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Abstract 

 
  Atmospheric pollutants are of concern for both their effects on human health and on 

plants and crops.  Since the 1960s monitoring networks have been created, linked to 

international protocols regulating emissions of pollutants such as sulphur and nitrogen 

and also to validation studies of large-scale atmospheric transport models.  One such 

monitoring site in the UK is at Auchencorth Moss, close to Edinburgh, where routine 

half-hourly measurements of sulphur dioxide are made.  The time series shows a large 

amount of variation, and it is of interest to explore any trend in the pollutant level 

along with any presence of seasonal and diurnal cycles and to draw comparisons with 

pollutant transport model predictions.  However, before carrying out such analysis, it 

is necessary to investigate the sources of variation.  This thesis will consider the 

nature of the calculation of the sulphur dioxide flux, based on three simultaneous 

concentration measurements corrected for stability height. The need to calculate a 

slope estimate based on three points led to some difficulties and these were looked at 

to see whether these were creating difficulty when it came to modelling the fluxes.  It 

was concluded that there were a high proportion of fluxes calculated using slope 

estimates with high R2 values and so any difficulty might lie in the actual data 

themselves rather than any technicalities in the calculations used to define the flux. 

From there, each variable involved in the calculation of the flux was studied, using 

approaches such as signal-to-noise ratios and sensitivity analysis.  From these it was 

seen where most variation was occurring.  Signal-to-noise ratio techniques did not 

work very well with the very low data measurements collected, which was 

disappointing but the values collected were generally very low suggesting a large 

level of noise in the data.   Sensitivity analysis helped to show where most of the 

variation lay.  Using a sampling based method it was shown that most of the variation 

lay in the gas concentrations themselves rather than any of the other variables 

involved in the calculation of the flux.  This led to the conclusion that the gas 

concentrations rather than anything else were contributing to the difficulty of 

modelling sulphur dioxide fluxes.  This suggested that there might be a possibility 

that there was no problem in the data collection approach or calculations of a flux, but 

perhaps the data itself was too variable to be modelled. 

  Chaos theory offers a different approach to the analysis of time-series and this thesis 

explores the use of the Lyapunov exponent to investigate chaotic behaviour over 
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different aggregated timescales.  The chaos definition used was the popular 

“Sensitivity based on initial conditions” approach favoured by most people in this 

field.  Looking at how quickly two data points placed very closely together could 

diverge after a certain time period would show whether any predictions made would 

be highly susceptible to any variation would be a very useful finding.  Using three 

different techniques gave disappointing results however. The techniques all produced 

results which were sometimes conflicting with each other and none of which gave any 

convincing argument for, or against, the existence of chaos. This led to two potential 

conclusions.  One being that the data were very noisy, but predictable underneath this, 

or methods of estimating chaotic behaviour can be flawed.  This thesis also looks at 

how Extreme Value Analysis can be used on very noisy environmental time series 

and how useful it can be in explaining the behaviour of the larger values measured.  In 

this study there were some large peaks in each of the years when looking at a time 

series analysis.  These values were studied separately from the data using Generalised 

Extreme Value theory and the General Pareto Distribution.  The Pareto distribution 

approach was concluded to give the better insight into the data.  This was shown to 

model the extreme values reasonably well though both options could be taken as valid 

from these approaches.  Finally the measured and modelled data (collected from a 

Europe-wide model) were compared and analysed to see how well they compare and 

what techniques from each of the previous analyses can be used to bring them closer 

together.  These tended to show that the two data sets (modelled and measured) did 

not match up particularly well.  Techniques such as a Bland-Altman analysis and 

many comparison diagnostic tests were analysed to see whether there were 

differences between the two.  Even when some findings from earlier chapters were 

applied to the data such as applying a minimum R2 to any slope estimates did not 

help.   
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Chapter 1 - Introduction 
 
 

Motivation 
 

   Science has contributed to many different leaps forward in technology and thinking 

throughout time.  However, as progress has been made, there have been many high-

profile stories about the damage man has made to the planet.   Scientific research can 

be used in order to quantify how much damage has occurred, and make predictions of 

what might happen in the future in order that governments and leaders can plan 

accordingly.  This might be anything from the amount of food generated (see the 

OECD-FAO Agricultural Outlook 2008) to even population estimates for humans 

(see the UN Report, World Population to 2300, 2004) 

   In environmental science it can be very useful to be able to model natural and man-

made effects that happen.  This can be anything from the growth/shrinking of an 

animal population to the growth rate of a flower or plant.  This allows scientists and 

other environmental analysts a greater degree of understanding of what goes on in 

these systems, and helps them to explain why events may be occurring.  The main 

reason for modelling something though, is for the opportunity to estimate what might 

happen in the future.  For high-profile issues such as global warming, populations 

close to extinction etc. the advantages of having an accurate model that can predict 

what may happen in 1,5, 10…years into the future can prove invaluable. 

   Scare stories about ice-caps melting and climate change are well documented in the 

press, and treaties like the Kyoto agreement are set up to try and reduce the amount of 

(mainly) CO2 in the atmosphere.  Being able to predict the levels of gasses in the 

atmosphere could therefore prove very useful.  This is especially useful for working 

out where gasses are spreading to, since they can be carried long distances through the 

air and so there may be high levels in quite “random” places, away from power 

stations or other things that may cause these gasses to be emitted. 

   Another example of a treaty set up is the LRTAP Convention (Long-Range 

Transboundary Air Pollution).   This was created in 1979 in order to try and protect 

the environment.  This was mainly done by setting protocols, many with so-called 

‘critical values’.  These are a threshold that companies/governments are not allowed 

to exceed when they produce harmful gasses such as SO2 or NO2 These two 
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chemicals in particular are very harmful to the environment, as they are known to be 

the main causes of acid rain, which can cause damage to vegetation, animals and 

humans (through building corrosion, poisoning water etc.) 

  Some of these gas levels are modelled by EMEP (Co-operative Programme for 

Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in 

Europe).  This programme “provides governments and subsidiary bodies under the 

(Long Range Transboundary Air Pollution) LRTAP Convention with qualified 

scientific information to support the development and further evaluation of the 

international protocols on emission reductions negotiated within the Convention.” 

(http://www.emep.int/emep_description.html) 

   The EMEP programme has three main elements.  They collect emission data.  They 

study environmental data and they attempt to model the data in order that future 

predictions can be made.  EMEP also teams up with many scientists and scientific 

task forces in order that its results can be verified and checked.   

   The programme uses a series of modelled meteorological data along with modelled 

gas concentrations to predict a flux or rate of SO2. These have been based upon data 

collected for over 40 years in some sites around Europe.  From these data a model has 

been made and updated through the years, from one that modelled daily values for 

100km squares through most of Europe, to a more improved one that now models 

values over a 50km square. The model used a Lagrangian method at first that was 

since updated to an Eulerian approach in order to model over the smaller areas (the 

new model is described at length in Bartnicki et.al (1998)).  One thing to make 

mention of though is the volume of variables that need to be modelled in order to 

work out a predicted flux.  There will still be some concern at how much a model can 

be expected to correlate with measured data over such a large area and this will be of 

interest to study and gain conclusions from. 

   Below shows a map of Europe along with a grid showing the 50km regions that 

northern Europe has been split into.  The EMEP model predicts daily fluxes for each 

one of these squares.  This is shown in Figure 1.1: 

 

 15

http://www.emep.int/emep_description.html


 

 
Figure 1.1: Domain of the EMEP model divided into the 50km ‘squares’ – the small squares are the 

grid cells 

 

It can be seen that these squares look small, but since each of them are actually 50km 

by 50km it can be seen that it may be difficult to provide one value that may match 

the levels of gas concentration that are actually measured.  Weather conditions for 

instance may be very localised and so provide differences between two sites in the 

same square.   

The Centre for Ecology and Hydrology, a nationwide organisation that studies areas 

such as biodiversity, water, biogeochemistry, environmental informatics, climate 

change and sustainable economies, collects measurements of different chemicals 

routinely every half hour over different areas in Britain.  Their research mainly 

focuses on understanding the world and importantly, the repercussions of human 

activity on the world.  This thesis will use data collected and recorded at their station 

in Edinburgh. 

Most of the focus will be on one particular site in Eastern Scotland called 

Auchencorth Moss.  Different variables are taken from a measuring tower, including 

gas concentrations at different heights, and then calculations are made in order to 

produce a flux measurement (this will be described in more detail in Chapter 2).   A 

flux is defined as the amount that flows through a unit area at unit time.  This flux is 

then compared to the value that the EMEP model calculates it to be at that particular 

grid location.  As mentioned already these data are modelled at a daily level, and so 
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the measured data will have to be aggregated up to daily levels in order to compare 

between them. 

    

There is much literature around and many (simple and non-simple) techniques for 

immediately comparing two sets of data, however it would be useful to use techniques 

which help to give more information to explain more about any differences that may 

occurs between these two data sets, rather than just producing a simple p-value that 

shows the model validity/invalidity .  For instance it will be useful to see if there are 

techniques for quantifying the quality of the data and if a model-measurement 

comparison can be improved in order that they match up more closely (and hence 

create a higher level of trust in future levels produced) 

 

This thesis will attempt to show the difficulties in working with environmental data 

and produce techniques which, while used in different contexts, may not have been 

widely applied to environmental systems, in order to see if these explain some of the 

behaviour that can be seen in environmental time series.  It will also be useful to look 

at some of the patterns and trends that occur when monitoring data. 

 

 

1.2 Scope of Thesis 
 
This thesis contains six chapters.  In this chapter, a brief overview is given of the kind 

of data that will be worked with throughout the rest of the thesis, along with the main 

problems that may be reached in the course of attempting to model sulphur dioxide 

fluxes.  Chapter 2 will look at the measured fluxes and look at them in more detail to 

see ways of assessing the quality of the data that has been collected in order that they 

can be compared to the model.  From this chapter, conclusions will be reached about 

which years appear to give “better” results and this will become useful in later 

chapters – especially when the modelled and measured data are looked at together.  

This chapter will also contain a sensitivity analysis to see which particular variable(s) 

are having most influence over the calculated flux values. 

 

In Chapter 3, the measured data is looked at in terms of whether it shows signs of 

chaotic behaviour.  The most popular technique is to calculate Lyapunov Exponents.  
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These assess whether the data shows signs of being very sensitive to small changes, 

which make it impossible to predict what will happen in the future, without being 

certain of what value is being measured currently.  Two ways of estimating these 

exponents will be looked at based on Giannerini and Rosa (2004) and Nychka et.al. 

(1992) respectively and compared to each other before concluding whether the data is 

chaotic or not. 

 

With variable time series data it can also be useful to look at the more extreme values 

that may be measured.  Chapter 4 will start looking more closely at these values that 

have been measured and will look to see if these show any pattern to them, by using 

classical Extreme Value Theory.  Both the Generalised Extreme Value (GEV) family 

and the Generalised Pareto Distribution (GPD) will be looked at in order to see if the 

data fits either or both of them.  These are the two most common way of analysing 

these sets of values and have been used in several other environmental studies.  This 

will be helpful in helping to ascertain whether the values furthest away from the 

modelled data could still be explained. 

 

Chapter 5 will bring all the conclusions from previous chapters together in order to 

see how closely the modelled and measured data that has been collected match up to 

each other.  By using information gained from Chapters 2,3 and 4, these will all be 

applied to the data to see if there are any ways of validating the model using different 

subsets of the measured data.  Also this chapter will discuss the spatial aspects of the 

modelled and measured data since the model is for a 50km by 50km square and it is 

being compared against just one measuring station. 

 

Finally Chapter 6 will conclude all the results from the chapters and discuss the 

findings from this thesis and any future work. 
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Chapter 2 - Sulphur Dioxide Flux Measurements 

 

2.1 Introduction 

 

   A flux is described as: “The rate of flow of fluid, particles, or energy through a 

given surface” (www.dictionary.com).  In this study, this will be the rate at which 

SO2 moves through the air.  As mentioned in Chapter 1, the values of interest are 

those of flux due to dry deposition.  The following picture helps to show exactly w

dry deposition is (Figure 2

hat 

.1) 

 

 
Figure 2.1:  Picture taken from http://www.ceh.ac.uk/aboutceh/sections/edin_pollution.htm.  This 

shows how dry deposition differs from wet deposition and how it is deposited. 

 

Figure 2.1 distinguishes between dry deposition and wet deposition.  Wet deposition 

is produced by rainfall, whereas dry deposition occurs from the transfer of a pollutant 
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to the surface by any other means (air currents etc.).  SO2 can be blown for many, 

many miles before it is deposited (either wet or dry), so it can be difficult to predict 

just how much will be measured in specific locations.   

   At Auchencorth Moss, meteorological and physical measurements are taken half-

hourly every day from a measurement tower on the site.  The tower is pictured below 

(Figure 2.2) 

 

 
 

Figure 2.2: A picture of the measuring tower at Auchencorth Moss taken from 

http://www.ceh.ac.uk/aboutceh/sections/edin_pollution.htm.  

 

   The tower has devices to measure gas concentrations from three heights on the 

tower.  Other things measured each half-hour include the air temperature, the wind 

direction and the wind speed.  The friction velocity (a reference wind velocity using 

the air density along with the horizontal and vertical wind speeds) is measured by a 

sonic anemometer.  

    Since the calculation of a sulphur dioxide flux depends on a number of measured 

and theoretical variables, the properties of an SO2 flux will depend on the attributes of 

these input variables.  Analysing these parameters in detail will help to assess the 

uncertainty of the measurements made in comparison to the ‘true’ value that exists in 

the environment at that particular time and in the model comparison. 

    Once a sensitivity study has been completed, an important step will be to ask 

questions about the ‘quality’ of the fluxes and methods will be shown to deal with the 

problems that could occur.  By applying certain statistical procedures to the data, the 

data quality can be measured in quantative ways. Goodness-of-fit tests will also be 

useful since the flux calculation relies on a slope estimate from three points (this will 
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be expanded upon in pages 23 and 24).  Other techniques will also be used to analyse 

potential problems that may affect the model-measurement comparisons that will be 

shown later on in Chapter 5.   

   Further analysis of the measurements will include temporal aggregation at different 

scales - from the half-hourly measurements into longer time periods such as days and 

months - to see if there are patterns in these longer data series.  Also analysing 

differences between day and night could help to see if the growth of plants underneath 

the measuring tower in the canopy, affects the quality of the gas concentrations that 

are measured.  Additionally, looking at the distribution and spread of the gas 

concentrations and the heights at which the measurements are taken (once they have 

been stabilised- this is described below) will help to show again if there appears to be 

a reasonable level of consistency.  It would probably be expected that the heights 

should not change very often and so if they are, then it may help to ask why. 

 

  This chapter underpins much of the statistical analysis in Chapters 3 and 4, and 

where the measured data are compared to the modelled in Chapter 5.  Also some of 

the later techniques involved in identifying a signal and assessing variation will be 

useful when looking at the chaotic behaviour that may be present (explained more in 

Chapter 3) 

 

2.2 Estimation of the Flux 

 

In order to estimate an SO2 flux at Auchencorth Moss, certain variables need to be 

calculated.  The technique used at this site is the ‘eddy correlation’ method (Monteith 

& Unsworth 1990).  This has the advantage of measuring a flux directly, rather than 

other techniques which infer it rather than measure it.  Two of these techniques are 

discussed by Griffith and Galle (2000) and Leuning et.al (1999).   The multi-stage 

technique used here is described below. 

The first step is to calculate a length L (the Monin-Obukhov length) using the formula 

 

kgH

Tcu
L p 

3*)(


        (2.1) 
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 u* is the friction velocity.  This is necessary in finding out how much of 

the turbulence measured is caused by wind and not heat flux.  If u* is 

measured at less than 0.08 however it is treated as missing as the wind 

speed is regarded as too low and measurements will be too uncertain.  

Friction velocity is measured by a sonic anemometer. 

   is a constant air density (=1246 gm-3), 

  cp is another constant (=1.01).  This is a basic property of matter.  It is the 

quantity of heat required to raise the temperature of 1kg of matter by 1oK. ,  

 T is the ambient temperature (in Kelvin) averaged over two heights on the 

measuring tower. 

 k is von Karman’s constant, a constant of proportionality (0.41),  

 g is the acceleration due to gravity  (9.87ms-1) 

 H is the rate of heat transfer per unit area.  This explains how much 

turbulence is caused by heat radiating from the surface.  This is measured 

at the tower. 

  

     L is routinely filtered to remove any unreasonable values.  If the absolute value of 

L falls below 2, then the value is rejected and treated as missing.  The reason for this 

is that the atmosphere has become either too stable or unstable at this point for the 

micrometeorological methods to be applied (Monteith and Unsworth 1990).  This, as 

well as the u* filter mentioned earlier are the only two filters applied. 

   The second step in calculating the fluxes involves calculating the stabilised 

corrected height (SCH) using the formulae listed below in (2.2) to (2.6) 
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        SCHi= log(gashti – d) - zH(i)                                     (2.6) 

 

   i = 1,..,3 

 

 gasht is the heights that the gas concentrations were measured at in metres 

above the ground; these are constant over a year but can change at the 

beginning of a new year depending on the height that the foliage 

underneath the tower may be expected to reach.   

 ‘d’ is a constant, which is worked out as approximately 70% of the 

canopy height (Campbell 1977).  This is used as a measure of the ‘zero 

plane’, i.e. the height at which the wind speed is zero. (Monteith and 

Unsworth p.113-117) 

 SCH values are the Stabilised Corrected Heights (in metres above the 

ground) 

 

   Before the flux calculation can be made, one more filter is applied to the data.  The 

heights and concentrations should only be used when/if the wind is not being 

interfered with by the measuring hut.  When the wind is blowing directly over the 

measuring hut then this will mean that an unreliable measurement could be taken and 

so this means that any measurements, collected while the wind direction is between 

60 and 170 degrees, are rejected. 

   The zH(i) values (from 2.5) are used to calculate the SCH’s. These are necessary in 

order that the wind-speed profiles are more or less linear.  In micrometeorology it is 

assumed that the atmosphere is stable and so the wind-speed profile and log(height) 

can be related linearly.  In a lot of real cases though this cannot be automatically 

assumed and so the profiles are linearised to account for this.  The SCH’s are 

calculated as shown in equation (2.6). 
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    Finally in stage three, the flux can be calculated.  Each gas concentration (at each 

height) has a corresponding stability corrected height (SCH) as mentioned previously.  

At each time point, there are therefore three concentrations and 3 SCH’s.   This is then 

treated as a regression problem using gas concentration as the response variable and 

the SCH as the explanatory variable.  From these three points, a least squares estimate 

is used in order to fit the best linear model for each set of three ‘points’ as shown in 

equation (2.7) 

 

iii cSCHmgasconc  )(        (2.7) 

 

 m being the gradient or slope of the best fit line 

 c being the intercept 

 

i = 1,..,3 

 

   Figure 2.3 shows this pictorially.  The three points are shown as the small circles 

and the piecewise lines drawn in bold.  The best-fit line has been drawn on as a dotted 

line. 

 
 

Figure 2.3:  Plot showing gas concentrations against stabilised heights, for one half hourly 

measurement from 1996 with a dotted line showing the best-fit line through them.  Solid lines indicate 

the piecewise lines. 
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  Now, finally the flux value can be calculated as shown below (2.8)   

                                 Flux = -k  (u*)  m                                                 (2.8) 

here k and u* are as before in equation (2.1) and m is the gradient of the best-fit 

for 

Possible problems with the quality assurance of the data could be: 

1. Although filters have been applied to three of the variables (u*, Wind 

re 

 be reliable when it is only based on 

 

etical) used to 

e 

 

   The first problem is probably of least concern that needs to be looked at in more 

 

d 

The second and third problems will be looked at in more detail in sections 2.3 and 

 

  

 

W

line from (2.7).  The product of these three quantities provides a flux measurement 

SO2  levels. 

 

 

Direction and L), are these taking out all unreliable measurements, or a

they taking out too many values leaving a data set too sparse to analyse 

properly? Are these missing measurements all occurring at one time or 

over more “random” time periods? 

2. Can a regression model be trusted to

three points? If values at one of these heights have been poorly measured,

this would surely give a poor fit and therefore an untrustworthy slope 

measurement, meaning a poorly calculated flux value. 

3. There are many different variables (measured and theor

calculate the flux measurement.  How much variation will each of thes

produce in the flux? 

  

detail.  In order to check this though, some brief analysis of the gas concentrations 

that are removed will be carried out, in order to see if these show any considerable 

differences to the filtered data.  This will be in Section 2.5.  Section 2.6 will show a

chi-squared analysis to analyse whether there are any differences in the amount of 

missing fluxes at particular half hourly periods.  Because the concentrations are 

measured and not derived they should show if the filter applied to L, u* and Win

Direction will make any difference.   

   

    

2.4. 
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2.3 Evaluating the Best Linear Model 

With only three points to fit a best-fit line, there is a worry that a particular flux 

k 

2.3.1 Analysing the Goodness-of-Fit of the Straight Line 

or each of the years, the R2 value for each best-fit line has been evaluated.  This has 

r or not) R2 

ear Min 1st 

rtile 

Median Mean 3rd 

rtile 

Max Numbers 

 

  

could be influenced by one outlying measured value. If the three points do not loo

like they may lie on a straight line then perhaps a flux measurement should not be 

calculated since the flux is directly related to the gradient of the best fit line. 

 

 F

been performed on the half hourly data so that the data can be checked for quality at 

their measured format before they are aggregated to the hourly or daily 

measurements.  The 17520/17568 (depending on whether it is a leap yea

values for the half-hourly data are shown in Figure 2.4: 

 

Y

Qua Qua missing 

1997 0.000 0.925 0.823 1.000 0.800 0.975 3213 

1998 0.000 0.738 0.913 0.795 0.971 1.000 2986 

1999 0.000 0.587 0.829 0.720 0.950 1.000 3233 

2000 0.000 0.740 0.967 0.797 0.978 1.000 2840 

2001 0.000 0.289 0.709 0.605 0.927 1.000 3126 

 

able 2.1: The summary statistics for each year of the half hourly R2 values.  The missing values T

include the filtered out values. 
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 Figure 2.4: Density histograms of R2 vs. a probability frequency for the years,  (a) 1997 (b) 1998, (c) 

1999 (d) 2000 and (e) 2001. The y-values multiplied by the bar-widths (0.05) sum to 1. 
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At first glance the histograms all seem relatively similar and show that the three 

points are providing a reasonable straight line in most cases (over 75% of values for 4 

of the five years are showing values above 50% and over half the values for all years 

are above the same figure).  Certainly 1997-2000 all look reasonably similar from the 

graphs above.  However, it should be noted that 1999 is slightly different and perhaps 

should be analysed with a little more care as there are more lower R2 values than in 

other years.  However, over three quarters of the data gives a better than 50% R2 value 

here (from Table 2.1)  so there is still reason to believe that the best fit line (and hence 

the flux measurements that come directly from it), is fitting the three points well in 

most cases. 

   1999 however does show a few, very low R2 values.  These are more noticeable than 

in the other years (ignoring 2001 for now) when looking at Figure 2.4.  These could 

be scrutinised to find out when they are occurring.   For instance, if they are all 

occurring together in time, then perhaps the machine had a fault in it that day, and 

those results should maybe be discounted.  If they are scattered then perhaps this 

could just be put down to a single measurement error and this shouldn’t cause too 

many problems especially when averaging them for a daily value (however this will 

be looked at). 

    In 2001 however, there does seem to be slightly more of a problem.  Certainly 

looking at the 1st quartile shows that a quarter of the R2 data points fall under 30%.  

This would appear to be a problem as these low values affect at least 25% of the flux 

calculations.  When comparing the modelled and measured data later on-this may 

have to be thought about if the comparisons prove to be worse for the 2001 data. 

2.3.2 R2 simulation 

 
A filter on the data points could possibly be something to think about.  This would 

allow an acceptance of a flux value only when the best-fit line was “good enough” 

(below is a discussion of what may be seen as acceptable).  With three points, a 

potential method might be to look at the middle value and use that, to see if the three 

points are ‘collinear enough’ to believe a straight-line model could be fitted to the 

data.  Figure 2.5 shows pictorially how this could be applied. 
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It could be useful to consider a simulation study, in order that three points could be 

chosen and then varied in order to see how much that would change an R2 value and 

to assist in interpreting an ‘acceptable’ R2 level as an additional filter. 

. 

 

 

 
 

Figure 2.5: Plot using simulated data showing three points (x1, y1), (x2, y2) and (x3, y3). Solid line is 

line connecting (x1, y1) to (x3, y3) with a point marked at the x2 co-ordinate. Dashed lines are the 

piecewise lines. 

 

 

 

 

Figure 2.5 shows the basis of a simulation that was applied using three arbitrary 

points.  Firstly three points were chosen that lay in a straight line (these are (x1, y1), 

(x2, y2*) and (x3, y3) in Figure 2.5), then the 2nd point (i.e. y2
*) was moved

perpendicular to the x-axis, and R2 values were calculated from the best fitted line for 

(x1,y1), (x2, y2) and (x3,y3).  These were then plotted against the standardised

differences between y2 and y2
*.  The differences were standardised by dividing the 

vertical distance between (x2, y2) and (x2, y2*) by y2* (=1.6).   For example, the

standardised distance on the second line (0.15625) was obtained by dividing 0.25 by 

1.6. The results obtained are shown in Table 2.2 and Figure 2.6.  
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y2 value Distance from (0.15, 1.6) Standardised 

Distance 

R2 

1.6 0 0 100% 

1.85 0.25 0.15625 98.56% 

1.93 0.33 0.20625 97.54% 

2.1 0.5 0.3125 94.53% 

2.35 0.75 0.46875 88.48% 

2.6 1 0.625 81.20% 

3.1 1.5 0.9375 65.75% 

3.6 2 1.25 51.92% 

4.1 2.5 1.5625 40.87% 

4.6 3 1.875 32.43% 

5.1 3.5 2.1875 26.07% 

5.6 4 2.5 21.26% 

 

Table 2.2: The simulated distances of the second point from the perfect fitted line and the resultant R2 

that it produces. 
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Figure 2.6: Plot of R2 values against corresponding standardised distance  

 

  Figure 2.6 shows that a “middle value” with a standardised distance of 2.5 will 

reduce the R2 value to nearly 20%.  This may prove to be a reasonable threshold so 

that any very poorly fitted flux values will not be calculated.  It could of course be 

made even stricter.  Table 2.2 and Figure 2.6 show how far away the middle point 

would be in these cases. 

    Some of the real measured values were used to see what sort of distances (and 

distance*) were being produced.  An example is shown in Figure 2.7.  This shows the 

last half hourly set of values taken from 1997 
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Figure 2.7:  Showing a real set of three values from 1997, along with the distance between the real 
middle point and where the middle point would be if the first and last points were connected 
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Figure 2.8:  Time Series showing the Distance* values throughout 1997, using the half hourly values. 

 

Distance* No. of Distance* Smaller % of Distance* 
Smaller

R2 at that 
Distance* 

0 0 0 1
0.15625 623 4.36 0.9857
0.20625 804 5.63 0.9754
0.31250 1185 8.30 0.9453
0.46875 1731 12.13 0.8848
0.62500 2319 16.25 0.8120
0.93750 4247 29.75 0.6575
1.25000 9324 65.32 0.5192
1.56250 11563 81.00 0.4087
1.87500 12334 86.40 0.3243
2.18750 12712 89.5 0.2607
2.50000 12968 90.84 0.2126

 

Table 2.3 The summary statistics of the Distance* from the 1997 half hourly data. 
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Figure 2.9: Using Table 2.2 to plot the percentage of data points with a lower distance than at each 

threshold (Col 2 of Table 2.2) and the corresponding R2 value (Col 4 of Table 2.2) 

 

Table 2.3 shows that there are still approximately 65% of available data that have an 

R2 of over 50% and in fact over 90% of the points give a better than 20% R2 figure as 

was mooted as a potential threshold on page 30.  Were the bar to be set at 30% (say), 

then there would be between approximately 86 to 90% of the data points included.  

This doesn’t appear to be a great difference in the number of rejected values.  In fact 

Figure 2.9 shows that the small differences in the percentage of data rejected as the R2 

value decreases from around 30-40%.  Therefore the 30% value will be used later on 

in Chapter 5 when the modelled and measured data are compared against each other. 

2.3.3 R2 values Throughout the Day 
 
    The R2 values may vary throughout the day.  Perhaps winds are strongest at 

particular points during the day and so may be carrying more of the pollutant.  Since 

SO2 comes from factories, maybe there will be certain points of each day in which 

there is more pollutant in the air.  In order to look at this Figure 2.10 shows the half 

hourly R2 values from the first day of each month in 1997. 
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Figure 2.10: Time Series of the half hourly R2 values over the 1st day of each month from 1997. 
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  Figure 2.10 shows how the R2 values vary throughout the day.  These twelve days 

are typical of the values calculated over each of the years and as can be seen there is 

no real "worst time" of the day in each of the plots above.  This (lack of) pattern is 

repeated throughout the 5 years in total so there is nothing to look at more in depth 

with regard to this. 

 

 

2.3.4 R2 Values for Day and Night in Summer and Winter 
 
It was thought that perhaps there could be a difference between the day and night 

calculations.  Perhaps any activity in the canopy below during the day could affect the 

quality of the three gas concentrations that are being measured. This can be checked 

by looking subjectively at some plots of day and night fluxes and comparing any 

differences between them.  

 

 Day 

Median 

Night Median Difference  

(Day - Night)

CI for Difference P-value 

1997 0.91844 0.94233 -0.01435 (-0.017, -0.012) <0.0001 

1998 0.90404 0.92847 -0.01075 (-0.014, -0.008) <0.0001 

1999 0.81672 0.85024 -0.01512 (-0.020, -0.010) <0.0001 

2000 0.91494 0.91468 0.00020 (-0.0015, 0.002) 0.7864 

2001 0.71341 0.73286 -0.00522 (-0.011, -0.0002) 0.0387 

 

Table 2.4:  The results from a Mann-Whitney analysis on the difference between the day and night R2 

values (negative values indicating night giving better fits) 
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Figure 2.12: The Daytime R2 values against the R2 values at night, using the half hourly fluxes from 

1997-2001. 

 

Figure 2.12 shows that there appears to be little difference subjectively between each 

of the years – day or night.  Because there are so many data points though, it is 

difficult to tell entirely.  A more formal analysis between the day/night R2 values can 

be implemented by performing Mann-Whitney tests on these R2 values with the 

hypotheses below: 

 

 H0 will be that there is no difference in the values of the R2 between day and 

night. 

 H1 that there is some difference.    
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 Mann-Whitney tests will be used as the distributions of the R2 values are not 

normally distributed, so the 2-sample t-test would not be suitable.   The Mann-

Whitney tests only require the variance and shape of the distributions to be the same 

and from the plots in Figure 2.12 this seems reasonable. 

   These tests show that (bar 2000), the straight lines, as measured by the R2, are 

better fits at night to the data than during the days.  However, the differences are very 

small for every year, so it seems unlikely that the measurements will be highly 

affected by poorer measurements during daylight hours.  Clearly with 17000+ data 

points for each year, the confidence intervals are very tight. 

 

 

2.3.5 Comparing the Fluxes and the R2 values 

It would be of interest to see if there is any pattern between the flux values and the 

corresponding R2 value for that particular value.  Then it can be seen if the higher R2 

values coincide with high or low fluxes or whether the goodness of fit has no bearing 

on the flux value that has been derived. 

Five plots showing the flux values against the R2 values again for each year are shown 

in Figure 2.13 
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Figure 2.13 Plots of the R2 value vs. the corresponding flux value for each half hour, from 1997-2001.  

Graphs have all been set to a max of 20 and min of –20 on the flux axis. 

 

   

   Subjectively from Figure 2.13, the plots look pretty similar in shape for 1997 and 

1998, and appear to have more scatter towards the right hand side (i.e. higher R2 

values) for the final 3 years.  Because most of the fluxes are very small, it is difficult 

to see any obvious relationship that may be between these two variables.  It should be 
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noticed though that there appears to be very few high positive or negative fluxes at the 

low end of the R2 scale.  This could suggest that the high fluxes are producing better 

fits in general.   However it is dangerous to assume causality here, as it could also be 

that the better fitted data are producing higher fluxes.  This seems to make more sense 

as three points which don’t have a high R2 value may have a very flat line as the best-

fit estimate. 

   Since it appears to be the smaller fluxes that are producing the lower R2 values, it 

might be useful to look at just how many of the slope estimates (since the flux is 

directly calculated from this), are significantly different from zero.  It may be that if 

these are removed from the data, (since a slope estimate of zero will produce a flux of 

zero too), then this will improve the R2 values in general and give fluxes that can be 

accepted more readily. 

   

By taking the slope estimate and creating a 95% confidence interval as the estimate  

1.96* the standard error of the slope should give an idea of whether the slopes are 

actually significantly different from zero.  Table 2.5 shows this: 

 

Year No. of (non-

missing) 

measurements 

No. of significant 

slopes 

% of Significant 

slopes 

1997 14307 10729 74.99 

1998 14534 10119 69.62 

1999 14290 7750 54.23 

2000 14728 10323 70.09 

2001 14394 6028 41.88 

 

Table 2.5:  The number and percentage of approximate significant slopes that have been obtained in 

each year 

 

From Table 2.5 it can be seen that the data in three of the years appear to give around 

70% ‘good’ slopes (i.e. ones that are significantly greater or less than zero).    1999 

and 2001 seem to be quite low however with just over half of the slopes being 

significant.  This may prove to be useful if the 1999 and 2001 years are the worst in 

comparison to the modelled data 
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  In 2001 the number of significant slopes drops to a very low value in comparison to 

the other years.  This may help to explain why there are a lot of low R2 values 

compared to other years in 2001, since many of these slopes are not significantly 

different from zero.  This could therefore be another filter to think about when 

calculating fluxes.  This will be explored more in Chapter 5 when the 

model/measurements are looked at further. 

 

  To see if this alters the pattern of R squared values, the table below (Table 2.6) 

shows a summary of the R2 values for each year, but only taking into account the 

significant slopes. 

 

R2 values for sig slopes Min Q1 Med Mean Q3 Maximu

m 

1997 0.800 0.9072 0.953 0.9401 0.9850 1.000 

1998 0.8001 0.9051 0.9514 0.9383 0.9839 1.000 

1999 0.800 0.8709 0.9424 0.9287 0.9840 1.000 

2000 0.800 0.9072 0.9588 0.9422 0.9887 1.000 

2001 0.8001 0.8866 0.9468 0.9316 0.9843 1.000 

 

Table 2.6: Summary of R2 values collected between the years 1997 and 2001 

 

   Table 2.6 shows that the significant slopes give far better slope estimates, as we 

would expect, (based on Figure 2.12) than the non-significant ones.  Perhaps if only 

these (significant slopes) are analysed, then these will give more accurate flux 

measurements.  This should be something to take into account when comparing the 

model and measured data in Chapter 5.  This possibly also shows that the reason the 

1999 data seems to vary more is because the number of slopes that are actually 

providing a significant flux measurement is very small. 

 

  Also useful could be looking at the actual slope estimates against the R2 values.  

Since the flux values are obtained by multiplying the slope estimates by a constant 

and u* which can change for each half hourly period there is a possibility that the 

patterns may look slightly differently for these.  These plots are shown in Figure 2.14. 
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From Figure 2.14 it can be seen from this that some of the slope estimates are positive 

and some are negative.  From (2.8) it can be seen that a positive slope estimate will 

lead to a negative flux.  This is defined as an upward flux, which as the name suggests 

would occur when more SO2 is coming up from the ground rather than down through 

the air.  This may be the case on rather still days where SO2 is not moving much 

through the lower atmosphere.  Also the fluxes look slightly different to the fluxes vs. 

R-squared that were pictured in Figure 2.12.  It can be seen that 1999 is the only year 

that appears to have more slope estimates below 0, than above it, which seems odd 

when compared to the other six years of data.  Differences with the final 3 years data 

look possible too.  During the years 1997 and 1998 it looks like most of the slope 

estimates are greater than 0.  However in the final three years (99-01) there appear to 

be more negative values.  Looking at the spread of the data also seems to show that 

1999 and 2001 seem to have quite a small spread in comparison to the other years.  

This may suggest that these years may be easier to model and so perhaps give more 

accurate results.  This should perhaps be taken into consideration when looking at the 

years.   
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  Figure 2.14: Slope estimates against R2 for the years 1997-2001 

 

    

 

2.3.6 U*, Gas Concentrations and Stability Corrected Heights 

In the previous sections, u* was used in the flux calculation along with the slope 

estimates, and the gas concentrations and stability corrected heights were used to 

create the slope estimates..  Since these are obviously then of great importance to any 

calculation of a flux measurement, then these should probably be analysed in a similar 

way to the earlier analyses. 

 

2.3.6.1 Looking at the Friction Velocity (u*) 

 

  Firstly u* shall be looked at as this is a simple straight measurement from the tower.  

Firstly Figure 2.15 shows the histograms of u* over the 5 year period 1997-2001: 
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Figure 2.15:  u* half-hourly measurements from 1997 to 2001 
 

 

As can be seen in most of the years the u* distributions are slightly right-skewed but 

reasonably similar throughout the 5 years.  The assumption of normality would be a 

risky one in this case. There also seems to be perhaps an exponential or chi-squared 

distribution to the figures, and appears to show that there are no real extreme values 

and hence shouldn’t affect the fluxes negatively.  From the plot it can be reasonably 

assumed that u* appears to remain similarly distributed throughout the 5 years that are 

being looked at.  So there certainly appears to be no obvious change or difference 

when looking at the friction velocity of the air throughout this time period.   

 

 

 44



 

2.3.6.2 Gas Concentrations and Stability Corrected Heights 

    

Table 2.7 and 2.8 contain the summary statistics for the SCHs and secondly the gas 

concentrations (at each of the 3 different measurement heights): 

    From these summary statistics, a few things stand out.  Firstly, some of the 

maximum values can be seen to be very large when compared to the rest of the data in 

both the gas concentrations and the SCH’s.  These data will be analysed in more 

detail in Chapter 4, so it is important here to look if the data appears normally 

distributed, if these extreme values are not taken into consideration. 

 

Year Gas  

Heights (m)

Min 1st Quartile Median Mean 3rd Quartile Max 

1997 2.82 -5.414 0.910 1.015 1.296 1.167 73.138 

 1.21 -5.437 0.065 0.110 0.197 0.172 29.534 

 0.43 -5.491 -1.122 -1.108 -1.100 -1.100 7.630 

1998 3.05 -5.703 1.021 1.100 1.365 1.240 90.298 

 1.16 -5.726 0.035 0.064 0.138 0.115 32.106 

 0.35 -5.786 -1.394 -1.387 -1.379 -1.375 6.159 

1999 3.05 -5.291 1.030 1.097 1.497 1.231 236.564

 1.16 -5.319 0.039 0.063 0.181 0.111 84.646 

 0.35 -5.394 -1.393 -1.387 -1.370 -1.376 18.532 

2000 3.05 -4.989 0.959 1.097 1.416 1.268 65.364 

 1.46 -5.012 0.248 0.315 0.429 0.393 29.943 

 0.71 -5.048 -0.522 -0.491 -0.459 -0.456 12.798 

2001 2.82 -4.492 0.919 1.016 1.379 1.206 76.967 

 1.21 -4.530 0.070 0.111 0.234 0.188 31.105 

 0.43 -4.616 -1.119 -1.107 -1.082 -1.084 8.108 

 

Table 2.7:  The summary statistics for the stability corrected heights over the years 1995-2001 (in half-

hourly measurements).  The gas heights show the three heights in metres that measurements were taken 

at in that particular year.  These have only been calculated if there is a corresponding gas concentration. 
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Year Gas 

Heights  

Min 1st 

Quartile

Median Mean 3rd 

Quartile

Max No.missing

1997 2.82 0.0000 0.100 0.214 0.751 0.610 42.341 3213 

 1.21 0.0000 0.100 0.201 0.667 0.561 38.336 3213 

 0.43 0.0000 0.100 0.193 0.612 0.518 35.208 3213 

1998 3.05 0.00015 0.123 0.201 0.546 0.374 54.339 2986 

 1.16 0.00004 0.126 0.195 0.494 0.351 47.103 2986 

 0.35 0.00003 0.123 0.187 0.452 0.328 42.654 2986 

1999 3.05 -0.162 0.064 0.124 0.451 0.300 26.939 3230 

 1.16 -0.150 0.070 0.132 0.477 0.318 30.560 3230 

 0.35 -0.161 0.068 0.129 0.464 0.304 29.108 3230 

2000 3.05 -0.061 0.054 0.113 0.500 0.278 67.172 2840 

 1.46 -0.040 0.061 0.121 0.546 0.299 68.988 2840 

 0.71 -0.052 0.061 0.121 0.567 0.301 69.800 2840 

2001 2.82 -0.072 0.054 0.114 0.458 0.324 26.878 1229 

 1.21 -0.052 0.063 0.125 0.488 0.359 27.395 1232 

 0.43 -0.041 0.060 0.120 0.467 0.341 25.921 1231 

 

Table 2.8:  The summary statistics for the gas concentration measurements over the years 1995-2001 

(in half hourly measurements). The gas heights show the three heights in metres that measurements 

were taken at in that particular year 

 

  Figures 2.15 and 2.16 show the histograms of the stability corrected heights and the 

gas concentrations.   
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Stability Corrected Heights 
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Figure 2.16: Distributions of the stability corrected heights from 1997-2001.  Top left plot is for the 

highest height, top right corresponds to the middle height and the bottom left is from the lowest height 
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 Histogram of 2000 high, 2000 mid, 2000 low
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Figure 2.17 Distributions of the Gas Concentrations from 1997-2001.    Top left equals the 

concentration at the highest height, top right equals the concentration at the middle height and the 

bottom left equals the concentration at the lowest height. 

 

Looking at the SCH’s first in Figure 2.16, the data look reasonably normal at all three 

heights.  Only 1999 looks to possibly deviate from this, but there would still be a 

strong argument to be made for a normal distribution to be a reasonable 

approximation to that as well.  These histograms have been shown on a –10 to 10 

scale so the extreme data doesn’t affect the distribution of the bulk of the data. 

  In Figure 2.17 the gas concentrations can be seen to appear to follow a similar 

distribution to each other in each year 1997-2001.  They all look possibly exponential 

in distribution, but there doesn’t seem to be much change in any of the years, once the 

extreme data is looked at separately. 

  We can look at a Sensitivity Analysis in order to see where the variation in the 

fluxes might be coming from.  This will be looked at in Section 2.5. 

 

So far it would appear that the main concern in these data are the number of non-
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significant slopes that are being calculated, coupled with a reasonably high number of 

low R2 values when using the slope estimate to try and estimate a flux.  It has been 

shown (Table 2.4, for instance) that these appear to be highly related and so by only 

using the significant slopes it would appear that the slope estimates calculated would 

potentially be closer to the "real" value of the flux.  Looking at some of the other 

variables that are used in the flux doesn’t appear to have shown anything that would 

adversely affect the level of confidence that a flux calculation would provide.   

However it is still clear when looking at the fluxes throughout the year that they still 

appear difficult to model.  Since this may be down to random noise it would be useful 

to perform some sort of Signal to Noise calculation so that it can be seen how easy or 

difficult it is going to be to predict what is going to happen in the future. 

 

 2.4 Signal- to- Noise Ratios  

 

2.4.1 Introduction 
 

Signal-to-Noise Ratios are used often to ascertain how good a signal is.  As the name 

suggests it is simply a ratio of the level of a signal to the level of background noise.   

The bigger the Ratio, the better the signal is.  It is commonly used with regard to radio 

signals, but can also be used in medicine for looking at cells and other measurements 

as well.  It is useful to put a value on how much noise there is around a signal. 

 

2.4.2 Estimating the SNRs 
 

The fluxes having now been looked at, along with the measurements used in the 

calculation of them it might be useful to start looking at how easy or difficult it might 

be to extract a signal that would be used to predict future observations. At the start of 

this chapter a question was asked about how easy it might be to predict a flux value. 

By looking at the fluxes and the variables used to calculate the flux it can be seen 

which particular variables appear to be most constant and which seem to deviate 

more.  It would be useful to look at how much signal there is in comparison to the 

levels of noise.  For this purpose, Signal-to-Noise Ratios (SNRs) are useful. There are 
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different ways of estimating these, one is discussed in Rout & Mittal (2006), a “time-

local, inband signal-to-noise ratio” is estimated in Mellinger and Clark (2006). Lots of 

the time SNRs are used in the measurement of sound/light waves etc, and not used as 

often in environmental systems (including the two previously mentioned above). 

Pauluzzi (2000), however, has produced an estimate which can be applied to the 

environmental data in this context.  This is defined in (2.9)   
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where ̂  is the SNR estimate and  ny   Nn 1  are the data points. 

  One problem when using this estimate is that sometimes the value ‘6M2
2 – 2M4’ can 

turn out to be negative when small values for  ny   are used.  This will obviously 

mean that an estimate for  will not exist.  However for larger values this should not 

be a problem. 

  Applying these to the 48 half hourly fluxes that are derived each day would help to 

show how much signal there is present in the fluxes.  It would also be useful at the 

same time to look at the inputs that are used to derive fluxes (the gas concentrations, 

wind friction velocities and the Monin-Obukhov lengths (L)).    Table 2.9 shows the 

summary statistics of the SNR estimate, for each of the input variables and the flux, 

from the years 1997-2001.  It can be seen that in a lot of occasions, this estimate 

doesn't produce values for some variables, but there are interesting results from the 

ones that are calculated: 
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 N Min Q1 Median Mean Q3 Max 

1997 Flux 37 0.03 0.34 0.62 0.79 1.07 2.33 

U* 353 0.28 4.28 8.27 12.39 15.26 86.80 

L 31 0.32 2.72 10.51 2.2*1014 59.46 1.7*1015 

Wind Dir 319 0.04 8.02 62.34 166.9 198.3 3280 

SO2 – high 174 0.10 1.13 2.71 5.9*1013 6.42 1.7*1015 

SO2 – 

middle 

187 0.07 1.30 3.26 5.5*1013 8.03 1.7*1015 

SO2 – low  189 0.05 1.52 3.55 5.4*1013 015 8.30 1.7*1

1998 Flux 39 0.16 0.36 1.03 1.03 1.51 2.71 

U*  340 0.10 5.89 10.15 1.6*1013 18.63 1.7*1015 

L 23 0.31 1.52 7.283 2.9*1014 58.5 1.7*1015 

Wind Dir 326 0.02 21.27  88.46 1.6*1013 243.2 1.7*1015 

SO2 – high 217 0.14 1.96 6.13 1.9*1014 15.86 1.7*1015 

SO2 – 

middle 

219 0.05 2.08 7.41 1.9*1014 22.46 1.7*1015 

SO2 - low 225 0.04 2.32 7.49 1.8*1014 28.2 1.7*1015 

1999 Flux 32 0.17 0.46 0.90 1.02 1.51 2.81 

U* 341 0.42 5.91 10.22 9.6*1014 21.58 1.7*1015 

L 21 1.52 1.7*1015 015 015 1.7*1 1.5*1015 1.7*1 1.7*1015 

Wind Dir 320 0.09 18.62    112.8 1.02*1014 296.4 1.7*1015 

SO2 – high 185 0.25 1.24 2.61 1.5*1014 7.33 1.7*1015 

SO2 – 

middle 

014 8.20 015 190 0.17 1.60 3.17 1.5*1 1.7*1

SO2 - low 191 0.07 1.38 3.00 1.5*1014 7.63 1.7*1015 

2000 Flux 22 0.05 0.23 0.62 0.81 1.11 2.99 

U* 360 0.11 4.84 8.89 1.9*1013 *1015 16.40 1.7

L 11 0.24 0.91 1.55 6.0*1014 015 *1015 1.7*1 1.7

Wind Dir 318 0.16 16.50  *1013 187.12 *1015 77.31 2.1 1.7

SO2 – high 150 0.03 1.39 2.47  15.58  
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SO2 – 

ddle mi

151 0.17 1.45 3.16  7.92  

SO2 - low 153 0.01 1.24 2.95  6.99  

2001 Flux 28 0.11 0.47 0.74 0.81 0.98 1.89 

U* 359 0.008 5.16 9.99 7.2*1013 18.5 1.7*1015 

L 17 0.71 1.7*1015 015  015 1.7*1 1.51*1015 1.7*1 1.7*1015 

Wind Dir 321 0.21 19.27 85.37 8.1*1013 235.2 1.7*1015 

SO2 – high 160 0.09 1.48 2.37 2.1*1014 6.19 1.7*1015 

SO2 – 

ddle 

159 0.13 1.60 3.36 2.1*1014 7.23 1.7*1015 

mi

SO2 - low 161 0.15 1.63 3.22 2.3*1014 7.01 1.7*1015 

 

Table 2.9: SNRs for the daily flux values along with the input parameters from 1997-2001 

 

   

It can be seen here that in many cases the signal-to-noise ratio for the flux was not 

able to be calculated.  This was because the formula used generated negative values 

for the ‘6M2
2 - 2M4’ part- however for the most part this was not the case, so this 

could generally be ignored and only the non-missing results were used.  

nalysis with the data so the 

 

ounts!  This is why the median value 

nal 

  This is obviously very disappointing and suggests that the estimation technique isn’t 

particularly suited to the low measurements that are occurring in this data set.  The 

lack of options in an environmental setting for this sort of calculation however do not 

leave many other options open to performing this kind of a

results from this analysis will be studied, however scarce they may be. 

   Some of the means are very large.  This is because some of the SNRs calculated had

very small values for ‘6M2
2 - 2M4‘ which led to some extremely large values being 

calculated which increased the means by vast am

was looked at as a reasonable figure for the average here. 

   From these results (and others that were generated) it could be seen that the SNR 

values were very low.  In the case of the flux values most of the SNRs lay between 0 

and 1.  Other literature on this topic can use SNRs of up to 1000 or 2000, to give an 

indication of just how small these values are.   

   Looking at the input variables it can be seen that u* appears to give the “best” sig
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with the higher SNRs, whereas the values for L were very scarce.  However i

appear that most of the noise in the input variables appears to be coming from the g

concentrations themselves.  As the concentrations are required in order to produce the 

slope estimate then it w

t would 

as 

ould be useful to see how much this will affect the variation 

t the fluxes are showing.  The other measurements all have higher medians and 

quartiles for each of the 5 years, so from this analysis it may appear that the 

 the most affect on the variation in the fluxes.  In the 

ext section it will be useful to have a look at how much variation it has compared to 

ng 

ating the sensitivity of a model can be found; the adjoint 

 Fuzzy-number based methods (Dou et al. 1995) 

nd second-order reliability methods (Unlu et al. 1995) to mention a few.  However a 

al sampling bas

           (2.10) 

t a linear model (2.10) is being used 

 try and analyse a multiplicative model (2.8).  A natural technique to improve this 

tha

concentrations may be having

n

other input variables. 

    

2.5 Sensitivity Analysis 

 

 It is clear that the fluxes are highly variable which will cause problems when tryi

to model them.  Since these are derived from a model, it might be useful to look at a 

Sensitivity Analysis (SA) of the flux based on input parameters.  This will show how 

much the variation of a model can be apportioned to the variation in the input 

parameters to the model. (Saltelli et.al 2000).   

Different ways of estim

method  (Hier-Majumber et al. 2006),

a

glob ed method will be used here from Saltelli et al (2000) as they have 

applied techniques to environmental data beforehand and their approach looks 

suitable for this case. 

   In general the model is written as:  

 

 ),...,( 1 nxxfy   

  By treating the output as y and the input vectors as xk, distributions for the inputs 

can be assigned (D1,…,Dk), then values for each xk can be produced and from these 

y1,…,yk can be derived and it can be seen which parameters contribute to most 

variation in the output. 

 

   One thing that should be mentioned here is tha

to
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would be to take a logarithm of (2.8), however since the fluxes can be negative (as

well as the slope estimates) then this is not possible. However the model fitted from 

(2.10) should give us a good indication of which variables in the model are 

contributing most to the variation in the model. 

 

  The flux is derived from five input parameters, namely 3 gas concentrations, the 

Monin-Obukhov length (L)  and the wind friction velocity (u*).  Both L and u* are 

approximately normally distributed and so these were used to sample from in order

generate values for the SA.  With regard to the gas concentrations, it was seen as 

unrealistic to think of these being generated from independent distributions whe

 

 to 

n they 

ainst 

 other (see Figure 2.19(b) and(c)).  This was done in R and meant that the gas 

concentrations maintained their dependence to each other. 1000 values were sampled 

for each of the input parameters, which were then used to produce 1000 fluxes. 

  The flux values were then plotted against each of the input parameters in order to see 

what relationships there were (if any) between each of them and the output. 

(a) 

seemed very highly correlated.  So these were sampled from a multivariate normal 

distribution, which took into account the correlations of the concentrations ag

each
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gure 2.18: Plots from SA from 1997,1998, 1999 and 2000: a) A plot showing (from left to right) flux 

ainst u*, L, then the 3 gas concentrations. b) Plots showing the input variables against each other 

rstly L and the 3 Gas concentrations against u*, then the three gas concentrations against L. c) The 

as Concentrations are plotted against each other (top v. middle, top v. bottom, middle v. bottom)  
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    Figure 2.19 sh e ar s a.  It looks like there is not any 

ious relation e f  t parameters independently from 

gure (a).  Figur o w l  between any of the parameters, as 

e would expec  p r dependently selected.  Figure (c) 

ows the high l f io ee s concentrations at the three 

ghts. 

In order to see i e buting to most variation in the 

ux, a regressio o a odel of the form: 

   (2.10) 

x1=u* 

 x =L 

 x3…x5= Gas Concentrations 

efficients of each parameter could be 

oked at in orde  i m contributed most to the 

 the d it  useful to look at Standardised Regression 

oefficients whi e  in n  variable is causing most variation 

altelli et al 200  a ie as been normalised to have mean 

, standard devia . ve l tance based on moving each 

ariable away from its expected value by a fixed fraction of its standard deviation.  

 

ows v ry simil picture of the dat

obv ship between th lux and the inpu

fi e (b) d esn’t sho  any re ationship

w t since the input aramete s were in

sh evels o  correlat n betw n the ga

hei

  which nput parameters w re contri

fl n was performed n the d ta to produce a m
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where   

2

 

This produced a model, from which the co

lo r that it could be seen wh ch of the

variation in ata.  However, is more

C ch giv  a better dicatio  of which

(S 0).  These give  coeffic nt that h

0 tion 1   So it gi s a leve of impor

v

   Table 2.10 below shows the results from 1997-2000 
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Input Variable Year Co-eff SRC p-value 

u* 1997 0.0121 0.021 0.065 

 1998 -0.0032 -0.020 0.5299 

 1999 -0.0033 -0.037 0.2840 

 2000 0.0039 0.020 0.5502 

L 1997 <0.0001 0.013 0.5809 

 1998 <0.0001 -0.010 0.7554 

 1999 <0.0001 -0.024 0.4820 

 2000 <0.0001 0.013 0.6969 

GasConc1 1997 -0.3432 -0.964 0.0171 

 1998 -0.1905 -0.640 0.1809 

 1999 -0.4443 -2.004 <0.0001

 2000 -0.3433 -1.106 0.0012 

GasConc2 1997 0.0661 -0.401 0.8093 

 1998 -0.5065 -1.456 0.2435 

 1999 0.2309 1.077 0.1440 

 2000 -0.1299 -0.453 0.6176 

GasConc3 1997 0.2877 1.635 0.0366 

 1998 0.7036 1.820 0.0240 

 1999 0.2002 0.915 0.0788 

 2000 0.4576 1.689 0.0055 

 

Table 2.10:  The regression coefficients for a linear model on the daily 1997-2000 data, along with 

Standardised Regression Coefficients and p-value for each term. 

 

From Table 2.10 it appears that GasConc3 tend to contribute most to the variation of 

the flux (i.e. the one taken at the lowest point on the tower), however it would 

probably be more useful to look at the three concentrations together as they are so 

highly correlated that it would be difficult to imagine that one would remain the same 

if the others increased.   The gas concentration SRCs still look much bigger than the 

coefficients that u* and L both give, suggesting that the gas concentrations are still the 

biggest contributor to variation in the fluxes, (with SRCs over 100 times as big as the 

 60



 

Monin-Obukov length and wind friction velocity).  This would lead to a belief that 

these input parameters are not very important and there should be a good link between 

the fluxes and the gas concentrations, as one might expect. 

2.6 Filters Applied and Missing Data 

 
As was mentioned in Section 2.2 it will be important to look at whether the values 

that are being rejected by the filters would show any unusual behaviour or differences 

with the data that have been allowed into the flux calculations.  As can be seen from 

Figure 2.20, the wind filters that have been applied do not appear to affect the 

concentrations that have been measured, as the two distributions seems reasonably 

s appears to be some slightly larger 

concentrations in the samples that have been rejected but certainly it would appear 

nothing that would unduly affect the results in this case. 

equal for each year 1997-2001.  There perhap

Pe
rc

en
t

38.533.027.522.016.511.05.50.0

60

50

40

30

20

10

0

38.533.027.522.016.511.05.50.0

SO2 - legal SO2 illegal

1997 SO2 concs allowed within wind direction filters vs those rejected

 

 

Pe
rc

en
t

52.545.037.530.022.515.07.50.0

52.545.037.530.022.515.07.50.0

70

60

50

40

30

20

10

SO2 legal SO2 illegal

1998 SO2 concs allowed within wind direction filters vs those rejected

0

 

 61



 

 

80

70

60

50

40

Pe
rc

en
t

30

20

10

0

35302520151050

SO2 legal SO2 illegal

1999 SO2 concs allowed within wind direction filters vs those rejected

35302520151050
 

 

Pe
rc

en
t

706050403020100

90

80

70

60

50

40

30

20

10

0

706050403020100

SO2 legal SO2 illegal

2000 SO2 concs within wind direction filters vs those rejected

 

 

Pe
rc

en
t

26.2522.5018.7515.0011.257.503.750.00

50

40

30

20

10

0

26.2522.5018.7515.0011.257.503.750.00

SO2 legal SO2 illegal

2001 SO2 concs within wind direction filters vs those rejected

 
Figure 2.19:  The half hour SO2 concentrations distributed throughout each year 1997-2001.  These 

have been split into both the concentrations not filtered, and filtered by the wind direction filter. 
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The other thing that was mentioned in Section 2.2 was to look at whether the data that 

were missing occurred at any particular times of the day.  If one part of the day were 

showing more missing data than another then this would be of concern as this could 

be affecting the quality of the average daily fluxes that are being calculated.  In order 

to test this, the number of times a value was found to be missing at each half hourly 

period of the day, throughout the year was studied.  These results are shown in Table 

2.10. 

 It can be seen from this table that there is no clear time of the day when more or less 

missing values are occurring so therefore it seems reasonable to assume that these 

data are missing at random throughout the five years of data collected.  This would 

indicate that data is being collected fairly evenly from all times of the day and night 

throughout the year and therefore there isn’t any complications over certain times 

having very scarce data. 
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Time of Day 0 1 2 3 4 5

1 85 122 108 45 3 3

2 82 149 89 40 5 1

3 72 145 104 37 6 2

4 77 146 99 36 7 1

5 82 142 98 30 14

6 88 135 87 45 9

No of times missing
Time of Day 0 1 2 3 4 5

25 60 139 111 45 8 3

26 64 136 112 42 9

28 68 141 96 46 14

No of times missing

2

18 74 142 93 44 8 5

19 63 143 101 45 12 2

7 74 148 96 35 12 1

8 81 142 102 31 8 2

9 78 135 104 39 10

10 66 161 86 41 12

11 77 148 94 40 6 1

12 72 151 94 40 9

13 72 137 99 45 11 2

14 74 131 113 36 11 1

15 80 122 114 39 10 1

16 83 133 101 37 11 1

17 78 130 98 48 8 4

20 56 151 100 49 5 5

21 64 129 112 51 8 2

22 71 134 98 48 13 2

23 76 121 110 41 15 3

24 65 143 114 33 9 2

3

27 69 144 99 43 8 3

1

29 72 137 95 52 7 3

30 51 150 113 38 11 3

40 9 2

35 70 127 111 42 15 1

1

1

1 64 141 110 37 13 1

42 74 133 103 44 12

43 90 130 93 42 9 2

2

31 70 139 102 38 14 3

32 67 141 105 40 11 2

33 81 115 117 44 7 2

34 70 138 107

36 68 140 106 32 18 2

37 70 130 112 42 11

38 81 128 98 44 14

39 78 134 93 48 11 2

40 72 139 101 41 13

4

44 71 150 102 34 8 1

45 63 162 88 41 12

46 68 139 105 43 9

47 83 122 97 50 13 1

48 70 147 100 43 5 1  

Table 2.11: Showing the number of times that missing data occurred in each half hourly period over th

5 year period.  The rows indicate which half hour of the day it is, the columns are th

e 

e number of times 

ly lead to variation and quality and this has been what this 

over the 5 years that a value was missing 

 

2.7 Conclusion + Discussion 

It has been seen in this chapter that in order to calculate fluxes many variables have to 

be measured including wind speeds, measurement heights and temperature to name 

three, as well as the gas concentrations.  From these at least 8 separate calculations 

need to be applied to gas concentrations in order to produce a flux measurement from 

these.  This can possib

chapter has explored. 

   Producing a best-fit line from 3 points on a graph, means that there is a larger 

margin for error and each measurement has a very high influence over the gradient of 

the best-fit slope, which is necessary to calculate the flux. 

   From the analysis of the seven years (1995-2001), by producing R2 values (which it 

should be noted do not tell anything about how “true” the measurements are, only 
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how well a slope, based on three points, fits the data), it has been seen that for most 

 

r, 

to be that there are a reasonable percentage of the 

nce 

ultiplication) meaning that the flux for that particular half-hour could be zero.  In 

001 especially it was shown that only 6987 of a potential 17520 observed slope 

alues were significantly above/below zero.  This tied in with the fact that there were 

ore lower R2 values in that particular year than any other. 

ooking at the R2 values in some more detail, especially during times of the day and 

ear did not show very much.  The hypothesis that perhaps ‘better’ measurements 

ould be achieved at night when no plants were growing in the canopy, where the 

easuring tower was, appeared to be unfounded by analysing some time series plots 

and the R2 values that could be directly compared against each other. 

   Since the flux is obtained directly from the slope measurement, the two variables 

(gas concentration and stability corrected height) that were used to measure this were 

analysed.  Some of the maximum values that were produced seemed a little too high, 

but these were very few and doesn’t look as if it would affect the data too much. 

   Finally, the other variables used in the flux measurement were looked at in order to 

see how much variation there appeared to be in them.  Most had small variation, 

however it may be something to think about if the results show disagreement with the 

modelled data. 

   From these preliminary results that showed some variance in the flux results some 

Signal to Noise Ratios were looked at and found to be low.  The SNR results however 

were estimated using a technique which did not produce a value for (in some cases) a 

majority of the input parameters.  This meant that little could be analysed from these 

results.  This led onto a Sensitivity analysis on the flux and the inputs that it receives.  

Using a technique applied to other environmental studies it was found that most of the 

variation in the fluxes was coming from the gas concentrations, with the other 

years, a lot of the slope calculations appear to fit the data pretty well.  This could give

some confidence in the flux values that have been calculated from these.  Howeve

for the two years 1999 and 2001 there are a few potential problematic points that 

could have enough influence to affect a comparison between the modelled and 

measured data that will occur in later chapters. 

   Other problems have been shown 

slopes who when combined with their standard error to produce some 95% confide

intervals, overlap zero, and therefore (since the flux is directly linked via 

m

2

v

m

 

L

y

w

m
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variables lending little or no influence on this. 

 of this chapter has focussed primarily on the 

alf hourly data.  When the data is compared to the model in Chapter 5, this will 

y data which is used.  However, if the half hourly data has been 

nly allow “good” values then this should produce daily values that we can 

   It should also be mentioned that most

h

primarily be the dail

filtered to o

then make comparisons with the modelled data without having to worry about any 

measurement or calculation errors. 

   The next chapter will move from the data quality analysis to look at whether the 

data are able to be predicted at all, with or without these findings above. 
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Ch

3.1

It w

pre ic 

asp  and 

ho e that is being 

loo

 In addition, a useful aspect of looking at the data in this way will mean that it can be 

odelled and measured data, as it will give us knowledge of 

r any deterministic model to 

t the data accurately.  If the data are too unpredictable or very sensitive to very small 

ked at instead.  It will 

e useful to see the methods used to define chaos and see if aggregating the data up to 

 

aotic behaviour can and does exist in 

 

e confusion and disorder (www.cogsci.princeton.edu/cgi-

apter 3 – Looking into Chaos 

 

 Introduction 

 

ould be useful to know if the data, measured at Auchencorth Moss, are 

dictable.  This can be achieved by looking to see if the series we have has a chaot

ect to it.  Below is an overview of what chaos means, how it can be defined,

w it can be employed in environmental situations such as the on

ked at here.   

  

seen if the data are chaotic at the daily level.  This will be useful to know when it 

comes to comparing the m

whether any model will fit the data well or not.  From looking at time series of the 

data earlier on it could be seen that it will be difficult fo

fi

changes then a completely different approach will need to be loo

b

daily levels (or even diurnal or hourly scales) will alter the levels of chaos that may or

may not be present, i.e. identifying a temporal scale to work in. 

3.2 Chaos 

3.2.1 Introduction to Chaos 

 

   Chaos is a topic, which can provoke a great deal of disagreement in many people’s 

minds.  Even those who believe that ch

environmental/natural systems, can have very different beliefs about what it is that

they define as chaos.  A quick Internet search immediately reveals that chaos is: 

 A state of extrem

bin/webwn) 

eton.edu/cgi-bin/webwn

 (physics) a dynamical system that is extremely sensitive to its initial 

conditions (www.cogsci.princ ) 

 Chaos is the breakdown of predictability, or a state of disorder (cf Chaos 
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Discussion, also Chaos is Everywhere Discussion). 

(www.shodor.org/interactivate/dictionary/c.html) 

 Chaos theory states that things are not really random, just complex. 

(http://www.webslave.dircon.co.uk/alife/chaos.html) 

e 

shington.edu/wcalvin/bk9/bk9gloss.htm

 Complicated patterns that are not truly random. Chaos is a cryptic form of 

order, what a random-number generator produces. There is, as the phras

goes, "a sensitive dependence on initial conditions." Because chaos was 

defined in a paradoxical way ("It may look random, but it's merely 

chaotic"), it is a term often misused or misunderstood 

(faculty.wa ) 

 to 

   randomness is described by a strictly deterministic equation.  

ong defines randomness as the definition of chaos.  Rapp and Schmah (2000) claim 

easure of the complexity (chaos) of the time series, and 

tal randomness shows a higher complexity.  The "rule finders" believe however that 

d Keijzer (1999) define chaos as a continuous power spectrum that does 

ot contain any dominant frequency.  

ut 

 

  There are many more definitions listed, but these are just five, showing some views 

that are held about chaos. 

    Definitions of chaos in time series are also a matter of some debate.  According

Tong (1990) a loose description of chaos can be when  

 

 

T

that he falls into one of two main groups of statisticians.  There are the “randomness 

finders” and the “rule finders” and Tong falls into the former. This group use the 

degree of randomness as a m

to

complexity lies between these two extremes and in fact periodic and completely 

random series (i.e. both extremes) are both least complex. (Gu et al. 2004).    

   Babovic an

n

   A common method of defining chaos is defining something known as Sensitive 

Dependence on Initial Conditions (SDIC).  This technique is explained by Ellner 

(2000) as:  

 

a small uncertainty about the system state now, producing a large uncertainty abo

what the state will be a while from now. 
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This basically means that unless a measurement is incredibly precise, then it will be 

 can be seen, some of these definitions do not differ from each other greatly and 

ould perhaps not be treated as entirely separate definitions.  However, hopefully 

what has been shown in the paragraphs above is that there is a lot of variation when it 

 imagined, that 

bly 

ethods of attempting to calculate levels of chaos in a system. Both 

asons for a particular method, and limitations of the same method will both be 

 

.2.2 Chaos in Environmental Systems 

 

Examples of these differing methods include Hastings et.al 1993 which looks at using 

995 which uses first derivative estimates and 

immer 1999 who talks about various ways of estimating Lyapunov Exponents. 

n 

 

very difficult/impossible to give a (worthwhile) prediction about the state at a future 

time point.   

      As

sh

comes to even defining what chaos actually is.  Therefore, it should be

there will be a few ways of analysing real data as being chaotic, some which possi

disagree with others.  

    This review hopes to bring together the ways in which chaos and environmental 

time-series can be linked together and how chaotic behaviour can be assessed.  There 

will be a few m

re

discussed.  If it is possible then methods will be compared against each other as best

they can. 

3

 

   Even when restricting analysis to environmental systems there is still some dispute,

as to how to measure whether chaos exists and how to quantify it.  According to 

Turchin and Ellner (2000)  

 

Despite an intensive theoretical and empirical investigation during the ensuing two 

decades, however, we do not have a widely accepted example of chaos in a field 

population.  

 

Poincare Maps, Ellner and Turchin 1

Z

   Many scientists have attempted to apply chaos theory to environmental systems i

order to explain them.  Populations of voles living in Europe (Turchin and Ellner

2000), sunspot indexes and concentrations of carbon dioxide data at the South Pole 

(Giannerini and Rosa 2004) and forecasting river discharges (Babovic and Keijzer 
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1999) are just a few of the differing systems under which chaotic behaviour can 

hich 

.2.3 Arguments Against Using Chaos Theory Techniques 

Before using some of these techniques to look at the data at Auchen orth M

ould be wise to see arguments that are used by people who disagree with it.  For 

easure using the techniques shown above.  Timmer et al. 

s  

rum we had applied an algorithm that is 

apunov exponents even for white noise.  

Therefore, we now doubt the validity of these former results.”  

This paper asserts that, even at a very small scale, noise can disable techniques used 

for ascertaining whether chaotic behaviour exists.  If there is a stochastic element to 

hen chaos can be falsely identified.  Hence it will be very importa

haotic techniques that will not be susceptible to normal variation in data patterns.  It 

ust be able to distinguish between noisy data which has an underlying model, and 

 non 

Also, for some, there will be methods of 

ating the level of chaos present in a system, so that meaningful values can be 

manifest itself. 

    The following sections will help to show some of the differing methods by w

chaos can be measured.  Some of the examples mentioned above may be referred to 

later. 

 

3

c oss it 

w

example there are some arguments that suggest that chaos, whether it may exist or 

not, could be impossible to m

(2000) claim

 

“For the calculation of the Lyapunov spect

nowadays known to be able to yield positive Ly

 

  

the data t nt to use 

c

m

one which does not contain any predictable behaviour.  If this can be achieved then 

Timmer et al's comments will be moot.  It will be important that the techniques that 

are applied to the data must be able to differentiate between white noise and

random variation. 

3.2.4 How is Chaos Assessed 

 

  As mentioned previously, chaos has a few definitions, which form the basis of a 

measure of chaotic behaviour.  In this section some of the more commonly used 

definitions will be listed and commented on.  

estim
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computed from real-life time series etc. 

    The first way (and most popular way) of assessing how chaotic a set of data is, is 

by using Lyapunov Exponents.  These use as the definition of chaos, the SDIC 

definition and work out how much a slight perturbation of a point (x(t) to x*(t) say) 

can grow into a large uncertainty over time (x(t+m) to x*(t+m)) 

pute Lyapunov exponents, there must exist a time series of the form    In order to com

below (3.1). 

 

))(),(()1( ttXFtX                 (3.1) 

 

Where F is the function that takes the value of the time series from X(t) to X(t+1), and 

3) 

Local:  

 is a random noise function. 

  

   Local and global Lyapunov exponents are then defined as follows in (3.2) and (3.

respectively: 

 

||)()1()...1(||log
1

)( 0UtJtJmtJ
m

tm 
             (3.2) 

 

||)()1()...1(||log
1

lim tJtJmtJ 
Global: mm              (3.3) 

t) 

 1 

nsional chaotic systems, Lyapunov exponents have an important 

 

   These exponents are the most widely used for calculating and quantifying chaotic 

 

 

where m is the duration of the time interval over which the exponent is measured, J(

is the first derivative matrix (Jacobian matrix) of F(X(t)) and U0 is a vector of length

in the direction of the initial perturbation. ||..|| means the norm in this case. 

   Quite simply, if the Lyapunov exponents for the data are positive then there is 

evidence of chaos in the system.  Wolff et al. (2004) states  

 

 “For one-dime

practical use: it is a necessary condition for the existence of chaos that the Lyapunov

exponent be positive.” 
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behaviour of systems.  Ellner uses them to calculate the chaos element in a mo

population

th 

 time series, Frazier and Kockelman (2004) use them to look for chaos in 

e series. 

 the 

transport systems and the analysis of the CO2 data by Giannerini and Rosa (2004) 

also use Lyapunov exponents to analyse their data. 

 

3.2.5 Estimating Lyapunov Exponents 

 

   From many time series however, it can be difficult to calculate Lyapunov exponents 

exactly, because of the difficulty in knowing what the underlying model (F) actually 

is, so there have been developed methods of estimating the values in tim

   The first of these is the simplest to implement.  Firstly “flybys” are picked out of

data.  These are times (t1, t2) where ||X(t1)- X(t2)|| falls below some threshold value.  

These are treated as perturbations of the state at time t1 and then the exponents are 

estimated by (3.4) 

 

||)()(||

||)()(||
log

1
)(

21

21

tXtX

mtXmtX

m
tLm 




  

tting m tend to infinity, the global Lyapunov exponent can also be estimated 

 

each tim

Ho

Th ay be present in 

e data.  Unless the system is 100% deterministic, a series has a large chance of 

d 

d 

ncern is expanded upon in 

tion 

s 

F*  and 

           (3.4) 

 

   By le

from (3.4) 

   Obviously, this is a very simple way of calculating values of Lyapunov exponents at

e increment, and therefore can seem quite appealing for this reason.  

wever, it has a major flaw, which make it certainly not the best approach to try.  

is is that this method does not take into account any noise that m

th

diverging in time due to the presence of noise, that is prevalent in many real life (an

especially in environmental) scenarios. Both this method and the following metho

are mentioned in more detail in Ellner (2000).  (This co

Section 3.2.5) 

   The second method is a more robust method.  This involves estimating a func

for the data - typically a non-linear model in the form shown in (3.1).  From thi

estimate of F (F* say), estimates of J(t)  can be produced by differentiating 
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then equations (3.2) and (3.3) will be used with the estimates of each of these 

variables. 

   The advantages for this method are numerous when compared to the first method

Firstly, white noise should be accounted for when choosing the function F*, an

such the Lyapunov Exponent estimate should be more accura

.  

d as 

te.  Secondly, the 

bserved trajectory is still used here.  This method does not test the model for chaos, 

 there is no added 

rror from a simulated time series. 

   The negative side of this approach is that, it can sometimes be very difficult to find 

odel for F.  This method can also throw up odd Lyapunov Exponents too 

any data points are used. (Tempkin and Yorke 2004) 

ate the exponents is described in Giannerini and Rosa 

  This is defined as the Maximum Characteristic 

n below (3.5): 

o

it tests the real data for chaos.  Doing the analysis this way means

e

a “good” m

when m

    A third method to estim

(2004) where the LE estimation comes from the evolution in time of the distance 

separating initially close points.

Lyapunov Exponent (MLCE).  This formula is show

 





 ),(1 min 


ij xUx

ji
i nfT

             (3.5) 

re 

 ||||ln()( xxS

 

whe

 T is the number of points (xi) involved in the calculation,  

 nfmin is the number of neighbours of each point that are closer than  and 

have a temporal s

discuss choosing sensible values of  and nmin.  As long as both are not 

This gives approximate straight lines over each of the values of xi representing the 

lo e  

, as it do 

11 T

eparation greater than nmin  Kantz and Schreiber (1997) 

too small generally this shouldn’t cause great concern. 

 

evolution of the logged mean distance.  The average a ng the trajectory of th se

lines, gives an estimated Global Lyapunov Exponent. 

   As shown by Giannerini and Rosa this estimator has two main advantages

not require modelling, and the computation is easier than calculating Jacobian 

estimators.   The problems with this are that there are no theoretical results for 

consistency, as it is a fairly new technique and for an asymptotic variance. 
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   A method for estimating Lyapunov exponents using the R-language has been 

devised by Nychka et al. (1992).   The LENNS program (Lyapunov Estimates for 

Noisy Nonlinear Systems) estimates global Lyapunov exponents from time series 

data.  This programs uses a series of FORTRAN programs and calculates the 

exponent using methods that Nychka et al (1992) expressed. 

 

   The program uses the assumption that the data are of the form: 

 

tdtttt exxxfx   ),...,,( 21       (3.6) 

ation in changes to the current population 

LENNS estimates the function and uses this along with the data {xt} to produce 

tion 

 

where 

1 Rxt   and et are independently identically distributed variables with zero 

mean and unit variance 

2  f is a non-linear (in most cases) function,    

3 d is the embedding dimension.  This quantifies how far into the past the model 

looks for an explan


f

a dominant/global Lyapunov estimate.  It uses the Lyapunov exponent defini

of: 

 

||...||log
1

lim JJJ 11m mm
m

        (3.7) 

n 

 if it is 

 data sets 

f 500 or less)- however this was written in 1992 so larger data sets can be used 

t will be very useful for applying to the daily 

verages for each year. Since the program runs many models (the manuscript quotes 

 

where  is the global Lyapunov exponent, m is the time delay and Jt is the Jacobia

(1st derivative) matrix of f in Equation (3.6).  By estimating this function, 


f an 

estimated Lyapunov exponent can be produced, with 


J
k being derived from 



f . 

   Once this has been calculated, the LE can be analysed by simply seeing

positive (signifying chaos) or negative-(signalling non-chaotic behaviour). 

   This method is designed for small data sets (the user’s guide recommends

o

instead, although will be very slow.  I

a
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“if you have to shoot blind, shoot often”) , this is a very slow process to select the 

best models for ea

(3.6)) and smoothing parameters (that determine the complexity of the model) to fit to 

the data set. 

 The program uses two methods of calculating Lyapunov exponents, one using 

ngular value decomposition (SVD) (which is discussed in McCaffrey et.al (1992) 

estimate has been shown to 

ed when estimated.  The QR value has less bias in most cases.  

The LENNS authors write this about the program itself: 

 

  “The program runs a lot of potential models for each of three separate parameters.  

 that runs from 1 through to 12.  There is also the 

h 

ial fits, for each combination of these 

ates the RMS (root mean square) for each 

   

ues for working out the 

lised Cross 

alidation) method and the BIC (Bayesian Information Criteria) method are both 

hat it explains the goodness 

of fit of a particular model whilst penalising extra parameters (more so than the 

riterion does) (Schwarz 1978).  The GCV is very 

omputationally efficient- when compared to other “leave one out methods” and also 

 

ch time delay (from (3.7)), embedding dimension  (as shown in 

  

si

and the other using QR factorisation (QR), (discussed in Arbarbanel (1992)).  The 

reason that two values are calculated is because the SVD 

be positively bias

 

  

Firstly there is a time delay (L)

embedding dimension (d) used for each estimate which runs from 1 through 10.  And 

finally k signifies the number of “hidden units” that could be used in the model whic

runs from 1 through to 8. 

 

  The program outputs the 20 ‘best’ potent

parameters, from L=d=k=1 to L=12, d=10, k=8.  By fitting 250 parameter sets from 

a Uniform distribution, the program calcul

fit and saves the lowest 20 of these.” 

   From these 20 values the program also produces two val

“best” model for each combination of parameters.  The GCV (Genera

V

used for reasons explained below.  The BIC is useful in t

Aikaike Information C

c

relies on less assumptions (for example the Gaussian distribution of errors. 

 

Firstly, the GCV is calculated using: 
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n

c
p

RMS
Vc         (3.8) 

 

 

where p is the number of parameters, c is a fixed constant and n is the number of data 

points.  The standard GCV is worked out by taking c=1. 

   The BIC uses: 

 

 






 

n

n
pRMSBIC

log
)log(2)2log(1

2

1    


   (3.9) 

s w t st c the  c on s be rre es

i s n t he an  to fit noisy linear data. 

a t y v ne  be a r ea c m io

 a a d

Techniques recommended for producing summaries of this data are: 

 plots of the “best” Lyapunov exponent estimate against the time delay, (as 

 

Two of the methods described above will be used in order to look at the data, the 

LENNS method, which was described at length in the previous section, and the 

MLCE method that was described in (3.5).   The flyby method (3.4) in Section 3.2.5 

 

  It ha  been sho n tha in mo ases  GCV riteri hould prefe d unl s 

linear ty ha  bee  rejec ed as t  BIC c  tend  over

 

Now  “bes ” L apuno  Expo nt can  estim ted fo ch parti ular co binat n of 

parameters nd nalyse . 

  

 

in Giannerini 2004) 

 scatterplots of estimated LE vs. GCV or BIC 

 plot of estimated LE vs. d for the L of the single best fit. 

 

3.3 Chaos Analysis of Auchencorth Moss Data 

3.3.1 Introduction 
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looks like it can be too easily affected by noise so will not be used here. 

  Having two programs will allow a qualitative check on the sulphur dioxide data that 

is being looked at here.  It also means that the “chaoticness” of a system can be 

analysed at a number of different time scales and it may be of some interest to see if 

the different years show differences in whether chaos is present or not and also if 

certain times of the year appear to show common patterns of chaos/non-chaos.  

Having two different programs calculating estimates for the Lyapunov exponents also 

means that comparisons can hopefully be achieved and therefore any spurious results 

can be flagged and corrected. 

 

  Firstly, it would be useful to look at the descriptive statistics of the daily measured 

data from 1996-2001.  This is shown in Table 3.1: 

 

 N N* Mean Median TrMean StDev SEMean Min Max Q1 Q3 

1997 355 10 -0.09 -0.02 -0.05 0.53 0.03 -9.28 1.26 -0.08 -0.005 

1998 340 25 -0.14 -0.02 -0.04 1.53 0.08 -28.05 0.97 -0.06 -0.002 

1999 344 21 0.39 0.01 0.02 3.62 0.20 -9.61 50.81 -0.004 0.02 

2000 343 23 -1.23 -0.02 -0.09 17.19 0.93 -315.44 15.93 -0.11 0.002 

2001 344 21 0.002 0.01 0.01 0.13 0.01 -1.99 0.50 -0.003 0.02 

 

Table 3.1:  The summary statistics for years 1997-2001 

 

  As can be seen it looks like there may be some problems with missing data.  To 

apply the data to the program these missing values will have to be imputed.  Looking 

at the histograms in Figure 3.1 along with the fact the data set contains very few 

missing values, it looks reasonable to impute the missing data by taking random 

and using the sample mean and variance that 

as been calculated from the non-missing observations). 

samples from the Normal distribution (

h
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gure 3.1:  The daily data from 1997 to 2001 

 

  The new samples are shown below in Table 3.2 for the same years in order to show 

that they do not differ too much from the original “real” data 
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 N Mean Median TrMean StDev SEMean Min Max Q1 Q3 

1997 365 -0.09 -0.02 -0.05 0.54 0.03 -9.28 1.26 -0.08 -0.004 

1998 365 -0.14 -0.02 -0.05 1.53 0.08 -28.05 4.49 -0.07 -0.001 

1999 365 0.41 0.01 0.05 3.62 0.19 -9.61 50.81 -0.01 0.03 

2000 366 -1.22 -0.03 -0.14 16.64 0.87 -315.44 15.93 -0.16 0.001 

2001 365 0.002 0.006 0.006 0.13 0.01 -1.99 0.50 -0.004 0.02 

 

Table 3.2:  The summary statistics for years 1997-2001 with imputed values. 

 

3.3.2 Chaos Estimation Results 

 

The LENNS program can then start working on these data in their revised format.  

Below are the results of the daily data from 1996 – 2001.  These have been plotted so 

as to show the best model (based on the lowest logged GCV) for each time lag (L) in 

the data set.  The different lines in the plot correspond to different embedding 

dimensions.  These are shown in Figure 3.2: 
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Figure 3.2:  Daily LEs against time lags (1-12days).  Each graph represents year of daily data from 

997-2001.  There is a line drawn across at LE=0. 

here are some important things to be inferred from these.  Firstly it can be seen that 

ost of the data points lie under the line at LE=0 indicating that there is non-chaotic 

1

 

T

m
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behaviour at most of these points.  It can also be seen that in general most of the lines 

eem to follow a similar pattern with the exception of d (the embedding dimension) 

be seen that there may be more chaotic 

ehaviour perhaps than in the other years as the plot shows more of the LEs are above 

ero.  

ined E g e s ic  the f chaotic 

on- e e es  to

mension.  It lo w m  d n i 2 this 

e ve en  th es im  (

 inte oo tim  o e y da ether 

kind s t uced even w e g t  

 tim  sa ste , t uc rap  (Figure 

h th st E s tim ab  

s

being equal to 2.  In 2000 perhaps it can 

b

z

 

The LEs obta  by the L NNS pro ram giv ome ind ation of  level o

behaviour or n chaotic b haviour at each tim lag, corr ponding  each 

embedding di oks like hen the e bedding imensio s set to 

appears to giv ry differ t results an the r t of the d ensions 3-7). 

It would be of rest to l k at the e series f the fiv ears of ta all tog

and see what  of chao his prod ith a larg r time la o it.  By

increasing the e lag to, y, 24 in ad of 12 his prod es the g h below

3.3) along wit e table li ing the L  estimate at each e lag (T le 3.3):

 
Figure 3.3: Time lag ( ai no  r 5 97- ith 

sion

 

x-axis) ag nst Lyapu v Exponent (y-axis) fo  years 19 2001, w

embedding dimen s 2-7. 
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 d=2 d=3  d=4 d=5 d=6 d=7 

Time Lag=1 -0.195 -0.171 0.251 -0.820 0.055 -0.364 

Time Lag=2 -0.120 -0.996 -0.836 -0.704 -0.534 -0.029 

Time Lag=3 -0.538 -0.041 -0.060 -0.173 -0.122 -0.144 

Time Lag=4 -1.005 -0.768 -0.081 -0.162 -0.073 -0.057 

Time  3 2   -0.148 -0.142 Lag=5 -0.43 -0.29 -0.226 -0.187

Time -0.089 -0.011 Lag=6 -0.036 -0.108 0.008 -0.073 

Time -0.089 -0.101 Lag=7 -0.296 -0.139 -0.134 -0.109 

Time -0.056 -0.054 Lag=8 -0.152 -0.079 -0.175 -0.004 

Time -0.099 -0.080 Lag=9 -0.063 -0.048 -0.085 -0.094 

Time 0.113 -0.048 Lag=10 -0.057 0.059 0.091 0.061 

Time 0.034 0.024 Lag=11 -0.068 -0.78 0.104 0.100 

Time Lag=12 -0.206 -0.038 -0.069 -0.027 -0.042 -0.044 

Time Lag=13 -0.197 -0.147 -0.112 -0.099 -0.067 -0.058 

Time Lag=14 -0.271 -0.160 -0.037 -0.078 -0.020 -0.019 

Time Lag=15 -0.062 -0.094 0.080 -0.055 -0.049 -0.044 

Time Lag=16 -0.152 -0.107 -0.086 -0.051 -0.010 -0.018 

Time Lag=17 -0.072 -0.109 -0.040 -0.010 -0.014 0.019 

Time Lag=18 -0.290 -0.089 -0.056 -0.043 -0.022 -0.024 

Time Lag=19 0.075 -0.007 0.040 0.117 0.101 -0.006 

Time Lag=20 0.055 0.136 -0.051 -0.045 -0.037 -0.033 

Time Lag=21 -0.114 -0.117 -0.095 -0.059 -0.020 0.011 

Time Lag=22 -0.082 -0.071 -0.057 -0.048 0.064 0.045 

Time Lag=23 -0.053 0.029 -0.055 0.053 0.043 0.095 

Time Lag=24 -0.153 -0.162 -0.029 -0.029 -0.028 -0.023 

 

Table 3.3:  The Lyapunov Exponents that are in Figure 3.5, with d going from 2 to 7. 
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Again this is showing that there is not much chaotic behaviour about the daily time 

series.  This appears to add more credence to the theory that the data is just very 

 and filter out this “noise” and try 

 extract the signal that is being picked out by the LENNS program. 

er 

noisy, and therefore it would probably be wise to try

and

 

In order to verify the results of this method, it would be useful to look at anoth

method of estimating Lyapunov exponents from the data.  The method explained in 

Giannerini and Rosa (Equation 3.5) will also be applied to the data and then these 

results can be checked against one another. 

 

 1997 1998 1999 2000 2001 

d=2 -0.0139 -0.0413 -0.01207 0.00518 -0.00448

d=3 -0.00388 -0.0385 0.02142 -0.00284 -0.00363

d=4 -0.00783 -0.0351 0.02222 0.00128 0.00616 

d=5 92 0 164 05-0.003 -0.032  0.02  0.0 06 0.00439 

d=6 -0.00648 7 6 9 135 -0.027  0.0231  0.00 45 0.0

d=7 0.00411 -0.0237 5 7 178  0.0246  0.00 91 0.0

 

Table 3  d b -7)  for each of the years 1997-2001 

sing the MLCE method 

ds both show different results- the MLCE 

rogram is estimating very small slopes and is showing chaotic behaviour in the final 

 years as shown by Table 3.4.  Though both programs show very small values that 

fluctuate between positive and negative values for different embedding dimensions. 

   There would be a strong case for giving more weight to the LENNS result as it is 

searching through many models to pick out the best ones, and also is designed to deal 

with a lot of noise.  It was seen in Chapter 2 that the flux data looks very noisy 

(Section 2.4 showed very small Signal-to-Noise ratios).  It may not be very useful on 

very large sample sizes but whilst looking at the daily values it is certainly reasonable 

to use these results. 

.4:  The LEs for the ifferent em edding dimensions (2

u

 

   It can be seen that these two metho

p

3
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3.3.3 Checking Modelled Results for Chaos 

    

   A good approach to go for next would be to look at how the LENNS program and 

the MLCE program work on the modelled EMEP daily results that have been 

described in Chapter 1.  Since these data points have been modelled then it would be 

expected that these would show no chaos in them.  However it has been seen that the 

model is a very complicated one, bringing many different modelled data into it.  It 

would also be interesting to see whether or not the LEs are similar to the measured 

data for each of the years concerned.  Table 3.5 and Figure 3.4 show the MLCE 

method followed by the LENNS method for each of the four years 1997 and 1999-

2001 so that they can be compared to one another. 

 

 1997 1998 1999 2000 2001 

d=2 0.0122 N/A 0.00721 0.0100 0.00494

d=3 0.00888 N/A 0.00971 0.0155 0.00962

d=4 0.00736 N/A 0.0165 0.0188 0.0184 

d=5 -0.00106 N/A 0.0352 0.0337 0.0292 

 

Table 3.5:  Lyapunov Exponents estimated by the MLCE program for the EMEP modelled data from 

1997-2001 (with embedding dimensions 2-5) 
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Figure 3.4: LENNS time-series plots for 1997,1999,2000, 2001 showing LEs  for EMEP modelled 

data, d=2,…7.  Time goes from 1-12 days on x axis.  A line is drawn at LE=0 

 

Both of these methods show that the values mostly remain around zero for most of th

time 

e 

intervals, which would be expected since the data points do come from a model.  

he MLCE method tends to show small positive values for the EMEP data.  This is 

ightly concerning since the data is modelled and therefore should show no levels of 

haos in its results.  The LENNS method stays below or around zero for nearly all 

values of d and so again looks a more reliable measure of the chaos/non-chaos in the 

system. 
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3.3.4 Refining the Timescale 

 

3.3.4.1 Diurnal Fluxes 

 

 

 It would be interesting to know if refining the timescale to a finer scale would change 

the level of chaos detected in the data.  Perhaps it may be interesting to look at the 

diurnal cycle of fluxes.  This can be done crudely by dividing the year into 6 months 

of “winter” (October-March inclusive) and 6 months of “summer” (April-September 

inclusive).  During the winter the assumption will be that “day” falls between 8am 

and 6pm and night at all other times.  During the summer- day will be taken from 6am 

till 8.30pm and night for the rest of the time.  As has been mentioned this is just a 

crude estimation, but it should be enough to pick out any changes in the Lyapunov 

analysis over the same years as previously measured.  Again, there will be missing 

data to impute into the data set, so it will be useful to see how much or little effect this 

looks to have on the data set that will be used in the LENNS program. 

In order to study this, the diurnal data will take the average value from each “night 

period” and “day period” to create 730 (or 732) data points (i.e. 365 days and nights). 

 

Running this on LENNS and the MLCE program give these results shown in Figure 

3.5: 
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Figure 3.5: Plots showing the diurnal time series plots with time lag on x-axis and Lyapunov Exponents 

on y-axis from years 1997-2001 using LENNS program.  The time goes from 1-12 on the x axis and a 

line is shown at LE=0 

 

These methods again show differences between the conclusions they provide.  The 

first point to make when looking at the MLCE method is that taking a slope estimate 

from this looks as if it will not be useful since there does not appear to be an obvious 

linear relationship on any of the plots. 

  When taking these slope estimates though they all seem to show chaotic behaviour 

ver the series as a whole. 

   The LENNS analysis shows something different with most of the exponents lying in 

the non-chaotic “half” of the graph.  Therefore these methods appear to contradict 

each other here. 

o
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   In summary, after looking at the three different time periods above using the two 

d LENNS) it seems that they do not give similar results (except 

r perhaps the modelled data).  Since LENNS is designed to work on noisy data sets, 

methods (MLCE an

fo

then the results from this should perhaps be looked at with more importance than the 

MLCE data.  From Section 3.3 this looks reasonable. 

 

3.3.4.2 Hourly Data 
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Figure 3.6:  The hourly time series plots with time lag on x-axis and Lyapunov Exponents on y-

from years 1997 and 2000 using LENNS program.  There is a line at LE=0 on the second plot b

first stays below 0. 

 

The LENNS program was also used on the hourly flux data.  When Nychka et.al

designed the LENNS program they were expecting that it should be used on small 

data sets, since i

axis 

ut the 

 

t tests so many models for each time lag, embedding dimension and 

rly 

hidden units.  When it was attempted on these hourly data sets (with over 8000 

values), it was only able to produce plots for the two years pictured.  The hou

values in fact show more negative values than in the daily data.  However it does 

appear to suggest again that the data can be modelled. 
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3.4 Conclusion 

 

  This chapter has shown the advantages and disadvantages of measuring, or at least 

otic signals in a data series.  The advantages in the main are that, 

resent, then time will not be wasted in an attempt to search for 

behaviour even in non-chaotic 

stems.  By using the LENNS method that Nychka et.al provide though, noise can be 

in 

 

 any 

ill 

ok at the fact that part of the reason the two data sets are struggling to match may be 

e is 

trying to measure cha

if chaos is found to be p

a (non-existent) model.  Ways of calculating these chaotic signals come from the 

estimation of Lyapunov exponents.  Three methods are described in this paper.  

However, there are arguments against the use of these methods, as papers have 

pointed out that stochastic noise can signal chaotic 

sy

accounted for by the use of a neural network method that applies lots of potential 

models to the data and chooses the best ones. 

   From analysis of the data, these methods have produced some disappointing results 

however.  In most cases it appears that the methods for estimating levels of chaos 

systems are not producing consistent results and this probably lends credence to 

Timmer et.al.’s criticism levelled in Section 3.3.2 earlier.  Most of the “noise” that

exists in the data, coupled with the very low measurements made are making it 

extremely difficult for any of the techniques to pick out the signal.  The fact that the 

MLCE technique and the LENNS technique appeared to produce different sets of 

results when analysing the data suggests that it would be very dangerous to make

firm sets of conclusions about whether there is an existence of chaotic behaviour in 

the data or not.  

   Although the results obtained from here have been discouraging, it has not ruled out 

the chances that the measured data are able to be modelled.  The next chapter w

lo

the very high values that are being measured in some half hourly periods of the day.  

It may be useful to look at some of these results separately in order to see if ther

anything interesting about them. 
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Chapter 4 – Extreme Value Analysis 

 

4.1 Introduction 

ber 

be “extreme”.  It would be of interest to 

e values in more detail to see if there is any particular model lying 

behind these that could

rder 

 Smith 

ls 

re extreme rainfall, using a flood in Venezuela in 1999 to 

how how it would work.  Salmon (2004) shows how EVT can be used to predict 

housing market crashes.  Fernandez (2007) uses an approach which isolates the 

extreme values 

 their extremes as they fluctuate throughout the year and Soja and Starkel (2007) 

ring of 

ll of these sets of data have been analysed in a very similar fashion, using the same 

re detailed below.  These are the Generalised Extreme 

alue Distribution and the Generalised Pareto Distribution.  The former uses a series 

 maxima and uses these as the “extr

e latter allows the use of the 

 

It has been seen in the previous analyses of the data that there appears to be a num

of observations which could be considered to 

study these extrem

 explain their occurrences.  

 

   Many people started looking at Extreme value theory (EVT) in the 1970s in o

that particular families of models might potentially explain unusually high or low 

observations.  Many of these have been used on a variety of real-life examples.

(1990) writes on modelling extremes in a ground level ozone situation, Chan and 

Gray (2006) modelled electricity spot prices, whereas Coles (2001) modelled closing 

prices of the Dow Jones Index, engine failure times, sea levels and daily rainfall.  

Coles et.al. (2003) also used EVT to show how looking at maximum rainfall leve

could be used to predict futu

s

to compare between 10 exchange rates to see if they have similarities 

in

look at the clustering patterns in the extreme rainfalls of the Himalayas.  Cluste

extremes is an interesting issue and one that could be useful for the flux data.  

 

A

families of models and as such the two main methods along with the family of 

distributions that are used a

V

of block eme” values to which the model then fits, 

whereas th raw data and picks values higher than a 
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suitable threshold in order to model these.  Both methods will be introduced and 

o the Auchencorth flux values and from these re

plots) it can be decided which of the methods appears to be more appropriate. 

 

4.2 Generalised Extreme Value Distribution 

es 

 which is unknown.  Using classical techniques to 

 

discrepancies in Fn.  This is why Coles (2001) and others suggest the use of a 

mily of models which are estimated on the extreme data alone.  However, firstly Mn 

has to be “normalised” in order that it does not degenerate to a point mass.  The 

normalisation is shown as: 

 

applied t sults (and suitable diagnostic 

 

Looking at this method firstly, it is required that the data are put in the form of a 

series of maximum values (4.1) 

 

 nn XXM ,...,max 1            (4.1) 

 

where X1, … Xn is a sequence of independent random variables which have a 

common distribution F.  The distribution of Mn  can be derived in theory for all valu

of n, but only in terms of Fn

estimate F are usually not suitable here as small discrepancies in the estimate can lead

to larger 

fa

n

nn
n a

bM
M


*

             (4.2) 

n >0} and {bn}.  By choosing these carefully the 

efore a family of models is chosen for 

n} and {bn} then Mn* belongs to one 

f the following families: 

 

for sequences of constants {a

difficulties shown above should not arise.  Ther

M * rather than M . n n

 

It can be shown that if there are the sequences {a

o

 

(a) 

























a
zG expexp)(          bz

 91



 

(b)  
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  bz1

het 

hich particular model should be 

sed in order to estimate the relevant parameters.  Then from this any subsequent 

ny 

hoice.  

f 

  

for parameters a>0, b and >0.  These are individually known as the Gumbel, Frec

and Weibull distributions respectively. 

 

There are two weaknesses to having three models for the extreme values.  Firstly, 

there needs to be a technique in order to choose w

u

analysis would have to assume this decision to be correct and would not allow a

uncertainty of this c

   Therefore it is far better to reformulate the models above into one single family o

models: 

 





 



  

      (4.4) 

 

 












 






1

1exp)(
z

zG

 valid on the set 






  01:




x
z ,   

 

1 

 

The scale parameter 0  

2 The location parameter - <  <  

3 The shape parameter - <  <  

 

(z) is defined as the Generalised Extreme Value (GEV) family of distributions.  It is 

le to check that this family contains all 3 distributions shown in (4.3), 

y choosing >0 and <0 for the Frechet and Weibull distributions.  By using the 

limit  0 for the case =0, leads to the Gumbel Distribution. 

G

relatively simp

b
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By combining these data into one family of models, the problems listed above will 

isappear as some appropriate inference on an estimate for  will immediately show 

give 

 convenient measure of the uncertainty in the model choice. 

 

  All that remains now is to decide on a method of estimating each paramet

his can be done by Maximum Likelihood Estimation (MLE).  One 

eter values, then 

en 

 not have the 

owever, the final two situations are not often encountered as they cover distributions 

of data with short upper tails.  Certainly in the Auchencorth Moss data this should not 

be a problem. 

 

 order to calculate the MLE’s for each of the three parameters in the GEV 

w in 

d

which particular model is most suitable.  Also the uncertainty in the estimate will 

a

er in the 

GEV model.  T

problem with this can be at the end points of the GEV distribution,  (Smith 1985), 

who showed that because these end points are a function of the param

-/ is an upper end point of the distribution when <0 and a lower end point wh

>0.  Smith managed to simplify this to 3 cases: 

 

1 >-0.5, this gives regular ML estimators that have the usual asymptotic 

properties. 

2 -1 <  < -0.5 This generally gives ML estimators but they do

usual asymptotic properties. 

3  < -1 ML estimators are unlikely to be obtainable.   (4.5) 

 

H

In

distribution shown in (4.4), the log likelihood to be maximised is shown belo

(4.6): 
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 for i = 1,…,m and   0 

 

 

If  = 0 then a different log-likelihood is obtained from the Gumbel Distribution 

 

   
  



 












i i

ml
1 1

explog,


          (4.7)

  

   m m
ii zz 

 The GEV distribution provides a model for the distribution of block maxima.  In the 

case of the Auchencorth data this seems suitable as it means hat th

daily/weekly/monthly maximum values could all be analysed which could prove 

seful in trying to see if the extreme values are following this particular distribution. 

  

 t e 

u

 

After the MLE estimates for the three parameters   ˆ,ˆ,ˆ  are obtained, there n

a way of firstly

eeds to be 

 checking how well this particular model and the data agree.  This can 

 level 

lot.  The returns level is obtained by inverting the GEV distribution (4.4) as shown 

below in (4.8): 

 

be achieved by analysing both probability plots and quantile plots. 

Once the model choice has been verified, it would be useful to produce a returns

p

   
   loglog 













01

01log1







 

p

p
z p    (4.8) 

turn level (zp) is exceeded by the maximum in a particular year with 

probability p. 

 

This re

 

This is useful as zp can be plotted against pylog  - which in the second (Gumbel) case 

will give a linear plot.  Else, if <0 or >0, the plot will converge to -/ or have no 

finite bound respectively. 
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4.3 Generalised Pareto Distribution 

 

There are other methods rather than only using block maxima in order to model the 

extreme values in a data set.  One technique that is widely used involves using a 

complete data set and only modelling the values that occur above a particular 

reshold. 

 It would be relatively simple to define a function for modelling particular values 

s shown in (4.9): 

 

th

  

over a certain threshold using basic probability a

  0,
)(1 uF

)(1
|Pr 


 y

yuF
uXyuX             (4.9) 

 

istribution). 

   Additionally, the GEV distribution (4.10) can be used, but altered in order to find a 

distribution function for (X-u) conditional on X>u, which gives approximately: 

 

 

However this would require knowing F.  In practical applications this is generally not

the case, and so approximations for F should be made, (similar to the GEV 

d








1

~11),~;(









 

y
yH        (4.10) 

 

which is defined on 














  0~10:


y

andyy  

 

where )(~   u  

 

(4.10) is defined as the Generalised Pareto Family (GPF).  This implies that if the 

block maxima can be approximated by the GEV distribution then the excesses can be 

modelled by the GPF.  In fact  is equal in both the GEV and GPF cases, and the 

same three cases shown in (4.10) also apply here. 

 

  The only difficulty that arises here is the choice of the threshold.  If the threshold is 

chosen to be too low, then the model may be biased, due to violation of the 
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asymptotic basis of the model.  If it too high, then there will be too few data points, 

leading to high variance in each of the parameter estimates.  Adopting low thresholds 

is the standard procedure in real life examples however and by estimating parameters 

for a range of threshold values will allow the influence of the threshold value to be 

made clear. 

 

 

4.4 Analysing the Auchencorth Data 

 

4.4.1 Analysis using the GEV Family 

 

The daily maximum values from Auchencorth Moss will be used first to try and fit a 

EV model.  This is suitable since the SO2 appears to have no seasonal variation 
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Figure 4.1: Boxplots of the weekly maximum values for years 1997-2001 

 

From the GEV distribution the values obtained for each of the three parameters along 

ith the negative log-likelihood from a Maximum Likelihood Estimate calculation, 

re shown in Table 4.1: 

w

a
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Year Negative Log- 

Likelihood 

̂ (std error) ̂ (std error) (std error) ̂

1997 140.006 0.993 (0.249) 1.448 (0.391) 1.399 (0.275) 

1998 123.356 0.853 (0.190) 1.155 (0.281) 1.223 (0.230) 

1999 141.797 0.935 (0.228) 1.411 (0.377) 1.424 (0.246) 

2000 196.197 1.581 (0.441) 0.996 (0.189) 2.003 (0.265) 

2001 100.177 0.920 (0.177) 2.003 (0.265) 0.7140 (0.216) 

 

Table 4.1: MLE of each parameter of the GEV distribution described in (4.4) along with their standard 

errors and the negative log-likelihood of the model. 

 

Coles (2001) suggests a group of diagnostic plots should be produced in order to 

check the model that has been used.  These are shown for the data in Table 4.1,  in 

Figure 4.2: 
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Figure 4.2: Probability Plot, Quartile Plot, Return Level Plot and Density Plot for the MLE of the GEV 

odel fitted using parameters in Table 4.1 for years 1997-2001 m
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It can be seen from Table 4.1 that each of the parameters for the GEV distribution for 

all 5 years are significantly different from zero.  It can also be seen that  is positive 

in each of the five years and as such it can be assumed that these ML estimators have 

the usual asymptotic properties in this case. (4.5). 

 

From the diagnostic plots, while the probability plots appear to fit the straight line 

reasonably well, the quartile plots for 1998-2001 appear to deviate a lot from the line.  

These in most cases appear to be due to one point in particular being so much bigger 

than the rest (a fact that is reflected in the density plots also produced).  This gives 

some doubt to a GEV model possibly being suitable for modelling the extreme data 

that has been collected- and perhaps suggests that a different one should be used 

instead.   Looking at the data once more, perhaps logarithm  of the data could be used 

 order to fit the model slightly better.  This may be something to think about in the 

future. 

 

4.4.2 Analysis Using the GPF distribution 

 

Using the GPF, a decision should be made on the choice of the threshold as 

mentioned previously.  From Table 4.2 it can be seen that a threshold choice of 

2gSm-3, means that most of the data is filtered out and only a small percentage 

remains to be analysed.  In this example the half-hourly data for each year will be 

analysed.  As missing data can prove to be a problem – any missing values have been 

replaced with a value below the threshold so as not to affect the data used to calculate 

the parameters in the Pareto distribution.  It will also be useful though to see what 

effect a change of this threshold will have on the parameters estimated.  Figure 4.3 

firstly shows the data that has been collected and the points above 2gSm-3.  This will 

lso be useful in that it can be seen whether the extreme values are clustering together 

or are appearing at “random” points. 
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igure 4.3:  Time Series plots of the daily flux values.  Any missing values have been imputed with the 

.01 since only values above 2gSm-3 will be considered in the Pareto model.  The ‘extreme’ 

points are indicated in green. 

 

From Figure 4.3 it can be observed that the extreme points (based on the definition 

given here) appear to be spread throughout the year in each of the 5 years that are 

being looked at.  1999 is more difficult to analyse since (as it has been shown in 

previous chapters and in Table 4.2) there are a lot of higher fluxes that fall into the 

extreme category than in any of the other years.  Section 4.5 will look more at 

whether the extreme data are clustering anyway, so for now an attempt will be made 

to model the extreme values. 

 

From the Pareto Distribution the values obtained for each of the two parameters along 

with the negative log-likelihood from an MLE calculation and the percentage of 

points above the chosen threshold of 2gSm-3. 

 

F
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̂ (std error) (std error) k̂Year  % of data  

above threshold 

Negative Log-

Likelihood 

1997 0.5% 190.15 1.171 (0.259) 1.002 (0.221) 

1998 0.5% 165.09 1.067 (0.221) 0.973 (0.205) 

1999 4% 2528.10 4.120 (0.319) 1.095 (0.079) 

2000 1% 594.60 1.574 (0.252) 1.644 (0.186) 

2001 0.89% 332.82 2.539 (0.289) 0.188 (0.083) 

 

Table 4.2:  MLE of each parameter of the Generalised Pareto Distribution  along with their standard 

errors as well as the negative log-likelihood of the model and the percentage of data above the 

threshold (of 2 in this case). 

 

The same diagnostic plots that were produced in Figure 4.2 can be reproduced for the 

GPD, in Figure 4.4: 

 

1997 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Probability Plot

Empirical

M
od

e
l

0 20 40 60 80 100

0
5

0
1

5
0

2
5

0

Quantile Plot

Model

E
m

p
iri

c
a

l

1   e-01 1   e+01 1   e+03

0
2

0
0

00
4

0
0

00

Return Level Plot

Return period (years)

R
e

tu
rn

 l
e

v
el

Density Plot

x

f(
x

)

0 50 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

 

 

 

 105



 

1998 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Probability Plot

Empirical

M
od

e
l

0 20 40 60 80

0
20

0
60

0

Quantile Plot

Model

E
m

p
iri

c
a

l

1   e-01 1   e+01 1   e+03

0
1

0
0

00
2

5
0

00

Return Level Plot

Return period (years)

R
e

tu
rn

 l
e

v
el

Density Plot

x

f(
x

)

0 200 400 600 800

0.
0

0.
4

0.
8

 

1999 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0
.8

Probability Plot

Empirical

M
od

e
l

0 1000 3000 5000

0
10

0
30

0

Quantile Plot

Model

E
m

pi
ric

a
l

1   e-01 1   e+01 1   e+03

0
1

00
00

00

Return Level Plot

Return period (years)

R
et

ur
n 

le
ve

l

Density Plot

x

f(
x

)

0 100 200 300 400 500

0.
00

0.
10

0.
20

 

 

 

 

 

 106



 

2000 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0
.8

Probability Plot

Empirical

M
od

e
l

0 1000 3000 5000

0
20

0
60

0

Quantile Plot

a
l

Model

E
m

pi
ric

Return Level Plot Density Plot

1   e-01 1   1   e+03e+01

0
  

 e
+

0
0

+
0

7
3

  
 e

Return years)period (

R
et

ur
n 

le
ve

l

x

f(
x

)

0 200 40 8000 600

0.
0

0.
2

0.
4

0.
6

 

2001 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.4

0
.8

Prob  Plot

Em al

ability

piric

M
od

e
l

5 10 1 205

Qua ot

Mo

10
40

20
30

ntile Pl

del

E
m

pi
ric

a
l

1   e-01 1   e+01 1   e+03

0
40

0
8

12
0

Return l Plot

tu

 Leve Den otsity Pl

0.
0

0.
1

0.
2

0.
3

0.
4

R
e

rn
 l

e
ve

l

f(
x

)

0 10 20 30 40 50

Return period (years) x
 

igure 4.4:  Diagnostic plots (same as Figure 4.2) for the GPD on fluxes > 2 for each year 1997-2001 

These diagnostic plots look like they show some improvement from the GEV plots.  

F
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The probability plot looks like it follows the normal line a lot better, but there are still 

me points on the quantile plot which are of some concern.  Again because of the 

ness in the extremes it means that the density plot looks similar to the plots 

shown in Figure 4.2.  Subjectively though the GPD plots look better. 

One important point to consider here is that these plots are produced when the 

threshold is 2.  It would be useful to see what sensitivity these models have to the 

choosing of the threshold, since clearly a model that changes significantly depending 

on the threshold choosing, may be difficult to analyse results from.  The number of 

exceedences are shown in Table 4.3 and the parameter estimates are graphically 

summarised in Figure 4.5: 

 

Threshold 1997 1998 1999 2000 2001 

so

skew

1 247 204 922 372 263 

2 88 81 720 192 157 

3 51 41 596 123 108 

4 34 28 483 92 76 

5 24 20 400 3 62 7

6 21 14 347 61 42 

7 15 11 313 57 24 

8 13 11 288 55 17 

9 12 8 269 54 13 

10 10 7 245 51 10 

11 10 7 231 50 7 

12 9 7 221 48 6 

13 7 7 214 48 6 

14 7 6 212 44 4 

15 7 6 194 44 4 

 

Table 4.3:  Number of points exceeding the threshold for each year 1997-2001 using the half hourly 

data 
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Figure 4.5:  Plots showing t cale (

parameter respectively for

 be seen from the graphs in Figure 4.5 that for almost all the years, the choice of 

threshold doesn’t appear to have too much of an effect on the parameter estimates in 

that the parameter estimates only start to 

 as 

ere would be a strong argument for keeping the 

to have 

eters, bar 1999.  This will be looked at 

parately from the rest when it is analysed further in Chapter 5, in order that sensible 

 

 

It can

the GPF.  However in 1999, it can be seen 

stay even, when the threshold flux value is approximately 20gSm-3.  Obviously

the exceedance level increase, the number of data values will decrease and so the 

variation around each parameter estimate will increase, but the estimate stays 

approximately the same.  Therefore th

threshold at 2gSm-3, since it gives more data points to work with and appears 

little effect on the shape and scale param

se
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conclusions can be produced from it. 

.5.1 Introduction 

dependent.  It would be interesting to 

udy this fact further since this may help to understand whether the extreme data may 

have been the result of any natural weather events (say gale force winds or torrential 

rain).  Therefore it would be of interest to see if the extr

hether it appears that they are just occurring independently throughout the years.  

nd Segers (2003) suggest the use of an extremal index in order to measure the 

vel of clustering that can be found in a data set. 

 

The extremal index is defined as follows:  Firstly let 1,…, n be a strictly stationary 

sequence of random 

 

4.5 Clustering 

4

 

It can be seen from the plots in Figure 4.3 that it may be that the extreme values are 

mostly clustered together and therefore are not in

st

eme data fall into clusters or 

w

Ferro a

le

variables that have marginal distribution F, a right end point 

 1)(:sup  xFx  and a tail function F = 1-F.  Then if Mk,l is defined to be 

 lkii ,...,1:ax m  for integers 0 k <  then 1,…, n has extremal index   [0,1] 

 every >0 there exists a sequence u1,…,un such that as n   

1 

l

if for

 

)( nuFn  

exp()( ,0  nn uMP )  2 

 

rom this it can be shown (Leadbetter et al (1983)) that if  = 1 then there is no 

lustering in the extreme data, and if  < 1 then exceedences will tend to cluster.  

n from real-life data sets so there is a way in which 

e extremal index can be estimated. 

F

c

Obviously F is difficult to ascertai

th

   This estimation involves choosing a threshold u as in the Pareto distribution 

explained previously and defining N as: 
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n

i
i uIN

1

)(  

where 1,…, n is a sample of data.  So N is the number of exceedences of u, and  

1 S1 < … < SN  n are the exceedence t   Then define Times.

rom these simple definitions Ferro and Segers show two estimates of  can be made 

hich are useful in different circumstances, (i.e. when the maximum exceedence time 

is above 2 or below 2) as shown below in (4.11) 

) 

i = Si+1 – Si as the inter-

exceedence times (for i=1,…, N-1). 
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4.5.1.1 Bootstrapping Intervals 

 

It would be very useful if a measure of confidence could be calculated from the 

extremal indexes described above.  A method for doing this would be bootstrapping.   
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   Bootstrapping requires the calculation of many estimates for This can be 

achieved by taking random samples from {T} (with replacement) in order to calculate 

estimates of Once 100 (say) estimates  have been produced, then a standard 95% 

confidence interval can be fitted around )(
~* un using the mean and standard deviation 

from the 100 estimates.  This technique helps to show how much variation is actually 

in our estimate. 

 

 

4.5.2 Using Flux Data 

 

Now that a way to estimate the extremal index has been shown in the previous 

section, it can be applied to the Auchencorth data set.  It will be applied to the half 

hourly flux data for each year.  As well as this – the mean cluster excess value will be 

calculated along with the indices.  These are calculated by summing the exceedences 

(after subtracting the thresholds) and then calculating the mean.  These will be shown 

along with the extremal indexes with thresholds chosen between 0 and 15.  As well as 

this, a table will show how many exceedences occur at each particular choice of 

threshold.  Around the extremal indexes and mean cluster excesses, bootstrapped 

confidence intervals are applied as calculated in the above section. 
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Figure 4.6:  Pairs of plots showing firstly the extremal indexes as well as a horizontal line at =1, a

below the mean cluster excesses for each year 1997-2001.  Also shown in red are the bootstrapped 

nd 

me 

 

lustering of 

 

 

ber of 

ts appear 

to take it quite high up past 1.  It could be concluded from this that 1997, 1998 and 

confidence intervals for each year. 

 

 

It can clearly be seen from Figure 4.6, the estimator for the extremal index starts to 

produce wide intervals when there are a small number of exceedences – and in so

cases this pushes the estimator to a value bigger than 1, which, as shown in 4.5.1 is

not a reasonable value.   

 

It appears that 1997 and 1998 don't appear to show much evidence c

points. As the threshold goes up, the index quickly rises to a value close to 1.  

However in 1999 and 2000 there appears to be an obvious shift.  Table 4.3 shows that 

the number of exceedences is certainly larger than the other three years and this high

number may help to show why the extremal index is so low as there are many of the

values close to each other.  Figure 4.3 appears to back this up as there appears to be 

certain close groups of extreme values throughout these years.  In 2001 the num

exceedences appears to revert back to a level similar to 97 and 98, however this time 

 appears to stay reasonably low until late on when the small number of poin
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2001s extreme values may be harder to explain, since they seem to appear at more 

in  

m

(say) one big event, that the EMEP mod ot have been programmed to take 

ccount of.  In the three former 'non-clustering' years, it appears that the extremes are 

perhaps just occurring, maybe due to one spurious result that has been corrected 

e useful in Chapter 5 if the 1999 and 2000 data appear harder to 

odel to. 

sing 

 

ple), there are too many very low values still, and 

ine.  

 

s to the values over a certain 

hoice 

an be modelled.  The 

 weather 

 data against the measured data and compare 

terspersed times than in 1999 or 2000.  This suggests that the data in 1999 and 2000

ight be more difficult to model, since the extreme values appear to be as a result of 

el may n

a

quickly.  This may b

fit the m

 

4.6 Conclusion 

From the EVT that has been applied to the daily and weekly data it appears that, u

the Generalised Extreme Value Distribution is not the best approach as (using the

weekly maximums for this exam

some very high values in these.  This is evident when looking at the Q-Q plot 

especially of the data where the points appear to deviate a lot from the normal l

   Therefore, it is perhaps more relevant to look at the results that are given from the

Generalised Pareto Family since this only applie

threshold. There are fewer concerns when the diagnostic plots are looked at under this 

family and so these look like they will give better results for the analysis. The c

of the thresholds isn't a particularly big issue either as it has been shown that the 

values for the model remain stable when the threshold is altered.  This is with the 

possible exception of 1999 which has more extreme values at the value of 2gSm-3 

  This suggests that the extreme values in the daily fluxes c

parameter values for the GPF each year are contained in Table 4.2. 

     Whether the extreme data were clustering or not, is another thing that can be 

looked at.  By estimating extremal indexes it can be inferred that in three of the years 

(1997, 1998 and 2001) there does not appear to be clustering in the extreme values 

and it could be inferred that these results are nothing more than some local

conditions (for example).  In 1999 and 2000 however the extreme values are tending 

to cluster together which may become a problem in the next chapter.  The next 

chapter will finally look at the modelled

the two sets with each other to see what differences there are between them. 
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Chapter 5 – Comparing the Measured and Modelled 

Data 

l 

 

 

ed data appear to show higher or lower values in 

general will give a clear indication of whether there appears to be any bias prevalent.  

 2 

w why the differences are occurring. 

 The modelled data comes from EMEP in a daily format so comparing it at different 

y 

ked 

 values) could be looked at by seeing how the half-

ourly values vary throughout the day to make sure they are not being unfairly 

luenced by a large “spurious” value. 

   After all this, it should be noted that the uncertainty, that is going to exist due to 

comparing a fixed point against a value that is an average over 50km squares, may 

 

5.1 Introduction 

 

Now that the data have been thoroughly analysed and there has been a study 

performed into whether or not the measured data could be chaotic, it would be usefu

to look at how the modelled data should be validated against the measured data.  

Using information that has been obtained from the previous chapters will help in 

finding out reasons for any differences that may lie in the (EMEP) modelled and

(Auchencorth) measured data. 

    A useful approach would be to look firstly at what the ideal situation would be for a 

model-measurement comparison and what sort of statistical analysis would be 

performed, then look at ways to possibly estimate these approaches from a real life 

setting like the one that is being studied here.   

   From this it can be deduced whether there appears to be any similarities between the

modelled and measured data and if not, whether there may be a pattern to any 

differences.  Whether the measur

It will also be interesting to see if using the Event Analysis discussed in Chapter

(2.5) will help to sho

  

timescales to see where differences may lie would be useful, but at the moment only 

by averaging the daily modelled data to create weekly/monthly values is the only wa

that the data sets can be looked at in a pairwise setting.  However, if the data is loo

at for some particular days (perhaps the ones that appear to show greatest 

displacement in terms of the daily

h

inf
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contribute to any differences and some analyses into quantifying this may come in 

useful.   This will lead into the next chapter where this will be discussed at more 

length. 

 

5.2 Methods of Comparing Modelled and Measured Data 

 

ere are many different ways in which it n be measured how well two series of 

data match each other.  One of the simplest methods would be to just plot the two 

series on a normal x-y plot and see how well it can be fitted by a line of equality.  One 

way of measuring the goodness-of-fit could be the R-squared value.  However this 

could be a false result as two variables could be well correlated despite not being 

equal, so there should be other methods looked at.  Bland and Altman (1986) suggest 

a method where the difference between the measured and modelled data can be 

tted against the average of the two values, and conclusions can be made from the 

 looking at 

ver-predictions and under-predictions.  It is important when thinking about well a 

The first thing that it would be good to look at would be simply the measured values 

gainst the EMEP values at the daily level.  This will be able to show whether there 

re differences between the data sets.  Figure 5.1 shows these for the years 1997, 

1999, 2000 and 2001 along with a line of equality in order that it can be seen how 

well the points match each other. 

 

    

Th ca

plo

shape of the points that are plotted.  Stohl et.al (1998) shows more quantitative results 

by measuring a number of different statistics, ranging from R-squared to

o

model fits to measured data, not to just look at how small the residuals are (say) but 

also how well the model reflects the shape of the time series of the measured data.  It 

is important that a model captures seasonality and any trends in the data, before it can 

be shown to be an accurate one. 

5.3 Comparisons of the raw daily measurements against the EMEP 

modelled values 

 

  

a

a
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Figure 5.1  Plots showing the relationship between the modelled (x axis) and measured (y axis) data for 

e years 1997, 1999, 2000 and 2001.  A line of equality has been put onto each plot.  

is is 

ts 

red data is a lot larger than the modelled.  This makes it rather difficult to 

e whether the smaller measured values are matching the modelled in any way.  

herefore it would be useful to see whether the distributions of the data are similar, 

ven if the actual values are not.  It would be useful to see the data in a time series 

rmat so that the shape of the data can also be subjectively analysed.  These are 

oked at in Figure 5.2: 

th

 

These data appear to not match the modelled data particularly well in any year. Th

reasonably obvious from Figure 5.1.  However, it can be seen that the range of poin

in the measu

se

T

e

fo

lo
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Figure 5.2:  Plots showing the time series of the modelled series (in red) and the measured series (in 

ecause the measured series is commonly larger than the modelled series it would 

black) 

 

B

appear to be more useful to look at a zoomed in version of each of these plots, in 

order to see the shape of the measured data more clearly.  These are considered in 

Figure 5.3: 
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Figure 5.3: Time Series plots of Fi . 

easured data appears on the left and the modelled on the right 

t appear to follow the shape of the modelled data either, never mind the size.  

erely a subjective opinion, and so it would be useful if formal statistics could 

lated in order to measure how well each of the measured data matches the 

odel.

 

e u  o  ilar or different measured and 

l  a  i n h 99 mends a 

er h ch sc lo

gure 5.2, but these show the shapes of both time series more clearly

The m

 

   It can be seen from Figure 5.3 that the two sets of data do seem very different.  As 

well as not matching particularly well size-wise, it can be seen that the measured data 

doesn'

This is m

be calcu

m  

  Ther  are a n mber of ways of l oking at how sim

model ed data re. As mentioned n Sectio  4.1, Sto l et.al (1 8) recom

variety of diff ent met ods whi  are de ribed be w: 

 

1 The Bias (B) where 



i

ii MP
N

B
1

)( where P
N1

values from the model and the measured values respectively, and N is the 

i and Mi are the predicted 

number of paired points. 
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2 The Fractional Bias (FB) where 
)(

2
__

MP

B
FB


  where 

_

P  and 
_

M  are the mean 

values of the modelled and measured data 

3 The Normalised Mean Square Error (NMSE) where 







N

i

ii

MP

MP

N
NMSE

1
__

2)(1
 

4 The Spearman rank-order correlation coefficient (rs) 

5 The percentage of modelled predictions that agree within a factor of 2 with t

measurements  (FA2) 

6 The perc

he 

entage of modelled predictions that agree within a factor of 5 with the 

measurements (FA5) 

ctions which is measured as a percentage in order to 

tell whether the model tends to overpredict or underpredict (FOEX) where 

7 The number of overpredi

)5.0(100
)(  

N

N
FOEX ii MP

.  This will always be between –50% and +50% 

 

For the four years for which the modelled daily data and the measured data can be 

ompared with each other each of these have been calculated and added in Table 5.1: c

 

 

 

 Bias Frac  

Bias 

NMSE rs FA2 FA5 FOEX 

1997 2.399 2.121 -42.947 -0.448 0.56% 0.85% 50% 

1999 1.092 1.146 24.659 0.051 2.33% 4.36% 45.93% 

2000 1.244 1.247 25.114 0.302 1.96% 9.24% 48.32% 

2001 1.476 1.990 1111.72 0.028 0.29% 0.29% 49.71% 

 

Table 5.1: This contains 7 different ways in which the modelled and measured data can be compare

 

d. 

The first thing to notice is that for all 4 years the values look very low, for each 

particular category.  Before some of these can be interpreted a general overview 

appears to show that 1997 seems to be giving far better results than the other three 
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years, but still shows nowhere near any sort of strong similarities.  It can be seen for 

instance that the Pearson correlation figures are all very low for each year, (especially 

for 2001 which shows an incredibly small correlation coefficient).  These back up the 

plots above that show the points not falling anyway close to a line of equality.  The 

FOEX figures all show what has already been seen previously, that the measured data 

is consistently higher than the modelled data.  Some of these methods for evaluating 

models are more sensitive than others.  T  be very sensitive 

especially when values fall around 0.  This is a problem in this data set since a lot of 

measured (and modelled values) are around zero.  It would be useful if a technique 

could be applied to see the main problem could be between the modelled and 

measured data. 

5.4 Bland Altman Analysis 

o sets of data.  They discuss some of the problems that have been mentioned early 

 

e of the 

ifferences.  95% of the points should lie between the (mean (d)  2*standard 

man 

 

   

 for the sulphur dioxide comparisons in a similar way.  With the large extremes 

ft in these plots were not useful at all, so the filter of removing measured values 

bove 2gSm-3 was applied.  These plots are shown in Figure 4.4: 

he FA2 and FA5 values can

 

  Bland and Altman (1986) discuss many of the problems that face trying to compare 

tw

(high correlations not meaning that two sets of data are close to each other for one).  

They use an approach featured below: 

 

The Bland-Altman plot can help to see this graphically.  By plotting the differences

(modelled – measured) against the average deposition (using both the modelled and 

measured values to get this), the points can be compared against the mean valu

d

deviation (s)), assuming the differences are normally distributed.  Bland and Alt

suggest that if the difference between d+2s and d-2s is not "clinically important" then

the two methods can be said to agree, since they could be used interchangeably.  If 

this difference is too large then  it can be said that the two methods certainly cannot.

Though this analysis will not be dealing with any “clinical” issues, this can still be 

used

le

a
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   Figure 5.4:  Bland-Altman plots showing the averages of the modelled and measured data against th

differences for years 1997, 1999, 2000 and 2001. Lines are drawn at the mean 

e 

2* standard deviation.

 

It can be seen that in each plot the data appears to follow a straight line.  This isn’t too 

surprising as the measured data is a lot bigger than the modelled data in the previous 

plots.  However it is most important to look at the two “boundaries” for each year.  I

can be seen cl

 

t 

early that in all 4 years, the difference between d+2s and d-2s is too 

 

, most of the results ended 

 

large for the methods to be used interchangeably and so as has been seen previously 

the two sets of data in their raw format do not match each other well enough. 

 

When the R2 values above 30% were taken into account (by removing the ones

below), this also unfortunately did not make a great deal of difference.  Because the 

daily values were aggregated from the raw half hour values

up averaging to nearly/exactly the same value as before.  Only in the extreme cases

(which were shown above in the Bland-Altman analysis) were the means changed at 

all. 
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5.5 Spatial Aspects 

 

As was discussed in previous chapters, part of the problem with comparing these 

alues is that one is taken from a point measurement inside a spatial area of 50km by 

km.  It may be that the local weather conditions make it impossible to believe that 

e average given by the model will be accurate to every location inside the square.  

The amount of sulphur dioxide in the air can vary over very small areas so it would be 

ifficult to believe that the same levels should be expected over such a wide area.  It is 

ifficult to quantify the level of variation that might be expected from one of these 

rid squares, but it is easy to imagine that it might be rather large. 

.6 Conclusions 

From this chapter it has been shown, very clearly that comparisons between modeled 

and measured data in a natural environment can be very difficult indeed.  Especially 

when using a data set with what has been shown to have such high levels of noise.  

This chapter has looked at how difficult it is to compare a noisy data set with a model 

that models over a large area.  The two do not compare well against each other for any 

of the 4 years looked at.  It would appear that the levels of noise are the main cause 

behind this.   

Common techniques to compare between the two sets of values were looked at, along 

with techniques such as Bland-Altman plots in order to graphically see what 

differences there were between the two data sets, along with several statistical 

calculations in order to show more quantitatively how well/badly the data sets 

compared with one another.  All of the techniques applied to the data sets showed that 

there was a clear disparity between the two sets of results. 

   It was studied whether removing some of the data that was deemed less reliable 

from the analysis in previous chapters, would allow a better comparison, however it 

ended up showing nothing different here.   

   Hence the main conclusion that can be taken from this chapter is that there are 

major pitfalls when looking at two sets of data taken in very different ways.  There are 

ways to make it as clean as possible but these still might end up showing differences 

between them.  One thing that should be made clear is that the levels of noise in the 

measured data, as shown in Chapter 2, mean that it is almost impossible to blame the 
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model in this, a ata. s it is very difficult to be confident about the measured d
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Chapter 6 – Final Conclusions and discussion 
 
 
The previous chapters have shown the many difficulties and problems that ac

trying to fit an accurate model to routinely measured, high frequency sulphur dioxide 

fluxes at a single monitoring station (Auchencorth Moss) which might then be use

allow verification of large scale atmospheric transport models.  The measurements 

have a complex structure, and can be impacted by weather conditions and other 

environmental situations which can change very easily over even small areas and in

short time periods.  For this setting, further issues arise since many of the modelled 

and measured fluxes are very low and can be

company 

d to 

 

 affected by errors in the measuring 

icult 

e 

 

 

 

erely producing a very flat line and hence slope 

 

ot 

e 

e 

ts did 

s 

equipment and even human error.  These together combined to make it very diff

to define an underlying model taking account of this additional variation. The flux 

calculation requires several different measurements from the tower.  Gas 

concentrations are taken from three heights and several other input variables ar

needed in order to calculate a flux.  The fact that slope estimates are required from

three data points for the flux also mean that the data quality can be reduced by one 

false measurement from the many variables that are collected. 

  From the earlier chapters it was shown that using only the gas concentrations that 

had significant slope estimates to produce the measured fluxes (removing the more 

poorly fitted models (defined by the R2 values)) reduced the data by up to  10-15% 

but gave slope estimates that were based on better fitted models .  The values which

were removed also tended to have the lowest flux values, which makes sense as the 

low sulphur dioxide fluxes calculated generally came from the low slope estimates

that were obtained from a linear model which did not fit the three gas concentrations 

particularly well and ended up m

estimates of small magnitude.   It was also checked in detail whether the fluxes being

calculated were being affected by time of day or seasonality.  These analyses did n

provide any significant results to explain the variability.   However, the reassuranc

provided by these analyses was important for the final comparison between th

modelled and measured data at since ‘unusual values’ and any time of day effec

not need to be accounted for.   Sensitivity analysis helped to show that most of the 

variation in the flux came from the gas concentrations rather than the other input 

variables in a quantitative sense.  This suggested that problems in modelling fluxe

might come from problems in predicting the raw concentrations. 
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   Chapter 3 explored the advantages and disadvantages of using ideas concernin

chaotic behaviour to help model the measured fluxes.   However the results turned out 

to be disappointing – despite an extensive check of the different methods of 

estimating Lyapunov Exponents.  Three methods were discussed in some detail, and 

two of them were applied to the data sets with differing results.  The results ga

g 

ve 

. 

fferent 

  The 

ues in 

were used. Two techniques worked reasonably well on the extreme values 

effect 

oval and whether the final model measurement 

omparison was improved..  Further work on modelling the extreme values would be 

ommended as there were indication of results which could have possibly been 

nalysed further (e.g. by comparing them with data sets from other sites in the local 

rea or further afield perhaps). 

 The final chapter showed the results of the model measurement comparison.  The 

odel in this case was a large scale atmospheric transport model (EMEP), which 

ffectively provides predictions at a grid scale (maybe give the dimensions).  The 

sue was whether single monitoring station results could be useful in model 

erification.  An initial comparison showed considerable disparity between the 

odelled and measured data using basic scatter plots compared with lines of equality.  

pplying the screening techniques that had been studied in Chapter 2 did not bring 

e data sets closer to each other, and there did not seem to be much relationship 

between the modelled and measured data sets at all.  Different statistical techniques 

some indication of chaotic behaviour, but this was dependent on scale. As Timmer et

al suggest, it is very difficult to find a method that can identify between a chaotic 

system and one that has a small signal hidden by large amounts of white noise and 

unfortunately this analysis did not allow us to distinguish between these two di

explanations in a consistent or reliable way. 

As is commonly the case in environmental time series, the next set of analyses 

focussed on the extreme values which might represent episodes of air pollution.

extreme value analysis was very useful and helped to show that the extreme val

these data sets could be modelled by classic extreme value theory technique.  

Techniques that looked at the clustering of the values along with the raw values 

themselves 

– the Generalised Extreme Value Theory and the Generalised Pareto Distribution - the 

Pareto distribution especially was shown to not have too much variation even when 

the threshold value for what constituted an “extreme” value was altered for 4 of the 5 

years.  Analysing the extreme values also allowed an opportunity to explore the 

on subsequent analysis of their rem
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such as Bland-Altman plots and statistical measures of agreement all showed a 

istinct lack of agreement between the two sets.  Even when the extreme values were 

t (in comparison 

 the size of many of the measured means) to be confident about these at all. 

 

ould be useful to look at this in more detail to see whether a model over 

ch an area should be expected to fit well against one point inside it.  This is 

delled and measured data to any great length, there were some 

teresting findings.  Overall, two areas of further work seemed the most promising, 

sis of 

.  

he thesis showed the difficulty in assessing chaotic behaviour in a data set that has a 

 

re 

ommon in other data sets, especially where episodic behaviour (high pollution 

  

d

taken out the two sets of data still differed by large amounts, and using the Bland-

Altman techniques, the “limits of agreement” were much too far apar

to

 However one thing that was not studied in too much detail was the fact that a point 

estimate was compared against a model which generates a spatial average for a large

area.  It w

su

definitely one more area that could be looked at in more detail. 

While many of the results in this thesis were disappointing since they did not improve 

the model- measurement comparisons, nor indeed help explain the differences 

between the mo

in

these are application of chaos to environmental time series, and the further analy

extremes

T

small signal obscured behind lots of noise.  The use of Extreme Value Theory showed

some interesting results which could be taken further forward to see whether these a

c

events) are especially important.   
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