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Abstract

Atmospheric pollutants are of concern for both their effects on human health and on
plants and crops. Since the 1960s monitoring networks have been created, linked to
international protocols regulating emissions of pollutants such as sulphur and nitrogen
and also to validation studies of large-scale atmospheric transport models. One such
monitoring site in the UK is at Auchencorth Moss, close to Edinburgh, where routine
half-hourly measurements of sulphur dioxide are made. The time series shows a large
amount of variation, and it is of interest to explore any trend in the pollutant level
along with any presence of seasonal and diurnal cycles and to draw comparisons with
pollutant transport model predictions. However, before carrying out such analysis, it
IS necessary to investigate the sources of variation. This thesis will consider the
nature of the calculation of the sulphur dioxide flux, based on three simultaneous
concentration measurements corrected for stability height. The need to calculate a
slope estimate based on three points led to some difficulties and these were looked at
to see whether these were creating difficulty when it came to modelling the fluxes. It
was concluded that there were a high proportion of fluxes calculated using slope
estimates with high R?values and so any difficulty might lie in the actual data
themselves rather than any technicalities in the calculations used to define the flux.
From there, each variable involved in the calculation of the flux was studied, using
approaches such as signal-to-noise ratios and sensitivity analysis. From these it was
seen where most variation was occurring. Signal-to-noise ratio techniques did not
work very well with the very low data measurements collected, which was
disappointing but the values collected were generally very low suggesting a large
level of noise in the data. Sensitivity analysis helped to show where most of the
variation lay. Using a sampling based method it was shown that most of the variation
lay in the gas concentrations themselves rather than any of the other variables
involved in the calculation of the flux. This led to the conclusion that the gas
concentrations rather than anything else were contributing to the difficulty of
modelling sulphur dioxide fluxes. This suggested that there might be a possibility
that there was no problem in the data collection approach or calculations of a flux, but
perhaps the data itself was too variable to be modelled.

Chaos theory offers a different approach to the analysis of time-series and this thesis

explores the use of the Lyapunov exponent to investigate chaotic behaviour over



different aggregated timescales. The chaos definition used was the popular
“Sensitivity based on initial conditions” approach favoured by most people in this
field. Looking at how quickly two data points placed very closely together could
diverge after a certain time period would show whether any predictions made would
be highly susceptible to any variation would be a very useful finding. Using three
different techniques gave disappointing results however. The techniques all produced
results which were sometimes conflicting with each other and none of which gave any
convincing argument for, or against, the existence of chaos. This led to two potential
conclusions. One being that the data were very noisy, but predictable underneath this,
or methods of estimating chaotic behaviour can be flawed. This thesis also looks at
how Extreme Value Analysis can be used on very noisy environmental time series
and how useful it can be in explaining the behaviour of the larger values measured. In
this study there were some large peaks in each of the years when looking at a time
series analysis. These values were studied separately from the data using Generalised
Extreme Value theory and the General Pareto Distribution. The Pareto distribution
approach was concluded to give the better insight into the data. This was shown to
model the extreme values reasonably well though both options could be taken as valid
from these approaches. Finally the measured and modelled data (collected from a
Europe-wide model) were compared and analysed to see how well they compare and
what techniques from each of the previous analyses can be used to bring them closer
together. These tended to show that the two data sets (modelled and measured) did
not match up particularly well. Techniques such as a Bland-Altman analysis and
many comparison diagnostic tests were analysed to see whether there were
differences between the two. Even when some findings from earlier chapters were
applied to the data such as applying a minimum R?to any slope estimates did not

help.
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Chapter 1 - Introduction

Motivation

Science has contributed to many different leaps forward in technology and thinking
throughout time. However, as progress has been made, there have been many high-
profile stories about the damage man has made to the planet. Scientific research can
be used in order to quantify how much damage has occurred, and make predictions of
what might happen in the future in order that governments and leaders can plan
accordingly. This might be anything from the amount of food generated (see the
OECD-FAO Agricultural Outlook 2008) to even population estimates for humans
(see the UN Report, World Population to 2300, 2004)

In environmental science it can be very useful to be able to model natural and man-
made effects that happen. This can be anything from the growth/shrinking of an
animal population to the growth rate of a flower or plant. This allows scientists and
other environmental analysts a greater degree of understanding of what goes on in
these systems, and helps them to explain why events may be occurring. The main
reason for modelling something though, is for the opportunity to estimate what might
happen in the future. For high-profile issues such as global warming, populations
close to extinction etc. the advantages of having an accurate model that can predict
what may happen in 1,5, 10...years into the future can prove invaluable.

Scare stories about ice-caps melting and climate change are well documented in the
press, and treaties like the Kyoto agreement are set up to try and reduce the amount of
(mainly) CO; in the atmosphere. Being able to predict the levels of gasses in the
atmosphere could therefore prove very useful. This is especially useful for working
out where gasses are spreading to, since they can be carried long distances through the
air and so there may be high levels in quite “random” places, away from power
stations or other things that may cause these gasses to be emitted.

Another example of a treaty set up is the LRTAP Convention (Long-Range
Transboundary Air Pollution). This was created in 1979 in order to try and protect
the environment. This was mainly done by setting protocols, many with so-called
‘critical values’. These are a threshold that companies/governments are not allowed

to exceed when they produce harmful gasses such as SO, or NO, These two
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chemicals in particular are very harmful to the environment, as they are known to be
the main causes of acid rain, which can cause damage to vegetation, animals and
humans (through building corrosion, poisoning water etc.)

Some of these gas levels are modelled by EMEP (Co-operative Programme for
Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in
Europe). This programme “provides governments and subsidiary bodies under the
(Long Range Transboundary Air Pollution) LRTAP Convention with qualified
scientific information to support the development and further evaluation of the
international protocols on emission reductions negotiated within the Convention.”

(http://www.emep.int/emep description.html)

The EMEP programme has three main elements. They collect emission data. They
study environmental data and they attempt to model the data in order that future
predictions can be made. EMEP also teams up with many scientists and scientific
task forces in order that its results can be verified and checked.

The programme uses a series of modelled meteorological data along with modelled
gas concentrations to predict a flux or rate of SO,. These have been based upon data
collected for over 40 years in some sites around Europe. From these data a model has
been made and updated through the years, from one that modelled daily values for
100km squares through most of Europe, to a more improved one that now models
values over a 50km square. The model used a Lagrangian method at first that was
since updated to an Eulerian approach in order to model over the smaller areas (the
new model is described at length in Bartnicki et.al (1998)). One thing to make
mention of though is the volume of variables that need to be modelled in order to
work out a predicted flux. There will still be some concern at how much a model can
be expected to correlate with measured data over such a large area and this will be of
interest to study and gain conclusions from.

Below shows a map of Europe along with a grid showing the 50km regions that
northern Europe has been split into. The EMEP model predicts daily fluxes for each

one of these squares. This is shown in Figure 1.1:
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Figure 1.1: Domain of the EMEP model divided into the 50km ‘squares’ — the small squares are the

grid cells

It can be seen that these squares look small, but since each of them are actually 50km
by 50km it can be seen that it may be difficult to provide one value that may match
the levels of gas concentration that are actually measured. Weather conditions for
instance may be very localised and so provide differences between two sites in the
same square.

The Centre for Ecology and Hydrology, a nationwide organisation that studies areas
such as biodiversity, water, biogeochemistry, environmental informatics, climate
change and sustainable economies, collects measurements of different chemicals
routinely every half hour over different areas in Britain. Their research mainly
focuses on understanding the world and importantly, the repercussions of human
activity on the world. This thesis will use data collected and recorded at their station
in Edinburgh.

Most of the focus will be on one particular site in Eastern Scotland called
Auchencorth Moss. Different variables are taken from a measuring tower, including
gas concentrations at different heights, and then calculations are made in order to
produce a flux measurement (this will be described in more detail in Chapter 2). A
flux is defined as the amount that flows through a unit area at unit time. This flux is
then compared to the value that the EMEP model calculates it to be at that particular

grid location. As mentioned already these data are modelled at a daily level, and so
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the measured data will have to be aggregated up to daily levels in order to compare

between them.

There is much literature around and many (simple and non-simple) techniques for
immediately comparing two sets of data, however it would be useful to use techniques
which help to give more information to explain more about any differences that may
occurs between these two data sets, rather than just producing a simple p-value that
shows the model validity/invalidity . For instance it will be useful to see if there are
techniques for quantifying the quality of the data and if a model-measurement
comparison can be improved in order that they match up more closely (and hence

create a higher level of trust in future levels produced)

This thesis will attempt to show the difficulties in working with environmental data
and produce techniques which, while used in different contexts, may not have been
widely applied to environmental systems, in order to see if these explain some of the
behaviour that can be seen in environmental time series. It will also be useful to look

at some of the patterns and trends that occur when monitoring data.

1.2 Scope of Thesis

This thesis contains six chapters. In this chapter, a brief overview is given of the kind
of data that will be worked with throughout the rest of the thesis, along with the main
problems that may be reached in the course of attempting to model sulphur dioxide
fluxes. Chapter 2 will look at the measured fluxes and look at them in more detail to
see ways of assessing the quality of the data that has been collected in order that they
can be compared to the model. From this chapter, conclusions will be reached about
which years appear to give “better” results and this will become useful in later
chapters — especially when the modelled and measured data are looked at together.
This chapter will also contain a sensitivity analysis to see which particular variable(s)

are having most influence over the calculated flux values.

In Chapter 3, the measured data is looked at in terms of whether it shows signs of

chaotic behaviour. The most popular technique is to calculate Lyapunov Exponents.
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These assess whether the data shows signs of being very sensitive to small changes,
which make it impossible to predict what will happen in the future, without being
certain of what value is being measured currently. Two ways of estimating these
exponents will be looked at based on Giannerini and Rosa (2004) and Nychka et.al.
(1992) respectively and compared to each other before concluding whether the data is
chaotic or not.

With variable time series data it can also be useful to look at the more extreme values
that may be measured. Chapter 4 will start looking more closely at these values that
have been measured and will look to see if these show any pattern to them, by using
classical Extreme Value Theory. Both the Generalised Extreme Value (GEV) family
and the Generalised Pareto Distribution (GPD) will be looked at in order to see if the
data fits either or both of them. These are the two most common way of analysing
these sets of values and have been used in several other environmental studies. This
will be helpful in helping to ascertain whether the values furthest away from the

modelled data could still be explained.

Chapter 5 will bring all the conclusions from previous chapters together in order to
see how closely the modelled and measured data that has been collected match up to
each other. By using information gained from Chapters 2,3 and 4, these will all be
applied to the data to see if there are any ways of validating the model using different
subsets of the measured data. Also this chapter will discuss the spatial aspects of the
modelled and measured data since the model is for a 50km by 50km square and it is

being compared against just one measuring station.

Finally Chapter 6 will conclude all the results from the chapters and discuss the
findings from this thesis and any future work.
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Chapter 2 - Sulphur Dioxide Flux Measurements

2.1 Introduction

A flux is described as: “The rate of flow of fluid, particles, or energy through a

given surface” (www.dictionary.com). In this study, this will be the rate at which

SO, moves through the air. As mentioned in Chapter 1, the values of interest are
those of flux due to dry deposition. The following picture helps to show exactly what

dry deposition is (Figure 2.1)

Emisslon, transport and deposition of acldifying pollutants
EMITTED POLLUTANTS

WET

pAIticion/ DEPOSITION

aerosols
S0
NOy
MH,*

power motor
stations vehicles livestock
(combustion) (combustion)

Figure 2.1: Picture taken from http://www.ceh.ac.uk/aboutceh/sections/edin_pollution.htm. This

shows how dry deposition differs from wet deposition and how it is deposited.

Figure 2.1 distinguishes between dry deposition and wet deposition. Wet deposition
is produced by rainfall, whereas dry deposition occurs from the transfer of a pollutant

19



to the surface by any other means (air currents etc.). SO, can be blown for many,
many miles before it is deposited (either wet or dry), so it can be difficult to predict
just how much will be measured in specific locations.

At Auchencorth Moss, meteorological and physical measurements are taken half-

hourly every day from a measurement tower on the site. The tower is pictured below
(Figure 2.2)

Figure 2.2: A picture of the measuring tower at Auchencorth Moss taken from

http://www.ceh.ac.uk/aboutceh/sections/edin_pollution.htm.

The tower has devices to measure gas concentrations from three heights on the
tower. Other things measured each half-hour include the air temperature, the wind
direction and the wind speed. The friction velocity (a reference wind velocity using
the air density along with the horizontal and vertical wind speeds) is measured by a
sonic anemometer.

Since the calculation of a sulphur dioxide flux depends on a number of measured
and theoretical variables, the properties of an SO, flux will depend on the attributes of
these input variables. Analysing these parameters in detail will help to assess the
uncertainty of the measurements made in comparison to the ‘true’ value that exists in
the environment at that particular time and in the model comparison.

Once a sensitivity study has been completed, an important step will be to ask
questions about the “quality’ of the fluxes and methods will be shown to deal with the
problems that could occur. By applying certain statistical procedures to the data, the
data quality can be measured in quantative ways. Goodness-of-fit tests will also be

useful since the flux calculation relies on a slope estimate from three points (this will
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be expanded upon in pages 23 and 24). Other techniques will also be used to analyse
potential problems that may affect the model-measurement comparisons that will be
shown later on in Chapter 5.

Further analysis of the measurements will include temporal aggregation at different
scales - from the half-hourly measurements into longer time periods such as days and
months - to see if there are patterns in these longer data series. Also analysing
differences between day and night could help to see if the growth of plants underneath
the measuring tower in the canopy, affects the quality of the gas concentrations that
are measured. Additionally, looking at the distribution and spread of the gas
concentrations and the heights at which the measurements are taken (once they have
been stabilised- this is described below) will help to show again if there appears to be
a reasonable level of consistency. It would probably be expected that the heights
should not change very often and so if they are, then it may help to ask why.

This chapter underpins much of the statistical analysis in Chapters 3 and 4, and
where the measured data are compared to the modelled in Chapter 5. Also some of
the later techniques involved in identifying a signal and assessing variation will be
useful when looking at the chaotic behaviour that may be present (explained more in
Chapter 3)

2.2 Estimation of the Flux

In order to estimate an SO, flux at Auchencorth Moss, certain variables need to be
calculated. The technique used at this site is the ‘eddy correlation’” method (Monteith
& Unsworth 1990). This has the advantage of measuring a flux directly, rather than
other techniques which infer it rather than measure it. Two of these techniques are
discussed by Griffith and Galle (2000) and Leuning et.al (1999). The multi-stage
technique used here is described below.

The first step is to calculate a length L (the Monin-Obukhov length) using the formula

~(um) e, pT
kgH (2.1)

L
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e U* is the friction velocity. This is necessary in finding out how much of
the turbulence measured is caused by wind and not heat flux. If u* is
measured at less than 0.08 however it is treated as missing as the wind
speed is regarded as too low and measurements will be too uncertain.
Friction velocity is measured by a sonic anemometer.

e pisaconstant air density (=1246 gm™),

e Cpisanother constant (=1.01). This is a basic property of matter. It is the
quantity of heat required to raise the temperature of 1kg of matter by 1°K. ,

e T is the ambient temperature (in Kelvin) averaged over two heights on the
measuring tower.

e kisvon Karman’s constant, a constant of proportionality (0.41),

e g isthe acceleration due to gravity (9.87ms™)

e His the rate of heat transfer per unit area. This explains how much
turbulence is caused by heat radiating from the surface. This is measured

at the tower.

L is routinely filtered to remove any unreasonable values. If the absolute value of
L falls below 2, then the value is rejected and treated as missing. The reason for this
is that the atmosphere has become either too stable or unstable at this point for the
micrometeorological methods to be applied (Monteith and Unsworth 1990). This, as
well as the u* filter mentioned earlier are the only two filters applied.
The second step in calculating the fluxes involves calculating the stabilised
corrected height (SCH) using the formulae listed below in (2.2) to (2.6)

_ —5.2(gasht; —d)
Vhai) = L 2.2)

1
= (1_ 16(gas|r_1ti - d)]zt

(2.3)

@+2°)
Yoty = ZIOQT (2.4

22



, B V Ha (i) L >0
Viua W iy iy --ere- OtNETWiSE

(2.9)
SCHi= log(gasht; — d) - ¥ (2.6)
i=1,.3

e gasht is the heights that the gas concentrations were measured at in metres
above the ground; these are constant over a year but can change at the
beginning of a new year depending on the height that the foliage
underneath the tower may be expected to reach.

e ‘d’is aconstant, which is worked out as approximately 70% of the
canopy height (Campbell 1977). This is used as a measure of the ‘zero
plane’, i.e. the height at which the wind speed is zero. (Monteith and
Unsworth p.113-117)

e SCH values are the Stabilised Corrected Heights (in metres above the

ground)

Before the flux calculation can be made, one more filter is applied to the data. The
heights and concentrations should only be used when/if the wind is not being
interfered with by the measuring hut. When the wind is blowing directly over the
measuring hut then this will mean that an unreliable measurement could be taken and
so this means that any measurements, collected while the wind direction is between
60 and 170 degrees, are rejected.

The z¥ ;) values (from 2.5) are used to calculate the SCH’s. These are necessary in
order that the wind-speed profiles are more or less linear. In micrometeorology it is
assumed that the atmosphere is stable and so the wind-speed profile and log(height)
can be related linearly. In a lot of real cases though this cannot be automatically
assumed and so the profiles are linearised to account for this. The SCH’s are

calculated as shown in equation (2.6).
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Finally in stage three, the flux can be calculated. Each gas concentration (at each
height) has a corresponding stability corrected height (SCH) as mentioned previously.
At each time point, there are therefore three concentrations and 3 SCH’s. This is then
treated as a regression problem using gas concentration as the response variable and
the SCH as the explanatory variable. From these three points, a least squares estimate
is used in order to fit the best linear model for each set of three ‘points’ as shown in
equation (2.7)

gascong =m(SCH,)+c+¢, (2.7)

e m being the gradient or slope of the best fit line

e C being the intercept
i=1,..3
Figure 2.3 shows this pictorially. The three points are shown as the small circles

and the piecewise lines drawn in bold. The best-fit line has been drawn on as a dotted

line.

gazcaicl
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Figure 2.3: Plot showing gas concentrations against stabilised heights, for one half hourly
measurement from 1996 with a dotted line showing the best-fit line through them. Solid lines indicate
the piecewise lines.
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Now, finally the flux value can be calculated as shown below (2.8)

Flux = -k x (u*) x m (2.8)

Where k and u* are as before in equation (2.1) and m is the gradient of the best-fit
line from (2.7). The product of these three quantities provides a flux measurement for

SO, levels.

Possible problems with the quality assurance of the data could be:

1. Although filters have been applied to three of the variables (u*, Wind
Direction and L), are these taking out all unreliable measurements, or are
they taking out too many values leaving a data set too sparse to analyse
properly? Are these missing measurements all occurring at one time or
over more “random” time periods?

2. Can aregression model be trusted to be reliable when it is only based on
three points? If values at one of these heights have been poorly measured,
this would surely give a poor fit and therefore an untrustworthy slope
measurement, meaning a poorly calculated flux value.

3. There are many different variables (measured and theoretical) used to
calculate the flux measurement. How much variation will each of these

produce in the flux?

The first problem is probably of least concern that needs to be looked at in more
detail. In order to check this though, some brief analysis of the gas concentrations
that are removed will be carried out, in order to see if these show any considerable
differences to the filtered data. This will be in Section 2.5. Section 2.6 will show a
chi-squared analysis to analyse whether there are any differences in the amount of
missing fluxes at particular half hourly periods. Because the concentrations are
measured and not derived they should show if the filter applied to L, u* and Wind

Direction will make any difference.

The second and third problems will be looked at in more detail in sections 2.3 and
2.4.
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2.3 Evaluating the Best Linear Model

With only three points to fit a best-fit line, there is a worry that a particular flux
could be influenced by one outlying measured value. If the three points do not look
like they may lie on a straight line then perhaps a flux measurement should not be

calculated since the flux is directly related to the gradient of the best fit line.

2.3.1 Analysing the Goodness-of-Fit of the Straight Line

For each of the years, the R? value for each best-fit line has been evaluated. This has
been performed on the half hourly data so that the data can be checked for quality at
their measured format before they are aggregated to the hourly or daily
measurements. The 17520/17568 (depending on whether it is a leap year or not) R

values for the half-hourly data are shown in Figure 2.4:

Year | Min 1% Median | Mean | 3™ Max | Numbers

Quartile Quartile missing

1997 | 0.000 | 0.800 0.925 0.823 | 0.975 1.000 | 3213

1998 | 0.000 | 0.738 0.913 0.795 |0.971 1.000 | 2986

1999 | 0.000 | 0.587 0.829 0.720 | 0.950 1.000 | 3233

2000 | 0.000 |0.740 0.967 0.797 |0.978 1.000 | 2840

2001 | 0.000 |0.289 0.709 0.605 | 0.927 1.000 | 3126

Table 2.1: The summary statistics for each year of the half hourly R? values. The missing values

include the filtered out values.
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Figure 2.4: Density histograms of R? vs. a probability frequency for the years, (a) 1997 (b) 1998, (c)
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At first glance the histograms all seem relatively similar and show that the three
points are providing a reasonable straight line in most cases (over 75% of values for 4
of the five years are showing values above 50% and over half the values for all years
are above the same figure). Certainly 1997-2000 all look reasonably similar from the
graphs above. However, it should be noted that 1999 is slightly different and perhaps
should be analysed with a little more care as there are more lower R? values than in
other years. However, over three quarters of the data gives a better than 50% R? value
here (from Table 2.1) so there is still reason to believe that the best fit line (and hence
the flux measurements that come directly from it), is fitting the three points well in
most cases.

1999 however does show a few, very low R?values. These are more noticeable than
in the other years (ignoring 2001 for now) when looking at Figure 2.4. These could
be scrutinised to find out when they are occurring. For instance, if they are all
occurring together in time, then perhaps the machine had a fault in it that day, and
those results should maybe be discounted. If they are scattered then perhaps this
could just be put down to a single measurement error and this shouldn’t cause too
many problems especially when averaging them for a daily value (however this will
be looked at).

In 2001 however, there does seem to be slightly more of a problem. Certainly
looking at the 1% quartile shows that a quarter of the R? data points fall under 30%.
This would appear to be a problem as these low values affect at least 25% of the flux
calculations. When comparing the modelled and measured data later on-this may
have to be thought about if the comparisons prove to be worse for the 2001 data.

2.3.2 R? simulation

A filter on the data points could possibly be something to think about. This would
allow an acceptance of a flux value only when the best-fit line was “good enough”
(below is a discussion of what may be seen as acceptable). With three points, a
potential method might be to look at the middle value and use that, to see if the three
points are ‘collinear enough’ to believe a straight-line model could be fitted to the
data. Figure 2.5 shows pictorially how this could be applied.
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It could be useful to consider a simulation study, in order that three points could be
chosen and then varied in order to see how much that would change an R? value and
to assist in interpreting an ‘acceptable’ R? level as an additional filter.

(x2,y2)
] e
J T1EANE)
s A
T2y
I f.-_.-' .___'_,.-"'-..
L
o (x1,y1) ,
0.10 015 0.0

Figure 2.5: Plot using simulated data showing three points (Xq, Y1), (X2, Y2) and (Xs, yz). Solid line is
line connecting (X1, y1) to (X3, y3) with a point marked at the x, co-ordinate. Dashed lines are the
piecewise lines.

Figure 2.5 shows the basis of a simulation that was applied using three arbitrary
points. Firstly three points were chosen that lay in a straight line (these are (X1, Y1),
(X2, Y2*) and (X3, y3) in Figure 2.5), then the 2" point (i.e. y, ) was moved
perpendicular to the x-axis, and R? values were calculated from the best fitted line for
(X1,y1), (X2, ¥2) and (x3,y3). These were then plotted against the standardised
differences between y, and y,". The differences were standardised by dividing the
vertical distance between (X2, y2) and (X2, y»*) by y>* (=1.6). For example, the
standardised distance on the second line (0.15625) was obtained by dividing 0.25 by

1.6. The results obtained are shown in Table 2.2 and Figure 2.6.
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RZ

y2 value Distance from (0.15, 1.6) Standardised
Distance

1.6 0 0 100%
1.85 0.25 0.15625 98.56%
1.93 0.33 0.20625 97.54%
2.1 0.5 0.3125 94.53%
2.35 0.75 0.46875 88.48%
2.6 1 0.625 81.20%
3.1 1.5 0.9375 65.75%
3.6 2 1.25 51.92%
4.1 2.5 1.5625 40.87%
4.6 3 1.875 32.43%
5.1 3.5 2.1875 26.07%
5.6 4 2.5 21.26%

Table 2.2: The simulated distances of the second point from the perfect fitted line and the resultant R

that it produces.
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Figure 2.6: Plot of R® values against corresponding standardised distance

Figure 2.6 shows that a “middle value” with a standardised distance of 2.5 will
reduce the R? value to nearly 20%. This may prove to be a reasonable threshold so
that any very poorly fitted flux values will not be calculated. It could of course be
made even stricter. Table 2.2 and Figure 2.6 show how far away the middle point
would be in these cases.

Some of the real measured values were used to see what sort of distances (and

distance*) were being produced. An example is shown in Figure 2.7. This shows the

last half hourly set of values taken from 1997
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Figure 2.7: Showing a real set of three values from 1997, along with the distance between the real
middle point and where the middle point would be if the first and last points were connected
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Figure 2.8: Time Series showing the Distance* values throughout 1997, using the half hourly values.

Distance* | No. of Distance* Smaller % of Distance* | R? at that
Smaller | Distance*

0 0 0 1
0.15625 623 4.36 0.9857
0.20625 804 5.63 0.9754
0.31250 1185 8.30 0.9453
0.46875 1731 12.13 0.8848
0.62500 2319 16.25 0.8120
0.93750 4247 29.75 0.6575
1.25000 9324 65.32 0.5192
1.56250 11563 81.00 0.4087
1.87500 12334 86.40 0.3243
2.18750 12712 89.5 0.2607
2.50000 12968 90.84 0.2126

Table 2.3 The summary statistics of the Distance* from the 1997 half hourly data.
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Figure 2.9: Using Table 2.2 to plot the percentage of data points with a lower distance than at each
threshold (Col 2 of Table 2.2) and the corresponding R? value (Col 4 of Table 2.2)

Table 2.3 shows that there are still approximately 65% of available data that have an
R? of over 50% and in fact over 90% of the points give a better than 20% R? figure as
was mooted as a potential threshold on page 30. Were the bar to be set at 30% (say),
then there would be between approximately 86 to 90% of the data points included.
This doesn’t appear to be a great difference in the number of rejected values. In fact
Figure 2.9 shows that the small differences in the percentage of data rejected as the R
value decreases from around 30-40%. Therefore the 30% value will be used later on

in Chapter 5 when the modelled and measured data are compared against each other.

2.3.3 R? values Throughout the Day

The R? values may vary throughout the day. Perhaps winds are strongest at
particular points during the day and so may be carrying more of the pollutant. Since
SO, comes from factories, maybe there will be certain points of each day in which
there is more pollutant in the air. In order to look at this Figure 2.10 shows the half

hourly R? values from the first day of each month in 1997.
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Figure 2.10: Time Series of the half hourly R? values over the 1% day of each month from 1997.
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Figure 2.10 shows how the R?values vary throughout the day. These twelve days
are typical of the values calculated over each of the years and as can be seen there is
no real "worst time" of the day in each of the plots above. This (lack of) pattern is
repeated throughout the 5 years in total so there is nothing to look at more in depth

with regard to this.

2.3.4 R? Values for Day and Night in Summer and Winter

It was thought that perhaps there could be a difference between the day and night
calculations. Perhaps any activity in the canopy below during the day could affect the
quality of the three gas concentrations that are being measured. This can be checked
by looking subjectively at some plots of day and night fluxes and comparing any
differences between them.

Day Night Median | Difference ClI for Difference | P-value
Median (Day - Night)
1997 | 0.91844 0.94233 -0.01435 (-0.017,-0.012) | <0.0001
1998 | 0.90404 0.92847 -0.01075 (-0.014, -0.008) | <0.0001
1999 | 0.81672 0.85024 -0.01512 (-0.020, -0.010) | <0.0001
2000 | 0.91494 0.91468 0.00020 (-0.0015, 0.002) | 0.7864
2001 | 0.71341 0.73286 -0.00522 (-0.011, -0.0002) | 0.0387

Table 2.4: The results from a Mann-Whitney analysis on the difference between the day and night R

values (negative values indicating night giving better fits)
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Figure 2.12: The Daytime R? values against the R? values at night, using the half hourly fluxes from
1997-2001.

Figure 2.12 shows that there appears to be little difference subjectively between each
of the years — day or night. Because there are so many data points though, it is
difficult to tell entirely. A more formal analysis between the day/night R? values can
be implemented by performing Mann-Whitney tests on these R® values with the

hypotheses below:

. Ho will be that there is no difference in the values of the R? between day and
night.
. H1 that there is some difference.
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Mann-Whitney tests will be used as the distributions of the R? values are not
normally distributed, so the 2-sample t-test would not be suitable. The Mann-
Whitney tests only require the variance and shape of the distributions to be the same
and from the plots in Figure 2.12 this seems reasonable.

These tests show that (bar 2000), the straight lines, as measured by the R?, are
better fits at night to the data than during the days. However, the differences are very
small for every year, so it seems unlikely that the measurements will be highly
affected by poorer measurements during daylight hours. Clearly with 17000+ data

points for each year, the confidence intervals are very tight.

2.3.5 Comparing the Fluxes and the R? values

It would be of interest to see if there is any pattern between the flux values and the
corresponding R? value for that particular value. Then it can be seen if the higher R?
values coincide with high or low fluxes or whether the goodness of fit has no bearing
on the flux value that has been derived.

Five plots showing the flux values against the R” values again for each year are shown
in Figure 2.13
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Figure 2.13 Plots of the R?value vs. the corresponding flux value for each half hour, from 1997-2001.

Graphs have all been set to a max of 20 and min of —20 on the flux axis.

Subjectively from Figure 2.13, the plots look pretty similar in shape for 1997 and
1998, and appear to have more scatter towards the right hand side (i.e. higher R?
values) for the final 3 years. Because most of the fluxes are very small, it is difficult
to see any obvious relationship that may be between these two variables. It should be
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noticed though that there appears to be very few high positive or negative fluxes at the
low end of the R? scale. This could suggest that the high fluxes are producing better
fits in general. However it is dangerous to assume causality here, as it could also be
that the better fitted data are producing higher fluxes. This seems to make more sense
as three points which don’t have a high R? value may have a very flat line as the best-
fit estimate.

Since it appears to be the smaller fluxes that are producing the lower R? values, it
might be useful to look at just how many of the slope estimates (since the flux is
directly calculated from this), are significantly different from zero. It may be that if
these are removed from the data, (since a slope estimate of zero will produce a flux of
zero too), then this will improve the R? values in general and give fluxes that can be

accepted more readily.

By taking the slope estimate and creating a 95% confidence interval as the estimate +
1.96* the standard error of the slope should give an idea of whether the slopes are

actually significantly different from zero. Table 2.5 shows this:

Year No. of (non- No. of significant | % of Significant
missing) slopes slopes
measurements

1997 14307 10729 74.99

1998 14534 10119 69.62

1999 14290 7750 54.23

2000 14728 10323 70.09

2001 14394 6028 41.88

Table 2.5: The number and percentage of approximate significant slopes that have been obtained in

each year

From Table 2.5 it can be seen that the data in three of the years appear to give around
70% *“good’ slopes (i.e. ones that are significantly greater or less than zero). 1999
and 2001 seem to be quite low however with just over half of the slopes being
significant. This may prove to be useful if the 1999 and 2001 years are the worst in

comparison to the modelled data

40




In 2001 the number of significant slopes drops to a very low value in comparison to
the other years. This may help to explain why there are a lot of low R? values
compared to other years in 2001, since many of these slopes are not significantly
different from zero. This could therefore be another filter to think about when
calculating fluxes. This will be explored more in Chapter 5 when the

model/measurements are looked at further.

To see if this alters the pattern of R squared values, the table below (Table 2.6)
shows a summary of the R? values for each year, but only taking into account the

significant slopes.

R”values for sig slopes | Min | Q1 Med |Mean |Q3 Maximu
m

1997 0.800 |0.9072 | 0.953 | 0.9401 | 0.9850 | 1.000

1998 0.8001 | 0.9051 | 0.9514 | 0.9383 | 0.9839 | 1.000

1999 0.800 | 0.8709 | 0.9424 | 0.9287 | 0.9840 | 1.000

2000 0.800 |0.9072 | 0.9588 | 0.9422 | 0.9887 | 1.000

2001 0.8001 | 0.8866 | 0.9468 | 0.9316 | 0.9843 | 1.000

Table 2.6: Summary of R? values collected between the years 1997 and 2001

Table 2.6 shows that the significant slopes give far better slope estimates, as we
would expect, (based on Figure 2.12) than the non-significant ones. Perhaps if only
these (significant slopes) are analysed, then these will give more accurate flux
measurements. This should be something to take into account when comparing the
model and measured data in Chapter 5. This possibly also shows that the reason the
1999 data seems to vary more is because the number of slopes that are actually

providing a significant flux measurement is very small.

Also useful could be looking at the actual slope estimates against the R? values.
Since the flux values are obtained by multiplying the slope estimates by a constant
and u* which can change for each half hourly period there is a possibility that the
patterns may look slightly differently for these. These plots are shown in Figure 2.14.
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From Figure 2.14 it can be seen from this that some of the slope estimates are positive
and some are negative. From (2.8) it can be seen that a positive slope estimate will
lead to a negative flux. This is defined as an upward flux, which as the name suggests
would occur when more SO is coming up from the ground rather than down through
the air. This may be the case on rather still days where SO, is not moving much
through the lower atmosphere. Also the fluxes look slightly different to the fluxes vs.
R-squared that were pictured in Figure 2.12. It can be seen that 1999 is the only year
that appears to have more slope estimates below 0, than above it, which seems odd
when compared to the other six years of data. Differences with the final 3 years data
look possible too. During the years 1997 and 1998 it looks like most of the slope
estimates are greater than 0. However in the final three years (99-01) there appear to
be more negative values. Looking at the spread of the data also seems to show that
1999 and 2001 seem to have quite a small spread in comparison to the other years.
This may suggest that these years may be easier to model and so perhaps give more
accurate results. This should perhaps be taken into consideration when looking at the

years.

slope estimate
slope estimate

R-squared R-zquared
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Figure 2.14: Slope estimates against R for the years 1997-2001

zlope estimate

R-squared

2.3.6 U*, Gas Concentrations and Stability Corrected Heights

In the previous sections, u* was used in the flux calculation along with the slope

estimates, and the gas concentrations and stability corrected heights were used to

create the slope estimates.. Since these are obviously then of great importance to any

calculation of a flux measurement, then these should probably be analysed in a similar

way to the earlier analyses.

2.3.6.1 Looking at the Friction Velocity (u*)

Firstly u* shall be looked at as this is a simple straight measurement from the tower.

Firstly Figure 2.15 shows the histograms of u* over the 5 year period 1997-2001:
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Figure 2.15: u* half-hourly measurements from 1997 to 2001

As can be seen in most of the years the u* distributions are slightly right-skewed but

reasonably similar throughout the 5 years. The assumption of normality would be a
risky one in this case. There also seems to be perhaps an exponential or chi-squared
distribution to the figures, and appears to show that there are no real extreme values

and hence shouldn’t affect the fluxes negatively. From the plot it can be reasonably

assumed that u* appears to remain similarly distributed throughout the 5 years that are

being looked at. So there certainly appears to be no obvious change or difference

when looking at the friction velocity of the air throughout this time period.
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2.3.6.2 Gas Concentrations and Stability Corrected Heights

Table 2.7 and 2.8 contain the summary statistics for the SCHs and secondly the gas

concentrations (at each of the 3 different measurement heights):

From these summary statistics, a few things stand out. Firstly, some of the

maximum values can be seen to be very large when compared to the rest of the data in

both the gas concentrations and the SCH’s. These data will be analysed in more

detail in Chapter 4, so it is important here to look if the data appears normally

distributed, if these extreme values are not taken into consideration.

Year | Gas Min | 1% Quartile | Median | Mean | 3" Quartile | Max
Heights (m)

1997 | 2.82 -5.414 | 0.910 1.015 1.296 | 1.167 73.138
121 -5.437 | 0.065 0.110 |[0.197 |0.172 29.534
0.43 -5.491 | -1.122 -1.108 |-1.100 | -1.100 7.630

1998 | 3.05 -5.703 | 1.021 1.100 1.365 | 1.240 90.298
1.16 -5.726 | 0.035 0.064 |[0.138 | 0.115 32.106
0.35 -5.786 | -1.394 -1.387 |-1.379 | -1.375 6.159

1999 | 3.05 -5.291 | 1.030 1.097 1.497 |1.231 236.564
1.16 -5.319 | 0.039 0.063 |[0.181 |0.111 84.646
0.35 -5.394 | -1.393 -1.387 |-1.370 | -1.376 18.532

2000 | 3.05 -4.989 | 0.959 1.097 1.416 | 1.268 65.364
1.46 -5.012 | 0.248 0.315 |[0.429 | 0.393 29.943
0.71 -5.048 | -0.522 -0.491 |-0.459 | -0.456 12.798

2001 | 2.82 -4.492 1 0.919 1.016 1.379 | 1.206 76.967
121 -4.530 | 0.070 0.111 0.234 |0.188 31.105
0.43 -4.616 | -1.119 -1.107 |-1.082 | -1.084 8.108

Table 2.7: The summary statistics for the stability corrected heights over the years 1995-2001 (in half-

hourly measurements). The gas heights show the three heights in metres that measurements were taken

at in that particular year. These have only been calculated if there is a corresponding gas concentration.
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Year | Gas Min 1 Median | Mean | 3" Max | No.missing
Heights Quiatrtile Quiartile

1997 | 2.82 0.0000 | 0.100 0.214 |0.751 | 0.610 42.341 | 3213
1.21 0.0000 | 0.100 0.201 | 0.667 | 0.561 38.336 | 3213
0.43 0.0000 | 0.100 0.193 |0.612 | 0.518 35.208 | 3213

1998 | 3.05 0.00015 | 0.123 0.201 0.546 | 0.374 54.339 | 2986
1.16 0.00004 | 0.126 0.195 |[0.494 | 0.351 47.103 | 2986
0.35 0.00003 | 0.123 0.187 | 0.452 | 0.328 42.654 | 2986

1999 | 3.05 -0.162 | 0.064 0.124 | 0.451 | 0.300 26.939 | 3230
1.16 -0.150 | 0.070 0.132 0.477 | 0.318 30.560 | 3230
0.35 -0.161 | 0.068 0.129 | 0.464 | 0.304 29.108 | 3230

2000 | 3.05 -0.061 | 0.054 0.113 0.500 | 0.278 67.172 | 2840
1.46 -0.040 | 0.061 0.121 0.546 | 0.299 68.988 | 2840
0.71 -0.052 | 0.061 0.121 | 0.567 | 0.301 69.800 | 2840

2001 | 2.82 -0.072 | 0.054 0.114 |0.458 | 0.324 26.878 | 1229
121 -0.052 | 0.063 0.125 |0.488 | 0.359 27.395 | 1232
0.43 -0.041 | 0.060 0.120 | 0.467 | 0.341 25.921 | 1231

Table 2.8: The summary statistics for the gas concentration measurements over the years 1995-2001

(in half hourly measurements). The gas heights show the three heights in metres that measurements

were taken at in that particular year

Figures 2.15 and 2.16 show the histograms of the stability corrected heights and the

gas concentrations.
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Stability Corrected Heights
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Figure 2.16: Distributions of the stability corrected heights from 1997-2001. Top left plot is for the

highest height, top right corresponds to the middle height and the bottom left is from the lowest height
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Gas Concentrations
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Figure 2.17 Distributions of the Gas Concentrations from 1997-2001. Top left equals the
concentration at the highest height, top right equals the concentration at the middle height and the

bottom left equals the concentration at the lowest height.

Looking at the SCH’s first in Figure 2.16, the data look reasonably normal at all three
heights. Only 1999 looks to possibly deviate from this, but there would still be a
strong argument to be made for a normal distribution to be a reasonable
approximation to that as well. These histograms have been shown on a -10 to 10
scale so the extreme data doesn’t affect the distribution of the bulk of the data.

In Figure 2.17 the gas concentrations can be seen to appear to follow a similar
distribution to each other in each year 1997-2001. They all look possibly exponential
in distribution, but there doesn’t seem to be much change in any of the years, once the
extreme data is looked at separately.

We can look at a Sensitivity Analysis in order to see where the variation in the

fluxes might be coming from. This will be looked at in Section 2.5.

So far it would appear that the main concern in these data are the number of non-
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significant slopes that are being calculated, coupled with a reasonably high number of
low R? values when using the slope estimate to try and estimate a flux. It has been
shown (Table 2.4, for instance) that these appear to be highly related and so by only
using the significant slopes it would appear that the slope estimates calculated would
potentially be closer to the "real” value of the flux. Looking at some of the other
variables that are used in the flux doesn’t appear to have shown anything that would
adversely affect the level of confidence that a flux calculation would provide.
However it is still clear when looking at the fluxes throughout the year that they still
appear difficult to model. Since this may be down to random noise it would be useful
to perform some sort of Signal to Noise calculation so that it can be seen how easy or

difficult it is going to be to predict what is going to happen in the future.

2.4 Signal- to- Noise Ratios

2.4.1 Introduction

Signal-to-Noise Ratios are used often to ascertain how good a signal is. As the name
suggests it is simply a ratio of the level of a signal to the level of background noise.
The bigger the Ratio, the better the signal is. It is commonly used with regard to radio
signals, but can also be used in medicine for looking at cells and other measurements

as well. It is useful to put a value on how much noise there is around a signal.

2.4.2 Estimating the SNRs

The fluxes having now been looked at, along with the measurements used in the
calculation of them it might be useful to start looking at how easy or difficult it might
be to extract a signal that would be used to predict future observations. At the start of
this chapter a question was asked about how easy it might be to predict a flux value.
By looking at the fluxes and the variables used to calculate the flux it can be seen
which particular variables appear to be most constant and which seem to deviate
more. It would be useful to look at how much signal there is in comparison to the
levels of noise. For this purpose, Signal-to-Noise Ratios (SNRs) are useful. There are

51



different ways of estimating these, one is discussed in Rout & Mittal (2006), a “time-
local, inband signal-to-noise ratio” is estimated in Mellinger and Clark (2006). Lots of
the time SNRs are used in the measurement of sound/light waves etc, and not used as
often in environmental systems (including the two previously mentioned above).
Pauluzzi (2000), however, has produced an estimate which can be applied to the

environmental data in this context. This is defined in (2.9)

%,ﬁan? - 2M,
M, - % [GM2 - 2M,

where

1& LT
M22_2|yn| M4:_Z|yn|
N n=1 N n=1

ﬁ:

(2.9)

where p isthe SNR estimate and {y,} 1<n <N are the data points.

One problem when using this estimate is that sometimes the value ‘6M,* — 2M,’ can

turn out to be negative when small values for {yn} are used. This will obviously

mean that an estimate for p will not exist. However for larger values this should not
be a problem.

Applying these to the 48 half hourly fluxes that are derived each day would help to
show how much signal there is present in the fluxes. It would also be useful at the
same time to look at the inputs that are used to derive fluxes (the gas concentrations,
wind friction velocities and the Monin-Obukhov lengths (L)). Table 2.9 shows the
summary statistics of the SNR estimate, for each of the input variables and the flux,
from the years 1997-2001. It can be seen that in a lot of occasions, this estimate
doesn't produce values for some variables, but there are interesting results from the

ones that are calculated:
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N |Min |Q1 Median | Mean Q3 Max
1997 Flux |37 [0.03 |0.34 0.62 0.79 1.07 2.33
u* 353|0.28 |4.28 8.27 12.39 15.26 | 86.80
L 31 [032 [272 1051 [ 2.2*10™ [59.46 |[1.7*10"
Wind Dir 319 0.04 |8.02 62.34 |166.9 198.3 {3280
SO, —high |[174(0.10 |1.13 2.71 5.9%10" |6.42 1.7*10"
SO, - 187 [ 0.07 [1.30 3.26 5.5*10° |8.03 1.7%10"
middle
SO, -low |189(0.05 |1.52 3.55 5.4*10° |8.30 1.7%10"
1998 Flux  [39 [0.16 |0.36 1.03 1.03 1.51 2.71
u* 340 0.10 |5.89 10.15 [1.6*10" [18.63 |[1.7*10"
L 23 [0.31 |152 7.283 [ 2.9*10" |585 1.7*107
Wind Dir 326 [0.02 |21.27 |88.46 |[1.6*10" |[243.2 |1.7*10"
SO, -high |[217]0.14 [1.96 6.13 1.9*10" |15.86 |1.7*10"
SO, - 219 [ 0.05 |2.08 7.41 1.9*10" |22.46 | 1.7*10"
middle
SO, - low 225 0.04 |2.32 7.49 1.8*10™ |28.2 1.7*107
1999 Flux |32 [0.17 |0.46 0.90 1.02 1.51 2.81
u* 341|042 [5.91 10.22 | 9.6*10" |2158 |1.7*10"
L 21 |1.52 |1.7*10" [ 1.7%10" | 1.5*10" | 1.7*10™ | 1.7*10"
Wind Dir 320009 |[1862 [112.8 |[1.02*10*|296.4 |1.7*10"
SO, —high |[185(0.25 |1.24 2.61 1.5%10** | 7.33 1.7*107
SO, - 190 | 0.17 |1.60 3.17 1.5*10 |[8.20 1.7*107
middle
SO, -low [1910.07 |1.38 3.00 1.5*10"* |7.63 1.7%10"
2000 Flux |22 [0.05 [0.23 0.62 0.81 1.11 2.99
U* 360 [ 0.11 |4.84 8.89 1.9*10° [16.40 | 1.7*10"
L 11 [0.24 |0.91 1.55 6.0x10" | 1.7*10" | 1.7*10"
Wind Dir 318 [0.16 |16.50 |77.31 |[2.1*10" |187.12 |1.7*10"
SO, -high [150 [ 0.03 |1.39 2.47 %0 1558 | oo
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SO, - 1511 0.17 |1.45 3.16 0 7.92 0
middle

SO, -low [153[0.01 |1.24 2.95 %0 6.99 %0
2001 Flux |28 [0.11 |0.47 0.74 0.81 0.98 1.89
U* 359 | 0.008 | 5.16 9.99 7.2*10° | 185 1.7%10"
L 17 [0.71 |1.7*10" | 1.7%10" | 1.51*10% | 1.7*10" | 1.7*10"

Wind Dir 3210.21 |19.27 85.37 8.1*10° | 235.2 1.7*10%

SO, —high |160{0.09 |1.48 2.37 2.1*10* [6.19 1.7*10"

SO, — 159 | 0.13 | 1.60 3.36 2.1*10* [ 7.23 1.7*10%
middle

SO, - low 161 | 0.15 | 1.63 3.22 2.3*10™ | 7.01 1.7*10%

Table 2.9: SNRs for the daily flux values along with the input parameters from 1997-2001

It can be seen here that in many cases the signal-to-noise ratio for the flux was not
able to be calculated. This was because the formula used generated negative values
for the “6M,2- 2M,’ part- however for the most part this was not the case, so this
could generally be ignored and only the non-missing results were used.

This is obviously very disappointing and suggests that the estimation technique isn’t
particularly suited to the low measurements that are occurring in this data set. The
lack of options in an environmental setting for this sort of calculation however do not
leave many other options open to performing this kind of analysis with the data so the
results from this analysis will be studied, however scarce they may be.

Some of the means are very large. This is because some of the SNRs calculated had
very small values for ‘6M,*- 2M,* which led to some extremely large values being
calculated which increased the means by vast amounts! This is why the median value
was looked at as a reasonable figure for the average here.

From these results (and others that were generated) it could be seen that the SNR
values were very low. In the case of the flux values most of the SNRs lay between 0
and 1. Other literature on this topic can use SNRs of up to 1000 or 2000, to give an
indication of just how small these values are.

Looking at the input variables it can be seen that u* appears to give the “best” signal
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with the higher SNRs, whereas the values for L were very scarce. However it would
appear that most of the noise in the input variables appears to be coming from the gas
concentrations themselves. As the concentrations are required in order to produce the
slope estimate then it would be useful to see how much this will affect the variation
that the fluxes are showing. The other measurements all have higher medians and
quartiles for each of the 5 years, so from this analysis it may appear that the
concentrations may be having the most affect on the variation in the fluxes. In the
next section it will be useful to have a look at how much variation it has compared to

other input variables.

2.5 Sensitivity Analysis

It is clear that the fluxes are highly variable which will cause problems when trying
to model them. Since these are derived from a model, it might be useful to look at a
Sensitivity Analysis (SA) of the flux based on input parameters. This will show how
much the variation of a model can be apportioned to the variation in the input
parameters to the model. (Saltelli et.al 2000).

Different ways of estimating the sensitivity of a model can be found; the adjoint
method (Hier-Majumber et al. 2006), Fuzzy-number based methods (Dou et al. 1995)
and second-order reliability methods (Unlu et al. 1995) to mention a few. However a
global sampling based method will be used here from Saltelli et al (2000) as they have
applied techniques to environmental data beforehand and their approach looks
suitable for this case.

In general the model is written as:

Y= f (X X,) (2.10)

By treating the output as y and the input vectors as X, distributions for the inputs
can be assigned (D4,...,Dy), then values for each X can be produced and from these
Y1,...,Yk can be derived and it can be seen which parameters contribute to most

variation in the output.

One thing that should be mentioned here is that a linear model (2.10) is being used

to try and analyse a multiplicative model (2.8). A natural technique to improve this

55



would be to take a logarithm of (2.8), however since the fluxes can be negative (as
well as the slope estimates) then this is not possible. However the model fitted from
(2.10) should give us a good indication of which variables in the model are

contributing most to the variation in the model.

The flux is derived from five input parameters, namely 3 gas concentrations, the
Monin-Obukhov length (L) and the wind friction velocity (u*). Both L and u* are
approximately normally distributed and so these were used to sample from in order to
generate values for the SA. With regard to the gas concentrations, it was seen as
unrealistic to think of these being generated from independent distributions when they
seemed very highly correlated. So these were sampled from a multivariate normal
distribution, which took into account the correlations of the concentrations against
each other (see Figure 2.19(b) and(c)). This was done in R and meant that the gas
concentrations maintained their dependence to each other. 1000 values were sampled
for each of the input parameters, which were then used to produce 1000 fluxes.

The flux values were then plotted against each of the input parameters in order to see

what relationships there were (if any) between each of them and the output.

(a)
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Figure 2.18: Plots from SA from 1997,1998, 1999 and 2000: a) A plot showing (from left to right) flux

against u*, L, then the 3 gas concentrations. b) Plots showing the input variables against each other

firstly L and the 3 Gas concentrations against u*, then the three gas concentrations against L. ¢) The

Gas Concentrations are plotted against each other (top v. middle, top v. bottom, middle v. bottom)
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Figure 2.19 shows very similar pictures of the data. It looks like there is not any
obvious relationship between the flux and the input parameters independently from
figure (a). Figure (b) doesn’t show any relationship between any of the parameters, as
we would expect since the input parameters were independently selected. Figure (c)
shows the high levels of correlation between the gas concentrations at the three
heights.

In order to see which input parameters were contributing to most variation in the

flux, a regression was performed on the data to produce a model of the form:
5

flux=B8,+> B;x; +¢ (2.10)
j=1

where Xx;=u*
Xo=L

X3...X5= Gas Concentrations

This produced a model, from which the coefficients of each parameter could be
looked at in order that it could be seen which of them contributed most to the
variation in the data. However, it is more useful to look at Standardised Regression
Coefficients which give a better indication of which variable is causing most variation
(Saltelli et al 2000). These give a coefficient that has been normalised to have mean
0, standard deviation 1. So it gives a level of importance based on moving each
variable away from its expected value by a fixed fraction of its standard deviation.
Table 2.10 below shows the results from 1997-2000
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Input Variable | Year | Co-eff | SRC | p-value

u* 1997 | 0.0121 | 0.021 | 0.065

1998 | -0.0032 | -0.020 | 0.5299

1999 | -0.0033 | -0.037 | 0.2840

2000 | 0.0039 | 0.020 | 0.5502

L 1997 | <0.0001 | 0.013 | 0.5809

1998 | <0.0001 | -0.010 | 0.7554

1999 | <0.0001 | -0.024 | 0.4820

2000 | <0.0001 | 0.013 | 0.6969

GasConcl 1997 | -0.3432 | -0.964 | 0.0171

1998 | -0.1905 | -0.640 | 0.1809

1999 | -0.4443 | -2.004 | <0.0001

2000 | -0.3433 | -1.106 | 0.0012

GasConc2 1997 | 0.0661 | -0.401 | 0.8093

1998 | -0.5065 | -1.456 | 0.2435

1999 [ 0.2309 | 1.077 | 0.1440

2000 | -0.1299 | -0.453 | 0.6176

GasConc3 1997 | 0.2877 | 1.635 | 0.0366

1998 | 0.7036 | 1.820 | 0.0240

1999 | 0.2002 | 0.915 | 0.0788

2000 | 0.4576 | 1.689 | 0.0055

Table 2.10: The regression coefficients for a linear model on the daily 1997-2000 data, along with

Standardised Regression Coefficients and p-value for each term.

From Table 2.10 it appears that GasConc3 tend to contribute most to the variation of
the flux (i.e. the one taken at the lowest point on the tower), however it would
probably be more useful to look at the three concentrations together as they are so
highly correlated that it would be difficult to imagine that one would remain the same
if the others increased. The gas concentration SRCs still look much bigger than the
coefficients that u* and L both give, suggesting that the gas concentrations are still the

biggest contributor to variation in the fluxes, (with SRCs over 100 times as big as the
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Monin-Obukov length and wind friction velocity). This would lead to a belief that
these input parameters are not very important and there should be a good link between
the fluxes and the gas concentrations, as one might expect.

2.6 Filters Applied and Missing Data

As was mentioned in Section 2.2 it will be important to look at whether the values
that are being rejected by the filters would show any unusual behaviour or differences
with the data that have been allowed into the flux calculations. As can be seen from
Figure 2.20, the wind filters that have been applied do not appear to affect the
concentrations that have been measured, as the two distributions seems reasonably
equal for each year 1997-2001. There perhaps appears to be some slightly larger
concentrations in the samples that have been rejected but certainly it would appear

nothing that would unduly affect the results in this case.
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1999 SO2 concs allowed within wind direction filters vs those rejected
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Figure 2.19: The half hour SO, concentrations distributed throughout each year 1997-2001. These
have been split into both the concentrations not filtered, and filtered by the wind direction filter.



The other thing that was mentioned in Section 2.2 was to look at whether the data that
were missing occurred at any particular times of the day. If one part of the day were
showing more missing data than another then this would be of concern as this could
be affecting the quality of the average daily fluxes that are being calculated. In order
to test this, the number of times a value was found to be missing at each half hourly
period of the day, throughout the year was studied. These results are shown in Table
2.10.

It can be seen from this table that there is no clear time of the day when more or less
missing values are occurring so therefore it seems reasonable to assume that these
data are missing at random throughout the five years of data collected. This would
indicate that data is being collected fairly evenly from all times of the day and night
throughout the year and therefore there isn’t any complications over certain times
having very scarce data.
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No of times missing No of times missing

Time of Day 0 1 2 3 4 5]Time of Day 0 1 2 3 4 5
1 85 122 108 45 3 3 25| 60 139 111 45 8 3
2 82 149 89 40 5 1 26] 64 136 112 42 9 3
3 72 145 104 37 6 2 271 69 144 99 43 8 3
4 7 146 99 36 7 1 28] 68 141 96 46 14 1
5 82 142 98 30 14 29l 72 137 95 52 7 3
6 88 135 87 45 9 2 30] 51 150 113 38 11 3
7 74 148 96 35 12 1 31} 70 139 102 38 14 3
8 81 142 102 31 8 2 32| 67 141 105 40 11 2
9 78 135 104 39 10 33| 81 115 117 44 2
10 66 161 86 41 12 34] 70 138 107 40 2
11 77 148 94 40 6 1 35| 70 127 111 42 15 1
12 72 151 94 40 9 36] 68 140 106 32 18 2
13 72 137 99 45 11 2 371 70 130 112 42 11 1
14 74 131 113 36 11 1 38] 81 128 98 44 14 1
15 80 122 114 39 10 1 39] 78 134 93 48 11 2
16 83 133 101 37 11 1 40 72 139 101 41 13
17 78 130 98 48 8 4 41] 64 141 110 37 13 1
18 74 142 93 44 8 5 42] 74 133 103 44 12
19 63 143 101 45 12 2 43] 90 130 93 42 9 2
20 56 151 100 49 5 44] 71 150 102 34 8
21 64 129 112 51 2 451 63 162 88 41 12
22 71 134 98 48 13 2 46] 68 139 105 43 9 2
23 76 121 110 41 15 3 47] 83 122 97 50 13
24 65 143 114 33 9 2 48] 70 147 100 43 5 1

Table 2.11: Showing the number of times that missing data occurred in each half hourly period over the
5 year period. The rows indicate which half hour of the day it is, the columns are the number of times

over the 5 years that a value was missing

2.7 Conclusion + Discussion

It has been seen in this chapter that in order to calculate fluxes many variables have to
be measured including wind speeds, measurement heights and temperature to name
three, as well as the gas concentrations. From these at least 8 separate calculations
need to be applied to gas concentrations in order to produce a flux measurement from
these. This can possibly lead to variation and quality and this has been what this
chapter has explored.

Producing a best-fit line from 3 points on a graph, means that there is a larger
margin for error and each measurement has a very high influence over the gradient of
the best-fit slope, which is necessary to calculate the flux.

From the analysis of the seven years (1995-2001), by producing R? values (which it
should be noted do not tell anything about how “true” the measurements are, only
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how well a slope, based on three points, fits the data), it has been seen that for most
years, a lot of the slope calculations appear to fit the data pretty well. This could give
some confidence in the flux values that have been calculated from these. However,
for the two years 1999 and 2001 there are a few potential problematic points that
could have enough influence to affect a comparison between the modelled and
measured data that will occur in later chapters.

Other problems have been shown to be that there are a reasonable percentage of the
slopes who when combined with their standard error to produce some 95% confidence
intervals, overlap zero, and therefore (since the flux is directly linked via
multiplication) meaning that the flux for that particular half-hour could be zero. In
2001 especially it was shown that only 6987 of a potential 17520 observed slope
values were significantly above/below zero. This tied in with the fact that there were
more lower R? values in that particular year than any other.

Looking at the R? values in some more detail, especially during times of the day and
year did not show very much. The hypothesis that perhaps ‘better’ measurements
would be achieved at night when no plants were growing in the canopy, where the
measuring tower was, appeared to be unfounded by analysing some time series plots
and the R?values that could be directly compared against each other.

Since the flux is obtained directly from the slope measurement, the two variables
(gas concentration and stability corrected height) that were used to measure this were
analysed. Some of the maximum values that were produced seemed a little too high,
but these were very few and doesn’t look as if it would affect the data too much.

Finally, the other variables used in the flux measurement were looked at in order to
see how much variation there appeared to be in them. Most had small variation,
however it may be something to think about if the results show disagreement with the
modelled data.

From these preliminary results that showed some variance in the flux results some
Signal to Noise Ratios were looked at and found to be low. The SNR results however
were estimated using a technique which did not produce a value for (in some cases) a
majority of the input parameters. This meant that little could be analysed from these
results. This led onto a Sensitivity analysis on the flux and the inputs that it receives.
Using a technique applied to other environmental studies it was found that most of the

variation in the fluxes was coming from the gas concentrations, with the other
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variables lending little or no influence on this.

It should also be mentioned that most of this chapter has focussed primarily on the
half hourly data. When the data is compared to the model in Chapter 5, this will
primarily be the daily data which is used. However, if the half hourly data has been
filtered to only allow “good” values then this should produce daily values that we can
then make comparisons with the modelled data without having to worry about any
measurement or calculation errors.

The next chapter will move from the data quality analysis to look at whether the

data are able to be predicted at all, with or without these findings above.
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Chapter 3 — Looking into Chaos

3.1 Introduction

It would be useful to know if the data, measured at Auchencorth Moss, are
predictable. This can be achieved by looking to see if the series we have has a chaotic
aspect to it. Below is an overview of what chaos means, how it can be defined, and
how it can be employed in environmental situations such as the one that is being
looked at here.

In addition, a useful aspect of looking at the data in this way will mean that it can be
seen if the data are chaotic at the daily level. This will be useful to know when it
comes to comparing the modelled and measured data, as it will give us knowledge of
whether any model will fit the data well or not. From looking at time series of the
data earlier on it could be seen that it will be difficult for any deterministic model to
fit the data accurately. If the data are too unpredictable or very sensitive to very small
changes then a completely different approach will need to be looked at instead. It will
be useful to see the methods used to define chaos and see if aggregating the data up to
daily levels (or even diurnal or hourly scales) will alter the levels of chaos that may or
may not be present, i.e. identifying a temporal scale to work in.

3.2 Chaos

3.2.1 Introduction to Chaos

Chaos is a topic, which can provoke a great deal of disagreement in many people’s
minds. Even those who believe that chaotic behaviour can and does exist in
environmental/natural systems, can have very different beliefs about what it is that
they define as chaos. A quick Internet search immediately reveals that chaos is:

e A state of extreme confusion and disorder (www.cogsci.princeton.edu/cqi-

bin/webwn)
e (physics) a dynamical system that is extremely sensitive to its initial

conditions (www.cogsci.princeton.edu/cgi-bin/webwn)

e Chaos is the breakdown of predictability, or a state of disorder (cf Chaos
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Discussion, also Chaos is Everywhere Discussion).

(www.shodor.org/interactivate/dictionary/c.html)

e Chaos theory states that things are not really random, just complex.
(http://www.webslave.dircon.co.uk/alife/chaos.html)

e Complicated patterns that are not truly random. Chaos is a cryptic form of
order, what a random-number generator produces. There is, as the phrase
goes, "a sensitive dependence on initial conditions." Because chaos was
defined in a paradoxical way ("It may look random, but it's merely
chaotic"), it is a term often misused or misunderstood

(faculty.washington.edu/wcalvin/bk9/bk9qgloss.htm)

There are many more definitions listed, but these are just five, showing some views
that are held about chaos.
Definitions of chaos in time series are also a matter of some debate. According to

Tong (1990) a loose description of chaos can be when

randomness is described by a strictly deterministic equation.

Tong defines randomness as the definition of chaos. Rapp and Schmah (2000) claim
that he falls into one of two main groups of statisticians. There are the “randomness
finders” and the “rule finders” and Tong falls into the former. This group use the
degree of randomness as a measure of the complexity (chaos) of the time series, and
total randomness shows a higher complexity. The "rule finders" believe however that
complexity lies between these two extremes and in fact periodic and completely
random series (i.e. both extremes) are both least complex. (Gu et al. 2004).

Babovic and Keijzer (1999) define chaos as a continuous power spectrum that does
not contain any dominant frequency.

A common method of defining chaos is defining something known as Sensitive
Dependence on Initial Conditions (SDIC). This technique is explained by Ellner
(2000) as:

a small uncertainty about the system state now, producing a large uncertainty about
what the state will be a while from now.
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This basically means that unless a measurement is incredibly precise, then it will be
very difficult/impossible to give a (worthwhile) prediction about the state at a future
time point.

As can be seen, some of these definitions do not differ from each other greatly and
should perhaps not be treated as entirely separate definitions. However, hopefully
what has been shown in the paragraphs above is that there is a lot of variation when it
comes to even defining what chaos actually is. Therefore, it should be imagined, that
there will be a few ways of analysing real data as being chaotic, some which possibly
disagree with others.

This review hopes to bring together the ways in which chaos and environmental
time-series can be linked together and how chaotic behaviour can be assessed. There
will be a few methods of attempting to calculate levels of chaos in a system. Both
reasons for a particular method, and limitations of the same method will both be
discussed. If it is possible then methods will be compared against each other as best

they can.

3.2.2 Chaos in Environmental Systems

Even when restricting analysis to environmental systems there is still some dispute,
as to how to measure whether chaos exists and how to quantify it. According to
Turchin and Ellner (2000)

Despite an intensive theoretical and empirical investigation during the ensuing two
decades, however, we do not have a widely accepted example of chaos in a field

population.

Examples of these differing methods include Hastings et.al 1993 which looks at using
Poincare Maps, Ellner and Turchin 1995 which uses first derivative estimates and
Zimmer 1999 who talks about various ways of estimating Lyapunov Exponents.
Many scientists have attempted to apply chaos theory to environmental systems in
order to explain them. Populations of voles living in Europe (Turchin and Ellner
2000), sunspot indexes and concentrations of carbon dioxide data at the South Pole
(Giannerini and Rosa 2004) and forecasting river discharges (Babovic and Keijzer
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1999) are just a few of the differing systems under which chaotic behaviour can
manifest itself.

The following sections will help to show some of the differing methods by which
chaos can be measured. Some of the examples mentioned above may be referred to

later.

3.2.3 Arguments Against Using Chaos Theory Techniques

Before using some of these techniques to look at the data at Auchencorth Moss it
would be wise to see arguments that are used by people who disagree with it. For
example there are some arguments that suggest that chaos, whether it may exist or
not, could be impossible to measure using the techniques shown above. Timmer et al.
(2000) claims

“For the calculation of the Lyapunov spectrum we had applied an algorithm that is
nowadays known to be able to yield positive Lyapunov exponents even for white noise.

Therefore, we now doubt the validity of these former results.”

This paper asserts that, even at a very small scale, noise can disable techniques used
for ascertaining whether chaotic behaviour exists. If there is a stochastic element to
the data then chaos can be falsely identified. Hence it will be very important to use
chaotic techniques that will not be susceptible to normal variation in data patterns. It
must be able to distinguish between noisy data which has an underlying model, and
one which does not contain any predictable behaviour. If this can be achieved then
Timmer et al's comments will be moot. It will be important that the techniques that
are applied to the data must be able to differentiate between white noise and non

random variation.
3.2.4 How is Chaos Assessed

As mentioned previously, chaos has a few definitions, which form the basis of a
measure of chaotic behaviour. In this section some of the more commonly used

definitions will be listed and commented on. Also, for some, there will be methods of

estimating the level of chaos present in a system, so that meaningful values can be
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computed from real-life time series etc.

The first way (and most popular way) of assessing how chaotic a set of data is, is
by using Lyapunov Exponents. These use as the definition of chaos, the SDIC
definition and work out how much a slight perturbation of a point (x(t) to x*(t) say)
can grow into a large uncertainty over time (x(t+m) to x*(t+m))

In order to compute Lyapunov exponents, there must exist a time series of the form
below (3.1).

X (t+1) = F(X (t), £(t)) (3.1)

Where F is the function that takes the value of the time series from X(t) to X(t+1), and

¢ is a random noise function.

Local and global Lyapunov exponents are then defined as follows in (3.2) and (3.3)

respectively:

An () = %Iog |J(t+m-1)..J(t+DIMU, |

Local: (3.2)

A= Iim%log |It+m=-2)..3(t+21)I()]

Global: m—e (3.3)

where m is the duration of the time interval over which the exponent is measured, J(t)
is the first derivative matrix (Jacobian matrix) of F(X(t)) and Uy is a vector of length 1
in the direction of the initial perturbation. ||..|| means the norm in this case.

Quite simply, if the Lyapunov exponents for the data are positive then there is

evidence of chaos in the system. Wolff et al. (2004) states

“For one-dimensional chaotic systems, Lyapunov exponents have an important
practical use: it is a necessary condition for the existence of chaos that the Lyapunov

exponent be positive.”

These exponents are the most widely used for calculating and quantifying chaotic
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behaviour of systems. Ellner uses them to calculate the chaos element in a moth
population time series, Frazier and Kockelman (2004) use them to look for chaos in
transport systems and the analysis of the CO, data by Giannerini and Rosa (2004)

also use Lyapunov exponents to analyse their data.

3.2.5 Estimating Lyapunov Exponents

From many time series however, it can be difficult to calculate Lyapunov exponents
exactly, because of the difficulty in knowing what the underlying model (F) actually
IS, so there have been developed methods of estimating the values in time series.

The first of these is the simplest to implement. Firstly “flybys” are picked out of the
data. These are times (t1, t) where [|X(t1)- X(t2)|| falls below some threshold value.
These are treated as perturbations of the state at time t; and then the exponents are
estimated by (3.4)

| X @+ m) =Xt +m)|
I X=X (3.4)

L, (1) = log
m

By letting m tend to infinity, the global Lyapunov exponent can also be estimated
from (3.4)

Obviously, this is a very simple way of calculating values of Lyapunov exponents at
each time increment, and therefore can seem quite appealing for this reason.
However, it has a major flaw, which make it certainly not the best approach to try.
This is that this method does not take into account any noise that may be present in
the data. Unless the system is 100% deterministic, a series has a large chance of
diverging in time due to the presence of noise, that is prevalent in many real life (and
especially in environmental) scenarios. Both this method and the following method
are mentioned in more detail in Ellner (2000). (This concern is expanded upon in
Section 3.2.5)

The second method is a more robust method. This involves estimating a function
for the data - typically a non-linear model in the form shown in (3.1). From this

estimate of F (F* say), estimates of J(t) can be produced by differentiating F* and
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then equations (3.2) and (3.3) will be used with the estimates of each of these
variables.

The advantages for this method are numerous when compared to the first method.
Firstly, white noise should be accounted for when choosing the function F*, and as
such the Lyapunov Exponent estimate should be more accurate. Secondly, the
observed trajectory is still used here. This method does not test the model for chaos,
it tests the real data for chaos. Doing the analysis this way means there is no added
error from a simulated time series.

The negative side of this approach is that, it can sometimes be very difficult to find
a “good” model for F. This method can also throw up odd Lyapunov Exponents too
when many data points are used. (Tempkin and Yorke 2004)

A third method to estimate the exponents is described in Giannerini and Rosa
(2004) where the LE estimation comes from the evolution in time of the distance
separating initially close points. This is defined as the Maximum Characteristic
Lyapunov Exponent (MLCE). This formula is shown below (3.5):

1
2% =X, |l

nf min , 3%,

S(v) = %i In(
= (3.5)

where
e T is the number of points (x;) involved in the calculation,
e nfmin is the number of neighbours of each point that are closer than € and
have a temporal separation greater than nmin Kantz and Schreiber (1997)
discuss choosing sensible values of € and nmin. As long as both are not

too small generally this shouldn’t cause great concern.

This gives approximate straight lines over each of the values of x; representing the
evolution of the logged mean distance. The average along the trajectory of these
lines, gives an estimated Global Lyapunov Exponent.

As shown by Giannerini and Rosa this estimator has two main advantages, as it do
not require modelling, and the computation is easier than calculating Jacobian
estimators. The problems with this are that there are no theoretical results for

consistency, as it is a fairly new technique and for an asymptotic variance.
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A method for estimating Lyapunov exponents using the R-language has been
devised by Nychka et al. (1992). The LENNS program (Lyapunov Estimates for
Noisy Nonlinear Systems) estimates global Lyapunov exponents from time series
data. This programs uses a series of FORTRAN programs and calculates the

exponent using methods that Nychka et al (1992) expressed.

The program uses the assumption that the data are of the form:

X = f (Xt—l’ Xi_g e Xi_g ) + o€, (3.6)

where

1 x, e R and e are independently identically distributed variables with zero

mean and unit variance

2 fisanon-linear (in most cases) function,

3 dis the embedding dimension. This quantifies how far into the past the model
looks for an explanation in changes to the current population

LENNS estimates the function T and uses this along with the data {x;} to produce
a dominant/global Lyapunov estimate. It uses the Lyapunov exponent definition
of:

2=limZlog 3,9, 3, |
m—% M (37)

where A is the global Lyapunov exponent, m is the time delay and J; is the Jacobian

(1** derivative) matrix of f in Equation (3.6). By estimating this function, fan

A

estimated Lyapunov exponent can be produced, with 3 k being derived from f
Once this has been calculated, the LE can be analysed by simply seeing if it is
positive (signifying chaos) or negative-(signalling non-chaotic behaviour).
This method is designed for small data sets (the user’s guide recommends data sets
of 500 or less)- however this was written in 1992 so larger data sets can be used
instead, although will be very slow. It will be very useful for applying to the daily

averages for each year. Since the program runs many models (the manuscript quotes
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““if you have to shoot blind, shoot often’”) , this is a very slow process to select the
best models for each time delay (from (3.7)), embedding dimension (as shown in
(3.6)) and smoothing parameters (that determine the complexity of the model) to fit to
the data set.

The program uses two methods of calculating Lyapunov exponents, one using
singular value decomposition (SVD) (which is discussed in McCaffrey et.al (1992)
and the other using QR factorisation (QR), (discussed in Arbarbanel (1992)). The
reason that two values are calculated is because the SVD estimate has been shown to

be positively biased when estimated. The QR value has less bias in most cases.

The LENNS authors write this about the program itself:

“The program runs a lot of potential models for each of three separate parameters.
Firstly there is a time delay (L) that runs from 1 through to 12. There is also the
embedding dimension (d) used for each estimate which runs from 1 through 10. And
finally k signifies the number of ““hidden units™ that could be used in the model which

runs from 1 through to 8.

The program outputs the 20 ‘best’ potential fits, for each combination of these
parameters, from L=d=k=1 to L=12, d=10, k=8. By fitting 250 parameter sets from
a Uniform distribution, the program calculates the RMS (root mean square) for each

fit and saves the lowest 20 of these.”

From these 20 values the program also produces two values for working out the
“best” model for each combination of parameters. The GCV (Generalised Cross
Validation) method and the BIC (Bayesian Information Criteria) method are both
used for reasons explained below. The BIC is useful in that it explains the goodness
of fit of a particular model whilst penalising extra parameters (more so than the
Aikaike Information Criterion does) (Schwarz 1978). The GCV is very
computationally efficient- when compared to other “leave one out methods” and also

relies on less assumptions (for example the Gaussian distribution of errors.

Firstly, the GCV is calculated using:
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Vesy—— (3.8)

where p is the number of parameters, c is a fixed constant and n is the number of data
points. The standard GCV is worked out by taking c=1.
The BIC uses:

BIC = %{1+ log(277) + 210g(RMS) + plo%} (3.9)

It has been shown that in most cases the GCV criterion should be preferred unless

linearity has been rejected as the BIC can tend to overfit noisy linear data.

Now a “best” Lyapunov Exponent can be estimated for each particular combination of
parameters and analysed.

Technigques recommended for producing summaries of this data are:

e plots of the “best” Lyapunov exponent estimate against the time delay, (as
in Giannerini 2004)

e scatterplots of estimated LE vs. GCV or BIC

e plot of estimated LE vs. d for the L of the single best fit.

3.3 Chaos Analysis of Auchencorth Moss Data
3.3.1 Introduction

Two of the methods described above will be used in order to look at the data, the
LENNS method, which was described at length in the previous section, and the
MLCE method that was described in (3.5). The flyby method (3.4) in Section 3.2.5
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looks like it can be too easily affected by noise so will not be used here.

Having two programs will allow a qualitative check on the sulphur dioxide data that
is being looked at here. It also means that the “chaoticness” of a system can be
analysed at a number of different time scales and it may be of some interest to see if
the different years show differences in whether chaos is present or not and also if
certain times of the year appear to show common patterns of chaos/non-chaos.
Having two different programs calculating estimates for the Lyapunov exponents also
means that comparisons can hopefully be achieved and therefore any spurious results

can be flagged and corrected.

Firstly, it would be useful to look at the descriptive statistics of the daily measured
data from 1996-2001. This is shown in Table 3.1:

N N* | Mean | Median | TrMean | StDev | SEMean | Min Max | Q1 Q3
1997 | 355 [ 10 | -0.09 | -0.02 | -0.05 0.53 |[0.03 -9.28 126 |-0.08 |-0.005
1998 | 340 [ 25 | -0.14 | -0.02 |-0.04 153 |0.08 -28.05 |0.97 |-0.06 | -0.002
1999 (344 [ 21 | 039 |[0.01 0.02 3.62 |[0.20 -9.61 50.81 | -0.004 | 0.02
2000 | 343 | 23 |-1.23 | -0.02 | -0.09 17.19 | 0.93 -315.44 | 15.93 | -0.11 | 0.002
2001 | 344 | 21 [ 0.002 | 0.01 0.01 013 (001 -1.99 0.50 |-0.003 | 0.02

Table 3.1: The summary statistics for years 1997-2001

As can be seen it looks like there may be some problems with missing data. To
apply the data to the program these missing values will have to be imputed. Looking
at the histograms in Figure 3.1 along with the fact the data set contains very few
missing values, it looks reasonable to impute the missing data by taking random
samples from the Normal distribution (and using the sample mean and variance that

has been calculated from the non-missing observations).
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Figure 3.1: The daily data from 1997 to 2001

The new samples are shown below in Table 3.2 for the same years in order to show
that they do not differ too much from the original “real” data
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N Mean | Median | TrMean | StDev | SEMean | Min Max | Q1 Q3
1997 | 365 | -0.09 | -0.02 -0.05 0.54 0.03 -9.28 126 |-0.08 | -0.004
1998 | 365 | -0.14 | -0.02 -0.05 1.53 0.08 -28.05 | 449 |-0.07 |-0.001
1999 | 365|041 | 0.01 0.05 3.62 0.19 -9.61 50.81 | -0.01 | 0.03
2000 [ 366 | -1.22 | -0.03 -0.14 16.64 | 0.87 -315.44 | 15.93 | -0.16 | 0.001
2001 | 365 | 0.002 | 0.006 0.006 0.13 0.01 -1.99 0.50 | -0.004 | 0.02

Table 3.2: The summary statistics for years 1997-2001 with imputed values.

3.3.2 Chaos Estimation Results

The LENNS program can then start working on these data in their revised format.

Below are the results of the daily data from 1996 — 2001. These have been plotted so

as to show the best model (based on the lowest logged GCV) for each time lag (L) in

the data set. The different lines in the plot correspond to different embedding

dimensions. These are shown in Figure 3.2:
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Figure 3.2: Daily LEs against time lags (1-12days). Each graph represents year of daily data from
1997-2001. There is a line drawn across at LE=0.

There are some important things to be inferred from these. Firstly it can be seen that
most of the data points lie under the line at LE=0 indicating that there is non-chaotic
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behaviour at most of these points. It can also be seen that in general most of the lines
seem to follow a similar pattern with the exception of d (the embedding dimension)
being equal to 2. In 2000 perhaps it can be seen that there may be more chaotic
behaviour perhaps than in the other years as the plot shows more of the LEs are above

Zero.

The LEs obtained by the LENNS program give some indication of the level of chaotic
behaviour or non-chaotic behaviour at each time lag, corresponding to each
embedding dimension. It looks like when the embedding dimension is set to 2 this
appears to give very different results than the rest of the dimensions (3-7).

It would be of interest to look at the time series of the five years of data all together
and see what kind of chaos this produced even with a larger time lag to it. By
increasing the time lag to, say, 24 instead of 12, this produces the graph below (Figure
3.3) along with the table listing the LE estimates at each time lag (Table 3.3):
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Figure 3.3: Time lag (x-axis) against Lyapunov Exponent (y-axis) for 5 years 1997-2001, with

embedding dimensions 2-7.
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d=2 d=3 d=4 d=5 d=6 d=7
Time Lag=1 -0.195 |-0.171 |0.251 -0.820 | 0.055 -0.364
Time Lag=2 -0.120 |-0.996 |-0.836 |-0.704 |-0.534 |-0.029
Time Lag=3 -0.538 |[-0.041 |-0.060 |-0.173 |-0.122 |-0.144
Time Lag=4 -1.005 |-0.768 |-0.081 |-0.162 |-0.073 |-0.057
Time Lag=5 -0.433 | -0.292 |-0.226 |-0.187 |-0.148 |-0.142
Time Lag=6 -0.036 | -0.108 | 0.008 -0.073 |-0.089 |-0.011
Time Lag=7 -0.296 |-0.139 |-0.134 |-0.109 |-0.089 |-0.101
Time Lag=8 -0.152 | -0.079 |[-0.175 |-0.004 |-0.056 |-0.054
Time Lag=9 -0.063 | -0.048 |-0.085 |-0.094 |[-0.099 |-0.080
Time Lag=10 | -0.057 |0.059 |0.091 |[0.061 |[0.113 |-0.048
Time Lag=11 -0.068 | -0.78 0.104 0.100 0.034 0.024
Time Lag=12 | -0.206 |-0.038 |-0.069 |-0.027 |-0.042 |-0.044
Time Lag=13 |-0.197 |-0.147 |-0.112 |-0.099 |-0.067 |-0.058
Time Lag=14 -0.271 |-0.160 |-0.037 |-0.078 |-0.020 |-0.019
Time Lag=15 |-0.062 |-0.094 |0.080 |-0.055 |-0.049 |-0.044
Time Lag=16 | -0.152 |-0.107 |-0.086 |-0.051 |[-0.010 |-0.018
Time Lag=17 -0.072 |-0.109 |-0.040 |-0.010 |-0.014 |0.019
Time Lag=18 |-0.290 |-0.089 |-0.056 |-0.043 |-0.022 |-0.024
Time Lag=19 0.075 -0.007 | 0.040 0.117 0.101 -0.006
Time Lag=20 0.055 0.136 -0.051 |-0.045 |-0.037 |-0.033
Time Lag=21 -0.114 |-0.117 |-0.095 |-0.059 |-0.020 |0.011
Time Lag=22 -0.082 |-0.071 |-0.057 |-0.048 |0.064 0.045
Time Lag=23 | -0.053 |0.029 |-0.055 |[0.053 |[0.043 |0.095
Time Lag=24 |-0.153 |-0.162 |-0.029 |-0.029 |-0.028 |-0.023

Table 3.3: The Lyapunov Exponents that are in Figure 3.5, with d going from 2 to 7.




Again this is showing that there is not much chaotic behaviour about the daily time
series. This appears to add more credence to the theory that the data is just very
noisy, and therefore it would probably be wise to try and filter out this “noise” and try

and extract the signal that is being picked out by the LENNS program.

In order to verify the results of this method, it would be useful to look at another
method of estimating Lyapunov exponents from the data. The method explained in
Giannerini and Rosa (Equation 3.5) will also be applied to the data and then these

results can be checked against one another.

1997 1998 1999 2000 2001

d=2 | -0.0139 |-0.0413 | -0.01207 | 0.00518 | -0.00448

d=3 | -0.00388 | -0.0385 | 0.02142 | -0.00284 | -0.00363

d=4 | -0.00783 | -0.0351 | 0.02222 | 0.00128 | 0.00616

d=5 | -0.00392 | -0.0320 | 0.02164 | 0.00506 | 0.00439

d=6 | -0.00648 | -0.0277 | 0.02316 | 0.00945 | 0.0135

d=7 | 0.00411 |-0.0237 | 0.02465 | 0.00791 | 0.0178

Table 3.4: The LEs for the different embedding dimensions (2-7) for each of the years 1997-2001
using the MLCE method

It can be seen that these two methods both show different results- the MLCE
program is estimating very small slopes and is showing chaotic behaviour in the final
3 years as shown by Table 3.4. Though both programs show very small values that
fluctuate between positive and negative values for different embedding dimensions.

There would be a strong case for giving more weight to the LENNS result as it is
searching through many models to pick out the best ones, and also is designed to deal
with a lot of noise. It was seen in Chapter 2 that the flux data looks very noisy
(Section 2.4 showed very small Signal-to-Noise ratios). It may not be very useful on
very large sample sizes but whilst looking at the daily values it is certainly reasonable

to use these results.
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3.3.3 Checking Modelled Results for Chaos

A good approach to go for next would be to look at how the LENNS program and
the MLCE program work on the modelled EMEP daily results that have been
described in Chapter 1. Since these data points have been modelled then it would be
expected that these would show no chaos in them. However it has been seen that the
model is a very complicated one, bringing many different modelled data into it. It
would also be interesting to see whether or not the LEs are similar to the measured
data for each of the years concerned. Table 3.5 and Figure 3.4 show the MLCE
method followed by the LENNS method for each of the four years 1997 and 1999-

2001 so that they can be compared to one another.

1997 1998 | 1999 2000 |2001

d=2|0.0122 | N/A | 0.00721 | 0.0100 | 0.00494

d=3 | 0.00888 | N/A | 0.00971 | 0.0155 | 0.00962

d=4 | 0.00736 | N/A | 0.0165 |0.0188 | 0.0184

d=5 | -0.00106 | N/A | 0.0352 | 0.0337 | 0.0292

Table 3.5: Lyapunov Exponents estimated by the MLCE program for the EMEP modelled data from
1997-2001 (with embedding dimensions 2-5)
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Figure 3.4: LENNS time-series plots for 1997,1999,2000, 2001 showing LEs for EMEP modelled

data, d=2,...7. Time goes from 1-12 days on x axis. A line is drawn at LE=0

Both of these methods show that the values mostly remain around zero for most of the
time intervals, which would be expected since the data points do come from a model.
The MLCE method tends to show small positive values for the EMEP data. This is
slightly concerning since the data is modelled and therefore should show no levels of
chaos in its results. The LENNS method stays below or around zero for nearly all

values of d and so again looks a more reliable measure of the chaos/non-chaos in the

system.
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3.3.4 Refining the Timescale

3.3.4.1 Diurnal Fluxes

It would be interesting to know if refining the timescale to a finer scale would change
the level of chaos detected in the data. Perhaps it may be interesting to look at the
diurnal cycle of fluxes. This can be done crudely by dividing the year into 6 months
of “winter” (October-March inclusive) and 6 months of “summer” (April-September
inclusive). During the winter the assumption will be that “day” falls between 8am
and 6pm and night at all other times. During the summer- day will be taken from 6am
till 8.30pm and night for the rest of the time. As has been mentioned this is just a
crude estimation, but it should be enough to pick out any changes in the Lyapunov
analysis over the same years as previously measured. Again, there will be missing
data to impute into the data set, so it will be useful to see how much or little effect this
looks to have on the data set that will be used in the LENNS program.

In order to study this, the diurnal data will take the average value from each “night

period” and “day period” to create 730 (or 732) data points (i.e. 365 days and nights).

Running this on LENNS and the MLCE program give these results shown in Figure
3.5:
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Figure 3.5: Plots showing the diurnal time series plots with time lag on x-axis and Lyapunov Exponents
on y-axis from years 1997-2001 using LENNS program. The time goes from 1-12 on the x axis and a

line is shown at LE=0

These methods again show differences between the conclusions they provide. The
first point to make when looking at the MLCE method is that taking a slope estimate
from this looks as if it will not be useful since there does not appear to be an obvious
linear relationship on any of the plots.

When taking these slope estimates though they all seem to show chaotic behaviour
over the series as a whole.

The LENNS analysis shows something different with most of the exponents lying in
the non-chaotic “half” of the graph. Therefore these methods appear to contradict

each other here.
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In summary, after looking at the three different time periods above using the two
methods (MLCE and LENNS) it seems that they do not give similar results (except
for perhaps the modelled data). Since LENNS is designed to work on noisy data sets,
then the results from this should perhaps be looked at with more importance than the
MLCE data. From Section 3.3 this looks reasonable.

3.3.4.2 Hourly Data
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Figure 3.6: The hourly time series plots with time lag on x-axis and Lyapunov Exponents on y-axis
from years 1997 and 2000 using LENNS program. There is a line at LE=0 on the second plot but the

first stays below O.

The LENNS program was also used on the hourly flux data. When Nychka et.al
designed the LENNS program they were expecting that it should be used on small
data sets, since it tests so many models for each time lag, embedding dimension and
hidden units. When it was attempted on these hourly data sets (with over 8000
values), it was only able to produce plots for the two years pictured. The hourly
values in fact show more negative values than in the daily data. However it does

appear to suggest again that the data can be modelled.
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3.4 Conclusion

This chapter has shown the advantages and disadvantages of measuring, or at least
trying to measure chaotic signals in a data series. The advantages in the main are that,
if chaos is found to be present, then time will not be wasted in an attempt to search for
a (non-existent) model. Ways of calculating these chaotic signals come from the
estimation of Lyapunov exponents. Three methods are described in this paper.
However, there are arguments against the use of these methods, as papers have
pointed out that stochastic noise can signal chaotic behaviour even in non-chaotic
systems. By using the LENNS method that Nychka et.al provide though, noise can be
accounted for by the use of a neural network method that applies lots of potential
models to the data and chooses the best ones.

From analysis of the data, these methods have produced some disappointing results
however. In most cases it appears that the methods for estimating levels of chaos in
systems are not producing consistent results and this probably lends credence to
Timmer et.al.’s criticism levelled in Section 3.3.2 earlier. Most of the “noise” that
exists in the data, coupled with the very low measurements made are making it
extremely difficult for any of the techniques to pick out the signal. The fact that the
MLCE technique and the LENNS technique appeared to produce different sets of
results when analysing the data suggests that it would be very dangerous to make any
firm sets of conclusions about whether there is an existence of chaotic behaviour in
the data or not.

Although the results obtained from here have been discouraging, it has not ruled out
the chances that the measured data are able to be modelled. The next chapter will
look at the fact that part of the reason the two data sets are struggling to match may be
the very high values that are being measured in some half hourly periods of the day.

It may be useful to look at some of these results separately in order to see if there is

anything interesting about them.
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Chapter 4 — Extreme Value Analysis

4.1 Introduction

It has been seen in the previous analyses of the data that there appears to be a number
of observations which could be considered to be “extreme”. It would be of interest to
study these extreme values in more detail to see if there is any particular model lying

behind these that could explain their occurrences.

Many people started looking at Extreme value theory (EVT) in the 1970s in order
that particular families of models might potentially explain unusually high or low
observations. Many of these have been used on a variety of real-life examples. Smith
(1990) writes on modelling extremes in a ground level ozone situation, Chan and
Gray (2006) modelled electricity spot prices, whereas Coles (2001) modelled closing
prices of the Dow Jones Index, engine failure times, sea levels and daily rainfall.
Coles et.al. (2003) also used EVT to show how looking at maximum rainfall levels
could be used to predict future extreme rainfall, using a flood in Venezuela in 1999 to
show how it would work. Salmon (2004) shows how EVT can be used to predict
housing market crashes. Fernandez (2007) uses an approach which isolates the
extreme values to compare between 10 exchange rates to see if they have similarities
in their extremes as they fluctuate throughout the year and Soja and Starkel (2007)
look at the clustering patterns in the extreme rainfalls of the Himalayas. Clustering of

extremes is an interesting issue and one that could be useful for the flux data.

All of these sets of data have been analysed in a very similar fashion, using the same
families of models and as such the two main methods along with the family of
distributions that are used are detailed below. These are the Generalised Extreme
Value Distribution and the Generalised Pareto Distribution. The former uses a series
of block maxima and uses these as the “extreme” values to which the model then fits,

whereas the latter allows the use of the raw data and picks values higher than a
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suitable threshold in order to model these. Both methods will be introduced and
applied to the Auchencorth flux values and from these results (and suitable diagnostic

plots) it can be decided which of the methods appears to be more appropriate.

4.2 Generalised Extreme Value Distribution

Looking at this method firstly, it is required that the data are put in the form of a

series of maximum values (4.1)

M, = max{X,,... X,} (4.1)

where X3, ... X, is a sequence of independent random variables which have a
common distribution F. The distribution of M, can be derived in theory for all values
of n, but only in terms of F" which is unknown. Using classical techniques to
estimate F are usually not suitable here as small discrepancies in the estimate can lead
to larger discrepancies in F". This is why Coles (2001) and others suggest the use of a
family of models which are estimated on the extreme data alone. However, firstly M,
has to be “normalised” in order that it does not degenerate to a point mass. The

normalisation is shown as:

&, (4.2)
for sequences of constants {a, >0} and {b,}. By choosing these carefully the
difficulties shown above should not arise. Therefore a family of models is chosen for

M, * rather than M,,.

It can be shown that if there are the sequences {a,} and {b,} then M,* belongs to one

of the following families:

@) G(z)= exp{— exp[‘ﬂz%abﬂ}
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for parameters a>0, b and a>0. These are individually known as the Gumbel, Frechet

and Weibull distributions respectively.

There are two weaknesses to having three models for the extreme values. Firstly,
there needs to be a technique in order to choose which particular model should be
used in order to estimate the relevant parameters. Then from this any subsequent
analysis would have to assume this decision to be correct and would not allow any
uncertainty of this choice.

Therefore it is far better to reformulate the models above into one single family of
models:

-1

G(2) = exp {1+ é(z — ﬂg (4.4)

valid on the set {Z ;1+§M > 0}:

o

1 The scale parameter o >0
2 The location parameter -oo < p < o0

3 The shape parameter -oo < § < o0

G(2) is defined as the Generalised Extreme Value (GEV) family of distributions. It is
relatively simple to check that this family contains all 3 distributions shown in (4.3),
by choosing £>0 and <O for the Frechet and Weibull distributions. By using the

limit £—0 for the case £=0, leads to the Gumbel Distribution.
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By combining these data into one family of models, the problems listed above will
disappear as some appropriate inference on an estimate for & will immediately show
which particular model is most suitable. Also the uncertainty in the estimate will give

a convenient measure of the uncertainty in the model choice.

All that remains now is to decide on a method of estimating each parameter in the
GEV model. This can be done by Maximum Likelihood Estimation (MLE). One
problem with this can be at the end points of the GEV distribution, (Smith 1985),
who showed that because these end points are a function of the parameter values, then

u-o/€ is an upper end point of the distribution when £<0 and a lower end point when

£>0. Smith managed to simplify this to 3 cases:

1 &>-0.5, this gives regular ML estimators that have the usual asymptotic
properties.

2 -1<§&<-0.5This generally gives ML estimators but they do not have the
usual asymptotic properties.

3 & <-1ML estimators are unlikely to be obtainable. (4.5)

However, the final two situations are not often encountered as they cover distributions
of data with short upper tails. Certainly in the Auchencorth Moss data this should not

be a problem.

In order to calculate the MLE’s for each of the three parameters in the GEV
distribution shown in (4.4), the log likelihood to be maximised is shown below in
(4.6):

-1

I, o, &) = —mlog 0'—£1+§Ji Iog{1+ g(ﬁ%"ﬂ—i{u g(zi _“ﬂf (4.6)

i=1 O

i=1

assuming that
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1+§(Z‘ _ﬂj>0 fori=1,...mand & =0
(o2

If £ = 0 then a different log-likelihood is obtained from the Gumbel Distribution

(u,0)= —mloga—g(%j—gexp{—i%j} (4.7

The GEV distribution provides a model for the distribution of block maxima. In the
case of the Auchencorth data this seems suitable as it means that the
daily/weekly/monthly maximum values could all be analysed which could prove

useful in trying to see if the extreme values are following this particular distribution.

After the MLE estimates for the three parameters (2.6.2) are obtained, there needs to be
a way of firstly checking how well this particular model and the data agree. This can
be achieved by analysing both probability plots and quantile plots.

Once the model choice has been verified, it would be useful to produce a returns level
plot. The returns level is obtained by inverting the GEV distribution (4.4) as shown
below in (4.8):

y—g[l—{—uoga— p)) <] £20
p— o logi-log(1-p)} £=0

Z, = (4.8)

p

This return level (zp) is exceeded by the maximum in a particular year with

probability p.

This is useful as z, can be plotted against '¢¥. - which in the second (Gumbel) case
will give a linear plot. Else, if £<0 or £>0, the plot will converge to u-c/€ or have no

finite bound respectively.
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4.3 Generalised Pareto Distribution

There are other methods rather than only using block maxima in order to model the
extreme values in a data set. One technique that is widely used involves using a
complete data set and only modelling the values that occur above a particular
threshold.

It would be relatively simple to define a function for modelling particular values
over a certain threshold using basic probability as shown in (4.9):

1-F(u+y)

Pr{X >u+y|X >u}= FQ)
~F(u

>0 (4.9)

However this would require knowing F. In practical applications this is generally not
the case, and so approximations for F should be made, (similar to the GEV
distribution).

Additionally, the GEV distribution (4.10) can be used, but altered in order to find a

distribution function for (X-u) conditional on X>u, which gives approximately:

-1

H(y:5,8) =1—(1+@j5 (4.10)
O

o)

which is defined on {y :y>0and (1+Qj > 0}

where ¢ = o+ &(U— )

(4.10) is defined as the Generalised Pareto Family (GPF). This implies that if the
block maxima can be approximated by the GEV distribution then the excesses can be
modelled by the GPF. In fact & is equal in both the GEV and GPF cases, and the

same three cases shown in (4.10) also apply here.

The only difficulty that arises here is the choice of the threshold. If the threshold is

chosen to be too low, then the model may be biased, due to violation of the
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asymptotic basis of the model. If it too high, then there will be too few data points,
leading to high variance in each of the parameter estimates. Adopting low thresholds
is the standard procedure in real life examples however and by estimating parameters
for a range of threshold values will allow the influence of the threshold value to be

made clear.

4.4 Analysing the Auchencorth Data

4.4.1 Analysis using the GEV Family

The daily maximum values from Auchencorth Moss will be used first to try and fit a

GEV model. This is suitable since the SO, appears to have no seasonal variation
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Figure 4.1: Boxplots of the weekly maximum values for years 1997-2001

From the GEV distribution the values obtained for each of the three parameters along
with the negative log-likelihood from a Maximum Likelihood Estimate calculation,

are shown in Table 4.1:
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Year | Negative Log- | #(std error) | s(std error) | £(std error)
Likelihood

1997 | 140.006 0.993 (0.249) | 1.448 (0.391) | 1.399 (0.275)

1998 | 123.356 0.853 (0.190) | 1.155 (0.281) | 1.223 (0.230)

1999 | 141.797 0.935 (0.228) | 1.411 (0.377) | 1.424 (0.246)

2000 | 196.197 1.581 (0.441) | 0.996 (0.189) | 2.003 (0.265)

2001 | 100.177 0.920 (0.177) | 2.003 (0.265) | 0.7140 (0.216)

Table 4.1: MLE of each parameter of the GEV distribution described in (4.4) along with their standard

errors and the negative log-likelihood of the model.

Coles (2001) suggests a group of diagnostic plots should be produced in order to
check the model that has been used. These are shown for the data in Table 4.1, in

Figure 4.2:
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Figure 4.2: Probability Plot, Quartile Plot, Return Level Plot and Density Plot for the MLE of the GEV
model fitted using parameters in Table 4.1 for years 1997-2001
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It can be seen from Table 4.1 that each of the parameters for the GEV distribution for
all 5 years are significantly different from zero. It can also be seen that § is positive
in each of the five years and as such it can be assumed that these ML estimators have

the usual asymptotic properties in this case. (4.5).

From the diagnostic plots, while the probability plots appear to fit the straight line
reasonably well, the quartile plots for 1998-2001 appear to deviate a lot from the line.
These in most cases appear to be due to one point in particular being so much bigger
than the rest (a fact that is reflected in the density plots also produced). This gives
some doubt to a GEV model possibly being suitable for modelling the extreme data
that has been collected- and perhaps suggests that a different one should be used
instead. Looking at the data once more, perhaps logarithms of the data could be used
in order to fit the model slightly better. This may be something to think about in the

future.

4.4.2 Analysis Using the GPF distribution

Using the GPF, a decision should be made on the choice of the threshold as
mentioned previously. From Table 4.2 it can be seen that a threshold choice of
2ngSm™, means that most of the data is filtered out and only a small percentage
remains to be analysed. In this example the half-hourly data for each year will be
analysed. As missing data can prove to be a problem — any missing values have been
replaced with a value below the threshold so as not to affect the data used to calculate
the parameters in the Pareto distribution. It will also be useful though to see what
effect a change of this threshold will have on the parameters estimated. Figure 4.3
firstly shows the data that has been collected and the points above 2ugSm™ This will
also be useful in that it can be seen whether the extreme values are clustering together

or are appearing at “random” points.
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Figure 4.3: Time Series plots of the daily flux values. Any missing values have been imputed with the
value 0.01 since only values above 2ugSm™ will be considered in the Pareto model. The ‘extreme’

points are indicated in green.

From Figure 4.3 it can be observed that the extreme points (based on the definition
given here) appear to be spread throughout the year in each of the 5 years that are
being looked at. 1999 is more difficult to analyse since (as it has been shown in
previous chapters and in Table 4.2) there are a lot of higher fluxes that fall into the
extreme category than in any of the other years. Section 4.5 will look more at
whether the extreme data are clustering anyway, so for now an attempt will be made

to model the extreme values.

From the Pareto Distribution the values obtained for each of the two parameters along
with the negative log-likelihood from an MLE calculation and the percentage of

points above the chosen threshold of 2ugSm,
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Year | % of data Negative Log- | & (std error) | k (std error)
above threshold | Likelihood

1997 | 0.5% 190.15 1.171 (0.259) | 1.002 (0.221)

1998 | 0.5% 165.09 1.067 (0.221) | 0.973 (0.205)

1999 | 4% 2528.10 4.120 (0.319) | 1.095 (0.079)

2000 | 1% 594.60 1.574 (0.252) | 1.644 (0.186)

2001 | 0.89% 332.82 2.539 (0.289) | 0.188 (0.083)

Table 4.2: MLE of each parameter of the Generalised Pareto Distribution along with their standard

errors as well as the negative log-likelihood of the model and the percentage of data above the

threshold (of 2 in this case).

The same diagnostic plots that were produced in Figure 4.2 can be reproduced for the
GPD, in Figure 4.4:
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Figure 4.4: Diagnostic plots (same as Figure 4.2) for the GPD on fluxes > 2 for each year 1997-2001

These diagnostic plots look like they show some improvement from the GEV plots.
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The probability plot looks like it follows the normal line a lot better, but there are still

some points on the quantile plot which are of some concern. Again because of the

skewness in the extremes it means that the density plot looks similar to the plots

shown in Figure 4.2. Subjectively though the GPD plots look better.

One important point to consider here is that these plots are produced when the

threshold is 2. It would be useful to see what sensitivity these models have to the

choosing of the threshold, since clearly a model that changes significantly depending

on the threshold choosing, may be difficult to analyse results from. The number of

exceedences are shown in Table 4.3 and the parameter estimates are graphically

summarised in Figure 4.5:

Threshold 1997 1998 1999 2000 2001
1 247 204 922 372 263
2 88 81 720 192 157
3 51 41 596 123 108
4 34 28 483 92 76
5 24 20 400 73 62
6 21 14 347 61 42
7 15 11 313 57 24
8 13 11 288 55 17
9 12 8 269 54 13
10 10 7 245 o1 10
11 10 7 231 50 7
12 9 7 221 48 6
13 7 7 214 48 6
14 7 6 212 44 4
15 7 6 194 44 4

Table 4.3: Number of points exceeding the threshold for each year 1997-2001 using the half hourly

data
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Figure 4.5: Plots showing the parameter estimates for the scale (w) parameter and the shape (&)
parameter respectively for the years (a) 1997, (b) 1998 (c) 1999 (d) 2000 and (e) 2001 daily maximum

flux values

It can be seen from the graphs in Figure 4.5 that for almost all the years, the choice of
threshold doesn’t appear to have too much of an effect on the parameter estimates in
the GPF. However in 1999, it can be seen that the parameter estimates only start to
stay even, when the threshold flux value is approximately 20pgSm™. Obviously as
the exceedance level increase, the number of data values will decrease and so the
variation around each parameter estimate will increase, but the estimate stays
approximately the same. Therefore there would be a strong argument for keeping the
threshold at 2pgSm, since it gives more data points to work with and appears to have
little effect on the shape and scale parameters, bar 1999. This will be looked at

separately from the rest when it is analysed further in Chapter 5, in order that sensible
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conclusions can be produced from it.

4.5 Clustering

4.5.1 Introduction

It can be seen from the plots in Figure 4.3 that it may be that the extreme values are
mostly clustered together and therefore are not independent. It would be interesting to
study this fact further since this may help to understand whether the extreme data may
have been the result of any natural weather events (say gale force winds or torrential
rain). Therefore it would be of interest to see if the extreme data fall into clusters or
whether it appears that they are just occurring independently throughout the years.
Ferro and Segers (2003) suggest the use of an extremal index in order to measure the

level of clustering that can be found in a data set.

The extremal index is defined as follows: Firstly let &1,..., £, be a strictly stationary
sequence of random variables that have marginal distribution F, a right end point

o =sup{x: F(x) <1} and a tail function ¥= 1-F. Then if My is defined to be
max{&, ;i =k+1,...,1}for integers 0< k < 1 then &y,..., &, has extremal index 6 < [0,1]

if for every t>0 there exists a sequence us,...,U, such thatasn — o

1 nF@u,)—>r

2 P(My, <u,)— exp(-0r)

From this it can be shown (Leadbetter et al (1983)) that if 6 = 1 then there is no
clustering in the extreme data, and if 6 < 1 then exceedences will tend to cluster.
Obviously F is difficult to ascertain from real-life data sets so there is a way in which
the extremal index can be estimated.

This estimation involves choosing a threshold u as in the Pareto distribution

explained previously and defining N as:
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N=D 1 >u)

where &, &, is a sample of data. So N is the number of exceedences of u, and

1<S; < ... < Sy £n are the exceedence times. Then define T; = S;41 — S; as the inter-

exceedence times (for i=1,..., N-1).
From these simple definitions Ferro and Segers show two estimates of 6 can be made

which are useful in different circumstances, (i.e. when the maximum exceedence time

is above 2 or below 2) as shown below in (4.11)

~ 1A6 if max{T,:1<i<N-1}<2
5= Z(U) if max{T, :1<i } (4.11)
IAG(u)  if max{T,:1<i<N-1}>2

where

)
O u)=—*t 72 (4.12)
(N-1)>'T?

n

and

Z{N_l(Ti —1)}
0, (u) (4.13)

4.5.1.1 Bootstrapping Intervals

It would be very useful if a measure of confidence could be calculated from the

extremal indexes described above. A method for doing this would be bootstrapping.
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Bootstrapping requires the calculation of many estimates for 6. This can be
achieved by taking random samples from {T} (with replacement) in order to calculate

estimates of 6. Once 100 (say) estimates have been produced, then a standard 95%
confidence interval can be fitted around §n*(u) using the mean and standard deviation

from the 100 estimates. This technique helps to show how much variation is actually

in our estimate.

4.5.2 Using Flux Data

Now that a way to estimate the extremal index has been shown in the previous
section, it can be applied to the Auchencorth data set. It will be applied to the half
hourly flux data for each year. As well as this — the mean cluster excess value will be
calculated along with the indices. These are calculated by summing the exceedences
(after subtracting the thresholds) and then calculating the mean. These will be shown
along with the extremal indexes with thresholds chosen between 0 and 15. As well as
this, a table will show how many exceedences occur at each particular choice of
threshold. Around the extremal indexes and mean cluster excesses, bootstrapped

confidence intervals are applied as calculated in the above section.
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Figure 4.6: Pairs of plots showing firstly the extremal indexes as well as a horizontal line at 6=1, and
below the mean cluster excesses for each year 1997-2001. Also shown in red are the bootstrapped

confidence intervals for each year.

It can clearly be seen from Figure 4.6, the estimator for the extremal index starts to
produce wide intervals when there are a small number of exceedences — and in some
cases this pushes the estimator to a value bigger than 1, which, as shown in 4.5.1 is

not a reasonable value.

It appears that 1997 and 1998 don't appear to show much evidence clustering of
points. As the threshold goes up, the index quickly rises to a value close to 1.
However in 1999 and 2000 there appears to be an obvious shift. Table 4.3 shows that
the number of exceedences is certainly larger than the other three years and this high
number may help to show why the extremal index is so low as there are many of the
values close to each other. Figure 4.3 appears to back this up as there appears to be
certain close groups of extreme values throughout these years. In 2001 the number of
exceedences appears to revert back to a level similar to 97 and 98, however this time
0 appears to stay reasonably low until late on when the small number of points appear
to take it quite high up past 1. It could be concluded from this that 1997, 1998 and
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2001s extreme values may be harder to explain, since they seem to appear at more
interspersed times than in 1999 or 2000. This suggests that the data in 1999 and 2000
might be more difficult to model, since the extreme values appear to be as a result of
(say) one big event, that the EMEP model may not have been programmed to take
account of. In the three former 'non-clustering' years, it appears that the extremes are
perhaps just occurring, maybe due to one spurious result that has been corrected
quickly. This may be useful in Chapter 5 if the 1999 and 2000 data appear harder to
fit the model to.

4.6 Conclusion

From the EVT that has been applied to the daily and weekly data it appears that, using
the Generalised Extreme Value Distribution is not the best approach as (using the
weekly maximums for this example), there are too many very low values still, and
some very high values in these. This is evident when looking at the Q-Q plot
especially of the data where the points appear to deviate a lot from the normal line.

Therefore, it is perhaps more relevant to look at the results that are given from the
Generalised Pareto Family since this only applies to the values over a certain
threshold. There are fewer concerns when the diagnostic plots are looked at under this
family and so these look like they will give better results for the analysis. The choice
of the thresholds isn't a particularly big issue either as it has been shown that the
values for the model remain stable when the threshold is altered. This is with the
possible exception of 1999 which has more extreme values at the value of 2ugSm

This suggests that the extreme values in the daily fluxes can be modelled. The
parameter values for the GPF each year are contained in Table 4.2.

Whether the extreme data were clustering or not, is another thing that can be
looked at. By estimating extremal indexes it can be inferred that in three of the years
(1997, 1998 and 2001) there does not appear to be clustering in the extreme values
and it could be inferred that these results are nothing more than some local weather
conditions (for example). In 1999 and 2000 however the extreme values are tending
to cluster together which may become a problem in the next chapter. The next
chapter will finally look at the modelled data against the measured data and compare

the two sets with each other to see what differences there are between them.

118



Chapter 5 — Comparing the Measured and Modelled
Data

5.1 Introduction

Now that the data have been thoroughly analysed and there has been a study
performed into whether or not the measured data could be chaotic, it would be useful
to look at how the modelled data should be validated against the measured data.
Using information that has been obtained from the previous chapters will help in
finding out reasons for any differences that may lie in the (EMEP) modelled and
(Auchencorth) measured data.

A useful approach would be to look firstly at what the ideal situation would be for a
model-measurement comparison and what sort of statistical analysis would be
performed, then look at ways to possibly estimate these approaches from a real life
setting like the one that is being studied here.

From this it can be deduced whether there appears to be any similarities between the
modelled and measured data and if not, whether there may be a pattern to any
differences. Whether the measured data appear to show higher or lower values in
general will give a clear indication of whether there appears to be any bias prevalent.
It will also be interesting to see if using the Event Analysis discussed in Chapter 2
(2.5) will help to show why the differences are occurring.

The modelled data comes from EMEP in a daily format so comparing it at different
timescales to see where differences may lie would be useful, but at the moment only
by averaging the daily modelled data to create weekly/monthly values is the only way
that the data sets can be looked at in a pairwise setting. However, if the data is looked
at for some particular days (perhaps the ones that appear to show greatest
displacement in terms of the daily values) could be looked at by seeing how the half-
hourly values vary throughout the day to make sure they are not being unfairly
influenced by a large “spurious” value.

After all this, it should be noted that the uncertainty, that is going to exist due to

comparing a fixed point against a value that is an average over 50km squares, may
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contribute to any differences and some analyses into quantifying this may come in
useful. This will lead into the next chapter where this will be discussed at more
length.

5.2 Methods of Comparing Modelled and Measured Data

There are many different ways in which it can be measured how well two series of
data match each other. One of the simplest methods would be to just plot the two
series on a normal x-y plot and see how well it can be fitted by a line of equality. One
way of measuring the goodness-of-fit could be the R-squared value. However this
could be a false result as two variables could be well correlated despite not being
equal, so there should be other methods looked at. Bland and Altman (1986) suggest
a method where the difference between the measured and modelled data can be
plotted against the average of the two values, and conclusions can be made from the
shape of the points that are plotted. Stohl et.al (1998) shows more quantitative results
by measuring a number of different statistics, ranging from R-squared to looking at
over-predictions and under-predictions. It is important when thinking about well a
model fits to measured data, not to just look at how small the residuals are (say) but
also how well the model reflects the shape of the time series of the measured data. It
is important that a model captures seasonality and any trends in the data, before it can

be shown to be an accurate one.

5.3 Comparisons of the raw daily measurements against the EMEP

modelled values

The first thing that it would be good to look at would be simply the measured values
against the EMEP values at the daily level. This will be able to show whether there
are differences between the data sets. Figure 5.1 shows these for the years 1997,
1999, 2000 and 2001 along with a line of equality in order that it can be seen how

well the points match each other.
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Figure 5.1 Plots showing the relationship between the modelled (x axis) and measured (y axis) data for
the years 1997, 1999, 2000 and 2001. A line of equality has been put onto each plot.

These data appear to not match the modelled data particularly well in any year. This is
reasonably obvious from Figure 5.1. However, it can be seen that the range of points
in the measured data is a lot larger than the modelled. This makes it rather difficult to
see whether the smaller measured values are matching the modelled in any way.
Therefore it would be useful to see whether the distributions of the data are similar,
even if the actual values are not. It would be useful to see the data in a time series
format so that the shape of the data can also be subjectively analysed. These are
looked at in Figure 5.2:
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Time Series Plot for Modelled and Measured Data 1997

Time Series Plot for Measured and Modelled Data 1999
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Figure 5.2: Plots showing the time series of the modelled series (in red) and the measured series (in

black)

Because the measured series is commonly larger than the modelled series it would

appear to be more useful to look at a zoomed in version of each of these plots, in

order to see the shape of the measured data more clearly. These are considered in

Figure 5.3:
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Time Series of Measured 1997 Daily fluxes (left) and Modelled 1997 fluxes (right) Time Series of Measured 1999 daily fluxes (left) and Modelled 1999 fluxes (right)
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Figure 5.3: Time Series plots of Figure 5.2, but these show the shapes of both time series more clearly.
The measured data appears on the left and the modelled on the right

It can be seen from Figure 5.3 that the two sets of data do seem very different. As
well as not matching particularly well size-wise, it can be seen that the measured data
doesn't appear to follow the shape of the modelled data either, never mind the size.
This is merely a subjective opinion, and so it would be useful if formal statistics could
be calculated in order to measure how well each of the measured data matches the
model.

There are a number of ways of looking at how similar or different measured and
modelled data are. As mentioned in Section 4.1, Stohl et.al (1998) recommends a
variety of different methods which are described below:

. 13 .
1 The Bias (B) where B = WZ(F’i —M,) where P; and M; are the predicted

i=1
values from the model and the measured values respectively, and N is the

number of paired points.
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where P and M are the mean

2 The Fractional Bias (FB) where FB =
(P+M)
values of the modelled and measured data
3 The Normalised Mean Square Error (NMSE) where

N
NMSE = — Z(P M,)
= PM

4 The Spearman rank-order correlation coefficient (rs)

5 The percentage of modelled predictions that agree within a factor of 2 with the
measurements (FA2)

6 The percentage of modelled predictions that agree within a factor of 5 with the
measurements (FAS)

7 The number of overpredictions which is measured as a percentage in order to

tell whether the model tends to overpredict or underpredict (FOEX) where

FOEX =100(—&2M0 (F;\I““ —0.5). This will always be between —50% and +50%

For the four years for which the modelled daily data and the measured data can be

compared with each other each of these have been calculated and added in Table 5.1:

Bias Frac | NMSE | rs FA2 FA5 FOEX

Bias

1997 | 2.399 | 2.121 | -42.947 | -0.448 | 0.56% | 0.85% | 50%

1999 | 1.092 | 1.146 | 24.659 | 0.051 |2.33% |4.36% |45.93%

2000 | 1.244 |1.247 | 25114 |0.302 |1.96% |9.24% |48.32%

2001 | 1.476 |1.990 | 1111.72| 0.028 | 0.29% | 0.29% | 49.71%

Table 5.1: This contains 7 different ways in which the modelled and measured data can be compared.

The first thing to notice is that for all 4 years the values look very low, for each
particular category. Before some of these can be interpreted a general overview

appears to show that 1997 seems to be giving far better results than the other three
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years, but still shows nowhere near any sort of strong similarities. It can be seen for
instance that the Pearson correlation figures are all very low for each year, (especially
for 2001 which shows an incredibly small correlation coefficient). These back up the
plots above that show the points not falling anyway close to a line of equality. The
FOEX figures all show what has already been seen previously, that the measured data
is consistently higher than the modelled data. Some of these methods for evaluating
models are more sensitive than others. The FA2 and FA5 values can be very sensitive
especially when values fall around 0. This is a problem in this data set since a lot of
measured (and modelled values) are around zero. It would be useful if a technique
could be applied to see the main problem could be between the modelled and

measured data.

5.4 Bland Altman Analysis

Bland and Altman (1986) discuss many of the problems that face trying to compare
two sets of data. They discuss some of the problems that have been mentioned early
(high correlations not meaning that two sets of data are close to each other for one).

They use an approach featured below:

The Bland-Altman plot can help to see this graphically. By plotting the differences
(modelled — measured) against the average deposition (using both the modelled and
measured values to get this), the points can be compared against the mean value of the
differences. 95% of the points should lie between the (mean (d) + 2*standard
deviation (s)), assuming the differences are normally distributed. Bland and Altman
suggest that if the difference between d+2s and d-2s is not "clinically important” then
the two methods can be said to agree, since they could be used interchangeably. If
this difference is too large then it can be said that the two methods certainly cannot.
Though this analysis will not be dealing with any “clinical” issues, this can still be
used for the sulphur dioxide comparisons in a similar way. With the large extremes
left in these plots were not useful at all, so the filter of removing measured values

above 2ugSm was applied. These plots are shown in Figure 4.4:
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Bland Altman Plot 1997 Daily Data Bland Altman Plot 1999 Daily Data
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Figure 5.4: Bland-Altman plots showing the averages of the modelled and measured data against the

differences for years 1997, 1999, 2000 and 2001. Lines are drawn at the mean +2* standard deviation.

It can be seen that in each plot the data appears to follow a straight line. This isn’t too
surprising as the measured data is a lot bigger than the modelled data in the previous
plots. However it is most important to look at the two “boundaries” for each year. It
can be seen clearly that in all 4 years, the difference between d+2s and d-2s is too
large for the methods to be used interchangeably and so as has been seen previously
the two sets of data in their raw format do not match each other well enough.

When the R? values above 30% were taken into account (by removing the ones
below), this also unfortunately did not make a great deal of difference. Because the
daily values were aggregated from the raw half hour values, most of the results ended
up averaging to nearly/exactly the same value as before. Only in the extreme cases
(which were shown above in the Bland-Altman analysis) were the means changed at

all.
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5.5 Spatial Aspects

As was discussed in previous chapters, part of the problem with comparing these
values is that one is taken from a point measurement inside a spatial area of 50km by
50km. It may be that the local weather conditions make it impossible to believe that
the average given by the model will be accurate to every location inside the square.
The amount of sulphur dioxide in the air can vary over very small areas so it would be
difficult to believe that the same levels should be expected over such a wide area. Itis
difficult to quantify the level of variation that might be expected from one of these

grid squares, but it is easy to imagine that it might be rather large.

5.6 Conclusions

From this chapter it has been shown, very clearly that comparisons between modeled
and measured data in a natural environment can be very difficult indeed. Especially
when using a data set with what has been shown to have such high levels of noise.
This chapter has looked at how difficult it is to compare a noisy data set with a model
that models over a large area. The two do not compare well against each other for any
of the 4 years looked at. It would appear that the levels of noise are the main cause
behind this.

Common techniques to compare between the two sets of values were looked at, along
with techniques such as Bland-Altman plots in order to graphically see what
differences there were between the two data sets, along with several statistical
calculations in order to show more quantitatively how well/badly the data sets
compared with one another. All of the techniques applied to the data sets showed that
there was a clear disparity between the two sets of results.

It was studied whether removing some of the data that was deemed less reliable
from the analysis in previous chapters, would allow a better comparison, however it
ended up showing nothing different here.

Hence the main conclusion that can be taken from this chapter is that there are
major pitfalls when looking at two sets of data taken in very different ways. There are
ways to make it as clean as possible but these still might end up showing differences
between them. One thing that should be made clear is that the levels of noise in the

measured data, as shown in Chapter 2, mean that it is almost impossible to blame the
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model in this, as it is very difficult to be confident about the measured data.
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Chapter 6 — Final Conclusions and discussion

The previous chapters have shown the many difficulties and problems that accompany
trying to fit an accurate model to routinely measured, high frequency sulphur dioxide
fluxes at a single monitoring station (Auchencorth Moss) which might then be used to
allow verification of large scale atmospheric transport models. The measurements
have a complex structure, and can be impacted by weather conditions and other
environmental situations which can change very easily over even small areas and in
short time periods. For this setting, further issues arise since many of the modelled
and measured fluxes are very low and can be affected by errors in the measuring
equipment and even human error. These together combined to make it very difficult
to define an underlying model taking account of this additional variation. The flux
calculation requires several different measurements from the tower. Gas
concentrations are taken from three heights and several other input variables are
needed in order to calculate a flux. The fact that slope estimates are required from
three data points for the flux also mean that the data quality can be reduced by one
false measurement from the many variables that are collected.

From the earlier chapters it was shown that using only the gas concentrations that
had significant slope estimates to produce the measured fluxes (removing the more
poorly fitted models (defined by the R® values)) reduced the data by up to 10-15%
but gave slope estimates that were based on better fitted models . The values which
were removed also tended to have the lowest flux values, which makes sense as the
low sulphur dioxide fluxes calculated generally came from the low slope estimates
that were obtained from a linear model which did not fit the three gas concentrations
particularly well and ended up merely producing a very flat line and hence slope
estimates of small magnitude. It was also checked in detail whether the fluxes being
calculated were being affected by time of day or seasonality. These analyses did not
provide any significant results to explain the variability. However, the reassurance
provided by these analyses was important for the final comparison between the
modelled and measured data at since ‘unusual values’ and any time of day effects did
not need to be accounted for. Sensitivity analysis helped to show that most of the
variation in the flux came from the gas concentrations rather than the other input
variables in a quantitative sense. This suggested that problems in modelling fluxes

might come from problems in predicting the raw concentrations.
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Chapter 3 explored the advantages and disadvantages of using ideas concerning
chaotic behaviour to help model the measured fluxes. However the results turned out
to be disappointing — despite an extensive check of the different methods of
estimating Lyapunov Exponents. Three methods were discussed in some detail, and
two of them were applied to the data sets with differing results. The results gave
some indication of chaotic behaviour, but this was dependent on scale. As Timmer et.
al suggest, it is very difficult to find a method that can identify between a chaotic
system and one that has a small signal hidden by large amounts of white noise and
unfortunately this analysis did not allow us to distinguish between these two different
explanations in a consistent or reliable way.

As is commonly the case in environmental time series, the next set of analyses
focussed on the extreme values which might represent episodes of air pollution. The
extreme value analysis was very useful and helped to show that the extreme values in
these data sets could be modelled by classic extreme value theory technique.
Techniques that looked at the clustering of the values along with the raw values
themselves were used. Two techniques worked reasonably well on the extreme values
— the Generalised Extreme Value Theory and the Generalised Pareto Distribution - the
Pareto distribution especially was shown to not have too much variation even when
the threshold value for what constituted an “extreme” value was altered for 4 of the 5
years. Analysing the extreme values also allowed an opportunity to explore the effect
on subsequent analysis of their removal and whether the final model measurement
comparison was improved.. Further work on modelling the extreme values would be
recommended as there were indication of results which could have possibly been
analysed further (e.g. by comparing them with data sets from other sites in the local
area or further afield perhaps).

The final chapter showed the results of the model measurement comparison. The
model in this case was a large scale atmospheric transport model (EMEP), which
effectively provides predictions at a grid scale (maybe give the dimensions). The
issue was whether single monitoring station results could be useful in model
verification. An initial comparison showed considerable disparity between the
modelled and measured data using basic scatter plots compared with lines of equality.
Applying the screening techniques that had been studied in Chapter 2 did not bring
the data sets closer to each other, and there did not seem to be much relationship

between the modelled and measured data sets at all. Different statistical techniques
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such as Bland-Altman plots and statistical measures of agreement all showed a
distinct lack of agreement between the two sets. Even when the extreme values were
taken out the two sets of data still differed by large amounts, and using the Bland-
Altman techniques, the “limits of agreement” were much too far apart (in comparison
to the size of many of the measured means) to be confident about these at all.
However one thing that was not studied in too much detail was the fact that a point
estimate was compared against a model which generates a spatial average for a large
area. It would be useful to look at this in more detail to see whether a model over
such an area should be expected to fit well against one point inside it. This is
definitely one more area that could be looked at in more detail.
While many of the results in this thesis were disappointing since they did not improve
the model- measurement comparisons, nor indeed help explain the differences
between the modelled and measured data to any great length, there were some
interesting findings. Overall, two areas of further work seemed the most promising,
these are application of chaos to environmental time series, and the further analysis of
extremes.
The thesis showed the difficulty in assessing chaotic behaviour in a data set that has a
small signal obscured behind lots of noise. The use of Extreme Value Theory showed
some interesting results which could be taken further forward to see whether these are
common in other data sets, especially where episodic behaviour (high pollution

events) are especially important.
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