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Abstract 

This thesis describes the selection of a new, non-melanising, refractory line of 

Anopheles gambiae s.s., denoted GU-REF, its characterisation with respect to 

fitness, and preliminary data on possible genes under selection. GU-REF was 

selected for refractoriness to Plasmodium falciparum clone 3D7 over 11 

generations, four of which are described in this work. A control line (GU-CON) was 

selected at random at the same time as a control for inbreeding effects.  

At the beginning of the project the GU-REF and GU-CON lines were at 

generation 7 of selection. However it was discovered that the colonies had 

become infected with the fungal pathogen microsporidia. It was therefore 

necessary to recover microsporidia-free colonies first, which was done by selective 

breeding from non-infected female mosquitoes. A further four generations of 

selection for refractoriness were then performed and are described here.  

The final generation of mosquitoes (GU-REF11) exhibited a significantly lower 

infection prevalence compared to the GU-CON11 line. Moreover, the GU-REF11 

was also more refractory than GU-CON11 to a different P. falciparum clone, HB3, 

which was not used in selection. This suggests that the mechanism of 

refractoriness is general to P. falciparum, and not specific to the parasite clone 

used for the selection process. 

To establish the costs, if any, of refractoriness in the newly selected GU-REF 

mosquitoes relative to the GU-CON line, five fitness markers were assessed: body 

size, adult survival, proportion of mosquitoes laying eggs after first blood meal, 

length of first gonotrophic cycle, and number of eggs per egg lay. To further 

investigate differences between GU-REF and GU-CON that could contribute to 

refractoriness of GU-REF, the speed of blood meal digestion was also analyzed. 

The overall fitness of GU-REF line compared to the GU-CON line was not 

significantly negatively affected by the selection process for refractoriness.  

In the final part of the project, a candidate gene, APL1A, was selected from 

the existing published data. Allele APL1A2 was found to be significantly enriched in 

GU-REF11 mosquitoes, compared to the GU-CON line, suggesting that it is 

associated with the refractory phenotype.  
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1 Chapter: General introduction 

1.1 Malaria burden and overview of disease transmission 

Malaria is one of the most prevalent parasitic diseases in the tropics around 

the world. Although malaria is preventable and treatable, it was estimated that in 

2015, 3.4 billion people in 91 countries lived at risk of the disease and that 212 

milion people (uncertainty range 148–304 million) were infected in 2015 out of 

which 490,000 died (uncertainty range 235,000–639,000) (WHO, 2016). 90% of 

cases and 92% of deaths occurred in Africa, and most of the deaths (70%) were in 

infants under the age of five. The total international funding for malaria control in 

2015 was estimated to be in the region of US$ 2.9 billion. Malaria also has a huge 

detrimental impact on the economies of the countries that are affected by the 

disease. 

There are five species of malaria parasite that infect humans: Plasmodium 

falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and 

Plasmodium knowlesi. These parasites are transmitted by approximately 60 

Anopheline mosquito species around the world, of which 41 are considered 

dominant (Manguin, 2008; Sinka et al, 2010a; Sinka et al, 2011; Sinka et al, 

2010b). P. falciparum is responsible for approximately 90% of malaria-associated 

deaths and most of the cases of severe malaria (www.cdc.gov/malaria). Adults 

living in malaria endemic regions reaching their teenage years tend to have 

developed immunological response decreasing the impact of the disease with 

local malaria strains due to continuous exposure (Langhorne et al, 2008) . 

Common symptoms of the disease include periodic fevers with chills, caused by 

the lysis of infected red blood cells (RBC), headache, nausea and fatigue. 

Untreated, malaria infection can lead to kidney damage, cerebral malaria, swelling 

of the spleen, respiratory problems, and ultimately can lead to death. 

The tools that are employed in malaria control are targeted against either its 

vector, the mosquito, or against the parasite in the human host. The main vector 

control strategies consist of controlling breeding sites, the use of larvicides, 

insecticides and insecticide-treated nets (ITNs), and indoor residual spraying 



 

2 

 

(IRS). In 2015, there was 53% coverage with ITNs in sub-Saharan Africa, whereas 

IRS accounted for only 5.8% coverage of the population at risk in Africa. In the 

human host, malaria can be prevented using prophylactic drugs, or infected 

individuals can be treated with antimalarials. There is currently no vaccine used 

against the disease, although several candidate vaccines are in development 

(Birkett et al, 2013), and one (RTS, S, now renamed Mosquirix) is currently being 

rolled out for pilot studies in 2018 (Matuschewski, 2017) (http://www.who.int/ 

mediacentre/ news/ releases/ 2016/ funding-malaria-vaccine/en/). 

Not all mosquito species are equally effective vectors for malaria (the 

phenomenon known as vector competence). Even within one mosquito population, 

vectorial capacity will vary and some of the mosquitoes will be completely 

refractory to infection (Cohuet et al, 2010; Lefevre et al, 2013). These phenomena 

were identified and mosquito-parasite interactions have been the subject of study 

for over 50 years. A better understanding of the mosquito-based mechanisms for 

killing the parasite would be extremely useful in designing GMO (Genetically 

Modified Organism) mosquitoes or transmission blocking vaccines (TBV).  

In the past 85 years, six mosquito species have been selected for their 

refractoriness to five Plasmodium species (Collins et al, 1986; Feldmann, 1989; 

Frizzi et al, 1975; Hurd et al, 2005; van der Kaay & Boorsma, 1977; Vernick et al, 

1995; Ward, 1963). The combination of parasite and vector has usually been 

artificial, i.e. not occurring in nature, due to the lack of cultivation techniques for P. 

falciparum gametocytes. The only Anopheles gambiae line refractory to P. 

falciparum is the G3-5 line, where the mechanism of refractoriness is melanisation 

(Collins et al, 1986). Melanisation is also the most studied mechanism of 

refractoriness, and research has mostly involved the use of a rodent malaria 

system. According to records from nature, melanisation occurs in under 1% of 

cases (Schwartz, 2002), where refractoriness is between 5-25% (Niare et al, 

2002). These differences in representation suggest that melanisation is not a 

common refractory mechanism.  

In this thesis, a line of An. gambiae (the main vector in sub-Saharan Africa) 

which is refractory to P. falciparum (the malaria species causing the most severe 

disease) was studied. This line was selected in the laboratory for a refractory 

http://www.who.int/%20mediacentre/%20news/%20releases/%202016/%20funding-malaria-vaccine/en/
http://www.who.int/%20mediacentre/%20news/%20releases/%202016/%20funding-malaria-vaccine/en/
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mechanism other than melanisation. We suggest that this mechanism is more 

relevant to natural conditions. 

1.2 Malaria parasite lifecycle 

Malaria is a disease caused by the Plasmodium parasite from the phylum 

apicomplexa. The lifecycle will be summarised briefly here and more detail is 

provided in later sections. Plasmodium is transmited from an infected human to 

another by the bite of an infected female Anopheline mosquito. The bitten person 

is infected with a dose of sporozoites from the mosquito’s saliva injected during 

blood feeding. Sporozoites then travel to the liver and form liver stages within 

hepatocytes. The parasite undergoes multiple rounds of mitotic replication within 

the hepatocyte, such that the cell becomes filled with merozoites and these are 

then released into the blood-stream. In the blood-stream, the merozoites infect red 

blood cells (RBC) and form ring stages. The ring stage develops to a trophozoite 

which continues its development to a schizont, containing merozoites (asexual 

blood cycle). Some merozoites develop through an alternative pathway to form 

gametocytes. Gametocytes are then ingested by another mosquito taking a blood-

meal. In the mosquito midgut, the gametocytes develop in to gametes, which fuse 

to form a zygote. The zygote elongates to form a motile ookinete, which travels 

through the mosquito midgut epithelia and forms an oocyst under its outer layer. In 

the oocyst, a sporogonic cycle leads to the development of hundreds of motile 

sporozoites. The sporozoites then travel to the salivary gland, where they wait for 

the mosquito to take its next blood-meal, in turn infecting another person (Figure 

1.1). 

1.2.1 Vertebrate host stages 

1.2.1.1 Sporozoite invasion 

Humans are infected when a female mosquito carrying sporozoites in her 

salivary glands takes a blood meal. Sporozoites in the mosquito’s saliva are 

injected through the host’s skin at the beginning of a blood-meal, when the 

mosquito is probing the skin to find a blood vessel and injecting saliva. On average 

~100 sporozoites are injected through the skin in one blood meal (Medica & 
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Sinnis, 2005). A proportion of these will penetrate the blood vessel and 

consequently travel from the site of the bite through the blood-stream. Around 20% 

of sporozoites end up in a draining lymph node, where they initiate an immune 

response. Any remaining sporozoites are destroyed or remain in the skin (Ejigiri & 

Sinnis, 2009). 

 

Figure 1.1. Lifecycle of Plasmodium falciparum. 

1.-14. Human part of the lifecycle. Development in the liver takes ~5-7days. The asexual cycle 
in red blood cells takes ~48h. Development of gametocytes takes ~10 days. (1.) sporozoite 
invading a liver cell; (2.) liver schizont; (3.) merosome formation; (4.) merosome rupture and 
release of merozoites into the bloodstream; (5.) merozoite invades red blood cell and forms ring 
stage; (6.) trophozoite inside a red blood cell; (7.) red blood cell merozoite formation within a 
schizont; (8) free merozoites after cell rupture; (9.) ring stage precommitted to gametocyte 
production; (10.) stage I gametocyte; (11.) stage II gametocyte; (12.) stage III gametocyte; (13.) 
stage IV gametocyte; (14.) stage V circulating male and female gametocytes.15.-20. Mosquito part 
of the lifecycle. From gametocyte ingestion to the ookinete passing through the midgut takes ~18h. 
Oocyst development up to rupture and sporozoite release takes 10 days in optimal conditions. (15.) 
female rounded macrogamete and male microgametocytes emerging during exflagellation; (16.) 
fertilization of gametes; (17.) retort form; (18.) ookinete; (19.) oocyst formation; (20.) sporozoites 
traveling through the hemolymph to penetrate the salivary glands.  

Recently, sporozoites in the skin have been suggested to be a new stage in 

the malaria life cycle (Guilbride et al, 2012; Sinnis, 2008). Sporozoites have been 

detected in skin up to 2-3h post inoculation. It has been suggested that naive 

CD8+ T cells are primed in skin lymph nodes by dendritic cells, and that these 

migrate to the spleen and liver, where they are essential for protection against 

sporozoites in the liver (Yamauchi et al, 2007). This finding is potentially very 
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important for anti-malarial vaccine development (Guilbride et al, 2012; Sinnis, 

2008). 

1.2.1.2 Liver stages 

Sporozoites travel in the blood stream until they reach the liver capillary beds, 

which have specific surface molecules with which they interact (Coppi et al, 2007). 

One of the debated possible signals for liver invasion is highly sulfonated heparan 

sulfate proteoglycans (HSPGs) on the surface of hepatocytes (Coppi et al, 2007). 

The sporozoites then traverse the sinusoidal barrier and enter hepatocytes. In the 

liver, sporozoites appear to migrate through several hepatocytes before finally 

invading one and beginning to develop, although the mechanism for choosing their 

final resting host cell is unclear (Tardieux & Menard, 2008). Within the hepatocyte, 

the sporozoite begins to divide mitotically, producing a liver schizont containing 

thousands of merozoites. After mitosis and merozoite formation are complete, 

merosomes containing merozoites are extruded into liver sinusoids and reach the 

blood-stream. Merozoites released from merosomes then invade red blood cells 

and begin the intra-erythrocytic lifecycle of the parasite (Ejigiri & Sinnis, 2009). 

From the inoculation of sporozoites into the skin to release of the first merozoites 

into the bloodstream takes 6-16 days depending on the Plasmodium species 

(Antinori et al, 2012). Up to this point, the infection is clinically silent.  

1.2.1.3 Blood asexual stages 

In the red blood cell, the newly invaded merozoite within its parasitophorous 

vacuole takes on a distinctive “ring” appearance. After approximately 18h (for P. 

falciparum), the parasite begins to digest haemoglobin and produce haemozoin or 

malaria pigment (Elliott et al, 2008), and from this stage it is known as a 

trophozoite. As the parasite nucleus begins to divide, the parasite becomes a 

schizont. Each schizont contains 16-30 new merozoites, depending on the 

parasite species (Antinori et al, 2012). The infected red cell lyses to release 

merozoites into the blood where they rapidly invade new erythrocytes. 

One cycle in the red blood cell takes between 1 and 3 days depending on the 

Plasmodium species: three of the five species causing human malaria are tertian 

(~48 hour cycle), P. malariae is quartan (72 hour cycle) and P. knowlesi has a 24 
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hour cycle. The synchronous rupture of large numbers of red blood cells, releasing 

merozoites with whole cell content into the blood stream, is responsible for the 

periodic fevers characteristic of malaria (Antinori et al, 2012). 

The tendency of infected red blood cells to adhere to other cells and the walls 

of capillaries can result in the formation of clots or occlusions, and this is partly 

responsible for the symptoms linked with severe malaria, such as cerebral malaria 

(Hora et al, 2016). 

1.2.1.4 Blood sexual stages 

To be able to complete its lifecycle in the mosquito, Plasmodium needs to be 

ingested within a mosquito blood meal in the form of stage five (mature) 

gametocytes. Signals contributing to triggering merozoites in the blood stream to 

develop into sexual gametocytes include high levels of asexual parasitaemia, 

antiparasitic immune responses, chemotherapeutic agents and other stresses 

(Carter & Miller, 1979; Dyer & Day, 2000). Each schizont committed to sexual 

development produces only gametocytes, not a mixture of gametocytes and 

asexuals (Bruce et al, 1990), and “sexual schizonts” produce only one type of 

progeny: microgametocytes (male) or macrogametocytes (female) (Smith et al, 

2000). P. falciparum gametocytogenesis takes ~8 days, which is long compared to 

other Plasmodium species, where gametocytogenesis is usually proportional to 

the asexual cycle at ~1.5 x the intraerythrocytic asexual cycle (Sinden, 2009). 

Gametocytogenesis consists of five morphologically different sub-stages 

(Carter & Miller, 1979). Only the fifth developmental stage circulates in peripheral 

blood, waiting to be ingested by a mosquito within a blood meal. Ultimately, 

gametes derived from these gametocytes in mosquitoes are capable of both self-

fertilization and cross-fertilization, making Plasmodium a simultaneous 

hermaphrodite (Baton & Ranford-Cartwright, 2005b). 
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1.2.2 Mosquito host stage 

1.2.2.1 From gametes to zygote 

Gametocytes are ingested during a mosquito blood-meal and taken into the 

mosquito midgut, where they transform into gametes. This process is triggered by 

a drop in temperature, and by xanthurenic acid from cells in the mosquito midgut, 

reviewed in (Kuehn & Pradel, 2010). First the gametocytes swell, increasing their 

volume, and this leads to erythrocyte rupture. While a single macrogametocyte 

produces one macrogamete, microgametocytes first have to go through cell 

division and a process known as exflagellation, which results in up to eight haploid 

flagellated microgametes. A male and a female gamete then fertilize to produce a 

diploid zygote stage within the blood meal. Finally, the sessile zygote transforms 

through a retort-form into a motile banana-shaped ookinete (Baton & Ranford-

Cartwright, 2005b). 

1.2.2.2 Ookinete formation and migration 

The ookinetes migrate from the midgut lumen, across the midgut epithelial 

cells, and eventually develop into sessile oocyst stages on the basal (outer) 

surface of the midgut epithelium, reviewed in (Baton & Ranford-Cartwright, 

2005b). 

Ookinetes have to avoid digestion by mosquito proteases required for 

digestion of the blood meal. They then cross the peritrophic matrix, followed by the 

microvilli-associated network and the single layer of midgut epithelial cells (Baton 

& Ranford-Cartwright, 2005a). More detail on the mosquito responses to ookinete 

invasion is provided in chapter 4. 

1.2.2.3 Oocyst formation 

Oocysts are the stages on the basal (outer) surface of the midgut epithelium in 

which sporogony (the massive asexual amplification of parasite numbers) occurs, 

reviewed in (Baton & Ranford-Cartwright, 2005a). Each oocyst can produce 

thousands of sporozoites. During multiple endomitoses, the nucleus becomes 

extremely convoluted and lobulized, finally attenuating into numerous small nuclei, 
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and this is followed by sporozoite formation. Sporozoite building occurs 

synchronously in the whole oocyst.  

1.2.2.4 Sporozoite migration 

Sporozoites emerge into the haemolymph through small ruptures in the oocyst 

wall. Sporozoites migrate in the haemolymph to the mosquito head, directed by 

chemotactic signals triggering active migration, reviewed in (Akaki & Dvorak, 2005; 

Baton & Ranford-Cartwright, 2005a; Baton & Ranford-Cartwright, 2005b). Most of 

the sporozoites seem to accumulate in the thoracic salivary gland region, where 

they pass into the salivary gland lumen by direct invasion and passage through the 

salivary gland epithelial cells, apparently without the formation of a 

parasitophorous vacuole. They accumulate in the distal median and lateral lobes 

of the glands. When an infected mosquito then takes a blood meal, the 

sporozoites are injected from secretory ducts through the skin of the human host, 

reviewed in (Baton & Ranford-Cartwright, 2005b). 

1.2.2.5 Dynamics of Plasmodium development in the mosquito 

In the mosquito, the extrinsic incubation period from P. falciparum gametocyte 

ingestion to sporozoites reaching the salivary glands is approximately 14 days at 

the optimal temperature of 26-30C. Sporogony is not possible below 16C and is 

considerably slowed down above 35C (Noden et al. 1995). 

On average, 5% of the 10 to 10,000 macrogametocytes ingested within one 

blood-meal successfully develop to the oocyst stage (Alavi et al, 2003). There are 

significant decreases in parasite numbers in the midgut lumen, with estimates of 

conversion of only 0.2% of ingested P. berghei gametocytes into ookinetes (Alavi 

et al, 2003), and a 40-fold decrease in the same parasite stage transition reported 

with P. falciparum in An. gambiae (Vaughan et al, 1992). Major losses are also 

incurred in the transition from the midgut lumen ookinete to the oocyst stage - a 

69-fold decreases was reported in P. falciparum / An. gambiae (Vaughan et al, 

1992). Within the oocyst there is considerable expansion of parasite numbers. 

Each oocyst can contain up to 10,000 sporozoites (Beier, 1998), although only a 

proportion of them successfully reach the salivary glands (approximately 100-

100,000) (Beier, 1998). With each mosquito bite, fewer than 100 sporozoites are 
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injected into the skin (Beier, 1998). Some sporozoites will be killed by an immune 

system mechanism, such as an innate immunity response (phagocytic 

granulocytes, macrophages, NK cells or T cells) or, in the case of a non-primary 

infection, by an adaptive immune system response (malaria specific antibody, 

primed effector T cells). Nevertheless, a single sporozoite reaching the liver is 

sufficient to establish an infection, reviewed in (Baton & Ranford-Cartwright, 

2005b). 

1.3 Anopheles mosquitoes: Geographical Distribution; Life-cycle 

The female mosquito of the genus Anopheles is responsible for transmitting 

human malaria. There are over 450 different species of Anopheles mosquito, but 

only approximately 60 can act as vectors and transmit malaria (Cohuet et al, 

2010). Malaria vectors can be found in endemic countries, but also in areas where 

malaria has been eliminated. Consequently, these areas are at risk of malaria 

reintroduction (www.cdc.gov). Vector capacity (defined as the efficiency of vector-

borne disease transmission) consists of susceptibility to Plasmodium, vector host 

choice, and vector longevity (Cohuet et al, 2010). Dominant malaria vectors with 

the largest distribution are An. quadrimaculatus in North America, An. darlingi and 

An. marajoara in South America, An. gambiae, An. arabiensis and An. funestus in 

Africa, An. stephensi in India and An. dirus and An. punctulatus in South-East Asia 

(Kiszewski et al, 2004; Sinka et al, 2010a; Sinka et al, 2011; Sinka et al, 2010b). 

Due to its large distribution and extremely high vectorial capacity, An. gambiae is 

the principal malarial vector in sub-Saharan Africa.  

Anopheles gambiae sensu lato consists of eight morphologically 

indistinguishable species with variable vectorial capacity. The species are: An. 

gambiae s.s., An. coluzzii, An. arabiensis, An. quadriannulatus A, An. 

quadriannulatus B, An. melas, An. merus, and An. bwambae. Anopheles gambiae 

sensu stricto has the biggest vectorial capacity and was previously divided into two 

molecular forms M (Mopti) and S (Savannah) (della Torre et al, 2001). Recently 

the M form has been classified as a separate species, An. coluzzii, with the S form 

retaining the species name An. gambiae s.s. (Coetzee et al, 2013). The molecular 

forms are differentiated by differences in a 4 Mb region on chromosome X (della 

http://www.cdc.gov/
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Torre et al, 2001; Favia et al, 2001). The distribution of these two forms is uneven 

across the Africa region (Lehmann & Diabate, 2008). 

Malaria is only transmitted by the female mosquito, which needs blood as a 

source of nutrients for egg production. Like all mosquito species, Anopheles has a 

four stage life-cycle: egg, larva, pupa and adult (Figure 1.2). The duration of each 

of the stages depends on temperature and humidity. The egg to pupae phase is 

aquatic, and in ideal conditions takes about 2 weeks. The adult mosquito can live 

for up to 2 months in captivity, but in nature the lifespan of most will only be 2-4 

weeks (Clements, 1992). 

On average, a female mosquito lays 50-200 eggs, 3 days after taking a blood-

meal. Individual eggs are laid on the surface of the water, where they float due to 

floats on their sides. Anopheline eggs are not resistant to desiccation. The larvae 

hatch from the eggs within 2-3 days in ideal conditions 22-27C, but it can take up 

to three weeks in colder environments (Clements, 1992; Impoinvil et al, 2007). The 

larvae feed on microorganisms, such as algae and bacteria on the surface micro 

layer of the water, using their mouth brushes. They breathe through spiracles on 

eight segments of their body, which need to be positioned horizontally on the 

water surface. Larval development consists of four instars, followed by 

metamorphosis into a pupa. Between each instar the exoskeleton is shed to allow 

further growth (Clements, 1992). The pupa is round with its head and thorax 

merged to form a cephalothorax. It has a strong exoskeleton and breathes through 

trumpets on its dorsal side. Within a day of formation, the pupa splits on the dorsal 

side of the cephalothorax and the adult mosquito emerges from the water.  

Usually the adult mosquito matures within days of emerging. The males feed 

solely on sugary nectars. The females will also feed on nectar, but additionally 

require blood for egg development. After a blood-meal, the female will rest for 2-3 

days, until her eggs are fully developed and can be laid on the surface of the 

water. After laying the eggs, the female mosquito seeks another blood-meal. This 

cycle will repeat until the death of the female mosquito (Clements, 1992).  



 

11 

 

 

Figure 1.2. Anopheles gambiae lifecycle  (1.-6.) Mosquito development from egg to pupa is 
aquatic, in fresh water. In ideal conditions this takes 14 days. (1.) Eggs are laid on the surface of 
the water. Each egg has a pair of floats on its sides. In ideal conditions, hatching takes 2-3 days. 
(2.) First instar larva. (3.) Second instar larva. (4.) Third instar larva. (5.) Fourth instar larva. (6.) 
Pupa. (7.) Mating of adult mosquitoes. The female is ready to mate immediately after hatching, and 
the male 2-3 days post hatching. Egg development in the mosquito takes 2-3 days following a 
blood feed. The female mosquito is capable of laying 50-200 eggs every 3 days for the duration of 
its lifespan (2-8 weeks), if she has access to blood.  

1.4 Mosquito factors affecting Plasmodium development and 

infection success 

1.4.1 Mosquito species- Vector competence 

The intrinsic susceptibility of mosquitoes to malaria parasite infection is termed 

vector competence. Different mosquito species vary in their susceptibility to 

infection (Collins et al, 1986; Vaughan et al, 1994; Warren, 1981), and there is 

also natural variation between individuals within a species. Experiments with 10 

species of Anopheline mosquito combined with two Plasmodium species, P. 

falciparum and P. vivax, demonstrated that there is high variability in the potential 

to transmit malaria in different combinations of parasite and vector, with a 

reasonable correlation between the geographical origin of the parasite and that of 

the vector (Hume et al, 2007; Warren, 1981). The distribution of different species 

of malaria in different continents and areas is therefore dependent to some extent 

on the distribution of suitable vectors. 
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Mosquitoes which are able to reduce or prevent parasite infection are termed 

refractory. Some refractory mosquito lines can kill most species of malaria 

parasite, whereas others are species-specific. For example, the An. gambiae L3-5 

melanising line, selected for refractoriness to the simian parasite P. cynomolgi, is 

also able to melanise human, avian and rodent parasite species (Collins et al, 

1986), whereas a line selected for refractoriness to the rodent parasite P. yoelii 

nigeriensis (Hurd et al, 2005) was completely susceptible to P. falciparum 

(Ranford-Cartwright and Hurd, unpublished). 

There can also be differences in the ability of a refractory line to recognize and 

kill different genotypes of the same parasite species (Lambrechts et al, 2005). In 

the natural situation, because of the variability of host and parasite genotype, 

different hosts subsets are resistant to different genotypes of parasites. The result 

of this is that, in nature, there is probably no mosquito that is resistant or 

susceptible to all genotypes of Plasmodium. This variability has to be taken in 

account in programmes aiming to control malaria using new drugs, vaccines or 

vector control (Lambrechts et al, 2005). More detail on refractoriness in 

mosquitoes is provided in Chapter 2. 

1.4.2 Mosquito physical factors influencing infection success 

The body size of mosquitoes correlates with the size of the blood meal they 

obtain when feeding on an infected host (Ichimori, 1989), and therefore should 

directly influence the number of gametocytes taken up by a mosquito. The number 

of oocysts harboured by field-caught An. gambiae mosquitoes in Tanzania has 

been reported to correlate with the size of the mosquito (Lyimo & Koella, 1992), 

but there was no significant association in the rodent model P. yoelli nigeriensis in 

An. stephensi (Ichimori, 1989). This apparent contradiction may reflect differences 

in immune capacity in larger compared to smaller mosquitoes, with larger 

mosquitoes better able to mount an immune response.  

Mosquito nutritional status may also affect infection, both as a direct effect on 

parasite growth if there is poor nutrient availability, and an indirect effect on the 

ability of the mosquito to mount an effective immune response. For example, 

mosquitoes that had taken a blood meal were more likely to melanise Sephadex 

beads injected into the haemolymph than unfed mosquitoes (Schwartz & Koella, 
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2002). However parasite infection rates were boosted in An. gambiae mosquitoes 

which had taken two rather than one uninfected blood meal before a P. falciparum 

infectious meal (Okech et al, 2004), suggesting that increased mosquito nutritional 

reserves has a positive effect on vector capacity. Vector competence of An. 

gambiae to natural P. falciparum parasites does not vary with mosquito age 

(Okech et al, 2004). 

1.4.3 Mosquito immunity 

Mosquitoes are not passive carriers of malaria parasites, and have a variety of 

anti-pathogen immune responses which can act to kill developing parasites 

(Blandin & Levashina, 2004). A major source of immune effector molecules 

mediating anti-Plasmodium responses is believed to be the haemocytes, and the 

haemolymph is a major site of immune attack (Hillyer & Strand, 2014). Mosquito 

immunity will be discussed in more detail in Chapter 4. 

The mosquito genes that are involved in anti-parasitic responses have been 

identified from studies using genome-wide transcriptional profiling to compare 

refractory and susceptible lines of mosquitoes, and by reverse-genetic screening, 

including gene silencing by RNA interference (RNAi) (Blandin, 2002), reviewed in 

(Blandin et al, 2008; Yassine & Osta, 2010). From 14,000 genes identified in An. 

gambiae, 282 have been shown to be members of gene families or functional 

classes related to innate immunity (Christophides et al, 2004). Most of the 

molecular research has been done in the P. berghei / An. gambiae combination, 

which does not represent the same interaction as P. falciparum / An. gambiae. 

Genes associated with oxidative stress, apoptosis and cytoskeletal reorganization 

are differently up/ down-regulated in these two species combinations 

(Christophides et al, 2004).  

1.4.4 Mechanisms of refractoriness 

Mechanisms of refractoriness have been extensively studied and are 

described in more detail in Chapter 4. There are three mechanisms of 

refractoriness towards Plasmodium described in Anopheline mosquitoes. The 

three mechanisms are melanotic encapsulation of the ookinete or oocyst, 

intracellular lysis of the ookinete, and lysis of the ookinete in the midgut lumen. 
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Melanisation in the L3-5 line occurs 16-24 hours after mosquito midgut 

invasion (Collins et al, 1986). The ookinetes are recognised by the mosquito and 

killed prior to melanotic encapsulation (Blandin et al, 2004), but the exact 

mechanism of recognition and killing is unknown. Genetic mapping studies 

identified mosquito quantitative trait loci (QTL) controlling the encapsulation 

response against P. cynomolgi in the L3-5 line (Collins, 1997; Zheng, 2003) and 

also in field-caught An. gambiae (Riehle et al, 2006). These Plasmodium 

encapsulation loci were named Pen1, Pen2 and Pen3. Pen1 independently 

accounts for 60% of the melanisation events (Collins, 1997). However, field-caught 

mosquitoes rarely melanise Plasmodium ookinetes (Niare et al, 2002), suggesting 

that melanisation is not a common defence against Plasmodium.  

The lytic refractory mechanism described in the avian parasite P. gallinaceum 

kills ookinetes lying free in the midgut epithelial cell cytosol (Vernick et al, 1995), in 

the absence of melanotic encapsulation. Genetic crossing of refractory and 

susceptible lines suggested that this refractory trait was inherited as a single 

dominant locus (Vernick et al, 1995). 

The so called “disappearance” of gametocytes from the midgut lumen was 

observed in Anopheles gambiae when selected for refractoriness to Plasmodium 

yoelii nigeriensis (Hurd et al, 2005). 

1.5 Plasmodium factors affecting mosquito infection success 

1.5.1 Parasite genotype 

There is known variation in the ability of different parasite genotypes to infect a 

given mosquito species, both in laboratory infections (Ranford-Cartwright & 

Mwangi, 2012) and in natural infections in the field (Morlais et al, 2015). Some of 

this variability can of course be attributed to the relative ability of different parasite 

genotypes to produce gametocytes (see below, section 1.5.2). 

1.5.2 Gametocyte number 

One of the factors determining the intensity of mosquito infection is the 

number of gametocytes in an infectious blood feed, especially in experimental 
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infections (Ponnudurai, 1989). The maximum intensity of infection measured by 

oocyst number is that obtained from gametocyte culture of 0.5% gametocytaemia 

or above for parasite clone 3D7 (Ranford-Cartwright, unpublished). Ingestion of a 

higher number of gametocytes than 0.5% by a mosquito does not lead to an 

appreciable increase oocyst numbers, possibly because of limiting factors such as 

the limited time frame in which the ookinetes have to leave the midgut before 

being digested, and the competition for nutrients needed to develop to an oocyst 

(Lambrechts et al, 2006; Warburg & Miller, 1992). Gametocyte numbers in natural 

P. falciparum infections are usually much lower than those used in experimental 

infections, but still result in mosquito infection (Schneider et al, 2007). Gametocyte 

densities adjusted by dilution correlated with oocyst loads in P. falciparum / An. 

coluzzii (Da et al, 2015).  

The second factor connected with gametocyte numbers is the ratio between 

male and female gametocytes and gametes. One female gametocyte produces 

one female gamete, whereas one male gametocyte can produce up to 8 male 

gametes, which can fertilise up to 8 female gametes to form zygotes. Due to this, a 

ratio in favour of female gametocyte numbers should in theory lead to higher 

numbers of zygotes and higher infection intensity. Gametocyte sex ratios in P. 

falciparum are usually strongly female biased, but cannot be experimentally 

manipulated within a single genotype (Paul et al, 2002; Smith et al, 2000). 

Gametocyte sex ratios in P. falciparum experimental infections using different 

clones of P. falciparum showed a link between higher male sex ratio and 

infectiousness to mosquitoes (Burkot et al, 1984; Mitri et al, 2009) but this finding 

was not replicated in other similar studies (Noden et al, 1994). Natural infections in 

the field also present with variable sex ratios, and the intensity of infection has 

been reported to increase as the proportion of male gametocytes increased to 

50% (Robert et al, 1996). However, apportioning infection success to sex ratio is 

complicated by the potential variability in infectivity of different genotypes of P. 

falciparum present in these experiments (section1.5.1).  

1.6 Hypothesis and aims of the thesis 

The main aim of this project was to establish a line of An. gambiae s.s. 

refractory to P. falciparum, by a mechanism other than melanisation. To date, no 
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such a line, which could represent natural mechanisms of mosquito refractoriness 

in this vector-parasite combination, has been generated. As An. gambiae is the 

principal malaria vector in sub-Saharan Africa, and P. falciparum is responsible for 

a vast majority of malaria caused death, such a refractory line would be extremely 

useful tool for investigating mosquito parasite interaction and developing of 

transmission blocking approaches.  

The fitness associated with refractoriness was proposed to be measured in the 

selected colony, as it is not possible to measure in the field with mixed populations 

of mosquitoes. These data are important in understanding whether refractoriness 

is advantageous or disadvantageous for the mosquito and if refractoriness has a 

potential to replace susceptibility in nature. 

It was not known if the selected line would be refractory only to parasite clone 

3D7 used for selection, or if the mechanism would be more general. If 

refractoriness was parasite clone-specific, a quantitative trait loci (QTL) analysis 

based on phenotyping of offspring clones from 3D7 x HB3 experimental cross was 

proposed. This approach would allow us to identify responsible loci for 

refractoriness in the parasite genome. 
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2 Chapter: Selection of a new, non-melanising line of Anopheles 

gambiae refractory to Plasmodium falciparum 

 

2.1 Aims and objectives 

This chapter describes the process of selection of a new non-melanising line 

of Anopheles gambiae refractory to Plasmodium falciparum clone 3D7. The aim 

was to select a non-melanising line of the main mosquito vector of the human 

malaria parasite, which could subsequently be used in experiments analyzing the 

underlying mechanism of refractoriness seen in mosquitoes in the field.  

Preliminary work had been done to begin the selection of a refractory strain, 

but the insectaries had suffered from a microsporidia infection. First, selection was 

needed to re-establish a clean mosquito colony that was free from infection with 

microsporidia. 

The selection for refractoriness of the microsporidia-free colony was then 

continued. Refractoriness was selected to clone 3D7 of P. falciparum. The 

presence and/or number of oocysts in the midgut 10 days after an infectious 

blood-meal were used as a marker for infection. Alongside the refractory line, a 

control line, to control for inbreeding, was developed that had been through the 

same selection steps but with random choice of adult females to form each 

generation.  

The selected lines GU-REF11 and GU-CON11 were tested for refractoriness 

against HB3 line of P. falciparum as an example of line not used in selection. 

The hypothesis tested was that refractoriness of An. gambiae to P. falciparum 

is genetically based phenomena, and therefore it is possible to select for it.  
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2.2 Introduction 

2.2.1 Refractory strains of Anopheles gambiae 

Since 1929 when Huff developed a Culex pipiens line, which was refractory to 

Plasmodium cathemerium (Huff, 1929), there have been another 10 successful 

attempts to produce partially or fully refractory mosquito lines in different 

combinations of vector and Plasmodium species (Table 2.1). 

In refractory mosquitoes in the field, melanotic encapsulation is very rare: less 

than 0.46% of P. falciparum oocysts in infected An. gambiae mosquitoes from 

southern Tanzania are melanised (Schwartz, 2002). However the evidence for 

refractoriness in field mosquitoes is quite strong, manifesting as a low success 

rate of An. gambiae infection by gametocyte carriers of P. falciparum. In a 

comparative study of 930 transmission experiments from Cameroon, The Gambia, 

Mali and Senegal, the proportion of mosquitoes infected after feeding on 

gametocyte carriers varied from 4.9-27.3%, leaving 72.7-95.1% of mosquitoes 

uninfected (Bousema et al, 2012). This suggests a much higher prevalence of 

refractoriness than that expected from melanisation alone.  

Mosquito  Plasmodium Mechanism (if known) Reference 

Culex pipiens P. cathemerium - (Huff, 1929) 

Aedes aegypti P. gallinaceum - (Ward, 1963) 

An. stephensi P. gallinaceum - (Frizzi et al, 1975) 

An. atroparvus P. berghei - 
(van der Kaay & 
Boorsma,1977) 

An. gambiae P. berghei - 
(Almashhadani et al, 

1980) 

An. gambiae P. cynomolgi melanisation of ookinetes (Collins et al, 1986) 

An. stephensi P. falciparum blocks ookinete invasion (Feldmann, 1989) 

Ae. aegypti P. gallinaceum 
not melanisation (not 

known) 
(Thathy et al, 1994). 

An. gambiae P. gallinaceum intracellular lysis (Vernick et al, 1995) 

An. dirus 
P. yoelii 

nigeriensis 
melanisation of ookinetes 

and oocysts 
(Somboon et al, 1999) 

An. gambiae 
P. yoelii 

nigeriensis 

melanisation of ookinetes, 
other (unknown) 

mechanism 
(Hurd et al, 2005) 

Table 2.1. Mosquito lines refractory to Plasmodium infection published in the literature. 

Although just 3 out of the 11 selected lines (Table 2.1) have melanisation as 

the mechanism of refractoriness, these lines, and melanisation, have become the 

most studied mechanism of parasite killing in the mosquito. Based on the above 



 

19 

 

field and laboratory data, we suggest that the common mechanism of Plasmodium 

killing by the mosquito is not melanotic encapsulation. Based on this hypothesis, 

we decided to select a non-melanising An. gambiae line refractory to P. 

falciparum. 

2.2.2 Selection of GU-REF/GU-CON lines 

In our laboratory, we had previously selected a new line of An. gambiae 

KEELE, which was refractory to infection through a mechanism of parasite killing 

that was not melanisation (Ranford-Cartwright, unpublished). Unlike other existing 

refractory An. gambiae laboratory lines, these mosquitoes were selected using P. 

falciparum (clone 3D7). The selection involved feeding the mosquitoes with 

infectious gametocytes and then selecting the offspring of those mosquitoes with 

zero or the lowest number of parasites to form the next generation. The offspring 

of 10-11 females was used to form the next generation in the first 3 generations 

and this was reduced to the offspring of 4 females for 4-7 generations. 

Mosquitoes were selected over 7 further generations and the resultant line, 

denoted GU-REF(old), was significantly more refractory to infection than the 

original An. gambiae KEELE stock. GU-REF(old) was also significantly more 

refractory to infection than an inbreeding control line GU-CON(old), which was 

selected at the same time using randomly selected offspring from the same 

number of females as those used for the refractory population. Infection 

prevalence in the KEELE stock and GU-CON(old) was around 80-90%, with up to 

500 oocysts per midgut, whereas GU-REF(old) line exhibited very low infection 

prevalence (~10%) and oocyst intensity (1-4 oocysts/midgut). The mechanism of 

refractoriness in GU-REF(old) is unknown, although it will involve targeting 

gametocytes, gametes, ookinetes or very early oocysts, because visible oocysts 

did not develop in this line. Importantly, no melanisation was observed. Preliminary 

studies suggested that the GU-REF line did not exhibit the same refractory 

behaviour to a different P. falciparum clone, HB3 (unpublished). Due to 

microsporidia infection in the mosquito colony after the 7th generation, GU-

REF(old) and GU-CON(old) lines were then subjected to selection for absence of 

microsporidia. This chapter describes the selection of microsporidia-free colonies 

of GU-REF(old) and GU-CON(old) and their subsequent re-selection for 

refractoriness. 
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2.2.3 Microsporidia infection in mosquitoes 

Microsporidia have been known as pathogens in the mosquito for over 100 

years, and, as such, are considered as potential biological control agents (Becnel 

et al, 2005). Microsporidia are eukaryotic, unicellular organisms belonging to the 

phylum Microspora, which are now classified as derived fungi (Capella-Gutierrez 

et al, 2012; Williams et al, 2002). Microsporidia are intracellular in their hosts, 

which include almost all animal species, including humans where they are 

opportunistic pathogens in immunocompromised hosts. Microsporidia survive in 

the extracellular environment as environmentally resistant, long-lived spores. The 

spore is surrounded by a protein rich exospore, a protein and chitin rich 

endospore, and a plasma membrane. This structure makes it possible for the 

spore to survive extreme conditions such as temperatures ranging from -700C to 

560C or pH range 4-9 (Becnel et al, 2005). Spores are also light enough to be 

carried in the air. In order to be inactivated, the spores have to be autoclaved for 

10 min, or exposed to 2% Lysol solution, 10% formalin or 70% ethanol (Becnel et 

al, 2005). 

Microsporidia also affect malaria parasite development and mosquito 

development. As early as 1959, Nosema was identified in a breeding colony of An. 

gambiae in Liberia as blocking experimental infection with malaria parasites (Fox 

& Weiser, 1959). The infection was found to be transmitted in the colony via cotton 

feeding wads with sugar water or honey where infected mosquitoes defecated 

during feeding. One of the few reported, controlled experimental infections was 

done with Nosema algerae (Microsporidia: Nosematidae) in An. stephensi and this 

led to an 85% reduction in P. yoelii nigeriensis oocyst numbers, larval and pupal 

mortality and a reduction in egg batches (Schenker et al, 1992).  

Microsporidia are known to be problem pathogens in insectaria. When 

microsporidia infect a mosquito colony in captivity, it affects the colony fitness, but 

also makes subsequent Plasmodium infections almost impossible. To recover a 

mosquito colony in captivity, which has been infected by microsporidia, the whole 

insectary has to undergo an intensive decontamination process. 
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2.2.3.1 Detection and diagnosis methods for microsporidia 

Diagnosis of microsporidial infection in adult and larval stages of mosquitoes is 

usually by microscopical examination of wet mount preparations from infected 

tissues. The spores have a characteristic refractile appearance and a posterior 

vacuole, and can also be stained with Giemsa’s stain. Infected larvae may also 

exhibit visible signs of infection: heavy infections in 4th instar larvae can be seen 

as white or yellow masses when viewed against a black background (Andreadis, 

2007). Fluorescent brighteners such as calcifluor stain chitin in the endospore 

layer of microsporidia and are also used - spores take up the stain and fluoresce 

under UV illumination (Vavra et al, 1993; Vavra & Chalupsky, 1982). Molecular 

detection of microsporidian spores requires the mechanical disruption of the 

spores, e.g. with glass beads, to release the DNA, which is then amplified, for 

example using primers to the SSU rRNA locus (Franzen & Muller, 1999; Muller et 

al, 1999).  

2.3 Materials and methods 

2.3.1 An. gambiae KEELE strain 

The KEELE strain of An. gambiae sensu stricto was produced at Keele 

University, UK in the early 2000s, by balanced interbreeding of four strains: KIL, 

ZANU, G3 and IFAKARA (Hurd et al, 2005). The KIL strain originated from 

Marangu, Tanzania 1975. The ZANU strain was isolated from Zanzibar in 1984. 

The G3 strain was isolated from Gambia in 1975 and IFAKARA was isolated from 

Tanzania in 1996 (Hurd et al, 2005; Ranford-Cartwright et al, 2016). Balanced 

interbreeding was performed, by reciprocal crosses of 50 males and females, 

chosen at random, and sexed as pupae. Initial crosses were done between 

KIL/IFAKARA and ZANU/G3. Offspring of these crosses were then crossed to 

produce the KEELE strain (Hurd et al, 2005). A breeding colony of An. gambiae 

KEELE was established in Glasgow University in 2002, with eggs obtained from 

Keele University. 
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2.3.2 Maintenance of the Anopheles gambiae colony 

The colony was kept in net cages in an insectarium at 26C, 80% RH, 12h 

daylight period. Between blood feeds the mosquitoes had access to glucose 

feeders containing 5% glucose solution in 0.05% PABA (4-amino benzoic acid). 

The larval stages were kept in water with sodium bicarbonate (2g w/V) and fed on 

fish food pellets. 

2.3.3 Culturing of P. falciparum 

2.3.3.1 Asexual culture of P. falciparum 

Asexual parasites were cultured in RPMI medium supplemented with 25mM 

HEPES, 50mg/L hypoxanthine, 0.74µg/mL sodium hydrogen carbonate and 10% 

(v/v) human serum (heat inactivated), known as complete RPMI. The cultures 

were maintained at 5% RBC haematocrit, at 37C, under a gas mixture of 1% O2, 

3% CO2, balanced N2. Human blood was obtained from the Glasgow and West of 

Scotland Blood Transfusion Service as whole blood in citrate-phosphate-dextrose-

adenine (CPD-A) anticoagulant, and was washed prior to use to remove white 

blood cells and anticoagulant. The culture was kept in small (25 cm3) tissue culture 

flasks at a total volume of 5 mL, and was maintained at a parasitaemia below 

10%. The medium was changed every day and the parasitaemia was monitored 

using thin smears, staining with Giemsa’s solution and examining by microscopy. 

The parasitaemia was adjusted to maintain the level between 1% and 8% by 

dilution with fresh uninfected blood 2-3 times a week (Haynes, 1976; Trager & 

Jensen, 1976). 

2.3.3.2 Gametocyte culture of P. falciparum 

Gametocyte cultures were established from asexual parasite cultures 

according to standard methodology (Carter et al 1993). Each gametocyte culture 

was established at 0.5-0.7% parasitaemia, 6% haematocrit in complete RPMI. The 

culture was set up in a large (75 cm3) tissue culture flask laid flat and containing 

15 mL culture material. The medium was changed every day and once the 

parasitaemia reached high levels, and the parasites started to look stressed (such 

as having triangular rings stages and blurred-looking trophozoites and schizonts), 
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the medium volume was increased to 25 mL with no addition of fresh erythrocytes 

(Carter et al, 1993). Gametocytes were mature after around 15 days from the start 

of culturing. For feeding the mosquitoes, 14 and 17 day old cultures were mixed 

together to increase infection success. 

2.3.3.3 Membrane feeding 

2.3.3.3.1 Mosquito collection 

Previously unfed mosquitoes were given their first blood feed as 5 to 7 day old 

adults. They were kept in waxed paper carton cups covered with netting with a 

secured side entrance covered in two layers of latex sheet. Mosquitoes were given 

access to glucose-soaked cotton wool balls lying on top of the netting, which were 

substituted for water-soaked cotton wool one day before the membrane feed to 

encourage blood feeding. 

2.3.3.3.2 Preparation of infected blood-meal 

Glass membrane feeders were covered with stretched baudruche membrane 

(Goldbeater’s skin) and connected to a circulating water bath at 37.1C. The 

infectious blood feed was prepared from mixed day 14 and day 17 gametocyte 

cultures. Each culture was sedimented by centrifugation at 1500 x g (at 37C). 

Pelleted cells containing parasites were resuspended in an equal volume of 

human serum and diluted with fresh blood in serum at 40% haematocrit. The final 

concentration of gametocytes was adjusted to ~1%. The dilution was based on 

day 12/15 gametocytaemia calculated from Giemsa-stained thin blood films. 

During the whole process of the infectious blood feed, the temperature was not 

allowed to drop below 37C, as this would have caused premature exflagellation of 

male gametes and a failure to infect mosquitoes. Approximately 1-1.5 mL of the 

infectious feed was placed into each membrane feeder, and the mosquitoes were 

allowed to feed for 20-30 minutes, while a sample of the feed mixture was 

examined microscopically for exflagellation (phase or Nomarski, 400x 

magnification), within 10 min from the start of the feed. Mosquitoes which did not 

feed were removed by aspiration 2-3 hours after the feed and killed (Carter et al, 

1993). 
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2.3.3.4 Mosquito dissection and identification of oocysts 

Mosquitoes which fed on the infectious blood were dissected 10 days later to 

look for the presence of oocysts in the midgut. Mosquitoes were killed by 

chloroform vapour, dipped in 70% ethanol, transferred into 1x PBS and kept on 

ice. The dissection was done within 30 min of mosquito death. The midgut was 

dissected from the mosquito and covered by a cover slip under 1 x PBS. 

Excessive PBS was removed by capillary soaking into dry tissue paper. This 

process flattened the midgut, allowing for the examination of upper and lower 

sides. The oocysts were counted under light microscopy at 400x magnification. 

2.3.4 Establishing a Microsporidia-free colony for selection 

2.3.4.1 Detection of microsporidia 

The published calcofluor staining method was used to detect microsporidial 

spores (Vavra et al, 1993; Vavra & Chalupsky, 1982). The spores are commonly 

present in the fat body and intestinal tract, and so midguts were removed from 

adult mosquitoes, or whole larvae were squashed on to slides, fixed with 

methanol, and stained with a 0.5% solution of calcofluor white M2R (Sigma 

Chemical Co., St. Louis, Mo.) for 2-3 minutes, rinsed with water and then 

counterstained with 0.1% Evan’s blue (Sigma) for 1 min at room temperature. After 

rinsing and drying, slides were viewed under a UV microscope at a wavelength of 

395 to 415 nm (observation light of 455 nm) under 1000x magnification. 

Microsporidia spores appeared as bluish-white ovals. 

2.3.4.2 Decontamination of microsporidia spores in insectaries 

Microsporidial spores are generally resistant to many standard forms of 

surface decontamination. It was not possible to decontaminate the insectaries 

using formaldehyde because of the lack of venting in the suites. Therefore after 

removal and disposal by autoclaving of all mosquitoes and rearing equipment, 

rooms were exposed to UV decontamination lights for at least 7 days (Marshall et 

al, 2003). All consumables were replaced with disposable plastics and rigorous 

quarantine procedures were instigated to prevent recontamination of “clean” 

rooms. 
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2.3.4.3 Selection of microsporidia-free mosquitoes to re-establish the GU-

REF and GU-CON lines 

The GU-REF(old) and GU-CON(old) lines of mosquitoes were diagnosed in 

2010 with microsporidia infection, which prevented the malaria parasite from 

establishing a successful infection. The infection rate in the two lines was 

established using the calcofluor method above (2.2.3.1). The lines were then re-

established from the minority uninfected individuals that were still present in the 

colonies. 

200 GU-REF and 100 GU-CON adult females were separated after a 

membrane blood feed into individual tubes containing a source of glucose. The 

mosquitoes were allowed to deposit haematin and were then transferred into a 

new tube containing water in order to lay eggs 2 days post blood feed. Egg laying 

mosquitoes were dissected and examined for the presence of microsporidia in 

midgut tissue and malpighian tubules. Eggs from microsporidia infected 

mosquitoes were discarded. Eggs from non-infected mothers were reared to 

establish a second generation. Females arising from each egg lay were kept 

together as family groups, whereas males were mixed and distributed at random 

between female families. The second generation of females was given a blood 

feed and separated into individual tubes. The same process as with the first 

generation was repeated. This process was continued until all females were 

negative for microsporidial infection.  

2.3.5 Selection for refractoriness to P. falciparum 

Following reestablishment of microsporidia-free colonies of the previously 

established GU-CON and GU-REF lines, selection for refractoriness to infection 

with P. falciparum (clone 3D7 was continued for four further generations 

(generations 8, 9, 10 and 11). The selection involved infecting mosquitoes with 

infectious parasites and taking the offspring of four to ten mosquitoes with zero 

parasites at the oocyst stage to form the next generation (Figure 2.1). The control 

line GU-CON was selected at the same time, as a control for inbreeding, using the 

same number of females (4-10) for the next generation chosen at random. 
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Figure 2.1. Selection procedure. 50-200 mosquito females (GU-REF and GU-CON) were 
infected with 3D7 parasites and separated into individual tubes for oviposition. Ten days after 
feeding, mosquitoes were dissected and the oocysts on the midgut counted. 4-10 females with 
zero oocysts were selected to form the next generation of the GU-REF line, and their offspring 
were grown to adults and used for the next infections. The same number of females was selected 
at random (regardless of infection level) to provide an inbreeding control (the GU-CON line).  

2.3.6 Statistical analysis 

The difference in oocyst prevalence between the GU-REF and GU-CON lines 

at each generation was examined using x2 test or Fisher’s exact test according to 

the sample size. Binomial errors were calculated using R. Oocyst intensities were 

expressed as medians because of the non-normal distribution. Oocyst distributions 

between the GU-REF and GU-CON mosquitoes were compared using 

Kolmogorov-Smirnov tests. All statistics were performed using R (Core Team R, 

2013). 

2.4 Results 

2.4.1 Selection for microsporidia free colony 

The GU-REF and GU-CON lines were successfully re-established from a 

minority of microsporidia-negative individual mosquitoes present in the original 

lines. 200 GU-REF and 100 GU-CON blood fed females were allowed to lay eggs 
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in separate tubes, of which 70 GU-REF and 37 GU-CON females laid eggs. 11 

GU-REF (15.7%) and 13 GU-CON (35.1%) mosquitoes were found to be negative 

for microsporidia (Figure 2.2).  

 

Figure 2.2 Microsporidia spores in mosquito midgut tissue.The arrow shows a tissue cyst 
full of spores (light microscope, 400x magnification).  

Eggs from non-microsporidia-infected mosquitoes were reared on to adults, 

resulting in 89 GU-REF females (offspring of 11 females) and 64 GU-CON 

females (offspring of 13 females). These females were blood fed, and 36 females 

of this GU-REF generation (offspring of 8 G0) and 24 of GU-CON (offspring of 8 

G0) laid eggs following a blood feed. Females were examined post egg laying for 

microsporidia and 100% of both GU-REF and GU-CON were found to be negative. 

Both the GU-REF and GU-CON lines were thus re-established from 8 uninfected 

mosquitoes (Table 2.2). 

Steps GU-REF line GU-CON line 

Feed #1. No. adult females blood fed 200 100 

No. females laying eggs 70 37 

No. females negative for microsporidia (%)  11 (15.7%) 13 (35.1%) 

Feed # 2. No. adult females blood fed (offspring of 
feed 1) 89 (11) 64 (13) 
No. females laying eggs (offspring of no. female 
feed#1) 36 (8) 24 (8) 

No. females negative for microsporidia (%) 36 (100%) 24 (100%) 

Colony recovered from no. females 8 8 

Table 2.2. Numbers of female mosquitoes in each step of the re- establishment of GU-
REF and GU-CON lines. 
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2.4.2 Prevalence and intensities of parasite infection during the selection 

process for refractoriness 

The prevalence of infection with P. falciparum clone 3D7 in generations 8 to 

11 was measured following an infectious blood-meal (proportion of mosquitoes 

with oocysts ten days post infection) (Figure 2.3). There was a significant 

difference in prevalence between the GU-REF and GU-CON lines by generation 

10 (X2; p=0.013) (Table 2.4Table 2.3). The median number of oocysts per 

mosquito varied between infectious feeds (Figure 2.5), but no significant trend 

towards a difference between GU-REF and GU-CON was observed (Table 2.4). 

The number of oocysts per mosquito in the selections 8-11 are shown in Figure 

2.4, and summarised as median oocysts per mosquito in Figure 2.5. No significant 

difference between intensity of oocyst infection in GU-REF and GU-CON was 

observed in any generation except generation 9 (Table 2.3).  

 

Figure 2.3. P. falciparum oocyst infection prevalence in generations 1-11.  The asterisks 
indicate a significant difference in prevalence between GU-REF and GU-CON (X2, p value <0.05). 
The arrow indicates the occurrence of the microsporidia infection in the colony. Generations 1-7 
were selected previously (L. Ranford-Cartwright& L. Peat; unpublished data).The number of 
mosquitoes examined in the generations 8-11 is shown in Table 2.4.  

 

* 

* 

* 
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Figure 2.4. Oocyst intensities in dissected mosquitoes during the selection process of 
generations 8-11. The graphs show the number of mosquitoes with the corresponding numbers of 
oocysts from dissection on day 10 post-IBF. The mosquitoes used to establish the next generation 
during the selection process are shown in dark red (GU-REF) and dark blue (GU-CON), whereas 
those discarded/not used are shown in the lighter coloured bars.   
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Generation Median oocyst 
intensity (range)  

of infection  
in GU-REF 

n Median oocyst 
intensity (range) of 

infection  
in GU-CON 

n p value 
(MWU test) 

8 2 (1-4) 49 2 (1-3) 30 0.988032 

9 10 (2-58) 26 14 (1-21) 10 0.00214 

10 6 (1-25) 27 5 (1-30) 22 0.062886 

11 2 (1-5) 17 1 (1-5) 14 0.05943 

Table 2.3 Median oocyst intensity in generations 8-11. Median oocyst intensity and range 
for mosquitoes infected with P. falciparum clone 3D7. Oocyst distributions were compared between 
GU-REF and GU-CON lines for each generation using Mann-Whitney U tests. Significant p values 
are shown in bold.  

 

Generation of 
selection 

Prevalence of infection 
in GU-REF 

Prevalence of infection 
in GU-CON 

p value 

8 36.7% (18/49) 36.6% (11/30) 0.995 

9 38.46% (10/26) 54.54% (6/11) 0.366 

10 66.6% (18/27) 95.45% (21/22) 0.012 

11 21.42% (6/28) 73% (19/26) 0.0004 

Table 2.4 P. falciparum oocyst infection prevalence in generations 8-11. The proportion 

of infected mosquitoes is shown in brackets after the percentage of prevalence. Significance was 
tested by chi-squared or Fisher’s exact as appropriate.  

 

 

Figure 2.5 Box-plot of oocyst infection intensities in generations 8-11. The box 
represents  the first and third quartiles, with the line within each box representing the median (2nd 
quartile). The whiskers represent the minimum and maximum values.  
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2.4.3 Strain-specificity of refractoriness 

The GU-REF line was selected using P. falciparum clone 3D7, and significant 

resistance to infection with this clone was selected as described above. To 

establish the specificity of this refractoriness to the parasite genotype, infection 

levels achieved with the P. falciparum parasite clone HB3 were tested. Female 

mosquitoes from GU-REF11 and GU-CON11 were infected with gametocytes of 

clone HB3 at the same time as an infection with clone 3D7, and oocyst prevalence 

and intensity established (Figure 2.5, Table 2.5). Infection prevalence of clone 

HB3 in GU-REF11 was 3.1% compared to 38.7% for GU-CON11 (X2 test, 

p=0.000484), with a median number of oocysts of 1 for GU-REF11 and 3 for GU-

CON11 (K-S test, p=0.0128). The experiment was done in without replicates due 

to problems with GU-REF11 and GU-CON11 colonies at the time. 

Generation Median oocyst 
intensity (range) of 
infection in GU-REF 

Median oocyst 
intensity (range) of 

infection in GU-CON 

p value (K-S test) 

11 1 (1) 3 (1-14) 0.0128 

 

Table 2.5 Oocyst intensity in generation 11 for HB3 infection. Maximum and minimum 
oocyst number, in brackets, follows the median number of oocysts per infected midgut. Mosquito 
numbers dissected were 32 for GU-REF11 and 31 for GU-CON11.  

  

Figure 2.6 Comparison of prevalence and intensity of 3D7 and HB3 in GU-REF11 and 
GU-CON11. Asterisks (* p< 0.05, **p< 0.005, ***p<0.0005) indicate level of significance. Mosquito 
numbers n= 32 (GU-REF11), n=31 (GU-CON11).  

2.5 Discussion 

The aim of the work described in this chapter was to select a non-melanising 

line of An. gambiae refractory to Plasmodium falciparum clone 3D7. 
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Mosquitoes were successfully selected to be clear of microsporidia, allowing 

clean lines of the previously selected GU-REF and GU-CON to be established. 

However, as shown in Figure 2.3, there was no difference in susceptibility to 

parasite infection between GU-REF and GU-CON in generation 8, implying that 

the refractoriness was lost during the microsporidial infection or the microsporidia-

free selection steps. The disruption of the refractory phenotype following the 

microsporidia infection meant that new rounds of selection were required to 

recover parasite refractoriness. Following the previous selection for seven 

generations, this project selected a further four generations.  

Using prevalence of oocysts 10 days after a blood-meal as a marker of 

refractoriness, the GU-REF line became significantly more refractory to P. 

falciparum clone 3D7 from the 10th generation, compared to the GU-CON line 

(p=0.012). The difference in infection prevalence further increased in the 11th 

generation (p=0.0004). 

Perhaps surprisingly, infection intensity did not change during the selection 

process, with the exception of the 9th generation. This could be because the 

mosquitoes selected for the GU-REF generations did not have any oocysts (a 

sufficiently low prevalence allowed only mosquitoes with zero oocysts to be used 

for generations 8-11). It is therefore possible that the refractory loci enriched in the 

GU-REF population influence prevalence (absolute ability to sustain infection) 

rather than intensity (reduction in the number of parasites establishing). 

The fact that it was possible to select for refractoriness in a relatively small 

number of generations means that refractoriness is probably controlled by a single 

locus, or a small number of loci. The small number of infected mosquitoes within a 

refractory population could be the outcome of parental heterozygotes crossing, 

leading to the representation of a susceptible genetic background.  

Moreover, the selected line of GU-REF11 was also refractory to P. falciparum 

clone HB3 which was not used in selection. This suggests that the mechanism of 

refractoriness is directed towards conserved targets that do not vary between the 

two parasite genotypes. This precluded the identification of potential targets of the 

refractory phenotype in the parasites by a QTL analysis approach based on 
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prevalence differences using progeny of a cross between parasites 3D7 and HB3 

(Walliker et al, 1987).   

2.6 Conclusions 

A new line of An. gambiae denoted GU-REF has been generated following the 

recovery of the GU-REF7 and GU-CON7 lines from colonies infected with the 

fungal pathogen microsporidia. The reselection of the line was necessary because 

the refractory behaviour (a significant difference in infection before microsporidial 

infection) had been lost, probably due to bottlenecking during the selection of 

“clean” mosquitoes.  

Following a further four rounds of selection, the 10th generation of GU-REF 

exhibited significantly greater refractoriness to P. falciparum clone 3D7 compared 

to the control line GU-CON with similar inbreeding. The final 11th generation had a 

further increase in the difference in the susceptibility to infection. 



 

34 

 

3 Fitness parameters of GU-REF and GU-CON lines and blood 

meal digestion pattern as a potential mechanism of 

refractoriness 

 

3.1 Aims and objectives 

The aim of the research presented in this chapter was to establish the fitness 

of the newly selected GU-REF mosquitoes relative to the GU-CON line. We 

measured five fitness markers: body size, adult survival, proportion of mosquitoes 

laying eggs after first blood meal, length of first gonotrophic cycle and number of 

eggs per egg lay. To further investigate differences between GU-REF and GU-

CON that could contribute to refractoriness of GU-REF, the speed of blood meal 

digestion was also analyzed. 

Five research questions were investigated as follows.  

1) Did the selection for refractoriness affect adult mosquito body size? 

2) Did the selection for refractoriness affect mosquito survival? 

3) Did the selection for refractoriness affect the proportion of mosquitoes that 

lay eggs after the first blood meal? 

4) Did the selection for refractoriness affect the number of eggs per oviposition 

after a first blood meal? 

5) Did the selection for refractoriness affect the length of the first gonotrophic 

cycle (time from blood-meal to oviposition)? 

 

3.2 Introduction 

3.2.1 Measures of mosquito fitness 

Fitness is usually defined as the relative ability of an individual to leave 

descendents, and for mosquitoes can be indirectly measured by two traits: 

reproductive success, and adult survival. Reproductive success is determined by 
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fecundity and fertility. Fecundity measures the number of gametes produced, 

which in a mosquito can be translated as the number of mature oocytes (eggs). 

Fertility measures the number of viable offspring, translated as the number of 

hatched eggs (Hurd, 1995). To be able to fully establish the effect of selection for 

refractoriness on the fitness of the population, life-time fecundity, fertility and 

longevity would have to be combined. 

Refractoriness may reduce the overall fitness of mosquitoes, for example if 

resources are reallocated from reproduction to an upregulation of mosquito 

immunity. Such trade-offs between insect life-history costs and anti-pathogen 

responses such as melanisation have been proposed in other insects (Armitage et 

al, 2003), and bead melanization by mosquitoes has been shown to reduce 

fecundity (Ahmed & Hurd, 2006; Schwartz & Koella, 2004). Costly refractoriness 

was not however observed in An. gambiae selected for refractoriness to infection 

by P. yoelii nigeriensis (Hurd et al, 2005), where mosquitoes from the refractory 

line had no survival or fecundity differences compared to the susceptible lines 

(Hurd et al, 2005). Refractory mosquitoes were however observed to have a lower 

hatch rate of their eggs (lower fertility), which could not be attributed to reduced 

insemination. Costs observed in a population of Aedes aegypti refractory to P. 

gallinaceum were attributed to the smaller body size of the refractory population 

rather than to the refractory mechanisms (Yan et al, 1997). 

3.2.1.1 Body size 

Body size of the adult mosquito depends on larval conditions such as 

crowding (population density), starvation, and food type. Adult mosquito body size 

is known to be an important factor affecting survival under stress conditions and 

for reproductive success (Briegel, 1990a; Briegel, 1990b; Takken et al, 1998). 

Larger mosquitoes also take a larger blood volume during feeding: the blood meal 

size of large females has been reported to be up to double that of smaller females, 

with corresponding fecundity increased up to 4-fold (Ichimori, 1989a). The 

gonotrophic cycle was completed in a shorter time in larger females than in small 

females which ingested blood of equal volumes (Briegel, 1990b). There is 

contradictory evidence as to whether smaller blood meal sizes results in lower 

parasite burden at the oocyst stage. No significant effect of body size/ blood meal 
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volume with oocyst burden was observed for the rodent parasite P. yoelli 

nigeriensis in An. stephensi (Ichimori, 1989b). However the number of oocysts 

harboured by field-caught An. gambiae mosquitoes in Tanzania increased with the 

size of the mosquito (Lyimo & Koella, 1992).  

If selection for refractoriness to produce GU-REF resulted in mosquitoes of a 

different size (to GU-CON or to the KEELE parent line), the refractoriness could be 

interpreted as a side effect of size selection. Wing length was used as an estimate 

of body size as its correlation with whole body size and body mass is clearly 

established (Briegel, 1990a).  

3.2.1.2 Survival 

Survival is one of the main determinants of mosquito life-time reproductive 

success: the longer the female mosquito lives, the more reproductive cycles can 

potentially be completed. The longevity of a female mosquito also determines her 

ability to transmit malaria, since mosquitoes that die before the extrinsic cycle is 

completed cannot pass on any infection. 

There are several factors affecting the survival of uninfected mosquitoes. The 

first is nutritional status of the mosquito after hatching, which represents the 

reserves built up in the larval state (Reiskind & Lounibos, 2009). Smaller 

mosquitoes with smaller energy reserves do not survive when exposed to sugar 

starvation (Andersson, 1992); sugar is important for survival and overall fitness, 

and also contributes to vector capacity (Manda et al, 2007). Blood is also an 

important source of nutrition, and can replenish a lack of food sources in the larval 

stage. Under laboratory conditions, mosquitoes live longer when provided with 

both blood and sugar meals rather than sugar alone (Okech et al, 2003). As 

stress, temperature and humidity levels are important factors affecting mosquito 

survival (Christiansen-Jucht et al, 2014), mosquitoes were maintained here under 

stable environmental conditions. 

3.2.1.3 Proportion of mosquitoes that lay eggs after a bloodmeal 

The first gonotrophic cycle is an important marker of mosquito nutritional 

status, because mosquitoes with low energy resources can use the first blood 
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meal to replenish the lack of nutrients from larval stage and produce either no 

eggs, or a reduced number (Takken et al, 2013). Mosquitoes that do not lay any 

eggs may also indicate a problem with mating in a colony.  

3.2.1.4 Number of eggs per oviposition 

The number of eggs laid per oviposition is another factor linked with the 

nutritional status of the mosquito, often manifest as a difference in body size 

(Lyimo & Takken, 1993). Moreover, although not measured in our experiments, 

infection of mosquitoes has been shown to reduce egg production by 20-30% in 

Ae. aegypti/ P. gallinaceum, and An. stephensi/ P. yoelii nigeriensis (Hurd, 1995). 

In An. gambiae/ P. yoelii, oocyte resorption is increased in infected mosquitoes 

(Ahmed & Hurd, 2006; Hurd, 1995). 

3.2.1.5 Time from bloodmeal to oviposition 

The length of the gonotrophic cycle influences, along with longevity, the 

number of cycles a mosquito can achieve during her lifespan. For a fixed 

longevity, the shorter the gonotrophic cycle, the more offspring can be produced 

over the time, assuming that offspring per gonotrophic cycle do not vary. 

Moreover, the length of time taken to mobilise and utilise nutrients for egg 

production may represent the speed of the processes involved, in individual 

mosquitoes, strains or even species. The length of the gonotrophic cycle can 

therefore be an important factor for vectorial capacity. 

Gonotrophic cycle length does vary between species of mosquito, and within a 

species between different environmental conditions such as temperature (Lardeux 

et al, 2008). The duration of gonotrophic cycle in a population of An. gambiae was 

reported to be shorter during the dry than the wet season (Mala et al, 2014). 

Mosquito body size has also been reported to be inversely correlated with the 

length of the gonotrophic cycle (Briegel, 1990b). 

3.2.1.6 Timing of Plasmodium development 

Plasmodium development within mosquito is largely dependent on 

temperature. Under insectary conditions (26oC, 80% RH) the process from 
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ingestion of infectious blood to the presence of sporozoites in the salivary glands 

takes about 14 days (Baton & Ranford-Cartwright, 2005). Within the mosquito 

midgut the parasite develops through stages known as gametocytes, gametes, 

zygotes, retort forms and finally ookinetes, which pass through the epithelial cells 

to encyst on the outer midgut wall. It takes 18-24 hours for P. falciparum 

development from ingestion of the infectious blood meal to the ookinete leaving 

the mosquito midgut (discussed in detail in Chapter 1). 

3.2.1.7 Blood meal digestion in the mosquito midgut 

During the time of development in the midgut, the parasite is exposed to 

mosquito midgut proteases, secreted into the posterior gut lumen to digest the 

blood meal. The main proteases of the mosquito midgut secreted in response to 

blood feeding are trypsin (peak 28-32h post blood-feed), chymotrypsin (peak 36h 

post blood-feed) and aminopeptidase (peak 30h post blood-feed) (Billingsley & 

Hecker, 1991; Rosenfeld & Vanderberg, 1998).  

When exposed to proteases of mosquito midgut, Plasmodium zygotes, retort 

forms and ookinetes show signs of destruction. The ookinetes of P. gallinaceum 

were shown to be sensitive to damage by Ae. aegypti gut proteolytic enzymes 

such as trypsin, especially in earlier stages of development (Gass & Yeates, 

1979). Blood meal digestion begins at the periphery of the blood bolus, and these 

authors suggested that only ookinetes developing within the centre of the blood 

meal survived. Thus, the speed of blood meal digestion is a critical factor for 

ookinete survival. If protease levels in mosquito midgut reach high levels before 

ookinetes leave the midgut lumen, they will be damaged by digestive enzymes. 

However, the proteases also inactivate complement and macrophages in the 

midgut, both of which kill parasites (Grotendorst et al, 1986). 

The speed of blood meal digestion in mosquitoes is influenced by 

environmental temperature (West & Eligh, 1957), light and humidity (O'Gower, 

1956), and the source of the blood meal (Downe et al, 1963). The speed of 

digestion may be influenced by differences in the levels of proteases, or the timing 

of their secretion, and may be responsible for some differences of susceptibility of 

vector-parasite combinations. For example, An. albimanus has faster digestion 

than An. stephensi, leading to the former being more refractory to P. falciparum 
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(Baton & Ranford-Cartwright, 2012). The presence of parasites in the blood meal 

has a negligible effect on blood-meal digestion (total protein ingested, rate of 

protein digestion) (Jahan et al, 1999).  

3.3 Materials and methods 

3.3.1 Analysis of mosquito fitness parameters 

Some analyses of fitness were carried out during the selection experiments, 

and others at the end with the GU-REF11 and GU-CON11 generations of 

selection. The generation of selection used for each experiment is stated in the 

relevant section below. 

3.3.1.1 Adult body size 

Pupae of each line (GU-REF10, GU-CON10 and An. gambiae s.s. KEELE) 

were allowed to emerge and 100 adults of each line were collected for 

measurement of wing length. The wings were removed from each mosquito under 

a dissecting microscope (magnification 20x), placed in drop of PBS and allowed to 

dry on the slide. The length was measured from the axillary incision to the apical 

margin (Nasci, 1986), using a digital camera imaging system (Moticam 2300) 

connected to the microscope eyepiece and precalibrated software (Motic images 

plus v. 2.0). 

The wing lengths of the GU-REF10, GU-CON10, KEELE An. gambiae s.s. 

mosquitoes were compared using Kruskal-Wallis pairwise tests and Kruskal-Wallis 

rank sum tests. 

3.3.1.2 Adult mosquito survival 

Survival of adult female mosquitoes was investigated under three different 

conditions, and compared between mosquitoes of the GU-REF11 selected line, 

the GU-CON11 line (control for inbreeding effects) and the parent An. gambiae 

KEELE line: (1) survival without blood feeding; (2) survival after a single blood-

meal; and (3) survival after one infectious blood-meal.  
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The first condition investigated the nutritional status from the larval stage 

growth of the selected lines without nutritional supplementation by a blood meal, 

and could provide information on the nutritional requirements or cost of 

refractoriness. The second condition represents basal survival in mosquitoes in 

the absence of stress caused by infection, but with natural nutritional 

supplementation through a single blood meal. This experiment will determine if 

maintenance of the refractory state in the absence of parasite challenge is costly. 

The third condition introduces stress caused by infection, and should indicate if 

refractoriness confers a survival advantage under parasite challenge. 

For each experimental condition, pupae from each line were sexed at the 

pupal stage based on their terminal genitalia (Moorefield, 1951), and females only 

were transferred to pupal hatching cages. 100 adult female mosquitoes of each 

line were then gently transferred to waxed paper cups closed with netting. Glucose 

was provided on cotton wool pads placed on top of the netting and changed daily. 

Cups were examined every day and dead mosquitoes were collected from the 

bottom of the cup daily and numbers recorded. The recording continued until all 

the mosquitoes had died. 

To analyse longevity in mosquitoes allowed to take a single blood meal 

(condition 2), the mosquitoes were offered a non-infectious blood meal eight days 

post-emergence. To analyse longevity in mosquitoes allowed to take a single 

infectious blood meal (condition 3), the mosquitoes were offered a blood meal 

containing infectious gametocytes (clone 3D7, 1% gametocytaemia) eight days 

post-emergence. Unfed mosquitoes were removed from the pots after the 

membrane feeding. The experiments with all conditions were replicated 3 times. 

The Cox proportional hazard model procedure was used to examine the impact of 

different feeding conditions on survival data, using the coxph command in the 

Survival package (Therneau & Grambsch, 2000) in R (Core Team R, 2013).  

3.3.1.3 Proportion of mosquitoes that lay eggs after the first blood meal 

The proportion of mosquitoes that laid eggs was measured during the 

selection process (generations 8 to 10), and therefore there are no within-

generation replicates, and all mosquitoes were given infectious blood meals. 

Following the infectious blood-meal, unfed mosquitoes were removed and 
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discarded. The remaining mosquitoes were allowed to deposit haematin, and then 

50 female mosquitoes were separated into individual tubes, with water for egg 

deposition and an individual source of glucose (described in chapter 2). The tubes 

were checked daily for eggs. Mosquitoes that had not laid eggs after 9 days were 

discarded and counted as non egg-laying.  

The proportion of mosquitoes that laid at least one egg was compared 

between the GU-REF and GU-CON lines at each of the three generations of 

selection (generations 8, 9 and 10). Because there were no replicates, the 

numbers were compared using chi-squared tests assuming a null hypothesis of no 

difference in the proportion of mosquitoes that laid eggs. 

3.3.1.4 Eggs per oviposition after a first blood meal 

Egg number is a basic factor contributing to mosquito lifetime fecundity. If 

refractoriness in mosquitoes was linked to decreased egg numbers, mosquitoes 

with such a trait would be at a disadvantage compared to susceptible ones.  

The number of eggs laid was measured in generation 11 for GU-REF11, GU-

CON11 and KEELE An. gambiae s.s. stock mosquito following an infectious blood 

meal. The number of eggs was measured in three separate replicates with 

independent infected blood meals (IBF). The number of eggs laid by each 

mosquito was counted as described above. The mean number of eggs per 

mosquito that laid eggs was calculated for each line in each replicate, and the 

mean numbers compared using a Welch Two Sample t-test. 

3.3.1.5 Length of the first gonotrophic cycle (time from blood-meal to 

oviposition) 

The time taken post-blood meal for mosquitoes to lay eggs was measured 

during the selection process (generations 8 to 10), and therefore there are no 

within-generation replicates, and all mosquitoes were given infectious blood 

meals. The day of oviposition was recorded for the two mosquito lines (GU-REF 

and GU-CON) in generations 8, 9 and 10. The original approach was to monitor 

oviposition over 2 days (as in generation 8). As GU-CON started to take longer to 

lay eggs after the blood meal during the selection process, the monitoring of 
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oviposition was extended to 4 days in generation 9 and 7 days in generation 10. 

The proportion of mosquitoes laying eggs on each day post blood meal was 

compared for each generation between GU-REF and GU-CON using a chi-

squared test, assuming no difference between the two lines. The median day of 

oviposition was compared using Mann-Whitney U tests.  

3.3.2 Analysis of rate of blood meal digestion 

Based on the early oviposition in GU-REF, we hypothesized that the selection 

experiment had favoured mosquitoes with faster blood-meal digestion in this line. 

Faster digestion of the blood-meal may confer refractoriness, because ookinetes 

may not escape the midgut before protease levels become lethal. Earlier stages of 

parasite development are known to be more susceptible to protease damage 

(Gass, 1979). 

3.3.2.1 Dissection of midgut after blood meal and sample preparation 

Female mosquitoes seven days post emergence (GU-REF7 and GU-REF9, 

GU-CON7 and GU-CON9), were allowed to feed on uninfected blood at 40% 

hematocrit through a membrane feeder. Every 6h (0h – 54h), five mosquitoes from 

each group were dissected and the midgut containing the blood meal was assayed 

for total protein content using the Bicinchonic acid protein assay (Sigma). 

3.3.2.2 Bicinchoninic acid protein assay (BCA) protein assay 

To measure the speed of blood meal digestion as one of the potential 

mosquito refractory mechanisms, we used the Bicinchonic acid protein assay, 

which measures the total concentration of protein in the mosquito midgut content 

post blood feeding, thus indirectly following the activity of midgut proteases. The 

assay has a wide working range (200–1,000 mg/mL of protein), and the outcome 

is determined by a colour change (green to purple) in proportion to protein 

concentration. 

Each mosquito midgut and its blood contents were homogenised in 40 μL 1x 

PBS and stored at -20C. After thawing, 280 μL of 1 x PBS was added and 50 μL 

of this solution was used for the assay. 200 μL of the BCA working solution was 
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mixed with 50 μL final homogenate solution, incubated in 96 well (flat bottom) plate 

for 30 min in 37C, and then measured in an ELISA plate reader at 560 nm 

wavelength. Bovine serum albumin (Sigma) solutions (range of concentration from 

100 to 700 μg/mL) were used to create a standard curve. Each standard curve 

concentration was prepared and measured in triplicate. The concentration of 

protein present in each sample was calculated from the regression equation of the 

standard curve. For each time point the mean and standard error were calculated 

from the five individual mosquito samples for each line. 

At each time point, protein levels were compared between GU-REF and GU-

CON using X2 tests. 

3.4 Results 

3.4.1 Body size 

The median sizes of the GU-REF10, GU-CON10, KEELE An. gambiae s.s. 

original colony are shown in Figure 3.1. Pairwise Kruskal Wallis tests revealed no 

significant difference between the winglengths in the three groups (GU-REF/GU-

CON p=0.3697, GU-REF/KEELE p=0.3357, GU-CON/KEELE p=0.41). 

 

Figure 3.1: Wing size in mm of mosquitoes from the GU-REF10, GU-CON10 and KEELE 
lines. Each box indicates the first and third quartiles, with the line representing the median (2nd 
quartile). The whiskers are the 95% confidence intervals, and circles represent outliers. n=50 for 
each mosquito line.  
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3.4.2 Survival 

Under the conditions of glucose-feeding only, GU-REF11 mosquitoes had 

significantly lower longevity when compared to GU-CON11 mosquitoes, living on 

average (median) 22 days compared to 29 days for GU-CON11 (Figure 3.2A, 

p=2e-16). When mosquitoes were allowed a single non-infectious blood meal on 

day 8, there was no significant difference in longevity (median lifespan: 29 days 

(GU-REF), 30 days (GU-CON, p=0.4586) (Figure 3.2B), and the longevity of the 

GU-REF line was restored to that of the GU-CON line. However, if the blood meal 

contained infectious gametocytes, the longevity of GU-REF was reduced to below 

that of the GU-CON line (Median lifespan: GU-REF: 27 days; GU-CON: 30 days; 

p=16.698e-06) (Figure 3.2C).  

A B C 

   

Figure 3.2. Survival of An. gambiae GU-REF10 and GU-CON10 mosquitoes. GU-REF10 
are shown as a dotted line and GU-CON10 as a solid line. A) Mosquitoes maintained on glucose 
alone; B) Mosquitoes maintained on glucose but with one non-infectious blood feed 8 days post-
emergence; C) Mosquitoes maintained on glucose but with one infectious blood feed on 8 days 
post-emergence. Each point represented on the graph was calculated as the predicted survival of 
all replicates with weighting of points depending on variation in the sample size within a replicate. 
The output was from the model of Survival, Cox Proportional Hazards model (N=600 for each 
condition).  

3.4.3 Proportion of mosquito that lay eggs after a bloodmeal 

The proportion of mosquitoes that laid eggs during generations 8-10 of the 

selection are shown in Figure 3.3. Comparisons of the numbers of egg-laying and 

non-egg laying mosquitoes between the GU-REF and GU-CON samples at each 

time point revealed that a significantly larger proportion of GU-REF mosquitoes 

laid eggs compared to the GU-CON control line in each of the three generations 

studied (x2 generation 8: p=0.016; generation 9: p=6.9E-13; generation 10: 

p=0.013).  
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Figure 3.3. The percentage of mosquitoes that laid eggs after an infectious feed. The 
total number of mosquitoes examined for oviposition was: generation 8: REF n=53, CON n=57; 
generation 9: REF n=79, CON n=75;  generation 10: REF n=50, CON n= 50.  

3.4.4 Number of eggs per oviposition in egg-laying females 

The number of eggs laid from three (infectious) blood meals is shown in Figure 

3.4. The mean number of eggs was the lowest in the GU-REF11 line 

(mean=40.09), with a small increase (mean=44.74) in the GU-CON11 line, and 

was highest in the unselected KEELE colony (mean=49.41). Pairwise t-tests 

revealed no significant difference between GU-REF11 and GU-CON11 (p=0.277), 

or between GU-CON11 and KEELE (p=0.2695). The mean number of eggs laid by 

egg-laying females of GU-REF was significantly lower than for the KEELE parent 

line (p=0.006893). 

 

Figure 3.4. Number of eggs per oviposition in mosquitoes laying at least one egg. Each 
box indicates the first and third quartiles, with the line representing the median (2nd quartile). The 
whiskers are the 95% confidence intervals, and circles represent outliers.Total sample size was 77 
(GU-REF11), 40 (GU-CON11), 81 (KEELE).  
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3.4.5 Time from bloodmeal to oviposition 

A 

 

B 

 

C 

 

Figure 3.5 Proportion of mosquitoes which laid eggs at different time point post-blood 
meal. A) Generation 8: n=37 (GU-REF), n= 24 (GU-CON). B) Generation 9: n=57 (GU-REF), n= 
11 (GU-CON). C) Generation 10: n=37 (GU-REF), n= 25 (GU-CON).  

In generation 8, the majority of mosquitoes in both GU-REF and GU-CON 

lines laid their eggs 3 days after the blood feed (Figure 3.5A) and there was no 

difference in the egg laying pattern between the GU-REF and GU-CON lines 

(median day of oviposition REF8 vs. CON8, p=0.3172). From generation 9 (Figure 

3.5B), a significant difference was observed in the adult female egg-laying pattern, 

such that a significantly higher proportion of GU-REF mosquitoes laid eggs on day 

3 compared to the GU-CON line (median day of oviposition REF9 vs. CON9, p= 

0.00398). A similar pattern was observed in generation 10 (Figure 3.5C), with GU-
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REF mosquitoes laying earlier than GU-CON (median day of oviposition) REF10 

vs. CON10 p= 0.00108). Rather than GU-REF mosquitoes laying earlier, the data 

suggest a delay in egg lay for GU-CON, relative to the parent Keele line, which 

usually lay eggs on day 3 post blood feed (data not shown). 

3.4.6 BCA protein assay time course experiments 

The results from the Bicinchonic acid protein assay for generation 7 (Figure 

3.6A) show an identical amount of protein in the midgut at the start of the 

experiment, followed by an apparently slower rate of protein breakdown, in the 

REF line compared to the CON line up to 18h post feed (p=0.027 at 12h, p=0.10 at 

t=18h). However, between 18 and 24 h post feed, the rate of protein digestion 

increased markedly in the REF line, such that at 24h the amount of protein in REF 

mosquitoes was lower than in the CON line, although this did not reach statistical 

significance (p=0.20). By the 9th generation of selection, at the time point 24h after 

the blood-meal, the GU-REF9 mosquitoes had (almost) significantly less protein in 

their midguts than the GU-CON9 (p=0.06), suggesting a more rapid increase in the 

rate of digestion around this time in the refractory line (Figure 3.6B). 

3.5 Discussion 

Previous research has suggested that refractory mosquitoes may have 

significantly reduced fitness, for example manifesting as reduced fecundity or 

survival (Voordouw et al, 2009). Of the five measures of fitness examined and 

reported in this chapter, two showed no difference in the REF line and the 

inbreeding control: neither body size, nor the number of eggs laid following a blood 

meal was significantly different between the GU-REF and GU-CON lines. The lack 

of difference in body size confirms that the selection for refractoriness did not 

result in smaller mosquitoes.  

The GU-REF line did not show fitness costs, compared to the inbreeding 

control GU-CON, as measured by the proportion of female mosquitoes which laid 

eggs after a blood-meal. Indeed, the GU-REF line has apparently significantly 

increased fitness as measured by this parameter of fecundity. Oviposition time 

was also significantly earlier in the GU-REF line compared to the GU-CON line 

(p=0.0073). However rather than being a lowering of this parameter in the REF  
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A  

 

B  

 

Figure 3.6. Blood meal digestion in the GU-REF and GU-CON lines at generations 7 and 
9 of selection. Protein levels per midgut were measured using the Bicinchonic acid protein assay. 
Each point on the graph represents the mean of five mosquitoes. The error bars show the standard 
error of mean. The arrow indicates the 24h time point. A) Mosquitoes from generation 7 (* indicates 
mosquito colony after microsporidia free selection) B) Mosquitoes from generation 9.  
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line, it appears than the GU-CON line has delayed oviposition, because the 

REF line is more similar to the parent KEELE line. This is most likely to be an 

effect of inbreeding in the GU-CON line. 

One potential explanation for an increased speed of oviposition could be that 

mosquitoes have an increased rate of digestion, releasing resources for egg 

development earlier. This hypothesis was tested: speed of digestion (to 24h) was 

marginally faster (p=0.06) in GU-REF compare to GU-CON lines in generation 9 of 

selection correlating with earlier oviposition, although this did not quite reach 

statistical significance.  

The survival of mosquitoes presents a more complex picture. Under conditions 

where mosquitoes are maintained on sugar alone, the GU-REF line has a 

significantly lower survival than the GU-CON mosquitoes, suggesting a fitness 

cost to refractoriness in the absence of challenge. However, this fitness cost was 

removed if mosquitoes were allowed a single blood meal, unless that blood meal 

contained infectious gametocytes. It appears that the mosquito refractory 

mechanism has some cost to mosquitoes under infection challenge, reducing their 

lifespan, albeit by only 3 days. However, this may be compensated by a higher 

proportion of refractory mosquitoes that lay eggs after the first blood meal.  

3.6 Conclusions 

The overall fitness of GU-REF line compared to the GU-CON line does not 

appear to have been significantly negatively affected by the selection process for 

refractoriness.  
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4 Characterisation of refractoriness in GU-REF An. gambiae s.s. 

mosquitoes 

4.1 Aims and objectives 

This chapter describes in more detail the effector mechanisms of parasite 

killing in the mosquito, described briefly in section 1.4.4, and the non-self-

recognition and signalling pathways that activate these effectors. The enrichment 

of candidate genes or alleles associated with refractoriness was investigated in 

GU-REF An. gambiae s.s. mosquitoes.  

4.2 Introduction 

4.2.1 Recognition of non-self 

To raise an immune response requires the recognition of an invading 

pathogen as foreign. Pattern recognition receptors (PRRs) interact with pathogen-

associated molecular patterns (PAMPs, also known as microbe-associated 

molecular patterns or MAMPs) that are present in microbes but are not found in 

insects, for example, bacterial peptidoglycans, fungal beta-1, and -3 glucans. 

Additionally, some PRR-like proteins, such as the Leucine-rich repeat (LRR) 

protein family regulate immune responses by a direct interaction with host proteins 

other than classical PAMPs. There is a great diversity of PRRs in different insect 

taxa, and their activity also varies, and includes direct stimulation of immune 

effectors like melanisation, activation of intracellular signalling pathways to 

modulate antimicrobial gene expression, and direct interaction with other host 

proteins to regulate immune responses. 

4.2.1.1 Peptidoglycan recognition proteins (PGRPs) 

PGRPs are the best-known insect PRRs; they recognise peptidoglycan, which 

is mainly found in the Gram-positive bacteria cell wall, and are characterised by a 

peptidoglycan-recognition domain of ~165 amino acids (Kim et al, 2003). PGRPs 

can be classified into two groups based on the length of their gene products. Short 

PGRPs are usually extracellular proteins, and are present in the haemolymph, 
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cuticle, fat body, epidermal cells, gut, and, to a lesser extent, haemocytes, 

whereas long PGRP are either intracellular or membrane-spanning proteins and 

are mainly expressed in haemocytes (Christophides et al, 2002). Activated PGRPs 

have multiple downstream effects including activation of the prophenoloxidase 

(PPO) cascade, the Toll pathway (especially for Gram-positive bacteria), the Imd 

pathway (Gram-negative bacteria) and stimulation of phagocytosis (Gram-negative 

bacteria).  

Seven PGRPs have been identified in the Anopheles genome: S1-S3 encode 

short AgPGRP, and the remaining four genes are differentially spliced to generate 

six long AgPGRPs: LA1, LA2, LB, LC1, LC2 and LC3 (Waterhouse et al, 2007). 

Expression of PGRPs has been shown to be upregulated in An. gambiae on 

exposure to various bacteria, to bacterial peptidoglycan, and to P. berghei 

challenge (Dimopoulos et al, 2002; Kang et al, 1998). PGRPLB is transcriptionally 

upregulated in Plasmodium-infected mosquitoes and remains high throughout 

infection (Christophides et al, 2004). 

4.2.1.2 Gram-negative binding proteins (GNBPs) 

GNBPs share a conserved β-1,3 -glucan-binding domain, and are usually 

upregulated following bacteria challenge. The An. gambiae genome encodes six 

GNBPs, AgGNBPA1, A2GNBP, and AgGNBPB1-B4 (Waterhouse et al, 2007). All 

have an N-terminal signal sequence, three (AgGNBPB1, B2, and B4) have 

glycosylphosphatidylinositol (GPI)-anchor sequences, and three (AgGNBPA1, B1, 

and B3) have potential N-linked glycosylation sites. The genes are differentially 

expressed in the mosquito body and are differentially upregulated in response to 

bacterial or parasite infection (Warr et al, 2008). AgGNBPB1 was found to be 

induced in the midgut and salivary glands upon P. falciparum infection, but gene 

silencing of GNBPA2 had the strongest impact on P. falciparum infection. 

GNBPB3 and GNBPB4 were only upregulated after challenge with P. berghei, and 

gene silencing affected P. berghei infection (Warr et al, 2008). AgGNBPs regulate 

the expression of a number of immune genes including AMPs, PGRPLC, LRIM1, 

CLIPB3 and CLIPB3, suggesting signalling through the Imd and Toll pathways 
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4.2.1.3 C-type lectins (CTLs) 

The CTL family is made up of membrane-bound and secreted proteins, which 

recognise sugar residues via interaction with a characteristic carbohydrate 

recognition domain (CRD). CTLs are involved in cell adhesion, cell-cell interaction, 

glycoprotein turnover, and pathogen recognition leading to innate immune 

responses (Schnitger et al, 2009). 23 CTL genes have been found in the An. 

gambiae genome, separated into four groups: mannose binding (CTLMA), 

galactose binding (CTLGA), selectins (CTLSE), and other CTLs (Schnitger et al, 

2009). Some CTLs share homology regions with scavenger receptors (section 

4.2.1.10). Compared to Drosophila, Anopheles have an expanded CTLMA group 

(Christophides et al, 2004). 

CTL4 and CTLMA2 are found in haemolymph of An. gambiae as a disulfide- 

linked heterodimeric complex (Schnitger et al, 2009). The two genes were 

upregulated 24 h after P. berghei infection, and gene silencing experiments 

suggested that they act to protect ookinetes from destruction (Osta et al, 2004). 

They have also been shown to protect the mosquito from infection with Gram-

negative bacteria (Schnitger et al, 2009). CTL4, and an additional CTLGA3, were 

shown to be upregulated on infection with P. falciparum (Dong et al, 2006a).   

4.2.1.4 Thioester containing proteins (TEPs) 

The Thioester- containing proteins (TEPs) are a wide family of proteins in 

vertebrates and invertebrates, characterised by a specific intra-chain thioester 

bond. TEPs are classified into two subfamilies: the alpha-2-macroglobulin (A2M) 

subfamily and the C3 subfamily. In vertebrates, TEPs form part of complement 

pathway – factors C3, C4 and C5 are all C3-type TEPs. During complement 

activation, the thioester bond is exposed and forms a covalent (ester or amide) 

bond with a target surface such as a pathogen, marking it for phagocytosis or lysis 

by the membrane attack complex.  

In insects, TEP members belong to the A2M subfamily, but are functionally 

similar to the C3 family (Nonaka, 2011). In Anopheles TEPs promote phagocytosis 

of Gram-negative bacteria (Levashina et al, 2001), and have also been shown to 
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bind to the surface of P. berghei ookinetes, promoting their melanisation and death 

(Blandin et al, 2004).  

The Anopheles genome encodes 15 TEPs, several of which play a role in 

vectorial capacity. TEP1, 3 and 4 have been shown to be upregulated after 

bacterial and parasite infection (both P. berghei and P. falciparum) (Christophides 

et al, 2004). TEP1 is produced by haemocytes, and circulates in the mosquito 

haemolymph as a full-length protein and a processed form, TEP1cut, which is 

stabilised by binding with two LRR proteins LRIM1 and APL1C. TEP1 binding to 

the ookinete stage marks it for destruction by the LRIM1/APL1C complex with 

additional components such as TEP1-activated proteases (Clayton et al, 

2014).The mechanisms up- and down-stream of TEP1 are still unknown. It has 

been suggested that TEP1 is responsible for most of the parasite killing in 

mosquitoes, but other mechanisms also play important role.  

Comparison of RNAi between P. falciparum and P. berghei revealed important 

differences in mosquito immunity against these two species of malaria parasite 

(Dong et al, 2006a): TEP1, apolipophorin II/I, WASP, lipoprotein homolog APOD 

or IRID seem to affect the development of both malaria parasite species, whereas 

LRIM1, CTL4, CTLMA2 and SRPN2 affect only P. berghei (Blandin et al, 2008). 

4.2.1.5 Leucine-rich repeat containing proteins (LRR) 

Leucine-rich repeat proteins (LRRs) are secreted, membrane-bound or 

cytoplasmic proteins with diverse functions, and are often involved in immune 

responses in plants and animals. In insects, the LRR domain-containing 

superfamily, known as leucine-rich repeat immune protein (LRIMs), are known to 

be involved in anti-pathogen defence. The An. gambiae genome was found to 

have 24 LRIM-like genes (Waterhouse et al, 2010) with similar characteristics of a 

signal peptide, one or more LRR, specific patterns of cysteine residues, and 

coiled-coil domains. Mosquito LRIMs were grouped into two subfamilies: Long 

LRIMs with 10 or more LRRs (e.g. AgLRIM1, AgAPL1C), and Short LRIMs with 6-

7 LRRs (Waterhouse et al, 2010). LRIM1 was found to be highly upregulated in P. 

berghei infections, and silencing of the gene increased oocyst numbers 

(Dimopoulos et al, 2002; Osta et al, 2004).  
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A second member of the LRR family involved in parasite susceptibility was 

identified from a population genetic analysis of wild An. gambiae mosquitoes. 

Variation in susceptibility to P. falciparum infection was linked to a single ~ 10 Mb 

region in the mosquito genome on chromosome 2L. This was named the 

Plasmodium-Resistance Island (PRI) (Niare et al, 2002; Riehle et al, 2007; Riehle 

et al, 2006b). Within this QTL, an 18kb locus containing resistance candidate 

genes was identified and named APL1 (Anopheles Plasmodium-responsive 

Leucine-rich repeat protein 1) (Figure 4.1). The region contains three separately 

transcribed APL1 genes, denoted APL1A, APL1B and APL1C, as well as genes 

encoding two LRR proteins (LRIM11 and LRIM3) which are not members of the 

APL1 family (Riehle et al, 2008b). The sequence similarity of the APL1 genes 

suggests that they evolved by gene duplication and functional diversification, 

making them paralogues (Riehle et al, 2008a). 

 

Figure 4.1 The APL1 locus from Anopheles gambiae str. PEST chromosome 2L 
(41,256K-41,278K). The blue box with white arrows indicates the region on chromosome 2L. 
Green boxes indicate APL1A, B, C and two more unnamed genes in the region, with the direction 
of transcription indicated by the while arrows (Image taken from Vectorbase 
http://www.vectorbase.org/ accessed 1.2017). 

 

4.2.1.5.1 Polymorphism of APL1 gene in Anopheles gambiae s.s. 

APL1 proteins have the same general structure of a signal peptide which is 

usually followed by a low complexity PANGGL (Pro-Ala-Asn-Gly-Gly-Leu) region, 

a Leucine-rich repeat region of around 300 amino acids, and then a CC (coiled-

coil) domain containing HLH (helix-loop-helix) motif (Riehle et al, 2008a). The 

three APL1 paralogues in the An. gambiae genome share 50% identity at the 

amino acid level, with variation occurring in the N and C terminal sequence 

through the presence or absence of the PANGGL domain, and deletions upstream 

of the LRR region (Fig. 4.2). The APL1 paralogues also exhibit diversity in field 

populations and laboratory colonies of An. gambiae, especially for APL1A and 

APL1C (Riehle et al, 2008a).  

http://www.vectorbase.org/
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Figure 4.2 Structure of APL1 genes in An. gambiae (NGOUSSO) strain. The predicted 
peptide domains are shown coded by colour: black – signal sequence, yellow – PANGGL, green – 
LRR, orange – coiled-coil domain. Adapted from (Holm et al, 2012). Three haplotypes were found 
in the Ngousso strain.  

 

4.2.1.5.2 Functional significance of APL1 paralogues and alleles 

RNAi knockdown of APL1C has been shown to increase mosquito 

susceptibility to P. berghei and P. yoelii (Mitri et al, 2009a; Riehle et al, 2006a; 

Riehle et al, 2008a). APL1C transcript and protein abundance are known to be 

regulated through the Toll /Rel /Cactus pathway (section 4.2.2.1), and silencing of 

APL1C abolishes the Rel-mediated protection for P. berghei. APL1C appears to 

mediate killing of P. berghei through the formation of a complex with the LRIM1 

(section 4.2.1.5), stabilising TEP1 (section 4.2.1.4) (Fraiture et al, 2009; Osta et al, 

2004; Povelones et al, 2009). 

Similar experiments with APL1A revealed its relevance for susceptibility to P. 

falciparum (Mitri et al, 2009b). APL1A transcription is regulated by the Imd /Rel2 

pathway (section 4.2.2.2) (Mitri et al, 2009a). APL1 allelic diversity was found to 

correlate with susceptibility of An. gambiae to P. falciparum infection, with APL1A2 

having the only significant effect (Holm et al, 2012; Mitri et al, 2009a). The 

presence of the APL1A2 allele was sufficient to explain the protective effect 

against P. falciparum infection, but it was not possible to determine whether 

homozygotes of this allele had any further effect over heterozygotes, because of 

the low frequency of APL1A2 homozygotes (Holm et al, 2012). The mechanism by 

which APL1A2 contributes to mosquito refractoriness to P. falciparum is not yet 

understood: APL1A2 and APL1A3 lack the coiled-coil domain, and were also 

retained in the cytoplasm of haemocyte-like cells, whereas APL1A1 was secreted 

from the cell, but it is not clear if secretion of APL1A is linked to its effect on P. 

falciparum (Holm et al, 2012). 
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However similar APL gene silencing studies using a different mosquito line 

(An. gambiae KEELE) and P. falciparum strain NF54 had different outcomes 

depending on infection intensity: silencing of APL1B and APL1C genes increased 

oocyst numbers at medium or low infection intensities only, and silencing of 

APL1A had no effect on infection (Garver et al, 2012). The authors suggested that 

the differences could be due to different APL sequences in the KEELE and 

NGOUSSO An. gambiae mosquito strains, or to the lower infection intensity of the 

NGOUSSO strain reported by Mitri (Mitri et al, 2009b). 

4.2.1.6 Galactoside binding lectins (GALEs) 

GALEs are thiol-dependent, -galactoside-binding lectins. In Drosophila 

GALEs have been shown to play a role in development and immunity (Tanji et al, 

2006). The An. gambiae genome encodes eight GALEs, some of which possess a 

carbohydrate recognition domain (CRD) (Dimopoulos et al, 1998). GALE8 was 

shown to be expressed in the larval stage, and in the midgut of adult mosquitoes, 

after bacterial or malaria challenge (P. berghei), although the up-regulation was 

“transient and marginal” (Dimopoulos et al, 1997; Christophides et al, 2002). 

4.2.1.7 Fibrinogen-like domain immunolectins (FBNs) 

FBNs, also known as fibrinogen-related proteins (FREPs), are PRRs linked to 

recognition of microorganisms and to agglutination. The An. gambiae genome 

encodes up to 58 FBNs, possibly reflecting a need to control the midgut microbial 

flora following haematophagy. Three members of the FBN family, FBN9, FBN23 

and FBN3, have been shown to be upregulated by Plasmodium infection, and 

gene silencing experiments suggested their involvement in the anti- Plasmodium 

defence (Dong et al, 2006a; Christophides et al, 2004). FBN39 was found to be 

important only in regulating the mosquito’s susceptibility to P. falciparum, whereas 

FBN9 and FBN8 were relevant both to P. berghei and P. falciparum infection 

outcomes (Dimopoulos et al, 2000; Dimopoulos et al, 2002; Dong et al, 2006a; 

Dong & Dimopoulos, 2009). 
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4.2.1.8 Immunoglobulin superfamily genes 

Members of the immunoglobulin superfamily mediate pathogen recognition in 

many organisms. The An. gambiae genome has 138 proteins with at least one 

immunoglobulin domain, and 85 of these were shown to be upregulated in 

response to bacteria or to Plasmodium infection (Garver et al, 2008). Six of these 

genes, denoted Infection Responsive with Immunoglobulin Domain (IRID) genes, 

were selected on the basis of upregulation to multiple pathogens and the presence 

of multiple Ig domains.  

IRID 1 (the orthologue of Drosophila kekkon1) and IRID2 (ortholog of the D-

Titin allele sallimus) were significantly upregulated during midgut invasion by P. 

falciparum, whereas IRID6 (no identified Drosophila orthologue) was strongly 

downregulated in the gut during P. berghei ookinete invasion. Gene-silencing 

assays resulted in more than two-fold higher oocyst numbers for IRID4 with P. 

falciparum and IRID6 for both P. falciparum and P. berghei. Gene silencing 

experiments also highlighted a role for IRID3, IRID5 and IRID6 in limiting bacterial 

infection (Garver et al, 2008). 

The An. gambiae Down syndrome cell adhesion molecule (AgDscam) is a 

hypervariable PRR; massive alternative splicing has the potential to generate 

31,000 alternative splice forms that may mediate different pathogen interactions 

and specificities. AgDscam has been shown to protect mosquitoes from both P. 

berghei and P. falciparum infection (Dong et al, 2012; Dong et al, 2006b). The Imd 

pathway (section 4.2.2.2) regulates alternative splicing (and thus species-

specificity) (Dong et al, 2012). 

4.2.1.9 Nimrod proteins 

In Drosophila, Nimrod proteins are known to bind bacteria and stimulate 

phagocytosis by haemocytes. Homologues exist in An. gambiae, and are similarly 

preferentially expressed in haemocytes, with transcriptional upregulation in 

response to bacterial infection (Estevez-Lao & Hillyer, 2014). Knockdown of the 

eater homologue resulted in decreased nitric oxide synthase (NOS) mRNA. 

Although the influence on Plasmodium has not been assessed, an effect on NOS 

levels (section 4.2.3.4) would be expected to influence parasite infection. 
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4.2.1.10 Scavenger receptors (SCRs) 

SCRs are surface glycoproteins which bind to modified LDLs and polyanionic 

ligands. Members of this family play a role in the recognition of bacteria, and their 

subsequent phagocytosis (Gough & Gordon, 2000). The An. gambiae genome has 

three structurally different classes of SCR: SCRA (playing a role in mosquito 

metamorphosis), SCRB (SCRB9 and SCRBQ1-4 orthologues play role in 

phagocytosis and defence reaction in Drosophila) and SCRC (Christophides et al, 

2004). There is no evidence to date that SCRs influence Plasmodium infection in 

mosquitoes. 

4.2.2 Signalling pathways 

Pathogen recognition activates signal transduction pathways that regulate the 

expression of AMPS and other effector mechanisms. Three immune signalling 

pathways that have been well studied in insects are known as the Toll/ Rel, the 

Imd/ Rel 2 and the Jak/ Stat pathways (Figure 4.3).  

4.2.2.1 Toll/ Rel 1 pathway 

This pathway involves the activation of the extracellular cytokine-like molecule 

Spaetzle (six homologues in Anopheles) by the pathogen recognition receptor, 

and its subsequent binding to the cellular receptor Toll (Figure 4.3). Downstream 

intracellular signalling, involving, for example, recruitment of the death-domain 

proteins Tube, Pelle or Myd88, results in the nuclear translocation of NF-B 

transcription factors such as Rel1. These activate the transcription of antimicrobial 

peptides and other immune effector genes. The Toll pathway is negatively 

regulated in the cytoplasm by Cactus, an ankyrin-repeat protein that inhibits the 

nuclear translocation of NF-B/Rel proteins. The Toll pathway has been shown to 

be important against Gram-positive bacteria, viruses, fungi, and Plasmodium 

berghei, reviewed in (Clayton et al, 2014; Hillyer, 2016). 



 

59 

 

 

Figure 4.3 Immune signalling pathways in insects. Figure taken with permission from 
(Hillyer, 2016).  

 

4.2.2.2 Imd /Rel 2 pathway 

The Imd/Rel2 pathway is activated by binding of the pathogen recognition 

molecule to the extracellular receptor PGPR-LC (section 4.2.1.1 above), which 

induces intracellular signalling through the death-domain proteins Imd, Fadd (Fas-

associated death domain), Dredd (A. gambiae homologue CASPL1) (and others) 

(Figure 4.3). In this case the NF-B transcription factors such as Rel 2 are 

translocated to the nucleus to activate transcription of antimicrobial peptides and 

other immune effector genes. The Imd pathway is negatively regulated in the 

cytoplasm by Caspar binding to Rel2. Other antagonists of Rel 2 include the 

transcription factor Caudal (Cad); silencing of Cad has been shown to decrease P. 

falciparum development in the gut (Clayton et al, 2014). The Imd/Rel2 pathway is 

important in defence against Gram-negative bacteria, viruses, and P. falciparum, 

reviewed in (Clayton et al, 2014; Hillyer, 2016). 
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4.2.2.3 JAK /STAT pathway 

The Jak/Stat pathway is activated, by the binding of the extracellular cytokine 

Unpaired (Upd) to the cellular receptor Domeless (Dome). The subsequent 

phosphorylation of Dome by the JAK tyrosine kinase Hopscotch (Hop) recruits 

Stat, which dimerises and moves to the nucleus (Figure 4.3). Stat activates 

transcription of antimicrobial genes such as nitric oxide synthase and TEP1. The 

Jak/Stat pathway is important in defence against bacteria, viruses and 

Plasmodium, reviewed in (Clayton et al, 2014; Hillyer, 2016). 

There are two STAT genes in An. gambiae (STAT1 /AgSTAT-B and STAT2 

/AgSTAT-A), both of which are involved in anti-Plasmodium activity. AgSTAT-A 

activates the transcription of NO synthase (NOS) (section 4.2.3.4), which reduces 

parasite levels: silencing of AgSTAT-A increased mature oocyst development in 

both P. berghei and P. falciparum (Gupta et al, 2009), but seems to control earlier 

stages of infection in P. vivax in the south American vector An. aquasalis (Bahia et 

al, 2011). 

The JAK/STAT pathway is negatively regulated by proteins such as the 

Suppressor of Cytokine Signalling (SOCS) and the Protein Inhibitor of Activated 

STAT (PIAS). 

4.2.3 Effector mechanisms of parasite killing 

4.2.3.1 Melanisation 

Although melanisation as an anti-malarial response is rarely observed in 

mosquitoes in the field (less than 1% of cases) (Schwartz, 2002), it is probably the 

most studied anti-parasitic mechanism.  

Melanisation is an acute reaction responsible for wound healing and pathogen 

killing in insects. In many invertebrates including mosquitoes, melanisation is a 

humoral but localized acute response. The reaction starts with conversion of 

tyrosine to quinones and reactive oxygen intermediates leading to the inactivation 

of a microorganism, crosslinking it with nearby proteins, and the formation of 

eumelanin leading to melanotic capsule formation, reviewed in (Hillyer, 2016) 

(Figure 4.4). 
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Figure 4.4 Insect melanisation pathway. PRR, pattern recognition receptor; βGRP, β-1,3 
glucan recognition protein; CTL, C-type lectin; GNBP, Gram (−) binding protein; PPAE, 
phenoloxidase activating enzyme; PAH, phenylalanine hydroxylase; PO, phenoloxidase; DDC, 
dopa decarboxylase; DCE, dopachrome conversion enzyme. Figure taken from Hillyer (2016) with 
permission.  

Tyrosine is oxidated via two pathways, the dopaquinone and dopamine 

pathways, both using prophenoloxidase (PPO). Phenoloxidases (POs) are 

secreted into the haemolymph from haemocytes as PPOs (zymogens). PPOs are 

then activated by phenoloxidase activating enzymes (PPAEs). As the PPOs lack 

secretory signal peptides, it is suggested that their release from cells is due to 
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granule exocytosis. In mosquitoes, nine genes encoding PPOs have been found. 

Moreover PPO-2, -3 and -9 are induced upon blood feeding (Christophides et al, 

2004). 

In Drosophila the inhibition of the PPO-activating serine proteases (PPAEs) by 

serpin 27A has a regulatory role in melanisation. This reaction is activated by the 

Toll pathway, reacting to bacterial or fungal infection (Ligoxygakis et al, 2002). 

Fourteen serpin genes have been identified in Anopheles, 10 of which are 

inhibitory: 3 of the inhibitory genes are orthologous to Drosophila serpin 27A 

(Gulley et al, 2013).Serpin10 codes for four alternatively spliced inhibitory forms; 

its expression is localized to midgut epithelial cells, pericardial cells and 

haemocytes. On top of that, two forms of serpin10 are induced in female 

mosquitoes in response to midgut invasion by Plasmodium ookinetes 

(Christophides et al, 2004). Serpins are discussed further in section 4.2.3.6. 

Plasmodium melanisation in mosquitoes has been examined in many parasite/ 

vector combinations. Because melanisation depends on Plasmodium species and 

strain, it is suggested that it is specific recognition based mechanism (Molina-Cruz 

et al, 2012).  

The An. gambiae refractory strain L3-5 was generated through selective 

breeding for melanisation of P. cynomolgi (simian malaria) (Collins et al, 1986). 

Mosquitoes were found to melanise ookinetes after passage through mosquito 

midgut (16-24h post infective blood meal) (Paskewitz et al, 1988). In addition to 

melanisation of P. cynomolgi, against which it was selected, melanisation also 

occurs with the avian malaria parasite P. gallinaceum (Collins et al, 1986), the 

human malaria parasites P. falciparum, P. ovale, and P. vivax, simian malarias P. 

gonderi, P. inui, and P. knowlesi, and the rodent species P. berghei (Blandin et al, 

2004). Three mosquito quantitative trait loci have been characterized as 

responsible for 79% of the melanisation based refractory trait: Plasmodium 

encapsulation loci - Pen1, Pen2 and Pen3, where the Pen1 locus has the biggest 

contribution (Collins, 1997; Zheng et al, 1997).  

An An. dirus refractory line was selected over 19 generations, to melanise P. 

yoelii, with both ookinetes and oocysts appearing to be melanised (Somboon et al, 

1999). However this line did not melanise P. falciparum and P. vivax, highlighting 
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the specificity of refractoriness to certain combinations of parasite and vector 

(Somboon et al, 1999). 

Several pathways have been studied in connection with melanisation and its 

effect on parasite infection in the mosquito. Silencing of thioester-containing 

protein 1 (TEP1, section 4.2.1.4) and leucine-rich repeat domain-containing 

protein (LRIM1, section 4.2.1.5) resulted in increased levels of P. berghei oocysts, 

and silencing of C-type lectins (CTLs, section 4.2.1.7) resulted in increased 

parasite melanisation (Schlegelmilch & Vlachou, 2013; Volz et al, 2006). However 

with the parasite/ vector combination P. falciparum/ An. gambiae, silencing of CTL-

4, CTLMA2 and LRIM1 had no effect on oocyst numbers and melanisation, 

highlighting differences between human Plasmodium and its rodent model 

organism P. berghei (Clayton et al, 2014).  

Molecular and microarray mRNA expression analysis revealed increased 

steady-state levels of reactive oxygen species, which favour melanisation of 

parasites, as well as Sephadex beads (Kumar, 2003; Schwartz, 2002). Moreover, 

the mechanism of refractoriness to P. berghei have been linked with Thioester 

containing protein (TEP1) (Blandin et al, 2004). 

4.2.3.2 Lytic mechanism 

Lysis of ookinetes of malaria parasites has been described in the combination 

of An. gambiae and the avian malaria P. gallinaceum. An. gambiae mosquitoes 

were selected for refractoriness without melanotic encapsulation. The ookinetes 

were found to be killed within midgut epithelial cells within 27 hours of midgut 

invasion. Electron microscopy showed that ookinete death occurred while the 

parasite lay free in the midgut epithelial cell cytosol, surrounded by an organelle-

free zone that consisted of finely fibrillar material (Vernick et al, 1995). The 

mechanism of ookinete lysis is not known, but TEP1 involvement has been 

suggested (Fraiture et al, 2009). 

4.2.3.3 Phagocytosis by haemocytes 

Haemocytes represent a cellular component of Anopheles innate defence 

mechanism against Plasmodium infection, reviewed in (Hillyer & Strand, 2014). 
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These cells mostly circulate in haemolymph or are located in the fat body. Several 

classes of haemocytes have been discovered in Anopheles mosquitoes. 

Oenocytoids are involved in melanisation and phagocytosis. In Ae. aegypti 

sporozoites of P. gallinaceum are phagocytosed by circulating oenocytes. In 

contrast, in An. albimanus oenocytoids are embedded in the fat body and are 

released just after infection. Other circulating haemocytes such as prohemocytes, 

plasmatocytes and granular cells are believed to play a role in An. albimanus in 

melanisation, cellular encapsulation and phagocytosis (Hernandez et al, 1999).  

4.2.3.4 Other defence mechanisms: nitric oxide 

In An. stephensi midguts, Plasmodium ookinetes can be destroyed by nitric 

oxide (NO) and nitrite/ nitrate produced by midgut epithelial cells (Christophides et 

al, 2004). Elevated expression of NO synthase (NOS) was observed to be present 

in the midgut and carcass soon after invasion of the midgut by P. berghei. This 

phase of increased NOS activity was however likely primed by rapid bacterial 

growth after the blood meal. The second phase of NOS expression is correlated to 

sporozoite release from oocysts. Moreover dietary provision of NOS inhibitors 

increased parasite numbers in the mosquito, confirming the importance of NOS in 

anti-Plasmodium immunity (Luckhart, 1998).  

Production of NO in the midgut columnar epithelia cells, triggering cascades 

leading to mosquito cell death, is the core of the “time bomb” theory. The initiation 

of the whole process is ookinete invasion of these cells (Han, 2000). 

4.2.3.5 Humoral effectors and immune killing mechanisms: antimicrobial 

peptides (AMPs) 

Antimicrobial peptides (AMP) are small (generally 12-50 amino acids), 

amphipathic molecules that are able to partition into the membrane lipid bilayer, 

and have a range of antimicrobial activities. Although first discovered in insects 

(Boman et al, 1974), they exist across a range of vertebrate and invertebrate 

species. 

In insects, AMPs are produced mainly in the fat body, from where are released 

into haemolymph and distributed throughout the insect body (Clements, 2012). 
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Other tissues, such as epithelia can also produce AMPs. AMPs are grouped into 

three classes: linear with amphipathic and hydrophobic -helices, peptides with 

cysteine disulfide bonds and proteins enriched in proline and/or glycine residues. 

Four families of AMPs have been identified in An. gambiae: four defensins (DEF1-

4), four cecropins (CEC1-4), one attacin and one gambicin (GAM1) (Christophides 

et al, 2004).  

Defensins are significantly upregulated following parasite infection in An. 

gambiae and Ae. aegypti (Lowenberger et al, 1999; Richman et al, 1997; 

Shahabuddin et al, 1998). Whereas over-expression in the fat body of Ae. aegypti 

was effective in decreasing infection of P. gallinaceum (Shin et al, 2003), 

knockdown of Defensin in An. gambiae did not affect infection levels with P. 

berghei (Blandin, 2002).  

Cecropins were found to be up regulated upon Plasmodium infection in 

mosquitoes from the second day after infection, and inoculation of cecropin into 

An. gambiae after an infectious blood meal produced an increase in oocyst 

numbers relative to controls (Gwadz et al, 1989), but the high level of AMP used 

was toxic to the mosquito. Overexpression of CecA was found to block 

development of P. berghei by up to 83% in An. gambiae (Kim et al, 2004).  

Gambicins are class of AMPs identified so far only in Anopheles and Aedes 

mosquitoes. GAM1 is expressed in the mosquito midgut and fat body after 

challenge with Gram-positive and Gram-negative bacteria, and P. berghei 

ookinetes (Christophides et al, 2004). Knock down of gambicin in An. gambiae 

increased levels of P. berghei oocyst infection, but had no effect on P. falciparum 

(Dong et al, 2006a).  

A combination of AMPs may be required to completely block parasite 

transmission: transgenic Ae. aegypti co-expressing both Defensin A and Cecropin 

A in the fat body were found to block the development of P. gallinaceum 

completely (Kokoza et al, 2010). 

4.2.3.6 CLIP domain serine proteases/ serine protease inhibitors (SERPINS) 

In several invertebrates, CLIP domain serine proteases have been linked to 

activation of the PPO cascade, reaction to LPS or glucans, and, in Drosophila, to 
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the activation of the Toll pathway upon fungal infection. Serpins are inhibitors of 

serine proteases, and are known to regulate the PPO and Toll pathways, leading 

to regulation of melanisation reaction (discussed in melanisation section 4.2.3.1) 

(Christophides et al, 2004). In Anopheles, four groups of CLIPs (CLIPA-D), 

comprising 41 genes, have been identified in the genome. The CLIPB group is 

responsible for activation of PPO cascade. After Plasmodium infection, CLIPB14 

stays upregulated, whereas CLIPB15 peaks only during ookinete invasion of 

midgut (Volz et al, 2005). In contrast another CLIP, CLIPA6 is induced by bacterial 

infection, but suppressed by Plasmodium. 

4.3 Selection of candidate genes investigated in the GU-REF line 

The process of selection for refractoriness in the GU-REF line was expected to 

be the result of enrichment of alleles conferring refractoriness that already existed 

in the KEELE colony. As an initial screen, candidate genes were selected and their 

polymorphism, and allele frequencies were investigated in the KEELE and GU-

REF lines. The candidate gene selected was APL1A, based on the research 

showing a strong association with infection in the field and laboratory studies 

described above.  

4.4 Materials and methods 

4.4.1 DNA extraction 

DNA was extracted from individual mosquitoes from the KEELE line (GU-CON 

and GU-REF) of An. gambiae s.s. using the DNeasy spin column protocol 

(Qiagen). Adult mosquitoes were frozen at -20C overnight and then processed to 

extract DNA according to the manufacturer's protocol. Each mosquito generated 

200 μL of genomic DNA (Ranford-Cartwright et al, 2016). 

4.4.2 PCR 

To determine which alleles of the APL1A gene (1,3 or 2) were present in GU-

REF and GU-CON, DNA fragments were amplified using published protocols and 

primer sets (Holm et al, 2012) (Table 4.1). 
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Table 4.1 Primers for amplification of diagnostic fragments from APL1A1,3 and APL1A2 
alleles. The number in brackets after the primer sequence is the length in base pairs of the 
primer.Primers are taken from Holm et al, 2012. F= forward primer; R= reverse primer.  

The size of expected fragment was 2367 bp for APL1A2 and 2359 bp for 

APL1A1,3. The PCR program used was as follows: denaturation 95C for 3 min – 

(95C 30 sec – annealing 62C 45 sec – extension 68C 3 min) for 40 cycles with 

final extension 68C 10 min. PCR reactions were performed in a final volume of 

20l. The reaction mix was as follows: 1l (1ug) genomic DNA, 1l (0.1M) 

Forward primer, 1l (0.1M) Reverse primer, 4l 10 x polymerase buffer, 1l 

(1.1g/mL) DMSO, 1l (10mM) dNTP’s, 0,25l (2U/l) Biorad iProof High fidelity 

polymerase, and 10.75l H2O. The PCR reaction products were separated by 

electrophoresis on 1% agarose gel.  

4.5 Results 

4.5.1 APL1A amplification from GU-REF and GU-CON mosquitoes 

The distribution of APL1A1,3 and APL1A2 alleles was determined amongst GU-

REF and GU-CON mosquitoes in generation 10 of the selection for refractoriness. 

A total of 90 mosquito were analyzed, 46 GU-REF10 and 44 GU-CON10. The 

sample consisted of males and females mosquitoes as shown in Table 4.2. An 

example of the amplification results for three mosquitoes is shown in Figure 4.5.  

 

Table 4.2 Distribution of APL1A alleles and genotypes among GU-REF10 and GU-
CON10 mosquitoes. (M) male, (F) female. (SUM) is the total number of individuals tested.  
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Figure 4.5 Electrophoresis of PCR products for amplification of APL1A1,3 and APL1A2 
from 3 mosquitoes.Alternative lanes show the amplification products from reactions specific for 
APL1A1,3 and APL1A2. Mosquito 1 (Mos. 1.) from GU-REF10 is a heterozygote, mosquito 2 (Mos. 
2.) from GU-REF10 is homozygous for APL1A2, and mosquito 3 (Mos. 3.) from GU-CON10 is 
homozygous for APL1A1,3. The fragments were separated in 1% agarose gel. Black arrows show 
sizes of the amplified fragments for APL1A1,3 and APL1A2.  

4.5.2 Calculation of allele frequencies and testing of Hardy-Weinberg 

equilibrium 

From the data in Table 4.2, the allele frequencies were calculated separately 

for the GU-REF10 and GU-CON10 lines (all mosquitoes) and for male only and 

female only mosquitoes, and are shown in Table 4.3.  

Allele Mosquito Sex 
Allele frequency 

GU-REF10 GU-CON10 

APL1A-1, 3 

Male 0.432 0.545 

Female 0.333 0.841 
Pooled 0.380 0.693 

APL1A-2 

Male 0.568 0.455 

Female 0.667 0.159 

Pooled 0.620 0.307 

Table 4.3. APLA allele frequencies in GU-REF10 and GU-CON10 colonies. 

The distributions of alleles in male mosquitoes and in female mosquitoes were 

compared between the GU-REF10 and GU-CON10 lines using Chi-Squared tests 

under the null hypothesis of no difference in allele frequency between the GU-

REF10 and GU-CON10 lines (Table 4.4). When male and female mosquitoes 

were pooled together, there was a significant deviation from the frequencies 

expected under the null hypothesis (p=0.00019). There was no significant 
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difference in the male allele frequencies (p=0.286), but in the female mosquitoes 

there were significantly higher frequencies of the APL1A2 allele in the GU-REF line 

than expected under the null hypothesis, suggesting enrichment of this allele in the 

GU-REF10 population in the females (those under selection). 

APL1A 
Allele 

Male and female 
pooled 

Males only Females only 

GU-REF GU-CON total GU-REF GU-CON total GU-REF 
GU-
CON 

total 

APL1A-1,3 
35 

(47.1) 
61 

(48.8) 
96 19 (21.5) 24 (21.5) 43 16 (25.6) 37 (27.4) 53 

APL1A-2 
50 

(37.8) 
27 

(39.1) 
77 25 (22.5) 20 (22.5) 45 25 (15.4) 

7 
(16.6) 

32 

total 85 88 173 44 44 88 41 44 85 

p value 0.00019 0.286 0.000018 

Table 4.4 Comparison of APL1A allele distributions in male and female mosquitoes in 
the GU-REF10 and GU-CON10 colonies using chi-squared tests. Expected values are shown in 
brackets.  

Considering genotypes, the same comparisons were made and are shown in 

table 4.5. When male and female mosquitoes were pooled together, there was a 

significant deviation from the genotype frequencies expected under the null 

hypothesis (p=0.0000036). There was no significant difference in the male 

genotype frequencies (p=0.059), but in the female mosquitoes there was a 

significant difference (p=0.00000018), with higher frequencies of the APL1A2 

homozygotes and lower frequencies of the APL1A1,3 homozygotes in the GU-REF 

line than expected under the null hypothesis. This suggests that the selection 

process in GU-REF has favoured the APLA2 homozygotes and selected against 

the APLA1,3 homozygotes in the female mosquitoes. 

APL1A 
genotype 

Male and female Males Females 

GU-REF GU-CON total GU-REF GU-CON total 
GU-
REF 

GU-
CON 

total 

Homozygous 
APL1A1,3 

2 (9.7) 17 (9.3) 19 2 (2) 2 (2) 4 0 (7.8) 15(7.2) 15 

Heterozygous 31 (29.6) 27 (28.4) 58 15 (17.5) 20 (17.5) 35 16 (12) 7 (11) 23 

Homozygous 
APL1A2 

13 (6.6) 0 (6.4) 13 5 (2.5) 0 (2.5) 5 8 (4.2) 0 (3.8) 8 

Total 46 44 90 22 22 44 24 22 46 

p value 0.0000036 0.059 0.00000018 

Table 4.5 Comparison of APL1A genotype distributions in male and female mosquitoes 
in the GU-REF10 and GU-CON10 colonies using chi-squared tests. Expected values are shown 
in brackets.  
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4.6 Discussion 

In this study, the distribution of alleles and genotypes of the candidate gene 

APL1A (alleles APL1A1,3 and APL1A2) were examined in the GU-REF and GU-

CON lines of Anopheles gambiae s.s.. This gene was selected for analysis over 

other genes linked with mosquito immunity because of the support for involvement 

in refractoriness against P. falciparum, both in field and from laboratory infections 

(Holm et al, 2012; Mitri et al, 2009b; Niare et al, 2002; Riehle et al, 2007; Riehle et 

al, 2006a; Riehle et al, 2008b; Rottschaefer et al, 2011; Waterhouse et al, 2010; 

Williams et al, 2015). APL1A was never associated with melanisation, which 

agrees with the lack of melanisation seen in field caught mosquitoes, and in the 

GU-REF selected mosquito line as a response to P. falciparum infection. 

The allele associated with refractoriness in the field data was APL1A2, and 

there was no association with APL1A1 or APL1A3 (Holm et al, 2012). This 

hypothesis was tested in the data presented here in An. gambiae s.s. mosquitoes 

selected for refractoriness to P. falciparum based purely on the refractoriness 

phenotype (lack of oocyst development after IBF of P. falciparum clone 3D7).  

The results showed a significantly higher allele frequency of the APL1A2 allele, 

and of APL1A2 homozygotes in the GU-REF mosquitoes, compared to the GU-

CON line. This finding strongly suggests that during selection for refractoriness, 

mosquitoes with at least one allele of the APL1A2 gene were selected for, and 

mosquitoes homozygous for APL1A1,3 were selected against. There were no 

APL1A2 homozygotes found in the 44 mosquitoes tested from the GU-CON10 line, 

which suggests these mosquitoes may have a lower fitness in the absence of 

selection than the heterozygous or homozygous APL1A1,3 individuals.  

The differences in allele and genotype frequencies in the GU-REF10 line were 

however only significant relative to the unselected GU-CON line in female 

mosquitoes, and not in males. This was surprising, as the selected females 

produce approximately equal numbers of male and female offspring, which mate 

to produce the next generation for selection. One explanation could be differential 

fitness costs in the different sexes of mosquitoes, such that the male APL1A1,3 

homozygotes had higher survival than females. It is noteworthy that the numbers 

of APL1A1,3 homozygotes were very similar in the GU-REF10 and GU-CON10 
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males, whereas APL1A1,3 homozygotes were not seen in the female GU-REF10 

individuals examined. 

It was not possible to determine the APL1A2 distribution in the final 

generations (GU-REF11, GU-CON11), which had a 51.58% difference in infection 

prevalence.  

The confirmation of APL1A2 association with refractoriness phenotype here 

provides further confirmation of the importance of the APL1A locus in 

refractoriness of An. gambiae for P. falciparum.  

4.7 Conclusions 

To conclude, in this final part of the project, the candidate gene with highest 

data support to be responsible for refractoriness from the field and laboratory 

research was selected for further analysis in the Anopheles gambiae s.s. GU-REF 

mosquitoes. The GU-REF mosquitoes in generation 10 demonstrated a very 

significantly lower infection level (28.85% difference in infection prevalence X2 

p=0.000006) compared to the GU-CON lines. The candidate gene, and specifically 

allele APL1A2, was found to be significantly associated with refractoriness 

compared to allele APL1A1,3. This knowledge is essential for the ability to select an 

APL1A2 pure homozygous Anopheles gambiae s.s. GU-REF line. With such a 

pure line, the mechanism of refractoriness can be further studied, and strategies, 

which enhance the natural immunity of An. gambiae to P. falciparum, thereby 

reducing transmission, can be developed. 
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5 General Discussion 

In this chapter, a summary of the major conclusions from my research will be 

presented: the selection and characterisation of a new refractory An. gambiae s.s. 

mosquito to P. falciparum, with its characterization and preliminary analysis of 

potential refractory immune mechanisms. The implications of these findings for 

vector control strategies and understanding of vector pathogen interactions will be 

discussed. 

5.1 Principal findings 

The key goal of the research project was to select a line of An. gambiae s.s. 

refractory to P. falciparum, and to investigate the genetic basis of the trait. The 

underlying principle was to select a refractory line that represented mechanism(s) 

of refractoriness common in the field, potentially to multiple P. falciparum strains, 

or that would allow the basis of strain-specificity to be examined. For that reason, 

and because melanising refractory mosquito strains already exist, melanisation 

was excluded as a mechanism under selection. The An. gambiae s.s. KEELE line 

had been preselected for partial refractoriness prior to this project, indicating that 

such a selection was possible. 

Unfortunately, microsporidia infection of the colonies at the start of the project 

required rescue of the colonies by selective breeding from uninfected individuals. 

This was successful, but the phenotype of partial refractoriness was lost. 

Reselection for refractoriness was then performed. After a subsequent four 

generations of selection GU-REF11 and GU-CON11 were established as a final 

selection generation exhibiting considerable and significant differences in infection 

prevalence. 

Five fitness parameters were followed in selected lines together with speed of 

blood-meal digestion. The overall fitness of GU-REF line compared to the GU-

CON line did not appear to be significantly negatively affected by the selection 

process for refractoriness. 

Candidate gene analysis of APL1A showed a significantly higher allele 

frequency of the APL1A2 allele, and APL1A2 homozygotes in the GU-REF 
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mosquitoes, providing further confirmation of the importance of the APL1A locus in 

refractoriness of An. gambiae for P. falciparum. 

5.1.1 Selection 

5.1.1.1 Selection for Microsporidia free mosquitoes 

Initial selection of An. gambiae KEELE in the laboratory before the start of my 

project had resulted in a GU-REF7 with significantly reduced infection prevalence 

compared to the GU-CON7 inbreeding control line (chapter 2). GU-REF7 was not 

completely refractory to infection. 

Generation 7 experienced a microsporidia infection, compromising the ability 

of Plasmodium to establish infection. The outbreak also affected the parent An. 

gambiae KEELE line; the source was not identified but coincided with the 

introduction of a new An. arabiensis colony from the field. It was therefore 

necessary to establish microsporidia-free colonies, and there were two options 

after decontamination: (i) establish a An. gambiae KEELE colony from clean eggs, 

and after its establishment, start the selection process from scratch, or (ii) 

selectively breed from microsporidia-free individuals from GU-REF and GU-CON, 

and re-establish the colonies. For reasons of time, the second option was 

selected, recognising the risk of further inbreeding. The seventh generation went 

first through two rounds of selection for microsporidia free individuals and was 

recovered from 8 individuals each as GU-REF7 and GU-CON7 (Chapter 2). 

5.1.1.2 Selection for refractoriness 

The original hypothesis was that when selected for refractoriness to P. 

falciparum clone 3D7, a difference of susceptibility between the parasite line used 

for selection and an unrelated clone (HB3) would provide a platform to perform 

QTL analysis based on offspring of genetic crosses between 3D7 and HB3. It was 

hypothesised that this would identify parasite targets of refractoriness that differed 

in the two parasite clones (Ranford-Cartwright & Mwangi, 2012). 

A further four rounds of selection were carried out during my thesis project, 

resulting in GU-REF11 and GU-CON11. At this point infection prevalence in the 
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colonies differed by ~52% (p=0.0004), although a significant difference in 

prevalence was apparent in generation 10 (~29% difference in prevalence, 

p=0.012). 

The susceptibility to parasite clone HB3 was tested at this point and a 

significantly different prevalence was found, with a reduction of ~ 36 % in GU-

REF11 compared to GU-CON11 (p=0.000484). This finding supported a 

hypothesis that the selection was not strain specific, and pointed to a more general 

mechanism of refractoriness against P. falciparum. The QTL analysis planned was 

therefore no longer an option to identify a parasite locus involved in refractoriness. 

An alternative candidate gene approach was adopted (Chapter 4). 

It did not prove possible to identify the parasite stages killed in the refractory 

mosquito line using immunofluorescent or Giemsa staining, as described in 

chapter 2. To examine the stage specificity in the future, alternative techniques, 

such quantitative detection of stage specific proteins or RNA could be attempted. If 

the parasite stages killed in GU-REF were identified, this would allow close 

examination of the mechanisms of killing, narrowing down potential candidate 

mechanisms. 

5.1.2 Impact of refractoriness on mosquito fitness 

During selection of the refractory line, a negative impact on mosquito fitness 

could arise because of (i) general inbreeding effects and (ii) refractoriness itself 

being costly to the mosquito. The GU-CON line went through the same 

bottlenecks of the population but in the absence of selection for refractoriness, and 

it is hypothesised that differences between GU-REF and GU-CON therefore 

identify fitness costs that occur because of refractoriness rather than inbreeding. 

Five components of mosquito physiology were examined for fitness costs in 

female mosquitoes of the GU-REF line. 

Previous studies, had shown selection for a smaller body size linked with 

refractoriness (Yan et al, 1997). No significant difference in body size was 

observed between the selected lines GU-REF10, GU-CON10 and the parent An. 

gambiae KEELE, suggesting that refractoriness in GU-REF10 is not caused by 

change in body size. 
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Survival is a key parameter for the mosquito’s ability to transmit malaria, and 

also plays an important role in mosquito lifetime fecundity. Generation 10 of the 

GU-REF and GU-CON lines were used in survival determination experiments. 

When kept only on glucose as a nutrient source, the median day of death was 

significantly lower in GU-REF (22 days) compared to GU-CON (29 days), implying 

some cost to refractoriness, even in the absence of challenge. However, one non-

infectious blood meal on day 8 restored the fitness as measured by survival to that 

of GU-CON, (median lifespan GU-REF 29 days, GU-CON 30 days (no significant 

difference)). However, when challenged with gametocytes in the blood meal, 

survival of GU-REF decreased compared to GU-CON (27 days vs. 30 days), 

implying that mounting a refractory (immune) response is costly. Such a decrease 

in survival of infected mosquitoes has been noted in a rodent malaria model 

(Dawes et al, 2009), but is less clear in human infections (Ferguson & Read, 

2002). 

Even after the apparently costly infectious blood feed, more mosquitoes from 

the GU-REF line laid eggs compared to GU-CON. This finding is in agreement 

with previous research suggesting that infection in non-refractory mosquitoes 

decreases fecundity (Hurd, 1995), and implies that the cost of refractoriness is 

less than the cost of infection. The median number of eggs laid was lower, but not 

significantly so, in the GU-REF11 line after an infectious blood meal compared to 

the GU-CON11 line. GU-REF mosquitoes did produce a significantly lower number 

of eggs compared to the parent An. gambiae KEELE line, which might indicate a 

dual effect of refractoriness and inbreeding; inbreeding itself is unlikely to explain 

the result as there was no significant difference in egg number between GU-CON 

and the parent outbred line An. gambiae KEELE. Overall the lack of a significant 

decrease in egg production related to infection or refractoriness is in agreement 

with data suggesting that both infection tolerance and refractoriness have similar 

fitness costs (Hurd et al, 2005). 

During the selection process, susceptibility to infection (GU-CON line) seemed 

to be connected with a lengthening of the gonotrophic cycle (measured on 1st 

cycle). In generation 8, where there was no difference in infection intensity in GU-

REF8 and GU-CON8, mosquitoes in both lines laid eggs 3 days after the blood 

feed. In generation 9, GU-REF laid eggs on day 3 whereas GU-CON laid on day 4. 
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The parental An. gambiae KEELE line laid eggs mostly on day 3. I am not aware 

of any studies of the length of the gonotrophic cycle having direct impact on 

infection or differences between refractory and susceptible mosquitoes. However, 

a longer or shorter gonotrophic cycle could reflect a change in blood meal 

digestion kinetics, which could be relevant to ookinete survival (Gass, 1979). 

Therefore, blood meal digestion patterns were investigated. 

The rate of protein digestion was measured in two generations during the 

selection process: generation 7 and 9. No significant difference was observed in 

the speed of protein digestion, although in generation 9, protein digestion was 

marginally faster in GU-REF compared to GU-CON 24 hours after the blood meal, 

although this did not reach the significance level (p=0.06). However, given that the 

GU-REF line had the same length of gonotrophic cycle as the unselected parent 

line An. gambiae KEELE, selection for refractoriness did not select for increased 

rate of blood meal digestion. Instead, the lengthened gonotrophic cycle in GU-

CON is likely to be a result of inbreeding and random selection of mosquitoes with 

slower digestion. 

In summary the GU-REF line did not shown major fitness costs compared to 

GU-CON line. However all the fitness parameters were measured only in females, 

and it is possible that male fitness costs exist. The APL1A2 allele appears to confer 

differential survival to the two sexes of the mosquito (as discussed below, in 

section 5.1.3.). Additional fitness parameters such as egg hatching rates, larval 

survival and pupation rates were not studied.  

5.1.3 Candidate gene approach: APL1A 

From a pool of genes associated with mosquito immunity, we selected APL1A 

as a strong candidate, and examined the allele distribution (APL1A1,3 and APL1A2) 

in the GU-REF10 and GU-CON10 lines of An. gambiae s.s. A significantly higher 

allele frequency of the APL1A2 allele, and of APL1A2 homozygotes, was found in 

the GU-REF mosquitoes, suggesting that during selection for refractoriness, 

mosquitoes with at least one allele of the APL1A2 gene were selected for, and 

homozygous APL1A1,3 mosquitoes were selected against. This finding agrees with 

data from field, and from laboratory research, linking APL1A2 to mosquito 

refractoriness (Holm et al, 2012; Niare et al, 2002). However the investigation did 
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not extend to other genes with the PRI (Parasite Resistance Island) locus, a 15 Mb 

region on chromosome 2L, which was found to explain the majority of naturally 

segregating variation in P. falciparum in a field study (Riehle et al, 2006). The PRI 

region contains over 70 plausible candidate genes, on the basis of predicted 

membership of mosquito immune gene families, or up-regulation on infection. One 

possibility is that the PRI region has been selected as a linked set of genes within 

the GU-REF line. The frequency of recombination in An. gambiae genome has 

been estimated to be 1.2Mb /cM. The PRI locus is region of about 22Mb (Zheng et 

al, 1997), and therefore can be expected to undergo approximately 1 crossover 

event in 5 meioses, if the standard recombination rate applies. The observation of 

enrichment of specific APL1A alleles in the REF line is likely to reflect enrichment 

of a larger linkage group or haplotype, which will contain additional genes up and 

down stream, because of the limited number of generations during selection.  

Further work is required to investigate the inheritance of other PRI genes in 

the GU-REF line. 

5.2 Implications of the results 

The ability to select for refractoriness in An. gambiae s.s. against P. falciparum 

confirms that refractoriness has a genetic basis and is heritable. The apparent 

linkage of APL1A2 with refractoriness after selection for refractoriness based on 

phenotype is an independent confirmation of the importance of this allele with 

refractoriness observed in the field (Niare et al, 2002). . 

It is noteworthy that APL1A, and the PRI region in which it is located, lie 

`within the major chromosomal inversion on the left arm of chromosome 2 

(2L+a/2La) (Riehle et al, 2007). Both forms of the 2L+a/2La inversion are found 

within the parental KEELE colony at approximately equal frequencies (Ranford-

Cartwright et al, 2016). It is not known whether the APL1A2 allele is present on 

both the 2L+a and the 2La chromosomal forms in the KEELE colony. There are 

three possible scenarios of representation of APL1A2 and APL1A1,3 on 2L+a and 

2La inversion in Anopheles gambiae KEELE (Figure 5.1). The high frequency of 

the APL1A1,3 in the GU-CON10 (0.693) suggests that this allele is likely to be 

present in 2L+a and 2La forms. The lower frequency of APL1A2 leaves the 
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possibility of association of this allele with only one of the inversion forms. If 

APL1A2 was associated only with one of the inversion forms, selection in the GU-

REF line would have resulted in selection of that inversion form. While not 

reported in this thesis, subsequent work done in the lab did not show enrichment 

for either the 2L+a or the 2La inversion forms, implying that model A (Figure 5.1) is 

correct. 

 

Figure 5.1 Possible scenarios of representation of alleles APL1A2 and APL1A1,3 on 
2L+a and 2La inversions in the genome of Anopheles gambiae KEELE. The black line 
represents 2L chromosome, with a circle representing the centromere. The gray arrow indicates 
the inversion region, with “+a” being wild-type and “a” the inverted version. The dark gray and red 
boxes indicate the position of the APL1A gene within the inversion region. (A) represents the 
scenario where all possible combinations of APL1A2 and APL1A1,3 on 2L+a and 2La inversion are 
present. (B) represents the scenari, where APL1A2 is present only on the inversion “a”. (C) 
represents the scenario where APL1A2 is present only on the wild-type “+a”.  

The inversion 2La has been associated with resistance to higher temperature 

and indoor resting behaviour (Ayala et al, 2014). Its prevalence in natural 

populations iincreased in the dry season and in dry environments. Interestingly a 

Kenyan population of mosquitoes homozygous for 2L+a were twice as likely to be 

infected with P. falciparum (positive for CSP) than those homozygous for the 2La 

inverted form, when the 2R inversion was also present (Petrarca & Beier, 1992). In 

that scenario, the APL1A2 allele would be likely associated with 2La inversion 

(scenario A and C), if responsible for refractoriness in the population studied. The 
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high prevalence of APL1A1,3 in wild populations suggests that these alleles are 

represented on both forms of the inversion. 

The higher frequency of APL1A2 homozygotes in females could be explained 

by a loss of homozygous males in the population before the pupal stage was 

sampled. As APL1A is not linked to the sex chromosome, equal numbers of male 

and female eggs homozygous for APL1A2 would be expected. The lower number 

of males with this karyotype suggests a loss of males, either during egg hatching 

or the following larval stages. As all the fitness characterisation was made on 

female mosquitoes, a study of male fitness would be one of the suggested 

experiments for better understanding of the impact of the APL1A2 homozygous 

karyotype in mosquitoes, and its rare occurrence in laboratory colonies such as 

the An. gambiae NGOUSSO and KEELE strains. 

5.3 What are the next steps? 

Additional work to examine enrichment of other alleles within the PRI locus is 

necessary to accept APL1A as the only candidate that has been selected for 

during selection for refractoriness. Selection of a pure APL1A2 line (all individuals 

homozygous APL1A2 / APL1A2) would be beneficial for studies of mosquito 

immune mechanisms against malaria, as well as in maintaining a stable refractory 

line, if there is a fitness cost of the APLA2 allele, especially in the homozygous 

state. Attempts to select a pure homozygous line proved difficult, due to a lack of 

APL1A2 homozygotes males in the GU-REF11 line. The approach of selecting a 

pure line for further work, which would not need constant selective pressure to 

maintain a stable APL1A2 allele frequency, would probably be very difficult. The 

alternative would be to genotype mosquitoes at the APL1A locus after the 

experiments, and comparing the allele distribution retrospectively. To examine the 

phenotype of refractoriness linked to APL1A2 in the field, the infection of wild-

caught mosquitoes, and association of infection rates to APL1A2 would have to be 

performed. 

To further investigate the parasite stages affected in the refractory line, time 

course experiments looking at parasite numbers in the blood bolus, and the 
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mosquito midgut wall in later stages of the infection, could narrow the time frame 

when the refractory mechanisms acts, and could narrow down potential effectors. 

Overall the selected line of non-melanising An. gambiae s.s. GU-REF can be 

used for experiments dissecting mosquito immune mechanisms against P. 

falciparum and in the research field of malaria transmission blocking interventions. 
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Abstract

Anopheles gambiae sensu strictowas recently reclassified as two species, An. coluzzii and

An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M

or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred labora-

tory colony strain that was developed around 12 years ago by crosses between mosquitoes

from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited

genetic diversity because of small starting populations (founder effect) and subsequent fluc-

tuations in colony size. Here we describe the characterisation of the chromosomal form(s)

present in the Keele line, and investigate the diversity present in the colony using microsatel-

lite markers on chromosome 3. We also characterise the large 2La inversion on chromo-

some 2. The results indicate that only the M-form of the chromosome Xmarker is present in

the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably

S-form. Levels of diversity were relatively high, as indicated by a mean number of microsat-

ellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of

the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal

proportions. The Keele colony has a mixed M- and S-form origin, and in common with the

PEST strain, we propose continuing to denote it as an An. gambiae s.s. line.

Introduction

Anopheles gambiae sensu lato is the major vector of malaria in sub-saharan Africa, consisting

of eight morphologically indistinguishable species. An. gambiae sensu stricto exists in two

molecular forms, denoted M and S, which can be distinguished by differences in a 4Mb region

located centromerically on the X chromosome, including fixed SNPs within 2.3kb intergenic

spacer region in the multicopy rDNA located on the X chromosome [1,2], or an M-specific

insertion of a short interspersed transposable element (SINE200) [3]. Recently it was proposed
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that the M- and S-forms are named as separate species [4], with the M-form taking the name

Anopheles coluzzii and the S-form retaining the name An. gambiae s.s.
The two molecular forms differ in their geographical distribution and ecological niches, as

well as in important phenotypic traits such as resistance to insecticides and to desiccation

(reviewed in Lehmann and Diabate (2008) [5]). S-form An. gambiae are distributed across

most of sub-saharan Africa, usually breeding in temporary aquatic habitats, and are associated

with rainy seasons. M-form An. gambiae have a similar distribution to S-form inWest and

Central Africa, but are apparently absent east of the Great Rift Valley; they are able to exploit

permanent breeding sites such as those associated with human activity, and breed year round

[5–8]. The mechanisms driving divergence and speciation of the two molecular forms do not

appear to be based on post-zygotic isolation, since laboratory crosses of M- and S-forms pro-

duce fully fertile male and female offspring [4,9]. Instead, spatial segregation of the two forms

in mating swarms [10–12], or assortative mating behaviour [13] probably contributes to the

usually very low rates of hybridisation seen in natural An. gambiae populations where the two
forms are sympatric [12,14], although hybridisation can reach up to 20% in some sympatric

populations [15–17], particularly at the extremes of the geographical distribution of sympatry

[18]. Genetic divergence between the two forms in nature has been extensively studied, and

was found to be widely distributed across the M- and S-form genomes, supporting the separa-

tion of the two forms into species [19–23].

The Keele mosquito strain was developed approximately 12 years ago as an outbred An.
gambiae s.s. strain for use in experimental selection of malaria-resistant and -susceptible lines

[24], and was established in Glasgow in 2002 directly from Keele University, where the line

was generated. The chromosomal form has not previously been investigated, and it is usually

referred to as an An. gambiae s.s. line. Its status now that An. gambiae s.s. has been divided into

two species is uncertain.

The line was developed by balanced interbreeding of 4 existing laboratory colonies: ZAN U,

Ifakara, KIL and G3 [24]. The first three of these colonies originated in East Africa (Zanzibar

in 1984; Ifakara (Tanzania) in 1996; Marangu (Tanzania) in 1975 respectively); only the G3

line is fromWest Africa (MacCarthy Island, The Gambia, in 1975). Therefore, 3 of the 4 strains

are expected to have been S-form at their original isolation, because of their East African ori-

gin. The G3 line could originally have been M, S or even a mixture, since hybrid M/S forms

have been observed in The Gambia [16,18]. The generation of the Keele line involved initial

crosses of 50 individuals of each sex between the strains KIL and Ifakara, and ZANU and G3,

and the offspring of these two crosses were then mated to produce the Keele strain[24]. Keele

mosquitoes are therefore likely to have a mixed origin fromM- and S- form parents.

Laboratory colonies of mosquitoes usually exhibit considerable loss of diversity because of

small starting populations (founder effect) and subsequent fluctuations in colony size [25,26].

Although the Keele strain was originally developed as an outbred line, the level of diversity of

the strain has not previously been characterised. Microsatellites, especially those on chromo-

some 3 where there seems to be little restriction on gene flow [27], have been used previously

to examine diversity in laboratory colonies, including the G3 line [26]. These analyses revealed

reduced microsatellite diversity in two laboratory colonies relative to wild-caught mosquitoes

fromMali, with an eightfold reduction in mean number of alleles found in eight microsatellite

loci on chromosome 3 [26]. Wild-caught mosquitoes also had an abundance of rare alleles

(frequency� 0.05) which are less likely to be sampled in the relatively small starting popula-

tions for laboratory colonies.

Chromosomal inversions contribute to the substructuring of An. gambiae subpopulations
and their adaptation to different environments [28–31]. A much-studied large inversion poly-

morphism on chromosome 2L (2La or 2L+a) has been associated with adaptation to aridity:
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An. coluzzii larvae homozygous for 2La have been shown to have enhanced thermal tolerance

[32], and An. gambiae s.s. adults have enhanced resistance to desiccation [33,34]. Allele fre-

quencies of the 2La/2L+a vary spatially and temporally with respect to the degree of humidity

in East andWest Africa [35]. Both the 2La and the 2L+a karyotypes are found in An. gambiae
s.s. and An. coluzzii, but with spatial variations in the frequency; the chromosomal arrange-

ments assort independently of molecular form in the field, and probably predate the speciation

process [8]. The 2La/2L+a karyotypes present in the Keele line have not previously been

established.

Materials and Methods

DNA extraction frommosquitoes

The Keele colony held at Glasgow University is usually maintained at many thousands of indi-

viduals, with an average daily pupal collection of between 200 and 500 individuals, and 2000–

3000 adults per large mating cage. Mosquitoes are allowed to mate naturally within each cage.

Pupae for the study were selected randomly from different pupal trays over several days. 60

pupae were collected initially over 2–3 days for analysis of colony diversity, and an additional

90 pupae were collected for the evaluation of M and S forms at a later time point.

DNA was extracted from individual pupae from the Keele line of An. gambiae s.s. using the
DNeasy spin column protocol (Qiagen). The sex of each pupa was first determined by exami-

nation of the terminalia [36]. Pupae were frozen at -20˚C overnight and then processed to

extract DNA according to the manufacturer’s protocol. Each pupa generated 200μl of genomic

DNA.

Determination of M- and S-forms

Fixed single nucleotide differences in the rDNA intergenic spacer region on the X chromo-

some are used to define the M- and S- chromosomal forms [1,2,37]. We used a published

PCR-RFLP method which amplifies a 390bp product including the polymorphic site at posi-

tion 581 of the IGS rDNA region [38]; M-forms have a T in this position whereas S-forms have

a C. The PCR product was then digested with HhaI (recognition site GCG^C), resulting in

fragments of 257bp, 110bp and 23bp from S form, and 367bp and 23bp fromM form.

3μl of DNA from each pupa was amplified in a final volume of 28μl containing 1x PCR
Buffer, 1mMMgCl2, 0.2mM dNTPs, 12.5ng primer UN (5’-GTGTGCCCCTTCCTCGATGT-

3’), 6.25ng primer GA (5’-CTGGTTTGGTCGGCACGTTT-3’), and 1 unit Taq DNA polymer-

ase, using the reaction conditions of an initial denaturation step 94˚C for 3 minutes, and then

30 cycles of 94˚C for 30s, 50˚C for 45s, 72˚C for 60s, with a final extension step of 7 minutes at

72˚C. 12μl of the PCR product was digested at 37˚C overnight with 1U of HhaI enzyme in 1 x

NE Buffer 4 and 1 x BSA in a 15μl reaction volume. 7μl of the digested PCR product was run

on a 2% agarose gel containing ethidium bromide and visualised by UV transillumination.

Undigested PCR product (5μl) was included for comparison to check for digestion; the

digested product is clearly smaller than the undigested product for the M-form, and two bands

are visible for the S-form (in both cases the 23bp band is not visible on a gel).

Microsatellite analysis of chromosome 3

Four published microsatellite loci (all dinucleotide repeats) on chromosome 3 [39,40] were

chosen for analysis of diversity in the Keele colony. The markers were chosen to be spread

along the chromosome; their published locations are shown in Table 1. 2μl of mosquito DNA

from each pupa was amplified in a final volume of 20μl containing 1x PCR Buffer, 1mM
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MgCl2, 0.2mM dNTPs, 10nM of each primer and 1 unit Taq DNA polymerase, using the reac-

tion conditions in Table 1. 7μl of PCR product was run for 4–6 hours on high resolution gels

consisting of a 4%MetaPhor agarose gel (Lonza UK), containing ethidium bromide, and visu-

alised by UV transillumination. PCR product sizes were estimated by comparison with a 25bp

ladder using band size estimation software (Labworks, UVP, UK). Sizes were pooled into bins

spanning 4 bp for each locus, taking into account the repeat size of 2 bp in these microsatellites

and the estimated resolution for Metaphor Agarose of 3 bp (Lonza, UK).

Analysis of inversions on chromosome 2

The inversion on the left arm of chromosome 2 known as 2La / 2L+a was analysed using a pub-

lished PCR strategy [41]. 2μl of mosquito DNA from each pupa was amplified in a final volume

of 20μl containing 1x PCR Buffer (1.5mMMgCl2), 0.2mM dNTPs, 10nM of each primer

(Table 2) and 1 unit Taq DNA polymerase, using the reaction conditions of an initial denatur-

ation step 94˚C for 2 minutes, and then 30 cycles of 94˚C for 30s, 55˚C for 30s, 70˚C for 45s,

with a final extension step of 10 minutes at 70˚C. 10μl of each PCR product was run on a 1.5%

agarose gel containing ethidium bromide and visualised by UV transillumination.

Results

Determination of M- and S-forms

150 An. gambiae Keele mosquito pupae were analysed of which 63% were female. A PCR prod-

uct of 390bp for the IGS rDNA region was amplified and digested from all 150 DNA samples.

All digested PCR products were 367bp, indicating that only the M-form of this locus (T at

position 581) was present in the colony (M frequency: 100% (95% confidence interval 97.5–

100%)). No hybrid individuals were seen.

Table 1. Microsatellite markers on chromosome 3. Distance represents the cumulative genetic distances from the most distal markers, and is taken from
[39].

Marker name Distance (cM) Forward Primer Reverse Primer Amplification conditions

Ag3H93a 0 • 95˚C for 5min

• 30 cycles of [95˚C for 20s/55˚C for 30s/72˚C for 30s]

• 72˚C for 10min

Ag3H119b 29.1 • 95˚C for 5min

• 30 cycles of [95˚C for 30s/53˚C for 30s/72˚C f˚C 30s]

• 72˚C for 10min

Ag3H88b 61.8 as for Ag3H93

Ag3H817b 93.7 • 95˚C for 5min

• 30 cycles of [95˚C for 30s/53˚C for 30s/65˚C for 30s]

• 65˚C for 10min

aPrimer sequences taken from Lanzaro et al., 1995.
bPrimer sequences taken from Zheng et al., 1996

doi:10.1371/journal.pone.0168999.t001

Table 2. PCR primers used to type the chromosome 2 inversion 2La/2L+a [41].

Chromosome 2 Arrangement Forward Primer Reverse Primer Expected PCR product size (bp)

2La 23A2: 27A2: 492

2L+a 23A2: DPCross5: 207

doi:10.1371/journal.pone.0168999.t002
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Microsatellite analysis of chromosome 3

The number of alleles seen at each of the 4 microsatellite markers in shown in Table 3. Some

alleles were seen in only one mosquito, giving a low allele frequency of<0.05, but no allele pre-

dominated in the Keele colony for any of the 4 microsatellite loci.

Analysis of inversions on chromosome 2

Both the 2La and 2L+a chromosomal arrangements were found to be present in the Keele col-

ony, with similar allele frequencies (Table 4). The numbers of homozygotes and heterozygotes

was not significantly different to those expected under Hardy-Weinberg equilibrium ( 2 =

0.446, P = 0.800).

Discussion

Analysis of the Keele colony unexpectedly revealed only the M-form of the rDNAmarker on

the X chromosome used to distinguish the two forms. Three of the four laboratory strains

from which the Keele strain was established originated in East Africa, and therefore were

expected to be S-form, although contamination of any of the lines with the opposite rDNA

form prior to the development of the Keele strain cannot be discounted. It is unclear when or

why the S-form marker on the X chromosome was lost in the Keele line; the initial crosses to

generate the line [24] involved progeny of two probable S-form lines mating with the offspring

of a cross between a probable M and a probable S-form line: early generations of the Keele line

must have had S-form individuals or hybrids. Hybrids of M- and S-forms occur readily in the

laboratory, as do as back-crosses to either M- or S- form parents, and the hybrids and their

backcrosses were found to be fully fertile, with similar egg batch size, hatching rate, and larval

development success under laboratory conditions [9]. Observed fitness differences of M- and

S-forms under laboratory conditions include minor differences in the time to hatching of eggs,

with S eggs hatching slightly earlier than M [42], higher longevity of virgin female M-forms

Table 3. Allele frequencies (freq.) for least andmost common alleles at each locus for the Keele colony.

Locus na no. alleles Freq most common allele Freq least common allele

Ag3H88 25 9 0.16 0.04

Ag3H93 31 7 0.258 0.032

Ag3H817 41 4 0.463 0.073

Ag3H119 39 5 0.487 0.077

mean 34 6.25 0.342 0.056

se 3.697 1.109 0.080 0.011

an = number of mosquitoes analysed

doi:10.1371/journal.pone.0168999.t003

Table 4. Frequency of 2La/2l+a genotypes in the Keele colony (n = 161).

Number Proportion

Genotype Heterozygous 84 0.522

Homozygous 2La/2La 46 0.286

Homozygous 2L+a/2L+a 31 0.193

Allele frequency 2La 176 0.547

2L+a 146 0.453

doi:10.1371/journal.pone.0168999.t004
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[5], and a larger body size of M-form females, which correlated in that study with larger egg

batches in M-form than S-form [43]. The latter two factors could, over time, lead to increases

in the frequency of M-form mosquitoes in a mixed colony. However in the face of repeated

inter-form mating, it is difficult to imagine how the rDNAmarker used to discriminate the M-

and S-forms would remain linked to the fitness differences unless the genes responsible for

these traits were strongly linked to the X-chromosome locus.

Under natural conditions in most of sub-saharan Africa, males form swarms of only one

chromosomal form, and mating is generally assortative [10–13]. The mechanism for premat-

ing isolation is not fully understood, but differences in wing widths in populations where M-

and S-forms mate assortatively lend support to the hypothesis that mosquitoes choose a mate

based on wing-beat frequencies [44,45]. However direct measurements fromM- and S-form

mosquitoes failed to show significant differences in their fundamental harmonic (wing beat)

frequencies [46]. Mating of Anopheles in the laboratory does not appear to involve typical

swarm formation, and adaptation/colonisation involves selecting for mating in the restricted

space of a cage (stenogamy) [47,48]. The Keele line within the Glasgow insectaries does form

small swarms, and females enter the swarms to mate (unpublished observations), but the

majority of mating in a colony probably occurs outside of swarms.

The Keele colony undoubtedly had a mixed M- and S-form origin, and the colony existing

today is expected to have a hybrid genome with contributions from the four parent lines. It is

similar in this respect to the An. gambiae PEST strain, chosen as the first Anopheles genome

project [49]; the strain was generated in a series of crossing steps between different colonies

from Kenya (S-form) and Nigeria (M-form) [https://www.vectorbase.org/organisms/

anopheles-gambiae/pest]. Since this strain is commonly referred to as An. gambiae s.s., despite
having M- and S-form heritage, we propose that the Keele strain should also continue to be

referred to as An. gambiae s.s.; the hybrid name An. coluzzii × An. gambiae s.s. may be more

correct, if the rules applied to the nomenclature for inter-species hybrid plants (including the

F1, subsequent generations, back-crosses and combinations of these) were to be followed [50],

but is excessively long.

Microsatellite locus analysis of the Keele colony revealed an unexpectedly high level of alle-

lic diversity at 4 microsatellite loci, with an average of 6.25 alleles (range 4–9) seen in the 4

microsatellite loci we examined on chromosome 3. Previous analyses of laboratory colonies

e.g. Norris et al., 2001 [26], had shown reduced diversity compared to wild-caught mosquitoes,

with an average number of alleles of 2.33 (G3 colony, range 1–6) and 3.67 (Mopti colony,

range 2–6), using 9 microsatellites on chromosome 3. Two of the microsatellites used in their

study, Ag3H88 and Ag3H119, were also used in our analysis of the Keele strain. For Ag3H88
both the Mopti and G3 colonies (n = 32 for each) had only 2 alleles present in the published

study [26], whereas in our study, 9 alleles were observed in 25 mosquitoes of the Keele line.

Analysis of Ag3H88 diversity in wild-caught mosquitoes revealed an average of 8 alleles in pop-

ulations from 12 African countries (n = 967 mosquitoes), including a population (n = 23) from

McCarthy Island (the origin of the G3 line) with 9 alleles at this locus [51]. For Ag3H119, previ-
ous characterisation of the Mopti and G3 colonies revealed 1 and 6 alleles respectively [26],

compared to 5 alleles seen in the Keele colony. A previous study of wild-caught An. gambiae
diversity in 9 Tanzanian locations found 10 alleles in total for this microsatellite in 638 individ-

uals, with an average of 6.22 alleles per sample site (mosquito numbers sampled per location

ranged from 30–106) [52]. Microsatellite diversity in the Keele line therefore appears to be

higher than in previously-analysed laboratory colonies, although it does not reach the diversity

observed in wild-caught mosquitoes, where large numbers of alleles, many at low frequencies

(<0.05) are frequently observed [26,40]. This increased diversity may reflect the generation of

the Keele colony by balanced interbreeding of 4 laboratory colonies, with offspring from 50
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matings for each of the pairs (KIL x Ifakara and ZAN U x G3) then mated to produce the

Keele line [24].

Finally the two karyotypes of the large inversion on chromosome 2 (2La/2L+a) are both

present in the Keele colony at approximately equal frequencies, and mosquitoes appear to

mate randomly with respect to this marker.
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