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Abstract 

The aim of this project is to investigate the electronic and optical properties of IIIN semiconductor 

quantum wells, specifically those based on the GaAs-AlGaAs system. Both the linear and non-linear 

optical properties of these systems are considered. 

A theoretical model for the refractive index in GaAs-AlGaAs quantum well structures for 

optical frequencies close in energy to the fundamental band gap has been constructed, and is based on 

knowledge of the electronic band structure. This model includes the r valley states, and also allows 

for inclusion of the electronic states at the X and L points. The ground state and excited state 

excitons have also been explicitly included within the theoretical model. The exciton model which is 

employed in this thesis takes into account the Coulomb coupling between different exciton states. 

In addition, the effects of band filling and screening have both been incorporated, allowing the 

intensity-dependent index of refraction to be obtained. Calculations are presented for a range of 

material compositions and quantum well structures, including both single and double quantum wells. 

The results obtained for die index of refraction are therefore more complete and accurate than 

any previous published calculations. It is expected that the results presented here can be used directly 

in the design of refractive-based optoelectronic devices. 

vii 



I Introduction 

Historical introduction 

During the past two decades, the semiconductor laser (also known as the diode laser) has been the 

subject of much development. This has led to recent advances in the field of semiconductor 
integrated optoelectronics, based on the production of elementary devices such as semiconductor 
lasers and photodetectors. The semiconductor laser has become a key component in this field, due to 
its excellent operating characteristics, which include high efficiency, high-speed modulation 

properties and reliability. 
Originally, due to the large lasing threshold, the gallium arsenide (GaAs) homojunction laserl 

was operated in pulsed mode only. The possibility of transverse mode contrO12 and high-speed 

modulation3,4 soon became obvious. and continuous (CW) operation att room temperature of GaAs- 

AlGaAs heterejunction lasers5-7 was soon realised, leading to substantial development. Longer 
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Chapter 1 Introduction 

wavelength operation, for possible optical fibre communications, was made possible by the 

development of GaInAsP-InP heterojunction laser diodes8-10, operating in the wavelength range of 

1.2gm to 1.6gm. 

Also, during this period, fabrication of artificial microstructures has been made possible due to 

the development of novel semiconductor technologies such as molecular beam epitaxyl I (MBE) and 

metal-organic-chemical-vapour deposition12 (MOCVD). These techniques have led to the 

introduction of devices with physical dimensions comparable to interatomic distances. Research on 

semiconductor superlattices was initiated following a proposal by Esaki and Tsu13,14 for a one- 

dimensional potential structure to be fabricated with epitaxy of alternating ultrathin layers. This is 

shown schematically in Figure I. I. Two possible types of these structures, doping-superlattices and 

compositional-superlattices are iflustrated in Figure 1.2. 

Within these devices "quantum size" phenomena be-come important, since the characteristic 

dimensions of superlattice, period or quantum well width are reduced to less than the electron mean 

free path and the entire electron system enters a quantum regime of reduced dimensionality. The 

quantum well laser15,16 which exploits the electronic properties of a quasi two-dimensional system, 

is of interest due to its reduced threshold current and high temperature operation. One of the most 
important parameters in quantum well optoelectronic devices is the index of refraction, which is 

studied in this thesis. Knowledge of the dispersion of the index of refraction is of significant 

importance in the design of optoelectronic devices. 

Layout of thesis 

In Chapter 2, many of the basic physical properties of bulk GaAs and AlGaAs are presented. T'his is 

not intended to be exhaustive, but to offer sufficient background material for later use. 

The electronic dispersion in quasi two-dimensional systems is of fundamental importance in 

this work. Before discussing this in some detail in Chapter 4, the basic fundamentals of band theory 

in bulk systems are given in Chapter 3. Again, this is not exhaustive, but presents the fundamentals 

required for the calculations in Chapter 4. 

The successful calculation of quantum well electronic dispersion allows accurate determination 

of physical properties and observables. In Chapter 5, we concentrate on the optical absorption 

spectrum in the vicinity of the fundamental band gap. The linear absorption spectrum is obtained 

directly from the imaginary part of the dielectric response function. Since this is used to obtain the 

index of refraction it is necessary to obtain die dielectric function as accurately as possible. At 

frequencies close to the ffindamental band gap, exciton effects are extremely important, even at room 

temperature, 17 in GaAs-AI. Gal-, As quantum wells. The theoretical model employed to obtain the 
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Layout of thesis 

GaAs AlGaAs 
ii 

GaAs 
substrate 

Figure 1.1 Schematic illustration of a GaAs-AlGaAs 

multiple quantum well (MQW) or superlattice. The lighter 

coloured layers are GaAs, sandwiched between layers of 
AlGaAs. The well thickness of IOOA is typical. 
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Figure 1.2 Schematic illustration of the conduction band edge and 

valence band edge potential profiles in an undoped compositional 

superlattice (top ) and a modulation (periodic) doped superlattice (bottom). 

The topfigure represents the idealised situation ofperfect interfaces. 
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Chapter 1 Introduction 

exciton wave functions is presented in Appendix B, to maintain separation from the main body of the 

text. Many-body effects are also important and lead to a screened dielectric function. These have a 

significant effect on the exciton wave functions and are included in Chapter 5. A self-consistent 
Hartree scheme is used throughout, both in the case of doping and in the case of a free-carrier plasma 

generated by optical absorption. 

Chapter 6 concentrates solely on the index of refraction in quantum well structures. The 

calculations draw heavily on the results of the two preceding Chapters. This gives the necessary 

electronic band structure and the calculated dielectric function, including excitons, which are used to 

obtain the index of refraction. The effects of both material parameters and structure-dependence on 

the index of refraction are examined. The effects of external perturbations on the refractive index are 

also considered in detail. Also of importance is the reduction in the refractive index due to the effects 

of saturation. Calculation of the intensity-dependent index of refraction are therefore also presented in 

this Chapter. 

For convenience we have included several Appendices. This allows each Appendix to deal 

separately with an important theoretical subject and derivation, without losing coherence and brevity 

within the main text of the thesis. In particular, as mentioned above, the model used to obtain the 

exciton wave functions is presented in Appendix B. This theory couples together several exciton 

states to form a variational basis set. In addition we find that only those excitons which are coupled 
by the Coulomb interaction need be included in the basis set. This not only allows accurate 

calculation of the exciton binding energies and oscillator strengths, but also takes into account the 

proper physics of the problem. 

Accurate knowledge of the refractive index is important for optoclectronic device modelling. It 

is necessary to obtain the refractive index spectrum as accurately and conveniently as possible. The 

material presented in this thesis is therefore intended to provide the necessary theoretical background 

to accomplish this task. It is hoped that it will be readily accessible to all requiring to make use of 

the theory and results contained herein. 

The results of the research leading to the production of this thesis has successfully led to 

several publications. A list of these publications is included at the end of the thesis. 
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Physical Properties of Bulk 
Gallium Arsenide and 
Aluminium Gallium Arsenide 

-------------- 

1111IME 

Introduction 

The aim of this chapter is to briefly review some of the major physical properties of the binary 

semiconductor Gallium Arsenide (GaAs) and the ternary alloy semiconductor Aluminium Gallium 

Arsenide (AIxGal-xAs, where x indicates the fraction of Gallium atoms replaced by Aluminium 

atoms). 
Since the symmetry properties of the zone-centre electronic states are similar to those of the 

jull crystal point group, it is useful to consider the basic crystal properties in both real space and 

reciprocal space. Various methods of calculating the electronic energy dispersion will be discussed in 

the next chapter. 

copyright V Alistair T. Mency (1991) 



Chapter 2 Physicat properties of bulk GaAs and AlGaAs 

Crystal structure 

Gallium Arsenide was first produced in the 1920s and is known to have the zincblende (cubicý 

sphalerite) lattice. This has face-centred cubic (fcc) symmetry and a basis of one GaAs molecule, 

with one atomic species at (000) and the other at (14- T' T') of the nonprimitive fcc unit cube. 

The Ga atoms and the As atoms thus separately form overlapping fcc. sublattices. The 

conventional unit cube (see Figure 2.1) has a side length of 5.653A, at 300K. The volw-ne of this 

unit cell is 1.807xlo-22cm-3 and is four times the volume of a primitive cell. The lattice constant 

of AIxGal. xAs is obtained by linear interpolation between the lattice constants of GaAs (x=O) and 

AlAs (x=l). This gives 

a(Al., Gai-,, As) = (5.653 + 0.007x) A. (2.1) 

- Crystal cleavage occurs most easily on ( 110) family planes, followed by (I 111 and then 

between (I 11) and (011). In the particular case of (I 11) planes, the cleaved terminator plane contains 

only one species of atom. This is either a Gallium (111A) plane, or an Arsenic (11113) plane and 

both have different chemical properties. 

The dispersion of electronic states and lattice vibrations is described in the coordinate system 

of reciprocal space. The first Brillouin zone (body-centred cubic) for GaAs is shown in Figure 2.2. 

This represents a truncated ocLahedron and lies within a cube of side length (4n/a) = 2.2xIOlOm-l. 

In Figure 2.2, the most important special points (i. e. points of highest symmetry) and special lines 

are indicated. The location of these points within the Brillouin zone and the distances between them 

are given in Table 2.1. 

The dependence of physical parameters in IIIN compounds of type Aýx Bill CV, on the x 

compositional value x is usually given by the formula, for some parameter a 

aW=a+ bx + (2.2) 

with a= (x(O), b+c= ct(l) - ct(O). The bowing parameter c indicates the deviation from linear 

dependence. For AlxGaj-xAs, with x<0.4, it is found that a linear relation of the form 

a(x) =a+ bx , (2.3) 

is sufficiently accurate for many physical properties (e. g. lattice and band structure parameters). 

8 



Crystal structure 

)k [010] 

Gallium'atoms 

Arsenic atoms 

[100] oo 

[001], 
Ide 1ý 

Figure 2.1 Conventional unit cube for GaAs, with a volume four times that 

of a primitive cell. The bondsfrom any one atom are separated by the tetrahedral 
bond angle cos-l(-113) = 109.470. 
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X 
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Figure 2.2 The body-centred cubic first Brillouin zone of GaAs. This 

has the same symmetry properties as the direct space fcc lattice. Special 

points and lines are indicated, along with the direction of each wavevector 

component. 
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Chapter 2 Physical properties of bulk GaAs and AlGaAs 

Point Locadon Distance 

r 000 

x 100 irxi 
w 

110 

2 1 rw I 'ý5/4 

u 
11 
44 1 UX I 

I uw I V118 

I ru 1 49/8 

L IM1 '13/4 

K 033 
44 1 rK 1 - 119/8 

ILKI 4-3/8 

R oTI I rR 1 4-2 

Table 2.1 Locations of special points within the first 

Brillouin zone (relative to the zone centre at F) and the 

distance between them, in units of (2irla) = 1. lIx1O'Om-J. 

Crystal bonding 

In both elemental semiconductors (e. g. Silicon, Germanium) and alloy semiconductors, the binding 

is primarily covalent and each of the atoms has four nearest neighbours. The alloy zincblende 

structure displays the sp3 hybrid bond orbitals which form tetrahedral bonds to the four nearest 

neighbour atoms. This is illustrated in Figure 2.1. To understand bond hybridisation, consider a 

Beryllium atom with the electronic configuration Is22s2. The ground state contains no unpaired 
electrons and a covalent bond is not expected. However, the low-lying excited state 1s22s12 1 has Pý 

two unpaired electrons. 'Me unpaired s- and p-orbitals can form two hybrid orbitals 

11 
72 

(S + P) ý2 ý 72 (s - P) - (2A) 

These can overlap and form a covalent bond with two atoms. The 'promotional' energy required to 

form these orbitals from the IS22S2 ground state is offset by the overlap energy obtained by bond 

formation. This type of hybridisation is called an sp hybrid. The Sp3 hybrid bond orbitals of 

tetrahedrally bonded semiconductors are due to the same basic mechanism but are rather more 

complex. In this case, the four hybrid functions which can be formed from the normalised s-wave 

10 



Crystal bonding 

function and px, py, pz normalised p-wave functions are 

01 ý1 
(5 + Px + py + Pz) ý2 =IP. - Py + P. 

22 
11 

03 ý- 
(y + Px - Py - Pz) 04 ý- Px + py - Pz) (25) 

22 

In the zincblende structure there are two atoms in each primitive cell and eight valence electrons. 

The Pauli exclusion principle allows two electrons per atom per electron band and therefore four 

valence bands are required in order to accommodate all the valence electrons. At T= OK, an ideal 

semiconductor has completely filled valence bands. AU the additional states into which an electron 

may be put comprise the conduction bands. 

Energy gaps and effective masses 

In this work, the principal electron bands of interest are the highest three valence bands and the 

lowest conduction bands. These are labelled according to the irreducible representations of the crystal 

point group (Td or T3m for zineblende lattices). The three representations of the double group 

(compatible with electron spin) are known as 176, r7 and 178 (using the Betheý notation), at the zone 

centre F (k = 0). 

Table 2.2 Direct and indirect energy gaps in GaAs and AIxGaj. xAs 

Energy gap representadons GaAs AIxGal-xAs 

T=4K Eo (eV) 6 '-, 06 - r8v 1.519 1.519 + 1.34x 

Ao (ev) r" - rv 87 0.34 0.34 - 0.06x 

E'o (eV) rc, - r8v 4.488 4.488 + O. Olx 

A'o (eV) 1.8' - r7c 0.171 0.171 - 0.04x 

T= 300K Eo (eV) 8 FC6 - r8v 1.425 1A25 + 1.155x + 0.37x2 

Ao (eV) 9 r8 - r7v 0.34 0.34 - 0.04x 

E'o (eV) r7c - rv 8 4.44 4.44 + O. Ix 

SO (cV) ri - r-c 117 0.19 0.19 - 0.04x 

T= 300K Eg(L) L6 - r8v 1.734 1.734 + 0.574x + 0.055X2 

E, (X) xc6 - rv 1.911 1.911 + 0.005x + 0.245X2 

11 



Chapter 2 Physical properties of bulk GaAs and AlGaAs 

Considering first the point r (k=O), the lowest conduction band is r6, the highest valence bands 

(heavy- and light-hole bands) are F8 and the spin-orbit split-off band is F7. The latmr is reduced in 

energy due to the spin-orbit interaction. The next highest conduction bands are the ff7 and 118 P- 

- antibonding conduction bands. 

The experimental values of the direct and indirect energy gaps are given in Table 2.2. The 

values given for A]xGal-xAs are for x-<0.45. For larger values of x, the smallest energy gap is the 

indirect gap Eg(x). The temperature dependence of the direct gap F., in GaAs can be given in the 

numerical formlO 

E,, = 1.519 - 5AO5xlO-4 
(T) 

ev (2.6) 
T+204 

where T is the temperature in Kelvins. 

The effective mass is strongly connected with carrier mobility and is one of the most 
important device parameters. There are, however, several defuiitions of effective mass and it must be 

made clear the definition used here. One definition, the optical or slope effective mass is important 

when considering such phenomena as magnetic susceptibility or Faraday rotation. This is defined as 

DE 
m, p, =hk 

(ak 
(2.7) 

The other definition, used in the present work, is the band curvature effective mass defined as 

rn h2 (2.8) 
(ak 

2)* 

This defmifion includes the free electron mass m, = 9.1 IxIO-31 kg. Removing this factor leads to 

Table 2.3 Zone centre effective masses in GaAs and AIxGal-, As 

GaAs AIxGal -xAs 
Mc 11 176C 0.067 0.067 + 0.083x 

mhh 12 r8 0.45 0.45 + 0.31x 

Mlh rs 0.082 0.082 + 0.068x 

mso r7v 0.15 0.15 + 0.09x 

12 



Energy gaps and effective masses 

the definition of effective mass used throuQhout this thesis 

2 (a'2Eý 

in. (29) 
nz in, 

ýk 2 

for an electron in band n. 

This definition is obtained by considering the group velocity of an electron wave packet, 

centred at wavevector k. Given that E= Tim and vg = (dco/dk), then 

I DE &9 1D2E Dk 
vg =--, and -=---. h Dk dt h ak 2 at 

An external field, applied for a time 8t, will do an amount of work on an electron of charge -e given 

by 

8E eEv. (8t) = 
aE 

(8k) (2.11) 
ak 

Since 5E = (DE/Dk)8k = fivg5k, then 

d(h k) 
= -eE (2.12) 

dt 

Table 2.4 Density of states effective masses and conductivity 

effective masses for the L valley and X valley conduction band 

minima, calculatedfrom equations (2.15) and (2.16). 

minimum effective mass GaAs AlxGal -,. KAs 
LC6 ml 1.9 13 - 

rnt 0.075 14 
DOS 

ML 0.56 0.56 + O. Ix 
c ML 0.11 0.11 + 0.03x 

X6C ml 1.3 15 

Mt 0.23 16 

MDOS x 0.85 0.85 - 0.14x 

c mx 0.32 0.32 - 0.06x 

13 



Chapter 2 PhysicalProperties of bulk GaAs and AlGaAs 

From equadon (2.10), 

dv, 1 @2 E 
--22 (-eE) (2.13) 

di h ak 

Comparing this with Newton's law (a = Flm) gives 

I a2 E 
2 

Since the energy surfaces are not constrained to be spherical, the effective mass is replaced by an 

effective mass tensor, given by 

a0 a2 
0 E,, 

ij h akiakj 

The experimental values quoted in Table 2.3 are all intended to be spherically-averaged values, 

which are most commonly used in device calculations. The values quoted are for k=0. The density 

of states mass is obtained at each conduction band minimum (r, X or L) as 

DOS 
= 

2/3 2/3 1/3 
MCI Nct m t. m 1. 

where Nct is the number of equivalent minima at cc, mt and ml are the transverse and longitudinal 

components of the effective mass. NL =4 and NX = 3. The conductivity effective mass at each 

minimum is obtained from 

I 
: -- 

1(2 
+I). (2.16) 

caa Ma 3 m, MI 

These values are given in Table 2.4. 

Density of states 

The density of states (DOS) function g(E) is an extremely important and useful parameter. It 

represents the number of allowed electron states per spin, per unit of energy, per unit of volume in a 

particular band at energy E in the interval (E, E+dF-). For an arbitrary number of dimensions this is 

14 



Density of states 

given by 

gi(E)dE = 
ýýf dk 

i 
(2.17) 

spý a (21r) 

where cc represents degenerate band minima and i is the number of dimensions. The quantity dk is 

the differential length (ID), area (2D) or volume QD) for a surface of constant energy. The DOS 

function is therefore obtained by taking the derivative of equation (2.17) with respect to energy E. 

Since analytical forms for E(k) do not in general exist, a useful general expression for the DOS is 

I dS 
gi(E)iE ............. ! -, (2.18) 

spin cc (2n)' IVIEl 

where dS is the differential surface area of constant energy in 3D, or a differential length for 2D 

systems. Near a band minimum and if a parabolic approximation to E(k) is sufficiently accurate, 

then the density of states per spin takes the simple form 

2m * 10 1 
ID g (E) 

h2 
NFE- 

2n 

I 
2D g (E) = hý2 

m 
21c 

12 (2m 3/2 

3D g (E) = 
rE (2.19) 

h2 

where the energy E is measured with respect to the band edge minimum. 
The joint density of states, essentially the number of pairs of electron states separated by a 

given energy interval E is extremely important when considering optical transitions and the dielectric 

function. This can be simply defined as ' 

pj (E) =EI 
18 (E - 

Errik - Enk) (220) 
m n*m k 

where the sum extends over the entire Brillouin zone. 
In general equations (2.20) and (2.18) must be solved numerically. In this work, this is 

obtained from the calculated band structure of each system under consideration. Note that the joint 

density of states can be expressed in a form analogous to equation (2.18) as 

gi (E) =IIf --- -: (221) 
spin a (27C)' lVkE,,, VkE. I 
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Chapter 2 Physical properties of bulk GaAs and AlGaAs 

Lattice vibrations: phonons 

The vibrational spectrum of GaAs extends to 7x, 012Hz for acoustic modes and 9xlol2Hz for optical 

(intramolecular) modes. 17he two branches are a consequence of the two-atom primitive basis of 

GaAs. For n atoms per primitive unit cell, there are 3n branches of lattice vibrations. Each triple of 

values corresponds to one longitudinal and two transverse branches. Three acoustic branches are 

given by co --> 0 as q -) 0. The remaining 3(n-1) optical branches have non-zero energy at q=0. 

The phonons belonging to these branches are labelled as LA-, TA-, LO- and TO-phonons. 

Most experimental results for v-q phonon dispersion curves are obtained using inelastic 

neutron scattering17. The phonon frequencies and energies for some important symmetry points in 

q-space are given in Table 2.5. 

In polar semiconductors coupling between the electrons and the LO phonons can become so 

strong that a new quasi-particle, the polaron, can be useful. In these semiconductors, measurements 

of the electron effective mass actually yield the polaronic mass m**. 'Mis can be related to thebare- 

Table 2.5 Phonon frequencies and energies in GaAs at high symmetry 
locations within the Brillouin zone. 

Reciprocal space mode v hv 
location character (1012 Hz) (meV) 

F (q = 000) LO 8.55 35.4 

TO 8.02 33.2 

X (q = 100) To 7.56 31.3 

LO 7.22 29.9 
L(q=l 11 

222) TO 7.84 32.4 

LO 7.15 29.6 

LA 6.26 25.9 

TA 1.86 7.7 
K(q=O 

3 1) 
44 TQ1 7.9 32.7 

TO, 7.51 31.1 

LO 6.44 26.6 

LA 5.65 23.4 

TA41 3.48 14.4 
TA_L 2.38 9.58 
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Lattice vibrations: phonons 

mass m* by" 

I-O. 

Ooosal mI- 

(cc/6) + 0.0034a 2m (2.22) 

where a is the Fr6hlich coupling pwmeter 

e2 )lf2[ 
(223) 

CE. h (A L13 

)E 

(-) F- (0) 

The variation in die LO- and TO-phonon energies in AlxGal-xAs with x, for x<0.4, can be 

expressed as19 

h(OLO (MCýV) = 3625 - 655x + 1.79X 2 

2 hOTO (MOV) = 3329 - 0.64x - 1.16x (224) 

Dielectric and optical properties 

Much research has been done on the optical properties of bulk GaAs and AIxGaj-xAs and there exist 

numerous research papers and an extensive review literature. The basic terminology used in this 

thesis is briefly outlined. Given that E is the complex dielectric permittivity at frequency co, then 

the dimensionless dielectric constant is 

(225) Cr ý EI F2 - 

The real and imaginary parts can each be a function of frequency. The complex index of refraction n* 

may be deflined as 

no m F- 
it2 

=n- ik, (226) 

with the real refractive index n and the extinction coefficient k as components. It folIows that 

2-2 
Ei =nk, 
F-2 = 2nk , (227 
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Chapter 2 Physical properties of bulk GaAs and AlGaAs 

and further that 

+ FI]lf2 
1 

=[(£ 
2+ 

£2)1/2 1 -2 72 
2 

122 112 

k= 72[(el 
+ E2) (2.28) 

The optical response can therefore be described by (P-1, F-2) or by (nk). Many optical phenomena 

may be observed and measured with great accuracy by using modulation and derivative methods. A 

detailed account of thew methods and useful experimental information, has been given by Cardona. 20 

The modulation-type optical experiments reported for GaAs include: wavelength modulated 

reflectance2l, piezoabsorption22, piezoreflectance23, thermoreflectance. 24, electroabsorption25, 

electroreflectance13,14,26-29 and piezo-electroreflectance. 30 The determination of the ordering and 

spacings of the GaAs valence and conduction bands has been greatly aided by the use of modulated 

electric field and/or uniaxial stress techniques. 

The lowfrequency dielectric constant 
The static (low frequency) dielectric constant E(O) is normally measured for frequencies between dc 

and millimetre wave regions (around 1011 Hz). This constant is most commonly used to consider 
long range Coulomb interactions (i. e. excitons), and is therefore considered as a crystal screening 

parameter. The contributions to F-(O) arise from both electronic motion and ionic motion. At high 

frequencies the ions are too heavy to follow an applied field and only the electron motion contributes. 
For polar semiconductors however, the coupling of electrons and phonons leads to an indirect 

contribution to E(O) from the ionic lattice at higher frequencies. The temperature dependence of E(O) 

can be given by31 

12A(I + 12xle7) , (2.29) 

where T is in Kelvins. This value is used for modelling ionisation energies and the Bohr radius for a 

shallow impurity. The criterion for use of F-(O) is that the Bohr orbital frequency be small compared 
to vTO. For tightly bound excitons and deep level impurities, the high orbital frequencies require that 

c(-) be used instead. Equation (2.29) is based on the results of several experimental investigations. 

The room temperature value of e(O) of 12.85 will be used in this thesis. 

The highfrequency &electric constant 
For frequencies below the fundamental energy gap E0, but above the infra-red, the high frequency 

dielectric constant E(-) should be used. For negligible absorption, well below the fundamental gap, 
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Dielectric and optical properties 

the index of re&wtion is obutined as 

n- 3.255(l + 4.5xlO-57) (2.30) 

This value is obtained from the experimental investigations by Hambleton32, Seraphin33 and 
SeV4 The results of these authors may be combined to give the room temperature dispersion of n, 

at frequencies approaching the fundamental absorption edge at F... This gives 

n(v) M 
/e- 

= 
f7.10 

+ 
3.78 

)2 

JIJ2 
(231) 

1-0.18(hv 

where v is the incident photon energy, in electron-Volts. Accurate knowledge of n(v) for photon 

energies in the vicinity of the fundamental absorption edge is required to model such optoelectronic 
devices as waveguides, LEDs and diode lasers. 717he nonparabolic band structure and presence of 

exciton states makes microscopic calculations of n rather difficult. In bulk GaAs equation (2.31) is 

fairly accurate for energies below EO and indeed accounts reliably for the index of refraction to 

energies just below the absorption threshold. The temperature dependence can be included from the 
data of NlarpIC35 which gives a linear progression of n. with temperature as 

1 dn. 
`ý 4.5 x 10-6 (K" (2.32) 

n. dT 

which gives the temperature dependence of the high Erequency dielectric constant as 

e(-) = 10.60(l + 9. OxIO-'57') . (233) 

An attempt to model the temperature dependence of n. was made by Yu and Cardona36, for 

both diamond and zincblende semiconductors, using the 'Penn' mode137 widi a Penn gap of 4.9eV 

for GaAs. This gives 

I dn. 
`ý: 5.4 x 10-5 K" (2.34) 

n. dT 
)I 

which agrees rather weR with equation (2.32) despite the rather crude theory used. 

19 



Chapter 2 Physical properties of bulk GaAs and AlGaAs 
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Energy Band Structure 
in Bulk Semiconductors 

Introduction 

In this chapter, several methods of calculating the energy bands of bulk semiconductors are discussed. 

The most useful of these for the purpose of obtaining the electronic dispersion in two-dimensional 

systems is the multiband effective mass theory, based on the k-p method. In addition to the usual 

k-p interaction, extra kinetic terms derived from the invariance of the Hamiltonian (mainly from the 

work of Bir and Pikusl, Hensel & Suzuki2 and others") result in an 'extended' k. p'matrix which 

is more accurate away from the centre of expansion (in terms of perturbation theory). 

It will be shown later that there are difficulties in applying a non-perturbational k-p matrix in 

the case of two-dimensional systems. All methods available for the calculation of crystalline 

electronic states include individual approximation and each has its own particular difficulties. It is 

generally simpler to consider the implications of the crystal symmetry, rather than the actual precise 
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Chapter 3 Energy band structure in bulk semiconductors 

details of a crystal potential. Semi-empirical schemes, employing known experimental quantities, 

are particularly appealing. 

The large number of interacting particles which together comprise a crystal, forbids analytical 

solutions. The basic Hamiltonian of all particles can be described as 

HT = T,, + 7:,; + V,, +V , N+ V 
. ý, N , 

where Te and TN, are kinetic energies of electrons and nuclei and Vee, VcN and VN-N represent the 

appropriate inter-particle interactions. 

The strongest interaction, namely electromagnetic, leads to an expression for the Hamiltonian 

based on Coulomb forces: 

2222 

= -1 
h 

V2_ 
h 

V2+ 1eZ, e+1 ZiZie 
IIT 

,-iZ-I _Z (3.2) 
i 2rn i 2m, jj Iri - rjl 1, ilRI-ril i<jIRI-Rjl 

where ij (1, J) refer io the electrons (nuclei), and Z is the nuclear charge. 

So far, spin-spin interactions have been neglected and the kinetic energy has been assumed to 

be non-relativistic. The energy eigenvalues are determined by the SchrWinger equation 

HT T (R, r) = ET (R, r) , (3.3) 

where R(r) represents the spatial and spin coordinates of the nuclei (electrons). To make equation 

(3.3) tractable, several approximations are required. 

(i) Adiabatic appro)dmation 
The vastly different masses of the electrons and nuclei leads to the Born-Oppenheimer 

approximation6, which splits equation (3.3) into two separate (but interdependent) eigenvalue, 

problems. The electron Hamiltonian is given by 

,, + (3.4) H, =T , +V 

or by 

h2 
V2 +, 

e*2 Zle 2 

H. =-Y, (3-5) 
i 2m ' 

i<j Iri - rji 1. i IR, - ril 
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The ad4abatic approximation 

This gives the electron eigenvalue problem for a specified nuclear spatial configuration, which is 

written as 

(T, +V,, +V, V), D, (R, r) = E,, (r)(D,, (R, r), (3.6) 

where n is the set of electron quantum numbers (at coordinate r). 

The adiabatic approximation states that the electrons will adjust to a change in nuclear 

coordinates adiabatically and also demands that En(R) and 4)n(R, r) are functions of R in a smooth 

and continuous way. The 'separated' wave function is then 

(D. �� (R, r) = Xý�,. (R) T. (R, r) , (3.7) 

where the r-dependence is limited tO 'Fn and m indicates the quantum numbers for nuclei at 

coordinates R. Equations (3.1) and (3.3) then lead to 

(Tr, + TN + V� +V , ýx+V Nx, )X��, (R)IF�(R, r) =E (R) 'F� (R, r) (3.8) 

2 To obtain TN, it is necessary to consider the quantity Vj1Xn, m(R)Tn(R, r)1. Ibis is 

Vý [X��, T� (R, r)] = 'F� (R, r) V2RX��, (R) + 2VRT� (R, r) 9 VRXý�� (R) 
9V2 %pn (R) R (R, r) . (39) 

The smooth dependence of 'Pn(R, r) on R, leads to the assumed dominance of the first term on the 

right hand side of equation (3.9). The nuclear kinetic operator is simplified to 

TN[X,,. (R)T. (R, r)] - T,, (R, r)TNX . ... (R) . (3.10) 

From equations (3.6), (3.10) and (3.8), the fundamental equations of the adiabatic approximation are 

then 

[TN + VNN + E,, (R) ]X 

along with equation (3.6). 

Equation (3.6) gives the electronic energies En(R) for a given nuclear configuration R. These 

solutions are then potentials in equation (3.11). This leads to separate (although interdependent) 
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Chapter 3 Energy band structure in bulk semiconductors 

calculadon of the electronic and nuclear energy eigenvalues (lattice vibrational states). To go beyond 

this approximation and explicitly include the electron-lattice interaction, it is necessary to retain the 

discarded terms from equation (3.9). However, for a reasonable description of the electronic states, 

equation (3.6) is used and the nuclei are taken as being in their equilibrium positions (lattice sites). 

(ii) One-electron appro)dmation 
In order to tackle equation (3.6), an intractable many-body problem, a useful starting point is that of 

the one-electron approximation7. The crystal electron states are represented by a determinantal 

wavefunction, composed of anti-symmetrised products of one-electron wavefunctions. Variational 

principles show that the best one-electron wavefunctions, written as a determinantal function, satisfy 

HBF 4r,, (r) = E,, 4f,, (r) , (3.12a) 

with 

HHF =-_ZZ, + v=I + V"xch 
7 (3.12b) 

2m 1 jr-gl 

e'ýf dr, (3.12c) 
j jr- r, I 

ard 

VexchYn (r) e2 (r) 
f Wj; (r, ), W,, (r, ) dr, (3.124 

jr- r, I 

and summation over spin is implied. 

HHF is the 'Hartree-Fock' Hamiltonian. The Coulomb term is local, but the exchange 

potential is non-local (i. e. is an integral operator over spatial coordinates). Slater8 suggested an 

approximate local exchange term to simplify calculation. Replacing equation (3.6) with equation 

(3.12) may in certain calculations result in poor approximation. In particular, concerning the ground 

state energy of atoms and free electron gas, screening effects on the exchange term (higher order 

corrections) must of necessity be included. In crystals, screening the exchange term8 by a dielectric 

function (all other terms remaining unaltered) would better the approximation. 
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The band approximation 

(iii) The band approximation 
Equation (3.12) so far still presents considerable mathematical difficulty (ignoring even the numerical 

work involved). The band approximation is basically an assumption of a known crystal potential, 

such that 

h2 V2 
V(r) yr, (k, r) = Eý, (k), 4f,, (k, r) (3.13) 

2m 

I 

where V(r) is invariant under all the symmetry operations of the crystal space group. The usual 
initial assumption is a sum of atomic-like potentials based on free atom calculations. The electronic 

states are largely dependent on the symmetry properties of the crystal potential and not the fine detail 

in its structure and for this the band approximation will be good. Obtaining accurate values of 

physical quantities strongly dependent on the crystal potential would not be a reasonable goal in this 

case. 

Self-consistent calculations can improve this aspect considerably. Several well-known 
methods are then readily available. These comprise the tight-binding method, orthogonalised plane 

wave (OPW) method and the pseudopotential formulation. These methods expand the crystal 

potential in a complete set of Bloch type functions and obtain coefficients of the expansion such that 

the energy eigenvalues satisfy the Schrodinger equation. 

The cellular method, augmented plane wave method and Green's function method expand the 

crystal states in a complete set of solutions of the SchrOdinger equation within a unit cell. 

Appropriate boundary conditions then determine the coefficients of the expansion. 

Semi-empirical approaches, making use of experimental data to determine known quantities 

from the band calculation are also effective. Two such methods are the quantum defect method and 

the semi-empirical pseudopotential approach. 
More important to the present work is the k-p interpolation method, which uses knowledge 

of the band structure at one or more values of k to obtain the band structure throughout the Brillouin 

zone. Several of these methods will be briefly discussed below. The k-p method will be discussed 

in detail and relativistic effects included where necessary. 

The tight binding method 

This was originally suggested by Bloch9 in 1928. Suppose that ý(r) is the eigenstate for an isolated 

atom, with eigenvaIue EO and that it is normalised and non-degenerate. The basic assumption is that 

the overlap of this state O(r) with its neighbours is small and that the extra potential energy seen by 
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Chapter 3 Energy bond structure in bulk semiconductors 

the electrons in the crystal is small in comparison to the atomic potential. The Hamiltonian is then 

(3.14) 

and O(r) is an eigenstate of H, t, m, with eigenvalue E,. H,, y, tal is often taken as a perturbation. 
If the atoms lie on lattice sites cm, then for an electron near Tm = 0, the eigenfunction is 

approximately ý(r). At site Tm, the eigenfunction is approximately 0(r-TM). A wavefunction for a 

single electron in the whole crystal is therefore 

Wk Ck,,, (r -'r, (3.15) 
m 

For a Bloch forrn 

ik * Tm Ckm e (3.16) 

and the wavefunction is 

Wk (r) e'j'* (r (3.17) 

The use of atomic wavefunctions means that the total wavefunction is a linear combination of 
atomic orbitals (LCAO). Since Hcrystal is a perturbation, the energy shift for the wavefunction (i. e. 

the shift when going to an LCAO wavefunction) is 

Nfk(r)jHcrystaljVk(r) ýý' ýI 
Ile'k*("--5) 

xVj*H,:, y,, gAVr,, dr, 

where Nfm -= y(r--cm). Keeping only terms with j= rn and with j, rn nearest neighbours (the tight- 

binding approximation) gives 

E,, - cc -y eik k (3.19a) 
m 

< Ym I "crystal I YM >I (3.19b) 

7< Wk I Hcrystal i IVrn (3.19c) 
1 

and the sum is over nearest neighbours. The sum over lattice points cancels the factor N-I in 
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The tight binding method 

equation (3.18). 

For a simple cubic lattice, the sum over nearest neighbours involves 

T,,, -, cj = (±a, 0,0) ; (0, ±aO) ; (0,0, ±a) (320) 

where a is the lattice constant. It is straightforward to obtain E vs. k as 

E(k) = E, - cc - 2y(cosk., a + coskya + cosk,, a) - (3.21) 

Obviously the minimum, -6y occurs at k=0 and the maximum, +6y at in each direction, in 
a 

terms of the k-dependence only. For small k, 

E (k) = E. - cc - 6y + 'y k 22, (322) 

which gives spherical energy surfaces near k=0 and an effective mass of m* = ff2/(2ya2) 

For an fcc lattice, the k-dependence is given by 

OsLya 
a)+ (cosk., a) (Cos k., a 

OSL os 
L,, a ya E(k) 4y OSL (323) 

I(C 

2 

)(c 

222 

)+(c 

2 

)(c 

2 

)1- 

The tight-binding method as outlined above can only give reliable results for low energy, 

well-localised states. Excited states extend over many neighbours: and have a continuous spectrum 

above the ionisation energy. 

Ilic matrix elements of the form 

flym 
(r-T 

M)1211 crysul cer , 

known as crystal field integrals, depend critically on the tails of the atomic-like potentials and are 
different from those of free atoms. 

One method of improving the approximation is to use different wavefunctionslO which are 

not atomic wavefunctions. These could be solutions of the Schr6dinger equation for a single atom, 
but with a non-atomic potential, to allow for the presence of other atoms in the lattice. These 

potentials would have the symmetry of the lattice and a self-consistent procedure should result in a 
better approximation. 
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Chapter 3 Energy band structure in bulk seadconductors 

The pseudopotential method 

The pseudopotential methodl I for calculating the energy structure in crystals is based on the fact that 

conduction and valence states must be orthogonal to the core states. The effect of orthogonality 

however is used to further the development of approximation or interpolation procedures. 
A conduction or valence state yv(kx) satisfies the SchrMnger equation 

[ýPý; 
V(r)] 9, (k, r) = E(k)(N(k, r) (324) 

and the orthogonality condition 

EP, 19, >=0, (325) 

where qc is a core state. 
It is possible to write (pv as 

(k, r) = (N (k, r) -< (pe (326) 
c 

SchrWinger's equation is then given by 

[El 
+ V(r) (k, r) + Y, [E, (k) - E, ] < q)c 

2m c, 
I qý, > E, (k) 4ý, (k, r) . (3.27) 

Ile eigenvalues of (3.27) and (3.24) are the same and the crystal potential V(r) is replaced by the 

operator 

V(r)+j: [E, (k)-E, jlip, ><q, 1=-Vp (3.28) 
c 

It is easily verified that the functions Ov = ýv +Z ac(pc also satisfy equation (3.27), and the ac are 
C 

arbitrary coefficients. Ilierefore the pseudopotential equation (3.27) can be writEen as 

[22 

-+V (r) (N (k, r) +< (pe ,IA 
19, > (p, = E, (k) 9, (k, r) 

2m c 
(329) 

where A is an arbitrary operator. The choice of A detennines the choice of ý,, but does not alter the 

30 



The pseudopotential nwthDd 

eigenvalues of equation (3.27). Further it is easily shown12 that 

[E, (k) - E, ] < (pe (330) 

Equations (3.28), (3.29) and (3.30) are the basic fundamentals of pseudopotential theory. 
From (3.28), it is clear that orthogonallsation is used to subtract from V(r)ýv the part expandable in 

core states, thus reducing VP in the core region and giving a smooth pseudopotential. The crystal 

pseudopotential is usually taken as the sum of spherically symmetric local pseudopotentials centred 

on atomic sites 

V= ElVp,,, (r - (331) p 
T. v dp 

Diagonalising die pseudopotential Hamiltonian 

Hp = (3.32) 
2m 

T") 
+ vp 

leads to a determinantal equation with matrix elements 

22 

<, WIH. -EI Wk >= 
(h ki 

E 8ij +e -i(hi -hj) o d,, 
ki pI Vp, ý, 

(h, - hj) (333) 
dA 

whem 
i(k + hj r Wkj e 

NFN V 

The Fourier coefficients Vp, jj(hi-hj) are usually treated as disposable parameters, fitting some 

experimental data which depends on the electronic band structure, often electromflectance. 
Setting V(hi-hj) to zero for sufficiently large Ihi-hjI leads to reasonable small equations. For 

example the valence and conduction bands of Germanium have been reasonably calculated13 using 

only the reciprocal lattice vectors 

2x 2n 2n 
a 

ýa (±2, ±2, O), 
a7(±341, 

±l), 

for the Fourier components of the pseudopotential and with values of -0.23,0.0 and 0.06 Rydbergs 

respectively. This takes Vp(h) =0 for (a2h2)/(4n2) ý, 11. By using different local pseudopotentials 

for different valence electron states (i. e. angular momentum-dependent pseudopotenfials) enables 
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Chapter 3 Energy band structure in bulk semiconductors 

crystal states to be calculated from atomic data of excited valence states. 11fis reduces the simplicity 

however and assumes that atomic core states are similar to crystal core states, which can rcduce the 

validity of the approximation for small lattice spacing (large atomic overlap). 

Ile k-p method 

The k-p method is an extremely powerful method when used in conjunction with a priori methods. 

Introduced by Bardeen14 and Seitz7 it is mainly used as a method of determining the effective masses 

and crystal wavefunctions near points of high symmetry in k-space. It was later extended15,16 to 

include the spin-orbit interaction. The method can be used to obtain the band structure throughout 

the entire Brillouin zone17, based on a priori calculations performed only at k=0. 

Suppose that we know the eigenfuncLions 0, (ko, r) and eigenvalues En(ko) of the 

Hamiltonian 

[2 p+ V(r) 0,, (k,,, r) 
2m 

I 

at the wavevector ko. Typically this is the point of highest symmetry, ko = 0. The Bloch 

functions ýn(kcr)exp[i(k-ko)-r] are a suitable set in which to expand the crystal wavefunctions 

ý(k, r). This leads to 

ý(kj) = Yc, (k)e'('( k. ) (kr) (334) 
n 

An alternative is to expand the periodic part of the wavefunction at k in terins of the periodic 

parts of the Bloch functions at ko. Applying the variational principle with respect to the coefficients 

cn, the eigenvalues E(k) and the eigenfunctions (3.34) of the crystal Hamiltonian are solutions of the 

secular equadon 

11 <e 
i(k - k. ) or ý,, (k,, r) IH-EI e'(k - k. ) or ýn (k,, r) >II=0. (335) 

Given that 

12 i(k-k. ) 9 rý, i(k-k. )or 
h2 

)2+ 
h 

-+ V(r) e (k., r) =e- (k - k. - (k - k. ) 9p+E. (k. ) (k,,, r) 
2m 

[2m 

m 
(336) 

then equation (3.35) becomes 
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The k-p method 

<h2 (k- - k. ) 2+ E� (k. ) - EI 5ý�. +h (k - k. ) o M��, (k�) > 0, (3.37) 
[2m 

m 

11 
= 

where 

(3.38) 

integrated over the normalisation volume Of the On(k,, r), which is the crystal volume. Given the 

eigenvalues and eigenfunctions at ko, then (3.37) gives these values throughout the entire Brillouin 

zone. Using the effects of crystal symmetry, the matrix elements (3.38) may be given in terms of 

relatively few parameters. Use of the commutator [H, rl = (ilf/m)p and since the On(ko, r) are 
eigenfunctions: of the crystal Hamiltonian, then for En(k, ) # En, (k, ) 

M,,, ý, (k. ) = [E,,, (k. ) - (339) 
ih 

Since on, (ko, r) and OAO, r) belong to the irreducible representation of the double group at ko and r 

belongs to the representation of the simple group at ko, the use of group theory enables the number 

of parameters needed in equation (3.37) to be greatly reduced and easily obtained from group 

multiplication tablesI8 for the elements 

I rl n> QAO) 

where gv label the irreducible representations of the bands n', n. 

The accuracy of the results depends on the number of basis states (i. e. bands) included in the 

expansion (3.34). The parameters used in later chapters will be calculated by considering 14 bands 

(including spin). Since the calculation of optical properties will require E(k) for many points 

throughout the Brillouin zone (typically around forty thousand are included in the calculations in this 

thesis), the advantage in using this method is remarkable. 

In the absence of a priori calculations, the use of experimental data such as energy gaps and 
effective masses at some value ko can be used to fit values of the matrix elements19 1"n'n(ko). 

Given that the basis set for expansion is large enough, reliable values Of Aln'n(k) may be obtained 

throughout the entire Brillouin zone, by calculating the eigenvectors of equation (3.37) and using the 

expansion (3.34). In most cases of interest, it is enough to consider the behaviour of the energy 
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Chapter 3 Energy band structure in bulk sendconductors 

bands and wavefunctions near high symmetry points in k-space (such as 17, L and X). At such a 
point, ko say, then for k- ko, the non-diagonal matrix elements are small and in second order of 

perturbation theory this gives 

h2h 
E,, E,, (k. ) 

2m 
(k k,, )2 

m 
(k 

11 (k k,, ) M,,,,, (k. ) 
(3AI) + 

E,, (k. ) - E,,, (k,, ) 

If ko is an extremum ( 
ýE 

=0) then Mnn(ko) =0 and the effective mass in the direction of a A 

principal axis of unit vector u is given by 

112uoM.,. (k. ) 12 
(3A2) 

Ilis indicates that interaction with higher (lower) bands tends to increase (decrease) the effective 

mass. For degenerate or nearly degenerate bands at ko, equation (3.41) must be replaced by that 

obtained by diagonalising the appropriate determinant (3.37) at ko. Details of this straightforward 

procedure have been described My by Kane. 20 

Relativistic effects 

To include relativistic effects for the motion of an electron in a potential V(r), it is necessary to 

consider the Dirac equation 

Ic cc* p+ PMC2 + V(r)]o = Wý, (3A3) 

0 
where ý is a four-component spinor, p is the operator -itfV, cc represents the matrix 

(a 
0G) , and 

0 

0) 
P=C The cy are the Pauli spin operator matrices and I indicates the W unit matrix. 0 -1 
W=E+ mc2 is the total energy (including the rest energy mc2). 

In order to decouple the strong and weak components of the Dirac spinor, it is necessary to 

apply the Foldy-WouLhuysen transformation. 21 For p/(mc) (( 1, this gives the wave equation for 

the upper two-comp3nent spinor as 
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[p2'4h2h 

-+V(r)- -P--Vvov+-a . (VV x p) E (3.44) 
2m 8m 3c2 4M2C2 4m 2c2 

This is commonly referred to as the Schr6dinger-Pauli equation. Three new terms ap-pear in this 
2 

equation in addition to the non-relativistic terms 2+ V(r). 

4 
p32 

8m c 

This is a relativistic correction to the kinefic energy. Expanding the kinetic energy in powers of p 

gives: 

24 
V-(C-2i-pY -+M2-C4) 2Pp 

mc + 
2m 

TM3C2 + 

Hd =- 
VVOV 

=V2V 4m 2c2 8m 2c2 

This is a relativistic correction to the potential V(r), and known as the Darwin correction. 

h 
H,. = -cr-(VVxp) 4m 2c2 

This is the spin-orbit coupling which mixes the two components of the Pauli spinor. It originates 
in the interaction of the electron spin magnetic moment with the magnetic field 'seen' by the 

electron. Since Hv and Hd do not depend on electron spin, they do not change the symmetry 

properties of the Hamiltonian. The term Hso couples operators in both spin space and ordinary 

space, reducing the symmetry. The eigenstates of the Schr6dinger equation are classified by the 
irreducible representations of the symmetry grou p of the Hamiltonian and those of equation (3.44) are 

classified by the irreducible representations of the corresponding double group. Determining how the 

states of the simple group split into the states of the double group enables the removal of degeneracy 

due to the spin-orbit interaction to be determined. Note that the operator HO is invariant only under 

simultaneous rotations in both spin space and real space. To calculate the spin-orbit interaction in a 

particular crystal, it is possible to use a simple tight-binding method. Although not generally 

accurate for the total energy of an electronic state, relativistic effects are only important near the 

nuclei, where the potential is strong and the kinetic energy is consequently large. If the crystal 
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potential is taken as the sum of atomic-like sphcrically-symmetric potentials, the Hso term can be 

wntten as 

h1d VI, (r - dl, - T, ) H'. =22 
ýý 

cT*I(r-ý, -T ). (3.45) 
4m c rý d� d(r-(ý-Tv) 

If, as before, the wavefunctions are taken as 

iV,, (k, r) ==1: eA (r- d,, -, C, ) , (3A6) 7N= 
TI, 

where n indicates the quantum numbers (nlms), including the spin quantum number, the simplest 

matrix elements are of the type 

I 
<> 51,1 < s'l al s>*< Yl,,,,, IIIY,.. >- (3A7) 

2h 

where 
h2V. W 

2M2C2 
r )ýý, (r) 

dr 

The spin matrix elements and angular momentum matrix elements can be immediately evaluated. 
The properties of the Pauli spin matrices give 

" U'lal U, >-< Yi. Illyr., > 
" U-IGIU- >-<Y, III Yj""' > 
" u, IGIU- >< Yl,. IIIYI,., > 

" U-101u, ><Y, III Yj""' > 

< yl. I,. I Yr., >, 
-< yl. 11.1 yr., > 
< Yl,. 11'. - ily Yl.., > 

< Yl. I I., + il., Yl,.,, > 

and the properties of the angular momentum operators give 

1,, Yl,, mh Yl,,, 
1/2h y I 

(IX+ily)Ylm [(I-M)(l+m+l)l 
Lrn+l 

(I 
-ily)y 1. ý 

[(, +M)(, _M+, )]IJ2 
xIh Yt,,, -I 

At high symmetry points of the Brillouin zone, the irreducible representations of the double group 

may be expressed in terms of the spherical harmonics YIm. This allows equation (3.47) to be 
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evaluated in a particularly simple fashion. At r the lowest conduction band is described by s-type 

states and the highest valence bands by p-type states. 

k-p band structure of GaAs 

To ensure reasonable accuracy, the k-p expansion should be performed with as many bands as 

possible. This depends on the experimental data available concerning the energy gaps and effective 

masses at the chosen value of ko in equation (3.37). Using equation (3.37) and considering only the 

states rc, rv., and r',, and taking k, = 0, gives the following k-p matrix with the direction of 77 

angular momentum quantisation along the z-axis 

H=H,,, Hr H, (3A8) 

IH, 

d Hc H,, 

l 

with solution given by 

det IH- XI I=0, (3A9) 

where I represents the 14xI4 unit matrix. 
In equation (3.48) each submatrix is given by 

E�'+, äý, '+ F- 0 0 0 
E. ' + A�' + F- 0 

Hee = 0 0 0 E, '+ Aj+ 
0 

0 

H', Z = 
10+ 

c 0 0 0 0 0 
0 E 0 0 0 0 

0 0 E 0 0 0 

0 0 0 E 0 
0 0 0 0 -A, +e 
0 0 0 0 
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-I P'k- 72 0 

! P'k, 3 --l-P'k- r6 

TP'k, 6 NF13P'k, ý 
0 1 'k, 72 p 

I P'k, ý T3 ---l-P'k- 13 

I Pk+ 73 -1-Pk,, 4G3 

0 
--! --Qk+ r 43 -ý-Qk, F3 0 --! --Qk., F6 Qk -i 

T Qk- 
3 

0 0 --! --Qk,. 53 0 --! --Qk., r2 

Qký T 0 0 ---l-Qk. F3 --.! ---Qk- F2 0 

0 
- Qk;, T -ý-Qk- , 

r3 0 -03 Qk,. --! --Qk- F6 

Qk- 76 0 ý-Qk., 
72 k A3 Q 0 0 

iNF! 
3Qk,. -' Qk- T2 0 Qk+ T2 0 0 

--LPk+ 12- NF3! Pk,. --ý-Pk- 16 0 --i-Pk,, 5. ---! --Pk- F3 
H0 

---ý--Pk+ 
. 
F6 Nrl P k,. -1-Pk- F2 --l-Pk+ r3- 

I-Pk,, 
F3 

and 
Hc, c = HL,, H,, e = H. *,., H,, c = Hý 

and where e--(F12k2/2mO) and k±--kx±iky, The zero of energy is taken at the top of the 1-8 valence 

band at k=O. The momentum matrix elements are obtained by obtaining a basis for each state at 

k=O, using standard group multiplication tables18 and following the convention, adopted by Kane16 

that the matrix elements between the r6 and F7,8 states be purely real (this introduces a fixed choice 

of phase factor in each basis). Note that the group tables in Ref. 18 contain several errors for the 

group Td. A correct form of the character table for Td may be found in Ref. 22. If uncorrected, these 

errors would lead to an incorrect choice of basis. Although many different bases appear in the 

literature, 5,23,24 most differ only in the choice of phase factor. However, several otherS25,26 do 

not lead to correct results. The matrix elements in equation (3.48) have the following form 

h 
-V p=< I5, 

x 
lPx I r6 

m 

P, =ih< 1'5cx lPx I r6 
m 
h 

Q=i< r5. x 
jPy 115,,. > (3.50) 

m 
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where the single band approximation has been used. This is simply the assumption of similar 

momentum matrix elements between the states of a given 1`5 multiPlet (Le- 1-7,8) and any other 

state of interest. 

'Me basis used to obtain equation QA8) is given in Table 3.1. Note that the symmetry group 

of equation (3.48) is Oh. Since the zinc-blende structure (group Td or ý3m) lacks inversion 

symmetry, then equation QA8) has artificially high symmetry. In GaAs (and AlGaAs) there is in 

general no degeneracy at a general point k. Whether splitting of the eigenvalues occurs can be 

determined from the structure of the double group reprsentations. Ile splittings are small or zero 

along the directions [100] and (1111 and largest along the direction (1101. Typically they are less 

than 0.25meV at any point within the Brillouin zone. This is not apparent from equation (3.48) 

which contains only a few chosen interactions. Also, the basis in Table 3.1 diagonalises the spin- 

orbit interaction within any given r5 multiplet - i. e. effect of spin-orbit interaction is seen within 
the diagonal terms only. However, the spin-orbit interaction couples the r-45-' and rv states, through 5 

the term 

-3ih -V -C TM-2 `ý: 1511 IIVVIP]Y I ls'z (3.51) 
OC2 

This term is extremely small, 27 around -70meV and can be reliably ignored. Also omitted from 

equation (3A8) are terms linear in k, which split the 1'8 bands along (1101 and the rv(3/2, ±3/2) 5 
bands along [I 11]. 

To make the problem as tractable as possible it is convenient to reduce the size of -the 
Hamiltonian as far as possible. The Hamiltonians used in this thesis were obtained using invariant 

expansion methods by Luttinger and Kohn28 and by Braun and Rdssler. 29 Although involving a 

group-theoretic analysis the approach is simple to describe. From group multiplication tables it is 

possible to obtain all non-zero matrix elements connecting the states of interest, in terms of the set 

of basis functions comprising each representation. This requires that each basis function be in the 
(J, mj) angular momentum representation. Terms required are of the form 

Hij I< ri1r,, Irj> (3.52) 
n 

where Fn runs over all representations of the group. For the closest bands, the weighting factors are 

simply obtained using standard k-p perturbation theory. 

This is the approach of Braun and R6ssler29 for the conduction band in GaAs. They obtain 

the lowest conduction band dispersion as 

39 



Chapter 3 Energy band structure in bulk semiconductors 

E(k) =hk+a, k4+0, (k 2k2+k2k2+k2 k2 
2m *xyyzZ X) 

222222 2) 22 2]1/2 ±-y. [k (kxky+kykz+kzkx 
-9kxkykz (3.53) 

The parameters oc,, P, and yo which are obtained in this case from a 14-band k-p calculation can 

therefore be given in terms of the standard band structure parameters. These are the momentum 

matrix elements and the energy gaps. In Ref. 29 the terms c(,, 00 andyo are all given in so-called 

magnetic units, since the purpose of that paper was to investigate magneto-optic transitions and the 

effects of the conduction band nonparabolicity. Since it may prove rather difficult to extricate 

anything from the equations as given in Ref. 29, we re-write them in full in Sl units for 

convenience. 

(xo- 
(2 

-+ - (I+C'+yl') 
6 Ti 2 m0 (E,, +A. ) 

) 

h2p 2( 1+2 )Y2' 

3m E2 Eo (E,, + Ao) 0 
h2(pt)2 2 

. -)2 (, E- 2 
(1 + C') 

6m 

((EO-Eof-Ao 

0 _E 0 )2 

p4 (2 
-+ 

I-I 
-- 

) 

- Tý 2)(2 + 
90 (Eo + AO) Eo E. + Ao 

p 2(pi)2 212 
j+ 2 9 

(Eo' 

(E,, +A 0) 

) (Eo 

- Eo' - A,, " 
+ 

Eo E. ') 

p 2(pp)2 212 
2 9 

(E,, 

E,, +Ao (Eo-Eo'-Ao') (Eo - Eo') 
(p P)4 212 

9++ 

((Eo 

- Eo'- A(, ') jEo-E. 'ý)(EO-Eo'-A. ' EO-Eo' 

+ 
Li P-Q- 112 

9 E. 

1 

Eo + Ao 

(E. 

- Eo'- A. ' 

+)* (3.54) 
9 E. Eo'- Ao Eo - Eo' E,, 

2222 
-L + 2 

(Y2'- Y3') 

m 

(Eo' 

E. (E. +Ao)) 

+ýI 
ýPQ 21 

3 ýEo(Eo+A. )(E,, -E,, '-Ao")+Eo2(EO-Eo')) 

2 
+3 

(Eo 

(E. - Eo') (Eo - E. '- A o') 
+ 

(Eo + AO) (Eo - Eo'- Ao') 2 (3.55) 
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4lp3QI I 
Yo =- 2 3 Ea J. (Eo'+ A. ) 

41PP'Ql I--1 
(3.56) 

((E,, 

+ A. ) (E,, - E,, '- A. ') Eo (E,, - E,, ') 

where the energy gaps are as defined in Chapter 2 and C' is a constant which corrects the zone-centre 

effective mass due to remote states not explicitly included in the l4xl4 Hamiltonian. The Y, are 

modified Luttinger parameters, discussed below. From equation (3.56) we calculate the value of yo 

in GaAs to be approximately -17xlo-24eVcm3 which is sufficiently small to be safely neglected 

throughout. Equation (3.53) is the one which will be used to obtain the quantum well conduction 

subband dispersion in the following Chapter. For the growth direction (001], the term k, in equation 

(3.53) is replaced by -ia/az to obtain the bound state z-dependent envelope functions, along with the 

application of suitable boundary conditions and the inclusion of the conf mement potential due to the 

material composition, which is fully described in Appendix C. A similar treatment has been 

developed for the valence bands by Luttinger and Kohn. 28 However, due to the proximity of the 

valence bands they have retained in full the couplings obtained from equation (3.52), but subtracted 
from these terms the effects of bands outside the r"8v manifold. Also, the spin-orbit split-off band is 

not included in this 44 Hamiltonian. For the energies of interest here, this makes little difference to 

the results. The 44 Hamiltonian is then solved, to obtain 4-component wavefunction solutions, 

each component due to the admixture of each spin component in the total wavefunction. The 

Hamiltonian is given as 

P+Q Lm0 
L* P-Q 0m 
m0 P-Q -L 
0 mo -Lo P+Q 

whem 

p1yI (k2x + k2y + k-2, ) 
2 

Q Y2 (k 2 +k 
2_ 2k2) 

xyz 

L= 43Y3(ky+ik, )ký 

3 
M= ýE 2 

-k 
2) 

- vF3iY3 k, ky 
2 

Y2 (kx 
y 

(3.57) 

Again, in the case of quantum wells, it is necessary to include the confinement potential and for 
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Rcprescntaýon I J, mj > Basis 

r6 1.1 1 
2' 2 isT 

11 -I 2' 2 isl 

r7 1.1 1 
2' 2 

1 IX+iY>I+ I IZ>T 4-3 4-3 

11 -I 2' 2 ix-iy>T- I iz>l 
N5 -13 

r8 1ý 
3 

2,2" -L-IX+iY>T r- 'V 2 

11 
1 

2'2 
1 

IX+ iy >'t z >T T6 

2' -2 Z>l ix-iy>T- 
q -1 

3 
'ý6 

12 311x 
-i Y 2' 2 72 

Table 3.1 Basisfunctionsfor electron states at I"(k=O). 

[001]-growth replace the quantum number kz by the momentum operator -iD/az. The necessary 

boundary conditions in this case are also examined in Appendix C. 

The y, parameters (Lutdngcr parameters) are related to the inverse zone-centre valence band 

effective masses. Since we will take the [0011 masses as the quantisation masses in the solution of 

the Luttinger-Kohn Hamiltonian in quantum wells, it is seen that they are obtained from the diagonal 

elements of the Hamiltonian at kx=ky=O. 'Mis gives 

Mhh (0()I) = (, y I- 2y2)-' 

Mlh (001) = (YI + 2Y2)-l - (3.58) 

Also the parameter y3 is related to the effective masses in the (I 11] direction, which are obtained as 

Mhh (I 11) ý-- (Y I- 2'(3)-l 

Mlh(l") "ý- (111+2YA-l 
- 

(3.59) 

The modified Luttinger parameters, mentioned above, are simply the Luttinger pararnetersyi, 

minus the coupling to the other states in the l4xl4 Hamiltonian discussed above, which have been 

included in the Luttinger-Kohn 4x4 Hamiltonian. 

Note that the momentum matrix elements do not explicitly appear in these equations. Since 
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we are considering materials of similar chemical properties we assume that the momentum matrix 

elements are similar as well and use the GaAs values throughout. 
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Electronic Structure in 
GaAs-AlGaAs Quantum Wells 

Introduction 

To obtain the bound state eigenfunctions and eigenvalues in quantum wells, it is sufficient to extend 
the theory of the preceding Chapter. 'Me bound state wavefunctions (e. g. in the valence band) can be 

taken as having the form 

(k, r) (z) U, ' 9m , (0) e"kl 1*Pp 

where U,,, (O) are the zone-centre Bloch functions, k1l is the in-plane wavevector and gmv(z) are the m 
envelope functions in the growth (z) direction. 

It is assumed that the confinement potential along z, due to the z-dependent composition, 
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Chapter 4. Electronic structure in GaAs-AlGaAs quantwn wells 

affects mainly the zone centre states at 1. The effect at other symmetry points (i. e. X or L) will be 

considered later. If we consider the conduction and valence bands as effectively decoupled (for small 

wavevectors), the bandstructure may be obtained directly from the Luttinger-Kohn Hamiltonianl for 

the hole subbands, or the effective mass Hamiltonian of Braun and R6ssler2 for the conduction 

subbands. 

The preliminary sections in the present Chapter will calculate the conduction band dispersion 

and valence band dispersion, respectively, in a single GaAs-AlGaAs quantum well. This will 

elucidate the method of calculation, which will be used throughout. Extension to different systems, 

for example multiple quantum wells, symmetric and asymmetric double quantum wells, is 

completely straightforward and will be considered later. Note that in using this envelope-function 

approach, it is assumed that the well and barrier materials are restricted to having similar chemical 

composition. We are connecting similar types of electron states in each region (along the growth 

axis). The momentum matrix elements elements do not explicitly appear and have been completely 

subsumed into the effective mass Hamiltonians. If different states in different regions were at fairly 

close energies, the method would not be expected to give good results. This particular topic, which 

necessitates different theoretical methods, will be discussed later. 

For the bulk of this thesis, the barrier and well materials under consideration will be of such 

similar chemical properties that the envelope-function method will always be applicable. It is thus 

expected to give extremely accurate and reliable results. 

Band Offsets 

it is assumed throughout this thesis that the material mismatch at each interface introduces an 

effective band gap offset AE?,, which for GaAs-AlGaAs, at T=4K can be given as3 AE, =1.34x, where 

x is the aluminiurn fraction in the barrier material. This means that the alignment of the two 

different band states in each material must be specified. Experimentally it is verified that the largest 

offset is seen at the F point, where discontinuities in both the conduction band and valence band are 

seen. In the GaAs-AlGaAs system, for quantum wells, this leads to the GaAs region becoming a 

potential well for electrons in both the lowest conduction band and valence band. 

The height of this well in both bands, which gives the so-called band offset ratio, has been the 

subject of much experimental investigation. No precise value has been agreed, but recent 

experimental resulLS4-6 have all fallen within a small range of values. These give the offset ratio 
AEc: AEv in the range 55: 45 to 65: 35. This contradicts the long-held view8 that 85: 15 was the 

correct offset ratio for the GaAs-AlGaAs system. NVe choose a value, therefore, which lies mid-way 
between these limiting values and take the GaAs-AlGaAs band offset to be 60: 40 throughoUt. 
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Conduction subband disýrsion 

Conduction subband. dispersion in single quantum wells 

To obtain the correct dispersion it is necessary to consider three important aspects of -the bulk 

conduction band structure in GaAs and AlGaAs. These arc: 

(i) Isotropic nonparabolicity 
(ii) Nonisotropic nonparabolicity 
(iii) Spin-splitting within each band 

Further, to obtain accurate dispersion, including the above, it is necessary to include the effects of the 

higher p-antibonding conduction band. 

Braun and R6ssler (Ref. 2) have obtained an accurate expression for the lowest conduction 

band dispersion to fourth order in k. This was obtained by an invariant expansion (cf previous 
Chapter) of the two-fold lowest conduction band states. The weighting factors were obtained using 

standard k-p perturbation theory. 

The conduction band dispersion may then be written as 

hk4+222 2+k2 2 E(k) =-+a, k N(kxky+kykz 
. 
k., ) 

2m 
22 

zk2 
qk2 22 2222 ±-I. [k (kxky+kykz+k 

.x xkykzl (42) 

We will choose to ignore the spin-splitting term since it is small (see calculated value in 

previous Chapter). The values of oto and 00 are obtained from equations (3.54) and (3.55) as 

-2088eVA4 and -2271 eVA4, respectively. The solution of this equation in single quantum wells 
has been extensively considered by Ekenberg (Ref. 8). Using k, = ýjcosO and ky = ýIsinO then 

equation (4.2) may be re-written as 

4+h2 (2ct, + P, ) 22+ h2 41 +22E kz +kII 
]kz 

k2l +k 
00 

kk--=0. (43) 11xy 2m a, cc, 2ma, (Y. 0 a, 

For a perfect heterostructure, with a step-like potential at each interface, then putting K=k, in the 

well region and ý_-ik, in the barrier, where E--)(E-V, ) leads to 

K= 
[A, 

- A, 
(I 

+ 
Ll )1121lf2 

(4Aa) 
A 12 

= 
[A 

2 

(1 

+L-A (4Ab) 
2 

)112 

2]lf2 
A 72 
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wh= 

h2 (2cc,, + 
A, = , k2 11 (4.5a) 

4m a, 2cc,, 
, , 

B, = k2k4 11 - if 

NI 
k2k2 

7y (4.5b) 
cc, l 

2m I cc., (Xo, 
2 2a) +N 2 A= 2 - 

2 2 k II (4.5c) 
4? " 2 iXo, 2cc, 

2 

B2 = 
(E- V) 11 22 

-kl I- 
4 

P-2 
22 k, I- -kxky (4.5a) 

a, 
2 

2m?. ()C', 
2 

cci 

The subscript 1 (2) refers to the well (barrier) material. The consideration of boundary conditions is 

quite lengthy and is given in Appendix C. The solution is simply given here. The appropriate 

current-conserving boundary conditions lead to a simple transcendental equation for the bound 

eigenstates given by 

It 2x 

- 2cc. 2 
X3 

tan (KL) 
2m2 

-1 (4.6) 

+ 2a, 
IK3 2m, 

for the even-parity solutions at kl, =O and where the interfaces are at z--±L. For the odd-parity 

solutions, tan(KL) is replaced by -cotan(KL). 
For the case of non-zero in-plane wavevectors (i. e. kl, #O) then equation (4.6) is easily 

generalised to 

h 21 X3 

(KL) = 

[2m2 
+ (2oc 

'2 + P,, ) k, 
Ix- 

2a. 2 

(4.7) 
h2 23 [2m, 

+ (2(x(,. + P., ) k, I 
IK 

+ 2cc,, K 

The calculated dispersion for 50A and IOOA quantum wells (with aluminium concentration in 

the barriers x--0.2) is shown in Figures 4.1 and 4.2. The dotted line in each figure is the result of the 

simple parabolic model (1-D particle in a box 'textbook' model) with constant effective mass and 

where no account has been taken of the correct dispersion at kl, =O. This simple model, although 

widely used, uses a constant effective mass and completely isotropic parabolic dispersion is therefore 
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Figure 4.1 Conduction subband dispersion (n = I) for a 50A GaAs-AlO. 2GaO., gAs single quantum 

well with k1l = kx. Also shown (dotted curve) is the result of a parabolic approximation to the 

dispersion. The directions are along [1001 to the right and 11101 to the left. The energy is measured 
from the bottom of the conduction band potential well. 

obtained. Note that the confinement energies En(kl, =O) are not the same. The proper solution shows 

an increased n=1 subbmd confinement energy and decreased confinement energy for the nt-I subbands. 
The density-of-states within each subband n is constant in the parabolic model and is given by 

2D M,, 
Pn = 

gh 2 (4.8) 
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Table 4.1 Calculated averaged in-plane zone-centre effective massesfor 

conduction subbands n=I and n=2 in GaAs-AlGaAs single quantum 

wellsfor several well widths. 

Al in barrier subband 5oA IoOA 200A 

x=0.2 CBI 0.0734 0.0697 0.0676 

CB2 0.0803 0.0714 

0.3 CBI 0.0732 0.0698 0.0677 

CB2 0.0811 0.0715 

Table 4.2 Calculated averaged in-plane zone-centre effective massesfor 

valence subbands IIH1, LH1 and IIH2 in GaAs-AlGaAs single quantum 

wellsfor several well widths. 

Al in barrier subband 50A iooA 200A 

x=0.2 HHI 0.172 0.159 0.154 

LHI -1.550 -0.216 -0.163 
HH2 0.107 0.0074 0.066 

0.3 HHI 0.194 0.181 0.170 

LHI -1.970 -0.284 -0.163 
HH2 0.124 0.086 0.067 

but this is not the case using the more accurate dispersion model. The n=1 and n=2 total density of 

states is shown for the IOOA well in Figure 4.3. Note, that the density of states increases with 

energy into each subband. 

In bulk material, a useful simplified form of the energy dispersion in the lowest conduction 
band can be expressed as9 

h2k2 
ýj = E(I + ctE) (4.9) 

wh= 

, (, 

-M* 

)2 

. (X =- Eg M, 
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Figure 4.2 Conduction subband dispersion for a IOOA GaAs-AIO. 2GaO. 8As single quantum well, 

for subbands n=I and n=2 and a parabolic. approidmation (dotted curves). 

The non-parabolic dispersion given by these equations is similar in trend to that obtained here for the 

n=1 quantum well subband. 

The calculated 2-D density-of-states shown in Figure 4.3 is still step-like, but the effects of 

the nonparabolicity can be clearly seen. As the energy increases into the conduction band, the band 

curvature mass increases and the dispersion departs from a parabolic shape. This effect gradually 
increases the density-of-states deeper into each subband. The results given here were obtained by 

solving equations (4.3) and (4A) at every 50 interval in 0, where 0 is defined by 

k,, = k, I cos 0 

ky = k, I sinO , (4.11) 

6-.. -- 
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and kil is the magnitude of the wavevector. The DOS function is calculated by considering which 

regions in k-space are closest to a particular energy, Ei say and summing the numerically obtained 

DOS from all contributing regions of k-space and all contributing subbands. This gives the 

contribution to p(E) as p(Ei). 

Valence subband dispersion in single quantum wells 

To obtain the valence subband dispersion we use the 4x4 Luttinger-Kohn Hamiltonian, given in the 

previous Chapter. Replacing hkz by the operator -ifia/az, the elements of the Hamiltonian now 

become 

121 a2 
p= yj (k 

x+ 
k2) Yi 

2y2 
YZ2 

12 a2 

Q= Y2 (kx + k2) 72- 
2y az 2 

a 

L= Yf3iY3 (ky + ik,, 
az 

ý-3 
2 2) M=2 Y2 (kx -ky - yfi3iy3k,, ky (4.12) 

The correct boundary conditions for the four-component envelope function are discussed in 

Appendix C. At each interface these require continuity of the envelope function (fj, f2, f3j4) and 

the vector 

a 
Of I- 2Y 2) - az 

ý3-Y3 (k,, + iky) 

0 

0 

NF3Y3 
(k, 

- iky) 

a 
(YI +2Y2) 

az 

0 

0 

0 

0 

a 
(y, +2y2)- 

az 

-ýIY3 (k,, + iky) 

0A 

0 f2 

F3Y3 (k, 
- iky) 3 -V 

(y, -2Y2)- f4 
az 

. 

In Figures 4.4 and 4.5 the valence subband dispersion is shown for well widths of 50A and 

100A respectively. In each case x--0.2 in the barrier material. The subbands have been labelled 

according to their character at the zone centre, k1l = 0, where they are decoupled in the Luuinger-Kohn 
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Figure 4.3 Conduction band 2-D density of states for a IOOA GaAs-AIO. 2GaO. 8As single 

quantum well, for subbands n=I and n=2, and a parabolic approximation (dotted curves). 

4x4 Hamiltonian, and HH denotes Heavy-Hole LH denotes Light-Hole. Note that this description 

does not apply to the actual in-plane effective masses. Ile effective masses are now. due to the 

subband mixing at k1l #0 which arises both from the off-diagonal terms in the Hamiltonian and from 

the application of the quantum well envelope function boundary conditions. The averaged zone- 

centre effective masses of the subbands are given in Table 4.2, where the averaging is over the angle 
0, defined in equation (4.11). It is clear from these figures that the dispersion is highly nonparabolic. 
An approximate guide to the trend of the effective masses can be seen from standard se-cond-order 

perturbation theory. For each subband n, this gives the effective mass as 

12: 
'12 

j jn1Hi, 12: n 
((I 

-ýT2)-1 + (4.14) 
2 M, MO Won E, - En, 

nI where fi, fnj are the four-component envelope functions of bands n, n' respectively and the Hij are 
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Table 4.3 Calculated subband confinement energies (meV) in 

GaAs-AlGaAs single quantum wellsfor several well widths. 

A] in barrier subband 50A iooA 200A 

x=0.2 CB1 65.4 28.6 9.9 
CB2 102A 38.4 

HHI 19.0 6.5 1.89 

LHI 40.2 16.8 5.58 

HH2 70.6 25.6 7.55 

0.3 CB1 80.9 32.4 10.6 

CB2 119.2 41.3 

HHI 20.9 6.7 1.91 

LH1 46.5 17.8 5.62 

HH2 80.4 26.8 7.61 

the off-diagonal elements of the Luttinger-Kohn Hamiltonian. Interactions with higher subbands 

tend to increase the effective mass and interactions with lower subbands tend to decrease the effective 

mass. The terms (yl±y2)-l give the effective masses at kil =0 in the so-called diagonal 

approximation (this neglects the effect of applicafion of the boundary conditions, essentially ignoring 

the quantum well structure). 
The effective mass values (yj4__y2)-I are often used to represent the HHI and LHI subband 

effective massesIO-12 when considering the exciton states in quantum wells. From Figures 4A and 

4.5 it is clear that this is quite incorrect and the actual subband in-plane masses are not given by the 

above expressions. The values given by (yj+_y2)-I are 0.115 and 0.206 for the HHI and LHI 

subbands respectively, in the diagonal approximation. The actual calculated in-plane masses (for 

x=0.2) given in Table 4.2 are 0.172, -1.55 (Lz = 50A) and 0.194, -0.216 (Lz = 1004 In the case of 

the HH I subband the calculated value is 50% larger and 69% larger than the above approximation for 

the 50A and IOOA wells respectively. The situation for the LH1 subband is even worse since the 

calculated subband dispersion has a different sign of curvature at the zone centre (i. e. negative hole 

effective mass). 
It is essential to point out that the bandgap discontinuity and relative band offsets are 

extremely important parameters to be input to the calculations of subband structure. As mentioned 

previously we rely on experimental results for these parameters. State-Of-thC-arE bandstructure 

calculation methods can hardly be of any help in this instance. Both pseudopotential and ab initio 

methods can not claim accuracy greater than O. IeV at present. This value, however, is of the same 

order of magnitude as the valence band offset used here for GaAs-AlO. -2GaO. 8As: quantum wells. At 
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Figure 4.4 Valence subband dispersion in a 50A GaAs-AlO. 2GaO. 8As single quantum well. The 

directions are along [1001 to the right and [1101 to the left. The energy is measuredfrom the bottom 

of the valence band confinement well. The subband are labelled according to their character at the 

zone-centre. 

present, therefore, the band offset values used are simply a personal choice made from the range of 

experimental values published. 
The actual subband structures shown in Figures 4A and 4.5 are not completely intuitive. 

This applies especially to the negative effective masses of some subbands at the zone-centre. It is 

clear, however, that the strong coupling of the wavefunction components and the anti-crossing 
behaviour of the basis set used, leads to much of the observed in-plane dispersion. 

The two directions in these Figures are along <100> and <110>. The results for these 

directions axe fairly similar and it is expected that the so-called axial approximation 13,14 would be 

reasonable in this case. This approximation neglects the in-plane warping of the subband dispersion, 
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resulting from a simplified Hamiltonian. The in-plane warping depends on the relative magnitudes 

of the effective mass parameters y2 and y3. The axial approximation is simply obtained by 

neglecting the difference between the values of y2 and y3 in the M term of the Luttinger-Kohn 

Hamiltonian. This term then has an average effective mass parameter ý given by L(Y2+73). 
n2 

This neglect of warping in the (kx, ky) plane has only a small effect on the dispersion and does not 
affect the calculation of the ki, =0 subband conf mement energies. 

Subbands; which have negative effective mass at the zone-centre typically reach a maximum 
value in energy at k1l = 21r/Lz where Lz is die well width. This value of k1l is therefore a 

characteristic value (inverse length) in these structures. The strong subband mixing and the 

consequent subband nonparabolicity were first predicted theoreticafly by Nedorezov15 in the case of 

an infinitely deep well. The problem in this case can be calculated exactly. 
Another simplification widely used is to reduce the 4x4 Hamiltonian to two 2x2 

Hamiltonians. This is achieved via a unitary transformationl4,16 which block diagonalises the 
Hamiltonian. This relies on the artificially high symmetry and the neglect of k-linear terms. The 

4x4 block diagonalised Hamiltonian is given by16 

P+Q R00 

H 
R* P-Q 00 

(4.15) 00 P-Q R 
00 R* P+Q 

whem 

R IMI -i ILI (4.16) 

using the notation given earlier for the 4x4 Hamiltonian. The use of this Hamiltonian simplifies the 

calculations and is computationally slightly more efficient. However, the basis set has also been 

transformed and the matrix elements between the conduction subbands and the valence subbands now 
have a different form. This method of solution is only mentioned here for the sake of completeness, 

the full 4x4 Hamiltonian being used throughout this thesis. Note that in the particular case of 

asymmetric quantum wells or the application of an external field, the above block-diagonalised form 
has been shown to be incorrect. 17 In this case all instances of k1l in the lower W block should be 

replaced by -kil. This has not been done in several publications using this method. 18,19 In these 

cases several of the results quoted are therefore inCoffeCL The new transformed bases which are given 

in Refs. 18 and 19 are aim incorrect since they were obtained from the point of view of the axial 

approximation and the neglect of any terms in the 4x4 Hamiltonian containing the factor ±(y2-y3), 

which was not stated in these References. A correct form is given in Ref. 20. 
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Figure 4.5 Valence subband dispersion in a IOOA GaAs-AlO. 2GaO. 8As single quantum well. The 

directions are along 11001 to the right and [1101 to the left. The energy is measuredfrom the bottom 

of the valence band confinement well. The subband are labelled according to their character at the 

zone-centre. IN denotes Heavy-Hole, LH denotes Light-Hole. 

The method which we use throughout to solve the matrix equations is the standard finite- 

difference method. This method is probably the simplest method available and is particularly 

straightforward to apply. As in the case of the conduction subband dispersion, the subband 

dispersion is obtained at every five degrees in the in-plane angle 19, defined earlier. The maximum 

value of the in-plane wavevector chosen was k1l = (0.21rla), which represents a distance of ten percent 

into the Brillouin zone. In calculating the density of states, it is assumed that the gradient VkE is 

constant within the small neighbourhood defined by the mesh size in 0 and k1j. By using some five 

hundred mesh points'to sub-divide k1l this gives nearly forty thousand points sampled in kll-space. 

By using initial estimates for the bound state envelope functions, the correct solutions are obtained 
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by simultaneously iterating the finite-difference equations both forwards and backwards. This method 

is extremely robust and is capable of accommodating an arbitrary potential profile. When 

considering the effects of an applied electric field, this method will also be applied to the solution of 

the conduction band Hamiltonian, which could otherwise be considered in terms of Airy functions: ý- 

although not as efficient to solve in terms of the computational time involved. 

The results given so far indicate that as the well width increases the number of bound 

subbands also increases. The energy separation between each subband is seen to decrease with 

increasing well width. In the case of the conduction subbands, the n=I subband effective mass is 

seen to approach the bulk value as the well width increases and at Lz = 200A is only 1.2% larger 

than the bulk value of 0.0665 for both x=0.2 and x=0.3. This trend is seen in all the conduction 

subband results in Table 4.1. 

The effective masses of the valence subbands also decrease with increasing wel-l width. 'nie 

only exception here is the LHI zone-centre effective mass but since this subband has negative 

effective mass the magnitude is seen to decrease with increasing well width. From Table 4.2 this is 

seen to drop from 1.55 at Lz = 50A to 0.163 at Lz = 200A with x=0.2 A similar trend is also seen 

for the LHI subband with x=0.3. 

As will be shown later, the perfortnance of highly-pumped GaAs-AlGaAs quantum well lasers 

depends strongly on the number of bound subbands, particularly within the conduction band. For 

well widths larger than around IOOA, the possibility of n=2 conduction subband lasing can be 

achieved at high injection currents and with increasing well width this will occur at lower values of 
injection current. To prevent this taking place requires narrower well widths, effectively giving only 

one bound conduction subband and with higher injection currents not adversely affecting the 

performance. 

Effect of electric field on subband structure 

The effects of an externally applied electric field on the subband dispersion is straightforward to 

incorporate into the theoretical calculations. In both the conduction and valence band Hamiltonians 

the potentials are now re-written as 

V(Z) = V, (z) + lelFz (4.17a) 

V(z) = Vh(z) - lelFz, (4.17b) 

for the conduction and valence bands respectively. F is the magnitude of the applied field , which is 

here taken as along the z-direction and lei is the magnitude of the electron charge. Ve(z) and Vh(z) are 
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Figure 4.6 Schematic illustration of the conduction band confinement potential for four values of 

electric field applied along the growth axis. Also shown (not to scale) is the n=I conduction 

subband envelope function at kil = Ofor a IOOA GaAs-AIO. 2Gao. 8As single quantum well. 

the conduction and valence band confinement potentials respectively. Note that equation (4.17b) is 

here added to each diagonal term in the Luttinger-Kohn Hamiltonian. 

Before making any calculations it is useful to consider the meaning of a bound eigenstate, as 

obtained via a finite-difference solution of the Hamiltonians. When applying boundary conditions, 

we normally take IVn(z) =0 at a suitably large distance from the well centre. since this is correct for a 
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truly bound state. However, since the overall potential is altered by the application of the electric 

field, then it is reasonable to expect that for a sufficientiv large field value, some eigenstates may be 

classed as either quasi-bound or completely unbound. 

The above boundary condition alone would not be helpful in this situation. Taking the case 

of no applied field and a single quantum well, it is sufficient to set XVn(z) =0 at a distance of z= 
'-2.5Lz, where Lz is the well width and we are considering only the k1l =0 eigenstates. Since a 

potential well always has at least one bound state, 21 then this eigenstate can be taken as bound. 

Suppose a reasonably large electric field has been applied along the growth axis. For a bound (or 

indeed quasi-bound) state, then for a sufficiently remote boundary, the actual location of the boundary 

is not important when calculating the energy. In the present case, evaluation of the eigenenergy 
involves spatial integration, which obviously extends to both boundaries (at ±2.5Lz). If, upon 

application of all boundary conditions and iterating the relaxation method n+I times we obtain 
(En+I-En) < 8, with 5 sufficiently small, then it is assumed that the bound state eigenfunction has 

been evaluated. Consider now removing the boundaries to several percent further, say at 2.7Lz. If 

upon a single extra relaxation and recalculation of the energy, (En+2-En+l) is still < 8, then this is 

taken as definitely a bound or quasi-bound state. 

This method should prove reliable in determining the field values at which quantum well 

states can no longer be considered to be bound states. Further, if this test were not made, then all 

envelope functions would initially have Wn(z) =0 at z= ±2.5Lz and this condition would remain 

indefinitely in all calculations, even beyond the electric field value at which eigenfunctions were no 

longer truly bound, these states then being completely miscalculated by the finite-difference scheme. 

- If a variational approach were used instead'22 then a trial wavefunction must be specified 

initially as a bound state. (The specific trial wave function used in Ref. 22 is similar to the Fang- 

Howard wave function23 which successfully describes the bound-electron levels in metal-oxide- 

semiconductor (MOS) structures). This then automatically dictates that all states are bound, even at 

arbitrarily high electric fields, which is completely erroneous. Hence any region in which states 

become quasi-bound could not be determined by using this variational approach. 

Figure 4.6 illustrates the effect of an electric field along the growth direction on the total 

conduction band confinement potential for four field values. The envelope function displayed is that 
for the C131 k1l =0 eigenfunction and L, = IOOA, x=0.2 in the barrier material. The minimum 

position in each potential well for the conduction and valence band states now occurs at a different 

location along z. The overlap integral between states of similar parity will originally decrease with 

ap plied field and those of different parity may start to increase with increasing field. Inevitably this 

will affect such properties as the optical absorption coefficient between each pair of confined 

subbands, which depends on the overlap integral of the envelope functions. 

For states with similar parity, the squared overlap integral is given in Figure 4.7, as a 

function of the applied electric field. This is for a well width of IOOA and with x=0.2 in the barrier 
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Figure 4.7 Squared overlap integralsfor the k1l =0 envelope functions of states CB1-HHI, CBI- 

LHI and CB2-HH2 in IOOA GaAs-AIO. 2Gao. 8As single quantum well as a function of the applied 

electricfield F(z). 

material. Note that at this value of electric field (i. e. 25kV/cm) the 11111, LHI and CB1 eigenstates 

are still bound. The HH2-CB2 results are only given for fields up to 40kV/cm, at which the CB2 

states are no longer bound. It should be pointed out that the results in Figure 4.7 refer to the 

eigenfunctions at kil =0 only. 

It has recently been suggested24 that at moderate values of electric field, all hole states have 

'leaked' out of the quantum well. It will be seen from the results given here that this is quite 
incorrect and owes much of the error to the method of solution (a Monte Carlo approach), which 

essentially 'locks on' to a resonance in the quasi-triangular potential well at the lowest point in the 

valence band confinement potential. This gives totally extraneous solutions, which are essentially 

resonance interactions between even and odd parity solutions. This can manifest itself particularly 

when the boundary at one side is at a potential energy equal to that in the bottom of the triangular 

well mentioned above especially if no allowance is made to 'move' the boundaries during the 

calculation as outlined in detail previously. 
The effect of an external field on the valence subband dispersion is shown in Figure 4.8, where 
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the direction of kil is along <100>. For F= OkV/cm all subbands are spin-degenerate which means 

that within each subband both spin components have the same energy at each wavevector value. 
However for non-zero electric fields the subbands split and the only degeneracy is at k1l = 0. 

Note that the subband confinement energies En(kjj = 0) are also different. This shift in energy 

has been called the quantum confined Stark effect25 (QCSE), which has been proposed as a possible 

candidate for fibre optic modulator devices26 and also switching devices. 27 The QCSE devices rely 

on the modulation of optical absorption due to an external mcdulating electric field, given that the 

optical absorption is directly proportional to the squared overlap integral of electron and hole subband 

envelope functions. In most cases of interest these are the ground state wave functions, namely CB I 

and HH L 

In fact almost all modulated quantum well devices rely on some form of modulation of the 

quantum well eigenstates for their principal mode of operation. The effect of the electric field on the 

squared overlap integral of the electron and hole envelope functions has already been shown in Figure 
4.7. From this Figure the term 'ýýVCB 1 IWHH 1>2 is seen to fall to 50% of the zero-field value at a 

field value of less than 80 kV/cm, with most of the change being linear in the applied field. The 

absorption (proportional to "'TCB11THH 1>2) can then be modulated linearly with the applied field. 

However, in practice it would be necessary to consider the effect of all the other subbands. These are 

of less importance for optical frequencies below the fundamental bandgap but will still contribute. 
Their effect will of course be reduced if narrower wells are used, this serving to both reduce the 

number of bound eigenstates and to increase the separation in energy between them. Also, for a 
,, 2 decreases with decreasing well width. This given value of electric electric field, <WC]311WHH 1, 

must of course be offset against the reduced optical confinement factor due to the narrower quantum 

well structures. 

The calculated shift in confinement energies, with respect to the centre of the well, is shown 
in Figure 4.9 for the CB1 and ffH I subbands. In each case energy is measured positively into each 

subband so that the confinement energy of these subbands actually decreases with increasing electric 
field. These results apply to both of the spin components in each subband since all subbands are 
doubly degenerate at ý, = 0. 

The higher subbands, which are not shown in Figure 4.9, display an increase in confinement 
energy En(kjj = 0) with increasing electric field. This is the opposite situation to that observed in the 

case of the ground states CB I and HH 1. 

The effects of the applied electric field will also be taken into account later, when the optical 

properties of GaAs-A]GaAs quantum wells will be considered. The reduction in the overlap integral 

between electron and hole states reduces the contribution to the real part of the index of refraction by 

these states. Similarly, the absorption coefficient is reduced. 
It has been mentioned previously that in some cases the overlap integral may increase. This 

is particularly true when the zero-field overlap integral is zero, due to the different parity of the states 
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Figure 4.8 Valence subband dispersion along the <100> direction for a GaAs-AlO. 2GaO. 8As 

single quantum wellfor (a) F=0 Mcm and (b) F= 25 Mcm- 

involved. Although the most important contributions at photon energies below the bandgap, namely 

'WCBl1'VHH 1>2 and "ýWCMIYLH 1; ý, 2 will decrease with increasing electric field, other contributions, 

i-e- 'WCB21YHH 1>2 and 'WCB21VLH 1>2 will initially increase with an increase in the electric 

field. Proper calculation of the optical properties must then include all confined subbands in both the, 

conduction and valence bands. It would not be possible to obtain correct results by including only a 

few selected subbands in the calculations. 
Up until now we have concentrated on the subband structure in single quantum wells. 

However, also of great importance are the electronic and optical proper-ties of double quantum wells. 

These may have different material in each of the three barrier regions and may also have different well 

thicknesses in each of the two well regions. The electronic structure in GaAs-AlGaAs double 

quantum wells will be examined in the next section. 
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Figure 4.9 Quantum confined stark effect (QCSE) shift of the CB1 and HH1 subband energies in 

a IOOA GaAs-AlO. 2GaO. 8As single quantum well. The shift is with respect to energy being 

measured positively into each subband. 

Double quantum wells 

In the case of double quantum wells and with thin central barriers, then it may be possible for the 

bound single well eigenstates to couple. This would produce symmetric and and-symmetric wave 
functions, in an analogous behaviour to that seen in atomic bonding. 

The well widths used in the calculations so far have not been obtained by consideration of the 

GaAs layer thickness. Given that one single GaAs layer has a width of 5.653A and ignoring the 

small difference in layer thickness in AI, Gaj_xAs for x :! ý 0.4, then it was chosen to consider a 

double quantum well structure of well thicknesses 50.877A (9 layers) and with a central barrier 

thickness of 14.133A (2.5 layers). 

This is the structure which will be considered at first. Later, the central baiTier will be 

increased to 25.439A (4.5 layers) to examine the effect of central barrier thickness on the subband 
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Figure 4.10 Valence subband dispersion along <100> direction for GaAs-AlO. 3GaO. 7As double 

quantum well. The well widths are 50.877A and the central barrier width is 14.133A. 

dispersion. Although coupling will be observed in both the conduction and valence subbands, only 

the results for the valence subband dispersion will be displayed. The subband dispersion is more 

complex in the valence band, and is more important when considering the optical properties. 

The calculated valence subband dispersion, along the in-plane direction <100> is illustrated in 

Figure 4.10. The aluminium content in the barrier is x=0.3, which has been chosen to reduce the 

number of confined subbands and hence the size of the calculations. Ibis structure is obtained using 

the Luttinger-Kohn Hamiltonian, described in detail previously. In this case, the continuity 

conditions are applied at each interface along the growth axis (four interfaces in this case) and as 

usual the wave functions are set to zero at a distance of several well widths into the outermost barrier 

regions. The aluminium fraction x=0.3 is the same in all barrier regions in this example. 
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Figure 4.11 Subband envelope functions at kil =0 for GaAs-AlGaAs double quantum well 

structure. The well widths are 50.877A and the central barrier width is 14.133A. 

It is clear from Figure 4.10 that the subbands: in each quantum well have coupled, due to the 

small width of the central barrier region. Within each pair of coupled subbands, it is possible to 

describe each subband wave function as either symmetric or anti-symmetric. This can be seen more 

clearly in Figure 4.11, where the calculated envelope functions (not to scale) are illustrated. Within 

each pair, the energies are no longer degenerate and indeed are different for aH values of k1l in Figure 

4.10. There is also a clear anti-crossing behaviour, although the symmetric and anti-symmetric 

partners approach each other to within less than a few meV. 
Note also from Figure 4.10 that the LH1 antisymmetric wave function reaches a maximum 
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Figure 4.12 Valence subband dispersion along <100> direction for GaAs-AlO. 3GaO. 7As double 

quantum well. The well widths are 50.877A and the central barrier*width is 25.439A. 

value in energy at k1l = (7c/Lt. 0 where Lt, t is the sum of the well region and central barrier region 

widths. This is similar to the case of the single quantum well LHI subband outlined earlier. In this 

case (ir/Lto appears to be a characteristic inverse length of the quantum well structure. 

In Figure 4.12 the subband dispersion is shown for the second double quantum well structure, 

with an increased central barrier thickness. The central barrier width has been increased from 

14.133A to 25A39A. In this case the symmetric and anti-symmetric energy levels have moved 

closer together signifying a reduction in the amount of wave function coupling through the central 
barrier region. This effect would continue with increasing width of the central barrier region, until at 

sufficiently wide barrier thicknesses both wells would be completely uncoupled. For most of the 

quantum wells considered in this thesis, the well widths are around 100A. For multiple quantum 
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well (MQW) structures with the well regions separated from each other by similarly thick barrier 

regions, then the structure can be considered as separate quantum wells with negligible inter-well 

coupling. This then simplifies calculation of the in-plane dispersion and the optical properties in 

such structures. 
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Absorption and Gain 
in Quantum Well Structures 

Introduction 

The optical properties of GaAs-AI, Gal-xAs quantum wells have attracted considerable interest during 

the last decade. Calculations of the index of refraction and of the absorption coefficient have 

concentrated on the contribution due to the electron and hole bound subbands alone and the exciton 

states alone. 1-11 

It is known, 12 however, that a proper calculation of the index of refraction in quantum wells 

must include the effect of continuum states and also the spin-orbit split-off valence band. In the case 

of optical absorption, then for frequencies below the fundamental bandgap, the neglect of these states 

makes no significant difference to the final results. It is only in the particular case of the index of 

refraction, where if an accuracy of An/n of the order of a few percent is required that the above 

contributions must be included. 12 
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Chapter 5 Absorption and gain in quantum well structures 

Figure 5.1 Schematic illustration of the 

valence and conduction band edges at the ]- 

point in GaAs. The bands are labelled 

according to the representations at k1l = 0. 

Also shown is the common notation for the 

energy gaps at F. The values of these energy 

gaps at room temperature are given by: 

Eo = IA25 eV 
E'O = 4.44 eV 

A, = 0.34 eV 

A'O = 0.19 eV 

The value of A'O is often given as negative, 

with E'O suitably re-defined. 

1 

En( 

r 

r8c 

r7c 

r6c 

r8 

r7v 

The optical properties include both absorption and refraction. In this Chapter, we concentrate 

on the absorption spectrum and deal with the index of refraction in the following Chapter. 

As weU as the band-to-band contribution to the absorption it is necessary to include the effects 

of excitons. Although difficult to resolve in bulk material, except at very low temperature, the 

excitonic contribution to the absorption spectrum is clearly resolved in quantum weU structures, even 

at room temperature. 13 

Transitions and matrix elements 

It is useful to recall the electronic bands considered throughout the thesis, which are illustrated in 

Figure 5.1. The particular bands of interest here are the 178v and r6, bands which in bulk GaAs are 

separated at the zone-centre by the fundamental bandgap EO . From the basis given in Table 3.1, the 

optical matrix elements between all the bulk r8v and r6c bands are as given in Figure 5.2. These 

are proportional to the Kane parameter P, which appears in equation (3.48) in the submatrix Hcv. 

Note that this is for a given direction of angular momentum quantisation (with respect to the electron 

wavevector). The squared average over all directions in bulk material therefore gives the squared 
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r6c 

13/2,3/2> 
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Figure 5.2 Polarisation dependence and coupling strength for dipole allowed transition 

matrix elements between the F8 (J = 312) valence band and the 1-6 (J = 112) conduction band. 
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Figure 5.3 Schematic illustration of the valence and conduction band confinement 

potentials and the quantised subband energy levels, for a well of width Lz. The transition 

energy hffor a direct band-ro-band transition (or recombination process) between the HHI 

and CBI subband is indicated. 
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momentum maLrix elements (in eV) 

2122 Pbulk ý-*- "'- SIPXIX >=7.86 eV . (5.1) 
3 m,, 

Note that the averaging introduces the T factor in equation (5.1). In using the density matrix 

formalism, outlined in Appendix A, the dipole matrix element is used. This is simply given by 

2e 
2h2 

2 S lexlX >= -<Slp., Ix> (52) 
M2 c, E? 

Note that equation (5.1) uses the value of <SlpxlX> obtained from a 14-band kip scheme. 

The more usual value, obtained from a truncated 3-level kip scheme14 is rather larger and less 

accurate. Note also that frequently the bulk value of the squared momentum matrix element is 

wrongly quoted. This is due to an incorrect equation first appearing in Ref. 15. The principal 

transitions are shown in Figure 5.3. 

For. photon energies below and near the band gap Eo the quantised subband states are the 

closest in energy and hence contribute most to the optical absorption. The use of the density matrix 

formalism, which includes the intraband scattering rates naturally, is the most simple model to 

describe the so-called band-tailing effects in semiconductors. This simply accounts for the below- 

bandgap absorption seen in aU semiconductors at non-resonant optical frequencies. 

The more remote states, most importantly the quasi-continuum states in the vicinity of the 

top of each potential well and the true continuum states, are not as important as the quantised 

subband states in contributing -to the absorption coefficient at energies below the bandgap E0. 

However, they should be taken into account fully in a proper theoretical model. However, these 

states are more important in calculating the index of refraction in order to obtain accurate results. 

Band-to-band absorption 

By assuming that the quantisation axis is along the z-direction, the optical matrix elements can be 

obtained directly from the basis functions of Table 3.1. Note that so far we have neglected to include 

the overlap integral ot me bound state envelope functions. Also, we have ignored the effect of non- 

zero in-plane wavevectors. For. small values of k1l this can be safely ignored but for larger values of 

k1l the direction of k'given by 
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Figure 5.4 Squared momentum matrix elements between the valence and conduction subbands in a 
IOOA GaAs-AlO. 2GaO. 8As single quantum well with an applied electricfield of F= 50 Mcm along 

the growth axis. The matrix elements are in units of the bulk averaged squared matrix element. The 

transitions included are HHI-CB1, LH1-CB1 and HH2-CB2. The solid curves include only the in- 

plane mixing of the basis given in Table 3.1, whereas the dotted curves also include the anisotropy 
factors which are given by equation (5.4). 
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0= tar, -, 
k, I, (5.3) 
k,. 

must be considered, where kz is the wavenumber of the bound subband envelope functions in the z-- 

direction (growth direction). In the case of optical absorption this is the hole subband envelope 
function. This leads to the following additional factors for the TE and TM mode matrix elements, 

where TE and TM denote the plane of polarisation either in the well plane, (x-y) plane, or 

perpendicular to the interfaces along z. 

.2122 
P: ý3/2 (TE) -(I+cos G)p (5Aa) 

2 

p2 
l(l+COS20)p2 

+2 20)p2 
±1/2 (TE) - (sin (5Ab) 

63 
2 20)p2 P±3/2 (TM) (sin (5Ac) 

p2 
14 

: tlf2 (TM) -') _ (Sin2 0) p2 +_ (COS2 0) p2 
, (5Ad) 

33 

where the p2 on the right hand side of equation (5.4) are as obtained from the basis in Table 3.1 for 

the envelope function components J---+1/2 and J--±3/2. This agrees with the form given in Ref. 16 

but not with the other more commonly used and incgrrect form. 17 

Figure 5.4 shows the calculated optical matrix elements, in units of the bulk averaged value 
for several transitions in a IOOA GaAs-A]0.2Gao. 8As single quantum well. These results are for an 

applied perpendicular electric field of 50 kV/cm2. The results give both the matrix elements obtained 

directly from Table 3.1 (solid curves) and those including the above anisotropy factors (dotted curves) 
in equation (5.4). From this figure it is clear that the inclusion of the anisotropy factors has a 

noticeable Wect on the matrix element for each transition considered. The factors given on equation 

(5A) wifl therefore be used throughout this thesis. 

The band-to-band contribution to the linear optical absorption is shown in Figure 5.5 for the 

TE mode polarisation and in Figure 5.6 for the TM mode polarisation. In each case, several carrier 
densities have been assumed. These vary from 0.5xjO18cm-3 (top curve) to 3. OxlO18cm-3 (bottom 

curve) in steps of 5. OxlO17cm-3. A constant intraband scattering time of 100 fsec: has been assumed 
in these calculations. The reduction in absorption with increasing carrier density is a consequence of 

the static Btirstein-Moss shift, 18,19 due to the phase-space filling by the free carriers. In this case 

the quasi-Fermi levels in both the conduction and valence band are obtained numerically from the 

calculated subband dispersion. Note that for energies below the equivalent bulk GaAs bandgap at E, 

the absorption falls considerably to less than 100cm-1 in both the TE and TM cases. At higher 

energies the absorption continues to steadily increase. 

It is necessary at higher energies to consider transitions including quasi-continuum states and 
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Figure 5.5 TE mode linear band-to-band absorption spectra in a 100A GaAs-AIO. 2Gao. 8As single 

quantuiý well with carrier densitiesfrom n=R. 1017cm-3 (top curve) to n= 3x. 1018cm-3 (bottom 

curve) in steps of 5x1017cm-3. 

transitions including true continuum states. The quasi-continuum states have been discussed in the 

previous Chapter. For transitions involving bo u*nd valence subbands and continuum conduction band 

states we ignore any polarisation dependence, including only the consideration of momentum 

conservation. The higher conduction band states are obtained directly from the theory given in 

Chapter 3, using a virtual crystal approximation and the full 14-band k. p scheme but ignoring the 

off-diagonal terms of Luttinger and Kohn within each 175 multiplet. This is expected to give 

reasonably accurate results and obviously includes the effects of the nonparabolic conduction band 

dispersion. The method is both simple to apply and computationally efficient. 

As will be seen later, neglect of higher states by the introduction of an arbitrary cut-off at the 

top of each potential well in the conduction and valence bands, tends to decrease the calculated 

threshold carrier density in the case of quantum well lasers. 
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Figure 5.6 TXf mode linear band-to-band absorption spectra in a IOOA GaAs-AIO. 2GaO. 8As 

single* quantum well with carrier densities from n= 5x1017cm-3 (top curve) to n= 3xI018CM-3 

(bottom curve) in steps of 5xI017cm-3. 

Absorption saturation 

The effect of direct saturation under continuous optical excitation can be simply introduced into the 

density matrix formalism. However, it is interesting to consider first the more common approach to 

saturation. Note that saturation of absorption via phase space-filling also leads to a nonlinear 

refraction effect, which will be considered in the next chapter. 
The most common model for saturation of absorption considers the number of electrons 

excited into the conduction band by the optical field at energy lico. It is simply assumed that the 

optical radiation has created a conduction band population given by 

cc (w) I T, 

h co 
(5.5) 
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Figure 5.7 TE mode band-to-band absorption in a 100A GaAs-AIO. 2Gao. 8As single quantum well 

for six values of optical intensity. The quantum well is assumed to be under continuous wave 

optical excitation (exceptfor I= 0). The results are obtained using the density matrix theory which 
is given by equation (5.10) and with a recombination lifetime given by Tj =3 nsec. The intensities 

indicated are in units ofMWlcm2. 
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Figure 5.8 TM mode band-to-band absorption in a 100A GaAs-AlO. 2GaO. 8As single quantum 

wellfor six values of optical intensity. The quantum well IS assumed to be under continuous wave 

optical excitation (exceptfor I= 0). The results are obtained using the density matrix theory which 
is given by equation (5.10) and with a recombination lifetime given by Tj =3 nsec. The intensities 

in&cated are in units of MWlcm2. 
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Figure 5.9 TE mode band-to-band absorption in a IOOA GaAs-AIO. 2Gao. 8As single quantum well 
jorfour values of optical intensity. The quantum well is assumed to be under continuous wave 
optical excitation (exceptfor I= 0). The results are obtained using the density matrix theory which 
is given by equation (5.10) and with a recombination lifetime given by Tj = 10 nsec. The 

intensities indicated are in units ofMWlcm2. 
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Figure 5.10 TM mode band-to-band absorption in a IOOA GaAs-AIO. 2Gao. 8. As single quantum 

wellforfouf values of optical intensity. The quantum well is assumed to be under continuous wave 

optical excitation (exceptfor I= 0). The results are obtained using the density matrix theory which 
is 'given by equation (5.10) and with a recombination lifetime given by Tj = 10 nsec. The 

intensities indicated are in units of MVV1cm2. 
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Absorption saturation 

where I is the intensity of the radiation, a((o) is the linear absorption coefficient at energy hco 

(usually taken as an empirical factor) and Tj is the relaxation time which describes the decay of the 

conduction band population to the zero-field value (thermal distribution). Typically Tj is taken to be 

independent of k1j. 

The constant population now created in the conduction band is therefore seen as a blocking 

mechanism to further transitions. Note that the origin of the absorption is not considered explicitly. 

It is simply assumed that some interband absorption does occur without asking which processes are 
involved. In the region of interest, it is known that some small absorption will occur and this is 

assumed to be the cause of the interband transitions. Since the excited electrons rapidly thermalise to 

the bottom of the conduction band, a steady-state population can be easily obtained. This is seen as 

causing a shift in the effective bandgap, known as the dynamic Burstein-Moss shift, 18,19 which is 

intensity-dependent and leads to an associated intensity-dependent contribution to the index of 

refraction. 

To consider the active material process involved in saturation it is necessary to either use a 

properly coupled perturbation and rate-eqtiation meLhod20 or to employ density matrix theory. From 

Appendix A, the two-level elements of the density matrix evolve (at frequencies wl, o)2) as 

dp Ip 
-=- 

EH. + H', p] + (5.6) 
di ih 

(at )". 
l. 

wh= 

-e p- A(col)e-icalt + 
-e p- A(02)e-")2t + cc (5.7) 

M, M, .1- 

A(col), A(0)2) are the magnitudes of the vector potential of the radiation fields at (ol, w2 

respectively and p is the momentum vector of the clectron in the crystal. The elements of p satisfy, 

at a resonant frequency coab 

d1 
- Pab - Hab dab -i CO ab Pab - Irab Pab (5.8a) 
dt ih 
d 

4b -2 
2 

Hab Pba -2 HbaPab 
db -17 (5.8b) 

di ih ih Tab 

where dab = Paa-Pbb is the excess ground state population in the one-electron model. rab = rba= r 

is the dephasing rate of the polarisation and Tab = Tj is the recombination time discussed 

previously. From Ref. 22 an exact solution of this problem gives the susceptibility in the form 
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1 i. M, 
0 

12 
(E. b _h0»2+ 

h 

X(co, E) =a- 

(T21 

(5.9) 

E. b - hco -i (Eib - h(0) 2+ (h1T2 )2 +4 1) JE - Mab 12 
(TI (LT2I 

where E is the radiation field field strength, EA is the photon polarisation vector and Mab is the 

dipole matrix element. Comparison with the results in Appendix A gives the form of equation (5.9) 

to be used in this case 

x(o), E) 1 ly IE. Nf, (kil )12 (f, (k, 

CoV k1l c'v E, (k,, )-E, (k,, )-hco-i 

T 
4( ' 

)JE. 
ý&(k, I)f 

x+ 
'rin 

We have previously takenrin = 100 fsec so that Tj is now the only unknown quantity in equation 

(5.10). Several experimental estimates of this are available and it is clear that the magnitude of the 

saturation strongly depends on the value chosen. 

Figures 5.7 to 5.10 give the TE and TM mode calculations of the absorption obtained directly 

from equation (5.10) for two values of Tj and for four values of intensity. The results are for a 

IOOA GaAs-AlO. 2GaO. 8As single quantum well. The two different values of Tj used are Tj =3 

nsec and Tj = 10 nsec. 

If there were only a single energy gap (i. e. if an ensemble of identical atoms was being 

considered) and a single constant value of the matrix element M, then it would be trivial to calculate 

a saturation intensity from equation (5.10). This is the value at which the absorption has fallen to 
50% of the zero-field value. However since the calculation must be summed over kll-space then this 

simpld calculation is no longer valid. In the results shown in Figures 5.7 to 5.10 the kli-dependence 

of Tj andrin has been neglected. 

Effect of doping 

A reduction in absorption also results from either p-type or n-type doping. In this case we consider 

modulation doping, where only the barrier regions are doped and the free electrons or holes are thus 
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Figure 5.11 Band-to-band contribution to the linear absorption coefficientfor a p-type modulation 

doped single quantum welljor (a) TE-mode and (b) TAf-mode polarisation. The well width is IOOA 

and the barrier aluminium concentration is x=0.2. The top curve in eachfigure has a doping density 

of n=1010cm-2 and the lower curve has n=1011cm-2. 
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confined within the quantum Well regions. Since a similar method of analysis applies to either p- 

type and n-type modulation doping, the following discussion will treat only the specific case of p- 

type modulation doping. It will also be assumed that only band-to-band contributions to the linear 

absorption coefficient need be considered. 

The presence of free holes in the quantum well regioras means that the potential appearing in 

the Hamiltonians is no longer simply due to the difference in the well and barrier materials as 

assumed previously. In this case a self-consistent solution must be sought for the electron wave 
functions which includes the potential due to the hole population in the valence band. The total 

potentials can then be written as 

V, (z) = Ve (z) +IeI Fz e (z) 
h Ný (z) =V (z) -I el Fz +I el O(z) (5.11) 

where Vw(z) is the material confinement potential, F allows for inclusion of an applied external 

electric field and 0 represents the screening potential due to the free holes in the quantum well region. 
The potential O(z) is the-solution of Poisson's equation 

d2e(Z) -lei 
2 -[p(z)-n(z)+ND(z)-NA(Z)ly (5.12) 

dz E 

where e is the background dielectric constant, p(z) and n(z) are the charge densities of holes and 

electrons respectively and NA and ND are the densities of ionised acceptors and donors respectively. 

'Me charge density p(z) is given by 

I 
P(Z) =_III (r) 12 (5.13) 

An k1l 

where A iý the area of the quantum well region and fn(k, j) is the Fermi function for the nth valence 
n (r) are the envelope-function solutions of each Hamiltonian. subband. The W, 

In this case the Hamiltonians for the conduction and valence subbands are solved, then 

I? Oisýon's equation is solved to re-estimate the potentials. These potentials are then substituted back 
into the Hamiltonians. This process is iterated self-consistently until the eigenvalues Em(k, j) for 

each subband converge, or change by less than an amount, 8 say, between iteration n and iteration 

(n+l). We take p(z) and n(z) typical of a thermal distribution at room temperature such that 
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Figure 5.12 Linear absorption spectra for IOOA GaAs-AlO. 25GaO. 75As quantum well for (a) TE 

polarisation and (b) TM polarisation. A total offifteen exciton states have been included in the 

calculations in addition to the band-to-band contribution. Not all of these exciton states can be 

resolved in the spectra. 
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I fp(z) 
=I 

fn(z) 
= NRT (5.14) 

Lz Lt 

and ND = 0, NA = the p-type doping density. The acceptors NA are assumed to be uniformly -- 
distributed within the barrier material. 

The calculated linear absorption spectra for a IOOA single quantum well with x=0.2 are 

shown in Figure 5.11 for both the TE and TM polarisations and for several doping levels. The 

maximum doping level was chosen such that the potential due to the p-type doping was less than 

that due to the material confinement. 
For doping levels of these magnitudes it is possible to introduce some approximations into 

the above theory. Assuming that all hole states are filled up to the hole Fermi level kF, an 

approximation would be to consider only those transitions involving in-plane wavevectors outside 

the Fermi wavevector. Electrons can recombine to these states from the conduction band following 

direct transitions, this process being automatically included in the density matrix formalism used 
here. The above approximation is a static band-filling model. 

A better approximation is to obtain the quasi-Fermi level for the valence bands alone and 
introduce a factor (I - fh(kll)] when calculating the susceptibility. This has been the basis for 

previous studies25,26 of absorption in doped quantum wells. The results given so far have included 

the band-to-band contribution to the absorption. The remainder of this chapter will include the 

effects of excitonic states on the optical absorption. 

Exciton absorption 

The inclusion of excitons follows from the theory given in Appendix B. The envelope function for 

an exciton using the two-band model is taken to be of Gaussian form O, h(k)=(2n%)1/2exp(-k2X/4) 

with X to be determined variationally. The total exciton wave function is then simply given by 

T(r) = 
YYyc(kjj, 

z)uc[ý: V, (kjj, z)i4 ýv 
cýv kil iI 

h(kll)e'k"P, 

where the uc, uv are the zone-centre Bloch functions and Wv, yv are the single-particle envelope 

functions for the conduction subband and valence subband. As usual we order the states at I' using 
the (j, mj) "cubic harmonies" of the zincblende lattice. 

If the exciton lineshape is assumed to be Lorentzian then the calculated absorption for a IOOA 

GaAs-AIO. 25GaO. 75As single quantum well is as shown in Figure 5.12. This assumes an excitonic 
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Figure 5.14 TM mode linear absorption spectra for IOOA GaAs-AlO. 25GaO. 7-5As quantum Ivell 

for three values of perpendicular electricfield. Thefield values are (a) 25 Mcm (b) 50 kVlcm and 

(c) 75 Mcm. The LH1-CB1 (Is) exciton is essentially quenched at the field value of 75 Mcm. 

This is in contrast to the HHI-CB1 (Is) exciton in Figure 5.13. 
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linewidthl3 of 3meV for each bound exciton state. It has been assumed that only the HH1-CB1 

exciton can be obtained using the two-band model. To obtain the other excitons we use the coupled- 

exciton model, detailed also in Appendix B. - 
The lowest excitons are clearly resolved in both TE and TM absorption. Since-the exciton 

calculations are performed in kli-space, then since all the single-particle states may be coupled by the 

Coulomb interaction, the HH2-CB I (2p) exciton is clearly resolved. This is particularly interesting 

since at k1l =0 the single-particle electron and hole envelope functions for these two subbands have 

zero overlap. If we compare the absorption coefficient for this exciton with experimental results, it 

is seen that the results given in Figure 5.12 agree with the experimental absorption results. 27 This 

disagrees with the frequently-used27 choice of exciton linewidth F= ro(nenh) meV, where FO 

represents the CB I -HH I exciton linewidth, and where ne and nh represent the subband level indices 

of the electron hole subbands. 

The effect of a perpendicular electric field on the absorption is shown in Figures 5.13 and 
5.14. For exciton states principally arising from single-particle states with similar zone-centre 

parity, the absorption is seen to initially decrease with the application of the electric field. The field 

reduces the overlap between these subbands, and hence reduces the exciton binding energy and matrix 

element. For exciton states built from subbands of different parity, the initially low electric field 

values can actually increase the overlap integral, resulting in an increased matrix element. This is 

clearly seen from the results given in Figures 5.13 and 5.14. 

The oscillator strengdis for the HHI-CBI (Is) and LH1-CB1 (Is) excitons are given in Figure 

5.15 for TE polarisation. It is found that in this quantum well structure, the HHI-CBI (Is) exciton 

absorption remains unquenched even at fields greater than F= 90 kV/cm. 

In the case of an optical switching device based on the quantum-confined Stark effect (QCSE), 

the change in absorption with applied electric field gives the modulation depth for the device. Ibis 

can be represented by Smd given as 

Smod((oyF) :: 
1 cx(co, F) - cc(co, F = 0) 1 

(5.16) 
CC(W, F = 

for a particular optical frequency (o. To increase this modulation depth requires increased quenching 

of the optical absorption for a given electric field value. If this can be achieved then operation of 

optical modulation devices can be obtained at lower voltages. 
To examine the structure dependence we take the case of (a) a single quantum well, (b) a 

double symmetric quantum well and (c) an asymmetric double quantum well structure. The 

parameters used in each case are GaAs wells with AlO. 25GaO. 75As barriers with widths in each 

structure given by 
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Figure 5.15 TE polarisation oscillator strengths of the HHI-CBI (Is) and LII1-CBI (Is) excitons 
in a IOOA GaAs-AlO. 25GaO. 75As single quantum well as a function of the external electric field. 

(a) Lz = 98.93A 

(b) Lzj = Lz2 = 42.4A Lb(centre) = 14.13A 

(C) Lzi = 56.53A Lb(centre) = 14.13A Lz2 = 28.27A 

This gives a total effective well width of around 99A in each case, assuming similar lattice constants 
in both GaAs and AJO. 25GaO. 75As- 

The TE and TM absorption coefficients for each of the above structures with the exciton 
linewidths given by I' =3 (nnh) maV is shown in Figure 5.16. Note that in a recent calculation of 

the'double quantum well excitons, 1 the density matrix expression for the exciton absorption is 

entirely incorrect. The number of states included in the calculation is subsumed within the 

calculation of the exciton matrix element (see Appendix B) and not as in equation (13) of Ref. 1. 

For structures (a) and (b) which are both symmetric under reflection in the plane z=0. the 

direction of the external electric field does not matter. However, for the asymmetric quantum well 

loo 
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Figure 5.16 TE mode linear absorption spectrafor the three quantum well structures discussed in 

the text. These are (a) single quantum well (b) symmetric double quantum well and (c) asymmetric 
double quantum well. Only the results for the ground state (Is) excitons have been included, 

although the coupled-exciton model was employed. 
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Figure 5.17 TE mode linear absorption spectra for two different values of perpendicular electric 
fieldfor (a) the single quantum well structure and (b) the symmetric double quantum well structure. 
The electric field values are 20 Mcm (solid curves) and 40 Mcm (dotted curves). The total 

effective well width of both structures is approximately 100A. 
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Figure 5.18 TE mode linear absorption spectra for two different values of perpendicular electric 
fieldfor the asymmetric double quantum well structure. The electricfield values are 20 Mcm (solid 

curves) and 40 Mcm (dotted curves). The total effective well width is approximately 100A. The 

top graph has the positivefteld orientation and the bottom graph the negativefteld orientation. By 

positive we mean that the wider well region is at a higher electric potential. 
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structure (c) the electric field direction is important. 

Figure 5.17 shows the TE mode absorption for structures (a) and (b) for several field values. 

Figure 5.18 shows the TE mode absorption for the double well structure (c) for the two different 

perpendicular field directions. The top graph in Figure 5.18 is for the wider well region at a higher 

potential. The lower graph in Figure 5.18 is for the opposite field direction. Again, this is shown 

for TE mode polarisation only. 

The HH1s-CBIs ground state exciton transition energy for all four structure-field 

combinations is shown in Figure 5.19. Note from Figure 5.18 that initially, for small field values, 

there is a clear difference in the results for the different field directions. In the first case, there is an 

initial increase in the transition energy. This is also true for the HHIs-CBls (Is) exciton oscillator 

strength. The explanation for this unintuitive behaviour is quite simple. The system parameters are 

such that in the asymmetric structure, with F=0 kV/cm, the HHIs envelope function and CBls 

envelope function have maximum values at different z-coordinates. The application of a finite 

electric field can produce an increased overlap between these envelope functions for small field values. 

This can increase the oscillator strength. However, the overlap integral between both envelope 

functions and the central barrier region actually increases slightly. This increase is extremely small 

but is sufficient to counteract the Stark shift of the single-particle states. This then serves to produce 

a slight increase in the overall energy of the single-particle states given by E(k) = Ejk) - Ev(k). 

Further increase in the electric field will reduce the envelope function overlap and the effect of the 

single-particle quantum-confined Stark shifts to lower energies becomes the more dominant effect. 

Exciton saturation 

To consider the effect of free carriers (electrons or holes) on the exciton absorption it is necessary to 

use many-body theory. In Appendix B, the equation for the exciton states is given in the form 

.h 
(k) (5.17) [E, (k)-E, (k)]ý, h(k)- 

I: V(k-k')O,. h(k') = EOr 
k* 

where Ec and E, represent the single-particle electron and hole energies and V(kIl-k1jý is the Coulomb 

potential screened by the static dielectric constant. 
Strictly, the use of the static dielectric constant gives only a lower limit to the calculation of 

the exciton binding energy. As shown by Haken, 29 the exciton Coulomb interaction (in real space) 

has the form 
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Figure 5.19 Transition energy of the lowest ground state (Is) exciton in each of the three different 

quantum well structures as afunction of external perpendicular electricfield. Graph (a) is the single 

quantum well, (b) is the symmetric double quantum well and (c) is the asymmetric double quantum 

well. In graph (c) the positivefteld direction results are given by the solid curve. In (a) the exciron 
is HHI-CB1. In (b) and (c) the exciton is HHIs-CBIs. 
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2 

V(r) + 
!ý [I 

-I 
ý[ 

I- (e 
E-r r e- E:. 

whem 

(2me(OLO 1/2 

(2MhCOLO 1/2 

(5.19) 
h 

In bulk GaAs, h(oLO is about 35meV and therefore qe = (4041, qh = (1541. For an electron-hole 

Bohr radius greater than 40A the static dielectric constant is therefore more important. For a radius 

less than 15A the optical dielectric constant is of more importance. In between these values an 

interpolated expression like equation (5.18) should be used. For typical Bohr radii in quantum wells, 

however, the static dielectric constant gives a reasonable approximation to equation (5.18). The 

small decrease in V(kjj-kjj) resulting from the use of E, therefore leads to the calculated binding 

energy being a lower limit to the true value. The error is small however, and will be neglected. The 

expression s for exciton absorption given in Appendix B were essentially of the form 

., 
ý, *-h (k) (k') (520) (X(hco) - 

11 
eh k, k' 

Since the largest contribution is at kil = 0, the sum over exciton states is often approximated by 

Jýý(k)O, 
h(k') -4 

Jýcýh(r= 0)12 (5.21) 
k, k' 

With the introduction of N charges, the effects are phase-space filling and screening. The Coulomb 

potential is now 

V, (q) = 
V(q) 

(522) 
F-(q, co) 

where q= (kil-klll and e(q, (o) is the new dielectric constant which takes account of the introduction of 

the charges. 
Several modifications to the electronic structure now arise due to the presence of the free 

carriers. The single-particle energies are renoffnalised. A useful classical concept is that of the self- 
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energy, which expresses how the energy of a particle due to its own potential can be altered in the 

presence of other particles. 29 A correct quantum mechanical description of this effect accounts for 

the modified Coulomb interaction. The principal effects are seen in the exchange interaction and 
direct screening. The origin of the exchange interaction lies in the fact that the distribution of 

electron charge is controlled by the principle of anti-symmetry. This produces the requirement that a 

many-bcAy wavefunction be and-symmetric with respect to the exchange of two electrons. This is 

also seen in the Pauli exchange principle, which states that no two electrons can have the same set of 

quantum numbers. 11is is trivially seen where two electrons in the same orbital or energy band at 

the same energy must then have opposite spin quantum numbers. In a free electron gas, the 

exchange term in the Hamiltonian is given by 

e 
vex 2-- 

ff 
Oi(rl)Oj(rl) -0i(Oýi(rDdr, dr2 (523) 

Irl - r2l 

where Oi(rl) is the wavefunction for orbital site i, and electron with position ri. The term 

0#1)0#1) is known as the exchange charge. Equation (5.22) then obtains the electrostatic self- 

energy of the exchange charge. 
The theories which attempt to calculate both the electron-hole interaction including exchange 

and correlation and the band-filling effect are extremely complicated. Typically a many-body Green's 

function technique is used in a k-space representatioOO-33 However, numerical results performed 
for quasi-two-dimensional GaAs have shown that the exchange-correlation potential can be fairly 

accurately given by 

Pic : -- -: ý-1J; P(NlWD)113 
9 (524) 

where R2D and a2D are the two-dimensional exciton Rydberg and Bohr radius respectively. The 

bandgap reduction is obtained as34 

a 
AE = -(Ng,, ) (525) 

aN 

where N is the density of firee carriers. In GaAs-AlGaAs quantum wells, using GaAs parameters, this 

leads to the simple expression for the carrier-dependent bandgap renormalisation given by 

AEg (eV) =- lAxle(L, N)113 
, (526) 

where N is the free carrier density (cm-3) and Lz is the well width (cm). 
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Figure 5.20 Absorption coefficient for 100A quantum well in the presence of a free carrier 

plasma. The 2D carrier densities are 1010CM-2,3XIO11cm-2 and 1011CM-2. 

Although in principle the band curvature resulting from the renormalised energies is now 

altered, a good approximation is to consider rigid bandgap shifts33 and ignore any change in the 

intersubband energies within the conduction* band or valence band. The effects of phase-space filling 

are naturally described by the quantity F(kjj) = [I - f, (k1j) - fh(kil)]. Therefore, in obtaining the 

exciton states, we now consider the Harniltonian33.34 

[E, 
, 
(k) - E, (k)]ý, h(k) sgn[F(k)]jF(k)jl'2V (k - k') IF(V)1"20, h(k) (527) 

The absorption coefficient is also re-defined as36 

a(hco, N) oc 
J: J: JF(V)1112ýý(k') IF(k)llo Oh(k) (528) 
e, h kk' 
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Figure 5.21 CBI to CB2 intersubband absorption in a 100A GaAs-AlO. 3GaO. 7As modulation- 

doped single quantum well. The free carrier density in the well region is taken to be 4xlOl 7cm-3. 

Obtaining the exciton energies and wave functions is therefore as straightforward as in the case 

of N=0, which is the situation considered in Appendix B. The calculation of the single-particle 

states follows that outlined in the previous discussion on modulation-doping. 
We now consider the situation of the optical absorption, including excitons, in modulation- 

doped quantum wells. With the results given above, the calculated absorption spectra for a 100A 

GaAs-Al0.25Ga0.75As single well are shown in Figure 5.20. One significant difference between the 

exciton and band-to-band contributions is that the exciton contribution decreases much more rapidly 

with doping density than does the band-to-band contribution. 
The reduction in the exciton oscillator strengths is affected by two distinct processes. The 

first is due to the exclusion principle, which introduces the F(k, j) factors given above. Also, the 

exciton wave function is found to become less localised in terms of the electron-hole orbital. The 
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real-space correlation enhancement, given by the right hand side of equation (5.20) is therefore 

decreased. Ilie results given in Figure 5.20 follow by numerical calculations only. Exact analytical 

expressions are not possible, without introducing wholescale approximations, reducing the validity 

of the final results. 

Intersubband transitions 

So far we have neglected intersubband transitions. These are normally defined as transitions between 

the valence subbands; and transitions between the conduction subbands. Tliese must not be confused 

with the transitions from valence to conduction subbands. The reason for not including these 

transitions in the preceding analysis is due simply to the fact that the oscillator strength for these 

transitions is much smaller than those transitions which we have considered. For completeness, 

however, we briefly discuss these transitions. 

We concentrate on the simple method of calculating the intersubband absorption. The 

transition from the n=I to n=2 conduction subbands is of possible use in quantum well infra-red 

detectors. For this purpose the quantum well structure should be such that the n=I subband has free 

carriers at room temperature. The optical dipole matrix element Mba for a transition from subband 

state Ia> to subband state Ib> is simply given by 

Mbit : -- <b1 lelz la> 

ý-- (Z) 1e1Z ýa (Z) 8kbk. dz 
. 

(529) 

The delta function is usually replaced by a Lorentzian linewidth function, resulting in the familiar 

density-matrix expression for the absorption coefficient. 

The matrix element only exists for polarisation along the growth axis, or more exactly for a 

component of the polarisation along the growth axis. This dependence on polarisation simply arises 

due to the symmetry of the envelope functions. In general for an arbitrary polarisation this will 

result in an additional factor of cos(O) appearing in equation (5.29), where 0 is the angle between the 

photon polarisation vector and the z-axis. 
For the valence intersubband transitions the matrix element depends on the spatial Bloch basis 

functions. For transitions between the LHI and LH2 valence subbands, for example, this results in 

an additional factor of (2/3) appearing in equation (5.29) for the case of TM polarisation. In most 

practical cases however, the difference in the Fermi functions will be smaller for these valence 

subbands than between those for the conduction subbands. The transitions between the conduction 
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subbands will therefore be larger than those between the LH valence subbands in a typical quantum 

well device. 

As an example we show the calculated CB I -CB2 intersubband absorption for a modulation- 
doped GaAs-AIO. 3Gao. 7As single quantum well in Figure 5.21. The well width for this structure is - 
taken to be IOOA, and the electron density in the well region is taken to be 4x, 017cm-3. The peak 

absorption is seen to occur at around 90meV. The effect of this absorption at near-bandgap 

frequencies will therefore be negligible. Further, the contribution to the bandgap-resonant index of 

refraction will be equally negligible. 

Linear gain spectra 

We conclude this Chapter by briefly considering the linear gain in quantum well lasers. This may be 

calculated directly from the density-matrix expressions for absorption given previously. In Figure 

5.22 we show the calculated gain spectra for a IOOA quantum well, with x=0.25 in the barrier 

regions. The injected carrier densities are 2xIO18crn-3,3xIO18cm-3 and 4x, 018cm-3. Note that at 

currents near threshold the TE-mode gain dominates. However, at larger injection currents the TM- 

mode gain increases as the valence band quasi-Fermi level moves well into the HHI subband. 

External control is therefore required to stop TE-TM mode hopping. The intraband scattering time 

used is taken to be constant, with a value of I 00fsec, independent of wavevector. 

At the time of writing the extensive literature on quantum well lasers includes no theoretical 

calculation using a k-dependent intraband scattering time. This then represents a useful and possibly 

fruitful area for further theoretical work. However, the role of scattering mechanisms in 

semiconductor quantum wells is still a relatively new field, with no overall concensus on the relative 

magnitudes of all possible scattering mechanisms. 

We have included this short section for completeness only. The calculation of the index of 

refraction in quantum well lasers is only an application of the model which we will obtain in the 

next Chapter. It contributes nothing to that model. 
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Index of Refraction in 
Quantum Well Structures 

Introduction 

The close lattice-matching of binary AlxGal-xAs alloy material has led to many novel structures 

being grown for possible use in semiconductor optoelectronic: devices. The lattice-matching enables 

the growth of material whose electronic properties can be easily tailored. In quantum-confined 
devices, the energy levels can be tailored over a wide range, thus allowing a concomitant tailoring of 

the resonant index of refraction. 
Very few calculations have appeared in the literature which obtain the frequency dependence of 

the index of refraction in quantum well structures. Recently, several theoretical studiesl-4 have 

reported calculation of the index of refraction in superlattice structures, neglecting the contribution 
due to excitons. Similarly, Tsu. and joratti5 used a simplified model of the electronic dispersion to 

obtain the static dielectric constant, relying heavily on bulk GaAs band structure parameters, and 
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Chapter 6 Index ofrefraction in quanlwn well structures 

again neglecting the contribution due to excitons. In this case, since absorption can be neglected, the 

real part of the dielectric function is straightforward to obtain and gives the required result 
immediately. 

The dielectric function in GaAs-AlGaAs superlattices has generally been obtained by 

considering the quantised subband dispersion and bulk-like contributions from higher points in the 

Brillouin zone. These calculations have both ignored the contribution due to excitons and chosen to 

consider the electronic states within a small region of k-space in the vicinity of a few special points 

of high symmetry. 
In bulk material, 6-8 for frequencies in the vicinity of the fundamental 176-178 energy gap, the 

case in obtaining the electronic dispersion allows for rather simple calculations of n(co). The 

excitonic states in quantum wells at room temperature, and the more complicated energy dispersion, 

increases the complexity of the calculations required. It is fairly commonplace to consider the 

contribution due to the lowest exciton states alone. This assumes that there is a constant background 

dielectric constant9,10 due to all other energy states excluded from the calculation. If there is only a 

single bound exciton state, then in the immediate vicinity of the exciton transition, a calculation of 

the change in refractive index due to external perturbation, which includes only the exciton state, is a 

useful although crude approximation. 

The majority of the published literature on the index of refraction in GaAs and AlGaAs anoys 

pertains to bulk material only. This includes the linear index of refraction6,7 the effects of 

sere-eningll, 12 and the nonlinear intensity-dependent index of refraction. 11,13 Most of these results 

are for frequencies near (usually below) the r6-11'8 energy gap and also use completely parabolic 

approximations to the energy dispersion. The use of parabolic energy bands necessitates truncation 

at moderate wave vectors, to avoid divergence. 

Systematic experimental studies14 of the dielectric function in Al. Gal-, As'afloys have been 

performed for energips from 1.5eV to 6. OeV with aluminium composition x varying from x=O to 

x=0.8. These results also provide useful information concerning the compositional dependence of 

various material parameters. 

When considering the effects of screening, as in the preceding Chapter, only free-carrier 

screening need be considered. If excitons are included in the theory, this simplifies the calculations. 
This can be understood as follows: due to the rapid thermal ionisation by optical phonons, which 

occurs within a fraction of a picosecond, 15 the effects of screening by occupied exciton states can 

reasonably be neglected. This was the case in the preceding Chapter, where the effects of screening 

on optical absorption were calculated. The results given there will therefore be equally relevant in 

the case of refraction in quantum wells. 
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Construction of dielectricfunclion 

Construction of dielectric function 

There am two straightforward approaches to the calculation of the index of refraction in quariturn -well 

structures. In the first method, the contribution of states with transition energies in close resonance 

with the optical frequency of interest is added to a constant background contribution, nb- The 

background index nb is therefore considered to be frequency-independent over the range of energies 

(frequencies) of interest. This simpler. constant background'model can be obtained as 

n(W) =- nb + An(O)) 

The real part of the dielectric function is then given approximately by 

er«, » ý [n(0»]2 - eb + 2nbän(W) (6.2) 

2 where -Ob :ý nb - The contribution due to the states of interest is then given by 

An(w) = -L E, (W) (6.3) 
2nb 

where E, (co) is the calculated contribution. 

However, the method used here considers the bulk frequency-dependent index of refraction in 

the energy range of intCreSL We consider that the effects of quantisation are of importance for the 

lowest conduction band and highest valence bands. The contributions of these bulk bands are 

calculated and subtracted from the frequency-dependent index of refraction n(a)). The new dispersion 

of the quantum well structure is then calculated. Ile contribution to the index of refraction from the 

new energy dispersion is then added. This gives the general form as 

n(w) = nB (w) - nblk ((0) + nQW (03) (6A) 

where nB(O)) is the known bulk refractive index, nbulk((O) is the contribution to nB(Q)) from the 

original bulk states included in the calculation over the energy range of interest and nQw(co) is the 

calculated contribution due to the quantum well energy dispersion. In general, at frequencies close to 

resonances, the imaginary part of the dielectric function cannot be ignored. The real part of the index 

of refraction is then given by 

J[E2 
( (0) + Eý«0)]lf2 + E, (0» 

1/2 

. (65) 
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If the imaginary part of the dielectric function is known over a significant range of energies, then the 

real pan may be approximately obtained from the Kramers-Kronig relation by using 

e, (W)_e_ = 
7r 

f dw' 
O)aLim 

(6.6) - 

In equation (6.6) P denotes the principal part of the integral. This relation is actually only exact for 

integration over all frequencies from co=O to (o---. Limiting the range of integration thus gives an 

approximation only. However, if the imaginary part of the dielectric function is known over a 

significant range of energies, the use of equation (6.6) is expected to give good results. Similarly, 

for a change in absorption, the resulting change in refraction may be obtained from the Kramers- 

Kronig relation. If the absorption a((o) changes only within a limited range, of energies, to a good 

approximation, then the change in refractive index can be usefully obtained as 

c" Aa(o)) 
An(o)) = -Pf"nl . -I-d(o". 

x ,. 
j; 7) (, 02 

(6.7) 

The use of the Kramers-Kronig relation in this form, using nb instead of obtaining Aer(o)), reduces 

the accuracy of the calculation. The presence of E- in equation (6.6) signifies the fact that there is an 

upper limit where F, is essentially zero and the physics of the pmblern suggests that the integration 

has gone far enough. If the integration could actually be performed to o)=-, then e- must be 

repLwcd by 1. 

Optical frequency contriýutions 

At frequencies close to the fundamental band gap, there are several important contributions to the 

index of refraction. The most important are those arising from the quantised. subbands. This 

obviously includes the exciton states, which have a significantly large contribution at near-band gap 

frequencies. The contribution from other states will in general decrease with increasing magnitude of 

the detuning A=(Ei-fia)). Ei is the energy under consideration and ho) is the photon energy. 

Ignoring the presence of these states has too ofte- become the nor7n in the literature. It is not correct 

to say that their contribution is negfigible. 16 

In order to improve the calculations in terms of accuracy, it is better to explicitly include the 

k-dependent mixing of the states included. This is most conveniently done using an W k-p 

Hamiltonian for the F-valley dispersion. In this manner all of the 1--states of interest are 
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automatically coupled, even at the zone centre. The method allows a fully self-consistent set of 

IJCU CUMA1,10 L%j be obtained. An earlier W k-p theory by Eppenga et at 17 was much simpler, 

although their method of dealing with the decoupling of the conduction band dispersion leads to 

numerical instabilities and is less accurate. 
In addition to the usual k-p parameters we also include the 2nd-order Kane parameter which 

contributes to the conduction band dispersion, and which is usually omitted. The W k-p matrix 

removes the explicit r6c-r5c coupling used in the previous Hamiltonians. The basis set used in the 

Hamiltonian is given in Table 6.1. The Hamiltonian (in atomic units) is therefore represented by the 

matrix 

where 

E, j -T3A, 
T2B 

-B 0 0 -A- -T2A- 

-NF3A+ 
Ehh 

NF2L -L 0 0 -S - 
T2S 

T2-B' 
NF2L* 

Elh Q A +* S 0 ý3-L 

-B -L Q E,. N62A NF2S -13L 0 
(6.8) 

0 0 A+ N62A, Ea -T3A- N62B -B 
0 0 S* T2S* 

-NF3A-* 
Ehh T2-L* 

-L* 

-A- -S 0 -T3L* NF2B NF2L Eu, Q 

-T2A-* -ýM 
T3L* 0 -B* -L Q E.. 

1) k 2+ (F+ 1-) k2 Es+ E�r- +(F+ 22Z 

Ehh ý 
'E+ Elh ý E- t 

E± 1-(71 ±»(2)k 2_ 1 (71 T 2Y2)k 2 
= -Eý-2 jZ 

2 
2_ fyik 2 E,. = Zt 

A± = -! -Pkz± 
UG kzlk:; 9 ý6 3 

B= -ý-(P k 1--LGkky 
. 
F3 Z F3 

L= 
A2(Y3, 

kz)k- 

S= 2L3 (7k2 _ g2) 
2+ 

y= 
l((2 

+(3)p 11"= 'L(Y3 -Y2) 22 

2- 2 

, 
r- 2 Q= N'f2Y2kz 
1-2 

yk 

k2=k2+k2, k± = k� ± ik =k exp (i 0) , 1yy 
ÜX, ßl =- 21 (Ctß + ß(X) 

- 
(69) 

The, r, are simply the Luttinger parameters, minus the explicit coupling of the states now included 

in the Hamiltonian matrix. This was detailed in Chapter 4. The term G is an inversion asymmetry 
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Chapter 6 Index of refraction in quantwn well structures 

term which will be omitted since it is small. Eg is the smallest band gap (well material) and the 

terms Ei, are the relevant band edge offsets. P (F) is the first-order (second-order) Kane parameter, 

where P= <SlpxlX>, in atomic units. The Hamiltonian in this form can be block-diagonalised 

rather simply. This gives the upper block as 

Ed A, A2 A3 

A, Ehh B, B2 

ppe, A2* B*j Elh C, 

A; B; C 1* E,. 

where 

AI -LPk 
. 
F2 

A 2 
1 [P, k,. I+ -1-Pk NF3 F6 

A 3 -L fP, k, -Pk , + --L 
, 
F3 45 

B, yf3k IY3, k,: } + 
L3i 2 [Y3 

- 2gcosý(20)] , 2k 

B2 +j&2 
ý22k[Y3, k,. } [113-29cosý(20)], 

Cl 2123 
YF2Y2kz _ y2k _ 

W737 kzl T2 T2 

The lower Hamiltonian block is simply given by HI.,,,, = Ht upper - 

In solving the above equations, continuity of probability current at each quantum well 

interface is obtained by continuity of both the envelope functions and the vector 

p 
2 az r. 

a 
ýF3i 0 2 

(71 2Y2) -2113 k 

az 
Na 

ýL 
2 Y3k -76 2(YI +2Y2)- 

az 

-L-P iN 
gY3k NF211 2 N63 ik j 1-2 az 

ipA 

-WISY 3k f2 

Ta- 2-y 2 az 
+ NF3ik f3 

Ia -Tyl - f4 
az 

where diefi are the individual components of each wave function. 

(6.10) 

(6.11) 

(6.12) 

Obtaining the continuum states with this method is computationally burdensome. To 

simplify this part of the calculation, it is assumed that the quantum well is surrounded by an infinite 

well. The distance is chosen so that the bound eigenstate confinement energies are not noticeably 

perturbed by the introduction of the infinite well. The criterion chosen was that the change in the 

confinement energies be less than 0.1% after introduction of the surrounding well. Thissimplifies 

the calculations considerably and allows the continuum states above the quasi-bound states to now be 

112 



Opticalfrequency contributions 

Table 6.1 Basis functions used to construct the 8x8 k-p 

Hamiltonian which is given by equation (6.8). 

I Ui > (J, mj) Basis function 

ul > IS> 

U2 >2,2) IX +iy > T2 

ii 
U3 >= 2,2) IX+iY>1-21Z>T 

IF6 
!, I IU4>=(2 

2) -! -(I X+ iy> I+ I Z> T} 43- 

1 U5> = (1, - 
1) 

22 -IS> 

IU6>=(2 
2) -Lix-iy>l ý2- 

I U7 >2 2) IX+iY>T+21Z>I} 

I U8 > 2 2) (I X+iY> T- I z>4,1 F3 

obtained relatively easily. They are therefore now given by closely-spaced discrete states, which 

merge in energy spacing at higher energies. The surrounding infinite weH is placed at z= ±25GOA 

which we find easily satisfies the above criterion. 
The states at the special points X and L, important due to the large joint density-of-states at 

these points, can be obtained simply using effective mass theory. Due to the different Brillouin zone 
locations of these points, the effects of polarisation are seen to be negligible, when averaged over all 

equivalent points. Note that the number of equivalent conduction band minima at X which need to 

be included is three. There are obviously six equivalent points in elemental semiconductors, but in 

zinc-blende structures there are only three within the first Brillouin zone. This is explained in detail 

in Ref. 18. For the quantum wells considered here, the difference in energy at the X-point in the well 

and barrier material is sufficiently small to prompt the assumption that the contribution is relatively 

unchanged from that of the equivalent bulk alloy. We therefore include only the L-point 

contribution. As noted above this shows no electro-optic anisotropy. The squared momentum 

matrix element (in eV). considering only the LI, L4 and L6 bands, can be simply obtained from 

standard k-p theory. 19 This gives 

1t=i+ 
p" +), 

ML 

(ii- 

EI +A, 

where mt is the transverse L-point conduction band effective mass. 18 
L 
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We apply the simple k-p theory of Ref. 19 directly. Since we make no changes to the theory 

(apart from quantisation) the details arc not repeated here in full. Briefly, however, since the valence 
bases are simply taken as p-orbitals, the gowth axis component is immediately obtained at each 

point. The small matrices are easily solved (the (I 11] valence dispersion is uncoupled) for the 

quantised levels. Above this we assume barrier-rike material parameters and simply diagonalise the 

Hamiltonian, taking all components of k to be good quantum numbers. The optical matrix elements 

and joint density-of-states for these bulk-like eigenstates are straightforward to obtain. The band 

offsets at the L-points can be extrapolated from knowledge of the band offsets at r. These are 

relatively small and so there are in practice only a few quantised states. Accordingly, this part of the 

calculation is much simpler than obtaining the eigenfunctions at F, where both the size of the 

Hamiltonian used is Larger and the effects of quantisation are more pronounced. 
A simpler method of including the spin-orbit split-off valence bands at IF' is to use the 6x6 

Luttinger-Kohn Hamiltonian20 for the hole states, and with the conduction band states obtained as 
before. The hole Hamiltonian is then represented by the matrix 

I 

whem 

P+Q L m 0 -L-L 12- -1, 
F2A1 

L P-Q 0 m F iýiL 

m* 0 P-Q -L -iAL F 

m -L P+Q -i 7L 2 2 

- L F iýIL iN(ýM* G 0 7 2 2 

ilffif * 
-iý22L* F* ýL* 

2 

P+ Q 120 
1+ 72) (k 2 

+k 
2) + 1_(, Yl - 2Y2)k 2 

xy2z 
P-Q 12(71 +72)(k 2 

-k 
2) +. L(, Yl + 2Y2) k2 xy2z 

L- -/3Y3 (ky + ik,, ) k,. 

M3 2) 
. 2E '12 (k2 -k 2xyv 

3iY3k,, ky 

(k2 22 F=1 ýIY2 
x+k)+ YF2iY2kz J-2 y 

G= -171 (k 2+k 2) 
+ lylk 2 

+Ao 2xy2z 

p 

(6.15) 

This matrix can be easily block-diagonalised as before, when suitably reordered. This gives an upper 
block for the 13/2,3/2>, 13/2,1/2> and 11/2,1/2> basis functions and a lower block for the 13/2, -3/2>, 
13/2, -1/2> and 11/2, -1/2> basis functions. The upper block is then given by 
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P+Q Af-iL Al 

, H,, pper M+MP-QB (6.16) 
A*B0G 

where 

3Y3 (k 2 +ey)lf2k, 23 (72 +73)(k2 +k2) +iý-f x Ay 

2 2) 22 
yy) 

lf2kz 
(6.17) B ', 

f2Y2kz 
_ T12Y2 (k, 2 +k- i-2-Y3 (k +k 2 

t and where the lower Hamiltonian block is given by HI. we 1-Upper - 
Although not used here, this 6x6 Hamiltonian and its block-diagonallsed form are only given here for 

completeness and to assist those requiring to copy this work. 

Resonant excitonic contribution 

Although the refractive index will be obtained using the contributions from all the states discussed 

above, it is instructive to consider the contribution due to the exciton states alone. At frequencies 

resonant with the fundamental band gap the contribution of these states is extremely important. 

We first consider a IOOA GaAs-AlO. 25GaO. 75As single quantum well. The excitons which 

are coupled to the (Is) excitons are given in Table 6.2. These are then used in the coupled exciton 

model explained in Appendix B. It must be made clear that the simpler two-band model, ignoring 

the angular momentum character of each exciton and used illustratively in the preceding Chapter, 

does not give as accurate results. For the excited states of each exciton it is expected that the simpler 

model would fail completely. For the ground states the Simpler model leads to a non-zero TM- 

polarisation oscillator strength for all HH excitons. The proper model, however, shows quite clearly 

that this oscillator strength is zero. 'Mis is also in contrast to the case for band-to-band absorption. 

In that particular case all of the spinor components of the valence subbands contribute. 

The contribution to the index of refraction of each exciton is obtained from the imaginary part 

of the dielectric function, using the Kramers-Kronig relation. This is expected to give accurate 

results since the contribution to the dielectric function of each exciton has only a very limited 

spectral range. 
We first consider the individual contributions from each bound exciton state. In Tables 6.3 

and 6.4 we give the calculated exciton binding energies and oscillator strengths for a 100A GaAs- 

AlO. 25GaO. 75As single quantum well, obtained using the coupled exciton theory, and for the ground 
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state and excited state excitons respectively. From these results the following observations can be 

made: 

(a) for both the (Is) and (2s) excitons only the LH excitons have TM oscillator strength 

(b) the normally parity-forbidden (2p) excitons have TM oscillator strength in the case of the 

HH excitons only 

(C) in the case of the (3d) excitons only the HH excitons have TM oscillator strength 

(d) all normally parity-allowed excitons are either (Is), (2s) or (3d) 

all nonnally parity-forbidden excitons are (2p) 

the ground state (Is) excitons show both the largest oscillator strengths and largest binding 

, energies of aH the excitons considered here 

(g) for excitons which have both TE and TM oscillator strength, the TM oscillator strength is 

four times that of the TE oscillator strength 

Table 6.2 The ground state (Is) excitons included in the 

calculations and the excitons to which they are coupled via the 

Coulomb interaction. Only excitons with nonvanishing oscillator 

strength have been included in the basis for the variational 

calculations. 

(Is) exciton Coupled excitons 

HHI-CBI LHI -CB I (3d), HH3-CB 1 (Is) 

LHI-CB1 HHI-CB1 (3d), HH2-CBI (2p), HH3-CBI (3d) 

HH2-CB2 LHI-CB2 (2p) 

I4H3-CBI HHI-CBI Os), LHI-CBI (3d) 

Table 6.3 Binding energies and TE, TM oscillator strengths of ground 

state (1s) excitons in a IOOA GaAs-AlO. 25GaO. 75As single quantum 

well. The results were obtained using the coupled exciton model. 

Exciton Eb (meV) fTE (10-5A-2) f Tm (10-5A-2) 

HHI-CB1 (Is) 9.44 33.96 0.0 

LHI-CBI (Is) 11.39 9.56 38.20 

HH2-CB2 (Is) 6.74 16.86 0.0 

HH3-CBI 0s) 1.12 1.53 0.0 
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Figure 6.1 Contributions to the TE-mode index of refractionfrom (a) the HHI-CB1 ground state 
(is) exciton and (b) the LHI-CBI ground state (Is) exciton. The width of the quantum well region is 

IOOA and the barrier aluminium concentration is x=0.25. The exciton linewidths are assumed to 

have the value of 3meVfor each exciron. 
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Figure 6.2 Contributions to the TE-mode index of refraction from (a) the HH2-CB2 ground state 

(Is) exciton and (b) the HH3-CBI ground state (Is) excilon. The width of the quantum well region 

is 100A and the barrier aluminium concentration is x=0.25. The e-xciton linewidths are assumed to 

have the value of 3meV, for each exciton. 
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Figure 6.3 Contributions to the TE-mode index of refraction from (a) the HH1-CB1 (2s) excited 

state exciton and (b) the LHI-CBI (2s) excited state exciton. The width of the quantum well region 

is IOOA and the barrier aluminium concentration is x=0.25. The exciton linewidths are assumed to 

have the value of 3meV, for each exciton. 
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state exciton and (b) the HH3-CBI (2s) excited state exciton. The width of the quantum well region 

is 100A and the barrier aluminium concentration is x=0.25. The exciton linewidths are assumed to 

have the value of 3meV, for each exciton. 
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Figure 6.5 Contributions to the TE-mode index of refraction from (a) the HH2-CBI (2p) excited 

state exciton and (b) (he LHI-CB2 (2p) excited state exciton. The width of the quantum well region 
is 100A and the barrier aluminium: concentration is x=0.2S. The exciton linewidths are assumed to 

have the value of 3meVfor each exciton. 
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(Is) exciton and (b) the LHI-CBI (2s) excited state exciton. The width of the quantum well region is 

IOOA and the barrier aluminium concentration is x=0.25. The exciton linewidths are assumed to 

have the value of 3meV, for each e-xciton. 
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Figure 6.7 Contribution to the TM-mode index of refractionfrom the flH2-CBI (2p) excited state 

exciton, for a IOOA GaAs-AIO. 25GaO. 75As single quantum well. The exciton linewidth is assumed 

to have the value of 3meV. - 

Table 6.4 Binding energies and TE, TM oscillator strengths of (2s), 

(2p) and (3d) excited state excitons in a 100A GaAs-AlO. 25GaO. 75As 

single quantum well. 

Exciton Eb (meV) f TE (1()-SA-2) f Tm (10-5A-2) 

HHI-CBI (2s) 1.58 4.72 0.0 

LH I -CB I (2s) 2.25 1.47 5.87 

HH2-CB2 (2s) 1.06 2.71 0.0 

HH3-CB I (2s) 2.48 0.19 0.0 

HHI-CB2 (2p) 3.95 0.064 0.27 

LHI-CB2 (2p) 5.98 5.23 0.0 

HH2-CR I (2p) 2.76 0.83 3.32 

HHI-CBI (3d) 3.58 0.26 1.03 

LHI-CBI, (3d) 4.56 0.69 0.0 

HH2-CB2 (3d) 2.67 0.0020 0.0080 

HH3-CBI (3d) 4.83 0.0062 0.025 
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In Figures 6.1 to 6.7 we show the contribution to the index of refraction of these exciton 

states, excluding the (3d) excitons, in a IOOA GaAs-A]0.25GaO. 75As single quantum well. These 

results are obtained directly from the Kramers-Kronig expression given by equation (6.7). A 

linewidth of 3meV has been assumed for all the exciton states considered. 
The magnitude of the contribution in each case can be directly related to the TE and TM 

oscillator strengths given in Tables 6.3 and 6.4. It is seen that by far the largest contributions arise 
from the HHI-CBI, LHI-CBI and HH2-CB2 (Is) excitons. The HH3-CB1 (Is) exciton contribution 
is small, and is exceeded by the contributions of the HHI-CBI (2s), HH2-CB2 (2s) and LHl-CB2 

(2p) excitons. 

Note that these contributions, and the previous analysis of the results given in Tables 6.3 and 
6.4 are for the particular case of a symmetric quantum well. Differences will arise in the case of an 

asymmetric quantum well. Asymmetry can be achieved by several means. These include different 

outer barrier compositions and different doping levels in each barrier region. The effect of an electric 
field, applied along the growth axis also leads to asymmetry. In this case, excitons excluded from 

Tables 6.3 and 6.4 can acquire finite non-zero oscillator strength. For the particular example of an 

applied electric field, the oscillator strengths of several excitons are given in Table 6.5, for several 
field strengths. These excitons have zero osciUator strength in a symmetric quantum well structure. 
Note however that the application of a magnetic field along the growth axis does not alter the 

symmetry of the Hamiltonian. 

In Table 6.5 only the (Is) and (2s) excitons are considered. It is seen that the increase in 

electric field increases the oscillator strength. For each exciton, however, a maximum field value 

exists beyond which no bound exciton state can exist. The actual values of these oscillator strengths 

are rather small, and the contribution to the index of refraction is correspondingly small. 
Nevertheless it is best to include these particular excitons when external perturbations, breaking the 

, quantum well symmetry, are considered. This keeps the model as complete and accurate as possible. 

Table 6.5 TE oscillator strengths of normally parity-forbidden excitons in a IOOA 

Ga. As-AlO. 25GaO. 75As single quantum well in the presence of an external electricfield. 

(n, m) state Exciton lOkV/cm 20kV/cm 30kV/cm 35kV/cm 

(IS) HH2-CBI 0.37 1.27 2.64 3.48 

HHI-CB2 0.72 1.97 3A 1.50 

LHI-CB2 0.19 0.29 0.44 0.18 

(2s) HH2-CBI 0.06 0.20 0.41 0.54 

HHI-CB2 0.11 0.30 0.53 0.40 

LHI-CB2 0.03 0.04 0.07 0.06 
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Note that the oscillator strengths given in Table 6.5 can oscillate in value as the field strength 
is increased. This depends on the overlap of the single-particle envelope functions. This is only 

seen in exciton states built mainly from the n#I single-particle states. 

Before considering the effects of external perturbations, which is done in the following two - 

sections, it is useful to consider the errors introduced by simpler models. In general the most 

complicated calculations are those dealing with the excitons. It is fairly commonplace to consider 

only the HHI-CB I (Is) exciton. The error resulting from the neglect of other excitons, in particular 

the excited exciton states, should therefore be carefully quantified. 

Before doing this, consider other sources of error. Typically the nonparabolicity of the 

conduction band dispersion is neglected. Also, the material parameters used vary considerably in the 
literature. The differences in binding energies and oscillator strengths resulting from different 

material parameters and parabolic versus nonparabolic conduction band dispersion are not particularly 

great. Ibis statement applies to the HHI-CBI (Is) and LHl-CBI (Is) excitons only. 

In Table 6.6 we give the binding energies and TE oscillator strengths obtained using three 

different sets of parameters. These are (a) parabolic conduction bands and the valence band parameters 
from Ref. 21, (b) as (a) but with nonparabolic conduction band dispersion, and (c) as (b) but with the 

valence band parameters used in this thesis. In general the results do not differ greatly. The use of 

nonparabolic conduction band dispersion increases the calculated binding energies. The results using 

parameters (b) and (c), differing only in the valence band parameters employed, are fairly similar. 
Other simpler methods of calculation (see Appendix B) are not considered here since the results 

have little physical validity, and would in any case fail completely for the excited exciton statm 
Consider now the neglect of exciton states in the calculation of the total index of refraction. 

To do this we consider four different models. Model I includes only the HH1-CBI (Is) exciton, 

although still obtained using a coupled-exciton model. Model 2 includes four parity-allowed (Is) 

excitons, the additional ones being LHI-CBI, HH2-CB2 and HH3-CBI. Model 3 further includes 

Table 6.6 Binding energies and TE oscillator strength of HHI-CBI (Is) and LHI-CBI (Is) 

excitons in GaAs-AlO. 25GaO. 75As quantum well. The parameters used are (a) parabolic 

conduction bands and valence band parametersfrom Ref. 2 1, (b) as (a) but with nonparabolic 

conduction bands, (c) as (b) but using the valence band parametersfrom this thesis. 

Exciton set (a) set (b) set (C) 

HHI-CBl (Is) EB (meV) 8.79 9.52 9.44 
fTE (10-5A-2) 29.57 34.74 33.96 

LHI-CBl (Is) EB (meV) 11.44 11.65 11.39 

fTE (10-5A-2) 7.27 8.60 ' 9.72 
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Figure 6.8 (a) Error in calculated total TE index of refraction using Model I which includes only 

the HHI-CBI (Is) excilon. (b) Error in calculated total TE index of refraction using Model 2 which 
includes only thefour (Is) excitons HHI-CBI, LHI-CB1, HH2-CB2 and HH3-CBI. The results are 

obtained for a IOOA GaAs-AlO. 25GaO. 75As single quantum well, and the error obtained by 

comparison with Model 4 which includesfour (Is), three (2s) and two (2p) excitons. F. -gure 6.8 (c) 
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Figure 6.8 (c) Error in calculated total TE index of refraction using Model 3 which includes the 

three additional (2s) excitons HH1-CB1, LHI-CBI and HH2-CB2. The results are obtainedfor a 
IOOA GaAs-AlO, 25GaO. 75As single quantum well, and the error is obtained by comparison with the 

results of Model 4 which includesfour (1s), three (2s) and two (2p) e-rcitons. 

three (2s) excited state excitons, these being HHI-CBI, LH1-CB1 and HH2-CB2. Finally, Model 4 

adds two (2p) excitons, HH2-CB I and LHI-CB2. For all of these calculations the coupled-exciton 

model and nonparabolic conduction band dispersion are employed. 

If we assume that Model 4 is essentially complete, all other excitons contributing little, then 

we obtain the neglected contributions to the total index of refraction resulting from each of the 

Models considered. These results are shown in Figure 6.8. From these results it is immediately 

obvious that by including more excitons the error is considerably reduced. The error obtained using 

Model 1, which considers only the ground state HHI-CB1 (Is) exciton is fairly large. The 

maximum magnitude of error is indeed comparable to the contribution of the HHI-CBl (Is) exciton 

to the index of refraction alone. This can be seen from the results given in Figure 6.1. 

The size of the errors shown in Figure 6.8 indicates clearly the requirements for accurate 

calculation of the resonant index of refraction. For frequencies considerably below the fundamental 

band gap it may be possible to include only a few excitons in the calculations. However, for 

frequencies in the vicinity of the fundamental band gap it is clear that a considerable number of 

exciton states must be included in the calculations. From the results given in Figure 6.8 (a) it is 
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evident that for frequencies above the fundamental band gap, these additional excitons introduce 

considerable structure into the index of refraction. 

We conclude this section by obtaining the total index of refraction. This is done for a IOOA 

GaAs-AlO. 25GaO. 75As single quantum well. The contributions included in this calculation are the 

confined subband, quasi-continuum states and continuum states at F, and also the contribution from 

the L-valley. These contributions have been discussed in detail previously in this Chapter. 

The excitons included are those which are parity-allowed in the absence of an external electric 
field. The complete list of exciton states is therefore HHI-CBI (Is, 2s, 3d), LHl-CBI (Is, 2s, 3d), 

HH2-CB2 (Is2s, 3d), HH3-CBl (Is, 2s, 3d), HHl-CB2 (2p), HH2-CBI (2p) and LHI-CB2 (2p). 

The calculated index of refraction for TE polarisation is shown in Figure 6.9, and the index of 

refraction for TM polarisation is shown in Figure 6.10. Note that the results for TM polarisation 

appear to have less structure than those for TE polarisation. Of the fifteen excitons included it is 

found that only six have non-zero TM polarisation oscillator strength. These are the LHl-CB1 

(Is, 2s, 3d), HHl-CB2 (2p) and HH2-CBI (2p) excitons. However, all of the excitons included have 

non-zero TE polarisation oscillator strength. 

For most of the frequency (energy) range considered in Figures 6.9 and 6.10 the refractive 

index for TE polarisation exceeds that for TM polarisation. This bi-refringence will be considered in 

more detail when the effects of external perturbations are included. In ft particular case of an 

external electric field it has already been shown that several more excitons must be included in our 

model. 

The peak value in this frequency range is nearly 3.39 in the case of TE poMsation. The peak 

value for the TM polarisation is slightly less at about 3.38. These values will of course strongly 
depend on the actual structure. Influencing factors will include the well width and the composition of 

the barrier material. These factors, along with the effects of a double quantum well structure (both 

symmetric and antisymmetric) will be considered later. 

At frequencies close to the fundamental band gap, however, the above factors will mostly 
influence the excitonic contributions. In all cases therefore an accurate determination of the exciton 

wave functions is of paramount importance. The coupled-exciton model employed here is considered 

to be the most accurate in this respect. The excited exciton states which have been seen to contribute 

strongly to the resonant index of refraction can only be obtained accurately within this theoretical 

model. This has been seen to be more important than the precise choice of material parameters used 

as input to die calculations. 

. It can clearly be seen from all of the results given so far that the hope of accurately obtaining 

the index of refraction by considering only the ground state HHl-CB1 exciton and a constant additive 
background contribution from all other states now seems rather optimistic. 
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Figure 6.9 Calculated total index of refraction for TE-mode polarisation for a IOOA GaAs- 

AlO. 2,5GaO. 75As single quantum well. A total offifteen exciton states have been included in the 

calculation. The other contributions included arisefrom the confined subband, quasi-continuum and 

continuum states at r, andfrom the L-valley states. 
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Figure 6.10 Calculated total index of refraction for TM-mode polarisation for a 100A GaAs- 

AlO. 2.5GaO. 75As single quantum well. A total offifteen exciton states have been included in the 

calculation. The other contributions included arisefrom the confined subband, quasi-continuum and 

continuum states at F, andfrom the L-valley states. 
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Electric field effects 

In this section we consider the effect of an external electric field on the index of refraction. It is 

assumed that the electric field is applied along the growth axis, perpendicular to the quantum well 
interfaces. The application of an electric field in the quantum well plane only results in a general 
broadening of the energy levels. This is the well-known Franz-Keldysh effect. The differences in 

this particular case, between bulk material and quantum-confined structures, are negligible. An 

analysis of the Franz-Keldysh effect in bulk semiconductors can be found in Ref. 22. The theory and 
discussion presented there can be immediately applied to the case of quantum well structures. 
However, due to the small effect, it is not considered further. 

In the absence of an electric field, the largest excitonic contributions to the index of refraction 
in a 100A GaAs-AlO. 25GaO. 75As single quantum well arise from the HH1-CB1 (Is), LHI-CB1 (Is) 

and HH2-CB2 (Is) excitons. The individual contributions are shown in Figure 6.12, for electric field 

values of F=0 and F= 35 W/cm. The reduction is greatest for the HH2-CB2 (Is) exciton, with the 

lower subbands still well-confined at F= 35 kV/cm. This reduction indicates that an accurate 

calculation of the changes in the refractive index with increasing field cannot be confined to the 

lowest ground state excitons. An important factor in this reduction arises from the decreasing 

overlap integral of die electron and hole envelope functions as the electric field is increased. As seen 

previously, however, this is not the case for the non-nally parity-forbidden excitons. 
It is instructive to consider the change in the index of refraction calculated by including only 

the HHI-CBI (Is) exciton, and compare this with a more accurate calculation which includes several 
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Figure 6.11 Binding energies of the 

HH1-CB1 (1s) and LH1-CB1 (1s) excitons 
in the presence of an external electricfield, 

applied along the quantum well growth 

axis. The single GaAs-AIO. 25GaO. 75As 

quantum well has a well width of 100A. 

The trend shown in this Figure will 

generally apply to all of the normally 

parity-allowed excitons. 
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Figure 6.12 Contribution to the index of refraction of (a) the HHI-CBI (Is) exciton and (b) the 

LH1-CBI (Is) exciton, for electric field values of F=0 Mcm: (solid curves) and F= 35 Mcm 

(dashed curves). The quantum well structure considered is a symmetric. 100A GaAs-A1O. 25GaO. 75As 

single quantum well. (continued overleaf) 
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Figure 6.12 (contd. ) (c) Contribution to the index of refraction of the HH2-CB2 (1s) exciton, for 

electricfield values of F=0 Mcm (solid curve) and F= 35 Mcm (dashed curve). The quantum 

well structure considered is a symmetric 100A GaAs-AIO. 25GaO. 75As single quantum well. 

excitons, including the excited states. The results of these calculations are shown in Figure 6.13. 

The top graph shows the results obtained by including only the HHI-CB1 (Is) exciton in the 

calculation. A simple two-band model is used to obtain the exciton wave function. The bottom 

graph shows the results obtained by including all of the exciton states which we have discussed 

previously, including several which are normally parity-forbidden at zero electric field. 

The results shown in Figure 6.13 are given in the form An/n where n is the index of refraction 

at F=0 kV/cm. It is assumed that the results given in Figure 6.13(b) represent an accurate 

calculation of the field-induced change in the index of refraction. If the results given in Figure 

6.13(a), which are obtained using only the HHI-CB I (Is) exciton within a simple two-band model, 

am also taken to be a good approximation then the difference between these two graphs will of course 

be negligible. This difference (i. e. the difference in the calculated An/n values) is shown in Figure 

6.14. It is immediately obvious that for photon energies well below the fundamental band gap the 

approximation obtained using only the HHI-CBI (is) exciton is actually quite reasonable. For 

photon energies above the fundamental band gap, however, the approximation is very poor. The 

maximum differences, positive and negative, are +1.95% at Tim = 1.449eV and -1.3% at Flo) = 
1.567eV. The complicated structure of the results shown in Figure 6.14 indicate quite clearly that 

for photon energies above the fundamental band gap the use of a theoretical model which incorporates 
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Figure 6.13 Index of refraction changes AnIn (in percent) obtained by the application of an 

external electricfield F= 35 Mcm calculated with the inclusion of the exciton states (a) HHI-CB] 

(Is) within a two-band approximation and (b) all of the exciton states discussed previously. The 

results shown are for a symmetric 100A GaAs-AlO. 25GaO. 75As single quantum well. 
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Figure 6.14 Difference between the results of Figure 6.13(a) and those of Figure 6.13(b) to 

illustrate the relative acccuracy of the simpler model shown in Figure 6.13(a). 

only a single exciton state is quite unRely to provide results of useful accuracy. Additionally, we 
find that when considering the effects of saturation on the index of refraction, the inclusion of only 

the HHl-CBI (1s) exciton does not in this case give particularly useful results for photon energies 
below the band gap. The changes in refraction due to the effects of saturation will be considered in 

detail later in this Chapter. 

The changes in refraction for a range of electric field values are shown in Figures 6.15 to 6.17. 

The values of electric field used to obtain the results given in these Figures are 15kV/cm, 30kV/cm 

and 45kVjcm respectively. Note that in all cases the overall change is larger for TE polarisation than 
for TM polarisation. This is due to the fact that for the (Is) and (2s) excitons, only those excitons 

principally derived from light-hole valence subbands have non-zero oscillator strength for TM 

polarisation. This differs from the results for the (2p) and (3d) excitons where only those excitons 
built principally from heavy-hole valence subbands have non-zero oscillator strength for TM 

polarisation. This applies to both the parity-allowed and parity-forbidden excitons. Also, the (2p) 

and (3d) excitons typically have smaller oscillator strengths than the (Is) and (2s) excitons. Specific 

values of exciton oscillator strengths for a IOOA GaAs-AlO. 25GaO. 75As quantum well were given in 

Tables 6.3 to 6.5, including several excitons which are parity-forbidden at zero electric field. 

The total index of refraction for TE polarisation and for electric field values F=0,20 and 
40kV/cm is shown in Figure 6.18. The higher exciton states are quenched at much lower field values 
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Figure 6.15 Calculated change in the refiractive index of a GaAs-AlGaAs quantum well in the 

presence of an external electricficldfor (a) TE polarisation and (b) TMpolarisation. The value of the 
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Figure 6.16 Calculated change in the refractive index of a GaAs-AlGaAs quantum well in the 

presence of an external electricfieldfor (a) TE polarisation and (b) TM polarisation. The value of the 

electricfzeld is 30kVlcm, applied normal to the quantum well interfaces. The quantum well structure 

considered is a symmetric 100A GaAs-AIO. 25GaO. 7.5As single quantum well. 
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Figure 6.17 Calculated change in the refractive index of a GaAs-AlGaAs quantum well in the 

presence of an external electricfieldfor (a) TE polarisation and (b) TM polarisation. The value of the 

electricfield is 45kVlcm, applied normal to the quantum well interfaces. The quantum well structure 

considered is a symmetric IOOA GaAs-AlO. 25GaO. 75As single quantum well. 
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Figure 6.18 The calculated total index of refraction of a IOOA GaAs-AlO. 2.5GaO. 75As single 

quantum well structurefor TE polarisation and with an external electricfield applied perpendicular to 

the quantum well interfaces. The values of the electricfield are F=OkVlcm (solid curve), F=20kVlcm 

(dashed curve) and F=4OkVtcm (dotted curve). 
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Figure 6.19 Refractive index of a 100A GaAs-AlO. 25GaO. 7.5As single quantum well as a function 

of electricfield value for both TE polarisation (solid curves) and TM polarisation (dashed curves). 
The electricfield is applied along the growth direction, perpendicular to the quantum well interfaces. 

The top graph isfor photon energy 1.4eV and the bottom graph isfor photon energy 135eV. 
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values than the ground state excitons derived mainly from the lower quantum well subbands. This is 

seen by the significant reduction in the HH2-CB2 (Is) oscillator strength at F= 40kV/cm. 

The actual variation in die index of refraction with electric field at fixed photon energy BO) is 

extremely important for optoelectronic, device applications. For the particular egample of a 

symmetric IOOA GaAs-AIO. 25GaO. 75As quantum well, the variation in refractive index at the 

photon energies 1.35eV and 1.4eV is shown in Figure 6.19. Results are given for both TE and TM 

polarisation. The overall trend is for the refractive index to decrease as the electric field strength is 

increased. Note, however, that at higher field values the effect of the normally parity-forbidden 

excitons is clearly seen in this Figure. These particular excitons have vanishing oscillator strength 

at zero field. At finite electric fields these excitons can acquire finite non-zero oscillator strength due 

to the now non-zero overlap integral of the contributing hole subband spinor component envelope 
functions and the conduction subband envelope functions. 

The effects of an electric field are also considered in the next section which deals solely with 
double quantum well structures. 

Double quantum wefls 

In this section we consider the dependence of the index of refraction on double quantum well 

structure. Both symmetric and asymmetric double quantum wells are considered. In each case the 

thickness of the central barrier (AIxGal-xAs) region is assumed to be thin enough to allow 

significant coupling between the two quantum well (GaAs) regions. Typical bound state electronic 
dispersion in these structures has already been shown in Chapter 5. 

To consider the effects of the central barrier thickness on the optical properties of symmetric 
double quantum well structures two distinct methods are possible. Firstly, the 'total' quantum well 

width may be kept constant while the central barrier thickness is allowed to vary. By 'total' we 

mean the sum of the thicknesses of the central barrier and two well regions. Secondly, the individual 

quantum well widths may be kept constant and the central barrier region allowed to vary in thickness. 

To compare these structures with single quantum well structures it must be made clear which of the 

above methods is being used in the comparison. The constancy of both 'total' width and individual 

quantum well width is illustrated in Figure 6.20. Consider first the case of symmetric double 

quantum well structures. In all cases the quantum well regions are taken as GaAs and the barrier 

regions are taken as Al(). 25GaO. 75As. The first type of structure considered has constant well 

widths, each well region comprising 14 monolayers of GaAs. The separation between the two 

quantum well regions is varied from 4 monolayers to 14 monolayers of AlO. 2.5GaO. 75As. It is still 

questionable whether it is strictly possible for 4 atomic monolayers to be defined as AlO. 25GaO. 75As 
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Figure 6.20 (a) Schematic illustration of double quantum well structures with 

constant 'total' width (left) and the corresponding confinement potentials (right). 

The light areas represent the GaAs well regions and the dark areas represent the 
A1025Gao. 7SAs barrier regions. 
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Figure 6.20 (b) Schematic illustration of double quantum well structures with 

constant well width (left) and the corresponding confinement potentials (right). In 

this case the dfsiance between the well regions is varied. 
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Double quantum wells 

with in-plane parameters derived from bulk AlO. 25GaO. 75As. Since this is beyond the brief of this 

thesis, it is assumed henceforth that the definition is valid for the purpose at hand. The index of 

refraction for this structure is calculated at the fixed photon energies of 1.4eV and lA2cV. Although 

the exciton states are now more properly labelled in terms of the principal contributing electron and 
hole spinor components and the envelope function symmetries (symmetric or antisymmetric), the 

calculations proceed exactly as before. For the range of structures considered it is found that the order 

of the'first six hole subbands can be given as HHls, HHla, LHIs, LHIa, HH2s, HH2a where S(a) 

denotes symmetric(antisymmetric). The order is different for the asymmetric structures considered 

later in this section. The calculated TE and TM refractive indices are shown in Figure 6.21. In all 

cases the values are smaller than a single quantum well of similar total width and barrier 

composition. Although a single quantum well of width similar to that of one of the wells considered 

here would in general have a higher refractive index at both of the energies considered here, we find 

that the largest exciton oscillator strength in the case of the double quantum well is reduced in 

comparison to that in the case of the single well. 

It can be seen from Figure 6.21 that the refractive index decreases with increasing thickness of 

the central barriei; region, at both photon energies considered. In the particular case of TE 

polarisation this decrease is fairly linear over the range of calculated values. This is particularly 

useful for tailoring the refraction (and absorption) to a particular value. Although the precise values 

may differ in the case of a particular real quantum well sample, it is expected that this predicted 

theoretical trend will also exist in that case. 
We find that broadly similar results are obtained in the case of a symmetric double quantum 

well structure with constant 'total' width Ltot = 102A (36 monolayers), and with a similar range of 

central barrier thicknesses. The results for this structure are shown in Figure 6.22. In each case the 

refractive index is greater for TE polarisation. However, as the central barrier is increased in 

thickness, the difference in the values for TE and TM poMsation generally becomes less. The only 

exception to this is the TE-TM difference obtained for a central barrier thickness of 4 monolayers in 

the case of the first structure. If we assume that the effective-mass model is relevant at small 

thicknesses then the above result may be due to the fact that at a central barrier thickness of 4 

monolayers the electronic dispersion is only slightly perturbed from that of a single quantum well. 

It is only in the case of thicker barriers that the electronic states may be considered as coupling 

between 'single well' states. 
As the central barrier thickness increases the confined subbands: are pushed to higher energies 

within each potential well. This also reduces the exciton oscillator strengths. The overall effect is a 

decrease in refractive index as seen in Figures 6.21 and 6.22. 

The change in the refractive index due to the application of an external electric field is shown 

in Figure 6.23 for two different symmetric double quantum well structures, and for an electric field 

value F= 25kV/cm. In each case the 'total' width is 36 monolayers (= 102A). The top graph shown 
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Figure 6.21 Calculated refractive index of a symmetric double quantum well structure as a 

func tion of the central barrier thickness, at photon energies (a) 1.4 eV and (b) 1.42 eV. The 'total' 

width (the sum of the two wells and central barrier) is 32 monolayers and the central barrier is varied 
from 4 to 14 monolayers. The well regions are GaAs and each barrier region is AlO. 25GaO. 75As. 
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Figure 6.22 Calculated refractive index of a symmetric double quantum well structure as a 
function of the central barrier thickness, at photon energies (a) 1.4 eV and (b) 1.42 eV. Each well 

width is 39.6A (14 monolayers) and the central barrier is variedfrom 4 to 14 monolayers. The well 

regions are GaAs and each barrier region is AIO. 2.5GaO. 75As. 
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Figure 6.23 Calculated eleciricfield-induced change in the refractive index, AnIn (percent), for two 

different double quantum well structures atfield value F= 25kVlcm. Each structure has a 'total' 

length Ljot = 102A (36 monolayers). Structure (a) is comprised of (15,6,15) monolayers and 

structure (b) is comprised of (12,12,12) monolayers. The well regions are GaAs and each barrier 

region is AlO. 25GaO. 75As. 
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in Figure 6.23 is for a structure with a central barrier width LB - 17A. The bottom graph shows the 

results with LB = 34A. The results in each case are broadly similar. 'Me change in refraction in 

both cases is significantly larger than that of a single quantum well of width LZ - 102A. This 

results from the larger reduction in exciton absorption in the case of the double quantum well 

structures, discussed in Chapter 5. It was seen in Chapter 5 that a double quantum well structure can 

offer a significantly enhanced modulation depth in comparison with a single quantum well. The 

reduction in refmction, however, may reduce waveguiding in an integrated modulation device. The 

inportance of this also depends on the interaction length (essentially the device length in this case), 

and may in practice prove to be of little concern. 23 

Consider now the case of asymmetric double quantum wells. In the specific examples which 

will be considered here, we have one wider well region of exactly twice the width of a narrower well 

region. As in the case of symmetric double quantum wells we examine two types of structural 

variations: (a) constant well widths with varying central barrier width and (b) constant 'total' width. 

For structures (a) the two well widths are taken as 18 monolayers and 9 monolayers of GaAs, with 

central barrier widths ranging from 4 to 14 monolayers of A10.25Gao. 75M. For structures (b) the 

-total' width is taken as 32 monolayers. The widths of the (well 1, barrier, well 2) combinations 

range from (18,5,9) monolayers to (12,14,6) monolayers. 

The calculated TE and TM refractive indices at No = I. 4eV and No =I A2eV are shown for 

structures (a) and (b) in Figures 6.24 and 6.25 respectively. In all cases the refractive index decreases 

as the central barrier thickness is increased. As the central barrier increases in thickness, this can be 

considered as effectively reducing the coupling between the 'single well' eigenstatcs. The interweIl 

coupling effectively reduces the subband confinement energies and the zone-centre effective masses. 

This tends to increase the contribution to the index of refraction at a particular below-band gap energy 
from both the band-to-band and excitonic transitions. This applies to both symmetric and 

asymmetric double quantum wells. 
For a given 'total' thickness and central barrier width, the asymmetric structure can have a 

different valence subband ordering and different subband confinement energies and dispersion from 

that of a symmetric structure. This leads to the two structures having different refractive indices at a 

particular energy. It is also seen from these Figures that the TE-TM anisotropy in the refractive 
index is enhanced in the asymmetric structure compared to the symmetric structure. For example, 

consider the symmetric well results of Figure 6.21 (both wells = 14 monloayers) and the asymmetric 

results of Figure 6.24 (wider well = 18 monolayers, narrower well =9 monolayers). At hCo = 1.4eV 

and a central barrier thickness of 8 monolayers, the TE-TM anisotropy for the symmetric structure is 

less than 0.2% while that for the asymmetric structure is 0.5%. Increasing the central barrier 

thickness to 12 monolayers gives an anisotropy of 0.1% for the symmetric structure and still about 

0.5% for the asymmetric structure. This comparison holds for all of the symmetric and asymmetric 

structures considered here. One important factor in this increased TE-TM anisotropy observed in the 
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Figure 6.24 Calculated TE and TM refractive indices of an asymmetric double quantum well 

struc ture as afunction of the central barrier thickness, at photon energies (a) 1.4 eV and (b) 1.42 eV. 
The well widths are 18 monolayers (= 50.9A) and 9 monolayers (ý 25.4A). The central barrier 

thickness is variedfrom 4 to 14 monolayers. Both of the well regions are GaAs and each of the 
barrier regions is Al0-25GaO. 75As. 
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Figure 6.25 Calculated TE and TM refractive indices of an asymmetric double quantum well 

structure as ajunction of the central barrier thickness, at photon energies (a) 1.4 eV and (b) 1.42 eV. 
The 'total' width is 32 monolayers (= 90.4A). The width of the wider well is twice that of the 

narrower well. The central barrier thickness variesfrom S to 14 monolayers. Both of the well 

regions are GaAs and each of the barrier regions is AIO_25Gao. 7SAs. 
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(a) F=0 kV/cm 

(b) F=+25kV/cm 

(c) F= -25 kV/cm 

Figure 6.26 Schematic illustration of the conduction band edge confinement potential of a 
(20,10,10)-monolayer asymmetric GaAs-AlO. 25GaO. 75As double quantum well structure in 

the presence of an external electricf1eld applied along the growth axis ft-direction). Different 

electronic dispersion is obtainedfor the electricfteld values +25kVlcm and -25kVIcm, which 
leads to differentfield-induced refractive index changes. The calculated refractive index changes 

are shown in Figure 6.27. The different dispersion also results in different overlap integrals 

between the conduction subbands and valence subbands, which gives rise to different exciton 

oscillator strengths in each case. 
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asymmetric structures is the fact that of the first four confined valence subbands only one has 'light- 

hole' character at the zone centre. In the symmetric structures considered two of these four subbands 

were 'light-hole' subbands. Since only a LH subband can lead to a (Is) exciton with non-zero TM 

oscillator strength this contributes to the larger TE-TM anisotropy seen in the -case of the 

asymmetric double quantum well structures. 
It was seen in Chapter 5 that the direction of electric field is important in the case of 

asymmetric quantum wells. The effect of an electric field of strength F= 25kV/cm on the 

conduction band edge confinement potential is illustrated schematically in Figure 6.26. The 

asymmetric structure considered consists of (20,10,10) monolayers. Two different directions of 

electric field are defined here as +ve and -ve. The change in refraction (An/n) with respect to the zero- 
field case, for each of these field directions is shown in Figures 6.27 (a) and (b) for the +ve and -ve 
field directions respectively. The structure here is different from that seen in the previous single well 

and symmetric double well results. The +ve field direction shows the smallest difference indicating 

that for this field direction the overlap integrals of the conduction and valence subbands are reduced 
less than for the -ve field direction. 

It was noted in Chapter 5 that for small electric field values the exciton oscillator strengths of 

the normally parity-allowed excitons can actually increase for this field direction in asymmetric 

quantum well structures. This occurs since the position expectation value of each quantum well 

subband (zi) = (V*i lzlyi) can differ for each subband in asymmetric structures (not only double 

quantum wells). The values of (zi) for k1l =0 are given below in Table 6.7 for the (20,10,10)- 

monolayer double well structure. The position z=0 is set to the midpoint between the two 

outen-nost interfaces. Small values of electric field can increase the overlap integrals (xV, *_IxV, ) 

resulting in an enhancement of the exciton oscillator strengths. In single symmetric quantum well 

structures the oscillator strength of each parity-allowed exciton generally decreases with increasing 

electric field, regardless of the electric field strength. 

Table 6.7 Quantum confined subband position expectation values (zý = (ly? I 1zlyi) 

in a (20,10,10) monolayer asymmetric GaAs-AlO. 25GaO. 75As double quantum well 

for several values of electricfield, applied along the growth axis. 

Subband OkV/cm 5kV/cm lOkV/cm -5kV/cm -lOkV/cm 
HHI -28.04 A -27.62 A -27.20 A -28A5 A -28.85 A 
HH2 31.32 33.45 34.65 27.19 18.92 

HH3 -22.91 -24.97 -26.10 -18.87 -10.69 
LHI -27.16 -26.69 -26.21 -27.63 -28.09 
CBI -27.19 -27.50 -27.80 -26.89 -26.58 
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Figure 6.27 Calculated electric field-induced change in the refractive index, AnIn (percent), of a 
(20,10,10)-monotayer GaAs-AlGaAs asymmetric double quantum well structure. The values of the 

electricfteld are (a) +25kVlcm and (b) -25kVlcm. Both of the well regions are GaAs and each barrier 

region is AlO. 25GaO. 75As. 
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In general the values of refractive index obtained for single quantum well and double quantum 

well structures are lower than the values obtained for longer period multiple quantum well 

StrUCtureS. 16 In the particular case of multiple quantum wells and superlattices the refraction is seen 

to be fairly simflar to the averaged equivalent bulk alloy. 
Experimental measurements of the refractive index in superlattice structures have recently been 

published. 24-'25 The bulk-like values obtained are readily apparent. For the particular case of a 
GaAs-A. 10.25Gao. 75M single symmetric quantum well the refractive index at 1.4eV is seen to peak 

at a well width between SOA and 75A. The maximwn value obtained in the vicinity of the HHI- 

CB I exciton transition energies reaches a maximum of around n=3.56 within this range of well 

widths. The experimental results24,25 and theoretical results16 obtained for multiple quantum well 

structures with well widths within the range 50A to 75A obtain a maximum value, within a similar 

spectral region, of around n=3.57 to n=3.59, which is slightly larger than the values obtained for 

single quantum well structures. 

Intensity-dependent saturation 

In this section we briefly consider the effect of saturation on the index of refraction. The structure 

considered is a IOOA GaAs-AlO. 25GaO. 75As single quantum well. The band-to-band contributions 

to the change in refraction can easily be obtained from the results given in Chapter 5, using the 

density-matrix theory which incorporates phase-space filling. In that case the change in absorption 

of the band-to-band transitions in the presence of an intense optical field was obtained using standard 

density-matrix theory. This model has been previously used to obtain the intensity-dependent 

changes in the refractive index in bulk semiconductors26,27 with the assumption of completely 

parabolic conduction and valence band electronic dispersion. 

To obtain the changes in the refraction due to the excitonic absorption we adopt a screening 

model similar to that discussed in Chapter 5. Justification for this approach has been given 

previously and need not be repeated here. The steady-state population due to band-to-band transitions 

is straightforward to obtain from the density-matrix equations. It is actually subsumed within the 

density-marix formalism. Note that this involves spectral integration and is not obtained from the 

simple formula N= a(w)I(w)Tj/rLo). The spectral integration is transformed to a kli-space 

integration as usual. The relaxation time Tj is assurned to be lOnsec throughout, independent of 

carrier density and in-plane wavevector. The above simple expression for N is used however to 

estimate the additional free carrier density due to the exciton absorption. This assumes that the 

exciton states are rapidly thermalised, the process assisted by the existing unbound electrons and 

holes in the conduction and valence subbands. The above approach is therefore a reasonably simple 
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Figure 6.28 Calculwed intensity-dependent refractive index contribution n2(0))for a IOOA single 
GaAs-AlO. 25GaO. 75As quantwn well structure for TE polarisation. The optical field intensity is 

50WIcný and the results are obtainedfor each value ofphoton energy in the range 13eV to 1-5eV. 

The relaxation tinte Tj has been taken as IOnsec, independent of both carrier density and in-plane 

wavevector. The values of n2(w) obtained are within the range of values given in Ref. 28 (and 

references contained within). 
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Figure 6.29 Calculated intensity-dependent refractive index contribution n2(Wfor a IOOA single 

GaAs-AlO. 25GaO. 75As quantum well structure for TM polarisation. The optical field intensity is 

50WICM2 and the results are obtainedfor each value of photon energy in the range 1.3eV to 1.5eV. 

The relaxation time Tj has been taken as IOnsec, independent of both carrier density and in-plane 

wavevector. 
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approximation which neglects incorporation of finite exciton lifetimes. However, qualitative results 

are easily obtained within this approximate scheme since the technical details involved are fairly 

trivial. The results obtained for an optical field intensity of 5OW/cm2 are shown in Figures 6.28 and 

6.29 for TE and TM polarisation respectively. Also shown in these Figures is the separate band-to- - 
band contribution to n2(0)) when the exciton absorption is completely neglected. This contribution 

is not significantly greater than tha obtained in bulk GaAs. 28 

In the particular case of TE polarisation (Figure 6.2-8) the maximum value of n2 is obtained at 

a photon energy of 1A5eV and is n2 = -I. 6xIO-3cm2/W. The band-to-band contribution at the same 

photon energy is only about 4% of this value. The results for TM polarisation are rather less and 

reach a maximum value of n2 -'ý -I-IxlO-3cm2/W at a photon energy of IA7eV. 

The results which we obtained during the course of this work were for a range of optical field 

intensifies I(co). From I= lOW/Cm2 to I= 25OW/cm2 (the range considered) broadly similar 

magnitudes for the maximum value of n2 were obtained in all cases. The saturation is therefore 

roughly linear for optical intensities within this range of values. 
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Conclusions 
and Future Work 

In this thesis we have constructed a theoretical model for the refractive index in quantum well 

structures in the vicinity of the 176-rg band gap. The model includes the r6c, 175c and I5v states, 

and also allows for inclusion of the electronic states at the X and L points. Additionally, the ground 

state and excited state excitons have also been explicitly included within the theoretical model. The 

exciton model employed takes into account the Coulomb coupling between different exciton states. 

The results obtained are in good agreement with published experimental results. 1 

The effects of band filling and screening have both been incorporated, allowing the intensity- 

dependent index of refraction to be obtained. Additionally the effects of external perturbations and of 

different material parameters have also been examined. All of the necessary theoretical detail has 

been presented so that it may be accessible to those with no prior knowledge of this field. As such it 

should also be directly accessible to experimentalists. 
By concentrating on a multi-band effective mass approach it should be possible to apply the 

model directly to the problem of laycr-intermixing or disordering in quantum well structures with the 
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Chapter 7 Conclusions andfuture work 

introduction of suitable position-dependent material parameters. This was considered to be an 

essential requirement for a 'fallow-on'project. In actual fact this work has already started since the 

research for this thesis was completed. 2,3 

The ability to accurately calculate the frequency-dependent index of refraction in quantum well 

structures is important in the case of optoelectronic devices which contain a quantum well or 

multiple quantum well layer. In particular the refraction at near-band gap frequencies is strongly 

dependent on an accurate knowledge of the excitonic wave functions, which have been obtained in 

this thesis. 

As mentioned above, one particular example of future work concerns the fabrication of 

optoclectronic devices with an imbedded quantum well or multiple quantum well layer. To obtain 

the polarisation within this layer, accurate knowledge of the quantum confined electronic dispersion 

is required. Additionally, at photon energies near the fundamental band gap it is also necessary to 

have an accurate description of the quantum well exciton states. It is intended that the theory 

presented in this thesis will be straightforwardly incorporated into the above work, which is in fact 

currently in progress. In this respect it is not necessary to restrict attention to the (Ga, AI)As system. 

Many IIIN and 11-VI binary, ternary and quaternary compounds are currently available which can be 

used to construct lattice-matched or strained-layer quantum well structures. New materials offer 

different optical properties by virtue of their different energy gaps and electronic dispersion. A wide 

range of quantum well and optoelectronic devices can therefore be fabricated with varying operating 

wavelengths. The application of the theory in this thesis to these systems should involve no more 

than altering the appropriate material parameters where necessary. The work involved in altering 

existing numerical codes for different material parameters is very little indeed. 

Also mentioned above is the particular example of layer-intermixed structures. The 

intermixing can be viewed as a disordering process initiated by interdiffusion. This can be achieved 

by annealing or laser irradiation, with or without the presence of impurity implantation. This 

implantation can enhance the diffusion process4-7 but is not strictly required to achieve the 

interdiffusion of, for example, gallium and aluminium in (GaAI)As heterostructures. Comparison 

of the published experimental work and the published theoretical work shows that the diffusion 

process can be considered as obeying a standard Fick-type law, 8 which leads to a variation in the 

material parameters. 
Considerable research has already been carried out modelling the electronic and optical 

properties of layer-intermixed (Ga, AI)As quantum wells and multiple quantum wells by directly 

applying the theoretical models in this thesis. 2.3 These studies incorporate diffusion along the 

growth axis and lead to position-dependent parameters substituted into the Hamiltonians. Accurate 

diffusion coefficients have been calculated in agreement with published experimental results. 7 

Additionally, the absorption edge shifts and changes in refraction can also be obtained in good 

agreement with published experimental studies. It is expected that this work will be continued and 
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applied to odier material systems, in particular. InGaAsP-based quantum well structures. 

Throughout this thesis the method of calculation applied to each Hamiltonian has been the 

finite-differcnce method. In the case of decoupled conduction-valence Hamiltonians the method used 

was a relaxation method. In the case of the W k. 'p Hamiltonian, the block-diagonalised 44 

Hamiltonians were written as explicit finite diff=nce equations and solved by an eigenvalue medW. 

During -the early stages of this project several methods of solution were considered and fully 

implemented for the valence band dispýion. Tbese include4t 

1 Analytic expressions for the eigenvalues and eigenvectors of the 4x4 Luttinger equation and 

block-diagonalised 3x3 versions of the 6x6 LuttingerrKohn equation 

2 Finite-difference mediods - both relaxation and eigenvalue techniques 

3 Transfer Matrix methods9 

4 Bond-orbital modelIO-11 - essentially a tight-binding method on an FCC lattice which is 

forced to agree with a k. 'p matrix to second order. in a Taylor expansion 

5 Expansion of the wave functions in terms of zone-centre solutions. 

In method I the resulting l6xl6 homogeneous matrix equation (i. e. we assume use of the 44 

Luttinger Hamiltonian) which requires to. be solved for. the four! -component envelope function 

solutions can be reduced to an W matrix by considering the reflection symmetry of a symmetric 

single well structure. The method is inappropriate in the case of layer-disordering and the application 

of an electric field. Methods 3 and 4 are comparable to the finite-difference techniques (method 2) in 

accessibility, but are rather more involved at a computational level. In method 5 the zone-centre 

solutions can be easily obtained since each spinor. component is uncoupled at k4l =0 for symmetric 

growth directions. However, it was found that to obtain accuracy comparable to finite-difference 

methods at a general non-zero Iql-value, a considerable number. of zone-centre states (typically at least 

15) must be included in the expansion. 

The interest in layer4ntermixed structures leads to the requirement of methods which can cope 

with arbiti-ary potential profiles and which therefore disregard any simplifications arising due to 

reflection symmetry in symmetric single quantum well structures. Further, the adoption of method 2 

thus allows parabolic and triangular. quantum wells to. be considered in a manner analogous to. 

rectangular quantum well profiles with no difference in the computational approach. Extension to. 

graded barrier structures is similar. and can alsobe easily incorporated. A disadvantage of finite- 

difference techniques is the large matrix size required for numerical accuracy. This can be avoided if 

only two. or three eigenvalues; are required, but this is generally not the case. Large matrices, 

however, do. not imply any inherent computational difficulty. The only implication is a longer 

computation time. 

Finite-difference methods are in general simple and can be easHy implemented. 'ne precise 
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details of these techniques are well known and can Iv found in most good introductory texts on 

numerical methods. 

Throughout this thesis a constant intraband relaxation time has been incorporated within the 

density-matrix theory, and which assumes a Lorentzian broadening. A more accurate model could be 

obtained by considering the phase damping due to carrier-carrier and carrier-phonon scattering. Recent 

attempts to do this have resulted in widely different values of the dipole transition linewidth. 12,13 

The intraband scattering time used in this thesis is about midway in value between the two 

theoretical estimates obtained in Refs. 12 and 13. Further work is required in this area in order to 

accurately model and calculate the non-Markov relaxation processes in low-dimensional 

sen-ticonductor devices. 
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Appendix A 

The DensityMatrix 

ZZ 

The density-matrix formalisml-3 has been commonly used to calculate the linear and nonlinear 

contributions to the optical gain and absorption. It has also been used in the case of semiconductor 

lasers. For the present case, the system under consideration is a semiconductor quantum well in the 

presence of multimode radiation. Let p be the one-particle density matrix and HO be the unperturbed 

Hamiltonian with an asymmetric potential energy, E(t) be the electric field strength of the optical 
A E radiation with polarisation vector , and M be the dipole operator. For multimode radiation, the 

optical field E(t) is the sum over all modes 

E(t) = iRe JEýe-'()-t 
Im I 

E6 
-"'m' Eý 

, 
(Eý, e (Al) 

rn 
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Appendix A The Density Matrix 

The density matrix equation, with intraband relaxation becomes2 

ap 
[H. -M- E(t), p] -I [r(p - po) + (p - Pý) (A2) 

at 2 

where p" is the unperturbed density matrix and r is a phenomenological operator responsible for 

damping. More precise details of damping, which involve electron-phonon interactions and electron- 

electron collisions, will be given later. 

It is sufficient to assume that I- is a diagonal matrix and has elements yn, which represent the 
inverse relaxation time of state In>. For the present discussion it is adequate to consider a two-level 

system only. The generalisation to a muld-level system is completely straightforward. Consider 

two states l(x> and IP> where 

I(x >=I lql, kj_ > 

10 >=I ql, qL > 

and where k1j, q1I are the in-plane wavevectors and k_L, q_L the z-component of the momentum. NVe 

consider Icc> and IP> to be the initial and final states respectively. The unperturbed Hamiltonian is 
diagonal, with energies Ect and Ep. 71be operator r has diagonal elements 

< Cc cc > 

< pi rip> (M) 
To 

where'ra andrp are the relaxation times for states I(x> and 10>. Equation (A2) may be solved by 

expanding the density matrix p in powers of the optical field E giving 

I (pn) (A5) 
n 

It is assumed that the unperturbed density matrix p(O) has diagonal elementS2 only. It is convenient 
to define 

Paa < 
(n) Q (n) ot IP 
(n) Pfýa (n) < PIP Ia> 
(n) NO (n) I < PIP 
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This gives pp, (t) =4 (t). The perturbation series for p are given by4 

pßß = 
(0) +p (2 2+-. 

- % ßß)E 
3 

paß = (')F. + p(3)E + (A6) päß aß 

where the dia onal elements of the density matrix heve been neglected. The term p(O) indicates the 9 aa 

electron distribution in the injected state. The linear term P(. 'ýE rotates in phase with the existing 

field mode and can be expressed as 

(1) = (1) (M) 4 IPaP (A7) 
m 

where pW(m) is the component with phase rotation expý(Omt). 

The second order terms pVP2 give the number of electrons whose phase rotation is 

synchronised with the existing field, given by 

(2) (2) 
POO ppp (m, k) (Ag) 

m, k 

where pV)(M, k) is the component built by the rn and k modes. The phase rotation is 1A 
exPO(%±(t)k)t). 

Note that pW02 has dc components (m=k), and also beat frequency components (m#k). The 

synchronisation saturates the dipole moment, shown by the third-order term 

(3) p. A)(m, k, q) (A9) NA 
m k, q 

where p 
(3)(M k, q) is the component built by the m, k and q modes with phase rotation aP 

exp(j(±(Om±(Dk±O)q)t)- If there is only a single mode, then the third order element is built by using 
(com, -com, com) and (-com, com, com) for the phase rotation expocomt). If there are two modes 

however, then the phase rotation expo(omt) is built by the terms ((Ok, -(Ok, (Om), (-COk, cok, com), 
(com, -cok, cok) and (-cok, o)m, (ok). This means that with two modes there are twice as many terms as 

(2) there are with identical modes. The extra terms arise from the beat frequency terms of pppF, 2 at 
((Om, -(Ok) and (-(Ok, (Dm). 

Equations (A2) to (A5) give for the even and odd elements of p respectively 
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a 
(2n) 

= 
(2n) 

1 
(2n-1) (2n-1) 

at ppp Ypo PPP 
ih 

(mp(" Pýp - mcp Poc, ) E(t) (AIO) 

a 
(2n) 

=- 
(2n) 

_I 
(Map (2n-1) M (2n - 1) 

at 
Pcia Yace Paa 

ih 
Pýa - pa Pýp ) EW (Al 1) 

a 
(2n+l) 

] 
(2n + 1) (2n) 

_ 
ý2 mpa E (1) Ppa =[I (EP 

- Ea) -Yap pa aa r (AI2) 
at ih ih 

w 

a 
(2n + 1) 

= 

[- 

_, Yýa]P(2n+l) (P(2n)_P(2n)) 
Pap 

I 
(Ea 

-Ep) aD pp aa 
MqE(t) (A13) 

at ih ih 

The first-order term pW can be obtained in terms of a linear combination of the components for 

different modes as 

'[00) 
io) t (1) =yw ((o )e (A14) 

ap (-co,,, ) e+ 00) Pa 

where 

0» 
K'ß M�ßEý (P(o) - 

ýaa 
(A15) 

ih [i(co, 
ý, - +-(, ýß] 

aal 

(0) 
- 0» ßß ýp(12 (CO. ) =-m. "ßE", 

(p 
(A16) 

ih [-i (W�, + Cüß�) + -l', ß] 

If these first-order terms are then substituted into (AIO), the second-order element, induced by modes 

m and k is obtained as 

(2) (m, k) =- 
mp, ým"ß (0) - (0) 

-h 2 
(Pßß paa) 

E. E: E 
(A17) 

[i«Ok 
- fflin) +»Yßß][i«)ýßc( - 0) in) +^(ßo: ] 
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If the second-order term is substituted into (A12) the third-order term, comprised of modes m, k and 

q, is obmined as 

(3) 3 
NO pýp) (m, k, q) (A18) 

kq 

where 

MC2 
3 tßmßct (0) 

p, (�p)(m, k, q) =- pß ih 3 
(P 

* *0 -0 +(aq)t E .. EkEqe 10 k 
[i(6)m 

- (Ük + CÜq - (Oßia) + Yß(x][i( CO in - Wßa) +'fctß] 

11 
x+- 

[i(COm 

- Wk) +'fßß i«Om - (Ük) + Yaa 

Ek* E 
.. 

4e +O')t 

(A19) 
li«Ok-(ÜM)+Yßß 

i«Ok-(Üm)+Yact 

The polarisation P(t) is given by 

I 
p- Tr(pm) (A20) 

v 

The Fourier components of the polarisation for mode m are denoted by Pm and the susceptibility 

XM(t) for mode m by XM(com). This gives 

(A21) 

The susceptibility is then 

(0) (0) 
PA - Pý- 

(A22) 

If we only keep the resonant term at ( (3 j)m, the third-order susceptibility Xm%(wm), corresponding to 
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the mode rn in the presence of another mode k is given by 

4 (0)- (0) 
(3) 

1 Im-ßi 1N pact 
Xm(k)(cü. ) = -Z 

113 E<, V 
aß 

'+ömk (corn-Coßa+iyaß) 

.1(1+1 
i«Oln +'YP(x i(COßa -0k) +'faß) 

x (i «Om - Oh )+ Tßß i(COm - C0k) +'faa 

) 

+ 
2(11«, +'ypß) yaß 

(A23) 
)2 +. y2 

1 

yuctyßß «Oßa 
-(Ok aß 

The material gain at com is given by 

(1) 
-im [, x. (tü. )] 
cn, 

g(1) _ I- g(3) )1 Fk 12 
m rn(k (A24) 

k 

where F is the optical confinement factor and 

X. «0. ) = X") «J). ) + EXm(k)«Üm) 
- 

(A25) 

The modal gain gm(con) is then 

gm ((0. ) = IF g (1) 
- r. 1: ) 

)I E 12 (A26) 
m ., 

g(3 kI- m(k 

Equations (A22) to (A25) then give 

Mcto, 2, 
yco 

-fl, 

Iv pop pac, 
comv /-, 22 (A27) AM 

EV ap h (Com - (opa) + yaý 

and 
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(3) 
fg- 1 

1: 
IMC, 014 I 

gm(k)((L)m) =-(Om 
Vak h3 (I + 8mk) 

( P(O) - P(O) 
xRe 

I op act 

i (0). 
- (Opa) +Yap 

11 

CO ni - (0 ßcc 
)+7 

ßcr 
+ 

i«Oßct - ýOk) + Yaß 

) 

11 

j(Om - (Ok) +'fßß i(COm - Ok) +'facc 

) 

2('f. +. yßß) Yclß 
(A28) 

Taaypp (COßcc - C0k) 
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Appendix B 

Excitons in Quantum Wells 

Two-band model 

To consider the excitonic states in quantum wells it is necessary to include the effects of valence- 

subband mixing in the calculation. Previous studies of excitons have mainly concentrated on real 

space variational methods, 1-4 usually neglecting the correct details of the subband dispersion. Some 

authors5-8 have attempted to combine a real space variational calculation with the off-diagonal 

elements of the Luttinger-Kohn Hamiltonian included via perturbation theory. A full solution in k- 

space is, however, essenfial. 
Only a handful of authors9,10 have attempted this previously and their excellent studies do 

not seem to have influenced the large number of researchers who still continue with real space 
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variational calculations. An exciton state necessarily includes the effect of Coulomb forces between 

all crystalline states and to consider one hole and one electron at k--O as the necessary ingredients to 

begin the calculation is incorrect. The method of calculating the band structure has been dealt with 

previously. It is assumed therefore that this calculation has been performed and that all electron 

states (i. e. wavefunctions) are known a priori. The valence band mixing has already been obtained 

using the Luttinger-Kohn 4x4 Hamiltonian for the J=3/2 valence bands. The conduction band 

wavefunctions are then taken as having been effectively decoupled from the valence bands and are 

given by 

I g'(z)e'q"*Pu, (r) ql, n> T Qqjj 9 

and the valence band wavefunctions by 

xV, mk, (r) (z) e'k" Ptý, k1l, m > (B2) 

In the absence of Coulomb interactions, the energies are given by 

n 

,IE 
(q, j) I qll, n > Ile 

c 
(B3) 

11, lkil, m > ET(kil) llql, m > (B4) 

To obtain the equation for the excitons, simply include the Coulomb interaction term V 

H 1-1, + H, +V 
Hig(r) ExV(r) (B5) 

whem 

-e 
2 

4ne[(z. - Zh )2 + (PC _ p")21 
' (B6) 

According to group theory ( and not an approximation as some workers seem to believe) the exciton 

wavefunctions can be expressed in terms of the non-interacting states as 

(B7) 
n, m q,. k, 
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Substitute equation (137) into (135) and multiply on the left by <qýj, n'l<kI'I, m'l, to give 

En(qll) -IiT(lql)]Cm 
(qll, lql) c 

+ YY, 
< qll, n I< kll, m IV I qll, n'>lkll, m>C,,, m, 

(qIl, kll) = EC, m(qll, kil) . (B8) 
n'm'q, k', 

For the case of excitons at rest, or for optical transitions, the centre-cf-mass momentum kjj+qjj is set 

to zero (conservation of momentum). This gives 

Cnrn ( 
qll, kil (B9) )=C.. Cn. (kil) 

, 

which enables (138) to be re-written as 

[E n (k,, )-ET(kj, )]C,,, (k,, ) 
+ 

J: J: 
= EC,,,,, (k, 

l) 10) 
c, -1 

V,, (B 

n'rn'kj, 

where the Coulomb term is given by 

rn < lql, n I< -klm IV I KI, n'> I -lell, m'> V'm 
n'Z(lql, 

Kl) 
-= 

'(I,,, 
Zh)gm'(k' , Zh 

) 
gn* 

(kil 
Z, 

)gn' (k', 
z 

ff dZedZh gm 11 ss it 

i(k, l - k,, ) - x V(r)e- (BI 1) 

The only approximation to be used is to take a two-band model for the calculation of the Coulomb 

term (B 11). However, the non-interacting'dispersion of each band has been accurately obtained 

previously. A Gaussian-type function is assumed for the term Cru-n, giving 

Xk 2 /4 
ých (Iql) 

= (2n%)"2e- 11 (B12) 

In real space this is 

(2 )"2e-lrl2/X 
(B13) 

Ick 

Setting Cnm(kil) -ý ýeh(kjj) in (BIO) gives 
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[Eý(kjj)-ET(kjj)]ý, 
h(kjj) +If dk; j ýr 

. h(kT, 
)V,,,,, (kil, kll) = Eý, 

(2n)i h 
(kil (B 14) 

Multiply by (4ýh(kjj) and integrating (with respect to k1j) leads to 

E 
)2 

f dlýI [E 
c ý1) n(k -E7 

(1ýl)]lech (4 )12 

(27t 

+ff dkil dgl eý (kil er 
)4 ýh 

(KI (kll, K, (B15) 
(2n 

By varying the parameter X, to give 
iE- 

= 0, the exciton binding energy is obtained as a% 

EB = En, (O) - Eý(O) - EjaE. 
0 

(B16) 
TX 

By obtaining an equation integrated throughout k-space, it is evident that the full effects of the 

valence-band mixing (and any details of the bandstructure) are completely incorporated into the 

solution. Real space integrationl-4 would not achieve this. To calculate the excitonic optical 

absorption, the squared momentum matrix element is given byl I 

Ipcxl2 
cv 

IIf 
&I ý, h 

(kil ) P, (kil 
2n 

(B17) 

Expressions for Pcv(k1j) have been given previously. The optical absorption can be given in two 

different forms, depending on the linewidth broadening factor used. If a Gaussian lineshape is used, 
the absorption can be given as 

IMexI2( 
1 )l f2 

e-ýho) 
)2/a 

cc Lý an 

where the linewidth r= (oln2)1/2 and is about 5-7meV in quantum wells at room temperature. The 

above expression used the dipole matrix element, which is defined as 

M, (kil) 
= 

ieh 
P, (kil) (B19) 

mor, (kil)) 
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Two-bandmodel 

If a Lorentzian linewidth is assumed, then a density matrix expression (see Appendix A) gives 

IMexI2(h/, r. cy 
Lz (Ec -h (o) 2+ (h /, r. )2 

where E., =- E, (O)-E, (O)-EB and I'=- (fi/T. ) and we have included the summation over spin within 

the matrix element. 

It is then completely straightforward to obtain the exciton oscillator strength (per unit area) 

which is given by 

2 

'. 
12 

WXmo 

)lp 
c 

ýWcxmo 

U),., M. 

2 
Tex lp < ýý. j 

2 (B21) 

Coupled-exciton model 

The exciton theory outlined in the previous section is expected to give good results for the ground 

state HHI-CBI exciton. For most well widths considered here, both the HH1 and CB I subbands are 

well confined for most states of interest. These are here the single-particle states coupled by the 

Coulomb interaction. Only states within approximately 106cm-1 from the zone centre at r' are 

considered here. For other excitons, including excited states of the excitons, it is best to consider a 

model which couples the excitons. The theoretical description of the Coulomb interaction has 

already been outlined above. Ibis section will therefore be descriptive only. 

To obtain a consistent theoretical description of each exciton, including excited states, we 
initially describe each exciton envelope function in terms the known solutions of the 2-D hydrogen 

atom. 12 These are given by 

121 (n + Im 1)! 1/2 

F2, 
ca(n+yl (21ml! ) (n-Iml). 1(2n+l) 

2) 

'1 -1 

I 2p 

xme irný 
e- 

(. 
(2n+l) 

)F(Im 
I -n, 21 m1 +1, p) (B22) 
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where (n, m) are the quantum numbers for the exciton and F(a, b, c) is the confluent hypergeometric 

function. The term a denotes the exciton Bohr radius (length parameter) which we denote as X in the 

following discussion. 

The complete wave function has a definite total angular momentum. Since the angular 

momentum of each spin component of the four-component hole wave function (using the Luttinger 

description) differs by ±1 for neighbouring components, then for the particular case of excitons, only 

one valence band envelope function component can be optically active. The total orbital angular 

momentum is therefore derived from this spin component. The form of each k-space envelope 

function is obtained from equation (B22) as 

(k) =f pdp(D,,,,, (p)J,, (kp) . (B23) 

which gives 

V1, (k) 
(%2 +k 

2)312 

), (k2 _ ýX) 
iV2-, (k) 

(X2+k 2)5/2 

y2p (k) 
kk 

(X2 +k 2)5/2 

k 2x 

lY3d(k) 
(X2 +k 

2)7/2 
(B24) 

The solutions obtained from each two-band calculation can then be combined to form the 

variational wave function T= YTi. Due to the different spin indices of c-ach hole component, 

including the relative motion orbital angular momentum, we find that only those excitons with 

similar spin values for each hole component are in fact coupled by the Coulomb interaction. For 

those exciton states of interest, the coupled excitons are given in detail in Chapter 6. 

In general we have found that for the HHI-CBI (Is) exciton there is little difference in the 

results using the two-band model and the more proper coupled-exciton model given above. For other 

excitons, in particular the excited states, this is not the case. For these states the use of the coupled- 

exciton model is essential to obtain correct binding energies and oscillator strengths. 
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Appendix C 

Envelope-Function Continuity 
in Semiconductor Heterostructures 

There has been a considerable amount of work published concerning the boundary conditions for 

envelope-functions in quantum well structures. 1-10 The effective-mass; equations used in Chapter 4 

for the conduction and valence subbands have subsumed all microscopic properties of the well and 
barrier materials. This includes the Bloch functions and momentum matrix elements between all 
bands of interest. It is therefore required to obtain the correct boundary conditions for continuity of 

probability current density, from the point of view that the effcctive-mass equations are correct. 
Given a Hamiltonian, to construct boundary conditions within the envelope-function 

approximation, necessarily means ignoring any relevance due to the approximations mentioned 

above. That is, the simple Hamiltonian is taken at face value, as a true mathematical expression of 

the kinetic energy. Many of the published papers in this field, having performed the necessary 
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Appendix C -Envelope-function continuity 

calculations, then add comment which seeks to describe correct physics in the final result. However, 

since the approximations cannot be neglected without mention, many of the conclusions drawn and 

insights offered by these authors apply only to the mathematical behaviour of the approximate 
Hamiltonian used More correctly the problem should be considered without use of any type of k-p 

formalism whatever. 

The present state-of-the-art bandstructure calculation methods are based on the density 

functional method, and do not use the widespread local density approximation (LDA). These 

methods, however, can not presently be applied to excited states. However, this method and other ab 

initio methods still rely on approximation techniques. Although an attempt is made to start from as 

basic a physical model as possible, solution of the resulting equations requires much ingenuity in the 

approximations required. This leads to the choice of either ab initio methods and difficulties in 

solution or an effective-mass method (including the invariant expansion Hamiltonians used in this 

thesis) which although contain initial approximations are straightforward to solve and can be done so 

with limited computational resources. 
Due to the similarity of GaAs and AlxGaj_xAs it was decided to use an effective-mass 

Hamiltonian and the envelope-function method throughout this thesis. This was partly due to the 

simplicity of solution and partly due to the simplicity of analysis offered by this method. With 

regard to the valence subband-mixing for non-zero in-plane wavevectors, this is straightforward to 

obtain with this method. The conduction subband dispersion, including the effects of 

nonparabolicity, is similarly straightforward to obtain. A more proper treatment would include the 

Bloch functions explicitly in each material, as has been done by Smith and Mailhiot (Refs. 4 and 5). 

However, this was beyond the brief of this thesis. 

The conduction band effective-mass Hamiltonian used here is given byl I 

h2k2222222 
E (k) =-+ cc,, 

0+0. (kxky+kykz+kzk. ) 
2m 

2222 2) 222i 
+y. [k2 (kxky+ky2kz+kzkx -9kxkykzl 2 

If we collect the kz terms and ignore the spin-splitting term proportional to yo this can be re-written 

as 

E(k) = a. k4 ++ (2cc. + 0. ) (k 2+k 2) k2+ 
-h 

(k 2+k 2) 
zxyz 2m* 7y 

22+ 
Cto 

4) 
+ (2a, +kk (k4 

y xy +k (C2) 

The basic prescription of effective-mass theory12 is then to use this as the kinetic energy and we add 
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the confinement potential V(z). We replace kz by the operator -i3/gz which is taken to act on the z- 
dependent envelope function. The in-plane translational invariance leaves kx and ky as good quantum 

numbers. For the case of finite quantum wells it is not possible to decouple the in-plane and 

perpendicular motion, as is usually done. The value of m* in equation (Cl) is taken as mi (well 

material) Or M2 (barrier material) given by the bulk zone-centre effective mass in the [001) direction. 

The common method of obtaining the boundary conditions is to integrate the Schrodinger equation 
from -8 to +8 (taking the boundary at z= 0) and then letting 8-ýO. The Hamiltonian can be written 

as (for k1l = 0) 

d h2 d d2 d2 

H= ---- + a, -+ V(Z) 
. (C3) 

dz 2m* dz j2- dz2 

Integrating across the boundary gives continuity of 

. h2 dp 2F da� d2F 
(C4) 

dz ei 
im dz 

where F denotes the z-dependent envelope function. If we set ao, = o: 021 then the result given in 

Ref. 8 is obtained. This is then identical to the boundary conditions of continuity of the envelope 

function IT divided by an energy dependent effective mass in the growth direction. Note that it is 

necessary to have 8=0 to eliminate the potential V(z). Also the derivative of the envelope function 

with respect to z has a discontinuity at the boundary. 

If we consider the most general case (kjj * 0) then the coefficient of kz has the form 

-h 
22 

A=ý; 7 t (2(x,, + 0. ) k, I. (C5) 

Current density is obtained from the continuity equation 

dp 
+ 

ýJ: 
=0 (C6) 

dt dt 

where p= F*F is the charge density of the postulated envelope function F. Ibis gives 

dp 
-F0 

dp 
+F 

dF *=1 
(F . UF - FHF *), (C7) 

di dt di ih 
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from the time-dependent Schr6dinger equation and gives 

di 1 JF dF (F 
*A 

- F*a. - C. C. (C8) 
di ih dz2 dZ4 

where c. c. denotes the complex conjugate of the preceding terms. It is seen that this equation is 

fulfilled if 

I(. d3F dF d2F 
ýj +- (X, - F*A F a, - C. C. 

) 
(C9) 

ih dz dz 12 

For quantum well structures the current density for bound states must be zero. Consider a potential 

step at z=0 and incoming, reflected and transmitted waves 

F(z) = Ie'k" + Re -iklz 
,z<0 

F(z) = Te 
'k2 Z, 

z>0 (Clo) 

Substitution in equation (C9) gives 

2k, 2) (1112 12) z ,c0 j, =h (A I+ 2(x., ki IR 

j2 = 
2k2 (A 2+ 2(x. 

ý 
k 2) IT 12 z>0 (cli) 

h2 

where k1l has been set to zero for convenience. Taking continuity of the envelope function and of 

equation (C4), neglecting the term (dc(oldz) leads to conservation of current if and only if 

dF d3F 
A- - 2a,, 7Z-3 (C12) 

dz 

is continuous at the boundary. Extension to k1l ;, -- 0 gives the following boundary conditions at each 
interface 

d1i 2) iPF, dF2 2)ý F2 (2a., + P.. ki I -- = A2 - +P. 
ýkll dZ3 

(C13) 
dz dZ3 dz 

If we take the ansatz F= Bcos(Kz) in the quantum well region and F= Cexp(-Xlzl) in the barrier 
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regions equation (C13) gives the eigenvalues as solutions of the transcendental equation 

h2 
21 X3 

tan(KL) = 

[2M2 

+ (2cc,, 
ý + Ný ) k, 

I% 
- 2cc,, 2- 

(C14) h2 
23 

12m, 
+ (2(x,,, + P,,, ) k, I 

]K 
+ 2cc, 

l 
K 

for the even-parity states and interfaces at z= ±L. The odd-parity states are obtained by replacing 

tan(KL) by -cotan(KL) in equation (Cl3) obtained by taking the envelope function of the form 

F=Bsin(Kz) in the well region. 'Me wavenumbers K and X are obtained from equation (C2) as 

[A, 
- A, I+ 

Ll ) 1/2 1/2 

(Cl5a) 2 A, 

] 

2 
-A (Cl5b) 

[A 

2 

(1 
+ 2 A2 

wh= 

A = 
h2 

- 
2(x,,, +2 

k (Cl6a) , iI 4m, a., 2cc., 

B, = 
E 

- 
h2- 2_4 

POi 
22 

- k1l kil -xy (C 16b) 
cc,,, 2m, oc., cc,, 

h (2cc. + P. ) 2 A2 = ý ,. k (Cl6c) 4M2(XO2 2(xo 2 

B2 (E- V) 
= 

h22422 
- k, k, -kxky (C 16a) 

cto 2 2M2ao, ao 
2 

The boundary conditions for continuity of current density for the 4x4 Luttinger-Kohn 

Hamiltonian can be more simply obtained by integrating the Hamiltonian across the well-barrier 
interface. 13,14 The Hamiltonian can be written as 

d2 d 
dZ2 dz 

(C17) 

where the A, B, C matrices are obtained from the 4x4 Hamiltonian given by equation (4.12) in 

Chapter 4. To ensure Hermiticity this can be re-written as 
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A+1 
(B I+B+C. 

(C18) 
dz dz 2 dz dz 

) 

Integration across the interfaces gives 

+B (cig) 
[A 

I dz 
+2B, 

IR, 
= 

[A 
2 dz 221 

52 

at each interface and where the subscript 1 (2) refers to the well (barrier) material. This leads to 

continuity at each interface of the four-component envelope function and of the vector 

(YI - 2Y2) NF3Y3 (k,, - iky) 00A 
az 

N63Y 3 (k,, + iky (YI +2Y2)- 00 f2 
az 

00 (71 + 2Y2) 
a 

-ý3Y3 (k,, - iky) A 
az 

a 

00 ýn 
3 (k, + iky (Y I- 2Y2) - f4 

az 
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Abstract 

Nonlinear Gain and Saturation Effects in 

GaAs/AlGaAs Quantum Well Lasers 

A. T. Meney and J. M. Arnold 
Department ofElectronics andElectrical Engineering 

University of Glasgow 

Glasgow G12 8QQ 

Many recent advances in the field of integrated optoelectronics have been due to the development of 
novel semiconductor devices, especially semiconductor diode lasers, which have proved to be of great 
potential in communication and telecommunication industries. Improvements in fabrication 
techniques have also led to the production of single quantum well and multiple quantum well 
devices, which have shown many new physical phenomena, as well as superior operating 
characteristics. 

Apart from experimental work, much research has been devoted to modelling gain spectra and gain- 
current relations in semiconductor lasers. It is known, however, that the gain-current relation in 
quantum well lasers is nonlinear. In order to model gain in quantum well lasers, it is therefore 
necessary to consider the microscopic nonlinear polarisation within the multi-level quasi-2- 
dimensional structure, and without resort to a phenomenologically introduced gain coefficient [1]. In 
addition, widely-used assumptions modelling gain saturation and refractive index changes (carrier 
dependent) may lead to an inaccurate description [2] of laser operation. 

We present model calculations based on an undoped GaAs/AlGaAs single quantum well laser which 
incorporates nonlinear gain and saturation effects, using calculated nonlinear susceptibilities within 
the reduced dimensionality of the quantum well layer. Of particular interest are the lasing transitions 
between different quantum well subbands and the gain saturation of the higher wavelength transitions 
(n=1 transitions) at high injection current densities, and also the observed carrier-dependent dispersion 
of the real refractive index in the active layer. 

In our future work, this analysis will be extended to incorporate the effects of an additional 
waveguide structure and will permit accurate calculation of the optical confinement within the 
quantum well active layer. 
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Superlattices and Microstructures, VoL 11, No. 1,1992 

ORIENTATION DEPENDENCE OF SUBBAND STRUCTURE AND OPTICAL PROPERTIES IN 
GaAs-AlGaAs QUANTUM WEýLS: [0011, [1111, [110] AND [310] GROWTH DIRECTIONS. 

Alistair T. Meney 
Laser and Optical System Engineering Group 

Departntent ofMechanical Engineering 
University of Glasgow 

Glasgow G. 12 8QQ 
Scotland UX. 

(Received 13 May 1991) 

We calculate the valence subband dispersion in GaAs-AIxGal-xAs quantum wells, with 
growth axes along the [001], [111], [110] and [310] directions, by solving the 
multiband effective mass equations for the four-component envelope function. 
Boundary conditions for conservation of probability current are given for each growth 
direction. The conduction band dispersion is obtained from an accurate expression for 
the bulk dispersion which includes the effects of anisotropy and nonparabolicity. We 
use the calculated dispersion to examine the dependence of optical interband transitions 
on both polarization and valence-subband mixing. 

1. Introduttion. 

Semiconductor heterostructures have received much 
attention in recent years, due to their novel electronic 
properties, and also due to their possible use in electronic 
and optbelectronic devices such as tunneling diodes, high- 
electron-mobility transistorsl (HEMI), quantum well 
lasers2, optical waveguides, modulators and switches. 

Many different methods have been employed to study 
the electronic properties of these heterostructures. These 
include the multiband effective mass theory3-6, tight- 
binding method7, bond-orbital modelg, density-functional 
method9 and pseudopotentials. 10-11 

The envelope-function method, based on the effective 
mass theory of the Luttinger-Kohn Hamiltonian12, is 
especially easy to apply, and gives a reasonable description 
of valence band dispersion near the Brillouin zone centre. 
It is particularly well suited to the inclusion of the effects of 
external perturbation such as uniaxial stress, external 
magnetic fiekL or a built-in quantum well potential. 

Possibly one of the most important results of the 
application of this method is the significant subband mixing 
for in-plane wavevectors away from the zone centre at 
ki=O. This mixing arises due to the off-diagonal terms in 
the Luttinger-Kohn Hamiltonian, and also due to the 

application of boundary conditions for the conservation of 
probability current density3 at each interface in the well 
growth direction. 

In this paper we adopt the four-component envelope 
function scheme to study the IFS subband struct 

' 
ure in 

GaAs/Al,, Gal.,, As quantum wells, with the growth 
direction (z-axis) along the [001], [111], [110] or [310] 
directions. Quantum wells in the [001] direction have been 
the subject of most studies to date. However, wells grown 
in the [1111 and [1101 CHMCtionS13-16 have recently attracted 
interest. Experimental studies have recently be en reported 
on wells grown along the [I 11] and [3 10] directions. 17 

Ile method of calculation is outlined in section 2. 
The 4x4 Luttinger-Kohn Hamiltonian for each growth 
direction, along with explicit expressions for the current- 
conserving boundary conditions in each case, are also 
presented. It has recently been suggested that the lower in- 

plane effective masses of [001]-grown strained-layer 
quantum wells may be present also in unstrainod material16 
grown in different crystal directions. The threshold current 
required for population inversion in quantum well lasers 
depends on the density of states, and therefore the effective 
ma-ses, of the valence- and conduction-subbands. Recent 

experimental results14, for [III]-grown GaAs/AlGaAs 

quantum well lasers, indicate a significant reduction in 
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threshold current compared to those grown along [001]. 
More recently, theoretical results16 have confirmed this, but 
used only a simplified model, with parabolic conduction 
bands (regardless of growth direction), and the assumption 
of axially symmetric valence band dispersion. We have 
therefore retained die off-diagonal terms in the Luttinger- 
Kohn "Hamiltonian which give rise to warping of the 
valence band dispersion in the plane of the well, and we 
include the effects of anisotropy and nonpambolicity on the 
conduction band dispersion to fourth order in k. 

Superlattices and Microstructures, VoL 11, No. 1,1992' 

-': fl (r) 11 1. L> 20 
22' > th (r) 12 

22 

+f (r) 13, -1 >+3> :f (r) 13, _ 3411 (3) 

Analytic expressions for the eigenvalues and 
eigenvectors of equation (1) in bulk (V(z)=O) have been 
given by Andreani et al (Ref. 19). The in-plane 
components of Bloch vector k are still good quantum 
numbers in the case of quantum wells, and the envelope 
functions have the form. 

(f, f2, f3 f4 e ik: - (4) 

2. Method of calculation. 

(a) [001 ]-growth valence band dispersion. 

We consider an isolated quantum well with the GaAs 
well region extending from z=-L to z=+L, where z is the 
groývth direction. The Luttinger-Kohn HamiltonianIs for 
the rs valence band is given by the 4x4 matrix 

P+Q Lm0 

H 
L. P-Q 0m 
me 0P-Q -L 

+ V(Z), 

0 M* -L* P+j 

where 

P=X (M ++ (2a) 2 

(k. 2+ Aý _ 2kz2) (2b) 
2 

yf3-, A (k ik, ) ki (2c) 

L3 
_, t 2 3i7s kxt 77. 2 

V(z) represents the potential due to the valence band edge 
discontinuity. We assume that the zone centre Bloch 
functions an similar in both the well and barrier materials, 
restricting the method to materials of simil chemical 
composition. Equation (1) can then be taken as acting on a 
four-component envelope function F-WIS2hf4) and we 
take the wave functions to be of the form 

where (fj, f2, f3, f4) is an eigenvector of equation (1). ne 
energy eigenvalues are given by 

E =. _p±(Q2+LL*+MM*)I, (5) 

where the +(-) sign refers to heavy(light) holes. In the 
barrier we must replace E by (E-VO), where VO is the 
valence band discontinuity in V(z). In the wen VO=O. 

Continuity of the envelope function, and continuity of 
probability current density (see below) at the interfaces 

z=+/-L leads to a system of linear homogeneous equations 
with 16 unknown coefficients. The energy eigenvalues of 
the subbands are given by the zeros of the associated 
determinantal equation, for each value of in-plane 
wavevector. 

To obtain the boundary condition for current 
conservation, we decompose the Hamiltonian (1) as 

: 012 H =A -+B. 
ý+C, 

57Z2 
CIZ 

where AB and C are matrices with components obtained 
using equations (2), and kz -+ -i(a/az). To ensure 
Hermiticity, this is re-written as 

aA cl + -1 
(B 

-a + -aB + C. (7) az az 2 az 
- 

az 
- 

)- 

ý-ý -- -- 

Integrating amm the intedaces leads to 

[A(i)-ý 
+ 

10) 
F(') =[A (2) a+ iB(2)]F(2), 

(8) 
äz 2 -2 

at each interface. 
For the 1001]-growth Hamil tonian, this leads to 

continuity of the following vector at each interface 
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(-yl - 271) ýf3, h (k� - iý 00 

+Uy) (yl + 2, b )ja 00 f2 

00 (yl + 2e) iky f 

00- ý-3'A (k. 
ý + iky (-yl - 2-b) f4 
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(b) [0011-growth conduction band dispersion. 

Ile conduction bands in zincblende semiconductors 
are known to exhibit anisotropiC20 and nonparabolic 
dispersion. Soin-splitting2l within each subband is also 
present due to the lack of inversion symmetry. To obtain 
an accurate description of the conduction bands, it is 

necessary to include the effects of the higher p-antibonding 
conduction band. Braun and R6ssler (Ref 22) have 

obtained an accurate expression for the conduction band 
dispersion to fourth order in k, which is obtained by an 
invariant expansion of the two-fold lowest conduction band 
states, with weighting factors obtained using standard k-p 
theory. Ile l4xl4 Hamiltonian consists of the states 1176c, 
r7v+r8v and r7c+178c. To fourth order in k, the dispersion 

may be written as22 

h 2k 24222222 
E(k) = 2m +ak (kxky+kykz+k7. k iL) 

222222222 2]2 ±^t. [k (kxky+kykz+kzkx)-9kxkykz 

.. (10) 

The coefficients ao, po and yo describe isotropic 
nonparabolicity, anisotropic nonparabolicity and spin- 
splitting respectively. Ile explicit expressions for these 
coefficients may be found in Ref. 22. They can be 
expressed in terms of standard band parameters such as 
energy gaps and momentum matrix elements. We choose 
to ignore the spin-splitting term yo since it is small. We 
assume similar momentum matrix elements in GaAs and 
AlGaAs (x<0.4), and for consistency calculate the IF6c zone 
centre effective mass using a five-level k-p scheme. (All 
the parameters used in the calculations are given in Table 
1). The effective ma s is therefore given by23 

. 
T_ 

=1+ 
Ep 2 
3 

[E. 
+ 

E. +1 A. 
Ep, ,12 +C, (11) 
3[E. '- E. 

+ 
E. '+ A. '- E. 

] 

(9) 
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where C is a constant chosen to give m*=0.0665 for x---O. 
This includes coupling to remote bands not explicitly 
included in equation (11). 71be parameters ao and 00 also 
depend on the r5v-11"5c interband matrix elements (see Table 
1). 

Following Ekenberg (Ref. 24) we re-write equation 
(10) as 

h2 (2a. + 0- )22 
k, 4 + 

[2ma, 
+ 

CEO 
ki I 

]kz 

h2 4 0- 2 2_ E 
+ kl2l +k+ 

cx(, 
kx k IIy- 40, (12) 

2mcco CEO 

2 1/2 where 1qj=(kj; +kY) . If we put K=kz in the well and "z 
in the barrier, where E-+(E-V, ), we easily obtain 

L 
K =[A, -A, 1+ý (13a) A2 

I 

2 1 
22 A2 I+ 

L) 
-A2 (13b) A2 

2 

whm 

A, 
h2 (2xx., +0.1) k2 II (14a) 4m, cE., 2a, I 

B, = 
E ji 224 00 1 u2 E2 ---kii-kil -Kx Ki (14b) 

ccol 2mi ccol CLOI 
A2 

h2 (2CCo2 + Po2)k2 
II t (14c) 4M2 Cýo2 2CLo2 

B2 (E- V) )i2 24 
Po2 

22 
x . jtý -k -k 't. Y. (14d) 

CLo2 2M2 C(o2 CL*2 

In equations (13) and (14) the subscript 1(2) refers to the 
well(barrier) material. 

Boundary conditions for conservation of current 
density have been discussed in detail by ELenberg. 24 It is 
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straightforward to show that for the dispersion of equation 
(10), the appropriate current-con serving boundary 

condition leads to a simple transcendental equation for the 
well eigenstates given by_ 

; i2)L 
_ 2cco2 %3 

tan(KL) _ 
2M2 

- (15) 
h2K 

+2ccIK3 
2m, 

for even-parity solutions at kl, =O. For odd-parity solutions 
we replace tan(KL) by -cotan(KL). For non-zero in-plane 

wavevectors equation (15) is easily generalised to 

d 

ý=(2y2 +, A)(ki +ik2) 73 

2 (7ý ý- 'h ) R2 + ik I T6 

0 

1 (, 4 _., V -ik L j)(k, +2 )2 

NF6 

- -(2,4 +7S)(k, -ik2)k3 17c) ý3 

M1- (y2 + 2-6) (ki ik2 )2 
2, VF3 

+2- 01 - 70 (kl + ik2) k3 (17d) 
NF6 

From (8) conservation of current at each interface is now 
given by continuity of the vector 

L(2)ý+'A)(kj-ik2) --L(, h-, h)(k2-ikl) 
IF3 -. -ý- -- . 

ý6 
--- - 

(yj + 2, h 

0 

0 

(yl-+275) 
d 
ýi 

0 

2 
-760ý-ISW2-ikl) 

f2 

1 (k, - 
ik2) 3 -73 

(ji- - 27S) -A , 
jj 

_r_ 
__2 (. h-, A)(k2+ikl) --L(2, h+, A)(kl+ik2) 76 ý3 

[ h2 
-+ (24Xo2 + Po2 )k 2 2a. 2 

X3 
2M2 

tan(KL) )i2 
(16) 

-+(2(x., +P. j)k21]K+2ccojK3 2m, I 

(c) Dispersion for other growth directions. 

For the [111]-growth direction we take wavevector 
components ki, k2, k3 along the (1,1, -2), (-1,1,0) and 
(1,1,1) directions respectively. 71lie natural direction for 
angular momentum quantization is now [111]. The 

elements of the Luttinger-Kohn Hamiltonian's now take the 
form 

122 2) P=2 (ki +k2 +k3 (17a) 

12 2_2k2) Q=2 (k, +k2 3 (17b) 

12 b- 12-'y3 

ý-3-im k2+ ý3-b k 

- Tüb -73) - 
dz 

-VFN)ý 
k2 + VF375 ki 

-d 
+ 12-7ý + 

0 

d 
&- 

For the [I I 0]-growth direction, kl, k2 and k3 are now 
along the (0,0, -1), (-1,1,0) and (1,1,0) directions 
respectively. Ile Luttinger-Kohn Hamiltonian now has 
elements 

122 2) P=2 Yl (k 
I +k2 +k3 (19a) 

121212 Q=2 *f2 
(k, 

_2 k2 _2 k3 

32 
_k2 I + ý, h (k2 3) (19b) 

L=- VF3y2 k2 k3 - r3ii, kI k3 (19c) 

2+( 2 
M= -'E Y2 

3 [(^f2 + ^f3 ) k2 k3] 
4 

3 

+ ! E(y2 ki - 2iy3 k2)kl 
- (19d) 

2 

Continuity of current at each interface is now given by 
contin I uity of 

ý-3 

0 

71 + 12772 + 12'b 
d 

ýi 

-VFN7ýk2 -VF3)ýk I 

0 

J3 d 
T(72 -)5) 

f2 

ý3-i, h k2- VF3, A kI r3 

f 4 
3f d 

4 

(20) 
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For [310]-grown quantum wells, we take kl, k2, k3 

along (0,0, -1), (-1,3,0) and (3,1,0) respectively. For the 
valence bands we now have 

2 2+P P= (21a) 
271 

(ki +k2 3) 

2+ 2 Q= g2k, ý(y2+y3)k2 

2 

4 
(3y2 + y3 ) k3 (21b) 

yf3-iy3 kI k3 

(21d) 

Y) O. U b. U 

-T (2)12 + 3Y3 ) k2 k3 (21c) -EQ (eV) 17.5 17.5 
AEo (mcV) 246 

I _IC y3)k ?2 NF3 lh k23 (4y2 +2 
2 10 

- 
rNY3 kI k2 

Continuity of current is now given by continuity of 

a 

j3n k+ 'yF3 i(2 It +3 YW 

0 

0 

3 .F Jy3k 
I- -y-i(2n+3-n)k2 

(Yi +I -A + -2L -A 
d 
ýi 

0 

0 

0 

0 

TABLE 1 
Paranxim used in the calculadms 

GaAs 

35 ýt 

Y, a 6.78 5.64 
72 1.92 1.46 
73 2.70 1.20 

ni*c 0.0665 0.082 b 

(Zo (eV A4) 
-2098 c -1305 

po (ev A4) 
-2271 -1734 

Eo (meV) 1425 d 1671 
Ao (meV) 341 328 
% (meV) 4488 4508 
Aý (Mev) 171 163 
Ep (eV) 28.9 28.9 

a. GaAs values am hm Ref. 25.. - 
"Aý values am obtained by linear interlmlation of 
the hole masses in the [0011 mid D 111 dirmlions. 

b. Calculated using equatkm (11). 

c. an and f6 am calculated fim Ref. 22. 

ct Energy band gaps we taken fim Refs. 26 and 27. 

0 

0.. 
, 

f2 

(22) 
3 

ül 
2h - f^A f4 

(YI + 22-'A + 21 h 

43pkj--Fi(2r2+3n)k2 

The quantum well conduction subbands for each 
growth direction are obtained by rotating the Hamiltonian 
(10) for each new direction, and replacing E by (E-Vc) in 
the barrier, where Vc is the conduction band discontinuity- 
in V(z). Ile rtsulting equations are solved by the standard 
finite-difference method, and we set the conduction band 
envelope fiurtion V(z)--)O, at z= ± 21-2 where Lz is the well 
width. 

3. Results. 

In this section we present the results of the calculated 
conduction and valence subband dispersion, and also the 

linear gain spectra, for for each growth direction under 
consideration. We take the barrier Alurnimurn concentration 
x=0.2, and consider well widths of 50A and 100A. 

Figures I and 2 show the n=1 conduction subband 
dispersion along [100] (to Tight) and [110] (to left) for 
[0011-grown wells and along the equivalent in-plane 
directions for the [111]- and [110]-grown wells. Ile 
dispersion for [310]-grown wells is close to that of [001] 
and is not shown for clarity. It is clear dud the confinement 
energies E(") are not the same for any growth direction. 
This would not be the case had the simple isotropic 
parabolic effective mass model been used instead. Ile 
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Figuri 1. n=I conduction subband dispersion for a 50A Figure 2. n=1 conduction subband dispersion for a 106A 

SAs quantum well for the growth axes GaAs-A1O 2GaO 
GaAs-AIO. 2GaO. SAs quantum well for the growth axes 

. . 
orientiid"06iij thc'[001], (solid --line), [1111 (dashed line) oriented along7tht [001] (solid line), [III]. (dashed line) 

' 
-directio'ns. For [0011 and [110] (dotted'liric)', growth and [110] (dotted line) growth dfiwtions. 
. growth, the wavevectors are along [100) (to right) and 

[I 10] (to left). The wavevectors are along equivalent in- TABLE2 
plane directions for ihe other growth axes. Calculated average zone-centre effective ma ses 

wen Growth InCBI mHH1 nkEl MHIH2 
width direction 

average in-plane zone-centre effective mass is given for 50A [0011 0.072 0.172 -1.872 0.110 
each growth direction in Table 2. The most significant [111] 0.073 0.133 0.045 -0.078 departure from the simple parabolic model is the conduction [110] 0.0904 0.173 0.060 -0.111 subband effective ma s of the [110]-grown wells. This 

[3101 0.0735 0.172 -0.552 0.106 
leads to a greater conduction band density of states for this 

looA [0011 0.0696 0.159 -0.254 0.079 
growth direction, the other growth directions having 
-broadlysimil effective masses and density of states. The . 

[111] 0.0687 0.127 0.104 1.381 

-valence subband disper Sion is . shown iii figure 3 (I-z--50A) [110] 0.0865 0.157 0.039 -0.053 

and figure 4 (1, =100A), for all four growth directions.. [3101 0.0707 0.158 -0.101 0.053 

Ile subbands are labelled according to their character at 
kj=0. Note that the or-der of the subbands is not the same 
for all directions, due to the different quantisation masses, It is seen from figures 3 and 4 that an axial 
which can be obtained from the diagonal elements of the approximation for the valence SUbband dispersion (i. e. 
Luttinger-Kohn Hamiltonian for each direction. For well neglect of in-plane subband warping) would be reasonable 
widths of 50A, the [ 111 ] growth direction HH 1 subband for the [0011, [111] and [310] oriented wells, but would 

---has-a pronounced-1i 
' 
ght-hole'- character extending-to -not be good for the [1101 orientation., - The anisotropy of the 

kjj>O. 025(2rji) giving a smaller density of states for this dispersion in this case is quite apparent, and is it unlikely 
subband than in the . other growth directions. Also that an axial approximation would be satisfactory. 
noticeable is the separation in energy between the first and Nevertheless, it is expected that our results for the gain 
second confined subbands which is greatest for the [I I I]- spectra using the non-axial model considered here will still 
grown wells. For both [111] and [110] the second differ noticeably Erom an axial model. 
subband is BM, therefore it is expected that the TM mode The calculated TE mode gain spectra, using standard 
laser gain will be less than the TE mode gain for these densýty matrix theoryý8 and assuming a constant intra- 
orientations, and the TM modes Will be effectively band relaxation time of 100 fsec, are shown in figures 5 
suppressed. .. and 6, for well widths of 50A and IOOA respectively. The 
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Figure 3. Valence subband dispersion for a 50A GaAs- 
AIO. 2GaO. 8As quantum well for the growth directions (a) 
[001], (b) [I 11], (c) [110] and (d) [310]. 
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Figure 4. Valence subband dispersion for a IOOA GaAs- 
AlO. 2GaO. 8As quantum well for the growth directions (a) 
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Energy (eV) Energy (A the results for [0011 and [310] are broadly similar, and it is 

.. 
seen from figures 3 and 4 that the valence subband 

Figure 5. Linear gain spectra of the 50A quantum wells for dispersion for these orientations is also similar. In the case 
TE mode polarisation, and for injected carrier densities of of [I I 01-grown wells, the gain is the lowest of all the 
2-6xlOlscm-3. 

systems considered here, and the gain is in general a 
function of the subband dispersion, the separation between 

the subbands and the confinement ordering of the 'light' 
a) 
nil 

mm 

2OW 

1000 
LD 

a 

Figure 7. Linear gain spectra of 50A [110]-oriented 
quantum well for (a) TE mode polarisation and (b) TM 
mode polarisation for injected carrier densities of 2- 
6xlO18cm-3. 

effect of the above-mentioned 'light-We' nature of the 
[I III -HHI. subband clearly. reduces the threshold for TE 

and 'heavy' subbands. It is also interesting to note that for 
50A [I 101-oriented wells the TE mode gain far exceeds that 
for the TM mode. This can be seen mom clearly in figure 
*7, where the TE mode gain and TM mode gain for 50A 
[I 101-oriented wells is shown, .. The reduction in TM mode 
pin is quite remadmble. 
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TABLE3 
Calculated threshold current densities 

Well wWth OfienMtm TE (A/cm2) TM (A/Cn, 2) 

5o A [001] 147 181 
[111] 119 176 

- 407-- 
[3101 183 253 

ioo A 10011 147 158 
[1111 134 140 
[110] 203 223 
[3101 146 160 

Figure'6. Linear gain spectra of the IOOA 4uantum wells For IOOA wells, the possibility of n=2 state lasing 

for TE mode polarisation, and for injected carrier densities (TE modes only) is shown in figure 6, where the n=2 gain 

of 2-6xlO'8crn-3. peak becomes larger than the n=1 peak at injected carrier 

[3103 
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Figure 8. Peak gain versus carrier density for TE (s olid Figure 9. Peak gain versus carrier density for TE (solid 
line) and TM (dashed line) for 50A wells. line), and TM (dashed line) for 100A wells. 

densities around 6xlO18cm-3. Ile peak gain versus. carrier where ts is the electron recombination lifetime with the 
density is shown in figure .8 (Lz=50A) and figure 9 value tg: ý2.6xlO6(nthr)-0-81 in bulk GaAs. Using this value 
94=100A). The threshold for TE modes is less than that of of ts and equation (23), and estimating nthr from the results' 
TM in all cases. However, at higher carrier densities, TM given in figures 5 and 6, the threshold current densities are 
gain is often higher, resulting in the possibility of TE-TM calculated as in Table 3. The TE mode threshold current 
mode-hopping. For the range of injected carrier densities density for each orientation with respect to that for [001]- 
considered here (2-6xlO18cnr3), the TE gain in 50A wellsi 

* 
grownvells is giveninTable4. - Note, thatthe [1111-grown 

. is always higher than TM. However in IOOA wells this is" wells hive-a lower threshold than any? other o rientation, and 
not the case, and the TM gain will always exceed the TE the [I 101-grown wells have a much higher threshold. The 
gain at higher injection curents. Further increase of values for the reduction in JLhr for [111] with respect to 
injection current can lead to n=2 TE mode lasing. In the [001] agree with the experimental values obtained in 
case of [ 110] wells, ]b r 1, -z=, - I OOA, TM m6dCs -are- _f0v 6_11iid Reference 14. 
with respect to TE modes over almost the entire range of 
carrier densities considered, in stark contrast to the situation TABLE4 for 50A wells. 

-We calculate the threshold current density from the 
Threshold current density with respect to [001]-orientation 

condition that the modal gain balances the internal losses at Orientation L =50A L =100A threshold, giving rg=cc+(lAL)ln(I/R). We take a cavity z Z 
length L--500gm, oc=10cm-1 for the internal losses and 

[111] -19% _10% 
mirror reflectivity R=0.32. For GaAs-AlGaAs a typical 

[1101 +60% +38% 

value of the optical confinement factor is given by [3101 +24% 0% 

r=2.5xlO-4Lz, where Lz is the well width in Angstroms. 
The threshold current density may be given as29 

The comparison between the threshold current for TM 
__ -2- 1 __'_ - __ __ - __ -- .1--------I-I- -- ---- -- --- ux)uc iasing wiui respect to mat ior ir. moac iasing is given 

J eV. L,. (23) 
below in Table 5, for all the systems considered. Note that 

T the decrease for [I 11] in comparison with [001] is larger 
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for narrow wells (Lz=SOA) and decreases with increasing 
well width. The reduction for L, =50A is estimated to be 
19%, and for Lz: =100A is-only 10%. 'Mis trend is in 
agreement with those of Ref 16, which used a simpler 
theoretical model, but the calculated values of the reduction 
differ slightly, as expected. 

TABLE5 
Comparison of the TM mode threshold current with 

respect to the TE mode threshold current 

Orientation 11--50A LZ=IOOA 
[001] +23% +8% 
[1111 +48% +5% 
[110] +73% +10% 
[3101 +38% +10% 

4. Conclusions 

We have zalculated the conduction- and valence-subband 
dispersion for 50A and IOOA GaAs-AlO. 2GaO. 8As quantum 
wells, with the growth axes along the [001], [111], [110] 
and 1310] directions. 

We have shown that for thin wells (L, =50A) the TE 
laser modes predominate, efficiently suppressing TM laser 
operation and reducing the possibility of TE-TM mode- 
hopping. The threshold current density for the [III]- 
oriented wells is lower than that for any other growth 
direction considered, in agreement with earlier experimental 
results. 14 For [110]-grown wells, with Iz=50A, lasing 
takes place for TE modes only, while for larger well widths 
(Lz>IOOA) TM modes are favoured over a wide range of 
operating currents. 
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A theoretical model for the refractive index in impurity induced disordered (IID) GaAs- 
AlGaAs quantum wells is presented. The electron and hole dispersion is obtained from 
the Luttinger-Kohn Hamiltonian and a bulk conduction band Hamiltonian which includes 
the effects of nonparabolicity. We solve the Hamiltonians using a finite difference 
method which is flexible enough to accommodate the potential profile in disordered 
quantum wells. f3oth TE and TM refractive indices art calculated, and our results are in 
excellent agreement with the published experimental data available. The inter-diffusion 
coefficient of Al and Ga is obtained by comparing our calculated subband level results, 
including the effects of excitons, to the published experimental data. The theoretical 
model allows accurate calculation of the index of refraction, allowing the refractive 
properties of impurity induced disordered wells to be accurately tailored experimentally. 

47 

1. Introduction. results of our model calculations with the experimental 

results. 
The process of impurity induced disordering (RD) 

or layer intermixing in semiconductor quantum well 
structures has been the subject of much research effort since 
its discovery in 1980.1 Several experimental reports have 
been concerned with the shift in the fundamental absorption 
edge in ED material2,3, while, others4 have concentrated on 
the reduced absorption due to the intermixing process. 

The change in absorption in these intermixed 

quantum wells leads to a change in the refractive index. 
Recently, experimental results have been reported5 which 
demonstrate the reduction in the index of refraction in a 
Ga-As-AlGaAs quantum well structure. The experiments 
were performed using the electrically neutral donor species 
boron and fluorine, which should have little effect on the 
absorption coefficient at photon energies near the bandgap. 

It is the aim of this paper to obtain a theoretical 
model of the TE and TM mode reftuctive indices in impurity 
induced disordered quantum wells, and to compare the 

2. Method of Calculation. 

We calculate the potential profile after disordering 

by considering the interdiffusion of the aluminium from the 
barrier regions into the wells, along with the out-diffusion 

of gallium from the wells into the barriers. The excess 

concentration of gallium in the well regions is assumed to 

obey a standard Fick's law diffusion process when 

annealed in the presence of the neutral donor species, with 
the inter-diffusion coefficient depending on both donor 

species concentration and annealing temperature. 
'Me experimental results. obtained in Ref. 5 were 

obtained with a 2-D doping concentration of fluorine at 
1014cm-2 and an annealing temperature of 8900C for 90 

minutes, and the multiple quantum well structure had an 
initial barrier aluminium concentration of x--0.26. The 

0749-6036/92/010047 + 07 $02.00/0 @ 1992 Academic Press Limited 
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surplus of gallium in each well is then taken as y=0.26. 
The diffused profile g(z) of gallium is therefore given by 

9(Z) " (17Y) 
LL 

n=+m L, + 2n Zz- + f-B' Z 
+y erf 

(2 

-2 2 2ýDt 

L;, -2nýl+LB +z 
+ erf 

22 
2FDt 

where the origin z=O is at the centre of the middle well 
region, LB is the barrier width, Lz is the well width and the 

sum is over the (2m+1) well and barrier regions. 
We further assume that the local conduction/valence 

band offset remains in the ratio 65: 35 and that the local 
bandgap shift is given by AE--l. 247x(z), where x(z) is the 
aluminium concentration along the z (growth) direction. 
The aluminium concentration profile x(z) is obtained from 

equation (1) as x(z)=I-g(z). To simplify the calculations 
we set the conduction band confinement potential to zero at 
the centre of each well and similarly for the valence band. 
71iis 'shifts' the energy gap at z=O to Eg+AE(z=O). 

We consider an MQW structure composed of five 

well regions, surrounded by thick substrate layers of 
AIO. 26GaO. 74As. The MQW structure is composed of 
alternating regions of GaAs and AIO. 26GaO. 74As, the well 
widths are Lz=60A and the barrier widths are LB=60A. 
This limits the sum in equation (1) to 5 terms only. Ile 

structure is taken to be grown along the [001] direction and 
we calculate the quantised hole subbands using the 
Luttinger-Kohn Hamiltonian given by6 

P+Q Lm0 
L* P-Q 0m+V (z) (2) M* 0 P-Q m 
0 M* -L* P+Q 

where 

1222 
2 yj (kx + ky + kz) 

2 
Y2 (kx - k2 - 2k2) 

2yz 
L= yf3-y3 (ky + ik, k, 

3 IL 2 2) M=2 'Y2 (kx - ky yr3- iy3 k,, ky (3) 
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In equation (2) V(z) represents the confinement potential 
due to the material composition and is obtained from 

equation (1). We average the effective masses in the well 
and barrier regions, which gives the averaged Luttinger 

parameters asyl=5.98, -n=1.60, y3=2.35 and the averaged 

conduction band mass as mc=0.0774mo. Values of the 
bulk masses are obtained from Ref. 7. We calculate the 

quantised conduction band levels from the Hamiltonian of 
Braun and R6ssler (Ref. 8), neglecting the spin-splitting 
term, which gives the bulk conduction band energy as 

h 2k2 
2 2k2 2k2 

z E +a. 0 +Po (kxk2 +k +k )+V(z), (4) 
2jn* yy2 

where the nonparaboliciry parameters ao and 00 are defined 
in Ref. 8, and where we have added the confinement 
potential V(z). As well as averaging the zone-centre 
conduction band effective mass, we have also averaged the 
ao and N nonparabolicity parameters which then have the 
values ao=- 1699 eVA4 and Po=- 1984 eVA4. 

Equations (2) and (4) are solved using the standard 
finite differen6e method, with the potentials V(z) in the 
conduction and valence bands obtained from equation (1) 

and the boundary condition that the wavefunctions vanish 
inside each substrate region. The error introduced by using 
average effective masses rather than considering position- 
dependent effective masses is expected to be small. This 
method can therefore accommodate an arbitrary potential 
profile V(z) and is extremely useful when considering the 
confinement potentials arising due to the inter-diffusion 

process. 
To model the continuum states, we ignore the 

anisotropy in the conduction band dispersion and use the 
dispersion relation given by9 

ji 2k2 

= E(l + (xE) 2m* 

where 

Es 

For simplicity we take parabolic continuum heavy- and 
light-hole dispersion, with averaged effective masses 
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nlhh-ý0.49mo and M F`0-091rno- We also include the 
HHI-CB1 and LHI-CBI exciton states in our calculation 
by performing a variational calculation in k-spacelO with a 
Gaussian-type trial function given by 

/2 k 12, /4 
(Deh(k, (21ck)l e- (7) 

for each exciton state, which incorporates the effects of the 

nonparabolic subband dispersion, and where X is the 

variational parameter. 
To determine the imaginary part of the dielectric 

function we consider three separate contributions, which 
sum as 

Eýx (h ü» + C? W(h 0» + Ulk (h 
,l 

where q'I is the contribution due to the exciton states, E? w 

bulk is the band-to-band quantised level contribution and F-, is 

the contribution due to the continuum states. Each term is 
given by 

c? w (E) =I 
e2h2 

7E&OLZM2E2 nn' 

ulk(E)= 
1 e2h2 I fdklg- 

P,, n'15(E'-E'-E) 7I: Eý m2E2 v =I, h 

I e2h 2 
2xf 

dlq IV' vp 
2 

cý" (E) E) B(Er FE-2 
7EF-oEjW2E2 v1-1: 

'h 

I 

49 

E, (Co) =, 
2p '0 ÜA, (0)ý 

dd. 
ir 

i 

«d)2 - (, )2 

The total dielectric function can then be given as 

cral =0-c? (r) + c, (r) 
, 

(11) 

where 0(1-) is the bulk contribution to EB, from the states in 
r 

the vicinity of the 17-point, and CAI) is our calculated 

contribution from equations (8), (9) and (10). Note that 

since in our case the barrier widths and the well widths are 
B equal, then the average over the bulk materials in F-r 

contains no length factors. 

'nie optical matrix elements for the bound subband 
transitions are different for TE and TM polarisation since 
the natural direction for angular momentum quantisation is 

the growth axis along z. 7be TE mode matrix elements can 
be given as 

Ig. P12 <p >2 2. <ý 101) >2 21c 

+< ýc (p(2) >2 

+. L <ý (p(3) >2 2c 

51_ < ý, I y(l) >2 
1, 

and the TM mode matrix elements as 

19- pl' = <P>' 
f 

2<4k, I (p(2) >2 

2<ý, 19(3) ý:. 2 
1y 

where Lz is the total length of the multiple quantum well 
structure, Pnn' is the momentum matrix element between a 
conduction band state and a valence band state, Eex is the 
exciton transition energy and 4Deh(kll) are the Fourier 

components of the exciton envelope function given by 

equation (7). 
We replace the delta functions in equation (9) with 

Lorentzian lineshape functions, with linewidths of 10meV 
for the band-to-band contributions and 5meV for the 

where ýc is the conduction subband envelope function, the 
(p(i) are the elements of the four-component hole envelope 
function solutions of the Luttinger-Kohn Hamiltonian, and 
<P>2 is the bulk-averaged momentum matrix element. 

3. Results. 

exciton contributions respectively. We have taken these as 
realistic values to model the experimental conditions. 

The real part of the dielectric function is then 
obtained from the imaginary part via the Kramers-Kronig 

relation 

In Figure I we show the calculated HHI-CBI 

exciton transition energy shifts as a functioQ of the 
diffusion length L--Nf-Dt, where D is the diffusion 

coefficient and t is the diffusing time. For a known 

experimental transition energy shift and diffusing time, it is 
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Figure 1. Calculated shift in the lowest quantum well 
transition energy (in meV) as a function of the diffusion 
length L---NFD-t (nm). 

straightforward to estimate the inter-diffusion coefficient for 

the experimental conditions from the results given in this 
Figure. 

In Ref. 5, the values quoted are a HH 1-CB I exciton 

peak shift of 40meV, after an annealing time of 90 minutes. 
Therefore from Figure I we estimate the inter-diffusion 
coefficient to be D=2.5xlo-18CM2/sec, for the given 
experimental conditions. This value compares well with 
that estimated experimentally in Ref. 11, where the inter- 
diffusion coefficient with fluorine doping and annealed at 
8000C is estimated to be RIO-18=2/sec. 

Using equation (1) the confinement potentials at t=O 
minutes and t--90 minutes are as shown in Figure 2. There 
is still little reduction in the peak value of this potential 
(which occurs at the middle of each barrier region) but the 
shape of the potential after 90 minutes has completely 
changed from the original step-like potential. This indicates 
that the most significant factor in the transition energy shift 
at small diffusion lengths is the change in the quantised 
subband energy levels due to the change in the potential 
profile, and is not simply due to the amount of aluminium 
which has diffused to the well centres, as has previously 
been suggested. 12 At higher values of diffusion length, 
however, the indiffused alumHurn concentration at the well 
centres will make an increasingly important contribution to 
the total energy shift. 

At photon energies below the HHl-CBI exciton 
peak, both the TE and TM mode absorption decreases with 
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(M CMKTIGN BAND 

(B) VALENCE BAND 

Figure 2. Schematic illustration of the conduction and 
valence band confinement potentials along the growth axis 
at t=O minutes (broken line) and t--90 minutes (solid line) 
with a diffusion coefficient of D=2.5xIO-18cm2/sec, for 
two well regions. Ile potential at the centre of the wells 
has been set to zero. 

the diffusion time. In Figures 3 and 4 we give the 

calculated TE and TM absorption results at several 
wavelengths. The X=835nm line is just below the HHl- 

CB1 exciton peak at t--O minutes, which we obtain as 
1.49eV. We have normalised this value to 1, and 
normalised all the other results in Figures 3 and 4 with 
respect to this. The absorption is seen to decrease very 

rapidly initially, with the TE mode absolute values greater 
than the TM mode at each wavelength considered. 
However, as the absorption decrease tails off, after around 
60 to 90 minutes, all results start to approach each other in 

magnitude. After this point there is little difference between 

the TE and TM absorption and the TE-TM anisotropy, 

characteristic of bound quantum well states, decreases. The 

r- I--- 
III 
III 

JI 

____j _I 
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Figure 3. Relative TE mode absorption coefficient as a 
function of the disordering time at four different 
wavelengths for energies below the HHI-CBI exciton 
transition energy. 

contribution of the continuum states increases with 
diffusion time, along with the bound states being squeezed 
out of the wells. With diffusion times longer than about 
three hours, the well and barrier regions will be essentially 
totally intermixed and the absorption become isotropic with 
respect to polarisation similar to bulk AlGa As alloy. 

The results of our calculations of the TE and TM 

refractive indices are shown in Figures 5 and 6. The solid 
lines are the theoretical results and the plotted symbols are 
the experimental results of Ref. 5. For t=O minutes, there 
is, a clear difference between the TE and TM polarisation, 
but at t=90 minutes both TE and TM approach similar 
values. Although there is excellent agreement between the 
theoretical and experimental results, there is an overestimate 
of the refractive index at energies below 1.4eV. For most 
of the results shown however, the agreement is very good. 

The experimental results for the TM mode index at 
t=90 minutes appear to show some structure which is not 

present in the calculated values. I'liere is little difference, 
however, in the absolute values. 
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Figure 4. Relative TM mode absorption coefficient as a 
function of the disordering time at four different 

wavelengths for energies below the HHI-CBI exciton 
transition energy. 

We have found that, in considering only the quantum 
well states it is not possible to obtain results in agreement 

with the experimental values. In practice it was found 

necessary to include states exceeding leV into the 

conduction band before the calculated values converged 
towards the measured values. These higher energy 
transitions are extremely important therefore in contributing 
to the index of refraction even for photon energies well 
below the first excitonic transition peak. Proper modelling 
of the index of refraction in quantum well structures must 
therefore include the contribution from remote states if the 

results -are to be favourably compared with known 

experimental values. 
However, it should be noted that all the theoretical 

results were obtained from the dispersion calculated using 
averaged effective mass parameters. This was done in 

order to simplify the calculations. It is known, however, 

that this has the effect of producing slightly lower energies 
for all states. This then tends to increase the contribution to 
the refractive index from all energy transitions considered. 
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Figure 5. TE mode refractive index for (a) t=O minutes and 
(b) t=90 minutes and D=2.5xlO-18cm2/sec (equivalent to a 
diffusion length of 1.16nm). 

The use of position-dependent effective mass parameters, 

which is more correct, would therefore give a reduction in 

the calculated values of both the TE and TM refractive 
indices. 

4. Conclusions. 

We have calculated the TE and TM mode refractive 
indices in an impurity induced disordered GaAs-AlGaAs 

quantum well structure. We have shown that the theoretical 
results are in excellent agreement with published 
experimental data. However it was found necessary to 
include the contribution from higher conduction band states 
in order to achieve good agreement. 

By comparing our theoretical results with the 
experimentally obtained transition energy shifts, we 
estimate the inter-diffusion coefficientý for fluorine doping 

at 1014CM-2 and for an annealing temperature of 8900C, to 
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Figure 6. TM mode. refractive index for (a) t=O minutes 
and (b) t=90 minutes and D=2.5xlo-18CM2/sec. 

be 2.5xl(yl8CM2/Se. C. The results presented here could be 

used to accurately tailor the index of refraction and 
absorption coefficient in impurity induced disordered 
GaAs-AlGaAs quantum well structures. 

Acknowledgement - The author would like to thank Dr. 
J. H. Marsh for communicating his results prior to 

publication and for permission to quote the experimental 
results in Reference 5. 

References. 

IWD Laidlig et al, Applied Physics Letters 35,776 
(1981) 

2M 0'3eill et al, Applied Physics Letters 55,1371 
(1989) 

3K Kash et al, Journal of Applied Physics 63,190 
(1988) 

4JD Ralston, WJ Schaff, DP Bour and CF 
Eastman, Aplied Physics Letters 54,1536 (1989) 



Superlattices and Microstructures, VoL 11, No. 1,1992 

5JH Marsh, SI Hansen, AC Bryce and RM 
DeLaRue, to be published in Optical and Quantum 
Electronics 

6JM Luttinger, Physical Review 102,1030 (1956) 
7 Numerical Data and Functional Relationships in 

Science and Technology, vol, 17 of Landolt- 
B6mstein, ed by 0 Madelung (Springer, Berlin, 
1982) 

8M Braun and TI R6ssler, Journal of Physics C18, 
3365(1985) 

53 

9J Wang and JP Leburton, Superlattices and 
Nficrostructures 8,191 (1990) 

10 GD Sanders and YC Chang, Physical Review 
B32,5517 (1985) 

11 Y Hirayama, Y Suzuki and H Okamoto, Japanese 
Journal of Applied Physics 24,1498 (1985) 

12 TE Schlesinger and T Kuech, Applied Physics 
Letters 49,519 (1986) 



Excitons in GaAs-AlGaAs Quantum Wells: 
Effects of Substrate Orientation 

Alislair T. Meney 

Laser and Optical Systeins Engineering Group 

Departinent of Mechanical Engineering 

University of Glasgow 

Glasgow G12 8QQ 
Scotland UK 

The binding energies of excitons in GaAs-AlGaAs quantum wells are studied theoretically as a 

function of the crystallographic growth direction. The electronic dispersion is obtained using the 

4x4 Luttinger Hamiltonian for the valence bands, and an accurate expression for the conduction 

band dispersion which includes the effects of non-parabolicity and warping to fourth order in k. 

The exciton binding energies are obtained for six growth directions. The different subband mixing 

for each orientation is seen to strongly influence the exciton properties. The coupling of different 

exciton states is also dependent on the subband order and energy level spacing, which differ for 

each quantum well orientation. 



Semiconductor quantum wells have attracted considerable interest in recent years due to 

their novel electronic and optical properties. High-quality heterostructures have been gown almost 

exclusively along the [0011 crystallographic direction. However, several investigations of quantum 

wells grown along other crystallographic directions have recently been reported. 1-6 Investigations 

of exciton binding energies and oscillator strengths for growth directions other than [001] have also 
been reported. Bauer and And07 have considered the [111] and [110] growth directions in GaAs- 

AlGaAs quantum wells while others8 have extended this model to include 1310]-grown quantum 

wells. Since the exciton states only sample a small number of states around r' (typically wave 

vectors less than 106CM-1) the conduction band and valence bands can be effectively decoupled 

within the theoretical model. Ibis simplifies the calculations, and allows the nonparabolicity of the 

conduction band to be more easily incorporated. 

Previous studies of excitons in quantum wells with non-[0011 orientations7,8 have ignored 

the orbital angular momentum nature of each exciton. This leads to incorrect selection rules and 
incorrect calculation of the TE and TM mode oscillator strengths. 9-10 Only by considering the 

proper angular momentum character of each exciton can the coupling between the exciton states be 

correctly included, This may also lead to incorrect assignment of exciton peaks in absorption and 

photoluminescence results. 10 

We take the conduction band and valence band as being decoupled, and neglect the split- 

off spin-orbit F7 valence band. The Hamiltonian for the conduction band is given byl I 

k4 
+po 2+ k2kx2) + V(Z) E= 

ýý! 
+ aok 

(k, 2ky2 + ky2kz 
2m,, 

(1) 

where the nonparabolicity parameters cto and 00 are defined in Ref. 11, and we have included the 

confinement potential V(z). The Luttinger Hamiltonian (in atomic units) with the additional 

confinement potential is given by12 

P+Q Lm0 

H=- 
Lt P-Q 0m+ V(Z) (2) 
mt 0 P-Q -L 
0 mt -Lt P+Q 

where 



p=1 2) 
-f yj (ký2, + ky2 + kz 

Q =1 y2(k, 2 +ky2 - 2k2) 
2z 

L- 43-y3 (ky + ik, ) kz (3) 

M =. ýE3 2) 
2 y2 (k. 

ý2 - ky _ NF3iy3 kxky 

In equation (2) we have neglected k-linear terms since they are small. 
Equations (1) and (2) are solved by the standard finite-difference method, with the 

replacement k, -> -i-l . The method is well suited to dealing with an arbitrary potential profile, 

such as in layer-disordered quantum wells and graded barrier structures. We rotate to our new basis 

for each growth direction, with the direction of angular momentum quantisation taken along the 

growth axis in each case. We assume a single GaAs-AlO. 25GaO. 75As quantum well structure. All 

the parameters used in the calculations are given in Table 1, and are obtained from ReL 13. 

Table 1. Paraxneters used in the calculations 

GaAs AIO. 25GaO. 75As 

E, 1.4240 eV 1.7259 eV 
AO 0.3410 eV 0.3248 eV 
mc 0.0665 0.0874 

Mhh(OOI) 0.3774 0.4027 

Mlh(001) 0.0905 0.1199 

Mhh(l 11) 0.9524 1.0017 
Fr 12.5 12.5 

AE, 0 0.1208 eV 

It is not strictly possible to have similar well widths for each different growth direction. 

However, since the interatomic spacings are not explicitly included in the effective mass equations 
(unlike Light-binding or effective bond-orbital models) we assume a free choice of well widths in 

our calculations. The single-particle wave functions resulting from the solutions to equations (1) 

and (2) are input to the exciton problem. The effects of nonparabolicity in the conduction band 

dispersion, and those of valence band-mixing, are therefore fully incorporated into the calculation 

of the single-particle states. 
The envelope function for the (n, m)-state exciton (n, m are 2D hydrogen-like quantum 

numbers) is taken to be of the form 



T. � (k) =fp dp (D�" (p) J� (kp) 

where DnTn is the 2D hydrogenic radial wave function. 14 This gives the form of the k-space 

envelope functions used here as; 10 

TI, (k) = ; L(; ý +k 2)-3/2 

T2s (k) =I (k 2_ ; L2)(2,2 +k 
2)-5/2 

(5) 
T2 

p (k) = k; L (; L2 +k 
2)-5/2 

T3d (k) =k2; L (Aý +k 2)-7/2 

The term X is taken as a variational parameter. The energy can be divided between a Coulomb term 

and a kinetic term, for the variational calculation, giving 

Ec,,, d + Ekj,, = 

(Te-x lVc 
... 1"Y"') 

(T. Ill. ) 

+( 
IP. IH, + Hh Ililex) 

(T. I T. ) 

By considering which excitons Tj are coupled by the Coulomb interaction we can then form the 

variational wave function T ci'Fi . For the HHI-CB I (Is, 2s) excitons we use a two-band 

model only. For the LHI-CB I (Is) exciton we include coupling to the HHI-CB I (3d+), 1HH3-CB I 

(3d+) and HH2-CB I (2p-) excitons. 

Table 2. Calculated exciton binding energies (meV) for IOOA quantum 

well (x=0.25 in barrier). 

Growth 

Direction 

HI-Cl (Is) HI-Cl (2s) LI-Cl (Is) 

10011 8.46 lA8 10.50 

[111] 8.18 IA5 11.84 

[110] 8.02 1.44 10.85 

[3101 8.38 IA7 10.60 

[3111 8.32 IA6 10.69 

[2111 8.26 IA6 11.72 



The calculated exciton binding energies for each growth direction are given in Table 2. It 

is seen that in the case of the HHI-CB1 excitons there is little difference between the results 

obtained for each orientation. In each case, there is no great difference in the overall HH1 subband 
dispersion (apart from the precise value of the zone-centre effective mass) for wavevectors less 

than 106CM-1. The confinement energies are also similar for this valence subband in each case. We 

conclude that this leads to the similar results for the HHI-CB1 binding energies (both Is and 2s) for 

each orientation. 

In the case of the LH I -CB I exciton, the differences in the calculated binding energies are 

slightly larger. It is possible to group the results into two distinct classes. This can be done 

according to the order of the valence subbands, obtained from Table 3 which gives the calculated 

confinement energies of the first four valence subbands for each orientation. 

Table 3. Calculated valence subband confinement energies (meV) for 

IOOA quantum well. 

Growth 

Direction 

HHI LHI Im HH3 

10011 7.02 20A8 27.77 61.21 

[111] 3.60 22.54 14.33 31.99 

[1101 4.50 22.03 17.90 39.86 

[3101 6.14 21.04 24.35 53.90 

[3111 5.47 21.46 21.70 48.18 

[2111 4.50 22.03 17.90 39.86 

For the [0011, [3101 and [311] growth directions, the LHI subband is the second confined 

valence subband. These three growth directions are seen to have the smaUestLH1-CBI (Is) exciton 

binding energy. The other three growth directions, for which the LHI subband is the third confined 

subband, have the largest LH I -CB 1 (Is) exciton binding energy. (rhis grouping also holds for the 

HHI-CB1 binding energies, but with the first three directions now having the largest binding 

energies, although the differences here are smaller). 
It is also important to consider the mixing between different subbands. This can be simply 

estimated by the difference in confinement energy between each of the subbands considered. For 

the [111] growth direction the LHI subband is closest to both the HH2 and HM subbands than any 

of the other growth directions. The reversed order of the LHI and HH2 subbands, compared with 

the [001] growth direction for example, tends to increase the (hole) effective mass of the LHI 



subband. This increase in ft effective mass then tends to increase the LHI-CB I binding energy. A 

similar situation also arises for the [1101 and [2111 growth directions although to a lesser degree. 

In general, therefore, it can be seen that the proximity of valence subbands contributing to 

exciton states coupled via the Coulomb interaction is an important factor in determining the exciton 

binding energy. The order of these subbands is also importanL Interaction with lower bands tends 

to reduce the (electron) effective mass, which is seen to result in a reduction of the exciton binding 

energy. Interaction with higher-lying bands will tend to increase the (electron) effective mass, 

resulting in an increase in the exciton binding energy. Both of these effects are important in 

determining the binding energy of excitons in quantum wells. 
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The properties of GaAs-AIxGal. xAs quantum well lasers are studied 
theoretically as a function of the crystallographic growth direction. The 

growth directions considered are [0011, [1111, [1101, [3101, [3111 and (2111. 
The electronic dispersion is obtained using an M k-p Hamiltonian which 
couples the electron, heavy-hole, light-hole and spin-orbit split-off bands. 
We calculate the threshold current for single quantum well lasers and 
determine the lowest threshold current for the growth directions 

considered. It is seen that for some growth directions the threshold 

current can be less than that previously calculated for a strained-layer 
quantum well laser. The results also differ from a previous model which 
completely decoupled the valence and conduction bands. 



1. Introduction 

Semiconductor quantum wells have attracted considerable attention in 

recent years due to their novel electronic and optical properties. High- 

quality heterostructures have been grown almost exclusively along the 
[0011 crystallographic direction. Several investigations of growth along 
other crystallographic directions have recently been reported. 1-6 

Experimental results7,8 have indicated reduced current thresholds for 
[1111-grown GaAs-AlGaAs quantum well lasers, also confirmed by several 
theoretical studies. 9,10 This reduction in threshold current is with respect 
to quantum well lasers grown along the [0011 direction. It has also been 

shown recently that [1111-grown quantum well lasers also have reduced 
current threshold compared to both [1101- and [3101-grown quantum well 
lasers. 9 In Ref. 11 it was shown that the (1101 growth direction is 

preferred for zincblende-on-diamond MBE growth, which includes GaAs 

on silicon. It was argued that the [1101 interface leads to defect-free 
heteroepitaxy. This is in contrast to other crystallographic growth 
directions. Ref, 12 investigated the crystal orientation dependence of n- 
and p-type Si doping in GaAs-AlGaAs heterostructures, for several high 
index planes, including [2111 and [3111. Reduced in-plane effective masses 
have also been reported for [1111-oriented substrates. This offers a 
significant enbancement over [0011-oriented devices. 

In this paper we extend our previous calculations9 to include the 

[3111 and [2111 growth directions. Not all of the growth directions 

considered here have been the subject of experimental investigation 

regarding the lasing performance of quantum well structures. Previously 

we considered the conduction and valence bands to be efectively 
decoupled. The nonparabolic conduction band dispersion was obtained 
using the Hamiltonian of Braun and Rossler. 13 The valence bands were 
then described by the 4x4 Luttinger-Kohn Hamiltonian'14 in the limit of 
infinite spin-orbit energy. In this paper, however, we use an 8x8 k-p 
Hamiltonian which couples the electron, heavy-hole, light-hole and spin- 
orbit split-off bands. In addition to the different parameters employed in 

this model, this gives results which differ slightly from our previous 
results, although the trends in each case are the same. 



2. Subband Dispersion 

To obtain the quantum well subband dispersion we use the 8x8 
k-p, model of Cohen and Marques. 15 This model includes the second-order 
contribution to the conduction band (1'6) effective mass which has often 
been neglected in previous k-p models. 16,17 Full details of the k-p 

Hamiltonian can be obtained from Ref. 15. For convenience they are not 

repeated here. The parameters used in the calculations are given in Table 
1. The values of F ([-,; second-order Kane parameter) and 2m, p2 /h2 are 

obtained self-consistently from the experimental energy gaps and 

effective masses at F. 

Table 1. Parameters used in the calculations. 

GaAs A]0.2Gao. 8As 
Eo 1.4240 eV 1.6734 eV 
Ao 0.3410 eV 0.3280 eV 

mc 0.0665 0.0832 

mhh(001) 0.3774 0.3976 

mlh(001) 0.0905 0.1140 

mhh(lll) 0.9524 0.9918 

mso(ool) 0.1735 0.2058 

2Mop2 / h2 24.01 eV 24.01 eV 
2F -1.7350 -2.5450 

AEv .0 99.8 meV 

For each orientation we take the direction of angular momentum 

quantisation to be the growth axis. It is straightforward to rotate the k-p 

Hamiltonian for each new growth direction considered. Since we neglect 
the inversion asymmetry terms it is simple to block-diagonaliso the 
Hamiltonian as in Ref. 15. Retaining only the off-diagonal terms which 

give rise to in-plane warping of the subbands, then following the method 

outlined in Ref. 15, we find that these terms are not completely 
diagonalised. However, since the effect of this is only apparent at large 

values of in-plane momentum k1l we choose to ignore this small error 



introduced. We solve each block in the Hamiltonian by using the standard 
finite-difference method for eigenvalue equations. Continuity of current is 

obtained by integrating the Hamiltonian across each interface in the 

growth direction, and we also take the envelope functions "0 at z=±5fz, 

where z is the growth direction and Lz is the width of the quantum well 

region. 

Table 2. Directions of the wavevectors; ki, k2 and k3 

for each growth direction. 

Growth kl k2 k3 

[0011 (1,0,0) (0,1,0) (0,0,1) 

[1111 (1,1, -2) (-1,1,0) (1,1,1) 

[1101 (0,0, -l) (-1,1,0) (1,1,0) 

[3101 (0,0, -l) (-1,3,0) (3,1,0) 
[3111 

[2111 

In Figures 1 and 2 we show the lowest confined valence subbands 
for each growth direction and for well widths of 50A and 100A 

respectively. In each case we have taken the barrier Aluminium fraction 

to be x=0.2. The direction of k1l is along (100) for the [0011-oriented wells 
and along the equivalent in-plane direction for each of the other growth 
directions. In Table 2 this direction is denoted as kj. Compared with our 

previous calculations it is seen that the lowest subbands are less affected 
by the finite spin-orbit energy than the higher-lying subbands. This 

indicates that at higher pumping levels in quantum well lasers (typical in 

thin quantum wells) this may lead to noticeable differences in the 

calculated linear gain when compared to the widely-used model with 
infinite spin-orbit energy. For each orientation we have calculated the 

zone-centre effective mass for several confined subbands (averaged over 
the in-plane direction). These are given in Table 3 for both 50A and 100A 

well widths. 



Table 3. Calculated zone-centre CB1 and HH1 masses (in-plane 

averages). 

Growth CB1 CB1 HH1 HH1 

axis 50A 100A 50A 100A 
[0011 0.0733 0.0697 0.1736 0.1616 

[1111 0.0721 0.0689 0.1323 0.1269 

[1101 0.0908 0.0854 0.1416 0.1350 

[3101 0.0733 0.0698 0.1592 0.1491 

[3111 0.0703 0.0676 0.1446 0.1378 

[2111 0.0683 0.0677 0.1402 0.1336 

3. Linear Gain and Threshold Current 

To obtain the linear gain spectra we use the density-matrix 
formalism18 with a constant intraband relaxation time Tin 100 fsec. 

This gives the linear gain as 

[f, (k) (k)][i - M, (k)12 (Yri. ) 

g 
FL, EEZ, 

'jo))2 +2 cr k c, v (Ec (k) - E, (k) - 
(Y-ri. ) 

where fc (fv) are the electron (bole) Fermi functions, i-M, (k) is the 

optical dipole matrix element between conduction subband c and valence 

subband v which depends on the photon polarisation (9) and the envelope 
function for each subband. The sum over cr includes both blocks of the 

diagonalised Hamiltonian. The intTaband relaxation time is not here 

considered to be a function of the orientation. The effect of the subband 
dispersion on the scattering rates in quantum wells, as a function of the 

growth direction, will be the subject of a future study. 
The highly nonparabolic valence subband dispersion, arising due 

to the strong valence band mixing, indicates that the optical matrix 

elements are now a strong function of the in-plane momentum k1l and the 

selection rules are. no longer strictly given by An = 0. Therefore the 

normally parity-forbidden transitions are now possible. The 



nonparabolicity in the valence subband dispersion is enhanced by the 
inclusion of finite spin-orbit energy. 

It has been shown that only in the case of thin quantum wells 
(Lz=50A) is there a significant reduction in lasing threshold current for 

[1111-growth in comparison to [0011-growth. 9,10 If we assume that at 
threshold all the injected current is converted into spontaneous emission 
then the current density at threshold can be obtained. The spontaneous 
emission rate is given by 

2 
Rf 

4e n,, ho) 
d(ho)) 

sp 3m 2c 3h2 dfA 
JjPc, (k)f 

0 C, V s (2) 

xfc(k)[1-f, (k)]b(E, (k)-E, (k)-hw) 

The current density is given by J= eRsp. The material gain at threshold 

is obtained by equating the modal gain and the internal loss a. This gives 

rg =I In -L) +a L 
(R 

We take the mirror reflectivity R=0.32, L=500gm and cc=10 cm-1. We 

further assume that the optical confinement factor 11'=2.5x1O-4A-1. 

Equation (3) then gives ]Fg=33cm-1 for the above parameters. In the 

following we consider only the TE-mode polarisation. 
The calculated linear gain spectra are shown in Figures 3 and 4. 

The numbers after each gain curve indicate the 3D carrier density in 

units of 1018cm-3- The calculated threshold current density for each 

orientation is given in Table 4. It is clear that the most pronounced result 
is the reduction in the threshold current for the [2111-oriented quantum 

well, better than that of the [1111 result. In the case of the 50A wells, this 
is 24% less than the [0011-oriented well. Even at 100A the reduction is 

21%, about the same reduction as in the 50A [1111 result. The results for 

the other growth directions differ slightly from our previous results, 9 due 

to the different theoretical model and slightly different parameters 

employed. It is expected that for high injection levels the coupled eight- 
band k-p model will lead to more accurate results than our previous 

calculations. 



It is interesting to note also that for several growth directions, the 
threshold current is less than that previously calculated for 40A strained 
GaO. 35InO. 67As-GaO. 71InO. 29As quantum well lasers. 19 The reduction in 

threshold current without the need to incorporate strain within the 

epitaxial layers may be beneficial for long-term operation of quantum well 
lasers, if good-quality heterostructure devices can be grown with these 

orientations. 

Table 4. Calculated threshold current densities (A/cm2) for 50A 

and 100A wells. 

Lz [0011 [1111 (1101 [3101 [3111 [2111 

5oA 168.0 138.2 187.7 147.6 141.0 127.1 

100A 158.1 142.6 174.5 139.9 124.3 124.8 

The reduction in threshold current can not be viewed as simply 
due to the reduced in-plane zone-centre effective mass of the HH1 valence 
subband. The averaged zone-centre HH1 masses are given in Table 3. It 
is seen that the [1111 quantum well has the lowest HH1 subband effective 
mass. The gain is therefore a complicated function of the density-of-states 
(via the effective masses), the separation in energy between the subband 
energy levels, and the overlap between the electron and hole wave 
functions. All of the above are dependent on both the quantum well width, 
orientation and barrier composition. Note also that the reduction in 

current density for the [3111 quantum well is more for Lz=IOOA than for 
Lz=50A. In this case (contrary to [1111 therefore) thin quantum wells, 

around 50A, may not be required for significant reductions in threshold 

current. We have tacitly assumed that a=10cm-1 for each orientation 
considered. This will of course vary with the quality of interfaces and 
layer structure. However, for the particular case of [2111-grown quantum 
wells, increasing cc by a factor of 3 still results in a lower threshold 

current than the [0011-grown quantum well. 



4. Conclusions 

We have studied the lasing performance of GaAs-AlGaAs 

quantum well lasers for six different substrate orientations. It has been 

shown that three orientations offer a significant reduction in the 

threshold current required for TE mode lasing with respect to [0011- 

oriented lasers. In the particular case of [3111- and [2111-grown quantum 

wells, is is seen that it is not necessary to have thin active regions 
(Lz=50A) in order to achieve significant reduction in threshold current. 
The possiblity of reduction in threshold current without the necessity for 

incorporating strain in the epitaxial layers may offer benefit for long-term 

operation of heterostructure lasers. We would welcome further 

experimental studies of non-[0011-oriented quantum well lasers, for 

comparison with the theoretical results presented here. 
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