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I 

Summary 

A distinctive feature of many cell types, such as endothelial cells (ECs), is 
abundant population of small plasma membrane invaginations termed 
caveolae. These structures represent a distinct membrane microenvironment 
that are involved in regulating multiple signalling pathways. Several diseases in 
human, such as heart failure, degenerative muscular illness, and vascular 
diseases, might result due to the disruption of caveolar integrity. The main 
caveolar structural membrane protein is cavin-1 and it has been shown to play 
a major role in caveolae assembly as shown by caveolae destabilisation due to 
cavin-1 deletion. However, the exact cellular process that regulate the 
functionality of cavin-1 has not been fully elucidated. One of the signalling 
pathways that have been found localised and distributed within caveolae is the 
JAK/STAT signalling, which is downregulated via the suppressor of cytokine 
signalling-3 (SOCS3). Studies based on proteomic screening and biochemical 
analysis have revealed an interaction between cavin-1 and SOCS3. As such, 
we hypothesised that SOCS3/cavin-1 interaction is an important controlling 
element in caveolae stability and/or the pro-inflammatory signalling pathway 
mediated by IL-6 in the endothelial cells. In support of this hypothesis, cavin-1 
protein levels were significantly reduced in SOCS3−/− murine embryonic 
fibroblasts (MEFs) and human endothelial angiosarcoma (AS-M.5) cells 
compared with their WT counterparts in the absence of any changes in cavin-1 
mRNA. This was associated with a reduced stability of the cavin-1 protein in 
SOCS3−/− AS-M.5 cells (t1/2=3 hr) versus WT AS-M.5 cells (t1/2>8 hr), 
significantly reduced levels of caveolin-1 and a parallel decrease in the number 
of caveolae detectable in SOCS3−/− MEFs and AS-M.5 cells by transmission 
electron microscopy. Confocal imaging experiments also revealed that cavin-1 
was required for SOCS3 localisation to the plasma membrane and effective 
SOCS3-mediated inhibition of IL-6 signalling. Our data suggest a novel role for 
SOCS3 in regulating caveolae assembly while cavin-1, acting as a scaffold-
protein, might aid SOCS3-dependent regulation of JAK/STAT signalling. This 
is the first indication of a novel role for SOCS3 in caveola homeostasis and 
suggests that loss of caveolae represents a novel mechanism by which chronic 
activation of pro-inflammatory JAK/STAT signalling could be triggered in 
disease. Together, these data demonstrate an important interaction between 
cavin-1 and SOCS3 responsible for reciprocal regulation of their respective 
functions. 
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1 

1 Introduction 

1.1 Plasma membrane organisation and function 

1.1.1 Lipid rafts 

The fluid mosaic model of Singer and Nicolson [1] is the most accepted 

representation of the cell membrane organisation and dynamics. According to 

this model, the lipid bilayer is a neutral two-dimensional fluid construct that 

allows free diffusion of membrane constituents [2]. Later, a series of 

experimental findings revealed that partial restriction of most proteins within the 

plasma membrane over the nanometre scale, and the hypothesis of membrane 

microdomain ‘lipid rafts’ was formulated. 

Lipid rafts include a variety of nanoscale, transient, relatively ordered 

assemblies with distinct compositions and properties [3]. They are defined as 

small (10-200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-

enriched domains that compartmentalise cellular processes [4]. Specific 

protein-lipid and protein-protein interactions are proposed to enlarge and 

stabilise functional membrane rafts complexes [5-7]. Furthermore, disrupting 

lipid raft integrity is associated with the pathogenesis of cardiovascular 

diseases, such as cardiac hypertrophy and atherosclerosis [8], and chronic 

inflammatory diseases, such as systemic lupus erythematosus and rheumatoid 

arthritis [9]. Therefore, pharmacological modulation of membrane rafts and 

perturbing their interactions with signalling molecules may hold potential 

therapeutic significance in devising new treatments or many human diseases. 

The plasma membrane includes two types of microdomain: planar lipid rafts 

and a subset of rafts known as caveolae. Flotillin-rich planar lipid rafts are flat 

non-invaginated microdomains that lack distinguishing morphological features 

[10]. Caveolin-rich caveolae, on the other hand, are spherical or flask-shaped 

invaginations of the plasma membrane and represent a subset of membrane 

lipid rafts with specific functions conferred by the presence of caveolin proteins 

[11] (Section 1.2). Lipid rafts and caveolae share the similar lipid composition. 

Nevertheless, caveolae do not seem to occur in all cells compared to lipid rafts 
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although both rafts and caveolae can co-exist in a given cell type [11]. Flotillin-

1 and flotillin-2 have been generally considered as marker proteins of planar 

lipid rafts. They are thought to function as scaffolding proteins within lipid 

microdomains by promoting the co-assembly of activated and specific 

glycosylphosphatidylinositol GPI-anchored proteins in plasma membrane 

microdomains to allow interaction with specific signalling molecules, such as 

the high-affinity IgE receptor (FcεRI), epidermal growth factor receptor (EGFR), 

and Ephrin-B1 receptors [12, 13].  

1.1.1.1 Development of the raft model of the cell membrane  

The common biochemical methods for studying the membrane lipid rafts 

include: 1) isolation of detergent-resistant membrane fractions (DRMs) by 

antibiotics (e.g. Nystatin) or pore-forming agents (e.g. Saponin)  and 2) 

cholesterol depletion by methyl-β-cyclodextrin [13]. Recently, the existence of 

dynamic cholesterol-dependent nano-clusters in the cell membrane has been 

demonstrated by advanced super-resolution microscopy techniques such as 

photoactivated localisation microscopy (PALM), stimulated emission depletion 

(STED) fluorescence microscopy and stochastic optical reconstruction 

microscopy (STORM) [14]. Although an enormous amount of direct and indirect 

evidence indicates the lipid rafts presence in cell membranes, the concept of 

lipid rafts is still evolving and a matter of debate. Thus, research in the field has 

grown in the past decade as hundreds of papers were published annually to 

discuss the lipid raft hypothesis (for an authoritative review of caveolae and lipid 

raft structures and functions, see ref.[15]). 

1.1.1.2 Signalling through Lipid Rafts 

Accumulating evidence suggests that lipid rafts play an important role in 

receptor-mediated signal transduction, providing a distinct platform for the 

functioning of receptors and intracellular molecules [16]. Such data were 

obtained via several helpful methodological approaches despite their potential 

pitfalls. For example, simple non-ionic detergent extraction is considered a 

useful means for the detection of floating lipid rafts although the detection 

process can be affected by the changes in extraction and detergents conditions 
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as well as the existence of non-floating rafts which might be connected to the 

cytoskeleton [17-19]. Another common approach which is used to identify 

putative raft association is the antibody patching and immunofluorescence 

microscopy [20]. However, quantification of rafts by using this method may be 

difficult due to cell-cell variability [19]. In addition, more advanced techniques 

that require technical expertise and specialised equipment include 

immunoelectron microscopy, photonic microscopy and fluorescence resonance 

energy transfer [21-23]. Importantly, chemical cross-linking enables adequate 

identification of native raft protein complexes although the selection of 

appropriate reagents and conditions may be semi-empirical [24]. Collectively, 

these techniques led to the proposal that rafts are indeed dynamic in nature 

rather than static in situ and that specific signals might affect the distribution of 

membrane proteins in raft domains [25].  

From an historical perspective, these microscopic cholesterol-enriched lipid 

rafts were initially implicated in various innate and adaptive immune responses. 

Specifically, Immunoglobulin E (IgE)-mediated signal transduction was the first 

signalling pathway that highlighted the association of lipid rafts during parasitic 

and allergic immune responses [26]. Since then, key immune receptors such 

as T-cell antigen receptor and B-cell antigen receptor were found in membrane 

rafts following receptor activation [27, 28]. In neuronal cells, lipid rafts are 

associated with the three components of the ciliary neurotrophic factor (CNTF) 

receptor complex, namely the CNTF-R itself and its signal transducers the 

leukaemia inhibitory factor (LIF) receptor and the interleukin-6 (IL-6) signal 

transducer glycoprotein (gp130) [29]. In addition to their involvement in immune 

and neuronal signalling, lipid rafts are also critical for haemostasis and 

thrombosis. Lipid rafts are required for fibrin clot retraction and platelet 

aggregation via the collagen receptor GPVI, the ADP receptor P2Y12, the Fcγ 

receptor FcγRIIa, and the thromboxane A2 receptor [30]. Furthermore, lipid 

rafts-dependent signalling has also been reported in other receptors that have 

intrinsic tyrosine kinase activity (e.g., insulin receptor, EGFR, and Kit receptor 

tyrosine kinase) [30, 31]. Additionally, signal transduction of certain G-protein-

coupled receptors (GPCR) depends on the interaction with lipid rafts. For 

example, dopamine D1 receptors were found to preferentially regulate the 
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activity of specific adenylyl cyclase isoforms (AC 3, 5, and 6) in a lipid rafts-

dependant manner [32].  

1.2 Caveolae 

The earliest research on caveolae was conducted by Yamada and Palade in 

the 1950s [33, 34]. Ultrastructural investigations of the plasma membrane by 

transmission electron microscopy revealed the presence of distinct ‘cave-like’ 

intracellular organelles. Caveolae were first identified in the continuous 

endothelium of the heart and then in the gall bladder epithelium. These 

structures exhibit the following characteristic features: 1) Flask-shaped 

membrane invaginations that are typically associated with the plasma 

membrane and occasionally seen with narrow neck or a diaphragm; 2) Typical 

sizes are 50-100 nm without an apparent electron-dense region found in larger 

“coated” vesicles-i.e., clathrin-coated pits [35, 36]. Morphologically identifiable 

caveolae have since been found in a variety of cell types. They are particularly 

abundant in smooth muscle cells, endothelial cells and adipocytes where they 

comprise up to 35% of the cell surface [37]. In contrast, they are reportedly 

absent in most neural tissues [38], lymphocytes, red blood cells, and platelets 

[39]. 

The discovery of the protein composition of caveolae marked a significant 

breakthrough in understanding the nature and importance of these organelles 

[40]. Caveolae are comprised of two classes of proteins, the integral membrane 

caveolins (caveolin 1-3) and caveola-associated cavins, (cavin 1-4) [41]. 

Mutation of caveolar proteins in mammals is associated with a broad range of 

diseases, such as lipodystrophy, muscular dystrophy, cardiovascular diseases 

and cancers [42-46]. 
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Figure 1–1: The morphology and composition of caveolae.  

(A) An endothelial cell showing the flask-like invaginations by electron 
microscopy. (B) Caveolin filaments are shown on the caveolae surface as 
viewed by rapid-freeze deep-etch electron microscope in the cytoplasm 
of a human fibroblast cell. Individual caveolae are depicted in the lower 
panel (C) An individual caveolae with caveolar proteins and lipid species. 
Additionally, DRMs (lipid rafts) are shown with flotillin-1 protein. Adapted 
from Shibata et al. [39] and Pilch et al. [47].  
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1.2.1 Caveolins 

Caveolins (CAV) are a family of three (caveolins-1-3) small ~18-22kDa proteins 

characterized by marked homology to each other despite their dissimilarity to 

other typical proteins. They include membrane integral proteins that resemble 

hairpins having cytoplasmic NH-2 and COOH-termini [48]. The four major 

domains of caveolins are the: scaffolding domain (CSD), N-terminal domain 

(NTD), C-terminal domain (CTD), and intramembrane domain (IMD) [49-51] 

(Figure 1–2). The family of caveolin genes consists of three caveolins (1, 2, and 

3). While many cell types express CAV-1 and CAV-2 (such as the endothelial 

cells, fibroblasts and adipocytes), CAV-3 is exclusively expressed in skeletal, 

cardiac, and smooth muscles [52, 53]. Both CAV-1 and CAV-3 are closely 

related to each other based on protein sequence homology; they are  85% 

similar and 65% identical [54]. Further, there is a close proximity between CAV-

1 and CAV-2 on the chromosome 7 (q31.1), while CAV-3 is found on 

chromosome (3p25) [55]. Additionally, CAV-2 complexes that subsequently 

form caveolae are assembled depending on the expression and oligomerisation 

of CAV 1/3. Actually, this property is exclusive for CAV-2 rather than CAV 1/3. 

As such, CAV-2 fails to leave the Golgi complex and undergoes rapid 

degradation in the absence of CAV-1 [56]. In addition, phosphorylation of CAV-

1 and CAV-2 can occur on multiple residues, while all caveolins are 

palmitoylated on three cysteine residues [57-60] (Figure 1–2 and Figure 1–3). 
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Figure 1–2: The different subdomains of caveolin proteins. 

Phosphorylation sites and the palmitoylated cysteine residues are shown 
in red and yellow text, respectively. Adapted from Sverdlov et al. [61] 
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Figure 1–3: The basic structures and posttranslational modifications 
of CAV-1 and CAV-3.  

Both proteins have four domains: The N-terminal domain (orange) with 
several ubiquitination sites as well as exclusive phosphorylation sites on 
CAV-1, scaffolding domain (blue) which forms alpha helices, 
intramembrane domain (fuchsia) which moves out of the membrane at a 
palmitoylation site, and C-terminal domain (green). Adapted from Busija 
et al. [48] 
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1.2.1.1 Caveolin-1 

CAV-1 is a 22kDa protein comprised of 178 amino acids. Alternatively-spliced 

CAV-1 transcripts encode two distinct isoforms: CAV-1 alpha (CAV-1α) and 

CAV-1 beta (CAV-1β; 32-178), in which the first 31 amino acids are absent [62, 

63]. Such isoforms have specific differences in their impact on the structure and 

depth of caveolae and how they affect the functions of cytokine receptors [62, 

64-66]. For example, studies have demonstrated that deep caveolae are 

associated with CAV-1α, while CAV-1β has the ability to inhibit the signals of 

cytokines [64-66].  

Human CAV-1 molecule contains nine tyrosine residues, three of which are 

located only in CAV-1α. Such residues might act as potential substrates for Src 

[67]. Studies have shown that CAV-1α is selectively phosphorylated in cells 

expressing viral Src (v-Src) and the basic phosphorylation site of cellular Src 

(c-Src) is Tyr-14 [68]. CAV-1 phosphorylation by Src family kinases would 

possibly have an impact on caveolar functions through distinct morphological 

changes, such as aggregation, flattening, and fusion of caveolae [68]. Gottlieb-

Abraham et al. [69] found that Src-mediated CAV-1 phosphorylation at Tyr-14 

resulted in modulation of focal adhesion dynamics via accumulation of Src 

kinases in focal adhesions. 

Within the full-length protein (Figure 1–2), the CAV-1 NTD (residues 1–81) is 

responsible for the assembly of complexes that build caveolae by the integrated 

oligomerization domain [70]. Additionally, the interaction of CAV-1 with the CSD 

(residues 82-101) may be involved in the downregulation of many signalling 

molecules although the presence of specific binding sites to such domains 

remains unclear [71, 72]. The IMD (residues 102-134) is composed of two α-

helices separated by a unique three residue linker region containing a proline 

(P110) that induces a ~50° angle between the helical regions [73, 74]. This 

pattern gives CAV-1 the hairpin topology, with the C- and N- termini directed 

towards the cellular cytoplasm [73, 75, 76]. Caveolin-1 oligomer/oligomer 

interactions require CTD (residues 135–178) that also contains three sites of 

cysteine palmitoylation (C133, C143 and C156) mediating membrane 
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attachment. Nonetheless, palmitoylation of caveolin is not necessary to target 

this protein to caveolae [77]. 

1.2.1.2 Caveolin-2 

Two distinct isoforms of caveolin-2 (CAV-2α and CAV-2β) have been identified. 

The full-length protein is encoded by CAV-2 alpha (CAV-2α), while the beta 

isoform lacks the N-terminus. In addition to the transcript variants which encode 

CAV-2 isoforms, using alternate in-frame initiation codons would encode CAV-

2 isoforms, particularly the β isoforms, that are preferentially located in lipid 

droplets [78]. Nonetheless, Fujimoto et al. [78] reported variations in the 

subcellular distribution of both isoforms although the detailed knowledge 

pertinent to them is still insufficient.  

The assembly of CAV-2 can be established in the form of homo-dimers or 

hetero-oligomers with CAV-1 [79, 80].  The expression of CAV-1 is necessary 

for CAV-2 expression, trafficking, and targeting of caveolae. For instance, In 

CAV-1 knock-out mice, the expression of CAV-2 is not sufficient to form 

caveolae and CAV-2 remains trapped in the Golgi. However, caveolae 

formation is not affected in CAV-2-deficient mice despite the reported reduction 

in CAV-1 expression (by 50%) observed in pulmonary abnormalities, including 

hypercellularity of lung parenchyma, thickening of alveolar septa and 

abundance of the endothelial cells expressing vascular endothelial growth 

factor receptors [80, 81]. Seemingly, it is unclear that CAV-2 could exert its 

functions independent of caveolae and CAV-1 on the cellular and tissue levels 

[80]. However, some reports have shown that CAV-2 has some roles in 

enhancing caveolae formation [82], inhibit pulmonary fibrosis caused by 

medications [83], downregulation of cellular proliferation [84, 85], insulin 

signalling, stimulate blood vessel formation in the tumours [86], and prevent 

gastrointestinal cellular injury or hyperpermeability [87]. Thus, CAV-2 appears 

to be involved in CAV-1 functionality to a specific extent, while the independent 

action of CAV-2 needs to be better elucidated.  
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1.2.1.3 Caveolin-3 

CAV-3 forms most of the caveolae present in muscle cells [88]. In addition to 

their predominance in the skeletal and cardiac muscle cells, there is an 

evidence of their presence in smooth muscle cells [89]. Unlike CAV-1 and CAV-

2, there are no isoforms of CAV-3. The biochemical characterisation of 

immortalised murine CAV-3-/- myoblasts suggested novel roles for CAV-3 

during myoblastic development at the step of myoblast fusion into myotubes 

and in the formation of transverse tubules during the differentiation of muscle 

cells [90-92]. In mature muscle fibres, CAV-3 has a remarkable post-maturation 

role as it is found in the sarcolemma, affecting muscular metabolic processes, 

such as glucose uptake and energy metabolism [93], activation of signalling 

pathways that mediate the cardiac hypertrophic response [94], and muscular 

contractility [95]. Talukder et al. [96] revealed that there was a significant 

change in muscular insulin signalling that was associated with changes in CAV-

3 expression. Mutations in CAV-3 have been associated with abnormal 

elevations of the levels of serum creatine kinase and they were found in several 

muscular diseases, such as Duchenne muscular dystrophy (DMD), rippling 

muscle disease (RMD), and limb-girdle muscular dystrophy (LGMD) [92, 97-

99].  

Experimental animal models that lack CAV-3 exhibit skeletal muscle 

abnormalities, including muscular dystrophy and cardiac muscle abnormalities, 

such as progressive cardiomyopathy, hypertrophy, dilation, and reduction of 

fractional shortening [92, 94]. It has been reported that CAV-3 null mice display 

impaired insulin resistance and lipid metabolism [100, 101]. In spite of such 

perceived roles of CAV-3, the exact pathophysiological mechanisms implicated 

in disease progression are not fully elucidated. Overall, CAV-3 plays an 

important role in muscle tissue as indicated by a variety of muscle disease that 

could develop as a result of CAV-3 gene mutations. Challenging aspects 

related to the identification of potential modifying factors or genetic mutations 

need to be revealed.  
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1.2.2 Cavins 

Although CAV-1 is a vital protein necessary for caveolae formation, it may not 

be sufficient for their formation [102]. A distinct class of caveolae-associated 

proteins called cavins (Cavin-1 and -4) was subsequently identified that have 

significant roles in the biological functions, formation and localisation of 

caveolae. Cavin1 was formerly known as “polymerase I and transcript release 

factor” (PTRF) [103], cavin-2 as serum deprivation protein response (SDPR) 

[104], cavin3 as SDPR-related gene product that binds to C kinase [105], and 

cavin4 as muscle-restricted coiled-coil protein (MURC) [106]. Kovtun et al. [107] 

performed a combined sequence of all cavin proteins in mouse and zebrafish 

Cavin4, revealing two strongly-predicted positively-charged α helical regions 

called HR1 and HR2 with a high degree of sequence conservation (HR1 is more 

consistently similar among cavin proteins than HR2) (Figure 1–4). HR1 and 

HR2 domains are flanked by negatively-charged, acidic, disordered and poorly 

conserved regions termed DR1-3. A coiled-coil domain exists in the HR1 

domain as confirmed by crystallography analysis and it is involved in the 

interactions between different cavin proteins [108]. In addition, a leucine zipper-

like motif (LZD), which helps in protein-protein interaction, is located in the HR1 

of cavin1-3 and HR2 of cavin-1. Furthermore, all cavin proteins have distinct 

domains, rich in proline (P), glutamic acid (E), serine (S) and threonine (T), 

termed PEST motifs [109]. Despite their apparent role in proteolytic degradation 

through the µ-calpain and 26S proteasome system that might lead to the 

shortening of the half-life of cavins, the exact function of the PEST domains in 

the cavin proteins has not been defined [110, 111]. A membrane association 

domain (which mediates the attachment to the membrane) is a basic domain 

located at the C terminus of cavins [112]. Cavin proteins map to different human 

chromosomes, unlike CAV-1 and CAV-2. Thus cavin-1 is located on 

chromosome 17 (q21.2), cavin-2 in on chromosome 2 (q32.3), cavin-3 in 

chromosome 11 (p15.4) and cavin-4 in on chromosome 9 (q31.1) [112].  
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Figure 1–4: Cavin family proteins 

(A) Structure of different cavin proteins in human. (B) The combined 
sequence revealed two positively-charged helical regions (HR1 and HR2) 
which are separated by non-conserved regions named DR1-3. N, Nuclear 
localization signals, LZD; Leucine zipper-like motif; HR, Helical regions; 
and DR, Disordered region. Adapted from Nassar and Parat [108] 
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A putative nuclear localisation signal was originally linked to Cavin-1. Indeed, 

this is consistent with the former identification of cavin-1 as an RNA-polymerase 

I regulator as it plays an important role in the process of loop formation which 

is required for activation of ribosome transcription [113]. However, there is a 

growing body of evidence that showed an important role of cavin-1 outside the 

nucleus [114]. Post-translational modification of cavins, results in a 10-15kDa 

higher migration than expected from their primary structure during fractionation 

by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 

Such modifications include multiple aspects of an unclear functional 

significance. The abundance of PEST motifs in the DR domains of cavins 

affects their proteolysis and might modulate cavin localisation, given the 

removal of the C-terminus DR3 results in association with microtubules [115] 

and the involvement of DRs in cavin oligomerisation [107]. Ubiquitylation has 

been also reported in cavins consistent with the identification of SUMOylation 

and ubiquitylation sites [116] and the acceleration of proteasome-dependent 

proteolysis of non-caveolar cavin-2 [117]. Phosphorylation is another commonly 

reported modification of cavins. As with caveolins, all cavin proteins have one 

or more phosphorylation sites, with dozens of reported sites within the DRs 

[107, 114]. Studies have shown that cavins might undergo rapid 

phosphorylation following stimulation of adipocytes, indicating a possible 

linkage between their regulation and the signalling pathways [118-120]. 

However, the effect of such extensive phosphorylation on the functions of 

cavins has not been discerned [114]. 

Cavin 1-3 are found in the body with the same distribution as CAV-1 [102, 121]. 

In addition, Cavin-1 is present also in skeletal muscle while cavin-3 is found in 

liver and brain. cavin-4 is exclusively located in the skeletal muscles [106]. 

Cavin-1 genetic deletion causes a remarkable loss of CAV-1-3 proteins in 

approximately 80-90% of tissue [121]. Such genetic loss results also in 

reduction of cavin-2 and -3 levels, but to a less extent, with no effect on cavin-

4 expression. Overall, the expression of CAV-1 and cavin-1 is essential for 

caveolae formation, while the stability and function of caveolae are preserved 

by cavin-2 and cavin-3. Co-immunoprecipitation data have shown that 

members of the cavin family interact in a multimeric complex in the cytosol and 
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plasma membrane fractions yet a clear connection of such interaction to 

caveolins has not been uncovered [106]. 

In general, cavin proteins in human and mice show strong homology, with the 

strongest homology in cavin-1 (93%), while cavin-2, -3, and -4 share 

homologies of 83%, 78%, and 89%, respectively. Within the murine species, 

cavin-4 shows a homology of 29% to cavin-1, 24% to cavin-2, and 20% to cavin-

3, while it shows a similarity of 49%, 42%, and 39% to cavin-1, cavin-2, and 

cavin-3, respectively [106]. Compared to caveolins, cavin proteins are larger, 

with cavin-1 comprising 390 amino acids, cavin-2 425 amino acids, cavin-3 261 

amino acids in, and 364 amino acids in cavin-4 (Figure 1–4) [112].  

Immunogold labelling technique showed that the expression patterns of cavin 

proteins are generally demonstrated in a uniform manner around the caveolar 

bulb [122]. As per single-molecule fluorescence microscopy findings, cavin 

monomers are composed of 50 molecules with specific patterns of interaction 

between all cavin family members in a given caveolae [123]. Changes in the 

membrane tension (membrane stretch) can cause disassembly of the cavin 

coat into distinct subcomplexes containing cavin-1 and cavin-2 or cavin-1 and 

cavin-3 [123].  

1.2.2.1 Cavin-1 

Cavin-1 was first identified by a yeast two-hybrid screening assay [124]. Cavin-

1 was named as polymerase I and transcript release factor (PTRF) because it 

enables the dissociation of RNA polymerase I transcripts and the tertiary 

structures [125]. Given that the transcription termination factor (TTF)-l is 

involved in the transcription process of ribosomal mRNA (mediated by 

polymerase I), the PTRF-related investigations were conducted using the TTF-

l as a bait in the yeast two hybrid screen. PTRF was then reclassified following 

its identification in specific enriched fractions with distinct localisation patterns 

in caveolae as shown by immunogold labelling [125]. Bastiani et al. [106] 

reported that cavin-1 is 66% homologous to cavin-2 and 59% homologous to 

Cavin3 and Cavin4. In terms of tissue distribution, cavin-1 expression has been 

reported in the heart, lungs, and adipose tissue [121]. The role of cavin-1 is 
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clearly demonstrated by the failure of caveolae formation in the lung epithelium, 

smooth muscles of the intestine, and cardiac muscle cells along with metabolic 

and adipocyte dysfunction when cavin-1 gene is deleted in mice [121, 126].  

Notably, cavin-1 depletion is associated with a significant reduction in protein 

expression of all cavins and caveolins [102, 106]. Even though Liu et al. [121] 

found that cavin-1 deficiency triggered an upregulation of expression levels for 

caveolin isoforms. In addition, it has been shown that the consequences of 

cavin-1 mutations or gene knockout are reduced adipose tissue, muscular 

dystrophy, cardiodystrophy, hypertriglyceridemia, hyperinsulinemia, and 

glucose intolerance [121, 126, 127]. Indeed, these patterns were typically 

reported CAV-1/CAV-3 double knockout mice [128]. This is consistent with the 

fact that the tissue distribution of combined CAV-1/CAV-3 mimics that of cavin-

1.  

Akin to caveolin proteins, the pathophysiological consequences of cavin-1 

deficiency in animal models have been replicated in rare human genetic 

disorders [129]. For example, genetic screening on more than 2,700 muscular 

dystrophy specimens showed that five patients with Berardinelli-Seip congenital 

lipodystrophy (BSCL), characterized by a marked reduction of the adipose 

tissue along with severe dyslipidaemia and insulin resistance, were deficient in 

CAV-3 in the absence of any CAV-3 mutations [127]. However, cavin-1 protein 

in all BSCL patients had remarkable frame-shift mutations that yielded severely 

truncated proteins. Furthermore, such BSCL patients suffered also from a 

generalised muscular dystrophy [127].  

In addition, cavin-1 has been involved in lipodystrophy. Several studies have 

shown that cavin-1 had potentially a major role in the pathogenesis of the near 

total loss of adipose tissue and multiple myopathic abnormalities in patients with 

congenital generalized lipodystrophy subtype 4 [43, 44, 130]. Therefore, the 

outcomes of these studies confirm that cavin-1 produces similar pathological 

pictures in human and mice.  
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The location of cavin-1 at the 17q21.2 region on the human genome have been 

linked with multiple human diseases. For instance, Barrett et al. [131] revealed 

that cavin-1 was widely reported in patients with type I diabetes, whereas 

another study conducted by Ikram et al. [132] showed a possible correlation 

between the variants at 17q21.2 and the intracranial volume. This would 

eventually lead to inability to attain maximal brain size. However, there is a lack 

of confirmed evidence regarding a possible role of cavin-1 in these conditions. 

It worthy to note that the BRCA1 gene (breast cancer gene 1), the well-known 

tumour suppressor gene, is located at the 17q21.31 locus [133]. Interestingly, 

there has been a controversy regarding the cancer-related effects of cavin-1. 

Some studies have proved that cavin-1 is a tumour suppressor in multiple 

studies, including colorectal [134], prostate [135], breast [45], and lung cancer 

[136]. In contrast, a recent study proved that cavin-1 promotes the proliferation 

of glioma cells, thus acting as a tumour promoter [137]. This is because cavin-

1 was enriched in glioblastoma subtypes and its increased expression with 

advanced tumour grades indicated a possible correlation with poor prognosis 

[137]. In sum, it seems that cavin-1 has a dual role in cancer.  

1.2.2.2 Cavin-1 as a regulator of caveolae 

The apparent role of cavin-1 proteins in the regulation of caveolae was first 

identified by the fact that reduced cavin-1 levels were associated with a 

reduction of CAV-1 protein recruitment into lipid raft fractions, while an increase 

of CAV-1 incorporation in lipid rafts was observed in human kidney embryonic 

kidney (HEK) HEK293-caveolin-1-cavin overexpressing cells [121]. Given the 

important linkage between caveolae and the actin cytoskeleton which is of an 

important implication for cellular response to mechanical stress [138], such 

linkage may be accomplished by cavin-1 since it has been reported that a 

truncation mutant of this protein localised to a cytoskeletal-like structure rather 

than the plasma membrane [139]. In contrast, Verma et al. [140] showed that 

CAV-1 was localised to long branched tubules derived from the plasma 

membrane (up to 50 µm) when it was expressed in certain cancer cells, while 

CAV-1 was appropriately localised to the plasma membrane when cavin-1 was 

co-expressed with CAV-1. As such, adequate proportions of cavins and 
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caveolins are required so that they could be appropriately localised to the 

plasma membrane and subsequently form caveolae.  

Indeed, in addition to decreasing the amounts of CAV-1, knockdown of cavin-1 

can also lead to a significant reduction in caveola density as demonstrated by 

electron microscopy due to an increase in the lateral motility and excessive 

lysosomal degradation of CAV-1 [102]. Moreover, genetic deletion of cavin-1 in 

mice resulted in a significant instability of all three caveolin proteins [121]. 

Besides, while cavin-1 exhibits a generally stable expression (like CAV-1), 

cavin-1 gene can be also induced by stress conditions, such as starvation [118], 

oxidative stress, and exposure to catecholamines which could ultimately lead 

to an increase in caveolae number [141].  

As mentioned above, a lipodystrophic phenotype is seen in mice in which both 

copies of the cavin-1 gene are knocked-out. This might be related to a lack of 

caveolae which impairs triacylglycerol uptake and storage in adipocytes [121]. 

In humans with cavin-1 mutations, cardiovascular and pulmonary disorders 

appear to evolve along with the lipodystrophic phenotype as these mutations 

result in either the loss of cavin-1 expression or the generation of non-functional 

C-terminally truncated cavin-1 proteins, leading to loss of caveolae in myocytes 

and fibroblasts [43, 44, 127]. However, diet-induced atherosclerosis caused a 

remarkable disruption of the positive association between CAV-1 and cavin-1 

[142]. In mice fed on a high-fat diet, the DRMs in the lung endothelial cells 

showed upregulation of CAV-1 despite reduced cavin-1 levels. As a 

consequence, caveolae were lost and caveolae-dependent signalling was 

impaired, providing one potential explanation for the association between 

cardiovascular and pulmonary disorders [142].    

It has also been shown that cavin-1 silencing and cholesterol-depleting drugs 

which disrupt caveolae can limit CAV-1 localisation to lysoendosomal 

compartments, where it is eventually degraded [143]. Such CAV-1 degradation 

is prevented by neutralisation of lysosomal pH and partially blocked by 

proteasome inhibitor MG132 suggesting that the endosomal system could 

possess a proteasomal activity that modulates CAV-1 turnover [143]. Although 
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these data reveal the necessity of cavin-1 for an adequate expression of normal 

amounts of caveolins, the exact details of such mechanism remain unclear. The 

contribution of cavin-1 has been shown in the process of CAV-1 trafficking and 

caveolae formation. Once CAV-1 moves to the Golgi after its synthesis in the 

endoplasmic reticulum (ER), it interacts with cholesterol and its mobility in the 

plasma membrane is lost. Following cholesterol-CAV-1 interaction, caveolae 

assembly is inhibited and CAV-1 degradation is accelerated [130, 143]. 

1.2.2.3 Cavin-2 

Cavin-2, formerly known as SDPR, was discovered by Gustincich and 

Schneider in the early 1990s as an mRNA that was intensively induced in 

response to serum deprivation in 3T3 fibroblasts [104]. The relationship 

between caveolae and cavin-2 was subsequently determined following its 

identification as a protein that mediates caveolae binding to the signalling 

enzyme protein kinase C (PKC) alpha [144]. In addition, it was recognised as a 

binding protein to phosphatidylserine in human platelets. This protein was re-

named as cavin-2 following detection of its localisation to the plasma membrane 

at the caveolae using confocal imaging [145].  

The sequence identity of cavin-2 with cavin-1 is 66%, 68% with cavin-3 and 

57% with cavin-4 [106]. It was found that excessive expression of cavin-2 led 

to caveolae deformity as well as tubular membrane structures as seen by 

immunofluorescence and electron microscopy [145].  

On the other hand, knockdown of cavin-2 was associated with loss of caveolae 

and a significant reduction of cavin-1 and CAV-1 expression [145]. Overall, 

these reports demonstrate an essential role of cavin-2 in the formation of 

caveolae.  

A clear relationship between cavin-2 and cholesterol has been shown when 

3T3-L1 adipocytes exposed to the cholesterol-depleting agent methyl-β-

cyclodextrin, which led to cavin-2 degradation by the proteasome. Interestingly, 

cholesterol repletion fully reversed the effect of methyl β- cyclodextrin and 

restored cavin-2 levels, which allowed reformation of the caveolae [139].  
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cavin-2 is highly expressed in the heart with considerable expression also 

detected in the lung and adipose tissue [146]. The role of cavin-2 in 

cardioprotection is still debated although it has been suggested that cavin-2 

might act as a negative regulator of Akt and extracellular signal–regulated 

kinase (ERK1/2) signalling. This is because inadequate cavin-2 expression in 

the heart results in hypertrophy and resistance to apoptosis caused by H2O2 

stimulation and hypoxia [147]. Moreover, Higuchi et al. [148] reported that 

cavin-2 may be considered an important mediator in the progression of heart 

failure, as it modulated phosphatase and tensin homolog (PTEN)/Akt signalling 

and enhanced cardiac cell death in response to pressure overload. The authors 

suggested that this protein might be a promising therapeutic target for heart 

disease [148]. Another recent report by Boopathy et al. [149] showed a critical 

role of cavin-2 in regulation of nitric oxide production in endothelial cells through 

an adequate control of the activity and stability of nitric-oxide synthase. Indeed, 

this might reveal an important impact of cavin-2 on endothelial cell maintenance 

and function. It is noteworthy that immunofluorescence and immunoblotting 

analyses have shown that cavin-2 expression was higher with the progressive 

differentiation status of liposarcoma tumour cell lines rather than their 

proliferation, suggesting cavin-2 as a potential marker for liposarcoma 

differentiation [150]. 

In terms of disease association, the location of cavin-2 on the 2q32-q33 locus 

suggests a potential role in cancer. This might be attributable to the previous 

evidence of a genomewide linkage screen, which showed a possible correlation 

between the 2q32-q33 locus and familial serrated neoplasia (Jass syndrome), 

a rarely reported form of colorectal cancer [151]. Moreover, the cavin-2 gene 

locus is involved in the pathogenesis of the eponymous chromosome 2q32-q33 

deletion syndrome, which is characterised by marked mental retardation, 

craniofacial dysmorphism and microcephaly [152, 153]. Recently, Unozawa et 

al. [154] found that cavin-2 expression was down-regulated in oral squamous 

cell carcinoma using immunoblot analyses and the clinical data of 

immunohistochemistry revealed an increase in tumour progression in patients 

deficient in cavin-2 [154]. However, these cancer phenotypes were not 
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observed in the knockout studies in mice, which might highlight the need to 

conduct future investigations concerned with malignancies.  

1.2.2.4 Cavin-3 

Cavin-3 was first identified as a protein that interacted  with PKC delta (δ), which 

was later found to be directly associated with caveolins and localised in the 

caveolae fraction [155]. Co-immunoprecipitation experiments suggest that 

cavin-3 interacts with cavin-1 and cavin-2 [106]. Cavin-3 is expressed a variety 

of cells, including brain cells and adipocytes [106]. However, cavin-3 is more 

widely distributed in the tissue, which may suggest other physiological functions 

outside the caveolae [109, 155]. Further, cavin-3 cardiac expression is 

comparable to that of caveolins [146].  

Bastiani et al. [106] stated that the general similarity of cavin-3 to other cavins 

has been estimated to be 59% to cavin-1, 68% to cavin-2, and 51% to cavin-4. 

Five variants of cavin-3 protein can be generated as a result of alternative 

splicing of cavin-3 mRNA resulting in a considerable variation in the molecular 

weight (14 to 31-kDa) [155].  

Multiple functions of cavin-3 have been reported, including intracellular 

transport and endocytosis [155]. The importance of cavin-3 is more apparent in 

cell signalling since it can mediate AAkt, ERK1/2, and EGFR signalling 

pathways. It may act also as a coupling agent to these signals to the transport 

machinery within the cells [155, 156]. McMahon et al. [155] suggested that 

caveolae signalling could be mediated by cavin-3 by budding of distinct vesicles 

called “cavicles” by microtubules. The authors supported their findings by the 

fact that cavicle trafficking was reduced in absence of cavin-3 [155].  

Cavin-3 deficiency in lung tissue is associated with an increase in phospho-Akt 

levels and a reduction in phospho-Erk levels when compared to wild-type 

counterparts. Moreover, it has been shown that cavin-3 deficiency was 

associated with a pleiotropic phenotype, where a late cachexia with shortened 

life span occurred [156]. Heart tissue deficient in cavin-3 did not show changes 

in the expression of cavin-1 and CAV-1 and cavin-3 was found dispensable for 
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formation of endothelial caveolae [146]. Nonetheless, recent evidence has 

shown that loss of cavin-3 in mice produces a 40% reduction in the expression 

of cavin-1 in the smooth muscles of the urinary bladder and blood vessels [157]. 

Although this was also associated with a reduction in caveolae number, the 

physiological consequences were mild, with the main effect being marginal 

elevation of soluble guanylyl cyclase expression [158].  

1.2.2.5 Cavin-4 

Cavin 4, is the most recently identified member of the cavin family. Cavin-4 is 

encoded by two conserved exons and has no splice variants, yielding a single 

362 amino acids long polypeptide [106]. This protein is also named muscle-

restricted coiled-coil protein (MURC) since it is exclusively expressed in 

cardiomyocytes, skeletal myocytes, and smooth muscle cells [159]. Based on 

its sequence homology with cavin-1 as well as its caveolae localisation, MURC 

was re-named cavin-4 [106, 145]. It seems that the role of cavin-4 is modest in 

the process of caveolae formation despite its apparently important impact on 

the disrupted caveolar shape. The latter function was demonstrated by the 

observed increase in caveolae size by cavin-4 overexpression [160]. Maturation 

of cardiac muscle cells and cultured muscle cells would entail cavin-4 

upregulation. On the other hand, expression levels of cavin-4 and CAV-3 are 

impaired in cases of severe myopathy and both proteins may together 

cooperate for proper functioning of skeletal muscle tissue [106, 159].  

Cavin-4 has the ability to form complexes with CAV-3, cavin-1, and cavin-2. 

The localisation of cavin-4 to caveolae and T-tubules in cardiac muscle cells 

was reported although cavin-4 is dispensable for caveola formation [161]. The 

coiled-coil domain of cavin-4 is thought to be responsible for protein 

oligomerisation, and other proteins that contain this domain (including the 

cartilage oligomeric matrix protein, α-keratin, and vemintin) are involved in a 

number of important cellular functions, such as cell division, membrane 

extrusion, gene regulation, and drug extrusion [162, 163]. Naito et al. [161] 

showed that deletion of the coiled-coil domain impaired cavin-4 localisation in 

cardiomyocytes, caused a significant reduction in CAV-3 levels in the plasma 

membrane, and eventually led to cardiac dysfunction. 
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Overexpression of cavin-4 results in induction of fibrosis, atrial arrhythmia, 

ventricular hypertrophy, and alterations in gene expression [159]. Moreover, six 

non-synonymous cavin-4 mutations have been identified in patients with 

hypertrophic cardiomyopathy [164]. Cavin-4 overexpression in rat cardiac 

muscle cells has been induced by hypoxia, which could be a result of induction 

of cavin-4 by serum response factor [165]. Conversely, cavin-4 deficiency might 

lead to attenuation of phenylephrine-induced cardiac hypertrophy following α1-

adrenergic receptor stimulation [160]. Further, cavin-4 knockdown prevented 

myocardial ischemia-reperfusion injury via reduction of oxidative damage and 

is thought to be associated with reactive oxygen species (ROS)-p38 mitogen-

activated protein kinase (MAPK) signalling pathway [166]. In addition to cardiac 

pathology, cavin-4 might be involved in modulating the progression of 

abdominal aortic aneurysm through activation of matrix metalloproteinase-9 

(MMP-9) and JNK [167]. Actually, the aforementioned studies indicate that 

cavin-4 might be a novel therapeutic target for ischemic heart disease as well 

as abdominal aortic aneurysm progression. Finally, cavin-4 was found to be 

disrupted along with CAV-3 in human suffering from rippling muscle disease 

[60]. Collectively, future studies should importantly consider targeting cavin-4 

to investigate its potential therapeutic benefits for inhibiting the exacerbation of 

cardiac, vascular, and muscular disease.  

 

1.2.3 Caveolae biogenesis 

Caveolae biogenesis is a stepwise process that involves trafficking of proteins 

and vesicles from the endoplasmic reticulum (ER) to the plasma membrane 

[48]. The Caveolins are synthetized in the rough ER and co-translationally 

inserted in the ER membrane. After the insertion, CAV monomers aggregate to 

give rise to 8S-Cav oligomers (150-200kDa). 8S- CAV oligomers translocate to 

ER exit sites (ERES) from where they traffic to the Golgi apparatus through coat 

protein 2 (COPII) vesicle-dependent transport (reviewed in [48]). At the cis-

media Golgi, 8S- CAV oligomers further oligomerize into more complex 

structures that contain roughly 160 CAV monomers and are referred to as 70S-

Cav oligomers. Simultaneously, CAV molecules associate to cholesterol-rich 
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membranes, perhaps via the CRAC (cholesterol recognition amino acid 

consensus) domain(reviewed in [48]). At this point the cholesterol associated 

70S-CAV oligomers exit the Golgi network in phosphate adapter protein 1 and 

2 (FAPP1-2) and phosphatidylinositol-4- phosphate (PI4P) dependent transport 

and head to the PM (Figure 1–5) [48]. When 70S-CAV-cholesterol vesicles 

approach the PM, members of the cavin protein family are recruited. The exact 

mechanism of Cavin recruitment at 70S-CAV-cholesterol vesicles sites remains 

unclear, but some hypotheses have been made. 1) low affinity interaction of 

cavins with phosphatidylserine and CAV-1 simultaneously, is the trigger for 

recruitment or 2) changes in the PM curvature could already trigger the 

recruitment of cavins without further molecular interactions [112]. Once at the 

PM, CAV oligomers and cavin oligomers interact to form hetero-oligomeric 

complexes [73].  

The interaction of CAV, cavins and cholesterol generate the membrane 

curvature necessary to form caveolae [48]. Caveolins and cavins together 

produce the membrane invagination by forming an extended tubular structure 

along the PM. In addition, EHD2 is another protein that may be involved in 

producing the fully-invaginated caveolae as well as controlling their stabilisation 

and association to cell surfaces [168, 169]. Furthermore, Hansen et al. [170] 

have reported that pacsin 2, that contains a membrane curvature-associated F-

BAR domain, has also an important role in sculpting caveolae. The end result 

is a mature caveola, composed of three layers: a cholesterol-enriched 

membrane (negatively charged), a 70S-CAV oligomers coat, and a layered 

60S-Cavin complex that runs outside the 70S-CAV oligomers coat (Figure 1–

5) [48]. 
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Figure 1–5: Caveolae biogenesis. 

CAV-1 and CAV-2 enters the endoplasmic reticulum, where they are 
oligomerised into 8S-CAV oligomers. After their exit through the 
endoplasmic reticulum exit sites, these oligomers are transported to the 
Golgi apparatus, where the 70S-CAV complexes are formed by the help 
of cholesterol crystallisation. The complexes are then transported to the 
plasma membrane. At or near this site, the oligomers are palmitoylated by 
palmitoyl acyltransferases and the trimerised cavins are aggregated on 
the 70S-Cav membrane, where they assist in the membrane curvature to 
eventually form mature caveolae. Adapted from Busija et al. [48] 
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1.2.4 Functions of caveolae 

A growing body of evidence suggested that the lack of caveolae impairs multiple 

functions of endothelial cells, adipocytes, and myocytes [112, 129]. This is 

because caveolae are involved in a variety of functions, including lipid 

homeostasis, endocytosis, mechanoprotection and signal transduction 

cascades [112]. The best evidence of caveolar functions comes from 

phenotypes of mice and patients lacking genes relevant to caveolae formation.  

1.2.4.1 Mechanoprotection 

In general, the morphology of caveolae buffer against rapid changes in 

membrane tension [59]. This property was first shown by Dulhunty and 

Franzini-Armstrong [171] when they suggested that caveolae could function as 

“safety valves” by flattening during increased membrane tension as a result of 

mechanical stretch as observed in the stretched frog muscles. In such 

circumstances, caveolae flatten due to detachment of the associated coats of 

cavin-1 from the membrane, leading to an increase in the surface area [129]. 

This would, in turn, prevent rupture of cell membrane and subsequent cell lysis. 

In addition to skeletal muscle tissue, caveolae have a mechanoprotective role 

in endothelial tissue and cardiac muscle cells, providing protection against 

hypo-osmotic swelling and increased mechanical force [172-174]. It has been 

shown that caveolae are essential elements for signalling cascades induced by 

mechanical stress on the PM, such as Akt phosphorylation and Ca2+ fluxes 

[175, 176]. 

Another mechanoprotective role of caveolae is apparent following membrane 

damage, during which caveolae modulate membrane repair through the 

formation of clusters at the site of damage [177]. Corrotte et al. [178] showed 

that caveolae repair membrane damage that can be induced by the pore-

forming toxin streptolysin O. They emphasized also the role of CAV-1 in the 

resistance against membrane damage caused by mechanical insults and toxins 

[178]. The importance of caveolae can be best demonstrated in the reported 

phenotypes of muscular and pulmonary dysfunction in human and mice that 

have been associated with loss of caveolae [99, 127, 179-181]. Overall, this 
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model of caveolar functions reveals a potential paradox. While lateral forces 

implied on the PM causing a mechanical stress would lead to disassembly of 

caveolae, these forces might result in disruption of the membrane, where 

caveolae can act by removing the membrane lesion. As such, the complex 

mechanoprotective role of caveolae needs to be further clarified, including the 

actual stimuli that trigger caveolar budding, the molecular components involved 

in stimuli detection, and finally the signalling pathways induced by mechanical 

stress.  

1.2.4.2 Endocytosis  

Several research studies have been conducted to investigate the role of 

caveolae in endocytosis. For example, it has been shown that SV40 virus and 

cholera toxin could be endocytosed by caveolae (Figure 1–6) [182-184]. 

However, linking caveolae to endocytosis has been controversial. Recent 

studies revealed that overexpression of CAV-1-green fluorescent protein (GFP) 

resulted in its degradation in the late endosomal compartments, and this 

supports the possibility of involvement of classical endocytosis processes in 

cargoes uptake rather than via caveolae [185]. In addition, the investigations 

based on quantitative analysis and microscopy demonstrated a minimal 

contribution of caveolae in the endocytic flux that might reach to only 5% of the 

total caveolar population at high lipid induced levels [186]. Although the results 

of recent studies did suggest a possible role of caveolae in the regulation of 

clathrin-independent endocytic processes [52], the cellular functions of caveolar 

endocytosis remain incompletely defined [129]. 

Similarly, the impact of dynamin on caveolar budding is still doubtful. While 

reports have shown the localisation of dynamin at the neck of caveolae [187, 

188], it seems that it is not essentially involved in caveolar endocytosis of 

damaged membrane [178]. Conversely, caveolar dynamics are controlled by 

the ATPase EHD2 during uptake of the affected membrane via co-localisation 

with caveolae [178].    
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Figure 1–6: Caveola-Mediated Endocytosis.  

An electron micrograph of a CV-1 monkey kidney cell showing Simian 
virus binding to gangliosides in the plasma membrane and entry via 
caveolae. Scale bar = 100 nm. Adapted from Marsh and Helenius [189]. 
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1.2.4.3 Transcytosis 

A specialised form of endocytosis has been shown in the endothelial cells, 

namely transcytosis, which involves the transport of lipids and proteins through 

the apical surface of vascular endothelial cells. Multiple reports proposed that 

caveolae could mediate transcytosis and transport of albumin, insulin, and low-

density lipoproteins [190-192]. Caveolae-based transcytosis might take place 

via fusion-fission model that facilitate vesicular transport and/or the formation 

of temporary trans-endothelial pores [193, 194]. However, these data were in 

contrast with studies based on CAV-1-deficient mice, showing that 

transvascular protein transport has been accomplished in such animals [195, 

196]. Therefore, there are still outstanding questions about whether caveolae 

are required for vesicular transcytosis in endothelial cells, if not, another set of 

cellular machinery for this process has to be addressed [129]. 

1.2.4.4 Lipid homeostasis 

In general, the most frequently-reported phenotypes in caveolae-deficient mice 

are loss of subcutaneous fat, lipodystrophy, and dysfunctions of adipocytes [44, 

197]. The functions of CAV-1 in lipid trafficking were first reported in 

Caenorhabditis elegans [198, 199]. CAV-1 has the ability to bind to fatty acids 

and cholesterol and it may have an important function in cholesterol trafficking 

[200]. Studies have shown that glycosphingolipids trafficking was altered and  

glycosphingolipids were accumulated in lysosomes present in CAV-1−/− cells 

[186, 201]. In addition, the expression of lipid biosynthetic enzymes is 

decreased with loss of CAV-1, leading to a significant reduction of specific lipids 

such as the glycosphingolipid GM3 and phosphatidylcholine [202]. Such 

evidence corroborates the importance of caveolae in the regulation of lipid 

composition in the plasma membrane. Moreover, alteration of lipid composition 

would have deleterious effects on the membrane nanoclusters, which contain 

distinct sets of proteins specialised for signal transduction. Therefore, this may 

represent an indirect mechanism by which caveolae disruption could alter 

signal transduction through disorganisation of particular lipids at the plasma 

membrane rather than through a direct interaction with membrane proteins 

[203].   
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1.2.4.5 Caveolae-localised signalling 

Reports have shown that caveolae are involved in cellular response to a diverse 

set of mechanical and chemical stimuli [204]. Caveolae have the ability to act 

as molecular switches for several cellular processes, in which they may be 

responsible for activation, inhibition, and modulation of multiple functions 

according to the self-interactions between signalling molecules. Such 

molecules include endothelial nitric oxide synthase (eNOS), insulin receptors, 

MAPK, and EGFR [205-209]. Ariotti et al. [202] have shown that agonist-

stimulated MAPK activation might become unaffected by cholesterol depletion 

in CAV-1−/− MEFs, which could be mediated by a switch to K-RAS signalling. 

CAV-2 has been also shown to be an inhibitor of TGF-β signalling and 

antiproliferative action in lung endothelial cells and, on the other hand, this 

function is switched to a pro-proliferative effect in the presence of TGF-β [210]. 

The involvement of caveolae in cell signalling became clear following the 

discovery of caveolin gene family. For example, it has been reported that a 

single knockout of caveolin genes would have no effect on the vitality and 

fertility in mice, while cardiomyopathy and inflammation would be the 

consequences of double deletion of CAV-1 and CAV-3 [128]. These 

observations sparked considerable interest in understanding the pathological 

implications of dysfunctional caveolae with impairments in cell signalling.  

Involvement of caveolae in signal transduction came from studies conducted 

on CAV-1, focusing on capability of such protein to bind and sequestrate a 

number of signalling adapters and the role of such binding in the essential 

regulation of downstream pathways. It has been shown that the CAV-1 binds to 

signalling molecules through its CSD domain and these molecules might be 

activated or inactivated within the caveolae.  

The scaffolding property of CAV-1 led to the development of the “caveolae 

signalling hypothesis” [72, 211] which proposed a potential interaction between 

the 20-amino acid segment in CSD and a particular caveolin binding motif on 
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specific protein targets as a mechanism for caveola-mediated regulation of 

signal transduction. Actually, binding to CSD can cause inhibition of G-proteins, 

eNOS, EGFR, and H-Ras [208, 212, 213]. Nonetheless, such hypothesis has 

been refuted via a structure-based study of Collins et al. [214], whereby the 

most of conserved caveolin-binding motifs in signalling molecules are buried 

and inaccessible to the CSD domain.  

Another observation which raised the interest regarding the role of caveolae in 

signal transduction is that caveolins might have the ability to modulate signalling 

regardless of their structural actions exerted during caveolae formation [215]. 

Within the endothelial cell models, it has been found that a variety of signal 

transduction receptors, such as GPCR and receptor tyrosine kinase (RTK), are 

either localised in caveolae or in a continuous interaction with caveolins [216]. 

There is also an evidence of caveolar contribution during GPCR internalisation. 

For instance, Escriche et al. [217] used cholera toxin to label the ganglioside 

GM1 in smooth muscle cell lines to study the involvement of caveolae in A1 

adenosine receptor internalisation. The authors found that caveolae and CAV-

1 contributed significantly during the receptor-mediated endocytic process. 

Indeed, caveolae might be an important therapeutic target for repairing the 

damaged endothelial tissue [204] relying on the critical roles of adenosine in 

inflammation and ischemia as well as the expression of adenosine receptors in 

endothelial cells [218]. In addition, RTKs represent a large family of molecules 

and their deregulation is involved in several diseases. Studies revealed that 

members of RTK family including angiopoietin, vascular endothelial growth 

factor (VEGF), and Platelet-derived growth factor (PDGF), have an essential 

role during angiogenesis and endothelial caveolin-1 specifically regulates 

VEGF-induced angiogenesis suggesting that localisation of VEGF to caveolae 

microdomains  is crucial for VEGF-mediated signalling [219]. Overall, although 

the idea that supports the role of caveolar proteins in intracellular signalling has 

been confirmed elsewhere in the literature, many signalling-related aspects of 

caveolae are still unclear. It is imperative to reveal the effect of multiple caveolar 

isoforms on signalling in a given cell type. Given the post-translational 

modifications of caveolins [220], the putative impact of modified caveolins on 

cell signalling should be investigated.  
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1.2.5 Potential caveolae-targeting therapeutics 

Caveolae provide a distinct environment where multiple receptor signalling 

components are sequestered, clustered and compartmentalized for efficient 

signal transduction. As such, considerable attention has been focused on the 

biology of lipid rafts generally and caveolae specifically as important sites of cell 

signalling. Indeed, a pivotal role of caveolae in the regulation of vascular 

contractility through binding to eNOS has been well-characterised [221]. In 

essence, eNOS was found to be inactive while it is linked to the scaffolding 

domain of CAV-1. Such linkage is disrupted when Ca2+ concentration is 

increased in the cytosol due to activation of calmodulin. As a result, nitric oxide 

is increasingly generated with a subsequent vasodilatation. This could be 

supported by blocking the interaction between CAV-1 and eNOS by a cell-

permeable peptide that contains the CAV-1 scaffolding domain, namely 

cavnoxin, leading to sustained production of nitric oxide and a marker reduction 

in the blood pressure of wild-type but not eNOS knockout mice [221].  

Indeed, caveolae can occupy up to 40% of the area of the plasma membrane 

in mammalian cell types such as adipocytes and muscle cells [185]. Moreover, 

the PM also contains a vital class of proteins that play central roles in cellular 

processes such as regulation of signal transduction, trafficking as well as the 

recently discovered scaffolding and shaping of the PM itself [14, 39]. Because 

of these diverse roles, the PM proteome accounts for 50% of the mass across 

biological membranes [222] and current estimates suggest that 15-39% of the 

genes in most sequenced genomes encode membrane proteins [223].  

The study of PM proteins holds a great potential to yield many therapeutic 

targets across disease types. Mutations or improper folding of these proteins 

are implicated in a wide range of human diseases such as heart disease, 

obesity, cancer, cystic fibrosis, depression and many others. Currently, 

approximately 60% of commercially produced drugs target membrane proteins, 

mainly GPCRs [224, 225]. Thus, characterisation of PM proteins and their 

functions are critical for providing the molecular framework for understanding 

signalling and the effects of stimulation with various signal molecules [226]. 

Defining membrane proteomes is crucial to understanding the role of 
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membranes in the fundamental biological processes and for finding new targets 

for action in drug development. 

1.3 Cytokine Signalling 

Cytokines are a complex of soluble extracellularly-secreted proteins that act as 

regulators of most aspects of the immune function, such as inflammation, as 

well as multiple facets of physiological processes, such as the wound healing 

[227, 228]. The main actions of cytokines generally include paracrine, 

autocrine, juxtacrine, and endocrine cellular communications which are exerted 

in a synergistic and pleiotropic manner. Notably, the expression of cytokines is 

transient and may last for hours to days to induce anti- or pro-inflammatory 

responses. Such action is essentially specific to cells in order to activate the 

effects of particular leukocytic compartments [229]. While the effects of 

cytokines are primarily targeted for the clearance of infection, other negative 

sequelae might emerge, such as lethargy, fever, allergy, sleepiness, and loss 

of appetite. Furthermore, multiple chronic inflammatory conditions, such as 

cardiovascular disease (Figure 1–7) and chronic rheumatoid arthritis, can be 

associated with persistent cytokine production [230, 231].  
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Figure 1–7: The role of cytokines during atherosclerosis 
development.  

The expression of adhesion molecules on the activated endothelial cells 
recruits the circulating monocytes, which would differentiate into 
macrophages in the arterial wall. Such macrophages express scavenger 
receptors to take up modified low-density lipoproteins (LDL). A fibrous cap 
is formed due to an increase in the lipid content that released from the 
dead foam cells. In addition, an atherosclerotic plaque forms due to 
persistent formation of foam cells along with profound inflammatory 
responses. Several anti-inflammatory (purple) and pro-inflammatory 
(blue) cytokines are involved in plaque development. IL, interleukin; IFN, 
interferon; MCP, monocyte chemoattractant protein; and TGF, 
transforming growth factor. Adapted from Moss and Ramji [232]. 
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There are over 50 cytokines and many exist in families that share receptor 

components and signal transduction pathways [229]. Cytokines include 

interleukins (IL), interferons (IFN), tumour necrosis factors (TNF), transforming 

growth factors (TGF), and colony stimulating factors (CSF). Additionally, 

researchers have identified about 70 potential candidates by using sequence 

comparisons [233]. The structure of the target receptors, that include 

hematopoietin/type 1, interferon/type 2, IL1/toll-like receptor, and TNF is 

considered an important determinant of the affecting cytokine. For instance, the 

effects of IL-6 can be exerted on the haematopoietin/type 1 receptors, where 

glycoprotein (gp)-130 is the commonest signalling unit [234]. 

The biological effects of cytokines involve dimerisation of cell receptors into 

assemblies [235, 236]. In the canonical model of cytokine signalling, this would 

in turn result in activation of Janus Kinases (JAKs) and non-receptor tyrosine 

kinase (TYK2) [237]. At this stage, both TYK2 and JAKs are constitutively 

bound to cell receptors. JAKs then cause phosphorylation and activation of 

signal transducer and activator of transcription (STAT) proteins, which 

subsequently mediate gene expression modulation and eventually the fate of 

the cell [238-240]. Additionally, some cytokines may have a role in the activation 

of the ERK1,2 and Akt signalling and other signalling pathways [241, 242]. 

In general, pleiotropy and redundancy represent the main features of cytokines, 

in which their degenerate nature is responsible for such properties [243]. 

Pleiotropy is defined as the ability of a given cytokine to induce a variety of 

responses. The impact of a single cytokine might be exerted on more than one 

receptor complex leading to activation of specific JAK/STAT signalling 

pathways and subsequently a number of functional responses [244]. In 

addition, the capacity of a group of cytokines to induce their actions in 

overlapping activities is another remarkable feature of cytokines, that is their 

redundancy. Indeed, multiple cytokines might share the receptor subunits to 

form certain cytokine complexes which, due to the presence of four JAKs and 

seven STAT proteins, would activate a set of JAK/STAT combinations [245, 

246]. Despite utilising a limited number of signalling proteins in these 

combinations, cytokines still have the capacity to perform a variety of activities 
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and they can be involved in highly complicated immune functional responses 

[247]. Nonetheless, the current understanding is still incomplete regarding 

multifarious determinants of cytokine receptor signalling that integrate into a 

broad range of biological actions and it seems that researchers in this field have 

to elucidate more details about the ways by which such specificity could be 

attained, considering the redundant and pleiotropic nature of cytokines.   

It is noteworthy that most recent knowledge emphasises complex relationship 

between a given activated signalling molecule and the resultant biological 

activity. For example, although STAT3 could be activated by both the IL-6 and 

IL-10, the exact roles of such cytokines are typically contrasted, in which the 

former induces a pro-inflammatory and the latter elicits an anti-inflammatory 

response [248, 249]. Moreover, another clear example is that there are more 

than 16 subtypes in the type I IFN system that could share a corresponding 

receptor complex, inducing a set of distinct biological activities [250, 251]. Given 

the importance of lipid rafts-mediated cytokines receptors signalling that has 

been demonstrated by several lines of evidence [252-254], knowledge about 

the effects of caveolin expression or function on the JAK/STAT signalling 

pathways is still insufficient. In the following sections, I explain the JAK/STAT 

signalling pathway and its potential interaction with cavin-1.  

1.3.1 The JAK/STAT pathway and its regulation  

Four proteins constitute the JAK family, namely JAK1, JAK2, JAK3, and TYK2 

[255]. On the other hand, the STAT family in mammals is composed of seven 

proteins, STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 [256]. 

All STATs are highly homologous in multiple regions, such as the SRC 

homology 2 (SH2) domain, which is involved in the process of STAT activation 

and dimerisation [257]. The JAK/STAT pathway is utilised by multiple cytokines, 

hormones and growth factors. Following cytokine receptor activation by its 

ligand, the kinase function is activated and this would be accompanied with 

auto-phosphorylation as well as cross-phosphorylation of a distinct JAK 

molecule that is bound to the heterodimer domain of the cytokine receptor [258]. 

In addition, the intracellular tail of the receptor (tyrosine residues) is 

phosphorylated, creating suitable docking sites and allowing binding of the 
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cytoplasmic STATs to these regions through the SH2 domain (Figure 1–8). 

After their phosphorylation, conformational changes would occur in the STATs 

leading to their separation from the receptor followed by dimerisation (or binding 

of two homologous STATs). STATs are then translocated to the nucleus, where 

they promote the expression of their specific genes [238]. Given the high 

functional specificity of the resultant complexes of different JAK/STAT proteins 

in various aspects of the immune response as revealed by the genetic knockout 

studies [259, 260], it is thought that such specificity can be attributed to the 

activation patterns of individual cytokines and, to some extent, specific 

regulation of gene expression [261].      
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Figure 1–8: A schematic representation of the JAK/STAT pathway. 

Cytokine-induced JAK activation leads to phosphorylation of STATs with 
subsequent dimerisation and translocation to the nucleus. Adapted from 
O'Shea et al. [262].  
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The JAK/STAT pathway is tightly regulated by distinct mechanisms at several 

steps. The mechanisms of the post-translational regulation include the protein 

inhibitor of activated STAT (PIAS), protein tyrosine phosphatases (PTPs), and 

suppressor of cytokine signalling (SOCS) proteins. In addition, other levels of 

regulations might involve the typical cross-talks between the various JAK/STAT 

pathways as well as other cell signalling pathways [263].  

Multiple PTPs have been implicated in the regulation of JAKs, such as SH2-

containing PTP (SHP)-1, SHP-2, T-cell PTP, and PTP1B [264]. An additional 

role of SHP-2 in case of IL-6 has been emphasised as it is required for ERK1/2 

and PI3K pathways [265, 266]. Furthermore, studies have shown that SHP1 

might be responsible for dephosphorylation of JAK1 and JAK2 [267, 268], while 

JAK2 and TYK2 can act as potential substrates of PTP1B [269]. In addition, 

JAK1 and JAK3 are dephosphorylated by T-cell PTP [270]. Indeed, PTPs have 

important physiological and pathophysiological consequences [271]. 

The role of PIAS is targeted for the regulation of several transcription factors, 

including STATs [272]. The family of PIAS proteins includes PIAS1, PIAS3, 

PIASX, and PISAY. The interaction of PIAS proteins with STAT members have 

been identified in the mammalian cultured cells, in which PIAS1 interacts with 

STAT1 in macrophages [273], PIAS3 with STAT3, and PIASX with STAT4 [272, 

274, 275]. Moreover, PIASY-STAT1 interaction has been reported [276]. It has 

been shown that STAT regulation via PIAS proteins is cytokine-dependent and 

this interaction is not demonstrated in the unstimulated cells. This can be 

supported by the interaction of PIAS1 with the dimeric, rather than the 

monomeric, form of STAT1 [277]. All PIAS family members have the ability to 

inhibit STAT-induced gene activation through inhibition of their DNA binding or 

recruitment of histone deacetylases [278].  

1.3.2 Suppressor of cytokine signalling proteins 

1.3.2.1 Structure and functions of SOCS 

CIS was the first identified member of the SOCS family in 1995 [279]. This was 

followed by an evidence of the inhibitory effects of SOCS1 on STAT1 signalling 
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[280, 281] along with the prediction of existence of other homologous SOCS 

proteins. Currently, there are eight identified members, SOCS1-7 and CIS. 

Each member of the SOCS family contains a central SH2 domain, which is 

flanked by a short C-terminal domain (the SOCS box) and a variable N-terminal 

domain (Figure 1–9a) [282].  

Some of the inhibitory effects of the SOCS are performed by ubiquitination and 

proteasome-induced degradation. The SOCS box binds to a complex that 

contains elongin B and C and cullin-5 [283, 284]. Having a central SH2 domain, 

SOCS proteins can function as substrate adapters for phosphorylated JAKs, 

phosphorylated STATs, and phosphorylated receptors (Figure 1–9b). 

Therefore, the SH2 domains would mediate the degradation of kinase-activated 

proteins [284].  
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B 

 

 

Figure 1–9: The structural domains of the SOCS family proteins and 
their perceived interaction in cellular signalling. 

(A) Different structural domains of SOCS 1-7 and CIS; (B) The functional 
interaction of the SOCS domains. The SH2 domain binds to specific 
phosphorylated tyrosine residues located on its substrates, mostly JAK 
proteins, while the SOCS box facilitates ubiquitination of target proteins 
through the interaction with Elongin B (EB), Elongin C (EC), Cullin5, 
RING-box-2 (Rbx2), and an E2 ubiquitin-conjugating enzyme. The kinase 
inhibitory region (KIR) is located in some SOCS proteins and it might act 
as a pseudosubstrate to inhibit the kinase activity of bounded proteins. 
Adapted from Galic et al. [285] and Akhtar and Benveniste [286]  
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Nonetheless, it has been reported that both SOCS1 and SOCS3 exhibit 

inhibitory activity even in the absence of their SOCS box domains [287]. These 

SOCS box domains can be also bound to the E3 ubiquitin ligase in a lower level 

than that of other SOCS proteins [284]. In particular, SOCS1 and SOCS3 can 

bind directly to the JAKs causing inhibition of their catalytic activity. While the 

inhibition of tyrosine phosphorylated JAKs by SOCS1 depends on the direct 

binding to its SH2 domains, the inhibition of JAKs by SOCS3 requires the 

interaction, or binding, between SOCS3 and the activated receptor [280, 281, 

288, 289]. 

Experimental studies revealed an important role of SOCS proteins on the 

physiological and pathological levels. For example, early lethality occurs within 

3 weeks in mice deficient for the SOCS1 molecule as a result of severe 

generalised inflammation and excessive interferon signalling [290]. Further, 

SOCS2 knockout led to the development of gigantism in mice, possibly due to 

hyper-responsiveness to growth hormone [291]. Finally, defective placental 

formation was the most apparent reason of perinatal death that has been 

reported resulting from homozygous deletion of the SOCS3 gene [292, 293].  

1.3.2.2 Regulation of cytokine signalling by the SOCS proteins   

SOCS represent one of the major regulatory mechanisms of cytokine signalling 

[294]. They can generally act as negative feedback circuits, where each SOCS 

molecule is transcriptionally induced by its corresponding, or target, STAT 

protein. It is necessary to note that the SOCS proteins are scarcely detectable 

in unstimulated cells, while cytokines induce rapid expression of SOCS genes.  

Given the essential control exerted by the SOCS on JAK activity in terms of 

intensity and duration, SOCSs have the potential to regulate both the 

quantitative and qualitative patterns of cytokine signalling. For example, the 

transcriptional signature of IL-6 is transitioned from a STAT3-mediated to a 

STAT1-mediated process in the absence of SOCS3, demonstrating the 

qualitative side of cytokine signalling [295, 296]. As a consequence, studies 

have shown that SOCS proteins have remarkable effects on immune cell 

function, which is supported by the inflammation-induced death in in mice 
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lacking SOCS1 protein as well as the role of the latter protein in T cell 

development and pro-allergic T cell responses [294, 297, 298].  

In addition, the roles of SOCS2 and SOCS3 has been emphasised in 

macrophage differentiation [299], which is related to the control of SOCS3 

ubiquitination and turnover by SOCS2 [300]. Moreover, SOCS3 plays a key role 

in the regulation of macrophage functions as demonstrated by the IL-6-

mediated suppression of LPS-induced TNF-α production in SOCS3-/- 

macrophages [301]. 

1.4 SOCS3 

The induction of SOCS3 proteins is mediated by several cytokines, such as 

those affecting the gp130 receptors (IL-6), IL-2, IL-3, IL-4, IL-10, type I and type 

II IFNs, and leptin. Moreover, agonists of the toll-like receptors, including 

lipopolysaccharide (LPS) and CpG-DNA, cyclic AMP-mobilising hormones, 

prolactin, and growth hormone might also mediate SOCS3 induction [294, 302-

304]. At this step, SOCS3 proteins have an important role in the regulation of 

the magnitude, quality, and the different kinetics of JAK/STAT signalling. A key 

factor is the binding of the SH2 domain of SOCS3 proteins to particular 

phosphorylated tyrosine (PTyr) residues on their targets (Figure 1–10). Given 

the primary action of SHP2 in the activation of the ERK1/2 pathway which might 

also drive the Gab1-dependent phosphatidylinositol-3-kinase (PI3K)-Akt 

signalling [305] and, on the other hand, the ability of SOCS3 to bind to the SHP2 

binding site on gp130, it is expected for the SOCS3 proteins to inhibit ERK1/2 

and PI3K activation through a direct competing mechanism on the SHP binding 

site. However, this competition has not been demonstrated since Lehmann et 

al. [306] found that both SOCS3 and SHP2 can act independently to inhibit IL-

6 signalling.  
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Figure 1–10: Inhibition of IL-6 signalling via SOCS3.  

Following activation of gp130-bound JAKs via IL-6 interaction, gp130 
tyrosine residues are phosphorylated and act as docking sites for STAT 
proteins (predominantly STAT3). Following their phosphorylation, STATs 
dimerise and translocate to the nucleus to induce gene expression. Then 
SOCS3 proteins are encoded by one of the induced genes to interact with 
the phosphorylated gp130. Such interaction is exerted via two distinct 
mechanisms: 1) inhibition of the receptor-bound JAKs via the KIR domain 
and 2) integration in an E3 ubiquitin complex that mediates the 
proteasomal degradation of target proteins. Adapted from Williams et al. 
[307]. 
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1.4.1 SOCS3 structure 

In general, three domains have been identified in SOCS3 proteins: the N-

terminal domain (which includes the kinase inhibitory region “KIR”, containing 

residues from 1 to 29), the SH2 domain (residues from 30 to 185), and the 

SOCS box domain (residues from 186 to 225, Figure 1–11A).  

 

Figure 1–11: Structural organisation of the SOCS3 domains  

(A), structural homology modelling of the ECS-E3 ubiquitin ligase complex 
in a graphical illustration (B) and a schematic diagram (C). Adapted from 
Piessevaux et al. [308] and Williams and Palmer [309]. 
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1.4.1.1 The KIR domain 

It has been shown that both SOCS1 and SOCS3 have a pseudosubstrate 

domain, namely the KIR, at the N-terminal domain (a 12-residue motif) which is 

able to interact with the receptor-associated JAKs via their JH1 domain (Figure 

1–11). This interaction is thought to have an inhibitory effect on substrate 

phosphorylation [310]. Since the first eight residues of KIR are not structured 

and the remaining residues represent the first part of the α-helix [311, 312], KIR 

has been reclassified as residues 21-32, with the 33-44 residues forming the 

extended SH2 domain (ESS) [313]. 

Studies have shown that the KIR might act as a pseudosubstrate for JAK1 and 

JAK2 causing inhibition of their activity [314]. This might be attributable to the 

similarity of sequence between KIR and the activation loop that is located on all 

JAKs. While unphosphorylated, such loop blocks substrate/ATP binding 

through acting as a potential pseudosubstrate. Therefore, the process of 

binding of the SH2 domain of SOCS3 to the phosphorylated activation loop 

would entail a significant inhibition of its action. Nonetheless, Babon et al. [315] 

postulated that SOCS3 might act as a non-competitive inhibitor of JAKs by 

binding to a specific glycine-glutamine-methionine (GQM) motif in distinct JAK 

proteins rather than the competitive inhibition of the activation loop. More details 

about SOCS3-GQM interaction would be discussed in section 1.4.3. 

1.4.1.2 The SH2 domain 

The activity of SH2 domains is linked to their ability to bind to the 

phosphotyrosine residues on some proteins, such as the pY1007 residue on 

JAK2 [310] and pY757 on the gp130 co-receptor. In fact, the affinity of binding 

of the gp130 co-receptor to the SH2 domain of SOCS3 is more than 1000-fold 

greater than the binding to pY1007 on JAK2 [316, 317]. Moreover, other SH2-

binding cytokine receptors include leptin [318], granulocyte colony-stimulating 

factor receptor [319], erythropoietin receptor [317, 319] , growth hormone 

receptor [320], insulin receptor [321], and IL-12Rβ2 [322]. The high affinity of 

the SH2 domain for binding with such distinct cytokine receptors might be the 

major player in the specificity of SOCS3 in the process of signalling 
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suppression. It is important to note that the predominant targets of SOCS3 for 

signalling inhibition are IL-6, IL-11, ciliary neurotrophic factor, granulocyte-

colony stimulating factor, and leptin as per results based on genetic knockout 

studies in mice.  

The crystal structure of the SOCS3/JAK2/gp130 complex revealed whether 

SOCS3 can bind to gp130 and JAK in a sequential or simultaneous manner 

[323]. In fact, SOCS3 is able to bind to both the cytokine receptor and JAK2 at 

the same time and it can also exert its action targeting the specific JAK/gp130 

complexes. Such structure showed that the gp130 receptor was bound to the 

SH2 domain via its phosphotyrosine binding pocket. On the other hand, the 

JAK2 kinase was bound to the other side of the SH2 domain as well as the KIR 

and the ESS helix in a phospho-independent fashion. The ability of SOCS3 to 

exclusively inhibit a distinct set of cytokines that signal via JAK1, JAK2, and 

TYK2 might be explained by the SOCS3 requirements to simultaneously bind 

to the receptor-JAK complex [324]. 

Another remarkable feature of the SH2 domain is that it contains an 

unstructured loop of 35 residues in which its sequence mimics that of the Pro-

Glu-Ser-Thr-rich (PEST) motif [311, 325]. It is thought that the PEST motif 

mediates the proteasome degradation of proteins. In fact, the role of the PEST 

motif in SOCS3 degradation is as the half-life of SOCS was increased without 

altering SOCS3 functionality when the PEST motif was deleted [324]. 

1.4.1.3 The SOCS box domain 

The SOCS box domain was initially-identified as a characteristic motif in the C-

terminal domain of SOCS3 proteins, but it is now known to be shared by more 

than 80 other proteins in humans [326]. In general, two interaction sites have 

been identified in the SOCS box: the Cul5-box and the BC-box. The former is 

known for its ability to bind to cullin 5, the scaffold proteins, while the latter is 

responsible for elongin B and C recruitment [281, 327]. Elongin B and C as well 

as SOCS3, cullin 5 and the Rbx2 Really Interesting New Gene (RING) protein 

form the E3 ubiquitin ligase complex [284], for subsequent proteasomal 
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degradation. More details about the elongin-cullin-SOCS (ECS)-E3 ubiquitin 

ligase complex can be found in section 1.4.4.  

1.4.2 SOCS3 expression and regulation 

Both the mRNA and protein expression of SOCS3 are tightly regulated. 

Transcription of SOCS3 is rapidly induced by several type I and type II 

cytokines. Induction of SOCS3 expression by IL-6 is dependent on the 

specificity protein 3 [328], while LPS induces SOCS3 expression via the c-Jun 

N-terminal kinase (JNK) and MAPK-ERK1/2 pathways [329]. In addition, TNFα-

induced expression occurs by activation of the MAP kinase kinase 

(MKK)/MAPK pathway [330], whereas Epac-1 (exchange protein directly 

activated by cAMP 1) is utilised to induce expression of SOCS3 by cyclic 

adenosine monophosphate (cAMP) [304]. IL-1, IL-9, IL-10, and leptin are 

considered other contributors in inducing SOCS3 expression [331-334]. On 

other hand, proto-oncoprotein growth factor independence-1B and hepatocyte 

nuclear factor-1β might suppress SOCS3 transcription [335, 336], while TGF-β 

inhibits SOCS3 induction [337].  

Proteasomal and non-proteasomal degradation pathways are involved in 

controlling SOCS3 proteins. This could be demonstrated in several in vitro 

studies via modification or knockout of the SOCS box, PEST motif, or mutation 

of ubiquitination site Lys6 to Gln [283, 311, 338] although their significance in 

vivo has not been fully discerned. Experimental evidence in cell lines have 

shown that the increased expression of SOCS2 proteins might contribute to 

enhanced SOCS3 degradation [300, 339]. It has been suggested that the 

formation of an E3 ubiquitin ligase comprised of SOCS2, SOCS3, and elongin 

B/C might promote SOCS3 ubiquitination and thereby mediate SOCS3 

degradation. In contrast, SOCS3 regulation has been shown to be independent 

of SOCS2 in SOCS2-deficient primary mice cell lines, suggesting some 

redundancy in this process [340].  
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1.4.3 SOCS3 as an inhibitory protein through KIR-JAK2 
interaction 

Babon et al. [315] have shown that the ability of SOCS3 to selectively bind to 

JAK1 and JAK2 as well as TYK2 rather than JAK3 may be attributable to the 

lack of hydrophobic amino acid sequences (GQM sequences) in the latter. In 

general, the GQM sequence is located at the JH1 kinase domain at its α-helical 

region that is exclusively present in the JAK proteins [341]. More specifically, 

the location of GQM sequence at positions 1071-1073 on JAK2 enables the 

binding of SOCS3 protein through the KIR, SH2, and ESS (Figure 1–11). 

Although the structural changes of JAK2 implied by binding of the GQM 

sequence to SOCS3 might be minimal [323], the inhibitory functions of SOCS3 

are lost when mutations take place in specific key residues (Phe25Ala) at the 

KIR domain of SOCS3, indicating the importance of such domain [323]. Further, 

it has been suggested that SOCS3 might inhibit JAK2 by prevention of cognate 

substrate binding and thereby can be a JAK2 pseudosubstrate [315]. Additional 

confirmatory evidence of KIR importance is demonstrated by a ten-fold increase 

in the half maximal inhibitory concentration (IC50) of the inhibitory effect of 

SOCS3 exerted on JAK2 when the first 3 residues in the KIR are deleted. 

Additionally, studies of the crystalline construct of the SOCS3-JAK2-gp130 

complex demonstrated that Arg21, which flanks the KIR, might act as a true 

pseudosubstrate residue as it interacts with the substrate binding domain of 

JAK2 [323]. Indeed, SOCS3 phosphorylation would occur upon mutation of the 

first 3 residues in the KIR [323]. 

1.4.4 SOCS3 and E3 Ubiquitin Ligase activity  

The SOCS box domain in all SOCS family members is able to form a complex 

called ECS-E3 ubiquitin ligase complex, which would target its substrates for 

subsequent ubiquitylation and proteasome-mediated degradation (Figure 1–

11). E3 ligase is one of three sequential enzymes that catalyse the conjugation 

of ubiquitin to lysine residues of the target proteins [342]. The Leu210ProGlyPro 

domain of the SOCS box of SOCS3 has the ability to directly bind the cullin 5 

protein [343]. In addition, SOCS3-cullin5 binding could be attained indirectly via 

the interaction between SOCS3 and elongin B/C heterodimer which is bound to 
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the N-terminal domain of cullin 5. Cullin 5 is bound also to the Rbx2 protein via 

its RING domain in the C-terminus, leading to facilitation of the interaction with 

the E2 conjugation protein (Figure 1–11B) [324, 344].  

Nonetheless, the short half-life and slow on-rate properties of SOCS3 caused 

a significant reduction of its affinity for the E3 scaffold proteins (ten-fold lower 

when compared to other SOCS members) [284, 307]. Such low affinity might 

be related to the variations in the binding sequences, where LeuProGlyPro 

binds to SOCS3 while LeuProLeuPro binds to other SOCS proteins except 

SOCS1 [284]. Hence, SOCS proteins can be divided into two subclasses 

according to their affinity to cullin 5 binding. While SOCS1 and SOCS3 act in a 

dual pattern, other SOCS proteins can only exert their inhibitory actions through 

ubiquitin-dependent pathways [284]. Nonetheless, in light of the reported E3 

ligase functionality with SOCS1 and SOCS3 proteins, E3 actions should be 

investigated for other SOCS proteins [284]. The knowledge concerning 

SOCS1/3 substrates which are regulated by ubiquitin is incomplete. The 

immunological defects that have been reported in mice deficient in the SOCS 

box of SOCS1 or SOCS3 might raise the interest in understanding the 

regulatory roles of both SOCS family members in such proteasome-dependent 

processes [345, 346].  

The dual inhibitory mechanisms of SOCS3 proteins is supported by the central 

SH2 domain that allows binding of SOCS proteins to the phosphorylated targets 

(Figure 1–11B). It is worthy to note that the formation of an E3 ligase complex, 

which is of a large size, might sterically hinder the binding of SOCS3 proteins 

to their targets. It seems that the availability or the abundance of E3 ligase is 

the essential determinant of assembly and functionality [307]. However, the 

inhibition or ubiquitylation of SOCS3 substrates might be performed in a 

sequential manner, which means that, in certain events, it is not possible to 

perform these roles independently [307].  

Currently, several targets of the elongin-cullin-SOCS (ECS)-E3 ubiquitin ligase 

complex have been identified. These include JAK1 [347], Siglec7 [348], and G-

CSFR [349]. In the case of G-CSFR, SOCS3 exerts a direct inhibitory effect, 
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via binding to the pY729 motif of the receptor and inhibiting receptor-bound JAK 

via the KIR domain, as well as indirectly inhibiting signalling through forming a 

ligase complex to ubiquitinate Lys632 of the G-CSFR leading to signal 

attenuation and sorting of lysosomal proteins [350].  

Experimental studies on mouse myeloid progenitor cells have revealed a SOCS 

box-dependent inhibition of colony formation via the G-CSF [351]. Furthermore, 

a significant reduction of SOCS3 mRNA and protein expression as well as an 

enhanced activation ratio of STAT5/STAT3 in response to G-CSF were 

observed in mice with a truncated form of G-CSFR lacking the SOCS3 

recruitment site (Tyr729) [352]. In addition to G-CSFR, the proteolytic role of 

the ECS-E3 ubiquitin ligase complex has been demonstrated on the insulin 

receptor substrate (IRS)-1/2 [353].  

1.4.5 Identifying cavin-1 as an interactor SOCS-3  

Protein ubiquitylation is a post-translational modification that regulates cell 

signalling. It might be associated with several outcomes, such as endocytosis, 

DNA repair, endocytosis and protein degradation. E3 ligases are considered a 

vital element of the ubiquitin proteasome system (UPS) that outline the 

specificity of substrate via the covalent binding to ubiquitin. Although there are 

more than 600 E3 ligases that have been identified, several aspects relevant to 

their characterisation are still not completely elucidated, particularly those 

pertinent to the specific protein substrates [354]. Target identification by using 

novel methods, models, and tools might represent a major approach for 

enhancing the understanding of various aspects of UPS function as well as 

improving knowledge about a variety of disease processes in which it is 

involved [354]. 

Currently, ubiquitylation and proteasomal degradation in a SOCS3 SOCS box-

dependent manner have been observed in a limited number of SOCS3 

substrates (Table 1–1). Nonetheless, such observations are based on cellular 

overexpression models, and this ultimately entails validation via cell-free-

ubiquitylation studies that utilise purified components [307]. The identified 

SOCS3 substrates perform unique functions in the cells, and these substrates 
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shared two properties which are: (1) their interaction with the SH2 domain of 

SOCS3 occurs in a Tyr phosphorylation-dependent manner, and (2) the 

process of substrate ubiquitylation requires an intact SOCS box [307, 309].  

 

Table 1–1: Known SOCS3 substrates  

An updated list of the identified SOCS3 substrates that can be 
ubiquitylated and proteasomally-degraded. Adapted from Williams and 
Munro [307]. 

 

Novel physiological functions of SOCS3 are likely to be revealed by the 

discovery of additional substrates of the SOCS3 E3 ubiquitin ligase. This will 

provide adequate knowledge about the down regulation of the inflammatory 

response as well as the protein degradation pathways relying on ubiquitin. This 

would possibly lead to further identification of novel therapeutic targets which 

might be applicable to cytokine-driven conditions such as atherosclerosis, 

arthritis, viral or bacterial infection, or cancer [307, 324]. However, false-positive 

outcomes could be attained as a result of some limitations in the currently-

utilised methodologies. In addition, protein-protein interaction can be employed 

for validation purposes. This might include co-immunoprecipitation, 

fluorescence resonance energy transfer, protein-microarray, peptide array, and 

glutathione-S-transferase-pull-down assays [354].  
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Williams et al. [309] used an unbiased identification approach to experimentally 

identify the proteins that might be targeted by SOCS3 for ubiquitylation. To this 

end, (His)6+biotin-tagged Ub (HB-Ub)-expressing WT and SOCS3−/− mouse 

embryonic fibroblasts (MEFs) were produced via retrovirus-mediated gene 

transfer. These cell lines were tested by immunoblotting for stably expressing 

equivalent levels of a tandem-affinity-tagged ubiquitin transgene as previously 

described by Meierhofer et al. [355]. This enabled a tandem affinity purification 

of ubiquitin, maintaining the ubiquitylation status by the denaturing conditions 

and reducing the possibility of co-purification of proteins that are bound to 

ubiquitin. Using a targeted analysis of the purified ubiquitin comprised of stable 

isotopic labelling of amino acids in cell culture (SILAC) and liquid 

chromatography (LC), multiple ubiquitylated proteins have been identified by 

Williams and Palmer [309] in wild type MEFs but not their SOCS3−/− 

counterparts, indicating that these proteins could be newly identified potential 

targets for the ECSSOCS3 complex. Notably, the detection of FAK1, which was 

formerly described as a substrate for SOCS3-dependent ubiquitylation, 

provided supportive evidence for the validity of this approach [309].  

Experimental procedures and data analyses: 

Intracellular cAMP was elevated along with forskolin (50 μM) as an adenylyl 

cyclase activator to induce SOCS3 (Figure 1–12) [356]. To enhance the 

possibility of identifying SOCS3-dependent ubiquitylating proteins, a 

combination composed of sodium orthovanadate and H2O2 was used to inhibit 

protein tyrosine phosphatases and to maximise binding to the SH2 domain of 

SOCS3. In addition, the proteasome inhibitor MG132 was used to preserve the 

cellular ubiquitinome. An Orbitrap Velos fourier transform mass spectrometer 

(FTMS) was utilised to analyse the tandem affinity-purified ubiquitinomes from 

the WT and SOCS3-deficient MEFs. Data processing was performed using the 

MaxQuant quantitative proteomics software package [356].   
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Figure 1–12: WT and SOCS3-/- MEFs proteomics screen. 

A comparison between tandem-affinity purified, SILAC-labelled 
ubiquitinomes isolated from WT MEFs and SOCS3-/- MEFs. After SOCS3 
induction via forskolin (50 µM) and MG132 for 2 hrs (blue box). Adapted 
from Williams et al. [356]. 
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Results revealed a significant elevation of cavin-1 protein in WT MEFs (5 unique 

peptides, count ratio of 6, and log2(H/L) = 1.37), indicating the ubiquitylation of 

cavin-1 specifically via a SOCS3-dependent pathway. It could be also 

suggested that such interaction was independent on tyrosine phosphorylation. 

However, the exact regulatory mechanism of that implied by SOCS3 on cavin-

1 ubiquitylation and its functional consequences have not been fully identified. 

As such, further investigations are warranted to reveal the mechanism of such 

interaction, referring to cavin-1 expression, caveolar stability and effective 

inhibition of JAK/STAT signalling.  

1.5 Hypothesis 

Caveolae represent a distinct membrane microenvironment that are involved in 

regulating multiple signalling pathways. Several diseases in human, such as 

heart failure, degenerative muscular illness, and vascular diseases, might result 

due to the disruption of caveolar integrity. The main caveolar structural 

membrane protein is cavin-1 and it has been shown to play a major role in 

caveolae assembly as shown by caveolae destabilisation due to cavin-1 

deletion. However, the exact cellular process that regulate the functionality of 

cavin-1 has not been fully elucidated. One of the signalling pathways that have 

been found localised and distributed within caveolae is the JAK/STAT 

signalling, which is downregulated via the suppressor of cytokine signalling-3 

(SOCS3). Studies based on proteomic screening and biochemical analysis 

have revealed an interaction between cavin-1 and SOCS3. As such, we 

hypothesised that SOCS3/cavin-1 interaction is an important controlling 

element in caveolae stability and/or the pro-inflammatory signalling pathway 

mediated by IL-6 in the endothelial cells.   

1.6 Aims 

1. To generate human vascular endothelial cell lines lacking SOCS3 via 

CRISPR/Cas9-mediated gene knockout which will form the basis for 

further examination of the working hypothesis. 
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2. To characterise the cavin-1/SOCS3 interaction and to assess the 

stability of cavin-1 at the basal level or following SOCS-3 induction by 

intracellular cAMP elevation in WT and SOCS3-/- cells. 

3. To assess whether cavin-1 controls SOCS3 recruitment to caveolae.  

4. To examine the impact of SOCS3 deletion on cavin-1 stability, cavin-1 

expression and plasma membrane levels of caveloae in human vascular 

endothelial cells. 

5. To investigate regulation of cytokine signalling pathways due to altered 

caveolae stability in SOCS3-deficient cells.  
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2 Materials and Methods  

2.1 Materials 

Table 2–1 List of general materials and reagents 

Supplier Description Cat. No. 

Agar Scientific 
 Ltd UK 

Sodium cacodylate AGR1104 

Osmium tetroxide AGR1015 

Agilent Technologies, UK XL1-Blue Competent Cells 200249 

Bio-Rad Laboratories Ltd, UK 

Precision Plus Protein® 
Kaleidoscope® Standards 161-0375 

Precision Plus Protein Kaleidoscope 
Standards 161-0375 

Biolog Life Sciences 8-pCPT-2'-O-Me-cAMP-AM C 051 

Carestream Health, UK Medical X-ray Blue/MXBE Film 7710783 

GE Healthcare Life Sciences, UK Amersham® Protran® 0.2 μm pore 
Nitrocellulose Membrane 10600001 

Invitrogen Ltd, Paisley, UK SuperScript™ II Reverse 
Transcriptase  18064022 

Melford Laboratories Dithiothreitol M1505 

Merck Biosciences, UK 

Forskolin 344270 

MG-132 474790 

Millipore H-89 dihydrochloride 371963 
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Perkin-Elmer Life Sciences, UK 

Enhanced chemiluminescence (ECL) 
reagents NEL 104 

Wizard® Plus SV minipreps A1330 

6 x Blue/Orange Loading Dye G1881 

1kb DNA ladder G5711 

100bp DNA ladder G2101 

Premier International Foods “Marvel” milk powder  

Qiagen, UK 

Polyfect Transfection reagent 301105 

SuperFect transfection reagent 301305 

Roche Applied Science, UK Complete, EDTA-free protease 
inhibitor cocktail tablets 11836170001 

Sigma-Aldrich, UK 

Paraformaldehyde 158127 

Emetine E2375 

Tween – 20 P5927 

30% (w/v) acrylamide/0.8% (w/v) bis-
acrylamide A3699 

Soybean trypsin inhibitor T9003 

Benzamidine 12072 

Bovine serum albumin A7030 
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Sigma-Aldrich, UK 

N, N, N’,N’-
tetramethylethylenediamine (TEMED) T9281 

Phenylmethylsulphonyl fluoride 
(PMSF) P7626 

Donkey serum D9663 

Ponceau S dye P3504 

Gluteraldehyde (25% aqua Pure, EM 
Grade) G5882 

Triton® X-100 T8787 

SMITH SCIENTIFIC 13mm glass coverslips NPS13/2222 

Thermo Fisher Scientific  

Solaris Mouse qPCR Gene Expression 
Assay (PTRF) 

AX-040777-
00-0200 

Solaris Mouse qPCR Gene Expression 
Assay (Gapdh) 

AX-040917-
00-0100 

ProLong® Gold antifade reagent with 
DAPI P36935 

ThermoScientific Thermanox coverslips 150067 

 

Table 2–2 Reagents and materials used in cell culture applications 

Supplier Description Cat. No. 

Fischer Scientific Opti-MEM® Reduced Serum Media 11058021 

Lonza EGM-2 Endothlial Medium CC-3162 

Sarstedt Tissue culture cell scraper 25cm 83.183 

Sigma-Aldrich, UK 

Greiner CELLSTAR® white flat 
bottom 96 well plate 655083 

Dulbecco's Modified Eagle's Medium D6046 
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Sigma-Aldrich, UK 

Foetal bovine serum F9665 

L-glutamine G7513 

Penicillin-Streptomycin solution P0781 

Endotoxin-free phosphate buffered 
saline (PBS) 14140-094 

1x Trypsin-EDTA solution T3924 

Sterile filtered cell culture water W3500 

Puromycin P8833 

Medium 199 M7528 

VWR International Ltd, UK 

Corning® 6 well flat bottomed cell 
culture plate 734-1599 

Corning® 60mm cell culture dish 734-1699 

Corning® 100mm cell culture dish 734-1815 

 

Cell lines 

Wild-type (SOCS3+/+) murine 
embryonic fibroblasts (MEFs)  

Generously provided by Prof. Akihiko 
Yoshimura (Kyushu University, Japan) 
[353] 

SOCS3-/- MEFs 

Wild-type (cavin-1+/+) MEFs 

Generously provided by Prof. Paul F. 
Pilch (Boston University, USA) [102] 

Cavin-1-/- MEFs 

Human endothelial angiosarcoma 
(AS-M.5) 

Generously provided by Dr Vera 
Krump-Konvalinkova V (Johannes 
Gutenberg University, Germany) [357] 
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Table 2–3 Plasmid constructs 

Construct Name Vectors Donor/Supplier 

cavin-1 pEGFP-N1 
(Clontech) 

a kind gift from Prof. Paul Pilch 
(Boston University, USA) [102] 

SOCS3 pEGFP-N1 
(Clontech) In-house 

ΔPEST SOCS3 pEGFP-N1 
(Clontech) 

In-house 
(ΔPEST SOCS3 was generously 
provided by Dr Jeff Babon, Walter 
and Eliza Hall Institute of Medical 
Research, Australia) (Nicholson, 
Willson [288] 

Human SOCS3 
CRISPR/Cas9 KO 

CRISPR/Cas9 KO 
Plasmid  
 

Santa Cruz Biotechnology 

human SOCS3 
HDR  

Cre Vector 
 Santa Cruz Biotechnology 

cavin-1  pmCherry-N1 
(Clontech) 

a kind gift from Dr Ben Nichols 
(MRC Laboratory of Molecular 
Biology, Cambridge, UK) [145] 

 

Table 2–4 Primary antibodies used for western blotting 

Target Protein 

Predicted 
molecular 
weight of the 
protein 

Host 
species 

Suppliers/ 
Cat. No. 

Working Dilution/ 
Diluent* 

SOCS3 24.7 kDa Rabbit In house 
1:000 
 (5% (w/v) dried 
milk) 

SOCS3 24.7 kDa Rabbit Abcam 
#ab16030 

1:1000 
(5% (w/v) dried 
milk) 

SOCS3 24.7 kDa Goat 
Santa Cruz 
Biotechnology 
#sc-7009 

1:500 
(5% (w/v) dried 
milk) 

α-phospho 
CREB 
(Ser133) 

43 kDa Mouse New England 
Biolabs #9196 

1:1000 
(5% (w/v) BSA) 

Phospho-
STAT3 
(Tyr705) 

79 kDa-86 
kDa Rabbit Cell Signaling 

#9131 
1:1000 
(5% (w/v) BSA) 

STAT3 79 kDa-86 
kDa Mouse Cell Signaling 

#9132 

1:1000 
(5% (w/v) dried 
milk) 
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GAPDH 36 kDa Mouse Abcam 
#ab8245 

1:20,000 
(5% (w/v) dried 
milk) 

Cavin-1 50 kDa Rabbit Abcam 
#ab48824 

1:1000 
(5% (w/v) dried 
milk) 

Caveolin-1 22 kDa Rabbit BD Biosciences 
#610059 

1:1000 
(5% (w/v) dried 
milk) 

Nurr1/Nur77  
Nurr1: 66 kDa 
Nur77: 64 kDa  
 

Rabbit 
Santa Cruz 
Biotechnology 
# sc-990 

1:2000 
(5% (w/v) dried 
milk) 

GFP 27 kDa Sheep In house 
1:2000 
(5% (w/v) dried 
milk) 

β-Actin 45 kDa Rabbit New England 
Biolabs #4970S 

1:1000 
(5% (w/v) dried 
milk) 

 

Table 2–5 Secondary detection agents for western blotting 

Linked 
molecule Epitope Species Suppliers/ 

Cat. No. 
Working Dilution/ 
Diluent* 

HRP Mouse IgG Goat Sigma-Aldrich 
A4416 

1:1000 
(5% (w/v) dried milk) 

HRP Rabbit IgG Goat Sigma-Aldrich 
A9169 

1:1000 
(5% (w/v) dried milk) 

HRP Goat IgG Rabbit Sigma-Aldrich 
A5420 

1:2000 
(5% (w/v) dried milk) 

 *Diluent solution: TBS-Tween (50mM Tris pH 7.5, 150mM NaCl, 0.05% (v/v) 

Tween-20)  
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2.2 Methods 

2.2.1 Cell culture 

All cell types were cultured at 37°C in a humidified atmosphere regulated at 5% 

(v/v) CO2.  

2.2.1.1 Cell culture growth media for MEFs 

The cell culture medium for murine embryonic fibroblasts (MEFs) was 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) 

inactivated foetal bovine serum (FBS), 100U/ml penicillin, 100µM streptomycin, 

and 1mM L-glutamine. The cell monolayers were grown in Corning® 150cm² 

flasks until ~80% confluence. Passaging (sub-culturing) of MEF monolayers 

was performed by removal of the cell culture medium, followed by rinsing with 

4 ml tissue culture grade PBS. Cells were incubated in 2 ml pre-warmed sterile 

trypsin (0.05% (v/v) in diaminothanetetra-acetic acid, disodium salt [EDTA]) for 

2-3 minutes at room temperature to detach the cells from the flask. The trypsin 

was then neutralised with 8 ml fresh medium. Cells were finally resuspended 

via gentle pipetting before transferring to 10-12ml of fresh media. Cells were 

split 1 in 20 into fresh T150cm flasks at each passage. 

2.2.1.2 Culture of endothelial AS-M.5 cell lines 

Human endothelial angiosarcoma (AS-M.5) cells were maintained as 

monolayers in endothelial growth medium (EGM, Lonza) consisting of 

endothelial basal medium supplemented with 2% (v/v) foetal bovine serum 

(FBS), 0.04% (v/v) hydrocortisone, 0.4% (v/v) human fibroblast growth factor-B 

(hFGF-B), 0.1 % (v/v) vascular endothelial growth factor (VEGF), 0.1% (v/v) 

insulin-like growth factor-l (IGF-l), 0.1% (v/v) ascorbic acid, 0.1% (v/v) human 

epidermal growth factor (hEGF), 0.1% (v/v) gentamicin sulphate and 

amphotericin-B (GA-1000) and 0.1% (v/v) heparin, as recommended by the 

supplier (Lonza). Cells were cultured in Corning® 150cm² flasks and sub-

cultured by washing the cells twice with tissue culture grade PBS and adding 

2ml of sterile endothelial grade trypsin-EDTA solution (5 U/ml porcine trypsin, 

1.8 % (w/v) EDTA) to each flask. Cells were left for a few minutes at 37°C to 
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allow detachment from the flask surface. Once adherent cells detached, fresh 

EGM was added to neutralise the action of the trypsin. The cell mixture was 

transferred to a Falcon centrifuge tube and spun down at 1200 x g for 5 minutes. 

The cell pellet was then resuspended in fresh medium and seeded into plates 

or dishes at an appropriate level according to the experiment performed. Cells 

were split 1 in 20 into fresh T150cm flasks at each passage.  

2.2.1.3 Preparation of protein lysates from cultured cells 

Confluent cells cultured on appropriately sized dishes were placed on ice and 

washed twice with ice-cold 1 x PBS to remove any residual media components. 

Cell lysates were obtained by harvesting the cells with 100μl ice-cold 

radioimmuno-precipitation assay (RIPA) buffer (50 mM sodium HEPES [pH 

7.5], 150 mM sodium chloride, 5 mM EDTA, 10 mM sodium fluoride, 10 mM 

sodium phosphate, 1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 

0.1% (w/v) sodium dodecyl sulphate (SDS), 0.1 mM phenylmethylsulphonyl 

fluoride, 10 μg/ml soybean trypsin inhibitor, 10 μg/ml benzamidine, and EDTA-

free complete protease inhibitor mix). 

The cells were scraped off using a cell lifter and transferred into pre-cooled 1.5 

ml microcentrifuge tubes. To facilitate cell lysis and protein solubilisation, the 

extracts were incubated for one hour at 4°C with rotation. Cell extracts were 

then centrifuged (15 minutes at 21000 x g, 4°C) to remove detergent-insoluble 

cellular fractions. The supernatants were subsequently collected and frozen in 

aliquots for storage at -20oC.  

2.2.2 Protein concentration determination 

The protein concentration in cell lysates was determined using a bicinchoninic 

acid assay (BCA). This colorimetric  assay [358] is based on measuring  purple 

Cu+1 generated by proteins in the sample. The intensity of the purple complex 

is directly proportional to the amount of protein present in the solution and it can 

be estimated by comparison to a protein standard, such as bovine serum 

albumin (BSA) (0.0-2.0 mg/ml). Protein lysates were diluted 1 in 5 in the same 
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lysis buffer (2μl sample + 8μl buffer). Both standards and samples were added 

to a clear 96-well plate in duplicate (total volume 10 μl/well). 

The BCA working solution was prepared in a 20ml universal at a ratio of 1:50 

dilution of copper sulphate (4% (v/v) to BCA reagent (1% (w/v) 4,4 dicarboxy-

2,2 biquinoline, disodium salt, 2% (w/v) sodium carbonate anhydrous, 

0.16%(w/v) sodium potassium tartate, 0.4% (w/v) sodium hydroxide, 0.95% 

(w/v) sodium bicarbonate, pH 11.25). 200µl were then added to each well 

before incubating at 37˚C for 10 minutes. Spectrophotometric analysis was 

performed using a POLARstar OPTIMA (BMG LabTech) microplate reader. The 

plate was read at 495nm and the mean absorbance for each sample duplicate. 

Measuring the absorbance of the BSA standards allowed plotting a best fit 

straight line from which the concentrations of the protein samples were 

quantified. Protein concentrations were determined using POLARstar OPTIMA 

MARS data analysis package v.1.20 and GraphPad Prism v.4. 

2.2.3 SDS-Polyacrylamide Gel Electophoresis 

Following protein determination by BCA assay, detergent-soluble whole cells 

lysates were equalised for protein content (15-30 μg/sample) and volume. 

Samples were prepared for SDS-PAGE to total volume of 30μl by addition of 

equal volume of SDS-loading buffer (50 mM Tris pH 6.8, 10% (v/v) glycerol, 

12% (w/v) SDS, 1 mM dithiothreitol (DTT), 0.02 % (w/v) bromophenol blue). 

Using the BioRad Mini-PROTEAN® cell system, proteins were resolved via 

SDS-PAGE on 1.5 mm thick vertical slab gels containing between 10-12% (w/v) 

poly-acrylamide gels. Size estimation of immunoreactive protein bands was 

consequently determined by running a Bio-Rad Rainbow marker alongside the 

samples. Electrophoresis was performed in 1% (w/v) SDS running buffer (0.1% 

(w/v) SDS, 192 mM glycine, 25 mM Tris, pH 8.3) at a constant voltage of 150 V 

for approximately 1.5 hours until the blue dye had reached the bottom of the 

resolving gel and good separation of the molecular weight markers had been 

obtained. 
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Table 2–6 Resolving gel components 

Component 10% 12% 
Volume required 

dH20 3.4ml 2.74ml 

Buffer 1 
(1.5M Tris, pH 8.8, 0.4% (w/v) SDS) 2.5ml 2.5ml 

50% (v/v) glycerol 0.65ml 0.65ml 

Ammonium persulphate  
(APS, 0.3mg/ml) 32µl 32µl 

TEMED 8µl 8µl 

30% (w/v) acrylamide/0.8 (w/v) bis-acrylamide 3.3ml 3.96ml 

 

Table 2–7 Stacking gel components 

Component Volume 
required 

dH20 3.4ml 

Buffer 2 
(0.5M Tris-HCl, pH 6.8, 0.4% (w/v) SDS) 1.34ml 

Ammonium persulphate  
(APS, 0.3mg/ml) 54µl 

TEMED 7µl 

30% (w/v) acrylamide/ 0.8 (w/v) bis-acrylamide 0.63ml 

 

2.2.4 Immunoblotting for proteins 

2.2.4.1 Electrophoretic transfer of fractionated proteins onto 
nitrocellulose  

Following gel electrophoresis , the gels were removed from the glass casing 

and placed on top of an equal-sized sheet of nitrocellulose membrane (0.2 μm 

pore size). Transfer cassettes were assembled with sponges, filter paper 

(Whatman 3MM blotting paper), SDS gel and nitrocellulose membrane, all pre-

wetted in transfer buffer (24.7 mM Tris, 0.19 M glycine in 20% (v/v) methanol). 
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The proteins were electrophoretically transferred to the nitrocellulose 

membrane using the Mini PROTEAN® Tetra Cell (Bio-Rad) transfer system at 

a constant current of 400 mA for 45 minutes. Ponceau stain (0.1% [w/v] 

Ponceau S acid red diazo dye in 1% [v/v] acetic acid) was used to confirm the 

transfer of protein from the gel to the membrane. 

2.2.4.2 Blocking of membranes and probing with primary antibodies 

To reduce non-specific antibody binding the membrane was incubated with 5% 

(w/v) skimmed milk powder in TBST (10 mM Tris-HCl PH 7.5, 150 mM NaCl, 

0.05% (v/v) Tween 20) for 1hr at room temperature. Following blocking, the 

appropriate primary antibody (Table 2–1) diluted in 5% (w/v) milk-TBST or 5% 

(w/v) BSA-TBST for phospho-specific antibodies was applied to the blot and 

incubated, with shaking, overnight at 4°C. 

2.2.4.3 Secondary antibodies and chemiluminescence western blot 
detection 

Following incubation with primary antibody, membranes were washed three 

times for 10 min in TBS/T at room temperature with rotation on a shaker 

(150rpm). Membranes were subsequently incubated with the appropriate 

horseradish peroxidase (HRP)-conjugated secondary antibody for 1 hour at RT 

in 5% (w/v) dried milk powder in TBS/T, followed by three washes for 10 min in 

TBS/T to remove unbound antibodies. Equal volumes of enhanced 

chemiluminesence (ECL) reagent 1 and 2 (Perkin-Elmer Life Sciences, UK) 

were mixed and membranes were immersed in the combined ECL substrate for 

1 min. After removal of the  detection reagents , membranes were placed 

between plastic film in  autoradiography cassette with Kodak film, and 

developed using a X-OMAT 2000 processor (Kodak). 

2.2.4.4 Stripping of nitrocellulose membranes 

Stripping buffer (0.15M NaCl, 0.1M Glycine, pH 2.6) was prepared to remove 

primary and secondary antibodies bound to a western blot membrane. 

Membranes were incubated in stripping buffer for 30 mins at room temperature 
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with shaking. The membranes were then washed in TBS/T (3 x 5 min) and 

blocked in 5% (w/v) dried milk before incubation with another primary antibody. 

2.2.4.5 Densitometric quantification of protein bands 

Immunoreactive proteins on the developed film were scanned on HP Scanjet 

G3110 scanner using Adobe Photoshop software. The optical density of the 

immune-detected protein was measured using Totallab v2.0 imaging software 

(Phoretix). 
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2.2.5 Cell Transfection 

MEFs were seeded and allowed to grow to 50-60% confluency on 6 cm2 dishes. 

Transient transfection of DNA constructs was then carried out using PolyFect 

transfection reagent (Qiagen, 301105) according to manufacturer’s 

instructions. Briefly, 4 μg of plasmid DNA was mixed with 150 μl Opti-MEM (Life 

Technologies) followed by addition of 40μl PolyFect transfection reagent and 

mixed thoroughly via gentle pipetting. The DNA/PolyFect mixture was 

incubated for 10 minutes at room temperature to allow formation of transfection 

complexes. In the meantime, 3 ml fresh DMEM growth medium was added to 

the 6 cm2 dish. The DNA/PolyFect solution was then mixed with 1 ml DMEM 

growth medium prior to being added drop-wise to the target cells. Cells were 

incubated in a humidified incubator (5% CO2, 37°C) for 24 hrs to allow transfer 

of DNA into cells. Transfection efficiency of DNA constructs was assessed 

using the Axiovert 40 CFL (Zeiss Microscopy,) fluorescent microscope and 

Zeiss Vision AxioVision Viewer 4.0 software. Cells were subsequently split onto 

6 well plates and treated as described in the figure legends. 
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2.2.6 RNA Extraction, Purification and Quantification 

2.2.6.1 Extraction of RNA from MEFs 

RNA from MEFs was extracted using a miRNeasy mini kit (including on-column 

DNase treatment) according to manufacturer’s instructions (Qiagen, Hilden, 

Germany). Briefly, the media was removed and the cells were washed with ice-

cold PBS. Cells were then lysed directly with 700 µl QIAzol lysis reagent and 

homogenised through a sterile 23-guage needle and syringe 10 times. Cell 

homogenates were placed into pre-cooled 1.5ml eppendorf tubes and stored at 

-80ᵒC until required. 

Cell lysates were thawed on ice and mixed with 140 µL chloroform by shaking 

the tube vigorously for 15 sec. Lysates were incubated at room temperature for 

2 min, prior to centrifugation at 12,000 x g (15 min, 4°C). After centrifugation, 

the upper aqueous phase containing total RNA was carefully collected and 

transferred to a new 1.5 ml tube and mixed thoroughly with 550 µL 100% 

ethanol. Lysates were transferred to RNeasy mini spin columns and centrifuged 

at 8,000 x g for 1 min and the flow-through discarded. The columns were 

washed with 350 µL RWT buffer and two times with 500 µl RPE buffer. Each 

wash was followed by centrifugation at 8,000 x g for 1 min at room temperature. 

miRNeasy spin columns were then transferred to new 2 mL collect tubes and 

centrifuged at 14,000 x g for 2 min at room temperature to remove any buffer 

contaminants. Total RNA was then eluted by adding 30 µL of nuclease-free 

water through the spin column for 1 min at 8,000 x g. To obtain an optimal RNA 

yield, the RNA eluates were collected and re-eluted through the column.  

The RNA concentration were quantified by measuring the absorbance of the 

sample at 260nm using a NanoDrop ND-1000 spectrophotometer (Thermo 

Scientific, Paisley, UK) and samples stored at -80°C until required. 

2.2.6.2 cDNA synthesis by reverse transcription 

For messenger RNA (mRNA) expression analysis, cDNA was generated from 

total RNA using Super-Script™ II Reverse Transcriptase (Invitrogen) according 

to manufacturer’s instructions. 
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Per reaction, 1µg of DNase-free RNA were reverse transcribed. Each reaction 

contained 100 ng random hexamers, 2.5 mM of each deoxyribonucleotide 

triphosphates (dNTPs), 40 U RNaseOUT (Invitrogen) and 200 U Super-Script™ 

II Reverse Transcriptase. RNase-free water was used to make up the reaction 

volume to 20 μl. 

Samples were incubated as follows: 

Temperature °C Cycle time (Min) Function 
25 10 annealing of random primers 
42 50 reverse transcription 
70 15 inactivate the reverse transcriptase 

 

cDNA samples were stored at -20°C. 

2.2.6.3 Quantitative Real-Time PCR (qRT-PCR) analysis for expression 
of cavin-1 gene transcripts 

qRT-PCR) analysis was performed  using Power SYBR® Green PCR Master 

Mix (Applied Biosystems).The final volume per reaction was 10 µl, containing 1 

µl of cDNA, 1 x Power SYBR Green master mix and 0.5 mM of each primer. 

Non-template controls in which cDNA was substituted with water were included 

in each reaction.  Samples were loaded in triplicate in real-time PCR 96-well 

plates (primerdesign, UK) which was covered with optical cover and centrifuged 

at 1000 RPM for 1 minute.  

Real-time quantitative PCRs were performed on a MX3000P® QPCR system 

(Stratagene). The gene amplification began with an initial denaturation at 95°C 

for 10 minutes, 40 cycles of 95°C for 5 seconds and 60°C for 20 seconds, 

followed by a final extension at 72°C for 5 minutes. 

Glyceraldehyde-3-phosphatase dehydrogenase (GAPDH) was used as a 

reference gene. 

Primers in Table 2–8 were used to amplify genes of interest. 
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Table 2–8 List of primer sequences used for qRT-PCR analysis in 
this study 

Gene Species forward primer reverse primer 

cavin-1 Mouse 5’-GCAAGGTCAGCGTCAAC-3’ 5'-CCGGCAGCTTGACTTCA-3’ 

GAPDH Mouse 5'-GGCTGGCATTGCTCTCAA-3’ 5'-GCTGTAGCCGTATTCATTGTC-3’ 

 

Data obtained were analysed using the comparative threshold cycle(Ct) 

method. The formula 2- ΔΔCt [359] was employed to compare the Ct value of the 

target gene to the Ct value of the control gene. Data was calculated in Microsoft 

Excel 2007 and expressed as the fold change of the gene of interest compared 

to the control condition. 

2.2.7 Ultrastructural analysis 

2.2.7.1 Preparation and Fixation of AS-M.5 cells 

WT and SOCS3-null AS-M.5 cells were seeded at a density of 1×106 cells per 

ml into 6-well plates and onto Thermanox coverslips (13 mm diameter) for 

culturing to confluency. The cells were then fixed in 1.5% (w/v) glutaraldehyde 

in 0.1 M sodium cacodylate buffer at 4°C for 1 h. 

2.2.7.2 Post-fixation 

Cells were washed 3 times in 0.1M sodium cacodylate buffer in 2% (w/v) 

sucrose prior to incubation with 1% (w/v) osmium tetroxide/0.1 M sodium 

cacodylate for 1 h. The cells were then washed 3 times in distilled water and 

incubated in 0.5% (w/v) uranyl acetate in the dark for 1 hour followed by 2 rinses 

in distilled water. 

2.2.7.3 Dehydration, embedding and microscopy 

Dehydration was carried out with a graded alcohol series (30–100% (v/v)), 

followed by overnight incubation in a 1:1 mix of propylene oxide/TAAB araldite 

Epon 812 resin. The propylene oxide was allowed to evaporate to leave pure 
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resin, which was changed twice before the sample was embedded flat in fresh 

resin polymerised overnight at 60 °C. Ultrathin sections were cut using a Leica 

Ultracut UCT and a Diatome diamond knife, contrast stained with aqueous 2% 

(w/v) methanolic uranyl acetate and Reynolds lead citrate, and viewed using a 

LEO 912AB TEM (Carl Zeiss) at an accelerating voltage of 120 kV. TIF images 

were captured using an Olympus Soft Imaging System and image contrast 

modified using Adobe Photoshop CS. 

2.2.8 Immunofluorescent Confocal Microscopy 

2.2.8.1 Cells preparation and fixation 

For immunofluorescent analysis of endogenous cavin-1 and transfected 

SOCS3-GFP, WT, and cavin-1−/− MEFs, cells were allowed to grow at 

appropriate density in 10 cm dishes and transiently transfected with or without 

SOCS3-GFP expression constructs using the method described previously in 

section 2.2.5. After 24 h, cells were split on ethanol-sterilised 13 mm glass 

coverslips and allowed to adhere overnight. On the following day, cells were 

washed with PBS and fixed with 4% (w/v) paraformaldehyde (PFA) in PBS for 

25 min.  

2.2.8.2 Permeabilisation and staining 

After washing with PBS and quenching residual PFA with 20 mM glycine in 

PBS, cells were permeabilised with 0.1% (v/v) Triton X-100 for 10 mins, and 

non-specific binding sites blocked by a 30 min of incubation at room 

temperature in PBS containing 3% (w/v) BSA and 10% (v/v) donkey serum. 

Cells were then incubated with rabbit anti-cavin-1 antibody (Abcam ab48824, 1 

in 100 dilution) for 90 min at room temperature. 

Cells were washed with PBS containing 0.1% (v/v) Triton X-100, 1% (w/v) BSA, 

and 10% (v/v) donkey serum prior to incubation with Alexa Fluor 594-

conjugated donkey anti-rabbit IgG (Life Technologies A21207, 1 in 200 dilution) 

for 1 hour at room temperature. The cells were washed with PBS and the 

coverslips were mounted onto glass slides using ProLong® Gold anti-fade 

reagent containing nuclear stain 4’,6-diamidino-2-phenylindole (DAPI). 
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2.2.8.3 Visualisation by confocal microscopy 

Cells were visualised using a 63xoil-immersion Plan Fluor Apochromat 

objective lens, on a Ziess LSM510 laser scanning confocal microscope (Carl 

Zeiss GmbH, Oberkochen, Germany) equipped with a Zeiss LSM5 Pascal 

instrument and AOTF Laser module.  

GFP fusion proteins were excited with an argon laser at 488 whereas Alexa 

Fluor 594 were excited with a helium neon laser. Images were analysed using 

MetaMorph® imaging software to generate Pearson’s correlation coefficients. 

2.2.9 Production of SOCS3 Knockout AS-M.5 via CRISPR 

2 x 105 AS-M.5 cells were seeded into 6 cm2 dishes and grown in endothelial 

growth medium (EGM) until reaching approximately 80% confluency. Cells 

were then co-transfected with human SOCS3 CRISPR/Cas9 KO and human 

SOCS3 HDR plasmids using SuperFect transfection reagent (Qiagen) 

according to the manufacturer’s protocol. Briefly, 30μL of Superfect reagent 

was mixed with 3μg of each DNA construct and made up to 300μL with cell 

growth medium. Following 10 minutes incubation at room temperature, the 

DNA-Superfect complexes were then added directly to the cells and allowed to 

incubate for 3 hours at 37°C. DNA complexes were then removed and complete 

EGM was added to dishes.  

48 hours after transfection, the cells were split into 6-well plates at 1:10-1:15 

ratio and allowed to proliferate for another 48 hrs prior to selection in medium 

supplemented with puromycin (2 μg ml−1).  Cultures were maintained for up to 

14 days and the media was replaced every 2-3 days. Following dilution and re-

plating, individual clones were identified for the successful elimination of 

SOCS3 gene production (as described in Chapter 3) and a single knockout 

clone was compared with an unselected control cell population. 
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Figure 2–1 Flowchart outlining the experimental procedures to 
generate SOCS3 KO AS-M.5 cell lines. 
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2.2.10 Statistical analysis 

Results were expressed as the mean ± standard error of the mean (SEM). 

Statistically analysis included unpaired, two-tail t-test or a one-way analysis of 

variance (ANOVA) followed by the Bonferroni multiple comparisons test when 

comparing the means of multiple treatment groups. P value <0.05 was deemed 

statistically significant. 
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3 Generation and characterisation of 
endothelial SOCS3KO cells for the further 
examination of the working hypothesis 

3.1 Perturbation of Target Gene Expression  

The basic functionality and relationships of proteins could be elucidated via 

understanding of their levels and activities in the cell. Several methods have 

been utilised to transiently and specifically perturbate target protein expression, 

including knockdown by RNA interference, chemical inhibition or 

overexpression by non-integrating vectors. For more stable perturbations, 

editing of the endogenous gene locus encoding the protein of interest can also 

be employed [360]. 

Two early forms of customised nucleases have been utilised for this purpose; 

zinc-finger nucleases (ZFNs) and Transcription activator-like effector nucleases 

(TALENs) [361]. The ZFNs system is composed of DNA-binding domains and 

zinc finger proteins (ZFPs) as well as a DNA-cleavage domain (FokI) (Figure 3-

1a). Different combinations of ZFPs can be produced to target a distinct DNA 

sequence since the ZFP region has the ability to interact with nucleotide (nt) 

triplets. The specificity of ZFNs systems is apparently demonstrated in creating 

double-stranded breaks (DSBs), FokI dimerisation, and DNA cleavage [361]. 

TALENs proteins originate from repeated domains of bacterial (prokaryotic) 

transcription activator-like effector that interact with a single nt and is bound to 

a FokI nuclease (Figure 3-1b). Pairs of TALENs are constructed to position the 

FokI nuclease domains to adjacent genomic target sites, where they induce 

DSBs that stimulate error-prone nonhomologous end-joining (NHEJ) or 

homology-directed repair (HDR) [362]. Although ZFN and TALEN platforms 

enable site-specific gene mutagenesis and editing, the need of extensive labour 

efforts and prolonged time may represent major limitations, in addition to having 

low efficiency, suboptimal precision, and poor scalability [363]. 

Recently, clustered regularly interspaced short palindromic repeat/associated 

9 (CRISPR/Cas9) (Figure 3-1c) has provided a more straightforward approach 

for genome editing and has been efficiently utilised to produce model organisms 
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in multiple species [364]. Despite its initial presentation as unknown sequences 

of unidentified biological significance, a considerable progress has been made 

in the CRISPR system suggesting it as the method of choice for genome editing 

[363]. 

  



 
 

79 

  
  

 
 

 

 

Figure 3–1 Nuclease-induced genome editing  

(a) Two monomers of zinc-finger nuclease containing three zinc fingers 
and a FokI cleavage domain in each. (b) The FokI cleavage domain is 
coupled to two TALEN monomers that entail a repeat region and C- and 
N-terminal extensions. (c) tracrRNA:crRNA recruits Cas9 to the target site 
of the DNA sequence. The complementary PAM sequence binds to 
crRNA and the DSBs are generated by Cas9 HNH and RuvC domains. 
(d) the process of DNA repair can be performed in two different pathways. 
A small number of bases can be removed and this might be associated 
with inducing a frameshift mutation via a NHEJ process. NHEJ typically 
inactivate gene function. Additionally, HDR may be followed if the donor 
template is transfected with Cas9 mRNA and the guide RNA. In this 
pathway, single base alterations could be inserted into the repaired 
strand, resulting in gene knockout. HDR: homology-directed repair; PAM: 
protospacer-adjacent motif; NHEJ: Non-homologous end joining; 
tracrRNA: trans-activating crRNA; ZF: Zinc finger (Adapted from [365, 
366]).  
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3.1.1 Advances in the development of the CRISPR/Cas9 
system  

The history of CRISPR discovery extends back to 1987, when a set of 29 nt 

repeats in Escherichia coli were found to be divided by short non-repetitive 

sequences [367]. Later, Mojica et al. [368] reported similar repeats in other 

bacterial species and in some prokaryotic Archaea. In 2002, the acronym 

“CRISPR” was created to replace the short regularly spaced repeats (SRSR) 

[369]. A conserved gene sequence that can interact with CRISPR repeats has 

been subsequently discovered and named CRISPR-associated (Cas) genes. 

Such genes encode various important proteins, such as the Cas3 gene which 

encodes a single-stranded DNA nuclease and ATP-dependent helicase , and 

Cas4 which encodes exonuclease [363]. Additionally, a large protein with 

nuclease activity has been found to be encoded by Cas9 gene as revealed by 

Bolotin et al. [370]. Furthermore, the protospacer adjacent motif (PAM), another 

component of the CRISPR system, has been discovered and contributed to 

revealing several technical details pertinent to the novel gene editing tool [370]. 

A more recent remarkable discovery is that certain complexes of Streptococcus 

thermophilus and Streptococcus pyogenes (Cas9–CRISPR (cr)RNA 

complexes) might exert an in vitro RNA-guided endonuclease action [369]. As 

a consequence, these complexes might be utilised in genome editing thereby 

expanding horizons for use of CRISPR technology in new applications. 

Of the three CRISPR systems, the CRISPR type II system has been well 

characterised. It is composed of pre-crRNA, trans-activating (tra)crRNA, and 

Cas9 proteins [363]. In Cas9, the HNH domain and RuvC-like domain are 

known for their prominent nuclease activity (Figure 3-1c). Pre-crRNA is cut into 

crRNA by a coordinating action of tracrRNA and RNaseIII. Then, an interaction 

between crRNAs and tracrRNAs occurs, helping the appropriate recognition of 

Cas9 to the specific DNA sites. The random identification of DNA sequences 

starts by the Cas9–RNA complexes and it requires a PAM motif to match its 

sequence. Once identified, the HNH nuclease domain on Cas9 cleaves the 

DNA strand at its specific cleavage site that is bound to crRNA. Additionally, 

the other DNA strand is cut by the RuvC-like domain to generate the relevant 

DSBs. Following creating the break sites, the repair mechanism is directed in 
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either two different ways depending on the stage of cell cycle or the existence 

of a donor template. These repair mechanisms include NHEJ or HDR. The 

NHEJ pathway entails conjoining the broken strands through multiple insertions 

or deletions (indels) leading to a frame shift and inducing premature stop 

codons in the reading sequence. On the other hand, when a donor template is 

available, distinct insertions, deletions, or mutations are generated in the HDR 

repair mechanism [363]. 

3.1.2 Experimental cell lines 

Vascular endothelium of an adult human is composed of 1–6 × 1013 endothelial 

cells lining a total surface of 4000-7000 m2 of blood and lymph vessels [371]. 

Endothelial cells play a key role in diverse physiological and pathological 

process such as inflammation, thrombosis, wound healing, angiogenesis, and 

tumour metastasis. Thus, systematic identification of the specific molecular 

features of the endothelial cells is essential for the development of new 

approaches for both the prevention and therapy of cardiovascular diseases 

[372]. 

Utilising human endothelial cells has been an essential element in experimental 

culture systems to investigate drug interactions, vascular remodelling and 

inflammation as well as blood haemostasis [373]. In the present thesis, the use 

of AS-M.5 cell line was considered. This cell line is derived from a rare 

malignancy in scalp endothelium, namely cutaneous angiosarcoma [374]. 

Immunohistochemical analyses and RT-PCR analyses have shown they 

display several characteristics of primary vascular endothelial cells: these 

include inducible expression of cell surface adhesion molecules (intercellular 

adhesion molecule-1 (ICAM-1), vascular endothelial cell adhesion molecule 1 

(VCAM-1), and E-selectin) when exposed to LPS, TNF, and IL-1β) and the 

expression of endothelium markers von Willebrand factor (vWF) and CD31 

[357]. Confirmation of the endothelial origin of this cell line was originally based 

on their increased uptake of acetylated-low density lipoprotein (acLDL), which 

is considered a defining function of endothelial cells [357, 375]. These 

characteristics are all comparable to those of primary isolated human umbilical 

endothelial cells (HUVECs) which have been widely used to study the 
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endothelial physiology and pathology. Unlike HUVECs that exhibit a limited 

proliferative capacity in culture [376], AS-M.5 cells can undergo more than 100 

population doublings (PDs) while remaining morphologically stable [357] and 

thus maintained many of endothelial characteristics. Additionally, AS-M.5 

culture systems are a cheaper and more tractable alternative for stable knock-

in or knockout experiments. Therefore, WT and SOCS3-null AS-M.5 cells could 

potentially be useful cell models for further examination of the specific roles of 

cavin-1/SOCS3 interaction in JAK-STAT signalling and caveolae stability in 

endothelial cells.. 

3.1.3 Aims 

In this Chapter, Generation of an immortalized human endothelial cell line that 

lacks SOCS3 protein expression is documented. This was achieved by: 

1) Obtaining commercially CRISPR/Cas9 KO Plasmids that have a suitable 

gRNA for SOCS3 gene editing. 

2) Determining the optimal Plasmid DNA: transfection reagent ratio to minimize 

cell toxicity followed by co-transfection the appropriate amount of 

CRISPR/Cas9 KO Plasmid with HDR Plasmid aiming at the highest level of 

transfection efficiency in WT AS-M.5 cell lines. 

3) Examining successful transfection of CRISPR/Cas9 KO Plasmid and HDR 

Plasmid by detection of the green fluorescent protein (GFP) and the red 

fluorescent protein (RFP) via visual confirmation using fluorescent microscopy. 

4) Selection SOCS3 KO cells with media containing puromycin antibiotic, 

followed by phenotypic analysis of SOCS3 KO in selected clones using 

fluorescent microscopy and western blotting. 

3.2 Results and discussion 

Caveolae and their major protein components, particularly cavin-1, are 

abundantly located in the endothelial cells [121]. Generation of endothelial 
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SOCS3 knockout cells is instrumental to define specific roles of cavin-1/SOCS3 

interaction and caveola abundance in endothelial cells.  

3.2.1 CRISPR/Cas9 Constructs 

SOCS-3 CRISPR/Cas9 KO Plasmid (h2) (sc-400455-KO-2) and SOCS-3 HDR 

Plasmid (h2)(sc-400455-HDR-2) were utilised (Santa Cruz Biotechnology, Inc., 

Texas, U.S). In the SOCS-3 CRISPR/Cas9 KO Plasmid (h2) product, a 3-

plasmid-containing pool is used to create a DSB in a 5' constitutive exon 

causing disruption of the genomic expression of the SOCS3 gene. DSBs could 

be made by the CRISPR plasmids via cloning of three 20 nt target sites into the 

gRNA scaffold. The pool of the SOCS3 CRISPR/Cas9 plasmids consists of 3 

sgRNA sequences developed from the Genome-Scale CRISPR Knock-Out 

library (GeCKO v1 and v2 lentiviral sgRNA libraries) as formerly described by 

Zhang Lab (Broad Institute, Massachusetts, U.S) [377, 378] where further off-

site modifications were prohibited or minimised by the selection of each specific 

target site. As such, three gRNAs (20 nt each) would target SOCS3 (Table 3–

1) and then the respective SOCS-3 CRISPR/Cas9 KO Plasmids (h2) were 

cloned, encoding the Cas9 nuclease along with an enhanced green fluorescent 

protein (EGFP) to enhance the visualisation of positive clones [379]. The 

gRNAs, which are located immediately adjacent to a PAM sequence, target a 

specific DNA sequence by Cas9. Subsequently, either the high-fidelity HDR or 

the error-prone NHEJ mechanisms are employed to repair the target sequence 

[380]. At this end, the role of the SOCS-3 HDR Plasmid (h2)(sc-400455-HDR-

2) could be apparent. Such repair template would render the edited cells 

containing a puromycin resistance gene, which could be further utilised for 

selection purposes. Figure 3–2 depicts a scheme for both plasmids used for 

transfection. 

Table 3–1 Guide RNA sequences used for constructing knockout cells.  

Data were adapted with permission from Santa Cruz Biotechnology, Inc.[381] 
  

gRNA gRNA sequence 
sgRNA1 Sense: CTTAAAGCGGGGCATCGTAC 
sgRNA2 Sense: CACAGCAAGTTTCCCGCCGC 
sgRNA3 Sense: GCTTGAGCACGCAGTCGAAG 
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Figure 3–2: Design of the CRISPR/CAS9 system for SOCS3 gene 
deletion. 

 (A) A scheme of the SOCS-3 CRISPR/Cas9 KO Plasmid (h2) which 
includes the following sites: 1) 20 nt RNA sequence that act as a guide to 
target Cas9 to a specific sequence in the genomic DNA. 2) gRNA scaffold 
which facilitates Cas9 binding to the target DNA. 3) termination signal. 4) 
chicken β-Actin hybrid (CBh) promoter which drives Cas9 expression 5) 
Nuclear localization signal 6) SpCas9 ribonuclease 7) nuclear localisation 
signal 8) 2A peptide that enables producing both GFP and Cas9 from the 
same CBh promoter 9) Green Fluorescent Protein to facilitate the 
visualisation of transfection. 10) U6 promoter: drives expression of gRNA. 
(B) A scheme of the SOCS-3 HDR Plasmid (h2) containing the following 
sites: 1) EF1a promoter which initiates expression of the Puromycin 
resistance gene. 2) Red Fluorescent Protein to enable accurate 
visualisation of transfection. 3) Puromycin resistance gene enables 
selection of cells in which DSBs have been induced by Cas9. 4) a Cre 
recombinase-recognisable Lox P (34 bp) recombination site. (C) The 
human SOCS3 gene is located on the 17q25.3 locus, which constitutes 
the long arm of the chromosome. The molecular location on chromosome 
17 from the base pair 78,356,777 to 78,360,079. Adapted from the 
Genetics Home Reference [382].  

A B 

  
C  
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3.2.2 Transfection of CRISPR/Cas9 Constructs 

In the current experimental work, liposomal transfection was initially employed 

using the PolyFect® Transfection Reagent (QIAGEN, Venlo, The Netherlands) 

but it was of a very low efficiency (data not shown). Therefore, it has been 

replaced with another commercially poly(amidoamine) (PAMAM) dendrimers-

based gene delivery system, SuperFect® Transfection Reagent (QIAGEN, 

Venlo, The Netherlands) (Figure 3–3). Seemingly, PAMAM dendrimers-

mediated transfection depends on both the charge of the complexes (where a 

net positive charge is more preferable and is inversely correlated with the 

hydrophobicity of the complexes) and dendrimer generation (higher efficiency 

is prospected with larger sized-dendrimers) [383]. 
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Figure 3–3: Fluorescence expression in AS-M.5 cells transfected 
with a CRISPR/Cas9 plasmid that expresses enhanced GFP. 

AS-M.5 cells were co-transfected with CRISPR/Cas9 KO Plasmid and 
HDR Plasmid (Santa Cruz Biotechnology, Inc.) using SuperFect® 
Transfection Reagent (QIAGEN). 24 hours post transfection, cells were 
visualized under a Zeiss Axiovert fluorescence microscope (Carl 
Zeiss, Germany). Representative bright field image of transfected cells 
and fluorescence image of the same field of cells. Scale bars: 100 µm 

  

Bright-field Fluorescent field 
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3.2.3 Puromycin selection 

AS-M.5 cells were co-transfected with CRISPR/Cas9 KO Plasmid and HDR 

Plasmid using the SuperFect® Transfection Reagent according to the 

manufacturer’s instruction. Five days post transfection, puromycin selection 

was used to select cells that had taken up the CRISPR/Cas9 KO Plasmid with 

HDR Plasmid. Titration of puromycin on the AS-M.5 cell line was previously 

performed and the optimal concentration 2 µg/ml was found sufficient to kill 

parental cells within 2 days (Kirsten Munro, University of Glasgow, personal 

communication). Selection was continued for 10 days (Figure 3–4), which 

resulted in large cell death. Dilution plating was performed for puromycin-

resistant cells using 10 cm cell culture dishes. Dilution would facilitate formation 

of separate discrete colonies with large gaps in-between for better 

characterisation.  
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Day 0 Day 5 

  
Day 7 Day 10 

  
Figure 3–4: The effect of puromycin treatment on CRISPR/Cas9-
transfected AS-M.5 cells.  

Representative phase contrast micrographs AS-M.5 cell after 5, 7, 
10 days of exposure to puromycin treatment (2µg/ml) as indicated 
(panels A-D). The number of dead cells increased significantly 
which aided the enrichment of targeted cells (puromycin-resistant 
cells). Images were taken using a Zeiss Axiovert microscope (Carl 
Zeiss, Germany), Scale bars: 100 µm. n=1. 
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3.2.4 Cell assay to confirm complete allelic knockouts 

The small-sized colonies (enough to be physically recognisable) were collected 

using trypsin-immersed cloning disks (Sigma-Aldrich). Single foci were picked 

from 10 cm dishes and seeded into separate wells of non-coated 48-well tissue 

culture plates. Following the expansion phase, characterisation of Cas9-

mediated SOCS3 genome editing was performed via western blotting. As 

shown in Figure 3–5, cells grown from one clone were treated with the adenylyl 

cyclase activator forskolin (Fsk) at a concentration of 50μM for 5 hours, in the 

presence of the proteosome inhibitor, MG132 at a concentration of 6μM. 

Polyclonal rabbit anti-SOCS3 antibodies (Abcam; Ab16030) were utilised to 

analyse SOCS3 expression. cAMP-elevation by Fsk induced endogenous 

SOCS3 expression and MG132 inhibited proteasome mediated degradation in 

the WT AS-M.5 cells whereas SOCS3 protein levels in the single-cell clone was 

null (Figure 3–5). Interestingly, Nur77, a well-characterised immediate early 

response gene whose expression is rapidly induced by cAMP elevation [384], 

was detectable in both WT and SOCS3-null AS-M.5 cells. Thus, the lack of 

response to the Fsk stimuli provided an evidence that such cells are SOCS3 

knockouts. Likewise, SOCS3 was detected (~27KDa) in the WT AS-M.5 cells 

treated with Fsk + MG132 but not in the six single cell clones which were 

expanded as potential SOCS3 knockouts (Figure 3–6). Notably, one single 

clone appeared to have a single allele (heterozygous) deletion as it exhibited 

incomplete knockout. Overall, deletion of SOCS3 via the CRISPR/Cas9 system 

was efficiently performed and occurred in six clonal cell lines in the current 

experiment. 

3.2.5 Phenotypic Differences in SOCS3–/– Endothelial Cells 

To determine whether SOCS3 deletion affected the quality of AS-M cells, the 

morphology of the endothelial clones was observed and digital images were 

taken using a microscope (Zeiss AxioVert, Germany). Phase contrast images 

showed that SOCS3-null endothelial cell clones grew in loose arrangements 

and at a slower rate when compared to the parental cells. Additionally, in 

contrast to the WT spindle-shaped AS-M.5 cells that grew in swirling patterns, 
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the endothelial clones exhibited a polygonal morphology with a growth pattern 

resembling a cobblestone (Figure 3–7).  
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A 

 
B 

SOCS3+/+ SOCS3–/– 

   

 
 

Figure 3–5 CRISPR/Cas9 mediated disruption of SOCS3 locus 
generated complete gene knockouts. 

(A) Detergent-soluble whole cell lysates from WT and SOCS3-null AS-M.5 
human angiosarcoma-derived ECs treated with either vehicle or Fsk (50 
µM) plus MG132(6 µM) for 5 hr were equalised for protein content for 
SDS-PAGE for immunoblotting with the indicated antibodies. N=3. 

(B) Representative phase-contrast micrographs showing the morphology of 
WT AS-M.5 cells and one clonal cell lines lacking SOCS3 protein. 
Images were taken using a Nikon Eclipse Ti-S inverted microscope 
(Nikon, Tokyo, Japan). Scale bar, 200 µm. 
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Figure 3–6 Immunoblot screening of CRISPR/Cas9-mediated 
SOCS3 gene knockout in AS-M.5 cells 

WT human angiosarcoma-derived ECs and clonal cell lines were 
treated with Fsk (50 µM) in the presence of MG132 (6µM) for 5 hr. 
Detergent-soluble whole cell lysates were equalised for protein content 
and then resolved by SDS-PAGE for immunoblotting with the indicated 
antibodies. Data shown are representative of three separate 
experiments. 
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Figure 3–7 Phase contrast photomicrographs of the parental AS-M.5 
human angiosarcoma-derived ECs and clonal cell lines in culture. 

WT AS-M.5 and the immortalized CRISPR/Cas9-mediated SOCS3 
knockout cell monolayers exhibit the typical cobblestone cell morphology 
that is characteristic of endothelial cells. While AS-M.5 cells were spindle-
shaped, clonal cell lines exhibited a polygonal-shape. Brightfield cell 
images were visualized under a Nikon Eclipse Ti-S inverted microscope 
(Nikon, Tokyo, Japan) equipped with a Nikon Digital Sight DS-Fi2 camera. 
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3.3 Conclusion 

In the present study, CRISPR/Cas9 gene editing was utilised to knockout 

SOCS3 gene expression. Three gRNAs were used to successfully generate six 

clonal cell lines with a complete absence of SOCS3 protein expression as 

detected by the Western blot analysis compared to unedited controls. SOCS3 

knockout cell lines could be created within a 7-week-period that extends from 

the day of transfection to cryopreservation of clonal production cell lines.  

SOCS3 has a significant regulatory role in inflammatory-mediated pathways. 

Functional studies of SOCS3 are critical to elucidate the pathological 

mechanisms underlying complex human diseases, such as insulin resistance, 

cardiovascular diseases, rheumatoid arthritis and specific cancers [324]. Other 

SOCS3-related diseases include anaemia [385], viral infection [386], and 

psoriasis, where psoriasis-like inflammation is induced by SOCS3 deletion 

[387]. Focusing on the heart, the interaction between SOCS3 proteins and 

gp130-JAK1 complexes yields a remarkable regulatory role of three major 

downstream pathways, including the Ras/MEK/ERK, JAK/STAT, and PI3K/ 

AKT [388, 389]. These multifaceted aspects of SOCS3 in different diseases 

highlight the importance of conducting future relevant studies to reveal the 

potential pathophysiological and therapeutic implications. Transitional research 

relies on mutant cell lines with a specific knocked-out protein to investigate the 

sequelae of allelic dysfunctionality in a given experimental study. The microbial 

CRISPR/Cas9 systems offered unprecedented ways of genomic manipulation 

induce gene knockouts in diploid cells and hence the biological significance of 

generating SOCS3-deficient endothelial cell lines as novel tools for the current 

experimental project and beyond. To the best of our knowledge, this study is 

the first to create endothelial SOCS3-deficient clonal cell lines using 

CRISPR/Cas9.  
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4 Characterisation of cavin-1/SOCS3 
interaction 

4.1  Introduction 

SOCS3 proteins have a vital role in regulating specific cytokine-mediated 

signalling and thus can be regarded as key players in various processes in the 

hematopoietic and immune systems, such as negative regulation of 

granulopoiesis, regulation of a number of cytokine receptors, and other 

regulatory roles in T cell development and functions [315, 390]. The inhibitory 

actions of SOCS3 are exerted on the catalytic activity of JAKs which have been 

implicated in initiating cytokine signalling [323]. Such actions are attributable to 

the central SH2 domain which binds to distinct phosphorylated tyrosine 

residues on target proteins [307]. Following the recognition of these residues 

by SH2 domains, downstream signalling pathways are regulated either via 

enhancing a distinct enzymatic activity or undergoing SH2-mediated protein-

protein interactions (Section 1.4.3 and 1.4.4). As such, the interest in 

investigating phosphotyrosine-dependent SOCS3 substrates has been 

substantially-increased. The characteristics of the identified substrates so far 

include a specific Tyr phosphorylation-dependent interaction with the SOCS3 

SH2 domain as well as the presence of an intact SOCS box required for 

ubiquitylation of the bound targets [307]. Subsequently, proteasome-mediated 

degradation of some targets, such as FAK1, would follow substrate 

ubiquitylation [307]. However, the exact regulatory mechanisms of SOCS3 

functions by other cellular proteins and the knowledge about ubiquitylated 

SOCS3 substrates remain unclear.  

Comparison of tandem affinity purified ubiquitinomes have shown that SOCS3-

expressing fibroblasts have a significant enhancement of cavin-1 ubiquitylation 

when compared to SOCS3-null cells [356]. Cavin-1 protein contributes to 

caveolae coupling to the microtubule network to inhibit caveolin-1 degradation 

and thus prevent caveolar disassembly [121]. A direct interaction between 

SOCS3 and two specific regions on cavin-1 independent of tyrosine 

phosphorylation has been demonstrated in studies employing co-
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immunoprecipitations and overlapping peptide array overlays [356]. Since 

elevated JAK/STAT signalling is involved in the pathophysiology of chronic 

inflammatory disorders, it is plausible that the SOCS3 might have a therapeutic 

role as an E3 ligase [307]. A novel therapeutic potential may emerge through 

the adequate identification of cAMP/Epac1-regulated ECSSOCS−3 E3 ubiquitin 

ligase targets and investigation of their impact on the cell.  

4.1.1 Aims 

This chapter aims to demonstrate whether SOCS3 could play a role in cavin-1 

and caveolin-1 regulation through assessment of their endogenous protein 

expression in wild type and SOCS3-null AS-M.5 cells and MEFs. This was 

further examined at the gene expression of cavin-1 in MEFs. In addition, the 

impact of cAMP-mediated elevation of SOCS3 expression was investigated to 

elucidate the effects of changes in endogenous SOCS3 expression on cavin-1. 

4.2 The effect of SOCS3 on cavin-1 stability in 
fibroblasts and endothelial cells  

The most significant non-lysosomal proteolytic pathway in the cell is mediated 

by the regulatory protein ubiquitin. In this pathway, protein degradation takes 

place via sequential catalytic reactions by three enzymes: ubiquitin activating 

enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). 

Subsequently, the 26S proteasome hydrolyses the target protein. Indeed, E3 

ligases are highly specific to their substrates and the control of such proteolytic 

pathway relies basically on the ubiquitin-substrate interaction [391]. The latter 

is not only important in protein turnover control in physiological and pathological 

conditions but also may contribute in the endeavour of developing novel 

therapeutic approaches (Section 1.4.1 and 1.4.4). 

Studies concerned with investigating the protein-protein interaction are 

designed not only to reveal the specific binders, but also to measure the 

resultant dynamic changes that might follow any disruptions. Gene knockout 

may be induced temporarily via siRNA or shRNA or more preferably through a 
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CRISPR/Cas9 KO control which would yield a permanent and stable negative 

control [392].  

The potential regulatory effects of SOCS3 on endogenous cavin-1 levels were 

assessed by investigating the impact of homozygous SOCS3 gene deletion on 

cavin-1 expression in AS-M.5 cells. Results have shown that cavin-1 

expression was significantly reduced in SOCS3−/− AS-M.5 cells when compared 

to WT cells as revealed by immunoblotting of whole-cell extracts. This was also 

associated with a decrease in CAV-1 protein expression levels, which has been 

similarly reported by other studies in normal and pathological conditions [121] 

(Figure 4–1). Furthermore, SOCS3−/− MEFs showed a significant reduction of 

cavin-1 levels as compared to WT MEFs (Figure 4–2). Thus, loss of SOCS3 in 

two distinct cellular systems (embryonic fibroblasts and endothelial cells) using 

two different methods (homologous recombination and CRISPR/Cas9 gene 

editing) results in reduced cavin-1 expression. 

Other regulatory mechanisms, including splicing and post-translational 

modifications, might exist and they may increase proteome complexity. In the 

present thesis, the observed reduction of cavin-1 levels in SOCS3−/− cells might 

be caused by post-translational modifications of the existing proteins rather 

than a de-novo synthesis of proteins, providing a novel mechanism of SOCS3 

protein involvement. To test whether the observed reduction in cavin-1 protein 

was accompanied by a corresponding decrease in mRNA levels, cavin-1 mRNA 

levels in WT and SOCS3-null MEFs, total RNA was extracted and quantitative 

real time-PCR measurements of cavin-1 mRNA abundance were performed as 

described previously (Section 2.2.6.1). There was a significant increase in the 

abundance of cavin-1 gene transcripts in SOCS3−/− cells versus WT MEFs 

(Figure 4–2). These results suggest that the steady state of cavin-1 proteins in 

SOCS3-deficient cells cannot be explained by a parallel reduction in the relative 

abundance of cavin-1 mRNA and suggests instead that the presence of SOCS3 

may enhance cavin-1 stability in WT MEFs. 

Cycloheximide is usually used in the kinetic experiments to inhibit protein 

synthesis. However, emetine was alternatively utilised in the present thesis as 
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it does not activate stress-activated MAP kinases such as p38 [393]. Emetine 

acts by preventing the enzymatic translocation of peptidyl-tRNA from the 

acceptor site to the donor site [394]. To quantify cavin-1 protein turnover in WT 

and SOCS3 deficient AS-M.5 cells, changes in the expression of cavin-1 was 

monitored following emetine-induced protein synthesis inhibition. Consistent 

with emetine chase experiments using MEFs [356], the lack of SOCS3 in AS-

M.5 cells caused a significant reduction of the half-life of cavin-1 from >8 hours 

in WT cells to 3 hours in SOCS3-null AS-M.5 cells (Figure 4–4). Therefore, 

these data indicate that the presence of SOCS3 enhances cavin-1 stabilisation 

in AS-M.5 cells. Interestingly, these results contrast the well-established role of 

SOCS3 in substrate-destabilisation via ubiquitylation and proteasomal 

degradation [307].  
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Figure 4–1 SOCS3 deletion significantly reduces endogenous 
protein levels of cavin-1 and caveolin-1 in AS-M.5 cells. 

WT and SOCS3-/- AS-M.5 cells were grown to confluency in 6-well plates 
and harvested in RIPA lysis buffer. Soluble protein lysates were equalised 
for protein content before fractionation by SDS-PAGE on 10 % (w/v) 
polyacrylamide gels for immunoblotting with antibodies as indicated. 
Densitometry analysis of three independent experiments were performed 
using Image Studio Lite Software Version 5.2.5. Values are means ±SEM. 
The statistical significance was assessed using an unpaired, two-tail t-test 
(GraphPadPrism, *p < 0.05). 
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Figure 4–2 SOCS3 deletion significantly reduces endogenous 
protein levels of cavin-1 and caveolin-1 in MEFs. 

WT and SOCS3-/- MEFs were grown to confluency in 6-well plates and 
harvested in RIPA lysis buffer. Soluble protein lysates were equalised for 
protein content before fractionation by SDS-PAGE on 10 % (w/v) 
polyacrylamide gels for immunoblotting with antibodies as indicated. 
Densitometry analysis of the immunoreactive bands was performed using 
Image Studio Lite Software Version 5.2.5. Values are means ±SEM of 
three different experiments. The statistical significance was assessed 
using an unpaired, two-tail t-test (GraphPadPrism, *p < 0.05). 
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Figure 4–3 Real-time qPCR revealed that the mRNA expression level 
of cavin-1 is significantly increased in SOCS3−/− MEFs as compared 
to WT (SOCS3+/+) controls.  

Total RNA samples were obtained, and cavin-1 mRNA levels were 
quantified by reverse transcription followed by qPCR analysis. GAPDH 
mRNA was used as an endogenous control. Real-time qPCR was 
performed to measure cavin-1 mRNA levels using the primers as shown 
in Table 2-8. The data were analysed using the 2(−ΔΔCt) method. Results 
representative of n=3 experiments. Statistical analysis was performed 
with the Student t test and are presented as the mean ± SEM. Significant 
differences are marked by asterisk (* = p < 0.05). 
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Figure 4–4 Destabilisation of cavin-1 in SOCS3- deficient endothelial 
cells.  

WT and SOCS3-/- AS-M.5 cells were seeded into 6cm diameter dishes 
and grown until confluent. Cells were then treated with emetine, a protein 
synthesis inhibitor, at a concentration of 100µM for 1, 2, 3, 5 and 8 hours 
in serum-free medium. Following treatment, soluble cell extracts 
equalised for protein concentration were fractionated by SDS-PAGE for 
immunoblotting with cavin-1 and GAPDH antibodies. Quantitative 
analysis of cavin-1 protein levels in WT and SOCS3-null AS-M.5 cells from 
three experiments is presented as mean values ± SEM (*p<0.05 versus 
cavin-1 levels in SOCS3+/+ AS-M.5 cells, # p<0.05 vs. t=0). 
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4.3 The effect of SOCS3 induction by cAMP elevation 
on cavin-1 

cAMP plays a major role in the regulation of multiple functions in the innate and 

adaptive immune response. Such regulatory function is clearly demonstrated 

when cAMP-elevating drugs enhance the production of anti-inflammatory 

mediators and reduce the pro-inflammatory factors produced by multiple 

immune cells [395]. cAMP homeostasis is maintained through the expression 

of adenylate cyclases (ACs), which catalyse its formation from ATP. 

Furthermore, phosphodiesterases (PDEs) comprise a family of more than 100 

enzyme variants that contribute to degradation of intracellular cyclic 

nucleotides. Indeed, these variants are allocated into 11 families [396] 

according to their structure and the interaction and specificity for cyclic 

nucleotides.  

cAMP triggers several downstream pathways in the cell via activation of protein 

kinase A (PKA) [397], which dissociates into its regulatory and catalytic subunits 

upon binding of cAMP. These catalytic units phosphorylate specific Ser and Thr 

residues on several target proteins [398]. Furthermore, multiple cAMP-

responsive transcription factors, including activating transcription factor-1 (ATF-

1), cAMP-response element binding protein (CREB), and distinct members of 

the cAMP-responsive element modulator (CREM) family [399], are also 

phosphorylated by PKA. Importantly, nuclear-localised PKA can phosphorylate 

CREB at serine-133[400] and this promotes translocation to the nucleus where 

it binds to target promotors and, following binding to CRE promoter sites and 

recruitment of transcriptional activators such as p300 and CBP, promotes gene 

transcription. Generally, the phosphorylated transcription factors bind to cAMP-

response elements (CREs) in the target genes with a significant interaction with 

CREB-binding protein (CBP) and p300, which coactivate the transcription 

process [401]. Phosphorylation of CREM, CREB, and ATF-1 could be also 

established by other kinases while distinct protein phosphatases can 

counterbalance PKA effects [398]. In addition to activation of PKA, cAMP can 

also act by modulation of cyclic nucleotide-gated channels (CNGs), the 
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exchange protein directly activated by cAMP (Epac) and guanine-nucleotide-

exchange factor (GEF) [402, 403]. 

 

4.3.1 SOCS3 induction by cAMP stabilises cavin-1 

Although proteasomal degradation maintains low SOCS3 levels in the cell, 

several routes are implicated in SOCS3 induction, including Toll-like receptors 

[344], the JAK/STAT pathway and cAMP elevation through activation of EPAC 

and PKA-independent ERK activation [304, 404]. As a result of the abundance 

of SOCS3-inducing routes, several ubiquitinated targets exist. Actually, the 

abundance of SOCS3-inducing routes renders a variable pool of ubiquitinated 

targets. SOCS3 has been recognised as one of two ubiquitin ligases induced 

by cAMP [405]. The latter has been identified as a potent inhibitor of the pro-

inflammatory signalling pathways [395]. Therefore, multiple anti-inflammatory 

therapeutic approaches could be elucidated by revealing novel cAMP/EPAC1 

targets. 

Williams et al. [356] attempted to identify novel ubiquitinated SOCS3 substrates 

following cAMP activation to further elucidate the involvement of cAMP in 

inflammation. The proteomic screening experiments have shown an interaction 

between cavin-1 and SOCS3 proteins. As presented in Section 4.2, SOCS3 

can contribute to cavin-1 stability. Thus, it is important to investigate the impact 

of cAMP-induced SOCS3 accumulation on the levels of cavin-1 and the 

resultant functional consequences. A time-dependent accumulation of SOCS3 

was observed following exposure to the cAMP-elevating agent forskolin (Fsk, 

50 µM). Such accumulating pattern, which peaked after 4 h, was associated 

with transient increase in SOCS-3 mRNA, which could be detectable at 1, 3 and 

5 h (data not shown). Following treatment of WT and SOCS3-/- MEFs with Fsk 

for 6 hours, cavin-1 expression was decreased in SOCS3-deficient MEFs at t=6 

hrs vs t=0, whereas SOCS3 accumulation in response to Fsk-stabilised cavin-

1 levels in the WT counterparts after 6 hrs of Fsk exposure (Figure 4–5). 
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cAMP causes CREB phosphorylation via protein kinase A induction. CREB 

then binds to the cAMP-regulated enhancer, which is located in many target 

genes. Of those genes, Nur77 is one of those genes and it can be induced by 

cAMP [356, 384]. Therefore, Nur77 expression was utilised in the present thesis 

to aid as a positive control to monitor cAMP elevation. 
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Figure 4–5 The effect of SOCS3 deletion on Fsk-mediated regulation 
of cavin-1 and Nur77 expression levels in MEFs.  

WT and SOCS3-/- MEFs were seeded in 6 well plates and grown until 
confluent. Cells were then treated with Fsk (50µM) for 1, 2, 4 and 6 hours. 
Following treatment, soluble cell extracts equalised for protein 
concentration prior to fractionation by SDS-PAGE for immunoblotting with 
indicated antibodies. Quantitative analysis of cavin-1 protein levels in WT 
and SOCS3-null MEFs is presented as mean values ± SEM (*p<0.05 
versus cavin-1 levels in SOCS3+/+ MEFs, # p<0.05 vs. t=0). One of seven 
experiments. 
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4.3.2 Examining cAMP-dependent regulation of cavin-1  

Previous studies suggested that cavin-1 migrates at a high molecular weight 

(10-15 kDa) upon separation by polyacrylamide gel electrophosresis, which is 

probably due to posttranslational modifications [114]. Cavin-1 acetylation takes 

place at the N-terminal methionine residue [406] and it can be also SUMOylated 

and ubiquitinated [307]. In addition, the involvement of cavin-1 in cell signalling 

is supported by its phosphorylation at multiple sites [118, 407]. Cavin-1 

fractionation into active and inactive forms for transcription is possible and such 

phosphorylation sites may potentially change the capacity of cavin-1 to 

dissociate ternary transcription complexes [408]. Aboulaich et al. [406] found 

that cavin-1 has four phosphorylation sites as demonstrated by immobilized-

metal affinity chromatography. Ser-36 and Ser-40 are sites for phosphorylation 

by glycogen synthase kinase-3, whereas protein kinase A and casein kinase 2 

phosphorylate Ser-365 and Ser366 sites, respectively [406]. 

Hormone-stimulated lipolysis in the adipocytes is one of the important 

intracellular processes that has been linked to cavin-1 [409]. Glucagon and 

epinephrine cause activation of cAMP/PKA signalling after binding to their 

receptors (glucagon and ß-adrenergic receptors, respectively) [406]. Hormone-

sensitive lipase (HSL) is an intracellular lipase that regulates lipolysis. It 

contains PKA phosphorylation sites [410, 411] and it can co-immunoprecipitate 

with cavin-1 proteins. Interestingly, insulin can cause translocation of both HSL 

and cavin-1 from the plasma membrane to the cytosol [409]. 

The results of the present thesis indicated that cavin-1 was detected as an 

approximately 50-kDa band in the positive-control WT cells. However, cavin-1 

immunoreactivity was observed in preliminary time course experiments 

following Fsk treatment (data not shown). The involvement of immunoreactive 

cavin-1 proteins in cAMP/PKA signalling was investigated by conducting time 

course experiments in which WT MEFs were stimulated with Fsk in the 

presence or absence of a PKA inhibitor (H89). Although H89 treatment inhibited 

the ability of Fsk to induce cAMP-responsive gene Nur77, cavin-1 levels 

evidenced no change (Figure 4–7). Therefore, cavin-1 immunoreactivity is 

supposedly regulated independent of cAMP/PKA signalling. 



 
 

108 

To further attain a confirmatory evidence, molecular cAMP induction 

requirements were assessed. Given that such induction entails new protein 

synthesis (Nur77 is translation-dependent), the assumption of requiring new 

protein synthesis with the changes in cavin-1 immunoreactivity was 

investigated. Thus, WT MEFs were incubated with protein synthesis inhibitor 

emetine (100 μM) or a vehicle 30 min prior to treating with Fsk. Although this 

treatment was sufficient to inhibit Nur77 accumulation in response to Fsk 

treatment, emetine had no effect on cavin-1 immunoreactivity as compared to 

the vehicle control groups (Figure 4–7). Thus, a cavin-1 activity, which seems 

to be translation-independent, is not regulated via a cAMP/PKA Pathway. 
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Figure 4–6 Stabilisation of cavin-1 following cAMP elevation is PKA-
independent. 

WT MEFs were seeded in 6 well plates and grown until confluent. Cells 
were then treated with H89 (5µM) 30 min prior Fsk (50µM) stimulation for 
1, 3, and 5 hours as indicated. Following treatment, soluble cell extracts 
equalised for protein concentration and then separated by SDS-PAGE for 
immunoblotting with indicated antibodies. Quantitative analysis of cavin-1 
protein levels in WT MEFs is presented as mean values ± SEM. All 
samples were analysed in three independent experiments. n.s. indicates 
statistically non-significant difference between H89-treated and untreated 
groups. 
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Figure 4–7 Effect of protein synthesis inhibitor emetine on Fsk-
mediated changes in cavin-1 immunoreactivity. 

WT MEFs were grown to confluency in 6-well plates and then treated with 
Fsk (50µM) in the presence or absence of emetine (100µM) for 5 hours 
prior to harvesting. Protein extracts were prepared and equalised for 
protein content before fractionation by SDS-PAGE on 10 % (w/v) 
polyacrylamide gels for immunoblotting with the indicated antibodies. 
Results representative of n=3 experiments. 
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4.3.3 Examining phosphorylation status of cavin-1 following 
cAMP elevation 

Protein phosphorylation is one of the important regulatory processes in all cells. 

Two major classes of enzymes, protein kinases and protein phosphatases, can 

control such reversible events. The important biological processes of relevance 

that could be activated or inactivated by phosphorylation include protein 

synthesis, signal transduction and DNA transcription as well as other cellular 

actions, such as motility and division [412]. 

The experiments in the present section used treatment with a non-selective 

phosphatase to determine whether phosphorylation altered cavin-1 protein 

immunoreactivity [413]. To this end, WT MEFs were lysed in a lysis buffer 

without phosphatase inhibitors and divided into two aliquots; one received calf 

intestinal phosphatase (CIP) and the other received buffer alone. Following 

incubation for 2 hrs at 37oC, samples were resolved by SDS-PAGE and 

immunoblotted for cavin-1. Given that phosphorylation has been suggested to 

be the primary mechanism by which CREB was controlled [414], anti-Ser-133 

pCREB antibody was used as a positive control to assess CIP activity. 

As shown in Figure 4–8, CREB phosphorylation on Ser-133 was detected 2h 

following Fsk stimulation and this modification was abolished by phosphatase 

treatment. In contrast, no changes in cavin-1 immunoreactivity were detectable, 

suggesting that any cAMP-mediated phosphorylation of cavin1 had no effect 

on immunoreactivity. 
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Figure 4–8 Effect of phosphatase treatment on cavin-1 
immunoreactivity. 

WT MEFs were grown to confluency in 6cm diameter dishes after which 
the media was refreshed before treating with Fsk (50 µM) for 2h prior to 
harvesting. Cells were lysed in the absence of phosphatase inhibitors. 
Protein-equalised soluble cell extracts were divided into aliquots and then 
incubated at 37˚C for 2 h in the presence (+) or absence (−) of calf 
intestinal alkaline phosphatase (1 unit/1μg protein). Following 
phosphatase treatment, samples were resolved by 12% SDS-PAGE for 
immunoblotting with the indicated antibodies. Results representative of 
n=3 experiments. 
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4.4 Discussion 

4.4.1 Role of SOCS3 in stabilising cavin-1 

Cavin-1 is a novel SOCS3-interacting protein. Williams et al. [356] confirmed 

such interaction via co-immunoprecipitation experiments, showing a co-

expression of myc-tagged cavin-1 proteins exclusively with Flag-SOCS3, and 

also the interaction was confirmed between HA-SOCS3 and Flag-cavin-1 to 

exclude the effect of tag-mediated combination. An overexpression approach 

was exploited in the early experiments aimed to characterise cavin-1/SOCS3 

interaction. Here, I sought to define this interaction in cell systems expressing 

the endogenous protein. 

The results of this chapter have shown that SOCS3 knockout in the whole-cell 

extracts of AS-M.5 and MEFs resulted in a significant reduction of cavin-1 and 

CAV-1. Interestingly, this reduction was found in the absence of any changes 

in cavin-1 mRNA suggesting that the presence of SOCS3 stabilises cavin-1 

through an unknown mechanism. In addition, SOCS3 knockout in endothelial 

AS-M.5 cells caused a significant shortening of the half-life of cavin-1 as 

compared to WT MEFs. SOCS3 does not ubiquitinate cavin-1 but instead 

supports cavin-1. This indicates a potent SOCS3-mediated stabilisation of 

cavin-1, which contrasts the well-established destabilising effect of SOCS3 on 

its target proteins. So far, only Eps15 homology domain-containing protein 2 

(EHD2) has been shown to be a cavin-1 interacting protein despite the lack of 

a direct effect on cavin-1 turnover [168]. Therefore, it is possible that cavin-1 

becomes less susceptible to proteolysis when bound to SOCS3 which limits 

further proteolysis. Stabilising cavin-1 might potentially be critical for controlling 

inflammatory pathways involved in diabetes and cardiovascular disease. 

4.4.2 Role of cAMP elevation in cavin-1 stabilisation  

cAMP elevation has been linked with SOCS3 induction in multiple cell lines, 

including primary endothelial cells from multiple vascular beds [304], MEFs 

[404], and AS-M.5 cells [356]. Fsk-mediated cAMP elevation maintained cavin-

1 levels in SOCS3+/+ MEFs over a time period of 6 hrs and this effect was 
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diminished in SOCS3-/- MEFs (Figure 4–5), suggesting a role of SOCS3 

induction in cavin-1 stabilisation. 

Moreover, there is no evidence to suggest that cavin-1 is directly regulated by 

the cAMP/PKA pathway. Likewise, cAMP-mediated CREB ser-133 

phosphorylation may not be involved in cavin-1 phosphorylation. To the best of 

my knowledge, the role of caveolar proteins in cAMP/PKA pathway has only 

been recently reported by Kuo et al. [415] where loss of caveolae led to 

increased cAMP/PKA signalling in EC and CAV-1 was found negatively 

regulated cAMP/PKA signalling at the level or upstream of G proteins. In 

addition, the authors have revealed that CAV-1-deficient EC enhanced Fsk-

stimulated PKA CREB phosphorylation at Ser-133 and they suggested a unique 

mechanism of CAV-1-dependent regulation of cAMP/PKA signalling-mediated 

lipolysis in endothelium versus adipocytes [415]. This is consistent with the 

observed effect of cAMP elevation on CAV-1 upregulation in EC (data not 

shown). However, it seems that cavin-1 regulation is independent of the 

cAMP/PKA pathway. In sum, there may be a potential unidentified relationship 

of CAV-1 with cavin-1 following Fsk-induced cAMP/PKA signalling.  
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5  Functional investigation of cavin-1/SOCS3 
interaction 

5.1 Introduction 

The knowledge regarding the basic molecular components that contribute to 

caveolar generation is increasing remarkably. One of these components is a 

group of biomechanical integral membrane proteins, namely caveolins, that 

form distinct oligomers in the inner leaflet of the plasma membrane [114, 214, 

416]. In addition, cavin proteins that contain assembled trimeric coiled coils, 

show higher levels of solubility than caveolins [102, 145, 417]. The size and 

shape of caveolae are determined by a large 80S complex that comprises 

caveolins and cavins [122, 418], while both cavin-1 and CAV-1 are crucial for 

caveolae formation [121, 181]. Other caveolar components include Eps15 

Homology Domain (EHD) proteins, which functions at the caveolar neck [419-

421], and pacsin 2 (Syndapin 2), which is located less frequently at the neck of 

caveolae as compared to EHD [422].  

Both cavin-1 and CAV-1 have integral roles in a variety of diseases resulting 

from loss-of-function mutations as revealed in knockout mice and human 

patients. Indeed, this suggests caveolae-mediated effects on the maintenance 

and functionality of a number of cell types, including cells of the endothelium, 

muscles, and adipose tissue [112, 114, 214]. However, the mechanisms by 

which the resulting diseases take place remain fairly ununderstood. Moreover, 

caveolae are presumably involved in the modulation of a wide variety of 

signalling pathways, including signalling to regulate the activities of insulin 

receptors and eNOS [41, 423, 424]. 

Given the complicated functional aspects of caveolae in the cell (detailed in 

chapter 1 section 1.2.4), cellular response to the absence of such structures 

seems to be a plausible matter of further investigations. This would be of a 

particular importance for those cells that are mostly caveolae-dependent, such 

as endothelial cells. 
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5.1.1 Aims 

According to data presented in chapter 4, MEFs and AS-M.5 cells lacking 

SOCS3 had reduced protein expression of CAV-1 and cavin-1. As such, the 

first aim of this chapter was to investigate the potential effect of SOCS3 deletion 

on caveolae abundance in both cell lines. Moreover, to determine whether 

cavin-1 is a functionally significant SOCS3-interacting protein, we aimed to (1) 

assess subcellular localisation of SOCS3 in cavin-1-deficient MEFs and their 

wild counterparts using immunofluorescence microscopy and (2) to define the 

integrative role of cavin-1 in SOCS3 -dependent IL-6 inhibition. 

5.2 Results 

5.2.1 Effect of SOCS3 deletion on caveolae abundance 

In section 4-2, the regulatory role of SOCS3 on CAV-1 abundance was 

demonstrated via promoting cavin-1 stabilisation. SOCS3-deficient MEFs had 

reduced cavin-1 levels by 47 ± 4% and Cav-1 levels by 65 ± 7% in MEFs while 

cavin-1 and Cav-1 levels decreased by 25 ± 4% and 42 ± 7%, respectively, in 

SOCS3-null AS-M.5 cells (section 4-2). Therefore, the effect of reduced cavin-

1 and CAV-1 expression on the abundance of caveolae was investigated using 

transmission electron microscopy (TEM), which allows the assessment of 

caveolae morphology and dynamic biogenesis in SOCS3-deficient cells and 

their wild counterparts.  

TEM is utilised to directly visualise the organisation of different cellular 

components on a nanometre scale. The significant role of TEM is augmented 

when used in combination with molecular detection techniques given the 

enhanced resolution of TEM is sufficient to detect intracellular proteins in the 

respective compartments and small membrane proteins. This could be attained 

by electron-dense markers, including gold particles, which are conjugated to 

secondary antibodies. Therefore, labelling of the ultrastructural antigens in this 

technique is called immunogold EM [425]. Given that CAV-1 is a major 

structural protein (22 kDa) that can act as a biomechanical marker of caveolae 

[114] (Section 1.2.1.1), our preliminary experiments were designed to identify 
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caveolae via detection of the intracellular localisation of CAV-1 through 

immunogold staining in WT MEFs.  

As such, following their growth on 6 cm cell culture dishes, confluent cells were 

scraped off, centrifuged at 1,500g for 5 min and subsequently prepared for 

electron microscopy (section 2.2.7). The pellets were then incubated with 

polyclonal Rabbit antibodies designated to target multiple unique CAV-1 

peptides (BD Biosciences 610059) followed by incubation with gold-

nanoparticle-associated secondary antibodies directed against the primary 

antibodies. Results showed that CAV-1 proteins distributed on the cellular 

surface and other regions in WT MEFs (Figure 5–1). Despite the substantial 

visualisation of cellular content and biomolecules by immunogold EM, it may be 

regarded an extremely laborious technique that entails multiple technical 

challenges. As a result of these technical challenges, gold labelling was not 

pursued in the present work. Instead, caveolar morphology was directly 

detected on the cell surface. Morphologically, caveolae are identified as 

spherical or flask-shaped plasma membrane invaginations of notably consistent 

shape and size (∼70 nm average outer diameter). The unique omega-shaped 

Ω morphology of caveolae as well as their arrangement as single structures or 

in chains or grape-like clusters [426, 427] can be visualised under electron 

microscopy (Figure 5-1B). 

Immortalised SOCS3−/− and cavin-1−/− MEFs and the corresponding WT cell 

lines grown until confluency on Thermanox® coverslips were fixed and 

embedded in Epon (section 2.2.7). Ultrathin sections were viewed on a LEO 

912AB TEM and images were captured. The length of plasma membrane was 

calculated and the number of caveolae/µm was counted including caveolae that 

opened to the outside of the plasma membrane. Caveolae abundance was 

significantly increased in WT MEFs as compared to SOCS3-deficient cells 

(p<0.01). Interestingly, caveolae were not detectable in cavin-1 KO MEFs 

(Figure 5–2) and this was consistent with a previous evidence in the literature 

[121]. 
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Caveolae are well-known for their abundance in all cell types of the 

cardiovascular system, including cardiac myocytes, vascular smooth muscle 

cells, macrophages, and endothelial cells [428]. Therefore, the effects of 

SOCS3 deletion on caveolae abundance in the endothelial AS-M.5 cells were 

investigated in the present project. In addition, caveolae were morphologically-

characterised using TEM techniques. Results revealed that caveolae were 

detectable and abundant in WT AS-M.5 cells but, on the other hand, they were 

significantly reduced in SOCS3-deficient cells (Figure 5-3). As such, it can be 

concluded that the abundance of plasma membrane caveolae was markedly 

affected by CAV-1 and cavin-1 reduction in SOCS3-deficient cells. 
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Figure 5–1 Detection of caveolae 

(A) Immunogold labelling of caveolin-1-rich fraction examined by electron 
microscopy. WT MEFs were prepared for electron microscopy as 
described in section 2.2.7. Ultrathin sections were cut and incubated with 
anti-caveolin-1 antibody (BD Biosciences 610059) followed by incubation 
with gold-conjugated secondary antibody. Samples were imaged using a 
transmission electron microscope. (i-ii) Electron micrographs of WT MEFs 
depicting localisation of caveolin-1. The insets show the distribution of 
gold particles near the plasma membrane. Data shown were N=1. Scale 
bar =0.2µm  

(B) Caveolae are readily visualized via electron microscopy. Electron 
micrographs show typical membrane invaginations (single caveolae and 
clustered caveolae) found on the surface of (i) WT MEF and (ii) WT AS-
M.5 endothelial cell. Arrows indicate caveolae. Scale bars are (i) 0.2 µm 
and (ii) 0.5 µm.  
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Figure 5–2 Ultrastructural analysis of caveolae on the WT, SOCS3–/–

, and cavin-1–/– MEF surface. 

WT, SOCS3–/–, and cavin-1–/– MEFs grown on coverslips were fixed, 
dehydrated and embedded in Epon resin as described in Methods (2.2.7). 
Ultrathin sections were processed for TEM and imaged. (A) 
Representative electron micrographs of (i) WT, (ii) SOCS3–/– and (iii) 
Cavin-1–/– MEFs. Arrows indicate caveolae. Scale bar =0.2 μm. (B) 
Caveolae were quantitated along the plasma membrane to obtain the 
number of caveolae/µm. The length of the plasma membrane from each 
image was measured using image J. The total length measured was 550 
µm for each cell lines. Quantitation of the abundance of caveolae in MEFs 
revealed a significant reduction of caveolae in SOCS3–/– vs WT MEFs 
(**p<0.01) as well as in cavin-1–/– vs WT MEFs (****p<0.0001) using 
student’s t-test (2-tailed, un-paired). Error bars represent mean ± SEM. 
Data were from three independent experiments.   
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Figure 5–3 Ultrastructural analysis of caveolae on the WT and 
SOCS3-null AS-M.5 endothelial cell surface. 

Confluent immortalised SOCS3-null and WT AS-M.5 cells were fixed, 
dehydrated and Epon-embedded as described in Methods (2.2.7). 
Ultrathin sections were processed and then viewed under a LEO 912AB 
TEM at an accelerating voltage of 120kv. (A) Representative electron 
micrographs of WT AS-M.5 cells showing caveolae around the perimeter 
(i-iii). (B) A representative electron micrograph of caveolae on the 
SOCS3–/– AS-M.5 cell surface (i). Arrows: caveolae. Scale bar=0.5 µm. In 
the presence of SOCS3, 13 caveolae were identified on the surface of a 
single WT AS-M.5 cell, for a total length of 14µm (0.93 cav/µm) after the 
reconstruction of image stacks as depicted in (A). In contrast, only 2 
caveolae were identified from a similar length (0.14 cav/µm) on a SOCS3–

/– AS-M.5 cell surface as depicted in (B). (C) Quantitation of these 
invaginations from three independent experiments indicated that this 
phenomenon is significant (unpaired, one-tailed Student's t-test, **P < 
0.02). Data represent caveolae per µm ± SEM. 
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5.2.2 Using confocal microscopy to characterise SOCS3/cavin-
1 interaction 

Protein-protein interaction could be identified using multiple techniques yet the 

best methods are those which distil and refine such interactions. Of them, 

confocal microscopy has been established as an essential confirmatory 

technique to elucidate protein-protein interaction [429]. Hence, confocal 

microscopy was utilised to visualise SOCS3 and cavin-1 localisation in the cell 

as well as their potential co-existence.  

5.2.2.1 Optimisation of green fluorescent protein (GFP)-tagged SOCS3 

To investigate protein-protein interactions using fluorescence microscopy, 

fluorophores can be utilised either directly (by using green fluorescent protein 

[GFP] or as a tag on a primary antibody) or as a tag on a secondary antibody 

(indirect) [429]. For SOCS3 localisation, three commercial anti-SOCS3 

antibodies were validated for use in a preliminary confocal-microscopy-

dependent experiment in the present thesis (data not shown). Nonetheless, the 

endogenous staining of SOCS3 in WT MEFs could not be detected over and 

above background staining in SOCS3-null MEFs. As such, a transfected 

SOCS3-GFP model was alternatively utilised. Furthermore, a titration assay 

was employed to identify the amount of SOCS3-GFP plasmid required for 

optimal expression (Figure 5–4). The Immunoblotting technique was able to 

detect SOCS3-GFP expression using anti-GFP antibodies. The amount of the 

plasmid sufficient to transiently transfect WT and cavin-1-deficient MEFs was 

estimated to be 2µg and thus SOCS3 distribution was examined by confocal 

microscopy accordingly.  
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Figure 5–4 Evaluation of the expression of GFP and SOCS3-GFP in 
WT MEFs.  

(A) WT MEFs grown on 6 cm dishes were transiently transfected with GFP 
or GFP-SOCS3 plasmids. These plasmids were titrated to detect and 
optimise GFP or GFP-SOCS3 expression for upcoming confocal 
microscopy experiments. Whole cell lysates were resolved via SDS -
PAGE and immunoblot analysis performed with anti-GFP and anti- 
GAPDH. The experiment was performed to N=1. (B) Densitometric 
intensity of GFP bands normalised to GAPDH were calculated. (C) 
Densitometric intensity of SOCS3-GFP bands normalised to GAPDH 
were calculated.  

WT MEFs plated at low density on coverslips were transiently transfected 
with 2µg GFP or SOCS3-GFP and then prepared for immunofluorescence 
(section 2.2.2). Representative confocal microscopy images show (D) a 
cell expressing GFP fluorescence (green) and (E) a cell expressing 
SOCS3-GFP (green). Scale bars: 10 µm. 
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5.2.2.2 SOCS3 localisation to plasma membrane is cavin-1-dependent  

Confocal microscopy was utilised to assess the subcellular localisation of 

endogenous cavin-1 as well as GFP and SOC3-GFP in transiently transfected 

cavin-1+/+ and cavin-1-/- MEFs. In cavin-1+/+ MEFs. Our data revealed that 

SOCS3-GFP was distributed in two subcellular pools, in the cytoplasm and in 

the plasma membrane (Figure 5–5A). Immunofluorescent staining with specific 

antibody for cavin-1 (Abcam ab48824) showed cavin-1 signal was 

predominantly localised at the rear or trailing edge of the cells as previously 

reported [430]. Interestingly, we observed co-localisation of cavin-1 and 

SOCS3-GFP exclusively at the plasma membrane and such co-localisation was 

found to be statistically significant on staining analysis by Pearson correlation 

coefficient (r2=>0.90). In contrast, in cavin-1-deficient cells, SOCS3-GFP was 

localised in an intracellular pool but not at the plasma membrane (Figure 5–5C). 

Expression of GFP solely showed a similar distribution in both WT and cavin-1-

/- MEFs while it was not co-localised with cavin-1 in WT cells (Figure 5–5D).  

Subsequently, to obtain a confirmatory evidence linking distinct localisation of 

SOCS3 at the plasma membrane to cavin-1, rescue experiments were 

performed using cavin-1-mCherry. On an immunoblot, as shown in (Figure 5-

6A), cavin-1 expression was restored in transiently transfected cavin-1–/– MEFs 

overexpressing cavin-1-mCherry cDNAs. In addition, confocal images of the 

transiently transfected cavin-1-deficient cells showed that the co-expression of 

cavin-1-mCherry and SOCS3-GFP was also restored at the plasma membrane 

(Figure 5-6B). Collectively, the results indicate that, in addition to the notable 

SOCS3/cavin-1 co-localisation, cavin-1 can be regarded a crucial determinant 

of SOCS3 localisation at the plasma membrane of intact cells. 
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Figure 5–5 Subcellular localisation of SOCS3-GFP and cavin-1 in WT 
and cavin-1-null MEFs. 

WT and cavin-1–/– MEFs differentiated on coverslips were transiently 
transfected with either SOCS3-GFP or GFP (2 µg). One day post-
transfection, cells were fixed with paraformaldehyde, permeabilised, and 
labelled with anti-cavin-1 antibody (red) as described in Methods (2.2.8). 
Confocal images showing WT MEFs expressing (A) SOCS3-GFP, (B) 
GFP (green). Confocal images showing cavin-1–/– MEFs expressing (C) 
SOCS3-GFP, (D) GFP (green). The nucleus has been stained with DAPI 
(blue). Scale bar = 10 µm. (E) Pearson correlation coefficient (r2) were 
calculated from the intensity of expression of cavin-1/SOCS3-GFP at the 
plasma membrane in WT MEFs using Fiji/ImageJ software. 
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Figure 5–6 Distribution of GFP in WT and cavin-1-/- MEFs.   

(A) Lysates from cavin-1–/– MEFs transiently transfected with mCherry or 
cavin-1-mCherry (amounts are indicated) were separated by SDS-PAGE 
and subjected to immunoblot analysis using anti-cavin-1, anti-mCherry 
and GAPDH antibodies. Experiment was performed to N=1. (B) Cavin-1-
/- MEFs were transiently transfected with cavin-1-mCh for imaging by 
confocal microscopy. Data revealed colocalisation of SOCS3-GFP and 
cavin-1-mCh at the plasma membrane.  Scale bars =10 µm (Data 
presented in (B) were generated by Dr Jamie Williams, University of 
Glasgow). 
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5.2.3 Examining SOCS3 and cavin-1 in lipid rafts Isolated from 
WT and Cavin-1 KO MEFs  

To further examine whether SOCS3 recruitment to membrane fractions is 

dependent on the presence of cavin-1, a previously-utilised protocol was 

employed in the present work [115, 431]. It relies on the separation of caveolae-

containing fractions from bulk cellular proteins exploiting the low buoyant 

density and detergent resistance properties in of lipid rafts.  

cavin-1+/+ and cavin-1-/- MEFs were solubilised and centrifuged in 1% (v/v) 

Triton X-100 and a discontinuous sucrose gradient, respectively. Fsk was used 

to elevate SOCS3 levels in the cell lines. Results showed differences in the 

accumulation patterns of drug-resistant lipid rafts, including their marker flotillin-

1, where such accumulation was more apparent at the interface of the 5 and 

30% (w/v) sucrose layers than the 40% sucrose layer (Figure 5–7). In vehicle-

treated WT cell lines, higher densities showed low levels of immunoreactive 

reactions of SOCS3 and non-raft fractions were low in unstimulated cells. In 

both raft and non-raft fractions, SOCS3 levels were increased with the addition 

of Fsk (Figure 5–7A). For cavin-1, its distribution included both non-raft and raft 

fractions of low density sucrose and positive for flotillin-1 and caveolin-1. 

Notable, such distribution patterns were not affected by Fsk treatment (Figure 

5–7A). In cavin-1-deficient MEFs, Fsk treatment was also associated with 

increased SOCS3 accumulation yet, in contrast to WT cells, SOCS3 

localisation was greater in higher density fractions and rarely observed in lipid 

rafts (Figure 5–7B).  

Hence, these findings indicate SOCS3 accumulation in lipid rafts is mainly 

dependent on cavin-1 in agreement with the aforementioned confocal imaging 

results that revealed a remarkable SOCS3-GFP/cavin-1 co-localisation.  
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Figure 5–7 Localisation and expression of SOCS3 and cavin-1 in lipid 
rafts. 

(A) Fsk (50 μM) or vehicle (Veh) were added to WT MEFs for 4 hours 
followed by solubilisation in 1% (v/v) Triton X-100 for 30 mins and a 
subsequent centrifugation in a discontinuous gradient including the 
recommended (w/v) sucrose concentrations. SDS-PAGE was then used 
on equal fractions for immunoblotting with specific antibodies. P=pellet. 
(B) Fsk (50 μM, for 4 hrs) was added to cavin-1+/+ and cavin-1-/- MEFs 
followed by processing and analysis as described in (A). (Data generated 
by Dr Jamie Williams, University of Glasgow)  
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5.2.4 Characterisation the regions within SOCS3 that interact 
with cavin-1 

As previously reported (Figure 5–5), the full-length SOCS3 proteins (residues 

1-225) showed a significant interaction and co-localisation with cavin-1 at the 

plasma membrane. Subsequently, immunofluorescence imaging was used in 

this section to investigate the interactive regions in SOCS3 proteins with cavin-

1, including SH2 residues (residues 46-142) and SOCS box domains (residues 

177-225). As such, GFP-fused SOCS3 constructs, including ΔSH2 domains 

(ΔSH2) and ∆SOCS box domains (ΔSB), were utilised in this experiment. Either 

constructs were transiently transfected to WT MEFs and titrated with different 

amounts (0.5, 1, 2 and 4µg). Western blot analysis was used to quantify the 

expression of ΔSH2-GFP or ∆SB-GFP (Figure 5-8A). In transfected WT cells, 

fluorescent ΔSH2-GFP and ∆SB-GFP constructs were identified at the plasma 

membrane and intracellularly (Figure 5-8E). Furthermore, endogenous cavin-1 

was detectable at the plasma membrane of the trailing edge. Merged images 

showed a remarkable co-localisation of SOCS3ΔSH2-GFP and SOCS3∆SB-

GFP constructs with endogenous cavin-1 particularly at the plasma membrane. 
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Figure 5–8 Localisation of SOCS3 mutants in WT MEFs. 

(A) WT MEFs were transiently transfected with increasing amounts of 
SOCS3∆SH2-GFP or SOCS3∆SB-GFP cDNAs. Cell lysates were 
analysed for SOCS3 and GAPDH expression by SDS-PAGE and 
immunoblotting. Data shown were N=1. Densitometric intensity of bands 
normalised to GAPDH were calculated for (B) SOCS3∆SH2-GFP and (C) 
SOCS3∆SB-GFP. (D) A schematic diagram of SOCS3∆SH2-GFP and 
SOCS3∆SB-GFP constructs used in this experiment as well as full-length 
SOCS3-GFP. Different domains of SOCS3 were depicted, including a C-
terminal SOCS box (white), SH2 domain (dark gray), extended SH2 
subdomain (light gray), kinase inhibitory domain (black), small N-terminal 
domain (white). Residue 44-185 comprise the extended SH2 domain, 
which is interrupted by a 35 amino acid PEST motif (blue). Adapted with 
modifications from [311]. 

WT MEFs transiently transfected with either SOCS3∆SH2-GFP or 
SOCS3∆SB-GFP (2 µg) were fixed with paraformaldehyde, 
permeabilised, and labelled with anti-cavin-1 antibody (red) as described 
in Methods (2.2.8). Confocal images showing WT MEFs expressing (E) 
SOCS3∆SH2-GFP, (F) SOCS3∆SB-GFP (green). The nucleus has been 
stained with DAPI (blue). Scale bar = 10 µm.   
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5.3 Investigating roles for cavin-1 in regulating pro-
inflammatory IL-6 signalling 

As previously detailed (sections 1.3, 1.4), the JAK/STAT and MAPK pathways 

are activated by most cytokines, including IL-6. Such cytokine family causes 

STAT3 activation predominantly and, to a less extent, STAT1 [432]. The 

pathways that aim to negatively regulate the JAK/STAT pathway, such as 

SOCS proteins, phosphatases, and protein inhibitors of activated STAT (PIAS), 

can thus prevent chronic inflammation [432].  

Several types of cells can secrete IL-6, including endothelial cells, keratocytes 

bone marrow cells, fibroblasts, and white blood cells [433]. This 22-28 kDa 

protein acts via a trans-signalling mechanism to regulate gp130 receptor-

mediated signalling. IL-6 and IL-6R have a high affinity to bind to gp130 

receptors via the IL-6R subunit. While gp130 is constantly expressed, IL-6R 

expression is limited to lymphocytes, hepatocytes, and leukocytes. Therefore, 

IL-R availability is crucial for IL-6 signalling. Shedding or alternate splicing could 

lead to the formation of of soluble IL-6R (sIL-6R) and subsequently mediate 

inflammatory signalling pathways (Borish and Steinke [433].   

Confocal imaging revealed a direct interaction between SOCS3 and 

endogenous cavin-1 and their co-localisation at the plasma membrane (Figure 

5–5), while in the absence of cavin-1, SOCS3 localisation was limited to the 

cytosol. Key Tyr residues are phosphorylated by cytokine-activated JAKs 

leading to the generation of a SOCS3 interaction motif and hence SOCS3 

recruitment to activated cytokine receptors takes place [323]. 

In the current experiment, the impact of cavin-1 deletion on STAT3 activation 

mediated by IL-6 was investigated in MEFs. This was performed by identifying 

Tyr705 phosphorylation which is crucial for the formation of transcriptionally-

active STAT3-derived complexes [434]. 

sIL-6Rα (25ng/ml), IL-6 (sIL-6Rα/IL-6, 5ng/ml), or a vehicle (25ng/ml) were 

added to the confluent MEFs cultures for 30 minutes and then the western blot 

showed a strong variation STAT3 phosphorylation on Tyr705 between WT and 
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cavin-1-/- MEFs (Figure 5–9A). The densitometric analysis revealed a ~3-fold 

increase of IL-6-mediated STAT3 phosphorylation on Tyr705 in cavin-1-

deficient cells as compared to WT MEFs (Figure 5–9B). 

So as to ascertain the typical role of cavin-1 in reducing such IL-6-mediated 

phosphorylation, cavin-1-/- cell lines that constitutively expressed GFP or cavin-

1-GFP were established by growing these MEFs in 6 cm dishes followed by 

transfection with a GFP plasmid or a cavin-1 plasmid tagged with GFP and then 

selected in G418. Microscopic techniques were used to visualise positive 

clones while isolation was performed by limiting dilution. Western blot was used 

to analyse the expression of cavin-1-GFP and GFP in cavin-1-/- MEFs (Figure 

5–10). The immunoblot showed that cavin-1 expression was restored in cavin-

1–/– MEFs constitutively expressing cavin-1-GFP. This cell line was successfully 

generated which could be utilised for functional investigation of the novel roles 

for cavin-1-SOCS3 interaction in regulating pro-inflammatory IL-6 signalling. To 

do this, WT and cavin-1–/– MEFs stably expressing GFP and cavin-1-GFP were 

treated with sIL-6R⍺/IL-6 trans-signalling complex. Results showed that STAT3 

phosphorylation on Tyr705 was significantly enhanced in cavin-1–/– MEFs 

expressing GFP (*** p < 0.001). Interestingly, this response was significantly 

reduced by rescuing cavin-1 expression in cavin-1–/– MEFs (*** p < 0.001) 

although it was not to the same level of WT (cavin-1+/+) MEFs (Figure 5-11).   
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A 

 
B 

 

Figure 5–9 Cavin-1 deletion enhances Tyr705 STAT3 
phosphorylation. 

WT (cavin-1+/+) and cavin-1−/− MEFs grown on 6 well plates were 
incubated with sIL-6Rα/IL-6 (25 ng/ml, 5 ng/ml) for 30 min. Protein-
equalized cell lysates were then analysed by SDS-PAGE and 
immunoblotting with the indicated antibodies. Densitometric analysis for 
Tyr705 phospho-STAT3 normalized to respective total levels is presented 
as mean ±SEM for n=3 independent experiments. **P < 0.01 
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Figure 5–10 Cavin-1−/− MEFs stably expression GFP and cavin-1-
GFP. 

Cavin-1−/− MEFs seeded in 6 cm dishes were transfected with 4µg of 
either a cavin-1-GFP construct or a GFP control construct using PolyFect 
transfection reagent (Qiagen) as per manufacturer’s instructions. 
Following dilution and re-plating, cells stably expressing the constructs 
were selected by supplementing growth media with 0.5 mg/ml G418. (A) 
Detergent-soluble whole cell lysates from WT MEFs and cavin-1−/− MEF 
clones stably expressing GFP or cavin-1-GFP were separated by SDS-
PAGE and subjected to immunoblot analysis with the indicated 
antibodies. N=3. Representative images showing WT MEFs stably 
expressing (B) cavin-1-GFP or (C) GFP. Images on the left shows phase 
contrast of the same field. Scale bar = 200 µm.  
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Figure 5–11 Tyr705 phosphorylation of STAT3 is limited by cavin-1 

WT (cavin-1+/+) and cavin-1−/− MEFs stably expressing GFP or cavin-1-
GFP were treated with sIL-6Rα/IL-6 (25 ng/ml, 5 ng/ml) for 30 min. 
Protein-equalized cell lysates were then fractionated by SDS-PAGE prior 
to immunoblotting with the indicated antibodies. Densitometric analysis for 
Tyr705 phospho-STAT3 normalized to a loading control (GAPDH). The 
mean data with SEM error bars were plotted and statistical significance 
tested using a Student’s t-test (2-tailed, un-paired) (GraphPadPrism, *** p 
< 0.001). N=3. 
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5.4 Discussion  

SOCS3 has been well-recognised for its great relevance in supressing 

downstream signalling mediated by cytokine receptors that employ the leptin 

receptor ObRb, the G-CSFR, and more importantly gp130 receptors [356]. 

However, the interaction of SOCS3 with other proteins within the cell might alter 

such inhibitory effect yet the relevant knowledge is scarce. The target proteins 

of SOCS3 for ubiquitination have been recently investigated in a study relying 

on a global proteomics approach [356]. Intriguingly, SOCS3 has been found to 

interact with cavin-1 and regulate its ubiquitination. In this chapter, the 

functional outcome of SOCS3-cavin-1 interaction was evaluated. In line with 

the significant role of direct and indirect immunofluorescence approaches in 

characterising protein-protein interactions, the microscopy techniques were 

utilised to define the mode of SOCS3/cavin-1 interaction. This chapter identified 

novel roles for SOCS3 in caveolae integrity as well as for cavin-1 in SOCS3 

recruitment to the plasma membrane. Additionally, a novel mechanism relying 

on SOCS3/cavin-1 interaction has been demonstrated to have a significant 

modulatory effect on IL-6-mediated proinflammatory signalling. Together, these 

data highlighted numerous important aspects of interaction between SOCS3 

and cavin-1 responsible for reciprocal regulation of their respective functions. 

The results in this chapter, as visualized by TEM, revealed that caveolae 

abundance has been significantly reduced in SOCS3-null MEFs and endothelial 

AS-M.5 as compared to WT cells. As such, a novel mechanism of SOCS3 

regulation has been identified in which SOCS3 can exert a regulatory role on 

cavin-1 function and stability and consequently maintain CAV-1 expression and 

caveolae. These findings were further confirmed by imaging and biochemical 

approaches. A similar caveolae-stabilising effect has been previously 

demonstrated by the Eps15 homology domain-containing protein 2 (EHD2) 

[168], which is known to function at the caveolar neck and being integrated in 

caveolae dynamics [419].  

Additionally, the present chapter showed that SOCS3/cavin-1 binding is directly 

exhibited and this plays a role in the efficient recruitment of SOCS3 to the 
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plasma membrane. In agreement with another study [430], results showed that 

cavin-1 localisation in the plasma membrane in WT MEFs was not uniformly-

distributed but rather cavin-1 is localised to the trailing edge of migrating cells 

and, notably, the same compartment of the plasma membrane was co-localised 

by a significant number of SOCS3-GFP. On the other hand, in the absence of 

cavin-1, confocal imaging showed that the distribution of SOCS3-GFP was 

chiefly intracellular while it was not detected in the plasma membrane. 

Nonetheless, SOCS3-GFP localisation at the plasma membrane was regained 

after transfection of cavin-1-deficient MEFs with cavin-1-mCherry and, again, 

both SOCS3-GFP and cavin-1-mCherry were co-localised consistently. 

Furthermore, given that cavin-1 localisation was essentially detected in 

membrane and cytoplasmic fractions as revealed by subcellular fractionation 

experiments [356], it is plausible that SOCS3 followed the same pattern of 

localisation in WT MEFs following induction by Fsk treatment for 5 h. 

Intriguingly, in the absence of cavin-1, SOCS3 distributed chiefly to the 

cytoplasm, indicating the importance of cavin-1 for the efficient localisation of 

endogenous SOCS3 to the membrane fraction. Moreover, SOCS3 deletion 

yielded a significant reduction of CAV-1 expression at the plasma membrane 

as shown by subcellular fractionation experiments. Indeed, the latter 

observation implies an indirect cavin-1-mediated role of SOCS3 in maintaining 

the expression of CAV-1. Such CAV-1 changes mediated by SOCS3 or cavin-

1 deletion were exclusive since flotillin levels were not affected by their deletion. 

Collectively, these data showed an intact co-localisation of cavin-1 and SOCS3 

at the plasma membrane, while cavin-1 is an important determinant of SOCS3 

at this site. 

SOCS3 contains a central SH2 domain flanked by a distinct N-terminal region 

and a C-terminal SOCS box. The SOCS box is a 40-residue-region that is 

involved in the degradation of target proteins [313]. The ability of the SOCS box 

region to bind elongin B and C (adaptor proteins) would subsequently lead to 

the formation of a ligase complex that involve Cul5 and Rbx2 and mediate the 

process of substrate ubiquitylation via the SH2 domain of SOCS3. Interestingly, 

SOCS3 could be associated with multiple membrane-bound receptors via the 
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SH2 domain and might have role in the regulation of their downstream signalling 

pathways [315] (detailed in section 1.4).  

In order to reveal the distinct regions in SOCS3 proteins that could be crucial 

for their interaction with cavin-1, a number of N- and C-terminal truncation 

mutants of SOCS3 has been investigated to get an insight into the important 

residues that have the ability to coimmunoprecipitate GFP-cavin-1 [356]. 

Importantly, all tested mutants showed a similar pattern of GFP-cavin-1 

coimmunoprecipitation to that of the full-length SOCS3 in WT cells. This 

indicates that SOCS3/cavin-1 binding is mediated by a specific region within 

the SH2 domain in these mutants. For further confirmation, confocal 

microscopy was used to investigate the important regions in SOCS3 proteins 

which are necessary for cavin-1/SOCS3 interaction. Results showed that the 

GFP-SOCS3∆SH2 and GFP-SOCS3 ∆SB mutants were localised within the 

cytoplasm and plasma membrane with a similar pattern of distribution to that of 

full-length SOCS3. 

It has been found that the SH2 domain of SOCS3 formed a complex with cavin-

1 at a non-pTyr location [356]. Structurally, residues 46-127 and residues 128-

142 comprise the main components of the SH2 domain of SOCS3 [311]. The 

PTyr-binding pocket located in all SH2 domains is formed partly of the β-sheet 

and α-helical regions within residues 46-127. On the other hand, residues 128–

142 comprise a part of an unstructured PEST motif which links the helix B of 

the SH2 domain with residues 166-185 (forming the BG loop and βG strand 

motifs) [311]. PEST motifs are involved in multiple functions, including protein 

turnover and protein-protein interactions [311]. To investigate the role of the 

PEST insert of the SOCS3 SH2 domain in cavin-1 interaction, 

coimmunoprecipitation experiments in transfected HEK293 cells using SOCS3 

ΔPEST mutants have been conducted, where (Gly-Ser)x4 peptides were used 

to replace the PEST motif (Pro129-Arg163). No coimmunoprecipitation could 

be observed, indicating a loss of the ability of SOCS3 ΔPEST to bind cavin-1 

[356]. Furthermore, in contrast to early overexpression experiments that tested 

the effect of the PEST sequence on SOCS3 functionality [311], the recent 

functional experiments which investigated endogenous SOCS3 signalling 
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revealed that the PEST motif of SOCS3 has an important role in cavin-1 

interaction via mediating a regulatory role on the JAK-STAT signalling pathway 

[356].    

Much data in the scientific literature demonstrate a fundamental involvement of 

caveolae in concentrating various signalling components, such as Ras, Src 

family kinases, β-arrestins, GPCRs, G proteins and downstream enzymes such 

as adenylyl cyclases (ACs) and eNOS, NOS3 [435]. Hence, caveolae are 

regarded as platforms that coordinate signalling transduction by 

compartmentalising receptors and their downstream effectors. This concept 

has been extensively validated in early experiments, in which the disruption of 

such domains via treatment of the plasma membrane with sphingomyelinases 

or changing membrane cholesterol levels could eventually lead to either 

enhancing or reducing distinct signalling events, including phospholipase D 

(PLD) activity and ERK activation, respectively [436]. 

Experiments relying on biochemical fractionation of cell extracts revealed that 

gp130 and JAK2 (specific JAK-STAT signalling components) were localised to 

lipid rafts. Nonetheless, the functional consequences seem to be dependent on 

the context given the varied effects of raft disruption (either inhibitory or 

activating) via treatment with β-cyclodextrin (a cholesterol-depleting agent) or 

homozygous deletion of caveolin-1 [356]. Other reports have exclusively tested 

the significance of caveolae for gp130 function, showing the ability of a large 

proportion of gp130 molecules, which are located in detergent-resistant lipid 

rafts, to coimmunoprecipitate with CAV-1 [437]. Additionally, gp130 could be 

redistributed to non-raft fraction on treatment with the cholesterol depleting 

agent β-cyclodextrin and this would also preclude STAT3 Tyr705 

phosphorylation by IL-6 [437]. Conversely, other reports have shown that both 

STAT3 and gp130 are localised to lipid rafts [252] and that both CAV-1 

expression and STAT3 activation are negatively correlated [438]. Hence, 

although membrane microdomains and the components of JAK-STAT 

signalling are weakly associated, the exact molecular mechanisms that drive 

such interaction still unclear.  
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The current study emphasises the significant role of cavin-1 in the SOCS3-

mediated inhibition of JAK-STAT signalling via direct binding to specific 

cytokine receptors, such as gp130 causing their inhibition. Additionally, loss of 

cavin-1 altered the inhibitory pathways that supress Tyr phosphorylation of 

STAT3 mediated by IL-6. The effect of cavin-1 deletion on the inhibitory role of 

cAMP, which has been shown to be dependent on SOCS3, was investigated in 

a recent report [356]. The authors found that treatment of WT MEFs with Fsk 

(a cAMP-elevating drug) led to a significant inhibition of IL-6-mediated STAT3 

Tyr705 phosphorylation. Moreover, cavin-1-deficient cells exhibited loss of such 

effect despite the production of equivalent SOCS3 levels in both cell lines by 

the effect of a combination of Fsk and IL-6. Therefore, it can be concluded that 

cavin-1 was indispensable for SOCS3-mediated inhibition of IL-6 signalling by 

cAMP. 

From another perspective, experimental studies in mice shown that CAV-1 

knockout resulted in a marked increase of the inflammatory cytokine (TNF-⍺, 

IL-6 and IL-12a) levels, elevation of superoxide dismutase in the lung, kidney, 

and liver, and a significant reduction of the phagocytic activity of macrophages 

[439]. In the same study, STAT3 was significantly activated. Importantly, 

despite the marked increase of SOCS3, which inversely correlates with STAT3, 

both STAT3 activation and its associated inflammatory response were not well-

controlled. Therefore, data in the present chapter provide an important 

explanatory evidence of the reasons of compromised SOCS3-mediated 

negative regulation on the inflammatory response in CAV-1 KO mice. Given the 

previously-demonstrated relevance of CAV-1 to mediating cavin-1 recruitment 

to the plasma membrane [102, 121], the present chapter showed a novel 

important mechanism by which SOCS3-mediated suppression of cytokine 

signalling is linked to plasma membrane localisation through the interaction with 

and stabilisation of cavin-1. 
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6. Final Discussion 

The pathophysiological outcomes of dysregulated gp130-mediated signalling 

on haematopoiesis, cell metabolism, inflammation and immune responses have 

been widely documented [440-442]. Thus, limiting the magnitude and duration 

of IL-6-dependent gp130/JAK/STAT signalling remains of paramount 

importance. In this regard, different mechanisms of negative regulation have 

evolved to restrict gp130-dependent intracellular signalling. Notably, SOCS3 

plays a prominent negative regulatory role by inhibiting JAK–STAT3 activation 

and targeting cytokine receptor complexes for proteasomal degradation via 

SOCS3 E3 ligase activity [443]. 

To date, several substrates, such as CD33, FAK1, Siglec7, IRS1/2, G-CSFR 

and JAK1, of the SOCS3 E3 ubiquitin ligase were identified (Section 1.4.5). Yet, 

the full spectrum of ubiquitin-regulated SOCS3 substrates remains unknown. 

Utilising an unbiased quantitative proteomics screen to identified SOCS3-

regulated proteins, Williams et al, 2018 revealed a novel and direct interaction 

between SOCS3 and the essential component of caveolae cavin-1 [356]. 

Consequently, we hypothesised that SOCS3-cavin-1 interaction is an important 

controlling element in caveolae stability and/or the pro-inflammatory signalling 

pathway mediated by IL-6 in the endothelial cells. In this study, one of the aims 

was to establish endothelial cell lines lacking SOCS3 expression via the 

CRISPR/Cas9 system. This system enabled us to investigate the effects of 

SOCS3 deletion on endogenous cavin-1 levels. The findings from this study 

demonstrated that the absence of SOCS3 increases cavin-1 turnover and 

significantly reduces both cellular levels of CAV-1 and cell surface caveolae in 

MEFs and endothelial AS-M.5 cells.  Consequently, via cavin-1 stabilisation, 

this study revealed a novel role for SOCS3 in regulating the assembly of 

caveolae. Additionally, results obtained using confocal microscopy highlighted 

the important role of cavin-1 in the recruitment of SOCS3 to the plasma 

membrane. Collectively, our data would uncover a novel mechanism by which 

the essential component of caveolae cavin-1 negatively regulates gp130-

medaited signalling through recruiting SOCS3 (Figure 6-1).  
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Figure 6–1 The proposed interaction between cavin-1 and SOCS3 to 
inhibit cytokine signalling.  

The complex of IL-6 and soluble IL-6 receptor (sIL-6R) can bind to gp130 
on endothelial cells, which subsequently induces pro-inflammatory 
cytokine trans-signalling. The signal is transmitted from the extracellular 
space into the cytoplasm. The gp130-associated JAKs are then activated, 
leading to phosphorylation of tyrosine motifs within the cytoplasmic 
domains of gp130, which recruit STAT3. Consequently, STAT proteins 
are phosphorylated, dimerised, and translocated to the nucleaus. This 
would eventually induce the expression of proinflammatory and 
prosurvival genes. Additionally, SOCS3 expression is induced as a 
negative feedback loop to suppress the signalling pathway. Intriguingly, 
SOCS3 is integrated as an essential component of the E3 ubiquitin ligase 
complex, which ubiquitinate JAK. Ultimately, the signalling cascade is 
terminated by proteasomal degradation [307]. The findings of the present 
thesis proposed a model of a direct SOCS3-cavin-1 interaction, which 
contributes to effective SOCS3 recruitment to the plasma membrane and 
its efficient binding to cytokine receptors, such as gp130 causing their 
inhibition. Reproduced with modifications from Williams et al 2018 [356].  
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6.1 Therapeutic possibilities 

6.1.1 Modulation of caveolae 

Body-fat distribution is a known risk factor for unfavourable cardiovascular 

consequences [444]. Studies have shown that the lack of cavin-1 expression in 

animal models led to loss of caveolae and the development of a lipodystrophic 

phenotype, which is characterised by glucose intolerance, hyperlipidaemia, and 

overall adiposity. Although the hyperlipidaemic phenotype was apparent in both 

cavin-1-null and CAV-1-null animals, the onset of dyslipidaemia was earlier and 

its severity was more pronounced in cavin-1-deficient models as they showed 

a complete absence of caveolae arguably in all tissues, including cardiac and 

skeletal muscles [445]. 

In human, alterations in cavin-1 protein, which result from distinct frameshift 

mutations within the exon 2 of the expressing gene, have been identified and 

were associated with muscular dystrophy, insulin resistance, and general 

lipodystrophy [44, 127, 130]. In these patients, all caveolin subtypes were 

downregulated in skeletal muscles, while surface caveolae were lacking in 

skeletal muscles [127] and patient-derived fibroblasts [44]. Since the interaction 

of cavin-1 and SOCS3 requires multiple functional regions on cavin-1 for 

optimal binding [356], it would be expected that patients with congenital 

generalised lipodystrophy, and subsequently cavin-1 mutations, would have 

impaired SOCS3-cavin-1 interactions and hence exaggerated IL-6 responses. 

In this context, cardiac-specific SOCS3 knockout in murine models has been 

associated with contractile dysfunctions along with ventricular arrhythmias 

[389]. Intriguingly, patients with dysfunctional cavin-1 proteins exhibit a wide 

variety of ventricular arrhythmias. Therefore, future investigations are needed 

to reveal the mechanism by which SOCS3 and/or cavin-1 mutations could 

contribute to specific defective regulatory pathways and hence to the incidence 

of these pathologies [356]. 

Furthermore, atherosclerosis is basically a condition that involves large conduit 

arteries and is instigated by a number of chemical, immunological, or 

mechanical risk factors which lead to endothelial activation [446]. Patients with 
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atherosclerosis usually experience a chronic damage to the endothelial lining 

associated with proliferation of smooth muscles in the vessel wall as well as 

lipid deposits formation [447]. Despite the major progress accomplished in 

understanding the pathogenesis of atherosclerosis and its relation to 

cardiovascular disease, the exact process by which an atherosclerotic plaque 

is initiated and developed remains relatively unclear [448]. For such a purpose, 

the associated risk factors have been investigated, revealing that patients with 

smoking, diabetes, obesity, hypertension, and increased plasma lipids are more 

likely to develop atherosclerosis [449]. Interestingly, the pathogenic changes 

during plaque formation are regulated by caveolae as evidenced from studies 

based on genetically-modified mice. For instance, when CAV-1-/- mice were 

cross bred with apoE-/- mice, loss of CAV-1 was associated with a significant 

downregulation of specific proatherogenic molecules and hence yielded a 

protective role against atherosclerosis [450]. The authors attributed the 

reduction in plaque formation to the significant reduction of oxidised lipids 

transcytosis, which is originally mediated by caveolae. Later on, these results 

were confirmed by Sessa’s group, where a specific endothelial re-expression 

model of CAV-1/caveolae was developed relying on the re-establishment of 

atherosclerotic lesions, validating the relevance of caveolae in atherosclerosis 

[451]. In a follow-up study, the authors evaluated CAV-1 overexpression in 

endothelial cells in transgenic mice and they found a profound atheroscelerotic 

formation and progression, supporting the role of CAV-1 in the regulation of 

atheroma development [452]. 

Based on these findings, it would be expected that the reduction of caveolae 

abundance would be of clinical potential. However, there is a remarkable 

challenging cut-off, where the plaque-limiting levels of caveolae should, on the 

other hand, maintain the normal physiologic functions of the endothelium. 

Importantly, reduction the levels of caveolae for therapeutic purposes might be 

considered based on the following observations. First, it has been shown 

previously that a 40–50% reduction of CAV-1 expression could be performed 

using HMG-CoA reductase inhibitors in endothelial cells [453], which signifies 

an additional atheroprotective role of statins rather than the well-established 

lipid-lowering actions. Second, it seems that caveolae position within the 
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endothelium and its relation to the prevailing hemodynamic patterns could be 

impactful. That is, exercise training in individuals with a high risk of 

atherosclerosis development would change flow profiles, alter caveolae levels, 

and ultimately lower the atherogenic liability in endothelial cells [446]. 

Therefore, several atherosclerosis-ameliorating approaches could be further 

uncovered and targeted accordingly. In this respect, novel drugs could be 

developed to target the newly-identified SOCS3-cavin-1 interaction to reduce 

the risk of cardiovascular disease in patients at risk as well as to maintain the 

vascular health in specific populations, such as diabetic patients. The current 

era of small-molecule immunomodulators provides promising targets for drug 

development in the future. Besides, targeted disruption of the cavin-1/SOCS3 

complex would not only refine our therapeutics, particularly with improved 

understanding of inflammation, but also would help discovering novel drugs. 

6.1.2 Regulation of JAK–STAT singnalling pathway 

Aberrant catalytic activities of JAK proteins can lead to either an increase or 

reduction of kinase activity and subsequently the development of hematological 

defects, inflammatory diseases, immunodeficiencies, autoimmune diseases, 

myeloproliferative disorders and increased susceptibility to infection. Therefore, 

in light of the plethora of studies concerning JAK-STAT signalling and its 

relevance to health and disease, it is expected that this pathway could be a 

promising drug target. Multiple mechanisms have been implicated in JAK 

dysregulation, such as somatic or inherited point mutations, gene 

translocations, receptor mutations, and changes in the activity of SOCS 

proteins or phosphatases, which are considered important JAK regulators 

[454].  

Multiple exon12 mutations in the JAK2 genes have been identified in patients 

with V617F-negative idiopathic erythrocytosis (IE) or polycythaemia vera (PV) 

[455]. The most prominent findings in these patients are low serum 

erythropoietin (EPO) levels, erythrocytosis and ligand-independent cell growth. 

In addition, the amino acids 542–543 (N542-E543del) of JAK2 are 

predominantly deleted. In the instance of JAK2V617F positivity, SOCS3-
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mediated downregulation of EPO signalling and proliferation of V617F-

expressing cells are not established.  

Furthermore, Suessmuth et al. (2009) reported a PV patient with a SOCS3F136L 

mutation (within the SH2 domain) and an additional heterozygous mutation in 

JAK2N542-E543del. In such a patient, EPO-induced proliferation was markedly 

elevated by SOCS3F136L-expressing cells, leading to a persistent 

phosphorylation of JAK2 mediated by EPO. Indeed, these results indicate that 

SOCS3 function is disrupted by the SOCS3F136L mutation, which has a robust 

clinical potential in PV [455]. Given that F136 is located within the cavin-1-

interacting domain, the PEST insert [356], such a mutation might change the 

patterns of SOC3-cavin-1 interaction and subsequently alter SOCS3-mediated 

inhibition of JAK-STAT signalling. As such, future studies are warranted to 

investigate the way by which SOCS3 and/or cavin-1 mutations can affect or 

dysregulate signalling pathways to trigger diseases. 

Moreover, SOCS3 inhibits JAK kinase activity by preventing both substrate and 

ATP binding and hence preclude IL-6-induced JAK/STAT activation [456]. The 

clinical potential of SOCS3 is increasingly appreciated given its induction by a 

number of routes as well as its direct involvement in cancer, diabetes, 

inflammation and both viral and bacterial infections [457]. In addition, it has 

been shown that the in vivo regulatory role of SOCS3 proteins is exerted on 

distinct subsets of cytokines, such as IL-6, IL-11, LIF and CNTF, as well as 

leptin, G-CSF, and IL-12 as revealed by the recently developed conditional 

deletion models and biochemical analyses methodologies (Fig. 6-2). Such 

selectivity is potentially attributable to the high affinity of SOCS3 for its 

receptors, including gp130, leptinR, IL-12Rβ, and G-CSFR [324]. Although 

several cytokines, including EPO, GM-CSF, or thrombopoietin (TPO) are able 

to utilise the JAK-STAT pathway and to induce SOCS3 expression, there is no 

evidence so far for their dysregulation in SOCS3 conditional knockout mice. 

Actually, this signifies the redundant nature of the SOCS family [324]. Thus, the 

discovery of novel proteins which have the ability to interact with SOCS3 would 

presumably reveal new biological implications of SOCS3. It is possible that 

additional proteins should be integrated as interactors to maximise the 
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regulatory roles of SOCS3. In this respect, the CUE domain-containing 2 

(CUEDC2) protein was found using a yeast two-hybrid screening to specifically 

interact with SOCS3 and this interaction is required for effective inhibition of 

JAK1/STAT3 signalling  [458]. In conclusion, SOCS3 has been implicated in 

the regulation of a variety of signalling pathways. Based on the previously-

established evidence over the past 20 years, SOCS3 regulation seems to be a 

promising therapeutic solution to treat pathogenic infections, diabetes, 

rheumatoid arthritis, and cancer. Therefore, SOCS3-cavin-1 interaction opens 

a new horizon to cytokine response and immune responses. 

 
Figure 6–2: The physiological functions of SOCS3 

SOCS3 role is mediated by direct binding to specific receptors, including 
gp130, G-CSFR, IL-12Rβ, and leptinR. The inhibitory effects of SOCS3 
on signalling pathways regulate several biological processes. Figure 
adapted from [324].  
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6.2 Limitations of the study 

The current study has some limitations worth noting. First, although SOCS3 

knockout clones were effectively produced in AS-M.5 cells as described 

(Section 2.2.9) and subsequently six knockout clones were confirmed by 

immunoblots (Figure 3-6), some variations between clones were observed 

following the induction of Nur77 in response to cAMP. Thus, PCR genotyping 

and Sanger sequencing are needed to verify efficient allelic knockout in clonal 

cell lines by identifying the CRISPR-induced alterations at the DNA level. 

Second, antibody-based detection of endogenous SOCS3 in our preliminary 

immunofluorescence experiments was challenging due to the lack of specificity 

and the immunoreactivity demonstrated in SOCS3-/- cells. Therefore, the 

expression of fluorescent protein fusions was used to investigate the subcellular 

distribution of SOCS3. 

Finally, cavin-1-/- MEFs stably expressing GFP-cavin-1 were established and 

characterised as described in (Figure 5-10). However, it is recommended to 

utilise a fluorescence-activated cell sorter (FACS) to enrich and sort the 

expressing cells in an accurate and quantitative manner for optimal clonal 

purity. 

6.3 Future work 

Targeting SOCS3-cavin-1 interaction may be exploited for desired functional 

outcomes in a diverse array of biological pathways, including IL-6, insulin, and 

eNOS. This could be approached using a combination of immunoblotting cell 

lysates with or without peptide inhibitors, which interfere with such interaction. 

In addition, experiments involving SOCS3 and cavin-1 null mice are likely to 

shed some light into pathophysiological significance of the present PhD study. 
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Appendices 

APPENDIX A: Interaction of suppressor of cytokine signalling 3 with cavin-1 

links SOCS3 function and cavin-1 stability 

 

A.1 CONTRIBUTION TO WORK 

 

The following appendix is a reprint of Williams et al. “Interaction of suppressor 

of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability”, 

published in Nature Communications volume 9, Article number: 168 (2018). 

Nasser Alotaiq is second author on this publication. His contribution to the work 

including (1) a novel tool: Establishing stable endothelial cell lines completely 

lacking SOCS3 expression via CRISPR/Cas system, (2) novel data generated 

by confocal microscopy and transmission electron microscopy. 

 

A.2 REPRINT OF “Interaction of suppressor of cytokine signalling 3 with cavin-

1 links SOCS3 function and cavin-1 stability”  
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Interaction of suppressor of cytokine signalling 3
with cavin-1 links SOCS3 function and cavin-1
stability
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Effective suppression of JAK–STAT signalling by the inducible inhibitor “suppressor of

cytokine signalling 3” (SOCS3) is essential for limiting signalling from cytokine receptors.

Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3-

interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to

the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such

that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby

reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and

SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated

STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic

AMP. Together, these findings reveal a new functionally important mechanism linking

SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via

interaction with and stabilisation of cavin-1.
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Cytokines control many important biological responses,
including haematopoiesis, T-cell differentiation and
expansion, and inflammatory status1,2. Multiple tempo-

rally distinct inhibitory mechanisms operate to ensure signalling
responses downstream of activated cytokine receptors are tran-
sient in nature. Therefore, sustained pathway activation perpe-
tuates chronic inflammatory conditions such as rheumatoid
arthritis and colitis, haematological malignancies such as poly-
cythemia vera, and also solid tumour development3–5.

Several cytokine receptors, including gp130 (the signal trans-
ducing component of the interleukin-6 (IL-6) signalling com-
plex), activate receptor-associated Janus kinases (JAKs) which
then trigger receptor engagement with proteins such as signal
transducer and activators of transcription (STATs), particularly
STAT3. Phosphorylated STATs can then dimerise and translocate
to the nucleus, where they function as transcription factors by
binding to specific promoter elements and recruiting transcrip-
tional co-activators1,2.

“Suppressors of cytokine signalling” (SOCS) proteins comprise
a family of eight related members (cytokine-inducible SH2-
containing protein (CIS), SOCS1–7) identified initially by their
role as cytokine-inducible negative feedback inhibitors of signal
propagation from specific cytokine receptors6. SOCS3 is recruited
to activated cytokine receptors following the formation of a
SOCS3 interaction motif upon phosphorylation of key Tyr resi-
dues by cytokine-activated JAKs. SOCS3 terminates signalling
from gp130 by binding via a central SH2 domain to PTyr759,
allowing it to interact with and inhibit adjacent receptor-bound
JAKs via its kinase inhibitory region (KIR) thereby preventing the
recruitment and tyrosine phosphorylation of STATs7. The C-
terminal SOCS box domain directs SH2 domain-bound inter-
acting proteins for ubiquitylation due to its ability to bind elongin
B and C, Cullin family member Cul5, and RING (Really Inter-
esting New Gene) finger protein Rbx27. Following SOCS3-
dependent ubiquitylation, targets such as FAK1 can be degraded
either by the proteasome8,9 or, in the case of the granulocyte
colony-stimulating factor receptor (G-CSFR), by trafficking into
lysosomal compartments following internalisation10. However,
despite advances in our molecular understanding of how SOCS3
interacts with cytokine receptors and JAKs, the extent to which
other cellular proteins regulate SOCS3 function is unclear.
Recently, CUE domain-containing 2 (CUEDC2) was identified as
a novel SOCS3-interacting protein that could enhance its inter-
action with elongin C11. Such observations raise the possibility
that additional protein interactors may be required to maximise
the ability of SOCS3 to regulate signalling.

Cavin-1 (alternatively known as polymerase I and transcript
release factor (PTRF)) is an abundant component of caveolae,
which function as specialised lipid raft microdomains within the
plasma membrane. Caveolae were first identified by electron
microscopy as 50–100 nm flask-shaped plasma membrane inva-
ginations12 and are now known to play critical roles in controlling
endocytosis, sphingolipid metabolism, and compartmentalisation
of signalling pathways13. Cavin-1, which is one of a family of four
related proteins (cavins 1 to 4), is recruited by one or more
“caveolin” proteins (caveolins 1 to 3) to the plasma membrane
during the latter stages of caveola biogenesis, and is thought to be
essential for caveola formation by stabilising caveolin proteins at
the plasma membrane14.

While some studies have demonstrated localisation of cytokine
receptors and JAKs in lipid raft microdomains15–18, little is
known about the impact of caveolin expression/function on
JAK–STAT signalling and no studies have specifically examined a
role for cavins. In this study, we identify a novel interaction
between SOCS3 and cavin-1. This interaction is not only required
for optimal SOCS3-mediated inhibition of IL-6-mediated

JAK–STAT signalling but also for effective stabilisation of
cavin-1 and hence caveolin-1. Therefore, our findings define a
new relationship between SOCS3 and cavin-1 in which each
partner plays previously unappreciated roles in maintaining
effective inhibition of JAK–STAT signalling (cavin-1), cavin-1
expression, and caveola stability (SOCS3).

Results
Cavin-1 as a SOCS3-regulated ubiquitylated protein. As well as
inhibiting cytokine receptor signalling by inhibiting the Tyr
kinase activity of receptor-bound JAKs19, SOCS3 can also control
the stability of SH2 domain-bound proteins as part of an elongin/
cullin/SOCS3 (ECSSOCS3) E3 ubiquitin ligase complex6,7,20.
While several ubiquitinated substrates of SOCS3 are known, the
full spectrum has yet to be identified. Thus, we pursued an
experimental approach to elaborate on SOCS3 function by
investigating SOCS3-regulated proteins. Since there is no con-
sensus sequence for ubiquitylation, we used a stable isotopic
labelling of amino acids in cell culture (SILAC)/mass spectro-
metry approach to compare ubiquitinomes from wild-type SOCS3
+/+ (WT) and SOCS3−/− murine embryonic fibroblast (MEF) cell
lines expressing equivalent levels of a tandem affinity
purification-compatible tagged ubiquitin transgene following
SOCS3 induction (Supplementary Fig. 1). Using this approach,
ubiquitylated proteins regulated by SOCS3 would be predicted to
be enriched in WT but not SOCS3−/− MEFs.

A ubiquitin transgene containing a tandem hexahistidine and
biotin tag (HB-Ub) was used to allow two-step tandem affinity
purification of the ubiquitinome via sequential Ni-NTA and
streptavidin affinity chromatography under fully denaturing
conditions necessary to inactivate deubiquitinases and prevent
co-purification of non-covalently interacting ubiquitin-binding
proteins21,22. Stable HB-Ub-expressing WT and SOCS3−/− MEFs
were generated via retrovirus-mediated gene transfer and assessed
by immunoblotting for equivalent expression levels of the HB-Ub
transgene. SOCS3 was induced by elevation of intracellular cyclic
adenosine monophosphate (cAMP) levels with forskolin (50 μM),
a direct activator of adenylyl cyclase. To increase the probability
of detecting proteins whose ubiquitylation was SOCS3 dependent,
protein tyrosine phosphatases were inhibited using a combination
of sodium orthovanadate and H2O2 to preserve the PTyr status of
potential substrates and maximise interaction with the SOCS3
SH2 domain23, while the ubiquitinome was preserved using
proteasome inhibitor MG132. Tandem affinity-purified ubiquiti-
nomes from WT and SOCS3−/− MEFs were then analysed using
an Orbitrap Velos FTMS and data processed using the MaxQuant
computational platform24 (170). Under these conditions, Max-
Quant detected cavin-1 (O54724) with a log2(normalised H L−1)
= 1.37 (5 unique peptides, count ratio of 6). This suggested
that cavin-1 was a ubiquitylated protein specifically depleted in
SOCS3−/− MEFs.

SOCS3 enhances cavin-1 stability. Our proteomics screen sug-
gested that SOCS3 regulates cavin-1 stability. To examine this, we
compared the ability of increasing levels of SOCS3 to trigger the
proteasomal degradation of co-transfected cavin-1 and FAK1, a
previously characterised substrate of ECSSOCS38,9. Consistent
with previous work, increased SOCS3 expression triggered a
decrease in FAK1 levels that could be rescued by inclusion of
proteasome inhibitor MG132. In contrast, levels of cavin-1 were
not altered even at the highest level of SOCS3 expression and
were not increased by proteasome inhibitor MG132 (Fig. 1a). To
determine whether SOCS3 could regulate levels of endogenous
cavin-1, we assessed the effects of SOCS3 deletion on cavin-1
expression levels in MEFs. Immunoblotting of whole-cell extracts
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revealed that levels of cavin-1 protein were significantly reduced
in SOCS3−/− MEFs versus WT cells. This reduction occurred
under conditions in which cavin-1 mRNA levels were sig-
nificantly increased in SOCS3−/− MEFs versus WT cells (Fig. 1b,
c). The decrease in cavin-1 protein was paralleled by a similar
decrease in caveolin-1 expression levels (Fig. 1b), which is con-
sistent with previous studies showing that loss of cavin-1 triggers

reductions in all three caveolin isoforms14. We then measured the
half-lives of cavin-1 protein in WT and SOCS3−/− MEFs by
monitoring time-dependent changes in cavin-1 expression in
whole-cell extracts following inhibition of protein synthesis with
emetine25. For these experiments, cells were also pre-treated with
forskolin (Fsk) to elevate cAMP levels and increase SOCS3
expression in WT MEFs26,27 Direct comparison of cavin-1
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Fig. 1 Cavin-1 stability is enhanced in the presence of SOCS3. a HEK293 cells co-transfected with fixed amounts of either myc-tagged FAK1 or GFP-cavin-1
expression constructs and increasing levels of Flag-SOCS3 were treated with or without proteasome inhibitor MG132 (6 μM) as indicated. Detergent-
soluble whole-cell lysates were analysed by SDS-PAGE and immunoblotting. b Detergent-soluble whole-cell lysates prepared from SOCS3+/+ (+/+) and
SOCS3−/− (−/−) MEFs equalised for protein content were analysed by SDS-PAGE and immunoblotting. c Quantitative real-time PCR of cavin-1 mRNA
levels in WT (SOCS3+/+) and SOCS3−/− MEFs. Data are presented as mean± standard error for N= 3 experiments. d Upper: Protein-equalised soluble cell
extracts from SOCS3+/+ and SOCS3−/− MEFs chased for the indicated times in serum-free medium with protein synthesis inhibitor emetine (100 μM) were
analysed by SDS-PAGE and immunoblotting with the indicated antibodies. Lower: Quantitation of cavin-1 levels in SOCS3+/+ and SOCS3−/− MEFs is also
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stability in WT versus SOCS3−/− MEFs demonstrated that the
absence of SOCS3 significantly reduced the half-life from >8 h
(WT MEFs) to 2 h (SOCS3−/− MEFs: Fig. 1d). Thus, in contrast
to the well-defined role of SOCS3 in destabilising target proteins
by targeting them for ubiquitylation and proteasomal degrada-
tion, the presence of SOCS3 stabilised cavin-1.

Effect of SOCS3 deletion on caveola abundance. Our data thus
far suggested that SOCS3 was an important regulator of caveolin-
1 abundance via stabilisation of cavin-1. Homozygous deletion of
the cavin-1 gene in mice results in marked reductions in the
expression of all caveolin isoforms and a lack of detectable
caveolae in multiple cell types, including endothelial cells (ECs) in
which caveolae are especially abundant14.

To examine the impact of SOCS3 on caveola abundance,
clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 technology was used to generate SOCS3-null
AS-M.5 human angiosarcoma-derived immortalised ECs28.
Treatment of WT AS-M.5 cells with cAMP-elevating agent Fsk
was able to promote SOCS3 induction similar to that observed in
MEFs and primary EC lines as previously reported26,27 However,
this effect was lost in SOCS3-null AS-M.5 cells, while Nur77, a
well-characterised cAMP-inducible gene product29, was detect-
able in both WT and SOCS3-null AS-M.5 cells following Fsk
treatment (Fig. 2a, Supplementary Fig. 2). Similar to MEFs
(Fig. 1b), SOCS3 deletion significantly reduced cavin-1 and
caveolin-1 protein levels in AS-M.5 whole-cell extracts (Fig. 2a),
demonstrating that this effect is independent of the cell system
being investigated.

We then used transmission electron microscopy (TEM) to
assess any consequences of the observed changes in cavin-1 and
caveolin-1 expression on the abundance of cell surface caveolae.
Caveolae were readily detectable in WT AS-M.5 cells as plasma
membrane-localised flask-shaped invaginations ranging from 50
to 100 nm in diameter (Fig. 2b). In contrast, these were barely
detectable in SOCS3-null cells (Fig. 2b, c). Therefore, significant
reductions in cavin-1 and caveolin-1 protein levels triggered by
the loss of SOCS3 in endothelial cells are translated into
significantly reduced numbers of cell surface caveolae.

Cavin-1 interacts with SOCS3 via a SH2 domain PEST
sequence. To assess whether SOCS3 could directly interact with
cavin-1, co-immunoprecipitation (co-IP) experiments were per-
formed in lysates isolated from transfected HEK293 cells tran-
siently expressing Flag-SOCS3 and myc-cavin-1. These
experiments demonstrated that myc-cavin-1 was present in anti-
Flag antibody immunoprecipitates only when co-expressed with
Flag-SOCS3, indicating the two proteins formed a complex
(Fig. 3a). Similar results were obtained using Flag-cavin-1 and
HA-SOCS3 (Supplementary Fig. 3), indicating that the effect was
independent of the combination of tags used. Analysis of lysates
and unbound samples from the experiments demonstrated that
under conditions in which SOCS3 could be fully precipitated
from lysates, a proportion of cavin-1 remained unbound, sug-
gesting that not all available cavin-1 could interact with SOCS3
under these condition (Supplementary Fig. 4). To assess the
interaction of endogenously expressed SOCS3 and cavin-1, WT
and SOCS3-null AS-M.5 cells were stimulated with Fsk prior to
IP of cavin-1 and analysis by immunoblotting. These experiments
demonstrated that immunoreactive SOCS3 was specifically enri-
ched in cavin-1 IPs from WT AS-M.5 cells (Fig. 3b), consistent
with the co-IP data from experiments using transfected cells
(Fig. 3a).

To identify the regions within SOCS3 that are important for
SOCS3/cavin-1 interaction, we initially utilised a panel of Flag-

tagged N- and C-terminal SOCS3 truncation mutants30,31 for
their ability to co-IP green fluorescent protein (GFP)-tagged
cavin-132 as compared to WT SOCS3. Interestingly, all of the
truncation mutants tested were able to co-IP GFP-cavin-1 to the
same extent as full-length WT SOCS3 (Fig. 3c), suggesting that a
region within the SH2 domain present in each of the mutants was
necessary for SOCS3 binding to cavin-1. To test this, we
expressed full-length SOCS3 (residues 1–225) and the region of
the SOCS3 SH2 domain (residues 46–142, termed SOCS3 ΔSH2)
required for cavin-1 binding (Fig. 3d) as GFP-tagged fusion
proteins and compared their ability to co-IP myc-tagged cavin-1
in transfected HEK293 cells. As a negative control, we used a GFP
fusion protein containing residues 177–225 of the SOCS box that
we identified as dispensable for cavin-1 interaction (Fig. 3c).
Similar to WT SOCS3-GFP, SOCS3 ΔSH2-GFP was able to co-IP
myc-tagged cavin-1 above the non-specific levels observed with
the SOCS3 SOCS box-GFP fusion and cavin-1 alone, albeit not to
the same extent as WT SOCS3-GFP (Fig. 3d, lane 2 versus lane 8).
Therefore, these data showed that residues 46–142 within the
SOCS3 SH2 domain were both necessary and sufficient for
SOCS3 interaction with cavin-1.

As many SOCS3 binding partners, including gp130, CD33 and
FAK1, must be Tyr phosphorylated in order to interact with
SOCS3, we pursued three experimental approaches to examine
whether or not the PTyr-binding pocket within the SOCS3 SH2
domain was required for interaction with cavin-1. First, we
treated transfected HEK293 cells with protein Tyr phosphatase
inhibitor sodium orthovanadate in the presence or absence of
hydrogen peroxide23. These experiments demonstrated that the
isolation of GFP-cavin-1 in anti-Flag (SOCS3) immunoprecipi-
tates was not altered by increases in global Tyr phosphorylation
levels (Fig. 4a), suggesting that cavin-1 formed a complex with
SOCS3 via a mechanism that did not require prior Tyr
phosphorylation. Secondly, we tested R71K-mutated SOCS3, in
which the conserved PTyr binding site within the SOCS3 SH2
domain is disrupted30,31, for its ability to form a complex with
cavin-1. Co-IP assays revealed that a R71K-mutated SOCS3
bound cavin-1 equivalently to WT SOCS3 (Fig. 4b), again
supporting the concept that cavin-1 interacted with the SOCS3
SH2 domain in a manner independent of its capacity to bind Tyr-
phosphorylated ligands. Finally, N-terminally biotinylated pep-
tides encompassing the Tyr759 motif of gp130 in phosphorylated
(PTyr759 peptide) and non-phosphorylated (Tyr759 peptide)
forms were used as bait to test the effect of cavin-1 co-expression
on the ability of SOCS3 to be precipitated in peptide pull-down
assays. As reported by others30, SOCS3 specifically associated
with the PTyr759 peptide under these conditions. Using a
maximally effective concentration of peptide (100 nM), co-
expression with cavin-1 did not reduce the ability of SOCS3 to
precipitate with PTyr759 peptide (Fig. 4c). Taken together, these
data demonstrated that cavin-1 interacted with the SOCS3 SH2
domain at a location distinct from the well-defined PTyr-binding
pocket.

The region of the SOCS3 SH2 domain identified in the studies
above consists of two structurally distinct components. Firstly,
residues 46–127 comprise of β-sheet and α-helical regions that
form part of the PTyr-binding pocket common to all SH2
domains. Secondly, residues 128–142 form part of an unstruc-
tured PEST sequence insert that links the SH2 domain helix B
with BG loop and βG strand motifs (residues 166–185)33. PEST
motifs are unstructured hypermobile regions that have roles in
multiple cellular processes by controlling protein–protein inter-
actions and protein turnover34,35. We noted the presence of a
PEST sequence within the classic SH2 domain structure is also
displayed by CIS but none of the other SOCS family proteins33.
Having excluded the PTyr-binding functionality for SH2 domain
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interaction with cavin-1, we next examined whether the PEST
sequence insert was involved. To do this, we utilised a ΔPEST
SOCS3 deletion mutant in which the PEST motif (Pro129-
Arg163) was removed and replaced with (Gly-Ser)x436. ΔPEST
SOCS3 was expressed at comparable levels to WT SOCS3 in
transfected HEK293 cells and, consistent with previously
published work33, replacement of the PEST sequence did not
diminish specific interaction with PTyr759 peptide as determined

by in vitro peptide pull-down assays (Fig. 5a). In contrast, the
ability of ΔPEST SOCS3 to bind cavin-1 in co-IP experiments
was almost completely lost (Fig. 5b), thus demonstrating that the
SOCS3 SH2 domain PEST insert was specifically required for
cavin-1 interaction. Additional co-IP experiments using CIS,
which also has a PEST insert in its SH2 domain, revealed that it
was also able to form a complex with cavin-1 in co-transfected
cells (Fig. 5c). Next we sought to determine whether the SOCS3

a

50

IP: SOCS3 (Flag)

Lysates

IB: Cavin-1 (myc)

IB: SOCS3 (Flag)

IB: Cavin-1 (myc)

IB: SOCS3 (Flag)

– + +
+ – +

: SOCS3
: Cavin-1

IB: GAPDH

50

MW
(kDa)

25

37

c

: WT/mutant SOCS3

+ GFP-cavin-1

W
T

ΔN20
ΔN36

ΔC40
ΔC84

IB: Cavin-1 (GFP)

IB: GAPDH

IB: Cavin-1 (GFP)

IB: SOCS3 (Flag)
IP: SOCS3 (Flag)

Lysates

ΔN20 (21–225)

WT (1–225)

ΔN36 (37–225)

ΔC40 (1–185)

ΔC84 (1–141)

1 225SH2 SOCS BoxK
IR

E
S

S

22 29 45 185

P
E

S
T

25

MW
(kDa)

75

20

75
37

50

50

37
50

50

50

37
50
37

MW
(kDa)

IB: SOCS3 (GFP)

IB: Cavin-1 (myc)

IB: SOCS3 (GFP)

IB: Cavin-1 (myc)

– – WT ΔSH2 SB WT ΔSH2 SB : SOCS3-GFP 
– + – – – + + + : myc-Cavin-1

IP: SOCS3 (GFP)

Lysates

IB: GAPDH

ΔSH2 domain (46–142)

WT (1–225)

SOCS box (177–225)

GFP

GFP

SOCS Box GFP

W
T

W
T

SOCS3-
nu

ll

SOCS3-
nu

ll

SH2 SOCS BoxK
IR

E
S

S

P
E

S
T

SH2

22 29 45 185

b

AS-M.5 cells:

IB: SOCS3

IP: Cavin-1

IB: Cavin-1 

IB: GAPDH

Input

: Fsk+MG132 (4 h)

NS

MW
(kDa)

50

25

37

d

Fig. 3 A region within the SOCS3 SH2 domain is necessary and sufficient for cavin-1 interaction. a Protein-equalised soluble cell extracts from HEK293 cells
transfected with expression constructs encoding Flag-SOCS3 and myc-tagged cavin-1 as indicated were processed by immunoprecipitation (IP) with anti-
Flag M2-agarose beads prior to SDS-PAGE and immunoblotting with the indicated antibodies. Whole-cell lysates from the samples used in the IP were also
fractionated by SDS-PAGE for immunoblotting in parallel. b Protein-equalised soluble cell extracts from WT and SOCS3-null AS-M.5 cells treated with 50
μM Fsk and 6 μM MG132 for 4 h were processed by IP with anti-cavin-1 antibody prior to SDS-PAGE and immunoblotting with the indicated antibodies. As
loss of SOCS3 in AS-M.5 cells reduces cavin-1 protein levels (a), twice the amount of protein was used as input for SOCS3-null cells to compensate. NS=
non-specific band. c Upper: Protein-equalised soluble cell extracts from HEK293 cells transfected with expression constructs encoding either Flag-tagged
WT SOCS3 or the indicated truncation mutants and GFP-tagged cavin-1 as indicated were processed by IP with anti-Flag M2-agarose beads prior to SDS-
PAGE and immunoblotting with the indicated antibodies. Whole-cell lysates from the same samples used in the IP were also fractionated by SDS-PAGE for
immunoblotting in parallel. Lower: Schematic of the SOCS3 truncation constructs used, KIR = kinase inhibitory region, ESS = extended SH2 subdomain,
PEST = PEST (ProGluSerThr) motif. d Upper: Protein-equalised soluble cell extracts from HEK293 cells co-transfected with expression constructs encoding
either full-length SOCS3 (WT), a truncated ΔSH2 SOCS3domain (ΔSH2), or SOCS box domain (SB) fused to GFP and myc-tagged cavin-1 as indicated
were processed by IP with anti-GFP antibody and protein G-Sepharose beads prior to SDS-PAGE and immunoblotting with the indicated antibodies. Whole-
cell lysates from the same samples used in the IP were also fractionated by SDS-PAGE and for immunoblotting in parallel. Lower: Schematic of the SOCS3-
GFP fusions used
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PEST sequence was sufficient to confer interaction with cavin-1.
Bioinformatic analysis using ePESTfind (http://emboss.
bioinformatics.nl/cgi-bin/emboss/epestfind) identified human
Grap2 as a candidate SH2 domain-containing protein that lacked
a detectable PEST sequence. In addition, Grap2 was unable to
form a complex with cavin-1 upon co-expression in transfected
HEK293 cells (Fig. 5d). Therefore, Pro129-Arg163 from SOCS3
was transplanted onto the central Grap2 SH2 domain and the
resulting chimera (Grap2-S3PEST) assessed for its ability to form
a complex with co-expressed cavin-1 in transfected HEK293 cells.
These experiments demonstrated that insertion of SOCS3 PEST
sequence was sufficient to confer an ability to bind cavin-1 on the
resulting Grap2-S3PEST chimera, albeit to a much weaker extent
than WT SOCS3 (Fig. 5d).

Multiple cavin-1 regions required for SOCS3 interaction. To
examine whether SOCS3 interacts directly with cavin-1, peptide
arrays of overlapping 25-mer peptides sequentially shifted by five
amino acids and spanning the full-length cavin-1 open reading
frame were overlaid with purified recombinant SOCS3 and
visualised by probing with anti-SOCS3 antibodies (Fig. 6a). Dark
spots represent positive areas of SOCS3 interaction. Using this

approach we found that SOCS3 could interact strongly with two
distinct regions spanning >70 amino acids within the cavin-1
open reading frame: an N-terminal region spanning residues
75–152 and a C-terminal region encompassing residues 200–295.
To validate the importance of these regions in controlling inter-
action with SOCS3 in intact cells, we generated a panel of myc
epitope-tagged N- and C-terminal truncation mutants of cavin-1
(Fig. 6b) and tested their ability to co-IP Flag-SOCS3 upon co-
expression in transfected HEK293 cells. All the truncated cavin-1
mutants expressed comparably to WT cavin-1 except for the C1
construct encoding residues 1–75 (Fig. 6c). These experiments
demonstrated that, compared with WT cavin-1, each of the N-
terminal and C-terminal truncation mutants was compromised in
its capacity to co-IP with SOCS3. In conjunction with data from
the peptide array experiments, our findings demonstrate that
multiple SOCS3 binding interfaces within cavin-1 were required
for optimal interaction with SOCS3.

Cavin-1 promotes SOCS3 localisation to the plasma mem-
brane. Cavin-1 is required for stabilisation and maturation of
caveolae at the plasma membrane, although it is also present with
caveolin-1 in non-lipid raft fractions37. SOCS3 is thought to be
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recruited to activated cytokine receptors at the plasma membrane
following the formation of a SOCS3 interaction motif upon
phosphorylation of key Tyr residues by cytokine-activated
JAKs19. Therefore, to examine a role for cavin-1 in controlling
SOCS3 localisation, we used confocal microscopy to assess the
effect of cavin-1 deletion on the subcellular distribution of a
SOCS3-GFP fusion protein expressed in transfected cells plated at
low density. A transfected SOCS3-GFP construct was used for
these experiments as we failed to specifically detect endogenous
SOCS3 staining in WT MEFs over and above background

staining in SOCS3−/− MEFs in confocal imaging experiments
using three separate commercially available antibodies. In trans-
fected WT MEFs, two populations of SOCS3-GFP-derived
fluorescence were detectable: a punctate intracellular pool and a
plasma membrane-localised pool (Fig. 7a). Endogenous cavin-1
was localised predominantly at the plasma membrane of the
trailing edge of the cells as described by others38. Merging of the
images revealed co-localisation of SOCS3-GFP and cavin-1 spe-
cifically at the plasma membrane (Fig. 7a). Analysis of SOCS3-
GFP/cavin-1 staining produced Pearson's correlation coefficient
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Fig. 5 Cavin-1–SOCS3 interaction requires the SOCS3 SH2 PEST motif. a Protein-equalised soluble cell extracts from HEK293 cells transfected with
expression constructs encoding either WT or ΔPEST Flag-SOCS3 were incubated with 100 nM N-terminally biotinylated peptides corresponding to the
Tyr759 motif of gp130 in its phosphorylated (pY) or non-phosphorylated (Y) forms and streptavidin–agarose beads prior to loading with whole-cell lysate
samples for SDS-PAGE and immunoblotting with the indicated antibodies. b Protein-equalised soluble cell extracts from HEK293 cells transfected with
expression constructs encoding either WT or ΔPEST Flag-SOCS3 and GFP-tagged cavin-1 as indicated were processed by IP with anti-Flag M2-agarose
beads prior to SDS-PAGE and immunoblotting with the indicated antibodies. Whole-cell lysates from the samples used in the IP were also fractionated by
SDS-PAGE for immunoblotting in parallel. c Upper, Protein-equalised soluble cell extracts from HEK293 cells transfected with or without the indicated CIS
and SOCS3 expression constructs and GFP-tagged cavin-1 as indicated were processed by IP with anti-Flag M2-agarose beads prior to SDS-PAGE and
immunoblotting with the indicated antibodies. Whole-cell lysates from the samples used in the IP were also fractionated by SDS-PAGE for immunoblotting
in parallel. Lower, Schematic of CIS and SOCS3. d Protein-equalised soluble cell extracts from HEK293 cells transfected with or without the indicated
SOCS3 and Grap2 expression constructs and GFP-tagged cavin-1 as indicated were processed by IP with anti-Flag M2-agarose beads prior to SDS-PAGE
and immunoblotting with the indicated antibodies. Whole-cell lysates from the samples used in the IP were also fractionated by SDS-PAGE for
immunoblotting in parallel

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02585-y

8 NATURE COMMUNICATIONS |  (2018) 9:168 |DOI: 10.1038/s41467-017-02585-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


values of >0.90 at the plasma membrane, indicative of a high
degree of co-localisation (Fig. 7b). Conversely, in cavin-1−/−

MEFs SOCS3-GFP was undetectable at the plasma membrane
and only present within a punctate intracellular pool (Fig. 7a).
Importantly, transient co-expression of SOCS3-GFP with co-
transfected cavin-1-mCherry into cavin-1−/− MEFs was able to
restore their co-localisation at the plasma membrane (Fig. 7c).
Expression of GFP alone in WT MEFs did not produce any
detectable co-localisation with cavin-1, and its distribution was
similar in both WT and cavin-1−/− MEFs (Supplementary
Fig. 5A, B).

Additionally, subcellular fractionation experiments demon-
strated that cavin-1 was mainly present in membrane and
cytoplasmic fractions. This mirrored the subcellular distribution

of SOCS3 in WT MEFs following induction by Fsk treatment for
5 h. Interestingly, cavin-1 deletion shifted the distribution of
SOCS3 predominantly to the cytoplasm (Fig. 7d). Thus, the
presence of cavin-1 was important for localising endogenous
SOCS3 to the membrane fraction, consistent with our confocal
imaging experiments using SOCS3-GFP (Fig. 7a–c). Subcellular
fractionation experiments also demonstrated that SOCS3 deletion
produced a comparable reduction in caveolin-1 expression at the
membrane as deletion of cavin-1, indicative of an indirect role for
SOCS3 in maintaining caveolin-1 expression via stabilisation of
cavin-1 (Fig. 7d). This change was specific for caveolin-1 as levels
of the membrane marker flotillin were unaffected by deletion of
either SOCS3 or cavin-1 (Fig. 7d). Therefore, together these data
indicate that cavin-1 co-localised with a plasma membrane pool
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of SOCS3 in intact cells and was an important determinant of
SOCS3 localisation to the plasma membrane.

Cavin-1 limits IL-6-stimulated Tyr705 STAT3 phosphoryla-
tion. While some studies have demonstrated localisation of
cytokine receptors and JAKs in lipid raft microdomains15–18,
relatively little is known about the impact of caveolin expression/

function on JAK–STAT signalling and no studies have specifically
examined a role for cavins. Our data suggested that cavin-1 and
SOCS3 interacted directly and co-localised at the plasma mem-
brane, while SOCS3 was mainly cytosolic in the absence of cavin-
1. To examine any functional impact of cavin-1 on cytokine
signalling, we examined the effects of cavin-1 deletion in MEFs on
IL-6-mediated activation of STAT3, as determined by phos-
phorylation at Tyr705 which is required for STAT3 to form
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transcriptionally active complexes39. While stimulation of both
WT and cavin-1−/− MEFs with a sIL-6Rα/IL-6 trans-signalling
complex triggered a transient increase in STAT3 phosphorylation
on Tyr705, the response was greater and more sustained in cavin-
1−/− MEFs, being detectable at the 60 and 120 min time points in
cavin-1−/− but less pronounced in WT cells (Fig. 8a). Interest-
ingly, Tyr705 phosphorylation was specifically enhanced as
STAT3 phosphorylation on Ser727 (which is mediated by several
candidate Ser/Thr kinases40) was unaffected by cavin-1 deletion.
Moreover, the increase in IL-6 signalling occurred despite
reduced levels of JAK1 in cavin-1−/− MEFs, although this
reduction did not reach statistical significance (Fig. 8a). Other
cytokine receptor complexes that utilise gp130 include those for
leukaemia inhibitory factor (LIF) and oncostatin M (OSM): LIF
signals via gp130/LIF receptor (LIFR) heterodimers, while OSM
signals downstream using either LIFR/gp130 or OSM receptor/
gp130 complexes41. As observed with sIL-6Rα/IL-6, Tyr705
phosphorylation of STAT3 in response to either LIF or OSM was
greater in cavin-1−/− versus WT MEFs at 60 min (Fig. 8b). Taken
together, these data suggested that loss of cavin-1 compromised
one or more inhibitory mechanisms responsible for suppressing
gp130- and JAK-mediated Tyr phosphorylation of STAT3.

Previous studies have demonstrated that depletion or loss of
SOCS3 results in prolonged activation of STAT3 in response to
specific cytokines42–44, similar to the effect observed upon cavin-1
deletion. We have shown previously that the ability of cAMP to
inhibit IL-6 signalling in vascular ECs, MEFs, and COS cells has
an absolute requirement for Epac1-dependent induction of
SOCS326,27,45. Given the importance of cavin-1 in localising
SOCS3 to the plasma membrane and the sustained phosphoryla-
tion of STAT3 on Tyr705 observed following sIL-6Rα/IL-
6 stimulation of cavin-1−/− MEFs, we examined the impact of
cavin-1 deletion on the inhibitory effect of cAMP which has
previously been shown to be SOCS3 dependent26,45. These
experiments demonstrated that while pre-treatment of WT MEFs
with cAMP-elevating drug Fsk (50 μM) significantly inhibited
sIL-6Rα/IL-6-stimulated Tyr705 phosphorylation of STAT3, this
effect was lost in cavin-1−/− MEFs even though Fsk in
combination with sIL-6Rα/IL-6 produced equivalent levels of
SOCS3 in WT and cavin-1−/− MEFs (Fig. 8c). These results also
did not reflect a non-specific reduction in cAMP responsiveness
following loss of cavin-1 as Fsk could trigger the accumulation of
cAMP target gene Nur77 equivalently in both WT and cavin-1−/−

MEFs (Supplementary Fig. 6). Therefore, the presence of cavin-1
was necessary for SOCS3-mediated inhibition of IL-6 signalling
by cAMP.

Discussion
The importance of SOCS3 in limiting downstream signalling
from cytokine receptor complexes that utilise gp130, as well as the
leptin receptor ObRb and the G-CSFR, is well established6,7

However, relatively little is known about how SOCS3 interaction
with other intracellular proteins can impact on its ability to
inhibit signalling. As part of a study to identify SOCS3-regulated
substrates, we performed “stable isotopic labelling of amino acids
in cell culture” (SILAC) analysis of ubiquitinome profiles in WT
and SOCS3−/− MEFs stably expressing a tandem affinity pur-
ification (TAP)-tagged ubiquitin transgene46. Using this
approach, the caveola scaffolding protein cavin-1 was identified as
a ubiquitinated protein whose levels were stabilised in WT cells.
We have demonstrated that cavin-1 can interact with SOCS3 and
that the absence of SOCS3 results in increased turnover of cavin-1
and a parallel reduction in cellular levels of caveolin-1 and cell
surface caveloae. We have also demonstrated that cavin-1 is
important for effective SOCS3-mediated suppression of

JAK–STAT signalling in response to sIL-6Rα/IL-6 trans-signal-
ling complexes.

The importance of caveolae and other lipid raft microdomains
for maintaining signalling from the plasma membrane has been
demonstrated for a variety of systems, including endothelial nitric
oxide synthase and Src47,48. In comparison, relatively little
information is available on how they regulate JAK–STAT path-
way activation. Localisation of JAK–STAT signalling components,
including gp130, receptors for growth hormone, ciliary neuro-
trophic factor and LIF, and JAK2 to lipid rafts has been deter-
mined by biochemical fractionation of cell extracts15–18,49–52.
However, the functional consequences appear to be context
dependent, such that raft disruption by treatment with
cholesterol-depleting agents like β-cyclodextrin or homozygous
deletion of caveolin-1 can either inhibit15,16,49 or enhance52,53

downstream signalling. Thus, Lisanti and colleagues52 have
examined the effects of manipulating caveolin-1, and demon-
strated that caveolin-1 can suppress prolactin receptor-mediated
JAK2-dependent phosphorylation and activation of STAT5a in
murine mammary epithelial cells in vitro, consistent with
observations that caveolin-1 deletion in vivo enhances prolactin
receptor signalling53. The mechanism proposed was via a direct
interaction between caveolin-1 and JAK2, although no evidence
of a direct effect of caveolin-1 on JAK2 Tyr kinase activity was
presented52. Other studies have specifically examined the
importance of caveolae for gp130 function, demonstrating that a
significant proportion of cellular gp130 resides in detergent-
resistant lipid rafts and can co-IP with caveolin-1. In addition,
cholesterol depletion with β-cyclodextrin has been shown to
trigger the re-distribution of gp130 to non-raft factions and
attenuate the ability of IL-6 to stimulate STAT3 phosphorylation
on Tyr70516. In contrast, others have found that both gp130 and
STAT3 are localised to lipid rafts15 and demonstrated an inverse
relationship between caveolin-1 expression and STAT3 activa-
tion54. Therefore, while a weak association between membrane
microdomains and JAK–STAT signalling modules has been
made, the molecular mechanisms responsible for this interaction
remain unclear.

Our data would suggest a novel route through which caveola
accessory protein cavin-1 can modulate cytokine receptor sig-
nalling via interaction with the inhibitory regulator SOCS3. While
SOCS3 expression is induced in response to many stimuli, con-
ditional gene targeting strategies have revealed that sensitivity to
SOCS3 is restricted to a panel of plasma membrane-localised
cytokine receptors6,7,41. Consistent with another study38, we
found that while cavin-1 was localised to the plasma membrane
in WT MEFs, it was not distributed uniformly, instead localising
to the trailing edge of migrating cells. Importantly, a significant
proportion of SOCS3-GFP co-localised to the same plasma
membrane compartment in WT but not cavin-1−/− MEFs.
Together with data showing that cavin-1 could co-IP with SOCS3
and that purified SOCS3 could interact with multiple cavin-1-
derived peptides in vitro, we propose that cavin-1 binds SOCS3
directly and that this contributes to efficient SOCS3 recruitment
to the plasma membrane where it can effectively bind and inhibit
cytokine receptors such as gp130. A key aspect of this model
(Fig. 9) is that SOCS3 can still bind Tyr phosphorylated peptide
in vitro in the presence of cavin-1. Interestingly, the SOCS3 SH2
domain appeared to fulfil both PTyr and cavin-1 binding func-
tions as cavin-1 interaction required the PEST motif present
within the SOCS3 SH2 domain, which we and others have shown
to be dispensable for PTyr binding33,36. In some respects, this is
similar to the recently described interaction between SOCS3 and
CUEDC2, which also binds the SH2 domain and enhances
SOCS3-mediated inhibition of JAK1–STAT3 activation by IL-611.
Since CUEDC2 potentiates SOCS3 function it would be
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anticipated that, like cavin-1, its interaction with the SH2 domain
must be independent of PTyr binding, suggesting it may also
involve the PEST sequence. However, in contrast to cavin-1,
CUEDC2 localises to the cytoplasm and nucleus55. Nevertheless,
our observations and those of Zhang et al.11 raise the possibility
that multiple proteins may bind within the SOCS3 SH2 domain
to facilitate localisation with Tyr phosphorylated binding partners
in distinct subcellular compartments. In this regard, it should be
noted that confocal imaging and subcellular fraction experiments
detected SOCS3 in the cytoplasm as well as the plasma mem-
brane, and that cavin-1 deletion resulted in the specific loss of the
plasma membrane pool.

To date, we are only aware of one other study which has
examined the impact of the PEST sequence on SOCS3 function36.
However, these experiments were performed in HEK293 cells co-
transfected to express a STAT3-responsive reporter gene and
increasing amounts of either WT or ΔPEST SOCS3. The authors

noted that at maximal levels of WT and ΔPEST SOCS3 expres-
sion, both constructs abolished LIF-stimulated activation of
STAT3. However, upon normalising SOCS3 function with the
expression levels of WT and ΔPEST SOCS3, they also noted that
at submaximal expression levels the functionality of ΔPEST
SOCS3 was less than that of WT SOCS3. Thus, they concluded
that WT SOCS3 is slightly more efficient at inhibiting STAT3
activation36. Others have shown that low expression levels of
SOCS3 inhibit signalling via interaction with g130 followed by
inhibition of JAK activity, whereas overexpression SOCS3 can
inhibit gp130 signalling independently of interaction with the
SOCS3 binding site and works instead via direct inhibition of
JAK119,56 These data would also suggest that any functional
deficits in ΔPEST SOCS3 in localising to gp130 would be over-
come by its overexpression. In contrast, our functional experi-
ments examining signalling from endogenous proteins suggest an
important aspect of SOCS3 PEST motif function is an interaction
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with cavin-1 that is critical for effective regulation of JAK–STAT
signalling. The effects on signalling of reconstituting cavin-1−/−

MEFs with mutated cavin-1 that fails to interact with SOCS3 but
retains the ability to stabilise caveolin-1 would be very informa-
tive in dissecting whether cavin-1 is essential for SOCS3 function
or simply enhances it through facilitating recruitment to the
plasma membrane. It would also be important to assess any
functional consequences of SOCS3 on gp130 ubiquitylation57 and
receptor trafficking10 in order to fully assess the impact of cavin-1
on SOCS3 function.

While this adds an extra layer of regulation for SOCS3, our
study has also identified a previously unknown mechanism by
which SOCS3 can regulate cavin-1 function by enhancing its
stability and, as a consequence, maintaining expression levels of
caveolin-1 and cell surface caveolae. Similar observations have
recently been reported for Eps15 homology domain-containing
protein 2 (EHD2) which, to our knowledge, is the only other
example of a cavin-1-interacting protein that regulates caveola
stability, although a direct effect on cavin-1 turnover has not been
examined58. More generally, our findings also raise the possibility
that cavins constitute a new class of SOCS3-interacting proteins.
While the presence of cavin-1 and caveolin-1 is sufficient to
generate caveolae in many cell types59, MEFs also express cavin-2
and cavin-3. Elegant biochemical and biophysical studies have
demonstrated that cavins assemble into oligomeric complexes
both in cells and in vitro60,61. While each of the cavins is
detectable on individual caveolae59, cavin-2 and cavin-3 appear to
form distinct hetero-oligomeric complexes with cavin-1 rather
than with each other60. Thus, it would be anticipated that
SOCS3 should interact with both cavin-1/cavin-2 and cavin-1/
cavin-3 oligomers and therefore distribute itself uniformly around
caveolar bulbs similarly to cavin-161. As the SOCS3 PEST
sequence was necessary for cavin-1 interaction, it would also be
informative to assess what extent this property is shared among
similar sequences present in other SOCS family members. Ana-
lysis of the SOCS family revealed that CIS, which like SOCS3 can
also interact with cavin-1, contains a PEST motif located in its
SH2 domain, while SOCS1, SOCS5, and SOCS7 each have one or
more PEST sequences located within their N-terminal domains.
In contrast, no PEST motifs are found in SOCS2, SOCS4, and
SOCS6. Given the distinct roles of different SOCS family mem-
bers in regulating signalling62, the functional significance of the
identified PEST motifs and their roles in determining the

localisation of individual SOCS proteins via distinct protein
interactions warrant further investigation.

Finally, our findings may have implications in the context of
how cavin-1 and SOCS3 dysfunction can trigger disease. Several
inactivating frameshift mutations within exon 2 of the cavin-1
gene that result in the production of altered cavin-1 proteins have
been identified in patients with general lipodystrophy, muscular
dystrophy, and insulin resistance63–66. In each case, a lack of
functional cavin-1 is associated with the downregulation and/or
mislocalisation of all three caveolin subtypes in skeletal muscle
and an absence of cell surface caveolae in patient-derived fibro-
blasts64 and skeletal muscle63. As multiple regions within cavin-1
are required for optimal binding of SOCS3, the mutated cavin-1
proteins identified in patients with congenital generalised lipo-
dystrophy would be predicted to be compromised in their ability
to interact with SOCS3, thereby resulting in enhanced IL-6
responses. In this regard, cardiac-specific homozygous deletion of
murine SOCS3 results in contractile dysfunction and the occur-
rence of a variety of ventricular arrhythmias67, the latter of which
is also observed in patients with inactivating cavin-1 mutations64.
Finally, a F136L germline SOCS3 mutation found in a subset of
polycythemia vera patients has been shown to display an
impaired capacity to inhibit erythropoietin receptor-JAK2 sig-
nalling68. As F136 is located within the PEST insert we have
identified as critical for cavin-1 interaction, this mutation may
alter cavin-1 binding to SOCS3 to block its inhibitory effects on
JAK–STAT signalling. Based on our findings, future studies will
therefore need to examine how cavin-1 and/or SOCS3 mutations
identified in patients interact to trigger defective regulation of
signalling in these pathologies.

Methods
Cell culture and transfection. HEK293 cells were obtained from the European
Collection of Authenticated Cell Cultures (ECACC) through Sigma. Immortalised
SOCS3−/− and cavin-1−/− MEFs and the corresponding WT cell lines have been
described previously59,69. HEK293 cells and MEFs were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% (v/v) foetal bovine
serum (FBS), 1 mM L-glutamine, 100 Uml−1 penicillin and 100 μM streptomycin.
AS-M.5 human angiosarcoma-derived ECs generously provided by Dr Vera
Krump-Konvalinkova and Professor Charles Kirkpatrick (Johannes Gutenberg
University of Mainz, Germany)28 were cultured in endothelial growth medium-2
supplemented with 2% (w/v) FBS, hydrocortisone, ascorbate, and recombinant
growth factors as recommended by the supplier (Lonza). HEK293 cells at 80%
confluence on poly-D-lysine-coated dishes were transfected with 2–8 μg of com-
plementary DNA (cDNA) per 100 mm dish using PolyFect transfection reagent
(Qiagen) as per THE manufacturer’s instructions.
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For SILAC experiments, MEFs were grown in either heavy SILAC DMEM
(13C6-arginine, 13C6-lysine; R6K6) or control SILAC DMEM (12C6-arginine, 12C6-
lysine; R0K0) (Dundee Cell Products, UK) supplemented with 10% (v/v) dialysed
calf serum, 100 Uml−1 penicillin, 100 μM streptomycin, 4 μg ml−1 puromycin, 200
mg l−1 L-proline and 1 μM D-biotin. Arginine can be metabolised from 13C6-
arginine to an isotope of the non-essential amino acid 13C5-proline via the arginase
pathway thus complicating data analysis70. As such, media were supplemented
with L-proline (200 mg l−1) to prevent arginine conversion. Furthermore, as
overexpression of the HB-Ub-tag reduces the availability of cellular D-biotin21,
growth medium was supplemented with D-biotin (1 μM) to prevent saturation of
in vivo biotinylation by excessive HB-Ub-tag expression. Plat-E retroviral
packaging cells were maintained in DMEM supplemented with 10% (v/v) FBS,
100Uml−1 penicillin, 100 μM streptomycin, 1 μg ml−1 puromycin, 10 μg ml−1

blasticidin, and 1 mM glutamine.

Constructs. Murine Grap2 (cat no. MR204666) and murine CIS (cat no.
MR203328) in pCMV6-Entry were from Origene. Human SOCS3 CRISPR/Cas9
knockout (KO) and human SOCS3 HDR plasmids (cat. no. sc-400455) were from
Santa Cruz Biotechnology. Expression constructs for Flag-tagged WT murine
SOCS3 (hereafter termed pcDNA3/Flag-SOCS3), the truncation mutants ΔN20,
ΔN36, ΔC40, and ΔC84, R71K-mutated SOCS3, and the ΔPEST mutant SOCS3
(generously provided by Dr Jeff Babon, Walter and Eliza Hall Institute of Medical
Research, Australia) have all been described previously30,31,33,71. N-terminally
GFP-tagged murine cavin-1 has been described previously32 while a cavin-1-
mCherry expression construct was generously provided by Dr Ben Nichols (MRC
Laboratory of Molecular Biology, Cambridge, UK).

Full-length murine WT SOCS3, ΔSH2 SOCS3 (amino acids 46–142), and SOCS
box domain-only (amino acids 177–225) GFP fusion proteins were generated by
PCR amplification and sub-cloning in-frame with the GFP open reading frame in
pEGFP-N1 (Clontech). The following primers were used to generate PCR products
using pcDNA3/Flag-SOCS3 as the template prior to digestion with the indicated
restriction enzymes for sub-cloning:-

Forward primers: WT (GAA GAA GAA TTC GCC ACC ATG GTC ACC CAC
AGC AAG), SOCS box only (GAA GAA GAA TTC GCC ACC ATG GTA CTG
AGC CGA CCT CTC), SH2 domain only (GAA GAA GAA TTC GCC ACC ATG
TTC TAC TGG AGC GCC GTG). EcoRI sites for sub-cloning underlined,
initiating Met codon in italics. Reverse primers: WT and SOCS box only (TT CTC
GGG ATC CGC AAG TGG AGC ATC ATA CTG ATC CAG G). ΔSH2 SOCS3
(TTC TCG GGA TCC GCT TCC GTG GGT GGC AAA G). BamHI sites for sub-
cloning underlined.

Myc-tagged WT murine cavin-1 and the truncation mutants N1 (amino acids
74–392), N2 (amino acids 168–392), N3 (amino acids 193–392), N4 (amino acids
250–392), C1 (amino acids 1–76), C2 (amino acids 1–167), C3 (amino acids
1–192), and C4 (amino acids 1–249) were generated by PCR amplification and sub-
cloning in-frame with the C-terminal myc epitope (EQKLISEEDL) in pcDNA3.1/
mycHis A(-) (Invitrogen). The following primers were used to generate PCR
products using pEGFP-C1/cavin-1 as the template prior to digestion with the
indicated restriction enzymes and sub-cloning:-

Forward primers: WT, C1, C3, C3 and C4 constructs (GGA GAA CCT CTA
GAC GCC ACC ATG GAG GAT GTC ACG CTC), N1 (GGA GAA CCT CTA
GAC GCC ACC ATG CAA GCC CAG CTG GAG), N2 (GGA GAA CCT CTA
GAC GCC ACC ATG CTG AGC GTC AGC AAG TCG), N3 (GGA GAA CCT
CTA GAC GCC ACC ATG CGG CCC GAG GAT GAC ACC), N4 (GGA GAA
CCT CTA GAC GCC ACC ATG ACG CGT GAG AAC CTG GAG). XbaI sites for
sub-cloning underlined, initiating Met codon in italics. Reverse primers: C1 (TTC
TCG GAT CCA CTG GGC TTG GGT CAG CTG), C2 (TTC TCG GAT CCA TTT
GGC CGG CAG CTT GAC), C3 (TTC TCG GAT CCA CTC GCC CTC GCC
CAG CTC), C4 (TTC TCG GAT CCA GCG CAC CTT GGT CTT CTC). WT, N1,
N2, N3, and N4 constructs (TTC TCG GAT CCA GTC GCT GTC GCT CTT
GTC). BamHI sites for sub-cloning underlined.

A mutated Grap2(SOCS3-PEST) in which residues 129–163 encompassing the
SOCS3 PEST sequence were inserted between amino acids 149–150 within the
Grap2 ORF in pCMV6-Entry was synthesised by GeneArtTM. All constructs were
verified by sequencing to ensure the absence of additional unanticipated mutations.

Retroviral delivery of a His6+biotin Ub (HB-Ub) transgene. Using Lipofecta-
mine2000 (Invitrogen), Plat-E retroviral packaging cells in 10 cm dishes at
approximately 80% confluence were transfected with a HB-Ub-expressing plasmid
kindly donated by Professor Peter Kaiser (University of California at Irvine, USA)
22. Following incubation in media without antibiotic selection, retrovirus-
containing media were collected following two sequential incubation periods, one
of 24 h at 37 °C and a second of 24 h at 32 °C.

Retroviral-mediated generation of cell lines. MEFs in 10 cm dishes at
approximately 40% confluence were transduced with 2 ml of retrovirus containing
media in a final volume of 4 ml DMEM supplemented with 10% (v/v) FBS, 1 mM
glutamine, and 10 μg ml−1 polybrene. After 12 h, the media were replaced with
DMEM supplemented with 10% (v/v) FBS, 1 mM L-glutamine and 100Uml−1

penicillin, 100 μM streptomycin and 1 μg ml−1 puromycin to select for positive
clones. Following dilution and re-plating, positive clones were expanded and HB-

Ub-expressing clones identified by immunoblotting whole-cell extracts with a
polyHis antibody.

Tandem affinity purification. SOCS3+/+ and SOCS3−/− MEFs were harvested in
lysis buffer (8M urea, 300 mM NaCl, 50 mM NaH2PO4, 0.5% (v/v) NP-40, pH 8.0)
supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF). Following
sonication (3 × 10 s pulses, with a 10 s rest phase, at 40% amplitude), supernatants
were isolated by centrifugation at 21,000×g for 30 min at room temperature (RT)
and equalised for protein content. Lysates from SOCS3+/+ and SOCS3−/− MEFs
were mixed in a 1:1 ratio before incubation with 30 μl of 50% (v/v) Ni2+-NTA-
Sepharose beads per milligram of protein and rotated overnight at RT. Beads were
isolated by centrifugation at 100×g for 1 min and then washed sequentially, once
with 20 bead volumes of buffer A (8M urea, 300 mM NaCl, 50 mM NaH2PO4,
0.5% (v/v) NP-40, pH 8.0) supplemented with 1 mM PMSF and 10 mM imidazole
and twice with 20 bead volumes of buffer B (8 M urea, 300 mM NaCl, 50 mM
NaH2PO4, 0.5% (v/v) NP-40, pH 6.3) supplemented with 10 mM imidazole and 1
mM PMSF. Beads were isolated by centrifugation at 100×g for 1 min and bound
proteins eluted twice with 5 bead volumes of elution buffer (8 M urea, 200 mM
NaCl, 50 mM NaH2PO4, 2% (w/v) SDS, 10 mM EDTA,100 mM Tris, 500 mM
imidazole, pH 8.0) supplemented with 1 mM PMSF.

Eluate from the Ni affinity chromatography step was directly added to 10 μl of
50% (v/v) streptavidin-Sepharose beads per milligram of initial protein lysate and
rotated overnight at RT. Beads isolated by centrifugation at 100×g for 1 min at RT
were washed sequentially, twice with 25 bead volumes of buffer C (8 M urea, 200
mM NaCl, 2% (w/v) SDS, 100 mM Tris, pH 8.0) and twice with 25 bead volumes of
buffer D (8 M urea, 1.2 M NaCl, 0.2% (w/v) SDS, 100 mM Tris, 10% (v/v) ethanol,
10% (v/v) isopropanol, pH 8.0). Bound proteins were eluted with one bead volume
of aqueous biotin (50 mM) at 95 °C for 5 min. Following isolation by centrifugation
at 100×g for 1 min at RT, eluate was concentrated using Amicon 10K Ultra-2
Centrifugal Filter Devices (Millipore) as per the manufacturer’s instructions.

In-gel trypsin digestion. Sodium dodecyl sulphate–polyacrylamide gel electro-
phoresis (SDS-PAGE)-fractionated TAP eluate was stained with InstantBlue
(Expedion) prior to manual sectioning into several manageable gel slices. Indivi-
dual gel slices were washed sequentially with 500 μl, 100 mM ammonium bicar-
bonate and then 500 μl, 50% (v/v) acetonitrile/ammonium bicarbonate (100 mM)
for 30 min with shaking. The samples were reduced with the addition of 150 μl 100
mM ammonium bicarbonate and 10 μl 45 mM dithiothreitol for 30 min at 60 °C.
Samples were cooled to RT before alkylation using 10 μl 100 mM iodoacetamide in
the dark for 30 min at RT. Gel pieces were then washed in 500 μl 50% (v/v)
acetonitrile/ammonium bicarbonate (100 mM) for 1 h with shaking at RT. Fol-
lowing treatment with 50 μl acetonitrile for 10 min, the solvent was discarded and
the gel pieces dried using a vacuum centrifuge for 1 h. Gel slices were fully rehy-
drated in trypsin suspended in 1 ml 25 mM ammonium bicarbonate and incubated
overnight at 37 °C after which the supernatant was transferred to a fresh 96-well
plate without disturbing the gel pieces. Residual digested protein was extracted by
using 20 μl 5% (v/v) formic acid for 20 min at RT with shaking followed by the
addition of 40 μl acetonitrile for a further 20 min with shaking at RT. Pooled
extracts were dried using a SpeedVac centrifugal evaporator before resuspension in
10 μl dH20 prior to mass spectrometry.

Liquid chromatography and mass spectrometry. Samples were analysed on a
Dionex Ultimate 3000 RSLS Nano flow system (Dionex). The samples (5 μl) were
loaded onto a Dionex 100 μm× 2 cm 5 μm C18 Nano trap column at a flow rate of
5 μl min−1 by the Ultimate 3000 RS autosampler (Dionex). The composition of the
loading solution was 0.1% formic acid and acetonitrile (98:2). Once loaded onto the
column, the sample was then washed off into an Acclaim PepMap 75 μm× 15 cm,
2 μm 100 Å C18 Nano column at a flow rate of 0.3 μmmin−1. The trap and nano
flow column were maintained at 35 °C in an UltiMate 3000 Rapid Separation LC
system (Thermo Fisher). The samples were eluted with a gradient of solvent A:
0.1% formic acid (solvent A) versus acetonitrile (solvent B) starting at 1% B rising
to 15% then to 45% B over 50 and then 90 min. The column was washed using 90%
B before being equilibrated prior to the next sample being loaded.

Column eluate was directed to a Proxeon Nano spray electrospray ionisation
(ESI) source (Thermo Fisher) operating in positive ion mode and then into an
Orbitrap Velos FTMS. The ionisation voltage was 2.5 kV and the capillary
temperature was 230 °C. The mass spectrometer was operated in tandem mass
spectrometry (MS/MS) mode scanning from 300 to 2000 amu. The top 20 multiply
charged ions were selected from each full scan for MS/MS analysis, the
fragmentation method was CID at 35% collision energy. The ions were selected for
MS2 using a data-dependent method with a repeat count of 1 s and repeat and
exclusion time of 15 s. Precursor ions with a charge state of 1 were rejected. The
resolution of ions in the first stage (MS1) was 60,000 and 7500 for the second
stage (CID MS2). Data were acquired using Xcalibur v.2.1 (Thermo Fisher).

Analysis of LC-MS/MS. Post-LC-MS/MS analysis was performed using Max-
Quant v.1.1.1.3672 and searched with Andromeda search engine73 against the IPI
mouse.v3.80 Fasta formatted database (release February 2011). Phosphorylation (S,
T, Y), ubiquitination (GlyGly), and oxidation (Met) were set as variable
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modifications, whereas carbamidomethylation (Cys) was set as fixed modification.
The peptides used for protein quantification were set to unique and razor and
minimum ratio count set to 1. Requantify was set to “TRUE” for deep searching of
paired SILAC peaks. “Labelled amino acid filtering” was set to “FALSE” to improve
analysis using R6K6 SILAC labelling. All other options were set to default.

CRISPR/Cas9 generation of SOCS3-null AS-M.5 EC lines. Using SuperFect
transfection reagent (Qiagen), AS-M.5 cells in 6 cm dishes at approximately 80%
confluence were co-transfected with human SOCS3 CRISPR/Cas9 KO and human
SOCS3 HDR plasmids. Following dilution and re-plating, positive clones were
isolated by selection in medium supplemented with puromycin (2 μg ml−1).
SOCS3-null clones were identified by immunoblotting whole-cell extracts with
SOCS3 antibody following cellular treatment with Fsk (50 μM, 5 h) to induce
SOCS3 gene expression26,45.

Antibodies. The following antibodies were obtained from the indicated suppliers:
anti-Flag M2 antibody (Sigma F3165, 1 in 1000), anti-HA HA-7 antibody (Sigma
H9658, 1 in 1000), PTRF/cavin-1 (Abcam ab48824, 1 in 1000), caveolin-1 (BD
Biosciences 610059, 1 in 1000) and anti-phosphotyrosine monoclonal antibody
4G10 (Millipore 05–321, 1 in 1000), GAPDH (Abcam, ab8245, 1 in 20,000), anti-
myc 9E10 (ascites generated by ProSci, 1 in 2000), anti-α-tubulin 12G10 (DSHB
12G10, 1 in 10,000), SOCS3 (M20; Santa Cruz sc-7009, 1 in 500), STAT3
(EPR787Y: Abcam ab68153, 1 in 1000), phospho-STAT3 (Tyr705) (3E2: Cell
Signaling 9138L, 1 in 1000), phospho-STAT3 (Ser727) (6E4: Cell Signaling 9136, 1
in 1000), JAK1 (BD Transduction Laboratories 610232, 1 in 1000), JAK2 (D2E12:
Cell Signaling 3230, 1 in 1000), and flotillin-1 (BD Transduction Laboratories
610821, 1 in 500). Sheep polyclonal anti-GFP serum was generously provided by
Professor Graeme Milligan (University of Glasgow, UK) and was used in a 1 in
2000 dilution.

Immunoblotting. Cell lysates were prepared as described previously74. Cells were
washed twice with ice-cold phosphate-buffered saline (PBS) and lysed by scraping
into lysis buffer (50 mM HEPES pH 7.4, 150 mM sodium chloride, 1% (v/v) Triton
X-100, 0.5% (v/v) sodium deoxycholate, 0.1% (w/v) SDS, 10 mM sodium fluoride,
5 mM EDTA, 10 mM sodium phosphate, 0.1 mM PMSF, 10 μg ml−1 benzamidine,
10 μg ml−1 soybean trypsin inhibitor, 2% (w/v) EDTA-free complete protease
inhibitor cocktail (Sigma)). After 30 min on ice, lysates were vortexed and cleared
by centrifugation. Equivalent amounts of protein, as determined by bicinchoninic
acid protein assay, were resolved by SDS-PAGE, transferred to a nitrocellulose
membrane, and analysed by immunoblotting as previously described26,74,75.
Uncropped immunoblots used to generate Figs. 1b and 5b are shown in Supple-
mentary Figure 7.

RNA analysis. Total RNA extraction from MEFs grown in 60 mm dishes was
carried out using a miRNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. The cDNA was generated from 1 μg total RNA using 200 U Super-
Script™ II Reverse Transcriptase (Invitrogen) following the manufacturer’s
instructions with 100 ng random hexamers, 2.5 mM of each dNTP and 40 U
RNaseOUT (Invitrogen) in a final volume of 20 μl. Real-time quantitative PCRs
were performed on a MX3000 system (Stratagene) using Power SYBR® Green PCR
Master Mix (Applied Biosystems) in a final volume of 10 μl containing 1 μl cDNA,
0.5 mM of each primer, and 1x Power SYBR® Green PCR Master Mix. The murine
cavin-1 primers used were GCAAGGTCAGCGTCAAC (forward primer) and
CCGGCAGCTTGACTTCA (reverse primer). GAPDH primers used for normal-
isation were GGCTGGCATTGCTCTCAA (forward primer) and
GCTGTAGCCGTATTCATTGTC (reverse primer). Primers were purchased from
Dharmacon.

Co-immunoprecipitation and peptide pull-down assays. For co-IP assays, either
transfected cells or WT and SOCS3-null AS-M.5 cells were harvested in ice-cold
PBS, pelleted by centrifugation at 1000×g for 5 min at 4 °C, and lysed in co-IP
buffer (50 mM HEPES, pH 7.4, 120 mM NaCl, 5 mM EDTA, 10% (v/v) glycerol,
1% (v/v) Triton X-100, 5 mM NaF, 1 mM sodium orthovanadate, 10 μg ml−1

benzamidine, 0.1 mM PMSF, 10 μg ml−1 soybean trypsin inhibitor, 2% (w/v)
EDTA-free complete protease inhibitor cocktail). Following solubilisation by
incubation for 1 h at 4 °C with rotation, lysates were centrifuged at 21,000×g for 15
min at 4 °C and the supernatant equalised for protein content and volume. Non-
specifically binding proteins were removed from soluble fractions by a 1 h pre-
clearing step using 40 μl of 50% (v/v) slurry of protein G-Sepharose 4B FF beads
(Sigma) re-suspended in 100 μl 2% (w/v) IgG-free bovine serum albumin (BSA).
Following sedimentation of protein G-Sepharose beads by brief centrifugation, pre-
cleared lysates were incubated overnight at 4 °C with rotation with either 40 μl
fresh protein G-Sepharose beads pre-equilibrated with 2% (w/v) IgG-free BSA and
anti-cavin-1 antibody or 40 μl pre-conjugated anti-Flag M2-agarose beads (Sigma).
Immune complexes were then isolated by brief centrifugation and washed three
times with 1 ml of co-IP buffer. Following removal of the final wash, protein
complexes were eluted for analysis by SDS-PAGE by the addition of 40 μl of
electrophoresis sample buffer containing 12% (w/v) SDS and incubation for 30 min
at 65 oC followed by a further 5 min at 95 °C.

For peptide pull-down assays, protein-equalised soluble extracts from
transfected HEK293 cells were incubated with 100 nM N-terminally biotinylated
peptides (Severn Biotech, UK) and streptavidin-agarose prior to isolation of
complexes by brief centrifugation and washing as described above. The peptides
used had the following amino acid sequences: Tyr759 (Y), biotin-
TSSTVQYSTVVHSG; and PTyr759 (pY), biotin-TSSTVQpYSTVVHSG). Samples
were then eluted for analysis by SDS-PAGE and immunoblotting as described
above.

Peptide array overlays. Arrays were produced by automatic SPOT synthesis and
synthesised on continuous cellulose membrane supports on Whatman 50 cellulose
membranes using Fmoc-chemistry with the AutoSpot-Robot ASS 222 (Intavis
Bioanalytical Instruments AG) as we have previously described76. Following
blocking of non-specific protein binding sites by incubation in tris-buffered saline
with Tween-20 (TBST; 50 mM Tris pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween 20)
containing 5% (w/v) BSA, membranes were overlaid with 10 μg ml−1 purified
recombinant Trx-polyHis-tagged SOCS3 (Sino Biological Inc.) diluted in TBST-5%
(w/v) BSA. After washing in TBST, bound SOCS3 was detected by probing overlays
with anti-SOCS3 antibody followed by IRDye-conjugated secondary antibody prior
to visualisation using a LI-COR Odyssey Sa imaging system. As a negative control,
identical arrays were identically treated in parallel minus recombinant SOCS3.

Subcellular fractionation. Confluent 10 cm dishes of WT, cavin-1−/−, and SOCS3
−/− MEFs were used to prepare subcellular fractions using a Subcellular Protein
Fractionation Kit (Thermo Scientific) in accordance with the the manufacturer’s
instructions.

Confocal microscopy. For analysis of endogenous cavin-1 and transfected SOCS3-
GFP, WT, and cavin-1−/− MEFs in 10 cm dishes were transiently transfected with
or without SOCS3-GFP expression constructs. The following day, cells were split
onto glass coverslips and left for a further 24 h. Cells were then washed with PBS
and fixed with 3% (w/v) paraformaldehyde (PFA) in PBS for 25 min. After washing
with PBS and quenching residual PFA with 20 mM glycine in PBS, cells were
permeabilised with 0.1% (v/v) Triton X-100 and non-specific binding sites blocked
by a 30 min of incubation at RT in PBS containing 3% (w/v) BSA and 10% (v/v)
donkey serum. Cells were then incubated with rabbit anti-cavin-1 antibody
(Abcam ab48824, 1 in 100 dilution) for 90 min at RT. Cells were washed with PBS
containing 0.1% (v/v) Triton X-100, 1% (w/v) BSA, and 10% (v/v) donkey serum
prior to incubation with Alexa Fluor 594-conjugated donkey anti-rabbit IgG (Life
Technologies A21207, 1 in 200 dilution) for 1 h at RT. Finally, the cells were
washed with PBS, mounted in ProLong® Gold anti-fade reagent containing nuclear
stain 4’,6-diamidino-2-phenylindole (DAPI), and visualised using a LSM510 laser
scanning confocal imaging system (Carl Zeiss). Images were analysed by Meta-
morph software to generate Pearson’s correlation coefficients.

For experiments involving co-expression of SOCS3-GFP and cavin-1-mCherry
in cavin-1−/− MEFs, cells at 80–90% confluence on 6 cm dishes were transfected
with 1 µg of each construct using PolyFect transfection reagent as per the
manufacturer’s instructions. The following day, cells were seeded into ×16 Lab-Tek
chamber slides (Fisher Scientific) at a density of 5 × 104 cells per chamber and
cultured for a further 24 h. Cells were then washed twice with Hanks' balanced salt
solution with Ca2+/Mg2+ and 0.2% (w/v) sucrose to preserve morphology before
fixing by incubation with 4% (w/v) PFA at RT for 20 min in the dark. After
removal of fixative and two washes with PBS, nuclei were stained with 10 µg ml−1

Hoechst 33342 (Life Technologies) prior to imaging using a VivaTome spinning
disk confocal microscope (Carl Zeiss). Images were analysed using Fiji ImageJ and
the Coloc 2 plugin.

Transmission electron microscopy. WT and SOCS3-null AS-M.5 cells were
seeded at a density of 1 × 106 cells per ml into 6-well plates and onto Thermanox
coverslips (13 mm diameter) for culturing to confluency. The cells were then fixed
in 1.5% (w/v) glutaraldehyde in 0.1 M sodium cacodylate buffer at 4 °C for 1 h.
Following three washes in 0.1 M sodium cacodylate buffer in 2% (w/v) sucrose, the
cells were incubated with 1% (w/v) osmium tetroxide/0.1 M sodium cacodylate for
1 h, washed three times in distilled water, and incubated in 0.5% (w/v) uranyl
acetate in the dark for 1 h. Following two rinses in distilled water, cells were
dehydrated in stepwise alcohol increments (30–100% (v/v)) and incubated over-
night in a 1:1 mix of propylene oxide/TAAB araldite Epon 812 resin. The pro-
pylene oxide was then allowed to evaporate to leave pure resin, which was changed
twice before the sample was embedded in fresh resin which was allowed to poly-
merise at 60 °C for 48 h. Ultrathin sections were cut using a Leica Ultracut UCT
and a Diatome diamond knife, contrast stained with aqueous 2% (w/v) methanolic
uranyl acetate and Reynolds lead citrate, and viewed using a LEO 912AB TEM
(Carl Zeiss) at an accelerating voltage of 120 kV. TIF images were captured using
an Olympus Soft Imaging System and image contrast modified using Adobe
Photoshop CS.

Statistics. Statistical significance was assessed either by one-way analysis of var-
iance or unpaired t-tests with an α probability of 0.05. At least three separate
experiments were used for analysis.
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Data availability. All the data that support the findings of this study are available
from the corresponding author upon reasonable request.
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