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Abstract 

 

Mathematical models of physiological processes can be used in critical care and 

anaesthesia to improve the understanding of disease processes and to guide 

treatment. This thesis provides a detailed description of two studies that are 

related through their shared aim of modelling different aspects of brain 

physiology. 

 

The Relationship Between Transcranial Bioimpedance and Invasive Intracranial 

Pressure Measurement in Traumatic Brain Injury Patients (BioTBI) Study 

describes an attempt to model intracranial pressure (ICP) in patients admitted 

with severe traumatic brain injury (TBI). It is introduced with a detailed 

discussion of the monitoring and modelling of ICP in patients with TBI alongside 

the rationale for considering transcranial bioimpedance (TCB) as a non-invasive 

approach to estimating ICP. The BioTBI Study confirmed a significant 

relationship between TCB and invasively measured ICP in ten patients admitted 

to the neurological intensive care unit (NICU) with severe TBI. Even when using 

an adjusted linear modelling technique to account for patient covariates, the 

magnitude of the relationship was small (r-squared = 0.32) and on the basis of 

the study, TCB is not seen as a realistic technique to monitor ICP in TBI. 

 

Target controlled infusion (TCI) of anaesthetic drugs exploit known 

pharmacokinetic pharmacodynamic (PKPD) models to achieve set concentrations 

in the plasma or an effect site. Following a discussion of PKPD model 

development for the anaesthetic drug propofol, the Validation Study of the 

Covariates Model (VaSCoM) describes a joint PKPD study of the Covariates Model. 

Pharmacokinetic validation of plasma concentrations predicted by the model in 

forty patients undergoing general anaesthesia confirmed a favourable overall 

bias (3%) and inaccuracy (25%) compared to established PKPD models. The first 

description of the pharmacodynamic behaviour of the Covariates Model is 

provided with an estimated rate constant for elimination from the effect site 

compartment (ke0) of 0.21 to 0.27 min-1. 
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1 Introduction to Mathematical Modelling in 

Neurological Intensive Care and Anaesthesia 
 

1.1 The Need for Modelling 

In anaesthesia and critical care medicine, patients undergo continuous 

monitoring of their physiological systems. Developments in healthcare 

information systems mean that increasingly vast quantities of physiological data 

are being stored. There is mounting recognition that despite the significant time 

and resources that are consumed to collect these data, they are not being used 

to their full potential(1). In the ideal situation, data can be used to guide 

clinical management, predict outcomes and improve understanding of disease 

processes. To achieve this ideal, there is a need to utilise the advances in 

methods for the study of dynamic systems and in particular the techniques of 

mathematical modelling(2).  

 

1.2 The Principles of Modelling 

A model is a representation of reality and can only ever be an approximation of 

that reality(3). Mathematical models can be described in terms of their purpose 

or in terms of the approach to the modelling process (Figure 1.1).  

 

The approach to mathematical modelling can be to either model the data or to 

model the system(4). In a data driven approach there is no need for existing 

knowledge of the physiological system of interest. Instead, these models can be 

considered as a “black box” where statistical modelling techniques are used to 

describe available experimental data. In contrast, for a physiologically derived 

model there is a requirement for existing knowledge of the system and the 

model is developed to represent this knowledge. 

 

The purpose of mathematical modelling of physiological systems can be 

considered as predictive, explanatory or both. A predictive model aims to 

predict the future behaviour of the system under investigation. Meanwhile, an 

explanatory model aims to improve the understanding of the system of interest. 
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Figure 1.1: The relationship between modelling approach and modelling purpose. 

The process of mathematical modelling involves the stages of model building, 

model identification, model simulation and model validation. The details of this 

process will vary significantly depending on the specific model being developed 

(Table 1.1). 

 

Model Type Model Features Model Type Model Features 

Deterministic Fixed model inputs 

provide fixed model 

outputs 

Stochastic 

 

Model outputs account for 

randomness observed in 

physiological systems 

Static Model describes system 

at single point in time 

Dynamic Model describes system as it 

changes in time 

Discrete Model samples 

physiological data at 

distinct time points 

Continuous Model of physiological system 

is allowed to change at any 

point in time 

 

Table 1.1: Categorisation of physiological models. 

1.3 Modelling of the Brain 

The clinical settings of the two studies presented in this thesis were firstly the 

neurological intensive care unit (NICU) and secondly the operating theatre, 

specifically in patients undergoing general anaesthesia to facilitate surgery. In 
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both of these settings there is a need to model either the effects of disease 

processes or of specific therapies on the physiology of the brain.  

 

The NICU provides the facilities and expertise to care for patients who suffer 

severe brain injuries with a variety of aetiologies ranging from trauma and 

vascular events to infection and malignancy. In these patients, specialised 

devices, such as the intracranial pressure monitor, can be used to monitor the 

disease process and thus inform treatment decisions. Modelling of the data 

provided by these devices has led to an improved understanding of the 

pathological processes following brain injury. There is an increasing demand to 

develop “non-invasive” monitoring and so avoid the potential complications of 

devices that require placement within the brain parenchyma. 

 

The first study (BioTBI) is a pilot study to model the relationship between 

transcranial bioimpedance (TCB) and invasively measured intracranial pressure 

(ICP) in patients with traumatic brain injury (TBI). Without existing knowledge of 

the relationship between TCB and ICP the model derived is primarily data 

driven. It is an example of a stochastic, static, discrete model. The ultimate aim 

of this study was to begin development of a non-invasive technique to estimate 

ICP. 

 

General anaesthesia can be regarded as a triad of hypnosis (or unconsciousness), 

analgesia (or pain relief) and muscle relaxation. The target sites of drugs used to 

achieve the hypnotic component of general anaesthesia are within the brain. 

There is therefore a call for models that can predict the dosing requirements to 

achieve adequate delivery of drugs to the brain and then to predict the clinical 

effects of these drugs. 

 

The second study (VaSCoM) is a validation study of a three compartment 

pharmacokinetic (PK) model for the intravenous anaesthetic drug propofol. The 

“Covariates Model”(5) is an update to a model (The Marsh Model(6)) in wide 

clinical use that was previously adapted to account for the observed 

pharmacokinetic data. It is an example of a deterministic, dynamic, continuous 

model. The dual aims of this study were to firstly validate the pharmacokinetic 

component of the model and secondly to expand the model to account for 
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pharmacodynamic behaviour. This involved the use of processed 

electroencephalography (pEEG), a non-invasive brain monitoring technique, to 

quantify the effect of propofol on the brain. 

 

A narrative review of the literature and discussion of existing models relevant to 

the two studies is provided in this thesis. The BioTBI and VaSCoM studies are not 

only related by their shared aim of modelling aspects of the brain, but also 

through the approach taken to the modelling process. All of the data collected 

were converted into standardised non-proprietary formats, while all of the 

analyses were performed using the open source statistical programming 

environment “R”(7). The consequence of this is that all data and models can be 

shared with interested research groups with diverse expertise in fields ranging 

from medicine to mathematics and clinical physics to computing science.  
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2 Monitoring and Modelling of Intracranial Pressure in 

Patients with Traumatic Brain Injury 
 

2.1 Overview 

Since Monro published his observations on the nature of the contents of the 

intracranial space in 1783 there has been investigation of the unique relationship 

between the contents of the skull and the intracranial pressure (ICP). This is 

particularly true following traumatic brain injury (TBI), where it is clear that 

elevated ICP due to the underlying pathological processes is associated with a 

poorer clinical outcome. Consequently, there is considerable interest in 

monitoring and manipulating ICP In patients with TBI.  

 

The two techniques most commonly used in clinical practice to monitor ICP are 

via an intraventricular or intraparenchymal catheter with a microtransducer 

system. Both of these techniques are invasive and are thus associated with 

complications such as haemorrhage and infection. For this reason, significant 

research effort has been directed towards development of a non-invasive 

method to measure ICP. In this introduction there will be a detailed review of 

the existing non-invasive ICP monitoring technology. The final section will then 

be an overview of the theory underlying the BioTBI study.  

 

The principle aims of ICP monitoring in TBI are to allow early detection of 

secondary haemorrhage and to guide therapies that limit intracranial 

hypertension and optimise cerebral perfusion. However, information from the 

ICP value and the ICP waveform can also be used to assess the intracranial 

volume-pressure relationship, estimate cerebrovascular pressure reactivity and 

attempt to forecast future episodes of intracranial hypertension.  

 

The following introduction to monitoring and modelling of intracranial pressure 

in patients with traumatic brain injury is an updated and extended version of a 

previously published review article(8). 
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2.2 Introduction to Traumatic Brain Injury 

The pathophysiology of TBI can divided into primary and secondary injury. The 

primary injury may include focal haematomas, contusions or diffuse injury that 

leads to a cycle of hypoxic ischaemic injury associated with inflammatory and 

neurotoxic processes (Figure 2.1). This secondary injury is exacerbated by 

secondary physiological insults such as hypoxia, hypo or hypercarbia, 

hypotension, hyperthermia and hypo or hyperglycaemia. A rise in ICP, or 

intracranial hypertension (ICH), is a secondary insult that can result from the 

primary injury, vascular engorgement, obstruction to cerebrospinal fluid (CSF) 

flow or cerebral oedema. It is known to be associated with poorer outcomes(9), 

which has led to considerable interest in its monitoring and manipulation in 

patients who have suffered TBI. 

 

Figure 2.1: The inter-relationship between primary and secondary injury in TBI. 

Secondary physiological insults can potentiate ischaemia and lead to exacerbation of 

secondary injury. ICP = intracranial pressure. Adapted from Maas et al(10). 

Normal ICP in healthy adults is usually regarded as 5 to 15 mmHg(11) and in TBI 

an ICP of >20 mmHg is widely accepted as ICH(12). The principle aims of ICP 
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monitoring in TBI are to allow early detection of secondary haemorrhage and to 

guide therapies that limit ICH. In addition, measurement of ICP and mean 

arterial pressure (MAP) allows calculation of cerebral perfusion pressure (CPP):  

 

𝐶𝑃𝑃 = 𝑀𝐴𝑃 −𝐼𝐶𝑃 (2.1) 

            

Attempts can then be made to optimise cerebral perfusion pressure with the aim 

of preventing cerebral ischaemia. 

 

There is ongoing debate over the central role of ICP monitoring in the clinical 

management of TBI. This is particularly relevant in the context of a recent 

randomised controlled trial (RCT) that did not show an outcome benefit in 

patients undergoing ICP monitoring with a treatment threshold of 20 mmHg 

when compared to patients that were not monitored(13). The purpose of this 

review is therefore to reconsider some of the basic science underlying ICP 

monitoring and the intracranial pressure-volume relationship in adults. With this 

pretext there will then be support for the arguments of other authors for the use 

of ICP as “more than a number” or a generic treatment threshold(14). Instead, 

the information within ICP trends and the ICP waveform can be used to provide 

individualised treatment thresholds and forecast future episodes of ICH. 

 

2.3 Concepts and Historical Perspectives 

2.3.1 Intracranial Contents 

The Monro-Kellie hypothesis describes the relationship between the contents of 

the skull(15). In 1783, Monro published his observations that: the brain was 

enclosed in a non-expandable case of bone; the substance of the brain was 

nearly incompressible; the volume of the blood in the cranial cavity was 

therefore constant or nearly constant; and a continuous outflow of venous blood 

from the cranial cavity was required to make room for the continuous incoming 

arterial blood. Experiments performed by Kellie and Abercrombie supported 

these observations but they, like Monro, did not account for the role of CSF. 

 

As the important role of CSF was recognised, the Monro-Kellie hypothesis was 

revised to its current form where with an intact skull, the sum of the volumes of 
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the brain, intracranial blood and CSF are constant. Therefore an increase in one 

necessitates a decrease in one or both of the remaining two. As the brain 

parenchyma is essentially non-compressible, compensation is achieved through 

extrusion of CSF or venous blood. 

 

2.3.2 Intracranial Pressure Measurement 

Lundberg systematically described the technique of continuous ICP monitoring 

using an intraventricular catheter in a series of 130 patients with suspected 

intracranial space occupying lesions(16). He then went on to confirm the 

feasibility of the technique in a series of 30 patients with TBI(17).  

 

In his seminal paper, Lundberg identified three typical patterns of ICP 

fluctuation which have come to be known as “A”, “B” and “C” waves. A waves 

are steep rises in ICP to a plateau of 50 mmHg or more and are sustained for 5 – 

20 minutes before falling rapidly. They represent a critical reduction in 

intracranial compliance. B waves occur with a frequency of 0.5 to 2 waves per 

minute and are rhythmic oscillations to 20-30 mmHg above the baseline but 

without a sustained period of intracranial hypertension. C waves are not thought 

to be of pathophysiological importance, probably a reflection of Traube-Hering 

waves originating in the arterial pressure and are of much smaller amplitude to 

B waves. 

 

While Lundberg and colleagues were developing the role of ICP monitoring in 

man, Langfitt’s group were examining primates to carefully characterise the 

transmission of pressure across the intracranial compartments(18, 19). The 

phenomenon of pressure underestimation was fully defined in experimental 

studies of extradural brain compression where progressive loss of transmission of 

ICP across the tentorial hiatus occurred, with the pressure in the posterior fossa 

and lumbar subarachnoid space progressively under-reading the ventricular 

pressure and eventually returning to normal pressure. 

 

2.3.3 The Intracranial Volume-Pressure Relationship 

The intracranial volume-pressure curve demonstrates how small increases in 

volume of one of the intracranial components can be compensated by a 
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reduction in CSF or blood volume (Figure 2.2). However, these compensatory 

measures are quickly exhausted and any subsequent increase in volume leads to 

an exponential increase in ICP. Measurement of this volume-pressure 

relationship is most often incorrectly referred to as intracranial compliance. 

According to conventional terminology it should be referred to as elastance 

(change in pressure per unit change in volume, 'P/'V)(20, 21). Due to the 

exponential nature of the volume-pressure relationship as depicted in Figure 

2.2, being able to quantify elastance is attractive clinically as in theory it will 

increase during the volume compensation phase more rapidly than ICP and 

should therefore be predictive of impending volume decompensation.  

 

Figure 2.2: Cerebral volume-pressure curve showing the exponential relationship 

between ICP and an increase in volume of one of the intracranial components. The 

red line marks the point of decompensation. 

The first full mathematical description of the craniospinal volume-pressure 

relationship was published by Marmarou in 1973(22). Since then, several 

research groups have contributed physiological simulation models of ICP 

dynamics of varying complexity. These models aim to improve understanding of 
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ICP pathophysiology and thus assist in the development of appropriate treatment 

strategies. A detailed comparative review on this subject has been provided by 

Wakeland and Goldstein(23). The early work of Marmarou and colleagues shall 

be discussed below as it provides an introduction to many important concepts 

surrounding ICP dynamics.  

 

Through his interest in the pathological state of hydrocephalus, Marmarou 

developed a mathematical model of the CSF system that produced a general 

solution for the CSF pressure(22). The model parameters were verified in a 

series of experiments on adult cats(24). In these studies, the CSF pressure was 

measured both intracranially at the cisterna magna and in the lumbar 

subarachnoid space in response to bolus injections (Figure 2.3).  

 

Figure 2.3: Demonstration of intracranial pressure changes following a bolus volume 

injection V0  where: Pb is the baseline ICP, Pp is the peak pressure and P2 refers to 

the pressure point on the return trajectory at time t. 

Of particular note in this work, was the introduction of the pressure-volume 

index (PVI). Marmarou confirmed the non-linear relationship between changes in 

craniospinal volume and pressure. However, by plotting changes in volume 
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against the log to the base ten of pressure, a straight-line relationship could be 

defined (Figure 2.4). The slope of this line is termed the PVI and is the notional 

volume required to raise ICP tenfold. Unlike elastance or compliance, the PVI 

characterises the craniospinal volume-pressure relationship over the whole 

physiological range of ICP and can be calculated from: 

 

𝑃𝑉𝐼 = 𝑉
𝑙𝑜𝑔ଵ൬

𝑃
𝑃൰

 
(2.2) 

 

where V0 is the bolus injection volume, Pp is the peak pressure and Pb is the 

baseline ICP. 

 

Figure 2.4: Log10 ICP vs intracranial volume relationship defined by Marmarou(22). 

The pressure volume index (PVI) is the notional volume which when added to the 

craniospinal volume causes a ten-fold rise in ICP. 
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Marmarou's mathematical model developed an improved understanding not only 

of craniospinal elastance but also of the inter-relationships of the static and 

dynamic processess of formation, storage and absorption of CSF. Previously, 

Davson had demonstrated that by withdrawing CSF at the estimated rate of CSF 

production (approximately 0.3 ml/min), it was possible to determine the 

cerebral venous pressure(25). This value could then be substituted into the 

steady-state ICP equation: 

 

𝐼𝐶𝑃 = 𝑃௦௦ + ൫𝐼 × 𝑅൯ (2.3) 

 

where Pssp is sagital sinus pressure, If is CSF formation rate and Ro is CSF outflow 

resistance. Marmarou extended Davson’s work and his general solution for ICP 

allowed the derivation of an equation for CSF outflow resistance based on the 

bolus injection technique (Figure 2.3)(22, 24): 

 

𝑅 = 𝑡 × 𝑃
(𝑃𝑉𝐼)𝑙𝑜𝑔ଵቊ

൫𝑃ଶ/𝑃൯൫𝑃 − 𝑃൯
(𝑃ଶ −𝑃) ቋ

 
(2.4) 

 

In TBI management, it is useful to know CSF outflow resistance when 

determining the aetiology of raised ICP. In general terms, causes of ICH can be 

categorised into "vascular" and "non-vascular" mechanisms. Vascular mechanisms 

include active cerebral vasodilation due to stimuli such as increased arterial 

carbon dioxide levels or decreased CPP with intact pressure autoregulation, 

passive distension of cerebral vessels in the absence of autoregulation or venous 

outflow obstruction. Non-vascular mechanisms include increased brain mass due 

to cerebral edema or an expanding extradural, subdural or intracerebral mass.  

A further non-vascular mechanism is an increase in CSF outflow resistance 

secondary to obstruction of the normal CSF pathway. 

 

The importance of vascular factors and the state of cerebral blood flow (CBF) 

autoregulation as a determinant of craniospinal elastance was shown clearly by 

the work of Gray and Rosner(26, 27). The autoregulation of CBF will be discussed 

later, however, through a series of studies in adult cats, Gray and Rosner 

demonstrated that with CPP levels greater than 50 mm Hg, there was a linear 
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increase in PVI with increasing CPP.  Similarly, with CPPs below 50 mmHg, 

further reduction in CPP was also associated with increased PVI, as well as 

reduced CBF.  This work illustrated that the PVI is a complex function of CPP and 

that the direction of the CPP-PVI relationship is dependent on whether CPP is 

above or below the autoregulatory range for CBF. The importance of the state of 

autoregulation on PVI has been supported recently by Lavinio et al(28). In a 

series of brain injured patients admitted to the intensive care unit (ICU), PVI 

results were significantly different if a transcranial Doppler (TCD) derived 

assessment of middle cerebral artery (MCA) flow velocity (FV) revealed defective 

cerebral autoregulation.  

 

Despite the potential for providing valuable information on the intracranial 

pressure-volume relationship, the PVI is not routinely measured in clinical 

management of severe TBI. Variability between measurements is high because of 

the difficulty in rapid manual injection at a constant rate.  As a result, an 

average of repeated measures is usually required. In addition, there is an 

infection risk associated with injecting fluid into the subarachnoid space via an 

intraventricular catheter(29-31) and a risk of provoking secondary ICP rises 

following injection as a consequence of vasodilation(32). Thus, an interest in 

deriving estimates of the intracranial pressure-volume relationship indirectly 

through analysis of the ICP waveform has become a research focus. 

 

2.3.4 The ICP Waveform 

The ICP waveform has three consistent peaks that are related to the arterial 

pulse waveform (Figure 2.5), although their exact aetiology is the subject of 

some debate(33). Avezaat and van Eijndhoven systematically studied the ICP 

waveform pulse amplitude (ICPplse) as a measure of craniospinal elastance(32, 

34). In recognition of the limitations of the PVI related to the need for volume 

injection or withdrawal, they exploited the fact that with each cardiac cycle 

there is a pulsatile increase in cerebral blood volume. This is the equivalent of a 

small intracranial volume injection (dV), and the ICPplse is the pressure change 

(dP) in response to that volume increment and should consequently be directly 

related to the craniospinal elastance (dP/dV) (Figure 2.6). Therefore, as 

craniospinal elastance increases (compliance decreases) the ICPplse should 

increase. The observation that as ICP increases so does the amplitude of the 
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intracranial pressure pulsations is not a new one, having been first described in 

1866 by Leyden(35). 

 

 
Figure 2.5: ICP waveform recorded from a Raumedic intraparenchymal catheter and 

displayed beneath an arterial waveform recorded from the radial artery in a patient 

with TBI. CRAN = intracranial pressure, ABP = arterial blood pressure, P1 = 

percussion wave, P2 = tidal wave, P3 = dicrotic wave. 

The mathematical description of the exponential craniospinal volume-pressure 

relationship was extended by Avezaat and Van Eijndhoven: 

 

𝐼𝐶𝑃 = 𝑃𝑒ாభௗ + 𝑃 (2.5) 

 

where Peq is intracranial equilibrium pressure, E1 is the elastance coefficient and 

determines the elastance at a given pressure and P0 is ICP at zero elastance. The 

term P0 was introduced into the pressure-volume equation primarily for 

mathematical convenience. It allows the volume-pressure curve as a whole to 

shift up or down its axis, which allows for correction of pressure transducer 

reference position and postural changes.  Mathematically, P0 is the pressure at 

zero elastance and must therefore have physiological significance as a 

determinant of the normal intracranial equilibrium pressure (Peq).  Löfgren 

showed that alterations in central venous pressure (CVP) can shift the pressure-
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volume curve up or down its axis(36), which would suggest CVP may be a factor 

determining P0. 

 

Figure 2.6: Craniospinal volume–pressure relationship demonstrating that for the 

same increase in craniospinal volume (dV) the ICP response (dP) increases when 

total craniospinal volume increases. Peq = intracranial equilibrium pressure, Veq = 

intracranial equilibrium volume. Adapted from Avezaat and Van Eijndhoven(32). 

To allow validation of ICPplse as a measure of elastance, Avezaat and Van 

Eijndhoven compared the relationship of ICPplse versus ICP and elastance, as 

invasively measured by volume injection, versus ICP. This was performed in a 

series of 58 patients undergoing ICP monitoring for a variety of neurosurgical 

indications. A linear relationship between both ICPplse and ICP and invasively 

measured elastance and ICP was confirmed, supporting the mono-exponential 

relationship between intracranial volume and ICP. However, the correlation 

between these relationships was weak. 

 

Of particular note in the above study, was the observation that there was a 

disproportionate increase in ICPplse during plateau waves, which was thought 
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secondary to an increase in dV due to defective cerebral vascular muscle tone. 

To explore this phenomenon further, they monitored ICPplse while manipulating 

ICP in adult dogs by inflating an epidural balloon. They found the ICPplse 

increased linearly with ICP up until a pressure of around 60 mmHg (Figure 2.7). 

At this pressure a breakpoint occurred and the ICPplse increased more rapidly 

with increasing ICP. It was postulated that the breakpoint marked the loss of 

CBF autoregulation, which will be dealt with in more detail below.  

 

Figure 2.7: ICPplse plotted against ICP, demonstrating a direct linear relationship. A 

breakpoint occurs at an ICP of approximately 60 mmHg where the slope of the 

relationship increases. Adapted from Avezaat and van Eijndhoven(32). 

The major limitation of using ICPplse as a measure of craniospinal elastance 

(dP/dV) is the need to assume that the volume of pulsatile blood (dV) is 

constant. This is unlikely to be the case in severe brain injury because of the 

associated cardiovascular complications. Therefore, the clinical utility of this 

technique is limited unless the pulsatile blood volume can be controlled for.  
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2.3.5 Cerebral Autoregulation 

2.3.5.1 Principles of Cerebral Autoregulation 

As suggested earlier, one of the principle clinical reasons to monitor ICP is to 

allow calculation of cerebral perfusion pressure. This is useful because, in 

theory, maintenance of a CPP within the limits of cerebral autoregulation will 

result in maintenance of adequate cerebral blood flow to meet the metabolic 

demands of the brain(37). Regulation of flow is achieved by active dilation and 

constriction of cerebral arterioles in response to changes of CPP and is 

illustrated in Figure 2.8. A number of physiological mechanisms are known to be 

involved in this process and Hamner and Tan have recently quantified the 

relative contributions of sympathetic, cholinergic and myogenic 

mechanisms(38). By measuring CBF while manipulating CPP, and utilising 

pharmacological blockade of the three mechanisms, they were able to 

demonstrate the effect that each had on cerebral autoregulation in healthy 

volunteers. Of note, they found that 38% of the pressure-flow relationship was 

unexplained by these mechanisms, implying that others must also be important. 

 

The physiological range of autoregulation, is regarded as 50 to 150 mmHg in 

healthy adults(37). When CPP is below the lower limit of the autoregulatory 

range, vessels within the arterial-arteriolar bed tend to passively vasoconstrict. 

Conversely, when CPP is above the upper limit, passive vasodilation occurs. 

Using measures of CBF including intra-arterial xenon clearance(39) and 

transcranial Doppler flow velocity of the MCA(40), it has been demonstrated that 

disordered cerebral autoregulation occurs after severe TBI and is associated with 

worse outcome. 
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Figure 2.8: Illustration of the maintenance of cerebral blood flow across a range of 

cerebral perfusion pressures.  

2.3.5.2 Mathematical Models of Autoregulation 

As discussed above, there is an extensive literature on the mathematical 

modelling of ICP dynamics. Several of these models incorporate descriptions of 

cerebral autoregulation. The models can be primarily physiology based, and aim 

to improve our understanding of the interaction between ICP dynamics and 

autoregulation, or they can have a more statistical basis and aim to provide an 

index of the state of autoregulation. Examples of each type of model shall be 

considered in turn below.  

 

2.3.5.3 Physiological Models of Autoregulation 

Ursino and Lodi published a simplified mathematical model of the interaction 

between ICP and cerebral haemodynamics that is a cut down version of Ursino’s 

earlier work(41-43). The model is a two compartment model which incorcopates 

the hemodynamics of the arterial-arteriolar cerebrovascular bed, CSF production 

and reabsorption processes, the pressure-volume relationship of the craniospinal 

compartment, and a Starling resistor mechanism for the cerebral veins (Figure 
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2.9). Importantly, it includes a parameter to account for the maximum 

autoregulatory gain. Using this model in a series of 20 patients with severe TBI, 

Ursino et al were able to classify the state of cerebral autoregulation and 

predict the response of ICP to PVI testing(42). 

 

 
 

Figure 2.9: Reproduction of the Electrical Equivalence Circuit of the Ursino 

Model(43). Capacitors are used to represent physiological compartments, resistors 

restriction to flow of blood or CSF and diodes unidirectional flow. CBF (q) enters the 

intracranial space at systemic arterial pressure (Pa). It is subject to arterial 

resistance (Ra) and the cerebrovascular bed has some storage capacity (Ca). CBF is 

then through proximal (Rpv) and distal (Rdv) venous resistance. Venous pressure (Pv) 

is assumed to equal ICP (PICP). PICP is dependent upon the volume stored in 

intracranial compliance (CIC). This is dependent upon blood volume in Ca, CSF inflow 

(qf) through inflow resistance (Rf) and CSF outflow (qo) through outflow resistance 

(Ro), which is itself dependent upon venous sinus pressure (Pvs). The system can be 

disturbed by mock CSF injection (Ii). 

Czosnyka has also proposed compartment model of CBF and CSF circulation(44). 

It is a three compartment model that consists of two vascular storage 

compartments (arterial and venous) and one CSF storage compartment (Figure 

2.10). Again, this model is able to simulate the state of autoregulation. Using 

data taken from 82 patients admitted to ICU with moderate and severe TBI, 

comparison was made between measured clinical responses and simulated model 

responses to events such carotid artery compression, systemic arterial 
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hypotension and ICH. The mathematical modelling results were found to be 

helpful with interpretation of the clinical phenomena. In particular, the model 

demonstrated that the correlation between arterial blood pressure (ABP) and ICP 

is dependent on the state of autoregulation. Czosnyka exploited this fact in 

development of the pressure reactivity index (PRx), which will be discussed in 

the following section.  

 

 
 

Figure 2.10: Reproduction of the Electrical Equivalent Circuit of the Czosnyka 

model(44). Capacitors are used to represent physiological compartments and 

resistors restriction to flow of blood or CSF. The model illustrates the presence of 

three storage compartments (Ca = compliance of the great cerebral arteries, Cv= 

compliance of capillaries and small veins, Ci = compliance of the CSF containers). 

Other parameters are arterial blood pressure (ABP), cerebral arterial pressure in the 

small arteries (Pa), pressure in the cortical veins (Pv), ICP (Pi), sagital sinus pressure 

(Pss), resistance of great cerebral arteries (Ra), cerebrovascular resistance (CVR), 

resistance of cortical and bridging veins (Rb), CSF outflow resistance (RCSF) and CSF 

secretion (If).  



 

 

21 
An example of a model bridging the gap between physiological and more 

statistical or data driven models of autoregulation is provided by Daley et al(45). 

The high frequencies of cerebrovascular pressure transmission of ABP to ICP are 

reduced by vasoconstriction and increased by vasodilation. The highest modal 

frequency (HMF) at which energy is transferred from ABP to ICP can be 

calculated from digitised ABP and ICP waveforms. Pairs of ABP and ICP values 

are processed using an autoregressive moving average (ARMAX) technique to 

numerically define a difference equation representing the change of ICP relative 

to ABP at 4 millisecond sampling epochs. The difference equation can be 

converted to a continuous description of cerebrovascular pressure transmission. 

The constants of this continuous model can then be used to determine HMF. 

 

In a piglet model of raised ICP it was found that when cerebral autoregulation 

was intact (as assessed by measurement of pial artery diameter), a rise in CPP 

led to a decrease in HMF.  In contrast, when there was autoregulatory 

impairment, a rise in CPP was met with an increase in HMF (Figure 2.11). Similar 

results have been seen in patients admitted to ICU with severe TBI(46). 
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Figure 2.11: Examples of the relationships between HMF and CPP during challenge 

with norepinephrine before and after fluid percussion injury (FPI). A) Before FPI (in 

blue): challenge with norepinephrine resulted in a response consistent with active 

vasoconstriction with a negative correlation value (R = −0.77) and negative slope 

(m) of the regression line (m = −0.317 Hz/mm Hg) between HMF and CPP were 

demonstrated. B) After FPI (in red): challenge with norepinephrine resulted in a 

response consistent with passive vasodilation with a positive correlation value (R = 

0.34) and positive slope of regression line (m = 0.325). Adapted from Daley et 

al(45). 

2.3.5.4 Data Driven Indices of Cerebral Autoregulation 

The most systematically investigated of the statistical approaches to 

autoregulatory assessment, using ICP as an input parameter, is the Pressure 

Reactivity Index (PRx) described by Czosnyka et al(47). It is based on the 

hypothesis that naturally occurring slow oscillations of arterial blood pressure 

can be used to evaluate the cerebrovascular reactivity. In theory, when pressure 

reactivity is intact, an increase in ABP would result in cerebral vasoconstriction 

and a reduction in ICP (negative PRx). Conversely, when pressure reactivity is 

absent, an increase in ABP would result in a passive rise in ICP (positive PRx). 
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Pressure reactivity has a complex relationship with cerebral autoregulation 

rather than the expressions being analogous. 

 

The PRx is a moving correlation coefficient between 40 consecutive samples of 

values for ABP and ICP averaged over a period of five seconds. By employing this 

averaging interval, most of the frequency changes above 0.2 Hz in the ABP and 

ICP recordings are filtered out. In addition, Nyquist’s sampling theorem dictates 

that the highest frequency that can be represented by a signal sampled every 

five seconds is 0.1 Hz or 6 oscillations per minute. As a result, the dynamical 

system relationship between ABP and ICP cannot be precisely defined by PRx. 

 

Nevertheless, PRx has been found to be a very useful tool in clinical research. In 

TBI it has been demonstrated to provide a reliable index of cerebral 

autoregulation as validated by TCD(47) and PET(48) derived measurements. 

Clinical observations show that the PRx is high both during the occurrence of 

plateau waves and also during refractory raised ICP(49). In addition, the PRx has 

been used to guide proposed therapies and calculation of an “optimal CPP” for 

the management of patients with TBI(50). 

 

2.3.5.5 Comparison of Models of Cerebral Autoregulation 

Despite illustrating a number of the approaches that can be taken, this is by no 

means an exhaustive list of models of CBF autoregulation. It is not clear which 

approach is most clinically practical or useful. The models take different input 

parameters and yield different output indices, thus making comparison difficult.  

In an attempt to address this issue, Shaw et al re-worked and normalized three 

of the models so that a fair evaluation could be made on a standardized dataset 

of ABP, ICP and MCA flow velocity readings taken from piglets pre and post fluid 

percussion injury(51, 52). The state of autoregulation predicted by the models 

could then be compared to changes in pial artery diameter as a direct measure 

of autoregulation. One of the interesting conclusions from this work was that 

before application of a number of optimization approaches, none of the models 

performed particularly well. Overall, Ursino’s physiological model performed 

best and after optimization of the data driven models, Daley’s HMF 

autoregulatory index performed marginally better than Czosnyka’s PrX. This 

work is limited by the use of only one small dataset for comparison. What is 
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certain, however, is that further studies comparing autoregulatory methods and 

optimization approaches are warranted before widespread clinical adoption of a 

standarised autoregulation model is possible.  

 

In recognition of this challenge, an international group of those working in both 

experimental and clinical autoregulation research have setup a new consortium 

called the “Cerebral AutoRegulation Network” or CAR-Net(53). 

 

2.4 Current Controversies 

2.4.1 Should ICP be Monitored in Severe TBI? 

Monitoring of ICP has become a standard of care in severe TBI and its use is 

supported by internationally applied guidelines. The Brain Trauma Foundation 

makes a level IIb recomendation that patients with severe TBI should be 

managed using information from ICP monitoring to reduce in-hospital and 2-

week post-injury mortality(54). Further, Treating ICP >22 mm Hg is 

recommended because values above this level are associated with increased 

mortality.  

 

The evidence for and against ICP monitoring in TBI has been appraised in several 

excellent reviews(55-57). Supporting the use of ICP monitoring are retrospective 

comparisons of historical cohorts at the same centre suggesting that protocols 

incorporating ICP monitoring improve outcome(58, 59). Similarly, there has been 

an association between centres monitoring ICP more frequently and better 

outcome(60). In contrast, a retrospective comparison of 2 trauma centres 

revealed an increase in therapy levels without an improvement in outcome in 

the centre that monitored ICP(61).  

 

On the basis of the wealth of conflicting evidence, there was demand for a 

randomised controlled trial (RCT) to assess the impact of ICP monitoring on 

clinical outcomes. An RCT of 324 patients with severe TBI was subsequently 

performed in Latin America(13). Patients were assigned to protocolised therapy 

directed by either ICP monitoring or clinical examination and imaging. There was 

no difference between groups in the primary outcome of a composite of survival 
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time, impaired consciousness, and functional status at 3 months and 6 months 

and neuro-psychological status at 6 months.  

 

This study has been subject to extensive discussion and editorial review(62-65) 

including by the lead investigator(66). Irrespective of the applicability of the 

findings to the routine practice of ICP monitoring in severe TBI, the results 

certainly strengthen the argument for more clearly defining the use of ICP 

targeting strategies as part of an individualised and multimodal approach to this 

patient group. 

 

2.4.2 What Modality Should be Used to Monitor ICP? 

2.4.2.1 Introduction 

The two techniques most commonly used in clinical practice to monitor ICP are 

via an intraventricular or intraparenchymal catheter with a microtransducer 

system. Both of these techniques are invasive and are thus associated with 

complications such as haemorrhage and infection. For this reason, significant 

research effort has been directed towards development of a non-invasive 

method to measure ICP.  

 

2.4.2.2 Intraventricular Catheter 

Following Lundberg’s description of the use of intraventricular catheters for the 

continuous measurement of CSF pressure(16), the technique has remained the 

gold standard for ICP monitoring(67). It is performed by inserting a catheter into 

either lateral ventricle through a frontal burr hole. In 1960, Lundberg was 

already using electronic measurement equipment by connecting the ventricular 

cannula via a strain gauge transducer to a potentiometer recorder. In modern 

practice, the ventricular catheter can similarly be connected to an external 

strain gauge or the ICP waveform can be transduced via fibreoptic or micro 

strain gauges within the catheter itself. 

 

An advantage of measuring ICP using an intraventricular catheter is the 

opportunity to perform drainage of CSF as an ICP lowering therapy. It is also 

possible to recalibrate the monitor while in situ and thus retain accuracy for 

several days of monitoring. However, as suggested above, the technique is not 

without risk. It can be technically difficult in the case of ventricular effacement 
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or midline shift. There is a risk of CSF infection but this can be kept to as low as 

10% with a “Bundle” based approach to care(68). The incidence of haemorrhage 

following ventriculostomy is around 1%, although the number requiring surgical 

evacuation is likely to be lower(67). 

 

2.4.2.3 Intraparenchymal Catheter 

In cases where intraventricular ICP monitoring is not possible, or in many centres 

as the preferred technique, an intraparenchymal device can be placed. The 

principle difference with the intraparenchymal devices is the inability to 

recalibrate them following insertion with the consequent problem of zero drift. 

Bench testing of devices using both fibreoptic tips (Camino OLM ICP monitor; 

Camino Laboratories, San Diego, CA) and micro strain gauges (Codman 

Microsensor ICP Transducer; Codman & Shurtlef Inc., Randolph, MA) have shown 

24 hour zero drift of <0.8 mmHg(69). Similarly, laboratory testing of an 

intraparenchymal device incorporating a micro strain gauge with complete 

Wheatstone bridge circuit incorporated into the tip (Raumedic AG, Helmbrechts, 

Germany), demonstrated a mean zero drift of 0.6 mmHg at 5 days(70). However, 

in the more demanding clinical environment, a multicentre evaluation concluded 

that the zero drift rate remained a concern and catheter performance was 

similar that of other manufacturers(71). 

 

Intraparenchymal ICP monitoring devices are typically placed via a small burr 

hole into the white mater of the non-dominant frontal hemisphere. These 

devices measure a compartmentalised local pressure and significant 

supratentorial pressure gradients have been demonstrated between monitoring 

ipsi and and contralateral to the side of focal haematomas(72). 

 

2.4.3 Non-invasive ICP Monitoring 

For a non-invasive measure of ICP to replace the commonly used invasive 

measures above it must provide an accurate absolute measure of ICP that can be 

performed continuously at the bedside. There is no current technique that 

satisfies these criteria. An in depth review of all of the available technologies is 

outwith the scope of this article and has been covered in detail elsewhere(73-

75). Techniques considered include imaging based studies using CT and magnetic 

resonance imaging (MRI), transcranial Doppler sonography (TCD), near-infrared 



 

 

27 
spectroscopy (NIRS), tympanic membrane displacement (TMD), visual-evoked 

potentials (VEPs), measurements of optic nerve sheath diameter (ONSD) and 

other measurements of the optic nerve, retina and pupil. Of these, approaches 

using TCD and ONSD have perhaps received the most clinical interest. 

 

Using low frequency TCD, it is possible to measure flow velocity in the middle 

cerebral artery (MCA)(76). Several authors have published equations using the 

MCA flow velocity metrics of peak systolic velocity (PSV), mean flow velocity 

(mFV), end diastolic velocity (EDV) and pulsatility index (PI, PSV-EDV/mFV) to 

estimate ICP and CPP.  

 

Schmidtt et al examined 25 patients admitted with severe TBI and calculated 

non-invasive CPP (nCPP) as MAP x EDV/mFV +14 mmHg(77). For these patients, 

81% of 1 minute averages of nCPP (n = 12 275) were different from invasively 

measured CPP (iCPP) by <10 mm Hg. In 81 brain injured patients, including 21 

with TBI, Bellner et al calculated non-invasive ICP (nICP) as 10.93 x PI – 1.28(78). 

Bland and Altman analysis of all measurements (n = 658) revealed that the 

difference between nICP and invasively measured ICP was less than 4.2 mmHg 

for 95% of measurements. Edouard et al calculated nCPP as [mFV/(mFV-EDV)] x 

(MAP-DAP) in patients with severe TBI and bilateral injury(79). In 10 patients, 

repeated measurements were made during their clinical course (n = 89) and a 

significant correlation was found between nCPP and iCPP. However, in a further 

10 patients in whom hypercapnoea was induced, the strength of this correlation 

was reduced. 

 

The performance of the above three equations in estimating ICP was compared 

in 45 patients with severe TBI by Brandi et al(80). Under standardised 

conditions, including continuous sedation, normocapnoea and normothermia, 

daily nICP measurements were compared to ICP measured using an 

intraparenchymal device. On the basis of Bland and Altman analysis, the authors 

concluded that the equation by Bellner et al(78) was superior in assessing nICP. 

However, as has been noted elsewhere(55), the Bellner equation failed to 

predict all cases of ICH in this series and is therefore not likely to be clinically 

useful as a screening test in TBI. 
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Like TCD measurements, assessment of ONSD using ultrasound potentially 

provides a simple bedside screening test for ICH in TBI. The technique exploits 

the fact that the optic nerve is part of the central nervous system and therefore, 

a rise in ICP will be transmitted through the CSF surrounding the nerve. Several 

studies comparing ultrasound derived ONSD assessment to iICP(81-86) have been 

included in a recent meta-analysis(87). This was limited by the fact that it 

included only 231 patients, 89 of whom had suffered TBI. However, using the 

ONSD thresholds reported in the individual studies, the pooled sensitivity and 

specificity to detect ICH were 0.9 and 0.85 respectively. Dubourg et al are now 

collecting data for an individual patient data meta-analysis with the objective of 

defining the cutoff value for ultrasound derived ONSD in the detection of 

ICH(88). 

 

2.4.4 Should ICP or CPP be the Target? 

Whatever modality is chosen to monitor ICP in severe TBI, the clinician must 

then decide whether to primarily target therapy at attempting to optimise CPP 

or lower ICP.  CPP oriented therapy, as proposed by Rosner et al(89), requires 

pressure autoregulation and the ability to manipulate CPP within the 

autoregulatory range.  During intact pressure regulation, increases of CPP cause 

constriction of the arterial-arteriolar vascular bed and lowering of ICP by a 

reduction in cerebral blood volume.  In addition, the result ing reduction of pre- 

and post-capillary pressure decreases fluid filtration and increases absorption, 

thus reducing brain oedema. However, the application of CPP oriented therapy 

when autoregulation has been lost may result in an imbalance of Starling forces 

at the capillaries leading to increased net fluid filtration and further brain injury 

by increased production of vasogenic oedema.  

 

Avoiding vasogenic oedema is one of the underlying tennets of the “Lund” 

approach to management of severe TBI based on lowering ICP(90, 91). Asgeirsson 

et al, working at the University Hospital of Lund, described a protocol aimed at 

inducing transcapillary fluid absorption through reduction of hydrostatic 

capillary pressure and preservation of normal colloid osmotic pressure. This 

included pharmacological interventions such as the reduction of systemic 

hypertension with metoprolol and clonidine, and precapillary vasoconstriction 

with dihydroergotamine. 
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In an attempt to determine whether an ICP or CPP based approach was 

preferable, Roberston et al conducted an RCT in 189 patients admitted with 

severe TBI(92). Patients were randomised to an ICP based protocol or a CBF 

based protocol. The major differences between the protocols were the CPP 

targets (>50 mmHg in the ICP group and >70 in the CBF group) and the option to 

treat ICH with hyperventilation in the ICP group. In terms of the primary 

outcome of this study, cerebral ischaemia as measured by jugular venous 

desaturations, the CBF based protocol was associated with a lower risk of 

ischaemia. However, this did not translate into improved neurological outcome 

and indeed was associated with an increased frequency of systemic 

complications such as adult respiratory distress syndrome (ARDS).   

  

It is likely that the choice of ICP or CPP based approach to ICU management of 

severe TBI should be made on an individual patient basis. For this to be possible, 

the state of autoregulation needs to be assessed. 

 

Support for the clinical utility of a pressure reactivity index has been provided 

by Howells et al(93). The approach of two neurosurgical ICUs to ICP management 

in TBI was compared using a PRx based index, averaged over many hours per 

day, and a machine learning Bayesian Neural Network (BANN) model, which 

predicted the probability of good or bad clinical outcome. In one centre, the 

predominant management approach was CPP targeted therapy and in the other, 

the approach was ICP targeted therapy.  The model showed  that not only was 

pressure reactivity related to clinical outcome but also that it’s relationship to 

outcome was management approach dependant (Figure 2.12).  From these data, 

a principally CPP targeted approach was more successful when pressure 

reactivity was intact, while a principally ICP targeted approach was more 

successful when pressure reactivity was impaired. Of course, there could be 

other factors influencing clinical outcome that were not considered in the 

analysis. Nevertheless it is compelling evidence for what appears to be common 

sense: a management strategy that considers the brains ability to regulate its 
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blood flow is more successful than one that does not.

 
Figure 2.12: Representation of BANN generated probability distribution plots for the 

mean likelihood of a favourable clinical outcome for patient populations managed in 

two different centres. In these data, the optimal point at which to switch from one 

treatment strategy to the other in a given patient is at an MABP/ICP trend with a 

slope of approximately 0.13. Adapted from Howells et al(93). 

2.5 Future Directions 

2.5.1 Introduction 

The field of ICP research is a wide ranging one and, to date, has been the 

subject of 16 international symposia embracing such diverse disciplines as 

neurosurgery, intensive care, anaesthesia, radiology, biophysics, electronic and 

mechanical engineering, mathematics and computer science(94). This 

multidisciplinary and collaborative approach is highlighted by research groups 

such as International Mission for Prognosis and Analysis of Clinical Trials in TBI 

(IMPACT)(95), Brain Monitoring with Information Technology (BrainIT)(96) and 

the recently funded CENTER-TBI project(97).  

 

At present, there is no level 1 evidence to support the targeting of a specific ICP 

or CPP using clinical interventions. Indeed the recently reported RESCUEicp 

study, which evaluated the role of decompressive craniectomy in treatment of 
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uncontrollable ICH, concluded that the rates of good recovery were not 

improved by the intervention(98). Similarly Eurotherm3235, which appraised the 

role of targeted temperature therapy (32 to 35qC) for the management of ICH, 

suggested that outcomes were worse with hypothermia than with standard care 

alone(99). 

 

In the face of these negative results, there is considerable effort to extract more 

information, rather than simply a generic threshold value, from the ICP signal 

and use this to provide patient specific targets and to forecast secondary ICP 

insults. In addition, there is ongoing effort to develop novel non-invasive 

techniques to measure ICP and thus widen its clinical application. Some key 

areas of current research shall be discussed below.  

 

2.5.2 Individualised ICP and CPP Targets 

As an alternative to using a universal CPP threshold for all TBI patients, a more 

dynamic patient tailored CPP target, based upon the autoregulation capacity of 

the cerebral vasculature, has been proposed. In retrospective analysis, Steiner 

et al(50) demonstrated that by plotting PRx against CPP for the entire 

monitoring period, a “U-shaped” curve could be produced in about 60% of 

patients. The CPP corresponding to the minimum PRx was taken to represent the 

optimal CPP (CPPopt) for each patient. Patients who were managed with CPPs 

closer to CPPopt were more likely to have a good outcome. 

 

The feasibility of using PRx to prospectively calculate CPPopt in TBI patients in a 

clinical environment has subsequently been demonstrated by Aries et al(100). 

Using a four hour moving window, updated every minute, CPPopt could be 

calculated for 55% of the monitoring period. Again, patients were more likely to 

have a good outcome if their actual CPP deviated less from CPPopt. 

 

In similar work, Lazaridis et al(101) have used PRx to identify patient specific 

ICP thresholds in TBI. By plotting PRx against ICP for the entire monitoring 

period, the threshold ICP was taken to be that at which the PRx was consistently 

>0.2. It was possible to calculate a threshold ICP in 68% of patients. Time spent 

above an individually calculated ICP threshold was more strongly predictive of 
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mortality than using a generic threshold of 20 or 25 mmHg. This further supports 

the concept of patient specific targets of ICP or CPP in the management of TBI. 

 

However, calculation of PRx and most other measures of autoregulation require 

high frequency data (> 50 Hz) sampling.  Capturing and processing this data 

frequency is not routine in many NICUs.  Consequently, Depretiere et al have 

developed a new index of cerebrovascular reactivity that requires only minute 

by minute data sampling(102). Known as LAx, the index is the moving median of 

minute-by-minute ICP/MAP correlation coefficients over different time intervals 

(3-120 min). They demonstated that not only does it correlate with PRx and GOS 

but also is able to produce a CPPopt recommendation. DATACAR (Dynamic 

Adaptive Target of Cerebral Autoregulation) combines different LAx values and 

time windows in a weighted manner to issue a CPPopt recommendation. They 

observed significant differences between PRx-based and LAx-based CPPopts. 

DATACAR was able to issue a CPPopt recommendation in 92% of monitoring time, 

as opposed to 44% for PRx-based CPPopt.   

 

Certainly, a method for continuous and robust determination of a patient’s 

optimal CPP, that can work with normal NICU data capture rates, is an attractive 

concept. A prospective study comparing a number of these indices is warranted. 

These developments show clearly the benefits possible through the combination 

of sharing and analysis of large ICU datasets with the development and 

application of mathematical models.  

 

2.5.3 Prediction of Secondary ICP Insults 

An interesting approach to forecasting ICH is based on preceding changes to 

waveform morphology. In recognition that most clinical decision making only 

takes into account the mean ICP, Hu and colleagues have proposed a technique 

for automatically extracting useful information from the ICP waveform(103). 

Morphological clustering and analysis of continuous intracranial pressure 

(MOCAIP) detects the P1, P2 and P3 peaks within the ICP waveform. The 

technique was developed and validated using an annotated database of ICP 

waveforms collected from 66 patients admitted to an adult hydrocephalus 

centre. For every 3 minute section of ICP recording, the MOCAIP algorithm 

performs beat-by-beat pulse detection followed by pulse clustering to generate 
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a dominant ICP pulse. Artifactual pulses are removed prior to the detection and 

optimal designation of pulse peaks. This process has been generalized as 

MOCAIP++ and validated on a larger dataset collected from 128 patients(104). 

 

The application of MOCAIP to ICP monitoring in TBI has been demonstrated(105). 

In a dataset from 66 patients, including 23 admitted with TBI, ICP pulse 

morphological metrics were correlated with low CBF as measured by an 

intravenous 133Xenon clearance technique. Of particular interest, was the 

association of an elevated P3 peak and low CBF. However, in this study, the 

correlation of pulse morphological metrics to low CBF was less in the TBI 

patients than in those admitted with other diagnoses such as subarachnoid 

haemorrhage. 

 

In the first efforts to use MOCAIP analysis to forecast episodes of elevated ICP, 

an ICP waveform dataset recorded from 34 patients presenting with suspected 

idiopathic intracranial hypertension, CSF shunts and Chiari malformation was 

evaluated(106). Using 24 metrics of the ICP waveform it was possible to classify 

recording segments as either control or pre-IH prior to episodes of elevation of 

ICP to >20 mmHg over a period of at least 20 minutes. This was done with a 

sensitivity of 37% and 21% and specificity of 99% and 99% for 5 and 20 minutes 

respectively. These results are encouraging but may not generalise to TBI 

because of the difference in underlying pathophysiological mechanisms. 

 

An alternative approach to prediction of ICH, which has been developed using 

data collected from patients admitted to NICU with TBI, is through the use of 

Gaussian processes(107). Using 4 hour windows of minute-by-minute recordings 

of ICP and MAP, Guiza et al generated over 1000 potential dynamic predictors 

from which a subset of 73 was selected. These included median values for non-

overlapping time intervals, measures of variability, clustering of values based on 

their trajectory, frequency domain analysis and correlation of ICP with MAP. 

Gaussian processes are a machine learning algorithm that generate a 

probabilistic prediction based on the known outcomes of similar data instances. 

The model was developed in a cohort of 178 patients to predict 30 minutes in 

advance of an elevation of ICP to >30 mmHg over a period of at least 10 



 

 

34 
minutes. It was then evaluated in a further cohort of 61 patients achieving a 

sensitivity of 82% and specificity of 75%. 

 

Future predictive models may incorporate both ICP waveform features and 

dynamic predictors to optimise their predictive capacity. The value of these 

predictions would then need to be assessed by providing them to clinicians and 

formally assessing the impact on patient management and outcome. 

 

2.5.4 Innovative Non-Invasive ICP Monitoring 

As suggested above, no methodology in current clinical use provides an accurate 

absolute measure of ICP. A novel technique, which provides an absolute value of 

ICP, has recently been described by Ragauskas et al(108). A two-depth TCD 

device is used to identify the intracranial and extracranial components of the 

ophthalmic artery (IOA and EOA). Following the assumption that the Doppler 

waveform of the IOA is dependent on compression by ICP and that of the EOA by 

externally applied pressure (Pe), a ring cuff is applied to the orbit and 

automatically inflated from 0 to 28 mmHg in 4 mmHg steps. The Pe at which the 

waveforms of the IOA and EOA are identical is taken to represent the ICP. A 

comparison study of this technique to CSF pressure measured by lumbar 

puncture was performed in 62 patients presenting to a neurology clinic, 

including 37 with suspected IIH and 20 with multiple sclerosis. For invasively 

measured CSF pressures in the range of 4 to 24, the non-invasive technique 

achieved a 98% confidence interval for the absolute error of r4 mmHg. 

 

In a study of a similar group of patients, the two-depth TCD technique was 

compared to the ONSD technique in its ability to predict raised CSF pressure as 

measured by LP(109). Using a CSF pressure threshold of 14.7 mmHg, and an 

ONSD cut-off of 5 mm, the two-depth TCD technique outperformed the ONSD 

technique with sensitivities of 0.68 and 0.37 and specificities of 0.84 and 0.59 

respectively.  

 

Further work is required to confirm the safety of the innovative two-depth TCD 

technique in terms of pressure effects on the globe and exposure of the lens to 

Doppler US. The applicability of the technique to the TBI population and across a 

wider range of ICP values has yet to be demonstrated.  
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2.6 Summary of the Current State of Intracranial Pressure 

Monitoring in Traumatic Brain Injury 
Despite the fact that ICP monitoring in TBI has become a standard of care, there 

is no level I evidence to support its use in targeting generic ICP thresholds. 

However, there can be little doubt that investigation of ICP and the intracranial 

pressure-volume relationship has led to an improved understanding of cerebral 

physiology. It is now time to exploit this knowledge and integrate ICP monitoring 

into a multimodality and individualised approach to care. Future RCTs of ICP 

monitoring should utilise autoregulatory assessment to provide patient specific 

thresholds for ICP and CPP. The use of non-invasive monitors of ICP is an 

attractive prospect but not yet supported by the technology.  

 

2.7 Transcranial Bioimpedance Measurement 

2.7.1 Introduction 

A study investigating the relationship between transcranial bioimpedance and 

invasive intracranial pressure measurement in patients with traumatic brain 

injury (BioTBI) is presented in the following three chapters of this thesis. It is 

therefore necessary to consider the principles of transcranial bioimpedance 

(TCB) measurement and the rationale for its consideration as a surrogate 

measure of ICP.  

 

As has already been discussed in detail, elevated ICP is associated with poor 

outcome following traumatic brain injury(9) and The Brain Trauma Foundation 

recommends that ICP should be monitored in patients with a severe traumatic 

brain injury(54). ICP is typically measured using invasive pressure monitors that 

are associated with specific complications and can generally only be inserted in 

specialist centres. To provide ICP monitoring to a wider clinical population, 

multiple attempts have been made to develop a non-invasive technique. 

Transcranial bioimpedance measurement was considered to be a potential 

approach to non-invasive ICP monitoring. 
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2.7.2 Fundamentals of Bioelectrical Impedance Analysis 

Bioimpedance is the ability of biological tissue to impede electric current. 

Techniques are available to measure bioimpedance from whole or part of the 

body in a process known as bioelectrical impedance analysis (BIA). The principles 

and methods of BIA have been extensively reviewed by Kyle et al(110) and shall 

be summarised below. 

 

Bioimpedance is the sum of capacitive resistance (or reactance) and resistive 

resistance (simply called resistance). The capacitive effect arises principally 

from charge distributed across cell membranes (acting like the plates of a 

capacitor) and the resistance from the conductance of current through the ionic 

solutions in extra and intracellular fluid paths. Electric current of low frequency 

will tend to be conducted through the extracellular space when the cell 

membrane is acting as an insulator, whereas electric current of high frequency 

will be conducted through both the extra and intracellular spaces. An electrical 

circuit model of the two current paths is shown in Figure 2.13. 

 

Figure 2.13: A parallel electrical circuit model demonstrating extra and intracellular 

current paths where R(ECW) is resistance through extracellular water, Xc is impedance 

from the cell membrane and R(ICW) is resistance through intracellular water. 

The equation relating the different factors is: 

 

𝑍 = 𝑅+ 𝑖𝑋 (2.6) 

 

where Z is overall impedance, R  is resistance and iXc is reactance. The 

magnitude of bioimpedance can be calculated by: 
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|𝑍| = ൫𝑅ଶ + 𝑖𝑋ଶ൯
ଵ
ଶ 

(2.7) 

    

In whole body measurements, two cutaneous electrodes are placed on the 

patient’s foot and another two on the ipsilateral hand. Resistance is proportional 

to length and inversely proportional to cross-sectional area of the conducting 

body (Figure 2.14). This means that whole body impedance measurements are 

corrected according to height (a surrogate of path length) for use in body 

composition analysis. 

 

Figure 2.14: Illustration of the cylinder model relating resistance to geometry. 

2.7.3 Bioelectrical Spectroscopy  

Bioimpedance measurement obtained using devices capable of delivering a 

broad band of frequencies (typically around 1 to 1000 kHz) is known as 

bioelectrical spectroscopy. Under these circumstances it is possible to plot the 

reactance and resistance measurements made at each frequency to construct a 

Cole-Cole plot (Figure 2.15), (111). Using the impedance values extracted from 

the Cole-Cole plot, body composition analysis can subsequently be performed. 

Equations exist to relate resistance, reactance and impedance at a variety of 

frequencies to fat free mass, body fat, total body water, extracellular water and 

intracellular water. 
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Figure 2.15: A graphical representation of a Cole-Cole plot with reactance plotted 

against resistance, where R0 represents resistance measured with a direct current 

and Rinf the resistance measured with an infinitely high frequency alternating 

current. Zc is the impedance measured at maximum reactance and T is the phase 

angle. 

In body composition analysis, the assumptions of homogeneous composition and 

uniform distribution of current across a fixed cross-sectional area are required. 

These assumptions are reasonable in healthy subjects, but are unlikely to apply 

in the context of disease. In this context, the phase angle has been the most 

extensively studied index of BIA. It is calculated as: 

 

𝜃 = 𝑡𝑎𝑛ିଵ + ൬𝑋𝑅 ൰ (2.8) 

 

where T is the phase angle (PhA). Calculation of PhA is typically performed at 50 

Hz in single frequency BIA and at Zc in bioelectrical spectroscopy. Higher values 

of PhA are thought to represent higher cellularity and efficient cell membrane 

and intracellular functioning(112). Lower phase angles have been correlated 
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with poor outcome and markers of increased disease severity in a number of 

pathological processes including renal failure(113, 114), cardiac failure(115, 

116) and several malignancies(117, 118). 

 

2.7.4 Bioimpedance Measurements of the Brain 

Application of bioimpedance measurements to the human brain is not a new 

development. Indeed rheoencephalography (REG), or electrical impedance 

measurement of brain circulation, has been investigated for several decades 

without transitioning into clinical practice(119). The principle of REG is based on 

the assumption that blood is a better conductor of electrical current than brain 

parenchyma. Therefore as arterial blood flows into the cranial cavity, there is a 

pulsatile reduction in continuously measured bioimpedance. 

 

As well as REG there have been several studies using intermittent measures of 

TCB in the detection of brain pathology. In a study of 100 healthy controls and 

50 patients with a variety of brain pathologies, Grasso et al made TCB 

measurements using a single frequency bioimpedance device(120). The 

pathologies studied were tumours, intraparenchymal haemorrhage and 

hydrocephalus. TCB measurements were made using pairs of cutaneous 

electrodes placed on the closed eyelids and at the base of the occiput. The 

relationship between resistance (R), brain water content (V) and head 

circumference (HC) was modelled as: 

 

𝑉 = 𝐻𝐶ଶ

𝑅  
(2.9) 

 

A significant increase in V was detected between the patients with brain 

pathology and the healthy controls. This supported their hypothesis that TCB 

could be used to detect pathological processes associated with brain oedema 

secondary to both extracellular and intracellular mechanisms. 

 

More recently Liu et al have compared TCB measurements made in 200 healthy 

controls to those made in 78 patients with haemorrhagic stroke and 51 patients 

with ischaemic stroke(121). Cutaneous electrodes were placed in frontal and 

occipital positions and a 50 Hz current applied using their “non-invasive 
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cerebral-edema monitior”. TCB was measured and then converted into a 

“perturbative index”. Unfortunately there are no details of how this index is 

calculated in this paper or related publications using the same device(122-124). 

The authors reported an increased perturbative index measured from the 

pathological side in both haemorrhagic and ischaemic stroke. 

 

Of particular relevance to the BioTBI study, Seonne et al have reported TCB 

measurements made using the same Impedimed SFB7 Bio-impedance 

Spectroscopy Unit (125). In their study of ten patients with ischaemic or 

haemorrhagic stroke, they compared TCB measurements made from each 

cerebral hemisphere using silver EEG electrodes. Nine out of the ten patients 

demonstrated either asymmetry or values outside those measured in control 

patients. It was not possible to differentiate between ischaemic and 

haemorrhagic stroke. 

 

Other authors have investigated the use of TCB measurements in TBI. Harting et 

al used a controlled cortical injury rat model of TBI to demonstrate a difference 

in brain impedance measurement made both post mortem and in vivo between 

sham and injured animals(126). In these experiments the measurements were 

made using bipolar electrodes in direct contact with the brain. Impedance 

measurements were found to correlate with brain water content, supporting the 

theory that bioimpedance could detect cerebral oedema following TBI. 

 

Previous attempts have been made to determine the relationship between TCB 

and ICP. Using a neonatal piglet model of brain hypoxia, Lingwood et al were 

first able to demonstrate that non-invasive TCB measurements correlated well 

with invasive measurements(127). They focussed on the bioimpedance 

parameter of R0 on the basis that the pathophysiology of brain hypoxia was likely 

to lead to intracellular oedema with a consequent reduction in the size of the 

extracellular space. The reduction in the extracellular space would lead to a 

significant increase in the impedance to a direct current. The presumed cerebral 

oedema was also associated with an increase in the invasively measured ICP. 

There was a strong correlation between the change from baseline of the non-

invasive measurements of TCB and ICP in the six animals subjected to severe 

hypoxia (correlation coefficients between 0.72 and 0.97). 
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In subsequent neonatal piglet experiments, Lingwood et al were able to 

demonstrate that the significant changes from baseline of non-invasive TCB 

measurements associated with severe hypoxia correlated well with clinical and 

histological markers of poor neurological outcome(128). They suggested that TCB 

measurements could therefore be used to help in prognosticating the degree of 

neurological impairment following severe perinatal asphyxia. Unfortunately it 

was not possible to confirm the association in a study of 24 human newborns 

with evidence of severe acute intrapartum hypoxia and encephalopathy(129). 

 

Other attempts have been made to explore the relationship between TCB and 

ICP using an animal model. Shaw et al performed a series of experiments in 

sheep, again using the Impedimed SFB7 device(130). TCB measurements were 

made via 21G needles inserted into the scalp on either side of the head. ICP was 

invasively measured with an intraventricular catheter and manipulated via the 

injection of a mock CSF injection to cause a stepwise increase in ICP up to 50 

mmHg. It was demonstrated that when Zc was normalised against a baseline 

value for each animal, there was a clear relationship between the log of ICP and 

the inverse of Zc: 

 

𝐼𝐶𝑃 = 𝑒𝑥𝑝൬ 𝑎
𝑍

+ 𝑏൰ (2.10) 

 

where Znorm is the normalised Zc. In parallel with this animal study, Shaw et al 

performed a study in healthy human volunteers to determine the normal values 

for TCB recorded using transcutaneous electrodes.  

 

In terms of previous work that has investigated TCB measurements of the brain, 

it is finally necessary to mention the evolving technique of electrical impedance 

tomography (EIT)(131).  Using an array of surface electrodes, multiple electrical 

impedance measurements can be made between rotating electrode pairs. 

Advanced signal processing is then required to construct a cross sectional image 

of the object being measured. An adaptation of the technique has been applied 

to a porcine model of traumatic brain injury using a combination of cutaneous 

electrodes and an EIT electrode incorporated onto an intraparenchymal ICP 
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monitoring device(132). As a proof of concept study, it was possible to some 

degree, to detect intracranial injuries in real time. 

 

2.7.5 Postulate 

It is clear that multiple studies have demonstrated a potential role for 

bioimpedance measurements of the brain in clinical practice. Indeed there is 

some evidence from the animal studies above that TCB measurements are 

related to invasively measured ICP. As stated above, development of a reliable 

non-invasive ICP monitoring technique would have wide clinical applicability in 

TBI. It was therefore postulated that TCB measurements could provide an 

estimate of ICP in patients admitted following a TBI.  

 

Following TBI intracranial compliance is dependant upon the degree of 

intracellular swelling and the size of the extra cellular space. Similarly in TCB 

measurement, brain impedance depends upon intracellular swelling and the size 

of the extra cellular space. As there is a well-defined exponential relationship 

between ICP and intracranial compliance, it was proposed that there should also 

be a definable relationship between ICP and TCB.  
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3. Materials and Methods for the BioTBI Study 

3.1 Overview 

This chapter describes in detail the materials and methods for the Relationship 

Between Transcranial Bioimpedance and Invasive Intracranial Pressure 

Measurement in Traumatic Brain Injury Patients (BioTBI) Study. The study 

protocol and related documents are available on request.  

 

3.2 Objective 

The primary objective of this study was to define the relationship between non-

invasive bioelectrical impedance measurements of the brain and skull and 

intracranial pressure (ICP) in traumatic brain injury (TBI) patients. This would 

act as a pilot project to assess the feasibility of transcranial bioimpedance (TCB) 

as a non-invasive estimate of ICP. 

 

3.3 Ethical Approval 

Ethical approval was granted for the study by Scotland A Research Ethics 

Committee following the meeting on 23rd June 2011 and chaired by Dr Ian 

Zealley (Reference Number: 11/AL/0320). The study was sponsored by NHS 

Greater Glasgow and Clyde and supported by funding from The Association of 

Anaesthetists of Great Britain and Ireland/ Anaesthesia via the National Institute 

of Academic Anaesthesia (WKR0-2011-0039). 

 

3.4 Summary of Study Design 

This was a single centre pilot study comparing TCB measurements to invasively 

monitored ICP in patients with TBI. The aim was to enrol 15 patients with a view 

to performing 300 individual TCB measurements.  

 

3.5 Patient Recruitment 

Study participants were prospectively recruited from patients admitted to the 

Neurological Intensive Care Unit (NICU) at the Institute of Neurological Sciences. 
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Included patients were over 16 years of age, admitted with a traumatic brain 

injury and undergoing invasive ICP monitoring as part of their routine clinical 

care. 

Due to the nature of their injuries and ongoing intensive care, patients were 

unable to consent to inclusion in the study. For this reason, the nearest relatives 

were approached on their behalf. The nearest relatives were provided with a 

Relative’s Information Sheet and a verbal description of the study procedure. 

They were allowed time to ask questions and for consideration prior to 

consenting to their relative’s participation in the study.  

 

Patients were excluded from participation in the study if their relative refused 

consent or if there was soft tissue injury preventing application of the TCB 

electrodes. 

 

3.6 Patient Monitoring 

As part of their routine clinical care on the NICU, all participants were 

undergoing measurement of their physiological vital signs through the Philips 

IntelliVue MX700 bedside patient monitor (Philips Healthcare, Netherlands). 

Vital signs recorded included, but were not limited to, pulse oximetry (SpO2), 

end-tidal carbon dioxide (ETCO2), electrocardiogram (ECG), invasive arterial 

blood pressure (IABP) and core temperature.  

 

As stated in the inclusion criteria, all patients were undergoing invasive ICP 

monitoring. This was done through a Neurovent-P catheter-tip pressure sensor 

(Raumedic, Germany). The sensor was typically placed in the intraparenchymal 

compartment through a cranial bolt-housing overlying the frontal cortex. 

Interface to the Philips IntelliVue MX700 was provided by the NPS2 Philips/HP 

adapter cable.  

 

Minute by minute summaries of all vital signs, including ICP, were recorded and 

archived to the local patient management database (Microsoft SQL Server, 

2008). 
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3.7 Study Procedure 

3.7.1 Transcranial Bioimpedance Measurement 

Transcranial bioimpedance measurements were performed using the Impedimed 

SFB7 Bio-impedance Spectroscopy Unit (ImpediMed, Australia). The device is a 

single channel BIA unit that acquires 256 separate measurements between 4 and 

1000kHz. The SFB7 device was connected through application of 3M Red Dot 

Paediatric Monitoring Electrodes (3M, USA) to the scalp. In a previous study of 

healthy volunteers, our group had demonstrated the ease of obtaining TCB 

measurements using this device and have established a normative data set with 

varying electrode position, age and gender(130). From this it was concluded that 

temporal to temporal or frontal to occipital electrode positions were likely to 

give equally reliable data. The temporal to temporal position was anticipated to 

be the easiest to perform in TBI patients and was thus chosen as the primary 

configuration (Figure 3.1). 

 

Following patient recruitment to the study, TCB measurements were made with 

at least one hour intervals so that they could be considered as discrete 

measurements. There was a target of 20 measurements per participant, but this 

was subject to continuation of invasive ICP monitoring and ongoing feasibility of 

TCB measurement. At each measurement time point the device was programmed 

to perform 40 separate TCB recordings. This process took approximately one 

minute and ensured that any variation of instantaneous readings through 

pulsatile changes in either brain or scalp could be accounted for at the analysis 

stage. 
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Figure 3.1: SFB7 device connected with electrodes in the temporal position. An 

identical pair of electrodes are on the opposite side. 

3.7.2 Whole Body Bioimpedance Analysis 

Whole body bioimpedance measurements were anticipated to be an important 

variable when modelling TCB against ICP. To enable this, whole body 

bioelectrical impedance analysis (BIA) was performed six hourly during the study 

period using the SFB7 device and the standard technique.  

 

3.7.3 Waveform Data Capture 

In addition to routine clinical monitoring of participants, high frequency capture 

of physiological vital signs was performed throughout the study period. This was 

achieved by continuously streaming data from the Philips Intellivue MX700 

Medical Interface Bus (MIB) to a Dell Inspiron laptop (Dell Inc., USA) using 

ixTrends software(133). The purpose of this high frequency data capture was to 

allow better inspection of data for artifact and to allow future comparison of 

TCB against features of the ICP waveform. 

 

3.7.4 Additional Clinical Data 

A number of participant variables were recorded in the clinical record form 

(CRF) to allow data stratification for the process of modelling TCB against ICP. 

These variables included age, gender, body weight and height. Additional 

variables extracted from the participants computed tomography scan (CT) of 

their brain for consideration in the modelling process included brain diameter 
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and measurements of soft tissue swelling. To ensure that the population of 

patients studied was an appropriate representation of patients admitted with 

TBI, details of aetiology of TBI, primary diagnosis and any surgical procedures 

were also collected in the clinical record form (CRF). 

 

3.8 Analysis 

3.8.1 Introduction 

As stated in the introduction, data processing and analysis were performed using 

the “R” statistical programming environment(7). Specifically R Studio Version 

0.98.1102 running R Version 3.1.2 (R Core Team, 2014) was used. Individual R 

Packages used for each stage of analysis are detailed in the appropriate 

sections. All data visualisation was done using the package ggplot(134). 

 

3.8.2 Data Preparation 

3.8.2.1 Bioimpedance Data 

TCB and whole body BIA data were downloaded from the SFB7 device using the 

BioImp Body Composition Analysis Software provided with the device. The 

capabilities of this software in terms of Cole-Cole plotting and body composition 

estimates were not used. Instead the downloaded comma separated value (csv) 

files were imported into R for subsequent analysis. An annotated example of an 

SFB7 output file is shown in Figure 3.2. 
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Figure 3.2: Excerpt from a SFB7 data file, which includes header information and 

resistance and reactance measurements across 256 frequencies. 

Manipulation of TCB data into a standardised format for ease of repeatable 

analysis was performed using the packages dplyr(135) and stringr(136). Cole-

Cole plots were then constructed for each TCB and whole body bioimpedance 

measurement using a circle fitting function used in previous work(51). Summary 

values for Zc, R0 and Rinf were created by performing a composite fit using data 

from all of the 40 measurements made at each time point. Data were excluded 
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if the circle fitting function was unable to successfully calculate all of Zc, R0 and 

Rinf. 

 

3.8.2.2 ICP Data 

The ICP data necessary for modelling against TCB data were extracted from the 

high frequency data collected by the ixTrends software. These waveform data 

were stored with a resolution of 128 Hz and were output to a csv file. The 

processing of waveform data was done using techniques developed by Martin 

Shaw as part of a parallel project to which the BioTBI study contributed pilot 

data(137, 138). In brief, the waveform data underwent pulse detection and 

subsequent summarisation to 1 Hz frequency. ICP data were then extracted and 

imported into R. As for TCB data, manipulation of ICP data into a standardised 

format for ease of repeatable analysis was performed using the packages 

dplyr(135) and stringr(136). 

 

In preparation for modelling their relationship, a unique ICP value was needed 

for each TCB measurement. As a pragmatic sample, median ICP was calculated 

for the five minutes following each TCB measurement. 

 

3.8.3 Modelling ICP Using TCB Data 

3.8.3.1 Sample Size 

When calculating the appropriate sample size for the study, the range of ICP was 

assumed to be 0 to 50 mmHg. In the first instance, we expected to detect a 

minimum correlation between ICP and impedance of 0.2 (or 10 mmHg). 

Therefore a sample size of 280 was required to achieve a power of 0.9. We 

anticipated that this number of samples could easily be collected if 15 patients 

were recruited and TCB measurements made every hour for 24 hours. 

 

3.8.3.2 Modelling Process  

Attempts were made to model ICP using both absolute and normalised values of 

Zc and R0. In the animal studies referred to in the introduction, Zc had an inverse 

relationship with ICP, while R0 had a direct relationship(127, 130). An 

unadjusted linear modelling approach was first taken to confirm some degree of 

relationship between TCB and ICP.  
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An adjusted linear modelling approach was subsequently taken to explore which 

patient specific variables could be used to further define the relationship 

between ICP and Zc or R0. Each of the patient variables of gender, age, weight 

and height, along with CT derived measurements of soft tissue swelling and 

brain diameter, as well as whole body bioimpedance measurement and 

temperature, were included in linear models. Patient variables that did not 

significantly contribute to the model were sequentially removed. The simplified 

model was then compared against the original using analysis of deviance testing 

to confirm that they were not significantly different.  

 

The final modelling approach was to use the Akaike information criterion (AIC) in 

backward stepwise regression to select the models with the best balance of 

goodness of fit and low complexity. All modelling was done using the stats 

package in R(7). 
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4 Results for the BioTBI Study 

 

4.1 Overview 

The principle results of the transcranial Bioimpedance in Traumatic Brain Injury 

study are presented. There is first a description of patient demographics and 

measurements made, followed by a description of the attempts to model 

intracranial pressure using transcranial bioimpedance measurements. These 

results were presented in June 2016 at the 16th International Symposium on 

Intracranial Pressure and Neuromonitoring, Boston, Massachusetts. 

 

4.2 Data Collection 

4.2.1 Data Collection Period 

The initial plan for the BioTBI study was to recruit 15 patients to achieve a data 

set of 300 independent TCB measurements. Data were collected over the period 

17/12/2011 to 21/01/2014. TCB data were collected from a total of 11 patients 

during this period. In one of these patients, a technical problem with the 

neurological intensive care unit network led to a failure to store sufficient ICP 

data to model against TCB measurements. Consequently there were 10 patients 

with data suitable for inclusion in the study. 

 

In an audit of admissions to NICU at the Institute of Neurological Sciences in 

2010 there were 17 patients with TBI who underwent ICP monitoring. For this 

reason, it had been felt that recruiting the sample size of 15 patients in a two 

year period would be achievable. There were a number of reasons that meant 

that this was ultimately not the case. These ranged from a higher than expected 

number of relatives refusing consent, the unavailability of relatives to conduct 

the consent process, coincident admission of patients when there was only 

sufficient equipment to recruit one and short ICP monitoring periods meaning 

adequate data collection would not be possible.  
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4.2.2 Patient Demographics 

All patients met the inclusion criteria of age over 16 years, admitted to NICU 

with a traumatic brain injury and were undergoing ICP monitoring as a routine 

part of their clinical care. Table 4.1 summarises the demographic characteristics 

of each of the 10 final participants. There were nine male patients and one 

female and the median age was 51 (29 – 61) years.  

 

ID Gender Age 

(Yrs) 

Aetiology Primary 

Diagnosis 

Hospital Survivor 

001 m 45 Fall ASDH y 

003 m 54 Fall  EDH y 

004 f 61 Fall  EDH y 

005 m 51 Fall ASDH y 

007 m 48 Fall ASDH y 

009 m 59 Fall Contusions y 

010 m 61 Fall Contusions y 

011 m 41 Assault EDH y 

013 m 53 Fall Contusions y 

018 m 29 MVC DAI n 

 
Table 4.1: Demographic summaries for each of the ten patients included in the 

BioTBI study, where MVC = motor vehicle crash, ASDH = acute subdural haematoma, 

EDH = extradural haematoma, DAI = diffuse axonal injury. 

The aetiology of TBI was a fall in eight cases, with one assault and one motor 

vehicle crash. Most patients had several abnormalities identified on their 

admission CT brain scan, but the primary diagnosis was subdural haematoma, 

extradural haematoma or contusions in three cases each, with a single case of 

diffuse axonal injury. Four patients underwent craniotomy for haematoma 

removal prior to the period of TCB measurement. Subsequent to the study 

period, one further patient underwent craniotomy, two underwent burr hole 

drainage of chronic subdural haematoma and a further patient underwent 

insertion of an external ventricular drain followed by decompressive 

craniectomy. The extent of mixed pathology within and between patients is 

likely to have been significant in terms of the ability to model ICP using TCB and 

will be considered in detail later.  
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Nine out of the ten patients survived until discharge from hospital. The median 

length of stay in ICU was 8.6 (4.2 – 18.6) days, while the median length of acute 

hospital stay was 24.6 (16.2 – 143.5) days.  

 

4.2.3 Transcranial Bioimpedance Measurements 

In the ten patients who were ultimately included in the study, 168 valid 

temporal to temporal TCB measurement episodes were available. Preliminary 

Cole-Cole plots could be displayed on the SFB7 device and it was therefore 

possible to reject any clearly invalid measurements and repeat. In some patients 

it was impossible to achieve a valid measurement and the reasons for this will be 

explored in the discussion section. In the first five patients, initial attempts 

were made to measure TCB in alternative electrode positions (for example 

frontal to mastoid). It became clear however, that these measurements could 

often not be made due to the presence of a cervical collar or due to the risk of 

head position changes impacting on ICP. For each of the 168 episodes, there 

were 40 separate TCB measurement sweeps across the frequency spectrum. 

 

The TCB measurements from each measurement episode underwent Cole-Cole 

analysis to fit a single composite curve as a summary measure of the data. An 

example of the Cole-Cole plots for one patient is shown in Figure 4.1 and an 

example of the curve fitting has already been shown in Figure 2.15. 
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Figure 4.1: An example of composite Cole-Cole plots for one patient (ID = 011). 

4.2.4 Whole Body Bioimpedance Measurements 

A total of 39 whole body bioimpedance measurements were made. This 

represented at least one measurement for every six hour period for the patients 

included in the study. As for the TCB measurements, for each of the 39 

episodes, there were 40 separate measurement sweeps across the frequency 

spectrum. 

 

4.2.5 Intracranial Pressure Measurements 

ICP was calculated as a summary measure of two time windows surrounding each 

TCB measurement. The first time window was the five minutes immediately 

following the measurement, when the median value across the study period for 

all patients was 16.3 (9.5 – 28.9) mmHg. Boxplots showing the distribution of ICP 

for each patient are shown in Figure 4.2. The median ICP value using a second 

time window from 15 minutes before to 15 minutes after each TCB measurement 

was 16.2 (9.5 – 29.4) mmHg. The distributions of ICP values for each patient 

were essentially identical between the first and second time windows. For this 

reason, the decision was made to use only the ICP values calculated during the 

first time window during the process of modelling ICP using TCB. 
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Figure 4.2: Boxplots showing the distribution of ICP values measured across the 

study period for each patient. 

4.3 Modelling of ICP Using TCB Data 

4.3.1 Introduction 

A number of modelling approaches were taken in an attempt to find the most 

effective technique to predict ICP using TCB measurements. The results of these 

analyses shall be discussed in turn below. TCB measurements entered the 

models either as the raw measured value or as a value normalised against the 

overall median value for the individual patient. 

 

4.3.2 Unadjusted Linear Models 

ICP was first plotted against measured Zc and normalised Zc to allow visual 

inspection for any obvious relationship (Figure 4.3). From these plots there was 

no clear relationship between TCB and ICP, so the plots were then repeated for 

each individual patient (Figure 4.4). In the absence of any clear visual 

relationship the decision was made to use an unadjusted linear modelling 

approach to explore the relationship between both measured Zc and normalised 



 

 

56 
Zc and ICP. On the basis of the previously discussed sheep study(130), the inverse 

relationship between normalised Zc and the log of ICP was also explored. 

 

On the basis of the previously discussed neonatal piglet study(127), the 

relationship between ICP and R0 was also explored. Combined and individual 

patient plots are displayed in Figures 4.5 and 4.6. Again there was no clear 

relationship between TCB and ICP, so on the basis of the piglet experiment a 

direct relationship between R0 and ICP was assumed. 

 

Figure 4.3: Plot of ICP against measured (A) and normalised (B) Zc for the entire 

study population. 
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Figure 4.4: Plots of ICP against normalised Zc for each patient. 

 

Figure 4.5: Plot of ICP against measured (A) and normalised (B) R0 for the entire 

study population. 
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Figure 4.6: Plots of ICP against normalised R0 for each patient. 

There was no significant relationship between ICP and Zc or R0. There was a 

significant relationship between ICP and normalised Zc (p < 0.001), a significant 

inverse relationship between the log of ICP and normalised Zc (p < 0.01) and a 

significant relationship between ICP and normalised R0 (p < 0.001). The adjusted 

r-squared value for each of these relationships was small (0.09, 0.06 and 0.18 

respectively). Attempts were therefore made to explore the relationship 

between ICP and TCB parameters by adjusting the linear models for patient 

specific variables.  

 

4.3.3 Adjusted Linear Models 

To explore which patient specific variables could be used to further define the 

relationship between ICP and Zc or R0, each of the patient variables of gender, 

age, weight and height, along with CT derived measurements of soft tissue 

swelling and brain diameter, as well as whole body bioimpedance measurement 

and temperature, were included in linear models. Patient variables that did not 

significantly contribute to the model were sequentially removed. The simplified 

model was then compared against the original using analysis of deviance testing 
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to confirm that they were not significantly different. The following models were 

considered: 

 

𝐼𝐶𝑃 = 𝑎ଵ𝑍 + 𝑎ଶ𝑉ଶ…𝑎𝑉 + 𝑏 (4.1) 

  

𝐼𝐶𝑃 = 𝑒𝑥𝑝൬𝑎ଵ𝑍
+ 𝑎ଶ𝑉ଶ…𝑎𝑉 + 𝑏൰ (4.2) 

  

𝐼𝐶𝑃 = 𝑎ଵ𝑅 + 𝑎ଶ𝑎ଶ… 𝑎𝑉 + 𝑏 (4.3) 

  

𝐼𝐶𝑃 = 𝑎ଵ𝑍 + 𝑎ଶ𝑉ଶ…𝑎𝑉 + 𝑏 (4.4) 

  

𝐼𝐶𝑃 = 𝑒𝑥𝑝൬ 𝑎ଵ
𝑍

+ 𝑎ଶ𝑉ଶ…𝑎𝑉 + 𝑏൰ (4.5) 

  

𝐼𝐶𝑃 = 𝑎ଵ𝑅 + 𝑎ଶ𝑉ଶ…𝑎𝑉 + 𝑏 (4.6) 

 

where Znorm and Rnorm are normalised Zc and R0, V1…Vn are patient specific 

variables and a1…an and b are constants. To assess whether or not the inclusion 

of both Zc and R0 strengthened the relationship between TCB parameters and 

ICP, the following models were considered:  

 

𝐼𝐶𝑃 = 𝑎ଵ𝑍 + 𝑎ଶ𝑅…𝑎𝑉 + 𝑏 (4.7) 

  

𝐼𝐶𝑃 = 𝑒𝑥𝑝൬𝑎ଵ𝑍
൰+𝑎ଶ𝑅…𝑎𝑉 + 𝑏 (4.8) 

  

𝐼𝐶𝑃 = 𝑎ଵ𝑍 + 𝑎ଶ𝑅…𝑎𝑉 + 𝑏 (4.9) 

  

𝐼𝐶𝑃 = 𝑒𝑥𝑝൬ 𝑎ଵ
𝑍

൰+ 𝑎ଶ𝑅…𝑎𝑉 + 𝑏 (4.10) 
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Using measured TCB parameters, the simplified model with the greatest r-

squared value was:  

 

𝐼𝐶𝑃 = 𝑎ଵ𝑅 + 𝑎ଶ𝐺 +𝑎ଷ𝑊+ 𝑎ସ𝐻+ 𝑎ହ𝐵𝐷+ 𝑎𝑊𝐵𝑍 + 𝑏 (4.11) 

 

where G is gender,  W is weight, H is height, BD is brain diameter and WBZc is 

whole body bioimpedance (p < 0.0001, r-squared = 0.19, estimates in Table 4.2). 

 

 Estimate 95% Confidence Intervals P-value 

a1 0.20 0.12 to 0.29 < 0.0001 

a2 -5.68 -7.51 to -3.85 < 0.0001 

a3 0.08 0.01 to 0.15 < 0.05 

a4 0.28 0.16 to 0.40 < 0.0001 

a5 -0.41 -0.65 to -0.17 < 0.001 

a6 -0.02 -0.03 to -0.01 < 0.0001 

b 15.03 -4.92 to 34.98 0.14 

 

Table 4.2: Estimates for model 4.11. 

The simplified model with the greatest r-squared value using normalised 

bioimpedance measurements was: 

 

𝐼𝐶𝑃

= 𝑒𝑥𝑝൬ 𝑎ଵ
𝑍

൰+ 𝑎ଶ𝑅 + 𝑎ଷ𝐺 + 𝑎ସ𝑆𝑇+ 𝑎ହ𝑇+ 𝑎𝑊𝐵𝑍+ 𝑏 

(4.12) 

 

where ST is soft tissue thickness and T is temperature (p < 0.0001, r-squared = 

0.32, estimates in Table 4.3).  
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 Estimate 95% Confidence Intervals P-value 

a1 2.92 1.07 to 4.78 < 0.01 

a2 9.60 6.10 to 13.09 < 0.0001 

a3 -3.81 -5.40 to -2.22 < 0.0001 

a4 0.13 0.08 to 0.19 < 0.0001 

a5 0.90 0.29 to 1.51 < 0.01 

a6 12.12 2.21 to 22.03 < 0.05 

b -48.50 -74.51 to -22.49 < 0.001 

 

Table 4.3: Estimates for model 4.12. 

4.3.4 Backward Stepwise Regression 

The models selected and their r-squared values calculated using a backward 

stepwise regression approach were essentially the same as those selected using 

the adjusted linear modelling approach. 
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5 Discussion and Conclusions for the BioTBI Study 

 

5.1 Overview 

A discussion of the results of the BioTBI Study is presented below. Limitations of 

the study are addressed and the results are considered in terms of those of 

similar studies attempting to model intracranial pressure (ICP) using a non-

invasive technique. There is then a description of work performed as a direct 

result of the BioTBI Study with suggestions for future directions of research into 

the modelling of ICP in patients with traumatic brain injury (TBI). 

 

5.2 Rationale for the Study 

Monitoring of ICP is well established in the clinical management of TBI and the 

practise is supported by international guidelines(54). ICP monitoring is typically 

performed using an intraventricular or intraparenchymal catheter with a 

microtransducer system. Both of these techniques are associated with significant 

complications such as bleeding and infection and their availability in TBI is 

largely restricted to specialist neurosurgical centres. A safe, simple and accurate 

non-invasive device would therefore increase the clinical availability of ICP 

monitoring. 

 

Transcranial bioimpedance (TCB) has been considered for the early detection of 

multiple brain pathologies in humans(120, 121, 125). In addition, previous 

animal experiments have shown a relationship between TCB and ICP(127, 130). 

Based on the known relationship between bioimpedance and the volume of the 

intracellular and extracellular spaces, the potential use of TCB was investigated 

as an estimate of ICP in TBI. 

 

5.3 Data Collection 

5.3.1 Study Population 

All study patients were recruited from the neurological intensive care unit 

(NICU) and had been admitted with severe TBI. The patients were representative 



 

 

63 
of the typical population of patients suffering a TBI in terms of age range and 

the diverse pathologies identified on computed tomography (CT) scanning of the 

brain. While the range of pathologies was a strength of the study in terms of its 

clinical applicability it may have limited the prospects of successfully identifying 

a relationship between TCB and ICP. 

 

In the animal studies that had previously defined a relationship between TCB 

and ICP, the experimental models resulted in a uniform pathological process 

that would effect TCB measurements in a predictable manner. In the neonatal 

piglet model described by Lingwood et al(127), brain hypoxia was presumed to 

lead to intracellular swelling and a consequent decrease in the extra-cellular 

fluid space that was associated with a rise in ICP. In the sheep model described 

by Shaw et al(130), intracranial hypertension (ICH) was induced by injection of 

mock cerebrospinal fluid (CSF) into the ventricle. The nature of the brain 

injuries in the patients recruited to the BioTBI study meant that there were 

likely to be multiple pathological processes evolving, even within an individual 

patient. The aetiology of increases in ICP could include intracellular or vasogenic 

oedema, expansion of intra or extra-axial haematoma or a disruption to CSF 

flow. All of these pathologies are likely to have had different influences upon 

TCB measurements that complicated the process of modelling ICP.  

 

A failure to translate promising animal research into successful human studies 

has been a very well recognised problem in TBI(139) and over the past 30 years 

more than 20 large phase III trials have failed to show a significant treatment 

effect of a neuroprotective agent(140). Many of the issues related to therapeutic 

trials relate equally well to monitoring studies. One of the primary problems in 

converting positive findings in animal models of TBI into positive findings in the 

clinical environment is believed to be the heterogeneity of human TBI compared 

to that in controlled animal models(141). The International Mission on Prognosis 

and Clinical Trial Design in TBI (IMPACT) study group was initiated in 2003(142). 

They were given access to individual patient data from several large randomised 

controlled trials (RCTs) with the aim of optimising the design and analysis of 

trials in TBI. Proposed techniques for dealing with heterogeneity in TBI have 

been to maintain broad inclusion criteria but to pre-specify covariate 

adjustment into analyses(143). 



 

 

64 
As already detailed in the results section, recruitment to the BioTBI Study was 

slower than had been anticipated. Although the intended sample size was not 

achieved, the number of patients and individual TCB measurements should have 

been sufficient to detect a strong relationship between TCB and ICP if it existed. 

 

5.3.2 TCB Measurements 

Measurement of TCB proved to have a number of technical difficulties in the 

population of TBI patients studied. The presence of rigid collars to immobilise 

the cervical spine in a number of patients meant that positioning the electrodes 

in mastoid or occipital positions was not feasible. Similarly the risk of 

undiagnosed cervical spine injury in this patient population means that the head 

and neck can only be moved with caution to allow electrode attachment. 

 

In several patients the application of electrodes was complicated by the position 

of dressings following cranial surgery or because of associated maxillo-facial 

injuries. Indeed the presence of significant soft-tissue swelling in some cases 

made the successful measurement of TCB difficult. In these cases there was the 

concern that a significant portion of the current path would be extra-cranial and 

therefore impedance would not necessarily reflect intra-cranial pathology. 

Attempts were made to mitigate this risk by measuring soft tissue thickness and 

brain diameter on CT scan and including these measurements in the adjusted 

models.  

 

5.3.3 ICP Measurements 

In the BioTBI Study, only patients who were undergoing ICP monitoring as part of 

their routine clinical care following severe TBI were recruited. In these patients, 

one of the principle aims of NICU care is to prevent ICH and thus intervene when 

ICP is rising. As can be seen from Figure 4.2, the vast majority of ICP summary 

measures from all patients were in the range of 10 to 25 mmHg. Therefore there 

were a limited number of extreme ICP values to facilitate model building. All 

studies investigating non-invasive ICP devices in the real clinical environment 

face a similar problem. For example in the study by Brandi et al, comparing 

multiple transcranial Doppler sonography (TCD) derived models of ICP, across 
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601 measurements in 45 patients, there were only four values above 25 

mmHg(80). 

 

ICP values used for modelling purposes were taken as a median of ICP in the five 

minutes following a TCD measurement. This time window was chosen as being 

long enough to provide a stable value but short enough to reflect any changes in 

pathophysiology. The R code used to provide the summary measure would allow 

the window length to be easily adjusted in any future studies.  

 

5.4 Modelling of ICP Using TCB Data 

5.4.1 Unadjusted Linear Models 

The TCB parameters selected for modelling were based upon the animal studies 

referred to above. Shaw et al had demonstrated an inverse relationship between 

the log of ICP and Zc(130), while Lingwood et al had demonstrated a direct 

relationship between ICP and R0(127). Visual inspection of plots of ICP against 

the Zc and R0 (Figures 4.3 and 4.5) did not suggest any strong relationship. Given 

the low sample size, plots were performed for each individual patient (Figures 

4.4 and 4.6) but even on an individual patient basis there was no clear trend 

between either Zc or R0 and ICP.  

  

The lack of a strong relationship was then supported by the results of the linear 

modelling approach, where there was no demonstrable relationship between the 

measured values of either Zc or R0 and ICP. When TCB variables were normalised 

per patient (as was done in the previous animal studies) there was a small but 

significant relationship. 

 

5.4.2 Adjusted Models 

In an attempt to account for some of the patient heterogeneity in the study 

population, a number of patient specific variables were used in adjusted linear 

models and backward stepwise regression. Using measured values, the TCB 

parameter R0 in combination with the variables of gender, age, weight, height, 

brain diameter and whole body Zc provided the adjusted linear model of ICP 

(4.11) with the largest adjusted r-squared value (0.19). Using normalised values, 

the TCB parameters of 1/Zc and R0 in combination with the variables of gender, 
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soft tissue thickness, temperature and whole body Zc provide the model of ICP 

(4.12) with the largest adjusted r-squared value (0.32).  The models and values 

calculated using backward stepwise regression were almost identical.  

 

The relatively low r-squared values in the above models mean that a large 

component of ICP is unexplained by the model incorporating TCB measurements. 

This is particularly relevant given that there is a significant risk of model over 

fitting to the small study population. Therefore the likelihood that either of the 

models could be generalised to provide clinically meaningful estimates of ICP in 

a population of patients admitted with severe TBI is low. 

 

5.4 Results in the Context of Similar Studies 

5.4.1 Non-Invasive ICP Measurement 

The two most extensively investigated non-invasive techniques to estimate ICP 

are TCD and optic nerve sheath diameter (ONSD) derived measures, as already 

discussed. The complexity of TCB measurements and the training required to 

perform them would be less than either of these ultrasound-derived measures. 

On the basis of the BioTBI study however, TCB does not show more potential 

overall.  

 

It is not possible to perform an exact comparison of the techniques, but the r-

squared value of 0.19 achieved by modelling ICP using measured values of TCB 

suggests the technique would be far inferior to either TCD or ONSD. The TCD 

technique proposed by Bellner et al(78) and recommended by Brandi et al(80) 

was initially demonstrated to detect an ICP of over 20 mmHg with a sensitivity of 

0.83 and specificity of 0.99. It is worth mention that in the comparative study by 

Brandi et al, the technique failed to detect all cases of intracranial 

hypertension. In the meta-analysis of ONSD techniques performed by Dubourg et 

al, the pooled sensitivity and specificity to detect ICH were 0.9 and 0.85 

respectively(87). 

 

The TCB, TCD and ONSD techniques all share the disadvantage of providing a 

surrogate measure of ICP, rather than an absolute measure. The technique 

described by Ragauskas et al(108), based on detecting ophthalmic artery pulse 
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waveforms following increments of intra-occular pressure, provides an 

interesting alternative. The safety and applicability to a wide range of clinical 

situations are yet to be demonstrated for this technique.  

 

5.4.2 Clinical Application of TCB 

The BioTBI study suggests that TCB techniques will require considerable 

development before application to estimation of ICP in TBI. Other authors have 

proposed the use of TCB to detect alternative pathologies. Both of Liu et al(121) 

and Seonne et al(125) have studied the use of TCB measurement in the early 

detection of stroke. The use of TCB in this population does not face the same 

difficulties in terms of movement of the head and neck or electrode application 

in the context of soft tissue injury that are encountered in TBI.  

 

There is no detailed description of the TCB measurements made by Liu et al. In 

the study by Seonne et al, comparison was made between TCB measurements 

made with central and lateral electrode positions and with left and right 

electrode positions. The ratios of resistance in these electrode positions was 

found to be outside the range of healthy controls in nine out of ten stroke 

patients. This is an interesting result and does support the hypothesis that TCB 

measurements can help to identify a patient with brain injury. It is difficult 

however to envisage how TCB would be applied in the acute care of stroke, 

where the requirement for early diagnostic imaging is already established in 

national guidelines(144).  

 

5.5 Related and Future Work 

5.5.1 Introduction 

Despite disappointing results in terms of modelling ICP, the ICP and ABP 

waveform data collected as part of the BioTBI Study have been a valuable 

research resource. They have been used as pilot data to test some of the models 

described in the introductory chapter and bring them closer to implementation 

in clinical practice. Examples of recent and ongoing projects that are using the 

data to develop novel ICP analysis, address issues related to artifact in high 

volume data capture and embed these complex analyses into the clinical 

environment are provided below.  
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5.5.2 Multi-resolution Convolution Analysis of the ICP Waveform 

From the database of ICP waveforms collected as part of the BioTBI Study, 

examples of the recognised ICP states of high and low compliance and ‘a’ and 

‘b’ waves were selected(145). Multi-resolution convolution analysis was used to 

identify features of the ICP waveform associated with each of the clinical states 

that could then be used to create an impulse function. It was then possible to 

identify these waveform features in a separate study dataset. These pilot results 

require further optimisation on a larger ICP waveform dataset. As with the 

previously discussed work on morphological clustering and analysis of continuous 

intracranial pressure (MOCAIP)(103), they do suggest that automated analysis of 

the ICP waveform may be able to identify clinically important ICP states. 

 

5.5.3 Calculation of Optimal CPP 

There has already been detailed discussion of the potential use of indices of 

cerebral autoregulation (CA) to calculate optimal cerebral perfusion pressure 

(CPPopt) in TBI. One of the potential limitations of this approach is the fact that 

the most established techniques to calculate CPPopt fail to successfully find a 

value in a significant percentage of monitoring episodes(100). Arterial blood 

pressure (ABP) and ICP waveforms collected during the BioTBI Study have been 

used to compare indices of CA(146) and explore alternative methods of 

estimating CPPopt(147). If targeting of CPPopt in the management of TBI is to be 

tested by RCT, there will need to be consensus agreement on the most 

appropriate means of its estimation. 

  

5.5.4 Detecting Artifact in Physiological Waveforms 

The BioTBI Study tested a new system for high frequency data capture on the 

NICU (ixTrends(133)). One of the well recognised problems with automatic high 

frequency data capture is the inadvertent collection of artifactual data(148). 

The ABP data collected during the BioTBI Study were used as pilot data for a 

Chief Scientist Office (Scotland) funded project (CHZ/4/801) into the automatic 

detection of artifactual events in vital signs monitoring data(149, 150). As high 

frequency data capture becomes the norm in ICU there will be a requirement for 

systems to ensure the quality of these data. 
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5.5.5 Embedding Automatic Data Analysis into the NICU 

At around the same time that the IMPACT Group were addressing issues 

surrounding the failure of multiple large RCTs to confirm the efficacy of 

promising therapies in TBI, the Brain monitoring with Information Technology 

(BrainIT) Group were suggesting an alternative solution(96). As a collaboration 

across 22 NICUs in 11 European countries (coordinated from the Institute of 

Neurological Sciences in Glasgow), the group have worked towards development 

of more information technology based tools for collection and analysis of 

standardised high resolution data in TBI. By sharing and analysing these high 

resolution data it is expected that a better understanding of variations in patient 

physiology and treatment will lead to more targeted therapies in the future. 

 

In the BrainIT projects, the data collection frequency was 1 Hz. In the BioTBI 

project, the data collection frequency of the ICP and ABP waveforms was 128 

Hz, while the frequency for the electrocardiogram (ECG) signal was 512 Hz. The 

collection of this resolution of data means that analyses of brain physiology, for 

example the assessments of cerebral autoregulation mentioned above, can be 

performed. However, the vast quantities of data generated require specialised 

infrastructure for transfer, storage and analysis. The Connecting Healthcare and 

Research Through A Data-Analysis Provisioning Technology (CHART-ADAPT) 

Project has been funded by Innovate UK (Reference: 102113) to address these 

issues along with the unique challenge of returning results to the patient bedside 

in a clinically useful timeframe(151). 

 

5.5.6 Alternative Monitors of Brain Physiology 

In the context of managing TBI, the importance of ICP monitoring relates to the 

information it can provide clinicians in terms of indicating the extent of the 

pathological process and guiding interventions. The interventions can be 

targeted at reducing ICP and optimising CPP as a means of ensuring adequate 

cerebral blood flow (CBF) and consequently maintaining oxygen and nutrient 

delivery to the injured brain. Direct measures of these endpoints exist but a 

review of their function and efficacy is outwith the scope of this thesis. The 

Brain Trauma Foundation (BTF) guidelines acknowledge the current low level of 

evidence surrounding devices designed to monitor CBF, brain oxygenation and 

the metabolic state of the brain. Despite this, the future of TBI care will 
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potentially involve integrating ICP measurement with multiple additional 

monitors of brain physiology.  

 

5.5.7 Alternative Applications for TCB Measurement 

All of the applications of TCB measurement described above have been in the 

monitoring and investigation of acute pathologies. As an estimate of ICP it may 

be more appropriate in future studies to consider a role for TCB in monitoring 

more chronic conditions. For example, idiopathic intracranial hypertension (IIH) 

is a syndrome of raised intracranial pressure without identifiable aetiology(152) 

and hydrocephalus is a disorder of excessive accumulation of CSF with multiple 

aetiologies(153). In both of these clinical conditions there is often an indication 

for measurement of CSF pressure in individuals over a long period of time, 

frequently resulting in multiple invasive procedures. Therefore the need for new 

techniques to assist with the diagnosis of hydrocephalus is recognised as an 

opportunity for hydrocephalus research(154). In IIH and hydrocephalus, TCB 

would benefit from the lack of soft tissue injury, the potential to make a 

calibrating invasive measurement at the time of diagnosis, followed by the 

ability to trend non-invasive measures over time. 

 

5.6 Conclusions 

The pilot results from the BioTBI Study confirm some degree of relationship 

between TCB parameters and invasively measured ICP. The magnitude of this 

relationship is small and on the basis of the study, TCB is unlikely to provide a 

clinically useful estimate of ICP in patients admitted with TBI.  
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6 Pharmacokinetic Pharmacodynamic Modelling in 

Anaesthesia 

 

6.1 Overview 

Target controlled infusion (TCI) systems deliver intravenous drugs with the aim 

of achieving and maintaining set levels of drug in either the plasma or an effect 

site. In anaesthetic practice the effect site of interest is most commonly the 

brain. TCI systems apply population based pharmacokinetic (PK) models that 

attempt to account for inter-individual variability by adjusting model 

parameters according to covariates such as age, sex and weight(155). Most PK 

models in anaesthesia are compartment models, where drug is infused into a 

central compartment and can re-distribute to peripheral compartments as 

described by the rate constants. The delay between measured or predicted 

plasma concentrations and clinical effect can be accounted for by the 

incorporation of an effect site compartment, with an associated rate constant 

for elimination from this compartment (ke0). The resulting model is known as a 

pharmacokinetic pharmacodynamic, or PKPD model (Figure 6.1). 

 

In anaesthetic practice, the drug most commonly administered by TCI is 

propofol. A detailed discussion of the pharmacodynamic and pharmacokinetic 

features of propofol that make it ideally suited for TCI is provided below. There 

is a description of the PKPD models for propofol that are commonly used in 

clinical practice, alongside a consideration of their most significant differences. 

This is followed by an introduction of the Covariates Model, which is the subject 

of the PKPD study (VaSCoM) that forms the subsequent sections of this thesis. 

Finally there is a discussion of the modelling techniques available to determine 

the appropriate ke0 to use with a given PK model.  
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Figure 6.1: Three compartment mammillary model with model parameters V 

(compartment volumes) and k (microrate constants). The effect site is assumed to 

be infinitely small and does not effect the disposition of drug from the central 

compartment. Keo is the model parameter that describes the time course of clinical 

effect. 

6.2 Total Intravenous Anaesthesia 
Total intravenous anaesthesia (TIVA) has a number of theoretical advantages 

over inhalational anaesthesia that relate both to the drug delivery mechanism 

(Table 6.1) and the pharmacodynamic properties of the drugs used. TIVA is most 

commonly provided using a combination of a hypnotic agent (typically propofol) 

and a short acting opioid analgesic (typically remifentanil). In an audit of 

National Health Service (NHS) activity performed in 2013, 5.8% of anaesthetics in 

the United Kingdom are delivered by propofol infusion(156). The establishment 

of TIVA in routine anaesthetic practice has been facilitated by the development 

of PKPD models for propofol to allow its delivery via TCI systems. 
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Selected Advantages of Total Intravenous Anaesthesia 

No requirement for anaesthetic machine with vapourisers 

No risk of atmospheric pollution 

Continuous delivery of anaesthesia during airway surgery 

Continuous delivery of anaesthesia during patient transfer 

Safe for use in patients with malignant hyperthermia 

 

Table 6.1: Advantages of TIVA 

6.3 Propofol  

6.3.1 Chemistry 

Propofol (2,6-diisopropylphenol) is the most commonly used intravenous 

anaesthetic agent. It is a highly lipophylic compound and was initially introduced 

during the late 1970s formulated in Cremophor EL(157). Due to an association 

between Cremophor EL and anapylactoid reactions, this preparation of the drug 

was withdrawn and propofol has been subsequently formulated as a lipid 

emulsion. The first preparation chosen for development (Diprivan®) was based 

on the composition of the parenteral fat formulation Intralipid® (10% soybean 

oil, 2.25% glycerol, 1.2% egg yolk lecithin) with the pH adjusted by sodium 

hydroxide. The soybean emulsion in Diprivan® contains long chain triglycerides 

and these are thought to be responsible for the associated pain on injection. 

Alternative formulations containing mixed long and medium chain triglycerides 

(Propofol-Lipuro®) have been associated with similar pharmacokinetic and 

pharmacodynamic properties but with less injection pain(158). 
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Selected Effects of Propofol 

Airway    Haemodynamic response to intubation 

Respiratory     Central inspiratory drive 

    Minute volume 

    Tidal volume 

    Ventilatory response to increased ETCO2 

Cardiovascular    Arterial blood pressure  

    Systemic vascular resistance 

   Cardiac output 

   Stroke volume 

Cerebral physiology    CMRO2 

 �  Vascular reactivity 

 �  Autoregulation 

    Blood flow 

    Blood volume 

    ICP 

   CPP 

 

Table 6.2: Selected Effects of Propofol.    = consistently reduced across multiple 

studies,   = tendency towards reduction or a less significant effect, �  = no change 

or conflicting evidence, ETCO2 = end tidal carbon dioxide, CMRO2 = cerebral 

metabolic rate for oxygen consumption, ICP = intracranial pressure, CPP = cerebral 

perfusion pressure. 

6.3.2 Pharmacodynamics 

Propofol induces unconsciousness through activity on the J-Aminobutyric acid A 

receptor (GABAA) on cortical and subcortical inhibitory interneurones(159).  The 

systemic effects of propofol have been well documented (160-162) and are 

summarised in Table 6.2. Propofol meets a number of the requirements of the 

ideal drug for intravenous anaesthesia by providing a rapid, smooth induction 

without excitation or respiratory distress and quick recovery to clear 

consciousness without post-operative nausea and vomiting. 
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6.3.3 General Pharmacokinetics 

The decline of plasma propofol concentration following an intravenous bolus 

dose or infusion has been well described and will be discussed in detail below in 

the context of disposition kinetics and existing PK models.  

 

Propofol is highly bound to plasma proteins with 97-98% binding (predominantly 

to albumin) in both control patients and patients with known cirrhosis but 

maintained plasma albumin levels(163). In contrast, clinical situations resulting 

in a reduction in the plasma protein concentration, such as cardiopulmonary 

bypass, have been associated with a rise in the concentration of unbound 

propofol(164). This rise in the free fraction of the drug is thought to result in 

increased pharmacodynamic effect despite a stable whole blood 

concentration(165). 

 

As well as being highly bound to plasma proteins, propofol is bound to 

erythrocytes. In whole blood samples, propofol has been shown to be 50% bound 

to erythrocytes, 48% bound to plasma protein and 2% free drug(166). 

 

The metabolism of propofol is thought to be primarily hepatic. There is likely to 

be at least some contribution from other organs due to the fact that apparent 

systemic clearance only reduced by around 40% during the anhepatic phase of 

liver transplant(167). Some authors have argued for a significant role of the 

kidney in propofol metabolism(168), although this could not be confirmed 

through measurement of propofol concentration in renal artery and vein in a 

swine experiment(169). Similarly there is some discussion over the relative 

contributions of the small intestine, lung and brain in propofol metabolism(167, 

170). 

 

Analysis of the urine metabolite profile for propofol has demonstrated an 

important contribution of both glucoronidation and hydroxylation prior to 

excretion(171). Only a small amount of propofol is excreted unchanged in the 

urine. 
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6.3.4 Disposition Kinetics 

The decline of the plasma concentration of propofol following an intravenous 

bolus dose can be mathematically modelled. The most commonly described 

pharmacokinetic model is the mammillary model(172). In this type of modelling, 

drug is delivered into a central compartment and then can either be 

redistributed to other tissue compartments or can be eliminated. The 

compartments do not represent real anatomical regions but rather groups of 

tissues that have similar blood flow and affinity for drug. Assumptions made by 

this type of modelling are that there is instantaneous mixing of drug delivered to 

the central compartment and there is uniform drug distribution within each 

peripheral compartment. 

 

Several early studies investigated the disposition kinetics of propofol following 

an intravenous bolus dose and all described the kinetics using a three-

compartment model(163, 173-175). These are a heterogeneous group of studies 

in that blood sampling was done from either arterial or venous systems, young 

and old patients were studied and propofol was either given alone or in 

combination with other drugs. However, key pharmacokinetic parameters were 

of a consistent magnitude and are summarised in Table 6.3. 

 

The structure of a three-compartment mammillary model has already been 

shown in Figure 6.1. A three compartment model was selected because of the 

triphasic decline of propofol concentration (Figure 6.2). The first phase 

represents rapid decline due to a combination of elimination, redistribution to 

the second compartment and slower redistribution to the third compartment. 

The second phase represent slower decline due to a combination of elimination 

and redistribution to the third compartment when the central and second 

compartments are in equilibrium. The third phase represents a terminal 

elimination phase when the central compartment is in equilibrium with both the 

second and third compartments. 
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Reference Sampling Group (n) V1 (l) Cl (l min-1) Cl (ml min-1 kg-1) 

Kay(173) Venous Males (6) 42.3 1.81 23.6 

  Females (6) 36.1 1.8 29.1 

Cockshott(174) Venous Control (6) 41.3 1.91 32.9 

  Fentanyl (6) 21.8 1.29 23.7 

  Halothane (6) 34.5 1.79 30.4 

Kirkpatrick(175) Venous Young (12) 26.3 NA 27.7 

  Elderly (12) 19.6 NA 23.2 

Servin(163) Arterial Control (10) 20.6 2.30 NA 

  Cirrhosis (10) 20.2 1.99 NA 

 

Table 6.3: Key pharmacokinetic parameters from studies of the disposition 

pharmacokinetics of propofol following an intravenous bolus. n = number of 

patients, V1 = central compartment volume, Cl = clearance from the central 

compartment. 

 

Figure 6.2: Simulated plot of the decline of propofol concentration following an 

intravenous bolus dose. 
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The tri-exponential decline of plasma propofol concentration according to the 

three compartment model can be described by the following equation:  

 

𝐶 = 𝐴𝑒ିఈ௧ +𝐵𝑒ିఉ௧ + 𝐶𝑒ି௧ (6.1) 

 

where Cp is the plasma concentration and t is time. Following fitting of the curve 

to identify the constants A, B, C and a, b, c, these can then be used to calculate 

the compartment volumes and the rate constants that predict the rate of 

elimination from the central compartment and transfer of drug between the 

central and peripheral compartments. For example: 

 

𝑉ଵ =
𝐷

𝐴+𝐵 + 𝐶 
(6.2) 

 

𝑘ଵ =
𝑎. 𝑏. 𝑐(𝐴 + 𝐵 + 𝐶)

𝐴.𝑏. 𝑐 + 𝐵.𝑎. 𝑐 + 𝐶.𝑎. 𝑏 
(6.3) 

 

where V1 is the volume of the central compartment and D0 is the bolus dose of 

propofol administered and k10 is the rate constant for elimination from the 

central compartment (Cp or C1). Clearance from the central compartment (Cl) 

can subsequently be calculated as: 

 

𝐶𝑙 = 𝑘ଵ.𝑉ଵ (6.4) 

 

The two models currently available for TCI of propofol in clinical practice are 

the Marsh(6) and Schnider(176, 177) models. The development of these models 

and their significant differences shall be discussed in detail below.  

 

 

6.4 Pharmacokinetic Models for Propofol 

6.4.1 The Marsh Model 

The Marsh Model is an adaptation of the pharmacokinetic parameters described 

by Gepts et al in two studies investigating the disposition kinetics of propofol 

following fixed rate infusions(178, 179). In the first of these studies(178), 18 
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patients were allocated to receive propofol at 3, 6 or 9 mg/kg/hr (in 

combination with regional anaesthesia) depending on the perceived clinical 

need. A radial artery cannula was inserted in the contralateral arm to the 

intravenous access and arterial blood samples were taken for quantification of 

whole blood propofol concentrations at regular time intervals. The tri-

exponential model (Equation 6.1) was then fitted to the individual blood 

concentration datasets. Mean values calculated for Vc and Cl were 16.9 l and 

1.77 l/min respectively. 

 

In the second Gepts study(179), 11 patients received a constant rate propofol 

infusion (6 mg/kg/hr) in combination with an exponentially decreasing infusion 

of alfentanil to achieve general anaesthesia. As before, arterial blood samples 

were taken for propofol quantification and the tri-exponential model fitted. 

Mean values calculated for Vc and Cl were 19.7 l and 1.91 l/min respectively.  

White and Kenny described the process of incorporating a PK model into a 

computer controlled infusion device and using it to deliver propofol anaesthesia 

in 33 patients undergoing general surgery(180). In this publication they referred 

to the second Gepts paper(179) as the source of their PK model but did not print 

the exact model parameters. The publication by Marsh et al, the first paper to 

state the model parameters, was in fact a follow up study using the adult model 

to anaesthetise children(6). This “Marsh Model” was identical to the PK model 

published in the first Gepts paper(178), with the exception of a typographical 

error where the k12 was changed from 0.114 min-1 to 0.112 min-1 and a weight 

based value for Vc was incorporated (Table 6.3). 

 

The ‘Diprifusor¥’ was the first commercially available TCI device and used the 

Marsh Model (with a k12 of 0.114 min-1). The technological challenges of 

developing this system and the rationale for selecting the Marsh Model over 

other published PK models have been discussed in detail by Glen(181). To allow 

predictions of effect site concentration, a ke0 of 0.26 min-1 was implemented 

with the model, although the reasoning for this decision was never published.  

 

6.4.2 The Schnider Model 

The development of the Schnider Model for propofol was entirely different from 

that of the Marsh Model. It was derived from a combined PKPD study in 24 
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healthy adult volunteers and published as separate PK(176) and PD(177) papers. 

Each individual received a 2 mg/kg bolus of propofol (or 1 mg/kg if aged over 65 

years) and then one hour later received a randomly allocated fixed rate infusion 

of 25, 50, 100 or 200 mcg/kg/min for 60 minutes. Blood samples to quantify 

plasma propofol concentrations were taken from a radial artery cannula at 

frequent intervals following the bolus dose and during and after the fixed rate 

infusion. To assess the pharmacodynamic effects of propofol, the timing of loss 

of consciousness and return of consciousness were recorded along with a novel 

electroencephalogram (EEG) processing technique, known as semilinear 

canonical correlation, leading to calculation of a canonical univariate parameter 

for propofol CUPpropofol. 

 

One of the end points of this study was to compare the pharmacokinetics of 

propofol with and without Ethylenediaminetetraacetic acid (EDTA). All 

individuals were therefore studied on two separate occasions. The PK model was 

constructed using plasma propofol concentrations collected during the infusions 

phase of the EDTA containing preparation. Fitting of a three compartment model 

to the data and the influence of subjects’ covariates were calculated using non-

linear mixed effect modelling (NONMEM)(182). The final model had a fixed 

central compartment volume, while compartment two was adjusted according to 

subjects’ age (Table 6.4). k10 was adjusted according to subjects’ weight, lean 

body mass (LBM) and height, while k12 was adjusted according to subjects’ age. 

Calculation of LBM was done using the James formula: 

 

Females:  

 

𝐿𝐵𝑀= 1.07× 𝑤𝑒𝑖𝑔ℎ𝑡 − 148× ൬𝑤𝑒𝑖𝑔ℎ𝑡ℎ𝑒𝑖𝑔ℎ𝑡൰
ଶ
 

(6.5) 

 

Males:  

 

𝐿𝐵𝑀= 1.1×𝑤𝑒𝑖𝑔ℎ𝑡− 128× ൬𝑤𝑒𝑖𝑔ℎ𝑡ℎ𝑒𝑖𝑔ℎ𝑡൰
ଶ
 

(6.6) 
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and the implications of this will be discussed below(183). The PK study 

demonstrated that the pharmacokinetics of propofol differ after a bolus dose 

compared to an infusion. The presence or absence of EDTA did not effect 

propofol pharmacokinetics.  

 

One of the primary purposes of the PD study was to develop a rate constant for 

equilibration between the plasma and effect site (ke0). ke0 was calculated using 

both non-parametric and parametric techniques for each individual and then the 

median taken to represent the population value. For the non-parametric 

technique, measured plasma propofol concentrations were compared to the 

calculated CUPpropofol. For the parametric technique, plasma propofol 

concentrations predicted by their PK model were compared to the calculated 

CUPpropofol. The non-parametric ke0 was estimated to be 0.316 min-1
, while the 

parametric ke0 was estimated to be 0.456 min-1. It was this parametric ke0 that 

the authors recommended for use with their PK model.  

 

6.4.3 Significant Differences Between the Marsh and Schnider Models 

There is considerable debate in the anaesthesia community over whether the 

Marsh or the Schnider PK Model is best suited to provide TCI of propofol in 

clinical practice. As mentioned above, the Diprifusor¥ was the first 

commercially available TCI device and was programmed with the Marsh model to 

be used in a plasma targeting mode. The device only accepted specially 

designed syringes pre-filled with the Diprivan£ formulation of propofol. 

Following the expiry of Diprivan£ patent protection in Europe, a new generation 

of “Open TCI” devices were developed that could accept any syringe(184). These 

devices allowed the user to select different drugs to deliver along with a choice 

of PKPD model. It thus became possible to select either the Marsh or Schnider 

Model to be used in a plasma or effect site targeting mode. 

 

The differences between the Marsh and Schnider Models have been discussed 

previously by Absalom et al(185). The structural components of the models are 

summarised in Table 6.3 and the most significant differences will be discussed in 

order below: 

 



 

 

82 
1. Central compartment volume (V1) 

The central compartment volume of the Marsh Model is proportional to total 

body weight. This means that the bolus dose of propofol required to achieve a 

chosen plasma target concentration will increase with weight. In the Schnider 

Model, the central compartment volume is fixed, meaning that for a chosen 

plasma target concentration, the bolus dose will be the same irrespective of 

weight, age or gender. 

 

2. Adjustment for multiple patient covariates 

The Marsh Model is a relatively simplistic PK model, where all body compartment 

volumes are proportional to weight, and all rate constants are fixed. The 

Schnider Model is a more complex model, which accounts for more patient 

covariates. The only compartment volume that varies with patient covariates is 

V2, which is adjusted according to patient age. Similarly the rate constants k12 

and k21 are influenced by patient age. The elimination rate constant k10 is 

adjusted according to body weight, lean body mass (and thus indirectly by 

gender, weight and height) and height. By accounting for more patient 

covariates, the Schnider Model could theoretically enable a more individualised 

dosing strategy. 

 

3. LBM calculation 

As mentioned above, the Schnider Model adjusts the elimination rate constant 

according to both body weight and LBM. A feature of the James formula for 

calculating LBM means that as body weight increases into the obese range, there 

is a paradoxical decrease in the calculated LBM. The consequence of this for the 

Schnider Model is that for a body mass index (BMI) of greater than 42 kg m-2 in 

males and 37 kg m-2 in females, there is an exponential increase in the 

magnitude of k10. The ways that pump manufacturers have compensated for this 

irregularity in the model, that could lead to dangerous overdosing in obese 

patients, is summarised in a letter by Engbers et al(186). 

 

4. Rate constant for effect site elimination (ke0) 

In their original, clinically implemented forms, the Marsh Model has a ke0 of 0.26 

min-1, while the Schnider Model has a ke0 of 0.456 min-1. The consequence of this 

difference is that the Schnider Model predicts more rapid equilibration between 
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the plasma and the effect site. This means that when using the Schnider Model 

in effect site targeting mode, TCI devices make more gentle manipulations of 

the predicted plasma concentration to achieve a desired effect site 

concentration. 

 

Model Parameter Marsh Schnider 

V1 0.228 litre kg-1  4.27 litre 

V2 0.463 litre kg-1 18.9 - 0.391 x (age - 53) litre 

V3 2.893 litre kg-1 238 litre 

k10 (min-1`) 0.119 0.443 + 0.0107 x (weight - 77) –  

0.0159 x�(LBM-59) + 0.0062 x�(height-177)  

k12 (min-1`) 0.112  0.302 - 0.0056�x (age - 53) 

k13 (min-1`) 0.042  0.196 

k21 (min-1`) 0.055  [1.29 – 0.024�x (age - 53)] / 

[18.9 – 0.391�x (age - 53)] 

k31 (min-1`) 0.0033  0.0035 

ke0 (min-1̀ ) 0.26 0.456 

 

Table 6.4: Structural parameters of the Marsh and Schnider Models for propofol. V = 

compartment volume, k = rate constant, LBM = lean body mass as calculated by the 

James formula. Age is measured in years, weight in kg and height in cm. 

A pragmatic approach recommended by most experts is to use the Marsh Model 

in plasma targeting mode and the Schnider Model in effect site targeting mode. 

Anaesthetists are encouraged to use the model with which they are most 

familiar and with caution if using TCI in a population of patients in whom the 

models have not been successfully validated. 

 

6.4.4 The Covariates Model 

The Marsh Model has been criticised for not taking into account patient 

covariates such as age and gender. Age is well known to have significant effects 

on body composition and hepatic and renal function, which influence the 

disposition and elimination of drugs(187). Indeed in one of the early studies of 

propofol pharmacokinetics following a bolus dose, Kirkpatrick et al compared 

patients aged 18 to 35 years old to those aged 65 to 80(175). The older patients 

had a significantly smaller central compartment volume and reduced clearance 
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of propofol. In a study of patients aged 65 to 91 years, who received a bolus 

followed by a fixed rate infusion of propofol, Vuyk et al demonstrated that 

compartment volumes and clearances were affected by gender(188) in this older 

age group. 

 

In an attempt to further improve the understanding of the effects of age and 

gender on the pharmacokinetics of propofol, White et al conducted a large 

population study in patients undergoing anaesthesia using TCI propfol(5). The 

study will be described in some detail, as a validation of the PK model proposed 

by the authors is presented later in this thesis.  

 

In 113 patients undergoing elective general surgery, anaesthesia was 

administered using the Marsh Model as implemented by the Diprifusor¥ TCI 

device. Precise details of the propofol infusion required for anaesthesia were 

automatically archived. Patients also received an infusion of alfentanil, 

breathed a mixture of 66% nitrous oxide in oxygen and were given a single bolus 

of atracurium if endotracheal intubation was required. After induction of 

anaesthesia, a cannula was inserted into the arm contralateral to the propofol 

infusion to allow removal of intravenous blood samples at regular intervals. 

Whole blood propofol concentrations were measured using a gas liquid 

chromatography-mass spectrometry technique. 

 

Using a NONMEM technique, the parameters of the Marsh model were optimised 

for each individual patient to provide the best prediction of the measured blood 

propofol concentrations. Only the volume of the central compartment and the 

clearance from the central compartment were adjusted as none of the other 

model parameters improved the goodness of fit by more than 2.5%. The 

relationship between age and central compartment volume for male and female 

patients volume is shown in Figure 6.3. The slopes of these regression lines are 

as follows:  

 

Females:  

 

𝑉ଵ = 191.78− 0.669×𝐴𝑔𝑒 (6.7) 
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Males:  

 

𝑉ଵ = 175.5+ 0.046× 𝐴𝑔𝑒 (6.8) 

 

where V1 is measured in ml kg-1 and age in years. In this population there was a 

very clear decline in central compartment volume with age in females but not in 

males. 

 

 
Figure 6.3: Simulated plot of V1 against age for the Covariates Model in female (A) 

and male (B) patients. 

Similarly, the relationship between age and clearance from the central 

compartment is shown in Figure 6.4 for females and males. The slopes of these 

regression lines are as follows: 
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Females:  

 

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 = 37.87− 0.198×𝐴𝑔𝑒 (6.9) 

 

Males:  

 

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 = 26.88− 0.029×𝐴𝑔𝑒 (6.10) 

 

where clearance is measured in ml kg-1 min-1 and age in years. Again there is a 

very clear decline in clearance from the central compartment with age in 

females but not in males. 

 

 
Figure 6.4:  Simulated plot of clearance against age for The Covariates Model in 

female (A) and male (B) patients. 

The revised “Covariates Model” thus maintained the original Marsh Model 

parameters but was optimised by the addition of gender and age covariates to 

adjust central compartment volume and clearance. The propofol infusion data 
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for each patient were then used to perform pharmacokinetic simulation of the 

blood concentrations predicted by the new model. In the study population, the 

predictions made by the Covariates Model were closer to the measured blood 

propofol concentrations than those predicted by the Marsh Model. The VASCoM 

Study had the primary objective of confirming this robust performance of the 

Covariates Model. 

 

6.4.5 Physiologically Based Pharmacokinetic Models 

Despite attempts to optimise compartmental PK models, it is well known that in 

the early phase after a bolus dose, they do not perform well in predicting 

plasma concentrations of anaesthetic drugs(189, 190). This is in part due to the 

erroneous assumption that there is instantaneous mixing of drug within the 

central compartment. There is also a failure to consider the effects of cardiac 

output and differing blood flow between organ groups. The development of 

physiologically based PK (PBPK) models attempts to address these deficiencies 

and thus improve the understanding of drug disposition. 

 

An example of a PBPK model for propofol has been developed by Upton and 

Ludbrook(191). Their initial work was done using a chronically instrumented 

sheep model, where propofol concentrations were measured from the carotid 

artery and the sagital sinus following bolus injection into the right atrium(192, 

193). The effects of propofol on cerebral blood flow and metabolism were 

measured by Doppler flow of the sagital sinus and oxygen extraction between 

the carotid artery and sagital sinus. Analysis of the data from these experiments 

allowed them to build a six compartment model that could explain the kinetics 

and dynamics of induction of anaesthesia with propofol(194, 195).  

 

They subsequently developed the principles of their animal model using human 

data to define propofol kinetics and dynamics in a “standard” man. This model 

was a simplified version of the PBPK model, known as a recirculatory model. The 

necessary estimates of organ blood volume and blood flow for a 30 year old, 69 

kg man were averaged from those derived from the Third National Health and 

Nutrition Examination Survey(196). The final model consisted of brain and lung 

sub-models in parallel with liver and fast and slow distribution compartments. 

The brain sub-model represented cerebral kinetics and dynamics derived from 



 

 

88 
experiments where arterial and jugular venous propofol concentrations were 

measured, along with processed EEG following a propofol infusion in man(197). 

To derive the lung sub-model, data from a study involving simultaneous 

measurement of pulmonary and radial artery concentrations of propofol 

following a central venous infusion were used(198). The remainder of the 

systemic model was built to fit the propofol concentrations predicted by the 

Schnider Model following rapid and slow infusions in a standard man. 

 

One of the most interesting possibilities for PBPK models in general and for 

Upton and Ludbrook’s model in particular, is the potential to improve our 

understanding of how changes in cardiac output or regional blood flow can 

effect the kinetics and dynamics of anaesthetic drugs. The approach used by 

Upton and Ludbrook also introduces many of the concepts that are explored in 

this thesis including data sharing between research groups and the continuous 

evolution and optimisation of physiological models. 

 

6.4.6 Methodology for Pharmacokinetic Model Comparison 

If one PK model for propofol was clearly superior in all clinical situations, then it 

can be assumed that all TCI devices would exclusively implement this model. As 

this has not been the case, it is necessary to have a framework to allow PK 

model comparison so that newly defined models can be compared against those 

already used in clinical practice in terms of their predictive performance. 

Following such a comparison, if the performance of the new model was 

significantly better than the existing models, there would be a reasonable case 

to support its introduction into clinical practice.  

 

Varvel et al proposed an approach to allow systematic comparison of PK models 

used in TCI devices, referred to in the paper as computer controlled infusion 

pumps (CCIPs), that has become widely adopted in the anaesthetic 

literature(199). They tested their approach using a dataset collected during a 

study of CCIPs comparing the performance of two PK models for alfentanil(200). 

For 51 patients they had between 10 and 24 blood samples with measured 

alfentanil concentrations to compare to the concentrations predicted by the 

CCIP.  
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Central to their methodology was measurement of the performance error (PE). 

The PE represents the difference between the drug concentration measured in 

blood and the drug concentration predicted by the TCI device. It is calculated 

using the equation: 

 

𝑃𝐸 =
𝐶𝑏 − 𝐶𝑝

𝐶𝑝
× 100 (6.11) 

 

where PEij is the percentage performance error i in the jth patient, Cb is the 

concentration measured in blood and Cp is the concentration predicted by the 

TCI device. 

 

The PE is expressed as a percentage of the predicted concentration because this 

is felt to be of more clinical utility. If a summary measure for the size of the PE 

is known, then for a given predicted concentration the clinician can estimate the 

range of the associated blood concentration. The same would not apply 

expressing the PE as a percentage of the measured concentration, which is not 

known at the time the TCI device is being used in clinical practice.  

 

Following calculation of the PEs for each sample in each individual, the authors 

advocate the calculation of four summary measures in each individual to 

describe the clinical utility of CCIPs. Firstly the median performance error 

(MDPE) represents the bias, or overall direction of the PEs, and thus the 

tendency of a CCIP to over or under-predict the blood concentration. Secondly 

the median absolute performance error (MDAPE) represents the inaccuracy, or 

overall magnitude of the PEs, and is not affected by the direction of the PEs. 

Thirdly divergence represents the tendency of PEs to either increase or decrease 

with time and is calculated from the slope of the linear regression of an 

individual’s PEs against time. Finally wobble represents the variability of an 

individual’s PEs and is calculated as the median absolute deviation of  PEs from 

the MDPE. 

 

The overall population performance of a CCIP requires further summarisation of 

the four summary measures described above. This can be done using either a 

two stage, pooled data or variance weighted approach. The two stage approach 
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simply takes a mean (or median) of all of the individuals summary measures. 

This inappropriately weights results towards individuals with fewer blood 

samples. The pooled data approach uses the number of samples for an individual 

to weight the contribution of that individual to the overall summary. Finally the 

variance weighted approach accounts for the intra-individual variability in PEs 

by weighting the contribution of an individual to the overall summary by the 

variance of the estimates for that individual. The authors suggest that in their 

analysis of several large datasets there is actually little difference in the 

summary measures calculated using each of the three approaches. 

 

6.4.7 Pharmacokinetic Model Comparison Studies 

The above methodology has been utilised in a number of studies to compare 

published PK models for propofol in their predictive performance. Coetzee et al 

randomly assigned 30 patients to receive propofol TCI by one of either the 

Tackley(201), Marsh or Dyck models(202). These were the same three models 

evaluated during the development of the Diprifusor¥ in 1993. Arterial and 

venous blood samples were collected at regular intervals and the summary 

measures of MDPE, MDAPE, divergence and wobble calculated. Although all 

models provided adequate clinical anaesthesia, the Tackley and Marsh Models 

were superior in terms of MDPE and MDAPEs. It was noted that arterial propofol 

concentrations were significantly greater than venous concentrations but that 

this difference decreased with time. 

 

Three recent simulation studies have compared the performance of the two PK 

models in common clinical use (Marsh and Schnider) and two of these included 

the Covariates Model introduced above(203-205). In the first, Glen et al used the 

standardised propofol infusion profiles from nine control patients (6 male and 3 

female) in a previous PK study(163) to simulate the plasma concentrations 

predicted by each of the Marsh, Schnider, Covariates and Schuttler(206) 

Models(203). PEs were then calculated for a total 286 arterial propofol 

concentration measurements. In terms of overall performance there was little to 

differentiate between the four models. In this group, the Covariates Model had a 

tendency to over-predict the plasma concentrations compared to the Marsh 

Model but compared favourably in terms of MDAPE. Although the Schnider Model 
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showed negligible overall bias, there was a tendency to over-predict during the 

early phases of infusion and under-predict during the recovery phase. 

 

In the second simulation study, Matsui et al used PK data from four previous 

studies, with distinct propofol infusion regimen(204). A total of 108 patients 

contributed PK data to the study, who had received propofol by either 

bolus(207), short infusion(208), long infusion(209) or TCI(202). Simulation studies 

were performed to calculate the plasma propofol concentrations predicted by 

each of the Marsh, Schnider and Schuttler PK models and an adaptation of the 

Upton physiologically based recirculation model(191). When all infusion regimen 

were taken into account, the Schnider Model more often displayed significantly 

better performance in terms of MDPE and MDAPE compared to the other models. 

This was particularly true when compared to the Marsh Model using data from 

the bolus and short infusion studies. All of the models performed with similar 

bias and inaccuracy when compared using data from the TCI study. 

 

In the third simulation study, Glen and White(205) used data from 41 patients in 

a previous study evaluating the predictive performance of the Diprifusor TCI 

system(210). Predicted plasma propofol concentrations for each of the Marsh, 

Schnider and Covariates Models were calculated and PEs measured for a total of 

530 arterial propofol samples. In this study, the MDPE of the Covariates Model 

was significantly improved compared to the Marsh and Schnider Models and the 

MDAPE was significantly improved compared to the Marsh Model. An important 

observation made by the authors was that for all three models, bias varied 

depending on whether plasma propofol concentration was increasing, steady or 

decreasing. 

 

6.5 Pharmacodynamic Models for Propofol 

6.5.1 Modelling the Effect Site 

As part of their review “Contributions of PK/PD Modelling to Intravenous 

Anesthesia”, Minto and Schnider described the theory of the effect site 

compartment in detail(155). The principles of the effect site and the techniques 

available to model its behaviour are central to the PD component of the VaSCoM 

study and will be considered below. 
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In response to the observation that the clinical effects of a drug are delayed 

relative to the plasma concentration (a fact that is well recognised by all 

practising anaesthetists), Sheiner et al proposed the concept of a hypothetical 

effect site compartment(211). The model parameter keo was introduced to 

characterise the delay between Cp and effect and therefore accounts for the 

processes of perfusion, diffusion, partition, drug-receptor interaction and the 

relationship between receptor occupancy and effect. In the original publication 

the nomenclature of keo was chosen to represent the rate constant for 

equilibration between the effect site compartment and “outside”. It is now 

more generally referred to using more standardised PKPD terminology as ke0 or 

the rate constant for elimination from the effect site. The structural model 

proposed has been illustrated in Figure 6.1 and the association between drug 

infusion rate and predicted plasma and effect site concentrations illustrated in 

Figure 6.5. 
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Figure 6.5: Lower panel provides details of propofol infusion regimen. Upper panel 

demonstrates associated plasma and effect site concentrations predicted by 

combined PKPD model. 

Sheiner et al applied their PKPD model to three datasets containing plasma 

concentrations and associated measures of effect for the drug d-tubocurarine. 

They modelled the relationship between concentration of drug in the effect site 

compartment and clinical effect using the adaptation of the “Hill Equation” 

previously proposed by Wagner(212): 

 

𝐸 = 𝐶ఊ
𝐶ఊ + 𝐶(50)ఊ

 
(6.12) 
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where E is the intensity of pharmacological effect expressed as a fraction of 

maximal effect, Ce is the concentration in the effect site, Ce(50) is a constant 

giving the value of Ce at 50% effect and J describes the sigmoidicity of the Ce to 

E relationship. For hypnotic anaesthetic drugs with an inhibitory effect on brain 

activity this can be expressed as:  

 

𝐸 = 𝐸 −
𝐸௫𝐶ఊ

𝐶ఊ + 𝐶(50)ఊ
 

(6.13) 

 

where E0 is the baseline effect with no drug present and Emax is the maximum 

difference from baseline. This sigmoid-Emax curve is demonstrated in Figure 6.6. 

 

Figure 6.6: Sigmoid-Emax Concentration-Effect relationship for a hypnotic anaesthetic 

drug where E0 = baseline effect with no drug present, Emax = the maximum 

difference from baseline, ec50 = a constant giving the value of Ce at 50% effect i.e. 

Ce(50). 
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The differential equation used to model the temporal relationship between Cp 

(or C1) and Ce was: 

 

𝛿𝐶
𝛿𝑡 = 𝑘ଵ𝐶ଵ − 𝑘𝐶 

(6.14) 

 

where k1e is the rate constant for movement of drug between the plasma and 

the effect site. The effect site is considered to be of negligible volume and 

therefore does not influence the behaviour of any associated PK model. For this 

reason the rate constant k1e is inconsequential and the characterisation of the 

relationship between Cp and Ce can be described in terms of ke0 alone: 

 

𝛿𝐶
𝛿𝑡 = 𝑘𝐶ଵ − 𝑘𝐶 

(6.15) 

 

In their study of d-tubocurarine, Sheiner et al successfully fitted a two-

compartment PK model to the data and determined the ke0 to describe the time 

course of the observed PD data. This is an example of parametric determination 

of the ke0, where the effect site is related to the plasma concentration predicted 

by a contemporaneous PK model and the magnitude of effect is modelled as a 

known function of Ce. 

 

It is also possible to determine ke0 using a non-parametric approach that makes 

no assumptions regarding the underlying PK model or the relationship between 

effect and Ce.(213). In this technique, ke0 is adjusted to account for the 

difference between measured plasma drug concentration and clinical effect. As 

for the parametric approach described above, this has the requirement to 

measure both plasma concentrations and pharmacodynamic effect within the 

same study. 

 

An alternative approach, referred to as the ‘time to peak effect site 

concentration’ (tpeak), has been proposed by Minto et al and allows PD 

parameters from one study to be combined with PK parameters from 

another(214). Following a submaximal intravenous bolus dose, tpeak is measured 

as the time taken to reach the maximum observed clinical effect (and thus 
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maximum Ce). Using an existing PK model, it is then possible to adjust the 

associated value of ke0 to preserve the measured tpeak. Minto et al performed a 

number of simulation studies using data from previous PKPD studies of 

thiopental, remifentanil and propofol and demonstrated that the tpeak method 

provided a better estimate of ke0 than simply extending a new PK model by 

combining a ke0 value from a previous PKPD study. 

 

In the Open TCI devices currently commercially available there are a number of 

very different implementations of ke0. A recent editorial by Cortinez has 

acknowledged the confusion that this can cause in the clinical use of TCI and 

discussed the implications of differing ke0s on the effect site concentrations 

predicted by these devices(215). In most of the studies estimating ke0, an index 

of the electroencephalogram (EEG) has been used as a surrogate for the clinical 

hypnotic effect of propofol. The use of differing EEG indices is likely to account 

for at least some of the difference in the calculated ke0s. 

 

As indicated above, a ke0 of 0.26 min-1 for the Marsh Model was implemented in 

the original Diprifusor TCI device. Although the rationale for selection of this k e0 

was never published, it was very similar to the ke0 of 0.2 min-1 calculated by 

Billard et al when comparing the Bispectral Index (BIS) to other indices of the 

EEG using a dataset from 12 patients who received a fixed rate propofol infusion 

(216). In a study using auditory evoked potentials (AEP) as a measure of the CNS 

effects of propofol, White et al used both parametric and non-parametric 

techniques to determine ke0. Successful fits of ke0 could be achieved in 14 of the 

22 patients using the population parametric approach and 15 of the 22 patients 

using the individual parametric approach. Mean ke0s for the parametric and non-

parametric approaches were 0.2 min-1 (median 0.16 min-1) and 0.22 min-1 

(median 0.24 min-1). 

 

The ‘adjusted’ ke0 often implemented with the Marsh Model is 1.21 min-1 and 

thus predicts much faster equilibration between the plasma and effect site 

compartments. This comes from using a tpeak for propofol of 1.6 minutes as 

reported by Schnider(177) to adjust the ke0. In a short TCI infusion study of 120 

female patients, with no period of decreasing plasma concentration, Struys et al 
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demonstrated that this adjusted ke0 more accurately predicts the measured 

changes in BIS(217). 

 

As has been outlined previously, the parametric ke0 of 0.456 min-1 is suggested 

for effect site TCI using the Schnider Model. With the common availability of two 

PK models and three Ke0s clinicians must exercise caution during the use of Open 

TCI to ensure that they are aware of the pharmacokinetic and pharmacodynamic 

consequences of their model selection. 

 

The PD component of the VaSCoM Study used the EEG index of BIS to estimate 

the appropriate ke0 to extend the Covariates PK Model. For this reason a brief 

summary of processed EEG (pEEG) and specifically BIS are provided below.  

 

6.5.2 Processed Electroencephalography 

The EEG is the measurement of bioelectric potentials resulting from the 

postsynaptic potentials produced by the dendrites of pyramidal neurones in the 

cerebral cortex(218). Needle or gel electrodes are required as transducers to 

convert the physiological ionic current to an electrical current for further 

processing by the EEG monitoring equipment. A formal EEG for diagnostic 

purposes uses a montage of electrodes attached across the whole scalp. For the 

purposes of monitoring the effect of anaesthetic drugs, gel electrodes connected 

across the forehead and temple are most commonly used. 

 

Unlike the electrocardiogram (ECG), the EEG has no fixed repeating pattern. If  

the signal is processed in terms of its time and frequency domain characteristics, 

there are however some constant statistical properties that can be correlated 

with differing levels of wakefulness or anaesthesia. A number of depth of 

anaesthesia monitors (DoA) have been developed in an attempt to quantify the 

hypnotic component of anaesthetic drugs on the EEG.  (219, 220). An effective 

device would help to prevent awareness under anaesthesia and avoid relative 

overdosing of anaesthetic drugs. Most DoA monitors attempt to provide an index 

of anaesthetic depth between 100 (fully awake) to 0 (no brain activity), with 

values of 40 to 60 often proposed to be adequate for surgical anaesthesia. In the 

ideal situation, these indices would correlate with clinical measures of 

anaesthetic effect and be stable across different anaesthetic drugs and clinical 
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populations. No DoA monitor yet meets these requirements but the BIS has 

become widely used in anaesthetic practice. Processing of the EEG signal is 

considered below in terms of BIS. 

 

6.5.3 Calculating the Bispectral Index 

The Bispectral Index is a complex parameter that integrates several separate 

descriptors of the EEG signal to provide a single index as above. It was 

developed by Aspect Medical Systems (subsequently owned by Covidien and now 

Medtronic) using data from 1500 anaesthetic administrations and was introduced 

in 1994. It uses a specialised four electrode sensor placed on the patients 

forehead to collect the raw EEG from one cerebral hemisphere. The underlying 

proprietary algorithm has never been published and has undergone continuous 

update, but the underlying principles of the signal processing have been 

described in detail by Sigl et al(221) and Rampil(218). The stages involved in 

calculating BIS are summarised in Figure 6.7.   

 

 
Figure 6.7: Summary of the processing steps involved in calculation of the Bispectral 

Index (BIS). BSR = burst suppression ratio, QUAZI detects burst suppression in the 

context of a wandering baseline voltage. 
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The first stage of EEG processing in BIS calculation involves filtering of high and 

low frequency artifacts and division of the signal into 2-s epochs. Further 

artifact filtering is then performed on these epochs to remove signals such as 

the ECG and electromyogram (EMG). Time domain analysis then uses two 

measures of burst suppression. During deep anaesthesia the EEG may develop 

the pattern of periods of normal or high voltage activity followed by periods of 

low voltage or isoelectricity. The burst suppression ratio (BSR) reports the 

periods of suppression of greater than 0.5 seconds as a fraction of the epoch 

length. In circumstances with a wandering baseline voltage, the “QUAZI” 

suppression index incorporates slow wave information to detect burst 

suppression that would be missed by the original BSR algorithm. 

 

Fourier’s theorem states that any complex repetitive waveform can be 

decomposed into the sum of simple sine or cosine waves (Figure 6.8). A 

computationally efficient method of performing this is known as the Fast Fourier 

transform (FFT). Each frequency component of the complex wave has an 

associated amplitude and phase component that can then be used for frequency 

domain analysis of the EEG. The frequency bands in the spectrum are named 

according to a generally accepted convention (Table 6.5). 
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Figure 6.8: An example of Fourrier theorem that a repetitive wave (A) can be 

deconstructed to a series of simple sine waves (B and C). 

Name Frequency Range (Hertz) 

Slow < 1  

Delta 1–4  

Theta 5–8  

Alpha 9–12  

Beta 13–25  

Gamma 26–80 

 

Table 6.5: Spectral frequency bands of the EEG 

The two measures of frequency domain analysis that contribute to the BIS Index 

are “BetaRatio” and “SynchFastSlow”. BetaRatio is the log ratio of power in the 

frequency bands 30-47 Hz and 11-20 Hz. SynchFastSlow is the contribution from 

bispectral analysis. The bispectrum is a complex measurement of the phase 

relationships between selected frequencies identified following FFT. It has been 

suggested that strong phase relationships are inversely related to the number of 

EEG pacemaker elements.  
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The BIS Index results from a combination of the subparameters of BSR, QUAZI, 

BetaRatio and SynchFastSlow, each of which was selected to have a specific 

range of anaesthetic depth where it performs best. SynchFastSlow predominates 

during the excitation phase and during surgical levels of hypnosis. BetaRatio is 

weighted more heavily during light sedation and BSR and QUAZI detect deep 

levels of anaesthesia. Ultimately a single number (BIS) is continuously produced 

using averaging of preceding epochs, which predicts the depth of anaesthesia.  

 

6.5.4 Clinical Validity of the Bispectral Index 

In the United Kingdom, use of BIS in anaesthetic practice is supported by 

guidance from the National Institute of Health and Care Excellence (NICE)(222). 

In the diagnostics guidance (DG6, 2012), pEEG depth of anaesthesia monitors, 

with specific reference to BIS, are recommended as an option during the 

following clinical situations: 

 

1. In patient groups at higher of risk of unintended awareness during general 

anaesthesia. These patients would include, but are not limited to, 

patients with a previous history of unintended awareness, patients with a 

history of drug or alcohol abuse or patients undergoing certain types of 

surgery such as airway surgery. 

 

2. In patient groups at higher risk of excessively deep levels of anaesthesia. 

These patients would include older patients and patients with a history of 

cardiac, renal or liver disease.  

 

3. In patients receiving total intravenous anaesthesia.  

 

In the NICE guidance, the recommendations regarding BIS were based on a 

Cochrane review on “Bispectral Index for improving anaesthetic delivery and 

post-operative recovery”(223). It included 31 randomised controlled trials (RCTs) 

of BIS monitoring compared with standard clinical practice, but the NICE 

guidance acknowledged a large amount of heterogeneity between the trials with 

unintended awareness as an end-point. Two of these trials, on the basis of being 

the largest and most influential, merit further discussion.  
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The B-Aware trial was a multicenter RCT of 2463 surgical patients aged 18 yr or 

older who were at higher risk of awareness(224). Patients were randomized to 

BIS monitoring with target range of 40 to 60 or routine care. BIS values were 

manually recorded by the anaesthetist in the intervention group and there was 

no BIS monitoring in the control group. The primary outcome measure was the 

incidence of confirmed awareness by use of a structured questionnaire. Until 30 

days after enrolment, the number of patients who reported awareness under 

anaesthesia was significantly less in the BIS group (2, 0.17%) than in the routine 

care group (11, 0.91%). This represented an odds ratio of 0.18 (95% confidence 

interval 0.02 to 0.84, p = 0.022) and absolute reduction in the risk of awareness 

of 0.74%, Therefore the number of high risk patients needed to treat to prevent 

one episode of awareness was 138. The rates of total intravenous anaesthesia 

with propofol were similar in the intervention and control groups (43% and 42%). 

 

The BAG-RECALL trial(225) was itself a follow up to the B-Unaware trial which 

was criticised for being single centre and underpowered to exclude a clinically 

significant benefit attributable to BIS(226). Therefore BAG-RECALL was a 

multicentre RCT of 5713 surgical patients aged 18 yr or older who were at higher 

risk of awareness. Patients were randomized to BIS monitoring with a target 

range of 40 to 60 or volatile anaesthesia with a targeted minimum alveolar 

concentration (MAC) of 0.7 to 1.3. BIS and MAC values were recorded at 

minimum intervals of 1 minute by means of an electronic recording of 

anaesthesia data. The primary outcome measure was the incidence of 

intraoperative awareness. Until 30 days after extubation, the number of patients 

who reported awareness under anaesthesia was not significantly less in the BIS 

group (7, 0.24%) than in the control group (2, 0.07%). This represented an 

absolute difference of 0.17% (95% confidence intervals -0.03 to 0.38, p = 0.98) 

and thus superiority for the the BIS protocol was not demonstrated. 

 

The BAG-RECALL study was performed only in patients undergoing volatile-based 

anaesthesia and thus does not exclude the possibility that BIS monitoring would 

lead to lower levels of unintended awareness during total intravenous 

anaesthesia. Indeed during the recently reported national audit project (NAP5), 

conducted by the Royal College of Anaesthetists, there was an approximate two-

fold over-representation of awareness cases where a propofol infusion was used 
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for maintenance than would have been expected(227). This led the report 

authors to suggest that depth of anaesthesia monitors should be considered in 

patients undergoing TIVA with associated neuromuscular blockade. 

 

One of the major limitations of all pEEG techniques used to monitor the depth of 

anaesthesia is the underlying assumption that all anaesthetic agents have the 

same effect on the EEG. Increasing doses of GABAergic anaesthetics (for 

example propofol) cause a shift in the spontaneous EEG from higher to lower 

frequency components and an increase in synchronisation. This is not necessarily 

the case for other agents that are known to increase the clinical depth of 

anaesthesia (for example ketamine and opioids). The EEG signatures of 

commonly used anaesthetic drugs and their neurophysiological bases have 

recently been reviewed in detail(228). 

 

On the basis of the variable effects of anaesthetic drugs on the EEG, some 

commentators have suggested that it would be more valuable for anaesthetists 

to be trained to observe the raw EEG waveform than be dependent on the 

output of a pEEG device(229). Barnard et al demonstrated that anaesthetists 

could be taught to recognise the basic EEG changes associated with GABAergic 

anaesthetic drugs(230). Following a 15 minute tutorial, anaesthetists were able 

to categorize EEGs as awake, sedated, or anesthetized with comparable 

accuracy to the BIS monitor. The authors therefore suggested that the 

combination of pEEG and a clinician able to interpret the raw waveform would 

be of more value than a DoA monitor alone. 

 

Despite the recognised limitations of BIS, the continuous nature of its output and 

its relatively well established place in clinical anaesthesia, mean that it was 

selected for monitoring of the effect site in the VaSCoM study. 

 

6.5.5 Non-linear Mixed Effect Modelling 

The standard technique used for the development of a PKPD model is known as 

non-linear mixed effect modelling (NONMEM)(231). The NONMEM� software, 

now distributed by ICON Development Solutions, was initially released by Lewis 

Sheiner and Stuart Beal at the University of California and has been in use for 

over 30 years(232). There is an extensive product literature explaining the 
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ongoing development and instructions on the use of NONMEM�(233). Owen and 

Fielder-Kelly have provided an excellent non-technical introduction to the 

principles underlying NONMEM analysis(234). 

 

Non-linear mixed effects models involve both fixed and random effects. The 

fixed effects are the structural parameters of the PKPD model (such as 

compartment volumes and rate constants) and can be scaled according to 

patient covariates. The random effects account for unexplained inter-patient 

variability and the difference between the individual predicted values and the 

observations.  

 

Therefore at the population level, the model predicted value (F) can be 

represented as a function: 

 

𝐹 = 𝑓(𝜃,𝑛,𝑥) (6.16) 

 

where the model parameter T, is scaled according to the covariates x, with 

inter-individual random variation K. At the individual level, the observation (Y) 

can be represented as a function of F: 

 

𝑌 = 𝑓(𝐹, 𝜀) (6.17) 

 

where H is the intra-individual variability. NONMEM� estimates the fixed and 

random effects parameters using a maximum likelihood approach(235). 

 

While NONMEM� remains the industry standard for PKPD modelling, open source 

alternatives are becoming increasingly refined. Using a standard PK dataset, 

Tornoe et al have demonstrated that the R package nlmeODE(236) provides 

accurate parameter estimates, which are consistent with NONMEM�(237). This 

package was used in the VaSCoM study to provide population and individual 

estimates of the ke0 for the Covariates Model. 
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6.6 Summary of PKPD Modelling in the Context of the Covariates 

Model for Propofol 

Target controlled infusion of propofol represents a significant component of 

anaesthetic practice in the United Kingdom. While the physicochemical 

properties and clinical effects of propofol make it particularly suitable for 

intravenous infusion, it is the development of pharmacokinetic 

pharmacodynamic models that has been instrumental in facilitating its clinical 

use in TCI. There is considerable debate over whether the Marsh or Schnider 

PKPD model for propofol is better. The Covariates Model represents a potential 

alternative to these models and has the advantage over the Marsh Model of 

adjusting for the additional patient factors of age and gender. The VaSCoM Study 

presented in the coming chapters provides a systematic validation of the 

Covariates Model and comparison to the Marsh and Schnider Models.  

 

There has so far been no description of the pharmacodynamic component of the 

Covariates Model. The standard technique for extending a PK model to predict 

clinical effect is to describe the delay between plasma concentrations and 

clinical effect using the parameter of ke0, or the rate constant for elimination 

from a theoretical effect site. Quantifying the magnitude of anaesthetic effect is 

typically performed using depth of anaesthesia monitors that use specialised 

algorithms to process the raw electroencephalogram. BIS is the most established 

of these monitors and has been used is conjunction with a non-linear mixed 

effects modelling approach to determine the ke0 for the Covariates Model. 
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7 Materials and Methods for the VaSCoM Study 

 

7.1 Overview 

This chapter provides a detailed description of the patients and methods used in 

the Validation Study of the Covariates Model (VaSCoM). The study protocol and 

related documents are available on request. 

 

7.2 Objectives 

The primary objective of this study was to prospectively validate the predictive 

performance of the Covariates Pharmacokinetic Model for propofol in the study 

population. 

 

The secondary objectives were: 

a. Effect site modelling to obtain a ke0 value for the Covariate Model.  

b. Comparison of propofol concentrations measured in simultaneously 

sampled arterial and venous blood. 

 

Comparison of the Covariates Model performance to that of the commonly used 

Marsh and Schnider models was not a stated objective of this study. Throughout 

the course of the study the question of which model is “best” did naturally arise. 

For this reason, simulation studies were performed to compare the three 

models. 

 

7.3 Ethical Approval 

Ethical approval was granted for the study by the West of Scotland Research 

Ethics Service on 9th April 2010 (Reference Number: 10/S0709/8). The study was 

sponsored by The Golden Jubilee National Hospital and supported by funding 

from The Department of Anaesthesia and Peri-operative Medicine Endowment 

Fund.  
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7.4 Summary of Study Design 

The study was a single centre, randomised, non-comparative, validation study of 

the Covariates Model. The Medicines and Healthcare products Regulatory Agency 

confirmed that the study was not a Clinical Trial of an Investigational Medicinal 

Product. The aim was to enrol up to 50 adults with a goal of 30 completed cases. 

At least ten patients aged over 65 years were required to assess the validity of 

the model in an older population. The study protocol is summarised in Figure 

7.1. 

 

7.5 Patient Recruitment 

Study participants were prospectively recruited from patients attending the 

Golden Jubilee National Hospital, Glasgow for elective surgery between 26th 

January 2011 and 10th June 2014. Included patients were over 18 years of age 

and undergoing non-cardiac surgery requiring general anaesthesia and expected 

to last more than 30 minutes. 

 

Patients were approached during their pre-operative clinic attendance and 

provided with a Participant Information Sheet and a verbal description of the 

study procedure. They were either consented at this stage or allowed further 

time to consider their involvement prior to attendance on the day of surgery. 

 

Patients were excluded from the study if they refused consent or were unable to 

consent on the basis of lack of capacity. If a patient was due to receive pre-

medication or had received sedative or anaesthetic agents the preceding 12 

hours they were excluded because of the potential impact on depth of 

anaesthesia monitoring. For similar reasons, patients with a history of excessive 

alcohol intake or illicit drug use were excluded. Patients were excluded if they 

had a body mass index (BMI) of greater than 35, predictors of a difficult airway 

or a history of allergy to any of the constituents of propofol.  

 

7.6 Patient Monitoring 

During conduct of the study protocol, all patients were cared for in either an 

anaesthetic room or operating theatre by a minimum of two anaesthetists or one 

anaesthetist and one appropriately trained physician’s assistant for anaesthesia. 
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A skilled anaesthetic assistant was present at all times. Standards of monitoring 

provided by the Association of Anaesthetists of Great Britain and Northern 

Ireland (AAGBI) were followed(238). Monitoring was performed using the Draeger 

Primus anaesthetic machine with integrated monitoring (Draeger Medical UK 

Ltd.). 

 

7.7 Study Procedure 

7.7.1 Intravenous and Intra-arterial Access 

Following confirmation of stable vital signs, all patients had an 18G or 20G 

intravenous cannula inserted into a large forearm vein to allow infusion of 

propofol. In the contra-lateral arm, a second 18G intravenous cannula was 

inserted to allow sampling of venous blood. A further cannula was then inserted 

into the radial artery on this side to allow sampling of arterial blood and beat-

to-beat measurement of arterial blood pressure. 

 

7.7.2 Electroencephalographic Monitoring 

To allow modelling of the effect site, processed electroencephalography (pEEG) 

monitoring was performed. The monitor used in the study was the Bispectral 

Index (BIS XP A2000, Medtronic, Ireland) running software version 3.11 and with 

a smoothing rate of 15 seconds. 

 

7.7.3 Synchronised Electronic Data Capture 

Prior to initiation of the study protocol, the collection of continuous 

physiological data was confirmed. All routinely collected AAGBI standard 

monitoring data, invasive arterial blood pressure and details of all medications 

administered were recorded using the Recall digital anaesthetic record 

(Informatics, UK). pEEG data were streamed directly to a Dell Latitude 

Toughbook (Dell, USA) using the Anaesthesia Synchronisation Software 

(ASYS)(239) (provided by Nadja Bressan). 

 

7.7.4 Propofol Infusion Regime 

Propofol (Propofol Lipuro 2%, B. Braun Medical Ltd., UK) was infused using an 

Injectomat TIVA Agilia syringe pump (Fresinius Kabi, France) programmed with 
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the Covariates Model. Patency of the intravenous cannula was confirmed by 

concomitant slow infusion of compound sodium lactate solution. As described in 

the study protocol (Figure 7.1), patients were alternately randomised to either a 

2-5-2 infusion or a 5-2-5 infusion. In the 2-5-2 group, an initial propofol plasma 

target concentration of 2 Pg/ml was maintained for 15 minutes prior to an 

increase to 5 Pg/ml for 15 minutes and finally a reduction to 2 Pg/ml for 15 

minutes. The reverse was performed in the 5-2-5 group.  

 

The study procedure lasted around 45 minutes in total and was performed prior 

to the initiation of surgery. During this time, the patient remained 

spontaneously breathing via a face mask and the concentration of oxygen was 

titrated to maintain arterial oxygen saturations of at least 95%. Intravenous 

boluses of metaraminol 0.1 mg and glycopyrrolate 200 mcg were used to treat 

hypotension and bradycardia as clinically indicated. No medications that could 

interfere with the pharmacodynamics of propofol, such as volatile anaesthetics 

agents, benzodiazepines or opioids, were administered during the study 

procedure. 

 

7.7.5 Blood Sampling Schedule 

Throughout the study procedure, arterial and venous blood samples were drawn 

at pre-specified time points as indicated in Table 7.1. The sampling schedule 

was designed to allow comparison of arterial and venous propofol concentrations 

as well as to allow model validation close to plasma target changes and during 

stable anaesthesia.  

 

Following collection of the final blood sample, the patient was prepared for 

their surgical procedure. Anaesthetic management from this stage onwards 

followed local procedures and guidelines and participation in the study did not 

influence the patient’s ongoing clinical care.  
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Arterial Sample 

 

Venous Sample 

Patients Identified 

Patients Recruited 

Study Theatre 

GA Commenced 

Consent 

 

AAGBI Monitoring 

 

Venous/Arterial Access 

 

BIS Monitoring 

 

TCI Pump Connected 

 

Propofol Cp @ 2Pg/ml 

 

Propofol Cp @ 5Pg/ml 

 

Propofol Cp @ 2Pg/ml 

 

Patient Transferred to Operating Theatre for Surgery 

Propofol Cp @ 5Pg/ml 

 

Propofol Cp @ 2Pg/ml 

 

Propofol Cp @ 5Pg/ml 

 

2-5-2 

 

5-2-5 

 

1.5 Mins 

16.5 Mins 

5 Mins 

15 Mins 

20 Mins 

30 Mins 

31.5 Mins 

35 Mins 

45 Mins 
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Figure 7.1 (previous page): VaSCoM study algorithm. AAGBI = Association of 

Anaesthetists of Great Britain and Ireland, BIS = Bispectral Index, TCI = target 

controlled infusion, GA = general anaesthesia, Cp = target plasma concentration. 

Venous Samples Arterial Samples 

Sample 1 90 seconds Sample 1 90 seconds 

Sample 2 5 minutes Sample 2 5 minutes 

Sample 3 60 – 90 seconds 

after change of 

target 1 

Sample 3 60 – 90 seconds 

after change of 

target 1 

Sample 4 20 minutes 

 

Sample 4 20 minutes 

 

Sample 5 60 – 90 seconds 

after change of 

target 2 

  

Sample 6 35 minutes   

Sample 7 45 to 60 minutes   

 

Table 7.1: Schedule for sampling of venous and arterial blood 

7.7.6 Processing of Blood Samples 

Arterial and venous blood samples were collected into a blood gas syringe to 

heparinise. The sample was then transferred into a fluoride oxalate sample 

bottle to provide stability prior to storage at 4qC. Propofol concentrations in 

whole blood samples were analysed by C3P Analysis using a validated whole 

blood high performance liquid chromatography (HPLC) technique(231). 

 

7.8 Analysis 

7.8.1 Introduction 

The majority of data processing and analysis were performed using RStudio 

Version 0.98.1102 running R Version 3.1.2 (R Core Team, 2014)(7). Individual R 

Packages used for each stage of analysis are detailed in the appropriate 
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sections. The rationale for using R has already been discussed in the introduction 

to this thesis. All summary measures are reported as median (range). 

 

7.8.2 Data Preparation 

Infusion profiles from the Injectomat TIVA Agilia syringe pump were downloaded 

into Microsoft Excel (2007) using the software provided (Partner Agilia, Fresenius 

Kabi, France). The BIS recordings were exported from the ASYS software into 

Microsoft Excel. Similarly all arterial and venous blood results and individual 

patient demographic details were stored in Microsoft Excel. Data were then 

imported into R using the package gdata(240). Manipulation of data into a 

standardised format for ease of repeatable analysis was performed using the 

packages dplyr(135) and stringr(136). 

 

7.8.3 Approach to Pharmacokinetic Model Validation 

7.8.3.1 Introduction 

The approach to pharmacokinetic model validation published by Varvel et al and 

discussed in the introduction to this thesis was adapted for use in this 

study(199). The measures of performance felt to be most relevant were “bias” 

and “precision”. The calculations of these metrics as performed in this study are 

outlined below. 

 

7.8.3.2 Percentage Performance Error 

Prior to the calculation of bias and precision, it was first necessary to measure 

the percentage performance error for each of the arterial and venous blood 

samples. It was calculated using the equation:  

 

𝑃𝐸 =
𝐶𝑏 − 𝐶𝑝

𝐶𝑝
× 100 (7.1) 

 

where PEij is the percentage performance error i in the jth patient, Cb is the 

concentration measured in blood and Cp is the concentration predicted by the 

TCI device. 
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7.8.3.3 Bias 

The bias of a TCI device is its tendency to over or under predict the actual drug 

concentration. For each individual this was measured through the median 

performance error (MDPE), calculated as: 

 

𝑀𝐷𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛൛𝑃𝐸, 𝑗 = 1,… , 𝑁ൟ (7.2) 

 

where Ni is the number of performance errors in the ith individual.  

 

7.8.3.4 Inaccuracy 

In a situation where a TCI device has the tendency to both under and over 

predict drug concentrations at different stages of the infusion, these PEs may 

compensate for each other and the bias may be negligible. The overall size of 

the PEs is thus better represented by the median absolute performance error 

(MDAPE), calculated as: 

 

𝑀𝐷𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛൛ห𝑃𝐸ห, 𝑗 = 1, … ,𝑁ൟ (7.3) 

 

7.8.3.5 Population estimates 

Following calculation of MDPE and MDAPE for each individual, the TCI device 

performance was measured for the entire population by finding the overall 

medians: 

 

𝑀𝐷𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑀𝐷𝑃𝐸, 𝑖 = 1, … ,𝑀} (7.4) 

 

and 

 

𝑀𝐷𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑀𝐷𝐴𝑃𝐸, 𝑖 = 1,… ,𝑀} (7.5) 

 

where M represents the number of study participants. The disadvantage of this 

two stage approach to finding the population estimates is that MDPE and MDAPE 

may be known in some participants with more certainty than others. This was 

accounted for by weighting the calculation by the number of blood samples 
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performed in each patient, but without adjustment for the intra-patient 

variability. 

 

7.8.3.6 Sample Size 

There is no consensus agreement on the required sample size for this type of PK 

validation study. Similar published studies have recruited around 30 

patients(241) and the same number was determined to be appropriate in this 

study.  

 

7.8.4 Model Simulation 

The TCI device infusion profile for each participant was used to simulate the 

propofol plasma concentrations predicted by each of the Covariates, Marsh and 

Schnider Models. For the interim analysis described below, this was first 

performed using the Tivatrainer software (Version 8.1)(242) to simulate the 

predictions made by the Covariates Model. Tivatrainer is a specialised 

pharmacokinetic simulation programme that has been used extensively in 

anaesthetic pharmacokinetic research. It does not however provide the 

flexibility of data manipulation and integration of multiple analyses that is 

provided by R. For this reason, the remainder of the simulation studies were 

performed using the deSolve Package in R, which provides the functions to solve 

ordinary differential equations as required in compartmental PK modelling(243). 

 

The models were represented in R based on the standard three compartment 

open model: 

 

𝛿𝐶ଵ
𝛿𝑡 = 𝑑𝑜𝑠𝑒 + 𝑘ଶଵ𝐶ଶ + 𝑘ଷଵ𝐶ଷ − (𝑘ଵ+ 𝑘ଵଶ + 𝑘ଵଷ)𝐶ଵ 

(7.6) 

 

𝛿𝐶ଶ
𝛿𝑡 = 𝑘ଵଶ𝐶ଵ − 𝑘ଶଵ𝐶ଶ 

(7.7) 

 

𝛿𝐶ଷ
𝛿𝑡 = 𝑘ଵଷ𝐶ଵ − 𝑘ଷଵ𝐶ଷ 

(7.8) 
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where dose is the quantity of propofol delivered, C1, C2 and C3 are the 

concentrations of propofol in the first, second and third compartments, k12, k13, 

k21 and k31  are the intercompartmental rate constants and k10 is the rate 

constant for elimination.  

 

To ensure that the deSolve Package was providing accurate solutions to the 

modelling studies, the predicted plasma concentrations for the Covariates Model 

in the interim analysis were compared to the predictions provided by 

Tivatrainer. This was done using the same methodology as described with 

calculation of MDPE and MDAPE as measures of bias and inaccuracy.  

 

7.8.5 Interim Analysis 

An interim analysis of the study was performed following recruitment of ten 

male and ten female patients to the study to ensure that MDPE and MDAPE for 

the Covariates Model were within the expected ranges. This analysis revealed 

that the PEs were markedly higher in female patients than was anticipated. The 

decision was therefore made to perform a simulation study at this stage to 

ensure that the implementation of the Covariates Model by the Fresenius 

Injectomat TIVA Agilia syringe pump was accurate. Simulation study using both 

Tivatrainer software and the desolve Package revealed that the TCI device 

programming had been mis-specified and was therefore not appropriately 

implementing the Covariates Model in female patients (details are provided in 

the results section). This mis-specification was corrected by the manufacturer 

and following discussion with the Research Ethics Service, an additional ten 

female patients were recruited to the study.  

 

7.8.6 Validation Study 

Validation of the Covariates Model as implemented by the syringe pump was 

performed only in the participants who received the correctly specified model. 

Overall values for bias (MDPE) and inaccuracy (MDAPE) were calculated. 

Wilcoxon Signed Rank Tests were performed to compare PEs measured using 

arterial and venous sampling. A p-value of < 0.05 was regarded as significant. 
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Again using the Wilcoxon Signed Rank Test, specific comparisons were made 

between male and female patients and younger and older patients to confirm 

that adjusting the model by the covariates of age and gender resulted in 

consistent bias.  

 

Finally, the effect of time since a change in target plasma concentration was 

explored. For arterial and venous samples, linear models were constructed to 

identify if there was a systematic change in bias with increasing time from a 

change in target concentration. The absolute difference was then calculated 

between each pair of PEs from arterial and venous samples (the a-v PE 

difference) and the magnitude of this difference modelled against time. All 

modelling was done using the stats Package in R(7) and details of the models 

selected are provided in the results section.  

 

7.8.7 Model Comparison Study 

Simulation studies were performed in the desolve Package using data from all 

patients to compare predictions made by the Covariates, Marsh and Schnider 

Models. Following calculation of the predicted plasma concentrations for each 

participant according to each of the models, their performances were compared 

using MDPE and MDAPE. The Friedman Rank Sum Test was used to compare all of 

the Covariates, Marsh and Schnider Models for a statistically significant 

difference in inaccuracy. The Nemenyi Multiple Comparison Test could then be 

used to determine which, if any, models were statistically different. Use of the 

Nemenyi multiple comparison test removes the need for post-hoc adjustment of 

p-values and therefore a p-value of <0.05 was regarded as significant. 

 

For each of the models, similar comparisons as for the validation study were 

performed between female and male and younger and older patients to 

determine if there were any systematic differences in bias. 

 

For arterial and venous blood sampling, models were compared at early (< 2.5 

minutes), intermediate (> 2.5 minutes) and late (> 5.5 minutes) time intervals 

following a change in target plasma concentration.  As above, statistical 

comparisons of model inaccuracies were performed using the Friedman Rank 

Sum Test with Nemenyi Multiple Comparison Test. For each of the PK models 
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there was then construction of linear models to determine systematic changes in 

bias with time and for a systematic change in the a-v PE difference. 

 

7.8.8 Effect Site Modelling 

The central role of the ke0 in effect site modelling and its determination using 

non-linear effect site modelling has been discussed in detail in the introduction. 

The appropriate ke0 for the Covariates Model had not been determined prior to 

this study. To perform effect site modelling using the standard parametric 

approach, it is necessary to simultaneously perform monitoring of the 

anaesthetic effect site while delivering anaesthesia using a validated PK model. 

In the first instance this meant using only data from patients in whom the 

correctly specified Covariates Model was delivered and an effect site monitoring 

profile (i.e. BIS) was available. The analysis was subsequently repeated using 

simulated PK data in all patients who had an effect site monitoring profile 

available. 

 

The relationship between anaesthetic effect and the effect site concentration 

was assumed to be represented by the sigmoid Emax model described by 

Hill(244): 

 

𝐸 = 𝐸 −
𝐸௫𝐶ఊ

𝐶ఊ + 𝐶(50)ఊ
 

(7.9) 

 

where E is drug effect, E0 is the baseline effect with no drug present, Emax is the 

maximum difference from baseline, Ce is the effect site concentration, Ce(50) is 

the drug concentration producing 50% of the maximum effect and J describes the 

slope of the concentration-effect relationship. To describe the relationship 

between the predicted plasma concentration and the effect site concentration, 

a further differential equation was added to the existing three-compartment 

model: 

 

𝛿𝐶
𝛿𝑡 = 𝑘(𝐶ଵ − 𝐶) 

(7.10) 

 



 

 

118 
where ke0 is the rate constant for elimination from the effect site and models 

the delay between changes in C1 and clinical effect.  

 

The standard software used for PKPD analysis, and thus estimation of the best 

ke0 to describe drug behaviour in a population is NONMEM£ (ICON Plc, Ireland). 

In this study, the R package nlmeODE(236) was used to perform non-linear mixed 

effect modelling using differential equations.  As discussed earlier, this package 

has been shown to provide accurate parameter estimates, which are consistent 

with NONMEM estimates(237). 

 

The analysis was performed in three stages. Firstly by allowing nlmeODE to fit 

the data by finding the best estimates of ke0, E0, Emax, EC50 and J. Secondly by 

fixing Emax to 100, as this is the maximum anaesthetic effect measurable by the 

BIS device. Finally by fixing both Emax and E0 to 100, as the theoretical BIS in all 

patients prior to starting anaesthesia is also 100. In each scenario, an overall 

population estimate (or fixed effect) as well as an individualised estimate (or 

random effect) for ke0 was provided.  

 

 



 

 

119 

8 Results of the VaSCoM Study 

 

8.1 Overview 

The principle results of the Validation Study of the Covariates Model (VaSCoM) 

for target controlled infusion of propofol are presented. The results are in four 

sections, relating firstly to an interim analysis, secondly to the pharmacokinetic 

(PK) validation study, thirdly to a pharmacokinetic PK comparison study and 

finally to the pharmacodynamic (PD) analysis. 

 

8.2 Data Collection 

8.2.1 Data Collection Period 

The initial plan for the VaSCoM study was to recruit up to 50 patients to achieve 

datasets for 30 patients. Data collection took place during the period 26th 

January 2011 and 10th June 2014. Recruitment was significantly slower than 

expected for two reasons. The first was the fact that the vast majority of 

patients undergoing non-cardiac surgery at the Golden Jubilee National Hospital 

are anaesthetised using regional rather than general anaesthetic techniques. 

This reduced the pool of eligible patients. The second reason related to the 

complex logistics of the study requiring three clinicians and a separate clinical 

area to complete the study procedure without impacting on the efficient running 

of the theatre list. 

 

As discussed in the methods section, the initial target sample size was increased 

to 40 to compensate for a calculation error programmed into the TCI device 

used. One patient was withdrawn from the study prior to any blood samples 

being collected because airway management became a priority. In addition, 

there was one female participant who was anaesthetised using the male 

algorithm. Ultimately there were 40 patients studied, with 29 participants 

anaesthetised using the correctly specified Covariates Model.  
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8.2.2 Patient Demographics 

25 female patients were studied with median age of 45 (38 – 63) years and 

median weight of 63 (61 - 71) kg. For the 14 females anaesthetised using the 

correctly specified Covariates Model, these values were 45.5 (43.25 – 65.25) 

years and 63 (60.25 – 73.25) kg. There were 15 male patients studied with 

median age of 51 (43 – 66) years and median weight of 86 (78 – 97) kg. Table 8.1 

summarises the demographic characteristics of each of the 40 participants and 

the infusion protocol that was used. 

 

8.2.3 Blood Samples and BIS Profiles 

Whole blood propofol concentrations were measured in 160 arterial blood 

samples and 274 venous blood samples. For patients who were anaesthetised 

using the correctly specified Covariates Model, there were 116 arterial samples 

and 199 venous samples. Bispectral index (BIS) profiles were available for 33 

patients, 24 of whom were anaesthetised using the correctly specified 

Covariates Model.
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ID Model Gender Age (Yrs) Weight (kg) Height (cm) Protocol 

1 Mis_spec f 54 66 160 a 

11 Covariates m 32 79 175 a 

20 Covariates m 29 86 180 b 

21 Covariates m 28 93 181 a 

23 Mis_spec f 43 62 161 b 

27 Mis_spec f 35 66 159 a 

30 Covariates m 53 117 185 b 

35 Covariates m 41 99 185 a 

39 Covariates m 51 99 175 b 

47 Mis_spec f 29 59 169 b 

49 Mis_spec f 52 62 166 a 

55 Covariates m 58 79 180 a 

56 Covariates m 46 95 175 b 

60 Mis_spec f 32 73 175 a 

61 Mis_spec f 49 80 171 b 

62 Covariates m 47 80 182 a 

63 Covariates m 45 120 192 b 

65 Mis_spec f 38 67 164 b 

71 Mis_spec f 30 61 171 a 

72 Mis_spec f 73 66 174 a 

78 Covariates f 51 49 156 a 

81 Covariates f 43 60 168 b 

83 Covariates f 46 58 171 a 

84 Covariates f 40 76 161 b 

85 Covariates f 45 63 162 a 

87 Covariates f 45 88 174 b 

88 Covariates f 44 63 159 a 

90 Covariates male f 69 51 164 a 

95 Covariates f 70 69 169 b 

101 Covariates m 65 68 173 b 

107 Covariates f 66 71 151 a 

108 Covariates m 75 75 172 b 

110 Covariates f 63 74 155 b 

112 Covariates f 35 62 167 a 

114 Covariates m 68 77 170 a 

117 Covariates m 67 95 179 a 

119 Covariates f 32 82 176 b 

130 Covariates m 67 73 177 b 

132 Covariates f 70 61 160 b 

137 Covariates f 68 54 158 a 

 

Table 8.1: Demographics, PK model details and study protocol for each of the 40 

patients studied in the VaSCoM study.  
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8.3 Interim Analysis 
An interim analysis of data from the first ten male and ten female patients 

studied was performed and these were presented in June 2012 at the 

Anaesthetic Research Society Meeting, Aberdeen(245). MDPE and MDAPE were 

first calculated for the full cohort of patients. MDPE and MDAPE for venous 

samples were 10 (-49 to 52) and 23 (9 to 54), while MDPE and MDAPE for arterial 

samples were 27 (-33 to 89) and 34 (13 to 89). The bias and inaccuracy 

calculated were of a greater magnitude than was anticipated given the 

optimisation of the Covariates Model through the inclusion of age and gender 

covariates. To explore this further, separate analyses of male and female 

patients were performed and the results revealed a much larger performance 

error in female patients (Table 8.2 and Figure 8.1). 

 

Measure Female Male 

MDPE Arterial 49 (-33 to 89) 16 (-11 to 72) 

MDAPE Arterial 49 (26 to 89) 23 (13 to 72) 

MDPE Venous 8 (-49 to 52) 15 (-6 to 29) 

MDAPE Venous 40 (12 to 54) 23 (9 to 31) 

 

Table 8.2: Interim results with MDPEs and MDAPEs for venous and arterial sampling 

in males and females. 
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Figure 8.1: Boxplots demonstrating the range of MDPEs and MDAPEs for arterial and 

venous sampling for females (A) and males (B) in the interim analysis of pump 

performance. 

On the evidence of the MDPE for arterial sampling in females there seemed to be 

a systematic under prediction of the measured propofol concentrations by the 

Covariates Model as implemented by the Fresenius Injectomat TIVA Agilia syringe 

pump. Sample plots of predicted concentrations with measured arterial and 

venous blood concentrations for female patients anaesthetised using both 

protocol a (2-5-2) and protocol b (5-2-5) supported this hypothesis (Figure 8.2). 

This systematic error could be related to either a bias within the Covariates 

Model itself, or a mis-specification of the Covariates Model within the syringe 

pump. To elucidate this further, it was necessary to perform simulation studies 

for each of the patients so far recruited and compare the predicted 

concentrations from the simulations to those downloaded from the syringe pump 

(Figure 8.2). 
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Figure 8.2: Predicted concentration profiles for female patients who had propofol 

infusions delivered according to protocol a (A) and b (B) for the mis-specified 

Covariates Model. The measured arterial and venous blood concentrations have 

been plotted to indicate the significant discrepancy between measured and 

predicted values. The concentrations predicted by a simulation of the correctly 

specified Covariates Model are plotted for comparison. 

The simulation studies were performed using both the Tivatrainer software and 

the deSolve Package in R with identical input parameters. Performance errors 

between the concentration predictions made by Tivatrainer and those made by 

the syringe pump were plotted against time (Figure 8.3). It became immediately 

clear that in female patients the syringe pump was systematically predicting 

lower concentrations than those expected by Tivatrainer. This was supported by 

a MDPE of 35 (23 to 69) and a MDAPE of 35 (23 to 69) in females. There was 

systematic under prediction of concentrations in males but to a much smaller 

degree with a MDPE of 5 (3 to 6) and a MDAPE of 5 (3 to 6) (Figure 8.4). 
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Figure 8.3: Performance error plotted against time for ten male and ten female 

patients comparing simulated predictions made by Tivatrainer and (A) the 

predictions made by the syringe pump and (B) the simulated predictions made by 

the deSolve Package. 



 

 

126 

Figure 8.4: Comparison of MDPE and MDAPE for female and male patients between 

predictions made by Tivatrainer and (A) the predictions made by the syringe pump 

and (B) the simulated predictions made by the deSolve package. 

On the basis of the significant and systematic error between propofol 

concentration predictions made by the syringe pump and both the measured 

values and the predictions made by Tivatrainer, the VaSCoM study was put on 

hold. A review of the input parameters to the Covariates Model as implemented 

by the syringe pump was performed and revealed a simple arithmetic error. 

Calculation of the central compartment volume should have been implemented 

as: 

 

𝑉ଵ = 191.78− 0.669×𝐴𝑔𝑒 (8.1) 

 

but had instead been implemented as: 

 

𝑉ଵ = 191.78+ 0.669×𝐴𝑔𝑒 (8.2) 

 



 

 

127 
with the consequence of increased doses of propofol being delivered to fill the 

larger compartment volume. All of the syringe pumps used in the study were re-

programmed with the correctly implemented model, and following liaison with 

the Research Ethics Committee a plan was made to recruit an additional 10 

female patients to the study. 

 

The results of the simulation studies performed comparing the predictions made 

by the deSolve Package to those made by the syringe pump gave essentially 

identical results to those using Tivatrainer. Indeed when the performance error 

between predictions made by Tivatrainer and those made by deSolve were 

plotted against time there was no real systematic difference identified (Figure 

8.3). This conclusion was supported by calculation of a MDPE of 0 (-2 to 1) and 

MDAPE of 1 (0 to 2) (Figure 8.4). On the basis of these results, all subsequent 

simulation studies were performed using the deSolve Package due to the ability 

to more quickly and efficiently perform multiple simulations. 

 

8.4 Validation Study Results 

8.4.1 Overall Validation Results 

The results presented below relate to a comparison between the measured 

arterial and venous propofol concentrations and the concentrations predicted by 

the syringe pump. Only data from the 29 patients anaesthetised using the 

correctly specified Covariates Model with the correctly implemented Covariates 

Model were included in the analysis. These results were presented in part in 

September 2016 at the World Congress of Anesthesiologists, Hong Kong(246). 

Overall the implemented model seemed to perform with a reasonable degree of 

bias and inaccuracy with a MDPE of 9 (-45 to 82) and MDAPE of 24 (9 to 82) for 

arterial samples and MDPE of -8 (-64 to 70) and MDAPE of 23 (9 to 70) for venous 

samples (Figure 8.5). There was a statistically significant difference between PEs 

for each arterial and venous blood sample (p < 0.0001) and between the arterial 

and venous MDPEs for each patient (p < 0.001) as tested by the Wilcoxon Signed 

Rank Test. 
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Figure 8.5: Validation study results showing MDPE and MDAPE for arterial and venous 

samples in (A) the overall population, (B) female patients and (C) male patients. 

8.4.2 Female and Male Patient Comparison 

On examination of the results for female and male patients, there appeared to 

be a tendency for the predicted concentrations to be higher than the measured 

concentrations in female patients but lower than predicted concentrations in 

male patients (Table 8.3 and Figure 8.5). This was confirmed by significant 

Wilcoxon Signed Rank Tests comparing MDPEs for female and male patients on 

arterial (p < 0.001) and venous (p < 0.0001) samples. The result of these 

opposing biases (over prediction in females and under prediction in males) was 

that the overall population bias was reduced to nearer to zero.  
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Measure Female Male 

MDPE Arterial -14 (-45 to 28)* 19 (-11 to 82)* 

MDAPE Arterial 23 (9 to 45) 24 (13 to 82) 

MDPE Venous -20 (-64 to -8)* 12 (-9 to 70)* 

MDAPE Venous 21 (11 to 64) 23 (9 to 70) 

 

Table 8.3: Final validation results with MDPEs and MDAPEs for venous and arterial 

sampling in females and males. * Denotes statistically significant difference between 

MDPEs in females and males. 

8.4.3 Younger and Older Patient Comparison 

There was no clear systematic difference in the bias of model predictions 

between younger (aged under 65 years) and older patients (Table 8.4). This was 

confirmed by non-significant Wilcoxon Signed Rank Tests comparing MDPEs for 

younger and older patients on arterial (p = 0.36) and venous (p = 0.80) samples. 

There was a tendency for older age to emphasise existing differences in bias 

between female and male patients as supported by arterial MDPEs of -12 (-43 to 

18) and -23 (-45 to 28) in younger and older females and 16 (-11 to 72) and 27 

(13 to 82) in younger and older males (Figure 8.6). 

 

Measure Younger Older 

MDPE Arterial 1 (-43 to 72) 20 (-45 to 82) 

MDAPE Arterial 22 (9 to 72) 27 (13 to 82) 

MDPE Venous -6 (-64 to 29) -9 (-51 to 70) 

MDAPE Venous 22 (9 to 64) 24 (10 to 70) 

 

Table 8.4: Final validation results with MDPEs and MDAPEs for venous and arterial 

sampling in younger and older patients. 
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Figure 8.6: Validation study results showing MDPE for arterial and venous samples in 

(A) younger females, (B) younger males, (C) older females and (D) older males.  

8.4.4 Early and Late Sampling Comparison 

On visual inspection of the data, there appeared to be a systematic change of 

PEs with increasing time from an increase in the target plasma concentration. 

With increasing, time arterial PEs appeared to become more negative and 

venous PEs appeared to become more positive. This was formally investigated 

using a linear modelling technique with the model: 

 

𝑃𝐸 = 𝛼ଵ∆𝑡+ 𝛼ଶ𝐺 + 𝛽 (8.3) 

 

where PE is the arterial or venous PE, 't is the time since an increase in plasma 

target concentration and G is gender (Table 8.5 and Figure 8.7). There was a 

significant negative correlation between time from an increase in target plasma 

concentration and the performance errors measured using arterial samples (p < 

0.0001, r-squared = 0.29). In contrast, using performance errors measured using 

venous samples, the overall model demonstrated statistical significance (p < 
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0.0001, r-squared = 0.23) but there was no significant relationship between 

performance errors and time (D1 p = 0.302). 

 

Sampling Constant Estimate Lower Upper p-value 

Arterial E 0.37 -0.26 15.61 0.946 

D1 -0.03 -0.05 -0.02 0.001 

D2 38.10 16.92 37.31 0.000 

Venous E -32.98 -42.41 -23.55 0.000 

D1 0.01 0.00 0.02 0.302 

D2 40.00 29.69 50.3 0.000 

 

Table 8.5: Estimates for constants in Equation 8.3 for venous and arterial sampling 

with upper and lower 95% confidence intervals and associated p-values. 

 

Figure 8.7: Plots of PE against time since an increase in the target plasma 

concentration for arterial (A) and venous (B) samples. Linear models are displayed 

as fit +/- 95% confidence interval. The lighter shaded area represents 95% 

confidence interval of model predictions. 
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From Figure 8.7, there is a suggestion that the differences between PEs 

calculated using arterial and venous sampling reduce with time from an increase 

in plasma target concentration. To explore this further, the difference was 

calculated between every pair of arterial and venous blood samples (Figure 8.8). 

After visual inspection of the data, the following linear model was fitted:  

 

𝑙𝑜𝑔(𝑃𝐸 − 𝑃𝐸௩) = 𝛼∆𝑡+ 𝛽 (8.4) 

 

where PEa is performance error calculated from arterial sampling, PEv is 

performance error calculated from arterial sampling and 't is the time since an 

increase in plasma target concentration (Table 8.6). There was a significant 

relationship between log(PEa - PEv) and time since an increase in target plasma 

concentration (p < 0.0001, r-squared = 0.32). 

 

Figure 8.8: Plot of the difference between arterial and venous PEs against time 

since an increase in target plasma concentration. Linear models are displayed as fit 

+/- 95% confidence interval. The dashed line represents 95% confidence interval of 

model predictions. 
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Constant Estimate Lower Upper p.value 

D 3.643 3.385 3.847 0.000 

E -0.002 -0.002 -0.001 0.000 

 

Table 8.6: Estimates for constants in Equation 8.4 with upper and lower 95% 

confidence intervals and associated p-values. 

8.5  Model Comparison Results 

8.5.1 Introduction 

All of the validation study results presented above have used the Fresenius 

implementation of the Covariates Model. For consistency in comparison, the 

Covariates Model, Marsh Model and Schnider Model were all re-simulated using 

the deSolve Package in R from the Fresenius Agilia Pump infusion profile for all 

40 patients. In the simulations performed for the interim analysis results above, 

predictions made using deSolve were very close to those made by the well-

established Tivatrainer software. 

 

8.5.2 Model Comparison Based on Overall Performance Error 

Comparison was first made between the arterial and venous blood propofol 

concentrations and the concentrations predicted by each of the Covariates, 

Marsh and Schnider Model Simulations in all study patients and at all study time 

points. The summary results for these simulations are displayed in Table 8.7 and 

Figures 8.9 and 8.10. On the basis of arterial sampling, the overall bias of the 

Covariates Model was closest to zero, with accuracy similar to that of the 

Schnider Model. The Marsh Model tended to over-predict with lower accuracy 

than the other two models. This was confirmed statistically using a Friedman 

Rank Sum Test to confirm a difference between the MDAPEs for each of the 

models (p < 0.0001). Pairwise comparisons using Nemenyi Multiple Comparison 

Test confirmed the similarity of the Covariates and Schnider Models, but a 

significant difference between the Marsh Model and the Covariates and Schnider 

Models respectively (p < 0.01 and p < 0.0001). On the basis of venous sampling, 

the Covariates Model had a greater tendency to under-predict but there was no 

significant difference in the accuracies of the models (p = 0.20). 
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Model MDPE Art MDAPE Art MDPE Ven MDAPE Ven 

Covariates 3 (-45 to 73) 25 (3 to 73)* -11 (-64 to 56) 20 (9 to 64) 

Marsh 18 (-44 to 112) 34 (9 to 112)* -5 (-56 to 84) 25 (9 to 84) 

Schnider 9 (-40 to 68) 22 (7 to 68)* -6 (-59 to 40) 26 (9 to 59) 

 

Table 8.7: Summary of results for prediction errors in simulation studies for each of 

the Covariates, Marsh and Schnider Models. * Denotes statistically significant 

difference between MDAPEs calculated for each model. 

 

Figure 8.9: Summary of results for prediction errors based on arterial blood 

sampling in simulation studies for each of the Covariates, Marsh and Schnider Models 

in all patients (A), females (B) and males (C). 
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Figure 8.10: Summary of results for prediction errors based on venous blood 

sampling in simulation studies for each of the Covariates, Marsh and Schnider Models 

in all patients (A), females (B) and males (C). 

8.5.3 Model Comparison By Gender 

The predictive performance of the Covariates, Marsh and Schnider Models in 

female and male patients was compared. The results are summarised in Table 

8.8 and Figures 8.9 and 8.10. In line with the Validation Study results, the 

simulation studies using the Covariates Model confirmed the tendency to over-

predict in females and under-predict in males. Again this was confirmed by 

significant Wilcoxon Signed Rank Tests comparing MDPEs for female and male 

patients on arterial (p < 0.0001) and venous (p < 0.0001) samples. The tendency 

for the Marsh Model to under-predict was consistent across both female and 

male patients on arterial but not venous samples. There was a statistically 

significant difference in bias between female and male patients in both arterial 

(p < 0.0001) and venous samples (p < 0.0001). In contrast, there was no 

significant difference in bias between female and male patients in the 

predictions made by the Schnider Model in either arterial (p = 0.55) or venous 

samples (p = 0.12). 
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Model Gender MDPE Art MDAPE Art MDPE Ven MDAPE Ven 

Covariates Female -7 (-45 to 47)* 24 (3 to 47) -26 (-64 to 16)* 26 (12 to 64) 

Male 14 (-15 to 73)* 25 (8 to 73) 3 (-18 to 56)* 18 (9 to 56) 

Marsh Female 12 (-44 to 74)* 32 (10 to 74) -13 (-56 to 27)* 25 (9 to 56) 

Male 36 (0 to 112)* 36 (9 to 112) 20 (-7 to 84)* 24 (17 to 84) 

Schnider Female 7 (-40 to 43) 24 (7 to 48) -6 (-59 to 33) 27 (9 to 59) 

Male 11 (-21 to 68) 20 (9 to 68) -7 (-26 to 40) 24 (10 to 59) 

 

Table 8.8: Results for prediction errors in simulation studies for each of the 

Covariates, Marsh and Schnider Models for female and male patients. * Denotes 

statistically significant difference between MDPEs in females and males. 

8.5.4 Model Comparison By Age 

The predictive performance of the Covariates, Marsh and Schnider Models was 

compared between older and younger patients. The results are summarised in 

Table 8.9 and Figures 8.11 and 8.12. With the exception of the Schnider Model 

as assessed on venous blood sampling (p < 0.05), there was no statistical 

difference between the model biases in younger and older patients. There was a 

non-significant trend for increased under-prediction in older patients for the 

Marsh Model.  

 

Model Age Group MDPE Art MDAPE Art MDPE Ven MDAPE Ven 

Covariates Younger 4 (-45 to 67) 25 (3 to 67) -8 (-64 to 24) 20 (11 to 64) 

Older 1 (-45 to 73) 24 (8 to 73) -15 (-51 to 56) 21 (9 to 56) 

Marsh Younger 15 (-44 to 97) 34 (9 to 97) -6 (-56 to 47) 25 (9 to 56) 

Older 31 (-23 to 112) 36 (10 to 112) 5 (-43 to 84) 22 (10 to 84) 

Schnider Younger 11 (-34 to 43) 19 (8 to 46) -7 (-59 to 27)* 24 (9 to 59) 

Older -4 (-40 to 68) 29 (7 to 68) 3 (-31 to 40)* 33 (13 to 58) 

 

Table 8.9: Results for prediction errors in simulation studies for each of the 

Covariates, Marsh and Schnider Models for younger and older patients. * Denotes 

statistically significant difference between MDPEs in younger and older patients. 
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Figure 8.11: Summary of results for prediction errors based on arterial blood 

sampling in simulation studies for each of the Covariates, Marsh and Schnider Models 

in all patients (A), younger patients (B) and older patients (C). 
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Figure 8.12: Summary of results for prediction errors based on venous blood 

sampling in simulation studies for each of the Covariates, Marsh and Schnider Models 

in all patients (A), younger patients (B) and older patients (C). 

8.5.5 Model Comparison By Timing Of Blood Sampling 

At set times following an increase in plasma target concentration, the predictive 

performances of the Covariates, Marsh and Schnider Models were compared.  The 

time periods selected were less than 2.5 minutes, greater than 2.5 minutes and 

greater than 5.5 minutes. The results are summarised in Table 8.10 and Figure 

8.13. 

 

For both the Covariates and the Marsh Models there was a trend from the early 

to the late time window from model under-prediction to over-prediction on the 

basis of arterial sampling. The reverse was true for the Schnider Model and these 

trends were explored in detail through linear modelling. 
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Time Measure Covariates Marsh Schnider 

< 2.5 Mins MDPE Art 9 (-46 to 113) 43 (-22 to 166) -15 (-50 to 44) 

MDAPE Art 31 (0 to 113)* 47 (2 to 166)* 27 (1 to 50)* 

MDPE Ven -20 (-79 to 61) 1 (-73 to 95) -34 (-77 to 18) 

MDAPE Ven 53 (7 to 79)* 56 (9 to 95)* 47 (7 to 77)* 

> 2.5 Mins MDPE Art 0 (-52 to 80) 2 (-55 to 118) 11 (-34 to 93) 

MDAPE Art 25 (8 to 80)* 30 (5 to 118)* 25 (4 to 93)* 

MDPE Ven -12 (-58 to 56) -4.5 (-56 to 84) 3.5 (-52 to 54) 

MDAPE Ven 18 (2 to 58) 21 (6 to 84) 22 (6 to 59) 

> 5.5 Mins MDPE Art -22 (-53 to 59) -17 (-58 to 80) 26 (-29 to 135) 

MDAPE Art 26 (6 to 59) 22 (3 to 80) 29 (6 to 135) 

MDPE Ven -14 (-53 to 50) -8.5 (-56 to 74) 13 (-27 to 107) 

MDAPE Ven 18 (2 to 53) 21 (6 to 74) 25 (3 to 107) 

 

Table 8.10: Results for prediction errors at specified time intervals in simulation 

studies for each of the Covariates, Marsh and Schnider Models. * Denotes statistically 

significant difference between MDAPEs calculated for each model at given time 

interval. 

At the early time window, on the basis of arterial sampling there was a 

significant difference between the accuracy of the three models as assessed by 

Friedman Rank Sum Test of the MDAPEs (p < 0.0001). Pairwise comparisons using 

Nemenyi Multiple Comparison Tests confirmed the similarity of the Covariates 

and Schnider Models, but a significant difference between the Marsh Model and 

the Covariates and Schnider Models respectively (p < 0.001 and p < 0.01). A 

significant difference was also seen between the accuracy of the three models 

on the basis of venous sampling (p < 0.01). Again the similarity of the Covariates 

and Schnider Models was confirmed, with a significant difference between the 

Marsh Model and each of the Covariates and Schnider Models (p < 0.01 and p < 

0.05).  

 



 

 

140 

Figure 8.13: Summary of results for prediction errors based on arterial (A) and 

venous (B) blood sampling in simulation studies for each of the Covariates (red), 

Marsh (green) and Schnider (blue) Models at set time points following an increase in 

target plasma concentration. 

At the intermediate time window, there was a persisting statistically significant 

difference in the accuracies of the three models on the basis of arterial (p < 

0.05) but not venous sampling (p = 0.50). On pairwise comparison, the statistical 

difference on the basis of arterial sampling was only present between the Marsh 

and Schnider Models (p < 0/05). 

 

At the later time window there was no statistically significant difference 

between accuracies of the three models on arterial (p = 0.25) or venous 

sampling (p = 0.71). 

 

As for the Fresenius implementation of the Covariates Model, there was further 

exploration of the relationship between increasing time from a plasma target 

increase and bias for each of the three simulated models. The same linear model 

described in Equation 8.3 was used with estimated constants in Table 8.11 and 

fits in Figures 8.14 and 8.15.  
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Sampling Model Constant Estimate Lower Upper p-value 

Arterial Covariates E 7.67 -0.26 15.61 0.058 

D1 -0.03 -0.05 -0.02 0.000 

D2 27.12 16.92 37.31 0.000 

Marsh E 37.73 28.3 47.15 0.000 

D1 -0.06 -0.07 -0.04 0.000 

D2 30.97 18.86 43.08 0.000 

Schnider E -11.09 -19.41 -2.78 0.009 

D1 0.04 0.02 0.05 0.000 

D2 0.49 -10.2 11.17 0.928 

Venous Covariates E -29.19 -36.51 -21.86 0.000 

D1 0.00 0.00 0.01 0.398 

D2 30.31 21.45 39.17 0.000 

Marsh 

 
E -12.71 -21.37 -4.06 0.004 

D1 -0.01 -0.02 0.00 0.135 

D2 36.79 26.31 47.26 0.000 

Schnider E -35.16 -43.51 -26.81 0.000 

D1 0.04 0.03 0.05 0.000 

D2 12.76 2.66 22.86 0.014 

 

Table 8.11: Estimates for constants in Equation 8.3 for venous and arterial sampling 

with upper and lower 95% confidence intervals and associated p-values. 

Using arterial sampling, there was a significant negative correlation between the 

time since an increase in the target concentration and the performance error for 

the Covariates and Marsh Models, (p < 0.0001, r-squared = 0.24 and p < 0.0001, 

r-squared = 0.33). The opposite was true for the Schnider Model, where there 

was a significant positive correlation (p < 0.0001, r-squared = 0.14). 

 

Using venous sampling the overall model demonstrated statistical significance 

for the Covariates and Marsh Models (p < 0.0001, r-squared = 0.14 and p < 0.0001 

and r-squared 0.15) but there was no significant relationship between 

performance errors and time (D1 p = 0.398 and 0.135). There remained a 

significant positive correlation for the Schnider Model (p < 0.0001, r-squared  = 

0.21 and D1 p = 0.000). 
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Figure 8.14: Plots of PE for arterial samples against time since an increase in the 

target plasma concentration for the Covariates (A), Marsh (B) and Schnider (C) 

Models. Linear models are displayed as fit +/- 95% confidence interval. The lighter 

shaded area represents 95% confidence interval of model predictions. 
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Figure 8.15: Plots of PE for venous samples against time since an increase in the 

target plasma concentration for the Covariates (A), Marsh (B) and Schnider (C) 

Models. Linear models are displayed as fit +/- 95% confidence interval. The lighter 

shaded area represents 95% confidence interval of model predictions. 

The difference was calculated between every pair of arterial and venous PEs for 

each of the three simulated models. The linear model from Equation 8.4 was 

fitted and demonstrated a significant relationship in each of the Covariates (p < 

0.0001 and r-squared 0.32), Marsh (p < 0.0001 and r-squared 0.37) and Schnider 

Models (p < 0.0001 and r-squared 0.15), (Table 8.12 and Figure 8.16). 
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Model Constant Estimate Lower Upper p-value 

Covariates E 3.616 3.385 3.847 0.000 

D -0.002 -0.002 -0.001 0.000 

Marsh E 3.875 3.385 3.847 0.000 

D -0.002 -0.002 -0.001 0.000 

Schnider E 3.34 3.385 3.847 0.000 

D -0.001 -0.002 -0.001 0.000 

 

Table 8.12: Estimates for constants in Equation 8.4 for each of the simulated models 

with upper and lower 95% confidence intervals and associated p-values. 

Figure 8.16: Plot of the difference between arterial and venous PEs against time 

since an increase in target plasma concentration for the Covariates (A), Marsh (B) 

and Schnider (C) Models. Linear models are displayed as fit +/- 95% confidence 

interval. The dashed line represents 95% confidence interval of model predictions. 
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8.6 Pharmacodynamic Model Development 

8.6.1 Introduction 

The Covariates Pharmacokinetic Model was extended to a pharmacokinetic 

pharmacodynamic (PKPD) model by calculation of an overall population estimate 

for ke0. As described in the methods section, this was performed firstly for the 

patients who received the correctly specified Fresenius implementation of the 

Covariates Model and secondly for all patients using predicted plasma propofol 

concentrations simulated by the Covariates Model. The results were presented in 

part in September 2016 at the World Congress of Anesthesiologists, Hong 

Kong(247). 

 

8.6.2 Fresenius Implementation 

Of the 29 patients who were anaesthetised according to the correctly specified 

Covariates Model, there were 24 with BIS data available for PKPD model 

development. Using the nlmeODE Package it was possible to successfully provide 

a population based estimate for ke0 with or without fixed values for E0 and Emax. 

Table 8.13 provides a summary of the population variable estimates in each of 

the three scenarios. Estimates for ke0 were all similar and ranged from 0.21 to 

0.25 min-1. 
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Model Variable Estimate Lower Upper p-value 

Fresenius 

 

ke0 (min-1) 0.25 0.20 0.31 0.00 

E0 (BIS) 106 102 110 0.00 

Emax(BIS) 144 0 2.01e+63 0.94 

EC50 (Pg/ml) 4.39 0.00 9.65e+85 0.99 

J 2.36 0.00 1.19e+07 0.91 

Fresenius with fixed E0 and Emax ke0 (min-1) 0.22 0.18 0.27 0.00 

E0 (BIS) 105 101 108 0.00 

EC50 (Pg/ml) 2.48 2.14 2.86 0.00 

J 2.80 2.37 3.31 0.00 

Fresenius with fixed Emax ke0 (min-1) 0.21 0.18 0.25 0.00 

EC50 (Pg/ml) 2.83 2.53 3.17 0.00 

J 2.33 1.78 3.07 0.00 

 

Table 8.13: Estimates for variables in Equation n for each of the described scenarios 

with upper and lower 95% confidence intervals and associated p-values. 

8.6.3 Covariates Simulation 

There were 33 patients with BIS data available for PKPD model development 

using simulated plasma propofol predictions for the Covariates Model. It was 

again possible to successfully provide a population based estimate for ke0 with or 

without fixed values for E0 and Emax. Table 8.14 provides a summary of the 

population variable estimates in each of the three scenarios. Estimates for ke0 

were similar to those calculated using the Fresenius implementation of the 

Covariates Model and ranged from 0.22 to 0.27 min-1. Figure 8.17 displays the 

fits achieved for population (fixed) and individual (random) estimates for ke0 

without fixed values for E0 and Emax. Figure 8.18 provides a more detailed display 

of the fits for a single patient (ID = 137). 
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Model Variable Estimate Lower Upper p-value 

Covariates ke0 (min-1) 0.27 0.23 0.32 0.00 

E0 (BIS) 104 102 106 0.00 

Emax(BIS) 124 96 160 0.00 

EC50 (Pg/ml) 4.13 2.50 6.82 0.00 

J 2.56 1.77 3.70 0.00 

Covariates with fixed Emax ke0 (min-1) 0.24 0.22 0.27 0.00 

E0 (BIS) 104 101 107 0.00 

EC50 (Pg/ml) 2.77 2.53 3.04 0.00 

J 2.21 1.94 2.53 0.00 

Covariates with fixed E0 and Emax 

 

ke0 (min-1) 0.22 0.20 0.25 0.00 

EC50 (Pg/ml) 3.05 2.81 3.30 0.00 

J 2.40 1.89 3.05 0.00 

 

Table 8.14: Estimates for variables in Equation n for each of the described scenarios 

with upper and lower 95% confidence intervals and associated p-values. 
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Figure 8.17 (preceding page): Fixed (red) and random (blue) nlmeODE fits for all 

patients with suitable BIS data. Model fits are plotted over the measured BIS values 

for each patient.  

 

Figure 8.18: Upper panel shows fixed (red) and random (blue) nlmeODE fits for an 

example patient (137). Model fits are plotted over the measured BIS values for each 

patient. Lower panel shows the associated Covariates Model predictions for plasma 

propofol concentration. 
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9 Discussion and Conclusions for the VaSCoM Study 

 

9.1 Overview 

A discussion of the results from the VaSCoM Study is presented below. 

Limitations of the study are addressed and the results are considered in terms of 

those of similar pharmacokinetic (PK) and pharmacodynamic (PD) studies of 

propofol. There is then a description of work performed as a direct result of the 

VaSCoM Study with suggestions for future directions of pharmacokinetic 

pharmacodynamic (PKPD) modelling in anaesthesia. 

 

9.2 Rationale for the Study 

The relative advantages and disadvantages of the Marsh and Schnider Models for 

target controlled infusion (TCI) of propofol have been discussed in the 

introductory section. There is currently no overall consensus on which is the 

more generally applicable model to a wide range of clinical situations. The 

Covariates Model described by White et al represents an update to the Marsh 

Model that adjusts for the patient covariates of age and gender(5). The VaSCoM 

Study aimed to prospectively validate the PK component of the Covariates 

Model, while extending the model to include a PD component by estimating the 

rate constant for elimination from the effect site (ke0). 

 

9.3 Data Collection 

9.3.1 Study Population 

All study patients were undergoing anaesthesia to facilitate elective non-cardiac 

surgery. In this respect they were representative of the population of patients in 

whom TCI of propofol is used in clinical practice. While patients with significant 

co-morbidities were excluded, the study was designed to recruit a reasonable 

number of patients who were aged over 65 years. This was particularly 

important as firstly this age group represents a significant proportion of 

anaesthetic caseload(156) and secondly it allowed comparison of model 

performance in younger and older age groups. 
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9.3.2 Infusion Regime and Blood Sampling 

The infusion regime used in the VaSCoM Study was chosen to be representative 

of the use of TCI in clinical practice. There were multiple step changes in target 

plasma concentration of propofol with patients randomised to either a 2-5-2 

Pg/ml protocol or 5-2-5 Pg/ml protocol. Therefore model performance was 

tested at several target plasma concentrations and also while plasma 

concentration was both increasing and decreasing. Following a change in target 

plasma concentration, there were no further target changes for at least 15 

minutes to allow time for PD effects to reach a steady state and thus assist with 

modelling of the effect site compartment. 

 

During the study period there was no administration of any other hypnotic drugs 

or analgesic drugs. Therefore the risk of other drugs influencing the distribution 

and metabolism of propofol or modulating the pharmacodynamic effects of 

propofol were minimised. 

 

In previous studies comparing PK models for propofol, both arterial and venous 

blood-sampling methods have been used. Some commentators believe that 

arterial sampling is of more value in PK modelling on the basis of the ‘front-end 

kinetics’ delivering the drug to its sites of action. Front-end kinetics refers to 

early drug distribution following intravenous administration and determines the 

relationship between the plasma concentration of drug delivered to various 

tissue groups and time(190). Three compartment PK models, such as the 

Covariates, Marsh and Schnider Models, ignore the complexity of this early phase 

and assume instantaneous mixing of drug within the whole of the central (i.e. 

plasma) compartment. To effectively model this dynamic phase of drug 

disposition, physiology based pharmacokinetic (PBPK) or recirculatory models, 

for example the model described by Upton and Ludbrook(191), are required. 

PBPK models are far more complex and are yet to be implemented in clinical 

practice.  

 

The development of the Covariates Model was based on venous blood samples 

taken during anaesthesia delivered using the Marsh Model(5). In the VaSCoM 

Study, the decision was made to collect a combination of arterial and venous 

samples. This allowed the comparison of the performance errors (PEs) between 
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sampling methods and also, as is discussed below, an examination of how 

arterial and venous PEs change with time. The study schedule involved sampling 

arterial blood at four specified time points during the first 20 minutes of 

anaesthesia and sampling venous blood at seven specified time points during the 

45 to 60 minutes of the study. In retrospect, a schedule involving paired arterial 

and venous sampling for the entire duration of the study would have allowed 

better comparison of the two methods. 

 

9.3.3 BIS Monitoring 

The most commonly used approach to modelling the effect site concentration 

(Ce) of a hypnotic anaesthetic drug in PKPD studies is through processed 

electroencephalography (pEEG). On the basis of endorsement by national 

guidelines(222) and use in routine clinical practice at the Golden Jubilee 

National Hospital, the Bispectral Index (BIS) was selected for the VaSCoM Study. 

The disadvantages of using BIS to model Ce include the fact that it is a surrogate 

marker of clinical effects and, as is the case with all pEEG monitors, there is a 

time delay associated with processing the EEG signal(248). There was no attempt 

to account for this time delay in the PD modelling study. 

 

Alternative approaches using clinical end-points to estimate the magnitude of 

the effect site concentration in PKPD studies have been suggested. For example, 

Lim used the loss of eyelash reflex during different propofol administration 

regimes to derive a ke0 of 0.8 min-1(249). Use of a fixed end-point means that 

the PKPD model will be dependent upon a single clinical observation in each 

individual.  

 

More recently Thomson et al have described a novel technique for estimating ke0 

while assessing clinical effect using visual reaction time (VRT)(250). This is an 

attractive technique as it provides a continuous measure of a true clinical end-

point. Unfortunately it is only practical at sedating doses of propofol and cannot 

be applied to the recovery phase from deeper anaesthesia. 

 

Using the above approach, Thomson et al tested several ke0s with the Marsh 

Model in effect site controlled TCI to see which provided the highest probability 

of achieving stable clinical effect(250). A ke0 of 0.61 min-1was most likely to 
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maintain a stable VRT when a fixed Ce was programmed. In a subsequent 

randomised study, they demonstrated that compared to TCI with the Marsh 

Model in plasma controlled mode or effect site controlled mode with a ke0 of 1.2 

min-1 and the Schnider Model in effect site controlled mode, the Marsh Model 

with a ke0 of 0.6 min-1 achieved faster induction but with no associated increase 

in haemodynamic instability(251). 

 

9.4 Interim Analysis 

In the interim analysis performed of data collected in the VaSCoM Study, a 

marked deviation from expected PEs was identified in female patients. Further 

investigation revealed a significant Covariates Model mis-specification in the 

Injectomat TIVA Agilia syringe pump based on a typographical error. Following 

discussion with the device manufacturer, the model was adjusted and 

subsequent female patients were anaesthetised using the correct specification 

of the model. Events like this underline the need for formal testing of PK models 

in a clinical context before implementation in Open TCI devices and introduction 

to clinical practice.  

 

Interestingly the plasma concentrations predicted for male patients by the TCI 

device were not identical to those estimated by the Tivatrainer software (Figure 

8.3). However, the deviations were within an acceptable margin of error 

following import of infusion rates into an external program along with the 

necessary interpolations of missing values. 

 

Outputs for Covariates Model predictions provided by Tivatrainer were compared 

to those provided the desolve Package in R. The results suggested that this open 

source alternative provides a suitable means of accurately simulating predictions 

for multiple PK models from infusion profiles. desolve is more suited to batch 

processing than Tivatrainer and should therefore be considered for future 

comparative PK studies. 
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9.5 Validation Study 

9.5.1 Overall Validation 

Schuttler et al suggested that a mean variation in measured drug plasma 

concentrations of 20 to 30%, with a total bias of 10 to 20% from TCI device 

predictions, represented acceptable performance(252). At the time of this 

publication, the use of PEs and the summary measures of median performance 

error (MDPE) and median absolute performance error (MDAPE) had not yet 

become established but similar ranges have been suggested by subsequent 

authors(202). Therefore the VaSCoM Study has demonstrated that the Injectomat 

TIVA Agilia syringe pump implementation of the Covariates Model achieved an 

acceptable level of predictive performance, as assessed by both arterial and 

venous sampling, for use in clinical practice. Whether or not there is a sufficient 

improvement in performance compared to the Marsh and Schnider Models to 

justify a shift towards usage of the Covariates Model shall be discussed with 

consideration of the comparison study results below.  

 

9.5.2 Specific Patient Populations 

The overall minimal bias of the Covariates Model (MDPE of 9 for arterial samples 

and -8 for venous samples) was not consistent across patient subgroups. On both 

sampling methods there was a consistent and statistically significant tendency to 

under-predict plasma concentrations in females and over-predict in males. This 

is a disappointing finding, given that in the development of the Covariates Model 

the Marsh Model was updated with a specific aim to account for gender 

differences. The Covariates Model was more successful in adjusting for the 

covariate of age and there was no significant difference in bias between younger 

and older patients.  

 

9.5.3 Relationship Between PE and Time 

The importance of the choice of blood sampling site (arterial or venous) and the 

influence of timing since dose on measured drug concentrations has undergone 

detailed general discussion elsewhere(253, 254). In their comparative study of 

PK models for propofol, Coetzee et al noted marked differences in calculated 

model performance based on arterial or venous sampling and changes in the 
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differences between arterial and venous propofol concentrations over time(202). 

Similar results were noted in the VaSCoM Study. 

 

When explored with a linear modelling technique, performance errors based on 

arterial samples showed a statistically significant tendency to change from more 

positive to more negative with time. There was no significant relationship 

observed for venous samples, although PEs tended to change in the opposite 

direction. In line with these observations, the difference between arterial and 

venous PEs (a-v PE difference) could be fitted with an exponentially decreasing 

model over time. From Figure 8.8 it can be suggested that by between 15 and 20 

minutes after an increase in target plasma concentration, arterial and venous 

PEs will have reached some sort of equilibrium. This has significant implications 

for planning blood sampling site and sampling schedule for future PK studies of 

TCI of propofol.  

 

9.6 Model Comparison 

9.6.1 Overall Comparison 

Simulations of the plasma concentrations predicted by the Covariates, Marsh and 

Schnider Models were performed using the propofol infusion profile from each 

patient. This allowed a comparison of each of the model’s predictions to the 

measured blood propofol concentrations. As suggested from the above results, 

the model biases were different depending on whether venous or arterial 

sampling was used. On arterial sampling, the Covariates Model had the bias 

closest to zero, suggesting the least tendency to over or under-predict plasma 

concentrations. The opposite was true for venous sampling. Statistical 

comparison between models was performed on the basis of inaccuracy (MDAPEs). 

This meant that the direction of any bias was irrelevant and models were 

compared only on the overall magnitude of PEs. The Marsh Model was 

significantly more likely to provide PEs of greater magnitude than either the 

Covariates or Schnider Models based on arterial sampling. 

 

9.6.2 Comparison by Specific Patient Population 

Statistical comparisons between female and male patients and between younger 

and older patients were performed for each model based on bias. The reason for 
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this was that when using a PK model clinically it is important to know if it has a 

difference in tendency towards over or under-prediction depending on the 

covariates of the individual patient. Both of the Covariates and Marsh Models, on 

the basis of both arterial and venous sampling, showed a significant tendency 

towards more positive bias in male patients. The Schnider Model did not 

demonstrate any significant difference in bias between female and male 

patients and therefore can be considered to more effectively account for the 

covariate of gender than the other models.  

 

In contrast, only the Schnider Model, on the basis of venous sampling, showed a 

significant tendency towards increased positive bias in older patients. The Marsh 

Model had a non-significant tendency towards more positive bias in older 

patients on the basis of arterial sampling. This difference in bias is negligible in 

the Covariates Model and supports the rationale for adjustment of the central 

compartment volume (V1) and clearance (Cl) for age. 

 

9.6.3 Comparison of Relationships Between PE and Time 

In the simulation studies, both of the Covariates and Marsh Models showed a 

similar pattern of arterial and venous PE changes over time as described above 

for the validation study. The Schnider Model showed distinctly different results. 

As assessed by linear modelling, on the basis of both arterial and venous 

sampling, PEs showed a significant tendency to become more positive over time. 

This is likely related to the fact that the relatively small fixed central 

compartment volume specified by the Schnider Model resulted in over-prediction 

of plasma concentrations in the early phase after an increase in target 

concentration. 

 

Comparisons between model performances were made at early, intermediate 

and late sampling periods. During the early sampling period, on the basis of both 

arterial and venous samples, the Marsh Model was associated with significantly 

increased inaccuracy compared to the other two models. By the late sampling 

period this difference is no longer significant and indeed the Schnider Model is 

trending towards increased inaccuracy.  
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For all three PK models, the relationship between a-v PE difference and time 

can be fitted with an exponentially decreasing model. The a-v PE difference is 

relatively smaller for the Schnider Model in the early phases because the model 

tends to over-predict both arterial and venous blood concentrations.  

 

All of the above results need consideration when using any of the above models 

in clinical practice. The anaesthetist must be aware of how the bias of the 

selected model will change with time and be prepared to adjust target plasma 

or effect site concentrations based on this knowledge. 

 

9.7 Pharmacodynamic Model 

The VaSCoM Study has provided a range of estimates for the appropriate ke0 to 

use with the Covariates Model using an adaptation of the parametric approach. 

In the classic study by Sheiner et al, they described fitting a PK model for d-

tubocurarine while explaining the time course of the PD effects with the 

ke0(211). In the current study there was no new PK model fitted to the available 

data but there was simultaneous validation of the predictions made by the 

Covariates Model. 

 

Depending on whether the analysis was restricted to patients who had received 

the correctly specified Covariates Model or performed in all patients with 

simulated plasma propofol concentrations predicted by the Covariates Model, 

the range of ke0 estimations were 0.21 to 0.25 min-1 and 0.22 to 0.27 min-1 

respectively. There was minimal effect in restricting the allowed BIS values for 

E0 (baseline value with no drug present) and Emax (maximum change from 

baseline). Indeed all estimates were around the value of 0.26 min-1 that was 

originally implemented with the Marsh Model in the Diprifusor¥. This is 

reassuring given that the non-linear mixed effect modelling (NONMEM) was not 

performed using the standard NONMEM� software but instead the nlmeODE 

Package in R. Further reassurance comes from Figures 8.17 and 8.18 that show 

the fixed and random effects models provide good fits to the available BIS data. 

The nlmeODE Package therefore provides a realistic alternative to NONMEM� for 

PKPD modelling that avoids the need to purchase proprietary software.  
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9.8 Results in the Context of Similar Studies 

9.8.1 PK Model Comparison 

There are only two prior studies that have compared performance of the 

Covariates Model to that of Marsh and Schnider Models(203, 205). The first of 

these studies used data from nine patients who had received a propofol infusion 

and the second used data from 42 patients undergoing surgery with TCI of 

propofol via the Diprifusor¥.  

 

In terms of assessing the performance of the Covariates Model, the VaSCoM 

Study has several theoretical advantages over the previous studies. To begin 

with, the VaSCoM Study is the first to provide a new PK dataset and validated 

the Covariates Model by directly testing it with a demanding schedule of 

increasing and decreasing target plasma concentrations. Patients recruited to 

the VaSCoM Study received no pre-medication and during the study period, 

anaesthesia was provided only by TCI of propofol. In the two prior studies, 

patients were routinely pre-medicated and received multiple other drugs that 

could potentially affect the PK profile of propofol.  

 

Despite the technical differences between the studies, there are important 

similarities in the results. In common with both the infusion and TCI studies 

above, the VaSCoM Study highlighted the favourable overall performance of the 

Covariates Model as assessed by MDAPE compared to the Marsh Model. As was 

demonstrated in the previous TCI study, the tendency of the Marsh Model to 

under-predict in males relative to females remained present (albeit to a lesser 

degree) in the Covariates Model despite the adjustments made to the model on 

the basis of gender.  

 

The VaSCoM Study confirmed the observation of both earlier studies that the 

Schnider Model tends to over-predict in the induction phases and under-predict 

in the later phases of anaesthesia. Indeed the VaSCoM Study also agreed with 

the finding of the previous TCI study that the bias of all three models did not 

remain constant across increasing, stable or decreasing target plasma 

concentrations. 
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In recognition that all of the published PK models for propofol have been derived 

from quite distinct patient or volunteer populations, Eleveld et al attempted to 

derive a general purpose PK model with robust performance across multiple 

patient populations(255). They used PK data from 21 previous studies, obtained 

either from the Open TCI Initiative or through personal communication with 

authors. The Open TCI Initiative provides a forum for the discussion of issues 

related to PKPD modelling and a platform for the sharing of open source code 

and data for model development(256). A comment on the importance of this 

type of initiative is included in the concluding remarks of this thesis.  

 

The final PK model constructed by Eleveld et al could theoretically be used to 

deliver propofol TCI in patient groups ranging from neonates to the elderly and 

from normal to high to body mass index (BMI). To remain applicable across such 

a diverse population, the model was necessarily complex and accounted for the 

patient covariates of gender, age and weight in a scaled manner. The model also 

distinguished between individuals depending on whether they were patients or 

healthy volunteers. Despite the complexity, and assessing predictive 

performance in the same population it was derived from, the Eleveld model 

actually showed only modest improvement in inaccuracy in an adult population 

compared to the Covariates Model.  

 

9.8.2 PD Model Development 

As stated above, the range of ke0 estimates calculated in the VaSCoM Study are 

very similar to the ke0 implemented with the Marsh Model in the Diprifusor¥. 

Furthermore, the range is also similar to the ke0 of 0.2 min-1 calculated by Billard 

et al using BIS to monitor drug effect during increasing and decreasing plasma 

concentrations of propofol(216). 

 

Studies using different methodology to calculate ke0 have provided markedly 

different estimates. For example in the study by Thomson et al outlined above 

the ke0 was faster than calculated in the VaSCoM Study. The Thomson study has 

the strength of having used a clinical measure of drug effect. However, in terms 

of general applicability, the VaSCoM Study monitored drug effect at a wider 

range of predicted effect site concentrations and also studied the decline in 

drug effect with decreasing concentrations. Only patients between the ages of 
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21 and 65 years were recruited to the Thomson study and therefore the 

applicability of the ke0 to an older population cannot be assumed(250). 

 

Minto et al advocated a ‘time to peak effect site concentration’ (tpeak) approach 

to estimating ke0(155) and Struys et al used the technique to estimate an 

‘adjusted ke0’ for the Marsh Model of 1.2 min-1(217). By definition the tpeak 

approach only accounts for the pharmacodynamics relating to onset of drug 

effect and therefore is unlikely to provide as full a description of PD behaviour 

as the more detailed approach adopted in the VaSCoM Study.  

 

Inter-individual variation of pharmacokinetics and pharmacodynamics means 

that a single ke0 value will not accurately predict effect site compartment 

concentrations in all patients. It remains the responsibility of the anaesthetist to 

monitor the clinical effects of target Cp or Ce and adjust infusions appropriately.  

 

9.9 Related and Future Work 

9.9.1 Introduction 

In similar with the BioTBI Study, the high-resolution data collected as part of the 

VaSCoM Study have become a valuable research resource. Examples of recent 

and ongoing projects that are using the data in PKPD analysis are provided 

below. 

 

9.9.2 Non-Parametric Estimation of Ke0 

To confirm the parametric ke0 estimated in the VaSCoM Study, the arterial blood 

propofol concentrations and BIS profiles were used to estimate a non-parametric 

ke0(257). The overall population estimate was 0.27 and thus within the range 

estimated in the VaSCoM Study.  

 

9.9.3 Unique Modelling Approaches to PKPD 

Physiology based pharmacokinetic models provide an alternative to 

compartmental PK models by attempting to incorporate existing knowledge of  

physiological behaviour. The opposite of this approach is a purely data driven or 

‘machine learning’ system (Figure 1.1). Data from the VaSCoM Study have been 
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used in an input-output non-linear dynamical system to model pharmacodynamic 

behaviour of multiple physiological effects in individual patients(258). The need 

to consider multiple effect site compartments was acknowledged in early work 

by Fuseau and Sheiner(213) and the delay between hypnotic and haemodynamic 

effects of propofol has previously been explored(217, 259). Attempts to apply 

input-output non-linear dynamical systems beyond the individual patient level 

are currently underway. 

 

9.9.4 The Future of PKPD Modelling in Anaesthesia 

The Food and Drug Administration (FDA) has never approved the use of TCI 

devices to deliver anaesthesia in the United States of America. A recent series of 

editorials in Anesthesia and Analgesia detailed the history, technology and 

safety of TCI and concluded with a review of the potential pathways to FDA 

approval(184, 260-262). Licensing of TCI in the United States would undoubtedly 

lead to a substantial rise in usage and further increase the demand for more 

refined and generally applicable PKPD models.  

 

One approach to this challenge, as demonstrated in the Eleveld study above, is 

to use bigger datasets with more patients, to develop increasingly complex 

compartmental models. Alternative modelling approaches may include the 

adaptation of PBPK models or machine learning models for clinical practice. A 

final methodology that is likely to influence the future of PKPD modelling in 

anaesthesia is the concept of ‘feedback control’(263). Closed-loop TCI for 

hypnotic drugs in anaesthesia would involve using the PK models as the starting 

point for drug delivery and adapting the infusion rate based on some observation 

of the system. The observations may be pharmacodynamic, for example a pEEG 

measure of hypnosis, or pharmacokinetic, for example bed-side measurement of 

blood propofol concentration(264). A suitable measurement device has been 

evaluated in comparison to reference techniques(265, 266) but it is as yet 

unclear if it will become adopted into clinical practice. Similarly, for any closed-

loop control systems to be introduced into routine use in anaesthesia there will 

need to be extensive assessment of their safety and value. 
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9.10 Conclusions 

The VaSCoM Study has validated the Covariates Model for target controlled 

infusion of propofol and confirmed that it improves inaccuracy compared to the 

Marsh Model. There remains a difference in bias between female and male 

patients such that anaesthetists would need to respect this if using the model in 

clinical practice. A ke0 in the range of 0.21 to 0.27 min-1 has been estimated for 

implementation with the Covariates Model. 
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10 Overall Conclusions to the Thesis 

 

The management of patients with traumatic brain injury (TBI) on the 

neurological intensive care unit (NICU) and the use of target controlled infusions 

(TCI) in the operating theatre provide two excellent examples of how 

mathematical modelling can enhance knowledge and influence the practice of 

anaesthesia and critical care. As has been demonstrated with the BioTBI and 

VaSCoM Studies the modelling approaches and techniques can be adapted to suit 

the particular clinical questions. There is however one underlying theme that 

can unite all modelling studies of critically ill patients. An increasing quantity of 

high-frequency physiological data are collected from these patients with a 

correspondingly high financial and resource cost. It is therefore imperative that 

these data are appropriately used.  

 

To facilitate the most effective exploitation of physiological data, networks of 

clinicians and scientists must share the data and the associated analytic 

techniques. Examples of such networks have already been discussed in terms of 

TBI (BrainIT(96), CENTER-TBI(97), IMPACT(142)) and TCI (Open TCI 

Initiative(256)). The most well established repository for sharing data and code 

in the critical care domain is the Medical Information Mart for Intensive Care 

(MIMIC) Database(267, 268). Now onto its third iteration it is an openly available 

dataset comprising de-identified health data associated with around 40,000 

patients. Collaboration such as this represents one of the keys to leveraging 

technology to improve the care of critically ill patients. 

 

In support of the above theme, all of the analyses in this thesis have been 

performed using the open source statistical programming environment ‘R’(7). 

Ultimately the code will be made available via BrainIT for the BioTBI Study and 

via the Open TCI Initiative for the VaSCoM Study. 



 

 

164 

11 References 

 

1. Celi LA, Mark RG, Stone DJ, Montgomery RA. "Big data" in the intensive 

care unit. Closing the data loop. Am J Respir Crit Care Med. 2013;187(11):1157-

60. 

2. Cobelli C, Carson E. Introduction to Modeling in Physiology and Medicine. 

Oxford: Academic Press; 2008. 

3. Barnes DJ, Chu D. Introduction to Modeling for Biosciences. London: 

Springer; 2010. 

4. Carson E, Cobelli C. Modeling Methodology for Physiology and Medicine. 

Bronzino J, editor. New York: Academic Press; 2001. 

5. White M, Kenny GN, Schraag S. Use of target controlled infusion to derive 

age and gender covariates for propofol clearance. Clin Pharmacokinet. 

2008;47(2):119-27. 

6. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven 

infusion of propofol in children. Br J Anaesth. 1991;67(1):41-8. 

7. R Core Team. R: A Language and Environment for Statistical Computing. 

Vienna, Austria: R Foundation for Statistical Computing; 2014. 

8. Hawthorne C, Piper I. Monitoring and Modelling of Intracranial Pressure in 

Patients with Traumatic Brain Injury. Frontiers in Neurology. 2014;5. 

9. Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, et 

al. Impact of ICP instability and hypotension on outcome in patients with severe 

head trauma. J Neurosurg. 1991;75(1s):S59-S66. 

10. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain 

injury in adults. Lancet Neurol. 2008;7(8):728-41. 

11. Dunn LT. Raised intracranial pressure. Journal of neurology, neurosurgery, 

and psychiatry. 2002;73 Suppl 1:i23-7. 

12. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, 

Hartl R, et al. Guidelines for the management of severe traumatic brain injury. 

VIII. Intracranial Pressure Thresholds. J Neurotrauma. 2007;24 Suppl 1:S55-8. 

13. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. 

A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J 

Med. 2012;367(26):2471-81. 



 

 

165 
14. Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, 

et al. Intracranial pressure: more than a number. Neurosurg Focus. 

2007;22(5):E10. 

15. Mokri B. The Monro–Kellie hypothesis: Applications in CSF volume 

depletion. Neurology. 2001;56(12):1746-8. 

16. Lundberg N. Continuous recording and control of ventricular fluid pressure 

in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36(149):1-193. 

17. Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-

fluid pressure in patients with severe acute traumatic brain injury. A preliminary 

report. J Neurosurg. 1965;22(6):581-90. 

18. Langfitt TW, Weinstein JD, Kassell NF, Simeone FA. Transmission of 

increased intracranial pressure. II. Within the craniospinal axis. J Neurosurg. 

1964;21:989-97. 

19. Langfitt TW, Weinstein JD, Kassell NF, Gagliardi LJ. Transmission of 

increased intracranial pressure. II. Within the supratentorial space. J Neurosurg. 

1964;21:998-1005. 

20. Lanier WL, Warner DO. Intracranial Elastance versus Intracranial 

Compliance: Terminology Should Agree with That of Other Disciplines. 

Anesthesiology. 1992;77(2):403. 

21. Drummond JC. Elastance Versus Compliance. Anesthesiology. 

1995;82(5):1309-10. 

22. Marmarou A. A theoretical and experimental evaluation of the 

cerebrospinal fluid system.: Drexel University; 1973. 

23. Wakeland W, Goldstein B. A review of physiological simulation models of 

intracranial pressure dynamics. Computers in Biology and Medicine. 

2008;38(9):1024-41. 

24. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of 

compliance and outflow resistance of the cerebrospinal fluid system. J 

Neurosurg. 1975;43(5):523-34. 

25. Davson H. Physiology of the cerebrospinal fluid. Churchill: London; 1967. 

26. Gray WJ, Rosner MJ. Pressure-volume index as a function of cerebral 

perfusion pressure. Part 1: The effects of cerebral perfusion pressure changes 

and anesthesia. J Neurosurg. 1987;67(3):369-76. 



 

 

166 
27. Gray WJ, Rosner MJ. Pressure-volume index as a function of cerebral 

perfusion pressure. Part 2: The effects of low cerebral perfusion pressure and 

autoregulation. J Neurosurg. 1987;67(3):377-80. 

28. Lavinio A, Rasulo FA, Peri E, Czosnyka M, Latronico N. The relationship 

between the intracranial pressure–volume index and cerebral autoregulation. In: 

Pinsky MR, Brochard L, Hedenstierna G, Antonelli M, editors. Applied Physiology 

in Intensive Care Medicine 1: Springer Berlin Heidelberg; 2012. p. 153-6. 

29. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES, Jr. Ventriculostomy-

related infections: a critical review of the literature. Neurosurgery. 

2002;51(1):170-81; discussion 81-2. 

30. Beer R, Lackner P, Pfausler B, Schmutzhard E. Nosocomial ventriculitis 

and meningitis in neurocritical care patients. Journal of neurology. 

2008;255(11):1617-24. 

31. van de Beek D, Drake JM, Tunkel AR. Nosocomial Bacterial Meningitis. 

New England Journal of Medicine. 2010;362(2):146-54. 

32. Avezaat CJJ, van Eijndhoven JHM. Cerebrospinal Fluid Pulse Pressure and 

Craniospinal Dynamics: A Theoretical, Clinical and Experimental Study: A. 

Jongbloed en Zoon; 1984. 

33. Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid 

pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817-21. 

34. Avezaat CJ, van Eijndhoven JH, Wyper DJ. Cerebrospinal fluid pulse 

pressure and intracranial volume-pressure relationships. Journal of Neurology, 

Neurosurgery & Psychiatry. 1979;42(8):687-700. 

35. Leyden E. Beiträge und Untersuchungen zur Physiologie und Pathologie 

des Gehirns. Archiv f pathol Anat. 1866;37(4):519-59. 

36. Löfgren J, Essen Cv, Zwetnow NN. The pressure-volume curve of the 

cerebrospinal fluid space in dogs. Acta Neurol Scand. 1973;49(4):557-74. 

37. Panerai RB. Assessment of cerebral pressure autoregulation in humans--a 

review of measurement methods. Physiol Meas. 1998;19(3):305-38. 

38. Hamner JW, Tan CO. Relative Contributions of Sympathetic, Cholinergic, 

and Myogenic Mechanisms to Cerebral Autoregulation. Stroke. 2014;45(6):1771-

7. 

39. Overgaard J, Tweed WA. Cerebral circulation after head injury. Journal of 

Neurosurgery. 1974;41(5):531-41. 



 

 

167 
40. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral 

autoregulation following head injury. Journal of Neurosurgery. 2001;95(5):756-

63. 

41. Ursino M. A mathematical study of human intracranial hydrodynamics part 

1—The cerebrospinal fluid pulse pressure. Annals of Biomedical Engineering. 

1988;16(4):379-401. 

42. Ursino M. A mathematical study of human intracranial hydrodynamics part 

2—Simulation of clinical tests. Annals of Biomedical Engineering. 1988;16(4):403-

16. 

43. Ursino M, Lodi CA. A simple mathematical model of the interaction 

between intracranial pressure and cerebral hemodynamics. Journal of Applied 

Physiology. 1997;82(4):1256-69. 

44. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard 

JD. Contribution of mathematical modelling to the interpretation of bedside 

tests of cerebrovascular autoregulation. Journal of Neurology, Neurosurgery & 

Psychiatry. 1997;63(6):721-31. 

45. Daley ML, Pourcyrous M, Timmons SD, Leffler CW. Assessment of 

Cerebrovascular Autoregulation: Changes of Highest Modal Frequency of 

Cerebrovascular Pressure Transmission With Cerebral Perfusion Pressure. Stroke. 

2004;35(8):1952-6. 

46. Daley ML, Leffler CW, Czosnyka M, Pickard JD. Intracranial pressure 

monitoring: modeling cerebrovascular pressure transmission. In: Hoff J, Keep R, 

Xi G, Hua Y, editors. Brain Edema XIII. Acta Neurochirurgica Supplementum. 96: 

Springer Vienna; 2006. p. 103-7. 

47. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. 

Continuous assessment of the cerebral vasomotor reactivity in head injury. 

Neurosurgery. 1997;41(1):11-7; discussion 7-9. 

48. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, 

et al. Assessment of cerebrovascular autoregulation in head-injured patients: a 

validation study. Stroke. 2003;34(10):2404-9. 

49. Czosnyka M, Smielewski P, Piechnik S, Schmidt EA, Al-Rawi PG, 

Kirkpatrick PJ, et al. Hemodynamic characterization of intracranial pressure 

plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11-9. 

50. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon 

DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows 



 

 

168 
determination of optimal cerebral perfusion pressure in patients with traumatic 

brain injury. Crit Care Med. 2002;30(4):733-8. 

51. Shaw M. Modelling the time-series of cerebrovascular pressure 

transmission variation in head injured patients.: University of Glasgow; 2012. 

52. Shaw M, Piper I, Daley M. Autoregulatory model comparison and 

optimisation methodology. Acta Neurochir Suppl. 2012;114:135-9. 

53. Cerebral Autoregulation Research Network  [cited 2017 18th March]. 

Available from: www.car-net.org. 

54. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. 

Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. 

Neurosurgery. 2017;80(1):6-15. 

55. Lavinio A, Menon DK. Intracranial pressure: why we monitor it, how to 

monitor it, what to do with the number and what's the future? Curr Opin 

Anaesthesiol. 2011;24(2):117-23. 

56. Smith M. Monitoring intracranial pressure in traumatic brain injury. 

Anesth Analg. 2008;106(1):240-8. 

57. Steiner LA, Andrews PJD. Monitoring the injured brain: ICP and CBF. 

British Journal of Anaesthesia. 2006;97(1):26-38. 

58. Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ. 

Specialist neurocritical care and outcome from head injury. Intensive Care Med. 

2002;28(5):547-53. 

59. Fakhry SM, Trask AL, Waller MA, Watts DD. Management of brain-injured 

patients by an evidence-based medicine protocol improves outcomes and 

decreases hospital charges. J Trauma. 2004;56(3):492-9; discussion 9-500. 

60. Alali AS, Fowler RA, Mainprize TG, Scales DC, Kiss A, de Mestral C, et al. 

Intracranial pressure monitoring in severe traumatic brain injury: results from 

the American College of Surgeons Trauma Quality Improvement Program. J 

Neurotrauma. 2013;30(20):1737-46. 

61. Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, 

Leenen LP, et al. Effect of intracranial pressure monitoring and targeted 

intensive care on functional outcome after severe head injury. Crit Care Med. 

2005;33(10):2207-13. 

62. Hutchinson PJ, Kolias AG, Czosnyka M, Kirkpatrick PJ, Pickard JD, Menon 

DK. Intracranial pressure monitoring in severe traumatic brain injury. Bmj. 

2013;346:f1000. 

http://www.car-net.org/


 

 

169 
63. Melhem S, Shutter L, Kaynar AM. A trial of intracranial pressure 

monitoring in traumatic brain injury. Crit Care. 2014;18(1):302. 

64. Romner B, Grande PO. Traumatic brain injury: Intracranial pressure 

monitoring in traumatic brain injury. Nature reviews Neurology. 2013;9(4):185-6. 

65. Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion 

pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional 

extra after brain injury? British Journal of Anaesthesia. 2014;112(1):35-46. 

66. Chesnut RM. Intracranial pressure monitoring: headstone or a new head 

start. The BEST TRIP trial in perspective. Intensive Care Med. 2013;39(4):771-4. 

67. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, 

Hartl R, et al. Guidelines for the management of severe traumatic brain injury. 

VII Intracranial pressure monitoring technology. J Neurotrauma. 2007;24 Suppl 

1:S37-44. 

68. Leverstein-van Hall MA, Hopmans TE, van der Sprenkel JW, Blok HE, van 

der Mark WA, Hanlo PW, et al. A bundle approach to reduce the incidence of 

external ventricular and lumbar drain-related infections. J Neurosurg. 

2010;112(2):345-53. 

69. Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of three 

intracranial pressure microtransducers: technical report. Neurosurgery. 

1996;38(1):219-24. 

70. Citerio G, Piper I, Cormio M, Galli D, Cazzaniga S, Enblad P, et al. Bench 

test assessment of the new Raumedic Neurovent-P ICP sensor: a technical report 

by the BrainIT group. Acta Neurochir (Wien). 2004;146(11):1221-6. 

71. Citerio G, Piper I, Chambers IR, Galli D, Enblad P, Kiening K, et al. 

Multicenter Clinical Assessment of the Raumedic Neurovent-P Intracranial 

Pressure Sensor: A Report By the Brainit Group. Neurosurgery. 2008;63(6):1152-

8. 

72. Sahuquillo J, Poca MA, Arribas M, Garnacho A, Rubio E. Interhemispheric 

supratentorial intracranial pressure gradients in head-injured patients: are they 

clinically important? J Neurosurg. 1999;90(1):16-26. 

73. Rosenberg JB, Shiloh AL, Savel RH, Eisen LA. Non-invasive methods of 

estimating intracranial pressure. Neurocrit Care. 2011;15(3):599-608. 

74. Raboel PH, Bartek J, Andresen M, Bellander BM, Romner B. Intracranial 

Pressure Monitoring: Invasive versus Non-Invasive Methods - A Review. Critical 

Care Research and Practice. 2012;2012:14. 



 

 

170 
75. Kristiansson H, Nissborg E, Bartek J, Jr., Andresen M, Reinstrup P, Romner 

B. Measuring elevated intracranial pressure through noninvasive methods: a 

review of the literature. J Neurosurg Anesthesiol. 2013;25(4):372-85. 

76. Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler 

ultrasound recording of flow velocity in basal cerebral arteries. Journal of 

Neurosurgery. 1982;57(6):769-74. 

77. Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, 

et al. Preliminary experience of the estimation of cerebral perfusion pressure 

using transcranial Doppler ultrasonography. Journal of neurology, neurosurgery, 

and psychiatry. 2001;70(2):198-204. 

78. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. 

Transcranial Doppler sonography pulsatility index (PI) reflects intracranial 

pressure (ICP). Surg Neurol. 2004;62(1):45-51; discussion  

79. Edouard AR, Vanhille E, Le Moigno S, Benhamou D, Mazoit JX. Non-

invasive assessment of cerebral perfusion pressure in brain injured patients with 

moderate intracranial hypertension. Br J Anaesth. 2005;94(2):216-21. 

80. Brandi G, Bechir M, Sailer S, Haberthur C, Stocker R, Stover JF. 

Transcranial color-coded duplex sonography allows to assess cerebral perfusion 

pressure noninvasively following severe traumatic brain injury. Acta Neurochir 

(Wien). 2010;152(6):965-72. 

81. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigue B, Duranteau J, et al. 

Ultrasonography of the optic nerve sheath may be useful for detecting raised 

intracranial pressure after severe brain injury. Intensive Care Med. 

2007;33(10):1704-11. 

82. Geeraerts T, Merceron S, Benhamou D, Vigue B, Duranteau J. Non-invasive 

assessment of intracranial pressure using ocular sonography in neurocritical care 

patients. Intensive Care Med. 2008;34(11):2062-7. 

83. Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath 

diameter with direct measurement of intracranial pressure. Academic 

emergency medicine : official journal of the Society for Academic Emergency 

Medicine. 2008;15(2):201-4. 

84. Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial 

hypertension in intracranial hemorrhage patients: confirmation of previous 

findings in a different patient population. J Neurosurg Anesthesiol. 

2009;21(1):16-20. 



 

 

171 
85. Moretti R, Pizzi B, Cassini F, Vivaldi N. Reliability of optic nerve 

ultrasound for the evaluation of patients with spontaneous intracranial 

hemorrhage. Neurocrit Care. 2009;11(3):406-10. 

86. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, 

Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain 

injury. Crit Care. 2008;12(3):1-7. 

87. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. 

Ultrasonography of optic nerve sheath diameter for detection of raised 

intracranial pressure: a systematic review and meta-analysis. Intensive Care 

Med. 2011;37(7):1059-68. 

88. Dubourg J, Messerer M, Karakitsos D, Rajajee V, Antonsen E, Javouhey E, 

et al. Individual patient data systematic review and meta-analysis of optic nerve 

sheath diameter ultrasonography for detecting raised intracranial pressure: 

protocol of the ONSD research group. Syst Rev. 2013;2(1):1-6. 

89. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: 

management protocol and clinical results. J Neurosurg. 1995;83(6):949-62. 

90. Asgeirsson B, Grände PO, Nordström CH. A new therapy of post-trauma 

brain oedema based on haemodynamic principles for brain volume regulation. 

Intensive Care Medicine. 1994;20(4):260-7. 

91. Naredi S, Eden E, Zall S, Stephensen H, Rydenhag B. A standardized 

neurosurgical neurointensive therapy directed toward vasogenic edema after 

severe traumatic brain injury: clinical results. Intensive Care Med. 

1998;24(5):446-51. 

92. Robertson CS, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio 

M, et al. Prevention of secondary ischemic insults after severe head injury. 

Critical Care Medicine. 1999;27(10):2086-95. 

93. Howells T, Elf K, Jones PA, Ronne-Engstrom E, Piper I, Nilsson P, et al. 

Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in 

patients with brain trauma. J Neurosurg. 2005;102(2):311-7. 

94. 16th International Conference on Intracranial Pressure and Brain 

Monitoring  [cited 2017 18th March]. Available from: 

http://www.rle.mit.edu/icp2016/. 

95. Maas AI, Murray GD, Roozenbeek B, Lingsma HF, Butcher I, McHugh GS, et 

al. Advancing care for traumatic brain injury: findings from the IMPACT studies 

and perspectives on future research. Lancet Neurol. 2013;12(12):1200-10. 

http://www.rle.mit.edu/icp2016/


 

 

172 
96. Piper I, Citerio G, Chambers I, Contant C, Enblad P, Fiddes H, et al. The 

BrainIT group: concept and core dataset definition. Acta Neurochir (Wien). 

2003;145(8):615-28; discussion 28-9. 

97. CENTER-TBI  [cited 2017 18th March]. Available from: www.center-tbi.eu. 

98. Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy 

J, et al. Trial of Decompressive Craniectomy for Traumatic Intracranial 

Hypertension. New England Journal of Medicine. 2016;375(12):1119-30. 

99. Andrews PJD, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes 

JKJ, et al. Hypothermia for Intracranial Hypertension after Traumatic Brain 

Injury. New England Journal of Medicine. 2015;373(25):2403-12. 

100. Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et 

al. Continuous determination of optimal cerebral perfusion pressure in traumatic 

brain injury. Crit Care Med. 2012;40(8):2456-63. 

101. Lazaridis C, Desantis SM, Smielewski P, Menon DK, Hutchinson P, Pickard 

JD, et al. Patient-specific thresholds of intracranial pressure in severe traumatic 

brain injury. J Neurosurg. 2014. 

102. Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper 

I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure 

target recommendation in patients with severe traumatic brain injury based on 

minute-by-minute monitoring data. Journal of Neurosurgery. 2014;120(6):1451-

7. 

103. Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M. Morphological clustering 

and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng. 

2009;56(3):696-705. 

104. Scalzo F, Asgari S, Kim S, Bergsneider M, Hu X. Robust peak recognition in 

intracranial pressure signals. Biomedical engineering online. 2010;9:61. 

105. Hu X, Glenn T, Scalzo F, Bergsneider M, Sarkiss C, Martin N, et al. 

Intracranial pressure pulse morphological features improved detection of 

decreased cerebral blood flow. Physiol Meas. 2010;31(5):679-95. 

106. Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting ICP elevation 

based on prescient changes of intracranial pressure waveform morphology. IEEE 

Trans Biomed Eng. 2010;57(5):1070-8. 

107. Guiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel 

methods to predict increased intracranial pressure during intensive care and 

http://www.center-tbi.eu/


 

 

173 
long-term neurologic outcome after traumatic brain injury: development and 

validation in a multicenter dataset. Crit Care Med. 2013;41(2):554-64. 

108. Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, 

et al. Clinical assessment of noninvasive intracranial pressure absolute value 

measurement method. Neurology. 2012;78(21):1684-91. 

109. Ragauskas A, Bartusis L, Piper I, Zakelis R, Matijosaitis V, Petrikonis K, et 

al. Improved diagnostic value of a TCD-based non-invasive ICP measurement 

method compared with the sonographic ONSD method for detecting elevated 

intracranial pressure. Neurol Res. 2014;36(7). 

110. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et 

al. Bioelectrical impedance analysis--part I: review of principles and methods. 

Clin Nutr. 2004;23(5):1226-43. 

111. Cole KS, Cole RH. Dispersion and Absorption in Dielectrics I. Alternating 

Current Characteristics. The Journal of Chemical Physics. 1941;9(4):341-51. 

112. Norman K, Stobaus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase 

angle and impedance vector analysis--clinical relevance and applicability of 

impedance parameters. Clin Nutr. 2012;31(6):854-61. 

113. Maggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. 

Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis 

patients. Kidney Int. 1996;50(6):2103-8. 

114. Segall L, Mardare NG, Ungureanu S, Busuioc M, Nistor I, Enache R, et al. 

Nutritional status evaluation and survival in haemodialysis patients in one centre 

from Romania. Nephrology, dialysis, transplantation : official publication of the 

European Dialysis and Transplant Association - European Renal Association. 

2009;24(8):2536-40. 

115. Colin-Ramirez E, Castillo-Martinez L, Orea-Tejeda A, Asensio Lafuente E, 

Torres Villanueva F, Rebollar Gonzalez V, et al. Body composition and 

echocardiographic abnormalities associated to anemia and volume overload in 

heart failure patients. Clin Nutr. 2006;25(5):746-57. 

116. Doesch C, Suselbeck T, Leweling H, Fluechter S, Haghi D, Schoenberg SO, 

et al. Bioimpedance analysis parameters and epicardial adipose tissue assessed 

by cardiac magnetic resonance imaging in patients with heart failure. Obesity 

(Silver Spring, Md). 2010;18(12):2326-32. 



 

 

174 
117. Gupta D, Lammersfeld CA, Burrows JL, Dahlk SL, Vashi PG, Grutsch JF, et 

al. Bioelectrical impedance phase angle in clinical practice: implications for 

prognosis in advanced colorectal cancer. Am J Clin Nutr. 2004;80(6):1634-8. 

118. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, et al. 

Bioelectrical impedance phase angle in clinical practice: implications for 

prognosis in stage IIIB and IV non-small cell lung cancer. BMC cancer. 2009;9:37. 

119. Bodo M. Studies in Rheoencephalography (REG). Journal of Electrical 

Bioimpedance. 2010;1:18-40. 

120. Grasso G, Alafaci C, Passalacqua M, Morabito A, Buemi M, Salpietro FM, et 

al. Assessment of human brain water content by cerebral bioelectrical 

impedance analysis: a new technique and its application to cerebral pathological 

conditions. Neurosurgery. 2002;50(5):1064-72; discussion 72-4. 

121. Liu L, Dong W, Ji X, Chen L, He W, Jia J. A new method of noninvasive 

brain-edema monitoring in stroke: cerebral electrical impedance measurement. 

Neurol Res. 2006;28(1):31-7. 

122. Liu LX, Dong WW, Wang J, Wu Q, He W, Jia YJ. The role of noninvasive 

monitoring of cerebral electrical impedance in stroke. Acta Neurochir Suppl. 

2005;95:137-40. 

123. He LY, Wang J, Luo Y, Dong WW, Liu LX. Application of non-invasive 

cerebral electrical impedance measurement on brain edema in patients with 

cerebral infarction. Neurol Res. 2010;32(7):770-4. 

124. Lou JH, Wang J, Liu LX, He LY, Yang H, Dong WW. Measurement of Brain 

Edema by Noninvasive Cerebral Electrical Impedance in Patients with Massive 

Hemispheric Cerebral Infarction. European Neurology. 2012;68(6):350-7. 

125. Seoane F, Reza Atefi S, Tomner J, Kostulas K, Lindecrantz K. Electrical 

Bioimpedance Spectroscopy on Acute Unilateral Stroke Patients: Initial 

Observations regarding Differences between Sides. BioMed research 

international. 2015;2015:12. 

126. Harting MT, Smith CT, Radhakrishnan RS, Aroom KR, Dash PK, Gill B, et al. 

Regional differences in cerebral edema after traumatic brain injury identified by 

impedance analysis. J Surg Res. 2010;159(1):557-64. 

127. Lingwood BE, Dunster KR, Colditz PB, Ward LC. Noninvasive measurement 

of cerebral bioimpedance for detection of cerebral edema in the neonatal 

piglet. Brain Res. 2002;945(1):97-105. 



 

 

175 
128. Lingwood BE, Dunster KR, Healy GN, Ward LC, Colditz PB. Cerebral 

impedance and neurological outcome following a mild or severe 

hypoxic/ischemic episode in neonatal piglets. Brain Res. 2003;969(1-2):160-7. 

129. Lingwood BE, Healy GN, Kecskes Z, Dunster KR, Gray PH, Ward LC, et al. 

Prediction of outcome following hypoxia/ischaemia in the human infant using 

cerebral impedance. Clinical neurophysiology : official journal of the 

International Federation of Clinical Neurophysiology. 2009;120(2):225-30. 

130. Shaw M, Piper I, Campbell P, McKeown C, Britton J, Oommen K, et al. 

Investigation of the relationship between transcranial impedance and 

intracranial pressure. Acta Neurochir Suppl. 2012;114:61-5. 

131. Metherall P, Barber D, Smallwood R, Brown B. Three dimensional 

electrical impedance tomography. Nature. 1996;380(6574):509-12. 

132. Manwaring PK, Moodie KL, Hartov A, Manwaring KH, Halter RJ. 

Intracranial electrical impedance tomography: a method of continuous 

monitoring in an animal model of head trauma. Anesth Analg. 2013;117(4):866-

75. 

133. ixellence GmbH. ixTrends. Germany;2011. 

134. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: 

Springer-Verlag; 2009. 

135. Wickham H, Francois R. dplyr: A Grammar of Data Manipulation. R 

package version 0.4.1. 2015. 

136. Wickham H. stringr: Make it easier to work with strings. R package version 

0.6.2. 2012. 

137. Georgatzis K, Lal P, C. H, Shaw M, Piper I, Tarbert C, et al. Artifact in 

physiological data collected from brain injured patients: quantifying the problem 

and providing a solution through a factorial switching linear dynamical systems 

approach. Proceedings of the 15th International Symposium on Brain Monitoring 

and Intracranial Pressure, Singapore, November 2013. 

138. Lal P, Williams CKI, Georgatzis K, Hawthorne C, McMonagle P, Piper I, et 

al. Detecting Artifactual Events in Vital Signs Monitoring Data2015. Available 

from: 

http://homepages.inf.ed.ac.uk/ckiw/projects/adult_icu/CSOreport230915.pdf . 

139. Maas AI, Steyerberg EW, Murray GD, Bullock R, Baethmann A, Marshall LF, 

et al. Why have recent trials of neuroprotective agents in head injury failed to 

http://homepages.inf.ed.ac.uk/ckiw/projects/adult_icu/CSOreport230915.pdf


 

 

176 
show convincing efficacy? A pragmatic analysis and theoretical considerations. 

Neurosurgery. 1999;44(6):1286-98. 

140. Maas AI, Roozenbeek B, Manley GT. Clinical trials in traumatic brain 

injury: past experience and current developments. Neurotherapeutics : the 

journal of the American Society for Experimental NeuroTherapeutics. 

2010;7(1):115-26. 

141. Roozenbeek B, Lingsma HF, Maas AI. New considerations in the design of 

clinical trials for traumatic brain injury. Clinical investigation. 2012;2(2):153-62. 

142. Maas AI, Marmarou A, Murray GD, Teasdale SG, Steyerberg EW. Prognosis 

and clinical trial design in traumatic brain injury: the IMPACT study. J 

Neurotrauma. 2007;24(2):232-8. 

143. Maas AI, Steyerberg EW, Marmarou A, McHugh GS, Lingsma HF, Butcher I, 

et al. IMPACT recommendations for improving the design and analysis of clinical 

trials in moderate to severe traumatic brain injury. Neurotherapeutics : the 

journal of the American Society for Experimental NeuroTherapeutics. 

2010;7(1):127-34. 

144. National Institute for Health and Care Excellence. Acute stroke. 2017. 

145. Shaw M, Piper I, Hawthorne C. Multi-resolution Convolution Methodology 

for ICP Waveform Morphology Analysis. Acta Neurochir Suppl. 2016;122:41-4. 

146. Ward A, Hawthorne C, Shaw M, editors. Cerebral autoregulation model 

extension using high frequency ICU data. British Journal of Anaesthesia Research 

Forum (Submitted to conference proceedings); 2016; Glasgow, UK. 

147. Hawthorne C, Shaw M, Moss L, Piper I, Elliott R, Lee C, et al. 761: 

Improvements to the optimal cerebral perfusion pressure calculation. Critical 

Care Medicine. 2016;44(12):266. 

148. Takla G, Petre JH, Doyle DJ, Horibe M, Gopakumaran B. The problem of 

artifacts in patient monitor data during surgery: a clinical and methodological 

review. Anesth Analg. 2006;103(5):1196-204. 

149. Georgatzis K, Lal P, Hawthorne C, Shaw M, Piper I, Tarbert C, et al. 

Artefact in Physiological Data Collected from Patients with Brain Injury: 

Quantifying the Problem and Providing a Solution Using a Factorial Switching 

Linear Dynamical Systems Approach. Acta Neurochir Suppl. 2016;122:301-5. 

150. Lal P, Williams CK, Georgatzis K, Hawthorne C, McMonagle P, Piper I, et 

al. Detecting artifactual events in vital signs monitoring data. 2016. In: Machine 



 

 

177 
Learning for Healthcare Technologies [Internet]. Institution of Engineering and 

TechnologyHealthcare Technologies; [7-32]. 

151.  [cited 2017 31st March]. Available from: www.chartadapt.org. 

152. Biousse V, Bruce BB, Newman NJ. Update on the pathophysiology and 

management of idiopathic intracranial hypertension. Journal of neurology, 

neurosurgery, and psychiatry. 2012;83(5):488-94. 

153. Pople IK. Hydrocephalus and shunts: what the neurologist should know. 

Journal of neurology, neurosurgery, and psychiatry. 2002;73 Suppl 1:i17-22. 

154. McAllister JP, 2nd, Williams MA, Walker ML, Kestle JR, Relkin NR, 

Anderson AM, et al. An update on research priorities in hydrocephalus: overview 

of the third National Institutes of Health-sponsored symposium "Opportunities for 

Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg. 

2015;123(6):1427-38. 

155. Minto CF, Schnider TW. Contributions of PK/PD modeling to intravenous 

anesthesia. Clin Pharmacol Ther. 2008;84(1):27-38. 

156. Sury MR, Palmer JH, Cook TM, Pandit JJ. The state of UK anaesthesia: a 

survey of National Health Service activity in 2013. Br J Anaesth. 

2014;113(4):575-84. 

157. Baker MT, Naguib M. Propofol: the challenges of formulation. 

Anesthesiology. 2005;103(4):860-76. 

158. Doenicke AW, Roizen MF, Rau J, O'Connor M, Kugler J, Klotz U, et al. 

Pharmacokinetics and pharmacodynamics of propofol in a new solvent. Anesth 

Analg. 1997;85(6):1399-403. 

159. Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N 

Engl J Med. 2010;363(27):2638-50. 

160. Sebel PS, Lowdon JD. Propofol: a new intravenous anesthetic. 

Anesthesiology. 1989;71(2):260-77. 

161. Smith I, White PF, Nathanson M, Gouldson R. Propofol. An update on its 

clinical use. Anesthesiology. 1994;81(4):1005-43. 

162. Aun CS. New i.v. agents. Br J Anaesth. 1999;83(1):29-41. 

163. Servln MDF, Desmonts MDJM, Haberer MDJP, Cockshott PDID, Plummer 

HNCGF, Farinotti PDR. Pharmacokinetics and Protein Binding of Propofol in 

Patients with Cirrhosis. Anesthesiology. 1988;69(6):887-91. 

164. Hiraoka H, Yamamoto K, Okano N, Morita T, Goto F, Horiuchi R. Changes 

in drug plasma concentrations of an extensively bound and highly extracted 

http://www.chartadapt.org/


 

 

178 
drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther. 

2004;75(4):324-30. 

165. Takizawa E, Hiraoka H, Takizawa D, Goto F. Changes in the effect of 

propofol in response to altered plasma protein binding during normothermic 

cardiopulmonary bypass. British Journal of Anaesthesia. 2006;96(2):179-85. 

166. Mazoit JX, Samii K. Binding of propofol to blood components: implications 

for pharmacokinetics and for pharmacodynamics. British journal of clinical 

pharmacology. 1999;47(1):35-42. 

167. Takizawa D, Sato E, Hiraoka H, Tomioka A, Yamamoto K, Horiuchi R, et 

al. Changes in apparent systemic clearance of propofol during transplantation of 

living related donor liver. Br J Anaesth. 2005;95(5):643-7. 

168. Takizawa MDD, Hiraoka MDPDH, Goto MDPDF, Yamamoto PDK, Horiuchi 

PDR. Human Kidneys Play an Important Role in the Elimination of Propofol. 

Anesthesiology. 2005;102(2):327-30. 

169. Takata K, Kurita T, Morishima Y, Morita K, Uraoka M, Sato S. Do the 

kidneys contribute to propofol elimination? Br J Anaesth. 2008;101(5):648-52. 

170. Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, et al. 

Kidneys contribute to the extrahepatic clearance of propofol in humans, but not 

lungs and brain. British journal of clinical pharmacology. 2005;60(2):176-82. 

171. Favetta P, Degoute CS, Perdrix JP, Dufresne C, Boulieu R, Guitton J. 

Propofol metabolites in man following propofol induction and maintenance. Br J 

Anaesth. 2002;88(5):653-8. 

172. Loftsson T. Chapter 2 - Basic Concepts of Pharmacokinetics.  Essential 

Pharmacokinetics. Boston: Academic Press; 2015. p. 9-84. 

173. Kay NH, Sear JW, Uppington J, Cockshott ID, Douglas EJ. Disposition of 

propofol in patients undergoing surgery. A comparison in men and women. Br J 

Anaesth. 1986;58(10):1075-9. 

174. Cockshott ID, Briggs LP, Douglas EJ, White M. Pharmacokinetics of 

propofol in female patients. Studies using single bolus injections. Br J Anaesth. 

1987;59(9):1103-10. 

175. Kirkpatrick T, Cockshott ID, Douglas EJ, Nimmo WS. Pharmacokinetics of 

propofol (diprivan) in elderly patients. Br J Anaesth. 1988;60(2):146-50. 

176. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, 

et al. The influence of method of administration and covariates on the 



 

 

179 
pharmacokinetics of propofol in adult volunteers. Anesthesiology. 

1998;88(5):1170-82. 

177. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, 

et al. The influence of age on propofol pharmacodynamics. Anesthesiology. 

1999;90(6):1502-16. 

178. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol 

administered as constant rate intravenous infusions in humans. Anesth Analg. 

1987;66(12):1256-63. 

179. Gepts E, Jonckheer K, Maes V, Sonck W, Camu F. Disposition kinetics of 

propofol during alfentanil anaesthesia. Anaesthesia. 1988;43 Suppl:8-13. 

180. White M, Kenny GN. Intravenous propofol anaesthesia using a 

computerised infusion system. Anaesthesia. 1990;45(3):204-9. 

181. Glen JB. The development of 'Diprifusor': a TCI system for propofol. 

Anaesthesia. 1998;53 Suppl 1:13-21. 

182. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM User's Guides. 

(1989-2009). Icon Development Solutions, Ellicott City, MD, USA2009. 

183. James WPT, Waterlow JC. Research on obesity: a report of the DHSS/MRC 

group: HM Stationery Office; 1976. 

184. Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM. Target-

Controlled Infusion: A Mature Technology. Anesth Analg. 2016;122(1):70-8. 

185. Absalom AR, Mani V, De Smet T, Struys MM. Pharmacokinetic models for 

propofol--defining and illuminating the devil in the detail. Br J Anaesth. 

2009;103(1):26-37. 

186. Engbers FH, Sutcliffe N, Kenny G, Schraag S. Pharmacokinetic models for 

propofol: defining and illuminating the devil in the detail. British Journal of 

Anaesthesia. 2010;104(2):261-4. 

187. Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug 

metabolism reviews. 2009;41(2):67-76. 

188. Vuyk J, Oostwouder CJ, Vletter AA, Burm AGL, Bovill JG. Gender 

differences in the pharmacokinetics of propofol in elderly patients during and 

after continuous infusion. British Journal of Anaesthesia. 2001;86(2):183-8. 

189. Fisher DM. (Almost) everything you learned about pharmacokinetics was 

(somewhat) wrong! Anesth Analg. 1996;83(5):901-3. 

190. Krejcie TC, Avram MJ. What determines anesthetic induction dose? It's the 

front-end kinetics, doctor! Anesth Analg. 1999;89(3):541-4. 



 

 

180 
191. Upton RN, Ludbrook G. A physiologically based, recirculatory model of the 

kinetics and dynamics of propofol in man. Anesthesiology. 2005;103(2):344-52. 

192. Ludbrook GL, Upton RN, Grant C, Gray EC. Cerebral effects of propofol 

following bolus administration in sheep. Anaesth Intensive Care. 1996;24(1):26-

31. 

193. Ludbrook GL, Upton RN, Grant C, Gray EC. Brain and blood concentrations 

of propofol after rapid intravenous injection in sheep, and their relationships to 

cerebral effects. Anaesth Intensive Care. 1996;24(4):445-52. 

194. Upton RN, Ludbrook GL. A physiological model of induction of anaesthesia 

with propofol in sheep. 1. Structure and estimation of variables. Br J Anaesth. 

1997;79(4):497-504. 

195. Ludbrook GL, Upton RN. A physiological model of induction of anaesthesia 

with propofol in sheep. 2. Model analysis and implications for dose 

requirements. Br J Anaesth. 1997;79(4):505-13. 

196. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, et al. 

Modeling interindividual variation in physiological factors used in PBPK models of 

humans. Critical reviews in toxicology. 2003;33(5):469-503. 

197. Ludbrook GL, Visco E, Lam AM. Propofol: relation between brain 

concentrations, electroencephalogram, middle cerebral artery blood flow 

velocity, and cerebral oxygen extraction during induction of anesthesia. 

Anesthesiology. 2002;97(6):1363-70. 

198. He YL, Ueyama H, Tashiro C, Mashimo T, Yoshiya I. Pulmonary disposition 

of propofol in surgical patients. Anesthesiology. 2000;93(4):986-91. 

199. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of 

computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63-

94. 

200. Raemer DB, Buschman A, Varvel JR, Philip BK, Johnson MD, Stein DA, et 

al. The prospective use of population pharmacokinetics in a computer-driven 

infusion system for alfentanil. Anesthesiology. 1990;73(1):66-72. 

201. Tackley RM, Lewis GT, Prys-Roberts C, Boaden RW, Dixon J, Harvey JT. 

Computer controlled infusion of propofol. Br J Anaesth. 1989;62(1):46-53. 

202. Coetzee JF, Glen JB, Wium CA, Boshoff L. Pharmacokinetic model 

selection for target controlled infusions of propofol. Assessment of three 

parameter sets. Anesthesiology. 1995;82(6):1328-45. 



 

 

181 
203. Glen JB, Servin F. Evaluation of the predictive performance of four 

pharmacokinetic models for propofol. Br J Anaesth. 2009;102(5):626-32. 

204. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, et al. 

The performance of compartmental and physiologically based recirculatory 

pharmacokinetic models for propofol: a comparison using bolus, continuous, and 

target-controlled infusion data. Anesth Analg. 2010;111(2):368-79. 

205. Glen JB, White M. A comparison of the predictive performance of three 

pharmacokinetic models for propofol using measured values obtained during 

target-controlled infusion. Anaesthesia. 2014;69(6):550-7. 

206. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a 

multicenter study. Anesthesiology. 2000;92(3):727-38. 

207. Struys MM, Coppens MJ, De Neve N, Mortier EP, Doufas AG, Van Bocxlaer 

JF, et al. Influence of administration rate on propofol plasma-effect site 

equilibration. Anesthesiology. 2007;107(3):386-96. 

208. Masui K, Kira M, Kazama T, Hagihira S, Mortier EP, Struys MM. Early phase 

pharmacokinetics but not pharmacodynamics are influenced by propofol infusion 

rate. Anesthesiology. 2009;111(4):805-17. 

209. Doufas AG, Bakhshandeh M, Bjorksten AR, Shafer SL, Sessler DI. Induction 

speed is not a determinant of propofol pharmacodynamics. Anesthesiology. 

2004;101(5):1112-21. 

210. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive 

performance of a 'Diprifusor' TCI system. Anaesthesia. 1998;53 Suppl 1:61-7. 

211. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling 

of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin 

Pharmacol Ther. 1979;25(3):358-71. 

212. Wagner JG. Kinetics of pharmacologic response I. Proposed relationships 

between response and drug concentration in the intact animal and man. Journal 

of Theoretical Biology. 1968;20(2):173-201. 

213. Fuseau E, Sheiner LB. Simultaneous modeling of pharmacokinetics and 

pharmacodynamics with a nonparametric pharmacodynamic model. Clin 

Pharmacol Ther. 1984;35(6):733-41. 

214. Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time 

of maximum effect site concentration to combine pharmacokinetics and 

pharmacodynamics. Anesthesiology. 2003;99(2):324-33. 



 

 

182 
215. Cortínez LI. What is the ke0 and what does it tell me about propofol? 

Anaesthesia. 2014;69(5):399-402. 

216. Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of 

spectral edge, delta power, and bispectral index as EEG measures of alfentanil, 

propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61(1):45-58. 

217. Struys MM, De Smet T, Depoorter B, Versichelen LF, Mortier EP, Dumortier 

FJ, et al. Comparison of plasma compartment versus two methods for effect 

compartment--controlled target-controlled infusion for propofol. Anesthesiology. 

2000;92(2):399-406. 

218. Rampil IJ. A primer for EEG signal processing in anesthesia. 

Anesthesiology. 1998;89(4):980-1002. 

219. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: 

what's available, what's validated and what's next? Br J Anaesth. 2006;97(1):85-

94. 

220. Palanca BJ, Mashour GA, Avidan MS. Processed electroencephalogram in 

depth of anesthesia monitoring. Curr Opin Anaesthesiol. 2009;22(5):553-9. 

221. Sigl JC, Chamoun NG. An introduction to bispectral analysis for the 

electroencephalogram. Journal of clinical monitoring. 1994;10(6):392-404. 

222. National Institute for Health and Care Excellence. Depth of anaesthesia 

monitors – Bispectral Index (BIS), E-Entropy and Narcotrend-Compact M (DG6). 

2012. 

223. Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral 

index for improving anaesthetic delivery and postoperative recovery. Cochrane 

Database of Systematic Reviews. 2014(6). 

224. Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index 

monitoring to prevent awareness during anaesthesia: the B-Aware randomised 

controlled trial. Lancet. 2004;363(9423):1757-63. 

225. Avidan MS, Jacobsohn E, Glick D, Burnside BA, Zhang L, Villafranca A, et 

al. Prevention of intraoperative awareness in a high-risk surgical population. N 

Engl J Med. 2011;365(7):591-600. 

226. Avidan  MS, Zhang  L, Burnside  BA, Finkel  KJ, Searleman  AC, Selvidge  

JA, et al. Anesthesia Awareness and the Bispectral Index. New England Journal 

of Medicine. 2008;358(11):1097-108. 

227. Pandit JJ, Andrade J, Bogod DG, Hitchman JM, Jonker WR, Lucas N, et al. 

5th National Audit Project (NAP5) on accidental awareness during general 



 

 

183 
anaesthesia: summary of main findings and risk factors. Br J Anaesth. 

2014;113(4):549-59. 

228. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical 

Electroencephalography for Anesthesiologists Part I: Background and Basic 

Signatures. Anesthesiology. 2015;123(4):937-60. 

229. Bennett C, Voss LJ, Barnard JP, Sleigh JW. Practical use of the raw 

electroencephalogram waveform during general anesthesia: the art and science. 

Anesth Analg. 2009;109(2):539-50. 

230. Barnard JP, Bennett C, Voss LJ, Sleigh JW. Can anaesthetists be taught to 

interpret the effects of general anaesthesia on the electroencephalogram? 

Comparison of performance with the BIS and spectral entropy. Br J Anaesth. 

2007;99(4):532-7. 

231. Rigby-Jones AE, Priston MJ, Wolf AR, Sneyd JR. Concentration-dependent 

instability of propofol in whole human blood: A-464. European Journal of 

Anaesthesiology. 2005;22:122. 

232. NONMEM History  [cited 2017 31st March]. Available from: 

http://www.iconplc.com/innovation/nonmem/history/. 

233. NONMEM Documentation  [cited 2017 31st March]. Available from: 

https://nonmem.iconplc.com. 

234. Owen JS, Fiedler-Kelly J. Introduction to Population Pharmacokinetic / 

Pharmacodynamic Analysis with Nonlinear Mixed Effects Models. First ed: John 

Wiley & Sons, Inc.; 2014. 

235. Kim M-G, Yim D-S, Bae K-S. R-based reproduction of the estimation 

process hidden behind NONMEM® Part 1: first-order approximation method. 

Transl Clin Pharmacol. 2015;23(1):1-7. 

236. Tornoe CW. nlmeODE: Non-linear mixed-effects modelling in nlme using 

differential equations. R package version 1.1. 2012. 

237. Tornoe CW, Agerso H, Jonsson EN, Madsen H, Nielsen HA. Non-linear 

mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using 

differential equations. Computer methods and programs in biomedicine. 

2004;76(1):31-40. 

238. The Association of Anaesthetists of Great Britain and Ireland. 

Recommendations for standards of monitoring during anaesthesia and recovery. 

2007. 

http://www.iconplc.com/innovation/nonmem/history/


 

 

184 
239. Bressan N, Paulo Moreira A, Amorim P, Nunes CS. Anaesthesia 

synchronization software: target controlled infusion system evaluation. Conf 

Proc IEEE Eng Med Biol Soc. 2010;2010:6777-80. 

240. Warnes GR, Bolker B, Gorjanc G, Grothendieck G, Korosec A, Lumley T, et 

al. gdata: Various R programming tools for data manipulation. R package version 

2.13.3. 2014. 

241. Absalom A, Amutike D, Lal A, White M, Kenny GN. Accuracy of the 

'Paedfusor' in children undergoing cardiac surgery or catheterization. Br J 

Anaesth. 2003;91(4):507-13. 

242. Eurosiva. Tivatrainer 2015 [cited 2015 November 26]. Available from: 

http://www.eurosiva.org/TivaTrainer/tivatrainer_main.htm. 

243. Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in R: 

Package deSolve. Journal of Statistical Software. 2010;33(9):25. 

244. Hill AV. The possible effects of the aggregation of the molecules of 

haemoglobin on its dissociation curves. The Journal of Physiology. 1910;40:iv-vii. 

245. Al Hashimi M, Calo G, Guerrini R, Thompson JP, Lambert DG, Arblaster L, 

et al. Proceedings of the Anaesthetic Research Society MeetingAberdeen 

Exhibition Centre, Aberdeen, 21–22 June 2012. British Journal of Anaesthesia. 

2012;109(4):655P-68P. 

246. Hawthorne C, Schraag S, Suttcliffe N, McKelvie S, Shaw M, Chandran M. 

Abstract PR438: Validation Study of the Covariates Model for Target Controlled 

Infusion of Propofol. Anesthesia & Analgesia. 2016;123(3S_Suppl):554-5. 

247. Hawthorne C, Schraag S, Suttcliffe N, McKelvie S, Shaw M, Chandran M. 

Abstract PR437: Calculating the Keo for the Covariates Model for Target 

Controlled Infusion of Propofol. Anesthesia & Analgesia. 2016;123(3S_Suppl):552-

3. 

248. Zanner R, Pilge S, Kochs EF, Kreuzer M, Schneider G. Time delay of 

electroencephalogram index calculation: analysis of cerebral state, bispectral, 

and Narcotrend indices using perioperatively recorded electroencephalographic 

signals. Br J Anaesth. 2009;103(3):394-9. 

249. Lim TA. A novel method of deriving the effect compartment equilibrium 

rate constant for propofol. Br J Anaesth. 2003;91(5):730-2. 

250. Thomson AJ, Nimmo AF, Engbers FH, Glen JB. A novel technique to 

determine an 'apparent ke0 ' value for use with the Marsh pharmacokinetic 

model for propofol. Anaesthesia. 2014;69(5):420-8. 

http://www.eurosiva.org/TivaTrainer/tivatrainer_main.htm


 

 

185 
251. Thomson AJ, Morrison G, Thomson E, Beattie C, Nimmo AF, Glen JB. 

Induction of general anaesthesia by effect-site target-controlled infusion of 

propofol: influence of pharmacokinetic model and ke0 value. Anaesthesia. 

2014;69(5):429-35. 

252. Schuttler J, Kloos S, Schwilden H, Stoeckel H. Total intravenous 

anaesthesia with propofol and alfentanil by computer-assisted infusion. 

Anaesthesia. 1988;43 Suppl:2-7. 

253. Chiou WL. The phenomenon and rationale of marked dependence of drug 

concentration on blood sampling site. Implications in pharmacokinetics, 

pharmacodynamics, toxicology and therapeutics (Part I). Clin Pharmacokinet. 

1989;17(3):175-99. 

254. Chiou WL. The phenomenon and rationale of marked dependence of drug 

concentration on blood sampling site. Implications in pharmacokinetics, 

pharmacodynamics, toxicology and therapeutics (Part II). Clin Pharmacokinet. 

1989;17(4):275-90. 

255. Eleveld DJ, Proost JH, Cortinez LI, Absalom AR, Struys MM. A general 

purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221-

37. 

256. Open TCI  [cited 2017 31st March]. Available from: http://opentci.org. 

257. Croall A, Hawthorne C, Shaw M, editors. Modelling the effect site 

compartment in a target controlled infusion of Propofol. British Journal of 

Anaesthesia Research Forum (Submitted to conference proceedings); 2016; 

Glasgow, UK. 

258. Georgatzis K, Williams CKI, Hawthorne C. Input-Output Non-Linear 

Dynamical Systems applied to Physiological Condition Monitoring. In: Finale D-V, 

Jim F, David K, Byron W, Jenna W, editors. Proceedings of the 1st Machine 

Learning for Healthcare Conference; Proceedings of Machine Learning Research: 

PMLR; 2016. p. 1-16. 

259. Kazama T, Ikeda K, Morita K, Kikura M, Doi M, Ikeda T, et al. Comparison 

of the effect-site k(eO)s of propofol for blood pressure and EEG bispectral index 

in elderly and younger patients. Anesthesiology. 1999;90(6):1517-27. 

260. Dryden PE. Target-Controlled Infusions: Paths to Approval. Anesth Analg. 

2016;122(1):86-9. 

261. Schnider TW, Minto CF, Struys MM, Absalom AR. The Safety of Target-

Controlled Infusions. Anesth Analg. 2016;122(1):79-85. 

http://opentci.org/


 

 

186 
262. Struys MM, De Smet T, Glen JI, Vereecke HE, Absalom AR, Schnider TW. 

The History of Target-Controlled Infusion. Anesth Analg. 2016;122(1):56-69. 

263. Dumont GA, Ansermino JM. Closed-loop control of anesthesia: a primer for 

anesthesiologists. Anesth Analg. 2013;117(5):1130-8. 

264. Pelorus  [cited 2017 31st March]. Available from: 

http://www.spheremedical.com/products/pelorus. 

265. Cowley NJ, Laitenberger P, Liu B, Jarvis J, Clutton-Brock TH. Evaluation 

of a new analyser for rapid measurement of blood propofol concentration during 

cardiac surgery. Anaesthesia. 2012;67(8):870-4. 

266. Liu B, Pettigrew DM, Bates S, Laitenberger PG, Troughton G. Performance 

evaluation of a whole blood propofol analyser. J Clin Monit Comput. 

2012;26(1):29-36. 

267. MIMIC  [cited 2017 31st March]. Available from: 

https://mimic.physionet.org. 

268. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, et al. 

MIMIC-III, a freely accessible critical care database. Scientific data. 

2016;3:160035. 

 

http://www.spheremedical.com/products/pelorus

