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Abstract 

 

ERp27 is a 27.7 kDa redox-inactive member of the protein disulphide isomerase (PDI) 

family. It was found to interact with another PDI member, the well-known thiol-

oxidoreductase ERp57 (58 kDa) in vitro. Although it is known that ERp57 interacts with 

ERp27 in vitro this interaction was not investigated in living cells. In this research project 

we applied in vitro and in cellulo approaches to investigate the same interaction of ERp57 

and ERp27 then to compare it to the interaction of ERp57/calnexin (CNX)/calreticulin 

(CRT) complex to determine if the ERp57 interaction with ERp27 competes with the 

ERp57/CNX/CRT complex. Additionally, we investigated the physiological role of ERp27. 

Protein expressions and purifications were carried out by the Nickel agarose affinity 

chromatography to obtain sufficient amount of proteins for analysis. Additionally, 

proteins were purified by gel filtration-chromatography. The interaction between purified 

ERp27 and ERp57 was determined using isothermal titration calorimetry (ITC) and by 

chemical cross-linking. The ITC results confirmed the interaction between ERp57 and the 

lectin CRT. However, we could not detect an interaction between ERp57 and ERp27 

possibly due to low protein concentrations. Moreover, the in vitro cross-linking results 

were in agreement with the previous research and verified the binding of ERp57 with 

ERp27. However, in cellulo chemical cross-linking suggested that the same interaction 

does not occur in living cells. Nevertheless, this investigation revealed that ERp27 binds to 

other proteins in cellulo. Mass spectrometry results have identified protein candidates 

that interact with ERp27 in living cells which are the PDI homologous P5 and the ER 

oxidoreductin Ero1. These results provide new insights of the role of ERp27 and provide 

suggestions for further research.  
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1 Main introduction 
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1.1 The endoplasmic reticulum (ER) 

 

The endoplasmic reticulum (ER) is an organelle that consists of various domains which 

have distinct functions. However, it is a continuous membrane that includes; the nuclear 

envelope (NE) (Watson, 1955), the rough ER (RER), and the smooth ER (SER) (Dallner et 

al., 1963, Palade and Siekevitz, 1956). There are morphological differences between the 

two types of ER which can be visually distinguished (Baumann and Walz, 2001, Voeltz et 

al., 2002). The RER is more granulated in texture because of the ribosomes that covers its 

surface compared to the SER which is more convoluted or coiled. This variation in their 

manifestation is directly related to their functions as the ribosomes that covers the RER 

are responsible for protein synthesis (Prinz et al., 2000, Rolls et al., 2002, Simon and 

Blobel, 1991).  

Consequently, the abundance of either the SER or the RER varies among different cells 

depending on their functions. Accordingly, cells that secrete synthesised proteins will 

mostly contain the RER (Dallner et al., 1963). However, one type of the SER that is 

abundant in cells is transitional ER which is involved in protein packaging and 

transportation to the Golgi apparatus (Palade, 1975, Hobman et al., 1998). The ER 

proteins have different functions which include; protein integration into the membrane, 

calcium ion storage in the ER lumen and their regulated release in the cytosol (Meldolesi 

and Pozzan, 1998), protein folding (Braakman and Hebert, 2013), synthesis, and 

modification in the ER lumen, synthesis of phospholipids in the cytosolic leaflet of the ER 

membrane (Voeltz et al., 2002, Fagone and Jackowski, 2009). 

The SER is particularly found in specific cells and the activities it plays in each cell type 

varies. It is the site for steroid synthesis in steroid-synthesising cells (Black et al., 2005) 

whereas it is significant for detoxification of substances within the liver cells (Ishizuki et 

al., 1983). Furthermore, in muscles and neurons it is known as the sarcoplasmic reticulum 

membrane and mostly involved in the calcium uptake and release for muscle contractions 

such as the heart (Gao et al., 2017, Voeltz et al., 2002). 

In this research project the ER is very significant as it is the place where almost one third 

of both secretory and membrane proteins are synthesised and folded (Kaufman, 1999). 

Unfolded proteins will be corrected by ER chaperones as only correctly folded protein will 
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be exported out of the ER to the Golgi apparatus and will be able to function either as 

secretory or membrane proteins (Ariyasu et al., 2017, Ron and Walter, 2007). 

The permanently misfolded proteins will be targeted for Endoplasmic Reticulum 

Associated Degradation (ERAD) (Ellgaard and Helenius, 2003), which is a machinery that 

can cope with a certain number of misfolded proteins which are produced under normal 

cellular conditions but not under ER stress (Kaneko et al., 2017). However, under ER stress 

when more misfolded proteins are produced in an overwhelming way, exceeding 

capacities of both the ER and ERAD, then cells will enter apoptosis (Hacker, 2000). The 

cells have a defence system that can protect them in such circumstances called the 

Unfolded Protein Response (UPR) or also known as ER stress response (Ariyasu et al., 

2017, Yoshida, 2007). 
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1.2 Protein folding and synthesis in the ER 

 

Protein folding is the initial step for proteins entering the secretory pathway. These 

proteins are initially targeted to the endoplasmic reticulum (ER) which is the entry point 

for the secretory pathway (Vitale and Denecke, 1999, Jin et al., 2017). In mammalian cells, 

typically but not exclusively, proteins are translocated into the ER by the recognition of a 

single sequence in the N-terminus of the protein (Braakman and Bulleid, 2011, High, 

1995). The single recognition particle (SRP) will recognise the signal sequence then the 

resulting complex of the nascent peptide chain/ribosome/SRP will be delivered to the ER 

membrane through the SRP receptor then directed to the proteinaceous pore within the 

membrane called the Sec61 translocon (Alder et al., 2005) which allows the growing 

polypeptide chain across the membrane and into the ER (Sitia and Braakman, 2003, 

Braakman and Bulleid, 2011, Helenius et al., 1992, Dejgaard et al., 2010). 

The folding commences co-translationally/translocationally with the aid of folding factors 

and continues posttranslationally until proteins reach their native protein structure (Sitia 

and Braakman, 2003, Rutkevich et al., 2010, Braakman and Bulleid, 2011). As proteins fold 

they form disulphide bonds (Feige and Hendershot, 2011), the formation, isomerisation, 

and reduction of which is catalysed by thiol oxidoreductases of the protein disulphide 

isomerase (PDI) family (Rutkevich et al., 2010, Poet et al., 2017). Protein folding can be 

interrupted by some dysfunctions such as cystic fibrosis (CF) in humans which is caused by 

inherited mutations (Kim and Skach, 2012). 

Despite the aid of the folding factors in the ER, proteins occasionally fail to achieve their 

correctly folded state and end up misfolded (Credle et al., 2005). To ensure these toxic 

particles are eliminated, cells adopt a protein quality control system that is able to control 

diseases such as systemic amyloid disease (Chen et al., 2015). The best characterised 

pathway is ERAD (Vembar and Brodsky, 2008, Ellgaard and Helenius, 2003). ERAD plays a 

key role in ER homeostasis as the inactivation of ERAD would result in accumulation of 

misfolded proteins in the membrane and the lumen of the ER (Hebert and Molinari, 

2007). The misfolded proteins amount varies considerably caused by different reasons; 

mutations, shortage of chaperone availability, or sub stoichiometric amounts of binding 

partners (Ruggiano et al., 2014). 
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In most cases, the misfolded proteins become substrates for ERAD which clears the ER of 

harmful species. The inactivation of ERAD will result in accumulation of misfolded 

proteins which cause a situation known as ER stress which is a common status for 

disorders such as prion accumulation; Alzheimer’s (Honjo et al., 2017) and Parkinson’s 

diseases (Hartl and Hayer-Hartl, 2009, Ruggiano et al., 2014, Ron and Walter, 2007, 

Walter and Ron, 2011). 
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1.3 ER stress and quality control 

 

Protein quality control is a unique mechanism for adaptation to ER stress. The ER is 

essential for synthesising proteins and the lipid membrane as it is the first organelle that 

the newly synthesised protein passed through (Jin et al., 2017, Alder et al., 2005). It is 

found that ER stress, inflammatory responses, and oxidative stress triggers a major 

defence system that helps cells survive any stress circumstances caused by either 

physiological, pathological, or biochemical stimuli and possibly adapt to it (Harding et al., 

2003). A highly specific signalling pathway has evolved in the ER named the unfolded 

protein response (UPR) (Merksamer and Papa, 2010). 

The UPR works by increasing the capacity of protein folding and decreasing the rate of 

protein translation. There are three branches which operate in parallel. Each of these 

branches are categorised by a number of ER-signalling components and classified as a 

distinct arm of the UPR. The ER membrane bound transducers are; Inositol Requiring 

Enzyme 1 (IRE1) (Karagoz et al., 2017), Activating Transcription Factor 6 (ATF6) (Adachi et 

al., 2008), and Double-stranded RNA-Activated Protein Kinase (PERK) (Jin et al., 2017, 

Walter and Ron, 2011). 

This way the UPR helps cells to adapt to stress situations and survive conditions of 

abnormalities. However, when homeostasis of protein folding cannot be achieved then 

the UPR will adopt a programme for cell death (Dandekar et al., 2015, Ron and Walter, 

2007). 
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Figure 1.1, The mechanism of mammalian ER stress response. 

This pathway consists of four steps; (1) translational attenuation, (2) expression of ER chaperones, 

(3) ERAD, and (4) apoptosis. The accumulation of unfolded proteins induces ER stress. 

Accordingly, cells will induce ER stress to cope (Yoshida, 2007). 
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1.3.1 Inositol requiring enzyme (IRE1) 

 

IRE1 is the most conserved transducer in the ER as it contains both endoribonuclease and 

Ser/Thr kinase activities. It is known as one of the unfolded proteins sensors in the ER 

membrane. Two IRE1 genes exist in the mammalian genome; IRE1α and IRE1β. IRE1α is 

expressed in almost all types of cells while IRE1β is restricted to the intestinal epithelial 

cells (Tirasophon et al., 2000). IRE1 binds to the ER chaperone Bip which adjusts 

homeostasis of the UPR (Pincus et al., 2010). IRE1 can detect unfolded protein in the ER 

via its luminal domain. However, it has another domain, the cytoplasmic domain that 

contains ribonuclease (RNase) and kinase activities (Dandekar et al., 2015, Yoshida, 2007). 

Under ER stress conditions, IRE1 α was found to be homo dimerised and auto-

phosphorylated to activate its RNase activity (Sha et al., 2009). The non-conventional 

splicing of the mRNA encoding X-box binding protein 1 (XBP1) is catalysed by the 

activation of IRE1 α. XBP1 protein activation is encoded by the spliced XBP1 mRNA. It 

functions as a powerful transcriptional factor to activate various ER chaperones and 

enzymes to be able to promote protein folding, secretion of correctly folded proteins as 

well as degradation of misfolded proteins (Dandekar et al., 2015, Yoshida et al., 2001, 

Ariyasu et al., 2017, Credle et al., 2005). 

IRE1 activation will convert XBP1 pre-mRNA (XBP1 (U) mRNA) into the mature mRNA 

(XBP1 (S) mRNA) in an unconventional splicing reaction. This mature form codes for a 

protein that possesses a DNA binding domain and a transcriptional activation domain. 

The unconventional splicing of XBP1 (U) mRNA removes 26 bp, to allow translation of the 

active XBP1 (S) (Sha et al., 2009). XBP1 (S) translocates to the nucleus to bind unfolded 

protein response elements (UPRE). Such binding enhances the expression of genes 

involved in ERAD by forming a heterodimer with ATF6 (Yoshida et al., 2001). 

IRE1 recognises the specific stem-loop RNA structure of XBP1 (U) mRNA for splicing which 

forms a complex with the nascent XBP1 polypeptide chain and ribosome and in turn 

stabilises XBP1 (U) mRNA on the ER membrane leading to efficient splicing by IRE1. 

Translational pausing of XBP1 (U) mRNA is mediated by a peptide module at the carboxyl 

domain which is required for efficient targeting to the membrane of the ER and splicing of 

XBP1 (U) mRNA by IRE1 (Yanagitani et al., 2011). Additionally, XBP1 is regulated at the 
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protein level. As an example, XBP1 (U) proteins and XBP1 (S) form a complex then under 

regular cellular conditions, they undergo rapid proteasome degradation. That in turn 

inhibits the transcription of target genes of XBP1 (S) during the ER stress recovery phase 

(Yoshida et al., 2006). 

IRE1 RNase activity is involved in a mechanism termed regulated IRE1-dependent decay 

of mRNA (RIDD). This mechanism is responsible for selectively degrading ER-associated 

mRNA coding secretory or membrane proteins, leading to unburden the protein load of 

the ER. mRNA coding ER chaperones which stabilises the ER avoid RIDD by an unknown 

mechanism. Yet, it remains unknown how Ire1 recognises RIDD targets (Hollien et al., 

2009, Hollien and Weissman, 2006). 
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Figure 1.2, The IRE1 pathway for ER stress and quality control. 

This model shows UPR induction where the Ire1 luminal domain interacts with the Bip ATPase 

domain. This interaction is abrogated when unfolded protein binds Bip. Trans-

autophosphorylation and oligomerization activates IRE1. After that, Ire1 converts the XBP1 (U) 

mRNA to XBP1 (S) mRNA by frame-switch splicing resulting in production of XBP1 (S) mRNA. XBP1 

(S) mRNA translocates to the nucleus and forms a heterodimer with ATF6 (N) that enhances the 

gene expression of ERAD (Ariyasu et al., 2017). 
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1.3.2 Double-stranded RNA-activated protein kinase (PERK) 

 

In the ER lumen, PERK is considered one of the most important ER stress UPR arms. 

Similar to Ire1, PERK is capable of detecting the accumulation of unfolded proteins using 

its luminal domain which is vital when in association with Bip (Carrara et al., 2015, 

Bertolotti et al., 2000). Under ER stress conditions, PERK is activated by trans-

autophosphorylation and oligomerisation. This activation leads to inactivation of the 

eukaryotic translation initiation factor 2 (eIF2α) which leads to general inhibition of 

protein translation (Cui et al., 2011, Harding et al., 1999). 

It remains unknown how PERK detects unfolded proteins in the ER lumen. However, there 

is a proposed induction of the UPR in which the ER chaperone, Bip, interacts with both 

PERK and Ire1 luminal domains. This interaction is abrogated when unfolded proteins 

bind Bip (Bertolotti et al., 2000, Carrara et al., 2015). 

There are chemical inhibitors which inhibit dephosphorylation of eIF2α such as 

guanabenz (GBZ), a selective inhibitor of eIF2α in eukaryotes. It blocks dephosphorylation 

mediated by virus protein as well as viral replication to protect cells from stress generated 

by protein accumulations (Tsaytler et al., 2011). Salubrinal is another eIF2α inhibitor that 

selectively binds to a regulatory subunit of protein phosphatase 1, PPP1R15A/GADD34, to 

prolong phosphorylation in human cells and accordingly managing protein levels and 

production rates by available chaperones. Subsequently, allows protein folding and 

thereby rescue cells from protein misfolding and stress (Boyce et al., 2005). In addition, 

similar to GBZ, sephin1 also binds and inhibits the stress-induced PPP1R15A, but not 

PPP1R15B, to prolong the phospho-signalling pathway preventing lethality of protein 

misfolding stress (Das et al., 2015). These inhibitors suggest that PERK has cytoprotective 

effects. 

It has been established that eIF2α activates translation of particular genes which have 

short open reading frames in their 5’ region and that increase the translation of other 

genes such as Activating Transcription Factors 4 (ATF4) (Harding et al., 1999, B'chir et al., 

2013) after eIF2α phosphorylation. This gene is involved in metabolism and is resistant to 

oxidation stress and provides a cytoprotective effect in the early stages of ER stress 

(Harding et al., 2000, Harding et al., 2003). The ATF4 activates C-EBP-homologous Protein 
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(CHOP) (Oyadomari and Mori, 2004) which is a proapoptotic transcription factor in later 

stages of ER stress. Accordingly, PERK was found to have two different effects on the cell 

by being both cytoprotective and apoptotic. Moreover, PERK is believed to have a role in 

determining cell fate under ER stress conditions (Liu et al., 2015). 

 

Figure 1.3, The PERK pathway of ER quality control. 

The luminal domain of PERK interacts with the ATPase domain of Bip which dissociates upon 

unfolded protein binding to Bip. ATF4 factor enhances amino acid transport, oxidation and 

apoptotic genes. Phosphorylated eIF2α will get dephosphorylated by CReP, GADD34, and P58IPK 

(Ariyasu et al., 2017). 
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1.3.3 Activating transcription factor 6 (ATF6) 

 

ATF6 is a sensor protein that is localised in the ER membrane. It also functions as a bZip 

transcription factor that enhances the expression of ER chaperone genes. ATF6 is 

translocated to the ER through Coat Protein Complex II (COPII) vesicles which transport it 

from the ER to the Golgi apparatus (Chen et al., 2002), where it undergoes Regulated 

Intramembrane Proteolysis (RIP) by Site-1 and Site-2 proteases (Ye et al., 2000, Chen et 

al., 2002). There are two models for ATF6 stress sensing mechanisms; the first model 

suggests that under ER stress, the ER chaperone Bip will dissociate from ATF6 uncovering 

the Golgi localisation signal of ATF6 which accordingly leads to the translocation of the 

ATF6 to the Golgi (Chen et al., 2002, Schindler and Schekman, 2009). In the second model, 

under normal cellular conditions the ATF6 luminal domain forms either dimers or 

oligomers by intramolecular disulphide bonds. However, under stress conditions the ATF6 

disulphide bonds are cleaved and the monomeric form of the ATF6 translocates to the 

Golgi (Nadanaka et al., 2007, Sato et al., 2011). 

The N-terminal bZip domain of ATF6 (N) is released from the Golgi by RIP and enters the 

nucleus, then through ER stress-response element (ERSE) it will upregulate the expression 

of the genes (Yoshida et al., 1998). In the promoter region of the mammalian UPR, a 

unique sequence was found consisting of 19 nucleotides (CCAAT-N9-CCACG) designated 

ERSE. A general transcription factor (NF-Y) also known as (CBF) was confirmed to bind to 

CCAAT part of ERSE. Additionally, the CCACG part was found to be very specific to the 

mammalian UPR (Roy and Lee, 1999, Yoshida et al., 2000). ER chaperone genes and 

folding enzyme genes are ATF6 (N) targeted genes involved in the ER quality control 

(Yoshida et al., 2001, Belmont et al., 2010). There are two isoforms of the ATF6 expressed 

ubiquitously in mammals; ATF6α and ATF6β (Haze et al., 2001, Haze et al., 1999, Thuerauf 

et al., 2007). It was found that a single knockout in mice (KO) of either isoform sensitises 

the animals to ER stress, however, does not have any lethal effect. Yet, when a double 

knockout (KO) of ATF6 α and β was carried out it was embryonic lethal for reasons which 

are unknown (Ariyasu et al., 2017, Yamamoto et al., 2007). 
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Figure 1.4, The ATF6 pathway for ER quality control. 

In this model unfolded proteins are detected by ATF6 and translocated to the Golgi apparatus. 

When in the Golgi, ATF6 gets cleaved by the proteases (S1P) and (S2P) and ATF6 (N), the N-

terminal form gets translocated to the nucleus and binds the ERSE to enhance transcription with 

ER chaperone genes by forming a heterodimer with NF-Y (Ariyasu et al., 2017). 
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1.4 Protein disulphide isomerase (PDI) family of enzymes and 

disulphide bond formation 

 

The protein disulphide isomerase (PDI) family is a group of proteins that comprises about 

20 members which can be catalytically active or inactive (Tannous et al., 2015). It includes 

proteins that have similar sequences, domain structure and localisation in the ER. These 

proteins localise to the ER lumen or to the luminal side of the ER membrane and share a 

common domain structure, which is the thioredoxin fold (Atkinson and Babbitt, 2009). 

The PDI family is critical for the process of disulphide bond formation, isomerisation and 

reduction (Rutkevich et al., 2010). Although the name of the family suggests that all 

members have a role in protein disulphide isomerisation, only a subset are able to 

efficiently catalyse isomerisation (Ellgaard and Ruddock, 2005). 

Protein stability is enhanced by disulphide bonds which also regulate redox-dependant 

functions (Bastolla and Demetrius, 2005). In the ER, PDI family members catalyse the 

formation of disulphides (Kosuri et al., 2012). Following co-translational translocation into 

the ER, disulphides can be formed between residues that come within close proximity 

even if they are not linked in the final native structure. Such non-native disulphides are 

predominant in the misfolded protein. However, they can still be intermediates in normal 

folding (Jansens et al., 2002, Hatahet and Ruddock, 2009, Bulleid and Ellgaard, 2011). 

Non-native disulphides can prevent correct folding and therefore have to be reduced for 

the native disulphide to form and this process is also catalysed by a PDI family member 

(Jansens et al., 2002, Kosuri et al., 2012). Thus, PDI family members are crucial enzymes 

for the formation and reduction of disulphide bonds for protein correct folding in the ER 

(Hatahet and Ruddock, 2009, Feige and Hendershot, 2011). 

Disulphide bond formation requires PDI to be oxidised (Ellgaard and Ruddock, 2005). 

There are a number of pathways for disulphide exchange proteins to be oxidised by 

specific oxidases, including Ero1, peroxiredoxin (Prx4) (Tavender et al., 2010), glutathione 

peroxidase (Gpx 7 and 8) (Nguyen et al., 2011), and vitamin K epoxide reductase (VKOR) 

(Schulman et al., 2010). The enzyme quiescin sulfhydryl oxidase (QSOX) is an exception as 

the pathway for disulphide oxidation is not as well characterised. In addition, QSOX is 

capable of oxidising polypeptides directly and does not require a disulphide exchange 
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protein such as PDI as the enzyme itself contains thioredoxin domains (Bulleid and 

Ellgaard, 2011). 

 

Figure 1.5, PDI family members exchange disulphides with substrate protein. 

In newly synthesised proteins entering the ER, cysteine pairs form disulphide bonds following a 

disulphide exchange reaction with a PDI family member. Native and non-native disulphides can be 

formed as a result of the exchange with PDI members. Non-native disulphides will be subjected to 

isomerisation, either directly or through cycles of reduction and oxidation to form the native 

disulphide (Bulleid and Ellgaard, 2011). 
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1.5 Disulphide bond formation pathways 

1.5.1 ER oxidase 1 (Ero1) pathway 

 

This pathway is the best characterised pathway for disulphide bond formation. The 

fundamental steps are comparable between yeast and mammals (Appenzeller-Herzog et 

al., 2008). Here the major contributors to disulphide bond formation are Ero1 and PDI 

family of oxidoreductases. There is only one isoform, called Ero1p, in yeast (Pollard et al., 

1998, Frand and Kaiser, 1998) while there are two isoforms present in mammals; Ero1 α 

and Ero1 β, which are similar in function but distributed in different tissues (Cabibbo et 

al., 2000, Pagani et al., 2000). However, the primary enzyme oxidised by both is PDI (Pdip 

in yeast and PDIA1 in mammals), although, other members of the family might be 

substrates (Inaba et al., 2010). 

The oxidation power of molecular oxygen is used by Ero1 to create a disulphide bond 

within PDI de novo (Frand and Kaiser, 1999). For disulphide bonds to form, electron flow 

is necessary and they move from the client to PDI and then to Ero1 (Benham et al., 2013). 

PDI is also capable of isomerisation of disulphide bonds within a client protein (Hatahet 

and Ruddock, 2009). To reduce molecular oxygen, producing hydrogen peroxide during 

the process, Ero1 uses the cofactor flavin adenine dinucleotide (FAD) (Tu and Weissman, 

2002, Gross et al., 2006). 

In this pathway within mammalian cells, PDI depends on its thioredoxin domains a and a’ 

(Kozlov et al., 2010a). These domains are separated by two thioredoxin-like b domains 

arranged as abb’xa’ (Tian et al., 2006, Tian et al., 2008). The linker region x is significant 

for modulating client proteins binding to PDI (Nguyen et al., 2008, Wang et al., 2010). The 

a-type domains of PDI contain CGHC active sites. The high biochemical reduction 

potential of the active sites (- 180 mV) makes PDI thermodynamically suitable for 

donating electrons to reduced protein clients (Lundstrom and Holmgren, 1993, Benham 

et al., 2013). 

During disulphide bond formation, the PDI a domain is oxidised by it’s a’ domain which is 

itself oxidised by Ero1 α (Araki and Nagata, 2011, Baker et al., 2008, Chambers et al., 

2010). The transfer of a disulphide bond from Ero1 α to the PDI a’ domain of the PDI is 

affected by the cysteine pair C94xxxxC99 region within a flexible loop of Ero1 α (Masui et 
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al., 2011). Reversibly, the C94xxxxC99 site of Ero1 α receives a disulphide bond from 

C394xxC397 which is close to FAD (Masui et al., 2011, Gross et al., 2004, Benham et al., 

2013). A similar mechanism occurs in yeast by Ero1p (Sevier and Kaiser, 2006b). There are 

other oxidation pathways alongside Ero1 which are explained in the sections below. 

 

Figure 1.6, Schematic showing the interaction between Ero1-Lα and human PDI. 

The four thioredoxin domains of human PDI are arranged in a U-shape where the a and a’ 

domains are facing each other. The b’ x a’ fragment of the human PDI provides the essential Ero1-

Lα binding site. The cysteine pair Cys94-Cys99 of Ero1-Lα face the active site of the a’ domain of the 

human PDI (Wang et al., 2009). 
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1.5.2 Peroxiredoxin IV pathway 

 

Peroxiredoxin IV (PrxIV) is an ER localised enzyme that can act as electron acceptor for 

PDI and in turn uses hydrogen peroxide as a terminal electron acceptor. PrxIV belongs to 

the family of 2-cysteine peroxiredoxins that share a similar structure and mechanism (Cao 

et al., 2011, Tavender et al., 2008). 

The first step of this pathway is the formation of sulfenylated cysteines at the peroxidatic 

cysteine active site by reaction with hydrogen peroxide in the ER. PrxIV forms a decamer 

in a donut-like shape that contains five dimers (Cao et al., 2011). Each polypeptide within 

the dimeric structure contains a peroxidatic cysteine. There is a conformational change in 

the dimer on sulfenylation which brings the peroxidatic cysteine into close proximity to 

the resolving cysteine on an adjacent polypeptide. That will then form a disulphide bond 

which can easily accept electrons from PDI and oxidise its active site. Consequently, for 

each oxygen molecule reduced, a disulphide will be formed in PDI by Ero 1 and another 

one will be formed by PrxIV after the reduction of hydrogen peroxide to water (Tavender 

et al., 2010, Bulleid, 2012). Under ER stress, PrxIV has a cytoprotective effect which is due 

to the metabolism of hydrogen peroxide produced by Ero1. Additionally, PrxIV provides a 

sensor for hyperoxidising conditions within the ER by becoming hyperoxidised after 

extreme oxidative stress (Tavender and Bulleid, 2010). 
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1.5.3 Glutathione peroxidases 7 and 8 (Gpx7 and Gpx8) 

 

There are two peroxidases localised to the ER lumen in addition to PrxIV. Gpx 7 is a 

soluble protein, however, Gpx 8 is a type I membrane protein. Both have an ER retrieval 

sequence at their carboxyl terminal. They have been shown to drive the oxidation of PDI 

in vitro (Nguyen et al., 2011). 

Their proposed mechanism involves the oxidation of the catalytic cysteine by hydrogen 

peroxide which results in the formation of sulfenylated cysteine. This particular cysteine 

can then accept electrons from PDI family members and form mixed disulphides between 

Gpx 7/8 and PDI, which will resolve the second cysteine on the active site of the PDI to 

form oxidised PDI (Bulleid, 2012, Wang et al., 2014). 
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Figure 1.7, Other alternative pathways for the oxidation of PDI involving members of the 

peroxidase family; Gpx7/8 or PrxIV. 

The first step of both cycles is to form sulfenylated cysteine by oxidation of the active site 

cysteine. This residue will be resolved by the PDI active site in Gpx7/8 or the adjacent cysteine in 

PrxIV. The reduced PDI will recycle PrxIV to re-generate a free thiol within the active site then 

PrxIV becomes oxidised. In Gpx7/8 all the mixed disulphide will be resolved to a second cysteine 

in the active site of PDI in order to form oxidised PDI (Bulleid, 2012). 
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1.5.4 Vitamin K epoxide reductase (VKOR) 

 

Ero 1 and peroxidase pathways have been known to be the main pathways for electron 

flow during disulphide bond formation. However, their absence does not prevent 

disulphide bond formation in mammalian cells. It was proved that in the absence of Ero 1, 

PrxIV, and Gpx 7/8 there is an alternative oxidative pathway derived from the activity of 

vitamin K epoxide reductase (VKOR). VKOR is a cofactor for blood coagulation important 

for ϒ carboxylation of glutamate residues in proteins (Jin et al., 2007). This enzyme is 

capable of donating electrons to vitamin K and vitamin K epoxide resulting in the 

formation of vitamin K hydroquinone (Berkner, 2008, Jin et al., 2007, Rutkevich and 

Williams, 2012). 

Active site cysteines in the transmembrane domain of VKOR will form disulphide bonds 

within VKOR by donating electrons to vitamin K epoxide. Those electrons are then 

transferred through an internal disulphide exchange reaction to form a disulphide 

between two cysteines within the luminal domain of VKOR (Jin et al., 2007, Schulman et 

al., 2010). PDI members can exchange electrons with VKOR to form a disulphide within 

the PDI active site (Bulleid, 2012, Braakman and Bulleid, 2011, Rishavy et al., 2011). 
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Figure 1.8, VKOR oxidation pathway for PDI. 

VKOR, a membrane protein, also has the ability to oxidise PDI family members. It contains two 

cysteines in the transmembrane domain which can form a disulphide after the donation of 

electrons to either vitamin K epoxide (KO) or vitamin K (K) and generate vitamin K hydroquinone 

(KH2). The formed disulphide can exchange with the cysteines in the VKOR luminal domain. The 

disulphide can be reduced by the activity of the PDIs TMX1, TMX4, and ERp18 leading to the 

oxidation of these proteins (Bulleid, 2012). 
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1.5.5 QSOX 

 

This pathway is quite unique compared to the previous pathways. This enzyme is capable 

of oxidising polypeptides directly without requiring disulphide exchange protein as it 

possesses a flavoenzyme domain like Ero1 and a PDI-like thioredoxin domain (Kodali and 

Thorpe, 2010). The polypeptide donates electrons which will be accepted by the 

thioredoxin domain and passed directly to the FAD via an internal disulphide exchange 

reaction (Heckler et al., 2008). 

Hence, QSOX is an efficient disulphide catalyst and capable of introducing covalent bonds 

to a large number of protein substrates. Human QSOX was found to fulfil the function of 

Ero1p in yeast when overexpressed (Chakravarthi et al., 2007). A couple of aspects may 

affect the QSOX function. One factor is that the amount of ER localised enzyme maybe 

limited as most of the intracellular protein is localised to the Golgi apparatus 

(Chakravarthi et al., 2007). Additionally, QSOX contains transmembrane domain which 

could restrict the catalysis of soluble substrates (Bulleid, 2012, Rutkevich and Williams, 

2012). 
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1.6 Protein disulphide isomerase (PDI) protein 

 

The PDI protein is the main member of the family and the best characterised ER thiol 

oxidoreductase in the ER. The domain structure of PDI revealed four thioredoxin-like 

domains: a, b, b’, and a’ followed by an acidic carboxyl terminal c-domain (Ellgaard and 

Frickel, 2003, Apperizeller-Herzog and Ellgaard, 2008, Kozlov et al., 2010a). The a and a’ 

are catalytically active (Ellgaard and Ruddock, 2005) whereas the b and b’ domains are 

non-catalytic. The b’ domain contains the substrate binding site. However, the b domain 

function is still unclear (Appenzeller-Herzog et al., 2008, Feige and Hendershot, 2011). 

 

Figure 1.9, The domain structure of the PDI protein. 

The diagram shows the catalytic a and a’ domains which contain the CXXC active sites and the 

non-catalytic b and b’ domains. 

The PDI protein is a multi-functional member of the thioredoxin superfamily. It catalyses 

the formation of native disulphides of peptide chains either from the reduced form or 

randomly joined disulphides (Wang and Tsou, 1993, Ellgaard and Ruddock, 2005). In 

proteins, disulphide bonds are covalent bonds that form between pairs of cysteine side 

chains and play a crucial role in stabilising the protein structure during protein folding 

(Oka and Bulleid, 2013, Appenzeller-Herzog et al., 2008). 

PDI was considered for a long time to be the only catalytic disulphide forming enzyme in 

the ER. It donates electrons to its targeted substrates from its active site cysteine residues 

resulting in oxidation of the substrates. Subsequently, it becomes re-oxidised by one of 

the oxidoreductases such as Ero1-Lα in mammals (Appenzeller-Herzog et al., 2008), or 

Ero1p in yeast (Frand and Kaiser, 1999, Tu and Weissman, 2002) directing the electrons to 

an ultimate acceptor such as oxygen molecules. However, for almost two decades, it has 

been clear that PDI is a member of a super family that contains almost 20 members. Most 

PDI family members are known for being able to catalyse disulphide formation but 

whether they all catalyse this reaction under normal cellular conditions is still unclear 

(Hatahet and Ruddock, 2009). 



27 
 

The identified 20 members of the PDI family are characterised by similarities to the PDI 

protein (Kozlov et al., 2010a). Some have a similar domain structure and localisation in 

the ER, but they do not necessarily have a similar physiological function. All of the human 

PDI members have at least one domain similar to either one of the four domains of the 

PDI protein (Fig 10). Most members have at least one catalytic domain, however, some of 

them have non-catalytic domains or have lost the active-site cysteines and therefore are 

considered non-catalytic such as ERp27 (Alanen et al., 2006) and ERp29 (Hatahet and 

Ruddock, 2009, Nakao et al., 2017). 

The PDI family members that have been reported are; PDI, PDIp, ERp57, ERp72, P5, PDIr 

(Ferrari and Soling, 1999), ERdj5 (Cunnea et al., 2003, Hosoda et al., 2003), PDILT (Van Lith 

et al., 2005), thioredoxin-related transmembrane protein 2 (TMX2) (Meng et al., 2003), 

ERp44 (Anelli et al., 2003), ERp46 (Knoblach et al., 2003, Sullivan et al., 2003), ERp18 

(Alanen et al., 2003, Knoblach et al., 2003), TMX (Matsuo et al., 2001), ERp27 (Alanen et 

al., 2006, Kober et al., 2013), ERp29 (Gao et al., 2016, Sakono et al., 2014), TMX3, TMX4, 

TMX5, hAG-2, and hAG-3 (Hatahet and Ruddock, 2009). Only a few of these PDIs are 

tissue specific such as PDIp which is expressed in the pancreatic beta cells (Desilva et al., 

1996) and PDILT (Van Lith et al., 2005) which is testis-localised protein. 
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Figure 1.10, The human PDI family members. 

The thioredoxin-like domains (catalytic domain) are shown in green. The non-catalytic domains 

are shown in blue. The transmembrane regions are in red (Ellgaard and Ruddock, 2005). 
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The endoplasmic reticulum lectins calnexin (CNX) and calreticulin (CRT) and 

their role in glycoprotein folding and their relation to the oxidoreductase 

ERp57 

 

Calnexin (CNX, about 572 residues, 65.4 kDa) is a type I ER membrane protein (Tjoelker et 

al., 1994, Wada et al., 1991). CNX was found to be expressed ubiquitously, regardless the 

cell type, lineage, or the maturation stage of the cell (Okazaki et al., 2000). Its expression 

was found to be affected by a various stress types; for example, deprivation of amino 

acids, calcium mobilising agents, heat shock, and heavy metals (Williams, 2006, Wada et 

al., 1991, Caramelo and Parodi, 2015). 

Calreticulin (CRT), the soluble paralog of CNX (about 400 residues, 46.5 kDa) (Fliegel et al., 

1989, Smith and Koch, 1989) is a resident lectin that is localised to the ER lumen by the C-

terminal KDEL sequence (Afshar et al., 2005). CRT is also a multifunctional protein that is 

found in a variety of locations other than the ER lumen such as the nucleus (Roderick et 

al., 1997), secretory granules (Fraser et al., 2000, Andrin et al., 1998), cytosol (Gold et al., 

2010), and the outer side of the plasma membrane (Ghiran et al., 2003, Johnson et al., 

2001, Arosa et al., 1999). Furthermore, it is known for its significant role in glycoprotein 

folding (Williams, 2006, Caramelo and Parodi, 2015) and calcium homeostasis (Li et al., 

2002) in addition to suggested roles in mRNA stability, complement activation, 

angiogenesis, and trafficking of nuclear receptors (Raghavan et al., 2013, Gold et al., 

2010). 

CNX also works as a molecular chaperone (Ihara et al., 1999). Regardless of its ability to 

bind Ca2+, it does not have a significant role in Ca2+ homeostasis (Li et al., 2002, Ellgaard 

and Frickel, 2003, Williams, 2006, Caramelo and Parodi, 2015, Gold et al., 2010, Raghavan 

et al., 2013). CNX and CRT have 45 % homology in terms of their sequence similarity in 

addition to domain organisation and structure. Both have an N-terminal domain followed 

by a pro-rich domain (P-domain) and a C-terminal domain (Caramelo and Parodi, 2015, 

Kapoor et al., 2003). 
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Figure 1.11, A crystal structure of the lectin calnexin (CNX). 

The diagram shows the ER globular domain containing a disulphide bond (in yellow) and bound 

calcium (black sphere). The arm domain (P-domain) has four different motifs and contains the 

negatively charged tip that can interact with the thiol oxidoreductase, ERp57 (Williams, 2006). 

 

 

Figure 1.12, The crystal structure of the full length calreticulin (CRT). 

The structure shows the lectin domain (in green) and the P-domain (in dark blue) containing the 

ERp57 binding site. A carbohydrate is shown as part of the N-linked glycan linked to the 

asparagine residues of unfolded protein. The C-terminal has a Glu, Asp-rich domain that is capable 

of binding calcium in addition to the ER retention signal (KDEL) (Kozlov et al., 2010b). 



31 
 

1.6.1 The interaction of lectins and glycoproteins 

 

The binding of glycoproteins to CNX/CRT has many advantages; it increases the folding 

efficiency, decreases aggregation and facilitates disulphide bond isomerisation. The 

isomerisation of the disulphide bridge is mediated by the oxidoreductase, ERp57, which is 

a PDI family member that mimics the PDI protein. Both PDI and ERp57 are composed of 

four domains (a, b, b’, and a’) in which the b’ domain of PDI contains the substrate 

binding site (Klappa et al., 1998, Pirneskoski et al., 2004). However, the b’ domain of 

ERp57 has a cluster of positively charged residues that can interact with the negatively 

charged tip of the P-domain of CNX (Jessop et al., 2009a, Maattanen et al., 2006).  

There are a number of cellular and viral glycoproteins that are considered to be 

substrates for the lectins; CNX and CRT such as class I major histocompatibility complex 

(MHC) (Williams et al., 2002, Sadasivan et al., 1996), the cystic fibrosis transmembrane 

conductance regulator (CFTR) (Pind et al., 1994, Loo et al., 1998), T-cell receptor subunits 

(Hochstenbach et al., 1992, Vanleeuwen and Kearse, 1996), HIV gp120 and gp160 

(Otteken and Moss, 1996, Li et al., 1996), α1-antitrypsin (Ware et al., 1995, Le et al., 

1994), and the prion protein (Capellari et al., 1999, Rudd et al., 2001). Although CNX and 

CRT bind to different glycoproteins they can also bind to the same substrate in different 

stages of the folding pathway as established with the MHC class I heavy chain and also 

the influenza hemagglutinin (HA) (Tatu et al., 1995, Ellgaard and Frickel, 2003). 
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1.6.2 The misfolded glycoprotein sensor (UGGT) 

 

Glycoproteins might be folded at the first attempt. However, many proteins need more 

than one round of the CNX/CRT cycle to achieve their native conformational structure. In 

cases where proteins are misfolded, a sensor called UGGT, (about 170 kDa, 1555 residues 

in human), is responsible for recognising misfolded proteins and directing them back to 

the CNX/CRT cycle until they fold successfully (Solda et al., 2007, Caramelo and Parodi, 

2015). 

1.6.3 The N-linked glycoprotein folding cycle 

 

This cycle is very significant for N-linked glycoproteins to be correctly folded and to 

achieve their native conformation. The process occurs by CNX or CRT, and ERp57 

(Helenius et al., 1997, High et al., 2000, Oliver et al., 1997, Elliott et al., 1997). As the 

nascent polypeptide chain is translocated through the Sec61 complex into the ER lumen, 

CNX and CRT function as lectins recognising glycoproteins carrying monoglucosylated 

oligosaccharide side chains. Two enzymes can generate the monoglucosylated 

oligosaccharides, and hence promote the binding of CNX and CRT. Glucosidase I (GI) and 

glucosidase II (GII) can remove the two outermost glucose residues of the side chain 

resulting in the formation of the monoglucosylated (Glc1Man9GlcNAc2) (Hebert et al., 

1995, Ware et al., 1995). This glycoform can be recognised by CRT and CNX, which are 

able to retain glycoproteins in the ER until GII cleaves the last glucose residue. At this 

stage, correctly folded proteins will be transported out of the ER to their final destination. 

However, those proteins which are unable to adopt their native conformation or do not 

achieve their assembled complexes and are recognised by UDP glucose: glycoprotein 

glucosyl transferase (UGGT). This enzyme can add a single glucose back on the structure 

and form the monoglucosylated form (Cannon and Helenius, 1999). This process would 

allow the interaction with the CNX and CRT cycle (Wada et al., 1997). The de-

glucosylation cycle continues until glycoproteins are properly folded (Oliver et al., 1999, 

Benham, 2012, Caramelo and Parodi, 2015). In other cases, the glycoproteins are 

permanently misfolded and will be targeted for Endoplasmic Reticulum Associated 

Degradation (ERAD) (Ellgaard and Frickel, 2003, Vitale and Denecke, 1999, Benham, 

2012). 
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Figure 1.13, A schematic representation of the N-linked core oligosaccharide. 

The N-linked core oligosaccharide attached on the asparagine side chain in an Asn-Xxx-Ser/Thr 

amino acid sequence. The linkage for each individual glycosyl residue is indicated along with 

cleavage sites for various ER enzymes that modify the sugar structure (Ellgaard and Frickel, 2003). 
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Figure 1.14, The calnexin (CNX) and calreticulin (CRT) cycle of glycoprotein folding. 

As proteins are translocated via the Sec61 into the endoplasmic reticulum (ER) lumen, the most 

outer glucose will be trimmed by glucosidase I and glucosidase II resulting in the 

monoglucosylated glycoform. The mono glycoform then will enter the cycle of CNX and CRT with 

ERp57 and correctly folded glycoproteins then exit the ER. Misfolded glycoproteins will be re-

glycosylated by UDP-glucose glycoprotein glucosyltransferase which will add a glucose on the 

glycan and send it back to the CNX/CRT cycle. If the glycoprotein is permanently misfolded it will 

be targeted for endoplasmic reticulum associated degradation (ERAD). 
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1.7 Endoplasmic reticulum protein 57 (ERp57) 

 

ERp57 (about 58 kDa, 505 amino acids), which also known as PDIA3, ERp60, and GRP58, 

(Coe and Michalak, 2010) is a soluble protein, and a well-known PDI family member of the 

thiol oxidoreductases. The thiol disulphide isomerases are involved in the formation of 

disulphide bonds in the endoplasmic reticulum in mammalian cells. It is localised to the 

ER lumen and it is the closest in homology to the PDI protein (Ellgaard and Frickel, 2003). 

It functions as disulphide isomerase, oxidoreductase, and a chaperone (Erickson et al., 

2005) in the ER. However, it is mainly associated with the two ER lectins CNX and CRT for 

glycoprotein folding (Jessop et al., 2007, Frasconi et al., 2012, Frickel et al., 2004). 

ERp57 is highly expressed in a variety of tissues such as liver, kidney, placenta, lungs, and 

the pancreas, however, low expression was noticed in the brain, skeletal muscles, and the 

heart (Coe and Michalak, 2010). Despite the great similarity to PDI, it has distinctive 

functions. It is established that the ERp57 and CRT interaction can be hindered by 

vancomycin, however, the antibiotic is not able to inhibit the interaction at higher 

concentration of CRT (Frasconi et al., 2012). 

ERp57 is also suggested to function as a cysteine protease (Urade and Kito, 1992), a 

hormone-induced protein of the brain (Mobbs et al., 1990), and a carnitine palmitoyl 

transferase (Murthy and Pande, 1994). Besides being a folding factor during the synthesis 

of glycoproteins (Zapun et al., 1998) it also plays a central role in the quality control of the 

ER. Moreover, it is essential in regulating gene expression and the assembly of the major 

histocompatibility complex (MHC) (Chapman and Williams, 2010). 

Additionally, studies have revealed that in mice ERp57 is important in embryonic 

development (Coe and Michalak, 2010). It was also implicated in human pathologies such 

as prion disorders Alzheimer’s (Erickson et al., 2005) and Parkinson’s diseases as well as 

cancer (Coe and Michalak, 2010). These studies have shed light on the importance of 

ERp57 in human diseases and suggested the possibility of using ERp57 for developing 

novel cures and early stages of diagnosing such diseases (Coe and Michalak, 2010). 

Similar to PDI protein, ERp57 has been shown to adopt an overall U-shape with the two 

catalytic domains containing the catalytic cysteines, a- and a’, facing each other (Coe and 

Michalak, 2010). The thioredoxin domains b and b’ are at the bottom where the tip of the 
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b’ domain contains the CNX binding site (Kozlov et al., 2006). ERp57 b and b’ domains are 

distinct to PDI b and b’ domains in which the acidic C-terminus is replaced by a basic C-

terminus (Coe and Michalak, 2010, Pirneskoski et al., 2004). 

 

Figure 1.15, A, schematic showing the domain structure of ERp57. B, A model of the full length 

ERp57. 

A, a cartoon detailing the catalytic a and a’ domains which contains the CXXC active sites and the 

non-catalytic b and b’ domains. B, the structure reveals a U-shape where the catalytic a and a’ 

domains are facing each other. The b and b’ domains are at the bottom and the b’ domain contain 

the CNX binding site (Kozlov et al., 2006). 

Furthermore, the b’ domain of PDI binds to substrate proteins while the b’ domain of 

ERp57 has been shown to be associated with CNX and CRT as it binds the tip of the P-

domain of the lectins specifically for glycoprotein folding (Jessop et al., 2007) forming a 

complex with CNX and CRT as explained earlier (Wada et al., 1991, Williams, 2006). 

The interaction of ERp57 with the lectins has been investigated previously (Jessop et al., 

2007). Nuclear magnetic resonance spectroscopy (NMR) studies (Frickel et al., 2002) and 

Isothermal Titration Calorimetry (ITC) experiments (Frickel et al., 2002) have investigated 

this interaction and revealed that when viral glycoproteins folding is taking place in the ER 

of living cells, ERp57 forms disulphide bonds with the substrates of those glycoproteins 

that bind to the lectins (Frasconi et al., 2012). However, inhibition of this association of 
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the glycoprotein and the lectins prevents the formation of disulphide bonds with the 

oxidoreductase (Frickel et al., 2002). 

 

Figure 1.16, A model for the interaction of the folding glycoprotein with calnexin or calreticulin. 

The model shows the domain structure of calnexin (in green). The tip of calnexin P-domain 

binding the b’ domain of ERp57 (in dark blue). The glycoprotein (thin light blue) can interact with 

both calnexin as well as the polypeptide binding site forming disulphide bonds (Williams, 2006). 

It was found that in ERp57 the α2’- helix in the b’ domain is positively charged by +4, 

whereas in PDI it is -4. The positive charges of ERp57 play a central role in binding the 

negative charged tip of the P-domain of the lectin CNX. When those residues are mutated 

in ERp57 to negatively charged amino acids, the ERp57/CNX/CRT complex is abrogated 

(Coe and Michalak, 2010, Kozlov et al., 2010a). 

ERp57 was also reported to be able to form a complex with another PDI family member 

named ERp27 in vitro. The interaction between ERp27 and ERp57 has been investigated. 

NMR and protein cross-linking experiments proved that ERp27 can bind ERp57 in vitro 

(Alanen et al., 2006).  

We are particularly interested in this interaction which we have investigated further using 

both in vitro and in cellulo assays which will be explained later. 
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1.8 Endoplasmic reticulum protein 29 (ERp29) 

 

ERp29 (about 28 kDa, 261 amino acids) is another PDI family member which is quite 

similar to ERp27 (Kober et al., 2013) in terms of domain structure and is a catalytically 

inactive protein missing the CXXC active site (Barak et al., 2009). The crystal structure of 

ERp29 has revealed a couple of domains. The first is the thioredoxin like domain and the 

other one is the D-domain which is of unknown function (Kozlov et al., 2017). Recently, it 

was established that ERp29 also interacts with the ER lectins CNX and CRT by binding the 

tip of their P-domain in a similar fashion to the oxidoreductase ERp57 (Nakao et al., 2017, 

Sakono et al., 2014). 

Studies have revealed that the tip of the P-domain of CNX and CRT acts as an adapter 

binding different chaperones within the ER lumen. ERp29 (Liepinsh et al., 2001) and 

ERp57 (Oliver et al., 1999) as well as other ER chaperones such as Bip and CypB are 

capable of binding CNX and CRT. This observation of protein scaffolds binding the same 

model indicates that there are converging pathways of folding machineries within the ER 

lumen (Kozlov et al., 2017). 

NMR studies that focused on the binding between the ERp29 D-domain and the P-domain 

of CNX/CRT have determined the binding affinity with CNX which is 20 µM and 17 µM 

with CRT. Furthermore, NMR has shown that the lectin-glycoprotein associations are 

long-lived in comparison to other chaperones complexes (Kozlov et al., 2017). 

Whether this interaction of ERp29 and the lectins is similar to the lectins-ERp57 complex 

or if they are occurring sequentially or competing is to be investigated. 
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1.9 Endoplasmic reticulum protein 27 (ERp27) 

 

ERp27 is a PDI family member that found exclusively in vertebrates (Kober et al., 2013). 

The human ERp27 (about 27.7 kDa, 273 amino acids) (Amin et al., 2013) was found to be 

expressed in a number of tissues including kidney, bone marrow, spleen, lungs, thymus, 

and highly expressed in the pancreas (Lash et al., 2000, Alanen et al., 2006). The 

expression in the pancreas occurs particularly within the acinar cells which secrete 

hormones. However, the pancreatic islet cells which secrete insulin do not show evidence 

of expressing ERp27 (personal communication with Professor Kenji Inaba, Tohoku 

University, Sendai, Japan). 

The ERp27 crystal structure has been solved and revealed two thioredoxin-like domains b 

and b’ and therefore it is known to be catalytically inactive (Kober et al., 2013). The 

sequence of this protein has revealed two cysteines that are localised to different 

domains and found to be solvent- inaccessible so are unlikely to form a disulphide (Kober 

et al., 2013). In comparison to other redox-inactive PDI members such as ERp29 which 

has a single thioredoxin fold domain and the other one is all α-helical domain, ERp27 

possesses two thioredoxin fold domains and therefore may form a distinct subfamily 

under the PDI family (Alanen et al., 2006, Ma et al., 2003, Kober et al., 2013, Liepinsh et 

al., 2001). 
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Figure 1.17, A, The domain structure of ERp27. B, The overall crystal structure of ERp27. 

A, the domain structure depicts the two thioredoxin-like domains b and b’. ERp27 lacks the CXXC 

active site and is classified as a non-catalytic member of the PDI family. B, ERp27 consists of two 

thioredoxin domains, b and b’. The b’ domain contains a hydrophobic cleft similar to the PDI 

protein which contains the peptides binding site and the tip of the b’ domain contains an ERp57 

binding site (Kober et al., 2013). 

ERp27 has a degree of homology to PDI protein and because other PDIs also possess the b 

and b’ domains an alignment has been carried out between ERp27 and those members. 

The percentage identities are as follows: ERp27 homology with PDI (33.5 %), ERp57 (16.5 

%), ERp72 (14.7 %), PDIp (28.1 %). However, no homology was found with ERp29 the 

other non-catalytic member of the family (Alanen et al., 2006). 

The C-terminal domain of ERp27 (b’ domain) was found to be homologous to the PDI b’ 

domain and has a hydrophobic groove in the middle containing the substrate binding site. 

It is established that the b’ domain of ERp27 can bind the 14-amino acid peptide Δ-

somatostatin. Mutating specific residues within this site inactivates the substrate binding 

site, particularly mutating the (Isoleucine) I196 residue into Tryptophan (W) (Alanen et al., 

2006, Pirneskoski et al., 2004). Expanding on that, an ITC experiment has indicated that 

ERp27 functions as a chaperone in the ER as it binds unfolded full-length proteins. 

However, when the protein is correctly folded then ERp27 does not show any degree of 

measurable binding affinity (Kober et al., 2013). 
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Additionally, the tip of the b’ domain was also found to contain an ERp57 binding site. 

This site was verified by mutating the (Glutamic acid) E231 residue to Lysine (K) which 

blocked the interaction (Jessop et al., 2009a). This particular site in the ERp27-b’ domain 

was found to contain a motif Asp-Glu-Trp-Asp, which was postulated to fulfil a similar 

function to the motif Asp-Glu-Trp-Asp, located on the tip of the P-domain of the two ER 

lectins CNX and CRT (Alanen et al., 2006). This suggested that both ERp27 and the lectins 

CNX and CRT bind to ERp57 at similar binding sites (Kober et al., 2013, Williams, 2006, 

Alanen et al., 2006). 
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In this research project we are not going to shed the light on all PDI members. We are 

going to emphasise ERp27 (Alanen et al., 2006), which is our protein of interest, and its 

interaction with another member of the oxidoreductases, ERp57 in vitro and in cellulo 

(Jessop et al., 2009a). 

From previous research studies, PDI family members were found to be important 

enzymes that contribute to disulphide bond formation (Sevier and Kaiser, 2006a), 

isomerisation and reduction (Inaba et al., 2010, Masui et al., 2011, Frand and Kaiser, 

1998). Members of this family are similar in some respects, however, have differences in 

structure which make PDIs functionally very diverse (Kozlov et al., 2010a, Ellgaard and 

Ruddock, 2005). ERp57 (Maattanen et al., 2006) is as well studied as PDI itself and is 

required for glycoprotein folding in collaboration with the ER lectins CNX and CRT in 

addition to a wide range of other functions (Maattanen et al., 2006, Williams, 2006). 

The P- domain of CNX and CRT is very important and found to bind other ER chaperones 

(Nakao et al., 2017, Kozlov et al., 2017) in addition to its involvement in the glycoprotein 

folding cycle (Ellgaard and Frickel, 2003, 1997). For glycoproteins to fold with the aid of 

ERp57, CNX and CRT bring N-glycosylated glycoproteins to ERp57 to fold. Furthermore, 

the CNX and CRT P-domain contains a sequence motif similar to that found on the tip of 

the b’ domain of ERp27 (Alanen et al., 2006). ERp27 has also been reported to interact 

with ERp57 in vitro, suggesting that ERp27 binds ERp57 on the same binding site as the 

lectins. This data together has suggested a role for ERp27 in recruiting substrates to 

ERp57 (Alanen et al., 2006). 

Moreover, ERp57 lacks a substrate binding site and binds its substrates through a 

CNX/CRT complex as they are able to recognise the suitable substrates and recruit them 

to ERp57 (Russell et al., 2004). Based on that model, ERp27 could potentially enable 

ERp57 to interact with a wide range of substrates that bind to ERp27 (Alanen et al., 2006). 

Hence, ERp27 might be working either in sequence or competing for the lectins that bind 

ERp57. 

Under ER stress conditions, ERp27 was found to function as a chaperone by selectively 

binding to misfolded or unfolded proteins which suggest other molecular functions and 

physiological roles for this redox-inactive PDI member (Kober et al., 2013). It was also 

established that the expression of ERp27 increases greatly as part of the UPR under 



43 
 

cellular stress conditions. That is in line with an ERp57 independent function (from 

CNX/CRT) following infection with simian virus 40 (Schelhaas et al., 2007), suggesting that 

under regular cellular conditions CNX/CRT replaces the ERp27/ERp57 interaction (Kober 

et al., 2013). 

Previous researches have consequently raised the following questions which we are 

aiming to answer;  

1. Does the ERp27/ERp57 interaction compete with the CNX/CRT/ERp57 complex? 

2. If so, then does ERp27 recruit non-glycosylated protein substrates to ERp57 to 

fold, just as CNX and CRT brings N-glycosylated proteins to ERp57 to fold? 

So far none of the previous research has investigated whether the ERp27/ERp57 

interaction compete with the complex of CNX/CRT/ERp57 or if these interactions occur 

sequentially and therefore the aims of this project are; 

1. To investigate the interaction between ERp27 and ERp57 both in vitro and in vivo. 

2. To compare the interaction of ERp57/ERp27 and CNX/CRT in order to define 

whether or not the ERp27 interaction could compete with ERp57/CNX/CRT 

complex. 

3. To investigate the physiological role of ERp27. 

To be able to achieve the aims and start in vitro assays we commenced a series of protein 

purifications which are explained in detail in the first results chapter. These include the 

purification of wild type (WT) ERp27 and two mutants: ERp27-I196W, which prevents 

ERp27 binding to client proteins and ERp27-E231K, which prevents ERp27 binding to 

ERp57. 

Additionally, we have sub-cloned CRT into the RSFDuet-1 vector (3829 bp), which is 

engineered to co-express target proteins in E. coli and additionally to produce native 

unfused or fused protein to a His-tag and sequences for detection and purification of 

protein complexes. Consequently, CRT was expressed and purified with a good yield. 

Moreover, we mutated the Arginine (ARG, R 282) of ERp57 into Alanine (Ala, A) to study 

binding to CRT. The ERp57-R282A mutant will prevent ERp57 binding to CRT. 

Isothermal titration calorimetry (ITC) experiments were carried out to investigate protein-

protein interactions. Furthermore, a protein cross-linking assay was applied in vitro as 
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well as in cellulo which is explained in detail in the second results chapter. An antibody to 

ERp27-WT has also been raised and characterised using a variety of mammalian cell lines; 

PANC-1, INS-1, CHOS, and HEK. Further investigation of the ERp27 interaction with PDI 

proteins other than ERp57 or possibly other ER chaperones was also determined in results 

chapter three. 
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2 Materials and methods 
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2.1 List of chemicals 

 

Chemicals Supplier 

Acetic Acid Fisher (A/0400/PB17) 
Acetone BDH (1000346) 
Ammonium bicarbonate Sigma (A6141) 
Ammonium Sulphate (NH4)2SO4 ICN (808211) 
Ampicillin Sigma (A0166) 
Bacto agar Melford (M1002) 
Bacto Tryptone Melford (T1332) 
Bacto Yeast Extract Melford (Y1333) 
BMH Pierce (22330) 
Brilliant Blue G250 Sigma (0770) 
Bromophenol Blue Aldrich (114391) 
DMSO Sigma 
DSG Pierce (20593) 
DSP Pierce (22585) 
DTT Fisher (D/D351/43) 
EDTA Fisher (D/0700/53) 
Ethanol Fisher (E/0650DF/17) 
Formaldehyde Fisher (F/1501/PB17) 
G418 Sigma (A1720) 
Glucose Sigma (G8270) 
Glycerol Fisher 
Glycine Fisher (G/0800/60) 
HEPES Fisher (BP310-100) 
Hydrochloric acid (HCL) Fisher (H/1200/PB17) 
Kanamycin Roche (10106801001) 
Lipofectamine 2000 Invitrogen (1168-019) 
Lysozyme Sigma (L6876) 
MegaTran Generon (TT200002) 
Mercaptoethanol Sigma M3148 
Methanol Fisher (M/4000/17) 
N-Ethylmaleimide (NEM) Sigma (E3876) 
Phenol: chloroform: isoamyl alcohol Sigma (77617) 
Phosphoric Acid (H3PO4) Fisher (O/0500/PB08) 
PMSF Sigma (P7626) 
Potassium Acetate BDH (103504X) 
Protease inhibitor cocktail tablets Roche (04693159001) 
Protein A Sepharose Zymed (10-1042) 
Silver nitrate (AgNO3) Fisher (S/1286/46) 
Sodium Carbonate (Na2CO3) BDH (10240) 
Sodium Chloride (NaCl) Fisher (S/3160/65) 
Sodium Dodecyl sulphate (SDS) Fisher (S/5200/53) 
Sodium hydroxide (NaOH) BDH (102524) 
Sodium Phosphate (NaH2PO4) Fisher (BP329-1) 
TBST Sigma 
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TCEP Thermo (20490) 
TEMED Sigma (T9281) 
Tris Fisher (BP152Y) 
Triton X-100 Sigma (T8520) 
Trypsin DIFCO (215240) 
Tween Sigma (P1754) 
Imidazole (C3N2H4) Sigma (10125) 
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2.2 List of antibodies 
 

Antibodies Supplier 

Anti-CRT rabbit Stressgen (SPA-600) 
Anti-CNX Sigma 
Anti-ERO1 monoclonal Obtained from Roberto Sitia 

(Sitia et al, 2010) 
Anti-ERp27 rabbit Raised against ERp27 purified protein 
Anti-ERp57 Rabbit Sigma 
Anti-His mouse Proteintech (660055) 
Anti-myc 9E10 mouse Fisher 
Anti-myc rabbit Santacruz 
Anti-myc conjugate (4A6) mouse Millipore (16-212) 
Anti-Myc-Trap agarose conjugate camel Chromotek 
Anti-V5 monoclonal Generon  
Anti-V5 agarose conjugate mouse sigma 
Licor secondary 800 mouse Abcam 
Licor secondary 680 mouse Abcam 
Licor secondary 800 rabbit Abcam 
Licor secondary 680 rabbit Abcam 
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2.3 Protein expression and purification 

 

Protein was purified using the general scheme outlined in figure 2.1 as previously 

described (Alanen et al., 2006). Cells were pelleted by centrifugation (10,000 rpm for 25 

min), and the pellet re-suspended in 1/10th volume of buffer A (50 mM NaH2PO4 buffer 

pH 8.0, containing 300 mM NaCl, 5 mM imidazole). The cells were lysed using a French 

press three times, and the debris was removed by centrifugation (10,000 rpm for 25 min). 

The supernatant was filtered through a 0.45 µM filter before being applied to a nickel 

agarose affinity chromatography column, equilibrated in buffer A. After loading, the 

column was washed with buffer A, containing 5 mM imidazole, before the His-tagged 

proteins were eluted using a linear gradient of 5-500 mM imidazole in buffer A. Eluted 

fractions were checked for purity by SDS-PAGE, and fractions containing fewest 

contaminant proteins were further purified by gel filtration. 



50 
 

 

Figure 2.1, Protein purification steps. 

A flow diagram shows the protein purification steps. Cells were pelleted (10,000 rpm for 25 min) 

then lysed by French press three times. The debris removed by centrifugation (10,000 rpm for 25 

min). The supernatant was then filtered by 0.45 µM filter and purified using a nickel agarose 

affinity chromatography column where the protein will be partially purified. Additional 

purification was by gel filtration chromatography (GFC Superdex 200) or ion-exchange (HiTrap 

Capto Q). 
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2.4 Colloidal Coomassie blue stain 

 

After gel electrophoresis the proteins were visualized by Coomassie blue staining (10 % 

phosphoric acid (H3PO4), 10 % ammonium sulphate (NH4)2SO4, 0.12 % Coomassie G 250 

(brilliant blue), 20 % Methanol) overnight. Gels were de-stained by dH2O and scanned the 

next day. 

2.5 Gel filtration (Superdex 200) 

 

Fractions from the nickel agarose affinity chromatography column were combined and 

concentrated to 1 ml using a centrifugal concentrator (Satorius, Vivaspin 6, membrane 

10,000 Mw). The membrane was washed with dH2O prior to adding the sample (4 ml) to 

the concentrator. Subsequently, the sample was centrifuged at 3000 Xg for 25 min. The 

gel filtration column was equilibrated with 50 mM Tris buffer pH 7.5, containing 150 mM 

NaCl, prior to loading 1 ml sample. Fractions that contain the purified protein were 

combined, aliquoted and stored at – 80  ̊C to be used in other molecular assays. 

2.6 Ion-exchange chromatography 

 

Samples were concentrated as for gel filtration samples to a final volume (1 ml) using a 

centrifugal concentrator. The protein was then diluted using 5 ml of ion exchange buffer 

(50 mM Tris buffer pH 7.5, containing 10 mM NaCl), and centrifuged at 3000 xg for 20 min 

before loading onto a HiTrap Capto Q (anion exchange) 1 ml column (GE. Healthcare). 

Proteins were eluted with ion exchange buffer B (50 mM Tris buffer pH 7.5, containing 1 

M NaCl). Eluted fractions were analysed by SDS-PAGE and protein visualised by silver 

staining. 
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2.7 Silver staining 

 

Gels were fixed in [MeOH (50 %), acetic acid (12.2 %), formalin (0.05 %)] for 10 min, then 

washed with EtOH (35 %) for 5 min and sensitised by immersing in NO2S2O3 (0.02 %) for 2 

min. The gels were stained with silver nitrate solution [0.02 % AgNO3, 0.076 % formalin 35 

% formaldehyde] for 20 min, and developed by incubating in [Na2CO3 (6 %), formalin (0.05 

%) formaldehyde (35 %), Na2S2O3 (0.0004 %)]. The staining was stopped by incubating the 

gel in [MeOH (50 %), acetic acid (12 %)]. 

2.8 Gel electrophoresis and western blot 

 

Each sample was mixed with an equal volume of SDS sample buffer (240 mM Tris/HCl 

buffer pH 6.8, containing 40 % glycerol, 8 % SDS, 0.04 % bromophenol blue, 50 mM DTT), 

then heated to 105  ̊C for 5-10 min followed by centrifugation at 16,162 xg for 10 sec. The 

samples were electrophoresed (2 h, 20 mA) in 1X running buffer (0.25 M Tris, 1.52 M 

glycine, 0.02 M SDS). Samples were transferred to nitrocellulose membrane (LiCor) in 

transfer buffer containing (25 mM Tris/HCL, 20 % methanol, 0.1 % SDS, 192 mM glycine), 

for 1 h, 300 V. The membrane was blocked with 5 % blocking buffer (5 % non-fat milk in 

TBST 50 mM Tris/HCL buffer pH 7.5, containing 150 mM NaCl, 0.1 % Tween), for either 1 h 

at room temperature or overnight at 4   ͦC. Membranes were incubated overnight at 4  ͦC 

with ERp27 antibody which was raised to the purified protein. After 3 washes (5 min 

each) with TBST, the membrane was incubated with anti-rabbit 800 secondary antibody 

diluted 1/5000 or 1/10,000. then washed 3 times (5 min each) with dH2O and scanned 

using the Odyssey Sa scanner. Anti-myc mouse antibody was used in some of the 

experiments along with the ERp27 antibody. In this case, the secondary antibody used 

was anti-mouse 680 diluted 1/5000 or 1/10,000. 
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2.9 Transformation 

 

Plasmid DNA was mixed with 50 µl of competent cells [BL21 (DE3) or (XL1)] and incubated 

on ice for 30 min. The cells were heat shocked at 42  ̊C for 45 secs and immediately placed 

on ice for 2 min before adding 450 µl of LB broth. Cultures were shaken for 1 h at 37   ̊C, 

prior to plating 200 µl of the culture was spread on antibiotic resistant plates (ampicillin 

50 mg/ml or kanamycin 50 mg/ml) and incubated overnight at 37   ̊C. 

2.10 Mini prep purification of DNA by alkaline lysis 

 

The culture (1.5 ml) was pelleted by centrifugation at 12,460 xg for 1 min. The 

supernatant was discarded, and centrifugation repeated. The pellet was re-suspended in 

100 µl of GTE buffer (25 mM Tris-Cl buffer pH 8.0, containing 50 mM glucose, 10 mM 

EDTA). Freshly made NaOH/SDS solution (200 µl) was added and samples incubated on 

ice for 5 min. Then 150 µl of 5 M potassium acetate solution pH 4.8 was added, mixed and 

centrifuged at 16,162 xg for 5 min to pellet all debris and chromosomal DNA. The 

supernatant was transferred to a new tube with an equal volume of phenol: chloroform: 

isoamyl alcohol (25:14:1) and centrifuged at 16,162 xg for 2 min. The upper phase was 

removed to another tube with an equal volume of phenol: chloroform: isoamyl alcohol 

and centrifuged at 16,162 xg for 2 min. The upper phase was removed to another tube 

with 800 µl 95 % ethanol and centrifuged at 16,162 xg for 5 min. The supernatant was 

discarded, and 1 ml of 70 % ethanol was added to the pellet and centrifuged at 16,162 xg 

for 5 min. After air-drying the pellet, 30 µl water was added. Samples of each DNA mini-

preparation were then sequenced (GATC). 
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2.11 Sub cloning of DNA fragments into vectors by PCR or restriction 

digestion 

 

DNA fragments for cloning were prepared by means of PCR (94   ̊C for 5 min, then 25 

cycles of 94   ̊C for 30 secs, 62  ̊ C for 1 min, 72  ̊ C for 1.5 min, and 72   ̊C for 7 min). The 

vector was linearised and PCR products cleaved by incubation with two different 

enzymes; Eco RI and Hind III. All of the digestion products were separated on 1 % agarose 

gel and correct sized bands were excised from the gel. The DNA was purified using Qiagen 

Qiaquick Gel Extraction Kit. Subsequently, the DNA fragment was ligated into the vector 

using T4 DNA ligase. Ligation reactions were transformed and plated onto antibiotic 

resistant plates and, finally, checked by sequencing. 

2.12 Site Directed Mutagenesis 

 

The sample was prepared as follows; 1:10 dilution of 50 ng parental DNA, 10X Accuzyme 

buffer, MgCl2, 10 µM forward primer (CAACTACTGGAGAAACGCGGTAATGATGGTGGCA), 

10 µM reverse primer (TGCCACCATCATTACCGCCTTTCTCCAGTAGTTG), 10 µM mixed dNTP, 

DMSO, dH2O to a final volume of 50 µl, and finally Accuzyme enzyme. Samples then 

underwent heating cycles; 95  ̊C (30 secs), 60  C̊ (1 min), 72  ̊C (8 min), 72  C̊ (10 min), for 

25 cycles. Dpn I restriction enzyme was added to digest the parental DNA. Finally, the 

DNA was used to transform XL1 blue E. coli competent cells and colonies were picked. 

Mini preps were carried out and checked by sequencing (GATC). 

2.13 In vitro protein cross-linking 

 

Proteins were mixed to prepare a 9 µl volume cross-linking reaction in 0.2 mM Sodium 

phosphate buffer (NaH2PO4) pH 7.4 incubated on ice for 10 min. Disuccinimidyl glutamate 

(DSG) (1 mM), which is amino group specific and non-cleavable, was added and incubated 

for 30 min at room temperature. Each sample was mixed with an equal volume of SDS 

sample buffer (240 mM Tris/HCl buffer pH 6.8, containing 40 % glycerol, 8 % SDS, 0.04 % 

bromophenol blue, 50 mM DTT), then heated to 105  ̊C for 5-10 min followed by 

centrifugation at 16,162 xg for 10 secs.  
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The samples were electrophoresed (2 h, 20 mA) in running buffer (25 mM Tris, 1.92 mM 

Glycine, 0.01 % SDS).  Samples were transferred to nitrocellulose membrane (LiCor) in 

transfer buffer for 1 h, 300 V. The membrane was blocked with 5 % blocking buffer for 

either 1h at room temperature or overnight at 4  C̊. Following that, the membrane was 

incubated overnight at 4  ̊C with rabbit anti-ERp27, which was raised against the purified 

protein, rabbit anti-ERp57, mouse anti-His 1/5000 (Proteintech 66005), or rabbit anti-CRT 

1/1000 (Stressgen SPA-600) antibodies. After 3 washes (5 min each) with TBST, the 

membrane was then incubated with either rabbit 800 or mouse 800 secondary antibodies 

diluted 1/5000 or 1/10,000. After 3 washes (5min each) with dH2O the membrane was 

scanned using an Odyssey Sa scanner. 

2.14 Immunoprecipitation technique 

 

Cell lysate was prepared by lysing the cells in 200 µl of lysis buffer containing (1 % Triton 

X100, 50 mM Tris buffer pH 8, 150 mM NaCl, 5 mM EDTA, protease inhibitor cocktail). 

After 5 min incubation on ice, nuclei and large debris were removed by centrifugation. 

Immunoprecipitations were carried out using cell lysis buffer and specific antibody. Cell 

lysates were precleared by incubating with Protein A Sepharose. Aliquots of the 

precleared lysate were incubated with a specific antibody either monoclonal V5 1/1000 

(Invitrogen) or V5 agarose beads (Sigma) overnight at 4  ̊C. Immunoisolates were washed 

3 times with immunoprecipitation buffer (50 mM Tris-HCl pH 7.5, 1 % Triton X-100, 150 

mM NaCl, 2 mM EDTA, 0.5 mM PMSF, 0.02 % Na-azide). Immunoisolates were then boiled 

with electrophoresis sample buffer containing 2 % SDS. 

2.15 Transient and stable transfections 

 

Mammalian cells were transfected using transfection reagents; PEI, MegaTran (TT200002 

MegaTran 1.0 (0.5 ml) Generon), or Lipofectamine 2000 for 24 h. 

 

 



56 
 

2.16 In cellulo protein cross-linking 

 

HT1080 cells in adherent culture were treated with 0.5 mM BMH (Pierce) at 37  ̊C. After 

that, the cross-linker was quenched with 10 mM DTT. Subsequently, the cells were lysed 

and V5 tagged ERp57 was immunoisolated prior SDS-PAGE and immunoblotted.  

In other experiments, we used ERp57-WT cells in adherent culture which were treated 

with either 0.5 mM BMH (Pierce) or 1 mM DSP (Pierce) at room temperature. The 

reaction was quenched with 10 mM DTT or 10 mM Tris/HCL buffer pH 7.5. Following that, 

cells were lysed and V5-tagged ERp57 as well as myc-tagged ERp27 were detected by 

immunoblotting. 

2.17 Mass spectrometry following DTT elution of substrate-trapped 

mixed disulphide 

 

Eight 15 cm dishes of HT1080 cells or HT1080 cells expressing V5-tagged ERp57 were 

grown to confluence. Freshly made DSP (Pierce) cross-linking reagent was added to four 

of the dishes for 30 min at room temperature. The cross-linker was quenched with 10 

mM Tris/HCL buffer before washing the cells for 5 min with ice-cold phosphate-buffered 

saline (PBS) containing 20 mM NEM. After that, any excess of PBS/25 mM NEM was 

removed and 1 ml of ice-cold lysis buffer [50 mM Tris pH 8.0, 1 % Triton X-100, 150 mM 

NaCl, 2 mM EDTA, 0.5 mM PMSF, 20 mM NEM and EDTA-free protease inhibitor cocktail 

(Roche)] was added to each dish for 5 min. Subsequently, the cells were scraped off the 

dishes (with or without treatment with cross-linker) and transferred to 15 ml falcon 

tubes. The cell lysates were incubated on ice for 20 min before being centrifuged for 20 

min at top speed at 4  ̊C. The supernatant was transferred to a fresh tube (4 ml each in 

total). The supernatant was precleared using 10 % PAS (100 µl), 30 min at 4  ̊C. The 

samples were centrifuged at 3000 xg for 3 min and the supernatant transferred to a fresh 

15 ml tube. Anti-V5 agarose beads (75 µl) (Sigma) were added to the supernatant and 

samples were incubated overnight at 4  C̊ on a rocker. The samples were centrifuged at 

3000 xg for 3 min, the supernatant was removed, and the beads transferred to a 1.5 ml 

microfuge tube. The beads were washed 3 times with 500 µl washing buffer (50 mM 

Tris/HCL pH 8.0, 1 % Triton X-100, 150 mM NaCl, 2 mM EDTA, 0.5 mM PMSF, 0.02 % 
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sodium azide). The beads were incubated with freshly made 10 mM DTT (200 µl) for 10 

min at room temperature to elute the cross-linked proteins. Ice-cold 12 % TCA (800 µl) 

was added to the DTT-elute and kept on ice for 10 min. The sample was centrifuged at 

15,000 xg for 20 min then the supernatant was removed, leaving a small pellet visible at 

the bottom of the tube. Ice-cold acetone (500 µl) was added and then the tube was 

centrifuged at 15,000 xg for 10 min. This wash step was repeated 3 times. Subsequently 

the acetone was completely removed, and the pellet allowed to air-dry for 10 min before 

adding 50 µl of 25 µM ammonium bicarbonate. Finally, the samples were dispatched for 

LC/MSMS analysis at the University of St. Andrews or the University of Glasgow Polyomics 

facility. 
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3 Protein expression and purification, In vitro protein interaction 

by isothermal titration calorimetry (ITC) 
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3.1 Introduction 

 

ERp27 is a non-catalytic human PDI family member that was identified and characterised 

by the Ruddock group (Frickel et al., 2002). It is a 27.7 kDa endoplasmic reticulum (ER) 

protein. ERp27 gene expression was analysed and it was found to be expressed in various 

human tissues such as; kidney, lungs, spleen, thymus, bone marrow and highly expressed 

in the pancreas (Alanen et al., 2006, Kober et al., 2013, Lash et al., 2000). 

Human ERp27 homology with the bb’ domains homologous to the PDI protein has been 

highlighted (Alanen et al., 2006, Amin et al., 2013) as well as other PDI family members. 

ERp27 and PDI have the highest homology (33.5 %) (Alanen et al., 2006, Okumura et al., 

2015) in contrast to other family members such as; ERp57 (16.5 %), PDIp (28 .1 %). ERp29 

is another non-catalytic member of the PDI family did not show any significant homology 

with ERp27 (Alanen et al., 2006). 

Biophysical analysis of mature ERp27 was carried out to characterise protein function. 

ERp27 (Glu26-Leu273) as well as the isolated domain 1 of ERp27 (Glu26-Leu141) both with N-

terminal his tags, were expressed in E. coli then proteins were purified by a combination 

of both metal affinity and ion-exchange chromatography. Analysis of the mass of the 

purified protein by matrix-assisted laser desorption/ionization MALDI-MS, an ionisation 

technique that uses laser energy to absorbing matrix to create ions from large molecules 

to tiny fragments, gave a mass of 28,838.9 Da for His-tagged ERp27 and for the His-tagged 

domain 1 construct the mass was 13,795.9 Da. Purified ERp27 then was evaluated by 

various approaches such as far-UV CD (Alanen et al., 2006). 

An investigation of ERp27 peptide binding capability was carried out. Since there is a 

considerable degree of homology between the b’ domain of ERp27 and the PDI b’ domain 

they were both tested for binding a 14-residue peptide, Δ-somatostatin, by applying a 

cross-linking assay. The b’ domains of ERp27 and PDI were shown to bind the peptide and 

the interaction was hydrophobic (Alanen et al., 2006, Amin et al., 2013). 

ERp27 has been reported to interact in vitro with the oxidoreductase ERp57, which is a 

well-known member of the PDI family. The interaction was investigated by applying a 

cross-linking approach which revealed that ERp57 has the ability to bind either ERp27 or 
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the lectin calreticulin-P domain at the same binding site (Alanen et al., 2006, Frickel et al., 

2002, Wijeyesakere et al., 2011). However, an interaction between ERp27 and the CRT-P 

domain was not observed nor was an interaction between ERp27and PDI (Alanen et al., 

2006). 

The peptide-binding site of the b’ domain of human PDI was shown to be within a 

hydrophobic pocket mainly containing the side chains of Leu259, Leu261, Phe275, and Ile289. 

To identify the calreticulin interaction site within ERp57 an alignment of the b’ domains of 

human PDI and ERp57 was carried out. The corresponding residues in ERp27 (Leu166, 

Met168, Tyr182, and Ile196) were indicated to be semi-conserved suggesting that the 

peptide binding site location might be the same in both proteins.  

To test this hypothesis, mutants were made in the ERp27 residues, the proteins expressed 

and tested for binding the 14 residue Δ-somatostatin peptide. Results indicated that 

mutations in both Met168(M168W) and Ile196(I196A, I196L, and I196W) decreased the 

peptide-binding site significantly. A small decrease in the binding was noticed with Y182W 

and no change was shown with L166W mutant compared to the wild type protein. The  

Ile-196 mutation has shown the greatest effect on peptide binding. The site was found to 

be consistent between PDI and ERp57, which revealed that a greatest effect on the 

peptide binding site with the homologous residues in PDI (Ile289, and Phe299). However, no 

discernible effects of these mutations was observed on the protein structure (Alanen et 

al., 2006). 

An ERp27 mutant, which prevents peptide binding as well as mutants of the ERp27 b’ 

domain, within the region homologous to the CRT/ERp57 binding site (DEWD), were used 

to study the interaction between ERp27 and ERp57. Results revealed that the ERp27 

peptide-binding site mutants can still form cross-links with ERp57 suggesting that this site 

is not involved in their binding. However, ERp27 cross-links with ERp27 containing 

mutations within the DEWD site were very much reduced. Consequently, this implies that 

ERp57 binds both ERp27 and CRT-P domain at the same site (Alanen et al., 2006) and that 

the ERp27 peptide binding site is not required for its interaction with ERp57. ERp29 was 

found to form a complex with the lectin CRT with a similar affinity to CRT interaction with 

ERp57 suggesting a competition with CRT for binding ERp57 (Sakono et al., 2014). 
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Since the cross-linking results demonstrating an interaction between ERp27 and ERp57 

were relatively poor it was further investigated by Nuclear Magnetic Resonance 

Spectroscopy (2D NMR). The NMR approach was applied to study the interaction and to 

find out if it is mediated by the b’-like domain. 1 H and 15 N heteronuclear single-quantum 

coherence (HSQC) spectra were collected for both domain 1 and the full length ERp27 

labelled with 15 N. Unlabelled ERp57 addition to domain 1 of ERp27 did not affect the 

interaction. Consequently, no peak shift was recognised. However, addition of unlabelled 

ERp57 to the full length ERp27 resulted in significant changes in the ERp27 spectrum. That 

suggested a tight binding of ERp57 to ERp27 via the b’-like domain (Alanen et al., 2006). 

These findings have raised the following questions; 

1- Does ERp27 compete with CRT P-domain for binding ERp57? 

2- If so, does ERp27 bring non-glycosylated protein to ERp57 to fold just as CNX/CRT 

brings glycoproteins to ERp57 to fold? 

Accordingly, the aims of this part of the project are; 

1- To study the interaction between ERp27 and ERp57 both in vitro and in cellulo 

(mammalian cells). 

2- To compare the interaction between ERp57 and ERp27 or CRT to determine if there is a 

competition between ERp27 and CRT-P domain for binding ERp57. 

To be able to achieve the aims and discuss the interplay between the three proteins, 

(ERp27, ERp57, and the soluble lectin CRT) protein expression and purification plus 

protein-protein interaction in vitro assays were carried out. The following proteins were 

expressed for further study: ERp27 WT, ERp27-I196W mutant, (which blocks the client 

protein binding site), ERp27-E231K mutant, (which had been previously shown to prevent 

binding to ERp57). ERp57 WT was also expressed and purified. Mutagenesis of ERp57 was 

carried out to mutate Arginine (Arg, R 282) into Alanine (Ala, A), which blocks the CRT 

binding site. The protein was then expressed and purified for further work. 

Calreticulin was sub-cloned into the RSFDuet-1 vector (3829 bp) which is designed to co-

express target proteins in E. coli and to produce native unfused or fused protein to His tag 

and sequences for detection and purification of protein complexes. After successfully sub 
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cloning, CRT was expressed on its own and purified for protein binding studies. Once we 

obtained sufficient amounts of all purified proteins other experiments were carried out to 

probe the interaction between ERp27 and ERp57. Additionally, an antibody to the purified 

ERp27 was raised and characterised against ERp27 expressed in different mammalian cell 

lines. 
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3.2 Results 

3.3 Protein expression and purification 

 

The following results were obtained from a series of experiments to express and purify 

ERp27-WT and two mutants; ERp27-I196W and ERp27-E231K. ERp57 WT was also 

expressed and purified as well as the mutant ERp57-R282A to enable its interaction with 

ERp27-WT to be studied. Calreticulin-WT was also expressed and purified to examine the 

interaction with ERp57-WT and furthermore to compare between the interaction of 

ERp57-WT with ERp27 or calreticulin by carrying out in vitro protein-protein interaction 

assays. In addition, an antibody to purified recombinant ERp27-WT was successfully 

raised to allow characterisation of its expression in a variety of different mammalian cell-

lines. 

3.3.1 ERp27-WT expression and purification 

 

This experiment was carried out to produce purified protein for binding studies. Initially, 

the plasmid was transformed in the presence of the antibiotic required for expression 

using BL21 (DE3) E. coli bacterial strain competent cells that are compatible with 

Isopropyl-1-thio-β-D-galactopyranoiside IPTG induction for high-level expression. A single 

colony was picked for making 1 l bacterial culture using lysogeny broth (LB), which was 

incubated for 2-3 h at 37 ˚C in a shaking incubator. An aliquot (1 ml) of the culture was 

taken out before induction (non-induced fraction) and kept at room-temperature. The 

remaining culture was induced with 1 mM IPTG then transferred to another shaking 

incubator at 16-22 ˚C overnight. An aliquot (1 ml) of the induced culture was taken and 

both non-induced and induced samples were then prepared to be loaded on a SDS-PAGE. 

SDS sample buffer was added to both samples, heated up to 105 ˚C for 5 min before 

being separated by SDS-PAGE and stained with Coomassie blue. It was noticed that 

ERp27-WT expression was leaky. Consequently, BL21 (DE3) PLysS strain competent cells 

were used which are known for ability to prevent leaky expression. However, there was 

no expression in this case. LB broth did not show any difference before and after 

induction. Subsequently, terrific broth (TB) and auto induction media (AI) were used to 

assess protein expression. It was noticed that expression did improve using AI. Finally, 
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protein was expressed in TB broth, however, it was difficult to conclude whether 

expression has taken place as the signal was quite diffuse as shown in (Fig 3.1A). To verify 

that the protein was expressed a western blot was carried out using anti-His antibody 

which confirmed ERp27 expression (Fig 3.1B) where a single protein band at the correct 

size (27 kDa) was observed (indicated with an arrow). At this stage, it can be concluded 

that ERp27 has successfully expressed.  

Following expression, cells were pelleted at 10,000 rpm for 25 min at 4 ˚C. Pellets were 

re-suspended in 1/10th volume of buffer (50 mM NaH2PO4 buffer, pH 8.0 containing 300 

mM NaCl, 5 mM imidazole). After that, cells were lysed for protein purification using a 

French pressure cell press. Cells were added into the cylinder where they undergo high 

pressure and are squeezed through a valve. During passage, cells experience 

decompression and shear stress resulting in cellular disruption. Once the lysate was 

obtained it was filtered through a 0.45 µM filter and the protein was purified using a 

nickel agarose affinity chromatography column which was equilibrated beforehand with 

His Buffer A, pH 8.0, and has the ability to bind His-tagged protein. The protein was 

washed with His Buffer A, (containing 5 mM imidazole, 300 mM NaCl) before the His-

tagged protein was eluted using a linear gradient of 5-500 mM imidazole (Fig 3.1C, 

fractions 7, 8, 9).  

At this point, the protein was partially purified containing several contaminants. The 

fractions containing ERp27 were combined and concentrated to 1 ml then purified further 

using gel filtration chromatography column Superdex 200 as an addition purification step 

to remove contaminated protein. The gel filtration column was equilibrated with 50 mM 

Tris buffer pH 7.5, containing 150 mM NaCl prior loading 1 ml protein sample. A typical 

elution profile is presented in Fig 3.1D. Although most contaminants were removed, the 

presence of high molecular weight proteins was noticed, which suggested that ERp27 

might have the ability to form aggregates at higher concentration. Western blotting was 

carried out using anti-His antibody confirming that these higher molecular bands were 

ERp27 (Fig 3.1E). Subsequently, as an attempt to remove those aggregates, we carried out 

ultra-centrifugation. Two protein samples were prepared in which one was centrifuged at 

100K rpm for 30 min and the other one was not. Both fractions were checked by SDS-

PAGE then stained by Coomassie blue (Fig. 3.1F). The centrifuged fraction 3 showed little 

difference compared to fraction 2. Hence, the protein was successfully, purified with a 
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high yield (2 mg/l) but contained some aggregates as a minor contaminant. Some of the 

purified protein was then used as an antigen to raise a polyclonal antibody to ERp27-WT 

in rabbits. Initially, the protein was freeze-dried where the solvent sublimates from solid 

phase to gas phase directly. This procedure has four main steps. First, pre-treatment 

which can vary depends on its requirements for freeze-dry. In this case, the protein was 

concentrated prior to freeze-drying. Secondly, freezing-phase, the most critical stage of 

the entire process where the protein was placed in a flask inside a shell-freezer where the 

process took place. Thirdly, primary drying phase, the sample experienced low pressure 

and elevated temperature for sublimation. Almost 95 % of the water in the sample is 

sublimated. Finally, secondary drying phase where the temperature is raised higher than 

the previous stage almost above 0 ˚C aiming to remove any unfrozen water left after the 

primary drying. Once this operation was complete the freeze-dried protein was sent out 

to a special lab for antibody production. The rest of the protein was combined, aliquoted 

then snap frozen in liquid nitrogen and stored in – 80 ˚C to be used in future assays. 
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Figure 3.1, ERp27-WT expression and purification. 

A, Coomassie-stained gel of E. coli BL21 (DE3) cell lysate from the ERp27-WT transfectants. B, 

western blot using anti-His antibody of E. coli lysate separated as in A. C, Coomassie-stained gel of 

fractions eluting from a nickel agarose affinity chromatography column. Arrow indicates a major 

band at 27 kDa most likely ERp27. D, Coomassie-stained gel of fractions eluting from a gel 

filtration column. Lanes 6, 7, 8 are the purified ERp27-WT. E, western blot using anti-His antibody. 

Lanes 7, 8, 9 are the purified ERp27-WT. F, Coomassie-stained gel of ERp27-WT ultra-

centrifugation at 100K rpm for 30 min. Lane 2 is non-centrifuged fraction and lane 3 is centrifuged 

fraction. 
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3.3.2 ERp27-I196W expression and purification 

 

Similar to the WT protein this experiment was carried out to produce purified protein for 

binding studies. The expression was examined under different conditions where two 

fractions of E. coli proteins were separated by SDS-PAGE and stained with Coomassie 

blue. The total cellular proteins were analysed either before or after induction with 1 mM 

IPTG (Fig. 3.2A, compare fractions 1 and 2). Both fractions contained a protein at 27 kDa; 

however, the induced fraction showed a stronger protein band at 27 kDa compared to 

the non-induced sample. A nickel agarose affinity column was used for the same 

purification method as the wild type protein. His tagged protein was bound to the column 

and eluted with imidazole (Fig. 3.2B, fractions 6, 7, 8, 9). However, contaminants were co 

purified with ERp27. To achieve a better separation of ERp27 from the contaminants a 

fresh purification was carried out with a gradient elution from the nickel agarose 

chromatography column with (5-500 mM) imidazole. Subsequently, ERp27 was separated 

from the contaminants more efficiently (Fig. 3.2C). The purification then was repeated 

demonstrating reproducibility of the protocol (Fig. 3.2D, fractions, 2, 3, 4, 5, 6). Although 

the purification of the eluted fractions was partially successful, the output still contained 

some additional proteins, so another polishing step was carried out using a gel filtration 

column. This column successfully purified ERp27 (Fig. 3.2E) with high yield (3.5 mg/l) and 

the purified fractions were then combined, aliquoted and stored at – 80 ˚C for future 

work. 
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Figure 3.2, ERp27-I196W expression and purification. 

A, Coomassie-stained gel of an E. coli BL21 (DE3) cell lysate from ERp27-I196W transfectants. Lane 

1, non-induced, Lane 2, induced with 1 mM IPTG. B, Coomassie-stained gel of fractions eluted 

from a nickel agarose affinity chromatography column. Lanes, 6, 7, 8, 9, contain ERp27-I196W. C, 

Coomassie-stained gel of fraction eluted from a nickel agarose affinity chromatography column. 

The purification was carried out with a linear gradient 5-500 mM imidazole. Lane 7, contains 

ERp27-I196W. D, Coomassie-stained gel of fractions eluted from a nickel agarose affinity 

chromatography column. Lanes, 2, 3, 4, 5, 6, contain ERp27-I196W. E, Coomassie-stained gel of 

fractions eluted from a gel filtration column. Lanes, 2, 3, 4, are the purified ERp27-I196W. 
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3.3.3 ERp27-E231K expression and purification 

 

Similar to the previous approach, two cultures of E. coli transformed with ERp27-E231K 

were tested under different conditions in which the first was non-induced whereas the 

second was induced with 1 mM IPTG to assess protein expression. E. coli proteins were 

separated by SDS-PAGE and visualised using Coomassie blue staining (Fig. 3.3A). It was 

noticed that the induced fraction provided higher expression compared to the non-

induced fraction and the protein bands appeared at about 27 kDa. Following the 

expression test, protein purification was carried out by a nickel agarose affinity column. 

The protein was eluted with an imidazole gradient (5-500 mM) with ERp27 as indicated in 

fractions 4, 5, 6, 7 (Fig. 3.3B). Unfortunately, the purification gave a different outcome 

compared to the previous protein purifications as the protein peaks did not separate and 

the purity was low. However, the purification was taken further by ion-exchange 

chromatography to remove the contaminants. Samples were concentrated as for gel 

filtration to a final volume of 1 ml using centrifugal concentrators. The protein was then 

diluted by 5 ml of ion exchange buffer A (50 mM Tris buffer, pH 7.5 containing 10 mM 

NaCl), and centrifuged at 3000 xg for 20 min before loading it onto HiTrap Capto Q (anion 

exchange) 1 ml column (GE Healthcare). The protein was eluted with ion exchange buffer 

B (50 mM Tris buffer pH 7.5, containing 1 M NaCl). Eluted fractions were separated by 

SDS-PAGE and protein was visualised using silver staining. As shown in Fig. 3.3C the 

protein was effectively purified. After that, a fresh purification was carried out. As 

indicated in Fig. 3.3D the protein bound to the column and was eluted in fractions 5, 6, 7, 

8, 9. At this stage the protein was still contaminated, and the purification needed to be 

taken further but this time through gel filtration instead of ion-exchange (Fig. 3.3E). The 

protein was purified but similar to the wild type, higher molecular bands appeared which 

suggested this protein has the tendency to form aggregates at high concentration. To 

remove these aggregates, ultra-centrifugation took place. As suggested in Fig. 3.3F, by 

comparing non-centrifuged with centrifuged fractions, it appears that there was no 

significant change. At this point of the purification the protein was partially purified with a 

high yield (3.5 mg/l) with some minor aggregation. Fractions were combined, aliquoted, 

snap-frozen and stored at – 80 ˚C for future assays. 
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Figure 3.3, ERp27-E231K expression and purification. 

A, Coomassie-stained gel of E. coli BL21 (DE3) cell lysate from the ERp27-E231K transfectants. 

Lane 1 is non-induced, and Lane 2 is induced with 1 mM IPTG. B, Coomassie-stained gel of 

fractions eluting from a nickel agarose affinity chromatography column, protein was eluted with 

linear gradient 5-500 mM imidazole. Lanes, 4, 5, 6, 7, contain ERp27-E231K. C, silver stained gel of 

fractions eluting from an ion-exchange column. Lanes, 6, 7, 8, are the purified protein. D, 

Coomassie-stained gel of fractions eluting from a nickel agarose affinity chromatography column, 

protein was eluted with a linear gradient 5-500 mM imidazole. Lanes, 5, 6, 7, 8, 9, are ERp27-

E231K. E, Coomassie-stained gel of fractions eluting from a gel filtration column. Lanes, 2, 3, 4, are 

the purified ERp27-E231K. F, Coomassie-stained gel of ERp27-E231K ultra-centrifugation at 100K 

rpm for 30 min. Lane 1 is non-centrifuged fraction and lane 2 is the centrifuged fraction. 
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3.3.4 ERp57-WT expression and purification 

 

This protein purification was carried out to produce enough protein for biochemical 

assays. Protein expression was tested following cell lysis and separation of ERp57 protein 

by SDS-PAGE. As shown in (Fig 3.4A) fraction 2 is non-induced while fraction 3 is induced 

by 1 mM IPTG. Coomassie blue staining confirmed protein expression with a clear band at 

57 kDa representing ERp57. A western blot was carried out using an anti His antibody 

which confirmed protein expression after IPTG induction (Fig 3.4B). ERp57 was then 

purified using nickel agarose affinity chromatography. The protein was bound by the 

column and eluted with an imidazole gradient (5-500 mM) in fractions 7, 8, 9, 10 (Fig 

3.4C). At this point, contaminants were still present so a further separation of the 

proteins by gel filtration chromatography was carried out. The protein was eluted in 

fractions 5, 6, 7, 8 (Fig 3.4D). Purification was successful, and the protein yield obtained 

was 4 mg/l. The purified fractions were combined, aliquoted, snap-frozen in liquid 

nitrogen and stored at – 80 ˚C for future work. 



72 
 

 

Figure 3.4, ERp57-WT expression and purification. 

A, Coomassie-stained gel of an E. coli BL21 (DE3) cell lysate from ERp57-WT transfectants. Lane 2, 

is non-induced ERp57-WT, lane 3, is induced. B, western blot using anti-His antibody of E. coli 

lysate separated as in A, lane 3, ERp57-WT. C, Coomassie-stained gel of fractions eluting from a 

nickel agarose affinity chromatography column. Lanes 7, 8, 9, 10 contain ERp57-WT. D, 

Coomassie-stained gel of fractions eluting from a gel filtration column. Lanes, 5, 6, 7, 8, are the 

purified ERp57-WT. 
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3.3.5 ERp27-antibody testing 

 

As ERp27-WT was successfully purified, it was then freeze-dried and sent out for antibody 

production as mentioned earlier. Two rabbits were injected to produce antibodies. Upon 

receiving the first bleeds of the antibody it was tested on several cell lines for its ability to 

recognise ERp27 in mammalian cells. A series of western blots were carried out on a 

variety of cell lines including; HT1080, HEK 293, CHOS and Panc1 as well as HT1080 cells 

expressing exogenous ERp27-WT or ERp27-E231K. First bleeds were tested on all cell lines 

except Panc1. The majority produced negative outcomes however; ERp27-WT and ERp27-

E231K cell lines provided positive results. The ERp27-E231K data is presented here as it 

represents the clearest results (Fig. 3.5). Lane 1 (Fig. 3.5A) represents 1X dilution and lane 

2 is 10X dilution of ERp27-E231K cell line lysate. Both were tested by immunoblotting 

using the ERp27 antibody and as indicated in lane 1 there was a strong signal around 30 

kDa as well as some non-specific bands at higher molecular weight. Accordingly, we 

stripped and re-probed the same blot with anti-myc antibody (mouse monoclonal) as a 

positive control as the exogenously expressed protein contains a myc-tag (Fig. 3.5B). The 

anti-myc antibody confirmed that the raised polyclonal ERp27 antibody recognised ERp27 

which is abundant in lane 1 compared to lane 2. By overlaying (Fig. 3.5A) and (Fig. 3.5B), 

we could see that the signal from ERp27 antibody overlaid with the signal from the anti-

myc antibody as indicated by yellow bands at the same size (Fig. 3.5C). Furthermore, 

additional experiments were carried out upon receiving the final bleed on ERp27-WT and 

the Panc1 cell lines. Positive outcomes were obtained from ERp27-WT cell line however; 

the Panc1 cell line was negative. The conclusion that was drawn at this point is, first 

bleeds were shown to function positively by recognising ERp27 although it gave negative 

results with the majority of the tested cell lines suggesting a limited amount of ERp27 in 

these cell-lines. 



74 
 

 

Figure 3.5, ERp27 anti body testing on ERp27-E231K cell line. 

A, western blot using anti-ERp27 antibody. Lanes 1, 1X dilution and 2, 10X dilution of ERp27 

lysate. B, western blot using anti-myc antibody. Lanes 1, 1X dilution and 2, 10X dilution of ERp27 

lysate. C, overlaying gel of A and B showing signals from both ERp27 antibody and anti-myc 

antibody as yellow bands. 
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3.3.6 Calreticulin WT expression and purification 

 

This purification was carried out to produce adequate CRT for binding studies. Two 

fractions of E. coli lysates were separated by SDS-PAGE and visualised by Coomassie blue 

stain (Fig 3.6A) where lane 1 is non-induced and lane 2 is induced. It was noticed that the 

protein was abundant within the induced sample and major induced protein migrated at 

57 kDa. The lysate was loaded onto a nickel agarose affinity column. Bound protein was 

eluted, separated by SDS-PAGE and visualised by Coomassie blue stain (Fig 3.6B). 

Fractions 2, 3, 4, and 5 contain CRT. As the protein still contains some contaminants it was 

purified further by gel filtration chromatography (Fig 3.6C). Fractions 1, 2, 3, 4, 5, and 6 

contain CRT-WT. The protein at this stage was relatively pure with a good yield (5 mg/l). 

Fractions containing the purified protein were then combined, aliquoted, snap-frozen by 

liquid nitrogen and stored for future assays. 
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Figure 3.6, Calreticulin-WT (CRT) expression and purification. 

A, Coomassie-stained gel of fractions eluting from a nickel agarose chromatography column. 

Lanes 2, 3, 4, 5 are purified CRT. B, Coomassie-stained gel of fractions eluting from a gel filtration 

column. Lanes, 1, 2, 3, 4, 5, and 6 are the purified CRT. 
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3.3.7 ERp57-R282A expression and purification 

 

This experiment was designed as previous experiments to express and purify the protein 

for binding studies. E. coli proteins were checked by SDS-PAGE then analysed and 

visualised by Coomassie blue stain. The first purification step was by Nickel agarose 

affinity chromatography. The protein bound to the column was eluted with imidazole 

gradient (5-500 mM). Fractions 2, 3, 4, 5, and 6 (Fig. 3.7A) containing ERp57-R282A were 

combined and concentrated as explained earlier for further purification. Gel filtration 

chromatography was carried out as a further purification step as shown in (Fig. 3.7B) 

where fractions 7, 8, 9, 10, 11, and 12 contain the purified ERp57-R282A with a yield of (6 

mg/l). The protein was combined, aliquoted, and snaps frozen and stored at – 80 ˚C. 

 

Figure 3.7, ERp57-R282A expression and purification. 

A, Coomassie-stained gel of an E. coli cells BL21 (DE3) lysate from ERp57-R282A transfectants. 

Lane 1, none induced ERp57-R282A, lane 2, induced. B, Coomassie-stained gel of fractions eluting 

from a nickel agarose chromatography column Lanes 1, 2, 3, 4, 5, 6, and 7 contain contaminant 

ERp57-R282A. C, Coomassie-stained gel of fractions eluting from a gel filtration column. Lanes, 6, 

7, 8, 9, 10, 11, and 12 are the purified ERp57-R282A. 
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3.4 Isothermal titration calorimetry ITC 

 

After obtaining a good yield of all the wild type proteins and their mutants some in vitro 

assays were carried out to assess protein-protein interaction. Isothermal titration 

calorimetry (ITC) a physical technique which determines a direct measurement of the 

thermodynamic parameters of interactions in solution. It is usually used to investigate 

interactions between small molecules like medicinal compounds and larger molecules 

such as proteins. The device consists of a sample cell that contains the macromolecule, 

the reference cell which contain water or buffer as a direct comparison to the sample cell 

as well as a syringe that holds the ligand particles that is titrated into the sample cell. As 

the first injection is made, the macromolecules will bind to the ligand generating heat 

that appears as a spike signal. The spike will return to the baseline before the next 

injection. The more injections the more binding occurs between macromolecules and 

ligands. Consequently, more heat is generated, and signals appear. Once they reach 

saturation no more interaction takes place and accordingly no heat change occurs. By 

applying this technique, it is intended to investigate the binding affinity between ERp27-

WT and ERp57-WT then compare it to ERp57-WT and CRT binding affinity that has been 

determined previously by (Frickel et al., 2002) where protein samples of ERp57 and CRT 

(189-288) were prepared, purified and filtered into a buffer containing 25 mM Tris HCl, 

pH 7.0 and 10 mM β-mercaptoethanol. Protein concentration were measured after gel 

filtration. ERp57 (0.2 mM) was loaded into the cell. The protocol comprises 24 12 µl 

injections of 0.2 mM CRT (189-288) where the duration was 10 secs allowing 5 min 

between injections for equilibration. The stirring rate was 200 rpm. At the end of the 

experiment data were analysed based on 1:1 binding model. 

Our samples were prepared for ITC as follows. In the first attempt, proteins were purified 

and polished by gel filtration chromatography in 50 mM HEPES pH 7.5 containing 150 mM 

NaCl and 1 mM TCEP. The concentration obtained following gel filtration were; 13.43 µM 

ERp57, 43.67 µM ERp27, and 55.21 µM CRT. Prior ITC samples were concentrated using 

(Satorius, Vivaspin 6, membrane 10,000 Mw) and centrifuged at 3000 xg for 30 min at 4 

˚C as an attempt to achieve a concentration compatible for the ITC device (300 µl of 10-20 

µM for the cell and 100 µl of 200 µM for the syringe). 
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Following that, samples were dialysed using dialysis buffer (50 mM HEPES pH 7.5 

containing 150 mM NaCl and 1 mM TCEP) as the protein and the ligand must be in 

identical buffers to avoid false heat masking the heat of interaction. Proteins were spun 

down for 5 min to remove precipitates before injection of their estimated concentrations 

after this centrifugation were; 7.44 µM ERp57 and 29.27 µM ERp27. ERp27 was then 

titrated into ERp57. Following subtraction of the appropriate heats of dilution control 

experiments gave no evidence of interaction (Fig 3.8A). Thereafter, ERp57 was injected 

into CRT. The first few injections showed evidence of heat of interaction (Fig, 3.8B). The 

KD between CRT and ERp57 was calculated to be 0.26 µM +/- 0.8 µM. 

As ERp27/ERp57 interaction did not show any heat generation more attempts were 

carried out by purifying both proteins and concentrating them close enough to the 

required concentration for binding, however, the desired concentration was never 

obtained. In addition, the experiment was repeated using the same buffer used 

previously (Frickel et al., 2002). Samples were dialysed for 2 days at 4 ˚C before injection. 

Unfortunately, the ERp27 concentration was not suitable for ITC and the experiment 

could not be repeated. The ERp57 and CRT binding experiment was repeated regardless 

of the ERp57 low concentration of 7.44 µM. CRT was diluted to 100 µl for this repeat 

experiment. The heats were extremely small due to the very low concentration of ERp57 

(Fig, 3.8C). The stoichiometry of binding was also less than one which may reflect changes 

of concentrations. The negative values of enthalpy and entropy suggested that 

CRT/ERp57 binding is favourable and might be driven by hydrogen and hydrophobic 

interactions. The KD of this interaction is 0.429 µM +/- 1.8 µM. 

This set of experiments were carried out in a chemistry lab where the instrument gives an 

association constant value KA which is the favoured parameter for chemists. However, as 

biochemists we prefer to report in terms of dissociation constant KD which was calculated 

according to this equation: KD = [P]free [L]free/ [PL] = 1 / KA. This explains the difference 

between the K values on the graph and in the text and figure legend.    

 



80 
 

 

Figure 3.8, Isothermal titration calorimetry (ITC). 

Binding isotherm describing the formation of, A, The interaction between ERp27 (29.27 µM) and 

ERp57 (7.44 µM). The signal is scattered, and no interaction observed due to the low 

concentration of both proteins. B, The formation of CRT (>200 µM) and ERp57 (7.44 µM) complex. 

The signal of the heat change and the sigmoidal curve have indicated the tight binding between 

the two proteins, The KD obtained is (0.26 µM). C, A repeat of the interaction between CRT and 

ERp57. The KD obtained is (0.429 µM). 
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3.5 Discussion 

 

This first chapter aimed to produce sufficient recombinant protein for ERp27, ERp57, CRT 

and mutants thereof for further interaction studies. The purifications were successful 

providing protein at sufficient yield for future work. A leaky expression was experienced 

when expressing ERp27-WT. As an attempt to overcome that issue PLysS cells were used 

instead of BL21 (DE3) cells which are a bacterial strain that limits leaky protein 

expression. Unfortunately, expression was not successful. The following option was to 

assess other types of media for protein expression; terrific broth (TB) and auto induction 

(AI) were used. TB broth showed the best expression with BL21 (DE3) competent cells 

when induced with 1 mM IPTG at 16-22 ˚C overnight compared to both AI culture and LB 

broth which were used initially. As soon as that matter was solved it was applied to the 

rest of the proteins. ERp27-WT and ERp27-E231K both have the tendency to form 

aggregates at high concentration. These accumulations appeared as bands at higher 

molecular weight after proteins were polished by gel filtration column. It is thought that 

aggregation occurs because of the high concentration of the protein obtained after 

purification and by diluting the protein those higher bands might be removed. As an 

attempt to remove those aggregates, an ultra-centrifugation was carried out at 100K rpm 

for 30 min however no significant change was noticed post centrifugation. It was 

suggested to take the purification further by running another gel filtration column which 

might remove these higher bands. Yet, proteins were sufficiently purified at this point for 

use in other molecular assays. 

Our ITC results between CRT and ERp57 has confirmed their interaction and the KD is 0.26 

µM +/- 0.8 µM. However, given that the concentration of CRT was found to be 3.6-fold 

higher than expected (i.e. 200 µM) it was advisable to repeat this experiment using a CRT 

concentration between 75-100 µM so that the reaction is not saturated within the first 2-

3 injections in addition to increasing ERp57 concentration in the cell. Consequently, 

another attempt was carried out however the heat change were extremely small due to 

the very low concentration of ERp57. The stoichiometry of binding was also less than one 

which may reflect changes of concentrations. The negative values of enthalpy and 

entropy suggested that CRT/ERp57 binding is favourable and might be driven by hydrogen 

and hydrophobic interactions. The KD of the second run is 0.429 µM +/- 1.8 µM. Ideally; 
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we should aim to increase the ERp57 concentration in the cell to improve the accuracy of 

heat detection. As a comparison, the Ellgaard group have studied CRT (189-288)/ERp57 

interaction. The NMR results proved the binding between those proteins and 

characterised CRT P-domain as the binding site for ERp57. Further investigation 

determined the thermodynamic stability of the interaction. The KD values obtained by ITC 

and TROSY-NMR are; 9.1 +/- 3.0 µM at 8 ˚C and 18 +/- 5 µM at 20 ˚C, respectively (Frickel 

et al., 2002). 

Moreover, the ITC results of ERp27/ERp57 interaction did not show any heat generation 

due to the low concentration for both proteins. More purification and concentration 

attempts were carried out for both proteins, however during sample preparation, 

obtaining more concentrated proteins using centrifugal concentrator was difficult. It was 

noticed that after exceeding certain concentration ERp27 and ERp57 started to aggregate, 

probably due to the intrinsic insolubility of both proteins. It was suggested that an exact 

buffer match followed by an extensive dialysis should preclude heats of ionisation. 

Consequently, the experiment was repeated with the same buffer from published work 

(Frickel et al., 2002). Samples were dialysed for 2 days at 4 ˚C before injection. 

Unfortunately, the ERp27 concentration was still lower than the ITC requirements and 

accordingly could not be repeated. However, that does not mean there is no interaction 

taking place between ERp27 and ERp57, but it could not be detected. 

The Ruddock group have looked at ERp27/ERp57 binding by applying various techniques 

including 2D NMR and cross-linking assays. The 2D NMR results show a very tight binding 

between ERp27 and ERp57 after comparing 1H/15N HSQC spectra for domain 1 and the 

full length 15N labelled ERp27. In the presence of a small excess of unlabelled ERp57 no 

peak shifts were observed with domain 1 but significant peak shifts were determined with 

the full length ERp27 which confirmed the tight binding between ERp27and ERp57 

(Alanen et al., 2006). Additionally, the ERp27 b’ domain was found to be conserved with 

the PDI b’ domain and similarly bound the 14 peptide, Δ-somatostatin. This fact suggested 

a possible interaction between ERp27 and a wide range of unfolded or partially folded 

polypeptides. It was also found that the loop between β4 and β5 in ERp27, which has the 

sequence of Asp-Glu-Trp-Asp. Similar motif was also found within the CRT P-domain 

which has the ability to bind ERp57. It was speculated that ERp57 can also bind ERp27 via 

this loop. Furthermore, cross-linking results have revealed that ERp57 can form cross-
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links with either the ERp27 or CRT P-domain under certain conditions. As ERp57 binds to 

both motifs on the CRT P-domain and ERp27 using the same binding site on its b’ domain 

it is not possible to bind them simultaneously. Moreover, since ERp57 is involved with the 

(ER) resident lectins CNX and CRT for glycoprotein folding and in quality control, ERp27 

overexpression might influence that binding or function or it may operate to bring non-

glycosylated proteins to ERp57 to fold, just as N-glycosylated substrates are brought to 

ERp57 by CNX and CRT to fold. Nevertheless, it is still unknown under what conditions or 

physiological circumstances the ERp57/ERp27 interaction happens. Interaction was not 

observed between ERp27 and PDI or between ERp27 and CRT P-domain (Alanen et al., 

2006). In those experiments, the ERp27/ERp57 interaction was investigated using cross-

linking assays and will be discussed in the next results chapter. 

With regard to the raised polyclonal anti body to the purified ERp27-WT, first bleeds from 

both rabbits have been shown to successfully recognise ERp27 in some transfected cell 

lines, specifically ERp27-WT and ERp27-E231K cell lines. However, they produced negative 

results with the cell lines HEK 293, and CHOS suggesting these cell lines have limited 

amounts of ERp27. Final bleeds were tested only on ERp27-WT and the Panc1 

(pancreas/duct) cell line which was provided by Dr. Karen Cosgrove, University of 

Manchester. It has been reported previously that the pancreas has the highest levels of 

ERp27 (Kober et al., 2013, Lash et al., 2000). Yet ERp27 might not be expressed in this 

particular cell line so other pancreas cell lines were investigated. The MIN6 Cell line 

(which was supplied by Dr. Kevin Docherty) University of Aberdeen, was tested. Initially 

this cell line needed special media to grow and while growing it was recognised that cells 

are growing in clusters and possibly vertically rather than horizontally. A cell lysate was 

made and tested with ERp27 antibody. Unfortunately, ERp27 was not recognised within 

this cell line either. 
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4 In vitro and in cellulo protein-protein interaction by cross-

linking assay 
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4.1 Introduction 

 

The oxidoreductase ERp57 is a PDI enzyme that is known for its significant role in 

catalysing isomerisation of non-native disulphide bonds in glycoproteins (Frasconi et al., 

2012). It operates as a chaperone, disulphide isomerase, and oxidoreductase together 

with calnexin and calreticulin. It is also considered an effective factor in the CNX and CRT 

cycle (Williams, 2006). ERp57 has generally been known and referred to as a glycoprotein-

specific oxidoreductase for its significant role in nascent glycoprotein folding when 

associated with CNX and CRT (Ellgaard and Frickel, 2003). 

This interaction between ERp57 and the two endoplasmic reticulum resident lectins, CNX 

and CRT was previously investigated by a cross-linking assay in mammalian cells (Jessop et 

al., 2009a). ERp57 has also shown the ability of binding the non-glycosylated substrates 

such as viruses (Schelhaas et al., 2007) which suggests that ERp57 can function 

independently from the CNX and CRT cycle. 

To determine the reasons why polyoma virus, simian virus 40 (SV40) uses an elaborate 

entry pathway and to define the possible roles of the ER in this process, the uncoating 

and the penetration of the SV40 virus were analysed. It was found that the ER route of 

entry allows SV40 to take advantage of the protein folding and quality control machinery 

in the ER before exploiting components of the ER-associated degradation (ERAD) to exit 

the ER lumen to the cytosol (Schelhaas et al., 2007). 

The isomerisation of disulphide bonds within the interpentamer in the virus plays a 

significant role in the entry process. During ERp57 catalysed disulphide isomerisation 

reactions in the lumen of the ER, pentamers are disconnected from a large network of 

disulphide crosslinked virus protein 1 (VP1) molecules in the capsid, the initial step for 

uncoating SV40. It was indicated that the modified virus exploits the ERAD pathway as a 

way to cross to the cytosol by depending on PDI, Derlin-1, and Sel1L. The SV40 overall 

strategy was found to be similar to that of cholera toxin, however, more elaborate due to 

the particles structural complexity (Schelhaas et al., 2007, Tsai et al., 2001).  

To establish whether ERp57 can form mixed disulphides when not associated with CNX 

and CRT, the interaction between ERp57/CNX/CRT was abolished using various mutations 
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of ERp57. Mixed disulphides between the enzyme and substrates can be trapped when 

the second cysteine of the CXXC active site on ERp57 is mutated into alanine. 

Subsequently, Arginine 282 within the b’ domain of ERp57 was mutated into Alanine that 

abrogates the CRT binding site. Moreover, various stable cell lines were made which 

include; wild type ERp57, a single point mutant R282A, a double mutant Cys2,7 in which 

cysteines on both CXXC active sites are mutated into alanine CXXA as well as a triple 

mutant cys 2,7 R282A (Jessop et al., 2009a). 

 

Figure 4.1, schematic diagram showing the domain structure of V5-tagged ERp57, single point 

mutant ERp57-R282, double mutant ERp57-cys 2,7, and triple mutant ERp57-cys 2,7-R282.  

The diagram depicts the domain organisation of ERp57. The domains; a, b, b’, and a’ are indicated 

for ERp57 and all mutants. 

A cross-linking agent was added to the transfected cells to verify that the R282A mutation 

stops complex formation between ERp57 and CNX/CRT. Cells were lysed and 

immunoprecipitated using the V5 antibody and then the immunoisolated material was 

separated by SDS-PAGE and visualised using either CNX or CRT antibodies by western 

blotting. Results revealed that cross-links were formed with both CNX and CRT within the 

wild type and cys 2,7 cells and it was noticed those complexes form to a lesser extent in 

the case of CNX. 

Both lectins are absent in the un-transfected cells which confirmed ERp57 interaction 

specificity. Furthermore, no sign of interaction was detected with R282A or cys 2,7 R282A 

cells which means successful creation of stable cell lines of ERp57 that are not associated 

with either CNX or CRT but can form a mixed disulphide with substrate proteins (Jessop et 

al., 2009a). 



87 
 

ERp57 has also been shown to form complexes with the non-catalytic member of the PDI 

family ERp27. The b’ domain of ERp27 contains a sequence of Asp-Glu-Trp-Asp similar to 

that on the P-domain of CRT which suggests that both ERp27 and CRT interact with ERp57 

on the same binding site. This interaction of ERp57 with ERp27 was investigated by in 

vitro cross-linking.  

Previous work has demonstrated that cross-links can be formed between the two wild 

type proteins. Complexes also formed between the client protein mutant of ERp27 and 

ERp57; however, the interaction between ERp27 and the CRT binding mutant of ERp57 

was very much reduced. This suggests that ERp57 binds ERp27 using the same binding 

site for CRT. That was accordingly confirmed by the E231K mutant of ERp27 which 

dramatically reduced the interaction with ERp57 (Alanen et al., 2006). 

 

Figure 4.2, Schematic diagram showing the domain structure of Myc-tagged ERp27, ERp27-

I196W, and ERp27-E231K. 

The diagram depicts the domain organisation of ERp27 and both mutants. The domains; b, and b’, 

are indicated for ERp27 as well as the mutants. 

Our investigation of the interaction of ERp27 with ERp57 by isothermal titration 

calorimetry (ITC) was unsuccessful due to low protein concentrations. To study the 

interaction of ERp27 and ERp57 both in vitro and in cellulo, a biochemical assay, cross-

linking, was used to establish if any interaction can be detected either in solution or 

within living cells and to compare ERp57 and ERp27 interaction to the ERp57 and CRT 

interaction. Purified proteins were used for the in vitro investigation while mammalian 

cells were used for the in-cellulo study. 
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4.2 Results 

4.2.1 In vitro cross-linking 

 

To investigate the formation of cross-links between purified proteins in solution, His-

tagged recombinant proteins were expressed and purified and include; ERp27-WT, I196W 

and E231K mutants, ERp57-WT and R282A mutant, as well as calreticulin-WT (CRT) 

(Figures 4.4, 4.5 and 4.6). To determine the optimum concentration of the cross-linking 

agent to use, various concentrations of disuccinimidyl glutarate (DSG) were tested (0.02 

mM, 0.01 mM, 0.2 mM, 0.1 mM, 1 mM, 2 mM, and 5mM). A 1 mM concentration of DSG 

was found to be the best. A 10 µl cross-linking reaction was made as following; 3 µg of 

each protein (worked out depending on protein concentration obtained after 

purification), 2 µl of phosphate buffer pH 7.2, and dH2O up to 10 µl placed on ice for 10 

min prior addition of 1 µl of DSG. After addition of DSG, the reactions were placed at 

room temperature for 30 min. The reactions were stopped by adding SDS sample buffer, 

boiled at 105 ˚C for 5-10 min and then separated by SDS-PAGE under reducing conditions. 

Subsequently, a western blot was carried out to assess the presence of proteins and their 

complexes using different antibodies. 

 

Figure 4.3, The chemical structure of the disuccinimidyl glutarate (DSG) cross-linking agent. 

An anti-His western blot confirmed the presence of all proteins with and without DSG (Fig 

4.4A). ERp27 protein bands appeared at 27 kDa (lanes 1, 4, 7-9 and 11), while ERp57-WT 

was observed at 57 kDa (lanes, 2, 5, and 7- 11). CRT bands migrated at about the same 

size as ERp57 at 57 kDa (lanes, 3, 6, 10, and 11). CRT bands were less evident compared to 

ERp27 and ERp57. However, it was apparent on later gels that CRT is abundant when 

probed with the CRT-antibody. That suggests that His-antibody is not able to recognise 

the His-tag on this particular protein. Cross-links formed between ERp27 and ERp57 at 84 

kDa (Fig 4.4A, lane 7). The ERp27 mutants also engaged in complexes around 84 kDa. The 

I196W mutant confirmed that ERp27 does not require the peptide-binding site to interact 

with ERp57 (Fig 4.4A, lane 8). In addition, there was no effect of the E231K mutant on the 
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cross-links formed with ERp57 (Fig 4.4A, lane 9). This is different to what was found 

previously (Alanen et al., 2006) and suggests that the E231K does not prevent the 

interaction with ERp57 in vitro. High molecular bands were also observed between ERp27 

wild type and both mutants with ERp57 (Fig 4.4A lanes 7-9)  

The interaction between ERp57 and CRT was confirmed by a cross-linking product that 

appeared at about 100 kDa (Fig 4.4A, lane 10). Additionally, a competition experiment 

was carried out where ERp27, ERp57, and CRT were mixed together to establish if ERp27 

would inhibit the interaction between ERp57 and CRT. A cross-linking product was 

observed between ERp57 and CRT around 100 kDa (Fig 4.4A lane, 11) which correspond 

to the cross-link in the absence of ERp27 (Fig 4.4A lane 10). In addition, no cross-links 

were observed between ERp27 and ERp57 within the same protein mixture using His 

antibody compared to the ERp27 and ERp57 western blots which suggest that His 

antibody cannot detect that specific signal due to its immunodetection and sensitivity.  

An ERp27 western blot confirmed the cross-links between ERp27 and ERp57 around 84 

kDa as well as the aggregates at higher molecular weight (Fig 4.4B, lanes 7- 9) which 

correspond to those cross-links seen with the anti His antibody (Fig 4.4A, lanes 7- 9). 

Additionally, a cross-link appeared at 84 kDa within the protein mixture (Fig 4.4B, lane 11) 

corresponding to those cross-links between ERp27 and ERp57 (Fig 4.4A, lanes 7- 9) 

suggesting that ERp27 has the potential to influence the ERp57 and CRT interaction. A 

western blot using an ERp57 antibody also verified cross-linking products of ERp57 with 

ERp27 around 84 kDa as well as the higher molecular weight bands (Fig 4.4C, lanes 7- 9) in 

addition to the complex at 100 kDa between ERp57 and CRT (Fig 4.4C, lanes 10 and 11). 

Similar to the ERp27 western blot, a cross-linking product appeared between ERp27 and 

ERp57 at 84 kDa (Fig 4.4C, lane 11) which corresponds to the cross-links of ERp27 and 

ERp57 (Fig 4.4B, lane 11). So, ERp57 interacts with ERp27 and CRT. The E231K mutant of 

ERp27 did not prevent the interaction with ERp57 in contrary to what was expected. 

Additionally, the peptide binding mutant of ERp27 is not required for the interaction with 

ERp57. Furthermore, ERp27 formed cross-links with ERp57 when mixed with CRT. That 

cross-link seemed stronger compared to the complex formed between ERp57 and CRT 

suggesting that ERp27 may be competing CRT for binding ERp57. 
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Figure 4.4, The interactions between ERp57 and ERp27 or ERp57 and CRT assessed by in vitro 

cross linking. 

A representative western blot of in vitro cross-linking between purified protein components (all 3 

µg, ERp57-WT, ERp27-WT, ERp27-I196W, ERp27-E231K, and CRT) in 10 µl of 0.2 M phosphate 

buffer, pH 7.2; 1 mM DSG, 30 min at room temperature. A, anti-His. B, anti-ERp27. C, anti-ERp57. 

Non-relevant lanes were cropped off the gels. (n = 8). 
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As the CRT concentration used in these experiments might be insufficient (Fig 4.4) its 

interaction with ERp57 was repeated as shown in (Fig 4.5). A western blot using a His-

antibody showed ERp57-WT, and CRT at about 57 kDa (Fig 4.5A, lanes 2, 3, and 5- 11) 

though the intensities of protein bands vary between different lanes. Additionally, by 

comparing the anti-His to the anti-CRT western blots CRT seem to be abundant when 

probed with the CRT specific-antibody suggesting that His-tagged CRT is not detected by 

the His-antibody for some reason. The cross-linking products between ERp57-WT and CRT 

were observed around 100 kDa in the presence of DSG (Fig 4.5A, lane 10). CRT and ERp57 

cross-links were also detected within the mixture of ERp57, ERp27, and CRT, which was 

made to investigate the effect of ERp27 on the ERp57/CRT complex (Fig 4.5A lane, 11). 

The cross-linking product formed between ERp57/CRT in Fig 4.5A lane 11 correspond to 

the cross-linking complex in Fig. 4.5A, lane 10. However, no cross-linking band for the 

ERp57 and ERp27 interaction was observed using the DSG cross-linker. 

The same experiment was carried out using a CRT antibody and CRT was seen at 57 kDa 

(Fig 4.5B lanes, 3, 6, 10, and 11). A cross-linking product formed between ERp57 and CRT 

at 100 kDa (Fig 4.5B lanes, 10, and 11) which correspond to those cross-links formed in 

(Fig 4.5A lanes, 10 and 11). This confirms the interaction between ERp57 and CRT. 
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Figure 4.5, The interaction between ERp57 and CRT by in vitro cross linking. 

A representative western blot of in vitro cross-linking between purified protein components (all 3 

µg, ERp57-WT, ERp27-WT, ERp27-I196W, ERp27-E231K, and CRT) in 10 µl of 0.2 M phosphate 

buffer, pH 7.2; 1 mM DSG, 30 min at room temperature A, anti-His. B, anti-CRT. (n = 8). 

A western blot using a His-antibody was carried out to determine the ability of the ERp57-

R282A mutant to prevent binding to CRT (Fig 4.6A lanes, 5, 6, and 8). However, expression 

of the R282A protein was very low compared to ERp57-WT and CRT which migrate at 57 

kDa (Fig 4.6A lanes, 1-4, and 7, 8). As seen before, the His-antibody did not recognise CRT 

and that may be because it cannot recognise the His-tag on this protein (Fig 4.6A). 

However, when probed with the CRT-antibody it is obvious that the protein is abundant 

(Fig 4.6C). A cross-link was observed between ERp57 and CRT at 100 kDa (Fig 4.6A lane 7). 

ERp57-WT as well as ERp57-R282A were detected at 57 kDa when probed with an ERp57 

antibody (Fig 4.6B lanes 1, 2, and 5-8) though ERp57-R282A expression was very low. A 

cross-link between ERp57 and CRT was seen at 100 kDa (Fig 4.6B lane 7) which 

corresponds to the cross-link in (Fig 4.6A lane 7); however, no cross-links were identified 

between ERp57-R282A and CRT (Fig 4.6B lane 8). An anti-CRT western blot has shown CRT 

bands at 57 kDa (Fig 4.6C lanes 3, 4, 7, and 8) in addition to cross-links with ERp57 at 100 

kDa (Fig 4.6C lane 7). This has confirmed the interaction between ERp57 and CRT. 

Unfortunately, due to the low levels of expression we could not determine using this 

approach whether the R282A mutation prevented ERp57 binding to calreticulin. 
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Figure 4.6, The interactions between ERp57 and CRT by in vitro cross linking. 

A representative western blot of in vitro cross-linking between purified protein components (all 3 

µg, ERp57-WT, ERp57-R282A, and CRT) in 10 µl of 0.2 M phosphate buffer, pH 7.2; 1 mM DSG, 30 

min at room temperature. A, anti-His. B, anti-ERp57. C, anti-CRT. (n = 3). 
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4.2.2 In cellular cross-linking 

 

The interaction between ERp57 and CRT was investigated in mammalian cells as done 

previously (Jessop et al., 2009a) to determine if it is occurring in cellulo as it is in vitro. V5-

tagged wild type ERp57 as well as the R282A mutant were transfected into HT1080 cells. 

Myc-tagged ERp27 was co-transfected with ERp57-WT to determine if it will have any 

effect on the ERp57/CRT interaction. The cells were cross-linked with the non-cleavable 

sulfhydryl group specific cross-linking agent Bismaleimidohexane (BMH) which was added 

to stabilise protein complexes. 

 

Figure 4.7, The chemical structure of the Bismaleimidohexane (BMH) cross-linking agent. 

The expressed V5-tagged ERp57 was immunoprecipitated and the immunoisolated 

material was separated on reduced SDS-PAGE followed by a CRT western blot (Fig 4.8A). 

CRT was pulled down with ERp57 in the presence of BMH (Fig 4.8A lanes 2 and 4) and 

cross-links were also observed between CRT and ERp57 (lanes 2 and 4). ERp27 seems to 

enhance the immunoisolation as stronger CRT and cross-links were observed in lane 4 

compared to lane 2. Unlike ERp57-WT, CRT was not pulled down within the ERp57-R282A 

sample in the presence of BMH (Fig 4.8A lane 6) and consequently no cross-links formed. 

That has confirmed that the ERp57-R282A mutation prevents the interaction between 

ERp57 and CRT. This experiment was repeated and showed consistency (Fig 4.8B). 

However, a triplicate showed slightly different results (Fig 4.8C). The results taken 

together demonstrated that we could detect an interaction between exogenously 

expressed ERp57 and endogenous calreticulin using this cross-linking approach. 



95 
 

 

Figure 4.8, The interaction between ERp57 and CRT by in-cellular cross-linking and the R282A 

mutation in ERp57 abolishes the interaction with CRT. 

A, HT1080 cells transfected with V5-tagged ERp57 (lanes 2- 6) as well as Myc-tagged ERp27 (lanes 

4, and 5) or un-transfected (UT) cells (lane 1) were cross-linked with BMH and lysed, and the 

expressed V5-tagged ERp57 was immunoisolated with V5-specific antibody. The immunoisolated 

material was separated on a reducing SDS-PAGE gel, and CRT was identified following western 

blotting. B and C, are repeats. (n = 3). 
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To investigate the interaction between ERp57 and ERp27, V5-tagged ERp57 and Myc-

tagged ERp27 constructs were co-transfected into HT1080 cells. Cells were co-transfected 

with ERp27 as the level of endogenous ERp27 was quite low in HT1080 cells (see chapter 

3). Cells were cross-linked and lysed then lysates were analysed by reducing SDS-PAGE. 

The exogenously expressed proteins were detected by western blot using V5 and Myc 

antibodies (Fig 4.9). Proteins were expressed at 57 and 27 kDa, however, no cross-links 

were observed between ERp57 and ERp27. Interestingly, cross-links appeared within the 

ERp57 only fraction (Fig 4.9A lane 6). A Myc western blot showed a non-specific band 

around 100 kDa (Fig 4.9B) but cross-links were not observed. 

 

Figure 4.9, The interaction between ERp57 and ERp27 by in-cellular cross-linking. 

HT1080 cells transfected with V5-tagged ERp57 (lanes 2, 4, 6, and 8) as well as Myc-tagged ERp27 

(lanes 3, 4, 7, and 8) or un-transfected (UT) cells (lanes 1, and 5) were cross-linked with BMH and 

expression and cross-links were confirmed by western blotting using A, V5 specific antibody. B, 

Myc specific antibody. (n = 12). 
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A repeat was carried out and confirmed similar results (Fig 4.10 lanes, 3- 6). 

 

 

Figure 4.10, The interaction between ERp57 and ERp27 by in cellular cross-linking. 

HT1080 cells transfected with V5-tagged ERp57 (lanes 3, and 4) and Myc-tagged ERp27 (lanes 5, 

and 6) or un-transfected (UT) cells (lanes 1, and 2) were cross-linked with BMH and lysed, then 

expression and cross-links were confirmed with V5 and Myc antibodies. (n = 3). 
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To avoid co-transfections as this could affect expression efficiency, transient transfection 

of either V5-tagged ERp57 or Myc-tagged ERp27 constructs was carried out using stable 

cells expressing either ERp57 or ERp27 to investigate the interaction between ERp57 and 

ERp27. First, Myc-tagged ERp27 constructs were transfected into V5-ERp57 stable cells, 

cross-linked, lysed, and then analysed by reducing SDS-PAGE gel (Fig 4.11). Protein 

expression was verified by anti-V5 and anti-Myc western blots. Protein bands were 

detected at 57 and 27 kDa but there was no evidence of protein-protein interaction (Fig 

4.11, A and B). Non-specific bands were observed at 100 kDa when probed with an anti-

Myc-antibody (Fig 4.11B). To confirm the lack of interaction, V5-ERp57 constructs were 

transiently transfected into Myc-ERp27 stable cells, cross-linked, and lysed, then 

separated on reducing SDS-PAGE. Expression and cross-links were verified by western 

blot using V5 and Myc antibodies.  

 

Figure 4.11, The interaction between ERp57 and ERp27 by in cellular cross-linking. 

ERp57 stable cells expressing V5-tagged ERp57 (lanes 1- 8) and transfected with Myc-tagged 

ERp27 (lanes 3- 8) were cross-linked with BMH and lysed. Expression and cross-links were 

confirmed by western blotting using A, V5 antibody B, Myc antibody.  
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Protein bands were detected at 57 and 27 kDa (Fig 4.12, A and B) in addition to cross-links 

with ERp57 only (Fig 4.12A lanes, 3 and 5). Non-specific bands around 100 kDa were 

picked up again when probed with Myc antibody (Fig. 4.12B). 

 

Figure 4.12, The interaction between ERp57 and ERp27 by in cellular cross-linking. 

A representative western blot of ERp27 stable cells expressing Myc-tagged ERp27 (lanes 1- 6) and 

transfected with V5-tagged ERp57 (lanes 3- 6) were cross-linked with BMH and lysed. Expression 

and cross-links were identified by western blotting A, V5 antibody and B, Myc antibody. 

Based on the first batch of the in-cell cross-linking results as ERp27 stable cells were 

losing expression overtime and since the results obtained using BMH were not conclusive, 

the cleavable amine-specific cross-linking agent Dithiobis succinimidyl propionate (DSP, 

Fig 4.13), was used in an ERp57 stable cell-line.  

 

Figure 4.13, The chemical structure of the Dithiobis succinimidyl propionate (DSP) cross-linking 

agent. 
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Myc-ERp27 was transiently transfected into cells stably expressing ERp57. Lysates were 

separated on a non-reducing SDS-PAGE gel followed by western blots using V5 and Myc 

antibodies (Fig 4.14). 

Interestingly, protein bands were detected at 57 kDa (Fig 4.14A lanes 1-4) and 27 kDa (Fig 

4.14B lane 4). Cross-links with ERp57 were seen (Fig 4.14A lanes 1 and 3) and ERp27 (Fig 

4.14B lane 3). Surprisingly, these cross-links do not correspond to each other as the 

complexes formed with ERp57 have different patterns and sizes compared to ERp27 

complexes. We checked reproducibility under reducing and non-reducing conditions as 

DSP is a cleavable cross-linking agent and the cross-links could be affected by the addition 

of reducing agents (Fig 4.15A).  

 

Figure 4.14, The interaction between ERp57 and ERp27 by in cellular cross-linking. 

A representative western blot of ERp57 stable cells expressing V5-tagged ERp57 (lanes 1, and 4) 

and transfected with Myc-tagged ERp27 (lanes 3, and 4) were cross-linked with DSP and lysed. 

Expression and cross-links were identified by western blotting using A, V5-antibody and B, Myc-

antibody. (n = 3). 
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The cross-links within the non-reduced ERp57 fractions were confirmed (Fig 4.15A lanes, 

5 and 7) as well as the non-reduced ERp27 (Fig 4.15B lane, 7). Those cross-links 

dissapeared from the reduced samples (Fig 4.15A lanes, 1 and 3) and (Fig 4.15B lane, 3) 

suggesting that ERp27 is binding to candidates other than ERp57 in cells. 

 

Figure 4.15, The interaction between ERp57 and ERp27 by in cellular cross-linking. 

ERp57 stable cells expressing V5-tagged ERp57 (lanes 1- 8) and transfected with Myc-tagged 

ERp27 (lanes 3, 4, 7, and 8) were cross-linked by DSP under reducing and non-reducing conditions 

then lysed. Expression and cross-links were identified by western blotting using A, V5 antibody 

and B, Myc antibody. (n = 3). 



102 
 

As ERp27 showed evidence of interaction to proteins other than ERp57 in cells an 

experiment was carried out to determine if the cross-links formed are to CRT or CNX as 

they are the two potential candidates . Myc-tagged ERp27 constructs were transfected 

into cells stably expressing ERp57. Cells were cross-linked and lysed then lysates were 

separated on non-reducing SDS-PAGE. Cross-links were visualised by a western blot using 

CRT and CNX antibodies (Fig 4.16 and 4.17). 

ERp27 was detected (Fig 4.16A lanes, 3 and 4) and CRT migrate at 57 kDa (Fig 4.16B lanes, 

1- 4). Cross-links to ERp27 were observed (Fig 4.16A lane 3) as well as weak cross-links to 

CRT (Fig 4.16B lanes 1 and 3). However, these cross-links do not correspond to each other 

suggesting that CRT does not interact with ERp27. 

 

Figure 4.16, The interaction between ERp27 and CRT. 

ERp57 stable cells expressing V5-ERp57 and transfected with Myc-tagged ERp27 (lanes 3, and 4) 

and CRT (lanes 1, and 4) were cross-linked with DSP and lysed. Expression and cross-links were 

confirmed by western blot using A, Myc-antibody. B, CRT-antibody. (n = 3).  



103 
 

In addition, the same experiment was repeated using CNX antibody (Fig 4.17). ERp27 was 

identified at 27 kDa (Fig 4.17A lanes 3 and 4) and CNX migtrate around 90 kDa (Fig 4.17B 

lanes, 1-4). The CNX antibody (Fig 4.17B lanes 1 and 3) did not pick up the same cross-

links to ERp27 (Fig 4.17A lane 3). These results strongly suggest that the cross-linked 

product with ERp27 are not calnexin or calreticulin. 

 

Figure 4.17, The interaction between ERp27 and CNX. 

ERp57 stable cells expressing V5-ERp57 and transfected with Myc-tagged ERp27 (lanes 3 and 4) 

and CNX (lanes 1 and 4) were cross-linked with DSP and lysed. Expression and cross-links were 

confirmed by western blot using A, Myc-antibody. B, CNX-antibody. (n = 3).  

Since we confirmed that cross-links to ERp27 are not formed with ERp57, CRT, and CNX, 

samples were prepared after using cross-linking agent and analysed by mass 

spectrometry to identify interacting proteins. These results will be analysed in the next 

chapter. 
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4.3 Discussion 

 

Our results have shown an agreement to some extent with what was established 

previously by the Ruddock group in terms of the in vitro interactions (Alanen et al., 2006). 

The interactions between the wild type proteins have been proven. The peptide binding 

mutant of ERp27 verified that ERp27 does not require this site for binding ERp57 and it 

uses a different binding-site for ERp57. 

On the other hand, the E231K mutant that was supposed to prevent the ERp57 binding-

site still formed a cross-link with ERp57 in our hands. That suggests that the E231K 

mutant does not influence the interaction with ERp57. It was assumed that this mutant 

does not prevent the binding completely but rather reduce it to some extent. However, 

that does not seem to be the case in the obtained results. That might be due to the 

variances in the conditions of handling the experiment compared to the Ruddock group 

(Alanen et al., 2006).  

Furthermore, high molecular weight bands formed between ERp57 and ERp27 indicate 

that multiple ERp27 or ERp57 molecules interact to form heterooligomers at least in vitro. 

Additionally, there was an indication of a competition between ERp27 and CRT for 

binding to ERp57 when the proteins were combined. That result suggests that ERp27 has 

an effect on the ERp57 and CRT interaction, as cross-links were formed between ERp57 

and CRT as well as ERp57 and ERp27. ERp57 has been thoroughly studied and essentially 

referred to as a glycoprotein-specific oxidoreductase because of its significant role in the 

CNX/CRT cycle for glycoproteins folding (Frasconi et al., 2012, Ellgaard and Frickel, 2003, 

Williams, 2006). 

ERp57 was reported to be essential for efficient folding of glycoproteins with mutual 

structural domains when associated with CNX and CRT (Jessop et al., 2007). ERp57 binds 

to both CRT and ERp27 using that same binding-site on its b’ domain. Consequently, the 

ERp57/ERp27 interaction and ERp57/CRT interaction should not occur simultaneously 

(Alanen et al., 2006). Our results imply that the ERp57 and CRT complex is more robust 

and preferable compared to ERp27. However, ERp27 does compete with CRT for binding 

ERp57 as cross-links were formed in the protein mixture using ERp27 and ERp57 anti-
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bodies. Figures 4.18 and 4.19 are showing the CNX/CRT cycle for glycoprotein folding and 

two different fates for ERp57.  

The interaction between ERp57 and CRT was more prominent when probed with the anti-

CRT compared to the His-antibody. That might be due to antibody accessibility and hence 

the sensitivity of the immunodetection of the His-antibody which makes it for some 

reason unable to recognise the His-tag on the recombinant protein CRT. Therefore, a 

specific antibody to CRT would be ideal to use for detection. It was established previously 

that the immunodetection levels of His-tagged protein markedly varied depending on the 

His-tag antibody used. Such variability could results in adverse effects on numerous 

analytical methods (Debeljak et al., 2006).  

The aggregation of ERp57 that we noticed within samples that do not contain cross-

linking agents may be the result of ERp57 becoming oxidised. This effect could be 

resolved by adding a reducing agent such as DTT to bring it to the reduced state before 

using it in an experiment. 

The ERp57 in cellulo interaction with CRT was repeated as previously described (Jessop et 

al., 2009a). CRT was co-immunoprecipitated with ERp57. Interestingly, the co-transfection 

of ERp27 enhanced the immunoprecipitation compared to the wild type or the mutant of 

ERp57 alone. A non-covalent interaction between ERp57 and CRT was observed as well as 

the cross-linking complex indicating that the cross-linker was not absolutely required to 

stabilise the interaction. The increased interaction of CRT and ERp57 in the presence of 

ERp27 is difficult to explain but could be due to an indirect effect such as the activation of 

the unfolded protein response. 

As co-transfection efficiency could be problematic and effect the expression and cross-

linking, the transfection was carried out in stable cells to limit inconsistency. The results 

from this set of experiments showed that the only cross-links seen were with ERp57 and 

proteins other than ERp27. This suggests that, at least in cells, ERp57 cannot be cross-

linked to ERp27 using a thiol specific cross-linking agent. 

The lack of the in cellulo interaction between ERp57 and ERp27 when using BMH might 

due to the fact that this agent is a sulfhydryl specific cross-linking agent which binds 

cysteine residues within proteins. Consequently, BMH might not be able to reach 

cysteines within ERp27 if they are mostly buried away from the surface. 
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DSP was used as an alternative, it is an amino specific agent with a spacer arm that has a 

disulphide bond that can be cleaved by the addition of reducing agents such as DTT or 

TCEP. DSG and DSP both have a similar chemical structure with a slight difference in 

which DSP has a longer spacer arm that contains a disulphide bond which makes it 

cleavable unlike DSG.  

Strikingly, cross-links were observed with both ERp57 and ERp27 when DSP was used. Yet, 

it was noticed those cross-links have different patterns when compared to each other. 

That implies that ERp57 does not interact with ERp27 in living cells, however, ERp27 

forms cross-links with other protein candidates which need to be identified. The two 

potential candidates are calnexin and calreticulin have already been eliminated. 

Therefore, further investigation is needed in order to identify possible partners for ERp27 

in mammalian cells which will be analysed by mass spectrometry in the next chapter. 
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Figure 4.18, The calnexin and calreticulin cycle for glycoprotein folding. 

 

 

Figure 4.19, The different fates for ERp57. CNX and CRT bring glycoproteins to ERp57 to fold 

while ERp27 could bring non-glycosylated proteins to ERp57 to fold. 
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5 In cellulo protein-protein interaction by cross-linking assay and 

mass spectrometry 
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5.1 Introduction 

 

ERp27 is a non-catalytic member of the PDI family. Its domain structure only contains the 

two thioredoxin-like domains; b and b’ and it lacks both of the CXXC active sites (Alanen 

et al., 2006). The crystal structure of ERp27 was solved and the C-terminal domain found 

to be homologous to that of the PDI protein as it has a hydrophobic cleft containing the 

substrate binding site. Additionally, it contains an ERp57 binding site (Kober et al., 2013). 

It was established that ERp27 can bind the peptide Δ-somatostatin by cross-linking 

(Alanen et al., 2006). Expanding on that result, an ITC experiments have suggested that 

ERp27 functions as a chaperone as it binds unfolded proteins. However, if the protein is 

fully folded then ERp27 does not show any evidence for measurable binding affinity 

(Kober et al., 2013). 

ERp27 was found to interact in vitro with a well-known PDI family member, ERp57 

(Alanen et al., 2006). ERp57 is known as an oxidoreductase that contains redox-active 

sites and interacts with calnexin (CNX) and calreticulin (CRT) for glycoprotein folding 

(Ellgaard and Frickel, 2003). However, ERp57 lacks a substrate binding site and interacts 

with its substrates through the CNX and CRT complex as they work to supply the redox-

active site for the suitable substrates (Russell et al., 2004). Based on that model, ERp27 

could potentially support ERp57 to interact with a wide variety of other substrates that 

interact with ERp27 (Alanen et al., 2006, Kober et al., 2013). 

Previous research has trapped ERp57 substrates as mixed disulphide complexes which 

disclosed that CNX and CRT only offer glycoproteins to interact with ERp57. These results 

imply that under normal cellular conditions the lectins CNX and CRT replace other 

possible interactions with ERp57 (Jessop et al., 2009a, Kober et al., 2013). Nevertheless, 

following infection with simian virus 40 (SV40), ERp57 functions independently from the 

lectins (Schelhaas et al., 2007). This result supported by the fact that the expression of 

ERp27 increases as a response to unfolded proteins as well as under cellular stress 

conditions (Kober et al., 2013). 

We wanted to study the ERp57 and ERp27 interaction in living cells and investigate if 

ERp27 would inhibit ERp57 and CRT interaction which has been investigated previously in 
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cellulo (Jessop et al, 2009). Our results revealed that ERp27 co-transfection with ERp57 

enhanced the interaction between ERp57 and calreticulin in a way that is not fully 

understood and might be due to cellular stress conditions (see chapter 4). Interestingly, 

we also found that ERp27 does not bind to ERp57 in cellulo but rather it binds to other 

candidates which need to be identified. CNX and CRT were two potential candidates that 

have been eliminated. 

To find out the protein candidates that interact with ERp27 in living cells, protein samples 

were prepared as explained in the previous chapter then after cross-linking they were 

analysed by mass spectrometry as solid or liquid samples. 

Additionally, ERp27 has been reported to be abundant in the pancreatic acinar cells. The 

expression was confirmed in a personal communication with Professor Kenji Inaba’s 

group in Sendai, Japan. 
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5.2 Results 

5.2.1 Protein sample preparation for Mass Spectrometry 

 

This set of experiments was carried out in order to determine protein partners that 

interact with ERp27 in living cells. Cells were cross-linked using 1 mM DSP then lysed. The 

lysate was then separated on SDS-PAGE and samples were sent out to be analysed by 

mass spectrometry either as solid or liquid samples. Once protein hits were determined, 

western blotting was carried out to confirm those hits. 

To check the transfection expression and cross-links to ERp27-WT and its mutants, 

HT1080 cells were transfected with ERp27 constructs then cross-linked with DSP (Fig 5.1). 

Proteins were separated on SDS-PAGE then a western blot was carried out with a myc 

antibody. Similar patterns of cross-links appeared with ERp27-WT and ERp27-E231K (Fig 

5.1 lanes 3 and 7) respectively, however, ERp27-I196W mutant (Fig 5.1 lane 5) gave a 

slightly different pattern of cross-links. 

 

Figure 5.1, In cellulo cross-linking of ERp27. 

HT1080 cells transfected with myc-tagged ERp27-WT (lanes 3 and 4), ERp27-I196W (lanes 5 and 

6), and ERp27-E231K (lanes 7 and 8) or un-transfected (UT) cells (lanes 1 and 2) were cross-linked 

with 1 mM DSP and lysed. The lysate was separated on SDS-PAGE followed by a western blot 

using myc specific antibody. (n = 3). 
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Subsequently, to demonstrate if the additional bands were crosslinked via DSP the 

experiment was repeated using wild type ERp27 only and the samples separated on SDS-

PAGE under reducing and non-reducing conditions followed by a myc western blot (Fig 

5.2). Under non-reducing conditions (Fig 5.2 lane 7) a similar pattern of a cross-link to 

ERp27 appeared as before while the crosslinked product disappeared from the reduced 

fraction (Fig 5.2 lane 3) as DSP is a cleavable cross-linking agent. 

 

Figure 5.2, in cellulo cross-linking of ERp27. 

HT1080 cells transfected with myc-tagged ERp27-WT (lanes 3, 4, 7, and 8) or un-transfected (UT) 

(lanes 1, 2, 5, and 6) were cross-linked with 1 mM DSP and lysed. The lysate was separated on 

SDS-PAGE and a western blot was carried out using myc specific antibody. (n = 3). 
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To avoid transfection a comparison between stable cells expressing ERp27-WT and 

ERp27-E231K mutant was carried out as they gave similar cross-linking results unlike the 

ERp27-I196W mutant. Cells were cross-linked with DSP and were prepared as described 

previously. The lysate was separated on SDS-PAGE and then a western blot was carried 

out using a myc specific antibody. A similar cross-link pattern to that obtained following 

transient expression was seen with the E231K mutant (Fig 5.3, lane 3). ERp27-WT seemed 

to lose expression over time (Fig 5.3, lane 2) as shown in the previous chapter. 

 

Figure 5.3, In cellulo cross-linking of ERp27. 

HT1080 (lane 1), ERp27-WT (lane 2), ERp27-E231K (lane 3), cells were cross-linked with 1 mM DSP 

and lysed. The lysate was then separated on SDS-PAGE and a western blot was carried out using 

myc specific antibody. (n = 3). 
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Therefore, E231K was preferred to be used to look at the interaction of ERp27 in cells. A 

repeat was carried out using the ERp27-E231K stable cells to prepare samples for analysis 

by mass spectrometry (Fig 5.4). ERp27-E231K cells were cross-linked with DSP and lysed. 

Then the lysate was separated on SDS-PAGE to check cell expression and cross-linking (Fig 

5.4 lanes 1-4). 

 

Figure 5.4, In cellulo cross-linking of ERp27. 

ERp27-E231K stable cells analysed under reducing conditions (lanes 1 and 2) or non-reducing 

conditions (lanes 3 and 4) were cross-linked with 1mM DSP and lysed. The lysate was then 

separated on SDS-PAGE and a western blot was carried out using myc specific antibody. (n = 3). 
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The same procedure was carried out but this time the whole lysate was immunoisolated 

using myc agarose beads and reduced to release the cross-linked materials. The 

immunoisolate was then separated on SDS-PAGE and released proteins visualised by 

silver-staining (Fig 5.5). The bands of interest were chosen based on the size of the cross-

links to ERp27 which run around 75 kDa, and by subtracting 27 kDa out of 75 kDa the 

output would be 48 kDa, indicated by an asterisk (Fig 5.5 lane 1). The other bands that are 

indicated by an asterisk were cut out of the gel and sent for analysis to compare with the 

band of interest (Fig 5.5, lane 1 and 2). 

 

Figure 5.5, in cellulo cross-linking of ERp27. 

A representative silver-stained gel of cross-linked ERp27 with 1 mM DSP (lanes 1 and 2). The 

lysate was immunoisolated with myc agarose beads and separated on SDS-PAGE then visualised 

by silver staining. The bands of interest (indicated with asterisks) were sent out for mass 

spectrometry as solid samples. (n = 3). 

The protein digestion was done prior to analysis by mass spectrometry in a different 

laboratory where in-gel digestion was performed. The in-gel digestion consists of 4 main 

steps; de-staining, reduction and alkylation, in-gel-digestion with trypsin, and extraction. 

Gel bands were washed to de-stain the gel from the silver staining. Then the samples 

went through reduction and alkylation of the cysteines within the protein. Hereby, the 

disulphide bonds were irreversibly broken up aiding the peptide yield. After that, the in-

gel digestion step was carried out in which the serine protease trypsin enzyme is used for 
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digesting the protein into peptides which are shorter fragments and easy to identify by 

mass spectrometry. Finally, the gel extraction is carried out to extract the peptides from 

the gel matrix which can be done in one or several steps. 

After analysis by mass spectrometry, the results did not show any protein hits. This 

experiment has been repeated many times and gave negative results. This may be due to 

the approach used for protein preparation or to the protein digestion preparations and 

buffers used for mass spectrometry. 

The experiment was then repeated with ERp27-E231K stable cells only with a slight 

change to the approach. Cells were cross-linked with 1 mM DSP then lysed. The lysate 

was then split, and a small amount was separated on SDS-PAGE to check the cell 

expression and cross-linking (Fig 5.6 lane 2). The rest of the lysate was then 

immunoisolated with myc agarose beads then the immunoisolated material was washed 

with the IP buffer then eluted with 10 mM DTT to reduce all disulphide bonds before 

adding an ammonium bicarbonate buffer, a compatible buffer with the mass 

spectrometry and sending the proteins in solution for analysis. 

 

Figure 5.6, in cellulo cross-linking of ERp27. 

HT1080 and ERp27-E231K cells were cross-linked with 1 mM DSP and lysed. The lysate was then 

separated on SDS-PAGE and a western blot was carried out using myc antibody to check cells 

expression and cross-linking. (n = 3).  
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Figure 5.7, A schematic showing the approach of preparing protein samples for mass 

spectrometry. 
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The mass spectrometry hits revealed a number of ER proteins as well as other proteins 

and contaminants such as keratin. This was repeated many times and there were few 

protein hits that mainly showed up; P5, ERO1, ERp29 and calumenin as indicated in (Table 

5.1). 

Table 5.1,The protein hits obtained from Mass spectrometry analysis.  

The table includes the protein sequence coverage % and the emPAI number. 

 

After protein hits were identified by mass spectrometry a series of immune western 

blotting were carried out in order to verify those hits. As indicated in (Fig 5.8), HT1080 

(lanes 1 and 2), ERp27-WT (lanes 3 and 4), and ERp27-E231K (lanes 5 and 6) cells were 

cross-linked with DSP and lysed. A small amount of the lysate was then separated on SDS-

PAGE to check the cross-linking and cell expression before proceeding with immuno 

precipitation. ERp27 was expressed within the E231K cell-line as well as cross-links at 75 

kDa. However, ERp27-WT cells have lost expression and therefore no signal was appeared 

within that cell-line. 
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Figure 5.8, In cellulo cross-linking of ERp27. 

HT1080 (lanes 1 and 2), ERp27-WT (lanes 3 and 4), and E231K (lanes 5 and 6) cell lines were cross-

linked with 1 mM DSP and lysed. A small amount of the lysates was then separated on SDS-PAGE 

followed by western blotting using a specific myc antibody. (n = 3). 

Subsequently, to determine what proteins interact with ERp27 in the cross-links, HT1080 

and E231K lysates were further analysed by immune precipitation using Myc-Trap 

agarose beads followed by western blots which were carried out using P5, ERp29, Ero1, 

and calumenin anti-bodies. 
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P5 was expressed around 48 kDa within HT1080 cells (Fig 5.9 lane 2) and E231K cells (Fig 

5.9 lanes 4). Additionally, in the presence of DSP within E231K cells a cross-linking product 

higher than 75 kDa appeared (Fig 5.9 lane 3). 

 

Figure 5.9, In cellulo cross-linking of ERp27. 

HT1080 (lanes 1 and 2), and E231K (lanes 3 and 4) were cross-linked with 1 mM DSP and lysed. 

The lysates were then immunoprecipitated using Myc-Trap agarose beads followed by western 

blot using monoclonal P5 antibody. (n = 3). 
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Furthermore, Ero1 was identified within the immunoisolates from HT1080 cells (Fig 5.10 

lane 2) as well as E231K cells (Fig 5.10 lanes 3 and 4) at around 54 kDa. Cross-links were 

also formed within E231K cells at a higher molecular weight in the presence of the cross-

linking reagent (Fig 5.10 lane 3). 

 

Figure 5.10, In cellulo cross-linking of ERp27. 

HT1080 cells (lane 1 and 2), and E231K cells (lane 3 and 4) were cross-linked with 1 mM DSP and 

lysed. The lysates were then immunoprecipitated using Myc-Trap agarose beads followed by 

western blotting using Ero1 antibody. (n = 3). 

However, when the same western blots were probed with ERp29 and calumenin anti-

bodies the results were negative, and no bands were expressed. No conclusive results 

were obtained and that is maybe due to the antibody being of low affinity and therefore 

unable to detect a protein signal. 



122 
 

5.2.2 The effect of ERp27 on pancreatic digestive enzymes 

 

ERp27 was reported to be abundant in the pancreas. The PANC-1 and INS-1 cell lines were 

used to check expression in the pancreatic islet cells which secrete insulin (Fig 5.11A and 

B). ERp27-WT and E231K stable cells as well as the ERp27 purified protein were used as 

controls. However, ERp27 does not seem to be expressed in that part of the pancreas (Fig 

5.11A). The purified protein ERp27 appeared at 27 kDa and the E231K cell line gave a 

slightly higher signal around 30 kDa as it is myc-tagged. The rest of the cell lines showed 

weaker signals around 27 kDa which were initially thought to be ERp27, but they were not 

evident in the repeat experiment (Fig 5.11B). 

 

Figure 5.11, The expression of ERp27 in pancreatic islet cells. 

A, A representative ERp27 western blot. Pancreatic cell-lines PANC-1 and INS-1 (lanes 1 and 2), as 

well as ERp27-WT (lane 3), E231K (lane 4), HT1080 (lane 5) cells-lines lysates and purified ERp27 

(lane 6) were separated on SDS-PAGE followed by western blot using ERp27 antibody. B, A repeat. 

(n = 3). 
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Professor Kenji Inaba’s group have found that ERp27 is expressed in acinar cells (personal 

communication). We have repeated the expression in the acinar cells which secrete 

digestive enzymes. The AR42J (which was provided by Dr Adam Benham, Durham 

University), 266-6 cell-lines and the pancreas tissue were used to check the expression. 

The ERp27-WT cell line as well as the purified protein were used as controls. However, 

the result was not conclusive as ERp27 was detected in the purified protein fraction only 

(Fig 5.12). The pancreas tissue which was obtained from a mouse that has been starved 

for 16 h for a behaviour experiment has shown a strong signal lower than 25 kDa which 

probably does not represent ERp27, but the rest of the samples did not show any obvious 

bands at the correct size for ERp27. 

 

Figure 5.12, The expression of ERp27 in the pancreatic acinar cells. 

HT1080 (lane 1), ERp27-WT (lane 2), AR42J (lane 3), 266-6 (lane 4), liver tissue (lane 5), pancreas 

tissue (lane 6) lysates as well as ERp27 purified protein (lane 7) were separated on SDS-PAGE 

followed by western blot using ERp27 antibody. (n = 3). 
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5.3 Discussion 

 

Our results have supported the in vitro interaction between ERp27 and ERp57. However, 

when we tried to identify interactions in cellulo we could not detect an interaction. The 

previous chapter has confirmed that ERp27 does not bind ERp57 in cellulo. So, the work 

that have been done in this chapter was to identify what are the protein candidates that 

interact with ERp27 in mammalian cells. Our results are summarised in preparing protein 

samples to be analysed by mass spectrometry. 

HT1080, ERp27-WT, and E231K cell-lines were cross-linked using 1 mM DSP and lysed. A 

small amount of the lysates was then tested for expression and cross-linking by carrying 

out immune western blot using myc antibody. E231K cells expressed, however, ERp27-WT 

cells did not, and it lost expression over time as shown in the previous chapter (see 

chapter 4). Accordingly, we then decided to use HT1080 and E231K cell-lines only. The 

lysates were then taken further and underwent immunoprecipitation using myc agarose 

beads followed by silver staining if we are sending the protein as a solid sample for 

analysis. In other instances, the immunoprecipitation was followed by 10 mM DTT elution 

if we are sending proteins in solution for mass spectrometry. 

Sending our proteins as solid samples have always came back with contaminations and 

never give any protein hits. The protein digestion step was carried out in a different lab 

where they used the in-gel technique. Consequently, the negative results may be due to 

the technique followed or the buffer used for mass analysis. After few trials, we have 

altered our protocol slightly by eluting the immunoprecipitated materials with 10 mM 

DTT which helps breaking disulphide bonds within the sample and send our proteins in 

ammonium bicarbonate buffer which is known to be compatible with mass spectrometry 

as explained in (Fig 5.7). 

After that, the mass spectrometry results have revealed a number of protein hits in which 

some of them were ER proteins and some were calcium binding proteins or ER 

chaperones in addition to contaminants such as keratin. After a triplicate, few hits were 

noticed frequently which are; a protein disulphide isomerase homologue P5 (Kikuchi et 

al., 2002), Ero1 the major contributor for disulphide bond formation with PDI family 
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(Cabibbo et al., 2000), calumenin protein (CP) a calcium binding protein (Jung and Kim, 

2004), and a non-catalytic PDI member ERp29 (Barak et al., 2009). 

To confirm if these hits were real and they are indeed forming cross-links with ERp27 a 

series of immune western blotting were carried out. Protein samples were prepared as 

explained earlier using HT1080 and E231K cell-lines only, as cell expression and cross-links 

were confirmed within these cell-lines. Immunoprecipitation was then carried out using 

myc agarose beads followed by immune western blot using different anti-bodies. 

Our results are novel as there is no research in the literature had shown this interaction of 

ERp27 in cellulo. We have discovered that P5 and Ero1 are indeed forming cross-links with 

ERp27 in mammalian cells. Both P5 and Ero1 were expressed within HT1080 and E231K 

cells. However, in the presence of the cross-linking reagent they only formed cross-linking 

complexes within E231K cells but not with HT1080 cells which make it clear that this 

interaction is very specific to ERp27. On the other hand, calumenin and ERp29 were not 

detected in the first place and accordingly did not show any interaction of any kind which 

might due to the non-efficiency of the antibodies which make them unable to recognise 

the proteins. 

These findings have indeed raised questions about ERp27 functions in mammalian cells. It 

would have been good to take these findings further and figure out what is the 

physiological functions of ERp27 and if its interaction with Ero1 may be contribute to 

disulphide bond formation in mammalian cells. Furthermore, ERp27 interaction with P5 

or other possible candidates would reveal other facts about the binding site on ERp27 

thioredoxin domains. Additionally, it would be of interest to determine if these 

interactions are occurring under normal cellular conditions or under ER stress. Under ER 

stress conditions, ERp27 was found to selectively bind to unfolded proteins in vitro which 

might compete with its interaction with other proteins such as ERp57. However, in cellulo 

this gives room for more investigation to be done. 

The other aspect that we wanted to investigate was the expression of ERp27 in pancreatic 

cells. ERp27 was reported to be abundant in the pancreas so we were aiming to check its 

expression and then investigate the effect of ERp27 on the expression of digestive 

enzymes which are secreted by acinar cells. The expression was tested using different 

pancreatic islet and acinar cell-lines and pancreatic tissue as well as HT1080 and ERp27 
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stable cells. However, results were not conclusive as the protein was not detected within 

the cell-lines-tested.  
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6 Main discussion 
 

The focus of this research project was to investigate if the thiol-inactive PDI family 

member ERp27 competes with the ER lectins calreticulin and calnexin for binding the 

thiol-oxidoreductase PDI family member ERp57. We also investigated if ERp27 functions 

to recruit non-glycosylated protein substrates to ERp57 to fold, just as calreticulin and 

calnexin bring N-glycosylated proteins to ERp57 to fold correctly during the glycoprotein 

folding cycle. Therefore, we investigated the protein-protein interaction between the two 

PDI family members, ERp27 and ERp57 in vitro as well as in mammalian cells. 

Furthermore, we compared both interactions of ERp57 with ERp27 and calreticulin and 

calnexin to define whether or not ERp27 competes with the lectins for binding ERp57.  

To start the project, a series of protein expressions and purifications were carried out 

including; WT-ERp27, ERp27-I196W mutation (which prevents peptide binding), ERp27-

E231K mutation (which blocks ERp57 binding), and WT-ERp57. ERp57-R282A mutation 

(which blocks CRT binding) as well as WT-CRT. All proteins were expressed and purified 

successfully. However, it was noticed that ERp27 has a leaky expression which is 

undesirable and needed to be solved. Consequently, pLysS cells were used instead of 

BL21 (DE3) competent cells which is a bacterial strain that is known for enhancing protein 

expression. However, that did not work. Furthermore, different media was assessed for 

expression; Lysogeny broth (LB), Terrific broth (TB), and Auto induction (AI). The terrific 

broth (TB) media was found to support the expression of all the proteins well with BL21 

(DE3) competent cells when induced by IPTG compared to AI and LB. Once this matter 

was solved it was applied for all proteins. 

ERp27 and E231K proteins have a tendency to form aggregates when concentrated to 

high concentrations and appeared as bands at higher molecular weight. These 

accumulations were formed after a polishing step by gel filtration and it was thought that 

by diluting these proteins the aggregation would be less severe. As an attempt to remove 

aggregation, ultra-centrifugation was carried out. However, no remarkable changes were 

noticed after centrifugation, so we carried out an additional gel filtration column. Despite 

these problems we purified sufficient protein for further molecular assays. 
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Our in vitro results of protein-protein interaction using ITC experiment confirmed the 

interaction between calreticulin and ERp57. However, as the concentration of calreticulin 

was higher than the desired concentration by almost 3.6 fold (i.e. 200 µM) it was 

preferable to lower the concentration between 75-100 µM before repeating the 

experiment so that the molecules did not reach saturation within the first couple of 

injections. The experiment was repeated and the KD was calculated to be 0.26 µM +/- 0.8 

µM which supports the results obtained previously (Frickel et al., 2002). The ERp57 and 

calreticulin interaction was carried out by ITC and TROSY NMR, KD was; 9.1 +/- 3.0 µM at 8 

˚C and 18 +/- 5 µM at 20 ˚C, respectively (Frickel et al., 2002).  

The optimum protein concentration required for ITC is 10-20 µM for the cell (300 µl) and 

200 µM for the syringe (100 µl). Following protein purification and concentration, the 

protein concentrations obtained were significantly lower than optimal; ERp27 was 29.27 

µM and ERp57 was 7.44 µM. Regardless of the low protein concentrations the 

experiment was carried out. Unfortunately, when we titrated ERp27 into ERp57 there was 

no measurable affinity for their interaction which is most likely due to the low 

concentration of both proteins. Therefore, further purification and concentration were 

carried out to achieve the required protein concentration. However, the process was 

difficult as exceeding certain concentrations caused protein precipitation which may be 

due to the intrinsic insolubility of both proteins. Hence, the interaction between ERp27 

and ERp57 could not be investigated by ITC. However, it cannot be said that there is no 

interaction taking place, but it could not be detected due to the low concentration of the 

proteins. 

We then investigated the interaction of ERp27 and ERp57 using a chemical cross-linking 

assay using DSG as carried out previously by the Ruddock group (Alanen et al., 2006). 

They also demonstrated that this interaction occurred using NMR studies on the purified 

proteins. Their results showed that ERp27 uses the tip of its b’ domain to bind to ERp57. 

Additionally, the ERp27 b’ domain has a sequence motif similar to that found on the P-

domain of the ER lectin calreticulin which suggested that both ERp27 and calreticulin bind 

to the same binding site within ERp57 (Alanen et al., 2006).  

Our results are in agreement to some extent with the previous study. The interaction of 

ERp27 and ERp57 was established as cross-links formed at 84 kDa which is the size of the 

complex. In addition, the ERp27-I196W mutation (which blocks the peptide binding-site), 
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confirmed that ERp27 does not require this site for binding to ERp57. However, the 

ERp27-E231K (which was supposed to prevent the binding to ERp57), did not block the 

interaction completely as cross-links still formed in our hands which may be due to the 

differences of handling the experiment compared to the Ruddock group. Moreover, when 

ERp27, ERp57 and calreticulin were combined to test the competition between ERp27 

and calreticulin for binding ERp57, cross-links were formed between ERp57 and 

calreticulin but not ERp27 when probed with the His antibody. However, the ERp27 

western blot showed that cross-links formed between ERp27 and ERp57 within the 

protein mixture which correspond to the ERp27/ERp57complexes in the other lanes. 

Additionally, the ERp57 western blot also showed cross-links between ERp57 and ERp27 

as well as calreticulin when combined, suggesting that ERp27 might have an effect on the 

interaction between ERp57 and calreticulin. Also, since ERp27 cross-links are stronger 

compared to the calreticulin complex that suggests ERp27 may be stronger and competes 

with calreticulin for binding to ERp57. The His antibody did not pick up the particular 

cross-links with ERp27 probably due to inaccessibility of the epitope in these protein 

samples. 

It was noted that the calreticulin signal was weak when the samples were probed with 

the His antibody. However, when probed with the calreticulin specific antibody the signal 

was enhanced. This might be due to the accessibility of the His epitope on calreticulin. It 

was reported previously that the immunodetection levels of different proteins varies 

depending on the type of the His antibody used. This variation causes diverse effects on a 

wide range of analytical methods (Debeljak et al., 2006).  

To look at the ERp27 and ERp57 interaction in living cells we have repeated the in cellulo 

cross-linking assay as carried out previously where calreticulin was co-

immunoprecipitated with ERp57 (Jessop et al., 2009a). Our results showed that ERp27 co-

transfection interestingly enhanced the immunoprecipitation compared to ERp57 alone. 

A non-covalent interaction of ERp57 and calreticulin as well as cross-linking product was 

observed and indicated that the cross-linking agent is not essential for the stabilisation of 

this interaction. The increased interaction between ERp57 and calreticulin in the presence 

of ERp27 is difficult to explain. However, it may be due to the indirect activation of 

unfolded protein response (UPR).  
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As the co-transfection could be problematic and have an effect on cell expression as well 

as the formation of cross-linking products, the transfection was carried out in stable cell-

lines to control the inconsistency of transfection. The results showed that the cross-links 

which formed to ERp57 were different in size compared to the ERp27 crosslinks. These 

results suggest that ERp57 was not cross-linked to ERp27 at least in cellulo using a thiol 

specific cross-linking agent such as (BMH). Since BMH is a sulfhydryl specific cross-linker 

that reacts with cysteine residues within proteins, the lack of a crosslink between ERp57 

and ERp27 might be due to the cysteines within ERp27 being buried away from the 

surface. As an alternative DSP was used. It is an amino specific agent with a spacer arm 

that has a disulphide bond that can be cleaved by the addition of reducing agents such as 

DTT or TCEP.  

Interestingly, when DSP was used, cross-links were seen to both ERp57 and ERp27. 

However, those cross-links formed adducts with different sizes and patterns which 

indicated that ERp27 does not cross-link to ERp57 but rather forms cross-links with other 

proteins. The two potential candidates; calnexin and calreticulin were eliminated from 

binding ERp27 as they also formed different cross-linking products compared to ERp27.   

Following the interesting observation that ERp27 binds other proteins in living cells, it was 

essential to determine their identity. The crosslinked complexes were prepared by either 

cutting the bands from SDS-PAGE gels or by eluting them from immunoisolates with DTT. 

The samples were then analysed by mass spectrometry following trypsin digestion. As the 

ERp27-WT cell-line loses its expression over time, the E231K cell-line was used for this 

batch of experiments. The E231K mutant formed the same cross-links as the wild-type 

protein following crosslinking with DSP.  

Sending proteins as solid samples for analysis by mass spectrometry did not provide any 

conclusive results; most of the hits were contaminants such as keratin. After a few 

attempts, the approach used for protein preparation was slightly modified by carrying out 

a DTT elution step which breaks the disulphide within the cross linker releasing any 

interacting protein. The proteins were despatched to the University of Glasgow Polyomics 

for analysis in ammonium bicarbonate buffer which is compatible with mass 

spectrometry.  
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The analysis has revealed a number of protein hits as well as contaminants such as 

keratin. These proteins were either ER proteins or other proteins. However, a few hits 

consistently appeared including; P5, Ero1, calumenin, and ERp29 which were investigated 

by immunoprecipitation and immune western blot. 

P5 and Ero1 western blots have identified P5 and Ero1 and protein bands at 48 kDa and 

54 kDa, respectively within HT1080 as well as E231K cell-lines. In addition, cross-links 

were formed with these proteins and ERp27 in the presence of DSP within E231K cells 

and not HT1080 cells indicating that the formed cross-links are specific to ERp27. These 

results have also confirmed the mass spectrometry protein hits. The calumenin and 

ERp29 western blots were negative and did not show any protein expression nor cross-

links which is likely due to the antibodies used. Unfortunately, we did not have a positive 

control to indicate whether these antibodies were at all functional.  Hence, it cannot be 

concluded that calumenin and ERp29 are not interacting with ERp27 in living cells, but 

merely that we were unable to detect their interactions because of the lack of efficient 

anti-bodies.    

We have investigated the expression of ERp27 in different pancreatic cell-lines including 

islet cells which secrets insulin; PANC-1 (pancreas/duct) cell-line (provided by Dr. Karen 

Cosgrove, University of Manchester) and INS-1 cell-line, as well as the acinar cells which 

secrets digestive enzymes; the AR42J cell-line (provided by Dr. Adam Benham, Durham 

University), the 266-6 cell-line in addition to pancreas tissue that was obtained from 

mouse. Unfortunately, ERp27 expression was negative in all tested cell-lines and tissues. 

ERp27 was reported not to be expressed in islet cells of the pancreas which maybe the 

reason why we could not see any expression within those cells (Professor Kenji Inaba, 

personal collaboration). ERp27 was expected to be seen within the pancreatic acinar cells. 

In a collaboration with Professor Kenji Inaba, the AR42J cell-line was found to be negative. 

In contrast, mouse pancreatic tissue expressed ERp27. However, when we repeated this 

experiment ERp27 expression could not be detected within the 266-6 cell-line or 

pancreatic tissue. This is likely due to the differences in the tissue samples used; however, 

it is not because of the antibody as the positive control (ERp27 purified protein) was 

detected.  

In summary, we demonstrated competition between ERp27 and calreticulin for binding 

ERp57 in vitro. As ERp27 can bind to unfolded protein substrates it could recruit those 
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unfolded proteins substrates to ERp57 to be correctly folded before leaving the ER. This 

pathway might compete with calnexin and calreticulin which brings N-glycoproteins to 

ERp57 to fold correctly during the glycoprotein folding cycle. 

The novel finding of our project was that ERp27 binds other proteins than ERp57 in living 

cells which suggest more functions for this protein. ERp27 was confirmed to interact with 

P5 which is protein disulphide isomerase homologue (Kikuchi et al., 2002), which was 

found to contribute to the regulation of ER stress via IRE1 and PERK. P5 also has a 

potential role in a number of pathologies associated with protein aggregation such as 

Alzheimer’s disease (Honjo et al., 2014). ERp27 was found to be upregulated during ER 

stress conditions (Kober et al., 2013, Marselli et al., 2010), which suggest that it might 

alleviate ER stress by binding unfolded proteins and target them to either ERp57 or P5 for 

further rounds of folding. 

The interaction of ERp27 with Ero1, which is a significant ER oxidoreductase, suggests an 

involvement in disulphide bond formation. However, ERp27 is a non-catalytic member of 

the PDI family and lacks a CxxC active site. It remains a possibility that ERp27 might 

regulate Ero1 activity though this is highly speculative and will require further 

investigation.  

 



133 
 

7 Future perspectives 

 

In this thesis we have confirmed the interaction between the two PDI family members 

ERp27 and ERp57 in vitro by the chemical cross-linking assay but we could not detect the 

same interaction in cellulo. However, we still not entirely sure if this interaction does not 

occur in cells and further investigation is needed to prove for certain that this interaction 

indeed cannot occur in mammalian cells. One way to do that is by trying different cross-

linking reagents in cells. One example is disuccinimidyl tartrate (DST) which is a similar 

conjugation reagent to DSP as it is primary amine-specific, cleavable by sodium meta-

periodate, but the spacer arm is shorter and does not have a disulphide bond, so it is ideal 

if the cleavability is desired without disturbing protein disulphide bonds.  

Regarding the interaction between ERp27 and P5, it is essential to determine the function 

of such interaction. Similar in vitro assays to those carried out for the demonstration of 

the ERp27 and ERp57 interaction can be carried out for ERp27 and P5. We can express 

and purify ERp27 and P5 using Nickel agarose affinity and gel filtration chromatography to 

obtain sufficient amount of proteins to investigate their interaction in vitro by the 

isothermal titration calorimetry (ITC) as well as the chemical cross-linking assays and 2D 

NMR spectrum. Furthermore, using the wild type ERp27 and the E231K cell-lines to 

determine ERp27 interaction with P5 in cellulo have indicated that ERp27 does not 

require the ERp57 binding site to interact with P5. Therefore, we need to investigate the 

peptide binding mutation of ERp27 (I196W) to determine if it is essential for binding P5. 

This can be studied by the in cellulo chemical cross-linking assay. It was noticed that the 

I196W cell-line gave a slightly different cross-linking pattern compared to ERp27-WT and 

E231K cell-lines which makes it a possible binding site for P5.  

Additionally, P5 has a potential role in the unfolded protein response (UPR) especially in 

regulating PERK and IRE1 (Groenendyk et al., 2014, Eletto et al., 2014). How the ERp27 

interaction with P5 influences these enzymes is to be investigated. Moreover, P5 is known 

to form non-covalent complexes with BiP and shows specificity towards BiP client 

proteins (Jessop et al., 2009b). This means that proteins bind to BiP during folding could 

become substrates for P5. Therefore, P5 interaction with ERp27 could bring ERp27 to this 

complex and further investigation in mammalian cells should be carried out to determine 
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if their interaction would have any effect on the UPR. Assays such as the knockout or 

knockdown of either BiP or P5 can be carried out to see if ERp27 would have any effect on 

cells undergoing stress when associated with P5.  

With regard to the interaction between ERp27 and ERO1 which was investigated in 

ERp27-WT and E231K cell-lines it was indicated that ERp27 does not need the ERp57 

binding site for this interaction. However, we need to further investigate the peptide 

binding site of ERp27 to determine if it is required for the interaction with ERO1. In cellulo 

or in vitro chemical cross-linking assays can be carried out between ERO1 and ERp27-

I196W. If these proteins cross-linked, then the peptide binding site of ERp27 is not 

required for binding ERO1 and other residues should be investigated. However, if cross-

links are disrupted that would confirm that the binding site for ERp27 to ERO1 is via the 

peptide binding site.  

The physiological role of ERp27 when interacting with ERO1 still needs to be determined. 

ERO1 plays a significant role in forming disulphide bonds by binding oxidoreductases of 

the PDI family which catalyses the formation of disulphide bonds. However, ERp27 is a 

non-catalytic member and it is highly speculative for ERp27 to have a direct role in 

disulphide bonds formation, but this does not rule out the possible indirect regulatory 

function of ERp27. To test that in vitro we can mix ERp27 and its mutants with ERO1 and 

PDI and observe the effect on the folding of RNase.  

ER oxidoreductin 1β (ERO1β) is a pancreas-specific disulphide oxidase that is known to be 

upregulated in response to ER stress and to promote protein folding in pancreatic β cells. 

ERp27 is highly expressed in the pancreas so it would be of interest to investigate if ERp27 

interacts with ERO1β in pancreatic tissue. Overexpression of ERO1β in β cells results in 

upregulation of the UPR genes which indicate that ERO1β overexpression leads to ER 

stress in β cells (Awazawa et al., 2014). ERp27 was found to be upregulated under the 

conditions of ER stress (Kober et al., 2013). Whether ERp27 has any impact on ERO1β 

during ER stress conditions is to be investigated. We can assay the interaction of ERp27 

and ERO1 by in vitro and in vivo cross-linking experiment or we can knock out or knock 

down either ERp27 or ERO1β and monitor what effects that would have on cells 

undergoing stress. 
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