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Abstract 

Cardiovascular disease is a leading cause of mortality and morbidity worldwide. 

One of the key factors mediating cardiovascular disease risk, and the underlying 

atherogenic disease process, is disturbances to metabolism in the postprandial 

state, particularly with respect to lipoprotein metabolism. 

A number of studies have demonstrated that prior exercise can reduce 

postprandial triglyceride (TG) concentrations, with recent evidence indicating 

that increased clearance from the circulation of large very low density 

lipoproteins (VLDL1) plays an important role. However, it was unclear how exercise 

facilitated this potentially beneficial effect and this was the focus of the present 

work.  

 

The first experimental study in this thesis demonstrated, in 10 overweight/obese 

men, that 90 minutes of prior moderate exercise increased the affinity of VLDL1 

for TG hydrolysis by lipoprotein lipase by 2.2-fold in the fasted state (p = 0.02) 

and 2.6-fold in the postprandial state (p = 0.001), but did not significantly alter 

the affinity of chylomicrons, a novel observation that adds to understanding of the 

mechanism by which exercise lowers TG concentrations.  

 

Postprandial responses to meal ingestion depend on the macronutrient 

composition of the food ingested. In the second experimental chapter, 

postprandial responses to ingestion of a test meal containing 75g glucose, or 75g 

fat, or a combination of 75g glucose and 75g fat were compared in 10 

overweight/obese men. The main finding was that co-ingestion of fat with the 

glucose load reduced the postprandial glucose response, but not insulin response, 

compared with glucose ingestion alone. Co-ingestion of fat with the glucose load 

also substantially reduced the postprandial suppression of non-esterified fatty 

acids (NEFA) compared to glucose only ingestion. Postprandial TG responses were 

similar when only fat was consumed compared with co-ingestion of fat and 

glucose, but postprandial VLDL1 concentrations were lower in the latter condition.  

 

It is well established that ethnic differences exist in the prevalence of cardio-

metabolic diseases. In particular, diabetes prevalence is high in Middle-Eastern 



 
 

 
II 

 

populations. It is not known whether ethnic differences in postprandial 

metabolism contribute to these differences in risk. In the third experimental 

study, eight white European men and eight men of Middle-Eastern origin consumed 

a mixed-meal and postprandial responses were assessed. Postprandial insulin 

responses were higher in the Middle-Eastern men and postprandial TG 

concentrations were higher in the European men. This suggests that ethnic 

differences may exist in the inter-relationship between insulin resistance and 

lipoprotein metabolism.  

 

Thus, overall this thesis has provided insights into how postprandial metabolism is 

modulated by exercise, macronutrient intake and ethnicity. 
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3-Hydroxybutyrate concentrations; panel [C] shows time-averaged NEFA concentration; 
panel [D] shows time-averaged postprandial 3-Hydroxybutyrateconcentrations. Black 
symbols show individual values, red symbols show the mean values. Values and statistical 
analysis of these data is shown in Table 4.2 and Table 4.3. ..............................................142 

Figure 4.8.Individual values for sdLDL the Control and Exercise trials. Panel [A] shows 
fasting sdLDL concentrations; panel [B] shows time-averaged sdLDL concentration. Black 
symbols show individual values, red symbols show the mean values. Values and statistical 
analysis of these data is shown in Table 4.2 and Table 4.3. ..............................................143 

Figure 4.9. Values for chylomicron-TG in the Control and Exercise trials, panel [A] shows 
mean values for time-averaged postprandial chylomicron-TG concentrations, panel [B] 
shows individual values for time-averaged postprandial chylomicron-TG concentrations. 
Statistical analysis of these data is shown in Table 4.4 and 4.5. N = 10, Values are mean ± 
SEM. Black symbols show individual values, red symbols show the mean values. Values 
and statistical analysis of these data is shown in Table 4.2 and Table 4.3. * significant 
values from the other group (p = 0.005). The table below, shows the mean ± SEM 
differences between the two trials at each time point.* significant difference between 
trials at this time-point within subject (p < 0.005). ...........................................................148 

Figure 4.10. Values for VLDL1-TG in the Control and Exercise trials, panel [A] shows mean 
values for time-averaged postprandial VLDL1-TG concentrations, panel [B] shows 
individual values for fasted VLDL1-TG concentrations, [C] shows individual values for time-
averaged postprandial VLDL1-TG concentrations. Statistical analysis of these data is shown 
in Table 4.4 and 4.5. N = 10, Values are mean ± SEM. The SEM shows the variability 
among the whole population. * significant difference between trials at this time-point 
within subject (p < 0.005).Black symbols show individual values, red symbols show the 
mean values. Values and statistical analysis of these data is shown in Table 4.2 and Table 
4.3. * significant values from the other group (p = 0.005). The table below, shows the 
mean ± SEM differences between the two trials at each time point.* significant difference 
between trials at this time-point within subject (p < 0.005). ............................................149 

Figure 4.11. Values for VLDL2-TG in the Control and Exercise trials, panel [A] shows mean 
values for time-averaged postprandial VLDL2-TG concentrations, panel [B] shows 
individual values for fasted VLDL2-TG concentrations [C] shows individual values for time-
averaged postprandial VLDL1-TG concentrations. Statistical analysis of these data is shown 
in Table 4.4 and 4.5. N = 10, Values are mean ± SEM. Black symbols show individual 
values, red symbols show the mean values. Values and statistical analysis of these data is 
shown in Table 4.2 and Table 4.3. * significant values from the other group (p = 0.005).
 ............................................................................................................................................152 

Figure 4.12. Values for NEFA release over 30-minutes in LPL-affinity assay in 
chylomicron in postprandial state Control and Exercise trials, panel [A] shows mean 
value of NEFA release over 30-minutes from chylomicron, panel [B] shows the individual 
value of NEFA release over 30-minutes from chylomicron. N = 10,Values are mean ± SEM. 
The SEM shows the variability among the whole population. Affinity of lipoproteins for 
LPL was determined by the rate of NEFA release over the linear portion of the 30-minute 
incubation period before a plateau was achieved for each individual participant. Values 
for lipoprotein affinity for LPL and statistical analyses are shown in Table 4.8. Significant 
values from the other group * (p = 0.005) and ** (p< 0.05). ............................................156 

Figure 4.13.Values for NEFA release over 30-minutes in LPL-affinity assay in VLDL1 in 
fasted and postprandial state in Control and Exercise trials, panel [A] shows mean value 
of NEFA release over 30-minutes from VLDL1 in fasted state, panel [B] shows mean value 
of NEFA release over 30-minutes from VLDL1 in postprandial state, panel [C] shows the 
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Individual value of NEFA release over 30-minutes from VLDL1 in fasted state, panel, panel 
[D] shows the Individual value of NEFA release over 30-minutes from VLDL1 in fasted 
state. N = 10, Values are mean ± SEM. The SEM shows the variability among the whole 
population. Affinity of lipoproteins for LPL was determined by the rate of NEFA release 
over the linear portion of the 30-minute incubation period before a plateau was achieved 
for each individual participant. Values for lipoprotein affinity for LPL and statistical 
analyses are shown in Table 4.8 Significant values from the other group * (p = 0.005) and 
** (p< 0.05). .......................................................................................................................157 

Figure 4.14. Values for NEFA release over 30-minutes in LPL-affinity assay in VLDL2 in 
fasted and postprandial state in Control and Exercise trials, panel [A] shows mean value 
of NEFA release over 30-minutes from VLDL2 in fasted state, panel [B] shows mean value 
of NEFA release over 30-minutes from VLDL2 in postprandial state, panel [C] shows the 
individual value of NEFA release over 30-minutes from VLDL2 in fasted state, panel, panel 
[D] shows the individual value of NEFA release over 30-minutes from VLDL2 in fasted 
state. N = 10, Values are mean ± SEM . The SEM shows the variability among the whole 
population.  Affinity of lipoproteins for LPL was determined by the rate of NEFA release 
over the linear portion of the 30-minute incubation period before a plateau was achieved 
for each individual participant. Values for lipoprotein affinity for LPL and statistical 
analyses are shown in Table 4.8. Significant values from the other group * (p = 0.005) and 
** (p< 0.05). .......................................................................................................................158 

Figure 5.1. Study design. Participants reported to the lab after 12 h fasting. A base line 
blood sample was taken, then a meal containing either 75 g of fat or 75 g of glucose or 
combination of both was provided and serial blood samples were taken. ......................170 

Figure 5.2. Change in glucose response over the 480 minute observation period in the 
OGTT, OFTT and COMB trials. Values are mean ± SEM, N = 10; data were analysed using 
two ways ANOVA. Least significant differences post-hoc analysiss was used to identify 
where significant main effect lay. aSignificantly different from OGTT trial, bsignificantly 
different from OFTT trial, csignificantly different from COMB trial, all (p<0.001). ............175 

Figure 5.3. Change in insulin response over the 480 minute observation period in the 
OGTT, OFTT and COMB trials. Values are mean ± SEM, N = 10; data were analysed using 
two ways ANOVA. Least significant differences post-hoc analysiss was used to identify 
where significant main effect lay aSignificantly different from glucose trial, bsignificantly 
different from fat trial, csignificantly different from combination trial, all (p<0.001). .....176 

Figure 5.4. Change in NEFA response over the 480 minute observation period in the 
OGTT, OFTT and COMB trials. Values are mean ± SEM, N = 10; data were analysed using 
two ways ANOVA. Least significant differences post-hoc analysiss was used to identify 
where significant main effect lay aSignificantly different from glucose trial, bsignificantly 
different from fat trial, csignificantly different from combination trial, all (p<0.001). .....177 

Figure 5.5. Change in TG response over the 480 minute observation period in the OGTT, 
OFTT and COMB trials. Values are mean ± SEM, N = 10; data were analysed using two 
ways ANOVA. Least significant differences post-hoc analyses was used to identify where 
significant main effect lay aSignificantly different from glucose trial, bsignificantly different 
from fat trial, csignificantly different from combination trial, all (p<0.001). .....................178 

Figure 5.6. Change in chylomicron-TG response over the 480 minute observation period 
in the OGTT, OFTT and COMB trials. Values are mean ± SEM, N = 10; data were analysed 
using two ways ANOVA. Least significant differences post-hoc analysiss was used to 
identify where significant main effect lay aSignificantly different from glucose trial, 
bsignificantly different from fat trial, csignificantly different from combination trial, all 
(p<0.001). ...........................................................................................................................182 

file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908475
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908476
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908477
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908477
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908477
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908478
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908478
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908478
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908478
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908478
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908479
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908479
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908479
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908479
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908479
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908480
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908480
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908480
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908480
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908480
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908481
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908481
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908481
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908481
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908481
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908482
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908482
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908482
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908482
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908482
file:///C:/Users/0809224g/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/Ghafouri2017.docx%23_Toc499908482


 
 

 
XIII 

 

Figure 5.7. Change in lipoprotein-TG response over the 480 minute observation period, 
panel [A] shows the change in VLDL1-TG and panel [B] the change in VLDL2-TG in the 
OGTT, OFTT and COMB trials. Values are mean ± SEM, n= 10; data were analysed using 
two ways ANOVA. Least significant differences post-hoc analysis was used to identify 
where significant main effect lay aSignificantly different from glucose trial, bsignificantly 
different from fat trial, csignificantly different from combination trial, all (p<0.05).........183 

Figure 5.8. Change in lipoprotein concentration response over the 480 minute 
observation period, panel [A] shows the change in VLDL1 concentration and panels [B] 
the change in VLDL2 concentration in the OGTT, OFTT and COMB trials. Values are mean ± 
SEM, n= 10; data were analysed using two ways ANOVA. Least significant differences 
post-hoc analysis was used to identify where significant main effect lay aSignificantly 
different from glucose trial, bsignificantly different from fat trial, csignificantly different 
from combination trial, all (p<0.05). ..................................................................................184 

Figure 5.9. Change in lipoprotein concentration response over the 480 minute 
observation period, panel [A] shows the change in IDL concentration and panel [B] shows 
the change in LDL concentration in the OGTT, OFTT and COMB trials. Values are mean ± 
SEM, n= 10; data were analysed using two ways ANOVA. Least significant differences 
post-hoc analysis was used to identify where significant main effect lay aSignificantly 
different from glucose trial, bsignificantly different from fat trial, csignificantly different 
from combination trial, all (p<0.05). ..................................................................................188 

Figure 5.10. Differences between lipoprotein compositions in the three trials, lay 
aSignificantly different from glucose trial, bsignificantly different from fat trial, 
csignificantly different from combination trial, p<0.005. Protein, phospholipid (PL) and 
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1 Introduction and literature review  

1.1 Introduction  

Cardiovascular disease (CVD) is a family of common multifactorial diseases, including 

coronary heart disease (CHD), cerebrovascular disease, hypertension, and heart 

failure, which develop as a consequence of interactions between the innate factors, 

encoded in a person's genotype interacting with environmental factors (e.g. nutrition, 

smoking, inactive lifestyle) (Sing et al., 2003). Atherosclerosis, which develops over 

decades, is the underlying pathology of these conditions (Griffin, 1999). 

Cardiovascular disease, together with related metabolic diseases, such as diabetes - 

often termed cardio-metabolic diseases – are leading causes of disability and 

premature death around the world, and make a substantial contribution to total 

health care costs (WHO, 2014a). According to the World Health Organization (WHO) 

an estimated 16.7 million - or 29.2% of deaths - result from the various forms of CVD 

(WHO, 2014a). In the UK, CVD was a major cause of death, accounting for almost 

155,000 deaths in 2014 (Townsend et al., 2015). Thus, this disease places an 

extensive economic burden on healthcare systems (Deaton et al., 2011, WHO, 2014a). 

More than £6.8 billion was spent on treating CVD within the NHS in England in 

2012/2013 (British Heart Foundation, 2012). The highest expenditure was on 

secondary care with £4373 million spent on secondary care for CVD in England. Within 

secondary care, emergency admissions had the greatest expenditure. Within primary 

care, the second highest setting for expenditure, the majority of costs were due to 

prescribing (£1387.5 million). In 2012/2013 in Wales, a total of £442.3 million was 

spent on CVD, in Northern Ireland, £393 million was spent and in Scotland it is 

estimated that >£750 million was spent on treatment of CVD (Bhatnagar et al., 2015). 

Environmental factors influencing CVD can be classified as non-modifiable risk 

factors, such as age, sex, family history and ethnicity, and modifiable risk factors 

(see Figure 1.1). Much of our knowledge about the latter comes from the pioneering 

Framingham study (D'Agostino Sr et al., 2001). This longitudinal cohort study 
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identified a number of potentially modifiable risk factors including high levels of 

cholesterol and triglycerides, hypertension, diabetes, high adiposity, obesity, 

smoking, unhealthy diet, and lack of physical activity (WHO, 2014b, Bitton and 

Gaziano, 2010). Although many cases of CVD are potentially preventable by action on 

risk factors such as unhealthy diet, physical inactivity and smoking, the public health 

and economic importance of CVD means the need to fully understand all the root 

causes of CVD prevalence remains. 
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Figure 1.1. Cardiovascular diseases risk factors. 
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1.2  Non-modifiable risk factors  

Age, sex, family history and ethnicity are factors that cannot be modified. Age plays 

an important role in the development of cardiovascular disease. The risk of CVD 

increases approximately by 3 fold with each decade of life (Finegold et al., 2013). 

Similarly, the risk of having a stroke doubles every decade after the age of 55 

(American Heart Association, 2011, Brown et al., 1996, Wolf et al., 1992). Even in 

developed countries, despite a decrease in mortality due to CVD, mortality from CVD 

still increases with age (Finegold et al., 2013). Approximately 82% of CVD deaths 

occur after 55 years of age (Mackay and Mensah, 2004). The reasons for the increase 

in incidence of CVD with age are not completely clear, however, with advancing age 

the serum total cholesterol concentration increases which is likely to contribute to 

the effect (Jousilahti et al., 1999). Loss of compliance and functions of blood vessels 

due to mechanical and structural changes in vessel wall with advancing age, may also 

contribute to CVD development and progression (Jani and Rajkumar, 2006). 

Sex contributes to 40% of the variation in coronary heart disease mortality (Jousilahti 

et al., 1999, Hu and Group, 2003). Epidemiologically, the sex difference in prognosis 

of CVD suggests an intrinsic sexual difference in susceptibility to CVD (Finegold et 

al., 2013, Kannel et al., 1976, WHO, 2014a). In developed countries, CHD is being 

two to five times more common in men than in women in the younger age groups. 

(Möller-Leimkühler, 2007). CHD risk increases with age in both men and women, but 

shows a more prominent increase in women older than 50. Despite better medical 

treatment of CHD, It remains the leading killer of women (Mosca et al., 2007). In 

Europe, about 55% of all female deaths are caused by cardiovascular disease (CVD), 

especially CHD and stroke, compared with 44% of all male deaths (Petersen et al., 

2005). Age-adjusted mortality for CVD has continuously declined in the last four 

decades, but to a lesser extent in women than in men. In fact, the temporal trend of 

the incidence of CVD even shows a rise in women (Tunstall-Pedoe et al., 1999, Thom 

et al., 2006). This has been mainly attributed to a decrease in myocardial infarction 

incidence in younger men, with a concomitant increase in older women (Tunstall-
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Pedoe et al., 1999). Although, the mechanism behind these differences is unclear, 

some explanations such as hormonal difference in premenopausal stages were 

suggested. Oestrogen, for example may provide protective effects through glucose 

metabolism and haemostatic system indirectly and may improve endothelial cell 

function directly (Jousilahti et al., 1999).  

Family history of CVD is another unmodifiable risk factor that is an independent 

predictor of future disease incidence (Hunt et al., 1986). The risk of developing CVD 

doubles if a first degree male relative develops coronary heart disease or stroke 

before the age of 60 or if a first degree female relative does so before 65 years 

(British Heart Foundation, 2012, Sesso et al., 2001). The risk increase by 50%, if both 

parents have suffered from heart disease before the age of 55 (British Heart 

Foundation, 2012). 

Finally, ethnic origin can play a role in the incidence of CVD. There is ample evidence 

for substantial and persistent disparities between racial/ethnic groups in 

cardiovascular disease and associated risk factors, such as obesity, hypertension and 

diabetes (Mensah and Brown, 2007, Halder et al., 2012). Research into ethnic 

differences in general health has mainly focused on factors that are related to the 

ethnic minorities directly, such as genetic, socioeconomic, and sociocultural factors 

(Venema et al., 1995). Another possible determinant of ethnic health differences is 

health care itself, more specifically the accessibility and the quality of health care 

(Venema et al., 1995, Lanting et al., 2005). However, it has been reported that South 

Asian men and women in the UK experience approximately 50% higher age-

standardised CHD mortality than European Whites (Wild et al., 2006). Also, compared 

to Caucasians, African–Caribbeans and people of African descent have high incidence 

of stroke (Balarajan, 1991, Cappuccio, 1997), end-stage renal failure but lower CHD 

(Roderick et al., 1994, Raleigh, 1997). This may be due to higher rates of high blood 

pressure: in those of African ancestry, hypertension is three- to four- fold more 

prevalent than in Caucasians (McKeigue et al., 1991, Cruickshank et al., 1991, 

Cappuccio et al., 1997, Joffe et al., 1992, Chaturvedi et al., 1994), as is diabetes 
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(Shai et al., 2006, McKeigue et al., 1991, Simmons et al., 1991). Risk factors in South 

Asians are hyperinsulinaemia, raised TG and low HDL cholesterol levels, central 

adiposity with a high waist to hip ratio (McKeigue, 1991, McKeigue et al., 1992, 

Cruickshank et al., 1991). Whereas in Africans with glucose intolerance there is a low 

triglyceride and high HDL cholesterol levels, due to lower visceral adiposity when 

compare to whites at the same BMI (Chaturvedi, 1993, Chaturvedi, 1994, Cooper et 

al., 1997, Cappuccio, 1997). 

1.3 Modifiable risk factors 

The international heart study over 52 countries (INTERHEART) assessed the 

importance of risk factors for coronary artery disease worldwide (Yusuf et al., 2004a, 

Yusuf et al., 2004b). Nine measured and potentially modifiable risk factors, 

accounted for more than 90% of the proportion of the risk for acute myocardial 

infarction. These can be classified into two categories, modifiable biomarkers and 

modifiable behavioural factors. The modifiable markers are linked to metabolic 

syndrome (MetS).Metabolic syndrome had been identified by Dr. Gerald Reaven 

almost three decades ago. Originally known as “syndrome X”, the cluster has also 

been termed pluri-metabolic syndrome (MS), or Reaven's syndrome. These 

characteristics, when found in the same person, are so ominous that they have also 

been called “the deadly quartet” or “the awesome foursome”(Reaven, 1988). Reaven 

and subsequently others postulated that insulin resistance underlies Syndrome X 

(hence the commonly used term insulin resistance syndrome) (Haffner et al., 1992). 

According to the National Cholesterol Education Program Adult Treatment Panel III 

(NCEP-ATP III) panel, MetS include an increased waist circumference, blood pressure 

elevation, low HDL cholesterol, high triglycerides, and hyperglycaemia (NCEP, 2002). 

Although the risk associated with the MetS is well-documented, the definition of the 

syndrome is still in flux. In addition, there are behavioural risk factors include, 

physical activity, diet pattern, smoking, psychosocial factors and alcohol 

consumption. The effect of these risk factors was consistent in men and women across 

different geographic regions and by ethnic group. The British Regional Heart Study 
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also found that smoking, blood pressure and cholesterol accounted for 90% of 

attributable risk of CVD (Emberson et al., 2003). CVD can be prevented through 

modification of behavioural risk factors and /or through pharmacological therapy for 

medical conditions (e.g., using blood pressure-lowering agents and lipid-modifying 

agents). Modifiable and non-modifiable risk factors can interact with each other’s, 

thus, through a combination of treatments and healthy lifestyle choices, the risk of 

heart disease and stroke can be significantly decreased (See Figure 1.2). 
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1.3.1 Behavioural factors  

Socioeconomic status and psychosocial factors  

Socioeconomic status (SES) refers to an individual's social position relative to other 

members of a society. A number of studies suggest that poor living conditions in 

childhood and adolescence contribute to increased risk of developing CVD in both 

genders (Clark et al., 2009, Kaplan and Keil, 1993). The social status is linked also to 

alcohol consumption. The Marmot Review (2010) mentioned an association between 

alcohol-related hospital admissions and high levels of deprivation for both men and 

women, with particularly high rates of admission for those areas among the most 

deprived quintile of England and Wales. Binge drinking was also reported to be most 

common among those living in deprived areas (Marmot, 2010). Cigarette smoking 

follows a social class gradient in the USA and most developed countries. Starting in 

youth, smoking initiation is positively correlated with being from a low income 

household and performing poorly in school (Barbeau et al., 2004b, Elders, 1997, 

Steptoe et al., 2002). The prevalence of smoking is linked to low educational 

attainment (Pierce et al., 1989, Cavelaars et al., 2000, Barbeau et al., 2004a), 

working class occupations (Bang and Kim, 2001, Barbeau et al., 2004a), and lower 

income levels (Barbeau et al., 2004a, Control and Prevention, 2002, H., 2005). Thus, 

cigarette smoking is clearly associated with social disadvantage as defined by 

educational attainment, income, and occupational class. Cigarette smoking is the 

social behaviour that has the single largest impact on health inequalities. All these 

risk factors increase the incidence of developing CVD. Moreover, depression and 

depressive symptoms are common in patients with CVD (Timberlake et al., 1997) or 

heart failure (Rutledge et al., 2006) and are associated with adverse outcomes (Van 

Melle et al., 2004) showing strong and consistent evidence that depression and social 

isolation or lack of quality social support are independent risk factors for the 

development of and prognosis with CHD (Carney and Freedland, 2016, Valtorta et al., 

2016). 
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Alcohol consumption  

Alcohol is one of the behavioural risk factors. It is known to have both beneficial and 

harmful effects on the biochemical basis for CHD and the psychological consequences 

of the disease (Foppa et al., 2002). Systematic reviews and meta-analyses have 

addressed the association of alcohol consumption with cardiovascular disease 

outcomes (Cleophas, 1999, Corrao et al., 2000, Corrao et al., 2004, Di Castelnuovo 

et al., 2002, Fillmore et al., 2007, Maclure, 1993, Reynolds et al., 2003). In Scotland, 

32% of men and 4% of women drink above weekly recommended limits. Patterns of 

drinking vary and 44% of men who had drunk in the last week consumed eight units 

or more on their heaviest drinking day (where one unit is defined as approximately 8 

g /10 ml of alcohol), indicating that binge drinking may be a particular problem 

(Wilson et al., 2015). Drinking is harmful and associated with a poorer lipid profile, 

and adverse effect on systolic blood pressure and increased risk of thrombosis (McKee 

and Britton, 1998, Britton and McKee, 2000). Clearly, ethanol consumed with a meal 

elevates plasma and VLDL-TG (Lee et al., 2005). It has been observed that, the 

addition of 47·5 g alcohol to a high-fat meal (54 % of energy) was associated with an 

approximately 60 % increase in the peak plasma TG concentration compared with a 

meal consumed without alcohol (Fielding et al., 2000). Ethanol has also been shown 

to increase fatty acid synthesis (Siler et al., 1998) and also to reduce TG clearance 

from the plasma (Pownall et al., 1999). The relationship between alcohol 

consumption and stroke is believed to involve various mechanisms including alcohol-

induced hypertension, cardiomyopathy, coagulation disorders, atrial fibrillation, and 

reductions in cerebral blood flow (Malarcher et al., 2001, Hillborn, 1998, Gorelick et 

al., 1999, Zakhari, 1997). A possible explanation of a reduced risk of ischemic stroke 

with moderate alcohol consumption is that alcohol increases high-density lipoprotein 

cholesterol levels and decreases platelet aggregation and fibrinolytic activity 

(Gorelick et al., 1999, Zakhari, 1997, Stampfer et al., 1988). There does not appear 

to be any differential effect associated with type of alcohol consumed (Whelan et 

al., 2004, Di Castelnuovo et al., 2002). 
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Smoking  

Smoking is a strong independent risk factor of cardiovascular events and mortality 

even at older age, advancing cardiovascular mortality by more than five years (Mons 

et al., 2015, Gellert et al., 2013, Kenfield et al., 2010). Smoking is linked to a two- 

to four-fold increased risk of CHD (Go et al., 2014, Kondo et al., 2011). Smoking 

independently contributes to the risk of myocardial infarction (Ferrie et al., 2009, 

Teo et al., 2006), stroke (Kelly‐Hayes, 2010). A dose–response relationship between 

the number of cigarettes smoked per day and both myocardial infarction and stroke 

has been established in large cohort studies (Kenfield et al., 2010, Kondo et al., 

2011). It also, influences the risk factor of developing CVD. Cigarette smoking also 

increases postprandial triglyceride levels by 50% (Pourmand et al., 2004, Axelsen et 

al., 1995, Chiolero et al., 2008), and studies of young adults have identified early use 

of alcohol and tobacco as key determinants of subsequent levels of serum triglyceride 

(Croft et al., 1987), lower HDL-C (Ellison et al., 2004). Data obtained in a large sample 

of men and women support the interpretation of Axelson et al. that smoking affects 

postprandial TG metabolism primarily by raising lipoproteins of intestinal origin 

because cigarette smokers had substantially greater postprandial retinyl palmitate 

and apo B-48 (by 114 – 259 %) responses than did non-smokers, when adjusted for 

fasting TG. In addition, smoking may increase insulin resistance directly (Benowitz, 

2003, Houston et al., 2006, Janzon et al., 1983). The response of insulin in smokers 

to an oral glucose test was more pronounced compared to non-smokers (Facchini et 

al., 1992), insulin resistance was dose dependently related to smoking (Eliasson et 

al., 1994). Most of the excess risk and risk advancement disappeared within 5 years 

after smoking cessation. Smoking cessation is highly and rapidly beneficial also at 

advanced age (Gellert et al., 2013, Iso et al., 2005). A Japanese cohort study found 

that quitting smoking more than 4 years ago was found to reduce the risk for major 

cardiovascular events by 70% compared to continuing smoking (Kondo et al., 2011). 

A systematic review of 20 studies concluded that quitting smoking is associated with 

a 36% reduction in the relative risk of mortality for patients with CHD who quit 

compared with those who continued smoking (RR 0.64; 95% CI 0.58 to 0.71). This risk 
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reduction appears to be consistent regardless of age, sex, index cardiac event, 

country, and year of study commencement (Critchley and Capewell, 2003). 

 

1.3.2  Biomarker Risk factors  

Blood pressure 

High blood pressure or hypertension refers to a chronic condition characterised by 

increase of blood pressure in the arteries. This increase could either be in systolic 

blood pressure (SBP) which represents the peak pressure due to ventricular 

contraction during systole, or a diastolic blood pressure (DBP) which represents the 

pressure during ventricular relaxation in diastole, or both. A reading of ≥ 140 mm Hg 

of SBP or ≥ 90 mm Hg of DBP indicates the presence of hypertension (Tajeu et al., 

2017, Schiffrin et al., 2016).  

The Department of Health survey of 2010 for England showed 31.5% prevalence of 

hypertension in male adults over 16 years and above and 29.0% in women. This puts 

a huge burden of approximately £2 billion on NHS annually (Public Health England, 

2014, British Hypertension Soceity, 2015). Hypertension is considered as a major risk 

factor for stroke, myocardial infarction, heart failure, chronic kidney disease, 

peripheral vascular disease, cognitive decline and premature death (Freis, 1969, 

Baudouin-Legros and Meyer, 1990, Rapsomaniki et al., 2014). Hypertension affects 

blood vessels by altering their functionality. It can lead to atherosclerosis and 

narrowing of the blood vessels making them more likely to block from blood clots or 

bits of fatty material breaking off from the lining of the blood vessel wall. Both SBP 

and DBP can be used as predictors of cardiovascular risk (Stamler et al., 1993a), atrial 

fibrillation (Kannel et al., 1982), coronary heart disease, stroke, transient ischemic 

attack, and congestive heart failure (Hubert et al., 1983). Untreated hypertension is 

associated with a progressive rise in blood pressure and shows a strong positive 

correlation with the risk of CVD onset and mortality (Cutler, 1996). The risk of 

cardiovascular events doubles for every 20/10 mmHg rise in blood pressure beyond 

the normal range (Rapsomaniki et al., 2014, Bauchner et al., 2014).  
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Figure 1.2. Interaction between modifiable risk factors in aged population. Ageing increases negative behaviours like smoking 
and drinking alcohol. It also, reduces the physical activity for the individuals all these factors contribute to increase body weight 

and develop some CVD risk factors such as diabetes, dyslipidemia and hypertension.   
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Lipid and CHD risk  

Lipid metabolism disturbance can lead to CVD. These diseases could be a result of 

inherited defects in lipoprotein metabolism, such as hyper- or hypo-lipoproteinemias, 

or of a metabolic disorder; abnormal lipoprotein metabolism is often observed as a 

secondary effect of diabetes, hypothyroidism and kidney disease, or it could be due 

to life style. 

 

1.4 Lipid metabolism  

1.4.1 Lipoproteins  

Lipids are hydrophobic and mostly insoluble in blood, so they require transport within 

hydrophilic, spherical structures called lipoproteins. Circulating lipoproteins are 

originally produced either from the intestine (exogenous) or from the liver 

(endogenous). They can be broadly divided in order of increasing density into: 

chylomicrons (CM), very-low-density lipoprotein (VLDL), intermediate-density 

lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). 

The density of lipoprotein depends on cholesterol, TG and protein content as the 

more cholesterol and TG and less protein the less dense it is. LDL are the major 

carriers of cholesterol in blood and contain one molecule of apolipoprotein B100 

which is recognized by the LDL receptors (Gurr et al., 2002). VLDL and CM are the 

major carriers for TG. Lipoproteins can classified according to their lipid contents 

into TG-Rich Lipoprotein (TRL; includes CM and VLDL) and Cholesterol Rich 

Lipoprotein (CRL; includes LDL and HDL (Sparks JD, 1994)) (See Table 1.1).  
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Table 1.1; Lipoprotein composition (Sparks JD, 1994). 

 
CM VLDL LDL HDL 

Density (g.mL-1) 
<0.96 0.96-1.006 1.006-1.063 <1.063-1.21 

Diameter (nm) 
100-1000 30-90 20-25 10-20 

Apolipoprotein 
A,C,E,B48 A,C,E,B100 B100 A,C,D,E 

Composition (%) 
    

Proteins 
2 10 20 40 

Lipids 
98 90 80 60 

Lipid composition (%) 
    

Triglyceride 
88 55 12 12 

Cholesterol Ester + cholesterol 
4 24 59 40 

Phospholipid 
8 20 28 47 

Free fatty acid 
- 1 1 1 
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1.4.2 Apolipoproteins  

Apolipoproteins are specific proteins associated with lipoprotein particles, and they 

are either an integral part of the lipoprotein or are located peripherally. They can 

emulsify and transport lipids in the blood. They appear on the surface of the 

lipoproteins and a number are synthesized in the liver and intestine. They are apoB, 

(B-48 and B-100) apoA-I, apo A-II. apo A-IV, apo A-V, apoC-II, apoC-III and apoE. 

Apoproteins have important structural and metabolic functions. For example, 

apolipoproteins A are predominantly found in the high HDL and are important for 

reverse cholesterol transport (Zhao et al., 2012). Moreover, they are responsible for 

recognition of particles by receptors and act as coenzymes (enzyme activator) 

(Ginsberg, 2002, Gurr et al., 2002). Table 1.2 illustrates sources and functions of 

apolipoproteins.  
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Table 1.2; Sources and functions of some lipoproteins (Jackson et al., 1976, Schaefer et al., 1978).  

Apolipoprotein Molecular wt. Source Function 

apo A-I 28.300 Liver, Intestine Structural component of HDL; activates LCAT 

apo A-II 17.000 Liver, Intestine May inhibit HL activity; inhibits AI/LCAT 

apo A-IV 44.500 Intestine Activates LCAT; possibly facilitates transfer of apos between HDL 
and CM 

apo A-V 39.000 Intestine Associated with lower TG levels; facilitates LPL 

apoB-48 241.000 Intestine 
Necessary for secretion of chylomicron from intestine, activates 
LPL uptake of remnants by the liver 

apo B-100 55.000 Liver 
Necessary for secretion of VLDL from liver; structural protein of 
VLDL, IDL and LDL; ligand for the LDL receptor 

apo C-I 6.331 Liver 
Activates LCAT; may inhibit hepatic uptake of CM and VLDL 
remnants; may inhibit CETP 

apo C-II 8.837 Liver, Activates LPL (essential cofactor) 

apo C-III 8.764 Liver, intestine 
Inhibits LPL and hepatic uptake of CM and VLDL remnants Ligand 
for LDL receptor, LDL receptor-related protein and proteoglycans 

apo E 33.000 
Liver (60-80%), and 
other tissues including 
adipose tissue 

May inhibit HL activity; inhibits AI/LCAT 
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As each apolipoproteins has a specific function the proportions of them differ 

between lipoprotein particles (Schaefer et al., 1978) as shown in Table 1.3. 

Table1.3; Distribution of Apolipoproteins in different lipoprotein particles (Schaefer et al., 
1978). 

Apoprotein (%) CM VLDL LDL HDL 

apo A-I 7.4 Trace  67 

apo A-II 4.2 Trace  22 

apo B-48 

apo B-100 

22.5 

 

36.9 

 

98 

 

Trace 

apo C-I 15 3.3 Trace 1-3 

apo C-II 15 6.7  3-5 

apo C-III 36 39.9  + 

apo E  13.0 Trace  

 

Two pathways are involved in lipoprotein metabolism; exogenous and endogenous. 

Exogenous pathway delivers cholesterol, TG and phospholipids from the small 

intestine to the liver and peripheral tissues, while the endogenous pathway transfers 

lipids from liver to peripheral tissue.  

1.4.3 De‐novo lipogenesis (DNL) pathway 

In the DNL carbohydrates transformed into FA in the liver and adipose tissues 

(Hellerstein, 1999, Ameer et al., 2014). This pathway is activated in the feeding state 
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in which it is controlled by many hormonal factors such as insulin (Ameer et al., 

2014). These factors include sterol response elements (SRE) binding protein isoform 

one (SREBP1-c) (Horton et al., 2002) and the liver X receptor-α (LXRα) (Liu et al., 

2007b). It has been demonstrated that SREB1-c upregulates all enzymes in the FA 

synthesis pathway and enzymes that regulate the availability of acetyl-CoA units in 

the pathway (Horton et al., 2002). Also, LXRα regulates lipogenesis via inducing the 

expression of SREBP-1c (Liu et al., 2007b). The Insulin increases the activity of LXRα, 

which hence induces SREBP-1c expression (Hellerstein, 1999, Ameer et al., 2014, Liu 

et al., 2007a). DNL contributes in FFA syntheses in endogenous pathway by 4% in 

fasted state and this rise to 8% postprandially. (Hellerstein, 1999, Ameer et al., 2014, 

Barrows and Parks, 2006). 

1.4.4  Exogenous lipoprotein metabolism   

The exogenous lipoprotein pathway starts in the intestine. Dietary triglycerides 

(approximately 100 grams per day) are hydrolysed to free fatty acids and 

monoacylglycerol by intestinal lipases and emulsified with bile acids, cholesterol, 

plant sterols, and fat soluble vitamins to form micelles. While the fatty acids in the 

intestine are overwhelmingly accounted for by dietary intake the cholesterol in the 

intestinal lumen is primarily derived from bile (approximately 800-1200 mg of 

cholesterol from bile vs. 300-500mg from diet) (Feingold and Grunfeld, 2015). 

In the postprandial state, endothelial cells of the gut produce digested fat from food 

as CM, which contains varies components as seen in Table 1.3. These particles travel 

to plasma through lymph, and acquire the apoC-I,C-II, C-III and E from VLDL and HDL 

(Patsch, 1987). By acquiring apoC-II the action of LPL starts on CM hydrolysing TG to 

fatty acid and 2-monoacylglycerols. The hydrolysis continues until CM have lost 70-

90% of their TG (Chen and Reaven, 1991). LPL cannot hydrolysis the TRL remnant 

particles and they are taken up by liver through specific receptors (Martins et al., 

1997) (see Figure 1.3). It appears that apo B-48 containing particles are continuously 

secreted from the enterocyte and at times of excessive triglyceride availability, lipid 



1 Introduction and Literature Review  
 

18 
Khloud Jamil Ghafouri ® 2017 

droplets fuse with nascent lipoprotein particles resulting in secretion of very large 

chylomicrons (Hayashi et al., 1990, Martins et al., 1994).  

A balance between apoC-III, apoE which inhibit LPL and apoC-II which activates LPL 

is required for effective hydrolysis (Corrao et al., 1990). The CM remnant is generated 

by the lipolysis process. By definition, a TRL-remnant is an apo B-containing 

lipoprotein that has delivered some, or the major part, of its original triglyceride 

content to tissues by means of LPL-mediated lipolysis (Karpe, 1999). Certain other 

modifications also often take place, such as apoE enrichment, possibly apoC-III 

enrichment and apoC-II depletion. This new particle has more apoE and apoB and less 

apoA-I and apoCs with an abundant amount of CE. CE is transferred to other 

lipoproteins in exchange for TG, mediated by cholesteryl ester transfer protein 

(CETP) (Roche and Gibney, 2000). The CM-remnant is responsible for delivering 

cholesterol and TG to the liver (Redgrave, 2004). The liver uses lipid from this 

remnant to assemble VLDL (Jung et al., 1999). It has been shown that endogenous 

VLDL accumulate in the plasma postprandially due to delayed competitive lipolysis 

of apoB-100 TRL particles with CM for the sites of LPL action (Bjorkegren et al., 1996) 

( see Table 1.4).  
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Figure 1.3; Chylomicron metabolism. Chylomicron metabolism begins when it emerges from the lymph carrying triglyceride into the circulation. Lipoprotein 
lipase from adipose tissue and skeletal muscles starts hydrolysing the triglyceride into fatty acids and glycerol. After it goes through the hydrolysis it loses 
most of its triglyceride, resulting in the formation of chylomicron remnants. These remnants enter to the liver through apoE receptors. 
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1.4.5 Endogenous lipoprotein metabolism 

Metabolism in the post-absorptive state 

Post-absorptive state refers to a state in which most of the previous meal has been 

fully absorbed e.g. after an overnight fast prior to any further food being 

consumed (Frayn 2009). The studies in subsequent chapters were implemented in 

the post absorptive state and therefore the following section will consider the 

metabolic processes involved in lipid metabolism during this state. 

Lipoproteins synthesized by the liver transport endogenous TG and cholesterol. 

Lipoproteins circulate through the blood continuously until taken by peripheral 

cells or cleared by the liver. Factors that stimulate hepatic lipoprotein synthesis 

generally lead to elevated plasma cholesterol and TG levels. 

VLDL metabolism parallels that of CM in many aspects. Like all lipoproteins, VLDL 

contains CE, phospholipids, free cholesterol and TG, and apolipoproteins as 

mentioned in Table 1.3. They are secreted continuously from liver and they are 

responsible for delivering TG to the peripheral tissues during fasting (Figure 1.4).  

There are two subclasses of VLDL particles: large TG-rich VLDL1 and smaller, more 

dense VLDL2, which have more cholesterol and a lower ratio of apoCs and apoE to 

apoB (Packard and Shepherd, 1997, Packard et al., 1984). VLDL is continuously 

being excreted from the liver. A major proportion of the VLDL undergoes 

sequential delipidation to form LDL in the fasting state (Björkegren et al., 1997).  

The secretion of the large VLDL particles is regulated by insulin-sensitive 

mechanisms which regulate the availability of triglyceride for VLDL production. 

FA are generated by lipolysis in adipose tissue through the action of HSL and are 

a major source for liver TG (Mifflin et al., 1990). Insulin stimulates the endothelial 

expression of LPL, the key enzyme for TRL metabolism, in a post-absorptive state 

(Semb and Olivecrona, 1986, Ong and Kern, 1989). Hepatic uptake of partially 

lipolysed VLDL or chylomicrons remnant particles may also contribute to the 

hepatocellular TG availability. Likewise, a lower rate of FA uptake by adipose and 

muscle tissues after LPL-mediated lipolysis of chylomicrons and VLDL promotes 

FFA uptake by the liver (Frayn et al., 1994). In addition, the liver has the capacity 
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of de novo synthesis of triglycerides, which is most evident in carbohydrate 

overfeeding. Therefore, the balance between oxidation of FFA in liver and muscle 

and the relative contribution of all of these TG/FFA flux rates, all regulated to a 

greater or lesser extent by insulin, determine the availability of hepatic TG for 

VLDL secretion (Malmström et al., 1997). Also, insulin seems to have a direct 

inhibitory effect on the hepatic secretion of large VLDL (Malmström et al., 1997). 

However, the secretion of smaller and less triglyceride rich VLDL, doesn’t required 

any of the above stated mechanism. It needs cholesterol availability or a high 

cholesterol synthesis rate (Watts et al., 1995).  

VLDL represents most of the pool of TRL in the post absorptive state. Table 1.4 

shows the variations of TRL concentrations during the day. It has been estimated 

that the endogenous TRL constitutes 96-97% of all TRL particles in the fasting 

state, and this figure was reduced to 91-96% in the postprandial state (Karpe et 

al., 1999, Sharrett et al., 1995).  

 
Table 1.4; Percentage of TRL particles which are of endogenous origin (apo B-100) in the 
fasting and the postprandial state inhuman plasma (Karpe, 1999). 

 0 h 3 h 6 h 

Large TRL 
(Sf 60 - 400) 

96 ± 3 91 ± 3 93 ± 4 

Small TRL 
(Sf 20 - 60) 

97 ± 2 95 ± 4 96 ± 3 

  

It has been demonstrated that chylomicron and VLDL particles are competing for 

the same lipolytic pathway (Bjorkegren et al., 1996, Brunzell, 1973). After fat 

intake, an accumulation of endogenous TRL has been reported (Cohn et al., 1988a, 

Schneeman et al., 1993). This is might be due the delayed lipolysis of the apo B-

100 TRL particles due to competition for the sites of LPL action by the 

chylomicrons (Brunzell, 1973). In rat plasma, it has been shown that the 

accumulation of endogenous TRL due the competition of the chylomicron-like 

triglyceride emulsion for the hydrolysis by LPL (Karpe and Hultin, 1995). In 

postprandial state, the rise of the number of TRL apoB-100 particles is actually 

far greater than that of apoB-48 containing lipoproteins (Havel, 1994). Conversely, 

80% of the postprandial increase of triglycerides is accounted for by apoB-48 
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containing lipoproteins (Cohn et al., 1993). This apparent paradox is explained by 

the fact that the major triglyceride-carrier in the postprandial state is the 

chylomicron with each chylomicron particle carrying a very large number of 

triglyceride molecules. Therefore large quantities of triglycerides are transported 

by very few chylomicron particles (Karpe, 1999). 

Within the circulation, LPL hydrolyses the TG in the core of VLDL. This action turns 

VLDL1 into VLDL2 which is then hydrolysed by the action of hepatic lipase (HL) and 

LPL to IDL, and HL then hydrolyses IDL to LDL (Nakajima et al., 2011b, Cohn et 

al., 1993). This delipidation process is slowed by the presence of chylomicrons 

resulting in a prolonged residence for VLDL in the postprandial state (Björkegren 

et al., 1997, Bjorkegren et al., 1996). This leads to more opportunities for 

cholesterol ester exchange between lipoprotein particles, and a cholesterol-

enriched VLDL remnant is subsequently formed. This remnant lipoprotein is also 

enriched by apoE. Because of its increased cholesterol content, the remnant will 

probably not be further delipidated (Björkegren et al., 1997). 

Cholesterol is an essential steroid involved in the formation of steroid hormones 

and bile salts and is also an important structural component of cell membranes 

(Hardman et al. 2003). LDL contains relatively high cholesterol content (around 

40-50%) and transports the majority of cholesterol (Frayn, 2002). Binding of LDL 

to target tissue occurs through an interaction between the LDL receptor and 

apolipoprotein B-100 or E on the LDL particle. Uptake occurs through endocytosis, 

and the internalized LDL particles are hydrolysed within lysosomes, releasing 

lipids, mainly cholesterol (Packard and Shepherd, 1997). LDL is the supplier of 

body tissue with cholesterol; around 65% of total plasma cholesterol is carried in 

LDL (Wang and Briggs, 2004). Larger LDL particles exhibit the highest affinity 

(Packard and Shepherd, 1997). While 70% of the LDLRs are located on hepatic 

cells, 30% are located on the other cells of the body (Verges, 2005).
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HDL metabolism  

HDL particles are synthesized in the liver and the small intestine. They are a 

heterogeneous group of particles that differ in size, shape, density, cholesterol 

and phospholipid content, as well as in apolipoprotein such as, Apo A1, ApoE and 

Apo C-II (Miller, 1990). Apo A-1 activates LCAT, an enzyme associated to HDL (Von 

Eckardstein et al., 2001). They contain higher protein content, around 50 % of the 

particle total weight (Miller, 1990). The life cycle of HDL begins with 

apolipoprotein A-I being secreted by the liver (Miller, 1990). As ApoA-I bind 

circulating phospholipids and cholesterol, nascent discoid lipid-poor HDL particles 

are formed. These immature HDL particles trigger cholesterol efflux in sub-

endothelial macrophages and fibroblasts and, via interactions with ATP-binding 

cassette transporter A1 (ABCA1) (Miller, 1990). This process is called Reverse 

Cholesterol Transport (RTC) which involves transport of cholesterol back to the 

liver for excretion or to other tissues that use cholesterol to synthesize hormones 

(Lewis and Rader, 2005). HDL particles assimilate cholesterol from cells into their 

cores, then the cholesterol is esterified by the action of LCAT. Finally, uptake of 

HDL cholesteryl esters by the liver, through the scavenger receptor B1 (SR-BI), 

hepatocytes and steroid-producing cells delivers cholesterol to sites where it can 

be metabolized or excreted in the bile (Lagrost and Gambert, 1991, Barter et al., 

2003, Alan, 1993).  

 

Mature HDL particles have a spherical shape. There are two main mature particles, 

HDL2 and HDL3 (Miller, 1990, Jaye et al., 1999). HDL particles acquire triglyceride 

via Cholesteryl Ester Transfer Protein (CETP) which promotes the transfer of 

cholesteryl esters and TG between HDL, LDL and VLDL (Lagrost and Gambert, 

1991, Barter et al., 2003, Alan, 1993). CE is carried from HDL to VLDL and LDL 

particles, and TG is carried in the opposite direction from VLDL and LDL to HDL 

particles, resulting in CE depletion and TG enrichment of HDL (Lagrost and 

Gambert, 1991, Barter et al., 2003, Alan, 1993). The subsequent HDL particle 

enriched with triglycerides may regenerate small HDL particles through hydrolysis 

from hepatic lipase (Kontush and Chapman, 2006, Von Eckardstein et al., 2001, 

Lewis and Rader, 2005). It has been, demonstrated that the lower HDL 

concentration in the plasma the higher the risk of developing CHD (Gordon et al., 

1989a) (see Table 1.5). 



1 Introduction and Literature Review  
 

24 
Khloud Jamil Ghafouri ® 2017 

 

Table 1.5 Enzymes involved in lipoprotein metabolism (Gurr et al., 2002, Frayn, 2009). 

Enzyme Secretion place Function 

ABCA1 Within cells Contributes to intracellular cholesterol transport to membrane 

CETP Liver  Mediates transfer of cholesteryl esters from HDL to VLDL 

LPL Endothelium Hydrolyses triglycerides of chylomicrons and VLDL to release free fatty acids 

LCAT Liver  Esterifies free cholesterol for transport within HDL 

HL Endothelium Hydrolyses triglycerides of VLDL2, IDL, and LDL 

HSL Adipocyte cells Hydrolyses triglyceride in adipocytes facilitating fatty acid release 

ABCA1 = ATP-binding cassette transporter; CETP = cholesteryl ester transfer protein; LCAT = lecithin-cholesterol acyltransferase; LPL = lipoprotein lipase; HL= Hepatic 
Lipase; HSL= hormone-sensitive lipase. 
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Figure 1.4. VLDL metabolism. VLDL is secreted from the liver with one apo B on the surface and triglyceride and cholesteryl ester in the core. Core triglyceride 
is hydrolyzed by lipoprotein lipase and becomes a remnant lipoprotein that is recognized by the liver in part, by apo E. The remnant lipoprotein is further 
processed to form LDL, which has a cholesterol-rich core and an intact apo B on its surface. The LDL particle can be removed by peripheral or hepatic LDL 
receptors. As the VLDL core is hydrolyzed, the unesterified cholesterol and phospholipid are transferred to HDL by phospholipid transfer protein to become the 
cholesteryl ester of HDL. 
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Function of Lipoprotein Lipase  

Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. It is mainly produced 

by parenchymal cells of adipose tissue, heart and skeletal muscle (Merkel et al., 

2002, Merkel et al., 1998, Olivecrona and Olivecrona, 1999). LPL is also produced in 

kidney (Ruge, 2004), lung (Hamosh and Hamosh, 1975), placenta (Lindegaard et al., 

2005), brain (Vilaró, 1990) as well as in pancreatic islets (Cruz et al., 2001b) and in 

macrophages (Camps et al., 1990). LPL hydrolyses mainly TG, but also some 

phospholipids in TRL (Goldberg and Merkel, 2001, Olivecrona and Olivecrona, 1999). 

Moreover, LPL has the ability to bind simultaneously to lipoproteins and to specific 

cell surface receptors, such as the LDL receptor-related protein (LRP) (Beisiegel et 

al., 1991) and this allows it to carry out a non-catalytic, bridging function, which 

leads to the accumulation and cellular uptake of lipoproteins (Mead et al., 1999). 

These interactions lead to the increased accumulation and cellular uptake of 

lipoproteins. A number of studies have been provided evidence for this function of 

LPL. This bridging function has been reported in several tissue culture-based studies 

and in vivo (Mead and Ramji, 2002, Mead et al., 1999, Merkel et al., 1998).A variation 

of such bridging action involves cells rather than lipoproteins. For instance, LPL can 

act as a monocyte adhesion protein by forming a bridge between the monocyte 

surface HSPG and the arterial endothelial cells (Mamputu et al., 1997).  

LPL activity is modulated by apoC-I, C-II and C-III (Jong et al., 1999). All three 

apolipoproteins are produced in the liver and they are physically associated with CM, 

VLDL IDL and HDL. Studies have provided support for a plasma TG-lowering effect of 

apoC-II via stimulation of LPL activity (Jong et al., 1999). It is wildly known that apoC-

II is an activator or co factor for LPL (LaRosa J. C., 1970). However, studies in mice 

have shown that the overexpression of the human apoC-II gene leads to marked 

hypertriglyceridemia via impaired plasma TG clearance (Hoogewerf et al., 1991), 

suggesting that at higher concentrations apoC-II may inhibit LPL (Jong et al., 1999). 

Several factors were shown to impact plasma apoC-II levels, including obesity 

diabetes and several hypolipidemic drugs (Kolset and Salmivirta, 1999). However, 

these factors are primarily pathological or pharmacological in nature, suggesting that 
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based on current knowledge apoC-II does not appear to be a major mediator of 

regulation of LPL activity in response to physiological stimulates, such as 

feeding/fasting, exercise and cold exposure. As opposed to C-II, C-I and C-III inhibit 

LPL-dependent plasma TG clearance, as shown using transgenic mice overexpressing 

human and mouse apoC-I or C-III (Nadanaka and Kitagawa, 2008, Pillarisetti et al., 

1997, Wang et al., 2013) or mice lacking apoC-I (Stins et al., 1992)., It was proposed 

that apoC-I and C-III inhibit LPL activity by displacement of the enzyme from TG-rich 

particles (Chajek-Shaul et al., 1990). In addition, apoC-I and C-III may influence 

plasma lipoprotein metabolism via modulation of the activity of other enzymes 

involved in lipoprotein processing, as well as by altering the binding of apoC-

containing lipoproteins to their receptors (Jong et al., 1999).  

1.4.6 Plasma lipids as risk factors 

 Cholesterol and triglycerides, like many other essential components of the body, 

attract clinical attention when present in abnormal concentrations. Increased or 

decreased levels usually occur because of abnormalities in the synthesis, 

degradation, and transport of their associated lipoprotein particles. When 

hyperlipidaemia or hypolipidaemia are defined in terms of the class or classes of 

increased or decreased plasma lipoproteins, the names hyperlipoproteinaemia or 

hypolipoproteinaemia are preferentially employed (Stone, 2001, Havel, 1982). 

Increased concentration of plasma lipids is etiologically related mainly to genetic 

disorders, dietary factors (such as ingestion of excessive calories, trans and saturated 

fatty acids), or ingestion of some drugs, or it may occur as a secondary phenomenon 

in a large variety of diseases (Cox and Garcia-Palmieri, 1990, Stone, 2001). In any of 

these instances the elevation of the different plasma lipoproteins usually occurs in a 

number of combinations that have led to their classification into six different 

patterns or phenotypes (see Table 1.6). 
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Table 1.6.Lipoprotein Patterns Resulting from Elevation of Different Plasma Lipid Fractions 
(Cox and Garcia-Palmieri, 1990). 

Lipoprotein pattern Increased lipid fraction Predominant lipoprotein 

Type I Triglycerides Chylomicrons 

Type 2a Cholesterol LDL 

Type 2b Cholesterol and 

triglycerides 

LDL and VLDL 

Type 3 Triglycerides and 

cholesterol 

Remnants 

Type 4 Triglycerides VLDL 

Type 5 Triglycerides and 

cholesterol 

VLDL and chylomicrons 

 

LDL as risk factor  
 
Many studies have repeatedly shown that elevated levels of cholesterol play a key 

role in the development of atherosclerotic disease. In particular, LDL cholesterol has 

been strongly associated with CHD risk (Pyörälä et al., 1994, Expert Panel on 

Detection, 2001, Stamler et al., 1986, Castelli et al., 1992, Verschuren et al., 1995). 

LDL measurements are complicated by the fact that LDL is not a single-molecular 

species, but a multimolecular particle aggregate composed of protein and thousands 

of molecules of cholesterol and other lipids. Quantification can thus be accomplished 

in different ways, depending on which molecular constituent of LDL is measured. 

Because cholesterol is the most abundant lipid in LDL, and cholesterol assays have 

been available for many years, LDL concentrations in clinical practice are routinely 

expressed in terms of measured or estimated cholesterol content (LDL cholesterol 

[LDL-C]) (Friedewald et al., 1972). An elevated total serum low-density lipoprotein 

(LDL) cholesterol ≥ 4 mmol.l-1, is considered as risk factor. An excess number of LDL 
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particles undergo oxidation and at hemodynamically vulnerable parts of the arterial 

vessels get trapped in the sub intimal space where they are taken up by monocytes 

that are transformed into macrophages (Pedersen, 2011). Ultimately these cells end 

up as foam cells in plaques and attract inflammatory molecules that further intensify 

the pathological process (Pedersen, 2011). Glycation is another type of atherogenic 

modification of LDL that may contribute to atherosclerosis (Soran and Durrington, 

2011). Glycation is the result of bonding of a protein or lipid molecule with a sugar 

molecule, such as fructose or glucose, via a non-enzymatic process. Small, dense 

LDL is more susceptible to glycation than more buoyant LDL (Soran and Durrington, 

2011, Ravandi et al., 2000).  

A number of key studies provide the evidence base to understand the role of LDL in 

CHD. Total cholesterol was positively associated with IHD mortality in both middle 

and old age and at all blood pressure levels (Prospective Studies Collaboration, 1995, 

Prospective Studies Collaboration, 2007). Evidence that lowering LDL leads to 

reduced risk has come from landmark clinical trials. The Framingham study 

(considered the longest running study of cardiovascular disease in the world) which 

started in 1948 with an original cohort of 5,209 subjects aged 30-62 at baseline 

concluded that serum total cholesterol derived its atherogenic potential from its LDL 

component and showed also the importance of assessing the cardio-protective HDL 

fraction (Castelli et al., 1986). The total/HDL-cholesterol ratio was demonstrated to 

be the most efficient lipid profile for predicting coronary disease. LDL was shown to 

be correlated with hemostatic factors, suggesting that there would be additional 

benefits to lowering LDL (Castelli et al., 1986).  

Important intervention trials helped proved the causal association between LDL 

cholesterol and CVD risk. The Scandinavian Simvastatin Survival Study (4S) further 

boosted the status of statins in preventive cardiology. A total of 4,444 patients with 

CHD and total plasma cholesterol 5.5–8.0 mmol.l-1 on a lipid-lowering diet were 

randomly allocated on a double-blind basis to simvastatin 20–40 mg once daily or 

placebo for five years. There was an unequivocal 30% reduction in all-cause mortality 

(P = 0.0003), due to a 42% reduction in coronary deaths (Scandinavian Simvastatin 
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Survival Study Group, 1994). Even after 10 years of follow up, Simvastatin treatment 

for 5 years in a placebo-controlled trial, followed by open-label statin therapy, was 

associated with survival benefit over 10 years of follow-up compared with open-label 

statin therapy for the past 5 years only (Strandberg et al., 2004). The West of 

Scotland Coronary Prevention Study (WOSCOPS) was a landmark primary prevention 

trial that used pravastatin to reduce LDL cholesterol, (Packard and Shepherd, 1997). 

It showed again that statin use was associated with a reduction in CHD events. These 

studies and many other studies have shown the benefits of reduction in cholesterol 

on cardiovascular end points. The Heart Protection Study (HPS) was a landmark study 

in secondary prevention in which 20,536 people were divided into those given a statin 

and those on placebo. The active treated arm showed a substantial reduction in risk 

over the 5 years of the trial (Collins et al., 2002). For people with raised LDL who are 

at high CVD risk, drugs (statins) are considered essential. Dietary intervention leads 

to only a moderate lowering of cholesterol i.e. in the Whitehall Study in which 4469 

patients completed the study, the patients who improved diet and lifestyle lowered 

cholesterol by only about 0.9 mmol.l-1 over 9 years compared with 2.7 mmol.l-1 for 

lipid lowering drug treatment (Bouillon et al., 2011). It has been observed that a 

reduction in plasma LDL-C concentrations by 1.0 mmol.l-1 reduces CVD mortality and 

non-fatal myocardial infarction by around 20-25% (Flather, 2010). It has been 

recommended to achieve a concentrations of 1.8 mmol.l-1 of LDL-C among high risk 

patients (Flather, 2010). 

Small Dense LDL and CHD 
 
Fisher et al proposed that small dense LDL may be more prevalent among CHD cases 

with premature atherosclerosis compared with controls (Fisher, 1983). The amount 

of TG transfer from TRL to LDL plays a crucial role in the formation of sdLDL. Thus, 

repeated episodes of exaggerated postprandial lipaemia can result in disturbances of 

the lipoprotein profile, characterized by elevated TG levels, increased hepatic VLDL-

TG production, generation of sdLDL and a decrease in HDL concentrations. Small, 

dense LDL is thought to be particularly atherogenic because these particles have low 

affinity for LDL receptors and this will increase the residence time in the circulation 

and their opportunity for binding to the arterial wall (Chancharme et al., 1999). 
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Cross-sectional studies have reported that the odds of finding CHD among individuals 

with small, dense LDL particles was increased by 2-5 fold compared with individuals 

having larger, more buoyant LDL particles in Caucasian men (Campos et al., 1992, 

Tornvall et al., 1991, Coresh and Kwiterovich, 1996) and women (Austin et al., 1988, 

Coresh et al., 1993).  

Other studies have explored further the atherogenicity of these LDL variants. Smaller 

and denser LDL particles are more susceptible to in vitro oxidation and taken up by 

macrophages and smooth muscle cells, leading to the development and progression 

of atherosclerosis (Carmena et al., 2004, Twickler et al., 2005, Tribble et al., 1994, 

de Graaf et al., 1991, de Graaf et al., 1993, Tribble et al., 1992), a mechanism that 

may contribute to the formation of foam cells in vivo. Small, dense LDL particles 

have also been shown to be degraded less rapidly than particles of intermediate 

density (Lamarche et al., 2008). This process has been attributed, among other 

factors, to the reduced binding affinity of small, dense LDL particles to the LDL 

receptor (Lamarche et al., 2008, Galeano et al., 1994). Small LDL particles also 

display an increased potential for interaction with proteoglycans of the arterial wall 

(Superko and Krauss, 1992, La Belle and Krauss, 1990), and appear to penetrate the 

endothelial barrier 1.7-fold more than large LDL particles (Rosenson, 2005). These 

processes could contribute to accelerate the formation of the atherosclerotic plaque 

and could explain, at least partly, the relationship between LDL particle size and 

density and the risk of CHD risk. 

Role of HDL in the prevention of CHD 
 
HDL is thought to protect against atherosclerosis in a number of ways including; 

removing cholesterol from foam cells, inhibiting the oxidation of LDL, and limiting 

the inflammatory processes that underlay atherosclerosis (Stender et al., 2005). The 

reduced plasma HDL cholesterol of <0.9 mmol.l-1 concentration characterizing 

hypertriglyceridaemic individuals with small dense LDL particlescan be explained by 

an alteration of intravascular lipase activities. It has been shown that abdominal 

obesity was associated with a reduced plasma post-heparin lipoprotein lipase activity 

and with an increased hepatic lipase activity (Despres et al., 1990, Despres et al., 
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1989) and these metabolic alterations may contribute to the hypertriglyceridemic-

low HDL cholesterol dyslipidemia noted among subjects with small, dense LDL 

particles. The first study to show the negative relation between HDL and heart 

disease was the Framingham Heart Study in the 1980s (Brezina and Padmos, 1994). 

Supportively it has been demonstrated that independent negative association 

between HDL and ischaemic stroke mortality during a long-term (21-year) follow-up 

(Tanne et al., 1997). Another prospective study measured the survival in 535 elderly 

and they found that a significant negative association of serum HDL-C with mortality 

(Nikkla and Heikkinen, 1990). An estimated rise of 10 mg.dl-1 of HDL-C is associated 

with a 2% lower risk of CHD for men and a 3% lower risk for women (Gordon et al., 

1989b). A recent meta-analysis, including 302.430 subjects from 68 long-term 

prospective studies, supported the importance of HDL-C measurement in the risk 

assessment for CAD (Di Angelantonio E et al., 2009).  

VLDL as a risk factor  
 
Although LDL is the lipoprotein most commonly associated with atherosclerosis, other 

lipoproteins, such as chylomicrons and VLDL are also considered to be atherogenic 

(Khetarpal and Rader, 2015). A link between fasting plasma TG and CHD was first 

proposed in the 1950s (Gofman, 1953) and this was later confirmed in 1996 in a meta-

analysis that showed that fasting TG levels are a weak risk factor for CVD (Austin et 

al., 1996, Austin et al., 1998). However, the association between fasting TG and CVD 

events is weakened or neglected in multivariate analysis which include HDL (Austin, 

1990, Austin et al., 1996). This reported weak link between fasting TG levels and CHD 

is somewhat surprising, given that HDL-C concentrations which are mainly 

determined by the efficiency of TRL metabolism have a strong relation with CHD 

(Griffin, 1999). The perceived weakness of the association might be due the 

significant biological variation observed in fasting TG concentrations (Durrington, 

1990, Tolfrey et al., 1999); this variations would lower its predictive power in 

multivariate analysis (Durrington, 1990). Moreover, fasting TG might not reflect the 

true state of the lipid’s metabolism over a 24 hour period; postprandial plasma TG 

may be a more accurate and sensitive indicator of TRL metabolic efficiency. This has 

been supported by the observation that individuals with similar fasting plasma TG 
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have different levels of postprandial plasma TG (Patsch et al., 1983, Alcala-Diaz et 

al., 2014, Schrezenmeir et al., 1992, Corella and Ordovas, 2005).  

Triglyceride concentrations in the postprandial period, are emerging as a 

significant independent risk factor for atherosclerosis, and may be a 

stronger predictor of cardiovascular disease and a contributor to insulin 

resistance compared with fasting TG levels (Langsted et al., 2011, Mora et 

al., 2008, Nordestgaard et al., 2007, Bansal et al., 2007, Schrezenmeir et 

al., 1997). Postprandial TG levels are well known to be a significant risk for 

CHD events (Mamputu et al., 2000, G Nordestgaard and J Freiberg, 2011, 

Patsch JR, 1992, Langsted et al., 2011). It has been reported also that 

postprandial TG has a stronger association to CHD than HDL-C 

concentrations (Patsch JR, 1992). Karpe (1999), found that a strong 

correlation between postprandial lipaemia and atherosclerosis.  

High concentrations of large VLDL (VLDL1, Sf 60-400) are the major 

determinants of plasma TG levels and believed to initiate a chain of 

reactions that generate the atherogenic lipoprotein phenotype associated 

with insulin resistance, obesity, T2D and MetS (Taskinen, 2003, Ginsberg et 

al., 2005, Bloomgarden, 2007). However, the elevation of CM and CM-

remnant concentrations might be as a result of the lipaemia that occurs 

due to impaired LPL function or any TRL and their remnants are the major 

lipoproteins which are increased in the postprandial hyperlipidaemia. 
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Chylomicrons as risk factors 
 

Zilversmit was first to suggest that postprandial lipaemia as an important 

risk factor of CVD (Zilversmit, 1979). The increase in postprandial TRL from 

fasting levels contributed to approximately 80% of the increase of 

postprandial total TG from total fasting TG (Nakajima et al., 2011a). 

Individuals with hypertriglyceridemia tend to have a prolonged postprandial 

hypertriglyceridemia after a fat-meal tolerance test (Patsch JR, 1992). 

Exaggerated postprandial TG can occur at any age, as it has been observed 

in young women aged 22.5 years with existence of other CHD risk factors 

(Kolovou et al., 2011). Higher postprandial TG has been measured among 

diabetic adolescents (Umpaichitra et al., 2004), children with familial 

hypercholesterolemia (Reiber et al., 2003), and central obesity (Moreno et 

al., 2001) compared to control healthy participants. Evidence suggests that 

high postprandial concentration of TG can promote generation of 

potentially atherogenic TRL remnants (Karpe, 1999, Nakajima et al., 2009). 

It is also has been observed postprandial TG correlates more strongly with 

Remnant Lipoprotein (RLP) than fasting TG (Nakajima et al., 2009). It also 

induces the structural abnormalities in LDL and HDL particles (Karpe et al., 

1993, Yang and Smith, 2007, Packard, 2003). 

High concentrations of TRL in the postprandial state affect endothelial 

function and contribute to atherosclerotic plaque formation (Zilversmit, 

1979, Groot 1991). An increased of CVD risk in men (32%) and women (76%) 

with elevated plasma concentrations of postprandial TG has been reported 

(Groot 1991, Patsch JR, 1992). Many other studies support Zilversmit’s 

hypothesis, and show that patients with CHD have increased postprandial 

levels of TG and intestinally-derived TRL in response to a fat load challenge 

compared to healthy controls (Patsch JR, 1992, Groot 1991, Simons et al., 

1987, Weintraub et al., 1996).  

Plasma TG concentration fluctuates throughout the day in response to the 

ingestion of meals. Even if measured after a 10 to 12 hours overnight fast 
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(as is normal clinical practice), TG levels vary considerably more than LDL 

and HDL cholesterol levels (Nakajima et al., 2011b, Varbo et al., 2011).  

Remnant lipoproteins and CHD risk  
 
RLP, include chylomicron remnants and VLDL remnants which are subject 

to clearance by the liver (Mahley and Ji, 1999). They can enter the arterial 

wall, where they are preferentially retained and then taken up by 

macrophages. In macrophage-based studies, lipoprotein particles that 

increase sterol delivery or reduce sterol efflux or that promote an 

inflammatory response are considered atherogenic (Moore and Tabas, 

2011). Compared with the nascent TG-rich lipoproteins, TRL remnants are 

depleted of TG, phospholipid, and apoC, but enriched in EC and apoE with 

a reduced size. Thus they are more likely to diffuse into the blood vessel 

wall, and retained by heparin sulphate proteoglycans (HSPG) within the 

arterial intima and can be taken up by macrophages (Nordestgaard and 

Nielsen, 1994, Tetali et al., 2010, Tomono et al., 1993). Therefore, they 

are more potentially atherogenic. Indeed, TRLP cholesterol level has 

recently considered as an independent risk factor for atherosclerosis and 

cardiovascular disease (Twickler et al., 2005, Nakajima et al., 2008). 

Postprandial RLP has also been shown to increase the expression of pro-

inflammatory genes such as, interleukin-6, intercellular adhesion molecule-

1, vascular cell adhesion molecule-1, and monocyte chemotactic protein-1 

(Norata et al., 2007), induce apoptosis (Shin et al., 2004) and accentuate 

the inflammatory response of cultured endothelial cells to tumour necrosis 

factor-α (Ting et al., 2007). It has been suggested that the atherogenic 

potential of these lipoproteins is mainly due to their cholesterol content 

(Varbo et al., 2013). A non-fasting remnant cholesterol increase of 1 

mmol.l-1 is associated with a 2.8-fold causal risk for ischemic heart disease, 

independent of reduced HDL cholesterol (Varbo et al., 2013). 
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1.4.7 Obesity insulin resistance, diabetes and CVD risk  

Prevalence and importance of obesity in CVD 

Obesity and overweight are considered as one of the leading health issues and obesity 

is becoming a global epidemic (Kelly et al., 2008). The increase in the prevalence of 

obesity has occurred across every age, sex, and race (Hill and Melanson, 1999). 

Overweight and obesity are defined as abnormal or excessive fat accumulation of the 

adipose tissue that may impair physical and psychosocial health (Haslam and James, 

2006, Naser et al., 2006). Overweight and obesity depend on the imbalance between 

energy intake and expenditure (Koopmans, 2003). To asses obesity Body Mass Index 

(BMI) is a widely used tool (see Table 1.7). 
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Table 1.7; Body Mass Index categories (WHO, 2012). 

Category BMI (kg.m-2) 

Under weight 16-18.5 

Normal 18.5-24.99 

Overweight 25.00 - 29.99 

Moderately obese 30-35 

Severely obese >35 

 

These BMI cut points in adults are the same for men and women, regardless of their 

age. For clinical and research purpose, obesity is classified into three categories: 

class I (30–34.9), class II (35–39.9), and class III (>40) (James et al., 2004). With the 

growth of extreme obesity, researchers and clinicians have further divided class III 

into super obesity (BMI 50–59) and super-super obesity (BMI > 60). 

The current used BMI cut-off values are based on morbidity and mortality studies in 

Caucasian population (De Lorenzo et al., 2016). Several studies observed that some 

obese patients do not show expected metabolic abnormalities despite their 

substantial excess of body fat, demonstrating that while obesity increases the 

possibility of having complications, not every obese patient will develop them 

(Tchernof and Després, 2013). Although BMI is the accepted method to classify 

obesity and it can be used to predict and evaluate disease risk in epidemiological 

studies, it does not differentiate the composition of lean versus fat tissue and 

therefore may lead to erroneous interpretations (Sharma and Kushner, 2009). In 

addition to BMI and WC, there are other markers for excess body fat evaluation used 

for clinical practice, as the skinfold thickness and the waist-to-hip ratio (De Lorenzo 

et al., 2016). 
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Finally, direct measure of body mass fat, through magnetic resonance imaging (MRI), 

computed tomography (CT), dual-energy X-ray absorptiometry (DXA), bioimpedance 

analysis, and total body water, is gaining interest to assess the obese phenotype, but 

more studies are needed before either can be routinely recommended for office use. 

 Many large scale studies have shown a positive relationship between h CVD mortality 

and body mass index, a widely used measure of human obesity (McGee and 

Collaboration, 2005, Wilson et al., 2002, Stevens et al., 1998, Raben et al., 2003, 

Flint and Rimm, 2006, Calle et al., 2000, Larsson et al., 1984, Lapidus et al., 1984). 

Although cohort studies from Gothenburg, Sweden, in 1984 found that fat distribution 

was potentially stronger risk factor for morbidity and mortality (Lapidus et al., 1984, 

Larsson et al., 1984). Intra-abdominal fat has been associated with adverse clinical 

effects, characterized by hyperinsulinemia, dyslipidemia, glucose intolerance, and 

hypertension, increased risk of diseases such as type 2 diabetes, cardiovascular 

disease, and some cancers (Han et al., 1995, Bosello and Zamboni, 2000). Waist 

circumference for a given BMI was found to be a strong risk indicator of all-cause 

mortality in both men and women, and the combination of waist circumference and 

BMI may be very relevant in clinical practice (Bigaard et al., 2003). (see Table 1.8). 
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Table 1.8. Sex-specific cut-offs for waist circumference in different ethnic population (WHO, 
2012). 

Country / Ethnic group Waist circumference 

Europids 
In the USA, the ATP III values ( 102 cm male; 88 cm 
female) are likely to continue to be used for clinical 
purposes 

Male 
Female 

94 cm 
80 cm 

South Asians 
Based on a Chinese , Malay and Asian-Indian 
population 

Male 
Female 

90 cm 
80 cm 

Chinese Male 
Female 

90 cm 
80 cm 

Japanese Male 
Female 

90 cm 
80 cm 

Ethnic South and Central Americans  Same recommendations for South 
Asian until more specific data are 
available 

Sub-Saharan Africans   Same recommendations for 
European data until more specific 
data are available 

EMME ( Arab) populations  Same recommendations for South 
Asian until more specific data are 
available 

 

WHO statistics estimate the prevalence of overweight adults in 2014 was more than 

1.9 billion and of these over 600 million were obese which is 13% of the world’s adult 

population in 2014 (WHO, 2014b). Obesity is the sixth most important risk factor 

contributing to the overall burden of disease worldwide (Ezzati et al., 2002). In 

England in 2013, the percentage of adults aged 16 years and over measured as 

overweight or obese (BMI > 25) was 67 per cent in men and 57 per cent in women; 

the percentage measured as obese was 26% in men and 24% in women (Health and 

Social Care Information Centre, 2014). In Scotland in 2014, 69% of men and 61% of 
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women aged 16 years and over were overweight or obese; 26% of men and 29% of 

women were defined as obese (The Scottish Health Survey, 2014).  

According to a recent health survey in the UK, the average prevalence of overweight 

and obesity (BMI > 25) is 66.1% in men and 57.5% in women, while the prevalence of 

obesity (BMI > 30) alone is 24.8% in men and 25.3% in women (NCD Risk Factor 

Collaboration, 2016). In the Middle East obesity has become a growing problem in the 

past two decades. The WHO indicates that the Gulf States have the highest rate of 

obesity and are in the list of top ten countries worldwide in term of obesity. In all 

WHO regions women were more likely to be obese than men. In the WHO regions for 

Africa, Eastern Mediterranean and South-East Asia, women had roughly double the 

obesity prevalence of men (WHO, 2014b, Alwan, 2011). Among different countries in 

the Middle East region there is significant heterogeneity in obesity prevalence (Sliem 

et al., 2012). Kuwait is the worst affected with a 42.8% obese population, placing 

Kuwait in the top 10 most obese countries in the world. Countries such as Saudi Arabia 

and Qatar are not far behind, with 35.2% and 33.1% obesity rates respectively (Arab 

Human Development Report, 2009). Obesity is assessed using body-mass index 

globally. Individuals are considered overweight with a BMI of 25 kg.m-2 or higher and 

obese with BMI of 30 kg.m-2 or more (WHO, 2014b). Obese individuals differ not only 

in respect to the excess fat mass but also in its regional distribution in different body 

sites. Indeed, central or visceral abdominal obesity is associated with substantially 

different metabolic profiles and cardiovascular risk factors than gluteal-femoral 

obesity. To assess these differences, it is useful to measure waist circumference 

(WC). Population studies have shown that people with larger WC have impaired health 

and increased cardiovascular risk compared with those with normal WC within the 

healthful, overweight, and class I obesity BMI categories. Abdominal fat is clinically 

defined as a WC of 102 cm or more in men and 88 cm or more in women (Sharma and 

Kushner, 2009). 
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Aetiology of obesity 

Obesity is a multifaceted problem that can occur due to physiological, psychological 

and cultural factors. The aetiology of obesity is highly complex and includes genetic 

predisposition, physiologic, environmental, psychological, social, economic, and 

even political factors that interact in varying degrees to promote the development 

of obesity (Haslam, 2007, Haslam and James, 2006, Hill and Melanson, 1999). Obesity 

is most commonly caused by excess energy consumption (dietary intake) relative to 

energy expenditure (energy loss via metabolic and physical activity) (Jequier et al., 

1987). Nutritional changes towards westernized diet, high in sugar and fats, and the 

sedentary lifestyle have led to increased obesity and CVD prevalence even in the 

developing countries (Sodjinou et al., 2008, Boutayeb, 2006, Popkin, 2002). Chronic 

positive shift of the energy equation resulting from increases in energy input, 

decreases in energy output, or both led to excess fat deposition in body (Bray, 1987). 

The imbalance in energy intake and expenditure does not need to be large to induce 

changes in body weight and an energy intake of just 5% higher than energy 

expenditure can result in 5 kg weight gain each year (Hill and Melanson, 1999). If 

repeated every year this has obvious implications for the development of obesity.  

 

Energy balance is determined by macronutrient intake, energy expenditure and 

partitioning in nutrient storage (Bray, 1997). Thus, protein and carbohydrate intakes 

spontaneously elicit powerful autoregulatory adjustments in protein and 

carbohydrate oxidation, while the fat balance is less acutely regulated and more 

easily disrupted (Flatt, 1995, Schutz, 1995, Schrauwen et al., 1997). However, at the 

same time consumption of carbohydrates in excess of what is required may decrease 

internal fat oxidation which will contribute to a positive fat balance (Frayn, 2009). 

Although interventions on a person's nutrition can reduce BMI, it has been shown that 

efforts towards BMI reduction can be affected by a person's genetic profile 

(Arkadianos et al., 2007, Ordovas and Mooser, 2004). The synergy of genes and 

nutrition is studied within the new fields of nutrigenetics and nutrigenomics (Ordovas 

and Mooser, 2004). These new disciplines establish new strategies for CVD control 

which traditionally has been limited to nutrition interventions (e.g. fruits, 
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vegetables, fish) and supplementation, the latter being more popular in American 

population (Pearson et al., 2000). In addition, physical inactivity has dramatically 

increased in the past several decades and more time is spent on sedentary behaviours 

such as television watching, surfing the internet, and playing video games (Andersen 

et al., 1998). 

 

Metabolic consequences of obesity 

Obesity contributes to many metabolic abnormalities such as hypertension, IR, T2D 

and dyslipidaemia (Haffner, 2006) and organ damage such as fatty-inflammatory 

degeneration of the liver and peripheral vascular disease (Abate et al., 2001, Visscher 

and Seidell, 2001, Skilton et al., 2011). It is also a significant risk for the development 

of CHD and increased arterial stiffness (Zebekakis et al., 2005).  

It is important to distinguish between android obesity and gynoid fat distribution, in 

which fat is allocated peripherally around the body (De Lorenzo et al., 2016). The 

type of obesity (android vs gynoid) and the amount of adipose tissue in the body could 

influence risk of developing CVD. Gynoid obesity, refer to preferential adipose tissue 

accumulation in the hips and thighs, with poor muscle-blood development, typically 

described as female obesity, a form much less associated with complications. Gynoid 

obesity is menaced only by direct mechanical complications of excessive adiposity: 

locomotor difficulty, abdominal pressure, limitation of respiratory motion, slowing 

of the venous and lymphatic circulation, cellulitis, lowering of energy, and reduction 

of the elasticity of the fat-infiltrated myocardium—complications which are all 

proportional to the degree of excess fat (Vague, 1956). Whereas, android obesity, 

refer to adipose tissue accumulated preferentially in the trunk/upper body area and 

pronounced muscle-blood development and suggested that this was a form of obesity 

closely associated with metabolic disturbances. It not only is associated with 

premature atherosclerosis and diabetes, but it is also the usual cause of diabetes in 

the adult in 80 to 90% of the cases. Gout and uric calculous disease generally appear 

in this form of obesity (Vague, 1956). Android obesity is associated with greater 

health risks such as increased TG and lower HDL concentrations in the plasma (Frayn 

2002) and the progression of atherosclerosis (Kortelainen and Särkioja, 1999). 
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Accumulation of visceral fat contributes to a higher risk of hypertriglyceridaemia 

(Couillard et al., 1998), glucose intolerance and IR (Yang and Smith, 2007), all of 

which increase an individual’s risk of developing CHD.  

Interestingly the risks of diabetes, hypertension and dyslipidaemia increase from a 

BMI of about 21 kg.m-2 , thereby reducing life expectancy and greatly increasing socio 

economic burden (James et al., 2004). Evidence suggests that a 1 kg.m-2 increase in 

BMI increases the risk of developing new-onset T2D by 8.4%. The risk of impaired 

fasting glucose rises by 9.5%. An increase in waist circumference by 1 cm increases 

the risk of type 2 diabetes and impaired fasting glucose by 3.5% and 3.2% respectively 

(Bombelli et al., 2011). Moreover, it has been observed in the Asian Pacific study 

that, for each unit increase in BMI there is a 9% increase in ischaemic cardiac events 

and 7% of hypertensive death and strokes (Collaboration, 2004). Many mechanisms 

driven by obesity are thought to be responsible for this increased health risk and 

almost all are based on the unifying principle of generalized inflammation (Wellen 

and Hotamisligil, 2005, Wellen and Hotamisligil, 2003, Visscher and Seidell, 2001). 

Other mechanisms include impairment of glucose and insulin function.  

 

Diabetes and insulin resistance  

Insulin is a hormone produced by the β cells of the islets of Langerhans (Greenfield 

and Campbell, 2004, Kriketos et al., 2004, Dimitriadis et al., 2011). These cells are 

are embedded in the exocrine portion of the pancreas (Greenfield and Campbell, 

2004, Kriketos et al., 2004, Dimitriadis et al., 2011). Insulin is carefully coordinated 

with the release of glucagon from pancreatic α cells. The relative amounts of both 

hormones released by the pancreas are regulated so that the rate of hepatic glucose 

production is kept equal to the use of glucose by peripheral tissues (Greenfield and 

Campbell, 2004, Kriketos et al., 2004, Dimitriadis et al., 2011). The synthesis and 

release of insulin are decreased during the scarcity of dietary fuels and during stress. 

These latter effects are mediated by adrenaline which is a hormone secreted by the 

adrenal medulla in response to stress, trauma, or extreme exercise. On the other 

hand, insulin secretion and synthesis are increased by glucose, amino acids, FA and 

gut hormones (Greenfield and Campbell, 2004, Kriketos et al., 2004, Dimitriadis et 
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al., 2011). Insulin exerts important actions on metabolism as shown in Table 1.9. For 

instance, in the liver and muscle tissues, insulin increases glycogen synthesis, and 

glucose breakdown by increasing glycogenesis and glycolysis respectively. In muscle 

and adipose tissue, insulin increases glucose uptake by increasing the number of 

glucose transporters (GLUT-4) in the cell membrane. Also, in the liver, insulin 

decreases the production of glucose through the inhibition of glycogenolysis and 

gluconeogenesis (Greenfield and Campbell, 2004, Kriketos et al., 2004, Dimitriadis et 

al., 2011). Insulin also decreases TG degradation by inhibiting lipolysis in adipose 

tissue. This is accomplished by inhibition of hormone-sensitive lipase (HSL) activity 

which reduces the concentration of circulating FFA. Insulin also increases TG 

synthesis in adipocytes by increasing the rate of transport and metabolism of glucose 

into adipocytes, providing the substrate glycerol 3-phosphate for TG synthesis. Insulin 

also increases LPL activity in adipose tissue by increasing its synthesis, which 

increases TG hydrolysis releasing FAs needed for TG synthesis. Also, insulin in the 

liver promotes de novo lipogenesis, amino acid cellular uptake and protein synthesis 

(Greenfield and Campbell, 2004, Kriketos et al., 2004, Dimitriadis et al., 2011).  

Table 1.9; Insulin’s effects on metabolism.  

Inhibit Stimulates 

 Gluconeogenesis  Glucose uptake 

Glycogenosis Glycolysis 

Lipolysis Glycogenesis 

Ketogenesis Protein synthesis 

 

An altered cellular biological response to insulin action is known as IR, and it is 

associated with T2D, obesity and metabolic syndrome (Greenfield and Campbell, 

2004, Kriketos et al., 2004). Therefore, IR is a strong sign of the risk of developing 
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T2D especially in obese individuals who are present with central or visceral obesity 

(Greenfield and Campbell, 2004, Kriketos et al., 2004). 

Insulin resistance, defined as inhibition of insulin stimulation of several metabolic 

pathways including glucose transport, glycogen synthesis and anti-lipolysis, is of 

considerable clinical relevance because it is pathophysiologically linked to several 

serious medical problems including type 2 diabetes (Boden, 2011). Type two diabetes 

is a metabolic disorder of the haemostasis of body fuel characterized by a decreased 

rate of insulin-mediated glucose uptake due to peripheral insulin resistance (Kasuga, 

2006). The pathology of diabetes is a complex process and it is accompanied by a 

variety of metabolic abnormalities attributed to IR (Atkinson and Maclaren, 1994, 

Baekkeskov et al., 1982, Catalano et al., 2014). Insulin sensitivity fluctuation occurs 

across through life cycle for example, during puberty, in pregnancy, and during the 

aging process (Karpe et al., 2011). Generalized insulin resistance occurs primarily as 

a result of obesity. Insulin resistance is associated with many serious medical 

conditions, such as type 2 diabetes, hypertension, atherosclerosis, and metabolic 

syndrome (Boden, 2011, Reaven, 1988).  

 

Adipose tissue affects metabolism by secreting hormones, glycerol, and other 

substances including leptin, cytokines, adiponectin, and pro-inflammatory 

substances, and by releasing NEFA. In obese individuals, the secretion of these 

substances will be increased (Karpe et al., 2011). Insulin sensitivity is inversely 

proportional to adiposity (Yki-Järvinen and Koivisto, 1983). Body fat distribution also 

has an influence on insulin sensitivity. Insulin resistance is associated with body mass 

index at any degree of weight gain. Insulin sensitivity also differs completely in lean 

individuals because of differences in body fat distribution. Individuals whose fat 

distribution is more peripheral have more insulin sensitivity than do individuals whose 

fat distribution is more central (Karpe et al., 2011). Abdominal fat is considered more 

lipolytic than subcutaneous fat, and it also does not respond easily to the antilipolytic 

action of insulin, which makes intra-abdominal fat more important in causing insulin 

resistance, and thus diabetes (Roden et al., 1996, Fain et al., 2004). 
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NEFA levels are strong predictors of muscle insulin resistance (Kelley et al., 2001). 

Increased release of NEFAs is observed in T2D and in obesity, and it is associated with 

insulin resistance in both conditions (Jelic et al., 2007). Muscle fat content is 

increased in obesity and more so in type 2 diabetes (Kelley et al., 2001). Shortly after 

an acute increase of plasma NEFA levels in humans, insulin resistance starts to 

develop. Conversely, when the level of plasma NEFA decreases, as in the case with 

antilipolytic agent use, peripheral insulin uptake and glucose monitoring will be 

improved (Roden et al., 1996). Circulating concentrations of plasma NFFA are 

determined to a large extent by the release by lipolysis of adipocyte triglyceride 

stores by adipose lipase (AL) (Lass et al., 2011) and HSL. Hormone-sensitive lipase 

stimulated release of FFA from TG stores in adipose tissue, is tightly controlled by 

hormones that are regulated by the metabolic status. During conditions such as 

fasting, when blood glucose is low or when energy demands are increased, glucagon, 

glucocorticoids and catecholamines lead to activation of HSL to promote hydrolysis 

of stored triglycerides to FFA (Stanley et al., 2005). By contrast, in the fed state 

insulin inactivates HSL and inhibits lipolysis (Stanley et al., 2005). In vivo, the 

majority of FFA that are delivered to tissues arise from hydrolysis of a triglycerides, 

which are transported in plasma in chylomicrons or VLDL particles and the remainder 

exist in the non-esterified form bound to albumin. Plasma FFAs can increase in 

healthy individuals due to adrenergic stimulation brought on by exercise, stress, 

fasting, ischemia, or diabetes. The release of FFA from chylomicrons or VLDL by 

lipoprotein lipase in these situations also increases plasma FFA (Stanley et al., 2005). 

When tissues up take FA, they have three major fates in the cell. They can be 

esterified into TG, diglycerides, or phospholipids; converted to sphingolipids; or 

oxidized for energy (Chavez and Summers, 2010). FFAs are transported to 

cardiomyocytes by either passive diffusion or transport proteins (Stanley et al., 

2005). Since the majority of FFA that enter the heart are to provide 70-90% of the 

energy (Lopaschuk et al., 1994), they must enter the mitochondrial matrix for β-

oxidation. FFA are transported across the outer and inner mitochondrial membrane 

by carnitine palmitoyl transferase 1 (CPT1), which is the rate-limiting step of fatty 

acid oxidation, and CPT2. The acetyl-CoA enters the tricarboxylic acid cycle, yielding 

NADH and FADH2, which enter the electron transport chain to produce ATP (Stanley 
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et al., 2005). Persistent exposure of tissues to increased concentrations of fatty 

acids, and associated changes in the metabolic fate of fatty acids are an important 

cause of insulin resistance. 

The resistance to insulin action in diabetes is due to reduced insulin action on target 

tissues such as skeletal muscle and adipose tissues (Atkinson and Maclaren, 1994, 

Baekkeskov et al., 1982). The normal effect of insulin on carbohydrate metabolism is 

reducing glucose levels on the plasma, on lipids it favours its synthesis (lipogenesis) 

and decreases its breakdown by favouring cholesterol biosynthesis by using glucose 

as substrate and also favours protein synthesis by decreasing protein catabolism. The 

dysregulation of insulin action on carbohydrate, protein and lipid metabolism causes 

the clinical condition ‘hyperglycaemia’ (Falciglia, 2007, Triplitt et al., 2015). Still it 

is highly debatable about the events that are causing T2D. It is associated with 

adverse changes in cardiovascular risk factors such as high TG levels, low levels of 

HDL-C and raised blood pressure. It usually results from impairment of ß cells to 

secrete adequate insulin in response to overeating, inactivity, obesity and IR (Weyer 

et al., 1999, Schrauwen-Hinderling et al., 2011). It has been observed that patients 

with diabetes are more likely to have high plasma TG concentration (Shen, 2007). In 

the San Antonio Heart Study patients with insulin resistance were at high risk for CVD 

development and presented with elevated TG, blood pressure and lower HDL 

compared with healthy non-diabetic individuals (Haffner et al., 2000). IR may be the 

underlying cause of impaired glucose tolerance (Weyer et al., 2001, Garvey and 

Hermayer, 1998). The exact mechanisms that cause IR are not fully understood and 

both environmental and genetic factors are involved. IR has been linked with one or 

more genes with varying frequencies among different ethnic groups (Mercado et al., 

2002, Stern and Mitchell, 1999). 

 

Diabetes and CVD risk 

According to IDF (International Diabetes Federation, 2014), there are currently 382 

million people with diabetes, which is projected to rise to 592 million by 2035. Over 

three-quarters of these cases are in low middle-income countries (International 

Diabetes Federation, 2014, Shaw et al., 2010, Whiting et al., 2011). Diabetes caused 
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around 4.9 million deaths in 2014 (International Diabetes Federation, 2014, Shaw et 

al., 2010, Whiting et al., 2011). Diabetes and IR are prime risk factors for CVD. 

Diabetes leads to metabolic, structural and functional changes in the heart and 

vasculature leading to diabetic cardiomyopathy, coronary artery disease and 

myocardial ischemia, and ultimately heart failure (Gray and Kim, 2011, Donnelly et 

al., 2000). Along with complications like retinopathy and nephropathy, peripheral 

vascular disease (PVD), it is also one of the leading risk factors for stroke and coronary 

artery disease (CAD). As people progress from impaired glucose tolerance (IGT) to 

diabetes mellitus, their risk of coronary heart disease (CHD) and stroke increases 2 

to 3 fold (Wilson et al., 1991, Stamler et al., 1993b, Zimmet et al., 2001), while the 

risk of peripheral vascular disease increases by four-fold (Haffner et al., 1998). The 

risk of all cause and CVD mortality is almost double in people with glucose levels ≥ 

11.1 mmol.l-1 in the fasted state, measured in response to an oral glucose load (Shaw 

et al., 2010). Diabetes also affects the heart muscle causing heart failure (Dokken, 

2008, Muhlestein et al., 2003, Thrainsdottir et al., 2005). A possible explanation is 

the impact of insulin resistance to induce impaired vascular function, which leads to 

impaired nitric oxide mediated vasorelaxation, which may contribute to hypertension 

and to increased risk of atherosclerosis (Zhang et al., 2012, Symons et al., 2009, 

Muniyappa et al., 2008). Moreover, genetic manipulation of insulin action in the 

vasculature will increase atherosclerosis (Rask-Madsen et al., 2012, Rask-Madsen et 

al., 2010, Qiang et al., 2012). Insulin resistance via multiple mechanisms may 

contribute to macrophage accumulation in the vessel wall to increase atherosclerosis 

and instability of vulnerable plaques (Bornfeldt and Tabas, 2011, Aurigemma et al., 

2013). Lastly, insulin resistance has been shown in many human and animal studies 

to increase the extent of myocardial injury in the context of myocardial ischemia, 

which may contribute to the increased risk of heart failure in affected individuals 

(Aurigemma et al., 2013, Abel et al., 2008). 

Causes of diabetic dyslipidemia 

Diabetic dyslipidaemia is caused by several factors, including hyperglycaemia, insulin 

resistance, hyperinsulinaemia, visceral adiposity, hepatic steatosis, and dysregulated 
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fatty acid metabolism (Taskinen, 2003, Chan and Watts, 2011). Insulin is involved in 

the regulation of lipid metabolism particularly in the release of FFA, as patients with 

IR or diabetes have higher TRL level and abnormalities in their lipid profile (Taskinen, 

2003). Any impairment of insulin sensitivity appears in the liver, skeletal muscles and 

adipose tissue (Turner and Clapham, 1998) and causes impairment in glucose uptake 

and storage (Turner and Clapham, 1998). Insulin resistance leads to an increase in 

the burden of fatty acid which builds up in the liver as triglyceride. The liver has 

three options for handling excess TG: store them, enhance β-oxidation in 

mitochondria (Gavrilova et al., 2000, Turner and Clapham, 1998, Meena et al., 2014, 

Shen, 2007, Björntorp, 1991, Wood, 2006) or stimulate the synthesis VLDL resulting 

in hypertriglyceridemia (Steinberger et al., 2001, Björntorp, 1991, Reaven, 1988, 

Reaven and Chen, 1996, Wood, 2006).  

In patients with T2D have high concentrations of both fasted and postprandial TG and 

apoB-48 (Lewis et al., 1991, Meng et al., 1983, Schaefer et al., 2002, Taniguchi et 

al., 2000, Curtin et al., 1996). Elevated concentrations of postprandial CM and CMRs 

in insulin resistance have been mainly attributed to impaired TRL clearance from the 

circulation (Shojaee-Moradie et al., 2013). In patients with T2D, increased plasma 

apoB-48 is related to reduce the rate of CMRs catabolism (Dane-Stewart et al., 2003, 

Hogue et al., 2007). Therefore, clearance of CMRs could be impaired as a result of 

increased hepatic-VLDL secretion in insulin resistance (Lewis, 1995). That is because 

increased availability of TG and cholesterol in T2D increases VLDL-hepatic synthesis 

which might affect the LPL activity in clearing CMR (Lewis, 1995).  

The overproduction of VLDL is a key mechanism leading to the development of 

dyslipidaemia in the metabolic syndrome and a frequent co-morbidity of peripheral 

IR and type 2 diabetes mellitus (Bamba and Rader, 2007). This resulting 

overproduction of VLDL1 causes an increase in small density LDL and decreases HDL 

transport to liver (Duell et al., 1991, Zimmet et al., 2001).  

Insulin resistance also contributes to elevated TG levels in plasma by reducing the 

activity of LPL which inhibit the clearance of both VLDL and TRL (Mead et al., 2002). 
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The slow removal of CM and CMRs by reduced LPL activity has been addressed in 

insulin resistance (Kobayashi et al., 2007) due to the diminished regulation of LPL by 

insulin (Patsch, 1998). Moreover, diabetic patients in general and diabetic women in 

particular have slow clearance of CM which expose the arterial wall to high 

concentrations of accumulated VLDL and CM (Goldberg and Merkel, 2001, De Man et 

al., 1996, Howard, 1999).  

Formation of small dense LDL in diabetics 
 
CETP promotes exchange of HDL cholesteryl ester for triglycerides of TRL. In the 

presence of high concentrations of chylomicrons and VLDLs, HDL cholesteryl esters 

are preferentially transferred by CETP to larger VLDL particles that become 

cholesterol rich and thus, potentially more atherogenic (Guérin et al., 

2001). Transfers of cholesteryl esters to TRLs, particularly chylomicrons, are 

enhanced in the postprandial state (Guerin et al., 2002, Contacos et al., 1998). The 

rate of cholesteryl ester transfer to TRLs and LDLs and the mass of CETP are increased 

in patients with a range of atherogenic dyslipidaemias (McPherson et al., 1991). Thus, 

reducing VLDL1 concentration is likely to induce clinically important changes to the 

atherosclerotic risk profile. 

Other studies show that insulin directly increased degradation of newly synthesized 

apoB (Sparks and Sparks, 1990). Therefore, insulin deficiency or hepatic insulin 

resistance may increase the secretion of apoB. Insulin may modulate the production 

of a number of other proteins that affect circulating levels of lipoproteins. These 

include apoC-III (Chen et al., 1994), a small apoprotein that may increase VLDL by 

preventing the actions of LPL and inhibiting lipoprotein uptake via the LDL receptor-

related protein (LRP). This leads to decrease in the clearance of postprandial remnant 

lipoproteins. LDL particles in diabetic patients can also become glycated, in a process 

similar to the glycation of the haemoglobin. Glycation of LDL lengthens its half-life 

(Napoli et al., 1997) and therefore increases the ability of the LDL to promote 

atherogenesis (Bucala et al., 1993).  

HDL acquires cholesterol and PL by the actions of phospholipid transfer protein (PLTP) 

or by the efflux of cellular FC by the esterification of this cholesterol by the enzyme 
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lecithin cholesterol acyl transferase (LCAT) (Hayek et al., 1993, Jiang et al., 1999, 

Young and Fielding, 1999). This metabolism is often defective in diabetes, reducing 

the production of HDL-C from this source (Taskinen, 1987). Also, high concentrations 

of TRL, stimulate CETP exchange of VLDL triglyceride for cholesteryl ester in the core 

of LDL and HDL. This triglyceride can then be converted to free fatty acids by the 

actions of plasma lipases, primarily hepatic lipase. The net effect is a decrease in 

size and an increase in density of both LDL and HDL (Chahil and Ginsberg, 2006). (see 

Figure 1.5). 

Dyslipidaemia is only one mechanism by which diabetes promotes atherosclerosis. IR 

is also believed to be a key factor mediating the progression of endothelial 

dysfunction (Lteif et al., 2005). Moreover, diabetes might also influence CVD by 

leukocyte adhesion, thrombogenesis and inflammation (Celermajer, 1997, Pickup and 

Mattock, 2003). The latter also has a paracrine suppressive effect on the secretion of 

adiponectin, a powerful insulin sensitizer which is secreted less as the adipocyte mass 

expands (Ryo et al., 2004, Kojima et al., 2005, Friedman and Halaas, 1998). The fat 

accumulation into islet cells might cause a reduction in the capacity of islets 

ultimately causing glucose intolerance and premature T2D (Ouchi et al., 1999, Kojima 

et al., 2005).  
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Figure 1.5. Dyslipidaemia of insulin resistance. Panel [A], shows the normal lipedmic response, Panel [B] shows insulin resistance/diabetes dyslipidaemia. 
Hypertriglyceridaemia reflects accumulation in plasma of TRL, the pivotal defect in lipoprotein metabolism. Over secretion of VLDL and chylomicrons by the 
liver and intestine, coupled with decreased catabolism, increases the plasma pool of TRLs, including remnant lipoproteins; increased hetero exchange of 
neutral lipids between TRL and LDL and HDLs via CETP results in remodelling of LDL and HDL to form correspondingly smaller, denser particles. LPL activity 
is decreased in skeletal muscle and adipose tissue owing to the inhibitory effects of insulin resistance and apoC-III. 

[A] 

[B] 
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1.5 Intervention to modify CVD through 
behavioural changes  

Most patients often undergo pharmacological treatments for lipoprotein disorders, 

obesity and IR. Long-term pharmacological therapies are often expensive, and 

probably undesirable to large sections of the population, whereas life style, diet 

and exercise can be an alternative solutions that are more acceptable and carry 

less risk of side effects.  

1.5.1 Controlling plasma lipids by exercise  

Moderate exercise is one potential non-pharmacological treatment to reduce 

elevated postprandial TG concentrations. In the last decade studies have shown 

that exercise can lower TG concentrations in both fasting and postprandial state 

by 20-25%, mostly the VLDL1 particles among highly risk CVD population (Gill et 

al., 2004a) such as centrally obese middle-aged men (Gill et al., 2004a) and 

postmenopausal women (Gill and Hardman, 2000). This effect is seen following a 

single exercise session and is not due to weight loss (Gill et al., 2004b, Gill et al., 

2004a). The TG-lowering effect cannot be replicated by a dietary-induced energy 

deficit of the same magnitude (Gill and Hardman, 2000) although it contributes as 

replacing the energy expended by exercise attenuates the TG-lowering effect 

(Burton et al., 2007). However, exercise induces lower postprandial TG 

concentrations when food is consumed ad libitum (Farah and Gill, 2012). 

Various studies indicated that exercise reduces postprandial lipaemia in various 

age groups and usually the effect of exercise appears after some hours of after 

exercise (Peterson et al., 1990). 

Borghouts et al., indicated that insulin sensitivity is improved by exercise training 

(Borghouts and Keizer, 2000). Mestek et al., (2009) reported that, in men with 

MetS, postprandial lipaemia tends to be lower after continuous aerobic exercise 

with 500 kcal of energy expenditure before a meal (Mestek, 2009). Ziogas et al., 

(1997) demonstrated that endurance exercise individuals exhibit a significantly 

lower postprandial hyperinsulinaemia response to a fat-rich meal compared with 

sedentary individuals (Ziogas et al., 1997). Ten hypertriglyceridaemic men with 
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insulin resistance were studied by Zhang et al., (2007), and they suggested that 

in individuals with metabolic syndrome, exercising at moderate intensity for 45 

min effectively resulted in a reduction of postprandial hypertriglyceridemia, while 

exercise for 30 min is sufficient to improve insulin action (Zhang et al., 2007). 

Similarly, Schrauwen-Hinderling et al., (2011) studied the effect of exercise on 11 

diabetic patients for 12 weeks of progressive endurance/strength training and 

found that although the cardiac lipid content remained unchanged, the aerobic 

capacity and insulin sensitivity were increased (Schrauwen-Hinderling et al., 

2011). Lee et al., (2011), investigated the effect of exercise on diabetic mice and 

implied that adiponectin (APN) suppresses inflammation and oxidative stress in 

the aorta (Lee et al., 2011). Supervised aerobic training exercise for 16 week in 

dyslipidemic patients without MetS was associated with weight loss, increased APN 

and a decline in LDL, IDL and VLDL-cholesterol (Yoshida et al., 2010). Endurance 

exercise training is known to generally increase HDL cholesterol concentrations 

and to decrease plasma triglyceride and LDL cholesterol levels (Després and 

Lamarche, 1993, Després and Lamarche, 1994).  

Studies show that trained individuals have lower postprandial lipaemia than 

untrained (Ziogas et al., 1997) and 50% lower TG concentration after exercise 

(Merrill et al., 1989). The period of endurance has been studied in different groups 

of individuals: overweight men and women with dyslipidaemia (Kraus et al., 2002) 

and older men and women (Halverstadt et al., 2007), and these indicate that the 

period of training reduces either fasting and/or postprandial TG. However, the 

effect on TG is due to short term metabolic response as shown by Herd et al., 

(2000) who found no difference in postprandial TG concentrations between 

endurance trained and untrained young adults. The basic role of exercise depends 

on how much energy is expended, according to a study conducted in 2008 by 

Burton et al., on 13 overweight/ obese men who enrolled for a three arms namely 

control, energy defect and energy replacement (Burton et al., 2007). The authors 

found that the greater reduction in postprandial TG was with energy defect by 

14%, compared to with 10% observed control and energy replacement arms 

respectively. 
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Comparing regular exercise with a single bout of exercise 

Regular exercise is beneficial for health by maintaining the healthy weight and it 

reduces TG concentration in the plasma (Jakicic, 2002). It also helps to reduce 

the acute changes in TG metabolism (Peterson et al., 1990). It has been found 

that there is no difference on level of TG on plasma between 30 min of moderate 

cycling (0.87 MJ per 30 min) accumulated in short bouts and one continuous 30 

min bout of cycling in obese men (Miyashita, 2008). Exercising at moderate 

activity over the course of 6 months, was shown to significantly increase HDL-C in 

young adult women (Duncan et al., 1991). In a population of men and women 

ranging from 50 to 65 years of age, however, an increased frequency of exercise 

resulted in the highest HDL-C levels (Kraus et al., 2002). Over the course of only 

3 weeks of exercise, although HDL-C levels did not increase, HDL preferentially 

converted to an anti-inflammatory state (Roberts et al., 2006). A beneficial effect 

on LDL particle size and density has been observed in long -distance runners 

(Williams et al., 1986).  

On the other hand, many studies show that a single session of exercise is more 

effective on TG reduction than continuous exercise. A session of aerobic exercise 

tends to reduce postprandial hyperinsulinaemia in healthy adult (Tsetsonis and 

Hardman, 1996, Zhang et al., 2007, Graham, 2004). Moreover, Mestek et al., 

(2009), stated that accumulating moderate-intensity exercise does not appear to 

effectively modulate postprandial lipaemia in men with MetS (Mestek, 2009). 

Similarly, different kinds of exercise either in its intensity or duration have the 

same influence in decreasing plasma TG (Tsetsonis and Hardman, 1996). The 

greatest effect of exercise appears 12-18 h after exercise (Peterson et al., 1990). 

Similarly exercise is considered to have short lived effect on insulin because insulin 

sensitivity can decline significantly after as little as 38 h after the final exercise 

training (Mikines et al., 1989). One single 90 minute session of moderate intensity 

exercise completely reversed FFA induced insulin resistance in healthy volunteers 

one day later (Schenk and Horowitz, 2007). 
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Energy Expenditure and Energy Deficit 

Accumulating evidence suggests that the TG lowering effect of exercise depends 

on the energy expended during the exercise sessions (Gill et al., 2003). It is widely 

accepted that the higher the energy expenditure, the larger amount of TG 

reduction (Petitt and Cureton, 2003). Maraki et al., (2009) studied the influence 

of low energy expenditure exercise (30% of maximal oxygen uptake(VO2max) along 

with mild energy intake restriction by 2.44 MJ on fasting and postprandial TG in 

young women (Maraki et al., 2009). They demonstrated that, fasting plasma TG, 

TG in TRL and serum insulin concentrations reduced by 18, 34 and 30% respectively 

after intervention compared with the control trial. Postprandial concentrations of 

plasma TG and TRL-TG also reduced significantly but there was no difference in 

serum insulin concentrations. Although energy intake restriction can reduce 

fasting TG, postprandial lipaemia and insulin concentrations, exercise was more 

effective in reducing fasting and postprandial TG and insulin in postmenopausal 

women (Gill and Hardman, 2000). Another study by Burton et al., indicated an 

approximately doubling of the reduction in postprandial lipaemia and rise in fat 

oxidation through exercise alone when compared to exercise plus energy 

replacement (Burton et al., 2007). 

Another way to manipulate the energy expenditure is to increase the duration of 

exercise. For instance significant reductions of both postprandial TG and 

postprandial insulin response was showed in premenopausal women who exercised 

for 2 h vs. 1 h at 50% VO2max another (Gill et al., 2002). They found that the 

reduction of postprandial TG concentrations was more after 90 min exercise at 60 

% of VO2max compared to the same period at 30% VO2max (Tsetsonis and Hardman, 

1996). Magkos et al., in different study found that a 2 h cycling at 60% decreased 

VLDL-TG –but not VLDL-apoB at the same intensity (Magkos et al., 2007, Magkos 

et al., 2006). As the exercise intensity and duration reduce postprandial TG, it 

also increases insulin sensitivity. It has been suggested that the effect of exercise 

on insulin sensitivity can last for 15 days on middle age overweight men which 

depends on intensity and weekly amount of exercise during each session 

(Breckenridge et al., 1982). Babraj and his team reported that low volume, high 

intensity exercise is effective in reducing plasma glucose and insulin in sedentary 

young adults (Babraj et al., 2009).  
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Possible Mechanisms for the effect of exercise on TRL 

The TG lowering effect of exercise does not appear to be due to a reduction in 

the rate of appearance of CM in the circulation (Gill et al., 2006, Gill et al., 

2001a). There is also no impact of exercise on CM number (James et al., 2007).  

Evidence supports the hypothesis that endurance trained individuals have high 

clearance rates of CM-like lipid emulsions compared with untrained peers 

(Carmena et al., 2004, Podl et al., 1994). LPL activity in muscles has been reported 

to increase over 200% in response to intense exercise sessions (Sady et al., 1986), 

which can be used as indicator of increased post-heparin plasma LPL activity (Podl 

et al., 1994). The level of LPL post exercise has been investigated in many studies. 

For instance; Miyashita and Tokuyama demonstrated that 30 min of moderate-

intensity cycling performed the day before a meal of moderate fat content reduce 

postprandial serum TG concentrations but did not affect serum pre-heparin 

lipoprotein lipase concentrations in young men (Miyashita, 2008). Similarly there 

was no difference observed in post-heparin plasma LPL activity, although it was 

correlated significantly with exercise-induced changes in fasting and postprandial 

TG (Gill et al., 2003).  

VLDL is the lipoprotein most influenced by exercise (Peterson et al., 1990, Gill et 

al., 2001b, Gill et al., 2006). The rise of postprandial lipaemia occurs due to a rise 

in VLDL remnant apoB-100 particles, not CM or CM remnants or apoB-48 particles 

(Havel, 2000). Recently it has been demonstrated that the major RLP associated 

with postprandial hyperlipidaemia is in fact VLDL and not CM remnants (Nakajima 

et al., 2011a). 

Despite the fact that CM is the preferred substrate for LPL (Fisher et al., 1995, 

Bjorkegren et al., 1997), it seems that VLDL concentration reductions after a 

session of exercise are mediated by increased peripheral clearance, rather than 

reduced hepatic production (Al-Shayji et al., 2012). It was hypothesised that this 

may be due to exercise altering the composition of VLDL1 to make it a more 

favourable substrate for LPL (Al-Shayji et al., 2012). The first objective of this 

PhD thesis is to explore and understand why LPL clears VLDL1 more rapidly 

after exercise by testing the hypothesis that the affinity of VLDL to LPL 
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increases after exercise. This work in described in Chapter 3. This may help to 

improve the understanding of the nature of these exercise-induced changes. 

For health care professionals this will help to emphasize the reason behind high 

level of TG and might recommend exercise as part of the treatment for people 

with high TG level.  

1.5.2 Controlling plasma lipids by diet modification  

A balanced dietary intake is necessary for optimal health benefits. Despite the 

essential role of diet in the treatment of many metabolic syndromes, the role of 

diet in the treatment of hypercholesterolemia has been largely neglected with the 

advent and use of medications (statins) (Kreisberg and Oberman, 2003). The 

relationship between plasma lipid and dietary intake has been studied in 

populations and individuals. Older studies examined total cholesterol and 

triglyceride levels; more recent studies have looked at specific lipoproteins and 

apolipoproteins.  

Studies relating the effect of diet to serum lipid levels and to rates of 

atherosclerosis in free-living populations have consisted mostly of cross-sectional 

surveys. Some studies found correlations between dietary fat and serum lipids 

when different groups were compared, e.g. Japanese living in urban and rural 

areas (Ueshima et al., 1982) and Polynesian groups consuming different levels of 

dietary saturated fat (Prior et al., 1981). Surveys of single populations such as that 

of the Western Electric Study showed that a high ratio of polyunsaturated to 

saturated fat was correlated positively with plasma lipid levels and positively with 

a decreased incidence of coronary heart disease (Shekelle et al., 1981), but the 

correlation coefficients were small. The Tecumseh Study, on the other hand, 

failed to show a correlation between fat, cholesterol, and other macronutrient 

intake and serum cholesterol and triglyceride levels (Nichols et al., 1976). The 

North American diet pattern of consuming higher quantities of red meat, high-fat 

dairy products, and refined grains and low amount of fiber was positively 

correlated with higher CRP (Fung et al., 2001). The Northern Manhattan Study 

(Gardener et al., 2011), European Prospective Investigation into Cancer and 

Nutrition (EPIC) cohort reported (Dilis et al., 2012) that a dietary pattern 

resembling the Mediterranean Diet was inversely associated with a composite 
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outcome of CVD (ischemic stroke, myocardial infarction or vascular death). 

Worldwide cross-sectional surveys, both prospective and retrospective, generally 

support the concept that low-fat diets correlate with lower lipid levels and lower 

incidence of atherosclerotic heart disease; and they are used to support position 

papers advocating the adoption of such diets (Gotto Jr et al., 1984). Nevertheless, 

there are problems in interpreting such studies. It is difficult to assess the part 

played by other factors such as the type of consumed fat, percentage of fat and 

carbohydrate, exercise, total caloric intake, obesity, and stress (Gordon et al., 

1984). More information concerning the relationships of diets and lipoproteins has 

come from individual and group feeding studies.  

 

Effect of total fat ingestion on lipid metabolism  

There is growing evidence about how major shifts in the macronutrient content of 

the diet can affect plasma lipoprotein patterns, which can be used to form dietary 

recommendations to minimize the risk of developing CVD. Early work focused on 

assessing the effect of a high fat meal on plasma lipoprotein pattern and it was 

observed that plasma TG increased (Havel, 1957b). However, later in the 1960s, 

it was noted that diets very low in fat resulted in hypertriglyceridemia (Ahrens Jr 

et al., 1961, Frayn, 2009, Lichtenstein and Van Horn, 1998). Hudgins and co-

worker observed an increase in fatty acid and VLDL-TG induction by very-low-fat, 

high-sugar diets (Hudgins et al., 1998, Nestel et al., 1970). From the early 1950, 

the role of fatty acid on plasma cholesterol was studied (Hegsted et al., 1959, 

Keys et al., 1950) and it is accepted that dietary saturated fatty acids (SFAs) are 

detrimental to health (Hunter et al., 2010). It was observed that not all saturated 

fatty acid (SFA) had similar effect on plasma cholesterol. The shorter the chain of 

saturated fatty acids (6:0–10:0) the lower effect on plasma cholesterol, whereas 

those with intermediate chain lengths (12:0–16:0) increased concentrations of 

cholesterol (Keys et al., 1950, Mcgandy et al., 1970). This increase in cholesterol 

level has been attributed to a decrease in low-density lipoprotein receptor activity 

(Matthan et al., 2004). Saturated fatty acid increases plasma LDL-cholesterol 

concentrations and lowers levels of cholesteryl esters in the liver (Spady and 

Dietschy, 1985). Myristic and palmitic acids increased LDL-C and HDL-C levels to 

a similar extent without significantly altering TC/HDL-C ratio, whereas lauric acid 

had the largest LDL-C- and HDL-C-raising effect leading to a decrease in the 
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TC/HDL-C ratio (Mensink et al., 2003). Epidemiological studies have found an 

association between higher saturated fat intake and higher rates of cardiovascular 

disease (Howard et al., 2006, Dayton et al., 1969). Randomized clinical trials have 

documented that lowering saturated fat reduces coronary events and reduces 

cholesterol, and that Mediterranean diet (high in fibre, olive oil, fish, and a 30% 

fat) improves survival (De Lorgeril et al., 1999, Mauger et al., 2003, Roth and 

Brown, 2005).  

 

Effect of quality of diet fatty acids on lipid metabolism 

Trans-fatty acids 
 

The frequent ingestion of high fat content foods such as margarine, cookies, cake 

and white bread which contain partially hydrogenated vegetable oils provide the 

body with trans-fatty acid (TFA) which are significantly associated with higher 

risks of CHD. A diet with the same energy density from saturated or cis unsaturated 

fats showed that the consumption of trans fatty acids raises levels of LDL-C, 

reduces levels of HDL-C, and increases the ratio of total cholesterol to HDL 

cholesterol (Stampfer et al., 1991). For every 1% increase in total calories from 

TFA, the amount of LDL-C increases by 2% (Cleeman et al., 2001). Trans fatty acid 

also increases the plasma concentration of TG (Mensink et al., 2003), and Lp(a) 

lipoprotein (Zaloga et al., 2006) and reduces the particle size of LDL-C more than 

other fats (Mauger et al., 2003). Five weeks consumption of TFA derived partially 

hydrogenated fats was associated higher total and LDL cholesterol, and lower HDL 

cholesterol concentrations in post-menopausal women (Matthan et al., 2004). 

These changes were attributed to impaired LDL apoB-100 and enhanced HDL apoA-

I fractional catabolism. Consumption of TFA did not alter TRL apoB-100 or apoB-

48 metabolism (Matthan et al., 2004). The combined effect of dietary saturated 

and trans fatty acids on plasma lipids is amplified by the lack of n-3 long-chain 

fatty acids, which have complex competitive effects on prostanoid synthesis, 

cellular function, and thrombosis (Amine et al., 2002). Epidemiological studies 

have demonstrated that diets low in saturated fat are associated with lower rates 

of CVD (Vessby, 2003, Trial, 2006). For instance the inverse relationship of dietary 

ω-3 fatty acids and CVD events (Dyerberg et al., 1975). However, The effects of 
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dietary fats on plasma TG is less clear than the effects of dietary fats on 

cholesterol and tend to be determined by specific fatty acids (Howell et al., 1997).  

Monounsaturated fatty acid 
 
Zheng et al. reported that replacing 17% of total energy intake from complex 

carbohydrate with MUFA selectively stimulated the secretion of VLDL and IDL 

particles containing apoE and apoC-III, while suppressing the secretion of particles 

that did not (Zheng et al., 2008). Consequently, the concentration of apoB-

containing lipoproteins with apoE and apoC-III was higher with the MUFA diet 

compared with the carbohydrate diet (Zheng et al., 2008). The MUFA diet was also 

associated with increased VLDL and IDL apoB catabolism, although LDL apoB 

metabolism was not altered (Zheng et al., 2008). This study lends support to the 

potential benefits of increased MUFA and reduced complex carbohydrate in 

modulating lipoprotein metabolism. The study, however, was non-randomized and 

short-term, with an intervention period of only three weeks. Notably, this study 

compared two relatively healthy diets, both low in SFA, high in fiber and utilized 

primarily low glycaemic foods. High-MUFA diets have gained significant attention 

as an alternative dietary pattern to the commonly recommended low-fat and high-

carbohydrate (CHO) pattern. Several meta-analyses of randomized controlled 

trials (RCTs) suggested potential benefits of a high-MUFA diet compared with a 

high-CHO diet in improving metabolic factors, such as glycemic control, serum 

lipids, and blood pressure, among both healthy individuals and T2D patients 

(Schwingshackl et al., 2011, Shah et al., 2007, Garg et al., 1994). A recent meta-

analysis illustrated that, When comparing high-MUFA to high-CHO diets, there 

were significant reductions in fasting plasma glucose, TG, body weight, and 

systolic blood pressure along with significant increases in HDL cholesterol (Qian et 

al., 2016). Also a diet rich in MUFA has been linked to a reduction in LDL oxidation. 

Studies found that the particles rich in MUFA have been shown to be less 

susceptible to oxidative modification compared to LDL particles enriched with n-

6 fatty acids (Parthasarathy et al., 1990, Abbey et al., 1993, Bonanome et al., 

1991). 
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Polyunsaturated fatty acids  
 
An aspect of CVD research focuses on the cardio-protective effects of fish oils and 

of individual omega 3 polyunsaturated fatty acids (n-3 PUFA), or more specifically, 

eicosapentaenoic acid (EPA; 20:5 n-3), docosahexaenoic acid (DHA; 22:6 n-3) and 

α linolenic acid (ALA; 18:3 n-3). Many large-scale studies, including primary and 

secondary prevention clinical trials and meta-analysis of cohorts, have concluded 

that consumption of fatty fish, fish oils or individual n-3 PUFA is an effective 

dietary strategy to lower CVD morbidity, mortality, as well as classic and emerging 

risk factors (Bucher et al., 2002, von Schacky, 2003, Calder, 2004, Von Schacky 

and Harris, 2007, Yaktine and Nesheim, 2007, Hu et al., 2002). Clinical and 

epidemiological trials have shown that an elevated intake of long-chain was also 

associated with a reduced cardiovascular risk, reduced inflammatory processes 

and reduced all-cause mortality (Simopoulos, 2008, Tapiero et al., 2002). A high 

intake of n-3 PUFA has been associated with antiarrhythmic, anti-thrombotic and 

vasodilatory effects (De Caterina, 2011, Leaf et al., 2003). Replacement of energy 

from saturated fat with PUFA has been shown to decrease TC and LDL-C, with a 

concomitant decrease in HDL-C (Hodson et al., 2001). In addition, n-3 PUFA have 

been shown to improve a number of cardiac hemodynamic factors such as blood 

pressure (Mozaffarian et al., 2006, Geleijnse et al., 2002) and endothelial function 

(Hirafuji et al., 2003, Goodfellow et al., 2000) plasma TG reduction (Harris, 1997) 

anti-inflammatory responses (Calder, 2006) and anti-atherosclerotic effects (von 

Schacky, 2003). 

 
 

Effect of carbohydrate ingestion on lipid metabolism  

On the other hand, it has been observed that the ingestion of CHO alone (as in an 

oral glucose tolerance test (OGTT) has no influence on lipoprotein particles 

(Havel, 1957a). In free living, the majority of ingested food contains CHO, fat and 

protein. Most human interventions are carried out by holding the protein content 

of the diet relatively constant and varying the amount of fat and CHO. Therefore, 

many studies have been examining the effect of different ratios of fat/CHO diets 

on metabolism. Increases in the relative proportion of CHO result in reductions in 

HDL-C and an increase in TG concentration (Stampfer et al., 1996, Lichtenstein et 

al., 1994, Grundy et al., 1986, Mensink et al., 2003). 
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Diets high in carbohydrate (60-80% of calories) and low in fats (0-25% of calories) 

have marked effects on plasma levels of lipoproteins and on lipoprotein 

metabolism. The substitution of SFA by CHO decreases HDL-C and increases TG 

(Knopp et al., 2000, Howard and Wylie-Rosett, 2002). Plasma TG and VLDL–TG rise 

in both normal and hypertriglyceridaemic subjects (Blum et al., 1977, Falko et al., 

1980b, Falko et al., 1980a, Ginsberg et al., 1981, Huff and Nestel, 1982, Kashyap 

et al., 1982, Liu et al., 1984, Schonfeld et al., 1976). Hepatic secretion of VLDL 

increases (Schonfeld and Pfleger, 1971), and the VLDL becomes more TG enriched 

(Falko et al., 1980b, Ginsberg et al., 1981, Kashyap et al., 1982). The elevations 

in plasma TG reach a peak after one week and decrease after three weeks, 

although they do not return to baseline levels in that time (Kashyap et al., 1982). 

Interventional studies comparing the effects of low and high carbohydrate diets 

on LDL found that high-carbohydrate diets affect LDL particle size, generating 

smaller, potentially more atherogenic LDL particles as compared to low 

carbohydrate diets. During 3 days. After the low-fat and high-carbohydrate diet, 

LDL particle size distribution shifted towards smaller particle size. These changes 

in LDL particle size were thought to be the consequence of an observed increase 

in large triglyceride-rich VLDL particles and serum triglycerides, which both are 

of importance in the generation of small, dense LDL as mentioned above (Guay et 

al., 2012). However, changes such as those observed in the above-mentioned study 

have not been observed in another study after just a single meal with different 

fat content (Callow et al., 2002). One study of 4 weeks duration demonstrated a 

smaller LDL peak size in individuals after a low-fat and high-carbohydrate diet 

compared to a high-fat and low-carbohydrate diet (Faghihnia et al., 2010). A long-

term diet intervention over 9 months has been performed in overweight or obese 

middle-aged adults. Most importantly, LDL size increased in this population during 

a low-carbohydrate diet, whereas no differences were observed during a low-fat 

diet. The change in body weight did not differ between these two groups 

(LeCheminant et al., 2010). HDL-C also decreases after a few days on a high -

carbohydrate diet (Kashyap et al., 1982, Gonen et al., 1981, Blum et al., 1977, 

Schonfeld et al., 1976), with the HDL2 fraction falling to a greater extent than 

HDL3 (Gonen et al., 1981). Thus, in some respects diets high in carbohydrate and 

those with high P/S ratios both produce similar effects on LDL and HDL, but not 

on VLDL. There are significant changes in apolipoprotein concentrations in 
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response to these short-term increases in dietary carbohydrate. Proteins of the C 

family increase in response to high-carbohydrate diets. Plasma levels of apoC-II 

increase both in normal subjects fed a high-carbohydrate formula diet and in 

patients with high plasma TG (Falko et al., 1980b). Kashyap et al, found increases 

in both apoC-II and C-III but the ratio of apoC-III to apoC-II was lower in VLDL and 

HDL2 after three weeks of a high-carbohydrate diet; this indicates a relative 

enrichment of VLDL and HDL2 with apoC-II. Kashyap et al suggest that the 

difference in amounts of apoC-III and C-II in HDL2 subfractions may be due to 

differences in binding affinities of the different apoC's for HDL subfractions 

(Kashyap et al., 1982). 

The type of carbohydrate used in the diet significantly affects TG and VLDL 

responses. On a diet with 70% carbohydrate and with sucrose contributing 55% of 

calories, VLDL increased in six of seven subjects (Nestel et al., 1979). VLDL-apoB 

also increased. In two subjects there were increases in removal rates of apoB VLDL 

from the circulation, whereas in four subjects there was decreased removal of 

apoB VLDL. In most of the studies involving high carbohydrate diets, sucrose 

comprised a large part of the additional carbohydrate calories. In a recent study 

of hypertriglyceridaemic subjects, when the sucrose content of the diet was 

increased from 9 to 15% while total carbohydrate content was increased from 40 

to 60%, the degree of fasting hypertriglyceridemia and increase in VLDL 

triglyceride were greater than if sucrose was kept at a constant percentage of 

total carbohydrate (Liu et al., 1984). VLDL triglyceride, VLDL cholesterol, and 

VLDL protein rise by factors of 2.4, 1.67, and 1.88 respectively; LDL cholesterol 

decreases while LDL triglyceride remains the same. However, this response is 

attenuated when complex CHO primarily consisting of whole grains are given. Fifty 

percent CHO intake worsens lipid and non-lipid risk factors in patients with the 

metabolic syndrome. However, some CHO commonly referred to as complex has a 

higher glycaemic index (GI) and consequently increase insulin responses more than 

simple sugars (Ludwig, 2002). GI is a term used to classify food according their 

effects on glycaemic responses (Wolever et al., 1991). High GI Foods are digested 

and transformed into glucose rapidly for a given amount of CHO than foods with a 

low GI (Axen and Axen, 2010, Rossetti et al., 1987). A high glycaemic load (product 

of GI and CHO content) is associated with higher fasting TG and lower HDL-C levels 
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(Ludwig, 2002). Increased dietary carbohydrates, particularly simple sugars and 

starches with high glycemic index, can increase levels of small, dense LDL (Siri 

and Krauss, 2005). Ingesting high glycaemic meals can lead to various metabolic 

changes that promote excessive food intake (Ludwig et al., 1999). On the other 

hand, a meta-analysis of observational studies reported an association between 

the consumption of lower GI foods and lower TG, LDL-C and total cholesterol and 

higher HDL-C concentrations (Barclay et al., 2008, Goff et al., 2013). It was 

estimated that replacement of high GI foods for low GI foods can result 15% to 

25% reductions in TG concentrations (Pelkman, 2001). 

However, most studies have examined the long-term effect of high CHO diet or 

high fat diet or specific fatty acid ingestion on total plasma TG, HDL and LDL. 

There is limited data on the acute effect of fat, CHO or combination of both on 

the lipoprotein particles metabolism.  

Effects of dietary fibre on lipid metabolism 
 
Dietary fibre and whole grains contain a unique blend of bioactive components 

including resistant starches, vitamins, minerals, phytochemicals and antioxidants. 

As a result, research regarding their potential health benefits has received 

considerable attention in the last several decades. Epidemiological and clinical 

studies demonstrate that consumption of dietary fiber and whole grain intake is 

inversely related to obesity (Liu et al., 2002), type two diabetes (Meyer et al., 

2000), cancer (Forman and Hernandez, 2010) and CVD (Streppel et al., 2008).  

Dietary fibre, by its impact on the glycaemic response and other aspects of 

metabolism, may also have important effects on cardio metabolic pathways 

(Pereira and Liu, 2003). An increasing number of studies have reported that for 

every 10 g of additional fiber added to a diet the mortality risk of CHD decreased 

by 17–35% (Pereira et al., 2004, Streppel et al., 2008). Based on findings from 

epidemiologic studies regarding the protective effects of fiber intakes, the Dietary 

Reference Intakes (DRI) recommended consumption of dietary fiber is 14 g/1000 

kcal, or 25 and 38 g/day for adult women and men, respectively (Slavin, 2008).  

It has been proposed that dietary fibre could modify underlying CVD risk factors 

including lipid and lipoprotein metabolism, insulin homeostasis, inflammatory 

markers and coagulation, and improves insulin sensitivity, thereby reducing the 
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risk of CVD mortality (Erkkilä and Lichtenstein, 2006, Kokubo et al., 2011, Eshak 

et al., 2010). Although studies showed beneficial effects of soluble, gel-forming 

fiber on cardio metabolic risk factors, food sources of mainly insoluble fibers, 

primarily contributed by cereal products, have been the fiber most consistently 

associated with lower risk of CVD (Erkkilä and Lichtenstein, 2006). Findings of 

some investigations also suggest that the role of dietary fibre is more dependent 

on its types and sources, rather than the amount of intake (McKeown et al., 2004, 

Hosseinpour-Niazi et al., 2011). Different types or sources of dietary fibre may 

induce different physiological effects; soluble fibre is responsible for the 

cholesterol-lowering effect of dietary fibre whereas insoluble fiber interacts with 

intestinal absorption of foods and contributes to reduction in clotting factors 

(Brown et al., 1999). 

It has been demonstrated that inflammation may be an important mediator in the 

association between consumption of dietary fibre and CVD. A research has 

demonstrated an association between dietary fibre and levels of C-reactive 

protein (CRP), a clinical indicator of inflammation (King et al., 2003). After 

adjustment for age, gender, race, education, smoking, physical activity, BMI, total 

energy consumed, and fat intake. Dietary fiber intake from a variety of sources 

has been associated with a significantly decreased risk of coronary heart disease. 

In the Nurses’ Health Study, women in the highest quintile of fibre intake (median 

22.9 g/day) had an age- adjusted relative risk for major coronary events that was 

47% lower than women in the lowest quintile (11.5 g/day) (Stampfer et al., 2000).  

 
Several studies have evaluated dietary fibre in relation to intermediate vascular 

markers such as cholesterol. Studies suggest that 3 g soluble fiber from oats (three 

servings of oatmeal, 28 g each) can decrease total cholesterol and LDL by 0.13 

mmol.l-1 (Gulati et al., 2017, Katz, 2001). The mechanism can be explained by the 

reduction in the absorption of ileal bile acid (Morgan et al., 1993). These soluble 

forms of dietary fibre appear to have a negligible effect on triglyceride or HDL 

levels. Insoluble dietary fibre subgroups are derived largely from cereal sources 

and have little or no effect on lipids and lipoproteins (Jenkins et al., 2000). 

Effect of high fat vs. high carbohydrate diets 
 
In a meta-analysis of randomized controlled trials comparing high fat diets with 

high carbohydrate diets, it has been found that, both diets reduced participants' 
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blood pressures, total to HDL cholesterol ratios, and total cholesterol, LDL 

cholesterol, triglycerides, blood glucose, and serum insulin levels and raised HDL 

cholesterol; however, participants on high fat diets had greater increases in HDL 

cholesterol and greater decreases in triglycerides but experienced less reduction 

in total and LDL cholesterol compared with persons on high carbohydrate diets 

(Hu et al., 2012, Mansoor et al., 2016b, Sackner-Bernstein et al., 2015). However, 

it should be noted that the associations between diets and lipid profiles may be 

stronger in shorter-term studies due to greater control over the participants’ diets 

and higher compliance rates, and might provide insight to how these effects might 

be long-term. The acute effect of high carbohydrate diet on lipid metabolism 

would explain the mechanism behind the long term ingestion. It has been shown 

that ingesting high carbohydrate diet by patients with non-insulin-dependent 

diabetes mellitus led to little or no decrease in postprandial plasma or lipoprotein 

TG or cholesterol concentrations and an actual increase in concentration of 

potentially atherogenic small chylomicron and/or chylomicron remnants (Chen et 

al., 1992). Also, in nondiabetic population, it reduces total, LDL and HDL 

cholesterol. In contrast, the acute ingestion of fat has been related to increase in 

the postprandial concentrations of TG, phospholipid and remnant lipoprotein 

(Wilson et al., 1985, Nestel, 1964, Jeppesen et al., 1995, Cohen et al., 1988, 

Havel, 1957b). In addition, the acute fat ingestion increases plasma NEFA 

concentrations (Katan et al., 1994); also, the acute ingestion of fat led to stepwise 

increases in the postprandial rise of chylomicron and serum TG and induced 

marked changes in serum lipoproteins postprandially (Dubois et al., 1998). 

However, there is a limited knowledge in the effect of the acute ingesting equal 

amount of carbohydrate with fat or ingesting them separately on both TRL and 

CRL (Austin, 1990).  

In real life, fat and carbohydrate are consumed together, thus it is important to 

understand how this co-ingestion influences postprandial metabolic responses. 

Manipulating dietary macronutrient content has been shown to improve blood lipid 

profiles even in the absence of weight loss. For example, high fat diet increased 

HDL concentrations and decrease TG concentrations (Shai et al., 2008). Another 

study that compared the effects of dietary macronutrient content, found that the 

high fat/low carbohydrate diet resulted in greater improvements in blood lipids 
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and systemic inflammation when compared to the low fat/high carbohydrate, 

even though there were no detectable differences in body weight between the 

two diets (Ruth et al., 2013). On the other hand, high carbohydrate diets are 

linked to the elevation of fasting plasma TG concentrations (Parks et al., 1999, 

Roche, 1999), small but significant increases in total, LDL and HDL cholesterol 

(Wood et al., 2016, Mansoor et al., 2016a, Bueno et al., 2013, Hu et al., 2012), 

and higher postprandial glucose and insulin concentrations (Mohammed and 

Wolever, 2004). Ultimately, this may decrease insulin sensitivity (Wolever and 

Mehling, 2003), raising fasting triacylglycerol concentrations but also induced a 

shift toward smaller, denser LDL particles (Krauss, 2001).  

Therefore, the aim of the second experimental Chapter 4) is to determine the 

influence of the ingestion of CHO with fat on lipoprotein metabolism which will 

provide the information about acute ingestion of fat and carbohydrate on 

lipoprotein metabolism. 
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1.6  Ethnicity, plasma lipids and postprandial 
response  

Environmental, genetic and lifestyle factors are thought to affect the distribution, 

incidence and mortality of CVD and diabetes among racial and ethnic populations 

(Haga and Venter, 2003, Cooper, 1997a, McBean et al., 2004). Ethnicity play 

important roles in understanding disparities in health and health care (Karter, 

2003a, Karter, 2003b). Ethnicity has been defined as “a complex multidimensional 

construct reflecting the confluence of biological factors and geographical origins, 

culture, economic, political and legal factors, as well as racism” (Williams, 1997).  

 

1.6.1 Ethnicity and plasma lipids 

As mentioned above there are ethnic differences in the incidence of CVD. This can 

be as a result of differences in lipid profile and/ or differences on CVD risk factors. 

Differences in the lipid and lipoprotein concentrations between African American 

(AA) and Caucasian (CA) populations have been reported to occur in children 

(Crawford et al., 2001, Williams et al., 1992, Berenson et al., 1981, Morrison et 

al., 1979, Donahue et al., 1989) and this continues till adulthood (Tyroler et al., 

1975, Srinivasan et al., 1986, Tyroler et al., 1980). These differences include 

lower plasma TG and VLDL-cholesterol, as well as higher levels of HDL cholesterol 

in AA compared with CA women (Tyroler et al., 1975, Srinivasan et al., 1986, 

Tyroler et al., 1980). These differences in the plasma lipids and lipoprotein 

concentrations persist after adjustment for age, degree of obesity and adiposity, 

and the use of tobacco and alcohol (Tyroler et al., 1980, Glueck et al., 1984). This 

is also had been reported in black men when compared to White Europeans, Blacks 

generally have a favourable lipoprotein-lipid profile including low fasting TG and 

apoB levels and higher HDL-C concentration (Després et al., 2000, Lovejoy et al., 

1996, Albu et al., 1997, Howard et al., 2003, Kuller, 2004, Chaturvedi et al., 

1994). Similarly, Japanese have higher HDL-C and TG levels than Whites (Wolfe et 

al., 2002). Afro- Caribbean men have lower levels of LDL-C, total cholesterol, TG, 

large and small VLDL, sdLDL, as well as lower VLDL particle size, than either 

African American or White men (Miljkovic-Gacic, 2006). On the other hand, South 

Asians have high incidence of CHD and more than double risk of developing T2D 
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than Whites, Hispanics and Blacks. This might be related to increased frequency 

of IR and diabetes, elevated TG and low HDL-C in Asians (Anand et al., 2003, 

McKeigue et al., 1991, Chandalia et al., 2007). Middle Eastern (ME) adults seem 

to have mean plasma cholesterol levels of ~5.2 mmol.l-1 (Al-Nozha et al., 2008, 

Al-Lawati et al., 2003, Zindah et al., 2008), which is near to the average European 

level 5.0 mmol.l-1 (WHO, 2014a). 

 

A possible explanation of these variations is low birth weight, In a retrospective 

study of adult men and women living in South India, the prevalence of CHD was 

related to their size at birth, low birthweight, short birth length and small head 

circumference at birth and these were all associated with a raised prevalence of 

CHD later in life (Stein et al., 1996)=. In Jamaican schoolchildren age between 6-

12 years, indices of small size at birth were associated with higher systolic BP, 

glycated haemoglobin and serum cholesterol levels (Forrester et al., 1996).  

 

Another possible explanation for differences are alterations in the metabolic 

factors that regulate lipoprotein levels. For example, the activity of LPL in 

subcutaneous adipose tissue of lean black African males residing in the Quebec 

City area no more than 3 years is higher than lean Caucasian males (Ama et al., 

1985). Also it has been found that the rate of clearance of TG from circulation 

was higher in the AA men. Accompanying this increased clearance was an elevation 

in post-heparin plasma LPL activity (Friday et al., 1999). Other alterations in 

metabolism are seen in hyperinsulinaemic South Asians where there is, raised TG 

and lower HDL cholesterol levels, central adiposity with a high waist to hip ratio 

(McKeigue, 1991, McKeigue et al., 1992, Cruickshank et al., 1991). Moreover, 

Black subjects both men and women, have significantly higher post heparin 

hepatic lipase activity but lower hepatic lipase activity than White subjects (Albu 

et al., 1997). The low hepatic lipase activities in Blacks may have a genetic basis 

and contribute to their higher plasma HDL-C concentrations when compared to 

Whites (Vega et al., 1998).  

1.6.2 Ethnicity, obesity and adipose tissue 

The distribution of overweight and obesity in this population is known to vary 

considerably by ethnic group (Saxena et al., 2004). For the same BMI as 
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Caucasians, the body fat percentage in Asians would be 5–7% higher in Indian men 

(Forouhi et al., 1999, Nair et al., 2008, Chandalia et al., 2007) 8% in Indian 

women(Rush et al., 2009, Rush et al., 2007, Kamath et al., 1999)1–4% in Japanese 

women (Gallagher et al., 2000), 5% and 7% for Indonesian men and women from 

Malay ancestry respectively (Gurrici et al., 1999), and 1.3% and 1.7% for 

Indonesian Chinese men and women respectively (Gurrici et al., 1999). 

Interestingly, there was a tendency that the difference in body fat percentage 

became smaller with increasing BMI and age (Gallagher et al., 2000). In Asians, it 

was predicted that with increasing age, the body fat percentage increased to a 

lesser degree than in Caucasians (Chung et al., 2005, Rush et al., 2009). Among 

Asians, Indians have the highest body fat percentage followed by Malays and 

Chinese. The suggested BMI cut-off points for obesity are 26 kg.m-2 for Indians, 

27 kg.m-2 for Malays and 27.5 kg.m-2 for Chinese, as compared to 30 kg.m-2 for 

Caucasians (Deurenberg-Yap et al., 2001). It can be concluded that the difference 

in body fat percentage between Asians and Caucasians is dependent on the 

region/ethnicity. It is most pronounced in South (Indians), than Southeast (Malay) 

and than East Asian (Chinese/Japanese). Ethnic differences in the relationship 

between BMI and body fat percentage may be explained by the difference in body 

build and frame size (Deurenberg et al., 1999), in part by differences in 

muscularity and bone mineral content (Rush et al., 2007) as well as fat distribution 

and relative leg length (Rush et al., 2009). 

Ethnicity also influences adipose tissue distribution. For a similar level of total 

body fat, white subjects have been shown to have more intra-abdominal adipose 

tissue than Blacks (Despres, 2000, Hoffman et al., 2005). It has been suggested 

that Asian, Hispanic and Caucasian are particularly prone to intra-abdominal fat 

and associated health risks. Interestingly, besides having less intra-abdominal 

adipose tissue accumulation, Black women are more likely to develop IR. This 

finding holds up even after matching them with White women for age, degree of 

obesity, and waist-to-hip ratio (Lovejoy et al., 1996). However, it was suggested 

that Black individuals are less likely to have intra-abdominal fat deposition and 

therefore have a more favourable metabolic profile than White individuals 

(Despres, 2000, Albu, 1999). Similarly, in Nurses’ Health Study, the increases in 

weight over 20 years were more harmful in Asians than other ethnic groups. For 
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every 11 pounds weight gained during adulthood, Asians had 84% increased risk of 

T2D. The risk for diabetes with weight gain also increased for Hispanics and Blacks 

but to a much lesser degree than Asians (Deurenberg-Yap et al., 2000, Wen et al., 

2009, Pan et al., 2004). The possible explanation for this could be amount of body 

fat.  

Interestingly, Far-East Asians and South Asian are different from Caucasians and 

each other in BMI and body fat percent relationship (Pan et al., 2004, Deurenberg-

Yap et al., 2000). Despite lower BMI indices, Asian populations have an increased 

tendency to accumulate Intra-abdominal Fat (IAF) and are more likely to develop 

T2D and CVD (Abate et al., 2001, Ramachandran et al., 2006, Chandalia et al., 

2007). South Asians, in particular, have high levels of body fat and are more prone 

to develop abdominal obesity, which may account for very high risk of T2D and 

CVD (Misra and Khurana, 2009, Misra and Vikram, 2004). Additionally, several 

studies have shown that Japanese Americans have a greater amount of intra-

abdominal adipose tissue and higher prevalence of T2D (Boyko et al., 1995, 

Fujimoto et al., 1999). A 32% of adults in the Middle East are having a BMI ≥ 30 

kg.m-2 (WHO, 2014b). Unfortunately, there is no available data of fat distribution 

among the Middle Eastern. 

Obesity, particularly visceral adiposity, is associated with IR and often assumed to 

be causative. According to the “lipid supply” hypothesis, higher concentrations of 

FA resulting from higher fat intake or higher visceral or intramuscular fat, inhibit 

carbohydrate oxidation and thereby produce IR (Kraegen and Cooney, 1999). 

However, the Arabic Caucasian subjects had the highest measure of abdominal fat 

(using WHR) but were among the most insulin sensitive (Dickinson et al., 2002). 

Furthermore, the Arabic Caucasian group reported the greatest fat intake (36% of 

energy vs. only 28% in the European Caucasian group), but the two groups were 

indistinguishable on the basis of HOMA-IR or postprandial responses to the bread 

meal. Hence differences in “lipid supply” do not account for differences in insulin 

sensitivity among these young adults (Dickinson et al., 2002).  
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1.6.3 Ethnicity and diabetes 

The West Pacific region had the highest number of individuals (131.9 million) 

diagnosed with diabetes with a comparative prevalence rate of 8.3% The two 

countries in this region that had the highest prevalence rates were the Kiribati 

and Marshall Islands, with rates of 25.7% and 22.2%, respectively. Middle East and 

North Africa regions had the highest comparative prevalence rates of diabetes at 

11.3%. Six countries in this region are among the world's top ten countries for 

highest diabetes prevalence rates, Kuwait (21.1%), Lebanon (20.2%), Qatar 

(20.2%), Saudi Arabia (20.0%), Bahrain (19.9%) and United Arabian Emirates 

(19.2%). The North America/Caribbean region had the second highest comparative 

prevalence rate of diabetes at 10.7%. South-Central America and South East Asia 

had similar diabetes prevalence rates of 9.2%, whereas Europe had a 6.7% 

comparative prevalence rate. Africa had the lowest comparative prevalence rate 

of diabetes (4.5%); however the Africa region has the highest proportion of 

undiagnosed diabetes, with at least 78% of affected individuals being undiagnosed 

(Cho et al., 2013, International Obesity Task Force 2012). Pima Indians and Asian 

Indians are more insulin resistant than European Caucasians of similar age and BMI 

(Chandalia et al., 1999, Lillioja et al., 1991). In most studies, however, the 

subjects have been middle-aged and/or overweight, with IR already well 

developed. Studies in young lean subjects are required to determine whether 

reduced insulin sensitivity and postprandial hyperglycemia/hyperinsulinemia can 

be present without overt signs of the metabolic syndrome. 

Although the different explanations mentioned above there is a different in the 

metabolic response in different ethnic groups. The glycaemic response seems to 

favour White Europeans compared with South Asians (Mohan et al., 1986, Raji et 

al., 2001). Also, it has observed that higher insulin concentrations after glucose 

load were reported in both normal and diabetic Navajo Indians compared with 

Pennsylvania Amish of similar weight (Rimoin, 1969). It has been observed that 

stimulated plasma insulin concentrations in the Pima Indians were 2-3 times higher 

than in the White population (Aronoff et al., 1977). The Pima Indians of the Gila 

River Indian Community in Arizona, a population in whom insulin-dependent 

diabetes is unknown, have the world's highest reported incidence of NIDDM, which 

often occurs in early adulthood (Savage et al., 1979, Knowler et al., 1978). Afro-
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Caribbean also, have a higher insulin response compared with Whites (Chaturvedi 

et al., 1994). It has been reported, in lean, young adults of Thai, Vietnamese and 

Chinese origin displayed marked postprandial hyperglycemia and hyperinsulinemia 

compared with matched Caucasian subjects. This corresponded to reduced insulin 

sensitivity as determined by HOMA, although the level of insulin sensitivity was 

still within the normal range for healthy individuals. The differences among ethnic 

groups were evident despite similarities in age (mean 20–22 y), BMI (20–23 kg.m-

2), waist circumference (72–82 cm), birth weight (3.2–3.5 kg) and diet (Liew et al., 

2003). After a high fat meal consist of (52% of energy as fat, 40% as carbohydrate 

and 8% as protein), the postprandial lipaemia is not affected in young South Asians 

compared to Northern Europeans although glucose intolerance is detectable (Cruz 

et al., 2001a). Consuming a carbohydrate meal that's provides 75 g of available 

carbohydrate, it has been found that SE Asians had the highest postprandial 

glycaemia and lowest insulin sensitivity, whereas European and Arabic Caucasian 

subjects were the most insulin sensitive and carbohydrate tolerant (Dickinson et 

al., 2002). Also, the lipaemic response after a high liquid fatty meal (86.5% of 

calories from fat), The increase in TG levels at 2 and 4 hours postprandially, 

tended to be lower in the AA than the CA (Bower et al., 2002). 

1.6.4 Ethnicity and other CVD risk factors  

Another possible cause of the variability of CVD among different ethnic groups 

could be due to the prevalence of risk factors such as hypertension. It has been 

observed that in both genders in Black population tend to have higher prevalence 

of hypertension than Whites (Greenlund et al., 1998). In addition, family history 

of hypertension was also greater among Blacks than Whites within sites. Alvis et 

al reported significantly higher age adjusted CVD mortality rates among Black men 

with hypertension (65.1 per 10,000 person/years) compared to Whites (55.8 per 

10,000 person/years) (Thomas et al., 2005). Other factors can influence ethnic 

differences such as environmental factors with respect to access to healthy food 

sources, places to exercise or crime related safety (Golden et al., 2012). Lack of 

healthy food stores, lack of places to exercise and increased psychosocial stressors 

related to crime or limited social cohesion have been linked to poor health 

outcomes (Casagrande et al., 2009). Evidence from the Multi-Ethnic Study of 

Atherosclerosis found that better neighbourhoods were associated with improved 
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insulin sensitivity and decreased risk of type 2 diabetes (Auchincloss et al., 2009). 

Neighbourhoods have also been associated with increased smoking, physical 

inactivity and poorer control of blood pressure, which can contribute to 

development of diabetes and its complications (Gary et al., 2008). For instance, 

Mexican American women had the highest prevalence of no leisure-time physical 

activity compared to Black and White women (Winkleby et al., 1998). American 

Indian an Alaska Natives (AIANs) (Denny et al., 2005) and Blacks (Appel et al., 

2002) also had higher prevalence of no leisure-time physical activity compared to 

Whites. Management of chronic diseases can also be more difficult in low 

socioeconomic areas (Brown et al., 2007). A study conducted in the GCC countries 

revealed that only 40% of men and 27% of women reported that they were 

physically active for at least 150 min per week (Mabry et al., 2010). 

 

Smoking also vary between ethnic groups, non-Hispanic Black (NHB) and non-

Hispanic White (NHW) have been reported to have similar smoking rates whereas 

Native Americans and Alaska Natives have higher smoking rates compared to NHB 

and NHW. Mexican Americans have the lowest smoking rates (Kurian and 

Cardarelli, 2007). In the Asian population there is great variability in the rates of 

smoking with the highest rates among Korean men and the lowest among the Asian 

Indian men (Venkat Narayan et al., 2010). Higher smoking rates among Native 

Americans may explain the higher prevalence of diabetes and peripheral arterial 

disease in this population. The rates of cigarette smoking in the GCC ranged from 

13.4% to 37.4% in males and from 0.5% to 20.7% in females. Furthermore, the 

prevalence of smoking fluctuated from age group to age group. It was more 

common in males at younger ages (18–25 years); however some studies reported a 

high prevalence in the older age group (40–59 years). In females, the highest rates 

of smoking were in the older age group (40–49 years) (Bassiony, 2009, Hajat et al., 

2012, Memon et al., 2000, Hamadeh and Musaiger, 2000). 

 

1.6.5 Middle East and North Africa 

The most frequent comparisons of ethnic groups have been between Caucasian vs. 

Asian and Caucasian vs. African American. This is because most of the studies were 

carried out in the UK and US where these are the dominant ethnic groups. Other 
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countries are now undertaking similar investigations therefore other populations 

are increasingly subject to study. 

For example, in the last 10 years, there have been reports of high prevalence of 

haemoglobin disorders, neurogenetic disorders, birth defects and inherited 

metabolic diseases in Middle Eastern and North African populations (Teebi, 2010, 

Al-Gazali et al., 2006, Christianson et al., 2006). For example, as mentioned in 

previous sections there has been an increase in the prevalence of non-

communicable diseases such as, heart disease by around 44%, stroke 35%, and 

diabetes 87% (International Diabetes Federation, 2014, WHO, 2014a). 

The populations of The Middle East and North Africa (MENA) belong to a unique 

genetic pool because of the high historical rates of horizontal mixing between 

ethnicities, the high rate of consanguineous marriages within subpopulations, and 

the broad geography of the states making up the region. Nevertheless, wide 

prospective population studies on the effects of polymorphisms on such disorders 

of metabolism in the MENA are still lacking (Farhud and Yeganeh, 2010). It will be 

helpful to understand the metabolic response for this population. Therefore, it is 

timely to investigate the impact of ethnicity on the postprandial metabolism on 

lipoproteins, glucose and insulin.  

Therefore, the aim of the third experimental chapter (Chapter 5) is to 

illustrate the differences in lipid metabolism, glucose and insulin after 

ingesting a combined meal, between European and Middle Eastern men.
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1.7 Aim of the thesis  

The aims of this thesis are: 

1) Determine the effect of moderate exercise on the affinity of triglyceride rich 

lipoproteins to lipoprotein lipase  

2) Examine the effect of the co-ingestion of fat with carbohydrate on lipoprotein 

metabolism.  

3) Compare the postprandial response of middle-aged European men and Middle 

Eastern men.  
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2 General methods  

2.1 Subject Recruitment and Screening   

Subjects were recruited from the population in the Glasgow area via local 

advertising. All subjects were required to attend a screening visit at the university 

prior to participation to ensure they met with the inclusion criteria of each study. 

They were provided with an information sheet describing the aim of the study, the 

experimental procedures involved and any potential risk or discomfort associated 

with these procedures. Written, informed consent was recorded for each subject 

(Appendix A1 for the study in Chapter 4 and A2 for study in Chapter 5). 

Questionnaires detailing the subject’s past and present health status and family 

history of disease were completed (Appendix B). Resting blood pressure was 

measured at screening using an automated sphygmomanometer (Omron Healthcare, 

Inc., Illinois, USA) and fasting finger-prick blood samples were taken to determine 

glucose using Accu-Chek Aviva Blood Glucose® instrument and Accu-Chek Aviva® Test 

reagent strips. Once the analysis finished, each participants received a feedback 

sheet (appendix D).  

Exclusion criteria common to all studies were: 

 A history of known CVD (e.g myocardial infarction, stroke, coronary artery 

bypass graft surgery), acute illness, or active, chronic systemic disease.  

 Anaemia (Hb<12g.dl-1).  

 Diabetes (fasting blood glucose ≥7 mmol.l-1).  

 Abnormal renal, liver or thyroid function tests.  

 Participation in a recent research study within last three months. 
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2.1.1 Anthropometric Measurements    

Standing Height  

Stretch stature method was used to measure the height using a stadiometer (Seca, 

Hamburg, Germany). Stature is the maximum distance from the floor to the highest 

point of the skull when the head is held in the Frankfort plane position (Ross and 

Marfell-Jones, 1991).  

Height was recorded to the nearest 0.1 cm.  

Body Mass 

Subjects were asked to wear light and minimal clothing and to remove their shoes. 

Weight was measured using a balanced beam scale to the nearest 0.01 kg. BMI was 

then calculated as body mass in kilograms divided by the square of height in metres. 

Waist and hip circumference Measurement  

Waist and hip circumference were measured using a flexible, steel tape measure 

(Supralip®160, West Germany) in direct contact with the skin. Waist circumference 

was taken with subjects standing with feet shoulder-width apart and arms on the side 

and landmarked as the narrowest part of the torso, mid-way between the inferior 

margin of lowest rib and the iliac crest with the abdominal muscles relaxed. Hip 

circumference was taken with the subjects standing with feet together and arms at 

the side and landmarked as the maximum circumference over the trochanters 

(buttocks) (Lean et al., 1995). The tape was placed horizontally directly on the skin 

with respect to both landmarks. All measurements were taken at the end of a normal 

expiration, with repeat measurements. Two measurements were made and the 

average was taken. If the measurements differed by more than 0.5 cm, a third 

measurement was made.  
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2.1.2 Skinfold Measurement  

A skinfold thickness is defined as the measure of the double thickness of the 

epidermis, underlying fascia and subcutaneous adipose tissue on different standard 

anatomical sites around the body. The following four sites were used according to 

Durnin and Womersley (1974) who validated the sum of four skinfold thickness against 

densitometry and devised sex- and age-dependent population-based linear regression 

equations to estimate total body density (Durnin and Womersley, 1974):   

1) Biceps: vertical skinfold raised on the anterior aspect of the biceps;  

2) Triceps: vertical skinfold raised on the posterior aspect of the triceps, mid-way 

between the olecranon process and the acromion process (shoulder) when the hand 

is supinated; 

 3) Subscapular: oblique skinfold raised 1 cm below the under most tip of the inferior 

angle of the scapula at approximately 45° to the horizontal plane following the 

natural cleavage lines of the skin;  

4) Suprailiac: diagonal fold raised immediately superior the crest of the ilium on a 

vertical line from the mid-axillary line.  

Skinfold sites were landmarked on the body prior to measurement so that repeat 

measures could be taken at the same place. The skin at each respective site was 

pinched up firmly between thumb and forefinger to raise a double layer of skin and 

the underlying adipose tissue, excluding the muscle tissue. The calipers were then 

applied to the fold with 1 cm between the edge of fingers and the nearest edge of 

the calliper and a reading in millimetres (mm) was recorded. All skinfold measures 

were taken on the right side of the body with skinfold calliper (Holtain Ltd., Crymych, 

UK). Measurements were recorded in duplicate for each site, not taken consecutively 

but by running through all sites once and back again as to allow the skin to regroup 

between measurements. If the readings for each site were more than 5% apart, a 

third measurement would then be taken, and the two closest measurements were 
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taken for calculation. The sum of the four skinfolds (Σ4SF = biceps + triceps + 

subscapular + suprailliac) was calculated. Relative fat mass was derived from the 

formula of Durnin and Womersley (1974) of linear regression equations for the 

estimation of body density x 103 (kg.m-3) (Durnin and Womersley, 1974) in 

combination with Siri's equation for estimating body fat percentage (Siri, 1961):  

Body density (BD) (g.cm3) = c – [m x (Σ4 SF (mm))] 

Where:  

C and M = standard age and sex-specific coefficients (Table2.1). 

Table 2.1; standard age and sex-specific coefficients (Durnin and Womersley, 1974). 

 Age (yrs) 17-19 20-29 30-39 40-49 50 + 

Male 
c 1.1620 1.1631 1.1422 1.1620 1.1715 

m 0.0630 0.0632 0.0544 0.0700 0.0779 

Female 
c 1.1549 1.1599 1.1423 1.1333 1.1339 

m 0.0678 0.0717 0.0632 0.0612 0.0645 

 

Σ4SF = sum of all four-site skinfolds (mm)  

Once the density was calculated, the Siri equation was used to estimate body fat  

Percentage:  

Body fat percentage (%) = [(4.95/d) – 4.5] x 100  

Where:  

d= density, 4.95 and 4.5 = constants.   
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2.2 Expired air measurements 

Oxygen uptake (VO2) and carbon dioxide (CO2) production was determined at rest, 

before and during exercise. Samples of expired air were collected into 100 or 150 L 

Douglas bags. While wearing a nose clip, subjects breathed through a mouthpiece 

fitted to a lightweight, large 2-way respiratory valve (2700 series, Hans Rudolph Inc. 

USA), which in turn was connected to a lightweight tube. The tubing was terminated 

at a two-way valve which opened and closed the Douglas bag. (All equipment was 

supplied by Cranlea & Co. Birmingham, England). 

An aliquot of expired air (measured using a flow meter) was removed from each 

Douglas bag to determine the fraction of O2 and CO2 using a gas analyser (Servomex 

4100, Servomex Group Ltd., East Sussex, England). The analyser was calibrated 

before each use with certified reference gases (BOC Ltd, Surrey, UK) and the 

reference gases were calibrated against a ‘gold standard’ reference gas to ensure 

consistency of results. 

The remaining volume of expired air in each Douglas bag was measured by evacuation 

through a dry gas meter (Harvard apparatus, supplied by Cranlea & Co. Birmingham, 

England). The temperature of air in the Douglas bag was measured during evacuation 

using the same dry gas meter. 

Barometric pressure was measured using a barometer and the measured expired gas 

volumes were corrected to standard temperature and pressure (STPD) for a dry gas 

using the universal gas equation. Inspired gas volumes were derived using the Haldane 

transformation (Consolazio et al., 1963) and O2 uptake, CO2 production, minute 

ventilation, respiratory exchange ratio and the ventilatory equivalent for oxygen 

were calculated. Rates of substrate utilization were calculated via indirect 

calorimetry using the equations described by Frayn (Frayn, 1983) and energy 

expenditure was determined by multiplying the mass of substrates used by their 

respective energy densities. 
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2.3 Monitoring of Heart Rate  

The subject’s heart rate was monitored continuously during exercise and the recovery 

period by short range telemetry (Polar S610i, Polar Electro, Finland).  

2.4 Submaximal Exercise Test  

Submaximal exercise test was performed to predict maximum oxygen consumption 

(VO2max) for each subject prior to commencing main trials. The test was designed to 

exercise subjects through a range of intensities from moderate to vigorous but not 

maximum. The test consisted of four, continuous 5-min stages of walking on a 

treadmill to determine the relationship between gradient and oxygen consumption 

at self-selected walking speed of about 5 – 6 km.h-1 (see Figure 2.1). The first stage 

of the test was performed on a level treadmill and gradient was increased by 2.5- 

3.0% at the end of every stage depending on subject’s heart rate response in the 

previous stage: if heart rate exceeded 100 beats per minute in the first stage, a 2.5% 

increment was used for subsequent stages. Each stage lasted five minutes with 

expired air being collected into Douglas bags during the last two minutes for the 

determination of VO2 and VCO2 by using the Douglas bag method. Five-minute stages 

were performed to ensure subjects were in steady state during expired air collection 

periods. Heart rate was recorded continuously during the test and the Borg scale was 

used to assess subject’s perceived exertion simultaneously with the expired air 

collections at the end of every stage. The test was terminated if subject’s heart rate 

reached 85% of his predicted maximum heart rate. At the end of the test, the oxygen 

uptake at each stage was plotted against the heart rate and gradient to estimate the 

gradient and speed necessary to elicit an intensity corresponding to 50% VO2max during 

the main trials.   
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2.5 Test meals  

Subjects were provided test meals as described in each of the three experimental 

chapters on completion of all fasting measurements. These were consumed within 10 

minutes. The compositions of the meals were as follows: 

2.5.1 Fat Loading Test (FLT)using high fat mixed meal 
(HFM) 

The composition of the meal provided in Chapter 4 and to a subset of participants in 

Chapter 6 is shown in Table 2.2. The meal provided 1278 kcal of energy, of which 

27% was carbohydrate, 65% was fat and the remaining 8% as protein. The ComplanTM 

formula was mixed thoroughly with whole milk and double cream to form a milkshake 

type drink. The croissant was lightly toasted, and spread with Lurpack™ spreadable 

butter.  

 

Figure 2.1. A schematic diagram of a 4-stage submaximal incremental test (black boxes 
represent expired air collection and heart rate measurements). 
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Table 2.2; Composition of the high fat mixed meal. 

     Total carbohydrate 

 
Portion 

Size 
Energy (Kcal) Protein (g) Total fat (g) Starch (g) Sugar (g) Total  CHO (g) 

Croissant (g) 100 430.0 9.2 25.3 34.8 5.8 40.6 

Lurpack spreadable butter 
(g) 20 144.8 0.1 16.0 0.0 0.1 0.1 

Complan (powder in g) 57 250.2 8.7 8.4 8.3 26.7 35.0 

Whole milk (mls) 180 118.8 5.8 7.0 0.0 8.6 8.6 

Double cream (mls) 75 333.8 1.3 35.6 0.0 2.0 2.0 

Total - 1277.6 25.1 92.4 43.1 43.2 86.3 
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2.5.2 Oral glucose Tolerance Test (OGTT)  

This was provided to subjects in chapter 5. The drink prepared by dissolving 75 g of 

glucose in 275 ml of water and adding 25 ml of concentrated lemon juice. This 

provided 75 g of carbohydrate 0 g fat, 0 g protein and 300 kcal energy. 

2.5.3 Oral fat Tolerance Test (OFTT)  

This was provided to subjects in Chapter 5. This comprised 150 ml double cream, 

with 0.5 ml of sugar-free raspberry flavouring. This provided 2.4 g of carbohydrate 

75 g fat, 2.3 g protein and 700 kcal energy (see Table 2.3). 

Table 2.3; Composition of the OFTT.  

TescoTM double cream portions 

Portion Size (ml) 150 

Energy (Kcal) 700 

Protein (g) 2.3 

Carbohydrate (g) 2.4 

Fat (g) 75 

 

2.5.4  Combined test (COMB) 

This comprised the OGTT drink and the OFTT drinks described above and provided 

77.4 g of carbohydrate 75 g fat, 2.3 g protein and 1000 kcal energy. This was provided 

to subjects in Chapter 5 and a subset of participants in Chapter 6. 

2.6 Blood sampling and processing 

Venous blood was obtained via a cannula (Biovalve, 18G/1.2 mm, Vygon, France) 

placed in an antecubital vein. The cannula was kept patent by flushing with saline 
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solution (0.9% NaCl). Blood samples were collected directly in 10 ml tubes 

containing EDTA as an anticoagulant (Chapter 4) (BD Vacutainer Systems, 

Plymouth, UK) or in 6 ml SST™ serum tubes (Chapters 5 and 6) (BD Vacutainer 

Systems, Plymouth, UK). When EDTA tubes were used, they were placed 

immediately in ice, the cold temperatures (4°C) inhibit glycolysis. The samples 

were centrifuged (GS-6KR, Beckman Instruments, Inc, California, US) within 15-30 

min of collection for 15 minutes at 3000 rpm and 4°C (WHO, 2006, Gambino et al., 

2009). When serum tubes were used, samples were left in room temperature for 60 

minutes and then centrifuged (GS-6KR, Beckman Instruments, Inc, California, US) 

for 15 minutes at 3000 rpm and 4°C. EDTA plasma was pipetted into aliquots of 500 

μl in 0.5 ml Apex tubes (0.5 ml, Alpha Laboratory Ltd, UK) and 2 x 350 μl in Apex 

tubes and frozen immediately at -70 ºC, for subsequent analysis of insulin. Another 

350 μl was placed in the fridge at 4 ºC, for NEFA, glucose and lipid profile analysis 

within 24 hours. The remaining EDTA plasma (Chapter 4) or serum plasma 

(Chapters 5 and 6) was used for lipoprotein separation. This was started on the 

same day of blood collection.  

 

Justification of using EDTA tube to measure glucose 

The commonly used glycolysis inhibitors are unable to prevent short-term glycolysis. 

Glycolysis can be attenuated by inhibiting enolase with sodium fluoride (2.5 mg/mL 

of blood) or, less commonly, lithium iodoacetate (0.5 mg/mL of blood). These 

reagents can be used alone or, more commonly, with such anticoagulants as 

potassium oxalate, EDTA, citrate, or lithium heparin. Unfortunately, although 

fluoride helps to maintain long-term glucose stability, the rates of decline in the 

glucose concentration in the first hour after sample collection are virtually identical 

for tubes with and without fluoride, and glycolysis continues for up to 4 h in samples 

containing fluoride (Chan et al., 1989). After 4 h, the concentration of glucose in 

whole blood in the presence of fluoride remains stable for 72 h at room temperature 

(Chan et al., 1989) (leukocytosis will increase glycolysis even in the presence of 

fluoride if the leukocyte count is very high). 
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Few effective and practical methods are available for prompt stabilization of glucose 

in whole-blood samples. Loss of glucose can be minimized in two classic ways: 1) 

immediate separation of plasma from blood cells after blood collection [the glucose 

concentration is stable for 8 h at 25°C and 72 h at 4°C in separated, nonhemolyzed, 

sterile serum without fluoride (Burtis et al., 2012); and 2) placing the blood tube in 

an ice–water slurry immediately after blood collection and separating the plasma 

from the cells within 30 min (WHO, 2006, Gambino et al., 2009). 

2.6.1 Plasma Analysis  

Plasma glucose, insulin, TG, NEFA, total and HDL cholesterol and small dense LDL 

(Chapter 4, 5 and 6) and 3-hydroxybutyrate (Chapter 4) concentrations were 

analysed in the fasted state. In postprandial state TG, NEFA, glucose, insulin, sdLDL 

(Chapter 4, 5 and 6) and 3-hydroxybutyrate (Chapter 4) concentrations were 

analysed at all-time points. LDL cholesterol was calculated in the fasted state using 

the Friedewald equation (Friedewald et al., 1972),(Appendix C). All tests listed 

above were carried out by Mrs. Josephine Cooney, in the Vascular Biochemistry 

Department of McGregor building, University of Glasgow (Appendix C). 

2.6.2  Lipoprotein separation  

Principle  

Flotation of lipoprotein particles through a gradient formed by layering solutions of 

decreasing density (generated using specific concentrations of NaCl, NaBr or KBr) 

above a sample of plasma adjusted to high density. (Lindgren et al., 1972). 

Sequential preparation of chylomicrons (Sf >400) by 
Ultracentrifugation 

To separate the chylomicron fraction (Sf >400), two ml of plasma were overlayered 

with 4 ml of 1.006 g.ml-1 density solution in Ultra-Clear centrifuge tubes and spun at 

10K rpm and 15°C for 30 min (Lindgren et al., 1972) using the Beckman L8-60M 
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Ultracentrifuge and Beckman 50.4 rotor (Beckman Instruments Inc., UK). The top 2 

ml containing chylomicron particles (d <1.006 g.ml-1) were removed (termed CM-1) 

and TG concentrations were measured using commercially available kits as described 

in Appendix C. This top fraction was used in the experiment mentioned in chapter 

3. TG concentrations were also measured in the middle 1.5 ml fraction (CM-2) to 

verify complete collection of the CM fraction. The final chylomicron-TG 

concentration was calculated as the addition of these two fractions [CM-1 + (CM-2 × 

1.5/2)] (chapter 4 and chapter 5). The final 0.5 ml of the density solution overlay 

was discarded and the remaining 2 ml of chylomicron-free plasma was used for 

separation of VLDL1 and VLDL2. The CV for the chylomicron-TG separation using 

triplicate samples from the same participant was 4.9%.  

 

Isolation of VLDL1 (Sf 60–400), VLDL2 (Sf 20–60), IDL (Sf 12-
20) and LDL (Sf 0-12) Fraction by Swing-Out 
Ultracentrifugation 

Two ml of the chylomicron-free plasma from the previous step was adjusted a density 

of d 1.118 g.ml-1 by the addition of 0.341 g NaCl. This was gently layered over a 

cushion of 0.5 ml d 1.182 g.ml-1 solution in an Ultra-Clear Beckman SW 50 

ultracentrifugation tube (Beckman Instruments Inc., UK) which had been coated with 

polyvinyl alcohol (Holmquist, 1982); this allowed the solutions to be introduced down 

the side of the tubes smoothly without disturbing the formation of the gradient. A 

discontinuous gradient was formed by over-layering sequentially d 1.0988 g.ml-1 (1 

ml), d 1.0860 g.ml-1 (1 ml), d 1.0790 g.ml-1 (2 ml), d 1.0722 g.ml-1 (2 ml), d 1.0641 

g.ml-1 (2 ml) and finally d 1.0588 g.ml-1 (2 ml) (see Table 2.4 below). 
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Table 2.4; Layers of density solutions 

 Density g.ml-1 

Volume in ml 

- 1.182 0.5 

Plasma 1.118 2 

1 1.0988 1 

2 1.0860 1 

3 1.0790 2 

4 1.0722 2 

5 1.0641 2 

6 1.0588 2 

 

Centrifugation was carried out using a Beckman SW 40 rotor (Beckman Instruments 

Inc., UK) in Beckman L8-60M ultracentrifuge for 1.38 h at 39K rpm and 23 ºC for 

separation of the VLDL1 fraction. The rotor was decelerated without braking and by 

using a finely drawn glass Pasteur pipette the VLDL1 fraction was removed in the top 

1 ml. This volume was replaced by 1 ml of d 1.0588 g.ml-1 and tubes were recapped 

and place back in the centrifuge overnight for separation of VLDL2, for practical 

reasons, the times and speeds were calculated using g X minutes by applying a 

formula for conversion. The relationship between RPM and RCF is as follows: 

  RCF= 1.118 X R X (RPM X 1000)2 

Where RPM is rotational speed (revolution per minute), RCF is relative centrifugal 

force, r is the radius of rotation measured in millimetres. R is constant here. Different 

speeds used for VLDL2 separation are shown in Table 2.5. 

 
At the end of the run, 0.5 ml of VLDL2 fraction was removed using a finely drawn 

glass Pasteur pipette.  

top 

bottom 
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Tubes were recapped and place back in the centrifuge for 2.35 h at 39K for separation 

of IDL. IDL was removed from the top of the tube as a 0.5 ml aliquot was withdrawn 

into Apex tubes and placed in the fridge for composition analysis. The tubes were 

recapped and placed into the rotor again and centrifuged overnight for separation of 

LDL, different speed and time could be applied (See Table 2.5). All lipoprotein 

subfractions have been stored in fridge at 4 ºC to be analysed next day for 

composition. 

 

Lipoprotein composition analysis  

Lipoprotein fraction TG, phospholipid (PL), total cholesterol, free cholesterol (FC), 

cholesteryl ester (CE), (Chapter 4 and 5) were analysed by Mrs. Josephine 

Cooney, in the Vascular Biochemistry Department of McGregor building, University 

of Glasgow (Appendix C).



  

 
 

Table 2.5; Centrifugation conditions used for the separation of lipoprotein fractions. 

chylomicron 
VLDL1 VLDL2 IDL LDL 

Time (h) RPM Time (h) RPM Time (h) RPM Time (h) RPM Time (h) RPM 

00.30 10K 1.31 39K 14.41 18.5K 2.35 39K 21.10 30K 

Alternative conditions 

  12.03 21.1K 3.12 35K 17.30 33K 

  17.31 17.5K 3.24 34K 16.29 34K 

  18.08 17.2K 3.50 32K 18.36 32K 

  14.52 19K   18.02 32.5K 



  

 
 

2.6.3 Insulin Analysis  

Principle  

Mercodia Insulin ELISA is a solid phase two-site enzyme immunoassay. It is based 

on the direct sandwich technique in which two monoclonal antibodies are directed 

against separate antigenic determinants on the insulin molecule. During 

incubation insulin in the sample reacts with peroxidase-conjugated anti-insulin 

antibodies and anti-insulin antibodies bound to wells on microtitration plates. A 

washing step removes unbound enzyme labelled antibody. The bound conjugate is 

detected by reaction with 3,3’,5,5’-tetramethylbenzidine (TMB). The reaction is 

stopped by adding acid to give a colorimetric endpoint that is read 

spectrophotometrically (Lequin, 2005). 

 

Procedure 

Plasma samples (25 µl) were pipetted into the assay wells. 100 µl of freshly 

prepared enzyme conjugate solution was then added to each well. Plates were 

incubated on a plate shaker for 1 hour at room temperature. During this incubation 

period, insulin in the samples reacted with peroxidase-conjugated anti-insulin 

antibodies and anti-insulin antibodies bound to plate wells. After incubation, the 

plates were washed and dried 5 times by an automatic washer to remove any 

unbound enzyme labelled antibody using the provided wash buffer solution. Bound 

conjugates which remained in the wells were detected by adding 200 µl of 

3,3’,5,5’-tetramethylbenzidine (TMB). The plates were then incubated for 15 

minutes at room temperature to allow reaction between substrate TMB and bound 

conjugates. After incubation, 50 µl of the Stop solution containing 0.5 M sulphuric 

acid were added to each well to stop the reaction. A yellowish-tint colour 

developed according to the concentration of conjugate-substrate complex. The 

optical density of each well was read at 450 nm using a spectrophotometer. All 

samples were run in duplicate together with the standards ranging from 0 to 200 

mU.l-1. A standard curve was obtained using cubic spine regression. The 

concentration of insulin in the samples was then determined by comparing the 

optical density of the samples to that of the standard curve for each respective 

plate. All reagents and samples were brought to room temperature before use. 

Coefficients of variation between assays were <5%. 
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2.6.4 Insulin resistance estimated the homeostasis 
model  

The homeostasis model assessment-estimated insulin resistance (HOMA-IR), 

developed by Matthews et al. (Matthews et al., 1985) has been widely used for 

the estimation of insulin resistance. Due to the simplicity of its determination and 

calculation, HOMA-IR has been the most frequently employed technique both in 

clinical practice and in epidemiological studies. HOMA-IR was calculated in 

Chapter 6 using this formula (fasting plasma insulin in mU.l-1 X fasting plasma 

glucose in mmol.l-1)/22.5 (Wallace et al., 2004). Low HOMA-IR values indicate high 

insulin sensitivity, whereas high HOMA-IR values indicate low insulin sensitivity 

(insulin resistance)(Matthews et al., 1985).  

2.7 Lowry assay  

Principle  

Protein is measured by the addition of Biuret Reagent and Folin-Ciocalteu reagent, 

which produces a colour change to blue. The colour intensity, which is 

proportional to the concentration of the protein present, is measured by optical 

density (OD) at 750 nm using a spectrophotometer. The protein concentration is 

calculated using a standard curve of known concentrations. The following method 

is a modification from the original. All volumes have been halved (Lowry et al., 

1951). 

Procedure 

Total protein was measured by adding 1 ml of Biuret Reagent and Folin-Ciocalteu 

reagent, [100 ml of 2% Na2CO3 in 0.1 M NaOH (w/v), 1 ml of 2% NaK Tartrate (w/v), 

1 ml of 1% CuSO4 (w/v), and 1 ml of 10% (w/v) sodium dodecyl sulphate (SDS)] to 

a total volume of 200 μl of sample (100 μl VLDL1 + 100 μl of distilled water or 50 

μl VLDL2 + 150 μl distilled water). One hundred microlitre of 1:1 Folin-Ciocalteu 

reagent (Sigma-Aldrich Company Ltd., Irvine, Scotland) was then added and mixed 

immediately. After incubation at room temperature for 30-60 min, the developed 

colour intensity was measured at an optical density of 750 nm using a Beckman 

DU 70 Spectrophotometer. The protein concentration was calculated using a 
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standard curve of known concentrations. Inter-assay precision was checked using 

2 levels (100 μl and 200 μl) of human and bovine quality control (QC) materials 

(Lowry et al., 1951). The coefficients of variation (CVs) for the low QC were 

(human: 1.8%, bovine: 1.3%) and high QC were (human: 1.0%, bovine: 1.4%). 

 

2.8 LPL assay 

Principle 

Triglycerides are hydrolysed by lipoproteinlipase to produce glycerol and free 

fatty acids. In order to apply this reaction a medium should be prepared to run 

the experiment.  

Procedure  

Tris-HCL buffer Preparation  

Tris-HCl buffer was prepared by mixing; 24.22 g.l-1 Tris-HCl (200 mmol.l-1) (Sigma-

Co NO. T3253), 366.24 mg.l-1 of CaCl2 (3.3 mmol.l-1) (Sigma-Co NO. C4901), 

7597.59 mg.l-1 of NaCl (130 mmol.l-1) (VWR C-S9888) and 66.7 mg.l-1 of sodium-

heparin (0.010 mmol.l-1) (Sigma-Co NO. H3393) to stabilized LPL and this inhibit 

the release of the attached LPL from VLDL, in a pH level of 8.2. To reach the 

required pH level HCl, or NaOH were used (Zambon et al., 1996, Saheki et al., 

1991). Different concentrations of LPL were prepared by diluting the stock 

solution in Tris-HCl buffer. 
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2.9 Statistical analysis  

2.9.1 Power calculations 

An a priori power calculation, on the basis of our data for intra-subject 

reproducibility of postprandial TG responses in men (between-day coefficient of 

variation 10.1%) indicated that 10 participants would enable detection exercise-

induced changes of ~10 % in the TG response with 80 % power (Gill et al., 2005). 

Significance was accepted at the p < 0.05 level. Data are presented as means ± 

SEM unless otherwise stated.  

 

2.9.2 Calculation of summary postprandial responses 

Time-averaged postprandial concentrations, calculated as the trapezium rule-

derived areas under concentration versus time curve, divided by the duration of 

the postprandial observation period, were used as summary measures of the 

postprandial responses. 

 

2.9.3 Normality of data 

The normality tests are supplementary to the graphical assessment of normality 

(Elliott and Woodward, 2007). There are many tests to assist normality (Elhan and 

Tuccar, 2006, Peat and Barton, 2008). In chapter 4,5 and 6 normality of data was 

tested using Anderson-Darling test (Elhan and Tuccar, 2006). 

If a variable did not fit a normal distribution or had greatly different standard 

deviations in different groups, data transformation was applied (Tu and Xia, 2008, 

Chou et al., 1998). Where data did not approximate a normal distribution, these 

were log-transformed prior to analysis and data are expressed as geometric means 

with 95% confidence intervals (95% CI).   

 

2.9.4 Significant testing  

Data was analysed using Statistica (version 10, StatSoft Inc.) and Minitab (version 

17, Minitab Ltd).  
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Comparisons between interventions were made using paired t-tests, where a 

single pair of means was compared. The validity the test based on normality of 

the data, the sample is a simple random sample from its population and data is 

continuous of the data. 

When comparisons were made between groups or across multiple time-points as 

in Chapter 4 or in different trials as in chapter 5 and 6 a two-way repeated 

measures ANOVA, with post hoc Fisher tests, were used. The validity of the test 

based on, homogeneity of variance, independency of the sample and normality 

of the data.  

2.9.5  Cohen’s d, effect size  

In comparing different intervals, it is useful to express the size of the effect in 

standardized way. One common way is to report Cohen’s d effect size, which is 

relating the effect size to the variance. Statistical significance depends on the 

sample size and the precision of the data. When a large set of data analysed, very 

small effects may reach statistical significance. Therefore, it is useful to 

determine effect size to describe, if effects have a relevant magnitude and to 

describe the strength of a phenomenon. The most popular effect size measure is 

Cohen's d (Cohen, 2013). Effect size is a standard measure that can be calculated 

from any number of statistical outputs (Cohen, 2013). 

Cohen’s ‘d’, expresses the mean difference between two groups in standard 

deviation units. Typically, this is reported as Cohen’s d, or simply referred to 

as “d.” Though the values calculated for effect size are generally low, they share 

the same range as standard deviation (-3.0 to 3.0), so can be quite large. 

Interpretation depends on the research question. The meaning of effect size varies 

by context, but the standard interpretation offered by Cohen (1988) is: 

0.8 = large (8/10 of a standard deviation unit) 

0.5 = moderate (1/2 of a standard deviation) 

0.2 = small (1/5 of a standard deviation) 
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Reporting effect size helps to: understand the importance of an effect (Kirk, 

1996), comparing the effect size within or between studies, and secondary 

analysis such as power calculations or meta-analysis (Reiser and Faraggi, 1999). 

The effect size of the interventions was calculated in Chapter 4 and 5. The effect 

size was calculated differently in chapter 6. The mean difference was calculated 

for each individual then divided by the SD of both groups (Cohen, 2013). 
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3 Development of a Method to 
Determine the Susceptibility of 
Triglyceride-Rich Lipoproteins for 
Hydrolysis  

 
Lipoprotein lipase is the major enzyme which hydrolyses triglycerides (TG) present 

in the circulation to release free fatty acids (FFA). It is the rate-limiting enzyme 

controlling plasma TG clearance. Hydrolysis of TG is essential for energy storage 

and utilization (Goldberg and Merkel, 2001, Wang and Eckel, 2009). Elevated 

postprandial TG concentrations are independently associated with risk of 

cardiovascular events and atherosclerotic disease process (Chapman et al., 2011, 

Goldberg IJ, 2011, Bansal et al., 2007). Considerable attention over the last 

decades has been focused on the effect of exercise on postprandial metabolism 

and its potential role in the reduction of fasted and postprandial TG. Exercise is 

considered an effective method to lower postprandial TG concentrations by about 

20-25% (Farah and Gill, 2012, Gill et al., 2004a). The mechanism(s) by which 

exercise induces triglyceride lowering is currently not clear. It has been 

hypothesised that exercise may cause compositional changes to the VLDL1 

particles, which are the major determinants of plasma TG concentrations (Austin, 

1990, Patsch et al., 1992, Deckelbaum et al., 1984), thereby increasing their 

clearance by LPL (Al-Shayji et al., 2012). Therefore, in order to test this 

hypothesis, it was essential to develop a method to test the susceptibility of 

chylomicron and VLDL1 to TG hydrolysis in standardised assay (described in 

Chapter 4 as “affinity of TRL for LPL”). In this chapter, the development and 

optimisation of this assay, based a method previously described by (van Barlingen 

et al., 1996).  

 

3.1 Elements of standardised lipolysis assay 

The ultimate aim of this study is to develop a method to determine how exercise 

influences the susceptibility of TRL to lipolysis. This requires development of a 

standardised assay to determine the rate of TG hydrolysis when the concentrations 

of substrate TRL and enzyme are fixed. 
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To generate an appropriate working method, a number of factors need to be 

considered (see Figure 3.1). These include:  

1) Determining of optimal indicator of lipolysis (i.e., TG decrease or NEFA / 

glycerol rise).  

2) Standardizing the concentration of lipoprotein particles.  

3) Determining optimal concentration of LPL. 

4) Determining the optimal assay conditions including:  

a) Duration of the assay.  

b) Optimizing the inhibitor of the reaction.  

c) Albumin interference.  
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Figure 3.1. Conditions that been addressed in lipolysis assay include, standardizing TRL, LPL 
concentration and optimal assay conditions.  
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3.1.1 Choice of indicator of rate of lipolysis 

 

The principle based on the hydrolysis of TG by the action of LPL producing three 

NEFA and glycerol (Fahy et al., 2009): 

 

 

 
 

 

 

 

There is no gold standard or universal method for LPL measurement. To measure 

LPL activity in a closed system, any of the following products can be assessed in 

principle: 

(a) the rate of degradation of the TG  

(b) the rate of production of fatty acids or glycerol (Smeltzer et al., 1992) (See 

Figure 3.2). 

 

 

 

 

 

 

 

Figure 3.2. The products of TRL hydrolysis, panel [A] shows the rise in NEFA, panel [B] shows the 
degradation of TG; both can be used as a parameter of the reaction. NEFA concentration will rise as 
triple as TG will fall. The higher TG will breakdown the higher NEFA will be released. The rate of the 
reaction will increase when a higher activity enzyme is used.  

 

[A] [B] 

TG 
3 NEFA + 

glycerol  

LPL 
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Thus, by incubating TRL with LPL for over a range of time intervals, it is possible 

to calculate the rate of LPL activity. 

The assay was initiated in a medium contains Tris-HCl with a pH of 8.2. The initial 

volume of the reaction was; 250 µl lipoprotein incubated with 125 µl of albumin 

and 125 µl of Tris-HCl buffer at 37 ºC for 10 min to climate the tube. A 125 µl of 

LPL were added in each tube except the control, and incubated for different time 

points 0, 5, 10, 15, 20, 30, 60, and 90 mins. Each tube was quenched by 500 µl of 

pre-cooled NaCl (1 Ml) (Table 3.1). Then assay the products of the reaction (TG, 

glycerol and NEFA) to assess TG hydrolysis rate. 

 
Table 3.1; initial assay mixture.  

 Time (min) 

All in µl Control        

0 0 0 5 10 15 20 30 60 90 

Tris-HCl 125 125 125 125 125 125 125 125 125 125 

1.006 g.ml-1 250 0 0 0 0 0 0 0 0 0 

LPL 0- 250 0 125 125 125 125 125 125 125 

Albumin 125 125 125 125 125 125 125 125 125 125 

lipoprotein 0 0 250 250 250 250 250 250 250 250 

NaCl 500 500 500 500 500 500 500 500 500 500 

Total volume 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 
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3.1.2 Triglyceride measurements  

Method  

Initially, two hydrolysis assays were carried out using constant concentration of 

VLDL1 (0.10 mmol.l-1) as substrate 100 units of LPL during 30 minutes interval. 

Followed by another assay, using higher doses of VLDL 0.25 mmol.l-1 of and 400 

units of LPL during 30 minutes interval.  

Result  

As shown in Figure 3.3, Panel [A] and [B], the rate of NEFA was increasing with 

time. Figure 3.3, Panel [B], shows that with increasing the TRL and LPL 

concentrations, more NEFA were released. However, TG concentration remained 

constant in both trials.  
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Figure 3.3. Release of NEFA and degradation of TG from VLDL1 during 30-minutes observation, 
Panel [A] shows the release of NEFA and degradation of TG from (0.10 mmol.l-1) of VLDL1 and 100 
units of LPL, Panel [B] shows release of NEFA and degradation of TG from (0.25 mmol.l-1) VLDL1 

and 400 units of LPL.  
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TG concentration was constant because the assay that was used to detect TG in 

ILab-600 based on hydrolysing TG into glycerol and this result in measuring all the 

glycerol in the mixture. The principle of the reaction is as the following:  

 

Principle: 

The principle for this reaction is based on lipase hydrolysis of TG to glycerol 

followed by oxidation to dihydroxyacetone phosphate and hydrogen peroxide. The 

hydrogen peroxide produced then reacts with 4-aminophenazone and 4-

chlorophenol under the catalytic action of peroxidase to form a red dyestuff which 

was measured spectrophotometrically using the IL600 analyser at 550 nm. The 

equation is shown below: 

 
(GK: Glycerol kinase; GPO: Glycerol phosphate oxidase; POD: Peroxidase; DHAP: 
dihydroxyacetote phosphate). The CV for the assay was 3.8%. 
 

Moreover, it has been reported that a single action of LPL would not release 

glycerol, it would release monoglyceride and diglycerides (Gilham and Lehner, 

2005). Therefore, glycerol was measured later on and the TG concentrations were 

corrected by subtracting glycerol.  
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3.1.3 Glycerol measurements  

Method 

Hydrolysis assay was carried out using different concentrations of VLDL1 and 

constant amount of LPL. VLDL1 at a concentration of 0.5 mmol.l-1 was incubated 

with 0.1 unit of LPL.  

Result 

As shown in Figure 3.4, TG concentrations did not decrease during the 30 minutes 

interval; however, the glycerol and NEFA concentrations were not increasing as 

desired. Moreover, it has been observed that, glycerol measurement appeared not 

to be reproducible. Therefore, we measured the inter-assay CV of free glycerol 

kit used on the ILab-600.  
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Figure 3.4. Release of NEFA and glycerol and degradation of TG from 0.5 mmol.l-1 VLDL1 and 0.1 

units of LPL concentrations during 30-minutes observation. 
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3.1.4 I‐Lab reproducibility 

The glycerol measurement was fluctuating, thus we tested the reproducibility of 

ILab-600 by running 10 times repeated measure using aliquots of same 

participants. The Initial results from the measurement of glycerol concentrations 

using the automated ILab-600 analyser in whole plasma, chylomicrons, VLDL1, and 

VLDL2, revealed are shown in Table 3.2. It was clear that the CV for glycerol at 

the required concentrations was very high, an order of magnitude higher than that 

for TG or NEFA, but CVs for TG and NEFA were also higher than expected. This 

prompted servicing of the analyser, where a new lamp and pump were fitted, with 

a system wide clean of the analyser. Additionally, measurements for NEFA, TG, 

and glycerol were being taken simultaneously within each sample, however 

further examination found that the reagents for ensuring TG and glycerol were 

having a carryover of NEFA. Therefore, NEFA, glycerol, and TG were measured 

separately and in that order thereafter. However, based on these data, it was felt 

that the rise in NEFA concentration provided the best signal for LPL hydrolysis. 

Table 3.2 ; reducibility of glycerol measurements in ILab-600. 

 Glycerol CV% TG CV% NEFA CV% 

Plasma 0.06 ± 0.01 1.6 % 1.42 ± 0.01 0.81% 0.39 ± 0.09 1.2% 

1:5 diluted 

plasma 
0.02 ± 0.001 75% 0.33 ± <0.01 1.2% 0.14 ± 0.07 5% 

1:10 diluted 

Plasma 
0.009 ± 0.008 85% 0.20 ± <0.01 5% 0.09 ± 0.02 10% 

Chylomicrons 0.02 ± 0.004 17% 0.14 ± 0.01 3.5% 0.16 ± <0.01  16% 

 

3.1.5 Albumin Interference  

As it has been reported above, the NEFA values were at the lower borderline of 

ILab detection limit. This has been reported previously. A number of studies have 

shown that serum albumin caused a decrease in NEFA detection when using the 

same reaction (Duncombe, 1963, Duncombe, 1964, Matsubara et al., 1983). The 

albumin complexes with NEFA preventing it from binding to the active site of ACS, 

thus preventing it from joining with CoA to form Acyl-CoA, and hindering the 

detection reaction (Matsubara et al., 1983). 
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The enzymatic reaction used to quantify the concentration of NEFA by the Waco 

kit is based on the Dole method (Dole, 1956), which involves the covalent binding 

of NEFA with Coenzyme A (CoA) to form Acyl-CoA. This reaction is catalysed by 

the enzyme Acyl-CoA synthetize (ACS). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
ATP = adenosine triphosphate; ACS = acyl-CoA synthetase; AMP = adenosine 
monophosphate; PPi = pyrophosphate; ACOD = acyl-CoA oxidase; MEHA = 
3¬methyl¬N¬ethyl¬N¬(β-hydroxyethyl)¬aniline; POD = peroxida  
 

Therefore, we ran an assay using different concentrations of albumin to 

investigate previous assays 5% of albumin was added to each sample to sequester 

excess-background NEFA, which in high concentrations has been shown to inhibit 

LPL activity (Bengtsson and Olivecrona, 1980). Therefore, we opted to compare 

the concentration of NEFA detected in an assay without, and with 2%, and 5% 

albumin. 
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Result  

Figure 3.5, Panel [A], shows that after a 30 minute of incubation of chylomicron 

with 0.1 unit of LPL and without albumin, there was 14% more NEFA released than 

with albumin. For VLDL1 when incubated without albumin, there was an over 2-

fold increase in detected NEFA concentration over its albumin containing 

counterpart (Figure 3.5, panel [B]). Without albumin, there was a steady increase 

in NEFA concentration over the 20 minute period, however, with albumin the NEFA 

concentration appeared to be levelling off after 10 minutes, but more data points 

are needed for both conditions to tell conclusively. Based on these data, albumin 

was removed from the LPL assay and the volume deficit has been replaced with 

Tris-HCl buffer. A final step of a sonication of each sample for 2 minutes before 

analysis to remove interference from bubbles was also included. 
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Figure 3.5. The effect of adding albumin to the hydrolysis assay during 30m interval. Panel [A] shows the release of NEFA from chylomicron when 
different albumin concentrations were added to the assay mixture, panel [B], shows the degradation of TG in chylomicron when different albumin 
concentrations were added to the assay mixture, panel [C], shows the release of NEFA from VLDL1 when different albumin concentrations were added to 
the assay mixture, panel [D], shows the degradation of TG in VLDL1 when different albumin concentrations were added to the assay mixture. 
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3.1.6 Conclusion  

The increase in NEFA concentration, rather than the degradation of TG and rise 

of glycerol as final products of the reaction was used an indicator of TRL 

hydrolysis. In addition, it was decided TG and NEFA were measured separately in 

the ILab-600 to avoid any interference might affect the readings. The removal of 

albumin helped in better detection of NEFA. These modifications allowed us to 

reach a CV% of <1% for NEFA at concentration of 0.18 mmol.l-1 and 2.1% at 

concentration of 0.15 mmol.l-1 for TG when measured in ILab-600.  
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3.2 Standardisation of TRL concentration 

3.2.1 Aim  

To accurately and precisely determine TRL susceptibility to TG hydrolysis it is 

necessary to ensure that TRL concentration in the assay is standardised. The aim 

here was to optimise a process to concentrate TRL particles to enable easy dilution 

to a single standardised concentration for all TRL (chylomicrons, VLDL1 and VLDL2) 

in all individuals under all conditions (fasted and postprandial, control and 

exercise). This would also enable the use of a concentration high enough to be 

read accurately and precisely by the ILab-600. 

 

3.2.2 Method  

Subjects were fasted for >12 h before a high fat meal was given (see Section 

2.5.1). Fifty ml of fasting and postprandial (4 hours after meal ingestion) blood 

was collected from rested subjects in EDTA tubes and was placed immediately on 

ice. Plasma was separated within 15 minutes of collections as previously 

mentioned in Section 2.6. 

 

Concentration of chylomicrons 

Chylomicron particles were separated from postprandial plasma samples a 

described in section 2.6.2. Chylomicrons were then concentrated in this sample 

using washed 10000 MWCO Centrifugal Filter Units (Fisher scientific, UK). The 

Centrifugal Filter Units were washed with distilled water 4-5 times at 2400 rpm 

for 13-23 minutes to remove any traces of glycerol. 

Each subfraction was then centrifuged at 3000 rpm for 90 minutes until a constant 

volume was produced, giving a 2-10X concentrated sample. Concentrated 

chylomicron was stored at 4 °C (Figure 3.6). 
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Figure 3.6. Chylomicron were concentrated using filtered tubes at 3000 rpm at 4ºC for 90 minutes. 

 

VLDL particles  

It was thought that VLDL1 and VLDL2 particles may not be stable once they were 

separated from plasma; therefore, we assessed the stability for both particles, 

by, measuring concentrations of TG in samples stored for 0, 24 and 48 hours. Both 

subfractions were stable for 48 h in the fridge at 4 °C.  

 

After the removal of chylomicron particles as detailed in Section 2.6.2, plasma 

was adjusted to a density of 1.25 g.ml-1 by the addition of 0.3517 g.ml-1 potassium 

bromide (KBr; BDH: 101954F), 15 ml of 1.25 g.ml-1 density solution (1.006 g.ml-1 

density Solution + 0.3517 g.ml-1 of KBr) was overlaid on 10 ml 1.25 g.ml-1 plasma 

in Ultra-Clear centrifuge tubes (Figure 3.7), which was then ultracentrifuged at 

39 k rpm for 46 hours at 15℃ using the Beckman L8-60M Ultracentrifuge and Ti 70 

fixed angle rotor (Beckman Instruments Inc., 337922, UK). The samples were left 

for 5-10 minutes after centrifugation to settle, before the top 2 ml was aspirated 

and reserved for VLDL separation as it mentioned in section 2.6.2. This resulted 

in a 5-fold concentration of TRL. The ultracentrifugation process to separate 

VLDL leads to a further doubling of the VLDL1 concentration (as 2 ml of the 

initial solution is collected in 1 ml) and 4-fold increase in VLDL2 concentration 

(as the fraction is collected in 0.5 ml). Thus this process leads to a 10-fold 

increase in concentration of VLDL1 and 20-fold increase in concentration of 

VLDL2.  
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Figure 3.7. 70 Ti rotor and tubes, used to concentrate VLDL particles.  
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3.2.3 Result  

After concentration of TRL, typical concentrations achieved were 1.0 mmol.l-1 for 

chylomicrons, 5.0 mmol.l-1 for VLDL1 and 3.0 mmol.l-1 for VLDL2. Thus, to ensure 

that a reproducible concentration of TRL could be achieved in all participants in 

all conditions (including following exercise, where concentrations could be 

reduced by up to 40%), it was decided to standardise TRL concentrations in the 

assay at 0.6 mmol.l-1.  

 

  



3 Development of a Method to Determine the susceptibility of Triglyceride-Rich Lipoproteins 
for hydrolysis  

 

116 
       Khloud Jamil Ghafouri ® 2017 

3.3 Optimising lipase amount  

3.3.1 Aim  

To determine suitable concentration of LPL to hydrolyse TRL to release NEFA. This 

includes testing the concentration of LPL and the volume of TRL in the assay. 

Further questions were addressed included whether the enzyme needed an 

activator and the incubation period. A previously described assay was used as the 

starting point (van Barlingen et al., 1996). 

 

3.3.2 Methods 

Serial assays wereconducted using different LPL concentrations from Burkholderia 

sp. The above separated VLDL1 particles were incubated with LPL in Tris-HCl 

buffer and then quenched with different NaCl concentrations.A number of 

adjustments were applied to reach the optimal assay conditions as following;  

 

LPL concentrations and reaction duration  

A range of LPL concentrations were used (100, 200, 400 and 800 units) for a range 

of incubation periods with TRL up to 90 minutes.  

As shown in Figure 3.8 the release of NEFA increased by increasing LPL 

concentrations. Also, it observed that most of the reaction occurred in the first 5-

10 minutes and saturation was generally seen within the first 10 minutes.  
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The reactions were fast and reached the saturation point quickly. In addition, 

concentrations of NEFA were low, which providing challenges for accurate and 

precise measurement using the iLab 600 analyser. This was not optimal; to 

measure the affinity of LPL after exercise a slower reaction was needed to be able 

to observe the change. Thus much lower concentrations of LPL were used in a 

second set of assays as described below. In addition, the volume of the reaction 

mixture was reduced by reducing the volume of buffer to increase final NEFA 

concentrations. 

3.3.3 Final enzyme concentrations  

In order to achieve a slower action of the reaction, a decision was made to reduce 

the concentrations of LPL substantially and to try LPL from different sources. 

Thus, experiments using 0.1 unit of LPL from Pseudomonas sp. and Burkholderia 

sp. were performed. In addition, the volume of the mixture was adjusted from 
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Figure 3.8. Values for NEFA release over 90-minutes in LPL-affinity assay in VLDL1 using different 
LPL concentrations; 100, 200, 400 and 800 units. 

 



3 Development of a Method to Determine the susceptibility of Triglyceride-Rich Lipoproteins 
for hydrolysis  

 

118 
       Khloud Jamil Ghafouri ® 2017 

500 µlto 140 µl as seen in Table 3.3, to increase the final concentration of NEFA 

in the reaction mixture VLDL1 was incubated with 0.1 units of LPL from both 

sources (Figure 3.9).  

With 0.1 units of LPL from Pseudomonas sp. and a reaction mixture volume of 140 

µl, the rate of NEFA released over the incubation period was linear until 20 

minutes with NEFA concentrations within a range which enabled accurate and 

precise detection by the ILab-600 analyser. In contrast NEFA release using LPL 

from Burkholderia sp. was negligible over the incubation period (Figure 3.9). 

 

 

Figure 3.9. Release of NEFA over 30-minutes in LPL-affinity assay in VLDL1 using 0.1 unit of LPL 
from different sources, Burkholderia sp. and Pseudomonas sp. 
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3.3.4 Conclusion  

The combination of using 0.1 units of LPL from Pseudomonas sp. and reducing the 

final volume of the reaction mixture to 140 µl led to an acceptable rate of NEFA 

release in the TG-hydrolysis assay. It was decided to use these conditions for the 

assay going forward.  

 

3.4 Assay conditions  

3.4.1 Stopping the reaction  

There are many enzyme inhibitors had been used to inhibit LPL action in different 

studies. Use of L- paraxon has been reported (Saheki et al., 1991), however its 

high toxicity meant that it was not considered for use here. Tetrahydrolipstatin 

(THL) has been used as an inhibitor of mammalian lipases, including pancreatic 

lipase, LPL, and HL (Hadvary et al., 1991, Lookene et al., 1994, Zambon et al., 

1996). However, the THL solution is not completely clear, small particles may 

remain floating, which make it impractical to be used in the current assay. In 

addition, ethanol:chloroform:heptane (1.00.90.7, v/v) was used in a study by 

Shirai and Jackson to inhibit LPL activity (Shirai and Jackson, 1982, Gómez-

Coronado et al., 1993). Again, chloroform is poisonous liquid. Sodium chloride has 

also been used as an inhibitor of LPL previously (van Barlingen et al., 1996, 

Fielding and Fielding, 1976). In current study NaCl was used as the inhibitor, 

because it is practical and not poisonous. Based on the original paper by (van 

Barlingen et al., 1996) an initial concentration of NaCl of 2 M was chosen. To test 

whether this concentration was sufficient, a higher concentration of 5 M was also 

tested.  

 

Results  

Figure 3.10, Panel [A] shows NEFA concentrations when the reaction was 

quenched with 2 M and 5 M NaCl, with NEFA concentrations measured immediately 

after the assay was completed (i.e. at 30 minutes). Figure 3.10, Panel [B] shows 

the same data when NEFA concentrations were re-measured an hour later. There 

are two clear observations here. First, NEFA concentrations were higher at the 
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early time-points of the reaction when quenched with 2 M NaCl than with 5 M 

NaCl, suggesting that 2 M NaCl was not sufficient to quench the reaction and TG-

hydrolysis was continuing until the NEFA measurement. Secondly, when the NEFA 

was re-measured one hour later, concentrations were higher compared with 

immediate NEFA measurement when the reaction was quenched with 2M NaCl, but 

not 5 M NaCl, which reinforces the initial observation that 2 M NaCl was not 

sufficient to fully quench the reaction, and demonstrates that 5 M NaCl was 

sufficient. Thus, a decision was made to use 5 M NaCl to quench the reaction. 

 

 

 

 

 

 

 

 

 

 

  



3 Development of a Method to Determine the susceptibility of Triglyceride-Rich Lipoproteins 
for hydrolysis  

 

121 
       Khloud Jamil Ghafouri ® 2017 

 

 

 

 

 

 

 

 

 
Figure 3.10. Stopping the reaction by using two concentrations of NaCl. Panle [A] shows the 
effect of adding 2 and 5 M of NaCl to stop the reaction, Panel [B] shows the repeated measurement 
for the same reaction after one hour. 
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3.5 Discussion  

The purpose of the present study was to develop a method to measure lipolytic 

capacity of TRL, based on a previously published approach by (van Barlingen et 

al., 1996). Although, there are many methods to measure the lipolytic capacity 

for LPL, this assay is relatively easy to perform and meaningful in that it provides 

a good measure for the lipolytic rate in a given sample. There was some 

modification needed to reach to the optimal assay. Concentrating TRL helped to 

overcome any error from low concentrations measurements of NEFA. The 

modification of assay mixture and volume to avoid any dilutions related low 

concentrations. The LPL assay has been improved after the changes that had been 

made. The beginning was with ILab-600, but after exploring alternatives, and ILab-

600 maintenance, automatic sample analysis using the ILab-600 presented the 

best option. Albumin removal enhanced the action of LPL to hydrolyse TG, with a 

more than 2 fold increase in detected NEFA, which is in line with a number of 

observations showing reduced NEFA recovery when albumin is present, using the 

same detection method (Duncombe, 1963, Duncombe, 1964, Matsubara et al., 

1983). Moreover, the detection of TG concentration without albumin was better 

than with albumin, but these results were based on data from only one 

experiment. Repeats confirmed this observation. The final concentration of LPL 

was 0.1 units as it gives a linear increase of NEFA release during 30 minutes of 

interval. Before making all these modifications in the assay, a quality control was 

carried out thought out all the equipment that involved in the assay.  

The final assay mixture ended up by using the following; 70 µl lipoprotein (0.6 

mmol.l-1) incubated with 35 µl of Tris-HCl buffer at 37 ºC for 10 min to climate 

the tube. A 35 µl of LPL were added in each tube except the control, and incubated 
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for different time points 0, 5, 10, 15, 20 and 30 mins. Each tube was quenched by 

35 µl of pre-cooled NaCl (5 Ml). NEFA was measured, in triplicate, at different 

time point using enzymatic colorimetric methods. The final reaction conditions 

are shown in Table 3.3. The protocol of the assay is illustrated in Figure3.11. 

One limitation of this assay is that bacterial, rather than human, LPL was used, 

thus the absolute rates of TRL TG-hydrolysis are likely to differ from values 

obtained if human LPL was used. However, the purpose of the assay was to 

compare relative differences between susceptibility of TRL species to TG-

hydrolysis under different experimental conditions and as the same type of LPL 

will be used under all conditions, the outcomes should be largely independent of 

the LPL species used. In conclusion, by concentrating TRL, removing albumin from 

the assay and lowering the assay volume, the measurements of both TG and NEFA 

become consistent and enabled this assay to be used in the study described in 

experimental Chapter 4. 
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Table 3.3;Final assay mixture.  

 Time (min) 

 Control      

All in µl 0 0 0 5 10 15 20 30 

Buffer 35 70 35 35 35 35 35 35 

Albumin 0 0 0 0 0 0 0 0 

LPL 0 35 0 35 35 35 35 35 

lipoprotein 0 0 70 70 70 70 70 70 

Density sol. 70 0 0 0 0 0 0 0 

Total Vol. 140 140 140 140 140 140 140 140 

NaCl 93 93 93 93 93 93 93 93 
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Blood sampling at;  

0, 120, 240 min 

Plasma analysis; 

TG,NEFA. 

Plasma samples;  
2 ml for analysis and lipid 

separation  

Blood samples;  
30 ml for concentrated lipid 

separations  

Spin for 48 h to concentrate.  
Spin for  

VLDL
1
 and VLDL

2
 

Spin at 3000 rpm for 30 min at 4 °C 

Spin for 
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Figure 3.11. Schematic diagram of LPL assay protocol.  
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4 Effect of Exercise on the Affinity of 
Lipoproteins for Lipoprotein Lipase 

4.1  Introduction 

Postprandial triglyceride concentrations are independently associated with risk of 

cardiovascular events (Bansal et al., 2007, Mora et al., 2008, Nordestgaard et al., 

2007) and chylomicrons and their remnants are implicated in the atherosclerotic 

disease process (Goldberg IJ, 2011, Chapman et al., 2011). Recent Mendelian 

randomisation studies reasserted the likely causal role of TG-mediated pathways in 

CVD (Jørgensen et al., 2012, Consortium and Collaboration, 2010, Cohorts, 2014, 

Jørgensen et al., 2014). Moderate intensity exercise lowers postprandial TG 

concentrations by about 15-25% in a range of population groups at increased risk of 

cardiovascular disease (Farah and Gill, 2012, Gill et al., 2004a, Gill and Hardman, 

2000) and is recommended as a TG-lowering intervention for patients at high CVD risk 

(Chapman et al., 2011). However, the mechanism(s) by which exercise lowers TG 

have not been fully elucidated. The exercise-induced reduction in postprandial TG 

concentration is quantitatively greater in VLDL than in chylomicrons (Gill et al., 2006, 

Gill et al., 2001b),with large VLDL particles (VLDL1, Sf 60- 400) being the lipoprotein 

subclass most affected (Gill et al., 2006). Kinetic studies have shown that exercise-

induced VLDL-TG reductions are due to increased clearance from the circulation, 

rather than reduced hepatic production (Al-Shayji et al., 2012). While exercise has 

also been shown to increase clearance of chylomicron-like particles (Al-Shayji et al., 

2012, Sady et al., 1986, Annuzzi et al., 1987), the magnitude of this change is smaller 

than the increase in clearance of VLDL1-TG (Al-Shayji et al., 2012), and the effect 

has not been consistently observed (Gill et al., 2001a). Furthermore, although 

exercise-induced reductions in postprandial TG concentrations are sometimes 

accompanied by an increase in post-heparin plasma or skeletal muscle lipoprotein 

lipase (LPL) activity, post-exercise TG reductions are also commonly observed in the 

absence of increased LPL activity (Harrison et al., 2012, Herd et al., 2001). The 

affinity of chylomicrons/chylomicron-like particles for LPL clearance is many fold 

greater than that of VLDL particles (Bjorkegren et al., 1996); thus the observation 
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that exercise increases VLDL1-TG clearance to a greater extent than chylomicron-like 

particles (Al-Shayji et al., 2012), taken together with the inconsistent changes to LPL 

activity in response to exercise (Malkova et al., 2000), suggest that mechanisms other 

than increased LPL activity are likely to contribute to the exercise-induced increase 

in VLDL1-TG removal. There is evidence that circulating VLDL1 particles are larger 

and more TG enriched following exercise (Al-Shayji et al., 2012, Gill et al., 2006) 

changes that might be expected to increase the susceptibility (affinity) of these 

particles for LPL-mediated hydrolysis (Fisher et al., 1995) and we have recently 

demonstrated that these exercise-induced changes to the size and TG enrichment of 

circulating VLDL1 particles explain about half of the variance in the exercise-induced 

increase in VLDL1 particle clearance in correlational analyses (Al-Shayji et al., 2012). 

This observation is consistent with exercise-induced changes to VLDL1 particles 

increasing their affinity for LPL-mediated clearance (Magkos, 2009, Al-Shayji et al., 

2012): this data interpretation would also explain how exercise could increase 

clearance of VLDL1-TG without necessarily increasing LPL activity, and why the 

exercise-induced increase in VLDL1-TG clearance is quantitatively larger than that 

observed in chylomicron-like particles. However, the hypothesis that exercise 

increases the affinity of VLDL1 as a substrate for LPL has not been directly tested. 

The purpose of this study was therefore to determine the effects of exercise on the 

affinity of TG-rich lipoprotein species (chylomicrons, VLDL1, and VLDL2 (Sf 20-60)) for 

LPL- mediated TG hydrolysis. 

 

4.2  Participants and Methods  

4.2.1 Participants 

Fifteen overweight/obese men were initially recruited to this study. Three were 

excluded at the outset for not being normoglycaemic. A further two withdrew without 

completing the experimental period for undisclosed personal reasons. 

Characterizations of the remaining 10 are listed in Table 4.1. All subjects were 

apparently healthy, normotensive, normoglycaemic and nonsmokers. None was 

taking any drugs known to affect lipid or carbohydrate metabolism. The study was 



4 Effect of Exercise on the Affinity of Lipoproteins for Lipoprotein Lipase 

128 
Khloud Jamil Ghafouri ® 2017  

conducted with the approval of University of Glasgow Ethics Committee, and subjects 

gave written informed consent prior to participation 

  
Table 4.1; Physical characteristics 

  

Age (years) 36.44 ± 0.77 

Weight (kg) 95.85 ± 24.39 

Height (m) 1.76 ± 0.09 

BMI (kg.m-2) 30.46 ± 6.27 

Waist (cm) 101.85 ± 15.40 

Percentage fat (%) 26.66 ± 5.84 

Sum of skinfolds* (mm) 56.27 ± 42.61 

Systolic blood pressure (mm Hg) 127.09 ± 17.03 

Diastolic blood pressure (mm Hg) 81.27 ± 10.62 

N=10 Values are means ± SD  
*triceps, biceps, subscapular and superiliac 
 

4.2.2 Study design 

Participants attended the laboratory for two oral fat loading test (FLTin a random 

order, with an interval of 7-14 days. On the day before one of the OFTTs, participants 

walked on a treadmill for 90-min at an intensity of 50% V ̊O2max (Exercise trial). For 

the other FLT, subjects performed no exercise on the day preceding the oral fat 

tolerance test (Control trial). Subjects were asked to weigh and record their dietary 

intake and refrain from alcohol for the 2 days prior to the first FLT and replicated 

this prior to the second fat tolerance test. During the 3 days prior each FLT subjects 

were instructed to perform no exercise, other than the treadmill walk in the exercise 

trial (see Figure 4.1). 
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Figure 4.1. Study Design. A day prior the OFTT participants performed either exercise for 90 minutes or rest. A base line blood sample was acquired, 
then a test meal was provided, further blood samples were obtained at 30, 60, 90, 120 and 240 minutes after meal consumption. 
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Exercise tests 

One week prior the first FLT a preliminary sub-maximal incremental treadmill test 

was performed to estimate V̊O2max (Armstrong, 2006) and determine the walking 

speed and gradient required to elicit 50% V̊O2max as mentioned in section 2.4. In 

the exercise trial, the treadmill walk was performed on the afternoon preceding 

the oral fat tolerance test about 16–18 h before the FLT. During the walk, O2 

uptake and CO2 production were measured as mentioned in section 2.2, heart 

rate was measured by short range telemetry (Polar Electroky, Kempele, Finland) 

as mention in section 2.3 and ratings of perceived exertion (Borg, 1973) were 

obtained at 15-minute intervals. 

 

Fat loading test  

Subjects reported to the lab in the morning after an overnight fast for ≥ 12h. A 

cannula was placed in an antecubital vein and, after a 10-min interval, a fasted 

state blood sample was withdrawn. A high fat mixed meal (HFM) as mentioned 

above in section 2.5.1 was provided. Further blood samples were obtained at 30, 

60, 90, 120 and 240 minutes after meal consumption. Subjects rested and 

consumed only water during this time.  

 

4.2.3 Lipoprotein separation 

Plasma samples (2 ml) at 0, 2 and 4 h were centrifuged to isolate lipoprotein 

subfractions as previously described in section 2.6.2 VLDL1 and VLDL2 fractions 

were assayed to determine concentrations and composition for TG, free 

cholesterol (FC) and phospholipids (PL), apoB, apoE and apoC as mention in 

Appendix C. Cholesteryl ester (CE) was determined by using the equation 

mentioned in Appendix C. Chylomicron fractions were assayed for TG 

concentration. In the VLDL1 and VLDL2 fractions, total protein was measured using 

a modified Lowry assay (see section 2.7).  

 

At the 4 h time point, chylomicrons were separated from 30 ml plasma by 

centrifugation. The chylomicron fraction was then concentrated 8-10 fold by 

centrifugation as mentioned in section 3.2. The chylomicron-free plasma at the 

4 h time-point, and 10 ml of plasma collected at 0 hours was then concentrated 
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~10-fold by centrifugation (see section 3.2) before lipoprotein separation to 

obtain concentrated VLDL1 and VLDL2 fractions. Chylomicron concentrations were 

adjusted to 0.6 mmol.l-1 of triglyceride, and VLDL1 and VLDL2 concentrations were 

adjusted to 0.6 and 2.0 mmol.l-1, by the addition of a d 1.006 g.ml-1 density 

solution.  

 

4.2.4 LPL affinity assay 

Affinity of lipoproteins for LPL was determined using a modified version a method 

described previously as mention in Chapter 3. 

 

4.2.5 Plasma assays 

Plasma glucose, TG, NEFA, and 3-hydroxybutyrate concentrations were analysed 

at all time points as previously mentioned in Appendix C. Total, HDL cholesterol 

concentrations were measured in the fasted state as mentioned in Appendix C. 

Small dense LDL was measured in the fasted state and 4 h postprandially as 

mention in Appendix C, LDL cholesterol was calculated in the fasted state using 

the Friedewald equation (Friedewald et al., 1972). Insulin was measured in EDTA 

plasma as described in section 2.6.4.  

 

4.2.6 Data analysis  

Statistical analyses were performed using Statistica (version 10, StatSoft Inc.) and 

Minitab (version 17, Minitab Ltd). All data were tested for normality using the 

Anderson-Darling test. Where data did not approximate a normal distribution, 

these were log-transformed prior to analysis and data are expressed as geometric 

means with 95% confidence intervals (95% CI)(Bland and Altman, 1996a, Bland and 

Altman, 1996b). Time-averaged postprandial concentrations, calculated as the 

trapezium rule-derived areas under concentration versus time curve, divided by 

the duration of the postprandial observation period (240 minutes), were used as 

summary measures of the postprandial responses. Comparisons between trials 

were made using paired t-tests where a single pair of means was compared, or by 

two-way repeated measures ANOVA, with post hoc Fisher tests, when comparisons 

were made across multiple time-points. Differences in lipoprotein affinity for LPL 

were expressed in terms of absolute changes and in terms of relative (fold) 
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changes. Relationships between variables were assessed using Pearson product-

moment correlations. Cohen’s effect size was calculated to measure the 

magnitude of the exercise effect (Cohen, 2013) see section 2.9.5. Statistical 

significance was accepted at p < 0.05. Please see Appendix E for Dr.Farag Al-

Shuweihdi statistical report. 
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4.3 Results 

4.3.1 Plasma concentrations in the fasted and 
postprandial states 

Plasma TG concentrations in the fasted and postprandial states for the group are 

shown in Figure 4.2 and Tables 4.2 and 4.3. Individual values are shown in Figure 

4.3. Exercise reduced fasting TG concentrations in 8, and postprandial TG in 7, of 

the 10 participants (Figure 4.3, panels A and B). TG concentrations were not 

normally distributed in either the fasted or postprandial states, largely due to one 

participant having substantially raised TG concentrations (> twice the mean) (see 

Figure 4.3, panels A and B) and thus statistical analysis was performed on log 

transformed data. Log transformed values approximated a normal distribution 

(Figure 4.3, panels C and D). Fasting TG concentrations were reduced by 18% (-

0.18 (-0.20 to -0.04) mmol.l-1 (mean difference (95% confidence interval)); p=0.04) 

by exercise, to give a Cohen’s d effect size for the exercise effect of 0.77. Time-

averaged postprandial TG concentrations were reduced by 13% (-0.33 (-0.63 to -

0.04) mmol.l-1; p=0.04), to give a Cohen’s d effect size of 0.70. Exercise had a 

statistically significant, moderate-sized effect on TG concentrations in both the 

fasted and postprandial states (Cohen, 2013).   

 

Group data for insulin are shown in Figure 4.4, panel B and Tables 4.2 and 4.3. 

Like TG, fasting and postprandial insulin concentrations were not normally 

distributed due to one individual with substantially elevated concentrations (see 

Figure 4.5, panels B and D), so values were log transformed prior to analysis. 

Although exercise reduced mean fasting insulin concentrations by ~25% and 

postprandial insulin concentrations by almost 60%, there was substantial individual 

variability in the exercise response (6 out of 10 lower with exercise in both fasted 

and postprandial states), leading to non-significant effects of exercise on both 

fasting (mean (95%CI) difference: -0.29 (-0.34 to +0.26) mU.l-1) and postprandial 

(-0.15 (-0.19 to +0.24) mU.l-1) insulin concentrations. Also, 3-hydroxybutyrate 

values were not normally distributed due to one individual with substantially 

elevated concentrations (see Figure 4.7, panel C and panel D) therefore, values 

were log transformed prior to analysis. Fasted 3-hydroxybutyrate values were 

higher in the exercise trial by 77% +0.37 (+0.34 to +0.62) mmol.l-1; p=0.02) but 



4 Effect of Exercise on the Affinity of Lipoproteins for Lipoprotein Lipase 

134 
Khloud Jamil Ghafouri ® 2017  

there was no significant different between the two trials in the postprandial state 

(-0.08 (-0.12 to +0.36) mmol.l-1; p=0.74). The Cohen’s d effect size was 0.89 and 

0.11 respectively.  

 

Figures 4.7, panels A and C, Figure 4.8, panels A and C and Tables 4.2 and 4.3 

show fasting and postprandial concentrations for glucose and NEFA control and 

exercise trials. NEFA did not significantly changed by exercise, although there was 

a trend for fasting values for NEFA (+0.07 (-0.01 to +0.15) mmol.l-1) to be higher 

in the exercise trial. 

 

Exercise did not significantly affect total, LDL or HDL cholesterol concentrations 

in the fasted state (Table 4.2), but fasted small dense LDL concentrations were 

significantly lower by 16% (-0.23(-0.31 to -0.16) mmol.l-1 (mean difference (95% 

confidence interval); p=0.0002) following exercise, to give a Cohen’s d effect size 

for the exercise effect of 1.89. Time-averaged postprandial sdLDL concentrations 

were reduced by 11% (+0.17 (-0.13 to +0.47)) mmol.l-1; p=0.0006), to give a 

Cohen’s d effect size of 0.35. (see Figure 4.8, panel A and panel B and Table 4.2 

and 4.3).  
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Table 4.2; Fasting plasma concentrations. 

 Fasting concentration 

 Control Exercise Mean difference and 95% CI 
Cohn’s d 

effect size 
p-value 

Plasma TG (mmol.l-1)* 0.45 ± 0.14 0.27 ± 0.15 -0.18 (-0.20 to -0.04) 0.77 0.04 

Glucose (mmol.l-1) 5.50 ± 0.22 5.47 ± 0.23 -0.04 (-0.31 to +0.24) 0.08 0.81 

Insulin (mU.l-1)* 2.50 ± 0.35 2.21 ± 0.20 -0.29 (-0.34 to +0.26) 0.33 0.33 

ΝΕFΑ (mmol.l-1) 0.66 ± 0.06 0.73 ± 0.05 +0.07 (-0.01  to +0.15) 0.57 0.11 

3-hydroxybutyrate (mmol.l-1)* 2.45 ± 0.25 2.82 ± 0.21 +0.37 (+0.34 to +0.62) 0.89 0.02 

Plasma Small dense LDL (mmol.l-1) 1.40 ± 0.20 1.17 ± 0.17 -0.23 (-0.31 to -0.16) 1.89 0.0002 

Total cholesterol (mmol.l-1) 5.44 ± 0.33 5.49 ± 0.36 +0.05 (-0.19 to +0.28) 0.13 0.69 

HDL cholesterol (mmol.l-1) 1.06 ± 0.09 1.09 ± 0.10 -0.03 (-0.09 to +0.03) 0.29 0.38 

LDL cholesterol (mmol.l-1) 3.68 ± 0.28 3.83 ± 0.33 +0.15 (-0.06 to +0.35) 0.45 0.19 

Values are mean ± SEM, n = 10. Statistical analysis performed using paired t-test. *log-transformed values.  
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Table 4.3; Time-averaged postprandial plasma concentrations. 

 Postprandial concentration 

 Control Exercise Mean difference and 95% CI  
Cohen’s d 

effect size 
p-value 

Plasma TG (mmol.l-1) 2.72 ± 0.40 2.36 ± 0.31 -0.33 (-0.63 to -0.04) 0.70 0.03 

Glucose (mmol.l-1) 6.39 ± 0.46 6.35 ± 0.36 -0.04 (-0.34 to +0.33) 0.08 0.81 

Insulin (mU.l-1)* 4.24 ± 0.27 4.09 ± 0.25  -0.15 (-0.19 to +0.24) 0.24 0.33 

ΝΕFΑ (mmol.l-1) 0.65 ± 0.06 0.64 ± 0.06 -0.01 (-0.09 tο +0.07) 0.005 0.11 

3- hydroxybutyrate (mmol.l-1) 0.08 ± 0.01 0.10 ± 0.03 -0.02 (-0.09 to +0.04) 0.24 0.74 

Plasma Small dense LDL (mmol.l-1) 1.31 ± 0.16 1.14 ± 0.14 +0.17 (-0.13 to +0.47) 0.35 0.0002 

 

 
Values are mean ± SEM, n = 10. Statistical analysis performed using paired t-test. *log-transformed values. Statistical analysis performed using paired t-test 
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Time 0 min 30 min 60 min 90 min 120 min 240 min 

Mean 
difference 

0.32*± 0.16 0.29*± 0.15 0.31*± 0.13 0.37*± 0.14 0.26* ±0.19 0.57* ± 0.19 

Figure 4.2. Time-averaged postprandial plasma TG concentrations in Control and Exercise trial. 
Values and statistical analysis of these data is shown in Table 4.1 and 4.2. N = 10, Values are mean ± 
SEM. The SEM shows the variability among the whole population.  

The table below, shows the mean ± SEM differences between the two trials at each time point.* 
significant difference between trials at this time-point within subject (p < 0.005). 

Note.Error bars are calculated on the between subjects data, but the test is of the within subjects 
data. 
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Figure 4.3. Individual values for TG in the Control and Exercise trials. Panel [A] shows raw values for fasting TG concentrations; panel [B] shows raw values for 
time-averaged postprandial TG concentrations; panel [C] shows log transformed values for fasting TG concentration; panel [D] shows log-transformed values for 
time-averaged postprandial TG concentrations. Black symbols show individual values; red symbols show the mean values. Values and statistical analysis of these 

data is shown in Table 4.2 and Table 4.3.  
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[C] Fasted concentrations – log transformed data [A] Fasted concentrations – raw data 

 

[B] Time-averaged postprandial concentrations – raw 
data 

[D] Time-averaged postprandial concentrations – log 
transformed data 
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Figure 4.4. Time-averaged postprandial concentrations in Control and Exercise trial, panel [A] shows time-averaged postprandial glucose concentrations 
and panel [B] shows time-averaged postprandial insulin concentrations. Values and statistical analysis of these data is shown in Table 4.2 and Table 4.3 
and 4.2 N = 10, Values are mean ± SEM. The SEM shows the variability among the whole population. * significant difference between trials at this time-
point within subject (p < 0.005). 

Note.Error bars are calculated on the between subjects data, but the test is of the within subjects data. 
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Figure 4.5. Individual values for glucose and insulin in the Control and Exercise trials. Panel [A] shows raw values for fasting glucose concentrations; panel [B] 
shows fasting insulin concentrations; panel [C] shows time-averaged glucose concentration; panel [D] shows time-averaged postprandial insulin concentrations. Black 

symbols show individual values, red symbols show the mean values. Values and statistical analysis of these data is shown in Table 4.2 and Table 4.3.  

[A] Fasted glucose concentrations [C] Time-averaged postprandial glucose concentrations 

 

[B] Fasted insulin concentrations [D] Time-averaged postprandial insulin concentrations 
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Figure 4.6. Time-averaged postprandial concentrations in Control and Exercise trial, panel [A] shows time-averaged postprandial NEFA concentrations and 
panel [B] shows time-averaged postprandial 3-Hydroxybutyrate concentrations. Values and statistical analysis of these data is shown in Table 4.2 and Table 
4.3 and 4.2 N = 10, Values are mean ± SEM. The SEM shows the variability among the whole population. * significant difference between trials at this time-
point within subject (p < 0.005). 
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[A] Fasted NEFA concentrations 

[B] Fasted 3-Hydroxybutyrate concentrations 

 
[D] Time-averaged postprandial 3-Hydroxybutyrate concentrations 

Figure 4.7. Individual values for NEFA and 3-Hydroxybutyratein the Control and Exercise trials. Panel [A] shows raw values for fasting NEFA concentrations; panel 
[B] shows fasting 3-Hydroxybutyrate concentrations; panel [C] shows time-averaged NEFA concentration; panel [D] shows time-averaged postprandial 3-
Hydroxybutyrateconcentrations. Black symbols show individual values, red symbols show the mean values. Values and statistical analysis of these data is shown in Table 
4.2 and Table 4.3.  
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[C] Time-averaged postprandial NEFA 
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[A] Fasted sdLDL concentrations 

 
[B] Time-averaged postprandial sdLDL concentrations 

 

Figure 4.8.Individual values for sdLDL the Control and Exercise trials. Panel [A] shows fasting sdLDL concentrations; panel [B] shows time-averaged sdLDL 
concentration. Black symbols show individual values, red symbols show the mean values. Values and statistical analysis of these data is shown in Table 4.2 
and Table 4.3.  
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4.3.2 Lipoprotein concentrations and composition in 
the fasted and postprandial states 

Fasting and postprandial chylomicron-TG, VLDL1-TG and VLDL2-TG concentrations in 

the fasted and postprandial states for the group are shown in Figure 4.9, panel A, 

Figure 4.10, panel A and Figure 4.11, panel A and Tables 4.4 and 4.5. Individual 

values are shown in Figure 4.9, panel B, Figure 4.10, panel B and panel C and 

Figure 4.11, panel B and panel C. Chylomicron-TG concentrations in the fasted state 

were negligible in both trials, (-0.01 (-0.02 to +0.01) mmol.l-1 (mean difference (95% 

confidence interval)); p=0.25) by exercise. Whereas, exercise reduced postprandial 

chylomicron-TG concentrations by 31% (-0.12 (-0.13 to +0.02); p=0.08). The reduction 

of chylomicron TG observed in 7 out of the 10 participants. The effect of exercise on 

chylomicron time averaged TG concentrations in postprandial state gave a Cohen’s d 

effect size of 0.73 (see Figure 4.9, panel B). Exercise reduced fasting and 

postprandial VLDL1-TG concentrations in 7 out of the 10 participants in both trials 

(Figure 4.10, panel B and C). Fasting VLDL1-TG concentrations were reduced by 25% 

(-10.63 (- 21.26 to +0.00) mg.dl-1 (mean difference (95% confidence interval); 

p=0.056)) by exercise, to give a Cohen’s d for the exercise effect of 0.69. Time-

averaged postprandial VLDL1 TG concentrations were reduced by 18% (-14.62 (-27.40 

to -1.84) mg.dl-1; p=0.01), to give a Cohen’s d effect size of 0.96. Thus, exercise had 

a statistically significant, moderate to large-sized effect on TG concentrations in both 

the fasted and postprandial. Exercise did not significantly affect fasted and time-

averaged postprandial VLDL2-TG concentration did not differ significantly between 

trials (-3.21(-8 .84 to +2.42); p=0.22) and (+0.44 (-3.98 to +4.86); p=0.10) mg.dl-1 

respectively. (see Figure 4.11, panel B and C and Table 4.6 and 4.7).  
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Table 4.4, Table 4.5, Table 4.6 and Table 4.7 show total lipoprotein particle 

concentration and concentration of constituent lipoprotein molecules for VLDL1 and 

VLDL2 in the fasted state and 240 minutes postprandially. Exercise reduced fasting 

and postprandial total VLDL1 mass concentrations in 8 out of the 10 participants in 

both fasted and postprandial state. Fasting total lipoprotein mass for VLDL1 was lower 

in the fasted state by 24% (-20.43 mg/dl (-39.34 to -1.51); p = 0.04) by exercise, to 

give a Cohen’s d for the exercise effect of 0.79 and lower at 240 minutes 

postprandially by 17% (-23.34mg/dl (-45.83 to -0.86); p = 0.049), by exercise, to give 

a Cohen’s d for the exercise effect of 0.69. 

 

 VLDL1 apoB concentrations were significantly lower in the exercise than the control 

trial in the fasted state, but not 240 minutes postprandially. Concentrations of VLDL1 

TG, cholesteryl ester and free cholesterol were lower in the exercise than the control 

trial in both the fasted state and 240 minutes postprandially (Table 4.4 and 4.5). In 

the fasted state the VLDL1 TG/apoB ratio tended to be 39% higher (6942 (-1097 to 

+14982); p=0.09) by exercise, to give a Cohen’s d for the exercise effect of 0.60. At 

the 240 minute postprandial time-point VLDL1 TG/apoB ratio was similar in the two 

trials. Similarly, in the fasted state, the CE/TG ratio tended to be 26% lower -0.06 (-

0.15 to +0.03) (p=0.16). At the 240 minute postprandial time-point VLDL1 CE/TG ratio 

was similar in the two trials. In contrast to the findings for VLDL1, no differences in 

VLDL2 concentration or composition were observed between the control and exercise. 
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Table 4.4; Concentration and composition of VLDL1 in the fasted states. 

Fasting (0 minutes) 

 Control Exercise Mean difference and 95 % CI Cohen’s d 
effect size 

p-value 

Total lipoprotein concentration (mg.dl-1) 84.1 ± 17.4 63.7 ± 13.0 -20.43 (-39.34 to -1.51) 0.75 0.04 

ApoB (mg.dl-1) 1.98 ± 0.36 1.05 ± 0.21 -0.93 (-0.33 to -1.52) 1.08 0.01 

Triglyceride (mg.dl-1) 51.7 ± 11.1 41.0 ± 8.9 -10.63 (- 21.26 to +0.00) 0.69 0.056 

Cholesteryl ester (mg.dl-1) 7.7 ± 1.2 4.8 ± 3.0 -2.89 (-5.30 to -0.47) 0.83 0.03 

Free cholesterol (mg.dl-1) 4.0 ± 0.9 2.6 ± 0.6 -1.45 (-2.51 to -0.39) 0.95 0.02 

Phospholipid (mg.dl-1) 12.8 ± 3.0 9.2 ± 1.9 -3.55 (-7.48 to -0.38) 0.63 0.08 

Protein (mg.dl-1) 8.0 ± 1.6 6.1 ± 1.1 -1.91 (-4.37 to -0.55 ) 0.54 0.12 

TG/apoB ratio (mol:mol) 17751 ± 2507 24693 ± 4238 6942 (-1097 to +14982) 0.60 0.09 

CE/TG ratio (mol:mol) 0.23 ±0.03 0.17 ± 0.02 -0.06 (-0.15 to +0.03) 0.48 0.16 

 

 

 

Values are mean ± SEM, n = 10.  
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Table 4.5; Concentration and composition of VLDL1 in the postprandial states (240 minutes). 

 Postprandial (240 minutes) 

 Control Exercise Different between trials 
and 95 % CI 

Cohen’s 
d effect 

size 

p-value 

Total lipoprotein concentration (mg.dl-1) 137.9 ± 22.1 114.6 ± 18.0  -23.34 (-45.83 to -0.86) 0.72 0.049 

ApoB (mg.dl-1) 2.22 ± 0.34 2.01 ± 0.31 -0.22 (-0.68 to -0.24) 0.33 0.33 

Triglyceride (mg.dl-1) 88.5 ± 14.0 73.9 ± 12.3 -14.62 (-27.40 to -1.84) 0.79 0.03 

Cholesteryl ester (mg.dl-1) 11.6 ± 2.0 8.3 ± 1.2 -1.33 (-2.59 to -0.07) 0.73 0.048 

Free cholesterol (mg.dl-1) 5.9 ± 1.1 4.6 ± 0.8 -0.04 (-0.07 to -0.01) 0.92 0.045 

Phospholipid (mg.dl-1) 21.1 ± 3.7 17.6 ± 8.7 +6.84 ( 0.28 to +9.77) 0.73 0.13 

Protein (mg.dl-1) 10.8 ± 2.2 10.2 ± 1.2 -0.57 (-4.01 to +2.88) 0.11 0.73 

TG/apoB ratio (mol:mol) 25103 ± 2304 23072 ± 2561 -2031 (-7969 to +3846 ) 0.24 0.47 

CE/TG ratio (mol:mol) 0.18 ± 0.02 0.16 ± 0.01 -0.02 (-0.07 to +0.03) 0.28 0.40 

 

 

 

Values are mean ± SEM, n = 10.  
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Figure 4.9. Values for chylomicron-TG in the Control and Exercise trials, panel [A] shows mean values for time-averaged postprandial chylomicron-TG 
concentrations, panel [B] shows individual values for time-averaged postprandial chylomicron-TG concentrations. Statistical analysis of these data is shown 
in Table 4.4 and 4.5. N = 10, Values are mean ± SEM. Black symbols show individual values, red symbols show the mean values. Values and statistical analysis 
of these data is shown in Table 4.2 and Table 4.3. * significant values from the other group (p = 0.005). The table below, shows the mean ± SEM differences 
between the two trials at each time point.* significant difference between trials at this time-point within subject (p < 0.005). 
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Figure 4.10. Values for VLDL1-TG in the Control and Exercise trials, panel [A] shows mean values for 
time-averaged postprandial VLDL1-TG concentrations, panel [B] shows individual values for fasted VLDL1-
TG concentrations, [C] shows individual values for time-averaged postprandial VLDL1-TG concentrations. 
Statistical analysis of these data is shown in Table 4.4 and 4.5. N = 10, Values are mean ± SEM. The SEM 
shows the variability among the whole population. * significant difference between trials at this time-point 
within subject (p < 0.005).Black symbols show individual values, red symbols show the mean values. Values 
and statistical analysis of these data is shown in Table 4.2 and Table 4.3. * significant values from the other 
group (p = 0.005). The table below, shows the mean ± SEM differences between the two trials at each time 
point.* significant difference between trials at this time-point within subject (p < 0.005). 
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Table 4.6; Concentration and composition of VLDL2 in the fasted state. 

Fasting ( 0 minutes) 

 

 

Control Exercise Mean difference and 95% 
CI 

Cohen’s d effect 
size 

p-value 

Total lipoprotein concentration (mg.dl-1) 49.5 ± 3.6 39.4 ± 2.2 -10.08 (-24.20 to +4.04 ) 0.49 0.15 

ApoB (mg.dl-1) 4.00 ± 0.57 3.39 ± 0.17 -0.61 (- 2.52 to +1.30) 0.22 0.50 

Triglyceride (mg.dl-1) 18.2 ± 3.2 15.0 ± 2.5 -3.21 (-8 .84 to +2.42) 0.35 0.29 

Cholesteryl ester (mg.dl-1) 11.3 ± 3.0 9.1 ± 1.5 -2.16 (-7.43 to +3.12) 0.28 0.39 

Free cholesterol (mg.dl-1) 4.0 ± 0.8 3.3 ± 0.5 0.38 (-1.18 to +1.93) 0.17 0.22 

Phospholipid (mg.dl-1) 9.8 ± 0.9 8.3 ± 0.5 1.55 (-5.06 to +1.96 ) 0.31 0.36 

Protein (mg.dl-1) 6.1 ± 0.4 3.7 ± 0.3 -2.43 (-5.11 to +0.26) 0.63 0.08 

TG/apoB ratio (mol:mol) 3679 ± 567 3051 ± 400 -628 (-1600 to +343) 0.45 0.19 

CE/TG ratio (mol:mol) 0.59 ± 0.10 0.62 ± 0.06 0.03 (-0.24 to +0.30) 0.09 0.79 

 

 

Values are mean ± SEM, n = 10. *Statistical analysis performed on log-transformed data, and values are geometric mean (95% confidence interval). 
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Table 4.7; Concentration and composition of VLDL2 in the postprandial state.  

 Postprandial (240 minutes) 

 Control Exercise Different between trials and 
95 % CI 

Cohen’s d 
effect size 

p-value 

Total lipoprotein concentration (mg.dl-1) 38.2 ± 1.6 40.0 ± 2.8 +1.80 (-5.35 to +8.93) 0.38 0.59 

ΑpοΒ (mg.dl-1) 2.43 ± 0.17 2.53 ± 0.15 +0.10 (-0.32 to +0.53) 0.37 0.60 

Triglyceride (mg.dl-1) 15.8 ± 2.2 16.2 ± 2.3 +0.44 (-3.98 to +4.86) 0.07 0.83 

Cholesteryl ester (mg.dl-1) 7.2 ± 1.5 6.7 ± 1.2 -0.44 (-1.63 to +0.76) 0.43 0.44 

Free cholesterol (mg.dl-1) 3.0 ± 0.5 2.9 ± 0.4 -0.12 (-0.54 to 0.30) 0.57 0.56 

Phospholipid (mg.dl-1) 7.3 ± 0.5 7.6 ± 0.6 +0.33 (-1.48 to +2.14) 0.13 0.70 

Protein (mg.dl-1) 5.0 ± 0.2 6.6 ± 0.7 +1.59 ( -1.07 to +4.24) 0.17 0.22 

TG/apoB ratio (mol:mol) 5416 ± 993 4169 ± 540 900592 (-609330 to +790513) 0.09 0.20 

CE/TG ratio (mol:mol) 0.45 ± 0.08 0.43 ± 0.04 -28.34 (-89.91 to +33.22) 0.32 0.78 

 

 
Values are mean ± SEM, n = 10. *Statistical analysis performed on log-transformed data, and values are geometric mean (95% confidence interval). 
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Figure 4.11. Values for VLDL2-TG in the Control and Exercise trials, panel [A] shows mean values for time-
averaged postprandial VLDL2-TG concentrations, panel [B] shows individual values for fasted VLDL2-TG 
concentrations [C] shows individual values for time-averaged postprandial VLDL1-TG concentrations. Statistical 
analysis of these data is shown in Table 4.4 and 4.5. N = 10, Values are mean ± SEM. Black symbols show individual 
values, red symbols show the mean values. Values and statistical analysis of these data is shown in Table 4.2 and 
Table 4.3. * significant values from the other group (p = 0.005). 
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4.3.3 Lipoprotein affinity for LPL 

 Figure 4.12, panel A, Figure 4.13, panel A, and Figure 4.14, panel A show mean 

(± SEM) NEFA release over the 30 minute incubation period in the LPL-affinity assay 

for VLDL1 and VLDL2 in the fasted state and 240 minutes postprandially, and for 

chylomicrons 240 minutes postprandially in the control and exercise trials. Affinity of 

chylomicrons, VLDL1 and VLDL2 for LPL was calculated from the gradient of the linear 

portion (before a plateau was achieved) of the individual NEFA release versus time 

plots. Table 4.8 shows VLDL1 and VLDL2 affinity for LPL in the fasted state and 240 

minutes postprandially and for chylomicrons 240 minutes postprandially, expressed 

as mmol of NEFA release, per mmol lipoprotein-TG, per unit LPL activity, per minute. 

Exercise did not affect the affinity of postprandial chylomicron, there was substantial 

individual variability in the exercise effect (6 out of 10 increased with exercise in 

postprandial state), leading to non-significant effects of exercise on both fasting 

(mean (95%CI) difference: (0.20 (-0.39 to 0.78) mmol of NEFA release, per mmol 

lipoprotein TG, per unit LPL activity, per minute (Figure 4.12, panel B). The Cohen’s 

d effect sizes at 0.21, for the change in chylomicron affinity with exercise were 

smaller than the effect of exercise on VLDL1 affinity. The exercise significantly 

increased the affinity of VLDL1 for LPL in 8 out of 10 and 9 out of 10 (Figure 4.13, 

panel C and D) in both fasted and postprandial states, (0.98 (0.55 to1.41); p=0.01) 

and (1.16 (0.63 to 1.70); p0.001), respectively, with a large Cohen’s d effect size of 

1.58 and 1.35 respectively. Exercise did not affect neither fasted nor postprandial 

VLDL2 affinity for LPL, with mean difference of (0.01 (-0.17 to 1.64); p=0.60) and 

(0.25 (0.12 to 1.45); p=0.34) (Figure 4.14 panel C and D). The Cohen effect size was 

small in both fasted and postprandial states 0.13 and 0.34 respectively.   
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Exercise increased affinity of VLDL1 for LPL by 2.2 (1.3 to 3.7) fold 

(geometric mean (95% CI)) in the fasted state (p= 0.02 for fold increase; p 

value for absolute increase shown in Table 4.8) and by 2.6 (1.8 to 3.8) fold 

in the postprandial state (p=0.001 for fold increase; p value for absolute 

increase shown in Table 4.8). However, there was no significant change in 

affinity of chylomicrons for LPL in either fold (1.2 (0.6 to 2.3) fold; p=0.59) 

or absolute units (see Table 4.8). Affinity of VLDL2 for LPL was negligible, 

~50-100-fold lower than chylomicrons and zero in many instances, and did 

not change in response to exercise. In the control trial, the affinity of 

chylomicrons for LPL was 11.3 (6.0 to 21.6) fold greater (p=0.0001) than 

the affinity of VLDL1 in the postprandial state, whereas in the exercise trial 

affinity of chylomicrons for LPL was 6.0 (3.0 to 12.0) greater (p=0.0007) 

than the affinity of VLDL1 in the postprandial state. Thus, the affinity of 

postprandial VLDL1 for LPL-mediated TG-hydrolysis relative to the affinity 

of chylomicrons was 2.6 (1.3 to 5.4) fold greater in the exercise compared 

to the control trial (p=0.03). There was no significant difference in affinity 

of VLDL1 for LPL between the fasted and postprandial states in either the 

control (postprandial VLDL1 LPL affinity 0.7 (0.4 to 1.1) fold compared with 

fasting VLDL1 LPL affinity, p=0.18) or the exercise (postprandial VLDL1 LPL 

affinity 0.8 (0.6 to 1.1) fold compared with fasting VLDL1 LPL affinity, p= 

0.28) trials.  
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Table 4.8;Lipoprotein Affinity for LPL. 

 

 

  
NEFA release (mmol.min-1 per mmol lipoprotein-TG per unit LPL activity) 

  Control Exercise Cohen d effect size p-value 

Fasting (0 minutes) 
VLDL1 

0.16 

(0.09 to 0.29) 

0.35 

(0.24 to 0.52) 
1.58 0.018* 

VLDL2 
0.013 

(0.004 to 0.044) 

0.018 

(0.007 to 0.049) 
0.13 0.60 

Postprandial (240 minutes) 

CM** 
1.25 

(0.94 to 1.66) 
1.52 

(0.98 to 2.34) 
0.21 0.53* 

VLDL1 
0.08 

(0.03 to 0.19) 

0.25 

(0.15 to 0.42) 
1.35 0.002* 

VLDL2 
0.021 

(0.006 to 0.070) 

0.013 

(0.004 to 0.048) 
0.34 0.34 

Values are geometric mean (95% confidence interval), n = 10. *Statistical analysis and mean differences performed on log-transformed data.**(CM) 
chylomicron.  
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Figure 4.12. Values for NEFA release over 30-minutes in LPL-affinity assay in chylomicron in postprandial state Control and Exercise trials, 
panel [A] shows mean value of NEFA release over 30-minutes from chylomicron, panel [B] shows the individual value of NEFA release over 30-
minutes from chylomicron. N = 10,Values are mean ± SEM. The SEM shows the variability among the whole population. Affinity of lipoproteins for 
LPL was determined by the rate of NEFA release over the linear portion of the 30-minute incubation period before a plateau was achieved for 
each individual participant. Values for lipoprotein affinity for LPL and statistical analyses are shown in Table 4.8. Significant values from the other 
group * (p = 0.005) and ** (p< 0.05). 
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[A] Mean values for NEFA release from VLDL1 in fasted state 
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[C] Individual values for NEFA release from VLDL1 in 
fasted state 

 

[B] Mean values for NEFA release from VLDL1 in postprandial state 
 

 

[D] Individual values for NEFA release from VLDL1 in 
postprandial state 

 
 

Figure 4.13.Values for NEFA release over 30-minutes in LPL-affinity assay in VLDL1 in fasted and postprandial state in Control and Exercise trials, panel [A] 
shows mean value of NEFA release over 30-minutes from VLDL1 in fasted state, panel [B] shows mean value of NEFA release over 30-minutes from VLDL1 in postprandial 
state, panel [C] shows the Individual value of NEFA release over 30-minutes from VLDL1 in fasted state, panel, panel [D] shows the Individual value of NEFA release 
over 30-minutes from VLDL1 in fasted state. N = 10, Values are mean ± SEM. The SEM shows the variability among the whole population. Affinity of lipoproteins for 
LPL was determined by the rate of NEFA release over the linear portion of the 30-minute incubation period before a plateau was achieved for each individual 
participant. Values for lipoprotein affinity for LPL and statistical analyses are shown in Table 4.8 Significant values from the other group * (p = 0.005) and ** (p< 
0.05). 
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Figure 4.14. Values for NEFA release over 30-minutes in LPL-affinity assay in VLDL2 in fasted and postprandial state in Control and Exercise trials, panel [A] shows mean value of 
NEFA release over 30-minutes from VLDL2 in fasted state, panel [B] shows mean value of NEFA release over 30-minutes from VLDL2 in postprandial state, panel [C] shows the individual 
value of NEFA release over 30-minutes from VLDL2 in fasted state, panel, panel [D] shows the individual value of NEFA release over 30-minutes from VLDL2 in fasted state. N = 10, Values 
are mean ± SEM . The SEM shows the variability among the whole population.  Affinity of lipoproteins for LPL was determined by the rate of NEFA release over the linear portion of the 
30-minute incubation period before a plateau was achieved for each individual participant. Values for lipoprotein affinity for LPL and statistical analyses are shown in Table 4.8. Significant 
values from the other group * (p = 0.005) and ** (p< 0.05). 
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[A] Mean values for NEFA release from VLDL2 in fasted 
state 

 

[C] Individual values for NEFA release from VLDL2 in fasted state 

 

[B] Mean values for NEFA release from VLDL2 in postprandial state 

 
[D] Individual values for NEFA release from VLDL2 in postprandial 

state 
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4.4  Discussion 

Elevated postprandial TG concentrations are associated with increased risk of 

cardiovascular events (Bansal et al., 2007, Nordestgaard and Nielsen, 1994, Mora 

et al., 2008), and there is evidence that this relationship is likely to be causal 

(Goldberg IJ, 2011, Chapman et al., 2011, Jørgensen et al., 2012, Consortium and 

Collaboration, 2010, Cohorts, 2014, Jørgensen et al., 2014). Prior exercise has 

consistently been shown to lower postprandial TG concentrations, but the 

mechanisms responsible have been unclear (Gill and Hardman, 2000, Gill et al., 

2004a, Farah and Gill, 2012). Previous studies have shown that TG reductions in 

large VLDL1 make the largest quantitative contribution to the overall TG-lowering 

effect of exercise (Gill et al., 2006); that exercise lowers VLDL1-TG concentrations 

by increasing clearance of these lipoproteins from the circulation, rather than 

reducing their production (Al-Shayji et al., 2012); but that exercise-induced TG-

lowering is often observed in the absence of an elevation in post-heparin plasma 

or skeletal muscle LPL activity (Malkova and Gill, 2006, Harrison et al., 2012). The 

main novel finding of the present study is that prior exercise increased the affinity 

of large VLDL1 – but not of chylomicrons or VLDL2 – for clearance by LPL. This 

provides an important advance in our understanding of the mechanism by exercise 

lowers TG concentrations; an effect which is likely to contribute to exercise’s 

overall cardioprotective benefit. 

 

The present findings put previous observations about the effects of exercise TG-

rich lipoprotein metabolism into context. Earlier work demonstrated that exercise 

often lowered TG concentrations without a substantial increase in post-heparin 

plasma or skeletal muscle LPL activity (Harrison et al., 2012, Malkova and Gill, 

2006, Gill et al., 2006, Herd et al., 2001); that the TG reductions induced by 

exercise are typically larger in VLDL than chylomicrons (Malkova and Gill, 2006, 

Gill and Hardman, 2000, Gill et al., 2006); and that exercise increased clearance 

of VLDL from the circulation but did not reduce hepatic VLDL production 

(Tsekouras et al., 2007, Magkos et al., 2006).  

 

However, these observations could not explain how this increased VLDL clearance 

could occur without a concomitant increase in LPL activity. More recently, we 

demonstrated that the exercise-induced increase in clearance of VLDL1-TG was 

twice as large as the exercise-induced increase in clearance of TG from 
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chylomicron-like particles (Al-Shayji et al., 2012). This suggested that exercise 

upregulated clearance of VLDL1 to a greater extent than chylomicrons, which led 

to the hypothesis that exercise increased the affinity of VLDL1 for TG-hydrolysis 

by LPL. This hypothesis was confirmed by the findings of the present study. 

Exercise increased the affinity of VLDL1 for LPL clearance by 2.2-fold in the fasted 

state (p = 0.02) and 2.6-fold in the postprandial state (p = 0.001), but did not 

significantly alter the affinity of chylomicrons for LPL-mediated TG-hydrolysis 

Accordingly the affinity of VLDL1 relative to chylomicrons for LPL-mediated 

clearance in the postprandial state was 2.6-fold greater in the exercise compared 

with the control trial (p = 0.03). Data shown there was a numerical increase in 

chylomicron affinity for LPL of 1.2 fold. However there was a large amount of 

individual variability in this effect – six of the 10 had an increase in chylomicron 

affinity for LPL in response to exercise, the other four subjects experienced a 

decrease, which meant that the 95% confidence interval around this point was 

large (0.6-2.3 fold) and the p-value for the fold change was 0.59 (p=0.53 for 

absolute change in affinity). The Cohen’s d for the effect of exercise on 

chylomicron affinity for LPL was 0.21, which is considered a small effect size, 

whereas the effect size for the effect of exercise on VLDL1 affinity for LPL was 

1.58 in the fasted state and 1.35 in the postprandial state, which are both 

considered to be large effect sizes (Cohen, 2013). This magnitude of this change 

in relative VLDL1 affinity for LPL-mediated TG-hydrolysis is consistent our earlier 

observation that the exercise-induced increase in VLDL1-TG clearance was twice 

as great as the exercise-induced increase in chylomicron-like particles (Al-Shayji 

et al., 2012).  

It is not clear from the present findings how exercise increases the affinity of 

VLDL1 for LPL-mediated TG hydrolysis. We previously demonstrated that following 

exercise, VLDL1 particles were larger (higher TG/apoB ratio) and more TG-

enriched (lower CE/TG ratio) and that exercise-induced increases the fractional 

catabolic rate of VLDL1 particles were correlated with the increases in TG-

enrichment and size of the VLDL1 particle (Al-Shayji et al., 2012). As larger, more 

TG-enriched lipoprotein particles have greater affinity for LPL (Saheki et al., 1991, 

Fisher et al., 1995), we hypothesised that this compositional change was a 

potential mediator of increased affinity of VLDL1 for LPL post-exercise(Al-Shayji 

et al., 2012). In the Al-Shayji study, VLDL1 composition was only measured in the 

fasted state, and in the present study we observed changes of similar magnitude 
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in the TG/apoB ratio (39% increase with exercise in present study vs 26% increase 

in Al-Shayji et al and CE/TG ratio (26% decrease with exercise in present study vs 

29% decrease in Al-Shayji et al in fasting VLDL1 composition, although these 

compositional changes did not quite achieve statistical significance in the present 

study (Al-Shayji et al., 2012).  

 

This would be consistent with this compositional change contributing to the 

enhanced affinity for LPL-mediated clearance. However, in the postprandial state 

the VLDL1 TG/apoB ratio and CE/TG ratio were similar in the exercise and control, 

despite the affinity of VLDL1 for LPL-mediated TG hydrolysis in response to 

exercise increasing to a similar extent in the postprandial state to that observed 

in the fasted state. The similar postprandial VLDL1 CE/TG ratio observed in the 

control and exercise trials also contrasts with an earlier observation that the VLDL1 

CE/TG ratio was lower following exercise postprandially (Gill et al., 2006). This 

may indicate that the increase in VLDL1 affinity for LPL in response to exercise 

was mediated by factors other than changes in size and TG-enrichment of the 

VLDL1 particle. However, there are two other aspects worth consideration when 

interpreting these findings. First, it is important to recognise that all circulating 

VLDL1 particles are essentially remnant particles to some extent, in that they will 

have had a degree of LPL-mediated hydrolysis of their TG-core by the time the 

blood sample was taken. Post-exercise VLDL1 particles with greater affinity for 

LPL would have been exposed to proportionately greater TG hydrolysis by the time 

a blood sample was taken. Thus, relative to newly secreted VLDL1 particles, 

circulating post-exercise VLDL1 particles may have had their size and TG-

enrichment reduced to a greater extent than VLDL1 particles in the control trial. 

Thus, it is possible that following exercise, the liver produced larger, more TG-

enriched VLDL1 particles and that this contributed to their increased affinity for 

VLDL1, but this effect was not fully reflected in the composition of the measured 

circulating VLDL1 particle. However, in Al-Shayji et al, ratio of VLDL1-TG 

production to VLDL1-apoB production was similar in control and exercise trials, 

suggesting that the average size of the secreted VLDL1 particle was not influenced 

by exercise (Al-Shayji et al., 2012). However, it is also important to recognise that 

VLDL1 particles are heterogeneous, occupying a greater than three-fold range in 

size and density, and thus considering only ‘average’ lipoprotein size and 

composition in the VLDL1 range may not reveal the whole story. Interestingly, Al-
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Shayji et al reported a larger increase in the VLDL1-apoB fractional catabolic rate 

than the VLDL1-TG fractional catabolic rate with exercise (146% vs 82% increase) 

(Al-Shayji et al., 2012), which would suggest that exercise was having a 

proportionately larger effect on clearance of smaller, less TG-rich VLDL1 particles 

(which have a lower TG/apoB ratio), either via direct particle removal or by TG-

removal taking them out of the VLDL1 and into the VLDL2 density range. This 

interpretation would suggest that the observation that circulating VLDL1 particles 

post-exercise are larger and more TG-enriched reflects the fact that exercise 

disproportionately increased clearance of smaller, less TG-enriched particles at 

the lower end of the Sf 60-400 range, leaving proportionally more larger VLDL1 in 

the circulation. Accordingly, it is possible that the strong correlations between 

change in VLDL1 apoB fractional catabolic rate and change in VLDL1 TG/apoB and 

CE/TG ratio observed in that study (Al-Shayji et al., 2012) reflects greater 

clearance of smaller VLDL1 particles following exercise, which would have the net 

effect of increasing the average TG/apoB and CE/TG ratio of the remaining 

circulating lipoprotein particles across the VLDL1 density range. This 

interpretation is supported by a recent study by Harrison and colleagues who used 

nuclear magnetic resonance spectroscopy to quantify 24 different VLDL 

subfractions in the fasted state following exercise (Harrison et al., 2012). This 

report found that in response to exercise, there was a proportionally larger TG 

reduction in ‘medium VLDL’ (size range 43-55 nm, approximately corresponding 

to Sf 100-200 (Redgrave, 2004), i.e. smaller VLDL1) than in ‘large VLDL’ (size (55-

260 nm, approximately corresponding to Sf >200 (Redgrave, 2004), i.e. larger 

VLDL1), with VLDL particles over 120 nm in size being virtually unaffected by 

exercise (Harrison et al., 2012). The authors proposed that their findings were 

suggestive of independent metabolic regulation of different VLDL pools within the 

VLDL1 range (Harrison et al., 2012). This is an attractive proposition which is 

consistent with our present and earlier (Al-Shayji et al., 2012) observations on the 

effects of exercise on VLDL1 metabolism. Thus, further study is needed to both 

examine the effects of exercise on the affinity of smaller and larger VLDL1 

particles for LPL-mediated TG hydrolysis and to understand the effects of exercise 

on TG and apoB kinetics of smaller and larger VLDL1 particles.  

 

While the present findings clearly show that exercise increased the affinity of 

VLDL1 particles for clearance by LPL, this effect is unlikely to be solely responsible 
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for the observed TG lowering effect of exercise. We observed a significant 

reduction in chylomicron-TG concentration following exercise, without a 

corresponding increase in the affinity for chylomicrons for LPL-mediated 

clearance. This chylomicron-TG reduction is consistent with earlier observations 

(Gill et al., 2006, Gill and Hardman, 2000) and is likely to reflect increased LPL-

mediated chylomicron TG clearance, in line with our recent report that Intralipid-

TG fractional catabolic rate was increased by prior exercise (Al-Shayji et al., 

2012). We did not measure LPL activity in the present study, so it is unclear 

whether this is the consequence of increased LPL activity or exercise-induced 

changes in blood perfusion to LPL-rich tissues leading to increased interactions 

between chylomicron particles and LPL, or a combination of the two. It has 

previously been reported that postprandial blood flow to the leg was almost 40% 

higher on the day following 2 hours of walking (Malkova et al., 2000), so it is 

conceivable that the reduction in chylomicron-TG observed in the present study 

could have occurred without a marked increase in LPL activity, which would be 

consistent with precious studies which have generally reported that LPL activity 

is not substantially elevated in response to exercise of the nature undertaken here 

(Harrison et al., 2012, Malkova and Gill, 2006, Herd et al., 2001). It is a limitation 

to the study that we did not measure LPL activity. This information would have 

provided a more complete assessment of the relative importance of increased 

VLDL1 affinity for LPL vs increased LPL activity in mediating the overall TG-

lowering effect of exercise. However, the invasive muscle biopsies required to 

determine skeletal muscle LPL activity were not feasible, and because heparin 

injection distorts lipoprotein metabolism, it would not have been possible to 

obtain fasting and postprandial post-heparin plasma LPL activity assessments in 

parallel with other measurements made in the study. Nevertheless, it would be 

helpful if future studies investigating the effects of exercise on kinetics and 

affinity for LPL of VLDL sub-populations, could also directly measure LPL activity. 

 

A further observation was that exercise substantially reduced fasting sdLDL 

cholesterol concentrations. There is accumulating evidence that sdLDL have 

particularly high atherogenicity (Hirayama and Miida, 2012, Diffenderfer and 

Schaefer, 2014), thus, exercise-induced reductions are likely to have clinically 

relevant implications for CVD risk. Elevated concentrations of TG-rich lipoproteins 

facilitate the development of sdLDL by accelerating CETP-mediated neutral lipid 
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exchange, between TG-rich lipoproteins and LDL, leading to TG-enriched LDL 

particles, which are then acted on by hepatic lipase to produce sdLDL particles 

(Hirayama and Miida, 2012, Diffenderfer and Schaefer, 2014). Thus, by lowering 

TG-rich lipoprotein concentrations, exercise is likely to have inhibited the neutral 

lipid exchange process leading to sdLDL formation.   

 

It is interesting TG-lowering effect of exercise occurs in absence of significant 

change of insulin and glucose concentrations. It was established that insulin 

resistance is an important determinant of TGR lipoproteins metabolism. However, 

in this instant TG-lowering effect may be independent of insulin sensitivity; this 

is consistent with earlier reports that TG–lowering effect is independent from 

insulin (Gill et al., 2002). 

 

In conclusion, this study’s main finding that exercise increases the affinity of 

VLDL1 for LPL-mediated TG-hydrolysis provides an important piece in the jigsaw 

of understanding the effects of exercise on the metabolism of TG-rich 

lipoproteins. These data provide clarity to the interpretation of the findings of 

many studies into the effects of exercise on postprandial lipoprotein undertaken 

over the past 15-20 years, explaining why exercise often affects VLDL1-TG 

concentrations to a greater extent than chylomicron concentrations, and why a 

TG-lowering effect of exercise is often seen without an increase in LPL activity. 

However, it is still unclear how exercise increases the affinity of VLDL1 for LPL-

mediated clearance and further study is now needed to understand the effects of 

exercise on the affinity for LPL and kinetics of sub-populations of VLDL1. 
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5 Effect of co-ingesting fat with 
carbohydrate on lipid and glucose 
response  

5.1 Introduction 

In response to meal ingestion, there are a number of perturbations to metabolism 

which are likely to impair insulin sensitivity and possibly contribute to atherosclerotic 

progression. As humans spend most of their time in the postprandial state, these 

metabolic changes have possible relevance in the development of the metabolic 

syndrome and T2D, and also increase CVD risk. There are a number of plausible 

mechanisms by which this can occur. Ingestion of fat leads to increases in 

postprandial chylomicron and VLDL concentrations. The magnitude of these changes 

is associated with the amount (Schwab et al., 2014) and type (saturated, 

monounsaturated, polyunsaturated) of fat consumed. These postprandial lipoproteins 

and their remnants may deposit into arterial walls accelerating the development of 

atheromatous plaques (Zilversmit, 1979). In addition, high concentrations of these 

triglyceride-rich lipoproteins facilitate neutral lipid exchange with HDL and LDL, 

mediated by CETP, contributing to the generation of an atherogenic lipoprotein 

phenotype (Zhong et al., 1996, Cohen et al., 1994).  

Ingestion of carbohydrate induces a rise in blood glucose concentrations which 

triggers the release of insulin from the pancreas (Scheen, 2004, Del Prato and Tiengo, 

2001, Wallum et al., 1992, Brand-Miller, 2004). There is evidence that these 

postprandial increases in glucose and insulin may have adverse effects on insulin 

sensitivity, diabetes risk and obesity (Giovannucci, 1995, Daly, 2003)  and thus, 

minimising the extent of these postprandial perturbations may be beneficial. For 

example, it has been shown that consuming foods with a low glycaemic index can 

reduce insulin demand, improve blood glucose control, and reduce blood lipid levels, 

all factors that may play important roles in the prevention or management of 

metabolic disease (Augustin et al., 2002, Jenkins et al., 1990). The magnitude of 

these postprandial changes is related to the amount of carbohydrate consumed 
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(Blaak, 2016, Wolever and Bolognesi, 1996b, Wolever and Mehling, 2003, Sheard et 

al., 2004), but the type of carohydrate ingested also plays a key role (Sheard et al., 

2004, Salmerón et al., 1997). The glycaemic index (GI) quantifies the postprandial 

glucose rise for a given food, relative to that for glucose. Foods with lower GIs lead 

to lower glucose and insulin responses (Jenkins et al., 2008). In epidemiological 

studies low GI diets are associated with reduced risk of CVD and diabetes (Barclay et 

al., 2008, Qi and Hu, 2007, Livesey et al., 2008), lower plasma TG by around 15% and 

cholesterol by 8% (Brand-Miller et al., 2003, Pelkman, 2001). There are benefits of 

using low-GI diets in the management of diabetes (Brand-Miller et al., 2003, Livesey 

et al., 2008, Rahelić et al., 2011) and interventions with low GI diets (LGI) have shown 

a reduction in fasting plasma glucose and postprandial plasma glucose and insulin in 

type-2 diabetic by around 30% (Jenkins et al., 1988). The diets are reported to reduce 

the level of HbA1c by absolute amounts varying from 3% (Calle-Pascual et al., 1987) 

to 19% (Jenkins et al., 1988, Augustin et al., 2002, Jenkins et al., 2008). Another 

study (Rizkalla et al., 2004) found that also, a low GI diet was able to improve 

glycaemic control, glucose utilization, some lipid profiles, and the capacity for 

fibrinolysis in type 2 diabetes (Rizkalla et al., 2004). In addition, a low-GI diet has 

been shown to improve the lipid profile (Thomas et al., 2007, Wolever et al., 1992). 

High GI diets, on the other hand, are associated with insulin resistance, type 2 

diabetes, dyslipidaemia and prostate, breast and colon cancer (Blaak, 2016, Pi-

Sunyer, 2002, McKeown-Eyssen, 1994, Giovannucci, 1999, Giovannucci, 1995).  

In free-living conditions, humans generally co-ingest fat and carbohydrate, so it is 

important to consider the effect consuming fat with carbohydrate on postprandial 

glucose, insulin and NEFA responses compared with ingestion of carbohydrate alone, 

as it is possible that this may slow glucose release into the circulation, thereby 

lowering the meal’s GI (Järvi et al., 1999, Wolever et al., 1999, Wolever et al., 1994, 

Moghaddam et al., 2006). Conversely, the addition of carbohydrate to fat ingestion 

will induce a larger insulin response (Moghaddam et al., 2006, Mohammed and 

Wolever, 2004), which would be expected to induce greater suppression of NEFA 

release from adipose tissue, a larger upregulation of adipose tissue LPL activity 

(Knuth et al., 2008, Knuth et al., 2007), and a greater suppression of hepatic VLDL 
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production (Schneeman et al., 1993), which might be expected to attenuate the 

postprandial TG response (Jeppesen et al., 1995). However, the effects of such 

coingestion on the concentration and composition different lipoprotein species in the 

postprandial state are not known.  

Therefore, the aim of this experimental chapter is to investigate the acute effects 

of consuming fat alone, carbohydrate alone and co-ingestion of fat and 

carbohydrate on postprandial metabolic responses, particularly on the 

concentration and composition of postprandial lipoprotein species. 
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5.2 Participants and Methods 

5.2.1 Participants  

Thirteen participants were initially recruited but three withdrew before completion of 

the experimental period for undisclosed personal reasons. Thus 10 apparently healthy 

men not taking any drugs thought to affect lipid or carbohydrate metabolism took 

part in the study. Their demographic information is given in Table 5.1 below.  

 

Table 5.1; Demographic data. 

  

Age (years) 30.0 ± 3.9 

Weight (kg) 87.4 ± 10.9 

Height (m)  182.6 ± 6.9 

BMI (kg.m-2) 26.3 ± 4.1 

Waist/ hip ratio 0.86 ± 0.07 

Percentage fat (%) 20.6 ± 6.9 

  

5.2.2 Study design  

A cross-over study design was used with participants undertaking three postprandial 

assessments: an OFTT (75 g of fat), an OGTT (75 g of Glucose) and combination of 

both (COMB) (75 g of fat and 75 g of glucose) in a randomised order with an interval 

of 7-14 days between tests. In each test, blood samples were collected in the fasted 

state and over 8 hours postprandially. Figure 5.1 shows the experimental design, 

which is described in detail below. 

 

Oral Fat Tolerance Test (OFTT)  

Participants reported to the lab in the morning after a 12-hour overnight fast. A 

cannula was inserted into an antecubital or forearm vein to acquire blood samples. 
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After a blood sample was taken in the fasted state, a high fat meal comprising 150 

ml cream, containing 75 g of fat, was ingested and further blood samples were 

collected at 30, 60, 90, 120, 240, 360 and 480 minutes after the meal. Participants 

were free to sit, read, relax, or watch TV during this time and were able to consume 

water ad libitum (see section 2.5.3). 

 

Oral Glucose Tolerance Test (OGTT) 

This trial was identical to the OFTT except participants ingested a drink containing 

75 g of glucose, instead of the fat (see section 2.5.2). 

 

OFTT and OGTT mixed meal  

In this trial the participant consumed a mixture of 75g fat and 75g glucose (see 

section 2.5.4). 



5 Effect of co- ingesting fat with carbohydrate on lipid and glucose response  
 

170 
Khloud Jamil Ghafouri ® 2017  

 

 

0  120 60 30  90 240 

Time (h)  

~ 12 h fasting 

 Meal (OGTT or OFTT or COMB).  Blood sample 

OGTT 

or  
OFTT  

or  

COMB (OFTT & OGTT) 

360 480 

Figure 5.1. Study design. Participants reported to the lab after 12 h fasting. A base line blood sample was taken, then a meal containing either 75 g 

of fat or 75 g of glucose or combination of both was provided and serial blood samples were taken. 
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5.2.3 Plasma assays 

Serum, TG and NEFA and plasma glucose concentrations were analysed at all time 

points as previously mentioned in Appendix C. Total, HDL cholesterol and small dense 

LDL concentrations were measured in the fasted state as mentioned in Appendix C. 

LDL cholesterol was calculated in the fasted state using the Friedewald equation 

(Friedewald et al., 1972). Insulin was measured in EDTA plasma, as described in 

section 2.6.4.  

 

5.2.4 Lipoprotein separation 

Plasma and serum samples (2 ml) at 0, 1, 2, 4, 6 and 8 h were centrifuged using the 

techniques to isolate chylomicrons and lipoprotein subfractions as described in 

section 2.6.2.  

Chylomicron, VLDL1 and VLDL2 IDL and LDL fractions were assayed to determine 

concentrations and composition for TG, FC and PL using commercially available 

enzymatic and turbidimetric kits as described in Appendix C. Chylomicron fractions 

were assayed for TG concentration. Total protein was measured in all lipoprotein 

subfractions using a modified Lowry assay as described in section 2.7.  

 

5.2.5 Calculations and statistical analysis 

The rise in postprandial concentration was calculated by taking the incremental area 

under the curve (IAUC) and dividing by total time. Percentages of TG and CE were 

relative to lipoprotein total mass. TG to CE ratio was calculated as TG/CE. 

 

Statistical analysis was carried out, Statistica (version 12.0) and Microsoft Excel 

(version 14.0.6112.500). When displayed graphically SEMs were used as error bars. 

Repeated measures ANOVAs were used to calculate differences in the means for time 

average concentrations, rise in time average concentrations, time to peak, the peak 

concentration and the maximal rise in concentration of plasma glucose, insulin, NEFA, 

TG and CM TG concentration and lipoprotein composition. Statistical significance was 
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set at p<0.05 at which point a Fisher post hoc test was carried out to establish which 

groups the statistical significance lay. Cohen’s d effect size was calculated to 

measure the magnitude of the co-ingestion of fat with carbohydrate (Cohen, 2013) 

(see section 2.9.5). 
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5.3 Results  

5.3.1 Plasma measurements  

Table 2.5 and Figure 5.2 show IAUC (±SEM) for plasma glucose over 480 minutes. 

The ingestion of carbohydrate alone and/or carbohydrate with fat increased the IAUC 

plasma glucose level when compare with ingesting fat only, in particular in the first 

120 minutes. Glucose AUC and IAUC were significantly lower in OFTT compared with 

OGTT and COMB (all p<0.05). 

During the first 120 minutes observation, the consumption of fat with carbohydrate 

lowered both IAUC and AUC of the glycaemic response. Incremental glucose 

concentration in the first 2 hours was significantly higher in OGTT than in COMB by 

49% (mean (95%CI) difference: +0.55 (+0.04 to +1.06) mmol.l-1, p=0.01) and a 

moderate Cohen’s effect size of 0.76 and in the AUC OGTT glucose concentrations 

were higher in OGTT then COMB by 12% with a mean (95%CI) difference: +0.17 (+0.03 

to +0.30) mmol.l-1, p=0.03). We observed a lower glycaemic response in COMB trial 

when compared with OGTT at 30 and 60 minutes. Glucose concentrations were lower 

by 52% (p<0.01) and a moderate Cohen effect size of 0.74 at 30 minutes and by 65% 

(p< 0.01) and a large Cohen’s effect size of 2.77.  

 

Insulin response was not influenced by the addition of fat with carbohydrate 

compared to carbohydrate by itself (Table 2.5). Ingesting fat alone had a significantly 

lower effect on insulin secretion compared with the ingestion COMB test meal or 

OGTT test meal alone (all p<0.05) (Figure 5.3).  

 

The co-ingestion of fat with carbohydrate seems to have a suppressing effect on NEFA 

release. The IAUC is shown in Table 5.2 and Figure 5.4, at the first 30 minutes there 

greater reduction in NEFA concentration in the OGTT trial comparing with OFTT trial 

by 72% (p<0.01) and in comparison with the COMB trial by 58% (p<0.03). After an hour 

of ingestion, the reduction of NEFA continued to be lower in OGTT by 87% and 65% 

compared with both OFTT and COMB (all p<0.01). At 90 minutes there was significant 

different between the three trials, as NEFA concentration continued to fall in OGTT 
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by 92% and 64% from both OFTT and COMB respectively (all p<0.01) and the OFTT was 

lower by 85% compared with COMB (p<0.01). After 2 hour of food ingestion NEFA 

concentration was lower in OGTT by 77% than OFTT and by 80% versus COMB (mean 

(95%CI) difference:(-0.32 (-0.48 to -0.17)) giving a Cohen’s d effect size of 1.27 and 

(-0.23 (-0.40 to -0.17)) giving a Cohen’s d effect size of 0.86 (all p<0.01).  

 

Plasma TG concentrations for incremental postprandial states for the group are 

shown in Figure 5.5 and Tables 5.2. The co-ingestion of fat with carbohydrate did 

not have any significant effect on plasma TG concentrations. As expected OGTT trial 

was significantly different from both OFTT trial and COMB trial. The OGTT trial was 

different from OFTT trial by mean of (95%CI) difference:-0.38 (-0.54 to -0.22), and a 

large Cohen’s d effect size of 1.47; and from COMB trial (-0.39 (-0.54 to -0.24) and a 

large Cohen’s d effect size of 1.61 (all p<0.005).  
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Figure 5.2. Change in glucose response over the 480 minute observation period in the OGTT, OFTT and COMB trials. Values 
are mean ± SEM, N = 10; data were analysed using two ways ANOVA. Least significant differences post-hoc analysiss was used to 
identify where significant main effect lay. aSignificantly different from OGTT trial, bsignificantly different from OFTT trial, 
csignificantly different from COMB trial, all (p<0.001).  
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Figure 5.3. Change in insulin response over the 480 minute observation period in the OGTT, OFTT and COMB trials. Values are 
mean ± SEM, N = 10; data were analysed using two ways ANOVA. Least significant differences post-hoc analysiss was used to identify 
where significant main effect lay aSignificantly different from glucose trial, bsignificantly different from fat trial, csignificantly 
different from combination trial, all (p<0.001). 
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Figure 5.4. Change in NEFA response over the 480 minute observation period in the OGTT, OFTT and COMB trials. Values are mean ± SEM, N 
= 10; data were analysed using two ways ANOVA. Least significant differences post-hoc analysiss was used to identify where significant main effect 
lay aSignificantly different from glucose trial, bsignificantly different from fat trial, csignificantly different from combination trial, all (p<0.001).  
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Figure 5.5. Change in TG response over the 480 minute observation period in the OGTT, OFTT and COMB trials. Values are mean 
± SEM, N = 10; data were analysed using two ways ANOVA. Least significant differences post-hoc analyses was used to identify where 
significant main effect lay aSignificantly different from glucose trial, bsignificantly different from fat trial, csignificantly different 
from combination trial, all (p<0.001). 
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Table 5.2; Change in plasma values over the 480-minute postprandial observation period in the OGTT, OFTT and COMB trials. 

 
Mean Value Mean difference Effect Size 

 

OGTT OFTT COMB OGTT vs OFTT OGTT vs COMB OFTT vs COMB 

OGTT 

vs 

OFTT 

OGTT 

vs 

COMB 

OFTT 

vs 

COMB 

TG (mmol.l-1) -0.01 ± 0.05 0.37 ± 0.08 0.38 ± 0.08 -0.38 (-0.54 to -0.22) -0.39 (-0.54 to -0.24) +0.01 ( -0.13 to +0.16) 1.47** 1.61** 0.06 

NEFA (mmol.l-1) 0.02 ± 0.12 0.18 ± 0.06 0.17 ± 0.05 -0.17 (-0.36 to +0.03 -0.15 (-0.37 to +0.07) -0.02 (-0.10 to +0.07) 0.52 0.41 0.12 

Glucose (mmol.l-1) -0.10 ± 0.08 -0.35 ± 0.15 -0.19 ± 0.12 +0.26 (+0.02 to +0.49) +0.09 (-0.18 to +0.36) +0.17 (-0.22 to +0.56) 0.68** 0.21* 0.26 

First h glucose 

(mmol.l-1) 
1.11 ± 0.18 -0.29 ± 0.15 0.56 ± 0.21 +1.38 (+1.03 to +1.7) +0.54 (+0.01 to +1.05) +0.58 (+0.34 to +1.35) 2.47** 0.64* 1.04** 

Insulin (mU.l.1) 1.84 ± 2.47 -0.48 ± 0.67 2.28 ± 4.22 +2.32 (-3.36 to +8.00) -0.45 (-6.31 to +5.41) +2.76 (-5.70 to +11.2) 0.25 0.05 0.20 

First h insulin 

(mU.l-1) 
17.84 ± 5.76 2.34 ± 1.16 18.05 ± 8.69 +15.52 (+3.60 to +27.42) -0.19 (-11.06 to +10.62) +15.71 (-1.21 to +32.62) 0.81** 0.01 0.58** 

Values are the mean ± SEM, n=10; data were analysed using repeated measure ANOVA.* significant from the other group p<0.05, **p<0.005 
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5.3.2 Lipoprotein composition  

Triglyceride rich lipoprotein  

Table 5.3 shows the AUC (±SEM) values of TG concentration in chylomicron particles 

in the three trials. The pattern of TG IAUC in chylomicron was similar to TG IAUC in 

plasma (Figure 5.7). There was a significant difference between the three trials and 

the time points in each trial and the pattern of the change (all p<0.001). After food 

ingestion, within an hour the TG concentration started to rise similarly in both OFTT 

and COMB trials. The mean IAUC values of chylomicron-TG were significantly lower 

in OGTT (mean (95%CI) difference: -0.19 (-0.24 to -0.13, p<0.005)) compared with 

OFTT, giving a large Chen’s d effect size of 1.84, and in OGTT compared with COMB 

(mean (95%CI) difference: -0.13 (-0.05 to + 0.04, p<0.005)). However, there was no 

significant different between IAUC chylomicron-TG concentration in OFTT and COMB 

trials.  

 

The ingestion of carbohydrate alone and the co-ingestion of carbohydrate seem to 

increase the TG percentage in VLDL1 particles (Figure 5.7 panel A and Table 5.3). 

Whereas, if fat was ingested alone TG concentrations were significantly lower than 

OGTT and COMB trials respectively by 21% (+10.14 (0.04 to +20.33) giving a moderate 

Cohen’s effect size of 0.62 and by 21% (+10.23 (-0.63 to +21.09) giving a moderate 

Cohen’s effect size 0.58 (all p=0.03).  

The percentage of phospholipid was higher in OFTT trial when compared with OGTT 

and COMB trials. Phospholipid in OFTT trial was significantly higher by 19% from OGTT 

trial, giving a moderate Cohen’s d effect size of 0.55 (p=0.056) and 18% comparing 

OFTT with COMB trial, giving a moderate Cohen’s d effect size of 0.56 (p=0.06).  

VLDL1 particles incremental concentration seemed to increase by approximately 

double when fat alone was ingested (Figure 5.8 panel A). The co-ingestion of fat 

with carbohydrate and/ or ingestion of carbohydrate alone, reduced VLDL1 

concentrations by 45%, giving a large Cohen’s d effect size of 0.82 and 59%, giving a 

small Cohen’s d effect size of 0.42 respectively when compared with ingesting fat 

alone (Table 5.3). However, at 8 hours of meal ingestion, the concentration of VLDL1 



5 Effect of co- ingesting fat with carbohydrate on lipid and glucose response  
 

181 
Khloud Jamil Ghafouri ® 2017  

in COMB trial decreased dramatically when compared with OGTT mass by 158% 

(p<0.05).  

There was no any significant difference in the percentage of FC, CE, protein and 

CE/TG ratio between the three meal types (see Table 5.3).  

 

The co-ingestion of fat with carbohydrate had a small influence on VLDL2 

composition. There was no significant different in the percentage TG, CE, FC, PL and 

protein between the three trials (see Table 5.4).  

There was a trend of reduction in VLDL2 concentration when fat alone ingested. In 

OFTT trial VLDL2 concentration was higher than OGTT trial by 67%, giving a moderate 

Cohen’s d effect size 0.43 and COMB trial by 69%, respectively.  

The CE/TG ratio was double in OFTT significantly comparing with OGTT and COMB 

and giving a small Cohen’s d effect size of 0.55 and 0.61 respectively (all p=0.05) 

(see Table 5.4 and Figure 5.8, panel B and Figure 5.10).  
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Figure 5.6. Change in chylomicron-TG response over the 480 minute observation period in the OGTT, OFTT and COMB trials. 
Values are mean ± SEM, N = 10; data were analysed using two ways ANOVA. Least significant differences post-hoc analysiss was used 
to identify where significant main effect lay aSignificantly different from glucose trial, bsignificantly different from fat trial, 
csignificantly different from combination trial, all (p<0.001). 
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Figure 5.7. Change in lipoprotein-TG response over the 480 minute observation period, panel [A] shows 
the change in VLDL1-TG and panel [B] the change in VLDL2-TG in the OGTT, OFTT and COMB trials. Values 
are mean ± SEM, n= 10; data were analysed using two ways ANOVA. Least significant differences post-hoc 
analysis was used to identify where significant main effect lay aSignificantly different from glucose trial, 
bsignificantly different from fat trial, csignificantly different from combination trial, all (p<0.05). 
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Figure 5.8. Change in lipoprotein concentration response over the 480 minute observation period, 
panel [A] shows the change in VLDL1 concentration and panels [B] the change in VLDL2 concentration in 
the OGTT, OFTT and COMB trials. Values are mean ± SEM, n= 10; data were analysed using two ways 
ANOVA. Least significant differences post-hoc analysis was used to identify where significant main effect 
lay aSignificantly different from glucose trial, bsignificantly different from fat trial, csignificantly 
different from combination trial, all (p<0.05). 
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Table 5.3; Time-averaged areas under the curve for chylomicron concentration and VLDL1 composition and concentration values over the 480-minute 
postprandial observation period in the OGTT, OFTT and COMB trials. 

 

 

Mean Value Mean difference Effect size 

OGTT OFTT COMB OGTT vs OFTT OGTT vs COMB OFTT vs COMB OGT
T vs 

OFTT 

OGTT 
vs 

COMB 

OFTT 
vs 

COMB 

Chylomicron TG 
(mmol.l-1) 

0.03 ± 0.01 0.22 ± 0.03 0.22 ± 0.03 -0.19 (-0.24 to -0.13) -0.19 (-0.05 to +0.04) 0.00 (+2.50 to +9.22) 2.15*
* 

2.30** 0.04 

IAUC total lipoprotein 
concentration (mg.dl-

1) 

5.94 ± 4.11 13.65 ± 4.18 6.18 ± 4.82 -7.71 (-8.29 to –1.91) -0.24 (-1.38 to +11.20) -7.47 (-8.58 to +3.58) 0.82 0.01 0.42 

Triglyceride (%) 58.56 ± 1.27 48.42 ± 4.97 58.65 ± 2.10 

 

+10.14 (+0.04 to +20.33) +0.24 ( -2.62 to +3.11) +10.23 (-0.63 to 
+21.09) 

0.62* 0.05 0.58* 

Free cholesterol (%) 
4.67 ± 0.67 5.41 ± 0.85 5.43 ± 0.28 -0.74 (-2.56 to +1.07) -0.76 (-1.77 to +0.25) +0.02 (-1.40 to +1.44) 0.25* 0.47 0.01 

Cholesteryl ester (%) 
11.11 ± 1.71 15.21 ± 4.11 10.96 ± 1.77 -4.11 (-13.03 to +4.81) +0.15 ( -1.67 to +1.96) -4.26 (-13.94 to +5.42) 0.29 0.05 0.27 

Phospholipid (%) 
15.11 ± 0.80 18.34 ± 1.78 15.43 ± 0.61 -3.23 (-6.84 to +0.38) -0.23 (-1.69 to +1.04) -2.91 (-6.16 to +0.34) 0.55 0.15 0.56* 

Protein (%) 10.55 ± 0.84 12.62 ± 2.72 9.53 ± 1.11 -2.06 (-7.22 to +3.10 +1.03 (-1.96 to +4.01) -3.09 (-7.15 to +0.98) 0.25 0.21 0.47 

CE/TG (mol:mol) 0.26 ± 0.04 0.67 ± 0.34 0.28 ± 0.06 -0.41 (-0.47 to +0.27) -0.04 (-0.02 to +0.04) +0.39 (+0.32 to+1.10) 

 

0.37 0.17 0.34 

Values for lipoprotein concentration is mean IAUC ± SEM, rest of the values are the mean ± SEM, n=10; data were analysed using repeated measure ANOVA.* 
significant from the other group p<0.05, **p<0.005. 
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Table 5.4; Time-averaged areas under the curve for VLDL2 composition and concentration values over the 480-minute postprandial observation period 
in the OGTT, OFTT and COMB trials. 

 Mean Value Mean different Effect Size 

 OGTT OFTT COMB OGTT vs. OFTT OGTT vs. COMB OFTT vs. COMB 
OGTT 

vs. 
OFTT 

OGTT 
vs. 

COMB 

OFTT 
vs. 

COMB 

IAUC total 
lipoprotein 

concentration 
(mg.dl-1) 

1.20 ± 2.55 5.03 ± 1.55 1.40 ± 3.46 -3.83 (-4.38 to +1.64) -0.20 (-0.98 to +7.55) -3.63 (-4.32 to +3.26) 0.43 0.02 0.33 

Triglyceride (%) 39.44 ± 2.80 33.24 ± 2.98 34.70 ± 3.54 +6.20 (-2.76 to +15.16) +4.74 (+0.45 to +9.04) +1.46 (-7.63 to +10.55) 0.43 0.68 0.10 

Free cholesterol 
(%) 

7.72 ± 0.87 8.40 ± 0.49 8.75 ± 0.62 -0.68 (-2.31 to +0.95) -1.03 (-2.16 to +0.09) +0.36 (-0.88 to +1.59) 0.26 0.57 0.18 

Cholesteryl ester 
(%) 

18.01 ± 1.60 17.31± 1.89 19.35 ± 2.14 +0.69 (-2.20 to +3.59) -1.34 (-5.08 to +2.39) +2.04 (-2.61 to +6.68) 0.15 0.22 0.27 

Phospholipid (%) 17.79 ± 1.63 20.45 ± 1.40 19.16 ± 1.07 -2.65 (-6.45 to +1.15) -1.37 (-3.24 to +0.50) -1.29 (-3.78 to +1.21) 0.43 0.45 0.32 

Protein (%) 17.03 ± 2.28 20.60 ± 5.93 18.04 ± 2.91 -3.57 (-15.49 to +8.35) -1.00 (-4.32 to +2.32) -2.57 (-13.02 to +7.89) 0.19 0.19 0.15 

CE/TG ratio 
(mol:mol) 

0.48 ± 0.07 1.11 ± 0.37 0.67 ± 0.11 -0.63 (-0.70 to +0.08) -0.19 (-0.21 to -0.01) +0.44 (-0.37 to +1.20) 0.55* 0.61* 0.36 

Values for lipoprotein concentration is mean IAUC ± SEM, rest of the values are the mean ± SEM, n=10; data were analysed using repeated measure ANOVA.* 
significant from the other group p<0.05, **p<0.005.  
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Cholesterol-rich lipoproteins  

Table 5.5 shows the AUC (±SEM) values of shows mean AUC (±SEM) of IDL percentage 

composition. The Carbohydrate ingestion led to enrich the particle with TG when 

compared to the two trials. However, the ratio of CE/TG did not differ significantly. 

Fat ingestion; lead the particle to have more phospholipids. There was no significant 

different in, CE, FC, protein and total lipoprotein mass (Figure 5.9, panel A and 

Figure 5.10). 

 

Table 5.6 shows mean AUC (±SEM) of LDL percentage composition. Ingesting 

carbohydrate alone increased TG concentration and reduced phospholipid 

concentration in LDL particles when compared with ingesting fat alone and/or co-

ingesting fat with carbohydrate. As shown in Table 5.6 TG concentration in OGTT 

trial was higher by 52% comparing with ingesting fat alone and/or the co-ingestion of 

both by 49% (all p=0.05).  

On the other hand, phospholipid was lower in OGTT trial by 12% and 9% comparing 

with both OFTT and COMB trials respectively, giving a moderate Cohen’s d effect size 

of 0.57 and 0.54 (p=0.3 and p=0.05) respectively. There was a trend of lower CE/TG 

ratio by 29% when carbohydrate alone was ingested comparing to ingesting fat alone, 

giving a moderate Cohen’s d effect size of 0.71. There was no significant different 

in, CE, FC, protein and total lipoprotein mass (Figure 5.9, panel B and Figure 5.10). 

The summary of lipoproteins result is shown in Figure 5.10, when carbohydrate was 

ingested alone or co-ingested with fat, both follow similar pattern on lipoprotein 

composition during 480 minutes of observation. Number of particles seem lower, 

however, they become more TG enrich.  
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Figure 5.9. Change in lipoprotein concentration response over the 480 minute observation period, 
panel [A] shows the change in IDL concentration and panel [B] shows the change in LDL concentration 
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Table 5.5; Time-averaged areas under the curve for IDL composition and concentration values over the 480-minute postprandial observation period in 
the OGTT, OFTT and COMB trials. 

 Mean value  Mean different  Effect size 

 
OGTT OFTT COMB OGTT vs. OFTT OGTT vs. COMB OFTT vs. COMB 

OGTT 
vs. 

OFTT 

OGTT 
vs. 

COMB 

OFTT 
vs. 

COMB 

Total 
lipoprotein 

concentration 
(mg.dl-1) 

1.11 ± 2.30 1.74 ± 2.72 -2.64 ± 1.90 
-0.63 

 (-5.64 to +4.39) 

+3.75 

 (-2.53 to +10.03) 

-4.38 

 (-10.98 to +2.22) 
0.08 0.37 0.41 

Triglyceride 
(%) 

14.64 ± 2.66 10.42 ± 0.71 9.78 ± 0.97 
+4.22 

 (-0.20 to +8.63) 

+4.86  

(-0.09 to +9.81) 

-0.64 

 (-2.80 to +1.52) 
0.59* 0.61* 0.18 

Free 
cholesterol 

(%) 
13.31 ± 1.73 12.65 ± 0.67 12.31 ± 0.78 

+0.65  

(-2.51 to +3.18) 

+1.00  

(-2.53 to +4.52) 

0.34  

(-1.95 to +1.27) 
0.13 0.18 0.13 

Cholesteryl 
ester (%) 

32.13 ± 3.07 35.83 ± 2.46 36.92 ± 1.57 
-3.70 

(-9.45 to +2.05) 

-4.79  

(-11.86 to +2.27) 

+1.09  

(-5.22 to +7.40) 
0.40 0.42 0.11 

Phospholipid 
(%) 

21.81 ± 1.67 25.09 ± 0.60 22.87 ±0.69 
-3.27 

(-7.22 to +0.67) 

-1.05  

(-4.46 to +2.35) 

-2.22 

 (-3.95 to -0.49) 
0.51* 0.19 0.80* 

Protein (%) 18.15 ± 2.13 16.06 ± 1.86 18.12 ± 2.34 
+2.09 

 (-1.43 to +5.61) 

+0.04 

 (-5.53 to +5.60) 

+2.05  

(-3.48 to +7.58) 
0.37 0.00 0.23 

CE/TG ratio 
(mol:mol) 

4.21 ± 0.87 5.05 ± 0.67 5.77 ± 0.78 
-0.84 

 (-0.98 to +0.56) 

-1.56 

 (-1.78 to +0.68) 

-0.72 

(-0.90 to +1.11) 
0.37 0.43 0.24 

Values for lipoprotein concentration is mean IAUC ± SEM, rest of the values are the mean ± SEM, n=10; data were analysed using repeated measure ANOVA.* 
significant from the other group p<0.05, **p<0.005. 
Table 5.6; Time-averaged areas under the curve for LDL composition and concentration values over the 480-minute postprandial observation period 
in the OGTT, OFTT and COMB trials. 
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 Mean value  Mean different  Effect size 

 OGTT OFTT COMB OGTT vs. OFTT OGTT vs. COMB OFTT vs. COMB 
OGTT 

vs. 
OFTT 

OGTT 
vs. 

COMB 

OFTT 
vs. 

COMB 

Total 
lipoprotein 

concentration 
(mg.dl-1) 

9.73 ± 9.22 9.31 ±7.70 8.21 ± 4.44 
+0.41 

 (-26.72 to +27.55) 
+1.52  

(-20.40 to +21.05) 
-1.10  

(-19.01 to +16.80) 
0.02 0.01 0.04 

Triglyceride 
(%) 8.29 ± 2.11 4.65 ± 0.32 4.83 ± 0.37 

+3.73 
 (+0.10 to +7.36) 

+3.46  
(+0.41 to +7.32) 

+0.27 
 (-0.40 to +0.95) 

0.64* 0.55* 0.40 

Free 
cholesteryl (%) 10.64 ± 2.28 10.72 ± 0.63 11.08 ± 0.55 

-0.08 
 (-4.40 to +4.24) 

-0.44  
(-4.99 to +4.12) 

+0.35  
(-1.13 to +1.84) 

0.01 0.0.06 0.15 

Cholesterol 
ester (%) 35.74 ± 1.81 37.19 ± 1.22 37.62 ±1.39 

-1.45  
(-5.48 to +2.59) 

-1.88  
(-6.20 to +2.44) 

+0.44  
(-2.93 to +3.80) 

0.22 0.27 0.08 

Phospholipid 
(%) 19.23 ± 0.93 21.59 ± 0.69 20.99 ± 0.36 

-2.36 
 (-4.94 to +0.23) 

-1.76 
 (-3.77 to +0.26) 

-0.60 
 (-1.87 to +0.67) 

0.57* 0.54* 0.29 

Protein (%) 
26.09 ± 1.43 25.94 ± 1.77 25.47 ± 1.48 

+0.15  
(-3.22 το +3.52) 

+0.62 
 (-3,20 το 4.43) 

-0.47 
 (-3.86 to +2.93) 

0.03 0.10 0.08 

CE/TG ratio 
(mol:mol)  9.12 ± 1.56 11.81 ± 11.02 11.31 ± 1.07 

-2.69  
(-2.92 to -0.33) 

-2.19 
 (-2.49 to +0.85) 

+0.50 
 (+0.31 to +2.45) 

0.71 0.45 0.16 

Values for lipoprotein concentration is mean IAUC ± SEM, rest of the values are the mean ± SEM, n=10; data were analysed using repeated measure ANOVA.* 
significant from the other group p<0.05, **p<0.005. 
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Figure 5.10. Differences between lipoprotein compositions in the three trials, lay aSignificantly 
different from glucose trial, bsignificantly different from fat trial, csignificantly different from 
combination trial, p<0.005. Protein, phospholipid (PL) and free-cholesterol (FC) comprise the outer 
coat of the lipoprotein; triglyceride (TG) and cholesteryl-ester (CE) comprise the lipoprotein core. 
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5.4 Discussion  

The goal of this study was to address the effect of ingesting fat and carbohydrate 

separately and in combination on postprandial responses. The results of the 

experiments appear are in line with existing literature (Wilson et al., 1985, Pedersen 

et al., 1999, Knuth et al., 2008, Collier and O'Dea, 1983).  

 

Glycaemic Response  

It is well established that glucose intake increases plasma insulin (Elrick et al., 1964, 

Stumvoll et al., 2000). The finding of the current study with glucose ingestion is in 

line with this finding. Hyperglycaemia is a major contributor to endothelial damage 

providing a link between CVD and T2D (Ceriello, 2004).In contrast OFTT meal led to 

a low glycaemic and insulinemic response, in line with previously observations 

(Riccardi et al., 2004, Havel, 1957a).                                                                                                                                                                      

 

In the current study, adding equal amounts of fat and carbohydrate (75 grams each) 

reduced the glycaemic response compared to carbohydrate ingestion alone. 

However, this response will be influenced by the amounts of fat and / or 

carbohydrate consumed, for example, in studies in which 8–24 g fat was fed in mixed 

meals containing 38–104 g carbohydrate, the added fat had little effect on the 

glycaemic response (Wolever and Bolognesi, 1996a). It has been observed that an 

intake of 15 g of fat has no influence on postprandial lipaemia and lipoproteins in 

healthy adults (Dubois et al., 1998). The current data shows that the COMB meal 

significantly reduced the glucose response, compared to carbohydrate ingestion 

alone, particularly during the first hour after meal ingestion. This is as has  observed 

previously (Collier et al., 1984, Collier and O'Dea, 1983, Collier et al., 1988). The 

most likely explanation for these results is that fat slows gastric emptying (Thomas, 

1957, Gentilcore et al., 2006, Heddle et al., 1989, Phillips et al., 2015) Gastric 

emptying is an important determinant of rate of glucose appearance and blood 

glucose homeostasis in healthy and diabetic populations (Horowitz et al., 1993). This 

is mediated by gut hormones such as gastric inhibitory polypeptide and glucagon-like 

peptide-1 (GLP-1) (Rocca and Brubaker, 1995, Herrmann et al., 1995, Feltrin et al., 
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2004). The reduction of the rate of glucose absorption after the consumption of the 

mixture of carbohydrate with fat will attenuate glycaemic and insulinaemic responses 

(Gannon et al., 1988, Pi-Sunyer, 2002) and reduce the postprandial rise in some 

hormones such as incretins, and insulin (Jenkins et al., 2002, Ludwig, 2002). The 

prolonged absorption of carbohydrate seen over time will maintain suppression of the 

free fatty acids and the counter regulatory responses, resulting in slower 

carbohydrate entry into the small intestine, while at the same time achieving lower 

blood glucose concentrations (Jenkins et al., 1990, Jenkins et al., 1988, Wolever et 

al., 1988, Ludwig et al., 1999). However, COMB meal did not lower the insulin AUC 

significantly and this has been observed previously (Collier et al., 1984, Collier and 

O'Dea, 1983, Collier et al., 1988). This is might be due to the type of dietary fat in 

particular saturated fatty acid which also affects insulin sensitivity, independently of 

its effects on body weight (Jenkins et al., 1978, Mayer et al., 1993), while 

monounsaturated and polyunsaturated fatty acids improve it through modifications 

in the composition of cell membranes (Chen et al., 1988, Swinburn et al., 1991, 

Lovejoy et al., 1998, Parillo et al., 1992, Bhaswant et al., 2015). In addition, we used 

glucose as a source of carbohydrate and it is well established that type of 

carbohydrate influences insulin levels (Augustin et al., 2002, Jenkins et al., 2008). 

Although we cannot exclude the possibility that fat ingestion may alter the hepatic 

extraction of insulin, the simplest explanation would invoke the potentiation of 

insulin secretion by the co-ingestion of fat (Collier et al., 1984, Estrich et al., 1967). 

Generally, the impact of carbohydrates on blood glucose is affected by the type of 

carbohydrate, the food form, type and amount of dietary fibre (Guillon and Champ, 

2000, Eastwood and Morris, 1992, Granfeldt et al., 2008), the presence of other 

nutrients.  

 

Lipaemic response  

 

Despite the insulin response being similar in the glucose and combined trials, effects 

on NEFA suppression differed markedly. There was a substantial initial suppression of 

NEFA in the glucose trial which was markedly attenuated when glucose and fat were 

co-ingested. As it has been well established that the ingestion of carbohydrate 
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stimulates insulin release, which suppresses the release of NEFA from adipose tissue 

and stimulates fat storage (Sadur and Eckel, 1982, Coppack et al., 1990). However, 

TG concentrations did not change when OGTT meal was consumed. As carbohydrate 

has no influence on plasma TG concentrations.  

 

In the OFTT meal, there was a significant postprandial increase in TG concentrations, 

in line with previous research which has shown that fat content influences plasma TG 

concentrations (Cohen and Berger, 1990, van Tol et al., 1998). The amount of fat 

required to significantly elevate plasma TG concentration is in the order of 30–50 g. 

Some studies have been performed with increasing doses of dietary fat (Cohen et al., 

1988, Dubois et al., 1994, Murphy et al., 1995, Dubois et al., 1998). In these studies 

a very low dose (5 g) or low dose (15 g) of dietary fat does not significantly increase 

TG concentration  postprandially; moderate doses (30–50 g) dose-dependently 

increase postprandial triglyceridemia; and finally, very high doses (80 g and above) 

exaggerate postprandial triglyceridemia.  

The co-ingestion of carbohydrate with fat did not influence the postprandial plasma 

TG response in the present study. Many studies reported that the addition of 

carbohydrate to a fat meal did not influence the lipaemic response after meal 

ingestion (Cohen et al., 1988, Nicholls and Cohen, 1985, van Oostrom et al., 2004) 

but this finding is not universal. On the other hand, other studies report that the 

addition of carbohydrate to a fat meal reduces the post-prandial TG response to the 

ingested fat compared with a fat meal alone (Albrink et al., 1958, Cohen and Berger, 

1990, Westphal et al., 2002, Westphal et al., 2004). This has been linked to effect of 

carbohydrate in the delay the appearance of ingested lipid as a result of a change in 

gastric osmolarity (Cohen and Berger, 1990, Hunt, 1961, Westphal et al., 2002, Vist 

and Maughan, 1995, Jenkins et al., 1984). It has been found that the rate of gastric 

empting is reduced roughly 50% when carbohydrate is added to a fat meal (Westphal 

et al., 2002). However, our findings disagree with this result. This is might be due to 

the hepatic VLDL and chylomicron remnants accumulation due to altered lipoprotein 

secretion and/or clearance (Parks et al., 1999, Abbasi et al., 2000). As the current 

data show, chylomicron-TG concentrations were similar when fat ingested alone 

and/or when it was combined with carbohydrate. And as we mentioned above, insulin 
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response did not differ when fat was added to carbohydrate which affected LPL 

secretion and activity. Insulin has a role in the activity of adipose tissue LPL (Nilsson-

Ehle et al., 1975, Sadur and Eckel, 1982, Sadur et al., 1984). 

It is been observed that postprandial lipaemia is influenced by the amount and type 

of dietary fat present in the meal, as well as other dietary components including 

fibre, glucose, starch, and alcohol (Cohen and Berger, 1990, van Tol et al., 1998). It 

has been reported that the intake of long-chain omega(n) – 3 polyunsaturated fatty 

acids (PUFAs) (predominantly fish oil), results in lower TG levels and attenuates 

postprandial lipaemia (Tinker et al., 1999). 

Lipoproteins  

TG concentration was mostly constant over the course of the OGTT trial and this 

might be because there was no competition between chylomicron and VLDL1 particles 

to be cleared by the action of LPL (Karpe et al., 1992). This also is similar to the 

pattern of plasma TG and agrees with the findings of others (Lewis et al., 1993b, 

Lewis et al., 1993a, Vogelberg et al., 1980). 

 

In OFTT and COMB meal the response of chylomicron and VLDL TG paralleled that of 

total TG; maximum increases occurred 4 h after intake of the meals, a finding that 

was also observed by others (Karpe et al., 1995, Cohen et al., 1988). The addition of 

carbohydrate to fat did influence the composition of VLDL1 (Figure 5.10). When 

carbohydrate ingested with fat or when it was ingested alone, VLDL1 concentrations 

were lower than when fat was ingested alone, and this might be due the accumulation 

of VLDL1 particles and increase in the clearance of very rich TG-chylomicrons. 

Alternatively, it might be due to low insulin concentration and high circulating NEFA 

concentration which stimulate the production of VLDL particles (Lewis et al., 1994, 

Lewis et al., 1995). Also, it has been suggested that the increase in the influx of 

exogenous TRL into plasma will inhibit the clearance from plasma of TRL of 

endogenous origin, whereas an increase in the secretion of TRL of endogenous origin 

will inhibit the removal from plasma of newly absorbed TRL of exogenous origin 

(Schneeman et al., 1993). However, TG concentrations were higher in both trials 
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significantly when compared with fat ingestion alone. A trend of lower protein 

content in VLDL1 was observed. This would be linked to the number of particles and 

suggest that consuming carbohydrate with fat contributes to lower particle number, 

but more TG-rich particles. Lipolysis of VLDL1 has been shown to give rise to LDL 

particles in the density range that have a prolonged residence time (approx. 5 days), 

compared with LDL derived from smaller VLDL or intermediate-density lipoprotein 

precursors (which has a residence time of approx. 2 days) (Packard, 2003, Julius et 

al., 2007, Gazi et al., 2005). The newly formed LDL particles have sufficient time to 

be remodelled by the action of CETP, LDL will lose CE and gain TG. When this 

remodelling of LDL particles occurs to a significant degree, then it is postulated that 

the next exposure of the triacylglycerol-enriched LDL to HL will lead to the removal 

of enough TG to promote a shift in particle size into the small, dense range (Packard, 

2003, Julius et al., 2007, Gazi et al., 2005). This sdLDL are the most readily oxidized 

subfraction among lipoprotein classes (Tribble et al., 1994, Julius et al., 2007) which 

increase its atherogenic potential.  

 

In contrast, VLDL2 particles seem not to respond to any factors neither diet nor 

exercise as shown in this study and the study in Chapter 4. However, there was a 

trend of higher concentration of VLDL2 when fat alone was ingested, following the 

same pattern of VLDL1 particles. This mean more VLDL1 and VLDL2 were accumulated 

in the circulation when fat alone was ingested.  

 

When consuming carbohydrate alone, IDL tended to have more TG and less 

phospholipids when compared to co-ingestion or fat ingestion and this is similar to 

VLDL1 pattern during the trials.  

 

In the COMB trial IDL concentrations on the plasma were reduced, consistent with 

the lower concentrations of VLDL1 particles recorded in this trial. Also, this suggests 

a faster catabolism of VLDL1 particles due to the insulin-induced LPL activity (Nilsson-

Ehle et al., 1975, Sadur et al., 1984, Sadur and Eckel, 1982).  
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Concentration of LDL particles did not differ between the three trials. However, 

compositions differed. Ingesting carbohydrate alone increased the percentage of TG 

and lowered the percentage CE in LDL particles when compared to ingesting fat alone 

and/ or the co-ingestion of both. This might be an adverse consequence as smaller 

more cholesterol rich LDL particle sizes are statistically correlated with other risk 

factors for coronary artery disease (Rosenson et al., 2002, Lamarche et al., 2008). 

Because LDL particle size is inversely related to plasma TG concentration, it is 

important to address if whether elevations in plasma TG induced by adding 

carbohydrate to fat is associated with reductions in LDL particle size (Dreon et al., 

1994, Dreon et al., 1999). Also, its influence, the prevalence of LDL subclass pattern 

B, a categorical marker for atherogenic dyslipidemia defined by the predominance of 

sdLDL, has been linearly and positively associated with increasing concentrations of 

dietary CHOs in randomized controlled clinical trials (RCTs) (Schwingshackl and 

Hoffmann, 2013, Bueno et al., 2013, Krauss et al., 2006).  

However, one of the limitations in the study is that, it was not possible to determine 

rates of production and removal of lipoprotein particles; this would require a kinetic 

study. We didn’t measure CETP in plasma, which promotes the triacylglycerol 

enrichment of HDL with concomitant cholesteryl ester accumulation in VLDLs 

(Dullaart et al., 1989, Mann et al., 1991). We also did not measure the activity of 

LPL. Moreover, the types of ingested fatty acid have a different influence on 

lipoprotein composition. It has been shown that, the long term of ingesting specific 

fatty acids classes can affect serum total, LDL, and HDL cholesterol concentrations 

and TG concentrations (Mensink and Katan, 1992, Mensink et al., 2003). The type of 

fatty acid that ingested in the current study was principally saturated and further 

study is needed evaluate the effects of co-ingestion of different types of fatty acids 

with carbohydrate.  

 

The meal we provide contained 2.3 g of protein, which is a low amount. The existence 

of protein in diet might influence plasma lipid postprandially. High protein diets 

appear to have beneficial effects on weight loss, body composition, and certain blood 

lipids, at least in the short term (Hession et al., 2009). Satiating effects of dietary 

protein, a reduced choice of foods, and an aversion against dietary fat in the absence 
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of carbohydrates have all been attributed to better weight loss with high protein 

diets (Weickert et al., 2005). However, there is limited data on the amount of protein 

that can influence postprandial response (Lopez-Miranda et al., 2007). Previous 

studies suggest that adding fat and protein to carbohydrate reduces glycaemic 

responses nonlinearly, with the glycaemic impact reaching a plateau as more and 

more protein and fat are added (Owen and Wolever, 2003, Moghaddam et al., 2006, 

Spiller et al., 1987). It has been observed that ingesting 47 g of soya protein led to 

lower cholesterol in plasma and LDL particles and plasma TG (Anderson et al., 1995). 

Another study found that consuming 20 g of soya protein for 3 weeks rescued plasma 

remnant like (Higashi et al., 2001). Further investigation should be focused on the 

effect of ingesting protein alone or with other macronutrients on postprandial 

metabolism.  

 

The challenges that accompany scientific research in this area result in an inability 

to conclusively determine the most effective macronutrient compositions required 

for the reduction of CVD risk. The co-ingestion of both carbohydrate and fat seems 

to reduce glycaemic response, however, ingesting fat contributes to weight gain in 

the long term (Lissner and Heitmann, 1995, McMorrow et al., 2016, Hall et al., 2015, 

Purnell et al., 1999, Visscher and Seidell, 2001, Seidell, 1998, Bray and Popkin, 1998).  
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6 A pilot study to determine the effect of 
ethnicity on postprandial metabolism: a 
comparison between men of European and 
Middle-Eastern origin  

6.1 Introduction  

Cardiovascular disease is major cause of morbidity and mortality worldwide, and its 

incidence is increasing in developing countries, including those in the Middle East, 

such as Afghanistan, Turkey, Iran, Iraq, Lebanon, Gulf countries, and Palestine (Bovet 

et al., 2006). Indeed, approximately 80% of the CVD mortality worldwide occurs in 

developing countries (Sibai et al., 2010) These numbers are expected to continue to 

rise over coming years and CVD is also more likely to occur in younger ages in 

developing countries (Bovet et al., 2006). On the other hand, in the Western countries 

where the disease first had its epidemic, there is now a decline in CVD because of 

major public health efforts (Mensah et al., 2017, Mendis, 2017).  

 

The pattern of increasing disease burden in the developing countries is not only the 

case for CVD, but other risk factors and metabolic diseases. For example, in Middle 

East, overall prevalence of diabetes amongst adults aged 18-80 years is 22% in men 

and 19% in women (Shara, 2010), and over the last 3 decades obesity in some regions 

of the Middle East has tripled (Shara, 2010). The Middle East is now facing an 

epidemic of diabetes and obesity, with prevalence of type 2 diabetes amongst the 

highest in the world. 

 

Changes in lifestyle factors, including changes to eating habits to more closely 

resemble Western societies, smoking, urbanization and technological advances and 

reduced physical activity during work and leisure are likely to contribute to the 

increases in cardio-metabolic disease in the Middle East (Al‐Kandari, 2006). While 

modifiable lifestyle-related factors are likely to underpin these disease increases 

(Jamrozik et al., 2001), it is possible that the extent to which these factors influence 
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disease risk is influenced by unmodifiable risk factors such as age, sex and ethnic 

background.  

 

There is evidence of ethnic differences in postprandial responses to meal ingestion 

which could potentially contribute to the observed ethnic differences in cardio-

metabolic disease risk (Mohan et al., 1986, Raji et al., 2001). For example, young 

adults of Vietnamese, south Asian and Chinese origin displayed marked postprandial 

hyperglycaemia and hyperinsulinemia compared with age-matched Caucasian 

subjects (Dickinson et al., 2002). Furthermore, in South Asians, the glycaemic 

response was greater than in Northern Europeans and Latin Americans, although there 

were no differences in postprandial TG concentrations or in insulin sensitivity as 

assessed with the insulin tolerance test (Cruz et al., 2001a, McKeigue et al., 1991). 

Remnant-like particle cholesterol levels in Japanese subjects have consistently been 

reported to be lower than those in Caucasians (Twickler et al., 2004). Black 

populations, are more insulin resistant than white Europeans and have higher glucose 

and insulin responses to glucose ingestion (Healy et al., 2015, Ziemer et al., 2010, 

Osei et al., 1992).  

 

However, there are limited data on the metabolic responses of Middle Eastern 

populations, who are a group with high population burden of cardio-metabolic 

disease. Therefore, this experimental chapter is a pilot study to examine the 

differences in postprandial metabolic responses between Middle Eastern and 

European adults.  

 

6.2 Participants and Methods 

6.2.1 Participants  

The data of 16 men (8 Middle Eastern and 8 Europeans) were collected from the 

previous experimental Chapter 4 and 5, their characterizations are listed in Table 

6.1. All subjects were apparently healthy, normotensive, normoglycaemic (fasting 
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glucose ≤ 6 mmol.l-1), nonsmokers. None was taking any drugs known to affect lipid 

or carbohydrate metabolism. The study was conducted with the approval of 

University of Glasgow Ethics Committee, and subjects gave written informed consent 

prior to participation. 

 

6.2.2 Test meals  

Seven participants had the high fat mixed meal (HFM) meal (containing 75 g fat and 

77.4 g carbohydrate) described in section 2.5.1 and 9 participants had the COMB 

meal (containing 92.4 g fat and 86.3 g carbohydrate) described in section 2.5.4 (see 

table 6.1). Test meal was included as a co-variate in statistical analyses and shown 

not to have a significant effect on any of the postprandial responses. 

 

6.2.3  Blood sampling 

Subjects reported to the lab on the morning after fasting for at least 12h. A cannula 

was placed in an antecubital vein and, after a 10-min interval, a fasted state blood 

sample was withdrawn. A test meal, as described above in Section 6.2.2., was 

provided. Further blood samples were obtained at 30, 60, 90, 120 and 240 minutes 

after meal consumption. Subjects rested and consumed only water during this time.  

 



6 A pilot study to determine the effect of ethnicity on postprandial metabolism: a comparison between men of European and Middle-Eastern origin  

202 
Khloud Jamil Ghafouri ® 2017  

Table 6.1; Physical characteristics 

 Meal 
AGE 

(years) 
Height 

(M) 
Body 

Mass (Kg) 
BMI 

(kg.m-2) 
Waist 
(cm) 

Hip (cm) WHR 
% body 

fat 

European 

HFM 37.00 1.91 101.90 27.93 102.00 107.00 0.95 23.31 
HFM 24.00 1.68 77.20 27.29 85.00 95.10 0.89 16.79 
HFM 34.00 1.69 75.40 26.28 94.05 99.45 0.95 26.27 
HFM 49.00 1.71 81.00 27.67 101.00 103.00 0.98 25.55 

COMB 32.00 1.85 86.35 25.07 88.81 102.10 0.87 24.74 
COMB 31.00 1.75 83.00 27.10 79.85 98.45 0.81 25.93 
COMB 25.00 1.84 83.10 24.52 95.00 102.00 0.93 15.09 
COMB 35.00 1.85 86.00 25.13 81.15 102.70 0.79 21.57 

Mean  33.38 1.79 84.24 26.37 90.86 101.23 0.90 22.41 
SD  7.80 0.09 8.11 1.32 8.52 3.55 0.07 4.30 

Middle Eastern 

HFM 55.0 1.8 89.60 28.83 101.60 103.50 0.98 33.00 
HFM 31.0 1.7 81.00 27.38 102.00 98.00 1.04 27.00 
HFM 35.0 1.8 83.00 27.10 95.50 102.00 0.94 25.93 

COMB 32.0 1.7 101.30 33.54 102.00 111.00 0.94 28.48 
COMB 35.0 2.0 90.00 22.96 74.00 98.00 0.76 10.56 
COMB 29.0 1.8 104.00 32.82 109.50 119.30 0.92 26.46 
COMB 29.0 1.9 94.00 27.47 95.50 100.00 0.96 27.00 
COMB 25.0 1.8 82.00 24.49 78.00 98.00 0.80 11.35 

Mean  33.88 1.80 90.61 28.07 94.76 103.73 0.91 23.73 
SD  9.16 0.08 8.71 3.66 12.44 7.66 0.09 8.16 

p-value (EU vs ME) 0.91 0.74 0.15 0.24 0.48 0.42 0.71 0.69 

 Values are means (SD), EU = European, ME = Middle Eastern. N= 8 European and 8 Middle eastern.  
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6.2.4 Plasma assays 

Serum, TG and NEFA and plasma glucose concentrations were analysed at all-time 

points as previously mentioned in Appendix C. Total, HDL cholesterol and sdLDL 

concentrations were measured in the fasted state as mentioned in Appendix C. LDL 

cholesterol was calculated in the fasted state using the Friedewald equation 

(Friedewald et al., 1972). Insulin was measured in EDTA plasma, as described in 

section 2.6.3, HOMA-IR was calculated as described in section 2.6.4. 

 

6.2.5 Lipoprotein separation 

Plasma samples (2 ml) at 0, 1, 2 and 4 hours were centrifuged using 

ultracentrifugation technique to isolate lipoprotein subfractions as previously 

described in section 2.6.2. VLDL1 and VLDL2 fractions were assayed to determine 

concentrations and composition for TG, free cholesterol (FC) and phospholipids, as 

mention in Appendix C Cholesterol Easter was determined as described in section. 

Chylomicron fractions were assayed for TG concentration. In the VLDL1 and VLDL2 

fractions, total protein was measured using a modified Lowry assay (see section 2.7).  

 

6.2.6 Calculations and statistical analysis 

Statistical analyses were performed using Statistica (version 10, StatSoft Inc.) and 

Minitab (version 17, Minitab Ltd). All data were tested for normality using the 

Anderson-Darling test. Where data did not approximate a normal distribution, these 

were log-transformed prior to analysis. Time-averaged postprandial concentrations, 

calculated as the trapezium rule-derived areas under concentration versus time 
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curve, divided by the duration of the postprandial observation period (240 minutes), 

were used as summary measures of the postprandial responses. Postprandial 

concentrations at individual timepoints between the two ethnic groups were 

compared by repeated measures ANOVA, with adjustment for BMI, age and test meal 

(HFM vs COMB). Post hoc Fisher tests were carried out to establish where differences 

lay. When displayed graphically SEMs were used as error bars. Unpaired T-tests were 

used to calculate differences in the area under the curve and the incremental area 

under the curve for postprandial responses. Statistical significance was set at p<0.05. 

Cohen’s d effect size was calculated by dividing the mean difference between the 

two groups by the stander deviation pool of both groups. Percentages of TG and CE 

were relative to total mass.TG to CE ratio in lipoprotein fractions was calculated as: 

TG/CE. 
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6.3 Results  

6.3.1 Fasting plasma concentration 

Table 6.2. shows fasting plasma concentrations for both groups. European had higher 

fasting TG concentration than Middle Eastern by 40% (p = 0.05), with a large Cohen’s 

d effect size for this difference of 0.96. There were no significant differences in total 

cholesterol, HDL, sdLDL, NEFA, glucose or insulin concentrations. However, although 

the differences did not achieve statistical significant fasting insulin concentrations 

and HOMA-IR were both ~4 fold higher in the Middle Eastern compared with the 

European adults, with medium Cohen’s d effect sizes of 0.71 and 0.68 respectively.  

Table 6.2; Fasting Plasma Values. 

 
European 

(n = 8) 

Middle 
Eastern 
(n = 8) 

Mean 
difference 

Effect 
size 

P-
value 

Total cholesterol (mmol.l-1) 5.13 ± 0.36 4.91 ± 0.36 +0.23 0.23 0.66 

HDL (mmol.l-1) 1.20 ± 0.09 1.35 ± 0.17 -0.15 0.39 0.46 

SdLDL (mg.dl-1) 35.56 ± 6.58 28.50 ± 5.03 +7.06 0.43 0.41 

Triglyceride (mmol.l-1) 1.32 ± 0.17 0.88 ± 0.12 +0.44 0.96 0.05 

NEFA (mmol.l-1) 0.75 ± 0.06 0.79 ± 0.08 -0.04 0.22 0.68 

Glucose (mmol.l-1) 5.00 ± 0.19 5.11 ± 0.18 -0.10 0.20 0.70 

Insulin (mU.l-1) 5.81 ± 0.76 22.16 ± 11.07 -16.36 0.71  0.16 

Log-Insulin (mU.l-1)* 1.70 ± 0.14 2.39 ± 0.44 -0.69 0.72 0.16 

HOMA-IR (units)+ 1.30 ± 0.20 5.07 ± 2.70 -3.77 0.68 0.19 

Values are means ± SEM, *log transformed values, +Homeostasis Model Assessment. . Statistical analysis 
performed using unpaired t-test. 
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6.3.2 Postprandial concentrations 

Table 6.3 shows the summary postprandial responses for the two ethnic groups. 

Europeans had higher TG AUC by 42%; this had borderline statistical significance 

(p=0.057) and a large Cohen’s d effect size. Figure 6.1 shows these responses 

graphically; TG concentrations were significantly higher in Europeans at both the 2 

and 4 hour postprandial timepoints. A similar pattern was observed when considering 

the IAUC and postprandial rises in TG concentration (i.e. adjusting for the difference 

in the fasting TG concentration). The TG IAUC was 62% higher in the Europeans, this 

difference was not statistically significant (p = 0.13), but the Cohen’s d effect size, 

at 0.77 was moderate to large. The rise in postprandial TG concentration above 

fasting was significantly higher in the Europeans than the Middle Eastern participants 

at 2 and 4 hour postprandial timepoints (see Figure 6.1). The different between the 

two groups is clear at 2 and 4 hours postprandially. At 2 and 4 hours postprandially 

TG concentrations differ between the two groups significantly, as European shows 

higher TG response by 42% and a large Cohn d effect size 0.92 (p=0.01) and 50% with 

a large Cohen d effect size of 0.94 from Middle Eastern (p=0.001) respectively. The 

same trend was observed in the incremental area under the curve at 2 and 4 hours, 

European TG was 46% higher (p=0.03) to give a medium Cohen’s d effect size 0.76 at 

2 hours postprandially and 60% higher at 4 hours postprandially (p=0.005) and an 

effect size of 0.82 (Figure 6.1 panel B).  

  
There was no significant different in AUC and IAUC for log-transformed glucose, log-

transformed insulin or NEFA (Table 6.3, Figure 6.2 panel A and B, Figure 6.3 panel 

A and B and Figure 6.4 panel A and B). However, both glucose and insulin 
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concentrations were different significantly in single time points between the two 

groups. Plasma glucose values at 60 and 90 minutes after meal ingestion were lower 

in European by 24% giving a large effect size of 0.90 (p=0.001) and 29% with a large 

effect size of 0.85 (p=0.05) respectively when compared with Middle Eastern. Also, 

incremental plasma glucose values at 60 and 90 minutes after meal ingestion were 

lower in European by 188% (p=0.005) and 27% (p=0.05) and to give a large Cohen’s d 

effect size of 0.91 and 0.94 respectively comparing with Middle Eastern (Figure 6.2 

panel B). 

Similarly insulin values were significantly lower in European compared with 

Middle Eastern, at 90 and 120 minutes was higher by 128% and 88% 

respectively compared with European (p=0.02,p=0.05) giving a Cohen’s d 

effect size of 0.94 and 0.66 respectively. IAUC was higher in Middle Eastern 

at 90 minutes by 129% compared with European (p=0.005) with a large 

Cohen’s d effect size 0.88 (see Figure 6.3 panel B).
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Table 6.3; Time-Averaged and incremental postprandial plasma Concentration. 

 

   
 
 

AUC 

 
European  

(n= 8) 
Middle eastern 

(n=8) 
Mean difference Effect size P-value 

Triglyceride (mmol.l-1) 2.07 ± 0.27 1.35 ± 0.22 +0.73  0.94 0.057 

NEFA (mmol.l-1) 0.80 ± 0.08 0.81 ± 0.08 -0.01 0.05 0.92 

Log-Glucose ( mmol.l-1)* 1.59 ± 0.04 1.71 ± 0.06 -0.12  0.83 0.10 

Log-Insulin (mU.l-1)* 2.98 ± 0.15 3.54 ± 0.42 -0.56 0.61 0.24 

IAUC 

Triglyceride (mmol.l-1) 0.76 ± 0.14 0.47 ± 0.11 +0.29  0.77 0.13 

NEFA (mmol.l-1) 0.05 ± 0.05 0.04 ± 0.07 +0.01  0.05 0.92 

Glucose (mmol.l-1) 0.06 ± 0.14 0.51 ± 0.25 -0.57 0.90 0.07 

Insulin (mU.l-1) 15.69 ± 3.84 37.83 ± 16.58 -22.14  0.64 0.21 

Values are mean time-averaged postprandial concentration ± SEM, and mean incremental rise in postprandial state ± SEM, N= 8 European and 
8 Middle eastern.*log-transformed data. Statistical analysis performed using unpaired t-test.  
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Figure 6.1. Plasma-TG concentrations during 4 h observation period in both groups; European and Middle Eastern. Panel [A] shows the mean values 
for TG concentrations; panel [B] shows the incremental time-averaged area under the curve for plasma TG, N= 8 European and 8 Middle eastern, Values are mean 
± SEM. * significant values from the other group (p< 0.005), ** (p≤0.05). Values and statistical analysis of these data is shown in Table 6.3. 

[A] Mean postprandial plasma TG 

[A] Mean postprandial plasma glucose [B] Incremental time-averaged plasma glucose  

[B] Incremental time-averaged plasma TG  
 

0.0

0.5

1.0

1.5

2.0

0 30 60 90 120 150 180 210 240

C
h
a
n
g
e
 i

n
 T

G
 (

m
m

o
l.

l-
1
)

Time (min) 

EU

ME

*

*



6 A pilot study to determine the effect of ethnicity on postprandial metabolism: a comparison between men of European and Middle-Eastern origin  

210 
Khloud Jamil Ghafouri ® 2017  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 60 120 180 240

G
lu

c
o
se

 (
m

m
o
l.

l-
1
)

Time (min)

*

*

Figure 6.2.Plasma-glucose concentrations during 4 h observation period in both groups; European and Middle Eastern. Panel [A] shows the 
mean values for glucose concentrations; panel [B] shows the incremental time-averaged area under the curve for plasma glucose. N= 8 European 
and 8 Middle eastern, Values are mean ± SEM. * significant values from the other group (p< 0.005),** (p≤0.05). Values and statistical analysis of 
these data is shown in Table 6.3. 
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[A] Mean postprandial plasma insulin [B] Incremental time-averaged plasma insulin 

Figure 6.3 . Plasma-insulin concentrations during 4 h observation period in both groups; European and Middle Eastern. Panel [A] shows the 
mean values for insulin concentrations; panel [B] shows the incremental time-averaged area under the curve for plasma insulin. N= 8 European 
and 8 Middle eastern, Values are mean ± SEM. * significant values from the other group (p< 0.005),** (p≤0.05). Values and statistical analysis of 
these data is shown in Table 6.3. 
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values for NEFA concentrations; panel [B] shows the incremental time-averaged area under the curve for plasma NEFA. N= 8 European and 8 Middle 
eastern, Values are mean ± SEM. * significant values from the other group (p = 0.005). Values and statistical analysis of these data is shown in Table 
6.3.  
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6.3.3 Lipoprotein subfractions  

Fasted Lipoprotein concentrations  

Fasted VLDL1 and VLDL2 composition show in Table 6.4. VLDL1 concentrations were 

significantly higher in European by 72% when compared with Middle Eastern 

(p<0.005), giving a large Cohen’s d effect size of 0.96 for this difference (Figure 6.5 

panel A). There were no other significant differences in VLDL1 and VLDL2 percentage 

of TG, FC, EC, PL, protein or the ratio of TG/CE.  
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Table 6.4; Fasted values for VLDL1 and VLDL2 composition. 

 
 

 
European 

(n=8) 
Middle eastern 

(n=8) 
Mean 

difference 
Effect size p-value 

VLDL1 Total lipoprotein concentration (mg.dl-1) 72.04 ± 15.80 33.55 ± 8.47 +38.49  0.96 0.05 

 Triglyceride (%) 60.03 ± 1.84 58.99 ± 2.77 +1.04  0.16 0.76 

 Free cholesteryl (%) 7.03 ± 1.17 5.51 ± 0.82 +1.52  0.53 0.31 

 Cholesterol ester (%) 9.03 ± 2.08 9.28 ± 1.55 -0.25  0.05 0.92 

 Phospholipid (%) 15.12 ± 1.07 14.47 ± 1.30 +0.56  0.20 0.71 

 Protein (%) 8.78 ± 1.29 11.73 ± 2.65 -2.95 0.50 0.33 

 CE/TG ratio (mol:mol) 0.21 ± 0.05 0.23 ± 0.06 -0.02  0.12 0.82 

 
VLDL2 

Total lipoprotein concentration (mg.dl-1) 41.20 ± 8.39 32.33 ± 9.42 +8.87  0.33 0.52 

 Triglyceride (%) 34.32 ± 3.82 33.23 ± 4.27 +1.09  0.10 0.85 

 Free cholesteryl (%) 9.66 ± 0.71 8.79 ± 0.70 +0.87 0.44 0.40 

 Cholesterol ester (%) 22.33 ± 2.18 22.45 ± 2.95 -0.12 0.02 0.97 

 Phospholipid (%) 19.99 ± 1.35 18.83 ± 1.82 +1.15 0.26 0.62 

 Protein (%) 13.70 ± 2.77 16.70 ± 3.43 -2.99 0.35 0.51 

 CE/TG ratio (mol:mol) 1.42 ± 0.36 1.45 ± 0.30 -0.02 0.03 0.96 

Values are mean ± SEM. 
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Postprandial lipoprotein concentrations  

Table 6.5 shows chylomicron, VLDL1 and VLDL2 concentration in the postprandial 

state.  

There was no significant different in the postprandial chylomicron-TG concentration 

(Table 6.5 and Figure 6.5).  

VLDL1 concentration AUC tends to be higher in Europeans when compared with Middle 

Eastern by 52% (p=0.09), giving a large effect size of 0.84. The concentration of VLDL1 

at 2 and 4 hours postprandially rose significantly among European by 58% and giving 

a large effect size of 0.93 and 42% giving a medium effect size of 0.66, (p<0.005 for 

both) respectively. (Figure 6.5 panel A). There was no significant different in VLDL1 

concentration IAUC (Figure 6.5 panel B). 

VLDL2 concentration at 2 hours postprandially was significantly higher among 

European by 43% and giving a medium effect size of 0.75 (p<0.005). (Figure 6.7, panel 

A and B). 

There were no significant differences between the two groups in the postprandial 

AUC or IAUC for both VLDL1 and VLDL2 percentage of TG, FC, EC, PL, protein or the 

ratio of TG/CE. (Table 6.5).  
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Table 6.5; Time-averaged area under the curve for VLDL1 and VLDL2 composition. 

 
 

 
European 

(n=8) 
Middle eastern 

(n=8) 
Mean difference Effect size p-value 

Chlyomicron Triglyceride (mmol.l-1)* 1.17 ± 0.27 1.53 ± 0.20 +0.36 0.54 0.30 

VLDL1 Total lipoprotein concentration (mg.dl-1) 90.42 ± 16.15 53.00 ± 13.20 +37.43  0.84 0.09 

 Triglyceride (%) 61.18 ± 1.52 60.92 ± 1.85 +0.25  0.05 0.92 

 Free cholesteryl (%) 5.74 ± 0.43 5.09 ± 0.52 +0.56  0.49 0.35 

 Cholesterol ester (%) 9.43 ± 0.91 9.60 ± 1.67 -0.17  0.04 0.93 

 Phospholipid (%) 15.42 ± 1.02 15.33 ± 1.03 +0.09  0.03 0.95 

 Protein (%) 8.23 ± 1.07 9.06 ± 1.18 -0.83  0.41 0.61 

 CE/TG ratio (mol:mol) 0.22 ± 0.03 0.27 ± 0.09 -0.05  0.31 0.55 

 
VLDL2 

Total lipoprotein concentration (mg.dl-1) 42.25 ± 7.24 28.97 ± 5.95 +13.28  0.69 0.18 

 Triglyceride (%) 37.23 ± 4.05 33.19 ± 3.41 +4.04  0.39 0.46 

 Free cholesteryl (%) 8.35 ± 0.48 8.59 ± 0.55 -0.24  0.17 0.75 

 Cholesterol ester (%) 21.05 ± 2.49 21.70 ± 2.72 -0.65  0.09 0.86 

 Phospholipid (%) 19.22 ± 1.38 18.95 ± 1.78 +0.27  0.06 0.91 

 Protein (%) 14.14 ± 2.73 17.56 ± 2.87 -3.42 0.43 0.40 

 CE/TG ratio (mol:mol) 1.41 ± 0.58 1.15 ± 0.32 +0.25 0.20 0.71 

Values are AUC mean ± SEM, CM=chylomicron. *log-transformed data.  
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[A] Mean postprandial chylomicron concentration [B] Incremental time-averaged chylomicron concentration 
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Figure 6.5. Chylomicron concentrations during 4 h observation period in both groups; European and Middle Eastern. Panel [A] shows the mean 
values for chylomicron concentrations ; panel [B] shows the incremental time-averaged area under the curve for chylomicron concentrations. N= 8 
European and 8 Middle eastern, Values are mean ± SEM. * significant values from the other group (p< 0.005). Values and statistical analysis of these 

data is shown in Table 6.5. 
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Figure 6.6. VLDL1 concentrations during 4 h observation period in both groups; European and Middle Eastern. Panel [A] shows the mean 
values for VLDL1 concentrations; panel [B] shows the incremental time-averaged area under the curve for VLDL1 concentrations. N= 8 European and 8 Middle 
eastern, Values are mean ± SEM. *significant values from the other group (p< 0.005),** (p≤0.05). Values and statistical analysis of these data is shown in 
Table 6.5. 
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Figure 6.7. VLDL2 concentrations during 4 h observation period in o in both groups; European and Middle Eastern. Panel [A] shows the 
mean values for VLDL2 concentrations; panel [B] shows the incremental time-averaged area under the curve for VLDL2 concentrations. N= 8 
European and 8 Middle eastern, Values are mean ± SEM. *significant values from the other group (p< 0.005),** (p≤0.05). Values and statistical 
analysis of these data is shown in Table 6.5. 
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6.4 Discussion 

The main objective of the present study was to verify whether differences in the 

postprandial response to a fat challenge between Middle Eastern and European. 

To provide enough subjects in this exploratory analysis two test meals were 

included, COMB from Chapter 5 and the high fat meal from Chapter 4. Both 

contained approximately the same amount of fat although this was presented in 

a different format. The nature of the test meal was included as a potentially 

confounding variable in the statistical analysis. 

 

 The main findings of this study were that in matched age and BMI over weight 

European and Middle Eastern men, consuming a mixed test meal the Europeans 

had higher TG response whereas the Middle Eastern men had the higher insulin 

response. This profile of the Middle Eastern postprandial response seems to be 

broadly comparable to what has been observed when comparing Black with White 

adults (Osei and Schuster, 1994, Kodama et al., 2013). Black adults also have lower 

TG responses and higher insulin responses than White Europeans (Sumner and 

Cowie, 2008, Ford et al., 2002). This is interesting because the higher TG levels 

in plasma are usually thought to be indicative of insulin resistance (Axelsen et al., 

1999, Grundy, 1999, HÖlzl et al., 1998, Lovejoy et al., 1996, Albu et al., 1997, 

Schmidt et al., 1996). A cursory comparison of CVD risk factors in the UK shows 

striking similarities between African Caribbeans and South Asians, with an 

increased risk of glucose intolerance and diabetes, and raised fasting and post-

load insulin, indicating a greater degree of insulin resistance (Chaturvedi et al., 

1993). However, VLDL, small dense LDL, and triglyceride concentrations are 

substantially lower in African Caribbeans than in Europeans, and the latter does 

not increase to the same extent in the presence of glucose intolerance (Chaturvedi 

et al., 1994). In contrast South Asian who have an increased risks of heart disease 

compared to Europeans, probably because of increased levels of insulin resistance 

and associated factors such as inflammation and endothelial dysfunction 

(Chaturvedi, 2003). 

 

In the current study fasted TG concentrations were different and therefore, the 

postprandial response would be expected to follow the same pattern. It is well 
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established that, fasting levels of plasma TG tend to be correlated with the 

magnitude of postprandial lipaemic response (Cohn et al., 1988b). This can be 

observed in the current study, the lower fasted TG in Middle Eastern men probably 

led to a lower postprandial response. However, the chylomicron concentrations 

postprandially shows that there was no significant different between the two 

groups and the exact difference is specific to endogenous TG. It has been observed 

that lean African American women have lower TG response after ingesting high 

fat meal, comparing with lean Caucasian women this is may be partly due to 

enhanced expression, activity, and intravascular availability of LPL (Bower et al., 

2002). However, the ethnic differences in expression and function of LPL are 

attenuated with obesity (Bower et al., 2002). Friday and colleagues studied the 

postprandial response of black and white young men and they found that the black 

men have lower TG response comparing with whites and this is due to the higher 

LPL activity (Friday et al., 1999). In the Caucasian population, there is 

considerable variability in insulin resistance at given levels of body fat content. 

This variability might be because they tend to secrete a relatively large proportion 

of their VLDL as small, triglyceride-poor particles, levels of which are not 

augmented in response to loss of insulin action (Godsland et al., 2007). Another 

possible mechanism might be due to an increase of the capacity of TG clearance 

from circulation that is most likely due to a higher LPL activity and LPL mass in 

adipose tissue, which has been observed previously in Caucasian women compared 

with African American (Bower et al., 2002). This more efficient lipid-clearing 

system may help to maintain a more favourable lipid profile and lipoprotein 

subpopulation distribution. Also, it has been found that, the favourable lipid 

profile of black compared to white South African women is associated with 

polymorphisms in lipid metabolism genes, specifically the LPL and CETP genes 

(Ellman et al., 2015).  

 

Ethnic differences in postprandial glycaemia have been reported previously 

between Chinese and Europeans (Dickinson et al., 2002), Caucasians and non-

Caucasians (Wolever et al., 2009), and Europeans compared with a group of Asians 

of mixed origin (Schmidt et al., 1996). 

Despite there were no significant differences between the two groups in fasted 

and postprandial insulin and glucose concentrations, there was a trend of higher 

insulin and glucose concentrations and HOMA-IR (the Cohen’s d effect size was 
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mostly medium) and this is due to the lack of power of the study. The findings 

suggest that reduced insulin sensitivity and impaired carbohydrate tolerance 

might lead to the development of some metabolic syndrome. Chronic postprandial 

hyperglycemia and/or hyperinsulinemia may therefore be the only phenotypic 

evidence of reduced insulin sensitivity for many years. Abnormalities in fat 

deposition and blood lipids characteristic of the IR syndrome may develop as a 

consequence of postprandial hyperglycaemia or hyperinsulinemia. Excessive 

glycaemia and/or insulin demand on a chronic basis may eventually affect insulin 

secretory capacity and precipitate T2D. Obesity, particularly visceral adiposity, is 

associated with insulin resistance and often assumed to be causative. The higher 

concentrations of fatty acids resulting from higher fat intake or higher visceral or 

intramuscular fat, inhibit carbohydrate oxidation and thereby produce insulin 

resistance the present study, however, there was no significant different between 

the two groups neither in the fat percentage, waist/hip ratio nor BMI. There was 

no evidence to suggest that there were differences in body fat that might explain 

our findings. BMI, waist circumference and WHR, did not differ among groups. 

However, we cannot exclude the possibility that a more precise measurement of 

body fat using dual X-ray absorptiometry or nuclear magnetic resonance may have 

shown differences among the ethnic groups. 

 

Regarding the cholesterol measurements, there was no significant different 

between the two groups in the fasting plasma total, LDL and HDL cholesterol, 

which is in agreement clinical data showing that Middle Eastern adults tend to 

have fasting plasma cholesterol level ~5.2 mmo.l-1 – comparable with values in the 

White UK population. However, the age range in those studies was different then 

the age range in the current study and there is limited data about the participant 

BMI (Al-Nozha et al., 2008, Al-Lawati et al., 2003, Zindah et al., 2008).  

 

However, the similar pattern of Middle Eastern to black ethnic group, the Middle 

Eastern seems to have higher incidence of CVD as 45% of early deaths in the Gulf 

countries are caused by CVD, whereas black have lower CVD incidence comparing 

with white ethnic groups (Manolio et al., 1995, Keil et al., 1993). This high 

incidence of CVD in the Middle Eastern population may be due to the high 

prevalence of obesity (13% for men and 24.5% for women), diabetes mellitus 

(11.3%), and smoking (48.04% among men and 13.8% among women) (International 
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Obesity Task Force 2012, Khattab et al., 2012) in this region. Currently, CVD has 

emerged as one of the leading causes of death in this population (Tailakh et al., 

2014). With one of the highest rates of obesity in the world, the Gulf region is 

facing an epidemic of cardiovascular diseases. At least 50% of the population is 

below the age of 25 and the high prevalence of risk factors signal a massive 

onslaught of cardiovascular diseases in the next 10-15 years. As obesity, unhealthy 

diet, and high blood pressure have caused increases in the burden of CVD in the 

Middle East and North Africa (Zubaid et al., 2011). Cardiovascular diseases cause 

45% of early deaths in the Gulf region. Around 30% of men and 44% of women in 

Saudi Arabia are obese and one-quarter of adults have diabetes (Zubaid et al., 

2011, Alhyas et al., 2011). Although CVD and its risk factors are among the leading 

cause of death in many Middle East and East Mediterranean countries, very little 

is known about inter-ethnic differences in prevalence of risk factors, treatment 

response and survival. Ethno-cultural differences are known to be associated with 

cultural practices as well with lifestyles changes that might be related to different 

patterns of morbidity and mortality. The regions are home to various ethnic groups 

such as Arabs, Persians, Bedowins South Asian and European.  

  

The limitations of our study must be considered. The number of subjects studied 

is small and this means they may not be representative of the general population. 

Also this limited statistical power to detect significant differences between 

groups, although using Cohen’s d effect sizes helps to provide a handle on whether 

non-significant differences (due to lack of power) are likely to be physiologically 

relevant. In addition, it will be useful if we were able to measure post heparin 

LPL to detect any ethnic differences among the two groups.  

 

Despite these limitations, few studies have documented a difference in the 

glycaemic response, and this might help to explain the high prevalence of diabetes 

in the Middle East and North Africa (Whiting et al., 2011).  

 

In summary, results of the present study indicate that the more favourable 

lipoprotein profile found in over weight individuals Middle Eastern men and a trend 

of higher insulin response. Further studies are needed to explore these ethnic 

differences in more detail.
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7 General Discussion 

7.1 Summary 

CVD is a major cause of death (WHO, 2014a). Alterations in lipid metabolism 

underlie atherosclerotic cardiovascular disease (Stegemann et al., 2014). Plasma 

TG concentrations consider as an independent risk factor in fasted (Hokanson and 

Austin, 1996) and postprandial state (Stampfer et al., 1996, Karpe, 1999). 

Hypertriglyceridemia is a prevalent risk factor for CVD and increasingly important 

in the setting of current obesity and insulin resistance epidemics. Recent data add 

confidence to the conclusion that TG levels appear to provide unique information 

as a biomarker of CVD risk because of their association with atherogenic 

lipoproteins and apolipoproteins, especially apo C-III (Luo and Peng, 2016). 

Accumulating evidence suggests that non-HDL-C, which combines the cholesterol 

levels found in LDL-C and TG-rich lipoproteins are an independent risk factor for 

atherosclerosis. Very low-density lipoprotein is the most atherogenic TRL 

particles, and the measurement of VLDL-C is relatively straightforward and 

captures distinct aspects of the TRL and plasma TG (Jialal and Devaraj, 2002). A 

large cross-sectional study (Penn Diabetes Heart Study (PDHS)) found that higher 

VLDL-C levels were associated with increasing coronary artery calcification after 

adjusting for numerous traditional CV risk factors in patients with type 2 diabetes 

(Prenner et al., 2014). Elevated TRL levels are associated with increased risks of 

CVD. VLDLs are the major component and atherogenic particles of TRL in the 

circulation (Takeichi et al., 1999, Kugiyama et al., 1999). A PDHS study that 

examined VLDL-C as an alternative marker of TRL demonstrated that VLDL-C levels 

are positively associated with increased coronary artery calcification in patients 

with type 2 diabetes even after adjusting for traditional risk factors (Prenner et 

al., 2014). Also, it has been reported that higher VLDL-C levels are associated with 

an increased risk of CVD in diabetic patients (Laakso et al., 1994). Several 

mechanisms have been proposed to explain why VLDL may be causally related to 

progression of atherosclerosis and CVD. VLDL is synthesized in the liver and serves 

as a vehicle that is responsible for the redistribution of triglycerides from liver to 

the peripheral tissues. Each VLDL particle contains a single molecule of 

apolipoprotein B100 and has a hydrophobic core that consists primarily of 

triglycerides and a small amount of cholesterol esters (Niu and Evans, 2011, 
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McEneny et al., 2000). The sizes of the VLDL particles vary depending on the 

quantity of triglycerides carried in the particle. Large VLDL particles are secreted 

from patients with hypertriglyceridemia and may contain 5 to 20 times more 

cholesterol than LDL. Unlike LDL, VLDL remnants rapidly penetrate the arterial 

wall, increase endothelial inflammation and facilitate the infiltration of 

monocytes, which results in foam cell formation and atherosclerosis (Nakamura et 

al., 2005, Nakajima et al., 2006). Hepatic VLDL overproduction has been reported 

to be related to insulin resistance (Sparks et al., 2012). It has been observed that 

in patients with metabolic syndrome or type 2 diabetes, insulin-resistant states 

and the loss of insulin-mediated suppression of apoB100 secretion lead to 

increased production of large VLDL1 particles (Gill et al., 2004b, Adiels et al., 

2006). Hypersecretion of large VLDL1 particles, which contain more cholesterol, 

results in higher levels of remnant particles and small dense LDLs and lower levels 

of HDL that may contribute to the progression of vascular endothelial injury and 

atherosclerosis (Chen et al., 2012, Gianturco and Bradley, 1999).  

 To avoid the atherogenic cascade, TRL remnants must be cleared from plasma 

and metabolized by the liver before endothelial accumulation occurs. However, 

hypertriglyceridaemic states are associated with increased VLDL production and 

delayed VLDL clearance from circulation (Ooi et al., 2008, Zheng et al., 2010). In 

addition, delayed clearance of all apo-B lipoproteins, including VLDL, has been 

attributed to different mechanisms such as apo C-III–mediated inhibition of apoE 

and apoB-100 binding to hepatic receptors and proteoglycan; reduced activity of 

LPL, hepatic TG lipase; and finally, reduced apoE and apo E to C-III ratio reflecting 

reduced ability of the lipoproteins to be taken up by the liver . Similarly, CMs are 

taken up by the liver via LDL receptors or LDL receptor–related proteins and unless 

their TG core is removed they are not considered atherogenic due to their very 

large size, which slows entry into the arterial intima. It is the resulting CM 

remnants that are atherogenic, presumably because they are sufficiently small to 

pass through the endothelial cell barrier to the arterial intima (Gianturco et al., 

1998). Hepatic lipase also plays a role in remnant removal (Cooper, 1997b) and its 

deficiency is associated with reduced TRL remnant clearance. 

Lowering TRL has clearly been associated with benefit (Panel, 2002). Aside from 

lifestyle changes, further treatment with lipid-lowering drugs, such as statins, 

fibrates, nicotinic acid, or omega-3 fatty acids, may be warranted and should be 

considered to help achieve TRL targets in patients with hypertriglyceridemia. The 
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efficacies of pharmacologic interventions on TG level reduction vary depending 

on the agent used and the pre-treatment TG levels. Most cardiovascular 

diseases risks can be prevented by addressing behavioural risk factors such as 

tobacco use, unhealthy diet and obesity, physical inactivity. Table 7.1. shows the 

influence of behavioural changes on plasma TG. Treating obesity which is always 

linked to hypertriglyceridemia, could led to around 20% reductions on plasma TG, 

this reduction would be grater if individuals become physically active.  

Diet modification also lowers plasma TG by 10-15%. The quality of fatty acids 
enhances plasma TG to a greater extends (Talayero and Sacks, 2011).  

  

Table 7.1; Effects of lifestyle practices and lipid-lowering therapies on TG level reduction 
(Talayero and Sacks, 2011).   

Therapeutic intervention  % TG reduction  

Behavioural Risks  

Weight loss (5% to 10% total body weight)  20%  

Diet  10-15%  

Aerobic exercise (dependent on baseline TG levels)  

    TG level > 1.69 mmol.l-1  

    Coupled with weight loss  

15-20%  

  

20-30%  

Omega-3 PUFAs (dose dependent)  

  Per every 1-g PUFA  

   High-dose PUFA (3–4 g/d)  

  

5-10%  

25-30%  

  

In over this thesis we examined the effect of two behavioural change; diet and 

exercise and ethnicity on postprandial metabolism.   

Studies observed a reduction of TG concentration prior exercise by ~ 20-25% (Gill, 

2004, Gill et al., 2003, Malkova and Gill, 2006) and this reduction seems due to 

the increased clearance from the circulation of VLDL1 (Al-Shayji et al., 2012). 

The exact mechanism behind the increase of the clearance rate of 

VLDL1 was not clear.  

Thus, after developing a method to measure the affinity of TRL for LPL-mediated 

hydrolysis in Chapter 3, in Chapter 4 the effects exercise on the affinity of TRL 

for LPL-mediated hydrolysis was assessed in 10 overweight/obese men. The 

results indicated that 90 minutes of prior moderate exercise increased the affinity 

of VLDL1 for TG hydrolysis by lipoprotein lipase by 2.2-fold in the fasted state (p 

= 0.02) and 2.6-fold in the postprandial state (p = 0.001), but did not significantly 
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alter the affinity of chylomicrons or VLDL2, this give an insight of a possible 

mechanism by which exercise can lower TG concentrations, and helps explain the 

observation that exercise appears to have a larger effect in lowering TG 

concentrations in VLDL1 than in chylomicrons and VLDL2 (Gill et al., 2006). 

Co-ingestion of fat and carbohydrate reduced the postprandial glucose response 

significantly by 20%, but not the insulin. Also, it has been observed a substantial 

initial suppression of NEFA in the glucose trial with was markedly attenuated when 

glucose and fat were co-ingested. These changes might be due to genetic 

differences as the participants in all the studies were from different background. 

Also, we found the co-ingestions of carbohydrate with fat significantly decrease 

on VLDL1 by 13% (p = 0.05). This can explain some of the possible mechanism 

behind the long-term changes happened from the ingestion of different diet 

component.  

  

In Chapter 6 the metabolic responses to consumption of a mixed meal was 

assessed in eight white European men and eight men of Middle-Eastern origin. 

Postprandial insulin responses were higher in the Middle-Eastern men but, in 

contrast, postprandial TG concentrations were higher in the European men. Thus, 

the Middle Eastern metabolic response pattern is similar to the metabolic response 

of Black ethnic groups (Osei and Schuster, 1994). This knowledge can potentially 

help inform future strategies to mitigate metabolic disease risk in Middle Eastern 

populations by potentially considering interventions which have been effective in 

populations of Black ethnic origin and further research is needed to establish 

whether Middle Eastern groups share other metabolic risk characteristics with 

Black populations.   

  

In all studies, Cohen’s d effect sizes were used to provide additional insight into 

the likely physiological relevance of any differences observed which provides 

insights beyond whether an observation differs significantly between conditions 

(Cohen, 2013). While a P value can inform about the probability of a difference of 

the magnitude observed occurring in the absence of a true difference in the 

underlying population, it provides no information about the size of the 

effect. With a large enough study clinically trivial differences could be statistically 

significant. Conversely, for variables with large variability, it is possible to miss 

potentially clinically relevant findings, which may have been statistically 
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significant with a larger sample size, by simply considering statistical significance 

at the conventional threshold of p < 0.05. This was particularly relevant 

in Chapter 5, where some variables did not differ significantly between the two 

ethnic groups, but large effect sizes were seen.   

7.2 Limitation of the studies  

As with any scientific study there were limitations to the research undertaken in 

this thesis and it is important to acknowledge these. One of the limitations of the 

method we used to measure the affinity of TRL for LPL (Chapter 4) is the large 

amount of blood we were using which was an obstruction to take postprandial 

blood samples beyond 4 hours. It is possible that some individuals experienced 

peak TG concentrations after 4 hours, so this would have been missed in the 

experimental design. However, concentrations of TG were substantially higher at 

4 hours postprandially compared with the fasted state and chylomicron 

concentrations were high at this point. Importantly, the effects of exercise on the 

affinity of VLDL1 for LPL-mediated TG hydrolysis were similar in the fasted and 

postprandial states, so it does seem likely that this may not have been a major 

concern. The trial was time consuming; sample processing and analysis required a 

full week of laboratory work after each study day with participants. This, and 

other logistic factors, limited the scope to undertake further measurements which 

may have helped to provide an even more complete picture of the effects of 

exercise on postprandial lipoprotein metabolism. For logistic reasons including the 

large amount of blood was withdrawn it was not possible to undertake a kinetic 

study in parallel to also determine the rate of production and clearance of TRL 

species. This would have enabled correlation of the extent to which change in 

affinity of lipoprotein particles for LPL-mediated TG hydrolysis paralleled any 

differences in rates of lipoprotein clearance. It was also not possible to measure 

the post-heparin LPL activity for two main reasons. The first was the need for 

clinical cover during heparin injections which was not available for these studies. 

The second was that injection of heparin disturbs lipoprotein metabolism, thus to 

obtain a picture of the effects of exercise on LPL activity in the fasted as well as 

postprandial states, it would have been necessary for each participant to 

undertake the overall protocol twice – once with fasting measurements of LPL 

activity made in the presence and absence to exercise and a second time with LPL 

activity measurements made in the postprandial state. It was felt that this would 
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have induced too much burden of participants who were already undertaking a 

challenging research protocol. Again, this limited the potential to understand the 

extent to which any difference in TG clearance may have been mediated by 

altered lipoprotein affinity for LPL vs an increase in LPL activity. We also did not 

evaluate the effects of exercise on meals with different compositions of fatty 

acids which could conceivably influence the affinity of chylomicrons for LPL-

mediated TG hydrolysis.  

For the experiment in Chapter 5, the aim was to determine in principle the effects 

of fat and carbohydrate consumed separately or together on postprandial 

metabolism. To maximise the potential effects the meals used were extreme ones, 

with a very large fat intake (75g) and the carbohydrate consumed being all 

glucose. Thus does not fully reflect the actual meals that are consumed in the 

daily life. Thus the postprandial responses to meal ingestion in real life setting are 

likely to be less pronounced than the ones observed here. In addition, only one 

composition of fatty acids (high in SFA) was considered, and responses to different 

fatty acid compositions may be different. In terms of sample analysis, we didn’t 

measure apoB concentrations in lipoprotein particles and total, HDL and sdLDL in 

postprandial state.  

A key limitation in the study in Chapter 6 was that the small sample size may have 

limited our ability to detect more robust associations between ethnicity and 

differences in postprandial response. Larger studies are needed to confirm the 

findings that were observed. In addition, we did not ask the participant to follow 

unified controlled diet during the three days prior the trial, so differences 

between the two ethnic groups in habitual diet may have influenced the findings. 

However, there is no simple solution here as providing all participants with the 

same preceding diet may reflect a dietary intervention if this diet differs 

substantially from what participants usually eat. Some might argue the differences 

between the two groups in the baseline measurements lead to the different 

postprandial responses between the two groups. However, any difference in 

fasting measure would also reflect an ethnic difference and attempting to control 

for this may not be helpful. Participants were matched for age and BMI, thus also 

attempting to match for baseline metabolic characteristics may result in 

participants who are atypical for their given ethnicity. This has been shown in 

many studies comparing ethnic groups, measuring factors such as mineral ion 
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handling (Gutiérrez et al., 2010), glycaemic response (Venn et al., 2010, Likhari 

and Gama, 2009) and lipaemic response (Punyadeera et al., 2001, Sharrett et al., 

2001). For the postprandial response one of the factors might led to different 

response between the two groups is that two different meals consumed (however, 

there was no significant statistical differences between the different meals for 

any of the responses measured).  

For all studies, we hoped to measure many different metabolites using a nuclear 

magnetic resonance (NMR) platform – a novel technology which enables 

simultaneous detections of over 200 metabolites within a single small amount of 

blood (Ala-Korpela et al., 2012). This technique would have yielded further 

insights into the effects of exercise, dietary intake and ethnicity on postprandial 

responses, but unfortunately, these methods were not up and running in Glasgow 

within the timeframe needed for inclusion in this thesis.  

7.3 Future experiments  

Taken together, these studies provide new insights in the role of dietary intake, 

exercise and ethnicity on postprandial responses. This will increase our 

understanding in the changes that occur in the postprandial state. Going forward 

there are a number of factors we can consider with respect to study of exercise 

and lipoprotein metabolism; one factor that can be taken into consideration is 

evaluating the competition of the affinity between VLDL1 and chylomicron by 

incubating both particles in vivo assay. It is well established that chylomicron 

affinity for LPL-mediated hydrolysis is greater than VLDL1 affinity, which is in turn 

greater than VLDL2 affinity (Fisher et al., 1995). This can done by radiolabelling 

VLDL1 particles taken from exercise and non-exercised conditions co-incubating 

with chylomicrons and assessing their affinity for LPL-mediated TG hydrolysis 

under this competitive situation which more closely reflects in vivo physiology.  

Also, it would be helpful to perform a kinetic study in which VLDL is subdivided 

into more than the two standard subfractions to provide a clearer insight into how 

exercise may be influencing affinity of VLDL1 for clearance – for example by 

altering the size distribution of particles within the VLDL1 range. Although an 

increase of LPL activity does not always accompany the exercise-induced 

reductions in postprandial TG (Malkova et al., 1999, Herd et al., 2001, Miyashita 

and Tokuyama, 2008), past literature did report such changes in some cases while 
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not in other cases (Herd et al., 2001), it would be helpful to measure lipoprotein 

lipase activity in this same study to reach to a final conclusion. Also, investigating 

the lipaemic response to differing types of exercise in individuals who have or are 

at risk for developing metabolic disease, including female participants and 

individuals who are under the age of 18 years or over the age of 40 years, will 

broaden the understanding of exercise and the postprandial lipaemic response. 

 

It would be helpful to examine the effects of ingesting different ratios of fat and 

carbohyrate, and different qualities of fat and carbohyrate, with respect to fatty 

acid composition and glycaemic index on posptrandial metaboic responses. Here 

examining NMR metabolomic responses will provide a step-change in the ability to 

characterise the metabolic responses to fat and carbohydrate ingestion and the 

time-based nature of postprandial interactions between metabolites. Future 

research should aim to gain further understanding of exercise-nutrition 

interactions, such as peri-exercise carbohydrate availability which may help to 

refine interventions and future public health guidelines.  

 

Future research should focus on large enough samples to be able to evaluate 

genetic–lifestyle effects (Crook and Taylor, 2003), although this may be difficult 

to do with large enough samples, given the labour-intensive nature of these 

investigations.  

Comparison studies similar ethnic groups in different environments provide 

powerful epidemiological tools and thus further study could include studying 

individuals of Middle Eastern descent living in the Middle East and in the UK.  

More detailed measurements of lipoprotein metabolism as descirbed above (i.e. 

kinetic studies, LPL measurement, NMR metabolomic measuresments) will help 

provide further insights into differences between the Middle Eastern and European 

men, and of course, it is important to replicate these studies in women. Moreover, 

it will be interesting to determine the effect of exercise and dietary interventions 

on metabolic responses among this population. Giving what has been observed on 

experimental Chapter 6, it would be great to match the participants for their 

fasteing TG level and investgate the influnce of the ingestion of high fat meal on 

postprandial TG responses and TG-rich lipoprotein metabolism. 
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7.4 Conclusion 

In conclusion, this thesis has provided novel insights into understanding 

to lipid and carbohydrate metabolism in response to different factors. 

The first study showed that the affinity of VLDL1 increased to LPL 

enzyme post-exercise, which may explain, at least in part, the 

mechanism by which exercise reduces plasma TG. In addition fasting and 

postprandial sdLDL concentrating was significantly lowered post-

exercise. The second study aimed to investigate the metabolic responses 

to three different meal compositions (fat only, carbohydrate only and 

combination of equal amount of both). Although, the plasma TG 

concentrations were unexpectedly similar in fat and combination meal, 

the glycaemic response was significantly lower when fat and 

carbohydrate were ingested together. Finally the third study was a pilot 

study which investigated the ethnic differences between recruited 

Middle Eastern and recruited European in their metabolic response to a 

mixed meal. This study revealed potential differences in TG and glucose 

metabolism between the two ethnic groups, where fasting and 

postprandial TG were significantly higher European (almost double) than 

that of Middle Eastern. Although, there was no significant different in 

fasting glucose concentrations between the two ethnic groups, the 

postprandial response tented to be slightly higher in the Middle Eastern 

group. Interestingly, the insulin concentration was 3 and 4 times higher 

in fasted and postprandial states in Middle Eastern compared to 

European, although this it did not reach statistical significance, likely 

due to the relatively small sample size. Thus, taken together, the results 

of this thesis add to the basic science understanding of the effect of 

exercise, dietary intake and ethnicity on postprandial metabolism.
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9 Appendices  

Appendix A; Heath Screen Questionnaire 
–Chapter 4, 5 & 6 

 
HEALTH SCREEN FOR STUDY VOLUNTEERS 
 

Name: 
________________________________________________________________ 
 
It is important that volunteers participating in research studies are currently in 

good health and have had no significant medical problems in the past. This is to 

ensure (i) their own continuing well-being and (ii) to avoid the possibility of 

individual health issues confounding study outcomes. 

 
Please complete this brief questionnaire to confirm fitness to participate: 
 
1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise  yes [ ] no [ ] 

(b) attending your general practitioner   yes [ ] no [ ] 

(c) on a hospital waiting list    yes [ ] no [ ] 

2. In the past two years, have you had any illness which required you to: 

(a) consult your GP      yes [ ] no [ ] 

(b) attend a hospital outpatient department  yes [ ] no [ ] 

(c) be admitted to hospital     yes [ ] no [ ] 

3. Have you ever had any of the following: 

(a) Convulsions/epilepsy      yes [ ] no [ ] 

(b) Asthma       yes [ ] no [ ] 

(c) Diabetes       yes [ ] no [ ] 

(d) A blood disorder       yes [ ] no [ ] 

(e) Digestive problems     yes [ ] no [ ] 

(f) Disturbance of balance/co-ordination  yes [ ] no [ ] 

(g) Numbness in hands or feet    yes [ ] no [ ] 

(h) Disturbance of vision     yes [ ] no [ ] 

(i) Thyroid problems     yes [ ] no [ ] 

(j) Kidney or liver problems    yes [ ] no [ ] 
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(k) Chest pain or heart problems    yes [ ] no [ ] 

(l) Any other health problems    yes [ ] no [ ] 

4. Have any of your family (parents, grandparents, brothers, sisters, children, 

aunts, uncles, cousins) ever had any of the following: (if yes please give details 

including age of first diagnosis) 

(a) Any heart problems     yes [ ] no [ ] 

(b) Diabetes      yes [ ] no [ ] 

(c) Stroke      yes [ ] no [ ] 

(d) Any other family illnesses   yes [ ] no [ ] 
 

5. Do you currently smoke     yes [ ] no [ ] 
 Have you ever smoked    yes [ ] no [ ] 

  If so, for how long did you smoke and when did you stop?  

6. How many units of alcohol do you typically drink in a week? …………………. 

7. Have you taken part in a research study in the last 3 months?  yes [ ]

 no [ ] 
 

If YES to any question, please describe briefly if you wish (e.g. to confirm 

whether problem was short-lived, insignificant or well controlled.) (Use a 

separate sheet if necessary) 

…………………………………………………………………………………………………………………………………

…………………………………………………………………………………………..…………………………………… 

Blood pressure measured at screening…………………..mm Hg  

Blood Glucose measured at screening…………………..mmol.l-1  
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Appendix B1; Subjects Information Sheet 
and consent Form –Chapter 4 

 

 
 
VOLUNTEER INFORMATION SHEET 
 

Title: A Pilot Study to Determine the Effect of Exercise on the Affinity of 

Lipoprotein for lipoprotein Lipase 

Lay title: Effect of Exercise on Fats in the Blood 
 
You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss 
it with others if you wish. Ask us if there is anything that is not clear or if you 
would like more information. Take time to decide whether or not you wish to take 
part. 
 
Thank you for reading this. 

What is the purpose of the study? 
Heart disease is the leading cause of death in Scotland. A high level of fat in the blood is an important risk factor. We know 
exercise reduces the level of fat in the blood, but we don’t know fully understand how it does this. Recent research from 
our lab suggested that mild exercise changes the nature of fat particles in the blood stream so that they are more easily 
cleared away. This study will help to increase understanding of how this happens. This is important as exercise could be 
used as a treatment option, rather than drugs, to prevent and treat disturbances in blood fat metabolism. 

 
Why have I been chosen? 
You have been chosen because you are a healthy man aged between 18-60 years, 
and you are heavier than the ideal weight for your height.  
 
 
Do I have to take part? 
It is up to you to decide whether or not to take part. If you do decide, you will be 

given this information sheet to keep and be asked to sign a consent form. If you 

do this you are still free to withdraw at any time and without giving a reason. A 

decision to withdraw at any time, or a decision not to take part, will not affect 

the standard of care you receive. 

 

What will happen to me if I take part? 
In the first instance you will be asked to attend for a screening visit in which we will: 
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 discuss with you and complete confidential questionnaires regarding your 
health, family history and physical activity level 

 measure your blood pressure 

 take your height, weight and waist measurements 

 take a small blood samples to check the fat and sugar levels in your blood.  

 provide an opportunity for you to ask questions 
 

These preliminary procedures will enable us to determine whether you fall into 
the group of people we wish to study and will also ensure that it is perfectly safe 
for you to take part.  
 

Experimental procedures 
 
A. Preliminary Exercise Test 
At the beginning of the study, an exercise test will be undertaken. This will involve 
walking on a motorised treadmill. If you are not used to walking on a treadmill, 
we will familiarise you with this before any ‘real’ sessions are performed. The test 
is designed to estimate your body’s ability to use oxygen and enables us to find 
the correct speed and gradient for you to walk at during your treadmill walks. This 
will not require a maximal effort and the test will last for about 20 minutes. Heart 
rate will be monitored and recorded throughout using a heart rate monitor and 
expired air will be collected at intervals using a mouthpiece and respiratory valve. 
For safety reasons, the test will be stopped if your heart rate exceeds 85% of your 
predicted maximum. 
 
B. Body Composition  
The amount and distribution of your body fat will be determined by measuring body 
girths and by using callipers to measure skin fold thickness at four different sites (a 
sophisticated version of "pinch an inch"). Your height, weight and waist and hip 
circumferences will also be recorded. You will need to wear only underclothing for 
these measurements which will be made in private by an experienced researcher. 
These measurements only take a few minutes and can be made on the same day as 
other tests. 
 
C. Main Trials 
We will ask you to undertake two trials in random order. The first trial is a control 
with no exercise and the other is by performing a single exercise session. On the 
day prior the test, a controlled exercise session of 90-minute walk will be 
undertaken (Exercise test). Other than this, conditions (such as alcohol 
consumption, food eaten, etc) in the days leading up to each trial will be EXACTLY 
the same. On day 2 you will report to the lab after ~12 h fasting, a cannula will 
be inserted into an antecubital or forearm vein. No more than 120 ml 
(approximately 8 tablespoons) of blood will be taken in total during the course of 
this trial (less than quarter the volume of blood given in a blood donation) and a 
fatty meal will be provided as an oral fat tolerance test (OFTT). (Please refer to 
what do I have to do section). 
 
Control Trial (con): on day one you will be asked to stay at home without doing 
any exercise. On day 2 you will come to the Clinical Investigation Suite (or 
whatever it’s called) after approximately 12hours fasting overnight. After giving 
a blood sample we will provide you with a creamy milkshake and buttered 
croissant, we will have 4 more blood samples at 30 min, 0hr, 2hr and 4hr. You will 
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remain fasting but we will provide you with plenty of water or low you are free to 
sit, read, relax, or watch TV during the entire observation. 
Exercise trial: 
This trial will be identical to the control trial except on the Day 1 you will visit 
the exercise laboratory in the evening and complete a treadmill walk at brisk force 
representing half of your maximum capacity.  
  

What do I have to do? 
We also ask you to maintain your usual lifestyle (i.e. don’t change your diet or 
exercise habits) for the duration of this study. However, before each trial, we ask 
you to do the following: 
1. For 3 days before each trial, refrain from planned or strenuous exercise, 
other than for personal transportation and the 90-minute treadmill walk in our 
laboratory. 
2. Weigh and record everything you eat and drink for 2 days before each test. 
We will provide you with weighing scales and diet sheets to do this.  
3. Refrain from alcohol consumption on the day before each test. 
4. For the 2 days leading up to the second test, we will ask you to eat the 
same diet as you did on the two days leading up to the first test. Therefore, we 
would advise you to eat meals that you will be able to easily repeat during the 
days preceding both tests.  
5. FASTING 
 
What are the possible disadvantages and risks of taking part? 

 Exercise testing will not be at a maximal level but the possibility exists that, 
very occasionally, certain changes may occur during or shortly after the tests. 
They include abnormal blood pressure, fainting or a change in the normal rhythm 
of the heartbeat. Reassure them that they will be looked after 

 Blood sampling via the cannula may cause minor bruising or an inflammation of 
the vein. Good practice, however, minimises this risk. Some people may feel faint 
when they give blood. 
 

What are the possible benefits of taking part? 
There may be no immediate benefits to you personally,but as a result of being 
involved in this study you will receive health and fitness information about 
yourself including fitness tests, dietary assessment, body fat measurement and 
your cholesterol and blood sugar levels. This study will help us to determine how 
exercise can improve risk factors for heart disease and diabetes. The findings will 
be published in scientific journals so that understanding of the way in which 
exercise decreases the risk of heart disease and diabetes can be increased. This 
information may help make up better exercise guidelines, particularly for people 
who are overweight or obese.  
 
We will provide you with feedback about the main study findings and also about 
your own results and would be delighted to explain results and discuss the 
implications with you. 
 

What if something goes wrong? 
The chances of something going wrong are extremely small. We have recently 
conducted a similar project and there were no problems. All of the procedures 
involved in this study are low risk and our screening tests are designed to ensure 
that you will only participate if it is safe for you to do so. In the unlikely event 
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that you are harmed due to someone's negligence, then you may have grounds for 
a legal action but you may have to pay for it.  
Ressurance again re experienced researchers 
 
 
Will my taking part in this study be kept confidential? 
All information which is collected about you during the course of the research will 
be kept strictly confidential. Any information about you which leaves the 
University or hospital will have your name and address removed so that you cannot 
be recognised from it. In addition, your records, samples and results will be 
identified by a number and not your name. where will it be stored? 
 
What will happen to the results of the research study? 
The results from this study will be presented at scientific meetings and published 
in scientific journals. A copy of the published results will be sent to you upon 
request. You will be informed which part of the study you were in, as this 
information will be confidential and no one else will know your name and which 
part you participated in. thesis? 
 
What will happen to my samples after the study has finished? 
The blood samples that you provide for this study may be useful for future research 
into the prevention and treatment of diabetes and heart disease; this may involve 
investigating new biochemical markers that are not yet identified. Samples will 
be analysed anonymously and will require a new ethics application before they 
would be used for future research. If you do not wish your samples to be used for 
future research, please indicate this on the consent form. 

Who has reviewed the study? 
College of Medial veterinary and Life Science (MVLS), ethics committee.  
 
 
Contact for Further Information 
Any questions about the procedures used in this study are encouraged. If you have 
any doubts or questions, please ask for further explanations by contacting either: 
 
Khloud Ghafouri   E-mail: k.ghafouri.1@research.gla.ac.uk   
Tel: 07868351398 

Dr Jason Gill 

Tel: 0141 3302916    E-mail:Jason.Gill@glasgow.ac.uk 
 
You will be given a copy of this information sheet and a signed consent form 
to keep for your records. 
 

mailto:k.ghafouri.1@research.gla.ac.uk
mailto:Jason.Gill@glasgow.ac.uk
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 Volunteer Identification Number for this trial: ___________ 
 
CONSENT FORM 
 
Title of Project: A Pilot Study to Determine the Effect of Exercise on the 

Affinity of Lipoprotein for lipoprotein Lipase 

 
Lay title: Effect of Exercise on Fats in the Blood 
 
Name of Researcher: ____________________________________________ 
 

Please initial box 
 
1. I confirm that I have read and understand the 
information sheet dated ……….for the above study and have 
had the opportunity to ask questions. 
 
2. I understand that my participation is voluntary and that  
I am free to withdraw at any time, without giving any reason, 
without my medical care or legal rights being affected. 
 
3. I agree to take part in the above study. 
 
4. I agree for my samples to be used for future research into the 
prevention and treatment of diabetes and heart disease. This may 
involve analysis of new biochemical markers not yet identified. 
 
 
      
           
Name of Subject    Date   Signature 
 

    
Name of Person taking consent  Date   Signature 
(if different from researcher) 
 
   
Researcher     Date   Signature 
 
 

Copy for subject 
Copy for researcher 

 
 

Yes  
  
 No 



9 Appendices  

 

324 
Khloud Jamil Ghafouri ® 2017  

Appendix B2; Subjects Information Sheet 
and consent Form –Chapter 4 

 

 
 
VOLUNTEER INFORMATION SHEET 
 

Title: A pilot study to determine metabolomic responses to fat and 
carbohydrate ingestion 

Lay title: Metabolic responses to consuming fat and sugar 
 

You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss 
it with others if you wish. Ask us if there is anything that is not clear or if you 
would like more information. Take time to decide whether or not you wish to take 
part. 
 
Thank you for reading this. 

What is the purpose of the study? 
Heart disease and diabetes are leading causes of death and ill health in Scotland. High levels of fat and sugar in the blood, 
particularly after we eat food, are important risk factors for these conditions. Many different factors in the blood change 
when we eat, but until recently it was difficult to measure all of them. With new technology it has become possible to 
measure dozens of different factors in the blood related to fat and sugar metabolism in a single blood sample. Measuring 
how all of these factors change after eating different types of meals help our understanding of how fat and sugar 
consumption can influence risk for heart disease and diabetes. 

 
Why have I been chosen? 
You have been chosen because you are a healthy adult aged between 18-60 years.  
 
Do I have to take part? 
It is up to you to decide whether or not to take part. If you do decide to 

participate, you will be given this information sheet to keep and be asked to sign 

a consent form. If you do this you are still free to withdraw at any time and without 

giving a reason. A decision to withdraw at any time, or a decision not to take part, 

will not affect the standard of care you receive. 

What will happen to me if I take part? 
In the first instance you will be asked to attend for a screening visit in which we will: 

 discuss with you and complete confidential questionnaires regarding your 
health, family history and physical activity level 

 measure your blood pressure 

 take your height, weight and waist measurements 

 take a small blood samples to check the sugar level in your blood.  
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 provide an opportunity for you to ask questions 
 

These preliminary procedures will enable us to determine whether you fall into 
the group of people we wish to study and will also ensure that it is perfectly safe 
for you to take part.  
 

Experimental procedures 
We will ask you to undertake three experimental trials in random order, separated 
by an interval of 1-3 weeks, as described below. 
 
Glucose test: We will ask you to come to the University after an overnight fast 
(i.e. having eaten nothing for 12 hours) and spend about 9 hours with us in our 
metabolic investigation suite. We will give you a sugary drink containing 75 g (15 
teaspoons) of glucose and will take small blood samples before the meal and at 
intervals for 8 hours afterwards to determine how your body is handling the food. 
Taking blood will be no more painful than a simple blood test as samples will be 
obtained from a tiny plastic tube called a ‘cannula’ placed in a forearm vein. A 
total of 140 ml (about 9 tablespoons, or less than a third of the amount taken 
when you donate a “pint” of blood) will be taken over the course of the day. 
During your time with us, you will be able to rest comfortably in our metabolic 
investigation suite, watching TV or videos, reading or working. At the end of the 
experiment we will give you a meal to eat before you go home. On the morning of 
the next day we will ask you to come back to the lab after an overnight fast for 
one further blood sample.  
 
Fat test: This will be identical to the glucose trial except we will give you a creamy 
milkshake to drink that contains 75 g of fat.  
 
Combined fat and glucose test: This trial will be identical to the previous trials 
except we will give you both drinks together.  
  
  

What do I have to do? 
Other than the specific tasks described above, we ask you to maintain your usual 
lifestyle (i.e. don’t change your diet or exercise habits) for the duration of this 
study. We will ask you to weigh and record everything you eat and drink for two 
days before your first main trial, and not to drink alcohol or exercise on these 
days, and to repeat this diet before your second and third main trials. We will 
provide you with weighing scales and diet sheets to do this.  
 
What are the possible disadvantages and risks of taking part? 

 Blood sampling via the cannula may cause minor bruising or an inflammation of 
the vein. Good practice, however, minimises this risk. Some people may feel faint 
when they give blood. 

 There is a small possibility that taking part in this study will reveal a health 
problem that you already have such as high cholesterol or high blood pressure. If 
such a problem is revealed, we will ask your permission to inform your GP to 
ensure that you receive appropriate treatment. 
 
 
 
 
What are the possible benefits of taking part? 
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There may be no immediate benefits to you personally, but as a result of being 
involved in this study you will receive health information about yourself including 
dietary assessment and your cholesterol and blood sugar levels. This study will 
help us to determine how fat and sugar intake influences risk factors for heart 
disease. The findings will be published in scientific journals so that understanding 
of the way in which diet influences the risk of heart disease and diabetes can be 
increased.  
 
We will provide you with feedback about the main study findings and also about 
your own results and would be delighted to explain results and discuss the 
implications with you. 
 

What if something goes wrong? 
The chances of something going wrong are extremely small. We have conducted 
several similar projects over the past 10-15 years, with many hundreds of 
participants, and have never had any problems. All of the procedures involved in 
this study are low risk and our screening tests are designed to ensure that you will 
only participate if it is safe for you to do so. In the unlikely event that you are 
harmed due to someone's negligence, then you may have grounds for a legal action 
but you may have to pay for it.  
 
Will my taking part in this study be kept confidential? 
All information which is collected about you during the course of the research will 
be kept strictly confidential. Any information about you which leaves the 
University or hospital will have your name and address removed so that you cannot 
be recognised from it. In addition, your records, samples and results will be 
identified by a number and not your name.  
 
What will happen to the results of the research study? 
The results from this study will be presented at scientific meetings and published 
in scientific journals. The results will also form part of Miss Khloud Ghafouri’s PhD 
thesis. A copy of the published results will be sent to you upon request. You will 
not be identifiable in any of the data presented or published from this study. 
 
What will happen to my samples after the study has finished? 
The blood samples that you provide for this study may be useful for future research 
into the prevention and treatment of diabetes and heart disease; this may involve 
investigating new biochemical markers that are not yet identified. Samples will 
be analysed anonymously and will require a new ethics application before they 
would be used for future research. If you do not wish your samples to be used for 
future research, please indicate this on the consent form. 

Who has reviewed the study? 
This study has been reviewed and approved by the College of Medial Veterinary 
and Life Sciences Ethics Committee at the University of Glasgow.  
 
Contact for Further Information 
Any questions about the procedures used in this study are encouraged. If you have 
any doubts or questions, please ask for further explanations by contacting either: 
 
Khloud Ghafouri   E-mail: k.ghafouri.1@research.gla.ac.uk   
Tel: 0141 2329494 (office) or 07868351398 (mobile) 

mailto:k.ghafouri.1@research.gla.ac.uk
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Dr Jason Gill 

Tel: 0141 3302916    E-mail:jason.gill@glasgow.ac.uk 
 
You will be given a copy of this information sheet and a signed consent form 
to keep for your records. 
  

  

mailto:jason.gill@glasgow.ac.uk
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 Volunteer Identification Number for this trial: ___________ 
 
CONSENT FORM 
 
Title: A pilot study to determine metabolomic responses to fat and 
carbohydrate ingestion 
Lay title: Metabolic responses to consuming fat and sugar 
 
 
Name of Researcher: ____________________________________________ 
 

Please initial box 
 
1. I confirm that I have read and understand the 
information sheet dated ………. 
 for the above study and have had the opportunity to ask 
questions. 
 
5. I understand that my participation is voluntary and that  
I am free to withdraw at any time, without giving any reason, 
without my medical care or legal rights being affected. 
 
6. I agree to take part in the above study. 
 
 
7. I agree for my samples to be used for future research into the 
prevention and treatment of diabetes and heart disease. This may 
involve analysis of new biochemical markers not yet identified. 
 
 
      
           
Name of Subject    Date   Signature 
 

    
Name of Person taking consent  Date   Signature 
(if different from researcher) 
 
   
Researcher     Date   Signature 
 

Copy for subject 
Copy for researcher 

 

 

Yes  
  
 No 
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Appendix C; Blood and lipoprotein 
subfraction analysis  

Spectrophotometric Assays 
Plasma analyses were carried out using commercially available kits. Plasma 

glucose (Randox Laboratories Ltd, UK) and total and HDL cholesterol (Roche 

Diagnostics, UK,) were analysed in the fasted state. LDL cholesterol was 

calculated in the fasted state using the Friedewald equation (Friedewald et al., 

1972). TG (Randox Laboratories, Crumlin, UK), NEFA (Wako Chemicals, GmbH, UK, 

LTD). 

Samples were analysed in duplicate on an automated spectrophotometric IL600 

Analyser (Instrumentation Laboratories, USA). The IL600 is an automated, random 

access clinical chemistry analyser which uses analytical technique photometry for 

the in vitro quantitation of analyses found in physiological fluids, such as serum, 

plasma, urine or cerebrospinal fluid.  

All the samples were analysed in McGregor Building, University of Glasgow by 

Mrs. Josephine Cooney.  

 

Method and materials  
The following materials and equipment were used in all testes.  

Equipment 
 IL600 Analyser (Instrumentation Laboratories, USA). 

 2 ml Free standing Apex tubes (Alpha Laboratories).  

 Hitachi sample cups (Sarstedt Ltd). 

 

Samples 
 500 µl Plasma and serum samples were stored at 4 ºC fridge and/or frozen 

at -80 ºC.  

 

Quality Control 
 Each test QC were prepared and stored as 350 µl aliquots in Apex tubes at 

-80°C. 

 

Procedure  
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The following steps were applied in each test: 

 QC and standers for each test were prepared according to the insert inside 

each kit and stored as recommended.  

 Reagents were prepared freshly before each test.  

 QC, stander and samples were defrosted (or removed from the fridge) for 45 

minutes, then mixed genteelly.  

 The IL600 analyser was calibrated before each test was started.  

 Samples and reagent were loaded into the sample tray as per worksheet. A 

minimum sample volume of 200 µl is required and the test was started by sending 

an order via computer system.  

 The samples and QC were incubated in for 5 minutes at 37 ºC and the 

absorbance were read at the required wave length.  

 The values of the samples and QC were determined by the analyser using a 

regression equation from analysis if the standers.  

 QC values were checked against acceptable ranges in the kit inserts in the 

stock book or by using the QC package on Modulab. If QCs were out of acceptable 

range, the IL600 was recalibrated and the samples were retested, if the QC was 

still out, a norther sample aliquot was used and the reagents were checked for 

contamination. 
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Determination of plasma glucose 
concentration  

Plasma glucose concentrations were determined in by enzymatic method using 

commercially available kits (Glucose hexokinase, Randox Laboratories, Crumlin, 

UK). Samples were analysed in IL600 as mentioned above. 

Principle  

The enzymatic hexokinase (HK) catalyses the reaction between glucose and 

adenosine triphosphate (ATP) to form glucose-6phosphate and adenosine 

diphosphate (ADP). In the presence of NAD, the enzyme glucose-6-phosphate 

dehydrogenase (G6PDH), oxidizes glucose-6-phosphate to 6-phosphogluconate. 

The increase in NADH concentration is directly proportional to the glucose 

concentration and can be measured photometrically using the IL600 analyser at 

340 nm. The equation is shown below: 

Glucose + ATP             glucose-6-phosphate + ADP   

 

Glucose-6-phosphate+ NADP+             gluconate-6-phosphate + NADPH + H+  

The CV for the assay was 2.0%.  
 

Reagents 

 Glucose Kit. (Randox Laboratories, Northern Ireland). 

 R1- Buffer/Coenzymes (contents ready for use). 

 R2 –made by mixing Reagent 2 diluent to one bottle of R2 enzymes rinsing 

the contents several times with the diluent.  

 

Standards 

 Randox Calibration Serum Level 2 was reconstituted in 3 ml of distilled 

water at room temperature with gentle mixing. 

 

Quality Control 

Human Assay Control (HC2 and HC3 Catalogue No. HS2611, Randox, Crumlin, UK), 

were prepared by mixing each control into 5 ml of distilled or deionised water.  

HK 

G-6-PDH 
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Determination of plasma and lipoprotein 
triglyceride  
Plasma and lipoprotein TG concentrations were determined by an enzymatic 

method using commercially available kits (GPO-PAP, Randox Laboratories, 

Crumlin, UK). Samples were analysed in IL600 as mentioned above. 

 

Principle  

The method based on lipase hydrolysis of TG to glycerol followed by oxidation to 

dihydroxyacetone phosphate and hydrogen peroxide. The hydrogen peroxide 

produced then reacts with 4-aminophenazone and 4-chlorophenol under the 

catalytic action of peroxidase to form a red dyestuff which was measured 

spectrophotometrically using the IL600 analyser at 550 nm. The equation is shown 

below: 

Triglycerides + H2O              glycerol + fatty acids  

Glycerol + ATP                    glycerol-3-phosphate + ADP  

glycerol-3-phosphate + Ο2                 DHAP+ H2O2 

H2O2 + 4 aminophenazone + p-chlorophenol          Quinoneime + 4 H2O + HCl  

(GK: Glycerol kinase; GPO: Glycerol phosphate oxidase; POD: Peroxidase; DHAP: 
dihydroxyacetote phosphate). The CV for the assay was 3.8%. 
 

Reagents 

 Triglyceride Reagent (Randox laboratories Reagent Kit Cat No TR210ridge) 

was made by dissolving R1b on 15 ml of R1a. 

 Sodium Chloride (NaCl)Cat No: S9888 Sigma. 

Standards 

 0.9% NaCl (used as Saline Blank). 

 Ready to use calibrator 

  

Quality Control 

Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD3)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  

Lipase 

GK 

GPO 

POD 
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Determination of plasma glycerol  
Determinations for Glycerol were performed using commercially kits (Randox 

Laboratories, Crumlin, UK). Samples were analysed in IL600 as mentioned above. 

 

Principle  

A direct spectrophotometric procedure for the measurement of glycerol utilising 

a quinoneimine chromogen system in the presence of glycerol kinase, peroxide 

and glycerol phosphate oxidase. The equation is shown below:  

 

Glycerol + ATP      Glycerol-3-phosphate + ADP 

Glycerol-3-phosphate + O2   DAP + H2O2  

H2O2 + DCHSB + 4 aminophenazone       ACSB 

 
(GK: Glycerol kinase; GPO: Glycerol phosphate oxidase; DCHBS: 3.5-dichloro-2-
hydroxybenzene sµlphonic acid; ACSB: n-(4-antipyryl_-3-chloro-5-sµlponate-p-
benzoquinoneimine). The CV for the assay was 1.9%. 
 

Reagents 

Randox glycerol Colorimetric Assay (cat no GY105, Randox Laboratories, Crumlin, 

UK). 

Reagent 1-Buffer as supplied 

Reagent 2-4-aminophenazone color reagent lyophylised. 

Glycerol reagent prepared by adding 15 ml of reagent 1 to one bottle of reagent 

2, then mixed gently and use for analysis.  

 

Standards 

100 µmol.l-1 standard supplied ready to use. 

 

Quality Control 

Randox glycerol (Control cat no GY1369, Randox Laboratories, Crumlin, UK). 

 

 

  

GK 

GPO 

Peroxidase 
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Determination of plasma hydroxybutrate 
Analysis  
Determinations for hydroxybutrate were performed using commercially available 

(Wako Chemicals, GmbH, UK, LTD). Samples were analysed in IL600 as mentioned 

above. 

 

Principle  

The principle of this test is based upon the enzymatic conversion of β-

hydroxybutyrate dehydrogenase to acetoacetate by the action of D-3-

hydroxybutyrate dehydrogenase, and concomitantly the co-factor nicotineamide 

adenine dinucleotide (NAD+) is converted to its reduced form β-nicotinamide 

adenine dinucleotide (NADH). In the presence of diaphorase, NADH reacts with 

the colorimetric detector WST-1 to produce a formazan dye with a maximum 

absorbance at 505 nm. The equation is shown below: 

D-3-hydroxybutyrate + NAD    Acetoacetate + NADH + H+ 

 

NADH + INT (oxidized)      NAD + INT (reduced) colour. 

(INT: (2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride)); 

NAD: nicotineamide adenine dinucleotide; NADH: β-nicotinamide adenine 

dinucleotide). 

 

Reagents 

R1 containing β-hydroxybutyrate dehydrogenase and diaphorase enzymes.  

R2 containing NAD, INT and oxalate.  

Reagent prepared by mixing 10 ml of reagent 1 with 1.5 ml of reagent 2.  

 

Standards 

Standard containing 1mM sodium D-3-hydroxybutyrate was provided in the kit.  

 

Quality Control 

Randox glycerol (Control cat no GY1369, Randox Laboratories, Crumlin, UK). 

 

  

D-3-hydroxybutyrate 
dehydrogenase 

Diaphorase 
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Determination of plasma NEFA Analysis  
Determinations for NEFA were performed using commercially available (Wako 

Chemicals, GmbH, UK, LTD). Samples were analysed in IL600 as mentioned above. 

 

Principle  

This method relies upon the acylation of coenzyme A (CoA) by the fatty acids in 

the presence of added acyl-CoA synthetase (ACS). The acyl-CoA thus produced is 

by added acyl-CoA oxidase (ACOD)with generation of hydrogen peroxide. 

Hydrogen peroxide, in the presence of peroxidase(POD) permits the oxidative 

condensation of 3-methyl-N-ethyl-N (B-hydroxyethyl)-aniline (MEHA) with 4-

aminoantipyrine to form a purple colour adduct which can be measured 

spectrophotometrically at 550 nm.  The equation is shown below: 

 

RCOOH (NEFA) + ATP + CoA             Acyl-CoA + AMP + Ppi  

 

Acyl-CoA + O2             2,3-trans-Enoyl-CoA + H2O2  

2 H2O2 + 4-Aminoantipyrine + MEHA              blue purple pigment + 3 H2O  

(ACS: acyl-CoA synthetase; ACOD: acyl-CoA oxidase; MEHA: 3-methyl-N-ethyl-N-β-
hydoxyethyl-aniline). The CV for the assay was 5.2%.  
 
 
Reagents 

Two colour reagents (R1A and R2A) were supplied in powder form with the kit. For 

analysis performed, the reagent R1A was reconstituted in 50 solvent R1. Colour 

reagent R2A, reconstitute with 20ml of solvent. Standard Solution is(1.0 mEq.L-1) 

 

Standards 

Standard supplied with kit.  

 

Quality Control 

Human Assay Control (HC2 andd HC3 Catalogue No. HS2611, Randox, Crumlin, UK), 

were reconstituted by mixing each control into 5 ml of distilled or deionised water.  

Determination of plasma and lipoprotein total 
cholesterol 

ACS 

ACOD 

Peroxidase 
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Total plasma cholesterol was determined using commercially available kits 

(Randox Laboratories, Crumlin, UK). Samples were analysed in IL600 as mentioned 

above. 

 

Principle  

The principle based on the generation of hydrogen peroxide from the substrate by 

the action of cholesterol esterase, after the hydrolysis of EC, which is coupled 

through peroxidase to produce a chromogen, detected by its absorbance at 500 

nm. The equation is shown below:  

 

Cholesterol esters + H2O                        cholesterol + RCOOH  

 

Cholesterol + O2                          cholesterol-3-one + H2O2  

 

2 H2O2 + phenol + 4-aminophenazone             Quinoneime + 4 H2O    

The CV for the assay was 2.9%. 

 

Reagents 

 Cholesterol Reagent (Reagent Kit Cat No CH200, Randox Laboratories, 

Crumlin, UK ), used as supplied.  

 Sodium Chloride (NaCl)Cat No: S9888 Sigma 

 

Standards 

 0.9% NaCl (used as Standard Blank). 

 Calibrator (CFAS, Cat. No.10759350, Roche).  

 The calibrator was reconstituted in 3 ml of distilled water at room 

temperature with gentle mixing.  

 

Quality Control 

Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD3)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  

Determination of plasma and lipoprotein free 
cholesterol  

Cholesterol esterase  

Cholesterol oxidase  

Peroxidase 
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Plasma and lipoprotein free cholesterol concentrations were determined by an 

enzymatic method using commercially available kits (Diagnostic Systems GmbH, 

Germany). Samples were analysed in IL600 as mentioned above. 

 

Principle  

Free cholesterol in the serum is oxidised by cholesterol oxidase to cholestenone 

and produces simultaneously hydrogen peroxide. The hydrogen peroxide formed 

causes phenol and 4-aminoantipyrine to undergo quantitatively an oxidative 

condensation in the presence of peroxidase, to produce a red colour. The amount 

of free cholesterol in the test sample is determined by measurement of the 

absorbance of the red colour at 510 nm. The equation is shown below:  

 

Cholesterol esters + O2                      cholesterol-3-one + H2O  

 

2 H2O2 + phenol + 4-aminophenazone             Quinoneime + 4 H2O    

The CV for the assay was 2.2%. 

 
Reagents 
 

 Wako Free Cholesterol C (code No. 274-47106, wako chemicals, GmbH, UK, 
LTD). 

 Buffer solution, use as supplied 

 Colour reagent, reconstituted in 75 ml of buffer solution. 
 
 
Standards 

 Standard Solution (supplied with kit) 

 Diluent for standard solution. 
 
 
Quality Control 
 
Two controls were used. Normal control serum 1 and abnormal control serum 2 

(Catalogue No. 410-00101 and No 416-00201, wako chemicals, GmbH, UK, LTD). 

Both controls had been reconstituted Wako 1 and Wako 2 in 5 ml distilled or 

deionised water.  

 
 

Calculation of esterified cholesterol 

CHO  

Peroxidase 
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CE concentration was calculated by multiplying the difference in mass (mg.dl-1) 

of TC and FC by 1.68 and converted to mmol.l-1 by dividing with 38.7. 

 

Determination of plasma HDL cholesterol  
Determinations for plasma HDL cholesterol were performed using commercially 

available enzymatic kits (Roche Diagnostics, Mannheim, Germany). Samples were 

analysed in IL600 as mentioned above. 

 

Principle  

 

The cholesterol concentration of HDL-cholesterol is determined enzymatically by 

cholesterol esterase and cholesterol oxidase coupled with polyethylene glycol 

(PEG) to the amino groups. In the presence of magnesium sulphate, dextran 

sulphate selectively forms water-soluble complexes with LDL,VLDL and 

chylomicrons which are resistant to PEG- modified enzymes. Cholesterol esters 

are broken down quantitatively into free cholesterol and fatty acids by cholesterol 

esterase, in the presence of oxygen, cholesterol is oxidised by cholesterol oxidase 

to cholesterone and hydrogen peroxide. The hydrogen peroxide generated reacts 

with 4-amino-antipyrine and N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline to 

form a purple-blue dye. The colour intensity of the dye is directly proportional to 

the cholesterol concentration and is measured photometrically at 600 nm. The 

equation is shown below:  

 

 

HDL cholesterol + H2O                         HDL-cholesterol + RCOOH 

  

HDL-cholesterol + O2                          ∆4-cholestenone + H2O2  

 

2 H2O2 + 4-aminoantipyrine + HSDA                        Purple- blue pigmentation + 5 

H2O 

(HSDA: Sodium N-(2-hydroxy-3-sµlfopropyl)-3,5-dimethoxyaniline). The CV for the 

assay was 2.8%.  

 

Reagents 

PEG-cholesterol esterase  

PEG-cholesterol oxidase  

Peroxidase  
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 HDL-C Reagent 3rd generation (Cat No 04713214, Roche Diagnostics, 

Mannheim, Germany) 

 Sodium Chloride (NaCl). 

 

Standards 

 0.9% NaCl (used as Standard Blank).  

  Roche CFAS Lipids calibrator (Cat. No.12172623, Roche Diagnostics, 

Mannheim, Germany) was reconstituted in 1 ml distilled water.  

 

Quality Control 

Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD2)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  
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Determination of plasma small dense LDL  
Determinations for plasma sdLDL cholesterol were performed using commercially 

available enzymatic and turbidimetric kits (Denka Seiken, Japan). Samples were 

analysed in ILab600 as mentioned above. 

 
Principle  

The principle of cholesterol determination is based on the following 2 steps of 

colorimetric reaction: of two steps; the first step removes non-sdLDL lipoproteins 

(chylomicrons, VLDL, IDL,L LDL and HDL) using a surfactant and sphingomyelinase 

in Reagent 1, where the released cholesterol is then degraded by standard 

enzymatic reactions; in the second step, another specific surfactant releases 

cholesterol only from the sdLDL particles and the catalase in Reagent 1 is inhibited 

by sodiumazide while the hydrogen peroxide produced from the reaction of 

cholesterol esterase and cholesterol oxidase results in a purple red colour with 

the coupler in the presence of peroxidase. The colour intensity of the dye is 

directly proportional to the cholesterol concentration and is measured 

photometrically at 550 nm. The equation is shown below:  

  

First Step  

Chylomicrons, VLDL, IDL. L LDL and HDL              Cholestenone + Fatty acid + H2O2 

2 H2O2    2 H2O +O2 

 

Second Step 

 

sdLDL-C      Cholestenone + Fatty acid + H2O2 

 

2 H2O2 + 4-aminoantipyrine + TOOS              Purple-blue colour + 4H2O 

(TOOS: N-Ethyl-n-(2-hydroxy-3-sµlfopropyl)-3-methylaniline). The CV for the assay 

was 2.8%. 

 

 

 

  

CHE & CO    

Catalase 

CHE & CO    

Peroxidase     
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Determination of lipoprotein phospholipid  
Determinations of phospholipid concentrations in lipoprotein subfractions were 

performed using spectrophotometric test for using available enzymatic and 

turbidimetric kits (Roche Diagnostics, UK). Samples were analysed in IL600 as 

mentioned above. 

 

Principle 

Phospholipids in serum are hydrolysed to free choline by phospholipase D. The 

liberated choline is subsequently oxidised with simultaneous production of 

hydrogen peroxide. The hydrogen peroxide, which is produced quantitatively, 

oxidatively couples 4- aminoantipyrine and phenol to yield a chromogen with a 

maximum absorbance at 570 nm. The equation is shown below:  

 

Phospholipids (Lecithin Sphingomyelin Lysolecithin ) +H2O            Choline + 

Phosphatidic acid N-acylsphingosyl phos Lysophosphatidic acid 

 

 

 

 

Reagents 

 

 Phospholipid available Kit (Cat No. MRP2 691844, Roche Diagnostics, UK).  

 Bottle 1 - Buffer 

 Bottle 2 - Enzyme reagent 

Working reagent solution was prepared by dissolving contents of one bottle 2 in 

40 ml buffer from bottle 1.  

 

Standards 

 Bottle 3  - Choline Chloride Standard Solution 300mg/dl, supplied ready 

to use. 

 Use 0.9% NaCl as Standard Blank 

 

Quality Control 

Diluted Quality control 1:5 using 0.9% Saline (cat no 5 9020 99 10 065, Diagnostic 

Systems GmbH, Germany).  

Phospholipase D 

       Peroxidase           

H2O + 4-aminoantipyrine + DAOS                  blue pigmentation + Η2Ο 

              Choline oxidase  

 Choline + 2 O2                           Betaine + 2 H2Ο 
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Determination of lipoprotein ApoE 
Determinations of ApoE concentrations in lipoprotein subfractions were 

determined by turbidometric immunoassay using commercially available 

turbidimetric kits (Randox Laboratories, Crumlin, UK). Samples were analysed in 

IL600 as mentioned above. 

 

Principle  

Through specific antibody binding to Apolipoprotein E in plasma, insoluble 

aggregates are formed which cause an increase in turbidity. The level of turbidity 

was measured at 340 nm. The CV for the assay was 3.3%.  

 

Reagents 
 

 Apolipoprotein E Diagnostic Kit – Randox Apo E (Cat No LP 3864, Randox 

Laboratories, Crumlin, UK), used as supplied. 

 

Standards 
 

 Apolipoprotein calibrator (Cat No 3023, Randox Laboratories, Crumlin, UK). 

 
Quality Control 
Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD3)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  
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Determination of ApolipoproteinB Analysis  
This is a turbidometric immunoassay using commercially available kits (Randox 

Laboratories, Crumlin, UK). Through specific antibody binding to Apolipoprotein B 

in plasma, insoluble aggregates are formed which cause an increase in turbidity. 

The level of turbidity is measured using an IL600 analyser nm and is proportional 

to the amount of Apo B (mg.dl-1) present. 

 

Principle  

This method is based on the reaction of a sample containing human apolipprotein-

B (apoB) and specific antibodies to form an insoluble complex which can be 

measured turbidimetrically at 340 nm in an autoanalyser (ILabTM 600, Clinical 

Chemistry System, Instrumentation Laboratory, USA) . The method in Vascular 

Biochemistry Lab has been optimised for apoB measurements in lipoprotein 

fractions by increasing the volume of sample used in the assay from 3 μl to 12 μl 

(results were then multiplied by a factor of 0.25). The supplied quality control 

was also diluted to account for the lower concentrations of apoB. The CV of apoB 

in plasma was 3.8 and 2.5% and 3.2% in VLDL1 and VLDL2 respectively.  

 

Reagents 

Apolipoprotein B Diagnostic Kit – Randox Apo B (Cat No LP 3839 ), distributed by 

Randox Laboratories ( Fridge 1 beside analyser). Use as supplied. 

 

Standards 

Calibration is not necessary as it is linked to the standard curve on SOP/LIPRES/159 

(Apo B) partnered 10 coefficient 0.25 

 

Quality Control 

Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD2)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  

LPDA made by diluting LPD1 1:5 with deionised water 
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Determination of Apolipoprotein C-II Analysis  
This is a turbidometric immunoassay using commercially available kits (Randox 

Laboratories, Crumlin, UK). Through specific antibody binding to Apolipoprotein 

CII in the sample , insoluble aggregates are formed which cause an increase in 

turbidity. The level of turbidity is measured using an IL600 analyser and is 

proportional to the amount of Apo CII (mg.dl-1) present. 

 

Principle  

This method is based on the reaction of a sample containing human ApoC-II and 
specific antiserum to form an insoluble complex which can be measured 
turbidimetrically at 340 nm. The CV for the assay was 3.3%  
 

Reagents 

Apolipoprotein C11 Diagnostic Kit – Randox Apo C11 (Cat No LP 3866), distributed 
by (Randox Laboratories. (Fridge 1 beside analyser). Used as supplied  
 

Standard 

Calibration is not necessary as it is linked to the standard curve on SOP/LIPRES/160 

(Apo C2)) 

 Partnered 6 coefficient 0.25 

 

Quality Control 

Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD2)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  

LPDA made by diluting LPD1 1:5 with deionosed water 
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Determination of Apolipoprotein C-III Analysis  
This is a turbidometric immunoassay. Through specific antibody binding to 

Apolipoprotein CIII in plasma, insoluble aggregates are formed which cause an 

increase in turbidity. The level of turbidity is measured using an ILab600 analyser 

and is proportional to the amount of Apo CIII (mg.dl-1) present. 

 
Principle 
This method is based on the reaction of a sample containing human ApoC-II and 

specific antiserum to form an insoluble complex which can be measured 

turbidimetrically at 340 nm. The CV for the assay was 3.3%  

 
Reagents 
 
Apolipoprotein CIII Diagnostic Kit – Randox Apo CIII (Cat No LP 3865), distributed 
by Randox Laboratories. 
Use as supplied. 
 
Standards 
 

 Apolipoprotein calibrator (Randox LP Cat No 3023), distributed by Randox 
Laboratories ( Fridge 1 beside analyser). Calibrator values are lot specific. 
 
To prepare std curve reconstitute one vial of calibrator with 1ml of distilled 
water at room   temperature with gentle mixing, - Apo Cal . 
 
Quality Control 
 
Two controls were included in the kit. Normal lipid control (LPD1) and abnormal 

Lipid control (LPD2)(Catalogue No LE 2661 and No LE 2663, Randox Laboratories, 

Crumlin, UK. Each control has been reconstituted in 3 ml distilled or deionised 

water.  
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Appendix D; participants Feedback Sheet  

 
 
 
 
 

Title: The effects of exercise on lipoprotein 

affinity for lipoprotein lipase 

 

Lay title: The effects of exercise on fats in the 
blood 

 
 

RESULTS FEEDBACK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  
Miss Khloud Ghafouri, MSc 
PhD Researcher 
Tel: 0141 2329494 
E-mail: k.ghafouri.1@research.gla.ac.uk 
 

 

Name:   

DOB:   

Address:   
 
 
 
Study Start Date:  
Study End Date:  



9 Appendices  

 

347 
Khloud Jamil Ghafouri ® 2017  

 

Body Composition Measurements 
 
 
1. Height and Weight  

Height and body mass are widely used to measure body fatness. An index called the 
‘Body mass index’ or ‘BMI’ can be used to determine whether somebody is the 
correct weight for his or her height. Usually, a BMI value of 20 to 25 is normal, 25 
to 30 is overweight, and 30+ is classed as obese. (BMI is calculated by dividing body 
mass in kg by height in metres squared, i.e. kg/m2). However, this index is of limited 
value, as it does not take into account an individual’s build and does not distinguish 
between fat and muscle mass. (In fact a number of athletes would be classed as 
overweight by this index, due to their large muscle mass.)  

Your height xx cm xx ft xx inch 

Your weight: xx kg  (xx stn xx lbs) 

Your body mass index (BMI): xx kg/m2 

 
The following graph shows the ideal body mass based on BMI and optimized for 
men. According to your height, your body mass should be between about xx-xx 
stones. 
 
 

 
 
 
 
 
2. Skinfolds 
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When deciding how fat somebody is, it is more useful to consider body fat levels 
rather than weight. A body fat estimation was calculated from measurements of the 
fat layer under the skin at four sites (biceps (front of the arm), triceps (back of the 
arm), subscapular (under the shoulder blade) and suprailiac (above the hip)). This 
was expressed as a percentage of total body mass (e.g. an 80kg man with 25% body 
fat would be carrying 20kg of fat). High percentages of body fat are linked with a 
number of diseases including heart disease and diabetes. For an adult male, body 
fat should ideally be between about 15-25%. 

Your Biceps: xx  mm  

Your Triceps:  xx mm 

Your Subscapular:  xx mm 

Your Suprailiac:   xx mm 

Your Percentage Body Fat (%BF):  xx % 

 

 

3. Waist Circumference  

The waist circumference is perhaps of greater importance than BMI or % body fat 
in determining risk of metabolic disorders such as diabetes and heart disease. This 
is because abdominal fat is thought to be in a position anatomically (i.e. near to the 
liver and other internal organs) where it could potentially cause a lot of harm. A 
waist measurement of greater than 100 cm (39.5 in) may increase the risk of certain 
metabolic complications. 

Your Waist Circumference (WC): xx cm  (xx inch) 
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Health Screening Results 
 

(A copy of your blood results has been sent to your GP.) 

 
1. Blood Pressure 

Your Blood Pressure:  xx mm Hg 

A blood pressure of xx mm Hg is considered (low, normal or high). The systolic 
pressure (xx mm Hg) indicates how hard the heart is working and the force that is 
blood exerts when blood is pumped from the heart. The diastolic pressure (xx mm 
Hg) tells us what resistance there is to blood flow and therefore how easily blood 
flows through the blood vessels. 
 

 

2. Fasting Glucose  

Fasting glucose level is used to determine whether you have diabetes or not. The 
normal range of fasting glucose is 3.5-5.5 mmol/l and a value of greater than 7 
mmol/l suggests diabetes.  
 

Your Fasting Glucose:  xx  mmol/l  (which is low, normal or 

high) 

 
 
3. Blood Lipid Measurements 

Lipids, or fats, are normal constituents of the ‘watery’ part of the blood, known as 
plasma. They are present in a number of forms, but in this study we are most 
interested in cholesterol and triglycerides. 
  
Cholesterol is a fundamental component of all the cells in our bodies and is 
essential for the normal functioning of the body. Part of the cholesterol in plasma 
comes from the liver, where it is made, the remainder being absorbed from the diet. 
Ideally, the level of cholesterol in the plasma should not exceed 5.0 mmol/l. 
 

Your Cholesterol:  xx mmol/l  (which is low, normal or 

high) 

  
High-density lipoprotein cholesterol or HDL cholesterol is commonly 
referred to as ‘good cholesterol’. These particles are responsible for transporting 
excess cholesterol away from the cells to the liver where it can be disposed of safely. 
High levels of HDL cholesterol are associated with a reduced risk of heart disease. 
It is desirable for your HDL concentration to be above 1.0 mmol/l. 
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 Your HDL Cholesterol: xx  mmol/l  (which is low, normal or 

high) 

 
 
 
Low-density lipoprotein cholesterol or LDL cholesterol, on the other hand, 
is commonly referred to as ‘bad cholesterol’. These particles are responsible for 
transporting cholesterol from the liver to all cells of the body. This is essential as 
cholesterol is an integral component of every cell. However, high levels of LDL 
cholesterol will result in the deposition of cholesterol inside the arteries which is 
associated with an increased risk of heart disease. It is desirable for your LDL 
cholesterol to be below 3.0 mmol/l. 
 

 Your LDL Cholesterol: xx mmol/l  (which is low, normal or 

high) 

 
Cholesterol-to-HDL (Chol/HDL) ratio is the ratio of ‘bad’ to ‘good’ cholesterol. 
Ideally, it should be less than 5.0.  
 

 Your Chol/HDL ratio: xx   

 
Triglyceride (TG) is an important source of energy and like cholesterol is both 
made by the liver and absorbed from the diet. Concentrations of TG in plasma rise 
after eating a fatty meal, but after an overnight fast it is desirable for concentrations 
to be below 2.3 mmol/l. 
 

 Your Triglycerides: xx  mmol/l  (which is low, normal or high) 

 
Many people living in Western societies have elevated levels of cholesterol and TG. 
Comparisons of the incidence of coronary heart disease in different societies 
indicate that high levels of lipids are associated with increased risk of heart disease. 
However, it is important to realise that an elevated blood lipid concentration is only 
one of several well-documented risk factors for coronary heart disease, others 
include family history, high blood pressure, diabetes, obesity and smoking. In most 
circumstances it is only when a person exhibits several of these risk factors that there 
is a major cause for concern. 
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Fitness Analysis 
 
 
1. Predicted Maximum Heart Rate (HRmax) 

This is the maximum number of beats that your heart can produce in a minute (beat 
per minute or BPM). It is calculated using the equation of (220 – your age). Common 
use for this value is for developing fitness programs and prescribing exercise 
intensities.  
 

Your Predicted Maximum Heart Rate (HRmax):  xx  BPM 

 
 
2. Predicted Maximal Oxygen Uptake (VO2max) 

Your maximal oxygen uptake or VO2max is a measure of your body’s ability to use 
oxygen and is one measure of endurance fitness. The point at which you perform 
exercise at increasing intensity without consuming more oxygen is considered your 
VO2max and is the point at which exercise can no longer normally be sustained. The 
major determinant of VO2 max is genetics, or how well you chose your parents. 
Another big factor is how heavy you are, as the value is expressed per kg body mass 
(your VO2max will increase if you lose weight). Perhaps a better measure of 
endurance fitness is the ability to sustain a reasonable percentage of VO2max for a 
prolonged period. This, quite clearly, is something that you can manage well!  

Your Maximal Oxygen Uptake (VO2max):   xx ml O2/kg/min 

 
The fitness classifications for your age group and gender are shown below: 
 

Fitness 
category 

VO2max (ml 
O2/kg/min) 

Excellent 44+ 

Good 35-43 

Average 29-34 

Below average 23-28 

Poor <23 

 
 
3. Energy Expenditure  

The body requires energy for every physical activity which is dependent on the 
duration and type of activity and the body’s age and gender. Energy is measured in 
calories (cal) and is obtained from the body stores or the food we eat, namely 
carbohydrates, fat and protein. The longer and harder the exercise is, the more 
calories you burn in order to sustain it. In order to lose 1 pound of fat, you need to 
burn 3500 kcal (7700 kcal for 1 kg). For the 90-minute brisk walking session you 
performed: 

Your Energy Expenditure:  xx kcal 
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4. Exercise Recommendations 

We asked you in this study to walk for 90 minutes at about 50% of your VO2max to 
maximise the potential effects of exercise on your body’s fat metabolism. This would 
allow us to see the effects of exercise on fat metabolism more clearly. In practice, 
you don’t have to perform such long exercise sessions to get a beneficial effect. We 
would recommend that you perform a total of 30 minutes of moderate intensity 
exercise (e.g. walking, gardening, golf, tennis, cycling, swimming etc.) on most, 
preferably all days of the week. This 30 minutes does not need to be continuous - 
you could split it up into a number of shorter exercise periods (each of at least 10 
minutes). In addition, everyday activities such as walking to the shops can all count 
towards your daily exercise. This amount of exercise is the ideal, but taking any 
exercise at all will be beneficial. We recommend you to exercise at an exercise 
intensity of 50-70% of your VO2max. For you, this would be at a heart rate 
range of xx BPM. 

 
 
 

 
 
 
 
 

 Thank you for your time and participation 
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Appendix E; Statistician Report about 
statistical test used in Chapter 4 
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