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“Sooner or later, it was bound to happen. On 30 June 1908 Moscow escaped 

destruction by three hours and four thousand kilometres – a margin invisibly small by the 

standards of the universe. Again, on 12 February 1947, yet another Russian city had a still 

narrower escape, when the second great meteorite of the twentieth century detonated less 

than four hundred kilometres from Vladivostok, with an explosion rivalling that of the 

newly invented uranium bomb.” 

Arthur C. Clarke, “Rendezvous with Rama”.
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 Abstract 

 

Small celestial bodies such as Near Earth Objects (NEOs) have become a common 

subject of study because of their importance in uncovering the mysteries of the 

composition, formation and evolution of the solar system. Among all asteroids, NEOs have 

stepped into prominence because of two important aspects: they are among the easiest 

celestial bodies to reach from Earth, in some cases with less demanding trajectories than a 

simple Earth-Moon trajectory and, even more meaningful, they may pose a threat to our 

planet. The purpose of this thesis is to provide a comprehensive insight into the asteroid 

hazard problem and particularly to its mitigation. Six different concepts are fully 

described; specifically models for nuclear interceptor, kinetic impactor, low-thrust 

propulsion, mass driver, solar collector and gravity tug are developed and their efficiency 

is assessed for a complete set of different types of hazardous celestial objects. A multi-

criteria optimization is then used to construct a set of Pareto-optimal asteroid deflection 

missions. The Pareto-optimality is here achieved not only by maximizing the deflection of 

the threatening object, but also by minimizing the total mass of the deflection mission at 

launch and the warning time required to deflect the asteroid. A dominance criterion is also 

defined and used to compare all the Pareto sets for all the various mitigation strategies. The 

Technology Readiness Level for each strategy is also accounted for in the comparison. 

Finally, this thesis will also show that impulsive deflection methods may easily 

catastrophically disrupt an asteroid if the required energy for a deflection reaches a certain 

limit threshold. A statistical model is presented to approximate both the number and size of 

the fragments and their initial dispersion of velocity and then used to assess the potential 

risk to Earth posed by the fragmentation of an asteroid as a possible outcome of a hazard 

mitigation mission. 
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Zmax =  maximum radiation depth, m 
ε =  elevation angle, deg 
mexp =  mass of sublimated asteroid’s material, kg  
Et           =  total energy released by the nuclear interceptor, J 
h =  distance from the nuclear explosion to a specific point on the surface of the 
   asteroid, m  
md =  dry mass of the spacecraft, kg  
mwh =  mass of the nuclear warhead, kg 
YTW =  yield-to-weight ratio of the nuclear device, kTons/ kg 
tw =  warning time defined as intMOID

t t− , d 

tint =  NEO interception time, d 

/S C
∆v  =  impact relative velocity of the spacecraft with respect to the asteroid, m/s or 

   km/s  
Tn =  thrust, N 
mpower =  mass of the power subsystem, kg 
τ =  mass-to–power ratio, kg/W 
ξ  =  specific thrust, N/W 

t =  time, d or s 

tI  =  total impulse produced by a propulsion system, Ns 

F =  force, N 
tpush =  total duration of the deflection (pushing) manoeuvre, d or s 
Isp =  specific impulse of a propulsion system, s 
g0        =      standard free fall constant, 9.81 m/s2 
v̂  =  unit vector along the asteroid orbital velocity 
ϖ =  asteroid complementary latitude, deg 
φ =  asteroid obliquity angle, deg 
PK =  kinetic power provided by the mass driver, W  
mlaunch =  mass expelled per shot by the mass driver method, kg 

shooting
t∆  =  time available to shoot the dug material, s 

Psolar =  radiation power density on the illuminated surface of the asteroid, W/m2 

Am =  cross section area of the mirror, m2 

As =  area of the illuminated spot, m2 

ηeff =  efficiency of the mirror assembly 
Sflux =  solar flux at 1 AU, 1367 W/m2 
rfi =  distance from spacecraft to the Sun, km 



 

 xiv

T =  temperature, K 
Tsubl =  sublimation temperature, K 
c =  heat capacity, J/kg/K 
k =  thermal conductivity, W/m/K 

( )( )erfc f x  =  complementary error function of f(x) 

Qcond =  heat flux loss by conduction, W/m2 

Qrad =  heat flux loss by radiation, W/m2 
σ  =  Stefan-Boltzmann constant, 5.67051x10-8 W/m2/K4 

εbb =  black body emissivity 
vrot =  rotational velocity of the asteroid equatorial surface, m/s 
V  =  average velocity of evaporated particles, m/s 
Mm =  molecular mass, kg 
asolar =  acceleration achieved by the asteroid due to material ablation, m/s2 

Fg         =      gravity attraction between the spacecraft and the asteroid, N 
Fhover     =      effective vertical thrust, N 
d  =  hovering distance, m 
φex =  exhaust cone half-angle, deg 
G  =  universal gravitational constant, 6.67259x10-11 m3/kg/s2 

Subscripts 

()0 =  initial 
()f =  final 
 

Chapter III: Hazard Deflection Missions 

tl =  launch date, MJD2000 
tw =  warning time defined as 

MOID l
t t− , d 

m0 =  mass launched into space, kg  
∆r  =  vector distance at the Minimum Orbit Interception Distance, km 
δr  =  deviation vector in the Hill coordinate frame, km 

dev
t  =  time required to upgrade the TRL of a given method, man-years 

ToF =  time of flight, d 

Chapter IV: On the Consequences of a Fragmentation Due to a NEO Mitigation Strategy 

Q
* =  barely catastrophic disruption critical specific energy, J/kg 

fr =  fragmentation ratio 
mmax =   mass of the largest fragment, kg 
vimpact =   asteroid impact velocity, km/s 
SKE =  specific kinetic energy of a kinetic impact mitigation, J/kg 
SNE =  specific nuclear energy of a nuclear interception mitigation, J/kg 

( )tX  =  state vector of positions x  and velocities v  at time t, km and km/s 

( )ρ X  =  probability density 

( ( ))t tφ∆ X =  dynamical flux of the system that propagates ( )tX a given t∆  

( )d tΞ  =  differential of volume of phase space at time t 

J  =  jacobian matrix 
q  =  vector of generalized coordinates 

p  =  vector of generalized momenta 

( ),H q p  =  Hamiltonian 

A  =  asymmetric square matrix for a 6-D state vector ( )( ) ( ), ( )t t t=Q q p  



 

 xv

0( , )t tΦ  =  state transition matrix 

( ; )P tx  =  probability to find a fragment in a relative position x  at a time t 

( )δ − 0x r  =  probability of a particular fragment to have position − 0x r  

0r   =  initial position of the centre of mass of the unfragmented asteroid, km 

( (0))G v  =  probability that a given fragment has velocity (0)v  

t̂  =  orbit’s tangential direction 
n̂  =  orbit’s normal direction 

ĥ  =  orbit’s out-of-plane direction 
µ  =  mean velocity vector of a fragment, m/s 

σ  =  standard deviation vector of a fragment, m/s 
k =  efficiency of transmission of the collisional energy constant 
b =  exponent of the power law distribution 

escv  =  escape velocity of a fragment, km/s 

ir  =  minimum distance between the centres of the fragment i and the largest  

   fragment, km 
Subscripts 

()t =  vector component tangent to the orbit 
()n =  vector component normal to the orbit in the orbit plane 
()h =  vector component normal to the orbit plane  

Appendices 

µ  = gravitational constant G m⋅ , km3/s2 

b =  semi-minor axis of an orbit, km  
p =  semilatus rectum of an orbit, km 
n =  angular velocity of an orbit, s-1 

v =  orbital velocity, km/s 
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Chapter I 

Introduction to the Asteroidal and Cometary  

Impact Hazard 

 

steroidal and cometary impact hazard is very easily taken either too earnestly 

or too jestingly, especially among people who are not acquainted with the 

problem. Hence, among all possible life threatening hazards, this prospect, more than any 

other, requires facts and numbers to lean on to avoid a subjective perspective. The so-

called “giggle factor[1]”, for example, is the name that scientists in this field gave to the 

recurrent hilarity generated when discussing impact hazard mitigation. The same reaction 

would have been unthinkable if discussing epidemic mitigation. The other end of the 

reaction scale is, as well, common, especially after the discovery of asteroid 

Apophis(99942) and its large diffusion in the popular media. On a general chat about 

impact hazard, one can realize that people generally feel more afraid of asteroidal impact 

than of other more earthly risks such as electrocution, even when statistically there are 

more than 4 times more chances of being victims of electrocution than of an asteroid 

impact[2]. Obviously impact hazard causes irrational fear. Cometary and asteroidal impacts 

have been playing a very active role in the Earth’s geological and biological history and at 

least one mass extinction is thought to have been caused by a celestial collision[3]. This, of 

course, happens in a time scale that is measured in tens of millions of years, but, as 

humans, we seem to have a better capability to grasp a global effect collision than 

understanding 100,000,000 years of time. This first chapter will aim to present the facts 

that will allow the reader to have a better perspective and understanding of the problem. 

 

A 
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I.1. Historical Recognition of the Impact Hazard 

The first recognition of the threat posed by extraterrestrial bodies dates back to the 

last decade of the 17th century, when Edmund Halley suggested that cometary impacts 

may have caused global catastrophes on Earth. He conjectured about this cosmic threat not 

long after predicting the 76-years return of a comet known today as Comet Halley. 

Nevertheless, the notion of asteroid did not yet exist and it would take another 200 years 

before it would enter the domain of astronomy. 

Astronomers started finding celestial bodies with orbits between Jupiter and Mars at 

the beginning of 19th century, following the hint given by the Titus-Bode Law1, which 

predicted the “gap” between these two planets as an allowable position to discover new 

planets in the solar system. This series of newly discovered ‘planets’, such as Ceres, Vesta 

and Pallas, remained points of light even under the highest telescope magnifications, 

instead of resolving into discs as other planets did. William Herschel, discoverer of 

Uranus, was the first in suggesting a new category for these new celestial bodies. He called 

them asteroids, after the Greek asteroeides, meaning "star-like".   

The first Mars-crossing asteroid was discovered in 1898 and named Eros, following 

the tradition of naming asteroidal objects after Roman or Greek deities. It took another 34 

years to catch sight of the first Earth-crossing asteroid, named 1862 Apollo. This occurred 

in 1932, only a few years after the Odessa Crater in Texas became the first proven impact 

crater on Earth[4]. 

The first efforts on estimating asteroidal and cometary impact rates came from 

Fletcher Watson[5] during the 40s and Ernst Julius Öpik[6] during the 50s.  It was the latter 

together with Ralph Baldwin[7], a leading figure in the history of lunar geology, who first 

envisaged the damage that an asteroid impact could cause to the Earth.   

At the dawn of the space era, the first interplanetary missions confirmed E.J. Öpik’s 

visions of moon-like cratered surfaces on other planets of the solar system.  In July 1965, 

Mariner-4 flew over Mars, sending back pictures showing an uninhabited cratered surface, 

a very disappointing view for most of the science-fiction readers of the time. Two decades 

later Mariner 10 would show similar features on the Mercurian surface and the Voyager 

probes showed that the same features extended to the satellites orbiting the giant planets in 

the outer solar system. 

                                                 
1 A rough rule, formulated by Titus in 1766 and Bode in 1778, that predicts the spacing of the planets in the 
solar system.   
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In 1968, asteroid (1566) Icarus, 1.3km in diameter, performed a close Earth approach 

of 6 million km distance (more than 16 times the Earth-Moon distance or 0.04 A.U.). The 

same year, MIT Press published Project Icarus[8], becoming the first ever asteroid hazard 

mitigation proposal, as a result of an assignment set to a group of students at the 

Massachusetts Institute of Technology. The report hypothesised on an attempt to deflect or 

destroy asteroid Icarus using six 100-Megaton hydrogen bombs launched in sequence from 

the Kennedy Space Center by six Saturn V rockets. This project inspired the movie 

“Meteor”, premiered in 1979 and starring Sean Connery.   

Rendezvous with Rama, the acclaimed novel by Arthur C. Clark, was published in 

1972. The novel described an early asteroid warning program called “Project Spaceguard”, 

which is set up after a fictional asteroid strikes Italy on September 11, 2077, destroying 

Padova and Verona and sinking Venezia. The term “Project Spaceguard” was later adopted 

for several international efforts in NEO detection and study. 

Despite the aforementioned examples, the modern awareness of the hazard began to 

materialize with the publication of Alvarez et al.’s famous work, which presented their 

hypotheses for the dinosaur extinction[3]. The “Extraterrestrial Cause for the Cretaceus-

Terciary Extinction” was published in 1980, advocating that an asteroid of 10 ±  4 km in 

diameter could have been the cause of the K-T extinction, 65 million years ago. This 

hypothesis was further strengthened after being linked with the Chicxulub crater in 

Mexico’s Yucatan peninsula.  

In 1992, NASA produced the "Spaceguard Survey Report" after a request from U.S. 

Congress. The document described an international survey network of ground-based 

telescopes with the goal of locating 90% of the large Near-Earth Objects (i.e., >1 km in 

diameter) within 25 years, instead of the two centuries that it would have taken at the 

discovery rate of the time.  

The dramatic impact on Jupiter of comet Shoemaker-Levy 9, on July of 1994, 

received substantial coverage from popular media all around the world. The comet was 

discovered by Carolyn S. Shoemaker, her husband, Eugene Merle Shoemaker, and David 

H. Levy a year before the impact. At least 21 cometary fragments, with diameters up to 2 

kilometres, caused massive explosions that were easily seen by the Galileo spacecraft (Fig. 

I-1) and left visible scars on Jupiter for many months. One of the consequences of this 

striking event was the redefinition of the Spaceguard survey with the so-called Shoemaker 
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Report, which recommended a 10-years program to complete the previous proposed 

survey. NASA publicly supported this program in 1998. 

 

 
Fig. I-1 Sequence of images taken by Galileo spacecraft 

showing the fireball caused by the impact of 1 of the 21 

fragments of comet Shoemaker-Levy 9 that fell into Jupiter on 

July 1994. 

 

In 1995, the Vulcano Workshop, organized by the International Astronomical Union, 

set up the basis for the Spaceguard Foundation, the first organization whose only objective 

is to promote the international efforts in NEO discovery, follow-up and study. At present, 

the organization is based in Rome, and coordinates more than 70 observatories. 

In 2000, the UK Government set up a Task Force on Potentially Hazardous NEOs, 

whose goal is to make proposals to the UK government on how the United Kingdom 

should best contribute to international effort on Near Earth Objects. The Task Force 

presented a report[9] in September 2000. The UK Government provided an initial response 

in February 2001, creating the NEO information centre, the first governmental 

organization solely dedicated to the impact hazard. 

The release in 1998 of two Hollywood blockbusters, Armageddon and Deep Impact, 

featuring asteroid impacts and the possibility of extinction for human civilization, fertilized 

the terrain for the immense following in the popular media of the discovery of (99942) 

Apophis. Asteroid Apophis was discovered in December 2004 and caused a brief period of 

concern due to the unprecedented high risk that this object involved. Initially, a possible 

impact with the Earth was calculated for 2029, with a probability of 2.5%. Following 

further orbit determination the impact on 2029 was ruled out, but currently there is still a 

possibility of a resonant return with an impact on 2036, having less than 1 in 45,000 

chances.  
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I.2. Near Earth Objects 

By convention, a celestial body is considered a Near Earth Object (NEO) if its 

perihelion is smaller than 1.3 A.U and its aphelion is bigger than 0.983 A.U.  This is a very 

broad definition that can be further divided in different sub-groups depending on the 

object’s orbital parameters. The most obvious subdivision is between asteroids and comets, 

which not only have very different orbital attributes, but also differ in physical 

characteristics and astrodynamical history. 

I.2.1. Asteroids and Near Earth Asteroids (NEAs) 

Asteroids are small celestial bodies, ranging from dust-sized fragments to ten-

kilometre objects, remnants of the formation of the solar system, prevented from 

aggregating into a planet-size body by the gravitational influence of the giant planets. Most 

asteroids are in fairly stable orbits between Mars and Jupiter, the so-called Asteroid Belt, 

containing about a million objects with a combined mass of only 1/1000 the mass of the 

Earth.  

The dynamics of these bodies are strongly influenced by a combination of close 

encounters with other planets, resonant dynamics and Yarkovsky effect. A common 

storyline for many Earth-crossing asteroids began in the main asteroid belt, slowly drifting 

away from a quasi-stable orbit due to the Yarkovsky thermal force. At some point the 

drifting asteroid entered into a region of powerful dynamic resonances (e.g., v6 secular 

resonance or 3:1 mean motion resonance with Jupiter), rapidly changing its eccentricity 

enough to reach planet-crossing orbits (i.e., taking between 0.5 million to 1 million 

years[10]).  

The large majority of Earth-crossing and Mars-crossing asteroids, the latter being 

roughly 4 times more numerous than the former, will end their wandering around the solar 

system either colliding with the Sun or in an escape hyperbolic orbit. Only a small fraction 

will strike a planet or a moon.  

The taxonomy of asteroids, other than by orbital characteristics, is based on optical 

properties. It began with a simple color classification and evolved together with the optical 

sensing to a more complex taxonomy. The most common classification is Tholen’s[11] and 

is based on albedo and spectral characteristics, from which the surface mineralogy is 

estimated. Table I-1 summarises the most common asteroid categories; among those in the 
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table, C-type or dark carbonaceous asteroids and S-type or stony silicaceous account for 

90% of all the asteroids (i.e., 45%  approximately for each class[12]).  

 

Table I-1 Summary of the most common classes of asteroid 

from Tholen’s taxonomy. 

Class Albedo Surface Mineralogy 

C Low (<0.04) Hydrated silicates + carbon, 

organics 

D Low(<0.05) Carbon and probably 

organic rich silicates 

P Low Carbon and probably 

organic rich silicates 

M Moderate(0.10-0.18) Metal, possible trace 

silicates 

S Moderate(∼0.14) Metal + olivine+ pyroxene 

 

Near Earth Asteroids are commonly subdivided in three further groupings depending 

on their orbital characteristics: the Apollo asteroids ( 1.0 .a AU≥ ; 1.0167 .pr AU≤ ), the 

Atens  ( 1.0 .a AU< ; 0.983 .ar AU≥ ) and the Amors (1.0167 . 1.3 .pAU r AU< ≤ ) (see Fig. 

I-2).  A fourth group, the IEO or Interior-to-Earth Orbit, although not “formally” 

considered part of the NEO group, comprises all the asteroids with trajectories inside the 

orbit of the Earth ( 0.983 .ar AU≤ ).  
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Fig. I-2    Near Earth Asteroid families  

The understanding of the NEA population is a challenging undertaking since NEO 

surveys have been traditionally biased against some kind of orbits that are more easily 

observed than others and the dynamical evolution of the objects originating from different 

sources is not fully understood. Debiased models indicate that 32±1% of the NEA 

population belongs to the Amor group, 62±1% of the NEA are Apollos and 6±1% are 

Atens[10]. The same models suggest, assuming random values for the argument of the 

perihelion and the longitude of nodes, that 21% of NEA have a Minimal Orbital 

Intersection Distance (MOID), i.e., minimum possible closest approach between two 

objects, smaller than 0.05 A.U.   

A Near Earth Object with a MOID smaller than 0.05 A.U. and absolute magnitude 

(H) smaller than 22 (or in other words an asteroid larger than 150 meters assuming 13% 

albedo) is considered to be a Potentially Hazardous Object or a PHO. This kind of object 

deserves special attention and its orbital determination and tracking are considered top 

priority. 

I.2.2. Comets and Near Earth Comets 

"Comets are like cats; they have tails, and they do precisely what they want." 

-David H. Levy 

The Near Earth Object list is not only formed by asteroids, but also by comets. In the 

past, these objects were distinguished from other celestial objects because of their “tail”. 

Indeed, the word “comet” evolves from the Greek komē, meaning “hair of the head”, 

Apollo  

Amor  

Aten 

Earth Orbit  
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which makes reference to the hairy look of the comet’s tail. Nowadays, knowledge about 

these objects has changed a good deal from the Aristotelian idea of a meteorological 

phenomenon, although there is still an intense debate about cometary diversity, formation 

and evolution[13],[14]. 

Two distinct cometary groups can be distinguished: the Nearly-isotropic comets and 

the Ecliptic comets. The main characteristic of the Nearly-isotropic comets is its arbitrary 

inclination (i.e., typically more than 20o) and they include two further groups: the Long-

period comets (T>200 years) and Halley-type comets (T< 200 years). The Ecliptic comets, 

on the other hand, have a relatively low inclination (i<20o) and a short orbital period 

( 20T years≤ ). 

The most widely accepted cometary theory alleges that the two main sources of 

comets are the remote Oort cloud and the trans-neptunian scattered disk[10],[13]. The Oort 

cloud is a spherical cloud of matter believed to be located approximately at 50,000 A.U 

from the Sun, which is a quarter of a distance to the closest star. Numerical simulations of 

the evolution of the early solar system seem to show that the matter orbiting in the Oort 

cloud was originally formed in the Jupiter-Uranus region and scattered out by gravitational 

effects. Some of this matter originally scattered from the Jupiter-Uranus region constitutes 

now the nearly-isotropic cometary family. Besides the Oort cloud, two more orbital regions 

can be identified outside the orbit of Neptune: the Kuiper Belt, a dynamically stable region 

ranging from 30 A.U to 50 A.U, where Pluto, the down-graded planet, is found, and a more 

erratic milieu called the scattered disk that extends approximately from 50 A.U to 100 

A.U. This is believed to be the source of the Ecliptic comets.     

 Comets seem to have a large range of physico-chemical properties and their 

connections with the different dynamical classes or origins are poorly understood. 

Cometary bodies contain many different volatile materials, e.g. H2O, HCN, CH3CN, CO, 

H2CO, etc, and the concentration ratio of these materials varies enormously.  The most 

common volatile detected within the comet’s out-gassing is water, although there is still an 

intense debate about how much water is contained in a comet. The two comets explored in 

situ, comet Tempel 1 and Comet Wild 2, seem to indicate that there is little water on the 

surface, which resembles an asteroid’s surface, both in appearance and composition[15]; 

thus the main sources of out-gassing water are thought to be sub-surface[16].   

The arrival of most comets at the Earth vicinity, in particular for long-period comets, 

is unpredictable. They are discovered when they are inside the orbit of Jupiter, which 
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means that the closest Earth approach can occur in less than 9 months after the comet has 

been discovered and, unlike with asteroids, a realistic comet threat scenario would be 

driven by a very short warning time. Estimates of the impact flux of long-period comets 

have been attempted by many authors and through many different techniques and, although 

different techniques entail different outcomes, a recurrent solution estimates the relative 

threat of long-period comets as ∼1% the threat posed by Near Earth Asteroids[10].  

It is interesting to notice that from the beginning of cometary detection, back in 18th 

century, until nowadays the rate of cometary Earth close approaches discovered has 

remained almost constant, despite the enormous improvement in telescopes and search 

technology. This seems to suggest a scarcity of small active comets, since they would have 

been detected with technological improvements. It is also remarkable that the size 

distribution of comets larger than 2 km in diameter seems to decrease not as steeply as for 

asteroids of the same size. It seems therefore possible that most of the large craters on the 

Moon and the extinction level large impacts on Earth may have in fact been caused by 

comets[17].    

I.2.3. NEO Census and Impact Frequency 

Population estimates computed by different authors[10] are shown in Fig. I-3. These 

estimates have been calculated by extrapolation either from lunar and planetary cratering 

records or from real survey data. Stokes et al. [10] adjusted a constant power law to the 

population estimates from Fig. I-3, working out an approximated accumulative population 

equation such as: 

 2.354( [ ]) 942N D km D−> =  (1.1) 

where N is the number of objects with diameter larger than a given diameter D. 

From Eq.(1.1), the total population of Near Earth Objects capable of a Tunguska-size 

atmospheric explosion (∼80m diameter) or more destructive consequences is close to 

350,000 objects. The current NEO survey programs focus their attention on cataloguing 

objects larger than 140m diameter, which have a population estimate of around 100,000 

objects. This survey of objects with approximately 140m in diameter is expected to be 90% 

completed by 2020.    
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Fig. I-3 Accumulative size distribution of Near Earth 

Objects, from Stokes et al
[10]

. Werner et al.
 
 related the Near 

Earth Asteroids population with the Moon cratering record 

(two lines for different albedos, pv=0.11 for the estimation in 

the range of H<17 and pv=0.25 in the H>17 range), Harris, 

Bottke et al., Stuart & Rabinowitz et al.  adjusted the population 

depending on the actual discoveries against the expected 

through simulation, D’Abramo et al.  used the re-detection 

statistics to estimate the NEA population, finally Brown et al. 

studied the annual bolide entries into the atmosphere. The 

black dash-dot line plots completed NEA survey by January 

2002.  

 

Table I-2 summarises the total number of Near Earth Objects discovered by the end 

of 2008. The census of objects larger than 1 kilometer is close to completion, as proves the 

steady annual decrease of discoveries since 2000. The number of detections of any object 

size has however been increasing and by the end of 2008 has not yet reached a maximum; 

648 objects were added to the survey during 2007, while 808 were added in 2008. 
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Table I-2 Total number of Near Earth Objects known at 1
st

 

January 2009. Data courtesy NASA’s NEO program. 

NEC Aten Apollo Amor PHA NEA NEO 

82 481 3130 2242 1000 5863 5945 

 

Considering a single PHO impact frequency of 8.4x10-9 yr-1 and a population 

estimate of 198 objects larger than 1km diameter, from Stokes et al.[10], the accumulative 

impact frequency can be easily estimated using the following power law: 

 6 2.354 1( [ ]) 1.7 10 [ ]f D km x D yr− − −> =  (1.2) 

I.2.4. Consequences for the Earth 

As is well known, the Earth’s atmosphere presents a very effective protective layer 

against hypervelocity impacts from extraterrestrial bodies.  When a small asteroid travels 

through the Earth’s atmosphere it generates a shock wave, causing a strong drag force, 

which dissipates the object’s kinetic energy as thermal energy, which in turn consumes the 

object. Although this dissipation protects the Earth surface from direct damage, that is, 

cratering, the consequent blast wave can still cause considerable harm. A well known 

example of this kind of event is the famous Tunguska impact[18], which on 30th June 1908 

devastated 2000 km2 of Siberian forest. Such an event is expected to occur once every 

2000 to 6000 years, and taking into account that only 1/3rd of the surface is covered by 

land, it is thought-provoking that Tunguska impact took place only a century ago. 

According to Hills & Goda
[19], the range of object diameter that could deliver an air 

blast capable of producing surface damage without cratering goes from 50m to 150m. This 

is considering only stony asteroids, which are approximately 95% of the Near Earth Object 

population. Metallic asteroids do not dissipate their energy in the atmosphere as efficiently 

as the less dense stony asteroids and even a few meters metallic bolide could be able to 

reach the Earth’s surface. Bland & Artemieva
[20] also discussed that the Earth’s atmosphere 

was more effective at dissipating kinetic energy than previously modelled and argued that 

the upper limit for an air blast is in fact 220m for stony objects.  

An asteroid that does not deliver enough energy at the surface is unlikely to produce 

deep water waves if the impact occurs at sea. Since most of the Earth’s surface is covered 

by water and shorelines are among the most populated areas of the planet, it is widely 

believed that sea impacts of objects between 200m to 1km diameter could be more harmful 
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than an equivalent land impact. An impact of this range of objects occurs approximately 

once every 15,000 years, although this frequency is basically driven by the lower limit of 

the range, for example an impact on the range 500m to 1km would occur only once every 

150,000 years. 

An impact of an object larger than 1km diameter can potentially trigger a global 

environmental catastrophe. The threshold between regional and global effects of an impact 

appears to be between 105 and 106 Mt energy range[21], which, depending on impact 

velocity and density, should be equivalent to an object with at least 1km diameter. A 

collision of an object of that size would generate an immense amount of suspended 

particles, such as dust, soot from fires ignited by the impact and water vapour, within the 

atmosphere. This would reduce solar irradiation at the surface and, depending on the 

magnitude of this reduction, could induce a global temperature drop, the so-called nuclear-

winter, or even a global cessation of the photosynthesis. Moreover, the ejecta plume of the 

asteroid and the shock wave may burn the atmospheric nitrogen, generating enough 

nitrogen oxides that, in turn, could destroy the ozone layer.       

At the top of the environmental global effects, we find the K-T impact, or 

Cretaceous-Tertiary-like impact[3], considered to be the cause of the dinosaur extinction, 65 

million years ago. Apart from the aforementioned effects, this sort of catastrophic impact 

resulted in changes in atmospheric and oceanic composition, which, added to other global 

effects, caused the last global extinction event (without considering the debated human-

triggered Holocene extinction event, currently happening).   

I.3. Asteroid Hazard Monitoring 

After a new object is discovered, by wide-angle telescopes such as US LINEAR or 

the Catalina-Schmidt telescope, follow-up observations are carried out by more 

conventional systems (i.e., smaller observatories and/or in lower altitudes) in order to 

accurately determine its orbit. These observations carried out during the remaining days of 

the observational opportunity may not be enough to properly discard any impact risk of a 

newly discovered object and may therefore require more observations at future 

opportunities, which may however occur years later. Furthermore, the already existing and 

catalogued asteroids and comets may require monitoring, particularly the Potentially 

Hazardous Objects (or PHOs), in order to refine their always-changing orbital elements.  
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Currently, there are two systems scanning for potential impacts and monitoring Near 

Earth Objects Orbits. These two independent systems, NEODyS at the University of 

Pisa[22] and Sentry at JPL[23], have also proved successful in reporting the asteroid and 

comet hazard to the NEO community and general public. For this purpose two impact 

hazard scales have been created: Torino Impact Hazard Scale[24] and Palermo Technical 

Scale[12]. The Torino scale is intended as a tool to communicate the impact risk to the 

general public with a 0 to 10 hazard integer scale (see Fig. I-4), where both the collision 

probability and the kinetic energy of the object are taken into account. The Palermo scale 

was developed, instead, as a tool to help astronomers to discern about the computational 

and observational resources that should be given to a particular object for further orbital 

determination. 

 

Fig. I-4 Diagram of Torino Scale risk categories
[24]

. 

 

The Palermo index of an asteroid can be calculated using the following formula: 
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where PI is the probability of impact of the asteroid, 
B

f is the “background” frequency or 

annual frequency of impacts of an energy E or greater and T∆  is the years remaining until 

the impact with probability PI. Hence, the Palermo scale relates the probability of the 
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impact of a particular object with the statistical risk, which is largely based on lunar 

cratering records.   

As of 1st January 2009, there are no objects among the 1000 Potentially Hazardous 

Asteroids with positive Palermo index, which means that there is no object threatening the 

Earth with an impact probability higher than the statistical risk. The highest Palermo index 

today is -1.82, which is almost two orders of magnitude lower than the statistical risk. The 

highest ever score was achieved by 99942 Apophis, which reached a +1.1 score in 

December 2004. The Palermo index for this object dropped to -2.41, after its orbit was 

computed with increased precision and the ellipsoid of uncertainty of the object position 

was consequently reduced. By the time that the new generation of surveys begins with the 

new LSST[25] and Pan-STARRS[26], scheduled for the first half of the 2010 decade, several 

objects are expected to be found in the Palermo scale region between 0 and 1 and maybe 

one additional object with P higher than 1.    

I.3.1. Considerations on Warning Time 

When a new threatening asteroid is spotted, its impact probability is always very low, 

since the ellipsoid of uncertainty of its position, at the encounter time, is much larger than 

the Earth’s volume. The impact probability will then increase with each new improvement 

of its orbit determination and will keep growing as long as the Earth capture region 

remains inside the collapsing uncertain region. If the threatening asteroid is not a real 

impactor, the impact probability will drop suddenly at a certain point during the process of 

refining its orbital parameters; this happens when the collapsing uncertain region moves 

outside the Earth capture region. The probability of impact may however not reach zero; 

this would happen if the uncertain region still encompasses keyholes allowing the asteroid 

a resonant return (see example of Apophis in section I.4.1).  

Chesley & Spahr
[27] simulated the capability of the survey systems, such as the 

LINEAR system (brightness limiting magnitude of 20) or the future Pan-STARRS project 

(brightness limiting magnitude of 24), to discover threatening asteroids, using populations 

of thousands of virtual impactors based on realistic NEA populations. Among the 

conclusions, it is interesting to see that an asteroid survey such as LINEAR should detect 

about 70% of the possible impactors of 360 m diameter within 10 years, but would still 

miss 5% of the impactors even with 100 years survey. A survey like Pan-STARRS will be 

able to detect 70-m diameter asteroids with the same ease as 360-m diameter asteroids for 

the LINEAR system. 
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The detection lead time, or time before impact when an asteroid is detected, is 

definitively important in order to determine the warning time, which is defined here as the 

time available to react to an already detected and confirmed threat, but is surely not the 

only factor before an asteroid is considered a threat and a mitigation plan is put forward. 

Chodas & Giorgini
[28] studied the time needed for a newly discovered impactor to have its 

orbital accuracy determined so that its impact probability is at least 50%. They concluded 

that in most of the cases the 50% impact likelihood is reached at the second observational 

period, although the time-span between the first and the second observational period varies 

with the object’s size and orbit, observatory brightness magnitude limit and intervening 

planetary close approaches. The majority of the 700-m diameter objects, 73%, reach the 

50% impact likelihood within 5 years of their discovery for a survey with limiting 

brightness magnitude of 20 and follow-up observation continuing down to 22, only 27% of 

the 140-m size object reach the same point within 5 years and 17% for objects of 70 meters 

diameter. Including radar observation in the follow-up improved greatly those 

percentages[28], as it would certainly happen with a higher limiting magnitude survey (e.g. 

Pan-STARRS) .    

I.3.2. Considerations on Resonant Returns  

If an asteroid has a very close planetary approach, its orbit will be modified in 

exactly the same way that a spacecraft orbit uses a planetary flyby to modify its own orbit. 

If the close approach is such that the asteroid’s orbital period becomes commensurable 

with the orbital period of the planet, both objects, planet and asteroid, will meet again after 

an integer number of orbits, when this happens a resonant return is said to occur[29]. A good 

example of resonant return is Apophis’ possible impact in 2036, when after 6 orbital 

revolutions it will meet again the Earth, 7 years after the 2029 flyby.  

For a resonant return like the Apophis possible impact in 2036 to occur, the asteroid 

must pass through a very small area in the planetary target plane or the b-plane of the 

encounter. This small area is called a keyhole, a term coined by Paul Chodas
[30].  One can 

use the analytical theory described in Valsecchi et al.[29] to characterize the set of keyholes 

of a particular close approach. The results may show several very small areas, sub-

kilometer diameter, for a particular close encounter. If a resonant return impact is bound to 

happen, a mitigation scenario could take advantage of the pre-resonant dynamics and 

simply move the asteroid away from the dangerous keyhole, which would require only a 

few kilometers deviation. The main problem with this kind of mitigation scenario is again 
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due to the small size of the keyhole, which entails the extreme challenge of verifying that 

the asteroid is indeed heading the keyhole.     

I.4. Virtual Asteroids and Impacts  

In order to improve the understanding of the mitigation strategies and the models 

described in Chapter II, this thesis will make use of a group of virtual impactors. As will be 

shown, this set of virtual asteroids and comets represents a meaningful set of realistic 

impact scenarios. Since, obviously and luckily, there are no real impactors to choose from, 

the virtual group needed to be generated by other means. Four objects are used: Apophis, 

the most threatening asteroid currently known, an Aten asteroid, an Apollo asteroid and a 

long-period comet. The last three objects were generated by statistical analysis of orbital 

data from NASA’s NEO program database. The following sections describe each one of 

virtual objects and the methodology used to generate them. 

I.4.1. Apophis (99942) 

Asteroid Apophis has been one of the most cited celestial objects over the last few 

years and not only in scientific literature[31]. The reason for such popularity is the 

unprecedented record in impact probability (IP) that this object initially reached shortly 

after its re-discovery in December 2004 (it was first spotted in June 2004). Apophis 

attained a ∼2.7% of probability to impact the Earth on 13th April 2029 and a +1.1 on the 

Palermo scale. Such impact threat is still today the highest value ever reached for an 

asteroid or comet threat. The observations continued until early July 2005, time at which 

Apophis moved to the daytime sky. By that time, the 2.7% IP (impact probability) had 

already dropped substantially, since the ellipsoid of uncertainty had shrank considerably 

due to the improved accuracy in the knowledge of Apophis’ orbital elements and had left 

the Earth capture region outside the feasible positions on 13th April 2029. Yet, even if the 

2029 impact has been completely ruled out, the predicted orbit is expected to have a very 

close Earth encounter with a minimum distance of 5.89 0.35R⊕± [31]. Within this small 

uncertain area there are several possible keyholes for resonant return, leaving an 

accumulative impact threat of 1 in 43,000 chances[23]. 

The orbit of Apophis is currently extremely well characterized, with less than 2000 

km uncertainty in its position during the 2029 encounter. Near-term ground-based optical 

astrometry can only weakly affect that estimation, but in 2013 Apophis will perform an 
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Earth approach that should allow radar measurements (e.g., Arecibo) to enable direct size 

measurements, 3D shape reconstruction and spin-state estimation. This accurate physical 

data will probably allow a better estimation of orbital perturbations and, likely, eliminate 

any probability of Apophis passing through a keyhole[32]. 

Due to the concern that the not-negligible Apophis’ IP currently spawns, this asteroid 

is an obvious candidate for this study. Table I-3 and Table I-4 summarize the orbital and 

physical data used to represent Apophis in this work.  

Table I-3 Keplerian elements used in this study for (99942) 

Apophis. Ephemeris are updated from JPL solar system 

dynamics
[23]

 as of July 2008. 

 a 

(AU) 
e i 

(deg) 
Ω 

(deg) 
ω 

(deg) 
M 

(deg) 
Epoch 

(MJD) 
tMOID 

(MJD) 
Apophis 0.922 0.191 3.331 204.5 126.4 222.3 53800.5 62240.3 

Table I-4 Physical characteristics used in this study for (99942) 

Apophis. Mass is calculated assuming spherical shape, impact 

velocity is calculated with the ephemeris in Table I-3.   

 Diameter 
(m) 

Density 
(g/cm3) 

Mass 
(kg) 

Rotational 
Period 

(h) 

Albedo V 
impact 
(km/s) 

Energy 
(MT) 

Impact 
Frequency 

(years) 
Apophis 270±60[33] 2.6[12] 2.7x1010 30.62[34] 0.33±0.08[33] 12.62 ∼500  ∼25,000  

 

Our Apophis impact scenario is foreseen to have a very close encounter on 14th April 

2029, with a MOID distance of 4.75
Earth

R . Notice the small difference between the 

predicted real flyby (i.e.,5.89 0.35R⊕± ) and that forecasted by our ephemeris. The 

difference is in fact very small if we take into account for example that the model to 

propagate Apophis, used by NEODyS and JPL, also accounts for perturbations from all 

planets of the Solar system, the Moon, Ceres, Pallas and Vesta. Our virtual Apophis will 

have a 5.85 km/s relative velocity at encounter, which, due to the hyperbolic orbit followed 

after entering into the sphere of influence of the Earth, will translate into a hypothetical 

impact velocity of 12.62 km/s. Eq.(1.2) can then be used to estimate the frequency of 

impacts of objects of the size of Apophis, which is ∼ 25,000 years.   
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I.4.2. Shiva (Aten) 

A list of the 100 Atens with the lowest MOID was taken from the most dangerous 

ECA (Earth Crossing Asteroid) from NASA’s NEO program database. Fig. I-5 shows the 

histograms of 5 keplerian elements (a, e, i, Ω, ω) together with the histogram of the 

diameter of the 100 objects. As can be seen in the table, the three first keplerian elements 

(a, e, i) roughly resemble a Gaussian distribution (with symmetry at 1 A.U. or 0 degrees 

for the semimajor axis a and inclination i respectively), while ascending node Ω and the 

argument of the periapsis ω have a more stochastic behaviour. Therefore, the semimajor 

axis, eccentricity and inclination of our virtual Aten were generated using the mean of the 

aforesaid variables, while the orientation of the orbit (i.e., the angular Keplerian elements 

Ω and ω) was modified such that the MOID was minimal. Finally, the mean anomaly M0 is 

chosen to generate a virtual encounter or collision on a fixed date. 
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Fig. I-5  Histograms of the 100 Aten list: A) Semimajor Axis B) 

Eccentricity C) Inclination D) Argument of Periapsis D) Argument 

of the Ascending Node F) Diameter. The size of the objects was 

calculated using the standard absolute magnitude H-diameter 

relation
[12]

 using an average albedo of Pv=0.13
[10]

. 

To simplify the identification of the Aten virtual impactor, we will name it Shiva, 

which continues with the custom of naming asteroids from ancient gods and, in particular, 

impact threatening asteroids with horrific god names (e.g., Apophis, which was the 

Egyptian devil demon). Shiva refers to the Hindu god of destruction and renewal. This 

name has already been used to name both a 400-km wide crater in the Indian Ocean and 
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the hypothesis in which, not only the K-T extinction, but most of the mass extinctions of 

life on Earth have been in fact caused by asteroidal and cometary impacts[35].  

Table I-5  Keplerian elements used for Shiva. 

 a 

(AU) 
e i 

(deg) 
Ω 

(deg) 
ω 

(deg) 
M 

(deg) 
Epoch 

(MJD) 
tMOID 

(MJD) 
Shiva 0.875 0.313 7.828 259.9 50.65 97.21 62481.0 62182.1 

 

Table I-5 shows the keplerian elements used to describe Shiva’s orbit. The impact 

scenario for this asteroid has a hypothetical impact on 15th February 2029, where the 

MOID distance is only 0.5xREarth, well inside the Earth surface. The relative velocity at 

encounter is 9.77 km/s, which translates to a 14.85 km/s impact after the hyperbolic final 

approach. In this case, we will also consider a range of different masses, thus our models 

will also be applied to a range of different asteroid sizes. The different Shiva asteroids, 

their masses, impact energy and approximated impact frequency are displayed in Table I-6. 

Table I-6  Shiva group of impactors and their physical 

characteristics. Diameter is calculated assuming spherical 

shape and constant density, impact velocity is calculated with 

the ephemeris in Table I-5.   

 Diameter 
(m) 

Density 
(g/cm3) 

Mass 
(kg) 

Rotational 
Period 

(h) 

Albedo V 
impact 
(km/s) 

Energy 
(MT) 

Estimated 
Impact 

Frequency 
(years) 

Shiva1 72 2.6[12] 5x108 4.33[36] 0.20 14.85 ∼13 ∼1,000 

Shiva2 154 2.6[12] 5x109 4.33[36] 0.20 14.85 ∼130 ∼10,000 

Shiva3 332 2.6[12] 5x1010 4.33[36] 0.20 14.85 ∼1,300 ∼50,000 

Shiva4 716 2.6[12] 5x1011 4.33[36] 0.20 14.85 ∼13,000 ∼250,000 

An important feature of our virtual asteroids is the surface albedo, which is a crucial 

characteristic for the efficiency of the deflection models that depend on solar energy. Since 

S-class and C-Class asteroids account for, approximately, 90% of the total population and 

a high albedo will downgrade the efficiency of the solar-based strategies, an albedo slightly 

higher than the average will be used. From Alan W. Harris
[37], the S-class average albedo is 

0.184, with a standard deviation of 0.059, while the C-Class asteroid mean albedo is 0.058 

with a standard deviation of 0.024, therefore the use of an albedo of 0.20 will include more 

than 54% of the whole NEO population. 
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I.4.3. Apollyon (Apollo) 

The last remaining Earth-crossing near-Earth objects belong to the Apollo group. A 

list of 100 Apollos is retrieved from NASA’s NEO program database. Fig. I-6 shows the 

histograms of this set of 100 Apollos with the lowest MOID for 5 keplerian elements (a, e, 

i, Ω, ω) and size distribution. Like in the Aten case, the semimajor axis a, the eccentricity e 

and the inclination i roughly resemble a Gaussian distribution, but this time we can notice 

that the histogram of the argument of the periapsis is clearly not stochastic. In fact, we can 

distinguish two bell curves, one around 90 degrees and the other around 270 degrees. This 

is mainly a consequence on the distribution of the semimajor axis and eccentricity of our 

set, which, as can be seen in Fig. I-7, is filled with asteroids having distances to the Sun 

similar to that of the Earth (thus 1 AU and susceptible of low MOID) at true anomalies 

close to ±90 degrees. As done previously, the semimajor axis, eccentricity and inclination 

are generated using the means of the set and the angular keplerian elements, while Ω, ω 

and M0, are modified such that the encounter distance for a fixed collision date is 

minimum. 
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Fig. I-6  Histograms of the 100 Apollo List: A) Semimajor Axis B) 

Eccentricity C) Inclination D) Argument of Periapsis D) Argument 

of the Ascending Node F) Diameter. The size of the objects was 

calculated using the standard absolute magnitude H-diameter 

relation. 
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Fig. I-7  Density distribution of the objects in the Apollo 

list function of the semimajor axis and eccentricity. The 

superposed red line shows the combinations of eccentricity 

and semimajor axis whose distance equal to 1 AU occurs at 

a true anomaly of  ±±±±90 degrees, thus all the solutions that 

fall close of that line will have arguments of the perigee 

either close to 90 or to 270.   

 

As in the Shiva case and to facilitate the use of the virtual asteroids, the Apollo 

virtual impactor will be refereed as Apollyon. This name echoes both the Greek god of the 

Sun Apollo and the subgroup of asteroids from which we generated our virtual impactor. 

Apollyon is however the greek for “the destroyer”, which fits our criteria. Table I-7 

summarize the keplerian elements of this impactor. 

Table I-7 Keplerian elements used for Apollyon. 

 a 

(AU) 
e i 

(deg) 
Ω 

(deg) 
ω 

(deg) 
M 

(deg) 
Epoch 

(MJD) 
tMOID 

(MJD) 
Apollyon 1.706 0.518 10.70 266.8 121.2 18.09 62488.0 62488.0 

Four different mass sizes are also studied in this case: 5x108kg, 5x109kg, 5x1010kg 

and 5x1011kg (see Table I-8). The important physical characteristics are assumed using the 

same argumentation for the Shiva case. The orbit generated delivers an impact on 17th 

December 2029, with a relative velocity of 13.82 km/s at Earth encounter, which translates 

to an impact velocity of 17.78 km/s. The Apollyon has therefore higher impact energy than 

the Shiva impact. This is to be expected since Apollyon has a higher eccentricity and a 

larger semimajor axis than Shiva. 
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Table I-8  Apollyon group of impactors and their physical 

characteristics. Diameter is calculated assuming spherical 

shape and constant density, impact velocity is calculated with 

the ephemeris in Table I-7.   

 Diameter 
(m) 

Density 
(g/cm3) 

Mass 
(kg) 

Rotational 
Period 

(h) 

Albedo V 
impact 
(km/s) 

Energy 
(MT) 

Estimated 
Impact 

Frequency 
(years) 

Apollyon1 72 2.6[12] 5x108 4.33[36] 0.20 17.78 ∼19 ∼1,000 

Apollyon2 154 2.6[12] 5x109 4.33[36] 0.20 17.78 ∼190 ∼10,000 

Apollyon3 332 2.6[12] 5x1010 4.33[36] 0.20 17.78 ∼1,900 ∼50,000 

Apollyon4 716 2.6[12] 5x1011 4.33[36] 0.20 17.78 ∼19,000 ∼250,000 

 

I.4.4. Comet S-T (Nearly-isotropic comet) 

A preliminary analysis of the main differences between asteroidal and cometary 

deflection is carried out in Chapter III and a nearly-isotropic comet is also generated with 

this purpose. Currently there are only 82 Near Earth Comets, from which only 2 are nearly-

isotropic comets with MOID smaller than 0.05 AU. We cannot therefore generate a comet 

based on statistical analysis of potentially dangerous comets. On top of that, the range of 

possible values for some of the keplerian elements, such as inclination, is extremely large 

and with homogenous distribution. The goal of our virtual comet is therefore only to help 

us to comprehend the principal differences between an Asteroid Hazard Mitigation and a 

Comet Mitigation. Even if a full study of the Comet Hazard Mitigation is out of the scope 

of this thesis, work on Hazard Mitigation should include at least enough discussion to 

understand the possible risk of cometary objects. 

Among the two potentially dangerous comets identified, comet Swift-Tuttle has the 

lowest MOID (i.e., 0.000892 A.U or approximately 1/3rd the Earth-Moon distance). The 

semimajor axis, eccentricity and inclination of this object are used to generate our 

cometary impactor, and as done previously, the orientation of the orbit (i.e., Ω, ω and M0) 

is modified such that a virtual Earth collision occurs during 2029. Table I-9 shows the 

resultant keplerian elements of this comet, which will be referred from now on as Comet S-

T.  
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Table I-9  Keplerian elements used for Comet S-T. 

 a 

(AU) 
e i  

(deg) 
Ω 

(deg) 
ω 

(deg) 
M 

(deg) 
Epoch 

(MJD) 
tMOID 

(MJD) 
Comet 

S-T 
26.092 0.963 113.45 70.77 152.94 0.141 13742.2 62421.4 

Comet S-T has a virtual encounter on 12th October 2029 with a relative velocity of 

59.3 km/s. This is a huge relative velocity, due to both the almost parabolic orbit and the 

retrograde trajectory of the comet. Cometary objects seems to be depleted of small bodies 

and present a peak of the size-frequency distribution located at 1.4km diameter[10]. 

Therefore, a cometary impact would most certainly have global effects on Earth. Luckily, 

impacts of objects such as the one described in Table I-10 (i.e., Comet S-T) or smaller only 

occur every 100 million years. 

Table I-10  Comet S-T and its physical characteristics. 

Diameter is calculated assuming spherical shape and constant 

density, impact velocity is calculated with the ephemeris in 

Table I-9.   

 Diameter 
(m) 

Density 
(g/cm3) 

Mass 
(kg) 

Rotational 
Period 

(h) 

Albedo V 
impact 
(km/s) 

Energy 
(MT) 

Impact 
Frequency 

(years) 
Comet 

S-T 

1500 1.1[12] 2x1012 4.33[36] 0.04[12] 60.34 ∼900,000 ∼100,000,000 

I.5. Minimum Deflection Distance 

In the following chapters, the efficiency of the different deflection methods will be 

evaluated by considering the spacecraft mass required to apply a given deflection method 

and achieve a fixed deviation distance at the asteroid-Earth encounter. Fixing the deviation 

distance as the minimum distance that an asteroid needs to be shifted in order to miss the 

Earth will provide us with the minimum size, in terms of on-orbit mass, of the deflection 

mission required to deflect the threatening asteroid. If the Earth atmosphere is neglected, 

the minimum distance necessary to avoid a collision of the asteroid with the Earth should 

clearly be one Earth radius R⊕ . 

After a deflection manoeuvre is applied, the achieved miss distance will be computed 

by means of proximal motion equations expressed as a function of the variations of the 

orbital elements, determined using Gauss’ planetary equations (see Appendix A.1). This 

method computes the relative distance between two objects orbiting the Sun, assuming no 

gravity interaction between them. When an asteroid or a comet is in proximity of the Earth, 
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its orbit is essentially hyperbolic with the Earth at the focus of the hyperbola. Hence, 

during the final Earth approach, the threatening object will suddenly relocate the 

gravitational focus of its orbit from the Sun to the Earth, and this phenomenon is perceived 

as a sudden curvature of the object’s trajectory towards the Earth. In order to account for 

this gravitational pull of the Earth during the asteroid’s final approach, the minimum 

distance of one Earth radius R⊕ will need to be corrected accordingly.  The correcting 

factor is: 

 
2

21a e

p p

r
r r v

µε
∞

= = +        (1.4) 

and defined as the ratio between ra, which is the minimum distance between the hyperbola 

asymptote and the Earth, i.e., focus2 of the hyperbola, and the perigee distance of the 

hyperbolic orbit rp, which was fixed to R⊕ (minimum distance to avoid collision without 

considering the atmosphere altitude), 
e

µ is the gravitational constant of the Earth and v∞ the 

hyperbolic excess velocity. Note that the correcting factor only depends on the hyperbolic 

excess velocity of the threatening object. Table I-11 summarizes the minimum deflection 

distance for the four virtual threatening objects. 

Table I-11     Hyperbolic factor and minimum deflection distance. 

 v∞   

(km/s) 
ε  
 

ra  
(km) 

Apophis 5.85 2.16 13,764 

Shiva 9.78 1.52 9,690 

Apollyon 13.83 1.29 8,202 

Comet 
S-T 

59.30 1.02 6,491 

 

I.6. Chapter Summary 

The seriousness of the extraterrestrial impact hazard has been well understood for 

more than 20 years, although, when confronting the problem of designing and studying 

possible space mission to mitigate this hazard, one faces a huge number of variables and 

uncertainties that would make the problem completely unmanageable unless some 

                                                 
2 The minimum distance between the focus and the asymptote of a hyperbolic orbit is equal to minus the 

semiminor axis b of the hyperbola, 
a

r b= − . 
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assumptions are made. This Chapter summarizes the different possible variables and 

uncertainties that play an important role on the hazard and assumptions take the form of 

four possible virtual impactors that the following chapters will study in depth.  

Table I-3, Table I-5, Table I-7 and Table I-9 describe the orbital elements of the 

different virtual impactors. The set of impactors includes 2 Atens, 1 Apollo and 1 Comet. 

The latter will be used only as an example to highlight the differences between asteroid 

and cometary mitigation. Table I-4, Table I-6, Table I-8 and Table I-12 describe some of 

the physical properties of the virtual bodies as well as the kinetic energy at the encounter 

and the accumulative impact frequency (i.e., impact frequency of bodies with diameter 

equal or bigger). We shall notice that the impact frequency is only a statistical 

approximation that does not takes into account orbital distribution. In fact bodies with 

lower relative velocity will have generally higher impact probability since they spend more 

time within the Earth-capture cross section of the Earth’s orbit, hence for example an 

asteroid of the Aten group has statistically more chances of being an impactor than an 

asteroid of the Apollo group. Finally, Table I-11 provides an estimate of the minimum 

distance that an asteroid needs to be deflected in order to avoid a collision with the Earth. 
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Chapter II 

On the Deflection of Threatening Asteroids  

 
 

ven before the scientific community reached a general agreement about the 

potential threat posed by the asteroidal and cometary population, the analysis 

and design of possible deflection techniques was already spurring the imagination of many. 

This is evident by the amount of movies, novels and student projects that had already 

conjectured on different deflection scenarios even before the publication of the famous 

work by Alvarez et al.
[3]. The latter, together with the organization of the first workshop on 

the consequences of a cometary or asteroidal impact[38] in 1981, a year after the publication 

of Alvarez’s work, is believed to have marked an inflection point in the recognition of the 

impact threat by the scientific community.   

An undergraduate student project from the Massachusetts Institute of Technology in 

1968 is believed to be the first analysis and design of an impact hazard mitigation 

mission[8]. Perhaps influenced by the Cold War culture of the time, this first mitigation 

report suggested the use of several large 100-megaton nuclear warheads launched by 

Saturn V rockets with the sole purpose of completely destroying the threatening object. 

More than 4 decades have passed since the publication of that first work on asteroid 

deflection and many others have followed, among them numerous interesting alternatives 

that do not contemplate the use of nuclear weapons. 

All the deflection methods suggested to date can be grouped into two broad groups: 

impulsive deflection methods which provide a quasi-instantaneous change of the velocity 

vector of the threatening object and slow push deflections which act on the asteroid or 

comet over extended periods of time. This chapter will examine kinetic impactor and 

nuclear interceptor methods as techniques providing an impulsive change in the linear 

momentum of the asteroid. The slow push or low thrust methods can be further divided 

into; techniques actively producing a controlled continuous low-thrust, such as attached 

propulsion devices[39] (e.g., electric/chemical engines, solar sails) or gravitational tugs[40]; 

E 
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techniques producing a passive low-thrust by an induced change of the thermo-optical 

properties of the asteroid surface, such as enhanced Yarkovsky effect[41] or enhanced 

emissivity through white paint; techniques producing a controlled thrust by the ablation of 

the asteroid surface[42] (e.g., through laser beams or solar collectors); or, finally, techniques 

producing a multi-impulsive change of the asteroid linear momentum by the ejection of 

surface material, such as the mass driver[43]. 

The number of methods proposed by researchers in the field is enormous and 

analysing all of them would be an unmanageable task. This chapter will therefore focus on 

six different techniques; nuclear interceptor, kinetic impactor, low-thrust propulsion, mass 

driver, solar collector and gravity tug, which, in the author’s opinion, comprise a good 

overview of all possible methods. Most of the techniques that will not be presented can be 

considered to be variations of the models developed in this chapter, e.g., laser ablation 

could be thought as a variation of the ablation model developed for the solar collector 

method. Other techniques, such as enhanced Yarkovsky effect or white paint, require 

acting upon the asteroid for centuries before they achieve a reasonable deflection and thus 

will not be considered in this thesis either. 

This Chapter will present a number of models; one for each deflection method. 

Though, a few of them were initially taken from literature, the contribution in redefining 

and adapting the models to the analysis carried out in Chapter II and Chapter III is not 

marginal.  

II.1. Nuclear Interceptor 

Nuclear devices carry the highest energy density among all the deviation methods 

currently available. Not surprisingly the first deviation strategy ever proposed[8] suggested 

the use of nuclear bombs to change the collision course of an asteroid. On the other hand, it 

is worthwhile to remark that this technology could represent a significant risk. As pointed 

out by Carl Sagan in the Pale Blue Dot
[44], all mitigation technologies can be a double-edge 

sword if misused. For obvious reasons delivering nuclear warheads in space could 

represent a higher menace than other deflection methods. This fearsome risk, intrinsic to 

this technology, would most probably raise political and security issues, which would 

certainly make the development of a deflection strategies based on nuclear weapons not 

only a technological problem. The work described here however has not considered these 

additional issues.  
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The model used in this study is based on a stand-off configuration over a spherical 

asteroid. This type of configuration requires detonating the nuclear charge at distance H 

from the asteroid surface. The method is less sensitive to possible uncertainties in the 

asteroid composition and surface morphology[45], unlike other nuclear-based 

configurations, such as buried and surface explosions.  

The energy released during a nuclear explosion is carried mainly by X-rays, neutrons, 

gamma radiation and debris and its distribution depends mostly on the type of nuclear 

reaction.  

Table II-1 shows the distribution of energy used in this work, which is taken from 

Hammerling[45] and based on the information in Glasstone[46]. As can be seen in the table, 

an important part of the total energy is carried in the form of kinetic energy by the debris 

resulting from the explosion. Although its momentum coupling, or efficiency in producing 

linear momentum change, is much smaller than that of radioactive processes (as will be 

seen later), this effect cannot however be neglected. In the following, a model for the 

computation of the change in the velocity of the asteroid due to debris and radiation is 

presented.  

Table II-1 Energy Distribution 

Source X-ray Neutrons Gamma-rays Debris Others 
Fission 70% 1% 2% 20% 7% 
Fusion 55% 20% 1% 20% 4% 

 

II.1.1. Debris 

After detonation of the nuclear device, part of the debris, from the spacecraft 

structure and components, will impact the surface of the asteroid. Assuming that the 

explosion produces a spherical shock wave and the debris is homogeneously distributed on 

the surface of this shock wave, the total amount of debris impacting the asteroid mdebris is 

given by the mass of the spacecraft at the Near Earth Object arrival mi, multiplied by the 

ratio S between the total area of the shock wave and the portion of it that intersects the 

asteroid:  

 idebris
m Sm= , (2.1)                                    

where S can be readily calculated using the maximum asteroid central angle maxλ  (Fig. 

II-1) as: 
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 max
1

(1 sin )
2

S λ= − , 

which can be written as a function of the radius of the asteroid 
a

R  and the altitude of 

detonation H:  

 
21

2 2
a

a

H RH
S

R H

+
= −

+
. (2.2) 

Here, and in the following, mi is the mass of the spacecraft without the propellant to 

perform the transfer from the Earth to the NEO. The impacting velocity of the debris vdebris 

is then given by: 

 
2 tdebris

debris
i

f E
v

m
= , (2.3) 

where Et is the total yield released by the nuclear interceptor and debris
f  is the fraction of 

delivered energy in kinetic form (see Table II-1). The final increment in the asteroid 

velocity δvdebris is calculated by using the conservation of linear momentum: 

 debris debris
Scdebris

a

m v
v S

M
δ β≈  (2.4) 

where 2
Sc

S π=  and accounts for a conservative estimation of 180-degrees scattering of 

the debris, β  is the momentum enhancement factor[47], which is conservatively chosen to 

be 2 (see Section II.2 for further discussion), and Ma is the mass of the asteroid.  

II.1.2. Radiation 

Assuming that the attenuation of energy penetrating into the asteroid follows the 

Beer-Lambert law, the radiant energy attenuated per unit area AdE  by a layer of material of 

thickness dz and mass per unit area aAdm dzρ=  is: 

 oA A AdE E dmµ= − , (2.5) 

where µo is the opacity of the material, EA is the received energy per unit area and ρa is the 

mean density of the asteroid. The opacity µo, or mass-attenuation coefficient, describes 

how the energy is attenuated as it passes through the asteroid, a small attenuation indicates 

that the material in question is relatively transparent to a particular radiation, while a large 

attenuation indicates a high degree of opacity. Thus its value depends on the radiation type, 

the associated energy and the material considered. 
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In accordance to Eq.(2.5) the energy per unit area varies with the depth z as: 

 A
o a A

dE
E

dz
µ ρ= − , (2.6) 

which, when integrated over z, gives the amount of energy per unit area remaining at a 

given depth: 

 ( ) (0) a oz
A AE z E e ρ µ−= , (2.7) 

where EA(0) is the energy on the external surface, and depends on the distance from the 

explosion. 

The absorbed energy K at a specific depth z per unit area and unit mass is: 

 ( )en AK E zµ= , (2.8) 

which is also known as kerma, an acronym standing for Kinetic Energy Released in the 

Material. The mass-absorption coefficient enµ  differs from the mass-attenuation oµ  on the 

fact that the latter accounts for both the absorption and the scattering of energy, while the 

former estimates only the statistical energy that is absorbed by a sample of matter. In order 

to be able to assess the values of the absorption and attenuation we will assume that the 

asteroid’s surface is mainly made of forsterite (i.e., Mg2SiO4) and that the energy of the 

impacting radiation is 10 kev for X-ray, 2 Mev for gamma-ray and 14 Mev for neutron 

radiation[45]. With these hypotheses the opacity and absorption for the different radiations 

were calculated using tables of radiation attenuation from the National Institute of 

Standard and Technology
[48], and shown in Table II-2. Surprisingly, values in Table II-2 

are more sensitive to wavelength (i.e., the energy) than to the material composition as can 

also be seen in Hammerling[45] calculations. Further information about calculation and 

validity of opacity and absorption can be found in the appendices (Appendix A.2.2). 

Table II-2  Values for opacity and absorption are calculated for 

forsterite (i.e., Mg2SiO4) by summing over its constituents 

weighted according to their atomic percent.  

 X-ray Neutron  Gamma-ray 
µ0  1.426 m2/kg 0.00496 m2/kg 0.00445 m2/kg 

µen  1.370 m2/kg 0.00496 m2/kg 0.00234 m2/kg 
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A portion Ev of the absorbed energy K goes into the sublimation process (sublimation 

enthalpy), while the remaining energy is converted into kinetic energy and accelerates the 

sublimated material to a velocity ve given by: 

 ( )2e vv K E= − . (2.9) 

If we consider forsterite as the main component of the asteroid, then the sublimation 

enthalpy is Ev = 5.03 kJ/g (Wang[49]). This assumption is likely to represent a worst case 

scenario since the surface of the asteroid might have more volatile materials, and the 

regolith may even help to increase the thrust/energy efficiency. The variation of the linear 

momentum per unit area dpA gained by the asteroid due to the evaporated mass is: 

 a eAdp v dzρ= , (2.10) 

which integrated from the surface of the asteroid to the maximum depth at which the 

evaporation takes place, maxZ , gives the total linear momentum per unit area: 

 
max

0

Z

A AP dp dz= ∫ . (2.11) 

The maximum depth maxZ  can be computed by solving 0vK E− = , which results in: 

 max

(0)1
ln en A

a o v

E
Z

E

µ
ρ µ

 
  
 

= . (2.12) 

Taking into account the elevation angle ε of the incoming radiation (see Fig. II-1), the 

linear momentum per unit area pA becomes: 

 
max

0
sin

sin

0

2 (0)
a

Z z

a en vA AP E e E dz
ε

ρ µ
ερ µ

⋅
− 

  
 

= −∫  (2.13) 

Similar to the integration Eq.(2.13), but without considering the velocity ve, provides 

the mass ablated and expelled from the asteroid surface: 

 
max sin

exp
0

Z

am dz
ε

ρ
⋅

= ∫  (2.14) 
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Fig. II-1 Geometric diagram of the spacecraft detonation and 

asteroid. 

Eq.(2.13) can now be integrated over the entire radiated surface. Using the equation 

of the surface of a spherical cap (see Fig. II-2): 

 2
cap a = 2 (1 cos )S Rπ λ− , (2.15) 

we obtain an integration dependant only on the asteroid central angle λ, which leads to the 

following double integration: 

 ( )
( )maxmax

1
2sin

sin2
2

0 0

8 sin
4 ( )

a o zZ

tradiation
a a en v

f E
P R e E dz d

h

λ
λ

ρ µελ
επ ρ µ λ λ

π λ

⋅ −
           

= −∫ ∫ , (2.16) 

where Et is the total energy released by the explosion, fradiation is the fraction of energy 

corresponding to each one of the three radiation contributions shown in Table II-1, and h is 

the distance from the explosion to the surface of the asteroid. The distance h and the 

elevation angle ε  are expressed as a function of the central angle [ ]0
max

λ λ∈  (see Fig. 

II-1), where λmax corresponds to the distance to the horizon of the asteroid as seen from the 

spacecraft. Finally, the δvradiation experienced by the asteroid is calculated by integrating 

Eq.(2.16) and dividing it by the total mass of the asteroid. 

 

Fig. II-2 Integration over the spherical cap. 
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II.1.3. Total Achieved δδδδv 

Finally, the total vδ  provided by the nuclear interceptor is therefore the sum of the 

three radiative components plus the contribution of the debris: 

 -gamma neutronsX rays debrisv v v v vδ δ δ δ δ= + + +  (2.17) 

Fig. II-3 shows the total δv given by the combination of all four components (i.e. X-

ray, neutron radiation, gamma radiation and debris) as well as the individual contribution 

of each as a function of H. In this example, the spacecraft carries a nuclear fusion device 

with a mass of 600 kg in the proximity of asteroid Apophis. Fig. II-3 shows that the 

neutron radiation gives the highest contribution to the total δv; note that the same 

conclusion is also valid for a nuclear fission device. For this example, the optimal stand-off 

distance, or altitude at which the maximum total increment of velocity occurs, is at an 

altitude H equal to 0.20Ra. 
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Fig. II-3 Change in velocity of asteroid Apophis achieved with 

a Nuclear Interceptor carrying a fusion device of 600 kg, as a 

function of altitude of detonation H. The distance is normalized 

using the asteroid average radius.  

The ablated mass mexp and the average velocity of the sublimated material produced 

by each one of the types of radiation are plotted in Fig. II-4. It can be observed that X-rays 

produce very high excess velocities but ablate a very thin layer of material from the surface 

of the asteroid. On the other hand, neutron radiation produces more evaporation, since this 
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radiation penetrates deeper into the asteroid and this is a more efficient way of providing 

impulse to the asteroid. 
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Fig. II-4 Radiation analysis. Y axis on the left shows the mass 

evaporated by the three main radiation components of the 

nuclear explosion, Y axis on the right shows the excess velocity 

of the material that have been evaporated, X axis is the asteroid 

radius normalized altitude of detonation. 

 

II.1.4. Optimal Stand-off Distance 

As can be inferred from the previous results (Fig. II-3), the altitude of the detonation 

is a key parameter for the performance of this approach. It is therefore paramount for a 

nuclear interceptor mission to detonate the nuclear device at the point where Eq.(2.17) is 

maximum. In Fig. II-3, we determined that the optimal stand-off distance was H = 0.20Ra, 

but, unfortunately, this distance is neither constant nor straightforward. A combination of 

energy transferred and area of surface radiated will provide the maximum change in the 

velocity of the asteroid, but the way that these two elements combine changes depending 

on the density of the target asteroid aρ , the mass of the spacecraft at the Near Earth Object 

arrival mi and the radius of the Near Earth Object Ra.  

One of the main contributors to the radiation opacity of the asteroid material is the 

density of the target asteroid aρ , hence this parameter will have an important impact to 

determine the proportion of energy that is effectively used to sublimate material or to 

accelerate the already sublimated mass. Since twice a given amount of energy applied to 
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accelerate the sublimated mass only produces a 2 increment of velocity, the radiative 

energy will have a higher effect in providing change of velocity if used to sublimate 

instead of accelerating. On the other hand, the mass of the spacecraft at the Near Earth 

Object arrival mi and the radius of the Near Earth Object Ra have a direct effect on the 

energy density at the surface, which again affects the share between excess velocities and 

amount of mass ablated. Fig. II-5 shows the aforementioned dependence of the optimal 

stand-off point.  
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Fig. II-5 Optimal Altitude of Detonation as a function of the 

mass of the spacecraft at the Near Earth Object arrival mi.  

Notice that each pair of same size Shiva and Apollyon is 

superposed in the figure since they have both the same radius 

and density.  

 

Note that the optimal stand-off point is usually driven by one type of radiation; in 

Fig. II-3, for example, neutron radiation is the dominant contribution. Although for most of 

the studied scenarios the dominant contribution comes from neutron radiation, for some 

cases however the x-ray radiation can become dominant. A sharp change in the optimal 

altitude of detonation in Fig. II-5 is indicative of a sudden change of dominance among the 

contribution of these two main radiations. For example, as shown in Fig. II-5, the Comet S-

T has a sudden change from an optimal altitude at 0.20Ra when mi is 10,000kg to an 

altitude of 0.016Ra when mi reaches 20,000kg. Fig. II-6 shows how this sudden change in 
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the optimal distance between mi at 10,000kg and at 20,000kg occurs at the point when the 

contribution of the nuclear radiation is larger than the X-ray radiation, which, contrarily to 

what happens with Apophis, is the dominant radiation in the δv contribution for Comet S-T 

from 100 kg to 10,000kg of initial mass mi. 
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Fig. II-6 Total delta-v and delta-v contributions of nuclear 

and x-ray radiation for two nuclear deflections with mi 

10,000kg and 20,000kg attempting to deflect Comet S-T. 

 

II.1.5. Model Final Remarks 

Although the core of the model developed here is initially based on the radiation 

coupling model found in the work of Hammerling[45], the numerical integration of 

Eq.(2.16) allows a more general analysis of the nuclear option. An important result of this 

model compared with previous existing models is the optimal stand-off distance: 

Harmmerling et al. found an optimal distance ( )2 1 aH R= −  and the same result was 

previously found by Ahrens[50]. These works computed the optimal stand-off distance by 

maximizing the sum of two fractions, the energy disposed over the asteroid against the 

total energy max0.5 (1 sin )S λ= ⋅ −  and the radiated surface against the total asteroid surface 

max0.5 (1 cos )aS λ= ⋅ − . The model developed here shows that the optimal distance is driven 

by both excess velocity and mass expelled. This ensues a distance which is smaller (in 
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some cases even one order of magnitude smaller) than what previously predicted. This 

indicates that the previous methods were probably an oversimplification of the problem.  

The model has been developed assuming a spherical asteroid, yet it is very unlikely 

that a Near Earth Object would have a spherical shape. This assumption however does not 

seem to represent a substantial source of error. As can be seen in Appendix A.2.3, even in 

the worst possible configuration (i.e., detonation over the smallest cross section area) on a 

very elongated body (i.e., asteroid Geographos3 ) corresponds only to a 18% reduction in 

the magnitude of the applied δv.  

II.1.6. Spacecraft System Definition 

We assume that a spacecraft carries a nuclear device with a mass mwh = 0.3md, where 

md is the dry mass of the spacecraft and the 30% fraction accounts for the portion of dry 

mass allocated to payload[51]. In this model, the dry mass md is equivalent to the mi or mass 

at NEO interception since we do not require propellant after intercepting the asteroid. Fig. 

II-3 shows the importance of maximizing the neutron radiation for Apophis and the same 

happens for all the other cases apart from few exceptions; very large objects (i.e., Shiva4, 

Apollyon4 and Comet S_T) and low spacecraft mass at the asteroid arrival mi (i.e., less than 

20kg mi for Shiva4 and Apollyon4 and 10,000kg mi for Comet S_T). A fusion device is 

therefore chosen as primary payload, since its fraction of nuclear radiation is considerably 

higher (see Table II-1). The energy delivered by the explosion Et can be computed as: 

 t wh
E YTW m= ⋅  (2.18) 

where YTW is the yield-to-weight ratio of a thermonuclear device. This parameter strongly 

depends on the mass of the nuclear device: the larger the mass, the higher the YTW ratio. 

We chose a YTW ratio of 0.75 kTons/kg in order to be consistent with the work of 

P.L.Smith et al.
[52] and J.L.Remo[53]. This seems to be a conservative option since the YTW 

may range from 0.6 kTons/kg for a 165 kg warhead to 2.25 kTons/kg for a 4000kg 

warhead[54].  

The two engineering parameters described in this section, the YWT and the payload 

allocation fraction (i.e., 30% in this case), provides the connection between physics of the 

model and the spacecraft system design. As a consequence of the uncertainty related with 

these two engineering parameters, the change of velocity vδ  provided by the nuclear 

model also has an inherent engineering uncertainty. The values of these parameters were 

                                                 
3http://echo.jpl.nasa.gov/~lance/nea_elongations.html 
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chosen so that the nuclear deflection model yields a feasible lower boundary for the 

asteroid change of velocity achieved by a given a dry mass. Since the payload fraction is 

not expected to suffer large variation from the chosen nominal value, the upper boundary 

would occur if the YTW ratio is 2.25 kTons/kg (three times the chosen value for the 

model), for which the achieved delta velocity would be twofold the lower bound.  

II.1.7. Nuclear Interceptor Mission Sizing 

Concluding the description of the nuclear interceptor model, this last section presents 

the minimum required mass mi (i.e., mass of the spacecraft at asteroid arrival) necessary to 

deflect each one of the threatening virtual asteroids introduced in Chapter I. The deflection 

was set equal to the minimum distance required to miss the Earth, which, as seen in 

Chapter I (Section I.5), is equal to 1 Earth radius R⊕  multiplied by a hyperbolic factor ε , 

unique to each threatening asteroid. The Earth-asteroid transfer is not yet considered (see 

Chapter III for a complete analysis and comparison), thus the warning time tw is, here, 

defined as the time-span covered from the moment when the nuclear interceptor reaches 

the asteroid and detonates its charge tint, to the time of the virtual impact tMOID. 

Given the mass mi of the spacecraft and the mass and size of the targeted asteroid, the 

model described through the previous sections yields us the magnitude of the change of 

velocity sustained by the targeted asteroid ( )i
mvδ .  The final deflection is then calculated 

using the direct mapping between the initial change of velocity δ v  and the deflection δr  

provided by the transition matrix [ ]int( ) ( )
MOID

t tδ δ∂ ∂r v  (see Appendix A.1 for further 

description of this methodology).   

 int
int

( )
( ) ( )

( )
MOID

MOID

t
t t

t

δδ δ
δ

 
 
  

∂=
∂

r
r v

v
 (2.19) 

The modulus of the vector int( )tδ v  is ( )i
mvδ , while the direction of the same vector, 

in the analysis carried out in this section, is such that maximises the modulus of deflection 

( )
MOID

tδr . The calculation of the optimal direction is described in Section A.1.5. At this 

point, a root-finding algorithm can search for the mass mi necessary to provide a deflection 

( )MOIDtδr  equal to Rε ⊕⋅  at a given time tint. The results of this root-search for a range of 

tint within 20 years of warning time are shown in Fig. II-7. 

The required mass mi shown in Fig. II-7 includes a very wide range of spacecraft 

sizes, which goes from 10 kg to 1,000,000kg. For long warning times tw, the required 
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change of velocity vδ , to obtain a safe deflection, may be very small and the nuclear model 

may also output a very small spacecraft mass mi. This model does not consider 

technological limitation related with the size of the spacecraft and therefore scales to any 

mass mi. Although both the upper end (e.g.,>250,000kg) and lower end (e.g., <100kg) on 

the Y axis from Fig. II-7 may be a bit unrealistic in terms of technology readiness to build 

such large or small spacecraft, the forecasted spacecraft mass mi can still be taken as a 

measure of the difficulty of such an endeavour.  Fig. II-7 then displays a very good 

efficiency of the nuclear method for all the virtual asteroids.  
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Fig. II-7 Nuclear Interceptor dry mass md required to deflect 

the asteroid at the time of the virtual impact by a distance of 1 

Earth radius R⊕  multiplied by the hyperbolic factor of the 

threatening asteroid. 

 

One of the remarkable features of Fig. II-7, the oscillatory behaviour of the nuclear 

interceptor mass mi with respect to the warning time tw, is a distinct characteristic of the 

impulsive deflection methods. These oscillations are also related to the variation of the 

asteroid velocity over a complete orbital period. An optimum approach to deflect an 

asteroid involves changing the asteroid’s orbital period4, which can then be achieved by 

increasing/decreasing the magnitude of the asteroid’s orbital velocity. The most efficient 

                                                 
4 Except for very short warning times (see appendix A.2.5). 
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time along an orbit to perform an impulsive manoeuvre to increasing/decreasing the orbital 

velocity is therefore when the asteroid is moving at its highest speed, and this, of course, 

occurs at the asteroid’s perihelion. Each one of the minimums in Fig. II-7 corresponds then 

to a mitigation scenario where the nuclear interceptor reaches the asteroid at the perihelion.     

II.2. Kinetic Impactor 

The Kinetic Impactor is the simplest concept for asteroid hazard mitigation: the 

asteroid’s linear momentum is modified by ramming a mass into it. The impact is modelled 

as a simple inelastic collision resulting into a change in the velocity vector of the asteroid 

multiplied by a momentum enhancement factor[47]. The enhancement is due to the blast of 

material expelled during the impact. 

The value of the enhancement factor is extrapolated from cratering analysis, such as 

the one performed by K. A. Holsapple[55], and hypervelocity experiments, such as Tedeschi 

et al
[47]. Both studies are Earth-based experiments on a small scale and their applicability 

to realistic asteroid size and conditions is difficult to quantify. A conservative value of 2 

was chosen for all the analysis in this chapter and in Chapter III. At the light of the results 

in Tedeschi et al
[47], most of the asteroids would be expected to obtain higher values of the 

enhancement factor; the maximum value is Tedeschi’s experiments is almost fivefold the 

value chosen for this model, which occurred for a compacted snow target. Only 

monolithic-like asteroids (e.g. metallic objects) capable to absorb the collision through 

deformation, producing very little amount of debris, would obtain an enhancement factor 

smaller than 2. The variation of the velocity of the asteroid due to the impact is then given 

by: 

 
( ) /

i
S C

a i

m

M m
δ β= ∆

+
v v  (2.20) 

where β is the momentum enhancement factor, /S C
∆v  is the relative velocity of a impactor 

of mass mi with respect to the asteroid at the deviation point and Ma is the mass of the 

asteroid. 

II.2.1. Kinetic Impactor Mission Sizing 

Once the minimum deflection distance is defined (see Section I.5 in Chapter I), one 

can compute the minimum δ v  required to achieve the demanded deflection by using the 

transition matrix defined in Appendix A.1.4, which is defined through the proximal motion 
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equations (i.e., through a root-finding search such that Eq.(2.19) is equal to the minimum 

deflection distance). Following this calculation of the minimum change of velocity 

required to deflect the threatening asteroid, the required impact mass mi can also be 

estimated for a given relative impact velocity /S C
∆v (Eq.(2.20)). Fig. II-8 shows the 

minimum impact mass mi to achieve the minimum deflection distance from Earth as a 

function of warning time tw. The resultant impact mass mi obviously depends upon the 

chosen impact velocity /S C
∆v  but it can be seen that the shape of the curve does not vary. 

In Fig. II-8, the left Y axis scales the results for an impact velocity /S C
∆v  of 15 km/s, 

while the right Y axis scales for a 50 km/s impact.  
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Fig. II-8 Impactor mass required to achieve the minimum 

deflection distance from Earth as a function of warning time tw. 

Left Y axis shows results for a 15 km/s impact, while right Y 

axis presents a 50 km/s calculation. 

 

It is interesting to note from Fig. II-8 how threatening asteroids of the size of Apophis 

could be easily deflected by impacts with only a few thousand kilograms of mass and 

velocities of around 50km/s if enough warning time is available. This makes this simple 

deflection method an interesting alternative to other technologically more demanding 

methods. Retrograde impacting trajectories could provide this deflection method with 

impact velocities in the order of  60 km/s[56] and, as demonstrated by the results of the first 
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Global Trajectory Optimization Contest
[57], this kind of trajectories are possible even 

without using advance propulsion systems. 

II.3. Spacecraft Propulsion 

A straightforward mitigation strategy could consist of a spacecraft landing on the 

asteroid and using its propulsion system to push the asteroid off the impact trajectory. 

Either traditional chemical propulsion or low thrust propulsion systems could be used. 

Chemical propulsion provides very high thrust, but the excess velocity of the exhaust 

gasses is about ten times lower than that of the ionized plasma of low thrust propulsion 

systems and thus requires much more propellant to deliver the same change in the linear 

momentum of the asteroid. For this reason a strategy based on a high thrust chemical 

engine was considered less efficient than a strategy with a low-thrust engine. 

On the other hand, for electric propulsion (or low thrust approaches in general) the 

rotation of the asteroid becomes an issue. On a rotating asteroid the thrust vector of the 

system will not maintain a constant pointing. The propulsion system will have to be 

switched on and off when the correct thrusting direction occurs or the asteroid rotation will 

have to be modified so that the propulsion system can be continuously active[39]. Another 

issue for such a mitigation approach is the definition of an appropriate attachment system 

between the propelling spacecraft and the asteroid. Finally, a problem pointed out by 

Scheeres et al.
[58] is the possible formation of a transient atmosphere due to the surface 

operations: the combination of loose regolith and low gravity could result in a transient 

atmosphere of dust that could potentially affect the spacecraft mechanics and operations 

leading to contingencies.  

Depending on how the thrust is applied and controlled we can divide the class of 

propulsion-based deflection methods into three subclasses: scheduled low-thrust, de-spin 

and push or precession and push.  

In the following sections the scheduled low thrust model will be described in detail. 

The other possible low thrust techniques will be briefly outlined and then compared to the 

scheduled thrust option. For a detailed discussion of these alternative techniques the 

interested reader can refer to the work of Scheeres et al
[39].  
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II.3.1. Scheduled Low Thrust Model  

The scheduled thrust model assumes a mission in which two spacecraft land on 

opposite sides along the equator and thrust through the centre of mass of the asteroid. By 

properly scheduling the periods when the engines are switched on and off, we can obtain a 

quasi-constant thrust and a limited scattering factor. The scattering factor takes into 

account the misalignment from the optimal thrusting direction, so that when multiplied by 

the thrust of the engine we obtain the effective force applied in the optimal thrusting 

direction.  

The total thrust of the system, i.e. the thrust of both engines together, is calculated 

using the following linear relationship:  

 n powerT m
ξ
τ

=  (2.21) 

where mpower is the mass of the power subsystem,τ  is the mass-to-power ratio and ξ  is the 

specific thrust. The specific thrust ξ  is set equal to 34 mN/kW which represents an average 

value for the most common ion thrusters[51]. It is also assumed that the available power is 

generated by a subsystem with a mass which is 50% of the dry mass of the spacecraft, 

mpower=md/2 , and capable of delivering 40 watts per kilogram (τ  = 25 kg/kW[51]).  

The mass of the system at the arrival at the asteroid mi includes the propellant mass 

for the manoeuvre and the dry mass md of the spacecraft. Since the thrust of the propulsion 

system is fixed by the dry mass md and will remain constant for the whole mission, the total 

impulse tI  produced by the propulsion system on the asteroid can be computed as follows: 

 
0
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2

ft

f
t n

t

t t
I Fdt T

 
 
 
 

−
= =∫  (2.22) 

where 2
n

TF =  is the net force applied to the asteroid. Now, the total impulse can also be 

computed using the variation in linear momentum produced by the ionized gas expelled 

from the propulsion system: 

 
0

( )
ft

t e ei d
t

dm
I v dt m m v

dt
= − = −∫  (2.23) 

By combining Eqs.(2.21)–(2.23), we can obtain the dry mass md as a function of the 

initial mass mi and of the duration of the pushing action 0push f
t t t= − : 
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The manoeuvre could be as long as the time left before the asteroid impacts the 

Earth, although pushing for so long is not necessarily the best strategy. Since the dry mass 

depends not only on the initial mass, but also on the duration of the deviation manoeuvre, 

see Eq.(2.24), a better option may be to reduce the duration of the pushing maneuver to 

achieve a higher dry mass for a fixed initial mass, which then translates into a better level 

of thrust (see Eq.(2.21)).  

An analysis of the achievable deviation as a function of the manoeuvre duration was 

performed for several different asteroids chosen from the three groups of NEOs, i.e., 

Apollo, Aten and Amor5. Given an initial spacecraft mass mi and a warning time tw, the 

achieved deviation was computed by numerically integrating Gauss’ planetary equations 

over a variable pushing time. This procedure was applied to the set of different asteroids, 

analysing the total achieved deviation as a function of the proportion α of the total time 

available for applying the deviating action, wpush
t tα = , and varying the latter from 7 days 

to 20 years of warning time. Fig. II-9 is an example of the aforementioned analysis applied 

to the Apollo asteroid Itokawa(25143), Table I-3 describes the main characteristics of this 

object.  

Table II-3  Itokawa(25143). Information is updated from JPL 

solar system dynamics
[23]

 as of November 2008. 

a 

(AU) 
e i 

(deg) 
Ω 

(deg) 
ω 

(deg) 
M 

(deg) 
Epoch 

(MJD) 
Diameter 

(m) 
Density 
(g/cm3) 

Mass 
(kg) 

1.324 0.280 1.622 69.1 162.8 350.8 54800 333 1.9 3.5x1010 

Fig. II-9 shows the total achieved deviation (right axis) and the total impulse (left 

axis) for a low-thrust deviation mission at asteroid Itokawa as a function of the pushing 

time proportion α. For this example, the mass of the spacecraft at the beginning of the 

pushing action was fixed to be mi = 10,000 kg and the maximum available pushing time 

was fixed to 10 years. The results show how the maximum deviation is not achieved when 

the spacecraft is pushing for the whole available time before the collision. It is, instead, 

more convenient to use a higher thrust for a shorter time.  

                                                 
5 A total of eight different objects were used for the analysis: Itokawa, Castalia and Apollyon as Apollo 
asteroids, Apophis, 1999KW4 and Shiva as Atens asteroids and Nyx and Quetzalcoalt as Amor asteroids.  



 Chapter II: On the Deflection of Threatening Objects 
  

                                                                       

 

47 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

7

Im
p

u
ls

e
, 

N
s

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

Pushing Action Factor, αααα

D
e
v

ia
ti

o
n

, 
K

m

 

 

 

Fig. II-9    Total impulse and deviation achieved for a varying 

αααα. The impulse is represented by the dotted line, while the 

deviation is the solid line. 

 

Thus, for each different scenario, the length of the pushing manoeuvre can be 

optimized to achieve the maximum deflection. Nevertheless, a numerical search of the 

optimal duration of the low thrust manoeuvre is computationally expensive. The analysis 

carried out in chapter III would have required several months in order to perform a single 

multi-objective optimization of the low thrust method if the optimal duration of the 

pushing manoeuvre would have been computed at each single run of the model. Therefore 

a quick estimation of the thrust duration was required. The result in Fig. II-9 suggests 

stopping the pushing manoeuvre after the last perigee passage before 50% of the time 

between the arrival at the asteroid t0 and the impact date, which is also satisfied for any 

warning time larger than several complete asteroid’s orbits (i.e., 2-3, approximately). For 

mission scenarios with very short warning times (less than 3 years) the low thrust method 

would push the asteroid all the available time.  

The aforementioned prediction of the duration of the pushing action matches the 

maximum deviation for all the asteroids considered here and for any warning time with an 

average error of less than 2% and a maximum error of 8%. Taking into account that 

thrusting throughout the entire available warning time results in deflections, which are on 

average, 17% smaller than those achieved after optimizing the duration of the thrusting 

manoeuvre, together with the fact that the aforementioned prediction reduces the 
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computational time by a factor of 40, we can conclude that the approximate prediction is a 

good compromise between improving the efficiency of the low thrust method and reducing 

the computational time. At this point, given the duration of the thrusting manoeuvre, the 

mass of propellant and the thrust can be calculated with Eq.(2.24).  

II.3.2. Efficiency of the Scheduled Thrust 

In order to measure the efficiency of the scheduled thrust, compared to a continuous 

thrust directed along the optimal direction, we can define the scattering factor Ssc as: 
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ˆ( )
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F v dt

S

F dt

⋅
=

∫

∫

�

�
 (2.25) 

where the integrations are along one complete asteroid rotation lrotation, v̂  is the unit vector 

along the optimal thrusting direction, F
�

 is the force vector delivered by the propulsion 

system attached to the asteroid and optimF
�

 is a force vector with equal magnitude but always 

directed along the optimal direction v̂ . 

If we assume that the asteroid is spinning much faster than it is orbiting around the 

Sun, we can define an asteroid orbit inertial reference frame and an asteroid equatorial 

inertial frame as shown in Fig. II-10.  

 
Fig. II-10  a) Asteroid inertial orbital frame, b) asteroid 

equatorial inertial frame, c) a composition of both frames 

together. 
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In the asteroid orbit frame, Fig. II-10a, the angle ν  is the angle between the orbital 

velocity and the x
⌢

 axis, this angle will perform a 360-deg rotation at every orbit. In the 

asteroid equatorial frame, Fig. II-10b, the angle ϕ is the angle between the projection of the 

force vector on the x y′ ′⌢ ⌢ plane and the x′⌢  axis. The angle ϕ will perform a full revolution at 

every rotation of the asteroid. The obliquity of the asteroid’s equator φ is the rotation angle 

necessary to align the asteroid’s orbital inertial coordinates with the asteroid equatorial 

inertial coordinates. Eq.(2.25) can now be re-written as follows: 
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 (2.26) 

where the integration limits ϕ0 and ϕf are chosen so that the scalar product ˆ ˆF v⋅  is positive 

in order to have a constant increase in the asteroid linear momentum. 

Integrating Eq.(2.26) along a complete orbit, i.e., ν from 0 to 2π, and dividing by 2π, 

we obtain an average scattering factor that depends only on the obliquity of the asteroid 

and the complementary latitude ϖ of the landing site. Fig. II-11 shows the scattering factor 

as a function of the obliquity angle φ and of the complementary latitude ϖ. The figure 

shows that for every obliquity it is always possible to choose a landing site that guarantees 

a scattering factor not lower than 0.25. Therefore, it is always possible to have at least 

25% of efficiency of thrust without changing the rotational state of the asteroid. Note that 

this analysis does not depend on the asteroid shape but only on the obliquity of the 

asteroid’s equator, thus the efficiency of the scheduled thrust is not affected by the asteroid 

shape.  
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Fig. II-11  Averaged scattering factor 

 

II.3.3. Analysis of Alternative Pushing Methods 

Two alternatives have been suggested in order to solve the problem caused by the 

asteroid’s rotation: asteroid de-spinning and simultaneous precession and push. Both 

techniques require a modification of the spinning rate of the asteroid. The de-spin method 

is a three phase method; during the first phase the low thrust propulsion is used to stop the 

rotation of the asteroid, next, a new rotational state is imposed in order to match the 

asteroid’s orbital period, then the propulsion system is used to push the asteroid out of the 

collision trajectory. The second alternative requires one to re-orient the asteroid rotational 

pole and, as demonstrated by Scheeres et al.
[39], there is always an axial tilt that allows a 

continuous thrust while maintaining a constant relative orientation between the rotational 

axis and the optimal thrusting direction. 

Fig. II-12 shows the effective total impulse produced by each one of the 

aforementioned techniques for a wide range of thrust levels. The effective total impulse for 

the scheduled thrust is the product of the thrust, scattering factor and pushing time. The 

effective total impulse for the de-spin method instead is the product of thrust and available 

pushing time once despin has been achieved. Finally, the effective total impulse for the 
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precession-push method is the product of the thrust component in the direction of the 

asteroid velocity and the pushing time.  

10
-2

10
-1

10
0

10
1

10
2

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

Spacecraft Thrust, N

Im
p

u
ls

e
, 

N
s

 

 

Scheduled Thrust
Slow rotator (1 cycle/day) De-Spinning
Fast rotator (6 cycle/day) De-Spinning
Slow rotator (1 cycle/day) Simultaneous Precession and Push
Fast rotator (6 cycles/day) Simultaneous Precession and Push 

 

Fig. II-12  Comparison among three possible low-thrust 

strategies for a wide range of thrust levels and 20 years of 

pushing time. 

As can be seen in Fig. II-12, the de-spinning technique requires a minimum level of 

thrust in order to stop the rotation of the asteroid before impact with the Earth. This 

minimum thrust level depends on the angular velocity of the asteroid’s rotation and the 

time available for despinning and deviating the asteroid. On the other hand, for the 

simultaneous precession and push, considering that the asteroid already has the correct 

configuration to start the deviating manoeuvre as soon as the spacecraft arrives, the faster 

the rotation is, the higher the fraction of thrust that goes into controlling the precession, 

hence less variation of the linear momentum for the same propellant consumption. For the 

analysis in Fig. II-12, the maximum available time was set to 4 years for all the low-thrust 

methods. 

In the remainder of this thesis, all analyses on the low-thrust propulsion method will 

consider only the scheduled approach, since, as Fig. II-12 shows, the scheduled thrust 

method performs well for all thrust levels, spinning rates and available pushing time 

considered. Besides, the scheduled thrust method is the simplest concept among the three 

options and thus the most technologically feasible option. Both the de-spin method and the 

simultaneous precession and push would require a gimballing attachment which would 
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allow pushing in directions other than the perpendicular to the asteroid surface. On top of 

these technological issues, the scheduled thrust represents the most robust option in terms 

of asteroid uncertainties, since the other two options are affected by the asteroid shape and 

rotation.  

II.3.4. Low Thrust Deflection Mission Sizing 

Again, we will use the low thrust model to deflect the virtual asteroids outlined in 

Chapter I by a minimum Earth-asteroid deflection distance (see Section I.5 in Chapter I). 

As done previously, the Earth-asteroid transfer is not considered and the initial mass mi 

refers to all the mass remaining after the Earth-asteroid transfer. This includes the dry mass 

of the spacecraft and the propellant to be used during the pushing operations. Fig. II-13 

shows the minimum initial mass mi required to achieve the minimum asteroid deflection to 

avoid the collision of each test case asteroid as a function of warning time tw. Unlike in the 

impulsive deflection models (see Section II.1.7), in the low thrust methods the calculation 

of the deflection distance δr  is not achieved by means of the transition matrix Eq.(6.7), 

but by integrating instead the Gauss’s planetary Equations (Eq.(6.2)).  The results of a 

root-finding algorithm searching for the mass mi that provides the required minimum 

deflection at different warning times tw are shown in Fig. II-13. The direction of the thrust 

used in this analysis is that that achieves maximum deflection (see Section A.1.5).  

 Considering that 50,000kg was the maximum payload capability for Earth-Moon 

transfer insertion of the legendary Saturn V rocket, used by NASA during the Apollo and 

Skylab programs or that 10,500kg is the GTO-payload mass capability of the modern 

Ariane 5, we can grasp the technological difficulties that a low thrust mission to deviate the 

largest asteroids considered in this thesis would pose. This technology may however be 

very suitable for the lower range of the masses considered here (i.e., 95 10x≤  kg). 
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Fig. II-13  Mass required for a low thrust deflection mission 

capable to deflect each one of the studied test case by distance 

equal to the minimum Earth-asteroid distance. The list of test 

cases in the legend is ordered following the results of the 

required mi.  

If one of the most remarkable features of Fig. II-7 and Fig. II-8, both impulsive 

mitigation methods, was the oscillatory behaviour of the interception mass mi, an 

outstanding feature of all low thrust methods is the almost absence of it. If the low thrust 

method entails pushing or pulling the asteroid during several orbital periods, the oscillatory 

behavior will become smoother, although may not disappear completely, like in this case 

for all the Apollyon asteroids.     

II.4. Mass Driver 

The mass driver system generates a change in the velocity vector of the asteroid by 

shooting into space pieces of the asteroid outer crust. Surface material is dug by a drilling 

device and accelerated into space through an electromagnetic railgun. The advantage of 

this strategy is that the material used to change the linear momentum of the asteroid is 

obtained in situ and not carried from Earth. 
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Fig. II-14 Multi-mass driver concept from J.Olds et al
[43]

. 

II.4.1. Mass Driver Model 

The model for the mass driver was developed assuming that a spacecraft with mass 

md lands along the equator of the asteroid and directing the railgun along a line 

perpendicular to the rotation axis, which is assumed to be perpendicular to the velocity 

vector of the asteroid. Furthermore, it was assumed that when the railgun is not pointing in 

an optimal direction, the mass driver is collecting material. The dug material is shot once 

per rotation when optimal pointing conditions within a given tolerance are met.  

The mass of the power subsystem was assumed to account for 30% of the dry mass 

md, which is in agreement with the results obtained by J. Olds[43]. The mass-to-power ratio 

τ  was set to 25 kg/kW[51], which is an averaged value for the power sources most 

commonly used in space. The energy efficiency of the railgun was set to 30%[59], hence 

approximately one third of the electrical energy generated by the power source is 

transformed into kinetic energy:   

 0.3 power

K

m
P

τ
=  (2.27) 

where 0.3power d
m m= ⋅  is the mass of the power system and PK is the total power converted 

into kinetic energy.  

In literature, a value of 100-300 m/s is considered as a realistic excess velocity for the 

expelled mass[43],[50]. In this work, an excess velocity of 200 m/s, which is within current 
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technological capabilities[59], has thus been chosen for all the analysis. Given the excess 

velocity, the mass expelled per shot can be calculated with the following equation: 

 
2

2 K shooting

launch
e

P t
m

v

∆
=  (2.28) 

where ∆tshooting is time available to shoot the dug material into space, which was set equal 

to the time required by the pointing vector of the railgun to span a 10 degrees arc around 

the rotation axis of the asteroid, i.e., ( )1
36 rotshooting

Tt =∆ , where Trot is the rotational period 

of the asteroid. The power generated when the mass driver is not shooting (97% of the 

time) is sufficient for the mining system, e.g. a coring drill, to prepare the next 

projectile[60],[61].  

The change in the velocity of the asteroid is determined by using the conservation of 

linear momentum and taking into account the change in the asteroid mass consequent to 

every shot:  

 
( )

launch
e

a

m
v v

M t
δ =  (2.29) 

At each impulsive vδ  there is a corresponding finite variation of the orbital elements 

of the asteroid and the new set of orbital parameters has to be calculated before the 

subsequent impulsive action. 

Note that, similarly to the low-thrust method, the mass driver generates a vδ  only 

when the railgun points in the correct direction. The performance of this method, therefore, 

is not affected by the shape of the asteroid but only by its rotational state. 

II.4.2. Mass Driver Mission Sizing 

Again, as in previous sections, the mass diver interception mass mi required to 

achieve a given deflection 0rδ  with a warning time wt  can be calculated through the root 

search of 0 ( , )i wr m tδ δ− r , where ( , )i wm tδr  is yielded by the combination of the mass 

driver model and the deflection formulas described in the Appendices (see Section A.1). 

Fig. II-15 shows the mass mi required to deflect each one of the test cases from Chapter I a 

distance equal to the minimum deflection distance (see Section I.5). As expected, the 

multi-impulsive manoeuvre of the mass driver provides an interception mass mi showing 

the same features as the low thrust method, although, when compared with Fig. II-13, the 

good performance of the mass driver concept is noteworthy.  
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Fig. II-15  Mass Driver size required to deflect each one of the 

studied test case by distance equal to the minimum Earth-

asteroid distance. The list of test cases in the legend is ordered 

following the results of the required mi.  

II.5. Solar Collector 

In 1994, Melosh et al.
[42] proposed the use of a mirror to focus the solar energy onto a 

small portion of the surface of the asteroid. The resulting heat sublimates the surface 

material creating a jet of gas and dust that produces a continuous thrust. This thrust 

ultimately alters the orbit of the asteroid in a similar fashion to how a comet’s orbit is 

altered by the expulsion of material from surface jets. A conceptually similar idea is to use 

a laser beam, either powered by a nuclear reactor or solar arrays, to induce the required 

sublimation of the surface material. In the following, a model is proposed to compute the 

deviating acceleration due to the flow of gases derived from the sublimation of the 

asteroid’s surface. Although applicable to both the solar collector and laser beam concepts, 

the spacecraft model that will be described in the following analyses will be based on the 

use of a solar concentrator. This choice was motivated by the expected mass of the laser 

together with the power unit required to operate it: after a first estimation, the mass of a 

deployable mirror resulted to be smaller than the equivalent mass of the laser plus power 

unit. However, this does not intend to rule out the laser option; on the contrary, although, a 
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more detailed spacecraft system analysis might demonstrate that the laser option is more 

advantageous than the solar collector, the sublimation model presented in this section 

maintains validity and the resulting conclusions are applicable to either approach.  

II.5.1. Spacecraft Model 

It is assumed that the solar concentrator is made of a layer of reflecting material 

mounted on an inflatable supporting structure[62]. The inflatable structure, together with the 

deployment system, attachments and related harnessing are assumed to account for 30% of 

the total dry mass of the spacecraft, thus allocating to the solar collector itself the 30% of 

dry mass representing payload of the spacecraft[51]. From the work of John 

M. Hedgepeth
[62],[63] the mass-to-area ratio of the inflatable solar concentrator is estimated 

to be 0.1 kg/m2. This is a conservative estimate when compared with the size and mass of 

space experiments such as Znamya and Echo balloons. The size of the spacecraft is related 

to the amount of energy focused on the surface of the asteroid through the concentration 

ratio. This is defined as the area of the reflective surface over the area of the illuminated 

spot. Concentration ratios between 2000 and 3000 are possible for space solar 

concentrators[63]. In the following, a concentration ratio of 2500 will be used, which is 

equivalent to a diameter for the illuminated spot 50 times smaller than the diameter of the 

mirror. 

II.5.2. Thermal Model of an Asteroid 

If a beam of light is focused onto the surface of the asteroid, the received power 

density can be calculated by using: 

 ( )2
1 v

flux m
solar eff

sfi

S A
P p

Ar
η= −  (2.30) 

where Am is the cross-section area of the reflective surface of the mirror, perpendicular to 

the direction of the solar radiation, As is the area of the illuminated surface on the asteroid, 

ηeff = 90% is the efficiency of the mirror assembly, Sflux = 1367 W/m2 is the solar flux at 

1 AU, rfi is the distance from the spacecraft to the Sun, which scales the solar flux, and the 

albedo pv was chosen as 0.2. This value approximates the albedo of a S-type asteroid, the 

surface of which is mostly composed of olivine. For the specific deviation method under 

investigation an albedo of 0.2 would correspond to a worst case scenario. 
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The time a portion of the surface spends under the spot beam is a function of the 

angular rotation of the asteroid and of the size of the spot. This last parameter is also 

function of the size of the mirror and the concentration ratio. The thermal model assumes 

the system (i.e., asteroid) to be an infinitely long rod, with the illuminated spot on one side 

of it. The illuminated surface is at a temperature of 1800 K, which is the sublimation 

temperature of forsterites[49]. The long rod model represents a good approximation of the 

real system. In fact it can be proved that the conduction loss through the perimeter of this 

rod is much smaller than the energy loss due to the movement of the surface (i.e. asteroid 

rotation with a fixed beam).  

Sublimation is due to the total absorbed energy. The net absorbed energy is the total 

energy focused on the surface minus the radiation and conduction losses. Energy loss due 

to conduction can be computed by first solving the differential equation for the surface 

temperature T, 

 
2

2
acT T

tx

ρ
κ

∂ ∂=
∂∂

 (2.31) 

where c is the heat capacity (750 J/kg/K), ρa is the asteroid density, and κ is the thermal 

conductivity (2 W/m/K in this case). The thermal conductivity and heat capacity were 

calculated using average values from different silicate materials on Earth, which are likely 

found on asteroids, and proved consistent with the values predicted by J.L.Remo
[64]. Using 

the following initial and boundary conditions6, 

0

0

( ,0) 278

(0, ) 1800

lim ( , )
subl

x

T x T K

T t T K

T x t T
→∞

= =
= =

=

 

and applying a Laplace transformation, the above differential equation can be solved to 

give:  

 ( )0 0( , )
2

subl

a

x
T x t T T T erfc

t

c

κ
ρ

 
 
 
 
 
 
 

= + − ⋅  (2.32) 

Finally, to calculate the conduction loss condQ k T x= ⋅∂ ∂ , the derivative of the 

temperature profile is calculated through a series expansion of the complementary error 

                                                 
6 T0=278K is computed assuming a blackbody radiating isothermal sphere at 1 AU with equal emissivity and 
absorptivity. 
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function, ( )( )erfc f x . Therefore, with this model, the heat flux loss by conduction Qcond on 

the surface of the asteroid (x = 0) can be computed using the following expression: 

 0subl
cond

a

T T
Q

t

c

π
κρ

−
=  (2.33) 

II.5.3. Rate of Expelled Mass 

The heat generated by sunlight will produce a flow of sublimated mass mexp. Part of 

the energy goes into the sublimation process and part into the acceleration of the expelled 

mass mexp . The mass flow rate can be computed as: 

 
( )exp

v outsolar

dm t
E Q P Q

dt
= ∆ = −  (2.34) 

where Ev is the sublimation enthalpy, ( )
exp

dm t dt  is the flow of sublimated mass and outQ is 

the sum of the conduction heat loss condQ  and the radiation heat loss radQ . The radiation 

heat loss radQ  is defined according to the black body radiation formula as:  

 4
rad bbQ Tσε=  (2.35) 

where σ is Stefan-Boltzmann constant, and εbb is the black body emissivity. Expanding the 

terms in Eq.(2.34) and solving for the mass flow, gives: 

 ( )1exp
in rad cond

v

dm
P Q Q

dt E
= − −  (2.36) 

In order to calculate the total sublimated mass, Eq.(2.36) is integrated over the 

surface area under the illuminated spot. Note that, if the mass flow rate 
exp

dm dt is negative, 

then there is not enough energy to sublimate the asteroid surface. Consequently, the limits 

of the integration have to be adjusted to avoid negative results. The horizontal surface 

position, x, and the illumination (or exposure) time can be related through the rotational 

velocity, vrot, such that rotx v t= ⋅  and rotdx v dt= ⋅ . Therefore, the integral can be rewritten 

in terms of the exposure time t, where the limits of the integration tin and tout are the times 

at which the asteroid surface moves inside and outside of the illuminated spot. Thus, the 

total mass flow is: 

 ( ) ( )0
0

1 1
( ) 2

max out

in

ty

exp rot intotal rad subl
vt

c
m v P Q T T dt dy

E t

κρ
π

  
  

    
= − − −∫ ∫ɺ  (2.37) 
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which is solved in detail in the Appendix A.3. 

II.5.4. Total Induced Acceleration 

Once the flow rate of evaporated material is computed, the average velocity of the 

particles is determined by using the Maxwell distribution for particles of an ideal gas: 

 
8

subl

m

kT
V

Mπ
=  (2.38) 

where Mm is the mass of a single molecule of forsterite (Mg2SiO4) and k the Boltzman 

constant. 

The acceleration asolar achieved by the asteroid due to the sublimation process, can be 

calculated by dividing the thrust produced by the evaporation of the surface material and 

the remaining mass of the asteroid7, corrected through a scattering factor Ssc which 

accounts for the plume dispersion:  

 
( )exp( )

( )solar

sc total

a

S V m

M t

⋅ ⋅
=a

ɺ

 (2.39) 

The scattering factor was computed assuming that the particles of debris and gas are 

accelerated uniformly over a semi-sphere, which corresponds to a 180 degrees plume cone. 

By integrating over the semi-sphere the effective components of the acceleration we get a 

value 2
scS π= . 

Fig. II-16 shows the effects of the radiation and conduction heat losses, as well as the 

thrust delivered by a 100 meter diameter mirror. In this simulation, the asteroid is assumed 

to have zero rotational velocity, but the exposure time varies between 0 and 30 seconds. As 

can be seen, below 5 seconds of exposure time the thrust level drops significantly. 

                                                 
7 The asteroid mass Ma decreases due to the evaporation and, although for most of the cases the loss of mass 
is insignificant, for some cases it has in fact important effect, e.g. for a 100-meter diameter mirror the mass 
flow rate is of the order of 1 kg/s, which for small asteroids and given enough time can have a very 
significant effect. 



 Chapter II: On the Deflection of Threatening Objects 
  

                                                                       

 

61 

0 5 10 15 20 25 30
0

2

4

x 10
6

Exposure Time under spot beam, s

P
o
w

e
r,

 W
/m

2

 

 

0 5 10 15 20 25 30
0

50

100

T
h

r
u

st
, 

N

 

 

Thrust

Conduction Loss

Radiation Loss

 
Fig. II-16  Energy loss (left axis) and thrust (right axis) for a 

100-meter diameter mirror. 

II.5.5. Influence of the Asteroid Spinning Rate 

As mentioned above, the exposure time, i.e., the time that the surface spends under 

the focused solar beam, depends strongly on the rotational speed of the asteroid. Fig. II-17 

shows the deviation achieved with a 60 meter mirror imparting a deflection action on 

asteroid Apophis. The deviation was computed by propagating Gauss’ planetary equations 

for a period of two years with the deviating action aligned with the instantaneous velocity 

vector of the asteroid. As can be seen in the figure, as the rotation speed increases, the 

achievable deflection decreases monotonically.  

In light of the work of A. W. Harris
[36], the most probable rotation state seems to be 

about 5.5 cycles/day. For this angular velocity, a mission with a 60 meter in diameter 

mirror would achieve a deviation of 14,000 km after two years of operations. Since the 

upper physical limit on the rotational speed is expected to be between 8 to 12 

cycles/day[36], Fig. II-17 shows that the deviation achieved with a solar collector, for any 

possible rotational state, would be at least 70% of the deviation achieved for a 5.5 

cycles/day rotator. The upper limit on the rotational speed is assumed to be due to the 

rotational upper limit for asteroids without cohesive or tensile strength (i.e. rubble piles). 



 Chapter II: On the Deflection of Threatening Objects 
  

                                                                       

 

62 

0 5 10 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

4

Rotation Frequency, cycles/day

D
e
v

ia
ti

o
n

, 
k

m

 

Fig. II-17  Deviation as a function of the rotational speed 

produced by a 60 m diameter mirror acting on an Apophis-like 

asteroid during 2 years.  

Finally, the elongation of the asteroid combined with its rotational state can affect the 

performance of this deflection method because the distance of the target spot on the surface 

of the asteroid from the mirror can vary with time. However, we can assume that the focal 

point of the mirror can be adjusted to cope with this variation. Adapting the focal point is a 

technological problem that does not affect the model presented in this section but will be 

considered later in Chapter III when the Technology Readiness Level of each method is 

examined. A first analysis of the problem related to focusing and pointing the light of the 

Sun, can be found in other works by Maddock et al.
[65] and Vasile

[66]. In the same works, 

there is a preliminary analysis of the control of the mirror in proximity of the asteroid. 

II.5.6. Solar Collector Mission Sizing 

The model described above will be used to deflect some of the virtual asteroids 

outlined in Chapter I (the procedure explained in Section II.3.4 is also used here). Like in 

previous mission sizing subsections, the Earth-asteroid transfer is not considered, thus the 

solar collector interception mass mi refers to the dry mass of the solar collector system. In 

Chapter III, where a full comparison among the different deflection methods is carried out, 

mass margins will be allocated to each deflection methods following technological 

motivations. These margins will try to account for several issues that have not been 

addressed explicitly in the models sections from this chapter, as, for example, the station 
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keeping mass budget. Even if a preliminary analysis[65],[66] can show that the station 

keeping mass budget will not modify to a great extent the results of  the solar collector 

model, the operational cost of very long deflection manoeuvres (e.g. lasting several years)  

will substantially increase the cost not only of a solar collector deflection, but of any 

deflection requiring many years of highly accurate manoeuvring and control.  Hence, a six-

month limit of operations was set for the results in this section, minimizing, then, possible 

operational cost.   

Fig. II-18 plots the diameter of the solar collector required to deflect the virtual 

asteroids a distance equal to the minimum Earth’s deflection distance (see section I.5.). 

While for short warning times, the size of the mirror structure inferred from Fig. II-18 may 

be beyond current technological capabilities, it is interesting to see how for long warning 

times (> 10 years) it is possible to deflect the three medium size asteroids (∼5x1010kg) with 

less than 30 m-diameter mirrors. A minimum size of 15.5 meters is still necessary to 

deflect Apophis with 20 years of warning time. Note that some currently flying spacecraft 

and others that have already flown have similar sizes, e.g. Rosetta wing span of 32 meters. 

One of the most outstanding features in Fig. II-18 is the very large oscillation in the results 

for Apollyon3, which escape from the range of diameters considered in the plot. The 

diameter of the solar collector necessary to deflect Apollyon3 achieves values similar to 

those for Apophis and Shiva3 only for a very short period of its orbit. It is worth 

remembering that Apollyon3, as all the Apollo asteroids, has a larger semimajor axis than 

the two Aten asteroids, i.e., Apophis and Shiva3, therefore it spends most of its time at 

much further distances from the Sun than the other two objects. It is only when Apollyon3 

is moving close to its perihelion that the solar flux is at its maximum and receives as much 

solar radiation intensity as Apophis or Shiva3 receive during their entire orbits. On the other 

hand, when the asteroid reaches a distance from the Sun of 2.5 AU, the solar collector 

method becomes incapable of sublimating any material from the asteroid surface, thus 

producing no impulse to the asteroid, since the power density is not high enough to render 

Eq.(2.34) positive. This implies that the energy collected by the mirror is not enough to 

heat up the surface to the sublimation point.  
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Fig. II-18  Minimum diameter of the Solar Collector able to 

deflect the threatening asteroid by a minimum deflection 

distance.  

 

Fig. II-19 presents the solar collector mass mi as a function of warning time tw for the 

complete set of virtual asteroids. As in the nuclear interceptor case, the mi range goes from 

10 kg to 1,000,000 kg. The lower limit should be considered only as an indication of the 

ease to endeavour the deflection of a small threatening asteroid using the solar collector 

strategy, since scaling spacecraft to very small sizes can be technologically even more 

challenging than scaling to very large sizes.  



 Chapter II: On the Deflection of Threatening Objects 
  

                                                                       

 

65 

0 2 4 6 8 10 12 14 16 18 20
10

1

10
2

10
3

10
4

Warning Time t
w

, years

S
o

la
r
 C

o
ll

e
c
to

r
 m

i, 
k

g

 

 

 
0 2 4 6 8 10 12 14 16 18 20

10
2

10
3

10
4

10
5

Warning Time t
w

, years

S
o

la
r 

C
o

ll
ec

to
r 

m
i, 

k
g

 

 

 

0 2 4 6 8 10 12 14 16 18 20
10

3

10
4

10
5

10
6

Warning Time t
w

, years

S
o

la
r 

C
o

ll
ec

to
r 

m
i, 

k
g

 

 

 

Shiva
4

Apollyon
4

Shiva
3

Apophis

Apollyon
3

Shiva
2

Apollyon
2

Shiva
1

Apollyon
1  

Fig. II-19  Minimum mass of the Solar Collector able to deflect all 

the virtual asteroids by a distance equal to the minimum deflection 

distance.  
 

II.6. Gravity Tractor 

The gravity tractor exploits the mutual gravitational attraction between an asteroid 

and a spacecraft to pull the asteroid off its collision course with the Earth. In order to 

perturb the asteroid in the desired way, the spacecraft should maintain a constant hovering 

position during the pulling period. This concept was proposed by Lu & Love
[40] as a means 

of modifying the orbit of an asteroid, overcoming the uncertainties inherent to the asteroid 

surface composition, morphology and spinning rate.  
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II.6.1. System Definition & Architecture 

The following hypotheses are used to develop the mathematical model of the gravity 

tractor: 

1. The power subsystem accounts for 50% of the dry mass md. 

2. The power subsystem is capable of delivering 40 watts per kilogram (τ  = 25 

kg/kW). 

3. The propulsion subsystem generates 0.034 N/kW. 

The total thrust nT  of the spacecraft is then computed by using Eq.(2.21). The closer 

the spacecraft hovers above the asteroid surface the bigger the gravity pull is. However, the 

exhaust gasses must not impinge on the asteroid surface, otherwise the centre of mass of 

the NEO-spacecraft system will remain unperturbed: in fact, it is the stream of mass 

escaping the system which generates a change in the linear momentum of the NEO[67]. 

Note that, according to the action-reaction principle, using a specific amount of thrust to 

push the asteroid or using the same thrust to hover above it would lead to the same 

variation of the linear momentum, hence the same deviation. On the other hand, the 

thrusters must be properly pointed such that the cone of the exhaust gasses does not 

intersect the asteroid surface (see Fig. II-20). As a consequence, the effective vertical thrust 

Fhover is always smaller than the total thrust Tn,. 

 
Fig. II-20  Geometric diagram of the Gravity Tug and asteroid 

configuration. 

As mentioned above, the thrusters have to be slanted laterally by an angle 

arcsin( )
ex aR dφ + , where 

ex
φ  is equal to half the angle of the exhaust cone, in order to 

avoid the impingement of the propulsion gasses. With this configuration, the hovering 

distance can be calculated by solving the following system of equations:  

2 exφ
 

( )arcsin a exR d φ+  

Fg 

d Fhover 

Ra 
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=
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 (2.40) 

where gF  is the gravity attraction between spacecraft and asteroid, hoverF  is the thrust 

force in the direction of the asteroid, 
ex

φ  is chosen to be 20 degrees (in agreement with Lu 

& Love
[40]), Ra is the mean radius of the asteroid, G is the universal gravity constant, Ma is 

mass of the asteroid, mi is the mass of the spacecraft at the beginning of the pulling 

manoeuvre and d is the hovering distance. 

Since the spacecraft is consuming propellant to hold its hovering position, its mass 

will slowly decrease over time. The reduction in mass would allow the spacecraft either to 

hover closer to the surface or to reduce its thrust level while hovering at the same altitude. 

The latter option (i.e., keeping the hovering distance constant) is more advantageous since 

a reduction in thrust leads to a lower propellant consumption, which in turn translates into 

a higher mass of the power subsystem for a fixed initial mass into space, which translates 

into a higher initial thrust and a lower hovering distance. By iterating this process, an 

optimal hovering point can be found that makes the constant altitude option more efficient 

than the variable altitude one.  

If the constant altitude option is adopted, the mass of the spacecraft at any time t 

during the pulling manoeuvre can be computed assuming a mass consumption linearly 

proportional to the pulling action hoverF :  
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with the acceleration imparted to the asteroid simply given by:  

 ( ) ( )
2gtug

Gm t
a t

d
=  (2.42) 
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Therefore, the remaining mass md, at the end of a pulling manoeuvre with duration ∆ttug is: 
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and by using Eq.(2.43) in the system of equations (2.40), we obtain: 
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which has to be solved to determine the hovering distance d.  

Fig. II-21 shows the total impulse provided by both, the low thrust and the gravity tug 

methods. It also shows the force produced by these two deviation methods on the asteroid. 

For a specific low thrust mitigation mission, the force is constant during the whole 

deviation manoeuvre (note that the monotonic decrease of the low thrust force in Fig. II-21 

is due to the fact that the X axis refers to missions with a given duration of the pushing 

action, the X axis is not the time line of a particular mission), while for a gravity tug 

mission the force decreases as a function of the mass of the spacecraft. It is interesting to 

note that, for pulling manoeuvres longer than 13 years the force initially exerted by the 

gravity tug is higher than the force exerted by a low-thrust spacecraft with equal initial 

mass mi. On the contrary, the total impulse is higher for the low-thrust method for 

deviation actions shorter than 135 years, the moment at which the total impulse provided 

by the gravity tug becomes higher than the one achieved by the low thrust. 
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Fig. II-21  Comparison between a Low Thrust mitigation 

mission and a Gravity Tug for a possible deviation of Apophis. 

Initial mass at asteroid arrival is 5000 kg for both methods.  

Before concluding this section it is worth noting that the spacecraft has to hover at a 

relatively close distance from the asteroid and accurately maintain its position and velocity. 

Since the shape and composition of the asteroid have an impact on its gravity field, the 

gravity tractor is not totally immune from the problems related to the unknown 

composition and morphology. Therefore, hovering control in an inhomogeneous gravity 

field generated by a non-spherical asteroid is an issue that has to be taken into account. 

However, a complete analysis of the effect of a non-spherical asteroid on the control of the 

gravity tug is out of the scope of the work presented here and has already been performed 

by other authors. The interested reader can refer to the work of Broschart & Scheeres and 

Kawaguchi et al. for more details[68],[69].  

II.6.2. Gravity Tractor Mission Sizing 

Once again, using the method described above, the minimum mass mi required to 

deflect by a minimum mitigation distance each one of the test case asteroids using a 

gravity tractor can be calculated for a varying warning time tw (see Section II.3.4). The 

results are shown in Fig. II-22. Clearly, the mass mi required for a gravity tractor 

mitigation is large and, on top of that, this kind of method requires very long operational 

times, which may have a strong influence on the total cost of the mission.   
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Fig. II-22  Mass required for a gravity tug deflection mission 

able to deviate each one of the test case studied by the 

minimum Earth-asteroid distance. 

II.7. Chapter Summary 

Over the last few years, the possible scenario of an asteroid threatening to impact the 

Earth has stimulated an intense debate, among the scientific community, about possible 

deviation methods. As a consequence, a large number of mitigation scenarios have been 

proposed in the scientific literature, although comprehensive quantitative comparison was 

still lacking[70]. This chapter set the basis of the multi-criteria criteria comparison carried 

out in Chapter III by introducing six different mitigation strategies modelled; nuclear 

interceptor, kinetic impactor, low thrust tug, mass driver, solar collector and gravity 

tractor.      

Each one of the models developed yields the total impulse or acceleration imparted to 

the asteroid, given the orbital and physical characteristics of the threatening object and the 

spacecraft mass at encounter. Once the induced impulse (or acceleration) is known, Gauss’ 

planetary equations can be integrated to compute the final deviation at the Earth-asteroid 

encounter.  As shown by Fig. II-7, Fig. II-8, Fig. II-13, Fig. II-15, Fig. II-19 and Fig. II-22, 

some of the methods perform better than others, although, clearly, in order to bring forth a 
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complete assessment on their efficiency a few issues still need to be included into the 

discussion: technology readiness, the Earth-asteroid trajectory, the operational costs, etc.  

The chapter did not intend to rule out other possible methods, although many can be 

considered as combinations and/or variations of the models developed here; for example a 

targeted deflection of a small asteroid could be used for a subsequent impact and deflection 

of a threatening object[71], but this can be considered as a combination of two deflections; a 

first very accurate deflection of a small asteroid with any one of the described methods 

together with a kinetic impact. Its efficiency can therefore be already extrapolated from the 

analysis carried out here. The chapter also did not considered methods requiring warning 

times in the order of centuries (e.g. enhanced Yarkovsky), but only those that could 

possibly deflect a threatening object with a maximum warning time of 20 years.   
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Chapter III 

Hazard Deflection Missions 

 

he efficiency of six possible deflection techniques (namely nuclear interceptor, 

kinetic impactor, low-thrust propulsion, mass driver, solar collector and gravity 

tug) was addressed in Chapter II. We now discuss the feasibility of a real deflection 

scenario with the current space technology and knowledge.  We will therefore take into 

account additional criteria, such as launcher capability, interception or rendezvous 

trajectories and technology readiness, in order to improve our understanding of the 

problem and we will also compare the efficiency of the different deflection strategies from 

a wider standpoint offered by the preliminary design of complete deflection missions. 

The following two sections deal with asteroidal and cometary hazard respectively. In 

order to analyse the asteroidal threat, we make use of the three different virtual asteroids 

presented in Chapter I; Apophis, Shiva and Apollyon. Preliminary missions were designed 

that, starting from Earth, intercept or rendezvous with the threatening objects and then 

apply the maximum correction of the impacting trajectory given the remaining mass of the 

spacecraft at the asteroid. Thousands of these missions were computed for each one of the 

six models presented in Chapter II. A summary of the results is given here, and then the 

different methods are compared using an original procedure based on the concept of 

dominance of each set of computed preliminary mission. Although in this chapter we use 

only three different criteria to define the concept of dominance, the same procedure could 

be used for a more extensive analysis including other figures of merit that were not 

modelled in this work, such as for example the mission cost or mission success reliability.   

The impact hazard posed by nearly isotropic comets is instead characterized through 

the study of the Comet S-T. The analysis includes both the study of the efficiency of each 

one of the deflection models applied to a cometary object such as Comet S-T (i.e., much 

larger in size and lower density) and the cost analysis of the interception trajectories as a 

function of warning time. The aim of this secondary study is to underline the main 

difference between the asteroidal and cometary hazard.   

T 
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III.1. Asteroidal Hazard 

In the following sections a complete comparative assessment of the effectiveness of 

complete hazard mitigation missions aiming to deflect near-Earth asteroids is presented.  

Each one of the deflection methods presented in Chapter II is now subjected to a multi-

criteria optimization method in order to construct a set of Pareto optimal missions for each 

deflection method. These Pareto optimal solutions were found by maximizing the 

deviation, while at the same time minimizing the mass of the spacecraft at departure from 

the Earth and the warning time, which in this chapter denotes the time from launch to the 

foreseen impact of the asteroid with the Earth. A dominance criterion is defined and used 

to compare all the Pareto sets for all the various mitigation strategies. Finally, a 

Technology Readiness Level is associated to each strategy in order to estimate the required 

technological development. 

III.1.1. Multi-criteria Optimization Problem Formulation 

The optimality of each strategy is here defined through a number of criteria or 

objectives that have to be attained. Unlike single objective problems, multiple objective 

problems look for a set of optimal values rather than a single optimal one. The general 

problem is to find a set X of feasible solutions x such that the property P(x) is true for all 

x ∈ X⊆D: 

 { }| ( )X D P= ∈x x  (3.1) 

where the domain D is a hyper-rectangle defined by the upper bound u
ib  and lower bound 

l
ib  on the components of the vector x: 

 { }| [ , ] , 1,...,l u
i i i iD x x b b i n= ∈ ⊆ ℜ =  (3.2) 

All the solutions x satisfying property P are here defined to be optimal with respect to 

P or P-optimal and X can be said to be a P-optimal set. In the case of multi-objective 

optimization, if P is a dominance condition or Pareto optimality condition for the solution 

x, then the solution is Pareto-optimal if P(x) is true.  

Each function vector j is associated to a scalar dominance index Id such that: 

 { }( ) |  pj i jd
I i i N= ∈ ∧x x x≻  (3.3) 
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where the symbol  is used to denote the cardinality of a set, ≻  represents the dominance 

of the xi solution over the xj solution and Np is the set of the indices of all the available 

feasible solutions. A solution vector xi dominates a solution vector xj when all the 

components of the criteria, or objectives, vector f(xi) associated to xi are better (higher or 

lower) than all the components of the criteria vector f(xj) associated to xj. The property 

P(x) in this case simply defines non-dominated solutions: 

 { }| ( ) 0
d

X D I= ∈ =x x  (3.4) 

The search for the P-optimal sets X, for each strategy, was performed through an 

agent-based search approach hybridized with a domain decomposition technique[72],[73], the 

Evolutionary Predictive Interval Computation tool, or EPIC. 

III.1.2. Objective Function Definition 

The following three criteria or figures of merit were selected to define the optimality 

of each strategy: 

• The warning time w MOID l
t t t= − , which, unlike in Chapter II, now is the 

interval between the launch date and the time at the point of Earth closest 

approach (i.e., virtual impact)8; this figure of merit defines how far in advance 

we need to know that an impact is going to occur, and gives a measure of our 

capability of reacting quickly to an incoming danger.  

• The mass into space m0 at departure, which is the mass of the spacecraft at the 

Earth, after launch; this figure of merit gives a measure of how difficult 

implementing a given strategy could be, if m0 is not within current launch 

capabilities the difficulty of a given strategy increases.  

• The total deviation totr∆  at encounter calculated as totr δ∆ = ∆ +r r  where ∆r  

is the vector distance of the asteroid from the Earth at the MOID point and 

δr  is the variation given by the integration of Gauss’ planetary equations (see 

Appendix A.1); this figure of merit, together with the mass into space, gives a 

measure of how easy deflecting an asteroid with a given method is. Note that 

we use the total deviation as figure of merit and not the ability of a particular 

deflection method to avoid the passage of the asteroid through dangerous key-

                                                 
8 In Chapter II, since we did not consider the Earth-asteroid trajectory, warning time was not including it. 
Now we start our deflection endeavour at the Earth, instead of at the asteroid.  
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holes[74]. In this case even a small δr  would produce significant results, 

greatly enhancing the effectiveness of a given deflection method, and other 

criteria should be considered, such as the controllability and manoeuvrability 

of a given deflection strategy.  

These three criteria represent perhaps the minimum set of figures of merit required to 

efficiently measure the capability of a deflection strategy to mitigate a possible impact 

hazard. By itself, the magnitude of the total deflection totr∆  has little information, but with 

the ancillary information provided by the warning time wt  and the mass into space m0 the 

efficiency of a given deflection method can be studied. The mitigation of the impact hazard 

is always going to be a time constrained problem, since the defection is clearly needed 

before the impact occurs and after the hazard has been discovered, thus the warning time is 

a necessary feature to judge the feasibility of a certain method. On the other hand, the 

combination of totr∆  and mass into space m0 gives us a good idea of how efficient a 

method is at deflecting asteroids.  Finally, these three criteria may also give us a first 

estimate on other important characteristics of a space mission, such as mission cost (since 

the cost should be related with both mass launched into space and operational time) and the 

mission reliability (since a deflection totr∆  largely above a certain distance-threshold 

should also indicate a high reliability to achieve that distance-threshold). 

The tMOID is the date at which the asteroid reaches the point of Minimum Orbit 

Interception Distance from the Earth. Note that the Earth does not need to be at that 

physical point in the orbit; the aim of this analysis is to measure the effectiveness and 

efficiency of each deviation method and not to reproduce a real impact scenario. In the 

following analyses, the tMOID for each asteroid is the same for all the deflection strategies, 

and is kept fixed for all the simulations. See the summary table of each test case, in 

Chapter I, for the tMOID values. 

Even though the strategies have been modelled with a very conservative approach, an 

additional margin in the mass into space m0 was added in order to take into account the 

corrective manoeuvres required during both the transfer leg and the deflecting arc (for low 

thrust approaches). These margins, that can be found in Table III-1, are also related, to 

some extent, to the maturity level of a given technology.  
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Table III-1. Design Margins for the Spacecraft Mass. 

Strategies m0 margin 

Solar Collector 25% 
Electric Propulsion 25% 

Mass Driver 25% 
Gravity Tug 25% 

Nuclear Interceptor 10% 
Kinetic Impactor 5% 

The criteria vector for a given method A is then defined as: 

 0, ,
T

AA A A
wt m r rδ 

  
= − ∆ +f  (3.5) 

where m0 is augmented according to the design margin for method A. The problem is to 

find the set X of feasible solutions that are not dominated with respect to the criteria vector 

f
A. Each solution corresponds to a mission leaving the Earth at a departure time t0, 

performing a transfer to the asteroid either along a Lambert’s arc or a low-thrust spiral for 

a transfer time T and then applying the deviation action for a time tpush.  

Deviation strategies whose action is impulsive, such as kinetic impactor and nuclear 

interceptor, are considered to use chemical propulsion systems and thus the transfer was 

modelled as a simple Lambert’s arc. The velocity change required to transfer the spacecraft 

from the Earth to the asteroid was used to compute the propellant mass by means of 

Tsiolkovsky's rocket equation. For all the other deviation strategies, the transfer was 

modelled as a low-thrust spiral through a shape-based approach[75], assuming a departure 

from the Earth with zero relative velocity. Shape-based approaches represent the trajectory 

connecting two points in space with a particular parameterized analytical curve (or shape), 

then the spacecraft’s control thrust required to reproduce the curve can be derived. By 

tuning the shaping parameters of the low-thrust curve a trajectory requiring minimum 

propellant mass can be found. 

The operational time at the asteroid tpush was set equal to the difference between the 

time of the virtual impact, or time at the point of closest approach, and the time at 

interception, except said otherwise or for those strategies for which the model provides an 

optimal value for tpush, for example the low thrust method. All celestial bodies that the 

spacecraft may encounter during its trajectory are considered to be point masses with no 

gravity and analytical ephemerides are used for the Earth and the asteroids.  

The general solution vector is defined as: 
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 0 0 1 2[ , , , , , ]TR s sm t T n λ λ=x  (3.6) 

where nR is the number of revolutions of the Lambert’s arc or of the low-thrust spiral and 

1sλ and 2sλ are two shaping parameters for the low-thrust arcs (exponential shape[75] was 

used), if they apply. The search domain D is defined by the values in Table III-2. For each 

deflection method, all the mission opportunities with a launch in the interval [tMOID-1000 

tMOID-7300] MJD2000 (i.e., Modified Julian Days counted since 1st January 2000 at 12:00 

p.m.) and a transfer time in the interval [25  1000] days were considered. Note that the 

range of masses into space is pretty wide, varying from as low as 100 kg to as high as 100 

tons, to account for a large variety of spacecraft designs, from mini-satellites to massive 

spacecraft. Note also that the propellant mass required for the transfer is subtracted from 

m0 when the spacecraft is at the asteroid. The residual mass, either mi (interception mass) 

or md (dry mass), depending on the model, is then used to compute the deviation. All the 

missions that had a residual mass so low to produce a deviation smaller than one kilometre 

were discarded and not included in the Pareto sets. 

Table III-2. Search domain for the multi-objective 

analysis. 

m0 (kg) t0 (MJD2000) T (days) nR 1sλ  2sλ  

100 tMOID-7300 25 0 -1 -1 
100000 tMOID-1000 1000 3 1 1 

 

III.1.3. Missions to Apophis 

Fig. III-1 shows the Pareto optimal solutions found by the agent-based[72],[73] search 

for each deviation method aimed at deflecting an Apophis-like asteroid with an impact date 

on 14th April 2029. Each solution shown in Fig. III-1, so each black dot, represents Pareto-

optimal deflection mission to the asteroid Apophis, i.e., no other mission can be designed 

by changing the parameters in the solution vector in Eq.(3.6) that is able to improve all the 

three criteria at the same time. It is important to remark that each black dot from Fig. III-1 

contains more information than the represented by the 3-D figures below, such as the 

departure and arrival dates, the propellant consumption, the dry mass of the spacecraft, the 

deflection operational time-span and the deflection direction, thus they are complete 

preliminary mission designs.   

Note that the range of warning times and mass into space are almost the same for all 

the six methods, while the range of the achieved deviation is substantially different. For 
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example for the same mass into space and for the same warning time, the solar collector 

and nuclear interceptor achieve a deviation which is two orders of magnitude higher than 

that of the kinetic impactor. Furthermore, all strategies that employ a single impulse 

transfer present a characteristic striped distribution of the solutions mainly due to the 

periodicity of the optimal launch date. Note that for the two impulsive methods, i.e., 

nuclear interceptor and kinetic impactor, the direction along which the deviating action is 

applied depends solely on the transfer and therefore an optimal launch date corresponds to 

a Pareto optimal solution.  
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Fig. III-1 Pareto sets for the six deviation methods applied to asteroid 

Apophis. A) Nuclear Interceptor. B) Kinetic Impactor. C) Low Thrust 

Propulsion. D) Mass Driver. E) Solar Collector. F) Gravity Tug.  
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The surfaces plotted in Fig. III-1: A, E and D have a plateau at a deviation value of 

about 400,000 km. The plateau is due to the fact that the integration was stopped once the 

deviation reached one Earth-Moon distance. In order for the hypotheses behind the 

proximal motion equations to hold true, the variation of the orbit radius rδ  must be small 

compared to the unperturbed one. Therefore the Earth-Moon distance, was taken as the 

upper threshold limit since this is considered to be sufficient to remove the threat of an 

impact. The size of the plateau regions suggests that both solar collector and nuclear 

interceptor provide similar performance. Note that the two approaches are utterly different, 

as the deviation is achieved through a continuous thrusting arc in the former case and 

through an impulsive change of the linear momentum in the latter. 

Pareto Contour Lines 

A simple way to compare the 3D Pareto fronts of the different strategies and 

asteroids is by plotting deviation isolines, thus a line or curve along which the value of the 

deflection δr is constant. Fig. III-2 shows the isolines for a deflection of 13,724 km for 

each deviation strategy targeting to deflect Apophis. Note that this is the minimum 

deviation necessary to deflect Apophis, which is computed by taking into account, not only 

the volume of the Earth, but also the deflection of the trajectory of Apophis due to the 

Earth’s gravity attraction as described in  section I.5. 
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Fig. III-2  Pareto front contour lines for a 13,720 km deflection 

of Apophis for all the analyzed deviation methods. The legend 

of the figures stands as follows: SC-solar collector, LT-low 

thrust, MD-mass driver, NI-nuclear interceptor, KI-kinetic 

impactor and SC 6-m is the solar collector model with a 

constraint in the operational pushing time of six months. 

Fig. III-2 shows how only four strategies out of the six analysed are able to deflect 

Apophis by 13,720 km, namely solar collector (SC and SC 6-m), low thrust (LT), mass 

driver (MD) and nuclear interceptor (NI). In fact, only three strategies, the mass driver, the 

nuclear interceptor and the two solar collector approaches, yield the desired deviation with 

a mass in space smaller than 100,000 kg and a warning time shorter than 10 years. The low 

thrust method is also able to provide the minimum necessary deflection, although requiring 

a mass into space very close to 100,000kg and almost 20 years of warning time. The only 

difference between the two solar collector approaches presented in Fig. III-2  is the time of 

the pushing manoeuvre, or in other words, the operational time at the asteroid. The SC 

approach uses as pushing manoeuvre time all the available warning time, i.e., time left for 

the impact after reaching the asteroid, while the second scenario, SC 6-m, uses only the 

first six months after arrival as pushing time. 
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III.1.4. Missions to Shiva 

This section summarizes the results of the multi-criteria optimization of deflection 

missions aiming to mitigate the threat posed by a Shiva-like asteroid. The virtual Shiva 

asteroids range from 5x108kg to 5x1011kg, which in terms of impact frequency translates to 

one impact each 1,000 to 250,000 years respectively (see Table 7 in Chapter I). Fig. III-3 

shows the Pareto optimal solutions found by the agent-based search targeting to deflect 

Shiva3. The Pareto optimal solutions for the three remaining sizes of Shiva are similar in 

shape and distribution of the solutions, as should be expected, since the only difference 

between the four test cases is the mass of the asteroid. Since the small differences are 

difficult to spot in the general 3D view of the Pareto fronts, they were not reproduced in 

this Chapter, although an analysis of the complete data is performed by means of the 

deflection isolines. 

The Pareto-optimal sets in Fig. III-3 show similar features to the previous results in 

Fig. III-1. Again, only three deflection methods reach the deviation plateau at 400,000 km 

(nuclear interceptor, mass driver and solar collector) and similar striped configuration is 

clearly seen in impulsive methods. We can also observe that the synodic period between 

the Earth and Shiva is playing a more significant role in the optimality of the launch date, 

and thus in the distribution of the optimal solutions, since a 4-years wide stripe 

configuration can be also observed in low trust methods.   
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Fig. III-3 Pareto sets for the six deviation methods applied to asteroid 

Shiva3. A) Nuclear Interceptor. B) Kinetic Impactor. C) Low Thrust 

Propulsion. D) Mass Driver. E) Solar Collector. F) Gravity Tug. 
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Pareto Contour Lines 

Fig. III-4 shows the isolines for a 9,690-km deflection on the four Shiva cases for 

different deflection methods. Shiva’s orbit has a higher relative velocity at Earth encounter 

than the Apophis case, therefore its orbit is less affected by the Earth’s gravity during the 

asteroid’s final approach, and, as a consequence, the minimum deflection required to 

mitigate Shiva’s threat is 4,000 km shorter than for Apophis.  
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Fig. III-4 Pareto front contour lines for a 9,690 km deflection of all four 

Shiva asteroids (see Table I-6) and for all the analyzed deviation 

methods. A) Shiva1 B) Shiva2 C) Shiva3 D) Shiva4. The legend of the 

figures stands as follows: SC-solar collector, LT-low thrust, MD-mass 

driver, NI-nuclear interceptor, KI-kinetic impactor, GT-gravity tug. 

It is remarkable to see how all the strategies are, in principle, possible candidates for 

the deflection of Shiva-like asteroids with mass smaller than 5x109kg. Notice that if the 

solar collector and the nuclear interceptor do not appear in Fig. III-4A is because the 

corresponding isoline is outside the range of mass in space and warning time studied. This, 

unlike for the low thrust, kinetic impactor and gravity tug methods in Fig. III-4D, implies 
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that all the solutions in the studied domain are above the required deflection distance. As 

discussed in Chapter II, this may appear to be an excessive scaling of the model, and 

unfeasible from a technological point of view, but it is nevertheless indicative of a very 

good performance of these two strategies. It is also remarkable to note the good 

performance of the kinetic impactor method, which, although the simplest of the studied 

concept, performs as well as the low thrust method, especially for short warning times. As 

expected, for the largest Shiva case, only the three most efficient methods are able to 

provide the required deviation within the range of mass into space and warning time. 

III.1.5. Missions to Apollyon 

This section describes the results of the multi-criteria optimization on the deflection 

of the Apollyon series. As previously mentioned, the Pareto surfaces of the different 

elements of each series are similar in shape, thus only one, Apollyon3, is shown in Fig. 

III-5. Again, the 3D images of the Apollyon3’s Pareto solutions are similar in shape to the 

previously shown for Apophis and Shiva3. We can however notice that the striped 

configuration is now slightly more evident than in previous results, this feature is 

magnified here by the larger semimajor axis and eccentricity of Apollyon with respect the 

Aten examples.  
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Fig. III-5 Pareto sets for the six deviation methods applied to asteroid 

Apollyon3. A) Nuclear Interceptor. B) Kinetic Impactor. C) Low Thrust 

Propulsion. D) Mass Driver. E) Solar Collector. F) Gravity Tug.  
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Pareto Contour Lines 

The following figure, Fig. III-6, shows now the isolines for an 8,202-km deflection 

on the four Apollyon cases. One of the most outstanding differences between the Apollyon 

results and those for the two Aten objects (Apophis and Shiva) is the very good 

performance of the kinetic impactor. As commented previously, we already noticed from 

Fig. III-4 that the deflection efficiency of the kinetic impactor was very similar to that of 

the low thrust deflection. The isolines for the Apollyon cases (Fig. III-6) show, not only 

how the kinetic impactor clearly outperforms the low thrust method, but how the kinetic 

impactor’s efficiency increases almost tenfold when compared with the Aten cases. The 

main reason for the high efficiency of the kinetic impactor in the Apollyon cases is due to 

the fact that Apollo asteroids have higher eccentricity and inclination and therefore a 

higher relative velocity with respect to the orbit of the Earth. A high-speed and optimal 

impact trajectory is therefore less expensive, in terms of propellant mass, than in the two 

Aten cases and more mass-efficient than a rendezvous. We should remember that both the 

velocity of the impact and its direction are the result of simple Lambert arc calculation. 
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Fig. III-6 Pareto front contour lines for an 8,202 km deflection of all four 

Apollyon asteroids for all the analyzed deviation methods. A) Apollyon1 

B) Apollyon2 C) Apollyon3 D) Apollyon4. The legend of the figures stands 

as follows: SC-solar collector, LT-low thrust, MD-mass driver, NI-

nuclear interceptor, KI-kinetic impactor, GT-gravity tug. 

 

III.1.6. Strategy Comparison 

The effectiveness and efficiency of each strategy are expressed, in this Chapter, 

through a set of Pareto optimal points (e.g., Fig. III-1, Fig. III-3 and Fig. III-5). In order to 

compare one strategy against the others it is possible to use the concept of dominance of 

one Pareto set over another: an element (or solution belonging to the Pareto set) i of 

strategy A is said to be dominated by element j of strategy B if all the components of the 

vector objective function B
jf  are better (i.e., wt and 0m smaller and r rδ∆ +  bigger) than 

all the components of the vector objective function A
if . Then, the dominance index Ii(mA) 
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of an element i of strategy A with respect to strategy B is the cardinality of the set of 

elements of the Pareto-optimal set of strategy B that dominate element i:  

 { }( ) | A B
i i jA

I m j= f f≺  (3.7) 

where the dominance symbol ≺  in Eq.(3.7) means that fj
B dominates fi

A, i.e. all the 

components of fj
B  are better than all the components of fi

A. Thus if the value of the 

dominance index of the element i is 0, it means that there are no solutions in the Pareto-

optimal set of strategy B that have all the three criteria that are better than the three criteria 

associated to element i. We can now say that strategy A dominates strategy B if the 

percentage of the elements of A that are dominated by B, i.e. the percentage of elements of 

A with dominance index I(mA) different from 0, is less than that of the elements of B that 

are dominated by A: 

 

1 1

1 if ( ) 0
( )

0 if ( ) 0

1 1
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
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=

⇒ <∑ ∑≻

 (3.8) 

where NA is the total number of the solutions in the Pareto set of method (or strategy) mA 

and NB is the total number of solutions in the Pareto set of method (or strategy) mB.  

The following nine tables (Table III-3 to Table III-11) show the dominance of the six 

different strategies applied to all nine test cases. The numbers in the tables are the 

percentage of elements of the method in the corresponding row that “dominate” over the 

elements of the method in the corresponding column, or in other words, the percentage of 

elements of the method in the corresponding row that obtained zero in Eq.(3.7). For 

example, if we look at the yellow-shaded box in Table III-3, we see that 100% of the 

solutions in the Pareto set of the Mass Driver dominate (i.e. all the three criteria are equal 

or better) the solutions in the Pareto set of the Low Thrust. Note that the numbers in every 

column do not necessarily add up to 100 with the corresponding numbers in every row. For 

example, for Apophis (see green-shaded boxes in Table III-3) 16% of the Kinetic Impactor 

solutions are dominant over Low-thrust solutions while 98% of Low-Thrust solutions are 

dominant over Kinetic Impactor solutions. The reasons for this are twofold; firstly, because 

we compute the percentage of elements being equal or better, so that two equal elements 

will dominate over each other; secondly, because we compute the percentage of points 
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within each Pareto set, therefore it could well be that 100% of the points of a set are 

dominating only a small fraction of the points of another set. 

Table III-3  Strategy Dominance for Apophis.  

 NI KI LT MD SC SC 6m GT 

Nuclear Interceptor (NI)  100 100 100 1 5 100 

Kinetic Impactor (KI) 0  16 0 0 0 100 

Low Thrust (LT) 0 98  0 0 0 100 

Mass Driver (MD) 0 100 100  0 0 100 

Solar Collector (SC) 100 100 100 100  100 100 

Solar Collector 6-m OT 99 100 100 100 18  100 

Gravity Tug (GT) 0 1 0 0 0 0  

Table III-4  Strategy Dominance for Shiva1. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 43 100 

Kinetic Impactor (KI) 0  44 0 0 100 

Low Thrust (LT) 0 78  0 0 100 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 71 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  

Table III-5  Strategy Dominance for Shiva2. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 20 100 

Kinetic Impactor (KI) 0  31 0 0 100 

Low Thrust (LT) 0 88  0 0 100 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 92 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  

Table III-6  Strategy Dominance for Shiva3. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 10 100 

Kinetic Impactor (KI) 0  42 0 0 100 

Low Thrust (LT) 0 88  0 0 100 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 90 100 100 100  100 

Gravity Tug (GT) 0 1 0 0 0  

Table III-7  Strategy Dominance for Shiva4. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 7 100 

Kinetic Impactor (KI) 0  61 0 0 76 

Low Thrust (LT) 0 95  0 0 100 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 94 100 100 100  100 

Gravity Tug (GT) 0 68 1 0 0  



 Chapter III: Hazard Deflection Missions 
  

                                                                       

 

91 

Table III-8  Strategy Dominance for Apollyon1. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 100 100 

Kinetic Impactor (KI) 0  100 1 0 100 

Low Thrust (LT) 0 0  0 0 100 

Mass Driver (MD) 0 100 100  1 100 

Solar Collector (SC) 0 100 100 95  100 

Gravity Tug (GT) 0 0 0 0 0  

Table III-9  Strategy Dominance for Apollyon2. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 100 100 

Kinetic Impactor (KI) 0  100 1 1 100 

Low Thrust (LT) 0 0  0 0 100 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 1 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  

Table III-10  Strategy Dominance for Apollyon3. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 99 100 

Kinetic Impactor (KI) 0  100 4 0 100 

Low Thrust (LT) 0 0  0 0 100 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 2 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  

Table III-11  Strategy Dominance for Apollyon4. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 99 100 

Kinetic Impactor (KI) 0  100 12 1 100 

Low Thrust (LT) 0 0  0 0 99 

Mass Driver (MD) 0 100 100  0 100 

Solar Collector (SC) 8 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  
 

From the dominance comparison, the solar collector and nuclear interceptor result to 

be the dominant methods in the domain under consideration. Solar collector achieves better 

performance than nuclear interceptor for the Aten class, but not for the Apollo class. This 

is due mainly to the fact that the smaller semimajor axis of the Aten group means better 

solar radiation and therefore higher efficiency of the solar collector. It is interesting to 

underline that the Kinetic Impactor dominates the Low Thrust option for the Apollo case. 

The same result can be seen in Fig. III-6, though limited to one particular value of 

deflection δr. 
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Despite the fact that, as shown in the isolines Fig. III-4 and Fig. III-6, for small size 

asteroids, techniques such as kinetic impactor, low thrust and gravity tug become effective, 

the relative performance between two deflection strategies shows only slight changes. For 

example, we can notice in Table III-7 the improvement of the gravity tug performance 

relative to the kinetic impactor. This change is due to fact that if an asteroid is 10 times 

heavier, for a fixed kinetic impact (i.e., fixed mi, /S C
∆v )  the δ v  applied to the asteroid 

would be 10 times smaller. On the other hand, the same gravity tug would apply an 

acceleration on average only 5 times smaller for a 10 times heavier asteroid. Yet, we do not 

observe the same improvement of the gravity tug Pareto front in Table III-11 since the 

kinetic impactor Pareto front is substantially better for Apollyon, and the dominance does 

not change despite the relative performance improvement.  

Furthermore, it should be noted, that due to the stochastic nature of the search for 

Pareto optimal solutions performed by the optimizer, the 3-D surfaces in Fig. III-1, Fig. 

III-3 and Fig. III-5 can locally change if the optimizer is run multiple times. As a 

consequence, the dominance evaluation is subject to minor changes; an increase or 

decrease of a few percentage points. 

III.1.7.  Influence of the Technology Readiness Level 

As an additional criterion, we considered the technology readiness level (TRL) of 

each method as a measure of its expected viability in the near future. We assumed that in 

the case of an impact the required time to implement a given deviation method had to take 

into account the necessary development effort and that the development effort was driven 

by the component of the technology composing the deviation method having the lowest 

TRL. The development effort is here measured in man years (amount of work performed 

by an average worker in one year). Although this is not an exact measure of the time 

required to implement a given technology, it provides a good estimation of the increased 

difficulty to bring a given technology to full operational capability. The actual 

development time depends on the amount of available resources and on political 

considerations that are however out of the scope of this analysis. Therefore, we assume that 

the development effort is a measure of the required delay in the implementation of a given 

deflection method. To be more precise, the warning time is redefined to be the time 

between the point when a given technology starts to be developed and the predicted impact 

time. For example, given a technology that needs a man-time ∆tdev to bring it to a sufficient 

level of development to be launched, the warning time becomes w MOID l dev
t t t t= − + ∆ , 
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where tl is the launch date. We use a standard definition of TRL
[76],[77]

, as summarized in 

Table III-12, assume no limitations due to economic or political issues, and no 

developments driven by other applications or breakthrough discoveries. We assign the 

current TRL to each of the deviation methods and assume that it will remain constant until 

tMOID-tw. These assumptions correspond to a situation in which cost is not an issue should a 

global threat be faced, but, on the other hand, both economic and political issues prevent 

any development not motivated by a confirmed catastrophic impact.     

Table III-12  Technology Readiness Levels. 

TRL Technology Readiness 
1 Basic principles observed and reported 
2 Technology concept and/or application formulated 
3 Analytical & experimental critical function and/or characteristic proof-of-concept 
4 Component and/or breadboard validation in laboratory environment 
5 Component and/or breadboard validation in relevant environment 
6 System/subsystem model or prototype demonstration in a relevant environment 

(ground or space) 
7 System prototype demonstration in a space environment 
8 Actual system completed and "Flight qualified" through test and demonstration 

(ground or space) 
9 Actual system "Flight proven" through successful mission operations 

The TRL of each deviation methodology is determined by taking into account past 

missions and state of the art scientific research. The TRL for each method is then mapped 

into the number of man-years ∆tdev needed to increase a given technology from its current 

TRL to TRL 9, through the logistic function[78]: 

 

1
cdev t

a
t b

e τ
Λ−−

= +
+

 (3.9) 

where tdev is the required development effort (measured in man years) to bring a 

technology from TRL 1 to TRL Λ. The parameter tc represents a turning point for the 

development of a technology when the critical function characteristics have been already 

demonstrated experimentally and analytically but the components have not yet been tested 

in a relevant environment. Around that point, we expect a maximum increase in the 

investments to turn a conceptual design into a first hardware prototype. In the following 

and according to the TRL standard definitions[76],[77],[78], we set tc to 5, which is the value 

corresponding to TRL5. The coefficients a, b, and τ  were chosen so that: 
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( 2) 0;

( 9) 15;

( 7) ( 4) 10

dev

dev

dev dev

t

t

t t

Λ = =
Λ = =

Λ = − Λ = =

 (3.10) 

The set of boundary conditions in Eq.(3.10) corresponds to a maximum development 

effort of 15 man-years from TRL 2 to TRL 9 and a development effort from breadboard to 

first prototype system demonstration into space of 10 man-years. The resulting ∆tdev is 

simply the difference between the tdev at TRL 9 and the tdev at a given TRL Λ (see Fig. 

III-7).  
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Fig. III-7  TRL mapping into required development effort to 

reach full operational capabilities. 

Note that we start with a minimum TRL of 2 since the basic concept and application 

have already been formulated for all the deflection methods under consideration. Then, 

when allocating the TRL to each deflection method we will distinguish between innovative 

technologies pre or during mission assessment phase (TRL 1 to 4) and existing 

technologies during mission definition phase (TRL 5 to 9). 

TRL Allocation 

In the following discussion we will assign a TRL to each one of the deflection 

methods. Each deviation method is characterized by a number of critical technologies that 

need to be developed in order make the method actually feasible. The technologies 

considered in this analysis are only strictly related to each deflection method model 

presented in Chapter II and do not include the development of new launch capabilities and 
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the required increase in the knowledge of the physical and orbital characteristics of the 

asteroids. Once the critical technologies for a given deflection method are identified, a TRL 

is assigned to each technology. We then allocate to the whole deflection method the TRL of 

the least developed critical technology. Since the TRL for some methods and technologies 

is uncertain, due to several concurrent factors, we assign to each deflection method an 

interval of TRLs. These intervals represent our level of confidence in the present level of 

development of a given technology. The assignment is based on Table III-12 and on the 

assumption that a technology at TRL 9 that is reused in a new application with new 

requirements will be downgraded to TRL 4.  Note also that we consider a technology at 

TRL 9 only when it has successfully flown on not only one, but multiple missions.  

 

Kinetic Impactor: although the kinetic impactor strategy has not been completely proven 

yet, a mission with similar characteristics, Deep Impact, has already flown successfully. 

Furthermore, although the impact velocity is a critical issue for this strategy, the average 

impact velocity of all solutions found in this study was in the region of 10 km/s, which is 

indeed very similar to the Deep Impact crash velocity (∼ 10.2 km/s). For this deflection 

method, we consider two critical issues: high precision targeting and enhancement factor. 

The former issue would require a better knowledge of the motion of the centre of mass and 

rotational state of the asteroid in order to correctly hit the asteroid and transfer the required 

∆v, the latter issue would require a better knowledge of the composition and morphology 

of the asteroid. Thus, both cases are related to an increased knowledge of the 

characteristics of the asteroid. The former issue would also require the development of 

accurate navigation and orbit determination capabilities for fast close encounters. 

However, we can assume that this technology is already available and at TRL 9 given all 

the past and present missions using gravity assist manoeuvres. Since only one example of 

high velocity impact exists, we assign a TRL ranging between 7 and 8 to the kinetic 

impactor. 

 

Nuclear Interceptor: nuclear weapons have not been tested in space since the Limited Test 

Ban Treaty forbids all nuclear use in both space and atmosphere. Furthermore, although 

the effects of a nuclear explosion can be considered to be well known, there has not been 

any Nuclear Interceptor prototype or any equivalent prototype in space, therefore the TRL 
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should be no higher than 6. On the other hand the launch of nuclear warhead is fully 

developed (e.g., ICBM), thus we assign a TRL ranging from 6 to 8.  

 

Low Thrust: Low Thrust requires the following main critical technologies; low-thrust 

propulsion, nuclear power generation, autonomous rendezvous and landing, anchoring 

system. Low-thrust engines delivering the required level of thrust have been used as main 

propulsion systems since 1998, with Deep Space 1. They could therefore be considered at 

TRL 9 already. On the other hand, some missions in the Pareto set require a thrusting time 

of more than 1000 days, which exceeds the operational lifetime of current electric engines. 

For those missions either a complete redesign of the propulsion system or multiple engines 

would be required, in the former case the TRL would be not higher than 4. Rendezvous and 

landing operations for small spacecraft can be considered at TRL 7 due to previous (e.g., 

NEAR[79]) and ongoing missions to comets and asteroids (such as Rosetta[80] and 

Hayabusa[69]). Nuclear reactors delivering between 1 to 10 kW have already flown since 

1965 (e.g., the US SNAP-10A) and higher power reactors can be derived from terrestrial 

ones with limited new developments, thus this technology can be considered at least to be 

between TRL 6 and 7. An anchoring system has already been designed for the lander of 

Rosetta though for more massive spacecraft the anchoring and landing system would 

require further development therefore their TRL cannot be considered higher than 6. 

Therefore, overall, the TRL for the Low Thrust method can be considered ranging from 4 

to 6.   

 

Gravity Tug: Gravity Tug requires the following main critical technologies; autonomous 

proximal motion control in an inhomogeneous gravity field, nuclear power generation, 

low-thrust propulsion. A hovering approach to asteroid Itokawa was used by the mission 

Hayabusa[69]. The same technique is proposed for the gravitational tug, but to a completely 

different level of accuracy and autonomy and therefore its TRL should be between 3 (no 

test in relevant environment) and 5 (if Hayabusa is considered to be an example of 

hovering in relevant environment). Low-thrust propulsion has the same TRL as for Low-

Thrust deviation methods and shares the same issues, in particular the operational lifetime 

since the number of missions with a pushing time higher than 1000 days is higher than for 

the Low-Thrust. Nuclear power generation for this method has the same TRL as for the 

Low-Thrust technique therefore the overall TRL for the Gravity Tug ranges from 3 to 5. 
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Mass Driver: Mass Driver requires the following main critical technologies; autonomous 

rendezvous and landing, autonomous mining in microgravity, high power railgun system, 

nuclear power generation, anchoring system. Magnetic railgun systems have already been 

developed and used on Earth for other applications[59], we can thus assume a TRL 5 for this 

technology. Rendezvous and landing is at TRL 7, as discussed previously for the low thrust 

technique. Nuclear power generation is between TRL 6 and TRL 7, also as discussed in the 

low thrust method. The anchoring system and the mining system in microgravity instead 

require a substantial development [60],[61],[81],[82], thus their TRL should not be higher than 4. 

Though drilling systems have been already tested in space (e.g., Apollo program[83]), the 

level of power involved for a successful implementation of the Mass Driver would require 

a substantial redesign of the mining and anchoring system to cope with the microgravity 

conditions. Since a conceptual design for this technology already exists[84] (TRL 2) we can 

assign a TRL ranging between 2 and 4 to the Mass Driver. 

 

Solar Collector: Solar Collector requires the following main critical technologies; adaptive 

optics, deployment and control of ultra-light mirrors, autonomous orbit control, accurate 

autonomous pointing. The mirrors have to focus the light of the Sun in every operational 

condition and therefore the curvature has to be actively controlled, furthermore it is 

expected that the light is collimated by a series of lenses. The collimation of the beams is 

of primary importance to maintain the required power density, especially for rotating 

asteroids with high elongation, for which the closest and farthest distance from the 

spacecraft could be considerable (i.e., larger than 100 meters). Adaptive optics for 

terrestrial[85] and space applications have been developed and used in space on telescopes 

and therefore their TRL could be considered to be at 7, on the other hand, for this particular 

application it would require an autonomous control of the pointing and focusing dependent 

on the power density of the illuminated spot. This would require a substantial redesign and 

a new development, therefore the TRL should be between 2 and 3. The deployment of 

ultra-light structures of small to medium dimensions has already been tested in space and 

would be between TRL 6 and 7
[86]

 and ultra-light adaptive mirrors for space have already 

been developed and prototyped and would be between TRL 4 and 5 [87],[88], on the other 

hand the deployment and control of large focusing mirrors is still at a conceptual stage and 

therefore at TRL 2. Accurate autonomous orbit control is at the same level of the Gravity 
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Tug and therefore is at TRL 4. The overall TRL for the Solar Collector is thus considered to 

be between 2 and 3. 

The TRL intervals for each deviation methods are summarized in Table III-13. These 

are then converted into a ∆tdev according to Fig. III-7, which shows the man-years ∆tdev 

needed to increase a given technology from its current TRL to TRL 9.  

Table III-13  TRL and ∆∆∆∆tdev for all the deviation methods. 

Deviation Method TRL intervals ∆∆∆∆tdev [man-years] 

Kinetic Impactor 7-8 1.5-0.4 
Nuclear Interceptor 6-8 3.9-0.4 

Low-Thrust 4-6 11.5-3.9 
Gravity Tug  3-5 13.9-7.7 
Mass Driver 2-4 15-11.5 

Solar Concentrator 2-3 15-13.9 

The development time ∆tdev due to the technology readiness level is now applied to 

the Pareto optimal sets by adding it to the warning time tw: 

 0, ,
T

w devt t m r rδ= + ∆ − ∆ +  f  (3.11) 

Since the impact date is kept fixed for all the strategies, all the Pareto optimal 

solutions that, by adding the new ∆tdev, would require an updated warning time w devt t+ ∆  

such that the arrival date at the asteroid exceeds the tMOID are removed from the 

comparison. As a consequence, a strategy with a low technology readiness requires a 

longer warning time for the same deviation or a lower deviation for the same warning time. 

The following three tables (Table III-14 to Table III-16) show the intervals of dominance 

of all the strategies for a simulated deviation of Apophis, Shiva3 and Apollyon3 after 

applying the range of TRL from Table III-13. Note that, when two numbers are shown in 

the tables, numbers on the left correspond to the results using the lower TRL boundary 

(numbers on the left in Table III-13) for all the technologies, while numbers on the right 

correspond to the results using the upper TRL boundary (numbers on the right in Table 

III-13). When only one result is shown in Table III-14 to Table III-16, it means that the 

results remained constant for both lower and upper TRL cases. 
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Table III-14  Strategy Dominance for Apophis. 

 NI KI LT MD SC SC 6m GT 

Nuclear Interceptor (NI)  100 100 100 100-98 100-99 100 

Kinetic Impactor (KI) 7-0  99-39 61-54 59 59 100 

Low Thrust (LT) 0 1-87  7-36 7-48 7-48 100 

Mass Driver (MD) 0 99-100 100  0-18 0-18 100 

Solar Collector (SC) 33-36 100 100 100  100 100 

Solar Collector 6-m OT 20 100 100 100 24  100 

Gravity Tug (GT) 0 0 1-0 11-4 11-15 11-15  

Table III-15  Strategy Dominance for Shiva3. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 100 100 

Kinetic Impactor (KI) 26-0  100-92 94-90 91 100 

Low Thrust (LT) 0 0-50  34-51 34-59 100 

Mass Driver (MD) 0 97-99 100-99  0-43 100 

Solar Collector (SC) 0-2 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  

Table III-16  Strategy Dominance for Apollyon3. 

 NI KI LT MD SC GT 

Nuclear Interceptor (NI)  100 100 100 100 100 

Kinetic Impactor (KI) 75-0  100 98-97 97 100 

Low Thrust (LT) 0 0  34-46 34-57 100 

Mass Driver (MD) 0 63-86 100  0-15 100 

Solar Collector (SC) 0 100 100 100  100 

Gravity Tug (GT) 0 0 0 0 0  

By comparing Table III-14, Table III-15 and Table III-16 with Table III-3, Table 

III-6 and Table III-10 some preliminary considerations can be drawn. The first is that when 

the Technology Readiness Level is considered, the kinetic impactor becomes competitive 

since its Pareto front encloses parts of the criteria space that the other strategies are not 

able to cover. On the other hand, even after the technology readiness shifting is applied, the 

solar collector strategy remains particularly competitive, despite the fact that the nuclear 

interceptor has better comparative performance in the three tables.  

III.2. Cometary Hazard 

We will now briefly discuss the issue of the cometary hazard, its mitigation and the 

main difference with its asteroidal counterpart. When looking at the 149 surveyed Near 

Earth Comets (NEC)9 (see Fig. III-8), one may notice how most of the cometary objects 

                                                 
9 Note that in Chapter I, Section I.4.4., it is said that there are 82 NEC, this is because the list used in the 
histograms in Fig. III-8 contains not only the comets but also fragments from their disruption. 
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have Apollo-like orbits, which points out that most of the NEC are in fact Ecliptic comets 

(see Section I.2.2). All other objects in Fig. III-8 with seemingly random distribution of the 

inclination are Nearly-isotropic short-period (<200 years) comets (see also Section I.2.2). 

There are no Nearly-isotropic long-period (>200 years) comets among the surveyed NECs. 

This lack of long period objects is due to the fact that comets are very faint objects when 

far from the Sun, due to both their small size and low albedo (∼0.04), and thus are 

practically undetectable until they are well inside the orbit of Jupiter[10].  
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Fig. III-8 Eccentricity, inclination and orbital period histograms of the 

149 Near Earth Comets retrieved from NASA’s NEO program at 14
th

 

November 2008.
[23]

 

 

Most probably, a NEC would be then detected only when approaching its perihelion 

and so the arrival of long period and parabolic objects from the Oort cloud cannot be 

foreseen. A cometary impact scenario should therefore feature either very similar 

characteristics to the Apollo threats, through a short-period ecliptic comet, or a very short 

warning time, most probably measured only in months, if through a nearly-isotropic comet. 
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Since we have already studied Apollyon as an example of objects with high eccentricity 

and low inclination orbit, we will now focus the analysis on nearly-isotropic comets.     

The virtual threatening comet presented in Chapter I, Comet S-T, is a 133-years 

nearly-isotropic comet, see Table I-9 and Table I-10. Fig. III-9 shows the change of 

velocity required to deflect Comet S-T the minimum distance necessary to miss the Earth 

(see Section I.5). For comparison purposes, the figure also shows the velocity required to 

deflect Apophis from an impact trajectory. As shown in the figure, the delta-velocity 

needed to deflect a highly eccentric long period object such as Comet S-T is even less 

demanding than that required to deflect an Aten-like asteroid. This is mainly due to two 

reasons; firstly, because, the comet moves at a much higher speed than the asteroid, hence 

a given delta-velocity produces a larger increment of orbital period in the comet case, 

secondly, because the comet’s orbit is barely altered by the Earth’s gravity (due to, again, 

its large orbital velocity). Comet S-T therefore needs only half of the deflection distance 

needed by Apophis in order to miss the Earth (see Table I-11 for hyperbolic factors).    
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Fig. III-9 Minimum required ∆v for a Rε ⊕⋅  deflection, where 

R⊕  is the Earth radius and ε is the hyperbolic factor of each 

particular case.  

Fig. III-10 shows the spacecraft mass mi required at the comet encounter in order to 

deflect the comet’s impact trajectory using the six deflection methods presented in Chapter 

II. The nuclear interceptor performs very well for the entire range of warning time, and is 
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clearly the most effective deflection technique among the six analysed. If the solar 

collector strategy was performing stunningly well for Aten-like asteroids, the opposite 

happens in the comet case.  Comet S-T performs only one periapsis approach during the 20 

years time prior to the virtual impact and it is only within the year prior to the final impact 

that the comet reaches a distance from the Sun at which the solar collector generates 

enough radiation energy to start the sublimation of surface material needed to produce 

thrust. The efficiency of the solar collector method is therefore greatly reduced by the 

shape of the comet’s orbit. It is also remarkable to note the loss of efficiency of the gravity 

tractor. This is due to the fact that the comet has a lower density than the asteroids, and has 

therefore a bigger size than asteroids with similar mass, which implies larger slanting angle 

for the gravity tug’s thrusters, and this, as explained in Section II.12., results into a lower 

efficiency.  
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Fig. III-10  Interception mass mi of the deflection mission 

required to mitigate the hazard posed by comet S-T. 

In general, we see from Fig. III-10 that impulsive methods are more effective than 

low thrust methods for a comet-like threat. We should also notice that the reason why the 

kinetic impactor performs so efficiently, and even out-performs the mass driver for 

warning times shorter than 12 years, is due to the fact that the impact velocity chosen is 

very high (i.e., 60 km/s), which seems perfectly possible when dealing with a retrograde 
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comet like Comet S-T. Moreover, even if methods like the mass driver could perform better 

than a simple kinetic impactor for long warning times, we still need to account for the 

propellant mass required to rendezvous with the comet. Screening all possible launch dates 

and time of flight ToF with a Lambert arc, we can derive an approximate delta-velocity 

requirement for both intercept and rendezvous the comet as a function of the time available 

until the impact, thus warning time minus the time of flight of the trajectory wit t ToF= − . 

As we see in Fig. III-11, for both cases the delta-velocity required is extremely high, 

although, at any given time, the rendezvous option is at least twice as expensive as the 

interception option.  
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Fig. III-11  Interception trajectory delta-velocity requirements 

as a function of the time remaining from interception to 

impact.  

Now, if we consider the fact that this sort of celestial threat may not be detected 

before the comet has crossed the orbit of Jupiter, we should be considering warning times 

shorter than a year. Fig. III-12 presents the approximate required minimum delta-velocity 

to reach the comet, departing from Earth within the last year of the comet’s trajectory and 

allowing us the time to impact specified along the X axis of the figure. In other words, the 
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black curve in Fig. III-12 shows the minimum delta-velocity of a pork-chop10 screening 

through all possible values of departure times and time of flights that allow us to act onto 

the comet within that last year. Using Tsiolkovsky's rocket equation, the minimum mass 

launched into space m0 needed to deflect the comet within the last year of its trajectory can 

also be extrapolated by taking into account both the delta-velocity to reach the comet, 

shown in Fig. III-12, and the minimum interception mass mi of the nuclear interceptor, 

shown in Fig. III-10. It is then clear from the figure that such a deflection would be utterly 

impossible with current technology, since the minimum mass necessary for deflection is 

more than three orders of magnitude above any current launching capabilities.  
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Fig. III-12  Minimum delta-velocity and mass in space for a 

nuclear interceptor if the comet is discovered one year prior to 

impact. 

Finally and again without considering the year-limit warning time constraint, Fig. 

III-13 shows the Pareto front of the nuclear impactor for the Comet S-T. As we can see, 

given enough warning time, it could be possible to deflect a comet like the fictitious Comet 

S-T. It is therefore the constraint in warning time of a realistic Nearly-isotropic comet 

impact threat that poses the most challenging demands. 

                                                 
10 A pork-chop plot is a graph that depicts the transfer delta-velocities in all possible combinations of launch 
date and time of flight. It is named after the characteristic pork-chop shaped contours displayed in the graph.  
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Fig. III-13  Pareto sets for the nuclear interceptor deviation 

method applied to asteroid Comet S-T.  

Concluding, we can then say that Nearly-isotropic comets, and particularly long 

period ones, are definitely the most difficult objects to deflect, should this necessity arise. 

On a more positive note, Stokes et al.
 [10] showed, by reviewing several authors’ estimates, 

that the approximate comparative value of the threat posed by cometary objects is around 

1% the threat posed by Near Earth Asteroids.  

III.3. Chapter Summary 

This chapter used the six deflection methods modelled in Chapter II to create 

thousands of preliminary mission design through an agent-based search approach. We then 

compare these missions scenarios using two methods. We used deviation isolines to show 

the part of the studied domain on warning time and mass into space where each deflection 

method could successfully deflect the different asteroidal test cases (i.e., Fig. III-2, Fig. 

III-4 and Fig. III-6).  We then proposed a second comparison procedure based on the 

concept of dominance (i.e., Table III-3 to Table III-11). Using this original method the 

comparison is not subject to any particular ideal or fictitious situation in which the 

deflection method is applied. We also introduce the analysis of the technology readiness of 

each deflection method and, adding time margins for technology development, perform a 

third comparison taking into account technological issues (i.e., Table III-14, Table III-15 

and Table III-16). 
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The cometary impact threat is also analysed using Comet S-T as test case. This time, 

the study of the deflection and a preliminary analysis of the transfer leg are performed 

separately. The results show that, despite the fact that impulsive deflection manoeuvres 

have a good efficiency on comets and that the delta-velocity of its interception transfer is 

much less demanding than a rendezvous, requirement for a low thrust methodology, the 

one-year warning time constraint poses an apparently insuperable obstacle for the 

feasibility of the hazard mitigation of such a threat.       
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Chapter IV 

On the Consequences of a Fragmentation Due to a NEO  

Mitigation Strategy 

 

long previous chapters we have attempted to classify, evaluate and compare a 

group of deflection techniques in terms of deflection efficiency, other similar 

studies with different efficiency definitions can be found in the literature[42],[53],[89],[90],[70], 

but very little has been done on the analysis of a possible fragmentation of the threatening 

object[50]. This chapter aims to fill this void by assessing the viability of a single-impulsive 

deflection of an Earth threatening object and examining the possible consequences of a 

catastrophic fragmentation outcome. In particular, the chapter considers the minimum level 

of energy (collisional energy) required to deviate an asteroid by a distance that ensures a 

successful deflection, taking also into account the hyperbolic trajectory that the asteroid 

will follow when approaching the Minimum Orbit Interception Distance (MOID) from the 

Earth. The collisional energy is then compared with the predicted specific energy required 

to completely fracture the asteroid and, as will be shown, for some warning times the 

collision energy required for an impulsive deviation technique can rise well above the 

theoretical catastrophic fragmentation limit. As a consequence the asteroid can fragment in 

an unpredictable number of pieces having different mass and velocity. The velocity 

associated with each piece of the asteroid uniquely determines its future trajectory.   

The chapter will consider two possible cases:  the fragmentation being the desired 

outcome of the deviation strategy or the undesired product of a mitigation mission. In the 

latter case we will analyse the evolution of the cloud of fragments and the probability that 

the bigger pieces in the cloud have to impact the Earth. In fact, if the initial relative 

velocity yielded to the larger pieces is not high enough, the gravity attraction of the largest 

fragment does not allow for a complete disgregation of the cloud of fragments, and an 

important fraction of the mass re-accumulates forming a rubble-pile asteroid. As a 

A 
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consequence of the uncertainties in magnitude and direction of the orbital velocity of this 

new rubble pile object, the potential risk to Earth is increased with respect the risk 

expected after the mitigation attempt. We will also show how the potential risk to Earth 

can be reduced by providing enough velocity dispersion to the fragments or by 

fragmenting the asteroid to sizes under a threshold at which they do not pose any danger to 

the Earth surface. 

IV.1. Fragmentation of Asteroids 

In order to assess the likelihood of a fragmentation outcome from an impulsive 

mitigation technique, the asteroid resistance to fragmentation needs first to be estimated. 

The critical specific energy Q* is defined as the energy per unit of mass necessary to 

barely catastrophically disrupt an asteroid; an asteroid is barely catastrophically disrupted 

when the mass of the largest fragment of the asteroid is half the mass of the original 

asteroid, or in other words, the remaining mass of the original asteroid is half the initial 

mass. If rf  is the fragmentation ratio, defined as: 

                                                    max
r

a

m
f

M
=                                                    (4.1) 

where mmax is the mass of the largest fragment and Ma the initial mass of the asteroid, then 

a catastrophic fragmentation is defined as a fragmentation where 0.5
r

f < . 
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Fig. IV-1 Estimates by different authors of critical specific 

energy Q
*
 to barely catastrophically disrupt (i.e., fr=0.5) an 

asteroid. 

Fig. IV-1 shows several estimates of the critical specific energy Q* from various 

authors, which were collected and published by O’Brien & Greenberg
[91].  Estimates on 

asteroid strength shown in Fig. IV-1 are based on power-law parameterizations with two 

different gradients; one slope for small objects, which rely on their material strength to 

avoid break-up, and another slope for large objects, where gravity dominates material 

strength through self-compression and gravitational re-accumulation. This chapter 

addresses the issue of fragmentation of small to medium size asteroids. These are celestial 

objects ranging from 40 m to 1 km in diameter and constitute the main bulk of the impact 

threat. Asteroids smaller than 40 m in diameter are expected to dissipate at a high altitude 

in the Earth atmosphere[19] , thus nothing smaller than 40 m will be included in the 

following analysis. On the other hand, the survey of objects with a diameter larger than 1 

km is believed to be almost complete, therefore only the remaining small not discovered 

asteroids pose a threat[10].  

The uncertainty associated to the description of the fragmentation process is clear if 

one looks at the different scaling laws from Fig. IV-1. Furthermore, the exact value of Q* 

depends on a number of factors, such as the composition and structure of the asteroid or 

the velocity and the size of the impactor. For the sake of analysis, in this chapter, a 
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complete and exact description of the fragmentation process is not required and an 

approximate estimate of the value of the critical specific energy Q* is sufficient.  

The work of Ryan & Melosh
[92] and Holsapple

[93] provided the necessary tools to 

understand and approximate the qualitative limits of the critical specific energy Q* for the 

range of studied asteroids. Fig. IV-2 shows the critical specific energy Q* for asteroids 

ranging from 40 m to 1 km diameter,  computed by using the scaling laws provided by the 

aforementioned authors.  Ryan & Melosh
[92] provide a scaling law for three different 

material strengths (basalt, strong mortar and week mortar) that also considers the velocity 

of the impactor and impacted object diameter. Fig. IV-2 shows then two different impact 

velocities for Ryan & Melosh’s scaling laws; 10 km/s  and 50 km/s, which account for an 

example of a prograde orbit impactor and an example of a retrograde one, respectively. On 

the other hand, Holsapple’s[93] scaling law only considers a general representative material 

strength, and so, the only varying parameter is  the diameter of targeted object. 
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Fig. IV-2 Critical Specific Energy Q
*
 for barely catastrophically 

disrupting asteroids from 40 m to 1 km in diameter, calculated 

using Ryan & Melosh
[92]

 and Holsapple
[93]

. 

 

 In light of the results shown in Fig. IV-2, two general qualitative limits were drawn: 

one at 1000 J/kg and a second at 100 J/kg. The upper fragmentation limit at 1000 J/kg is 

above any of the specific energies Q* expected from the scaling laws in Fig. IV-2, 

including those of basalt strength from Ryan & Melosh
[92].  In some cases, this upper limit 
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is more than one order of magnitude above the predicted Q*. Hence, for the studied range 

of diameters, the limit at 1000 J/kg is considered here as a fated catastrophic 

fragmentation. On the other hand, the lower fragmentation limit at 100 J/kg is at the same 

energy level of most of the critical energies Q* predicted by Fig. IV-2, and more 

importantly, the 100 J/kg limit is, in general, above the four predicted Q* using Ryan & 

Melosh
[92]’s mortar strengths. If asteroids have the tensile strength of “rubble piles”, as the 

rotational state of small asteroids seems to indicate[36], the scaling laws for mortar tensile 

strength from Fig. IV-2 may be a good approximation. Hence, the 100 J/kg limit may be 

considered as a reasonable fragmentation limit according the results of Ryan & Melosh
[92] 

and Holsapple
[93] scaling laws. 

IV.2. NEO Deflection Requirements 

In order to compute the minimum deflection required to deviate a threatening 

asteroid, we will need to define the minimum distance that an asteroid needs to be shifted 

in order to miss the Earth. Since the threatening asteroid will follow a hyperbolic approach 

at the proximity of the Earth, the minimum distance of one Earth radius R⊕ will need to be 

corrected in order to account for the gravitational pull of the Earth in its final approach. 

This correcting factor is: 

 
2

21a e

p p

r
r r v

µε
∞

= = +        (4.2) 

where ra is the minimum distance between the hyperbola asymptote and the Earth, i.e., 

focus11 of the hyperbola, rp is the perigee distance, which is fixed to R⊕  (minimum 

distance to avoid collision without considering the atmosphere altitude), 
e

µ is the 

gravitational constant of the Earth and v∞ the hyperbolic excess velocity. Note that the 

correcting factor only depends on the hyperbolic excess velocity of the threatening object. 

As will be seen later, the analysis carried out in this chapter is very sensitive to the 

orbital parameters of the asteroid. Table IV-1 summarizes the different orbital elements of 

the four test cases that are used here to provide a better insight to the analysis. Together 

with the six Keplerian elements, the epoch of elements, the tMOID or time of the minimum 

interception distance that is used as the virtual impact, the hypebolic factor ε, the impact 

                                                 
11 The minimum distance between the focus and the asymptote of a hyperbolic orbit is equal to minus the 

semiminor axis b of the hyperbola, 
a

r b= − . 
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velocity and the mass of each test case are also shown in the table. A circular orbit was 

also added to the test cases in order to provide a more manageable example of the orbital 

dynamics of the dispersion of fragments, since this type of orbit has as the main advantage 

that the dispersion of fragments will not depend on the point along an orbit at which the 

break-up occurred.  

Table IV-1  Summary of the orbital characteristics of the four 

cases analysed during the chapter. 

 Apophis Shiva3 Apollyon3 Circular 

a [AU] 0.922 0.875 1.706 1.000 

e 0.191 0.313 0.518 0 

i [deg] 3.331 7.828 10.70 0 

Ω [deg] 204.5 259.9 266.8 0 

ω [deg] 126.4 50.65 121.2 0 

M [deg] 222.3 97.21 18.09 0 

Epoch [MJD] 53800.5 62481.0 62488.0 62488.0 

tMOID [MJD] 62240.3 62182.1 62488.0 62500.0 

ε 2.16 1.52 1.29 22.50 

 v impact [km/s] 12.62 14.85 17.78 11.19 

      Ma  [kg] 2.7x1010 5.0x1010 5.0x1010 5.0x1010 

It can be noted, in Table IV-1, that the Circular case has a very large hyperbolic 

factor compared to the other cases; this is due to the resemblance of the Circular orbit to 

the Earth orbit. The more an orbit resembles the Earth orbit, the lower the relative velocity 

at the encounter will be and, clearly, this makes the asteroid more susceptible to be 

affected by the Earth gravity, since it will spend more time in close encounter. For 

example, a relative velocity of 0 km/s has an infinite hyperbolic factor and a minimum 

impact velocity of 11.18km/s, which is the theoretical parabolic escape velocity. The 

opposite is also true; the more an orbit differs from the Earth orbit, the higher its relative 

velocity at encounter and the lower the hyperbolic factor. In fact, without considering the 

Circular case, Apollyon3 is carrying the highest amount of kinetic energy, but it is Apophis 

that is the most prone to “fall” into Earth, due to its larger hyperbolic factor. 

IV.2.1. Minimum Change of Velocity  

Once the minimum distance to avoid collision is set, the minimum change of velocity 

to provide a safe deflection can be calculated. Fig. IV-3 presents the necessary change of 
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velocity within an interval of time spanning 20 years before the hypothetical impact at time 

tMOID to deviate the four test cases. The minimum change of velocity required to deviate an 

object by a given distance from its initial orbit is computed by means of the proximal 

motion equations expressed as a function of the variation of the orbital elements. The 

variation of the orbital elements was then computed with Gauss’ planetary equations. A 

complete description of the methodology is presented in the Appendices, Section A.1. 
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Fig. IV-3 Minimum required ∆v for a Rε ⊕⋅  deflection. 

The minimum required v∆  in Fig. IV-3 were computed using the hyperbolic factor ε 

of each particular case. The Circular case, although an unrealistic orbit for an asteroid[10], 

is a good example to show that although objects with high eccentricity and large semimajor 

axis will have very high impact velocities (e.g. Apollo asteroids or comets), objects with 

low excess velocities v∞  will have slightly lower impact energies, but the required change 

of velocity to deflect them would be considerably higher. Another distinctive feature of 

Fig. IV-3 is the oscillatory behaviour of the minimum required v∆ . This sinusoidal 

evolution repeats with the orbital period of the asteroid and its amplitude is a function of 

the orbital variations of the velocity. Each minimum occurs at the point where the asteroid 

is moving at its highest speed, thus its perihelion, and so, it is more vulnerable to changes 

in its orbital period. 
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IV.2.2. Kinetic Impactor & Nuclear Interceptor 

Any of the mitigation techniques seen in Chapter II could be capable of providing the 

necessary change of velocity to ensure that a threatening object misses the Earth, but only 

impulsive mitigation actions can provide quasi-instantaneously specific energies of the 

order of the Critical Energy Q* from Fig. IV-2. Hence, deflection strategies such as kinetic 

impactor and nuclear interceptor could trigger a catastrophic outcome as a result of a 

deviation attempt. The remaining of this section will briefly remind the main features of 

these two mitigations strategies, for more comprehensive description refer back to Chapter 

II or to  J.P.Sanchez et al
[70].  

The Kinetic Impactor is the simplest concept for asteroid hazard mitigation: the 

asteroid’s linear momentum is modified by ramming a mass into it. The impact is modelled 

as an inelastic collision resulting into a change in the velocity of the asteroid multiplied by 

a momentum enhancement factor[47]. This enhancement is due to the blast of material 

expelled during the impact, although if the asteroid undergoes a fragmentation process 

after the impact, the enhancement factor should be considered 1, since all the material is 

included in the fragmentation process. Accordingly, the variation of the velocity of the 

asteroid a∆v  due to the impact is given by: 

 
( )

/
/

/

s c
a s c

a s c

m

M m
β∆ = ∆

+
v v                                         (4.3) 

where β is the momentum enhancement factor, /s c
m is the mass of the kinetic impactor, 

aM is the mass of the asteroid and /s c
∆v  is the relative velocity of the spacecraft with 

respect to the asteroid at the time when the mitigation attempt takes place. 

Knowing the minimum change of velocity required for a deflection (see Fig. IV-3), 

Eq.(4.3) can be used to compute the Specific Kinetic Energy (SKE) that an asteroid would 

have to absorb from a kinetic impactor mission attempting to modify its trajectory: 
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Fig. IV-4 presents an example of the Specific Kinetic Energy (SKE) as a function of 

warning time that a kinetic impactor should apply to the asteroid in order to provide the 

a∆v  required in Fig. IV-3. The impactor mass /s c
m , for this example, was set to 5,000 kg 

and the impact velocity /s c
∆v  was calculated with an enhancement factor β equal to 2, 



 Chapter IV: On the Consequences of a Fragmentation Due to NEO Mitigation 
  

                                                                       

 

115 

which, as discussed in Chapter II, is a conservative value for this parameter. Note also that, 

for a given a delta-velocity 
a

∆v , the SKE will vary with the kinetic impactor mass /s c
m , 

thus, an example with higher impact mass will provide a lower value of SKE.  The two 

aforementioned fragmentation limits of 1000 J/kg and 100 J/kg are also superposed on the 

figure. In general terms, the SKE needed for very short warning times (<2 years) is clearly 

above the fragmentation limits, only for very long warning times (> 10 years) the energy 

required for a kinetic deflection begins to move below the fragmentation limits.    
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Fig. IV-4 Minimum SKE required for a deflection mission with 

5,000 kg of impact mass as a function of warning time. 

 

It should also be noted that a kinetic impactor may require unrealistic impact 

velocities /s c
∆v to provide very large SKE. For example, in order for a kinetic impactor to 

deliver collisional energies greater than 1000 J/kg it would need an impact mass of more 

than 50 tons and  relative velocity larger than 50 km/s. Considering retrograde trajectories, 

impact velocities of at least 60 km/s are possible[56] even without using advanced 

propulsion concepts[57]. Therefore, assuming impact velocities close to 50 km/s only a few 

tons of impact mass would be required to provide a collisional energy in the order of 100 

J/kg.   

The Nuclear Interceptor strategy considers a spacecraft carrying a nuclear warhead 

and intercepting the asteroid. The model used in this study, fully described in Section 2 
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from Chapter II, is based on a stand-off configuration over a spherical asteroid, i.e., the 

nuclear device detonates at a given distance from the asteroid surface. The energy released 

during a nuclear explosion is carried mainly by X-rays, neutrons and gamma radiation that 

are absorbed by the asteroid surface. This sudden irradiation of the asteroid, which causes 

material ablation and a large and sudden increase of the surface temperature, would induce 

a stress wave that while propagating through the asteroid could trigger not only the surface 

material ablation that was intended to obtain a change of velocity, but also the 

fragmentation of the whole body. The Specific absorbed Nuclear Energy (SNE) is defined 

here as the portion of the energy released that is radiated over the asteroid divided by the 

mass of the asteroid: 

 t

a

E S
SNE

M

⋅=  (4.5) 

where Et is the total energy released by the nuclear device and S is the fraction of the area 

of the shock wave that intersects the asteroid (Eq.(2.2)).  
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Fig. IV-5 Specific absorbed Nuclear Energy (SNE) provided 

for a nuclear interceptor (see Section II.1) attempting to deflect 

a threatening asteroid by delta-velocity as specified in Fig. 

IV-3. 

The two suggested limits (1000 J/kg and 100 J/kg) must be taken cautiously when 

assessing the likelihood of fragmentation triggered by a nuclear interceptor. Since these 

two limits were estimated from hypervelocity impact studies[94], the actual fragmentation 
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energies for an asteroid being deflected by a nuclear device may be different, because of 

the different physical interaction. However, in this work it was considered that the shock 

wave caused by an impact and the thermal stress wave generated by the nuclear explosion 

are analogous, and therefore the associated fragmentation energies are expected to have 

similar orders of magnitude. It is also interesting to note that the SNE remains at higher 

levels of specific energy for long warning times, compared with the SKE. This is a 

consequence of the fact that at low levels of energies, an increasing percentage of the 

nuclear energy delivered is used to heat the asteroid up, without ablating material, there is 

therefore no change in linear momentum and the nuclear impactor becomes less efficient in 

terms of energy. Despite this loss of efficiency, the dry mass required for an equivalent 

deflection using a kinetic impactor will still be several orders of magnitude higher. 

IV.3. Statistical Model of a Fragmented Asteroid 

From the energetic requirements of a hazard mitigation mission, we can conclude that 

the possibility of an undesired break-up of an asteroid during a deflection attempt cannot 

be ignored. The consequences of an undesired fragmentation can be evaluated by studying 

the evolution of the cloud of fragments generated during the break-up process. The 

quantity, size and velocity of the pieces spawned by the fragmentation process needs then 

to be assessed. Building a deterministic dynamical model of the fragmentation and 

dispersion process is out of the scope of this work, instead the following section proposes a 

statistical model of the initial distribution of the fragments with associated positions and 

velocities and a methodology to calculate the probability to find the fragments in particular 

positions in space at different times.   

IV.3.1. Fragmented Asteroid Dispersion 

The position and velocity of every piece of a fragmented asteroid can be described as 

a stochastic process, even if the dynamical system is deterministic, since the initial 

conditions of the system are not known and can only be assessed through a probability 

density function. In particular, considering a scalar function describing the probability 

density of a dynamic system such as ( )( ) ( , ; )t tρ ρ=X x v , where ( , ; )tρ x v  is the probability 

of a fragment to have position x  and velocity v  at a time t. The probability density 

function ( )( )tρ X  relates to an initial probability density function ( )(0)ρ X  through the 

equation: 
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                             ( ) ( ) ( ) ( )( ) ( ) ( (0)) (0) 0tt t dρ δ φ ρ
Γ

= − Ξ∫X X X X                                (4.6) 

where ( (0))tφ X  denotes the flux of the system, or evolution of the state (0) [ (0), (0)]T=X x v  

over a time-span t so that ( (0))tφ X  is equal to [ ( ), ( )]Tt tx v , ( )δ y  is a multi-dimensional 

Dirac-delta, which represents the product of the one-dimensional Dirac-delta functions, 

that will allow a probability ( )(0)ρ X  to be added to the total probability of ( )( )tρ X , only if 

the initial state vector (0)X  can effectively evolve to ( )tX , and finally, ( )0dΞ  refers to the 

product of the one-dimensional differential components of the vector (0)X , i.e.,  

x y zdx dy dz dv dv dv⋅⋅ ⋅ ⋅ ⋅ , and defines the volume of an infinitesimal portion of the phase 

space Γ , which is the feasible phase space in which the system evolves.  

If we introduce the new variable ( (0))tφ=z X  and the associated Jacobian 

determinant as 
( (0))

(0)

tφ∂
=

∂

X
J

X
, we can substitute the differential ( )0dΞ  with dζ J  in 

Eq.(4.6), where dζ  is the product of the one-dimensional differentials components of the 

vector z  and J  is the absolute value of the Jacobian determinant.  This allows us to 

integrate Eq.(4.6) using the feasible phase space at time t instead of the initial phase space, 

resulting in the following integration: 

                                  ( ) ( ) ( )( ) ( ) ( );0t d
t t

ζρ δ ρ φ−

Γ

= −∫X X z z
J

                          (4.7) 

Using the definition of a Dirac-delta function12, Eq.(4.7) resolves to:  

           ( ) 1
( ) ( , ; ) ( ( , );0)tt tρ ρ ρ φ−= =X x v x v

J
    (4.8) 

Invariance of the volume element of the phase space  

Eq.(4.8) tells us that the probability of a particular fragment having position x  and 

velocity v  at a time t is the same probability of having the initial conditions that can make 

the fragment dynamically evolve to the particular state ( )tX  and then scaled by the absolute 

value of the Jacobian determinant J . The Jacobian determinant J  defines the evolution 

of the volume of the phase space from the initial time of the break-up to a given time t. 

                                                 
12 ( ) ( ) ( )x a x dx aδ ϕ ϕ

∞

−∞
− =∫  
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Hamiltonian system dynamics will be used in the remainder of this section to prove that 

1=J .    

Considering a Hamiltonian ( ),H q p , where q is a 3-D  vector of generalized 

coordinates and p  is a 3-D vector of generalized momenta, the dynamical system will 

evolve as ( )( ) ( ), ( ) ( (0))tt t t φ= =Q q p Q , where the flux ( , )tφ q p  is defined by Hamilton 

equations as: 

 

 

( )

( )

,

,

i
i

i
i

H
q

p

H
p

q

∂
=

∂

∂
= −

∂

q p

q p

ɺ

ɺ

 (4.9) 

Eq.(4.9) can be written in a more compact form using matrix nomenclature: 

 
( ),

( )
( )

H
t

t

∂
= ⋅

∂

q p
Q A

Q
ɺ  (4.10) 

where A is an asymmetric square matrix for a 6-D state vector ( )( ) ( ), ( )t t t=Q q p  defined as 

follows: 

                                                    
 
 
 
 

= 0 I
A

-I 0
 

where I is a 3 3×  unit matrix and 0 is a 3 3×  null matrix. 

The partial derivative of ( )tQ  with respect to time t can be written using the chain 

rule as: 

 
( ) (0) (0)

( )
(0)
t

t
t t

∂ ∂ ∂= ⋅ = ⋅
∂ ∂ ∂

Q Q Q
Q J

Q
ɺ  (4.11) 

where ( ) (0)t∂ ∂Q Q  is a Jacobian matrix J of partial derivatives, thus Eq.(4.11) can be 

rewritten, using the Hamilton equations matrix nomenclature introduced in Eq.(4.10), as: 

 
( ),

( )
(0)

H
t

∂
= ⋅ ⋅

∂
q p

Q J A
Q

ɺ  (4.12) 

We can now write the last element in the right side of Eq.(4.12) as: 
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( ) ( ) ( ), , ,( )
(0) ( ) (0) ( )

T
T

T
H H Ht

t t

 
 
 
 
 

∂ ∂ ∂∂= ⋅ =
∂ ∂ ∂ ∂

q p q p q pQ
J

Q Q Q Q
 (4.13) 

where TJ is the transpose Jacobian Matrix 
( (0))

(0)

tφ 
  
 

∂
=

∂
Q

J
Q

. Eq.(4.12) and Eq.(4.13) can 

now be set together as: 

 
( ),

( )
( )

T
H

t
t

∂
= ⋅ ⋅ ⋅

∂
q p

Q J A J
Q

ɺ  (4.14) 

Since Eq.(4.14)  must be equal to the Eq.(4.10), we can conclude that  T⋅ ⋅ =J A J A . Taking 

the determinant, we have 
2

=J A A  and we can therefore conclude that 
( (0))

(0)

tφ∂
=

∂
Q

J
Q

 

must be 1 for Hamiltonian systems. This also demonstrates that the Jacobian determinant 

in Eq.(4.8) is 1 since the flux ( (0))tφ X  that defines our system is a two body problem 

dynamics, which is also a Hamiltonian system (i.e., the forces in the system are velocity 

invariant).  

Transition Matrix 

Eq.(4.6) can finally be expressed as: 

 ( )( ) ( ( , );0)ttρ ρ φ−=X x v  (4.15) 

Hence, to compute the probability of having a fragment with a state vector ( )tX  it is 

necessary to calculate the forefather of ( )tX  at break-up. A state transition matrix 0( , )t tΦ  

such as: 

 0 0
0

0 0

( ) ( )
( ) ( )

( , )
( ) ( )
( ) ( )

t t

t t
t t

t t

t t

 
 
 
 
 
  

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

x x

x v
Φ

v v

x v

 (4.16) 

 will provide this direct mapping from an initial state vector 0( )tX  to the final state vector 

( )tX necessary to calculate Eq.(4.15).  

 0
0

0

( )( )
( , )

( ) ( )
tt

t t
t t

  
  

      

=
xx

Φ
v v

  (4.17) 
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Since we are interested in studying the dispersion of a cloud of particles, we can 

work in relative coordinates to study the differences in position and velocity with respect to 

the unperturbed orbit of the asteroid prior to fragmentation. Eq.(4.17) can be simplified by 

assuming that all the fragmented particles depart from the centre of mass of the asteroid 

(i.e., the relative initial position 0( )t∆x is 0), and by computing only the relative final 

position ( )t∆x : 

 0
0

( )
( ) ( )

( )
t

t t
t

 
 
 
 

∆∂∆∆ =
∂∆

x
x v

v
 (4.18) 

This simplifies the problem considerably, since only the 3 3×  relative transition 

matrix 0( ) ( )t t∂∆ ∂∆x v is required. The matrix 0( ) ( )t t∂∆ ∂∆x v  used in this work is 

described in Section A.2.4, and can also be found in Vasile & Colombo
[95], or, for a more 

extensive explanation, refer to Schaub & Junkins
[96].  The transition matrix used is given 

by the product of the linear proximal motion equations and the Gauss’ planetary equations. 

This calculation provides a linear approximation of the nonlinear two body dynamics, but 

if the dispersive velocity is small compared to the nominal velocity of the unfragmented 

asteroid, it is an acceptable approximation[95]. 

Probability to find a particle in a particular position 

Since we are interested in the probability of finding a fragment in a certain position in 

space at a particular time t, the probability function ( , ; )tρ x v  will need to be integrated 

over all the feasible space of velocities: 

                            ( ; ) ( , ; ) ( ) ( ( , );0) ( )tP t t d t d tρ υ ρ φ υ−

Γ Γ

= =∫ ∫x x v x v                (4.19) 

where ( )d tυ  is the product of the one-dimensional differentials components of the velocity, 

x y zdv dv dv⋅ ⋅ . 

Since the probability density function ( , ;0)ρ x v  is the probability to have a fragment 

in a position (0)x  with velocity (0)v  and having already assumed that the dispersion of 

fragments initiates from the centre of mass of the unfragmented asteroid, we can express 

( , ;0)ρ x v  as the product of two separate probability density functions: 

 ( , ;0) ( (0) ) ( (0))Gρ δ= − ⋅
0

x v x r v  (4.20) 
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where ( (0) )δ − 0x r  is the probability of a particular fragment to have position (0) − 0x r , 0r  is 

the position of the centre of mass of the unfragmented asteroid at 0t =  and ( (0))G v  is  the 

probability that the same fragment has velocity (0)v . Now, Eq.(4.19) can be rewritten 

using Eq.(4.20) as: 

                                          ( ; ) ( ( , ) ) ( ( , ) ) ( )t tP t G d tδ φ φ υ− −

Γ

= − ⋅∫ 0r vx x v r x v                    (4.21) 

where ( , )tφ −
rx v  and ( , )tφ −

vx v  are, respectively, the components of the position and 

velocity of the flux ( , )tφ − x v . Now, similarly to what was done with Eq.(4.6), the element of 

volume of the space of velocities ( )d tυ  can be related to the element (0)d dx dy dzξ = ⋅ ⋅  

through their Jacobian:  

 
( )

( ) (0)
(0)
t

d t dυ ξ∂=
∂

v

x
 (4.22) 

allowing us to solve the integral in Eq.(4.19) as:  

 *
( )

( ; ) (( ( , ) )
(0)

tt
P t G φ−∂=

∂ v

v
x x v

x
 (4.23) 

where *v  is the solution of the equation: 

 *( , )tφ− =r 0
x v r  (4.24) 

so that ( ( , ) )tδ φ − − 0rx v r  is 1. Besides, the absolute value of the Jacobian in Eq.(4.23) relates 

to the transition matrix 0( ) ( )t t∂∆ ∂∆x v  in Eq.(4.18) as follows: 

 

0

( ) 1 1
(0) (0) ( )

( ) ( )

t

t
t t

∂ = =
∂ ∂ ∂∆

∂ ∂∆

v

x x x
v v

 (4.25) 

Finally, the probability to find a piece of asteroid in a particular position relative to 

the unperturbed orbit at a given time after a fragmentation is given by: 

 

1

00

( )1
( ; ) ( )

( )( )
( )

t
P t G t

tt

t

−   ∆      

∂∆∆ =
∂∆∂∆

∂∆

x
x x

vx

v

 (4.26) 
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IV.3.2. Velocity Dispersion Model 

The probability density function defined in Eq.(4.20) depends on two terms, a Dirac 

delta such as ( (0) )δ − 0x r for the position, which is equivalent to one Dirac delta function 

for each one of the components of the vector (0)x , and a function ( (0))G v  that describes 

the dispersion of the values of the initial velocity (0)v .  For the latter purpose, we will use 

three Gaussian distributions; each Gaussian distribution will describe the velocity 

dispersion in one direction of the cartesian ˆˆ ˆt n h− −  reference frame or the tangential, 

normal and out-of-plane direction:  

 ( )
( ) ( ) ( )22 2

22 2 22 2(0), (0), (0)
1 1 1

2 2 2

h ht t n n

t n h
t n h

vv v

t n h

G v v v e e e

µµ µ
σσ σ

σ π σ π σ π

− −− − − −

= ⋅ ⋅  (4.27) 

Six parameters will be needed in order to define the dispersion of velocities: three 

mean velocities [ ]t n h
µ µ µ=µ , and three standard deviations [ ]t n h

σ σ σ=σ .  

Assuming a kinetic impactor scenario, we can hypothesize that an infinitesimal 

instant after the impact, but before the fragmentation takes place, the system asteroid-

spacecraft forms a single object, which moves according to the law of conservation of 

linear momentum. In fact, after the kinetic impactor mission triggers a catastrophic 

fragmentation, it is reasonable to think that the system asteroid-spacecraft would preserve 

the total linear momentum. Hence, given the SKE of a particular collision, Eq.(4.4) will 

provide the change of velocity of the centre of mass of the system only by considering the 

momentum enhancement factor β equal to 1. It also seems sensible to think of the mean 

vector [ ]t n h
µ µ µ=µ  as the change of velocity of the centre of mass, since the highest 

probability to find a fragment should be at the centre of mass of the system.  As a result, 

the norm of the mean of the dispersion should be: 

 
( )

/

/

2 a s c

a s c

M m SKE

M m
= ∆ =

+aµ v  (4.28) 

  The direction of µ  is defined by the direction of the impact relative velocity /s c∆v . 

Since the trajectory of a kinetic impactor should be designed to achieve the maximum 

possible deviation,  µ  should be directed along the tangential direction (see Section A.2.5 

in the Appendices). Accordingly, given the SKE of the collision, the mean velocity 

dispersion vector can be taken as: 
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( )

/

/

2
0 0a s c

a s c

M m SKE

M m

 
 
 
  

=
+

µ  (4.29) 

Just as it is sensible to think that after a dish has shattered on the floor, the smallest 

fragments are generally found the furthest, one would expect that the smaller the fragments 

of the asteroid are, the larger their velocity dispersion [ ]t n h
σ σ σ=σ  will be. The mass of 

the fragment must therefore have an influence on the dispersion of velocities. Let us 

assume that a fragment with mass mi has a velocity 
i

v∆  defined by an inelastic collision 

such that13:  

 / ii i SKE ms cm v m v ⋅∆ ≈ ∆  (4.30) 

where 
iSKE mv ⋅∆ is a collisional velocity such that the fragment mi takes with it its share of 

collisional energy SKE, that is: 

 
/

2
i

i
SKE m

s c

SKE m
v

m⋅
⋅ ⋅

∆ =  (4.31) 

Clearly, 
iSKE mv ⋅∆  is only a mathematical entity that helps us to develop the theory 

here. The real impact occurs between the unfragmented asteroid with mass aM  and the 

spacecraft with mass /s cm at a relative velocity of: 

 ( )/ /2 as c s c
v SKE M m∆ = ⋅ ⋅  (4.32) 

Writing  Eq.(4.31)  as a function of the real impact velocity /s cv∆  of the spacecraft leads us 

to: 

 /i

i
SKE m s c

a

m
v v

M⋅∆ = ⋅∆ . (4.33) 

Using the virtual inelastic collision Eq.(4.30) and Eq.(4.33), we can write iv∆  as: 

 /
/

s c i
i s c

i a

m m
v v

m M
∆ = ⋅ ∆  (4.34) 

                                                 
13 In the following, and only to simplify the equations, it is considered that ms/c is always orders of magnitude 

smaller than both Ma and mi, thus 
/a s c a

M m M+ ≈  and 
/s ci im m m+ ≈  
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As was said before, the centre of mass of the cloud of fragments is likely to follow 

the law of conservation of linear momentum (i.e., / /a a s c s cM v m v∆ ≈ ∆ ), hence Eq.(4.34) 

finally settles down to the following expression: 

 a
i a

i

M
v v

m
∆ = ⋅ ∆  (4.35) 

Note that Eq.(4.35) is only a step away from: 

 
1
2

xm v∆ = constant (4.36) 

when x is equal to 2. Hence, we are assuming a homogenous distribution of the 

translational kinetic energy among all the fragments, or equipartition of translational 

kinetic energy.  Several experimental works have intended to adjust a similar relation (i.e., 

Eq.(4.36)) to their fragment size and velocity experimental data:  Gault
 
et al.

[97] found an 

exponent of 2.25 for his cratering experiments, while Davis & Ryan
[94] found exponents 

between 1.92 and 1.41 on their fragmentation experiments. An equipartition effect was 

also suggested by Wiesel
[98] while studying the explosion of objects such as spacecraft in 

Earth orbit.  

Recalling the definition of standard deviation, 
22σ = −∆v ∆v , and assuming 

that ∆v  is equal to zero for a homogeneous spherical dispersion from the centre of mass 

of the cloud of fragments, we can compute the norm of the standard deviation of velocity 

( )i
mσ  using Eq.(4.35) as: 

 0( )i
i

aM
m

m
σ σ= ⋅  (4.37) 

where 0σ  is defined as: 

 0
av

k
σ ∆=  (4.38) 

with k a constant value. The constant k is 1 if we consider the velocity of the fragment with 

mass mi as described above, i.e., Eq.(4.35).   

In fact, one could think of k as the efficiency of transmission of the collisional 

energy. If part of the collisional energy is lost in processes such as melting or breaking, one 

could expect k to be larger than 1. On the other hand, k could also be smaller than 1 for 
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fragments coming from areas in the asteroid where there was a higher reservoir of 

collisional energy, e.g., close to the impact site. Therefore, it would be sensible to expect 

that small fragments may have k equal to 1 or smaller, since small fragments must come 

from areas with higher reservoir of collisional energy so that this energy was able to break 

the material to smaller sizes. Large fragments may have instead k larger than 1 from 

opposite reasons. Using experimental data published by Davis & Ryan
[94], one can fit their 

experiments with available velocity dispersion data to find an average value of k (see 

Appendix A.4). Doing so, k results to be 1.4, thus:  

                                                     0 1.4
avσ ∆=                                                      (4.39) 

To finish, the norm of standard deviation of velocity is ( )i
mσ  as in Eq.(4.37), and 

since we assume an homogeneous spherical dispersion on the initial velocities at the break-

up point, we can write the vector of the standard deviation as assuming three equal 1-

dimensional values: 

 0 0 0
1 1 1

3 3 3i i i

a a aM M M
m m m

σ σ σ
 
 
  

= ⋅ ⋅ ⋅σ  (4.40) 

IV.4. On the Nature of the Cloud of Fragments 

Once the feasibleness of the fragmentation scenario has been highlighted and the 

statistical model has been described, the following sections will give some insight into the 

evolution and dispersion of the fragments. While Section IV.1 supported for a lower limit 

of the critical fragmentation energy only of 100 J/kg, Fig. IV-4 and Fig. IV-5 in Section 

IV.2 showed that the minimum required specific energy to deflect an asteroid, which 

depends on the warning time available for the deflection, is very often above this lower 

critical limit. We also saw that, for short warning times (< 4 years), the critical 

fragmentation energy can also go above the upper limit of 1000 J/kg. Along the following 

section an intermediate level of energy at 500 J/kg will be used to evaluate the statistical 

model introduced in the previous section. Some insight into the statistical composition of 

the cloud of fragments in terms of quantity and size of its fragments will also be given and, 

finally, we will also assess the influence of the gravitational force on the disgregation and 

dispersion of the fragmented asteroid.  
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IV.4.1. Time Evolution of the Cloud of Fragments 

The following figures, Fig. IV-6 to Fig. IV-8, show the evolution of the probability 

density function of a fragmentation occurring after providing 500 J/kg of collisional energy 

to a 5x1010kg Circular asteroid (see Table IV-1). A successful deflection attempt, with a 

collisional energy of 500 J/kg, would have provided an approximate change of velocity of 

0.02
a

v m s∆ = , using an impactor mass /s cm of 18,500 kg. If a barely catastrophic 

fragmentation occurs, according to the model developed in this chapter, the largest 

fragment (i.e., 2.5x1010kg) would have a mean velocity of [ ]0.02 0 0 /m s=µ  (Eq.(4.29)) 

and a standard deviation of [ ]0.012 0.012 0.012 /m s=σ  (Eq.(4.40)).The following images 

show the evolution, during the first complete orbit after the break-up, of the volume 

enclosing 97% probability to find the large 2.5x1010kg-fragment. The images are taken 

every 30 degrees difference in true anomaly during the first half of the orbit and 45 degrees 

during the second half, which corresponds approximately to a time step of 30 and 45 days 

respectively.  
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Fig. IV-6   Volume enclosing 97% probability to find the 

largest fragment of a fragmentation with fr=0.5 for a Circular 

asteroid.  The initial distribution of velocities is modelled 

with [ ]0.02 0 0 /m s=µ  and [ ]0.012 0.012 0.012 /m s=σ .  The 

difference between the true anomaly at the break-up point 

and at each image is: A) 30
0
, B) 60

0
, C) 90

0
 and D) 120

0
. 

 

Note that the growth and re-shaping of the volume plotted along Fig. IV-6 to Fig. 

IV-8 is only the consequence of the dispersion of velocities, which in the example here is 

[ ]0.012 0.012 0.012 /m s=σ . The centre of the ellipsoidal shaped cloud is a position along 

the orbit perturbed by the mean velocity [ ]0.02 0 0 /m s=µ , thus the centre of mass of all 

the fragments. The origin of the coordinate frame of the figures is the centre of the 

ellipsoid and orientation of the frame is given by the cartesian ˆˆ ˆt n h− −   or tangential, 

normal and out-of-plane frame of the initial unperturbed orbit. 
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Fig. IV-7   Volume enclosing 97% probability to find the 

largest fragment of a fragmentation with fr=0.5 for a 

Circular asteroid.  The initial distribution of velocities is 

modelled with [ ]0.02 0 0 /m s=µ  and 

[ ]0.012 0.012 0.012 /m s=σ .  The difference between the 

true anomaly at the break-up point and at each image is: 

E) 150
0
, F) 180

0
 and G) 225

0
.  
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Fig. IV-8   Volume enclosing 97% probability to find the 

largest fragment of a fragmentation with fr=0.5 for a 

Circular asteroid.  The initial distribution of velocities is 

modelled with [ ]0.02 0 0 /m s=µ  and 

[ ]0.012 0.012 0.012 /m s=σ .  The difference between the true 

anomaly at the break-up point and at each image is: H) 270
0
, 

I) 315
0
 and J) 360

0
. Note that in figure J the volume is almost 

a line in space, thus the largest fragment has a 97% 

probability to be located at some point in the line.   
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Let us suppose, for the moment, that the gravity interaction among the different 

fragments is negligible. Doing so, the same calculation can be extended to any fragment 

size, which would only modify the standard deviation σ  by a factor a iM m , where im  is 

the mass of a given size of fragments. The factor a iM m  would increase the dispersion 

of elements with a decreasing im , thus the equivalent volumes enclosing a given 

probability will grow when analysing smaller sizes. For fragment sizes with im  a few 

orders of magnitude smaller than r af M⋅  the number of pieces is already expected to be of 

a few tens, thus the volumes represented from Fig. IV-6 to Fig. IV-8 can be also 

interpreted as the physical shape of the cloud of fragments, at least for those fragment sizes 

that have abundant elements, since the probability density function describes the regions 

where, statistically at least, there is a higher concentration of fragments.  

The most prominent feature that stands out from the images above is the ellipsoidal 

shape of the volume enclosing a particular probability, or cloud of particles. In order to 

better understand the dynamics of the dispersive cloud of particles, we can try to 

understand the evolution of the four salient features of the elliptical cloud. These four 

features are: the semimajor axis a, the semiminor axis b, the dispersion along the h axis or 

out-of-plane and the angle α between the semimajor axis a and the tangential direction axis 

t, as shown in Fig. IV-9. 

 
Fig. IV-9 Schematic of the 4 features describing the shape and 

attitude of the ellipsoidal shaped cloud of fragments.  

 

b̂  

t̂  

â  

ĥ  

n̂  

α  
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Fig. IV-10 summarizes the evolution of the four aforementioned features that 

describe the volume enclosing 97% probability to find the largest fragment of a barely 

catastrophic fragmentation with [ ]0.012 0.012 0.012 /m s=σ . The figure also extends the 

time-span to complete a two years propagation from the break-up point. It is important to 

note that the evolution of the shape of the cloud is essentially driven by the dynamics of 

the system, which were defined by the proximal motion equations that were used to 

construct the transition matrix in Eq.(4.18). Therefore, studying the motion of a single 

perturbed particle using proximal motion dynamics will prove very useful to help us to 

understand the transformation with time of the probability density function and its four 

salient features (i.e., a, b, α and h). 
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Fig. IV-10  Two years evolution of the four features defining 

the ellipsoidal cloud enclosing 97% probability to find the 

single 2.5x10
10

kg fragment.   
 

Fig. IV-11 shows three relative motion trajectories that a particle would travel along 

if perturbed in 0.012 m/s in tangential direction t
⌢

 (black line), normal direction n
⌢

 (blue 

line) and in out-of-plane direction h
⌢

 (red line), these trajectories represent two complete 

orbits drift after the perturbation from its initial circular orbit. Also note that the delta-

velocity of 0.012 m/s is the same as each one of the components of the standard deviation 

σ  of the example used above.  The motion of a particular fragment in the dispersive cloud 

will follow a particular combination of the three trajectories described in Fig. IV-11, 
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depending on the components of its initial relative velocity ˆ ˆ ˆnt h
v v v ∆ ∆ ∆  . A few of the 

most important characteristics of the evolution described in Fig. IV-10 can now be more 

easily understood by looking at Fig. IV-11. 

-2000

-1500

-1000

-500

0

-200
-100
0

-50
0

50

 

t (tangent), km

n (normal), km

 

h
, 

k
m

δδδδv
t
=0.012m/s δδδδv

n
=0.012m/s δδδδv

h
=0.012m/s

 
Fig. IV-11  Relative motion trajectories. An asteroid fragment 

perturbed in 0.012 m/s from its initial circular orbit would 

follow one of the three trajectories on the figure if the 

perturbation was entirely in tangent direction t
⌢

 (black line),  

normal direction n
⌢

 (blue line) or in out-of-plane direction 

h
⌢

(red line). 

Probably, the most important characteristic of the dispersion of the cloud of 

fragments is the evolution of the semimajor axis of the ellipsoidal shape. This evolution is 

a direct consequence of the fact that a velocity perturbation in the tangential direction, i.e., 

in the direction of the orbital velocity, is the only perturbative component that provides an 

unbounded drift from the initial relative position. While delta-velocities in the normal or 

the out-of-plane directions mostly change the direction of the orbital velocity, but do not 

substantially modify its magnitude, delta-velocities in the tangential direction only change 

the magnitude of the orbital velocity. If a fragment is provided only with relative velocities 

in the normal and out-of-plane direction, the fragment will perform a relative orbit around 

the unperturbed position, while if the fragment has tangential velocity, its orbital period 

will be modified and, as a consequence, will drift away from the unperturbed initial 

position.  The perturbance in tangential direction therefore defines the semimajor axis a 

after a very short period of time (i.e., at the very beginning of the dispersion the three 

components have equal magnitudes of deviation).  

Both the semimajor axis a of a volume enclosing a given probability and the angle 

α , or angle between the semimajor axis a and the tangential direction t
⌢

,  are then defined 
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by the tangential component of the initial relative velocity of the particles of the cloud, and 

thus, its behaviour can be readily understood by looking at the black line (
t̂

v∆  

perturbation) in Fig. IV-11. For example, in Fig. IV-10, we see that the angle α  undergoes 

a change from 90 to 0 degrees during the first orbit and then has decreasing rebounds over 

0 degrees in subsequent orbits, which can be explained by the evolution of a vector from 

the origin of the coordinate frame of Fig. IV-11 to a position moving along the black line. 

The angle of this vector with the tangent direction will behave exactly like the angle α . 

The fact that the semimajor axis a seems to take a break in its growth at each multiple of 

the orbital period is also seen in the behaviour of the black line in Fig. IV-11. This is a 

consequence of the fact that drifting in the positive tangential direction is achieved through 

shortening the period of the perturbed fragment, which translates into a negative delta-

velocity in the tangential direction. When the perturbed fragments reaches close to the 

point along the orbit where it was perturbed, the unperturbed position has therefore more 

velocity and for an instant seems to catch up with the perturbed object. 

The semiminor axis b and out-of-plane deviation h are defined by the perturbation in 

the normal direction and in the out-of-plane direction respectively, and will therefore 

remain enclosed between very small boundaries. The out of plane deviation h will become 

zero twice per orbit, both at the ascending node and the descending node of the perturbed 

orbit, while the semiminor axis b has only one zero during the first orbit and two zeros 

thereafter. The zeros of the semiminor axis b occur when the deviation spawned by the 

delta-velocities with tangential and normal directions are aligned (i.e., have the same 

direction), consequently at those times all the particles of the cloud form a line in the ˆ ˆt n−  

plane (see image J in Fig. IV-8). 

To summarize, the help of the proximal motion trajectories (Fig. IV-11) makes Fig. 

IV-10 much more understandable and general trends for the four features can be inferred 

for further propagations; the angle α will follow a damped-like oscillatory motion with 

decreasing amplitude in its rebounds, the semimajor axis will keep growing at the same 

rate and the out-of-plane h deviation and the semiminor axis b will remain bounded under 

the same limit, giving to the ellipsoidal shape a more overstretched look as the time passes.  

Finally, Fig. IV-12 shows the evolution of the probability ( ; )P tx  at the centre of the 

dispersive cloud. As predicted by the discussion above, the probability drops several orders 

of magnitude during the first half of the orbit and then has periodical peaks due to the 

bounded components of the motion, namely normal and out-of-plane components, that 
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repeat, in general, every half a period. At the end of each complete orbit both deflections 

collapse to zero, hence a maximum in probability density occurs at the centre of the 

ellipsoid. At the half of each orbit the deflection in the out-of-plane collapses again to zero, 

thus the density also increases at each half an orbit. Moreover, another peak appears at 1.41 

years after the break-up and repeats at 2.45 and 3.46 years, this third peak is due to the 

collapse of the semiminor b axis, which as time passes moves closer to the half an orbit 

point due to the smaller oscillations of the angle α . 
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Fig. IV-12  Evolution of the probability density ( ; )P tx  in the 

centre of the dispersive cloud for a Circular case, fragment 

mass of 2.5x10
10

kg and [ ]0.012 0.012 0.012 /m s=σ . Note that the 

Circular case has exactly 1 year orbital period. 

 

IV.4.2. Fragment Size Distribution 

It is out of the scope of this thesis to describe the physics of the fragmentation of a 

brittle solid, such as an asteroid, and a simple statistical distribution of fragments will serve 

better to our purposes. The aim here is only to discern the intrinsic risks of an impulsive 

asteroid hazard mitigation strategy. This purpose can be achieved by estimating the 

approximate number of fragments within a given range of mass. With this, we will also be 

able to perform a preliminary analysis of the gravitational interaction among the different 

components of the cloud.  
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Early works in collisional fragmentation have used accumulative power law 

distribution to model fragment size distribution[99]. Two- or three- segments power laws 

have been found to fit much better to experimental data[94],[100], particularly when the 

fragmentation data comprises sizes many orders of magnitude smaller than the original 

size. However, for the analysis carried out here, we will use only one segment 

accumulative power law distribution such as: 

 ( ) bN m Cm−> =  (4.41) 

since this is already an acceptable approximation for a qualitative analysis inside a range of 

3 orders of magnitude of the fragment mass. Eq.(4.41) provides the number of fragments 

above a given mass m, therefore if mmax is the mass of the largest fragment, max( )N m≥  must 

be 1, and thus the constant C must be: 

 max
bC m=  (4.42) 

Now, If we integrate the mass over all fragment sizes, the total mass must be equal to 

the unfragmented asteroid mass Ma: 

 ( )
( )

1
max

1 1
b

a m
bC

M m dN m
b

∞
−

 
 
 
 
  

>= ⋅ =
−∫  (4.43) 

Using Eq.(4.42) in Eq.(4.43), the exponent b becomes a function only of the ratio 

between the largest fragment mass mmax and the total mass of the asteroid Ma: 

 
1

max1
a

m
b

M

−
 
  
 

= +  (4.44) 

where the fraction 
max a

m M is the fragmentation ratio 
r

f .  

Fig. IV-13 shows the number of fragments that a one-segment power law distribution 

such as Eq.(4.41) predicts for three different catastrophic fragmentations of Apophis test 

case: 0.5rf = (blue bars), 0.25rf = (green bars) and 0.1rf = (red bars). Only the range of 

fragments that can pose threat to Earth are shown in the figure, thus from mmax to, roughly, 

the mass of a 40m diameter rocky object. The number of fragments are counted inside 

equally wide and equispaced boxes, the width of the plotted bar is only chosen for clarity.  
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Fig. IV-13  Approximated number of pieces expected to be 

found in a fragmentation cloud of an asteroid with 2.7x10
10

kg 

of mass resulting from disruptions with  fr=0.5 (blue bars), 

fr=0.25 (green bars) and fr=0.1 (red bars).  The largest 

fragment, i.e., surviving mass of the asteroid, is counted in the 

initial bin of the histogram for each level of disruption.  

It is interesting to note that the higher the level of disruption the lesser the number of 

dangerous fragments. In fact, the total mass of the dangerous fragments is 85%, 63% or 

30% the mass of the unshattered asteroid for fragmentation ratios rf  of 0.5, 0.25 and 0.1 

respectively, thus, a priori, the higher the level of fragmentation the lesser the risk for the 

Earth. By definition a fragmentation equal to the critical specific energy Q* triggers a 

barely catastrophic fragmentation, 0.5rf = , yet if the energy provided by an impulsive 

mitigation mission differs from this, a different level of disruption should be expected.  In 

fact, the fragmentation ratio rf  in Benz & Asphaug
[101] simulations adjusted very well to a 

simple linear function of the ratio between the specific energy applied and  the critical 

specific energy Q* , at least for a range between 0.5 to 2 times Q*. Although Benz & 

Asphaug
[101]’s results cannot be extrapolated to this work since their simulations 

considered impact velocities only up to 5 km/s, they emphasise that for specific energies 

just a few times larger than Q*, the fragmentation ratio could decrease even more than one 

order of magnitude. In all the remaining analysis, we will consider three different 

fragmentation ratios ( 0.5rf = , 0.25rf =  and 0.1rf = ) in order to represent different 

possible break-up scenarios.   
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IV.4.3. Gravity Re-accumulation 

Both, unshattered asteroids used in this chapter and the largest fragment resultant 

from their catastrophic fragmentation, have very weak gravitational attraction due to their 

small mass. Despite this, their gravity will still be the principal source of gravitational 

force inside a sphere centred on these bodies and smaller than one kilometre in radius. 

Although this is a very small volume of interplanetary space, the gravitational interaction 

among the different fragments, during the initial moments after the break-up, may play a 

very important role on the nature of the dispersive cloud of fragments. It may well happen 

that some of the fragments, most probably the larger ones, are provided with very little 

relative velocity with respect to the largest fragments of the cloud, and so, they may spend 

too much time in very close proximity to the most massive pieces of the cloud. Those 

fragments will not disperse as the dispersion model foresees, but rather, will re-accumulate 

into rubble piles or become orbiting satellites of a larger fragment.  

Considering the coarse statistical description of the model, it is deemed that a full 

treatment of the gravity perturbation on each fragment due to the gravitational attraction of 

all the other fragments is not necessary at this stage, nevertheless the total re-accumulated 

mass needs to be determined. Hence, as a first approximation, we will compute the 

percentage of mass (or number of fragments) that are able to escape from the vicinity of 

the largest and most massive fragment, avoiding being either re-accumulated or becoming 

an orbiting satellite. The final census of fragments and the mass of the largest one will be 

then updated. Eventually, the number of fragments that manage to escape the largest mass’ 

gravity well will evolve using the afore-used statistical description of the problem. 

If the escape velocity of a fragment fi is computed as: 

 max2
esc

i

Gm
v

r
=  (4.45) 

where G is the Newtonian constant of gravitation and ri is the minimum distance between 

the centres of two spherical volumes with mass maxm  and im  and density ρ 2600 kg/m3 

(see asteroid’s data in Chapter I), the percentage of fragments fi avoiding being captured by 

the gravity pull of the largest fragment maxf  can be calculated by computing the 

probability of those fragments to have a relative velocity with respect to the largest 

fragment maxf  higher than the escape velocity in Eq.(4.45). Thus, the probability that a 
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fragment fi escapes from the gravity of maxf  should be computed by integrating the 

following expression: 

 ( ) ( )max max( ) F( 0 , 0 ) (0) (0)
i i

esc f f
P v v d dυ υ

∞ ∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞ −∞
⋅∆ > = ∫ ∫ ∫ ∫ ∫ ∫ v v  (4.46) 

where (0)
i i i if tf nf hf

d dv dv dvυ = , 
max max maxmax (0) t n h

d dv dv dvυ = and the function F  is: 

 

( ) ( )

( ) ( ) ( ) ( )max max max

max

max

F( 0 , 0 )

(0), (0), (0) (0), (0), (0) , 0 0

0,    otherwise

i

i i i i

f

t n t n escf f h f h f
G v v v G v v v v







=

⋅ − >

v v

v v  (4.47) 

Integral Eq.(4.46) is computationally very expensive, thus a method to reduce the 

computational time (which was of the order of several days) without impairing the result of 

the integration was needed.  Using the law of cosines, we can relate the modulus of the 

relative velocity ( ) ( )max0 0
if

−v v  to the norm of the velocity ( )0
if

v  and ( )max 0v  as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

max max max0 0 0 0 2 0 0 cos
i i if f f

α− = + − ⋅ ⋅ ⋅v v v v v v  (4.48) 

where α  is the angle between the two vectors ( )0
if

v  and ( )max 0v . Since the velocity 

distribution accounts for three equally distributed cartesian components, that is, equal 

mean and standard deviation for all components, angle α  has a homogeneous probability 

to have a value between 0 a 360 degrees. Then, by averaging ( )cos α  in Eq.(4.48) between 

0 and 360 degrees, resulting in ( ) 0cos α = ,  we obtain an average modulus of the 

relative velocity as: 

 ( ) ( ) ( ) ( )
2 2 2

max max0 0 0 0
i if f

− = +v v v v  (4.49) 

Using Eq.(4.49), the integral Eq.(4.46) can be reduced to a double integral if we use 

the norms of the vectors ( )0
if

v  and ( )max 0v  instead of the six cartesian components: 

 ( )max max( ) (0), (0) (0) (0)
i i

esc f f
P v v l v v dv dv

∞ ∞

−∞ −∞

∆ > = ⋅∫ ∫  (4.50) 

where function l  becomes: 
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( )

( ) ( )

2
2

max
2 2

max

max

2 22 2
max

max

(0), (0)

1 1
, 0 0

2 2

0,    otherwise

i

fi

fi

i

i

f

v
v

escf

f

l v v

e e v
σ σ

σ π σ π

−
−









=

⋅ + >v v
 (4.51) 

with max0 0
max

;
i

a a
f

i

M M

m m
σ σ σ σ= ⋅ = ⋅  

Expression Eq.(4.51) does not include the mean of the distribution, since both fragments 

have, by definition, the same mean velocity. 

Fig. IV-14 and Fig. IV-15 show the results of the integral Eq.(4.50) on the 

fragmentation of the asteroids Apophis, Shiva3 and Apollyon3. Integral Eq.(4.50) is a 

function uniquely determined by the mass of the asteroid, energy used for the break up and 

fragmentation ratio, thus, since they have the same mass, the results for Shiva3 and 

Apollyon3 are equivalent (Fig. IV-15). An interesting conclusion highlighted by the two 

figures concerns rubble pile asteroids; 100 J/kg of impact energy may be the minimum 

energy required to fragment an asteroid, only if the asteroid happens to have a rubble-pile 

structure, if the fragmentation occurs at this level of energy, the velocities provided to the 

different spawned fragments would certainly not be enough to completely disperse the 

asteroid, which, most likely, would become a rubble pile asteroid again, losing only a small 

fraction of its mass during the process of break-up and subsequent re-aggregation. 
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Fig. IV-14  Percentage of fragments escaping the gravitational 

field of the largest fragment and avoiding being re-aggregated 

into the largest remaining mass of Apophis. The figure shows 

break-ups at four different levels of energy and three different 

levels of fragmentation for each level of energy. 
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Fig. IV-15  Percentage of fragments escaping the gravitational 

field of the largest fragment for Shiva3 and Apollyon3. The 

figure shows break-ups at four different levels of energy and 

three different levels of fragmentation for each level of energy. 

IV.5. Consequences of a Fragmentation 

If the impact of each asteroid test case is assumed to occur at the MOID point for 

each test case listed in Table IV-1, the impact likelihood can be calculated by integrating 

over the volume inside a sphere centred at the asteroid’s MOID point with radius equal to 

the Earth capture volume ( )dV r :  

 
( )

0
( 0)

)( ;( ) ( )
V r R

MOID
V r

L P t t dV r

ε ⊕= ⋅

=

−= ⋅∫ x  (4.52) 

Note that the capture volume is approximated by the Earth radius corrected with the 

hyperbolic factor ε , to account for the final gravitational focusing of the Earth.  

From Eq.(4.52) we can see that the total impact likelihood for a particular fragment 

size and test case is only a function of the time of the closest approach tMOID , the time at 

which the break up occurred (the difference between these two times is here referred to as 

the warning time) and the specific collisional energy used to break up the asteroid. Fig. 

IV-16 shows the evolution along warning time of the impact likelihood of the largest 

fragment from a barely catastrophic fragmentation emanating from the hypothetical break-
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up of each test case presented in Table IV-1. In this first example, the hyperbolic factor ε  

particular to each test is not yet taken into account and a 2.16 value, i.e., Apophis 

hyperbolic factor, is instead used for all the four orbits. Using the same factor ε  for all the 

test cases avoids adding third body effects (i.e., Earth final hyperbolic approach) to the 

problem of the dispersion of fragments, which, at this point, eases the analysis on the 

evolution and dispersion of the cloud of fragments. 
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Fig. IV-16  Impact likelihood for all the four test cases from 

Table IV-1 as a function of warning time or time span between 

break-up and impact. The fragmentation is spawned by 500 

J/kg of collisional energy causing a dispersion of the largest 

fragment mmax with [ ]0.014 0 0 /m s=µ  and 

[ ]0.008 0.008 0.008 /m s=σ  for all the four test cases. The 

hyperbolic factor ε  is fixed to 2.16 for all the four cases.  

 

The collisional energy or SKE of the impact likelihood plotted in Fig. IV-16 was set 

at 500 J/kg. Such a collisional energy causes a change of velocity of the centre of mass of 

the system (i.e., cloud of particles) of [ ]0.014 0 0 /m s and a standard deviation of the 

velocity of the largest fragment resulting from the break-up of [ ]0.008 0.008 0.008 /m s , 

which is almost 60% the vδ  of the centre of mass. An important difference with respect to 

the results in Section IV.4 is the fact that in Fig. IV-16 the break up of the asteroid moves 

backwards in time in order to have an increase in warning time, while the hypothetical 

impact time tMOID  is kept fixed. A consequence of this is that the break up occurs at 
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different orbital positions of the unperturbed orbit of asteroid, and the periodic variations 

of the impact likelihood that can be observed are primarily due to this change in orbital 

position of the break up point.  

One of the figure’s most outstanding features is the large variation of the impact 

likelihood within one orbital period. This variation increases with the eccentricity of each 

test case, hence the Circular case is the asteroid with minimum variation of the impact 

likelihood, while Apollyon is the case with the largest. For the latter the difference between 

the maximum and minimum impact probability within the same orbit reaches a maximum 

of 70%. Another distinctive feature of the evolution of the curves in Fig. IV-16 is the 

timing of each minimum, occurring at the perihelion position of each asteroid orbit. Both 

features are direct consequences of the variation of semimajor axis of the initial orbit aδ , 

which is the only variation of Keplerian elements that allows for an unbounded relative 

orbit of the fragments. The first Gauss planetary equation states: 

 
22

t
a v

a vδ δµ=  (4.53) 

which, for a fixed tvδ , will be maximum at perihelion, since the orbital velocity v  will 

also be highest. At the same time, the orbital variation of the velocity v  is larger the higher 

the eccentricity of the asteroid, hence the orbital variation of the impact likelihood is also 

larger the higher the eccentricity. 

The instantaneous change of velocity required to deflect each one of the asteroids in 

Fig. IV-16 a distance equal to 2.16 R⊕×  can be computed using the same procedure 

explained in Section IV.2.1. The minimum required delta-velocities can then be mapped to 

the correspondent impact probability of each asteroid at the same warning time. Fig. IV-17 

shows this mapping of the results on Fig. IV-16 and several interesting conclusions can be 

drawn from it. All the asteroids reach 50% chance of impact when the minimum required 

vδ  for a 2.16 R⊕×  deflection is 0.014 m/s; note that this is the same vδ  that our 

fragmentation provided to the centre of mass of the fragmented cloud. At warning times 

such that the required vδ  for a 2.16 R⊕×  deviation is 0.014 m/s the centre of mass of the 

fragmented asteroid is moving just outside of the integrated volume, thus, if the length or 

semimajor axis of the cloud of fragments is not larger than the diameter of the integrated 

volume, half of the cloud should still remain inside the integrated volume. The impact 

likelihood should therefore be 50% (note that the cloud is aligned with the radii of the 

integrated sphere, since the centre of it is the position at tMOID of the unperturbed and 
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unfragmented asteroid and is also included inside the cloud). In general, the conclusion 

from Fig. IV-17 is that the impact likelihood can be almost perfectly mapped into a simple 

one-dimensional Gaussian distribution of the delta-velocity in the tangential direction tvδ , 

thus, for example, the impact probability reaches ∼98 % at the time that the vδ  required 

for a 2.16 R⊕×  deviation is 0.030 m/s, using a simple Gaussian distribution, tangential 

velocities larger than 2t tvδ σ+  would be reached by 2.28%, thus driving the impact 

likelihood to  ∼98 %. 
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Fig. IV-17  Impact likelihood mapping into minimum required 

vδ  to achieve a deflection equal to 2.16 R⊕× . 

 

IV.5.1. Average Predicted Fragments and Impacts: SKE=500 J/kg  

This section presents the impact likelihood and the average number of expected 

impacts for three different catastrophic fragmentations, 0.5rf ≤ , triggered with a 500 J/kg 

kinetic impactor mission at some point during the last 20 years of collision course of 

Apophis, Shiva3 and Apollyon3. In the example used here, The 500 J/kg of collisional 

energy accounts for a kinetic impactor with a mass of 10,000 kg to deflect Apophis or 

18,520 kg for the larger cases of Shiva3 and Apollyon3.  As a consequence, the impact 

velocity necessary to provide the required collisional energy is 52 km/s. Such a deflection 
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mission would provide a change of the velocity of the unfragmented asteroid (or centre of 

mass of the fragmented case) of  0.019 0 0 /a m s  ∆v ∼ . 

Only a discrete number of size samples were computed due to the large 

computational cost of the impact likelihood integration (i.e., Eq.(4.52)), in particular, six 

different fragment masses were studied for each given case; five general masses for all the 

small fragments, 1010kg, 5x109kg, 109kg, 5x108kg and 108kg plus a varying mass 

accounting for the largest fragment of each fragmentation case. As defined by Eq.(4.1), for 

the three fragmentations ratios, fr equal to 0.5, 0.25 and 0.1, the largest Apophis’ fragment 

should contain a mass of 1.35x1010kg , 6.75x109kg or 2.7x109kg respectively, while for 

Shiva3 and Apollyon3 the largest fragment mass should be 2.5x1010kg, 1.25x1010kg or 

5x109kg for the same fragmentation ratios. Considering the re-aggregation of mass and the 

fragment size distribution previously described in this Chapter, together with a collisional 

energy at 500 J/kg, the largest fragments of three test cases will instead be 2.1x1010kg, 

1.35x1010kg and 4.46x109kg for Apophis or 4.08x1010kg, 2.72x1010kg and 9.68x109kg for 

the other two larger asteroids. As we can see, the effect of the gravity is considerable, re-

aggregating enough mass to yield an effective fragmentation ratio between 0.82 and 0.17, 

instead of ranging from 0.50 to 0.10. Table IV-2 summarizes the number of dangerous 

fragments considering a power law distribution such as Eq.(4.41) and the re-aggregation as 

in Section IV.4.3.  

Table IV-2  Fragment groups used for the computation of 

impact likelihood and average number of impacts for 

catastrophic fragmentation with fr equal to 0.5, 0.25 and 0.1. 

Note that the smallest mass is 8x10
7
kg, since the lower limit is 

set by the lower diameter limit of 40m. N is the number of 

average fragments rounded to the closest integer number. 

 N 
Apophis 

N 
Shiva3 & 
Apollyon3 

Representative 
Mass 

fr= 0.50 0.25 0.10 0.50 0.25 0.10  
10 105 10 1.5 10x kg m x kg> >  1 1 0 1 1 0 102.5 10x kg  

10 91.5 10 7 10x kg m x kg≥ >  0 0 1 0 0 1 101 10x kg  
9 97 10 2 10x kg m x kg≥ >  0 0 0 0 0 1 95 10x kg  
9 82 10 7 10x kg m x kg≥ >  1 1 1 1 2 2 91 10x kg  
8 87 10 2 10x kg m x kg≥ >  3 5 5 5 8 8 85 10x kg  
8 72 10 8 10x kg m x kg≥ >  8 11 11 12 19 18 81 10x kg  

As described in Section IV.3.2, all the fragments, no matter their mass, will have the 

same mean velocity, thus fulfilling the law of conservation of momentum, while the 
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dispersion of velocity from the centre of mass of the system is driven by Eq.(4.37), thus is 

a function of the mass of the fragment. When calculating the impact likelihood of the 

largest fragment, it is considered that its velocity dispersion corresponds to the dispersion 

of the fragment with mass equal to
r a

Mf ⋅ , so the mass of the largest fragment prior to re-

aggregation process. This assumption considers that the re-aggregation process does not 

substantially modify the statistical description of the velocity of the largest fragment. In 

fact, if the velocity of the largest fragment is modified, it will tend to be accelerated, 

changing only marginally its direction; this is due to the fact that the largest fragment has 

more probability to interact with fragments with low relative velocities, moving slightly 

faster, since it is statistically the slowest fragment, and moving in the same direction (or 

similar). The perturbation caused by all the re-aggregating fragments will then tend to be 

low and in the same direction.      

The impact likelihood of the remaining fragments is then computed by approximating 

the dispersion of velocity σ  of each fragment to the dispersion of velocity σ  of the closest 

of the calculated representative masses in Table IV-2. Note that by doing so we have 

considered that the statistical description of the fragments that avoided being re-aggregated 

remains unchanged. This implicitly slows down the velocity of the escaped fragments, 

since those had a relative velocity higher than the dispersion of velocity calculated by 

Eq.(4.40).  In fact, the excess mean dispersion σ  of the escaped fragments, i.e., average 

velocity relative to the centre of mass of the system outside the sphere of influence of the 

largest fragment, differs from the results calculated by Eq.(4.40) by less than 20%.  On top 

of that, the gravitational perturbation to each particular fragment will vary depending on its 

actual dispersion of velocity, and for the quickest moving fragments the error is negligible, 

since they are barely affected by the gravity of the largest fragment. Since another 

approximation is also done by assuming that the mass of each fragment is equal to the 

closest representative mass in Table IV-2, calculating the dispersion of velocities σ  

directly from Eq.(4.40), thus without gravitational perturbations, is considered to be an 

acceptable approximation, given the level of accuracy seek in this work.   

Finally, the integrated Earth capture volume of each asteroid is corrected, now, with 

the corresponding hyperbolic factor ε (see Table IV-13 in Chapter I), to account for the 

different Earth gravitational effect to each asteroid orbit.  Therefore Apophis’s likelihood 

integration is a sphere of 2.16 R⊕× , Shiva’s sphere is 1.52 R⊕×  and Apollyon’s is 

1.29 R⊕× . 
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Fig. IV-18  Evolution of the impact likelihood for different 

fragment sizes along warning times ranging from 0 to 20 

years:  A) Apophis B) Shiva3 C) Apollyon3. The simulations 

accounts for an SKE of 500 J/kg providing 

0.019 0 0 /a m s  ∆v ∼  to the centre of mass of the 

fragmentation. 
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Fig. IV-19  Average number of impacts for three different 

fragmentation ratios as a function of the warning time: A) 

Apophis B) Shiva3 C) Apollyon3. The simulations accounts for 

an SKE of 500 J/kg providing 0.019 0 0 /a m s  ∆v ∼  to the 

centre of mass of the fragmentation. 

 

Fig. IV-18 shows the evolution over warning time of the impact likelihood for the 

three test cases and different fragment sizes. Fig. IV-19 shows the average number of 

impacts, thus including the complete census of fragment, for the three different levels of 

fragmentation. As was expected, the smaller a fragment is, the quicker its impact 
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likelihood begins to drop, which is due to the higher velocity dispersion of the smaller 

fragments. At a certain point, this trend changes for all fragment sizes with dispersion of 

velocity smaller than their mean velocity, since the centre of the ellipsoid of uncertainty 

moves out of the integrated volume and then the smaller the ellipsoid is the lower will be 

the impact likelihood. Despite that, in general, the impact likelihood decreases with a 

decreasing mass, the number of expected impacts grows with a decaying mass and, as seen 

in Fig. IV-19, even if the break-up occurred 20 years in advance a few impacts should still 

be expected. 

IV.5.2. Expected Damage 

As shown for Apophis, Shiva and Apollyon in Fig. IV-19, if the outcome of an 

attempt of asteroid deflection is the break-up of the threatening object, several impacts of 

small fragments could be expected even if the fragmentation or break-up occurred 20 years 

prior to the forecasted impact. Nevertheless, the number of expected impacts is not a good 

figure to evaluate the risk that these small objects pose to Earth. The work of Hills & 

Goda
[19]

 and Chesley & Ward
[102] will be used to assess the damage that these smaller 

fragments can cause and, finally, the damage will be compared with the initial damage that 

the unshattered object would have caused.  

Clearly, an asteroid or fragment threatening to impact the Earth would have 2/3 

chances to fall into the water and only 1/3 to fall into land. A small land impact tends to be 

much more localized than a sea impact, since water can transmit the impact energy over 

very large distances on two-dimensional waves. Adding to the efficient energy 

propagation, the high coastal density population makes water impacts a major element of 

the impact hazard.  

The next three tables (Table IV-3 to Table IV-5) show the expected damage for both 

the unshattered objects and each one of the fragment sizes analysed earlier. Land damage 

is assessed using Hills & Goda
[19]’s calculations;  for all fragments size, the radius of 

destruction is taken from the worse case between soft and hard stone for a 20km/s impact. 

Water damage, instead, is evaluated using data accounting also for 20km/s water impacts 

found in Stokes et al
[10]

., which were computed using the assessment on damage generated 

by tsunamis from Chesley & Ward
[102]. Since the impact velocity of the three test cases 

analysed here differs from 20km/s (see Table IV-1), the predicted areas were scaled by the 

collisional energy fraction to the power of 2/3, which is believed to be the way that 

explosive devastation area scales with the energy[2]. 
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Table IV-3  Expected damaged area for Apophis. Table 

summarizes the damage for the unshattered object and its 

fragments, including the aggregated largest fragments for 

break-ups with fr at 0.50, 0.25 and 0.10.  

Mass  Diameter  

 

Land Damage 
Area 

[km2] 

Water Damage 
Area 

[km2] 

Weighted 
Damage Area  

[km2] 

2.7x1010kg 270m ∼5,920 ∼56,940 ∼39,930 

2.1x1010kgfr=0.50 250m ∼5,253 ∼44,340 ∼31,311 

1.35x1010kgfr=0.25 215m ∼4,429 ∼30,000 ∼21,477 

4.46x109kgfr=0.10 149m ∼2,988 ∼7,719 ∼6,142 

1x109kg 90m ∼2,080 ∼240 ∼860 

5x108kg 71m ∼750 ∼40 ∼280 

1x108kg 42m ∼40 ∼0 ∼10 

 

Table IV-4  Expected damaged area for Shiva. Table 

summarizes the damage for the unshattered object and its 

fragments, including the aggregated largest fragments for 

break-ups with fr at 0.50, 0.25 and 0.10.  

Mass  

 

Diameter  

 

Land Damage 
Area 

[km2] 

Water Damage 
Area 

[km2] 

Weighted 
Damage Area  

[km2] 

5x1010kg 332m ∼11,260 ∼110,770 ∼77,600 

4.1x1010kgfr=0.50 311m ∼9,959 ∼93,650 ∼65,632 

2.7x1010kgfr=0.25 271m ∼7,390 ∼71,110 ∼49,867 

9,68x109kgfr=0.10 192m ∼4,990 ∼29,020 ∼21,011 

5x109kg 154m ∼3,910 ∼12,200 ∼9,440 

1x109kg 90m ∼2,590 ∼300 ∼1,070 

5x108kg 71m ∼930 ∼50 ∼350 

1x108kg 42m ∼50 ∼0 ∼20 
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Table IV-5  Expected damaged area for Apollyon. Table 

summarizes the damage for the unshattered object and its 

fragments, including the aggregated largest fragments for 

break-ups with fr at 0.50, 0.25 and 0.10.  

Mass  

 

Diameter  

 

Land Damage 
Area 

[km2] 

Water Damage 
Area 

[km2] 

Weighted 
Damage Area  

[km2] 

5x1010kg 332m ∼14,310 ∼140,830 ∼98,660 

4.1x1010kgfr=0.50 311m ∼12,200 ∼119,070 ∼83,443 

2.7x1010kgfr=0.25 271m ∼9,390 ∼90,400 ∼63,400 

9,68x109kgfr=0.10 192m ∼6,350 ∼36,890 ∼26,713 

5x109kg 154m ∼4,970 ∼15,510 ∼12,000 

1x109kg 90m ∼3,290 ∼390 ∼1,350 

5x108kg 71m ∼1,180 ∼70 ∼440 

1x108kg 42m ∼70 ∼0 ∼20 

Hills & Goda
[19] estimated that asteroidal bolides larger than a few tens of meters in 

diameter are already able to cause damage to the Earth surface, although only due to the 

sudden blast produced in the final moments of the dissipation of the bolide when crossing 

the Earth atmosphere. This will not leave long lasting scars on the surface, but only cause 

an atmospheric explosion like the one occurred in Tunguska (Siberia) in 1908[18]. On the 

other hand, bolides above 150-200m in diameter[19],[20] reach the Earth surface producing 

cratering events and, if falling into the sea, dangerous tsunamis[102].  Note from the tables 

above, the sudden reduction in water damaged area below the 150m diameter. This is due 

to the low efficiency of air blasts in transmitting their energy to the ocean surface in order 

to initiate a tsunami. 

We also considered a weighted damage ratio. The weighted damage ratio considers 

the mean damage of a statistical distribution of land and sea impacts. One could think that 

although for small fragments the number of impacts is high enough to make the weighted 

damage a good approximation, for the largest fragments and especially for the 

unfragmented asteroid the approximation can drive to misleading results, since a single 

fragment would not cause a weighted damage, but one of the two options, i.e., either land 

or water impact.  

Let us suppose that a fragmentation spawning several big fragments (i.e., >5x109kg) 

occurs. This kind of fragmentation outcome would be a very rare occurrence when the 

break-ups is triggered by only 500 J/kg of SKE, but may happen more often for higher 
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collisional energies.  If several large fragments are then spawned by the break-up of an 

asteroid, the most worrying scenario would occur if the unshattered object was meant to 

have a land impact, but because of the failed attempt to mitigate the threat, at least 1 of the 

large fragments falls into the sea. This scenario would yield more damage to Earth than 

previous unfragmented scenario and, considering each fragment as statistically 

independent, would occur with little less than 33% probability (if having several large 

objects).On the other hand, if the unshattered object is meant to hit the sea, only the very 

infrequently occurring scenario of several large objects, which manage not to become re-

aggregated, and all of them falling into the water could possibly increase the damage 

caused by the tsunami produced by the single unshattered object. To sum up, there is only 

a little more than 33% probability to increase the damage by fragmentation of the original 

asteroid, if both the unshattered object and all its fragments fall onto Earth. Highlighting 

the latter result, the statistical weighted damage is used in the rest of the analysis of 

consequences of a fragmentation.  

Fig. IV-20 shows the evolution with time of the three different damages produced by 

a barely catastrophic fragmentation, i.e., fr=0.50, of Apophis. As shown in the figure, 

despite an increasing number of fragments, the damaged area drops with a decreasing 

fragment mass, being the largest fragment clearly the most dangerous of all, although even 

the smallest fragments, 108kg, may still cause considerable damage. 
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Fig. IV-20  Damage evolution of a barely catastrophic 

fragmentation of Apophis for land impacts, sea impacts and 

weighted damage. For comparison, the three straight lines 

represent the area of Scotland (∼∼∼∼80,000km
2
), the area of 

London (∼∼∼∼1,500km
2
) and the area of Manhattan (∼∼∼∼60km

2
). 

 

Fig. IV-21 compares the expected damage of the unshattered Apophis with the 

potential damage of all fragments from the three different catastrophic fragmentation 

levels. The damage of the fragmented case is computed by adding the predicted weighted 

damage of each fragment size, thus multiplying the areas in Table IV-3 by the number of 

expected impacts of each fragment size previously calculated and shown in Fig. IV-19. 

The statistical damaged area shown in Fig. IV-21 is scaled by the weighted damage of the 

unfragmented Apophis, ∼40,000 km2. The fragmentation represented in Fig. IV-21 was 

triggered by a kinetic impactor with a ms/c of 10,000 kg providing 500 J/kg of SKE. If 

Apophis does not shatter under such a collisional energy the asteroid could be deflected 

with a velocity of [ ]0.019 / 0 0m sµ ∼ , assuming an enhancement factor β of only 1.  

As seen in Fig. IV-21, the unshattered Apophis completely misses the Earth 12 years 

after its orbit was altered by 0.019m/s, while within 6 to 12 years of warning time, Apophis 

misses the Earth only if the deflection occurs at several optimal orbital positions.  The 

damage ratio of the unshattered object (blue line) was computed not only by applying a 

delta-velocity [ ]0.019 / 0 0m sδ v ∼  to Apophis, but also adding a small error to account for 
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sensible uncertainties during the mitigation mission. A standard deviation 0σ  of 1/6th the 

delta-velocity is chosen as a generic error for all the unfragmented computations. This 

standard deviation states that, after taking into account the uncertainties of the model, the 

ultimate value of the delta-velocity has a 99.7% of probability to be within 50% the value 

predicted by the model, thus: 

 03
2

avσ ∆
=  (4.54) 

Without this hypothetical error in the kinetic impactor performance, the damage ratio (blue 

line) would simply resemble a step function.  
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Fig. IV-21  Damage ratios of Apophis: fragmented case fr=0.50 

(black solid line), fr=0.25 (black dashed line), fr=0.10 (black 

dotted line) and unshattered case (blue line) with a tree sigma 

equal to 50% in the delta-velocity.   

Finally, Fig. IV-22 completes the comparison on the consequences of a fragmentation 

for Shiva3 and Apollyon3 cases and a SKE of 500 J/kg. The unshattered damage for these 

two objects is also calculated using the same generic error described above. Fig. IV-21 and 

Fig. IV-22 highlight several interesting features on the consequences of a catastrophic 

fragmentation; if a fragmentation occurs, the maximum damage, i.e., the damage that 

would be caused by all fragments impacting the Earth, is smaller than that of the 

unshattered object, and keeps decreasing with a decreasing fragmentation ratio. There is 
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however an exception to this: as we can see by using the data available from Table IV-3 to 

Table IV-5, several land impacts will easily cause more harm that the unshattered land 

damage, while the opposite occurs for sea impacts.   

An interesting feature for long warning times (> 10 years) in Fig. IV-21 and Fig. 

IV-22 is the higher damage ratio of all the fragmented scenarios opposed to the zero 

damage of the unshattered case. We should notice from Fig. IV-20 that, at this SKE level, 

the damage is driven by the largest fragment: on the one hand, since the potential damage 

of the largest fragment is smaller than the unshattered object, the risk should be reduced, 

although on the other hand, the orbital uncertainty associated to the fragmentation greatly 

enhances the risk. Notice from Fig. IV-3 that the delta-velocities required to deflect the 

collisional course of a threatening object vary very little for long warning times, being the 

uncertainties associated to the fragmentation much larger.     
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Fig. IV-22  Damage ratios of Shiva3 and Apollyon3: fragmented 

case fr=0.50 (black solid line), fr=0.25 (black dashed line), 

fr=0.10 (black dotted line) and unshattered case (blue line) with 

a tree sigma equal to 50% in the delta-velocity.   
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IV.5.3. Other Scenarios Analysed 

In terms of the break-up and dispersion model described in this chapter, the following 

points should be highlighted:  

• For a fixed impactor mass ms/c, the delta-velocity provided to the centre of 

mass of the asteroid is only a function of the collisional energy or SKE used 

during the mitigation attempt. 

• The dispersion of the cloud of fragments of a given size is only a function of 

the delta-velocity provided to the centre of mass. 

• The potential damage that a fragmented asteroid could cause to Earth is, 

therefore, a function only of two variables; the delta-velocity provided to the 

centre of mass of the asteroid, which depends only on the SKE, and the 

fragmentation ratio of the break-up. 

• A barely catastrophic fragmentation, i.e., fr equal to 0.5, only occurs if 

SKE(or SNE) is equal to Q*, otherwise if SKE(or SNE) is larger than Q* the 

fragmentation ratio fr will be smaller. 

• The critical specific energy Q* is uncertain; possibly close to 100 J/kg for 

“rubble piles” and still below 1000 J/kg even for strong monolithic asteroids.   

Up to this point, the chapter has only analyzed the consequences of a 500 J/kg impact 

triggering three different levels of fragmentation and, given the aforementioned statements 

about the model, a few more possible scenarios should also be assessed. The following 

scenarios are here presented; a barely catastrophic fragmentation triggered by a very low 

level of collisional energy (100 J/kg), different level of catastrophic fragmentation 

triggered by the upper limit of collisional energy (1000 J/kg) and, finally, a highly 

catastrophic fragmentation achieved with an energy much higher than the upper 

fragmentation limit to account for the possibility of a hazard mitigation mission attempting 

to destroy and disperse the impact threat as oppose to deviate it. Table IV-6 summarises all 

the different scenarios computed for the analysis carried out in this chapter.  
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Table IV-6  Summary of the fragmentation scenarios simulated 

in the chapter. K.I. refers to the use of the kinetic impact 

model, while N.I. refers to the nuclear interceptor model. 

 100 J/kg 500 J/kg 1000 J/kg 5000 J/kg 

Apophis K.I. 

0.006 0 0 /
a

m s  

∆v ∼
 

/ 5,000
s c

m kg=  

/

33 0 0 /
s c

km s  

∆v ∼

 

K.I. 

0.019 0 0 /
a

m s  

∆v ∼
 

/ 10,000
s c

m kg=  

/

52 0 0 /
s c
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∆v ∼
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0.038 0 0 /
a

m s  

∆v ∼
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s c
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/

52 0 0 /
s c
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∆v ∼

 

N.I. 
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a
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∆v ∼
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s c

m kg=  
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Barely catastrophic fragmentation with 100 J/kg 

A SKE of 100 J/kg provides very little velocity to the threatening object as can be 

seen in Fig. IV-23, where the impulse provided to the three unshattered object is barely 

able to deflect Apollyon3 (blue lines). On the other hand, if the asteroid shatters, the 

fragments will have very little velocity and most of the mass will re-accumulate. As 

described in Table IV-7, less than 10% of the mass is predicted to escape the re-

accumulation process, thus the potential risk of damage comes almost entirely from the 

large re-accumulated fragment. There is a small initial reduction on the damage caused by 

the fragmented cases, caused by the mass loss, since all the small fragments that do 

manage to escape the gravitational re-accumulation are, in fact, too small to reach the Earth 

surface and cause any noticeable damage. We can notice however a higher damage on the 

fragmented case for long warning times in the Apollyon3’s figure, which is caused by the 

increased uncertainty on the motion of the new “rubble pile” asteroid. The same trend will 

be also observed in Apophis and Shiva3 figures if the warning time was extended.  

 

Table IV-7  Approximate fragment census for a barely 

catastrophic fragmentation triggered with 100 J/kg. 

Representative Mass N 
Apophis 

N 
Shiva3 & Apollyon3 

 fr=0.50 fr=0.50 
Largest Fragment 102.45 10x kg  104.6 10x kg  

101 10x kg  0 0 
95 10x kg  0 0 
91 10x kg  0 0 
85 10x kg  0 0 
81 10x kg  1 2 
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Fig. IV-23   Damage ratios of Apophis, Shiva and Apollyon 

for a 100 J/kg break-up: fragmented case (black line) and 

unshattered case (blue line) with a tree sigma equal to 50% 

in the delta-velocity.   
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Catastrophic fragmentations with 1000 J/kg 

If energies of around 1000 J/kg are provided, most of the mass escapes re-

accumulation, thus increasing the population of fragments for all sizes. At this energy, 

several large and dangerous fragments should be expected. The potential risk decreases 

with increasing warning time and reaches levels that are approximately half of those 

achieved through a deflection with 500 J/kg. Perhaps the most important drawback of this 

energy level is the fact that a secondary attempt of deflection will have to deal not only 

with one dangerous fragment but with 3 to 6 dangerous fragments. On top of that, at this 

level of collisional energy and by the results on fragmentation energies from Fig. IV-2, it 

seems clear that the most probable outcome of an impulsive mitigation attempt would be a 

catastrophic fragmentation as described in Table IV-8. 

 

Table IV-8  Approximate fragment census for three 

catastrophic fragmentations triggered with 1000 J/kg. 

Representative 
Mass 

N 
Apophis 

N 
Shiva3 & Apollyon3 

fr= 0.50 0.25 0.10 0.50 0.25 0.10 
Largest Fragment 

[kg] 

101.75 10x  99.15 10x  92.93 10x  103.5 10x  101.93 10x  96.06 10x  

95 10x kg  1 1 1 1 1 1 
91 10x kg  2 2 2 3 4 3 
85 10x kg  6 7 6 8 12 10 
81 10x kg  11 15 12 16 24 21 
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Fig. IV-24  Damage ratios of Apophis, Shiva and Apollyon for 

a 1000 J/kg break-up: fragmented cases (black lines) and 

unshattered cases (blue lines) with a tree sigma equal to 50% 

in the delta-velocity.   
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Highly catastrophic fragmentations with 5000 J/kg 

With a five-fold increase of the upper fragmentation limit considered in this work, 

the fragmentation should be expected to be highly catastrophic. The fragmentation level is 

clearly unknown, although, as seen by the fragmentations with fr=0.25 and fr=0.10, a very 

high dispersion should be expected, achieving very low risk for long warning times, which 

in some cases can be deemed negligible. However, although the unfragmented case seems 

highly improbable to exist at this level of energy, we should notice that the unfragmented 

option still represent a safe option to achieve zero potential risk only after very short 

period. 

Table IV-9  Approximate fragment census for two highly 

catastrophic fragmentations triggered with 5000 J/kg. 

Representative 
Mass 

N 
Apophis 

N 
Shiva3 & Apollyon3 

 fr=0.25 fr=0.10 fr=0.25 fr=0.10 
Largest Fragment 95.7 10x kg  92.29 10x kg  101.1 10x kg  94.37 10x kg  

101 10x kg  0 0 1 0 
95 10x kg  1 1 2 1 
91 10x kg  4 2 6 4 
85 10x kg  9 6 15 11 
81 10x kg  17 13 28 23 
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Fig. IV-25 Damage ratios of Apophis, Shiva and Apollyon for a 

5000 J/kg break-up: fragmented cases (black lines) and 

unshattered cases (blue lines) with a tree sigma equal to 50% in 

the delta-velocity.   
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IV.6. Chapter Summary 

The work described in this chapter examined the risk of fragmentation that impulsive 

asteroid deflection missions, such as the kinetic impactor or the nuclear interceptor, can 

cause when attempting to deflect an asteroid in a single impulsive manoeuvre. The levels 

of collisional energy required to break-up an asteroid were first estimated and, then, a 

fragmentation and dispersion model was introduced. The model was then used to analyse 

the evolution of fragments for up to 20 years after the break-up of the asteroid. Using the 

Earth impact probability of five different fragment sizes together with the approximate area 

that could be destroyed by each one fragments analysed, the consequences of a 

fragmentation were estimated for several illustrative examples.  

The energies required for a single impulsive deflection manoeuvre, i.e., those of a 

kinetic impactor (Fig. IV-4) or a nuclear interceptor (Fig. IV-5), are dangerously close to 

the energies required to catastrophically disrupt an asteroid (Fig. IV-2). Even for relatively 

large warning times, more than 10 years prior to the collision, the risk of fragmentation 

seems still considerable. We should also bear in mind that even if, instead of a single 

manoeuvre, several smaller impulses are given to the asteroid, in order to avoid surpassing 

the catastrophic fragmentation level, the material strength of the asteroid will decrease at 

each small impact, and the risk of fragmentation will not disappear, even if it may be 

reduced.  

If an undesired fragmentation of the threatening object occurs, it may result in a 

substantial increase of risk to Earth. Considering that an undesired fragmentation may 

occur when applying collisional energies ranging from 100 J/kg to 1000 J/kg, we can 

distinguish three different trends in Fig. IV-21, Fig. IV-22, Fig. IV-23 and Fig. IV-24. 

Initially, the potential damage caused by the fragmented asteroids is lower than the 

unshattered object. This occurs not because some fragments miss the Earth, but as a result 

of the fragments that are two small to yield any noticeable damage at the surface of the 

Earth. Clearly, the maximum fragmented damage is strongly related with the fragmentation 

ratio fr resultant from a particular break-up. Secondly, we observe that at the moment when 

the unfragmented scenario begins to transit from a potential damage ratio of 1 to 0, i.e., 

time at which the deflection mission was intending to fulfil the deflection requirements, all 

the fragmented scenarios still retain a potential damage ratio that is considerably high, 

going approximately from 0.5 to 0.15, depending on fragmentation ratio and exact warning 

time. We can therefore conclude that an undesired fragmentation outcome would represent 
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a failure on the deflection mission, where, if no further deflection attempt is performed, the 

potential damage to Earth would remain still considerably high at the predicted collision 

time. Finally, for very long warning times, the fragments disperse enough so that the 

damage becomes negligible. The time required to reach this point depends on the 

collisional energy used in the deflection attempt, although for energies between 100 J/kg to 

1000 J/kg the required warning time to reach negligible damage is longer than 20 years.  

Applying collisional energies much higher than 1000 J/kg will result on highly 

catastrophic fragmentation. This kind of fragmentation may be used to fragment and 

disperse an asteroid to such a level that the potential damage becomes almost negligible 

(Fig. IV-25). This may be achieved for long warning times (>10 years), although serious 

questions should be arisen about the optimality of such an option if enough warning time is 

available that both kinetic impulses lower than the fragmentation limit and low thrust 

deflection  techniques are also efficient options.  
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Chapter V 

Conclusions 

 

This thesis is the culmination of a three-year research study on the deflection of 

asteroids. Specifically, the research was conducted on asteroid deflection techniques, 

analysis of possible mission scenarios and asteroid fragmentation and its consequences. 

The author hopes that the results presented in the previous chapters will contribute to the 

understanding of the problem and help to identify possible solutions. The following 

sections summarize the main research outcomes and proposed further lines of work. 

V.1. Summary of the Research Results 

Chapter I set the boundaries of the problem at hand. We saw that most of the future 

impact risk may come from small asteroids, having less than a few hundred meters in 

diameter. We presented three asteroidal test cases; Apophis, Shiva and Apollyon, whose 

orbital characteristics are the result of statistical analysis of currently surveyed population, 

and together with a varying asteroidal mass of four orders of magnitude, presents a 

meaningful set of realistic scenarios encompassing not only asteroid size, thus impact 

frequency, but also orbital characteristics. We also analysed the magnitude of the minimum 

deflection required to deviate an object from an Earth-impact trajectory, and saw that we 

need to take into account not only the physical volume of the Earth, but also the 

gravitational focusing of our planet.  

Chapter II presented six different methods that could be use to change the collisional 

course of a threatening object, two impulsive strategies, i.e., nuclear interceptor and kinetic 

impactor, one multi-impulsive, mass driver, and three low acceleration methods, i.e., low 

thrust propulsion, solar collector and gravity tug.  

Without considering political and security issues related to the use of nuclear devices, 

the nuclear stand off explosion proved to have very good deflection capabilities. The 

reliability of the stand off configuration to uncertainties, on both asteroid characteristics 

such as composition and shape, and nuclear device performances, was also analysed (see 
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appendices for the latter). The optimal detonation distance was also investigated and found 

to be dependant on the yield of the nuclear device and density and size of the asteroid.  

The velocity at impact was shown to be a paramount feature for the efficiency of the 

kinetic impactor. If impact speeds of around 50 km/s are attained, asteroids up to few 

hundred meters in diameter can be successfully deflected by impactors smaller than 3,000 

kg. This kind of hypervelocity impact could be achieved through retrograde orbits. 

With the analysis of spacecraft propulsion model (also referred as low thrust 

method), we saw that it is not necessary to modify the asteroid rotational state in order to 

deflect it and that, despite the obliquity of the asteroid, using a multi-engine approach is 

possible to achieve at least 30% efficiency on the push without having to perform very 

complex operations to de-spin or precess the asteroid. We also saw that limiting the 

thrusting operations to the first half of the total available pushing time could achieve better 

deflections than thrusting all the available time. Finally, we showed that the spacecraft 

propulsion/low thrust approach can deviate asteroids below 150 meters in diameter with 

only a few thousand kilograms of dry mass plus propellant for deflection operations. 

Asteroids below 150 meters diameter have an accumulative impact probability of 0.3% in 

the next 20 years.   

The mass driver concept was also showed to be a successfully performing deflection 

technique. This concept was capable of deflecting all the asteroidal test cases with less than 

10,000 kg of dry mass. Clearly, the efficiency of this method is the result of using in-situ 

material to provide a change in the linear momentum of the asteroid, although the 

technology requirements for this kind of deflection method is surely much more 

demanding than for other techniques, with the exception perhaps of the solar collector. 

Among all the techniques analysed, the solar collector is the deflection concept that is 

the most affected by the orbital characteristics of the targeted asteroid. The concentration 

ratio of the collector implies a distance threshold from the Sun at which the solar collector 

does not focus enough energy to sublimate surface material, and is therefore not able to 

produce thrust. The concentration ratio used throughout the thesis was 2500, which 

corresponds to a threshold of approximately 2.5 AU (there are other factors that contribute 

to this distance, such as the rotational state of the asteroid). Despite this, solar collectors of 

less than 20 meters diameter could successfully deflect the three virtual asteroids at the 

upper end of the warning time (∼ 20 years), with dry masses not higher than 1000 kg.  
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Finally, the gravity tug also showed a certain capability to deflect small asteroids, 

although somewhat smaller than the rest. It may be surmised however that a technology 

like the gravity tug could be easily used to deflect asteroids from passing through impact 

keyholes (see resonant returns, Section I.3.2). The gravity tug also showed better 

performance than the low thrust for deflection manoeuvres longer than 135 years, although 

this duration of the pushing manoeuvre is unrealistically long for both options. 

In Chapter III, a comprehensive comparison among the different strategies was 

presented. The methodology used consisted in; firstly, computing thousands of preliminary 

mission designs for each combination of deflection method and asteroidal test case, which 

included transfer leg and deflection operations, and secondly, comparing all those solutions 

by means of deflection isolines and dominance tables. Solar collector and nuclear 

interceptor resulted to be the two most efficient methods. The solar collector concept 

showed better results for Aten-like asteroids, while the nuclear interceptor seems more 

efficient in Apollo asteroids. The modest kinetic impactor concept performs surprisingly 

well for all test cases studied, competing at the same level or above other more complex 

deflection methodologies such as low thrust propulsion technique or gravitational tug. It 

should be noted that the impact trajectories for this approach computed in Chapter III were 

the result of a Lambert’s arc, and thus, the efficiency of the kinetic impact would therefore 

be increased by studying more complex trajectories. The technology level of each 

deflection strategy was also discussed in Chapter III and a further comparison was 

presented, which took into account the approximate time that a deflection technology 

would need before becoming usable. Following this additional constraint, the kinetic 

impactor performed very well, as should be expected since similar missions have already 

flown successfully. The solar mirror was shown to be a competitive technology despite 

being, together with the mass driver, the technique needing the most technological 

development.  For cometary hazard, it was shown that, among the objects studied, Nearly-

isotropic comets are the most difficult objects to deflect from an impacting trajectory. The 

reason of this difficulty is the intrinsic short warning time that a realistic impact scenario of 

this type of object would face, most likely in the order of only a few months. 

In most of the work presented in this thesis, an asteroid is considered as a monolithic 

unbreakable object, Chapter IV however showed that the risk of triggering a catastrophic 

fragmentation while attempting a single-impulsive mitigation, such as nuclear interceptor 

or kinetic impactor, is indeed very high. Analysing both the statistical size distribution of 

fragments spawned by the impulsive mitigation and the dispersion of material based on an 
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original velocity dispersion model, also presented in Chapter IV, shows that a 

fragmentation outcome generally results in an increased threat for the Earth than its 

unfragmented counterpart. This increased potential damage is inherent to the uncertainty in 

the velocity magnitude and direction of the largest fragments of the break-up. For short 

warning times and high fragmentation levels, i.e., impact energies above the critical 

catastrophic fragmentation level, the fragmentation outcome obtained reduced potential 

damage. This is due to the fact that the higher the level of fragmentation is the larger the 

number of spawned fragments with size below the limit threshold at which a fragment is 

not able to penetrate deep enough in the atmosphere to pose any risk to the Earth surface 

will be.  We also saw that for low critical specific energies the velocity dispersion of the 

different fragments is rather low, and as a consequence a substantial fraction of the asteroid 

mass would gravitationally re-accumulate into a new single object. This is an interesting 

result that indicates that at the level of energy that a rubble pile asteroid is thought to 

fragment, more than 90% of the mass will re-accumulate again, forming another rubble 

pile asteroid with almost the same mass. This is a very coherent result, which points out the 

consistency of the models developed to study the consequences of an asteroidal 

fragmentation.  

V.1.1. Conclusions 

In the light of current surveys on NEO population, we must avoid to use Apophis as 

the only yardstick with which to measure how good a given deflection method is. An 

Apophis-size impact is thought to occur every 25,000 years approximately and, in fact, the 

current impact probability of Apophis itself does not exceed this background impact 

probability. It is therefore much more plausible that the first ever deflection carried out by 

mankind will be on much smaller objects, for example, those having impact frequencies 

around 1,000 years, also known as Tunguska-class. It is also reasonable to think that the 

orbital characteristics of a future impact-threatening object will not differ by much from 

those analysed in this thesis.     

Considering therefore objects below 150 meters diameter as possible threatening 

objects, many possible methods could become successful candidates for their deflection. 

Among them, the kinetic impactor is probably the most obvious choice since it does not 

require any further technological development and, as shown previously, objects of this 

size could be easily deflected with impactors equal in size to currently flying interplanetary 

spacecrafts (e.g. ESA’s 1578-kg Rosetta spacecraft could successfully deflect a 75m-diam 
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Aten object using a simple prograde trajectory if at least 10 years warning time are 

available). Future technology trends and research interest could finally draw the decision 

makers towards one of the different technologies investigated. Considering objects with a 

few hundred meters diameter, only a limited number of technologies could be plausible 

candidates; nuclear interceptor, mass driver and solar collector. Although the solar 

collector and mass driver concepts present nowadays clear technology issues, these may 

change in future, since both technologies could become an interesting investment for future 

space utilization, such as space mining or solar energy enhancement. On the other hand, 

the use of nuclear warheads in space may pose serious political and moral issues and as 

many may agree, the proliferation of nuclear warheads in space could potentially pose a 

higher risk than the possible benefit. Finally, considering the impact threat posed by 

Nearly-isotropic comets, the most serious problem that we would face is its intrinsic short 

warning time, which makes even attempts with impulsive methods such as kinetic 

impactor and nuclear interceptor highly difficult challenges. 

Another important issue that we discussed here is asteroid fragmentation due to 

impulsive deflections. Fragmentation may occur when attempting to deflect an asteroid, 

especially if the impulsive deflection is applied to an asteroid with less than 10 years 

warning time. If a fragmentation is the undesired outcome of a deflection attempt, the 

uncertainties of the resultant cloud of fragments will intrinsically pose a threat to Earth, 

only reducing by half the potential damage to Earth of the asteroid at the predicted impact 

time. As an alternative option, an asteroid could be highly disrupted and dispersed with the 

sole purpose of reducing the potential damage to Earth to negligible terms. Although this 

alternative could be used as a final backup option, serious doubts about the efficiency of 

the option should be raised. In order to make the total destruction of the asteroid viable 

enough warning time needs to be provided, and thus, the same threatening scenario could 

be resolved using low thrust deflections methods. On the other hand, further study should 

be provided to assess the threat that the fragments could cause in future Earth encounter.     

V.2. Further Research 

Several issues were identified as possible lines for continuity of the work presented 

along the thesis: 

• We have considered the optimal deflection direction uniquely as the direction 

that maximizes the asteroid-Earth distance at a given time. Future work on 
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impact hazard mitigation should expand the study on the optimality of a 

deflection in order to account for the stability of the new deflected orbit, and 

ensure that near-term perturbations would not provide any further chances of 

Earth impact in the following decades or centuries. Also, the issue of the 

resonant return impact should be studied and optimal deviation strategies for 

resonant returns should also be assessed.  

• Trajectory design was limited here to either a Lambert’s arc impulsive 

trajectory or a direct low-thrust spiral. A straightforward improvement of the 

study developed here should include deep space manoeuvres in the 

calculation of the impulsive transfer legs. Further improvements could 

account for multiple fly-by trajectories, both using low thrust and chemical 

transfers.   

• Several could be the working lines in order to further develop the analysis on 

the consequences of an asteroid fragmentation. Some examples are; assessing 

a qualitative probability of fragmentation for multi-impulsive manoeuvres, 

improving the gravitational interaction model between the different fragments 

and the link between this and the statistical description of the escaped 

fragments or adding other perturbative forces to the analysis, such as 

Yarkovsky effect or solar pressure.   

Finally, many other related studies could follow the research developed in this thesis, 

some potential candidates are; solar collector sample return mission or asteroid capture 

trajectories. The solar collector is probably the most interesting deflection method among 

the studied techniques. Alternative space application of this technology could be 

investigated in order to prompt the technological development of this concept. For 

example, the feasibility of asteroidal sample return missions using ablation of material as 

collecting system could be investigated. Although this may now seem science fiction, 

shepherding the asteroidal and cometary population for several purposes such as avoiding 

any threat to Earth, taking advantage of its natural resources or simply building small space 

outpost on them may become an alternative in the years to come. In this context, planetary 

capture of asteroids should be investigated. Using low stability orbits this possibility may 

be exploited at a reasonably low energetic cost. 



 

 

 
 

 

VI. 

Appendices 

 

A.1. Deflection Formulas 

Throughout this thesis, the distance that a deflected asteroid achieves at the Earth 

encounter has been calculated either by simply referring to the proximal motion equations 

and Gauss’ variational equations or by referring to the work of Vasile & Colombo
[95]. This 

section will extend the explanation of the procedure used to calculate the deflection and, 

more importantly, the optimal direction of the deflection impulse. Some insight into the 

accuracy of the methodology will also be given.  

A.1.1. Gauss’ Variational Equations  

Let us assume that a given deflection model provides the asteroid with a δ v  vector of 

impulsive change of velocities at a time t0. Expressing this δ v  vector in a Cartesian 

rotating frame { }ˆ ˆ ˆ
t n h
i i i , where t̂i  is the direction along the orbit velocity vector,  

ĥ
i   is 

parallel to the orbital momentum vector, thus the out-of-plane direction, and n̂i  completes 

the right-hand coordinates system, we can express the variation of the orbital elements of 

the asteroid at the time t0 (i.e., when the impulsive change occurs) with the following 

system of equations: 
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 (6.1) 

where { }a e i MωΩ  are the keplerian elements, v  is the orbital velocity of the 

asteroid, µ  is the gravitational constant, f  is the true anomaly,  r  is the distance to the 

Sun or norm of the position, θ  is the argument of latitude (i.e., fω + ) and p is the 

semilatus rectum. All the parameters in Eq.(6.1) are obviously referred to the nominal 

unperturbed orbit of the asteroid at time t0. Eq.(6.1) are known as Gauss’ Variational 

equations.  

 If instead of an impulsive mitigation action, a continuous gentle push is provided 

by one of the low thrust models (i.e., low thrust propulsion, solar collector or gravity tug) 

the variational equations Eq.(6.1) will take the following form:  
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 (6.2) 

where n is the mean angular motion of the orbit, and integrating Eq.(6.2) the total variation 

of the keplerian elements will be obtained. 
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A.1.2. Proximal Motion Equations  

A very convenient way of describing the deflected orbit of the asteroid is by using a 

relative orbit description.  Assuming a two body problem with no disturbance, the six 

variations of the orbital elements { }end
a e i Mδ δ δ δ δω δΩ , where 

end
Mδ  indicates 

the variation in mean anomaly at a given time tend, remain invariant with time, and thus, 

knowing the initial orbital elements and the variations of the perturbed orbit, the position 

of the perturbed asteroid can be computed at any time by solving Kepler’s equation. Note 

that 
end

Mδ  accounts for the change in mean anomaly with respect to the unperturbed orbit 

at the time t0, thus time at which either the impulsive manoeuvre was applied or the low 

thrust acceleration began.  
end

Mδ  is therefore expressed as: 

 ( )0end end
M M n t tδ δ δ= + −  (Impulsive manoeuvre) (6.3) 

 ( ) ( )0 0 0ft tend f end f end
M n t t M n t tδ −

 
  

= − + ∆ − − (Low thrust push) (6.4) 

where, in Eq.(6.3), ( )33n a a aδ µ µ δ= − +  and, in Eq.(6.4), the subscript f refers to 

time when the low thrust pushing manoeuvre is stopped, and the asteroid is then coasting 

from tf to tend.  This methodology is considered convenient simply because five of the six 

relative orbital elements are constant with time, unlike when using the relative Cartesian 

elements of the two orbits. This orbital description eases the interpretation of the shape of 

the relative orbits.  

Since the change in the orbital elements { }a e i MωΩ  of the initial 

unperturbed orbit is small, we can express the position of the deflected asteroid relative to 

the virtual position of the unperturbed asteroid by using the linear mapping provided by 

proximal motion equations[96]: 

         ( ) ( )

( )

2

3 2

sin
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sin
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sin cos sin

end
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r
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ae fr
s a M a f e

a

r fr
s e f M r e f e r i

s r i i

θ

δ δ δ δ
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δ δ δω δ δ
η η
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               (6.5) 

where rsδ , sθδ  and 
h

sδ  are the displacements in the Hill’s reference frame, i.e., radial, 

transversal and perpendicular to the orbit plane directions respectively, and 21 eη = − . 



 Appendices 
  

                                                                       

 

176 

A.1.3. Accuracy of the Proximal Motion  

The following five figures (Fig. A-1 to Fig. A-5) show the deflection error and 

relative error for Shiva and Apollyon cases and the relative error for the cometary example 

Comet S-T. The error was computed by comparing the resulting deflection triggered by a 

change of velocity 0 0tvδ    and computed using both the method described above (i.e., 

combining Gauss’equations and linearized proximal motion) and a propagation of the two 

orbits, the unperturbed and the perturbed by the change of velocity. In light of the results 

shown in the figures, the proximal motion and Gauss equation method provides a very 

efficient way to compute the deflection of an asteroid for all the range of delta-velocities 

and warning times that have been used throughout this thesis. On the other hand, as shown 

in Fig. A-5, when computing the deflection of bodies with orbital elements similar to those 

of comet S-T, the method should only be used for long warning times (> 6 years) and very 

low delta-velocities (<0.01 m/s).    
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Fig. A-1 Deflection error as a function of Warning Time and 

tvδ  applied to Shiva. 

 



 Appendices 
  

                                                                       

 

177 

2 4 6 8 10 12 14 16 18

10
-2

10
-1

10
0

0.0001

0.0001

0.0001

0
.0
0
0
1

0.0003

0.0003

0.0003

0.0003

0.
00
0
3

0
.0
0
0
3

0
.0
0
0
3

0
. 0
0
0
3

0.0008

0.0008

0.0008
0.
00
08

0
.0
0
0
8

0
.0
0
0
8

0.00
08

0
.0
0
0
8

0
. 0
0
0
8

0
.0
0
0
8

0
. 0
0
0
8

0
.0
02
2

0
.0
0
2
2

0.002
2

0.002
2

0
.0
0
2
2

0
.0
0
2
2

0
. 0
0
2
20

.0
0
2
2

0
.0
0
2
2

0
.0
0
2
2

0
. 0
0
2
20
.0
0
2
2

0
. 0
0
2
2

0
.0
0
2
2

0
.0
0
2
20

.0
0
2
2

0
. 0
0
2
2

0
. 0
0
2
2

0
.0
0
6

0
.0
0
6

0
.0
0
6

0
.0
0
6

0
.0
0
6

0
. 0
0
6

0
. 0
0
60

.0
0
6

0
.0
0
60

.0
0
6

0.00
6

0
. 0
0
60

.0
0
6

0
. 0
0
6

0
. 0
0
6

0.006

0.006

0
.0
0
6

0
.0
0
6

0
.0
0
6

0
.0
0
6

0
. 0
0
6

0
. 0
0
6

0
. 0
0
60

.0
0
6 0

.0
1
6
7

0
. 0
1
6
7

0
. 0
1
6
7

0
.0
1
6
70

.0
1
6
70

. 0
1
6
70

. 0
1
6
70

. 0
0
6

0
. 0
0
6

0
.0
1
6
7

0
.0
1
6
7

0
. 0
1
6
7

0
. 0
0
2
2

0
. 0
1
6
7

0
.0
0
6

0
. 0
1
6
70.0167

Warning Time, years

δδ δδ
v

t, 
m

/s

 

 

2

4

6

8

10

12

14

16

x 10
-3

 

Fig. A-2 Deflection relative error as a function of Warning 

Time and tvδ  applied to Shiva. 
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Fig. A-3 Deflection error as a function of Warning Time and 

tvδ  applied to Apollyon. 
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Fig. A-4 Deflection relative error as a function of Warning 

Time and tvδ  applied to Apollyon. 
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Fig. A-5 Deflection relative error as a function of Warning 

Time and tvδ  applied to Comet S-T. 
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A.1.4. State Transition Matrix 

Combining Eq.(6.1) and Eq.(6.5) it is possible to assemble a state transition matrix 

that provides us a direct mapping for a given time t between the initial δ v  and relative 

position vector δr  of the new perturbed position with respect the “virtual” unperturbed 

position. 

 0
0

( )
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t t
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The matrix 0( ) ( )t tδ δ 
 ∂ ∂r v  is formed by two matrices, one containing the proximal 

motion equations (A) and a second containing the Gauss’equation (G). 
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 in the first row of matrix TA  makes implicit the 

dependence on aδ  of 
end

Mδ . 
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A.1.5. Optimal Deflection Direction 

Now that the transition matrix is defined, we can use Eq.(6.6) to study the optimal 

direction to deflect a threatening asteroid. As suggested by Conway[103], in order to 

maximize the vector ( )tδr  given an impulse 0( )tδ v , the associated quadratic form 

T

0 0( ) ( ) ( ) ( )t t t tδ δ δ δ   
   ∂ ∂ ∂ ∂r v r v  has to be maximized by choosing an impulse vector 

0( )tδ v   parallel to the eigenvector ν  associated to the maximum eigenvalue of  

T

0 0( ) ( ) ( ) ( )t t t tδ δ δ δ   
   ∂ ∂ ∂ ∂r v r v .  Fig. A-6 shows the deflection achieved as a function 

of warning time for an impulsive deflection of Shiva. Four different directions of impulse 

are applied; one along each direction of the t-n-h Cartesian reference and one along the 

optimal direction as proposed by Conway’s approach. Fig. A-6 shows how, in general, the 

optimal deflection direction matches perfectly that of the tangential direction. Only for 

very short warning times (less than half a year) the optimal direction is achieved through a 

combination of the three t-n-h Cartesian directions.  
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Fig. A-6 Deviation achieved on Shiva with ||δv||=0.01 m/s.  
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A.2. Nuclear Interceptor Appendices 

A.2.1. Further Derivations  

The inclusion of the elevation angleε  in the Eq.(2.13) is critical, since without it the 

mass ablated would have been substantially overestimated. The integration, Eq.(2.13), 

echoes the calculation of the volume of a parallelipede, thus, as seen in Fig. A-7, area of 

the base dA multiplied by height Z.  

 

Fig. A-7  Schematic of the geometry behind the integration in 

Eq.(2.13) . 

The integration of Eq.(2.13) was solved analytically, shortening the computation of 

the model. This is an important issue when the model needs to be calculated several 

hundred thousand times, as was the case during the multi-criteria optimization. What 

follows is the analytical solution of Eq. (2.13):   
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Eq.(6.8) can be rewritten in a more practical manner by collecting constant 

parameters: 
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The following change of variable eases the integration of Eq.(6.9): 
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and so Eq.(6.9) becomes: 
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en v

f E
a b E C

h

ρ µ
µ

επ λ 
 

⋅
= = = . 

after substituting the change of variables of Eq.(6.10) into Eq.(6.9). The integration in 

Eq.(6.11) can be more readily solved using the following expression:  

 
1

2

2
tan

ax b dx
dx ax b b

x x ax b

dx ax b

bx ax b b

−
 
  
 

+
= + + ⋅

+

+
=

−+ −

∫ ∫

∫
 (6.12) 

 The solution of which can be found in mathematical tables[104]. The final analytical 

expression yields: 

 ( )
( )max

max

sin
sin 1tan tan

8 CZ
CZa

A

ae b a b
ae b b a b b

C b b
P

ε
ερ − ⋅

− ⋅ −
    − − −  − − ⋅ − − + ⋅         

⋅
= (6.13) 

 with  

( ) ( )2
; ;

sin4

tradiation a o
en v

f E
a b E C

h

ρ µµ
επ λ 

  

⋅
= = =  

Expression Eq.(6.13) can be now integrated over the entire radiated surface using the 

equation of the surface of a spherical cap 2
a

S R bπ=  (see Fig. II-2). Thus the differential of 

surface area becomes ( )22 sin
a

dS R dπ λ λ= ⋅ , allowing the integration of the linear 

momentum per unit area 
A

P  only integrating over the asteroid central angle λ . 

 

 

 
Fig. A-8 Surface integration using the spherical cap surface 

Scap = 2ππππRab. This reduces the surface integration to a one 

variable integration. 

H 

λ 

b(λλλλ)=Ra(1-cos(λλλλ)) 

Ra h(λλλλ)=Ra(sin(λλλλ)/sin(ηηηη(λλλλ))) 

ηηηη 
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The final expression takes the following form: 
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∫

( ) ( )

1

sin cos
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90

a

a

o

R

R H

ρ λ

ρ

ε η λ

−

 
  
 

 
=  

+ 

= − − (6.14) 

Eq.(6.14) was implemented in Matlab in order to be solved numerically. 

A.2.2. Model Uncertainties in Composition and Radiative Energy 

As expressed in Section II.1.2, the main sources of uncertainty in the model are both 

the opacity 
o

µ  and the absorption
en

µ . The values of these two constants depend on the 

radiation type, the wavelength or energy and the composition of the asteroid surface.  

Table A-1 summarises the main sources of error for opacity 
o

µ  and absorption
en

µ  and the 

approximate influence in percentage on the nominal value used in Table A-1. Fig. A-9 

shows a comparison between the change of velocity computed by the model using nominal 

values for opacity 
o

µ  and absorption
en

µ  or using one of the two uncertainty types; 

maximum variation by error in the radiation wavelength or maximum variation by error in 

asteroid composition. The example shown is based on a 600-kg fusion device and 

detonating it at a varying altitudes. 
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Table A-1   Approximate maximum error committed by the 

assumptions in composition and radiation wavelength. 

Radiation  

Type 

Uncertainty  

type 

Approximate 

 variation 

Notes 

Neutron 

Radiation 

Wavelength 0.2% 
In a fission reaction, neutron radiation of 
14 Mev is 100 times more frequent than 
any other[54]. 

Neutron 

Radiation 

Composition 25% 
Considering composition of enstatite 
chondrites instead of forsterite[45] . 

X-Ray Wavelength 100% 
X-ray radiation at 100 Kev instead of 
radiation at 10Kev, which would be 
equivalent to black body radiation from 
a source at 108K instead of 107K.  

X-Ray Composition 400% 
Considering an enstatite chondrite 
without volatile materials. 

Gamma-Ray Wavelength 50% 
Considering one order of magnitude 
switch in the wavelength 

Gamma-Ray Composition 15% 
Considering an enstatite chondrite 
without volatile materials. 
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Fig. A-9 Total achieved change of velocity of asteroid 

Apophis; with the nominal values of opacity and absorption 

(black solid line), with the maximum change by variation of 

composition (red dotted line) and with the maximum variation 

on radiation wavelength (blue dotted line).    

A.2.3. Model Uncertainties with Asteroid Shape 

As a final consideration on the nuclear interceptor model elaborated in this thesis, it 

should be remembered that the total momentum change is dependent on both the area 

radiated by the nuclear device and the elevation angle. The radiated area and the elevation 

angles are also dependent on the shape of the asteroid and the model assumed spherical 

shape. If the asteroid is not spherical but is an elongated body with the same mass, the 

worst case scenario would be when the explosion occurs over the side of the asteroid with 

the smallest cross section area. In order to evaluate the loss of efficiency in the worst case 

scenario, the ratio between the total ∆v for an elongated asteroid and the total ∆v for a 

spherical asteroid with equal mass was computed.  Fig. A-10 shows the ∆v-ratio as a 

function of the elongation. Considering the typical measured elongation of known asteroids 

the maximum expected value is 2.5 for asteroid Geographos14, which corresponds only to 

an 18% reduction in the performance of the nuclear interceptor. 

                                                 
14http://echo.jpl.nasa.gov/~lance/nea_elongations.html 
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Fig. A-10 Efficiency of the nuclear deflection for an elongated 

body. Nuclear detonation occurs over the side with the 

minimum cross-sectional area.  

A.3. Solar Collector Appendices 

A.3.1. Expelled Mass Integration 

The mass flow rate of the system described in Section II.5.3 is: 

 ( )1exp

solar rad cond
v

dm
P Q Q

dt E
= − −  (6.15) 

where expdm dt  is the mass flow per unit area, vE  is the enthalpy of sublimation, which is 

5.03 kJ/g (Wang[49]) considering forsterite (i.e. Mg2SiO4) as the main component of the 

asteroids, 
solar

P  is the power density at the illuminated spot on the surface of the asteroid 

and, finally, 
rad

Q  and 
cond

Q  are the radiation and conduction loss respectively. 

Eq.(6.15) needs to be integrated over the entire illuminated surface in order to obtain 

the total mass flow out-coming from the asteroid: 

 
max

min

( )
out

in

x y

x y

exp
exp total

dx dy
dm

m
dt

= ⋅ ⋅∫ ∫ɺ  (6.16) 

The axis x̂  and ŷ  are, respectively, perpendicular and parallel to the rotational axis of the 

asteroid, so that the axis x̂  is along the direction of the movement of the surface under the 

illuminated spot. This definition allows us to relate the horizontal surface position x and 

the illumination (or exposure) time through the rotational velocity, vrot, such that rotx v t= ⋅  
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and thus rotdx v dt= ⋅ . Therefore, the integral in Eq.(6.16) can be rewritten in terms of the 

exposure time t (as described in Eq.(2.36) in Chapter II): 

 ( )
max

0

1
( ) 2

cond

out

in

ty

exp rot intotal rad
vt

m v P Q Q dt dy
E

= − −∫ ∫ɺ  (6.17) 

where the limits of the integration tin and tout are the times at which the asteroid surface 

moves inside and outside the illuminated spot respectively and the integration from ymin to 

ymax is symmetric and goes from the centre of the illuminated spot to distance ymax from the 

centre such that 2
max4

rot in
v t D y= − , thus assuring that there is sublimation.  

 The integral in Eq.(6.17) can be rewritten now as: 

 
max

0

1( ) 2
out

in

ty

exp rottotal
t

t
m v A B dt dy

 
 
 
 

= −∫ ∫ɺ  (6.18) 

where ( )1
solar rad

v

A P Q
E

≡ −  and 0subl a

v

T T c
B

E

κρ
π

−
≡ . If t is defined as 0 when the rotating 

asteroid surface moves inside the illuminated spot, then tin is the time at which the 

sublimation starts, being equal to ( )
2

in
Bt

A
= , so that 0

condin rad
P Q Q =− − , and tout is the 

time at which the surface moves out of the illuminated spot, which for a surface moving at 

a velocity rotv , is 2 24
rot

D y v− . 

The integration of the exposure time yields: 
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44
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exp rot in intotal
rot

D y
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D y
m v A t B t dy

v
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−
= ⋅ − − ⋅ − ⋅∫ɺ  (6.19) 

Eq.(6.19) is split in four different smaller integrals, some of which can be readily 

solved as follow: 
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Finally, in the integrations
expmA
ɺ

 and 
expmC
ɺ

, 2y  can be substituted by cosD θ , becoming: 

 

( )
max

max

/ 2
2 2

max max

2

/

3 3

2

arccos(2 )

arccos(2 )

1
sin 2

2 2

2 sin

sin
D

D

rot

exp

exp

y

m

y

m

AD
AD

B v D

d

d

A

C

π

π

θ θ π

θ

θ θ

θ

 = − − +  

=

=∫

∫

ɺ

ɺ

 (6.21) 

The integration 
expmC
ɺ

can be solved analytically using elliptic integrals or numerically. 

A.4. Appendices on the Consequences of Asteroid Fragmentation 

A.4.1. Expelled Mass Integration 

Davis & Ryan
[94] provided the data of a set of 30 experiments on the fragmentation of 

cement mortar targets that can be used to test the velocity dispersion model and the validity 

of some of the assumptions described along Section IV.3. Table A-2 shows some valuable 

data of those 30 experiments, while for the complete a description of each experiment refer 

to Davis & Ryan
[94] using the shot number found in the table. 

Table A-2  30 experiments from Davis & Ryan
[94]

. 

Shot 
number 

Target mass 
[g] 

Projectile 
mass [g] 

Impact 
Speed [m/s] 

Fragmentation 
Ratio rf  

SKE 
[J/kg] 

820302 1346 1.05 1330 0.4 689.95 
820303 1385 1.05 1770 0.056 1187.56 
820304 1354 0.38 1990 0.6 555.70 
820306 1318 0.38 2240 0.25 723.33 
820308 1279 0.29 1960 0.78 435.52 
850841 1085 0.29 1010 0.32 136.33 
850842 1116 0.29 1600 0.31 332.62 
850843 1085 0.29 750 0.33 75.17 
850844 1056 0.29 2250 0.33 695.13 
850845 1333 8.1 180 0.91 98.44 
850846 1375 66.65 130 0.48 409.59 
850847 1354 66.65 90 0.46 199.36 
850850 1393 66.65 50 0.52 59.81 
851204 1375 0.29 2190 0.42 505.77 
851205 1382 0.29 1750 0.79 321.32 
851206 1347 0.29 1340 0.98 193.29 
851207 1304 0.29 1470 0.97 240.28 
851208 1322 0.29 1580 0.68 273.81 
851209 1269 0.29 950 0.99 103.12 
851213 1407 8.1 290 0.96 242.08 
851214 1336 28.2 250 0.54 659.62 
851215 1107 0.29 440 0.96 25.36 
860414 1318 0.38 1510 0.972 328.69 
860415 1370 0.38 1690 0.928 396.10 
860416 1323 0.38 1690 0.963 410.17 
860417 1325 0.38 2150 0.826 662.85 
860418 1313 0.38 2070 0.86 620.05 



 Appendices 
  

                                                                       

 

189 

860419 1316 0.38 2230 0.84 717.97 
860420 1326 0.38 2040 0.492 596.31 
860503 1317 0.38 3140 0.111 1422.42 

Having assumed, in Chapter IV, a relation such as: 

 21
2

m V cte∆ = , (6.22) 

for all fragments oncoming from the same break-up, we can define the constant value of 

Eq.(6.22) as: 

 2 21 1
2 2 a ai im V M V∆ = ∆ . (6.23) 

Recalling now the definition of standard deviation, 
22σ = −∆v ∆v , and considering 

∆v  equal zero since we assume homogeneous spherical dispersion from the centre of 

mass of the system or cloud of fragments, we can rewrite Eq.(6.23) as: 

 2 2
0

1 1
2 2 ai im Mσ σ= , (6.24) 

which leads us back to the Eq.(4.37) from Chapter IV, where 0σ  is defined as : 

 0
a

V

k
σ ∆

= , (6.25) 

where k is a constant that, as discussed in Chapter IV,  will be 1 only if there is a perfect 

spreading and sharing of collisional energy and no loss through processes such as melting 

or breaking. We will use the data from the 30 experiments of  Davis & Ryan
[94] to assess an 

approximate value for k.  Table A-3 shows Davis & Ryan’s fragment speed measurements 

for the 30 experiments in Table A-2. From Table A-3, columns 1,2, 3 and 5 are data 

provided in Davis & Ryan
[94], while columns 4,6,7 and 8 were worked out to test the 

validity of the model. Column 8 shows the constant k that provides a perfect match 

between our model and mean velocity of fragments measured in the experiments.   

Table A-3   30 experiments from Davis & Ryan
[94]

. Column 2 is 

the number of ejecta fragments which the experiment 

successfully measured its 2D velocity.  Column 3 is the 

percentage of ejecta encompassed by the fragments recovered, 

note that this is only the ejecta percentage, which corresponds 

to the mass remaining after subtracting the mass of the largest 

fragments.  Column 4 is the average mass of each one of the 

fragments, thus is an arithmetic average of the ejecta mass 

recovered divided by the number of fragments. Column 5 is the 

average speed of the fragments provided by Davis & Ryan
[94]

. 
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Column 6 is the predicted 
a

V∆  of the target + projectile.  

Column 7 is the dispersion of velocity calculated with Eq.(4.35) 

of chapter IV of the fragments with the mass correspondent to 

the mass in column 4, note that this considering an k in 

Eq.(6.25) equal 1.  Column 8 is the k of Eq.(6.25) that would 

make the data in column 5 to perfectly fit in our model, note 

that to calculate k the 2D speed needs to be corrected to 3D. 

Shot 
number 

 Number of 
Fragments 

% of 
Ejecta 
Mass 

Fragment 
Average 
Mass [g] 

Mean 
2D 

Speed 
[m/s] 

a
V∆  

[m/s] 

a
a

M
V

m
∆  

[m/s] k 
820302 8 45 45.4 4.8 1.038 5.648 1.06 
820303 9 18 26.1 12.5 1.342 9.766 0.67 
820304 6 13 11.7 4.3 0.558 5.999 1.21 
820306 8 10 12.4 4.2 0.646 6.670 1.39 
820308 7 49 19.7 4.4 0.444 3.581 0.70 
850841 8 44 40.6 1.3 0.270 1.396 0.96 
850842 6 42 53.9 1.7 0.416 1.892 1.01 
850843 4 86 156.3 0.9 0.200 0.528 0.53 
850844 7 32 32.3 1.4 0.618 3.531 2.44 
850845 4 23 6.9 3.5 1.094 15.205 4.04 
850846 6 25 29.8 9.2 6.301 42.810 4.65 
850847 11 19 12.6 11.6 4.430 45.872 3.76 
850850 8 30 25.1 6.1 2.392 17.831 2.79 
851204 9 88 78.0 3.2 0.462 1.940 0.53 
851205 7 46 19.1 3 0.367 3.126 0.90 
851206 5 33 1.8 5.4 0.288 7.941 1.23 
851207 6 37 2.4 4.6 0.327 7.601 1.39 
851208 9 88 41.4 3.1 0.347 1.959 0.54 
851209 5 40 1.0 17.2 0.217 7.676 0.37 
851213 10 96 5.4 3.8 1.670 26.942 6.85 
851214 8 30 23.0 9.8 5.277 40.178 4.04 
851215 7 16 1.0 1.9 0.115 3.812 1.68 
860414 12 43 1.3 5.8 0.435 13.744 2.00 
860415 8 21 2.6 4.9 0.469 10.782 1.88 
860416 7 42 2.9 7.2 0.485 10.302 1.21 
860417 8 20 5.8 6.3 0.617 9.349 1.27 
860418 10 25 4.6 5.6 0.599 10.126 1.55 
860419 15 30 4.2 4.5 0.644 11.383 2.20 
860420 13 57 29.5 3.1 0.585 3.917 1.12 
860503 19 36 22.2 8.5 0.906 6.981 0.70 

The following procedure has been followed to compute the constant k from Table 

A-3 using Davis & Ryan’s[94] experiments: assuming homogeneous spherical dispersion, 

the experimental 2D mean velocity was converted to 1D velocity by simply dividing it 

with 2  factor, then the 3D experimental velocity is calculated by approximating it to: 

 ( )2 2
exp 1 12

i D a Dv v v v∆ = − ∆ + ⋅ , (6.26) 
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using Eq.(4.30) from Chapter IV, the theoretical iv∆  for an fragment mass equal to the 

average mass of the fragments in the experiment (i.e., Table A-3 column 4) is calculated, 

and finally the fraction expiiv v∆ ∆ gives us the constant k (i.e., Table A-3 column 8). 

Fig. A-11 shows each one of the calculated k plotted against the mass fraction of each 

experiment mean fragment size. As can be seen in Table A-3, the constant k ranges from 

0.37 to 6.85. Since the lower limit of k is 0, an histogram of log10(k) will provide us better 

insight to the distribution of the values of this constant.  Fig. A-12 shows the log10(k) 

histogram and points out a distribution of values around a mean of 1.4. 
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Fig. A-11 Calculated k for each one of the experiments in Table 

A-3. 
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Fig. A-12 Histogram of constant k calculated in column 8 of 

Table A-3. 

The work developed in this section only aimed to test the model developed in Section 

IV.3.2 and at the same time obtaining an approximate and realistic qualitative value of k. I 

believe that this was achieved through the analysis of data provided by Davis & Ryan
[94], 

despite it lacks of some important information such as the proportion of small fragments 

from the ejecta recovered or the methodology in calculating the 2D mean velocity.  
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