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Abstract

The scaling of conventional silicon based MOSFETs is increasingly difficult into

the nanometer regime due to short channel effects, tunneling and subthreshold

leakage current. Ultra-thin body silicon-on-insulator based architectures offer

a promising alternative, alleviating these problems through their geometry.

However, the transport behaviour in these devices is more complex, especially

for silicon thicknesses below 10 nm, with enhancement from band splitting and

volume inversion competing with scattering from phonons, Coulomb interac-

tions, interface roughness and body thickness fluctuation.

Here, the effect of the last scattering mechanism on the drive current is exam-

ined as it is considered a significant limitation to device performance for body

thicknesses below 5 nm. A simulation technique that properly captures non-

equilibrium transport, includes quantum effects and maintains computational

efficiency is essential for the study of this scattering mechanism. Therefore, a

3D Monte Carlo simulator has been developed which includes this scattering

effect in an ab initio fashion, and quantum corrections using the Density Gra-

dient formalism. Monte Carlo simulations using ‘frozen field’ approximation

have been carried out to examine the dependence of mobility on silicon thick-

ness in large, self averaging devices. This approximation is then used to carry

out statistical studies of uniquely different devices to examine the variability

of on-current. Finally, Monte Carlo simulations self consistent with Poisson’s

equation have been carried out to further investigate this mechanism.
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Chapter 1

Introduction

The aim of this work is the development of a Monte Carlo simulator capable of

studying the current variability in ultra thin body (UTB) silicon on insulator

(SOI) and double gate (DG) MOSFETs which are considered strong candidates

to replace the conventional MOSFET architecture as devices are scaled down

to increasingly small dimensions.

In this section a brief overview of various possibilities for scaling of MOSFETs

further into the nanometer regime, based on the adoption of alternative materi-

als and device structures, is presented. Following this, the aims and objectives

of this study are outlined in more detail, and an overview of the structure and

content of this thesis is given.

1.1 Scaling of MOSFETs and the Transition

to New Device Architectures

The scaling of conventional silicon (Si) based MOSFETs becomes increasingly

difficult in the sub-100 nm channel length regime, as short channel effects be-



1. Introduction 2

come ever more problematic and quantum mechanical tunneling through the

gate oxide and band-to-band tunneling leads to greater gate and subthreshold

leakage current. The desire to maintain good on-current (Ion), while keeping

subthreshold currents (Ioff ) as small as possible has resulted in an increased

interest in alternate materials (III-V, high-κ dielectrics, strained Si) and ar-

chitectures (based on SOI and multiple gate designs) that are more resistant

to short channel effects, and capable of maintaining high performance at small

dimensions [1].

The use of Si under biaxial tensile strain on SiGe (silicon-germanium) sub-

strates has been extensively investigated [2, 3, 4, 5, 6]. Strained Si produces

a higher carrier mobility as a result of a splitting of the high and low effective

mass valleys [7], hence enhanced transport compared to conventional Si MOS-

FETs. Difficulties in terms of developing fabrication processes that minimize

defects [8], along with the observation of self-heating in such devices [9] are,

however, significant drawbacks. Instead, process induced uniaxial strain is now

widely used to enhance the device performance [10, 11].

Another possibility comes in replacing Si altogether. MOSFETs employing

compound semiconductor (III-V) materials such as gallium arsenide (GaAs) [12],

indium gallium arsenide (InGaAs) [13] or indium antimonide (InSb) [14] are

attractive due to their higher saturation velocity and mobility. However, Si

is cheaper and easier to process due to its greater strength which allows for

larger wafers to be manufactured, and offers an excellent native oxide in SiO2,

factors that give it significant advantage in terms of the fabrication of devices,

and that are still being addressed for III-V technology with the use of metal

gates and high-κ dielectrics [15]. Therefore, III-V materials have a potential

if only they can be integrated as channel materials on large Si substrates.

Although III-V MOSFETs with conventional architecture offer performance

improvements only down to 30 nm channel lengths [16, 17], new implant free

architectures offer nanometer scaling potential [18, 19]. The smaller band gap

and higher dielectric constant of these materials means they can also be more
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susceptible to band-to-band tunneling and short channel effects [1, 17], both

already considered a major limitations to the scaling of Si devices.

The inclusion of high-κ dielectrics [20] in both III-V and conventional Si MOS-

FETs has also gained a lot of interest. A reduction in gate leakage current

comes via the oxide layer being physically thicker than conventional silicon

dioxide (SiO2) while maintaining a similar capacitance. However, finding a

high-κ material with qualities comparable (in terms of potential barrier height,

thermal stability and interface properties [7]) to SiO2 is difficult and the use of

such dielectrics adds an additional source of carrier scattering from soft optical

phonons which results in degradation of carrier mobility [21, 22].

The use of alternative architectures [7, 23] is attractive as they generally re-

main based around Si and SiO2 (although the use of III-V, strain and high-κ

has been investigated in these designs [17, 24, 25]), well understood materi-

als long used in conventional MOSFETs. A range of possible designs have

been proposed from the single gated silicon-on-insulator (SOI) structure, to

the double gate (DG) configuration, FinFET, triple-gate and gate-all-around

(GAA) designs [23]. These alternate architectures allow for better suppression

of short channel effects through the device geometry and negate issues asso-

ciated with highly doped regions in conventional structures by using virtually

undoped channels, allowing for higher carrier mobility and less variability.

In this thesis the single- and double-gated ultra thin body (UTB) configura-

tions that are expected to replace conventional MOSFETs from the 32 nm

technology node [26, 27], are investigated in detail. As these devices are scaled

to silicon thicknesses below 10 nm, transport behaviour becomes increasingly

complex, with enhancement from volume inversion and band splitting com-

peting with enhanced scattering from Phonons, Coulomb interactions with

charged centres trapped at the semiconductor/oxide interfaces and surface

roughness and body thickness fluctuation induced scattering. All of these

come about due to the design and structure of these devices, so a complete un-



1. Introduction 4

derstanding of the full impact of these mechanisms is vital in order to develop

an accurate picture of how well SOI MOSFETs will scale.

1.2 Aims and Objectives

As SOI and DG MOSFETs are scaled to nanometer scale Si body thicknesses,

the influence of the roughness patterns present at the silicon/oxide interfaces

because an increasingly significant issue. In addition to scattering directly from

the roughness patterns, the non-uniform silicon thickness along the channel

leads to a shift in the ground state and a resulting fluctuation in the effective

quantum potential that acts as an additional source of carrier scattering, thus

degrading transport [28]. This is one of the transport degrading phenomena

considered fundamental to the limits of scaling of SOI and DG MOSFETs.

The aim of this project is to a develop computationally efficient methods to

study this phenomena based on the Monte Carlo technique which is capable

of capturing non equilibrium transport and scattering effects. In order to take

into account the variable shifting of the ground state that results in additional

scattering, the inclusion of quantum mechanical effects is of great importance.

To this end, techniques have been developed and implemented based on the

Density Gradient formalism. Using this simulation methodology, the impact

of scattering from body thickness fluctuations on carrier transport and device

variability has been examined.

1.3 Thesis Outline

This thesis is structured as follows. In Chapter 2 a more detailed examination

of the scaling and transport behaviour associated with UTB SOI and DG

MOSFETs is given. The scaling of conventional, SOI and DG architectures
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are compared and contrasted, demonstrating the benefits in moving to the new

structures as device dimensions shrink. After that, a review of previous studies

on transport phenomena in UTB SOI and DG devices is presented, looking at

the various mechanisms that dictate carrier transport in these architectures as

the silicon layer thickness is scaled down.

Chapter 3 provides an evaluation of simulation methodologies available to

study UTB SOI and DG devices. Drift Diffusion, Monte Carlo and Non-

Equilibrium Green’s Functions are considered and compared, with their rela-

tive strengths and weaknesses in terms of examining the impact of the body

thickness fluctuations discussed in detail. This section provides the justifica-

tion for the selection of a 3D Monte Carlo technique to conduct this research.

Chapter 4 describes the development of the Monte Carlo simulator used. Meth-

ods for the inclusion of quantum corrections, self-consistency and interface

roughness are detailed, as well as other factors affecting the stability of simu-

lations of these devices, such as the implementation of contacts, choice of mesh

spacing and time step. The Drift Diffusion simulator used for initialization and

comparison with the Monte Carlo simulator is also introduced and described.

In Chapter 5, the results from the various simulation studies using different

versions of the Monte Carlo simulator are presented and discussed. The trans-

port degradation and current variability from device to device are examined

through statistical Monte Carlo studies and careful comparison to Drift Diffu-

sion results.

Finally, in Chapter 6 the findings of this thesis are restated and summarised

and suggestions are made for possible future work in terms of development of

the Monte Carlo module.



Chapter 2

Scaling and Transport

Phenomena of UTB Devices

2.1 Introduction

In comparison to conventional bulk MOSFETs, ultra thin body (UTB) silicon

on insulator (SOI) and double gate (DG) MOSFETs offer superior electrostat-

ics, but more complex transport behaviour.

At relatively large silicon body thicknesses (tSi), these devices offer similar

behaviour to their conventional counterparts. When scaled to intermediate

dimensions (5 nm < tSi < 20 nm), a variety of effects such as volume inversion,

increased phonon scattering, interface roughness and band splitting compete to

influence transport. Below 5 nm, a rapid degradation of transport properties is

experienced due to the impact of confined acoustic phonon and body thickness

variation induced scattering.

This chapter first discusses the superior scaling properties of UTB SOI and DG

devices in comparison with conventional bulk MOSFETs, before examining the
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various mechanisms mentioned above that influence the transport of carriers

in these architectures.

2.2 Scaling Properties of Conventional, UTB

SOI and DG MOSFETs

Scaling of the conventional MOSFET into the nanometer regime (channel

lengths sub 0.1 µm) has been an important area of research for many years

now [29, 30, 31, 32], with a channel length of 25 nm being considered an

achievable limit [33] through the employment of alternative materials and di-

electrics. While devices with 15 nm gate length have been fabricated and

demonstrated [34], the off and on state currents failed to meet desired spec-

ifications [27]. As the channel length shrinks, the impact of short channel

effects (SCE) becomes increasingly pronounced especially at high drain volt-

age. The threshold voltage becomes dependent on both the channel length

and drain voltage, and a phenomenon called ‘punch through’ is encountered

at high drain voltage where the gate completely loses control of the channel,

resulting in uncontrollable drain leakage current. All these effects are a mani-

festation of the drain induced barrier lowering (DIBL) which results in a direct

reduction of the potential barrier between the source and drain by the drain

potential and unwanted parasitic capacitance coupling between the drain and

the channel. This in turn leads to a high subthreshold leakage current.

The usual approach for combatting these effects in conventional MOSFET

structures is by increasing the doping within the channel, allowing for the

depletion depth to be scaled along with the channel length, which reduces

the electrostatic drain coupling and prevents the excessive growth of the sub-

threshold leakage current [35]. However, as the channel length is scaled down,

the required doping increases considerably. The simple raising of the doping

uniformly leads to a inappropriately high threshold voltage [36]. A more suit-
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able option for short channel MOSFETs is to use retrograde doping, where a

low-high (moving away from the oxide layer) doping profile is adopted, which

allows for control of the depletion depth and reduction of SCE [36] without

affecting adversely the threshold voltage. This method is used in epitaxial

MOSFETs [30, 37]. Another option is to use high doping around the source

and drain regions (referred to as ‘halo’ or ‘pocket’ doping) to prevent punch

through, and thus allow for lower doping to be used in the middle of the chan-

nel for threshold voltage control. It has been shown that this method provides

significantly better results in terms of controlling independently the threshold

voltage and the short channel effects [33]. However, increasing the doping has

adverse effects on transport and device performance due to increased impu-

rity scattering and a higher transverse field which results in increased surface

roughness scattering [38].

Additionally, the gate oxide thickness must scale with the channel length, to

help maintain threshold voltage and keep control of the channel by the gate.

However, the reduction of the oxide to thicknesses below 2 nm leads to an

undesirably high gate tunneling leakage current [35].

Therefore, the limitations to scaling of conventional (bulk) MOSFETs come

from tunneling through the gate oxide (gate leakage current) and the reduced

device performance and band-to-band tunneling both associated with the in-

creased doping used to control SCE.

By adopting a UTB SOI based architecture (illustrated in Fig. 2.1), the SCE

can be controlled via the geometry of the device rather than by using high

doping. Here, the thin body and the second oxide layer reduce the electrostatic

coupling between the drain and the channel, lessening the amount of DIBL,

thus helping to prevent SCE [39].

The two basic versions of single gate (SG) SOI MOSFET are the partially

depleted (PD) SOI architecture where the silicon layer thickness is greater

than the depletion layer, and fully depleted (FD) SOI architecture where the



2. Scaling and Transport Phenomena of UTB Devices 9

Undoped
Channel

 Gate

Source Drain

Silicon
Substrate

Oxide

O
xi

d
e

Undoped
Channel

Top 
Gate

Bottom
Gate

Source Drain

O
xi

d
e

O
xi

d
e

Figure 2.1: Schematics of SG-SOI (left) and DG (right) architectures, not

shown to similar scales.

depth of the silicon layer is equal to the depth of the depletion region under

the gate.

PD-SOI suffers a drawback in the floating body effect (FBE), where the region

beneath the channel depletion layer can charge up from capacitive coupling to

the gate and drain or from impact ionization in the drain region [39, 40]. This

is undesirable as it can lead to unpredictable device behaviour. Connecting the

floating body to the source to discharge it is one method of counteracting this

problem, but this leads to slower switching times [35]. The scaling behaviour

of the PD-SOI is similar to that of bulk MOSFETs and so it suffers from the

same scaling limitation factors [1].

The FBE is not such a serious issue in FD-SOI as the entire silicon layer un-

der the gate is fully depleted. Additionally, it tolerates much lighter doping

compared to bulk or its PD counterpart [39]. FD-SOI therefore offers a more

viable option in terms of scaling potential. The lightly doped channel results in

less mobility degradation due to impurity scattering or high transverse fields,

which can still be issues within PD-SOI where the threshold voltage and the

SCE are controlled via channel doping. FD-SOI does present some drawbacks

such as increased series resistance due to the thinness of the silicon layer [35].

Additionally, scaling of the oxide layer is still required for ever decreasing chan-
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nel lengths, meaning gate leakage current is still an issue, although one that

can be overcome via the use of high-κ dielectrics [35]. Also, this architecture

does suffer from self heating as the back oxide layer does not efficiently con-

duct heat away [40]. A significant drawback of FD-SOI compared to PD-SOI,

or even bulk MOSFETs is the difficulties in controlling the thickness of the

uniformity of the silicon body in extremely scaled devices.

Another promising device structure is the DG MOSFET illustrated in Fig. 2.1,

where in addition to the second oxide layer, there is a second gate, which

itself creates an inversion layer and a channel through which carriers flow. It

has been shown that this architecture improves scaling potential compared to

the SG-SOI MOSFET described above [41, 42, 43]. The second gate helps

improve SCE while maintaining a good subthreshold slope (no greater than 80

mV/decade is desirable), which becomes a problem for aggressively scaled SG-

SOI devices [39]. It has been predicted that DG architectures could be almost

twice as scalable as their bulk predecessors [39, 44]. Experimental examination

of a UTB DG MOSFET has recently been carried out [45], showing a good

subthreshold slope (76 mV/dec), as well as mobility enhancement, a significant

improvement when compared to SG operation. Again, in DG transistors the

transverse electric field is reduced further compared to conventional bulk and

SG-SOI MOSFET designs.

In both SG-SOI and DG devices, as the geometry of the device controls the

SCE, low (intrinsic) channel doping can be used, thus preventing degradation

of transport through increased impurity scattering. Additionally, subthresh-

old and the band-to-band tunneling leakage current can be controlled via the

thinness of the silicon layer [35].
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A useful illustration of how alternative device architectures cope with SCE

has been presented by Skotnicki [46, 47]. By quantifying DIBL using equation

(2.1), conventional, SG-SOI and DG MOSFETs can be compared.

DIBL = 0.80
εSi

εox

(
1 +

X2
j

L2
eff

)
tox

Leff

tdep

Leff

VD (2.1)

Here, Leff is the effective channel length, Xj is the depth of the source and

drain regions, tox and tdep are the thickness of the oxide and depletion layer re-

spectively, εox and εSi are the permittivity of the oxide and silicon respectively

and VD is the applied drain bias.

In all cases, εox = 3.9, εSi = 11.7 and VD assumed to be 1 V. Additionally,

Leff is taken to be 2/3Lg, where Lg is the gate length. Finally, tdep is assumed

to be the same as Xj, and tox to be 1/30 of Lg. The equation also highlights

how important it is to scale all parameters consistently, as scaling Leff with-

out scaling the other parameters would lead to an overall increase in DIBL.

These scaling assumptions were given by Skotnicki as a good approximation

for reasonable device design rules.

For a conventional MOSFET architecture, tdep and Xj are assumed to equal

half of Lg. Inserting this into (2.1) gives a value of 140 mV for DIBL in bulk

MOSFETs. For a SG-SOI MOSFET, tdep is now assumed to be equal to the

silicon thickness (i.e. fully depleted), which itself is assumed to be 1/3 of Lg.

This gives a value of 75 mV for DIBL. Finally, a DG MOSFET where tdep is half

of the silicon thickness (treating each gate’s depletion region separately), with

the silicon thickness being the same as that for the SG-SOI example will have

32 mV DIBL which is less than half of that calculated for SOI and a quarter of

that for a conventional MOSFET, highlighting the DG MOSFETs superiority

in efficiently controlling SCE purely by geometry. The above calculations are

summarised in Table 2.1.
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Conventional SOI DG

Leff 2/3 2/3 2/3

Xj 1/2 1/3 1/6

tox 1/30 1/30 1/30

tdep 1/2 1/3 1/6

DIBL (mV) 140 75 32

Table 2.1: Comparison of DIBL in various MOSFET structures based on (2.1).

All dimensions are expressed as fractions of the gate length, Lg.

While further variations of multiple gate architectures (triple or even quad

gates) may offer even better performance [41], the difficulties encountered in

fabrication of these devices are a significant drawback. Acceptable performance

can be obtained via FD-SOI and DG MOSFET designs, and they remain viable

options in terms of fabrication. The International Technology Roadmap for

Semiconductors (ITRS) [27] suggests SOI taking over from bulk architectures

around the 45 nm technology node, with DG coming to prominence soon after,

both near term targets.

The rest of this chapter comprises an examination of various quantum me-

chanical and transport aspects of the operation of UTB SOI and DG MOS-

FET devices, focusing on phenomena that becomes important when the silicon

thickness is scaled well below 20 nm.

2.3 Volume Inversion

Arguably one of the most prominent effects associated with the operation of

DG UTB MOSFETs is that of volume inversion, first observed by Balestra et

al. [48].
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Figure 2.2: Comparison of potentials and electron distributions in DG MOS-

FETs with tSi = 10.8 nm (left) and tSi = 2.4 nm (right). These plots were

generated during this work, using the Drift Diffusion simulator with Density

Gradient quantum corrections described in a later chapter.

In DG MOSFETs, both gates can create an inversion layer near each of the

semiconductor/oxide interfaces with the appropriate bias applied. In effect,

this is like two MOSFETs with a single drain, substrate and source [49].

In the case when the thickness of the silicon layer is greater than the sum of

the two depletion regions, the device operates as two MOSFETs in parallel,

with two channels, one towards each interface (see Fig. 2.2).

For sufficiently thin silicon layers, with suitable gate voltages applied, due to

quantum confinement the entire volume of silicon can be forced into strong

inversion (with the depletion regions meeting, and carriers no longer confined

towards the interface, instead spread through the whole body and peaking in

the centre), leading to the ‘volume inversion’ effect [49, 50]. This is also il-

lustrated in Fig. 2.2, which also highlights that this is a quantum mechanical

effect, with the peak of the electron concentration moved away from the semi-

conductor/insulator interface, in contrast with the classical carrier distribution

which peaks at the interface [51].

The benefits associated with this phenomena include [48, 49] an increase in

the number of carriers in the channel and a decrease in the impact of rough-
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ness and fixed charges at the interfaces. These two effects ultimately produce

an increase in both the current and transconductance. Additionally, volume

inversion reduces hot carrier effects, and produces a steep threshold slope [52].

The transverse electric field is lower under volume inversion conditions, which

reduces the interface roughness scattering and increases the carrier mobility.

The conditions defining volume inversion have an impact upon the other sig-

nificant transport phenomena (scattering associated with phonons, Coulomb

interactions and interface roughness) observed in UTB SOI and DG MOS-

FETs. A discussion of these mechanisms and their resulting effect follows in

this chapter.

2.4 Enhanced Phonon Scattering

In ultra thin silicon layers, such as the one employed in UTB SG-SOI and DG

MOSFETs, an increase in phonon scattering is observed which contributes

to transport degradation. Two phenomena contribute to this: confinement

of electrons in thin silicon layers leading to more bulk phonons available to

participate in transitions between electron states [53]; and the confinement of

acoustic phonons in thin silicon layers [54].

The first phenomena that increases the phonon scattering results from greater

confinement of carriers in thin tSi, which leads to a reduction of uncertainty

on the electrons’ positions perpendicular to the interface, allowing for a wider

distribution of values for the electrons’ momenta. This provides more phonons

to contribute to transitions between electron states, leading to an increase in

phonon scattering [53].

Shoji et al. [55, 56] considered the phonon limited mobility in UTB SOI and

DG MOSFETs. The effect of band splitting, when carriers populate different
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Figure 2.3: Phonon limited mobility versus tSi from [49], comparing trends in

DG and SG-SOI MOSFETs.

subbands based on their energy, becomes important. This effect is discussed

in more detail in the next section.

Phonon scattering starts to produce an appreciable decrease in mobility for

higher energy subbands for tSi < 20 nm, and for the lowest energy subbands

for tSi < 10 nm. Therefore, a total drop in phonon limited mobility is not

observed until tSi < 10 nm due to the higher occupation of the lowest energy

subbands.

The combination of these factors allow Shoji [56] and Gàmiz [49] to observe

three tSi defined phonon limited mobility regimes, as can be observed in

Fig. 2.3. For large values of tSi, the mobility of DG is similar to that ob-

served in SG SOI MOSFETs, as the inversion layers are kept separate. As tSi

decreases, and the DG MOSFET enters the volume inversion regime the mo-

bility trends of the two begin to differ as the inversion layers interact. A peak
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Figure 2.4: Dependence of phonon limited electron mobility on silicon layer

thickness from [57], showing the significant degradation coming from confined

acoustic phonon scattering. The three different curves, refer to boundary con-

ditions used by the authors when including the phonon scattering mechanism.

They suggest that the most appropriate boundary condition will vary depend-

ing on the material and structure under consideration.

value of mobility comes around tSi = 10 nm for the reasons mentioned above.

Below tSi = 10 nm, the geometrical confinement leads to an overall increase

in phonon scattering in both structures. The increase in mobility observed in

this region is due to band splitting and will be discussed in the next section.

The second aspect of the increased phonon scattering is associated with the

confinement of acoustic phonons in thin silicon layers which results in a mod-

ification of phonon modes where there is a mismatch between the dielectric

constants of the silicon and the oxide layers [57]. This phenomena has been
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observed experimentally [58], and produces a significant degradation in elec-

tron mobility.

The increase in confined phonon scattering results in a further degradation

of electron mobility down to tSi = 2 nm, as shown in Fig. 2.4. The most

significant impact is in the region 5 nm < tSi < 10 nm, where the transport

enhancement associated with volume inversion is counteracted [59].

The importance of phonon scattering comes from the fact that the mecha-

nism is coupled to the device itself, so no matter how perfect the fabrication

process, the limitation will always be there at room temperatures (though is

avoidable at low temperatures) [53]. The introduction of high-κ dielectric will

only exacerbate these effects by introducing additional soft optical phonon

scattering [21, 60].

2.5 Band Splitting

Scaling of devices to ever smaller dimensions ultimately leads to an increased

impact of quantum effects upon transport and device characteristics [44, 51,

62, 63, 64]. In thicker silicon layers, confinement is a product of an exter-

nal bias, however, at thinner silicon layers the confinement is a geometrical

effect resulting from the close proximity of the layer boundaries. This size

induced quantization shifts the peak concentration of carriers away from the

interface (contrasting with the classical distribution), additionally increasing

the effective oxide thickness [50, 65].

As reported in [66], and shown in Fig. 2.5, DG MOSFETs experience a mobility

enhancement when scaled to body thicknesses between approximately 3 and

5 nm. This enhancement is attributable to subband splitting and the carrier

occupation of 2-fold (or unprimed subband) valleys that have a lower effective

mass compared to the carriers in the 4-fold (or primed subband) valleys in the
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Figure 2.5: Mobility in different subbands and overall mobility, from [61].

Shows the increase in mobility in the 3-4 nm region in the 2-fold valleys, that

contributes to the increase in the overall mobility.

direction of current flow, as described in Table 2.2 and shown in Fig. 2.6. This

subband structure engineering can be exploited in strained silicon MOSFETs,

as well as the UTB SOI MOSFETs (SG or DG) considered here [61].

In UTB SG-SOI and DG MOSFETs, the dependence of mobility on silicon

thickness can be explained as a result of the energy difference between the

2-fold and 4-fold valleys. When the tSi is thick (greater than 10 nm), the top

and bottom interfaces are separated so that the band structure is the same as

in bulk MOSFETs and the mobility is constant.

The differences in the confinement direction effective mass (higher in the 2-fold

valleys) and the inversion layer (thinner in the 2-fold valleys) leads to a split in

occupation as the silicon layer reduces. The thickness of the inversion layer for

the 4-fold valleys means that the size of the silicon layer influences their ground

state energy (E0) first when tSi < 5 nm, pushing it upwards and creating a
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Unprimed (2-fold) Primed (4-fold)

lower conductivity mass higher conductivity mass

(0.19m0) (0.315m0)

higher mass normal to transport lower mass normal to transport

(0.916mz) (0.19mz)

higher mobility lower mobility

lower subband energy higher subband energy

Table 2.2: Description of the subband structure for (100) Si orientation.

difference in E0 between the 2- and 4-fold valleys (∆E0) and is depicted in

Fig. 2.7. Carriers begin to occupy the 2-fold valleys in greater numbers and

this leads to an overall increase in mobility due to the lower conductivity

mass [52, 61]. This trend continues till tSi < 3 nm and all the electrons occupy

the 2-fold valleys. Now the size of the silicon layer is of a similar, or smaller,

size to the inversion layer, leading to an increase in scattering from acoustic

phonons and a resulting decrease in overall mobility [67]. Fig. 2.5 shows the

mobility dependence on silicon thickness in the 2-fold and 4-fold valleys, as well

as the total mobility. This effect can only be captured in quantum mechanical

simulations as classically all valleys are equally populated [51].

Taking into account the impact of the transverse effective field, the relationship

between tSi and mobility is less straightforward. In the region 20 nm > tSi >

5 nm, mobility increases with a decreasing electric field. However below tSi = 5

nm, the dependence of mobility on field lessens, and vanishes when tSi < 3 nm

with mobility independent of tSi [61, 67] .

Further, the impact of temperature has been investigated, showing that at

low temperatures there is a greater improvement in mobility for UTB DG

MOSFETs compared to that observed at room temperature [68].
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Figure 2.6: Subband structure, showing 4- (in plane) and 2- (out plane) fold

valleys in red and blue respectively.

2.6 Coulomb Scattering

Typically Coulomb scattering depends on several factors, such as the distribu-

tion of electrons in the inversion layer, the distribution of charged scattering

centres, screening of the charged centres by mobile carriers, the charged cen-

tres’ correlation and image charges. In DG MOSFETs, the carrier distribution

differs from that in bulk MOSFETs hence the screening, and the relative po-

sition between the carriers and the charged centres will also differ, impacting

upon the effect of the Coulomb potential screening on electron mobility [69].

Coulomb scattering in UTB SOI MOSFETs results from carrier interactions

with trapped charges at the two Si/SiO2 interfaces, as channel doping in both

SG SOI and DG is low enough that Coulomb scattering due to dopant impuri-

ties can be considered negligible [70]. It becomes the dominant mechanism at

lower inversion charge densities (compared to phonon scattering discussed pre-
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Figure 2.7: Comparison of 2- and 4-fold valleys showing the energy separation

that leads to splitting, and highlighting the confinement from both the field

and structure and its influence on the ground state as tSi decreases. Adapted

from [67]

viously), though an increase in the effective vertical field and the corresponding

increase of the carrier concentration in the channel reduces the impact of the

charged centres due to screening [49].

Uchida et al. [71] experimentally observed the impact of Coulomb scattering,

showing for SG SOI MOSFETs a Coulomb limited mobility degradation is

evident for thinner silicon layers when compared to thicker ones. Additionally,

he observed a suppression of Coulomb scattering in DG MOSFETs compared

to SG SOI MOSFETs due to an increase in screening. This is associated

with the volume inversion effect. At thinner silicon layers, volume inversion

improves the screening of the charged centers, thus reducing the impact of

Coulomb scattering.

Coulomb scattering is, however, considered to be an issue which could be

overcome via technological advancement in the device’s fabrication [53].
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2.7 Interface Roughness and Body Thickness

Variation

Roughness patterns at the top and bottom Si/SiO2 interfaces induce two scat-

tering mechanisms that influence transport in UTB SOI MOSFETs: interface

(or surface) roughness scattering and body thickness fluctuations.

Numerous authors have considered the impact of surface roughness scattering

in DG MOSFETs, and found the resulting transport degradation to be as

significant as in bulk MOSFETs, if not more so.

In the study by Kathawala et al. in [50], Ando’s model for surface roughness

scattering [51] is used in a quantum corrected Monte Carlo simulator. For

a device with tSi = 10 nm, the comparison of simulations with and without

interface roughness scattering shows a reduction in current and mobility in

the presence of this additional scattering mechanism. Bufler et al. [72] carried

out classical self-consistent Monte Carlo simulations using a specular/diffusive

surface roughness scattering model [73] to examine this mechanism in DG

MOSFETs with tSi = 6.25 nm and found the additional scattering to have an

effect upon the on-current improvement expected in these structures.

Gàmiz [74] examines the role of surface roughness scattering more rigorously.

The mobility for a range of transverse effective fields for different tSi was

simulated. At low fields, degradation is only observed when tSi < 5 nm.

This is due to the fact that the confinement at low fields is determined by

the thinness of the silicon layer. At high fields, degradation is observed for all

thicknesses as the field is forcing carriers toward the interfaces [75].

Comparisons of the impact of surface roughness scattering on UTB MOSFETs

with both the single and double gate configuration have also been carried out

by the same authors [74]. Three regions of surface roughness limited mobility

are observed. The first, at thick silicon layers (tSi > 20 nm), where there is
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Figure 2.8: Source of body thickness fluctuations resulting from roughness

patterns at the top and bottom interfaces.

no interaction between inversion layers in the DG device, the mobility curves

coincide with the universal mobility value. For 3 nm < tSi < 20 nm, the DG

device enters the volume inversion regime, which leads to an increase of mobil-

ity in comparison to the SG SOI MOSFET. Below tSi = 3 nm, the mobility in

the two architectures again coincide due to other scattering mechanisms (most

notably phonon scattering) dominating, resulting in an overall drop in mobil-

ity. Additionally, the presence of the second oxide layer in both configurations

produce similar geometrical confinement effects.

The studies of Gàmiz [49] used quantum corrected Monte Carlo simulations [76]

with a modified version of the roughness scattering model of Ando [51] to

demonstrate the degradation in transport for this mechanism. His explanation

was that at smaller tSi the presence of a second interface, and the accompa-

nying additional surface roughness scattering, was responsible for the drop in

performance.

However, the drop in mobility for tSi < 5 nm can be explained more accurately

by examining the impact of body thickness fluctuations caused by the unique

roughness patterns at the top and bottom of the silicon layer (see Fig. 2.8).
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tSi d

Figure 2.9: The relationship between the nominal thickness of the silicon layer

(tSi) and the roughness limited actual silicon thickness (d = tSi −∆(r) where

∆(r) accounts for the contribution of both oxide layers).

These thickness fluctuations lead to variation in subband energies [71, 77]

which results in a shifting of the ground state which may be described by [28]:

E0 =
h2

8m∗t2Si

(2.2)

Where h is Plank’s constant and m∗ is the effective mass of the electron. The

height of the interface roughness fluctuations (∆), is usually assumed to be ±
1 atomic layer, so with 2 interfaces, the total fluctuation is 4 atomic layers [28].

Hence, as tSi varies along the channel, so does E0. The shifting of the ground

state leads to the variation in subband energies as mentioned above. The

resulting fluctuations in potential is given by [28, 77]:

∆V =
∂E0

∂tSi

∆ = − h2

4m∗t3Si

∆ (2.3)

From (2.3), the fluctuations are dependent on the height of the roughness, so

for smoother surfaces, there is less fluctuation, and hence less scattering.
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Figure 2.10: Mobility dependence on tSi from [28], showing the relationship

stated in (2.4). Study carried out at low temperature to suppress effects from

increased phonon scattering at these dimensions.

When tSi < 4 nm, the fluctuation in conduction-band energy from the shift

in ground state exceeds thermal energy at room temperature leading to the

potential barriers that act as an additional scattering potential for electrons

in the channel [66].

The relationship between mobility and silicon thickness has been shown to

be [28, 78, 79]:

µ ∝

(
∂E0

∂tSi

∆

)−2

∝ t6Si (2.4)

and is demonstrated in Fig. 2.10. This explains how the reduction of tSi leads

to a dramatic degradation of µ.
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Figure 2.11: Comparison of mobility vs. silicon thickness trends in SG-SOI

MOSFETs from Shoji [55], Takagi [67] and Uchida [66]. The differences above

tSi = 5 nm are attributable to differences in field and the scattering mechanisms

employed in the different studies.

Scattering from body thickness fluctuations becomes prominent when tSi <

4 nm, and, along with confined acoustic phonon scattering, leads to a sharp

drop in the mobility observed in Fig. 2.5 [66]. Hence, this scattering mechanism

imposes a severe limitation on carrier mobility as the silicon thickness in UTB

SOI and DG MOSFETs is decreased.

The uniqueness of the roughness pattern from interface to interface leads to

variation in drive current from device to device that may hamper devices’

integration in future circuits.

2.8 Summary

Considering all the mechanisms discussed in this chapter, three distinct ar-

eas of operation for UTB MOSFETs can be identified, each defined by silicon
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Figure 2.12: Comparison of mobility vs. silicon thickness trends in DG MOS-

FETs from Donetti [57], Esseni [77], Gàmiz [74] and Shoji [56]. Differences in

location of peak mobility is attributable to variations in scattering phenomena

captured.

layer thickness. These three regions are identified in the work of Gàmiz [49],

Uchida [71] and Venkatesan [80] and can be recognised in Fig. 2.5 and sum-

marised in Fig. 2.11 for SG-SOI and Fig. 2.12 for DG MOSFETs.

For tSi > 20 nm there is little or no improvement in double gate MOSFETs

in comparison to their SG SOI or bulk counterparts. This is a result of elec-

trons behaving in a similar manner in all three architectures with the sub-

band structures coinciding. This has been demonstrated by numerous au-

thors [49, 55, 56, 70, 77].

For 20 nm > tSi > 5 nm, the reduction in tSi leads to UTB DG MOSFETs

entering the volume inversion regime, and an appreciable improvement in mo-

bility can be observed. The interaction of the top and bottom inversion layers

alters the subband structure, and in conjunction with the spread of electrons

through the silicon layer, the impact of several scattering mechanisms is re-
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duced. In particular channel orientations a peak in mobility can be observed

due to band splitting.

Finally, for tSi < 5 nm, the presence of the second SiO2 layer for both DG

and SG SOI MOSFETs leads to the mobility curves for both coinciding and

dropping sharply as confined acoustic phonon and body thickness variation

scattering starts to dominate.

Ultimately, these effects culminate to impose dimensional limitations in the

scaling of UTB SOI MOSFETs with either one or two gates.

While some of these problems may be eventually overcome via improved fabri-

cation (such as the Coulomb scattering effect and scattering from body thick-

ness fluctuations), others are inherent to the device structure and materials

used (such as scattering from phonons) and will degrade transport regardless

of fabrication quality.

The focus in this study is the device performance variations from differences

in body thickness dominated scattering due to the unique interface and body

thickness pattern in each nano UTB SG-SOI or DG MOSFET.



Chapter 3

Simulation Methodology

3.1 Introduction

In order to capture the device variability phenomena discussed in the previous

chapter, a simulation approach is required that can take into account quantum

mechanical effects. In this chapter, the strengths and weaknesses of Drift-

Diffusion (DD), Monte Carlo (MC) and Quantum Transport based on Non-

equilibrium Green’s Function (NEGF), three generic simulation approaches

capable of including quantum effects, are discussed and compared.

The Boltzmann transport equation (BTE) (3.1) describes semiclassical carrier

transport.

∂f

∂t
+ v · ∇rf +

eF

~
· ∇kf

=
∑
k′,λ

Sλ(k,k
′)f(r,k′, t)(1− f(r,k, t))

− Sλ(k,k
′)f(r,k, t)(1− f(r,k′, t)) (3.1)
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It determines the distribution function f which is formulated in a seven di-

mensional phase space, consisting of position r and momentum k at time t,

along with velocity v and force F. Sλ(k,k
′) is the scattering probability from

state k to k′. The right hand side is the collision integral (often represented as

(∂f/∂t)coll), describing the scattering effects. The direct solution of the BTE

is cumbersome [81], so alternate approaches have been derived, including DD

and MC.

In order to couple properly the current flow to the field distribution of the

simulated devices, it necessary to use self-consistent simulations [82]. This is

implemented in all 3 simulation techniques by solving Poisson’s equation (3.2)

in order to calculate the potential resulting from the mobile charge distribution

present:

∇ · (ε∇ψ) = q(n− p+NA −ND) (3.2)

Here, ε is the permittivity of the material, ψ the potential, q the charge, n and p

are the mobile charges, and NA and ND the acceptor and donor concentrations.

The three simulation approaches use different methods to update the mobile

charge distribution based on the updated potential. These two operations are

carried out self-consistently until a specified convergence is reached.

In DD, Poisson’s equation is solved self consistently with the current continu-

ity equation. In MC, a statistical ensemble of carriers is propagated within

the device suffering random scattering mechanisms. In quantum transport,

the Schrödinger equation is solved with open boundary conditions using the

Green’s Function formalism.

The necessity to capture quantum effects increases as the dimensions of the

simulated device shrink [82]. Many of the phenomena affecting transport in

UTB SOI MOSFETs, as described in the previous chapter, require a quantum

mechanical approach in order to be modelled accurately.
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While NEGF inherently describes the quantum effects, with DD and MC it is

necessary for quantum corrections to be implemented. A range of various meth-

ods have been employed including Schrödinger [83], Wigner [84], Bohm [85]

and Effective Potential [86] based techniques.

Typically, these corrections are added to the classical potential calculated via

the solution to Poisson’s equation, with the resulting quantum potential used

to update the current continuity equation in DD, or to calculate the driving

force for the particles in MC. Validation and/or calibration is then carried

out via careful comparison to solutions using a NEGF algorithm or Poisson-

Schrödinger solvers [65]. The use of a quantum correction allows for the com-

putational efficiency of these methods to be retained while making the capture

of quantum effects, such as size quantization and, with lesser success, tunnel-

ing, possible.

In order to effectively study MOSFET variability, it is necessary to capture

the responsible mechanisms including quantum confinement variation and the

corresponding scattering which varies from device to device. Hence, in order

to be useful, all the methodologies discussed in this chapter must be capable

of capturing the electrostatic and/or transport limiting scattering effects that

lead to variability in devices.

3.2 Drift-Diffusion

The DD formalism [87, 88, 89] in unipolar devices like MOSFETs, involves self

consistently solving the Poisson (3.2) and Current Continuity (3.3) and (3.4)

equations (for electrons in n-channel devices), until convergence in the current

solution is met.

∇ · Jn = qR (3.3)
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Jn = Jdiffusion + Jdrift = qDn∇n− qµnn∇ψ (3.4)

Where Jn is the electron current density, R the net recombination rate, Jdiffusion

and Jdrift the current densities for diffusion and drift respectively and Dn and

µn the diffusion coefficient and mobility for electrons. The other symbols have

the same meaning as before.

The equation for current density (3.4), which combines drift and diffusion

components, can be derived from the first moments of the BTE (3.1) [87]. It

represents an approximation of the BTE, with several assumptions and sim-

plifications applied: the use of the relaxation time approximation, a slowly

varying field at any point in the device, and equal lattice and carrier temper-

atures [87].

DD provides a relatively simple, computationally efficient simulation basis that

is easily extendable into two- and three-dimensional domains [90]. It has been

at the heart of device simulation for many years, and provided an extremely

good tool for modeling devices up to entry into the nanometer regime. The

necessary conditions are to assume that the problem is localised, with carriers

having no ‘memory’ of the numerous successive collisions they undergo while

traversing the device and that the scattering is an additional ‘frictional’ force

acting upon the current flow [91].

When simulating modern decananometer scale MOSFETs it is most applicable

in the subthreshold regime, where the current is not strongly coupled to the

solution of Poisson’s equation and the electrostatics dominate. In this instance

the source to drain potential barrier is sufficiently high so that little mobile

charge inhabits the channel. The barrier is controlled by both VG and VD and

by sources of barrier fluctuation such as line-edge roughness (LER), interface

roughness and variations in dopant placement [37, 92, 93]. Above threshold,

it has been shown that DD fails to properly describe the on-current (Ion) and

its variability [94, 95, 96, 97].
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Scaling of devices leads to a breakdown in the assumptions used to derive the

DD equations. The problem becomes non-equilibrium and ‘non-local’ and the

previous scattering history has to be taken into account.

The classical version of DD presented above does not deal with non-equilibrium

transport, as carriers are treated as being in thermal equilibrium with the

lattice, so carrier heating is not taken into consideration [36, 98]. As devices

are scaled the electric field increases resulting in more hot carriers, so the

validity of DD simulations decreases - carriers can now gain kinetic energy

greater than the thermal energy.

As DD responds immediately and locally to changes in the electric field, it

cannot capture non-local effects. Rapid changes in field occur in small devices,

where µn and Dn are no longer simply connected to the local field, and become

dependent on the carrier history [91].

In small devices, carriers can exceed the saturation velocity, resulting in veloc-

ity overshoot [99, 100], a non-equlibrium phenomena which is not accounted

for in DD [87]. As carriers pass from a low to high field region, the average

velocity reacts quicker to the change than the average kinetic energy, so the

instantaneous mobility remains at its previous higher level. This results in a

spatial velocity overshoot. As the carriers propagate further into the chan-

nel, the velocity returns towards the value that might be expected in a long

channel device. DD assumes a simple field dependent mobility model, locally

coupled to the electric field, so this effect is not captured [94, 101, 102]. It

has been demonstrated that velocity overshoot is a desirable quality, increas-

ing transconductance [103] and improving the switching time in circuits [104]

making it a relevant area of research.

Methods to extend the applicability of the DD formalism have been explored,

using more advanced mobility models [105] that do extend the validity of the

model. Extension to higher moments of the BTE (such as the hydrodynamic

or energy transport models [106]) where the thermal equilibrium assumption
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is no longer applied [72] are also in common use, yet discrepancies still appear

when compared to more sophisticated transport models.

Therefore, as devices scale to decananometer dimensions, methods based on

simplifications of the BTE become less appropriate, and it is likely that more

direct solutions of the BTE will become necessary [107].

3.2.1 Quantum Corrections in Drift-Diffusion

To further extend the validity and usefulness of the DD simulation approach,

the introduction of a quantum corrected potential has allowed for effects re-

lating to confinement and tunneling to be captured [82].

The Density Gradient formalism [108] is derived, similarly to the Bohm inter-

pretation of quantum mechanics [109], as a correction to the classical potential,

based on a modification to the BTE using the Wigner distribution function

(3.5).

∂f

∂t
+ v · ∇rf +

1

~
FQC · ∇kf =

(∂f
∂t

)
coll

(3.5)

Here FQC is the quantum correction force defined as a derivative of the sum

of the classical and quantum correction potentials (3.6).

FQC = −∇
(
ψc −

~2

12m∗∇
2 ln(n)

)
(3.6)

Here, ψc is the classical potential, m∗ the effective mass and n the electron

concentration. Writing the equilibrium carrier concentration in terms of the

correction to the potential, then expanding and taking the lowest order com-
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Figure 3.1: Comparison between vertical electron distribution (i.e. the quan-

tization direction) for NEGF and Density Gradient results for various Vg in a

DG MOSFET with tSi = 2 nm, showing a good agreement between the two

methods [110].

ponent gives an extra quantum correction dependent on the second derivative

of the carrier concentration which can be added to the current equation giving:

Jn = qDn∇n+ qµnn∇ψ + 2µn∇
(
bn
∇2
√
n√
n

)
(3.7)

Where bn = ~2/(4qm∗r) and r is a fitting parameter, defined between 1 and 3

depending on the number of subbands filled [111]. Expressing the current in

terms of the quasi-Fermi level gradient leads to an equation for the quasi-Fermi

level [112]:

φn − ψc +
kBT

q
ln
n

ni

= 2bn
(∇2

√
n√
n

)
(3.8)
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Figure 3.2: Simulation flow for Drift Diffusion using a modified Gummel algo-

rithm

Where φn is the quasi-Fermi level. The parameter bn can be calibrated to

reproduce the vertical electron distribution obtained from a fully quantum

NEGF simulation, as can be seen from Fig. 3.1. It has been shown that the

Density Gradient corrections can capture accurately carrier confinement and

mimic source-to-drain tunneling via lowering of the potential barrier in 3D

simulations [110, 113, 114]. The dependence on the gradient of the carrier

density also lends the method an element of non-locality. A typical simulation

flowchart for a DD simulator employing Density Gradient quantum corrections

is shown in Fig. 3.2.



3. Simulation Methodology 37

3D DD simulations employing Density Gradient corrections have been used to

study body thickness fluctuations in ultra thin body (UTB) single gate silicon

on insulator (SG-SOI) MOSFETs [115]. This method successfully captured

the electrostatic and confinement effects, and the accompanying shift in VT

and reduction in Ion [36], but it failed to address the additional quantum

confinement scattering variation and the associated increased Ion variability.

An alternative quantum correction method used in DD is the Effective Quan-

tum Potential approach [116], which takes the form:

ψeffective(x) =

∫
ψc(x0)G((x0 − x), a0)dx0 (3.9)

G((x0 − x), a0) =
1

a0

√
2π

exp

(
−(x0 − x)2

2a2
0

)
(3.10)

a2
0 =

~2

12m∗kBT
(3.11)

Where (3.10) is a Gaussian distribution used to smooth the classical potential

in (3.9). Here, a0 is the standard deviation and is effectively the quantum

mechanical size of the particle [86], and can be tuned by varying m∗ [117,

118]. This is based on an approach developed by Feynman [119] taking the

path integral of the quantum fluctuations around a particles classical path.

As with the Density Gradient formalism, the Effective Potential method has

been shown to capture the quantum mechanical shift in threshold voltage,

though, while describing well the shift in peak electron concentration away

from the interface, it fails to capture accurately the shape of the electron

distribution [113]. The Effective Potential approach also fails in capturing

accurately tunneling effects [117].
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Figure 3.3: Simulation flow for Monte Carlo.

3.3 Monte Carlo

The Monte Carlo technique [106, 120, 121, 122, 123] offers a numerical solution

to the BTE (3.1), combining classical (Newtonian) mechanics with quantum

mechanical scattering rates. The method is based around the simulation of

the trajectory of carriers in the presence of applied electric fields and random

scattering events.

A typical simulation flow for the ensemble MC method is shown in Fig. 3.3.

The simulator is initialised, populating the solution domain with carriers in

a first guess which can be based on an analytical model, previous results, or
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on the solution from another simulator, such as DD. Carriers are then moved

under the influence of the field distribution in the device for a ‘free flight’

time generated via a random number. At the end of this free flight, a scat-

tering mechanism is selected, again via the generation of a random number.

These mechanisms replicate the correct physics via appropriate probability

distributions and selection of post-scattering state. Fig. 3.4 shows a typical

relationship between scattering mechanism and random number, generated via

probabilities associated with each scattering process considered in the simula-

tion. Fig. 3.5 shows the cumulative scattering rates for some of the scattering

mechanisms used in our simulations, plotted versus energy. In addition to rele-

vant, physically accurate processes, a ‘self-scattering’ (no change in the carriers

state) is included to make the selection of the flight time easier as the scatter-

ing rate becomes constant over the energy range. Usually the self-scattering

is the most frequently chosen scattering mechanism.

Once scattered, statistics are gathered and averaged, in terms of the individual

attributes of the particles (velocity (3.12) and energy (3.13) - both for non-

parabolic band approximations, with a non-parabolicity factor α), as well as

ensemble averages such as current.

v =
~k

m∗(1 + 2αE(k))
(3.12)

E(k)(1 + αE(k)) =
~2k2

2m∗ (3.13)

The simulation can be ‘frozen field’ [124, 125, 126] or self-consistent [82, 127,

128]. In the ‘frozen field’ simulations the field distribution in the simulated

device remains fixed, generated, for instance, using an initial DD simulation.

In self-consistent simulations the new electron distribution at the end of each

time step is used to solve Poisson’s equation (3.2), and a new field distribution
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Figure 3.4: Relationship of scattering rates to random number, adapted

from [106].

is calculated. The process is continued until statistics converge to a satisfactory

accuracy.

The biggest detriment to computational speed is from solving Poisson’s equa-

tion and the use of an efficient solver (such as SOR (Successive Over Re-

laxation) [88, 129], Bi-Conjugate Gradient-Stable (BiCGstab) [130] or Multi-

grid [131, 132] methods) is essential.

The band structure can be described in a succession of increasingly more com-

plex models, starting with a simple, single band, parabolic/non-parabolic ap-

proach [120], which uses spherical or ellipsoidal bands, to a more detailed full
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Figure 3.5: Cumulative scattering rates from the MC simulator used in this

work, along with the total scattering rate taking into account self-scattering.

band structure based on the k · p [122], pseudopotential [125, 133, 134] or

tight-binding [135, 136, 137] approaches. The increase in the complexity of

the bandstructure description leads to a trade-off between accuracy and com-

putational efficiency.

The clear benefit of MC over DD based simulations is its ability to handle

transport in aggressively scaled devices where the number of scattering events

is reduced leading to non-equilibrium and near-ballistic transport. The reduced

number of scattering events leads to increasingly non-equilibrium transport

with carrier heating [138], and non-local effects such as velocity overshoot

becoming more and more relevant [16, 107]. As the MC approach is effectively a

numerical solution to the BTE, rather than a simplification, it remains valid for

small devices. Additionally, it is relatively easy and computationally efficient

to extend MC into a 3D simulation domain.
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3.3.1 Scattering in Monte Carlo

All of the transport phenomena described in Chapter 2 must be represented

accurately in order to properly model UTB MOSFETs as they are scaled

to tSi below 10 nm. The inclusion of the corresponding scattering processes

in simulations is therefore essential to capture the drive current magnitude

and variations in addition to electrostatic effects which mainly influence the

subthreshold current and the threshold voltage. In doing so a balance has to

be achieved between computational efficiency and the physical accuracy.

The standard method for inclusion of scattering in MC has been described

before, with scattering processes chosen via the selection of a random number

compared to a table of scattering probabilities [121].

The probability of transition from state k to k′ (S(k,k′)) due to a perturbation

Hamiltonian Hk′,k is given by Fermi’s Golden rule (3.14), derived from the

Schrödinger equation [106, 123]:

S(k,k′) =
2π

~
|Hk′,k|2δ[E(k′)− E(k)] (3.14)

From this, scattering probabilities are calculated and stored for each mecha-

nism. This method allows for scattering processes to be captured in detail as

Hamiltonians can be calculated for each relevant scattering mechanism. This

formalism has been used to calculate the scattering rates for Phonons (acous-

tic and optical) [120, 122], ionized impurities [106, 120] and interface rough-

ness [139] scattering. An alternative method for including surface roughness

scattering by weighted selection of either a specular or diffusive reflection [73]

has been employed in [140]. This method has the drawback of requiring a

varying ratio of specular to diffusive scattering depending on the bias applied

to the device [141].
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After scattering, a new final state is chosen, with the energy, the direction and

the magnitude of the momentum (k-vector) of each scattered particle altered

appropriately, based on the nature of the scattering mechanism [106]. The

specific methods employed for these mechanisms can be found in various text

books and papers [106, 121].

Another method for introducing scattering in Monte Carlo simulations is the

so called ‘ab initio’ scattering approach where the effect of the scattering po-

tentials is captured through its effect on the real space trajectories rather than

through probability-based scattering rates selected via random numbers.

It has previously been used to capture the influence of Coloumb scattering from

a trapped charge or random ionized impurities [142, 143]. In this method,

based on a particle-particle-particle-mesh (P3M) algorithm [144], the short

range Coulomb force acting on the real space trajectory of each particle can

be evaluated using:

FSR(r) =
Qr

4πε(r2 + 1
2
r2
c )

3/2
(3.15)

Where rc is a cut-off radius selected to prevent undesirable carrier heating [145]

and r the distance to the charge. The long range interactions are included via

the solution to Poisson’s equation. This allows the accurate simulation of

random dopant scattering induced current variability to be simulated [146].

This has proved to be a computationally efficient method that could capture

not only the localised carrier-impurity interactions but the carrier-carrier scat-

tering in small devices [146].
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3.3.2 Quantum Corrections in Monte Carlo

MC simulations can effectively bridge the gap between the semiclassical (trans-

port and scattering) and quantum (quantization and tunneling) regimes [141]

through the introduction of quantum corrections. The transport phenomena

detailed in the last chapter can all be adequately captured by quantum cor-

rected MC down to very small dimensions (tSi < 5 nm) [147, 148].

Hence, the use of quantum corrections within MC allows for computational

efficiency to be maintained while the additional effects of size quantization and

tunneling can be captured, thus extending the validity of the method. Various

methods [149] based on Schrödinger equation [83], Wigner equation [150] and

Effective Potentials [86] have been used.

In all cases, the general method involves the use of quantum corrected potential

(ψq) [149] in the form:

ψq = ψc + ψqc (3.16)

where ψc is the classical potential from the solution to Poisson’s equation and

ψqc is the quantum correction potential calculated using one of the methods

described below. However, in contrast to DD simulations, instead of using

the quantum corrected potential alongside the current continuity equation, in

MC the corrected potential is used to calculate the force, F acting upon the

particles during the free flight, where:

F = Fc + Fqc (3.17)

Fc = −∇ψc (3.18)
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Fqc = −∇ψqc (3.19)

This method of adding a correction term to existing semiclassical transport

is considerably more efficient than solving the Poisson-Schrödinger equations

which, while more accurate in capturing the full quantum picture, is usually

restricted to 1D or 2D MC simulations [64, 139, 151, 152]. A more efficient

approach to include Poisson-Schrödinger solution has been proposed in [153] for

2D MC simulations, where the Schrödinger equation is only solved periodically,

and at the rest of the time steps, the eigenenergies are approximated using a

perturbative approach.

A correction based on the Wigner distribution function has been proposed

and employed in [154]. Starting with a modification to the BTE known as the

Wigner transport equation (3.5), the correction term can be written as [84]:

ψqc =
kBT

24
[γ2(k − k)2 − 3γ]∇ ln(n) (3.20)

Where γ = ~2/(m∗kBT ) and k is the average momentum. As with the Density

Gradient formalism, by averaging out the momentum term and assuming ther-

mal equilibrium, a simplified quantum correction potential is derived from [84]:

ψqc = − ~2

12m∗∇
2 ln(n) (3.21)

This correction is added to ψc according to (3.16), and the field calculated

according to (3.17) and (3.19). As it is based on the 2nd derivative of the

carrier concentration, this approach is sensitive to noise, which is a clear draw-

back in MC simulations where the statistical carrier distribution is far from

smooth. Therefore, the electron concentration has to be time averaged, and

the potential spatially smoothed [155, 156]. So far, this method has been em-
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ployed in 2D MC simulations [157], and has been shown to agree well with

Poisson-Schrödinger [155] and NEGF results [158].

The above method was extended further in the so called effective conduction

band edge (ECBE) method, considered a variation to the Wigner correction

described above [85], or derived directly from the Bohm interpretation of the

Schrödinger equation [109]. Here, the problem of calculating the driving force

from higher derivatives of the electron distribution is avoided using an expres-

sion for n ∝ exp(qψq/kBT ). On this basis, the corrected potential can be

written as:

ψq = ψc +
~2

4m∗rkBT
[∇2ψq −

1

2kBT
(∇ψq)

2] (3.22)

While (3.22) is less sensitive to noise than the previous methodology, it is

strongly non-linear, making it difficult to solve. This correction has been

successfully demonstrated in 2D MC simulations [159, 160] and extended to

include the electron distribution across different valleys [161, 162, 163], as well

as beyond the thermal equilibrium assumption [160].

The Effective Potential approach (3.9)-(3.11) mentioned above has also been

successfully employed to capture confinement effects in 2D [164] and 3D [86]

MC simulations. It has been used to study surface roughness scattering [165,

166] in DG MOSFETs. Here, selection of a weighted specular/diffusive reflec-

tion [73] is not appropriate as the extent to which carriers are repelled from the

interface is overestimated by the Effective Potential method, so a scattering

rate has to be employed to circumvent this issue and to allow for accurate sim-

ulation. Coulomb interactions with unintentional doping [62, 167] have also

been studied with this method, and effectively quantifies the degradation due

to dopant placement within the channel

A significant drawback comes through use of the fitting parameter, a0 [168].

The underestimation of the electron concentration at the interface due to the
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overestimation of the field, leads to a shift of the peak concentration away

from the interface. Reducing this parameter to compensate for this can lead

to a correction term smaller than expected and an undesirably large peak

concentration when compared to a Poisson-Schrödinger solution. Extending

to 3D requires varying values of the fitting parameter in the directions normal

and parallel to the interface [167].

An alternative Effective Potential method has recently been proposed using

a Pearson IV distribution in place of the Gaussian [169, 170]. The Pearson

distribution can be tuned at various points depending on the distance of the

carrier from the semiconductor-oxide interface in the vertical direction based

on a total of four parameters compared to the single fitting parameter used for

the Gaussian based Effective Potential. This allows a closer agreement with

the electron distribution obtained from a Poisson-Schrödinger solution [170].

So far this has only been implemented and validated in 2D [169] and to the

best of our knowledge has not been used in any detailed simulation studies.

While the inclusion of a Poisson-Schrödinger solution directly into MC sim-

ulation is computationally inefficient, a Schrödinger based correction can be

employed via [50]:

ψq(z) = −kBT log(nq(z))− ψc(z) + V0 (3.23)

Here, nq(z) is the quantum density as taken from the solution of the Schrödinger

equation [83], but represents only the shape of the distribution, rather than

the actual values. In this case, the eigenvalue solver is only used in slices along

the device in the quantization direction, and applied to calculate nq(z). This

is done periodically to maintain self-consistency, and the result used to up-

date the correction in (3.23), but not in conjunction with the Poisson equation

which is solved using the MC electron distribution. Hence, the computational

efficiency of a classical simulation is maintained. As only the shape of the quan-

tum carrier density is used, the Fermi level is not required for this method and,
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by use of different carrier temperature in each slice, it can be extended beyond

the thermal equilibrium assumption [83].

Since this method uses the solution to the Schrödinger equation, good agree-

ment with Poisson-Schrödinger solution is obtained. This methodology has

been employed in both 2D [83, 171] and 3D MC simulations [172] (the cor-

rection remains 2D while transport is 3D), and captures size quantization

accurately, but is not suited to tunneling effects [149].

Each of the described methods has its own strengths and weaknesses, both

in terms of computational efficiency and accuracy. As a result no method

has proved itself definitive, and choice of correction is based on suitability to

purpose.

With reference to Table 3.1, a brief comparison between the different quantum

correction approaches in MC simulations can be made. The Effective Potential

and Schrödinger based versions have the benefits of being conveniently extend-

able to 3D simulations (at least in terms of transport), allowing for effects in

the width direction to be taken into account (for instance Coloumb or surface

roughness scattering) and neither of them are sensitive to the noise contained

in the MC statistics. However, both are unable to effectively capture tunneling,

and the Effective Potential approach overestimates the drop-off in electron con-

centration towards the oxide interface. The one significant difference between

the two approaches is that the Effective Potential method requires a fitting

parameter (a0, or more specifically m∗) to properly match the solution from

a quantum approach (such as Schrödinger-Poisson), whereas the Schrödinger

based correction does not, as it uses a physical value for the effective mass m∗

in its solution. An alternative implementation of the Effective Potential using

a Pearson IV distribution in place of the Gaussian has recently been proposed,

and circumvents the problems associated with the electron distribution drop

off through the introduction of additional fitting parameters. At the time of
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Effective Potential 3D, simple to implement, not sensitive to noise,

fails to capture tunneling, overestimates drop off

in the electron distribution towards the interface,

uses fitting parameter

Wigner Correction 2D, sensitive to noise, mimicks tunneling,

uses fitting parameter

ECBE 2D, less sensitive to noise, non-linear, mimicks

tunneling, uses fitting parameter

Schrödinger based Applicable to 3D, not sensitive to noise,

accurate for quantization, does not capture

tunneling, no fitting parameter

Table 3.1: Strengths and weaknesses of quantum correction methods in MC.

writing, this method is still in the validation stages, and has so far only been

implemented in 2D.

The Wigner and ECBE corrections both share many common aspects, as they

are variations on the same approach. Both have so far been extended only to

2D, both can mimic tunneling and both use a fitting parameter (m∗). The

difference is in their sensitivity to statistical noise present in MC simulations.

The Wigner corrections rely on the second derivative of the electron concen-

tration and require smoothing to maintain computational efficiency. ECBE

overcomes this problem via substitution, so is not directly dependent on the

electron concentration, but at the cost of increased non-linearity, inserting its

own problems in solution.
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3.4 Quantum Transport

It has been suggested that semiclassical approaches can retain validity down

to channel lengths of 10 nm [95], but, quantum effects, and in particular tun-

neling, will be playing an increasingly important role below this mark. To

capture accurately such effects, it is necessary to include coherent transport

self-consistency with the solution of Poisson’s equation. For studying variabil-

ity, such simulations have to be carried out of statistical ensembles of unique

devices. One such method is the NEGF formalism [173, 174, 175], which

directly captures quantization and tunneling.

The NEGF approach provides an open boundary solution to the Schrödinger

equation. In this approach the retarded Green’s Function, GR, based on the

relation shown in (3.24), is used to describe electron dynamics, by means of

giving the response at one point in the system based on the excitation at

another [176].

GR(E) = [EI −H − ΣR
1 − ΣR

2 − ΣR
S ]−1 (3.24)

Here, E is the energy, H is the Hamiltonian describing the system (for instance

the effective mass Hamiltonian) and ΣR is the self-energy used to describe the

connection to the contacts (ΣR
1 and ΣR

2 ) and the scattering mechanisms (ΣR
S ).

The electron density and current can be obtained from the diagonal of the

lesser Green’s function, G<, that identifies how many states are occupied, and

is defined by:

G<(E) = GR(E)Σ<(E)[GR(E)]+ (3.25)

Where Σ< is the inscattering function and [GR(E)]+ the transpose of GR(E).

The greater Green’s function, G>, identifies how many states are empty and
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Figure 3.6: Simulation flow for NEGF.

the local density of available states can be obtained from the diagonal of the

spectral function, A = G< +G>. The scattering functions are computed based

on the desired process and approximation used. With Σ> the outscattering

function, ΣR
S is defined by:

ΣR
S = Σ< + Σ> (3.26)

Fig 3.6 outlines the flow diagram of a typical NEGF simulation, self consis-

tently coupled to the solution of Poisson’s equation.
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The NEGF formalism includes quantum coherence effects that DD and MC

simulations cannot properly capture including tunneling [176], and has been

useful in calibrating and validating quantum corrected semiclassical models [110].

The greatest drawback comes from the computational cost associated with the

formalism as large matrix transformations are required. This drastically in-

creases as the complexity of the algorithms, and makes difficult the increase

of the dimensionality of the simulation domain. These factors makes complete

transport simulations difficult to achieve.

3.4.1 Scattering in NEGF

Ab initio elastic scattering from random discrete dopants, rough interfaces

and body thickness variations are naturally included in the NEGF simulations

through the associated Coulomb potential and boundary conditions at the

interface. Inelastic Phonon scattering processes can be included via the self

energy function [173]. However, the computational strain already imposed on

the system increases yet further depending on the methodology and level of

approximation employed.

A simple method of including scattering via the self energies is to use an ap-

proximation based on Büttiker probes [177]. These probes are placed at points

along the device and are used to perturb the energy and momentum of carriers

in a manner that allows for the cumulative effects of all scattering effects to

be captured [178, 179]. Thus, scattering is included without significant addi-

tional computational costs as each probe is effectively treated as an additional

contact with current kept at zero [173] with electrons removed and then re-

injected with altered energy and momentum. This method, however, uses a

significant level of simplification and approximation.

The rigorous inclusion of Phonon scattering, for example, via the self-consistent

Born approximation [180, 181], leads to substantial computational costs, as



3. Simulation Methodology 53

large matrix inversions are required. Here, Σ< and G< for a given energy must

be calculated self-consistently [173, 176], the nature of the relationship between

the two described by the coupling constant D. This can be done in the case

of elastic and inelastic scattering as shown in (3.27) and (3.28) respectively.

Σ<(E) = DG<(E) (3.27)

Σ<(E) = DabG
<(E − ~ω) +DemG

<(E + ~ω) (3.28)

In (3.28), the two terms on the right hand side deal with the absorption and

emission of a Phonon respectively. Therefore, to prevent the computational

costs becoming excessive, either the dimensions of the simulation or the set of

scattering mechanisms considered are restricted, making it difficult to obtain

a full transport picture. Hence a lot of work carried out using NEGF simula-

tions is focused on ballistic transport in MOSFETs where scattering is not an

issue [90], and is restricted to 1D [182] or 2D [175] simulation domains.

Ab initio methods have been implemented to study the impact of unintentional

dopants and interface roughness in UTB DG MOSFETs.

The use of a NEGF simulation method restricted only to 2D leads to difficulties

in capturing scattering from stray impurities. In this case, current flow in

the width direction is not considered and the impact of individual charges is

overestimated [183]. Full scale 3D simulation is required to properly capture

the effect [141].

Scattering from interface roughness induced body thickness fluctuations, as de-

scribed in the previous chapter, has been studied using 1D [184] and 2D [185,

186] NEGF simulators, both self-consistently coupled to Poisson’s equation.

In the 1D case, a DG device with a nominal value of tSi = 3 nm was sim-

ulated, and a significant degradation in Ion due to body thickness variations
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Figure 3.7: Hierarchy of simulation methodologys.

demonstrated. In the 2D study, a DG MOSFET was simulated, with tSi = 2

nm, and the impact of the varying thicknesses on current flow has been suc-

cessfully captured. However, in both cases, the restriction in dimensionality

leads to a failure in realistically capturing the impact of interface roughness

patterns, which are two dimensional in nature. While the 2D simulations cap-

ture the confinement scattering, they cannot describe the current percolation

in the width direction. This study does highlight the usefulness of the NEGF

formalism in capturing current variability due to the unique body thickness

pattern in UTB nano CMOS transistors.

For more realistic simulations of the above effects it is necessary to extend the

simulation domain to three dimensions but, the computational strain associ-

ated with NEGF simulations becomes prohibitive. As a result, implementation

of the above ab initio scattering methods into 3D has so far been restricted to

the simulation of a 2 × 2 × 6 nm nanowire [187].
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3.5 Summary

Fig. 3.7 highlights the trade-off between computational efficiency and physical

accuracy in the choice of simulation methodology.

As the focus of this research is the impact of interface roughness and the

corresponding body thickness variation induced scattering on transport and

current variability in UTB MOSFETs, it is useful to compare and contrast the

suitability of the simulation methods described in this chapter to this purpose.

DD is efficient and stable simulation approach, and can include quantum effects

in a simple but effective manner, leading to a useful simulation tool. However,

it cannot capture non-equlibrium effects in small devices and has difficulties in

capturing the transport variability associated with the difference in the body

thickness pattern from device to device. The latter limits its usefulness in this

study.

NEGF based simulations offer accurate description of quantum transport in a

manner not available from the other two simulation methods. It can handle in

an ab initio manner the scattering introduced by the body thickness variations.

However, to accurately capture the impact of this mechanism, 3D simulations

are necessary, which are still computationally prohibitive in NEGF simulations

of devices of relevant CMOS size. Their use in statistical simulations, central

to our research, is out of the question. The best hope is that NEGF simulations

can provide a basis for calibration and validation of the DD and MC results.

MC simulations capture non-equilibrium effects, can include quantum correc-

tions while maintaining computational efficiency and accuracy and can handle

ab initio scattering in statistical simulations of variability. In quantum cor-

rected MC, the quantum transport is treated phenomenologically, but scatter-

ing is treated in detail.



3. Simulation Methodology 56

The selection of simulation technique is based on the importance of the inves-

tigated phenomena and the trade off between the accuracy and the efficiency

by which this phenomena is represented in each one of the simulation tech-

niques. While all the techniques considered in this section offer advantages and

disadvantages in terms of both the effects captured and the computational ef-

ficiency, it was decided that it is most appropriate to use a MC technique in

this study, as it offers the best trade off in describing the body thickness fluc-

tuations related variability in nanometer scale UTB DG or SOI devices with

an acceptable level of computational efficiency.



Chapter 4

Simulator Development

4.1 Introduction

In order to study the impact of scattering from interface roughness induced

body thickness fluctuations on the variability of ultra thin body silicon on insu-

lator (UTB SOI) MOSFETs, an appropriate 3D simulator capable of dealing

with non-equilibrium transport and transport variations from device to de-

vice had to be developed. It was necessary to use a 3D simulation domain in

order to correctly account for percolation across the width of a device, that

would be neglected in a 2D simulation. The computational efficiency becomes

a very important factor in such 3D simulations, therefore a 3D Monte Carlo

(MC) simulator has been developed which includes scattering from the inter-

face roughness and body thickness variations both captured via the real space

trajectories of the MC particles.

In this chapter, the development of this simulator is detailed. Firstly, the

Glasgow ‘Atomistic’ Drift-Diffusion (DD) Simulator, which has been used in

conjunction with the MC simulator, including the technique for generation of

the interface roughness pattern, is described. The emphasis is on the modifica-
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tions made to this simulator through the course of this project. This is followed

by the description of the MC module starting with a simple, ‘frozen field’ ap-

proximation, and moving on to self-consistency with Poisson’s equation and

the inclusion of quantum corrections. Additional considerations concerning

the inclusion of interface roughness and the proper implementation of contacts

are also described at the end of the chapter, along with a discussion of the

selection of optimal time steps and mesh spacings for MC simulations.

4.2 Drift Diffusion

The Glasgow ‘Atomistic’ 3D DD simulator [188] has been developed and main-

tained over several years by different members of the Device Modelling Group.

In this project, the focus was on using it to provide input for the MC simula-

tions. Additionally it was used as a benchmark for comparison and validation

of results obtained from the MC module. Alterations were made to the existing

‘Atomistic’ code to allow extraction of the necessary data from simulations for

the purposes of this project. This section gives a brief overview of the operation

of the simulator, focusing on elements important to the MC module.

The ‘Atomistic’ simulator allows for a variety of sources of variability to be

studied, such as line edge roughness (LER), random discrete ionized dopants

and interface roughness [92, 93] in a variety of structures ranging from con-

ventional MOSFET architectures, to SOI [115] and double gate (DG) [189]

and nanowires. It is most suited to sub threshold regimes where the current

is dominated by the device electrostatic and is less affected by transport vari-

ations. As a result, the development of a 3D MC simulation methodology

is essential to enable the study of non-equilibrium transport and on-current

(Ion) variations resulting from scattering sources, in this case the effects of non

uniform oxide and silicon layers.
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The DD simulator follows the basic methodology described in the preceding

chapter. All equations are discretised using a finite box method onto a mesh

covering the solution domain which is based on dimensions supplied by an

input file. A uniform mesh has been employed in simulations used to initialise

the MC module for reasons which will be detailed in the course of the this

chapter. A Red-Black Successive Over-Relaxation (SOR) scheme is used for

the solution of Poisson’s equation, and a Bi-Conjugate Gradient Stabilized (Bi-

CGSTAB) solver is used for the continuity equations. Quantum corrections

are implemented via the Density Gradient formalism:

φn − ψ +
kBT

q
ln

(
n

ni

)
= 2bn

(
∇2
√
n√
n

)
(4.1)

bn =
~2

12qm∗ (4.2)

Where φn is the quasi-Fermi level, ψ the potential, kB is Boltzmann’s con-

stant, T the temperature and q the electron charge. A discretization and

solution scheme similar to the one used for Poisson’s equation is employed.

This is solved self-consistently with Poisson’s equation and the current conti-

nuity equation iteratively in order to find the quantum corrected charge den-

sity. With this, a new quantum corrected potential can be evaluated and the

procedure iterated until the current converges.

At the Si/SiO2 interfaces, the electron density goes towards zero due to a large

potential barrier being present [51]. Initially, this was taken into account in

the solver by fixing the interface concentration to an arbitrarily small value, as-

suming an effectively infinite barrier. A better solution was proposed in [190],

taking into account that the barrier is actually finite and that there is pene-

tration of the electrons wavefunction into the oxide. Therefore, the boundary
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∆ [nm] Lc [nm] Auto-Correlation Function

Goodnick et al. [191] 0.48 1.3 Exponential

Goodnick et al. [191] 0.35 1.5 Gaussian

Yoshinobu et al. [192] 0.3 15 Exponential

Yamakawa et al. [139] 0.178 2.2 Exponential

Vasileska et al. [193] 0.3 1.5 Exponential

Gamiz et al. [74] 0.5 1.5 Exponential

Winstead et al. [83] 0.178 2.2 Exponential

Esseni et al. [77, 194] 0.51 1.0 Gaussian

Table 4.1: RMS height, correlation length and auto-correlation used (or shown

to be preferable) in both simulation and experimental studies of semiconduc-

tor/oxide interface roughness. In the case of Goodnick, both auto-correlation

functions were employed without a strong preference being stated.

conditions at the interface between oxide and semiconductor has been modified

to:

n · bn∇
√
n = −box

√
n

xp

(4.3)

Where box = ~2/(12qm∗
ox) and xp = ~/(

√
2m∗

oxΦB) is the characteristic pen-

etration depth into the oxide [190] with ΦB the silicon to insulator potential

barrier. This makes the carrier density at the interface an unknown variable

allowing for a smooth transition of the carrier density towards the interface

that is representative of the electron penetration into the oxide, rather than the

sudden discontinuity associated with the assumption of zero electron charge

at the interface.
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Figure 4.1: Generated roughness pattern (above) and the corresponding digi-

tised version (below) from [115]

4.2.1 Interface Roughness Generation

The DD simulator has a subroutine dealing with the generation of rough sur-

faces at the semiconductor/oxide interface. The roughness is described statis-

tically as a fluctuation in oxide thickness, ∆(r), with a RMS amplitude, ∆, and

correlation length, Lc, based on the methodology described in [92, 115, 195].

Values of ∆ = 0.3 nm and Lc = 1.8 nm were used in the simulations carried

out in this project (these values are representative of a range of experimentally

measured values [139, 192, 195]), along with an exponential auto-correlation

function (4.4) which has been shown to be more appropriate than a Gaus-

sian equivalent for representing surface roughness scattering in MC simula-

tions [139, 191, 192].

ACF (r) = ∆2 exp

(
− r

Lc

)
(4.4)
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Figure 4.2: Impact of the inclusion of interface roughness on electron dis-

tribution in a 10 × 10 nm double gate device, modelled using DD, showing

confinement of carriers along the channel. The source (S), drain (D) and bot-

tom gate (G) are shown, with the top gate removed to show impact of the

roughness pattern at the top of the channel.

The values of ∆ and Lc are confirmed by a comparison of simulation and

experimental studies of the interface patterns shown in Table 4.1. A power

spectrum is obtained via a 2D Fourier transform of the correlation function.

The interface can then be reconstructed using an N×N matrix, the magnitude

of each element following the power spectrum with the phase chosen at random.

The roughness produced is digitized to 0.15 nm steps above and below the

position of the smooth interface to match the spacing of a silicon monolayer

(see Fig. 4.1). In the vertical direction (top gate to bottom gate), the simulator

mesh spacing is then chosen to match the 0.15 nm steps and a uniform mesh

is used to avoid self-force in self-consistent MC simulations [196].

The variations in the thickness of the oxide, and consequently the thickness

of the silicon body, have an effect on the electrostatics and the quantum con-

finement in the device, shifting accordingly the threshold voltage which is
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well captured in the Density Gradient corrected DD simulations. Addition-

ally, the non-uniformity of the silicon thickness along the channel produces

an additional scattering potential due to variations in carrier confinement (see

Fig. 4.2) as described in a previous chapter. This source of scattering is con-

sidered a significant source of transport degradation in UTB SOI and DG

MOSFETs at the limits of scaling. However, the 3D DD simulator, whilst well

able to predictively describe electrostatic effects, captures transport through

a parameterized electron mobility model with little predictive power at these

scales. Hence a 3D MC simulator is necessary in order to analyse the transport

degradation and current variability due to increased scattering from quantum

confinement variations.

4.3 Monte Carlo

The main focus of this project is the development of a 3D MC simulator, start-

ing with a classical, ‘frozen field’ approximation, then adding self-consistency

and quantum corrections. An ab initio implementation of scattering associ-

ated with interface roughness and the resulting body thickness variations in

UTB DG and SOI MOSFETs was also developed in order to study current

variability that would not be fully taken into account using DD simulations

alone. Other relevant scattering mechanisms for phonon (acoustic and optical)

and ionized impurity scattering are included via scattering rates calculated as

described in the Chapter 3.

In the MC module, the charge is assigned to the mesh by virtue of the ‘Cloud

In Cell’ scheme [144], where the charge density is interpolated to the eight grid

points of the cell a carrier is currently in, based on its position relative to each

corner. The equations of motion are integrated via the Velocity Verlet algo-

rithm [197] and a spherical, non-parabolic band approximation is used [120].
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4.3.1 ‘Frozen Field’ Approximation

In its initial form, the MC simulator employed a ‘frozen field’ approxima-

tion [124, 125, 126]. The field was never updated to reflect the constantly

changing carrier distribution, so there was no link between the dynamics of

the carriers and the electric field. The benefit of the ‘frozen field’ approxima-

tion comes in its speed, with simulations taking as little as a matter of hours to

complete. Therefore, statistical studies based on large ensembles of uniquely

different devices may be easily and quickly carried out.

A ‘frozen field’ simulation consists of the following procedure. First, a DD

simulation is run and the solution passed to the MC module in order to ini-

tialise the particles, and to calculate the driving force applied to them. The

description of the mesh spacing in each direction, along with details of posi-

tions of specific architectural detail (start and end of gate and oxide regions for

instance), applied bias (VG, VD), the electron, hole, donor and acceptor con-

centrations, the classical and (if necessary) quantum potentials are all passed

from the DD to the MC simulator. While the majority of these parameters

are required for MC simulator to function, some (generally the details concern-

ing the structure and bias) are desirable only for record keeping, as they are

written to a file at the beginning of the simulation. Additionally, as described

previously, the interface roughness patterns are generated in the DD simula-

tor, then applied in the MC module, the methodology for which is described

later in this chapter. The MC simulator is capable of handling non-uniformity

in the mesh spacing which, while acceptable for ‘frozen field’ solutions, can

introduce self-force issues [196] in self-consistent simulations.

To begin with, the two simulators were completely separate entities, the DD

simulator writing out a file with the relevant information that the MC module

then reads in. To make the process more flexible and self contained, the two

simulators were coupled via a very simple interface subroutine that is called

once the DD simulation was completed, based on a flag within the input file
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which is set to indicate that a MC simulation should be run using the output

from the DD simulation.

This method allows for a single executable to be compiled and run, without

the need for two separate simulations to be carried out independently. This

was beneficial for simulating a variety of devices that were different in terms

of, for instance, structure or bias. For testing purposes it was frequently useful

to simulate identical devices, but using different MC parameters so the pre-

vious file based version was more applicable. Currently, the two sections still

maintain individual input files, the DD one describing the mesh, applied bias

and doping, the MC file containing details concerning time steps and number

of particles. For further ease of use, these files could be combined into one

single input file.

Further modifications concerned the languages the codes were written in. The

DD code, having been developed over a longer period of time by various mem-

bers of the Device Modelling Group, is coded in Fortran 77, while the MC

module is in Fortran 90. This led to difficulties bringing them together. Con-

verting the DD simulator to Fortran 90 would allow for arrays and solvers to

be shared, and for memory to be dynamically allocated, lowering the overall

memory footprint of the code and better using computing resources. This task

remained outwith the scope of this project, which was to develop the MC part

of the simulation process.

The main drawback of the ‘frozen field’ approximation comes from the fact that

the method is limited to low field simulations, hence all simulations have to be

carried out at low drain bias (VD < 50 mV). This retains the validity of the

‘frozen field’ approximation by limiting the non-equilibrium effects, minimizing

the importance of the coupling of the field to the current, and thus allowing

comparison to DD simulations. Therefore, to capture a wider range of effects

up to higher drain bias, the field would have to be updated self-consistently

with the carrier distribution during the course of the simulations.
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Figure 4.3: Digitization of interface roughness patterns in MC. As shown, the

pattern is used to adjust the reflective boundaries and is applied consistent

with the mesh used. This is carried out across the x-y plane for the entire

depth of the device, running the length of the channel.

4.3.2 Interface Roughness Implementation

The implementation of an effective method to capture the scattering from

surface roughness and body thickness fluctuations is central to this work. Two

methods were developed to include the digitized interface roughness patterns

generated by the DD simulator in the MC module.

The first, rather crude, method involved writing an array from the subroutine

in the DD simulator that generated the pattern storing for each point in the

x-y plane, depending on the value for the roughness at that point, either -1,

0 or 1 indicating its position relative to a nominal interface (see Fig. 4.3).

Such an array for each interface is written by the DD simulator and then read

into the MC module (either from a file, or via the interface) and the reflective

boundaries at each semiconductor/oxide interface are altered accordingly. The

roughness pattern extends for the length of the channel in the x-direction (not

in the source or drain regions), and for the entire width of the device in the

y-direction.
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The second, more refined method uses an array created by the DD simula-

tor that describes the material at each node. By passing the array from the

DD to the MC module, the reflective boundaries could be altered in a more

elegant manner, but still achieving the same outcome. In this way it was no

longer necessary to explicitly state in the input file of the simulator that in-

terface roughness was to be included in both the DD and the MC simulators

as everything is defined at the start of the DD simulation, leaving less scope

for the possibility of inconsistency. Both implementations allowed for an ab

initio method of surface roughness scattering to be included via the real space

interactions with the varying oxide roughness patterns.

Previously, scattering from body thickness variation has been included in MC

simulations via a scattering rate [77], calculated to reproduce the specific mo-

bility dependence on silicon thickness due to this mechanism, as discussed in

Chapter 2. In this work, this mechanism is captured in an ab initio fashion via

the real space trajectories of the particles by inclusion of an effective quantum

scattering potential that is obtained from the silicon body thickness fluctua-

tions as also described in Chapter 2. This is achieved by calculating the driving

force acting on the particles by using a quantum corrected potential that takes

into account the necessary changes in confinement and resulting shift in the

ground state as the thickness of the channel varies. This makes the calculation

of additional scattering rates and resulting final states unnecessary, while still

taking into account the effects of this mechanism. The inclusion of quantum

corrections in MC is dealt with later in this chapter.

4.3.3 Self-Consistent Monte Carlo

At higher VD, the current and field are more strongly coupled and the potential

must be regularly updated to reflect changes in the carrier distribution. The

ability of MC simulations to capture non-equilibrium transport and the local

variations in electron velocity that DD cannot, leads to a difference in the
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resulting terminal currents between DD and MC. At low VD, as simulated using

the previous ‘frozen field’ approach, the non-equlibrium effects are limited,

and similar results are recovered from both DD and MC simulations, but an

increase in VD will lead to different values being observed between the two

simulation methodologies.

To implement self-consistency in MC [82, 127, 128], the classical potential,

ψc, has to be updated at the end of each time step based on the new carrier

distribution, nmc, using Poisson’s equation:

∇ · (ε∇ψc) = −q(ND − nmc + p−NA) (4.5)

Where ε is the permattivity for the particular medium and ND, NA and p

the donor, acceptor and hole concentrations respectively. To solve this, two

methods were considered, SOR [144] and Bi-CGSTAB [130]. Both were tested,

and gave different results in terms of speed of solution, though they produced

the same classical potential. Table 4.2 shows a comparison between them, in-

dicating a considerable speed up when the Bi-CGSTAB solver is used, which

is on average more than three times faster than SOR, and occupies a smaller

percentage of the simulation time. Putting this into perspective, for a MC

simulation of 200 000 times steps, using the Bi-CGSTAB solver the total sim-

ulation time would be less than four days, for the SOR solver it would be

almost two weeks.

Additionally, the length of time step employed between Poisson solutions (∆t)

should fit the relation ωp∆t < 0.2, where ωp is the plasma frequency given

by [198, 199]:

ωp =

√
nq2

εm∗ (4.6)
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Average Time per Solution Percentage of Total Time

SOR 5.41 secs 97%

Bi-CGSTAB 1.52 secs 90%

Table 4.2: Comparison of average time of solution for the linear Poisson so-

lution using Bi-CGSTAB and SOR for a tolerance of 10−6. Also shown is

the average percentage of the total simulation time spent solving Poisson’s

equation.

With m∗ being the effective mass of the carrier. This maintains numerical

stability as it prevents the generation of artificial plasma oscillations, which

can be especially problematic in highly doped regions, such as the contact

source and drain regions [198]. Equation 4.6 gives a time step of around 0.1 fs

for n = 2× 1020 cm−3, which is typical for the source and drain regions of the

devices simulated in this study. However, in the case of quantum corrected

simulations, where the field towards the interfaces is higher than in classical

simulations, an even smaller time step was required, usually around 0.01 fs,

to avoid undesirable carrier heating. An even shorter time step (0.005 fs) was

neceesary when body thickness fluctuations were introduced, due to localised

regions where the potential varies rapidly, leading to higher fields and the

possibility of even more artificial carrier heating. This was also a necessary

consideration in ‘frozen field’ simulations. The unfortunate consequence of

shortening the time step, is an increase in the number of total simulation time

steps required for a complete simulation.

4.3.4 Quantum Corrections

As mentioned previously, inclusion of quantum corrections in the MC simu-

lator is vital to this work. Methods to achieve this, based on the Density

Gradient formalism, were introduced in the MC simulator in a succession of



4. Simulator Development 70

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Z-Direction [nm]

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Po
te

nt
ia

l [
V

]

Classical Potential - Drift Diffusion
Classical Potential - Monte Carlo
Quantum Potential - Drift Diffusion
Quantum Potential - Monte Carlo
Applied Correction

Figure 4.4: Classical and quantum potential along with the applied correction

in the vertical direction (top to bottom gate) of a DG MOSFET (Device 2 in

Table 5.1 in Chapter 5 with tSi = 2.6 nm).

more complex and effective revisions that continually broadened the scope of

simulations.

The first implementation of the Density Gradient quantum corrections was

in the ‘frozen field’ approach, where the quantum corrected potential taken

from a DD simulation with Density Gradient corrections is used to calculate

the driving force applied to the particles. Additionally, the resulting quantum

distribution of particles from the DD simulation is used to initialise the carriers

at the beginning of the MC simulation. The field is not updated during the

course of the simulation, so there is no self-consistent coupling of the MC carrier

distribution to either the classical potential nor the quantum corrections.

The second update involves the use of a frozen quantum correction applied to

a classically self consistent MC simulator. The self consistency is implemented

as described previously, solving Poisson’s equation at each time step, and again

the quantum correction, ψqc, is calculated from an initial DD simulation by
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taking the difference between the quantum corrected potential, ψq, and the

corresponding classical potential at each point:

ψqc = ψq − ψc (4.7)

This is saved, and after each solution to Poisson’s equation (4.5), the correction

is applied to the resulting classical potential:

ψq = ψc + ψqc (4.8)

This procedure is illustrated in Fig. 4.4, showing the relationship between

the classical and quantum potentials along with the applied correction in the

vertical direction. This quantum corrected potential is then used to update

the applied electrical field:

Fq = −∇ψq (4.9)

Both these methods have the drawback of being restricted to low drain bias

simulations, as they both have non-self-consistent elements to them. In the

case of the ‘frozen field’ version, there is no connection between the current

and the field. In the classically self-consistent version with a frozen quan-

tum correction, the field is recalculated based on carrier dynamics, which does

allow for higher drain bias to be considered, but the quantum correction is

never updated to reflect changes in the system. As can be seen from (4.1), the

quantum corrected charge density from Density Gradient is dependent on the

quasi-Fermi level and classical potential from the solution of Poisson’s equa-

tion, hence if these deviate significantly from their initial values (for instance

due to non-equilibrium transport), there would be a resulting change in the

quantum density, hence the quantum correction and electric field would be

inconsistent with this new carrier distribution.
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Ultimately, a code which updates the Density Gradient solution periodically

would increase the range of validity of the MC simulator. For instance, this

opens up the possibility of time dependent device simulations. To this end,

a Density Gradient solver was introduced directly into the MC code. The

implementation presented here is more in the spirit of the Schrödinger based

corrections presented in [83], than the Wigner based corrections of [155].

The simulation is initialised as before, with the quantum correction, quantum

potential and corrected field calculated using (4.7), (4.8) and (4.9) respectively

and the simulation progresses initially as the classically self consistent version

with a frozen correction. After the initial transient period, the values for the

classical and quantum potential and the electron density are time averaged in

order to smooth the numerical noise present in the MC simulator. After such

averaging over a selected period of time, 〈ψc〉t and 〈nmc〉t are used to update

the quasi-Fermi level, φn (4.10), which itself is also time averaged.

φn = 〈ψq〉t −
kBT

q
ln

(
〈nmc〉t
ni

)
(4.10)

Then, periodically, the quantum density, nq, is obtained using (4.11), based on

the values of 〈φn〉t and 〈ψc〉t.

〈φn〉t − 〈ψc〉t +
kBT

q
ln

(
nq

ni

)
= 2bn

(∇2√nq
√
nq

)
(4.11)

Here, bn is defined as before (4.2). With the new nq, using (4.12) the new value

for ψqc is calculated, and this correction is used until the next update of the

Density Gradient solution.

ψqc = 〈φn〉t +
kBT

q
ln

(
nq

ni

)
− 〈ψc〉t (4.12)
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Figure 4.5: Flowchart of MC simulation with self consistent Density Gradient

quantum corrections.

The solver uses a Red-Black SOR scheme, and the discretization is based on

the finite box method, as employed for Poisson’s equation. A flowchart for

a MC simulation using this methodology for quantum correction is shown in

Fig. 4.5, indicating the additional computational steps required to include the

necessary calculations and time averaging. Fig. 4.6 shows how the simulation

evolves starting with an initial transient period, followed by time averaging,

then the periodic update of the quantum correction.

The frequency of solution of the Density Gradient equation in order to recalcu-

late the quantum correction is still under investigation. In [50], the update is

carried out every 100 fs using a Schrödinger based quantum correction. That
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Figure 4.6: Timeline of fully self consistent MC simulation with Density Gra-

dient quantum corrections, showing the order that processes begin within the

simulation.

methodology is similar in spirit to that developed in this work, so would seem

a reasonable place to start, and has thus far proved effective. Fig. 4.7 shows a

comparison between the carrier concentration and quantum corrected potential

from DD and the MC simulator using this method for quantum corrections.

A good agreement is shown between the two methodologies at low VD vali-

dating the use of this method of quantum correction in the 3D MC simulator

developed as part of this work. Further testing may lead to refinement of

the frequency that the Density Gradient equation is solved, perhaps based on

applied bias or device dimensions.

Time averaging is conducted in the period between solutions, then reset imme-

diately after the correction has been updated. Therefore, the new correction

reflects the changes within the system in the intervening period. Another area

of consideration is the frequency that values are gathered for time averaging,

perhaps every time step (an interval of around 0.01 fs) or every 10 time steps

(an interval of around 0.1 fs). Again, this may be dependent on the nature of

the simulation, in terms of the applied bias, the size and architecture of the
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Figure 4.7: Quantum corrected potential and electron concentration in a DG

MOSFET (Device 2 in Table 5.1 in Chapter 5 with tSi = 3.3 nm) at VD =

0.01 V and VG = 0.8 V. Results from DD and MC simulations, both using

self-consistent Density Gradient quantum corrections are presented, showing

a good agreement between the two. Slight asymmetry due to noise in MC

statistics.

device and the inclusion of a non-uniform silicon channel thickness. Therefore,

further investigation is required into this matter. A further assumption made

in the implementation of the Density Gradient approach is that the carriers

are in thermal equilibrium with the lattice. This is a reasonable assumption

only at low drain bias, but, as the bias is increased, and carriers gain energy

in excess of the lattice temperature, it becomes invalid. It has been suggested

in [83] that this could be problematic in DG devices, and this is also an issue

that may need addressed in further development of this methodology.

The simulator was tested using a single processor on an AMD Opteron 2.2

GHz compute cluster, and compiled using a 64-bit Intel compiler. Table 4.3

compares the average CPU time to compute a single time step for each of the

quantum corrected MC simulation methodologies described above. It is clear
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Average Time Step Duration

‘Frozen Field’ 0.180 secs

Classically Self Consistent 2.289 secs

Fully Self Consistent 2.334 secs

Table 4.3: Comparison of the average CPU time to carry out a time step for

each method of simulation for a single test device (Device 2 in Table 5.1 in

Chapter 5 with tSi = 3.3 nm at VD = 0.01 V and VG = 0.8 V). The Poisson

solver in the self consistent versions was Bi-CGSTAB, in each case there was

an ensemble of 80 000 particles, simulated with a time step of 1× 10−17s. The

tolerance of the solution to Poisson’s equation was 1× 10−6 where required.

that the addition of a Poisson solver adds significant compute time to the basic

simulation engine (propagation, scattering and gathering of statistics) used in

the ‘frozen field’ simulations. Using the same comparison of a 200 000 time step

simulation, a ‘frozen field’ simulation would take around 10 hours, compared to

the 3-4 days required for the self consistent equivalent. However, the addition

of the Density Gradient solver does not lead to a further significant increase,

making it an efficient method for self-consistent inclusion of quantum effects

in MC.

4.3.5 Ohmic Contacts

The implementation of the self-consistent solution of the Density Gradient

formalism in the MC simulator identified a problem concerning the injec-

tion/removal of electrons at ohmic contacts. The basic operation involves

the removal of electrons that cross the boundaries at the contacts, and the

injection of carriers at the contacts to match the initial fixed charge distri-

bution obtained from the DD simulation. A k-vector is generated using a

hemi-Maxwellian distribution in the direction normal to the contact, and a
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Figure 4.8: Electron concentration profile in a DG MOSFET (Device 2 in

Table 5.1 in Chapter 5 with tSi = 3.3 nm), running from source to drain,

left to right. Shows depletion in source and drain regions that occurs when

self-consistently updating the solution to the Density Gradient formalism.

Gaussian distribution in the other two directions. However, the vertical quan-

tum distribution of particles across the channel thickness (see Fig.4.7) leads

to inconsistencies. Ultimately, there was insufficient injection of carriers, es-

pecially towards the semiconductor/oxide interfaces, leading to a depletion of

carriers in the source and drain regions of the device (see Fig. 4.8). This in

turn leads to inconsistencies in the calculation of the quasi-Fermi level, and

to a lesser extent, to the solution of Poisson’s equation, thus affecting the so-

lution of the Density Gradient equation. The self-consistent coupling of all

these elements meant that the problem continually worsened as the simulation

progressed.

Methods such as interpolating the carrier distribution towards the contacts or

treating the contacts classically (with no quantum effects taken into account, as

in [50]) were tried, but proved unsuccessful. Therefore reservoir contacts [200,

201] were implemented similar to the methodology outlined in [202].
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Figure 4.9: Position and orientation of ohmic contacts for a MC simulation

of a DG MOSFET (arbitrary dimensions - details of the actual dimensions

used in this research in Table 5.1 in Chapter 5). Clockwise from top left: the

initial configuration; the first implementation of reservoir contacts; the second

implementation with contacts rotated 90o.

Fig. 4.9 shows the three different placements of reservoir contacts tried in the

course of this project. At the top left is the initial contact placement, covering

an entire plane at the edge of the source and drain regions. This orientation was

effective for classical simulations and did not cause significant problems for the

quantum corrected ‘frozen field’ or self-consistent simulations, but as discussed

above, become problematic when the quantum correction was updated in the

course of the simulation.

Top right is the first implementation of reservoir contacts. The doping in these

regions is an order of magnitude greater than in the source and drain regions to

produce a concentration gradient and thus a diffusion current into the device.

This entire structure was once again first solved in DD and, as can be seen

from Fig. 4.10, there is only a negligible impact on the drain current due to
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Figure 4.10: Comparison of ID − VG characteristics for DD simulations of

DG devices (dimensions without reservoirs as previously considered) with and

without reservoir contacts. Three different versions of reservoir contacts were

tested. The first two, with contacts aligned along the edge of the device (x-

plane), first with higher doping in the reservoir regions, then again with the

same doping in the reservoirs as in the source and drain. Finally, contacts

orientated on the z-plane at the top and bottom of the device are shown, with

higher doping in the reservoir regions.

a slight increase in series resistance. Poisson’s equation was not solved in the

reservoir regions, the applied field, Fcnt, calculated as in [202]:

Fcnt = K
[ ∫ tSi

0

N(xctrl, y)dy −
∫ tSi

0

n(xctrl, y)dy
]

(4.13)

Here, K is a factor (dimensionless constant) used to calibrate the field to

an appropriate value, and can be obtained via trial and error. Typically a

value of 10−13 gave the most robust results. While this method showed some

improvements, making the depletion less severe in the source and drain, it was

still present, and ultimately led to the same problems encountered before.
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Figure 4.11: The electron concentration at the source contact in the vertical

direction, as simulated using old and new boundary conditions in DD. As can

be seen, with the new conditions, the typical shape associated with a quantum

corrected simulation is recovered, as compared with the fixed value used in

previous simulations.

The second version of the reservoir contact fix involved moving them from

the x-plane, through ninety degrees onto the z-plane, on both the top and

bottom of the device (see bottom diagram, Fig. 4.9). With this method, the

injection was no longer influenced by the vertical quantum distribution of

particles. Again, Fig. 4.10 shows this makes no significant difference to the

characteristics of the device. A further difference of this method was that both

Poisson and Density Gradient were solved over the entire device, including the

reservoir regions. The large drawback being the increased size of the simulation

domain, which now included two, significantly large reservoir regions on top

of the simulated device, increasing the size of the simulated device by around

20%. Taking into account the restraints placed on the mesh spacing this led

to a large grid, which, in terms of computational efficiency, is unacceptable.

However, as this was being implemented and tested a more effective method

was found.
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Figure 4.12: ID − VG for a single device using both methods of boundary

condition, showing there is no difference in device operation.

Ultimately, the most effective way to circumvent the contact problem was

to alter the boundary conditions within the DD simulator used to initialise

the MC simulator as electrons are injected into the system at the contacts

consistent with the electron distribution coming from the DD solution.

Originally, Dirichlet boundary conditions were applied for the solution of Pois-

son, current continuity and Density Gradient equations. For Poisson’s equa-

tion, the potential at the source and drain contacts and both gates was fixed

consistent with the appropriate applied bias, and the carrier concentrations

were fixed to a constant value for the current continuity equation. As a result,

the carrier distribution used to inject electrons in the MC module was constant

across the entire plane, inconsistent with the quantum corrected distribution

shown in Fig. 4.7, leading to the problems described above.

To remedy this, the boundary conditions were altered to allow the potential

and carrier concentration to ‘float’ at the source and drain contact (the con-

ditions applied to the gates were unchanged), with the quasi-Fermi level fixed
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Figure 4.13: Time averaged electron concentration in the x-direction with

alternate contact conditions, showing they are now well maintained, and there

is no depletion present in the source and drain regions. In this instance, the

time averaged electron concentration is presented in place of the more noisy,

instantaneous profile.

(Neumann boundary conditions) [203]. This allowed for the electron distribu-

tion in the contacts to become consistent with the shape of the distribution

in the rest of the device, and thus sufficient electrons were injected in the MC

module. A comparison between the electron distribution using old and new

boundary conditions at the source contact is shown in Fig 4.11, and it can

be seen that the new conditions properly capture the shape associated with

a quantum distribution in a UTB DG MOSFET. Fig. 4.12 demonstrates that

this change in boundary conditions had no influence on the ID − VG charac-

teristics of the device. Fig. 4.13 shows that with the new contact conditions

the problems with depletion in MC simulations are avoided and the contacts

are well maintained.
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Figure 4.14: Various methods for dealing with boundary conditions associated

with Density Gradient. On the left is the initial version, with concentration,

and thus potential, fixed at either interface. To the right is the first fix em-

ployed in MC of interpolating the potential towards the interfaces and the

gradient fix applied within the DD simulator, both of which provided an iden-

tical result. Shown here is the gradient fix.

4.3.6 Additional Considerations

The impact of the Density Gradient boundary conditions at the Si/SiO2 in-

terface was significant in the MC module. The initial method used in the DD

code of fixing the concentration to an arbitrary low value led to discontinuity in

the potential and thus a large field. This was fixed in MC by interpolating the

potential towards the interfaces, thus negating the possibility of undesirable

discontinuities and providing a satisfactorily smooth field. The implementa-

tion of new boundary conditions in DD, as discussed previously, meant that

this was no longer necessary as the potential no longer contained undesirable

discontinuities. These three methods are compared in Fig. 4.14.

As already mentioned in this chapter, there are limitations to the mesh spacings

used in the MC simulator. It is desirable that the cell spacing in any direction
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should not vastly exceed the Debye length (4.14) for the most heavily doped

region in the simulation domain.

λD =

√
εkBT

q2n
(4.14)

It has been shown [199, 204], that using a mesh spacing of no more than 2×λD

maintains stability within the simulation, and straying above that can lead to

unphysical increases in carrier energy. To avoid self forces, a uniform mesh

is employed, hence, in this work the mesh spacing for the x- and y-directions

are restricted to 0.5 nm based on this parameter, with the spacing in the z-

direction set to 0.15 nm to match the digitized steps of the interface roughness

patterns, as described before.

4.3.7 Summary

In this chapter, the development of a 3D fully self-consistent MC simulator

capable of capturing the effects of scattering resulting from interface roughness

and body thickness variations in UTB MOSFETs was described.

The DD simulator used to provide initialization and comparison was intro-

duced, with the most relevant sections concerning Density Gradient quantum

corrections and interface roughness generation detailed more closely.

After that, the development of the 3D MC simulator was described. Initially,

a ‘frozen field’ approximation was used, allowing for fast statistical simulations

of large ensembles of devices to be carried out. The simulations, however, were

limited to low VD simulations due to lack of coupling between carrier dynamics

and resulting potential distribution and electric field. The implementation of

interface roughness in the MC module was detailed here as well.
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To extend the validity of the simulator, a self-consistent approach was devel-

oped, coupling the electron distribution to the solution of Poisson’s equation

to update the classical potential coherently with the carrier propagation and

the selection of an efficient BiCGSTAB solver was also justified.

As the scattering potential associated with body thickness fluctuations is re-

lated to the accompanying shift in the ground state along the channel, a

method to include quantum corrections based on the Density Gradient for-

malism was also described. A frozen correction method was developed first,

which was added to the self-consistently updated classical potential at each

time step.

To extend this methodology further and allow for high VD simulations to be

carried out, a self-consistent quantum correction technique was developed via

the solution of the Density Gradient equation in the MC simulator. The use

of time averaging offered a compensation for the inherently noisy statistics

produced by this simulation method. This periodic updating of the quantum

correction term proved efficient, adding negligible simulation time overheads

compared to that spent on classically self-consistent simulations, while pro-

ducing accurate results.

Problems associated with the Ohmic contacts were discussed, and an eventual

solution was found by altering the boundary conditions from Dirichlet to Neu-

mann. Criteria concerning choice of mesh spacing and time step were laid out

as well.

This simulator has been used to study the impact of non-uniform silicon body

thicknesses in UTB SOI and DG MOSFETs. Results and discussion of these

simulations are presented in the following chapter.



Chapter 5

Results And Discussion

5.1 Introduction

In this chapter results obtained using the Monte Carlo (MC) simulator de-

veloped in this project and described in Chapter 4 are presented. The main

focus of these simulations was the investigation of the effect of interface rough-

ness induced body thickness variations (BTV) on transport and variability in

nanometre scale ultra thin body (UTB) MOSFETs.

As discussed in Chapter 3, previous simulation studies of BTV effects in

UTB MOSFETs have been carried using the Drift-Diffusion (DD) approxi-

mation [115] which fails to account for non-equilibrium transport effects and

device specific transport variations, or using Non-Equilibrium Green’s Func-

tion (NEGF) [184, 185] which was restricted to 2D simulations of small devices

due to the large computational effort required and does not include phonon

scattering. Here the results from full 3D MC simulations (both ‘frozen field’

and self consistent) employing quantum corrections based on the Density Gra-

dient formalism are presented. Firstly, the impact of BTV on mobility in long

channel devices is demonstrated, showing that the 3D MC simulations can
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Device 1 2 3 4

Architecture DG DG DG SOI

Top Oxide (tox1) [nm] 1.05 1.05 1.05 0.67

Bottom Oxide (tox2) [nm] 1.05 1.05 1.05 20

Silicon Thickness (tSi) [nm] varied 2.4 2.1 2.5

Source/Drain Length (LSD) [nm] 10 10 10 10

Channel Length (Lchan) [nm] 50 20 20 10

Channel Doping [cm−3] 1014 1014 1014 1014

Source/Drain Doping [cm−3] 2× 1020 2× 1020 2× 1020 2× 1020

Table 5.1: The dimensions of the devices simulated in this study. These devices

are illustrated in the Fig. 5.1.

capture in ab initio fashion the impact of the quantum confinement variation

scattering on mobility. Using this as a starting point, validating the approach,

the variation in on-current (Ion) is examined. This is an area that DD fails to

accurately model, making the use of 3D MC invaluable.

5.2 Mobility Dependence on Silicon Thickness

Initially, MC simulations employing the ‘frozen field’ approximation (FFMC)

were used to examine the impact of BTV on the mobility, µ, in DG MOS-

FETs. Long channeled, self-averaging devices were considered for this study,

with simulations carried out at low drain voltage (VD = 0.05 V), as required

for ‘frozen field’ simulations, and for VG = 1.0 V. The aim is to study the de-

pendence of µ on silicon layer thickness (tSi) in double gate (DG) MOSFETs

as tSi is scaled down.

The dimensions of the device indicated as Device 1 are shown in Table 5.1

and illustrated in Fig. 5.1, with tSi varying from 10.8 nm down to 2.4 nm.
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Figure 5.1: Illustration of the devices simulated in this study as detailed in

Table 5.1. The DG architecture is shown on the left and SOI on the right.

The values of tSi cover the range from 10 nm down to 2 nm in order to show

the impact of interface roughness and BTV related scattering at the limits

of scaling for these devices, where the latter scattering mechanism has been

shown to have the most impact, causing significant transport degradation for

tSi < 5 nm [28]. The exact values of tSi were selected in order to keep the

mesh spacing constant to avoid self-force issues [196]. The mesh spacing itself

was limited to multiples of the digitised interface roughness steps (0.15 nm).

For each value of tSi, simulations were carried out with both uniform and non-

uniform body thicknesses. The driving force is calculated using potential from

an initial DD simulation employing Density Gradient quantum corrections.

The inclusion of quantum corrections is important as the additional scattering

due to BTV comes from the shifting of the ground state (E0) approximated

for an infinite square well by:

E0 =
h2

8m∗t2Si

(5.1)

Where h is Plank’s constant and m∗ the effective mass. Density Gradient

successfully approximates the shift in the ground state, as will be demonstrated
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Figure 5.2: 3D plot of electron distribution in the silicon layer of Device 2 (the

gates and oxide layers at the top and bottom have been removed for clarity)

showing the effect of fluctuations in body thickness with the confinement along

the channel. Red/orange signifies a higher concentration, green/blue signifies

a lower concentration.

through the rest of this chapter. Fig. 5.2 shows the 3D electron distribution for

the entire silicon layer in a thin device (tSi = 2.4 nm). The top section shows

the variation in electron concentration resulting from the interface roughness

pattern in the channel region. Also, the fluctuation in carrier confinement

along the channel can be observed, showing a clear increase in concentration in

the centre of the channel when compared to the regions closer to the interfaces.

The variation in confinement leads to the shifting in E0 from equation 5.1,

producing the quantum scattering potential.

Fig. 5.3 compares the potential obtained from a DD simulation with the effec-

tive quantum potential from the Density Gradient quantum corrections. As

can be seen, quantum corrections are necessary to capture the fluctuations in

the quantum potential that act as an additional scattering force to the carriers

which is neglected in the classical version.

Figs 5.4 and 5.5 show the effect of thinning the silicon thickness on the extent

of the fluctuations in the quantum potential due to BTV. Fig. 5.4 shows the



5. Results And Discussion 90

Figure 5.3: Comparison of classical (left) and quantum (right) potential plane

through the centre of a 10 × 10 nm channel DG MOSFET, running from

the source on the left to the drain on the right. The fluctuations due to

body thickness variation are absent in the classical case, but clearly visible

in the quantum corrected version. Again, red/orange signifies a higher value,

green/blue signifies a lower value.

significant increase in the magnitude of the fluctuations as tSi decreases, be-

coming most severe at the smallest tSi considered. This is further emphasised

by Fig. 5.5, which shows the quantum potential landscape in planes through

the centre of the channel, from the source at the left to the drain at the right,

for the thickest and thinnest of the devices considered here. There is a drastic

difference between the smooth potential of the thickest device with the con-

siderably rougher landscape in the thinnest device. As a result, carriers in the

channel of the tSi = 2.4 nm device experience increased scattering and thus a

degradation in µ.

The µ obtained from the FFMC simulations of devices with smooth and rough

interfaces for different tSi are compared in Fig. 5.6, where three distinct regions

can be observed.
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Figure 5.4: Quantum potential profile through the centre of the device, from

the source at the right, to the drain at the left. Various values of tSi are shown,

showing greater fluctuations from variations in body thickness as the silicon

layer is thinned.

Figure 5.5: Quantum potential plane running from the source at the left to the

drain at the right, taken halfway between the two interfaces. Blue represents

a lower value of potential, red higher. Top is for a device with tSi = 10.8 nm,

bottom is for tSi = 2.4 nm.
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Figure 5.6: Mobility dependence on silicon thickness in DG MOSFET (Device

1 in Table 5.1).

For thick silicon layers there are two distinct channels with peak electron con-

centrations close to the two interfaces. The difference in mobility between the

smooth and rough devices results from interface roughness scattering at the

top and bottom interfaces.

As tSi is reduced below 5 nm, an increase in the effective mobility for the

device with uniform body thickness is observed due to volume inversion.

The sharp decrease in the mobility observed for devices with rough interfaces

when tSi < 5 nm is attributed to the increased scattering resulting from BTV

as described in Chapter 2. At such channel thicknesses, the peak electron con-

centration moves to the centre of the channel (see Fig. 5.7), and the quantum

potential fluctuations become significant through the entire silicon volume, as

shown in Fig. 5.4 and 5.5, leading to mobility degradation.
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Figure 5.7: The electron distribution and quantum corrected potential for DG

MOSFET with tSi = 2.4 nm, showing in both cases the peak being in the

centre of the device.

The impact of individual scattering mechanisms can be examined using Matth-

iessen’s rule:

1

µtotal

=
1

µ1

+
1

µ2

+
1

µ3

+ ..... (5.2)

where µ1, µ2, µ3, ... are the contributions to the total mobility (µtotal) of indi-

vidual scattering mechanisms. In this case, taking consideration of only two

mechanisms, surface roughness (µ1) and BTV (µ2), the effect of scattering

from BTV alone on mobility can be extracted.

As shown elsewhere [78], the relationship between body thickness fluctuations

limited mobility and silicon thickness is:

µ ∝ t6Si (5.3)
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Figure 5.8: Comparison of simulated data (Fig. 5.6) to theoretical dependence

of body thickness fluctuation limited mobility on tSi [78].

A comparison of the mobility limited due to BTV scattering from the simu-

lations in this work (extracted using Mathiessen’s rule) in Fig. 5.6 with this

theory is shown in Fig. 5.8. The very good agreement indicates that the de-

scribed simulation methodology reproduces the effect of this scattering mech-

anism consistently with previous theoretical result [28].

The DD simulator contains a mobility model, which includes doping concen-

tration and field dependencies. Typically, low field mobility is set using the

doping concentration dependent model, the perpendicular field dependence

accounts for the effects of surface roughness scattering and the lateral field de-

pendence for velocity saturation effects. Here, for simulations of SOI and DG

MOSFETs, the undoped channel, lack of interface roughness and low drain

bias makes the use of this mobility model inappropriate or unnecessary for

comparison of DD to MC results. So, the mobility in the DD simulator was

set to a constant value, calibrated to match the mobility obtained from equiv-

alent MC simulations (for the same device dimensions and applied bias), and

this was used for the subsequent simulations to determine ID.
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5.3 Current Variation in DG and SOI MOS-

FETs

Having validated the methodology, showing that scattering from BTV is cap-

tured effectively using the ab initio technique developed in this work, the

impact on the drive current (Ion) in UTB DG and SOI devices can be evalu-

ated.

Here, the use of the MC rather than DD simulations is necessary for two

reasons. Firstly, the strength of DD simulations is in the subthreshold region,

where the current is exponentially dependent on the potential barrier between

the source and the drain and the mobility plays a secondary role. It generally

fails to accurately represent Ion due to the inability to capture non-equilibrium

transport effects and transport variations due to interface roughness variations

from device to device. MC exhibits the opposite behaviour. It captures well

Ion, and its variation, but due to its statistical nature it becomes unreliable

below threshold where few carriers are injected into the channel and very long

simulation times are needed to gather enough statistics.

The second reason is the need to capture the scattering from BTV. DD captures

only the electrostatic and quantum confinement effects which dominate the

VT variations, but it fails to capture non-equilibrium transport effects and the

transport variation from device to device due to the distinct interface roughness

patterns. MC is therefore a more appropriate approach to capture the BTV

scattering and resulting variability as will be demonstrated through the course

of this section.

5.3.1 ‘Frozen Field’ Monte Carlo Simulation Studies

In Fig. 5.9, the ID−VG characteristics obtained from both classical and quan-

tum DD and FFMC simulations for Device 2 (see Table 5.1), in the absence
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Figure 5.9: ID−VG characteristics for DD and FFMC simulations with uniform

body thickness (Device 1 in Table 5.1 with tSi = 2.4 nm), comparing classical

and quantum simulations, showing the associated shift in VT .

of surface roughness are compared. Performing the simulations at low drain

voltage (VD = 1 mV) limits the non-equilibrium effects in the MC simula-

tions and allows for fair comparison with DD simulations. As can be seen, a

good agreement between the two is observed and the threshold voltage shift

associated with the quantum confinement is well captured by both simulators.

An ensemble of 200 devices (Device 2 in Table 5.1) with uniquely different in-

terface roughness patterns was simulated with the DD simulator using Density

Gradient quantum corrections. Three devices were then selected, one with a

high VT , one with a low VT , and one pitched in the middle of the distribution.

Fig. 5.10 shows the resulting ID −VG characteristics for the three devices sim-

ulated using both DD and FFMC with both uniform and non-uniform silicon

body thicknesses. The DD simulations only capture the electrostatic and the

quantum confinement effects, leading to a small decrease in current due to the

inclusion of BTV. This comes from the shift in VT due to the variation in thick-

ness of the top and bottom oxide layers, and the shift in ground state (5.1)

as captured by the Density Gradient quantum corrections. MC consistently
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Figure 5.10: ID − VG characteristics for DG MOSFET (Device 2 in Table 5.1)

comparing DD and FFMC. VD = 1 mV. Top to bottom, high, average and low

VT .
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Figure 5.11: Comparison of ID variation for 50 uniquely different DG MOS-

FETs, showing a greater fluctuation for MC simulations compared to DD.

captures a greater reduction in drive current due to additional scattering from

body thickness fluctuations. There also appears to be no obvious relationship

between VT and the amount of degradation due to the scattering from BTV.

The next step in this study is to highlight the amount of variability that BTV

introduces into UTB devices. Statistical studies using DD of large ensembles of

intrinsically different devices have shown a significant VT shift for a SOI device

with tSi = 5 nm due to the impact of BTV alone (without considering other

sources of fluctuation) [115]. In order to attain an indication of the impact of

BTV on Ion, similar simulation studies have been employed using MC.

50 DG devices (Device 2 in Table 5.1) with randomly generated interface rough-

ness patterns were simulated with both DD and FFMC simulations using VD =

1 mV, VG = 0.8 V. A comparison of the percentage variation in ID for each

device with DD and FFMC is shown in Fig. 5.11. An identical study for a

properly scaled SOI device (Device 4 in Table 5.1) was carried out, and the

percentage variation in ID is shown in Fig. 5.12. In both cases the variation



5. Results And Discussion 99

Device Number
0

10

20

30

40
Monte Carlo
Drift Diffusion

∆I
D

/I D
 [%

]

10 20 30 40 50

Ave.
MC

Ave.
DD

Figure 5.12: Comparison of ID variation for 50 uniquely different SOI MOS-

FETs, showing a greater fluctuation for MC simulations compared to DD.

Mean Ion [A/µm] Standard Deviation [%] Average Variation [%]

DD 1.139× 10−5 0.65 2.93

MC 9.387× 10−6 22.64 38.87

Table 5.2: Statistics from the simulation of 50 DG devices, comparing MOS-

FET with rough and smooth interface roughness patterns, using both DD and

FFMC.

is significantly greater in MC than DD, again attributable to the inclusion of

scattering from BTV.

Tables 5.2 and 5.3 compare the statistical results for the 50 devices for the

DG and SOI architectures respectively. The average reduction in ID in the

long channel DG MOSFET of 38.87% is comparable to the 33.16% reduction

in mobility as seen in Fig. 5.6 at the same tSi. A smaller variation is shown in

the properly scaled SOI device, which operates closer to the ballistic regime,

though the average degradation of 8.98% is significant nonetheless, especially

compared to the 0.89% obtained via DD.
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Mean Ion [A/µm] Standard Deviation [%] Average Variation [%]

DD 1.460× 10−5 1.05 0.89

MC 1.115× 10−5 11.35 8.98

Table 5.3: Statistics from the simulation of 50 SOI devices, comparing MOS-

FET with rough and smooth interface roughness patterns, using both DD and

FFMC.
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Figure 5.13: Scatter plot of ID percentage variation for 50 uniquely different

DG MOSFETs, showing weak correlation between DD and MC simulations.

Scatter plots for the percentage variation in ID in these simulations are shown

in Figs. 5.13 and 5.14 for the DG and SOI devices respectively. Extremely

weak correlation is observed between the DD and FFMC simulations (the

correlation coefficient is 0.105 for DG and 0.086 for SOI), which highlights

the differing factors causing the current degradation and variability in each

simulation methodology (electrostatics and quantum VT shift in DD, scattering

and transport variations in MC).

Therefore, scattering from BTV leads to significant variability of Ion. This

unpredictability of the drive current from device to device resulting from addi-
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Figure 5.14: Scatter plot of ID percentage variation for 50 uniquely different

SOI MOSFETs, showing weak correlation between DD and MC simulations.

tional scattering will hamper the integration into future chips where they will

number in the billions.

5.3.2 Self-Consistent Monte Carlo Simulation Studies

The inclusion of a Poisson solver, as detailed in Chapter 4, allows for the

electric field to be updated to reflect changes in the mobile carrier distribu-

tion. This method means classical simulations can be carried out at higher

drain bias, however, the method for inclusion of frozen quantum corrections

again restricts quantum simulations to a lower drain bias. Fig. 5.15 shows the

smooth classical potential obtained from the Poisson solver employed in the

MC module. The MC simulator can now be run in a self-consistent mode with

a frozen quantum correction (FQMC).

There is good agreement between the three quantum corrected simulation

methods (DD with Density Gradient, FFMC and FQMC), as shown in Fig. 5.16
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Figure 5.15: 3D plot of classical potential, bottom half of the channel, running

left to right from the source to the drain, at VD = 1 mV, VG = 0.8 V, with the

units also in Volts.
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Figure 5.16: ID − VG characteristics for DG MOSFET (Device 3 in Table 5.1)

in the absence of interface roughness comparing DD, FFMC and FQMC, all

including Density Gradient quantum corrections and at VD = 1 mV .
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Drift-Diffusion Monte Carlo

ID smooth interfaces [A/µm] 1.042× 10−5 1.195× 10−5

ID rough interfaces [A/µm] 9.59× 10−6 8.74× 10−6

Variation [%] 7.92 26.87

Table 5.4: Comparison of quantum corrected DD and FQMC simulations of

Device 3 at VD = 1 mV, VG = 0.8 V.

which compares ID − VG characteristics in the absence of interface roughness

patterns.

Fig. 5.17 shows the electron concentration in the channel of Device 2 in Ta-

ble 5.1, taken in a vertical plane, from interface to interface. This is from a

FQMC simulation without interface roughness patterns and shows the peak

carrier concentration to again be confined to the centre of the channel.

The introduction of interface roughness produces the variation in confinement

demonstrated in Fig. 5.18 for a DD simulation and Fig. 5.19 for FQMC sim-

ulation of the same device (Device 3 in Table 5.1). In both cases similar con-

finement patterns are observed, though the DD plot is smoother due to noise

present in the MC statistics. Comparing the classical potential in Fig. 5.15

where the potential is smooth with the quantum potential in Fig. 5.20 where

fluctuations are prominent, shows how effectively the quantum corrections in

this methodology capture the additional scattering potential.

This results in fluctuation in the electron distribution as shown in Fig. 5.21,

leading to degradation in transport. A comparison between simulations carried

out using this method and DD is shown in Table 5.4, again demonstrating

that a greater variation in ID is captured with FQMC simulations due to the

additional scattering. Also the variation captured (26.87%) is of a similar

magnitude to the reduction seen in both mobility (33.16%) and Ion (38.87%)
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Figure 5.17: MC carrier concentration on a vertical plane in the channel of a

DG MOSFET in the absence of interface roughness patterns.

Figure 5.18: DD carrier concentration on a vertical plane in the channel of a

DG MOSFET in the presence of roughness patterns at both interfaces. Vari-

ations in concentration due to confinement can be observed.
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Figure 5.19: MC carrier concentration on a vertical plane in the channel of a

DG MOSFET in the presence of roughness patterns at both interfaces. Vari-

ations in concentration due to confinement can be observed.

in the FFMC simulations. A study of a larger number of devices may improve

the comparison further.

In these low field simulations, the variation of ID is greater than would be

expected at high field as the transport is mobility dominated. Hence, the use

of an ensemble MC simulator is necessary, as these scattering effects are not

accounted for in the DD approximation.

In order to carry out quantum corrected simulations at high VD, it was nec-

essary to introduce a Density Gradient solver to make the simulator fully

self-consistent (SCQMC - the development of this approach was detailed in

Chapter 4). At higher VD, the importance of quantum confinement scattering

decreases as the degree of balisticity increases so less variation in Ion would be

expected. The problems associated with the employment of this methodology

were described in Chapter 4, along with the solutions leading to the even-

tual successful implementation. The time spent developing the code left little
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Figure 5.20: 3D plot of quantum corrected potential, as calculated in the MC

simulator, at VD = 1 mV, VG = 0.8V, with the units also in Volts.

Figure 5.21: 3D plot of electron concentration in Device 2 (Table 5.1) from a

MC simulation, running from the source to the drain, left to right. The units

here are ×1019cm−3.
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time to run substantial simulations with the fully self consistent MC simulator

at high VD, so further validation of this methodology, along with high field

simulations are still to be carried out.

5.4 Summary

The variability of Ion due to BTV in UTB SOI and DG MOSFETs has been

investigated using a 3D MC simulator employing quantum corrections based

on the Density Gradient formalism. Scattering from surface roughness and

BTV is included in the ab initio approach described in Chapter 4.

Initially, a ‘frozen field’ approximation was employed to study mobility de-

pendence on silicon layer thickness in long channeled DG MOSFETs. In this

instance, the field was generated using an initial DD simulation, and never

updated through the course of the MC simulation. For 5 nm < tSi < 10 nm,

the observed degradation in µ is attributed to surface roughness scattering.

Below 5 nm, an increase in µ for devices with uniform silicon thicknesses is

observed as a result of volume inversion. For non-uniform silicon thicknesses,

a drop in µ is captured as a result of scattering from BTV. This is shown to

be consistent with the t6Si dependence of µ predicted by theory [28], which

validates the use of this approach for studying BTV scattering.

The next step was to employ the MC simulator to study the variation of Ion in

UTB devices. The failure of DD simulations to properly capture current above

threshold as well as the impact of scattering from BTV makes the use of MC

simulations vital. Large ensembles of devices were simulated to highlight two

aspects of this phenomena. Firstly, the average variation in ID is considerably

greater in MC than DD, as DD is incapable of capturing the scattering asso-

ciated with BTV. Additionally, by comparing the variation in sets of devices

with uniquely different roughness patterns, the vastly differing degrees of Ion

degradation in each individual device has been shown. This device to device
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variability will hamper the integration of devices using this architecture into

future circuits where they will number in the billions.

The development of self consistency of the MC simulator with Poisson’s equa-

tion and with Density Gradient will allow for a greater range of simulations

to be carried out, though, at this time the full range of possibilities using this

methodology have yet to be explored.



Chapter 6

Conclusions

The aim of this thesis was the development of a simulation methodology and

tools that accurately and efficiently capture the impact of interface roughness

related silicon body thickness variations in ultra thin body (UTB) silicon on

insulator (SOI) double gate (DG) MOSFETs at the limits of device scaling.

A 3D Monte Carlo (MC) simulator was developed that was used, along side

a 3D Drift Diffusion (DD) simulator, to examine the degradation in transport

due to this scattering mechanism. The significance of this phenomena was

highlighted by use of statistical studies showing the current variability from

device to device due to the uniqueness of the body thickness variation in each

transistor. This will adversely effect the integration of ultimate UTB SOI

and DG MOSFETs into modern and future chips where they number in the

billions.

Chapter 2 discussed the advantages offered in scaling SOI and DG MOSFETs

in comparison to their conventional counterparts. The geometry of these de-

vice counteracting short channel effects, and the virtually undoped channel

allowing for higher carrier mobility. The complex transport behaviour asso-

ciated with these architectures was discussed, detailing research carried out

previously. The transport enhancement associated with volume inversion and

band splitting was contrasted with the detrimental effects of scattering from
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Coulomb interactions with charges trapped at the interfaces, phonons (due to

confinement of carriers and acoustic phonons), interface roughness and body

thickness variations. The last of these was of particular interest in this study,

becoming extremely significant when tSi < 5 nm, with its effects on transport

being the main focus of this work.

In Chapter 3, the selection of an appropriate simulation methodology to exam-

ine the quantum confinement scattering and its impact on device variability

was discussed. MC, DD and Non-Equlibrium Green’s Functions (NEGF) were

all described and evaluated in terms of their suitability. The computational

efficiency of DD is attractive, allowing for large statistical studies to be carried

out quickly, and is capable of including quantum effects, but its effectiveness

is limited by its inability to capture non-equilibrium effects and the transport

variations from device to device due to the scattering from the unique body

thickness fluctuations which is of significant interest in this work. The NEGF

formalism offers the reverse scenario - while it can capture the transport vari-

ability associated with this scattering mechanism, the computational efficiency

rapidly decreases as the complexity of the model (such as moving from two to

three dimensions or the inclusion of complex scattering mechanisms) increases,

generally limiting 3D simulations to small structures which was unsuitable for

this work where large self averaging devices were under consideration. Hence,

3D MC was deemed to be the most appropriate simulation methodology for

this research. It remains computationally efficient, even when extended to

3D, is capable of capturing non-equilibrium carrier transport and can include

quantum effects through the introduction of a quantum corrected potential

with a minimal computational cost. Various methods of implementing quan-

tum corrections in MC were compared, based on the Schrödinger equation,

the Wigner distribution function, the Böhm interpretation of the Schrödinger

equation (Density Gradient and Effective Conduction Band Edge) and effec-

tive potential approaches. The derivations of these formalisms and the relative

strengths and weaknesses were also discussed.
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Chapter 4 describes the development of the 3D MC simulator used for this

study. First, the DD simulator used to initialize and validate the MC module

was described, including details of the surface roughness generation technique

used to create the semiconductor/oxide interface roughness patterns and re-

sulting non-uniform body thickness. Following that, a detailed description of

the MC module was presented. General details of the MC model were de-

scribed, in terms of charge assignment scheme, band structure model and ex-

isting scattering mechanisms. The ‘frozen field’ approximation was introduced,

followed by the description of the self-consistent version of the simulator. The

quantum correction scheme, based on the Density Gradient formalism was

then introduced. The importance of the inclusion of quantum effects comes

as the body thickness variation induced scattering is a product of a random

quantum confinement variations. Therefore, the quantum corrections allow for

an ab initio treatment of interface roughness and body thickness fluctuation

induced scattering to be employed. This chapter also dealt with issues asso-

ciated with the boundary conditions at the source and drain contacts, which

provided a major problem in the development of the MC module. The existing

Dirichlet boundary conditions lead to insufficient injection of carriers into the

device when quantum corrections were introduced, and therefore depletion in

the source and drain regions. Self-consistent coupling of the current to Pois-

son’s equation and the Density Gradient equation exacerbated this problem

further. The implementation of Neumann boundary conditions resulted in the

contacts being properly maintained, remedying this issue. As a result, the

first 3D MC simulator capable of studying quantum confinement transport

variations has been successfully developed.

Finally, in Chapter 5, results from statistical simulation studies carried out us-

ing this simulation methodology were presented, using both the ‘frozen field’

and classically self-consistent with a frozen quantum correction versions of the

MC module. The simulator was shown to capture well the quantum confine-

ment related t6Si mobility dependence on silicon thickness predicted by the-

ory [28], validating the ab initio inclusion of the additional scattering from
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body thickness variations. The impact on the drive current in these devices

was demonstrated via careful comparison with DD. Good agreement between

the ID − VG characteristics from DD and MC simulations at low drain bias

(where non-equilibrium effects are limited), and in the absence of interface

roughness patterns, was demonstrated. When interface roughness patterns

were introduced, the greater degradation in ID exhibited by the MC simula-

tions is attributed to the additional scattering captured by MC, but neglected

by DD where only electrostatic effects are accounted for. Simulations of large

ensembles of devices with uniquely different roughness patterns showed for the

first time a large on-current variation from device to device due to the ad-

ditional quantum confinement scattering. This level of unpredictability will

make the integration of ultimately scaled UTB SOI and DG MOSFETs into

modern and future circuits problematic.

6.1 Suggestions for Future Work

Further studies, most specifically at higher drain bias, could be carried out

using the existing simulator to provide further validation of the methodology.

Simulations of realistic modern or future devices using the MC simulator would

also be of considerable interest. Less variation in ID would be expected here,

as transport becomes less influenced by scattering and more ballistic.

In order to gain a more comprehensive and accurate picture of transport phe-

nomena in UTB SOI and DG MOSFETs described in Chapter 2, the MC

simulator could be extended yet further. The first extension, would be to

move from the spherical band structure to an ellipsoidal one [120], allowing

for the capture of the band splitting phenomena as the silicon thickness is

scaled [67].

The additional scattering mechanisms detailed in Chapter 2 could be imple-

mented by employing the approaches used by others. Coulomb scattering could
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be captured using an ab initio approach as described in Chapter 3, consistent

with the methodology detailed in [143] and the increased phonon scattering

accounted as in [53] and [57]. From this a full, 3D MC simulator capable of ac-

curately simulating the behavior and current variability in UTB architectures

down to the limits of scaling would have been developed.

Another possible extension would be to introduce a non-equilbrium carrier

temperature distribution in the Density Gradient solver. As it stands, the

thermal equilibrium approximation is employed, assuming the carriers are kept

at the same temperature as the lattice (typically room temperature, T = 300

K). A methodology has been proposed in [160] for the Effective Conduction

Band Edge (ECBE) formalism, where the kBT term is replaced by the average

value of:

U = 〈vz~kz〉 (6.1)

Where vz is the velocity and kz the momentum in the z-direction. Taken

in slices along the x-direction, this would account for changes in the carrier

temperature. The authors in [160] have shown this to be an effective method

to deal with this issue, and it could perhaps be included within the Density

Gradient solver used in this study in a similar manner. This would allow for

accurate simulation where high fields result in the temperature of the carriers

exceeding that of the lattice.
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[201] T. González and D. Pardo, “Physical Models of Ohmic Contact for Monte

Carlo Device Simulation,” Solid-State Electronics, vol. 39, no. 4, pp. 555–

562, 1996.

[202] I. Riolino, M. Braccioli, L. Lucci, D. Esseni, C. Fiegna, P. Palestri,

and L. Selmi, “Monte-Carlo Simulation of Decananometric Double-Gate

SOI devices: Multi-Subband vs. 3D-Electron Gas with Quantum Cor-

rections,” Proceedings of the 36th European Solid-State Device Research

Conference (ESSDERC), pp. 162–165, 2006.

[203] M. G. Ancona, D. Yergeau, Z. Yu, and B. A. Biegel, “On Ohmic Bound-

ary Conditions for Density-Gradient Theory,” Journal of Computational

Electronics, vol. 1, pp. 103–107, 2002.



Bibliography 140

[204] R. Clerc, P. Palestri, and A. Abramo, “Invesigation on Convergence

and Stability of Self-Consistent Monte Carlo Device Simulations,” Pro-

ceedings of the 32nd European Solid-State Device Research Conference

(ESSDERC), pp. 191–194, 2002.


	1 Introduction
	1.1 Scaling of MOSFETs and the Transition to New Device Architectures
	1.2 Aims and Objectives
	1.3 Thesis Outline

	2 Scaling and Transport Phenomena of UTB Devices
	2.1 Introduction
	2.2 Scaling Properties of Conventional, UTB SOI and DG MOSFETs
	2.3 Volume Inversion
	2.4 Enhanced Phonon Scattering
	2.5 Band Splitting
	2.6 Coulomb Scattering
	2.7 Interface Roughness and Body Thickness Variation
	2.8 Summary

	3 Simulation Methodology
	3.1 Introduction
	3.2 Drift-Diffusion
	3.2.1 Quantum Corrections in Drift-Diffusion

	3.3 Monte Carlo
	3.3.1 Scattering in Monte Carlo
	3.3.2 Quantum Corrections in Monte Carlo

	3.4 Quantum Transport
	3.4.1 Scattering in NEGF

	3.5 Summary

	4 Simulator Development
	4.1 Introduction
	4.2 Drift Diffusion
	4.2.1 Interface Roughness Generation

	4.3 Monte Carlo
	4.3.1 `Frozen Field' Approximation
	4.3.2 Interface Roughness Implementation
	4.3.3 Self-Consistent Monte Carlo
	4.3.4 Quantum Corrections
	4.3.5 Ohmic Contacts
	4.3.6 Additional Considerations
	4.3.7 Summary


	5 Results And Discussion
	5.1 Introduction
	5.2 Mobility Dependence on Silicon Thickness
	5.3 Current Variation in DG and SOI MOSFETs
	5.3.1 `Frozen Field' Monte Carlo Simulation Studies
	5.3.2 Self-Consistent Monte Carlo Simulation Studies

	5.4 Summary

	6 Conclusions
	6.1 Suggestions for Future Work

	Bibliography

