 Problems with respect to sparse data

Despite its efficiency, the FPCA described in section 2.3.1 and 2.3.2 may not be able to handle
data with a high percentage of missing observations. The problem lies in the estimation of
the coefficient matrix B. As each column of B represents the coefficient vector of one
functional data object, it could be impossible to estimate the coefficients if the observations
corresponding to certain objects are too sparse. Unfortunately, this is an inevitable problem
in the remote-sensing data, which is why the illustration in section 2.3.3 was presented using
the ARC-Lake reconstructed LSWT data, not the real measurements, because the algorithm
for FPCA simply cannot be implemented. Modifications are required to accommodate the

missing observations.

James (2011) provided a summary of how to deal with missing observations in functional
data analysis, where the approaches to FPCA were discussed in detail. Two methods widely
discussed in research papers are the ‘mixed effect model’ and the ‘local smoothing’. Both
methods are designed to extract information from the entire data set when modelling the

individual functions.

The mixed effect model approach was first proposed by James et al. (2000), where observa-

tions from individual objects are modelled as functions with random coefficients,

Zi(t) = (t)B + (t)m: + (1) (2.28)

P
=D(t)B+ ) O(t)0pop + €i(t) .
p=1

The first part of (2.28) is a fixed mean function for the population; the second part of (2.28)
is a random effect component, which models the variation unique up to the i-th object.
The construction of the random effect 211;:1 O (t)Bp0y; is based on a Karhunen-Loeve (K-L)
expansion of a random process using a sequence of orthogonal functions. The authors named
it the ‘reduced rank principal component model’; as only the leading P terms in the K-L
expansion are used to approximate the process. The covariance structure can be modelled
through m;, or equivalently 6,04,. It can be shown that ®(t)6, is the equivalence of the
eigenfunction &,(t) and oy, is essentially the PC score (James et al., 2000). Estimation of
model (2.28) employs the EM algorithm, where a,; is treated as missing information. Further
development of the model can be found in Rice & Wu (2001), which offered more discussion

on this method, Peng & Paul (2009), which proposed a Newton-Raphson algorithm for
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model estimation, Gervini (2009), which described the model in a more general t-distribution

setting, and Zhou & Pan (2014), which extended the method to a 2-dimensional case.

The local smoothing approach was described in detail in Yao et al. (2005), where a sparse
longitudinal data set was analysed. The same idea was discussed in Di et al. (2009). The key
to this method is to model the sparse functional data as noisy sampled points from a collection
of trajectories with mean function E[Z(t)] = u(t) and covariance function Cov[Z(t), Z(u)] =
V(t,u). First, observations Zy, i = 1,...,n, t = 1,...,T;, are stacked into a column vector
to produce a mean function fi(t) using a local linear smoother (kernel). Next the element in

the raw covariance matrix is computed as

~

V(ti,ui) = [Zie — p(t))[Ziw — f1(ui)]

A second kernel is then applied to ‘A/(ti,ui) to produce the smoothed covariance function
V(t,u). Finally, eigenvalues j\p and eigenfunctions ép(t) are extracted from V (¢, u). The PC
scores «y,; are computed using the principal analysis by condition estimation (PACE) (Yao
et al., 2005) as

i = My 271 (25— )

where f)z = ‘7; + 621 and 62 is the estimated residual variance from the kernel smoothing.
The subscript ¢ indicates that f]i, V; are different for each i due to missing observations.
Further development of this method can be found in Di et al. (2014), Goldsmith et al. (2013),
Zipunikov et al. (2011), where topics related to modelling high-dimensional multilevel data

and constructing confidence bands for the estimated PCs were discussed.

In this thesis, the mixed model is favoured over the local smoothing approach due to the
sparse features of the remote-sensing data. Recall the discussion in section 1.3.2 on different
types of missing data mechanisms. It has been assumed that the type of missingness in the
remote-sensing data in this thesis is missing at random (MAR). That is, the probability of the
LSWT/Chl data being missing may depend on other observed variables, such as the longitude
and latitude, but it is irrelevant to the values of the unobserved data. Further assuming that
the parameters governing the missing data mechanism are distinct from the parameters in
the model, the MAR condition means that the missing data mechanism can be ignored in
the likelihood based inference process (Heitjan & Rubin, 1991, Lu & Copas, 2004). In view
of this, the mixed model approach, implemented using the maximum likelihood method,

is considered as an appropriate choice to analyse the remote-sensing data in this thesis.
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According to Allison (2009), likelihood based inference minimizes the bias, maximizes the
use of information in the data and provides asymptotic results for assessing the parameter
estimates. It also has the advantage of automatically assigning the weights to each individual

function to account for the impact of sparsity (James et al., 2000).

The mixed model FPCA is explained in full detail in the next chapter, including its estimation
method and a simulation study on the influence of sparsity on model fitting. The extension
to accounting for the temporal correlations between remote-sensing images is investigated in

Chapters 4 and 5.



Chapter 3

The mixed model FPCA for sparse

image series

At the end of Chapter 2, two different approaches for performing FPCA on sparse data were
introduced and the mixed model approach was favoured in terms of the analysis in this thesis.
In this chapter, the mixed model FPCA method and its estimation procedure are described
in detail. A comparison of the FPCA computed using direct matrix decomposition and the
mixed model framework is carried out, which is followed by a simulation study assessing the
method’s performance with respect to sparse images. Applications of the method on the

Lake Victoria LSWT and Chl data are presented at the end of the chapter.

3.1 The mixed model FPCA (MM-FPCA)

3.1.1 Model specification

Without loss of generality, consider a mixed model of n univariate random functionss Z;(t),
i=1,...,nand t €T,
Zi(t) = ©(t)B + @(t)n; + €(?), (3.1)

In this model, function Z;(¢) is modelled through a collection of basis functions ®(¢), a fixed
effect coefficient vector B and a random effect coefficient vector ;. The fixed effect ® ()3 is
usually a mean function; whereas the random effect ®(t)n; describes the unique effect of the
i-th function. The covariance structure of the functions can be modelled through imposing

constraints on 7);. Based on this framework, James et al. (2000) proposed a reduced rank
45
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functional principal component model. The idea is to represent the random effect using a

truncated Karhunen-Loéve expansion (K-L expansion)

Zi(t) = 2B+ &(t)ay (3.2)

p=1
P

ROWB+ Y &t)ap + ()
p=1

=o(t)B+ P(t)Oa; + €(t).

The first line of (3.2) is essentially a mean function ®(¢)3 plus a infinite order K-L expansion
of a random process with zero mean and finite variance. Functions &,(t), p = 1,..., 00,
are orthonormal functions, which form the basis of the K-L expansion. The component
Qpi, © = 1,...,n, are defined as [ Z;(t)&,(t)dt following the properties of the expansion.
The inclusion of the K-L expansion suggests that the representation using &,(t) and oy,
converges in mean square to the original random process as the expansion order goes to
infinity (Alexanderian, 2013). A truncation is then applied so that only a finite number
P of functions &,(t) are retained. The last line of (3.2) is simply to decompose £,(t) into
a basis ®(t) and the corresponding coefficient vector 6,, so that 21173:1 &p(t)api becomes
25:1 O (t)0p0p; = P(t)Oa;, where O is a basis matrix with column vectors 8,, p=1,--- , P,
and oy is a vector consisting of o, p=1,---, P. As aresult, the problem becomes a mixed
model with random coefficient 17; = O«;. To ensure that the random effect is equivalent to

a K-L expansion, the following model assumptions are required.

(a) The parameter matrix ® and the basis matrix ®, which consists of ®(¢) evaluated at
different values of ¢, are both column orthonormal, i.e. @'® = I, ®'® = I. This
is to make sure that the orthonormal constraints on functions &,(t) in eigenproblem

(2.22) are satisfied.

(b) The random coefficient ay; has distribution e; ~ N(0, A), where A is a diagonal matrix

with diagonal elements A\,, p=1,---, P
(c) The model residuals are i.i.d normal, i.e. € ~ N(0,c%I).
(d) There is also a hidden assumption that the n functions Z;(t),i = 1, - ,n, are supposed

to be independent.

This model is referred to as the MM-FPCA in all the content that follows, in order to
distinguish from the FPCA described in section 2.3.1 of Chapter 2.
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The connection between the MM-FPCA (3.2) and the FPCA in section 2.3.1, though not
straightforward, can be explained by the properties of the K-L expansion, reproducing kernel
Hilbert space and Mercer’s representation theorem. Additional details are given in Appendix
A.1. In general, the orthonormal function &,(t) = ®(¢)8, is equivalent to the p-th eigenfunc-
tion; the random coefficient ay,; = [ Z;(t)&,(t)dt is equivalent to the score of the p-th principal
component. As Cov|a;] = A = diag{\;, -+, Ap} suggests that Var[a,]| = Ap, it can be
deduced that A\,, p=1,..., P, are equivalent to the eigenvalues of the FPCA.

James et al. (2000) described the advantages of the method as being able to estimate the
individual functions using all the observed data rather than just those from one individual
object (e.g. time series and image). At the same time, it automatically adjusts the influence
of the missing percentages for each individual object. Potential drawbacks of this method
are the large number of parameters to be estimated and the occasional failure of convergence
of the EM to a global maximum. These can sometimes be avoided by careful choice of initial

values, which is discussed later in this chapter.

As the MM-FPCA (3.2) was inspired by sparse longitudinal data sets, most of the pioneering
studies were carried out on univariate functional data, i.e. curves. However, apart from the
potential computational cost, there is no restriction on the dimension of the functions in
theory. In some situations, using multivariate functions may even be advantageous, such
as modelling of a sequence of smooth images. In this thesis, a MM-FPCA using bivariate
functions was proposed to model the sparse remote-sensing image time series. The model

generalizes equation (3.2) to
Zt(xvy) = <D(337:y)/6_’_(b(xuy)(aat_’_€t(li7y)a (33)

fort =1,---,T and (x,y) € D. The change of the individual function index from ¢ in model
(3.2) to t in model (3.3) is to emphasize that the model is going to be applied to a time series
of images. The basis vector ®(z,y) is now a collection of bivariate functions defined on a

2-dimensional domain D. The same assumptions as in model (3.2) apply, which are

'dp=1, 06'60=1,

o ~ N(O,A), €4 ~ N(O,O’QI),

where A = diag{\1, -+ ,Ap} is a diagonal covariance matrix. .



Chapter 3. The MM-FPCA 48

The design of the bivariate basis ®(z,y) is usually motivated by the problem under study.
For a regular shaped field, such as a rectangular grid, the basis ®(x,y) can be constructed by
taking the tensor product of two univariate bases and then applying an orthonormalization
process so that ® " ® = I is satisfied. For an irregular field, triangulation is often applied and
the bivariate basis is defined on each triangle. This technique has been presented in Ettinger
et al. (2012), Guillas & Lai (2010) for modelling the ozone concentration using functional
regression and Zhou & Pan (2014) for a 2-dimensional FPCA on Texas temperature data.
Both applications take into account the effect of irregular boundaries. Penalty matrices and
smoothing parameters may be used to control the smoothness of the functions. In Zhou
& Pan (2014), a thin-plate penalty P is used to control the smoothness of both the mean
function and the functional PCs. This gives w18 P38 + wy 25:1 0; PO, as an addition to
the usual estimation criterion of the model. In circumstances where selecting smoothing
parameters wy and ws is computationally intensive, alternative methods for establishing an
appropriate degrees of freedom for the basis may be required. One approach could be directly

specifying the degrees of freedom of the basis based on scientific/application background of

the problem under study.

The estimated eigenfunctions §,(x,y), p=1,..., P, are the counterparts of the PC loadings
in a PCA. In particular, the bivariate eigenfunctions assign weights to each point (z,y) in
the range of support D. It measures how much ‘load’ each point has on the p-th principal
component. Under the scenario that D is a spatial field, the eigenfunctions can be regarded
as the spatial patterns common to all functional objects. By default, &,(z,y), p=1,..., P,
are ordered by the magnitude of the eigenvalues \,, showing their contributions to the total
variation in decreasing order. The leading eigenfunctions usually display the most distinctive
spatial variations in the data. In the MM-FPCA (3.3), the PC scores are estimated as the
random components ;. They reflect how strong the pattern shown by &,(x,y) is in terms
of the t-th functional objects. However, the scores need to be interpreted carefully as some

distinctive values might be induced by the high proportions of missing observations.

3.1.2 Estimation of MM-FPCA

The main approach used here to estimate the MM-FPCA is maximum likelihood. Specif-
ically, the EM algorithm is applied, with the coefficient of the random effect component
estimated as the missing information (Rice & Wu, 2001). The log-likelihood functions and

their expectations for the E-step and M-step iteration have been derived in (James et al.,
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2000). Although the authors presented their results as 1-dimensional functional data, the
extension to 2-dimensional functional data involves only a small change of the estimating
equations. However, some modifications of the computational details are required. In the
following paragraphs, the complete EM algorithm for the 2-dimensional MM-FPCA (3.3) is

presented.

The EM algorithm is a general method for obtaining MLEs in incomplete data problems
(Little & Rubin, 2002). As described in section 1.3.2 in Chapter 1, the algorithm consists of
two steps, an E-step for the conditional expectation of the complete data log-likelihood and
a M-step where the MLEs are produced by maximizing the E-step expectation with respect

to the model parameters.

For the MM-FPCA, the complete data of the problem are Z.o,, = {Z1.7, @1.7}, where the
subscript 1 : T stands for the collection of data from time point 1 to T'. The parameter set
is denoted as ¥ = {3,0, A, 0%}. The complete data distribution of the model is then

T T

f(Zrr,cnm; O) = [[ £(Zr, 05 9) = [ £(Zilew; ©) f (e 0) (3.4)

t=1 t=1

where the product comes from the assumption that the functional data at different time
points are independent. The conditional distribution f(a|Z;; V) can be derived from the
joint distribution of data at time t. In the it-th iteration, the E-step calculates the expectation
of the complete data log-likelihood given the observed data Z; and the current parameter

estimate W(it—1)

Q0 <\1;; \11(“—1>) —E [ﬁ(\II;ZLT,aLT) ZLT,\I'(“‘D] : (3.5)

where the conditional expectation is taken with respect to the missing information oy, as

E[oy|Z;, U*=D]. The M-step then updates the parameter set to W) so that the condition
o) (xp@'t); qf(“—l)) >0 (\1:; \IJW—U) L YUew, (3.6)

is satisfied. The iterations of E-step and M-step terminate when the difference between
certain measure of the fit of the model is smaller than a pre-determined threshold. Given

this outline, a detailed algorithm can be established as follows.
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Step 1: model distributions According to the model assumptions above, the distribu-

tions of Z; and Z;|oy are

Z; ~ N(®:8, 2,0A0"®, + 0°1) ,

Zt|at ~ N(@tﬁ + <I>t®at, 0'2.[).

Here ®; is the basis matrix for the ¢-th function, where the subscript ¢ is used to reflect
the impact of missing data on the model. As the observed pixels vary with the images, the
evaluated basis matrix ®; would change accordingly. The joint density function f(Z;, o)

can be obtained using f(Z;|ay)f(ay) as

1

(Qﬂ)(nﬁK)/zant |A|1/2 (3.7)

f(Zt7 at) —

1 1
exp {—%Q(Zt —®,8-®0O) (Z, - 8- 9,60,) - QO‘tTA_lO‘t} ,

where n; is the number of observations at time ¢. The conditional density function f(o|Z;)

can be derived using f(Z;, o)/ f(Z;) as

1 1
f(ozt|Zt) X exp {_M(Zt — (I.t/B — @t(-')at)T(Zt — @t,@ — i’t@at) — iaIA_lat

+%(Zt — .07 (cpteAeTcpj)fl (Zy — @tﬁ)} .

Rearranging this with regard to random vector a; and recognizing the fact that it follows
a normal distribution, gives the conditional distribution of ay|Z; as in the supplemental

document of James et al. (2000)
24 —1 TeT oTaT -1 L TaT -
N (a AT+ 0T, <I>t®> ©'®/(Z—®p), (A7 + 0 2]®0 . (3.8)

Alternatively, conditional distribution (3.8) can be derived using the property of the following

multivariate normal distribution (Zhou & Pan, 2014)

oy 0 A AOT®/]
~N ,
Z, o, 0N P,O0AOTD] + 21

and then applying the Woodbury identity to the conditional expectation and variance,

—1
Elow|Z] = A®T®] (@@A@T@j v U2I> (Z; — ®,8)
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—1
Coview|Zi] = A — AOT®/ (@t@A@)%Z + 021) $,0A .

Both the distributions in equation (3.7) and (3.8) are essential to the computation of the

expectation in the E-step, which is then passed onto the M-step to get the MLEs.

Step 2: E-step equations Based on the conditional distribution (3.8), in the it-th itera-
tion, the conditional expectations of the missing data a; and its quadratic atatT evaluated
at the current estimates of the parameter set, U1 — {,6(“*1),6(“*1),A(itfl),awt*l)},

can be computed as

&, — E [at ‘Zt, \If@t—l)] (3.9)

_ [02(it—1) <A(it—l)>_1 n <(I)t®(it—1))T (I)t@(it—l):| - <(I,t®(it—1)>T (Zt - (I)tﬁ(it—l)>

—

o] =E ata;r ‘Zt,\lf(it_l)} (3.10)

=E

|
|

= &6] + [(A(“l)>_1 n

oy ’Zt7qj(it—1)} E [ozt ‘Zt, \I,(z't—l)]T 4 Cov {at ’th \Il(it—l):|

T 71
it—1 it—1
iy (2000) @0t

Plugging in (3.9) and (3.10) to the conditional expectation of the complete data log-likelihood

at the current iteration E(\Il(it_l); Z\.17,00.7)

_ % ZT: {nt log (02(”71)> + log (’A(itfl) D +a (A(it71)>_1 Qy (3.11)
t=1

1 4 4 . .
+—5(Zi - &30 — 9,0 V)" (Z, — &80V — @tG(’tl)at} + constant

gives the target function Q(¥; W(#~1) as defined in equation (3.5).

Step 3: M-step equations The Q(V; \Il(itfl)) function obtained above is then maximized
with respect to each parameter component to obtain their MLEs. The estimating equations
can be derived by solving the equations of the partial derivatives with respect to each pa-
rameter being zero. Particularly, the partial derivative with respect to ® is computed for
each column 8, of ®, because ®;Oq; is essentially 25:1 ®,0,,a,;. The partial derivative of

A is also derived for each diagonal element A\,, p=1,..., P, based on the fact that
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P P
log (|A]) + ] A"ray = log H Ap |+ Za?)t)‘f’ .
p=1 p=1

—

As a result, the M-step equations based on the E-step predictions &; and atatT are

T
0 LS [ ) (5w e
t=1

. T . . — .
_9 (zt _ @tﬂ(“‘l)) 0 Vg, 1 tr {@@W—Dataj @W—UT@TH ,

T
. 1 — =
it) __ T
WO = 1Yl 319
t=1
forp=1,..., P, with atag— (>:p) indicates the p-th diagonal element of atatT , and
g0 (Sore) Tor(nowerta). o
t=1 t=1
6,") = [Z atatT(p,p)'l)tT‘I’t Z @/ |Gy (Zt - (PtB(Zt)) a Z Giip ) ®ib5 | -
t=1 t=1 j#p
(3.15)

with &y, represents the p-th element in vector a, éj = Bj(-it) for j < p and éj = Oj(-it_l)
for j > p, for the basis coefficients. Note that the estimation of 6, needs to be done itera-
tively for all p = 1,..., P. Strictly speaking, the M-Step in this algorithm is essentially the
conditional maximization (CM) steps (Meng & Rubin, 1993) as the estimation of parameter
0, is conditioned on the estimations of 8, j # p. However, James et al. (2000) and some
other authors still referred to it as the M-step. This thesis chooses to follow this tradition;

whereas an explanation of the CM-steps is given in Chapter 4. After running through above

equations, the current parameter set is updated to U = {B(”), el Al 02(”)}.

Step 4: evaluate convergence Choices of convergence criteria for the EM iterations in-
clude relative changes of the expected complete data log-likelihood, RSS, specific parameters,
etc. For example, the criterion using relative change in the RSS values from two consecutive

iterations is
RSS() — RS-
Rss(it—l)

<eg,

where ¢ is a pre-determined small value, such as 0.005, 0.0001.
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Step 5: orthonormalize the results According to the assumptions of the MM-FPCA
(3.3), the coeflicient matrix @ is required to be orthonormal. However, the resulting MLE
©* from the EM iterations is not guaranteed to have this property. Therefore, a final step of
orthonormalizing ®* is carried out. This is done through computing the covariance matrix
of the estimated random effect component and then applying an eigen-decomposition to the

covariance matrix,
Cov[®0*a*| = ®O*A*Q*Td | = =Aw)gT,

The columns of matrix 2 give the final estimation of the orthonormal eigenfunctions &,(z,y)
and A("€®) is the final approximation to the covariance matrix of the PCs. In practice, the
eigen-decomposition @*A*@* T = @(new) A (new)@(new)T ig computed to avoid the manipu-
lating of a very high dimensional matrix, as a result of the dimensionality of basis matrix
®. The results are exactly the same since ® is orthonormal. The final version of the eigen-
functions is then computed as E = #O (%) In the end, the PC scores oyt are re-estimated

with the orthonomalized matrix @ (ew),

3.1.3 MM-FPCA initialization

Due to the complexity of the complete data likelihood in equation (3.11), the choice of starting
values for the EM iterations is important. A sensible initialization method is essential to the
convergence of the algorithm. Laird et al. (1987) suggested that ‘Criteria for good starting
values are (a) initial estimates can be obtained under all configurations of data and models,
(b) if the closed form expressions of & and D exist, the method of obtaining starting values
should find them’, where o2 represents the residual variance and D represents the random

effect covariance matrix of the repeated measures model studied in the paper.

For the MM-FPCA (3.3), an initialization method based on the R package fpca is adopted
with small modifications to 02(9) and A(®). The package is developed by Peng & Paul (2009)
to implement the method described in their paper. It handles only univariate functional

data, but the idea can be generalized to bivariate functional data in the following ways.

(a) The initial value of B is computed through fitting the model Z = ®3 + € using

vectorized data Z = vec(Zy, -, Z7).

(b) The residuals plus random effects are then calculated by subtracting the mean function

from the data as 7, = ®;Q0; + €; = Z; — ‘I’tﬁ(o)-
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(c) Rewriting ®,0q; as ®,m; and fitting the linear model #, = ®;1; + €; gives the least
square estimates 7y = (®, ®;)~'®/ #;. The fact that Cov|[n;] = ®Cov|[oy]® suggests
that an eigenvalue decomposition of Cov[n;] = UX,U " can be used to initialize © as
©) = U. Note that a perturbation is sometimes added to the least square estimator
of 1; to prevent ®, ®, from being singular, i.e. 7 = (®, ®; + xI)"1®/ 7, where & is

a small positive real number.

(d) The initial values of A and o are obtained as A®) = X, and ¢2(0) = ﬁ S

The main idea is to avoid setting o2(W A(0)—1

overwhelmingly larger than the product
00T®/®,0). Otherwise, the conditional mean of ;| Z; in equation (3.9) would be
driven towards zero by the factor 02(® A©~1 and the algorithm might shortly converge

to a biased solution.

3.1.4 MM-FPCA implementation

One of the major assumptions of the MM-FPCA is that the basis functions are orthogo-
nal. There are several bivariate bases which are orthogonal by design and are capable of
incorporating the shapes of the images, such as the bivariate B-spline, simplex splines, etc.
However, building such bases usually involves complicated geometric partition of the spatial
domain, e.g. the triangulation, and the quality of result often depends on the specific geo-
metric design. As far as the problems in this thesis are concerned, the gains from using the
advanced basis systems may not compensate the costs in implementing such bases. There
are two main reasons. (a) The remote-sensing images are recorded in regularly spaced pixels,
so the basis can be evaluated without additional geometric partition of the domain. (b) Due
to the higher uncertainties in pixels towards the boundaries of the images', the modelling
of the shapes of the images is not considered as a priority. Instead, the grid is trimmed to
remove pixels that are irrelevant to the lake so the influence of the shape on the model can
be minimized. A relatively simple method is then applied, which takes the tensor product

of two univariate B-spline bases to construct a bivariate basis on a rectangular grid.

Since the bivariate bases created using the above method are usually not orthogonal, a

transformation is also applied. Two bivariate functions being orthogonal refers to

/D b (0. ) (2 y)didy = 0 . for k £1.

{The retrieved remote-sensing data in the boundary pixels are often considered as not very reliable,
because of the uncertainty in identifying whether a pixel is for land or water.
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This integral can be approximated as

n
> (@i yi)di(@i,yi) babry, 0 — 0. (3.16)
i=1

The orthonormalization of basis functions ¢1(z,y),...,¢x(z,y) is carried out in discrete

forms using approximation (3.16). The process involves evaluating the basis functions on a
fine grid to obtain a basis matrix and then applying the transformation using the Cholesky

decomposition. Some details of this process are presented below.

- The transformation using the Cholesky decomposition follows two steps. First decom-
pose the product of the basis matrix as ®'® = LL", where L is an orthogonal lower
triangular matrix. Then construct the orthogonal basis matrix as ®(LT)~!. This is the
method proposed in package fpca, which is essentially a linear transformation defined

by Cholesky decomposition.

- Unlike univariate basis functions, there are two ways of constructing the basis matrix
of bivariate basis functions ¢y (x,y). For basis functions defined on a 2-dimensional
range space D, the k-th column of the basis matrix ® can be created by concatenating
the evaluations of ¢y(z,y) by either z or y and the results would be different. That is,
a bivariate basis matrix constructed using ®, ® ®, is different from that constructed
using ®, ® ®,. However, it can be shown that the results after orthonormalization
are essentially the same, subject only to a permutation of rows and columns. In other

words, it will not affect the model fitting.

In order to implement the model, the values of two additional parameters need to be speci-
fied before starting the EM iterations described above. They are the degrees of freedom (or
dimension) of the basis K and the order of the K-L expansion P. These two parameters
control the smoothness of the functions and can be regarded as the ‘smoothing’ parameters
of the MM-FPCA (3.3), although they function in a slightly different way as the smoothing
parameter w introduced in section 1.3.1. The basis dimension K can be chosen using model
selection criteria, such as AIC/BIC, cross-validation or alternatively using a penalized ap-
proach (Zhou & Pan, 2014). The expansion order P can be selected using similar methods.
James et al. (2000) also proposed the use of a plot of the expected log-likelihood evaluated
at the MLEs against the expansion order, i.e. L(VU*; Z1.7, a1.7) ~ P. The optimal choice is

the value of P at which the curve becomes flat. For an approach that follows the tradition
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of PCA, P can be selected by inspecting the magnitude of the variance of PCs relative to

the total variance (Rice & Wu, 2001), i.e. the variance proportion criterion.

Considering the dimension of the remote-sensing data in general, both the cross-validation
and penalized approach would be computationally expensive. Therefore, the selection of K
and P based on information criteria is preferred. The variance proportion criterion is also
considered for choosing expansion order P. Ideally, the two parameters should be selected si-
multaneously through a grid search. However, this again would be computationally intensive
if higher basis dimension is required for the problem, as it could result in numerous combina-
tions of P and K to search through. To overcome this problem, a simplified 2-stage approach

is proposed. This approach handles the choice of K and P as two successive problems.

(a) The basis dimension K is selected first using the AIC/BIC. In order to select K ini-
tially, a sufficiently large P is used and is fixed throughout this stage. In practice, the
sufficiently large P can be chosen by fitting a MM-FPCA with an arbitrary basis and
inspecting the variance explained by various numbers of PCs. This idea of selecting
the basis dimension K regardless of the expansion order P is similar to the method
used in the FPCA described in section 2.3, where the basis dimension only depends on

functional data representation and is not affected by the PCA that follows.

(b) Next the expansion order P is selected using the optimal basis decided in stage (a). The
selection using AIC/BIC is relatively straightforward. Although, in some situations, a
more practical approach may be used where a truncated expansion which provides a
high enough approximation power is used instead of the one selected by the information
criteria. The selection using variance proportion criterion is even easier to implement.
First fit a full rank (or high rank) model and then select P so that at least §% of the

total variation is explained, i.e.

P
szl )‘P

e >6%, for P< K . (3.17)
Zp:l )\p

Another approach to the variance proportion criterion is illustrated in Zhou & Pan
(2014). The authors fitted a series of models with increasing expansion order P until
a PC with variance significantly smaller than other leading PCs appeared, then they

set the expansion order as the current P.

In general, the selection of K and P should not be treated too rigidly. It is better to adapt

the selection criteria to the purpose of statistical analysis. For example, the relative changes
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of RSS and mean integrated squared error (MISE) from the fitted model may be used as
they can be helpful in assessing whether it is signal or noise the model is trying to capture.
Scientific knowledge associated with the application background may also play a part in the

selection of the ‘optimal’ combination of K and P.

Code for implementing the MM-FPCA has been developed based on the R package fpca
(Peng & Paul, 2013). An extension from univariate functions to bivariate functions has been

made, which involves modifications of the basis matrix and its orthonomalization.

3.2 MM-FPCA investigation using image series

Several investigations on the MM-FPCA (3.3) were carried out to examine its performance on
sparse remote-sensing image series. The first two studies were based on the ‘Re LSWT’ data
set introduced at the end of Chapter 1, including a comparison between the MM-FPCA and
the FPCA by eigenvalue decomposition (referred to as ‘direct FPCA’) and an investigation
with respect to the basis dimension and expansion order. A simulation study was then carried
out to assess the performance of the model under different levels of missing percentages and

spatial missing patterns (i.e. missingness appearing as spatial regions).

3.2.1 MM-FPCA and direct FPCA

For a comparison between the MM-FPCA and the direct FPCA, model (3.3) was fitted to
the ‘Re LSWT’ data set as used in section 2.3.3. The orthonormal basis was constructed
by first creating the tensor spline basis ® = ®, ® ®,, then applying the orthonormalization
process described in section 3.1.4. The same degrees of freedom K = 25 as in section 2.3.3
was used. An example with 6 out of 25 resulting orthonormal bivariate basis functions is
given in Figure 3.1. For comparison purpose, the full rank model with P = 25 was fitted.
This gives a random effect component describing a space spanned by 25 PCs. It was also
assumed that the mean function ®(x,y)3 = 0, which, after centering the data by removing

the monthly means, can be regarded as appropriate.

The computation of the MM-FPCA took 136.8 seconds. The EM algorithm converged after
7 iterations. The estimated residual variance is 2 = 0.0049. The covariance matrix of

the estimated random effect was computed using the results from the EM iterations and

the final eigen-decomposition @*A*@*T = @new) A (new) @(new) T wag then applied to give
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FIGURE 3.1: An example of six orthogonal bivariate basis functions from the basis (degrees
of freedom = 25) defined on the rectangular grid of the ‘Re LSWT’ data set.

the eigenvalues ;\p as the diagonal elements of A"¢®) and the eigenfunctions ép(x, y) as the
column vectors of ®O (%) Table 3.1 summarises the eigenvalues of the first five PCs and
their contribution to the variance in proportions. In this case, the first PC is the most
influential one, accounting for 35.54% of the total variation. The second and the third PC
appear to be equally important, accounting for 21.06% and 19.48% of the total variation
respectively. The leading five PCs in total explains 91.38% of the variation. The same
measure from the direct FPCA is 92.80%. These results from the MM-FPCA are different
from those extracted from the direct FPCA. This is understandable because the MM-FPCA
contains a residual component €;, which does not exist in the direct FPCA. This component
is certain to have some effect on the estimated eigenvalues and eigenfunctions. In this case,
the estimated residual variance is 62 = 0.0049. The RSS from reconstructing the original
image using the first five PCs is 0.0081, which is almost the same as the RSS from the direct
FPCA (0.0078) in section 2.3.3.

TABLE 3.1: The first five eigenvalues and their variance proportions from the MM-FPCA

| PC1 PC2 PC3 PC4  PC5

Eigenvalues 9.52 5.64 5.22 2.99 1.10
Variance proportions | 35.54% 21.06% 19.48% 11.17% 4.11%

For a complete comparison, the eigenfunctions and scores of PC1 and PC2 extracted from
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FIGURE 3.2: (Top) Illustrations of the eigenfunctions of PC1 and PC2. The horizontal
and vertical axes represent longitude and latitude respectively. (Bottom) Illustrations of the
scores of PC1 and PC2 over time.

the MM-FPCA were plotted in Figure 3.2. In order to make the comparison easy, these
eigenfunctions were rescaled to match the eigenfunctions extracted from the direct FPCA in

section 2.3.3. The rescaling was carried out using the following equation,

~

gp(q’.? y) )

>
s~
2

where Xém) is the eigenvalues from the MM-FPCA and 5\1(,0{) is the eigenvalues from the direct

FPCA. The same was done to the scores, by changing the rescaling factor to 4/ ;\I(Jd) / jxl(,m).
The resulting eigenfunctions and scores are different from their counterparts in section 2.3.3.
However, the rescaled eigenfunction 51 (z,y) describes a similar contrast between the north
and south as that in the left panel of Figure 2.8. In terms of ég (z,y), although the pattern
is not exactly reflecting the contrast between East and West as the right panel in Figure 2.8,

it conveys a similar idea.

It could be difficult to examine the similarity between the results from the two methods ap-
plied to sparse data, because the direct FPCA cannot even be implemented if the missingness

is substantial. However, based on the performance of the two methods on complete data and
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their theoretical connections, it is appropriate to used the MM-FPCA as an alternative to
the direct FPCA. In fact, the MM-FPCA may even be a superior method, because it makes
optimal use of the available information (James et al., 2000). In practice, the assumption

®(z,y)B3 = 0 is not required and B is estimated within the EM iterations (section 3.1.2).

3.2.2 Basis dimension and expansion order

The basis dimension K and the K-L expansion order P need to be selected before launching
the EM algorithm. The following paragraphs continue the investigation using the ‘Re LSW'T’
data set, but with emphasis put on the selection of K and P using the 2-stage approach

described in section 3.1.4 and the influence of the choices on the model.

The first step in the 2-stage approach is to choose basis dimension K. The selection procedure
starts with the 5 x 5 basis, which is the smallest possible basis with only one interior knot
along each coordinate. Then one knot is added to one of the two coordinates each time to
increase the basis dimension. That is, testing a sequence of basis of dimension 5 x 5, 6 X 5,
5 X 6, etc, until the maximum basis dimension considered is reached. For each basis tested, a
MM-FPCA is fitted with a sufficiently large initial expansion order P;,;. The log-likelihood,
AIC, BIC and RSS values are recorded. In this investigation, the maximum dimension was
taken to be 7 x 7 and an initial Pj,; = 20 was used. Table 3.2 presents some detail from
this selection. In this case, the AIC and BIC failed to give an explicit answer as both criteria
gave decreasing values as the basis dimension increases. However, there is a big drop in the
AIC and BIC values after the basis dimension reaches 6 x 5, corresponding to a large increase
in the log-likelihood. It also appears that the rapid decrease of AIC and BIC values slows

down after the 7 x 6 basis. Therefore, a 7 x 6 basis is selected.

TABLE 3.2: The log-likelihood, AIC, BIC and RSS from the MM-FPCA fitted with increas-
ing degrees of freedom.

Basis | 5x5 6x5 5% 6 6 x 6 7% 6 6 x7 TxT

likelihood | 179470 181256 192678 197226 202064 202602 208166
AIC 357848 -361211 -384055 -392899 -402323 -403398 -414232
BIC -352461 -354788 -377631 -385232 -393413 -394488 -403872
RSS 0.0048 0.0046 0.0038 0.0035 0.0033 0.0033 0.0030

After determining the basis, the magnitude of the expansion order was investigated. For the

likelihood based approach, both the method using the information criteria and the method

iThe maximum degrees of freedom of the basis can be chosen based on initial analysis, e.g. fitting spline
regression models to individual images and examine the smoothness. It can be increased during the selection
process, if the initial choice appears to be too low.
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using the log-likelihood against expansion order plot were considered. For the 7 x 6 basis,
models with expansion order ranging from 2 to 20 were tested. The log-likelihood, AIC,
BIC and RSS were recorded and reported in Table 3.3. Again, the AIC and BIC did not
give an explicit answer as the values keep on decreasing. However, from the plot of log-
likelihood against expansion order P in Figure 3.3, it is possible to identify a point after
which the log-likelihood curve becomes almost horizontal. Specifically, the dashed vertical
line, corresponding to P = 15, indicates the point after which the increase of log-likelihood
becomes smaller than 0.5%, i.e. (Lpy1 — Lp)/Lp < 0.5%, where Lp is the log-likelihood
of the model with expansion order P. It turns out that P = 15 is also the point where the
AIC and BIC values reach an asymptotic. As a result, the expansion order P = 15 can be
regarded as an appropriate choice.

TABLE 3.3: The log-likelihood, AIC, BIC and RSS from the MM-FPCA fitted with increas-
ing expansion orders, when the basis dimension is fixed as 7 x 6.

P 2 ... 13 14 15 ... 19 20

log-like | 91845 ... 196609 198863 199907 ... 202107 202194
AIC | -183432 ... -391928 -396351 -398353 ... -402494 -402583
BIC | -182160 ... -385564 -389563 -391140 ... -394009 -394736
RSS 0.0159 ... 0.0035 0.0034 0.0033 ... 00033  0.0033
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F1cURE 3.3: Illustrations of the selection of expansion order P using the log-likelihood. The
black solid curve represents the log-likelihood; the dashed line indicates the point where the
increase of log-likelihood becomes smaller than 0.5%. The horizontal axis represents P.

An alternative way to select the expansion order P is based on considering the variance
proportion criterion, which is a method widely used in the PCA for multivariate analysis. To
implement this criterion, a high rank model with P = 30 was fitted. According to this model,
a 90% threshold for the variance explained gives expansion order P = 6; a 95% threshold
gives P = 8; a 99% threshold would require P = 15. The variance proportion criterion can

be attractive due to its computational efficiency, as it requires fitting a high rank model
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only once. In this example, if the modelling purpose is to reduce the data complexity by
retaining a small number of PCs, or to identify the PCs explaining the main patterns, then
the variance proportion criterion would be helpful. If data imputation or reconstruction is
of main interest, then the likelihood based approach might be preferred for a measure of the

fit of the data.

To examine the impacts of the selected degrees of freedom, a model with K =7 x 6, P =15
(denoted as the P15 model) and another with K = 7 x 6, P = 6 (denoted as the P6
model) were fitted and the imputations were computed. The computation of the P15 model
took 85.6s; the timer for the P6 model showed 20.6s. The estimated o? for the P15 model
is 0.0035 and that of the P6 model is 0.0058. The first two eigenfunctions & (z,y) and
& (x,y) estimated from the P15 and P6 models are presented in Figure 3.4; examples of
reconstructions from the two models are shown in Figure 3.5. The plots were produced using
the same colour scheme for the purpose of comparison. The eigenfunctions from the two
models are very similar to each other, so are the reconstructed images, indicating there is no

substantial difference between the P15 and the P6 model.
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FicURE 3.4: Examples of eigenfunctions from the MM-FPCA. The two left panels show

the first eigenfunction from the P15 and P6 models. The two right panels show the second

eigenfunction from the P15 and P6 models. TThe horizontal and vertical axes represent
longitude and latitude respectively.

The above investigation suggests that if the main interest is in dimension reduction or to
identify the dominant spatial patterns in the data, then a small model such as the P6 model
would be sufficient. If the detail of the spatial reconstruction is of interest, then a larger
model such as the P15 model may be a better choice. In addition, while the likelihood based
approach and the variance proportion approach provide some information on the selection
of the expansion order, the optimal choice in a real application may also be guided by the
scientific background of the problem. It may be essential to consider the trade-off between
the fit of the data and the identification of the actual signal, so that the dimension of the

model is not increased merely for explaining the noise. Computation time and the number of



Chapter 3. The MM-FPCA 63

32.4 32.8 33.2 32.4 32.8 33.2 32.4 32.8 33.2
Data Dec 2000 P15 Dec 2000 P6 Dec 2000

32.4 32.8 33.2 32.4 32.8 33.2 32.4 32.8 33.2
Data Jan 2001 P15 Jan 2001 P6 Jan 2001

F1GURE 3.5: Examples of reconstructions from the MM-FPCA with P = 15 and P = 6 from

December 2000 (top) and January 2001 (bottom). In each row, the left panel represents the

data, the middle panel represents the P15 model and right panel represents the P6 model.
The horizontal and vertical axes are longitude and latitude respectively.

observations available are among the other factors to be considered when choosing the most

appropriate model.

3.2.3 Simulation study on missing conditions

Through its specification, the MM-FPCA handles the problem of missing observations auto-
matically. However, the proportions of missing observations and the patterns of the missing
data are presumed to have some impact on the model (Allison, 2009). The missing observa-
tions in remote sensing data are often the result of meteorological conditions and the satellite
orbit. The percentage of missing observations in satellite images can be relatively high. In
the Lake Victoria LSWT data, more than 1/5 of the images have less than 30% of the data
observed and the total percentage of missing data reaches almost 50%. Another problem
about the remote-sensing data is that missing observations often appear as spatial regions
(recall Figure 1.2). This feature is referred to as spatial missing patterns in this thesis. It
does not affect the assumption of missing at random (MAR) made earlier in the thesis as
the probability the data are missing does not depend on the unobserved values, yet these

missing regions would make recognizing the spatial patterns difficult.
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To the author’s knowledge, these issues have not received much investigation so far. There-
fore, a simulation study on the impact of various conditions of sparsity on the model was
carried out. The aim of this study is to investigate the applicability of the MM-FPCA to
sparse data such as the remote-sensing LSWT. It also attempts to find the potential threshold

for percentage of missing where the application of the MM-FPCA is not appropriate.

Part 1: simulation design Using the properties of Lake Victoria LSWT data as a guide,
a 30 x 40 rectangular grid is defined and 120 images are simulated on this grid. Three levels,
0%, 30% and 50%, are assessed for the percentage of missing data. The last one is slightly
higher than the missing proportion of the Lake Victoria LSWT data. Two types of sparsity
are considered, one with spatial missing patterns and one without. The missing scenarios
are then paired with four levels of spatial variation, giving 20 different scenarios in total (see

Figure 3.6).

4 spatial variation 5 missing scenarios
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nugget ! none —_— | 0%
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FIGURE 3.6: A diagram showing the settings of 20 simulation scenarios

Data are simulated pixel by pixel using function (3.18)
Zt($7 y) = A(.ZL‘, y) cos [27”/(t - 90)] + St(.%', y) + Et(l‘, y) ) (318)

where t = 1,2,...,120 and (x,y) € D, which covers a grid of size 30 x 40. The A(z,y)
component is the main spatial pattern designed for the simulated data, which corresponds to
the leading eigenfunction. The sinusoid is used to mimic the seasonal fluctuation of the data
with cycle length 1 = 12. An isotropic Gaussian random field (GRF) S;(z,y) adds noise in
the form of spatial variations to the data. The component €, (z,y) is the i.i.d. random noise,

which can be merged into the GRF as a nugget effect. The GRF is generated using the
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covariance function (2.1