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Abstract

A complex challenge in mobile computing is to allow the user to migrate her highly
customised environment while moving to a different location and to continue work
without interruption. I motivate why this is a highly desirable capability and conduct a
survey of the current approaches towards this goal and explain their limitations. I then
propose a new architecture to support user mobility by live migration of a user’s
operating system instance over the network. Previous work includes the Collective and
Internet Suspend/Resume projects that have addressed migration of a user’s environment
by suspending the running state and resuming it at a later time. In contrast to previous
work, this work addresses live migration of a user’s operating system instance across
wide area links. Live migration is done by performing most of the migration while the
operating system is still running, achieving very little downtime and preserving all

network connectivity.

I developed an initial proof of concept of this solution. It relies on migrating whole
operating systems using the Xen virtual machine and provides a way to perform live
migration of persistent storage as well as the network connections across subnets. These
challenges have not been addressed previously in this scenario. In a virtual machine
environment, persistent storage is provided by virtual block devices. The architecture
supports decentralized virtual block device replication across wide area network links, as
well as migrating network connection across subnetworks using the Host Identity
Protocol. The proposed architecture is compared against existing solutions and an initial
performance evaluation of the prototype implementation is presented, showing that such
a solution is a promising step towards true seamless mobility of fully fledged computing

environments.
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Chapter 1

Introduction

Coping with user mobility across pervasive hardware while maintaining access to a
highly customized environment is a challenging task and today’s computing
environments do not provide adequate support for it. The operating system, installed
software and user data take up several gigabytes of storage and are tightly coupled with
the hardware. Common solutions for user mobility include mounting user profiles stored
on distributed file systems, roaming profiles, remote connections to the user’s machine,
process migration, carrying a heavy and fragile laptop or using a mobile device with
limited computing capabilities. All these solutions have drawbacks that prevent a user
from resuming work without interruption across various computers. For instance, remote
connections to a user’s machine are prone to network disconnections and are sensitive to
the network delay. Mobile devices such as PDAs typically have a small computing power
and a limited interface. Laptops are fragile devices that can compromise user data or be

stolen.

Ideally, a user would like to use the same settings and data as well as the same software
packages everywhere. This would allow the user to use the software and settings that she
is most accustomed to. Moreover, the same data should be available at every location
where the user is using the computing environment (i.e. at home and at the work place).
Unfortunately, there are many hindrances to accomplishing this ideal. Firstly, even
though the user can take advantage of many machines, typically the user environment on
each of them is significantly different because the installed software and the user settings
are different. Moreover, the user has to take care of synchronizing the data that she

modified on one machine so that it is available on the others. Network connections are
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restarted once the user resumes working at a new location. For instance, for each Secure
Shell Connection (ssh [11]) the user has to manually restart the connection and introduce
a password. Another disadvantage of the current approaches to the migration of user
environments is that during the commutes, the user environment is stopped and cannot

perform any useful work, such as batch jobs.

This thesis proposes an architecture to solve these issues by enabling the live migration of
user environments across wide area network links. Therefore, the first challenge is to
allow the same user environment to be migrated between different PCs. The running state
of a user environment is a snapshot of the current activity that includes the running
programs and network connections. Seamless mobility implies that the running state of
the user environment is preserved during user commutes. Virtual machine (VM)
technology makes it easy to seal the state of an operating system and send it over the
network. Resuming the virtual machine on the destination can be done easily and without
compatibility problems. The virtual machine monitor offers a uniform hardware interface
to the VM so that migrating on a platform with another type of hardware does not change

anything from the point of view of the guest VM.

Migrating a user’s whole environment packed as a virtual machine capsule has been
recognized as a way to support seamless user mobility ([75], [77]). The capsule can be
suspended and later resumed (non live relocation of the virtual machine) allowing the

user to work with minimal interruption.

My approach is to use live migration for the same purpose. This approach does not
require the user to suspend the capsule before she starts commuting. Instead, it allows the
user capsule to be migrated with a very small and usually unnoticeable downtime. This is
a new approach and has the advantage that network connectivity is not restarted, rather it
is migrated with virtually unperceived downtime to the new destination. Also, batch jobs
such as updating the operating system with the latest security patches or a lengthy

download can be performed during the commutes.

1.1 Scenario

This section describes the scenarios that motivate the architecture proposed in Chapter 3.

Similar to Internet Suspend/Resume ([77]), for the following scenario, it is assumed that
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hardware is pervasively available, and a Virtual Machine Monitor is installed and

configured to run the user’s VM.

Doctor D is working on some patient records on her computer at home while
downloading a tune she just heard on TV from the iTunes website. At the same time she
is also updating her Operating System software. She leaves for the hospital without
taking her laptop. In her car, she can resume her work on the car’s computer while her
chauffeur is driving her to work. The state of her computer was synchronized using the
car’s WiFi connection and all the network connections are still maintained. In the interim,
the music file download finishes and she can listen to the new song in the car. Moreover,
her OS is already up to date with all today’s security patches. She configures her work
application to download last night’s updates to patient records and to process them with

the specialized software installed in her computer.

In her office she is glad to see that her specialized software has almost finished
downloading and processing the updates to the patient’s records. She is now starting to
visit the patients in various areas of the hospital. Using the computer provided in every
patient room, where her computer environment is migrated, she can easily record her

notes and enjoy the crisp interaction and familiar user interface.

Her computer is permanently monitoring the vital signs of a patient that has a high heart
attack risk and signals are being sent from her monitoring device to the doctor’s
computer. The computer suddenly detects an anomaly in the readings and automatically
alarms the doctor. The doctor quickly processes the output with the software on her

computer and decides that an ambulance should be sent for the patient right away.

A similar scenario is shown in Figure 1.1. In the morning, Professor X is using her virtual
environment at home where she can start downloading her email. She then starts
commuting to work so she instructs her virtual environment to switch to the in-car
computer. During her commute, she is able to watch the news and to read some of her
email using her customized user environment. At the office, she is able to resume work
on her presentation slides for her upcoming afternoon course at the university. She
instructs her virtual environment to switch to the computer in the University Lecture Hall.
During her course she is also able to demonstrate some software to the students, display

the slides from her virtual environment and check her email during the break.

Throughout the day, the professor was able to access her personalized environment on
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Figure 1.1: Scenario: Professor X’s virtual environment is live migrated between various
physical hosts around the world such as her office PC or her in-car PC. Her system is
not suspended during the commutes so that network activity such as attending a video
conference is not affected.

various pervasively available hardware. All her applications worked out of the box on the
local hardware, without sacrificing performance and providing a good user experience.
Moreover, she did not have to restart any network connections at any time so her virtual

environment did not notice any downtime.

1.2 Discussion and Scope

This is clearly a futuristic scenario but it highlights some very interesting potential uses
of live migration. The biggest problem is live-migrating the user environment’s entire
state, which may consist of several gigabytes, over the network. The limitations of this

work are discussed in Section 1.3.

The typical workload intended for migration is normal home and office load. This work

does not deal with server or data intensive workloads. Processor intensive applications on
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the other hand are easier to migrate because they do not generate a lot of updates to the
persistent state of the user environment. Real-time network applications such as an
audio-conference application do not generate large updates to persistent storage but are
impacted by the network handover, the new route to the destination, the additional traffic
generated by migration as well as the network downtime during migration. Therefore,
real-time traffic might be significantly impacted by the migration. The thesis does not
explicitly provide solutions to handle the requirements of real time traffic. Instead it
provides a best-effort approach to migrate these connections without differentiating

between their QoS requirements and the requirements of other network connections.

Security and trust are important requirements of such a scenario. The user should be able
to remotely authenticate the destination of a migration. A possible approach is to use the
Trusted Platform Module (TPM) [14] to verify that the remote host has not been
compromised by an attacker. This approach could leverage existing work such as Terra
[38] that builds an architecture for trusted computing. However, these issues are outside

the scope of this thesis.

1.3 Limitations

This thesis studies the mobility of whole user environments across the wide area network.
Mobility implies migrating the whole operating system on pervasive hardware without
interrupting or suspending user programs or disturbing network connectivity. From a
usability point of view, the user is responsible for setting the destination where she wants

her user environment to run next. This decision is taken before the user starts to commute.

However, there are some limitations:

e Downtime: Migration of a running user environment, from a hardware machine to
another, certainly incurs a certain amount of downtime. It is up to the architecture
and actual realization prototype to make sure this downtime is small enough to
have an unnoticeable effect on user experience and network connections. An

acceptable bound is discussed in Section 2.3.1.

e Availability: Sometimes it is not possible to predict the new commute location for

a user due to unpredictable user behavior or unforeseen circumstances. If a certain
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next destination is decided upon, but the user changes her mind in the interim and
wants to resume work at a different destination, this will make the current state of
her machine unavailable. This happens because live migration is used: once the
live migration process finishes and an existing copy is ready to run at the

destination, the copy running at the source is suspended and becomes unavailable.

Because the user environment is running at all times, suspending a remote copy of
it is a complex issue. In the following scenario, user A is commuting from work to
home. During her commute, her running computing environment is gradually
transferred to her home hardware. Once the migration succeeds, the home location
will be running her computing environment and the one at her work location will
be suspended and will be no longer active. If an urgent call from work makes the
user change her mind about going home and return to her work place, she will find
that her computing environment is running in a remote location. The user will need
to either resume from the state present at the work location or to trigger a reverse

migration. Such scenarios will impact the degree of mobility.

Resources:

Because the architecture is based on the concept of live migration, the user
environment starts executing at the destination and consumes available resources
there. Moreover, the user has to authenticate twice in order to use a destination.
First she has to authenticate to the remote host before starting the migration. This
step also checks for available resources. A second authentication phase takes place

when the user logs in at the destination.

Depending on the storage and memory size of the user environment, the workload
performed and the network capacity available, it may not always be possible to
provide the required degree of mobility. For some static resources, such as memory
size, it can be determined before migration starts if a destination is not suitable. In
this case, migration will fail and the user will be notified immediately. However,
for dynamic aspects such as workload and network capacity that can change during
migration, it is not always possible to tell beforehand if migration is possible. In
this case, migration is attempted and if it is unsuccessful, the user will not be able
to resume work at the destination from the most up to date copy of her
environment. In this situation there are two options. The default behavior in case of
a failed migration is to not allow the user to start at the destination. Therefore, the
user will have to use the copy of her environment that runs on the source because
that is the most up to date. The source environment can still be used via a remote

connection to the source host. However, there is the alternative that the user
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resumes execution from a previous version of her environment, if such a version
already exists at the destination (for instance from a previous migration). The
disadvantage is that her copy is not up to date. Resuming from a previous snapshot
is entirely the user’s choice. The copy running at the source will have to be
suspended in this case. Given the data integrity issues raised by the second

approach, this thesis only considers the default behavior.

e Hardware Compatibility: Ideally, a solution for mobility that runs on pervasive
hardware should take into account the differences between various hardware
capabilities and features of different platforms. There is an obvious tradeoff
between the degree of similarity of hardware platforms and the subset of features
and degree of customization offered to the user. The more similar the hardware
platforms are assumed to be, the larger the subset of features and the number of
peripherals available to the user will be. On the other hand, being able to
accommodate all mobile and desktop platforms will limit the functionality the user
will benefit from. For instance, stripping down some of the functionality of the
computing environment also implies that the user will make marginal use of the

computing power of desktop PCs.

Apart from these limitations, the approach described in this thesis is useful in providing a
high degree of mobility to users. Users can perform the live migration of their
environment across various machines, assuming the hardware is pervasively available and
compatible, and enough resources are available to facilitate the migration of their

environment.

1.4 Thesis Statement

This thesis discusses the limitations behind building a system that allows a user to use her
unmodified environment at the various locations where she travels without having to
suspend her environment or disconnect the network connections. I will propose an
architecture for live migration of user environments across wide area networks, designed
to have reasonable downtime, high availability and a low impact on user experience. The

architecture fits in with the usability scenarios described in Section 1.1.

I assert that live migration of user environments across wide area networks offers a highly
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desirable degree of user mobility and can effectively support user mobility in pervasive
computing environments. I demonstrate this by building an architecture for live migration
of user environments, building a proof of concept implementation of this architecture and

evaluating its performance.

This thesis proves that live migration of user environments, including persistent storage
and network connections is possible by doing a real system implementation. The proof of
concept implementation shows that this new approach to user mobility does not impact
performance before and after migration, that it has reasonable performance during the
migration and that indeed, users can resume work and network activity without restarting

their environment or restarting any applications.

1.5 Structure of the Thesis

In Chapter 2 relevant background work is presented. This gives an overview of the basic
blocks involved in the proposed architecture such as virtual machine technology, mobility
protocols and storage replication. In the same chapter, in Section 2.5 similar approaches
to migration of whole user environments are overviewed. Chapter 3 describes the
architecture of the solution. First, a general architecture is described as well as a specific
one based on system virtual machine technology. The architecture describes solutions to
the live migration of persistent storage and network connections. Chapter 4 shows the
implementation details of an initial proof of concept. It discusses the implementation
challenges involved in minimizing the network downtime and replicating block devices

as well as the solutions proposed for solving each of these challenges.

The performance of the initial prototype is evaluated in Chapter 5. The evaluation is done
using existing benchmarks as well as a benchmark created specifically for the purpose of
simulating various user workloads. Future work is detailed in Chapter 6. This chapter
describes what is needed to improve the prototype, how to make a more realistic
evaluation as well as how to better handle failure scenarios. The summary and final

conclusions of this thesis are outlined in Chapter 7.
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Chapter 2

Background

The main issues involved in the live migration of user environments are how to create a
portable user environment and how to perform the migration of the necessary resources,
including active network connections. Thus, a broad range of related work about virtual
machines, storage replication and mobility solutions will be overviewed in this chapter.
Section 2.1 gives an overview of virtual machine technology since this is an essential
building block of the architecture for live migration. Section 2.1.1 further discusses the
Xen hypervisor used in the implementation in this thesis and section 2.2 discusses some
related aspects of I/0 virtualization. Section 2.3 gives an overview of the mobility
protocols such as Mobile IPv6 and Host Identity Protocol (HIP). Mobility protocols are
used to allow transparent migration of network connections across subnetworks and are
another important building block of the architecture for live migration of user
environments across wide area networks. Section 2.4 overviews related work about
replication of persistent storage. This topic has been mostly researched in the context of
storage replication for server storage backup and fast disaster recovery. In this thesis, the
same principles are applied and studied in the context of migration of the user’s persistent
storage across wide area networks. Sections 2.5 and 2.6 discuss similar work in the area
of user mobility. Finally, Section 2.7 discusses the motivation for proposing live

migration of user environments and Section 2.8 concludes.
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2.1 Virtual Machines

A virtual machine is an environment created within another environment and executes
software in the same way as the machine for which the software was developed. Virtual
machines are divided into two categories: process virtual machines and system virtual
machines, depending on the type of software they are executing. Process virtual
machines execute individual processes while system virtual machines execute whole
operating systems. In most cases, the virtualization layer must emulate several resources
that are not present in the hardware, and hence the software executed by a virtual

machine has lower performance than the same software running on the real hardware.

For process virtual machines, the virtualization software, usually called the runtime, is
placed on top of the operating system and is capable of emulating userspace instructions
as well as operating system calls. Process virtual machines are capable of running
processes compiled for a different instruction set by performing emulation or binary

translation.

High-Level Language Virtual Machines such as the Java Virtual Machine (JVM) [55] are
a type of process virtual machine that offer cross-platform portability by implementing a
VM capable of executing a virtual Instruction Set Architecture (ISA) on various different
platforms. The high level code is compiled to a portable code format that contains
instructions for the virtual ISA. The portable code format can be run without the need for
recompilation on all hardware that is capable of running the virtual machine. The
advantage of a high level language VM is portability at the expense of lower
performance. VMs such as the JVM encode instructions as byfecodes, assume an

unbounded memory size and use garbage collection.

System virtual machines provide the abstraction of a complete operating system. A
virtual machine environment consists of an additional software level called the Virtual
Machine Manager (VMM) or hypervisor that manages the hardware resources and
provides virtual resources such as processor, storage and peripherals to the guest systems.
Applications running in virtual machines are completely unaware of the fact that they are
not running in fact on the bare hardware. The advantages of system VMs are that
multiple OS environments can run at the same time on the same computer, in strong
isolation from each other. Moreover, the virtual machine can provide an instruction set

architecture (ISA) that is different from that of the real machine.
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Systems such as VMware [16], KVM [4], QEMU [9] and Virtual PC [7] virtualize
commodity PC hardware allowing a machine to host multiple guest operating systems
and implement a full virtualization of the underlying hardware. Each virtual machine has

private virtualized hardware: a network card, disk, graphics adapter, etc.

There is an overhead associated with full virtualization. VMware dynamically rewrites
portions of the hosted machine code to insert traps wherever VMM intervention might be
required. This translation is applied to the entire guest OS kernel. The VMM must also
create and maintain data structures such as shadow page tables. These data structures

must be updated for every access by the VMs.

The Xen hypervisor on the other hand uses paravirtualization which means that it
presents a modified interface to the guest operating system. Guests have to be ported to

be able to run on Xen. This will be further discussed in Section 2.1.1.

Another approach to paravirtualization is Denali [86]. Denali is designed to support
thousands of machines running network services. The Denali implementation does not
support the full x86 ISA and thus does not target existing ABIs. It does not address the
problem of supporting application multiplexing, or multiple address spaces, within a

single guest operating system.

Another approach to virtualization is one in which the operating system kernel allows
multiple isolated guest capsules (usually called jails) to run at the same time. This
approach is usually used in virtual hosting and has very low overhead. However, the
disadvantage is that a number of resources have to be shared by the guest and the host.
Moreover, it cannot allow guest operating systems to have a different kernel than the one
of the host operating system. Examples of this approach are Linux-Vserver [5], OpenVZ
[8] and FreeBSD jail[48].

From the point of view of migrating user environments, almost all the systems described
above provide a good degree of isolation and run at almost native performance on the
underlying hardware. In this thesis, the implementation is based on Xen which offers
excellent performance and is open source and thus was a good option to extend in order
to perform live migration. The choice was further motivated by the fact that some of the

required live migration functionality was already part of Xen [28].
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Figure 2.1: Architecture of the Xen Virtual Machine.

2.1.1 The Xen Hypervisor

Xen is an open source system level virtual machine monitor. It allows a virtual machine
to run multiple independent OSs, each in its own isolated environment. The created
sand-box environment gives the guest virtual machines the illusion that they are running
on real hardware. As opposed to VMware that does full virtualization, Xen uses
parvitualization which minimizes the overhead of virtualization. However, it does that at
at cost. Guest OSs have to be ported to be able to run on Xen, that is their kernel has to be
modified to prevent them from running in ring O of an x86 architecture. It also exposes a
set of highly efficient device driver abstractions that decrease the overhead of
virtualization. Applications however can still run unmodified because the Application
Binary Interface is not changed. More recent versions of Xen also support full
virtualization using the hardware assisted virtualization provided by Intel VT-x and
AMD-V extensions. These extensions enable unmodified guest OSs to run in Xen with a

low overhead.

In Xen parlance, each VM is called a domain (Figure 2.1). DomO is the domain started

during boot and it proxies hardware requests from the other domains which are called
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domUs. User level management software running inside Dom0 is allowed to use the
control interface to the other domains. Dom0 is responsible for controlling scheduling
parameters, creating, migrating and destroying the other domains as well as creation and

deletion of virtual network interfaces and virtual block devices.

The domains communicate with Xen through hypercalls, which are synchronous calls
similar to system calls and allow the guest OS to perform privileged operations.
Communication from Xen to the domains is done using asynchronous event channels

which deliver notifications to domains much like the hardware interrupt mechanism.

Data transfer between domains and Xen is done using asynchronous producer-consumer
I/0 rings aimed at reducing the transfer overhead. These data structures are general
enough to accommodate different types of devices; they allow reordering of requests and
decoupling notifications from the production of requests or responses. Therefore, both

virtual interface cards and virtual block devices can use them efficiently.

Only Domain0 has direct access to disks while the other unprivileged domains use a
virtual block device (VBD). Xen has more knowledge of the disk structure than domUs,
and so a scheduling algorithm within Xen may reorder the disk requests. This may lead
to responses being delivered out of order to the domUs. Dom0 manages a translation
table for each VBD. Xen then checks permissions and produces a zero-copy transfer
using DMA between the corresponding sector of the physical storage device and the

memory shared between Xen and the unprivileged domain.

Xen was designed with the goal of running up to 100 virtual machine instances on the
same machine. The overheads are considerably lower (less than 5%) than in the case of

virtual machines that perform full virtualization.

The architecture presented in this thesis is based on Xen owing to the good performance
it achieves and because it is open source and was straightforward to extend. However, it
should be possible to use other virtualization technology such as the full virtualization
approach of VMware, provided access to the hypervisor source is available. There is
nothing conceptually specific to Xen in the architecture, and other virtualization
technologies could also be used.
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2.2 1/0 Virtualization

The specific architecture presented in this thesis is based on using virtual machines to
encapsulate the user environment. In a VM, the persistent storage and network devices
are usually virtual resources backed by real devices. Since migrating the persistent
storage and network connections of a user environment are the main focus of this thesis,

this section will give an overview of I/O virtualization.

The approach for virtualizing a specific I/O device is to construct a virtual version of the
device and to virtualize the I/O activity between the physical device and the virtualized
one. Most of the time, the virtualized device is not necessarily similar to the physical one.
For instance, the virtual version of a block device is usually a file residing in userspace

but can also be a dedicated physical disk drive.

2.2.1 The Xen I/O Subsystem

The Xen I/0 subsystem is based on split device drivers. A virtual machine is granted
access to the physical hardware device. It makes use of the unmodified operating system
driver for that device. It shares the device with other guest virtual machines by granting
access to it through a back-end device driver. The other guest VMs will be using a
front-end device driver to gain access to the physical device (Figure 2.1). Interactions
between the back-end and the front-end are carried out via a shared memory primitive
called a device channel. The migration of an I/O device means, roughly speaking, simply
reconnecting the front-end and the back-end upon migration, therefore, this decoupling
makes it easier to perform live migration and the implementation in this thesis heavily

relies on this decoupling to migrate persistent storage.

2.2.2 Soft Devices

Adding software functionality to the driver level can benefit system performance and
functionality in many ways. Since the architecture provided by this thesis can be
regarded as adding live migration functionality at device driver level, it is important to

describe the related concept of soft devices [84]. Soft devices are device drivers that can
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be partially implemented as userspace applications. Userspace applications are easier to
write and can reuse a plethora of libraries, compared to kernel code. One possibility to
implement live migration is to use soft devices. This was not used in the specific
implementation from this thesis but could be the subject of future work. Therefore, this

section describes soft devices in more detail.

At the block level, software devices could extend the set of features offered by traditional
devices by adding functionality such as data compression or encryption. This normally
implies creating an OS specific device driver but with the aid of a hypervisor this can be
implemented in an OS agnostic way. For instance, Xen implements the blktap to
facilitate the development of soft devices for block devices. It allows soft devices to be
constructed as userspace applications within the privileged domain and provide the same

regular interface to any of the guest operating systems.

Soft devices are specific to Xen. The architecture of block soft devices consists of a
kernel message switch between 4 device channels. It interposes between the back-end of
the device VM and the front-end of the guest VM. Therefore it can access all the block
requests passing from the guest virtual machine towards the driver VM. The message
switch can operate in several configurations. The MODE_PASSTHROUGH bypasses
userspace device channels in order to achieve the lowest overhead and to allow
processing within the kernel. The MODE_INTERPOSE routes requests through
userspace, allowing all requests to be processed by userspace libraries. The
MODE_INTERCEPT _FE routes all requests from the guest VM front-end to userspace.
This means that userspace applications can process the requests and then commit them to

any OS specific backing storage such as a distributed file system, a partition, etc.

The advantage of implementing soft devices in userspace is that many already existing
userspace tools can be used without any modification. Moreover, this can be achieved
without modifying existing Xen back-end and front-end interfaces. Even though the soft
device application is implemented in userspace and incurs additional overhead, the block

soft device sustains a high level of performance.

Live migration of persistent storage could be implemented as a soft device extension and
is a viable alternative to the implementation used in this thesis. Moreover, it could bring
the benefit of easily adding functionality such as disk encryption which would be a very
desirable feature to mobile users. The implementation in Chapter 4 is a kernel based

implementation and does not use soft devices, therefore even though it does not incur the

24



overhead of userspace processing, it may be harder to extend with additional features.

This work chose a kernel implementation mainly for the low overhead.

2.3 Mobility Protocols

Historically, hosts in the Internet were static and remained at fixed locations. Host
mobility introduces a new challenge to Internet protocols because hosts can move from
one network to another network. This is especially true for small mobile devices with
Internet connectivity but also for whole system user environments, as stated in Section
1.1. IPv4 was not designed with mobility in mind and the mobility scheme was
developed later in Mobile IPv4 [64]. However, Mobile IPv6 [44] was designed in parallel
with the IPv6 [31] protocol. Network connections mobility is an essential feature that
needs to be present in a realization of the architecture to support the scenarios described

in Section 1.1. I will further discuss how two mobility protocols achieve this goal.

In Mobile IPv6 and Mobile IPV4 nodes have a home address that does not change while
the node moves to a different network. A multi-homed node obtains a care-of-address
from the foreign network and packets are tunneled through its home network to the
care-of-address in the foreign network. The tunneling is transparent to upper layer
protocols. Thus, Mobile IPv6 allows a node to migrate to another network and still keep
network connections active because they are tunneled through the node’s home network.
The registration of the care-of-address is done either with Registration Request/Reply

messages for IPv4 or with Binding Update/Acknowledgment for IPv6 messages.

However, tunneling introduces backward dependencies to the home network, which is not
a reliable solution for live migration of user environments. A route optimization can be
performed between two nodes that support Mobile IPv6 so that the peer node can be
informed of the new care-of-address and use the care-of-address instead of the home
address of the mobile node. This means that if the route optimization can be applied there
is no need to tunnel the traffic through the node’s home network. Tunneling still has to be

used for in-flight packets until the route optimization is performed.

Within the current Internet architecture, the IP address is both an identifier for the host as
well as the topological locator. This is a problem for the migration of network

connections because after migration the node will obtain a new IP address which acts as a
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new identifier as well. The second solution to network mobility discussed in this section,
the Host Identity Protocol (HIP) [58] solves this problem. It decouples the locator and
identifier by introducing the Host Identity namespace. Thus, the IP address is only used
for routing, and multi-homed hosts are identified in a secure way using a new
cryptographic name. The HIP protocol acts as a layer between the Network Layer and the
Transport Layer (Figure 2.2).

HIP hosts can have multiple identities which are in fact the public keys from
public-private key pairs. The private key is used to prove that the host owns the respective
identity to other peers. This adds a level of security to HIP. It is implemented in the
following way: the Host Identity can be represented as a 128 bit Host Identity Tag (HIT)
by hashing the public key. The 128 bit representation is the same length as an IPv6
address and can be used by applications as an IP address. Applications only use the HIT
as the destination host.

Application

Transport

HIT

¥

Host Identity

Network

Link

Figure 2.2: Host Identity Layer

To make the migration faster, HIP also defines a mobility management protocol allowing
the mobile host to create a re-address packet that contains the new IP address of the node
in the foreign network and allow it to resume connections with peer nodes. The vertical
handover delays of HIP and MIPv6 are compared in [45] where HIP performs slightly
better than MIPv6. The delays depend on the amount of signaling and the network round
trip times but certainly even for wireless networks, handover delays between 2-5 seconds
are possible. However, to be more useful and more widely deployable, HIP needs some

support from the existing infrastructure, including the Domain Name System (DNS).

Because of the better network handover performance of HIP compared to MIPv6, this
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thesis uses HIP for implementing live migration network connections.

The migration of network connections also has to deal with network address translation
(NAT [18]). NATs are widely used to allow hosts to connect to the Internet even though
they have a private IP address. It does that by asking the gateway server to modify the
network address information inside the packet header while the packet is in transit,
essentially remapping a given address into another. The implementation in this thesis
provides support for live migration of network connections behind NATs and firewalls by
using existing techniques provided by HIP [20].

IPsec security associations are bound to the HITs and are not modified when the IP
address changes. This way, a mobile host can use a single transport layer connection
associated to one HIT. The main issue with traversal of the NAT and firewall
middle-boxes is to make the HIP flow identifier available to the middle-boxes. HIP places
a flow identifier inside the signaling protocol payloads. The flow identifier is a triplet
containing the destination IP address, the Security Parameter Index (SPI) used to encrypt
the traffic [19] and the protocol. When the underlying IP address changes, the flow
identifier has to be updated for all the middle-boxes. NATs and firewalls are supposed to
intercept these messages in order to learn the flow identifier and to forward the packets
accordingly. Firewalls introduce the problem of routing asymmetry because packets
could be forwarded on one path and return on another path. This is not true for NATs and
therefore the problem is much simpler. The challenges involved in creating HIP-aware
NATSs and firewalls are discussed in detail in [20]. This thesis uses an implementation of
NAT traversals that works with legacy NAT's that are not necessarily aware of HIP. It
involves encapsulating HIP in UDP packets and uses keep-alive messages to maintain
NAT port bindings.

2.3.1 Saurvival of TCP Connections for Long Periods of

Disconnection

This section discusses two important issues for live migration. Firstly, it describes some
of the factors that influence the survival of a TCP connection during live migration.
Secondly, it discusses why TCP performance can be influenced by the live migration,

right after the migration ends.
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Live migration of user environments implies survivability of TCP connections when the
user moves to another network, therefore one of the building blocks involved in the
architecture for live migration of user environments is a network mobility protocol.
However, mobility protocols such as HIP and MobilelP introduce a new challenge to
TCP connections: some hosts are connected to the network at different endpoints and can

suffer large periods of disconnection when they move between endpoints.

The TCP standard [65] and current implementations were not designed with mobility in
mind and do not tolerate large periods of disconnection. TCP provides a user timeout for
aborting the connection in case a segment is not acknowledged. The TCP standard allows
implementations to choose a timeout value and for most implementations this is a few
minutes [78]. This is normally a system wide value that applies for all connections. Some
implementations have different timeout depending on the state of the TCP connection (i.e.
ESTABLISHED or SYN_SENT). In order to address this issue, a new Internet-Draft [35]
proposes the negotiation of a per-connection Abort Timeout Option as a new TCP option.

This option allows hosts to maintain TCP connections across large disconnection periods.

For live migration of user environments, the tolerable downtime is likely to be application
and protocol specific. The migration process is best-effort and does not offer any
guarantees about network downtime. In the worst case, network connections have to be
restarted, which is the approach taken in previous work. In this thesis it is assumed that
common applications using TCP can tolerate downtime of a few seconds and still ensure
an acceptable user experience. This is based on the experience with some applications
such as ssh [11] and wget [17] during migration. In this thesis, it is assumed that if the
network connection survives during the handover, the migration is successful. If some
connections do not survive, the system can revert to the backup approach of restarting
them. It is however desirable to have a downtime as small as possible in order to provide

a good user experience for all applications.

An acceptable network downtime for migration is hard to define because it is also
application and protocol dependent. For interactive sessions, a downtime of more than 30
ms [37] will exceed the human perception threshold and will impact user experience.
However, depending on the interactive application, the downtime can be up to 100 ms.
For other types of applications such as a web download, the downtime is less important,
and it is more important to ensure the survival of the TCP connection instead. Given that
the user is not interactively using her environment during the migration, interactive

performance is not a critical aspect. However, network connections need to survive the
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migration so that the user does not have to restart them. In extreme network conditions
longer disconnection times are possible and the user could benefit from larger
disconnection timeouts and could change the abort timeout to a large value just before

triggering a live migration.

One other important aspect regarding the effects of live migration on TCP connections, is
the performance after a period of disconnection. This is because TCP connections will
exhibit low performance after periods of disconnection. One of the reasons is TCP’s
retransmission behavior. TCP doubles the retransmit timeout in case of an
unacknowledged packet for every attempt. It stops increasing the retransmission timeout
(RTO) after it reaches 60 seconds. Because of this, upon a node rejoining the network, up
to 60 seconds can pass before the connection resumes. The TCP Extensions for
Immediate Retransmissions draft [36] addresses this problem by allowing TCP to restart
stalled connections as soon as it receives an indication that connectivity to previously
disconnected peers may have been resumed. Another reason is the TCP congestion
window which is reduced to a small value after disconnection. This window is restored
slowly after a period of disconnection and this behavior impacts TCP performance: a
small congestion window reduces the throughput of a TCP connection and does not allow
it to take full advantage of the available bandwidth. These are some of the reasons TCP
exhibits low performance after periods of disconnection which occur during the live

migration of user environments.

2.4 Storage Replication

Storage replication is another essential building block for realizing the scenarios
described in Section 1.1. The user maintains several replicas of her persistent storage on
various locations. Storage needs to be replicated efficiently across the various sites.
Moreover, block-level redundancy between peers may be exploited. However, storage
replication is normally studied in the context of data centers and is an essential
component of building a reliable data center. Some related solutions for persistent data

replication are discussed in this section.

Several solutions such as RAID [61] provide local backup. Standard solutions include
array mirroring, to either local or remote storage. The preferred method is backup to tape

drives because of the low cost of such a solution but often in case of failure, the data can
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be up to a day old. Moreover, local backup does not prevent all failures such as the case
when an entire data center fails. This means that storage needs to be replicated to a
secondary site in a geographically different location. Recovery from failure implies
fail-over to one of the secondary sites or data reconstruction at the primary site. Live
migration of user environments addresses similar issues and uses similar concepts for
migrating persistent storage. However, it is more complex than simply providing local

backup because replication is not local, but instead it is over wide area networks.

Disaster recovery has several similarities to the live migration of user environments and
will be discussed in detail in this section. Many results pertaining to this topic can be
used without any modification to asses a good solution to the live migration of persistent
storage for user environments discussed in this thesis. This is mainly because the
replication of persistent storage is a very similar problem. There are many available
solutions for designing disaster-tolerant solutions that have different tradeoffs in terms of
dependability, cost and complexity. The main tradeoff is in terms of bandwidth
availability and the degree of dependability offered and the use of either an asynchronous
or synchronous protocol. At one end of the spectrum, synchronous protocols offer a high
degree of dependability at the expense of network bandwidth used, while asynchronous

protocols are less dependable but use less network resources.

A framework for automatic generation of dependability solutions is given in [49]. It takes
into account dependability metrics as well as cost and models of data protection
alternatives. The degree of dependability refers to the degree of tolerable downtime
(Recovery Time Objective (RTO)) and the amount of data loss ((Recovery Point
Objective, (RPO)). The data loss metric gives the maximum time window for updates to
be lost. Live migration of persistent storage is a particular case of storage dependability
with a RTO of less than a second or a maximum of a few seconds and a RPO of 0 (no loss

is tolerated).

Storage replication techniques are sensitive to the average update rate and to the unique
update rate. The average update rate is the number of written blocks in a certain interval
and the unique update rate is the number of unique blocks written in a certain interval,

not counting the overwrites.
Synchronous mirroring solutions limit write bursts within a certain interval. Depending

on the workload, write bursts are typically 3-10 times [49] larger than the average update

rate.
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For synchronous mirroring, the secondary needs to apply the write and confirm it before
the write completes at the primary, therefore a low network latency is required. However,
no data loss occurs. Therefore, in order to accommodate short term bursts without
slowing down applications on the primary, the following available link bandwidth is

required:

bandwidth > averageUpdate Rate x burst Multiplier (2.1)

In this equation, bandwzidth is the link bandwidth, averageUpdate Rate is the average
rate at which data is written and burst Multiplier is the short-term update-rate multiplier.
This equation that gives the minimum network bandwidth required for synchronization is
justified by the fact that the link bandwidth must be enough to accommodate the bursts

arriving at the averageUpdateRate.

Two other replication strategies studied in [49] are relevant to live migration of persistent
storage of user environments as well: write-order preserving asynchronous mirroring,

async and batch asynchronous mirroring with write absorption, asyncB.

The async protocol commits the writes to the secondary in the order of arrival without
coalescing writes. Therefore, updates are propagated to the secondary at a lower rate than
the peak rate they are written on the primary. This protocol can be used to accommodate
write bursts that might slow down application workloads. It also requires a write buffer
large enough to accommodate the write bursts of the specific workload type. Data losses
can occur if the primary fails while the write buffer is not empty as described in 2.2 and
2.3.

bandwidth > averageUpdate Rate 2.2)

writeBuf ferSize

dataLoss =
aranoss min(averageUpdate Rate, bandwidth)

(2.3)

In this equation dataLoss is the data loss probability, writeBufferSize is the size of the
write buffer used to store outstanding writes, bandwidth is the available bandwidth that

can be used for replication, and averageUpdate Rate is the average rate at which data is
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written to the disk. Equation 2.2 is justified by the fact that the write buffer must be able
to absorb the bursts. The buffer can be drained only if the average update rate is smaller
than the available bandwidth. Of course, data losses are possible, depending on the size

of the write buffer relative to the average update rate and the bandwidth.

Equation 2.3 justifies that the data lost is the data present in the write buffer at the
moment the primary fails. The data is constantly being sent from the buffer to the

secondary at a rate which is the smallest of the average update rate and the bandwidth.

The ascynB [62] protocol minimizes the bandwidth used by coalescing writes in batches
at the primary write buffer before they are sent over the network. The bandwidth required
for such a protocol is given by the uniquelUpdate Rate. However, in case of failure of the
primary site, the batch of in progress updates and the one being sent over the network
will be lost. The bandwidth requirements for live migration of user environments will be
discussed in Chapter 3 as they are different for a number of reasons. Firstly, because data
losses are not tolerated and secondly because user workloads instead of server workloads
are addressed, a slight slowdown in the performance can be tolerated. Moreover, user

workloads are characterized by bursts followed by large pause times.

The previously described asyncB protocol is implemented in SnapMirror [62].
SnapMirror uses asynchronous mirroring for Network Appliance file servers. It ensures
consistency by taking consistent snapshots from the primary and forwarding them to the
secondary site. It takes into account that the destination system must be in a consistent
state in case of primary failure. SnapMirror is tailored towards the WAFL file system
[40]. It exploits file system data structure information to distinguish changed blocks and
to avoid sending deleted blocks (WAFL is a no-overwrite file system) over the network.
Thus, SnapMirror is able to reduce the amount of data transferred by 30% to 80% for a
loaded server for update intervals of 1 minute and obtains even better performance if the
update interval is larger than 1 minute. This suggests a very interesting conclusion for the
work in this thesis. Live migration of persistent storage of user environments could use

less network bandwidth if a protocol similar to asyncB would be used.

Another option is to perform synchronization at file level. Programs like rsync, rdist [82]
and Csync2 [2] are file synchronization tools. Given that VM storage is commonly
backed up by files, this could be an alternative for implementing the live migration of
persistent storage. However, these tools have the main disadvantage of being slow.

Operating above the file system has some advantages over the block-level
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synchronization approach: even a small number of bytes written to a file translate to
many data blocks being written at block level (metadata writes). However, a small change
to a file usually results in the need to re-sync the whole file. Rsync uses CPU to compute
byte range checksums and transfer only a smaller range from the modified file. On the
other hand, block layer replication solutions have lower complexity (they only need to
traverse a block map instead of the directory structure), can optimize for reads and writes
(can read and write blocks sequentially rather than logical blocks at the file level) and are
therefore faster than file level replication. This was the main motivation for implementing

persistent storage replication at block level in this thesis.

The previous work regarding storage replication, even though it was in the context of
storage replication for servers, is very useful in describing the basic principles behind
storage replication for migration of user environments. All workloads have a certain
degree of bursty behavior and depending on the consistency requirements and the
available network bandwidth, it is better to perform asynchronous or synchronous

replication. The choices made in this work will be further explained in Chapter 3.

2.4.1 Mirroring Virtual Disks

The previous section described the protocols for synchronous and asynchronous
replication and compared the approaches of file level replication and block-level
replication. This section overviews existing technology for migration of persistent
storage when the storage is represented in a specific way, by virtual block devices. Virtual

block devices are in fact virtual disks implemented by virtual machine technology.

For the purpose of live migration of user environments, one option is to encapsulate the
entire operating system as a virtual machine as in [77]. In this case, the entire disk of a
VM is a virtual block device that can be backed by different types of resources on the
host virtual machine, such as a file or a partition. If the user environment is packed as a
virtual machine as in previous work and in this thesis, live migration has to deal with the

live migration of virtual disks.

This section overviews solutions that can be used to migrate virtual disks. Virtual disks
are sometimes easier to migrate because they can be accessed at file level by the host
operating system. This is easier because virtual disks are in fact files in the host operating

system, thus the migration can be done by userspace tools ([84]).
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Solutions for mirroring virtual block devices (VBDs) can either rely on mirroring files or
on mirroring block devices using specialized software that requires kernel level code. In
the later category fall Software RAID [10] and Distributed Replicated Block Devices
(DRBD) [69]. DRBD can be used to replicate block devices over the network and can be

used for replicating virtual block devices based on real block devices as well.

The alternative to mirroring VBDs based on block devices, is to replicate file based
VBDs using existing tools such as rsync. This is a good option when using non-live VM
relocation. However, it is not an appropriate method for live migration as such schemes
do not readily provide a way to synchronize the blocks that are dirtied during the
migration process. This is the reason this approach was not chosen in this thesis. The rest
of the section deals with block device replication of the VBDs.

For mirroring Logical Volume Manager (LVM) partitions for non-live relocation, a setup
with Software RAID or DRBD can be used. Live migration is not directly supposed with
these tools, although they do offer a number of features that are useful for live replication
of virtual block devices. I have implemented a DRBD based virtual block device
migration tool, specifically addressing LVM partitions. Therefore, DRBD’s features will
be discussed in more detail, in order to justify why it is an efficient solution for migrating

VBDs using low latency network links.

DRBD is used to build high availability (HA) clusters with replicated storage by
mirroring block devices over a network. It uses TCP as a transport protocol to solve
issues like packet reordering. It performs intelligent resynchronizations by keeping track
of active regions of the disk. DRBD is able to find the up-to-date replica without

administrator intervention if the cluster is restarted.

DRBD supports three protocols labeled A, B and C. Protocol C is completely
synchronous. Protocol B signals I/O completion to the upper layers as soon as an
acknowledgment packet arrives from the secondary node and the local write operation is
committed the the local disk. Protocol A signals I/O completion to the upper layers as

soon as the write was committed to local storage and was sent to the secondary.

Each DRBD device can have one of two possible roles: Primary or Secondary. The main
difference is that a secondary device is not writable. DRBD supports a configuration in
which both nodes are primary, therefore they are both writable at the same time and

protocol C must be used in order to ensure consistency.
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In the current implementation, the meta-data disk used for this purpose takes 128MB no
matter what the hard drive size is. The meta-data disk can be stored internally or on

another disk and is an overhead for migrating small disks.

DRBD takes a different approach from SnapMirror to ensure consistency for
asynchronous mirroring protocols. It cannot make use of snapshots but it must ensure
that the secondary node is always in a consistent state and the write order is maintained.

Therefore, there are two approaches:

e Perform each write block request before the next block from the primary is
accepted. This approach would not make good use of the disk scheduler and I/0O
subsystem on the secondary node because it does not schedule large transfers to
disk.

o Identify write dependencies on the primary node and insert barriers where
appropriate between write requests. When the secondary encounters a barrier it

waits for all the requests to complete before processing any further requests.

SecondSite [30] is a work in progress system designed for high availability and disaster
protection. Instead of addressing storage replication and backup to a remote persistent
storage site, it addresses whole system checkpointing to remote persistent storage. The
goal of this system is to virtualize the entire hardware and to provide disaster recovery
without any modifications to the operating system. Moreover, it is transparent to the
outside network since it aims at minimizing the downtime between failure and service
continuation by migrating TCP connections. SecondSite also attempts to minimize the
bandwidth requirements for replication by content hashing, dirty page compression and
throttling page dirtying rate. However, this is work in progress and actual details about

the architecture and results are not currently available.

This work is similar to live migration of user environments because it attempts to resume
whole operating systems, including persistent storage at a remote location, with minimal
data loss and while maintaining active network connections. It also differs because in the
case of user environments, the secondary location does not need to be consistent at all
times. Moreover, the workloads and available bandwidth are much lower than the ones

likely to be used for disaster recovery of data centers.
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2.5 Migration of Virtual Machines and Environments

The previous sections described the background related to my work. This section
describes similar projects to the one described in this thesis, such as the Internet Suspend
Resume [77] project. This section first describes live migration of virtual machines
(2.5.1). The next section (2.5.2) describes how regular (not live) migration of virtual
machines has been used in previous work that addresses the non live migration of user
environments. The approach used in these works is to pack the user environment as a
virtual machine and use a suspend/resume migration approach along with a number of
optimizations to reduce the amount of network resources consumed by migration. Since
the work in this thesis uses live migration for the mobility of user environments, it is at

the intersection of the works described in the next two sections.

2.5.1 Virtual Machine Live Migration

Xen live migration [28] has a number of useful features for data centers, facilitating fault
management and load balancing. A VM can simply be relocated with minimal service
down time using a pre-copy technique to migrate the memory while the machine is still
running. This is an iterative copy process that starts with first copying the whole memory.
Xen live-migration benefits from the fact that the hypervisor’s control interface has
access to the migrating machine’s memory pages and is responsible for creating and

destroying VM instances.

The hypervisor can keep track of pages that have been dirtied since the last iteration and
just copy those at the destination. Finally, a writable working set of pages is sent over
the network along with a checkpoint of the state of the OS and the machine is resumed at
the destination. The downtime obviously depends on the size of the writable working set

which is dependent on the workload’s patterns of updating page tables.

Xen implements hosted-migration in which the host control software governs the
migration process. However, the first approach to live-migration was self-migration [39].
Self migration is done without hypervisor involvement using a similar iterative pre-copy
mechanism. The guest OS has to be modified to keep track of its writable working set
and the transfer to the migration destination, as well as suspending itself from the

originating machine.

36



2.5.2 Migration of Virtual Environments

This section discusses the related work related to the migration of user environments. It
focuses on the techniques developed for migrating user environments, especially on the

optimizations aimed at minimizing network traffic.

The Collective: The Collective project [75], [74] addresses moving entire x86 operating
systems from one machine to the other using the VMware GSX server virtual machine
monitor. The x86 machines are encapsulated so that they contain the whole memory and
disk space. The most important problem when migrating this amount of data is the
network bandwidth. In order to minimize the amount of data sent over the network, the

Collective made the following optimizations:

e Copy-on-write disks (CoW) - only the modifications from the previous snapshot of
the system are recorded. Thus, the amount of data that needs to be transferred is
proportional to the modifications to user data. Maintaining snapshots of both the

disk and the main memory ensures that the filesystem is kept in a consistent state.

e Demand paging A capsule’s execution can be resumed even if not all the pages are
present in memory. The pages that are not on the local disk will be fetched over the

network.

e Ballooning the unused memory - this optimization decreases the size of the
memory being transferred over the network at the expense of losing some of the

performance provided by the buffer cache.

e Hashing disk blocks for efficiently mirroring virtual disks. Hashing helps to
reduce the traffic in the case some of the disk chunks are already on the disk.
Checking the hash values for every chunk is not bound by the CPU because the

work addresses low bandwidth links.

e Gzip all the traffic.

Additional optimizations include CoW disk hierarchies and a hash cache. Their system
supports only non-live migration, therefore if the machine is running, it is first suspended
to disk and then resumed on the other host. The advantages of their approach and in fact

of every VM migration based system are:
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access to the same interface from anywhere in the world

there is no loss in interactivity

e casiness of maintaining the OS

an open system that allows users to chose their OS and preferred software

The Collective project shares many common ideas with the work in this thesis. Most of
the advantages and optimizations done in the Collective are also present in my work. The
main difference is that they do not support live migration and network connection
migration. Some of the optimizations such as copy on write and gzipping the traffic are

not implemented in this thesis but are likely to prove useful.

Grid live migration: [81] investigates Xen live migration supporting Grid operations
over long haul MAN or WAN high performance networks. The necessity to live migrate
machines from a cluster comes from multiple usage scenarios. Firstly, without migration
it can be impossible to bring computation closer to the data. Migration mitigates high
network latencies to the data centers. Secondly, migration achieves dynamic load
balancing of computation workloads over domains that exceed the boundaries of a local
data center. Additional gains are limitation of power consumption and better

management of workloads.

The