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Abstract 

Traditionally research into how we perceive our external world focused on the 

unisensory approach, examining how information is processed by one sense at a 

time. This produced a vast literature of results revealing how our brains process 

information from the different senses, from fields such as psychophysics, animal 

electrophysiology, and neuroimaging. However, we know from our own 

experiences that we use more than one sense at a time to understand our 

external world. Therefore to fully understand perception, we must understand 

not only how the brain processes information from individual sensory modalities, 

but also how and when this information interacts and combines with information 

from other modalities. In short, we need to understand the phenomenon of 

multisensory perception.   

The work in this thesis describes three experiments aimed to provide new 

insights into this topic. Specifically, the three experiments presented here 

focused on examining when and where effects related to multisensory 

perception emerged in neural signals, and whether or not these effects could be 

related to behaviour in a time-resolved way and on a trial-by-trial basis. These 

experiments were carried out using a novel combination of psychophysics, 

high-density electroencephalography (EEG), and advanced computational 

methods (linear discriminant analysis and mutual information analysis).  

Experiment 1 (Chapter 3) investigated how behavioural and neural signals are 

modulated by the reliability of sensory information. Previous work has shown 

that subjects will weight sensory cues in proportion to their relative reliabilities; 

high reliability cues are assigned a higher weight and have more influence on the 

final perceptual estimate, while low reliability cues are assigned a lower weight 

and have less influence (Angelaki, Gu, & DeAngelis, 2009; Fetsch, DeAngelis, & 

Angelaki, 2013a). Despite this widespread finding, it remains unclear when 

neural correlates of sensory reliability emerge during a trial, and whether or not 

modulations in neural signals due to reliability relate to modulations in 

behavioural reweighting. To investigate these questions we used a combination 

of psychophysics, EEG-based neuroimaging, single-trial decoding, and regression 

modelling. Subjects performed an audio-visual rate discrimination task where 
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the modality (auditory, visual, audio-visual), stimulus stream rate (8 to 14 Hz), 

visual reliability (high/low), and congruency in rate between audio-visual stimuli 

(± 2 Hz) were systematically manipulated. For the behavioural and EEG 

components (derived using linear discriminant analysis), a set of perceptual and 

neural weights were calculated for each time point. The behavioural results 

revealed that participants weighted sensory information based on reliability: as 

visual reliability decreased, auditory weighting increased. These modulations in 

perceptual weights emerged early after stimulus onset (48 ms). The EEG data 

revealed that neural correlates of sensory reliability and perceptual weighting 

were also evident in decoding signals, and that these occurred surprisingly early 

in the trial (84 ms). Finally, source localisation suggested that these correlates 

originated in early sensory (occipital/temporal) and parietal regions 

respectively. Overall, these results provide the first insights into the temporal 

dynamics underlying human cue weighting in the brain, and suggest that it is an 

early, dynamic, and distributed process in the brain.  

Experiment 2 (Chapter 4) expanded on this work by investigating how oscillatory 

power was modulated by the reliability of sensory information. To this end, we 

used a time-frequency approach to analyse the data collected for the work in 

Chapter 3. Our results showed that significant effects in the theta and alpha 

bands over fronto-central regions occurred during the same early time windows 

as a shift in perceptual weighting (<100 ms and 250 ms respectively). 

Specifically, we found that theta power (4 - 6 Hz) was lower and alpha power 

(10 – 12 Hz) was higher in audio-visual conditions where visual reliability was 

low, relative to conditions where visual reliability was high. These results 

suggest that changes in oscillatory power may underlie reliability based cue 

weighting in the brain, and that these changes occur early during the sensory 

integration process.  

Finally, Experiment 3 (Chapter 5) moved away from examining reliability based 

cue weighting and focused on investigating cases where spatially and temporally 

incongruent auditory and visual cues interact to affect behaviour. Known 

collectively as “cross-modal associations”, past work has shown that observers 

have preferred and non-preferred stimuli pairings. For example, subjects will 

frequently pair high pitched tones with small objects and low pitched tones with 

large objects (Parise & Spence, 2012; Spence, 2011). However it is still unclear 
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when and where these associations are reflected in neural signals, and whether 

they emerge at an early perceptual level or later decisional level. To investigate 

these questions we used a modified version of the implicit association test (IAT) 

to examine the modulation of behavioural and neural signals underlying an 

auditory pitch – visual size cross-modal association. Congruency was manipulated 

by assigning two stimuli (one auditory and one visual) to each of the left or right 

response keys and changing this assignment across blocks to create congruent 

(left key: high tone – small circle, right key: low tone – large circle) and 

incongruent (left key: low tone – small circle, right key: high tone – large circle) 

pairings of stimuli. On each trial, subjects were presented with only one of the 

four stimuli (auditory high tone, auditory low tone, visual small circle, visual 

large circle), and asked to respond which was presented as quickly and 

accurately as possible. The key assumption with such a design is that subjects 

should respond faster when associated (i.e. congruent) stimuli are assigned to 

the same response key than when two non-associated stimuli are. In line with 

this, our behavioural results demonstrated that subjects responded faster on 

blocks where congruent pairings of stimuli were assigned to the response keys 

(high pitch-small circle and low pitch-large circle), than blocks where 

incongruent pairings were. The EEG results demonstrated that information about 

auditory pitch and visual size could be extracted from neural signals using two 

approaches to single-trial analysis (linear discriminant analysis and mutual 

information analysis) early during the trial (<50ms), with the strongest 

information contained over posterior and temporal electrodes for auditory trials, 

and posterior electrodes for visual trials. EEG components related to auditory 

pitch were significantly modulated by cross-modal congruency over temporal and 

frontal regions early in the trial (~100ms), while EEG components related to 

visual size were modulated later (~220ms) over frontal and temporal electrodes. 

For the auditory trials, these EEG components were significantly predictive of 

single trial reaction times, yet for the visual trials the components were not. As 

a result, the data support an early and short-latency origin of cross-modal 

associations, and suggest that these may originate in a bottom-up manner during 

early sensory processing rather than from high-level inference processes. 

Importantly, the findings were consistent across both analysis methods, 

suggesting these effects are robust.  
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To summarise, the results across all three experiments showed that it is possible 

to extract meaningful, single-trial information from the EEG signal and relate it 

to behaviour on a time resolved basis. As a result, the work presented here steps 

beyond previous studies to provide new insights into the temporal dynamics of 

audio-visual perception in the brain. All experiments, although employing 

different paradigms and investigating different processes,  showed early neural 

correlates related to audio-visual perception emerging in neural signals across 

early sensory, parietal, and frontal regions. Together, these results provide 

support for the prevailing modern view that the entire cortex is essentially 

multisensory and that multisensory effects can emerge at all stages during the 

perceptual process.
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Chapter 1 : General Introduction   

What is multisensory perception? 

Multisensory perception is a term used to describe the integration and 

interaction of sensory information across different modalities. More specifically, 

multisensory integration refers to situations where two stimuli are perceived as 

one, and where the multisensory stimuli cause a significantly different neuronal 

response (e.g. increased neuronal firing) in multisensory compared to unisensory 

conditions (Stein & Meredith, 1993). In contrast, the term multisensory 

interaction describes situations where information from different sensory 

modalities is processed, but does not necessarily result in one percept and there 

is not a significantly different neural response (Calvert et al., 2012). Despite the 

distinct meanings, these two terms are often used interchangeably and without 

specific definition in the literature. However, the work in this thesis deals with 

cases of multisensory integration (where the stimuli are perceived as one – see 

Chapters 3 and 4) as well as multisensory interactions (where auditory 

information interacts with visual information – see Chapter 5), and so it is 

important to define the difference between the two.  

When does multisensory perception occur? 

Integration is most likely to occur when stimuli are spatially and temporally 

proximate (i.e. when they occur from the same place at the same time). This is 

best demonstrated by examining how behavioural responses are modulated 

during the presentation of two simultaneous stimuli. For example, perceptual 

sensitivity and response times for visual stimuli are enhanced when an auditory 

stimulus is presented at the same location (Bolognini, Frassinetti, Serino, & 

Làdavas, 2005) or same time (Vroomen & De Gelder, 2000). The detectability of 

a low intensity auditory tone is improved when it is paired with a simultaneous 

visual stimulus (Lovelace, Stein, & Wallace, 2003). Multisensory stimuli can even 

provide learning benefits: in one study, Seitz, Kim, & Shams, (2006) 

demonstrated that participants who received training with auditory and visual 

stimuli (motion in both modalities) showed greater learning of motion direction, 

both within and across training sessions. Finally, presenting three types of 
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sensory information (trimodal) has been shown to lead to greater improvement 

in reaction time than bimodal stimuli (Diederich & Colonius, 2004; Hecht, 

Reiner, & Karni, 2008a, 2008b). Thus, collectively the evidence demonstrates 

that spatially and temporally proximate stimuli lead to multisensory integration, 

and that combining information across modalities can provide perceptual 

benefits.  

Integration between two slightly conflicting stimuli can also occur, as long as the 

stimuli are spatially and temporally congruent. One well-known example of this 

is called the McGurk effect; when presented with a simultaneous auditory “ba” 

and visual “ga”, subjects will often report “hearing” the sound “da” (McGurk & 

Macdonald, 1976). This demonstrates a dynamic interaction whereby the brain 

combines conflicting information into a meaningful (but incorrect) percept, 

simply because the two pieces of information originated from the same place at 

the same time. Another famous demonstration of this effect comes from a set of 

seminal experiments using what is now known as the “two beep, one flash” 

paradigm (Shams, Kamitani, & Shimojo, 2000, 2002). In these studies, 

participants were presented with a visual disc that flashed only once, paired 

with one or two auditory beeps. In most cases, when the visual stimulus was 

accompanied by two beeps subjects reported “seeing” two visual flashes. This 

effect — where the rate of a visual stimulus is pulled towards the rate of the 

auditory — is known as temporal ventriloquism, and has been replicated by many 

other subsequent studies (Fendrich & Corballis, 2001; Morein-Zamir, Soto-

Faraco, & Kingstone, 2003; Repp & Penel, 2002; Vroomen & De Gelder, 2004). In 

a similar way, a visual stimulus can affect judgements about an auditory 

stimulus. “Spatial ventriloquist” paradigms show that when visual and auditory 

stimuli are presented at the same time but at a spatial offset, the visual 

stimulus will “pull” the reported location of the auditory stimulus towards it 

(Bertelson, Vroomen, De Gelder, & Driver, 2000; Jean Vroomen, Bertelson, & de 

Gelder, 1998). Together, these effects show that the brain can flexibly adjust 

and integrate sensory information, even when there are slight temporal or 

spatial discrepancies.  

Temporal and spatial ventriloquist paradigms also demonstrate another 

important part of multisensory integration: the process of sensory cue weighting. 

It is known that vision provides more accurate spatial information while audition 
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provides more accurate temporal information (Recanzone, 2003; Repp & Penel, 

2002). Therefore in spatial ventriloquist tasks (where the visual modality is more 

“appropriate” for judging location), the visual information has greater influence 

on the final perceptual estimate and consequently pulls the auditory stimulus 

towards it. In temporal ventriloquist paradigms, the auditory modality is more 

appropriate to judge the temporal properties of stimuli, and so the rate 

estimate of the visual stimulus is pulled towards the auditory rate. Thus, not 

only is spatial and temporal congruency important for multisensory integration, 

so is the weighting of each cue. Investigating how spatially and temporally 

congruent and incongruent audio-visual stimuli are weighted and integrated is 

the focus of Chapters 3 and 4.  

In contrast, multisensory interactions occur in a wider variety of contexts that 

do not necessarily depend on spatial and temporal congruence or perceptual 

relevance. For example, subjects show faster reaction times during stimulus 

discrimination when high pitched tones are paired with small visual objects, 

than when high pitched tones are paired with large objects (Bien, ten Oever, 

Goebel, & Sack, 2012; Evans & Treisman, 2010; Parise & Spence, 2012). 

Similarly, individuals will respond faster to visual stimuli in high positions of 

space when they are paired with high tones, compared to when they are paired 

with low tones (Evans & Treisman, 2010; Parise & Spence, 2012; Rusconi, Kwan, 

Giordano, Umiltà, & Butterworth, 2006). These associations — known as “cross-

modal correspondences” or “cross-modal associations” — have even been shown 

to occur when only a single stimulus is presented on a trial. In a recent paper, 

Parise & Spence (2012) demonstrated that subjects respond faster to preferred 

pairings of audio-visual stimuli (high tone – small circle and low tone – large 

circle) if they are assigned to the same response key than if they are not. 

Importantly, this occurred even though only a single stimulus was presented on a 

trial. Overall, these results show that sensory information from separate 

modalities can interact with one another even if there is no spatial and temporal 

congruency, and even if the stimulus in one modality has no predictive validity 

for the stimulus in the other. Chapter 5 investigates this issue further, by 

examining when an effect of a cross-modal interaction between auditory and 

visual stimuli emerges in neural signals.  
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How does multisensory perception occur in the brain? 

Non-linear neuronal responses 

Much of the early work into multisensory perception in the brain came from 

animal work. A landmark set of studies (for review, see Stein & Meredith, 1993), 

showed neurons in the superior colliculus (SC) of the cat displayed increased 

firing (enhancement), decreased firing (depression), or a response that was 

larger than the sum of the individual unimodal responses (superadditivity, 

considered by some to be a special case of enhancement) when presented with 

spatially and temporally congruent visual, auditory, and somatosensory stimuli 

(Meredith & Stein, 1983a; Meredith & Stein, 1986). Additionally, neurons 

demonstrated a principle known as “inverse effectiveness”, where the strength 

of the multisensory response depended non-linearly on the strength of the 

stimuli: the more effective the individual unisensory stimuli, the weaker the 

multisensory response (Meredith & Stein, 1983a; Meredith & Stein, 1986). These 

observations led to three defining “rules” for multisensory integration at a 

neural level (although they also apply to behaviour, as previously introduced). 

“The spatial rule” states that integration is more likely to occur when the 

stimuli come from the same location in space. “The temporal rule” states that 

integration is more likely to occur when the stimuli arrive at the same time. 

Finally, “the law of inverse effectiveness” states that multisensory integration 

will be more likely when the unisensory stimuli are weak (Meredith & Stein, 

1983b; Meredith & Stein, 1986).  

Collectively, the results from neuroimaging suggest that multisensory 

interactions in the brain follow, at least to some extent, the effects observed in 

the neuronal responses in animal brains (Meredith & Stein, 1983b; Stein & 

Meredith, 1993). For example, perhaps the most common approach to examining 

multisensory perception with neuroimaging has been to examine whether the 

multisensory neuronal response is significantly different from the combined sum 

of unisensory responses (following the guidelines of superadditivity seen in 

neuronal responses). Using this approach, a nonlinear response is calculated as: 

AV = AV-[A+V], where AV represents the audio-visual response, A represents the 

auditory response, and V represents the visual. Such a model has been 

successfully used to show multisensory interactions emerging in neural signals in 
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both EEG (Fort, Delpuech, Pernier, & Giard, 2002; Foxe et al., 2000; Giard & 

Peronnet, 1999; Molholm et al., 2002; Möttönen, Schürmann, & Sams, 2004) and 

fMRI work (Calvert, Campell, & Brammer, 2000; Calvert, Hansen, Iversen, & 

Brammer, 2001; Stevenson, Kim, & James, 2009). The principles of inverse 

effectiveness also seem to hold in such large scale neural activity. For example, 

a study by Senkowski, Saint-Amour, Höfle, & Foxe, (2011) showed that the 

strongest amplitude modulations in the multisensory EEG signal occurred when 

the respective auditory and visual unisensory stimuli were of low intensity. 

Crosse, Di Liberto, & Lalor, (2016) found similar representations of inverse 

effectiveness in EEG signals in response to audio-visual speech. Finally, recent 

functional magnetic resonance studies (fMRI) have reported findings in line with 

the principle of inverse effectiveness occurring in the superior temporal sulcus 

(STS) (Stevenson & James, 2009; Werner & Noppeney, 2010) and nearby cortical 

regions (Holle, Obleser, Rueschemeyer, & Gunter, 2010) during presentation of 

audio-visual stimuli containing varying degrees of noise.  

However, some have cautioned against relying too heavily on the principles 

observed at the level of the single neuron when making inferences from 

neuroimaging (Beauchamp, 2005; Calvert, 2001; Giard & Besle, 2010; Stein, 

Stanford, Ramachandran, Perrault, & Rowland, 2009). In neuroimaging, the 

signal being measured is not from a single neuron, but rather is the composite 

activity from millions of neurons. Consequently, any information recorded from 

the scalp will be a mix of activity and noise from many sources in the brain. This 

creates several problems when looking for non-linear responses in neuroimaging 

signals using [AV-(A+V)], as it assumes that: (a) the auditory and visual signals 

contain no overlapping information; (b) the activity in either unisensory 

condition is not modulated by the presence of another stimulus; and (c) biases — 

such as attentional demands — are the same in both modalities you are 

measuring. Assumption (a) is easily violated if an electrode measuring visual 

activity contains any shared activity that an auditory electrode does. As each 

electrode measures a combination of neuronal responses, noise, and non-

cognitive related activity from multiple sources in the brain this assumption is 

most likely violated. From research, we know that assumption (b) is also easily 

violated: for example, research has shown that auditory cortex responses can be 

modulated by visual stimuli (Kayser, Petkov, & Logothetis, 2008; Laurienti et al., 
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2002; Vetter, Smith, & Muckli, 2014). Finally, assumption (c) could be easily 

violated if, for example, the behavioural task was a spatial localisation paradigm 

and it was necessary to pay more attention to the visual than auditory modality. 

Therefore, while non-linear effects have been found widely in neuroimaging, it 

is also important to examine and test other models of cue combination. 

Linear cue combination 

“Optimal Integration” or “Bayesian Integration” models are frameworks based 

on probability theory, which describe how cue integration can occur in a linear, 

statistically optimal fashion by following the rules of Maximum Likelihood 

Estimation (Angelaki et al., 2009; Rohde, van Dam, & Ernst, 2015). Under this 

framework, the “optimal” way to derive the most precise perceptual estimate is 

to generate a weighted average of the unimodal estimates, where each sensory 

cue is weighted relative to its individual precision and reliability. This weighting 

strategy is important, as the information coming in through our senses is 

inherently probabilistic; sensory cues can be unreliable (e.g. visual stimuli 

become less reliable in dim conditions) or redundant (e.g.an auditory stimulus 

might provide no additional information about the location of an event yet it 

occurs simultaneously with the visual). Alongside this, internal noise (e.g. in the 

response of neurons, muscle movements, or heartbeats) can create more 

uncertainty. This uncertainty lends itself well to using probability theory (i.e. 

Bayesian/optimal integration) models to investigate multisensory integration in 

the brain. 

These frameworks have two predictions. First, perceptual estimates should be 

more precise for multisensory versus unisensory stimuli. Second, as the 

reliability of a sensory cue decreases, so should the weight assigned to it. For 

example, imagine you are performing an audio-visual spatial localisation task 

where the reliability of the auditory cue varies from low to high quality. 

According to the Optimal Integration framework, on trials where the visual and 

auditory stimuli are of equal reliability, your estimate of the location of the 

stimuli should be based on an equal weighting of both stimuli. However, on trials 

where the visual stimulus is of high quality and the auditory stimulus is of low 

quality, your estimate of the location of the audio-visual stimulus should be 
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based on unequal weighting; specifically, the visual modality should be weighted 

higher as it is of greater reliability.  

These models have had great success in explaining cue integration in a variety of 

behavioural tasks. For example, Sheppard, Raposo, & Churchland, (2013) 

investigated how subjects weighted sensory cues during an audio-visual rate 

discrimination task. Subjects (humans/rats) were presented with two sequential 

streams of visual, auditory or audio-visual flicker, and had to judge which 

stream had a higher stimulation rate. On some audio-visual trials the reliability 

of the visual or auditory stimulus varied and — importantly — a discrepancy was 

introduced between the auditory and visual cues which caused the stimuli to 

flicker at slightly different rates. This incongruency in cue weighting paradigms 

is essential, as it allows assessment of the degree to which subjects are biased 

towards each cue: if subjects’ responses are more in line with of one modality, 

it suggests they are placing higher importance on it. In this study, this bias was 

quantified by fitting psychometric curves to the behavioural response data to 

generate a set of “perceptual weights” for each modality. Indeed, the results 

revealed that for both rat and human subjects, performance was higher in the 

multisensory condition compared to the unisensory condition, and there was 

increased perceptual weighting for the more reliable stimuli compared to the 

less reliable. Similar findings were reported in a study by Alais & Burr, (2004), 

who investigated the integration of audio-visual cues during a spatial localisation 

task. Consistent with the predictions from optimal integration models, their 

results showed that localisation in the bimodal conditions was better than 

localisation in either the visual alone or auditory alone condition, and that when 

the reliability of the visual information decreased the auditory weighting 

increased. Overall, these findings of cue weighting have been demonstrated in 

many other behavioural studies, suggesting it a robust and important process 

during multisensory integration (Battaglia, Jacobs, & Aslin, 2003; Butler, Smith, 

Campos, & Bülthoff, 2010; Ernst & Banks, 2002; Fetsch, Turner, DeAngelis, & 

Angelaki, 2009; Helbig & Ernst, 2007; Hillis, Watt, Landy, & Banks, 2004; Knill & 

Saunders, 2003; Rosas, Wagemans, Ernst, & Wichmann, 2005; Sheppard, Raposo, 

& Churchland, 2013).  

These principles of cue weighting have also been shown to emerge in neural 

signals. For example, single-cell recordings have shown that “neural weights” 
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(calculated via fitting psychometric curves to neural data) can vary with cue 

reliability in a manner consistent with predictions from statistical optimal 

models (Gu, Angelaki, & Deangelis, 2008; Morgan, DeAngelis, & Angelaki, 2008). 

Additionally, neural weights can also can predict the perceptual weights derived 

from behaviour (Fetsch, Pouget, DeAngelis, & Angelaki, 2012). Similarly, fMRI 

studies have demonstrated that BOLD responses are modulated by sensory 

reliability during visual-tactile (Beauchamp, Pasalar, & Ro, 2010; Helbig et al., 

2012) and audio-visual tasks (Rohe & Noppeney, 2016) in a manner consistent 

with cue weighting frameworks: as the reliability of a stimulus decreases, the 

BOLD signal tends to increase in areas underlying the processing of the more 

reliable stimulus. Finally, recent fMRI work has indicated that this sensory 

weighting process emerges gradually along the cortical hierarchy, with stimulus 

reliability encoded in low-level sensory regions and cue weighting occurring in 

higher-order parietal regions (Rohe & Noppeney, 2015a, 2016). Overall, these 

results indicate that linear cue combination can be implemented by neurons in 

the brain, and that these computations can be measured by neuroimaging.  

Chapters 3 and 5 of this thesis use such a linear modelling to study the neural 

underpinnings of audio-visual cue perception across two different audio-visual 

tasks.   

Neural oscillations  

The final method (relevant to this thesis) by which the brain has been proposed 

to combine sensory information is via oscillatory activity. It has been known for 

almost a century that the brain shows rhythmic activity, and this activity shows 

both correlational and causal relationships with behaviour (Buzsáki & Draguhn, 

2004; Wang, 2010). These rhythms – known as “neural oscillations” – are usually 

sub-divided by boundaries into separate bands based on the frequency with 

which they oscillate: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 

Hz), and gamma (>30 Hz). However it is important to remember that these 

frequency boundaries are somewhat arbitrary and can change depending on the 

specific experiment. 

Importantly, oscillatory activity has been widely observed during multisensory 

tasks. For example, Sakowitz, Quiroga, Schurmann, & Basar, (2001) found 

increased theta activity in response to audio-visual stimuli compared to 
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unisensory stimuli. Similarly, Sakowitz, Quiroga, Schurmann, & Basar, (2005) 

found oscillatory power changes in theta and alpha evident early after 

presentation of audio-visual stimuli. Another study found increased beta band 

activity in response to audio-visual stimuli, and demonstrated that power also 

predicted shorter reaction times for multisensory stimuli versus unisensory 

stimuli (Senkowski, Molholm, Gomez-Ramirez, & Foxe, 2006). Activity in higher 

frequency bands is also a common finding in multisensory research: increased 

gamma activity has been found for congruent versus incongruent pairs of audio-

visual stimuli (Schneider, Debener, Oostenveld, & Engel, 2008; Yuval-Greenberg 

& Deouell, 2007), and in response to mismatches in congruency between 

auditory and visual speech (Arnal, Wyart, & Giraud, 2011). Findings of oscillatory 

activity in multisensory paradigms are in fact so widespread that it has now been 

proposed that oscillations may be the key mechanism by which the brain 

combines information across different modalities (Engel, Senkowski, & 

Schneider, 2012; Fries, 2005). Under such a hypothesis, synchronised oscillations 

between different areas of the brain might provide the potential mechanism for 

crossmodal integration (Engel, Fries, & Singer, 2001), and modulations in power 

of phase of neural signals may reflect ongoing modulations or interactions due to 

multisensory perception (for review see Engel et al., 2007). Chapter 4 builds on 

this literature by investigating how oscillatory power is modulated by the 

reliability of multisensory stimuli.  

Where and when do multisensory effects occur in the 
brain? 

The final aspect of multisensory perception to review relates to where and when 

it occurs in the brain. The traditional view of multisensory processing was that it 

occurred in a hierarchical manner, with incoming sensory information first 

processed in early sensory areas or specialised subcortical regions, and later 

integrated at higher association areas (Meredith & Stein, 1986b; Stein & 

Meredith, 1993). And indeed, multisensory effects have been found widely in 

subcortical regions such as the superior colliculus (SC), basal ganglia and 

putamen (Stein & Meredith, 1993). With regards to cortical areas, in both animal 

and human studies, effects of multisensory perception have been found in the 

superior temporal sulcus (STS) (Beauchamp, Lee, Argall, & Martin, 2004; 
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Beauchamp, Yasar, Frye, & Ro, 2008; Benevento, Fallon, Davis, & Rezak, 1977; 

Bruce, Desimone, & Gross, 1981), parietal cortex (Avillac, Hamed, & Duhamel, 

2007; Bremmer, Klam, Duhamel, Hamed, & Graf, 2002; Rohe & Noppeney, 

2015a, 2016), and frontal and prefrontal areas (Fuster, Bodner, & Kroger, 2000; 

Senkowski et al., 2006). Thus, it appears there is a lot of evidence indicating 

multisensory integration occurs at specialised subcortical, association, and 

higher-order regions.  

Yet in more recent years accumulating evidence has challenged this view (Foxe 

& Schroeder, 2005; Ghazanfar & Schroeder, 2006). Many areas that were 

typically considered unisensory also show responses to multisensory stimuli. For 

example, animal work has demonstrated both somatosensory (Kayser, Petkov, 

Augath, & Logothetis, 2005; Lakatos, Chen, O’Connell, Mills, & Schroeder, 2007) 

and visual stimulation (Bizley & King, 2009; Ghazanfar, Maier, Hoffman, & 

Logothetis, 2005; Kayser, Petkov, Augath, & Logothetis, 2007) can modulate 

activity in early auditory cortex. At a more macroscopic level, it has been shown 

that event related potentials (ERP) and event related fields (ERF) in auditory 

cortex can be modulated by visual stimuli (Besle, Fort, Delpuech, & Giard, 2004; 

Colin et al., 2002; Möttönen, Krause, Tiippana, & Sams, 2002), and in 

somatosensory cortex in response to auditory-somatosensory stimulation (Foxe 

et al., 2000). Functional MRI studies have also revealed that visual stimuli can 

modulate auditory cortex activity as measured by the BOLD signal (Calvert, 

2001; Calvert et al., 1997; Lehmann et al., 2006; Pekkola et al., 2005, 2006), 

and that sound content can be decoded from early visual areas (Vetter et al., 

2014). Based on all this evidence, the modern view is now that early sensory 

areas are capable of processing stimuli from multiple modalities, thus rendering 

the cortex essentially multisensory.  

Multisensory interactions have also been shown to occur surprisingly early in the 

perceptual process. For example, enhancement of auditory ERPs have been 

found in response to a simultaneously presented somatosensory stimulus as early 

as 50 ms after stimulus onset (Murray et al., 2005). Another study showed audio-

visual ERP responses emerging at 46 ms after presentation in early parietal and 

occipital regions (Molholm et al., 2002). Fort et al., (2002) also demonstrated 

early (<200 ms) effects occurring in early sensory cortex during audio-visual 

object recognition. Overall, the early onset of these results suggests 
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multisensory effects cannot possibly be restricted to a late stage of the 

perceptual hierarchy.  

However, much of the previously cited work relied on measuring the timing or 

fluctuation in peaks of ERPs, potentially due to the ease of which ERPs can be 

calculated, and/or the feasibility in collecting vast number of trials for analyses, 

difficulty implementing single-trial analysis classifiers, and longer computation 

time needed for single-trial analysis. While informative in their own right, such 

studies limit the amount of information one can draw from these early 

modulations. Thus, more work using a larger variety of tasks and methods is 

needed to examine when multisensory effects emerge in neural signals, and to 

further resolve what role early and low level sensory effects play in multisensory 

perception. This issue is a core topic of this thesis, and is investigated in 

Chapters 3, 4 and 5.  

Chapter 1: Summary and Thesis Rationale 

To summarise, multisensory perception is an important part of everyday life, it 

modulates behavioural and neural responses on a variety of levels and in many 

different ways, and research points towards the idea that the cortex is 

essentially multisensory. However, we still do not have a full understanding of 

how and when effects of multisensory perception emerge in the brain during a 

variety of tasks, or how modulations in neural signals due to multisensory 

perception relate to human behaviour. The work in this thesis aimed to provide 

insights into these open questions. Specifically, I carried out three experiments 

that investigated when effects related to multisensory perception emerged in 

neural signals, and examined whether these could be related to behaviour. To 

do so, we used a combination of psychophysics, high-density 

electroencephalography (EEG), and advanced computational methods (linear 

discriminant analysis and mutual information analysis). This novel combination 

made it possible to extract information from the EEG signal and relate it to 

behaviour on a trial-by-trial and time resolved basis. This steps beyond previous 

studies in the field, which have traditionally relied on examining multisensory 

perception via fluctuations in the amplitude or timing of neuronal responses, or 

by looking for increases and decreases in averaged voxel activations as measured 
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by fMRI. Thus, the work in this thesis provides novel insights into the temporal 

dynamics underlying audio-visual perception. 

Thesis at a Glance (Abstracts) 

Chapter 3: Neural Correlates of Multisensory Reliability and 
Perceptual Weights Emerge at Early Latencies during Audio-
visual Integration 

To make accurate perceptual estimates observers must take the reliability of 

sensory information into account. Despite many behavioural studies 

demonstrating that subjects weight individual sensory cues in proportion to their 

reliabilities, it is still unclear when during a trial neuronal responses are 

modulated by the reliability of sensory information, or when they reflect the 

perceptual weights attributed to each sensory input. We investigated these 

questions using a combination of psychophysics, EEG based neuroimaging, and 

single -trial decoding. Our results show that the weighted integration of sensory 

information in the brain is a dynamic process; effects of sensory reliability on 

task relevant EEG components were evident 84 ms after stimulus onset, while 

neural correlates of perceptual weights emerged 120 ms after stimulus onset. 

These neural processes had different underlying sources, arising from sensory 

and parietal regions respectively. Together these results reveal the temporal 

dynamics of perceptual and neural audio -visual integration and support the 

notion of temporally early and functionally specific multisensory processes in the 

brain. 

Chapter 4: Theta and Alpha Power are modulated by Sensory 
Reliability Early during Audio-visual Integration. 

Oscillations have been found in a variety of multisensory tasks, and are thought 

to be a fundamental process by which the brain combines information across the 

senses. However, it has yet to be investigated whether oscillatory power is 

modulated by the reliability of sensory information. Here we used a time-

frequency approach to investigate whether the oscillatory power underlying 

auditory signals was modulated by changes in visual reliability during audio-

visual integration. Additionally, we examined whether any changes in oscillatory 
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power occurred at the same time as changes in perceptual weighting. Our results 

revealed that auditory power during audio-visual conditions is modulated by 

visual reliability early during the perceptual process. Specifically, we found 

significantly lower theta power and higher alpha power during audio-visual 

conditions where the visual reliability was low, relative to conditions where 

visual reliability was high. These modulations in power occurred early in the trial 

from stimulus onset to 150 ms, and from 252 ms to 300 ms for theta and alpha 

respectively, over fronto-central sites. Together these results suggest a role of 

theta and alpha in sensory reweighting, occurring at an early stage during audio-

visual integration.  

Chapter 5: Neural Correlates of an Auditory Pitch – Visual Size 
Cross-Modal Association Emerge Early during Perception 

Humans have been shown to exhibit implicit perceptual associations across the 

different senses. For example, subjects often associate high pitch tones with 

small objects and low pitch tones with large objects. However, it is remains 

unclear when and where these cross-modal associations are reflected in neural 

signals, and whether they emerge at an early perceptual level or later decisional 

level. In this study we investigated these questions using a modified version of 

an implicit association task (IAT) combined with 128-channel EEG and two 

approaches to single trial analysis. Our behavioural results revealed subjects 

identified stimuli faster during congruent than incongruent blocks, even though 

only a single stimulus was presented per trial. The EEG results demonstrated 

that EEG components related to acoustic pitch and visual size were early in the 

trial (~100 ms,~200 ms respectively), over temporal and frontal regions. For the 

auditory trials, these EEG components were significantly predictive of single trial 

reaction times, yet for the visual trials the components were not. As a result, 

our data support an early and short-latency origin of cross-modal associations, 

and suggest that these may originate in a bottom-up manner during early sensory 

processing rather than from high-level inference processes. Importantly, our EEG 

results were consistent across both EEG analysis methods, demonstrating that 

our findings are robust to the statistical methodology used. 
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Chapter 2 : Methods Overview 

Electroencephalography 

Electroencephalography (EEG) is a non-invasive brain imaging technique that 

records electrical activity from the brain. To record the EEG signal, electrodes 

are placed upon the scalp and these pick up the electrical current arising from 

the synchronised firing of millions of neurons (see Figure 2.1). These electrodes 

are placed at multiple sites on the scalp, which gives many signals to work with 

(typically >64 channels) and allows recording of signals from the whole brain 

simultaneously. Additionally from a single electrode, different measures such as 

amplitude, latency, phase and frequency, can be extracted. This provides at 

least four dimensions to work with. Finally, signals from electrodes are typically 

recorded thousands of times per second, resulting in a multi-dimensional signal 

with high temporal resolution. This is the main benefit of using EEG to study 

cognitive processes, as neural responses are modulated by internal and external 

events on the order of milliseconds rather than seconds.  

The main limitation with EEG concerns spatial accuracy: EEG has a large spatial 

scale on the order of cm, as each electrode records activity not only from 

neurons directly below it, but also from the surrounding electrodes and other 

distributed sources in the brain. Additionally, the electrical propagation 

properties of the EEG signal mean that signals radiate out and away from the 

sources in different manners depending on the orientation of the neurons and 

the tissues they travel through. These factors do not mean that EEG cannot be 

used to study where a process occurs in the brain, but they do add a layer of 

difficulty to spatial interpretations.  

With regards to the work contained in this thesis, the timing of multisensory 

perception in the brain was the focus of interest, and functional localisation was 

not of the upmost importance; as a result, EEG was the preferred recording 

method. 
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Preprocessing Methods 

As described above, the raw EEG recording consists of one time continuous signal 

per electrode composed of a mix of signal and noise. In this context, “noise” 

broadly refers to any signal — external or internal — that is not related to a 

cognitive process. External noise can arise from electrical devices (such as 

mobile phones, computers, and overhead lights), or recording equipment (e.g. 

broken electrodes). Internal sources of noise arise from sources such as eye 

movements, eye-blinks, heartbeat, body movements, and neural processes 

related to phenomenon other than the task. In order to disentangle these noise 

artifacts from true, task-relevant signal, preprocessing methods are used.  

For the data contained in this thesis, preprocessing involved epoching data so 

that individual trials were separated and removing trials with high amplitudes 

(±120 µV) fluctuations. In addition to this, artefactual trials related to eye blink 

or eye movements were identified using independent components analysis (ICA) 

and removed using a combination of automatic and visual procedures. As some 

of these automatic removal processes go beyond “standard” techniques, and as 

the same preprocessing methods were used for the data in every chapter, an 

Figure 2.1 | EEG Biosemi Setup. Schematic representations of 128 channel (left) and 64 
channel (right) systems used for the work in this thesis. Top represents the front of the head, 
with left and right on the corresponding sides. 
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overview of each removal technique will be described here once. However, 

experiment specific parameters (e.g. time window lengths, epoch lengths, etc.) 

will be described within each relevant chapter.   

Artifact identification based on Independent Component Analysis 
(ICA) 

Independent component analysis (ICA) is a statistical technique that uses linear 

decomposition to separate the EEG signal into a set of independent components. 

Using it as a method of artifact removal is based on the assumptions that the 

activity recorded on the scalp is a mix of independent sources related to 

artifacts and brain activity, and that these signals propagate linearly out from 

the sources in the brain. Thus, if the independent sources in the data can be 

identified using ICA, the ones related to artifacts can be removed.  

ICA works by finding a set of weights (W) that linearly decompose the EEG signal 

(X) into a set of independent components, which provide information about the 

time course and spatial topography of the signal. The time course can be 

examined to find large amplitude fluctuations in the data, which typically 

represent noisy channels or eye blinks. The spatial topography of the 

components can be examined to see whether they bear typical artifact 

topographies (Delorme, Makeig, & Sejnowski, 2001; Li, Ma, Lu, & Li, 2006; Viola 

et al., 2009). For example, components showing strong activity centred over 

frontal or temporal electrodes are usually considered to be artifacts due to the 

close proximity of these electrodes to the eyes and the ears. Strong activity 

centred over a single electrode is also usually considered an artifact, as it is very 

unlikely that you would see EEG activity at only one electrode and not at 

neighbouring ones. Figure 2.2 provides some example topographies showing such 

artifacts.  

Once these artifact components have been identified they can be removed and 

the remaining components can be projected back onto the scalp channels to 

produce artifact free EEG data. 



32 
 

Why use ICA? 

ICA has shown it to be a successful technique for identifying, separating, and 

removing artifacts in EEG data in a variety of experiments (Hoffmann & 

Falkenstein, 2008; Iriarte et al., 2003; Plöchl, Ossandón, & König, 2012). The 

consistent use and demonstration of successful cleaning makes it a reliable 

technique for data cleaning. ICA also has the potential to detect small or 

medium modulations in the EEG signal that may be related to artifacts (e.g. 

small eye blinks), which would be missed using an arbitrarily defined cut-off 

threshold value (which looks only for extreme minimum and maximum 

deviations). Finally, by removing components in the data rather than entire 

trials, you can (potentially) save more of your data, reducing the chance of 

wasting cost and time.  

Figure 2.2 | Artifact Topography Template. Shown here are 9 examples of the template artifacts 
created for preprocessing. Top left and centre shows typical eye movement related activity. Top 
right shows typical artifacts arising due to the gap between ears and cap, or headphone related 
disturbance. The remaining examples demonstrate typical artifacts arising from noisy electrodes at 
various points across the scalp, and of varying degrees of severity. In each, blue = 0, and red = 1.  
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The main limitation when using ICA as a method of artifact removal is that it can 

be difficult (if not sometimes, impossible) to determine which components 

relate to true artifacts (e.g. noise, bad channels, and eye movements) and which 

relate to cognitive processes. Thus, one must be careful of how you identify and 

remove components decided to be artifacts.  

In this thesis, determining which ICA components were artifacts was performed 

using three automatic procedures (described below) alongside visual inspection. 

Automatic procedures are beneficial as they allow you to identify artifact EEG 

components with some consistent standard between trials and across subjects. 

Additionally, automatic identification is faster than visual identification when 

dealing with large datasets. However, it is important to stress the need to 

perform both visual and automatic inspection; if you do not carefully check the 

components automatically identified as artifacts via visual inspection, you risk 

automatically rejecting valuable sections of the data, removing too many 

components, or even keeping data which contains artifacts that the automatic 

procedures have missed. Thus, a combination of automatic and visual inspection 

is essential.  

Artifact identification via correlation with templates  

As mentioned above, artifacts related to ocular-motor activity and noisy 

channels have distinctive topographies: eye movements and blinks show strong 

frontal activity, ear movement or headphone artifacts show strong activity 

centred over the ears, and noisy channels show strong activity centred over 

single electrodes. To detect and remove these artifacts, templates containing 

these typical topography patterns were manually created using Matlab for both 

the 64 channel and 128 Biosemi layouts. These were generated by inserting high 

amplitude values (i.e. +1 or 0.4 relative to 0) over several typical artifact areas: 

(a) centro-frontal regions (related to eye movements), (b) broader frontal 

regions (as in Hipp & Siegel, 2013), (c) temporal areas (related to temporal 

muscles, and headphones), and (d) single electrodes (related to noisy channels). 

Visual examples of these templates are shown in Figure 2.2, and the electrodes 

for which we created artifact values are listed in Table 2.1. Using these 

templates, the correlations between the signals in each ICA component and the 

signals in each topographical template were calculated and components with  
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64 Channel 

Frontal Fp1 Fp2 Fpz  AF7  AF3 AFz AF4 AF8 

Broad Frontal  Fp1 Fp2 Fpz AF7 AF3 AFz AF4 AF8 

Temporal  T7 T8 FT7 FT8 TP8 TP7   

128 Channel 

Frontal C29 C17 C16 C28 C18 C15   
 C30 C31 C27 C19 C14 C9 C8  

Broad Frontal C29 C17 C16 C28 C18 C15   
 C30 C31 C27 C19 C14 C9 C8  
Temporal D8 D22 D23 D24 B27 B25 B26 B14 

 

Table 2.1 | Artifact Template Electrode Labels. Table showing the electrodes for which we 
manually inserted artefactual amplitude values. These electrodes were chosen as they 
correspond to the locations typical of artifactual eye blinks and muscle movements around ears 
and eyes. Electrodes denoted in black text = 1 µV, electrodes denoted in underlined text = 0.4 
µV). These values were chosen to create gradual fluctuations from baseline (zero) that show 
patterns typical of artifacts. In addition to the electrodes listed above, artefactual values of 1 
were inserted over each individual electrode to generate a topographical template for each 
electrode representing a broken or noisy channel. For more detail, see section: Artifact 
identification via correlation with templates.  
 

high correlations (defined in this case as >0.8) were suggested for removal. 

Visual inspection was used to confirm. 

Artifact identification via correlation with electro-oculogram 
(EOG) signals  

The second way artifacts were removed was via correlating the component time 

signals (identified by ICA) with electro-oculogram (EOG) signals. EOG signals 

capture the high frequency (>30Hz) EEG potentials that occur due to muscle 

movements in the face and neck, miniscule eye rotations, and involuntary 

microsaccades (Hipp & Siegel, 2013; Keren, Yuval-Greenberg, & Deouell, 2010; 

Muthukumaraswamy, 2013). Conventional filtering and ICA often miss these, and 

this can be particularly problematic if performing time-frequency analysis.  

In this thesis, EOG signal channels (as defined in Keren et al., 2010) were 

calculated using the eye movement signals from four electrodes placed around 
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the eyes. These were: a vertical electro-oculogram (VEOG), a horizontal electro-

oculogram (HEOG), and a radial electro-oculogram (REOG) signal (Croft & Barry, 

2000; Elbert, Lutzenberger, Rockstroh, & Birbaumer, 1985; Keren et al., 2010). 

The VEOG picks up micro eyelid movements, and is calculated as the difference 

between signals in the electrodes placed above and below the eyes. The HEOG 

picks up small eye rotations (corneo-retinal dipole rotation), and is calculated as 

the difference between the electrodes placed at the outer corners of each eye. 

Finally, the REOG signal picks up saccade related spike potentials (SPs) (Boylan 

& Doig, 1988; Doig & Boylan, 1989; Thickbroom & Mastaglia, 1986), and is 

calculated as the difference of all averaged EOG channels placed around the 

eyes and a referenced posterior electrode (in this thesis, for 64 channel analysis 

the average of Pz, P1 and P2 were used, and for 128 channel analysis 

A17,18,20,21,30 and 31 were used). These three EOG signals were correlated 

with the signals derived from ICA, and any which had high correlations (again, 

defined as >0.8) were identified as artifacts. After visual confirmation, these 

were removed.  

Artifact identification via power spectrum analysis 

The final method used to remove artifacts was to compute the power spectrum 

of each ICA component, and remove components that had a low ratio between 

low frequency and high frequency power (with a low ratio defined as <6). In 

general, EEG data — or any data where there is a relationship between power 

and frequency — follows a power law c/fx, where c is a constant and x is an 

exponent (Cohen, 2014). This law states that power (here, EEG power) is a 

function of frequency (here, EEG frequency). EEG data specifically follows a 1/f 

phenomenon, meaning that the signal has smaller magnitude at higher 

frequencies than the signal at the lower frequencies. By searching for 

components where there is a low ratio between low frequency power and high 

frequency power (i.e. little difference, which is in contrast to what we would 

expect), we can find components that are most likely related to artifacts and 

remove them. For this thesis, the power spectral density ratio of each ICA 

component was calculated using Welch’s method (as implemented in MATLAB 

2012, pwelch function), and components that had a ratio less than 6 were then 

checked again for correlations (this time, >0.5) between the component and the 
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artifact templates. These components were visually identified and removed if 

they appeared to be related to artifacts.  

To summarise, in this thesis a combination of ICA, visual inspection and 

automatic procedures were used to remove artifact components in the EEG data. 

The following sections will describe all the analyses used on the cleaned EEG 

data in this thesis. 

Time-Frequency Approach  

As described in Chapter 1, the EEG activity measured from a brain is not static; 

signals evolve and fluctuate over time in rhythmic patterns.  These rhythms — 

known as “neural oscillations” — are driven by excitatory and inhibitory 

fluctuations in signals from populations of neurons, and show variations in the 

speed with which they oscillate. This allows them to be subdivided into different 

bands: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-12 Hz), beta (β, 13-30 Hz) 

and gamma (γ, >30Hz). Alongside temporal and spatial information, they contain 

information about frequency (the speed of the oscillation), power (the amount 

of energy) and phase (the point along the wave).  

In neuroimaging, a time-frequency based approach tries to understand how 

these oscillatory patterns in the brain relate to different cognitive and 

perceptual processes. There are two important aspects to consider when 

generating or evaluating time-frequency representations (TFRs). The first is 

taper choice. A taper is a function multiplied with the EEG data, and is 

important for reducing spectral leakage (i.e. where the energy in a particular 

frequency band “leaks” to the corresponding bands) and controlling frequency 

smoothing (which is performed to remove localised variation in the raw EEG). In 

this thesis Hanning tapers were used. These multiply the time course data with 

an inverted cosine function, to generate a signal that peaks in the middle but 

tapers off to zero on either edge. The benefit of this taper is that it tapers the 

data fully to zero at the beginning and end of the time window, thus eliminating 

the possibility of edge artifacts. However, this means you lose the data at the 

edges, but using appropriate time windows will limit these effects. Shorter time 

windows provide better temporal precision but lower frequency resolution, while 
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longer time windows provide better frequency resolution but lower temporal 

resolution. Therefore, the choice of time window should depend on what 

frequencies you want to analyse and the trade-off you desire. As the goal of this 

thesis was to examine the temporal evolution of multisensory processes in the 

brain, we chose sliding time windows that scaled with specific frequency bands 

to minimise the trade-off: for lower frequencies there was a longer time 

window, while for higher frequencies the time window was shorter (the 

individual bands and time windows are listed in the Methods section of Chapter 

4).  This allowed us to keep temporal smoothing to a minimum with higher 

frequencies.  

Finally, the time-frequency representations for the work in this thesis were 

generated using complex wavelet analysis. In short, this method examines how 

the frequency content of the signal changes over time by convolving the raw EEG 

data with a complex wavelet. It is a multi-step process which involves extracting 

an epoch of the data (based on the desired window length), Fourier transforming 

both the taper and the data, multiplying them together, and then computing the 

inverse Fourier transform. This analysis was repeated for each epoch in the trial, 

resulting in a power spectrum for the entire dataset. 

Why use a Time-Frequency Approach? 

The main benefit of using a time-frequency approach is that it generates a 

multidimensional representation containing information on time, space, power, 

frequency, and phase; this allows you to explore more than simply time and 

amplitude values in your signal. This is in contrast to the traditional method of 

studying the timing of neural responses: the event related potential (ERP). The 

ERP results from averaging EEG activity over trials to generate a one-dimensional 

time signal, which contains positive and negative fluctuations time-locked to a 

specific event (usually stimulus or response locked). The assumption behind this 

is that noise or any other signals not related to the cognitive process of interest 

will be averaged out, leaving only fluctuations of interest. However, averaging 

also removes a lot of the variation present in the signal. In contrast, the time-

frequency approach allows you to examine the temporal, spatial and spectral 

properties of your EEG signal. As discussed above, the main limitation to the 

approach is the need to trade-off between temporal precision and frequency 
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specificity; if you want more temporal precision, you must examine higher 

frequency activity, and if you want to analyse low frequency activity you will 

have to give up temporal precision. Despite this limitation, the temporal 

resolution of time-frequency decomposed data is still on the order of 

milliseconds.  

To summarise, the time-frequency approach is a useful way of investigating the 

temporal dynamics of EEG signals by examining the oscillatory nature of the 

signal and allowing you to compare differences between conditions or groups of 

subjects.  

Linear Discriminant Analysis  

An alternative way of examining the EEG signal is to use multivariate analysis 

methods. These techniques focus on extracting information across space and 

time from single trials, allowing you to examine inter-trial variability within 

subjects. This can reveal information that is hidden when you average across 

trials (see Figure 2.3), and allows you to relate subject specific behaviour to 

neural signals on a trial-by-trial basis (Blankertz, Lemm, Treder, Haufe, & 

Müller, 2011; Parra et al., 2002; Parra, Spence, Gerson, & Sajda, 2005; Pernet, 

Sajda, & Rousselet, 2011; Sajda, Philiastides, & Parra, 2009).  

For the multivariate analysis in this thesis, a technique known as linear 

discriminant analysis (LDA) was used. LDA is a popular technique used for 

dimensionality reduction and data classification, which spatially integrates 

information across the electrodes rather than trials, thus providing a single-trial 

measure of cognitive function. It is becoming increasingly popular in 

neuroimaging, and has been used successfully to show information related to 

various stimuli and cognitive processes can be extracted from neural signals 

(Gherman & Philiastides, 2015; S. J. Kayser, McNair, & Kayser, 2016; 

Philiastides, Heekeren, & Sajda, 2014; Philiastides & Sajda, 2006).  

The overall goal of LDA is to generate a one-dimensional projection (denoted as 

Y), which linearly combines the information from the multidimensional EEG data  
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(X) into a single channel (dimensionality reduction). This projection (Y) is 

calculated from a set of spatial weights (denoted W), and represents the best 

linear separation of the EEG data into two “classes” based on predefined 

conditions of interest (data classification). Each step in this process will be 

described below. 

Estimating the Spatial Weighting Vector (W) 

The spatial weighting vector (W) is essentially a spatial filter (of the same 

dimension as your EEG electrode set) that represents the activity components 

most sensitive to the classification of the two conditions of interest. There are 

different methods available to calculate the weight vector, but in this thesis 

regularised fisher’s linear discriminant (FLD) was used. FLD finds the best mean 

separation between the two conditions of interest, while minimising the overlap 

of the covariance matrices (see Figure 2.4 and Parra, Spence, Gerson, & Sajda, 

(2005) for tutorial). This is formalised with:  

W = Sc (m2 – m1) 

Figure 2.3 | Single-Trial Analysis. Schematic only. Grey lines show the individual trial 
signals. The blue line represents the trial averaged signal. As can be seen, there is 
variation amongst even very few trials, and this variation is lost due to averaging. 
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where m is the mean of condition 1 and 2 respectively (e.g. high tone (1) or low 

tone (2), or correct response (1) or incorrect response (2)), and Sc is the common 

covariance matrix (the average of the condition specific covariance matrices, 

see Philiastides, Heekeren, & Sajda, 2014). This covariance matrix is regularised 

to account for any potential estimation errors (e.g. overfitting) and the fact that 

the two conditions of interest will not have identical covariance structures 

(Philiastides, Heekeren, & Sajda, 2014).  

 

Figure 2.4 | Linear Discriminant Analysis (Fisher’s).  In the case of Fisher’s 
linear discriminant, the goal is to find the projection (dotted lines) that best 
separates the given samples (coloured points) from two conditions of interest 
(here represented by, class 1 and class 2, blue and purple) while minimising the 
overlap of the covariance matrices (shaded circles). W represents the set of 
spatial weights used to find the projection (Y). The data presented here are a 
schematic only. 
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Estimating the Projection (Y) 

To estimate the discriminant projection (Y), the spatial weighting vector (W) is 

multiplied by the EEG activity alongside a constant at specific time points or 

time windows of interest: 

Y(t) = W(t) X(t) + C 

The resulting projection (Y) is a one-dimensional aggregate representation of the 

EEG data at all sensors, which represents the best separation of the data (X) 

from two predefined conditions of interest. This projection is calculated for 

each trial and time point or time window of interest individually, resulting in a 

trial-specific, time-resolved measure of evidence about the conditions of 

interest. Additionally, the values assigned to the projection (Y) describe how 

informative the signal is over time: low Y values (i.e. those closer to zero) 

represent less information, while high Y values represent more information. 

Thus, the projection (Y) can essentially be used as a time sensitive, trial specific 

measure of condition evidence in neural signals.  

Estimating the Forward Model (A) 

To visualise the discriminant projection (Y) at the sensor level again, a scalp 

topography for each projection can be computed by estimating a forward model 

which linearly relates the sensor level EEG activity (X) to the discriminating 

component (Y), at each time point during the trial. This is formalised with:  

A = X*Y / Y’*Y 

where A is a spatial topography of the normalised correlation between the 

discriminant component (Y) and the EEG data (X) (and Y’ represents the 

transpose of Y). Thus, A is a measure of the relationship between the EEG 

activity and discriminant projection, and can be used to show where this 

relationship is strongest (i.e. where there is the highest correlation between the 

projection and the data).  
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Classification Performance (Az)  

The final part of the LDA process is to calculate how well the two conditions of 

interest can be separated. In this thesis this was carried out using the area under 

a receiver operator characteristic (ROC) curve combined with cross-validation. 

The ROC process calculates how sensitive and specific your classifier is (i.e. how 

many times the classifier correctly separates the conditions vs. how many times 

it incorrectly does it). Using it in combination with 10-fold cross-validation, 

involved randomly splitting the data into 10, equally sized partitions, training 

the classifier on 9 partitions, and testing the performance on the remaining 

partition. The average performance over these 10 partitions was then computed, 

resulting in one ROC value (Az) for each time point in the trial which 

representing how well the classifier performed. Finally, to assess whether this 

performance was above chance, permutation testing was used. This involved 

calculating the Az value (using the ROC analysis described above) for each time 

point 1000 times with randomly shuffled condition labels. This produced a 

probability distribution for Az, from which the percentiles were calculated, and 

the significance value that lead to a p-value of 0.01 (above the 99th percentile) 

was extracted to represent chance performance level.  

LDA: Final Outputs 

Performing all of the steps above results in: a set of spatial weights (W) for each 

time point, a time-resolved discriminant output (Y) for each trial, a sensor level 

topography (A) which represents the strength of correlation between your 

discriminant output and EEG activity, and a measure of classifier performance 

(Az) for each time point in your trial. An example of each is shown in Figure 2.5. 

Why use LDA? 

There are three main benefits to using LDA. The first is that it preserves the 

trial-to-trial variability in the signal. This allows you to examine more of your 

data, find effects that may be lost due to averaging, and gives you the option to 

relate neural signals to behaviour on a single-trial basis. The second benefit 

concerns signal dimensionality. EEG data contains many dimensions (e.g. four  
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dimensions are typically: trials, electrode space, time points, and conditions). 

Data recorded with a 64-channel EEG system measuring at 1000Hz, with each 

trial lasting approximately 3 seconds, and approximately 2000 trials (as in 

Chapter 3), will result in 384,000,000 features for each subject (2000 trials x 64 

electrodes x 3000 time points), which vastly outnumbers the number of 

observations they actually came from (i.e. one subject). Somewhat counter 

intuitively, as dimensionality increases the performance of your classifier 

decreases; as the feature space grows (with more dimensions) it becomes 

sparser, and it becomes easier to find a linear way to separate the separate the 

data. This can lead to overfitting, and the classifier will not generalise well 

when applied to new data. The dimensionality reduction aspect (concatenating 

over electrodes rather than trials) of LDA goes towards solving this. This leads to 

the third benefit, which is related to integrating the information across sensors 

rather than trials. Individual sensors are noisy (due to physiological and 

environmental noise), and often carrying similar information from neighbouring 

sensors. As the one dimensional projection is a representation of the activity 

from all sensors, it can be a better estimate of neurophysiological activity when 

Figure 2.5 | LDA Output Example.  Schematic of: the spatial weights (W) for one 
trial at each time point (top left), the discriminant output (Y) for individual trials sorted 
by condition type (top right) for each time point, an example of a forward model 
topography (A) calculated from the discriminant component and EEG data (bottom 
left), and the classification performance (Az) over time (bottom right) for one subject.  
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compared to a single electrode, thus increasing the signal-to-noise ratio of your 

signal (Blankertz et al., 2011; Parra et al., 2005).  

There are also two limitations to consider. First is the assumption of linearity.  

Linear discriminant techniques assume that brain activity can be modelled 

linearly. While there are good reasons to consider that this may be true (e.g. 

linear models have been shown to predict neuronal response patterns in animal 

work ,Fetsch, Pouget, DeAngelis, & Angelaki,2012), there is also evidence that 

shows distinctly non-linear activity in the brain (Rombouts, Keunen, & Stam, 

1995). Therefore, the assumption of linearity may not hold in all cases. Second, 

LDA assumes normally distributed data, independence of features (such as 

electrodes and time points), and identical covariance matrices for each 

condition you are classifying (e.g. trials belonging to one condition versus 

another), which is often not true in EEG data. Fortunately, regularising the 

covariance matrices can help control for effects of non-equal covariance 

structures (Blankertz et al., 2011; Philiastides et al., 2014), and some research 

has shown that LDA can be robust even if these assumptions of common 

covariance and normality are violated (Li, Zhu, & Ogihara, 2006).  

To sum up, LDA is a powerful tool for dimensionality reduction and condition 

classification, and results in a time-resolved, single-trial measure of neural 

activity that specifically relates to functional differences between task relevant 

conditions.  

Mutual Information Analysis  

The final analysis technique used in this thesis was an information theoretic 

approach known as mutual information (MI) analysis. In short, MI measures the 

statistical dependency between two signals of interest (e.g. between stimulus 

type and EEG, or between EEG and reaction times), and allows for the direct 

comparison of the MI signals underlying different conditions (this will be 

explained in more detail below). Such analyses are becoming increasingly 

popular to compare different neuronal responses at the level of single neurons 

(Ince, Panzeri, & Kayser, 2013; Kayser, Montemurro, Logothetis, & Panzeri, 
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2009), and in neuroimaging (Gross et al., 2013; Ince, Jaworska, et al., 2016; 

Kayser, Ince, Gross, & Kayser, 2015; Keitel, Ince, Gross, & Kayser, 2017).  

Calculating Mutual Information 

The most basic element of MI is entropy, defined as the amount of information a 

variable has. Entropy is a measure of uncertainty, which can be used to examine 

how predictable a variable is. For example, take a random variable X that 

represents the card that you get when you draw a card from a pack. Then take a 

random variable Y, which represents the number that falls when you throw a six-

sided die. Which has higher uncertainty (and thus, higher entropy)? In this 

example, the entropy of the card draw is higher: there are more possible options 

for a card draw (52 possible values) than a die throw (6 possible values). Now, 

imagine you are measuring the entropy of a single EEG electrode. Higher entropy 

means that the electrode you are measuring/comparing can take on a higher 

number of states, interpreted as the activity has more configurations over time. 

Lower entropy means the activity in the electrode is more restricted. As a 

result, you can see how knowing the entropy of a variable helps you understand 

how predictable or frequent it is. A related concept is conditional entropy, 

which is a measure of how much uncertainty remains about variable X, when you 

know the value of variable Y. For example, if we know how much one signal 

varies (Y), what does this tell us about another (X)? The conditional entropy 

(X|Y) of the two random variables X and Y can tell us this.  

Finally, mutual information is defined in terms of entropy differences; it 

quantifies the reduction in uncertainty (entropy) about one variable (X) given 

the knowledge about another variable (Y). As such, MI measures the entropy 

explained about X given Y (for a visual representation, see Figure 2.6). In this 

case, high MI between two signals indicates a large amount of explained entropy 

(i.e. reduction in uncertainty) about Y given X, and low MI indicates a small 

amount of explained entropy (or, small uncertainty reduction). Zero MI indicates 

that the two variables are independent. However, MI is an unsigned quality (i.e. 

never below zero), and so can reveal only the strength of a relationship rather 

than the direction.  
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In this thesis, a novel method known as Gaussian Copula Mutual Information 

(GCMI) was used. GCMI uses the concept of statistical copula and Gaussian 

transformation to calculate MI. In short, the distribution of each random variable 

(in our case, the EEG signal, and the behavioural measure) is transformed to be 

normal via statistical copulas, and then MI is estimated by applying a Gaussian 

parametric estimate (see Ince et al., (2016) for a full tutorial). This method is 

computationally efficient and can be applied easily and robustly to 

multidimensional EEG data using the framework devised by Ince et al., (2016) 

and the code is freely provided in the GCMI toolbox (see Ince et al., (2016) for 

code and tutorials).  

Why use MI analysis? 

First, as MI is a measure of the uncertainty explained about X given Y, it can be 

used as a measure of the information that X and Y share. Consequently, if you 

find high MI then you can make the strong inference that the X (e.g. your 

stimulus) explains a lot about Y (e.g. your signal). Second, because MI quantifies 

the difference in entropies (which is a mathematically defined construct), it can 

be used a test for statistical dependence between two variables (see Ince et al., 

2016). Third, it does not have any assumptions about the underlying distributions 

or the nature of the relationship between variables, and is therefore more 

Figure 2.6 | Mutual Information. Schematic shows how mutual information (I) 
is a measure of the shared information (explained entropy) shared by X and Y. 
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flexible than other statistical analysis methods. Fourth, MI is a general, 

quantifiable measure quantified on a common scale (“bits”). This common scale 

allows for the direct comparison of MI values between signals from a range of 

measures: you can compare the MI values resulting from behavioural and EEG 

signals, from different experiments in the field, and from studies in the field 

using different techniques (e.g. between single-neurons and neuroimaging 

signals). Finally, the MI measurement is sensitive to nonlinear effects (Ince, 

Giordano, et al., 2016; Ostwald & Bagshaw, 2011), which analysis methods such 

as linear discriminant analysis are not. This is a benefit as nonlinearities may 

play a role in the neural signal.  

To summarise, MI is a simple but robust method for quantifying the amount of 

information that is shared between two variables, and is essentially a flexible, 

statistical test for significant dependence between two signals.  

Chapter 2: Summary 

There are various methods used in EEG research today that allow us to explore 

our data and answer our questions. These all have their benefits and costs, as 

have been discussed in this Chapter. This overview should allow the reader to 

evaluate the experimental work in the following chapters in enough detail to 

conclude the suitability of the analysis given the specific experimental 

paradigms, and to interpret the results in the appropriate ways.  
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Chapter 3 : Neural Correlates of Multisensory 
Reliability and Perceptual Weights Emerge at Early 
Latencies during Audio-visual Integration 

Introduction 

The reliability of the information received by our senses varies. For example, 

visual cues become unreliable in dim or fogged conditions, and auditory cues 

become unreliable in loud or noisy situations. To deal with such variations, 

stimulus reliability must be taken into account when combining information 

across the senses. “Optimal Integration” or “Bayesian Integration” models 

formally describe how this process occurs. These models state that observers can 

arrive at the most precise final perceptual estimate by weighting sensory 

information in proportion to its reliability; more reliable cues are assigned a 

higher weight and have stronger influence on the final perceptual estimate, 

while less reliable cues are assigned a lower weight and have less influence. In 

most cases, this weighting leads to a more precise and reliable percept (Angelaki 

et al., 2009; Ernst, 2006; Ernst & Bülthoff, 2004; Fetsch, DeAngelis, & Angelaki, 

2013b; Rohde et al., 2015). Formally, these models have two predictions: first, 

that performance should be higher (or perceptual thresholds should be lower) 

for multisensory trials compared to unisensory trials and second, as reliability of 

the cue decreases, so does the importance (or weight) the subject assigns to it. 

These models have had great success in demonstrating how integration occurs in 

wide variety of tasks a wide variety of behavioural tasks. For example, Raposo et 

al., (2012) and Sheppard et al., (2013) examined how subjects (rats and humans) 

weighted auditory and visual as the reliability of both cues changed. They used 

an audio-visual rate discrimination task that contained visual only, auditory only, 

and bimodal (audio-visual) trials, and where the reliability (high/low) and 

congruency between the auditory and visual cues was systematically varied. 

Their results revealed two outcomes. First, they found that the performance of 

rats and humans improved on multisensory trials compared to unisensory trials, 

and that these performances were close to the optimal predictions. 

Furthermore, they found that at a perceptual level humans’ and rats’ decisions 

about rate were influenced by the reliability of the auditory and visual stimuli. 
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Specifically, when the reliability of the two cues were matched, subjects 

weighted both modalities equally, but when the reliabilities were unequal, 

subjects consistently assigned higher weight to the more reliable cue. These 

observed cue weightings were also consistent with the theoretical weights 

predicted by statistically optimal models. Another study by Alais and Burr, 

(2004) investigated the integration of audio-visual cues during a spatial 

localisation task. Light spots (visual) and clicks (auditory) were presented to 

participants separately (unimodal condition) or together (bimodal condition), 

and participants had to indicate which of the stimuli were localised further to 

the left. They also manipulated the reliability of the visual information by 

blurring the light spots, and introduced incongruencies between the locations of 

the stimuli. Their results showed that in all subjects, localisation in the bimodal 

conditions was better than localisation in either the visual alone or auditory 

alone condition, consistent with the first key prediction of the optimal observer 

models. Additionally, they found that when the visual information was reliable 

(i.e. not blurred), vision dominated localisation, but when the visual stimuli 

were not reliable (i.e. blurred) the auditory information dominated. Again, this 

is consistent with a simple model of optimal combination of the auditory and 

visual information, where the two are weighted linearly in proportion to their 

reliability. These and numerous other studies have shown that cue integration 

follows the rules of optimal integration for audio-visual (Alais & Burr, 2004; 

Battaglia et al., 2003; Rohe & Noppeney, 2016), visual-tactile (Beauchamp et 

al., 2010; Ernst & Banks, 2002; Helbig et al., 2012; Helbig & Ernst, 2007), and 

visual-vestibular stimuli (Butler et al., 2010; Fetsch et al., 2012, 2009; Morgan et 

al., 2008).  

Weighted linear cue combination can also be encoded in neural signals. For 

example, Fetsch et al., (2012) recorded neurons in the medial superior temporal 

dorsal area (MSTd) of macaques while they were performing a visual-vestibular 

heading discrimination task where the reliability of both modalities varied. By 

fitting neurometric curves (a psychometric curve fit to neural responses) to the 

electrophysiological data, they were able to show that both behaviour and 

neurons responded in line with the rules of optimal integration: specifically, 

neurons responded with an increase in firing for the more reliable cue. In 

another study, Morgan et al., (2008) demonstrated that the responses from 
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neurons in the MSTd stimulated with visual-vestibular stimuli were fit well with a 

linear weighted model, and that the  weights changed according to the relative 

reliabilities of the stimuli. Again, as visual reliability decreased, the weight 

needed to fit the model increased. Thus, animal work suggests that probability 

based encoding can be implemented in neural circuits, and that the principles of 

statistically optimal integration can be encoded in the firing patterns (at least, 

in area MSTd).   

Neuroimaging data can also be combined with statistically optimal frameworks 

to study cue integration. For example, Helbig et al., (2012) used fMRI to 

characterise the how neural signals were modulated by changes in visual 

reliability during a visual-tactile integration task. Their results showed a 

significant increase in the blood oxygen level dependent (BOLD) response in the 

left and right postcentral sulcus and left superior parietal lobe when the 

reliability of the visual stimulus was reduced. They also found decreased 

activation in the right posterior fusiform when the visual input was completely 

blurred. Together these results indicated that cue reliability seems to be 

reflected in population level BOLD activity, with increased activation in relevant 

sensory areas elicited by reliable stimuli, and suppression of activity in relevant 

areas by unreliable stimuli. Another fMRI study by Beauchamp et al., (2010) 

modelled the connection weights between occipital, somatosensory and parietal 

cortex during a visual-tactile task while manipulating the reliability of the 

stimuli. Using the average BOLD signal in pre-defined regions of interest (ROIs), 

structural equation models were constructed which reflected the correlation of 

activity between these ROIs (for each ROI pairing and subject separately). Their 

results showed that the connection weight between somatosensory and the 

intraparietal sulcus (IPS) increased when the tactile stimulus was more reliable, 

yet the connection weight between occipital cortex and IPS increased when the 

visual stimulus was more reliable. Thus, their results not only show cue 

weighting emerging in the brain, but also suggest it may be implemented via 

connections and cross-talk between early sensory regions and parietal cortex.  

Finally, Rohe & Noppeney, (2016) examined where in the cortex audio-visual 

signals were weighted using a spatial ventriloquist paradigm where the reliability 

of the visual stimulus varied. Their results also showed linear cue weighting 

evident in the BOLD signal, but only in parietal cortex; there were no effects of 
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sensory weighting at low-level areas. Overall, these results indicate that linear 

cue combination can be implemented by neurons in the brain, and that these 

computations can be measured by neuroimaging.   

However, while providing valuable computational insights, these studies have 

some limitations. Single-neuron recording studies cannot adequately assess the 

spatial distribution of cue weighting processes across the cortex, and fMRI 

studies cannot determine the temporal evolution of the neural processes 

implementing sensory cue weighting. Therefore it remains unclear when 

following stimulus onset neuronal responses across the cortex are modulated by 

the reliability of sensory information, and when they reflect the modulations in 

subsequent perceptual weighting.  

To address these questions, in this study we combined a rate discrimination task 

with EEG based neuroimaging, single-trial decoding, and linear modelling. 

Importantly, this combination allowed us to examine the temporal dynamics of 

weighted cue combination, to identify the neural correlates relating to sensory 

reliability, and to link modulations in neural signals to perceptual reweighting 

processes on a trial-by-trial and time-resolved basis.  

Methods 

Subjects  

We obtained data from 20 right-handed subjects (13 females; mean age 26 

years) after written informed consent. The sample size was set to 20 based on 

sample sizes used in related previous EEG studies. All subjects reported normal 

or corrected to normal vision, normal hearing, and received £6 per hour for their 

participation. The study was approved by the local ethics committee (College of 

Science and Engineering, University of Glasgow) and conducted in accordance 

with the Declaration of Helsinki.  

Stimuli and Task 

The task was an adapted version of a 2-alternative forced choice rate  
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Figure 3.1 | Experimental Task. (A) Subjects were presented with two sequential streams of 
auditory, visual and/or audio-visual events (one experimental, and one comparison of 11 Hz) 
and had to indicate which contained more events. The first stream varied in modality, event 
rate, reliability and congruency of the events (see Methods). (B) Example of high and low 
reliability visual stimuli. (C) Schematic showing one combination for each level of congruency 
(left: equal rates, middle: auditory fewer events, right: auditory more events).  Δ = Visual minus 
Auditory rate.  

 

discrimination task (Raposo, Sheppard, Schrater, & Churchland, 2012; Sheppard 

et al., 2013). Subjects were presented with two streams (each lasting 900 ms) of 

auditory, visual or audio-visual events and asked to decide which stream had a 

higher event rate (Figure 3.1A). Visual events were noise squares (3x3cm, 2.1° 

of visual angle, flashed for 12 ms each) presented atop a static pink-noise 

background image. Acoustic events were brief click sounds (65 dB SPL, 12 ms 

duration) presented in silence. These events were instantiated by sequences of 

short (48 ms) or long (96 ms) silent pauses, causing them to appear as streams of 

auditory and/or visual flicker. Auditory stimuli were presented using Sennheiser 

headphones and visual stimuli were presented on a Hansol 2100A CRT monitor at 

a refresh rate of 85 Hz. All recordings were carried out in a dark and electrical 

shielded room. The experiment was controlled through MATLAB (MathWorks) 

using the Psychophysics Toolbox Extensions (Brainard, 1997) and custom written 

scripts.  

In the first “experimental” stream, events were presented at seven different 

rates (8 – 14 Hz). In the second “standard” stream, events flickered at 11Hz. The 

total stream duration (900 ms) was predetermined based on the refresh rate of 

the computer (85 Hz) and desired event length (12 ms). From these parameters 

we calculated the possible rates that could be presented alongside the short and 
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long pauses while staying within the 900 ms time window (8 to 14 Hz). For each 

trial, short and long pauses were randomly placed around the events to create 

stimuli streams of equal length for all rates. For the comparison stream (where 

the event rate was always 11 Hz), pauses were randomly interspersed around 11 

events on each trial.  

Important to note, that on some trials the experimental stream rate was equal 

to the comparison stream rate. Subjects were unaware of this, but were still 

asked to make a choice about which stream had a higher event rate. In theory, 

this could result in a bias towards inequality; for example, if on 11 Hz trials, 

subjects always chose to respond that the rate was lower, this would create a 

bias towards more “first stream lower” responses. To control for this potential 

systematic influence on behaviour, we ensured these trials only made up a small 

percentage of each block (2% of trials per condition), and were randomly 

intermixed within each block.  

Contrast levels for each reliability level were derived to match individual 

subject’s psychometric thresholds in separate calibration blocks carried out prior 

to the main experiment (see Procedure). The reliability of the visual stimulus 

was manipulated by adjusting the contrast of the visual square relative to the 

background (Figure 3.1B). Auditory reliability was held constant throughout. 

Manipulating the reliability of only one modality allowed us to keep the 

experiment at a reasonable length (~3 hours per session) while accommodating 

the additional time necessary for EEG set up and extended inter-trial intervals 

(to include a baseline period). This manipulation of only a single modality’s 

reliability is also in line with past work (Fetsch et al., 2012; Helbig et al., 2012; 

Rohe & Noppeney, 2016).  

Congruency was manipulated by introducing differences in the event rate 

between the auditory and visual streams; as mentioned in the Introduction, 

placing the audio-visual cues in conflict is necessary to allow the calculation of 

perceptual weights based on subject’s bias towards each sensory cue. Audio-

visual trials were either Congruent (Δ = 0) with auditory and visual streams each 

having the same number of events, or incongruent, with the visual either 

containing two more (Δ = +2), or two fewer (Δ = -2) events than the auditory 

stream (Figure 3.1C).  
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Overall these stimulus manipulations resulted in: three unisensory conditions 

(auditory [AUD], visual high [VH] and visual low [VL]); two congruent 

multisensory conditions (one where both the streams were highly reliable [AVH 

Δ = 0], and one where the auditory had high and the visual low reliability [AVL 

Δ = 0]); and four incongruent audio-visual conditions (AVH Δ = +2, AVH Δ = -2, 

AVL Δ = +2 and AVL Δ =-2). Within each audio-visual condition (AVH, AVL), there 

were auditory (e.g. AVH auditory) and visual (e.g. AVH visual) stimuli.  

Experimental Procedure 

Each session started with two unisensory calibration blocks, used to set the 

reliability levels of the auditory and visual stimuli (see, Stimuli). The stimuli in 

these calibration blocks were the same stimuli used in the experimental blocks, 

however only the easiest comparison rates (8 Hz and 14 Hz) were presented. The 

auditory calibration block consisted of 30 trials with the auditory stimuli 

presented in silence (highly reliable auditory stimuli). For auditory trials an 

overall performance score was calculated. The visual calibration block consisted 

of 150 trials (30 trials x 5 signal-to-noise ratios, SNRs), where the reliability of 

the visual stimulus varied systematically from high to low. For the visual trials 

psychometric functions were fit to the data, and two SNR levels for visual 

reliability selected from the resulting psychometric curve. Visual high reliability 

was set as the SNR at which visual performance was equal to performance on the 

auditory calibration block. Visual low reliability was set at the SNR at which 

performance was ~30% lower than auditory performance. These reliability levels 

were set at the start of each experimental session and held constant throughout.   

Each experimental block began with a reminder of the task instructions. Each 

trial began with a white fixation cross presented centrally on a dark grey noise 

image (500-1000 ms). This was followed by the first “experimental” stimuli 

stream (900 ms), a fixation period (200-400 ms), and then the “standard” stimuli 

stream (900 ms). The experimental stream varied in the modality, rate, and 

reliability of the stimulus, on each trial and within each block. The standard 

stream was matched to the first experimental stream with regards to reliability 

and modality. Congruency (always Δ = 0) and rate (always 11 Hz) were not 

manipulated in the standard stream. At the end of the trial, subjects were cued 

to respond using the left (“first stream has more events”) or right (“second 
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stream has more events”) keyboard buttons, and received feedback on their 

performance (Figure 3.1A). For audio-visual trials where the rate of the auditory 

and visual stimuli differed (i.e. Δ = ± 2), feedback was generated using the 

average rate of the auditory and visual streams. For trials where the rates in the 

experimental and standard stream were equal, feedback was randomly 

generated. Although providing feedback is not standard practice for studies 

investigating reliability weighting, previous work (Raposo et al., 2012; Sheppard 

et al., 2013) has shown no difference in performance for subjects who received 

feedback compared to those who did not. Therefore we chose to provide 

feedback in order to engage subjects with the task over the long experiment. 

Overall, each block consisted of 510 trials with modality (auditory, visual, audio-

visual), reliability (visual high and low), event rate (8-14Hz) and congruency 

(audio-visual Δ = 0, ± 2) varying pseudo-randomly across trials in the 

experimental stream (see Stimuli and Task).  

In total, subjects completed 2040 trials, split up into four individual blocks. 

These blocks were carried out across multiple sessions over two, three or four 

days depending on the subjects’ availability and level of alertness during the 

session. Importantly, before the main analysis we checked for confounding 

learning effects which may have arisen due to these multiple sessions. The 

results showed there was no difference in performance or perceptual weighting 

strategies across blocks or days (see Supplementary Figure S3.1 A and 3.1 B for 

individual day performance and weighting). 

EEG Recording and Preprocessing  

EEG data were recorded using a 64-channel BioSemi system and ActiView 

recording software (Biosemi, Amsterdam, Netherlands). Signals were digitised at 

512 Hz and band-pass filtered online between 0.16 and 100 Hz. Signals 

originating from ocular muscles were recorded from four additional electrodes 

placed below and at the outer canthi of each eye.  

Data from individual subject blocks were preprocessed separately in MATLAB 

using the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) and 

custom written scripts. Epochs around the first stimuli stream (-1 to 2s relative 

to stream onset) were extracted and filtered between 0.5 and 90 Hz 
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(Butterworth filter) and down-sampled to 200 Hz. Potential signal artefacts were 

removed using independent component analysis (ICA) as implemented in the 

FieldTrip toolbox (Oostenveld et al., 2011), and components related to typical 

eye blink activity or noisy electrode channels were removed (see Chapter 2, 

Preprocessing section). Horizontal, vertical, and radial EOG signals were 

computed using established procedures (Hipp & Siegel, 2013; Keren, Yuval-

Greenberg, & Deouell, 2010 and see Chapter 2, Preprocessing section), and trials 

during which there was a high correlation between eye movements and 

components in the EEG data were removed. Finally, remaining trials with 

amplitudes exceeding ±120 µV were removed. Successful cleaning was verified 

by visual inspection of single trials. For one subject (S20), three noisy channels 

(FT7, P9, TP8) were interpolated using the channel repair function as 

implemented in the FieldTrip toolbox.  

Analysis Methods 

Psychometric performance and Optimal Integration Model 

For each subject, modality, and stimulation rate, the proportion of “first stream 

had a higher event rate” responses were calculated and cumulative Gaussian 

functions fit to the data using the psignifit toolbox for Matlab (Fruend, Haenel, 

& Wichmann, 2011). The threshold (s.d., σ) and the point of subjective equality 

(PSE, µ) were obtained from the best fitting function (2000 simulations via 

bootstrapping). These measures were then used to calculate a set of predicted 

and observed perceptual weights (Fetsch et al., 2012) for each modality in each 

audio-visual reliability condition. Predicted weights reflect the weights that an 

optimal observer would assign to each sensory cue in multisensory conditions 

(Fetsch et al., 2012). These were calculated using the thresholds (σ) from the 

PSE curves calculated from unisensory trials using: 

W!"# =

1
σ  !"#
!

1
σ  !"#
! +  1

σ  !"#
!

 

Equation 1 
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Observed perceptual weights represent the apparent weight a subject assigns to 

each sensory cue. These were calculated from the PSE (µ) from multisensory 

trials using:  

W!"# =  
µ!"(!) −  µ!"(!!!!) +  Δ2

Δ  

Equation 2 

where Δ represents the incongruency between the auditory and visual stimuli 

(Fetsch et al., 2012). For both perceptual and observed weights we assumed 

that auditory and visual weights sum to one:  

WVIS = 1 - WAUD 

Predicted and observed weights were derived for each modality and reliability 

separately, and averaged over congruency levels (Δ = ± 2). 

Time-dependent Perceptual Weights 

To examine how perceptual weights evolved over the course of a trial we 

modelled the relationship between sensory evidence and behavioural reports at 

each time point. As a measure of sensory evidence, we used the “accumulated 

rate” (see Figure 3.2), defined as the average number of stimulus events 

presented up to each time point in the trial (with an event defined as an 

auditory click, a visual flash, or audio-visual clicks and flashes presented 

together). Accumulated rate was calculated in increasing 12 ms time bins (as our 

stimuli were each presented for 12 ms) which resulted in 75 time points for the 

full stimulus stream of 900 ms. This yielded a trial and time-specific measure 

(“accumulated rate”) of the experienced sensory evidence.  

This measure of sensory evidence was then regressed against behavioural choice 

(first stream higher vs. second stream higher) for each trial, modality within 

each audio-visual condition (AVH auditory and visual, AVL auditory and visual), 

and time point separately using logistic regression (see Figure 3.2).  
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Figure 3.2 | Schematic of Accumulated Rate and Regression (Logistic and Linear) Analysis 
Pipeline (A) Step 1: the stimuli (auditory and visual) presented on each audio-visual trial are 
extracted. (B) Step 2: at each time window (increasing 12 ms time windows) the “accumulated rate” 
is calculated by taking the mean number of stimuli presented over the time window. For example, 
for the first two time windows no stimuli had been presented and so both the visual and auditory 
accumulated rates at these time points are zero. For the third time window, one visual stimulus had 
been presented and one auditory, so at this time point both accumulated rates equal 1/3 = 0.33 (1 
stimulus/3 time points). For the fourth time window, two visual stimuli had been presented and still 
only one auditory stimulus had been presented; now the visual accumulated rate is 2/4 = 0.50, and 
the auditory is 1/4 = 0.25. This process is carried out for audio-visual high (both auditory and visual 
are of high reliability) and audio-visual low (auditory is high reliability, visual is low reliability) trials 
separately, and continues until you have a time varying accumulated rate for each modality, for 
each audio-visual trial.  Finally, at each time point, the accumulated rates for both reliabilities are 
combined into one predictor matrix (with four separate predictors, one for each modality in each 
reliability condition) with a constant (see C, D). (C) Step 3: to calculate perceptual weights, logistic 
regression is used to regress the predictor matrix of accumulated rates generated in Step 2 against 
behavioural choice on a trial by trial basis, at each time point of the trial. This yields four regression 
weights (here defined as “perceptual weights”) for each modality in each reliability condition for 
each time point in the trial. (D) Step 4: to calculate neural weights, linear regression is used to 
regress the predictor matrix (accumulated rates, same as above) against the decoding signal (Y) at 
each time point of the trial. Again, this yields four regression weights (here defined as “neural 
weights”) for each modality in each reliability condition, for each time point in the trial. Note: in (C) 
and (D), for this early time point the accumulated rate is 0 for some trials in the predictor matrices. 
Data are schematic only. 
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Analysis was restricted to incongruent audio-visual trials and a time window of 

24 ms to 600 ms post stimulus onset to account for null values (pre-24 ms) and 

multicollinearity in the predictor matrix (post 600 ms). This generated four sets 

of regression weights (which we here refer to as “perceptual weights”): one for 

the auditory and visual in each reliability condition (AVH auditory, AVH visual, 

AVL auditory and AVL visual).  

To assess whether the accumulated rate was significantly predictive of 

perceptual choice, we quantified the performance of the regression model 

(referred to here as Az) using the area under the receiver operator characteristic 

(ROC) and 10-fold cross-validation (see Statistics). To determine how well the 

perceptual weights derived from the psychometric curves corresponded to the 

perceptual weights derived from the regression model, the correlation between 

the reliability influence for the psychometric and the reliability influence for the 

regression weights was computed at each time point during the trial (see 

Statistics). Here, the reliability influence was here defined as the difference (D) 

in auditory and visual weights at each time point (t) (in other words, the effect 

of visual reliability on auditory weights):  

D t = AVH!"#$ − AVH!"#$ − [AVL!"#$ − AVL!"#$]  

Equation 3 
 

Single-Trial EEG Analysis 

We used single-trial, multivariate linear discriminant analysis (Parra et al., 2005; 

Philiastides et al., 2014, and see Chapter 2, Methods) to uncover EEG 

components that best separated our two conditions of interest, defined here as 

stimulus rate higher (condition 1) or lower (condition 2) than 11 Hz. This analysis 

generated a one-dimensional projection (Yt) of the multidimensional EEG data 

(Xt), defined by spatial weights (Wt) and a constant (C): 

Y! =  W! X! + C 

Equation 4 
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where the weight vector (W) represents the activity components most sensitive 

to the condition of interest (here, whether stimulus rate >/< 11 Hz), and the 

discriminant output (Y) provides a neural correlate of the quality of the single-

trial evidence about the conditions of interest. This approach preserves the trial-

to-trial variability of the data, and is assumed to be a better estimator of the 

underlying single trial task-relevant activity than the data on individual channels 

(Blankertz, Lemm, Treder, Haufe, & Müller, 2011; Kayser et al., 2016; Parra et 

al., 2005; Philiastides et al., 2014). 

The classifier was trained to discriminate between high and low stimulus rate 

(i.e. whether the first stream had an event rate that was lower or higher than 

the standard stream of 11 Hz) as this reflected the task the subjects were asked 

to complete. The classifier was based on regularised (Fisher’s) linear 

discriminant analysis (Philiastides et al., 2014), and applied to the EEG activity 

at each 5 ms time point from stimulus onset to 600 ms post stimulus onset in 

sliding time windows of 55 ms. For each time point, the EEG data within the 

55 ms window was averaged and the discriminant output (Y) aligned to the onset 

of the 55 ms window. This time window was chosen as between each stimulus 

(of 12ms) there was either a 48 ms or 96 ms pause. Therefore, this window did 

not blur across stimuli and was in keeping with time windows used in previous 

work (Philiastides et al., 2014).  

This analysis generated a sensory matrix [trials x time], which represented the 

information about stimulus rate in neural signals over time. To avoid introducing 

bias to either sensory modality, we derived the weighting vector (W) and 

constant (C) from the congruent audio-visual trials only (AVH and AVL Δ = 0), and 

applied these to all other trials at the same time point. Scalp topographies for 

the discriminating component were estimated via the forward model 

(Philiastides et al., 2014), defined as the normalised correlation between the 

discriminant output and the EEG activity. 

Neural Weights 

We used linear regression to calculate a set of neural weights which quantified 

how each modality contributed to the information contained in the discriminant 

output (Y). Similar to the behavioural data, the trial-specific accumulated rates 
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for each modality, in each reliability condition (AVH auditory, AVH visual, AVL 

auditory, and AVL visual) were used as predictors and regressed (in a single 

regression) against the discriminant output (Y) at each time point in the trial 

(see Figure 3.2). Analysis was performed over the significant classification 

performance time window (24 ms to 400 ms), and restricted to incongruent 

audio-visual conditions (Δ =± 2).  

Neural weights were generated for each modality and reliability condition 

separately; this resulted in four neural weights for each time point (one for AVH 

auditory, AVH visual, AVL auditory and AVL visual). Importantly, the precise 

neural origin of these EEG discriminant output components (and hence the 

respective generators of auditory and visual contributions to these) remains 

unclear, and so we did not assume that auditory and visual neural weights for 

each reliability normalised to a fixed sum of one. For this reason, we did not 

perform normalisation on the neural regression weights. Finally, to assess the 

relationship between neural weights and the time-dependent perceptual weights 

(calculated using regression analysis), we correlated the reliability influence 

(Equation 3) between these two measures at each time point (see Statistics). 

Source Localisation 

We used source localisation to obtain a confirmatory representation of the 

neural generators underlying the discriminant output (Y). This involved 

correlating the source signals with the discriminant output (Y), and is 

comparable to obtaining forward scalp models from linear discriminant analysis 

(Parra et al., 2005).  

The standard Montreal Neurological Institute (MNI) magnetic resonance imaging 

(MRI) template was used as the head model and interpolated with the 

automated anatomical labelling (AAL) atlas. Leadfield computation was based on 

the standard source model (3D grid model with 6mm spacing) and a manually 

aligned BioSemi electrode channel template. Covariance matrices were 

calculated from -200 ms pre-stimulus onset to 800 ms post-stimulus onset and 

source localisation performed on individual subject single-trial data using a 

linear constrained minimum variance beamformer in Fieldtrip (fixed orientation, 

7% normalisation). This resulted in 11432 unique grid points within the brain for 
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which the source signal was extracted. Finally, source signals were correlated 

with the discriminant output (Y) for each subject and time point within our 

analysis window (24 ms to 400 ms) separately, and correlation signals 

z-transformed and averaged over subjects. 

Statistics 

All descriptive statistics reported represent median values. All Z values reported 

were generated from a one-sided Wilcoxon signed rank test (after testing 

assumptions of normality, which did not hold), and effect sizes calculated by 

dividing the Z value by the square root of N (where N = the number of 

observations rather than subjects, Rosenthal, 1994). Correlations were 

calculated using Spearman rank correlation analysis. All reported p-values were 

checked for inconsistencies using the R software package “statcheck” (Nuijten, 

Hartgerink, Assen, Epskamp, & Wicherts, 2016). 

Significance levels of classification performance (Az) were determined by 

randomly shuffling the data by condition 2000 times, computing the group 

averaged Az value for each randomisation, and taking the maximal Az value over 

time. This generated a distribution of group averaged Az values based on 2000 

randomised data sets, from which we could estimate the Az value leading to a 

significance level of p<0.01. Significant clusters for all other comparisons were 

determined using a cluster based randomisation technique (referred to as cluster 

randomisation in text, Maris & Oostenveld, 2007). In all cases, condition labels 

were randomly shuffled across conditions 1000 times, and for each separate 

comparison a distribution of t-values was computed. These shuffled t-value 

distributions were compared to the true t-value values to find significant 

clusters in the data: for all comparisons a cluster-threshold of t = 1.8 

(corresponding to p<0.01), minimum cluster size of 2, and max-size as the 

cluster-forming variable were used. Effect sizes were calculated as the 

equivalent r value that is bounded between 0 and 1 (Rosenthal & Rubin, 2003).  

To improve readability in the following results section, results are reported with 

regards to significance thresholds (e.g. <0.05) within text, while exact p-values 

and statistics are reported in corresponding tables. 



63 
 

Results 

Psychometric behaviour and perceptual thresholds  

Figure 3.3A shows the group-level psychometric curves for each sensory 

condition. Unisensory curves (Figure 3.3A, left) demonstrated that subject 

performance was lowest for visual low reliability conditions and highest for 

auditory, as evidenced by steepness of curve. Comparing psychometric curves 

for congruent and incongruent audio-visual conditions (Figure 3.3A middle and 

right) showed that subjects preferentially weighted the auditory modality 

regardless of visual reliability, as demonstrated by shifts in the psychometric 

curves towards the auditory rate. However, as expected, this shift was more 

pronounced in the low reliability condition, indicating a stronger influence of the 

auditory modality when visual reliability was reduced (Table 3.1, Figure 3.3A, 

right).  

Figure 3.3B displays the individual threshold performance (extracted from the 

psychometric curves) for each condition. On unisensory trials, thresholds were 

significantly lower (i.e. better performance) for high compared to low reliability 

stimuli across subjects (p<0.05, Table 3.1). Thresholds were comparable for the 

auditory and both congruent audio-visual conditions (all comparisons p>0.05, 

Table 3.1). Finally, thresholds on audio-visual trials were significantly lower 

compared to the visual conditions (p<0.05, Table 3.1). This demonstrates that 

performance was comparable for audio-visual and auditory trials, lowest for 

visual trials, and better for high vs. low reliable stimuli. 

Figure 3.3C presents the predicted weights for each modality and reliability 

condition calculated using the optimal integration model. Predicted auditory 

weights significantly increased and visual weights decreased when visual 

reliability was reduced (p<0.05, Table 3.2). However, this was not consistently 

found in the observed weights (Figure 3.3D), and there was no significant 

difference between observed weights for reliabilities in each modality (p>0.05, 

Table 3.2). This suggests that individual subject weighting could not be 

adequately accounted for by the optimal integration model. This is corroborated 

by the magnitude and direction of the weight shift across subjects; only 11 

subjects showed perceptual weight shifts in the predicted direction (i.e. 
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increased auditory weighting when visual reliability is reduced). Furthermore, a 

direct comparison between observed and predicted weights revealed only a 

weak correlation for low reliability weights (p<0.05, Table 3.2).  

Overall, the lack of a significant difference between unisensory and multisensory 

thresholds and the weak correlation between observed and predicted weights 

suggests that observers did not systematically follow the behavioural pattern 

predicted by optimal models of multisensory integration. This heterogeneity in 

the change of perceptual weights with reliability presents a unique opportunity 

to investigate the neural correlates of perceptual weights independently of an 

effect of sensory reliability, as these two effects are dissociable across subjects. 

Evolution of Perceptual Weights over Time 

Figure 3.3E displays the results for classification of behavioural choice (first 

stream higher/lower than second) from accumulated rate. Sensory evidence 

(accumulated rate) was significantly predictive of behavioural choice across the 

trial (permutation test, p<0.01), and increased as the trial progressed. Figure 

3.3F shows the time-resolved perceptual weights, and demonstrates that 

auditory and visual weights changed significantly with reliability early during the 

trial; two auditory clusters (cluster 1, 48 ms to 192 ms; cluster 2, 276 ms to 

300 ms, Table 3.3) and one visual cluster (cluster 1, 48 ms to 216 ms, Table 3.3). 

Additionally the results confirmed that subjects preferentially weighted the 

auditory over the visual modality (cluster randomisation test, p<0.05, Figure 

3.3F, Table 3.3). Finally, Figure 3.3G shows the correlation between these time-

resolved perceptual weights and those derived from the psychometric curve 

analysis. Significant correlations emerged during three epochs that collectively 

covered most of the trial: 132-192 ms, 252-408 ms, and 420-600 ms (cluster 

randomisation tests, p<0.05, Table 3.3).  

In summary, these behavioural results show: (a) that auditory weights increase 

as visual reliability decreases, (b) subjects show a bias towards the auditory 

modality over visual regardless of analysis method, and (c) that our two 

measures of perceptual weighting correlate highly with each other.  
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Figure 3.3 | Behavioural Results. (A) Group (n = 20) level psychometric curves displayed as the 
proportion of “first stream” decisions as a function of event rate for each condition. Note that for 
incongruent trials the x-axis indicates the average event rate (Δ = Visual Rate – Auditory rate). 
Vertical dashed lines represent the standard rate (11Hz) and horizontal dashed lines represent 
chance (50%) performance. (B) Individual subject threshold values (σ) for each separate condition, 
with group result shown on boxplot. (C) Group level predicted perceptual weights, with individual 
subject data shown in grey.  AVH represents the audiovisual condition where both the auditory and 
visual cues were equally reliable. AVL represents the audiovisual condition where the auditory was 
highly reliable and the visual was less reliable. Within each AV(H/L) condition, auditory values are 
denoted with Aud, and visual values denoted with Vis. This gives four sets of weights, one for each 
modality within each reliability condition (AVH Aud, AVL Aud, AVH vis, AVL vis). (D) Observed 
Perceptual Weights, plotting same information as in (B). (E-F) Logistic regression was used to 
predict single trial choice (event rate >/<11Hz) based on the accumulated event rate at each time 
point in the trial. (E) Performance of the logistic model used to quantify how well our measure of 
sensory evidence (accumulated rate) predicted behavioural choice (first stream higher/lower), 
calculated using the area under the ROC and 10-fold cross validation (red dashed line p<0.01, 
randomisation test) (F) Auditory and visual perceptual weights derived from the regression model 
.Time points with significant reliability effects are denoted with black circles. (G) Correlation of 
perceptual weights derived from psychometric curves and from the logistic model. Time points with 
significant correlations are marked with orange circles. 
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Psychometric Fits  Comparison of Perceptual Thresholds 

 Median σ Median µ   Z value p value Effect Size 

AUD 2.19 11.45  VH vs AUD -2.688 0.007 -0.425 
VH 2.87 11.44  VL vs. AUD -3.658 0.0003 -0.579 
VL 4.55 10.53  VH vs. VL -3.136 0.002 -0.496 
        
AVH (Δ = 0) 1.98 11.72  AUD vs. AVH -0.336 0.737 -0.053 
AVH (Δ = +2) 1.80 12.25  AUD vs. AVL -0.261 0.794 -0.041 
AVH (Δ = -2) 1.89 11.05      
    AVH vs. AVL -0.018 0.986 -0.003 
AVL (Δ = 0) 2.29 11.14  AVH vs. VH 3.322 0.0009 0.525 
AVL (Δ = +2) 1.82 11.94  AVH vs. VL 3.621 0.0003 0.573 
AVL (Δ = -2) 2.10 10.58  AVL vs. VH 3.397 0.0007 0.535 
    AVL vs. VL 3.919 0.00009 0.619 

Table 3.1 | Analysis of Psychometric Data. Median threshold (σ) and PSE (µ) values from 
fits to psychometric data (left). Statistical tests (right) were based on two sided Wilcoxon 
Signed Rank tests of thresholds (σ).   

 

High vs. Low Reliability  
Psychometric Weights 

 Observed vs. Predicted 
Psychometric Weights 

 Z P Effect   R P 
Visual (Pred) -3.09 0.0019 -0.49  Visual (High) 0.18 0.45 

Visual (Obs) -1.64 0.1002 -0.26  Visual (Low) 0.46 0.04 

        

Auditory (Pred) -2.84 0.005 -0.45  Auditory (High) 0.21 0.381 

Auditory (Obs) -1.26 0.207 -0.20  Auditory (Low) 0.48 0.034 

Table 3.2 | Analysis of Predicted and Observed Psychometric Weights. Comparison of 
psychometric weights based on two sided Wilcoxon signed rank tests (left; High vs. Low 
reliability comparisons) and Spearman rank correlations (right; Rs, Predicted vs. Observed 
comparisons).  
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Time-resolved Perceptual Weights 

 Cluster # Time (ms) p-value t-value Effect Size 

AH vs AL 1 48 to 192 <0.0001 -13 0.5005 

 2 276 to 300 0.010 -3 0.5604 

VH vs VL 1 48 to 216 <0.0001 -15 0.5976 

PMC vs PRW * 1 48 to 588 <0.0001 6 0.5201 

      

Neural Weights: Modality Dominance 

 Cluster # Time (ms) p-value t-value Effect Size 

AH vs VH 1 36 to 60 <0.001 3 0.5576 

 2 108 to 120 <0.001 2 0.5055 

 3 252 to 264 <0.001 -2 0.4566 

AL vs VL  1 60 to 96 <0.001 11 0.5564 

 2 120 to 336 <0.001 2 0.5014 

      

Neural Weights: Sensory Reliability 

 Cluster # Time (ms) p-value t-value Effect Size 

AH vs AL 1 156 to 204 <0.0001 -5 0.4940 

 2 264 to 276 0.0070 -2 0.4731 

VH vs VL 1 84 to 108 <0.0001 3 0.5139 

 2 252 to 288 <0.0001 4 0.5406 

      

Neural vs. Perceptual Weights 

 Cluster # Time(ms) p-value t-value Effect Size 

NW vs PRW * 1 120 to 132 0.005 2 0.4674 

 2 204 to 228 <0.0001 3 0.5170 

Table 3.3 | Statistical Comparisons of Perceptual and Neural Weights. 
Tests were performed using cluster randomisation statistics (see Statistics). For 
each significant effect we list cluster p-value (where p-values below 10-3 are 
listed as <0.001), cluster t-values and effect size. T values marked with * reflect 
t-values derived from correlations. PMC = Psychometric Curve Weight. PRW = 
Perceptual Regression Weight. NW = Neural Weight. Condition abbreviations 
(AUD,VH,VL,AVH,AVL) see: Methods. 
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EEG Decoding Components and Neural Weights 

Figure 3.4A displays the discriminant performance across subjects. Significant 

performance emerged early in the trial from 48 ms to 396 ms (permutation test, 

p<0.01) and was highest during three epochs: 96 ms to 120 ms, 168 ms to 

204 ms, and 252 ms to 288 ms (Az performance >0.58). This demonstrates that 

there was information related to stimulus rate (high/low) evident in EEG signal 

early in the trial. The corresponding scalp topography (Figure 3.4A, insert) 

indicated that the strongest information about audio-visual rate emerged over 

posterior and central electrodes, consistent with an origin in early sensory 

(temporal and occipital) cortices.  

Figure 3.4B displays the neural weights derived from the regression analysis. 

Neural weights exhibited a similar bias towards the auditory modality as 

perceptual weights; auditory weights dominated in both reliability conditions 

(Figure 3.4B, left and right). When both auditory and visual stimuli were highly 

reliable (audio-visual high reliability condition), auditory weights were higher 

than visual at three separate clusters (cluster 1: 36 ms to 60 ms, cluster 2: 

108 ms to 120 ms, cluster 3: 252 ms to 264 ms; cluster randomisation tests, 

p<0.05, Table 3.3). When the auditory stimuli were highly reliable and visual 

stimuli were not (audio-visual low reliability condition), auditory weights were 

higher than visual at two clusters (cluster 1: 60 ms to 96 ms, cluster 2: 120 ms to 

336 ms; cluster randomisation tests, p<0.05, Table 3.3). Consistent with 

perceptual weights, auditory weights were significantly higher when the visual 

reliability was reduced (compared to auditory weights when visual reliability was 

high) and these differences emerged during two epochs (156 ms to 204 ms, and 

264 ms to 276 ms; cluster randomisation test, p<0.05; Figure 3.4C left; Table 

3.3). Visual weights were significantly lower when the visual reliability was 

reduced (compared to visual weights when visual reliability was high) at two 

epochs (84 ms to 108 ms, and 252 ms to 288 ms; cluster randomisation test, 

p<0.05, Figure 3.4C right, Table 3.3). Finally, there was a significant correlation 

between the reliability effect on the time-resolved perceptual and the neural 

weights at two epochs (120 ms to 132 ms, and 204 ms to 228 ms (cluster 

randomisation test, p<0.05, Figure 3.4D, Table 3.3).  
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Figure 3.4 | Decoding, Neural Weights and Neuro-Behavioural Correlation. (A) Group 
averaged performance of a linear classifier applied to all audio-visual congruent trials. 
Classifier trained to discriminate between event rate >/<11Hz (i.e. stimulus rate), quantified 
using the area under the ROC curve. Scalp topography (insert) represents the forward 
model (correlation between discriminant output Y and underlying EEG activity) for the peak 
decoding time point (288 ms). Colorbar represents correlation value. (B) Neural weights for 
each modality for high reliability (left) and low reliability (right) trials, shown for each 
modality separately (auditory = blue, visual = yellow). (C) Neural weights in each reliability 
condition for auditory (left) and visual (right) trials, shown for each reliability level separately 
(high reliability = darker colours, low reliability = lighter colours in each graph). In (B,C), 
time points with significant effects are indicated by black circles. (D) Neuro-behavioural 
correlation between perceptual and neural weights obtained from the regression models. 
Time points with significant correlations indicated by orange circles. 

 

Summarising these results in order of time (rather than by statistical contrast) 

reveals an evolving pattern of results as the trial progresses. From stimulus 

onset, first there was a change in visual weights (starting 84 ms) and a 

significant relationship between perceptual and neural weights (starting 

120 ms). This was followed by a change in auditory weights (starting 156 ms) and 

another epoch where there was a significant relationship between perceptual 

and neural weights (starting 204 ms). Finally, there was a change in both visual 

(starting 252 ms) and auditory weights (starting 264 ms) later in the trial. This 

indicates a dynamic process whereby sensory information is weighted in the 

brain.  

To disentangle whether these six epochs represented distinct neural processes or 

whether they related to the same underlying neural generators, we compared 

the scalp projections and neural weights between the six epochs (Supplementary 

Figure S3.2). This revealed that temporally adjacent topographies (84 to 108 ms 

and 120 to 132 ms; 156 to 204 ms and 204 to 228 ms; and 252 to 288 ms and 264 

to 276 ms) were highly correlated (within Epochs: RS >0.6, p<0.005). The 

reliability difference in neural weights (Equation 3) at temporally adjacent 

epochs were also highly correlated (Rs >0.6, p<0.001) and showed similar 

patterns of neural weights. For all other comparisons, the correlation values 

were all less than 0.6, and above the threshold value of 0.005. Consequently, we 

concatenated the six epochs into three separate epochs of interest based on 

their high correlations (Epoch 1: 84 ms to 132 ms; Epoch 2: 156 ms to 228 ms; 

and Epoch 3: 252 ms to 276 ms). 
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Localization of Neural Sources 

Figure 3.5 shows the neural weights, forward model scalp topographies, and 

source localisation maps for each of the three clusters defined above. Table 3.4 

reports co-ordinates and statistical values for significant voxels. The first epoch 

(84 ms to 132 ms) was characterized by a scalp projection consistent with a 

potential origin in sensory cortices. Source localisation revealed that 

discriminant activity originated from occipital and temporal regions. The second 

epoch (156 ms to 228 ms) had a scalp projection that revealed strong 

contributions from fronto-central and occipital electrodes, and source activity 

was broadly localized to temporal, occipital and parietal regions. The third 

epoch revealed contributions from central electrodes with sources in occipital 

and parietal regions.  

 

 

 

 

Epoch 1: 84 ms to 132 ms 

 Co-ord (spm) z-transformed R p-value t-value Effect Size 

Occipital Mid L (-45,-70,0) 0.145 0.004 -6.949 0.486 

Temporal mid L (-60,-38,-10) 0.197 0.004 -7.687 0.526 

Epoch 2: 156 ms to 228 ms 

 Co-ord (spm) z-transformed R p-value t-value Effect Size 

Occipital Mid R (37,-72,27) 0.266 <0.001 -8.336 0.541 

Temporal Inf. R. (58,-15,-25) 0.267 <0.001 -6.768 0.476 

Parietal Inf. R. (47,-57,41) 0.268 <0.001 10.275 0.439 

Epoch 3: 252 ms to 276 ms 

 Co-ord (spm) z-transformed R p-value t-value Effect Size 

Occipital Mid. L. (-35,-86,18) 0.166 0.003 7.575 0.416 

Parietal L. (-36,-32,46) 0.159 <0.001 12.223 0.499 

Table 3.4 | Source Localisation of Discriminant Activity. Significance values obtained from 
correlating source signals with discriminant output (Y), corrected for multiple comparisons using 
cluster permutation testing (see Statistics). For each significant source the table provides co-
ordinates of peak voxel (co-ord spm), z-transformed R value (as plotted in Fig.3.5, bottom row), 
and the p-value, cluster t-value, and effect size. 
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Figure 3.5 | Neural Weights, Topographies and Source Localisation results for three 
EEG components of interest. Each cluster was defined based on the statistical contrast 
between sensory reliabilities (Fig. 3.4C), or a significant neuro-behavioural (N2B) correlation 
(Fig. 3.4D). In each panel, boxplots represent neural weights averaged over each epoch, with 
individual subject data in grey. Topographies represent the group averaged forward models 
averaged over the epoch (values represent correlation between discriminating output (Y) and 
underlying EEG activity). Source maps represent the z transformed correlation values of single 
voxel activity with the discriminant output for each epoch (left hemisphere on left-hand side. 
Source localisation z-coordinates for slice: (A) -7, (B) 37, and (C) 51). 
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Discussion 

This study examined the temporal dynamics underlying audio-visual cue 

weighting in the brain. Our behavioural results revealed that subjects weighted 

sensory cues in proportion to their relative reliabilities: auditory perceptual 

weights increased as visual reliability decreased. These modulations in 

behavioural reweighting occurred early during the trial (starting 48 ms). We also 

found a consistent bias towards the auditory modality regardless of visual 

reliability, which caused a mismatch in the perceptual weights predicted by the 

optimal integration model and those observed in subject behaviour. The EEG 

data revealed that information related to stimulus type could be reliably 

extracted from neural signals during stimulus presentation. Additionally, we 

found three early epochs (starting 84 ms) during which EEG correlates were 

modulated by sensory reliability. Similarly early neural correlates of perceptual 

weighting were also evident early in the trial, emerging 120 ms after stimulus 

onset. However, these two processes had distinct topographical patterns, and 

source localisation revealed these neural correlates of sensory reliability and 

perceptual weighting localised to early sensory (occipital, temporal) and parietal 

regions respectively. Taken together, these results shed new light on the 

temporal dynamics of underlying audio-visual cue weighting, and suggest that 

reliability encoding and perceptual reweighting are computationally distinct 

processes in the brain. 

Perceptual Weights: Evolution over Time  

We performed two analyses to generate perceptual weights. The first followed 

the conventional approach using the optimal integration framework to calculate 

weights based on psychometric curves fit to subjects’ responses. The second 

used regression modelling to generate a set of perceptual weights based on the 

time-varying accumulated sensory evidence. This dual approach allowed 

different views of the reliability effects on behavioural weights, and the novel 

regression approach gave us an opportunity to apply comparable analyses to 

behavioural and neural data (as in Fetsch et al., 2012; Gu et al., 2008).  

However, these two approaches revealed divergent results regarding the effect 

of sensory reliability on perceptual weights. The analysis of psychometric curves 
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revealed no significant group effect of reliability, while the time-resolved 

behavioural weights were significantly modulated by reliability in the direction 

as expected by previous literature (that is, auditory weights increased as visual 

weights decreased). One potential explanation for this apparent discrepancy is 

methodological. In the optimal integration analysis, psychometric performance is 

measured only at the end of the trial and is based on trial labels. In contrast, 

the regression analysis quantifies choice at each time point based on the time-

aggregated sensory evidence. Hence, one possibility is that early sensory 

information may contribute to perceptual weighting in a more specific manner 

than the average sensory information available throughout the trial, and so this 

effect of sensory reliability emerges only in the time-resolved weights. Despite 

this divergence, our finding of a significant correlation between the reliability 

effects for each set of perceptual weights suggests there is overall similarity 

between the two sets, and thus we feel confident that conceptually they 

measure the same process. This interpretation could be checked by reverse-

correlating behavioural choice with the local rate (i.e. the momentary rate, not 

the accumulated rate) across time, especially for those trials where the 

comparison rate across streams is equal (11Hz – 11 Hz trials). 

Perceptual Weights: Auditory Bias 

Our group data demonstrate that subjects failed to show the expected 

multisensory benefit, as shown by comparable performance on audio-visual and 

auditory trials. We also observed a general bias towards the auditory stimulus 

regardless of visual reliability in the majority of subjects. This bias emerged 

despite efforts to equalise visual and auditory thresholds using unisensory 

calibration blocks.  

With regards to this experiment, we hypothesise that the observed auditory bias 

arises from the preference for auditory over visual information for temporal 

judgements (Glenberg & Fernandez, 1988; Glenberg, Mann, Altman, Forman, & 

Procise, 1989; Recanzone, 2003; Repp & Penel, 2002). As discussed in the 

general introduction chapter (Chapter 1), the auditory modality is more suited 

to temporal tasks while the visual modality is more suited to localisation tasks. 

Given that our task required rate discrimination (a temporal task), it could be 

that overall subjects found it easier to judge the stimulus rate on auditory trials 
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compared to visual trials regardless of reliability. Alternatively, it could be that 

as the auditory stimulus was presented in silence while the visual stimulus was 

embedded in noise, there may have been subtle differences in intramodal 

attention which caused a bias towards the auditory modality (Alho, Woods, 

Algazi, & Näätänen, 1992; Lu & Dosher, 1998). A final possibility for the 

observed auditory bias is that subjects did not consider auditory and visual 

stimuli to originate from the same underlying sensory cause, in particular on 

trials where event rates differed. Such stimulus-dependent changes in the 

inference about the causal structure of the environment have recently been 

included in models of sensory integration (Shams et al., 2005; Roach et al., 

2006; Knill, 2007; Körding et al., 2007; Beierholm et al., 2009; for review, see 

Shams & Beierholm, 2010 and Kayser & Shams, 2015), and recently neuroimaging 

studies have started to study the neural mechanisms underlying this flexibility in 

sensory integration (Rohe & Noppeney, 2015a, 2016). However, given that the 

present experiment included only one level of audio-visual discrepancy it is not 

possible to ascertain whether causal inference processes contribute to the 

apparent mismatch between the observed psychometric performance and 

predictions based on optimal integration strategies. 

Interestingly, similar modality biases have been reported in the cue weighting 

literature before (Fetsch et al., 2012, 2009; Knill & Saunders, 2003; Oruç, 

Maloney, & Landy, 2003; Rosas et al., 2005; Rosas, Wichmann, & Wagemans, 

2007; Sheppard et al., 2013), and attempts to improve the predictions of 

optimal integration models have been made. For example, Battaglia et al., 

(2003) found that both the reliability of a visual stimulus and a bias for visual 

information over auditory affected the perceptual weights in a spatial 

localisation task. They showed that a “hybrid model” which included a prior to 

make greater use of the visual information provided a better fit to the data than 

the standard optimal integration model. Butler et al., (2010) found similar 

results for visual-vestibular stimuli. Taken together, these studies demonstrate 

that including a prior to account for modality bias can improve the predictions of 

optimal integration models. Adapting the integration model to include such a 

prior was beyond the scope of this project, but provides an interesting starting 

point for future work.  
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Decoding Correlates of Stimulus Rate from EEG Activity 

Our results showed we were successfully able to extract information relating to 

stimulus rate from the EEG signal early during stimulus presentation. This adds 

to the growing literature which has used multivariate single trial decoding of 

EEG data to reveal the dynamic correlates of various types of sensory stimuli 

(Kayser et al., 2016; Lou, Li, Philiastides, & Sajda, 2014; Mostert, Kok, & de 

Lange, 2015; Philiastides et al., 2014; Philiastides & Sajda, 2006; Ratcliff et al., 

2009; Wyart, de Gardelle, Scholl, & Summerfield, 2012). In addition, we 

exploited this approach to quantify multisensory interactions directly within 

those EEG components carrying the relevant sensory information, rather than 

relying on generic stimulus-related evoked responses.  

However, our results demonstrated that the classifier was not able to 

successfully decode stimulus rate beyond 400 ms after stimulus onset. There are 

two possible explanations for this: either sensory rate is only linearly reflected 

in EEG activity early during the trial, or neural activity later in the trial reflects 

a mix of sensory encoding and decision-making processes which may make it 

difficult to extract purely sensory representations (Raposo, Kaufman, & 

Churchland, 2014). While this precludes us from making statements about the 

patterns of sensory weighting that may occur later in the trial, our results 

directly reveal neural correlates of changes in sensory reliability and of 

perceptual weights that are evident early during the integration process.    

Early Neural Correlates of Sensory Reliability and Perceptual 
Weights 

We found neural correlates of both sensory reliability and perceptual weights at 

multiple times early points. We thereby step beyond previous neurophysiological 

(Fetsch et al., 2012; Gu et al., 2008; Morgan et al., 2008) and neuroimaging 

studies (Beauchamp et al., 2010; Helbig et al., 2012; Rohe & Noppeney, 2015a, 

2016) to reveal the temporal evolution of the sensory weighting process in 

functionally specific brain activity. In addition, by dissociating the influence of 

sensory reliability on the representation of sensory information from perceptual 

weighting in EEG responses rather than demonstrating a simple modulation of 

evoked response amplitudes, we demonstrate that these early effects reflect 

sensory and computationally specific processes. This complements recent work 
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in the fMRI literature by Rohe & Noppeney, (2016) which found that sensory 

reliability was encoded in early sensory areas while higher-order parietal areas 

were responsible for weighting based on stimulus reliability. Thus our results 

provide support for computationally distinct processes occurring across the 

cortex to implement cue weighting in the brain, but add the important temporal 

dimension that up until now has been missing.  

Early Effects of Sensory Reliability  

We found that neural correlates of cumulative sensory evidence scaled with 

reliability. At the earliest time (84 ms) these effects were associated with 

changes in visual weights, while at a slightly later window (starting at 156 ms) 

these effects were associated with changes in auditory weights. Even later in the 

trial (starting at 252 ms), changes in both auditory and visual weights were 

evident.  

First, the early onset of these changes in audio-visual sensory weights supports 

the notion of low-level and short-latency multisensory interactions (Cappe et al., 

2010; Foxe et al., 2000; Giard & Peronnet, 1999; Molholm et al., 2002; Murray et 

al., 2005; Sperdin et al., 2009). Second, our finding that visual and auditory 

weights scaled with reliability at different latencies during the trial is 

noteworthy. While visual weights were affected early (<100 ms), auditory 

weights increased with decreasing reliability of the visual stimulus later (around 

150 ms). This temporal dissociation between visual and auditory weights shifts 

could reflect the adaptive nature of multisensory integration; perhaps visual 

encoding is adjusted at short latencies and in a bottom-up (i.e. sensory driven 

manner) to cope with trial-by-trial changes in visual sensory reliability. In 

contrast, auditory encoding may be adjusted only later (possibly as result of top-

down processes) in order to meet the increased demands for representing the 

unreliable sensory environment. Hence, it makes sense for the brain to first 

adapt to the visual modality on a trial-by-trial basis, before subsequently 

adjusting processing across the auditory modality. This speculation is in part 

supported by the fact that auditory reliability was fixed throughout the 

experiment, while visual reliability varied unpredictably. 
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Early Neural Correlates of Perceptual Weighting   

As not every subject attributed perceptual weights in a statistically optimal 

manner, we were able to dissociate neural correlates related to perceptual 

weighting from correlates related to sensory reliability. First, this demonstrates 

that the scaling of sensory representations based on stimulus reliability and the 

process of perceptual weighting are computationally distinct and reflect 

different aspects of the perceptual process. Second, we found that neural 

correlates of the perceptual weighting process emerged early in the trial, at 

120 ms and 204 ms after stimulus onset. These effects in neural signals – while 

somewhat later than the onset of modulations in the behaviour – are still earlier 

than expected, and a long time before the perceptual choice at the end of the 

trial. Furthermore, the early onset of these effects suggests these neural 

correlates are not related to the perceptual decision.  

Supporting this, past work specifically aiming to dissociate neural correlates 

related to sensory processing from those related to perceptual decisions has 

shown that these two processes have different temporal profiles. For example, 

Mostert et al., (2015) showed that sensory information was encoded from 

130 ms, while decision related processes emerged later from 250 ms to 600 ms. 

Wyart et al., (2012) found similar results, showing sensory correlates peaked 

around 120 ms while perceptual decision correlates emerged around 300 ms. In 

our case, we speculate that the early onset of our effects (i.e. all our effects 

emerged before 300ms) suggest that perceptual weights are adjusted on each 

trial individually at early sensory stages to allow the information to be used in 

the later perceptual decision. What remains unclear is whether these perceptual 

weights are adjusted on each trial individually and in response to the 

experienced sensory reliabilities, or whether they are at least in part already 

established based on task-context in a predictive manner even before stimulus 

onset. Future work is required to elucidate the precise neural correlates of these 

perceptual weights, and examine how different brain regions contribute to 

establishing the perceptual integration process. 
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Localising these Effects in Space and Time 

Finally, the temporal organization and localisation of the reliability and 

perceptual weighting effects in three clusters showed distinct patterns of 

topographies and neural sources. At the earliest window (84 ms to 132 ms), 

effects of sensory reliability and perceptual weights were associated with 

occipital scalp topographies and source activity emerging from early visual and 

temporal areas. At the slightly later time point (starting at 156 ms to 228 ms), 

effects were associated with activity over central electrodes (consistent with 

activations including prominent contributions from auditory cortex) and source 

activity from temporal and parietal regions. Finally, at the latest window 

(252 ms to 288 ms), effects were associated with activity over posterior and 

central regions, and again source activity indicating a potential origin in 

occipital and temporal regions. While the source localization of the relevant EEG 

components was quite distributed, our results fit with the notion that earliest 

effects arise from occipital sensory regions and are followed by activity in the 

temporal and parietal lobe. 

This evolving pattern of activation demonstrates early sensory and parietal 

regions encode sensory cues and represent the integrated evidence weighted by 

the relative reliability. This complements existing findings from fMRI work which 

have shown multisensory interactions occurring along primary sensory and 

parietal areas in response to changing reliability. For example, Helbig et al., 

(2012) found that BOLD responses in both primary somatosensory and the 

superior parietal lobe increased when visual reliability decreased during a visual-

tactile task. Beauchamp et al., (2010) demonstrated that the strength of 

functional connections increased between somatosensory and intraparietal 

sulcus (IPS) for reliable somatosensory stimuli, but increased between visual and 

IPS for more reliable visual stimuli. Finally, Rohe & Noppeney (2015a, 2016) 

showed that primary sensory areas encoded the spatial location of cues during 

an audio-visual task, while early parietal areas (IPS1-2) represented the 

reliability weighted signals. Taken together with the prior literature, our results 

support the idea that sensory reweighting is an evolving and hierarchical 

process, with multisensory interactions emerging along the sensory pathway in 

primary sensory and parietal areas. Yet our results add a temporal dimension to 

these processes and demonstrate that effects related to external sensory 
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reliability and perceptual weighting emerge at slightly different times and from 

distinct brain regions. 

Chapter 3: Summary 

This chapter has presented results showing that neural correlates of sensory 

reliability and perceptual weights at multiple times, early during a trial. This 

was achieved using single-trial, time-resolved analysis of neural and behavioural 

data, thereby stepping beyond previous neurophysiological (Fetsch et al., 2012; 

Gu et al., 2008; Morgan et al., 2008) and neuroimaging studies (Beauchamp et 

al., 2010; Helbig et al., 2012; Rohe & Noppeney, 2015a, 2016). In addition, by 

dissociating the influence of sensory reliability on the representation of sensory 

information from perceptual weighting in EEG responses rather than 

demonstrating a simple modulation of evoked response amplitudes, we show 

that these early effects reflect sensory and computationally specific processes. 

Overall, these results provide the first insights into the temporal evolution of 

cue weighting in the brain, thus adding an important contribution to the field. 

Additionally, the results provide the first evidence from this thesis supporting 

the modern view that multisensory interactions can occur early and across 

multiple regions of the perceptual pathway, and showing that neural and 

behavioural signals can be linked in a meaningful way. 
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Supplementary Materials: Chapter 3 
 

 

 

 

 

 

 

Figure S3.2 | Neural Weights and Scalp Topographies. Weights and topographies underlying 
the six time epochs that showed a significant effect of reliability. Topographies marked with * 
represent R >0.6 and p<0.005 for correlations between scalp topographies. For each epoch the 
difference in neural weights (AVHAUD - AVHVIS) - (AVLAUD - AVLVIS) was calculated and correlated, * 
represent R>0.6 and p<0.001. 

 
 

 

 

 

Figure S3.1 | Performance and Perceptual Weighting across Days. A) Single-subject 
performance (overall performance score) on each experimental session. B) Single-subject auditory 
weight difference (auditory low – auditory high) on each experimental session. 
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Table S3.1 | Calibration Block Thresholds. AUD column contains overall auditory performance 
score (% correct). VH and VL columns contain threshold values (contrast value) for signal to noise 
ratio (SNR) for high and low reliability visual stimuli respectively. 
 

 

  

 Day 1  Day 2  Day 3  Day 4 

 AUD VH VL  AUD VH VL  AUD VH VL  AUD VH VL 

S01 83.1 26.2 14.5  80.2 34.3 12.7         

S02 92.0 32.6 10.2  97.1 51.1 27.4  98.3 33.4 10.9     

S03 78.3 74.2 20.8  96.6 70.1 22.3  98.3 29.5 12.4  90.2 76.0 23.8 

S04 93.3 25.6 12.7  75.0 11.8 9.4  91.6 59.1 19.6  96.6 80.0 29.5 

S05 86.7 25.3 10.9  80.0 89.0 22.0  95.0 70.0 19.0  90.0 56.2 13.3 

S06 88.3 33.1 13.3  93.3 37.0 20.5  85.0 29.2 16.0  95.0 82.0 11.5 

S07 98.3 64.3 18.4  94.2 84.0 19.6  100 40.0 11.2     

S08 76.7 15.3 11.1  73.3 25.6 10.0         

S09 86.6 33.1 10.6  88.3 70.0 40.0         

S10 76.6 71.6 11.8  66.6 12.7 8.4         

S11 71.6 13.9 7.0  91.6 87.0 25.0         

S12 85.0 48.4 23.2  91.6 65.8 18.7         

S13 85.0 78.2 13.3  73.3 22.6 7.0         

S14 98.3 25.0 11.5  100 40.6 11.8         

S15 73.3 47.2 13.6  88.3 71.0 16.0         

S16 85.0 71.0 29.8  81.6 25.0 10.3         

S17 90.0 70.0 19.6  88.3 10.3 4.0         

S18 98.3 73.7 16.3  97.6 43.9 16.9         

S19 83.3 25.6 14.0  90.0 81.0 17.8         

S20 84.3 12.6 6.0  85.0 41.2 19.6         
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Chapter 4 : Theta and Alpha Power are modulated 
by the Reliability of Sensory Information Early 
during Audio-visual Integration. 

Introduction 

Brain signals show rhythmic fluctuations. These fluctuations, known as “neural 

oscillations”, have been shown to underlie many perceptual and cognitive 

functions (Başar, Başar-Eroglu, Karakaş, & Schürmann, 2000; Buzsáki & Draguhn, 

2004; Siegel, Donner, & Engel, 2012), including multisensory perception. For 

example, low frequency activity delta (~1-4 Hz), theta (~4-8 Hz), alpha (~8-12 

Hz) and beta (~13-30 Hz) activity have been found during human audio-visual 

paradigms (Luo, Liu, & Poeppel, 2010; Senkowski, Molholm, Gomez-Ramirez, & 

Foxe, 2006; Thorne, De Vos, Viola, & Debener, 2011; Sakowitz, Schürmann, & 

Başar, 2000), as well as in direct neuronal recordings in animals studies (Kayser 

et al., 2008). High frequency (>30 Hz) gamma activity has been found in audio-

visual speech paradigms (Doesburg, Emberson, Rahi, Cameron, & Ward, 2008; 

Kaiser, Hertrich, Ackermann, & Lutzenberger, 2006; Kaiser, Hertrich, 

Ackermann, Mathiak, & Lutzenberger, 2004), audio-visual semantic matching 

tasks (Schneider et al., 2008), and in response to synchronous audio-visual 

stimuli (Bhattacharya, Shams, & Shimojo, 2002; Maier, Chandrasekaran, & 

Ghazanfar, 2008; Widmann, Gruber, Kujala, Tervaniemi, & Schröger, 2007; 

Yuval-Greenberg & Deouell, 2007). Some studies have even demonstrated 

activity in both high and low frequency bands co-occurring during audio-visual 

listening tasks (Sakowitz, Quiroga, Schurmann, & Basar, 2005) and audio-visual 

speech paradigms (Arnal et al., 2011). Oscillations are in fact such a pervasive 

finding in the multisensory literature that they have been proposed as the 

potential mechanism used by the brain to integrate and combine information 

across different modalities (Buzsáki & Draguhn, 2004; Engel et al., 2012; Fries, 

2005; Senkowski, Schneider, Foxe, & Engel, 2008).  

While the evidence strongly suggests that oscillations play an important role in 

multisensory perception, there is still no consensus on what role that is, and 

there are many multisensory process yet to be explored. For example, the role 

neural oscillations play in the process of “optimal integration” has not yet been 
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investigated. As introduced in Chapter 3, the optimal integration framework 

states that observers can arrive at the most precise final perceptual estimate by 

weighting sensory cues in proportion to their relative reliabilities. Using this 

strategy, more reliable sensory cues have a greater influence and lead to the 

most precise final perceptual estimate. In support of this, many behavioural 

(Battaglia et al., 2003; Butler et al., 2010; Fetsch et al., 2009; Helbig & Ernst, 

2007; Raposo et al., 2012; Sheppard et al., 2013), neuroimaging (Beauchamp et 

al., 2010; Helbig et al., 2012; Rohe & Noppeney, 2015b, 2016), and 

electrophysiological studies (Fetsch et al., 2012; Gu et al., 2008; Morgan et al., 

2008) have found behavioural and neural evidence of cue weighting, thus 

suggesting it is an important mechanism of multisensory integration. Given that 

both oscillations and optimal integration are cited as important mechanisms for 

sensory integration, an investigation of the role (if any) oscillatory activity plays 

in cue weighting could be fundamental to gaining a complete understanding of 

multisensory integration in the brain.  

To this end, in this study we investigated how oscillatory power was modulated 

by visual reliability during an audio-visual task. To do so, the EEG and 

behavioural datasets collected for Chapter 3 were re-analysed using a time-

frequency approach and combined with behavioural regression analysis to link 

changes in power to changes in behaviour. Based on the findings from Chapter 3 

(i.e. early onset effects) we hypothesised that any modulations in oscillatory 

power would occur early during the perceptual process. However, due to the 

literature showing oscillations in all bands emerging during audio-visual 

paradigms, we had no hypothesis about which frequency band would show 

modulations.  

Methods 

Stimuli, Participants, Task and EEG recording 

The stimuli, task, EEG recording and preprocessing settings were as described in 

Chapter 3. To avoid excessive repetition, this section will only provide details of 

the new analysis. For a detailed overview please refer to Chapter 3.  
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Behavioural Analysis 

Time-varying perceptual weights were calculated using the method described in 

Chapter 3. Please refer to “Chapter 3: Time Dependent Perceptual Weights”, 

and see “Chapter 3, Figure 3.2” for a visual overview of the analysis pipeline.  

Time-Frequency Analysis  

For each subject, time-frequency representations (TFR) were obtained using 

complex wavelet analysis alongside Hanning tapers (as implemented in the 

FieldTrip Toolbox, Oostenveld et al., 2011). TFR were calculated from -500 ms 

pre stimulus onset to 1200 ms post stimulus with a 50 ms sliding time window. 

Wavelet transforms (“mtmconvol” method) were calculated for all sensors in 1 

Hz steps for frequencies between 1Hz and 10Hz, 2 Hz steps from 12 Hz to 24 Hz, 

and 4 Hz steps from 26 Hz to 80 Hz. To account for temporal smoothing, the 

width of individual wavelets was scaled (5 cycles per time window) for all 

frequency bands. For higher frequencies (>26 Hz), frequency smoothing was also 

applied (0.4 Hz smoothing) to induce stronger smoothing at higher frequencies. 

This resulted in two separate TFRs, one for low frequency and one for high. 

These two TFR were then appended to create one power spectrum (for each 

subject), which was then normalised relative to a baseline period of -500 ms 

to -100 ms (baseline normalisation as implemented in Fieldtrip, with setting 

“relative” dividing the data by the mean of data in baseline interval). All 

resulting power spectra represent baseline-normalised relative power.  

Our main goal was to examine whether changes in visual reliability would 

modulate auditory power during audio-visual conditions. To do this, the 

individual subject power spectra were split into five different conditions based 

on reliability and modality: auditory (AUD), visual high (VH), visual low (VL), 

audio-visual high (AVH, where both the auditory and visual were highly reliable) 

and audio-visual low (AVL, where the auditory was of high reliability and the 

visual was of low reliability). Then the power related to the visual information 

was subtracted from each audio-visual condition separately using [AVH - VH] and 

[AVL - VL]). In theory, this subtracts all visual activity during audio-visual trials, 

and the remaining activity represents the auditory information elicited by audio-

visual stimuli during each level of reliability.  
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To examine how auditory power was modulated by visual reliability during audio-

visual trials, the two power spectra were tested against each other across 

subjects ([AVL - VL] versus [AVH - VH]). Statistical analysis was carried out using 

cluster based, non-parametric permutation analysis as implemented in FieldTrip 

(Maris & Oostenveld, 2007; Oostenveld et al., 2011). As our hypothesis was that 

modulations in relative oscillatory power would occur early during audio-visual 

integration, we set our time window of interest from 0 ms (stimulus onset) to 

300 ms (the epoch during which effects of cue weighting emerged in Chapter 3). 

We had no a-priori hypothesis as to which frequency bands (if any) would show 

effects; consequently, we tested for effects in four separate frequency bands, 

defined here as: theta (4–8 Hz), alpha (8–12 Hz), beta (14–32 Hz), and gamma 

(30–50 Hz). For each comparison, frequencies within each band were averaged 

over and all time points and all electrodes were tested. Neighbouring electrodes 

were defined using a custom template based on Biosemi 64-channel layouts. For 

all comparisons, a dependent samples t-test was used, with significance level set 

to alpha = 0.025 (to control for the two sided test). Correction for multiple 

comparisons was performed using 1000 permutations, minimum cluster channel 

of 2, and the Monte Carlo method as implemented in Fieldtrip.  

Finally, we examined the relationship between behavioural and oscillatory 

modulations. To do so, the power within each cluster showing significant effects 

was extracted and averaged over the significant frequency bands, time points, 

and electrodes for each reliability condition separately ([AVH - VH] and [AVL - 

VL]). This resulted in two power values for each subject (one in each reliability 

condition). Perceptual weights were averaged over the time windows of the 

significant clusters in the same manner as the oscillatory power for each 

reliability condition separately, resulting in two perceptual weight values for 

each subject.  

Finally, the difference between high and low reliability trials 

([AVL - VL] - [AVH - VH]) was calculated for power and perceptual weights for 

each individual subject separately, and the correlation between the two (power 

and perceptual weights) across subjects calculated using spearman-rank 

correlation analysis.  
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Results 

Figure 4.1 shows the group-averaged power difference in auditory activity during 

high reliability audio-visual trials, relative to low reliability audio-visual trials (as 

calculated using [AVL - VL] – [AVH - VH]), for each frequency band separately 

(see Supplementary Figure S4.1 for individual power spectrums). Visual 

inspection of these power spectra indicated potential differences in theta, 

alpha, and beta power between reliability conditions. In the theta band, there 

appeared to be a fluctuation from lower power early in the trial to higher power 

later in the trial during audio-visual conditions when visual reliability was low, 

relative to trials where visual reliability was high. This was evidenced by 

negative values during the first half of the trial and positive values in the later 

half (as the difference is calculated as low reliability minus high reliability). In 

the alpha band it appeared there was higher power over frontal electrodes early 

in the trial for audio-visual trials where visual reliability was low, relative to 

trials where visual reliability was high. Visually there appeared to be 

modulations in the relative beta and gamma power. To determine which (if any) 

of these effects were significant, we used cluster based permutation testing (see 

Methods).  

Figure 4.2 shows the t-value (top) topographies, raw effect (middle) 

topographies, and power signal over time (bottom) resulting from the cluster 

analysis of the theta time-frequency representations. There were two clusters 

where relative auditory power scaled significantly with visual reliability during 

audio-visual trials. The first emerged in the theta band (averaged 4-6 Hz) over 

fronto-central electrodes, from stimulus onset to 150 ms (Figure 4.2A, cluster 

based permutation test, t(19) = -73.7835, p = 0.011). Specifically, at this epoch 

there was significantly lower theta power in the audio-visual condition where 

visual reliability was low, relative to the audio-visual condition where visual 

reliability was high. The second significant cluster emerged later in from 252 ms 

to 300 ms in the alpha band (averaged 10-12 Hz), again over fronto-central 

electrodes (Figure 4.2B, cluster permutation tests, t(19) = 19.714, p = 0.021). 

This time, there was significantly higher alpha power in the audio-visual 

condition where the visual reliability was low, relative to the condition where 

visual reliability was high. We found no significant beta or gamma activity, and 

therefore excluded it from further analysis (cluster randomisation tests p>0.05). 
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Figure 4.1 | Auditory Power Scaling with Visual Reliability. Each plot shows the grand average 
(n = 20) of the difference in auditory power elicited during audio-visual trials, relative to stimulus 
reliability. This is calculated as: [AVL - VL] - [AVH - VH]. For each individual plot, the data is 
averaged over the frequency band (see Methods for specification of bands). All plots shows the 
power difference spectra [AVL - VL] – [AVH - VH] for theta (top left), alpha (top right), beta (bottom 
left) and gamma (bottom right). Y axis in all graphs indicates arrangement by electrode row: frontal 
electrodes at top of y axis, posterior electrodes at bottom of y axis (see Supplementary Figure S4.2 
for row positions). Positive values indicate there is higher (relative to baseline) relative power for 
the condition where visual reliability was low. Negative values indicate there is higher (relative to 
baseline) power for the condition where visual reliability was high. Colorbars represent the 
difference in baseline normalised power (relative power) (note different colorbar scales for each 
plot). Stimulus stream onset occurred at 0 and offset at 900 ms. 
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Figure 4.2 | Significant cluster differences. Cluster permutation tests revealed significant relative 
differences in the theta (left) and alpha (right) power related to auditory activity, depending on 
visual reliability ([AVL - VL] vs [AVH - VH]). (A) Scalp topography shows t-values (top) and raw 
effect (middle) for theta power averaged over the significant time window (0 to 150 ms). Electrodes 
showing significant differences are highlighted by white circles. For theta, these are: AFz, Fz, F1, 
F3, FC, FC3, F7, TP7. For alpha, these are: AF7, F7, F5, F3, F1, F2, FC1. (A) (bottom) shows the 
group averaged theta power for each reliability condition separately for an early time window during 
stimulus presentation. (B) Shows the same as in (A) for the alpha power (significant time window: 
252 ms to 300 ms). 
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Figure 4.3 | Behavioural and Neural Relation. (A) Theta power was averaged across frequency 
(4-6Hz), time (0:150 ms) and electrodes (see Figure 4.2) of the significant cluster. (A, top) shows 
the decrease in auditory perceptual weights from high reliability (AVH) to low reliability (AVL) during 
the time window of significant theta power change (0 to 150 ms). Auditory perceptual weights were 
averaged across the time window for each subject individually. (A, middle) shows the theta power 
in audio-visual high (AVH) and audio-visual low (AVL) reliability conditions during the same time 
window. (A, bottom) shows the relation between these averaged perceptual weight and theta 
power values. Panel (B) shows the same as (A) for perceptual weights (top), alpha power (middle), 
and relationship between the two (bottom) the time window of significant alpha change (252 ms to 
300 ms). Note: these plots contain the relative difference in auditory power between visual 
reliability conditions during audio-visual trials ([AVL - VL] - [AVH - VH]) (with power relative to 
baseline). 
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Figure 4.3 shows the perceptual weight change (top row), power change (middle 

row), and correlation between power and perceptual weights (bottom row) in 

each reliability condition (AVH and AVL), for theta (Figure 4.3A) and alpha 

(Figure 4.3B) separately. During the epoch theta power was modulated by visual 

reliability (0 to 150 ms) auditory perceptual weights significantly increased 

(median auditory weight AVH = 4.608, t(19) = -2.889, p = 0.009, effect size 

= -0.396).  

During the epoch alpha power was significantly modulated by visual reliability 

(252 ms to 300 ms), again auditory perceptual weights significantly increased 

(median auditory weight AVH = 16.616, AVL = 17.291; t(19) = -2.4644, 

p = 0.0234, g = -0.227). However there was no significant correlation between 

power change and perceptual weight change for either theta or alpha (theta: 

r = 0.03, p = 0.8; alpha: r = 0.23, p = 0.33). Taken together, these results 

demonstrate that early in the trial (<300 ms), increases in auditory perceptual 

weights emerge at the same time as lower theta power and higher alpha power 

as a result of reduced visual reliability. However, the relationship between the 

two needs further investigation. 

Discussion 

In the present study we examined how oscillatory activity was modulated by the 

reliability of sensory information during an audio-visual rate discrimination task. 

Our results revealed lower theta power and higher alpha power emerged in 

conditions when visual reliability was low, relative to conditions when visual 

reliability was high. These modulations emerged early in the trial (from stimulus 

onset to 300 ms) over fronto-central electrodes, and occurred alongside a 

significant increase in auditory perceptual weights. Together these results 

suggest a role for theta and alpha in sensory weighting, and provide the second 

set of results in this thesis demonstrating early multisensory effects emerging 

from the brain during audio-visual perception.   

As the behavioural aspects of sensory cue weighting have already been discussed 

in Chapter 3, the following section will concentrate on discussing the observed 

oscillatory power modulations and how they relate to cue reweighting.  
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Theta and Alpha: Audio-visual Processing 

Theta and alpha oscillations have been widely found in previous experiments 

investigating audio-visual processing. For example, a study by Sakowitz, Quiroga, 

Schurmann, & Basar, (2005), found that strong, early (<100 ms) fronto-central 

theta oscillations, and later (>200 ms) alpha oscillations emerged over fronto-

central regions during audio-visual trials, compared to unisensory auditory or 

visual trials. Based on the timing difference between the theta and alpha 

oscillations, the authors speculate that each frequency could underlie different 

stages of audio-visual perception in the brain. In our study, we found similar 

results as the Sakowitz et al,. (2005) study: in our work, theta and oscillatory 

activity emerged early and sequentially (<150 ms for theta, >250 ms for alpha) 

during audio-visual integration over fronto-central regions. Thus, our results 

provide support for their hypothesis that each frequency underlies a different 

stage of perception.  

Additionally, as we observed modulations in oscillatory power due to sensory 

reliability, we can add to this hypothesis by speculating that theta and alpha 

each reflect different stages of the cue weighting process during perception. 

Specifically, we speculate that that the early theta response (<150 ms) could 

represent encoding of sensory reliability while the later alpha (>200 ms) 

represents correlates of perceptual reweighting, or indeed may reflect the 

process of cue reweighting in the brain. This also echoes the findings of the 

previous chapter, which revealed that the earliest neural correlates underpinned 

the reliability of the sensory information (84 ms), while later components 

(120 ms and 204 ms) were related to perceptual weighting. Taking these results 

into account lends strength to our interpretation. However, it must be stressed 

that these results are speculative, and given that the changes we observed in 

power were not correlated with changes in behaviour, the modulations could 

just reflect degraded stimulus processing rather than a correlate of behavioural 

reweighting. More work investigating the neural oscillations underlying cue 

weighting is needed to shed more light on this interpretation.  
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Theta and Alpha: Multisensory Attention and Inhibition 

Theta and alpha have also been found in studies investigating multisensory 

attention. For example, a study by Keller, Payne, & Sekuler, (2017) examined 

oscillatory patterns during an audio-visual oddball task where subjects had to 

divide attention between the two streams. The results showed that fronto-

central theta was stronger in the audio-visual divided attention condition 

compared to the non-divided condition. This finding was replicated in a follow 

up experiment (Keller et al., 2017). Together, these findings strongly suggested 

that theta plays a prominent role in attention to multisensory stimuli.  

Alpha has also often been linked to attentional processes (Klimesch, 

Doppelmayr, Russegger, Pachinger, & Schwaiger, 1998; Klimesch, 2012; 

Rohenkohl & Nobre, 2011; Thut, Nietzel, Brandt, & Pascual-Leone, 2006). 

Specifically, studies have shown increased alpha activity in preparation of 

attention (Worden, Foxe, Wang, & Simpson, 2000) and as a result of directed 

attention early after stimulus onset  (Yamagishi et al., 2003). Complementary 

findings of other studies have shown that an increase in alpha power occurs in 

response to attentional shifts away from visual stimuli (Sauseng et al., 2005; 

Thut et al., 2006; Yamagishi, Goda, Callan, Anderson, & Kawato, 2005). 

Together, these results show increased alpha accompanies directed attention 

towards one modality.   

In terms of linking such effects to our results, we can interpret the lower theta 

observed in low visual reliability conditions as an indicator of less divided 

attention (as in Keller et al., 2017), and higher alpha power in low visual 

reliability conditions as a result of directed attention (as in Sauseng et al., 2015; 

Thut et al., 2006). This interpretation fits in well with our experimental design, 

as the initial lower theta power in conditions where auditory reliability was high 

and visual reliability was low could reflect the initial decreased need for divided 

attention as a result of less reliable visual stimulus. Similarly, the higher alpha 

power seen in the same conditions (high auditory reliability, low visual 

reliability) could reflect a shift towards increased focused attention on the more 

reliable auditory stimulus. Both of these modulations in power also coincide with 

a shift towards increased auditory weighting and decreased visual weighting as a 
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result of changing stimulus reliability. Together, this is one interpretation of our 

results that fits with the findings of the attention literature.  

Related to this, alpha has also been implicated as an inhibition mechanism by 

which task-irrelevant or unattended stimuli are suppressed (Foxe & Snyder, 

2011; Händel, Haarmeier, & Jensen, 2011; Jensen, Bonnefond, & VanRullen, 

2012). For example, Payne et al., (2013) found consistent alpha power when 

subjects were instructed to ignore a visual stimulus, and this alpha power was a 

good predictor of accuracy recall for the auditory stimulus. They concluded that 

alpha power was therefore related to the suppression of the visual stimulus. In 

another study, Keller et al., (2017) showed alpha oscillations persisted during 

the presentation of auditory stimuli, but not visual. Consequently, they 

speculated this was because participants were suppressing the visual fixation 

cross, in order to divert attention to the auditory stream. Two other studies 

(Foxe, Simpson, & Ahlfors, 1998; Worden et al., 2000) found results that support 

this suggestion, revealing that alpha oscillations act as an anticipatory 

mechanism for suppressing distracting visual information. Fu et al., (2001) 

extended this work to a crossmodal task, and found significantly higher alpha 

emerged when subjects were cued to attend to the auditory modality. Again, 

this suggested that alpha oscillations may serve to suppress visual attention 

during multisensory integration. Finally, alpha has even been found to show a 

causal relationship with visual stimuli suppression. Romei, Gross, & Thut, (2010) 

used TMS to stimulate within the alpha frequency range, and showed directly 

that the visibility of visual targets was significantly impaired as a result. This did 

not occur with stimulation in the theta and beta band. This strongly suggests a 

causal role for alpha in visual suppression.  

In terms of our results, alpha being associated to visual stimulus suppression fits 

with our above interpretation that theta and alpha activity represent the 

decreased need for divided attention and directing of attention towards the 

auditory modality when visual reliability is low. However, we would need to 

modify the interpretation slightly: instead of alpha power representing diverted 

attention away from the visual towards auditory, it may specifically represent 

suppression of attention to the visual stimulus, which results in the directed 

auditory attention. One could thus assume that the modulation in alpha power 

we see results from a brain process that suppresses the visual information when 
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it is of low reliability, in order to place greater emphasis on the more reliable 

auditory information and generate a more accurate perception.  

However, while this interpretation of increased alpha being involved in attention 

and suppression fits nicely with our results, it is difficult to tease apart whether 

the modulations we see in the alpha band are related to attention directed 

towards the auditory stimuli, suppression of the visual stimuli, or both. 

Furthermore, the literature is complicated by the findings of other studies that 

show attention is associated with modulations in power in all frequency bands 

and that conclude attention cannot be related to any single frequency band (Fan 

et al., 2007). Thus, more work is required to dissociate the role of alpha in 

auditory attention and visual suppression.  

Theta and Alpha: Memory  

Finally, theta and alpha have been implicated in memory processes. In one 

study, Jensen & Tesche, (2002) asked subjects to retain lists of numbers of 

varying length (1,3,5 or 7 numbers), and found that frontal theta power 

increased as memory load increased. In another study, Meltzer et al., (2008) 

analysed oscillatory activity recorded from intracranial recordings during a 

memory task, and showed increases in theta and alpha occurring over midline 

frontal electrodes, as well as decreases in both bands occurring over occipital 

cortex, frontal and parietal regions in response to increasing memory load. 

Finally, in a combined fMRI-EEG study, Scheeringa et al., (2008) showed 

posterior alpha and frontal theta increased with increases in working memory 

load. Taken together, the findings of these studies (and others, e.g. 

Raghavachari et al., 2001; Roux & Uhlhaas, 2014) point towards a role of theta 

and alpha in working memory maintenance. Again these findings from the field 

tie in with our paradigm, as in our experiment, there was a memory component; 

subjects had to compare the stimulation rate of two sequentially presented 

stimuli streams. Thus, it could be that the observed modulations in theta and 

alpha oscillatory power relate to task related memory processes rather than 

sensory processing. For example, it may be that subjects find low reliability 

stimuli harder to remember than the salient, high reliability stimuli, and this is 

reflected in modulations in the power of oscillatory activity.  
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However, we feel that this interpretation is the least likely of the potential ones 

presented above, for two reasons. First, in terms of working memory load, 

subjects were not required to remember how many stimuli were presented in a 

trial, rather they were only required to judge which stream (out of two) 

flickered at a higher rate. Additionally, in our experiment there were easy trials 

(8 and 14 Hz compared to 11Hz) and hard trials (10 and 12 Hz compared to 11Hz) 

but they were all of equal length (900 ms). Thus, while there were differences in 

task difficulty, there were not differences in overall working memory capacity as 

the stimuli were all of equal length regardless of rate. Together these reasons 

make it probable that memory load did not play a role.  

Secondly, our results showed significant differences evident from stimulus onset 

but only until 300 ms; if theta and alpha modulations were related to 

maintaining a representation of the stimulus rate, and these varied with 

reliability, we expect we would see modulations in power emerge throughout 

the entire trial (which was 900 ms long). As this was not the case, it suggests 

that the significant modulations in theta and alpha seem are not due to memory 

processes. However, future work on this dataset could explore the neural 

oscillations underlying each rate presented to examine for differences based on 

increasing number of stimuli to be retained. While beyond the scope of this 

chapter, this proposed analysis provides an interesting starting point for future 

work.   

Overall, the broad range of processes to which theta and alpha have been linked 

makes it difficult to conclusively assign a functional process to our results. In 

addition, there are different aspects of the time-frequency representation still 

to be investigated here, such as phase and cross frequency coupling. Future 

work could build on the findings here by such analyses on the dataset to examine 

the underlying effects in more detail. Yet, in line with the literature above, our 

speculation is that the relative lower theta power and higher alpha power we 

observed during conditions where visual reliability was low is tied to either 

sensory reweighting processes or attention, or a combination of both.  
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Chapter 4: Summary 

This chapter has presented results demonstrating that oscillatory activity is also 

modulated by sensory reliability at early points during a trial, and that 

modulations in oscillatory patterns occur simultaneously alongside behaviour. As 

in Chapter 3, this was achieved using single-trial analysis and the attempt to link 

neural signals to behaviour, rather than demonstrating a simple modulation of 

evoked response amplitudes in response to multisensory stimulation. Overall, 

the work presented in this Chapter provides the first insights into the oscillatory 

patterns underlying sensory cue weighting during audio-visual integration, and 

the results tie in with the existing literature as well as the results found in 

Chapter 3. This chapter also presents the second set of results showing early 

modulation of neural signals during multisensory perception, once again lending 

support to the modern view that the entire cortex is capable of multisensory 

processing.  
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Supplementary Materials: Chapter 4 

 

  

 

Figure S4.1 | Auditory Power Scaling with Visual Reliability for Individual 
Reliability Conditions. Each plot shows the grand average (n = 20) of the difference in 
auditory power elicited during audio-visual trials, relative to stimulus reliability. For each 
individual plot, the data is averaged over the frequency band (see Methods for 
specification of bands).  Y axis in all graphs indicates arrangement by electrode row: 
frontal electrodes at top of y axis, posterior electrodes at bottom of y axis (see 
Supplementary Figure S4.2 for row positions). Colorbars represent relative power 
(baseline-normalised power).  
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Figure S4.2 | Electrode Rows. All TFR plot Y 
axes are arranged according to the row layout 
above.   
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Chapter 5 : Neural Correlates of an Auditory 
Pitch - Visual Size Cross-modal Association 
Emerge Early during Perception 

Introduction  

While the brain predominately associates sensory cues based on their spatial or 

temporal congruency, it also embodies some more implicit cross-modal 

associations. For example, research has shown that human subjects often 

associate high pitched tones with small objects, and low pitched tones with 

large objects (Bien et al., 2012; Evans & Treisman, 2010; Gallace & Spence, 

2006; Mondloch & Maurer, 2004; Parise & Spence, 2008; Parise & Spence, 2009, 

2012). Similarly, high pitch tones are often paired with high elevations in space, 

while low pitched tones are paired with low elevations (Evans & Treisman, 2010; 

Melara & O’Brien, 1987; Roffler & Butler, 1968; Widmann, Kujala, Tervaniemi, 

Kujala, & Schröger, 2004). Although these two pairings are the most consistently 

demonstrated, many other associations have been found, including: brightness-

loudness (bright object-loud sound vs. dark object-quiet sound, Stevens & Marks, 

1965); pitch-brightness (high pitch-bright object vs. low pitch-dark object, 

(Mondloch & Maurer, 2004); pitch-angle (high pitch-sharp angle vs. low pitch-

obtuse angle, Parise & Spence, 2012); and pitch-spatial frequency (high pitch-

high spatial frequency vs. low pitch-low spatial frequency, Evans & Treisman, 

2010; Parise & Spence, 2012). Collectively, these interactions are known as 

“cross-modal associations”, with preferred pairings defined as “congruent” and 

non-preferred pairings defined as “incongruent”.  

Over the years, cross-modal associations have been examined in a variety of 

ways. Early studies used explicit paradigms, where subjects directly matched 

stimuli based on their preferred congruency (Kohler, 1929; Ramachandran & 

Hubbard, 2001; Stevens & Marks, 1965). In more recent years, studies focused on 

examining how stimulus congruency modulates behaviour using implicit 

paradigms. For example, spatial and temporal ventriloquist paradigms have been 

used to examine how cross-modal associations modulate task performance. In 

such paradigms, subjects are presented with two stimuli (one auditory, one 

visual) at either a spatial or temporal offset, and asked to judge the location or 
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timing of both stimuli. Associations between stimuli are then measured by 

examining the extent to which the perceived location of an auditory stimulus is 

affected by a spatially disparate visual stimulus (spatial ventriloquism), or the 

extent to which the perceived temporal rate or order of a visual stimulus is 

affected by a temporally disparate auditory stimulus (temporal ventriloquism). 

For example, Bien et al. (2012) demonstrated that the reported location of the 

auditory stimulus was “pulled” towards the visual stimulus location to a greater 

extent when the stimuli were congruent (high tone-small circle, low tone-large 

circle) compared to incongruent (high tone-large circle, low tone-small circle). 

Similarly, Parise & Spence (2008) used a temporal ventriloquist paradigm to 

show that subjects were better able to judge the temporal order in which two 

visual stimuli (small and large circle) had been presented, when the stimuli were 

paired with congruent auditory stimuli (high and low tones respectively), 

compared to incongruent auditory stimuli (low and high tones respectively).  

Reaction time can also be modulated by cross-modal congruency, as 

demonstrated by speeded classification paradigms. Such paradigms present 

subjects with two stimuli, and ask them to make a judgement about one 

stimulus as quickly and accurately as possible. Following the assumption that the 

simultaneous presentation of the stimuli provides behavioural facilitation (even 

if one stimulus is task irrelevant), compatible stimulus pairings should lead to 

shorter reaction times compared to incompatible pairings. Indeed, many studies 

have used these paradigms to present subjects with congruent or incongruent 

pairings of stimuli (as defined above), and have demonstrated that congruent 

pairings lead to shorter reaction times than incongruent pairings across a variety 

of stimulus combinations (pitch-size, Gallace & Spence, (2006); pitch-spatial 

position, Evans & Treisman, (2010); Rusconi et al., (2006); and pitch-spatial 

frequency, Evans & Treisman, (2010)).  

Interestingly, cross-modal congruency can modulate reaction times even when 

only one stimulus is presented on a trial. In a recent study, Parise & Spence 

(2012) used a version of the Implicit Association Test (IAT, Greenwald, McGhee & 

Schwartz, 1998) to test for cross-modal associations. The IAT is a computer task 

designed to measure associations between stimuli via stimulus-response key 

mapping. The main assumption of the IAT is that if an association exists between 

two stimuli, response times should be faster when these associated stimuli are 
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assigned to the same response key as compared to when they are assigned to 

different response keys (Greenwald, McGhee, & Schwartz, 1998). Importantly, 

this modulation of reaction times should occur even when only a single stimulus 

is presented per trial. Using this measure, Parise & Spence (2012) demonstrated 

that response times were faster when congruent pairings of stimuli were 

assigned to the same response key, compared to when incongruent pairings 

were, across a variety of audio-visual stimulus combinations. Given that these 

findings were observed even when only one stimulus was presented per trial, 

and when no explicit reference to the pairings of the stimuli were involved in 

the task, the results suggest that cross-modal associations emerge implicitly at 

an early stage of perception, rather than a later, explicit decision related stage. 

However, what stage or perception these associations emerge at is still a source 

of much debate (for review, see Spence & Deroy, 2013).  

One way to shed light on this issue of when cross-modal associations emerge is 

to examine the underlying neural signals. One study by Bien et al., (2012) used 

electroencephalography (EEG), transcranial magnetic stimulation (TMS), and a 

spatial localisation task to examine an auditory pitch-visual size association.  

They found that parietal and frontal ERP components were modulated by cross-

modal congruency early in the trial (around 250-300 ms), and demonstrated that 

applying TMS over parietal cortex — an area known for multisensory processing 

(Matsuhashi et al., 2004; Molholm, 2006; Pasalar, Ro, & Beauchamp, 2010) — 

could abolish the association. Similarly, Kovic, Plunkett, & Westermann, (2010) 

found early ERP effects at occipital (~140 ms) and parietal (~340 ms) sites were 

sensitive to the learned congruency of an association between semantic 

(auditory) words and visual objects. Finally, Sadaghiani, Maier, & Noppeney, 

(2009) used fMRI to demonstrate that associations between auditory and visual 

motion signals emerged in motion areas, whereas higher-level speech-motion 

associations emerged in fronto-parietal areas. The conclusions of each study 

generally converged: Bien et al., (2012) concluded their results depended on 

perceptual processes due to the early onset and abolishment of the effect via 

TMS over a known multisensory perceptual area. Kovic et al., (2010) concluded 

similarly, given the early onset of their results (i.e. during stimulus 

presentation). Sadaghiani et al., (2009) suggested that the origin of the effects 

depends on the stimulus: both perceptual level and higher-level associations 
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were demonstrated across the cortex but depended on the whether the 

association was between basic stimulus features, or a higher level semantic 

association. Overall, the conclusions made by the authors of these studies 

generally supported the early, perceptual origin of cross-modal association.  

However, these studies were limited in their ability to accurately determine the 

origin and timing of cross-modal associations, as they relied on few recording 

sites (Kovic et al., 2010), or sampled brain activity at low temporal resolution 

(Sadaghiani et al., 2009). Additionally, the studies relied on paradigms which 

required explicit matching, or where two stimuli are presented simultaneously 

(Bien et al., 2012). As a result, it remains unclear whether the behavioural 

effects seen were due to genuine cross-modal associations, or to confounding 

effects related to dual stimulus presentation (e.g. behavioural facilitation due 

simply to the presence of two stimuli) or decreased response time as a result of 

divided attention. Together, these factors make it difficult to draw clear 

conclusions about where and when brain activity reflects true cross-modal 

associations. 

In this study we addressed these questions by examining when effects of an 

auditory pitch – visual size cross-modal association emerged in neural signals. To 

do so, we used the modified version of the implicit association test (IAT) as in 

Parise & Spence (2012), combined with EEG based neuroimaging and two 

approaches to single-trial EEG analysis. Importantly, using the IAT overcomes all 

the methodological issues mentioned above: it presents only one stimulus per 

trial, thus avoiding attentional or multisensory confounds, and it manipulates 

congruency by changing the stimulus-response key mapping across blocks, thus 

avoiding explicit matching and subjective reports. Additionally, the presentation 

of only a single stimulus on each trial allows us to extract sensory-specific 

processes from brain activity and relate these to behaviour on a trial-by-trial 

basis.  

In line with previous IAT studies, we hypothesised that reaction times would be 

faster when congruent pairs of stimuli (high tone-small circle, and low tone-

large circle) were assigned to the same response key, compared to when 

incongruent pairs were (low tone-small circle, and high tone-large circle). 

However, in our study we restricted the stimulus-response manipulation to 
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auditory trials only, and held the assignment of the visual stimuli constant (see 

Methods). As a result, we hypothesised reaction times would be shorter for 

congruent auditory trials, but not congruent visual trials. We did not expect 

performance to be significantly modulated by congruency for two reasons: first, 

past work has typically shown no modulation of performance due to congruency 

(Parise & Spence, 2012). Second, the task was a simple, single stimulus 

identification task where there were only four repeating options, and so subjects 

could be expected to perform well. We had two hypotheses regarding the EEG 

data: a) that brain activity sensitive to the task-relevant sensory feature (e.g. 

acoustic pitch or visual size) should be modulated by congruency, and b) that 

these neural correlates sensitive to the cross-modal congruency should be 

predictive of subject’s single trial reaction times. Finally, we had no prior 

hypothesis as to when these effects would manifest during a trial or where they 

would localize. However, if implicit associations arise at an early perceptual 

level, one would expect their neural correlates to emerge with short latencies 

after stimulus onset, likely over early sensory areas. In contrast, if these 

associations arise at a decisional level, one would expect neural correlates to 

arise only later and potentially over associative and higher-order brain regions.  

Methods 

Subjects  

20 participants (13 females; age range 19-32) took part in the study. One 

subject’s data (S19) had to be discarded due to noisy EEG channels. All subjects 

reported normal or corrected to normal vision and normal hearing. Subjects 

were recruited via the University of Glasgow Subject Pool, and received £6 per 

hour for their participation. The study was approved by the local ethics 

committee (application number: 300130001, College of Science and Engineering, 

University of Glasgow) and conducted in accordance with the Declaration of 

Helsinki. 

Stimuli  

Stimuli were created and presented using MATLAB (MathWorks) and the 

Psychophysics Toolbox Extensions (Brainard, 1997). Visual stimuli consisted of 
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two light grey circles (‘small’ and ‘large’, 2cm and 5cm, 1.1 ° and 2.8 ° of visual 

angle respectively) presented for 300 ms atop a darker grey background (Figure 

5.1). Auditory stimuli consisted of two 300 ms pure tones (‘high’ and ‘low’ pitch, 

2000Hz and 100Hz respectively). The sound intensity of each tone was matched 

to 72 DbA SPL (left and right ear) using a sound level meter. Auditory stimuli 

were presented using Sennheiser headphones and visual stimuli were presented 

on a Hansol 2100A CRT monitor at a refresh rate of 85 Hz.  

Task 

The task was a modified version of the IAT (Greenwald, McGhee, & Schwartz, 

1998b), as used in Parise & Spence, (2012). As mentioned previously, the IAT 

measures implicit associations via manipulating stimulus-response key mapping, 

and assumes response times will be faster when associated pairs of stimuli are 

assigned to the same response key. In this modified version, on each block, one 

auditory and one visual stimulus were assigned to the left response key, and one 

auditory and one visual stimulus were assigned to the right (two stimuli per key, 

see Congruency section for assignment). Subjects were then presented with one 

stimulus per trial, and asked to identify which was presented as quickly and 

accurately as possible using the appropriate response keys. Implicit associations 

were measured via reaction time modulations.  

Congruency 

Congruency was manipulated by changing the stimulus-response key pairings 

across blocks (Figure 5.1). On congruent blocks the small circle and high tone 

were assigned to the left response key and the large circle and low tone were 

assigned to the right key On incongruent blocks the small circle and low tone 

were assigned to the left response key and the large circle and high tone were 

assigned to the right response key. Importantly, the auditory assignment 

changed across blocks, while the visual assignment always remained fixed. In 

total, subjects completed 8 blocks (4 congruent and 4 incongruent presented in 

a randomised order) for a total of 1280 trials (160 trials per block, 40 trials for 

each stimulus type). 
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Figure 5.1 | Task. Subjects were presented with one stimulus on each trial and had to indicate 
which stimulus was presented as quickly and as accurately as possible using the left and right 
response keys. On each block, the assignment of visual and auditory features to the two 
response keys was manipulated (left, congruent pairings; right, incongruent pairings). 

 

Procedure  

The experiment was carried out in a dark and electrically shielded room. Each 

block began with instructions on the mapping between stimuli and response keys 

(see Congruency). Subjects were given as much time as they needed to 

memorise the instructions for the upcoming block. Each trial started with a 

fixation cross presented centrally for a randomised period (uniform distribution 

in 500 to 1000 ms). Then one of the four stimuli (see Stimuli) was selected 

randomly, and presented for 300 ms (Figure 5.1). Subjects had to respond as 

quickly as possible using the left and right keyboard keys, as defined by the 

block instructions (see Congruency). Subjects always responded using their right 

hand. Feedback was provided after each trial (green fixation cross for correct 

answers, red fixation cross for incorrect answers) for a randomised duration 

(uniform distribution from 300 ms to 600 ms). 

EEG Recording and Preprocessing  

EEG data was recorded using a 128-channel BioSemi system and ActiView 

recording software (Biosemi, Amsterdam, Netherlands). Signals were digitised at 

512 Hz and band-pass filtered online between 0.16 and 100 Hz. Signals 

originating from ocular muscles were recorded from four additional electrodes 

placed below and at the outer canthi of each eye.  

Data from individual subject blocks were preprocessed in MATLAB using the 

FieldTrip toolbox (Oostenveld et al., 2011) and custom scripts. Epochs of 2 
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seconds (-0.5 to 1.5 seconds relative to stimulus onset) were extracted and 

filtered between 0.5 and 90 Hz (Butterworth filter) and down-sampled to 200 

Hz. Potential signal artefacts were removed using independent component 

analysis (ICA) as implemented in the FieldTrip toolbox (Oostenveld et al., 2011), 

and components related to typical eye blink activity or noisy electrode channels 

were removed. Horizontal, vertical and radial EOG signals were computed using 

established procedures (see Chapter 2, Preprocessing section and Hipp & Siegel, 

2013; Keren, Yuval-Greenberg, & Deouell, 2010) and trials where there was a 

high correlation between eye movements and components in the EEG data were 

removed. Remaining trials with amplitudes exceeding ±120 µV were also 

removed. Successful cleaning was verified by visual inspection of single trials.  

Analysis Methods 

Analysis of Behavioural Data 

For each subject, overall performance (proportion correct) and median reaction 

time (RT) were calculated separately for each modality and congruency. Trials 

with very fast (<300 ms) or slow (>1200 ms) responses were excluded (in line 

with Parise & Spence, 2012). Both RT and performance scores were submitted to 

Wilcoxon Signed rank tests for analysis (see Statistics). All reported RTs are 

calculated with respect to stimulus onset.  

Analysis of EEG: Linear Discriminant Analysis 

We used single-trial, multivariate linear discriminant analysis (Parra et al., 2005; 

Philiastides et al., 2014; Sajda et al., 2009) to extract discriminant components 

related to stimulus type, for each modality separately (high versus low pitch; 

small versus big circle). Prior to analysis, the data was band-pass filtered 

between 1 and 30 Hz. Classification was based on regularised Fisher’s linear 

discriminant analysis (Philiastides et al., 2014), and was applied to the EEG 

activity in sliding time windows of 30 ms, at each 5 ms time point in the window 

from -300 ms pre-stimulus onset to 1 second post stimulus onset. The 

discriminant output (Y) was always aligned to the onset of the 30 ms window. 

Classification performance (Az) was determined using the receiver operator 

characteristic (ROC) and 10 fold cross-validation along with randomisation 
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testing (see Statistics). Scalp topographies showing the normalised correlation 

between the discriminant output and the EEG activity were estimated via a 

forward model (Philiastides et al., 2014). 

To assess how these neural correlates of sensory evidence were modulated by 

congruency, the discriminant output (Y) for congruent trials was compared to 

that for incongruent trials using a cluster randomisation technique (see 

Statistics). We used linear regression to investigate whether the information 

contained in the discriminant component (Y) was predictive of behavioural 

reaction times. As we were interested in whether the quality of the sensory 

information reflected by the EEG component (i.e. the distance from zero, 

regardless of sign) was predictive of auditory reaction times, the discriminant 

output (Y) was flipped for trials that had been assigned to a negative value 

during classification (e.g. stimulus labels assigned to 0 were multiplied by -1). 

The discriminant output (Y) for each trial was then regressed against individual 

subject reaction times at each time point during the trial. Significance levels for 

both congruency and regression analyses were calculated using a cluster 

randomisation technique (see Statistics).  

Analysis of EEG: Mutual Information 

To assess how robust our effects were, we performed a complementary analysis 

based on mutual information (MI) (Gross et al., 2013; Ince, Jaworska, et al., 

2016; Keitel et al., 2017). MI can be thought of as a likelihood ratio test for 

dependence between two variables of interest (e.g. between stimulus type and 

EEG, or between EEG and reaction times). A particular advantage of MI is that 

provides a common meaningful effect size scale (bits) across a wide range of 

statistical tests (Ince, Giordano, et al., 2016).    

We calculated MI using a semi-parametric estimator: Gaussian Copula Mutual 

Information (GCMI) (Ince, Giordano, et al., 2016). This provides a data-efficient 

and robust lower bound approximation to MI by modelling the dependence 

between the variables with a Gaussian copula. However, no assumption is made 

on the marginal distributions of the variables. To allow direct comparison of the 

results obtained from MI analysis and the linear discriminant analysis, we follow 

the same pre-processing steps described in the previous section. EEG data were 
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band-pass filtered between 1 and 30 Hz, and then averaged in sliding windows of 

30 ms from stimulus onset to 545 ms post stimulus onset in steps of 5 ms (with 

the data aligned to the onset of the 30 ms window). For each sensor we 

calculated the single trial central finite difference temporal derivative of the 

filtered EEG signal. At each time point of each trial, we added this temporal 

derivate to the voltage to obtain a bivariate response. GCMI allows us to 

estimate MI using this bivariate response. When a biphasic evoked potential is 

modulated by an experimental condition, considering voltage alone can often 

result in a double peak statistical effect, because of the zero crossing where the 

modulation changes sign (e.g. at the zero crossing of an amplitude modulated bi-

phasic waveform). Since MI is an unsigned effect size this results in a two 

positive peaks, separated by a time period in which there is no significant 

effect. Including the EEG voltage and its instantaneous rate of change at each 

time point addresses this, since at the zero crossing ongoing modulation of the 

signal can be detected in the gradient. This gives a more balanced picture of the 

time window over which the EEG signal is modulated by the experimental 

condition (Ince, Giordano, et al., 2016). GCMI was computed between stimulus 

type (high/low tone and small/large circle) and the 2D EEG voltage response 

(EEG data, temporal derivative) for each modality, time point and electrode 

separately. Statistical significance was determined using randomisation analysis 

(see Statistics).  

To examine when this MI statistic was affected by cross-modal congruency, for 

each modality we compared MI values (about high/low tone and small/large 

circle) computed from the congruent trials to MI values obtained from the 

incongruent trials at each time point. Significant clusters were determined using 

a cluster randomisation procedure (see Statistics). To examine the relationship 

between neural activity and behavioural responses, the EEG data in these 

significant clusters was then averaged over all significant electrodes and a 30 ms 

epoch over the centre cluster peak. This shorter epoch was chosen as averaging 

EEG activity over long (>100 ms) windows can cause problems with biphasic 

evoked potentials due to cancellation of positive and negative periods of the 

signal. Based on our filtering parameters, we chose a 30ms window around the 

peak to reduce noise and avoid including periods of signal with different sign.  
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The resulting single-trial EEG data in these clusters was then regressed against 

the single-trial reaction times for each participant using multiple linear 

regression (with each cluster as a predictor). Significance was determined by 

applying a permutation based t-test across subjects on the group level regression 

weights for each time point, and significant clusters determined using a cluster 

randomisation technique (see Statistics).  

Statistics  

All Z values reported were generated from a two-sided Wilcoxon signed rank test 

after testing assumptions of normality (which did not hold). Effect sizes were 

calculated by dividing the Z value by the square root of N (where N = the number 

of observations rather than subjects, Rosenthal, 1994). P-values were checked 

for inconsistencies using the R software package “statcheck” (Nuijten et al., 

2016). 

Statistical significance of classification performance (Az) were determined by 

randomly shuffling the condition allocated to each trial 2000 times, computing 

the group averaged Az value (area under ROC curve, see Methods) for each 

randomisation, and taking the maximal Az value over time for each 

randomisation. This built a distribution of Az values from which we extracted the 

99th percentile. Because of the maximum operation, this provides a Family-Wise 

Error Rate (FWER) of p = 0.01, corrected for the multiple comparisons over time 

points (Holmes, Blair, Watson, & Ford, 1996; Nichols & Holmes, 2001).   

Significance for group-level effects of congruency on the discriminant output (Y) 

were obtained by comparing congruent and incongruent trials across subjects at 

each time point using a permutation based paired t-test across subjects (shuffled 

subject labels, 1000 permutations). Significant clusters were then determined 

using a cluster randomisation technique which compared the true t-value 

(resulting from comparing congruent to incongruent Y signals using true subject 

labels) to the shuffled t-value, based on a cluster threshold of t = 1.8 (p<0.05), 

maxsum cluster forming, minimum cluster size of 2, and cluster p-value = 0.05. 

Effect sizes were indicated as the equivalent r value that is bounded between 0 

and 1 (Rosenthal & Rubin, 2003). 
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Significance levels for the LDA regression analysis were generated by randomly 

shuffling the trial specific reaction times and performing the regression analysis 

between the decoding signal and reaction times 1000 times. Significance was 

determined by applying a t-test against zero across subjects on the group level 

regression weights for each time point, and significant clusters determined using 

a cluster randomisation technique, with cluster thresholds set as described 

above.  

Finally, statistical significance for the MI analysis was calculated using a 

randomisation test together with the method of maximum statistics (Holmes et 

al., 1996). For each time point, sensor, condition, and subject, GCMI was 

calculated 1000 times with permuted stimulus class labels. The maximum MI 

value over electrodes and time across permutations was calculated, and the 99th 

percentile used as the threshold for significance. MI values computed from 

congruent and incongruent trials were then compared at each electrode and 

time point using the same cluster randomisation technique (and settings) 

described above.  

Results 

Behavioural Results 

Figure 5.2 shows the behavioural results. In line with our hypothesis, median 

reaction times were shorter for congruent versus incongruent trials (auditory 

congruent to incongruent: 959 ms to 993 ms, visual congruent to incongruent: 

898 ms to 929 ms, calculated from stimulus offset). As expected, this difference 

was significant only for auditory stimuli (Wilcoxon sign rank tests: auditory, 

Z = -2.1328, p = 0.033, effect size = -0.3372; visual, Z = -1.14487, p = 0.127, 

effect size = -0.229). Performance score did not significantly differ between 

incongruent and congruent trials (Wilcoxon sign rank tests: auditory, median 

change congruent to incongruent, 94.3% to 94.1%, Z = -0.402, p = 0.688, effect 

size = -0.064; visual, median change congruent to incongruent, 97.4 % to 97.4%, 

Z = 0, p = 1, effect size = 0.002). 
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Figure 5.2 | Behavioural Results. (A) Median reaction time difference (Incongruent RT – 
Congruent RT) across all trials shown for each participant (grey circles). (B) Accuracy Difference 
(Incongruent – Congruent proportion correct). Asterisk (*) represents significant difference (p<0.05, 
Wilcoxon Signed Rank test). 

 

EEG Decoding  

Figure 5.3A displays the discriminant performance for auditory and visual trials. 

For auditory stimuli, significant performance emerged between 25ms after 

stimulus onset and 535 ms (Figure 5.3A, blue horizontal dotted line, cluster 

permutation test, p<0.01 Az value = 0.5387). The corresponding scalp models 

obtained from the correlation between the discriminant output and the EEG data 

(averaged over a 30 ms time window centred on the two classification 

performance peaks) revealed the strongest effects originated over posterior, 

central and temporal electrodes for both peaks (Figure 5.3A, topographical 

inserts, top row). These two topographies were very similar but of opposite sign. 

For visual stimuli, significant decoding performance emerged between 40ms 

after stimulus onset and 660 ms (Figure 5.3A, yellow horizontal dotted line, 

cluster permutation test, p<0.01 Az value = 0.5432). The corresponding scalp 

models (Figure 5.3A, topographical inserts, bottom row) showed strongest  
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correlations between the discriminant output (Y) and the EEG activity over 

posterior and frontal regions (for the first classification peak and second 

classification peak respectively). These results indicate that the linear classifier 

could identify EEG components carrying significant task-relevant sensory 

information, and that these components were different for auditory and visual 

trials.  

Figure 5.3B (left) shows the discriminant output (Y) for the auditory modality, 

separately for congruent and incongruent trials (with the signal Y flipped in 

order to map all trials to positive values, see Methods). For the auditory 

modality we found one cluster where the discriminant output (Y) was 

significantly different for congruent compared to incongruent trials (cluster 

randomisation test, cluster 1: t = 8.576, p<0.001, effect size = 0.4599). This 

emerged early in the trial, from 95 ms to 110 ms after stimulus onset, and 

revealed there was more information (i.e. higher value decoding signal) about 

stimulus type in the congruent signals compared to incongruent signals. The 

corresponding scalp topographies represent the raw EEG amplitude underlying 

this time window of interest, shown separately for congruent (Figure 5.3B, top 

row, left) and incongruent trials (Figure 5.3B, top row, right). These revealed 

Figure 5.3 | EEG Linear Discriminant Analysis. (A) Group averaged performance of a linear 
classifier discriminating between stimulus type (auditory: high vs. low tone; visual: small vs. large 
circle). Auditory classification performance shown in blue, visual classification shown in orange. 
Horizontal dotted lines represent the threshold for statistical significance (FWER p<0.01, blue for 
auditory, orange for visual). Vertical dotted line represents the last time point (545 ms) both auditory 
and visual discrimination are significant (used as a time window cut-off for following analysis). Scalp 
topographies display the forward models (correlation between discriminant output Y and underlying 
EEG activity) for a 30ms time window centred on each peak in classification performance (auditory 
first peak: 105ms, second peak: 180 ms; visual first peak: 170 ms, second peak: 235 ms). (B) Group 
averaged discriminant output (Y) for auditory trials separated by congruency. Black dots represent 
significant congruency effect (p<0.05, cluster randomisation test). Scalp topographies represent the 
group-averaged raw EEG activity underlying this significant time window of interest (averaged across 
time) for congruent and incongruent trials separately. Bottom scalp topography (group averaged, time 
window averaged, raw EEG data) shows the difference in raw EEG activity (Congruent – 
Incongruent) (C) Group averaged discriminant output (Y) for visual trials, separated by congruency, 
with significant time points again denoted with black circles. All scalp topographies as in (B), but for 
the first cluster showing significant differences in the visual modality. Note: we have only included the 
topographies underlying the first cluster here as this was the only one which occurred during stimulus 
presentation. To see scalp topographies for the final two significant clusters (cluster 2,3 occurring 
after stimulus offset), see Supplementary Figure 1. (D) Group-level regression weights (beta values) 
for the regression of single trial RTs against the discriminant output for auditory (left) and visual 
(right). Significant time points represented with black circles (p<0.05, cluster permutation test). In all 
figure panels, grey background represents the time period of stimulus presentation (0 ms to 300 ms). 
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similar activation patterns over posterior-temporal regions for auditory 

congruent and incongruent trials. However, examining the difference 

(congruent-incongruent) between these raw EEG topographies (Figure 5.3B 

bottom row) revealed positive differences over frontal, temporal and posterior 

regions.  

Figure 5.3C (left) displays the discriminant output (Y) for the visual modality, 

separately for congruent and incongruent trials (again, with the Y signal flipped 

to map all trials to positive values, see Methods). There were three clusters 

where the discriminant output was modulated by congruency. The first emerged 

from 220ms to 235ms (cluster randomisation test, cluster 1: t(18) = -7.761, 

p<0.001, effect size = 0.426). The corresponding scalp topographies displaying 

the raw EEG activity underlying this time window of interest revealed strong 

occipital activity for both congruent and incongruent trials (Figure 5.3C top row, 

left and right respectively). Examining the difference between congruent and 

incongruent trials revealed strong positive differences over frontal and temporal 

electrodes. The second cluster emerged after stimulus offset at 460ms to 465ms 

(cluster randomisation test, cluster 2: t(18) = 4.0906, p<0.001, effect size = 

0.441). At this cluster, there was strong negative activity over frontal electrodes 

for both congruent and incongruent trials (Supplementary Figure 5.1A, top row, 

left and right respectively). Examining the difference (congruent – incongruent) 

between these topographies showed a central effect (Supplementary Figure 

5.1A, bottom row). Finally, the third significant cluster which showed 

differences based on visual congruency occurred from 530ms to 545ms (cluster 

randomisation test, cluster 3: t(18) = 9.038, p<0.001, effect size = 0.480). This 

time, the cluster was associated with strong negative activity over frontal and 

temporal electrodes (Supplementary Figure 5.1B, top row, left and right 

respectively). Examining the EEG signal difference between congruency 

conditions again revealed a weaker positive difference over frontal regions 

between congruent and incongruent trials (Supplementary Figure 5.1B, bottom 

row).  

Figure 5.3D (left) displays the results generated from regressing the auditory 

decoding signal against auditory trial reaction times. Here we found that the 

discriminant EEG signals were significantly predictive of reaction times at two 

clusters during stimulus presentation: from 65 ms to 135 ms, and from 180 ms to 
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205 ms (cluster randomisation tests: first cluster, t(18) = 40.479, p<0.001, 

effect size = 0.541; second cluster, t(18) = 14.538, p<0.001, effect size = 0.504). 

Figure 5.3D (right) displays result from regressing the visual decoding signal 

against visual trial reaction times. Here, we found that visual discriminant 

signals were not predictive of reaction times at any point in the trial (cluster 

randomisation test, p>0.01).  

To summarise the LDA analysis, the results indicated possible differences in the 

contributions of EEG activity to sensory discrimination and congruency due to 

the varying time windows and locations of effects. They also demonstrated that 

congruency effects emerge early during the auditory trials (during stimulus 

presentation) yet later during visual trials (around stimulus offset and closer to 

the behavioural response). Finally, the results showed that auditory discriminant 

EEG signals are predictive of behavioural response times, whilst visual signals are 

not.  

Mutual Information 

Figure 5.4A shows the results from the mutual information analysis, for auditory 

and visual trials separately. For auditory trials, stimulus information (high/low 

tone) was represented in the EEG signal early in the trial, with significant MI 

values emerging from 50 ms to 245 ms after stimulus onset for the congruent 

trials, and from 70 ms to 230 ms for the incongruent trials (Figure 5.4A, blue 

horizontal dotted line, randomisation test, 99th percentile). This information was 

highest over posterior and temporal electrodes (Figure 5.4A, topographical 

inserts, top row). For the visual trials, stimulus information (small/large circle) 

was represented in the EEG signal early in the trial, with significant MI values 

emerging from 70ms to 545ms for congruent trials and from 60ms to 545ms for 

incongruent trials (Figure 5.4A, yellow horizontal dotted line, randomisation 

test, 99th percentile). This time, the highest information was centred over 

posterior electrodes (Figure 5.4A, topographical inserts, bottom row). Note that 

as MI is an unsigned quantity the signs of the values are different, but the spatial 

patterns obtained from the sensor-wise MI analysis are very similar to the 

absolute value of the patterns obtained through the LDA forward model (Figure 

5.3A).  
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Figure 5.4 | EEG Mutual Information Analysis. (A) Group level mutual information (MI) between 
EEG and stimulus type (auditory: high vs. low tone, visual: small vs. large circle) averaged over 
electrodes. Auditory MI shown in blue, visual MI shown in orange. Dotted lines show time windows 
where the MI for each condition was significant (blue dotted line = auditory significance, orange 
dotted line = visual significance). Scalp topographies (right) show the MI at peak time points for 
auditory (top row) and visual (bottom row) separately. (B) Congruency difference between 
congruent and incongruent auditory MI (averaged over trials and electrodes). Significant time 
points where there was a difference between congruent and incongruent MI represented with black 
circles (p<0.05, cluster randomisation test). Scalp topography (B, top row) shows MI underlying 
congruent (left) and incongruent (right) auditory trials underlying peak MI (averaged over 30ms 
around centre of peak MI difference). Scalp topography (B, bottom row) shows the MI difference 
(Congruent – Incongruent) for the three clusters where there was a significant congruency effect 
(again, topographies are activity averaged over 30ms around centre of each significant cluster). (C) 
Same as in (B), but for visual trials. (D) Regression weights (beta values) generated from 
regressing EEG activity against reaction time for the three clusters of interest for auditory (left) and 
visual (right) trials. Grey circles represent individual subject beta weights, and asterisks represent 
clusters where EEG activity significantly predicted reaction time. Again, in all panels grey 
background represents the time of stimulus presentation (0 ms to 300 ms). 

 

Figure 5.4B (left) displays the results from the congruency comparison for 

auditory trials, with congruent and incongruent trials shown separately. This 

revealed stronger MI between the EEG signal and stimulus for congruent 

compared to incongruent trials, emerging early in the trial. The scalp 

topographies show that the highest MI for both congruent and incongruent trials 

occurred over posterior and temporal electrodes (Figure 5.4A, topographical 

inserts, top row, MI averaged over a 30 ms time window centred on peak). 

Comparing MI values between congruent and incongruent auditory trials revealed 

three significant spatio-temporal clusters: one emerging from 65 ms to 145 ms 

over frontal electrodes (cluster randomisation test, cluster 1: t(18) = 160.1086, 

p =0.004, effect size = 0.4176), one emerging 65 ms to 195 ms over posterior 

electrodes (cluster randomisation test, cluster 2: t(18) = 180.649, p = 0.004, 

effect size = 0.4389), and one from 230 ms to 275 ms over temporal electrodes 

(cluster randomisation test, cluster 3: t(18) = -131.843, p < 0.001, 

effect = 0.4751). To avoid artifactual effects in the scalp topographies occurring 

a result of averaging over these long significant cluster time windows, we 

reduced the window length of the significant clusters to a 30 ms time window 

centred on each MI cluster (cluster 1 centre, 105ms; cluster 2 centre, 130ms; 

cluster 3 centre, 250ms). Figure 5.4B (topographical inserts, bottom row) 

displays the early differences found over frontal (left), temporal (middle), and 

posterior (right) electrodes for each shorter spatio-temporal cluster (Figure 

5.4B, topographical inserts, bottom row).  
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Figure 5.4C (left) displays the results from the congruency comparison for visual 

trials, with congruent and incongruent trials shown separately. Again, this 

revealed stronger MI between the EEG signal and stimulus for congruent 

compared to incongruent visual trials. The scalp topographies indicated that MI 

between the EEG signal and stimulus type was strongest over posterior 

electrodes (Figure 5.4C, topographical inserts, top row, MI averaged over a 30ms 

time window centred on peak). In contrast to the auditory modality, comparing 

congruent and incongruent visual MI revealed significant differences at two 

spatio-temporal clusters later in the trial: one from 220 to 365ms (cluster 

randomisation test, cluster 1: t(18) = 250.67, p <0.001, effect = 0.4848) over 

frontal and temporal electrodes, and one from 385 to 445ms (cluster 

randomisation test, cluster 2: t(18) = -99.309, p <0.001, effect = 0.4309) over 

temporal electrodes. As for the auditory, the time window for displaying each 

spatio-temporal cluster was again reduced to a 30 ms time window centred on 

each cluster which showed significant differences based on congruency (cluster 1 

centre, 290ms; cluster 2 centre, 415ms). Figure 5.4C (topographical inserts, 

bottom row) displays the differences found over frontal (left) and temporal 

(right) electrodes for each shorter spatio-temporal cluster. 

Finally, Figure 5.4D displays the results of the regression analysis between the 

EEG activity underlying the significant clusters and single-trial reaction times for 

auditory (left) and visual (right) separately. As a reminder, to calculate the 

regression weights we averaged the EEG activity over all significant electrodes 

(shown in Figure 5.4B and 5.4C, white circles) and over the shorter, 30ms 

windows centred over the cluster peaks (defined above) and regressed the 

activity in each cluster against behavioural reaction times. For auditory trials, 

this regression analysis demonstrated that the EEG in both the early frontal and 

later temporal cluster was predictive of reaction times (cluster 1: 90 ms to 

120 ms, t(18) = -4.3073, p = 0.00042, effect size = -0.988; cluster 3: 235 ms to 

265 ms, t(18) = -2.2979, p = 0.0338, effect size = -0.5272 for frontal and 

temporal respectively). However, auditory activity in the posterior cluster was 

not significantly predictive of reaction times (cluster 2: 115 ms to 145 ms, 

t(18), = 1.349, p = 0.194, d = 0.309). For the visual trials, the EEG activity in 

both the frontal and temporal clusters was not significantly predictive of visual 

trial reaction times.  
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To summarise, the MI analysis results indicated that the encoding of acoustic 

information was affected by congruency early in the trial, and activity over 

frontal and temporal electrodes was significantly predictive of reaction times at 

these early latencies.  In contrast, the encoding of visual information was 

affected by congruency only later in the trial over frontal and temporal 

electrodes, and this activity was not significantly predictive of reaction times.  

Consistency of Results 

Both EEG analyses revealed that the EEG signal contained information about 

stimulus type during stimulus presentation, with the highest information 

emerging over posterior and temporal regions for auditory trials, and over 

posterior regions for visual trials (see Figure 5.3A and Figure 5.4A). In both 

analyses, effects of stimulus congruency emerged early in the trial for auditory 

(Figure 5.3B and Figure 5.4B), and the strongest differences appeared over 

posterior, temporal and frontal regions. In both analyses, effects of stimulus 

congruency for visual trials emerged later in the trial with the strongest 

differences over frontal and temporal regions (Figure 5.3C and Figure 5.4C). 

Finally, both analyses demonstrated that neural activity was predictive of 

behavioural reaction time during stimulus presentation for auditory trials, and 

that neural activity underlying visual trials was not predictive of behavioural 

reaction time (see Figure 5.3D, Figure 5.4D). Overall, these similar findings 

across methods are encouraging, and demonstrate that our results are robust.  

Discussion 

In this experiment we examined the neural mechanisms underlying a cross-modal 

association between auditory pitch and visual size. To do so, we used an implicit 

association test (IAT) in combination with 128-channel EEG recording and two 

approaches to multivariate EEG analysis. In contrast to previous work using the 

IAT (Parise & Spence, 2012), we manipulated only the assignment of the auditory 

stimuli to response keys and held the visual stimulus-response key mapping 

constant. Consequently, we hypothesised that we would see an effect of 

reaction time based on perceived congruency for auditory trials only. As 

predicted, the behavioural data revealed that subjects responded faster on 

auditory congruent trials than incongruent trials, providing evidence for an 
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implicit association. From the EEG data we found that information about the 

stimulus could be extracted from the EEG activity during stimulus presentation 

for both auditory and visual trials, and that effects related to stimulus type were 

strongest over posterior and temporal regions for auditory, and posterior regions 

for visual. The results also revealed that auditory neural correlates were 

modulated by congruency early in the trial (<100 ms), and that these differences 

emerged from frontal, posterior and temporal regions. Visual neural correlates 

were modulated by congruency later in the trial (>250ms) over frontal and 

temporal areas. Finally, auditory activity underlying a congruency modulated 

representation of the auditory stimulus in frontal and temporal regions was also 

significantly predictive of single trial auditory reaction times, indicating that 

these activations reflect a neural correlate of the underlying perceptual 

association. In contrast, activity underlying a congruency modulated visual 

stimulus representation was not significantly predictive of visual reaction times. 

Importantly, these results were consistent across two separate analysis methods, 

showing our results are robust. As a result, our data provide support for cross-

modal associations as an early perceptual process that emerges at a sensory 

stage of perception, rather than a process having an origin during a later 

decision related stage.  

Effect of Cross-modal Congruency on Behaviour 

The behavioural results showed that subjects had faster reaction times for 

auditory congruent stimulus-response assignments than incongruent ones. This 

provides further evidence supporting the existence of an acoustic pitch – visual 

size cross-modal association, which has been reported in various experimental 

paradigms before (Bien, ten Oever, Goebel, & Sack, 2012; Evans & Treisman, 

2010; Gallace & Spence, 2006; Marks, Ben-Artzi, & Lakatos, 2003; Parise & 

Spence, 2008; Parise & Spence, 2009). More importantly, given our choice of the 

IAT, our behavioural results demonstrate that a cross-modal association between 

pitch and size arises can occur even when only a single stimulus is presented on 

a trial. This finding replicates the work using the IAT carried out by Parise & 

Spence (2012). Furthermore, as the IAT presents only one stimulus per a trial, it 

rules out the possibility that our effects are due to general multisensory benefits 

(i.e. due to spatial and temporal congruency), or to attentional differences 

caused by dividing attention between two stimuli.  
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Early Neural Correlates of Pitch-Size Association 

Our results revealed that auditory neural signals were modulated by the 

perceived congruency of sensory information early during the trial (<100 ms 

after stimulus onset), while visual trials were modulated later (>220 ms). The 

early onset of these results suggests that these implicit cross-modal associations 

arise at an early, perceptual stage rather than a later decision related stage. 

Supporting this interpretation, a recent study by Mostert, Kok, & de Lange, 

(2015) showed that decision related neural correlates can be dissociated from 

sensory related correlates by examining the temporal profile of each. Using 

MEG, two tasks (one sensory, one sensory and decision making), and a dual 

decoding approach, they demonstrated that sensory related processes emerged 

in occipital areas from 130 ms, whereas decisional related processes emerged 

later, around 250 ms. These timings are consistent with our work, with both 

auditory and visual modulations occurring earlier than 220ms after stimulus 

onset.  

Additionally, the timing of our results are in line with previous neuroimaging 

studies examining cross-modal effects in the brain. For example Kovic et al., 

(2010) found neural signals were modulated around 140 ms to 180 ms by 

congruency (sound-symbolic association), while Bien et al., (2011) found effects 

emerging at 250 ms. The short latency onset of these effects occurring in 

response to the presentation of two associated arbitrary stimulus properties led 

both sets of authors to conclude that these associations arise in the early stages 

of the multisensory integration process. These claims of cross-modal associations 

originating due to multisensory integration are in line with past work that has 

shown multisensory interactions occurring in neural signals at very short 

latencies after stimulus onset (Giard & Peronnet, 1999; Molholm et al., 2002; 

Sperdin et al., 2009). However, in our study the early modulations we observe 

cannot be due to multisensory integration, as on each trial only a single stimulus 

was presented. Instead, the modulations we see – while multisensory in nature – 

must rely on a different perceptual process. We suggest that the congruency 

effects we observed may be due to some form of top-down feedback influencing 

signals in the different modalities at an early stage during the perceptual 

process, or from some existing underlying mapping of a pitch-size association 

which automatically influences early sensory processing. In further support of 
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this, the early onset of our effects emerged during stimulus presentation, and at 

least 600 ms before any decisional response is made. This timing difference 

would appear to rule out explanations of the results in terms of decision related 

strategies. This evidence further strengthens our interpretation effects of a 

cross-modal association arise early during sensory processing rather than at a 

later decisional stage. 

We also observed that neural correlates of auditory congruency emerge early 

(<100ms) and are predictive of behavioural reaction times, while visual 

correlates emerged later (>200ms) and are not predictive of behavioural 

reaction times. This dissociation is interesting, given that we see an effect of 

congruency on behaviour for auditory trials, but not for visual trials. Together, 

this potentially indicates that the auditory modulations are more behaviourally 

relevant than the visual. A first potential explanation for this dissociation in both 

temporal profiles and predictive validity of the signals is that the auditory 

stimuli changes on a trial-to-trial basis, the encoding of congruency may have to 

be encoded early than the visual trials (which do not change). A second potential 

interpretation is that the auditory and visual neural correlates possibly relate to 

different underlying processes, which emerge with different temporal profiles 

(as in the Mostert et al., (2015) study mentioned above). Specifically, while 

neural signals are modulated by congruency regardless of modality, these 

modulations may only be behaviourally relevant and affect subsequent 

perceptual decisions if they occur early after stimulus onset. With regards to our 

results, the early auditory modulations could represent the updating of audio-

visual congruency (as the congruency of the auditory stimuli changed on a trial-

to-trial basis), whereas the visual modulations could represent a stable 

decisional related correlate based on visual congruency. The timing of the 

auditory (<100ms) and visual (>200ms) would also fit with the Mostert et al., 

(2015) study showing a dissociation between early perceptual related correlates 

(<100ms) and later decision related correlates (>200ms).  

A final interpretation of the early effect could relate to the nature of the 

association itself being environmentally relevant. For example, an acoustic 

pitch - visual size association reflects the natural properties of acoustic 

resonance in the world where larger objects resonate at lower frequencies than 

smaller ones. Other cross-modal associations, such as acoustic pitch – spatial 
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elevation, also rely on a strong environmental relationship: larger objects tend 

to be heavier and more likely to be found at lower elevations than smaller, 

lighter objects. Indeed, a recent study has even shown that both auditory scene 

statistics in sounds recorded from the natural world, and the filtering properties 

of the human ear also demonstrate a clear mapping between frequency and 

elevation; specifically, high-frequency sounds tended to originate from high 

elevation sources in natural auditory scenes, and sounds coming from low 

elevations had less energy than those coming from high elevations ( Parise, 

Knorre, & Ernst, 2014a). Given that such cross-modal associations reflect a 

naturally occurring link between stimuli, this could lead to a strong Bayesian 

prior on this relationship (de-Wit, Machilsen, & Putzeys, 2010; Huang & Rao, 

2011; Knill & Pouget, 2004). Future work could attempt to investigate such 

relationships between implicit cross-modal associations and prior probabilities of 

co-occurrence through experiments that manipulate the priors, or involve more 

arbitrary pairings of stimuli (e.g. colour and pitch).  

 

Spatial Distribution of Early Cross-Modal Effects 

Both the LDA and MI analysis revealed that congruency differences emerged over 

frontal, temporal and posterior areas for auditory trials, and frontal and 

temporal electrodes for visual trials. This points towards a dynamic network of 

areas underlying the implementation of these implicit associations in order to 

affect subsequent behavioural responses. These findings are also consistent with 

other studies investigating how neural activity is modulated during cross-modal 

associations. For example, Bien et al., (2012) found modulations in ERPs over 

frontal regions, and using fMRI Sadaghiani, Maier, & Noppeney, (2009) 

demonstrated that higher-level speech-motion cross-modal associations emerged 

in fronto-parietal areas.  

However, modulations in parietal activity are the most common finding across 

all previous studies examining the neural underpinnings of cross-modal 

associations. For example, Bien et al., (2012) found that parietal ERPs 

(200 ms - 300 ms) were modulated by congruency, and that TMS applied over 

parietal cortex reduced the amplitude difference between congruent and 

incongruent trials, and the behavioural congruency effect. Similarly, Kovic, 
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Plunkett, & Westermann, (2010) found early ERP modulations over parietal sites, 

and — as mentioned above — Sadaghiani, Maier, & Noppeney, (2009) found an 

interaction in fronto-parietal areas in response to audio-visual motion stimuli. In 

our study we found no parietal activity which was predictive of behaviour or 

modulated by congruency, and so our findings are at odds with past results in 

the literature.  

However, the findings of these previous studies are confounded with the issue of 

multisensory integration and attention; in all experiments, two stimuli were 

presented on each trial (either simultaneously or sequentially). Previous studies 

have found early parietal effects related to bimodal stimuli presentation 

(Molholm et al., 2002; Murray et al., 2005), and the parietal region is often 

implicated in multisensory integration (Matsuhashi et al., 2004; Molholm, 2006; 

Pasalar et al., 2010; Rohe & Noppeney, 2015a, 2016). Additionally, parietal 

activity has been shown to be involved in attention during multisensory tasks 

(Downar, Crawley, Mikulis, & Davis, 2001, 2002; Talsma, Senkowski, Soto-Faraco, 

& Woldorff, 2010). Therefore, parietal activity observed in these previous 

studies may be reflecting multisensory processing or attention, rather than 

reflecting a pure cross-modal association. As a result, the effects of parietal TMS 

on cross-modal effects in the Bien et al., (2012) study might simply disrupt 

multisensory integration processes rather than specific cross-modal association 

processes, and the parietal activation seen in the Kovic et al., (2010) and 

Sadaghiani, Maier & Noppeney (2009) study may reflect audio-visual processing 

or divided attention. In contrast, in our experiment we presented only a single 

stimulus on each trial, thus ruling out effects of multisensory integration or 

divided attention. We propose this is stronger evidence that the parietal 

component represents effects due to multisensory integration or attention in 

neural signals rather than the cross-modal association, and that the effects we 

find here may be a more robust correlate of cross-modal associations in the 

brain.   

This interpretation is strengthened by our finding that auditory neural signals in 

frontal and temporal regions were significantly predictive of reaction time early 

during the trial (i.e. during stimulus presentation) across two analyses methods. 

Thus, we directly show that specific EEG components in frontal and temporal 

areas are behaviourally relevant, with the addition of showing this is robust 
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across two separate analysis methods. This supports our interpretation that the 

effects seen in our study over temporal and frontal regions may be a more 

sensitive measure of where in the brain a cross-modal association first emerges, 

and that parietal activity found in previous studies may be more reflective of 

other perceptual and cognitive processes. Additionally, as the neural signals are 

behaviourally relevant early in the trial, the results once again support the early 

and perceptual account of cross-modal associations rather than the later, 

decisional account.  

Consistency of Results 

A final aim of this work was related to the analyses methods. In recent years, it 

has been suggested that the wide range of different processing pipelines and 

alternative analyses methods leads to heterogeneity in neuroimaging results 

(Carp, 2012a, 2012b). This can lead to divergent findings and so difficulty 

interpreting the overall literature on a specific topic. To address this and reveal 

how different analyses pipelines would affect the results from the EEG data we 

collected, we used two EEG analysis methods (linear discriminant analysis and 

mutual information analysis) to analyse the same experimental data set. This 

allowed us to examine whether our results were robust by looking for 

consistency across methods. We found that across analysis methods, the timing 

and locations of the results were consistent, suggesting our results are robust to 

the choice of analysis method. 

Chapter 5: Summary  

This chapter has presented results showing that multisensory interactions (in the 

form of a cross-modal auditory pitch-visual size association) emerge early during 

the perceptual process. Once again, this effect was demonstrated using a 

combination of neuroimaging, psychophysics, and single-trial analysis methods, 

again stepping beyond examining simple modulations in response to stimuli 

presented. Finally, this chapter — although examining multisensory interactions 

instead of multisensory integration — aligns with the previous two chapters by 

providing the third set of results supporting the early and distributed view of 

multisensory processing.   
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Supplementary Materials: Chapter 5 

 

 

 
Supplementary Figure 5.1 | Significant visual LDA clusters (after stimulus offset). (A) Scalp 
topographies represent the group-averaged raw EEG activity underlying the second significant 
cluster (cluster 2) where congruency differences were found, averaged across time for congruent 
and incongruent trials separately. Bottom scalp topography (group averaged, time window 
averaged, raw EEG data) shows the difference in raw EEG activity (Congruent – Incongruent). (B) 
Shows the same as (A) for the third significant visual cluster. 
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Chapter 6 : General Discussion 

The work in this thesis investigated the temporal dynamics underlying audio-

visual perception in the brain using a combination of psychophysics, high-density 

neuroimaging (EEG), and multivariate analysis methods. This novel combination 

made it possible to extract information from the EEG signal and relate it to 

behaviour on a trial-by-trial and time resolved basis across three experiments. 

As a result, the work presented here steps beyond previous studies to provide 

new insights into the temporal dynamics of audio-visual perception in the brain 

during a variety of perceptual tasks.  

Chapter 3 (Experiment 1) focused on investigating when neural correlates of 

sensory reliability and perceptual weighting emerged during audio-visual 

integration. The behavioural results showed that subjects weighted sensory 

information in a manner broadly consistent with the rules of optimal integration: 

as visual reliability decreased, auditory perceptual weights increased. However, 

they also revealed a consistent bias towards the auditory modality regardless of 

visual reliability, which caused a mismatch between the perceptual weights 

predicted by the model and the perceptual weights observed in subject 

behaviour. We exploited this dissociation between sensory reliability and 

perceptual weighting to uncover neural correlates related to each, using a 

combination of single trial analysis and regression modelling. These results 

demonstrated that information about sensory rate could be extracted from 

neural signals during stimulus presentation, with the strongest information over 

scalp locations consistent with early sensory regions. This information was 

modulated by visual reliability early during the perceptual process in sensory and 

parietal regions. Similarly, neural correlates of perceptual weighting emerged in 

neural signals early after stimulus onset, again in early sensory and parietal 

regions. Overall these results broadly support previous findings from the fMRI 

literature which have indicated cue weighting occurs across the cortex 

(Beauchamp et al., 2010; Helbig et al., 2012; Rohe & Noppeney, 2016), and 

provide the first demonstration of the temporal dynamics of sensory cue 

weighting in the human brain.  
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Chapter 4 (Experiment 2) expanded on the results from Chapter 3. Specifically, 

this chapter investigated whether oscillatory power during audio-visual trials was 

modulated by sensory reliability. The results showed there was lower theta 

power and higher alpha power during audio-visual conditions where visual 

reliability was low, relative to conditions where visual reliability was high. These 

modulations occurred early during the trial (0 ms to 300 ms) over fronto-central 

regions, and alongside significant changes in perceptual weighting. Again, these 

results demonstrate for the first time that theta and alpha are modulated due to 

reliability based cue weighting in the brain, thus adding important insights to 

the field.  

Finally, Chapter 5 (Experiment 3) investigated when effects of an auditory pitch, 

visual size cross-modal association emerged in the brain. The behavioural results 

replicated findings from previous work showing that participants responded 

faster when congruent pairings of auditory and visual stimuli were assigned to 

the same response key, compared to when incongruent pairings were. The EEG 

data revealed that information about stimulus type could be discriminated early 

in the trial during stimulus presentation, with the strongest information 

contained in temporal and posterior areas. Neural components related to this 

information were modulated by the perceived congruency of the stimuli early in 

the trial (<100ms), over temporal, posterior and frontal areas for auditory trials, 

and later in the trial (>250 ms) over frontal and temporal areas for visual trials. 

Finally, the EEG signal over frontal and temporal regions during auditory trials 

was predictive of behavioural reaction times, while the activity underlying visual 

trials was not. Importantly these results were consistent across two analysis 

methods, suggesting our findings are robust. Once again, these results provide 

the first investigation into the neural underpinnings of an audio-visual cross-

modal association, thus adding an important contribution to the field.  

To sum up, the common finding across all three experiments was that early 

neural correlates of multisensory stimuli and behaviour were observed over 

sensory (posterior and temporal), association (parietal) and higher-order 

(frontal) regions. Given that each experimental chapter has already addressed 

the specific effects from each experiment, this chapter will focus on discussing 

the common findings across experiments. In addition, it will highlight some 
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conceptual issues related to the experiments and methods used, before finishing 

by providing suggestions for future work. 

Early Effects of Multisensory Perception  

How do our findings of early, distributed effects fit in with the field? As 

described in the General Introduction (Chapter 1), research has shown that 

multisensory interactions can occur surprisingly early during perception (40-

80 ms, Giard & Peronnet, 1999; Molholm et al., 2002; Murray et al., 2005) at 

almost every level of the cortex (for review, see Ghazanfar & Schroeder, 2006). 

These observations led to the modern view that multisensory perception is an 

early emerging process in the brain, rather a later, hierarchical one. The work 

presented in this thesis supports this view by demonstrating that a dynamic 

network of early sensory and higher order regions is active early during a variety 

of audio-visual perceptual tasks.  

However, across experiments, our effects emerged later than those reported by 

previous studies. For example, enhancement of auditory ERPs in response to a 

simultaneously presented somatosensory stimulus have been shown to emerge as 

early as 50 ms after stimulus onset (Murray et al., 2005). Audio-visual ERP 

responses have been found to occur at between 40 ms (Giard & Peronnet, 1999) 

and 46 ms (Molholm et al., 2002) in occipital and parieto-occipital regions 

respectively. Finally, Cappe, Thut, Romei, & Murray, (2010) showed audio-visual 

ERP responses were modulated in primary visual, auditory and temporal areas 

from 60 ms after stimulus onset. In contrast, the earliest effects we found 

emerged at later, ranging from 65 ms to 260 ms across Chapters.  

Why do we not find effects as early as previous work? One possibility is due to 

the questions of interest studied in these experiments. Previous studies focus on 

uncovering effects relating to multisensory stimuli by comparing multisensory 

signals to unisensory signals (Molholm et al., 2002; Murray et al., 2005). In 

contrast, rather than focusing on effects related to basic properties of 

multisensory stimuli, the analyses in this thesis examined perceptual effects 

related to multisensory processes, such as cue weighting, oscillatory modulation, 

or cross-modal interactions. For example, in Chapters 3 and 4 the aim was to 
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uncover neural correlates of audio-visual reliability and perceptual cue 

reweighting. In Chapter 5, the goal was to examine cross-modal perceptual 

associations between unisensory auditory and visual stimuli. It may be that 

comparing audio-visual trials across different experimental conditions (as we did 

here) does not shed light on effects related to basic stimulus processing that are 

evident when the analyses focuses on comparing multisensory to unisensory 

trials. This speculation is in part backed up by the observation that in Chapters 3 

and 5, basic audio-visual stimulus features (rate, stimulus type) could be reliably 

decoded from stimulus onset or shortly thereafter (latest: 45 ms, Chapter 3). 

This indicates that information is indeed contained in the EEG signal about basic 

audio-visual stimulus features, and leads us to speculate that if we had 

compared unisensory to multisensory signals (as the previously mentioned 

studies do), we may have found early differences on a time-scale in line with 

previous work in the field.  

Activity in Early Sensory Regions: Feedback or 
Feedforward? 

Our results showed early results related to multisensory stimuli and behaviour 

arose in low-level sensory areas (posterior and temporal) across a variety of 

experiments. These results are similar to the findings of many other studies 

examining multisensory processing in the brain, who have found activations in 

the same regions in human and animal work (Foxe et al., 2000; Giard & 

Peronnet, 1999; Kayser & Logothetis, 2007; Kayser, Petkov, & Logothetis, 2008; 

Murray et al., 2005; Sperdin, Cappe, Foxe, & Murray, 2009). However despite 

the widespread finding of multisensory activity in sensory regions, it remains 

unclear what role these early areas play in multisensory processing. Low-order 

regions of sensory cortex may process “feedforward” information coming 

directly from multiple senses to early sensory areas, or they could process 

“feedback” (i.e. top down influences) from higher cortical areas or other 

sensory regions.  

With regards to our results, the critical issue to consider is timing: is there 

sufficient time for the early effects we saw in sensory areas to have been 

transmitted via feedback, either from other sensory areas or higher regions of 
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the cortex? Research shows visual processing in occipital cortex occurs around 

50 ms after stimulus onset (Clark, Fan, & Hillyard, 1994; Schroeder, Mehta, & 

Givre, 1998), and auditory processing in auditory cortex occurs around 15 ms 

after (Rupp et al., 2000). Taking into account what is known about the speed of 

neural transmission, Foxe & Schroeder, (2005) approximated the timing of 

feedback from higher areas to early sensory areas to occur 67 ms after stimulus 

onset. Under this estimate, effects due to feedforward processing should occur 

prior to 67 ms, while effects due to feedback processing should occur after.  

With this in mind, we propose that our earliest effects in sensory regions are due 

to feedforward mechanisms. In Chapter 3, information about stimulus rate was 

decodable from the EEG signal from 48 ms after stimulus onset, with the 

strongest activity emerging over scalp regions consistent with sensory areas. In 

Chapter 5, information about acoustic pitch and visual size was decodable from 

50 ms after stimulus onset, again from regions suggesting origin in early sensory 

cortices. Overall, the immediate onset of these effects strongly suggests that 

low-level encoding of basic stimulus features (such as stimulation rate, pitch and 

size) happens via direct input mechanisms to sensory regions. 

In contrast, we speculate that later effects in sensory areas are due to feedback 

mechanisms. For example, in Chapter 3, effects of reliability emerged at 84 ms 

and 252 ms in temporal and posterior areas. In Chapter 5 effects of congruency 

emerged between 65 and 95 ms over temporal and posterior areas. Overall, 

these timings are consistent with the feedback timings proposed by Foxe & 

Schroeder (2005) (i.e. >67 ms). This provides a strong indication that feedback 

mechanisms underlie these early effects in sensory cortices. Secondly, although 

sensory reliability could be considered a “low level” stimulus feature, it may 

need to be encoded via feedback; after all, to integrate sensory cues based on 

reliability it is necessary to know the reliability of both cues in order to weight 

each appropriately. Thus, it could be that feedback mechanisms send 

information about sensory reliability between sensory cortices or via higher 

order regions early in the trial to allow accurate cue weighting. Additionally, in 

Chapter 5 we did not present two stimuli at the same time, and therefore the 

effects of one modality on the other cannot arise due to direct input to the 

respective cortices, but rather must emerge due either to feedback from 

association areas (i.e. parietal cortex), or from cross-talk between sensory 
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regions. Taking these interpretations together, we propose that across 

experiments, basic stimulus feature encoding occurs from onset due to 

feedforward inputs, while reliability and congruency effects in early areas occur 

via feedback.  

Activity in Association and Higher Order Regions 

Across experiments we found activity emerging in parietal and frontal regions. 

Given that parietal and frontal activations have previously been linked to 

perceptual, attention and decision-related processes it is worth examining how 

the effects we found relate to each of these potential interpretations.  

Perception 

In Chapter 3 neural correlates of sensory reliability and perceptual weighting 

emerged in parietal cortex. In Chapter 4, oscillatory theta and alpha power was 

modulated over frontal regions at the same epoch where there was a significant 

change in perceptual weighting. Finally, in Chapter 5, neural signals over frontal 

regions were modulated by audio-visual congruency, and were predictive of 

behavioural reaction times. Consistent with our findings of effects in higher 

order and association areas, many studies examining multisensory perception 

have found parietal and frontal activation. For example, intracranial EEG studies 

have found neurons in the superior parietal lobule (SPL) (Molholm, 2006) and 

temporo-parietal junction (Matsuhashi et al., 2004) display increased firing in 

response to multisensory stimuli compared to unisensory stimuli. Neuroimaging 

studies have shown parietal and frontal activation in response to audio-visual 

speech (Calvert, 2001) and basic audio-visual stimuli (Teder-Sälejärvi, McDonald, 

Di Russo, & Hillyard, 2002). Finally, modulations in oscillatory activity in 

response to audio-visual stimuli have been found in parietal and frontal areas 

(Sakowitz et al., 2000; Sakowitz et al., 2005). Taken together with the 

literature, our results of parietal and frontal activation across experiments using 

audio-visual stimuli strongly suggest these areas play a general role in 

multisensory perception. Additionally, across experiments we demonstrated that 

frontal and parietal activity patterns were related to behaviour, early during 

perceptual tasks. These direct associations with behaviour strengthen our 
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interpretation that the activations seen in parietal and frontal regions in our 

experiments are linked to perceptual processes.   

Attention 

Parietal and frontal activations have also been widely linked to attention. For 

example, an fMRI study by Downar, Crawley, Mikulis, & Davis, (2001) showed the 

BOLD response in the temporoparietal junction (TPJ) was enhanced when 

behaviourally relevant auditory and visual stimuli were presented, as compared 

to when behaviourally irrelevant stimuli were. Using EEG, Shomstein, Kravitz, & 

Behrmann, (2012) demonstrated that cued shifts of attention resulted in 

modulations over frontal and parietal regions early in the trial (146 ms and 

286 ms respectively). Markett et al., (2014) showed similar fronto-parietal 

activation during attentional tasks using fMRI. Finally, Talsma & Woldorff, (2005) 

demonstrated that ERP activity was stronger during attended audio-visual trials 

compared to unattended trials, and that these differences emerged early in the 

trial (100 ms, 160 ms, and 300 ms) over fronto-central regions. In Chapter 3 we 

found parietal activity was related to sensory reliability and perceptual 

weighting from 156 ms. In Chapter 4, modulations in relative theta and alpha 

power occurred over frontal regions from stimulus onset to 300 ms. Finally, in 

Chapter 5, frontal activation was modulated by audio-visual congruency from 

90 ms to 120 ms. The location and timing of these effects somewhat correspond 

to the results in this thesis. For example, In Chapter 3 we found parietal activity 

was related to sensory reliability and perceptual weighting from 156 ms. In 

Chapter 4, modulations in relative theta and alpha power occurred over frontal 

regions from stimulus onset to 300 ms. Finally, in Chapter 5, frontal activation 

was modulated by audio-visual congruency from 90 ms to 120 ms. Given that 

these results from the attention literature are similar to ours, it could point 

towards attention underlying the effects we observed.  

Unfortunately, dissociating attention processes from perceptual processes in our 

results is somewhat difficult. In Chapters 3 and 4, we presented two audio-visual 

stimuli on each trial and so the modulations we see could arise from processes 

recruited to allocate attention across two stimuli. However, given that the 

analyses focused on comparing differences between audio-visual streams — 

which contain equal numbers of stimuli —rather than comparing trials where two 
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stimuli were presented to trials where only one stimulus was, this seems 

unlikely. Similarly, in Chapter 5, we presented only one stimulus on each trial, 

and so any modulations observed in higher-order regions cannot be due to 

confounding attentional processes. Rather, we speculate that the frontal 

activation seen in Chapter 5, early in the trial represents context driven 

information relating to the cross-modal association, rather than attention 

related processes. Consequently, with regards to the work in this thesis it seems 

reasonable to interpret the activity seen in parietal and frontal areas as relating 

to perceptual rather than attentional processes. 

Decision-making 

Finally, studies examining perceptual decision making have also found parietal-

frontal activations (Gherman & Philiastides, 2015; Paulus et al., 2001). For 

example, a recent study by Mostert et al., (2015) showed that subtle decision 

related neural correlates can be intertwined with sensory related correlates and 

that each has a different temporal profile. Specifically, they used MEG, two 

tasks (one sensory, one sensory and decision making), and a dual decoding 

approach, to demonstrate that sensory related processes emerged in occipital 

areas from 130 ms to 350 ms, whereas decisional related processes emerged 

later in parietal and frontal areas around 250 ms.  

Whilst the location of our results corresponds to the locations found in the 

Mostert et al., (2015) study, the timing of our results suggests they are unlikely 

to be related to decision processes. In Chapters 3 and 4, parietal and frontal 

effects emerged from 156 ms and stimulus onset, respectively. These effects are 

much earlier than the decisional related effects emerged in the Mostert et al., 

(2015) study. Additionally, in the context of the individual experiment in 

Chapters 3 and 4, subjects were not required to make a perceptual decision until 

approximately 1.5 seconds after these parietal and frontal modulations 

emerged. Together, this makes it unlikely these effects were related to decision 

processes. Finally, in Chapter 5 frontal effects emerged from 65 ms until 145 ms, 

again far earlier than the divergent decision related processes reported in the 

Mostert et al., (2015) study. Thus — despite not performing analyses specifically 

designed to tease apart sensory from decisional related effects — we speculate 

that the results we see in higher order regions are unlikely to be related to 
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decision processes. To confirm, future work should focus either on using analysis 

aimed at separating the two processes (as in the Mostert et al., (2015) paper), or 

use recording techniques that can directly manipulate neural activity (such as 

direct neuronal recordings or brain stimulation) in order to determine causal 

roles of early and late effects during multisensory processing.  

To summarise, we find parietal and frontal activity in two paradigms examining 

audio-visual perception. Taken together with the literature in the field, we 

speculate these effects in association and higher-order regions are related to 

perceptual processes. However, from our experiments it is difficult to determine 

conclusively whether the effects we find in association and higher regions arise 

from sensory, attention, or decision related processes (or a mix of all three). 

Future work is required to tease apart the relevant contributions.  

Decoding Information from Neural Signals 

Across experiments we demonstrated that information about sensory stimuli 

could be extracted from neural signals using multivariate methods. These results 

add to the growing literature using single trial analysis of EEG data to decode 

various stimulus features (Kayser et al., 2016; Lou, Li, Philiastides, & Sajda, 

2014; Mostert, Kok, & de Lange, 2015; Philiastides et al., 2014; Philiastides & 

Sajda, 2006; Ratcliff et al., 2009; Wyart, de Gardelle, Scholl, & Summerfield, 

2012). Additionally, our results add new insights to this field by revealing the 

dynamic correlates of two previously unstudied audio-visual combinations 

(sensory rate, cross-modal associations).  

However, it is important to reflect on what we are decoding from neural signals. 

First, what is “information”, and what does it tell us about the brain?  In the 

context of this thesis (and more widely, the field) “information” refers to the 

presence of a statistical dependence in the EEG data on the stimulus and/or 

experimental condition of interest. This in itself tells us a relationship of some 

form exists, but does it really tell us about something meaningful about the 

brain? For example, fluctuations in the response firing of neurons may allow a 

classifier to successfully discriminate between two auditory tones of different 

pitches. However, rather than spike rate representing the “information” the 
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brain uses to encode stimulus features, it may be the phase, oscillatory 

frequency, or spike timing that is most relevant for processing the sound and 

that the response firing modulations are a simple by-product of encoding. In this 

case, the “information” contained in the amplitude is actually meaningless, and 

is in fact not relevant for understanding how the brain processes auditory pitch.  

This dissociation between decoding performance and neural activity was 

recently highlighted in a study by Kamitani & Tong, (2006). Using single-neuron 

recording and multivariate classification methods, they demonstrated that 

motion information could be decoded from early visual area V1 with more 

accuracy than from the higher visual area V5/MT. This was unexpected, as 

animal work has shown that area V5/MT primarily contains neurons which 

encode motion heading (Bradley, Chang, & Andersen, 1998; Krug, Cicmil, Parker, 

& Cumming, 2013). Overall, these findings suggest that just because we can 

extract information from neural signals using classifiers, it does not mean that 

we have found necessarily found a neural representation of our stimulus or 

experimental condition of interest. Taking this into account, our observation 

that information relating to high or low tones, small or large circles, or high and 

low rates could be significantly decoded from the EEG signal does not necessarily 

mean that we have discovered the neural representation of how or where the 

brain processes these stimuli. Rather, the results can only conclusively tell us 

that the EEG responses cluster together in a way that gives rise to successful 

linear separation of our conditions of interest, at early time points during the 

trial. Thus, rather than referring to significant clusters uncovered by decoding as 

“neural representations”, we have endeavoured to refer to (and interpret them) 

throughout the text as “neural correlates”.  

Related to this, a failure to decode information from the brain does not mean 

there is no information there; it could simply be that a failure to decode (e.g. 

after 400 ms in Chapter 3), means only that the neural responses cluster in a 

non-linear way, or that the information about the stimulus contained with the 

signal is represented, but at a finer grain. Overall, while classifiers provide a 

powerful way to extract information from neural signals, we must be careful not 

to rely too heavily on significant classification, or discount non-significant 

classification as a hallmark for information processing in the brain. 
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One approach to provide evidence that information as uncovered by decoding is 

information used by the brain is to examine whether there are correlations 

between classifier outputs and behaviour. For example, Williams, Dang, & 

Kanwisher, (2007) used fMRI and multivariate pattern classification methods to 

examine whether the discriminant information in retinotopic and lateral 

occipital cortex (LOC) was higher for correct than incorrect trials. They found 

that while they could decode information about object category from both 

regions at above chance levels, only the information in the latter area was 

related to behaviour. Consequently, the authors argued that only the activation 

patterns in the LOC was actually used by the brain when forming the behavioural 

response (despite other regions being active).  

With regards to our results, we found a similar mismatch between epochs during 

which classification performance was significant and those during which 

decoding signals were related to behaviour. For example, in Chapter 3, neural 

signals and behavioural responses (as measured by linear discriminant analysis) 

were decodable from stimulus onset to 545ms after, but only related to 

behaviour at two early clusters within this window. Similarly, in Chapter 5 of this 

thesis, information was decodable from neural signals during a large epoch (0 ms 

to 545 ms) over three brain areas (frontal, temporal, and posterior), but was 

only predictive of behavioural reaction times at two early clusters, and only over 

frontal and temporal regions. Together these findings strengthen our 

interpretations made around behaviourally relevant information extracted from 

neural signals, and demonstrate that quantitatively relating information (as 

uncovered by classifiers) to behaviour can lead to more meaningful 

interpretations of the brain signal and information extracted from it. 

Overall, these points of discussion above do not invalidate classification as an 

excellent analysis technique for extracting information from neural signals; 

classification remains a powerful technique for studying brain function. Rather, 

they show us we must be careful to interpret “information” as measured by 

classification techniques or mutual information analysis as an important, real, 

and quantifiable statistical dependency, but not to overextend these 

interpretations to conclude that the information is a “neural representation”.  
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Limitations 

As with all experimental work, it is important to reflect on the how the 

interpretations are limited by the chosen tasks and methodology. This section 

will reflect on three important issues to consider when interpreting the work 

presented in this thesis.  

Modality Specificity 

First, it is unclear whether the effects we find in this thesis would generalise to 

other modalities. For example, Chapters 3 and 4 examined audio-visual cue 

weighting. The results — while novel — do not tell us whether similar findings 

would emerge in response to auditory-tactile or visual-tactile stimuli. 

Speculating about this issue is complicated by the fact that to date most of the 

work examining cue reliability weighting in humans has focused on audio-visual 

stimuli (Beauchamp et al., 2010; Rohe & Noppeney, 2015a, 2016). One study by 

Helbig et al., (2010) examined visual-tactile cue weighting using fMRI, and found 

signals in primary sensory and parietal areas were modulated by reliability. This 

is consistent with the findings from our audio-visual study. However, since 

Helbig et al., (2010) used fMRI to examine visual-tactile weighting, the timing of 

these effects remain unclear. Thus, we can only speculate that the early neural 

correlates we find in our audio-visual paradigm would generalise to other 

modalities.  

In Chapter 5 we examined an audio-visual association between acoustic pitch 

and visual size. While cross-modal associations have been documented to exist 

between stimulus attributes in many different sensory modalities — such as 

visual-touch (Martino & Marks, 2000), audition-touch (Yau, Olenczak, Dammann, 

& Bensmaia, 2009), audition-taste (Simner, Cuskley, & Kirby, 2010), and 

vision-smell (Gilbert, Martin, & Kemp, 1996) — to date none of these other 

modality combinations have been examined with neuroimaging. Therefore, again 

we can only speculate as to whether our results showing early modulations of 

neural signals would generalise to other modality combinations.  
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Task Generalizability 

Second, would the early effects found in this thesis generalise to other tasks? In 

Chapters 3 and 4 we manipulated the reliability of the visual information and 

held auditory reliability constant. If we were to repeat the experiment and 

manipulate auditory reliability, we may find different results. For example, 

modulations in neural signals may occur earlier than we report in Chapter 3, 

given that auditory processing is faster than visual processing (Clark et al., 1994; 

Rupp et al., 2000). Similarly, in Chapters 3 and 4 the task was a temporal 

judgement task where the auditory modality was dominant. Would we find 

similar, distributed effects in a spatial localisation task where the visual 

modality is dominant? We speculate we might, as results from a study by Rohe & 

Noppeney, (2016) — which measured cue weighting using fMRI and a spatial 

localisation task — showed similar multisensory effects in early sensory and 

parietal areas. Unfortunately, as fMRI has poor temporal resolution, the timing 

of these effects was not clear. However, given that the effects in the Rohe & 

Noppeney, (2015) study emerged in areas consistent with the locations as we 

found in Chapters 3 and 4, we can speculate that our findings of early effects 

may generalise to other tasks.  

In Chapter 5 we found early neural correlates using an implicit association test. 

Would we find similar early modulations of neural signals in a different task (e.g. 

one that measures direct or indirect associations?). In this case, we err on the 

side of caution; the cross-modal association examined here (pitch-size) may 

simply reflect the natural correlation between physical acoustic and visual 

properties of the external world whereby larger objects resonate at lower 

frequencies than smaller objects. Thus, this particular association may be more 

intrinsic, innate, and based on real world acoustic properties than other cross-

modal associations are. Consequently, the effects of this particular association 

as measured by an implicit task may arise earlier in neural signals, than effects 

of a semantic association measured via an indirect tasks would.  

Spatial Resolution  

Finally, despite the results in this thesis providing new and important insights 

into the temporal dynamics underlying audio-visual perception, they do not 



141 
 

provide conclusive insights into the spatial localisation of these effects. As 

described in Chapter 2, EEG has excellent temporal resolution, but only average 

spatial resolution. Therefore, in this thesis inferences about the underlying 

locations of the effects have been made with care, evidenced by restricting our 

interpretations to brain regions rather than specific locations. To build on the 

work and make more accurate spatial interpretations alongside the temporal 

insights with spatial localisation, future work could use an imaging tool more 

suited to localisation alongside EEG. For example, combined fMRI-EEG studies 

have had great success in identifying the timing and location of EEG signals 

during perceptual (Bénar et al., 2007) and decision making (Pisauro, Fouragnan, 

Retzler, & Philiastides, 2017) tasks. Overall this technology potentially provides 

a promising way forward (if implemented carefully) to make inferences about 

the localisation and timing of the effects presented in this thesis.   

Moving Forward 

Future Experiments 

The limitations listed above provide solid starting points for future work. For 

example, it would be interesting to investigate whether early effects in 

multisensory perception generalise to other modalities and tasks. Specifically, 

the work in Chapters 3 and 4 could be replicated using a spatial localisation task, 

or using visual-tactile or auditory-tactile stimuli. Similarly, the work in Chapter 5 

opens many potential avenues to explore many different cross-modal 

associations using EEG. As mentioned in the Introduction of Chapter 5, to the 

best of my knowledge and research, there have only been three other studies to 

date investigating the neural underpinnings. Therefore there are many possible 

insights still to be gained. 

The Importance of Linking Neural Signals to Behaviour  

The primary goal of (most) cognitive neuroscience is to understand how brain 

signals give rise and relate to human cognition and behaviour. Consequently, 

interpreting neural signals without examining how they relate to behaviour (if at 

all) makes it difficult to evaluate whether the conclusions of the results are 

meaningful. The work in this thesis has shown it is possible to link neural and 
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behavioural signals by looking for trial-by-trial correlations between classifier 

outputs and behavioural signals, or by relating these signals to behaviour using 

regression modelling. Alternatively, work in the field has shown that modelling 

neural responses in the same way as behavioural responses (e.g. by fitting 

neurometric and psychometric curves, Fetsch et al., 2012; Gu et al., 2008) or 

building computational models of the brain (Knill & Pouget, 2004; Rohe & 

Noppeney, 2016) can provide important insights. Given the many ways it has 

been shown possible to carefully link behaviour and neural signals, it makes 

sense for neuroimaging studies to continue this process, and step away from 

leaning only on neural modulations or classification performance as a means of 

determining relevant brain activity. Overall, if one can relate neural signals to 

behavioural signals, any interpretations made about the data will immediately 

be strengthened.  

Open Science 

Finally, the best way to move cognitive neuroscience forward is to embrace open 

science. In recent years there has been a focus towards this, primarily driven 

forward by the failure of many studies in psychology and cognitive neuroscience 

to replicate (Collaboration, 2015), and problems in the field such as: low power 

(Button et al., 2013); erroneous and inflated significance of effects due to the 

dimensionality and flexibility of neuroimaging data (Gelman & Loken, 2014; Luck 

& Gaspelin, 2017); and “HARK-ing” – the process whereby post-hoc narratives or 

hypotheses are invented “after the results are known”. To address these 

problems, open science initiatives should be widely adopted. Pre-registration 

and Registered Reports promote transparency of the experimental design, initial 

hypotheses, and planned analyses and discourage false post-hoc narratives and 

the temptation to carry out multiple analyses. Additionally, code sharing and 

open data platforms encourage accurate reporting, and allow peers to execute 

and evaluate the analysis and results alongside reading the publication. These 

efforts towards more transparent and open science — if widely accepted and 

encouraged — can solve the issues described above and should be promoted 

wherever possible. To show my support for such scientific practices, I have 

uploaded all data and code related to the work in this thesis to the Open Science 

Framework, accessible here: https://osf.io/2aexf/.  
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Conclusion 

The work in this thesis has provided a broad investigation into the temporal 

dynamics underlying audio-visual perception, using advanced computational 

methods to extract information from the EEG signal on a single-trial basis and 

link these signals to behaviour in a time-resolved way. The findings of early 

modulations in neural correlates that link with behaviour across experimental 

paradigms demonstrate that audio-visual interactions can occur at all levels of 

the perceptual process, from early effects in sensory areas to similarly early 

effects in higher areas. This provides support for the prevailing modern view 

that the entire cortex is essentially multisensory and that multisensory effects 

can emerge at all stages during the perceptual process.
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