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ABSTRACT 

Ajudazol B is a polyketide secondary metabolite, isolated from Chondromyces crocatus in 

2002, that exhibits anti-fungal activity through potent inhibition of the electron transport 

chain. 

 

 

The main objective of the work described in this thesis was to use and expand the oxidative 

rearrangement of isobenzofurans to generate isochromanones, and apply this towards the 

total synthesis of ajudazol B. The rearrangement was used as a key step in the synthesis of 

the full ajudazol B framework. The synthesis was achieved in 20 steps and 11% overall 

yield. 

 

 

 

The isomer of ajudazol B was synthesised in 21 steps and 8% overall yield. Its biological 

activity remains to be determined. 
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1 INTRODUCTION 

1.1 MYXOBACTERIA 

Myxobacteria are an order of Gram-negative bacteria that have been studied extensively.[1] 

They are ubiquitous, but are often found in areas possessing high levels of microbial life and 

organic matter: decomposing plant material, animal dung, soil, and in the bark of living or 

dead trees. They are particularly prevalent in warm and semi-arid climates, but have even 

been isolated from marine environments.[2] 

They are discernible from other bacteria in two main ways: the cells move over the surface 

of, or within, the substrate they are grown in, by ‘gliding’ in swarms; and, secondly, under 

starvation conditions the cells aggregate and generate fruiting bodies consisting of 105 - 106 

cells. Within these fruiting bodies, the cells are transformed into desiccation resistant 

myxospores and the fruiting body ensures that a new life cycle is initiated by a community 

of cells, as opposed to a singular individual.[1, 3] 

 

 

Figure 1.1: Chondromyces crocatus fruiting bodies. 

Myxobacteria have long been studied as a rich source of novel secondary metabolites. [4] The 

microbes are attractive targets for drug discovery due to the wide assortment of metabolites 

they produce.[5] C. crocatus is particularly renowned for its anti-fungal and cytotoxic 

activities, which have been attributed to the large number of structurally diverse secondary 

metabolites it generates. Notable biologically active secondary metabolites isolated from 
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C.crocatus, as well as the ajudazols, include: the crocacins, unsual linear dipeptides 

possessing anti-fungal and cytotoxic antibiotic properties; the chondramides, 

cyclodepsipeptides that exhibit cytostatic activity against mammalian cell lines by 

interference with actin; chondrochlorens, anti-bacterial β-aminostyrenes; and the 

thuggacins, thiazole-containing macrolides possessing activity against Mycobacterium 

tuberculosis.[6-9] 

 

 

Figure 1.2: Biologically active secondary metabolites isolated from Chondromyces crocatus. 

The genome sequence of C. crocatus Cm c5 was reported in 2016, and represents one of the 

largest prokaryotic genomes. Containing an abundance of secondary metabolite biosynthetic 

gene clusters, including the known pathways of the ajudazol, crocacin, chondramide, 

chondrocloren, and thuggacin families, C. crocatus Cm c5 also contains many more 
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biosynthetic gene clusters bearing no significant sequence similarity to known bacterial 

genomes, so there is a high potential for discovery of more biologically active secondary 

metabolites.[10] This potential was exemplified by the discovery of the crocagins, 

biologically active novel polycyclic peptides containing a tetrahydropyrrolo[2,3-b] indoline 

core, unprecedented in bacterial natural products.[11] 

 

 

Figure 1.3: Crocagin A. 

1.2 AJUDAZOL A AND B 

Ajudazol A and B are structurally novel, biologically active, secondary metabolites, isolated 

in 2002, by Höfle and co-workers, from Chondromyces crocatus, a strain of 

myxobacteria.[12]  

 

 

 

Figure 1.4: The ajudazols. 

Structurally, the ajudazols represent a unique class of compounds. The isochroman-1-one 

core contains a hydroxy group at C8 and an extended side chain at C9. The side chain 
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possesses an oxazole, Z,Z-diene, E-olefin, and a (E)-3-methoxy-N-methylbut-2-enamide. 

The (E)-3-methoxy-N-methylbut-2-enamide moiety is an uncommon motif in natural 

products, and has only been reported in lyngbyapeptin A and the recently isolated 

biakamides C and D.[13, 14] The anti,anti-configured 8-hydroxyisochroman-1-one core is 

unique to the ajudazols. 

 

 

Figure 1.5: Ajudazol B. 

 

1.3 BIOLOGICAL ACTIVITY 

Ajudazol A 13, the major metabolite, only showed weak activity against a few types of fungi 

and bacteria. As well as displaying activity against Gram-positive bacteria, ajudazol B 

possesses anti-fungal properties. Ajudazol B 14 was shown to inhibit the growth of several 

important fungi, that affect various agricultural and horticultural crops including Botrytis 

cinera, Trichoderma koningii, Gibberella fujikori, and Ustilago maydis.[15]  

The ajudazols demonstrate potent inhibition of the mitochondrial respiratory chain, with an 

IC50 value of 13.0 ng/mL (22.0 nM) for ajudazol A and 10.9 ng/mL (18.4 nM) in the case of 

ajudazol B, in submitochondrial particles.[15] Ajudazol B selectively binds to  NADH-

dehydrogenase, complex I. 

The aerobic production of energy via the mitochondrial respiratory chain is a key regulatory 

mechanism in an extensive assortment of cellular processes, and along with myxothiazol, 

stigmatellin, and crocacin D, the ajudazols are the fourth class of compounds isolated from 

myxobacteria to inhibit the electron transport chain.[6, 16, 17]  

Most recently, Menche identified ajudazol B as being an effective inhibitor of 5-

lipoxygenase.[18]  
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1.4 BIOSYNTHESIS OF THE AJUDAZOLS 

The gene cluster involved in the biosynthesis of the ajudazols was identified by Müller and 

coworkers.[19, 20] It consists of a hybrid type I polyketide synthase (PKS) nonribosomal 

peptide synthetase (NRPS) multienzyme assembly line. These large, multimodular enzyme 

complexes synthesise natural products from acyl-coenzyme A thioester and amino acid 

components, in a stepwise fashion. Each module contains: a domain for selecting and 

loading the correct monomer; a carrier protein domain, which holds the monomer via a 

thioester link; and a catalytic domain that mediates chain extension by either C-C bond 

formation or C-N amide bond formation.[21] The vast structural diversity of polyketides is 

due to the wide range of organic acid substrates used by PKSs.[22] 

During the biosynthesis of the ajudazols, the growing chain passes through 13 of these 

modules, with various domains that introduce the functionality present, until the chain 

reaches the termination stage. The ajudazols biosynthetic apparatus lacks a terminal cyclase, 

and instead contains a single, variant thioesterase (TE) domain. Upon reaching the end of 

the PKS-NRPS assembly line, the extended ajudazol chain trans-acylates onto the serine 

residue of AjuTE. Müller demonstrated that the isochromanone formation was mediated by 

this unusual thioesterase, AjuTE (figure 1.6).[20]  
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Figure 1.6: Biosynthesis on the ajudazol mixed PKS–NRPS synthetase.[20] 
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The mechanism for formation of the isochromanone moiety of the ajudazols could follow 

two potential pathways. AjuTE catalysed nucleophilic attack of the C9 hydroxy group, 

giving a ten-membered lactone intermediate 16, and chain release, followed by 

intramolecular aldol condensation and aromatisation could give deshydroxyajudazol B 17. 

Alternatively, intramolecular aldol condensation and aromatisation takes place whilst the 

chain is still bound to the enzyme giving intermediate 18, followed by the TE catalysed 

nucleophilic attack and cleavage, generating the lactone of deshydroxajudazol B 17 (scheme 

1.1).[19, 20]  

 

Scheme 1.1: Proposed mechanisms of chain release and isochromanone formation in ajudazol biosynthesis. 

Ajudazol A and ajudazol B, share the same PKS-NRPS assembly line, and the same AjuTE 

catalysed isochromanone formation and chain release, resulting in the generation of the 

shared putative intermediate deshydroxyajudazol B 17. There are then post-PKS 

modifications, installing the C8 hydroxy group, and in the case of ajudazol A the exo-

methylene at C15. 

The enzymes responsible for these transformations are AjuI and AjuJ, and they bear 

significant homology to P450 enzymes. AjuI was discovered to carry out the dehydrogenation 

of the methyl group at C15, and AjuJ installed the hydroxy group. This results in two 

possible pathways: when AjuI acts first, followed by AjuJ the final metabolite formed is 

ajudazol A; when AjuJ acts first, this results in ajudazol B 14, which is no longer a suitable 

substrate for AjuI, which therefore does not carry out the dehydrogenation. Ajudazol A 13 

is the major metabolite isolated, which implies that AjuI is the more efficient enzyme 

(scheme 1.2).[19, 20]  
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Scheme 1.2: Post-PKS modifications in the biosynthesis of the ajudazols. 

1.5 ABSOLUTE STEREOCHEMISTRY 

Despite being isolated in 2002, due to the lack of comparable natural products, the lability 

of the compounds, and the inherent difficulty of assigning isolated methyl stereocentres, the 

absolute stereochemistry of the ajudazols was not determined until 2012, by Menche.[12, 23] 

Menche’s determination was based on a bioinformatics approach, involving gene cluster 

analysis. 

It was postulated that the stereochemistry at C9 is derived from a ketoreductase mediated 

process. McDaniel and Caffrey both proposed a model in which the presence or absence of 

an aspartate residue in the keto-reductase enzyme could be used to predict the configuration 
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of secondary alcohols.[24, 25] Analysis of the amino acid sequence of ajudazol keto-reductase 

enzyme KR10, coded in the AjuF gene cluster, showed the presence of the aspartate residue 

allowing Menche to assign the configuration of C9 as R. 

The configuration of the methyl groups at C10 and C15 are determined by enoyl-reductase 

mediated reactions. Leadlay and coworkers discovered a correlation between the 

stereochemistry of a methyl group introduced by an enoyl-reductase enzyme and the 

presence of a tyrosine residue in the active site of the enzyme.[26] The amino acid sequence 

of the enoylreductases, AjuC ER7 and AjuE ER9, revealed that the tyrosine residue was 

absent in each case, allowing the two methyl bearing stereocentres at C10 and C15 to be 

assigned as R. 

 

Figure 1.7: Ajudazol B absolute configuration. 

1.6 EFFORTS TOWARDS THE SYNTHESIS OF THE AJUDAZOLS 

The ajudazol’s unusual structural features, combined with their potent biological activity, 

has made them desirable targets for synthetic chemists. Several research groups have 

published their approaches towards the Ajudazols, and to date only one group has completed 

the total synthesis of ajudazol B.[18, 23, 27-31] 

1.6.1 Taylor’s synthesis of the eastern section 

In 2005, Taylor reported the synthesis of the C12-C29 fragment of ajudazol A. His approach 

hinged on a one pot double acetylene carbocupration to generate the Z,Z-diene, and a Stille-

coupling to introduce the oxazole unit.[30] 

 

 

 

Figure 1.8: C12-C29 fragment of ajudazol A. 

Taylor’s synthesis began with the stereocontrolled double acetylene carbocupration of THP-

protected 3-iodopropanol 21, to generate dienyl cuprate 22, which was treated with 2,3-

dibromopropene 23, to afford the Z,Z-diene 24 in 55% yield and excellent Z,Z-selectivity 
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(>95%). The THP protecting group was then removed to give the free alcohol 25, which was 

then oxidized using Dess-Martin periodinane, to the corresponding aldehyde. Wittig 

olefination of the aldehyde intermediate then produced the E-configured α,β-unsaturated 

ester 27, in excellent yield. Ester 27 was reduced to the primary alcohol using DIBAL-H, 

and the resulting alcohol protected as the THP ether 28.  

Using a vinyl bromide as a coupling partner in the final Stille cross-coupling had been shown 

in model systems to be non-viable, as the bromide was not sufficiently reactive. Therefore, 

vinyl bromide 28 was converted to the vinyl iodide 29, through a lithium-halogen exchange 

(scheme 1.3). 

 

Scheme 1.3: Taylor’s synthesis of polyene 29. 

The THP unit on vinyl iodide 29 was then removed and the resultant alcohol was converted 

to the corresponding bromide, which upon treatment with an excess of methylamine gave 

amine 30. Peptide coupling between amine 30 and the known acid 31, completed the 

synthesis of the eastern unit of ajudazol A.[32] Stille coupling of stannyl oxazole 33 with vinyl 
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iodide 32 was then successfully used to complete the synthesis of the C12-C29 fragment of 

ajudazol A 20 (scheme 1.4). 

It is worth noting that optimal results were obtained for the Stille cross-coupling using a 

relatively low temperature of 50 °C, and a long reaction time of 2 days. However, these 

conditions were essential, as the diene was unstable at elevated temperatures. 

 

 

Scheme 1.4: Taylor’s completion of synthesis of C12-C29 fragment of ajudazol A 20. 

 

1.6.2 Rizzacasa’s synthesis of the C9-C29 fragment of the ajudazols 

Rizzacasa published a route to the C9-C29 fragments of both ajudazol A and B in 2007. The 

key steps of the synthesis comprise of a cyclodehydration step to form the oxazole unit, and 

a P2-Ni mediated partial alkyne reduction to install the Z-alkene at C17-C18.  Rizzacasa’s 

and Taylor’s fragments differ only by the addition of an alkoxide tether, at the 4-position of 

the oxazole moiety (figure 1.9).[29] 
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Figure 1.9: Rizzacasa’s C9-C29 fragments of ajudazol A and B. 

Rizzacasa’s synthesis began with the known alcohol 36, which was oxidized to the 

corresponding aldehyde, that was then subjected to an E-selective Wittig olefination to give 

α,β-unsaturated methyl ester 38. Reduction of ester 38, followed by conversion of the 

resultant alcohol to the bromide, and then displacement of the bromide with methylamine 

gave the desired amine 39 in good yield, over 3 steps. Acid 31 (prepared in the same manner 

as Taylor), was then coupled to the amine to afford vinyl iodide 40 (scheme 1.5). 

 

 

Scheme 1.5: Rizzacasa’s synthesis of vinyl iodide 40. 

Synthesis of the racemic acetylene fragment 45, to be used as a model for ajudazol B, began 

with the known racemic alcohol 41.[33] Alcohol 41 was converted to the corresponding amine 

by conversion to the mesylate, which was then displaced using sodium azide, followed by a 

Staudinger reduction to give the desired adduct 42 in excellent yield. Amine 42 was then 

coupled to racemic acid 43 to give the amide product 44, which was isolated as a mixture of 

diastereomers. Deprotection of silyl ether 44 using TBAF gave the β-hydroxy amide, which 

upon Dess-Martin oxidation, followed by cyclodehydration under Wipf’s conditions yielded 

oxazole 45 (scheme 1.6).[34, 35] 
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Scheme 1.6: Rizzacasa’s synthesis of the ajudazol B model oxazole 45. 

Rizzacasa’s synthesis of the oxazole model for ajudazol A, began with dimethyl malonate 

46 which was alkylated and then reduced to diol 48. Mono-protection of diol 48, followed 

by two-step oxidation gave the corresponding acid 49. Peptide coupling between carboxylic 

acid 49 and amine 42 afforded the key amide 50. Removal of the TBS protecting group 

produced the desired alcohol, which was oxidised to the corresponding aldehyde. The 

aldehyde intermediate was then subjected to the previously employed cyclodehydration 

conditions to generate oxazole 51. Finally, desilylation using TBAF completed the synthesis 

of acetylene 52 (scheme 1.7). 
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Scheme 1.7: Rizzacasa’s synthesis of the ajudazol A model oxazole 52. 

With vinyl iodide 40 and acetylene 45 in hand, the crucial C18-C19 bond was successfully 

formed using a Sonogashira coupling to give enyne 53 in good yield. The partial reduction 

of the C17-C18 triple bond, on the other hand, proved to be challenging. Lindlar’s catalyst 

in the presence of hydrogen gas gave no reaction, and prolonged reaction times gave over-

reduction of the C17-C18 alkyne. Using Brown’s P2-Ni catalyst, on the other hand, gave the 

desired Z,Z-diene 35 in 55% yield, completing the synthesis of the racemic C9-C29 fragment 

of ajudazol B.[36] Rizzacasa reported the synthesis of both enantiomers of oxazole 45 to 

demonstrate that the synthesis could be carried out enantioselectively (scheme 1.8). 
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Scheme 1.8: Rizzacasa’s synthesis of C9-C29 fragment of ajudazol B 35. 

The synthesis of the ajudazol A model unit was completed following a similar approach to 

that for the ajudazol B fragment. Namely, alkyne 52 was coupled with vinyl iodide 40 using 

Sonogashira conditions, followed by partial reduction of the enyne unit 54 using P2-Ni. The 

disubstituted olefin was introduced via activation of the free alcohol as the mesylate, which 

was then eliminated, thus completing the synthesis of the C9-C29 ajudazol A fragment 34 

(scheme 1.9). 
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Scheme 1.9: Rizzacasa’s synthesis of C9-C29 fragment of ajudazol A 34. 

 

1.6.3 Rizzacasa’s synthesis of of 8-deshydroxyajudazol B stereoisomer 55 

In 2011, before the absolute configuration of the ajudazols had been determined, Rizzacasa 

published the synthesis of the proposed structure of 8-deshydroxyajudazol B (C15-epi-

enantiomer). 8-Deshydroxyajudazol is a putative late-stage intermediate in the biosynthesis 

of ajudazol B, as proposed by Müller.[19] 

 

 

Figure 1.10: 8-Deshydroxyajudazol B stereoisomer 55. 

The synthesis began with the enantiopure, known aldehyde 56, which upon Wittig 

olefination gave triene 58 as a 3:1 mixture favouring the Z,E-diene. Removal of the silyl 

protecting group, followed by transesterification with excess methyl propiolate facilitated 

by Otera’s catalyst gave ester 59. Bromination of the terminal alkyne moiety produced 

bromo-alkyne 60 which upon an intramolecular Diels-Alder, followed by aromatization, 
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afforded the desired isochromanone 61. The aromatic bromide was then exchanged for a 

hydroxyl group using palladium-catalyzed borylation conditions developed by Buchwald, to 

give the pinacol boronate ester.[37] Oxidation and subsequent hydrolysis afforded the phenol 

62. Protection of phenol 62 as the PMB ether, followed by hydroboration of the terminal 

alkyne under Rh-catalysed conditions gave primary alcohol 63. Oxidation of alcohol 63 to 

the corresponding aldehyde, and subsequent Wittig methelynation gave the terminal olefin 

64 (scheme 1.10). 

 

Scheme 1.10: Rizzacasa’s synthesis of terminal olefin 64. 

Upjohn dihydroxylation of olefin 64, gave diol 65 as a mixture of diastereomers. The 

primary alcohol was chemoselectively coupled with enantiopure acid (R)-43 to give the 

desired ester 66, whilst the secondary alcohol was successfully converted to the 

corresponding azide 67, using Mitsunobu conditions. A one-pot azide reduction, followed 

by O,N-acyl shift facilitated by triethylamine, gave the desired β-hydroxyamide 69. Parikh-
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Doering oxidation, and subsequent cyclodehydration gave the key oxazole core 70. Finally, 

CSA removal of the PMB group yielded the desired acetylene 71 (scheme 1.11). 

 

Scheme 1.11: Rizzacasa’s synthesis of terminal acetylene 71. 

Sonogashira coupling between acetylene 71 and vinyl iodide 40 proceeded in excellent yield 

to give enyne 72. The partial reduction of the enyne to the Z,Z-diene was achieved, 

employing the previously used P2-Ni conditions, in 34% yield to complete the synthesis of 

8-deshydroxyajudazol B stereoisomer 55 (scheme 1.12). 
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Scheme 1.12: Rizzacasa’s completion of the synthesis of 8-deshydroxyajudazol B stereoisomer 55. 

 

1.6.4 Rizzacasa’s synthesis of 8-deshydroxyajudazol A stereoisomer 73 

Rizzacasa published the synthesis of a proposed structure of 8-deshydroxyajudazol A 73, 

shortly before the absolute stereochemistry of the ajudazols had been elucidated.[38] 8-

Deshydroxyajudazol A is believed to be an intermediate in the biosynthesis of ajudazol A. 

 

 

Figure 1.11: 8-Deshydroxyajudazol A stereoisomer 73. 

Rizzacasa’s approach began with the mono-protection of the previously synthesised diol 48, 

to give silyl ether 74. Oxidation of alcohol 74 through sequential Dess-Martin and Pinnick 

oxidations gave racemic acid 75, in good yield (scheme 1.13). 
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Scheme 1.13: Rizzacasa’s synthesis of acid 75. 

Acid 75 was then coupled selectively to the primary alcohol in diol 65, which was an 

intermediate in Rizzacasa’s synthesis of 8-deshydroxyajudazol B stereoisomer 55, to 

generate ester 76 (schemes 1.10 and 1.11). A Mitsunobu reaction then converted alcohol 76 

into azide 77, which upon reduction and O,N-acyl shift gave the β-hydroxyamide 78. Parikh-

Doering oxidation to the aldehyde followed by cyclodehydration gave oxazole 79, that was 

then treated with TBAF to give acetylene 80 (scheme 1.14). 

 

 

Scheme 1.14: Rizzacasa’s synthesis of acetylene 80. 

Rizzacasa then decided to install the 1,1-disubstituted alkene before the Sonogashira 

coupling, trying to achieve a more convergent approach. Thus, alcohol 80 was converted to 

the mesylate and the PMB-ether was removed in excellent yield to give 81. DBU mediated 

elimination of the mesylate then gave the terminal olefin 82, ready for the Sonogashira 
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coupling with known vinyl iodide 40. The desired product was successfully formed, but 

proved to be inseparable from excess alkyne 82, therefore the partial hydrogenation was 

carried out on the product mixture. Cu/Ag activated Zn was employed to achieve the partial 

reduction of the enyne, which proved superior to the previously established conditions 

comprising of P2-Ni/H2/EDA, as over-reduction was completely suppressed. The two steps 

gave a poor yield of 20%, but 8-deshydroxyajudazol A stereoisomer 73 was successfully 

synthesized. Unfortunately, it was later discovered that Rizzacasa had completed the 

synthesis of ent-8-deshydroxyajudazol A 73 (scheme 1.15). 

 

 

Scheme 1.15: Rizzacasa’s completion of total synthesis of 8-deshydroxyajudazol A stereoisomer 73. 

 

1.6.5 Menche’s total synthesis of ajudazol B 

In 2012, Menche and coworkers reported the full stereochemical determination of ajudazol 

A and B using a bioinformatic approach (Section 1.5 Absolute stereochemistry), and 

completed the first total synthesis of ajudazol B.[23] 

Menche’s synthesis began with a Brown crotylation of ethyl glyoxylate 83, with TES 

protection of the resultant alcohol to give silyl ether 84, in 70% yield and 90% ee. 

Homologation via hydroboration, oxidation to the aldehyde, and then Wittig olefination gave 
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ester 85, which was reduced to the corresponding alcohol and oxidized to give aldehyde 86 

(scheme 1.16). 

 

 

Scheme 1.16: Menche's synthesis of olefin 86. 

Synthesis of the aromatic section of the isochromanone unit began with 3-methylsalicylic 

acid 87 which was allylated, followed by conversion of the carboxylic acid to the diisopropyl 

amide. The amide axis was then fixed via ortho-lithiation and subsequent capture with 

Andersen’s reagent 88, to give sulfoxide 89. Asymmetric lithiation of sulfoxide 89 and 

treatment with aldehyde 86, gave the anti,anti-product 90, with a d.r. of >95:5. 

The benzylic alcohol was TBS protected, before removal of the allyl group, using Pd(PPh3)4, 

followed by microwave assisted amide hydrolysis and simultaneous TES cleavage gave the 

anti,anti-isochromanone core. Consequent TBS protection of the phenol group, gave 

isochromanone 91, in 66% over 4 steps. 

Dihydroxylation of alkane 91 with subsequent protection of the primary alcohol gave the 

TBS ether. Azide substitution of the secondary alcohol, using Mitsunobu conditions 

followed by hydrogenation to the primary amine completed the synthesis of western 

fragment 92 (scheme 1.17). 
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Scheme 1.17: Menche’s synthesis of western fragment 92. 

Methyl acetoacetate 93 was treated following Taylor’s and Rizzacasa’s conditions to 

generate 3-methoxybutenoic acid 31.[32] Acid 31 was then coupled to allyl amine, to give 

amide 94 in 68% over 3 steps. Allylic amide 94 then underwent a cross-metathesis with 

olefin 95, promoted by Grubbs 1st Generation catalyst. Desilylation of the silyl ether 

intermediate followed by oxidation of the resultant alcohol to the aldehyde, and then 

Seyferth-Gilbert homologation gave the terminal acetylene 97. Finally, a Rh-catalysed 

trans-selective hydroboration gave the Z-alkenyl boronate ester 98 with good selectivity 

(scheme 1.18). 
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Scheme 1.18: Menche’s synthesis of Eastern fragment 98. 

Menche then coupled the western fragment 92 to known acid (R)-43, followed by the 

selective removal of the primary TBS group. The resultant β-hydroxyamide was oxidized to 

the corresponding aldehyde which was then treated with a modified Wipf cyclodehydration 

protocol, to give the oxazole 99.[35] Iodination of the terminal alkyne, followed by a selective 

syn-reduction afforded the Z-vinyl iodide 100. Suzuki cross-coupling of vinyl iodide 100 

with eastern fragment 98, followed by subsequent removal of the silyl groups completed the 

first reported total synthesis of ajudazol B 14 (scheme 1.19). 
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Scheme 1.19: Menche’s completion of the total synthesis of ajudazol B 14. 
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1.7 EFFORTS TOWARDS THE AJUDAZOLS WITHIN THE MARQUEZ GROUP 

 

Research efforts within the Marquez group were initially focused on the synthesis of the 

isochromanone core of the ajudazols. This functionality was proven to be accessible via 

methodology developed within the Marquez group, comprising of an adaptation of the 

Achmatowicz rearrangement, employing highly reactive isobenzofurans as synthetic 

intermediates. 

1.7.1 Achmatowicz rearrangement 

First reported in 1971, the Achmatowicz rearrangement generates α,β-unsaturated pyranones 

from the oxidative treatment of α-hydroxyfurans.[39] The original conditions employ 

bromine in MeOH, followed by H2SO4 to form the hydroxypyranone. However, several 

other one-pot oxidative conditions have been employed including, but not limited to: NBS 

in H2O/THF; mCPBA, CH2Cl2; tBuOOH, VO(acac)2; KBr, oxone; and photo-redox 

conditions using visible light.[39-44]  

 

 

Scheme 1.20: Achmatowicz rearrangement. 

Mechanistically, the Achmatowicz rearrangement proceeds through a hydroxy-directed 

epoxidation at the allylic position, to generate epoxide 104. Ring opening of the epoxide, via 

formation of zwitterionic intermediate 105, generates 1,4-dicarbonyl 106. This is followed 

by intramolecular nucleophilic attack of the free hydroxy group onto the carbonyl, to 

generate α,β-unsaturated pyranone 107, where the α-anomer is the major product (scheme 

1.21). 
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Scheme 1.21: Mechanism of the Achmatowicz Rearrangement. 

Used widely in organic synthesis, the Achmatowicz rearrangement has been employed in 

the synthesis of carbohydrates, and in natural product synthesis due to its ability to tolerate 

a wide range of substrates and functionalities. The pyranone acetals formed are often used 

to generate substituted tetrahydropyrans, spiroketals, and oxa-bridged bicycles.[45] For 

example, an Achmatowicz rearrangement was used as the key step in Tadano’s synthesis of 

(+)-mycoepoxydiene 110. The furfuryl alcohol 108 was subjected to a VO(acac)2/tBuOOH 

promoted Achmatowicz rearrangement to generate the pyranone ring in 109, in excellent 

yield (scheme 1.22).[46]  

 

 

Scheme 1.22: Achmatowicz rearrangement in Tadano’s synthesis of (+)-mycoepoxydiene 110. 

The pyranone intermediate in Zakarian’s synthesis of (+)-brevisamide 113 was also 

generated using an Achmatowicz rearrangement.[47] The α-hydroxyfuran 111 underwent an 

NBS promoted Achmatowicz rearrangement, and the resulting hemi-ketal was reduced with 

triethylsilane to give pyranone 112, in 54% yield (scheme 1.23). 
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Scheme 1.23: Achmatowicz rearrangement in Zakarian’s synthesis of (+)-brevisamide 113. 

 

1.7.2 The oxidative rearrangement of isobenzofurans 

In 2008, the Marquez group reported the oxidative rearrangement of α-

hydroxyisobenzofurans for the generation of isochromanones.[27] It was envisaged that 

substituted isochromanones 114 could be accessed through the oxidation and selective 

reduction of keto-lactol 115. Lactol 115 in turn, would be generated from the Achmatowicz-

type oxidative rearrangement of α-hydroxyisobenzofuran 116, which was envisioned to be 

accessible from the alkylation of the isobenzofuran anion 117, itself formed from phthalan 

118 (scheme 1.24). 

 

 

Scheme 1.24: Retrosynthetic analysis of isochromanone 114. 

Using this approach isochroman-1-one cores were first synthesized starting from 

commercially available phthalide, which was reduced to the corresponding lactol, and then 

methylated to give phthalan 119. Treatment of the phthalan intermediate with LDA then 

formed the key isobenzofuran anion intermediate 120. Mechanisitically, the LDA promotes 
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the elimination of the methoxy group and generates the aromatic isobenzofuran unit, which 

is then deprotonated by a second equivalent of LDA to generate the anion. This highly 

reactive anion is then trapped with an aldehyde 121 to form the corresponding α-

hydroxyisobenzofuran intermediate 122. This highly unstable intermediate is then treated 

with mCPBA, to induce an Achmatowicz type rearrangement, to give the keto-lactol 126. 

Oxidation to the keto-lactone, followed by reduction produces the desired isochroman-1-one 

unit 127 (scheme 1.25). 

 

 

Scheme 1.25: Generation of isobenzofuran, alkylation, and oxidative rearrangement sequence. 

This procedure was successfully applied using a wide range of aldehydes to give the desired 

isochroman-1-ones, in good yield. It is worth noting that the selectivity of the reduction step 

was highly dependent on the nature of the side-chain. Sterically bulky side-chains, 

particularly those with branched substituents α to the aldehyde unit gave solely the syn-

product (table 1-1).  
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Scheme 1.26: Synthesis of ioschromanones. 

Entry Aldehyde Keto-lactone % (yield over 4 steps) Reduction % (syn:anti) 

1 

 

85 96 (100:0) 

2 

 

94 90 (50:50) 

3 

 

84 71 (60:40) 

4 

 

82 56 (90:10) 

5 

 

72 80 (75:25) 

6 

 

83 77 (100:0) 

7 

 

57 82 (100:0) 

8 

 

67 58 (50:50) 

9 

 

64 48 (100:0) 

10 

 

93 90 (50:50) 

11 

 

95 76 (100:0) 

Table 1-1: Oxidative rearrangement and reduction. 

With this 5-step protocol allowing for the fast and efficient synthesis of isochroman-1-ones 

from simple aldehydes, it was decided to investigate the scope of the methodology, and the 
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usefulness of α-hydroxyisobenzofurans as synthetic intermediates in complex natural 

product synthesis. Thus, the synthesis of a model system of ajudazol A was undertaken. 

The ajudazol A model system 130, was envisioned as being accessed through the inversion 

of the hydroxy group at C8 of the syn-anti isochromanone 131, which in turn would be 

accessed from oxidative rearrangement of α-hydroxyisobenzofuran 132. The key α-

hydroxyisobenzofuran unit 132 could be synthesized from alkylation of the isobenzofuran 

anion 120 with the oxazole-containing aldehyde 133 (scheme 1.27). 

 

 

Scheme 1.27: Retrosynthetic analysis of ajudazol A model system 130. 

The forward synthesis of the oxazole containing aldehyde unit 133 began with D,L-serine 

methyl ester 134, which was converted to the oxazole ester 135. Reduction of the ester to 

the corresponding alcohol followed by Swern oxidation, gave the aldehyde coupling partner 

136, in reasonable yield over the two steps. Wittig olefination with stabilised ylide 137 then 

gave the E-olefin 138 in excellent yield, and as a single double bond isomer. Ester reduction 

followed by double bind hydrogenation and subsequent oxidation of the alcohol completed 

the synthesis of racemic oxazole-aldehyde 133 (scheme 1.28). 
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Scheme 1.28: Synthesis of oxazole-aldehyde 133. 

The isobenzofuran anion was generated using standard conditions, from phthalan 119, and 

trapped with the newly generated oxazole-aldehyde 133 to afford the putative α-

hydroxyisobenzofuran intermediate. Oxidative rearrangement of the α-

hydroxyisobenzofuran with mCPBA then gave lactol 134 in excellent yield. Oxidation using 

Jones’ reagent afforded the desired keto-lactones 135 and 136, as a 3:2 mixture of 

diastereomers, which was then reduced using Luche reduction conditions to afford 

isochroman-1-ones 137 and 138 (scheme 1.29). The major diastereomer was separated via 

selective crystallisation, and the structure corroborated using X-ray crystallography (figure 

1.12).  

 

Scheme 1.29: Synthesis of isochromanones 137 & 138. 
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Figure 1.12: Crystal structure of isochromanone 137. 

Isochromanone 137 was then subjected to Mitsunobu conditions to give the desired p-

nitrobenzoate ester 139, which contains the key anti-anti stereochemical relationship present 

in the ajudazols. Mild hydrolysis of the p-nitrobenzoate ester gave the anti,anti-

isochromanone 140, completing the synthesis (scheme 1.30). 

 

 

Scheme 1.30: Synthesis of anti,anti-ajudazol model system 140. 

1.8 REGIOSELECTIVE OXIDATIVE REARRANGEMENT OF ISOBENZOFURANS 

Initially, the methodology had only been used to successfully synthesize isochromanones 

using unsubsituted phthalan as a precursor. For the oxidative rearrangement methodology to 

be useful in the synthesis of the ajudazols, it would be required to handle the presence of 

substituents. 

When unsubstituted phthalan was used as a precursor there were no regioselectivity issues, 

as the isobenzofuran intermediate is symmetrical. When substitution is present on the 

phthalan, the second deprotonation can take place on either the same side, or opposite side 

of the substituents, leading to a regioisomeric anions. However, it was hypothesized that by 

altering the group (Y) at C4 it would be possible to influence the site of deprotonation, and 

therefore the regiochemical outcome of the reaction (scheme 1.31).[48] 
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Scheme 1.31: Regioselective approach to isochromanones. 

Indeed, it was demonstrated that substituents at the C4 position were able to sterically divert 

the second deprotonation step Additionally, the fact that the reaction goes through an 

isobenzofuran intermediate means that either C4 or C7 substituted phthalans would converge 

into the same intermediate. 

Effectively, alkylation of the isobenzofuran generated from either C4 or C7 substituted 

phthalans 150 or 152, and subsequent rearrangement led to the formation of C8 substituted 

isochromanone 151 as a single regioisomer in both cases (scheme 1.32). 

 

Scheme 1.32: Regioselectivity of rearrangement. 

With complete control of the regiochemistry of alkylation demonstrated, work began on a 

phthalan unit containing the full functionality present in the ajudazol isochromanone core. 

The synthesis of fully functionalised phthalan 159 began with 3-methylsalicylic acid 87, 

which was converted to the diethyl amide 154 in four steps, and good overall yield. A 
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directed ortho-formylation, followed by reduction of the resultant aldehyde, and treatment 

with acid, gave the key phthalide 156. Deprotection of the methyl group using 

iodocyclohexane, then re-protection of the phenol group using TBSCl gave phthalide 158. 

DIBALH reduction to the corresponding lactol, and then treatment with methanol in the 

presence of tosic acid gave the phthalan 159, ready for use in the rearrangement process 

(scheme 1.33). 

 

 

Scheme 1.33: Synthesis of phthalan 159. 

Following the standard isobenzofuran alkylation-rearrangement protocol, and trapping with 

isobutyraldehyde, the desired 4,8-dihydroxy-7-methylisochroman-1-one was formed, as a 

single regioisomer. Although the yield was lower than when unsubstituted phthalans were 

used, the product could be obtained in one day without difficulties. 

 

 

Scheme 1.34: Synthesis of 4,8-dihydroxy-7-methylisochroman-1-one 160. 

With phthalan 159 in hand, a more complex model aldehyde was synthesised which more 

closely resembled the ajudazol core structure. Thus, the known oxazole 161 was converted 

to α,β-unsaturated ester 162 in a one pot process using activated MnO2, in the presence of 
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stabilised ylide 137. Hydrogenation of the olefin, followed by reduction of the ester gave the 

corresponding racemic which was separated via chiral HPLC. Oxidation of the 

enantiomerically pure alcohol gave the enantiomerically pure (R)-aldehyde 163 (scheme 

1.35). 

 

 

Scheme 1.35: Synthesis of enantiomerically pure aldehyde 163. 

With aldehyde 163 in hand, the oxidative rearrangement protocol was implemented using 

the fully functionalised phthalan 159. Gratifyingly, this afforded the desired isochromanone 

products 164 and 165 in 59% yield, thus demonstrating the applicability of the methodology 

towards the synthesis of the ajudazols (scheme 1.36). 

 

 

Scheme 1.36: Synthesis of isochromanones 164 and 165. 

With the knowledge that the methodology was compatible with functionalised phthalans, it 

was decided to investigate conditions to couple the isochromanone fragment to the full 

eastern section of ajudazol A. Disappointingly, C-H activation, following Taylor’s approach, 

proved to be incompatible with the isochromanone moiety, and resulted in degradation.[28, 

30] Chlorination of the oxazole unit was also unsuccessful so it was opted to introduce the 

chlorine atom earlier in the synthesis. 

The modified synthetic approach began with oxazole 166, which was TBDPS protected in 

excellent yield. Chlorination using conditions developed by Vedejs, employing borane as a 
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Lewis acid to complex with the nitrogen lone-pair, thus inhibiting ring-opening during the 

lithiation step, gave chloro-oxazole 168 in good yield.[49] Deprotection using TBAF and 

oxidation of the resulting alcohol gave the desired racemic aldehyde 169 (scheme 1.37). 

 

 

Scheme 1.37: Synthesis of chloro-aldehyde 169. 

Aldehyde 169 was then used in the oxidative rearrangement, to assess the suitability of 

chloro-oxazoles under the rearrangement conditions. Encouragingly, the reaction sequence 

gave the desired syn,anti-chloro-isochromanone 170 as well as the syn,syn-chloro-

isochromanone 171 in good yield, proving the methodology was compatible with sensitive 

aldehydes. Also, interestingly, no de-halogenated products were detected (scheme 1.38). 

  

 

Scheme 1.38: Synthesis of chlorinated isochromanones 170 and 171. 

Finally, a Stille coupling between vinyl-stannane 172 and chloro-isochromanone 170, 

completed the synthesis of the C1-C16 model system of ajudazol A 173. The isochromanone 

core proved to be stable at the elevated temperature conditions (scheme 1.39).  

 



49 

 

 

Scheme 1.39: Synthesis of C1-C16 ajudazol A model system 173. 

Standard hydrogenation conditions then reduced the methylene group in excellent yield. 

Mitsunobu inversion, followed by cleavage of the p-nitrobenzoate ester, gave the desired 

anti,anti-isochromanone and completed the synthesis of the C1-C16 model system of 

ajudazol B 175 (scheme 1.40).[28, 50] 

 

 

Scheme 1.40: Synthesis of C1-C16 ajudazol B model system 175. 

One of the major limitations of the methodology towards the synthesis of the ajudazols, is 

that the syn-isochromanone is the favoured diastereomer. Although inversion of the 

stereocentre to access the desired anti-isochromanone could be achieved using Mitsunobu 

conditions, adapting the methodology to allow for direct access of the anti-isochromanone 

would provide for a much more efficient synthesis. 

With this goal in mind, several different reducing conditions were employed. 

Disappointingly all conditions gave the syn-isochromanone as the major product (table 1-2). 
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Scheme 1.41: Reduction of keto-lactone 176. 

Entry Conditions Syn:Anti Yield (%) 

1 NaBH4.CeCl3 100:0 82 

2 NaBH4 100:0 89 

3 Na(CN)BH3 100:0 52 

4 L-selectride - - 

5 Me2AlCl 100:0 71 

6 Sm(OiPr)3 100:0 64 

7 BH3 12:1 40 

8 9-BBN - - 

9 Alpine borane - - 

10 (R)-CBS, BH3 12:1 45 

11 (S)-CBS, BH3 12:1 45 

Table 1-2: Reduction conditions  

1.9 PREVIOUS EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AJUDAZOL B 

Studies towards the total synthesis of ajudazol B began in the group before the absolute 

stereochemistry had been determined, meaning initial efforts were directed towards what 

was later determined to be the enantiomer. (-)-Ajudazol B 179 was envisioned as being 

synthesised from Sonogashira coupling of vinyl iodide 40 and acetylene 180, followed by 

partial reduction of the alkyne to the Z-diene. Alkyne 180 would be generated from 

isochromanone 181 via Mitsunobu inversion of the C8-hydroxy group, deprotection of the 

benzyl ether, oxidation of the resultant alcohol to the aldehyde and homologation to give the 

alkyne with concomitant deprotection of the TBS ether. Isochromanone 181 in turn would 

be synthesised from the oxidative rearrangement of fully functionalised phthalan 159 and 

oxazole-aldehyde 182 (scheme 1.42). 
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Scheme 1.42: Initial proposed route to (-)-ajudazol B 179. 

Synthesis of the oxazole fragment 182 began with TBDPS protection of (R)-Roche ester 183 

to give alcohol (S)-184, in quantitative yield. The alcohol (S)-184 was then converted to 

iodide (R)-185, using Appel conditions in high yield. Negishi coupling between iodide (R)-

185 and vinyl bromide then gave olefin (S)-186.[51] Upjohn dihydroxylation, followed by 

selective protection of the primary alcohol, and conversion of the secondary alcohol to the 

mesylate gave intermediate 187, in excellent yield. Displacement of the mesylate with 

sodium azide, followed by reduction of the azide intermediate completed the synthesis of 

amine 188 (scheme 1.43).[50] 
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Scheme 1.43: Synthesis of amine 188. 

The synthesis of enantiopure acid (S)-194, began with (-)-pseudoephedrine 189 which was 

propionylated to generate amide 191, in excellent yield. Amide 191 was then used in a 

diastereoselective Myer’s alkylation with the known iodide 192.[52] N,O-acyl transfer, 

borane complexation, and finally ester hydrolysis, gave the enantiopure acid (S)-194 

(scheme 1.44). 

 

 

Scheme 1.44: Synthesis of enantiopure acid (S)-194. 

Amide coupling between acid (S)-194 and amine 188 followed by removal of the TBS group 

yielded β-hydroxyamide 195. Swern oxidation followed by Wipf’s cyclodehydration of the 

resulting β-formylamide then gave oxazole 196.[34] Desilylation and oxidation of the primary 

alcohol completed the synthesis of oxazole-aldehyde 182 (scheme 1.45). 
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Scheme 1.45: Synthesis of aldehyde 182. 

With the phthalan 159 and aldehyde 182 in hand, the decisive oxidative rearrangement 

sequence was carried out. After optimization, the syn,anti-diastereomer 181 and syn,syn-

diastereomer 197 were successfully synthesized in a 2:1 mixture. The diastereomers were 

separable via HPLC (scheme 1.46). 

 

 

Scheme 1.46: Synthesis of the C1-C17 fragment of ajudazol B. 

Hydrogenolysis of benzyl ether 181 followed by oxidation of the resulting alcohol yielded 

the key aldehyde 198. It is worth noting that Parikh-Doering oxidation conditions 

demonstrated best selectivity, with negligible amounts of oxidative side products being 

detected. Seyferth-Gilbert homologation of aldehyde 198, using Ohira-Bestmann reagent 96 

proceeded to afford the desired alkyne unit 199, with concomitant removal of the TBS group. 

Unfortunately, trans-lactonised 5-membered lactone 200 was the main product isolated. 
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However, after optimisation, the desired product 199 could be isolated as the major product 

in 55% isolated yield (scheme 1.47). 

   

 

Scheme 1.47: Synthesis of acetylene 199. 

Acetylene 199 was then coupled to vinyl iodide 40, using Sonogashira coupling conditions, 

to successfully yield enyne 201. The enyne 201 was then partially reduced under P2-Ni 

conditions to give ent-8-epi-ajudazol B 202, in a 2:1 mixture with the over-reduced 

compound 203. The two compounds were separable via HPLC with ent-8-epi-ajudazol B 

202 being isolated in 53%, and the over-reduced product 203, in 25% yield (scheme 1.48). 
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Scheme 1.48: Synthesis of ent-C8-epi-ajudazol B 202. 

Next, the Mitsunobu conditions that were successfully employed to give the anti,anti-

isochromanone 175 (scheme 1.40), were trialled. Unfortunately, in this more structurally 

complicated system they were unsuccessful affording only starting material. More forceful 

conditions involving the addition of excess reagents, or elevated temperatures only led to 

decomposition of the starting material (scheme 1.49).[50]  
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Scheme 1.49: Unsuccessful Mitsunobu inversion to yield anti,anti-isochromanone core. 
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2 SYNTHESIS OF PHTHALIDE FRAGMENT 

The initial aim of the project was to develop a more efficient, shorter synthesis of phthalide 

precursor 158, which would then be used as a key building block in the synthesis of the 

ajudazols. The synthesis of phthalide 158 previously established within the group was 

lengthy, consisting of 10 steps, and requiring multiple purifications (scheme 1.33).  

2.1 PREVIOUS WORK 

In 2006, Toney published the synthesis of 7-hydroxy-6-methyl phthalide 157. In Toney’s 

approach, 3-hydroxy-4-methylbenzoic acid 206 was reduced to generate 3-hydroxy-4-

methylbenzyl alcohol 207. Treatment of alcohol 207 with tin (IV) chloride, and 

formaldehyde, gave the desired phthalide 157, with high regioselectivity, albeit in poor yield 

(scheme 2.1).[53] 

 

 

Scheme 2.1: Toney’s synthesis of 7-hydroxy-6-methyl phthalide 157. 

Faced with such close precedent, Toney’s approach was emulated within the group. 

Interestingly, although the borane reduction proceeded in good yield, the lactone formation 

step gave none of the desired phthalide product 157. The only identifiable product was 3-

hydroxy-4-methylbenzaldehyde 208, in 6% yield (scheme 2.2).[50] Toney did report the 

formation of this compound as a side product, however no mention was made of the yield 

obtained.[53] 

 

 

Scheme 2.2: Initial reproduction of Toney’s synthesis of phthalide 157 within the Marquez group. 
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Due to the large discrepancy between the previous efforts within the group and the literature 

procedure, Toney’s synthesis was attempted again. In this case, the borane reduction was 

successful, but low yielding. The subsequent lactone formation was successful resulting in 

the generation of the desired phthalide product in 26% yield (scheme 2.3). Although the 

product was obtained, the low yield, and the lack of reproducibility meant that a new route 

was investigated. 

 

 

Scheme 2.3: Synthesis of 7-hydroxy-6-methyl phthalide 157. 

2.2 ALDER-RICKERT APPROACH 

In 2008, Kuwahara published a synthesis of novel anti-fungal phthalides, using an Alder-

Rickert reaction to generate the poly-substituted aromatic diester 211. Hydrolysis of the 

diester intermediate 211 followed by reduction, completed the synthesis of the phthalide 212 

(scheme 2.4).[54] 

 

 

Scheme 2.4: Kuwahara’s Alder-Rickert approach to phthalide 212. 

Inspired by this tactic, an alternative approach to 7-hydroxy-6-methyl phthalide 157 was 

envisaged. In this new scheme, the target phthalide was thought of as being accessed through 

the demethylation of methoxy phthalide 156, which in turn would be generated from 

hydrolysis and reduction of diester 213. The key diester could be synthesized through an 

Alder-Rickert reaction between cyclohexadiene 214 and dimethyl acetylenedicarboxylate 

(DMAD) 210 (scheme 2.5). 
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Scheme 2.5: Proposed Alder-Rickert approach to 7-hydroxy-6-methyl phthalide 157. 

To test the reaction conditions, a model system was devised in which commercially available 

diene, 1,3-methoxycyclohexyl-1,3-diene 215, was subjected to an Alder-Rickert reaction 

with DMAD. Gratifyingly, this reaction gave 3-methoxy phthalate 216 in quantitative yield. 

The diester 216 was then hydrolysed to give the diacid 217 in 63% yield. Kuwahara’s 

conditions were then applied, and 7-methoxyphthalide 218, was successfully synthesised in 

50% yield, without the need for purification. Unfortunately, demethylation of the crude 

methyl ether 218 failed to yield any of the desired product.[55] However, despite the failure 

of the last step, the validity of this synthetic approach was demonstrated (scheme 2.6). 

 

 

Scheme 2.6: Synthesis of 7-methoxyphthalide 218 using an Alder-Rickert approach. 

With the success of the model system, synthesis of the fully functionalised diene 214 was 

explored. It was envisaged that diene 214 could be generated through the Birch reduction of 

2-methylanisole 220, followed by a double bond isomerisation. Alternatively, it was 

postulated that the 1,4-diene 221 might isomerise in-situ under the Alder-Rickert thermal 

conditions. Unfortunately, treatment of 2-methylanisole 220 with sodium under Birch 

conditions failed to produce the characteristic deep blue metallic colour, and only starting 

material was recovered, regardless of solvent or proton source. Switching the alkali metal to 
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lithium caused the reaction to afford a 5:1 ratio of starting material to product. Switching the 

solvent from THF to Et2O, and removing the proton source, further increased product 

formation, and an optimised 57% yield of the desired 1,4-diene 221 was obtained (table 2-

1).[56] 

 

 

Scheme 2.7: Birch reduction of 220. 

Entry Alkali metal Solvent Proton source Yield SM : Product 

1 Na THF tBuOH - 1:0 

2 Na Et2O - - 1:0 

3 Na THF EtOH - 1:0 

4 Li THF tBuOH - 5:1 

5 Li Et2O - 57% 0:1 

Table 2-1: Birch reduction of 2-methylanisole 220 conditions. 

With the 1,4-diene 221 at hand, the isomerisation was then attempted. Disappointingly, all 

attempts to isomerise the disubstituted double bond to give 1,3-diene 214, proved to be 

unfruitful, thus 1-methoxy-2-methyl-1,4-cyclohexadiene 221 was used in a thermal Alder-

Rickert reaction with DMAD 210. It was hoped that the double bond could isomerise in-

situ, and then undergo the required Alder-Rickert reaction to generate the desired product 

213. Frustratingly, none of the desired compound was isolated, and only 3-methoxy 

phthalate 216 was obtained (scheme 2.8). 

 

 

Scheme 2.8: Alder-Rickert using 1-methoxy-2-methyl-1,4-cyclohexadiene 221 and DMAD 210. 

Formation of 216 could be rationalised by isomerisation of the tetra-substituted double bond 

to generate diene 222, which upon an Alder-Rickert reaction with DMAD 210, affords 

compound 216, with the elimination of propene 224 as shown in figure 2.1. 



61 

 

 

 

Figure 2.1: Mechanism of undesired elimination of propene. 

Next, trans,trans-2,4-hexadien-1-ol 225 was investigated as the diene partner. It was hoped 

that upon cyclisation, the 5-membered lactone could be formed either simultaneously or 

upon basic treatment. Although the thermal cycloaddition did take place, spontaneous 

formation of the lactone did not take place as hoped. Using toluene as the solvent allowed 

isolation of the product in 45% yield after 16 h. Increasing the reaction time to 60 h improved 

the yield slightly to 51%, whilst performing the reaction without solvent gave the product 

226 in 72% after 16 h (scheme 2.9). 

 

 

Scheme 2.9: Synthesis of diene 226.  

Next, conditions were trialled to facilitate the aromatisation and formation of the lactone. 

DDQ was initially used as an oxidant. At room temperature, the oxidation failed to proceed. 

Heating the reaction to either 50 °C or reflux resulted in only recovery of starting material. 

Singaram had reported the synthesis of substituted benzenes via a Diels-Alder reaction, and 

subsequent oxidation using KMnO4 under mild conditions.[57] Using Singaram’s conditions 

failed to give any of the desired product, with only starting material being recovered, as well 

as undesired partial oxidation of the alcohol to the aldehyde. A different approach using 

palladium on carbon and cyclohexene, as a sacrificial hydrogen acceptor, gave no reaction. 

Methanolic K2CO3 also did not yield any of the desired products, and merely led to 

decomposition. 

Keehn had published the use of activated MnO2 to mediate oxidative dehydrogenations on 

very similar substrates.[58] Using refluxing benzene and a Dean-Stark apparatus, treatment 

of diene 226 with ten equivalents of activated MnO2, resulted in formation of the phthalide 
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227 in 12% yield. Reducing the reaction time from 16 h to 4 h, increased the yield of 

phthalide 227 to 70%. A small amount of aldehyde 228 was isolated, where aromatisation 

had occurred and the benzylic alcohol was oxidised, as opposed to forming the lactone 

(scheme 2.10, table 2-2). 

 

 

Scheme 2.10: Synthesis of phthalide 227. 

 

Table 2-2: Oxidation of diene 226. 

 

2.3 [4+2] ESTER TETHERED CYCLOADDITION APPROACH 

Encouraged by the promising results obtained in the Diels-Alder reaction, a new strategy 

was devised. In a new approach, 7-hydroxy-6-methyl phthalide 157, would be accessed 

through the key [4+2] intramolecular cycloaddition of the ester tethered alkyne-diene 229. 

Alkyne 229 would originate from the functionalisation of terminal acetylene 230, which in 

Entry Reagents Temp. (C) Yield 227 (%) Yield 228 (%) 

1 DDQ, toluene rt - - 

2 DDQ, toluene 50 - - 

3 DDQ, toluene 110 - - 

4 KMnO4/Al2O3, acetone 0 - - 

5 Pd/C, Cyclohexene, MeOH rt - - 

7 K2CO3, MeOH rt - - 

8 MnO2, benzene, 16 h 80 12 - 

9 MnO2, benzene, 4 h 80 70 4 
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turn would be generated from the esterification of propiolic acid 231 and trans,trans-2,4-

hexadien-1-ol 225 (scheme 2.11). 

 

 

Scheme 2.11: Intramolecular approach to 7-hydroxy-6-methyl phthalide 157. 

Conditions for the intramolecular [4+2] cycloaddition were inspired by the work of Saito. 

Saito and coworkers reported the use of a cationic rhodium catalyst to mediate the [4+2] 

cycloaddition of ester-tethered 1,3-diene-8-yne derivatives. The resulting dienes were then 

oxidised to the corresponding bicyclic lactones (scheme 2.12).[59]  

 

 

Scheme 2.12: Saito’s Rh(I) catalyzed [4+2] cycloaddition of ester-tethered 1,3-diene-8-yne derivatives. 

Our new approach began with a Steglich esterification between trans-trans -2,4-hexadien-

1-ol 225 and propiolic acid 231 to generate diene-yne 230 in high yield.[59-61] Intramolecular 

[4+2] cycloaddition under Saito’s conditions then proceeded to afford the desired lactone 

234 in good overall yield (scheme 2.13). 
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Scheme 2.13: Synthesis of lactone 234. 

With lactone 234 in hand, it was decided to investigate whether further functionalisation was 

possible. It was hoped a conjugate addition to 234 would allow for the installation of the 

hydroxyl group on the C7 carbon. Thiophenol was initially chosen as the nucleophile, as the 

thioether product could potentially then be oxidised to the corresponding hydroxy group. 

Several sets of conditions were attempted for the conjugate addition utilising thiophenol. 

Unfortunately, this approach proved to be unsuccessful and none of the desired product was 

synthesised (scheme 2.14). 

 

Scheme 2.14: Unsuccessful conjugate addition to 234 using thiophenol. 

Faced with the lack of success in the nucleophilic addition using thiophenol, it was decided 

to investigate the nucleophilic epoxidation of 234, to functionalise the aromatic ring. 

Treatment of lactone 234 with 3M NaOH (aq) and H2O2 afforded the desired epoxide 237, 

albeit in low yield (scheme 2.15). 

 

 

Scheme 2.15: Nucleophilic epoxidation of 234. 

It must be noted that this process was unoptimised and carried out on a small scale. Although 

this reaction provided a potentially useful pathway, it was decided to focus our efforts on 

more step economic approaches. 
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Due to the efficiency of the ester-tethered [4+2] cycloaddition, but the limited success of the 

subsequent functionalisation, it was decided to investigate alternative ways of installing the 

oxygen at the C7 position. In 2003, Dudley and coworkers demonstrated the usefulness of 

strained siletanes as substrates for Tamao-type carbon-silicon oxidation to give alcohols. 

Dudley reported a range of substrates that were stable and readily oxidised to give the 

corresponding alcohols, in good yields (scheme 2.16).[62] 

 

 

Scheme 2.16: Dudley’s oxidation of strained siletanes. 

Thus, a modified approach to the synthesis of phthalide 157 was envisaged in which the 

terminal acetylene 230 was functionalised with a strained siletane ring, before being 

subjected to Saito’s [4+2] cycloaddition conditions.[59] If successful, mild oxidation of the 

resulting siletane 240 should afford the desired phthalide unit 157 (scheme 2.17). 

 

 

Scheme 2.17: Proposed synthesis of 157 using a strained siletane. 

As 1-chloro-1-methylsilacyclobutane was not readily available, TMSCl was used to test the 

compatibility of a silyl group with the cycloaddition conditions. Thus, the coupling of trans-

trans-2,4-hexadien-1-ol 225 and 3-(trimethylsilyl)prop-2-ynoic acid 242 was attempted 

initially using both DCC and HBTU. However, in each case only the desilylated product 230 

was isolated (scheme 2.18). 
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Scheme 2.18: Failed synthesis of TMS-alkyne 243. 

Due to the lack of success with the coupling, it was decided to attempt the cycloaddition 

before the esterification step. Unfortunately, the reaction of diene 225 with alkyne 242 under 

thermal conditions at different concentrations (0.15 M and 0.7 M) failed to give any of the 

desired diene 244 (scheme 2.19). 

 

 

Scheme 2.19: Unsuccessful cycloaddition of 225 and 242. 

Faced with the latest setback, a different approach was attempted in which the esterification 

was carried out before the incorporation of the silyl group. Thus, treatment of acetylene 230 

with LDA followed by capturing the resulting alkyne anion with different chlorosilanes was 

attempted (scheme 2.20). 

 

 

Scheme 2.20: Silylation of 225. 

The newly synthesised silyl acetylenes 245 and 246, were then subjected to Saito’s 

conditions.[59] Disappointingly, this led to decomposition of the starting materials, with none 

of  the cyclised products being observed (scheme 2.21). 
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Scheme 2.21: Unsuccessful cycloaddition of 245 and 246 employing Saito’s conditions. 

The instability of either the silyl acetylenes or the silylated products under Saito’s conditions 

prompted us to consider alternative reaction conditions. We were particularly interested in 

moving away from the use of AgSbF6 to minimise the possible loss of the silyl groups.  

Nicolaou had reported the use of an ester-tethered silyl substituted alkyne-diene substrate, 

in an intramolecular [4+2] cycloaddition to access tricyclic intermediate 250 as part of his 

synthesis of forskolin (scheme 2.22).[63] 

 

Scheme 2.22: Nicolaou’s ester tethered silyl substituted alkyne-diene 249 [4+2] cycloaddition. 

Thus, it was hoped that a thermal [4+2] cycloaddition would therefore allow the cyclisation 

of substrates 245 and 246. In each case however, the substrate was refluxed in toluene for 

24 h with no desired products being observed, and only starting material detected. Attempts 

to push the reaction forward by increasing the temperature, changing the solvent, and using 

the microwave initiator proved unsuccessful (table 2-3). 

 

Scheme 2.23: Unsuccessful cycloaddition of 245 and 246. 

Entry Solvent Temperature (°C) Time (h) 247 yield (%) 248 yield (%) 

1 toluene 111 24 SM SM 

2 toluene 160 (sealed vial) 24 SM SM 

3 DMF 200 (MW) 3 decomposition decomposition 

Table 2-3: Unsuccessful cycloaddition of 245 and 246. 
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Previous work in the group had demonstrated that the oxidative rearrangement followed a 

convergent/divergent approach in which both the C3 and C7 OTBS substituted phthalides 

converged into a common isobenzofuran intermediate which then would react 

regioselectively due to the presence of the TBS group (scheme 1.32).[48] 

Thus, the alternative 4-hydroxy-5-methyl phthalide 251 was envisaged as originating from 

the esterification of 2,4-hexadienoic acid 255 with propargyl alcohol 254, to give ester-

tethered alkyne-diene 253. Alkyne 253 would then be functionalised and a [4+2] 

cycloaddition should yield the desired phthalide 251 (scheme 2.24). 

 

 

Scheme 2.24: Proposed synthesis of 4-hydroxy-5-methyl phthalide 251. 

Steglich esterification of 2,4-hexadienoic acid 255 and propargyl alcohol 254 gave the 

desired ester 253, in quantitative yield.[61] Next, the terminal alkyne was deprotonated with 

LDA and the resulting anion was trapped with TBSCl, to yield the silylated product 256 

(scheme 2.25). 

 

 

Scheme 2.25: Synthesis of alkyne 256. 

Saito reported that the cycloaddition of diene-yne 256 took place at 50 °C, and the product 

was oxidised using DDQ to give the aromatic phthalide product 258 (scheme 2.26). 
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Scheme 2.26: Saito’s synthesis of phthalide 258. 

In our hands, the cyclisation could not be repeated, with no reaction taking place under the 

reported conditions. However, heating the reaction mixture to reflux for 72 h yielded the 

fully aromatic product in low yield (19%), negating the need for the additional oxidation 

step. Encouragingly, when the reaction was undertaken in the microwave, the yield was 

improved to 32% (61% based on recovery of starting material) (scheme 2.27, table 2-4). 

 

 

Scheme 2.27. Synthesis of phthalide 258. 

Entry Temperature (°C) Time (h) Yield 258 (%) 

1 50 48 - 

2 78 72 19 

3 100 (MW) 2 32 (61 brsm) 

Table 2-4: Cycloaddition conditions. 

Despite this partial success, there was no precedent for the oxidation of an aromatic bound 

TBS-group to the corresponding phenol. Thus, the TBS group was replaced with a DMPS 

group. It was hoped that the DMPS group would allow the Fleming-Tamao oxidation to take 

place and generate the desired phenol functionality. 

Synthetically, ester-tethered alkyne-diene 253, was treated with LDA and then DMPSCl to 

give the desired silane 259. Frustratingly, when silane 259 was used a substrate under Saito’s 

conditions no reaction took place under all attempted reaction conditions (scheme 2.28). 
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Scheme 2.28: Synthesis of diene-yne 259 and failed cyclisation. 

The disappointing results obtained by substitution of the alkyne with silicon groups meant 

that alternative functionalities were required.  

Substitution with an acetyl group was trialled next as an alternative, as this would make the 

alkyne electron deficient, which should facilitate the cycloaddition reaction. Once the 

cyclisation was complete a Baeyer-Villiger type oxidation, followed by hydrolysis, could be 

employed to install the hydroxy group. 

Initial attempts using either KHMDS or nBuLi to deprotonate the alkyne, followed by 

dropwise addition of acetyl chloride proved to be unfruitful, and no formation of the desired 

product was observed. 

Cox and coworkers reported the palladium catalysed coupling of acyl chlorides with terminal 

alkynes, to generate alkynones in good yield.[64] Unfortunately, Cox’s conditions failed to 

generate any of the desired product when applied to the coupling of alkyne 230 with acetyl 

chloride. A test reaction using 4-nitrobenzoyl chloride, to investigate whether acetyl chloride 

was unsuitable as a reagent under the reaction conditions, also failed to yield any of the 

desired product, with only decomposition taking place. 

In 1956, Scheiber demonstrated the preparation of acetylenic ketones using silver acetylides 

as intermediates.[65] This methodology negated the need for a strong base for the 

deprotonation of the alkyne unit. In our hands, treatment of alkyne 230 with silver nitrate 

allowed the formation of the putative silver acetylide intermediate as a white precipitate. 

Disappointingly, none of the desired product was obtained using acetyl chloride under 

refluxing conditions (table 2-5). 
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Scheme 2.29: Attempted synthesis of ester 261. 

Entry Conditions Yield 261 (%) 

1 KHMDS, THF, -78 °C - 

2 nBuLi, THF, -78 °C - 

3 Pd(PPh3)2Cl2, CuI, Et3N, THF, rt decomposition 

4 (i) AgNO3, H2O, MeOH, NH4OH (ii) CCl4, 77 °C - 

Table 2-5:Acylation of acetylene 230. 

At this point, it was unclear as to whether the product was too unstable, or was not being 

formed under any of the sets of conditions investigated. Nevertheless, an alternative 

approach was required. 

It was theorised that a conjugate addition to the alkyne unit using benzyl alcohol would give 

enol ether 263. Enol ether 263 would then be able to undergo a cycloaddition, followed by 

subsequent oxidation/aromatisation with concomitant removal of the benzyl group to yield 

phthalide 157 (scheme 2.30). 

 

 

Scheme 2.30: Enol ether Diels Alder approach to phthalide 157. 

The conjugate addition was attempted using conditions employed by Procter, who had 

demonstrated the phosphine-catalysed conjugate addition of several alcohols, including 

benzyl alcohol, to methyl propiolate in excellent yield.[66] Using tributylphosphine as the 

catalyst, and benzyl alcohol as the nucleophile the desired product 263 was isolated, 
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exclusively as the E-isomer, in poor yield of 27%, however enough material was isolated to 

investigate the following steps (scheme 2.31). 

 

 

Scheme 2.31: Phosphine-catalysed conjugate addition.  

It was hoped that enol ether 263 would undergo a thermal [4+2] cycloaddition to give lactone 

262. However, under reflux in toluene for 24 h, no formation of the desired products took 

place and only starting material was observed. Frustratingly, all attempts to push the reaction 

forward by increasing the temperature, reaction time, running the reaction neat, and in the 

microwave initiator proved to be unsuccessful (table 2-6). 

  

 

Scheme 2.32: Unsuccessful cyclisation of enol ether 262. 

Entry Solvent Temperature (°C) Time (h) Yield (%) 

1 toluene 111 24 - 

2 toluene 120 (sealed tube) 72 - 

3 toluene 160 (sealed tube) 72 - 

4 neat 160 (sealed tube) 72 - 

5 DMF 170 (MW) 2 - 

Table 2-6: Attempted cyclisation conditions of enol ether 262. 

Failure of the benzyl ether, made us consider a different handle which would be stable to the 

cyclisation conditions, and could then be converted into the required phenol group. 

In 1992, Leroy adapted conditions originally developed by Hofmeister and coworkers for 

bromination of 17-ethynyl steroids to prepare 3-bromopropiolic esters.[67, 68] Employing 

Leroy’s conditions, using N-bromosuccinimide and silver nitrate in acetone, the brominated 

alkyne 264 was generated in excellent yield, without the need for purification (scheme 2.33).  
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Scheme 2.33: Bromination of terminal acetylene 264. 

With 264 in hand, the Rh-catalysed [4+2] cycloaddition utilising Saito’s conditions 

furnished the desired cyclic product 265 in good yield. Following this success, it was decided 

to attempt the thermal cyclisation in refluxing toluene to investigate whether the use of a 

catalyst was necessary. Pleasingly, the same cyclised product 265 was isolated via this 

method, in similar yield. The corresponding phthalide 266 was then obtained upon 

aromatisation, using DDQ in benzene (scheme 2.34) 

 

 

Scheme 2.34: Synthesis of bromo-phthalide 266. 

Following the successful synthesis of bromo-phthalide 266, it was hoped that the cyclisation 

and aromatisation steps could be optimised, or preferably, combined. The bromo-alkyne 

264, was left to reflux in toluene overnight, before adding activated MnO2. Excitingly. this 

combination successfully yielded the desired bromo-phthalide 266 in 78% yield, in a one 

pot process without the need for purification (scheme 2.35). 

 

 

Scheme 2.35: One-pot cyclisation-oxidation of bromo-alkyne 266. 

It was envisaged that not only could 266 be used as not only an intermediate in the synthesis 

of the phthalan 159, but also as an intermediate in the synthesis of a number of potential 

analogues of ajudazol B. To test the use of the bromide as a synthetic handle, a Suzuki 
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coupling with phenylboronic acid was attempted. Satisfyingly, the coupling proceeded in 

excellent yield to give the desired product 267 (scheme 2.36). 

 

 

Scheme 2.36: Synthesis of 267 via Suzuki coupling. 

Next, the conditions required to form the necessary phthalan units were tested. 

Encouragingly, the reduction, followed by methylation, gave the desired phthalan product 

268 in reasonable yield (scheme 2.37). 

 

 

Scheme 2.37: Synthesis of bromo-phthalan 266. 

With bromide 266 in hand, and its synthetic utility demonstrated, conditions to convert the 

bromide to the phenol whilst conserving the lactone functionality were explored. Buchwald, 

in 2008, reported conditions for the palladium catalysed borylation of aryl halides with 

pinacol borane.[37] These conditions successfully yielded pinacol borane 269, which was 

then oxidised to the free phenol using hydrogen peroxide and sodium hydroxide to give 157 

(scheme 2.38). These reactions were not optimised. 

  

 

Scheme 2.38: Synthesis of 7-hydroxy-6-methyl phthalide 157 from bromo-phthalide 266. 
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This approach, although resulting in the successful synthesis of 7-hydroxy-6-methyl 

phthalide 157, was not developed further due to time constraints, and the simultaneous 

development of an alternative, more step economic approach. 

2.4 C-H ACTIVATION APPROACH 

In 2009, Yu reported the palladium (II)-catalysed ortho-alkylation of benzoic acids with 

alkyl dihalides.[69] Mechanistically, the aryl C-H bond ortho to the benzoic acid is activated 

and an alkylation takes place, followed by an intramolecular SN2 reaction to form the lactone 

product. Yu described the use of dichloroethane as solvent, and electrophile, to give the 6-

membered lactone, whilst dibromomethane yielded the 5-membered lactone (scheme 2.39). 

 

 

Scheme 2.39: Yu’s Pd(II)-catalysed ortho-alkylation of benzoic acids. 

This opened the possibility of a potentially more efficient approach to the required phthalan 

159. In the new approach, it was thought that 7-hydroxy-6-methyl phthalide 157 could be 

synthesised from 7-methoxy-6-methyl phthalide 156 via deprotection of the methyl ether . 

The phthalide core would in turn be accessed via Yu’s C-H activation protocol from 2-

methoxy-3-methyl benzoic acid 153.[55, 59] Acid 153 is commercially available, but very 

expensive so it would be synthesised from 3-methylsalicylic acid 87 by methylation of the 

phenol group (scheme 2.40). 

 

 

Scheme 2.40: Proposed synthesis of phthalide 157 via Yu’s ortho-alkylation of benzoic acids protocol. 

Synthetically, 3-methylsalicylic acid 87 was treated with dimethyl sulfate and potassium 

carbonate in refluxing acetone, to produce ester 272 in quantitative yield. Ester 272 was then 

saponified to give the desired 2-methoxy-3-methylbenzoic acid 153, in excellent overall 

yield (scheme 2.41).[48] 
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Scheme 2.41: Synthesis of 2-methoxy-3-methyl benzoic acid 153. 

With 2-methoxy-3-methyl benzoic acid 153 in hand, the Pd (II)- catalysed ortho-alkylation 

was investigated (scheme 2.42). Each reaction was carried out in a sealed reaction tube, and 

the reagents were added before the reaction vessel was lowered into a pre-heated oil bath. 

Using Yu’s reported conditions, 10 mol% Pd(OAc)2 and 36 h reaction time, lactone 156 was 

obtained in a very poor 22% yield. However, when the catalyst loading was increased to 20 

mol% the yield rose significantly to 72%. Doubling the reaction time, to 72 h, increased the 

yield further to 84%. When the reaction time was increased further to 88 h, a 10 mol% 

loading of Pd(OAc)2 gave the product in 88% yield. Further increase in catalyst loading to 

20 mol% resulted in negligible increases in yield. Each of these results were obtained on a 

multi-gram scale (table 2-7). 

 

 

Scheme 2.42: C-H activation synthesis of 7-methoxy-6-methyl phthalide 156. 

Entry Catalyst loading (mol%) Time (h) Yield (%) 

1 10 36 22 

2 20 36 72 

3 20 72 84 

4 10 88 88 

5 20 88 89 

Table 2-7: C-H activation synthesis of 7-methoxy-6-methyl phthalide 156. 

To shorten the synthesis even further, it was investigated to determine whether this 

methodology would allow access to TBS-protected phthalide 158, directly from the TBS 

protected phenol-carboxylic acid 273. The TBS protected intermediate could potentially be 

accessed from 3-methylsalicylic acid 87, further reducing the synthesis to two steps (scheme 

2.43). 



77 

 

 

 

Scheme 2.43: Proposed synthesis of phthalide 158 using Yu’s C-H activation methodology. 

Unfortunately, no literature procedure for synthesis of the acid intermediate 273 exists, and 

all attempts to synthesise it were unsuccessful. This was thought to be due to migration of 

the silyl group, from the phenol to the acid group. This lead to inseparable mixtures of 

products (scheme 2.44). 

 

 

Scheme 2.44: Unsuccessful synthesis of acid 273. 

Thus, our approach reverted to the use of 7-methoxy-6-methyl phthalide 156 intermediate 

which was demethylated in excellent yield.[55] The resulting free phenol was then TBS-

protected to complete the synthesis of phthalide 158 (scheme 2.45). 

 

 

Scheme 2.45: Synthesis of TBS-phthalide 158. 

2.5 SUMMARY 

Two new routes for the synthesis of phthalide 158 have been established: via an ester-

tethered [4+2] cycloaddition or via a Pd (II)-catalysed C-H activation. 

The cycloaddition route successfully furnished 7-hydroxy-6-methyl phthalide 156 in 5 

synthetic steps from 2,4-hexadien-1-ol 225, in 17% overall yield, and TBS-protected 

phthalide 158 in 15% overall yield. This was previously achieved in 10 synthetic steps. 
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Additonally, the bromide intermediate 266, allows for potential diversification through its 

use as a synthetic handle in the synthesis of analogues. 

 

Scheme 2.46: Ester-tethered [4+2] cycloaddition route to 158. 

The second approach culminated in the synthesis of 7-methoxy-6-methyl phthalide 156 in 3 

synthetic steps from 3-methylsalicylic acid 87, in 76% overall yield, or 65% to the TBS-

protected phthalide 158 in 5 synthetic steps, in a multi-gram scale. This is a marked increase 

in efficiency from the 10 synthetic steps and 37% overall yield reported previously. 

 

 

Scheme 2.47: C-H activation route to 158. 
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3 SYNTHESIS OF EASTERN FRAGMENT 

As in previous work completed within the group, it was decided to use vinyl iodide 40 as 

the eastern fragment of the ajudazols, inspired by Rizzacasa’s initial work.[29, 50]  

Retrosynthetically it was envisaged that the vinyl iodide eastern fragment 40 could be 

obtained via an amide coupling between (E)-3-methoxybutenoic acid 31 and amine 39. The 

amine intermediate 39 in turn, would be synthesised from reduction of ester 38, followed by 

conversion of the corresponding alcohol to the bromide, and amination using methylamine. 

Ester 38 could be generated from oxidation and Wittig olefination of vinyl iodide 36 (scheme 

3.1). 

 

 

Scheme 3.1: Proposed synthesis of eastern fragment 40. 

Additionally, it was expected that vinyl iodide 40 could be converted the corresponding vinyl 

stannane 274 or vinyl boronic acid 275 to provide the route with more flexibility if needed 

(scheme 3.2). 

 

 

Scheme 3.2: Possible conversion of eastern fragment 40 to alternatives 274 and 275. 

3.1 SYNTHESIS 

The synthesis began as before, with pent-4-yn-1-ol 276 being converted into iodo-alkyne 

277 in very good yield, as reported by Yang.[70] Reduction to the Z-vinyl iodide had 

previously been achieved in the group using dipotassium azodicarboxylate as a source of 

diimide. However, on repetition of this methodology, this reaction proved to be low yielding 
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and required a lengthy work up procedure. Therefore o-nitrobenzenesulfonylhydrazide 

(NBSH) 278 was investigated as an alternative in-situ source of diimide for the reduction. 

NBSH 278 was synthesised according to Myers’ procedure, and used immediately for the 

reduction step.[71] Pleasingly, this reagent was easier to handle and the procedure more user-

friendly. Furthermore, the yield was also improved, giving the desired Z-vinyl iodide 36 with 

complete selectivity in 66% yield (scheme 3.3). 

 

 

Scheme 3.3: Synthesis of vinyl iodide 36. 

Oxidation of alcohol 36 using PCC followed by immediate treatment of the resultant 

aldehyde with methyl (triphenylphosphoranylidene)acetate 37, gave the desired E-

conjugated ester product 38, as a single double bond isomer. DIBALH reduction of the ester 

to the corresponding alcohol then proceeded in excellent yield. Finally, conversion of the 

alcohol to the bromide, using Appel conditions, gave the key bromide intermediate 279 in 

very high yield for the entire sequence (scheme 3.4). 

 

 

Scheme 3.4: Synthesis of bromide 279. 

The synthesis of (E)-3-methoxybutenoic acid 31 began with treatment of neat trimethyl 

orthoformate with neat methyl acetoacetate, under acidic conditions to generate ester 280. 
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Ester 280 was then hydrolysed using LiOH to give acid 31, exclusively as the (E)-isomer 

(scheme 3.5).[30, 32]  

 

Scheme 3.5: Synthesis of (E)-3-methoxybutenoic acid 31.a 

The synthesis of the amine coupling partner began with allylic bromide 279 which was 

treated with methyl amine to yield the desired secondary amine 39. Coupling of amine 39 

with (E)-3-methoxybutenoic acid 31, using HBTU completed the efficient synthesis of the 

eastern fragment 40 (scheme 3.6). 

 

Scheme 3.6: Completion of eastern fragment synthesis. 

3.2 SUMMARY 

The eastern fragment, vinyl iodide 40, was successfully synthesised starting from 4-pentyn-

1-ol, in 8 steps and 7% overall yield. The procedure allows for scale-up during the synthesis. 

 

 

Figure 3.1: Eastern fragment 40. 

Additionally, should vinyl iodide 40 prove to be an unsuitable coupling partner, Egan had 

demonstrated previously that it could be converted to stannane 274.[28, 50] 

 

Figure 3.2: Alternative eastern fragment 274. 

                                                 
a (E)-3-Methoxybutenoic acid synthesised by Dr. B. Egan 
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4 SYNTHESIS OF OXAZOLE ALDEHYDE FRAGMENT 

The initial goals of the project required the synthesis of enantiomerically pure oxazole 281. 

Oxazole 281 being the enantiomer of the oxazole unit previously synthesised in the group 

(182 scheme 1.45). Thus, it was decided to mirror the approach initially developed.  

Oxazole 281 was envisioned as being generated from the oxidation and cyclodehydration of 

β-hydroxyamide 282, followed by removal of the silyl group and oxidation. Amide 282 

could be generated from the coupling of acid (R)-194 and amine 283, then selective removal 

of the TBS group. Amine 283 could be obtained from olefin (R)-186, via dihydroxylation, 

and functional group manipulation (scheme 4.1). 

 

 

Scheme 4.1: Proposed synthesis of oxazole-aldehyde 281. 

 

4.1 SYNTHESIS OF OLEFIN FRAGMENT (R)-186 

The synthesis of oxazole-aldehyde 281 began with known alcohol (R)-184, which was 

derived from methyl (S)-(+)-3-hydroxy-2-methylpropionate ((S)-Roche ester), which was 

converted to the iodide (S)-185 in excellent yield. Negishi coupling of iodide (S)-185 with 

vinyl bromide then gave the desired terminal olefin (R)-186, albeit in variable yields (scheme 

4.2).[51]  
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Scheme 4.2: Synthesis of olefin (R)-186 via Negishi coupling. 

The Negishi approach delivered alkene (R)-186 in good yield on a small scale, however 

when attempted on a multi-gram scale, the yield depreciated significantly and was 

inconsistent. Due to this lack of reproducibility, an alternative approach to the synthesis of 

alkene (R)-186 was investigated. 

In an alternative approach, (1S,2S)-(+)-pseudoephedrine 284 was propionylated to give 

amide 285. Amide 285 was then used as the chiral auxiliary for a Myers’ diastereoselective 

alkylation, using allyl bromide.[72, 73] Gratifyingly, the desired olefin 286 was isolated in 

quantitative yield as a single diastereomer (scheme 4.3). 

 

Scheme 4.3: Myers’ approach to the synthesis of olefin 286. 

With diasteromerically pure amide 286 in hand, the next step was to generate the 

corresponding alcohol, which would then be TBDPS-protected to give the desired unit (R)-

186. The alkylated pseudoephedrine amide 286 was treated with a mixture of 3M NaOH 

(aq), methanol, and tert-butanol to give the desired acid 287, which was then reduced to the 

primary alcohol using lithium aluminium hydride.[73, 74] Subsequent TBDPS-protection gave 

the desired silyl ether (R)-186 (scheme 4.4).  

 

 

Scheme 4.4: Basic hydrolysis of amide 286 in synthesis of (R)-186. 
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As an alternative approach, the reduction of amide 286 directly using lithium ammonia-

borane was carried out to yield alcohol 287.[73] The crude volatile alcohol 287 was then 

immediately TBDPS-protected, to give the silyl ether (R)-186 in 67% yield over 2 steps 

(scheme 4.5). 

 

 

Scheme 4.5: LAB reduction of amide 286 in synthesis of (R)-186. 

Although the difference in yield between the two approaches to olefin (R)-186  is negligible, 

the ease of handling and cheaper reagents meant that the hydrolysis-reduction approach was 

the preferred method.  

4.2 SYNTHESIS OF ACID FRAGMENT (R)-194 

The synthesis of (R)-4-(benzyloxy)-2-methylbutanoic acid (R)-194 also began with 

propionylated (1S,2S)-(+)-pseudoephedrine 285 which was alkylated according to Myers’ 

procedure using the known iodide 192.[52, 73] After alkylation, amide 289 underwent mild 

hydrolysis, using MsOH to facilitate N,O-acyl transfer followed by saponification to give 

the desired enantiomerically pure acid (R)-194 (scheme 4.6).b 

 

 

Scheme 4.6: Synthesis of (R)-4-(benzyloxy)-2-methylbutanoic acid. 

 

                                                 
b Synthesis of (R)-4-(benzyloxy)-2-methylbutanoic acid carried out by Dr. Colin Pearson 
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4.3 COMPLETION OF OXAZOLE FRAGMENT 281 

With both olefin (R)-186 and acid (R)-194 fragments in hand, completion of the oxazole 

fragment was attempted. The sequence began with an Upjohn dihydroxylation of olefin (R)-

186 which gave the desired diol 290, in quantitative yield.[75] The product was isolated as a 

3:2 mixture of diastereomers, that co-eluted during flash chromatography. This was 

inconsequential as the cyclodehydration step to form the oxazole would lead to the formation 

of an sp2 centre, so the newly introduced stereocentre would be lost at that point. However, 

the NMR spectra for the mixture of diastereomers was very complex, and more so once the 

amide bond was introduced and rotamers were formed. 

Asymmetric dihydroxylation procedures were investigated to see if the NMR spectra could 

be simplified. Sharpless asymmetric dihydroxylation was performed using both 

commercially available AD-mix-β, as well as using the individual reagents.[76, 77] 

Disappointingly, the selectivity in either case was poor (d.r. approximately 2.7:1 in both 

cases), and the yield for the transformation dropped slightly, to 86% and 93% respectively, 

compared to the racemic procedure. The poor selectivity obtained meant that the NMR 

spectra were no easier to interpret, and as the introduction of chirality was unnecessary, the 

Upjohn dihydroxylation remained the preferred method (scheme 4.7). 

 

 

Scheme 4.7: Dihydroxylation in synthesis of diol 290. 

Regioselective silylation of the primary alcohol using TBSCl, followed by mesylation of the 

free secondary alcohol gave mesylate 291 in near quantitative yield. Displacement of the 

mesylate using sodium azide, followed by reduction of the azide intermediate using 

palladium on charcoal gave amine 292 in good yield. Staudinger conditions were also 

explored for the azide reduction, however the yield of amine 292 produced decreased 

significantly.[78] The newly generated amine 292 was then coupled with the enantiomerically 

pure acid (R)-194 to generate amide 293, as a mixture of diastereomers. 

Selective deprotection of the primary TBS group, whilst leaving the primary TBDPS group 

in place, was successfully realised using PPTS in 88% yield.[79] However, the reaction was 

sluggish and took four days to reach completion. Switching to the stronger CSA decreased 

the reaction time to four hours, however the yield decreased to 62% (scheme 4.8).[80]  
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Scheme 4.8: Synthesis of β-hydroxyamide 293. 

With β-hydroxyamide 293 in hand, we focused on the generation of the required oxazole 

unit. Unfortunately, the initial oxidation of β-hydroxyamide 293 to the corresponding β-

formylamide proved to be troublesome. Use of a Swern oxidation proved unreliable with 

63% as the best isolated yield, however, there was no need for chromatographic purification. 

Switching to Dess-Martin oxidation conditions resulted in a slight improvement in yield  

(69%) but column purification of the product was necessary.[81] The best result over the two 

steps was obtained by oxidation of alcohol 293 under Swern conditions, and then 

immediately subjecting the resulting crude aldehyde to the Forsyth modification of the Wipf 

cyclodehydration protocol.[34, 35, 82] Using this combination, oxazole 295 was generated in 

consistent and reliable yields. 

Removal of the TBDPS group using TBAF gave a reasonable, but lower than expected yield 

of alcohol 296 (77%). The use of alternative sources of fluoride failed to increase the 

efficiency of the deprotection, with TASF giving a disappointing 66% yield of the free 

alcohol.[83] Mild oxidation using TEMPO and BAIB gave the desired aldehyde, and 

completed the synthesis of oxazole-aldehyde 281 (scheme 4.9). 
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Scheme 4.9: Synthesis of oxazole-aldehyde 281. 

 

4.4 SUMMARY 

The desired oxazole fragment was successfully synthesised starting from (2R)-3-((tert-

butyldiphenylsilyl)oxy)-2-methylpropan-1-ol (R)-184. The synthetic sequence is 16 steps 

long and can reliably generate oxazole-aldehyde 281 in 15% overall yield. 

 

 

Figure 4.1: Oxazole-aldehyde 281. 

With the completion of the synthesis of oxazole-aldehyde 281, efforts were then focused on 

the synthesis of the isochromanone core of ajudazol B, using the isobenzofuran oxidative 

rearrangement approach. 
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5  OXIDATIVE REARRANGEMENT INITIAL WORK 

The next step in the proposed synthesis towards ajudazol B, was the synthesis of the 

isochromanone core. It was envisioned that the isochromanone core 297 could be generated 

through the reduction of the keto-lactone intermediate 298. Keto-lactone 298 being formed 

through the oxidation of lactol 299, which in turn could be obtained through the oxidative 

rearrangement of α-hydroxyisobenzofuran intermediate 300, produced using phthalan 159 

and aldehyde 281 (scheme 5.1). 

 

 

Scheme 5.1: Retrosynthesis of isochromanone 297. 

5.1 COMPLETION OF PHTHALAN FRAGMENT 

The primary task, before the oxidative rearrangement process could be carried out, was the 

completion of the synthesis of the phthalan fragment 159. TBS-phthalide 158 was to be 

reduced, and the resultant lactol intermediate methylated to give the key phthalan unit 159. 

The reduction-methylation approach was initially tested on phthalide 301. Using CH2Cl2 as 

the solvent, as reported in previous work, proved to be extremely problematic. Switching to 

toluene, and running the reaction at a 0.06 M concentration, led to an increase in 

reproducibility. It was eventually found that omitting the work up after the DIBALH 
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reduction step, and by adding the methanol and acid in a one-pot process increased the yield 

of phthalan 119 (scheme 5.2). 

 

 

Scheme 5.2: Synthesis of phthalan 119. 

This optimised approach was then attempted for the synthesis of phthalan 159, from 

phthalide 158. The two-step, and one-pot process, proved to be extremely temperamental. 

In some instances, none of the desired product was isolated, and the sole product obtained 

was diol 303. When the acid was switched from pTsOH to CSA, the yield was low. Reverting 

to CH2Cl2 as the solvent gave an even lower yield of 48%. Changing the proton source to 

PPTS proved to be high yielding and reproducible (scheme 5.3, table 5-1). 

 

 

Scheme 5.3: Synthesis of phthalan 159. 

Entry Conditions Diol Yield 159 (%) 

1 1. DIBALH, toluene, -78 °C 2. pTsOH, MeOH Y 0 – 68 

2 DIBALH, toluene, -78 °C, then pTsOH, MeOH Y 0 – 54 

3 1. DIBALH, toluene, -78 °C 2. CSA, MeOH Y 49 

4 1. DIBALH, CH2Cl2, -78 °C 2. pTsOH, MeOH Y 48 

5 1. DIBALH, toluene, -78 °C 2. PPTS, MeOH N 88 

Table 5-1: Conditions attempted in synthesis of 159. 

With phthalan 159 in hand, the oxidative rearrangement procedure was executed, using 

isobutyraldehyde 121 as a model aldehyde. The initial attempt successfully furnished 

isochromanone 160, but in a very poor 15% yield over the four steps, compared with 51% 

yield, reported by Egan (scheme 5.4).[48, 50] 
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Scheme 5.4: Synthesis of isochromanone 160. 

Based on the low yield obtained, it was decided to attempt a second model substrate, rather 

than using the precious aldehyde 281. Surprisingly, reaction of phthalan 159 with oxazole-

aldehyde 133 under the oxidative rearrangement conditions failed to generate any of the 

desired product 304 (scheme 5.5). 

 

 

Scheme 5.5: Unsuccessful synthesis of 304. 

Due to the vastly reduced yield in repeating the synthesis of isochromanone 160, and the 

failure to synthesise keto-lactone 304, the oxidative rearrangement procedure was 

scrutinised, and the reasons for the discrepancies in yield identified. 

5.2  INVESTIGATION OF REARRANGEMENT 

As part of the optimisation work, the unsubstituted phthalan 119 and isobutyraldehyde 121 

were used as model units. The intial attempt using previously reported conditions, gave the 

keto-lactone 176 in 34% yield, compared to the reported yield in previous work of 79%. 

In the general procedure for the oxidative rearrangement, the putative deprotonation takes 

place at 0 °C. As part of our preliminary investigations, this was lowered to -78 °C to ensure 

the isobenzofuran anion was not decomposing before addition of the aldehyde. This change 

however, failed to affect the yield of the reaction. 
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Two sources of anhydrous THF were used: the in-house solvent purification system (SPS), 

and anhydrous THF was purchased from Acros Organics®. The yield increased using the 

solvent from the external supplier, but not appreciably enough to explain the decrease in 

yield from previous work (table 5-2). From this point onwards, anhydrous THF used in the 

rearrangement procedure was thoroughly degassed, using the freeze-pump-thaw method. 

 

 

Scheme 5.6: Synthesis of keto-lactone 176. 

Entry THF source MeLi addition Yield (%) 

1 SPS 0 °C 34 

2 SPS -78 °C 33 

3 Acros 0 °C 51 

Table 5-2: Conditions used in the synthesis of keto-lactone 176. 

There were several reasons besides the source of the solvent which could be responsible for 

the low yield obtained for the synthesis of the keto-lactone product 176. There was concern 

that the keto-lactol or keto-lactone intermediates would be unstable either during the reaction 

or purification conditions. Thus, the decision was made to test the stability of the keto-lactol 

intermediates. 

If the keto-lactol was stable, the oxidation step would not have to be undertaken immediately 

and different oxidants could be investigated, without having to carry out the entire sequence 

on every occasion. Synthesis of the model keto-lactol 305 was achieved, using the 

unsubstituted phthalan 119 and isobutyraldehyde 121, in quantitative crude yield (scheme 

5.7). 

 



92 

 

 

Scheme 5.7: Synthesis of keto-lactol 305. 

To check the stability of the lactol product 305, a crude NMR sample was prepared, and 

measurements taken at 0, 7, 15, and 120 h. Encouragingly, there were no visible signs of 

degradation even after 120 h, so it was deemed that the lactol 305 was stable enough to be 

stored in the freezer, thus allowing the examination of different oxidation conditions (figure 

5.1). 

 

Figure 5.1: NMR spectra of lactol 305 over time. 

Preliminary studies using TEMPO/BAIB oxidation gave the desired keto-lactone 176 in 

60% yield. When the aqueous work up was omitted, and the crude product dry-loaded onto 

silica before flash chromatography, the yield was increased to 80%, equal to that as 

demonstrated by Egan in previous work.[50] 

TPAP, has been used for the oxidation of lactols to lactones in several natural product 

syntheses. Disappointingly, use of TPAP resulted in decomposition of the lactol 305, with 

no product formation being observed.[84, 85] 

PCC and MnO2 were also trialled, as they would require a simple filtration as opposed to 

flash chromatography for purification. However, despite the synthetic ease of the 

procedures, the yields were inferior, giving a 45% and 13% yield of 305 respectively 

(scheme 5.8, table 5-3). 
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Scheme 5.8: Synthesis of keto-lactone 176. 

Entry  Oxidant Yield 176 (%) 

1  TEMPO, BAIB 60 

2  TEMPO, BAIB (no aq work up) 80 

3  TPAP, NMO decomposition 

4  PCC 45 

5  MnO2 13 

Table 5-3: Oxidation conditions used in synthesis of keto-lactone 176. 

It was decided that TEMPO/BAIB conditions followed by a non-aqueous work-up were the 

best oxidation conditions. Finally, reduction of the keto-lactone 176 using sodium 

borohydride, gave solely the syn-isochromanone 177, in good yield after purification 

(scheme 5.9). 

 

 

Scheme 5.9: Synthesis of isochromanone 177. 

With the new results and optimised conditions, the methodology was applied towards the 

total synthesis of ajudazol B. 

5.3  OXIDATIVE REARRANGEMENT USING OXAZOLE-ALDEHYDE 281 

Using the optimised procedure, phthalan 159 was deprotonated and the resulting 

isobenzofuran anion was treated with oxazole-aldehyde 281 to generate the keto-lactol 

intermediate, as observed in the crude NMR spectrum. Unfortunately, oxidation of the crude 

lactol using TEMPO/BAIB was sluggish and did not go to completion, requiring extensive 

purification to yield the keto-lactone intermediate. Luche reduction, as used in previous 
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studies, gave the desired isochromanone products as a 3:2 mixture of syn,anti- and syn,syn-

diastereomers, 297 and 306, inseparable by flash chromatography, in a very disappointing 

9% yield (scheme 5.10). 

 

 

Scheme 5.10: Synthesis of isochromanones 297 and 306. 

5.4 SUMMARY 

As expected the level of water contained in the solvent was crucial to the successful outcome 

of the isobenzofuran rearrangement, however, this could be easily addressed by changing 

the source of the THF. 

More significantly, the stability of the keto-lactol intermediates was also explored. 

Interestingly, the keto-lactols were determined to be more stable than previously thought, 

which opened the possibility of exploring different oxidation conditions for the generation 

of the keto-lactones and gives the rearrangement more flexibility and scope. 

The oxidative conditions for the formation of the keto-lactone units were also explored. 

Crucially, the keto-lactones are unstable and extensive purification is detrimental to the yield 

obtained. 

Unfortunately, in the route towards ent-8-epi-ajudazol B, with the isochromanone core in 

place the three steps required to install the alkyne functionality gave a relatively poor overall 

yield of 36%. Additionally, the Ohira-Bestmann homologation step also led to a significant 

amount of ring-contracted lactone product 200 (scheme 5.11). 
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Scheme 5.11: Egan’s synthesis of acetylene 199. 

The slow oxidation of the keto-lactol intermediate, combined with the poor yield in previous 

work for the transformation of the benzyl ether 181 into the desired alkyne 199, meant that 

a fresh, alternative approach was necessary.  
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6 EXPANSION OF SCOPE OF REARRANGEMENT 

A more convergent, and step-economic synthesis was envisioned which, would incorporate 

the desired alkyne functionality into the aldehyde coupling partner used in the rearrangement 

step (scheme 6.1).  

 

 

Scheme 6.1: Proposed route to acetylene 307. 

Although this approach would significantly shorten the synthesis, there were some concerns 

to be noted. Previously, during the development of the rearrangement methodology, the 

presence of alkene functionality within the aldehyde partner was found not to be tolerated. 

Tiglic aldehyde had been used as a substrate, and instead of forming the expected 

isochromanone product 311, a highly unusual bridged-tetracycle 312 was isolated (scheme 

6.2).[86]  

 

Scheme 6.2: Hobson’s formation of unexpected tetracycle 312. 
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Mechanistically it is believed that the isobenzofuran anion first reacts as expected with tiglic 

aldehyde, then the α-hydroxy-isobenzofuran intermediate undergoes a [4+2] cycloaddition 

with the excess aldehyde present in the reaction, to give the endo product, which then 

cyclises to form the 5-membered lactol 313. Epoxidation with mCPBA generates 

intermediate 314, which upon oxidation with Jones reagent generates the observed lactone 

tetracyclic product 312 (scheme 6.3). 

 

 

Scheme 6.3: Proposed mechanism for the generation of tetracycle 312. 

Therefore, there was the possibility that the α-hydroxyisobenzofuran intermediate 308 could 

undergo a [4+2] cycloaddition with the alkyne functional group either inter- or 

intramolecularly (figure 6.1). Hence, it was decided to investigate whether the rearrangement 

protocol would tolerate the presence of an alkyne in the system. 
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Figure 6.1: Possible undesired cycloaddition reactions of isobenzofuran intermediate 308. 

6.1 DESIGN OF AN ALKYNE BEARING MODEL SYSTEM 

A simplistic model system was designed, employing 4-pentyn-1-al 318 as the aldehyde and 

unsubstituted phthalan 119, to test whether the rearrangement would tolerate the presence of 

the alkyne functionality, and whether a simple alkyne-containing keto-lactol 317 could be 

synthesised (scheme 6.4). 

 

 

Scheme 6.4: Proposed synthesis of keto-lactol 317. 

As in the more complex system, two unwanted scenarios could theoretically take place. In 

the first one, the isobenzofuran could add to the carbonyl and the resulting α-

hydroxyisobenzofuran intermediate 319 could undergo a Diels-Alder reaction with a second 

molecule of alkyne 318. Alternatively, the α-hydroxyisobenzofuran intermediate 319 could 

undergo an intramolecular Diels-Alder (figure 6.2). 
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Figure 6.2: Possible undesired cycloaddition reactions of intermediate 319. 

4-Pentyn-1-al 318 was synthesised from 4-pentyn-1-ol 276 using a Swern oxidation. Due to 

volatility and the consequential difficulty in handling 318, the solvent was evaporated 

carefully after the oxidation, and the aldehyde used crude immediately (scheme 6.5). 

 

 

Scheme 6.5: Swern oxidation of 4-pentyn-1-ol 276 to 4-pentyn-1-al 318. 

Frustratingly, the rearrangement using these starting materials did not yield any of the 

desired product 317, and the crude NMR spectra showed only what was deemed to be 

decomposition products. It was thought that instead of nucleophilic addition of the 

isobenzofuran anion to the carbonyl taking place, that the terminal alkyne was deprotonated  

thus, quenching the reaction. Residual solvent from the Swern oxidation was likely to have 

also impacted on the outcome of the reaction (scheme 6.6). 

 

 

Scheme 6.6: Unsuccessful synthesis of lactol 317. 

To eliminate the possibility of competing deprotonation of the acetylene, the model aldehyde 

was TMS-protected. Terminal alkyne 276 was deprotonated using nBuLi, then treated with 

TMSCl. The bis-silylated intermediate was then hydrolysed using 1M HCl to give 5-
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trimethylsilanyl-pent-4-yn-1-ol 319 in 92% yield.[87] Oxidation using TEMPO/BAIB gave 

the corresponding aldehyde 320 in 43% yield. This low yield could be partially attributed to 

the lengthy purification required, therefore alternative oxidation conditions were used. PCC 

was then trialled, due to its ease of work up and likely lack of purification required. 

Gratifyingly, PCC oxidation afforded 5-(trimethylsilyl)pent-4-ynal 320 in a slightly 

improved 52% yield. The use of IBX further improved the yield to an acceptable 62% (table 

6-1).[88] 

 

 

Scheme 6.7: Synthesis of 5-(trimethylsilyl)pent-4-ynal 320. 

Entry Conditions Yield (%) 

1 TEMPO, BAIB, CH2Cl2 43 

2 PCC, CH2Cl2 52 

3 IBX, DMSO, THF 62 

Table 6-1. Oxidation of alcohol 319 to aldehyde 320. 

With the alkyne functionality TMS-protected, aldehyde 320 was used in the rearrangement. 

Pleasingly, the expected lactol product 321 was formed and an accurate mass spectra was 

obtained. Unfortunately, all attempts to obtain an analytically pure sample were futile, and  

all attempts at column chromatographic purification using silica gel led to product 

decomposition. Consequently, the crude lactol product 321 was then oxidised, and the keto-

lactone product 322 was successfully synthesised. Again, it was not possible to obtain an 

analytically pure sample, due to product instability during purification, but an accurate mass 

spectrum was attained (scheme 6.8). 
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Scheme 6.8: Synthesis of keto-lactone 322. 

6.2  REARRANGEMENT WITH PHTHALAN 159 AND MODEL ALKYNE 320 

Armed with this partial success, it was decided to use 5-(trimethylsilyl)pent-4-ynal 320 as a 

model aldehyde, with the fully functionalised phthalan precursor 159. The rearrangement 

proceeded as expected and the crude residue was identified by 1H NMR and mass 

spectrometry. Purification of the crude product using neutral alumina afforded the clean 

lactol 323 in excellent overall yield. Unfortunately, oxidation of lactol 323 using either 

TEMPO/BAIB or IBX failed to generate any of the desired keto-lactone 324 in both cases 

(scheme 6.9). 

 

 

Scheme 6.9: Synthesis of keto-lactol 323. 
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6.3 SUMMARY 

The synthesis of lactol 323 demonstrated that the isobenzofuran rearrangement can be 

successfully carried out in the presence of a TMS-protected acetylene. This is in marked 

contrast with the results previously obtained with alkene bearing substrates in which the 

competing Diels-Alder reactions took precedence over the oxidative rearrangement. 

It was hoped this success would translate into an improved synthesis of ajudazol B, allowing 

the oxazole-aldehyde fragment to contain the alkyne functionality, thus, making the overall 

route shorter and more convergent. 
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7  REDESIGN OF OXAZOLE FRAGMENT 

The exciting results obtained with aldehyde 320 (scheme 6.9) demonstrated that the 

oxidative rearrangement of isobenzofurans could tolerate the presence of a TMS-protected 

alkyne, thus opening the possibility of modifying the aldehyde coupling partner. 

The redesigned oxazole-aldehyde 325 was envisioned as being obtained via oxidation of 

alcohol 326. Alcohol 326 could in turn be generated from the cyclodehydration of β-

hydroxyamide 327, followed by introduction of the TMS group onto the alkyne unit. The 

key β-hydroxyamide 327 could be synthesised through an amide coupling between the 

previously generated amine 283 and (2R)-2-methylpent-4-ynoic acid (R)-43 (scheme 7.1). 

 

 

Scheme 7.1: Proposed synthesis of oxazole-aldehyde 325. 

7.1 SYNTHESIS OF OXAZOLE-ALKYNE 325 

Despite its simple structure, only two literature preparations have been reported for the 

synthesis of (2R)-2-methylpent-4-ynoic acid (R)-43. Wilson and co-workers used a chiral 

resolution, whilst Menche used pseudoephedrine as a chiral auxiliary and 3-bromoprop-1-

ynyltrimethylsilane.[23, 89]  

Our approach to the synthesis of acid (R)-43 began with a Myers’ diastereoselective 

alkylation with propargyl bromide 47, using conditions analogous to those employed in the 

synthesis of olefin 286 (scheme 4.3), to afford amide 328. Amide 328 was then converted 

through basic hydrolysis of the amide bond to the desired enantiomerically pure acid (R)-43 

in 76% yield over two steps (scheme 7.2). 
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Scheme 7.2: Synthesis of (2R)-2-methylpent-4-ynoic acid (R)-43. 

With the desired acid (R)-43 in hand, an EDC mediated amide coupling with the previously 

generated amine 283 afforded the desired amide product 329 in excellent yield. The primary 

TBS group was then selectively removed in the presence of the TBDPS group, using 

analogous conditions to those used previously (scheme 4.8), to give the β-hydroxyamide 

327. Sadly, in the case of this substrate, these conditions gave only a 63% yield. Switching 

the proton source to CSA proved to be too harsh, and only 28% of the desired product was 

isolated, with the rest of the material decomposing. Using TMSCl, as an in situ source of 

HCl, gave the desired alcohol 327, in 39%, together with a significant amount of the 

undesired diol.[90] When using TBAF at 0 °C, the reaction did not go to completion, and 

when allowed to warm to rt, global deprotection took place. HF in acetonitrile, on the other 

hand, gave global deprotection almost instantaneously. Doubling the equivalents of PPTS 

used, to 0.2, gave a greatly improved yield of 96% however, the reaction remained sluggish, 

taking 60 h to reach completion (scheme 7.3, table 7-1). 

 

 

Scheme 7.3: Synthesis of β-hydroxyamide 327. 
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Entry Deprotection conditions Time (h) Yield (%) 

1 PPTS (0.1 eq), MeOH, rt 72 63 

2 CSA, MeOH, rt 16 28 

3 TMSCl, H2O, MeCN 16 39 

4 TBAF, THF, 0 °C - rt 16 - 

5 HF, MeCN 0.25 - 

6 PPTS (0.2 eq), MeOH, rt 60 96 

Table 7-1: Deprotection of 327. 

As with the synthesis of oxazole fragment 281, the oxidation of the β-hydroxyamide to the 

β-formylamide proved to be challenging. Swern oxidation gave the desired formylamide 330 

in very poor yield. Oxidation using TEMPO/BAIB gave no conversion, and only starting 

material was recovered. IBX oxidation at rt on the other hand, gave the desired aldehyde in 

reasonable yield. When the same IBX oxidation was executed in refluxing ethyl acetate, the 

yield was increased significantly. Interestingly, when the reaction time was reduced to 2 h, 

the desired β-formylamide 330 was isolated in quantitative yield (scheme 7.4, table 7-2). 

 

 

Scheme 7.4: Synthesis of aldehyde 330. 

Entry Conditions Yield (%) 

1 Swern Oxidation 28 

2 TEMPO, BAIB - 

3 IBX, DMSO, THF, rt 55 

4 IBX, EtOAc, Δ (16 h) 83 

5 IBX, EtOAc, Δ (2 h) 100 

Table 7-2: Oxidation of 327. 

Gratifyingly, cyclodehydration of β-formylamide 330 using Forsyth’s modification of 

Wipf’s protocol gave the desired oxazole 331 in good yield.[35, 82] Removal of the TBDPS 

group was then achieved in 92% yield, to give primary alcohol 332. Introduction of the 

alkynyl-TMS group was then achieved selectively to afford alcohol 326, which upon 

TEMPO/BAIB oxidation generated the desired aldehyde 325 in high yield. Although the 

yield of the TEMPO/BAIB oxidation was 77%, the reaction required careful purification to 
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remove the side products, thus IBX oxidation of alcohol 326 was attempted. Excitingly, 

using IBX yielded aldehyde 325 in 88% yield, with minimal purification (scheme 7.5). 

 

 

Scheme 7.5: Synthesis of oxazole-aldehyde 325. 

 

7.2  SUMMARY 

The synthesis of a modified oxazole-aldehyde unit 325 containing an alkyne handle has been 

achieved in 16 steps and 28% yield starting from (1S,2S)-(+)-pseudoephedrine 284. The 

procedure is robust and amenable to scale-up. 

 

 

Figure 7.1: Oxazole-aldehyde 325. 
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8  END-GAME STRATEGY 

8.1 OXIDATIVE REARRANGEMENT  

With the alkyne-aldehyde 325 and fully substituted phthalan 159 available, the oxidative 

rearrangement sequence was initially executed according to the standard oxidative 

procedure, involving flash chromatography purification of the keto-lactone unit 333. 

Interestingly, whilst an accurate mass spectrum was obtained of the crude keto-lactol 

intermediate from the Achmatowicz rearrangement, none of the keto-lactone 333 could be 

identified after the TEMPO/BAIB oxidation (scheme 8.1). Therefore, it was decided to 

optimise the isobenzofuran rearrangement steps, and to then isolate and purify the lactol 

intermediate.  

 

 

Scheme 8.1: Unsuccessful synthesis of keto-lactone 333. 

The initial oxidative rearrangement sequence was performed using 1.1 equivalents of the 

phthalan starting material 159, however this resulted in significant amounts of unreacted 

aldehyde 325. Despite this, lactol 334 was isolated as an inseparable mixture of 

diastereomers, in 25% yield. Unreacted aldehyde 325 was recovered making the overall 

yield 82%, based upon recovery of starting material. 

To optimise the transformation, the equivalents of phthalan were modified initially. The 

phthalan, being the more easily synthesised, and therefore less valuable substrate, was 

increased to 1.6 equivalents resulting in an increase in yield to 34%. Further inncrease to 2.0 

equivalents of phthalan 159, translated into a much more satisfactory 65% yield (table 8-1). 
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Scheme 8.2: Oxidative rearrangement utilising aldehyde 325. 

Entry Phthalan (159) equivalents Yield 334 (%) 

1 1.1 25 (82 brsm) 

2 1.6 34 

3 2.0 65 

Table 8-1: Oxidative rearrangement utilising aldehyde 325. 

Oxidation of lactol mixture 334 to the corresponding keto-lactone 333 again proved to be 

problematic. Oxidation attempts using TEMPO/BAIB were unsuccessful, resulting in 

decomposition. Changing the oxidant to PCC afforded only starting material.   

It was hypothesised that the keto-lactone 333 intermediate was highly unstable. Hence, it 

was decided to test whether the oxidation/reduction sequence could be carried out in a one-

pot process, negating the need to isolate the putative keto-lactone unit 333. Thus, the lactol 

mixture, was treated with TEMPO/BAIB, followed by the addition of NaBH4 in anhydrous 

MeOH at -78 °C. This approach worked surprisingly well, and the syn,anti-isochromanone 

335 and syn,syn-isochromanone 336 were isolated in a combined 90% yield, in a 2.8:1 ratio 

(scheme 8.3). 

 

Scheme 8.3: One pot oxidation-reduction of isochromanones 335 and 336. 
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The next step was concomitant removal of the TMS and TBS protecting groups. This was 

initially tested on the undesired syn,syn-isochromanone 336. Encouragingly, by using 

TBAF, at 0 °C, both silyl groups were removed after 10 min in excellent yield (scheme 8.4). 

 

 

Scheme 8.4: Desilylation of syn,syn-isochromanone 336. 

The same conditions were then applied to desilylation of the desired syn,anti-isochromanone 

335. Pleasingly, both silyl groups were removed after a 10 min reaction, with the desired 

diol 338 being obtained in near quantitative yield (scheme 8.5).  

 

 

Scheme 8.5: Desilylation of syn,anti-isochromanone 335. 

Unfortunately, lactone 338 proved to be unstable, and prone to trans-lactonisation 

particularly during purification by flash chromatography. The following steps were carried 

out immediately after its synthesis. 

8.2  COUPLING OF EASTERN AND WESTERN FRAGMENTS 

Having completed the synthesis of the western fragment 338, efforts were then directed to 

achieving the pivotal coupling with the eastern fragment 40. 

Excitingly, the sp-sp2 bond formation between acetylene 338 and vinyl iodide 40 was 

achieved via a Sonogashira coupling, completing the full ajudazol B carbon framework 339. 

The amount of dissolved oxygen had a significant impact on the yield of the coupling. When 

the acetonitrile solvent was degassed using a stream of argon, the coupling proceeded in 

57% yield. Using a freeze-pump-thaw method, the yield was successfully, and substantially, 

increased to 71% (scheme 8.6). 
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Scheme 8.6: Sonogashira coupling to synthesise enyne 339. 

Partial reduction of the enyne 339 to the Z,Z-diene was then attempted using Brown’s P2-Ni 

conditions.[36] After the reaction was complete, the crude mixture was passed through a plug 

of celite. Unfortunately, this did not remove all the inorganic material, so the crude mixture 

was passed through a short plug of alumina, and likewise this also failed to remove the 

inorganic material. Faced with this difficulty, as a last resort the product was passed through 

a short plug of silica gel. A pure compound with the correct accurate mass was isolated, 

however, on closer inspection of the 1H NMR spectrum it became apparent that the signals 

from the isochromanone core had shifted. Disappointingly the isolated product was the 5-

membered lactone 341. 

 

 

Scheme 8.7: Synthesis of 341. 
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At this point, it was unclear whether the Ni in the catalyst had acted as a Lewis acid and 

promoted the translactonisation, or if exposure to silica had mediated the formation of the 5-

membered lactone.  

Therefore, different conditions were investigated for the selective, partial reduction of the 

enyne. Hydrogenation using Lindlar’s catalyst using quinoline as a catalyst poison and a Pd 

loading of 5 wt. %, resulted in complete recovery of starting material after 24 h. Increasing 

the Pd content to 15 wt. % failed to afford any of the reduced product. Further increases in 

Pd content as well as solvent changes, and omission of quinoline failed to catalyse the 

reaction. 

Switching of the palladium source to Pd/BaSO4, in the presence of quinoline resulted in no 

reaction based on TLC monitoring on alumina plates. However, crude 1H NMR revealed 

decomposition of starting material, and mass spectrometry confirmed that none of the 

desired product was formed (table 8-2). 

  

 

Scheme 8.8: Unsuccessful partial reduction of enyne 339. 

Entry Conditions Pd (wt. %) Time (h) Yield 340 (%) 

1 Lindlar’s, quinoline, EtOAc 5 24 - 

2 Lindlar’s, quinoline, EtOAc 15 6 - 

3 Lindlar’s, EtOH 10 6 - 

4 Lindlar’s, EtOH 30 16 - 

5 PdBaSO4, quinoline, EtOH 10 24 decomposition 

Table 8-2: Unsuccessful alternative conditions for partial reduction of enyne 339. 
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Based on the lack of visible reduction using standard palladium catalysts, it was decied to 

revert to using P2-Ni and to try to minimise the undesired translactonisation. The treatment 

of enyne 339 using P2-Ni under our precisely executed conditions yielded a crude material 

which was filtered sequentially through celite, and neutral alumina, before being purified by 

preparative HPLC. Encouraginly, LCMS confirmed the presence of [M+H] and starting 

material. Disappointingly, after HPLC purification the quantity of product obtained with the 

correct [M+H] was not sufficient to obtain a 1H NMR spectra. 

With very limited material, and due to time constraints, the P2-Ni reduction was performed 

on the last of the synthesised enyne 339. After completion of the reaction, the crude was 

filtered through a syringe filter, and immediately purified using preparative HPLC. LCMS 

confirmed the presence of starting material, and two peaks both with [M+H]. The major 

product appeared to be the 5-membered lactone 341, and the minor one was postulated to be 

8-epi-ajudazol B 340. 

An accurate mass spectrum was obtained, with [M+Na]+ being calculated as m/z 615.3041 

and observed as m/z 615.3013. Disappointingly, the quantity of material obtained after 

purification was insufficient to obtain an optical rotation or clear proton NMR spectrum, 

despite running the sample with solvent suppression and a highly extended number of scans. 

The spectrum obtained could not be integrated, nor could the coupling patterns be identified 

(figure 8.1). During the HPLC purification the eluents used contained 0.1% TFA. This could 

have contributed to translactonisation, and to degradation of the product. 
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Figure 8.1: 1H NMR spectrum of 8-epi-ajudazol B 340. 
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9 CONCLUSIONS 

 

The first objective of the work presented in this thesis, was to develop an efficient synthesis 

of phthalide 158. The previous synthesis was completed in 10 steps and 37% yield. This was 

successfully shortened to 5 steps, and the yield significantly increased to 65%. 

 

 

Scheme 9.1: Synthesis of phthalide 158. 

Oxazole 281 and phthalan 159 were successfully synthesised. They were then used in the 

oxidative rearrangement of isobenzofurans methodology to synthesise isochromanones 297 

and 306. 

 

Scheme 9.2: Synthesis of isochromanones 297 and 306. 

To increase the efficiency and convergence of the route, the rearrangement was investigated 

to determine whether the presence of an alkyne would be tolerated. An alkyne-bearing 

aldehyde 320 was successfully used in the rearrangement and keto-lactol 323 was 

synthesised. The scope of the rearrangement was therefore expanded, increasing the 

synthetic utility of the methodology. 
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Scheme 9.3: Oxidative rearrangement of isobenzofuran in the presence of an alkyne. 

A new oxazole coupling partner 325 was designed and synthesised, then successfully utilised 

in the oxidative rearrangement. This optimised route allowed for the efficient generation of 

the full ajudazol B framework in 20 steps and 11% overall yield. 

 

 

Scheme 9.4: Synthesis of the ajudazol B framework. 
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The partial reduction of enyne 339 was unsuccessful in generating 8-epi-ajudazol B 340, but 

a structural isomer 341 was isolated and will be tested for biological activity. 

 

 

Figure 9.1: Isomer of ajudazol B. 

Ultimately, we were unable to complete the total synthesis of ajudazol B, though an efficient, 

convergent route to complete the full ajudazol B framework was developed. 
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10  FUTURE WORK 

10.1  COMPLETION OF THE TOTAL SYNTHESIS 

The first objective for any future work on this research project would be to complete the 

total synthesis of 8-epi-ajudazol B, and then focus efforts on ajudazol B. 

The partial reduction of the enyne to the Z,Z-diene proved to be problematic to purify and 

led to translactonisation, therefore an alternative route avoiding this step could be designed. 

Acetylene 338 could be converted to the Z-vinyl iodide 342, and the eastern fragment 40 

converted to the stannane 274. A Stille coupling, instead of the Sonogashira, could generate 

the desired Z,Z-diene, negating the need for the problematic partial reduction step, and 

completing the synthesis of 8-epi-ajudazol B 240. 

 

 

Scheme 10.1: Stille coupling partners. 

Alternatively, the C8 hydroxy group could be protected to prevent translactonisation. The 

TMS could be selectively removed, in the presence of the TBS ethers, and the route 

continued as before.[91] The synthesis could then be continued as in the established route, 

with an added deprotection step to cleave the silyl ether protecting groups. 
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Scheme 10.2: Protection of C8 hydroxy group. 

Work could then be focussed on achieving the anti,anti-relationship of the isochromanone 

core. Mitsunobu inversion could be attempted at several stages throughout the synthesis on 

various isochromanone bearing intermediates. 

 

 

Scheme 10.3: Mitsunobu inversion to access anti,anti-isochromanone 

 

10.2  SYNTHESIS OF ANALOGUES 

The next objective would be the synthesis of analogues based on the ajudazol B framework, 

using the synthetic route developed. These analogues could then be tested, along with 

intermediates from throughout the synthesis, to establish the structure-activity relationship.  
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11 EXPERIMENTAL 

11.1 GENERAL DETAILS 

Reactions were performed in glassware that had been oven-dried and/or flame-dried prior to 

use. Reactions were carried out under an inert argon atmosphere unless otherwise stated. 

THF, Et2O, CH2Cl2, MeCN, and toluene were purified through a Pure Solv 400-5MD solvent 

purification system (Innovative Technology, Inc). All reagents were used as received, unless 

otherwise stated. Liquid reagents were distilled before use where stated. 

All microwave reactions were performed using a Biotage Initiator system. 

NMR spectra were recorded on a Bruker AVI DPX-400 spectrometer, Bruker AVIII DPX-

400 (1H NMR at 400 MHz and 13C NMR at 100 MHz), or a Bruker AVII DPX-500 

spectrometer (1H NMR at 500 MHz and 13C NMR at 125 MHz). Chemical shifts (δ) are 

reported in parts per million (ppm). 1H NMR spectra are referenced to the residual solvent 

peak. The order of citation in parentheses is: (1) number of equivalent nuclei (by integration), 

(2) multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, or 

a combination of these), and (3) coupling constant (J) quoted in Hertz to the nearest 0.1 Hz. 

DEPT135, DEPT90, and two-dimensional (COSY, NOESY, HSQC, HMBC) NMR 

spectroscopy were used, where appropriate, to assist with the assignment of signals in the 

1H and 13C NMR spectra. 

IR spectra were obtained using a Shimadzu FTIR-8400 instrument with a Golden Gate™ 

attachment that uses a type IIa diamond as a single reflection element so that the IR spectrum 

of the compound (solid or liquid) could be detected directly (thin layer). 

High resolution mass spectra were recorded using ESI and CI conditions by the analytical 

services at the University of Glasgow. 

Flash chromatography was performed using silica gel (Fluorochem silica gel 60, 40 – 63 

µm) as the stationary phase, and HPLC graded solvents as the eluent. Reaction monitoring 

by TLC was performed on aluminium sheets pre-coated with silica (Merck Silica gel 60 

F254), unless otherwise stated. The plates were visualised under UV-light (λmax 254 nm) 

and/or by staining with either anisaldehyde, potassium permanganate, or cerium ammonium 

molybdate dips followed by heating. 
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11.2 EXPERIMENTAL DETAILS 

 

5-(Hydroxymethyl)-2-methylphenol 

 

 

LiAlH4 (250 mg, 6.58 mmol) was dissolved in anhydrous THF (10 mL) and cooled to 0 °C. 

3-Hydroxy-4-methylbenzoic acid 206 (500 mg, 3.29 mmol) was dissolved in anhydrous 

THF (5 mL) and added dropwise to the resultant suspension via syringe pump over 1 h. The 

resultant mixture was warmed to rt and stirred for 16 h. The reaction was quenched by careful 

addition of EtOAc (40 mL) followed by addition of 20% Rochelle’s salt solution (aq) (50 

mL) and the resultant mixture was stirred for 16 h. The organic phase was separated, dried 

(Na2SO4), filtered, and concentrated in vacuo, to give the desired product 207 as a white 

solid (164 mg, 36%).  

1H NMR (CDCl3, 400 MHz) : 7.14 (1H, d, J = 7.3 Hz, ArH), 6.87 (1H, d, J = 7.4 Hz, ArH) 

6.86 (1H, s, ArH), 4.66 (2H, s, CH2), 2.28 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 154.0 (ArCOH), 140.2 (ArCCH2OH), 131.2 (ArCH), 123.2 

(ArCCH3), 119.3 (ArCH), 113.5 (ArCH), 65.1 (CH2), 15.5 (CH3). 

This data is in accordance with literature values.[53] 

 

Dimethyl 3-methoxyphthalate 

 

 

1-Methoxy-1,3-cyclohexadiene (540 μL, 2.96 mmol) (65% by assay) was dissolved in 

anhydrous toluene (3 mL). DMAD (280 μL, 2.28 mmol) was added and the reaction mixture 
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was heated to reflux (111 °C) and stirred for 16 h. The reaction mixture was concentrated in 

vacuo and purified using flash chromatography (silica gel, 10 – 30% EtOAc in petroleum 

ether) to yield the desired product 216 as a yellow oil (511 mg, quant.). 

1H NMR (400 MHz, CDCl3) : 7.62 (1H, dd, J = 7.9, 0.8 Hz, C(O)CArCH), 7.48 – 7.39 (1H, 

m, ArCHArCH), 7.15 (1H, dd, J = 8.4, 0.8 Hz, C(OCH3)ArCH), 3.97 (3H, s, CH3), 3.89 (3H, 

s, CH3), 3.87 (3H, s, CH3). 

13C NMR (125 MHz, CDCl3) : 168.1 (C=O), 165.9 (C=O), 156.6 (ArC), 130.3 (ArCH) , 

128.9 (ArC), 125.6 (ArC), 122.1 (ArCHCC(O)), 115.6 (ArCHC(OCH3)), 56.9 (OCH3), 52.7 

(C(O)OCH3), 52.5 (C(O)OCH3). 

This data is in accordance with literature values.[92] 

 

3-Methoxyphthalic acid 

 

 

Dimethyl 3-methoxyphthalate 216 (1.00 g, 4.46 mmol) was dissolved in MeOH (10 mL) 

before addition of 2M NaOH (aq) (30 mL). The resultant mixture was then heated to 50 C 

and stirred for 6 h. The mixture was then cooled to rt, diluted with H2O (200 mL), and 

extracted with Et2O (100 mL). The aqueous phase was then acidified with 6M HCl (aq) to 

pH 1, and extracted with EtOAc (200 mL). The combined organic extracts were washed with 

brine (200 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The crude mixture was 

purified using flash chromatography (silica gel, 50% EtOAc in petroleum ether) to yield the 

desired product 217 as a white crystalline solid (551 mg, 63%). 

1H NMR (400 MHz, (CD3)2CO) : 7.57 (1H, dd, J = 7.8, 0.9 Hz, C(O)CArCH), 7.42 – 7.38 

(1H, m, ArCHArCH), 7.24 (1H, dd, J = 8.3, 0.9 Hz, C(OCH3)ArCH), 3.85 (3H, s, OCH3). 

This data is in accordance with literature values.[93] 
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7-Methoxyphthalide 

 

3-Methoxyphthalic acid (449 mg, 2.74 mmol) was dissolved in 12 M HCl (aq) (5 mL) and 

AcOH (11 mL). The resultant mixture was heated to 70 °C and then treated slowly with Zn 

dust (1 g, 15.3 mmol/h over 6 h), then stirred for 16 h. The reaction was then quenched with 

H2O (5 mL), extracted with EtOAc (15 mL), washed with NaHCO3 (10 mL), brine (10 mL), 

dried (Na2SO4), and concentrated in vacuo, to give the desired product as a white solid (186 

mg, 50%) which was used in the subsequent reaction without further purification. 

1H NMR (CDCl3, 400 MHz) : 7.62 (1H, t, J = 8.0 Hz, ArH), 7.00 (1H, d, J = 7.6 Hz, ArH), 

6.93 (1H, d, J = 8.2 Hz, ArH), 5.23 (2H, s, CH2), 3.99 (3H, s, OCH3). 

13C NMR (CDCl3, 100 MHz) : 169.2 (C=O), 158.8 (ArCOCH3), 149.5 (ArC), 136.3 (ArCH), 

113.7 (ArCH), 113.4 (ArC), 110.6 (ArCH), 68.7 (CH2), 56.2 (OCH3). 

This data is in accordance with literature values.[48] 

 

1-Methoxy-2-methylcyclohexa-1,4-diene 

 

 

2-Methylanisole (2.55 mL, 20.6 mmol) was dissolved in Et2O (25 mL) and cooled to -78 °C. 

NH3 (l) (100 mL) was condensed into the flask. Li wire (2.10 g, 303 mmol) was added 

slowly, resulting in a deep blue metallic solution. The dry ice/acetone bath was then 

removed, and the mixture left to reflux and stirred for 5 h. The reaction mixture was then 

quenched by careful addition of MeOH, and left for 16 h for the NH3 to evaporate. The crude 

reaction mixture was then diluted with H2O (25 mL), and extracted with EtOAc (100 mL). 

The combined organic phases were washed with H2O (3  25 mL), brine (25 mL), and 

concentrated in vacuo to yield the desired product 221 as a clear oil (1.45 g, 57%).  
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1H NMR (CDCl3, 500 MHz) : 5.71 – 5.63 (2H, m, HC=CH), 3.53 (3H, s, OCH3), 2.83 – 

2.78 (2H, m, CH2), 2.72 – 2.68 (2H, m, CH2), 1.65 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 145.3 (C=C-OCH3) 124.5 (HC=CH), 123.6 (HC=CH), 

111.6 (H3CC=C), 56.03 (OCH3), 32.8 (CH2), 26.0 (CH2), 14.8 (CH3). 

This data is in accordance with literature values.[94] 

 

Dimethyl 3-(hydroxymethyl)-6-methylcyclohexa-1,4-diene-1,2-dicarboxylate 

 

 

trans,trans-2,4-Hexadien-1-ol (1.25 g, 12.7 mmol) and DMAD (1.53 mL, 12.4 mmol) were 

added to a flask and heated to 80 C, for 16 h. The reaction mixture was then cooled and 

purified using flash chromatography (silica gel, 20% EtOAc in petroleum ether) to yield the 

desired product 226 as a pale-yellow oil (2.17 g, 73%). 

1H NMR (CDCl3, 500 MHz) : 5.89 (1H, ddd, J = 9.8, 4.2, 0.9 Hz, HC=CH), 5.69 (1H, ddd, 

J = 9.8, 4.3, 0.8 Hz, HC=CH), 3.80 (6H, s, OCH3), 3.79 – 3.74 (1H, m, CH2), 3.70 – 3.63 

(1H, m, CH2), 3.34 – 3.15 (2H, m, CHCH3 + CHCH2OH), 2.17 (1H, dd, J = 7.8, 5.5 Hz, 

OH), 1.23 (3H, d, J = 7.0 Hz, CH3). 

13C NMR (CDCl3, 500 MHz) : 168.9 (C=O), 168.2 (C=O), 140.9 (C=CC(O)), 133.6 

(C=CC(O)), 131.6 (HC=CH), 123.6 (HC=CH), 65.7 (CH2), 52.5 (C(O)OCH3), 52.2 

(C(O)OCH3), 41.3 (CHCH2), 33.2 (CHCH3), 21.8 (CH3). 

HRMS (ESI) calculated for C12H17O5 (M+H)+: m/z 241.1076, observed 241.1075 

IR vmax (film)/cm-1 3385 , 1717, 1636, 1435, 1256. 
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Methyl 5-methyl-3-oxo-1,3-dihydroisobenzofuran-4-carboxylate 

 

     

Dimethyl 3-(hydroxymethyl)-6-methylcyclohexa-1,4-diene-1,2-dicarboxylate 226 (200 mg, 

0.83 mmol) was dissolved in benzene. Activated MnO2 (730 mg, 8.40 mmol) was added and 

the resultant solution was heated to reflux for 4 h, whilst azeotropically removing the H2O 

generated using a Dean-Stark apparatus. The reaction mixture was then filtered through 

celite, washed with benzene (30 mL), chloroform (10 mL), and concentrated in vacuo. The 

crude mixture was purified by flash chromatography (silica gel, 20% EtOAc in pet. ether) to 

yield the desired lactone 227 as a white solid (116 mg, 70%) and aldehyde 228 as a clear oil 

(8 mg, 4%). 

1H NMR (CDCl3, 500 MHz) : 7.54 (1H, d, J = 8.0 Hz, ArH), 7.44 (1H, d, J = 8.0 Hz, ArH), 

5.28 (2H, s, CH2), 4.02 (3H, s, OCH3), 2.44 (3H, s, ArCH3). 

13C NMR (CDCl3, 500 MHz) : 169.1 (C=O), 167.4 (C=O), 144.5 (ArCCH2O), 136.5 

(ArCCH3), 136.3 (ArCCO2CH3), 131.9 (ArCH), 123.2 (ArCCO2CH2), 123.1 (ArCH), 69.3 

(OCH3), 53.1 (CH2), 18.8 (CH3). 

HRMS (ESI) calculated for C11H10O4Na (M+Na)+: m/z 229.0471, observed m/z 229.0473. 

IR vmax (film)/cm-1 1759, 1724, 1435, 1258, 907. 

Melting point: 90 – 92 °C. 
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Dimethyl 3-formyl-6-methylphthalate 

 

 

(8 mg, 4%). 

1H NMR (CDCl3, 500 MHz) : 10.12 (1H, s, C(O)H), 7.92 (1H, d, J = 8.0 Hz, ArH), 7.49 

(1H, d, J = 8.0 Hz, ArH), 3.96 (3H, s, OCH3), 3.92 (3H, s, OCH3), 2.52 (3H, s, CH3). 

13C NMR (CDCl3, 125 MHz) : 189.8 (C(O)H), 167.6 (C=O), 167.2 (C=O), 143.6 (ArC), 

134.3 (ArCH) 133.2 (ArCH), 132.7 (ArC), 132.6 (ArC), 132.3 (ArC), 53.3 (OCH3), 52.9 (OCH3), 

20.9 (CH3). 

HRMS (ESI) calculated for C12H13O5 (M+H)+: m/z 237.0763, observed m/z 237.0772. 

IR vmax (film)/cm-1 2955, 1730, 1701, 1593, 1273. 

 

(2E,4E)-Hexa-2,4-dien-1-yl propiolate 

 

 

trans,trans-2,4-Hexadien-1-ol (2.48 g, 25.3 mmol) and DMAP (cat.) were dissolved in 

CH2Cl2 (175 mL) and cooled to 0 C. Then propiolic acid (2.33 mL, 37.9 mmol) was added 

followed by DCC (7.83 g, 37.9 mmol) which was added portionwise. The reaction was 

warmed to room temperature overnight and then the CH2Cl2 was removed in vacuo. The 

crude precipitate was washed with hexane (200 mL) and filtered through celite. The filtrate 

was then concentrated in vacuo and purified by column chromatography (silica gel, 5% 

EtOAc in hexane) to yield the desired product 230 as a clear colourless oil (2.49 g, 66%). 
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1H NMR (CDCl3, 500 MHz) : 6.31 (1H, dd, J = 10.5, 4.5 Hz, HC=CHCH2), 6.08 (1H, dd, 

J = 11.0, 4.5 Hz, HC=CHCH3), 5.83 – 5.76 (1H, m, C=CHCH2), 5.66 – 5.60 (1H, m, 

=CHCH3), 4.70 (2H, d, J = 7.0 Hz, CH2), 2.88 (1H, s, CH), 1.78 (3H, d, J = 7.0 Hz, CH3). 

13C NMR (CDCl3, 500 MHz) : 152.5 (C=O), 136.2 (HC=CHCH2), 132.1 (HC=CHCH3), 

130.2 (HC=CHCH2), 121.9 (HC=CHCH3), 74.9 (CCH), 74.8 (CCH), 66.7 (CH2), 18.1 

(CH3). 

HRMS (ESI) calculated for C9H10O2Na (M+Na)+: m/z 173.0573, observed m/z 173.0570. 

This data is in accordance with literature values.[59] 

 

6-Methyl-3,3a-dihydroisobenzofuran-1(6H)-one 

 

 

A suspension of [Rh(cod)Cl]2 (12.3 mg, 5 mol%) in TFE (3 mL) was treated with AgSbF6 

(22.3 mg, 13 mol%) in CH2Cl2 (0.26 mL) followed immediately by a solution of (2E,4E)-

hexa-2,4-dien-1-yl propiolate 230 (75 mg, 0.5 mmol) in TFE (2 mL). The reaction mixture 

was stirred for 1.5 h, then diluted with Et2O (15 mL), and filtered through celite. The reaction 

mixture was concentrated in vacuo and the crude product was purified using flash 

chromatography (silica gel, 10% EtOAc in hexane) to yield the desired product 234 as a 

colourless oil (55.3 mg, 74%). 

1H NMR (CDCl3, 500 MHz) : 6.71 – 6.70 (m, 1H, HC=qC), 5.79 – 5.73 (m, 2H, HC=CH), 

4.67 – 4.63 (m, 1H, CH2), 3.85 (dd, 1H, J = 10.4, 8.3 Hz, CH2), 3.56 – 3.48 (m, 1H, CH), 

3.07 – 2.99 (m, 1H, CHCH3), 1.27 (d, 3H, J = 7.7 Hz). 

13C NMR (CDCl3, 500 MHz) : 169.5 (C=O), 138.7 (HC=C), 133.2 (HC=CH), 127.57 (C), 

121.9 (HC=CH), 70.7 (CH2), 37.2 (CH), 32.2 (CH), 20.5 (CH3). 

This data is in accordance with literature values.[59] 
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4-Methyl-2,9-dioxatricyclodec-5-en-10-one 

 

 

6-Methyl-3,3a-dihydroisobenzofuran-1(6H)-one 234 (55 mg, 0.37 mmol) was dissolved in 

MeOH (3 mL) and cooled to 0 °C. 3M NaOH (aq) (0.37 mL), and 30% H2O2 (0.37 mL) 

were then added dropwise and the resultant mixture was warmed to rt and stirred for 5 h. 

The reaction mixture was then diluted with H2O (2 mL), acidified to pH 1 with 2M HCl (aq), 

extracted with EtOAc (5 mL). The organic extracts were washed with brine (2 mL), dried 

(Na2SO4), filtered, concentrated in vacuo and purified using flash chromatography (silica 

gel 20% EtOAc in petrol) to yield the desired product 237 as a clear oil (18.2 mg, 30%).  

1H NMR (500 MHz, CDCl3) : 5.93 (1H, d, J = 9.7 Hz, C=CH), 5.73 (1H, dd J = 9.3, 4.3 

Hz, C=CH), 5.44 (1H, br s, CH), 4.54 – 4.50 (1H, m, CH), 4.07 (1H, dd, J = 8.5, 6.4 Hz, 

CH), 3.38 – 3.28 (2H, m, CH2), 1.82 (3H, s, CH3). 

13C NMR (100 MHz, CDCl3) : 178.6 (C=O), 128.9 (HC=CH), 124.3 (HC=CH), 113.7 

(CO), 73.5 (CH2), 69.7 (HCO), 40.6 (HCCH2), 34.9 (HCCH3), 21.7 (CH3). 

HRMS (ESI) calculated for C9H11O3 (M+H)+: m/z 167.0708, observed 167.0709. 

IR vmax (film)/cm-1 2916, 1767, 1283, 907, 725. 

 

(2E,4E)-Hexa-2,4-dien-1-yl 3-(tert-butyldimethylsilyl)prop-2-ynoate 

 

 

Freshly distilled iPr2NH (0.24 mL, 1.68 mmol) was dissolved in anhydrous THF (3 mL) and 

cooled to -78 °C. nBuLi (1.6 M in hexanes, 1.05 mL, 1.7 mmol) was added dropwise and 

the resultant mixture stirred for 30 min. The solution was then transferred, via cannula, to a 

stirred solution of (2E,4E)-hexa-2,4-dien-1-yl propiolate 230 (250 mg, 1.66 mmol) in 
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anhydrous THF (3 mL) at -78 °C, and stirred for 1 h. TBSCl (253 mg, 1.68 mmol) in 

anhydrous THF (1 mL) was added dropwise to the resultant mixture and stirred for 3 h. The 

reaction was then quenched with saturated NH4Cl (aq) (15 mL), and extracted with EtOAc 

(25 mL). The organic extracts were washed with H2O (25 mL), then brine (25 mL), dried 

(Na2SO4), filtered, and concentrated in vacuo. The crude mixture was purified using flash 

chromatography (silica gel, 5% EtOAc in hexane) to yield the desired product 245 as a 

yellow oil (193 mg, 44%). 

1H NMR (CDCl3, 400 MHz) : 6.29 (1H, dd, J = 15.2, 10.5 Hz, HC=CHCH2), 6.07 (1H, dd, 

J = 15.0, 10.7 Hz, HC=CHCH3), 5.86 – 5.73 (1H, m, H2CCH=CH) 5.69 – 5.58 (1H, m, 

HC=CHCH3), 4.67 (2H, d, J = 6.8 Hz, CH2), 1.78 (3H, d, J = 6.7 Hz, CH3), 0.97 (9H, s, 

SiC(CH3)3), 0.18 (6H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 153.0 (C=O), 136.3 (HC=CHCH2), 132.2 (HC=CHCH3), 

130.4 (H2CCH=CH), 122.7 (HC=CHCH3), 95.5 (SiCC), 92.9 (CCC(O)), 66.6 (CH2), 26.1 

(C(CH3)3), 18.3 (=CHCH3), 16.7 (C(CH3)3), -5.0 (Si(CH3)2). 

HRMS (ESI) calculated for C15H24O2SiNa (M+Na)+: m/z 287.1438, observed m/z 287.1424. 

IR vmax (film)/cm-1 2190, 1709, 1660, 1213, 990. 

 

(2E,4E)-Hexa-2,4-dien-1-yl 3-[tris(propan-2-yl)silyl]prop-2-ynoate 

 

 

Freshly distilled iPr2NH (0.47 mL, 3.36 mmol) was dissolved in anhydrous THF (6 mL) and 

cooled to -78 °C, under an argon atmosphere. nBuLi (1.6 M in hexanes, 2.10 mL, 3.4 mmol) 

was added dropwise and the resultant mixture stirred for 30 min. The solution was then 

transferred, via cannula, to a stirred solution of (2E,4E)-hexa-2,4-dien-1-yl propiolate 230 

(500 mg, 3.32 mmol) in anhydrous THF (6 mL) at -78 °C, and stirred for 1 h. TIPSCl (0.71 

mL, 3.36 mmol) was added dropwise to the resultant mixture and stirred for 3 h. The reaction 

was then quenched with saturated NH4Cl (aq) (15 mL), and extracted with EtOAc (25 mL). 

The organic extracts were washed with H2O (25 mL), then brine (25 mL), dried (Na2SO4), 

filtered, and concentrated in vacuo. The crude mixture was purified using flash 
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chromatography (silica gel, 1% EtOAc in hexane) to yield the desired product 246 as a 

yellow oil (193 mg, 44%). 

1H NMR (CDCl3, 500 MHz) : 6.29 (1H, dd, J = 15.2, 10.5 Hz, HC=CHCH2), 6.10 – 6.04 

(1H, m, HC=CHCH3), 5.82 – 5.75 (1H, m, C=CHCH2), 5.68 – 5.62 (1H, m, C=CHCH3), 

4.67 (2H, d, J = 6.8 Hz, CH2), 1.78 (3H, d, J = 6.8 Hz, CH3), 1.12 – 1.10 (21H, m, Si(iPr)3). 

13C NMR (CDCl3, 125 MHz) : 153.1 (C=O), 136.1 (HC=CHCH2), 132.0 (HC=CHCH3), 

130.5 (HC=CHCH2), 122.9 (HC=CHCH3), 96.9 (C(O)CC), 91.5 (C(O)CC), 66.6 (CH2), 

18.6 (Si(CH(CH3)2)3), 18.3 (CH3), 11.2 (Si(CH(CH3)2)3). 

HRMS (ESI) calculated for C18H30O2SiNa (M+Na)+: m/z 329.1907, observed m/z 329.1893. 

IR vmax (film)/cm-1 2170, 1711, 1663, 1462, 1207, 988. 

 

(2E,4E)-Prop-2-yn-1-yl hexa-2,4-dienoate 

 

 

2-Propyn-1-ol (1.28 mL, 22.0 mmol), N,N’-dicyclohexylcarbodiimide (4.54 g, 22.0 mmol), 

and 4-(dimethylamino)pyridine (244 mg, 2.00 mmol)  were dissolved in anydrous CH2Cl2 

(40 mL) and cooled to 0 °C. 2,4-Hexadienoic acid (2.24 g, 20.0 mmol) was added and the 

resultant mixture was stirred for 4 h at 0 °C. The reaction mixture was then concentrated in 

vacuo, dissolved in hexane (20 mL), and filtered through a celite pad. The solvent was then 

removed in vacuo and the filtrate purified using flash chromatography (silica gel, 10% 

EtOAc in hexane) to yield the desired product 253 as a colourless oil (3.30 g, 100%). 

1H NMR (500 MHz, CDCl3) : 7.34 – 7.29 (1H, m, HC=CHC(O)), 6.24 – 6.15 (2H, m, =CH 

× 2), 5.81 (1H, d, J = 15.8 Hz, =CH), 4.76 (2H, d, J = 2.5 Hz, CH2), 2.48 (1H, t, J = 2.5 Hz, 

CH), 1.87 (3H, d, J = 5.5 Hz, CH3). 

13C NMR (125 MHz, CDCl3) : 166.3 (C=O), 146.3 (HC=CHC(O)), 140.3 (HC=CHCH3), 

129.7 (HC=CHCH3), 117.8 (HC=CHC(O)), 77.9 (H2CCCH), 74.7 (H2CCCH), 51.7 

(CH2), 18.7 (CH3). 

This data is in accordance with literature values.[59] 
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(2E,4E)-3-(tert-Butyldimethylsilyl)prop-2-yn-1-yl hexa-2,4-dienoate 

 

 

Freshly distilled iPr2NH (0.47 mL, 3.36 mmol) was dissolved in anhydrous THF (6 mL) and 

cooled to -78 °C. nBuLi (2.5 M in hexanes, 1.34 mL, 3.4 mmol) was added dropwise and 

the resultant mixture stirred for 30 min. The solution was then transferred, via cannula, to a 

stirred solution of (2E,4E)-prop-2-yn-1-yl hexa-2,4-dienoate 253 (500 mg, 3.33 mmol) in 

anhydrous THF (6 mL) at -78 °C, and stirred for 30 min. TBSCl (506 mg, 3.36 mmol) in 

anhydrous THF (0.5 mL) was added dropwise to the resultant mixture and stirred for 3 h. 

The reaction was then quenched with saturated NH4Cl (aq) (15 mL), and extracted with 

EtOAc (25 mL). The organic extracts were washed with H2O (25 mL), then brine (25 mL), 

dried (Na2SO4), filtered, and concentrated in vacuo. The crude mixture was purified using 

flash chromatography (silica gel, 1% EtOAc in hexane) to yield the desired product 256 as 

a yellow oil (515 mg, 59%). 

1H NMR (CDCl3, 400 MHz) : 7.34 – 7.28 (1H, m, HC=CHC(O)), 6.25 – 6.13 (2H, m, 

HC=C × 2), 5.83 – 5.79 (1H, m, =CHCH3), 4.77 (2H, s, CH2), 1.87 (3H, d, J = 5.4 Hz, CH3), 

0.94 (9H, s, SiC(CH3)3), 0.13 (6H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 166.6 (C=O), 146.1 (HC=CHC(O)), 140.2 (HC=CHCH3), 

129.9 (HC=CHCH3), 118.2 (HC=CHC(O)), 100.1 (CCCH2), 90.4 (CCSi), 52.8 (CH2), 

26.2 (C(CH3)3), 18.9 (=CHCH3), 16.7 (C(CH3)3), -4.6 (Si(CH3)2). 

This data is in accordance with literature values.[59] 
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4-(tert-Butyldimethylsilyl)-5-methylisobenzofuran-1(3H)-one 

 

 

Method A: A suspension of [Rh(cod)Cl]2 (12.3 mg, 5 mol%) in TFE (3 mL) was treated 

with AgSbF6 (22.3 mg, 13 mol%) in CH2Cl2 (0.26 mL), followed immediately by a solution 

of (2E,4E)-3-(tert-butyldimethylsilyl)prop-2-yn-1-yl hexa-2,4-dienoate 256 (132 mg, 0.50 

mmol) in TFE (2 mL). The resultant mixture was stirred and heated to reflux (74 °C) for 72 

h. The reaction mixture was then diluted with Et2O (20 mL), filtered through a celite pad, 

washed with Et2O, concentrated in vacuo, and purified using flash chromatography (silica 

gel, 5% EtOAc in hexane) to yield the desired product 258 as a pale white solid (24.4 mg, 

19%). 

Method B: [Rh(cod)Cl]2 (7.4 mg, 5 mol%) and AgSbF6 (13.4 mg, 13 mol%) were added to 

a microwave vial, and flushed with argon. TFE (1 mL) was added, followed immediately by 

a solution of (2E,4E)-3-(tert-butyldimethylsilyl)prop-2-yn-1-yl hexa-2,4-dienoate 256 (80 

mg, 0.30 mmol) in TFE (0.5 mL). The vial was placed in the microwave initiator and heated 

to 100 C for 2 h. The crude reaction mixture was then filtered through celite, washed with 

Et2O, concentrated in vacuo, and purified using flash chromatography (silica gel, 5% EtOAc 

in hexane) to yield the desired product 258 as a pale white solid (25.2 mg, 32%).  

1H NMR (CDCl3, 400 MHz) : 7.81 (1H, d, J = 7.8 Hz, ArH), 7.34 (1H, d, J = 7.8 Hz, ArH), 

5.34 (2H, s, CH2), 2.60 (3H, s, CH3), 0.94 (9H, s, SiC(CH3)3), 0.44 (6H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 171.6 (C=O), 154.1 (ArC), 152.2 (ArC),  132.0 (ArCH), 

131.1(ArC), 126.4 (ArCH), 122.8(ArC), 72.2 (CH2), 27.1 (SiC(CH3)3), 25.6 (CH3), 19.6 

(SiC(CH3)3), -0.9 (Si(CH3)2). 

This data is in accordance with literature values.[59] 
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 (2E,4E)-3-(Dimethyl(phenyl)silyl)prop-2-yn-1-yl hexa-2,4-dienoate 

 

 

Freshly distilled iPr2NH (0.24 mL, 1.68 mmol) was dissolved in anhydrous THF (3 mL) and 

cooled to -78 °C. nBuLi (2.5 M in hexanes, 0.67 mL, 1.7 mmol) was added dropwise and 

the resultant mixture stirred for 30 min. The solution was then transferred, via cannula, to a 

stirred solution of (2E,4E)-prop-2-yn-1-yl hexa-2,4-dienoate 253 (250 mg, 1.66 mmol) in 

anhydrous THF (3 mL) at -78 °C, and stirred for 30 min. DMPSCl (0.28 mL, 1.68 mmol) 

was added dropwise to the resultant mixture, and the reaction was stirred for 3 h. The 

reaction was then quenched with saturated NH4Cl (aq) (15 mL), and extracted with EtOAc 

(25 mL). The organic extracts were washed with H2O (25 mL), then brine (25 mL), dried 

(Na2SO4), filtered, and concentrated in vacuo. The crude mixture was purified using flash 

chromatography (silica gel, 2.5% EtOAc in hexane) to yield the desired product 259 as a 

yellow oil (314 mg, 67%). 

1H NMR (CDCl3, 400 MHz) : 7.66 – 7.60 (2H, m, ArH × 2), 7.58 – 7.52 (1H, m, ArH), 7.43 

– 7.28 (3H, m, 2 × ArH + HC=CHC(O)), 6.26 – 6.13 (2H, m, HC=CHCH3), 5.82 (1H, d, J = 

15.4 Hz, C(O)CH=CH), 4.81 (2H, s, CH2), 1.88 (3H, d, J = 5.3 Hz, CH3), 0.44 (6H, s, 

Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 166.6 (C=O), 146.3 (HC=CHC(O)), 140.3 (HC=CHCH3), 

136.6 (ArC), 133.9 (ArCH), 133.2 (ArCH), 129.7 (HC=CHCH3), 128.1 (ArCH), 127.9 (ArCH), 

118.1 (HC=CHC(O)), 101.2 (CCCH2), 90.1 (CCSi), 52.7 (CH2), 18.9 (CH3), -0.9 

(Si(CH3)2). 

HRMS (ESI) calculated for C17H21O2Si (M+H)+: 285.1311, observed 285.1313 

IR vmax (film)/cm-1 3019, 2187, 1717, 1645, 1240, 752. 
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(E)-(2E,4E)-Hexa-2,4-dien-1-yl 3-(benzyloxy)acrylate 

 

 

Benzyl alcohol (0.69 mL, 6.70 mmol) was dissolved in anhydrous CH2Cl2 (40 mL). Tri-n-

butylphosphine (0.24 mL, 1.00 mmol) was added and the resultant mixture was cooled to 0 

C. (2E,4E)-Hexa-2,4-dien-1-yl propiolate 230 (1.00 g, 6.7 mmol) was added dropwise, and 

the resultant mixture was warmed to rt and stirred for 30 min, before being exposed to air 

for 20 min. The reaction mixture was then concentrated in vacuo and purified using flash 

chromatography (silica gel, 2.5% EtOAc in hexane) to yield the desired product 263 as a 

clear oil (460 mg, 27%).  

1H NMR (500 MHz, CDCl3) : 7.70 (1H, d, J = 12.6 Hz, C=CHOBn), 7.42 – 7.34 (5H, m, 

ArH), 6.26 (1H, dd, J = 15.1, 10.5 Hz, HC=CH), 6.07 (1H, ddd, J = 15.1, 10.5, 1.2 Hz, 

HC=CH), 5.79 – 5.72 (1H, m, HC=CH), 5.68 – 5.63 (1H, m, HC=CH), 5.33 (1H, d, J = 12.6 

Hz, C=CHC(O)), 4.91 (2H, s, OCH2), 4.63 (2H, d, J = 6.6 Hz, CH2), 1.77 (3H, d, J = 6.6 

Hz, CH3). 

13C NMR (125 MHz. CDCl3) : 167.6 (C=O), 162.4 (HC=CHC(O)), 135.4 (HC=CHC(O)), 

134.8 (ArC), 131.2 (HC=CHCH3), 130.7 ((HC=CHCH2), 128.9 (ArCH), 128.8 (ArCH), 128.7 

(ArCH), 127.9 (2 × ArCH), 124.3 (HC=CHCH3), 97.5 (C=CHC(O)), 73.0 (OCH2Ph), 64.6 

(CH2), 18.3 (CH3). 

HRMS (CI) calculated for C16H19O3 (M+H)+: m/z 259.1334, observed m/z 259.1337 

IR vmax (film)/cm-1 3023, 1705, 1643, 1622, 990, 750. 
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(2E,4E)-Hexa-2,4-dien-1-yl 3-bromopropiolate 

 

 

(2E,4E)-Hexa-2,4-dien-1-yl prop-2-ynoate 37 230 (477 mg, 3.18 mmol) was dissolved in 

acetone (38 mL) at rt. AgNO3 (64.6 mg, 0.38 mmol) was added, followed by recrystallized 

NBS (623 mg, 3.50 mmol), and the resultant mixture was stirred for 1.5 h. The reaction 

mixture was then diluted with EtOAc (40 mL), washed with H2O (40 mL), brine (3 × 40 

mL), dried (Na2SO4), filtered, and concentrated in vacuo to yield the desired product 264 as 

an orange oil (629 mg, 86%) without the need for purification. 

 1H NMR (CDCl3, 400 MHz) : 6.30 (1H, dd, J = 15.2, 10.5 Hz, HC=CHCH2), 6.09 – 6.03 

(1H, m, HC=CHCH3), 5.82 – 5.78 (1H, m, HC=CHCH2), 5.66 – 5.57 (1H, m, HC=CHCH3), 

4.68 (2H, d, J = 6.8 Hz, OCH2), 1.78 (3H, d, J = 6.7 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 152.4 (C=O), 136.5 (HC=CHCH2), 132.4 (HC=CHCH2), 

130.4 (HC=CHCH3), 122.2 (HC=CHCH3), 77.4 (CCC(O)), 72.9 (CCBr), 67.0 (CH2), 

18.3 (CH3). 

Analytical services were unable to obtain an accurate MS. 

IR vmax (film)/cm-1 2934, 2203, 1713, 1236, 990. 

 

7-bromo-6-methyl-3,3a-dihydroisobenzofuran-1(6H)-one 

 

 

A suspension of [Rh(cod)Cl]2 (12.3 mg, 25.0 mol, 5 mol%) in TFE (3 mL) was treated 

with AgSbF6 (22.3 mg, 65.0 mol 13 mol%), followed immediately by a solution of (2E,4E)-

hexa-2,4-dien-1-yl 3-bromopropiolate 264 (113 mg, 0.49 mmol) in TFE (2 mL). The 

reaction mixture was stirred at rt for 1.5 h and was then diluted with Et2O (15 mL), filtered 
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through celite, washed with Et2O, and concentrated in vacuo. Purification using flash 

chromatography (silica gel, 20% ethyl acetate in hexane) gave the desired product 265 as an 

orange oil (70 mg, 62%). 

1H NMR (CDCl3, 400 MHz) : 5.79 – 5.72 (2H, m, HC=CH), 4.55 – 4.51 (1H, m, CH2), 

3.84 (1H, dd, J = 10.8, 8.0 Hz, CH2), 3.72 – 3.60 (1H, m, CHCH2), 3.33 – 3.22 (1H, m, 

CHCH3), 1.46 (3H, d, J = 7.4 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 166.8 (C=O), 134.4 (C=CBr), 132.9 (C=CH), 124.7 

(C=CBr), 120.9 (C=CH), 69.0 (CH2), 42.9 (CHCH2), 39.6 (CHCH3), 21.5 (CH3). 

HRMS (ESI) calculated for C9H9O2BrNa (M+Na)+: m/z 250.9678, observed m/z 250.9672 

IR vmax (film)/cm-1 2361, 1771, 1456, 1082, 750. 

 

7-bromo-6-methylisobenzofuran-1(3H)-one 

 

 

(2E,4E)-Hexa-2,4-dien-1-yl 3-bromoprop-2-ynoate 264 (242 mg, 1.06 mmol) was dissolved 

in toluene (10 mL) and heated to reflux (111 °C) for 16 h. Then MnO2 (461 mg, 5.30 mmol) 

was added, and the reaction mixture was refluxed for 4 h, then filtered through celite, washed 

with Et2O, and concentrated in vacuo to give the desired product 266 as a pale orange solid 

(186 mg, 78%). 

1H NMR (CDCl3, 400 MHz) : 7.54 (1H, d, J = 7.7 Hz, ArH), 7.33 (1H, d, J = 7.7 Hz, ArH), 

5.22 (2H, s, CH2), 2.53 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 168.6 (C=O), 146.6 (ArC), 140.2 (ArC), 136.2 (ArCH), 124.4 

(ArC), 123.0 (ArC), 120.5 (ArCH), 67.4 (CH2), 22.3 (CH3). 

HRMS (ESI) calculated for C9H7O2BrNa (M+Na)+: m/z 248.9522, observed 248.9520. 

IR vmax (film)/cm-1 2361, 1751, 1578, 1082, 1016, 646. 

Melting point: 140 – 142 °C. 
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6-Methyl-7-phenylisobenzofuran-1(3H)-one 

 

 

7-Bromo-6-methylisobenzofuran-1(3H)-one (1.00 g, 4.40 mmol), phenylboronic acid (537 

mg, 4.40 mmol) and Cs2CO3 (2.15 g, 6.6 mmol) were dissolved in toluene (60 mL) and H2O 

(10 mL). The resultant mixture was treated with Pd(PPh3)4 (153 mg, 0.13 mmol, 3 mol%). 

The reaction mixture was then heated to 90 °C and stirred for 16 h. The reaction mixture 

was then diluted with EtOAc (100 mL), washed with H2O (100 mL), brine (100 mL), dried 

(Na2SO4), filtered and concentrated in vacuo. The mixture was then purified using column 

chromatography (silica gel, 10% EtOAc in petroleum ether) to give the desired product 267 

as a colourless solid (949 mg, 96%). 

1H NMR (CDCl3, 400 MHz) δ: 7.58 (1H, d, J = 7.8 Hz, ArH), 7.50 – 7.40 (3H, m, ArH), 7.37 

(1H, d, J = 7.8 Hz, ArH), 7.26 – 7.21 (2H, m, ArH), 5.25 (2H, s, CH2), 2.22 (3H, s, CH3).  

13C NMR (CDCl3, 125 MHz) δ: 169.9 (C=O), 144.9 (ArC), 141.7 (ArC), 137.9 (ArC), 136.0 

(ArCHphthalide), 136.0 (ArC), 129.1 (ArCH), 128.2 (ArCH), 128.0 (ArCH), 123.3 (ArC), 120.9 

(ArCHphthalide), 68.2 (CH2), 19.9 (CH3).  

HRMS (EI) calculated for C15H12O2 (M)+: m/z 224.0837, observed 224.0838.  

IRVmax (film)/cm-1 2359, 1761, 1475, 1084, 764, 700. 

 

7-Bromo-1-methoxy-6-methyl-1,3-dihydro-2-benzofuran 

 

 

7-Bromo-6-methylisobenzofuran-1(3H)-one 266 (100 mg, 0.44 mmol) was dissolved in 

anhydrous toluene (7 mL), and cooled down to -78 °C. The resultant solution was then 
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treated with DIBALH (0.44 mL, 1M in hexanes, 0.44 mmol) via syringe pump over 1.5 h. 

The reaction mixture was left to warm to rt over 16 h. The reaction mixture was then cooled 

down to 0 °C and methanol (0.5 mL) was added, followed by CH2Cl2 (7 mL) and Rochelle’s 

salt 20% (aq) solution (7 mL) and stirred at rt for 1 h. The organic layer was then washed 

with H2O (7 mL), brine (7 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The 

crude lactol intermediate was then dissolved in MeOH (7 mL) and TsOH.H2O (5 mg, 0.03 

mmol) was added. The resultant solution was left to stir at rt for 3 h. The reaction mixture 

was then basified with NaHCO3 (aq), diluted with Et2O (7 mL), washed with H2O (2 × 7 

mL), brine (2 × 7 mL), dried (Na2SO4), filtered, then concentrated in vacuo, and purified 

using column chromatography (silica gel, 10% EtOAc in petroleum ether) to yield the 

desired product as a colourless oil 268 (41 mg, 19%). 

1H NMR (400 MHz, CDCl3) δ: 7.24 (1H, d, J = 7.6 Hz, ArH), 7.10 (1H, d, J = 7.6 Hz, ArH), 

6.09 (1H, d, J = 2.1 Hz, C(H)OCH3), 5.29 – 5.23 (1H, m, CH2), 5.03 (1H, d, J = 12.7 Hz, 

CH2), 3.52 (3H, s, OCH3), 2.43 (3H, s, CH3). 

13C NMR (100 MHz, CDCl3) δ: 139.4 (ArC), 138.1 (ArC), 137.4 (ArC), 131.8 (ArCH), 119.9 

(ArC), 119.6 (ArCH), 108.4 (CH), 72.6 (CH2), 55.1 (OCH3), 22.1 (CH3). 

HRMS (EI) calculated for C10H10O2Br (M+H)+: m/z 240.9864, observed 240.9866. 

IRVmax (film)/cm-1 2926, 1130, 1088, 1032, 912, 731. 

 

6-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isobenzofuran-1(3H)-one 

 

 

7-Bromo-6-methylisobenzofuran-1(3H)-one 266 (100 mg, 0.44 mmol), Pd(CH3CN)2Cl2 

(1.5 mg, 5.8 mol, 1 mol%), and SPhos (14.5 mg, 0.04 mmol) were dissolved in 1,4-dioxane 

(1 mL) and Et3N (1 mL). Then pinacolborane (0.13 mL, 0.89 mmol) was added, and the 

resultant mixture was heated to 110 °C, and stirred for 2 h. The reaction mixture was then 

cooled down to rt, filtered through celite, washed with CH2Cl2, concentrated in vacuo, and 
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purified using flash chromatography (silica gel, 10% EtOAc in petroleum ether) to yield the 

desired product 269 as a colourless solid (47 mg, (59% brsm) 34 mg). 

1H NMR (400 MHz, CDCl3) : 7.42 (1H, d, J = 7.9 Hz, ArH), 7.33 (1H, d, J = 7.9 Hz, ArH), 

5.24 (2H, s, CH2), 2.49 (3H, s, ArCH3), 1.46 (12H, s, CH3). 

13C NMR (100 MHz, CDCl3) : 171.8 (C=O), 143.0 (ArC), 142.4 (ArC), 134.5 (ArC), 129.0 

(ArC), 125.9 (ArC), 122.2 (ArCH), 84.8 (COB), 69.7 (OCH2), 25.0 (CH3), 21.5 (ArCCH3). 

11B NMR (128 MHz, CDCl3) : 31.9 (B(OR)2). 

HRMS (EI) calculated for C15H19O4B (M)+: m/z 274.1379, observed 274.1374. 

IR vmax (film)/cm-1 2980, 2361, 1759, 1358, 1051. 

Melting point: 176 – 178 °C. 

 

Methyl-2-methoxy-3-methylbenzoate 

 

3-Methylsalicylic acid (20.0 g, 131 mmol), and anhydrous K2CO3 (52.7 g, 381 mmol) were 

dissolved in acetone (250 mL). Dimethylsulfate (36.1 mL) was added, and the resultant 

mixture heated to reflux and stirred for 16 h. The reaction mixture was then cooled down to 

rt, the solid residue removed by filtration, and the solvent removed in vacuo. The crude 

residue was then dissolved in H2O (500 mL) and stirred for 15 min, then extracted with 

EtOAc (3 × 500 mL). The combined organics were then washed with H2O (500 mL), brine 

(500 mL), dried (Na2SO4), filtered, and concentrated in vacuo, to yield the crude product 

272 as a colourless oil (23.6 g, quant.) and used without further purification. 

1H NMR (CDCl3, 400 MHz) : 7.64 (1H, dd, J = 7.8, 1.4 Hz, ArH), 7.35 (1H, ddd, J = 7.5, 

1.7, 0.7 Hz, ArH), 7.06 (1H, t, J = 7.6 Hz, ArH), 3.92 (3H, s, C(O)OCH3), 3.84 (3H, s, OCH3), 

2.33 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 166.9 (C=O), 158.4 (ArC), 135.2 (ArCH), 132.8 (ArC), 129.1 

(ArCH), 124.6 (ArC), 123.5 (ArCH), 61.5 (OCH3), 52.2 (C(O)OCH3), 16.0 (CH3). 

This data is in accordance with literature values.[95] 
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2-Methoxy-3-methylbenzoic acid 

 

 

Methyl-2-methoxy-3-methylbenzoate 272 (23.6 g, 131 mmol) was dissolved in MeOH (250 

mL). The resultant solution was treated with 3M NaOH (aq) (100 mL) and stirred for 16 h. 

The organics were removed in vacuo and the crude residue dissolved in H2O (300 mL) and 

acidified using 3M HCl (aq). The resultant mixture was then extracted with EtOAc (3 × 200 

mL), washed with brine (400 mL), dried (Na2SO4), filtered, and concentrated in vacuo, to 

yield the desired product 153 as a white solid (18.4 g, 85%). 

1H NMR (CDCl3, 400 MHz) : 7.96 (1H, dd, J = 7.8, 1.4 Hz, ArH), 7.44 (1H, dd, J = 7.5, 

1.0 Hz, ArH), 7.19 (1H, t, J = 7.7 Hz, ArH), 3.93 (3H, s, OCH3), 2.38 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 165.6 (C=O), 157.5 (ArCOCH3), 137.1 (ArCH), 131.2 

(ArCCH3), 130.8 (ArCH), 125.3 (ArCH), 121.8 (ArCCOOH), 62.3 (OCH3), 16.0 (CH3). 

This data is in accordance with literature values.[48] 

 

7-methoxy-6-methylisobenzofuran-1(3H)-one 

 

 

2-Methoxy-3-methylbenzoic acid 153 (3.32 g, 20.0 mmol), K2HPO4 (10.4 g, 59.9 mmol), 

and Pd(OAc)2 (900 mg, 4.01 mmol, 20 mol%) were dissolved in CH2Br2 (80 mL) in a 200 

mL sealed reaction tube under an air atmosphere. The resultant mixture was then heated to 

140 °C in a pre-heated oil bath and stirred for 88 h. The reaction mixture was then cooled 

and diluted with CH2Cl2 (150 mL), filtered through a celite pad, washed with CH2Cl2, and 

concentrated in vacuo. The crude mixture was purified using flash chromatography (silica 
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gel, 20 % EtOAc in petroleum ether) to yield the desired product 156 as a beige solid (3.16 

g, 89%). 

1H NMR (CDCl3, 400 MHz) : 7.48 (1H, d, J = 7.5 Hz, ArH), 7.06 (1H, d, J = 7.5 Hz, ArH), 

5.24 (2H, s, CH2), 4.09 (3H, s, OCH3), 2.34 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 169.1 (C=O), 157.8 (ArC(OCH3)), 146.8 (ArC), 137.5 (ArCH), 

131.7 (ArC), 117.0 (ArC), 116.5 (ArCH), 68.8 (CH2), 62.3 (OCH3), 15.6 (CH3). 

This data is in accordance with literature values.[48] 

 

7-Hydroxy-6-methylisobenzofuran-1(3H)-one 

 

 

Method A: 

5-(Hydroxymethyl)-2-methylphenol 207 (1.15 g, 8.32 mmol) was dissolved in anhydrous 

MeCN (80 mL). Et3N (4.33 mL, 31.2 mmol) was added to the solution, followed by the 

dropwise addition of SnCl4 (1.46 mL, 7.96 mmol). The resultant mixture was stirred at rt for 

20 min, then paraformaldehyde (1.77 g, 59.0 mmol) was added and the mixture heated to 

reflux (82 °C) and stirred for 16 h. The reaction was then diluted with Et2O (250 mL), washed 

with H2O (250 mL), separated organic phase, dried (Na2SO4), filtered, concentrated in 

vacuo. The crude mixture was then purified using column chromatography (silica gel, 40 – 

60% CH2Cl2 in petroleum ether) to yield the desired product 157 as a white solid (355 mg, 

26%).  

Method B: 

6-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isobenzofuran-1(3H)-one 269 (43 

mg, 0.16 mmol) was dissolved in anhydrous THF (3 mL). Then 1M NaOH (0.47 mL) was 

added, followed by (aq) 30% H2O2 (0.16 mL), and the resultant mixture stirred for 2 h. The 

reaction mixture was then diluted with EtOAc (5 mL), acidified with 1M HCl (0.60 mL), 

washed with H2O (5 mL), brine (5 mL), dried (Na2SO4), then concentrated in vacuo. The 
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crude product was purified using flash column chromatography (silica gel, 20% EtOAc in 

petroleum ether) to give the desired product 157 as a colourless solid (12 mg, 46%). 

Method C 

7-Methoxy-6-methylisobenzofuran-1(3H)-one 156 (3.16 g, 17.7 mmol) was dissolved in 

anhydrous DMF (100 mL). The resultant solution was treated with iodocyclohexane (16.1 

mL, 124 mmol), and the reaction mixture was heated to 153 °C and stirred for 80 h. The 

reaction mixture was then diluted with H2O (50 mL), extracted with EtOAc (300 mL), 

washed with sat. (aq) Na2S2O3 (3  200 mL), brine (2  200 mL), dried (Na2SO4), and 

concentrated in vacuo. Trituration with petroleum ether gave the desired product 157 as a 

white solid (2.73 g, 94%). 

1H NMR (CDCl3, 400 MHz) : 7.87 (1H, s, OH), 7.42 (1H, d, J = 7.5 Hz, ArH), 6.87 (1H, d, 

J = 7.5 Hz, ArH), 5.29 (2H, s, CH2), 2.30 (3H, s, CH3). 

13C NMR (CDCl3, 100 MHz) : 173.0 (C=O), 154.5 (ArC(OH)), 144.1 (ArC), 138.2 (ArCH), 

124.8 (ArC(CH3)), 112.8 (ArCH), 110.5 (ArC), 70.4 (CH2), 14.6 (CH3). 

This data is in accordance with literature values.[48] 

 

7-((tert-Butyldimethylsilyl)oxy)-6-methylisobenzofuran-1(3H)-one 

 

 

7-Hydroxy-6-methylisobenzofuran-1(3H)-one 157 (355 mg, 2.16 mmol) and imidazole (349 

mg, 5.12 mmol) were dissolved in anhydrous DMF (10 mL). TBSCl (463 mg, 3.07 mmol) 

was added, and the resultant mixture was stirred for 16 h. The reaction was then diluted with 

Et2O (500 mL), washed with H2O (50 mL), brine (4  50 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo. The crude mixture was then purified using flash chromatography 

(silica gel, 5% EtOAc in petroleum ether) to give the desired product 158 as a white solid 

(551 mg, 92%). 

1H NMR (400 MHz, CDCl3) δ: 7.44 (1H, d, J = 7.6 Hz, ArH), 6.94 (1H, d, J = 7.6 Hz, ArH), 

5.17 (2H, s, CH2), 2.30 (3H, s, CH3), 1.07 (9H, s, SiC(CH3)3), 0.27 (6H, s, Si(CH3)2). 
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13C NMR (400 MHz, CDCl3) δ: 169.1 (C=O), 153.0 (ArCO), 146.3 (ArC), 137.6 (ArCH), 130.2 

(ArCCH3), 115.9 (ArC), 114.3 (ArCH), 68.1 (CH2), 26.0 (SiC(CH3)3), 18.8 (SiC(CH3)3), 16.8 

(CH3), -3.5 (Si(CH3)2). 

This data is in accordance with literature values.[48] 

 

5-Iodopent-4-yn-1-ol 

 

 

A 0 °C solution of pent-4-yn-1-ol (100 mg, 1.19 mmol) in MeOH (3 mL) was treated with 

12.5 M (aq) NaOH (0.24 mL), and the resultant solution stirred for 10 min. I2 (332 mg, 1.31 

mmol) was then added, and the reaction was warmed to rt and stirred for 3 h. The reaction 

mixture was then diluted with H2O (3 mL), and extracted with Et2O (3  10 mL). The 

combined organics were washed with saturated (aq) Na2S2O3 (3  20 mL), brine (20 mL), 

dried (Na2SO4), then concentrated in vacuo to yield the desired product 277 as a yellow oil 

(223 mg, 89%). 

1H NMR (CDCl3, 400 MHz) : 3.81 – 3.70 (2H, m, CH2OH), 2.51 (2H, t, J = 7.0 Hz, 

CCCH2), 1.83 – 1.72 (2H, m, CH2CH2CH2).  

This data is in accordance with literature values.[70] 

 

o-Nitrobenzenesulfonylhydrazide 

 

 

o-Nitrobenzenesulfonyl chloride (10.0 g, 45.1 mmol) was dissolved in anhydrous THF (100 

mL) and cooled to -30 °C. Hydrazine monohydrate (5.46 mL, 112 mmol) was added 

dropwise, and the resultant mixture was stirred for 30 min. The reaction was then diluted 
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with EtOAc (200 mL), and washed with ice-cold brine (5  100 mL). The organics were 

then dried (Na2SO4) at 0 °C, then added slowly to a stirring solution of hexane (500 mL) at 

rt. The precipitate was then collected by vacuum filtration, washed with hexane, and dried 

in vacuo, to afford the desired product 278 as a white powder (8.87 g, 90%). 

1H NMR (CDCl3, 400 MHz) : 8.26 – 8.21 (1H, m, ArH), 7.94 – 7.88 (1H, m, ArH), 7.86 – 

7.78 (2H, m, ArH), 6.51 (1H, br s, NH), 3.84 (2H, br s, NH2).  

This data is in accordance with literature values.[71] 

 

(4Z)-5-Iodopent-4-en-1-ol 

 

 

5-Iodopent-4-yn-1-ol 277 (5.47 g, 26.1 mmol) was dissolved in THF: iPrOH (1:1, 150 mL), 

and the resultant solution treated with 2-nitrobenzenesulfonyl hydrazide 278 (7.37 g, 33.8 

mmol), followed by Et3N (9.00 mL, 64.9 mmol). The reaction mixture was stirred for 16 h 

and protected from light. The reaction was then diluted with H2O (150 mL), and extracted 

with diethyl ether (150 mL), dried (Na2SO4), filtered, concentrated in vacuo, and purified by 

flash chromatography (5 – 25% EtOAc in hexane) to yield the desired product 36 as a 

colourless oil (3.66 g, 66%). 

1H NMR (CDCl3, 500 MHz) : 6.24 – 6.19 (2H, m, HC=CHI), 3.68 (2H, dd, J = 10.0, 6.6 

Hz, CH2OH), 2.24 (2H, m, CH2), 1.70 (2H, m, CH2). 

This data is in accordance with literature values.[96] 
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Methyl (2E,6Z)-7-iodohepta-2,6-dienoate 

 

 

(4Z)-5-Iodopent-4-en-1-ol 36 (4.30 g, 20.3 mmol) was dissolved in anhydrous CH2Cl2 (100 

mL) at 0 °C. PCC (4.81 g, 22.3 mmol) was added, and the resultant mixture was stirred for 

2 h, then warmed to rt and stirred for 3 h. The reaction mixture was then filtered through 

Florisil® and washed with CH2Cl2. The solvent was carefully concentrated in vacuo, until 

approximately 75 mL remained, then the flask was flushed with argon and treated with 

methyl (triphenylphosphoranylidene)acetate (7.46 g, 22.3 mmol) and stirred at rt for 24 h. 

The crude mixture was concentrated in vacuo, then purified using flash chromatography 

(silica gel, 5% Et2O in petroleum ether) to yield the desired product 38 as a colourless oil 

(3.03 g, 56%). 

1H NMR (C6D6, 500 MHz) : 6.85 (1H, dt, J = 15.6, 6.9 Hz, HC=CHCO2Me), 5.82 (1H, d, 

J = 7.4 Hz, IHC=CH), 5.74 (1H, dt, J = 15.6, 1.6 Hz, HC=CHCO2Me), 5.50 (1H, q, J = 6.9 

Hz, IHC=CH), 3.41 (3H, s, CH3), 1.91 – 1.84 (2H, m, CH2), 1.73 – 1.65 (2H, m, CH2). 

13C NMR (CDCl3, 100 MHz) : 167.1 (C=O), 147.8 (HC=CHCO), 139.6 (HC=CHI), 122.0 

(HC=CHCO), 84.0 (HC=CHI), 51.7 (OCH3), 33.3 (CH2), 30.6 (CH2). 

This data is in accordance with literature values.[29] 

 

(2E,6Z)-7-Iodohepta-2,6-dien-1-ol 

 

 

Methyl (2E,6Z)-7-iodohepta-2,6-dienoate 38 (621 mg, 2.33 mmol) was dissolved in 

anhydrous CH2Cl2 (16 mL) and cooled to 0 °C. The resultant solution was then treated with 

DIBALH (5.13 mL, 1M in hexanes, 5.13 mmol), warmed to rt, and stirred for 16 h. The 

reaction mixture was quenched with MeOH (5 mL), diluted with CH2Cl2 (20 mL), and 

Rochelle’s salt 20% (aq) solution (40 mL) was added. The resultant mixture was stirred for 
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4 h, the organic separated, washed with brine (30 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo. The crude product was purified using flash chromatography (silica 

gel, 0 – 25% Et2O in petroleum ether) to yield the desired product 347 as a colourless oil 

(505 mg, 91%). 

1H NMR (C6D6, 400 MHz) : 5.89 (1H, dt, J = 7.3, 1.4 Hz, HC=CHI), 5.71 (1H, q, J = 6.9 

Hz HC=CHI), 5.40 – 5.35 (2H, m, HC=CHCH2OH), 3.78 (2H, br s, CH2OH), 2.07 – 1.99 

(2H, m, CH2CH=CHI), 1.88 – 1.81 (2H, m, CH2CH=CHCH2), 0.59 (1H, br s, OH). 

13C NMR (C6D6, 100 MHz) : 140.9 (HC=CHI), 131.3 (HC) 130.5 (HC), 83.2 (CHI), 63.6 

(CH2OH), 34.9 (H2CCH=CHI), 31.0 (H2CCH=CHCH2). 

This data is in accordance with literature values.[29] 

 

(1Z,5E)-7-Bromo-1-iodohepta-1,5-diene 

 

 

(2E,6Z)-7-Iodohepta-2,6-dien-1-ol 347 (1.00 g, 4.20 mmol) was dissolved in CH2Cl2 (50 

mL). The resultant solution was then treated sequentially with PPh3 (2.20 g, 8.39 mmol) and 

CBr4 (2.79 g, 8.41 mmol), and stirred for 1 h. The solvent was removed in vacuo and the 

crude reaction mixture purified using flash chromatography (silica gel, 5% EtOAc in 

petroleum ether) to yield the desired product 279 as a pale orange oil (1.26 g, 100%). 

Fully characterised as 40. 
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(E)-N-((2E,6Z)-7-Iodohepta-2,6-dienyl)-3-methoxy-N-methylbut-2-enamide  

 

 

Bromide 279 (810 mg, 2.69 mmol) was dissolved in anhydrous THF (20 mL) and cooled 

down to 0 °C. MeNH2 (2M in THF, 6.73 mL, 13.5 mmol) was added, and the reaction 

mixture stirred at 0 °C for 1 h, before being warmed to rt and stirred for a further 1 h. The 

solvent and excess MeNH2 was removed in vacuo to afford the crude product. Purification 

using SCX ion-exchange chromatography, flushing with MeOH, followed by elution with 

7M NH3 in MeOH, afforded the amine intermediate as an orange oil (490 mg, 77%). The 

amine was dissolved in anhydrous CH2Cl2 (40 mL) and cooled down to 0 °C. (E)-3-

Methoxybutenoic acid 31 (250 mg, 2.15 mmol), and HBTU (963 mg, 2.54 mmol) were 

added, followed by the dropwise addition of DIPEA (0.71 mL, 4.08 mmol). The resultant 

mixture was stirred at 0 °C for 20 min, then warmed to rt and stirred for an additional 2 h. 

The solvent was removed in vacuo, and the resultant slurry was partitioned between Et2O 

(40 mL) and H2O (40 mL). The organic layer was then washed with sat. NaHCO3 (aq) (40 

mL), 20% citric acid (aq) (40 mL), and brine (2  40 mL), then dried (Na2SO4), filtered, and 

concentrated in vacuo. The crude product was then purified using flash chromatography 

(silica gel, 10 – 20% EtOAc in petroleum ether) to yield the desired product 40 as a pale-

yellow oil (229 mg, 34%). 

(3:2 mixture of rotamers. * denotes minor rotamer) 

1H NMR (CDCl3, 500 MHz) : 6.22 (1H, d, J = 7.3 Hz, HC=CHI), 6.15 (1H, q, J = 6.8 Hz, 

HC=CHI), 5.59 (1H, dtt, J = 15.4, 6.5, 1.3 Hz, HC=CHCH2N), 5.46 (1H, dtt, J = 15.4, 5.7, 

1.3 Hz, CHCH2CH2), 5.19* (1H, br s, HCC(O)N), 5.16 (1H, br s, CHC(O)N), 3.98* (2H, br 

s, CH2N), 3.89 (2H, br s, CH2N), 3.62* (3H, br s, CH3O), 3.59 (3H, br s, CH3O), 2.95 (3H, 

br s, NCH3), 2.34 – 2.21 (7H, m, CH3, CH2CH2). 

13C NMR (CDCl3, 100 MHz) : 168.5 (C=O), 167.8 (HC=C(OMe)), 140.6* (HCCH2CH2), 

140.2 (HCCH2CH2), 132.0* (HC=CHCH2N), 131.6 (HC=CHCH2N), 126.4* (HC=CHI), 

125.7 (HC=CHI), 91.2 (HCC(O)N), 83.1* (HC=CHI), 82.8 (HC=CHI), 54.8 (OCH3), 52.1 

(CH2N), 49.0* (CH2N), 35.1 (CH3N), 34.3 (CH2), 33.4 (CH3N), 30.5 (CH2), 18.8 (CH3). 

This data is in accordance with literature values.[29] 
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 (S)-tert-Butyl(3-iodo-2-methylpropoxy)diphenylsilane 

 

 

(2R)-3-((tert-Butyldiphenylsilyl)oxy)-2-methylpropan-1-ol (20.3 g, 61.8 mmol) was 

dissolved in CH2Cl2 (250 mL) and cooled to 0 °C. Imidazole (5.75 g, 84.4 mmol), PPh3 (20.5 

g, 78.0 mmol) and I2 (19.8 g, 78.0 mmol) were added sequentially and the resultant solution 

was stirred for 10 min, then warmed to rt and stirred for 1 h. The reaction mixture was 

quenched with saturated Na2S2O3 solution (250 mL) and extracted with CH2Cl2 (2  150 

mL). The combined organics were then washed with saturated Na2S2O3 solution (300 mL), 

brine (2  150 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product 

was then purified using flash chromatography (silica gel, petroleum ether) to yield the 

desired product (S)-185 as a colourless oil (11.7g, 43%). 

1H NMR (CDCl3, 400 MHz) : 7.71 – 7.65 (4H, m, ArH), 7.48 – 7.36 (6H, m, ArH), 3.59 (1H, 

dd, J = 10.1, 4.9 Hz, CH2I), 3.48 (1H, dd, J = 10.1, 6.9 Hz, CH2I), 3.40 (1H, dd, J = 9.5, 5.1 

Hz, CH2SiO), 3.34 (1H, dd, J = 9.5, 5.8 Hz, CH2SiO), 1.80 – 1.68 (1H, m, CH(CH3)), 1.06 

(9H, s, (CH3)3Si), 0.97 (3H, d, J = 6.7 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 135.7 (4  ArCH), 133.6 (2  ArC), 129.7 (2  ArCH), 127.7 

(4  ArCH), 67.3 (CH2O), 37.6 (CH(CH3)), 26.9 (SiC(CH3)3), 19.3 (SiC(CH3)3), 17.3 

(CH(CH3)3), 13.6 (CH2I). 

[]D
26 +4.1 (c = 1.66, CHCl3), lit. []D

23 +3.8 (c = 0.41, CHCl3). 

This data is in accordance with literature values.[51] 
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N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N-methylpropionamide  

 

 

(1S,2S)-(+)-Pseudoephedrine (24.0 g, 145 mmol) and Et3N (25.1 mL, 181 mmol) were 

dissolved in anhydrous CH2Cl2 (300 mL). The resultant solution was then treated by the 

dropwise addition of propionic anhydride (20.4 mL, 160 mmol) and the reaction mixture 

was stirred for 30 min before being quenched with H2O (50 mL). The organic layer was 

separated and washed with saturated NaHCO3 (aq) (2  100 mL), 1M HCl (aq) (2  100 

mL), dried (Na2SO4), and filtered. The solvent was removed in vacuo to yield the desired 

compound 285 as a white crystalline solid (29.87 g, 93%). 

(3:1 mixture of rotamers. * denotes minor rotamer) 

1H NMR (CDCl3, 400 MHz) : 7.63 – 7.30 (5H, m, ArH), 4.63 – 4.57 (1H, m, CHOH), 4.48 

– 4.51 (1H, m, H), 4.06 – 3.98* (1H, m, H), 2.94* (3H, s, NCH3), 2.82 (3H, s, NCH3), 2.58 

– 2.47* (2H, m, CH2), 2.44 – 2.25 (2H, m, CH2), 2.14 (1H, d, J = 2.0 Hz, OH), 1.22 – 1.12 

(6H, m, CHCH3 + CH2CH3), 0.99* (3H, d, J = 6.8 Hz, CHCH3). 

13C NMR (CDCl3, 100 MHz) : 176.3 (C=O), 175.0* (C=O), 142.5 (ArC), 141.1 (ArC), 

128.8* (ArCH), 128.5* (ArCH), 128.4 (ArCH), 127.7 (ArCH), 126.9* (ArCH), 126.4 (ArCH), 

76.7 (CHOH), 75.5* (CHOH), 58.8* (CCH3), 58.3 (CCH3), 32.9* (NCH3), 28.7 (NCH3), 

27.6 (CH2), 26.9* (CH2), 15.2* (CH3), 14.5 (CH3), 9.6* (CH3), 9.2 (CH3). 

[]D
31 +98.3 (c = 0.82, CHCl3), lit. []D

25 +103.6 (c = 1.20, CHCl3). 

This data is in accordance with literature values.[73] 
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(R)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-enamide 

 

 

LiCl (13.79 g, 325 mmol) (heated to 230 °C under vacuum for 16 h) and freshly distilled 

DIPA (17.3 mL, 123 mmol) were added to a flame-dried flask. THF (100 mL) was added 

and the resultant mixture was cooled down to -78°C. nBuLi (2.5 M in hexanes, 45.6 mL, 

114 mmol) was added and the reaction mixture was warmed to 0 °C for 5 min, then cooled 

down to -78 °C. An ice cooled solution of N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-

methylpropionamide 285 (12.0 g, 54.2 mmol) in THF (50 mL) was added dropwise via 

cannula. The reaction mixture was stirred at -78 °C for 1 h, warmed to 0 °C for 15 min, rt 

for 5 min, and cooled back down to -78 °C. Allyl bromide (7.03 mL, 81.3 mmol) was added 

dropwise via syringe pump and the resultant mixture was stirred at -78 °C for 4 h, then the 

dry ice/acetone bath was removed and the mixture stirred for 16 h. The reaction was 

quenched with saturated NH4Cl (aq) (50 mL) and diluted with EtOAc (200 mL), and washed 

with saturated NH4Cl (100 mL). The aqueous layer was extracted with EtOAc (2  150 mL), 

and the combined organic extracts were dried (Na2SO4), filtered, and concentrated in vacuo 

to yield the desired product 286 as a yellow oil (14.2 g, quant.). 

Characterised fully as 287. 

 

(2R)-2-Methylpent-4-enoic acid 

 

 

(R)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-enamide 286 (29.0 g, 

111 mmol) was dissolved in tBuOH (100 mL), MeOH (100 mL), and 3M NaOH (aq) (100 

mL). The resultant solution was heated to reflux and stirred for 16 h. The reaction mixture 

was then cooled to rt, and concentrated in vacuo, before being diluted with H2O (500 mL), 

and extracted with CH2Cl2 (4  300 mL). The aqueous phase was then acidified to pH < 2 
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using 3M HCl (aq), and extracted with CH2Cl2 (3  400 mL). The combined extracts (after 

acidification) were dried (Na2SO4), filtered, and concentrated in vacuo to give the desired 

product 287 as a colourless oil (12.4 g, 98%).  

1H NMR (CDCl3, 400 MHz) : 11.26 (1H, br s, OH), 5.78 (1H, m HC=C), 5.15 – 5.02 (2H, 

m, C=CH2), 2.62 – 2.52 (1H, m, CH(CH3)), 2.50 – 2.40 (1H, m, CH2), 2.26 – 2.18 (1H, m 

CH2). 

13C NMR (CDCl3, 100 MHz) : 181.7 (C=O), 135.1 (HC=CH2), 117.2 (HC=CH2), 39.0 

(CH2), 37.5 (CH), 16.3 (CH3). 

[]D
26 −32.4 (c = 1.30, CHCl3), lit. []D

20 −20.9 (c = 1.11, CHCl3). 

This data is in accordance with literature values.[97] 

 

(2R)-2-Methylpent-4-en-1-ol 

 

 

Method A: 

Freshly distilled DIPA (32.1 mL, 228 mmol) was dissolved in anhydrous THF (200 mL) and 

cooled to -78 °C. The resultant solution was treated with nBuLi (2.5 M in hexanes, 86.8 mL, 

217 mmol) and stirred at -78 °C for 10 min, then 0 °C for 10 min. Borane-ammonia complex 

(6.72 g, 217 mmol) was added in one portion and the reaction mixture was stirred at 0 °C 

for 15 min, then rt for 15 min, then cooled to 0 °C. (R)-N-((1S,2S)-1-hydroxy-1-

phenylpropan-2-yl)-N,2 ́-dimethylpent-4-enamide 286 (14.2 g, 54.3 mmol) was added in 

anhydrous THF (150 mL) dropwise, via cannula, and the reaction mixture was warmed up 

to rt and stirred for 4 h. The reaction mixture was then cooled to 0 °C and quenched using 

1M HCl (aq) (300 mL) and stirred for 30 min. The phases were then separated and the 

aqueous phase was extracted with Et2O (3  200 mL). The combined organic phases were 

then washed with 1M HCl (aq) (300 mL), 1M NaOH (aq) (300 mL), and brine (300 mL), 

dried (Na2SO4), and concentrated in vacuo to give the desired alcohol 288 as a clear oil. 

Used without further purification. 
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Method B: 

(2R)-2-Methylpent-4-enoic acid 287 (9.92 g, 86.9 mmol) was dissolved in anhydrous Et2O 

(100 mL). The resultant solution was transferred dropwise via cannula to a rapidly stirred 

suspension of LiAlH4 (3.47 g, 91.3 mmol) in anhydrous Et2O (150 mL) at 0 °C. The reaction 

mixture was warmed to rt, and stirred for 16 h before being cooled to 0 °C. H2O (3.5 mL) 

was added dropwise, followed by 15% NaOH (aq) (3.5 mL), then H2O (10.4 mL), and the 

resultant mixture stirred for 15 min. Na2SO4 was added and the mixture stirred for 15 min, 

filtered, and concentrated in vacuo to give the desired product 288 as a clear oil (6.76 g, 

76%). 

1H NMR (CDCl3, 400 MHz) : 5.88 – 5.77 (1H, m, HC=CH2), 5.10 – 5.00 (2H, m, 

HC=CH2), 3.55 – 3.45 (2H, m, CH2OH), 2.23 – 2.14(1H, m, CH2CH=CH2), 2.00 -1.91 (1H, 

m, CH2CH=CH2), 2.00 – 1.92 (1H, m, CH(CH3)), 1.33 (1H, br s, OH), 0.94 (3H, d, J = 0.94 

Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 137.0 (HC=CH2), 116.1(HC=CH2), 67.9 (OCH2), 37.9 

(CH2), 35.6 (CH), 16.4 (CH3). 

[]D
31

 +6.8 (c = 1.01, CHCl3), lit. []D
19

 +4.3 (c = 1.00, CHCl3). 

This data is in accordance with literature values.[98] 

 

 (R)-tert-Butyl((2-methylpent-4-en-1-yl)oxy)diphenylsilane 

 

 

Method A: 

(S)-tert-Butyl(3-iodo-2-methylpropoxy)diphenylsilane  (S)-185 (500mg, 1.14 mmol) was 

dissolved in Et2O (8 mL) and cooled to -78 °C. tBuLi (1.41 mL, 1.7 M in hexanes, 2.40 

mmol) was added slowly and the resultant solution was stirred for 30 min. In a separate flask 

ZnBr2 (166 mg, 0.74 mmol),  was dried at 230 °C, under high vacuum for 24 h and dissolved 

in anhydrous THF (1.6 mL), cooled to 0 °C then added dropwise to the lithiated intermediate, 

and stirred for 45 min at -78 °C, then warmed up to 0 °C and stirred for 20 min. Pd(PPh3)4 

(40 mg, 3 mol%, 34.6 mol) and vinyl bromide (3.42 mL, 1M in THF, 3.42 mmol) were 
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added to a flask and the resultant suspension added dropwise to the organozinc intermediate. 

The reaction mixture was then warmed up to rt and stirred for 16 h then diluted with Et2O 

(10 mL), washed with water (2  25 mL), then brine (2  25 mL), dried (Na2SO4), filtered, 

and concentrated in vacuo. The crude mixture was then purified using flash chromatography 

(silica gel, petroleum ether) to yield the desired product (R)-186 as a colourless oil (277 mg, 

72%).  

Method B: 

(2R)-2-Methylpent-4-en-1-ol 288 (6.76 g, 67.5 mmol) and imidazole (9.19 g, 135 mmol) 

were dissolved in anhydrous DMF (200 mL). TBDPSCl (19.2 mL, 74.0 mmol) was then 

added and the resultant mixture was stirred at rt for 16 h. The reaction was then diluted with 

EtOAc (500 mL), washed with H2O (250 mL), brine (4  250 mL), dried (Na2SO4), filtered, 

and concentrated in vacuo. The crude mixture was then purified using flash chromatography 

(silica gel, 5% EtOAc in petroleum ether) to yield the desired product (R)-186 as a colourless 

oil (20.3 g, 89%). 

1H NMR (CDCl3, 400 MHz) : 7.73 – 7.62 (4H, m, ArH), 7.48 – 7.33 (6H, m, ArH), 5.84 – 

5.71 (1H, m, HC=CH2), 5.08 – 4.92 (2H, m, HC=CH2), 3.50 (2H, dd, J = 6.0, 2.6 Hz, 

CH2SiO), 2.30 – 2.23 (1H, m, CH2CH=CH2), 1.95 – 1.88 (1H, m, CH2CH=CH2), 1.80 – 1.72 

(1H, m, CH(CH3)), 1.06 (9H, s, (CH3)3CSi), 0.92 (3H, d, J = 6.7 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 137.3 (HC=CH2), 135.6 (4  ArCH), 134.2 (ArC), 134.0 

(ArC), 129.5 (2  ArCH), 127.6 (4  ArCH), 115.7 (HC=CH2), 68.4 (CH2), 37.6 (CH2), 35.7 

(CH(CH3)), 26.9 (C(CH3)3), 19.3 (C(CH3)3), 16.4 (CH3). 

[]D
22

 +6.8 (c = 1.96, CHCl3), lit. []D
20

 +3.1 (c = 1.14, CHCl3). 

This data is in accordance with literature values.[99] 
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(4R)-5-((tert-Butyldiphenylsilyl)oxy)-4-methylpentane-1,2-diol 

 

 

(R)-tert-Butyl((2-methylpent-4-en-1-yl)oxy)diphenylsilane (R)-186 (10.68g, 31.54 mmol) 

was dissolved in MeCN (80 mL) and cooled to 0 °C. H2O (20 mL), and NMO (7.26 g, 62.0 

mmol) were added, followed by OsO4 (2.5% w/w in tBuOH, 0.30 mmol). The reaction 

mixture was warmed to rt, and stirred for 16 h. The reaction mixture was quenched with 

Na2SO3 (aq) (100 mL), diluted with Et2O (200 mL), washed with water (200 mL), then brine 

(2  200 mL), dried (Na2SO4), filtered, and the solvent removed in vacuo to give the desired 

product 290 as a yellow oil (11.75 g, 100%). 

(1.3:1 mixture of diastereomers. * denotes minor diastereomer) 

1H NMR (CDCl3, 400 MHz) : 7.68 – 7.64 (4H, m, ArH), 7.47 – 7.34 (6H, m, ArH), 3.88 – 

3.76 (1H, m, CH(OH)), 3.65 – 3.38 (4H, m, OCH2), 3.34 (1H, d, J = 3.4 Hz, OH), 2.83* 

(1H, d, J = 4.1 Hz, OH), 1.99 (1H, dd, J = 6.8, 4.9 Hz, OH(CH)), 1.92* (1H, dd, J = 7.2, 5.0 

Hz, OH(CH)), 1.91 – 1.83 (1H, m, CH(CH3), 1.56 – 1.44 (3H, m, CH2 + SiOCH2), 1.36 (1H, 

dd, J = 14.3, 6.4, 2.9 Hz, CH2), 1.06 (9H, s, SiC(CH3)3), 0.92* (3H, d, J = 6.9 Hz, CH3), 

0.86 (3H, d, J = 6.9 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 135.7* (ArCH), 135.6(ArCH), 135.6*(ArCH), 133.3* (ArC), 

133.3* (ArC), 133.2 (ArC), 133.2 (ArC), 129.8 (ArCH), 127.8 (ArCH), 70.7 (CH(OH)), 70.0 

(CH2OSi), 69.8* (CH(OH)), 68.9* (CH2OSi), 67.4 (CH2OH), 67.1* (CH2OH), 38.8* (CH2), 

37.8 (CH2), 33.7 (CH(CH3)), 32.2* (CH(CH3)), 26.9* (SiC(CH3)3), 26.8 (SiC(CH3)3), 19.2 

(SiC(CH3)), 17.7 (CH3), 17.6* (CH3). 

HRMS (ESI) calculated for C22H32O3SiNa (M+Na)+: m/z 395.2013, observed 395.1996. 

IR vmax (film)/cm-1 3383, 2957, 2930, 2857, 1471, 1427. 
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(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-

pentanol 

 

 

(4R)-5-((tert-Butyldiphenylsilyl)oxy)-4-methylpentane-1,2-diol 290 (12.0 g, 32.2 mmol) 

was dissolved in anhydrous DMF (150 mL) and cooled to 0 °C. Imidazole (4.39 g, 64.5 

mmol), then TBSCl (4.85 g, 32.2 mmol) was added. The reaction mixture was stirred for 1 

h before being quenched with H2O (100 mL), extracted with Et2O (200 mL), washed with 

brine (4  100 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The crude product 

was then purified using flash chromatography (silica gel, 20% EtOAc in petroleum ether) to 

yield the desired compound 348 as a colourless oil (15.0 g, 99%). 

Fully characterised as 292. 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-

pentyl mesylate 

 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-pentanol 

348 (15.1 g, 32.2 mmol) was dissolved in anhydrous CH2Cl2 (200 mL) and cooled to 0 °C. 

Et3N (8.93 mL, 64.4 mmol) was added, followed by MsCl (2.74 mL, 35.4 mmol), and the 

resultant mixture was stirred for 1 h. The reaction mixture was then quenched with H2O (100 

mL). The organics were then washed with H2O (2  100 mL), dried (Na2SO4), and 

concentrated in vacuo to give the desired product 291 as a yellow oil (18.2 g, 100% crude). 

Fully characterised as 292. 
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(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-

pentyl azide 

 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-pentyl 

mesylate 291 (18.2 g, 32.2 mmol) was dissolved in anhydrous DMF (150 mL). NaN3 (6.28 

g, 96.6 mmol) was added and the resultant solution heated to 80 °C and stirred for 16 h. The 

reaction was then quenched with H2O (150 mL), extracted with Et2O (300 mL), washed with 

brine (4  100 mL), dried (Na2SO4), and concentrated in vacuo. The crude product was 

purified using flash chromatography (silica gel, hexane) to yield the desired product 349 as 

a yellow oil (14.74 g, 89%). 

Fully characterised as 292. 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-

pentyl amine 

 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-pentyl 

azide 349 (5.48 g, 10.7 mmol) was dissolved in EtOH (120 mL), and charged with 10% 

activated Pd/C (335 mg, 3.15 mmol). The resultant suspension was stirred under an 

atmosphere of H2 for 16 h. The suspension was then filtered through celite, washed with 

EtOH, and the filtrate concentrated in vacuo. The crude product was then purified using flash 

chromatography (silica gel, 0 – 10 % MeOH in CH2Cl2) to yield the desired product 292 as 

a colourless oil (4.38 g, 84%) (66% from (R)-tert-butyl((2-methylpent-4-en-1-

yl)oxy)diphenylsilane (R)-186). 

(1.3:1 mixture of diastereomers. * denotes minor diastereomer) 
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1H NMR (CDCl3, 400 MHz) : 7.68 – 7.62 (4H, m, ArH), 7.45 – 7.34 (6H, m, ArH), 3.66 (1H, 

td, J = 9.4, 3.7 Hz, SiOCH2), 3.56 – 3.41 (3H, m, SiOCH2), 3.08 (1H, m, CH(NH2)), 1.92 – 

1.79 (1H, m, CH2), 1.66 – 1.59 (1H, m, CH(CH3)), 1.56 – 1.48* (1H, m, CH(CH3)), 1.37 – 

1.29 (1H, m, CH2), 1.05 (9H, s, Si(CH3)3), 0.96 (3H, d, J = 6.6 Hz, CH3), 0.94* (3H, d, J = 

6.6 Hz, CH3), 0.90 (9H, s, Si(CH3)3), 0.89 (9H, s, Si(CH3)2), 0.07 (6H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 135.6 (ArCH), 135.6* (ArCH), 133.8 (ArC), 133.7 (ArC), 129.6 

(ArCH), 129.6 (ArCH), 127.7 (ArCH), 69.3 (SiOCH2), 68.6 (SiOCH2), 51.2 (CH2(NH2)), 50.9* 

(CH(NH2)), 38.3 (CH2), 37.5* (CH2), 32.5 (CH(CH3)), 32.4* (CH(CH3)), 26.9* 

(SiC(CH3)3), 25.9 (SiC(CH3)3), 19.3* (SiC(CH3)3), 18.3 (SiC(CH3)3), 17.5 (CH3), 16.8* 

(CH3), -5.33* (Si(CH3)2), -5.38 (Si(CH3)2). 

HRMS (CI) calculated for C18H25O3NNa (M+H)+: m/z 486.3224, observed 486.3207. 

IR vmax (film)/cm-1 3017, 2957, 2930, 2857, 2359, 1472. 

 

(2R)-4-Benzyloxy-N-((4R)-((tert-butyldimethylsilyl)oxy)-5-((tert-

butyldiphenylsilyloxy)-4-methylpentan-2-yl)-2-methyl butanamide 

 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-pentyl 

amine 292 (6.19 g, 12.7 mmol) and (2R)-4-(benzyloxy)-2-methylbutanoic acid (R)-194 

(2.65 g, 12.7 mmol) were dissolved in anhydrous CH2Cl2 (150 mL) and cooled to 0 °C. 

EDC.HCl (2.93 g, 15.3 mmol) and HOBt (172 mg, 1.27 mmol) were added, followed by the 

dropwise addition of DIPEA (4.44 mL, 25.5 mmol). The reaction mixture was stirred at 0 

°C for 2 h, then warmed to rt and stirred for 16 h. The solvent was then removed in vacuo 

and the crude mixture dissolved in Et2O (200 mL), washed with water (150 mL), NaHCO3 

(aq) (100 mL), 10% HCl (aq) (100 mL), brine (2  100 mL), dried (Na2SO4), then filtered, 

and concentrated in vacuo to give the desired crude amide product 350 (8.43 g, 98% crude). 

Fully characterised as 295. 
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(2R)-4-(Benzyloxy)-N-((4R)-5-((tert-butyldiphenylsilyl)oxy)-1-hydroxy-4-

methylpentan-2-yl)-2-methylbutanamide 

 

 

(2R)-4-Benzyloxy-N-((4R)-((tert-butyldimethylsilyl)oxy)-5-((tert-butyldiphenylsilyloxy)-

4-methylpentan-2-yl)-2-methyl butanamide 350 (8.43 g, 12.7 mmol) was dissolved in 

ethanol (110 mL), and the resultant solution was treated with PPTS (313 mg, 1.25 mmol) 

then stirred at rt for 72 h. NEt3 (5 mL) was added and the solvent was removed in vacuo. 

The crude product was then purified using flash chromatography (silica gel, 50 - 100% 

EtOAc in petroleum ether) to give the desired product 293 as a colourless oil (6.19 g, 88%). 

Fully characterised as 295. 

 

(2R)-4-(Benzyloxy)-N-((4R)-5-((tert-butyldiphenylsilyl)oxy)-4-methyl-1-oxopentan-2-

yl)-2-methylbutanamide 

 

 

Method A: 

CH2Cl2 (90 mL) was added to a flame dried flask and cooled to -78 °C. before adding oxalyl 

chloride (0.60 mL, 7.09 mmol). Then a solution of DMSO (0.85 mL, 12.0 mmol) in CH2Cl2 

(5 mL) was added dropwise over 20 min and the resultant solution was stirred for 30 min. 

(2R)-4-(Benzyloxy)-N-((4R)-5-((tert-butyldiphenylsilyl)oxy)-1-hydroxy-4-methylpentan-

2-yl)-2-methylbutanamide 293 (2.50 g, 4.45 mmol) in CH2Cl2 (5 mL) was added dropwise 

over 30 min and the reaction mixture was stirred for 30 min. Et3N (3.70 mL, 12.0 mmol) 

was then added dropwise over 30 min before the reaction mixture was warmed to 0 °C and 

stirred for 1 h. The reaction mixture was then diluted with CH2Cl2 (100 mL), washed with 
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NH4Cl (100 mL), H2O (2  100 mL), brine (2  100 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo to give the desired crude product 351 as an orange oil (1.57 g, 63%). 

Method B: 

(2R)-4-(Benzyloxy)-N-((4R)-5-((tert-butyldiphenylsilyl)oxy)-1-hydroxy-4-methylpentan-

2-yl)-2-methylbutanamide 293 (6.09 g, 10.8 mmol) was dissolved in anhydrous CH2Cl2 (75 

mL). DMP (6.90 g, 16.3 mmol) was added, and the resultant solution stirred for 16 h. The 

reaction mixture was then diluted with CH2Cl2 (75 mL), washed with NaHCO3 (aq) (100 

mL), Na2S2O3 (aq) (100 mL), and brine (100 mL). The organic was then dried (Na2SO4), 

filtered, and concentrated in vacuo, and the crude purified using flash chromatography (silica 

gel, 40 – 50% EtOAc in petroleum ether) to give the desired product 351 as a yellow oil 

(4.21 g, 69%). 

Fully characterised as 295. 

 

2-((R)-4-(Benzyloxy)butan-2-yl)-4-((R)-3-((tert-butyldiphenylsilyl)oxy)-2-

methylpropyl)oxazole 

 

 

(2R)-4-(Benzyloxy)-N-((4R)-5-((tert-butyldiphenylsilyl)oxy)-4-methyl-1-oxopentan-2-yl)-

2-methylbutanamide 351 (1.57 g, 2.80 mmol) dissolved in CH2Cl2 (60 mL) and cooled down 

to 0 °C. PPh3 (2.05 g, 7.82 mmol), DTBMP (2.01 g, 9.79 mmol), and (BrCCl2)2 were added 

sequentially. The resultant mixture was stirred at 0 °C for a further 10 min, before the 

reaction was allowed to warm up to rt and stirred for 45 min. DIPEA (2.43 mL, 14.0 mmol) 

was then added dropwise and the reaction was stirred for 16 h. The reaction mixture was 

concentrated in vacuo, before being purified by flash chromatography (silica gel, 0 – 5 % 

Et2O in petroleum ether) to yield the desired product 295 (795 mg, 61% brsm 225 mg). 

1H NMR (500 MHz, CDCl3) : 7.66 (4H, dt, J = 8.0, 1.5 Hz, ArH), 7.45 – 7.28 (10H, m, ArH), 

7.16 (1H, s, ArH), 4.46 (2H, s, OCH2Ph), 3.58 – 3.41 (4H, m, OCH2Si, CH2OBn), 3.19 – 

3.14 (1H, m, (CH3)CH(Ar)), 2.67 (1H, dd, J = 14.6, 5.5 Hz, CH2Ar), 2.33 (1H, dd, J = 14.6, 

7.8 Hz, CH2Ar), 2.16 – 2.02 (2H, m, CH(CH2Ar), CH2(CH2OBn)), 1.91 – 1.85 (1H, m, 
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CH2(CH2OBn)), 1.31 (3H, d, J = 7.1 Hz, CH3(CHAr)), 1.06 (9H, s, (CH3)3CSi), 0.96 (3H, 

d, J = 6.7 Hz, CH3(CHCH2Ar). 

13C NMR (100 MHz, CDCl3) : 168.0 (ArCN), 139.1 (ArC), 138.6 (ArCH), 135.6 (ArCH), 

134.2 (ArC), 134.0 (ArCH), 129.7 (ArCH), 128.4 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 73.0 

(OCH2Ph), 68.3 (SiOCH2), 68.1 (BnOCH2), 35.3 (CH(CH3)), 35.1 (CH2), 30.9 (CH(CH3)), 

30.0 (CH2), 27.0 (SiC(CH3)3), 19.4 (SiC(CH3)3), 18.7 (CH3), 16.8 (CH3). 

HRMS (ESI) calculated for C34H43O3SiNa (M+Na)+: m/z 564.2904, observed 564.2888 

IR vmax (film)/cm-1 2970, 2361, 1738, 1366, 912, 743. 

[]D
26 -4.6 (c = 0.87, CHCl3). 

 

(R)-3-(2-((R)-4-(Benzyloxy)butan-2-yl)oxazol-4-yl)-2-methylpropan-1-ol 

 

 

2-((R)-4-(Benzyloxy)butan-2-yl)-4-((R)-3-((tert-butyldiphenylsilyl)oxy)-2-

methylpropyl)oxazole 295 (795 mg, 1.47 mmol) was dissolved in anhydrous THF (10 mL) 

and cooled to 0 °C. The resultant solution was then treated with TBAF (1M in THF, 7.31 

mL, 7.31 mmol), and stirred at 0 °C for 30 min, before being warmed to rt and stirred for 16 

h. The reaction mixture was then quenched with H2O (5 mL), diluted with Et2O (20 mL), 

washed with H2O (2  10 mL), brine (20 mL), dried (Na2SO4), filtered, then concentrated in 

vacuo. The crude product was then purified using flash chromatography (silica gel, 0 – 60% 

Et2O in petroleum ether) to yield the desired product 296 as a pale yellow oil (345 mg, 77%). 

1H NMR (CDCl3, 400 MHz) : 7.37 – 7.27 (6H, m, ArH), 4.47 (2H, s, OCH2), 3.58 – 3.41 

(4H, m, CH2OH + CH2OBn), 3.23 – 3.14 (1H, m, CH(CH3)), 2.60 – 2.46 (2H, m, CH2), 2.16 

– 2.08 (1H, m, CH2), 2.04 – 1.96 (1H, m, CH2), 1.93 – 1.85 (1H, m, CH(CH3)), 1.32 (3H, d, 

J = 7.1 Hz, CH3), 0.91 (3H, d, J = 6.9 Hz, CH3). 

13C NMR (100 MHz, CDCl3) : 168.0 (ArCN), 138.4 (ArCHO), 138.0 (ArC), 134.2 (ArC), 

128.3 (ArCH), 127.6 (ArCH), 127.5 (ArCH), 73.0 (OCH2Ph), 67.7 (CH2OBn), 67.4 (CH2OH), 
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35.0 (CH(CH3)), 34.9 (CH2), 30.6 (CH(CH3)), 30.1 (CH2), 18.5 (CH(CH3)), 16.9 

(CH(CH3)). 

HRMS (ESI) calculated for C18H25O3NNa (M+Na)+: m/z 326.1727, observed 326.1716. 

IR vmax (film)/cm-1 3370, 2870, 1566, 1094, 1038, 750. 

[]D
26 -22.6 (c = 1.31, CHCl3). 

 

(2R)-3-(2-((2R)-4-(Benzyloxy)butan-2-yl)-1,3-oxazol-4-yl)-2-methylpropanal 

 

 

(R)-3-(2-((R)-4-(Benzyloxy)butan-2-yl)oxazol-4-yl)-2-methylpropan-1-ol 296 (176 mg, 

0.58 mmol) was dissolved in CH2Cl2 (10 mL). The resultant solution was then treated 

sequentially with BAIB (0.60 g, 1.86 mmol) and TEMPO (18 mg, 0.12 mmol). The reaction 

mixture was then stirred for 16 h. The solvent was removed in vacuo and the crude product 

was purified using flash chromatography (silica gel, 20% EtOAc in petroleum ether) to give 

the desired product 281 as a colourless oil (127 mg, 73%). 

1H NMR (CDCl3, 400 MHz) : 9.72 (1H, d, J = 1.3 Hz, C(O)H), 7.36 – 7.27 (6H, m, ArH), 

4.47 (2H, s, OCH2Ph), 3.55 – 3.40 (2H, m, CH2OBn), 3.23 – 3.12 (1H, m, CH(CH3)), 2.92 

(1H, ddd, J = 14.7, 6.6, 1.0 Hz, CH2Ar), 2.83 – 2.71 (1H, m, CH(CH3)), 2.54 (1H, ddd, 14.7, 

7.1, 0.9 Hz, CH2Ar), 2.18 – 2.05 (1H, m, CH2), 1.93 – 1.85 (1H, m, CH2), 1.32 (3H, d, J = 

7.1 Hz,CH3), 1.11 (3H, d, J = 7.1 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 204.1 (HC=O), 168.1 (ArC), 138.4 (ArC), 137.3 (ArC), 134.3 

(ArCH), 128.3 (ArCH), 127.6 (ArCH), 127.5 (ArCH), 73.0 (OCH2Ph), 67.8 (OCH2CH2), 45.4 

(CH(CH3)C(O)H), 35.0 (CH2), 30.7 (CH(CH3)), 27.2 (CH2), 18.6 (CH3), 13.3 (CH3). 

HRMS (ESI) calculated for C18H23O3NNa (M+Na)+: m/z 324.1570, observed 324.1554. 

IR vmax (film)/cm-1 2972, 2874, 2861, 1722, 1570, 1440, 1036. 

[]D
26 -20.5 (c = 1.12, CHCl3). 
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1-Methoxy-1,3-dihydroisobenzofuran 

 

 

Phthalide (6.70 g, 50.0 mmol) was dissolved in anhydrous toluene (500 mL) and cooled to -

78 °C. The resultant solution was then treated with DIBALH (50.0 mL, 1M in hexanes, 50.0 

mmol) added via syringe pump over 1.5 h. The reaction mixture was warmed to rt, then 

MeOH (20 mL) and p-TsOH.H2O (150 mg, 0.79 mmol) were added. The resultant mixture 

was stirred for 3 h then diluted with EtOAc (500 mL) and Rochelle’s salt 20 % (aq) solution 

(600 mL) was added and stirred for 16 h. The organic phase was separated, washed with 

saturated NaHCO3 (aq) solution (400 mL), brine (400 mL), dried (Na2SO4), filtered, then 

concentrated in vacuo. The crude product was purified using flash chromatography (silica 

gel, 10% EtOAc in petroleum ether) to yield the desired product 119 as a colourless oil (4.66 

g, 62%). 

1H NMR (CDCl3, 400 MHz) : 7.44 – 7.28 (4H, m, ArH), 6.20 (1H, d, J = 2.2 Hz, CHOCH3), 

5.23 (1H, d, J = 12.7 Hz, CH2), 5.06 (1H, d, J = 12.7 Hz, CH2), 3.45 (3H, s, OCH3). 

13C NMR (CDCl3, 100 MHz) : 140.0 (ArC), 137.3 (ArC), 129.2 (ArCH), 127.7 (ArCH), 123.0 

(ArCH), 121.0 (ArCH), 107.6 (CHOCH3), 72.4 (CH2), 54.3 (OCH3). 

This data is in accordance with literature values.[27] 

 

tert-Butyl((3-methoxy-5-methyl-1,3-dihydroisobenzofuran-4-yl)oxy)dimethylsilane 

 

 

7-((tert-Butyldimethylsilyl)oxy)-6-methyl-1,3-dihydro-2-benzofuran-1-one 158 (1.67 g, 

6.00 mmol) was dissolved in anhydrous toluene (90 mL) and cooled to -78 °C. The resultant 

solution was then treated with DIBALH (6.00 mL, 1M in hexanes, 6.00 mmol) added via 

syringe pump over 1.5 h. The reaction was then quenched with MeOH (6 mL), and then 

diluted with Et2O (100 mL). Rochelle’s salt 20% (aq) solution (100 mL) was then added, 
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and then stirred for 16 h. The layers were then separated, and the organic phase was washed 

with brine (50 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The crude lactol 

intermediate was then dissolved in anhydrous MeOH (100 mL), and treated with PPTS (150 

mg, 0.60 mmol). The reaction mixture was stirred for 2 h, then basified with saturated 

NaHCO3 (aq) solution, diluted with Et2O (150 mL), and the aqueous phase extracted with 

(150 mL). The combined organics were then washed with H2O (2  100 mL), brine (2  100 

mL), dried (Na2SO4), filtered, then concentrated in vacuo. The crude product was purified 

using flash chromatography (silica gel, 10% EtOAc in petroleum ether) to yield the desired 

product 159 as a colourless oil (1.55 g, 88%). 

1H NMR (CDCl3, 400 MHz) : 7.14 (1H, d, J = 7.6 Hz, ArH), 6.77 (1H, d, J = 7.6 Hz, ArH), 

6.16 (1H, d, J = 1.9 Hz, CH), 5.14 (1H, d, J = 12.4 Hz, CH2), 4.94 (1H, d, J = 12.4 Hz, CH2), 

3.41 (3H, s, CH3), 2.23 (3H, s, CH3), 1.03 (9H, s, C(CH3)3), 0.21 (6H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 149.2 (ArC), 139.9 (ArC), 132.9 (ArCH), 128.3 (ArC), 128.2 

(ArC), 113.8 (ArCH), 106.4 (CH(OCH3)), 72.1 (CH2), 54.2 (OCH3), 25.9 (SiC(CH3)3), 18.6 

(ArCH3), 17.2 (SiC(CH3)3, -3.4 (Si(CH3)2), -3.5 (Si(CH3)2). 

This data is in accordance with literature values.[48] 

 

(3-((tert-Butyldimethylsilyl)oxy)-4-methyl-1,2-phenylene)dimethanol 

 

 

Procedure as per synthesis of tert-butyl((3-methoxy-5-methyl-1,3-dihydroisobenzofuran-4-

yl)oxy)dimethylsilane 159. Compound isolated as a yellow oil. 

1H NMR (CDCl3, 400 MHz) : 7.09 (1H, d, J = 7.5 Hz, ArH), 6.92 (1H, d, J = 7.5 Hz, ArH), 

4.80 (2H, s, CH2), 4.69 (2H, s, CH2), 2.79 (2H, br s, OH), 2.23 (3H, s, CH3), 1.05 (9H, s, 

C(CH3)3), 0.20 (6H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 151.9 (ArC), 139.1 (ArC), 130.9 (ArCH), 130.5 (ArC), 129.7 

(ArC), 123.3 (ArCH), 64.7 (HOCH2), 57.3 (HOCH2), 26.1 (SiC(CH3)3), 18.7 (SiC), 18.0 

(CH3), -3.5 (Si(CH3)2). 
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HRMS (ESI) calculated for C15H26O3SiNa (M+Na)+: m/z 305.1543, observed m/z 305.1539. 

IR vmax (film)/cm-1 3384, 2955, 2930, 2859, 1580, 1416, 1265 

 

8-((tert-Butyldimethylsilyl)oxy)-3-isopropyl-7-methylisochroman-1,4-dione 

 

 

tert-Butyl((3-methoxy-5-methyl-1,3-dihydroisobenzofuran-4-yl)oxy)dimethylsilane 159 

(295 mg, 1.00 mmol) was dissolved in anhydrous THF (6 mL) and cooled to 0 °C. The 

resultant solution was then treated with freshly distilled iPr2NH (0.28 mL, 1.99 mmol) and 

stirred for 10 min. MeLi (1.25 mL, 1.6 M, 1.25 mmol) was then added slowly, then stirred 

for 30 min before the reaction mixture was cooled to -78 °C. Freshly distilled 

isobutyraldehyde (0.11 mL, 1.21 mmol) was then added and the reaction stirred for 1.5 h. 

The reaction was then quenched with H2O at 0 °C, diluted with Et2O (10 mL), washed with 

H2O (10 mL), brine (10 mL), then dried (Na2SO4). The solvent was removed in vacuo to 

give the -hydroxy-isobenzofuran intermediate. This intermediate was then immediately 

dissolved in anhydrous CH2Cl2 (6 mL) and cooled to 0 °C. The resultant solution was then 

treated with mCPBA (77% w/w, 246 mg, 1.10 mmol) and the reaction mixture was stirred 

at 0 °C for 2 h. The reaction was then quenched with NaHCO3 (aq) (10 mL), extracted with 

CH2Cl2 (2  10 mL), and dried (Na2SO4). The solvent was removed in vacuo to give the 

crude keto-lactol intermediate. This intermediate was then dissolved in anhydrous CH2Cl2 

(6 mL) and cooled to  0 °C. BAIB (1.03 g, 3.2 mmol), then TEMPO (31 mg, 0.20 mmol) 

were added and the reaction mixture stirred at rt for 45 min, then diluted with CH2Cl2 (20 

mL), washed with Na2S2O3 (aq) (2  10 mL), water (2  10 mL), brine (10 mL), dried 

(Na2SO4), filtered, and concentrated in vacuo. The crude product was then purified using 

flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to yield the desired 

product 352 as a clear oil (124 mg, 35%).  

1H NMR (CDCl3, 500 MHz) : 7.63 (1H, d, J = 7.8 Hz, ArH), 7.57 (1H, d, J = 7.8 Hz, ArH), 

4.75 (1H, d, J = 4.9 Hz, C(O)CH), 2.42 – 2.33 (4H, m, CH3 & CH(CH3)2), 1.10 (3H, d, J = 
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6.9 Hz, CH(CH3)2), 1.07 (9H, s, SiC(CH3)3), 0.99 (3H, d, J = 6.8 Hz, CH(CH3)2), 0.24 (3H, 

s, SiCH3), 0.21 (3H, s, SiCH3). 

This data is in accordance with literature values.[48] 

 

(3R,4R)-8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-3-isopropyl-7-methylisochroman-

1-one 

 

 

8-((tert-Butyldimethylsilyl)oxy)-3-isopropyl-7-methylisochroman-1,4-dione 352 (124 mg, 

0.36 mmol) was dissolved in anhydrous MeOH (5 mL) and cooled to -78 °C. The resultant 

solution was then treated with NaBH4 (16 mg, 0.43 mmol) and the reaction mixture was 

warmed to rt and stirred for 16 h. The reaction was then quenched with H2O, and 10% (aq) 

citric acid solution (10 mL). The aqueous was extracted with CH2Cl2 (2  10 mL), and the 

combined organics washed with H2O (10 mL), brine (10 mL), dried (Na2SO4), and 

concentrated in vacuo. The crude product was purified using flash chromatography (silica 

gel, 20% EtOAc in petroleum ether) to yield the desired product 160 as a white solid (54 

mg, 43%). 

1H NMR (CDCl3, 400 MHz) : 7.38 (1H, dd, J = 7.5, 0.7 Hz, ArH), 6.96 (1H, d, J = 7.5 Hz, 

ArH), 4.67 (1H, dd, J = 7.3, 1.1 Hz, HC(OH)), 3.88 (1H, dd, J = 9.8, 1.4 Hz, HC(OC(O)), 

2.33 – 2.22 (1H, m, HC(CH3)2), 2.27 (3H, s, ArCH3), 1.95 (1H, d, J = 7.4 Hz, OH), 1.17 (3H, 

d, J = 6.6 Hz, HC(CH3)2), 1.07 (3H, d, J = 6.6 Hz, HC(CH3)2), 1.04 (9H, s, SiC(CH3)3), 0.19 

(3H, s, Si(CH3)2), 0.11 (3H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 163.0 (C=O), 155.4 (ArC), 139.6 (ArC), 136.3 (ArCH), 132.8 

(ArC), 120.4 (ArCH), 115.8 (ArC), 85.7 (CHCH(CH3)2), 66.1 (CHOH), 28.4 (CH(CH3)2), 25.9 

(SiC(CH3)3), 19.3 (CH3), 18.7 (SiC), 18.2 (CH3), 17.5 (ArCH3), -3.7 (Si(CH3)2), -3.7 

(Si(CH3)2). 

This data is in accordance with literature values.[48] 
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1-Hydroxy-3-isopropylisochroman-4-one 

 

 

1-Methoxy-1,3-dihydro-2-benzofuran 119 (750 mg, 5.00 mmol) was dissolved in anhydrous 

THF (30 mL) and cooled to 0 °C. The resultant solution was then treated with freshly 

distilled iPr2NH (1.40 mL, 9.96 mmol) and stirred for 10 min. MeLi (6.25 mL, 1.6 M, 6.25 

mmol) was then added slowly and the solution stirred for 30 min before the reaction mixture 

was cooled to -78 °C. Freshly distilled isobutyraldehyde (0.55 mL, 6.03 mmol) was then 

added and the reaction mixture stirred for 1.5 h. The reaction was then quenched with H2O 

at 0 °C, diluted with Et2O (60 mL), washed with water (60 mL), brine (60 mL), then dried 

(Na2SO4). The solvent was removed in vacuo to give the -hydroxy-isobenzofuran 

intermediate. This intermediate was then immediately dissolved in anhydrous CH2Cl2 (30 

mL) and cooled to 0 °C. The resultant solution was then treated with mCPBA (77% w/w, 

1.23 g, 7.13 mmol) and the reaction mixture was left to stir at 0 °C for 2 h. The reaction was 

then quenched with NaHCO3 (aq) (30 mL), extracted with CH2Cl2 (2  30 mL), and dried 

(Na2SO4). The solvent was removed in vacuo to give the crude keto-lactol 305 (1.03 g, 

100%) which was used in the subsuquent reaction without further purification. 

 

3-Isopropylisochroman-1,4-dione 

 

 

1-Hydroxy-3-isopropylisochroman-4-one 305 (343 mg, 1.67 mmol) was dissolved in 

anhydrous CH2Cl2 (6 mL) and cooled to 0 °C. BAIB (1.67 g, 5.18 mmol), then TEMPO (52 

mg, 0.33 mmol) were added and the reaction mixture stirred at rt for 1.5 h. The reaction 

mixture was then concentrated in vacuo, and then purified using flash column 
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chromatography (silica gel, 20% EtOAc in petroleum ether) to yield the desired product 176 

as a yellow oil (204 mg, 80%). 

1H NMR (400 MHz, CDCl3) : 8.33 – 8.28 (1H, m, ArH), 8.11 – 8.07 (1H, m, ArH), 7.86 (2H, 

m, ArH), 4.96 (1H, d, J = 3.7 Hz, OCH), 2.51 (1H, m, HC(CH3)2), 1.16 (3H, d, J = 7.0 Hz, 

CH3), 0.94 (3H, d, J = 6.8 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 192.5 (C=O), 162.0 (C=O(O)), 135.6 (ArCH), 134.5 (ArCH), 

132.0 (ArC), 130.6 (ArCH), 128.1 (ArC), 125.6 (ArCH), 88.9 (CHO), 33.4 (CH(CH3)2), 18.9 

(CH3), 16.3 (CH3). 

This data is in accordance with literature values.[27] 

 

(3R,4R)-4-hydroxy-3-isopropylisochroman-1-one 

 

 

3-Isopropylisochroman-1,4-dione 176 (200 mg, 0.98 mmol) was dissolved in anhydrous 

MeOH (10 mL) and cooled to -78 °C. The resultant solution was then treated with NaBH4 

(45 mg, 1.19 mmol), and stirred at -78 °C for 3 h. The reaction mixture was then quenched 

with water, and 10% (aq) citric acid solution. The aqueous was extracted with CH2Cl2 (2  

10 mL), and the combined organics washed with H2O (10 mL), brine (10 mL), dried 

(Na2SO4), filtered, and concentrated in vacuo. The crude product was purified using flash 

chromatography (silica gel, 20% EtOAc in petroleum ether) to give the desired product 177 

as a pale yellow solid (145 mg, 73%). 

1H NMR (500 MHz, CDCl3) : 8.16 (1H, dd, J = 7.8, 1.1 Hz, ArH), 7.67 (1H, td, J = 7.5, 1.3 

Hz, ArH), 7.55 (1H, td, J = 7.6, 1.2 Hz, ArH), 7.48 (1H, d, J = 7.5 Hz, ArH), 4.78 (1H, d, J = 

6.2 Hz, CHOH), 4.03 (1H, dd, J = 9.8, 1.5 Hz, CHCH(CH3)3), 2.41 – 2.34 (1H, m, 

CH(CH3)3), 1.80 (1H, d, J = 7.1 Hz, OH), 1.23 (3H, d, J = 6.6 Hz, CH(CH3)3, 1.13 (3H, d, J 

= 6.6 Hz, CH(CH3)3). 
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13C NMR (100 MHz, CDCl3) : 164.9 (C=O), 140.3 (ArC), 134.3 (ArCH), 130.5 (ArCH), 130.0 

(ArCH), 128.0 (ArCH), 124.3 (ArC), 86.5 (CHOC), 65.2 (CHOH), 28.7 (CH(CH3)2), 19.3 

(CH3), 18.2 (CH3).  

This data is in accordance with literature values.[27] 

 

(3R,4R)-3-((R)-1-(2-((R)-4-(Benzyloxy)butan-2-yl)oxazol-4-yl)propan-2-yl)-8-(tert-

butyldimethylsilyloxy)-4-hydroxy-7-methylisochroman-1-one 

 

 

tert-Butyl((3-methoxy-5-methyl-1,3-dihydro-2-benzofuran-4-yl)oxy)dimethylsilane 159 

(100 mg, 0.34 mmol) was dissolved in anhydrous THF (6 mL), and cooled to 0 °C. Freshly 

distilled DIPA (0.10 mL, 0.71 mmol) was added, and the resultant solution stirred for 10 

min. MeLi (1.6 M in Et2O, 0.43 mL, 0.69 mmol) was added dropwise, and the resultant 

mixture was stirred for 30 min at 0 °C before being cooled to -78 °C. (2R)-3-(2-((2R)-4-

(Benzyloxy)butan-2-yl)-1,3-oxazol-4-yl)-2-methylpropanal 281 (100 mg, 0.33 mmol) in 

anhydrous THF (0.20 mL) was added dropwise, and the reaction mixture was stirred for 1.5 

h at -78 °C, before being warmed to 0 °C. H2O (1 mL) was added, then the reaction mixture 

was diluted with Et2O (10 mL), washed with H2O (10 mL), brine (10 mL), the organic dried 

(Na2SO4), filtered, and concentrated in vacuo to yield the -hydroxy-isobenzofuran 

intermediate. The crude intermediate was then immediately dissolved in anhydrous CH2Cl2 

(10 mL), and cooled to 0 °C, under an argon atmosphere. mCPBA (77% w/w, 82 mg, 0.37 

mmol) was added and the resultant solution stirred at 0 °C for 2 h. The reaction was then 

quenched with NaHCO3 (aq) (10 mL), extracted with CH2Cl2 (2  10 mL), and dried 

(Na2SO4). The solvent was removed in vacuo, and the lactol intermediate was immediately 

dissolved in anhydrous CH2Cl2 (6 mL)  and cooled to 0 °C. BAIB (1.03 g, 3.2 mmol), then 

TEMPO (31 mg, 0.20 mmol) were added and the reaction mixture was stirred at rt for 4 h, 

and then concentrated in vacuo. The crude product was then purified using flash column 

chromatography (silica gel, 20% EtOAc in petroleum ether) to yield the keto-lactone 

intermediate as a yellow oil (34 mg, 0.06 mmol, 18%). The intermediate was then dissolved 

in anhydrous CH2Cl2 (3 mL) under an argon atmosphere, and cooled to -78 °C. CeCl3.7H2O 
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(66 mg, 0.18 mmol) in MeOH (3 mL) was added, and the resultant mixture stirred for 10 

min. NaBH4 (3.1 mg, 0.08 mmol) was added and the reaction mixture was stirred for 30 min 

at -78 °C. The reaction was then quenched with H2O (3 mL) and 10% (aq) citric acid solution 

(3 mL), and the resultant biphasic mixture stirred for 20 min at rt. The organic phase was 

separated and the aqueous was extracted with CH2Cl2 (3 × 3 mL). The combined organics 

were washed with brine (3 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The 

crude products were purified using flash chromatography (silica gel, 20 – 50% EtOAc in 

petroleum ether) to give the desired product 297, an inseparable mixture of diastereomers,  

as a colourless oil (17.8 mg, 9%). 

*NMR data major diastereomer reported only 

1H NMR (CDCl3, 400 MHz) : 7.37 (1H, dd, J = 7.5, 0.7 Hz, ArH), 7.36 – 7.22 (6H, m, ArH), 

6.95 (1H, d, J = 7.6 Hz, ArH), 4.66 (1H, d, J = 1.3 Hz, CH(OH)), 4.45 (2H, s, OCH2Ph), 4.06 

(1H, dd, J = 9.3, 1.5 Hz, CH(O2C)), 3.53 – 3.42 (2H, m, CH2OBn), 3.22 – 3.13 (1H, m, 

CH(CH3)), 3.04 (1H, dd, J = 14.6, 2.6 Hz, CH2), 2.60 (1H, dd, J = 14.6, 7.8 Hz, CH2), 2.51 

– 2.43 (1H, m, CH(CH3)), 2.27 (3H, s, ArCCH3), 2.14 – 2.05 (1H, m, CH2CH2OBn), 1.92 – 

1.83 (1H, m, CH2CH2OBn), 1.30 (3H, d, J = 7.3 Hz, CH3), 1.21 (3H, d, J = 6.7 Hz), 1.04 

(9H, s, SiC(CH3)3), 0.20 (3H, s, Si(CH3)2), 0.12 (3H, s, Si(CH3)2). 

13C NMR (CDCl3, 100 MHz) : 167.7 (C=O), 163.0 (C=N), 155.4 (ArC), 139.7 (ArC), 138.4 

(ArC), 137.9 (ArC), 136.3 (ArCH), 134.7 (ArCH), 132.7 (ArC), 128.3 (ArCH), 127.6 (ArC), 127.5 

(ArCH), 120.4 (ArCH), 115.8 (ArC), 83.0 (CH(O2C)), 73.0 (OCH2Ph), 67.8 (CH2OBn), 66.3 

(CH(OH), 35.0 (CH2CH2OBn), 33.2 (CH(CH3)), 30.7 (CH(CH3)), 28.1 (CH2), 26.0 

(SiC(CH3)3), 18.6 (SiC(CH3)3), 18.4 (CH3), 17.5 (ArCCH3), 15.4 (CH3), -3.6 (Si(CH3)2), -

3.7 (Si(CH3)2). 

HRMS (ESI) calculated for C33H45O6NSiNa (M+Na)+: m/z 602.2908, observed 602.2880. 

IR vmax (film)/cm-1 3380, 2951, 2930, 2858, 1723, 1597, 1585, 1472, 1417, 1254 
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5-(Trimethylsilyl)pent-4-yn-1-ol 

 

 

4-Pentyn-1-ol (0.94 mL, 10.1 mmol) was dissolved in anhydrous THF (30 mL) and the 

solution cooled to -78 °C. nBuLi (2.5 M in hexanes, 8.06 mL, 20.2 mmol) was added slowly 

and the resultant mixture stirred for 45 min at -78 °C, then the dry ice/acetone bath was 

removed and the reaction stirred for 15 min. The reaction mixture was then cooled back 

down to -78 °C and TMSCl (2.54 mL, 20.1 mmol) was added dropwise. The reaction mixture 

was stirred for 30 min at -78 °C, then rt for 1 h. A mixture of Et2O:1 M HCl (1:1, 50 mL) 

was added and the reaction stirred for 3 h, before being diluted with Et2O (100 mL). The 

organic phase was separated and the aqueous layer extracted with Et2O (50 mL). The organic 

extracts were then washed with sat. NaHCO3 (aq) (100 mL), brine (100 mL), dried (Na2SO4), 

filtered, and concentrated in vacuo. Purification using flash chromatography (silica gel, 10% 

EtOAc in petroleum ether) gave the desired product 319 as a colourless oil (1.45 g, 92%). 

1H NMR (CDCl3, 400 MHz) : 3.80 – 3.75 (2H, m, OCH2), 2.36 (2H, t, J = 6.9 Hz, CH2), 

1.82 – 1.75 (2H, m, CH2), 1.57 (1H, s, OH), 0.16 (9H, s, Si(CH3)3). 

13C NMR (CDCl3, 100 MHz) : 106.6 (CCSi), 85.3 (CCSi), 61.9 (OCH2), 31.1 (CH2), 

16.5 (CH2), 0.0 (Si(CH3)3). 

This data is in accordance with literature values.[87] 

 

5-(Trimethylsilyl)pent-4-ynal 

 

 

IBX (1.25 g, 4.46 mmol) was dissolved in DMSO (8 mL). 5-(Trimethylsilyl)pent-4-yn-1-ol 

319 (350 mg, 2.24 mmol) in anhydrous THF (15 mL) was then added and the resultant 

mixture was stirred for 20 h, at rt. H2O (20 mL) was added to the reaction and the mixture 

was stirred for 4 h, forming a white precipitate. The reaction was then filtered, and the 
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precipitate washed thoroughly with Et2O (75 mL). The organic phase was separated, and the 

aqueous phase extracted with Et2O (50 mL). The organic extracts were then washed with 

brine (50 mL), dried (Na2SO4), filtered, and concentrated in vacuo. Purification using flash 

chromatography (silica gel, 5% Et2O in pentane) gave the desired product 320 as a colourless 

oil (214 mg, 62%). 

1H NMR (CDCl3, 400 MHz) : 9.80 (1H, t, J = 1.1 Hz, C(O)H), 2.73 – 2.65 (2H, m, CH2), 

2.58 – 2.53 (2H, m, CH2), 0.15 (9H, s, Si(CH3)3). 

13C NMR (CDCl3, 100 MHz) : 200.4 (C(O)H), 104.7 (CCSi), 85.8 (CCSi), 42.5 (CH2), 

13.1 (CH2), 0.0 (Si(CH3)3. 

This data is in accordance with literature values.[100] 

 

8-((tert-Butyldimethylsilyl)oxy)-1-hydroxy-7-methyl-3-(4-(trimethylsilyl)but-3-yn-1-

yl)isochroman-4-one 

 

 

tert-Butyl((3-methoxy-5-methyl-1,3-dihydroisobenzofuran-4-yl)oxy)dimethylsilane 159 

(507 mg, 1.72 mmol) was dissolved in anhydrous THF (10 mL), and cooled to 0 °C. Freshly 

distilled iPr2NH (0.48 mL, 3.42 mmol) was added, and the resultant solution stirred for 10 

min. MeLi (1.6 M in Et2O, 2.15 mL, 3.44 mL) was added dropwise, and the resultant mixture 

was stirred for 30 min at 0 °C before being cooled to -78 °C. 5-(Trimethylsilyl)pent-4-ynal 

320 (266 mg, 1.72 mmol) in anhydrous THF (0.20 mL) was added dropwise, and the reaction 

mixture was stirred for 1.5 h at -78 °C, before being warmed to 0 °C. H2O (1 mL) was added, 

then the reaction mixture was diluted with Et2O (25 mL), washed with H2O (20 mL), and 

brine (20 mL). The organic extracts were dried (Na2SO4), filtered, and concentrated in vacuo 

to yield the -hydroxy-isobenzofuran intermediate. The crude intermediate was then 

immediately dissolved in anhydrous CH2Cl2 (10 mL), and cooled to 0 °C. mCPBA (77% 

w/w, 423 mg, 1.87 mmol) was added and the resultant solution stirred at 0 °C for 2 h. The 

reaction was then quenched with NaHCO3 (aq) (10 mL), extracted with CH2Cl2 (2  10 mL), 
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and dried (Na2SO4). The solvent was removed in vacuo. Purification using flash 

chromatography (neutral alumina, 5% EtOAc in petroleum ether) gave the desired product 

323 (701 mg, 94%). 

1H NMR (CDCl3, 500 MHz) : 7.59 (1H, d, J = 7.9 Hz, ArH), 7.27 (1H, d, J = 7.9 Hz, ArH), 

6.36 (1H, br s, CHOH), 4.95 (1H, dd, J = 8.9, 3.6 Hz, C(O)CH), 2.78 (1H, d, J = 3.6 Hz, 

OH), 2.46 – 2.41 (2H, m, CH2CH2), 2.36 – 2.31 (1H, m, CH2), 2.31 (3H, s, CH3), 1.97 – 

1.88 (1H, m, CH2), 1.06 (OSiC(CH3)3), 0.30 (3H, s, SiCH3), 0.26 (3H, s, SiCH3), 0.14 (9H, 

s, CSiC(CH3)3). 

13C NMR (CDCl3, 125 MHz) : 195.5 (C=O), 149.8 (ArC), 136.4 (ArC), 132.0 (ArCH), 131.4 

(ArC), 128.0 (ArC), 119.7 (ArCH), 103.4 (C≡C), 88.0 (CH(CO)), 85.5 (C≡C), 71.2 (CH(OH)), 

29.3 (CH2), 26.1 (SiC(CH3)3), 25.7 (SiC(CH3)3), 18.6 (CH2), 15.8 (CH3), 0.13 (Si(CH3)3), -

3.12 (Si(CH3)2), -3.58 (Si(CH3)2). 

HRMS (ESI) calculated for C23H36O4Si2Na (M+Na)+: m/z 455.2044, observed 455.2027. 

IR vmax (film)/cm-1 3391, 2957, 2930, 2857, 2357, 2178, 1694, 1472, 1252. 

 

(R)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-ynamide 

 

 

LiCl (11.4 g, 268 mmol) was dried under vacuum at 230 °C for 16 h, then allowed to cool 

to rt under a flow of argon. Anhydrous THF (80 mL) and freshly distilled DIPA (1.59 mL, 

11.3 mmol) were added and the resultant mixture was cooled to -78°C. nBuLi (2.5 M in 

hexanes, 37.9 mL, 94.8 mmol) was added and the reaction mixture was warmed to 0 °C for 

5 min and cooled to -78 °C. An ice cooled solution of N-((1S,2S)-1-hydroxy-1-

phenylpropan-2-yl)-N-methylpropionamide 285 (10.0 g, 45.2 mmol) in THF (100 mL) was 

added dropwise via cannula. The reaction mixture was stirred at -78 °C for 1 h, warmed to 

0 °C for 15 min, rt for 5 min, and cooled to -78 °C. Propargyl bromide (80% w/w in toluene, 

7.55 mL, 68.0 mmol) was added dropwise via syringe pump and the resultant mixture was 

stirred at -78 °C for 2 h, then the dry ice/acetone bath was removed and the mixture stirred 

for 16 h. The reaction was quenched with saturated NH4Cl (aq) (250 mL) and diluted with 
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EtOAc (300 mL), and washed with saturated NH4Cl (300 mL). The aqueous layer was 

extracted with EtOAc (2  300 mL), and the combined organic extracts were dried (Na2SO4), 

filtered, and concentrated in vacuo to yield the desired product 328 as a yellow oil (11.7 g, 

100%) which was used in the subsequent reaction without further purification. 

 

(2R)-2-Methylpent-4-ynoic acid 

 

 

(R)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-ynamide 328 (11.7 g, 

45.2 mmol) was dissolved in tBuOH (60 mL), MeOH (60 mL), and 3M NaOH (aq) (60 mL). 

The resultant solution was heated to reflux and stirred for 16 h. The reaction mixture was 

then cooled to rt, and concentrated in vacuo, before being diluted with H2O (300 mL), and 

extracted with CH2Cl2 (4  200 mL). The aqueous was then acidified to pH < 2 using 3M 

HCl (aq), and extracted with CH2Cl2 (3  200 mL). The combined extracts (after 

acidification) were dried (Na2SO4), filtered, and concentrated in vacuo to give the desired 

product (R)-43 as an orange oil (4.05 mg, 80%). 

1H NMR (CDCl3, 400 MHz) : 2.72 (1H, m, CHCH3), 2.58 (1H, ddd, J = 16.8, 6.0, 2.6 Hz, 

CH2), 2.41 (1H, ddd, J = 16.8, 7.6, 2.6 Hz, CH2), 2.03 (1H, t, J = 2.6 Hz, CCH), 1.33 (3H, 

d, J = 7.1 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 180.3 (C=O), 81.1 (CCH), 70.1 (CCH), 38.4 (CH), 22.3 

(CH2), 16.1 (CH3). 

[]D
26 +7.6 (c = 1.38, CHCl3), lit. []D

23 +4.2 (c = 1.00, CHCl3). 

This data is in accordance with literature values.[23] 
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(2R)-N-((4R)-1-((tert-butyldimethylsilyl)oxy)-5-((tert-butyldiphenylsilyl)oxy)-4-

methyl-pentant-2-yl)-2-methyl-4-pentynamide 

 

 

(4R)-1-((tert-Butyldimethylsilyl)oxy)-5-(-tert-butyldiphenylsilyl)oxy)-4-methyl-2-pentyl 

amine 292 (8.36 g, 17.2 mmol) and (2R)-2-methylpent-4-ynoic acid (R)-43 (1.93 g, 17.2 

mmol) were dissolved in anhydrous CH2Cl2 (110 mL) and cooled to 0 °C. Then EDC.HCl 

(3.95 g, 20.6 mmol) and HOBt (232 mg, 1.72mmol) were added, followed by the dropwise 

addition of DIPEA (6.00 mL, 34.4 mmol). The reaction mixture was stirred at 0 °C for 2 h, 

then warmed to rt and stirred for 16 h. The solvent was then removed in vacuo and the crude 

mixture dissolved in Et2O (300 mL), washed with water (300 mL), NaHCO3 (aq) (200 mL), 

10% HCl (aq) (200 mL), brine (2  200 mL), dried (Na2SO4), then filtered, and concentrated 

in vacuo to give the desired crude amide product 329 (9.84 g, 99%). 

Fully characterised as 331. 

 

(2R)-N-((4R)-5-((tert-Butyldiphenylsilyl)oxy)-1-hydroxy-4-methylpentan-2-yl)-2-

methylpent-4-ynamide 

 

 

(2R)-N-((4R)-1-((tert-butyldimethylsilyl)oxy)-5-((tert-butyldiphenylsilyl)oxy)-4-methyl-

pentant-2-yl)-2-methyl-4-pentynamide 329 (9.84 g, 17.0 mmol) was dissoved in EtOH (115 

mL). PPTS (427 mg, 1.70 mmol) was added and the resultant solution stirred for 72 h. Et3N 

(2 mL) was added and the reaction mixture concentrated in vacuo, and purified using flash 

chromatography (silica gel 25 – 50% EtOAc in petroleum ether) to yield the desired product 

327 as a colourless oil (7.60 g, 96%). 

Fully characterised as 331. 



174 

 

(2R)-N-((4R)-5-((tert-Butyldiphenylsilyl)oxy)-4-methyl-1-oxopentan-2-yl)-2-

methylpent-4-ynamide 

 

 

(2R)-N-((4R)-5-((tert-Butyldiphenylsilyl)oxy)-1-hydroxy-4-methylpentan-2-yl)-2-

methylpent-4-ynamide 327 (3.53 g, 7.58 mmol) was dissolved in EtOAc (215 mL). IBX 

(6.37 g, 22.8 mmol) was added and the resultant mixture was heated to reflux and stirred for 

3 h. The reaction was then cooled and filtered through a plug of silica using 

EtOAc/petroleum ether (1:2) as eluent. The eluent was removed in vacuo to yield the desired 

product 330 as a colourless oil (3.51 g, 100%). 

Fully characterised as 331. 

 

4-((R)-3-((tert-Butyldiphenylsilyl)oxy)-2-methylpropyl)-2-((R)-pent-4-yn-2-yl)oxazole 

 

 

(2R)-N-((4R)-5-((tert-Butyldiphenylsilyl)oxy)-4-methyl-1-oxopentan-2-yl)-2-methylpent-

4-ynamide 330 (2.04 g, 4.40 mmol) was dissolved in anhydrous CH2Cl2 (40 mL) and cooled 

to 0 °C. PPh3 (5.77 g, 22.0 mmol), DTBMP (3.55 g, 17.3 mmol), and (Cl2BrC)2 (7.16 g, 22.0 

mmol) were added and the resultant solution stirred at 0 °C for 4 h. The reaction mixture 

was then warmed to rt then stirred for 45 min, then DIPEA (7.67 mL, 44.0 mmol) was added 

dropwise. The reaction mixture was then stirred for 16 h, before being diluted with CH2Cl2 

(200 mL), washed with NH4Cl (2 × 100 mL), brine (100 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo. Purification using flash chromatography (silica gel, 5% EtOAc in 

petroleum ether) gave the desired product 331 as a pale yellow oil (1.60 g, 81%). 

1H NMR (CDCl3, 400 MHz) : 7.69 – 7.63 (4H, m, ArH), 7.45 – 7.35 (6H, m, ArH), 7.19 (1H, 

s, ArH), 3.59 – 3.49 (2H, m, OCH2), 3.19 – 3.09 (1H, m, CH(CH3)3), 2.72 – 2.63 (2H, m, 
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CH2), 2.50 (1H, ddd, J = 16.7, 8.3, 2.7 Hz, CH2), 2.35 (1H, dd, J = 14.3, 7.5 Hz, CH2), 2.11 

– 2.03 (1H, m, CH(CH3)), 1.97 (1H, t, J = 2.7 Hz, CCH), 1.43 (3H, d, J = 7.0 Hz, CH3), 

1.06 (9H, s, SiC(CH3)3), 0.98 (3H, d, J = 6.7 Hz, CH3). 

13C NMR (CDCl3, 100 MHz) : 166.0 (N=C), 139.24 (ArC), 135.6 (ArCH), 134.3 

(ArCHoxazole), 134.0 (ArC), 133.9 (ArC), 129.5 (ArCH), 127.6 (ArCH), 81.5 (CCH), 70.0 

(CCH), 68.1 (OCH2), 35.1 (CH), 33.2 (CH), 29.8 (CH2), 26.9 (SiC(CH3)3), 24.3 (CH2), 

19.3 (SiC), 17.5 (CH3), 16.7 (CH3). 

HRMS (ESI) calculated for C28H35O2NSiNa (M+Na)+: m/z 468.2329, observed 468.2308. 

IR vmax (film)/cm-1 3308, 2961, 2932, 2857, 1566, 1462, 1427 

[]D
26 +13.8 (c = 1.05, CHCl3). 

 

(R)-2-methyl-3-(2-((R)-pent-4-yn-2-yl)oxazol-4-yl)propan-1-ol 

 

 

4-((R)-3-((tert-Butyldiphenylsilyl)oxy)-2-methylpropyl)-2-((R)-pent-4-yn-2-yl)oxazole 331 

(100 mg, 0.22 mmol) was dissolved in anhydrous THF (4 mL), and cooled to 0 °C. TBAF 

(1M in THF, 0.90 mL, 0.90 mmol) was added slowly, and the resultant solution stirred for 

1 h, then warmed to rt and stirred for 16 h. The reaction was quenched with H2O (10 mL), 

and extracted with Et2O (10 mL). The organic extracts were washed with H2O (10 mL), 

brine (10 mL), dried (Na2SO4), filtered, and concentrated in vacuo. Purification using flash 

chromatography (silica gel, 50% EtOAc in petroleum ether) gave the desired product 332 as 

a colourless oil (42 mg, 92%). 

1H NMR (CDCl3, 400 MHz) : 7.32 (1H, t, J = 0.8 Hz, ArH), 3.59 – 3.55 (1H, m, OCH2), 

3.48 – 3.42 (1H, m, OCH2), 3.20 – 3.12 (1H, m, CH(CH3)), 2.68 (1H, ddd, J = 16.7, 5.9, 2.7 

Hz, CH2C≡C), 2.61 – 2.48 (3H, m, CH2C≡C + CH2), 2.06 – 1.98 (1H, m, CH(CH3)3), 2.00 

(1H, t, J = 2.7 Hz, C≡CH), 1.44 (3H, d, J = 7.0 Hz, CH3), 0.92 (3H, d, J = 6.9 Hz, CH3). 
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13C NMR (CDCl3, 100 MHz) : 166.3 (ArCN), 138.3 (ArCH), 134.6 (ArC), 81.2 (CCH), 70.2 

(CCH), 67.3 (OCH2), 35.1 (N=CCH(CH3)), 33.1 (CH(CH3)), 30.0 (CH2), 24.2 (CH2), 17.4 

(CH3), 16.8 (CH3). 

HRMS (ESI) calculated for C12H17O2NNa (M+Na)+: m/z 230.1151, observed 230.1147. 

IR vmax (film)/cm-1 3304, 2932, 2364, 1568, 1458, 1096. 

[]D
26 +10.5 (c = 1.05, CHCl3). 

 

(2R)-2-Methyl-3-(2-((2R)-5-(trimethylsilyl)pent-4-yn-2-yl)-1,3-oxazol-4-yl)propan-1-ol 

 

 

(R)-2-methyl-3-(2-((R)-pent-4-yn-2-yl)oxazol-4-yl)propan-1-ol 332 (410 mg, 1.98 mmol) 

was dissolved in anhydrous THF (15 mL) and cooled to -78 °C. nBuLi (2.3 M in hexanes, 

1.73 mL, 3.98 mmol) was added dropwise and the resultant solution stirred for 45 min. The 

dry ice/acetone bath was removed, and the reaction stirred for 10 min. The reaction was 

cooled down to -78 °C and then TMSCl (0.53 mL, 4.20 mmol) was added dropwise. The 

reaction was allowed to warm up to rt and was stirred for 16 h. Et2O (10 mL) and 1M HCl 

(aq) (10 mL) were added and the resultant biphasic mixture stirred for 3 h. The reaction 

mixture was diluted with Et2O (15 mL), the organic phase separated, washed with NaHCO3 

(aq) (15 mL), dried (Na2SO4), filtered, and concentrated in vacuo. The crude product was 

purified using flash chromatography (silica gel, 10 – 40% EtOAc in petroleum ether) to yield 

the desired product 326 as a pale yellow oil (408 mg, 74% (94% brsm)). 

1H NMR (CDCl3, 400 MHz) : 7.32 (1H, s, ArH), 3.62 – 3.51 (1H, m, OCH2), 3.50 – 3.35 

(1H, m, OCH2), 3.22 – 3.04 (2H, m, OH + CH(CH3)), 2.71 (1H, dd, J = 16.9, 5.7 Hz, 

CH2C≡C), 2.62 – 2.43 (3H, m, CH2C≡C + CH2), 2.08 – 1.92 (1H, m, CH(CH3)), 1.43 (3H, 

d, J = 7.0 Hz, CH3), 0.92 (3H, d, J = 6.9 Hz, CH3), 0.13 (9H, s, Si(CH3)3). 

13C NMR (CDCl3, 100 MHz) : 166.4 (ArC=N), 138.2 (ArC), 134.5 (ArCH), 103.9 (C≡C), 

86.6 (C≡C), 67.2 (OCH2), 35.0 (CH(CH3)), 33.3 (CH(CH3), 29.9 (CH2), 25.7 (CH2), 17.4 

(CH3), 16.8 (CH3), 0.0 (Si(CH3)3). 
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HRMS (ESI) calculated for C15H25O2NSiNa (M+Na)+: m/z 302.1547, observed 302.1542. 

IR vmax (film)/cm-1 2960, 2359, 2178, 1724, 1570, 1458, 1250. 

[]D
27 +9.8 (c = 1.28, CHCl3). 

 

 (R)-2-Methyl-3-(2-((R)-5-(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propanal 

 

 

(2R)-2-Methyl-3-(2-((2R)-5-(trimethylsilyl)pent-4-yn-2-yl)-1,3-oxazol-4-yl)propan-1-ol 

326 (408 mg, 1.46 mmol) was dissolved in anhydrous THF (11 mL). IBX (824 mg, 2.94 

mmol) and DMSO (6 mL) were added and the resultant mixture was stirred for 16 h. H2O 

(6 mL) was added and the reaction mixture stirred for 4 h, a white precipitate was formed. 

The reaction mixture was then filtered, washed with Et2O (50 mL) and the aqueous phase 

extracted with Et2O (30 mL). The combined organics were washed with brine (50 mL), dried 

(Na2SO4), filtered, and concentrated in vacuo. The crude product was purified via flash 

chromatography (silica gel, 15% EtOAc in petroleum ether) to yield the desired product 325 

as a colourless oil (357 mg, 88%). 

1H NMR (CDCl3, 500 MHz) : 9.73 (1H, d, J = 1.0 Hz, C(O)H), 7.32 (1H, s, ArH), 3.18 – 

3.09 (1H, m, CH(CH3)), 2.93 (1H, ddd, J = 14.8, 6.5, 0.7 Hz, CH2), 283 – 2.75 (1H, m, 

CH(CH3)), 2.70 (1H, dd, J = 16.8, 5.7 Hz, CH2), 2.57 (1H, ddd, J = 14.8, 7.2, 0.8 Hz, CH2), 

2.52 (1H, dd, J = 16.8, 8.3 Hz, CH2), 1.42 (3H, d, J = 7.0 Hz, CH3), 1.13 (3H, d, J = 7.1 Hz, 

CH3), 0.12 (9H, s, Si(CH3)3). 

13C NMR (CDCl3, 125 MHz) : 204.0 (C=O), 166.6 (ArCN), 137.5 (ArC), 134.6(ArCH), 103.4 

(CCSi), 86.6 (CCSi), 45.4 (CH), 33.4 (CH), 27.1 (CH2), 25.7 (CH2), 17.5 (CH3), 13.3 

(CH3), 0.0 (Si(CH3)3). 

HRMS (ESI) calculated for C15H23O2NSiNa (M+Na)+: m/z 300.1390, observed 300.1378. 

IR vmax (film)/cm-1 2963, 2178, 1724, 1569, 1250. 

[]D
27 -8.2 (c = 0.63, CHCl3). 
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8-((tert-Butyldimethylsilyl)oxy)-1-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-4-one 

 

 

tert-Butyl((3-methoxy-5-methyl-1,3-dihydroisobenzofuran-4-yl)oxy)dimethylsilane 159 

(444 mg, 1.51 mmol) was dissolved in anhydrous THF (10 mL), and cooled to 0 °C. Freshly 

distilled iPr2NH (0.42 mL, 3.02 mmol) was added, and the resultant solution stirred for 10 

min. MeLi (1.60 M in Et2O, 1.89 mL, 3.02 mmol) was added dropwise, and the resultant 

mixture was stirred for 30 min at 0 °C before being cooled down to -78 °C. (R)-2-Methyl-3-

(2-((R)-5-(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propanal 325 (208 mg, 0.75 mmol) in 

anhydrous THF (0.20 mL) was added dropwise, and the reaction mixture was stirred for 1.5 

h at -78 °C, before being warmed to 0 °C. H2O (1 mL) was added, then the reaction mixture 

was diluted with Et2O (10 mL), washed with H2O (10 mL), brine (10 mL), the organic dried 

(Na2SO4), filtered, and concentrated in vacuo to yield the -hydroxy-isobenzofuran 

intermediate. The crude intermediate was then immediately dissolved in anhydrous CH2Cl2 

(10 mL), and cooled to 0 °C. mCPBA (77% w/w, 168 mg, 0.75 mmol) was added and the 

resultant solution stirred at 0 °C for 2 h. The reaction was then quenched with NaHCO3 (aq) 

(10 mL), extracted with CH2Cl2 (2  10 mL), and dried (Na2SO4). The solvent was removed 

in vacuo. Purification via flash column chromatography (silica gel 10 – 40% EtOAc in 

petroleum ether) gave the desired lactol product 334 as an orange oil (269 mg, 65%) as a 

mixture of diastereomers which were carried through to the subsequent step. 

HRMS (ESI) calculated for C30H45O5NSi2Na (M+Na)+: m/z 578.2728, observed 578.2700 

Fully characterised as 335 and 336. 
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8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one 

 

 

8-((tert-Butyldimethylsilyl)oxy)-1-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-4-one 334 (130 mg, 

0.23 mmol) was dissolved in anhydrous CH2Cl2 (3 mL). The resultant solution was treated 

with BAIB (238 mg, 0.74 mmol) then TEMPO (3.6 mg, 23 µmol) and stirred for 16 h. The 

reaction mixture was then cooled to -78 °C and NaBH4 (11.3 mg, 0.30 mmol) in anhydrous 

MeOH (0.5 mL) was added. The resultant mixture was stirred for 1 h, then warmed to 0 °C, 

and quenched with H2O (1 mL) and 10% (aq) citric acid solution (1 mL). The resultant 

mixture was then extracted with CH2Cl2 (3 × 5 mL), and the combined organic extracts 

washed with brine (10 mL), dried (Na2SO4), filtered, and concentrated in vacuo. Purification 

using flash chromatography (silica gel 10 – 40 % EtOAc in petroleum ether) gave the desired 

products as pale yellow oils in a separable mixture of diastereomers (2.8:1, 335:336) 

(115mg, 90%). 

 

(3R,4R)-8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one 

 

 

(85 mg, 67%) 

1H NMR (400 MHz, CDCl3) δ: 7.39 (1H, d, J = 7.6 Hz, ArH), 7.36 (1H, s, ArH), 6.95 (1H, d, 

J = 7.6 Hz, ArH), 4.68 (1H, d, J = 6.4 Hz, CH(OH)), 4.09 (1H, dd, J = 9.2, 3.2 Hz, CH(O2C)), 

3.17 – 3.08 (1H, m, CH(CH3)), 3.02 (1H, dd, J = 14.7, 3.3 Hz, CH2C≡C), 2.74 – 2.66 (2H, 
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m, CH(CH3), CH2), 2.56 – 2.42 (2H, m, CH2C≡C, CH2), 2.28 (3H, s, ArCH3), 2.18 (1H, dd, 

J = 11.2, 7.2 Hz, H), 1.41 (3H, d, J = 7.0 Hz, CH3), 1.13 (3H, d, J = 6.9 Hz, CH3), 1.06 (9H, 

s, SiC(CH3)3), 0.22 (3H, s, Si(CH3)2), 0.13 (3H, s, Si(CH3)2), 0.11 (9H, s, Si(CH3)3).  

13C NMR (100 MHz, CDCl3) δ: 166.2 (C=O), 162.9 (ArCN), 155.3 (ArC), 139.6 (ArC), 138.0 

(ArC), 136.3 (ArCH), 134.9 (ArCHox), 132.7 (ArC), 120.4 (ArCH), 115.8 (ArCH), 104.1 (C≡C), 

86.4 (C≡C), 82.3 (CH(O2C)), 66.3 (CH(OH)), 33.3 (CH), 33.1 (CH), 28.0 (CH2), 25.9 

(SiC(CH3)3), 25.7 (CH2), 18.6 (CH3), 17.5 (CH3), 0.00 (Si(CH3)3), -3.66 (Si(CH3)2), -3.69 

(Si(CH3)2). 

HRMS (ESI) calculated for C30H45O5NSi2Na (M+Na)+: m/z 578.2728, observed 578.2704 

IR vmax (film)/cm-1 2965, 2932, 2363, 1734, 1719, 1558, 1251 

[]D
28 -3.9 (c = 1.86, CHCl3). 

 

(3S,4S)-8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one 

 

 

(30 mg, 23%) 

1H NMR (400 MHz, CDCl3) δ: 7.40 (1H, d, J = 7.9 Hz, ArH), 7.38 (1H, s, ArH), 7.28 (1H, d, 

J = 7.9 Hz, ArH), 4.72 (1H, d, J = 10.4 Hz, CH(OH)), 4.10 (1H, dd, J = 10.5, 2.1 Hz, 

CH(O2C)), 3.22 – 3.14 (1H, m, CH(CH3)), 3.05 (1H, dd, J = 16.1, 6.8 Hz, CH2C≡C), 2.73 – 

2.66 (1H, m, CH2), 2.61 – 2.51 (2H, m, CH2C≡C, CH(CH3)), 2.40 (1H, dd, J = 16.3, 3.6 Hz, 

CH2), 2.27 (3H, s, ArCH3), 1.47 (3H, d, J = 7.0 Hz, CH3), 1.25 (3H, d, J = 7.7 Hz, CH3), 1.05 

(9H, s, SiC(CH3)3), 0.21 (3H, s, Si(CH3)2), 0.14 (3H, s, Si(CH3)2), 0.13 (9H, s, Si(CH3)3). 

13C NMR (100 MHz, CDCl3) δ: 167.3 (C=O), 163.4 (ArCN), 154.7 (ArC), 142.5 (ArC), 139.1 

(ArC), 136.2 (ArCH), 134.2 (ArCHox), 130.2 (ArC), 116.7 (ArCH), 115.0 (ArC), 103.4 (C≡C), 

87.2 (C≡C), 85.5 (CH(O2C)), 65.4 (CH(OH)), 33.4 (CH), 31.6 (CH), 26.0 (SiC(CH3)3), 25.6 
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(CH2), 25.4 (CH2), 18.6 (CH3), 17.3 (CH3), 0.00 (Si(CH3)3), -3.66 (Si(CH3)2), -3.69 

(Si(CH3)2). 

HRMS (ESI) calculated for C30H45O5NSi2Na (M+Na)+: 578.2728, observed 578.2705 

IR vmax (film)/cm-1 3021, 2359, 1753, 1736, 1726, 1366 

[]D
29 -61.9 (c = 0.91, CHCl3). 

 

(3S,4S)-4,8-Dihydroxy-7-methyl-3-((R)-1-(2-((R)-pent-4-yn-2-yl)oxazol-4-yl)propan-2-

yl)isochroman-1-one 

 

 

(3S,4S)-8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one 336 (30 mg, 54.0 

µmol) was dissolved in anhydrous THF (3 mL) and cooled to 0 °C. TBAF (1M in THF, 108 

µL, 108 µmol) was added dropwise, and the resultant mixture stirred for 10 min. H2O (2 

mL) was added, and the reaction mixture was extracted with EtOAc (3 × 3 mL), the 

combined organic extracts washed with brine (3 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo. Purification using flash chromatography (silica gel, 40% EtOAc in 

petroleum ether) gave the desired product 337 as a colourless oil (17 mg, 92%). 

1H NMR (400 MHz, CDCl3) δ: 11.05 (1H, s, ArOH), 7.40 (1H, d, J = 7.7 Hz, ArH), 7.39 (1H, 

s, ArH), 7.12 (1H, d, J = 7.6 Hz, ArH), 6.05 (1H, d, J = 6.1 Hz, OH), 4.86 (1H, dd, J = 10.3, 

5.9 Hz, CH(OH)), 4.31 (1H, dt, J = 10.8, 2.5 Hz, CH(O2C)), 3.23 – 3.15 (1H, m, CH(CH3)), 

3.00 (1H, ddd, J = 16.0, 7.7, 1.1 Hz, CH2C≡C), 2.69 – 2.59 (2H, m, CH2, CH(CH3)), 2.58 – 

2.52 (1H, m, CH2), 2.50 – 2.44 (1H, m, CH2C≡C), 2.27 (3H, s, ArCH3), 1.93 (1H, t, J = 2.6 

Hz, C≡CH), 1.45 (3H, d, J = 7.0 Hz, CH3), 1.26 (3H, d, J = 7.2 Hz, CH3). 

13C NMR (100 MHz, CDCl3) δ: 170.1 (C=O), 167.0 (ArCN), 160.1 (ArC(OH)), 141.2 (ArC), 

138.8 (ArC), 137.4 (ArCH), 134.5 (ArCH), 125.6 (ArC), 114.3 (ArCH), 105.9 (ArC), 86.6 

(CH(O2C)), 80.7 (C≡CH), 70.5 (C≡CH), 64.7 (CH(OH)), 33.1 (CH(CH3)), 32.4 (CH(CH3)), 

26.0 (CH2C≡C), 24.1 (CH2), 18.2 (CH3), 17.4 (CH3), 15.5 (ArCCH3). 
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HRMS (ESI) calculated for C21H23O5NNa (M+Na)+: m/z 392.1468, observed 392.1455. 

IR vmax (film)/cm-1 3298, 2934, 1676, 1424, 1250, 1136. 

[]D
29 -52.0 (c = 0.23, CHCl3). 

 

(3R,4R)-4,8-Dihydroxy-7-methyl-3-((R)-1-(2-((R)-pent-4-yn-2-yl)oxazol-4-yl)propan-

2-yl)isochroman-1-one 

 

(3R,4R)-8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one 335 (44 mg, 79.2 

µmol) was dissolved in anhydrous THF (3 mL) and cooled to 0 °C. TBAF (1M in THF, 0.16 

mL, 0.16 mmol) was added dropwise, and the resultant mixture stirred for 10 min. H2O (2 

mL) was added, and the reaction mixture was extracted with EtOAc (3 × 3 mL), the 

combined organic extracts washed with brine (3 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo. Purification using flash chromatography (silica gel, 40% EtOAc in 

petroleum ether) gave the desired product 338 as a colourless oil (29 mg, 98%). 

1H NMR (400 MHz, CDCl3) δ: 11.26 (1H, s, ArOH), 7.39 (1H, d, J = 7.2 Hz, ArH), 7.38 (1H, 

s, ArH), 6.83 (1H, d, J = 7.4 Hz, ArH), 4.73 (1H, d, J = 5.0 Hz, CH(OH)), 4.24 (1H, dd, J = 

8.6, 1.5 Hz, CH(O2C)), 3.17 – 3.06 (2H, m, CH(CH3), CH2), 2.69 – 2.53 (3H, m, CH2C≡C, 

CH(CH3), CH2), 2.49 (1H, ddd, J = 16.7, 8.0, 2.6 Hz, CH2C≡C), 2.29 (3H, s, ArCCH3), 1.95 

(1H, br s, C≡CH), 1.67 (1H, br s, OH), 1.42 (3H, d, J = 7.0 Hz, CH3), 1.12 (3H, J = 6.6 Hz, 

CH3). 

13C NMR (100 MHz, CDCl3) δ: 169.6 (C=O), 166.2 (ArCN), 160.5 (ArC), 138.2 (ArC), 138.1 

(ArC), 137.3 (ArCH), 135.0 (ArCH), 128.0 (ArC), 117.8 (ArCH), 106.5 (ArC), 85.1 (CH(O2C)), 

81.4 (C≡CH), 70.0 (C≡CH), 65.3 (CH(OH)), 33.5 (CH(CH3)), 33.1 (CH(CH3)), 28.2 (CH2), 

24.3 (CH2C≡C), 17.5 (CH3), 15.7 (ArCCH3), 15.5 (CH3). 

HRMS (ESI) calculated for C21H23O5NNa (M+Na)+: m/z 392.1468, observed 392.1456 

IR vmax (film)/cm-1 3641, 3300, 2951, 2854, 1729, 1668, 1483 

[]D
29 +16.2 (c = 0.64, CHCl3). 



183 

 

(E)-N-((R,2E,6Z)-11-(4-((R)-2-((3R,4R)-4,8-Dihydroxy-7-methyl-1-oxoisochroman-3-

yl)propyl)oxazol-2-yl)dodeca-2,6-dien-8-yn-1-yl)-3-methoxy-N-methylbut-2-enamide 

 

Acetylene 338 (15 mg, 40.6 µmol) and vinyl iodide 40 (17 mg, 48.7 µmol) were azeotroped 

with toluene, then dissolved in anhydrous, degassed MeCN (1.5 mL) in the absence of light, 

and cooled to 0 °C. Pd(PPh3)2Cl2 (2.8 mg, 4.0 µmol) and CuI (1.4 mg, 7.4 µmol) were added, 

followed by dropwise addition of Et3N (25 µL, 180 µmol). The resultant mixture was stirred 

for 1 h at 0 °C, then warmed to rt and stirred for 19 h. The reaction mixture was diluted with 

EtOAc (5 mL), washed with H2O (2 mL), brine (2 mL), dried (Na2SO4), filtered, and 

concentrated in vacuo. Purification using flash chromatography (silica gel, 50 – 80% EtOAc 

in petroleum ether) gave the desired product as a yellow oil (17 mg, 71%). 

1H NMR (400 MHz, CDCl3) : 11.28 (1H, s, ArOH), 7.38 (1H, d, J = 7.4 Hz, ArH), 7.38 (1H, 

s, ArH), 6.84 (1H, d, J = 7.4 Hz, ArH), 5.77 (1H, dd, J = 15.0, 7.2 Hz, HC=CH), 5.57 (1H, dt, 

J = 15.4, 6.5 Hz, HC=CH),  5.49 – 5.37 (2H, m, HC=CH), 5.15 (1H, s, HC=C), 4.73 (1H, br 

s, CH(OH)), 4.22 (1H, d, J = 8.7 Hz, CH(O2C)), 3.98 (1H, br s, CH2N), 3.88 (1H, br s, 

CH2N), 3.59 (3H, br s, OCH3), 3.22 – 3.08 (2H, m, CH(CH3) + CH2), 2.94 (3H, s, NCH3), 

2.80 (1H, dd, J = 16.9, 5.6 Hz, CH2C≡C), 2.75 – 2.65 (1H, m, CH2C≡C), 2.62 – 2.48 (2H, 

m, CH(CH3) + CH2), 2.33 – 2.25 (2H, m, CH2), 2.28 (3H, s, ArCCH3), 2.20 – 2.05 (5H, m, 

C=C(CH3) + CH2), 1.43 (3H, d, J = 7.0 Hz, CH3), 1.12 (3H, d, J = 6.7 Hz, CH3). 

13C NMR (100 MHz, CDCl3) δ: 169.6 (C=O), 168.6 (C=O), 166.3 (HC=C(OMe)), 160.3 

(C), 142.2 (HC=C), 138.4 (ArC), 138.3 (ArC), 137.2 (ArCH), 134.8 (ArCH), 132.8 (HC=C), 

127.6 (ArC), 125.8 (ArCH), 125.1 (HC=C), 117.9 (ArCH), 109.6 (HC=C), 106.6 (ArC), 91.2 

(HC=C(OMe)), 85.3 (CH(O2C)), 78.9 (C≡C), 77.7 (C≡C), 65.1 (CH(OH)), 54.9 (OCH3), 

52.2 (CH2N), 33.6 (CH(CH3)), 33.5 (CH(CH3)), 31.4 (CH2), 29.6 (CH2), 28.4 (CH2), 25.6 

(CH2), 18.7 (CH3), 17.7 (CH3), 15.7 (CH3), 15.4 (CH3).  

N.B. CH3N not observed 

IR vmax (film)/cm-1 3664, 2916, 2849, 2359, 1726, 1691, 1631, 1583, 1427. 

HRMS (ESI) calculated for C34H42O7N2Na (M+Na)+: m/z 613.2884, observed 613.2866. 

[]D
29 +11.8 (c = 0.88, CHCl3). 
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(E)-N-((R,2E,6Z,8Z)-11-(4-((2R,3R)-3-Hydroxy-3-((R)-4-hydroxy-5-methyl-3-oxo-1,3-

dihydroisobenzofuran-1-yl)-2-methylpropyl)oxazol-2-yl)dodeca-2,6,8-trien-1-yl)-3-

methoxy-N-methylbut-2-enamide 

 

Ni(OAc)2.4H2O (21.5 mg, 86.4 µmol) was dissolved in degassed EtOH (2 mL), under an 

argon atmosphere. NaBH4 (2.8 mg, 74.0 µmol) was added and the reaction mixture turned 

black, and was stirred for 2 min, before being placed under a hydrogen atmosphere. EDA 

(57.8 µL, 0.86 mmol) was added, followed by a solution of enyne 339 (14.1 mg, 23.9 µmol) 

in degassed EtOH (0.5 mL). The resultant mixture was stirred for 30 min, under a hydrogen 

atmosphere, then filtered through celite, and washed with EtOH (10 mL). then filtered 

through a plug of silica uing 5% MeOH in CH2Cl2 as eluent. The solvent was removed in 

vacuo to give the title compound 341 as a clear oil (9.4 mg, 66%). 

1H NMR (400 MHz, acetone-d6) δ: 8.23 (1H, br s, ArOH), 7.59 (1H, s, ArH), 7.46 (1H, d, J = 

7.4 Hz, ArH), 7.03 (1H, d, J = 7.4 Hz, ArH), 6.34 – 6.23 (2H, m, CH=CH), 5.71 (1H, s, 

CH(CO)N), 5.63 – 5.55 (1H, m, CH=CH), 5.49 – 5.32 (3H, m, CH=H), 4.34 (1H, d, J = 7.2 

Hz, CH(O2C)), 3.90 (2H, d, J = 5.4 Hz, CH2N), 3.82 (1H, t, J = 7.2 Hz, CH(OH)), 3.59 (3H, 

br s, OCH3), 3.04 – 2.99 (1H, m, CH(CH3)), 2.95 – 2.82 (4H, m, CH2), 2.78 (3H, s, NCH3), 

2.66 – 2.57 (1H, m, CH(CH3)), 2.53 – 2.47 (2H, m, CH2), 2.31 – 2.23 (2H, m, CH2), 2.24 

(3H, s, ArCH3), 2.12 (3H, s, C=CCH3), 1.29 (3H, d, J = 6.7 Hz, CH3), 1.03 (3H, d, J = 6.6 

Hz, CH3). 

13C NMR (100 MHz, acetone-d6) δ: 172.8 (C), 171.0 (C), 168.1 (C), 155.0 (C), 148.1 (C), 

139.6 (C), 138.5 (CH), 135.9 (CH), 135.9 (C), 132.5 (CH), 129.3 (CH), 127.0 (C), 126.4 

(CH), 125.2 (C), 124.8 (CH), 123.0 (CH), 114.3 (CH), 112.9 (C), 92.3 (CH(CO)N), 83.6 

(CH(O2C)), 76.0 (CH(OH)), 55.4 (OCH3), 49.9 (NCH2), 37.0 (CH(CH3)), 34.7 (CH(CH3)), 

33.7 (CH2), 33.0 (CH2), 28.0 (CH2), 27.8 (CH2), 18.8 (CH3), 18.4 (CH3), 16.7 (CH3), 14.9 

(CH3). 

N.B. CH3N not observed 
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HRMS (ESI) calculated for C34H44O7N2Na (M+Na)+: m/z 615.3041, observed 615.3014. 

IR vmax (film)/cm-1 3422, 2970, 2930, 2860, 2367, 2340, 1732, 1643, 1601, 1574, 1454, 

1439, 1381, 1240, 1107. 

[]D
23 -8.8 (c = 0.68, CHCl3). 
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13  APPENDICES 

(2R)-3-(2-((2R)-4-(Benzyloxy)butan-2-yl)-1,3-oxazol-4-yl)-2-methylpropanal 281 
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8-((tert-Butyldimethylsilyl)oxy)-1-hydroxy-7-methyl-3-(4-(trimethylsilyl)but-3-yn-1-

yl)isochroman-4-one 323 
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(R)-2-Methyl-3-(2-((R)-5-(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propanal 325 
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(3R,4R)-8-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-methyl-3-((R)-1-(2-((R)-5-

(trimethylsilyl)pent-4-yn-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one 335 
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(3R,4R)-4,8-Dihydroxy-7-methyl-3-((R)-1-(2-((R)-pent-4-yn-2-yl)oxazol-4-yl)propan-

2-yl)isochroman-1-one 338 
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(E)-N-((R,2E,6Z)-11-(4-((R)-2-((3R,4R)-4,8-Dihydroxy-7-methyl-1-oxoisochroman-3-

yl)propyl)oxazol-2-yl)dodeca-2,6-dien-8-yn-1-yl)-3-methoxy-N-methylbut-2-enamide 

 339 
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(E)-N-((R,2E,6Z,8Z)-11-(4-((2R,3R)-3-Hydroxy-3-((R)-4-hydroxy-5-methyl-3-oxo-1,3-

dihydroisobenzofuran-1-yl)-2-methylpropyl)oxazol-2-yl)dodeca-2,6,8-trien-1-yl)-3-

methoxy-N-methylbut-2-enamide 341 
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