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Abstract 

Surfactant activity is generally associated with small molecules rather than biological 

macromolecules like proteins. Only a few proteins have good intrinsic surfactant activity, 

an example being the natural surfactant ranaspumin 2 (Rsn2) from the foam nests of the 

túngara frog. In solution, Rsn2 has a hydrophobic core and hydrophilic exterior, but 

when Rsn2 comes in contact with an air-water interface, it changes conformation to 

expose its hydrophobic core to interact with the air and present a hydrophilic face to the 

water. The unique combination of biocompatibility along with surface activity offers the 

possibility of developing biomedical applications based on Rsn2. Some of the possible 

applications, including cell patterning, functionalising scaffolds and stabilising droplets , 

have been explored in the work described in this thesis.  

The ability of Rsn2 to coat hydrophobic surfaces persistently, rendering them wettable 

and the nature of coating and interaction with the surfaces were investigated. This 

formed the basis for the development of a method to coat a range of hydrophobic 

polymers, which are commonly used for biomedical applications. These Rsn2 coated 

surfaces were tested for their capability to control cell adhesion on surfaces which 

usually do not support cell adhesion. Rsn2 coating was demonstrated to promote, and 

thus allowed the spatial control over, cell adhesion on otherwise non-cell compatible 

surfaces.  

The potential of Rsn2 to be used as a protein fusion partner for the production of further 

functionalised cell engineering substrates was explored by constructing five different 

integerin binding sequence (IBS)-Rsn2 conjugates. Specific IBS-Rsn2 proteins proved 

successful in increasing the adhesion and biomineralising potential of osteoblasts isolated 

from neonatal rats.  

In addition, Rsn2's ability to stabilise microscopic oil droplets, and to solubilise fullerene 

were investigated. Rsn2 stabilised oil droplets were stable for more than six months.  

Thus, the surfactant properties of Rsn2 can be used for many potential biomedical 

applications.  
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Definitions/Abbreviations 

°C   Degree centigrade 

3D    Three dimensional 

A
2
    Angstrom square 

ACLAR   A clear, poly-chloro-tri-fluoro-ethylene (PCTFE) film  

BPI   Bactericidal permeability increasing protein 

BSA  Bovine Serum Albumin 

BslA   Biofilm surface layer protein A 

CA   Contact angle 

Ca
2+

    Calcium 

CCD   Charge-coupled device 

CCD camera   Charge-coupled device camera 

cDNA   Complementary DNA 

DAPI   6-diamidino-2-phenylindole 

DGEA   Asp-Gly-Glu-Ala; peptide sequence 

DMEM    Dulbecco's Modified Eagle's Medium 

DMS    Dimethylsiloxane 

DNA   Deoxyribonucleic acid 

E.Coli.   Escherichia coli  

ECM    Extracellular matrix 

EDTA   Ethylenediaminetetraacetic Acid 

EP    Extrapallial protein 

EP82S-Rsn2/EP76E-

Rsn2  

 First 82/76 amino acid of extrapallial protein – ranaspumin2 

fusion protein 

EP-Rsn2   Extrapallial protein – ranaspumin2 fusion protein 

ESEM    Environmental scanning electron microscope 

FA   Focal adhesion 

FBS   Foetal bovine serum 

FITC   Fluorescein isothyiocyanate streptavidin 

FL EP   full length extrapallial protein 

FMN   Flavin Mononucleotide 

g   Gram 

g/cm3    Gram per cubic centimeter 

g/L   Gram per litre 

GFOGER   Gly-Phe-Hyp-Gly-Glu-Arg; peptide sequence 

Glu   Glutamic acid 

H2O   Water 

H2O2   Hydrogen peroxide 

HEPES   2-hydroxylethyl-1-piperazine-ethanesulphonic acid 

HPA   Hydrophobic Alkane Thiol 

h-TERT   Fibroblasts cell line 

IBS   Integrin binding sequences 

IBS-Rsn2   Integrin binding sequences – ranaspumin-2 fusion protein 

Ig   Immunoglobulin G 

iLOV   Improved light oxygen voltage 

iLOVRsn2   improved light oxygen voltage ranaspumin2 fusion protein 
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IPTG   Isopropyl β-D-1-Thiogalactopyranoside 

IRRAS   Infrared Reflection Absorption Spectroscopy 

kDa  Kilo Dalton  

L   Litre 

LB   Luria-Bertani medium 

LPS   Lipopolysaccharide 

MEOR   Microbial enhanced oil recovery 

mg/ml   Milligram per mililitre 

MgCl2   Magnesium chloride 

mM   Mili molar 

mm   Millimetre 

mN/m   MiliNewton per metre 

NaCl   Sodium chloride 

NEB   New England Biolab 

Ni2+   Nickel   

Ni2+-NTA   Nickel Nitrilotriacetic acid 

nm    Nanometre 

NMR   Nuclear Magnetic Resonance 

OCN   Osteocalcin 

OPN   Osteopontin 

PAGE   Polyacrylamide Gel Electrophoresis 

PBS   Phosphate buffered saline 

PC    Polycarbonate 

PCR   Polymerase Chain Reaction 

PDA   Polydopamine 

PDB   Protein data bank 

PDMS    Polydimethylsiloxane 

PEG    Polyethylene glycol 

pg/mm2   Picogram per millimetre square 

pI   Isoelectric point  

PLUNC   Palate, Lung and Nasal Epithelium Clone 

PMMA    Para-methoxymethamphetamine 

PP   Polypropylene 

PS   Polystyrene 

PTFE    Polytetrafluoroethylene 

RGD   Arg-Gly-Asp; peptide sequence 

RH    Relative humidity   

RNA   Ribonucleic Acid 

RP-HPLC   Reversed-Phase High-Performance Liquid Chromatography 

Rpm   Rounds per minute 

Rsn2   Ranaspumin-2  

RU   Response unit 

SDS   Sodium Dodecyl Sulphate 

SDS-PAGE   Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SiO2   Sillicon dioxide 

SP   Pulmonary surfactant protein 

SPLUNC   Small Palate, Lung and Nasal Epithelium Clone 

SWNT   Single-wall nanotubes 
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Taq   Thermus aquaticus polymerase  

TFA    Trifluoroacetic acid 

UV   Ultraviolet 

μL   Microliter 
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Introduction 

Almost all proteins display some surface activity when agitated sufficiently vigorously, 

but this property is certainly not one that they have evolved to possess. However, there 

are a small number of proteins whose intrinsic surface activity appears to fulfil one of 

their primary functions. One such protein is ranaspumin-2 (Rsn2) found in foam nest of 

túngara frog.  The physical properties of Rsn2 offer an attractive opportunity for many 

biotechnological applications, including, coatings for nano-devices or medical implants 

and as an emulsifier in food and personal-care products. Work described in this thesis is 

mainly focused on using Rsn2’s ability to coat surfaces for developing a variety of 

biotechnological applications.   

1.1 Surfactant 

Surface tension is one of the important properties of a liquid and it arises from the 

interactions between the molecules that constitute a liquid. These molecules have 

cohesive forces between them, which attract them to each other and allow the surface of 

a liquid to resist an external force.  

Surface tension is the measure of the free energy of the surface per unit area (Myers, 

2005b). Surface tension is one of the important properties of liquids and it arises from the 

interactions between the molecules that constitute them. These molecules have cohesive 

forces between them, which attract them to one another and allow the surface of a liquid 

to resist an external force. Surface tension of a pure liquid, which is a constant value, can 

be measured by static surface measurements. For example water, which forms relatively 

strong intermolecular hydrogen bonds, generates a high surface tension (74.2 mN m-1) 

compared to other liquids, for example ethanol (22.3 mN m-1) and acetone (23.7 mN m-

1) where dipole-dipole interactions and van der Waal forces also exists (Myers, 2005b). 

Surface tension measurements are commonly made by the capillary rise method, Du 

Noüy ring tensiometer, pendant drop or sessile drop method, and micro trough 

tensiometry method. 

In the capillary rise method, a thin circular glass capillary is dipped into the liquid to be 

tested. If the liquid interaction with the capillary wall is favoured, then the liquid level 

will rises in the capillary and will generate a concave meniscus. In the opposite situation, 

a decrease in the liquid level will be observed in the capillary along with a 
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semispherically convex meniscus (Liu et al., 2016, Zhmud et al., 2000). The below 

formula is used for measuring surface tension in capillary rise method 

γ = rh dg/2 

Where γ is the liquid surface tension, r is the capillary radius, h is the height, d is the 

liquid density and g is the acceleration of gravity. 

The Du Noüy ring tensiometer uses a platinum ring, which is generally lowered into the 

liquid to be tested and lifted upwards, raising a meniscus of liquid along with it. The 

force required to raise the ring increases until the meniscus breaks, releasing the ring. 

The maximum force encountered by the ring is measured by a balance and used to 

calculate surface tension (Fox and Chrisman, 1952).  The below formula is used for 

measuring surface tension in method the Du Noüy ring tensiometer  

Wtot = Wr + 4π R γ = Wr + 2lγ 

Where Wtot  is the total force needed to detach the ring, Wr is the ring weight, R is the 

ring radius, γ is the liquid surface tension, and l is the width.  

The micro trough tensiometry method, also known as the Wilhelmy plate method, 

measures the surface tension of a test solution. For this a platinum rod attached to a 

computer-monitored microbalance is submerged into the test solution. The downward 

force exerted upon the rod by the surface is then calculated. The principle of the 

technique is similar to that of the du Noüy ring, however this gives the advantage of 

being able to measure surface tension in time-dependant manner (Vance, 2012, Wu et al., 

1999). The below formula is used for measuring surface tension in method the micro 

trough tensiometry   

Wtot = Wplate + 2 l γ cosθ 

Where Wtot  is the total force needed to detach the ring, Wr is the ring weight, R is the 

ring radius, γ is the liquid surface tension, and l is the width of the plate. 

The pendant drop or sessile drop method involves taking measurements of an 

axisymmetric fluid droplet, and using the Young–Laplace equation to calculate interfacial 

tension (Berry et al., 2015) The method is described in detail in section 2.3.2 and 2.3.4 of 

the thesis.  
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Surfactants are surface active molecules which modify the surface tension of the liquid 

by modifying the inter-molecular forces between molecules at the surface. Surfactants 

have the ability to reduce the surface tension at an interface, even though present in small 

concentrations as measured in the bulk solution. Synthetic surfactants are usually organic 

molecules with amphiphilic properties, and they are made up of hydrophilic (polar head) 

and hydrophobic (non-polar tail) groups. Consequently, they are soluble in both aqueous 

and non-aqueous solutions. The conventional surfactants are grouped as non-ionic, 

cationic, anionic or zwitterionic, depending upon the nature of their head group (Myers, 

2005a). 

 

 

Figure 1-1 The typical molecular structure of a surfactant (A) and an example of a synthetic surfactant 

Na-dodecyl sulphate (B).  

Upon mixing water and an immiscible hydrophobic liquid such as oil with surfactant, the 

surfactant occupies the water-oil interface and forms emulsions or micro-emulsions to 

avoid the direct oil/water contact. The surfactant molecules act cooperatively at an 

interface, and change the interfacial energy to function as wetting; emulsifying; foaming 

or suspending agents.  

 

Figure 1-2 Diagrammatic representation of water in oil emulsion stabilised by surfactant 

A wide variety of applications have increased the demand and production of surfactant 

molecules at global level. The global surfactant market was of US $30.65 billion in 2015 

and their demand is expected to increase by 4.4% in coming years (Market, 2016). Most 

of the synthetic surfactants are chemically derived from petroleum; nevertheless the 

interest in biological surfactants has been increasing steadily for environmental and 

industrial applications (Joshi et al., 2015).  

Hydrophobic 

 tail 
Hydrophilic 

head 
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1.2 Biosurfactants  

Biosurfactants, a type of surfactant, are amphiphilic molecules secreted extracellularly by 

cells to facilitate many physiological functions including antimicrobial activity, 

protecting them against wetting and allowing them to grow on water-immiscible 

substrates (Desai and Banat, 1997). Like surfactants, biosurfactants also contain 

hydrophobic and hydrophilic groups, and have the ability to reduce surface tension at the 

interface. They have generally been found to be low molecular weight molecules. 

According to their chemical composition, biosurfactants are classified as glycolipids, 

lipopeptides and fatty acids  (Reis et al., 2013).  The current mass produced sources and 

possible applications of a range of biosurfactants are shown in below (Table 1-1). 

Biosurfactants potentially offer notable advantages of reduced toxicity, biodegradability, 

eco-friendliness, bioremediation and digestibility (Banat et al., 2010) over the traditional 

chemical surfactants, and have found their applications in coatings and lubricants, 

pharma, crude oil recovery, health care, cosmetics and food processing industries (Desai 

and Banat, 1997).  

Biosurfactant Class Micro organism Application 
Glycolipids  Rhamnolipids 

(Edwards and Hayashi, 

1965) 

P. aeruginosa and P. putida 

  

Bioremediation,  

Biocontrol agent, 

Antifungal agent, 

Bioremediation 

 

Sophorolipids (Gautam 

and Tyagi, 2006) 

 

Candida bombicola and C. 

apicola 

Emulsifier, MEOR, alkane 

dissimilation 

Trehalose lipids 

(Asselineau and 

Asselineau, 1978) 

 

Rhodococcus spp. and 

Arthrobacter sp. 

Bioremediation, 

Antimicrobial agent 

Mannosylerythritol 

lipids 

(Reis et al., 2013) 

 

Candida antartica 

Neuroreceptor antagonist 

and Kurtzmanomyces sp 

Antimicrobial agent, 

Biomedical application 

Fatty acids Fatty acids, 

phospholipids and 

neutral lipids 

(Gautam and Tyagi, 

2006) 

 

Acinetobacter spp Biomedical applications 

Lipo Peptides Surfactin 

(Arima et al., 1968) 

 

Bacillus subtilis Antimicrobial agent, 

biomedical application 

 

Lichenysin 

(McInerney et al., 

1990) 

B. licheniformis Hemolytic and chelating 

agent 

 

Table 1-1 Major types of biosurfactants 
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The surfactant property is generally associated with the low molecular weight molecules, 

but some macromolecules, like proteins, are also surface active. Nearly all proteins are 

composed of amphiphilic polypeptides, but generally have the hydrophilic parts exposed 

on their surface and the hydrophobic parts buried. Most proteins are sensitive to surface 

effects and foaming will result in denaturation. This denatured proteins exhibits 

surfactant properties attributed to the exposure of hydrophobic groups, which were 

buried in their native structure (Cooper and Kennedy, 2010). Thus while most proteins 

are surfactant to a certain extent, they are not usually surface active in their native state. 

However, proteins that have intrinsic surfactant activity are termed as surfactant proteins. 

The surfactant proteins generally adsorb at air water interfaces. The process of adsorption 

at an air water interface gives rise to an emulsion.  

The surfactant proteins can be grouped into two classes: those that are active in presence 

of associated lipids (e.g., the pulmonary surfactants), and non-lipid-associated globular 

proteins. Both types of proteins and their mechanism of action are further discussed in 

the next sections, with the focus on the non-lipid associated surfactant proteins. 

1.3 Pulmonary Surfactant proteins  

The pulmonary surfactant proteins (SP) are the most well studied group of proteins 

linked with surfactant activity. Pulmonary surfactants are produced by the alveolar 

epithelial cell lining of the lungs to prevent alveolar collapse upon exhalation. Pulmonary 

surfactant is heterogeneous being composed of 90% lipids and 10% proteins by weight, 

the latter representing four surfactant associated proteins, designated as surfactant protein 

(SP)-A, SP-B, SP-C and SP-D. These proteins can be divided into two types, SP-B and 

SP-C are small hydrophobic proteins, while SP-A and SP-D are large hydrophilic 

proteins (Goerke, 1998). 

SP-A and SP-D have collagen-containing calcium-dependent lectins, and are therefore 

referred to as “collectins”. Both proteins are hydrophilic and have calcium dependent 

carbohydrate binding domains involved in innate host-defence functions (Kishore et al., 

2006, Sano and Kuroki, 2005). 
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Figure 1-3 The Schematic structure and relative size of the pulmonary surfactant proteins. SP-A, SP-B, 

SP-C, and SP-D stands for the four different types of surfactant proteins acting near a phospholipid 

bilayer (PL). Image taken from (Griese, 1999) 

The most abundant SP by weight is SP-A. SP-A is an octadecamer made up of ~ 32 kDa 

monomers, interacting with each other via disulphide linkages and noncovalent 

interactions (Griese, 1999). Each SP-A monomer has three structural motifs, a linking 

region that connects a long collagenous region to a globular region (Kishore et al., 2006). 

SP-A and SP-B along with endogenous surfactant are involved in the formation of 

tubular myelin (Goerke, 1998). 

The membrane associated SP-B is a 79 amino acid peptide weighing almost a 17.4- kDa 

(Zaltash et al., 2000, Johansson and Curstedt, 1997). Sp-B has a direct impact on the 

respiratory physiology and absence of it can result in lethal respiratory failure in 

deficient individuals (Melton et al., 2003). SP-B is mainly found in a dimeric state, 

where monomers are linked through three intrachain and one interchain disulphide 

linkages (Zaltash et al., 2000). 

The highly hydrophobic SP-C is expressed by alveolar type II cells (Griese, 1999). SP-C 

is a 35 amino acid, valine rich lipopeptide (Gustafsson et al., 1997). The structure of SP-

C mainly consists of a rigid 3.7 nm long alpha helix and a 2.3 nm central aliphatic 

domain, which is attached to the alpha helix (Johansson and Curstedt, 1997). Two 

palmitoyl chains are also linked to the N-terminus of SP-C via thio-ester bonds, allowing 

it to incorporate into the phospholipid monolayer (Gustafsson et al., 1997). The main 

function of SP-C is to facilitate the spreading of surfactant at the air/water interface 

(Pinto et al., 1995). SP-B is required for the full processing of SP-C and absence of SP-C 

is associated with severe respiratory diseases (Glasser et al., 2003).  

Hydrophilic SP-D surfactant protein weighs almost 43 kDa as a monomer (Zhang et al., 

2001). Electron microscopy shows that the native SP-D consists of 12 monomers 

forming four homologous trimers stabilised by interchain disulfide bonds (Zhang et al., 
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2001). The four trimers are directly linked  to the long collagen-like regions forming a 

cross shaped molecule with a width of approximately 92 nm (Griese, 1999). SP-D has an 

immunological role, but has no surfactant function. It has specific binding sites for 

macrophages and bacterial lipopolysaccharide and modulates the chemotaxis and 

oxidative bursts of macrophages and opsonizes various micro-organisms for easier 

phagocytosis (Griese, 1999).  

To summarise, pulmonary surfactant proteins play an important role in vital respiratory 

process in humans. However, these proteins rely mostly on their exposed amphiphilicity 

for their function and play a crucial role in organising lipids at the interface. It is the lipid 

rich surfactant mixture, which goes on to decrease the surface tension at the interface 

rather than the proteins themselves. Thus these proteins can be considered as mediators 

rather than the principal surfactants. 

1.4 Hydrophobins  

Another type of amphiphilic surfactant protein that has been studied in detail is the 

hydrophobin family. Hydrophobins are a group of surface active proteins that are 

secreted by filamentous fungi.  Hydrophobins are known to fulfil many important 

functions in fungal physiology, forming surface coatings for protection against 

desiccation and wetting, and reducing the surface tension of water to allow growth of 

aerial structures including hyphae and spores (Linder et al., 2005).  

Hydrophobins are small proteins of about 100 amino acids and 10 kDa in size. They have 

four disulphide bridges formed by eight conserved cysteine residues (Hou et al., 2009). 

Hydrophobins are divided into two classes (class I and II) based on differences in 

hydropathy pattern and biophysical properties. Both types self-assemble into an 

amphipathic film at a hydrophilic–hydrophobic interface. The protein aggregates of class 

I hydrophobins are more stable. They resist boiling in detergent and can only be 

dissolved in strong acids such as trifluoroacetic acid (TFA) and formic acid. In contrast, 

class II aggregates are less stable and can be dissolved using aqueous dilutions of organic 

solvents (Bonazza et al., 2015, Hou et al., 2009). 

Upon self-assembling at an interface, hydrophobins can very effectively invert the 

polarity of the surface. The N-terminal part determines wettability of the hydrophilic side 

of the assemblage (Hou et al., 2009). Class I hydrophobins self-assemble at interfaces 

into a monolayer of highly ordered mosaic ultrastructure of 10 nm wide rodlets (Wosten 

and de Vocht, 2000), which share some structural similarity to amyloid-like fibrils. By 
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contrast, class II hydrophobins lack fibrillar structure, but form films with a hexagonal 

structure and distinct repeating units (Paananen et al., 2003). Both the class of 

hydrophobins exist in an initial soluble state (monomeric for class I, and dimeric or 

tetrameric for class II) and transform to the final beta-sheet state, in which they are 

insoluble in water (Wosten and de Vocht, 2000, Meister et al., 2016). Their actions result 

in the formation of different types of highly ordered coatings, as mentioned earlier. 

 

 

Figure 1-4 Cartoon representation of the crystal structure of a hydrophobin class II monomer showing 

four symmetrically arranged disulphide bridges in yellow and orange, with the α-helix shown in red and 

the strands of the β-barrel in yellow. Diagram was created from PDB file2b97 using PyMOL software 

(Hakanpaa et al., 2006). 

The first crystal structure of a class II hydrophobin from Trichoderma reesei was solved 

at 1.0 Å resolution revealing that this globular protein is made up of a central β-barrel 

structure, consisting of two β-hairpins, and one short α-helix  (Hakanpää et al., 2004). 

Hydrophobin exhibits a novel fold, which is as shown in Figure 1-4. 

Hydrophobin exposes about half of its hydrophobic aliphatic residues to the surface, 

unlike most soluble proteins, and has a hydrophobic residues in the core that stabilises 

the structure (Linder et al., 2005). The disulphide bridges formed by cysteine residues 

provide further stabilization, and ensure that the protein will remain globular. To contrast, 
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other protein surfactant like Rsn2, Latherin/SPLUNC1 (discussed later in detail) also 

contain a disulphide each, but are not as topologically constrained by them. 

The unique properties of the hydrophobins have been appreciated and applied in 

numerous roles including: biomedical applications, fusion partners for protein 

purification and anti-fouling agents (Wösten and Scholtmeijer, 2015). 

1.5 Biofilm Surface Layer Protein A  

Bacillus subtilis is a gram-positive bacterium dwelling in soil. The bacteria often 

aggregate to form a community of individuals referred to as a biofilm (Ostrowski et al., 

2011). This biofilm provides resistance to liquid wetting. Studies have shown that the 

surface topology of biofilms plays a vital role in water repellence (Epstein et al., 2011, 

Ostrowski et al., 2011). Further investigation has shown that in B. subtilis, a biofilm 

surface layer protein A (BslA1) is the main contributor for repellence to surface wetting 

(Kobayashi and Iwano, 2012). BslA1 is a surfactant protein that forms a hydrophobic 

coating outside of the biofilm matrix, and is therefore referred to as bacterial raincoat 

(Hofer, 2013). 

Structure of BslA1 was recently solved using X-ray crystallography and its fold revealed 

that BslA1 belongs to a member of the immunoglobulin superfamily. The structure of 

BslA1 consists of one 310-helix and two β-sheets, one four stranded and one three 

stranded, stacked together. Linked to this main scaffold is a highly hydrophobic “cap” β-

sheet region,  comprising three short β-strands (Hofer, 2013). The crystal structure 

revealed two forms of the protein, one in which hydrophobic amino acids of the cap 

region are buried within the structure, which allows the protein to be monomeric in 

aqueous solution. The alternative conformation is believed to reveal what happens when 

BslA1 is at an air-water interface. The protein undergoes a limited conformational 

change, exposing the hydrophobic amino acids of the cap region to the hydrophobic 

surface and can then self-assemble into an ordered 2D rectangular lattice that stabilizes 

the interface (Bromley et al., 2015, Brandani et al., 2015). 
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Figure 1-5 Cartoon diagram showing structure of BslA1 determined by X-ray crystallography coloured 

red for α-helix and yellow for β-strand. The cap region, made up of three β-strands, is highlighted using 

blue colour. Image created from PDB file 4bhu using PyMOL software (Hobley et al., 2013b) 

The importance of the “cap” region residues was confirmed by replacing individual 

leucines with lysine residues in the centre of the cap. The resulting disruption in the 

formation of the 2D lattice suggests that leucine residues are involved in inter-monomer 

interactions. Thus proving the importance of the hydrophobic residues in cap region 

needed for interfacial stabilization of biofilms (Hobley, 2013). 

1.6 Latherin and SPLUNC1 

Latherin is a surfactant protein, identified from the sweat and saliva of horses and other 

equine species. It is believed to play a vital role in the process of evaporative cooling by 

wetting the waterproofed pelt (McDonald et al., 2009). Like humans, horses regulate 

their body temperature by sweating, but equine sweat has low salt and high protein (5-10 

g/L) content compared with that of humans. The horse sweat gets readily converted into 

foam and this foaming property is attributed to latherin, a surfactant protein. Even at low 

concentrations, latherin has the ability to reduce water surface tension. (Eckersall et al., 

1982, McDonald et al., 2009).  

Latherin, a 22.6kDa protein, is acidic and has a pI of 4.11 (McDonald et al., 2009). 

Latherin is composed of 228 amino acids and is exceptionally rich in leucine residues 

(Vance et al., 2014).  
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Figure 1-6 Cartoon diagram showing solution structure of latherin coloured red for α-helix and yellow for 

β-sheet. Image created from PDB file 3ZPM using PyMOL software (Vance et al., 2013a) 

Latherin is monomeric in solution and displays an approximately cylindrical-shaped 

structure, as determined by NMR spectroscopy (Figure 1-6). Latherin's structure consists 

of a four stranded β-sheet, two antiparallel α-helices, and two flexible, leucine-rich loops 

at one end. Like most globular proteins, latherin has a hydrophobic core and displays no 

obvious signs of being particularly amphiphilic (Vance et al., 2013a). 

 

Figure 1-7 Model showing different stages of Latherin unfolding from globular solution state to planar 

conformation state at an air : water interface. Taken from (Vance et al., 2013a). 

During interfacial association, latherin is proposed to undergo major conformational 

changes as shown in Figure 1-7. This is backed by the neutron-reflection measurements 

data, which show that latherin adsorbs at the interface forming a 1 nm thick monolayer 
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(Kennedy, 2011). Initial interfacial recognition is thought to be driven by the leucine rich 

flexible loops followed by opening of the two helices into a planar conformation, in 

which its hydrophobic core is exposed to the interface, retaining its secondary structure 

(Vance et al., 2013a). 

The conserved amino acid sequence of latherin belongs to a family of the palate, lung, 

and nasal epithelium clone (PLUNC) proteins (Kennedy, 2011). PLUNCs are the group 

of hydrophobic proteins with a pair of highly conserved cysteines and are encoded by 

sequential genes present on chromosome 20 (Gakhar et al., 2010, Bingle et al., 2004). 

PLUNCs have a role in host defence system and have been shown to be bactericidal to a 

number of bacteria including Pseudomonas aeruginosa and Mycoplasma pneumoniae 

(Di, 2011, Britto and Cohn, 2015).  

SPLUNC1, also known as Human short PLUNC, is a member of the PLUNC family 

(Garcia-Caballero et al., 2009). SPLUNC1 has been found to be present in human 

respiratory system, mammalian salivary glands and oral cavities (Tarran and Redinbo, 

2014). SPLUNC1, a 237 amino acids protein, share high leucine composition and 28% 

sequence similarity with latherin (Kennedy, 2011).  

SP-B and SP-C are the surface active proteins found in lungs but not in the upper 

respiratory tract, suggesting that a different surfactant molecule might be present. 

SPLUNC1, the most abundant secreted protein in the airways, is surface active at below 

physiological concentration in many assays (Gakhar et al., 2010).  

The recently solved X-ray crystal structure of SPLUNC 1 shows that, a SPLUNC1 

monomer consists of a central six-stranded antiparallel β-sheet, flanked by six α-helices. 

SPLUNC1 exhibits structural similarity to the Latherin and N-terminal half of BPI 

(bactericidal permeability increasing protein). Like latherin, SPLUNC1 is suggested to 

undergo a conformational change at an interface. (Garland et al., 2013). 

Mutation of four leucine residues to alanine in α-helix (α4) and/or addition of a 

disulphide mutation have inhibited bacteriostatic, surfactant, and LPS binding ability of 

the SPLUNC1 protein. Introduction of the disulphide bond is expected to restrict the 

conformational freedom of the protein and inhibited the SPLUNC1’s ability to function. 

(Walton et al., 2016). 
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1.7 Ranaspumin2  

The surface tension at an air–water interface is reduced by one of the component of 

Túngara frog foam nest, named Ranaspumin 2 (Rsn2). The remarkable features of this 

protein of being both surface active and biocompatible have formed the basis of this 

investigation. 

1.7.1 Túngara frog  

Túngara frog (Engystomops pustulosus; formerly known as Physalaemus pustulosus) 

(Figure 1-8) is one 650 of species belonging to the Leptodactylidae family (Ron et al., 

2006). This frog is very commonly found in moist, lowland sites from South and Central 

America and the Caribbean (Weigt et al., 2005). The frog’s skin has many small lesions 

(pustular), hence known as pustulosus (Ryan, 1985). 

 

Figure 1-8 Foam nest production by mating male and female Engystomops pustulosus Image courtesy of 

Alan Cooper and Malcolm Kennedy. 

Once a female has selected to mate with one of the calling males, the female frog carries 

the male in amplexus to a nesting spot, different from the calling site. There she lays a 

combination of eggs and foam precursor fluid. The male fertilises the eggs and whip up 

the fluid with their feet to make a foam nest for the eggs at the side of the pond (Ryan, 

1980). The well-studied nesting process usually takes about an hour and results in 

formation of surface floating foam nest containing 100–200 eggs (Dalgetty and Kennedy, 

2010). The foam nests are then left unattended for the remaining development from eggs 

to tadpoles. The eggs in the foam will hatch in two days giving rise to tadpoles. The 

tadpoles will survive by eating detritus in the water and will metamorphose in about 4 

weeks. If the pool dries out, the tadpoles will congregate beneath the foam, where they 
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can survive for up to five days. Tadpoles are sexually mature after a few months (Ryan, 

1985). At the point when tadpoles are ready to hatch, the foam dissolves allowing the 

tadpoles to escape into surrounding water. 

1.7.2 Foam nest 

The frog foam nest displays interesting biochemical and biophysical properties. They are 

also stable for up to 10 days (without eggs), although made up of foam is remarkable in 

itself.  It can also maintain a stable environmental temperature and act as a mini-

incubator for developing eggs and tadpoles. Being rich in carbohydrate, which naturally 

holds water, the nest resists evaporation in the tropical heat. 

These foam nests are not only mechanically stable to physical handling, but are also 

flexible enough to adapt to various conformations. They are rich in carbohydrates and 

proteins, but are not vulnerable to predation. They have also developed a mechanism for 

resistance to microbial attack, but this is not due to the foaming surfactant causing cell 

membrane disruption, as the foams are compatible with the eggs and young embryos. 

This striking feature of biocompatibility along with surface activity has suggested many 

potential biomedical applications and further research. 

 

Figure 1-9  Túngara frog foam nest with eggs seen as dots. Image courtesy of Prof Malcolm Kennedy. 

1.7.3 Foam nests components 

The túngara foam nests have a density of approximately 0.1 g/cm
3
. Analysis of the foam 

fluid components revealed that it is made up of 1–2 mg/ml of total protein and similar 

quantities of carbohydrate. There was an absence of fat and lipid, signifying a lack of any 

conventional small molecule surfactants. (Cooper and Kennedy, 2010). Further 

investigations resulted in discovery of six proteins, consequently named as 

“ranaspumins” (Latin: rana = frog; spuma = froth, foam). 
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Rsn1, an 11.4 kDa protein, belongs to the cystatin super family. It shows sequence 

similarity and fold similarity with the cystatins. Its exact function is unknown, but it is 

believed to function alongside Rsn2 to maintain surface activity of the bulk foam 

(Fleming et al., 2009). 

Rsn2, an 11 kDa protein, is the main surfactant protein in the foam nest (Cooper et al., 

2005). Rsn2 is discussed in detail in the next section 1.7.4. 

 

Figure 1-10 Cartoon representation of the frog foam nest components with their proposed role. (Fleming 

et al., 2009) 

Rsn 3, 4, 5 & 6 fall in the range of 18-26 kDa in weight and have sequence similarities to 

the sugar binding, lectin family of proteins. Rsn6 is a galactose binding C-type lectin; 

whereas Rsn3, 4 & 5 are fucose binding F-type “fucolectins”.  They may play a 

defensive role in protection of foam nest against microorganisms and insects like 

predators. Some of the lectins bind to target sugars on the surface of bacteria and 

decreases their ability to form aggregates. The agglutination activity of lectins has been 

shown to upset the gut of insects, perhaps discouraging them from using foam as a food 

(Cooper and Kennedy, 2010, Fleming et al., 2009). The lectin's sugar binding site is 

hypothesized to interact with the carbohydrates and provide mechanical resilience to the 

foam. 

1.7.4 Ranaspumin2 

Ranaspumin 2 (Rsn2) is a small, moderately surfactant protein secreted by female 

túngara frog (Kennedy, 2011). Rsn2 is rich in polar amino acids like lysine and aspartic 

acid, and has acidic pI of 5.16 (Fleming et al., 2009). At the C-terminus, Rsn2 displays 

unusual amino acid sequence where 6 out of its 21 aspartic acid residues are found 

consecutively, making the C-terminal region highly negatively charged. 
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Rsn2’s monomeric solution structure was solved using NMR spectroscopy (Mackenzie et 

al., 2009). The structure of Rsn2 consists of a four stranded antiparallel β-sheet and a 

kinked α-helix lying perpendicular to the β-sheet. A disulphide bond links the third and 

fourth strands of the β-sheet, while the hydrophobic N-terminus and hydrophilic C-

terminus remain mostly disordered. Rsn2 exhibits a cystatin-like fold but cystatin 

protease inhibitor activity has not been detected (Mackenzie et al., 2009).  

 

Figure 1-11 Cartoon diagram showing solution structure of Rsn2 coloured red for α-helix and yellow for 

β-sheet. Image created from PDB file 2WGO using PyMOL software (Mackenzie et al., 2009). 

Rsn2 is monomeric in solution and its structure does not obviously establish it as an 

amphipathic protein. It has been hypothesised, based on the neutron reflectivity data, that 

Rsn2 needs to undergo a conformational change to enable its interfacially active. It has 

been proposed that Rsn2 might undergo a clamshell-like opening when it approaches the 

interface (Mackenzie et al., 2009).  

 

Figure 1-12 Cartoon diagram showing the hypothesised open Rsn2 structure at the air –water interface 

and the closed globular form in solution (Mackenzie et al., 2009). 

N-terminal 

C-terminal 
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Further investigation using coarse-grained molecular dynamics simulations showed that 

interfacial adsorption of Rsn2 is a two-step process. The initial interaction with an 

interface is made by the flexible N-terminal tail, which is followed by a conformational 

change in which the helix ‘unhinges’ from the β-sheet exposing its hydrophobic core. 

Thus aligning the hydrophilic exterior in one plane, directed into the water, and retaining 

its secondary structure (Morris et al., 2016). The infrared reflection absorption 

spectroscopy (IRRAS) data and the Neutron-scattering data confirm that this is the case 

(Mackenzie et al., 2009). 

1.8 Comparison of the different surfactant proteins 

The foremost difference between the non-lipid-associated globular surfactant proteins, 

described earlier in this chapter is the diversity in their origin. Proteins with intrinsic 

surfactant activity are produced by organisms ranging from single-cell prokaryotes to 

mammals, in each case supporting a different biological function. 

Even though they have similar surfactant properties, none of the proteins show a 

similarity in their structure, nor do they have any obviously conserved amino acid 

sequence. Even the mechanism of action by which they interact at the interface is 

different, as mentioned earlier in each respective protein section.  

Although all surfactant proteins are ultimately amphipathic in nature, not all proteins 

have amphiphilic surface charge in their “native” conformation (Figure 1-13). Proteins 

like hydrophobin and BslA1 have patches of polar and non-polar regions, while Rsn2 and 

latherin have predominantly polar surfaces similar to the majority of globular proteins 

(Hakanpää et al., 2004, Mackenzie et al., 2009, Vance et al., 2013a). The later rely on 

their ability to undergo conformational change to expose the core hydrophobic residues 

to interact at the interface (Mackenzie et al., 2009, Vance et al., 2013a). In contrast 

hydrophobin and BslA1 rely on their ability to generate a surface active film via 

intermolecular association (Meister et al., 2016, Hobley et al., 2013b). Unlike 

hydrophobin, BslA1 also undergoes a small conformational change in the cap region to 

make hydrophobic interactions (Hobley et al., 2015).  
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Figure 1-13 A comparison of the surfactant proteins hydrophobin II (A) and BslA1 (B) is shown. The 

cartoon figures (A1 and B1) represent the structure of each protein with α-helices shown in red, β-strands 

in yellow and loops in green. The surface charge of the proteins are represented in figures (A2, A3, B2, 

B3) by red for negative electrostatic potential, blue for positive and grey for neutral, where the panels 2 

and 3 show opposite faces of proteins. All the surface charge figures are contoured to same range of 

potentials (-80 to + 80) and the proteins are shown at the same scale. 
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Figure 1-14 A comparison of the surfactant protein latherin  (C) and Rsn2 (D) is shown. The cartoon 

figures (C1 and D1) represent the structure of each protein with α-helices shown in red, β-strands in 

yellow and loops in green. The surface charge of the proteins are represented in figures (C2, C3, D2, D3) 

by red for negative electrostatic potential, blue for positive and grey for neutral, where the panels 2 and 3 

show opposite faces of proteins. All the surface charge figures are contoured to same range of potentials 

(-80 to + 80) and the proteins are shown at the same scale. 
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Among the globular surfactants, hydrophobins are the strongest surfactant followed by 

BslA1, and then by latherin and Rsn2. Rsn2 and latherin are considered moderate 

surfactant proteins. This comparison is made on the basis of the final interfacial surface 

tension obtained after the action of the surfactant proteins, which for hydrophobin is 20 

mN⋅m−1
, compared to 50 mN⋅m−1 

for Rsn2 (table1-2). The aim of this work is to apply 

the surfactant and biocompatible property of Rsn2, for various cell based biological 

applications.  

Surfactant protein Final Interfacial 

surface tension 

Reference 

Hydrophobin (class II) 20 mN⋅m−1
 (Alexandrov et al., 2012) 

BslA1 27 mN⋅m−1
 (Bonmatin et al., 1994) 

Latherin 43 mN⋅m−1
 (Vance, 2012) 

Rsn2 50 mN⋅m−1
 (Morris et al., 2016) 

 

Table 1-2 Final reduction in surface tension by the action of surfactant proteins. Final interfacial surface 

tension measurements for Hydrophobins, BslA1 and Rsn2 were made suing pendant drop method; while 

microtrough tensiometer was used for Latherin.  Note – The final interfacial surface tension value gives an 

estimate for comparison among the surfactant proteins. The method used, along with time and protein 

concentration required to reduce the interfacial surface tension are not the same in every instance, so 

some minor difference is expected in the values . 

1.9 Aims 

The aim of this project was to use the unique features of Rsn2 protein to develop various 

biotechnological applications with a particular focus on cell engineering.  

The project developed along four main themes: approaches for cell patterning by 

controlling cell adhesion on surfaces that do not otherwise support cell adhesion; analysis 

of bone cell growth on surfaces coated with integrin binding sequence-Rsn2 fusion 

proteins; production of  Rsn2 stabilised droplet emulsions; and, a method to solubilise 

C60 (Fullerene). These will each be described in the subsequent chapters. 
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2 Cell patterning with Rsn2  
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2.1 Introduction 

For many tissue engineering approaches, cells are seeded into scaffolds that support 

subsequent tissue formation. A range of scaffolds that have desirable mechanical 

properties are available, but most of them are hydrophobic (non-wettable) polymer to 

which cells have difficulty attaching (Chan and Leong, 2008a). Thus there is a need to 

engineer a material surface to promote cell adhesion and enhance tissue function.  

The factors that influence cell-adhesiveness to the surface materials are of significant 

interest in the bioengineering of complex tissues. Many approaches have been tested, 

including modifying the chemical and topographical properties of the surfaces to enhance 

cell adhesion. These alterations in the physicochemical properties of the material surface 

will influence protein adsorption and thereby cell adhesion (Welle et al., 2014). Cell 

adhesion is mediated by cell adhesion molecules like cadherins and integrins. 

Modification of the material surface to enhance cell adhesion is described in detail in 

section 3.1 of this thesis. 

The interaction of living cells with a scaffold material is mediated through the integrin 

receptors, which will interact with the protein film deposited on the material surface. 

This provides an opportunity to guide cell attachment and development by controlling 

the pattern of protein deposition. Cell patterning provides a useful tool for research in 

overcoming the limitation of conventional cell culture techniques. Even cell patterning 

has some limitations, such as having only two dimensions, though research is underway 

to develop 3D scaffolds, but it brings us a step closer to tissue engineering.  

Patterns of proteins and cells have been generated using photolithographic, soft 

lithographic, micro-contact printing, Inkjet printing and dip coating techniques. A brief 

overview of these widely used patterning techniques is follows. 

Kleinfeld and colleagues used the photolithography process from electronics and created 

new methods for cell patterning (Kam et al., 2013). Photolithography works on the 

principle that when radiation is applied to the photoresist material layered on a master, 

only the photoresist to which radiation is applied becomes soluble in particular solvents, 

which depends on the type of the photoresist used. Thus a pattern is developed by 

washing the soluble photoresist with a solvent and leaving the insoluble photoresist 

intact. This method can be used to create patterns on substrate with features at the 

precision of submicron level (less than 100 nm) (Nie and Kumacheva, 2008). This 
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method is one of the most popular methods for patterning cells and proteins. Although 

this method is highly reproducible, it requires specialised equipment and clean room 

facilities for producing the substrate along with being laborious and expensive. Soft 

lithography, a modified version of lithography, is a versatile technique for generating 

patterns of proteins and cells. 

Soft lithography, initially developed by Whitesides and colleagues, are so called because 

they involve production of a stamp, mould or mask made from a soft elastomeric 

material by means of lithography. (Qin et al., 2010a). This elastomeric stamp can be used 

to copy patterns on to another material through surface direct printing, position limited 

adsorption, or masking. Typically poly(dimethylsiloxane) (PDMS) is used as a soft 

elastomeric material of choice. This technique overcomes many limitations of 

photolithography and offer some advantages such as being inexpensive, being easy to 

develop, having the ability to pattern a variety of substrates, and not requiring specialized 

equipment or chemicals (Ratner and Bryant, 2004). However, most of the soft 

lithography techniques are restricted to substrates such as gold, silver, or silicon, whereas 

for many applications, other substrates such as polymers are more desirable. To 

overcome this, micro-contact printing (µCP) techniques have been developed. 

In the µCP approach, different patterns can be generated on a variety of substrate 

surfaces (James et al., 1996), including patterned self assembled monolayers (SAMs) 

(Kumar and Whitesides, 1993). µCP has been used to generate patterns on different 

substrates and functionalised them using  proteins, DNA  as well as the organic thiol 

solutions used for gold functionalisation (Bernard et al., 2000, Hui et al., 2002)  

Another method for delivering fine patterns using liquid "inks" is inkjet printing. In this 

method, cell-adhesive materials are used instead of ink to produce a patterned substrate. 

Inkjet printers are an alternative patterning technology that produces  droplets of tens of 

microns in diameter, which are deposited onto a material surface, and develop into a 

pattern when the solvent evaporates (Cui et al., 2014, Cui et al., 2012)  (Nie and 

Kumacheva, 2008). The inkjet printing technique offers advantages of being cost 

effective and, unlike for soft lithography, it is easy to change the pattern from one printed 

item to another at a resolution of 1,400 dpi in 3D (Cui et al., 2014) 

Some other proteins and peptides, like hydrophobins and polydopamine (PDA), have 

been used for cell patterning. Like Rsn2, hydrophobins and PDA can be used to make 

proteinaceous coatings on the polymer surface and render them biocompatible (Janssen 
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et al., 2002a, Huang et al., 2016). Thus different proteins have been tested in the past to 

promote cell adhesion. This chapter will focus on the development of patterned scaffolds 

using a naturally surfactant protein, Rsn2. 

As described earlier in section 1.7.4, Rsn2 was identified as one of the foam nest 

components of the Túngara frog (Fleming et al., 2009). The foam protein from these 

nests showed significant surfactant properties while retaining biocompatibility with 

fertilized eggs, sperms and young embryos(Cooper and Kennedy, 2010). It is unusual for 

a protein to be highly surfactant and this feature of the Rsn2 protein was used to develop 

approaches to pattern hydrophobic surfaces thereby directing cell adhesion. 

 It was hypothesized that the use of Rsn2 was expected to be beneficial compared to 

other patterning techniques because of the removal of any need for chemical treatment.  

Cell patterning is a process to control the spatial position of the cells onto a substrate. In 

this chapter, the cell patterning is obtained by dip coating Rsn2 protein onto the surface 

and seeding it with cells. Strictly speaking, this is more of controlling cell adhesion onto 

a large surface area and not forming fine cell patterning in microns. 

2.2 Aim  

The aim of the project was to develop a set of tools that allow cell patterning on a range 

of hydrophobic scaffolds. 

  



39 

 

2.3 Methods and Materials 

2.3.1 Rsn2 production 

Recombinant Rsn2 and iLOVRsn2 expression constructs (generated by Dr S.J. Vance) 

were utilised for Rsn2 and iLOVRsn2 expression and purification. 

2.3.1.1 Protein Expression 

Rsn2 and iLOVRsn2 were expressed using Novagen’s pET28 expression system. The 

strong bacteriophage T7 promoter has the control of the gene cloned into a pET plasmid. 

This has an advantage over host transcription as T7 RNA polymerase is selective and 

much more active as compared to its host counterpart. Basal expression is inhibited by a 

Lac repressor binding sequence incorporated in the promoter assisted by expression of 

lac repressor protein. This control element regulates expression of both the target gene 

and the T7 polymerase gene integrated into the host genome. Once induced using the 

lactose analog, isopropyl β-D-1-thiogalactopyranoside (IPTG), almost all of the host 

cell’s resources are transferred towards the target gene expression. As a result, high levels 

of expression of the desired protein can be achieved in just a few hours after induction. 

Also, it is possible to modulate the expression level by varying the concentration of 

IPTG, which can help to optimise the soluble yield of target protein (Rosano and 

Ceccarelli, 2014). 

2.3.1.1.1 Transformation 

Competent E.Coli. were transformed with a pET28(b) based, kanamycin resistant 

expression vector carrying the coding sequence for Rsn2 expressed as a fusion protein 

with a thrombin cleavable N-terminal 6-His tag. Plasmid was incubated with chemically 

competent BL21 (DE3) cells (Novagen) for 30 minutes on ice. The mixture was then 

heat-shocked at 42
○
C for 30 seconds and immediately returned to ice. Transformed cells 

were grown in SOC media for 1 hour and were spread on LB plates containing 

kanamycin. Plates were then incubated overnight at 37
○
C. 

2.3.1.1.2 Protein Production 

Overnight cultures were set up and used at 1:100 dilutions to seed 8  500 mL LB broth 

in 2 L conical flasks. The 500 mL cultures were incubated with shaking (200 rpm) at 

37°C until the OD600 reached 0.6-0.8. The cells were then induced using IPTG at a final 

concentration of 1 mM and were incubated for a further 3 hrs. Cells were harvested by 

centrifugation at 4°C for 25 minutes. The supernatant was discarded and the cells were 
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re-suspended in 20 mL of binding buffer (20 mM Tris, 500 mM NaCl, 5 mM Imidazole, 

pH 8) for 4 L of culture. 

2.3.1.2 Protein Purification 

The process of Rsn2 and iLOVRsn2 purification can be divided into three key steps: cell 

lysis and insoluble cell debris removal; Ni
2+

 -affinity chromatography; and analysis using 

SDS-PAGE. 

2.3.1.2.1 Cell Lysis and Insoluble Cell Debris Removal 

Two methods were assessed for cell lysis, namely detergent lysis and sonication. The test 

expression using detergent solution (Bugbuster, Novagen) for cell lysis resulted in a 

greater proportion of target protein being seen in the insoluble fraction. Thus sonication 

was used for cell lysis in large scale expressions, which gave less insoluble target 

protein. A plausible explanation for the difference between the lysis methods is that the 

amphiphilic nature of the detergent causes denaturation of protein resulting in 

aggregation. Thus sonication was deemed acceptable for cell lysis.   

For sonication, 500 U Benzonase (Novagen) and an EDTA free protease inhibitor tablet 

(Roche) were added to the re-suspended bacterial pellets and sonicated on ice at 10 

microns amplitude for 15 cycles of 30 seconds on and 30 seconds off. 

Following sonication, insoluble cell debris was removed by high speed centrifugation at 

40,000 g for 25 minutes and careful decanting of the supernatant. The supernatant was 

filtered using 0.2 μm filter leaving a solution containing the protein of interest along with 

the remaining soluble cell components. 

2.3.1.2.2 Ni2+-Affinity Chromatography 

Rsn2 and iLOVRsn2 fusion proteins were expressed with six consecutive histidine 

residues at the N-terminus and purified using metal chelation chromatography (Ni
2+

 

bound within a nitrilotriacetic acid (Ni
2+

-NTA) column). Ni
2+

-affinity chromatography 

was chosen for protein purification because of its simplicity and reliability (Bornhorst 

and Falke, 2000). 

The cleared lysate was passed through an Econo pack (BioRad) column loaded with 5 x 

ml bed of Ni-NTA His-bind Super flow (Novagen), previously equilibrated with binding 

buffer. The flow through was collected and the column washed with binding buffer 

containing 5 mM imidazole. The poly-histidine fusion tag (His-tag) protein sequence 

binds to Ni
2+

 ions, which are immobilized on the Ni-NTA Resin (Bornhorst and Falke, 
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2000, Khan et al., 2006). Non-specific binding via electrostatic interactions was inhibited 

by the presence of NaCl in the buffer. The column was then washed with wash buffer  

(20 mM Tris, 500 mM NaCl, 25 mM Imidazole, pH 8) containing 25 mM imidazole to 

remove weakly bound proteins. This was followed by elution in buffer containing a high 

concentration of imidazole (300 mM), which displaces the bound histidines. Finally a 1 

M imidazole wash was applied to ensure that the column was clean before re-

equilibration in binding buffer. 

2.3.1.2.3 SDS-PAGE  

The success of the protein purification was determined by SDS-PAGE (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis). The underlying principle is to use an 

electric field to displace charged protein-SDS complexes through a porous matrix and 

separating them on the basis of their molecular weight.  

The lysate and flow through samples were diluted to a final volume (in μl) which was 

150 times the OD600 at harvest to ensure even loading of the gel. The samples were 

mixed with SDS-PAGE loading buffer and then heated at 85
○
C for ten minutes before 

loading on the gel. SDS was added to mask protein intrinsic charge and to impart 

negative charge to the protein, generating unfolded proteins into linear chain depending 

on its size. Glycerol was added to render density to the loading sample and the 

bromophenol blue to track the electrophoresis progress of the gel. Upon application of 

electric voltage, the proteins will get separated based on their size by a sieving 

mechanism. Gels were then stained with Coomassie Brilliant Blue Stain and destained in 

‘Coomassie Destain Solution’ (70% distilled H2O, 15% CH3OH and 15% CH3COOH) to 

visualise the protein bands. 

2.3.2 Pendant drop tensiometry  

The purified Rsn2 proteins were assessed for functionality by evaluating their surface 

activity by pendant drop measurement. Rsn2, being a surfactant protein, should act on 

the air-water/air-oil interface and reduce the surface tension and so affect the shape of the 

pendant shaped droplet formed during the experiment.  

Pendant drop experiments were performed on a Kr¨uss EasyDrop tensiometer. Rsn2 was 

diluted in MilliQ water and immediately placed in a syringe with a needle diameter of 

1.83 mm. Images of the pendant drop were captured by a CCD camera and their shapes 

fitted to the Young-Laplace equation using  Kr¨uss software to determine the interfacial 

tension. 
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2.3.3 Wettability  

The effect on the wettability of surfaces coated with Rsn2 was assessed using an 

environmental scanning electron microscope (ESEM) by observing the formation of 

microscopic water droplets on samples in an environment held at 100% relative humidity 

(RH).  

 Glass coverslips to be used were thoroughly cleaned with concentrated nitric acid, rinsed 

twice with distilled water and dried overnight. Hydrophobic surfaces were prepared by 

dipping only half of the coverslip in silanizing reagent (dimethyldichlorosilane) for 5 

minutes and again drying overnight. Only the silanized half of the coverslip was dipped 

in 1 mg/ml of Rsn2. Any excess Rsn2 was removed by dipping in distilled water twice 

before subjecting to ESEM. 

Then the images of Rsn2 coated and non-coated surface were taken after 30, 70 &120 

minutes. The obtained ESEM images were subjected to ImageJ analysis to calculate the 

percentage of the area covered by water droplets on coated and non-coated surfaces.  

2.3.4 Contact Angle  

Contact angle measurements were performed by dip coating half of a clean glass slide 

with protein sample (1 mg/ml). Any excess Rsn2 was removed by dipping in distilled 

water twice and air drying before subjecting to water contact angle measurements. Then 

water drops of uniform volumes of 20 μL were transferred onto a half coated glass slide 

and the contact angle of each droplet measured at room temperature. Contact angle 

measurements were carried out using the sessile drop technique with a KSV CAM 100 

contact angle goniometer (KSV Instruments, USA) on Rsn2 coated and non-coated 

surfaces. High contrast images of static water droplets were recorded and CAM 100 

software was used to determine the water contact angle.  

Similarly to assess relative hydrophobicity, water contact angle was measured on a range 

of materials including silanized glass, polycarbonate (PC), polytetrafluoroethylene 

(PTFE), poly(methyl methacrylate) (PMMA), Nylon, polystyrene (PS), polypropylene 

(PP), ACLAR and polydimethylsiloxane (PDMS). Contact angle measurements were 

made on the Rsn2 coated and non-coated surfaces for each material. Mean and standard 

deviation were calculated using data from three set of experiments. 



43 

 

2.3.5 Persistence 

Fluorescence from the FMN of the iLOV fusion protein in iLOVRsn2 was used to check 

the longevity of Rsn2 coating on a range of hydrophobic surfaces. All the surfaces used 

were cleaned with 70% ethanol and then rising twice with water. Thereafter fluorescent 

iLOV-Rsn2 protein (1 mg/ml) was applied onto each material surface and incubated for 

one minute. Excess protein was removed by extensive, rapid rinsing with water. The 

protein-coated material was incubated in PBS at 37⁰C and fluorescence microscopy was 

carried out every day for 10 days.   The range of materials tested in this experiment were 

– ACLAR (Agar scientific Ltd.), silanized glass, Nescofilm™, nylon (Good Fellow, 

Ltd.), polycarbonate (PC) (Good Fellow, Ltd.), polydimethylsiloxane (PDMS), 

Polymethyl methacrylate (PMMA) (Good Fellow, Ltd.), polypropylene (PP) (Good 

Fellow, Ltd.) and polystyrene (PS) (Good Fellow, Ltd.). 

To avoid the loss of fluorescence signal due to photobleaching, optimisation was done in 

order to find out the duration of exposure after which bleaching effects may occur. Once 

determined, all the samples were exposed under blue light for the same duration (400 

mm, which is less than the time required for photobleaching), while keeping numerical 

aperture constant. 

 To calculate and eliminate the effects of fluctuations in the intensity of the light source, 

autofluorescence from the white filter paper (whatman lens cleaning tissue, GE 

healthcare) was used as a control along with neutral density filters (Zeiss). Fluorescence 

images of iLOVRsn2 coated and non-coated regions were exported to ImageJ to quantify 

the intensity of fluorescence. Obtained intensity of fluorescence were then normalised by 

dividing with the value of intensity obtained using filter-2 (% transmission = 53.6%). 

 While conducting fluorescence microscopy, background signals can affect the reliability 

and quality of the results, hence background signals were subtracted before making any 

quantifications using the formula, T (total signal) = Signal + Background. 

2.3.6 Routine cell culture  

Cell culture work was performed aseptically at room temperature using laminar flow cell 

culture hoods and cells were cultured in an incubator at 37°C under humidified 

conditions with ventilation of 5% CO2. Cells were maintained in Dulbecco's Modified 

Eagle's Medium (DMEM) (PAA Laboratories) supplemented with 10% Foetal bovine 

serum (FBS, Invitrogen) and 1% penicillin and streptomycin (Sigma) unless otherwise 

stated 
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Fibroblast cell lines (h-TERT, Lonza, USA) were seeded into a 75 cm
2
 (T-75) culture 

flask (BD Biosciences, San Jose, CA, USA) containing medium and incubated. After 48 

hrs in culture, the non-adherent cells were discarded and cells were fed with fresh 

medium. Medium was replaced once a week. Cells were allowed to reach 70-80% 

confluence and then the cells were passaged. Briefly, the culture medium was aspirated 

and the cells washed in HEPES saline following which 5 ml trypsin was added (PAA 

Laboratories) and incubated at 37°C for 5 minutes. The action of trypsination was 

neutralised by adding 5 ml medium and a cell count was performed using a Neuber 

chamber. The cells were then seeded in a 150 cm
2
 culture flask (BD Biosciences, San 

Jose, CA, USA) for sub culture. 

2.3.7 Fabrication of PDMS 

Polydimethylsiloxane (PDMS) was made by properly mixing PDMS 184 polymer 

solution 90% (Wt/Wt) (Sylgard® 184 Silicone Elastomer, Dow Corning, UK) with  10% 

(Wt/Wt) curing agent.  The mixture was kept under vacuum for 30 minutes to de-gas it 

and remove any bubbles. The mixture was then transferred to a sterile petri dish and left 

to set overnight at 180⁰C. Solidified PDMS was treated with n-pentane to remove 

unbound DMS in order to remove the capacity for self-healing of the PDMS surface thus 

avoiding peeling off of the protein coat (Lee et al., 2003). PDMS casts were sterilised by 

washing in 70% alcohol followed by rinsing in sterile water twice. PDMS casts were 

then dried using sterile-filtered nitrogen gas in preparation for cell patterning 

experiments.  

2.3.8 Cell Patterning 

Cell culture substrates made of PDMS, PS and glass were rinsed with 70% alcohol to 

sterilise them and dried. Glass was further subjected to salinization, by adding a 

organofunctional alkoxysilane molecules to the surface of the glass, which will increase 

its hydrophobicity and cell selectivity. A pattern was developed on each substrate by dip 

coating half of each substrate with Rsn2 at a concentration of 1 mg/ml for 1 minute 

before rinsing with sterile PBS. A confluent flask of h-TERT cells was trypsinised and 

used to seed the substrates homogenously. Cells were incubated at 37°C for up to 72 hrs 

before fixing them with 4% formaldehyde and stained with coomassie blue. Cell density 

and cell surface area measurements were performed using ImageJ software. Paired T-test 

was used for significance analysis. 



45 

 

2.3.9 Fluorescence staining 

Samples were washed with PBS and fixed with 10% v/v formaldehyde/PBS for 15 

minutes at 37°C. Cells patterned were stained with 4', 6-diamidino-2-phenylindole 

(DAPI) mountant and visualised using Olympus fluorescence microscope at 10X 

magnification.  
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2.4 Results  

2.4.1 Rsn2 and iLOVRsn2 production  

Recombinant His-tagged Rsn2 proteins were produced in E. coli and purified to a high 

degree by Ni
2+

-affinity chromatography as seen in Figure 2-1. A good yield for Rsn2 

(19.23 mg/L) and for iLOVRsn2 (7.5 mg/L) were obtained.  A right size band appeared 

for both the protein as observed by SDS-PAGE. 

 

Figure 2-1 SDS PAGE of Rsn2 nickel affinity purification, (1) Cell lysate flow through; washes with 

(2)binding buffer and (3) wash buffer; (4 & 5) Elutions; (6) 1M imidazole and (M) Marker (NEB pre 

stained protein ladder). Mw of iLOVRsn2 is ~ 14 KDa, which is where the band is obtained in elution 

fraction. 

 

 

Figure 2-2 SDS PAGE of iLOVRsn2 Nickle affinity purification (1) Cell lysate flow through; washes with 

(2)binding buffer and (3) wash buffer; (4 & 5) Elutions; (6) 1M imidazole and (M) Marker (NEB pre 

stained protein ladder). Mw of iLOVRsn2 is ~ 27 KDa, which is where the band is obtained in elution 

fraction. 

2.4.2 Pendant drop tensiometry  

Pendant drop experiments were performed to explore the behaviour of Rsn2 at an 

air/water and oil/water interface. A droplet of Rsn2 (1.3 mg/ml) in low salt buffer was 
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formed in trioctanoyl glycerol to produce an oil-water interface. The obtained droplet 

was fitted using the Young-Laplace equation to estimate the surface tension,  

 

where Δp stands for the pressure difference, r1 and r2 for the radii of curvature of the 

surface and the interfacial tension is calculated (KRUSS).  

Rsn2 reduced the interfacial surface tension from the initial interfacial surface tension of 

72 mN/m to 50 mN/m (Figure 2-4 A). The control, the interfacial surface tension of a 

droplet of buffer alone formed in trioctanoyl glycerol, also was 72 mN/m. This result of 

finial interfacial surface tension is in close agreement with measurements of surface 

tension depression by Rsn2 measured by micro trough tensiometry (Vance, 2012).  

To gain further insight into Rsn2’s behaviour at the interface, the droplet was compressed 

after a curing time of 10 minutes. It was observed that upon compression of the droplet, 

transient wrinkles were formed (Figure 2-3), indicating that Rsn2 forms a film at the 

interface. The wrinkles in the film completely relaxed after 5 seconds indicating that this 

process of film formation is fully reversible. The observations of depression of the 

surface tension is similar to other surfactant protein such as hydrophobin (Szilvay et al., 

2007) and BslA (Hobley et al., 2013a), confirming recombinant Rsn2 is a functional 

surfactant protein.  Interestingly, the rapid resolution of the wrinkes for Rsn2 is in 

contrast to hydrophobins and BslA, whose wrinkles did not relax after 10 minutes 

(Bromley et al., 2015).  

Wrinkles are a sign of hysteresis that is due to the interfacial structures being 

thermodynamically stable and therefore long-lived. This is because of the interactions 

between the surfactant molecules at the surface and the energy barrier that must be 

overcome to drive them back into bulk solution. The difference in wrinkle characteristics 

between Rsn2 and hydrophobins can be attributed to the way the individual protein 

interacts at the interface. Rsn2, a monomer in solution, undergoes a conformational 

change upon interaction with the interface where it does not appear to act cooperatively 

with its neighbouring Rsn2 monomers. The hydrophobins, dimers or tetramers in 

solution, form a homogeneous film at the interface by interacting with neighbouring 

molecules using H-bond together making continuous β-sheets. Thus upon retraction of 

the droplet in pendant drop method, individual Rsn2 molecules can undergo 
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conformational change in to a globular shape monomer that can re-dissolve into the bulk 

solution and thus the interfacial surface area can decrease rapidly allowing the wrinkles 

to relax. In contrast, the hydrophobins are arranged in a relatively rigid, cooperative 

conformation such that they do not go back into the solution rapidly upon retraction and 

the wrinkles remain stable. 

A 

 

B 

 

Figure 2-3 Rsn2 film relaxation at trioctanoyl glycerol oil/water interface. (A) Droplet of 1.3 mg/ml Rsn2 

before compression. (B) After surface compression induced by reducing the drop’s volume. Large wrinkles 

or folds appear in the surface layer which rapidly relax. 

2.4.3 Wettability 

Wettability experiments were performed to investigate Rsn2 ability to coat surfaces and 

make them hydrophilic or wettable. In each ESEM experiment, half of a coverslip was 

coated with Rsn2 and subjected to ESEM.  At 100% RH, water droplets started to form 

on both the parts of the coverslip. The percentage area covered by condensation was 

calculated for Rsn2 coated and uncoated regions and compared. After 30 minutes 

incubation, droplets started to develop on protein coated regions only and the number 

and size of the droplets had increased by 70 minutes. Only after 120 minutes incubation, 

were droplets formed on non-coated regions. At the 120 minute time point, Rsn2 coated 

regions showed significantly higher area of condensation compared with non-coated 

regions. 
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A 

 

 

 

 

 

 

B 

 

Figure 2-4 Formation of water droplets on a coverslip having coated & non-coated Rsn2 regions 

subjected to ESEM at 100% RH, where (A) is a representative ESEM images of water droplet formation 

on Rsn2 coated & non-coated region after 120 minutes and (B) is a graphical representation of 

condensation area of Rsn2 coated vs. non-coated surface. 

2.4.4 Contact angle 

Investigations were made to assess the range of surfaces that Rsn2 can coat, using 

contact angle measurements. Rsn2, being a surfactant protein, should reduce the surface 

tension of the droplet, thereby reducing the contact angle of the droplet. 

Except glass, all the materials chosen are hydrophobic, as shown by angle of contact of a 

pure water droplet on their uncoated surface, and display a range of hydrophobicities. 

When an Rsn2 coat was applied, water droplets spread out, decreasing the angle of 

contact indicating decreased hydrophobicity. 

Upon coating with Rsn2, the wettability of all the material surfaces improves noticeably, 

except for the PTFE in which nearly no change in the contact angle was observed 

between coated and non-coated surface. The difference in the change of contact angle 
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among different surfaces could be attributed to the initial loading of Rsn2, which is 

dependent on the nature of the surfaces and could be different for different substrates.  

The contact angle result shows that the initial loading of Rsn2 was higher on to PC, 

Glass, PP, ACLAR, PS, PMMA and Nylon. Consequently, an increase in wettability is 

observed the most in case of PC, followed by Glass and PP, while the least change in 

wettability was observed in PTFE and PDMS.  

In case of PDMS, the difference in contact angle is not much, suggesting low initial 

loading of Rsn2 on PDMS surface. But the result of persistence experiment suggests that 

the initial loading of Rsn2 is very decent in case of PDMS. This difference in initial 

loading of Rsn2 on different substrates could be due to difference in the method used for 

measuring it. In the case of measurement of fluorescence, auto-fluorescence was not 

taken into account. This auto-fluorescence might have added to the initial loading of 

Rsn2 and therefore, the reading between CA and persistence experiments vary. Hence it 

may be said that measurement of fluorescence alone may not be reliable for concluding 

the initial loading of Rsn2 on different substrates. 

Thus contact angle measurement shows that presence of Rsn2 makes the surfaces more 

hydrophilic for range of hydrophobic materials.  
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Figure 2-5 The contact angle of water on Rsn2 coated and non-coated regions after dip coating with the 

Rsn2 protein solution (1mg/ml). A typical example of a water droplet on coated surface (A) and non-

coated surface (B) is shown. (C) Graphical representation of the contact angle of water measured on the 

range of hydrophobic materials. Mean values were used to plot graph with bars representing the standard 

deviation (n=3).  

2.4.5 Persistence 

The three dimensional structure of Rsn2 in solution reveals that it has a hydrophobic 

interior and hydrophilic exterior (Mackenzie et al., 2009). Here the authors also discuss 

that once Rsn2 comes to the air water interface, it is believed to open up to expose it 

hydrophobic core to the air leaving the hydrophilic exterior to interact with water. By the 

same principle it is expected that, when applied to hydrophobic surfaces, Rsn2 should 

unfold to make hydrophobic interactions with hydrophobic surfaces, thus resulting in 

coating the hydrophobic surface with Rsn2 protein. Investigations were made to test 

whether Rsn2 adheres to a surface and how long it stays there, using a fusion protein 

construct of Rsn2 with a small fluorescent protein fusion partner (improved Light 

Oxygen Voltage, iLOV, developed by Prof Christie of University of Glasgow (Christie et 

al., 2012)). This will impart fluorescence to the Rsn2 coating and the presence or absence 
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of coating can be detected using fluorescence microscopy. Controls, as mentioned in 

section 2.3.5 were used to increase the quality and reliability of quantification of 

fluorescence intensity, which directly correlates to the loading of iLOVRsn2 protein. It is 

worth noting that Flavin mononucleotide (FMN), the molecule imparting fluorescence, is 

not covalently bound to iLOV and therefore it is possibility that FMN could slowly leach 

out with longer lasting experiments.  

Results after 1 day of initial coating show that the initial loading of iLOVRsn2 is highest 

on Nylon followed by PDMS and ACLAR, while the least loading is observed for 

Nescofilm. After 5 and10 days of coating, the initial loading of iLOVRsn2 is gradually 

lost from Nylon, while it remains stable on PDMS and ACLAR. Results show that 

fluorescence intensity of iLOVRsn2 coating remains stable over the 10 days of 

incubation for ACLAR, Glass, Nescofilm, PC, PDMS, PP and PS types of material, while 

the intensity gradually decreases for Nylon and PMMA. Although the intensity of 

fluorescence measured on Nylon coating decreases after 10 days, it is still higher 

compared to the intensities of other material. This shows that PDMS and ACLAR are 

good choices of material for Rsn2 based application from the perspective of high and 

stable levels of loading. 
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Figure 2-6 The persistence of Rsn2 coating on hydrophobic material. Persistence was measured by 

quantifying intensity of fluorescence from iLOVRsn2 (1mg/ml) coated protein. (A) A typical fluorescent 

image of the edge of Rsn2 droplet on PCL (B) Graphical representation of the persistence of Rsn2 coating 

on the range of hydrophobic materials tested. Measurements were recorded after 1, 5 and 10 days of 

incubation in PBS at 37⁰C. Mean values were used to plot graph with bars representing the standard 

deviation (n=3).  

2.4.6 Cell patterning  

In order to discover whether Rsn2 coated surfaces have the potential to pattern cells, PS 

substrates were dip coated with Rsn2 and seeded with fibroblasts. After 24 hours in 

culture, cells preferentially adhered to Rsn2 coated regions and exhibited a well-spread 

morphology compared to those cells adhered to the non-coated region. Bare PS 

substrates did not support cell growth and development with only a few undeveloped 

somata observed after 24 hours. Cells remained pattern compliant on Rsn2 treated PS 

surface after 72 hours in culture. Cells on Rsn2 treated PS surface exhibited cell growth 

and division compared to non-coated regions for the observed period of 72 hours as seen 

B 

         A 
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in Figure 2-7. Cells cultured on Rsn2 coated PS shows significantly higher cell density 

compared to uncoated surfaces. 

 

Figure 2-7 Representative light microscopy image taken at the boundary between Rsn2 coated and non-

coated regions of the patterned h-Terts cells cultured on PS after (A) 24 hrs and (B) 72 hrs 

A 

B 

 
Figure 2-8 Comparison of coated and non-coted regions of h-Terts cells cultured on Rsn2 coated PS for 

(A) Cell density after 24 hours & 72 hours of incubation and (B) surface area per cell after 24 hours of 

incubation.  
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From the contact angle and persistence experiments, it was known that Rsn2 can coat a 

range of surfaces and from cell patterning experiments it was known that Rsn2 coating 

can support cell adhseion and cell patterning. The next step was to investigate the 

possibility of obtaining patterned cells on a range of material surfaces. For this PDMS, 

silanized glass and PS materials were used along with hTert cell lines. Even though Rsn2 

can adsorb on range of surfaces, only PDMS, glass and PS were selected for cell pattern 

screening because PDMS, PS and glass are extensively used for culturing different types 

of cells because of their optical transparency, low cost and easy availability or easy 

fabrication. Even though PS and glass are traditionally used for cell culture, PDMS gives 

an added advantage of biocompatibility, low toxicity and compatibility with soft 

lithography for making finer patterns (Lee et al., 2004). So PDMS was also selected.   

Silanized glass and PDMS were used along with untreated hydrophobic PS to investigate 

the posibility of obtaining cell patterning on different types of substrates. Pattern 

compliant cells were obatined on all the three types of substrates as seen in the Figure 

2-9.  

   

Figure 2-9 Scanned image of coomassie blue stained pattern compliant h-Terts cells cultured on Rsn2 

coated and non-coted regions of (A) silanised glass, (B) PS & (C)PDMS after 72 hours of incuabtion.  

 

Figure 2-10 A montage fluorescence image taken on the edge of the Rsn2 coated and non-coated region 

seeded with h-Tert cells and stained with dapi, for the nucleus of cells. The image clearly shows that cell 

preferentially adhered to the Rsn2 coated region. 

A B C 
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2.5 Discussion 

From previous studies it was already known that Rsn2 is a surfactant protein, this work 

has reinforced those findings using the water contact angle; ESEM & pendent drop 

method and has shown that Rsn2 can be very effective for cell patterning on a range of 

hydrophobic surfaces. Literature reveals that most of the cell patterning technique 

developed have material dependency and is only suitable for limited number of surfaces, 

for example photolithography can only be used for SiO2 based materials (Hughes et al., 

2014).  The obtained results of cell patterning Figure 2-7 experiment suggest that Rsn2 

has material independency and can be used to modify a range of material surface to 

generate patterned cells. Thus the use of Rsn2 provides an important advantage of not 

limiting the cell patterning application to the type of substrate.  

 

In the study conducted by Lussi et al., where the comparison is made on the long-term 

stability of cellular patterns developed with the PEG-graft patterning techniques. The 

conclusion was that the differences in the pattern compliancy of cells were due to the 

different interactions between the patterned substrate, the PEG graft and the serum 

containing cellular medium (Lussi et al., 2006). In contrast to the finding of Lussi et al., 

Rsn2 based patterned cells were pattern compliant in all three different substrates tested 

for 72 hours Figure 2-9.  

Rsn2 only coats the surface and that coating does not require any specific surface 

chemistry but rely on physical parameter, thereby widening the scale of application 

(Straley and Heilshorn, 2009, Janssen et al., 2002b). The surface application of Rsn2 can 

be achieved by a simple dip coating technique. Most cell patterning methodologies 

require specialised instruments and facilities to pattern cells. For example, 

special/specific chemical and/or physical treatment is needed for soft lithography to 

develop PDMS mould (Qin et al., 2010b). This study has shown that obtaining pattern 

compliant cell using Rsn2 is not complicated, as it involves adsorption of protein onto 

material surfaces at normal room temperature and there is no need of specialised 

instrumental set up required for its application.  

The use of Rsn2 gives an added advantage of retaining the mechanical properties of the 

selected material and being a protein it can be degraded into non-cytotoxic fragments 

(Straley and Heilshorn, 2009). Additionally, the requirement of specialized instruments 

and chemicals needed for direct patterning methods, like bioprinting, can incur higher 

cost and time compared to using Rsn2 for cell patterning (Gesellchen et al., 2014). More 

over Rsn2 production requires minimal protein expression facilities and its production 
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can be easily scaled up for achieving high yield. The surplus Rsn2 can also be easily and 

safely stored for long term use. To summarise, Rsn2 offers may advantages for its 

application in cell patterning. 

One potential hurdle of using Rsn2 in therapeutic application is that Rsn2 being a foreign 

protein may trigger an immune response and therefore it may be a challenge to use Rsn2 

protein for biomedical applications in future. Although other proteins, like hydrophobins 

(Scholtmeijer et al., 2002) and polydopamine (Ku et al., 2010), used in cell patterning 

may also be immunogenic. To counter this situation, there is a possibility of using 

SPLUNC1 protein, more information in section 1.6. SPLUNC1, a human surfactant 

protein, like Latherin is proposed to undergoes a conformational change at an interface 

and can be used to coat surfaces for cell patterning (Vance et al., 2013b). 

Moreover, the method of applying Rsn2 by dip coating suited to generate total coverage 

of a substrate or large scale patterns with low precision. Finer patterning could be 

advantageous for controlling cell placement, which could be achieved by using Rsn2 as 

an ink for nano or micro contact printing. Prof Dalby of University of Glasgow have 

demonstrated the effects of nanotopography on stem cells (Dalby et al., 2014). Similarly, 

the nano-level features developed by coating Rsn2 using nano-contact printing can be 

used for co-culture patterning using specific integrin binding sequences (Table 3-1)  

To conclude, the cell patterning method developed by using Rsn2 offers advantage of 

simple application technique, which will result in a persistent protein coat on a range of 

hydrophobic surfaces.  
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3 Functionalisation of PDMS with IBS-Rsn2  
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3.1 Introduction  

Cell-based tissue engineering focuses on the restoration of a functional tissue in the hope 

of answering the currently unmet medical need of wound healing of complex tissues. For 

various tissue engineering approaches, cells are implanted into scaffolds capable of 

supporting three-dimensional (3D) tissue formation. The scaffold not only defines the 3D 

geometry of the tissue but also provides the microenvironment for cell attachment, 

proliferation and tissue neo-genesis. 

The scaffolds currently used for cell attachment are typically made up of polymeric 

materials, and the behaviours of the attached cells are modulated by the surface 

properties of the polymeric material (Dalby et al., 2014). Modification of the surface 

properties of the material by presenting chemical and/or physical cues can significantly 

influence the interaction of the cell with the material surface (Ma, 2008, Qiu et al., 2014). 

Plasma treatment is routinely used to prepare the surfaces and facilitate protein 

immobilisation, either by covalent linkage or adsorption, so promoting cell adhesion 

(Nitschke et al., 2002).  

Scaffold surface functionalization is routinely used for developing new tissue 

engineering strategies as it offers the advantage of making material surface cell friendly 

without changing the desirable material properties. The use of extracellular matrix 

(ECM) proteins, in particular, for surface modification could promote cell interaction and 

integration with the material surface (Higuchi et al., 2012). The work of this chapter 

focuses on making surface modifications to mimic the ECM in a facile manner by the 

application of ranaspumin-2 (Rsn2) fusion proteins. 

ECM is mainly composed of glycosaminoglycans and proteins that include collagen, 

elastin, fibronectin and laminin, which have both structural and adhesive functions. Cells 

adhere to their environment with a wide array of membrane spanning cell adhesion 

molecules (CAM) that form the mechano-chemical link to the ECM  (Shekaran and 

Garcia, 2011). Integrins are a prominent member of the CAMs. 

Integrins are one of the principal animal cell membrane receptors used to bind to the 

extracellular matrix. They are heterodimeric in nature, each consisting of an α subunit 

and a β subunit (Hynes, 2002, Barczyk et al., 2010). Integrins function as transmembrane 

linkers between ECM and the actin cytoskeleton. Integrins and conventional signalling 
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receptors often cooperate to promote cell growth, cell survival, and cell proliferation  

(Takada et al., 2007, Hynes, 1999). 

Integrins are known to operate as force dependent mechanotransducers attaching both to 

their ligands within the ECM and the actin cytoskeleton (Hynes, 2002). Activation allows 

bidirectional signalling between the two environs (Schoenwaelder and Burridge, 1999). 

Attachment of integrins to the ECM and aggregation into clusters known as focal 

adhesions sets off a number of intracellular signalling cascades such as the ERK1/2 

mitogen activated protein kinase (MAPK) pathway. The MAPK pathway relies on 

integrin-dependent cell-surface interactions to trigger a chain reaction of kinase 

activation leading to changes in gene transcription and ultimately changes in gene 

expression (Zhu and Assoian, 1995). 

Integrins bind a cell’s surface to the ECM components such as fibronectin, vitronectin, 

collagen, and laminin by binding to specific peptide motifs.. In mammals, eighteen α and 

eight β subunits have been found and have been well characterised.  Through different 

combinations of these α and β subunits, some 24 unique integrins are generated  

(Barczyk et al., 2010). Some integrin α subunits contain an I (interaction) domain and are 

closely related to each other. Also closely related to each other are the family of non-I-

domain α subunits that recognise the RGD motif (Hynes, 2002). Each integrin dimer has 

distinct ligand-binding specificity and the list of various specific integrin-binding short 

peptide sequences that can be used to direct cell adhesion is given in Table 3-1 and Table 

3-2. 
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Integrin 

subunits 

Distribution/ cell type Receptor/Binding Site /Ligand 

α1β1 Dorsal Root Ganglion (DRG), 

fibroblasts, vascular smooth 

muscle, liver, microvascular 

endothelium 

Laminin, collagen 

 

α2β1 Fibroblasts Laminin, collagen, thrombospondin, E-cadherin, tenascin 

α3β1 Fibroblasts, DRG Collagen, Laminin, thrombospondin, fibronectin 

α4β1 Hematopoietic cells Thrombospondin,VCAM-1, fibronectin, osteopontin, 

ICAM-4 

α5β1 DRG, human umbilical vein 

endothelia (HUVEC) 

Fibronectin, osteopontin, fibrillin, thrombospondin,.  

α6β1 DRG (Low expression) Laminin, thrombospondin 

α7β1 Skeletal and smooth muscle 

cells 

Laminin 

α8β1 crypt cell, alveolar interstitial 

cells 

Tenascin, fibronectin, osteopontin, vitronectin, TGF-β, 

nephronectin 

α9β1 T-cells Tenascin, VCAM-1, osteopontin, plasmin, angiostatin, 

VEGF. 

α10β1 Chondrocytes Laminin, collagen 

α11β1 Dermal cells, Periodontal 

ligament cells 

Collagen 

 

αVβ1 Oligodendrocytes, astrocytes, 

pancreatic β cells 

TGF-β, fibronectin, Vitronectin, osteopontin 

αLβ2 T-lymphocytes ICAM, ICAM-4 

αMβ2 Neutrophils and Monocytes ICAM, fibrinogen, ICAM-4, heparin 

αXβ2 Myeloid cells and activated B, 

NK and some cytotoxic T cells 

ICAM, fibrinogen, ICAM-4, heparin, collagen 

αDβ2 Inflamed Macrophages, 

Eosinophils 

ICAM, VCAM-1, fibrinogen, fibronectin, vitronectin, 

plasminogen 

αllbβ3 Platelets Fibrinogen,thrombospondin, fibronectin, vitronectin, 

collagens,  ICAM-4 

 αVβ3 Osteocytes, HUVEC, 

melanoma 

Fibrinogen, vitronectin, thrombospondin, fibrillin, 

tenascin,  fibronectin, osteopontin, Bone Sialoprotein 

(BSP), TGF-β. 

α6β4 DRG, Epithelial cells Fibronectin, Laminin 

αVβ5 Fibroblasts, epithelial cells Osteopontin, BSP, vitronectin,  TGF-β 

αVβ6 Epithelial cells (proliferating) TGF-β, fibronectin, Tenascin, 

Osteopontin 

α4β7 

 

T-cells, Intestinal Mast 

progenitor cells 

MAdCAM-1, VCAM-1, fibronectin, osteopontin 

αEβ7 

 

Tcells (memory) E-cadherin 

αVβ8 Dendritic cells, Langerhans 

cells 

Collagens, Laminins, Fibronectin, TGF-β 

Table 3-1 Integrins and their binding partners. List of different integrin subunits with their protein binding 

ligands found in various types of tissue. Each integrin can bind to more than one protein binding 

ligand.(Anselme, 2000, Plow et al., 2000, Higuchi et al., 2012, Takada et al., 2007, Orla Protein 

technologies, Bennett et al., 2001a, Siebers et al., 2005)  

NOTE: Cells express more than one type of integrin at a time, and expression varies according to the 

stage of cell cycle stage and during development. 
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Integrin binding 

sequence 

 Integrin Reference 

RGD collagen I, vitronectin, 

fibronectin, Bone 

sialoprotein 

α3β1, α5β1, α8β1, 

αvβ1, αvβ3, αvβ5, 

αvβ6, αllbβ3 

(Pytela et al., 1987, Ruoslahti, 

1996b) 

PHSRN Fibronectin α5β1 (Aota et al., 1994) 

IKVAV Laminin α3β1,  α1 chain (Saha et al., 2007, Caniggia et al., 

1996, Nomizu et al., 1995) 

LDVP Laminin α4β1 (Komoriya et al., 1991, Bayless and 

Davis, 2001) 

FHRRIKA BSP, collagen α2β1 (Healy et al., 1999b, Schuler et al., 

2009) 

REDV Fibronectin α4β1 (Humphries et al., 1986, Bayless 

and Davis, 2001) 

KRSR BSP   (Balasundaram and Webster, 2007) 

YIGSR Laminin  β1 chain (Frith et al., 2012) 

(GG)DGEA collagen I α2β1 (Hennessy et al., 2009, McCann et 

al., 1997) 

HHLGGAKQAGDV Fibrinogen γ-chain αllbβ3  (Hagisawa et al., 2016) 

GPR  α2β2  (Graham et al., 2003) 

AEIDGIEL Fibronectin α9β1   (Yokosaki et al., 1998) 

QIDS Fibronectin α4β1 (Clements et al., 1994) 

PPRARI Fibronectin (heparin 

II domain) 

α4β1 (Gonzalez et al., 2009) 

GFOGER Collagen α1β1, α2β1  (Hennessy et al., 2009) 

Table 3-2 Integrin binding sequences (IBS), their molecule(s) of origin, their binding integrins and the 

citation, where the sequences have been described. 

A series of studies where surfaces have been modified such that RGD tripeptide motifs 

are displayed to cells have shown that this can promote cell attachment and proliferation. 

Coating a scaffold material’s surface with only the RGD peptide can limit cell type-

specific adhesion, since all cells express RGD binding integrins. Moreover, binding by 

RGD-directed integrins is only optimal in the presence of other synergistic peptides. For 

instance, the presence of a PHSRN synergy peptide, on fibronectin domain 10, along 

with RGD can substantially enhance the adhesive activity of α5β1 integrin (Redick et al., 

2000).  Some other peptide sequences, like the IKVAV, can mediate α3β1 integrin- 

mediated neurite outgrowth (Tashiro et al., 1989). Thus it is hypothesised that to make a 

surface cell type specific, the availability of a combination of specific integrin binding 

sequence (IBS) might be needed.   

The genetic engineering provides an opportunity to develop recombinant fusion proteins 

containing cell adhesive peptides, which can be used to generate biomimetic biomaterials 

interfaces (Hersel et al., 2003). The biomimetic substrates produced by presenting 

peptide sequences in this manner might then promote cell adhesion. The work described 

in this chapter is building on the cell patterning chapter and is focused on developing a 

functionalised scaffold specialised for osteoblasts, and DRG neurons, using IBS as a 

fusion partner with Rsn2. The selection of IBS was based on the information summarised 
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in Table 3-1 and Table 3-2, which suggests that DRG neurons express α1β1, α3β1 and 

α5β1, while osteoblasts express α3β1 and αVβ3 integrins. Five short biomimetic peptides 

were selected which would bind to these integrins, namely (in standard single letter code) 

RGD, PHSRN, IKVAV, LDVP and FHRIKKA. This was backed by literature that showed 

that use of FHRRIKA and RGD would promote osteoblasts differentiation (Rezania and 

Healy, 1999b), while IKVAV and LDVP would promote neuronal outgrowth (Tashiro et 

al., 1989). Thus we hypothesised that by presenting short peptide sequences, which bind 

to the expressed integrin receptors, like RGD; FHRRIKA and PHSRN on scaffold 

surface would promote osteoblasts adhesion while presenting RGD, PHSRN, IKVAV, and 

LDVP might improve DRG cell adhesion.  

3.2 Aim 

The aim of the work described in this chapter was to develop a tool that allows the 

functionalizing of a wide range of hydrophobic scaffolds with cell type selective IBS-

Rsn2 fusion proteins that have been tailored to promote cell adhesion on otherwise non-

selective surfaces. 
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3.3 Method and Materials 

3.3.1 IBS-Rsn2 cloning and protein expression 

The IBS-Rsn2 expression constructs were created by PCR subcloning. Primers were 

designed, one to anneal to the 5’ end of the Rsn2 non-coding strand that incorporated 

each IBS preceded by a NdeI restriction site; whereas the 3’ end primer would bind to the 

Rsn2 coding strand and contained a BamHI restriction site.  Table 3-3 shows the primer 

sequences. 

Rsn2_FL_3’Primer (3’       5’) : CTA-CTA-CTA-CTA-CTA-CCT-ATA-ATC-CTA-GG 

Rsn2_FL_5’Primer    (5’       3’) 
RGD CAT-ATG-CGT-GGC-GAT-TTA-ATA-TTA-GAT-GGG-GAC-CTA-CTA 

LDVP CAT-ATG-CTG-GAT-GTG-CCG-TTA-ATA-TTA-GAT-GGG-GAC-CTA-CTA 

IKVAV CAT-ATG-ATT-AAA-GTG-GCG-GTG-TTA-ATA-TTA-GAT-GGG-GAC-CTA-CTA 

PHSRN CAT-ATG-CCG-CAT-TCT-CGT-AAC-TTA-ATA-TTA-GAT-GGG-GAC-CTA-CTA 

FHRRIKA CAT-ATG-TTT-CAT-CGT-CGT-ATT-AAA-GCG-TTA-ATA-TTA-GAT-GGG-GAC-CTA-CTA 

Table 3-3 Sequences of primers designed to generate IBS-Rsn2. CAT-ATG is the NdeI site, C-CTA-GG is 

the BamHI site and IBS coding nucleotides are coloured red.  

PCR amplification was then carried out at an annealing temperature of 50⁰C with these 

primers, using the pET28-Rsn2 template to produce an IBS-Rsn2 PCR product. The PCR 

product was subjected to agarose gel electrophoresis, and the excised fragment was then 

subjected to gel purification (Wizard® SV Gel and PCR Clean-Up System) to avoid any 

contaminating template. 3’ adenine overhangs were added to each insert using Taq 

polymerase (GoTaq® Flexi DNA Polymerase # M8301). The fragments were then ligated 

into the pCR4.0-TOPO vector with complementary 3’ thymine overhangs which contain 

immobilised topoisomerase enzyme (Invitrogen). DNA sequencing of the transformed 

DH5 alpha (Invitrogen™) cells were carried out to investigate that the TA-cloned 

fragments had the correct sequence. 

Each IBS-Rsn2 coding sequence was then subcloned. The restriction enzymes NdeI and 

BamHI were used to cut the insert out of the pCR4 vector producing sticky overhangs to 

subclone into the pET-28 expression plasmid (Novagen, #69864) cut with the same 

restriction enzymes. The ligated plasmids were then transformed into E. coli DH5 alpha, 

followed by the selection of clones using colony PCR and DNA sequencing. The 

recombinant plasmid DNA was then ready to be transformed into the expression cells of 

choice, BL21 (DE3) cells (Agilent). 

All the expressed proteins will have his-tag and thrombin cleavage site before the IBS-

Rsn2. The proteins Rsn2, RGD-Rsn2, FHRIKKA-Rsn2 and PHSRN-Rsn2, were 

expressed as described in section 2.2.1. IKVAV-Rsn2 and LDVPRsn2 were expressed 
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overnight at 15°C with all other conditions being the same as outlined in Section 2.2.1 

and given to Dr Kredi for for her to investigate if these would promote axonal outgrowth. 

3.3.2 Contact Angle  

Contact angle measurements for IBS-Rsn2 coated PDMS surfaces were made using the 

protocol described in Chapter 2. 

3.3.3 Silanisation 

The Glass coverslips/slides were cleaned using piranha solution (a 3:1 mixture of 

sulphuric acid and hydrogen peroxide), rinsed with water, and air dried thoroughly. Then 

the glass coverslip/slides were briefly soaked in a minimal volume of silanizing reagent 

(Chlorodimethylsilane, Sigma-Aldrich) and the excess solution was allowed to evaporate 

in the fume hood before thoroughly rinsing with log flumes. Silanised glass 

coverslips/slides were then air dried.  

3.3.4 Routine cell culture 

Cell culture work was performed aseptically at room temperature using laminar flow 

hoods and cells were kept in an incubator at 37°C under humidified conditions with 5% 

CO2. Cells were maintained in modified DMEM culture medium containing foetal 

bovine serum (FBS), antibiotic mixture and sodium pyruvate.  

Fibroblast h-Tert cells were cultured and seeded, as mentioned in chapter two method 

and material section, onto IBS-Rsn2 coated PDMS surfaces for 24 hours. After which 

they were fixed and subjected to DAPI staining for nucleus and immunofluorescence 

microscopy as described later. 

3.3.5 Isolation and culture of osteoblastic cells 

Osteoblastic cells were isolated from neonatal rat calvaria by Dr M Riehle using explant 

culture as briefly described in the following. Firstly, the neonates were schedule 1 killed 

using an overdose of pentorbital and their DRG removed by another user. The same 

animals were collected in sterile plastic bags on ice and 1-4 hours later used to extract the 

calvariae. After cutting through the skin and soft connective tissue the calvariae were 

removed, and collected at room temperature in Hanks' Balanced Salt Solution (GIBCO® 

HBSS). Using a binocular microscope the periosteum and other adhering soft tissue was 

removed from the bone using scalpel blades and Dumont No 7 forceps. The collected, 

soft tissue free calvariae of two rats were then cut into small, ca. 1mm large pieces. The 

bone pieces were washed twice with HBSS  and placed in a 25 cm
2
 TCP flask with ca. 1-
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2ml DMEM media (10%FBS, 5% ABS, 85% DMEM Sigma) such that the meniscus of 

the media would confine the bone pieces into contact with the substrate. The media 

would be carefully exchanged every three days. After 7-14 days in vitro a cell layer 

would surround the bone pieces. At this stage I would take over the cultures and treat 

these as follows. 

The cell layer was then digested by giving a trypsin-collagenase proteolytic treatment. 

Rat calvaria cells obtained were seeded in a 25 cm
2
 (T-25) (BD Biosciences, San Jose, 

CA, USA) tissue culture dish. The cells were grown until confluence in Dulbecco's 

Modified Eagle's Medium (DMEM) (PAA Laboratories) supplemented with 10% Foetal 

bovine serum (FBS, Invitrogen), 1% penicillin and streptomycin (Sigma) and sodium 

pyruvate (Sigma).  

Isolated osteoblast cells were seeded into a 75 cm2 (T-75) culture flask (BD Biosciences, 

San Jose, CA, USA) containing medium and incubated. After 48 hrs in culture, the non-

adherent cells were discarded, and cells were fed with fresh medium. The medium was 

replaced twice a week. Cells were allowed to reach 70-80% confluence and then 

passaged as follows: Briefly, the culture medium was aspirated and the cells washed in 

HEPES-saline (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) following which 5 

ml trypsin (PAA Laboratories) was added and incubated at 37°C for 5 minutes. The 

action of trypsin was neutralised by adding 5 ml medium, and a cell count was performed 

using a Neubauer chamber. The cells were then seeded in a 150 cm
2
 (T-150) culture flask 

(BD Biosciences, San Jose, CA, USA) at a concentration of 100 cells/cm
2
. 

3.3.6 PDMS fabrication 

PDMS 184 polymer solution  (Sylgard® 184 Silicone Elastomer, Dow Corning, UK) was 

added to curing agent at a ratio of 9:1 (w:w). The polymer and curing agent were mixed 

very thoroughly in a disposable cup and then degassed for 20 minutes. The degassed 

PDMS was poured into a petri dish or a silicon wafer mould and cured in an 80°C oven 

for 2 hours before being left to cool and cut into individual 11 mm diameter devices with 

a 13mm diameter cork borer. 

The unreacted component of the crosslinked PDMS was extracted by three cycles of 

swelling the polymer in n-hexane (Riedel-de Haën), and shrinking of the samples in 

ethanol. 
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3.3.7 Sample preparation 

Samples were sterilised before seeding by immersing them in 70% ethanol for 30 mins, 

after which each sample was rinsed twice in sterilised water followed by drying with a 

flow of 0.22μm filtered compressed air in a laminar flow cabinet. 

For Rsn2, RGD-Rsn2, PHSRN-Rsn2, FHRIKKA-Rsn2, RGD-Rsn2:PHSRN-Rsn2 (1:1), 

RGD-Rsn2:FHRRIKA-Rsn2 (1:1), FHRRIKA-Rsn2:PHSRN-Rsn2 (1:1) and RGD-

Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2 (1:1:1) coatings, protein solution (1 mg/ml total 

concentration) was added to each surface and left to incubate for 30 mins. After this, the 

excess protein solution was removed, and the samples were rinsed in water before 

seeding with cells. 

3.3.8 Differentiation assay   

The osteoblast cells, when about 70% confluent, were used at passage 3 and 4. Cells 

were plated into 12-well tissue culture dishes at a cell seeding density of 1000 cells/cm
2
. 

Cells were fed thrice in a week. 

For all experiments, coverslips and PDMS used were rinsed in 70% ethanol three times 

followed by further rinsing in sterile PBS saline solution and then cell culture medium. 

Cells were seeded onto ten different surfaces: plain glass coverslips (positive control), 

untreated PDMS (negative controls), Rsn2, RGD-Rsn2, PHSRN-Rsn2, FHRRIKA-Rsn2, 

RGD-Rsn2: PHSRN-Rsn2 (1:1), RGD-Rsn2:FHRRIKA-Rsn2 (1:1), FHRRIKA-

Rsn2:PHSRN-Rsn2 (1:1) and RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2 (1:1:1). 

Samples were fixed after 0, 1, 7 or 28 days in culture. 

3.3.9 Immunofluorescence staining 

After various times after seeding, cultured osteoblast cells were washed three times with 

phosphate buffered saline (PBS) and fixed with 4% formaldehyde/PBS for 15 minutes at 

37°C. Cells were then permeabilized for 5 minutes at 4°C with a permeabilizing solution 

of 0.1% w/v sucrose, 50 mM NaCl, 3 mM MgCl2.6H2O, 20 mM HEPES (4-(2-

hydroxyethyl)-1-piperazine-ethanesulphonic acid) and 0.5% v/v Triton X-100 in 100 ml 

H2O (pH 7.2). Non-specific binding sites were blocked with 1% bovine serum albumin 

(BSA) in PBS for 15 minutes at 37°C. To visualise the actin cytoskeleton a 1% BSA/PBS 

solution of rhodamine-conjugated phalloidin ((1:200), Molecular Probes USA) was used. 

Along with phalloidin, either mouse anti-vinculin(1:150), mouse monoclonal anti-

osteopontin (OPN ) Ig (1:50) or mouse monoclonal anti-osteocalcin (OCN ) Ig (1:50) 
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were made with 1% BSA in PBS . Each stain was added to its respective sample and 

incubated at 37°C. After 1 hr, samples were washed with 0.5% Tween 20 in PBS 3 times 

for 5 minutes to reduce background labelling. After incubation, secondary antibodies 

made in 1% BSA/PBS were added to the respective samples. Horse biotinylated anti-

mouse IgG (1:150) was added to anti- vinculin, anti-OPN and anti-OCN containing 

samples and were further incubated for 1 hr at 37°C. Samples were washed with Tween 

20/PBS as previously described and incubated at 4°C for 30 minutes in a 1% BSA/PBS 

solution of fluorescin isothiocyanate (FITC) conjugated streptavdin ((1:50), Vector 

Laboratories UK). A final washing step was carried out to remove any excess stain. 

Samples were mounted on glass slides using  mountant containing 4’6- diamidino-2-

phenylindole (DAPI, Vector Laboratories UK) and cells were observed using a Zeiss 

Axiophot fluorescence microscope at 20X magnification (0.40 NA). Images were 

captured using an Evolution QEi digital monochromatic CCD camera (Media 

Cybernetics USA) with QCapture imaging software.  

3.3.10 Quantification  

The fluorescence microscopy images were analysed using FIJI software (Schindelin et 

al., 2012) to assess cell density and to quantify the number of focal adhesions per cell. 

The fluorescence images of DAPI stained samples were exported to FIJI, to calculate 

number of particles Figure 3-1. To quantify the number of focal adhesion formed, the 

fluorescence images of vinculing stained samples were exported to FIJI and the threshold 

tool was used to trace the focal cell adhesions formed Figure 3-2. A paired sample T-test 

was used to test statistical significance between the quantitative data obtained from cells 

cultured on different IBS-Rsn2 coated PDMS substrates. The null hypothesis of the 

paired sample T-test assumes that the true mean difference between the paired samples is 

zero and all differences are by random chance. 
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Figure 3-1 A representative fluorescent image of the osteoblast cells cultured on IBS-Rsn2 coated PDMS, 

fixed and stained with DAPI (A), which was used for adjusting threshold (B) for nucleus quantification. 

The red colour indicates the area identified by FIJI after thresholding.  

  

Figure 3-2 A representative fluorescence image of the osteoblast cells cultured on IBS-Rsn2 coated 

PDMS, fixed and stained with vinculin (A), which was used for adjusting threshold (B) for quantification 

of focal adhesions formed. The red colour indicates the area identified by FIJI after thresholding. Scale 

bar is for 100 µm. 

  

B 
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3.4 Results 

3.4.1 IBS-Rsn2 fusion construct cloning 

For tissue engineering applications it is important to develop a functional scaffold 

capable of supporting a functional tissue. For the formation of a functional tissue, the 

adhesion of particular cell types should be directed onto a three-dimensional scaffold. 

This cell type specificity may be achieved by presenting a fusion construct of specific 

integrin binding sequences with Rsn2 on the surface of the scaffold. To test this, five IBS 

sequences were selected and were cloned with Rsn2 to develop recombinant IBS-Rsn2 

proteins.  Specially designed primers for 5’Rsn2 incorporating the IBS coding region 

were used for amplification of each IBS-Rsn2 construct as shown in Figure 3-3.  

The solution structure of Rsn2 determined by NMR revealed that the N-terminal peptide 

of the protein, first 16 residues, was disordered in bulk solution. Previous work by Dr. 

Vance had shown that the presence of the thrombin-cleavable affinity tag in the 

recombinant protein did not affect the protein's surfactant properties (Vance, 2012). 

Indeed, a fusion protein incorporating the small fluorescent domain iLOV (Chapman et 

al., 2008) N-terminal to Rsn2 also retained surface activity (Vance, 2012). Thus it was 

hypothesised that the introduction of an additional peptide sequence at the N-terminus 

would be unlikely to disrupt surface activity. Moreover, the disordered, 16 residue N-

terminal peptide might help in presenting the IBS for cell attachment at a distance from 

the Rsn2-coated surface.  Thus a site immediately preceding the N-terminal leucine 

residue of the natural, mature Rsn2 sequence was chosen for the addition of the IBS 

peptide.   

The PCR products obtained were gel purified and used for TOPO TA cloning into the 

pCR4.0 vector. Competent cells were then transformed with the vector carrying IBS 

Rsn2 gene generating many colonies. 
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Figure 3-3 PCR amplification of IBS-Rsn2 product using primers incorporating IBS, where (1) no 

template negative control; (2) RGD-Rsn2; (3) LDVP-Rsn2; (4) PHSRN-Rsn2; (5) IKVAV-Rsn2; (6) 

FHRRIKA-Rsn2, (7) Rsn2 as a positive control; (M) 100bp ladder. The red arrow points to the amplified 

IBS-Rsn2 fragments of almost 300bp. 

 

Figure 3-4 Colony PCR. Screening of colonies for the correct insert using PCR for all five IBS-Rsn2 

fusion construct (1-5) colonies selected for colony PCR and (M) 100bp ladder. The orange arrows 

indicate the amplified IBS-Rsn2 fragments of almost 500bp.  

Colony PCR was performed using M13 primers to screen for the presence of the insert in 

the pCR4.0 vector. The expected sizes of the colony PCR products are for RGD: 474bp, 

LDVP is 477bp, PHSRN is 480bp, IKVAV is 480bp, FHRRIKA is 486bp and positive 

control is 165bp. Agarose gel electrophoresis Figure 3-4 revealed that all selected 

colonies gave rise to a PCR product of the expected size insert except PHSRN 1. Plasmid 

DNA was extracted from each positive clones and sequenced (University of Dundee). 

The sequencing results confirmed that the positive clones carried the right sequences. 
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Figure 3-5 A 1% agarose gel for double digested vector and insert with NdeI and BamHI, where M is 100 

bp Ladder, 1 is Rsn2 uncut, 2 is BamHI control, 3 is NdeI control, 4;5;6;7;8;9;10 are double digests for 

Rsn2; RGD; LDVP; PHSRN; IKVAV; FHRRIKA; pET28 vector (followed by Alkaline  Phosphatase 

treatment) The red arrow points to the IBS-Rsn2 fragments generated after double digestion.  

Once confirmed, each pCR4.0 vector carrying an insert was subjected to double digestion 

with NdeI and BamHI to produce the desired insert flanked with the respective restriction 

sites. In parallel, the destination vector, pET28, was double digested and subjected to 

alkaline phosphatase treatment to prevent self-ligation. The double digest was subjected 

to agarose gel electrophoresis Figure 3-5, and each band of the correct size was excised 

and gel extracted followed by overnight ligation into the pET28 vector. 

 

Figure 3-6 An example of agarose gel electrophoresis of colony PCR products from selected IBS-Rsn2 

constructs ligated into pET28 and transformed into DH5alpha cells, where M is 100bp ladder, 1-5 are 

RGD colonies, 6 and 7 PHSRN, 8 IKVAV, 9 no plasmid negative control and 10 Rsn2 as a positive 

control. Colonies labelled in red are positive clones. The red arrow points to the amplified IBS-Rsn2 

products.  

The ligated construct was then transformed into competent cells and the clones obtained 

were screened by colony PCR Figure 3-6, positive clones were sequenced (Figure 3-7). 
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The sequencing result allowed the identification of plasmids that had the correct 

sequence for each IBS-Rsn2.  

 

Figure 3-7 An example of the sequencing result for IBS-Rsn2 in pET28 vector confirmed the insertion of 

RGD (IBS) between the start codon and Rsn2 gene. 

3.4.2 IBS-Rsn2 fusion protein expression 

Following successful construction of each expression vector, each IBS-Rsn2 vector was 

transformed into BL21 (DE3) cells and expression of the individual proteins tested.  

SDS-PAGE analysis of RGD-Rsn2; LDVP-Rsn2; PHSRN-Rsn2 and FHRRIKA-Rsn2 

revealed their presence in both soluble and insoluble fractions whereas the majority of 

the IKVAV-Rsn2 was in the insoluble fraction. 

Since significant proportions of each IBS-Rsn2, Rsn2 was found in the insoluble fraction 

in the small scale test expressions, large-scale expression tests were set up to investigate 

whether sufficient IBS-Rsn2 could be expressed and purified successfully.  Following 

purification of each IBS-Rsn2, they were subjected to SDS-PAGE to check the purity and 

integrity of each protein. The yield of purified protein obtained for RGD-Rsn2 and 

PHSRN-Rsn2 was more than 10 milligrames per litre of culture (mg/L) (Figure 3-8), and 

for FHRRIKA-Rsn2 it was nearly 8 mg/L, whereas LDVP-Rsn2 gave 4 mg/L and 

IKVAV-Rsn2 2.5 mg/L. Since LDVP-Rsn2 and IKVAV-Rsn2 gave low yields of soluble 

protein (Figure 3-9), steps were taken to optimise their expression conditions.  

Optimisations were carried out by reducing the incubation temperature and extending the 

time of induction from 37⁰C for 3 hours to 15⁰C overnight, and by reducing the IPTG 

concentration from 1mM to 0.4mM or 0.1mM. Test expressions carried out using these 

conditions showed that reducing the temperature to 15⁰C with 1 mM IPTG induction 

resulted in most of the protein being found in the soluble fraction. The results of the test 

expression were assessed on a larger scale culture which gave yields above 10 mg/L for 

both LDVP-Rsn2 and IKVAV-Rsn2 (Figure 3-10). 
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Figure 3-8 SDS-PAGE of PHSRN-Rsn2 affinity purification, where (1) Cell lysate flow through; (2) 

Binding buffer1; (3) Binding buffer2; (4)Wash buffer1; (5) Elution buffer1; (6) Elution buffer2; (7) 1M 

immidazole and (M) Marker. The red arrow points to the right sized expressed protein almost 14 kDa.  

 

Figure 3-9 SDS-PAGE of the five IBS-Rsn2 samples after Ni
2+

-affinity purification, where (1) RGD-Rsn2; 

(2) LDVP-Rsn2; (3) PHSRN-Rsn2; (4) IKVAV-Rsn2; (5)FHRRIKA-Rsn2 and (M) Marker. The red arrow 

points to the expected size for the expressed proteins of almost 14 kDa.  
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Figure 3-10 SDS-PAGE of IKVAV-Rsn2 affinity purification.(1) Cell lysate flow through; (2) Binding 

buffer1; (3) Wash buffer1; (4) Elution buffer1; (5) Elution buffer2; (6) 1M immidazole and (M) Marker. 

The red arrow points to the right sized expressed protein of almost 14 kDa.  

3.4.3 Contact angle measurements 

Following successful expression and purification of each of the IBS-Rsn2, their effects 

on the surface modification of PDMS was assessed using contact angle measurements to 

confirm that their surface activity is not hindered by the addition of short peptide the N-

terminus of the protein. For this, each IBS-Rsn2 was used to coat PDMS and the water 

contact angle of these coated surfaces measured. Rsn2, uncoated PDMS and silanized 

glass were used as positive and negative controls. The results obtained showed that all 

the IBS-Rsn2 proteins could reduce the surface tension by coating a hydrophobic surface.  

The contact angle measurement is there to show that the IBS-Rsn2s all stick to the 

surface, but approximately equal loading is only assumed, but not measured. The results 

of the contact angle measurements suggests that the angle of contact could be changed by 

the different natures of the IBSs themselves. 

 For future work, it would be better to quantitatively measure the coverage of different 

Rsn2 mutants at the surface. For achieving this, specially designed antibodies should be 

used against specific IBS-Rsn2 coated surface, to prove the presence of IBS-Rsn2 on 

surface. Upon confirmation of the presence of IBS-Rsn2, it would be seeded with cells 

and if  the cells  adhesion is restricted on the conjugated antibody-IBS-Rsn2 surface 

compared to IBS-Rsn2 surface, then it would suggests that IBS-Rsn2 is available  for cell 

attachment.  
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Figure 3-11 Graphical representation of the contact angle measurement of the droplet of water on various 

IBS-Rsn2 coated PDMS surface. The average water contact angle was used along with ±SD on different 

IBS-Rsn2 coated PDMS surfaces. Measurements were made immediately after coating a PDMS surface 

with the proteins. (n=3 repeats). 

3.4.4 Fibroblast cell culture on different IBS-Rsn2 coated PDMS 

Once it was confirmed that the IBS-Rsn2 proteins coat PDMS substrates, as judged by 

the reductions in surface tension seen, the next step was to check whether the IBS were 

available to bind to cells or were concealed in the protein surface structure. To 

investigate this, IBS-Rsn2 coated PDMS samples were seeded with fibroblast (hTert) 

cells, cultured for 24 hours and the cell density calculated. A striking difference in cell 

density was seen between uncoated PDMS and Rsn2-coated samples, as seen earlier in 

cell patterning chapter. The cell densities on each of the IBS-Rsn2 were also higher than 

on the uncoated coated PDMS and even exceeded the densities seen with Rsn2 (Figure 

3-12) Thus, since the cell densities seen were higher for all the IBS-Rsn2 coated samples 

than for Rsn2 alone, it seems likely that the IBS are available for cell binding and exert a 

positive effect. 
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Figure 3-12 Cell density of fibroblast cells cultured on various IBS-Rsn2. Fibroblast cells were cultured 

on protein coated PDMS surface for 24 hours and cell density calculated following immunofluorescence 

microscopy for nucleus staining. (A) A representative image of nucleus staining on un-coated PDMS 

surface. (B) A representative image of nucleus staining on RGD-Rsn2 coated PDMS surface. (C) A 

graphical representation of cell density obtained in different IBS-Rsn2. RGD-Rsn2 is significantly 

different from all the other samples. Stars indicate significant differences between the different coatings as 

determined by paired sample T-test, Where ***p<0.001. The bars indicate standard deviation (n=3 

repeats) 
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3.4.5 Osteoblast cell culture on IBS-Rsn2 coated PDMS 

Having established that all the IBS-Rsn2 proteins could promote fibroblast cell adhesion 

on PDMS, coated PDMS substrates were cultured with primary calvaria bone cells.  

As the IBS-Rsn2 were designed to support nerve and osteoblast cells, IBS-Rsn2 proteins 

expected to promote nerve cell outgrowth by binding neuron specific integrin (α1β1, α3β1 

and α5β1) were passed to a co-worker, Dr Kredi, who showed that IKVAV-Rsn2 

improved nerve outgrowth from rat dorsal root ganglion explants (Kredi, 2015). For the 

osteoblast cell culture work, IBS-Rsn2 incorporating either RGD, or the PHSRN and 

FHRRIKA sequences that are ligands for the osteoblast specific integrins (α3β1 and αVβ3) 

were used to investigate their effects on osteoblast adhesion and differentiation. 

3.4.5.1 Osteoblasts after 4 hrs in culture 

After 4 hrs (day 0) in culture, cells seeded on RGD-Rsn2, RGD-Rsn2:PHSRN-Rsn2 

(1:1), and RGD-Rsn2:PHSRN-Rsn2: FHRRIKA-Rsn2 (1:1:1) had adhered to the surface 

and displayed extended morphologies compared to the control coatings (glass and Rsn2). 

In contrast, Rsn2, PHSRN-Rsn2, FHRIKKA-Rsn2, RGD-Rsn2:FHRRIKA-Rsn2 (1:1) 

and PHSRN-Rsn2:FHRRIKA-Rsn2 (1:1) did not promote osteoblasts spreading at this 

time point (Figure 3-13). 

This qualitative analysis is supported by comparing the cell densities and the average 

number of focal adhesions per cell (Figure 3-14 and Figure 3-15). The number of focal 

adhesions seen per cell was assessed to establish which of the surfaces tested provided 

the best environment to support cell attachment. The highest number of focal cell 

adhesions per cell formed on RGD-Rsn2 and RGD-Rsn2: PHSRN-Rsn2: FHRRIKA-

Rsn2 (1:1:1) coated surfaces. This was followed by the RGD-Rsn2:PHSRN-Rsn2 (1:1) 

and the other coatings did not support the formation of focal adhesions by osteoblasts. 

The results can only enlighten about the osteoblast’s preferences for the formation of the 

initial cell attachments. The next step was to see which coating provided the best surface 

for osteoblast development after longer time in culture. 
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Figure 3-13 Immunofluorescence images of osteocytes after 4 hours in culture 
on IBS-Rsn2 coated PDMS. After 4 hours (day 0) in culture, osteocytes showed 

extended morphology on RGD-Rsn2 coated surfaces, while some spreading was 

also observed on RGD-Rsn2: PHSRN-Rsn2 and RGD-Rsn2: PHSRN-Rsn2: 

FHRRIKA-Rsn2 coated surfaces. The actin filaments are represented in red, 

vinculin in green and nuclei in blue. Scale bar is 100 µm.  (Where  A=Glass, 

B=PDMS, C=Rsn2, D=RGD-Rsn2, E=PHSRN-Rsn2, F=FHRRIKA-Rsn2, 

G=RGD-Rsn2:PHSRN-Rsn2, H=RGD-Rsn2:FHRIKA-Rsn2, I=PHSRN-

Rsn2:FHRIKA-Rsn2, J= RGD-Rsn2:PHSRN-Rsn2:FHRIKA-Rsn2) 
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Figure 3-14 Density of cells on various IBS-Rsn2 coated surface after 4 hours in culture. The graph 

represents the average number of  osteoblasts cells/cm
2 

 after 4 hours in culture on Glass and Rsn2 - 

positive control, PDMS - negative control, and test - RGD-Rsn2 (R) coated PDMS, PHSRN-Rsn2 (P) 

coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P (RGD-Rsn2:PHSRN-Rsn2) coated PDMS, R:F 

(RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-Rsn2: FHRRIKA-Rsn2) coated PDMS and 

R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated PDMS. RGD-Rsn2 and R:P:F-Rsn2 are 

significantly different from all the other samples. Stars indicate significant differences between the 

different coatings as determined by paired sample T-test, Where ***p<0.001. The bars indicate standard 

deviation (n=3 biological repeats). 
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Figure 3-15 Graphical representation of the quantified number of focal adhesion formed per cells on 

various IBS-Rsn2 coated surfaces after 4 hours in culture. The graph represents the number of FCA per 

cells after 4 hours in culture on Glass and Rsn2 - positive control, PDMS - negative control, and test - 

RGD-Rsn2 (R) coated PDMS, PHSRN-Rsn2 (P) coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P 

(RGD-Rsn2:PHSRN-Rsn2) coated PDMS, R:F (RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-

Rsn2: FHRRIKA-Rsn2) coated PDMS and R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated 

PDMS. RGD-Rsn2 and R:P:F-Rsn2 are significantly different from all the other samples. Stars indicate 

significant differences between the different coatings as determined by paired sample T-test, Where 

***p<0.001. The bars indicate standard deviation (n=3 biological repeats). 
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3.4.5.2 Osteoblasts after 1 and 7 days in culture 

All osteoblast cells were cultured on different IBS-Rsn2 coated PDMS for either one or 

seven days and compared with bare glass, PDMS and Rsn2-coated PDMS controls. The 

cell density, formation of focal adhesions, and morphology of the osteoblasts varied 

considerably on the different coatings.  

At the 1 day time point, the highest cell density, most extended morphology, and highest 

number of focal adhesions per cell were observed on RGD-Rsn2 and RGD-

Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2 (1:1:1) coated surfaces.  Higher cell density with 

some cell spreading and formation of focal cell adhesions was also observed on RGD-

Rsn2:PHSRN-Rsn2 (1:1) and RGD-Rsn2:FHRRIKA-Rsn2 (1:1), compared to the glass 

and Rsn2 controls. In contrast, lower cell density; focal cell adhesions and cell spreading 

were observed on PHSRN-Rsn2, FHRIKKA-Rsn2, and PHSRN-Rsn2: FHRRIKA-Rsn2 

(1:1) coated surfaces (Figure 3-16 to Figure 3-18).   

After 7 days in culture, the highest cell densities were observed in RGD-Rsn2 and RGD-

Rsn2: PHSRN-Rsn2: FHRRIKA-Rsn2 (1:1:1), followed by RGD-Rsn2: FHRRIKA-Rsn2 

(1:1). Quantification of focal cell adhesions were not made as two samples had such a 

high cell density that cells had become confluent on the surface and even overgrown each 

other. Vinculin staining revealed the formation of focal cell adhesions on RGD-Rsn2: 

PHSRN-Rsn2 (1:1); RGD-Rsn2: FHRRIKA-Rsn2 (1:1); PHSRN-Rsn2: FHRRIKA-Rsn2 

(1:1) as well as FHRRIKA-Rsn2 coated samples (Figure 3-19 and Figure 3-20). 
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Figure 3-16 Immunofluorescence images of osteocytes after 1 day in culture on 

IBS-Rsn2 coated PDMS. Cells showed extended morphology on all but PDMS 

sample. Cell density was found to be highest in RGD-Rsn2 and RGD-Rsn2: 

PHSRN-Rsn2: FHRRIKA-Rsn2 coated surfaces. The actin filaments are 

represented in red, vinculin in green and nuclei in blue. Scale bar is 100 µm. 

(Where  A=Glass, B=PDMS, C=Rsn2, D=RGD-Rsn2, E=PHSRN-Rsn2, 

F=FHRRIKA-Rsn2, G=RGD-Rsn2:PHSRN-Rsn2, H=RGD-Rsn2:FHRIKA-

Rsn2, I=PHSRN-Rsn2:FHRIKA-Rsn2, J= RGD-Rsn2:PHSRN-Rsn2:FHRIKA-

Rsn2) 
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Figure 3-17 Density of cells on various IBS-Rsn2 coated surface after 1 day in culture. The graph 

represents the average number of  osteoblasts cells/cm
2 

 after 1days in culture on Glass and Rsn2 - 

positive control, PDMS - negative control, and test - RGD-Rsn2 (R) coated PDMS, PHSRN-Rsn2 (P) 

coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P (RGD-Rsn2:PHSRN-Rsn2) coated PDMS, R:F 

(RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-Rsn2: FHRRIKA-Rsn2) coated PDMS and 

R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated PDMS. RGD-Rsn2 and R:P:F-Rsn2 are 

significantly different from all the other samples. Stars indicate significant differences between the 

different coatings as determined by paired sample T-test, Where ***p<0.001. The bars indicate standard 

deviation (n=3 biological repeats). 
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Figure 3-18 Graphical representation of the quantified number of FCA per cells on various IBS-Rsn2 

coated surfaces after 1 day in culture. The graph represents the number of FCA per cells after 1 day in 

culture on Glass and Rsn2 - positive control, PDMS - negative control, and test - RGD-Rsn2 (R) coated 

PDMS, PHSRN-Rsn2 (P) coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P (RGD-Rsn2:PHSRN-

Rsn2) coated PDMS, R:F (RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-Rsn2: FHRRIKA-

Rsn2) coated PDMS and R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated PDMS RGD-Rsn2 and 

R:P:F-Rsn2 are significantly different from all the other samples. Stars indicate significant differences 

between the different coatings as determined by paired sample T-test, Where ***p<0.001. The bars 

indicate standard deviation (n=3 biological repeats). 
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Figure 3-19. Immunofluorescence images after 7 days in culture. Cells showed 

extended morphology in all samples except PDMS. Cell density was found to be 

highest in RGD-Rsn2 and RGD-Rsn2: PHSRN-Rsn2: FHRRIKA-Rsn2 coated 

surfaces. Colours are actin (red), vinculin (green), nuclei (blue); scale bar is 

100 μm. (Where  A=Glass, B=PDMS, C=Rsn2, D=RGD-Rsn2, E=PHSRN-

Rsn2, F=FHRRIKA-Rsn2, G=RGD-Rsn2:PHSRN-Rsn2, H=RGD-

Rsn2:FHRIKA-Rsn2, I=PHSRN-Rsn2:FHRIKA-Rsn2, J= RGD-Rsn2:PHSRN-

Rsn2:FHRIKA-Rsn2) 
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Figure 3-20 Density of cells on various IBS-Rsn2 coated surface after 7 days in culture. The graph 

represents the average number of  osteoblasts cells/cm
2 

 after 7days in culture on Glass and Rsn2 - 

positive controls, PDMS - negative control, and test - RGD-Rsn2 (R) coated PDMS, PHSRN-Rsn2 (P) 

coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P (RGD-Rsn2:PHSRN-Rsn2) coated PDMS, R:F 

(RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-Rsn2: FHRRIKA-Rsn2) coated PDMS and 

R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated PDMS. RGD-Rsn2 and R:P:F-Rsn2 are 

significantly different from all the other samples. Stars indicate significant differences between the 

different coatings as determined by paired sample T-test, Where ***p<0.001. The bars indicate standard 

deviation (n=3 biological repeats) 

3.4.6 Comparison of the cell density of osteoblasts at various time points 

The cell densities of the osteoblasts on different IBS-Rsn2 coated PDMS were compared 

at the different time points assessed and the data are shown in Figure 3-21. When 

compared to bare PDMS, PDMS coated with Rsn2 alone and with all the IBS-Rsn2 

proteins tested promoted cell adhesion at all the time points. The initial densities of 

attached cells (after 4 hours in culture) were substantially higher on RGD-Rsn2 coated 

surfaces than for most of the other IBS, except for the mixed RGD-Rsn2:PHSRN-

Rsn2:FHRRIKA-Rsn2 (1:1:1) surface. This early time point was used to establish which 

IBS is best situated for osteocyte adhesion. The more prolonged cultures, after 1 day and 
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7 days, also showed the same trend in cell density, suggesting osteoblasts preference to 

form attachment on the RGD-Rsn2 and RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2 

(1:1:1) coated surface compared to other IBS-Rsn2.  

The RGD-Rsn2 and RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2 coated surfaces were not 

only preferred by osteoblasts for cell adhesion, but also promoted growth and cell 

division compared to other IBS-Rsn2 coated surfaces as can be seen by comparing the 

cell densities in Figure 3-17 and Figure 3-20. In contrast, on the PHSRN-Rsn2, 

FHRRIKA-Rsn2 and PHSRN-Rsn2:FHRRIKA-Rsn2 coated surfaces the cell density did 

not increase. 

 

 

Figure 3-21 Density of cells on day0, day1 and day7. The graph represents the average number of 

osteoblasts cells/cm
2 

 after 0, 1 and 7days of culture on Glass and Rsn2combining the data from figures 

23, 25 and 27. In sequence the data is plotted for positive controls, PDMS - negative control, and test - 

RGD-Rsn2 (R) coated PDMS, PHSRN-Rsn2 (P) coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P 

(RGD-Rsn2:PHSRN-Rsn2) coated PDMS, R:F (RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-

Rsn2: FHRRIKA-Rsn2) coated PDMS and R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated 

PDMS. The bars indicate standard deviation. 
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Figure 3-22.Quantification of the average number of focal cell adhesions per cell on day0 and day1. The 

graph represents the average number of  focal cell adhesions per cell  after 0 and 1 days of culture on 

Glass and Rsn2- positive controls, PDMS - negative control, and test - RGD-Rsn2 (R) coated PDMS, 

PHSRN-Rsn2 (P) coated PDMS, FHRRIKA-Rsn2 (F) coated PDMS, R:P (RGD-Rsn2:PHSRN-Rsn2) 

coated PDMS, R:F (RGD-Rsn2:FHRRIKA-Rsn2) coated PDMS, P:F (PHSRN-Rsn2: FHRRIKA-Rsn2) 

coated PDMS and R:P:F (RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-Rsn2) coated PDMS. The bars indicate 

standard deviation. 

3.4.7 Osteopontin and Osteocalcin expression  

All the protein coated samples were cultured for 28 days and were immunolabelled to 

visulise the expression of the bone cell marker proteins OPN and OCN. Although cells 

grown on all the IBS-Rsn2 coated samples showed expression of OPN, RGD-

Rsn2:PHSRN-Rsn2: FHRRIKA-Rsn2 (1:1:1) coated sample showed the most prominent 

expression over all the other coatings (Figure 3-23). 

Similarly, the determination of expression of OCN in all samples showed varying levels 

of expression across all the samples. OCN expressions level was also most prominent in 

RGD-Rsn2: PHSRN-Rsn2: FHRRIKA-Rsn2 coated samples compared to all the other 

coatings. The immunofluorescence images of all the samples stained for OCN are shown 

in Figure 3-24.  
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Figure 3-23 Immunofluorescence images for osteopontin after 28 days. The 

presence of osteopontin was observed on glass – positive control and all of the 

protein-coated surfaces, except PDMS. RGD-Rsn2: PHSRN-Rsn2: FHRRIKA-

Rsn2 showed the highest expression of osteopontin compared to all other 

samples. The actin filaments are represented in red, osteopontin in green and 

nuclei in blue. Scale bar is 100 µm. (Where  A=Glass, B=PDMS, C=Rsn2, 

D=RGD-Rsn2, E=PHSRN-Rsn2, F=FHRRIKA-Rsn2, G=RGD-Rsn2:PHSRN-

Rsn2, H=RGD-Rsn2:FHRIKA-Rsn2, I=PHSRN-Rsn2:FHRIKA-Rsn2, J= RGD-

Rsn2:PHSRN-Rsn2:FHRIKA-Rsn2) 
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Figure 3-24 Immunofluorescence images for osteocalcin after 28 days. The 

presence of osteocalcin was observed on glass – positive control and all of the 

protein-coated surfaces, except PDMS. RGD-Rsn2: PHSRN-Rsn2: FHRRIKA-

Rsn2 showed higher expression of osteocalcin compared to all the other 

samples. The actin filaments are represented in red, osteocalcin in green and 

nuclei in blue. Scale bar is 100 µm. (Where  A=Glass, B=PDMS, C=Rsn2, 

D=RGD-Rsn2, E=PHSRN-Rsn2, F=FHRRIKA-Rsn2, G=RGD-Rsn2:PHSRN-

Rsn2, H=RGD-Rsn2:FHRIKA-Rsn2, I=PHSRN-Rsn2:FHRIKA-Rsn2, J= RGD-

Rsn2:PHSRN-Rsn2:FHRIKA-Rsn2). 
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3.5 Discussion 

Biomaterials have a vital role in tissue engineering as they provide a surface where cells 

can attach, develop and proliferate. Surface modifications are routinely made to augment 

the biocompatibility of scaffolds (Chan and Leong, 2008b). For this, usually various 

bioactive molecules or growth factors are introduced to control and enhance cell 

interactions, proliferation, differentiation and generation of ECM (Chan and Leong, 

2008b).  

Bioactive molecules can be presented on the surface by adsorption or via covalent 

modifications, made after plasma treatment. The bioactive molecules used can either be 

whole ECM protein or short cell adhesive peptide sequences. Moreover, during the 

modification process, short peptides tend to be more stable and can be easily mass-

produced in laboratories (Tallawi et al., 2015). Thus short biomimetic peptides were 

selected for making fusion constructs with Rsn2 using recombinant protein technology.  

Rsn2 through its surface activity adsorbs to scaffold surfaces (as shown and discussed in 

chapter 2) allowing the establishment of a simple and easy to replicate method to bio-

functionalize a surface with accessible active sites. IBS-Rsn2 constructs were designed, 

successfully expressed, and the proteins isolated and purified. These IBS-Rsn2 proteins 

all proved to be surface active as judged by contact angle measurements and the addition 

of short peptides to the N-terminus of Rsn2 did not significantly affect its functionality.    

Having confirmed that all of the IBS-Rsn2 were surface active, they were used to coat 

PDMS substrates and seeded with h-Tert cells, and then cultured for 24 hours discover 

whether the IBS presented on Rsn2 were available for cell attachment. The literature 

reveal that not all the proteins containing RGD sequence can mediate cell attachment, 

and only a few of them can do so (Ruoslahti, 1996a). This is because the RGD sequence 

might not be presented on the surface of protein and so be available for integrin binding 

(Pierschbacher and Ruoslahti, 1987). The h-Tert cell results confirmed that all the IBS 

presented on Rsn2 were available for attachment as the cell density on all of the IBS-

Rsn2 coated substrates came out to be higher than the cell densities observed on Rsn2 

alone coated surfaces (Figure 3-21) suggesting that the N-terminus of Rsn2 remains 

flexible and tolerates the addition of short peptides (Vance, 2012, Mackenzie et al., 

2009). Thus the designed constructs were functional and were then used to study which 

IBS promoted osteoblast adhesion, proliferation and differentiation in a manner similar 

to Dalby et al (Dalby et al., 2007).  
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Interactions between osteoblasts and the ECM of bone that are mediated by integrin 

receptors are important determinants of the cells proliferation, differentiation and 

expression of osteocalcin (OCN) and osteopontin (OPN) (Bennett et al., 2001b)  

To test the ability of different IBS-Rsn2 coated surfaces to influence the differentiation of 

cells cultured on them, primary bone cells were used since they are both more 

differentiable than fibroblasts and express a different subset of integrins. Out of several 

IBS-Rsn2 tested, RGD-Rsn2 and the mixture of RGD-Rsn2:PHSRN-Rsn2:FHRRIKA-

Rsn2 (1:1:1) outperformed others in initial cell adhesion, cell spreading and proliferation.  

The work presented in this chapter agrees with other studies using RGD, the fibronectin-

derived IBS, favoured cell attachment from day 0 and also showed enhanced cell 

spreading and proliferation, along with OPN and OCN expression after day 28. These 

observations are in line with observations made by Fraioli et al., who used 

peptidomimetic ligands to functionalise surfaces to promote αvβ3 or α5β1 integrin 

mediated osteoblast adhesion. They observed enhanced cell attachment and spreading 

along with cell proliferation and higher mineralization on the surfaces coated with the 

ligands (Fraioli et al., 2015). Similarly, Wang et al observed that α5β1 integrin is the 

dominant integrin that initiates the osteoblasts attachment with the RGD-cell binding site 

on fibronectin.  (Wang et al., 2010). A similar observation has been made by Dr. Roberts 

in our lab, who showed that upon interaction of mesenchymal stem cells with RGD-

immobilised surface, favoured bone cell differentiation, and enhanced OPN and OCN 

expression (Roberts, 2013).  

The obtained results of RGD as a cell adhesive peptide are in agreement with some other 

studies, where chemically attached RGD has been shown to favour initial cell 

attachment, spreading and mineralisation of osteoblast cells (Beuvelot et al., 2009, Bell 

et al., 2011, Hu et al., 2003). 

All this observation made earlier and in this thesis proves that functionalising surface 

with RGD will promote bone cell attachment and mineralisation.  

The results obtained in this thesis also suggest that mimicking ECM by presenting more 

than one type of IBS (e.g. sample 10 R:P:F) resulted in enhanced focal adhesion 

formation, along with expression of OCN and OPN. These results are in agreement with 

the results of cell binding assays conducted by Gronthos et al. who showed that 

osteoblasts have the ability to adhere to different ECM proteins with a preference to 

fibronectin over collagen, vitronectin and laminin (Gronthos et al., 1997). The findings 
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presented by Healy et al.  also showed that by presenting more than one type of IBS 

together promoted cell spreading and mineralization, mediated by the collagen and 

vitronectin receptors (Healy et al., 1999a) 

Many studies have been conducted using RGD in combination with other peptides, to 

mimic the ECM, and have found to have positively affected osteoblasts’ development 

and mineralisation. One such study used cell-binding peptide RGD along with the 

synergistic peptide PHSRN, found in fibronectin, and saw enhanced differentiation of,  

and calcium deposition by the cultured osteoblasts (Nakaoka et al., 2013, García et al., 

2002, Petrie et al., 2006). 

Another study showed that rat calvaria cells cultured on immobilised biomimetic peptide 

surfaces had a preference for RGD:FHRRIKA. In that study RGD alone showed the 

highest number of focal adhesions per cell formed after 4 hours in culture, while 

RGD:FHRRIKA surface showed mineralisation of the matrix after 24 days in culture 

(Rezania and Healy, 1999a). A similar study used bio-mimetic peptide sequence RGD in 

combination with KRSR or FHRRIKA, heparin-binding peptide sequences, for 

promoting osteoblast outgrowths. They found out that when RGD is used along with 

other peptides, osteoblast migration and outgrowth was stimulated (Schuler et al., 2009). 

Both these studies suggest that RGD if used in combination with PHSRN and /or 

FHRRIKA, to mimic ECM, will enhance osteoblastic development (Mrksich, 2009). 

To summarise, all of the IBS-Rsn2 coated PDMS were biocompatible for 28 days in 

culture, suggesting that the protein coating is stable for that long, or that cells once 

attached and differentiation initiated, the ECM they deposit interacts sufficiently well 

with the substrate to keep them attached. Also, that IBS-Rsn2 can be successfully used to 

mimic ECM, which in this case up to three fusion constructs were used. Result 

successfully show that osteoblast cells preferred RGD-Rsn2 and RGD-Rsn2: PHSRN-

Rsn2: FHRRIKA-Rsn2 (1:1:1) over the other Rsn2 constructs; and that these coatings 

promoted initial cell attachment, osteoblast differentiation and matrix mineralisation.  

RGD-Rsn2: PHSRN-Rsn2 (1:1) and RGD-Rsn2: FHRRIKA-Rsn2 (1:1) also positively 

influenced osteoblast differentiation as compared to the controls.  

To conclude, RGD-Rsn2 alone, or in combination with PHSRN-Rsn2 and/or FHRRIKA-

Rsn2, favour the adhesion and spreading of osteoblast cells to PDMS surfaces that have 

been simply coated with them and support differentiation of the cells as judged by the 

expression of protein markers of mature osteoblasts.  
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4 Stabilisation of micro-emulsions droplets 
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4.1 Introduction 

This chapter describes work undertaken in an effort to demonstrate the use of EP protein 

to direct biomineralisation onto surfaces that do not naturally support this process. 

Specifically, the aim was to make mineralised droplets stabilised by surfactant Rsn2 

protein and mineralising it with biomineralising EP protein. The rationale was that Rsn2 

being a surfactant protein will act on air-water interface and will stabilise the droplets, 

while the EP protein being a biomineralising protein will mineralise the droplets when 

subjected to calcium containing solution. The obtained the mineralised droplets could be 

used for drug delivery, cosmetics, fabricating microcapsules, and other applications. 

4.1.1 Biomineralisation 

Living organisms deposit minerals to form skeletal architecture to perform a range of 

functions including support, mobility and protection (Veis, 2010). Minerals comprising 

carbonate, silica and phosphates are combined with proteins, carbohydrates and lipids, 

generating a staggering range of skeletal architecture featuring intricate details (Cusack 

and Freer, 2008). This phenomenon of skeletal formation through mineral deposition is 

termed biomineralisation. 

The fossil record indicates that the process of biomineralisation has been occurring for 

more than 550 million years (Veis, 2010). The process of biomineralisation is often 

precisely controlled by a set of extracellular macromolecules including proteins, 

glycoproteins and polysaccharides, collectively called the shell matrix (Addadi and 

Weiner, 1992). Even though the shell matrix accounts for less than 5% of weight of the 

total shell weight, it controls several different aspects of shell formation including size, 

shape, the calcium carbonate polymorph (calcite vs aragonite), crystal organisation and 

crystal orientation (Marin et al., 2008, Arakaki et al., 2015).  

The extracellular matrix proteins in particular are responsible for crystal nucleation, 

encouraging crystal growth and stopping of crystal growth (Veis, 1990). Incorporation of 

macromolecules into the shell matrix protects the crystal lattice against fracture by 

creating defects, which will absorb stress and stop the progression of cracks (Aizenberg 

et al., 1995). These matrix proteins are highly acidic, phosphorylated, and have motifs 

such as Asp repeats and Ser-Ser repeats (Weiner and Hood, 1975). The highly acidic and 

negatively charged nature of these proteins may act as a template for mineralisation by 

providing calcium-binding sites (Alvares, 2014).  
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In vitro crystallisation experiments using shell matrix acidic proteins confirmed that they 

play a role in controlling crystal morphology and crystal polymorph (Feng, 2009). Many 

molluscan biomineralising proteins have been found so far and they can be grouped 

either based on pI values,  44 biomineralising protein are grouped according to pI values 

(Marin et al., 2008), or based on their osteogenic properties, 77 invertebrate skeletal 

nacre proteins are grouped together based on their osteogenic properties (Sarashina and 

Endo, 2006), or location (Kobayashi and Samata, 2006).  

4.1.2. Molluscan Shell Formation and Extrapallial Fluid 

Most mussel shells are made up of calcium carbonate. In contrast, the bivalves like the 

common blue mussel, Mytilus edulis, have shells of made up of outer prismatic calcite 

layer and inner nacreous aragonite layer (Figure 4-1) (Yin et al., 2005).  

 

  

Figure 4-1 The common blue mussel M. edulis. (A) An extrapallial space between mantle and shell of the 

M. edulis. (B) Schematic diagram of transverse section of the mantle edge of a bivalve (Behrens, 2007). 

In the common blue mussel, Mytilus edulis, the extrapallial (EP) fluid is secreted into the 

extrapallial space formed between the mantle and the shell (Figure 4-1 B). EP fluid has a 

higher concentration of Ca
2+ 

 ions compared to their  blood, suggesting that the 

extrapallial fluid has a role in shell formation (Crenshaw, 1972). Subsequent chemical 

analysis of EP fluid using SDS-PAGE showed that EP fluid contains five different 

proteins (Misogianes and Chasteen, 1979).  Hattan et al. identified the most abundant 

protein in extrapallial fluid, a 28 kDa protein, and named it extrapallial (EP) protein 

(Hattan et al., 2001a). Further work on the primary structure of this protein showed that 

the EP protein is made up of 213 amino acids in total, of which the first 23 amino acids 

constitute a secretion signal peptide (Yin et al., 2005). EP protein is highly glycosylated 

A B 
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and usually exists in disulphide linked dimeric form (Yin et al., 2005). The protein's 

secondary structure is stabilised by calcium binding (Hattan et al., 2001a).  

EP protein has many Glu and Asp acidic residues; which will further facilitate calcium 

binding; and make EP protein an ideal candidate for the development of synthetic 

biomineralising strategies to mimic nature.  

4.1.2 Rsn2 Protein 

Rsn2, a surfactant protein, is isolated from the foam nest of Túngara frog. The surfactant 

properties of this protein are described and proven, in section 2.5.  .  

4.2 Aims & Objectives 

Exploiting the role that EP protein plays in biomineral formation, combined with the 

surfactant properties of Rsn2, the strategy of stabilising droplets with Rsn2 and 

mineralising the droplets using EP protein aimed to direct mineral formation on surfaces 

that would otherwise not support mineral formation. 

Work describe by Ji.B et al  (Ji et al., 2010) was the precedent for this work about 

exploring the possibility of use of EP biomineralising protein with the aim of generating 

hybrid mineralised capsules as shown by Schulz.A et al (Schulz et al., 2011). 

The rationale was that Rsn2 being a surfactant protein will act on air-water interface and 

will stabilise the droplets, while the EP protein being a biomineralising protein will 

mineralise the droplets when subjected to calcium containing solution. Idea was to 

develop Ep-Rsn2 fusion protein, which would have the ability to stabilise and mineralise 

oil droplets. To ensure control of all parameters, a microfluidic on-chip approach was 

used to generate uniform bubbles. The mineralised droplets could be used for drug 

delivery, cosmetics, fabricating microcapsules, and other applications. 
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4.3 Method and Materials 

4.3.1 Rsn2 stabilised bubbles and droplets  

A microfluidics system was used to make bubbles and droplets of uniform size. The 

microfluidic chip used was designed and fabricated by Dr Jonathan McKendry. 

4.3.1.1 Fabrication of microfluidic chip 

The microfluidic chip was generated by casting polydimethylsiloxane (PDMS) elastomer 

on a Pyrex glass substrate (Li et al., 2014). The PDMS oligomer and curing agent 

(Sylgard 184, Dow Corning) were mixed in a ratio of 10:1, poured into a silicon master 

mould, and cured at 70⁰C overnight (Yin et al., 2009). The silicon master was fabricated 

by optical lithography, while the electrodes were configured by depositing a thick 

platinum film on the silicon master. The photoresist was deposited onto the silicon 

master, which protected the substrate against irradiation, such that it then makes the 

features that will template the channels when the PDMS is cast onto it (Hua and Pennell, 

2009).  

 

 

Figure 4-2 Schematic diagram of the microfluidics chip design used to form bubbles and oil droplets. 

Where the dimensions mentioned are channels’ widths, while the circles represents the inlet and outlet 

channels. 

4.3.1.2 Making droplets and bubbles 

The microfluidic chip (Figure 4-2) consists of parallel inlet flow channels separated by a 

distance of 1 mm. Each channel has uniform cross section dimensions of 100 µm width x 

50 µm height. The single outlet channel is wider with a cross section of 300µm wide x 50 

µm height. Polytetrafluoroethylene (PTFE) tubing (Cole Palmer, Hanwell, UK) of 100 

µm internal diameter and 300 µm outer diameter was inserted carefully into the outlet 

Rsn2 or 

iLOVRsn2 

(Inlet) 

Nitrogen gas 

or oil (Inlet)  

  

Pressure cone 

generated here 

Collection tube 

(outlet) (300µm 

width) 

100µm 

width 
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reservoir to extend the reaction channel and allow collection of the product (Yashina et 

al., 2012). Optimisations of flow rate were carried out to reduce the size of bubbles to 

below 100 µm by changing flow rate from 1 µl/minutes to 10 µl/minutes in the flow 

cells.  For further experiments a flow rate of 5µl/minutes was used. Reagents (Rsn2, 

Nitrogen gas or per-fluorinated oil) were delivered through the inlets at flow rates of 5 

µl/minutes using precision syringe pumps (KD Scientific). The supply pressures (250 

mbar for Rsn2 and 212 mbar for nitrogen gas) were kept constant and bubbles of 

nitrogen gas or droplets of per-fluorinated oil were made at room temperature (22⁰C). A 

high-speed camera was used to capture images of the droplets/bubbles formed. The 

bubbles or droplets were transferred to a microscope slide for analysis by a Zeiss 

Axiovert light inverted microscope or Zeiss Axiophot fluorescence microscope. The 

images from microscopy were processed using ImageJ to facilitate measurement of the 

dimensions of the droplets/bubbles. 

4.3.2 EP-Rsn2 – cloning and protein production 

Unless otherwise stated, the method of protein production for developing EP-Rsn2 

recombinant protein was as described for IBS-Rsn2 in section 3.3. 

4.3.3 Inclusion body preparation 

Inclusion bodies containing insoluble protein are part of the pellet along with cell debris 

after centrifugation of the cell lysate. The cell pellet was resuspended in wash solution (5 

g l
-1

 methionine and 1 mM EDTA) and pelleted by spinning at 11,000 rpm for 20 

minutes. The wash step was performed three times. The pellet was resuspended and 

incubated on a magnetic stirrer at 4⁰C overnight in acetonitrile-water (1:1) solution with 

0.1% TFA. 
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4.4 Results 

4.4.1 EP-Rsn2 cloning 

4.4.1.1 Primer design 

An EP cDNA codon optimised for high level expression in E. coli and carried in a pET 

15 based expression vector was obtained from Prof Maggie Cusack. The EP gene was 

flanked by NdeI and XhoI restriction sites. Primers were designed to amplify the whole 

EP gene and fragments flanked with NdeI and AseI restriction sites that could be cloned 

into the NdeI site of existing pET28-Rsn2 vector to generate EP-Rsn2 fusion proteins. 

XhoI had to be replaced by AseI because XhoI has stop codon in its sequence and there 

were no directly available XhoI sites in pET28 to be used (the XhoI site is at the 3’ end 

of the EP coding sequence). AseI was selected because it has compatible cohesive ends 

with NdeI. Thus the AseI digested sticky end can be ligated to the NdeI half site, the 5’ 

end of the pET28-Rsn2 expression cassette, to generate EP-Rsn2 construct. The EP-Rsn2 

construct were flanked by NdeI on 5’ end and BamHI on the 3’ end.  

Full length EP protein was also expressed from the pET15 construct, but most of it was 

not folded and was found in inclusion bodies (Figure 4-3). Thus three sets of primers 

were designed to amplify different EP fragments to incorporate into Rsn2 fusions, all 

containing the N-terminal calcium binding domain (Figure 4-3). Shorter fragment lengths 

were made so that if full length (FL) FL EP-Rsn2 does not fold then a shorter fragment 

such as 76E EP-Rsn2 and 82S EP-Rsn2 might work. The first 76 (as in 76E) and 82 (as 

in 82S) amino acids were selected as they are followed by C1q sequence. This C1q 

sequence also plays an important role in biomineralisation of bones, but it is the highly 

charged and has glycosylation sites, and therefore might be difficult to fold (Kishore and 

Reid, 2000). Thus primers were designed to amplify the first 76 and 82 amino acid long 

fragment, which has better prospects of being folded when expressed as an Rsn2 fusion 

construct. Table 4-1 below shows the primer sequences. 
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Figure 4-3 The binding sites of the three sets of primers design for pET15 EP, which each result in 

amplification of a different size EP fragment.  

 Sequence Fwd (5’ -3’) Rev Primer Sequence For N-

terminal EP (5’- 3’) 

Ann 

Tem 
FL 

(218 AAs) 

AGCCATATGAACCCGGTG ATTAATGTGCAGCATAAAGCCGGT 53.7 

76E 

(76 AAs) 

AGCCATATGAACCCGGTG ATTAATTTCTTCGTGCAGATGTTT 48.1 

82S 

(82 AAs) 

AGCCATATGAACCCGGTG ATTAATGCTTTTGAAATATTCAAC 41.9 

 

Table 4-1 The EP fusion protein primer sequences, where ATTAAT is the restriction site for AseI, which 

has compatible ends with NdeI. Here AAs stand for amino acids.  

4.4.1.2 PCR 

PCR amplification was carried out at the annealing temperature specific to each primer 

pair, many times dictated by 3' primer annealing temperature is shown in Table 4-1. 

pET15-EP was used as a template to produce three different fragments of the EP coding 

sequence as PCR products. The first primer pair was used to amplify 654 bp coding for 

the full length EP gene, second primer pair was to amplify 228 bp coding for the N 

terminal 76 amino acids and third primer pair was for 246bp coding for the N terminal 82 

amino acids. The PCR products were purifies by agarose gel electrophoresis and each 

excised fragment was then purified using gel purification (Wizard® SV Gel and PCR 

Clean-Up System) to remove any contaminating product.  
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Figure 4-4 PCR amplification from EP pET15 using primers incorporating AseI restriction site to 

generate a fragment flanked with AseI and NdeI, (1) no plasmid as a negative control; (2) EP-FL; (3) EP-

82S; (4) EP-76E; (M) 1kb ladder promega and (M’) is 100bp Promega marker. 

4.4.1.3 Topo TA cloning and transformation 

3’ adenosine overhangs were added to each insert using Taq polymerase (GoTaq® Flexi 

DNA Polymerase # M8301). The gene was then recombined into pCR4.0-TOPO vector 

with complementary 3’ thymine overhangs which contains immobilised topoisomerase 

enzyme (Invitrogen). The Topo-TA cloned mixture was then transformed into One shot 

TOPO cells (using the manufacturer’s protocol), minipreped and DNA sequencing 

carried out to check that the TA-cloned fragments had the correct sequence. 

4.4.1.4 Subcloning 

Each EP coding sequence was then subcloned into the Rsn2 containing pET28 vector. 

The restriction enzymes NdeI (NEB) and AseI (NEB) were used to cut the insert out of 

the pCR4 vector producing sticky overhangs. In parallel, Rsn2 containing pET28 

expression plasmid was linearized with NdeI restriction enzyme (NEB) and 

dephosphorylated using alkaline phosphatase (NEB) to generate sticky overhangs 

compatible with the EP fragments. 
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Figure 4-5 Agarose gel electrophoresis of restriction digests of all three EP fragments in pCR4.0 TOPO 

generated using primers incorporating NdeI and AseI sites. (1) plasmid alone; (2) NdeI single digest; (3) 

AseI single digest; (4) EP-FL double digest; (5) EP-82S double digest; (6) EP-76E double digest; (M) 1kb 

ladder promega. Red arrows shows the linearised inserts of the correct size. 

The gel-purified EP fragments were ligated into Rsn2 containing pET-28 expression 

plasmid using T4 DNA ligase enzyme (NEB). Ligation reactions were incubated at 16⁰C 

overnight and were then transformed into chemically competent DH5 alpha (Subcloning 

Efficiency™ DH5α™ Competent Cells # 18265-017) using the manufacturer’s protocol.  

4.4.1.5 Orientation Screening  

Plasmid DNA was purified from transformed colonies and screened for the presence of 

the correct insert by subjecting it to NdeI and BamHI restriction digest. For this, several 

colonies were grown, minipreped, and the plasmids were used for restriction double 

digest. If the insert is in the correct orientation, carrying 5’NdeI and 3’AseI, then a band 

of the correct size will appear. If the insert is in the wrong orientation, a band 

corresponding to the Rsn2 cDNA alone will be visible. Thus double digest with NdeI and 

BamHI is an effective way of screening colonies. 
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Figure 4-6 Agarose gel electrophoresis results showing screening of plasmid from six EP82S-Rsn2 

colonies by restriction double digest. (1 to 6)  plasmid double digest using NdeI and BamHI; (7) Uncut 

plasmid; (M) 1kb ladder Promega. Red arrows indicate the excised bands of the correct size, suggesting 

that the colony has the correct orientation of the insert.  

Colonies were screened and those which contained inserts of the correct size e.g. colony 

6 in Figure 4-6 were sequenced.  The verified plasmids were then transformed into the 

Tuner (DE3) pLysS expression cells. 

4.4.2 Test expression 

Test expression was carried out to check for expression and solubility of the EP82S-Rsn2 

fusion protein, using a representative for all three EP-Rsn2 proteins. SDS-PAGE analysis 

suggested that the soluble protein expression is low for all EP-Rsn2 constructs at all 

IPTG concentrations (0.1mM, 0.4mM or 1 mM) tested. Further optimisations were 

carried out in an attempt to improve the yield of protein by decreasing the incubation 

temperature to 4⁰C post induction, and increasing incubation from 3 hours to overnight, 

but this did not result in any improvement in protein yield. 
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Figure 4-7 SDS-PAGE of EP82S-Rsn2 test expressions induced at different IPTG concentrations, (A) 

0.1mM; (B)0.4mM and (C) 1 mM IPTG ; (P) Pre-induced fraction; (T) Total post-induced fraction; (S) 

Soluble fraction; (I) Insoluble fraction and (M) Marker (7-175kD, NEB). 

4.4.3 EP pET15 protein expression and purification 

Upon successful transformation, test expression was carried out for all three EP-Rsn2 

fusion constructs. For all the three test expression, samples were incubated at 37⁰C after 

inducing with 1 mM IPTG. Post induced samples were then subjected to SDS-PAGE. 

SDS-PAGE analysis suggests that the soluble protein expression was low for all the three 

EP-Rsn2 constructs. Thus optimisations were made in order to get the protein insoluble 

fraction. For this, IPTG concentration was decreased to 0.4 mM from 1mM and the rest 

of the parameters constant. Post-induced samples were obtained at the end of 3 hours 

incubation at 37⁰C and were subjected to SDS-PAGE, which showed that the expressed 

protein is going in the insoluble fraction. Further trials were made by further reducing the 

IPTG concentration to 0.1mM and conducting SDS-PAGE analysis of the post induced 

samples, which also showed presence of expressed protein in insoluble fraction. 

Further optimisations were carried out by increasing the time of incubation after inducing 

the samples with 1 mM IPTG. The post induced samples were harvested after incubating 

them overnight at 37⁰C and subjecting to SDS-PAGE analysis.  The obtained results 

showed that the proteins were still insoluble.  

In order to give chaperons enough time for folding the expressed EP-Rsn2 proteins, the 

post induced incubation time was increased and simultaneously the induction was 

decreased by lowering the concertation of IPTG, so that proteins gets enough time to be 

folded and thereby they remain in the desired soluble fraction.  With this logic, the IPTG 
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concentration was decreased to 0.4mM and increased the time of incubation 

simultaneously. The post induced samples were subjected to SDS-PAGE, which revealed 

that the expressed protein was going in the insoluble fraction. So the next step was to 

further decrease IPTG concentration to 0.1mM and post induced samples were incubated 

overnight. The SDS-PAGE gel showed that the expressed protein was still going in the 

insoluble fraction. 

After unsuccessful protein expression by reducing the IPTG concentration and increasing 

the time of incubation, the next step tried was to decrease the temperature of post 

induced incubation from 37⁰C to 4⁰C. The decrease in incubation temperature will result 

in lowering of basal metabolic rate and thereby reducing the kinetics of protein 

expression. Thus the chance of protein being folded and in the soluble fraction increases. 

To achieve this, samples were induced with IPTG (0.1mM, 0.4mM, 1mM) and incubated 

at 4⁰C overnight. The resultant samples were run on the SDS-PAGE for analysis, which 

showed that protein was still going in the insoluble fraction. 

Further optimisations were carried out in an attempt to improve the yield of protein by 

trying a different type of expression cells like BL21(DE3), and trying out all of the above 

mentioned combination of decreasing IPTG concentration along with the incubation 

temperature to 4⁰C and increasing the time of incubation from 3 hours to overnight, but 

this did not result in any improvement in protein yield. 

4.4.4 Inclusion body preparation 

Samples from all three wash steps and the acetonitrile-water sample were analysed by 

SDS-PAGE alongside the nickel affinity purification samples. The gel revealed that EP 

protein was well expressed (Figure 4-8), but mostly present in the insoluble fraction and 

was mostly solubilized by the acetonitrile-water extraction.  
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Figure 4-8 SDS-PAGE of large scale expression of EP from pET15 (1) Methionine wash 1 of the cell 

pellet; (2) Methionine wash 2 of the cell pellet; (3) Methionine wash 3 of the cell pellet; (4) After 

overnight extraction of protein from inclusion bodies using acetonitrile-water (50:50); (5) Elution fraction 

of the cell lysate supernatant subjected to Ni affinity chromatography and (M) Marker (7-175kD, NEB). 

Since the EP protein was already of reasonable purity, it was lyophilised without further 

purification. Attempts were then made to solubilise lyophilised EP into pure water or 

buffers. However, the EP lyophilizate was not soluble in water or buffers at a range of pH 

3-10. 

4.4.5 Formation of Rsn2 stabilised bubbles 

As a proof of principle that Rsn2 could stabilise the formation of micro-scale bubbles, 

nitrogen gas bubbles were made in an aqueous solution of Rsn2. Nitrogen gas and Rsn2 

solution were passed through inlet flow cells on a microfluidic chip (Figure 4-9A). At the 

pressure cone that is generated at the meeting point of aqueous phase and nitrogen gas, 

bubbles are formed. The bubbles then pass through the collection tube and can be 

collected in an eppendorf tube. Being less dense than the aqueous phase, the bubbles tend 

to float on the liquid in the eppendorf.  

At a flow rate of 5 µl/minutes bubbles of 118.5 ± 7.8 µm diameter were generated. 

Figure 4-9 shows bubble formation, and a representative view of the bubbles formed. 

These bubbles were stable for more than 24 hours but upon incubation at 4⁰C for more 

than 48 hours they started to coalescence giving a population of heterogeneous sized 

bubbles. No bubbles were formed in control sample, where buffer was used in place of 

Rsn2. A range of concentrations from 0.1-1 mg/ml  Rsn2 were used to make bubbles, but 
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no bubbles were formed at a lower concentrations showing that at least 1 mg/ml Rsn2 

was required for bubble formation. 

A 

 

B 

 
C 

 

D 

 
 

Figure 4-9 illustrates the process of Rsn2-stabilized N2 bubble formation. Where (A) is the image of the 

pressure cone formed at the microfluidic junction where Rsn2 solution and nitrogen gas meet, resulting in 

formation of bubbles, (B) shows bubbles passing through the collection tube, (C) shows a mass of bubbles 

floating in an eppendorf tube, and (D) shows the bubbles viewed by light microscopy. 

4.4.6 Formation of Rsn2 stabilised droplets  

Rsn2-stabilised bubbles of nitrogen gas were made in a microfluidic device as a prelude 

to using Rsn2 in the device to form stable droplets of immiscible liquids that can be 

mineralised to generate nanoparticles. Perfluorinated oil was passed through one 

microfluidic inlet channel instead of nitrogen gas to generated Rsn2 stabilised oil 

droplets. The Rsn2 stabilised droplets were examined using light microscopy (Figure 

4-10A). In subsequent experiments Rsn2 was replaced with iLOVRsn2, a fluorescent 

tagged Rsn2 protein (section-2.4.1), to produce iLOVRsn2 stabilised fluorescent oil 

droplets. Perfluorinated oil was selected as it is neutral in buoyancy which will allow 

droplet emulsion to remain suspended in solution. If the droplets are neutral in buoyancy, 

there will be less tendency for them to phase separate, which will also be important for 
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mineralisation. While, iLOVRsn2 facilitates monitoring of the localisation of partition 

between droplet (surface) and bulk aqueous phase formed. Droplets of 49.48 ± 0.96 µm 

diameter were formed at a constant flow rate of 5 µl/minutes for both solutions. The 

droplets were examined by fluorescence microscopy, where the intrinsic fluorescence of 

the iLOV fusion partner was used for tracing Rsn2. Figure 4-10 shows a representative 

view of the droplets formed. Fluorescence was only found outside of the droplets, 

confirming that Rsn2 is working at the oil buffer interface to stabilise the oil droplets 

formed. These droplets were stable for more than 6 months upon subsequent incubation 

at 4⁰C. In contrast, the control sample, where only buffer was used in place of Rsn2 

solution, immiscible layers of oil and buffer were found. The obtained droplets were 

washed to confirm that Rsn2 was at the surface, but upon washing the droplets 

disintegrated suggesting Rsn2 is required in solution for droplet stabilisation. 

 

  

Figure 4-10 Representative image of (A) Rsn2 stabilised oil droplets captured using light microscope and 

(B) iLOVRsn2 stabilised oil droplets captured using fluorescence microscope. Scale bar = 50 µm 

After producing droplets with iLOVRsn2 on the surface, the aim was to biomineralise the 

droplets using EP-Rsn2 fusion construct by incubating them with the mineralising 

solution. EP protein being a biomineralising protein would bind to calcium and would 

biomineralise the droplets to generate hybrid biomineralised capsules.  

In order to achieve this, attempts were made for generating Ep-Rsn2 fusion constructs, 

which were then used for protein production. 
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4.5 Discussion and future work 

This chapter describes work undertaken in an effort to demonstrate the use of EP protein 

to direct biomineralisation onto surfaces that do not naturally support this process. 

Specifically, the aim was to make mineralised droplets stabilised by surfactant Rsn2 

protein and mineralising them with biomineralising EP protein functionality.  

Further, the aim was to develop a mineralised material mimicking nacre or bone-like 

tissue. To achieve this, the material surface would be coated with EP-Rsn2 and then it 

would be allowed to mineralise by dipping in calcium carbonate solution. This coating 

and mineralising steps might results in a layer of mineral crystal, which would resemble 

a nacre or a de-cellularised bone. A de-cellularised bone is made up of mineralised 

calcium and protein; the only difference will be in the type of protein and mineral formed 

(Hydroxylapatite in bone vs calcite if EP is used). 

For this, EP protein was recombinantly over-expressed in E. coli as a His-tagged fusion 

protein, or as a tagged fusion with Rsn2 proved to be largely insoluble, most likely 

forming inclusion bodies. Native EP protein is secreted into the extra pallial space by the 

epithelial cells of the mollusc's mantle. This might have an impact on the folding and 

solubility of the EP protein in vivo. To address this challenge, it might be advantageous to 

produce EP containing proteins using prokaryotic secreting, or eukaryotic systems, like 

Pichia pastoris, for protein expression (Rosano and Ceccarelli, 2014).  

Bacterial protein expression systems are commonly used as the cells are easy to culture, 

grow fast and generate good yields of recombinant protein (Khow and Suntrarachun, 

2012). However, eukaryotic protein expression systems offer advantages including more 

native-like post translational modification. This may be important for EP which is 

normally glycosylated (Yin et al., 2005). If a secreting expression system were used for 

recombinant EP-Rsn2 expression, there is a high chance of excessive foaming of the 

culture medium due to the surfactant nature of Rsn2 component in the recombinant 

fusion protein and this may complicate cell culture. Other possibilities include exploring 

the use of insect cell or Pichia pastoris expression systems for the EP-Rsn2 protein 

expression, but these also typically require some aeration or aggitation.  

Native EP protein has a low pI and calcium ions are needed for its stabilisation in its 

native form (Feng, 2009). Thus addition of calcium ions in the buffer used for re-

suspending the powdered lyophilised EP might prove to be beneficial. The other 
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possibility is that the protein needs to be purified better first, e.g. by RP-HPLC or 

denatured with a chaotrope and refolded from that denatured state. 

The N-terminus of EP protein has a short calcium-binding peptide with repeat sequence 

of histidine and aspartate residues  ‘DDHHDDHHD’ (Hattan et al., 2001b), one can use 

this short calcium-binding peptide to make EP-Rsn2 recombinant fusion construct. This 

shorter recombinant protein might help in protein folding and result in protein 

solubilisation. Another possibility is to try different biomineralising proteins as fusion 

partners with Rsn2. For example a 23-kD silicatein-α protein, this protein has been used 

for the formation of synthetic siliceous spicules (Morse, 2005). Osteopontin derived short 

peptides like FHRRIKA (Table 3-2) found in extracellular matrix of human bone could 

be used for biomineralisation.  

In summary, attempts were made to obtain soluble recombinant EP-Rsn2 protein but 

were unsuccessful. The low solubility could perhaps be attributed to native EP protein 

having glycosylation sites, and glycosylation may be needed for its solubility and 

function in its native form. More work is needed to explore the possible options for 

production of soluble EP-Rsn2 protein. Upon successful expression of EP-Rsn2 protein, 

production of mineralised droplet should be possible. 

In parallel, microfluidics was selected for making monodispersed droplets, as it gives a 

precise control over the production conditions, including the volume of droplet and 

mixing of their contents, along with the reproducibility and scalability (Ralf et al., 2012). 

Many have used microfluidics to make droplet emulsions and have managed to get them 

of varying sizes (1 µm to 100’s of µm) (Ralf et al., 2012, Baret, 2012). Although the use 

of surfactant in emulsion formation is inevitable, none have used natural protein 

surfactants for droplet emulsion stabilisation. Saito et al. and Van Dijke et al. reported 

successful preparation of emulsions using protein from milk, egg white or soya bean 

flour in combination with various oils, but none of these proteins are classed as 

biosurfactants (Sahin et al., 2016, van Dijke et al., 2010, Saito et al., 2005). Schulz et al. 

have used hydrophobins for stabilising oil droplet, which were then used to mineralise 

but did not use microfluidics for making the emulsions (Schulz et al., 2011).  
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5 General discussion 



114 

 

General discussion 

The work described in this thesis is about using the biophysical properties of Rsn2 for 

applications in cell patterning, functionalising scaffolds and stabilising oil droplets 

emulsion. 

Rsn2, a protein with intrinsic surfactant activity, adsorbs to hydrophobic surfaces using 

non-covalent interactions, and makes the material surface hydrophilic. The Rsn2 surface 

coat forms rapidly and can be applied by simply dip coating with the Rsn2 solution. The 

Rsn2 surface coating method developed is reproducible and does not require any 

chemical or physical pre-treatment. Moreover, Rsn2 has demonstrated its ability to coat a 

range of hydrophobic polymeric surfaces, as shown by water contact angle and 

persistence experiments (section- 2.4). The resulting Rsn2 coating proved to be stable 

and persistent, and Rsn2 coated surfaces were then able to be used to promote cell 

adhesion, develop functionalised polymeric scaffolds and stabilise oil droplet emulsions. 

The ability to produce recombinant Rsn2 fusion proteins without interfering with the 

proteins’ surface activity was exploited. The results from section 3.4.1 showed that Rsn2 

can successfully act as a fusion partner for several integrin binding sequence (IBS) 

peptides, and are relatively easy to express and purify. Given the experience with IBS 

peptide and iLOV domain fusions, it is highly likely that Rsn2 can be used to produce 

surface active fusions for other peptides or proteins of interest. In the recombinant Rsn2 

fusion proteins developed, the Rsn2 acts as the anchor to the surface leaving the fusion 

partner accessible, active and solvent exposed. 

Rsn2 also provides a distinct advantage for creating mixed protein surfaces, which can be 

applied for mimicking extracellular matrix (ECM) or by presenting growth factors, with 

application in tissue engineering. Rsn2 coatings could find their applications in number 

of places, such as coating cell culture surfaces; for immobilising enzymes; for 

diagnostics biosensor application; or for studying protein-protein interactions. 

Although hydrophobin reduces interfacial surface tension to a greater extent, as 

discussed in section 1.4, and has demonstrated equally good application possibilities 

when compared to Rsn2 (Wösten and Scholtmeijer, 2015, Hou et al., 2009, Linder et al., 

2002).  For hydrophobin, in order to form assembly on solid materials, aqueous solution 

of protein is added onto the cleaned material surface and incubated overnight at 25°C in 

the presence of 0.02% NaN3.  This is followed by harsh extraction steps, which needs to 
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be carried out using 2% SDS at 100°C, in order to form sheets of hydrophobins (Wösten 

et al., 1995, Wösten et al., 1994). Thus Rsn2 was selected as it provides an easy method 

to develop a coating technique as compared to hydrophobin, which requires 

comparatively harsh and prolonged treatment to form a coat. 

Moreover, fungal spores are well-known to cause respiratory allergies. A study conducted 

by Weichel M et al showed that hydrophobins, which coats the fungal spores, can also 

trigger allergic response (Weichel et al., 2003). In addition, hydrophobins aggregates at 

the interface to make amyloid like film, which can uptake the congo-red staining (Kwan 

et al., 2006). However, in the histology world congo-red is used to stain amyloid plaques 

of patients with Alzheimer's disease (Wu et al., 2012). Thus the ability of hydrophobin to 

trigger allergenic response and uptake the congo-red stain, will limit its applicability in 

cell based therapy. 

A potentially productive avenue is to explore the idea of using SPLUNC1 for 

applications in humans. SPLUNC1 is a surfactant protein isolated from the upper 

respiratory tract of humans, more information in section-1.6. In comparison with Rsn2, 

SPLUNC1 is difficult to express and purify from the constructs so far tested, requiring 

carefully optimised culture temperature, IPTG levels and specialized E. coli strains. If 

allergenicity did not prove to be a problem, Rsn2 production could be more easily scaled 

up and economic in production.  The insight of the mechanisms of Rsn2 and SPLUNC1 

could be perhaps used to produce humanised Rsn2 sequences. Moreover, Rsn2 was 

selected as a candidate to develop a model system for future replication with SPLUNC1. 

To conclude, the surfactant properties of Rsn2 can be used for many potential biomedical 

applications and can act as a model system for developing SPLUNC1 application 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Weichel%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12534552
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