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Abstract

Fasciola hepatica is a common parasite, which affects sheep and cattle. In past decades, due to
wet weather and the increasing temperature in summer and early autumn, the risk of sheep and
cattle infection by F. hepatica has significantly increased, and it has also caused enormous eco-
nomic loss. The distribution of F. hepatica is profoundly affected by environmental conditions,
including precipitation, temperature, soil moisture, and vegetation type and can be predicted on
a regional scale by environmental data. In the UK, a large number of farms are small or medium-
sized, and the current parasite forecast system works on a national scale postal area scales, which
is too broad to provide a precise forecast or enable the development of within-farm management
strategies. Hence, there is a need to map the environment data to F. hepatica at the farm-level.

This study examined the relationships between F. hepatica and environmental factors at the
within-farm and within-field levels, useing earth observation techniques and geographic infor-
mation systems (GIS) to analyse the potential contribution of environmental factors to the den-
sity of F. hepatica on pasture. Five study fields within two farms in Scotland, Cochno and
Dumgoyne, were used in this study. Nine variables grouped within four categories were used
to describe the environmental conditions: 1) remote sensing indices: normalized difference wa-
ter index (NDWI) and normalized difference vegetation index (NDVI); 2) soil properties: soil
moisture and soil temperature; 3) topographical factors: elevation, slope, and aspect; 4) grazing
grass: grass height and grass weight. Two variables were used to describe the intensity of F. hep-

atica in pasture grass: count of metacercarial cysts and yield of metacercariae (the number of
metacercarial cysts per gram pasture). Univariate negative binomial regression models of each
environment factors were built against the number of metacercariae per 0.1 gram. Subsequently,
the significant variables were used in a multivariate regression model. The environmental condi-
tions were diverse among the five fields and the F. hepatica density also varied quite widely. The
results of this study showed that there were strong associations among environmental variables.
These associations result in complex interactions when modelling the environment to F. hep-

atica. Relationships among environmental variables and metacercarial density measures were
quite inconsistent. Although the NDVI, grass weight, soil moisture and slope in particular fields
showed significant relationships with F. hepatica, the remote sensing indicators tested would not
be useful for determining parasite concentrations within farm-level.
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Chapter 1

Introduction

1.1 Introduction

Fasciola hepatica, also known as liver fluke, is a parasitic trematode (flatworm or fluke) which
is distributed world-wide. It causes the disease fasciolosis, among mammals and ruminants, in-
cluding humans. Fasciolosis is a widespread disease around the world and causes huge financial
losses to farmers and consumers in the form of poor quality carcass, reduction in growth rate and
lower productivity (Khan et al., 2013). Notable economic loses occur due to infection of animals
with Fasciola, with worldwide losses in animal production estimated to be approximately 3.2
billion US dollars per year (Mehmood et al., 2017). The World Health Organisation (WHO) also
identified fasciolosis as a re-emerged, neglected tropical disease associated with human disease
epidemics (Beesley et al., 2017). In Europe, both the awareness and prevalence of fasciolosis
have increased.The significant impact on agriculture and human health, and the growing de-
mand for animal-based foods that support the growth of the global population, make fasciolosis
a major health problem. The prevalence of Fasciolia has been a issue for a long time. Fasci-
olosis caused by F. gigantica is prevalent in African, Asian and some American countries, and
prevalence is comparatively higher in developing countries compared with developed countries
in every continent (Jaja et al., 2017; Hussein and Khalifa, 2010). It is mentioned that the high
prevalence rate is due to poor management practices and lack of knowledge among the farmers
about its control. In Europe, F. hepatica is mostly associated with disease in sheep, cattle and
goats.

In the UK, cattle infection by F. hepatica is estimated to cost £23 million annually. At the farm
level, it has been reported that fasciolosis has an unquantifiable effect on milk production, car-
cass composition and extending the time to reach slaughter weight (http://www.nadis.org.uk/).
Over the past decade, the regional epidemiology of fasciolosis in the United Kingdom has
changed in terms of seasonality and severity. These changes are related to increased rainfall
or localised flooding, prompting debate on the harmful effects of climate change (Sucke, 2014).
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As a consequence, effective management of fasciolosis has become problematic in areas where
fluke exists, leading to serious loss of production in sheep and cattle. Meanwhile, In the east-
ern parts of the UK, unexpected disease outbreaks have caused production losses (Sargison and
Scott, 2011). This has prompted the investigation of advanced technologies and strategies in
farming management. Monitoring changes in climate and grassland in real time might help to
identify the potentially high risk areas or times for F. hepatica, which might reduce the number
of infected livestock. For example, the National Animal Disease Information Service (NADIS)
publishes a parasite forecast report every month and suggests "safe grazing" before predicted
high risk months such as August to October (NADIS, 2017). In Scotland, fluke has tradition-
ally been seen in the wetter western areas, however, over recent years, cases have been reported
in the eastern and north-eastern regions in increasing numbers (Mitchell, 2002; Kenyon et al.,
2009).

1.2 F. hepatica and fasciolosis

1.2.1 Biological characteristics of F. hepatica

F. hepatica is an extraordinarily successful parasite that is found in most temperate regions of the
world. It has an indirect life cycle involving a final host (in which the adult fluke reproduces),
an intermediate host (in which the larval stages of the worm develop) and a carrier (entailing
suitable aquatic plants). Adult stages of F. hepatica flukes occur in the liver of the final host,
which include cattle, sheep, and buffaloes. Wild ruminants and other mammals, including hu-
mans, can act as definitive hosts as well. The molluscan intermediate hosts of F. hepatica are
amphibious snails from the family Lymnaeidae and the principal species in Europe is Galba

truncatula (Torgerson and Claxton, 1999).

The life cycle (Figure 1.1) starts when infected animals defecate in fresh-water sources. Undif-
ferentiated fluke eggs are passed out in the feces of infected animals and once washed out of the
feces, the eggs start to develop, a process dependent on temperature. When a fully developed egg
is given stimuli of increased light and temperature, the miracidium is released. It requires water
to swim through and once it finds a suitable lymnaeid snail, the miracidium burrows through the
foot and into the snail body and develops into sporocyst larva (around 0.7 mm). Each sporocysts
then ruptures its body wall and emerges as two rediae.
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Figure 1.1: The life-cycle of F.hepatica (Taylor et al., 2016)

After about 6 weeks, rediae have developed into cercariae. Each redia produces 14 to 20 cer-
carial larvae, depending on the temperature (Abrous et al., 1999). Then, the cercariae loses its
tail and develops a cyst around itself after releasing from the snails. The cercariae encysts on
vegetation as metacercariae (Figure 1.2) which are about 0.2 mm in diameter, and it is in fact a
juvenile fluke. If the metacercariae are formed in water, they can live for a year, but if they are
formed on grass or vegetation then they survive only for a few weeks, they can withstand short
periods of drying.
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Figure 1.2: Metacercariae of F. hepatica (Photo by Mr.James McGoldrick)

The metacercarial cysts enter the body of animals through the metacercariae-contaminated grass
while grazing. The metacercariae then hatch into juveniles, which burrow through the gut wall
and migrate into the liver. Cattle and sheep can be infected by eating the contaminated grass
or the consumption of metacercariae-contaminated water (Facey and Marsden, 1960; LaPook
et al., 2000). Following a period of approximately six to eight weeks, the parasites migrate into
the bile ducts where they develop into sexually mature adults (Figure 1.3), releasing 20,000 to
24,000 eggs per fluke per day (Boray, 1969). In humans, maturation from metacercariae into
adult flukes takes approximately three to four months.
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Figure 1.3: Adult F. hepatica (up to 30 mm by 13 mm) (Photo by Mr.James McGoldrick)

The disease caused by infection with F. hepatica is called fasciolosis, which causes liver damage
and haemorrhage. Fasciolosis in sheep may be acute, subacute or chronic. The acute disease
is the less common type of fasciolosis and occurs two to six weeks after the infection by over
2000 metacercariae. In the subacute disease, metacercariae are ingested over a longer period
and while some have reached the bile ducts, where they cause a cholangitis, others are still mi-
grating through the liver (Taylor et al., 2016). This form of the disease, occurring six to ten
weeks after ingestion of approximately 500 to 1500 metacercariae, also appears in the late au-
tumn and winter. Chronic fasciolosis, which is seen mainly in late winter/early spring, is the
most common form of disease. It occurs four to five months after ingestion of about 200 to 500
of metacercariae (WHO, 1990; Abrous et al., 1999).

In Britain, the most suitable weather for F. hepatica reproduction is from May to October. A
marked increase in numbers of metacercariae appear on pasture from August to October, before
this the rediae develop in the snails during the summer and then the cercariae are shed from
August until October. Alternatively, infections arise from the winter infection of snails and the
metacercariae appear on the grass in May to June. This is called the winter infection. However,
in most European countries, the summer infection of snails is more important and therefore the
density of metacercariae in the grazing grass is increased during August to October.
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1.2.2 Environmental effects on the life-cycle of F. hepatica

The life-cycle of F. hepatica is strongly affected by environmental factors. Climate and environ-
mental factors are considered to be important elements to help us understand the occurrence of
F. hepatica (Bennema et al., 2011). G. truncatula, the main immediate host of F. hepatica, is a
species of air-breathing mud snail; and ponds or wetland are its main habitat. Climate change
has been proved to have significant effects on the prevalence of fasciolosis (Kenyon et al., 2009).

1.2.2.1 Climate

Climate appears to be an important factor that can influence the whole life cycle of F. hepatica.
It is long established that liver fluke infection risk is largely driven by the prevailing climatic
conditions, particularly temperature and rainfall in UK (Met-office, b). The past ten to fifteen
years in the UK have seen increasing fluke prevalence in livestock , as well as altered geograph-
ical distribution and seasonality of the disease ( www.nadis.org.uk). These changes have been
mainly attributed to changing climatic conditions, specifically warmer and wetter springs and
summers and milder winters (Kenyon et al., 2009; Skuce et al., 2014). The related research
shows that due to the climatic changes, an overall long-term risk level of fasciolosis will in-
crease in all regions of the UK in the coming decades and also spatio-temporal variation in risk
levels is expected (Fox et al., 2011).

Temperature is one of the most important factors affecting the life-cycle of F. hepatica. After
its eggs are displaced in water with infected animals’ feces, temperature and light are required
(up to 22◦C and 9-days light) for them to hatch into larvae. A mean day/night temperature of
10◦C or higher is necessary both for snails to breed and for the development of F. hepatica

within the snail, and all activity ceases at 5◦C (Taylor et al., 2016). The development of cercar-
ial larvae is also temperature- dependent. Environmental temperature is considered to be one of
the most consistent factors influencing the development of F. hepatica (McCann et al., 2010a).
Kantzoura’s research shows that the geographical distribution of F. hepatica was affected by
temperature and precipitation in south-eastern Europe (Kantzoura et al., 2011).

The whole life-cycle of F. hepatica occurs in wet surroundings. Water plays a key role in every
stage of the life cycle. The ideal moisture conditions for snail breeding and the development of
F. hepatica within snails are provided when rainfall exceeds transpiration, and the saturation of
fields is attained (Taylor et al., 2016). The intermediate host G. truncatula is a snail, and the
metacercariae in water can live for a year, but they can survive only for a few weeks on grass
or vegetation (Taylor et al., 2016). The period of metacercarial occurrence affects the possi-
bility of cattle infection, especially in the grazing areas. Geographical differences in surface
water content can help to predict the spatial distribution of fasciolosis. Given a set temperature,
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precipitation becomes a significant factor associated with the intensity of F. hepatica (Charlier
et al., 2014b; Bosco et al., 2015). Indeed, heavy rainfall will promote the multiplication of Fas-

ciola (Howell et al., 2015). Small water bodies, such as ponds, trenches and ditches, surrounded
with grassland provide a suitable environment for G. truncatula and have been shown to provide
suitable habitat for G. truncatula and have been shown to provide suitable habitat for F. hepatica

(Vignolles et al., 2010; De Roeck et al., 2014; Charlier et al., 2014b). Also, water quality and
ph are keys to F. hepatica (Charlier et al., 2014a; Manyangadze et al., 2016).

1.2.2.2 Soil moisture and soil material

McCann’s research showed in some English and Walsh regions soil moisture has a positive
impact on F. hepatica (McCann et al., 2010a). Soil texture influences land drainage and land
surface, which can provide ideal habitats for F. hepatica. Poor quality land and soil with fine
particles has poorer draining than soil with coarser particles. Soil with fine particles and flat
poor quality land can form ponds, trenches or ditches. This will increase the risk level of F.

hepatica on the soil with fine sand content. Also, soil ph has a negative impact on F. hepatica

(Charlier et al., 2014b).

1.2.2.3 Landcover type and other topographical factors

Grazing strategies and herd management plays a major role in prevalence of economic infection
levels of F. hepatica (Bennema et al., 2011). Improved grassland that is typically used for graz-
ing will increase the risk level of fasciolosis if mowing strategies cannot be used (Charlier et al.,
2014b). Grazing of boggy pastures and letting cattle access streams and ponds directly has been
associated with higher risk (Howell et al., 2015). In addition, some research has suggested some
plant species as a risk factor for F. hepatica; Ranunculus is a positive signal while reed-like
plants can be considered as a less positive indicator (Charlier et al., 2016).

Topographical factors such as elevation, slope and aspect are also considered as factors which
can affect the prevalence of F. hepatica because these factors will influence the temperature and
moisture level within an area. A study undertaken in Iran shows that a positive correlation was
obtained between altitude and F. hepatica (Ashrafi et al., 2015). Research found that the infec-
tion of fasciolosis decreased with elevation , which gave us an idea about how elevation effect
F. hepatica (Lyngdoh et al., 2016).
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1.3 Remote sensing and GIS approaches used in Parasitology

Earth Observation and Geographical Information Systems (GIS) approaches could be a good
method to help with the identification of potential F. hepatica habitats. Moisture areas and
small water bodies are ideal habitats for the intermediate host G. truncatula. In 1972, the first-
generation earth resources technology satellite (later renamed as Landsat) was launched. Earth
observation and remote sensing has been increasingly applied to a large variety of research
fields. Earth Observation has proven to be a good way to detect and monitor the moist areas
and dynamics of small water bodies such as ponds and ditches. Satellite imagery provides a
stable and high-quality data source from which to analyse the prevalence of G. truncatula. GIS
is a platform which can help researchers have a better understanding on the pattern of Fasciolia

infection. Meanwhile, Meanwhile, GIS as a powerful tool can help farmers manage grazing
strategies by mapping the spatial distribution of F. hepatica. A reasonable herb management
strategy can reduce infection of F. hepatica (Bennema et al., 2011; Charlier et al., 2016). Com-
bined Earth Observation with GIS tools can achieve economical and highly efficient agriculture
management at the farm level.

Traditionally, vector habitats are mapped manually on ground surveys, which is time-consuming
and also very expensive (Ozesmi and Bauer, 2002). Using Earth Observation and satellite im-
ages allows non-invasive, temporal monitoring in an automated way. Satellite images provide
area-wide information making the traditional way of point-wise sampling of the Earth’s surface
more selective. Remote sensing images from space-borne sensors with resolutions from 1 km
to 1m become more and more available at reasonable costs. For some remote sensing sensors
already, large archives for periods of over 40 years are available via the World Wide Web (e.g.
Landsat, NOAA-AVHRR, MODIS). This has resulted in the application of remote sensing in a
large number of disciplines ranging from agriculture, environmental monitoring, and forestry to
oceanography. It has been proved that remote sensing has significant advantages in monitoring
inundation with F. hepatica (Alsdorf et al., 2007) and also can be an asset in parasitological
research (Dambach et al., 2009; Vignolles et al., 2010). Recent research has shown the detection
of vector habitats at a high spatial resolution in a large area in a semi-automated way and also
indicated the importance of annual the G. truncatula life-cycle in the future studies of liver fluke
(De Roeck et al., 2014).

Some studies combined the spatial distribution of F. hepatica with other factors when analysing
potential infection areas, for example, management factors (Bennema et al., 2011) and char-
acterised suitable small water bodies for G. truncatula (Charlier et al., 2014a). Some studies
used the new methods to analyse the distribution pattern (Olsen et al., 2015) and used environ-
mental factors, such as rainfall, temperature, soil moisture, to explain the spatial distribution
pattern (McCann et al., 2010a). However, the application of remote sensing in this research in
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F. hepatica remains undeveloped, especially the use of high-resolution satellite imagery. The
most notable is DeRoeck’s (2014) study which used object-based imaging analysis (OBIA) to
present a classification of small water bodies based on 50 cm resolution Worldview2 imagery.
Above all, cloud-free high-resolution images should be implemented in our research and the
acquisition of images should occur at the time of seasonal peaks in vector abundance of both
adults and juveniles. Many studies in this area have used field work associated with GIS analysis
when assessing F. hepatica infection levels (Olsen et al., 2015) and manually mapped on aerial
photography when classifying G. truncatula habitats (Halabisky, 2011). In recent years, due to
the development of the satellite industry, the spatial resolution of microwave-sensed images has
been improved significantly.

1.4 Aims and objectives

Earth Observation techniques and satellite imagery are widely used in the analysis of the land
surface environment. The aim of this research is to use satellite data and GIS techniques asso-
ciated with reference data (i.e. elevation, slope, soil moisture and soil temperature) to build a
model for high-risk areas of F. hepatica. In addition, fieldwork is necessary as the reference data
to correct the model.

The overall objective of this research is to develop an approach that can identify high risk areas
for fasciolosis within a farm or paddock. The intended outcome of this research can be used for
optimising management e.g. improve drainage, fence-off areas at high risk and minimising the
use of anti-parasitic agents. To achieve the overall objective, farm-specific regression models
between environment factors and F. hepatica were developed and applied.
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Chapter 2

Methodology

2.1 Study Area

Two study areas just outside the city of Glasgow in Scotland; Cochno Farm and fields at Dum-
goyne, were selected for analysis primarily because the study areas represented typical grazing
fields, and also because of the availability of satellite imagery and aerial photographs, avail-
ability of weather data and soil type information, and their contrasting vegetation types. The
Cochno study site is a University of Glasgow research farm and is used for core teaching and
research activities at the School of Veterinary Medicine, and affiliated Research Institutes of the
College of Medical, Veterinary and Life Sciences (www.gla.ac.uk/). The site covers an area of
344 ha, mainly consisting of agriculturally-improved grasslands and lands dominated by mosses
or lichens. In this research, three fields were selected within the Cochno Farm (Figure 2.1).
Selection of experimental fields was based on the variety of elevation and terrain, from lowland
grassland to upland meadow. The Dumgoyne grassland is 13 miles away from Glasgow city and
the area covers approximately 27 ha and is divided into two parts; the north field and the south
field. In September 2017, the average daily precipitation of study fields was 5.83 mm per day
and the average temperature was 12◦C. The monthly average precipitation and temperature from
January 2016 to September 2017 are given in Appendix A. The climate data were acquired from
the Met Office website (www.metoffice.gov.uk/climate/uk) and it shows that in the summer of
2017 (from August to October), the study areas had more rainfall than the same period of 2016
and the monthly aver- age temperatures were about 12◦C which was also slightly higher than
2016.
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Table 2.1: Characteristics of the fields at the two study locations

Fields Highest Elevation (m) Lowest Elevation (m) Area (ha)
Cochno Cochno Low 126.48 116.53 1.98

Cochno Mid 173.02 160.94 0.46
Cochno High 300.99 268.75 11.8

Dumgoyne Dumgoyne North 33.29 20.75 18.2
Dumgoyne South 31.28 23.21 8.45

(a) Two study areas

(b) Five research fields

Figure 2.1: Maps of study areas: (a) Two study areas; (b) Five research fields.
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2.2 Earth Observation Imagery

This section describes the earth observation images and the methods of image processing used
in this study. Images from three sensors were used as data sources. The main characteristics of
each sensor and the reason for selection are presented below.

2.2.1 Sentinel-2

The Sentinel-2 images of 31 August 2017 was used in this study. Sentinel-2 is a wide-swath,
high-resolution, multi-spectral imaging mission, supporting ESA Copernicus Land Monitoring
studies, including the monitoring of vegetation, soil and water cover, as well as observation of in-
land waterways and coastal areas. The Sentinel-2 (https://earth.esa.int/web/sentinel/missions/sentinel-
2) mission has the following capabilities:

- Multi-spectral data with 13 bands representing Top of Atmosphere (TOA) reflectances
: four bands at 10 meters, six bands at 20 meters and three bands at 60 meters spatial
resolution.

- Systematic global coverage of land surfaces from 56◦S to 84◦N

- Sun synchronous orbit at 786 km altitude, providing 14.3 revolutions per day

- The revisit frequency of each individual satellite is 10 days and the combined constellation
revisit is 5 days.

- 290 km field of view

- free and open data policy

As shown in Table 2.2, four 10-m resolution bands, B2 (490 nm), B3 (560 nm), B4 (665 nm),
B8 (842 nm) and one 20-m resolution bands, B11 (1610 nm) were used in this study. QA60 is
a bit mask band which contains the cloud information: no cloud, dense cloud or cirrus cloud.
All satellite images were collected and processed on the Google Earth Engine (GEE) online
geospatial-processing platform. GEE is a cloud-based platform for planetary-scale environmen-
tal data analysis (https://code.earthengine.google.com). It provides an archive of publicly avail-
able remotely sensed imagery (Landsat, Sentinel-1/2) and other satellite data. GEE also provides
tools and a code editor for rapid prototyping and visualisation of complex spatial analyses using
a JavaScript API (Figure 2.2).
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Table 2.2: Spectral bands for the SENTINEL-2 sensors(S2A) used in the study

Band number Central Wavelength (nm) Bandwidth (nm) Spatial resolution (m) Descriptions

B2 496.6 98 10 Blue
B3 560 45 10 Green
B4 664.5 38 10 Red
B8 835.1 145 10 NIR
B11 1,613.7 143 20 SWIR1
B12 2,202.4 242 20 SWIR2

QA60 60 Bitmask band

Figure 2.2: Google Earth Engine API.

2.2.1.1 Pre-processing of satellite images

The satellite imagery data acquisition process is affected by several factors that can decrease the
quality of the images collected. This may have an impact on the accuracy of the information
retrieved during the image analysis. In this research, all image analysis was completed on the
GEE online platform using generated JavaScript codes. GEE also provides a large number
of standard processing algorithms to help users access data easily and accurately. The pre-
processing workflow is given in Figure 2.3. All JavaScript codes were given in Appendix E.

• Loading satellite images:

Load the Sentinel-2 dataset using the Earth Engine collection ID (COPERNICUS/S2) and
select image bounds and date period. The images produced by radiometric and geometric
corrections and have been orthorectified. Display the images.
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• Cloud-mask:

To get clear cloud-free images of the research fields, we need to remove cloudy pixels.
Sentinel-2 level-2C product provides the cloud mask information in Band QA60. The
cloud mask is set as three values: 0 is a cloud-free pixel; 1 is a dense cloud pixel; 2 is
a cirrus cloud pixel (Sentinel-2 user handbook, 2015). In this study, we just need the
cloud-free pixels with a QA Band value equal to zero.

• Resampling:

The Sentinel-2 product has three spatial resolutions (10 m, 20 m and 60 m). In this re-
search, the band B2, B3, B4 and B8 are 10-m resolution, which were down-scaled to 20
m, same as B11 and B12. The Google Earth Engine provides the algorithms to resample
images with nearest neighbour.

Figure 2.3: Workflow of pre-processing of satellite images.

2.2.2 LiDAR

Light Detection and Ranging (LiDAR) is an airborne mapping technique, which uses a laser
to measure the distance between the aircraft and the ground. Up to 300,000 measurements per
second are made of the ground, allowing highly detailed terrain models to be generated at spatial
resolutions of between 25 cm and 2 m. LiDAR data can represent a very accurate terrain model
of the earth surface with ground cover features and detailed geographic information. LiDAR
is an option in remote sensing technology that optimises the precision of biophysical measure-
ments and extends spatial analysis into the third dimension (Popescu, 2007). LiDAR data of
Scotland are published by the UK Environment Agency through the Digimap online platform
(http://digimap.edina.ac.uk/lidar). The Environment Agency’s LiDAR data archive contains dig-
ital elevation data derived from surveys carried out by the Environment Agency’s specialist re-
mote sensing team. Data are available in Digital Surface Models (DSM) and Digital Terrain
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Models (DTM) with at 2 m, 1 m, 50 cm, and 25 cm resolutions across the UK.

The 2015 Scotland LiDAR data were used in this research and were received as Digital Terrain
Models (DTM) at 1 m resolution. To cover all five research fields, twelve 5×5 km images tiles
were collected (Figure 2.4) and the images were received in ascii data format.

Figure 2.4: LiDAR images: (a) Scotland 1 m LiDAR composites; (b) LiDAR tiles used in
this study.

2.2.3 Aerial photography

Aerial photography has significant advantages in detection of detailed topographical informa-
tion because of its minimum mapping unit size. Additionally, low-level photography, using
helicopters or unmanned aerial vehicles (UAVS) can provide even smaller minimum measure-
ment units (Hackney and Clayton, 2015) and therefore is commonly used in the application
of accurate field surveys and small field survey. Aerial photographs at 25 cm resolution were
obtained for this research from the Digimap online platform (http://digimap.edina.ac.uk/aerial).
Digimap provides free access to aerial photographs in JPG data format. This research used 68
aerial photographs acquired in 23 August 2015 (Figure 2.5).
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Figure 2.5: Aerial photography: (a) Cochno; (b) Dumgoyne.

2.3 Reference data

2.3.1 Terrain data

Environmental factors have significant influence on the life cycle of F. hepatica and, therefore
are considered as reliable predictors of the risk of fasciolosis. The environmental and geograph-
ical data are major sources to help understand the geographical distribution of F. hepatica and
the prevalence of fasciolosis (McCann et al., 2010b; Manyangadze et al., 2016). In this research,
ArcMap Desktop 10.3 was used to store, manage, analyse and visualise the datasets. ArcMap
Desktop is a powerful and professional GIS application used for all map- based tasks, includ-
ing cartography, map analysis, and editing. It offers different tools that can perform any GIS
task,from simple to advanced, including mapping, geographic analysis, data editing and compi-
lation, data management, visualisation, and geoprocessing.
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Topographical information such as elevation, slope and aspect have impact on F. hepatica be-
cause they affect weather and vegetation (McCann et al., 2010b; Bennema et al., 2011). Ele-
vation data is represented in the LiDAR DTM images while slope and aspect can be calculated
from the LiDAR DTM. The LiDAR DTM images were based on the British National Grid and
needed to be re-projected to the UTM/WGS84 in an initial step. The steps of processing LiDAR
DTM data are shown in Figure 2.6.

Figure 2.6: Workflow of pre-processing of LiDAR DTM Data.

ArcMap Desktop was used to extract the elevation data from the LiDAR DTM images. The
elevation was based on the WGS84. The elevation map of research fields is shown in Figure ??.
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Figure 2.7: Elevation maps of research areas: (a) Cochno; (b) Dumgoyne.
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The Slope tool in ArcMap was used to calculated slope of the research fields. The Slope tool
identifies the steepness at each cell. Slopes were measured in units of degrees, using the follow-
ing 2.1, where the [δ z/δx] means the rates of change of the surface in the horizontal and the
[δ z/δy] means the rates of change in the vertical directions.The number 57.29578 is a truncated
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version of the result from 180/pi.

slope_degrees = arctan
(√

[δ z/δx]2 +[δ z/δy]2)
)
∗57.29578 (2.1)

The lower the slope value, the flatter the terrain; the higher the slope value, the steeper the
terrain. The slope map of research fields is shown in Figure 2.8.

Figure 2.8: Slope maps of research areas: (a) Cochno;(b) Dumgoyne.

To calculate the aspect, the Aspect tool in ArcMap was used. The Aspect tool identifies the
direction in which the downhill slope faces. The value of each cell in the output raster indicates
the compass direction the surface faces at that location. It is measured clockwise in degrees
from 0 (due north) to 360 (again due north), coming full circle. Flat areas having no down-slope
direction are given a value of -1. The Figure 2.9 below shows the aspect of five research fields.
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Figure 2.9: Aspect maps of research areas: (a) Cochno; (b) Dumgoyne.

2.3.2 Soil texture

Soil texture and soil particles may influence the presence of liver fluke and its host. Poor quality
land with fine sand content is more suitable for the fluke’s intermediate hosts, G. truncatula, be-
cause soil with fine particles has poorer drainage than soil with coarser particles (McCann et al.,
2010b).The Soil-Parent Material (PM) Database was used in this research. The Soil-Parent Ma-
terial (PM) Database was published by the British Geological Survey and can be downloaded
from the Digimap online platform. The Soil-Parent Material (PM) Database is part of a series
of GIS maps designed to help environmental scientists and consultants assess the characteristics
of the ’near-surface’ weathered zone. A parent material is a soil-science name for a weathered
rock or deposit from, and within which a soil has formed. In the UK, parent materials provide
the foundations and building blocks of the soil, influencing their texture, structure, drainage and
chemistry (Avery et al., 1980).

The data were obtained in Shapefile format in the British National Grid coordinate system. Soil-
Parent Material data using in the study were acquired from the Digimap (https://digimap.edina.ac.uk).
The soil data are in the 1:50,000 scale and contain over 30 rock and sediment characteristics built
upon the standard DiGMapGB-50 geological dataset, which offers 44 attributes to describe soil
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properties. As soil texture and soil particles are key parameters of the life cycle of F. hepatica,
this research selected four attributes which represent soil texture and soil particles.

• SOIL_TEXT and EST_TEXT
Soil_text and Est_text text provides a general classification of soil texture from measured
samples of soils overlying this parent material. Soil texture classes are based on a UK
classification of soil texture designed by The National Soil Research Institute (Hodgson,
1974).

• Grain-size Name and Particle Diameter
A geological description and qualitative classification of the grain sizes expected for this
parent material based upon the information in the minimum, maximum and dominant
grain size fields.

2.4 Remote sensing indices

In remote sensing, radiometric or spectral ratios are enhancement techniques where raster pixels
from one spectral band are divided by corresponding values in another band. Both above indi-
cators have the same form of function; the choice of frequency bands used makes them suitable
for specific purposes.

2.4.1 Normalized difference water index

The Normalized Difference Water Index (NDWI) is one of the most widely-used methods to
indicate water or moisture conditions. Surface water and the water content of land features can
be reflected on NDWI values. NDWI is shown by a formulation which uses the combination
of different visible light wavelengths. In 1996, Gao proposed a formulation using near-infrared
(860 nm) and short-wave infrared (1240 nm) wavelengths to monitor changes in water content
of leaves (Gao, 1996). The Short Wavelength Infrared (SWIR) reflects changes in vegetation
canopy water content and sponge structure. The near-infrared is affected by the internal structure
of the leaves and the dry matter content of the leaves but is not affected by the moisture content.
The combination of NIR and SWIR eliminates the changes caused by leaf internal structure and
leaf dry matter content and improves the accuracy of restoration of vegetation moisture content
(Ceccato et al., 2001). The NDWI is calculated as follows:

NDWI =
(nir− swir)
(nir+ swir)

(2.2)
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In this study, nir stands for the spectral reflectances measurements acquired in B8 (824 nm) and
swir stand for the spectral reflectance measurements acquired in B11 (1610 nm). These spec-
tral reflectances are themselves ratios of the reflected incoming radiation in each spectral band
individually, hence they take on values between 0.0 and 1.0. By design, the NDWI itself thus
varies between -1.0 and +1.0. NDWI values between -1.0 and 0 represents bright surface with
no vegetation or water content, while values above 0 to +1.0 represents water content.

2.4.2 Normalized difference vegetation index

Calculation of vegetation indices is one of the most common transformations applied to image
data. It serves to highlight subtle variations in the spectral responses of various surface covers.
A vegetation index can be used to estimate continuous variables like, e.g. LAI and biomass.
Normalized difference vegetation index (NDVI) is one of these vegetation indexes. NDVI was
one of the most successful of many attempts to simply and quickly identify vegetated areas and
their condition, and it remains the most well-known and used index to detect live green plant
canopies in multispectral remote sensing data (Pettorelli, 2013). The NDVI is calculated from
these individual measurements as follows:

NDV I =
(nir− red)
(nir+ red)

(2.3)

In this study, nir stands for the spectral reflectances measurements acquired in B8 (824 nm) and
red stands for the spectral reflectances measurements acquired in B4 (665 nm). Visual or digital
interpretation of the output image/raster created is similar to NDWI; the NDVI itself thus varies
between -1.0 and +1.0. NDVI values between -1.0 and 0 represents earth surface with poor
vegetation or bare soil, while values above 0 to +1.0 represents sufficient vegetation.

2.5 Preliminary risk map

Before field survey and sampling, a preliminary risk map of F. hepatica was generated based on
the NDWI, NDVI, slope and soil texture. The risk map showed a direction to the potential high
level of F. hepatica contamination of pastures and therefore was used as a reference when select-
ing the sampling locations. In the following field survey and laboratory analysis, the accuracy of
the risk map was examined. The NDWI and NDVI layer were sourced from Sentinel-2 satellite
images and the slope and soil were obtained from the Digimap online platform, described in the
previous sections.

The NDVI, NDWI and Slope values were classified by five classes. For the NDVI and NDWI,
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the higher values corresponds to higher risks (Bennema et al., 2009) and for the slope, the flat
terrain may have the higher risks (Tum et al., 2004). As for the soil layer, the risk class was
identified by the soil texture, basically soil with fine particles more poor drainage than soil with
coarser particles and therefore a higher risk level. This study assumes that each classification was
equally distributed. The classification was carried out on ArcMap 10.3 using the tool Reclassify.
The reclassification method was equal interval. The risk layers of NDVI, NDWI, slope and soil
texture were added up to create a risk map for each study area. All risk maps are presented in
Chapter 3.

2.6 Field survey and laboratory analysis

2.6.1 Field survey method

2.6.1.1 Selection of sampling points

In this research, we selected 12 sampling points for each of five fields, based on the preliminary
risk map and the actual field situation. Sampling points were selected randomly using ArcMap
Desktop tool ’Create Random Points’. All 60 samples were classified by research fields and
numbered according to the rule ’ research fields + number’. The latitude and longitude of each
of the points were recorded in a hand-held GPS device under the WGS84. The coordinates of
sampling points are listed in Appendix B.

2.6.1.2 Materials

Main materials used in the field survey are listed below:

- GPS navigation device
Garmin GPX60 with the navigation accuracy between 5 to 10 meters ( https://support.garmin.com/en-
GB), recording latitudes and longitudes in WGS84 cordinate system.

- Soil Sensor: Stevens HydraProbe
A soil sensor HydraProbe was used in this study to measure soil moisture and soil temper-
ature. HydraProbe provides the measurement of Soil Moisture in units of water fraction
by volume (WFV), with the ±0.01 WFV accuracy for most soils and ±0.03 max for
fine textured soils. The soil temperature measurement is within ±0.3◦C accuracy and the
unit of soil temperature is ◦C. (https://www.stevenswater.com/products/
hydraprobe/). The accuracy may vary with some soil textures.

- Other materials
A 50×50 cm quadrat, wood stakes and shears
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2.6.1.3 Sampling approach

The metacercarial cysts are formed on grass or vegetation and , therefore, the main activity of
the field survey was to cut and remove grass at specified locations and quantify the metacercariae
from standardised areas of grass and from standardised weights of grass. We also measured soil
moisture and soil temperature at each sampling location. The survey at each sampling point used
quadrat sampling methods. In the Dumgoyne sites, the survey was conducted on 5 September
2017: twenty-four quadrat samples were taken in total. The survey in the second study area
at Cochno was conducted on 6 September 2017, with a total of thirty-six twenty-four quadrats
recorded.

First, following the GPS device, the location of each pre-selected sampling location was identi-
fied and the quadrat was placed. Within each quadrat, grass height was randomly measured five
times using a ruler; and three points were chosen to measure soil moisture and soil temperature.
The measurements of grass height were recorded by hand and the measurements of soil were
recorded in the soil sensor. The grass was cut down to the ground within each quadrat. Mea-
surements of soil moisture (%) and soil temperature (◦C) were made in each quadrat using the
soil sensor. Latitude and longitude co-ordinates were input to the ArcMap desktop to show the
position of each sampling point on the study area map. The average value of the three measure-
ments at each sampling point was taken as the measurement result at that point.

Figure 2.10: Workflow of field survey and quadrat sampling.
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Figure 2.11: Field survey

2.6.2 Laboratory analysis

The metacercarial cysts of F. hepatica within pasture grass of sampling locations were counted in
the laboratory. The procedure of laboratory analysis followed the Manual of Veterinary Parasito-
logical Laboratory Techniques reference book, established by the UK Ministry of Agriculture,
Fisheries and Food (MAFF) in 1986 (Great Britain. Ministry of Agriculture and Food, 1986).

2.6.2.1 Materials

All materials used in the lab work were listed as followed, including the lab equipment and the
chemical solution used to store samples.

- Laboratory balance

- Washing Machine

- 10% Formalin solution

- 38 µm Laboratory Test Sieves (ENDECOTTS)

- Stereo-Microscopes: eyepiece ×10 and objective ×10, ×20 and ×50

- 1 ml air-displacement pipette
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2.6.2.2 Working Procedures

There are 60 samples in this research. For each sample, the following working procedure was
followed. The work flow was shown in Figure 2.12.

(i) First, grass weight was measured weight of each grass sample was calculated as the weight
of the sample minus the weight of empty plastic bag (22 g in this study).

(ii) The metacercarial cysts are normally found on and vegetation and are very hydrophilic.
Washing grass samples moderately can make metacercarial cysts into water. Grass was
first washed in a washing machine with about two litres warm water for nine minutes.
Metacercarial cysts are about 0.2 mm in diameter and grass was first wrung out into the
washing and then remove grass out of the washing machine and placed grass back in the
transport bag. Keep the water and pull into a clean bucket.

(iii) The liquid in the washing machine was then removed from the washing machine and
placed into a bucket. The washing machine was then rinsed with water 2 or 3 times and
the wash retained in the bucket. Then the liquid was poured through a 38 µm sieve, and
the filtrate in the sieve was retained. The sieve was then washed and the process repeated
a further two or three times. until the filtrate was less than 75 ml. The filtrate was placed
into a new plastic container and 25 ml formalin was added. Rinse the washing machine
and buckets with clear water for the next sample.

(iv) Samples were then shaken 10 times and 1 ml was pipetted into a petri dish, to which
a small amount of water was added to cover the entire dish before examination under
the microscope using ×10 objective for screening with ×20 or ×50 objectives used for
confirmation. Seven replicate samples were examined from each sample of grass. The
metacercarial cysts have some noticeable characteristic features: firstly, shape is a perfect
circle of about 0.2 mm diameter, which is quite big. Secondly, the metacercarial cyst of F.

hepatica has an obvious wall, which creates a noticeable dark edge under the microscope
and it is very clear within the metacercariae sometimes with small bubbles.

29



30

Figure 2.12: Workflow of laboratory analysis.

2.6.3 Calculation of metacercarial cyst count

We took 7 replicates of the metacercarial cyst counts for each sample, which means the number
of metacercarial cysts in 100 ml solution could be calculated as the following equation :

Metacercariae = (n/7)∗100 (2.4)

In which n is the number of metacercarial cysts counted in each replicate. The number of
metacercarial cysts per gram of forage (Yield) was calculated by using the equation:

Yield = Metacercaria/GrassWeight (2.5)

Yield reflects the contamination of metacercarial cysts in every gram of forage grass. To use in
the logistic models, the Yield values were transformed to Yield2 using the equation:

Yield2 = Yield ∗0.1 (2.6)

The Yield2 values means the number of metacercariae per 10 g. It follows the same distribution
as the Yield.
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2.7 Statistical analysis methods

This section describes the statistical methods used in assessing the relationships among the vari-
ables as well as the variation among fields. All methods were carried out using the software
R 3.5.0 (R Core Team 2016). The confidence interval used in this study is 95%. According
to the descriptions in the previous sections of this chapter, there were 58 samples and for each
sample, 11 variables were used in this study. All variables were numeric and recorded to the
third decimal. The entire data are given in Appendix C. The 11 variables were divided into five
datasets:

- Dataset 1: F. hepatica density in pasture
Dataset 1 contained two variables: (1) Metacercarial cysts: the number of metacercarial
cysts; (2) Yield: the number of metacercariae per gram

- Dataset 2: Remote sensing indices
Dataset 2 contained two variables: (1) NDWI: normalised difference water index; (2)
NDVI: normalised difference vegetation index. All values obtained from the NDWI and
NDVI maps of each fields on 31 August 2017 based on the coordinates of each sampling
points.

- Dataset 3: Topographical factors
Dataset 3 contained three variables: (1) Elevation: the altitude of each sampling point; (2)
Slope: the slope of each sampling point; (3) Aspect: the aspect of each sampling point.
All values were sourced from the DEM images.

- Dataset 4: Soil properties
Dataset 4 contained two variables: (1) Soil Moisture: soil moisture of each sampling
point; (2) Soil Temperature: soil temperature of each sampling point. Soil moisture and
temperature were measured from the field survey using a Stevens HydraProbe soil sensor.

- Dataset 5: Pasture
Dataset 5 contained two variables: (1) Grass Height: the height of sampling grass; (2)
Grass Weight: the wet weight of sampling grass, which were measured results in field
survey and laboratory analysis.

2.7.1 Preliminary analysis

The results of the preliminary analysis are presented in Chapter 4 and make use of summary
statistics and graphical tools such as histograms and kernel density curve (Gaussian), which
were produced in the statistical software package R 3.5.0 (R Core Team, 2018). The process was
particularly crucial for the exploratory statistical assessments. Before further statistical tests,
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some preliminary tests were required to make sure that the relevant test assumptions are met.
Shapiro-Wilk normality test (Shapiro and Wilk, 1965) were used in this study, and the R 3.5.0
function shapiro.test() was applied to assess the normality of data. If the p-value given by the
Shapiro-Wilk test was greater than 0.05, we conclude that the data follow a normal distribution.
If the data do not follow a normal distribution, the data are required to be transformed into a
normal distribution to reduce the skewness in the data. The Box-Cox transformation was carried
out for highly skewed data. The Box-Cox procedure is available with the boxcox() function
in the MASS package in R 3.5.0. After transformation, a Shapiro-Wilk test was applied once
again. If the new data are still not a normal distribution, non-parametric tests will be used. The
results of preliminary analysis for every variable are presented in Chapter 4.1 and the results of
Shapiro-Wilk normality test for each variable are presented in Appendix D.

2.7.2 Kruskal-Wallis one-way analysis of variance

Some data did not follow the normal distribution and were unable to be transformed, such as
Metacercariae and Yield in this study. Non-parametric methods are suitable data which is not
normally distributed. In this study, the analysis of variance for these data was carried out by the
Kruskal-Wallis test, which was widely used in previous research in parasitology and epidemiol-
ogy. The Kruskal-Wallis test is a non-parametric method for testing whether samples originate
from the same distribution (Kruskal and Wallis, 1952; Gregory and Foreman, 2009). It is used
for comparing two or more independent samples of equal or different sample sizes. Since it is
a non-parametric method, the Kruskal-Wallis test does not assume a normal distribution of the
residuals. The null hypothesis is that the medians of all groups are equal, and the alternative
hypothesis is that at least one population median of one group is different from the population
median of at least one other group. The test statistic is given by:

H = (N −1)
∑

g
i=1 ni(r̄i·− r̄)2

∑
g
i=1 ∑

ni
j=1(ri j − r̄)2 (2.7)

where: ni is the number of observations in group i; ri j is the rank of observation j from group
i; ri j is the rank of observation j from group i; N is the total number of observations across all

groups; r̄i· =
∑

ni
j=1 ri j

ni
is the average rank of all observations in group i; r̄ = 1

2(N+1) is the average
of all the ri j.

The R 3.5.0 function kruskal.test() was applied to compare the variance among groups. The
function gives Kruskal-Wallis chi-squared value, Degree of freedom and p-value. At the 95%
confidence interval, the critical value of the chi-square statistic with the d f = 4 degrees of
freedom is 9.487729. If the p-value is greater than 0.05 and the chi-squared value is less than
9.487729, the null hypothesis can be accepted, and each group has a statistically equal mean.
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The analysis of the Kruskal-Wallis tests results is in Chapter 4.1.

2.7.3 One-way analysis of variance (ANOVA)

For normally distributed data, one-way analysis of variance (ANOVA) was carried out to analyse
the difference of variables among fields. The null hypothesis of the ANOVA test is that the
fields’ means are all equal, while the alternative hypothesis says that at least one pair of the
fields’ means are all equal, meaning that at least one pair of the fields’ means is significantly
different. The results of a one-way ANOVA can be considered reliable as long as the following
assumptions are met:

- Each set of replicates represents a random sample from different populations.

- Each parent population is normally distributed.

- Each parent population has the same variance.

This required testing the homogeneity of variance before the ANOVA test. The Bartlett’s test
(Bartlett, 1937) is used to test if samples are from each field with equal variances. If Bartlett’s
test shows that the data have the same variances (p-value > 0.05), one-way analysis of variance
will be conducted. The Bartlett’s test is available with the bartlett.test() function and the One-
way ANOVA is available with the aov() function in R 3.5.0. The summary of ANOVA results
in R function gives F-value, P-value, the degree of freedom and residuals. If the p-value was
less than 0.05, we rejected the null hypothesis and can conclude that the fields’ means are not
all equal and there is at least one pair of fields having a significant difference. The results of the
ANOVA are presented in Chapter 4.1.

2.7.4 Pearson’s Correlation Coefficients

As part of the exploratory analysis of the relationships between factors in this project, it was
of interest to assess the strength of association between the different environmental situations
as well as between topographical factors and the number of metacercarial cysts of F. hepatica.
This was done using Pearson’s correlation coefficients. The Pearson’s correlation evaluates the
linear relationship between two continuous variables. A relationship is linear when a change
in one variable is associated with a proportional change in the other variable. The correlation
coefficient is given by the formula:

r =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2

(2.8)

The closer r is to +1 or -1, the more closely the two variables are related. If r is close to 0, it
means there is no relationship between the variables. If r is positive, it means that as one variable
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gets larger the other gets larger. If r is negative it means that as one gets larger, the other gets
smaller. The Pearson’s Correlation Coefficient was calculated in R using cor() function and
choose "method = pearson". In this study, we considered thresholds used to interpret r values
lists as following:

• 1 < r < 0.5: A strong positive linear relationship

• 0.5 < r < 0.3: A moderate positive linear relationship

• 0.3 < r < 0.1: A low positive linear relationship

• 0.1 < r < -0.1: No linear relationship

• -0.1 < r < -0.3: A low negative linear relationship

• -0.3 < r < -0.5: A moderate negative linear relationship

• -0.5 < r < -1: A strong negative linear relationship

2.7.5 Modelling methods to assess relationships between F. hepatica and
environmental factors

This section discussed the methods used in defining and selection of statistical tests and models
along with the process of checking necessary assumptions to assess the relationships between
the F. hepatica and the environmental factors. All modelling methods and plots of assumption
checking were carried out in R.

2.7.5.1 Negative binomial regression model

Regression modeling was used to formally analyse the relationships between F. hepatica level
and each of the environmental variables in this study. Negative binomial regression models have
been widely used in research on the relationship between environment and intensity of F. hep-

atica (Charlier et al., 2014b). For example, Charlier used a negative binomial regression with
robust standard deviation to model the small water types and climate data to the G. truncatula

and F. hepatica on four Belgian farms. McCann (McCann et al., 2010b) conducted the univari-
ate models to select suitable variables used in the multiple negative binomial models. A logistic
regression model is also widely used in research, especially for modeling environmental factors
on F. hepatica level (Bennema et al., 2009; Kuerpick et al., 2013; Novobilský et al., 2014).

In this study, the univariate negative binomial regression model for each environmental factor
was carried out first and a negative binomial regression model was used to fit all environmental
factors to the F. hepatica level. Multivariate negative binomial regression models belong to the
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family of generalised linear models, except that the response (Y) variable is an observed count
that follows the negative binomial distribution (McCullagh and Nelder, 1989).The negative bi-
nomial regression model is of the following structure:

E(Yi) = µi = η−1(β0 +βiXi)(2.9)

η = ln
µi

1−µi
(2.10)

where E(Yi) is the expected value of Y ; βiXi is a linear combination of unknown parameters Xi;
η is the logit link function. In this study, the dependent variable follows the negative binomial
distribution, so the logit link function was selected to fit the regression models (Charlier et al.,
2014a). In all models, independent variables were used as the nested factors within fields. The
Cochno High was used as the reference group and the intercept (β0) of a model is the mean of
the response variable (Y ) at the mean of the independent variable (Xi)for the reference group.

The R function glm() was used to fit the negative binomial generalised linear regression model.
The dependent and independent variables used in fitting models was listed as follow:

• Response variable: Yield2 (Metacercariae per 0.1 gram)

• Independent variables:
Dataset 2: Remote sensing indices:
Normalized difference water index (NDWI) and Normalized difference vegetation index
(NDVI)
Dataset 3: Topographical factors:
Elevation, Slope, and Aspect
Dataset 4: Soil properties:
Soil Moisture and Soil Temperature
Dataset 5: Pasture grass:
Grass Height and Grass Weight

2.7.5.2 McFadden’s Pseudo R2

When fitting the logistic regression model, R2-type measures often appear very small even when
other measures suggest that the model fits the data well. However, to evaluate the goodness-of-
fit of logistic models, several pseudo R2s have been developed. These are ’pseudo’ R2s because
they look like R2 in the sense that they are on a similar scale, ranging from 0 to 1 with higher
values indicating better model fit. This study used the McFadden’s Pseudo R2. McFadden’s
Pseudo R2 measure (McFadden, 1973) is defined as
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R2
McFadden = 1− (logLc)

log(Lnull)
(2.11)

where Lc denotes the (maximised) likelihood value from the current fitted model, and Lnull

denotes the corresponding value but for the null model, the model with only an intercept and
no covariates. If comparing two models on the same data, McFadden’s would be higher for the
model with the greater likelihood. The PseudoR2() function in R 3.5.0 package BaylorEdPsych
are used to calculate the McFadden’s Pseudo R2.

2.7.5.3 Akaike information criterion (AIC)

The Akaike information criterion (AIC) (Akaike, 1974, 1987) is an estimator of the relative
quality of statistical models for a given set of data. Given a collection of models for the data, AIC
estimates the quality of each model, relative to each of the other models. Thus, AIC provides
a means for model selection. The AIC was widely used to evaluate the goodness of fit of a
regression model, the preferred model usually having the minimum AIC value. The definition
of AIC is

AIC = 2k−2ln
(
L̂
)

(2.12)

Where k is the number of estimated parameters in the model and L is the maximum value of the
likelihood function for the model.

2.7.5.4 Chi-Squared goodness of fit test

Chi-Squared goodness of fit test (Pearson, 1992) is a statistical test applied to sets of categorical
data to evaluate how likely it is that any observed difference between the sets arose by chance.
It is suitable for unpaired data from large samples. It is the most widely used of many chi-
squared tests. Research shows that chi-squared test fits negative binomial distribution data better
(Charlier et al., 2014b). For a chi-square goodness of fit test, the hypotheses take the following
form:

- H0: there is no significant difference between the observed and the expected value

- Ha: there is a significant difference between the observed and the expected value

A chi-square random variable (χ2) defined by the following equation

χ
2 = ∑[(Oi −Ei)

2/Ei] (2.13)

where Oi is the observed value and Ei is the expected value. In this study, the anova() function in
R 3.5.0 package MASS was used to measure the goodness of each independent variables to the
model and select test=’Chisq’. The result of chi-squared goodness of fit test for each variable in
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the model was given, including the chi-squared valued, degrees of freedom, deviance residual,
degree of freedom for residuals and p-value. At the 95% confidence interval, if the p-value is
less than 0.05, the null hypothesis will be rejected.
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Chapter 3

Preliminary Risk Maps

3.1 Risk classification

In this study, normalized difference water index, normalized difference vegetation index, slope,
and soil parameters were used to evaluate the risk of occurrence F. hepatica. For the soil layer,
the criteria were soil texture and soil particle size. These soil properties can determine the
drainage ability of an area. Soil with fine particles often provides poorer drainage than soil with
coarser particles (McCann et al., 2010a). Hence, areas with smaller particle sizes were identified
as high-risk areas. Based on this, the soil texture classified in seven class from high risk (7) to
low risk (1), showing in Table 3.2. In the Table 3.2, the soil texture with ND means no data.
NDVI and NDWI indicate the vegetation and the land surface moisture. The higher NDVI values
equate to higher green plant coverage. High NDWI values indicate that the surface moisture of
the land is high (Bennema et al. (2009); Tum et al. (2004)). Above all, the high NDVI and NDWI
areas were identified as the high-risk areas. The slope also influences the land surface drainage
system. The flat areas represent poor at drainage, especially in a wet climate like Scotland.
This means areas with less slope were classified as potential risk areas of F. hepatica. Hence,
the NDWI, NDVI and slope were classified in the risk class from high (5) to low (1) in Table 3.2.

Figure 3.1 presents the classification maps of NDVI, NDWI, Slope and Soil texture at Cochno.
Figure 3.2 shows the classification maps at Dumgoyne. For each field, add each risk map to-
gether and calculate a total risk level. Then reclassify the total risk level from high to low to
generate a preliminary risk map for each field. Figure 3.3 shows the preliminary risk maps of
both Cochno and Dumgoyne.
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Table 3.1: Risk class for the data layers
(Risk decreasing from 5 to 1)

Risk Class NDVI NDWI Slope (degree)

5 0.717-0.858 0.44-0.553 0-5
4 0.576-0.717 0.328-0.44 5-10
3 0.435-0.576 0.216-0.328 10-15
2 0.294-0.435 0.104-0.216 15-30
1 <0.294 <0.104 >30

Table 3.2: Soil texture of study areas and the risk class
(Risk decreasing from 7 to 1)

Soil_TEXT EST_TEXT Grain-size Name Particle Diameter(mm) Risk Class

S_NL Sand>Loam Fine <0.25 7

S_SL Sand Fine <0.25 6

L_C_S Loam>Clay>Sand Argillic-Arenaceous <2.0 5

NL Loam>Clay>Sand Medium 0.25>2 4

C_S Clay>Sand Mixed (Argillic-Arenaceous) ALL 3

S_L Sand>Loam Mixed (Argillic-Arenaceous) ALL 2

ALL All Peat Not applicable 1

ND – – – No Data
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Figure 3.1: Risk Classification Maps of Cochno: (a) NDWI; (b) NDVI; (c) Slope; (d) Soil.
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Figure 3.2: Risk Classification Maps of Dumgoyne: (a) NDWI; (b) NDVI; (c) Slope; (d)
Soil.
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Figure 3.3: Risk Maps: (a) Cochno; (b) Dumyoyne.

3.2 Sampling locations

The preliminary risk map was used as one of the references on the selection of sampling lo-
cations. To verify the accuracy of the risk map, the sampling locations were selected not only
from high-risk and mid-risk areas but also on low-risk areas. the counts of metacercarial cysts
from each sampling point were obtained in the laboratory analysis. Figure 3.4 (a) to (c) shows
the preliminary risk map and the metacercarial cyst counts for the sampling points in Cochno.
It was shown that some areas in Cochno which were assigned a preliminary high risk status
did not have many metacercaria and some areas predicted to be low risk yielded a very high
number of metacercariae. For example, in Cochno Low, L01 was located in the mid-risk area;
how- ever, the number of the metacercariae found at the L01 was 71.43. This is a relatively high
level of metacercariae. The same situation occurred in L06 as well. In addition, some sampling
locations in the high-risk areas returned low metacercarial cyst counts, such as L02 and L08.
Another two Cochno fields were the same. H01 in Cochno High and M05 in Cochno Mid were
misclassified into the low-risk areas. Figure 3.4 (d) and (e) shows the relationship between the
preliminary risk map and the metacercarial cyst counts in Dumgoyne. The risk map identified
that most of the areas in Dumgoyne were mid or low risk. For example, in Dumgoyne North,
N11 was located in a mid-risk area, while the number of metacercarial cysts was extremely high

43



44

(around 386). N07 was the opposite situation, which was classified into very high-risk areas but
decidedly fewer metacercarial cysts were found.

Figure 3.4: Risk maps and metacercarial cyst counts: (a) Cochno Low; (b) Cochno Mid;
(c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South.
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Chapter 4

Exploratory Analysis of Environmental
Factors and Density of F. hepatica in
pasture

4.1 Initial exploration of F. hepatica and environmental fac-
tors among fields

This section presents the results of the statistical analysis of all variables and an analysis of the
variation of each variable among the five study areas. There are five categories including 11
variables and 58 samples within the five study areas which are used in the analysis.

4.1.1 F. hepatica density in pasture

4.1.1.1 Metacercarial cyst counts

Metacercarial cyst counts per 100 ml solution can represent the F. hepatica density within each
study areas. Figure 4.1 shows the metacercarial cyst counts in each of sampling locations around
the fields. The highest metacercarial cyst counts was 386 in N11, Dumgoyne North, and the
lowest metacercarial cysts was zero. The mean count of metacercarial cyst counts in Cochno
Mid were higher than other areas.
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Figure 4.1: The metacercarial cyst count maps for sampling points within the study fields:
(a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.
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The histogram of metacercarial cysts (Figure 4.2) for all 59 samples shows a negative binomial
distribution, as expected. The number of metacercarial cysts between 0 to 100 had the highest
frequency and lower frequency was between 300 to 400 (Figure 4.2 (f)). Although the metacer-
carial cysts followed a similar distribution pattern within fields, except Cochno Low (Figure 4.2
(a)), the range of metacercarial cysts varied across fields.

Each field’s metacercarial cyst profile can be seen in the kernel density curve in Figure 4.3. The
red line represents the mean count of metacercariae of all samples and the blue line is the median
of all samples. A Kruskal-Wallis rank sum test was carried out to determine the effect of Field
on metacercarial cysts count. The value of the test statistic was 7.8137. The p-value (0.099) was
greater than 0.05, under 95% confidence interval; also, the value of the test statistic was less than
the chi-square-tabulation (9.49). The conclusion is, therefore, that the null hypothesis H0 was
accepted: the means of the 5 groups were statistically equal. Hence, there was no significant
difference among the five fields in the number of metacercarial cysts.

Figure 4.2: Histograms of metacercarial cyst for each field and all samples: (a) Cochno
Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f)
All samples.
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Figure 4.3: Density curve of metacercarial cysts for each field. Red vertical line is the
overall average count. Blue vertical line is the median.

4.1.1.2 Yield (Metacercariae/g)

Yield is used to mean the metacercariae per gram pasture in our study, which reflects the contam-
ination of forage grass by metacercariae. The Yield map of each field is presented in Figure 4.4.
Most Yield values were under 1. The highest yield value was 1.31, the M10 in Cochno Mid, also
the only yield value greater than 1, while the highest metacercarial cyst was in Dumgoyne North.

As shown in Figure 4.5 (f), the yield followed the negative binomial distribution and Figure 4.5
(a) to (e) displays the histogram of each field showing the same distribution pattern with total
samples but also representing the variation among fields. The variation of yield values among
the fields is presented in the kernel density curve (Figure 4.6). The red line is the mean yield
value of all samples, and the blue line is the median of all samples. It is shown that the density
curve of yield for each field is highly skewed. There were differences in the probability of data
distribution among fields. For example, the yield in Dumgoyne North had a very high density , in
the range of 0 to 0.05 , and another high density occurred in the range of 0.4 to 0.45. A Kruskal-
Wallis rank sum test was carried out to determine the variation of yield (metacercariae/g) among
fields. The value of the test statistic was 11.286. The p-value (0.024) was less than 0.05; also, the
value of the test statistic was greater than the chi-square-tabulation. Therefore, the means of the
five groups were not statistically equal, and yield values among the five fields were significantly
different.
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Figure 4.4: The yield for sampling points within the study fields: (a) Cochno Low; (b)
Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South.
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Figure 4.5: Histograms of yield for each field and for all samples: (a) Cochno Low; (b)
Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All samples.

Figure 4.6: Density curve of yield (metacercariae/g) for each field.
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4.1.2 Remote sensing indices

4.1.2.1 Normalized difference water index

Normalized difference water index (NDWI) indicates land surface moisture. The NDWI values
for 31August 2017 were used in the analysis and displayed in Figure 4.7 with the NDWI value
for each sampling point labelled. The highest NDWI of all samples was 0.46 in Cochno High
(H11), and the lowest was 0.201 in the Cochno Low (L06). According to the Shapiro-Wilk
normality test result, NDWI values did not follow the normal distribution, and the histogram
of NDWI in Figure 4.8 supported some of the features of the data distributions. There were
variations among the distribution pattern of fields in Figure 4.8. All NDWI values were positive,
and the most of the NDWI values were in the range from 0.35 to 0.45. Figure 4.9 shows that the
density curves of the NDWI in each field were highly skewed to the right, except for the Cochno
Mid field. Consequently, a Box-cox Transformation was carried out to transform NDWI and re-
duce the skewness of data. From the Figure 4.6, the Dumgoyne North had the narrowest NDWI
range, and Cochno Low had a similar curve to Cochno High. The red line is the mean of all
samples, and the blue line is the median of all samples. The Kruskal-Wallis test was conducted
to determine the difference among fields. The p-value given by test (0.039) was lower than 0.05,
and we can conclude that the NDWI differed significantly within the fields.
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Figure 4.7: The NDWI maps for study fields and the NDWI of each sampling point: (a)
Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.
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Figure 4.8: Histograms of NDWI for each field and all samples: (a) Cochno Low; (b)
Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All samples.

Figure 4.9: Density curve of NDWI for each field.
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4.1.2.2 Normalized difference vegetation index

The Normalized difference vegetation index (NDVI) reflects the growth and abundance of green
vegetation. In this study, the NDVI values were acquired from the Sentinel-2 satellite image of
31 August 2017. There were 60 NDVI samples in total,12 for each field. The NDVI maps and
NDVI values of each sampling point were represented in Figure 4.10. In contrast to the NDWI
values, the maximum of NDVI values was 0.842, the L09 in the Cochno Low, and the minimum
was 0.201, the H06 in the Cochno Low.

The NDVI histograms are presented in Figure 4.11. There was no apparent pattern in the dis-
tribution of NDVI among fields. Both the histograms and the kernel density curves illustrated
that the NDVI values of all samples did not follow a normal distribution, and the Shapiro-Wilk
test results proved that (p<0.001). The Box-cox transformation was carried out with the NDVI
data; but the transformed NDVI were still not normally distributed. Figure 4.12 was the kernel
density curve of NDVI, and from the figure, there was the apparent right skewness for NDVI
values, except Dumgoyne North. The red line is the mean value of all samples, and the blue line
is the median of all samples.

As the NDVI did not follow the normal distribution, the Kruskal-Wallis test was applied to
analyse the variation among fields. The null hypothesis was that the NDVI of each field is an
identical population. The p-value given by Kruskal-Wallis test turned out nearly zero (3.71e-09).
Hence, the null hypothesis was rejected. At the 0.05 significance level, it was concluded that the
NDVI values of each field were different populations.
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Figure 4.10: The NDVI maps for the study fields and the NDWI of each sampling point:
(a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.

63



64

64



65

65



66

Figure 4.11: Histograms of NDVI for each field and for all samples: (a) Cochno Low; (b)
Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All samples.

Figure 4.12: Density curve of NDVI for each field.
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4.1.3 Topographical factors

4.1.3.1 Elevation

The elevation, which is in WGS84 above sea level, was a consideration when selecting study
areas. For this reason, the elevation of sampling locations was significantly different among
fields. Cochno has a higher average elevation than Dumgoyne. There was just a slight altitude
difference between Dumgoyne fields, whereas the difference in altitude between Cochno Mid
and Cochno High is nearly 120 m. Figure 4.13 is the elevation map of each field.

Figure 4.14 displays the histograms for the elevation of each field. The Shapiro-Wilk normality
test showed that there was a non-normal distribution of the elevation (p<0.001). The kernel
density curves in Figure 4.15 illustrated the variation of elevation among fields. There were
clear boundaries in-between the density curves of the Cochno fields, which corresponds to the
altitude differences among fields. However, the elevation of each field showed a very high
density within a limited altitude range, which means there was no significant difference among
sampling locations within each field. From the kernel density curve and histogram, the elevation
data showed the variation among fields. The Kruskal-Wallis test was carried out to examine
whether this variation was statistically or not. The result was given by the R function, and
the p-value was 5.255E-11. Hence, we can conclude the difference of elevation by fields was
significant.
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Figure 4.13: The elevation maps for the study fields and the altitude of each sampling
point: (a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e)
Dumgoyne South.
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Figure 4.14: Histograms of elevation for each field and all samples: (a) Cochno Low; (b)
Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All samples.

Figure 4.15: Density curve of elevation for each field.
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4.1.3.2 Slope

The slope values of sampling points were obtained from the slope map, calculated from the
DEM images. Figure 4.16 displays the slope maps, and the slope value of each sampling point
is also labelled. From the maps, we can see that Cochno Low was flatter than other fields and the
terrain of Cochno High was quite undulating. The H01 in Cochno High had the steepest slope
(10.4 degrees), and 0.6 degrees was the lowest slope (S04 in Dumgoyne South).

The histograms (Figure 4.17) illustrated that the slope was not normally distributed. The red
line in Figure 4.18 4.18 is the mean of the slope, and the blue is the median of the slope. The
mean of samples was larger than the median, which suggested that the data was highly skewness
to the right. The result of the Shapiro-Wilk normality test demonstrated the data did not follow
the normal distribution. After the Box-Cox transformation, the transformed Slope converted
to the normal distribution. The Homogeneity of variance was checked by Bartlett’s test. The
variance of each field was statistically equal (p-value is 0.8215 in Bartlett’s test). The One-way
analysis of variance was applied to check the variation of the slope by field, and the p-value of
F-test was 0.000000119. At the 95% Confidence interval level, we rejected the null hypothesis
and admitted that at least one field was significantly different with other fields. Moreover, the
further analysis showed that the slope of Dumgoyne South was different from other fields.
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Figure 4.16: The slope maps for the study fields and the slope of each sampling point:
(a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.
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Figure 4.17: Histograms of slope for each field and all sample: (a) Cochno Low; (b) Cochno
Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All samples.

Figure 4.18: Density curve of slope for each field.
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4.1.3.3 Aspect

Figure 4.20 displays the aspect maps for each sampling point and Figure 4.19 displays the his-
togram for aspect in each field. Southeast and Southwest orientations occur most frequently in
the study fields, and none of the sampling points face north, south or west.

Figure 4.19: Histogram of aspect for each field.
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Figure 4.20: The aspect maps for the study fields and the aspect of each sampling point:
(a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.
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4.1.4 Soil properties

4.1.4.1 Soil Moisture

The geographical distribution of soil moisture values in each field is represented in (Figure 4.21).
Fifty-nine soil moisture values were acquired from the field survey. The point N07 in Dumgoyne
North was not measured. The highest soil moisture value appeared in Cochno High, where the
soil moisture of the H01 was 0.744, and the lowest value was 0.435 (M12). The average soil
moisture of all sample points was 0.588. The histogram plots illustrated that the soil moisture
values of each field were differently distributed within a certain range. These distributions did
not follow a clear pattern, and there were differences among these distributions. For example,
most fields had the highest frequency at the high values (above 0.5 or 0.6), despite Cochno
High, in which the highest frequency was at 0.4 to 0.5. This was also obviously shown in the
kernel density curve (Figure 4.23). The dotted line, the density curve of Cochno High, was
right-skewed while other curves were left-skewed. The mean of all samples is nearly equal to
the median, which suggested the data was less skewness. Although the soil moisture data did
not follow the normal distribution according to the result of the Shapiro-Wilk normality test,
they were able to transform to a normal distribution by the Box-Cox transformation. Also, the
modified values did not show the heterogeneity of different fields. After the previous analysis, a
one-way ANOVA was conducted to find out the difference among fields. The p-value of F-test
was 0.009 , less than 0.05. Therefore, the mean of soil moisture in each field was not equal.
There was at least one field having the significant difference with other fields.
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Figure 4.21: The soil moisture values for sampling points within the study fields: (a)
Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.
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Figure 4.22: Histograms of soil moisture for each field and all samples: (a) Cochno Low;
(b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All
samples.

Figure 4.23: Density curve of soil moisture for each field.

85



86

4.1.4.2 Soil Temperature

Figure 4.24 displays the soil temperature values in each field. Similar to the soil moisture col-
lection, 59 samples were recorded. The highest recorded soil temperature was 19 degrees in the
N09 (Dumgoyne North), and the lowest soil temperature was 12 degrees in the H01. H01 had
the highest soil temperature and soil moisture among all sampling points.

Figure 4.25 contains the histogram for each field and also for all samples. There was a high
frequency of soil temperature values in the range of 12◦C to 16◦C. It was evident that the dis-
tribution of soil temperature values varied among fields. The kernel density curve of each field
in Figure 4.26 also supported this. The red line in Figure 4.26 represents the average soil tem-
perature value for all samples and the blue line indicates the median values of all samples.
From the density curve, we can see that Dumgoyne South (long dash line) and Cochno Mid
(short dash line) were similar in distribution with a left-skewed curve. By contrast, Cochno Mid
density curve (dotted line) and Cochno Low curve (solid line) showed different distributions.
Furthermore, the soil temperature values were not normally distributed and unable to transform
into the normal distribution. The Kruskal-Wallis test was carried out to detect the variation of
soil temperature by fields. The result is displayed in Appendix D. The p-value (<0.001) of the
Kruskal-Wallis test was nearly zero which suggested that the soil temperature values by fields
did not have an equal mean, and therefore we can conclude that the variation of soil temperature
among fields was significant.

86



87

Figure 4.24: The soil temperature (degrees Celsius) for sampling points within the study
fields: (a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e)
Dumgoyne South.
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Figure 4.25: Histograms of soil temperature (degrees Celsius) for each field and for all
samples: (a) Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e)
Dumgoyne South; (f) All samples.

Figure 4.26: Density curve of soil temperature for each field.
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4.1.5 Pasture

4.1.5.1 Grass Height

The fields in this study are from typical pasture-based farms, and the risk of infection can be
determined by identifying both previous and future use of pastures, particularly the areas that
will be grazed by ewes and lamb (NADIS Parasite Report). The grass height was recorded in
the field survey at each of the sampling locations, representing the volume of forage grass within
each quadrat area (0.25 m2). The field suvey was conducted on 4 Septemberhe grass height is
expected to be variable over time. The average grass height of the five fields was 15.007 cm, and
the maximum was 25.33 cm in Dumgoyne North (N03). Figure 4.27 displays the grass height
values for each of the sampling points.

Observing the histograms of grass height for each field (Figure 4.28), Dumgoyne North and
Cochno Mid were lush with grazing grass, and the grass height of Cochno Mid seemed to be
the lowest among the fields. The Shapiro-Wilk normality test applied to the 60 grass heights,
showed that the grass height followed a normal distribution. The kernel density curves in Figure
4.29 showed the distribution pattern of grass height and the variation among fields. The red line
is the mean of total grass height, and the blue line is the median of total grass height. The density
curve of Cochno High and Dumgoyne North were different from the other three fields, appear-
ing on the right of the red line. The distribution of Cochno Mid had the very similar pattern to
Dumgoyne South, just farther away from the red line.

The grass height was normally distributed and the homogeneity of variances within each field
was passed by Bartlett’s test (p-value = 0.9981). The One-way analysis of variance was car-
ried out by R function to test if there was a significant difference among fields. The One-way
ANOVA result of grass height was given in Appendix B. The F-test value was 26.44, and the
p-value was nearly 2.96E-12. As a result, the null hypothesis cannot be accepted at the 95%
confidence interval level. Therefore, we concluded that at least one field was significantly dif-
ferent from the others. South facing areas will receive more sunlight and could have higher grass
heights.
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Figure 4.27: The grass height (cm) for sampling points within the study fields: (a) Cochno
Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South.
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Figure 4.28: Histograms of grass height (cm) for each field and all samples: (a) Cochno
Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f)
All samples.

Figure 4.29: Density curve of grass height for each field.
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4.1.5.2 Grass Weight

The grass weight was the total wet weight of grass within a 50cm× 50cm quadrat, represent-
ing the volume of forage grass and the condition of pasture. The highest grass weight among
all samples was H04 in the Cochno High (820 g), and the lowest grass weight was L03 in the
Cochno Low (89 g). There was a great disparity between sampling points. The grass weight
values for each sampling point for the fields is displayed in Figure 4.30.

According to the Shapiro-Wilk normality test result, the p-value (<0.001) was less than 0.05,
and the grass weight of all samples was not normally distributed. The histogram (Figure 4.31)
and the kernel density curve (Figure 4.32) of each field below illustrated how the distribution of
grass weight varied among fields. In Figure 4.32, the red line is the mean of all samples, and
the blue line is the median of all samples. The distribution of grass weight data for most fields
were highly skewed to right, apart from the data in Dumgoyne North which was skewed to left
and had a higher density on the right side of the red line. As with the grass heights, Cochno Mid
and Dumgoyne South were similar in the density curves of the grass weight. The grass weight
did not follow the normal distribution and could not be transformed into the normal distribution.
Hence, the non-parametric test, Kruskal-Wallis test, was conducted to analyse the variance. The
test result is in Appendix B, and the p-value is nearly zero (3.246e-05). This revealed that the
average grass weight of each field was not significantly equal and the variation of grass weight
by fields was significant.
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Figure 4.30: The grass weight values for sampling points within the study fields: (a)
Cochno Low; (b) Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne
South.
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Figure 4.31: Histograms of grass height for each field and all samples: (a) Cochno Low; (b)
Cochno Mid; (c) Cochno High; (d) Dumgoyne North; (e) Dumgoyne South; (f) All samples.

Figure 4.32: Density curve of grass weight for each field.
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4.2 Relationships between remote sensing, terrain, soil and
pasture datasets

Initial assessment of relationships among variables within each study area was carried out using
statistical tests. The strength of relationships was assessed by Pearson product moment cor-
relation, and the correlation coefficients (r) of each field represent the strength and direction of
a linear relationship between two variables.

4.2.1 Cochno Low

Pearson’s correlation coefficients matrix of all variables for the field Cochno Low are listed in
Table 4.1 and reveal significant (at 95% confidence level) correlations among variables. There
were 12 samples and 11 variables in this analysis. Yield and count of metacercariae are two
critical variables indicting F. hepatica level, and their univariate association with environmental
variables can provide a preliminary indication of how the environment might affect the density
of F. hepatica. In Cochno Low, Soil Moisture was the only variable that showed a strong positive
association (r = 0.591) with Yield, whereas the coefficient between Soil Moisture and metac-
ercariae was 0.44. There were also quite strong positive associations be- tween remote sensing
index variables (NDWI and NDVI) and F. hepatica level (Yield and Metacercarial cyst counts),
but there were also negative associations. What was unexpected was that all of the topographical
factors showed very weak associations with both Yield and Metacercarial cyst counts.

The relationships among environmental factors is worth noting due to the strong relationships
between variables cause multicollinearity for predictive models. For example, the correlation
matrix reflected a powerful positive linear association between NDVI and NDWI. Moreover,
Soil Temperature also showed strong negative relationships with both NDWI and NDVI. There
was also a similar relationship between Soil Moisture and Elevation. Furthermore, there were
some unexpected connections revealed in the Pearson’s correlation coefficient matrix. For in-
stance, the NDVI, which was the way to measure healthy green vegetation, showed a weak
negative relationship with the Grass Height, the real measurement from field survey. Similarly,
the NDWI, as an index to indicate land surface moisture, had nearly no linear relationship with
Soil Moisture.
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Table 4.1: Pearson’s Correlation Coefficient of Cochno Low

Yield Metacercaria GrassHeight GrassWeight SoilMoisture SoilTemperature NDWI NDVI Elevation Slope Aspect

Yield 1
Metacercaria 0.86 1
GrassHeight -0.34 -0.19 1
GrassWeight -0.60 -0.46 0.78 1
SoilMoisture 0.59 0.44 -0.20 -0.36 1
SoilTemperature 0.30 0.27 -0.07 -0.38 -0.36 1
NDWI -0.61 -0.58 -0.14 0.40 -0.08 -0.70 1
NDVI -0.54 -0.59 -0.18 0.34 -0.07 -0.64 0.96 1
Elevation -0.27 -0.22 -0.01 0.35 -0.51 0.26 0.28 0.23 1
Slope -0.21 -0.13 -0.15 0.30 -0.25 -0.23 0.46 0.34 0.62 1
Aspect 0.19 -0.10 -0.02 -0.36 -0.09 0.32 -0.54 -0.44 -0.42 -0.49 1

4.2.2 Cochno Mid

Table 4.2 shows the Pearson’s correlation coefficients for Cochno Mid. There were 12 samples
and 11 variables used in the analysis. Firstly, there were strong negative linear relationships
between NDVI and F. hepatica (Yield and Metacercarial cysts). Despite Grass Weight nega-
tively relating to Yield, other variables did not show linear relationships with F. hepatica. Three
pairs of independent variables showed strong positive associations: Grass Weight with Slope,
Soil Temperature with Elevation, and NDWI with Elevation. There were also three pairs of
negatively associated variables: NDWI with Grass Height, Soil Moisture with Slope, and Soil
Moisture with Aspect. In contrast to Cochno Low, there were few strong associations among
the variables in Cochno Mid.

Table 4.2: Pearson’s Correlation Coefficient of Cochno Mid

Yield Metacercaria GrassHeight GrassWeight SoilTemperature SoilMoisture NDWI NDVI Elevation Slope Aspect

Yield 1
Metacercaria 0.99 1
GrassHeight -0.20 -0.12 1
GrassWeight -0.32 -0.21 0.71 1
SoilTemperature 0.02 0.02 -0.22 0.29 1
SoilMoisture -0.20 -0.16 -0.12 0.03 0.02 1
NDWI -0.16 -0.26 -0.61 -0.34 0.45 0.04 1
NDVI -0.59 -0.63 -0.28 -0.19 -0.03 0.39 0.41 1
Elevation 0.07 0.04 -0.10 0.19 0.81 -0.39 0.50 -0.26 1
Slope -0.26 -0.24 0.20 0.57 0.34 -0.53 0.11 -0.23 0.57 1
Aspect 0.11 0.01 0.004 -0.22 0.23 -0.57 0.37 -0.003 0.54 0.15 1

4.2.3 Cochno High

The relationships among variables in Cochno High are shown in Table 4.3.4.3.There were 12
samples and 11 variables in Cochno High. The correlations between environmental factors and
were limited, as with the other two fields at Cochno. Soil Moisture was the only variable that
had strong positive associations with both Yield and Metacercarial cysts; otherwise, none of

102



103

the variables had significant negative relationships with F. hepatica, and Soil Temperature was
moderately associated with Yield and Metacercarial cysts. Slope showed a strong positive asso-
ciation with Metacercarial cysts but was not significantly associated with Yield.

Focusing on relationships among environmental factors at Cochno High, Grass Height and
NDVI had strong positive correlations with Elevation. Soil Moisture was significantly posi-
tively related to topographical factors, Slope and Aspect (r = 0.807 and r = 0.701 respectively).
Moreover, Soil Temperature also had strong negative relationships with both Slope and Aspect.
Just like the other two fields at Cochno, more than half of the variables showed very weak corre-
lations. The correlation coefficient of NDVI and Grass Weight was very low (r = 0.001), which
meant that there was no linear correlation between NDVI and Grass Weight. Also, NDWI and
Soil Moisture were only very weakly correlated.

Table 4.3: Pearson’s Correlation Coefficient of Cochno High

Yield Metacercaria GrassHeight GrassWeight SoilTemperature SoilMoisture NDWI NDVI Elevation Slope Aspect

Yield 1
Metacercaria 0.98 1
GrassHeight 0.38 0.38 1
GrassWeight -0.20 -0.07 0.35 1
SoilTemperature -0.40 -0.31 -0.29 0.05 1
SoilMoisture 0.73 0.71 0.22 -0.33 -0.30 1
NDWI -0.12 -0.18 0.45 -0.24 0.08 -0.15 1
NDVI 0.13 0.14 0.56 0.001 0.13 0.01 0.82 1
Elevation 0.34 0.31 0.59 0.07 -0.60 0.48 0.34 0.44 1
Slope 0.49 0.53 -0.06 -0.22 -0.15 0.81 -0.16 0.06 0.39 1
Aspect 0.33 0.34 0.16 -0.16 -0.50 0.70 -0.11 -0.18 0.49 0.59 1

4.2.4 Dumgoyne North

Pearson’s correlation coefficients of all variables for the field Dumgoyne North are given listed in
Table 4.4 and reveal significant (95% confidence level) correlations among variables. There were
11 samples and 11 variables in Dumgoyne North used in this analysis, due to the missed sample
N07. Grass Weight was the only independent variable significantly correlated with F. hepatica

at Dumgoyne North, which had a strong positive relationship with both Yield and Metacercarial
cysts. Remote sensing indices (NDWI and NDVI) had moderate positive relationships with the
density of F. hepatica , and Soil Moisture had a weak negative association with F. hepatica.
Soil Moisture was significantly negatively associated (r = -0.828) with NDWI and had a strong
negative relationship with NDVI as well. Slope had strong negative relationships with NDWI.
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Table 4.4: Pearson’s Correlation Coefficient of Dumgoyne North

Yield Metacercaria GrassHeight GrassWeight SoilTemperature SoilMoisture NDWI NDVI Elevation Slope Aspect

Yield 1
Metacercaria 1.00 1
GrassHeight 0.14 0.14 1
GrassWeight 0.50 0.51 0.60 1
SoilTemperature -0.07 -0.08 0.17 -0.29 1
SoilMoisture -0.40 -0.40 -0.10 -0.05 -0.40 1
NDWI 0.36 0.36 -0.02 -0.15 0.46 -0.83 1
NDVI 0.34 0.35 0.03 0.24 0.12 -0.61 0.74 1
Elevation 0.12 0.12 -0.30 -0.39 0.49 -0.48 0.42 0.26 1
Slope 0.11 0.12 0.45 0.34 -0.34 0.36 -0.54 -0.46 -0.36 1
Aspect -0.13 -0.12 0.56 -0.15 0.39 -0.02 0.13 0.06 0.09 0.16 1

4.2.5 Dumgoyne South

Correlations among variables in Dumgoyne South differed from those of Dumgoyne North.
There were 11 samples and 11 variables in Dumgoyne South. The Table 4.5 4.5 lists correlations
among variables within Dumgoyne South. Soil Moisture had strong positive associations with
both Yield and Metacercarial cysts, whereas Soil Temperature and F. hepatica had no significant
associations. Grazing factors (Grass Height and Grass Weight) had negative associations with
F. hepatica. Soil Temperature had significant positive correlations with remote sensing indexes
(NDWI and NDVI). There were strong positive relationships between Slope and grazing factors
(Grass Height and Grass Weight).

Table 4.5: Pearson’s Correlation Coefficient of Dumgoyne South

Yield Metacercaria GrassHeight GrassWeight SoilTemperature SoilMoisture NDWI NDVI Elevation Slope Aspect

Yield 1
Metacercaria 0.98 1
GrassHeight -0.55 -0.51 1
GrassWeight -0.53 -0.47 0.65 1
SoilTemperature 0.06 0.08 -0.32 0.27 1
SoilMoisture 0.57 0.63 -0.11 -0.23 0.11 1
NDWI -0.24 -0.23 -0.26 0.35 0.83 -0.22 1
NDVI -0.45 -0.45 -0.03 0.42 0.56 -0.49 0.87 1
Elevation -0.59 -0.63 0.36 0.30 -0.32 -0.79 -0.01 0.12 1
Slope -0.52 -0.41 0.58 0.72 0.30 0.28 0.26 0.19 -0.06 1
Aspect -0.08 -0.003 0.20 0.17 -0.21 -0.03 -0.11 0.12 0.03 0.16 1
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Chapter 5

Relationships between F. hepatica and
Environmental Factors

5.1 Univariate regression models

Including all environmental factors in the regression leads to the problem of multicollinearity.
Several of the environmental factors in this study demonstrated a high degree of correlation in
Chapter 3.2. To reduce the potential for multicollinearity among environmental factors, univari-
ate negative binomial regression was conducted on each independent variable first and only the
variables with significant coefficients were selected for use in the multivariate regression model.
However, the overdispersion of the model has impacts on the model accuracy. The goodness of
fit of each univariate regression model was analysed using the chi-square goodness of fit test.
McFadden’s Pseudo R2 and AIC values were also used to test the goodness of fit of the regres-
sion model.

5.1.1 Modeling remote sensing indices against F. hepatica density in pas-
ture

The Yield2 data were modelled against the remote sensing indices across the study fields, nor-
malized difference water index (NDWI) and normalized difference vegetation index (NDVI)
individually as the nested factors within fields. Models assumed a negative binomial distribu-
tion of the response, where a generalised linear model with a logit link function was specified.
Cochno High was used as the reference group, and the other four fields were the comparison
groups. The following models were examined:

• Yield2 ∼ Field * NDWI

• Yield2 ∼ Field * NDVI
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There were no consistent effects of field, NDWI, NDVI or their interactions on the density of F.

hepatica Neither field nor NDWI nor their interaction were significantly associated with Yield2.
The regression results of NDWI model are shown in Table 5.1, and the fitted line plot shows
the regression results graphically (Figure 5.1). Although the effects of Cochno Mid (increased
Yield2) and its interaction with NDVI (in Cochno Mid, increased NDVI reduced Yield2) were
significant (Table 5.2), it is evident from Figure 5.2 that the effects are small and do not repre-
sent a consistent pattern. The Chi-squared test of each covariate was carried out to examine the
goodness of fit for each model (Table 5.3). The NDVI model fitted better than the NDWI model,
with more significant factors and reduced residual deviance.

Table 5.1: Univariate regression model of NDWI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.8680 1.9816 -1.9519 0.0568
CochnoLow 2.4184 2.5319 0.9552 0.3443
CochnoMid 1.6021 2.7452 0.5836 0.5622
DumgoyneNorth -27.8168 24.2147 -1.1488 0.2563
DumgoyneSouth 1.6155 5.1755 0.3121 0.7563
NDWI -2.4234 5.6189 -0.4313 0.6682
CochnoLow:NDWI -6.4719 7.6604 -0.8449 0.4024
CochnoMid:NDWI -1.4933 7.5295 -0.1983 0.8436
DumgoyneNorth:NDWI 69.3453 59.9827 1.1561 0.2534
DumgoyneSouth:NDWI -4.9382 15.6377 -0.3158 0.7535

Table 5.2: Univariate regression model of NDVI

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.7334 1.9127 -2.9976 0.0043
CochnoLow 4.1896 2.4138 1.7357 0.0890
CochnoMid 12.4122 3.7541 3.3063 0.0018
DumgoyneNorth -73.1315 60.6895 -1.2050 0.2341
DumgoyneSouth 14.0834 11.5870 1.2155 0.2301
NDVI 2.4102 4.3133 0.5588 0.5789
CochnoLow:NDVI -6.4816 4.8737 -1.3299 0.1898
CochnoMid:NDVI -21.4763 7.4540 -2.8812 0.0059
DumgoyneNorth:NDVI 86.5671 72.8818 1.1878 0.2408
DumgoyneSouth:NDVI -19.7320 15.9123 -1.2400 0.2210

106



107

Figure 5.1: The dot plot and fitted line of NDWI against Yield2.

Figure 5.2: The dot plot and fitted line of NDVI against Yield2.
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Table 5.3: Chi-squared goodness of fit for remote sensing index models

Models Variables Df Deviance Resid. Df Resid. Dev Pr(>Chi)
Yield2~Field *NDWI NULL 57 1.1549

Field 4 0.1393 53 1.0156 0.2293
NDWI 1 0.0705 52 0.9451 0.0918
Field:NDWI 4 0.0736 48 0.8715 0.5630

Yield2~Field * NDVI NULL 57 1.1549
Field 4 0.1393 53 1.0156 0.0942
NDVI 1 0.0887 52 0.9268 0.0247
Field:NDVI 4 0.2245 48 0.7024 0.0124

5.1.2 Modeling Soil properties against F. hepatica density in pasture

As with the analysis on F. hepatica level, the soil properties were also appropriate to model
across the fields. Soil properties, such as temperature and moisture were used as nested vari-
ables within fields to perform a univariate negative binomial regression model against Yield2
separately. The two models were:

• Yield2 ∼ Field * SoilMoisture

• Yield2 ∼ Field * SoilTemperature

When modeling Soil Moisture to F. hepatica level, Cochno Mid, Dumgoyne North, Soil Mois-
ture and Intercept had p-values less than 0.05 (Table 5.4). The effect estimates of Cochno Mid,
Dumgoyne North and Soil Moisture were 8.479, 12.559 and 9.434, indicating that they were
all positively related to Yield2. The fitted regression line for Soil Moisture against Yield2
was shown in the Figure 5.3. It indicates that the significant interaction term of Cochno-
Mid:SoilMoisture is likely due to high leverage caused by a single factor. In contrast to Soil
Moisture, Soil Temperature did not show any significant effect on F. hepatica level in any of
the fields. The regression table of Soil Temperature model is shown in Table 5.5 and the fitted
regression line is shown in Figure 5.4.
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Table 5.4: Univariate regression model of Soil Moisture

Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.9984 2.1579 -4.6334 0.00003
CochnoLow -3.9034 5.5482 -0.7035 0.4851
CochnoMid 8.4791 2.8676 2.9569 0.0048
DumgoyneNorth 12.1559 5.3362 2.2780 0.0272
DumgoyneSouth -1.2376 5.1773 -0.2390 0.8121
SoilMoisture 9.4340 3.4305 2.7500 0.0084
CochnoLow:SoilMoisture 5.6757 8.4935 0.6682 0.5072
CochnoMid:SoilMoisture -13.0877 4.6311 -2.8260 0.0068
DumgoyneNorth:SoilMoisture -22.1570 9.7034 -2.2834 0.0269
DumgoyneSouth:SoilMoisture 0.8565 7.9195 0.1082 0.9143

Table 5.5: Univariate regression model of Soil Temperature

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.8448 18.0639 1.0432 0.3021
CochnoLow -30.3465 20.0873 -1.5107 0.1374
CochnoMid -23.2874 20.4045 -1.1413 0.2594
DumgoyneNorth -22.3719 19.2124 -1.1645 0.2500
DumgoyneSouth -26.3787 31.1377 -0.8472 0.4011
SoilTemperature -1.8662 1.4487 -1.2882 0.2039
CochnoLow:SoilTemperature 2.3811 1.5762 1.5106 0.1374
CochnoMid:SoilTemperature 1.9095 1.5670 1.2186 0.2290
DumgoyneNorth:SoilTemperature 1.7768 1.5084 1.1779 0.2446
DumgoyneSouth:SoilTemperature 2.0493 2.1785 0.9407 0.3516

109



110

Figure 5.3: The dot plot and fitted line of Soil Moisture against Yield2.

Figure 5.4: The dot plot and fitted line of Soil Temperature against Yield2.
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Table 5.6: Chi-squared goodness of fit for soil models

Models Variables Df Deviance Resid. Df Resid. Dev Pr(>Chi)

Yield2~Field*SoilMositure NULL 57 1.1549
Field 4 0.1393 53 1.0156 0.0922
SoilMoisture 1 0.0561 52 0.9595 0.0730
Field:SoilMoisture 4 0.2687 48 0.6907 0.0039

Yield2~Field*SoilTemperature NULL 57 1.1549
Field 4 0.1393 53 1.0156 0.2777
SoilTemperature 1 0.0004 52 1.0152 0.9072
Field:SoilTemperature 4 0.0853 48 0.9299 0.5379

5.1.3 Modeling topographical factors against F. hepatica density in pas-
ture

Assessing the relationship between the terrain and the F. hepatica density on pasture, the Ele-
vation, Slope, and Aspect were used as the nested covariate to build models for the F. hepatica

density. Three univariate regression models were examined:

• Yield2 ∼ Field * Elevation

• Yield2 ∼ Field * Slope

• Yield2 ∼ Field * Aspect

Table 5.7 presents the negative binomial regression results of Elevation model and Figure 5.5
illustrates the relationships between Yield2 and Elevation for each field with dot plots. Elevation
had no significant association with the Yield2 in any of the fields. Slope tended to have a
significant positive effect on Yield2 and there was a significant negative interaction with slope
in Cochno Mid (Table 5.8). The fitted regression for the Slope model is shown in Figure 5.6. As
shown in the regression Table 5.9, there were no significant relationships between Aspect and
the density of F. hepatica. The goodness of fit and the overdispersion of models was examined
and documented in Table 5.10.
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Table 5.7: Univariate regression model of Elevation

Estimate Std. Error t value Pr(>|t|)
(Intercept) -37.6058 27.3979 -1.3726 0.1763
CochnoLow 55.7872 39.6856 1.4057 0.1662
CochnoMid 27.2055 33.3628 0.8154 0.4188
DumgoyneNorth 28.7107 29.6251 0.9691 0.3373
DumgoyneSouth 48.8199 30.8917 1.5804 0.1206
Elevation 0.1136 0.0942 1.2068 0.2334
CochnoLow:Elevation -0.2988 0.2551 -1.1714 0.2472
CochnoMid:Elevation -0.0739 0.1477 -0.5002 0.6192
DumgoyneNorth:Elevation 0.0491 0.4682 0.1049 0.9169
DumgoyneSouth:Elevation -0.7567 0.5933 -1.2754 0.2083

Table 5.8: Univariate regression model of Slope

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.0409 1.0146 -5.9538 0.000000
CochnoLow 2.2600 1.2940 1.7466 0.0871
CochnoMid 3.3780 1.3081 2.5823 0.0129
DumgoyneNorth 0.7798 1.4686 0.5310 0.5979
DumgoyneSouth 2.5229 1.3996 1.8026 0.0777
Slope 0.2436 0.1354 1.7985 0.0784
CochnoLow:Slope -0.4891 0.3941 -1.2409 0.2207
CochnoMid:Slope -0.6134 0.3225 -1.9018 0.0632
DumgoyneNorth:Slope -0.0934 0.4119 -0.2267 0.8216
DumgoyneSouth:Slope -1.7799 1.3154 -1.3531 0.1824

Table 5.9: Univariate regression model of Aspect

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.5524 2.7578 -2.0134 0.0507
CochnoLow 2.0106 1.4877 1.3515 0.1839
CochnoMid 2.7914 1.4115 1.9776 0.0547
DumgoyneNorth 0.0668 1.8078 0.0369 0.9707
DumgoyneSouth 1.5112 1.4848 1.0178 0.3148
NorthEast -0.7295 2.6725 -0.2730 0.7863
NorthWest 2.7643 2.8164 0.9815 0.3321
SouthEast 0.3605 2.8405 0.1269 0.8996
SouthWest -0.4816 2.3951 -0.2011 0.8416
West -0.7515 3.6717 -0.2047 0.8388
CochnoMid:NorthEast -0.1365 1.4952 -0.0913 0.9277
DumgoyneNorth:NorthEast 1.1755 2.3652 0.4970 0.6218
DumgoyneNorth:NorthWest -3.3031 3.3166 -0.9959 0.3251
DumgoyneSouth:NorthWest -3.5948 1.7670 -2.0344 0.0484
CochnoLow:SouthEast -1.2084 1.6853 -0.7170 0.4774
CochnoMid:SouthEast -1.8535 1.6248 -1.1408 0.2606
DumgoyneNorth:SouthEast 1.4990 2.0210 0.7417 0.4625
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Figure 5.5: The dot plot and fitted line of Elevation against Yield2 for each field.

Figure 5.6: The dot plot and fitted line of Slope against Yield2 for each field.
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Figure 5.7: The dot plot of Aspect against Yield2.

Table 5.10: Chi-squared goodness of fit for topographical factors models

Models Variables Df Deviance Resid. Df Resid. Dev Pr(>Chi)

Yield2~Field *Elevation NULL 57 1.1549
Field 4 0.139 53 1.016 0.247
Elevation 1 0.011 52 1.004 0.510
Field:Elevation 4 0.096 48 0.908 0.443

Yield2~Field *Slope NULL 57 1.1549
Field 4 0.139 53 1.016 0.164
Slope 1 0.0001 52 1.015 0.954
Field:Slope 4 0.176 48 0.839 0.083

Yield2~Field *Aspect NULL 57 1.1549
Field 4 0.139 53 1.016 0.099
Aspect 5 0.062 48 0.954 0.628
Field:Aspect 7 0.256 41 0.698 0.045
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5.1.4 Modeling pasture grass against F. hepatica density in pasture

As mentioned in Chapter 3.2, the forage data shows collinearity and therefore, the univariate
regression model was built on Grass Height and Grass Weight separately. The Forage factors
were nested within Field. Cochno High was used as the reference group. There were two
models:

• Yield2 ∼ Field * GrassHeight

• Yield2 ∼ Field * GrassWeight

Including Grass Height in the first model, shows that none of the covariates were significantly
associated with Yield2 (Table 5.11). On the other hand, the univariate regression model of Grass
Weight demonstrated that just the Grass Weight in Dumgoyne North displayed a significantly
positive relationship between Grass Weight and Yield2 (Table 5.12). Figure 5.8 and Figure 5.9
show the relationship of Grass Height and Yield2, with fitted lines of two models. The chi-
squared goodness of fit for forage models is shown in Table 5.13, which shows that the Grass
Weight model might fit better than Grass Height model.

Table 5.11: Univariate regression model of Grass Height

Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.0873 5.5662 -2.1716 0.0349
CochnoLow 9.4144 5.7775 1.6295 0.1098
CochnoMid 9.2738 5.6491 1.6417 0.1072
DumgoyneNorth 5.1934 7.2061 0.7207 0.4746
DumgoyneSouth 10.6099 6.1699 1.7196 0.0919
GrassHeight 0.3886 0.2801 1.3877 0.1716
CochnoLow:GrassHeight -0.5317 0.3131 -1.6979 0.0960
CochnoMid:GrassHeight -0.4912 0.2990 -1.6428 0.1070
DumgoyneNorth:GrassHeight -0.2990 0.3461 -0.8640 0.3919
DumgoyneSouth:GrassHeight -0.6220 0.3453 -1.8014 0.0779
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Table 5.12: Univariate regression model of Grass Weight

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.8531 0.9757 -3.9489 0.0003
CochnoLow 1.4667 1.2737 1.1515 0.2552
CochnoMid 2.5696 1.6528 1.5546 0.1266
DumgoyneNorth -11.1054 5.7080 -1.9456 0.0576
DumgoyneSouth 2.7059 2.7347 0.9895 0.3274
GrassWeight -0.0023 0.0025 -0.8953 0.3751
CochnoLow:GrassWeight -0.0059 0.0046 -1.2819 0.2060
CochnoMid:GrassWeight -0.0061 0.0053 -1.1465 0.2573
DumgoyneNorth:GrassWeight 0.0163 0.0079 2.0801 0.0429
DumgoyneSouth:GrassWeight -0.0088 0.0088 -0.9986 0.3230

Figure 5.8: The dot plot and fitted line of Grass Height against Yield2.
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Figure 5.9: The dot plot and fitted line of Grass Weight against Yield2.

Table 5.13: Chi-squared goodness of fit for forage models

Models Variables Df Deviance Resid. Df Resid. Dev Pr(>Chi)
Yield2~Field *GrassHeight NULL 57 1.1549

Field 4 0.139 53 1.016 0.207
GrassHeight 1 0.015 52 1.000 0.418
Field:GrassHeight 4 0.147 48 0.853 0.182

Yield2~Field *GrassWeight NULL 57 1.1549
Field 4 0.139 53 1.016 0.092
GrassWeight 1 0.089 52 0.926 0.024
Field:GrassWeight 4 0.236 48 0.690 0.009
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5.2 Multivariate regression model

To deal with multicolinearity, only the more significant variables of a group of related variables
were selected for a multivariate regression model. According to Section 4.1, there are four sig-
nificant variables, NDVI, Grass Weight, Soil Moisture and Slope, which were included in the
multivariate regression model Model 1 as the nested factors within fields. Yield2 was the re-
sponse variable.

Model 1: Yield2 ∼ Field * (NDVI + GrassWeight + SoilMoisture + Slope)

Table 5.14 lists the coefficients of regression model M1. Most covariates were not significant
at the 95% confidence interval. However, there were some factors which show a significant
relationship with the density of F. hepatica in pasture. Cochno Mid had a significantly higher
density and Soil Moisture had a significant positive association with Yield2 overall, but had a
negative association with Yield2 in the Cochno Mid and Dumgoyne North. NDVI values in
Cochno Mid also had a significant negative relationship with the Yield2. Table 5.15 shows the
chi-squared goodness of fit test of Model 1, which showed that most covariates fitted the model
well, apart from Slope.

Table 5.14: Multivariate regression model

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.066 6.168 -2.767 0.009
CochnoLow 10.249 7.758 1.321 0.196
CochnoMid 25.025 6.526 3.835 0.001
DumgoyneNorth 56.912 70.044 0.813 0.422
DumgoyneSouth 3.596 16.719 0.215 0.831
NDVI 7.764 7.023 1.106 0.277
GrassWeight -0.0002 0.003 -0.077 0.939
SoilMoisture 19.222 7.812 2.461 0.019
Slope -0.320 0.222 -1.442 0.159
CochnoLow:NDVI -11.112 7.313 -1.520 0.138
CochnoMid:NDVI -22.260 8.368 -2.660 0.012
DumgoyneNorth:NDVI -62.385 81.747 -0.763 0.451
DumgoyneSouth:NDVI -4.263 17.702 -0.241 0.811
CochnoLow:GrassWeight -0.005 0.004 -1.179 0.247
CochnoMid:GrassWeight -0.003 0.005 -0.559 0.580
DumgoyneNorth:GrassWeight 0.012 0.007 1.680 0.102
DumgoyneSouth:GrassWeight -0.002 0.009 -0.194 0.848
CochnoLow:SoilMoisture -11.118 9.769 -1.138 0.263
CochnoMid:SoilMoisture -22.179 8.845 -2.507 0.017
DumgoyneNorth:SoilMoisture -33.525 13.336 -2.514 0.017
DumgoyneSouth:SoilMoisture -7.235 10.810 -0.669 0.508
CochnoLow:Slope 0.749 0.435 1.721 0.095
CochnoMid:Slope -0.023 0.301 -0.077 0.939
DumgoyneNorth:Slope 0.278 0.540 0.514 0.611
DumgoyneSouth:Slope -0.804 1.128 -0.713 0.481
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Table 5.15: Chi-squared goodness of fit for multivariate regression model

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 57 1.155
Field 4 0.139 53 1.016 0.002
NDVI 1 0.089 52 0.927 0.001
GrassWeight 1 0.065 51 0.862 0.004
SoilMoisture 1 0.033 50 0.828 0.042
Slope 1 0.001 49 0.827 0.679
Field:NDVI 4 0.298 45 0.528 0.00000
Field:GrassWeight 4 0.149 41 0.379 0.001
Field:SoilMoisture 4 0.095 37 0.284 0.018
Field:Slope 4 0.038 33 0.246 0.314
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Chapter 6

Discussion and conclusion

6.1 Discussion

The main objective of this study was to apply earth observation and GIS approaches to detect
the high risk areas for F. hepatica within a farm and try to predict the geographical distribution
of F. hepatica. This study also explored the relationships among environment and the density F.

hepatica in pasture at the field-level within farms.

Firstly, F. hepatica metacercariae were found in each field and some locations had a high num-
ber of metacercarial cysts. Yield, which was calculated as the number of metacercarial cysts
per gram of pasture grass, was used to quantify the F. hepatica density in forage. Higher yield
values are likely to result in higher risk of F. hepatica infection in sheep. The results showed that
the density of metacercariae in pasture was significantly different between the five fields, but the
pattern of distribution of counts in the five fields was similar. Most of the grass samples were
clean or had low counts of metacercariae, but a small number of samples had high metacercarial
cyst counts of F. hepatica.

The environmental factors including elevation, slope and soil were also compared among five
fields and showed significant differences among fields. Soil moisture and soil temperature dif-
fered significantly among fields. The soil moisture of most sampling locations was high, most
exceeding 50%, which is an ideal environmental condition for the life-cycle of F. hepatica. The
average soil temperature was 15◦C, which is within the ideal temperature range for cercarial
encystment. In addition, to conventionally measured environmental factors, the normalized dif-
ference vegetation index (NDVI) and normalized difference water index (NDWI) generated from
Sentinel-2 satellite images also differed significantly among the five fields. The NDVI values
were all high, most values exceeding 0.5, meaning that there was abundant pasture grass. In
contrast, the NDWI values were not high, all values being less than 0.5 with some values below
zero, indicating very dry areas or vegetation with very low water content which gave different

121



122

information from the in situ soil moisture measurements. Grass height and grass weight were
used as factors to indicate amounts of forage.

The analysis of the relationships among environmental factors was conducted at the farm-level.
The NDWI and NDVI showed significant positive relationships with each other within all five
fields. The abundance of pasture showed significant associations with the terrain factors, such
as elevation and slope, in all five fields. For example, in Dumgoyne South, both grass height
and grass weight were positively related to the slope, and in Dumgoyne North, the grass height
and aspect were also positively associated. Also, at Cochno, the grass height of Cochno High
was positively related with the elevation, while the grass weight of Cochno Mid was positively
associated with the slope. Besides, there were significant connections between soil properties
and topographical factors in the five fields. First, the soil moisture had a negative relationship
with elevation in Dumgoyne South and Cochno Low. The Cochno Mid also showed the negative
relationships between soil moisture and slope. The only field where soil moisture had a positive
relationship to the terrain factors and slope was Cochno High. As for the soil temperature in
each field, there were negative relationships with aspect and elevation in the Cochno High, and
there was also a positive relationship with altitude in Cochno Mid. The reason for this might be
the outh facing areas will receive more sunlight and could have higher grass heights.

Application of remote sensing methods to detect land surface was one of the objectives in this
study. The Sentinel-2 images of 31 August 2017 were used in this study. In Cochno High,
the NDVI showed a strong positive association with grass height. In Cochno Mid, the NDWI
was negatively associated with grass weight. Furthermore, in Dumgoyne South, both NDWI
and NDVI were positively related to soil temperature. It is worth noting that negative associa-
tions between soil moisture and both NDWI and NDVI were also identified. A similar situation
emerged in Cochno Low, where soil temperature was negatively associated with both NDWI and
NDVI. According to the related research, the NDWI were used to detect the water bodies from
vegetation or other background land surface, and also can indicate the water content of vege-
tation (Soti et al., 2009; Xu, 2006; De Roeck et al., 2014). The NDVI were normally used to
indicate the abundance of pasture vegetation (Gao, 1996; Manyangadze et al., 2016; De Roeck
et al., 2014). However, the results of this study show that the remote sensing indices did not
reflect the actual land situation. This contradiction between the retrieved values from satellite
images and the measured values from the field survey was found in all five fields. Possible rea-
sons for this contradiction could be the choice of spectral bands and the spectral resolution. The
NDWI in this study used the band combination of NIR (690 nm to 980 nm) and SWIR (1470
nm to 1750 nm), which can distinguish water with soil from other type of land cover types, but
cannot separate water from vegetation (Soti et al., 2009).
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The univariate regression model of each environmental variable was established against the
Yield2, the number of metacercarial cysts per 0.1 gram, to explain the relationships among
environment variables and the density of F. hepatica in pasture. The regression results showed
that few univariate models had significant coefficients of covariates and there were only a few
variables in specific fields having a significant association with the Yield2. This means the re-
lationships among environment variables and F. hepatica were weak; and the directions of the
relation- ships differed among fields. This results suggest that remote sensing and environmen-
tal factors ,such as terrain factors and soil texture, might not be reliable when monitoring F.

hepatica in farm-level, especially in the farm with high transmission of fasciolosis. This lack of
association could be explained by the following factors. The first factor could be the Validity
of the environmental observations. The measurements taken in the field are single time point
observations and this does not deal well with the phenology of pasture in relation to collection of
Sentinel 2 data. The field survey were conducted on 5 and 6 September 2017, while the NDWI
and NDVI data were obtained from the satellite images of 31 August 2017. Temporal changes
might affect the measurements of grass, soil moisture and temperature, causing remote sensing
indices are different with real measurements. In this study, the date of satellite images was six
days ahead of the field survey and the soil texture and vegetation are very likely to change in
these days. This might cause what the remote sensing indices shown is different with the field
survey data. Moreover, variation in recovery rates of metacercariae can also impact the results.
In this study, seven replicates were carried out for each sample. At the beginning of the lab
analysis, some samples had 10 replicates and showed a difference compared with those with
seven replicates. This might lead to the loss of metacercarial cysts. Sheep density and farm
size might cause the different directions of relationships among fields. In addition, the remote
sensing indices used in this study cannot reflect in situ measurements. The spatial resolutions
of Sentinel-2 images are 10 m and 20 m, and in this study, the 10 metre band was resampled to
20 metres resolution for the NDWI value calculations, which means the area of a single pixel
is 400 m2. The variation of F. hepatica within this area can be ignored. Moreover, the remote
sensing indices may not detect moisture areas.

6.2 Conclusion

In conclusion, this study mapped the environment data to the F. hepatica risk and assessed the
variation of environmental factors among fields. The data used in this study were from multiple
sources, including satellite images, LiDAR images, field survey measurements. Four categories
including nine variables of environmental factors, remote sensing indices, topographical factors,
soil properties, and grazing grass, were used in the model. This study explored the impact of
environmental factors on the geographical distribution of F. hepatica.
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The results of the regression model demonstrated that some environmental factors were signif-
icantly related to the F. hepatica in particular areas. The negative binomial regression model
employed by this study performed well, and the multicollinearity of the multivariate model was
reduced by selecting the key parameters. In the NDVI model, intercept and Cochno Mid had
significant coefficients. The estimate of Cochno Mid was 12.41 which meant it had a positive
relationship with Yield2. Soil moisture model had the most significant factors. When modelling
soil moisture to Yield2, field Cochno Mid and Dumgoyne North had significant, positive regres-
sion coefficients. The Soil moisture itself also showed a significant relationship with the Yield2,
which was also a positive relation. Another univariate model with significant factors is the Slope
model, in which the Cochno Mid and the intercept were significant factors. The dependent vari-
ables used in the multivariate regression model were NDVI, Soil Moisture, Slope, and Grass
Weight. The result of regression demonstrated that there were restricted relations between envi-
ronmental factors and F. hepatica. The Cochno Mid was the only field which was significantly
related to the Yield2, with a positive estimate coefficient value implying the positive associa-
tion with the risk of infection of F. hepatica. Soil moisture was the only environmental variable
which had a significant coefficient in the multivariate model. The coefficient of soil moisture
was 19.222, which meant there was a positive relationship between soil moisture and the Yield2
across all five fields.

However, this study still has limitations. First, the use of satellite images needs to be developed.
Farm with small area (under 20ha), mid resolution images is too rough and too wide to show
detailed land surface information. Higher spatial resolution images can provide more detailed
land surface information because each farm area can be covered by more images. It is worth
using different remote sensing indices, such as modified normalized water index and normal-
ized difference turbidity index, which can detect and distinguish free standing water bodies and
water turbidity (Lacaux et al., 2007; Soti et al., 2010). Future studies on mapping environment
to F. hepatica at farm-level could try multiple sensor images. For example, the hyperspectral
images such as MODIS and Earth Observing-1 can improve land cover classification and de-
tect moisture areas. In the analysis of F. hepatica, it require us to distinguish moisture areas
with vegetation from the vegetation alone, which causes the single cell of images contains in-
formation of various features (soil, water, vegetation, etc.) and therefore reduce the accuracy
of detection. Hyperspectral images can reduce this problem (Cheng et al., 2006; Datt et al.,
2003).On the other hand, repeated field measurements are also necessary. Future studies should
take the dynamic nature of pasture grass into consideration.
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Appendix A

Monthly precipitation and temperature of
the study areas

Recent research proved demonstrated that climate data such as temperature and precipitation
play key roles in the life cycle of F. hepatica especially in the embryonation stage and also
cercariae. The climate data can be acquired from the Centre for Environmental Data Analysis
(CEDA), which makes publically available the hourly rainfall and daily temperature onto its
own online platform (http://www.ceda.ac.uk/). The unit of hourly rainfall is mm and the unit
of daily temerature is Celsius Degree. The climate data using in this study were collected from
weather station Mugdock Park (id is 954) and covers the period of from 1 January 2016 to 30
October 2017.
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Figure A.1: Monthly precipitation (mm) and temperature (degrees Celsius) of the study
areas
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Appendix B

Sampling Locations of each field

The latitude and longitude of each of the points were recorded in a hand-held GPS device under
the UTM/WGS84.

Table B.1: Sampling locations of Cochno

Field Samples Lat Lon Field Samples Lat Lon

CochnoLow

L01 55.934637 -4.404783

CochnoMid

M01 55.9406 -4.40617

L02 55.934043 -4.406531 M02 55.94039 -4.40617

L03 55.934535 -4.404249 M03 55.94018 -4.406

L04 55.934041 -4.406346 M04 55.93994 -4.4058

L05 55.933979 -4.406023 M05 55.93964 -4.40556

L06 55.934685 -4.404426 M06 55.93979 -4.406

L07 55.934946 -4.40405 M07 55.93996 -4.40621

L08 55.935257 -4.402741 M08 55.94017 -4.40632

L09 55.934428 -4.406126 M09 55.94033 -4.40653

L10 55.9342 -4.4048 M10 55.94022 -4.40679

L11 55.934046 -4.405585 M11 55.94012 -4.40672

L12 55.934982 -4.403692 M12 55.94019 -4.40704

CochnoHigh

H01 55.953987 -4.403044

H02 55.95366 -4.40479

H03 55.955448 -4.403454

H04 55.95296 -4.402511

H05 55.9534 -4.404925

H06 55.952014 -4.403364

H07 55.951696 -4.405688

H08 55.95395 -4.405355

H09 55.954875 -4.404714

H10 55.95533 -4.402822

H11 55.955754 -4.404694

H12 55.95326 -4.40571
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Table B.2: Sampling locations of Dumgoyne

Field Samples Lat Lon

DumgoyneNorth

N01 56.014566 -4.368024
N02 56.015517 -4.365849
N03 56.016559 -4.369705
N04 56.018919 -4.369283
N05 56.01513 -4.367409
N06 56.017999 -4.369136
N07 56.015049 -4.364936
N08 56.014996 -4.368815
N09 56.016775 -4.367557
N10 56.019737 -4.369765
N11 56.018416 -4.36791
N12 56.017648 -4.366292

DumgoyneSouth

S01 56.011444 -4.364544
S02 56.012303 -4.367148
S03 56.011552 -4.367088
S04 56.010912 -4.366178
S13 56.01191 -4.36758
S06 56.011375 -4.363492
S07 56.011783 -4.363527
S08 56.011424 -4.362811
S09 56.011647 -4.362803
S14 56.01088 -4.36521
S11 56.012786 -4.366714
S15 56.01208 -4.36325
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Appendix C

F. hepatica and environmental factors of
each sampling point

Table C.1: CochnoLow data

Samples Metacercaria Yield Yield2 GrassHeight GrassWeight SoilTemperature
L01 71.429 0.388 0.039 12.333 184 14
L02 0 0 0 18.500 611 13
L03 42.857 0.482 0.048 7.500 89 14.333
L04 28.571 0.122 0.012 7.833 235 13.233
L05 28.571 0.083 0.008 11.333 343 13.4
L06 57.143 0.295 0.029 13.667 194 14.7
L07 14.286 0.046 0.005 13.333 312 14.767
L08 0 0 0 9.500 212 14.733
L09 28.571 0.102 0.010 8.833 279 13.3
L10 0 0 0 11.333 169 13.3
L11 14.286 0.036 0.004 14.333 396 13.3
L12 28.571 0.077 0.008 14 373 14.733

SoilMoisture NDWI NDVI Elevation Slope Aspect
L01 0.689 0.283 0.560 120.390 1.851 SE
L02 0.622 0.415 0.825 122.950 2.984 SE
L03 0.691 0.270 0.662 120.790 1.674 SW
L04 0.654 0.417 0.823 122.340 2.178 SE
L05 0.577 0.387 0.790 120.720 3.727 SE
L06 0.683 0.201 0.455 120.740 1.235 SE
L07 0.478 0.246 0.492 122.930 2.723 SW
L08 0.570 0.409 0.831 123.890 2.723 SE
L09 0.593 0.440 0.842 123.480 4.151 SE
L10 0.624 0.367 0.758 118.240 0.655 SW
L11 0.647 0.376 0.779 120.040 1.063 SE
L12 0.465 0.322 0.724 122.830 1.221 SE
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Table C.2: CochnoMid data

Samples Metacercaria Yield Yield2 GrassHeight GrassWeight SoilTemperature
M01 42.857 0.090 0.009 11.667 477 16.833
M02 42.857 0.139 0.014 6.167 308 17
M03 28.571 0.097 0.01 7 296 15.767
M04 28.571 0.129 0.013 5.833 222 15.2
M05 100 0.259 0.026 13.5 386 15.3
M06 57.143 0.147 0.015 12.333 388 15.5
M07 28.571 0.107 0.011 7 267 15.867
M08 42.857 0.177 0.018 7.167 242 15.967
M09 57.143 0.202 0.020 10.5 283 15.9
M10 314.286 1.31 0.131 7.667 240 15.933
M11 14.286 0.04 0.004 15.833 360 15.7
M12 14.286 0.047 0.005 11 301 15.433

SoilMoisture NDWI NDVI Elevation Slope Aspect
M01 0.576 0.404 0.53 172.66 9.677 SE
M02 0.656 0.424 0.604 169.34 2.225 SE
M03 0.657 0.422 0.60 166.74 3.004 SE
M04 0.628 0.409 0.606 164.500 3.195 SE
M05 0.696 0.236 0.542 161.99 2.057 NE
M06 0.676 0.388 0.564 163.97 3.148 SE
M07 0.681 0.421 0.584 165.47 1.99 SW
M08 0.666 0.435 0.62 167.46 2.926 SE
M09 0.625 0.388 0.494 169.32 3.133 SE
M10 0.549 0.371 0.487 168.23 2.015 SW
M11 0.613 0.371 0.599 167.21 2.185 SW
M12 0.435 0.358 0.551 166.94 6.068 SW
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Table C.3: CochnoHigh Data

Samples Metacercaria Yield Yield2 GrassHeight GrassWeight SoilTemperature
H01 200 0.580 0.058 20.833 345 12.167
H02 0 0 0 18.833 439 13.333
H03 14.286 0.028 0.003 21.500 518 12.733
H04 14.286 0.017 0.002 20.833 820 12.533
H05 57.143 0.119 0.012 18.167 481 13.6
H06 0 0 0 11.667 415 12.2
H07 0 0 0 11.167 184 13.8
H08 14.286 0.024 0.002 18 594 13.3
H09 14.286 0.068 0.007 18.500 210 12.633
H10 0 0 0 17.333 307 12.533
H11 28.571 0.170 0.017 19.167 168 12.267
H12 28.571 0.057 0.006 16 503 12.967

SoilMoisture NDWI NDVI Elevation Slope Aspect
H01 0.744 0.287 0.414 293.670 10.415 NW
H02 0.503 0.416 0.499 283.800 5.226 SE
H03 0.493 0.446 0.449 288.730 2.521 SW
H04 0.489 0.230 0.267 290.610 2.367 SE
H05 0.442 0.396 0.503 283.260 3.488 SE
H06 0.439 0.240 0.201 282.490 4.150 SW
H07 0.555 0.252 0.212 279.070 5.325 SE
H08 0.449 0.428 0.500 288.730 2.366 SE
H09 0.527 0.402 0.421 288.700 1.183 SW
H10 0.594 0.447 0.510 298.580 9.408 SW
H11 0.470 0.459 0.445 289.720 1.543 SE
H12 0.461 0.311 0.477 287.630 3.489 SE
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Table C.4: DumgoyneNorth Data

Samples Metacercaria Yield Yield2 GrassHeight GrassWeight SoilTemperature
N01 14.286 0.020 0.002 24.750 732 15.133
N02 0 0 0 15.167 401 14.9
N03 14.286 0.020 0.002 25.333 711 14.6
N04 42.857 0.064 0.006 17.833 666 14.567
N05 14.286 0.024 0.002 21.667 592 17
N06 28.571 0.048 0.005 19.833 600 15.7334
N07 14.286 0.018 0.002 23 814
N08 28.571 0.038 0.004 24.500 756 14.3
N09 28.571 0.041 0.004 22.333 702 18.533
N10 28.571 0.041 0.004 20 692 14.133
N11 385.714 0.471 0.047 23 819 15.366
N12 14.286 0.029 0.003 23.500 490 18.333

SoilMoisture NDWI NDVI Elevation Slope Aspect
N01 0.561 0.396 0.832 23.550 1.155 W
N02 0.598 0.397 0.827 26.030 1.788 SW
N03 0.673 0.359 0.806 22.600 5.304 SW
N04 0.663 0.370 0.809 24.280 1.705 NE
N05 0.656 0.390 0.831 24.300 1.093 NW
N06 0.586 0.404 0.826 21.880 1.644 SE
N07 0.415 0.832 29.420 4.627 SW
N08 0.630 0.393 0.833 23.520 3.276 SW
N09 0.525 0.402 0.836 25.800 1.734 SW
N10 0.512 0.397 0.839 24.280 1.540 E
N11 0.497 0.413 0.839 24.890 2.637 SE
N12 0.491 0.413 0.821 25.960 1.746 SW
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Table C.5: DumgoyneSouth Data

Samples Metacercaria Yield Yield2 GrassHeight GrassWeight SoilTemperature
S01 14.286 0.052 0.005 13 274 15.133
S02 14.286 0.047 0.005 12.167 302 15.933
S03 42.857 0.168 0.017 10 255 15.967
S04 85.714 0.339 0.034 12 253 15.5
S06 0 0 0 17.833 326 15.4
S07 28.571 0.087 0.009 12.833 328 15.2
S08 0 0 0 18.333 455 15.367
S09 8.667 169 15.933
S11 14.286 0.024 0.002 17.667 603 15.967
S13 57.143 0.174 0.017 14.333 328 15.7
S14 28.571 0.083 0.008 18.667 346 15.167
S15 14.286 0.035 0.004 13.833 404 15.9

SoilMoisture NDWI NDVI Elevation Slope Aspect
S01 0.591 0.305 0.749 25.210 0.545 SW
S02 0.580 0.388 0.823 24.100 0.837 NW
S03 0.636 0.340 0.741 23.910 0.574 NE
S04 0.694 0.315 0.735 23.940 0.182 SW
S06 0.595 0.337 0.764 26.530 0.935 NE
S07 0.564 0.327 0.755 26.650 0.655 SW
S08 0.444 0.315 0.770 28.100 0.581 NW
S09 0.610 0.332 0.772 28.140 0.454 SW
S11 0.641 0.381 0.800 24.410 1.788 SW
S13 0.670 0.333 0.752 23.760 0.908 NW
S14 0.730 0.266 0.704 24.120 1.455 NW
S15 0.610 0.368 0.763 26.940 1.309 SW
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Appendix D

Summary of statistical results in Chapter 4

Table D.1: Shapiro-Wilk normality test results in Chapter4

Variables W-test p-value Distribution
Metacercaria 0.504 8.07E-13 Negative binomial

Yield 0.570 7.08E-12 Negative binomial

NDWI 0.917 0.001 Non-normal

NDVI 0.884 3.65E-05 Non-normal

SoilTemperature 0.959 0.046 Non-normal

SoilMoisture 0.955 0.028 Non-normal

Elevation 0.831 8.80E-07 Non-normal

Slope 0.794 9.69E-08 Non-normal

GrassHeight 0.966 0.094 Normal

GrassWeight 0.927 0.001 Non-normal

Table D.2: Kruskal-Wallis test results in Chapter4

Variables by Fields Kruskal-Wallis chi-squared df p-value
Metacercaria 7.8137 4 0.09864

Yield 11.286 4 0.02353

NDWI 10.111 4 0.0386

NDVI 45.145 4 3.71E-09

Elevation 54.003 4 5.255E-11

SoilTemperature 42.108 4 1.584E-08

GrassWeight 25.945 4 0.00003246
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Table D.3: One-way ANOVA test results in Chapter4

One-way ANOVA test of Slope
Df Sum Square Mean Square F value Pr(>F)

Field 4 19.89 4.971 13.31 0.000000119

Residuals 55 20.54 0.374

One-way ANOVA test of Soil Moisture
Df Sum Square Mean Square F value Pr(>F)

Field 4 0.03229 0.008073 3.736 0.00936

Residuals 54 0.11668 0.002161

One-way ANOVA test of Grass Height
Df Sum Square Mean Square F value Pr(>F)

Field 4 1102.5 275.63 26.44 2.96E-12

Residuals 55 573.4 10.43
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Appendix E

Google Earth Engine JavaScript Codes

/ / Load s t u d y a r e a s
v a r R e s e a r c h F i e l d s = ee . F e a t u r e C o l l e c t i o n ( ’ f t : 140VAcJBmfVFWlkW−O2Wdq
MTB51DkJMjWH8KFZaoz ’ )

. s e t ( {
0 : { l a b e l : ’ F i e l d 1 ’} ,
1 : { l a b e l : ’ F i e l d 2 ’} ,
2 : { l a b e l : ’ F i e l d 3 ’} ,
3 : { l a b e l : ’ F i e l d 4 ’} ,
4 : { l a b e l : ’ F i e l d 5 ’}

} ) ;

/ / Load S e n t i n e l −2 images
v a r S2 = ee . I m a g e C o l l e c t i o n ( ’COPERNICUS / S2 ’ )

. f i l t e r D a t e ( ’2016−01−01 ’ , ’2017−10−10 ’)

. f i l t e r B o u n d s ( R e s e a r c h F i e l d s )

. f i l t e r ( ee . F i l t e r . eq ( ’MGRS_TILE’ , ’ 3 0VVH’ ) ) ;

/ / c l i p s t u d y f i e l d s
v a r m a s k F i e l d s = f u n c t i o n ( image ) {

v a r F i e l d s = image . c l i p T o C o l l e c t i o n ( R e s e a r c h F i e l d s ) ;
r e t u r n image . updateMask ( F i e l d s ) ;

} ;
v a r F i e l d C o l l e c t i o n = S2 . map ( m a s k F i e l d s ) ;

/ / c l o u d f u n c t i o n t o remove c l o u d s
v a r c l o u d f u n c t i o n _ S T 2 = f u n c t i o n ( image ) {

/ / use add t h e c l o u d l i k e l i h o o d band t o t h e image
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v a r q u a l i t y = image . s e l e c t ( " QA60 " ) . unmask ( ) ;
/ / g e t p i x e l s above t h e t h r e s h o l d
v a r c loud01 = q u a l i t y . g t ( 0 ) ;
/ / c r e a t e a mask from high l i k e l i h o o d p i x e l s
v a r c loudmask = image . mask ( ) . and ( c loud01 . n o t ( ) ) ;
/ / mask t h o s e p i x e l s from t h e image
r e t u r n image . updateMask ( c loudmask ) ;

} ;
v a r F i e l d s C l e a r = F i e l d C o l l e c t i o n . map ( c l o u d f u n c t i o n _ S T 2 ) ;

/ / NDVI f u n c t i o n
v a r addNDVI = f u n c t i o n ( image ) {

v a r ndv i = image . n o r m a l i z e d D i f f e r e n c e ( [ ’ B8 ’ , ’B4 ’ ] ) . rename ( ’NDVI ’ ) ;
r e t u r n image . addBands ( ndv i ) ;

} ;
v a r S2NDVI = F i e l d s C l e a r . map ( addNDVI ) ;
p r i n t ( S2NDVI ) ;

/ / Ex po r t NDVI images
Ex po r t . t a b l e . t o D r i v e ( S2NDVI . s e l e c t ( ’NDVI ’ ) , ’NDVI ’ ) ;
v a r s i z e = S2NDVI . s i z e ( ) . g e t I n f o ( ) ;
f o r ( v a r i = 0 ; i < s i z e ; i ++) {

v a r img = ee . Image ( S2NDVI . t o L i s t ( 1 , i ) . g e t ( 0 ) ) ;
Ex po r t . image . t o D r i v e ( {

image : img . s e l e c t ( ’NDVI ’ ) ,
d e s c r i p t i o n : i . t o S t r i n g ( ) ,
r e g i o n : e x p o r t a r e a 1

} ) ;
}

/ / r e s a m p l i n g
v a r r e sampl ingB8 = f u n c t i o n ( image ) {

v a r p r j = image . s e l e c t ( ’ B8 ’ ) . p r o j e c t i o n ( ) / / UTM
v a r r e s a m p l e d = image . s e l e c t ( ’ B8 ’ ) . r e d u c e R e s o l u t i o n ( {

r e d u c e r : ee . Reducer . median ( )
} )

. r e p r o j e c t ( p r j . s c a l e ( 2 , 2 ) )

. rename ( ’ B8_20 ’ ) ;
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r e t u r n image . addBands ( r e s a m p l e d ) ;
} ;
v a r r e s a m p l e d = F i e l d s C l e a r . map ( re sampl ingB8 ) ;

/ / NDWI f u n c t i o n
v a r addNDWI = f u n c t i o n ( image ) {
v a r ndwi=image . n o r m a l i z e d D i f f e r e n c e ( [ ’ B8_20 ’ , ’ B11 ’ ] ) . rename ( ’NDWI’ ) ;
r e t u r n image . addBands ( ndwi ) ;
} ;
v a r S2NDWI = r e s a m p l e d . map ( addNDWI ) ;
p r i n t (S2NDWI ) ;

/ / NDWI c h a r t
v a r chartNDWI = u i . C h a r t . image . s e r i e s B y R e g i o n ( {

i m a g e C o l l e c t i o n : S2NDWI . s e l e c t ( ’NDWI’ ) ,
r e g i o n s : R e s e a r c h F i e l d s ,
r e d u c e r : ee . Reducer . mean ( ) ,
s c a l e : 25

} ) ;
chartNDWI . s e t O p t i o n s ( {

t i t l e : ’NDWI B8_20&B11 2016 ’ ,
vAxis : {

t i t l e : ’NDWI’
} ,
l i n e W i d t h : 1 ,
p o i n t S i z e : 4 ,
s e r i e s : {

0 : { c o l o r : ’00 f f80 ’ } ,
1 : { c o l o r : ’ f f0000 ’ } ,
2 : { c o l o r : ’ f f f f 0 0 ’ } ,
3 : { c o l o r : ’0080 f f ’ } ,
4 : { c o l o r : ’ d358f7 ’ }

}
} ) ;
p r i n t ( chartNDWI ) ;

/ / Count c l e a r NDWI p i x e l s
v a r countNDWI = u i . C h a r t . image . s e r i e s B y R e g i o n ( {
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i m a g e C o l l e c t i o n : S2NDWI . s e l e c t ( ’NDWI’ ) ,
r e g i o n s : R e s e a r c h F i e l d s ,
r e d u c e r : ee . Reducer . c o u n t ( ) ,
s c a l e : 25

} ) ;
countNDWI . s e t O p t i o n s ( {

t i t l e : ’NDWI p i x e l s ’ ,
vAxis : {

t i t l e : ’NDWI’
} ,
s e r i e s : {

0 : { c o l o r : ’00 f f80 ’ } ,
1 : { c o l o r : ’ f f0000 ’ } ,
2 : { c o l o r : ’ f f f f 0 0 ’ } ,
3 : { c o l o r : ’0080 f f ’ } ,
4 : { c o l o r : ’ d358f7 ’ }

}
} ) ;
p r i n t ( countNDWI ) ;

/ / Ex po r t NDWI images
Ex po r t . t a b l e . t o D r i v e (S2NDWI . s e l e c t ( ’NDWI’ ) , ’NDWI B8_20&B11 ’ ) ;
v a r s i z e = S2NDWI . s i z e ( ) . g e t I n f o ( ) ;
f o r ( v a r i = 0 ; i < s i z e ; i ++) {

v a r img = ee . Image (S2NDWI . t o L i s t ( 1 , i ) . g e t ( 0 ) ) ;
Ex po r t . image . t o D r i v e ( {

image : img . s e l e c t ( ’NDWI’ ) ,
d e s c r i p t i o n : i . t o S t r i n g ( ) ,
r e g i o n : e x p o r t a r e a 1

} ) ;
}

/ / V i s u a l i z e NDWI images
Map . c e n t e r O b j e c t ( R e s e a r c h F i e l d s , 1 2 ) ;
Map . addLayer (S2NDWI . s e l e c t ( ’NDWI’ ) ) ;
Map . addLayer ( S2NDVI . s e l e c t ( ’NDVI ’ ) ) ;
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