
 
 
 
 
 
 
 
 

 

Openshaw, Rebecca Louise (2017) Behavioural and molecular 

characterisation of mice haploinsufficient for Map2K7, a schizophrenia risk 

gene. PhD thesis. 

 

 

https://theses.gla.ac.uk/8890/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/8890/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Behavioural and molecular 

characterisation of mice 

haploinsufficient for Map2k7, a 

schizophrenia risk gene 

 

 

Rebecca Louise Openshaw 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the 

degree of Doctor of Philosophy 

 

 

 

 

Institute of Neuroscience and Psychology 

College of Medicine, Veterinary and Life Sciences 

University of Glasgow 

September 2017 



2 
 

 

 



i 
 

Abstract 

Schizophrenia is a serious psychiatric disorder characterised by a breakdown in 

thought, emotion and perception, which leads to alterations of normal behaviour 

and feelings, a withdrawal from reality and an impression of mental 

defragmentation. Of the positive, negative and cognitive symptoms, the positive 

symptoms are perhaps the most striking. However, it is the severity of cognitive 

deficits that are most closely associated with a patients’ functional outcome in 

the long-term. Despite this, the successful treatment of the cognitive deficits has 

been met with difficulty, partly due to a lack of suitable animal models. There is 

an urgent need for animal models with appropriate face, construct and predictive 

validity for schizophrenia so that improved drug targets can be identified, and 

new drugs tested. 

In 2012, Winchester et al. discovered that sequence variations in the Map2k7 gene 

were associated with increased risk for schizophrenia, and Map2k7 mRNA was 

decreased in the prefrontal cortex of the post mortem brains of patients. The 

primary aim of this thesis is to behaviourally and molecularly characterise mice 

which are heterozygous for Map2k7 (Map2k7+/- mice) as a potential animal model 

of relevance to schizophrenia. Sequence variants in the Map2k7 gene are 

moderately common in the population and they almost double the disease risk 

(OR~1.9); hence, alterations of the Map2k7 gene in mice represent an ideal basis 

for an animal model with good construct validity.  

The Map2k7 gene produces the MKK7 protein, a kinase within the stress-activated 

JNK pathway, and is involved in a diverse range of cellular processes, such as 

apoptosis, synaptic plasticity and regulation of the immune response. First and 

foremost, the components of the MKK7/JNK pathway were quantified in Map2k7+/- 

mice and MKK7γ was found to be significantly decreased in the prefrontal cortex 

compared to their wildtype (WT) littermates, a highly disrupted brain region in 

patients with schizophrenia.  

Map2k7+/- mice also exhibited behavioural phenotypes relevant to schizophrenia: 

hyperactivity in the open field and attentional dysfunction. Minocycline showed 

promise in alleviating the attentional deficits and hyperactivity in the open field, 

but did not influence protein levels of signalling pathway components. Map2k7+/- 
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mice did not show a decrease in sensorimotor gating as many patients do; 

however, they exhibited signs of altered response to amphetamine administration 

just prior to testing of sensorimotor gating, compared to WT mice.  

Decision-making abilities were also investigated: Map2k7+/- mice showed normal 

learning and performance of the rodent gambling task. Additionally, all mice were 

able to alter their choice pattern to be more optimal when the task contingencies 

were subtly switched, which was the first time this has been shown in mice in the 

touchscreen apparatus. However, when the task demands were altered such that 

‘punishment’ no longer featured as prominently, Map2k7+/- mice showed huge 

difficulty compared to their WT littermates in shifting their choice pattern to be 

more optimal, suggesting they have a deficit in aspects of cognitive flexibility. 

Finally, Map2k7+/- mice were investigated as a gene x environment interaction 

model, by injecting pregnant dams with Poly I:C and examining the resultant 

immune response in maternal serum and embryonic brain. Map2k7+/- dams 

exhibited an altered immune response to Poly I:C compared to WT dams; however, 

future experiments will be required to confirm whether this altered cytokine 

response is also present in embryonic brain.  

Overall, Map2k7+/- mice show utility for dissecting the cognitive deficits and some 

aspects of the positive symptoms of schizophrenia that could be targeted by novel 

compounds. This would be aimed at restoring the function of the MKK7/JNK 

pathway. Further molecular and behavioural characterisation will be required, 

particularly into the potential gene x environment interaction model. Although no 

mouse model can recapitulate the full symptom spectrum of a human 

neuropsychiatric disorder, Map2k7+/- mice exhibit an interesting accumulation of 

phenotypic abnormalities relevant to schizophrenia. 
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Chapter 1 Introduction  

1.2 General introduction to schizophrenia  

Schizophrenia is a complex neuropsychiatric disorder characterised by disruption 

in behaviour, thoughts, emotion and perception (Tandon et al., 2013). 

Approximately 0.7% of the worldwide population will develop schizophrenia in 

their lifetime, although prevalence varies significantly by geographical location 

(Goldner et al., 2002; Saha et al., 2005); for example, people in non-Asian 

countries are nearly four times more likely to develop schizophrenia than people 

in Asian countries (Goldner et al., 2002). Age of symptom onset varies between 

patients and has been shown to be modulated by environmental factors (Stepniak 

et al., 2014), genetic predisposition (Chow et al., 2016), and sex (Aleman et al., 

2003). However, evidence suggests that there is not a simple correlation with age 

of onset of schizophrenia and any of these factors, but rather sex may be a 

modulator in the way that male age of onset is more influenced by environmental 

factors whereas female age of onset is more influenced by genetic predisposition 

(Hilker et al., 2017). However, overall, diagnosis of schizophrenia in males occurs 

earlier on average compared to females (Forrest & Hay, 1971). Males also have a 

slightly higher prevalence, with the ratio of male: female diagnoses being 1.4:1 

(McGrath et al., 2008), although this observation is not clear-cut: before the age 

of 30, more males are diagnosed with schizophrenia than females, and after the 

age of 30 more females are diagnosed than males (Sham et al., 1994). Females 

have a second “wave” of diagnosis after the age of 40 and, in general, the earlier 

the onset of schizophrenia the more severe and debilitating the symptoms (Forrest 

& Hay, 1971; Sham et al., 1994). 

Patients with schizophrenia are 2.6 times more likely to die prematurely compared 

to the general population (McGrath et al., 2008). This is for a number of reasons, 

such as: cardiovascular or metabolic problems, suicide, or the fact that patients 

are more likely to engage in high-risk behaviours (McGrath et al., 2008; Saha et 

al., 2007). Furthermore, patients have only a 30% chance of sustained recovery to 

a life of good quality in the long-term (defined as 25 years following a psychotic 

episode); only 20% of patients are employed throughout Europe, and ~20% are 

homeless (Insel, 2010). There is a clear requirement to produce more effective 

medication than currently available. 
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1.3 Symptoms  

The behavioural symptoms of schizophrenia were first described by the German 

psychiatrist Emil Kraepelin in 1887 (Jablensky, 2010). Symptoms usually emerge 

in adolescence or early adulthood, and they can be grouped into 3 main subtypes: 

positive, negative and cognitive symptoms (American Psychiatric Association, 

2013). Positive symptoms (which “add” to normal functioning) include 

hallucinations, delusions, psychomotor agitation and disorganised speech. 

Negative symptoms (or “diminution” of normal functioning) comprise of reduced 

emotional expression, anhedonia, alogia and lack of motivation; cognitive 

symptoms consist of deficits in working memory, decision-making, speed of 

processing, social cognition, attention and executive control (American 

Psychiatric Association, 2013). Some symptoms can fall into multiple subtypes, 

such as deficits in prepulse inhibition, which has been described as the “interface 

between cognitive and positive symptoms”, one reason being it is a pre-

attentional (i.e. cognitive) process that is ameliorated by antipsychotics 

(Desbonnet et al., 2009).  

Although the positive symptoms are perhaps the most striking, more recently it 

has been realised that it is the severity of cognitive deficits which are the main 

determinant of long-term functional outcome for patients with schizophrenia 

(Lesh et al., 2011; Mishara & Goldberg, 2004). However, the exact set of 

symptoms, severity, clinical course and response to the treatments currently 

available varies greatly across individuals (van Os & Kapur, 2009). 

1.4 Diagnosis  

Despite the evident symptoms and outcomes, the diagnosis of schizophrenia 

according to the Diagnostic and Statistical Manual of Mental Disorders (DSM) is 

quite difficult. First, other potential diagnoses that have overlapping symptoms 

must be ruled out (e.g., bipolar disorder, schizoaffective disorder, drug abuse, 

autism spectrum disorder), and the symptoms must have been present for at least 

6 months (Tandon et al., 2013). Additionally, at least two of the following 

symptoms are to have been existent for the duration of one month or more: 

delusions, hallucinations, disorganised speech, grossly disorganised or catatonic 

behaviour, and/or negative symptoms (e.g., affective flattening, alogia, 

anhedonia; Tandon et al., 2013). Finally, patients must have been functioning in 
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normal, everyday life (e.g. work, or social situations) significantly worse than they 

did prior to onset of symptoms, for a prolonged period (Tandon et al., 2013). 

These diagnostic criteria can take too long and usually lead to distressing 

circumstances where people are sectioned and/or hospitalised before diagnosis. 

Additionally, despite the significance of the cognitive symptoms in the lives of 

patients with schizophrenia, these are not included in diagnosis because they do 

not sufficiently distinguish between schizophrenia and other, similar disorders. 

This emphasises the need to substantially increase the neurobiological 

understanding of schizophrenia not just so that new treatments can be developed, 

but also so that reliable biological markers, or ways of diagnosing this disorder 

more quickly, can be produced.  

In an attempt to address this issue, new initiatives such as the Research Domain 

Criteria (RDoC) project, established in 2009 by the National Institute of Mental 

Health (Cuthbert & Insel, 2013), have developed a classification system for mental 

disorders that puts more emphasis on symptom domains rather than relying purely 

on distinct signs and symptoms laid out by the DSM. The main goal of RDoC is to 

create a more precision-based diagnosis of patients with a psychiatric disorder. 

The RDoC project aims to incorporate novel information gathered by research into 

the genetic, behavioural, physiological and neural circuitry underpinnings of 

domains (or subtypes) of symptoms, rather than aiming to treat a single disorder 

with one drug. Any one psychiatric disorder will never be characterised by a single 

symptom and will always involve multiple mechanisms; it is arguably not feasible 

to attempt to create a drug which will alleviate all the symptoms altogether 

(Cuthbert & Insel, 2013). This approach may lead to a better understanding of the 

pathophysiology of multiple disorders by providing a more accurate framework for 

future research. For example, a mechanism underlying a process such as working 

memory is disrupted in multiple disorders and it could be hard to decide which 

disorder to pursue further, from a researcher’s perspective. If “working memory” 

was investigated per se, it may have positive implications for all disorders it is 

connected to. In this way, disorders that have similar or overlapping symptoms 

can eventually be treated more relevantly. RDoC is currently a work in progress, 

but more aspects of this new framework may be incorporated into future 

diagnoses and research plans. 
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1.5 Neuropathology 

In addition to behavioural symptoms, patients with schizophrenia have 

consistently altered brain structure, function and neurochemical regulation 

(Keshavan et al., 2011). The brain structural changes in schizophrenia were first 

noted by post mortem examination of patient’s brains and were later confirmed 

with structural MRI when the technology became available about 35 years ago (see 

van Os & Kapur (2009) for review). Well-established brain structural changes 

include: reduction of whole brain volume; reduction of prefrontal cortex (PFC) 

volume whilst maintaining a similar number of cells (Buchanan et al., 1998); 

reduction of striatal volume (Keshavan et al., 1998); increased volume of lateral 

and third ventricles (Andreasen et al., 1982); white matter integrity abnormalities 

(Boos et al., 2013; de Leeuw et al., 2015; Kubicki et al., 2013; Munoz Maniega et 

al., 2008) and reduction of grey matter volume of the hippocampus, PFC, thalamus 

and anterior cingulate cortex (Fitzsimmons et al., 2013; Shenton et al., 2001). In 

addition to the structural differences in these areas, brain imaging studies (e.g., 

functional MRI, PET and MEG) of patients taking part in various cognitive tasks 

have shown that they have functional impairments, in particular, hypofunction in 

the PFC (Fusar-Poli et al., 2007).  

1.5.1 Prefrontal cortex dysfunction in schizophrenia 

Clinical, post-mortem and neuroimaging studies show disruption in multiple areas 

of the brain, and have identified the PFC as a particularly key site of dysfunction 

in schizophrenia (Arnsten, 2011; Weinberger et al., 1986). The PFC is critical for 

higher-order cognitive processes and emotional regulation, and can be divided in 

rodents and humans into several sub regions. In humans, the dorsolateral PFC 

mainly influences cognition, including attention, executive control and working 

memory, and the ventromedial PFC controls emotional and motivational 

regulation (Sigurdsson & Duvarci, 2016). In rodents, the medial PFC corresponds 

to both the dorsolateral and ventromedial subdivisions of the PFC in humans, and 

has analogous functions crucial for attention, working memory, short-term 

associative memory (Benn et al., 2016), attentional set shifting and motivation 

(reviewed in Sigurdsson & Duvarci, 2016). The human PFC has major reciprocal 

connections with the mediodorsal thalamus (Pratt et al., 2017) and the 

hippocampus. Connections from the PFC to the dorsal hippocampus are important 

for memory retrieval and connections from the ventral hippocampus are important 
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for working memory, anxiety and learned fear. The nucleus reuniens of the 

thalamus also has reciprocal connections to the medial PFC, which are thought to 

play a role in working memory (Sigurdsson & Duvarci, 2016).  

Investigations of cellular pathology in the post mortem brains of patients show 

that there is reduced spine density on deep layer 3 pyramidal neurons of the 

dorsolateral PFC, reflecting a diminished number of excitatory (glutamatergic) 

inputs to this area and thereby causing lower activity levels (Glantz & Lewis, 

2000). Also, it is well established that the calcium-binding protein parvalbumin 

(PV) subclass of gamma-amino butyric acid (GABA) neuron markers are reduced in 

patients with schizophrenia (Gonzalez-Burgos et al., 2010). PV-positive GABAergic 

neurons provide strong inhibition onto pyramidal cells and also inhibit other 

GABAergic neurons, including other PV-positive neurons (Gonzalez-Burgos et al., 

2010). Their regulated inhibition helps create gamma oscillations that are 

important for normal cognitive and attentional function (Gonzalez-Burgos et al., 

2010). Additionally, decreased levels of mRNA (Akbarian et al., 1995) and protein 

(Curley et al., 2011) of the 67 kDa isoform of glutamic acid decarboxylase (GAD67), 

a key enzyme involved in the synthesis of GABA, are also consistently found in the 

PFC of schizophrenia, especially in the axon terminals of PV-containing neurons 

(Curley et al., 2011); hence, less GABA synthesis occurs in these regions. Patients 

with schizophrenia also have smaller somal volumes, decreased dendritic arbour 

size and density onto subtypes of pyramidal cells in the PFC (Hill et al., 2006). As 

the formation of gamma oscillations are a result of the coordinated action 

between the inhibitory GABA interneurons and the excitatory pyramidal cells, it 

would seem reasonable that any alterations in GABA would have a knock-on effect 

on gamma oscillations. In fact, studies using optogenetic techniques have 

demonstrated that activity in PV-positive interneurons is essential for driving 

cortical gamma oscillations in mice (Sohal et al., 2009), and overall reductions in 

the power and synchrony of gamma oscillations, including in the PFC during 

cognitive tests and at rest, have been detected in schizophrenia (reviewed in 

Uhlhaas & Singer, 2010). 

Gamma oscillations are involved with social cognition, working memory and 

attention (Fries et al., 2001; Williams & Boksa, 2010). They are evoked by external 

stimuli in sensory cortices and exploratory behaviour in the hippocampus, and they 

precede motor responses in the premotor areas of the cortex (Atallah & Scanziani, 
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2009). Oscillations synchronise and bind complex brain activity between different 

brain regions, allowing coordinated activity. With respect to cognition, gamma 

oscillations move between the PFC, thalamus and hippocampus, improving the 

efficiency and clarity of transmission of information between these regions 

(Atallah & Scanziani, 2009). Therefore, disruption of gamma oscillations will have 

widespread effects and can at least partially explain many of the cognitive deficits 

seen in schizophrenia, such as attentional deficits, working memory and social 

cognition (Shin et al., 2011). 

Another key feature in the PFC of patients with schizophrenia is that they have 

reduced mRNA and protein levels of the GluN1 subunit of NMDARs in the 

dorsolateral PFC (Weickert et al., 2013). NMDARs are composed of four subunits: 

two obligatory GluN1 subunits, plus two out of the four GluN2 subunits and/or the 

two GluN3 subunits (Traynelis et al., 2010). The fact that the obligatory subunit 

is reduced both in mRNA and protein levels suggests that NMDAR function is 

reduced in the PFC of schizophrenia, thus further contributing to hypofunction 

and therefore the cognitive deficits seen in schizophrenia (Weickert et al., 2013) 

1.5.2 Behavioural deficits as a result of prefrontal cortex dysfunction 

Behaviourally, patients with schizophrenia show deficits in several tasks that are 

reliant on the PFC. These include reversal learning and attentional set shifting as 

evidenced by their reduced performance in the Wisconsin card sort task and/or 

the intradimensional/extradimensional attentional set-shifting task (Ceaser et al., 

2008; Elliott et al., 1995; Gold et al., 1997), decision-making in the Iowa gambling 

task (Shurman et al., 2005), working memory in a spatial delayed response task 

(Mayer & Park, 2012), sustained attention in the 5-choice continuous performance 

test (5-CCPT; Suwa et al., 2004), and associative memory in paired associates 

learning (Hutton et al., 1998). Overall, patients with schizophrenia have 

widespread molecular, structural, physiological and functional deficits in the PFC. 

1.6 Hypotheses of Schizophrenia 

Many hypotheses attempting to explain the causes of schizophrenia have been 

formulated. These include: the NMDAR hypofunction hypothesis (reviewed in 

Snyder & Gao, 2013), the dopamine hypothesis (reviewed in Howes & Kapur, 2009; 

Meltzer & Stahl, 1976), the neurodevelopmental hypothesis (Weinberger, 1987), 

the serotonin hypothesis (reviewed in Eggers, 2013) and the microglia hypothesis 
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(reviewed in Monji et al., 2009), although they are not thought to be mutually 

exclusive. As an overview of all the hypotheses are beyond the scope of this thesis, 

only the NMDAR hypofunction and dopamine hypotheses will be described as these 

are most relevant to the investigations of this thesis.  

1.6.1 The NMDA receptor hypofunction hypothesis 

The prefrontal NMDAR hypofunction hypothesis of schizophrenia posits that 

schizophrenia is caused by reduced function of the NMDA class of glutamate 

receptor (reviewed in Snyder & Gao, 2013). This hypothesis initially came about 

because of the psychotomimetic effect of the non-competitive NMDAR antagonist 

phencyclidine (PCP) (Deutsch et al., 1989; Olney & Farber, 1995). Intake of PCP 

by healthy human subjects produces symptoms almost indistinguishable from an 

acute psychotic episode seen in patients with schizophrenia, and also exacerbates 

psychotic symptoms in patients (Luby et al., 1959). Additionally, brain imaging 

studies have shown that PCP induces hypofrontality in human subjects when taking 

part in a cognitive task in the same way that occurs in schizophrenic patients (Wu 

et al., 1991). Investigations into other NMDAR antagonists, such as MK-801 (a 

potent NMDAR antagonist) and ketamine (a derivative of PCP), which have similar 

mechanisms of action, provided further evidence for the NMDAR hypofunction 

hypothesis. Chronic administration of ketamine also produced the cognitive and 

negative symptoms of schizophrenia (Krystal et al., 1994), and subanaesthetic 

doses of ketamine reinstated the symptoms of schizophrenia when given to 

patients who were not experiencing symptoms beforehand (Lahti et al., 1995). 

Additionally, MK-801 given at low doses to healthy human subjects induce a range 

of symptoms associated with schizophrenia, including aspects of positive, negative 

and cognitive symptoms (Nakazawa et al., 2012). These studies suggest that 

NMDARs at least partially underlie the hypofunction seen in the PFC of 

schizophrenia patients.  

In animal models, long-term administration of NMDAR antagonists reduce PV-

positive neurons as seen in schizophrenia patients (Cochran et al., 2003), and this 

produces disinhibition of the neuronal circuits with subsequent aberrant response, 

and because the NMDARs are pharmacologically disrupted, the homeostasis is not 

re-maintained (Lisman et al., 2008). It is thought that this disinhibition 

contributes towards disruption of the gamma oscillations and participates towards 

the cognitive symptoms seen in schizophrenia, as described in Section 1.5.1 
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(Gonzalez-Burgos et al., 2010). Moreover, the dysfunction of GABAergic neurons 

is linked to repeat administration of NMDAR antagonists: the expression of GAD67 

and PV are decreased in the cortical GABAergic neurons in mice following repeated 

administration of NMDAR antagonists (Nakazawa et al., 2012). Similarly, chronic 

intermittent PCP treatment induced prefrontal hypofrontality, reduced levels of 

PV-positive interneurons and induced deficits in executive function (as measured 

by the attentional set shifting task; Dawson et al., 2012), which was not reversed 

by clozapine or haloperidol, consistent with what occurs in human patients 

(Cochran et al., 2003). Repeated PCP treatment also induced deficits in cognitive 

processing speed in the 5-choice serial reaction time task (Thomson et al., 2011; 

see Chapter 5 for more information on this task). As the rodent models relevant 

to the NMDAR hypofunction hypothesis of schizophrenia so closely match what 

occurs in patients with respect to molecular, cellular and behavioural changes, it 

is hoped that cognitive treatments may be derived from continuing to study the 

neurobiological mechanisms that occur to cause this. 

1.6.2 The dopamine hypothesis of schizophrenia  

The dopamine hypothesis has arguably been the dominant theory of the 

pathogenesis of schizophrenia for around 40 years (reviewed in Howes et al., 

2017). In a similar way to the NMDAR hypofunction hypothesis, it originated from 

pharmacological studies: antipsychotics were found to work by affecting the 

dopamine system and the clinical efficacy of antipsychotics was discovered to be 

positively correlated with antagonism of the dopamine D2 receptor (Seeman & 

Lee, 1975). Furthermore, dopaminergic agonists induce psychosis in healthy 

humans (Connell, 1957), and some patients display increased psychotic symptoms 

after acute exposure to psychostimulants at doses that do not induce psychosis in 

healthy subjects (Lieberman et al., 1987). Direct evidence was then provided by 

post-mortem studies, which showed that dopamine, its receptors and metabolites, 

were increased in the striatum of patients with schizophrenia (Howes et al., 

2017). Later studies showed that there was an increase of dopamine D2 receptor 

activity in the subcortical structures but a decrease of dopaminergic D1 receptor 

activity in the PFC (Desbonnet et al., 2009). Researchers formulated the dopamine 

hypothesis and now have a clearer explanation for how this may occur, which is 

described in more detail in the following paragraph (summarised by Howes et al., 

2017).  
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Under normal circumstances, the regulation of striatal dopamine release is well 

controlled in the dopaminergic mesocorticostriatal system (Howes et al., 2017). 

Cortical dopamine acts on dopamine D2 receptors (which are inhibitory; Cass & 

Gerhardt, 1994), to regulate the activity of excitatory glutamatergic projections 

from the cortex to the midbrain. These projections act on the striatum, so this is 

one way in which striatal dopamine release is controlled to a suitable level. 

Additionally, cortical glutamatergic neurons projecting to NMDARs of GABAergic 

interneurons in the midbrain stimulate GABA release, which inhibits/limits 

dopaminergic output to the striatum.  

In patients with schizophrenia, it has been shown that the mesocorticostriatal 

control of dopaminergic function is disrupted, ultimately leading to aberrant 

striatal dopamine synthesis and release. As there is reduced dopaminergic 

signalling in the PFC of patients with schizophrenia as revealed by PET (Okubo et 

al., 1997), there is disinhibition and therefore increased glutamatergic activity to 

the midbrain dopaminergic neurons, which increases striatal dopamine synthesis 

and release. This occurs together with hypoactive NMDAR signalling from the PFC 

onto the midbrain GABAergic interneurons, which leads to disinhibition and 

therefore increased striatal dopaminergic activity (Howes et al., 2017).  

Neuroimaging studies support the idea that there is a yin-yang relationship 

between dopamine in the cortical and subcortical structures: patients with 

schizophrenia carrying out the Wisconsin Card Sorting Test exhibited decreased 

PFC blood flow accompanied by an increase in striatal F-DOPA uptake (a marker 

that reflects dopamine synthesis) and these two processes were tightly coupled 

(Meyer-Lindenberg et al., 2002). It is thought that dopaminergic hypofunction in 

the PFC contributes towards the negative symptoms and cognitive deficits, and 

the hyperfunction in the subcortical regions underlies the positive symptoms 

(Desbonnet et al., 2009). In fact, the severity of negative symptoms and cognitive 

deficits correlates with the degree of prefrontal metabolic hypofrontality (Hill et 

al., 2004; Potkin et al., 2002). Targeting the dopaminergic system in the PFC 

should treat the negative and cognitive deficits. However, a challenge arises from 

being able to affect the dopaminergic function here, whilst not affecting the 

psychotic symptoms arising from the dopaminergic hyperfunction in the 

subcortical structures, as these are already (albeit with side effects) treated with 

antipsychotics.  
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1.7 Treatments for schizophrenia 

Antipsychotic drugs are used to alleviate positive symptoms; however, they have 

little or no efficacy for negative symptoms and cognitive deficits, and cause 

multiple severe side effects which limit their therapeutic timespan (Leucht et al., 

2013). Although the positive symptoms of schizophrenia are perhaps the most 

striking and noticeable of the symptoms of schizophrenia, the cognitive symptoms 

are most closely associated with a patients’ functional outcome in the long-term 

(Green, 2006). 

1.7.1 Antipsychotics as a treatment for the positive symptoms of 

schizophrenia 

Antipsychotics can be categorised in two groups: the typical or first generation 

(chlorpromazine, loxapine, haloperidol), and atypical or second-generation 

antipsychotics (clozapine, olanzapine, sertindole, risperidone) (Insel, 2010). The 

typical antipsychotics were first developed in the 1950’s but it was not until the 

mid-1970’s that their main mechanism of action was found to be dopamine D2 

receptor antagonism (Seeman & Lee, 1975; Seeman et al., 1975). However, long-

term administration of typical antipsychotics causes extrapyramidal symptoms, 

such as tardive dyskinesia and/or akathisia, due to chronically decreased levels of 

dopaminergic signalling in the nigrostriatal pathway (Tandon et al., 2010). Up to 

50% of patients stop taking their medication due to the extrapyramidal symptoms 

and other, intolerable side-effects (for example, metabolic effects and weight 

gain), lack of efficacy, or other reasons (Haddad et al., 2014). Atypical 

antipsychotic drugs were then developed in an attempt to improve the side effects 

and efficacy. They affect dopamine D1, D4, histamine H1, serotonin 5HT2 and 

acetylcholine muscarinic M1 receptors, as well as the dopamine D2 receptors 

(Kapur & Mamo, 2003). Although the atypical antipsychotics produce fewer side 

effects and are safer than typical antipsychotics (Tandon et al., 2010), they did 

not enhance functional recovery because they still did not address the cognitive 

deficits and negative symptoms (Hill et al., 2010). A meta-analysis concluded that 

any improved outcomes were likely due to the improved side effect profile of 

atypical antipsychotics rather than their specific improvement of cognitive 

deficits (Crossley et al., 2010). Although the understanding of the neurobiology 

underpinning positive symptoms has improved, since the generation of atypical 

antipsychotics little progress has been made in developing new therapeutic 
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targets for these symptoms in an attempt to eliminate side-effects completely 

(Buckley & Stahl, 2007; Insel, 2010). 

1.7.2 Minocycline as a potential treatment for the cognitive and negative 

symptoms of schizophrenia 

Minocycline, a broad-spectrum, second-generation, tetracycline antibiotic, has 

been identified as a potential treatment for the cognitive and negative symptoms 

of schizophrenia due to its anti-inflammatory, neurotrophic, antioxidant and anti-

apoptotic properties (Monte et al., 2013). These properties give minocycline a 

neuroprotective quality, as discovered via animal models when investigating it as 

a treatment for neurodegenerative conditions such as Huntington’s disease, 

amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease 

(Garrido-Mesa et al., 2013). Additionally, minocycline can readily cross the blood 

brain barrier, even by multiple routes of administration (Zhang et al., 2007; Zink 

et al., 2005). It is safe for intake by humans, available for immediate clinical use, 

and patients can tolerate doses of therapeutic value of minocycline over long 

periods (6 months was tested) with little-to-no side effects and no interactions 

with other drugs (Domercq & Matute, 2004). This is particularly important, as 

discussed above, current drugs that treat the symptoms of schizophrenia are 

already the cause of multiple unpleasant side effects. Moreover, research is 

showing clinical potential for the treatment of schizophrenia with minocycline as 

add-on medication along with anti-psychotics, so it is imperative that interactions 

of minocycline with antipsychotic drugs do not occur (reviewed in Chaudhry et 

al., 2012; Levkovitz et al., 2010; Miyamoto et al., 2013; Oya et al., 2014; Zhang 

& Zhao, 2014). 

1.7.2.1 Minocycline in clinical trials  

A recent meta-analysis (Xiang et al., 2017) incorporated the results of 8 

randomised controlled clinical trials in patients with schizophrenia and overall, 

minocycline showed significant improvement of negative, positive and overall 

symptoms, as assessed by the Positive and Negative Syndrome Scale (PANSS) and 

the Brief Psychiatric Rating Scale (BPRS). Moreover, the number and type of 

adverse drug reactions reported were similar in the minocycline and placebo 

group, emphasising that minocycline is safe as well as efficacious. This meta-

analysis did not find a significant improvement of cognitive deficits as measured 
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by the Measurement and Treatment Research to Improve Cognition in 

Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB; MATRICS is 

described in Section 1.10); however, only two of eight of the studies actually 

included cognitive measurements as part of the study (Levkovitz et al., 2010; Liu 

et al., 2014). Therefore, although the two studies found improvement of cognitive 

deficits following minocycline treatment separately (including improved working 

memory, cognitive shifting, attentional performance and cognitive planning 

tasks), combined they did not. However, this may be due to the type of statistical 

model applied in the meta-analysis, or the fact that different research 

environments cause distinct types of variation in results, so it may not be relevant 

to compare such a small number of studies with each other.  

Another, open label study not included in the meta-analysis showed that atypical 

antipsychotic administration, plus 300mg/day (quite a high dose) minocycline for 

4 weeks significantly improved the PANSS score, which persisted for 4 weeks after 

cessation of treatment (Miyaoka et al., 2008). Additionally, minocycline improved 

reaction time of healthy volunteers, and attenuated the amphetamine-induced 

subjective reward deficits in a Go No-Go task (Sofuoglu et al., 2011).  

1.7.2.2 Minocycline effects in animal models  

The effects of minocycline in pharmacological animal models in general shows 

good predictive validity and matches well with its effects in humans. Deficits in 

the Morris Water Maze and prepulse inhibition were restored by minocycline in 

mice that had received the NMDAR antagonist MK-801 (Levkovitz et al., 2007). In 

another study, MK-801-induced hyperlocomotion and PPI deficits were also 

significantly attenuated by pre-treatment with minocycline (Zhang et al., 2007). 

Subchronic minocycline treatment resulted in improvement of novel object 

recognition deficits in repeated PCP treated mice (Fujita et al., 2008), and 

Mizoguchi et al. (2008) found a similar effect in mice that had been administered 

amphetamine for 7 days then minocycline for 7 consecutive days in the novel 

object recognition task. This suggests that minocycline can interact with both the 

glutamate and dopamine pathways to produce a therapeutic effect.  

1.7.2.3 Minocycline mechanism of action  

Despite minocycline having been shown to have beneficial effects in both healthy 

and pathological human and rodent studies, its exact mechanism of action is 
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incompletely characterised, although several, not mutually exclusive mechanisms 

have been identified. Minocycline has shown to affect various mechanisms of 

relevance to schizophrenia, including the inhibition of apoptosis by attenuation of 

caspase 1 and 3 (Chen et al., 2000), inhibition of microglial activation, and 

reduction of the levels of specific cytokines (TNF-α, IL1β, NO) that are released 

from activated microglia (Filipovic & Zecevic, 2008; Lee et al., 2004; Tikka & 

Koistinaho, 2001; Watabe et al., 2012). Patients with schizophrenia have highly 

activated microglia in the brain, and NMDAR antagonists such as PCP and ketamine 

are known to induce microglial activation in the brains of rodents (Monji et al., 

2009), so these mechanisms are highly relevant. Minocycline also inhibits inducible 

nitric oxide synthase (which synthesises nitric oxide; NO); there is a whole 

plethora of research going into NO and its metabolites contributing towards the 

cause of schizophrenia (Nasyrova et al., 2015). Minocycline may also protect 

neurons against glutamate-induced excitotoxicity, which has been implicated in 

the pathophysiology of several neuropsychiatric conditions (Dean et al., 2012). 

Furthermore, the neuroprotective property of minocycline is thought to partially 

be due to its inhibitory effects on 5-lipoxygenase, an inflammatory enzyme 

associated with brain ageing (Oya et al., 2014). These proposed mechanisms of 

action are all relevant to the neural underpinnings of schizophrenia and are linked 

with the MKK7/JNK pathway (see Section 1.9 for more information on this 

pathway).  

There is an essential requirement for more specific treatments for the negative 

and cognitive symptoms of schizophrenia that are not associated with debilitating 

side effects. Minocycline is very promising for this purpose, as the pharmacological 

and therapeutic profile of minocycline suggests that it could improve symptoms 

caused by multiple processes involved in the current hypotheses of schizophrenia, 

for example, the microglia, dopamine and glutamate hypotheses (Dean et al., 

2012), whilst being safe and not affecting the function of any other drugs that 

patients may be on. 

1.8 Causes of Schizophrenia 

Unlike some other conditions where a single, fully penetrant causal gene produces 

a disorder, the exact cause of schizophrenia is not attributed to a specific genetic 

mutation (Singh et al., 2014; Sullivan et al., 2012). Rather, it is caused by a 
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complex combination of multiple genetic and environmental influences, none 

which are necessary or sufficient, but instead all act as risk factors (Gottesman & 

Shields, 1967). These interact to bring about the complex array of brain structural, 

functional and chemical changes seen in schizophrenia (Keshavan et al., 2008). 

The genetic contribution to the disorder is currently thought to be a state where 

large numbers of common genetic variants of small effect, as well as rare variants 

of larger effect, contribute towards predisposition to developing schizophrenia if 

they are exposed to certain environmental risk factors (Tandon et al., 2008). Early 

twin, family and adoption studies clearly show this dual genetic/environmental 

contribution: monozygotic twins, which share 100% of DNA, have a concordance 

rate for schizophrenia of 40-60%, leaving 60-40% that could be explained by 

environmental factors, including those of epigenetic mechanisms (Farmer et al., 

1987; Kaminsky et al., 2009). Dizygotic twins, on the other hand, have a 

concordance rate of 6-14%, which is like non-twin siblings in both the number of 

shared genes and the schizophrenia concordance rate (Farmer et al., 1987). 

Additionally, several studies on adoption cases found significant effects to support 

this when comparing the prevalence of schizophrenia in children who were raised 

by parents who did not have schizophrenia but whose biological parents did 

(Wender et al., 1974). These simple yet informative early studies demonstrate the 

importance of genetic inheritance in the prevalence of schizophrenia and show 

that environmental factors must also be involved.  

1.8.1 Environmental factors  

It has been acknowledged that environmental risk factors for schizophrenia 

include: maternal stress, infection and other neurodevelopmental threats (Buka 

et al., 2001; Khashan et al., 2008), cannabis use (Di Forti et al., 2015), 

Toxoplasma gondii exposure (Arias et al., 2012), advanced paternal age (Dalman 

& Allebeck, 2002), being born in late winter/early spring, growing up in urbanised 

areas, and being part of an immigrant group (Giusti-rodríguez & Sullivan, 2013; 

Torrey et al., 1997). It is still not completely clear how the genetic and 

environmental factors interact with each other to cause schizophrenia, although 

some links have been made; for example, polymorphisms of particular genes 

involved in predisposing sensitivity to stress (Modinos et al., 2013). Also, many risk 

factors for schizophrenia occur whilst the brain is undergoing development 

through the perinatal and early postnatal stages; it is thought that the processes 
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underlying the neuroinflammatory hypothesis of schizophrenia have a major part 

to play in this (explored further in Chapter 7).  

1.8.2 Genetic factors 

There is a major research focus on finding the genetic variants which confer 

increased risk for schizophrenia (Tandon et al., 2008). A variety of methodologies 

have been developed with the aim of locating the genetic variants, including 

family linkage analysis, candidate gene association studies, genome wide 

association studies (GWAS), copy number variant (CNV) analyses, cytogenetic 

screens and deep re-sequencing (Winchester et al., 2014). Research has been 

directed towards finding many common genetic variants, each contributing a small 

risk, as well as rare variants of large effect, that interact with one another and/or 

with environmental risk factors to cause schizophrenia (Mulle, 2012). In a 

population, schizophrenia is believed to be caused by an aggregate accumulation 

of many of these genetic variants that confer risk, at thousands of loci, which is 

known as called the polygenic inheritance model (Glessner & Hakonarson, 2009; 

Purcell et al., 2009).  

There are several ways in which genetic variants can be identified. Sequence 

variants consist of single nucleotide polymorphisms (SNPs), indels (INsertions or 

DELetions; rare, pathogenic single or small polynucleotide variants of which the 

importance in schizophrenia is unclear), and trinucleotide or hexanucleotide 

repeats. There are also structural variants, which consist of copy number variants 

(CNVs) and chromosomal abnormalities. CNVs and SNPs are the most common type 

of genetic variation that occur in the genome of patients with schizophrenia 

(especially SNPs), but even so, they explain less than 5% of heritability (Marshall 

et al., 2017). This is thought to be an underestimate due to a few reasons: there 

are probably very many more than 108 loci associated with schizophrenia as found 

out by the most recent GWAS conducted (Ripke et al., 2014). Perhaps most 

importantly, there are gene x gene interactions (epistasis) and gene x environment 

interactions, which are not considered in the calculation of heritability (Zuk et 

al., 2012).  

1.8.2.1 Copy number variants  

Copy number variants are small chromosomal abnormalities with excessive 

deletions or duplications of DNA segments that occur in the genome of every 
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human being. Where they are located, and the gene “dosage”, dictates whether 

they have a detrimental effect, or no effect whatsoever. CNVs associated with 

schizophrenia are relatively rare but have a high genotypic relative risk score, 

i.e., a strong effect on disease risk (Marshall et al., 2017). 

Eight consistent CNVs associated with schizophrenia have been identified (Marshall 

et al., 2017), most of which have also been implicated in other psychiatric 

disorders, such as autism and bipolar disorder (Sullivan et al., 2012). The most 

common CNVs are the 16p11.2 duplication, 15q13.3 deletion and 22q11.2 deletion 

(Marshall et al., 2017). The 22q11.2 region is also strongly associated with velo-

cardio-facial syndrome, patients of which have a 30% chance of developing 

psychosis (Williams et al., 2006), suggesting psychotic symptoms may at least be 

partly produced by genetic alterations at this locus. 

1.8.2.2 Single nucleotide polymorphisms  

A single nucleotide polymorphism is an exchange of a single nucleotide at a 

specific locus for a different nucleotide. Just 0.1% of the human genome is 

different between individuals, and SNPs make up approximately 90% of this 0.1% 

variation (Collins et al., 1998; Collins & Mansoura, 2001). More than 10 million 

SNPs have been identified so far, and the majority have no known effect or 

function; however, some are causative mutations. SNPs with causative mutations 

can either be located within the coding regions of a gene, where they may have 

effects on the structure or function of a protein and may or may not be important 

for normal functioning. Or, they can be located in non-coding regions of a gene, 

where they can have an effect on regulation of gene expression, and therefore 

quantity, or different splicing of isoforms of the protein made which, again, may 

or may not be important for normal functioning (Samson & Wong, 2015). 

SNP association with a particular disorder can be identified in several ways. 

Microarrays can study thousands of SNPs at once, for example, GWAS. A GWAS 

uses a chi-squared test to identify whether the frequency of each SNP (up to 

~500,000 of them at a time) differs between patients and controls. To control for 

multiple testing, huge sample numbers are required. The most recent 

schizophrenia GWAS (Ripke et al., 2014) included 36,989 cases and 113,075 

controls, and identified 108 loci that reached genome wide significance between 

patients and controls. This information is useful in order to know where to begin 
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looking, and for spotting trends in the associations. For example, many of the loci 

included genes which were part of the same well-characterised pathways (Ripke 

et al., 2014). The most common convergence appears to occur on pathways for 

NMDAR signalling, synaptic plasticity, calcium signalling and immune function 

(Giusti-rodríguez & Sullivan, 2013; Morris & Pratt, 2014). This has led to the idea 

that schizophrenia may be a “pathway” disorder, with genetic variation conferring 

risk converging on a particular cellular pathway (or pathways), causing alterations 

of whole molecular systems (Horváth & Mirnics, 2015; Sullivan, 2012).  

However, there are problems with using solely GWAS to identify SNPs. GWAS works 

by spanning the entire genome and testing for significant SNPs at roughly equal 

intervals (about every 50,000 bases), missing large parts of the genome. 

Additionally, each locus is huge; there are implicated genes at these regions, but 

this does not actually causally link them to a disorder. Moreover, there is very 

limited clinical information available for such large sample sizes, so genotype-

phenotype relationships are unclear, and most of the data used in GWAS studies 

are from Caucasian subjects, but there are major ethnic differences in SNPs and 

in the prevalence of schizophrenia (Huang et al., 2015). However, GWAS’s are 

useful in providing information about where to start looking for genetic variation 

associated with a particular disorder.  

Specific SNPs can then be genotyped in candidate gene association studies, which 

focus on finding associations between genetic variation of pre-selected genes of 

interest and disease states. Recently, Winchester et al. (2012) conducted a 

candidate gene association study and found a significant association between two 

SNP variants of the Map2k7 gene and schizophrenia, as well as decreased 

expression levels of Map2k7 mRNA by ~30% in the post mortem PFC of 

schizophrenia patients (Winchester et al., 2012). Map2k7 was not identified in the 

GWAS’s of schizophrenia to date, most likely because it was poorly represented 

on the chip arrays used (Winchester et al., 2012).  

1.9 Map2k7 and the JNK pathway 

The Map2k7 gene encodes an intracellular signalling kinase in the c-Jun NH2-

terminal protein kinase (JNK) pathway, which is activated by cellular stress stimuli 

and modulates critical cellular functions, such as cell growth and proliferation, 

differentiation, transcription, apoptosis and cellular migration (Rincón & Davis, 
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2009; Yamasaki et al., 2011; Yamasaki et al., 2012). The MAP2K7 (MKK7) protein 

specifically phosphorylates and activates JNK (facilitated by MAP2K4; MKK4; Wang 

et al., 2007), which is one of three subgroups in the mitogen activated protein 

kinase (MAPK) superfamily (the other two being p38 and the extracellular signal 

related kinase (ERK)). Dual phosphorylation is required to activate JNK, on the 

Threonine-Proline-Tyrosine motif in its activation loop, and in order to keep the 

activation level under control, JNK is deactivated by phosphatases. MKK4 and 

MKK7 preferentially phosphorylate the tyrosine and threonine residues, 

respectfully (Wada et al., 2001). Although MKK7 is specific for JNK, MKK4 is 

involved with activating JNK and also p38 MAPK in response to stress (Wang et al., 

2007). Cellular stress stimuli, such as: osmolarity changes, DNA damage, heat/cold 

shock, inflammatory cytokines, UV irradiation and mechanical sheer stress lead to 

phosphorylation of MAP kinase kinase kinases, sometimes via NMDARs (Centeno et 

al., 2007), which then activate the MAP kinase kinases MKK7 and MKK4, which, in 

turn phosphorylate and activate JNK (Kyriakis & Avruch, 2001; Watanabe et al., 

2002). JNK then either interacts with other cellular effectors within the 

cytoplasm, or translocates to the nucleus to have further effects on transcription 

factors, such as c-Jun, AP-1, c-Myc and ATF2, microtubule associated proteins 

(MAPs), and various apoptotic proteins (Bogoyevitch & Kobe, 2006). This then 

leads to regulation of the critical, distinct cellular processes mentioned above 

(Yamasaki et al., 2012; Yamasaki et al., 2011). The main components of the 

signalling pathway are depicted in Fig. 1.1. 
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Figure 1.1. The MKK7/JNK signalling pathway. MKK7 is part of a three-tier 

intracellular signalling cascade that begins with the activation of MKKKs by stress 

factors such as inflammatory cytokines, growth factors, UV irradiation and oxidative 

stress, among others. NMDA receptors are one, but not all, of the ways in which the 

stress factors mediate their response intracellularly, activating the MKKKs, which 

include TAOK2, DLK, MLKs and apoptosis signal-regulating kinase 1 (ASK1). These then 

go on to activate MKK4 and MKK7, which together activate JNK1, 2 and 3. JNK then 

either translocates to the nucleus to have further effects on transcription factors and 

therefore gene transcription, or has direct mediation of other cellular effectors within 

the cytoplasm. Figure and legend composed using information from (Coffey, 2014; 

Morris et al., 2014; Traynelis et al., 2010). This is a simplified depiction of the 

MKK7/JNK pathway. MKK7 = mitogen activated protein kinase kinase 7; MKK4 = 

mitogen activated protein kinase kinase 4; MAP3Ks/MKKKs = mitogen activated protein 

kinase kinase kinases; PSD-95 = postsynaptic density 95; NMDAR = N-methyl-D-

aspartate receptor; JNK = c-Jun N-terminal kinase. 
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1.9.1 Information about MKK7/JNK signalling has been provided by studying 

knockout mice 

The importance of the role of MKK7/JNK signalling in vivo has been investigated 

using genetically altered mice for different components of the MKK7/JNK pathway 

(Yamasaki et al., 2012). Mice completely lacking the Map2k7 or Map2k4 gene are 

embryonically lethal between E11.5 and E12.5 due to impaired liver formation and 

decreased JNK activation (Wada et al., 2004), showing that activation of JNK by 

MKK4/7 is crucial for hepatoblast growth in mouse development (Watanabe et al., 

2002). MKK4/MKK7 double KO mice die at E9.5 prior to neural tube formation, 

suggesting that MKK4 and MKK7 can compensate for each other to a certain extent 

(Asaoka & Nishina, 2010). Nestin-Cre Map2k7 mice lacking Map2k7 in just the 

nervous system died at birth and showed severe brain defects, including enlarged 

ventricles, enlarged overall brain volume, defects in axonal tract formation, 

altered radial migration and reduced striatal volume (Yamasaki et al., 2011). 

There was also a compensatory increase of activated MKK4 (Yamasaki et al., 2011, 

2017), showing that MKK4 and MKK7 work together; however, they also have 

distinct functions as Map2k4 Nestin-Cre mice lacking Map2k4 in just the nervous 

system did not show a compensatory increase in MKK7, but did show a decrease in 

p38, which is consistent with the physiological role of MKK4 in mediating p38 MAPK 

activation in response to stress (Wang et al., 2007). The Map2k4 conditional KO 

mice died at 3 weeks and exhibited misalignment of the Purkinje cells of the 

cerebellum (Wang et al., 2007). In both nervous system cKO MKK4 and MKK7 mice, 

JNK activation was reduced to 20% of the normal extent of activation in the 

developing brain and they also exhibited delayed neuronal migration in the cortex 

(Yamasaki et al., 2011). It has been suggested that these differences/similarities 

between signalling by MKK7 or MKK4 in the JNK pathway may be due to specific 

regulation by extracellular stimuli, distinct tissue distribution and their different 

biochemical properties (Coffey, 2014; Lee et al., 2012; Wang et al., 2007).  

JNK knockout mice have also been useful in providing information about the 

function of the MKK7/JNK pathway. Three Jnk genes (Jnk 1, 2 and 3) encode 10 

isoforms in mammals (Wang et al., 2007); JNK1 and JNK2 proteins are ubiquitously 

expressed, including in heart, brain, lung, liver and skeletal muscle, whereas JNK3 

is only expressed in the brain and testes (Kuan et al., 1999). JNK1 KO mice 

displayed abnormal dendritic architecture in the motor cortex, increased 
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apoptosis and impaired LTP (Komulainen et al., 2014; Li et al., 2007). JNK2 KO 

mice exhibited increased apoptosis and defective synaptic plasticity (Chen et al., 

2005; Sabapathy et al., 1999). JNK3 KO mice exhibited reduced glutamate toxicity 

in neurons and abnormal circadian rhythms (Yang et al., 1997; Yoshitane et al., 

2012). Additionally, JNK1/JNK2 double KO mice die at 11.5 with failure of neural 

tube closure and decreased apoptosis in the hindbrain but increased apoptosis in 

the forebrain (Kuan et al., 1999). These JNK KO studies show that JNK1, 2, and 3 

have both functional differences and the ability to compensate for each other to 

a certain extent (Yamasaki et al., 2012), in a comparable way to MKK4 and MKK7. 

Altogether, these KO studies show the importance of the MKK7/JNK pathway in 

embryogenesis and mammalian body plan organisation from very early stages, and 

produce effects that are related to schizophrenia pathology (reduced striatal 

volume, enlarged ventricles, dendritic architecture, axonal tract (i.e. white 

matter) changes; discussed in Section 1.5). In particular, the double JNK1/JNK2 

KO mice showed differential apoptosis over the brain regions that clearly links 

with the dopaminergic hypofunction and hyperfunction of schizophrenia 

neuropathology in the PFC and subcortical structures, respectively (described in 

Section 1.6.2). Moreover, several of the knockout mice show deficits in long term 

potentiation, which is mediated by NMDARs, and there is evidence to suggest that 

NMDAR function is altered in schizophrenia (see Section 1.6.1 above and reviewed 

in (Snyder & Gao, 2013). Therefore, the MKK7/JNK pathway has important roles 

in brain development, neuronal activity and controlled cell death which will likely 

have consequences on the brain that continue into adulthood. Additionally, 

cellular stress stimuli itself during development plays a role in the pathogenesis 

of schizophrenia (Meyer, 2013). Therefore, these highly relevant and important 

findings from Winchester et al. (2012) could pave the way to a deeper 

understanding of the abnormal neurobiological mechanisms involved in 

schizophrenia.  

1.9.2 Map2k7 and schizophrenia  

Animal, clinical and genetic studies show there are numerous ways in which 

disrupted MKK7/JNK signalling may be a factor in the pathophysiology of 

schizophrenia. Mutations in JNK3 cause severe intellectual disability in humans 

(Shoichet et al., 2006; Kunde et al., 2013), and JNK1, MKK7 and MKKK12 (a kinase 

upstream of MKK7) are all crucial for the development of the neocortex (Hirai et 
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al., 2002; Hirai et al., 2011; Yamasaki et al., 2011; Riches & Reynolds, 2014; Xu 

et al., 2014). Also, NMDARs are located upstream of MKK7 and interact directly 

with the MKK7/JNK pathway (Mukherjee et al., 1999), and JNK1 and 2 mediate 

aspects of synaptic plasticity via NMDARs in the mature mouse hippocampus (Chen 

et al., 2005; Li et al., 2007). Additionally, there is an orthologue version of the 

Map2k7 gene present in C. elegans: Jkk-1. A mutation in Jkk-1 of C. elegans 

impairs long-term potentiation, therefore implicating Map2k7 in fundamental 

aspects of memory (Lakhina et al., 2015). Notably, as the genes of C. elegans are 

very old phylogenetically, this shows the significance and importance of this gene 

in humans as it still exists and not been removed by natural selection (Asaoka & 

Nishina, 2010). Additionally, Winchester et al. (2012) identified two SNPs in the 

Map2k7 gene associated with increased risk for schizophrenia. It is interesting that 

one of these polymorphisms was located in a region that had extremely high inter-

species sequence conservation (Winchester et al., 2012). This, again, highlights 

the physiological importance of the Map2k7 gene and suggests fundamental 

processes may be compromised if there is disruption in this gene/protein and the 

genes/proteins it interacts with, and will probably cause disruption of functional 

importance. It also shows that the relevant (i.e. associated with schizophrenia) 

parts of the Map2k7 gene are highly likely to be the same in mice and humans. 

This is especially likely considering the whole Map2k7 gene is 99% conserved in 

mice and humans overall (Foltz et al., 1998), and the polymorphism associated 

with schizophrenia represents one of the highest inter-species sequence 

conservation of the gene (Winchester et al., 2012, with data obtained from 

Ensembl: www.ensembl.org). Therefore, mice heterozygous for the Map2k7 gene 

would be expected to have excellent construct validity (i.e. the procedures used 

to create the model are related to the underlying mechanisms involved in disease 

aetiology; Pratt et al., 2012). 

Genetic abnormalities affecting several other levels of the JNK/MKK7 pathway 

also confer risk for psychiatric disorders such as schizophrenia (summarised in 

Morris & Pratt, 2014). For example, thousand-and-one amino acid kinase 2 

(TAOK2) partially activates JNK1 (de Anda et al., 2012) and is located on 

chromosome 16p11.2, a region associated with increased risk for schizophrenia 

(McCarthy et al., 2009). Also, MKK7/JNK signalling may impact on calcium levels 

(Brnjic et al., 2010), and the CACNA1C gene (which encodes an alpha-1 subunit of 
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a voltage-dependent calcium channel, and mediates the influx of calcium ions into 

the cell upon membrane polarization) has also been implicated in schizophrenia. 

Calcium signalling has very widespread effects in vivo (Giusti-rodríguez & Sullivan, 

2013), including on synaptic plasticity, so it is possible that MKK7/JNK signalling 

can interact with calcium signalling to contribute towards the pathogenesis of 

schizophrenia.  

Evidence is also mounting in support of an altered inflammatory response playing 

a role in the pathophysiology of schizophrenia (Meyer, 2013; Monji et al., 2009) 

and stress-activated protein kinases, including MKK7, have been shown to regulate 

the immune response (reviewed in Rincón & Davis, 2009). Therefore, it is feasible 

that insults such as hypoxia and infection during a critical point in development 

induce cellular stress in an individual who has a schizophrenia risk polymorphism 

in the Map2k7 gene, and thereby cause aberrant activation of the JNK pathway, 

which may result in a compensatory long-term down-regulation of Map2k7 in the 

brain (Winchester et al., 2012). The immune system is important for normal brain 

development (Bilbo & Schwarz, 2012), so abnormal regulation of the immune 

response throughout the developmental period could have damaging effects on 

brain function, structure and behaviour which only begin to show as symptoms of 

schizophrenia later in life.   

Collectively, these findings link MKK7/JNK signalling to the pathogenesis of 

schizophrenia. As mentioned earlier, the genetic, pharmacological and 

physiological causes of schizophrenia converge on pathways for NMDAR signalling, 

synaptic plasticity, calcium signalling and immune function (Morris & Pratt, 2014; 

Giusti-Rodriguez & Sullivan, 2013). MKK7/JNK signalling falls at least partially into 

all four of these, making it an excellent basis for future study as a potential 

therapeutic target. Further investigation will be required into the cellular 

mechanisms and behavioural phenotypes associated with this signalling pathway 

when it is disrupted. Mice haploinsufficient for the Map2k7 gene will be valuable 

in this objective and is what will be explored throughout this thesis. 

1.10 Animal models for schizophrenia  

Animal models of relevance to schizophrenia are vital for progress in drug 

development and have been the topic of many reviews (Ayhan et al., 2009; Geyer 

& Moghaddam, 2002; Jones et al., 2011; Marcotte et al., 2001; Mouri et al., 2013; 
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Nestler & Hyman, 2010; Pratt et al., 2012; Young et al., 2010, to name but a few). 

The idea that it is difficult to model human characteristics in non-human animals 

has led to criticism of models of relevance to complex mental disorders (Young et 

al., 2010). However, animal models provide valuable neurobiological information 

that is not possible to obtain by studying humans. A genuinely novel therapeutic 

drug has not been developed for the symptoms of schizophrenia since atypical 

antipsychotics were clinically introduced in the 1970’s, and this is thought to be 

primarily due to the unavailability of accurate and reliable animal models (Nestler 

& Hyman, 2010; Pratt et al., 2012; Yee & Singer, 2013). As schizophrenia and 

other psychiatric disorders are behaviourally, genetically and neuropathologically 

heterogeneous, a common approach when generating new animal models is to 

focus on modelling particular aspects of symptoms domains, e.g. the cognitive 

symptoms. Approaching this as the RDoC initiative suggests in Section 1.4, rather 

than attempting to model the whole disorder in one animal model, will provide 

relevant information that can potentially span multiple disorders. That is, 

assuming that the domains share similar underlying mechanisms across species and 

disorders (Young et al., 2010). The research domains that RDoC have identified 

include negative valence (fear, anxiety), positive valence (motivation, reward 

learning, initial and sustained responsiveness to reward), cognitive systems 

(attention, working memory, cognitive control, declarative memory), social 

processes (social communication, perception and understanding of self and 

others), and, finally, arousal/modulatory systems (sleep/wake cycle, circadian 

rhythms) (Cuthbert & Insel, 2013).  

Initiatives such as the Measurement and Treatment Research to Improve Cognition 

in Schizophrenia (MATRICS) and the Cognitive Neuroscience Treatment Research 

to Improve Cognitive in Schizophrenia (CNTRICS) also aim to facilitate boundaries 

between clinical and basic research, and they focus on the cognitive deficits of 

schizophrenia as there are no efficacious treatments for those currently. MATRICS 

have developed a standardised battery of tests to examine the functioning of each 

of the cognitive constructs in patients so that the efficacy of novel treatments can 

be assessed (Nuechterlein et al., 2008). Based on the battery of tests laid out by 

MATRICS, the CNTRICS panel selected analogous behavioural tasks for evaluating 

these cognitive domains in animal models (Carter & Barch, 2007). Therefore, by 

following the guidance of CNTRICS, researchers investigating the phenotype of 
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potential animal models will be re-assured that they are using accurate tasks that 

have been reliably shown to be highly translatable to human patients.  

1.10.1 Validity of animal models  

For an animal model to be effective it must be carefully designed to fulfil its 

specified function, be reliable and satisfy certain criteria (Young et al., 2010). 

The behavioural symptoms of schizophrenia are primarily unique to humans. 

However, endophenotypes (behavioural, neuroanatomical, cognitive or 

neuropsychological markers that are heritable and that expose the link between 

genetic and clinical expression; Uhlhaas & Singer, 2010) reflecting specific 

symptoms in humans that can be observed in rodent models are becoming more 

established (Braff, 2015). 

Ideally, an animal model should have good face, construct and predictive validity 

and the behavioural tests used to examine it would be relevant, precise, objective 

and perfectly translatable to human patients (Young et al., 2010). Face validity is 

defined as when the observed phenotype of the model resembles that seen in 

patients, which is not as vital as construct or predictive validity and if this is the 

only criteria an animal model fulfils, would not be considered a reliable model. 

Construct validity describes a model created using mechanisms based on actual, 

known underlying mechanisms involved in disease aetiology, which is perhaps the 

most important of the three criteria and is hard to achieve, yet is still not useful 

if this is the only criteria a model satisfies. A model has predictive validity if 

predictions made using the model (for example, drug efficacy) reflect what occurs 

in patients (Pratt et al., 2012; Sharma et al., 2016; Young et al., 2010). All the 

aforementioned validity criteria are important and ideally an animal model will 

possess all of them. As described in this introduction, mice heterozygous for the 

Map2k7 gene have excellent construct validity, and their face and predictive 

validity will be investigated throughout this thesis by utilising translational 

behavioural tasks and molecular techniques.  

There are currently multiple subtypes of animal models for schizophrenia, broadly 

grouped into pharmacological, genetic and developmental models; a brief 

overview and examples of each type are given in the following sections (Jones et 

al., 2011).  
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1.10.2 Pharmacological animal models of schizophrenia 

Pharmacological models are created by acute or sub chronic administration of 

psychotomimetic compounds to animals in order to recapitulate symptoms of 

schizophrenia. As mentioned in Section 1.6, ketamine is a derivative of PCP, and 

they are both primarily NMDAR antagonists. PCP and ketamine induce remarkably 

similar experiences in people who abuse it to those who have schizophrenia, 

mirroring the negative, positive and cognitive deficits (Adler et al., 1999). This 

occurs to such an extent that chronic PCP abusers have previously been mis-

diagnosed as having schizophrenia (Morris et al., 2005). Acute or subchronic PCP 

administration in rodents produces hyperlocomotion, neuropathological changes 

and impairment in: PPI, novel object recognition, reversal learning, attentional 

set-shifting and attentional function that are relevant to schizophrenia (Jones et 

al., 2011; Neill et al., 2010; Pratt et al., 2012; Thomson et al., 2011). These 

studies provide evidence towards the NMDAR hypofunction hypothesis of 

schizophrenia, and, in a similar way, administration of amphetamine in rodents 

provide evidence towards the dopamine hypothesis of schizophrenia (Van Den 

Buuse, 2010). Although offering good face validity, pharmacological animal 

models of schizophrenia have come under some criticism because of the fact that 

schizophrenia is not thought to be caused by selective dysfunction of a single 

neurotransmitter system (Nestler & Hyman, 2010). However, combinational 

administration of drugs in animal models have been attempted in the context of 

drug abuse. Ketamine plus amphetamine administration in mice showed additive 

effects on locomotor activity but differential effects on GAD67 expression (Lai et 

al., 2013); therefore, it would be useful to pursue these combinatorial 

pharmacological models further, with a focus on schizophrenia. 

1.10.3 Developmental animal models  

Developmental animal models of schizophrenia typically involve administration of 

drugs or manipulation of the environment during critical periods of development 

and then studying the effect(s) this has on the offspring. Exposure to 

Polyinosinic:polycytidylic acid (Poly I:C), a synthetic analogue of double-stranded 

RNA that acts as a viral mimetic, during the gestational period is one example of 

this. It causes behavioural phenotypes in offspring relevant to schizophrenia, such 

as deficits in: PPI (described in Section 4.4.1), latent inhibition, selective 

attention, sociability and social novelty, and hyper-exploration in a novel 
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environment (Moran et al., 2016). Poly I:C exposure during gestation also produces 

an enhanced immune response in maternal serum and foetal brain that are 

relevant to those which contribute to schizophrenia in offspring (Reisinger et al., 

2015).  

Another well-studied neurodevelopmental rodent model is the gestational 

methylazoxymethanol acetate (MAM) model. MAM is an agent naturally occurring 

in cycad plant seeds and it methylates DNA, producing anti-mitotic and anti-

proliferative effects during development (Matsumoto & Higa, 1966). 

Administration of MAM to gestating rats produces long-term histological, 

neurophysiological and behavioural deficits in the offspring (Lodge, 2013). Another 

example of developmental animal models are neonatal lesion or disconnection 

studies of parts of the hippocampus, which produce a collection of behavioural 

and cellular alterations that mimic several aspects of schizophrenia (Lipska, 

2004). However, these models do not show particularly good construct validity. 

1.10.4 Genetic animal models of schizophrenia  

One approach when creating a relevant animal model is by genetic manipulation 

of specific gene(s) associated with schizophrenia. Genetic manipulation can be in 

the form of point mutations using N-ethyl-N-nitrosourea (ENU) mutagenesis, 

structural changes such as inducing chromosome abnormalities, CNV alterations 

and haploinsufficiency models (Tomoda et al., 2016). Although it must be 

acknowledged that animal models relevant to schizophrenia created by genetic 

manipulation may show phenotypes also related to other conditions such as 

depression and bipolar disorder, they have significant value as they have the 

potential to have excellent construct validity. Having a genetic model that is 

relevant to the pathogenesis of not just schizophrenia but related disorders also, 

would conform well with the RDoC initiative. This may be valuable because 

schizophrenia shares some of its risk genes with disorders such as bipolar disorder 

and autism (Carroll & Owen, 2009; Goes et al., 2016). Very specific genetic 

alterations can be designed to mimic what occurs in humans, and is present from 

birth, which is relevant to what is likely to naturally occur. On the other hand, 

genetic manipulation that can be induced whenever desired using optogenetic 

techniques and designer receptors exclusively activated by designer drugs 

(DREADDs) are showing promise for precisely deconstructing the 

pathophysiological mechanisms of schizophrenia-relevant neural circuits (Cho & 
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Sohal, 2014) and have been shown to impair PPI, cognitive flexibility and attention 

(Koike et al., 2015; Nguyen et al., 2014; Parnaudeau et al., 2015).  

22q11.2 deletion, 15q13.3 microdeletion and 16p11.2 duplication (see Section 

1.8.2.1) mouse models have also been developed. Mice with various deletions in 

the 22q11.2 region are perhaps the best studied of these and show alterations in 

hippocampal synaptic plasticity, reduced synchrony between the hippocampus 

and PFC, dysregulation of presynaptic calcium, enhanced glutamate release, age-

dependent decrease in parvalbumin positive cell density, and increased LTP (Earls 

et al., 2011; Piskorowski et al., 2016; Sigurdsson et al., 2010). Behaviourally, they 

exhibit hyperactivity in the open field, and deficits in working memory, social 

memory, spatial memory, PPI and fear conditioning (Earls et al., 2011; Piskorowski 

et al., 2016; Stark et al., 2008). The 22q11.2 deletion is one of the largest known 

genetic risk factors for schizophrenia (Karayiorgou & Gogos, 2004), so these animal 

models represent excellent face and construct validity.  

Disrupted-in-schizophrenia 1 (DISC1) is a gene initially identified in a Scottish 

pedigree in which loss of DISC1 function is associated with hugely increased risk 

for schizophrenia and other psychiatric disorders (such as depression and bipolar 

disorder; Millar et al., 2007). Various genetic mouse models of DISC1 have shown 

behavioural, cellular, circuitry and molecular changes relevant to schizophrenia. 

Behavioural changes include working memory deficits, increased impulsivity, 

reduced PPI, reduced sociability and social novelty, hyperlocomotion, enhanced 

dopamine function, deficits in interneuron development and enlarged ventricles 

(Brandon & Sawa, 2011; Koike et al., 2006; Kuroda et al., 2011; Lee et al., 2013; 

Lipina et al., 2010). These animal models have proven useful in advancing the 

knowledge of the underlying neurobiology of schizophrenia and are expected to 

continue providing the means to test novel treatments and diagnostic possibilities 

(Tomoda et al., 2016). 

1.10.5 Gene x environment interaction models  

The advantage of genetic models is that it is easy to simultaneously “superimpose” 

a different type of model onto them to create a gene x environment interaction 

model. Genetic manipulations have been combined with developmental models 

(Section 1.10.3), including induction of stress, maternal infection, isolation 
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rearing and drug abuse, allowing for a more hypothesis-driven and accurate animal 

model (Ayhan et al., 2009).  

It is well established that prenatal exposure to infection that involves immune 

activation is associated with increased risk of developing schizophrenia in 

offspring (Cannon et al., 1996). Exposure of a genetically altered gestating dam 

to infection or direct immune activation such as human influenza, 

lipopolysaccharide (LPS) or Poly I:C and subsequent investigation of changes in 

offspring are an interesting way to study gene x environment interactions in 

schizophrenia. Exposure to Poly I:C is perhaps the most frequently studied. In non-

genetically altered animals, Poly I:C administration to a gestating dam causes (in 

offspring) behavioural phenotypes (PPI, latent inhibition, selective attention, 

sociability and social novelty deficits, and hyper-exploration in a novel 

environment), including an enhanced immune response in maternal serum and 

foetal brain that are relevant to those which occur in schizophrenia (reviewed in 

Moran et al., 2016; Reisinger et al., 2015). Both Neuregulin-1 and DISC1 animal 

models have been subject to the Poly I:C immune challenge procedure, and 

produced differential (O’Leary et al., 2014) and synergistic (Tatiana et al., 2013) 

effects on schizophrenia-related phenotypes, respectively. Chapter 7 will 

examine the potential of Map2k7 heterozygous mice as a gene x environment 

model with the administration of Poly I:C. 

1.11 Assessing schizophrenia-related behavioural 

phenotypes in mice 

When investigating complex disorder such as schizophrenia, it is common to utilise 

a battery approach and examine mice in a broad range of tasks, in order to get a 

full representation of impairments. As with human tasks, no single rodent 

behavioural task is uniquely relevant to schizophrenia, or adequately captures the 

full spectrum of its symptoms (Powell & Miyakawa, 2006). There are many rodent 

tasks of relevance to schizophrenia, which will be briefly discussed. 

1.11.1 SHIRPA assessment 

SHIRPA (an acronym of SmithKline Beecham, Harwell, Imperial College, Royal 

London Hospital phenotype assessment) tests are usually carried out in the first 

instance on any potential novel animal model. It is a battery of short tests that 
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detect overt differences in animals to produce a general phenotypic screen 

(Rogers et al., 1997). Map2k7+/- mice have previously undergone SHIRPA tests (R. 

Thompson, PhD thesis, 2013) and appeared completely normal in every aspect 

assessed. Table 1.1 gives a summary of results of the tests relevant to the current 

thesis. To summarise, Map2k7+/- mice can move normally, are not hindered by 

tremor or by exhibiting convulsions, can see properly, and are normal in their 

balance, strength and motor coordination, compared to their WT littermates (R. 

Thompson, PhD Thesis, 2013). These non-significant results are important because 

it means that any differences between WT and Map2k7+/- mice in subsequent 

behavioural tests are likely to be due to the impact of the genetic manipulation 

upon behaviour, rather than a confound, such as impaired vision. 

Test WT score HZ score Significance 

Gait 0 ± 0  0 ± 0 p >0.05 

Tremor 0 ± 0 0 ± 0 p >0.05 

Bizarre behaviours  0 ± 0 0 ± 0 p >0.05 

Convulsions 0 ± 0 0 ± 0 p >0.05 

Visual placing (eyesight) 1 ± 0 1 ± 0 p >0.05 

Hanging wire (s) (grip strength) 54.9 ± 3.3 52 ± 3.7 p >0.05 

Rotarod (s) (balance, motor 

coordination) 
111.5 ± 14.7 121.2 ± 12.6 p >0.05 

Table 1.1. Summary of primary phenotype screen of Map2k7+/- mice (HZ) and their 

WT littermates, carried out by R. Thompson (PhD thesis, 2013). Data is presented as 

the mean ± SEM, WT n=7, Map2k7+/- n=9. Data analysed by Student’s t-test. 

1.11.2 Maze and arena-based tasks 

Behavioural tasks carried out in a maze or arena are usually relatively brief tasks 

and require little to no training. Maze-based tasks can give a variety of 

information, such as the Morris water maze for working and spatial memory, 

elevated plus or zero maze for anxiety, 8-arm radial maze for working memory, 

and the Y-maze for working memory and reversal learning. Arena-based tasks such 

as the open field or three-chamber arena are used for assessing many behaviours; 

for example, locomotor activity, anxiety, sociability and social novelty, novel 

object recognition and light/dark preference, to name but a few. The tasks can 

also be carried out following pharmacological intervention. Many of these maze 

and arena-based tasks can be used effectively in conjunction with animal tracking 
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software (such as Ethovision®) whilst performing the tasks so that distance moved, 

velocity moved, interactions with objects or other animals, number of entries and 

time spent in pre-defined areas can be recorded automatically, which avoids 

researcher bias (reviewed in Powell & Miyakawa, 2006). 

1.11.3 Operant-based tasks  

Bussey et al. (2012) described the following desirable traits for a rodent 

behavioural assay. It should be: automated to diminish experimenter 

interaction/bias, minimise stress to the subject, be translational to human tasks, 

and utilise similar neural circuitry. All in all, the assay itself must present with 

good face, construct and predictive validity. It must also be able to measure 

multiple cognitive domains within the same equipment to minimise environmental 

factors. Therefore, Bussey et al. created the touchscreen operant-based method 

in order to meet these criteria, and designed the tasks to match the MATRICS tasks 

for phenotypic screens in humans as closely as possible, even sometimes utilising 

the same stimuli. Robbins (2002) previously developed the 9-hole operant box 

which, again, minimises experimenter bias and allows a battery of tasks to be 

carried out in the exact same environment on the same subjects. These operant-

based methods are also relatively high throughput, meaning that many animals 

can be tested within one day, which is useful as extensive, daily training is usually 

required.  

Throughout this thesis, I will use both the 5-Choice serial reaction time task for 

attention in 9-hole operant chamber and the rodent gambling task for decision-

making using the touchscreen, and will describe the tasks in further detail in the 

relevant chapters.   

 

1.12 Thesis aims 

Following their finding that variations in the Map2k7 gene are associated with 

schizophrenia, Winchester et al. conducted some preliminary behavioural analysis 

on mice haploinsufficient for Map2k7 (Map2k7+/- mice) and found deficits 

potentially relevant to those in patients with schizophrenia. Map2k7+/- mice 

showed signs of exhibiting increased perseveration and a reduction in correct 

responses compared to WT littermates during a T-maze task to probe working 

memory, which involves the PFC (Winchester et al., 2012). As this genetic 
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manipulation is based on findings from human patients, this suggests the Map2k7+/- 

mice could have good face validity and model the cognitive deficits of 

schizophrenia; hence, this thesis will primarily focus on the cognitive systems and, 

to a lesser extent, the positive valence domains from those identified by RDoC 

(outlined in Section 1.10).  

As described throughout the thesis Introduction, there are many ways in which 

Map2k7 is linked with the pathogenesis of schizophrenia and many features that 

suggest mice heterozygous for the Map2k7 gene have the potential to possess the 

main qualities of a good animal model. For example, Map2k7+/- mice have 

appropriate construct validity and the predictive and face validity are what I will 

be investigating throughout this thesis, following on and contributing to the 

findings by Winchester and colleagues (2012).  

Chapter 2 describes the materials and methods that are relevant to all subsequent 

experimental chapters and how the Map2k7+/- mice were created, by J. Penninger. 

The experimental chapters will aim to answer the following questions:  

Chapter 3 

• Do Map2k7+/- mice show decreased MKK7 protein in the PFC?  

• Do Map2k7+/- mice show altered amounts of other proteins in the MKK7/JNK 

pathway in the PFC? 

• Do Map2k7+/- mice show altered pathway components following one week’s 

treatment with minocycline? 

Chapter 4 

• Do Map2k7+/- mice show phenotypes grossly related to the positive 

symptoms of schizophrenia? 

• Do they show an altered behavioural response to an NMDAR antagonist? 

• Does minocycline alleviate any positive-related phenotypes observed? 

Chapter 5 

• Do Map2k7+/- mice show attentional deficits? 

• Do they show an altered behavioural response to an NMDAR antagonist? 

• Does minocycline alleviate any deficits observed? 
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Chapter 6 

• Can mice learn the rodent gambling task in the touchscreen? 

• Do Map2k7+/- mice exhibit a deficit in decision-making? 

• Are Map2k7+/- mice flexible in their decision-making abilities? 

Chapter 7 

• Will Map2k7+/- mice be suitable as a gene x environment risk factor model 

of schizophrenia? 

• Do Map2k7+/- mice (gestating adult and/or embryo) exhibit an altered 

cytokine response to maternal immune activation? 

Finally, Chapter 8 will bring together and discuss the findings of the thesis, 

including how it fits in with the relevant literature. 
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Chapter 2 Materials and Methods 

Materials and methods which are applicable to all chapters are included here; 

more detailed “Materials and Methods” will be described within each chapter.  

2.1 Map2k7+/- mice 

Mice heterozygous for a functional Map2k7 gene (Map2k7+/-; HZ) and wildtype 

(WT) littermate controls are the mice used throughout this thesis. They were 

originally a gift from Professor J. Penninger (IMBA, Institute for Molecular 

Biotechnology of the Austrian Academy of Sciences, Vienna, Austria) and were 

produced by replacement of a portion of exon 9 with a PGK-Neo cassette as 

described in Sasaki et al. (2001) (see Fig. 2.1). They were backcrossed for at least 

5 generations onto a C57Bl6/J mouse strain to achieve >98% genetic background 

similarity (the rest is 129SvEvBrd strain). Homozygous disruption of Map2k7 results 

in embryonic lethality, thus only WT and Map2k7+/- mice are available to study. 

WT and HZ mice were fertile together and were always mated in-house with WT 

x HZ breeding pairs, giving ~ 50% WT mice and ~ 50% Map2k7+/- pups; WT 

littermates were always used as controls. Half of breeding pairs consisted of WT 

females with HZ males, and half consisted of WT males with HZ females. Mice 

were weaned and genotyped (utilising the genotyping protocol outlined in Section 

2.2) at 3 weeks of age. All mice were kept in a humidity and temperature-

controlled room (21°C, 45–65% humidity). Animal weight, age, light cycle and 

testing times vary for each experiment so these details are given in the “Materials 

and Methods” section of the corresponding chapter. It was not possible to 

calculate sample sizes for each experiment using power analyses because no 

previous data had been obtained using Map2k7+/- mice for the experiments in this 

thesis. Therefore, all sample sizes chosen were based on wildtype mouse data 

obtained by our lab for the corresponding experiment. All behavioural testing and 

procedures were carried out in accordance with the Animals (Scientific 

Procedures) Act, 1986.  

 



35 
 

 

Figure 2.1. Disruption of Map2k7+/- mice was induced by insertion of a cassette into 

exon 9. Not to scale. UTR = untranslated region; LTR = long terminal repeat. 

 

2.2 Genotyping 

Genotyping followed a standard protocol of DNA extraction, polymerase chain 

reaction (PCR) to amplify gene areas of interest, then gel electrophoresis and 

examining bands under UV light to identify the genotype. If problems occurred 

during the genotyping protocol (for example, no bands on the gel), DNA quantity 

and quality was then measured (Section 2.2.4) and PCR repeated with 

adjustments as necessary. 

2.2.1 DNA Extraction  

Ear clippings were obtained from mice using a 2mm diameter ear punch at weaning 

(aged 3 weeks old), placed in a 1.5ml Eppendorf tube and kept at -20°C until 

digestion.  

38µl 0.5M EDTA at pH8 (Invitrogen, #15575020), 7µl Proteinase K (Invitrogen, 

#25530015) and 155µl of cell lysis solution (Buffer ATL; QIAGEN, #19076) were 

added to each sample in the Eppendorf and vortexed to ensure the ear clipping 

was submerged in the fluid. The ear clippings were then digested overnight at 

50°C with gentle shaking. 

The following day, tubes were heated to 99°C for 10 minutes, then 470µl 100% 

ethanol added and vortexed. Samples were centrifuged at 13,000rpm for 5 

minutes, supernatant discarded, 1ml 70% ethanol added to each tube and 

centrifuged again at 13,000rpm for 2 minutes. The supernatant was then 
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discarded, and DNA was air-dried for 30 minutes at 37°C. Finally, 100µl of 

nuclease-free water was added to each sample and incubated in an Eppendorf 

Thermomixer at 50°C for 20 minutes, shaking at 1000rpm for 10 seconds per 

minute. DNA extracts were kept at -20°C until the PCR stage. 

2.2.2 Polymerase Chain Reaction  

PCR was used to amplify regions of mouse genomic DNA extracted from Map2k7+/- 

mice to determine their genotype using Top Taq DNA Polymerase (QIAGEN, 

#200203). PCR primers specific for Map2k7 were designed using OligoPerfect™ 

Designer (Invitrogen, UK). Proposed forward and reverse primers were ‘blasted’ 

using Nucleotide Blast (NCBI) to ensure primers were specific to the gene of 

interest. See Fig. 2.2 for primer locations: WT mice were distinguished from 

Map2k7+/- mice by primers designed to target regions either side of the trapping 

cassette insertion site (exon 9), plus a primer designed to anneal to the trapping 

cassette in order to identify Map2k7+/- mice. Primer sequences are displayed in 

Table 2.1. 

All equipment and PCR tubes (0.5ml) were placed in a UV hood and sterilised of 

DNA for 30 minutes using the UV light. A master mix was then made for the 

samples, plus three control tubes, one each for nuclease-free water, a sample 

from a known wildtype mouse and a sample from a known Map2k7+/- mouse. Master 

mix components are outlined in Table 2.2. If using primers for the first time, each 

lyophilised primer was resuspended in nuclease-free water to 100µM. The primer 

mix was then made by adding 10µl 100µM primer F1, 10µl 100µM primer F2, 10µl 

100µM primer R1 and 70µl nuclease free water, then added to the master mix as 

directed in Table 2.2. 18µl of master mix was added to each 0.5ml PCR tube, then 

2µl of each DNA sample diluted 10X, (or controls) added to the individual tubes. 

The tubes were then placed in a Veriti® Thermal Cycler (ThermoFisher Scientific) 

and the PCR was run according to the conditions outlined in Table 2.3. 
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Figure 2.2. Primer locations for genotyping of Map2k7+/- mice. Forward primer 1 

(F1; WT primer) is located in the intronic region between exon 8 and 9; forward primer 

2 (F2; Mutant primer) is located in the trapping cassette inserted into exon 9 of 

Map2k7+/- mice only, and reverse primer 1 is common to both F1 and F2, located in 

the intronic region between exons 9 and 10. 

 

 

Table 2.1. List and sequences of Map2k7 primers. Three primers were used which 

create one product for WT mice and two products for HZ mice. These products were 

then run on a gel and examined. WT mice presented with one band and HZ mice 

presented with two bands. Primer locations are shown in Figure 2.2 and band 

locations shown in Figure 2.3. 

 

 

Primer name Sequence 

Forward 1 (WT) 5’ - GCTCTGTGACTTTGGCA 

Reverse primer 1 
(common) 

5’ - GCCCCAACTAACCAGTGAGA  

Forward 2 (mutant) 5’ - GGATGTGGAATGTGTGCGAG 
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Component Volume per Reaction 

Nuclease free H2O 12.5µl 

10X PCR Buffer for Top Taq DNA 
Polymerase 

2µl 

2mM each dNTP 0.4µl 

Primer Mix (see Section 2.2.2) 1µl 

Coral Load 2µl 

Top Taq DNA Polymerase 0.1µl 

Total Reaction Volume (inc. DNA) 20µl 

 

Table 2.2. Components of the master mix for PCR reaction. The components are added 

together to make a master mix. 18µl is added to each PCR tube, then 2µl DNA sample 

(diluted x 10 with nuclease-free water), to finish with a total reaction volume of 20µl. 

 

Step Temperature Duration Cycles 

Polymerase 
activation 

94°C 3 minutes 1X 

Denature 94°C 30 seconds 

33X 
Annealing 61°C 30 seconds 

Extension 72°C 1 minute 

Final extension 72°C 3 minutes 1x 

Table 2.3. PCR cycling parameters for the amplification of Map2k7 genomic DNA. 
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2.2.3 Gel Electrophoresis 

PCR products were then separated by gel electrophoresis. 3.5% (w/v) agarose gels 

with Gelstar™ nucleic acid gel stain (Lonza) were prepared and 5µl PCR product 

was loaded per well. Gels were run for 3.5 - 4 hours at 34V and imaged on a UV 

light box. A representative gel is shown in Fig. 2.3. 

 

Figure 2.3. Representative gel to identify Map2k7+/- mice and their WT littermates. 

WT mice have a single band at 263bp, and Map2k7+/- (HZ) mice present with two bands 

at 263bp and 397bp. The water control (H2O) allows for identification of contamination 

and should present with no bands. Bp = base pairs.  

2.2.4 DNA quantification  

If any problems were encountered with genotyping results, the quantity and 

quality of DNA samples were determined using a NanoDrop spectrophotometer 

(ND-1000; ThermoFisher Scientific). Prior to measurements, the 

spectrophotometer was blanked to sterile water and then the samples were 

calibrated to the buffer in which the samples were in (in this case, nuclease-free 

water). One microliter of each sample was measured and nucleic acid 

concentration was displayed by the NanoDrop in ng/ml along with 260/280 and 

230/260 ratios. A 260/280 reading of between 1.6 and 2.6 is an acceptable 

standard of purity for DNA samples. The 230/260 measurement gives a secondary 

indication of sample purity: ideal readings should be ~2.0, and values significantly 

lower than this could indicate contamination with carbohydrates or phenols. 
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2.3 Statistical analysis  

The details of specific statistical analyses are given in each chapter. Minitab® 

software was always used for analysis. For all repeated measures designs, mice 

were assigned a number and nested within either genotype, sex, or both as 

appropriate to ensure Minitab® knew that each mouse being tested within a 

repeated measure is the same mouse. Pairwise interactions were made as 

appropriate using Tukey’s method. All data points (unless otherwise specified) are 

shown/described as the mean ± SEM.  

2.4 Graphs and Figures  

All data which was expressed as a percentage, or other data which could have a 

value of zero is shown as a bar chart. Other data which could not have a value of 

zero is presented as a line graph or box plot as appropriate. All difference scores 

are represented as a bar chart. All bar and line graphs were made using GraphPad 

Prism 7 and box plots were made using BoxPlotR, an application available at 

http://shiny.chemgrid.org/boxplotr/ and described in Nature Methods Editorial 

“Kick the bar chart habit” 2014, p113.  

  

http://shiny.chemgrid.org/boxplotr/
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Chapter 3 MKK7 signalling pathway protein 

quantification in Map2k7+/- mice  

3.1 Introduction  

This thesis will primarily focus on behaviourally characterising mice that are 

heterozygous for the Map2k7 gene in order to assess their suitability for being a 

model relevant to schizophrenia. It is important to verify the effect that Map2k7 

heterogeneity has on protein levels in the brain because this will establish whether 

there are likely to be behavioural differences related to schizophrenia (and 

therefore be more likely to show face validity) and will also confirm that the mice 

have an element of construct validity for schizophrenia. This chapter will focus on 

the PFC as it is a highly relevant brain area: Map2k7 mRNA is decreased in the PFC 

of patients with schizophrenia (Winchester et al., 2012) and the PFC has extensive 

molecular, structural and functional disruption in patients (described in Section 

1.5.1).  

The entire known MKK7/JNK pathway is outlined in Fig. 1.1 and is described in 

detail in Section 1.9. However, this chapter will focus on those proteins 

downstream of MKK7 (outlined in Fig. 3.1).  

Figure 3.1. A brief overview of the MKK7/JNK signalling pathway components to 

be quantified by Western blotting.  
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MKK7 is activated in response to a variety of cellular stress signals, such as 

inflammatory cytokines, UV irradiation, heat/cold shock, DNA damage and 

osmolarity changes. These signals lead to phosphorylation of MAP kinase kinase 

kinases (MKKKs), for example, dual leucine zipper kinases (DLKs), mixed lineage 

protein kinases (MLKs), but there are many more (Johnson & Lapadat, 2002), 

which then activate the MAP kinase kinases MKK4 and MKK7. These, in turn, 

phosphorylate and activate JNK (Holland et al., 1997; Kyriakis & Avruch, 2001; 

Watanabe et al., 2002; Yao et al., 1997). JNK then either translocates to the 

nucleus and has further effects on transcription factors, or it activates other 

targets within the cytoplasm (Plotnikov et al., 2011). One of the most well-known 

targets of JNK is c-Jun (Hibi et al.,1993), which gave it its name and is a 

component of the activator protein 1 (AP-1) transcription complex (Johnson & 

Lapadat, 2002; Plotnikov et al., 2011). The phosphorylation of c-Jun represents a 

central mechanism by which JNK mediates its various cellular processes, which 

include upregulation of genes involved in cell differentiation and proliferation, 

induction of an inflammatory response, and apoptosis; therefore, c-Jun activity is 

often observed as an indication of MKK7/JNK pathway activity levels (Bode & 

Dong, 2010). The Map2k7 gene is comprised of 14 exons that are alternatively 

spliced to yield a group which contains two different COOH- termini (which give 

isoforms 1 and 2), and three different NH2-termini (alpha, beta, gamma). The 

individual functions of the isoforms are unclear (Asaoka & Nishina, 2010). 

3.2 Aims 

The aims of this chapter are to establish if/how the MKK7/JNK pathway is altered 

in Map2k7+/- mice by using Western Blotting to determine protein levels of each 

of the downstream pathway components: total JNK (46 and 54 kDa), total c-Jun 

(48 kDa), phospho c-Jun (49 kDa) and also total MKK4 (44 kDa), and total MKK7 (39 

kDa (α isoform) and 56 kDa (γ isoform)). 

We have shown in a separate cohort of mice that MKK7γ is decreased in the PFC 

and hippocampus (Openshaw et al., 2017), and that minocycline showed signs of 

alleviating attentional deficits seen in Map2k7+/- mice (described in Chapter 5). 

The rationale for investigating minocycline further with respect to Map2k7+/- mice 

is outlined in Section 1.7.2.3. Minocycline is a tetracycline antibiotic that has 

shown promise as a potential add-on treatment along with antipsychotics for the 
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treatment of negative and cognitive aspects of schizophrenia (more detail about 

minocycline in Section 1.7.2 and 1.7.2.1; Chaudhry et al., 2012; Jhamnani et al., 

2013; Levkovitz et al., 2010; Liu et al., 2014). To investigate how minocycline 

could alleviate attentional deficits in Map2k7+/- mice, this chapter will also aim to 

establish whether minocycline appears to produce its therapeutic effect by 

altering the protein levels of the components of the MKK7/JNK pathway.   
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3.3 Materials and Methods 

3.3.1 Mice and drug administration 

23 Map2k7+/- (12 female, 11 male) and 17 WT mice (6 female, 11 male) were used 

to supply tissue. Females weighed 21.94 ± 0.64 g and males weighed 25.10 ± 0.64 

g on average and all mice were 11.06 ± 0.02 weeks old at the time of dissection. 

The week immediately prior to dissection, half of these mice received minocycline 

in a similar way to McKim et al. (2016): 0.5 mg/ml; protected from light (Sigma-

Aldrich M9511, St. Louis, USA) in their standard drinking water for 7 days, whilst 

the other half received standard drinking water without minocycline (see Table 

3.1). The dose and duration of the minocycline administration were chosen to 

reflect, as closely as possible, the treatment protocols that are associated with 

symptomatic improvement in patients with schizophrenia. Administration of 

minocycline to mice in drinking water at 0.5 mg/ml produces a brain 

concentration of around 2μM (Smith et al., 2003), which is equivalent to the CSF 

concentrations achieved in humans during standard antibacterial dosing regimens 

(Agwuh & MacGowan, 2006; Macdonald et al., 1973). Fresh water or minocycline 

solution were prepared every second day and provided at room temperature. 

Consumption of water and minocycline treated water was monitored daily for each 

cage. On average, the treated group received 99.14 ± 17.72 mg/kg/day of 

minocycline and, per day, mice drank 5.18 ± 0.49ml water or 4.84 ± 0.43ml 

minocycline treated water, which are both within the normal daily water intake 

range for mice (Bachmanov et al., 2002). 

 Water Minocycline 

Female WT 3 3 

Female HZ 6 6 

Male WT 4 7 

Male HZ 6 5 

Table 3.1 Numbers of mice treated with minocycline or water. 

3.3.2 Protein extraction 

Exactly one week after the beginning of the minocycline treatment, mice were 

killed by cervical dislocation. The brain was carefully removed, which was placed 

on a ceramic tile on ice, thus keeping it at ~ 4°C. Using a sharp scalpel, the PFC 

of the brain (coronal section ~1.5mm from the front of the brain without the 
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olfactory bulb) was removed and placed in a 1.5ml Eppendorf on ice and then 

frozen at -80°C until required. Total protein was then extracted from the PFC 

tissue as follows: approximately 20mg tissue was homogenised in RIPA buffer 

(10mM Tris-HCL pH 7.4, 150mM NaCl, 1mM EDTA pH 8, 0.5 % w/v NP-40, 0.1 % w/v 

SDS, 0.1 % w/v sodium deoxycholate), 1% w/v protease inhibitor cocktail (Sigma, 

P8340) and 1M phosphatase inhibitor (Na3VO4). Cellular extracts were then 

centrifuged at 10,000g for 10 minutes at 4°C and supernatant collected and frozen 

at -20°C until required.  

3.3.3 Bradford protein assay 

Protein concentrations of each individual sample were determined by using a 

Bradford protein assay. Bovine serum albumin (BSA) (Sigma-Aldrich, UK) was 

diluted in distilled water (dH2O) to make six standards of concentrations 0, 2.5, 

5, 10, 15 and 20 μg/ml. If frozen, samples were defrosted on ice and then diluted 

in dH2O to ensure the protein concentration would fall on the linear portion of the 

standard curve. Protein assay dye reagent concentrate (Bio-Rad, #500-0006) was 

diluted 1:4 in dH2O, then 200μl was added to each sample/standard and mixed 

thoroughly. 200μl of each standard and sample mixture were assayed in duplicate 

into a flat-bottomed 96-well plate and the optical density read at 595nm on a 

plate reader (Multiskan Spectrum, Thermo Fisher) using SkanIt™ Software 2.4.4. 

The duplicate readings were averaged, and the blank readings were subtracted 

from all other standards and samples in order to give corrected optical density. 

The sample readings were then interpolated from the standard curve and 

multiplied by the dilution factor to give the concentration of each sample in 

mg/ml. 

3.3.4 Western blotting 

Protein samples were normalised to equal levels by diluting in dH2O according to 

the total protein that was quantified using the Bradford assay. The normalised 

samples were then denatured by heating to 80°C for 10 minutes in sample buffer 

(NuPAGE, Novex, NP0007) and sample reducing agent (NuPAGE, Novex, NP0004), 

which created a mixture that was 65% normalised protein, 10% reducing agent and 

25% sample buffer, before being subjected to SDS-PAGE in 10% Bis-Tris gel 

(NuPAGE, Novex, NP0302BOX) and transferred to Invitrolon PVDF membrane 

(Novex, LC2005). Membranes were placed in TTBS buffer (20 mM Tris pH 7.6, 150 
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mM NaCl, 0.05% Tween-20), supplemented with 3% skimmed milk and blocked for 

30 minutes at room temperature. Membranes were then incubated with the 

appropriate primary antibody (see Table 3.1) overnight at 4°C with constant 

agitation. The next day, they were washed 3 × 10 minutes in TTBS and then 

incubated with anti-rabbit secondary antibody (1:10,000; Millipore, 12-348) for 90 

minutes at room temperature with constant agitation. Blots were then washed 1 

x 10 minutes in TTBS, then 2 × 10 minutes in TBS (20 mM Tris-HCL pH 7.6, 150 mM 

NaCl). Membrane-bound secondary antibodies were detected using 

Chemiluminescent HRP Substrate (Immobilon, Millipore, WBKLS0100), and digital 

images of Western blots were captured by PXi4 (Syngene) using the appropriate 

exposure time as outlined in Table 3.1. Blots were then re-probed with 

housekeeping protein GAPDH-HRP antibody (1:20,000, Genetex, GTX627408) in 

TTBS with 1% milk for two hours at room temperature with constant agitation and 

then washed 1 × 10 minutes in TTBS, followed by 2 x 10 minutes in TBS. GAPDH 

specific bands were detected using ECL reagent (Signalfire, Cell Signalling 

Technologies, 68835), and digital images of Western blots were captured by PXi4 

(Syngene) using an exposure time of ~3 minutes. Digital images of blots were 

quantified using ImageJ software (W. Rasband, NIH), then antigen values 

normalised to the appropriate GAPDH values. Normalised values for each antigen 

were then expressed as a percentage of control (WT mice that received water) 

from the same blot, to allow the multiple blots to be compared reliably with each 

other. This was calculated using the formula:  

% of control = (
GAPDH-normalised value for the antigen of interest 

WT Water GAPDH-normalised values from that blot, averaged
)  *100 
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Antigen Company Dilution Diluent Time ECL Company 
Exposure time 
(using PXi4) 

tMKK7 
Genetex, 
GTX103563 

1:10000 
Signalboost, 

Millipore, KP31812 
Overnight, 

4°C 
Immobilon 

Millipore, 
WBKLS0100 

~10 minutes 

tMKK4 
Bethyl, 
A302-658A 

1:5000 
Signalboost, 

Millipore, KP31812 
Overnight, 

4°C 
Immobilon 

Millipore, 
WBKLS0100 

~15 minutes 

tJNK CST, #9258 1:10000 TTBS with 1% milk 
Overnight, 

4°C 
Immobilon 

Millipore, 
WBKLS0100 

~10 minutes 

tc-Jun CST, #9165 1:1000 
Signalboost, 

Millipore, KP31812 
Overnight, 

4°C 
Immobilon 

Millipore, 
WBKLS0100 

~15 Minutes 

pc-Jun CST, #9166 1:1000 TTBS with 5% BSA 
Overnight, 

4°C 
Immobilon 

Millipore, 
WBKLS0101 

~10 minutes 

GAPDH-HRP 
Genetex, 
GTX627408 

1:20000 TTBS with 1% milk 
2 hours, 

Room Temp. 
Signalfire CST, 68835 ~3 minutes 

Table 3.2 Primary antibodies used for Western blotting. CST = Cell Signalling Technologies, BSA = bovine serum albumin, ECL = enhanced 

chemiluminescence 
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3.3.5 Statistical Analysis 

Data from each antigen expressed as a % of control were analysed separately by a 

three-way ANOVA with sex, treatment (water or minocycline) and genotype (WT 

or Map2k7+/-) as between subjects factors with Tukey’s post hoc analysis where 

appropriate.  

For tMKK7γ, there were 4 extreme outliers on one blot, so these were removed 

from analysis. There was also an extreme outlier for c-Jun and two extreme 

outliers for tJNK, so these were also removed. All extreme outliers in the current 

experiment were identified from Minitab® 17 software as a Large Standardised 

Residual. Each outlier was first removed, and the data reanalysed to determine 

whether it was an influential observation that had a disproportionate impact on 

the ANOVA model. If it had no effect, it was kept; if the model changed 

significantly, the outlier was investigated further. First, a check was made for 

data input errors. Next, the origin of the data was investigated. The outliers from 

these Western blots may have occurred because the control (WT Water) for the 

particular blot they came from was unusually faint, so when expressing as a % of 

control the data was skewed. The outliers did not exist when looking at protein 

levels normalised to GAPDH for that blot, therefore, it was necessary to remove 

them from % of control analyses. 
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3.4 Results 

3.4.1 Map2k7+/- mice have decreased MKK7 protein in the PFC  

Western blotting shows 56 kDa MKK7 (γ isoform; effect of genotype: F(1,28)=40.97; 

p<0.0001), but not 38 kDa MKK7 (α isoform; F(1,32)=0.01; p=0.905), to be 

significantly decreased in the PFC of Map2k7+/- mice compared to their wildtype 

littermates (Fig. 3.2). For both MKK7α and γ, there were no significant effects of 

treatment, sex or any interactions between them (p>0.05). 

 

Figure 3.2. MKK7 protein levels in the PFC as determined by Western blotting. a) Total 

MKK7α protein levels in Map2k7+/- PFC were similar to WT levels. b) Map2k7+/- mice have 

reduced total MKK7γ protein in the PFC compared to WT littermates. c) representative 

Western blot. MKK7γ and α levels were normalised to GAPDH levels from the same blot 

and then expressed as a percentage of control (WT Water). Minocycline did not 

significantly alter protein levels of tMKK7α or tMKK7γ. Numbers under each bar represent 

the n number of that group. Four extreme outliers from a single Western blot were 

removed from MKK7γ analysis. Data were analysed by a 3-way ANOVA with genotype, sex 

and treatment as between subjects factors. 2- and 3-way pairwise comparisons were made 

between all factors using Tukey’s method. *p<0.05 (ANOVA).  
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3.4.2 Map2k7+/- mice have similar levels to WTs for all other proteins 

measured in the PFC  

Protein levels in the PFC were similar in Map2k7+/- mice compared to their 

wildtype littermates for tMKK4, tJNK, tc-Jun and pc-Jun. tMKK4, tJNK and tc-Jun 

had no significant effects of treatment, sex or any interactions between them 

(Fig. 3.3; p>0.05). For pc-Jun, there was an overall significant genotype x 

treatment interaction (p=0.015; F(1,20)=7.05); however, Tukey’s post hoc analysis 

did not reveal where this statistical significance arose.  

3.4.3 Minocycline does not alter protein levels of MKK7/JNK pathway 

components 

Following seven days of minocycline treatment, the levels of all PFC proteins 

measured (tMKK7α, tMKK7γ, tMKK4, tJNK, tc-Jun and pc-Jun) were not altered 

compared to mice that received water (Fig 3.2 and 3.3; p>0.05 for all). 
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Figure 3.3. PFC levels of various proteins from components of the MKK7/JNK pathway 

as determined by Western blotting. Representative Western blots shown above the 

corresponding graph. tMKK4 (a), tJNK (b), tc-Jun (c) and pc-Jun (d) all showed similar 

protein levels in the PFC in Map2k7+/- mice compared with WT littermates. There were no 

significant effects of minocycline on the levels of any of the proteins measured. All protein 

levels were normalised to GAPDH levels from the same blot and then expressed as a 

percentage of control (WT Water). Numbers under each bar represent the n number of 

that group. Two extreme outliers were removed from tJNK analysis and one extreme 

outlier was removed from tc-Jun analysis. Data were analysed by a 3-way ANOVA with 

genotype, sex and treatment as between subjects factors. 2- and 3-way pairwise 

comparisons were made between all factors using Tukey’s method. 
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3.5 Discussion 

Western blotting revealed that MKK7γ was significantly decreased in the PFC of 

Map2k7+/- mice compared to their wildtype littermates. On the other hand, 

protein levels of MKK7α, JNK, MKK4, tcJun and pc-Jun were not altered in the PFC 

(Fig. 3.4). Minocycline had no significant effect on protein levels in the PFC, 

including that of the decreased MKK7γ, suggesting that it does not produce its 

therapeutic effects by restoring MKK7γ protein levels in the MKK7/JNK pathway 

in the PFC. These results show that Map2k7 heterogeneity may have been 

compensated for by MKK7α, but not MKK7γ, and that downstream pathway 

components do not have altered protein levels as a consequence of reduced MKK7γ 

as measured by Western blotting in the current experiment. 

Figure 3.4. Simplified overview of MKK7/JNK signalling pathway components and how 

their levels are altered in Map2k7+/- mice compared to WT littermates, as determined 

by Western blotting. The levels of tMKK7γ are significantly reduced compared to WTs, 

however the levels of tMKK7α, tMKK4, tJNK, tc-Jun and pc-Jun remain similar in WT and 

Map2k7+/- mice.  

 

3.5.1 The γ isoform of MKK7 is decreased in the PFC of Map2k7+/- mice 

Western blotting confirmed that MKK7γ is decreased in the PFC of Map2k7+/- mice; 

however, MKK7α and the other downstream proteins in Fig 3.4 remain similar to 
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of MKK7 are (Asaoka & Nishina, 2010; Wang et al., 2007); however, using a coupled 

protein kinase assay in vitro, Tournier et al. (1999) showed that, under basal 

conditions, MKK7α has a lower level of activity for JNK than MKK7β and γ (which 

have similar activities for JNK), suggesting that the different isoforms of MKK7 

may have different functions (Haeusgen et al., 2011). Also, MKK7γ is the only 

isoform of MKK7 that can bind Filamin A, which plays an important role in the 

organisation of actin filaments in the cytoskeleton and forms very strong signalling 

complexes together with MKK4 (Nakagawa et al., 2010). Activation of JNK is 

significantly stronger when activated by MKK4 plus MKK7 than either separately 

(Asaoka & Nishina, 2010), so this suggests that MKK7γ can have a powerful effect 

on JNK signalling, perhaps more so that the other isoforms.  

We have replicated these results of MKK7γ but not MKK7α being decreased in the 

PFC of Map2k7+/- mice compared to WTs in a separate cohort of mice, and which 

also occurred in the hippocampus (Openshaw et al., 2017), demonstrating that 

this is a robust finding relevant to different brain areas. The specific importance 

of MKK7γ in schizophrenia is emphasised by the fact that one of the two SNPs 

increased in a cohort of patients with schizophrenia vs. healthy controls is located 

immediately upstream of an alternatively spliced exon only present in the MKK7γ 

isoform (Winchester et al., 2012). Moreover, the location of this SNP is in a region 

that is associated with particularly high levels of inter-species sequence 

conservation, and highlights the significance of this part of the gene in the MKK7γ 

isoform (Winchester et al., 2012).  

Decreased MKK7γ in the PFC and HC are likely to have a disruptive effect on 

behaviour because hippocampal-prefrontal interactions occur in various cognitive 

and behavioural functions, and disruption of the PFC is consistently implicated in 

psychiatric disease (reviewed in Sigurdsson & Duvarci (2016) and discussed further 

in Section 1.5.1). The potential functional implications are explored 

behaviourally in the next chapters of this thesis. However, the reason why only 

the γ isoform of MKK7 is decreased is not clear, and is surprising considering the 

disrupted portion of the gene in Map2k7+/- mice is not within the first four exons 

(Sasaki et al., 2001), which is where alternative splicing occurs to create either 

the α, β or γ isoforms (Tournier et al., 1999). It is most likely that compensatory 

mechanisms have occurred (discussed further below); however, additional 

experiments will be required to shed more light on this.  
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3.5.2 The potential impact of decreased MKK7γ from early development 

As Map2k7+/- mice have had Map2k7 heterogeneity in all tissues from the beginning 

of conception, it is likely this will have an impact on development of the brain as 

MKK7 is required for various aspects of embryogenesis, including brain 

development and mammalian body plan organisation (reviewed in Asaoka & 

Nishina, 2010). The role of MKK7 in development is striking, as Map2k7 full 

knockout (KO) mice die between embryonic day (E) 11.5 and 13.5 (Wada et al., 

2004). Conditional Map2k7 KO mice in which Map2k7 was specifically knocked out 

in the nervous system showed enlarged ventricles, a pathological hallmark of 

schizophrenia, and showed that MKK7 plays a major role in neuronal migration and 

axon elongation (Yamasaki et al., 2011). This would certainly have an impact on 

the extent and quality of connectivity, structure and function of the brain once 

fully developed. However, these mice died immediately after birth, preventing 

any further molecular and/or behavioural investigation, but still provided 

information that is likely to also be relevant for the development of the brain in 

mice that are heterozygous for Map2k7. 

Analysis of knockout mice for other members of the MKK7/JNK pathway have also 

been examined: Map2k4 KO mice die at E10.5 and Map2k4 Map2k7 double KO mice 

die at E9.5, earlier than either KO separately (Asaoka & Nishina, 2010), showing 

that MKK4 and MKK7 have non-redundant functions in vivo but they can 

compensate for each other to some extent. Additionally, KO mice for the different 

isoforms of JNK have been investigated (reviewed in Yamasaki et al., 2012): Jnk1, 

2 and 3 KOs (separately) can survive postnatally but Jnk1 KOs show dysregulation 

of neuronal migration and dendritic architecture, and Jnk2 and Jnk3 KOs show 

resistance to neuronal stress, demonstrating their necessity in stress-induced 

neuronal cell death in the adult brain. Finally, Jnk1 Jnk2 double KO mice die 

during development due to defective neural tube morphogenesis and reduced 

apoptosis in the hindbrain (Kuan et al., 1999; Sabapathy et al., 1999). Altogether, 

these KO studies show the importance of the MKK7/JNK pathway from very early 

stages of brain development; produce effects that are related to schizophrenia 

pathology, and also may have consequences on the brain that continue into 

adulthood (see Section 1.9.1 and 1.9.2 for further discussion on this). Although 

only MKK7γ was decreased at adulthood in Map2k7+/- mice in the current 

experiment, it is possible that other proteins in the pathway are altered more 
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subtly than can be detected by Western blotting, are only altered within certain 

cell types or parts of the cell, and/or other proteins were indeed altered but were 

not measured here. It is also feasible that pathological alterations had already 

occurred throughout development but the brain levels of other molecules in the 

pathway have adapted back to normal levels by adulthood. This is supported in a 

study by Yamasaki et al. (2017), who found relatively subtle changes in 

components of the MKK7/JNK pathway, even with complete deletion of MKK7 in 

the brain, as well as changes in pJNK levels throughout embryonic development. 

It would be interesting to examine the levels of protein of MKK7/JNK pathway 

components during earlier stages of development, and to investigate protein 

levels utilising a more sensitive technique, such as ELISA. 

The vast majority of cellular signalling pathways in the CNS, including the 

MKK7/JNK pathway, are extremely tightly controlled (Winchester et al., 2012). 

Therefore, mice heterozygous for Map2k7 with accompanying decreased protein 

expression throughout the course of development may show adjustment in other 

components of the pathway (or from other interacting proteins) in an attempt to 

compensate for lack of MKK7 (Pratt et al., 2012). Map2k4 and Map2k7 genes 

cannot compensate for each other in vivo (Asaoka & Nishina, 2010); however, 

other components of the MKK7/JNK pathway in the brain have been shown to 

compensate for each other, such as JNK1 increasing for lack of Jnk2 (Chen et al., 

2005) and JNK2 increasing for lack of Jnk3 (Brecht et al., 2005). On the other 

hand, MKK7 has been shown to compensate for over-activation of itself: 

Winchester et al. (2012) showed that increased MKK7 activation by sorbitol in 

embryonic mouse cortical neurons initially increased phosphorylated MKK7, then 

dramatically reduced MKK7 expression 24 hours afterwards. In the current study, 

there are no signs of other downstream proteins in the pathway increasing or 

decreasing for lack of MKK7γ, but it may be that the α isoform has indeed 

compensated for lack of itself, as its protein level appears normal. Again, it will 

be important to investigate protein levels at distinct stages of embryonic 

development. In addition, the study by Winchester et al. (2012) highlights the 

need to examine gene expression levels as well as protein levels in order to get a 

more accurate picture of any compensatory mechanisms that may be occurring. 
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3.5.3 Minocycline does not alter protein levels of any component of the 

MKK7/JNK pathway 

Minocycline or standard drinking water was administered to Map2k7+/- and WT 

mice for one week in order to investigate whether minocycline alters the protein 

levels of the components of the MKK7/JNK pathway. It was of particular interest 

to establish whether minocycline restored any protein alterations in Map2k7+/- 

mice back to WT levels. However, minocycline had no significant effect on protein 

levels in the PFC, including that of the decreased MKK7γ in Map2k7+/- mice.  

Minocycline has previously been shown to activate MKK7 in cultured neuronal cells 

(spoken communication with Prof. Brian Morris, unpublished data), and inhibit 

JNK1/2 in microglia following lipopolysaccharide stimulation (Nikodemova et al., 

2006), so it is proven possible for minocycline to interact with the MKK7/JNK 

pathway. However, these results also suggest that minocycline acts in a cell- 

and/or stimulus-specific manner which may not have been strong enough to be 

identified via Western blotting, particularly if other cell types are present in which 

minocycline does not mediate its effect as this may mask any significant 

differences. Additionally, minocycline can act via alternative pathways; for 

example, by affecting a non-MKK7/JNK pathway (such as p38 MAPK) downstream 

of NMDA receptors (Chaves et al., 2009). In a case such as this, it is unlikely that 

an alteration in protein levels in the MKK7/JNK pathway would be detected.  

3.5.4 Future Directions  

This chapter has provided useful information, such as showing that MKK7γ is 

decreased in the PFC of Map2k7+/- mice; however, there are further experiments 

that would be necessary to carry out in order to further validate any findings and 

to provide more detailed information regarding how this pathway is disrupted in 

Map2k7+/- mice. As briefly mentioned above, it will be beneficial to look at MKK7 

in other brain areas, and to use a more sensitive method of protein quantification, 

such as ELISA. It would be interesting to look at the proteins at an earlier stage of 

development; in individual cell types, such as microglia, astrocytes and neurons; 

in separate cellular compartments (JNK signalling is known to have different 

effects depending on the cellular component in which the signalling takes place; 

Coffey, 2014), and to look at other proteins that interact with the MKK7/JNK 

pathway. This could include upstream proteins such as the MKKK DLK, which is an 
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important MKKK with respect to MKK7 activation (Haeusgen et al., 2011). DLK-

mediated activation of MKK7 has been shown to position JNK signalling modules in 

neurites in order to control microtubule bundling in embryonic hippocampal 

neurons (Feltrin et al., 2012), and DLK KO mice produce major disruption of 

neuronal migration and axon elongation , similar to what is seen in Map2k7 

conditional KO mice. (Yamasaki et al., 2012). Furthermore, DLK is almost 

exclusively expressed in neural tissues in the developing mouse embryo, including 

central, peripheral and autonomic nervous systems; the only exception outside of 

the nervous system is that it is also temporally expressed in the liver at E11, which, 

interestingly, is the same time at which Map2k7 KO mice die due to impaired liver 

formation. Finally, it is of interest to investigate any changes in the levels of 

inhibitory molecules that interact with the MKK7/JNK pathway, such as 

phosphatases, vaccinia-related kinases (VRKs), cFLIP and ITCH (Haeusgen et al., 

2011).  

3.5.5 Conclusion 

To conclude, Map2k7+/- mice have decreased MKK7γ in the PFC compared to WT 

mice, showing good construct validity. Although the protein levels in some of the 

downstream components of the pathway are unaffected as measured by Western 

blotting, it remains possible that behavioural effects will be seen as Map2k7+/- 

mice have had decreased MKK7 throughout the whole of development and the 

MKK7/JNK pathway is vital for the developing brain. Finally, minocycline did not 

affect the protein level of downstream MKK7/JNK signalling pathway; however, it 

may exert any therapeutic effects reported in Chapters 4 and 5 via other means. 

The following chapters will consider the face validity of Map2k7+/- mice by 

characterising their behavioural phenotype, as well as investigate them as a 

suitable gene x environment interaction risk model with relevance to 

schizophrenia. 
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Chapter 4 Positive symptom-related tasks 

4.1 Introduction 

The positive symptoms of schizophrenia, such as hallucinations and delusions, are 

likely to be uniquely human because of other animals’ inability to express and/or 

experience them. Although not necessarily producing the same behaviours as 

those seen in humans, positive symptoms can be explored in rodent models by 

using behavioural studies which utilise similar areas of the brain and 

neurotransmitter systems to those which are dysfunctional in patients with 

schizophrenia that cause positive symptoms (van den Buuse, 2010). Examining 

locomotor activity, sensorimotor gating and sensitivity to psychotomimetic drugs 

are the main behavioural measures used to identify phenotypes relevant to the 

positive symptoms (Van Den Buuse 2010; Powell & Miyakawa 2006; Pratt et al., 

2012).  

4.1.1 Sensorimotor gating 

Sensorimotor gating is a physiological process that filters out irrelevant, incoming 

sensory stimuli as it is transmitted to motor output systems. This is thought to 

occur so that potentially disruptive reactions (such as the startle reflex) can be 

attenuated until conscious perception of the startling stimulus is completed 

(Graham, 1975). Sensorimotor gating abilities are reliably examined by measuring 

the extent of prepulse inhibition (PPI) of the startle response, a cross-species 

paradigm with excellent face validity (depicted in Fig. 4.1; Graham, 1975; 

Swerdlow & Geyer, 1998). 

In the majority of mammals, including humans and mice, the startle response is 

in the form of sudden movement, or “jumping”, and can be measured (in rodents) 

using an accelerometer to quantify the whole-body startle amplitude. In humans, 

the startle response is usually measured by eye blink response (e.g. Braff et al., 

1992). PPI is a normal, automatic, pre-conscious inhibition of the startle response 

when the startling stimulus is preceded closely (~100ms) by a much weaker, non-

startling “prepulse” (Graham, 1975), and its measurement is robust and consistent 

over time in healthy adult humans (Swerdlow et al., 2017). Patients with 

schizophrenia reliably present with reduced PPI, to the extent where it is 

considered to be an endophenotype (Braff et al., 2007; Swerdlow et al., 2008; 
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Swerdlow et al., 2014). Additionally, the degree of reduced PPI in patients with 

schizophrenia has been shown to correlate with extent of psychotic symptoms and 

is also reversed with antipsychotics, in a way in which treatment positively 

correlates with drug clinical potency (Swerdlow & Geyer 1998). However, this is 

controversial; for example, Ludewig & Vollenweider (2002) did not find any 

correlation between psychotic symptoms and degree of reduced PPI in patients. 

Figure 4.1. Schematic depiction of PPI. a) Normal startle response to a 120dB startling 

stimulus above background noise. b) When a prepulse precedes the startling stimulus by 

~100ms, the startle response is attenuated. The percentage of full startle that is 

attenuated is the extent of prepulse inhibition. 

As the measurement of normal PPI is a consistent phenomenon in all species, 

deficits in PPI have emerged as a phenotype used for identifying genetic mouse 

models of potential relevance to schizophrenia (Pratt et al., 2012). Additionally, 

PPI represents an excellent way to examine the sensitivity of models to 

psychotomimetics. Many studies have demonstrated the psychotomimetic effects 

of dopaminergic agonists, such as amphetamine, on PPI (e.g. Varty et al., 2001). 

Indeed, amphetamine administration in rodents have shown that dopamine is a 

regulator of PPI and it is suggested that increased mesolimbic dopamine (DA) 

activity, a dopaminergic reward pathway connecting the ventral tegmental area 

to the nucleus accumbens, mediates amphetamine-induced disruption of PPI 

(Swerdlow et al., 1990).  

4.1.2 Locomotor hyperactivity 

Baseline locomotor hyperactivity has also been shown to reflect aberrant 

mesolimbic dopaminergic activity in rodents, and is believed to relate to psychotic 

% PPI
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episodes and the positive symptoms seen in schizophrenia (Jones et al., 2011; 

Pratt et al., 2012). The underlying neural mechanisms for hyperactivity in rodents 

and the positive symptoms of schizophrenia in humans are similar; however, the 

behavioural effects are different aside from showing aspects of psychomotor 

agitation (van den Buuse, 2010). Hence, although its face validity is questionable, 

this observation is not without value (Pratt et al., 2012). Many genetic animal 

models with relevance to schizophrenia show hyperactivity in some form (either 

in response to a novel environment or generally across behavioural tests), 

including dopamine transporter KO, NRG1 heterozygous, NRG3 KO, Drd1 KO, ErbB4 

conditional KO (parvalbumin-positive neurons only), and NMDAR glycine binding 

site mutant mice (Powell & Miyakawa, 2006; Wen et al., 2010; Hayes et al., 2016; 

and summarised in Pratt et al., 2012).  

Additionally, it is widely recognised that mild psychotic-like experiences 

frequently occur in a muted form during childhood or adolescence in patients with 

schizophrenia before they are formally diagnosed. This period, from the onset of 

deviation from normal behaviour to diagnosis, is referred to as the schizophrenia 

“initial prodrome” (Yung & McGorry, 1996). It is of significant interest to study 

this period because it has the most potential to provide information that could 

lead to early intervention and the identification of biological markers. Animal 

models of the schizophrenia prodromal state also display hyperactivity (Tenn et 

al., 2005) and so part of this chapter will aim to discover whether hyperactivity is 

apparent in Map2k7+/- mice during early adolescence, as well as during adulthood. 

4.2 Aims 

This chapter will investigate Map2k7+/- mice in tasks that are thought to be 

sensitive to dopaminergic dysfunction and are strongly implicated with the 

positive symptoms of schizophrenia. Locomotor activity in the open field at 

adolescence and adulthood, and following minocycline treatment at adulthood 

will be examined. Additionally, PPI of the acoustic startle response under the 

influence of an acute dose of amphetamine will be carried out in order to 

investigate the integrity of dopaminergic systems in Map2k7+/- mice. 
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4.3 Materials and Methods 

4.3.1 Mice  

40 Mice were used in the following PPI and open field experiments: 17 WT (11M, 

6F), 23 Map2k7+/- (HZ; 11M, 12F), group housed with between 9-12 mice per cage 

on a 12:12 reverse light/dark cycle (lights off at 7am). They weighed an average 

of 21.87 ± 0.46g and underwent PPI at 7.51 ± 0.026 weeks old. For the open field, 

these same 40 mice were tested initially, then 24 additional mice were tested 

when the first group of mice reached adulthood (15 WT (9M, 6F), 9 HZ (8F, 1M)). 

At adolescence, the 64 mice were 5.58 ± 0.03 weeks old and weighed 18.10 ± 

0.30g. At adulthood, they were 10.11 ± 0.04 weeks old, weighed 23.28 ± 0.43g, 

and were separated 3 days prior to open field testing at adulthood so that they 

were housed in smaller groups of 2, 3 or 4. This was so that minocycline 

administration could be monitored more accurately for each mouse. One mouse 

in the additional group of mice died during the open field experimental period (a 

HZ female); all data from that mouse were excluded from open field analyses. 

4.3.2 PPI apparatus 

Four identical startle chambers (Fig. 4.2; SR-LAB, San Diego Instruments, San 

Diego, CA) were used to measure startle reactivity. Each chamber consisted of a 

sound attenuated cabinet (inside height: 28.7cm, inside width: 28.7cm, inside 

depth: 30cm) that was lit and ventilated, with a Plexiglass cylinder (3.7cm inner 

diameter, 12.7cm long) situated on top of a removable stand in which a 

piezoelectric accelerometer was attached underneath. A speaker was mounted 

24cm above the cylinder and played acoustic stimuli in the form of white noise. 

During a session, the animal was placed within the cylinder with both ends blocked 

off by Plexiglass attachments. Motion was detected by the accelerometer and 

recorded as analog signals which were then stored by a computer. The delivery of 

acoustic stimuli and recording of responses were controlled by SR-LAB software. 

All four chambers were calibrated to each other so that they had similar baseline 

values to movement, delivered startle stimuli simultaneously, and at the same 

decibel level. 

A continuous background noise level of 65dB was maintained throughout all 

sessions to provide a consistent acoustic environment and to mask any external 

noises that may have passed through the sound attenuated cabinet. All stimuli 



62 
 

were delivered as 𝑥dB above background noise. All chambers were cleaned with 

soap and warm water and dried in between each mouse, and each mouse was 

tested at the same time of day in the same chamber for all sessions. Care was 

taken to ensure that no chamber was being used for all mice of one particular 

group; for example, all WT/Map2k7+/- or all male/female. The first session 

consisted of the startle curve, which aims to verify that hearing is intact in the 

mice. The second and third sessions were PPI test sessions with amphetamine 

(counterbalanced): the drug administration procedure is outlined in Section 

4.3.5.  

 

 

Figure 4.2. a) The startle response system. b) A schematic diagram of the view 

looking in the front of the startle response system. The mouse is placed in the centre 

of the Plexiglas cylinder and blocked in by two Plexiglas attachments at either end of 

the cylinder (which is 12.7cm long). Startle stimuli in the form of white noise is played 

through the speaker on the roof of the soundproof cabinet. Movements from the mouse 

are recorded by the accelerometer placed on the stand below the cylinder containing 

the mouse. 

 

4.3.3 Startle curve  

The startle curve session began with a 5-minute acclimation period where 

background white noise (65dB) was played continuously. 5 x 40ms, 120dB startling 

stimuli were played following the acclimation period to partially habituate the 

animals to the startling stimulus. Following this, the test session began, which 

consisted of 6 repetitions of each of the following 40ms-long stimuli: 65, 69, 73, 

Accelerometer

28.7cm

2
8
.7

c
m

3
.7

c
m

Speaker

a b



63 
 

77, 85, 90, 100, 110 and 120 dB above background. The stimuli were presented in 

a random order with inter-trial intervals averaging ~15 seconds, but were either 

(randomly) 12, 13, 14, 15, 16 or 17 seconds long. The startle response was 

recorded throughout the duration of each stimulus and the peak amplitude of each 

response were analysed.  

4.3.4 PPI test session 

The PPI session began with a 5-minute acclimation period where background white 

noise (65dB) was played continuously. 5 x 40ms, 120dB startling stimuli were 

played following the acclimation period to partially habituate the animals to the 

startling stimulus. Following this, the PPI test session began, which consisted of 

10 repetitions of each of the following prepulse trials: a 20 ms prepulse of either 

4, 6 or 8 dB above background, followed by a 100ms inter-pulse interval, then a 

40ms startling stimulus at 120dB above background. Randomly interspersed 

between prepulse trials were 10 x 120dB startling stimuli alone and 10 x “no 

stimulus” trials in which movements were recorded but no stimulus was delivered. 

These trials were presented in a random order with inter-trial intervals averaging 

~15 seconds, but were either (randomly) 12, 13, 14, 15, 16 or 17 seconds long. 

Movements of the animal were recorded for 40ms from the beginning of the 120dB 

startling stimulus, or, in the case of “no stimulus” trials, from the end of the inter-

trial interval for 10 ms. The peak amplitude of each response was used in the 

formulas in Section 4.3.6 for analysis. The session finished with 5 x “120dB startle 

only” trials to give an indication of overall habituation to the startle response the 

mice exhibited when compared with the first 5 x “120dB startle only” trials.  

4.3.5 PPI drug administration 

The effect of an acute dose of D-amphetamine on % PPI was assessed. The 

amphetamine dose was chosen based on previous publications in the literature 

which suggested that 5mg/kg causes disruption of PPI in mice on a C57Bl/6 

background (Martin et al., 2008). Amphetamine administration was 

counterbalanced such that 5mg/kg D-amphetamine (Sigma Aldrich, A-5880) or 

2ml/kg saline were injected interperitoneally on the first day, 5 minutes prior to 

PPI testing. Mice were then tested normally without drug on the following day and 

then D-amphetamine or saline were administered to the other half of the group 

on the third day, 5 minutes prior to PPI testing.  



64 
 

4.3.6 PPI statistical analysis 

All statistical analyses were carried out using Minitab® 17 software. Results were 

considered significant if p<0.05. All error bars are expressed as ± standard error 

of the mean (SEM). Bar and line graphs were created using GraphPad Prism 7. Box 

plots were created using BoxPlotR, an application available at 

http://shiny.chemgrid.org/boxplotr/ and described in Nature Methods Editorial 

“Kick the bar chart habit” 2014, p113.  

Peak amplitudes of startle response in the ‘Startle Curve’ session were averaged 

for each stimulus intensity and analysed by a 3-way ANOVA with genotype and sex 

as between subjects factors, stimulus intensity as a within subjects factor and 

each mouse nested within genotype and sex.  

For the ‘PPI test’ session, the peak amplitude of response to each trial were used 

in the analyses, and were averaged for each prepulse stimulus type (4, 6 or 8dB) 

for each mouse over the course of a session. Responses to 120dB startle only trials 

at the beginning and end were not included in the calculation of % PPI, which was 

determined by the formula: 

% PPI = (
mean of 120dB startle only – mean of 4, 8 or 16 dB PPI startle

mean of 120dB startle only
)  *100 

% PPI was calculated, then analysed by a 4-way ANOVA with genotype and sex as 

between subjects factors, prepulse stimulus intensity and treatment as within 

subjects factors and each mouse nested within genotype and sex.  

Short term habituation to the startling stimulus is inevitable; however, it is 

important to verify that all mice exhibited a similar amount of habituation. 

Habituation to the startling stimulus was calculated by the formula:  

% Habituation= (
mean ASR to initial 120dB bursts – mean ASR to final 120dB bursts

mean ASR to initial 120dB bursts
) *100 

% habituation and the peak amplitude of response to “no stimulus” trials were 

analysed by a 3-way ANOVA with genotype and sex as between subjects factors, 

treatment as a within subjects factor and each mouse nested within genotype and 

sex.  

2-, 3- and 4-way pairwise interactions were made in all analyses as appropriate 

using Tukey’s method. 
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4.3.7 PPI Data anomalies 

There was no effect of genotype for “120dB startle only” (p=0.965), however, WTs 

were significantly more startled with “no stim” than HZs (p=0.006; F(1,72)=8.10). 

Minitab® 17 flagged “no stim” data from two mice (one WT female and one HZ 

female) as anomalies, which was driving this effect. All extreme outliers in the 

current experiment were identified from Minitab® 17 software as a Large 

Standardised Residual. Each outlier was first removed and the data reanalysed to 

determine whether it was an influential observation that had a disproportionate 

impact on the ANOVA model. If it had no effect, it was kept; if the model changed 

significantly, the outlier was investigated further. First, a check was made for 

data input errors. Next, the origin of the data was investigated. These two mice 

appeared to be constantly moving to the same extent regardless of stimulus type. 

This was biasing the data: the significant effect was ameliorated when they were 

removed, so these mice were removed from all PPI analyses.  

4.3.8 Open field (OF) apparatus 

Four black opaque Perspex XT open field arenas (40 x 40 x 40cm), semi-permeable 

to infrared light, were used in a small, dimly lit room. The apparatus was lit from 

below by infrared LED lighting. An infrared-sensitive digital camera (Sony) and 

computer-based video tracking software (EthoVision® XT, Noldus Information 

Technology, Leesburg, VA) were used to monitor and record activity levels.  

4.3.9 OF procedure 

Mice were tested in the open field firstly at adolescence, then at adulthood and 

finally, at adulthood following 7 days’ minocycline treatment (or standard drinking 

water) and were always tested in the same arena for all three sessions. Mice were 

placed into transfer cages half an hour prior to testing.  

One mouse was placed in the centre of each arena and allowed to explore freely 

for 45 minutes (15 minutes habituation directly followed by 30 minutes test). Care 

was taken to ensure that the same box was not being used for all mice of one 

particular group; for example, all WT/Map2k7+/- or all male/female. Arenas were 

cleaned in between each animal using disinfectant to avoid possible effects on 

behaviour from odour cues left by previous mice.  
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4.3.10 OF drug administration  

Following testing at adulthood half of these mice received minocycline in a similar 

way to McKim et al. (2016): 0.5 mg/ml; protected from light (Sigma-Aldrich 

M9511, St. Louis, USA) in their standard drinking water for 7 days, whilst the other 

half received standard drinking water without minocycline (see Table 4.1). The 

dose and duration of the minocycline administration were chosen to reflect, as 

closely as possible, the treatment protocols that are associated with symptomatic 

improvement in patients with schizophrenia. Administration of minocycline to 

mice in drinking water at 0.5 mg/ml produces a brain concentration of around 2μM 

(Smith et al., 2003), which is equivalent to the CSF concentrations achieved in 

humans during standard antibacterial dosing regimens (Agwuh & MacGowan, 2006; 

Macdonald et al., 1973). Fresh water or minocycline solution was prepared every 

second day and provided at room temperature. Consumption of water and 

minocycline treated water was monitored daily for each cage. On average, the 

treated group received 99.14 ± 17.72 mg/kg/day of minocycline and, per day, 

mice drank 5.18 ± 0.49ml normal drinking water or 4.84 ± 0.43ml minocycline 

treated water, which are both within the normal daily water intake range for mice 

(Bachmanov et al., 2002). 

 Water Minocycline 

Female WT 6 6 

Female HZ 9 10 

Male WT 8 12 

Male HZ 6 6 

Table 4.1 Numbers of mice treated with minocycline or water. 

4.3.11 OF statistical analysis 

All statistical analyses were carried out using Minitab® 17 software. Results were 

considered significant if p<0.05. All error bars are expressed as ± standard error 

of the mean (SEM). Bar and line graphs were created using GraphPad Prism 7. Box 

plots were created using BoxPlotR, an application available at 

http://shiny.chemgrid.org/boxplotr/ and described in Nature Methods Editorial 

“Kick the bar chart habit” 2014, p113.  

Total distance travelled (cm), mean velocity (cm/s), and duration spent in an 

immobile (s), mobile (s) and highly mobile (s) state were recorded by EthoVision® 
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for each 5-minute time bin. Duration spent in the different mobility states were 

calculated by Ethovision® using the pixel area of the mouse on the screen, on a 

frame by frame basis. The changed area (in number of pixels) for the current 

frame (the frame rate was set at 25 frames per second) was divided by the sum of 

the current area and the previous area. If a mouse was in a highly mobile state, 

the percentage of change in body area was defined as more than 10% from one 

frame to the next; if a mouse was in a mobile state, the percentage of change in 

body area was defined as between 2 and 10%, and if the mouse was in an immobile 

state, the percentage of change in body area was defined as less than 2% from one 

frame to the next. 

For the age comparison, data were analysed by a three-way ANOVA with genotype 

and sex as between subjects factors, age (adolescence or adulthood) as a within 

subjects factor and each individual mouse nested within genotype and sex. For 

the treatment comparison, data were analysed by a three-way ANOVA with 

genotype, sex and treatment (minocycline or water) as between subjects factors, 

and each mouse nested within genotype, sex and treatment. Tukey’s post hoc test 

was carried out where appropriate. As there were so many irrelevant significant 

effects, results for main effects and interactions are only shown and discussed 

when a significant effect was observed.  

There were many effects of sex throughout the open field analyses. Therefore, 

the graphs are presented with sex separately for visual clarity. However, all p-

values stated will be from the overall analyses that included sex as a factor.   



68 
 

4.4 Results 

The acoustic startle response curve was first established for all mice. They then 

underwent the first PPI session two days later with half the mice receiving saline 

or amphetamine. Two days following that, the PPI session was repeated with the 

other half of mice receiving either saline or amphetamine.  

4.4.1 The acoustic startle response curve showed WT and Map2k7+/- mice 

had a similar startle response at 120dB, the stimulus intensity that was 

used to measure PPI  

The startle curve is shown in Fig. 4.3. Overall, Map2k7+/- mice have a greater 

startle response to stimuli than WT mice (effect of genotype: p=0.038, 

F(1,280)=4.36) and males have a greater startle response than females (effect of 

sex: p<0.0001, F(1,280)=27.78); however, there were no post hoc differences 

between WT vs. Map2k7+/- mice or male vs. female at any of the stimuli 

separately. As expected, as stimulus intensity increases from 65-120dB, so does 

the startle response to all mice overall (effect of stimulus intensity: p<0.0001, 

F(8,280)=76.04). Post hoc analyses revealed that from 65-90dB, mice respond to 

each stimulus intensity to a similar extent (p>0.05). The startle stimulus intensity 

at which mice significantly begin startling at is 100dB. At 120dB, the stimulus 

intensity we used to measure PPI, there was no significant difference in startle 

between genotypes (0.759, ns), but males were significantly more startled than 

females (effect of sex: p=0.002, F(1,35)=11.79). There were no other significant 

interactions/effects. This indicates that any significant genotype effects on the 

PPI test session are not due to Map2k7+/- mice being unable to hear properly and 

that male and female %PPI should be examined separately as they are so different 

from each other. 
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Figure 4.3. The startle curve of mice generated by measuring movement immediately 

following a range of stimuli with differing intensities (65 – 120dB above background 

noise). Overall, Map2k7+/- mice have a greater startle response than WT mice and male 

mice have a greater startle response than female mice. Mice begin startling at 100dB. At 

120dB, there was no significant difference between WT and Map2k7+/- mice but the 

significant difference between males and females remained. Significant differences 

between groups are indicated on the graph key on the RHS. Box plots: Centre lines show 

the medians; box limits indicate the 25th and 75th percentiles as determined by R 

software; whiskers extend 1.5 times the interquartile range from the 25th and 75th 

percentiles, outliers are represented by circles; crosses represent sample mean. Data 

analysed by a 3-way ANOVA with genotype and sex as between subjects factors, stimulus 

intensity as a within subjects factor and each mouse nested within genotype and sex. 2- 

and 3-way pairwise interactions were made as appropriate using Tukey’s method. Lines 

joining groups show the significance between those groups: *p<0.05; ***p<0.001 (ANOVA); 

##p<0.01 (Tukey’s). Map2k7+/-: n=23 (11M, 12F), WT: n= 17 (11M, 6F). 
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4.4.2 WT and Map2k7+/- mice had a similar, relatively low response to the 

“no stimulus” condition, and exhibited a similar level of habituation over 

the course of the PPI sessions 

“No stimulus” trials were randomly interspersed between PPI trials, and each 

session started and finished with 5 x 120dB stimuli, to assess the level of baseline 

reactivity when there is no stimulus, and extent of habituation, respectively. Once 

the two mice that were moving to a high extent regardless of stimulus type were 

removed from analysis (see Section 4.3.7 for more information), there were no 

significant differences between any measurements (genotype, sex or treatment) 

for both “no stimulus” trials and % habituation (Fig. 4.4; p>0.05 for all). This 

indicates that any disruptive effects on PPI in the test session are not simply due 

to differences in baseline movement, or differences in changes in movement over 

the course of the session, which could be potentially induced by hyperactivity 

owing to genotype, sex, or amphetamine administration. 
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Figure 4.4. The % habituation and response of mice to the “no stimulus” control trials. There 

were no significant differences between any variables measured (genotype, sex, amphetamine 

administration) for response amplitude to a) the “no stimulus” trials, or for b) the % habituation 

exhibited across the two PPI sessions. Saline (2ml/kg) or equivalent volumes of D-amphetamine 

(5mg/kg) was administered 5 minutes prior to PPI testing. The bar chart represents the mean, with 

error bars showing the standard error of the mean; boxplots: Centre lines show the medians; box 

limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 

times the interquartile range from the 25th and 75th percentiles, outliers are represented by 

circles; crosses represent sample mean. Data for a) and b) were analysed separately by a 3-way 

ANOVA with genotype and sex as between subjects factors, treatment (amphetamine or saline) as 

a within subjects factor and each mouse nested within genotype and sex. 2- and 3-way pairwise 

interactions were made as appropriate using Tukey’s method. Map2k7+/-: n=23 (11M, 12F), WT: n= 

17 (11M, 6F). 
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4.4.3 % PPI increases as prepulse intensity increases but there were no 

significant effects of genotype or drug 

As prepulse intensity increases from 4 to 8 to 16dB, % PPI significantly increases 

(Fig. 4.5; effect of prepulse intensity: p<0.001; F(2,170)=101.37). Post-hoc analyses 

showed there were no effects of sex, genotype or injection at each of the prepulse 

intensities separately, and no overall significant effects of sex or genotype (p>0.05 

for all terms). 

4.4.4 Amphetamine reduces % PPI in WT and male mice, but not Map2k7+/- 

and female mice 

Overall, injection of 5mg/kg amphetamine immediately prior to PPI testing 

resulted in a decrease in % PPI (Fig. 4.5; significant effect of injection: p=0.009; 

F(1,170)=6.90). Post hoc analyses revealed that this decrease in % PPI by 

amphetamine was significant within WT but not Map2k7+/- mice, suggesting a 

decreased sensitivity of Map2k7+/- mice to amphetamine. However, the genotype 

x injection interaction term was not significant (p=0.120, F(1,170)=2.44), but there 

was a sex x genotype x injection interaction where male WT % PPI was significantly 

reduced by amphetamine whereas female WT % PPI was not (p=0.003; 

F(1,170)=9.28). Therefore, amphetamine effects appear to be more obvious in male 

and WT mice.  

 

 

 



73 
 

Figure 4.5. % PPI of mice to prepulses of 4, 8 and 16 dB above background. % PPI 

significantly increases along with prepulse intensity. Amphetamine administration 

decreased % PPI for WT mice but not Map2k7+/- mice and post hoc analyses revealed that 

this decrease in % PPI in WT mice occurred only for male mice (not indicated on the 

graph). Post hoc analyses indicated that the decrease in %PPI by amphetamine for male 

WT mice was significantly different for the 4dB prepulse intensity (indicated on the 

graph), even though the genotype x sex x injection x prepulse intensity interaction was 

not significant (p=0.132). Saline (2ml/kg) or equivalent volumes of D-amphetamine 

(5mg/kg) was administered 5 minutes prior to PPI testing. Bar chart represents the mean, 

with error bars showing the standard error of the mean. Data were analysed separately 

by a 4-way ANOVA with genotype and sex as between subjects factors, treatment 

(amphetamine or saline) and prepulse (4, 8 or 16 dB) as a within subjects factor and each 

mouse nested within genotype and sex. 2-, 3- and 4-way pairwise interactions were made 

as appropriate using Tukey’s method. Lines linking groups represent significant 

differences between those groups: **p<0.01; ***p<0.001 (ANOVA); #p<0.05 (Tukey’s). 

Map2k7+/-: n=23 (11M, 12F), WT: n= 17 (11M, 6F). 

4.4.5 Open field at adolescence, adulthood and with minocycline treatment 

The locomotor activity of mice was monitored individually for 45 minutes in a 

40cm x 40cm open field arena at adolescence, adulthood and then at adulthood 

following minocycline treatment (or normal water) for one week. The first 15 

minutes within the open field was considered the “Habituation Phase”, to allow 

activity levels of mice to stabilise before analysis, and the final 30 minutes termed 

the “Test Phase”. Mice were not removed or disturbed throughout the 45 minutes. 

There were effects of sex in most of the performance parameters, so the data 

from males and females are presented on separate graphs for clarity; however, 
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all p-values stated will be from the overall analysis that included sex as a factor. 

P-values from the analysis for each variable, plus their relevant interactions, are 

presented in Table A1 and A2 in Appendix 1.  

4.4.6 Map2k7+/- mice move further and faster than WT mice at adulthood 

but not at adolescence 

Overall, mice moved further and faster at adulthood than at adolescence (Fig. 

4.6; distance: p<0.001, F(1,688)=97.98); velocity: p<0.001, F(1,688)=94.80); however, 

post hoc analyses showed that this occurred only within female mice (age x sex 

interaction; distance: p<0.001, F(1,688)=41.85; velocity: p<0.001, F(1,688)=42.41). In 

fact, looking further into the post hoc analyses, it was revealed that Map2k7+/- 

male mice moved further and faster than WT male mice at adolescence but not 

at adulthood, whereas Map2k7+/- female mice moved further and faster than WT 

female mice at adulthood but not at adolescence (genotype x sex x age 

interaction; distance: p<0.001, F(1,688)=22.50); velocity: p<0.001, F(1,688)=22.29). 

Nevertheless, overall, Map2k7+/- mice moved further and faster than WT mice at 

adulthood but not at adolescence (genotype x age interaction, distance: p=0.026, 

F(1,688)=5.00; velocity: p=0.01, F(1,688)=4.88). 
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Figure 4.6. Distance moved and average velocity by WT and HZ mice. Map2k7+/- 

males at adolescence move a) further and c) faster than WT males at adolescence. 

Map2k7+/- females at adulthood move b) further and d) faster than WT females at 

adulthood, and all female mice at adulthood move further and faster than all female 

mice at adolescence. Line graphs: data points represent the mean and error bars the 
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standard error of the mean. Box plots: Centre lines show the medians; box limits 

indicate the 25th and 75th percentiles as determined by R software; whiskers extend 

1.5 times the interquartile range from the 25th and 75th percentiles, outliers are 

represented by circles; crosses represent sample means. Significant sex x age 

interactions are indicated on the corresponding graph key. Significant genotype x sex 

x age interactions are indicated on the box plot on the right-hand side. *p<0.05; 

**p<0.01 (ANOVA); ###p<0.001 (Tukey’s). Map2k7+/-: n=31 (12M, 19F), WT: n= 32 (20M, 

12F). 

 

4.4.7 Mice show higher levels of mobility at adulthood compared to 

adolescence  

As would be expected, time spent in each of the mobility levels reflect what 

occurs with distance moved and velocity (Fig. 4.7). Taken together, mice spent 

significantly more time immobile and less mobile and highly mobile at adolescence 

compared to adulthood (overall effect of age, immobile: p<0.001, F(1,688)=377.18; 

mobile: p<0.001, F(1,688)=252.16; highly mobile: p<0.001, F(1,688)=13.09). WT mice 

spent longer in a mobile state (p=0.032, F(1,688)=4.59) and Map2k7+/- mice spent 

longer in a highly mobile state (p<0.001, F(1,688)=42.74) compared to WT mice 

overall. In line with distance moved and velocity, male Map2k7+/- mice spent less 

time in a mobile state than male WT mice at adolescence and spent a similar 

amount of time in a mobile state at adulthood, whereas female Map2k7+/- mice 

spent a similar amount of time in a mobile state to female WT mice at adolescence 

but less time in a mobile state than WT mice at adulthood (genotype x sex x age 

interaction: p<0.001, F(1,688)=20.54). Additionally, male Map2k7+/- mice spent more 

time highly mobile than male WT mice at adolescence but not at adulthood, 

whereas female Map2k7+/- mice spent more time highly mobile than female WT 

mice at adulthood but not at adolescence (genotype x sex x age interaction: 

p<0.001, F(1,688)=32.20). Overall, Map2k7+/- mice spent less time immobile and 

more time highly mobile at both adolescence and adulthood (see Table A1 from 

Appendix 1). 
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< Figure 4.7. Mobility levels at adulthood and adolescence. All mice spend 

significantly more time immobile (a & b), and less time mobile (c & d) and highly 

mobile (e & f) at adolescence compared to adulthood. There were no significant 

genotype differences for duration immobile (a & b). However, male Map2k7+/- mice 

spend less time in a mobile state than male WT mice at adolescence and spend a 

similar amount of time in a mobile state at adulthood (c), whereas female Map2k7+/- 

mice spend a similar amount of time in a mobile state to female WT mice at 

adolescence but less time in a mobile state than WT mice at adulthood (d). Male 

Map2k7+/- mice spent more time highly mobile than male WT mice at adolescence but 

not at adulthood (e), whereas female Map2k7+/- mice spent more time highly mobile 

than female WT mice at adulthood but not at adolescence (f). Line graphs: data points 

represent the mean and error bars the standard error of the mean. Box plots: Centre 

lines show the medians; box limits indicate the 25th and 75th percentiles as 

determined by R software; whiskers extend 1.5 times the interquartile range from the 

25th and 75th percentiles, outliers are represented by circles; crosses represent 

sample means. Significant sex x age interactions are indicated on the corresponding 

graph key. Significant genotype x sex x age interactions are indicated on the box plot 

on the right-hand side. Lines linking groups represent significant differences between 

those groups: ***p<0.001 (ANOVA); ###p<0.001 (Tukey’s). Map2k7+/-: n=31 (12M, 19F), 

WT: n= 32 (20M, 12F). 
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4.4.8 Minocycline decreased distance moved and velocity for female mice 

but not males 

Following minocycline treatment, there was an overall significant decrease of 

distance moved and velocity (Fig. 4.8; effect of treatment, distance moved: 

p=0.001, F(1,314)=12.21; effect of treatment, velocity: p<0.001, F(1,314)=12.19). 

However, post hoc analyses revealed that minocycline did not significantly affect 

distance moved and velocity of male mice, whereas the distance moved and 

velocity of female mice were decreased (sex x treatment interaction, distance 

moved: p<0.001, F(1,314)=45.04; velocity: p<0.001, F(1,314)=45.03). This decrease 

occurred for both WT and Map2k7+/- female mice, so the genotype significance 

was still present in female mice with minocycline, and indeed overall (effect of 

genotype, distance moved: p<0.001, F(1,314)=16.84; velocity: p<0.001, 

F(1,314)=16.97). On the other hand, male mice slightly (although not significantly) 

moved further and faster following minocycline treatment, but only to a point 

where the distance moved and velocity of male mice following minocycline was 

more like that of females following minocycline treatment (genotype x sex x 

treatment interaction, distance moved: p<0.001, F(1,314)=13.66; velocity: p<0.001, 

F(1,314)=13.42).  
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Figure 4.8. Distance moved and velocity of mice in the open field at adulthood 

either with normal water or treated with minocycline for one week. Male mice 

distance moved (a) and velocity (c) were unaffected by minocycline treatment, 

whereas female mice covered less distance (c) and with decreased velocity (d) 

following minocycline treatment compared to mice that received standard drinking 

water. Minocycline has the same effects on female mice regardless of genotype. 
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0.5mg/ml minocycline was administered via drinking water for one week. Line graphs: 

data points represent the mean and error bars the standard error of the mean. Box 

plots: Centre lines show the medians; box limits indicate the 25th and 75th percentiles 

as determined by R software; whiskers extend 1.5 times the interquartile range from 

the 25th and 75th percentiles, outliers are represented by circles; crosses represent 

sample means. Significant sex x treatment interactions are indicated on the 

corresponding graph key. Significant genotype x sex x treatment interactions are 

indicated on the box plot on the right-hand side. Lines linking groups represent 

significant differences between those groups: ***p<0.001 (ANOVA); ###p<0.001 

(Tukey’s). Map2k7+/-: n=31 (12M, 19F), WT: n= 32 (20M, 12F). 
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4.4.9 Minocycline decreased mobility levels for female mice but not males  

In a comparable way to the adolescent-adult analysis, and as would be expected, 

mobility levels reflect what occurs with distance moved and velocity. Within the 

mice that received standard drinking water, Map2k7+/- mice moved faster than WT 

mice overall: they spent less time in an immobile, less time in a mobile and more 

time in a highly mobile state (Fig. 4.9; genotype x treatment interaction, 

immobile: p=0.037, F(1,314)=4.39; mobile: p<0.001, F(1,314)=25.11; highly mobile: 

p=0.034, F(1,314)=4.53).  

Minocycline had an overall significant effect on time spent in a mobile and highly 

mobile state but not immobile (no effect of treatment, immobile: p=0.102). 

Overall, mice spent more time in a mobile state and less time in a highly mobile 

state following minocycline treatment, compared to controls who received 

standard drinking water (effect of treatment, mobile: p=0.006, F(1,314)=7.81 ; 

highly mobile: p=0.001, F(1,314)=11.37). However, post hoc analyses revealed that 

minocycline had a significant effect on the duration of time spent in an immobile 

and highly mobile state for female mice but not male mice for these variables. 

Furthermore, this difference among female mice following minocycline treatment 

occurred regardless of genotype. Minocycline increased the time spent immobile 

and decreased the time spent highly mobile for female mice (genotype x sex x 

treatment interaction, immobile: p=0.004, F(1,314)=8.30; highly mobile: p=0.002, 

F(1,314)=9.47). This interaction was not significant for duration spent in a mobile 

state (p=0.245). 

Taken together, these results show that minocycline could decrease activity levels 

(by decreasing distance moved, velocity and duration in a highly mobile state, and 

increasing duration in an immobile and mobile state) for all female mice, 

regardless of genotype, but did not have the same impact on male mice. 
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< Figure 4.9. Mobility levels following treatment with minocycline or standard 

drinking water for one week. Compared to standard drinking water, minocycline 

increased the amount of time spent in an immobile state for female mice (b) but not 

for male mice (a), and increased the time spent in a mobile state for female mice (d) 

but not male mice (c). Minocycline also decreased the amount of time spent in a highly 

mobile state for female mice (f) but not male mice (e), compared to controls who 

received standard drinking water. Minocycline had these effects in female mice to the 

same extent in WT and Map2k7+/- mice. 0.5mg/ml minocycline was administered via 

drinking water for one week. Line graphs: data points represent the mean and error 

bars the standard error of the mean. Box plots: Centre lines show the medians; box 

limits indicate the 25th and 75th percentiles as determined by R software; whiskers 

extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers 

are represented by circles; crosses represent sample means. Significant sex x 

treatment interactions are indicated on the corresponding graph key. Significant 

genotype x sex x treatment interactions are indicated on the box plot on the right-

hand side. Lines linking groups represent significant differences between those 

groups: *p<0.05; **p<0.01; ***p<0.001 (ANOVA); #p<0.05; ##p<0.01; ###p<0.001 

(Tukey’s). Map2k7+/-: n=31 (12M, 19F), WT: n= 32 (20M, 12F). 
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4.5 Discussion  

Map2k7+/- mice show some characteristics that could be interpreted as relevant 

to the positive symptoms of schizophrenia. They did not exhibit a deficit in PPI, 

but were hyperactive in the open field, which presented in male Map2k7+/- mice 

at a younger age than it did in females. Administration of amphetamine prior to 

PPI testing revealed a modest decreased sensitivity to its effects in Map2k7+/- 

mice, and treatment of minocycline in the open field decreased locomotor activity 

levels of all female mice, regardless of genotype, but did not have a significant 

effect on males.  

4.5.1 Map2k7+/- mice did not show a deficit in PPI 

For all mice, as prepulse intensity increased from 4 to 8 to 16dB, %PPI also 

increased, which is expected and is what occurred in previous PPI experiments in 

C57Bl/6 mice (Martin et al., 2008; Yee et al., 2004; van den Buuse, 2010). WT and 

Map2k7+/- mice were similar in the amount of PPI they exhibited. As Map2k7+/- and 

WT mice had a similar startle response at 120dB and a similar level of habituation, 

these potential confounding factors can be ruled out, and so the neural circuitry 

involved in PPI appears to be intact or compensated for in Map2k7+/- mice. Hence, 

Map2k7 does not appear to be key to the robust deficits seen in %PPI observed in 

patients with schizophrenia. 

The basic circuitry involved in PPI is relatively well established. There are three 

main pathways involved: the primary startle, PPI mediation and PPI modulation 

networks (Rohleder et al., 2016). Brain areas involved include (among others) the 

caudal pontine reticular nucleus, substantia nigra, nucleus accumbens, inferior 

and superior colliculi, medial PFC, mediodorsal thalamus, pedunculopontine and 

laterodorsal tegmental nuclei (reviewed in Swerdlow et al., 2001). As would be 

expected from the wide distribution of brain areas, genetically modified mice, 

lesion and pharmacological studies have shown that multiple neurotransmitter 

systems are involved, including dopaminergic, serotoninergic, glutamatergic and 

cholinergic systems (Geyer et al., 2002; Maclaren et al., 2014; van den Buuse, 

2010; Geyer et al., 2001). As Map2k7+/- mice do not have disruption in PPI, they 

may have these circuitries fully intact. However, these brain systems are known 

to interact closely, and to up- or down-regulate themselves to compensate for 

alterations in each other, particularly if, as is the case in Map2k7+/- mice, the 
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alteration has been present from the beginning of development (van den Buuse, 

2010; Pratt et al., 2012). It is highly possible that molecular alterations have 

occurred in Map2k7+/- mice, such as receptor expression or neurotransmitter level 

changes, which would present behaviourally as having normal PPI (Pratt et al., 

2012; van den Buuse, 2010). The administration of amphetamine prior to PPI 

testing may shed more light on this and is discussed below. 

4.5.2 Map2k7+/- mice showed decreased sensitivity to amphetamine-

induced deficits in PPI 

Administration of an acute dose of amphetamine prior to PPI testing was then 

carried out to investigate whether there may be underlying alterations in the 

neurotransmitter systems involved; for example, neurotransmitter release, 

upregulation of specific receptors or other compensatory mechanisms, due to 

Map2k7 deficiency. The amphetamine drug challenge significantly decreased %PPI 

in WT mice overall as a group, which is an effect previous studies have shown in 

healthy rats (Mansbach et al., 1988), mice (Martin et al., 2008) and humans 

(Hutchison & Swift, 1999). However, post hoc analyses showed that this 

significance was only true for male and WT mice; Map2k7+/- and WT female mice 

did not show a significant decrease in PPI, suggesting that they may have an 

attenuated response to amphetamine. 

The effect of amphetamine on behaviour in rodents has been observed and 

recorded since the early 1970’s (Scheel-Krüger, 1971). At the moderate dose of 

5mg/kg in this experiment, amphetamine is known to cause increase in available 

dopamine in the synaptic cleft by decreasing reuptake of dopamine back into the 

presynaptic bouton, facilitating release of dopamine into the synaptic cleft from 

vesicles, and by interacting with the dopamine transporter, causing it to work in 

reverse (German et al., 2015; Seiden et al., 1993). Amphetamine also increases 

noradrenaline in the synaptic cleft in a similar way to dopamine (Seiden et al., 

1993) and increases levels of serotonin and other neurotransmitters, but dopamine 

is the main neurotransmitter system it affects (Fleckenstein et al., 2007). Ralph 

et al. (1999) conducted PPI on mice that had each member of the dopamine D2-

like receptor family knocked out, separately. Each KO mouse line (D2, D3 and D4) 

showed normal PPI; however, when challenged with amphetamine, D2R KO mice 

did not show amphetamine-induced decrease in PPI, whereas D3R and D4R KO 

mice did, suggesting that the amphetamine-induced decrease in PPI is mediated 
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by D2 and not D3 or D4 receptors. This suggests that Map2k7+/- mice may have 

alterations in the activity/performance of D2 receptors.  

Dr. N. Dawson (Lancaster University, UK) conducted 2-deoxyglucose imaging on 

Map2k7+/- mice and found that, following an acute, 5mg/kg dose of amphetamine, 

Map2k7+/- mice (but not their WT littermates) exhibited a complete loss of 

response to amphetamine in multiple regions of the PFC and hippocampus and the 

nucleus reunions of the thalamus, and that the response to amphetamine was 

significantly attenuated in several other thalamic nuclei (written communication, 

Dr. N. Dawson). This implies that Map2k7+/- mice have developed a modest 

resistance to the effects of amphetamine, perhaps by decreasing receptors and/or 

synthesis of neurotransmitters (as amphetamine works by manipulating 

endogenous neurotransmitters as opposed to replacing them) so that 

amphetamine does not have a significant effect because the system is saturated. 

This may have come about if, for example, the Map2k7+/- mice had elevated levels 

of dopaminergic (and possibly other) signalling from the beginning of development 

and therefore developed differently to compensate. Both the thalamus and PFC 

are involved in the mediation of PPI (Rohleder et al., 2016), so it is feasible that 

amphetamine would have attenuated the response relevant during PPI testing. 

Based on the Ralph et al. (1999) results described above, if dopamine receptors 

are decreased in Map2k7+/- mice as a compensatory effect, it is possible that 

dopamine D2 receptors are more decreased than the others. These underlying 

differences at a molecular and systems level may have been masked by 

compensatory effects from other neurotransmitter systems without the influence 

of amphetamine and would therefore produce apparently normal PPI in Map2k7+/- 

mice. It will be interesting to investigate this molecularly in the future to establish 

whether this is the case. One way this could be achieved is by measuring dopamine 

receptor density in Map2k7+/- vs. WT mouse brain sections using specific radio-

ligands, or by quantifying the dopamine receptor availability using micro-PET (e.g. 

Dalley et al., 2007).  

4.5.3 Sex differences in PPI and startle 

There were many sex differences when examining extent of PPI and startle, the 

most substantial being that males had a significantly larger overall startle 

response than females. Fig. 4.3 shows that males’ startle response was almost 

double that of females at 120dB, the volume used in PPI testing. The PPI of male 



88 
 

WT mice was significantly decreased by amphetamine whereas female WT PPI was 

not. As the calculation of %PPI relies on the startle response to 120dB without 

prepulse, this would make the calculation of female %PPI less accurate than if 

they had a larger startle response. This may explain why the female WT mice do 

not exhibit reduced %PPI in response to amphetamine, which is a well-established 

finding (in humans: Hutchison & Swift, 1999; and C57Bl/6 mice: Ralph et al., 

2001), as opposed to it being a real effect of sex in the current experiment. For 

the future, it would be necessary to carry out a power analysis to help decide 

whether to include more animals for increased power in this experiment. 

There are several reasons that could explain the amount of sex differences in this 

experiment. There are profound differences in the neurochemistry of rodent male 

and female brains, including that of dopaminergic neurotransmission, arguably the 

most relevant to the current experiment. For example, in rats, regulation of the 

dopamine transporter is significantly more tightly controlled in females than males 

(Walker et al., 2005). Neurochemical differences occur for a few main reasons, 

such as due to fluctuations in circulating hormones as a result of the oestrus cycle 

in females, and sex chromosome-related gene expression differences during 

development (Calipari et al., 2017). Specifically, genes of the X-chromosome play 

a role in development of the dopaminergic system, leading to basal and hormone-

related differences in this system in male and female offspring (Calipari et al., 

2017). The oestrus cycles of female mice in the current experiment were not 

monitored or controlled; it will be important in the future to consider doing this.  

On the other hand, with respect to PPI testing, the effects of sex are likely to be 

at least partially due to a methodological issue: female mice are smaller and weigh 

less, so may have less of an influence on the accelerometer used to measure 

startle responses. In future, more consideration could be given to keep the weight 

variation in mice as little as possible, and perhaps testing males and females 

separately in experiments where this will be important, as well as adjusting the 

group sizes accordingly.  

4.5.4 Map2k7+/- mice exhibited hyperactivity in the open field  

By bringing together the information from distance moved/velocity, and duration 

immobile, mobile and highly mobile, it is possible to get an indication of locomotor 

activity levels of mice overall. Animals that moved further, with faster velocity 
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and had a larger duration highly mobile would be attributed to more hyperactive 

animals, and those that moved a shorter distance, with slower velocity and larger 

duration immobile would be attributed to more hypoactive animals. Duration 

mobile is merely a buffer in between the immobile and highly mobile parameters: 

any changes to duration spent immobile or highly mobile will have derived from 

duration spent mobile. Therefore, this parameter could be treated as “normal 

movement” and does not carry much meaning as a separate parameter. 

Overall, mice were more hyperactive at adulthood, but post hoc analysis showed 

that Map2k7+/- male mice were significantly more hyperactive than WT males at 

adolescence but not at adulthood, and Map2k7+/- female mice were significantly 

more hyperactive than WT females at adulthood but not at adolescence. It is 

interesting that males show hyperactivity at an earlier stage than females, 

especially considering schizophrenia in male humans has an earlier onset on 

average, compared to females (Forrest & Hay, 1971): before the age of 30, more 

males are diagnosed with schizophrenia than females, and after the age of 30 

more females are diagnosed than males (Sham et al., 1994). Females have a 

second “wave” of diagnosis after the age of 40 and, in general, the earlier the 

onset of schizophrenia the more severe and debilitating the symptoms (Forrest & 

Hay, 1971; Sham et al., 1994). However, these observations do not fully fit with 

the data seen here. Although it is interesting that the male Map2k7+/- mice showed 

hyperactivity earlier than female Map2k7+/- mice compared to their WT 

littermates, the hyperactivity observed in male Map2k7+/- mice did not continue 

into adulthood, and especially did not become more severe. However, this does 

suggest a disruption of the relevant circuitry at a critical developmental period, 

which will be an important focus for future research. There is also evidence to 

suggest that mice are generally more hyperactive during adolescence because of 

increased novelty-seeking and risk-taking behaviour (Laviola et al., 2003), which 

may have occurred to a larger extent in male Map2k7+/- mice.   

There are many ways in which we can correlate the age of mice to humans (Dutta 

& Sengupta, 2016). With respect to brain development and behavioural 

phenotypes, 5.58 weeks old (as tested in the current experiment) corresponds to 

periods of human adolescence (Semple et al., 2013). In mice and humans, this is 

a period where locomotor and explorative activity are increased, and when the 

brain circuitry connections are continuing to be refined and matured (Semple et 
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al., 2013). On the other hand, 10.11 weeks old (as tested in the current 

experiment) corresponds to early adulthood, a time more relevant to the age at 

which females begin to develop the symptoms of schizophrenia (Semple et al., 

2013). It is unclear why male Map2k7+/- mice do not have a hyperactive phenotype 

by the time they reach adulthood; however, it may be that as their brain matures, 

the brain circuitry connections adapt to the disruption within the brain. Overall, 

with males and females combined, Map2k7+/- mice are more hyperactive than WT 

littermates at adulthood. In fact, hyperactivity in the open field was also observed 

in another, separate cohort of Map2k7+/- mice in the open field at 24.6 ± 0.3 weeks 

old (data not shown). Additionally, Map2k7+/- mice of two more, separate, cohorts 

of adult mice (50:50 male:female) exhibited significant hyperactivity compared 

to WT littermates whilst carrying out more sophisticated behavioural tasks: one in 

the operant-based 5-choice serial reaction time task (Chapter 5) and one in the 

pairwise discrimination/reversal (PD) and paired associates learning (PAL), both 

carried out in the touchscreen (data not shown; general hyperactivity of Map2k7+/- 

mice is discussed in more detail in Discussion Section 8.3.1).  

Hyperactivity in rodents has been shown to be mediated by aberrant mesolimbic 

dopaminergic activity (Pratt et al., 2012). Pijnenburg et al. (1975) administered 

the dopamine antagonist (and typical antipsychotic) haloperidol directly onto the 

nucleus accumbens which counteracted the hyperactivity induced by 

amphetamine, whereas adrenergic antagonists into the nucleus accumbens did 

not, and neither did haloperidol directly onto the caudate nucleus. As the nucleus 

accumbens is part of the neurocircuitry involved in PPI, these results also suggest 

that this system may be partially disrupted in Map2k7+/- mice, and in a different 

way in males and females, which was discussed in Section 4.5.3 above.  

4.5.5 Minocycline treatment decreased locomotor activity levels for all 

female mice 

Minocycline was then administered in the drinking water of half the mice (the 

other half received standard drinking water) for one week in an attempt to 

alleviate the overall hyperactive phenotype. Minocycline is described in Section 

1.7.2. Minocycline, overall, decreased activity levels of all mice; however, post 

hoc analyses showed that minocycline treatment did not have a significant effect 

on male mice but decreased activity levels of all female mice to the same extent, 

regardless of their genotype, closer to a level more like that of male mice. The 
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fact that male Map2k7+/- mice were not hyperactive compared to male WT mice 

at adulthood (when the minocycline was administered), and that genotype 

difference did occur within female mice at adulthood, suggests that minocycline 

may act to decrease activity levels, but only if they are elevated in the first place. 

It may be that minocycline can act to stabilise the mesolimbic dopaminergic 

system in some way. Zhang et al. (2007) gave 40mg/kg minocycline 

intraperitoneally to mice before testing in the open field with or without the NMDA 

receptor antagonist MK-801 and found that minocycline attenuated the 

hyperlocomotor effect of MK-801, in a comparable way to the effect minocycline 

had on Map2k7+/- mice in the current study. The authors also considered potential 

mechanisms and discovered that the extracellular increase in prefrontal and 

striatal dopamine induced by MK-801 was significantly attenuated by pre-

treatment with minocycline. Moreover, minocycline did not decrease extracellular 

dopamine levels of mice that did not receive MK-801 (Zhang et al., 2007), further 

demonstrating that minocycline has the ability to regulate, or normalise, 

extracellular dopamine levels in the brain when necessary.  

4.5.6 Conclusion 

Dysfunction in the mesolimbic pathway, a dopaminergic reward pathway 

connecting the ventral tegmental area to the nucleus accumbens, is strongly 

associated with the positive symptoms of schizophrenia, and both behavioural 

tests carried out in this chapter rely on the mesolimbic system (Van Den Buuse, 

2010; Pratt et al., 2012). In this chapter, although Map2k7+/- mice did not show a 

deficit in PPI, they were hyperactive in the open field, which presented earlier in 

male than female Map2k7+/- mice, and amphetamine administration shows signs 

of producing an attenuated effect in Map2k7+/- mice on PPI (and 2-DG imaging, 

carried out by N. Dawson, Lancaster, UK), compared to WT mice. These results 

suggest that dopaminergic (and possibly other neurotransmitter systems) may be 

disrupted in Map2k7+/- mice; these potential compensatory effects will need to be 

examined further.  

This chapter also showed that minocycline acted to decrease activity levels of 

more hyperactive, female mice in the open field and highlights the need for 

further investigation into the mechanism of minocycline, as it appears to influence 

mice in this chapter and in the cognitive 5-CSRTT (Chapter 5), regardless of 

genotype. Minocycline may, therefore, work by balancing / regulating dopamine 
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levels, either directly or indirectly, and appears to have a smaller effect on less 

hyperactive mice, i.e. WT mice or adult male mice in the current experiment. 

Therefore, although further molecular investigation will be necessary, these 

results suggest that Map2k7+/- mice show some characteristics relevant to the 

positive symptoms of schizophrenia, in a different way and time period in male 

and female mice. 
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Chapter 5 The 5-Choice Serial Reaction Time 

Task  

This chapter has been published in part:  

Openshaw RL, Thomson DM, Penninger JM, Pratt JA and Morris BJ (2017) Mice 

haploinsufficient for Map2k7, a gene involved in neurodevelopment and risk for 

schizophrenia, show impaired attention, a vigilance decrement deficit and 

unstable cognitive processing in an attentional task: impact of minocycline. 

Psychopharmacology (Berl.) 234(2): 293-305. 

 

5.1 Introduction  

Current treatments for patients with schizophrenia can alleviate psychotic 

symptoms to some extent, but are limited in their effectiveness for negative and 

cognitive dysfunction, which are the symptoms carrying the strongest predictor 

for long-term functional outcome of patients (Keefe et al., 2007; Mishara & 

Goldberg, 2004). The multiple cognitive domains in which patients with 

schizophrenia show deficits include: speed of processing, attention, decision-

making, pre-attentional sensory gating, working memory, visual and verbal 

learning and memory, and social cognition (Green et al., 2004). Attention is 

arguably the most important of these, as the ability to maintain proper attention 

inevitably has a direct effect on performance in other cognitive domains. 

Moreover, it is considered one of the core impairments in schizophrenia (Fukumoto 

et al., 2014) and it has been suggested that attentional deficits may actually 

precede the onset of psychotic symptoms (Cornblatt & Keilp, 1994; Erlenmeyer-

Kimling & Cornblatt, 1992; reviewed in Lewis, 2004).  

Attention is complex; many subtypes have been described, including focussed, 

sustained, visuo-spatial, divided, and effortful, controlled attention (Chudasama 

& Robbins, 2003). Attentional deficits in humans can be assessed via multiple 

different tasks, however MATRICS selected the continuous performance test (CPT) 

as the optimal way of measuring attention because of its strong test-retest 

reliability and lack of ceiling effect (Nuechterlein et al., 2008). The CPT was 

originally developed by Beck et al. in 1956 to probe sustained attention. It was 
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then developed further and adapted to probe other aspects of attention, such as 

visuo-spatial attention (Wilkinson, 1963; Carli et al., 1983). Nowadays, various 

versions exist but the basic concept of CPTs is that the subject is rapidly presented 

with various stimuli from which they have to identify and correctly respond to 

“target” stimuli as quickly as possible; duration of the task is intended to be quite 

long (usually at least 100 trials), so it is sufficient to assess sustained attention 

(Riccio et al., 2002). The main measurements usually used to determine if a 

subject has an attentional deficit are reaction times and accuracy. Deficits have 

been identified and widely reported in patients with schizophrenia through various 

versions of the CPT (Turner et al., 2015), where patients show slower reaction 

times and decreased accuracy, but also increased omissions and worse 

performance over time (sustained attention), and more variability in responses 

(Elvevåg et al., 2000; Mulet et al., 2007). Patients do not tend to show a 

difference in false alarms or motivational state (Cornblatt et al., 1989).  

In order to reliably assess attentional function in rodents, a task that is highly 

translatable to those used in humans is required. Based on the tasks probing 

specific cognitive domains recommended by MATRICS, the CNTRICS panel selected 

analogous tasks for use with animals, in which the 5-CSRTT was one task chosen 

to measure attention (Lustig et al., 2013). The 5-CSRTT was developed by Robbins 

and colleagues in 1983 and is now a very well-validated task, able to selectively 

measure sustained, focussed, divided and spatial attention, as well as inhibitory 

control (also referred to as impulsivity and compulsivity; Robbins, 2002). Much 

investigation has been carried out to show that it does indeed probe equivalent 

behavioural and neural mechanisms in the rodent and human brain under healthy 

conditions and also following pharmacological manipulation (Robbins, 2002; 

Chudasama & Robbins, 2004), which reinforces its applicability for new drug 

development. Importantly, patients of various neuropsychological disorders (such 

as ADHD, schizophrenia, drug addiction, Alzheimer’s, Parkinson’s and 

Huntington’s disease) and their corresponding animal models show a similar 

combination of the different types of attentional deficits in the 5-CSRTT and CPT 

(Bari et al., 2008).  

5.1.1 The 5-choice Serial Reaction Time Task (5-CSRTT) 

During the 5-CSRTT, rodents are required to respond via nose-poke to brief flashes 

of light that appear psuedorandomly within 1 of 5 small apertures in an operant 
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box (Fig. 5.1), therefore assessing spatially divided attention. Each session, which 

occurs daily, has a large number of trials (usually 100), thus being able to assess 

sustained attention by observing performance over time. Many other aspects of 

rodents’ performance are automatically recorded (see Materials and Methods for 

more information). They are rewarded with palatable food (usually Yazoo® 

strawberry milkshake) when they make a correct response, and are punished by a 

time-out period and illumination of the main “house light” if they nose-poke the 

wrong hole or miss the trial by failing to poke a hole within the given time period. 

Mice typically take about 30 daily sessions after initial training to be able to 

perform at around 80% correct, and, once acquired, the 5-CSRTT can then be used 

to probe the many distinct aspects of attention by introducing manipulations 

which alter task demands. These would occur throughout separate, daily sessions 

and include: altering the stimulus duration length (which shifts general attentional 

demand), changing the length of time between trials (to investigate inhibitory 

control) and also the observation of behaviour following pharmacological 

manipulations (Bari et al., 2008; Humby et al., 2005). 

 

Figure 5.1. a) The 9-hole operant box. b) A schematic diagram of the 5-CSRTT 

equipment. Mice tend to utilise a “scanning” strategy where they face the holes 

during the inter-trial interval (see Materials and Methods for more information) in 

order to focus properly on the task. Holes 2, 4, 6 and 8 are blocked off during the 5-

CSRTT. The food magazine is located opposite the holes, which delivers a set amount 

(usually 20µl) of strawberry milkshake (Yazoo®) when the mouse makes a correct 

response. Adapted from Bari et al., 2008. 

Reward

Magazine

25cm

a b
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5.2 Aims 

In this chapter, various aspects of the attentional function of Map2k7+/- mice 

compared to their wildtype littermates will be investigated by examining 

performance in the 5-CSRTT. Following training to a particular level, task 

manipulations will be carried out to 1) assess inhibitory response control by 

varying the inter-trial interval, and 2) performance following overall increased 

task demand by changing the stimulus duration length randomly throughout a 

session.  

Additionally, performance following an acute dose of ketamine in the 5-CSRTT will 

be assessed in order to determine whether this drug induces an altered 

behavioural response in Map2k7 deficient mice compared to their WT littermates: 

NMDAR antagonists, such as ketamine, are able to induce schizophrenia-like 

symptoms in healthy subjects (Breier et al., 1997; Krystal et al., 1994) as well as 

exacerbate symptoms in patients with schizophrenia (Lahti et al., 1995, 2001; 

Malhotra et al., 1997), and administration of ketamine in rodents has been shown 

to produce some symptoms relevant to schizophrenia (Miyamoto et al., 2000; van 

den Buuse, 2010).  

Finally, we were interested to find out if minocycline, a tetracycline antibiotic 

currently showing promise in clinical trials for schizophrenia (Levkovitz et al., 

2010; Oya et al., 2014; Zhang & Zhao, 2014), could ameliorate any deficits seen 

in Map2k7+/- mice in the 5-CSRTT. 
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5.3 Materials and Methods  

5.3.1 Subjects  

16 Map2k7+/- mice (HZ; 7 female, 9 male) and 15 WT littermates (7 female, 8 

male) were used in the experiment. At the start of the experiments, males 

weighed 29.5 ± 0.5g and females weighed 23.0 ± 0.7g, and mice were 18.9 ± 0.6 

weeks of age. All mice were singularly housed in a temperature and humidity-

controlled room (21 °C, 45–65 % humidity) with a 12-hour light/dark cycle (lights 

on at 08:00). Mice were food restricted to 85–90 % of their free-feeding weight 

and had ad libitum access to water throughout the experiment. All testing was 

carried out between 09:00 and 15:00, Monday to Friday and in accordance with 

the Animals (Scientific Procedures) Act, 1986.  

5.3.2 Drug administration  

Concentrations/doses were chosen based on pilot data in our laboratory: dose and 

timing of ketamine were chosen so that cognitive effects could occur but 

performance on the 5-CSRTT would not be confounded due to hyperlocomotion, 

sedation, or de-motivation. Oliver et al. (2009), also administered 20mg/kg 15 

minutes before testing in C57Bl/6 mice and did not see effects on latencies to 

make a correct response or to collect the reward, suggesting that their locomotor 

activity and motivation are unaffected. Ketamine (as a racemic mixture of its two 

enantiomers; Sigma-Aldrich Co. K2753, St. Louis, MA, USA) was given at 20mg/kg 

intraperitoneally (i.p.) and mice were tested in the 5-CSRTT 15 minutes after 

administration.  

Minocycline was administered in a similar manner to McKim et al., 2016: mice 

received minocycline in their standard drinking water (0.5mg/ml; protected from 

light; Sigma-Aldrich Co. M9511, St. Louis, MA, USA) for a 7 day period. Fresh 

minocycline solution was prepared every second day and provided at room 

temperature. Mice were tested on the 5-CSRTT on days 4 and 7 after the start of 

minocycline treatment. Consumption of minocycline treated water was monitored 

daily for each mouse; they received an average of 81.6 ± 3.1mg/kg/day of 

minocycline.  
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5.3.3 Apparatus 

Eight mouse 9-hole operant chambers with dimensions of 12 by 13cm (Campden 

Instruments Ltd., Cambridge Cognition Limited) were used for the experiment, 

which were enclosed in separate noise-attenuation outer cabinets with a 

ventilator fan providing low-level, constant background noise. Mice were 

allocated an operant box randomly and were always tested in the same operant 

box throughout the experiment. Care was taken to ensure that the same box was 

not being used for all mice of one particular group; for example, all WT/Map2k7+/- 

or all male/female. 9 circular holes are evenly spaced along a curved side, of 

which 4 holes (holes 2, 4, 6 and 8) were blocked off leaving 5 available for use in 

the task. The operant chambers were controlled by Campden BNC Control 

software.  

5.3.4 The Task 

A schematic of the basic structure the full 5-CSRTT takes is shown in Fig. 5.2. All 

mice were trained for 61 sessions on a fixed inter-trial interval (ITI; according to 

the methods outlined in Bari et al., 2008; Thomson et al., 2011) until they reached 

a stable level of performance. Mice were then trained on a variable ITI (vITI), to 

avoid the use of a temporal strategy to complete the 5-CSRTT, until their 

performance stabilised once again. Then, 5 days testing occurred which was taken 

as “Baseline” before they were subjected to various manipulations in order to 

provide information about different aspects of attentional functioning and/or 

motivation and impulsivity (Bari et al., 2008, Humby et al., 2005 and Robbins, 

2002). See Fig. 5.3 for a timeline of this experimental design. 
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Figure 5.2. Schematic diagram showing the basic structure of the full 5-CSRTT. Each 

trial is discrete, separated by the inter-trial interval (ITI) period, and is initiated by the 

mouse entering and leaving the food magazine. A correct response is rewarded and an 

incorrect or premature response, or missed trial, is punished by a time out (TO) period 

and illumination of the house light for 5 seconds before the trial can be re-initiated. 

The session ends when 100 trials have been completed or 45 minutes has passed, 

whichever comes first. Adapted from 5-CSRTT User Manual. 
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Figure 5.3. Experimental Timeline showing the order in which experimental 

manipulations were carried out. 

 

Liquid reinforcer (Yazoo® Strawberry Milkshake) was used throughout the 

experiment. The training stages are designed to gradually introduce the mice to 

the operant boxes and to nose poke the lit hole in order to obtain the reward. As 

Stages 9 - 18 progress, the length of time the stimulus is lit for (stimulus duration) 

and limited hold (LH; the length of time the mice have to respond within, from 

the beginning of the presentation of the stimulus) decrease and the criteria 

become more stringent until the mice are performing at a level deemed 

appropriate to see differences in other aspects of performance measures (e.g. % 

missed) without being confounded by differences in task ability (Bari et al., 2008). 

These details are shown in Table 5.1 and explained in more detail below: 

During the 7 sessions of initial box habituation/training, the mice are gradually 

introduced to the operant boxes and learn to nose poke the lit hole in order to 

obtain the reward. During the first session, a mouse is placed in each operant box 

for 30 minutes. They receive an initial “free” reward of 100µl and then a smaller 

50µl free reward delivery every 40 seconds in the magazine (light always on) in 
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order to train the mice to learn where they can find the reward. This was repeated 

the next day to ensure all mice consumed all the strawberry milkshake, and then 

the reward amount was decreased for the following 2 sessions (50µl initially and 

then 20µl every 40 seconds), and the magazine light was extinguished when the 

mouse exits. For the next session, mice were in the box for 30 minutes or until 

they had completed 100 trials. They obtained an initial reward delivery of (50µl) 

in the magazine, in which the light is illuminated and is extinguished when the 

reward had been collected. One of the 5 stimulus lights are pseudorandomly 

illuminated for 10 seconds, and then a reward is delivered (20µl) during the final 

second of stimulus light illumination in order to pair the turning off of the stimulus 

light with the delivery of reward. From here on, whenever a reward is delivered, 

the magazine light illuminates and then extinguishes when the mouse has 

collected the reward. This session occurred 3 times and throughout, the mice were 

all moved to the next session as a group.  

The mice progressed individually through the next training stages (10 in total; 

details shown in Table 5.1) when they reached the criteria for that stage. Once 

an individual mouse had reached the final training stage (Stage 18), their training 

was halted until the rest of the mice caught up, and were given a reminder session 

of the final stage twice a week (Mondays and Thursdays). If their performance 

dropped below criteria on a reminder session, they were trained on the following 

days until they reached criteria again. This training regime is encouraged for 

operant-based training (Oomen et al., 2013) because “over”-training the mice 

that pick up the task more quickly than others could have confounding effects on 

results (Sanchez-roige et al., 2012). 
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Training 

Stage # 

Stimulus 

Duration (s) 

ITI 

(s) 

LH 

(s) 

Time 

Out 

(s) 

Session 

Duration 

(min) 

Criterion to move to 

next stage (Bari et al., 

2008) 

9 32 5 37 5 30 >30 Correct trials 

10 16 5 21 5 30 >30 Correct trials 

11 8 5 13 5 30 >50 Correct trials 

12 4 5 9 5 30 
>50 Correct trials, 

>80% Accuracy 

13 2 5 7 5 30 
>50 Correct trials, 

>80% Accuracy 

14 1.8 5 6.8 5 30 

>50 Correct trials, 

>80% Accuracy, 

<20% Omissions 

15 1.6 5 6.6 5 30 

>50 Correct trials, 

>80% Accuracy, 

<20% Omissions 

16 1.4 5 6.4 5 30 

>50 Correct trials, 

>80% Accuracy, 

<20% Omissions 

17 1.2 5 6.2 5 30 

>50 Correct trials, 

>80% Accuracy, 

<20% Omissions 

18 1 5 6 5 30 

>50 Correct trials, 

>80% Accuracy, 

<20% Omissions 

Task complete within 30 

minutes 

Full task 

(vITI) 
1 2-15 6 5 45 

>50 Correct trials, 

>80% Accuracy, 

<20% Omissions 

Task complete within 45 

minutes 

vSD 0.2-0.8 5 6 5 30 N/A 

Ketamine 1 2-15 6 5 45 N/A 

Minocycline 1 2-15 6 5 45 N/A 

Table 5.1: 5-CSRTT training schedule details. 
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Once all the mice reached the final training stage, they were moved onto the full 

task (variable ITI) conditions which are the same as training Stage 18 apart from 

the ITI was not fixed at 5 seconds; instead it pseudorandomly varied between 2, 

5, 10 or 15 seconds. As the overall ITI length was increased, the session duration 

was increased from 30 to 45 minutes. They were trained on the vITI until their 

performance stabilised (which took 11 sessions) and the final 5 days’ stable data 

was taken as “Baseline” performance. It is this Baseline performance that is 

compared with the ensuing manipulations.  

Task manipulations then occurred separated by normal vITI conditions (see Fig. 

5.3) in order to check the mice were performing back to normal good level of 

performance. Manipulation conditions are outlined in Table 5.1.  

5.3.5 Statistical Analysis  

All mice were included in all analyses with two exceptions: one significantly 

atypical wildtype mouse was removed from the study (and all analyses) because 

of consistent abnormal repetitive behaviour (hyperactive rotational movements) 

that prevented the mouse from completing the task properly, disguising its true 

cognitive ability. One heterozygous mouse was removed from ketamine analysis 

because it had an adverse reaction to the ketamine and did not take part in the 

task following ketamine administration. 

All statistical analyses were carried out using Minitab® 17 Statistical Software. 

Results were considered significant if p<0.05. All error bars are expressed as ± 

standard error of the mean (SEM). Bar and line graphs were created using 

GraphPad Prism 7. Box plots were created using BoxPlotR, an application available 

at http://shiny.chemgrid.org/boxplotr/ and described in Nature Methods Editorial 

“Kick the bar chart habit” 2014, p113.  

Comparison of the last 5 days’ stable performance between two experimental 

groups is a method generally utilised to examine group differences (Sanchez-roige 

et al., 2012): the last 5 days of well-trained, stable performance were analysed 

between genotypes and, where appropriate, were compared with performance on 

day 4 and 7 of the 7 days’ minocycline treatment. 

Many of the parameters throughout this experiment yielded non-normal data. 

Although it is possible that parametric statistical tests give more power when 

http://shiny.chemgrid.org/boxplotr/
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analysing non-normal data, there is no non-parametric statistical test available to 

accurately represent the data here. This is because a repeated measures design 

with multiple factors is appropriate, with nesting of each individual mouse within 

genotype. As non-parametric tests do not allow nesting and multiple factor 

repeated measures, and ANOVA is considered robust against non-normality (Laan 

& Verdooren, 1987), an ANOVA was decided to be the most suitable test to use 

here. Unless stated otherwise, results were analysed using a 2-way repeated 

measures ANOVA, with daily session as a within subjects factor, genotype as a 

between subjects factor and each individual mouse nested within genotype. 

Minocycline treatment data were analysed by a 3-way repeated measures ANOVA 

with session (i.e. day of minocycline treatment) and treatment as within subject 

factors, genotype as a between subjects factor and each individual mouse nested 

within genotype. Before data from males and females were grouped, effects of 

sex were investigated and were non-significant for all measurements excluding 

Correct Response Latency. Therefore, “sex” was included in the statistical 

analysis as a between subjects factor for this measure. Post hoc tests were 

conducted using Tukey’s method for multiple comparisons where appropriate. As 

there were so many irrelevant significant effects, results for main effects and 

interactions are only shown and discussed when a significant effect was observed.  

 

The performance measures for each session analysed were the following: 

• % accuracy - calculated by the formula: (number of correct 

responses/number of correct responses + number of incorrect 

responses)*100  

• % omissions – calculated by the formula: (number of missed trials/total 

number of trials completed)*100 

• Number of commission errors (nose-poke during the LH period into a hole 

where the stimulus had not been presented) 

• Number of premature responses (nose poke before the stimulus has 

appeared, i.e. during the ITI period)  

• Number of perseverative responses (repeat nose-poke following a correct 

response before collecting the food reward earned) 

• Total number of nose pokes (throughout the session)  

• Total number of entries into the food magazine during the ITI  
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• Total number of trials completed 

• Mean reward collection latency 

• Mean correct response latency 

• Mean incorrect response latency 

• Vigilance decrement (the extent to which performance declined over the 

course of each session). Calculated by subtracting the % omissions, or % 

accuracy or # incorrect responses made during the final 20 trials 

completed from the first 20 trials completed by each mouse, for each 

session.  

• Intra-individual variability of correct response times (IIV; the variability of 

response times for each mouse over the course of each session). 

Calculated by the standard deviation of response times for each mouse 

per session, then averaged for each group. 

• Intra-individual variability of incorrect response times: see IIV of correct 

response times above. 

• Overall variability of correct response times – calculated by the standard 

deviation of response times over the course of 5 Baseline sessions 

• Overall variability of incorrect response times: see variability of correct 

response times above. 
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5.4 Results 

5.4.1 Both WT and Map2k7+/- mice took the same amount of time to 

complete training stages 

During training, each mouse was advanced to the next stage individually whenever 

they reached criteria for that stage until they reached stage 18 (final stage; Table 

5.1). Overall, mice learned to complete the 5-choice task well, with WTs and 

Map2k7+/- mice taking a similar number of sessions to complete training (p=0.440, 

ns): WT mice took an average of 20.6 ± 2.22 and Map2k7+/- mice an average of 

23.5 ± 2.44 (Fig 5.4; defined as completing >50 trials within 45 minutes, with >80% 

accuracy and <20% omissions over two consecutive sessions). As not all mice 

completed all 100 trials per session, the number of trials to complete training 

were also analysed: WT and Map2k7+/- mice took a similar number of trials to 

complete training (p=0.490, ns). WT mice took an average of 1798.6 ± 146.70 and 

Map2k7+/- mice an average of 1938 ± 135.39 trials. 
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Figure 5.4. WT and Map2k7+/- mice took a similar number of sessions (a) and trials 

(b) to complete training for initial acquisition of the 5-CSRTT. The ITI was fixed at 

5 seconds and stimulus duration fixed at 1 second. Data were analysed separately by 

one-way ANOVA between genotypes. No significant effect of genotype: p=0.440 and 

p=0.490 for a and b, respectively. Centre lines show the medians; box limits indicate 

the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times 

the interquartile range from the 25th and 75th percentiles; crosses represent sample 

means. Data for a and b analysed separately by one-way ANOVAs between genotypes. 

Map2k7+/-: n=16 (9M, 7F), WT: n= 15 (8M, 7F). 
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5.4.2 The transition from fITI to vITI had a brief detrimental effect on 

performance  

Once all mice had reached criteria (>50 correct responses, >80% accuracy and 

<20% omissions) for training using a fixed ITI (fITI; aka final training stage), they 

were moved onto the standard 5-CSRTT session with a variable ITI (vITI; ranging 

from 2-15 seconds) to minimise confounds due to any temporal strategies they 

may have. All other aspects of the task remained the same (Table 5.1). When the 

last day of fixed ITI training was compared with the first day of standard session 

with a vITI, performance worsened (Fig. 5.5): % accuracy decreased (p=0.002, 

F(1,27)=11.36), total number of trials completed showed a trend towards decreasing 

(p=0.063, f(1,27)=3.76), and % omissions (p<0.0001, F(1,27)=106.89), errors of 

commission (p=0.035, F(1,27)=5.00), latency to correct response (p=0.002, 

F(1,27)=11.83), premature responses (p<0.0001, F(1,27)=39.20) and the number of 

food magazine entries during the ITI (p<0.0001, F(1,27)=48.32) increased for all 

mice. Perseverative responses, however, decreased (p=0.023, F(1,27)=5.78).  

In addition to effects of the vITI on performance, there were significant effects of 

genotype. Overall, Map2k7+/- mice missed more trials than WTs (Fig. 5.5b; 

p=0.011, F(1,27)=7.54) and made fewer premature responses than WT mice (Fig. 

5.5f; p=0.023, F(1, 27)=5.84). Also, WT mice completed significantly less trials with 

the vITI session compared to the fITI session whereas the Map2k7+/- mice did not 

(genotype x session interaction: p=0.039, F(1, 27)=4.72; Fig. 5.5c). 
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< Figure 5.5. The transition from fITI to vITI had a brief (1 session) detrimental 

effect on performance. Following a switch from a fixed ITI to a variable ITI: (a) % 

Accuracy was significantly decreased overall (b) % omissions increased for both WT 

and HZ mice, and HZ mice missed more trials than WTs overall. (c) The number of 

trials completed, although not significant, showed a trend towards being decreased 

slightly overall. WTs completed significantly less trials with the vITI whereas the HZ 

mice did not. (d) Errors of commission were significantly elevated. (e) All mice took 

significantly longer to respond correctly to stimuli. (f) Premature responses were 

significantly increased and overall, HZ mice made fewer premature responses than 

WT mice. (g) Mice made increased entries into the food magazine during the ITI. (h) 

Mice made less perseverative responses. Data analysed by a two-way ANOVA with 

genotype and sex as between subjects factors, session (fixed or variable ITI) as a 

within subjects factor, and each individual mouse nested within genotype. Post hoc 

tests were conducted using Tukey’s method for multiple comparisons where 

appropriate. Bar charts represent sample mean ± SEM. Box plots: Centre lines show 

the medians; box limits indicate the 25th and 75th percentiles as determined by R 

software; whiskers extend 1.5 times the interquartile range from the 25th and 75th 

percentiles, outliers are represented by circles; crosses represent sample means. 

Lines between groups show the significance between those groups: *p< 0.05; **p< 0.01; 

***p< 0.001 (ANOVA); #p<0.05 (Tukey’s). Map2k7+/-: n=16 (9M, 7F), WT: n= 15 (8M, 7F). 
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5.4.3 Map2k7+/- mice exhibit impaired attention in the 5-CSRTT 

Overall performance of Map2k7+/- and WT mice are given in Figs. 5.6 and 5.7. 

Throughout training and once stable performance had been attained, Map2k7+/- 

mice consistently showed a similar level of accuracy as WT mice (Fig. 5.6a), in 

fact, they performed marginally better at 94.6% ± 0.9 accuracy compared to WT 

littermates at 93.5% ± 0.7 (p=0.052, F(1,116)=3.87), and made fewer commission 

errors overall (Map2k7+/-: 4.063 ± 0.67; WT: 5.33 ± 0.48) (p=0.0001, F(1,116)= 17.24) 

(Fig. 5.6b). Even when challenged with shorter stimulus durations, Map2k7+/- mice 

were still able to perform to a similar extent to WT mice (p<0.0001, F(3,84)=30.63) 

(Fig. 5.8). However, Map2k7+/- mice showed impaired attentional performance, 

as indicated by an elevated number of omissions made compared to wildtype 

littermates (p=0.0001, F(1,116)=42.36), which was consistent throughout training on 

the vITI, (Fig. 5.6c line graph). Inhibitory control measures showed that Map2k7+/- 

mice were not impaired compared to WTs: they made significantly fewer 

perseverative responses (p=0.001, F(1,116)=12.13) (Fig. 5.6d) and exhibited a 

similar number of premature responses (p=0.463, ns) (Fig. 5.6e).  

Parameters that give an indication of motivation levels in order to rule out lack of 

motivation as reasons for performance deficits showed that Map2k7+/- mice were 

highly motivated to perform the task: they had similar correct response latencies 

to WTs (p=0.22, ns) (Fig. 5.7a), were quicker to collect the reward (p=0.0001, 

F(1,116)=240.97) (Fig. 5.7b) and completed almost all trials (99.6 ± 0.4 trials 

completed on average over the 5 days’ baseline, compared to WTs completing all 

100; p=0.011, F(1,116)=6.64) (Fig. 5.7d). Map2k7+/- mice were slower to make an 

incorrect response (explored in more detail below) (p<0.0001, F(1,116)=21.21) (Fig. 

5.7c) and also entered the reward magazine more frequently during the ITI period 

(i.e. when there is no reward there to collect) than WTs (p=0.0001, F(1,116)=51.92;) 

(Fig. 5.7e).  

Collectively, these results indicate that Map2k7+/- mice exhibit an attentional 

deficit displayed as increased omissions in the 5-CSRTT. Furthermore, this deficit 

is not due to incapability of learning or carrying out of the task, as shown by good 

accuracy, even when challenged with shorter stimulus durations and when going 

through initial task acquisition. The deficit is also not due to motivational/motoric 

impairment: they displayed clear motivation to perform the task in several aspects 

of performance, and they had slightly faster reward collection latencies, which 
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indicates that measurements such as the number of omissions are not confounded 

for reasons such as being physically incapable of reaching the stimulus during the 

limited hold period. 
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Figure 5.6. Overall performance of mice on the 5-CSRTT – Map2k7+/- mice display 

an attentional deficit. Each day of vITI training performance from day (Session) 1 (χ-

axis): (a) Map2k7+/- mice consistently showed a similar level of accuracy as WT mice, 

and (b) made fewer commission errors overall. (c) Map2k7+/- mice made an increased 

number of omissions, (d) perseverative responses and (e) a similar number of 

premature responses. Line graph points show data for each session (numbered from 

beginning of the first vITI session). Bar graphs: bars represent the sample mean ± SEM 
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of the last 5 days’ stable vITI performance. Box plots: centre lines show the medians; 

box limits indicate the 25th and 75th percentiles as determined by R software; 

whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, 

outliers are represented by circles. Data analysed by a 2-way repeated measures 

ANOVA (with daily session as a within subjects factor, genotype as a between subjects 

factor and each individual mouse nested within genotype) with Tukey’s post hoc, and 

are presented as the mean ± standard error of the mean (SEM). **p<0.01; ***p<0.001 

(ANOVA). Map2k7+/-: n=16 (9M, 7F), WT: n= 15 (8M, 7F). 
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Figure 5.7. Map2k7+/- mice are highly motivated to perform the 5-CSRTT. Each day 

of vITI training performance from day (Session) 1 (χ-axis): (a) Map2k7+/- mice had 

similar correct response latencies to WTs, (b) were quicker to collect the reward and 

(d) completed almost all trials. (c) Map2k7+/- mice were slower to make an incorrect 

response and (e) entered the reward magazine more frequently during the ITI period 

(i.e. when there is no reward there to collect) than WTs. Line graph points show data 
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for each session (numbered from beginning of vITI). Box plots: Centre lines show the 

medians; box limits indicate the 25th and 75th percentiles as determined by R 

software; whiskers extend 1.5 times the interquartile range from the 25th and 75th 

percentiles, outliers are represented by circles. Data analysed by a 2-way repeated 

measures ANOVA (with daily session as a within subjects factor, genotype as a between 

subjects factor and each individual mouse nested within genotype) with Tukey’s post 

hoc, and are presented as mean ± standard error of the mean (SEM). **p<0.01; 

***p<0.001 (ANOVA). Map2k7+/-: n=16 (9M, 7F), WT: n= 15 (8M, 7F). 

 

 

 

 

Figure 5.8. Performance of Map2k7+/- mice in the 5-CSRTT remained similar to WTs 

after being challenged with shorter, variable stimulus durations (SD). Throughout 

a single session, mice were subjected to variable stimulus durations with a fixed ITI 

of 5 seconds. Stimulus durations varied pseudorandomly across the session between 

0.2, 0.4, 0.5 and 0.6 seconds in order to challenge accuracy. All mice performed with 

significantly decreased accuracy at 200ms compared to all other stimulus durations, 

but performance remained similar between WT and Map2k7+/- mice (p=0.47, ns). Data 

analysed by a repeated measures ANOVA, with genotype as a between subjects factor, 

stimulus duration as a within subjects factor and each individual mouse nested within 

genotype, with Tukey’s post hoc. Data are presented as mean ± SEM. *p<0.0001, vs all 

other stimulus durations (Tukey’s). Map2k7+/-: n=16 (9M, 7F), WT: n= 15 (8M, 7F). 
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5.4.4 Ketamine had a detrimental effect on 5-CSRTT performance with 

Map2k7+/- and WT mice  

Ketamine (20mg/kg) was administered 15 minutes prior to testing in the 5-CSRTT 

in order to determine whether this drug induces an altered behavioural response 

in Map2k7 deficient mice compared to their WT littermates: NMDAR antagonists, 

such as ketamine, are able to induce schizophrenia-like symptoms in healthy 

subjects (Breier et al., 1997; Krystal et al., 1994) as well as exacerbate symptoms 

in patients with schizophrenia (Lahti et al., 1995; Lahti et al., 2001; Malhotra et 

al., 1997), and administration of ketamine in rodents has been shown to produce 

some symptoms of relevance to schizophrenia (van den Buuse, 2010).  

Ketamine administration significantly decreased % accuracy for WT mice but not 

Map2k7+/- mice (p=0.002, F(1,28)=11.54), although this difference was small (see 

Fig. 5.9a; WT baseline: 93.8 ± 0.8 % vs. WT ketamine: 90.3 ± 1.8 %). In a 

comparable way to Baseline performance, overall Map2k7+/- mice showed a trend 

towards an increased % accuracy with ketamine, compared to WTs, although this 

was not significant (p=0.06, F(1,28)=3.77). Ketamine had no significant effect on % 

omissions for both WT and Map2k7+/- mice (p=0.206, ns): % omissions remained 

elevated for Map2k7+/- mice compared to WTs (Fig. 5.9b; p<0.0001, F(1,26)=22.80). 

Inhibitory response control measures were altered after ketamine: premature 

responses increased overall (Fig. 5.9c; p=0.002, F(1,28)=12.24), but post hoc 

analyses indicated that the increase was significantly different between WT mice 

but not Map2k7+/- mice, and perseverative responses significantly increased 

overall following ketamine administration (Fig. 5.9d; p=0.006, F(1,28)=9.01). The 

number of errors of commission were significantly increased overall following an 

acute dose of ketamine (p=0.001, F(1,28)=14.30) and overall, Map2k7+/- mice made 

fewer errors of commission than WTs (p=0.006, F(1,28)=8.86; Fig. 5.9e). 

Measures of motivation levels showed some differences with ketamine. There was 

no overall effect on correct (Fig. 5.10a; p=0.864, ns) or incorrect (Fig. 5.10b; 

p=0.783, ns) response latencies; however, under the influence of ketamine, 

Map2k7+/- mice were significantly slower to make a correct response than WTs 

(Fig. 5.10a; p=0.002, F(1,28)=12.30), and Map2k7+/- mice remained, like at 

baseline, significantly slower to make an incorrect response than WTs (Fig. 5.10b; 

p<0.0001, F(1,28)=25.07). Reward collection latency slightly but significantly 

increased for Map2k7+/- mice but not WTs (Fig. 5.10e; genotype*session 
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interaction: p=0.007, F(1,28)=8.62): before ketamine administration, Map2k7+/- 

mice were quicker to collect the reward but following ketamine administration 

both WT and Map2k7+/- mice had similar reward collection latencies; however, the 

overall significant effect of genotype remained (p=0.006, F(1,28)=8.99). The total 

number of pokes throughout the session (Fig. 5.10c; p<0.0001, F(1,28)=26.75) and 

the number of magazine entries during the ITI (Fig. 5.10f; p=0.003, F(1,28)=10.40) 

increased for both groups of mice, although similar to at baseline, Map2k7+/- mice 

entered the magazine throughout the ITI more than WTs (Fig. 5.10f; p=0.041, 

F(1,28)=4.60). Ketamine did not affect the number of trials completed (Fig. 5.10d; 

p=0.532, ns).  
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Figure 5.9. Effects of an acute dose of ketamine on mouse performance in the 5-

CSRTT. Ketamine was administered at 20mg/kg, i.p. (a) Ketamine administration 

significantly decreased % accuracy for WT mice but not Map2k7+/- mice. (b) Ketamine 

had no significant effect on % omissions for both WT and Map2k7+/- mice. % omissions 

remained elevated for Map2k7+/- mice compared to WTs. (c) Ketamine significantly 
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increased premature responses for WT mice but not Map2k7+/- mice. (d) Perseverative 

responses significantly increased overall following ketamine administration. (e) The 

number of errors of commission were significantly increased overall following an acute 

dose of ketamine. Bar graphs: each bar represents the average of the last 5 days’ 

stable performance, as mean ± SEM. Box plots: Centre lines show the medians; box 

limits indicate the 25th and 75th percentiles as determined by R software; whiskers 

extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers 

are represented by circles. Data analysed by a three-way repeated measures ANOVA 

with daily session and ketamine treatment as within subject factors, genotype as a 

between subject factor and each individual mouse nested within genotype with 

Tukey’s post hoc. Lines between groups show the significance between those groups: 

*p<0.05, **p<0.01, ***p<0.001 (ANOVA); #p<0.05, ##p<0.01, ###p<0.001 (Tukey’s). 

Map2k7+/-: n=15 (8M, 7F), WT: n= 15 (8M, 7F). 
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Figure 5.10. Effects of an acute dose of ketamine on measurements of motivation 

in the 5-CSRTT. Ketamine was administered at 20mg/kg, i.p. (a) Under the influence 

of ketamine, Map2k7+/- mice were significantly slower to make a correct response than 

WTs, however, there was no effect of session. There was a significant effect of 

genotype overall. (b) Ketamine had no effect on incorrect response latency; Map2k7+/- 

mice remained significantly slower to make an incorrect response, similar to at 

baseline. (c) Ketamine increased the total number of nose pokes made throughout the 
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session for both groups of mice. (d) The total number of trials completed remained at 

almost maximum for both groups of mice under the influence of ketamine. (e) Reward 

collection latency slightly but significantly increased for Map2k7+/- mice but not WTs. 

Before ketamine administration, Map2k7+/- mice were quicker to collect the reward 

but following ketamine administration both WT and Map2k7+/- mice had similar reward 

collection latencies. (f) Ketamine significantly increased the number of magazine 

entries during the ITI. Overall, Map2k7+/- mice entered the magazine more times 

during the ITI than WTs. Centre lines show the medians; box limits indicate the 25th 

and 75th percentiles as determined by R software; whiskers extend 1.5 times the 

interquartile range from the 25th and 75th percentiles, outliers are represented by 

circles. Data analysed by a three-way repeated measures ANOVA with daily session 

and ketamine treatment as within subject factors, genotype as a between subject 

factor and each individual mouse nested within genotype with Tukey’s post hoc. Lines 

between groups show the significance between those groups: *p<0.05, **p<0.01, 

***p<0.001 (ANOVA); ##p<0.01 (Tukey’s). Map2k7+/-: n=15 (8M, 7F), WT: n= 15 (8M, 

7F). 

 

 

5.4.5 Map2k7+/- omissions deficit shows signs of being improved by 

minocycline 

Minocycline is a tetracycline antibiotic which is currently showing promise in 

clinical trials for treatment of the negative and cognitive symptoms of 

schizophrenia (Reviewed in Chaves et al., 2015). Overall, minocycline, 

administered for 7 days, improved the % omissions score for both Map2k7+/- and 

WT mice through the week so that by the 4th day of treatment there was a small 

significant effect of session, but by the 7th day of treatment there was a larger 

significant effect (effect of session: p=0.006, F(3,80)=4.53), suggesting 

improvement as minocycline treatment goes on. By the 7th day of treatment, the 

significant genotype difference from baseline had disappeared (Fig.5.11; ns, 

p>0.05). Furthermore, mice committed fewer omissions in the 5-CSRTT by the 7th 

day of minocycline treatment than they had ever achieved before the treatment 

(from 16.9 ±1.7 at baseline compared to 11.8 ±2.9 by the 7th day of minocycline 

treatment).  
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5.4.6 Map2k7+/- mice display a deficit in ability to sustain attention that is 

not alleviated by minocycline treatment 

For each daily session, the number of omissions, commission errors or correct 

responses performed by each mouse in the first 20 trials they completed were 

subtracted from those performed during the final 20 trials to give a difference 

score that shows the extent to which performance for each mouse declines with 

session progress, which is known as a “vigilance decrement” (Parasuraman et al., 

1987; Robbins, 2002). For omission and commission errors, a more positive score 

indicates a larger vigilance decrement. For correct responses, a more negative 

score indicates a larger vigilance decrement. On average, Map2k7+/- mice show a 

vigilance decrement compared to WT mice (who did not) at baseline, manifesting 

as a significantly higher increase in the number of omissions at the end of each 

session than the beginning, compared to WT mice (p=0.012, F(1,184)=6.51) (Fig. 

5.12a). Minocycline improved the number of omissions difference score by the 7th 

day of treatment overall, whilst, again, removing the statistical significance 

between genotype groups (Fig. 5.12a) (p=0.009, F(2,184)=4.79). At 4 days’ 

minocycline treatment, again, it appeared to have an intermediate significance 

level, as if the mice are improving over time with minocycline treatment. Like % 

accuracy seen at Baseline (Fig. 5.6a), the % accuracy difference scores were 

similar in WTs and HZs (no effect of genotype: p=0.826, ns). Surprisingly, all mice 

showed a significantly increased vigilance decrement in this measurement on the 

7th day of minocycline treatment as compared to Baseline (p=0.008, F(2,184)=4.92) 

(Fig. 5.12b). This was also true for the number of incorrect responses difference 

score: there was no significant effect of genotype (p=0.455, ns) but there was a 

significant effect of session (p=0.001, F(2,184)=7.84) (Fig. 5.12c).  
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Figure 5.11. Map2k7+/- omissions deficit shows signs of being improved by 

minocycline. Overall, minocycline, administered for 7 days (Mino 7), improved the % 

omissions score for both Map2k7+/- and WT mice by the 7th day of treatment, by which 

time the significant genotype difference at baseline had disappeared. The 4th day of 

minocycline treatment (Mino 4) showed intermediate significance between baseline 

and the 7th day of treatment. Mice received 81.6mg/kg/day minocycline on average. 

Data analysed by a three-way repeated measures ANOVA with daily session and 

minocycline treatment as within subject factors, genotype as a between subject 

factor and each individual mouse nested within genotype with Tukey’s post hoc. Data 

presented as mean ± SEM. #p<0.05, ##p<0.01, ###p<0.001 (Tukey’s). Map2k7+/-: n=16 

(9M, 7F), WT: n= 15 (8M, 7F). 
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< Figure 5.12. Map2k7+/- mice display a sustained attention deficit compared to 

WT mice. (a) Map2k7+/- mice exhibit a significantly higher increase in the number of 

omissions at the end of each session than the beginning, compared to WT mice. 

Minocycline improved the number of omissions difference score by the 7th day of 

treatment (Mino 7) overall, whilst, again, removing the statistical significance 

between genotype groups. (b) Like % accuracy as seen at Baseline (Fig. 5.6a), the % 

accuracy difference scores were similar in WTs and HZs (no effect of genotype: 

p=0.826, ns). All mice showed a significantly increased vigilance decrement in this 

measurement on the 7th day of minocycline treatment as compared to Baseline. (c) 

This was also true for the number of incorrect responses difference score: there was 

no significant effect of genotype but there was a significant effect of session. The 4th 

day of minocycline treatment (Mino 4) showed intermediate significance between 

baseline and the 7th day of treatment. Mice received 81.6mg/kg/day minocycline on 

average. Data analysed by a three-way repeated measures ANOVA with daily session 

and minocycline treatment as within subject factors, genotype as a between subject 

factor and each individual mouse nested within genotype with Tukey’s post hoc. Data 

presented as mean ± SEM. Lines between groups show the significance between those 

groups: *p<0.05 (ANOVA); ##p<0.01 (Tukey’s). Map2k7+/-: n=16 (9M, 7F), WT: n= 15 

(8M, 7F). 
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5.4.7 Map2k7+/- mice are more varied in their response times than WT mice 

that is not altered by minocycline treatment 

Intra-individual reaction time variability (IIV) is a measure of variability in 

response times of a subject carrying out a task over the course of a single session, 

thus quantifying short-term fluctuations in an individual’s performance, and gives 

an indication of the stability of cognitive processing (Kanai & Rees, 2011). IIV is 

perturbed in a number of neuropsychiatric disorders including schizophrenia 

(Geurts et al., 2008; Kaiser et al., 2008). We assessed IIV by measuring the 

variability of reaction times of each mouse to make a correct and incorrect 

response over the course of each daily session for every day of Baseline (stable) 

performance. Interestingly, Map2k7+/- mice show significantly higher variability in 

their reaction times when making incorrect responses (Fig. 5.13a; p=0.034, 

F(1,125)=4.58) but not when making correct responses (Fig. 5.13b; p=0.491, ns). 

This effect was maintained when looking at group reaction time variability, 

averaged for each mouse over the course of the vITI training, including the 5 days’ 

stable performance, i.e. Sessions 1-12: see Fig. 5.7 (Fig. 5.13c, d): incorrect 

response times of Map2k7+/- mice vary significantly more on a day-to-day basis 

than WTs (Fig. 5.13c; p=0.049, F(1,4)=6.43) and group reaction time variability for 

correct responses remained the same for all mice (Fig. 5.13d; p=0.453, ns). 

Minocycline did not have a significant effect on the standard deviations of either 

correct or incorrect response times of mice compared to baseline performance 

(Fig. 5.13a, b). 
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Figure 5.13. Map2k7+/- mice show more unstable cognitive processing than WT 

mice. Map2k7+/- mice display a higher intra-individual reaction time variability for (a) 

incorrect, but not (b) correct, response times than WT mice throughout Baseline that 

was not significantly alleviated by minocycline treatment. Increased variability also 

occurred for Map2k7+/- mice compared to WTs on average on a day-to day basis, seen 

during training to a vITI and Baseline performance for latency to (c) incorrect but not 

(d) correct responses. (See Figs. 5.7 c and a to visualise this). a and b represent each 

individual mouse’s IIV; c and d represent the standard deviations of each group over 

the course of the last 5 days’ stable performance (Baseline). The 4th day of minocycline 

treatment (Mino 4) showed intermediate significance between baseline and the 7th 

day of treatment. Data were analysed by a two-way repeated measures ANOVA with 

daily session as a within subjects factor, genotype as a between subjects factor, with 

each individual mouse nested within genotype (data from a and b), or as a one-tailed 

t test between genotypes (data from c and d). Centre lines show the medians; box 

limits indicate the 25th and 75th percentiles as determined by R software; whiskers 
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extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers 

are represented by circles. Lines between groups show the significance between those 

groups: *p<0.05, **p<0.01 (ANOVA or one-tailed t test). Map2k7+/-: n=16 (9M, 7F), WT: 

n= 15 (8M, 7F). 
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5.5 Discussion 

5.5.1 Map2k7+/- mice display a variety of different attentional deficits in 

the 5-CSRTT 

Map2k7+/- mice show attentional deficits in accordance with those seen in 

psychiatric patients carrying out similar tasks, some of which shows signs of being 

alleviated by minocycline. Additionally, throughout training in this experiment, 

all mice appeared to be using a temporal strategy (reported previously: Nikiforuk 

& Popik, 2014) which was prevented post-training by utilising a variable ITI. 

Finally, ketamine administration had a detrimental effect on performance, but 

did not appear to disrupt attentional performance specifically, or to exacerbate 

deficits seen in Map2k7+/- mice. 

5.5.2 Training 

Map2k7+/- mice took the same number of sessions and trials to reach criterion than 

WT mice, which allows the interpretation of results post-training to be 

unconfounded. When their training regime switched from a fixed ITI to variable 

ITI, the performance of all mice was worsened. This is expected if mice were using 

a temporal strategy as explained in Humby et al. (1999) and Bruin et al. (2006): 

mice have learned when they should begin to pay attention, as paying attention 

before the 5 second ITI will not have any beneficial effect on results. As the 

variable ITI spanned a range that was above and below the 5-second fixed ITI, the 

mice were caught out, reflected by their worsened performance. This behaviour 

is similar to rats in Nikiforuk & Popik (2014) when introduced to a variable ITI, 

who showed increased % omissions and correct response latency.   

Map2k7+/- mice missed more trials than WTs over the two sessions (worse 

performance) but made fewer premature responses than WT mice (less impulsive; 

Robbins, 2002). Also, WT mice completed significantly fewer trials with the vITI 

session compared to the fITI session whereas the Map2k7+/- mice did not (thus 

appearing less affected by the change in ITI length). The fact that Map2k7+/- mice 

are performing better than WT controls is not expected. It may be because they 

are hyperactive compared to WTs (see Chapter 4), however, their performance 

presumably would only have a detrimental effect on results if they were worse 

than WTs with respect to behaviour following the change in ITI length, so this is 

probably not a cause for concern regarding interpretation of results post-training.  
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From this point on the mice are now required to pay attention across the course 

of each session because stimuli appearances will be unpredictable. The 

detrimental effect of the variable ITI appeared to only last for a single session, 

showing how quickly the mice can adapt and change their strategy (see line graphs 

in Fig. 5.6 and 5.7). It is beneficial to have the vITI as the standard as this verifies 

that it is attention being measured as opposed to the ability to keep to time. 

 

5.5.3 Map2k7+/- mice display an attentional deficit 

Once stable performance had been attained, attentional performance and 

motivation parameters were looked at as a whole rather than as singular 

parameters, in order to determine whether Map2k7+/- mice exhibited a deficit. 

Accuracy in the 5-CSRTT was unimpaired in Map2k7+/- mice, indicating that they 

are able to acquire the basic principles of the task to normal levels of 

performance. Equally, there was no evidence that these mice showed increased 

levels of impulsivity (premature responses) or compulsivity (perseveration). 

Response latencies (with the exception of incorrect response latencies, discussed 

below), together with the number of magazine entries throughout the ITI, 

indicated that they had good motivation to perform the task. Strikingly, there was 

a very specific deficit in that rates of missed responses were substantially raised. 

The % omissions deficit showed signs of diminishing over time (Fig. 5.6c) and it is 

possible that if the mice had been trained for longer on this task that the number 

of omissions in WT and Map2k7+/- mice may have eventually reached the same 

level. However, the deficit remains for some length of time which could 

reasonably be attributed to a lack of attention, as long-term repetition of the 

same task could tap into other domains such as long-term habit formation. It is 

also arguable that rodents (and humans) can learn to pay attention.  

This combination of results (increased omissions, good accuracy and faster 

response latencies) suggests that Map2k7+/- mice are unable to maintain the same 

levels of attention as WT littermates, despite the fact they appear to be highly 

motivated and understand how to carry out the task (Humby et al., 1999; Robbins, 

2002). Changes in accuracy levels as opposed to omissions are frequently looked 

at as the main measure of attentional function in the 5-CSRTT; however, several 

studies confirm that increased omissions with the absence of an accuracy deficit 

probably result from stimulus detection failures as a consequence of inattention, 
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so long as motoric / motivational impairments can be ruled out (Cordova et al., 

2006; Fletcher et al., 2007; Inglis et al., 2001; Risbrough et al., 2002; Tzanoulinou 

et al., 2015; Young et al., 2004, 2007). 

As well as an omission deficit, Map2k7+/- mice also display a worsened vigilance 

decrement that manifests as an increased amount of missed trials at the end of 

each session than at the beginning, compared to WT mice, whose performance did 

not decline over the course of a session. Patients with schizophrenia consistently 

show a similar vigilance deficit (Nestor et al., 1990, 1991; Hahn et al., 2012; 

Lysaker et al., 2010, Mass et al., 2000), as do other rodent models relevant to 

schizophrenia (Barnes et al., 2012, 2014). Young et al. (2013) went one step 

further and took the 5-choice Continuous Performance Test (a variation on the 5-

CSRTT) and back-translated it to humans so that the human version was based on 

the rodent version. They found patients with schizophrenia presented with 

increased omissions and no corresponding decrease in accuracy. The authors also 

found that the number of missed trials committed by patients with schizophrenia 

increased to a worse extent over time than healthy controls, along with increased 

variability in response times – remarkably similar to what is seen in the current 

study. The variability in response times is discussed further in the following 

paragraph.  

Map2k7+/- mice also showed another form of attention deficit: increased intra-

individual reaction time variability. IIV is a measure of variability in response times 

of a subject carrying out a task over the course of a single session. Originally seen 

merely as “noise” in experimental data, researchers now realise that it also 

reflects the stability of cognitive processing and short term fluctuations in 

performance over a session (Kaiser et al., 2008) and it has been suggested that 

IIV, as well as average task performance levels, are good predictors for real-world 

functioning (Stuss et al., 2003). IIV is consistently increased in schizophrenia 

(Kaiser et al., 2008), ADHD (reviewed in Kuntsi & Klein, 2012) and several other 

psychiatric/cognitive disorders (Musso et al., 2015; Camicioli et al., 2008; Geurts 

et al., 2008). Moreover, it is under investigation as a reliable predictor for those 

who are at risk of developing schizophrenia (Shin et al., 2013), ADHD (Henríquez-

Henríquez et al., 2015) and intrinsic deficits in cognitive function (Grand et al., 

2016). Here, we looked at the distribution of response times for each mouse over 

the course of each daily session to give a measure of IIV. Map2k7+/- mice have 
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increased IIV for incorrect responses but not correct responses. They also respond 

more variably on a day-to-day basis as a group when making incorrect responses 

compared to WT mice. IIV is an intriguing indicator of cognitive function because 

of its sensitivity, reliability and robustness across different tasks that involve 

reaction times (Kuntsi & Klein, 2012). Establishing the underlying neural 

mechanisms to increased IIV have been the focus of many studies which have 

shown that increased IIV is correlated with disruption of dopamine regulation in 

the PFC and subsequent increase of neural signal-to-noise (MacDonald et al., 2006, 

2009; Stefanis et al., 2005). Nevertheless, other neural systems, hitherto 

unexplored are likely to be involved. 

In addition to Map2k7+/- mice showing increased variability in making incorrect 

responses, they also show altered latencies in other measurements. They are 

quicker or similar in all other latency measurements recorded: Map2k7+/- mice are 

faster to collect and consume the reward and respond just as quickly as WT mice 

when making a correct response. As well as showing high motivation to complete 

the task, this set of results suggests that when the Map2k7+/- mice have noticed 

the stimulus, they are just as quick to respond correctly, but when they miss a 

stimulus (probably due to inattention), they have slower processing times than 

WTs before deciding to take a guess. This may manifest as increased, and more 

variable, incorrect response reaction times.  

Map2k7+/- mice also make an increased number of magazine entries during the ITI 

period compared to WTs. The ITI is the period of time after they have collected 

the reward (if they responded correctly), or after the time out period (if they 

responded incorrectly or missed the stimulus). Therefore, Map2k7+/- mice are 

showing signs of anticipating wrongly when they should receive a reward. Two 

possible explanations for this are either because they are applying an increased 

amount of salience to the reward, or that they “like” it more than WT mice. 

Previous studies in our lab have suggested that Map2k7+/- mice do not experience 

increased preference for sucrose (Thompson, 2013); Map2k7+/- mice may therefore 

apply more salience to the reward magazine than WTs. Furthermore, Map2k7+/- 

mice appear to exhibit greater entrainment to the light stimulus as they do not 

show decreased accuracy in conjunction with their increased % omissions (Amitai 

& Markou, 2010). Throughout any given trial, if they fail to detect the stimulus, 

instead of guessing which hole to poke (thus decreasing their % accuracy score), 
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they withhold responding and consequently present with a missed trial. The 

decreased numbers of commission errors made by Map2k7+/- mice is also indicative 

of this. Frequent and mistaken trips to the reward magazine, and strong 

entrainment to the light stimuli may both be examples of Map2k7+/- mice applying 

increased salience to some aspects of the task, which is interesting in relation to 

psychiatric disorders that include cognitive impairment, especially schizophrenia, 

because one of the symptoms in patients is applying too much salience to 

particular, often irrelevant, aspects of the environment (Kapur, 2003).  

5.5.4 Ketamine had a detrimental effect on Map2k7+/- and WT performance 

in the 5-CSRTT 

NMDAR dysfunction as a contributor to schizophrenia pathophysiology was 

proposed three decades ago (Javitt, 1987) and it was based on observations that 

NMDAR antagonists, such as ketamine, are able to induce schizophrenia-like 

symptoms in healthy subjects (Breier et al., 1997), as well as exacerbate 

symptoms in patients with schizophrenia (Lahti et al., 1995). Importantly, 

administration of ketamine to healthy human subjects induced attentional deficits 

in the form of increased omissions (missed responses) and commission errors 

(incorrect responses) in the CPT without affecting reaction times (Krystal et al., 

1994). 

Mice were given an acute dose of 20mg/kg ketamine 15 minutes prior to testing 

in the 5-CSRTT. Overall, ketamine showed signs of altering task latencies: 

Map2k7+/- mice made slightly slower correct response latencies and reward 

collection latencies compared to WT mice. However, incorrect response latencies 

were completely unaffected compared to baseline. Despite some alterations in 

some response latencies, all mice did not appear to have lost motivation to 

perform the task as their total nose pokes increased, along with number of 

magazine entries during the ITI (Map2k7+/- mice in particular for this measure) and 

the number of trials completed overall were unaffected. Performance-wise, 

ketamine was disruptive but not specifically for measurements of attention as % 

omissions were unaffected for both groups of mice. However, % accuracy 

decreased, and premature responses, perseverative responses and commission 

errors increased. Of these, % accuracy, premature responses and commission 

errors were less disrupted by ketamine in Map2k7+/- mice compared to WT mice. 
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In general, where ketamine administration in rodents has been previously 

reported, the worsening of performance in cognitive tasks appears inconsistent 

and not specific to any particular element of cognition (Amitai & Markou, 2010; 

Nikiforuk & Popik, 2014). However, in rats, administration of the NMDAR 

antagonist MK-801 consistently increases premature responses (Fletcher et al., 

2011; Higgins et al., 2003; Paine & Carlezon, 2009). One study (Oliver et al., 2009) 

administered ketamine in mice at 20mg/kg i.p. and tested in the 5-CSRTT 15 

minutes after, which is the same regime used here. The authors compared C57Bl/6 

mice to CD1 mice and found an increase in premature responses in CD1 mice but 

not C57Bl/6, and an increase in perseverative responding in C57Bl/6 but not CD1 

mice, as well as unaffected % omissions and % accuracy. In the current study there 

was an increase in premature responses in WT (C57Bl/6) but not in Map2k7+/- mice, 

increased perseverative responses in all mice, unaltered % omissions, but 

decreased % accuracy in WT mice. Comparison of these results highlights the fact 

that even different strains of the same species can present with differing or 

opposite results under the same conditions, and also highlights the differences 

that can occur under similarly controlled conditions in different laboratory 

environments, which may be what is occurring here. It is also possible that 

ketamine has un-reproducible effects because of relatively low affinity for the 

NMDAR (Amitai & Markou, 2010). Studying the effects of NMDA dysfunction on mice 

with disruption in a schizophrenia risk gene may benefit from using an agent that 

more potently antagonises NMDAR, such as MK801 (Wong et al., 1986). 

Further to this, acute, systemic administration of ketamine has been shown to 

increase glutamate release in the medial PFC, as well as increasing dopamine 

release (Lorrain et al., 2003). Acetylcholine is also increased in the PFC in 

response to acute ketamine administration in rodents, but not when under a 

repeated pre-treatment regime with ketamine (Nelson et al., 2002).  As 

monoaminergic, cholinergic and glutamatergic neurotransmission are closely 

interconnected with each other and are critically involved in cognitive functions 

(Amitai & Markou, 2010), it is perhaps not surprising that ketamine has varying 

effects on cognitive functions. It would be interesting to investigate the effects 

of administering ketamine in a chronic or sub-chronic way rather than acute 

administration on 5-CSRTT performance in Map2k7+/- mice. This regime has been 

used before in rats but not mice, and the authors showed differential deficits 
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between acute and repeated doses of ketamine, e.g. ketamine appeared to have 

a more drastic effect on incorrect responses when given acutely as opposed to 

repeated administration (Nikiforuk & Popik, 2014). Thomson et al. (2011) also 

found differential effects with acute PCP compared to repeated PCP 

administration in rats.  

Following an acute dose of ketamine, Map2k7+/- mice appear to be more distracted 

by obtaining a reward (nose poking more frequently, even when not relevant, and 

making more entries into the reward magazine when there is not reward there to 

collect) rather than focussing on the task, and they seem to be less affected by 

performance parameters related to attention. Despite nose poking prematurely 

and to an increased extent, being slower to respond to stimuli or a reward 

delivery, Map2k7+/- mice did not miss more trials than they did at baseline 

(although still to an increased extent compared to WT mice) but they did present 

with a modest decrease in % accuracy. Ketamine appears to have a slightly 

decreased effect overall in Map2k7+/- mice compared to WT mice for some 

parameters but not others, and ketamine disrupts certain aspects of performance 

in all mice. Future experiments (discussed above) could look into this further to 

verify whether this is a robust finding, or a variable effect of acute ketamine 

administration. On the whole, ketamine does not cause behavioural observations 

as might be expected based on results from patients with schizophrenia: it does 

not exacerbate previous deficits in Map2k7+/- mice (i.e. cause a further increase 

in % omissions), nor does it induce a specific attentional deficit in WT mice.  

5.5.5 Minocycline shows signs of improving some aspects of performance in 

the 5-CSRTT 

Minocycline is a semi-synthetic tetracycline antibiotic showing promise in current 

clinical trials for the treatment of the negative and cognitive symptoms of 

schizophrenia; importantly, it has shown ability to improve attentional deficits 

(Liu et al., 2014). It is an ideal candidate for schizophrenia treatment because it 

is already deemed safe for human consumption, and readily crosses the blood-

brain barrier (Zink et al., 2005). Minocycline was administered to Map2k7+/- mice 

for one week in their drinking water, with testing on the 5-CSRTT on days 4 and 7 

of treatment. Minocycline improved the % omissions score of the mice overall, but 

the Map2k7+/- mice in particular showed signs of continual improvement of their 

% omissions score throughout minocycline treatment, performing better on the 7th 
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day of treatment than they had ever performed beforehand. Although minocycline 

treatment did not have a significant effect on the IIV of Map2k7+/- mice, in the 

same way as it affected % omissions, the treatment improved performance of all 

mice overall with respect to the vigilance decrement, including having a particular 

influence on Map2k7+/- mice.  

As minocycline has previously been shown to improve attention deficits in human 

patients with schizophrenia (Liu et al., 2014), these results further warrant the 

refinement of Map2k7+/- mice as a model of attentional, and possibly other 

cognitive impairments because the ability to maintain and focus attention 

inevitably has an impact on performance in other cognitive domains.  

Minocycline has also been shown to improve reaction times in healthy volunteers 

in a sustained attentional task (Sofuoglu et al., 2011). Additionally, in a mouse 

model of relevance to schizophrenia produced by administration of an NMDAR 

antagonist, MK801, minocycline improved deficits in prepulse inhibition and visuo-

spatial memory (Levkovitz et al., 2007) and also improved phencyclidine-induced 

novel object recognition deficits in mice (Fujita et al., 2008). Also, in a 

developmental two-hit mouse model of schizophrenia, presymptomatic 

minocycline treatment was able to alleviate multiple behavioural abnormalities 

relevant to schizophrenia (Giovanoli et al., 2016). Despite minocycline having 

been shown to have beneficial effects in both healthy and pathological (cognitive 

deficits) human and rodent studies, the exact mechanism of action of minocycline 

is still unknown, although two main mechanisms have been proposed with relation 

to cognition: inhibition of activated microglia and/or enhancing glutamate release 

via NMDARs (Liu et al., 2014; Lisiecka et al., 2015). It is entirely conceivable that 

either, or a combination of both of these mechanisms are relevant in the current 

study because of the potential for them both to interact with the MKK7/JNK 

pathway. The JNK pathway is essential for pro-inflammatory functions of microglia 

(Waetzig et al., 2005) and NMDARs are located upstream of the MKK7/JNK 

pathway (Centeno et al., 2007), suggesting that altering microglia and/or NMDAR 

activation states via minocycline have potential to affect regulation of the 

MKK7/JNK pathway in order to produce a cognitive enhancing effect. In Chapter 

3, Western blotting of prefrontal MKK7/JNK pathway components from mice that 

have received 7 days’ worth of minocycline treatment in the same way as 

administered here are compared with mice that had standard drinking water and 
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discussed. Overall, there was no difference in protein levels of MKK7/JNK 

signalling pathway components with mice that had received minocycline and mice 

that had not; however, gaining knowledge of the mechanism of minocycline and 

how it has acted to improve attention in the current experiment will benefit from 

more sensitive methods of protein quantification and longer-term studies. In 

general, more molecular and clinical evidence on minocycline’s potential as an 

agent to improve cognition is needed. However, our data support the concept that 

this drug is effective in improving some aspects of attentional function. 

5.5.6 Conclusion 

The results presented here demonstrate the importance of MKK7/JNK signalling 

for attentional processes. Mice haploinsufficient for the Map2k7 gene show 

deficits in attention, a core cognitive impairment in many neuropsychiatric 

diseases (Millan et al., 2012) and show signs of improvement in attentional 

performance with minocycline treatment. Importantly, dissection of attentional 

processes revealed that Map2k7+/- mice present with impaired vigilance/sustained 

attention as evidenced by a significantly higher (than WT) increase in the number 

of omissions at the end of each test session compared to the beginning. 

Additionally, Map2k7+/- mice exhibit impaired cognitive stability, as evidenced by 

significantly more varied response times over the course of a test session than WT 

mice when attending to incorrect responses, which is highly relevant to ‘real-

world’ functioning. Hence, the data may be important for understanding the 

mechanisms of cognitive dysfunction, and highlight the possibility of treating some 

of these deficits with minocycline. 
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Chapter 6 The Rodent Gambling Task 

6.1. Introduction 

The ability to make sound decisions that incorporate aspects of emotion, memory 

of past events and projections to future events is a crucial element of normal 

cognitive functioning. Patients with schizophrenia have altered decision-making 

abilities, evident from behaviour in real-world circumstances. For example, many 

patients make poor decisions regarding their treatment-taking and in spending 

money (thus are more likely to have financial problems). Moreover, many exhibit 

addictive behaviours and are involved with interpersonal conflicts (Fond et al., 

2013). One way in which decision-making abilities are assessed in patients with 

schizophrenia under laboratory conditions is by the Iowa Gambling Task (IGT). The 

IGT is a touchscreen-based task originally developed by Bechara et al. in 1994 to 

detect decision-making impairments in patients with frontal lobe damage. 

Subjects are presented with $2000 of fake money and four virtual decks of cards, 

each associated with a different monetary win/loss probability, and they are 

instructed to try and win as much money as possible in the time available by 

virtually “turning over” cards from the different decks. 100 “turns” generally 

occur per session, but the participants are not told this. Two decks have small, 

frequent wins and small losses, making them advantageous overall, whereas the 

other two decks give higher wins that occur less often but have larger 

consequential loss. Healthy participants tend to first sample all of the decks and 

by about the 50th turn, they have learned which decks are advantageous and 

mainly turn over these cards (i.e. small, frequent wins with small losses). The IGT 

has been used extensively in clinical and research studies to investigate the 

decision-making impairments seen in neurological disorders such as pathological 

gambling behaviour and addiction, obesity, obsessive compulsive disorder, 

depression, psychopathy, bipolar disorder and schizophrenia (Li et al., 2010).  

The brain regions required for the IGT are also areas which are highly dysfunctional 

in schizophrenia (e.g. the PFC; Bechara et al., 1999; Li et al., 2010), and 

dysfunction in the ability to make sound decisions is one of the core cognitive 

symptoms of schizophrenia; therefore, patients with schizophrenia have been well 

studied in the IGT although they present with conflicting results. Some studies 

show that patients with schizophrenia make more disadvantageous decisions 
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(Cella et al., 2012; Fond et al., 2013; Kester et al., 2006; Sevy et al., 2007; 

Shurman et al., 2005); some studies show that patients on atypical drugs make 

poorer decisions than patients on typical drugs (Beninger et al., 2003), and some 

show there is no difference in decision-making between patients and healthy 

controls (Evans et al., 2005; Rodríguez-Sánchez et al., 2005). This lack of 

consensus is thought to reflect the complexity and heterogeneity of schizophrenia 

cases (chronic or first episode schizophrenia, schizoaffective disorder, etc), 

including the fact that patients have different dominating symptoms (Bark et al., 

2005), and also because patients are receiving differing medication (Beninger et 

al., 2003). However, even this concept is debatable; for example, Shurman et al. 

(2005) found no correlation between severity of schizophrenia or treatment type 

with performance in the IGT.  

An aspect of performance in the IGT that appears to have consensus in the 

literature is that patients with schizophrenia do not improve over the course of 

the task. Healthy participants will begin by picking cards from each deck and then 

quite quickly begin to preferentially pick the advantageous decks (i.e. the two 

decks with small, frequent wins and small losses), but patients with schizophrenia 

take longer to adopt this strategy (Kester et al., 2006; Kim et al., 2016; Kim et 

al., 2009; Shurman et al., 2005; Turnbull et al., 2006). This slowness to alter their 

responding based on negative feedback is thought to be caused by increased 

perseverative behaviour, a well-established trait in patients with schizophrenia 

and frontal lobe damage (Pantelis et al., 1999). Perseverative behaviour in 

schizophrenia and the IGT was further investigated by Turnbull et al. in 2006, who 

created a version of the IGT where reward/punishment contingencies associated 

with each deck were altered over the course of a session, thus investigating 

adaptive decision-making. Patients with schizophrenia that had high negative 

symptoms scores, despite performing just as well as controls in learning the 

normal IGT, showed difficulty in shifting their responses when the 

reward/punishment contingencies of the cards were completely reversed. This is 

an example of perseverative behaviour: the over-reliance on decks that had 

previously been learned to be favourable (Turnbull et al., 2006).  

A rodent version of the IGT (rGT) has been developed (reviewed in Van Den Bos, 

2014), which, along with the IGT for humans, has been validated for cross-species 

investigation of cognition within RDoC/CNTRICS cognitive constructs (Cope et al., 
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2016). In a comparable way to the IGT, the rGT presents mice with four options 

on a touchscreen apparatus that differ in frequency and magnitude of 

reward/punishment possibilities. Rodents learn the different contingencies over a 

lengthy training period, and once learned, have shown to consistently stick to the 

advantageous choices and avoid the disadvantageous choice (i.e. the choice which 

has the least frequent wins but has the largest reward amount) in rats (Zeeb et 

al., 2009) and mice (van Enkhuizen et al., 2013) in the corresponding 5-hole 

operant box version. Although the rGT differs from the human task in that it is 

acquired over an extensive training period as opposed to a single session, neural 

circuitry in both rodent and human versions of the gambling task are reported to 

be similar, requiring the PFC, striatum and amygdala (de Visser et al., 2011), 

giving it potential to be a good translational task for measuring decision-making 

abilities in rodent models of disorders involving deficits in decision-making, 

including schizophrenia. 

6.2. Aims 

In the current study, the aim is to investigate the role of the MKK7/JNK pathway 

in decision-making processes by studying Map2k7+/- mice and their WT littermates 

in the rGT and their ability to learn the rGT in the touchscreen apparatus. It will 

also be investigated whether mice make optimal decisions in the rGT and, in a 

comparable way to Turnbull et al. (2006) with the IGT, to adjust responding when 

rGT choice contingencies are switched. The effects on performance of an acute 

dose of amphetamine will also be investigated. Acute amphetamine 

administration produces an enhanced dopaminergic response in patients with 

schizophrenia compared to healthy controls (Laruelle et al., 1996), and disrupts 

performance in the 5-hole operant box version of the rGT by causing rodents to 

opt for less advantageous options (Zeeb et al., 2009). Based on this, it is 

hypothesised that Map2k7+/- mice will show an altered behavioural response to 

amphetamine compared to WT mice, and that choice behaviour for all mice may 

be disrupted. 
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6.3. Materials and Methods 

6.3.1 Subjects 

12 Map2k7+/- mice (6 Male, 6 Female) and 10 wildtype (WT) (5 Male, 5 Female) 

littermates were used (two WT mice were removed from the experiment due to 

constant abnormal repetitive movements). Mice were 15-16 weeks of age at the 

start of the study, male mice weighing 31.1 ± 0.49g on average and female mice 

weighing 23.5 ± 0.22g on average. All mice had experienced no previous 

procedures (naïve to drugs and testing), and were pair-housed in a temperature 

and humidity-controlled room (21°C, 45–65% humidity) with a reversed 12-hour 

light/dark cycle (lights off at 07:00). Mice were food restricted to 85-90% of their 

individual free-feeding weight and had ad libitum access to water throughout the 

experiment. Testing was carried out daily between 08:00 and 13:00, Monday to 

Friday and in accordance with the Animals (Scientific Procedures) Act 1986.  

6.3.2 The Rodent Gambling Task (rGT) 

In the rGT, mice are able to freely choose between four options that differ in 

magnitude and ratios of reward/punishment possibilities (Choices 1-4; see Fig. 

6.3). Mice undergo up to 100 trials per daily session, each thirty-minutes long. 

Overall, Choice 2 is the most advantageous option and Choice 4 is the least 

advantageous, because they give the most and least reward per unit time, 

respectively (see Fig. 6.3). Choice 1 is the next most advantageous option, 

followed by Choice 3. Mice were trained on the rGT until they reached stable 

performance. Manipulation 1 then occurred (see below) until stable performance 

was re-attained and then mice underwent Manipulation 2. 

Once stable performance had been once again re-attained, D-Amphetamine 

(1.5mg/kg, 2ml/kg i.p.) was administered 5 minutes prior to re-testing. 

A timeline of the whole experimental procedure is given in Fig. 6.1. 
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Figure 6.1. A timeline showing the experimental procedure. *42 sessions were 

analysed for Manipulation 2, however, 56 sessions were actually run. This is because the 

mice underwent one session per day for the first 28 sessions and two sessions per day for 

the next 14 days, but only the morning sessions were analysed when mice were run twice 

per day. The reason for this was to speed up learning, and as time of day may have an 

influence on task parameters the afternoon sessions were not included in the analysis 

 

6.3.3 Apparatus 

Mice were tested in four identical touchscreen operant chambers (Fig. 6.2) within 

a sound and light attenuating box with a silent extractor fan (80614; Bussey-

Saksida Mouse Touchscreen Chamber; Campden Instruments, UK). Mice were 

singularly always tested in the same operant box and were allocated a box 

randomly; however, a check was made to ensure that no experimental group 

(genotype or sex) would exclusively be carrying out the rGT at the same time of 

day or in a particular operant box. Each chamber was trapezoidal in shape (narrow 
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end: 4.6cm, wide end: 23.8cm, height: 23cm) and contained a liquid reward 

dispenser at the narrow end, a house light, a tone generator, a perforant metal 

floor and a touchscreen at the wide end. During testing, the touchscreen was 

covered by a black Plexiglas mask with five square windows (3.5 x 3.5cm), each 

separated by 0.4 cm and located at a height of 3.6 cm from the floor of the 

chamber. Through these windows, visual stimuli in the form of white squares the 

same size as the windows in the mask could be shown on the screen; however, the 

centre square was never lit. Infra-red light beams were positioned at the rear 

(close to the food magazine) and front (close to the touchscreen) of each box and 

allowed quantifying the horizontal locomotor activity of each animal. In addition, 

infra-red beams covered the area very close to the touchscreen so that the mice 

only had to come into close proximity to the screen rather than actually touch the 

screen in order for it to be sensed, so that sniffing behaviour was also counted. 

The operant chambers were controlled by ABET II Touch software on the Whisker® 

operating system (Campden Instruments, UK). 
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Figure 6.2. (a) The touchscreen operant chamber and (b) a bird’s eye schematic 

diagram of the touchscreen layout. (a) In order to focus the rodents’ attention towards 

particular parts of the touchscreen, most of it is covered by a black Plexiglas mask. This 

leaves 5 square windows, the middle of which is never used in the task. (b) The shape of 

the chamber is such that it focusses rodents’ attention towards the screen and the 

reward magazine but does not have any corners in which the mice can spend time 

investigating rather than focussing on the task (see the 9-hole operant box, Fig. 5.1 for 

comparison).  Mice initiate each trial by entering the reward magazine; when they turn 

around they are faced with the whole screen, which enables the mice to make an 

unbiased selection throughout the task. The food magazine delivers strawberry milkshake 

(Yazoo®) when they “win” the trial, the amount varies depending on which choice they 

select. 

 

6.3.4 Habituation and training 

Prior to the beginning of each subjects’ test session, the subject was transported 

to the test room in the home cage and allowed to acclimatize for thirty minutes 

before testing commenced. Mice were fed half an hour after their session had 

completed to ensure that each mouse had a similar level of motivation to 

complete the task each day. Inner chambers were cleaned with diluted 

antibacterial spray after the testing of each mouse to eliminate odour cues from 

previous mice. All testing was carried out with the main “house” light in the 

operant box turned off. 

Food 
Magazine

Touchscreen
23.8cm

4.6cm

17cm

a b
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During the initial box habituation/training, the mice are gradually introduced to 

the operant boxes and learn to touch the screen in order to obtain reward. During 

the first session, a mouse was placed in their allocated operant box for 20 minutes. 

They received an initial “free” reward of 150µl strawberry milkshake (SM; Yazoo®) 

and the tray light was illuminated. Once the mouse had entered and left the food 

dispenser, the reward tray light was turned off. There was a 10s delay before the 

dispenser light was turned on and SM was then delivered for 280ms (7µl). If the 

mouse was in the reward tray at the end of the 10s delay, an extra 1s was added 

to the delay. The procedure was repeated until the end of the session. 

This procedure was repeated the next day but with a 40-minute session instead of 

20 minutes, ensuring that all mice had consumed all the strawberry milkshake.  

Next, the mice were trained to touch the screen and were in the box for 30 

minutes or until they had completed 100 trials. The stimulus (a white square) was 

displayed psuedorandomly in one of the 4 windows (grid positions 1, 2, 4 or 5) 

whilst the others remained blank. After 30 seconds, the stimulus was removed and 

7µl reward was delivered, accompanied by illumination of the food dispenser light, 

which turned off when the mouse entered the dispenser to collect the reward. 

Exiting the reward dispenser automatically triggered the inter-trial interval (ITI) 

period of 5 seconds, at the end of which a stimulus was presented in one of the 

grid squares. A stimulus would not appear in the same grid square more than 3 

times in a row. If the mouse was to touch the stimulus whilst it was illuminated, 

the stimulus was removed and 3x 7µl SM reward was given along with illumination 

of the dispenser light. This session occurred once, and then the same procedure 

was repeated for the following five sessions, apart from a stimulus appeared in 

every one of the four grid squares (1, 2, 4 and 5) and 3x 7µl reward was only 

delivered when the mouse touched one of the stimuli. No reward was given if the 

mouse touched grid position 3 where no stimulus was displayed. If a mouse 

touched the grid during the ITI period (i.e. before the stimulus was presented), 

this resulted in a premature response to be recorded, followed by a time out of 5 

seconds. 

The next sessions were aimed at building on the training for the mouse to touch 

the touchscreen at every trial and were still run in darkness, but illumination of 

the main house light for 5 seconds occurred if the mouse made an incorrect 
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response (touching an unlit square), or missed the stimulus and did not respond 

(omission). Each session began with a delivery of 7µl SM and illumination of the 

dispenser light. Once the mouse had consumed the reward and exited the 

dispenser, the ITI of 5 seconds began and a stimulus appeared psuedorandomly in 

one of the grid positions (1, 2, 4 or 5), and the limited hold (LH) period began: 

the period in which the mouse has to respond. If the mouse touched the stimuli, 

it was recorded as a correct response and was given 7µl SM. If the mouse did not 

respond within the LH period, it was recorded as an omission and no reward was 

given, along with illumination of the main house light for 5 seconds (time out 

period; TO). After the TO, the mouse had to make an entry into the reward 

dispenser to start the next trial: the dispenser light was turned on to indicate this 

period. As these sessions progressed from 1-4, the length of time for which the 

stimulus is lit (stimulus duration; SD) and LH period were decreased from 30 - 10 

and 37 – 10 seconds, for SD and LH, respectively. Mice were moved on individually 

to the next stage when they achieved criteria of >80% accuracy and <20% omissions 

for two consecutive sessions. Mice that had completed the 4th stage were rested 

without daily training, whilst mice not at criteria of stage 4 continued. Mice on 

rest were given a reminder training session twice per week and if they fell below 

criteria on a reminder session, they were trained daily until criteria was re-

attained. This training regime is encouraged for operant-based training (Oomen 

et al., 2013) because “over”-training the mice that learn the task more quickly 

than others could increase variability in performance and have confounding 

effects on the interpretation of the results. These stages of training took 49 

sessions in total.  

6.3.5 The full rGT  

Next, the mice were given four sessions to learn each of the reward-punishment 

contingencies. These sessions lasted for 30 minutes or 100 trials, whichever came 

first. The contingencies were counterbalanced across mice so that each quarter 

of mice were trained on one of four different combinations of locations of 

contingencies: A= Choice 1, 4, 2, 3; B=Choice 2, 1, 3, 4; C= Choice 3, 2, 4, 1; D= 

Choice 4, 3, 1, 2 in grid squares 1, 2, 4 and 5, respectively. The mice were forced 

to choose a particular square (i.e. only one square was lit at each trial) so that 

each mouse had equal prior exposure to each of the contingencies. A white square 

was presented in one of the four stimulus locations and the LH and stimulus 
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duration length were fixed at 10 seconds. Incorrect responses (not at the lit 

square) resulted in no action but were recorded. Failure to respond within the LH 

period was recorded as an omission, and then the stimulus was removed. A correct 

response at each square resulted in the following (see also Fig. 6.3): 

• Choice 1: Rewarded 90% of the time with 1 x 7µl strawberry milkshake; punished 

10% of the time with a 5s timeout. 

• Choice 2: Rewarded 80% of the time with 2 x 7µl strawberry milkshake; punished 

20% of the time with a 10s timeout. 

• Choice 3: Rewarded 50% of the time with 3 x 7µl strawberry milkshake; punished 

50% of the time with a 30s timeout. 

• Choice 4: Rewarded 40% of the time with 4 x 7µl strawberry milkshake; punished 

60% of the time with a 40s timeout. 

 

Choice 2 delivers the optimum reward per unit time (411 SM deliveries in 30 

minutes). 

If the trial was rewarded (win), then the square was removed, the appropriate 

number of SM deliveries occurred and the tray light was illuminated. Once the 

reward had been consumed and the mouse had left the reward dispenser, the ITI 

period began and the dispenser light was extinguished. 

If the trial was punished (loss) then the house light was turned on, the stimuli 

were removed and the square touched flashed (0.2s on and then 0.2s off) for the 

TO period of 10 seconds. At the end of the TO, the house light was turned off, the 

tray light was illuminated and the flashing image was removed. The next trial was 

initiated when the mouse had entered and left the reward dispenser (which 

extinguishes the light), by starting the next ITI period. 

A premature response was recorded when a touch was made in one of the response 

grid areas (1-5) during the ITI and resulted in a TO of 5 seconds with the house 

light turned on. At the end of the TO the house light was switched off and the tray 

light illuminated. The next trial was initiated when the mouse entered and left 

the reward dispenser by starting the next ITI period.  

After four sessions of exposure to the different reward contingencies, mice were 

moved onto the full task where they had the option to pick whichever square they 
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liked at each trial. Everything remained the same as for when they were forced 

to pick a choice, apart from all four of the stimulus squares appeared at each trial 

in grid positions 1, 2, 4 and 5 instead of just one. Mice were trained on this free 

choice version until they reach stable performance; i.e., they were consistent in 

their choice pattern for five consecutive days, which took 13 sessions in total. 

 

 

 

Figure 6.3. Schematic diagram depicting the reward/punishment contingencies 

associated with each choice on the touchscreen. Choice 2 is the most advantageous 

option and Choice 4 is the least, according to the number of SM reward deliveries 

available per unit time. Considering the probabilities and extent of the punishment 

period, if chosen exclusively within the 30-minute period, it is possible for mice to obtain 

295 SM reward deliveries with Choice 1, 411 with Choice 2, 135 with Choice 3 and 99 

with Choice 4.  
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6.3.6 Manipulation 1 

Choice 1 and 2 were optimal choices (2 the most optimal) and 3 and 4 were the 

least optimal (4 the least optimal) throughout training to stable performance. The 

position of the two more similar choices (1 and 3) were switched in Manipulation 

1, making the contingency groups resemble the following: A= Choice 3, 4, 2, 1; B= 

Choice 2, 3, 1, 4; C= Choice 1, 2, 4, 3; D= Choice 4, 1, 3, 2 in grid squares 1, 2, 4 

and 5, respectively (see Fig.6.4 and Table 6.1 for an overview of each of the 

manipulations). Mice were tested on Manipulation 1 until they reached stable 

performance, which took 6 sessions in total.  

 

6.3.7 Manipulation 2 

Mice were then subjected to a second manipulation, where Choice 2 and 4 (most 

vs. least optimal) were switched, in addition to adjustment of the punishment 

period for Choice 3 and 4: it was decreased from 20 and 40 seconds to 15 and 20 

seconds, respectively (Fig. 6.4 and Table 6.1). The contingency groups for this 

manipulation resembled the following: A= Choice 3, 2, 4, 1; B= Choice 4, 3, 1, 2; 

C= Choice 1, 4, 2, 3; D= Choice 2, 1, 3, 4 in grid squares 1, 2, 4 and 5, respectively. 

Switching of the two more extreme options could be considered an “easy” switch 

for the mice to learn and it could be hypothesised that mice would learn this 

switch more quickly than with Manipulation 1, as this is the second time they have 

had to switch. By making the punishment less extreme for the disadvantageous 

options 3 and 4, we are able to assess the sensitivity of mice to the punishment 

period length rather than sensitivity to reward amounts obtained per choice, or 

probability of reward-punishment (this was unchanged). Mice were tested on 

Manipulation 2 until they reached stable performance, which took 56 sessions. 
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Figure 6.4. Schematic diagram depicting the nature of the manipulations. In 

Manipulation 1, the location of Choices 1 and 3 were switched. In Manipulation 2, the 

location of Choices 2 and 4 were switched, as well as decreasing the punishment periods 

for Choices 3 and 4. 

 

 

Condition  

Grid 

Position 

Choice 

# 

Reward 

(x7ul SM) 

% 

Punished 

Punishment 

length (s) 

Baseline 1 1 1 10 5 

Baseline 2 4 4 60 40 

Baseline 4 2 2 20 10 

Baseline 5 3 3 50 30 

Manipulation 1 1 3 3 50 30 

Manipulation 1 2 4 4 60 40 

Manipulation 1 4 2 2 20 10 

Manipulation 1 5 1 1 10 5 

Manipulation 2 1 3 3 50 15 

Manipulation 2 2 2 2 20 10 

Manipulation 2 4 4 4 60 20 

Manipulation 2 5 1 1 10 5 

Table 6.1. Choice contingencies in each grid position for Baseline and Manipulations. 

Highlighted in bold are the alterations made when compared to Manipulation 1. 

 

 

P1P2P3 P4

40 s30 s 10 s 5 s

Manipulation 1

P1 P2P3 P4
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Manipulation 2

Punishment 

Period

Switched Choices 1 and 3
Switched Choices 2 and 4, 

decreased punishment period 
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6.3.8 Amphetamine Challenge  

Once stable performance had been re-acquired following Manipulation 2, the 

effect of an acute dose of 1.5mg/kg amphetamine was assessed. The 

amphetamine dose was chosen based on results by van Enkhuizen et al. (2013) and 

previous data from our lab, in order to produce disruption of cognition without 

the confounding increase in locomotor activity seen with higher doses. 

Amphetamine administration was counterbalanced such that 1.5mg/kg D-

amphetamine (Sigma Aldrich, A-5880) or saline was administered i.p. at 2ml/kg 

on the first day. Mice were then tested without drug on the following day and then 

D-amphetamine or saline was administered to the other half of the group on the 

third day. Performance on the intervening day was analysed to verify that recovery 

from amphetamine had occurred before proceeding with amphetamine 

administration on the third day. Recovery was deemed to have occurred if any 

effects from amphetamine had returned to Baseline performance.  

6.3.9 Statistical Analysis  

All mice were included in all analyses with the exception of two significantly 

atypical WT mice (who were removed from study) because of consistent abnormal 

repetitive behaviour (hyperactive rotational movements) that prevented the 

mouse from completing the task properly, disguising its true cognitive ability. 

Following amphetamine administration, one mouse was not as active as the other 

mice, completing just 11 trials for that session, so was therefore removed from 

all amphetamine analyses. 

All statistical analyses were carried out using Minitab® 17 Statistical Software. 

Results were considered significant if p<0.05. All error bars are expressed as ± 

standard error of the mean (SEM). Bar and line graphs were created using 

GraphPad Prism 7. Box plots were created using BoxPlotR, an application available 

at http://shiny.chemgrid.org/boxplotr/ and described in Nature Methods Editorial 

“Kick the bar chart habit” 2014, p113.  

The performance measures analysed for each session were the following: 

• % Choice 1 (% of the choices made to the grid position rewarding 1 SM 

deliveries) 

• % Choice 2 (% of the choices made to the grid position rewarding 2 SM 

deliveries) 
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• % Choice 3 (% of the choices made to the grid position rewarding 3 SM 

deliveries) 

• % Choice 4 (% of the choices made to the grid position rewarding 4 SM 

deliveries) 

• % premature responses (responses made during the ITI before the stimuli 

appear on the screen; number of premature responses/total number of 

trials initiated × 100) 

• % omissions (number of omissions/total number of trials initiated × 100) 

• Number of perseverative responses per loss (repeat touches to any part 

of the screen; number of perseverative responses/number of lost trials) 

• Total number of responses made  

• Reward magazine entries during the ITI  

• Total number of beam breaks  

• Latency to make a choice 

• Reward collection latency 

All behavioural parameters were analysed for sex differences. Many variables (% 

optimal responses, % omissions, % premature responses, % responses to Choice 1, 

% responses to Choice 3, latency to make a choice, total number of beam breaks 

and number of magazine entries during the ITI) showed a significant effect of sex. 

As there was a difference between male and female mice in so many aspects of 

the task, it was more appropriate to take sex into account for all analyses in this 

chapter rather than only for parameters which exhibited sex differences. 

Genotype group sizes contained equal numbers of male and female mice; so, in 

addition to considering sex in analyses, effects of sex are not likely to influence 

the data in a misrepresentative way.  

The last 5 days of stable performance from the “Free Choice” rGT were analysed 

between genotypes and, where appropriate, were compared with stable 

performance following Manipulation 1, Manipulation 2 and the Amphetamine 

challenge.  

Some of the parameters throughout this experiment yielded non-normal data. 

Although it is possible that parametric statistical tests give more power when 

analysing non-normal data, there is no non-parametric statistical test available to 

accurately represent the data here. This is because a repeated measures design 
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with multiple factors is appropriate, with nesting of each individual mouse within 

genotype. As non-parametric tests do not allow nesting and multiple factor 

repeated measures, and ANOVA is considered robust against non-normality (Laan 

& Verdooren, 1987), an ANOVA was decided to be the most suitable test to use 

here. Unless stated otherwise, results were analysed using a 3-way repeated 

measures ANOVA, with daily session as a within subjects factor, genotype and sex 

as between subjects factors and each individual mouse nested within genotype 

and sex. Amphetamine treatment data were analysed by a 3-way repeated 

measures ANOVA with session (i.e. amphetamine treatment or normal test session) 

as a within subjects factors, genotype and sex as between subjects factors and 

each individual mouse nested within genotype and sex. Post hoc tests were 

conducted using Tukey’s method for multiple comparisons where appropriate. As 

there were so many irrelevant significant effects, results for main effects and 

interactions are only shown and discussed when a significant effect was observed.  
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6.4. Results 

6.4.1. Map2k7+/- mice were quicker to complete training stages  

Following initial training to touch the screen, the mice progressed onto training 

to touch the screen at every trial. For this section of training, mice were moved 

on to the next sub-stage when they reached criteria. Criteria were defined as 

performing at >80% accuracy (touching the square that was lit), and <20% 

omissions (not making a response during a trial) for two consecutive sessions. The 

number of sessions and trials taken for each mouse to reach criteria was recorded. 

Map2k7+/- mice learned the task more quickly than WT mice: they took a fewer 

sessions on average (23.91 ± 2.71 compared to WT mice taking 32.80 ± 3.45 

sessions; p=0.038, F(1,18)=5.02) and fewer trials on average (1154.67 ± 84.78 

compared to WT mice taking 1325.90 ± 61.96 trials; p=0.05, F(1,18)=4.25) to 

complete training (Fig. 6.5). 
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Figure 6.5. Map2k7+/- mice completed training more quickly than WT mice. 

Map2k7+/- mice took (a) fewer sessions and (b) fewer trials on average to complete 

Gambling Task training. Centre lines show the medians; box limits indicate the 25th 

and 75th percentiles as determined by R software; whiskers extend 1.5 times the 

interquartile range from the 25th and 75th percentiles, outliers are represented by 

circles; crosses represent sample means. Data for a and b analysed separately by a 

two-way ANOVA with genotype and sex as factors. Lines linking groups represent 

significant differences between those groups: *p<0.05 (ANOVA). Map2k7+/-: n=12 (6M, 

6F), WT: n= 10 (5M, 5F). 

 

6.4.2 Map2k7+/- mice show slightly less-risky choice behaviour in the rGT 

than WTs 

6.4.2.1 Choice Performance  

Mice were then trained on the Free Choice rGT until they reached a stable level 

of choice performance, which took 13 sessions in total. The last 5 days of stable 

performance (Baseline) were analysed for differences between genotypes. 

Map2k7+/- mice showed enhanced performance on the rGT at Baseline compared 

to WTs with decreased % Choice 4 (least optimal option; p<0.0001, F(1,80)=15.85; 

Fig. 6.6d), and a slight increase in responding for the most optimal choice, 2 
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(p=0.011, F(1,80)=6.73; Fig. 6.6b). The % of choices to 1 (Fig. 6.6a) and 3 (Fig. 

6.6c) were similar between WT and Map2k7+/- mice (p=0.795 and p=0.237, 

respectively).  

6.4.2.2 Other performance and motivation parameters 

Looking at other performance parameters, WT and Map2k7+/- mice made similar % 

omissions (Fig. 6.7a) and % premature responses (Fig. 6.7b) (p=0.192 and 

p=0.651, respectively). However, Map2k7+/- mice showed signs of having enhanced 

performance in some measurements: they made less perseverative responses per 

loss (p<0.0001, F(1,80)=50.53; Fig. 6.7c) and more choices per session on average 

(p<0.0001, F(1,80)=19.16; Fig. 6.7d). Map2k7+/- mice were also hyperactive whilst 

carrying out the task: they made significantly more beam breaks than WT mice 

(p<0.0001, F(1,80)=461.80; Fig. 6.8a). Despite this, Map2k7+/- mice made less 

entries into the magazine throughout the ITI period (p=0.047, F(1,80)=4.06; Fig. 

6.8b) and collected the reward just as quickly as WT mice (p=0.138, ns; Fig. 

6.8d); however, they were quicker to make a choice on average (p<0.0001, 

F(1,80)=34.96; Fig. 6.8c). Overall, Map2k7+/- mice seemed highly motivated to 

complete the rGT: they are hyperactive and are quicker to make a choice, made 

more choices overall, did not miss more trials, and collected the reward just as 

quickly as WT mice. They also exhibited slightly more focussed behaviour than WT 

mice in the sense that they made less perseverative responses, and less entries 

into the reward magazine throughout the ITI.  
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Figure 6.6. Map2k7+/- mice show slightly less-risky choice behaviour in the rGT. 

Map2k7+/- mice made similar number of Choices 1 (a) and 3 (c) as WT mice but made 

significantly more choices to 2 (b; the “most optimal” choice) and significantly less 

choices to 4 (d; the “least optimal” choice). Line graphs show data for each session 

(numbered from beginning of Free Choice). Data points (line graphs) or bars represent 

the mean; error bars represent the SEM. Data analysed by a 3-way repeated measures 

ANOVA with the last 5 days’ session as a within subjects factor, genotype and sex as 

a between subjects factor and each individual mouse nested within genotype and sex. 

Tukey’s post hoc analysis was used where appropriate. *p<0.05, ***p<0.0001 (ANOVA). 

Map2k7+/-: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 



159 
 

Figure 6.7. Map2k7+/- mice show enhanced performance in some aspects of the 

rGT. (a) % omissions and (b) % premature responses were similar between Map2k7+/- 

mice and WT mice. However, Map2k7+/- mice made significantly less perseverative 

responses per loss (c) and more choices (d) each daily session than WTs. Line graphs 

show data for each session (numbered from beginning of Free Choice). Data points 

(line graphs) or bars represent the mean; error bars represent the SEM. Box plots: 

centre lines show the medians; box limits indicate the 25th and 75th percentiles as 

determined by R software; whiskers extend 1.5 times the interquartile range from the 

25th and 75th percentiles, outliers are represented by circles; crosses represent 

sample means. Data analysed by a 3-way repeated measures ANOVA with the last 5 

days’ session as a within subjects factor, genotype and sex as a between subjects 

factor and each individual mouse nested within genotype and sex. Tukey’s post hoc 
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analysis was carried out where appropriate. ***p<0.0001 (ANOVA). Map2k7+/-: n=12 

(6M, 6F), WT: n= 10 (5M, 5F). 

Figure 6.8. Map2k7+/- mice show good motivation to carry out the rGT task in most 

parameters. Map2k7+/- mice made significantly more beam breaks (a), more magazine 

entries during the ITI (b) and made choices more quickly (c) than WT mice. Reward 

collection latency was similar between Map2k7+/- and WT mice (d). Line graphs show 

data for each session (numbered from beginning of Free Choice). Data points represent 

the mean; error bars represent the SEM. Box plots: centre lines show the medians; 

box limits indicate the 25th and 75th percentiles as determined by R software; 

whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, 

outliers are represented by circles; crosses represent sample means. Data analysed by 
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a 3-way repeated measures ANOVA with the last 5 days’ session as a within subjects 

factor, genotype and sex as a between subjects factor and each individual mouse 

nested within genotype and sex. Tukey’s post hoc analysis was carried out where 

appropriate. *p<0.05, ***p<0.0001 (ANOVA). Map2k7+/-: n=12 (6M, 6F), WT: n= 10 (5M, 

5F). 

 

6.4.3 Manipulation 1 affected performance in the rGT to the same extent 

in WT and Map2k7+/- mice  

6.4.3.1 Choice Performance  

Manipulation 1 involved a switch between options 1 and 3 (Fig. 6.4), which are 

the two more subtly-different options in that neither were the most or least 

optimal. As is expected, overall performance for all mice during the first session 

following this manipulation dropped, reflected in a significantly decreased % 

response for the better option, 1, and an increased % response for the more 

disadvantageous option, 3, because they were previously located in each other’s 

position (effect of session: p<0.0001 for both choices; F(5,100)=6.71 (Choice 1), 7.42 

(Choice 2); Fig. 6.9a and c, respectively). % choices for 2 and 4, which were not 

switched, remained unchanged (no significant effect of session: p=0.132 and 

p=0.315; Fig. 6.9b and d, respectively). Remarkably, the mice detected the 

manipulation and rapidly altered their responding, such that by the fourth session 

post-switch they were already performing close to previous baseline levels of 

performance. By the time stable performance had been achieved for three 

consecutive sessions (which took six sessions in total), the mice had returned to 

the same pattern of responding as before. Comparing the last 3 days of 

Manipulation 1 between genotypes showed that Map2k7+/- mice had enhanced 

performance compared to WTs: slightly increased responding for Choice 2 

(p=0.001, F(1,40)=12.47; Fig. 6.9b), decreased responding for Choice 4 (p<0.001; 

F(1,40)=56.28; Fig. 6.9d), and similar responding for Choices 1 (p=0.325, ns) and 3 

(p=0.478, ns). 

6.4.3.2 Other performance and motivation parameters 

Analysis of Baseline performance compared with the first day of Manipulation 1 

showed other performance parameters were not significantly altered by 

Manipulation 1: no significant effect of session for % omissions (Fig. 6.10a; 
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p=0.456), number of perseverative responses per loss (Fig. 6.10c; p=0.732) and 

total number of choices (Fig. 6.10d; p=0.234). There was an overall significant 

effect of session for % premature responses (Fig. 6.10b; p=0.025, F(5,100)=2.70); 

however, post hoc analyses confirmed the significant difference was not between 

Manipulation 1 and the other 5 sessions.  

Motivation parameters were altered by Manipulation 1 to some extent: there was 

an overall decrease in total beam breaks (Fig. 6.11a; p<0.0001, F(5,100)=11.94)  and 

magazine entries during the ITI (Fig. 6.11b; p=0.004, F(5,100)=3.78); reward 

collection latency was increased (Fig. 6.11d; p=0.029, F(5,100)=2.62), but choice 

response latency remained the same (Fig. 6.11c; p=0.075). Post hoc analyses 

showed that there was a significant effect between Manipulation 1 and some, but 

not all, of the last 5 days’ stable performance parameters (indicated on the line 

graphs of Fig. 6.11). Whereas total beam breaks were significantly decreased for 

the first day of Manipulation 1 compared to 3 of 5 of the days, magazine entries 

during the ITI were significantly decreased compared to 2 of 5 of the days and 

reward collection latency was increased compared to 1 of the 5 days. Overall, 

Manipulation 1 appeared to influence some aspects of motivation levels as the 

mice were slower to respond and moved around the box less. This is ‘normal’ for 

the first session after an unexpected change and suggests the mice were ‘feeling 

defeated’; however, all mice showed signs of having good motivation to complete 

the task (no change in % omissions, total number of choices and latency to make 

a choice). 

Once stable performance had been re-attained following Manipulation 1, there 

were some alterations in performance between WT and Map2k7+/- mice. Analysing 

the last 3 days of Manipulation 1 showed that Map2k7+/- mice made less % omissions 

than WT mice (Fig. 6.10a; p=0.001, F(1,40)=13.92), which was previously similar 

between genotypes at Baseline. Map2k7+/- mice also made a similar number of 

reward magazine entries during the ITI to WTs (Fig. 6.11b; p=0.720), whereas at 

Baseline they made significantly less entries than WTs. All other performance and 

motivation parameters remained similarly significant or non-significant between 

genotypes as to what they were at Baseline: beam breaks (Fig. 6.11a; p<0.0001, 

F(1,40)=166.16) and number of choices made (Fig. 6.10d; p<0.0001, F(1,40)=23.24) 

were increased compared to WTs; Map2k7+/- mice were quicker to make a choice 

(Fig. 6.11c; p<0.0001, F(1,40)=24.82); and reward collection latency (Fig. 6.11d; 
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p=0.172) and percentage of premature responses (Fig. 6.10b; p=0.108) remained 

similar. Throughout stable performance following Manipulation 1, Map2k7+/- mice 

continued to have good motivation to perform the task. Although significant, the 

decrease in % omissions and levelling of reward magazine entries during the ITI 

compared to WTs was very modest and should not have contributed to any 

significant degree on choice behaviour.  
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Figure 6.9. rGT performance was affected by Manipulation 1 to the same extent in 

WT and Map2k7+/- mice. Significant differences from the analysis of the last 5 days, 

plus first day of Manipulation 1 are indicated by ¥. Significant differences from the 

analysis of the last 3 days’ Manipulation 1 are indicated by *. Comparing the first day 

of Manipulation 1 to the last 5 days’ stable responding revealed a significant effect of 

session for Choices 1 (a) and 3 (c). There was no significant change for Choices 2 (b) 

and 4 (d). This was analysed by a three-way repeated measures ANOVA with session 

(last 5 days, plus first day of Manipulation 1) as a within subjects factor, genotype and 

sex as a between subjects factor and each individual mouse nested within genotype 

and sex. Lines linking groups represent significant differences between those groups. 
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Significant differences from this analysis are indicated by ¥¥p<0.01, ¥¥¥p<0.0001 

(ANOVA/Tukey’s). Analysing the last 3 days of Manipulation 1 showed that Map2k7+/- 

mice were similar to WTs with their responses to 1 (a) and 3 (c) but Map2k7+/- mice 

responded significantly less than WTs to choice 2 (b) and more than WTs to choice 4 

(d). This was analysed by a three-way repeated measures ANOVA with session (last 3 

days’ Manipulation 1) as a within subjects factor, genotype and sex as a between 

subjects factor and each individual mouse nested within genotype and sex. Significant 

differences from this analysis are indicated by **p<0.01, ***p<0.0001 (ANOVA). Line 

graphs show data for each session (numbered from beginning of 5 days’ stable 

performance). Data points represent the mean; error bars represent the SEM. Tukey’s 

post hoc analyses were carried out throughout where appropriate. Map2k7+/-: n=12 

(6M, 6F), WT: n= 10 (5M, 5F). 
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Figure 6.10. Manipulation 1 did not have an immediate significant effect on the 

above (a-d) performance parameters in the rGT, but performance was altered once 

stable performance had been re-attained. Significant differences from the analysis 

of the last 5 days, plus first day of Manipulation 1 are indicated by ¥. Significant 

differences from the analysis of the last 3 days’ Manipulation 1 are indicated by *. 

Analysis of the last 5 days performance compared with the first day of Manipulation 1 

showed no significant effect of session for % omissions (a), number of perseverative 

responses per loss (c) and total number of choices (d). There was a significant effect 

of session for % premature responses (b); however, post hoc analyses confirmed the 

significant difference was not between Manipulation 1 and any of the other 5 sessions. 
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This was analysed by a three-way repeated measures ANOVA with session (last 5 days, 

plus first day of Manipulation 1) as a within subjects factor, genotype and sex as a 

between subjects factor and each individual mouse nested within genotype and sex. 

Lines linking groups represent significant differences between those groups. 

Significant differences from this analysis are indicated by ¥¥¥p<0.0001 (ANOVA). 

Analysing the last 3 days of Manipulation 1 showed that Map2k7+/- mice made a similar 

percentage of premature responses to WTs (b). Map2k7+/- mice made significantly 

fewer omissions (which was not the case before Manipulation 1; a) and perseverative 

responses (c) than WTs, and made significantly more choices (d). Overall, following 

Manipulation 1, Map2k7+/- mice were still performing slightly better than WTs in some 

parameters. This was analysed by a three-way repeated measures ANOVA with session 

(last 3 days’ Manipulation 1) as a within subjects factor, genotype and sex as a 

between subjects factor and each individual mouse nested within genotype and sex. 

Significant differences from this analysis are indicated by **p<0.01, ***p<0.0001 

(ANOVA). Line graphs show data for each session (numbered from beginning of 5 days’ 

stable Baseline performance). Data points represent the mean; error bars represent 

the SEM. Box plots: centre lines show the medians; box limits indicate the 25th and 

75th percentiles as determined by R software; whiskers extend 1.5 times the 

interquartile range from the 25th and 75th percentiles, outliers are represented by 

circles; crosses represent sample means. Tukey’s post hoc analyses were carried out 

throughout where appropriate. Map2k7+/-: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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Figure 6.11. Manipulation 1 had a slight effect on motivation parameters in the 

rGT. Significant differences from the analysis of the last 5 days, plus first day of 

Manipulation 1 are indicated by ¥. Significant differences from the analysis of the last 

3 days’ Manipulation 1 are indicated by *. Analysis of the last 5 days performance 

compared with the first day of Manipulation 1 showed there was an overall significant 

effect of session for total beam breaks (a), magazine entries during the ITI (b) and 
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reward collection latency (d), but not for choice response latency (c). Post hoc 

analyses showed that there was a significant effect between Manipulation 1 and some, 

but not all, of the last 5 days’ stable performance parameters (indicated on the line 

graphs). This was analysed by a three-way repeated measures ANOVA with session (last 

5 days, plus first day of Manipulation 1) as a within subjects factor, genotype and sex 

as a between subjects factor and each individual mouse nested within genotype and 

sex. Lines linking groups represent significant differences between those groups. 

Significant differences from this analysis are indicated by ¥p<0.05, ¥¥p<0.01, 

¥¥¥p<0.0001 (ANOVA/Tukey’s). Analysing the last 3 days of Manipulation 1 showed 

that Map2k7+/- mice make more beam breaks than WT mice (a) and are quicker to 

make a choice (c). Other motivation parameters remain the same for Map2k7+/- 

compared to WT mice (number of magazine entries during the ITI (b), reward 

collection latency (d). Overall, following Manipulation 1, Map2k7+/- mice are still 

showing signs of good motivation to perform the task, and in some measurements, 

show slightly better motivation (being quicker to make a choice and moving around 

more). This was analysed by a three-way repeated measures ANOVA with session (last 

3 days’ Manipulation 1) as a within subjects factor, genotype and sex as a between 

subjects factor and each individual mouse nested within genotype and sex. Significant 

differences from this analysis are indicated by ***p<0.0001 (ANOVA). Line graphs show 

data for each session (numbered from beginning of 5 days’ stable performance). Data 

points represent the mean; error bars represent the SEM. Box plots: centre lines show 

the medians; box limits indicate the 25th and 75th percentiles as determined by R 

software; whiskers extend 1.5 times the interquartile range from the 25th and 75th 

percentiles, outliers are represented by circles; crosses represent sample means. 

Tukey’s post hoc analyses were carried out throughout where appropriate. Map2k7+/-

: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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6.4.4 Map2k7+/- mice took significantly longer than WT mice to re-establish 

stable responding following Manipulation 2  

6.4.4.1 Choice Performance  

Manipulation 2 then occurred, which consisted of switching the most and least 

optimal options: Choice 2 with Choice 4. The severity of the punishment period 

was also decreased for Choice 3 and Choice 4, reducing them from 30 and 40 

seconds to 15 and 20 seconds, respectively, whilst keeping the punishment 

likelihood the same for all options (see Table 6.1 and Fig.6.4). The punishment 

period length now increased linearly from Choices 1-4 (from 5 – 10 – 15 – 20 

seconds, respectively), as opposed to increasing disproportionately. Throughout 

Manipulation 1, the mice were capable of tracking even subtly different 

contingencies. We predicted that switching two more obviously different 

contingencies would likely have the effect of inducing just as much, or even more 

motivation to switch because the consequences are more drastic. However, the 

decrease of the punishment period for the disadvantageous options at the same 

time as this switch makes this prediction more complex and enables examination 

of the magnitude of effect that lesser punishment has on the mice when 

attempting to learn a new contingency switch, as opposed to other aspects of the 

task (reward amount, punishment probability), because these remain the same, 

just in a different location on the touchscreen. In the session following 

Manipulation 2, a large effect on choice performance was seen because % 

responses to Choice 2 and 4 switched. Hence, on average mice were choosing: 

WT: 54.64 ± 9.37; Map2k7+/- : 58.72 ± 8.52 % Choice 2 at Baseline and WT: 9.97 ± 

2.39; Map2k7+/- : 5.70 ± 1.85 % Choice 2 following Manipulation 2, and WT: 7.77 ± 

1.92; Map2k7+/- : 4.89 ± 1.29 % Choice 4 at Baseline, and WT: 49.21 ± 8.72; 

Map2k7+/- : 55.40 ± 9.05 % Choice 4 following Manipulation 2 (Fig. 6.13b and d). 

The last 3 days of Manipulation 1 were compared with the first 5 of Manipulation 

2 (as they are grouped this way on the line graphs) and Choice 2 and 4 had a 

significant effect of session: p<0.0001 for both choices, F(7,140)=32.99 (Choice 2), 

F(7,140)=23.57 (Choice 4); Fig. 6.13b and d, respectively. % response for Choices 1 

and 3 also changed (increased) following Manipulation 2, but not to the same 

extent as with Choices 2 and 4 (effect of session: p=0.005, F(7,140)=3.06 (Choice 1) 

and p=0.004, F(7,140)=3.16 (Choice 3)).  
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Manipulation 2 had a huge effect on mice, particularly Map2k7+/- mice, who took 

substantially longer to re-establish stable responding following this manipulation 

(30.25 ± 4.17 sessions to stable performance as compared with 12.1 ± 4.32 

sessions for WTs; p=0.007; F(1,20)=9.05; Fig. 6.12). 

 

 

Figure 6.12. Map2k7+/- mice took substantially longer to re-establish stable 

responding following Manipulation 2. The number of sessions that it took for each 

mouse to reach more than 70% of their choices being either Choice 1 or Choice 2 (the 

two optimal choices) for three consecutive sessions were calculated: Map2k7+/- mice 

took significantly more sessions than WT mice. Centre lines show the medians; box 

limits indicate the 25th and 75th percentiles as determined by R software; whiskers 

extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers 

are represented by circles; crosses represent sample means. Data analysed by a one-

way ANOVA between genotypes. **p<0.01 (ANOVA). Map2k7+/-: n=12 (6M, 6F), WT: n= 

10 (5M, 5F). 

 

Interestingly, when their performance was once again stable for five sessions 

following Manipulation 2, the choice preference of the two groups of mice settled 

differently to what previously occurred following Manipulation 1 (and at Baseline). 

When comparing stable performance at the end of Manipulation 1 (last 3 days, 

grouped) with the stable performance at the end of Manipulation 2 (last 5 days, 

grouped), both groups of mice increased their % responding for Choice 3 (effect 

of session: p=0.005, F(1,152)= 7.94). % responding for Choice 4 also increased (effect 
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of session: p<0.0001, F(1,152)= 27.99), but post hoc analyses showed that this was 

solely an increase that occurred for Map2k7+/- mice (genotype x session 

interaction: (p<0.0001, F(1,152)=13.61)). Overall, there was a significant decrease 

in % Choice 1 following Manipulation 2 (effect of session: p=0.001, F(1,152)=14.60); 

however, post hoc analyses indicated that the significant decrease only occurred 

with WT mice, whereas Map2k7+/- mice % Choice 1 remained the same (genotype 

x session interaction: p=0.001; F(1,152)=12.28; Fig. 6.13a). Instead, Map2k7+/- mice 

decreased their preference for Choice 2, with WT mice % Choice 2 staying the 

same (genotype x session interaction: p<0.0001; F(1,152)=19.47; Fig. 6.13b). The 

sacrifice of % Choices 1 and 2 for Choices 3 and 4 were different between the 

distinct groups of mice: WT mice made less % Choice 1 for more % Choice 2 and 3, 

and Map2k7+/- mice made less % Choice 2 for more % Choice 4 and 3.  

At stable performance following Manipulation 2 (comparison of the last 5 days), 

Map2k7+/- mice made more % Choice 1 (p<0.0001, F(1,80)=79.39) and % Choice 4 

(p=0.039, F(1,80)=4.38), less % Choice 2 (p<0.0001, F(1,80)=61.05) and similar % 

Choice 3 (p=0.771, ns) compared to WTs (Fig. 6.13). Interestingly, in contrast to 

what occurred at Baseline, Map2k7+/- mice made more disadvantageous choices 

than WTs. 

6.4.4.2 Other performance and motivation parameters 

The last 3 days of Manipulation 1 were compared with the first 5 days of 

Manipulation 2 in order to see what effect this had on other performance 

parameters. % omissions, number of choices made, choice latency, magazine 

entries during the ITI, number of perseverative responses and % premature 

responses were all unaltered overall following Manipulation 2 compared to 

Manipulation 1 (Fig. 6.14 and 6.15; p=0.573, 0.586, 0.237, 0.063, 0.007, 0.020, 

respectively; post hoc analysis confirmed that of the significant p-values, there 

was no significance between any of the sessions separately). However, total beam 

breaks and reward collection latency significantly increased following 

Manipulation 2 (p<0.0001 for both, F(7,140)=7.64 and 12.34, respectively; Fig. 

6.15a, d) and total beam breaks were elevated for the rest of the experiment 

(see line graph, Fig. 6.15a). Manipulation 2 had a particularly large effect on 

reward collection latency of both mice initially (WT mice went from 3.79 ± 0.62 

seconds at Manipulation 1 to 14.5 ± 3.35 seconds, and Map2k7+/- mice went from 

2.85 ± 0.76 seconds to 27.23 ± 6.68 seconds), but Map2k7+/- mice were 
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significantly affected throughout (see line graph, Fig. 6.15d). Although the 

genotype x session interaction term only approached significance (p=0.072, 

F(7,140)=1.91), post hoc analyses showed that Map2k7+/- mice had a slower reward 

collection latency on each of the 5 days following Manipulation 2 than WTs.  

When comparing stable performance at the end of Manipulation 1 (last 3 days, 

grouped) with the stable performance at the end of Manipulation 2 (last 5 days, 

grouped), the number of choices made (p<0.0001, F(1,152)=19.43), number of beam 

breaks (p=0.002, F(1,152)=9.48), number of magazine entries during the ITI 

(p<0.0001, F(1,152)=13.72) and reward collection latency (p<0.0001, F(1,152)=13.85) 

increased; % premature responses (p=0.752, ns) remained the same, and % 

omissions (p=0.058, F(1,152)=3.66), latency to make a choice (p=0.005, F(1,152)=8.24 

and number of perseverative responses (p<0.0001, F(1,152)=48.33) were decreased 

overall (Figs. 6.14, 6.15). Additionally, once mice had reached stable choice 

responding following Manipulation 2, significant differences between genotypes 

were altered compared to stable performance following Manipulation 1 in some 

performance parameters. Where Map2k7+/- mice made fewer % omissions 

compared to WTs previously, % omissions were now similar following Manipulation 

2 (no effect of genotype: p=0.216, ns). Map2k7+/- mice made significantly less 

perseverative responses and more total choices made following Manipulation 1, 

but were both similar between genotypes following Manipulation 2 (effect of 

genotype overall: p<0.0001 for both, F(1,152)= 19.96 and 12.90, respectively; 

genotype x session interaction: p<0.0001 for both, F(1,152)=14.92 and 13.45, 

respectively). The number of magazine entries during the ITI period increased 

overall, however, post hoc analysis showed that this increase occurred for WTs 

but not Map2k7+/- mice (effect of genotype overall: p=0.001, F(1,152)=11.19; 

genotype x session interaction: p=0.004, F(1,152)=8.75). Some performance 

parameters did not alter the significance between genotypes, however: the 

number of beam breaks remained elevated in Map2k7+/- mice (effect of genotype: 

p<0.0001, F(1,152)=76.33; no genotype x session interaction: p=0.876, ns). The 

latency to collect reward was elevated overall in Manipulation 2 compared to 

Manipulation 1, but remained similar between WT and Map2k7+/- mice (no effect 

of genotype: p=0.757, ns; no genotype x session interaction: p=0.315, ns). % 

premature responses were once again elevated in Map2k7+/- mice (effect of 

genotype: p=0.006, F(1,152)=7.76). Finally, WTs were still slower to make a choice 
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than Map2k7+/- mice throughout stable responding following Manipulation 2 (effect 

of genotype: p=0.001, F(1,152)=12.16; no genotype x session interaction: p=0.119, 

ns). 

Overall, all mice appeared to show high motivation throughout Manipulation 2. 

Aside from the increase in reward collection latency, all motivation and other 

performance parameters changed or remained the same in a way that would, if 

anything, indicate increased drive to perform (the number of choices made, 

magazine entries and beam breaks increased, the % premature responses 

remained the same and % omissions, number of perseverative responses and 

latency to make a choice were decreased). With the exception of the increase in 

reward collection latency (considered in Section 6.5), the choice response 

behaviour is not confounded by performance in other aspects, including 

motivational aspects, of the task. There were some genotype differences that 

occurred: perseverative responses and number of choices made were different 

between genotypes following Manipulation 1, but this significant effect had 

disappeared by Manipulation 2, and the number of magazine entries throughout 

the ITI was increased for WT mice but not Map2k7+/- mice following Manipulation 

2.  

At stable performance following Manipulation 2 (comparison of the last 5 days), 

Map2k7+/- mice made more % premature responses (p=0.001, F(1.80)=12.98), and 

beam breaks (p<0.0001, F(1,80)=53.60), less magazine entries during the ITI 

(p<0.0001, F(1,80)=31.30), were quicker to make choices (p=0.023, F(1,80)=5.37) 

compared to WT mice. Map2k7+/- and WT mice performed similarly for % omissions 

(p=0.754, ns), perseverative responses (p=0.328, ns), number of choices per 

session (p=0.928, ns) and reward collection latency (p=0.555, ns) (Figs. 6.14 and 

6.15). 
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Figure 6.13. rGT performance was affected by Manipulation 2, in particular for 

Map2k7+/- mice, and all mice changed their pattern of choice responses when 

stable performance was once again achieved. Significant differences from the 

analysis of the last 3 days’ Manipulation 1 and last 5 days’ Manipulation 2 are indicated 

by §. Significant differences from the analysis of the last 3 days Manipulation 1, plus 

first 5 days of Manipulation 2 are indicated by ¥. Significant differences from the 

analysis of the last 5 days Manipulation 2 are indicated by *. Comparing the first 5 days 

of Manipulation 2 to the last 3 days’ stable responding of Manipulation 1 revealed a 

significant decrease for Choice 2 (b) and increase for Choice 4 (d). There was no 

significant change for Choices 1 (a) and 3 (c). This was analysed by a three-way 

repeated measures ANOVA with session (last 3 days Manipulation 1, plus first 5 days 

of Manipulation 2) as a within subjects factor, genotype and sex as a between subjects 
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factor and each individual mouse nested within genotype and sex. Significant 

differences from this analysis are indicated by ¥¥¥p<0.0001 (ANOVA). Analysing the 

last 3 days of Manipulation 1 compared with the final 5 days of Manipulation 2 showed 

that Map2k7+/- and WT mice had altered their stable choice pattern compared to 

before: WT mice made less % Choice 1 (a) and more % Choice 2 (b) and 3 (c), and 

Map2k7+/- mice made less % Choice 2 (b) but more % Choice 4 (d) and 3 (c) than before. 

This was analysed by a three-way repeated measures ANOVA with session (last 3 days’ 

Manipulation 1 and last 5 days’ Manipulation 2, both grouped) as a within subjects 

factor, genotype and sex as a between subjects factor and each individual mouse 

nested within genotype and sex. Lines linking groups represent significant differences 

between those groups. Significant differences from this analysis are indicated by 

§p<0.05, §§§p<0.0001 (ANOVA/Tukey’s). At stable performance following Manipulation 

2 (comparison of the last 5 days), Map2k7+/- mice made more % Choice 1 (a) and % 

Choice 4 (d), less % Choice 2 (b) and similar % Choice 3 (c) compared to WTs. This was 

analysed by a three-way repeated measures ANOVA with session (last 5 days 

Manipulation 2) as a within subjects factor, genotype and sex as a between subjects 

factor and each individual mouse nested within genotype and sex. Significant 

differences from this analysis are indicated by *p<0.05, ***p<0.0001 (ANOVA). Line 

graphs show data for each session (numbered from beginning of last 3 days’ 

Manipulation 1 stable performance). Data points represent the mean; error bars 

represent the SEM. Tukey’s post hoc analyses were carried out throughout where 

appropriate. Map2k7+/-: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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Figure 6.14. Manipulation 2 had an effect on other performance parameters in the 

rGT. Significant differences from the analysis of the last 3 days’ Manipulation 1 and 

last 5 days’ Manipulation 2 are indicated by §. Significant differences from the analysis 

of the last 3 days Manipulation 1, plus first 5 days of Manipulation 2 are indicated by 

¥. Significant differences from the analysis of the last 5 days Manipulation 2 are 

indicated by *. Analysis of the last 3 days Manipulation 1 with the first 5 of 

Manipulation 2 showed % omissions (a), % premature responses (b) and total number 

of choices (d) were unaltered, whereas the number of perseverative responses were 

decreased (c) during Manipulation 2. This was analysed by a three-way repeated 
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measures ANOVA with session (last 3 days Manipulation 1, plus first 5 days of 

Manipulation 2) as a within subjects factor, genotype and sex as a between subjects 

factor and each individual mouse nested within genotype and sex. Lines linking groups 

represent significant differences between those groups. Significant differences from 

this analysis are indicated by ¥¥¥p<0.001 (ANOVA/Tukey’s). Analysing the last 3 days 

of Manipulation 1 compared with the final 5 days of Manipulation 2 showed that % 

omissions decreased overall (a); premature responses remained the same (b), 

perseverative responses decreased overall (c) and total number of choices increased 

overall (d). This was analysed by a three-way repeated measures ANOVA with session 

(last 3 days’ Manipulation 1 and last 5 days’ Manipulation 2, both grouped) as a within 

subjects factor, genotype and sex as a between subjects factor and each individual 

mouse nested within genotype and sex. Lines linking groups represent significant 

differences between those groups. Significant differences from this analysis are 

indicated by §§p<0.01, §§§p<0.0001 (ANOVA/Tukey’s). At stable performance 

following Manipulation 2 (comparison of the last 5 days), Map2k7+/- mice made similar 

% omissions (a), more % premature responses (b), and a similar number of 

perseverative responses (c) and choices (d) compared to WT mice. This was analysed 

by a three-way repeated measures ANOVA with session (last 5 days Manipulation 2) as 

a within subjects factor, genotype and sex as a between subjects factor and each 

individual mouse nested within genotype and sex. Significant differences from this 

analysis are indicated by **p<0.01 (ANOVA). Line graphs show data for each session 

(numbered from beginning of 3 days’ stable Manipulation 1 performance). Data points 

represent the mean; error bars represent the SEM. Box plots: centre lines show the 

medians; box limits indicate the 25th and 75th percentiles as determined by R 

software; whiskers extend 1.5 times the interquartile range from the 25th and 75th 

percentiles, outliers are represented by circles; crosses represent sample means. 

Tukey’s post hoc analyses were carried out throughout where appropriate. Map2k7+/-

: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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Figure 6.15. Manipulation 2 had a slight effect on motivation parameters in the 

rGT. Significant differences from the analysis of the last 3 days’ Manipulation 1 and 

last 5 days’ Manipulation 2 are indicated by §. Significant differences from the analysis 

of the last 3 days Manipulation 1, plus first 5 days of Manipulation 2 are indicated by 

¥. Significant differences from the analysis of the last 5 days Manipulation 2 are 

indicated by *. Analysis of the last 3 days Manipulation 1 with the first 5 of 

Manipulation 2 showed an increase in total beam breaks (a) and reward collection 

latency (d), whereas the number of magazine entries during the ITI (b) and choice 

response latency (c) were unaltered during Manipulation 2. This was analysed by a 

three-way repeated measures ANOVA with session (last 3 days Manipulation 1, plus 

first 5 days of Manipulation 2) as a within subjects factor, genotype and sex as a 
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between subjects factor and each individual mouse nested within genotype and sex. 

Lines linking groups represent significant differences between those groups. 

Significant differences from this analysis are indicated by ¥¥¥p<0.001 

(ANOVA/Tukey’s). Analysing the last 3 days of Manipulation 1 compared with the final 

5 days of Manipulation 2 showed total beam breaks (a) were unaltered, the number of 

magazine entries (b) and reward collection latency (d) were increased, and choice 

response latency (c) was decreased. This was analysed by a three-way repeated 

measures ANOVA with session (last 3 days’ Manipulation 1 and last 5 days’ Manipulation 

2, both grouped) as a within subjects factor, genotype and sex as a between subjects 

factor and each individual mouse nested within genotype and sex. Lines linking groups 

represent significant differences between those groups. Significant differences from 

this analysis are indicated by §§p<0.01, §§§p<0.0001 (ANOVA/Tukey’s). At stable 

performance following Manipulation 2 (comparison of the last 5 days), Map2k7+/- mice 

made an increased number of beam breaks (a), less magazine entries (b) and choice 

response latency (c), and an increase in reward collection latency (d) compared to 

WT mice. This was analysed by a three-way repeated measures ANOVA with session 

(last 5 days’ Manipulation 2) as a within subjects factor, genotype and sex as a 

between subjects factor and each individual mouse nested within genotype and sex. 

Significant differences from this analysis are indicated by *p<0.05, **p<0.01 (ANOVA). 

Line graphs show data for each session (numbered from beginning of 3 days’ stable 

Manipulation 1 performance). Data points represent the mean; error bars represent 

the SEM. Box plots: centre lines show the medians; box limits indicate the 25th and 

75th percentiles as determined by R software; whiskers extend 1.5 times the 

interquartile range from the 25th and 75th percentiles, outliers are represented by 

circles; crosses represent sample means. Tukey’s post hoc analyses were carried out 

throughout where appropriate. Map2k7+/-: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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6.4.5 Amphetamine administration 

6.4.5.1 Choice Performance  

Risk-taking behaviour in the rGT was analysed following administration of 

1.5mg/kg D-amphetamine, a dose that has previously been shown to alter the 

cognitive but not locomotor aspects of the task carried out in the 5-hole operant 

chamber (van Enkhuizen et al., 2013). Amphetamine administration was carried 

out over 4 days: half of each genotype group were given D-amphetamine and the 

other half were given saline intraperitoneally on the first day. On the second and 

fourth days, mice were tested normally on the rGT without drug in order to verify 

that any effects had worn off (recovery); on the third day, saline or D-

amphetamine was administered to the other half of the group. Comparing 

performance of animals who had received saline with animals who had received 

an acute dose of 1.5mg/kg amphetamine showed that overall, mice showed 

increased preference for Choice 1 (p<0.006, F(1,19)=9.59; Fig. 6.16a). This increase 

in % Choice 1 appeared to be more evident in WT mice. Although there was no 

significant genotype effect overall (p=0.893, ns), nor was there a genotype x 

treatment interaction (p=0.199, ns), post hoc analyses revealed that there was a 

significant increase in % Choice 1 for WTs but not for Map2k7+/- mice. The increase 

in preference for Choice 1 was accompanied by a slight decrease in response for 

Choice 2 (Fig. 6.16b), although this was not significant (p=0.172, ns). % response 

for Choices 3 and 4 remained the same following amphetamine administration 

(p=0.207 and 0.114, respectively; Fig. 6.16c and d); however, Map2k7+/- mice 

made less % Choice 3 than WTs overall (p=0.049, F(1,19)=4.41).  

Overall, mice subtly switched their choice preference after receiving 

amphetamine to choices that were the least risky (i.e., Choice 1), with a trend 

towards the effect being stronger in WT than Map2k7+/- mice.  

6.4.5.2 Other performance and motivation parameters 

Following an acute dose of 1.5mg/kg D-amphetamine, % omissions were increased 

(p=0.026, F(1,19)=5.83; Fig. 6.16e), % premature responses were decreased 

(p=0.050, F(1,19)=4.37; Fig. 6.16f), and Map2k7+/- mice continued to make more 

premature responses than WT mice (p=0.003, F(1,19)=11.90). The number of 

perseverative responses per loss decreased to a small extent (p=0.018, F(1,19)=6.77; 

Fig. 6.17a), and total number of choices (p=0.119, ns) and reward collection 
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latency (p=0.748, ns) remained similar, which implies the dose of amphetamine 

was not so high that it prevented motivation to carry out the task. Interestingly, 

total beam breaks were actually decreased (p=0.044, F(1,19)=4.65; Fig. 6.17c), but 

the significant hyperactivity of Map2k7+/- mice compared to WTs remained 

(p<0.0001, F(1,19)=24.04), showing, again, that the dose of amphetamine was not 

too high, as hyperlocomotor side effects were not seen (Anisman & Kokkinidis, 

1975; Chen et al., 2007; Wise & Bozarth, 1987). Finally, the latency to make a 

choice increased overall (p<0.0001, F(1,19)=35.06), and the number of magazine 

entries during the ITI decreased overall (p=0.44, F(1,19)=4.65); however, post hoc 

analyses revealed that both the latency increase and the decrease in magazine 

entries were only significant for WT mice (genotype x treatment interaction: 

p=0.039, F(1,19)=4.91 and p=0.056, F(1,19)=4.16, respectively; Fig. 6.17e and d).  

Overall, mice were affected by amphetamine in other performance parameters, 

some of which are consistent with previous studies (Van Enkhuizen et al., 2013; 

increase in % omissions, decrease in perseverative responses, similar reward 

collection latencies), but some changes were not consistent with previous studies 

(% premature responses were decreased, choices made were not decreased). 

However, the dose of amphetamine used was effective in altering the cognitive 

aspects of the task (i.e. the choice preferences) without introducing confounding 

factors, such as an increase in locomotor activity or a reduction in motivation. 

Finally, there is a trend for WT mice to have increased reactions to amphetamine 

relative to Map2k7+/- mice in some parameters (magazine entries during the ITI 

and choice response latency).   
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Figure 6.16. An acute dose of amphetamine modestly altered choice preference 

and other performance parameters in the rGT. Following 1.5mg/kg amphetamine 

administration, preference for Choice 1 was increased (a), but Choice 2 (b), 3 (c), and 

4 (d), were not significantly altered. % omissions were increased (e) and premature 

responses decreased (f) for all mice. Data represent the mean; error bars represent 

the SEM. Data was analysed by a three-way repeated measures ANOVA with treatment 

(saline or amphetamine) as a within subjects factor, genotype and sex as a between 
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subjects factor and each individual mouse nested within genotype and sex. Tukey’s 

post hoc analyses were carried out where appropriate. Lines linking groups represent 

significant differences between those groups: *p<0.05, **p<0.01 (ANOVA); ##p<0.01 

(Tukey’s). Recovery is included on graph but not in analysis. Three-way ANOVA (with 

treatment (saline, amphetamine, recovery) as a within subjects factor, genotype and 

sex as a between subjects factor and each individual mouse nested within genotype 

and sex) were carried out on all the data before proceeding with comparison between 

saline and amphetamine in order to establish that proper recovery had occurred. 

According to Tukey’s post hoc analyses, there were no significant differences between 

saline treatment and recovery in any of the parameters. Therefore, the data from the 

saline group had no detectable carry-over effects from amphetamine on the second 

day of drug administration so saline was then only compared with amphetamine. 

Map2k7+/-: n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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Figure 6.17. An acute dose of amphetamine altered other performance / 

motivational parameters in the rGT. Following 1.5mg/kg amphetamine 

administration, perseverative responses (a), total number of beam breaks (c) and 
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magazine entries during the ITI (d) decreased, whereas choice latency (e) increased 

and total number of choices (b) and reward collection latency (f) remained the same. 

WT mice were particularly affected by amphetamine for choice latency (e) and 

magazine entries during the ITI (f). Data was analysed by a three-way repeated 

measures ANOVA with treatment (saline or amphetamine) as a within subjects factor, 

genotype and sex as a between subjects factor and each individual mouse nested 

within genotype and sex. Box plots: centre lines show the medians; box limits indicate 

the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times 

the interquartile range from the 25th and 75th percentiles, outliers are represented 

by circles; crosses represent sample means. Tukey’s post hoc analyses were carried 

out throughout where appropriate. Lines linking groups represent significant 

differences between those groups: **p<0.01, ***p<0.0001 (ANOVA, relative to 

corresponding WT group where not specifically indicated); ##p<0.01, ###p<0.001 

(Tukey’s, relative to corresponding WT group where not specifically indicated). 

Recovery is included on graph but not in analysis. Three-way ANOVA (with treatment 

(saline, amphetamine, recovery) as a within subjects factor, genotype and sex as a 

between subjects factor and each individual mouse nested within genotype and sex) 

were carried out on all the data before proceeding with comparison between saline 

and amphetamine in order to establish that proper recovery had occurred. According 

to Tukey’s post hoc analyses, there were no significant differences between saline 

treatment and recovery in any of the parameters. Therefore, the data from the saline 

group had no detectable carry-over effects from amphetamine on the second day of 

drug administration so saline was then only compared with amphetamine. Map2k7+/-: 

n=12 (6M, 6F), WT: n= 10 (5M, 5F). 
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6.5 Discussion 

In this chapter it is shown that mice are able to learn the different contingencies 

of reward and punishment in the touchscreen rGT and that they exhibited a 

consistent pattern of optimal responding: they avoided high-risk high-reward 

options more than the advantageous options of frequent, small rewards. 

Importantly, they chose the most advantageous option the majority of the time 

and the most disadvantageous option the least. To the best of our knowledge, 

similar versions of the rGT have been carried out using mice (for example, van 

Enkhuizen et al., 2013) and rats (for example, Zeeb et al., 2009) in the 9-hole 

operant box, but have not been published using mice in the touchscreen before, 

so this result validates the touchscreen equipment for use with this task. When an 

element of reversal learning was introduced to the task by switching subtly 

different contingencies (Manipulation 1), mice can notice, track the change and 

alter their pattern of responding accordingly, further validating the rGT as a 

reliable, translational task. We have also shown that mice take a longer time to 

switch responding when the punishment length is made less extreme. Map2k7+/- 

mice are particularly sensitive to this alteration and take significantly longer than 

WTs to alter their response, possibly reflecting a deficit in cognitive flexibility, or 

altered reward/punishment valuation based on prior knowledge, a trait seen in 

patients with schizophrenia (Pantelis et al., 1999). Finally, administration of 

amphetamine altered choice preference in the rGT by increasing % responding for 

Choice 1 (the least risky). Administration of amphetamine also altered other task 

performance measurements (% omissions, % premature responses, perseverative 

responses, magazine entries during the ITI, total beam breaks and choice response 

latency), and also caused a modest differential effect between Map2k7+/- and WT 

mice with respect to choice preference. 

6.5.1 Learning the rGT  

As part of training, the mice were required to touch a square on a pseudorandom 

part of the screen at every trial for a strawberry milkshake reward. For this section 

of training, mice were moved onto the next sub-stage when they reached criteria 

for that stage (defined as >80% accuracy, i.e. touching the lit square, and <20% 

omissions) for two consecutive sessions. Map2k7+/- mice progressed through this 

part of training more quickly than WT mice by taking fewer sessions and trials on 

average. 
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Following initial habituation and training, mice were subjected to four sessions of 

“Forced Choice” where a single option appeared at each trial and mice were 

forced to pick it. This was to ensure they learned that each square was associated 

with a different reward/punishment contingency, and also so they were given 

equal exposure to each of the contingencies, and is similar to verbal instruction 

to participants in the IGT that some decks are more advantageous than others). 

Then, the mice were subjected to “Free Choice”, where they could pick whichever 

square they liked; all mice reached Baseline performance (stable choice 

preference) of the Free Choice rGT over the course of 13 sessions. Once stable 

responding was established, Map2k7+/- mice showed slightly enhanced ability to 

perform the task: they had a significant increase in preference for Choice 2 (the 

most advantageous option) and a decrease in preference for Choice 4 (the least 

advantageous option), compared to WT mice. Although patients with 

schizophrenia do not appear to show better performance in the IGT, they have 

frequently been seen to perform as well as healthy controls (Evans et al., 2005; 

Rodríguez-Sánchez et al., 2005). As the significant difference in the current 

experiment was very modest (difference of +4.08 ± 0.14 responses for Choice 2 

and -2.89 ± 0.64% responses for Choice 4), it is likely not a cause for concern 

regarding the validity of any further findings, or large enough to suggest that they 

are profoundly “less risky” than WT mice. On the whole, all mice showed a choice 

preference remarkably in line with the total possible amounts of strawberry 

milkshake available. Choice 1 (295 possible rewards) was picked 25.5 ± 4.1% of 

the time, Choice 2 (411 possible rewards) was picked 56.9 ± 5.9% of the time, 

Choice 3 (135 possible rewards) was picked 11.1 ± 2.3% of the time and Choice 4 

(99 possible rewards) was picked 6.2 ± 1.1% of the time. This is consistent with 

the choice preferences of pair-housed mice (the same set up as in this experiment) 

in Zeeb et al. (2013), the study that the reward/punishment contingencies for the 

current experiment were based on. 

6.5.2 Motivation Performance  

Once performing at stable choice preference, there were some aspects of general 

behaviour whilst carrying out the task that were different between Map2k7+/- and 

WT mice. There are infra-red beams that cross the front (by the screen) and back 

(by the reward magazine) of the touchscreen arena. In total, Map2k7+/- mice made 

more beam breaks per session than WT mice, suggesting they were hyperactive 
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(at least in the horizontal plane) throughout the task. This hyperactivity in 

Map2k7+/- mice has been demonstrated throughout other operant experiments, 

too (for example, in the open field (Chapter 4), and in other operant-based 

experiments (the 5-CSRTT in Chapter 5, PAL and PD (data not shown), also see 

Discussion Section 8.3.1). Additionally, Map2k7+/- mice collected the reward just 

as quickly as WT mice and were quicker to make a correct response. They also 

made more choices per session, which may partly reflect their slight hyperactivity 

(as shown by increased beam breaks across the session), but also suggests they 

were highly motivated to perform the task. However, Map2k7+/- mice made 

slightly less entries into the magazine throughout the ITI period and less 

perseverative responses per loss (which is different to what was seen in the 5-

CSRTT in Chapter 5, discussed in Section 8.3.1), suggesting either that they had 

less interest in the reward than WT mice, or that they were more aware of the 

demands of the task and therefore made less unnecessary movements than WT 

mice. The fact that Map2k7+/- mice collected the reward just as quickly as WT 

mice and were quicker to make a correct response suggests that it may be due to 

the latter. 

6.5.3 Performance Following Manipulation 1  

Manipulation 1 consisted of switching the two more subtly different options in the 

task – Choice 1 with Choice 3. Whilst Choice 1 was an advantageous option and 

Choice 3 disadvantageous, neither were the “best” or “worst” options in the 

amount of reward available per unit time. % Choice for 1 and 3 was reversed, as 

is expected, and mice responded quickly, reaching stable performance and 

altering their responding accordingly (i.e. switching % Choice 1 for 3 and vice 

versa) once again after six sessions. Both Map2k7+/- and WT mice learned the 

switch to the same extent, with Map2k7+/- mice still performing slightly but 

significantly better once stable performance had been re-attained (less % Choice 

4 and more % Choice 2). This ability of mice to notice a subtle change in reward-

punishment contingencies is quite remarkable and informs us that the task is being 

carried out by the mice exactly how it was intended, highlighting the tasks’ 

validity: the mice are clearly able to evaluate small differences in either the 

amount of reward they are receiving, the probability that they get 

rewarded/punished, the extent of the punishment when it occurs, or a 
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combination of all three, and then alter behaviour to maintain optimal 

performance. 

6.5.4 Performance Following Manipulation 2  

Manipulation 2 consisted of switching the location of Choices 2 and 4 (the most 

and least optimal options), as well as decreasing the punishment severity of 

Choices 3 and 4 so that punishment length increased linearly with reward amounts 

rather than exponentially (Fig. 6.4, Table 6.1). Again, in the sessions immediately 

following Manipulation 2, mice completely swapped their % Choices of the two 

that had been switched. WT mice were responding 54.64 ± 9.37% to Choice 2 

before, then 9.97 ± 2.39% after the manipulation and Map2k7+/- mice were 

responding 58.72 ± 8.52% to Choice 2 before and 5.70 ± 1.85% after. For Choice 4, 

WT mice were responding 7.77 ± 1.92% before and 49.21 ± 8.72% afterwards; 

Map2k7+/- mice were responding 4.89 ± 1.29% before and 55.4 ± 9.05% immediately 

afterwards. All mice took considerably longer to reach stable choice preference 

following this switch compared with Manipulation 1, and Map2k7+/- mice took 

significantly longer than WTs to do this (Map2k7+/- mice took 30.25 ± 4.17 sessions 

compared to WTs, who took 12.1 ± 4.32 sessions). The overall increase in the 

number of sessions until re-achieving a stable choice pattern is most likely due to 

the alteration of the punishment period, because it took the mice just 6 sessions 

following Manipulation 1, even when the switch here was more subtly different in 

the amount of reward available over time. By decreasing the punishment lengths 

for Choices 3 and 4, the difference between the most and least optimal options is 

much less, so that Choices 3 and 4 are less distinguishably “worse” and therefore 

mice took longer to notice and alter their preference. In fact, using the same 

calculations as before, the maximum number of rewards for each choice after 

Manipulation 2 is 295, 411, 216 and 168 for Choices 1, 2, 3 and 4, respectively, as 

opposed to 295, 411, 135 and 99. The amount of reward able to be achieved per 

unit time for the least optimal choices are now more similar to each other and 

would therefore make decisions more difficult. Additionally, if preference was 

based solely on either quantity of reward obtained per choice, or probability of 

reward, or both together, it could be expected that mice would switch responding 

to the same extent as in Manipulation 1, because the difference in the number of 

strawberry milkshake rewards obtained between the choices is 2 for both 

Manipulation 1 and 2, and the probability of reward remains the same for each 
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choice. It could even be expected that the mice would switch responding more 

rapidly than before because this is the second time they have encountered a 

switch, and Baseline performance showed more extreme differences in choice 

preference between 2 and 4 than 1 and 3, so they would come across the switch 

more frequently. In other words, because, at stable performance, they select 

Choice 2 most (about 55% of the time) and Choice 4 about 8% of the time, they 

would encounter the switch more frequently than with Manipulation 1, where they 

picked Choices 1 and 3 about 25 and 12%, respectively. However, the mice did not 

take the same amount of time, or less, to switch their responding. WT mice took, 

on average, ~5 extra days to learn Manipulation 2 than Manipulation 1 whereas 

Map2k7+/- mice took ~24 extra days. This shows that punishment length, or 

possible reward achieved over time (which is directly affected by punishment 

length) has a huge impact on their decision-making, perhaps even more so than 

quantity or immediate probability of reward, and that this effect is stronger in 

Map2k7+/- than WT mice.  

Interestingly, even though mice were receiving negative feedback in the form of 

increased probability and length of punishment when selecting Choice 4 

(compared to what they had previously learned as Choice 2), Map2k7+/- mice in 

particular continued to persevere with the now least advantageous option, and 

took significantly longer than WT mice to switch responding preference. They 

appeared to show over-reliance on the option that they had previously established 

to be most favourable and were more inflexible in their decision-making than WT 

mice. In fact, Map2k7+/- mice behaved in a very similar way to that seen in patients 

with schizophrenia in the IGT study by Turnbull et al. (2006) (see Section 6.1), 

who also altered task contingencies. 

There are several explanations for why subjects may show impairment in cognitive 

flexibility. It may be a consequence of increased perseverative behaviour 

(Turnbull et al., 2006), or reduced working memory capacity (and therefore the 

individual would have problems using the outcomes from past choice to direct 

future behaviour; (Dunn et al., 2006). It could also be due to lack of attention, 

lack of motivation, or altered sensitivity to reward and punishing outcomes (Dunn 

et al., 2006). Alternatively, it may be explained by habit-induced rigidity, in which 

the subject continues to behave in a way that is very well-consolidated and 
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therefore fails to notice negative reinforcement; (Paglieri et al., 2014; Waltz, 

2017).  

These possible reasons for cognitive inflexibility are challenging to distinguish 

between behaviourally and are not likely to be mutually exclusive, nor the extent 

of the explanations. For example, it is inevitable that emotional factors and 

actively planning future actions are involved in the IGT, but it is hard to establish 

whether these processes occur in the rGT in mice as they do in humans. However, 

of these potential explanations, in the current study it is unlikely to be due to 

working memory as, although not directly studied in this thesis, Map2k7+/- mice 

have not shown deficits in working memory compared to their WT littermates 

when learning any tasks in the operant 9-hole chamber or touchscreen. It is 

possible that there are elements of Map2k7+/- mice’s attentional deficit (Chapter 

5) that have influenced inflexible behaviour in this task, but is unlikely to be the 

sole explanation because % omissions (which were significantly increased in the 

attentional task) are not increased here, and Map2k7+/- mice switched responding 

just as quickly as WT mice following Manipulation 1. Similarly, Map2k7+/- mice do 

not show a lack of motivation (following Manipulation 2, their % omissions and 

total number of choices are similar to WT mice; the number of beam breaks are 

increased, and they are faster to make a choice). They are, however, slower at 

collecting reward throughout the course of Manipulation 2. This is surprising, 

because all other performance measurements throughout Manipulation 2 suggest 

that Map2k7+/- mice are very motivated to carry out the task. Again, Map2k7+/- 

mice have not shown an increase in reward collection latency in other operant 

tasks (explored further in the main Discussion, Section 8.3.1). It appears that 

they have lost motivation for taking part in the task in the first place, which has 

perhaps surfaced a lack of motivation for amount of reward that was not 

observable before. 

The other possible explanations for cognitive inflexibility mentioned (increased 

perseverative behaviour, altered sensitivity to reward or punishing outcomes and 

habit-induced rigidity) are challenging to distinguish between with the current 

data and will require further, more specific, behavioural study in order to 

decipher them. However, Map2k7+/- mice have not shown an increase in 

perseverative responding in the past, and perseverative responding as recorded in 

this task did not show that Map2k7+/- mice are impaired compared to WT mice (in 
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fact, Map2k7+/- mice show less perseverative responses than WT mice at Baseline). 

However, “perseveration” was recorded during the time-out following any loss, so 

it appears the perseverative responses recorded here are showing that Map2k7+/- 

mice are simply more aware of when they are not receiving optimal amounts of 

reward than WT mice, as opposed to continuing to try and gain optimal rewards 

despite this. It may also be that WT mice are quicker at this manipulation because 

the punishment period has less salience for them as they are more focussed on 

obtaining a reward, so when it is decreased it has less of an effect on their drive 

to switch. Map2k7+/- mice are showing signs of having decreased sensitivity to 

reward compared to WT mice.  

Based on excluding working memory and perseveration as possible factors in 

explaining this, it is possible that Map2k7+/- mice are showing signs of habit-

induced rigidity (Waltz, 2017), and altered sensitivity to punishing outcomes (Dunn 

et al., 2006). This may be what is causing Map2k7+/- mice to be inflexible in their 

abilities. When punishments are severe, Map2k7+/- mice are capable of quickly 

learning the best option. However, when the punishment is less severe they find 

it challenging, as if they are driven primarily by severity of punishment. This is 

supported by the fact that their reward collection latencies significantly increased 

throughout this period whilst showing good motivation to carry out the task in 

other measurements and may reflect aberrant salience attribution by the 

Map2k7+/- mice, a feature which patients with schizophrenia exhibit (Howes & 

Nour, 2016).  

In any case, it is interesting that Map2k7+/- mice did not display cognitive 

inflexibility when carrying out a task designed to measure exactly this: Pairwise 

Discrimination and Reversal (data not shown). An explanation for this may be that 

Map2k7+/- mice have a subtle deficit in cognitive flexibility and this deficit only 

appears when the cognitive load involved is high and the reversal is significantly 

more complex. 

6.5.5 Manipulation 2 Stable Performance 

Interestingly, when their performance was once again stable for five sessions 

following Manipulation 2, the choice preference of the two groups of mice settled 

differently to what previously occurred following Manipulation 1 (and at Baseline): 

both groups of mice increased their preference for Choice 3 and Choice 4; WT 
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mice decreased their preference for Choice 1, and Map2k7+/- mice instead 

decreased their preference for Choice 2. The increase in % Choices 3 and 4 is 

logical, because they are no longer as disadvantageous as they were previously 

because of their decreased punishment length. The alteration in preference for 

Choices 1 and 2 by WT and Map2k7+/- mice is presumably in sacrifice for the 

increase in Choices 3 and 4, however it is interesting that both groups picked 

different choices to sacrifice. In this instance, Map2k7+/- mice are performing 

‘worse’, because they have sacrificed a more optimal choice in favour of the lesser 

optimal choice 3 and 4. The reason for this is unclear, but it may reflect 

differences in reward valuation based on their previous knowledge of 

reward/punishment contingencies (Glimcher et al., 2013). As the contingencies 

have been altered for the second time, this would affect the way the mice view 

its reliability. For instance, with pairwise discrimination and reversal, also carried 

out in the touchscreen equipment, it is known that mice take longer to learn the 

first reversal than each reversal thereafter (Dickson et al., 2013). It is possible 

that after the second time the contingencies have been switched, they have 

preference for different choices because the new reward/punishment valuation 

based on previous knowledge of contingency patterns is different for mice whose 

drive to learn appears to be more punishment driven (i.e. Map2k7+/- mice) than 

reward driven. As the only difference that occurred with Manipulation 2 (aside 

from the actual choice switch) compared to Manipulation 1 was that the 

punishment was made less extreme, it would be reasonable to assume that this is 

why the mice took so long to recover, and why they settled on different choices 

preferences.  

6.5.6 Performance Following Amphetamine Challenge 

Administration of an acute dose of amphetamine altered choice preference in the 

rGT by increasing % responding for Choice 1, particularly for WT mice, and altering 

other task performance measurements, such as % omissions, % premature 

responses, # perseverative responses, total beam breaks, magazine entries during 

the ITI and choice latency. For some measurements, there was an enhanced effect 

in WT mice compared with Map2k7+/- mice. 

Amphetamine administration increases dopamine (DA) in the midbrain via various 

mechanisms (reviewed in Seiden et al., 1993). At small doses such as the dose we 

used, amphetamine is known to increase DA in the synaptic cleft by potentiating 
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DA vesicular release and by causing the DA transporter (DAT) to work in reverse, 

transporting DA from the cytoplasm into the extracellular space (Daberkow et al., 

2013). Patients with schizophrenia show an enhanced release of DA in response to 

amphetamine administration (Laruelle et al., 1996). We therefore hypothesised 

that amphetamine administration in Map2k7+/- mice may have a differential, 

enhanced effect compared to WTs. However, we did not see this, and in some 

circumstances, saw the opposite, suggesting that dopaminergic transmission, at 

least in the brain areas required for carrying out this task, may partly interact 

with the MKK7/JNK pathway.  

Amphetamine significantly increased responding for Choice 1, with signs of this 

increase being more pronounced in WT mice compared to Map2k7+/- mice. With 

the exception of one study (Young et al., 2011), in the published literature, this 

increase in Choice 1 was always observed in the rGT following amphetamine 

administration (Baarendse & Winstanley, 2013; van Enkhuizen et al., 2013; Silveira 

et al., 2015; Zeeb et al., 2009). An accompanying effect often seen in those 

studies mentioned just prior (which was not significant here) is a decrease in 

responding for Choice 2 such that responding for Choice 2 was switched from 

responding for Choice 1. This decrease in preference for Choice 2 was not quite 

significant in the current study (p=0.172), however future power analyses will 

enable us to decide if this is an effect that is worth pursuing further. It is possible 

that mice had actually switched their responding from Choice 2 to Choice 1, but 

the stable % Choice 2 was higher to begin with than % Choice 1, so the increase in 

Choice 1 is significant and the decrease in Choice 2 is insignificant because the 

proportion of responses changed are less. On the whole, this alteration in risk 

choice profile similar to previous studies carried out in rats in the 9-hole operant 

box further establishes the touchscreen rGT as having good cross-species, and also 

cross–equipment, translational validity.  

The reasons behind the shift in preference for less risky options is not clear. Zeeb 

et al. (2009) suggest that amphetamine induces a state of over-weighting the 

severity of punishment so the mice perceive the punishment as worse than 

previously. The authors suggest that amphetamine increases the activity of the 

internal pacemaker, causing the punishment period lengths to be perceived as 

longer than they are and therefore biasing preference towards Choice 1 (Zeeb et 

al., 2009). If this is true, this suggests that animals under the influence of 
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amphetamine are affected by punishment length /probability over reward amount 

(Zeeb et al., 2009), which may be another explanation as to why the 

accompanying decrease in % Choice 2 was not seen here: as the punishment period 

for Choices 2 and 3 are less than in comparison to previous studies that observed 

an increase in % Choice 1 and a decrease in % Choice 2 (Van Enkhuizen et al., 

2013), the whole dynamic of % Choices is altered.  

However, another possibility is that the shift is caused by a difference in reward 

valuation perceived by the mice because of alterations of dopaminergic firing 

patterns induced by the amphetamine. Transient, phasic bursts of dopaminergic 

activity occur tonically and spontaneously in the brain but also occur in a time-

locked fashion in response to reward prediction from learned cues, as well as for 

unexpected rewards (Day et al., 2007; Roitman et al., 2008). Daberkow et al. 

(2013) have shown that amphetamine increased the amplitude, duration and 

frequency of the tonic, naturally-occurring, phasic increases in extracellular 

dopamine. Not only this, but they showed that low-dose amphetamine augmented 

the dopamine phasic response to reward prediction cues. It is feasible that the 

mice in the current study, after a low dose of amphetamine, experience an 

enhanced dopaminergic response to obtaining a reward they were expecting and 

therefore bias their responding to Choice 1: if they are experiencing enhanced 

enjoyment from a single reward delivery, they may not be as motivated to try and 

achieve a larger amount of reward at the expense of more frequent punishments. 

This may also be different between the two groups of mice as Map2k7+/- mice 

showed signs of having a reduced behavioural response to amphetamine than WT 

mice. Future experiments could look into the phasic dopaminergic firing in these 

mice whilst carrying out the rGT to observe whether this is the case. 

Amphetamine caused changes in some other performance parameters: magazine 

entries during the ITI and choice latency, a differential effect in the two groups 

of mice such that amphetamine had a stronger effect on WT than Map2k7+/- mice. 

However, these two performance parameters are not normally altered by 

amphetamine in the rGT in mice or rats (Van Enkhuizen et al., 2013, Zeeb et al., 

2009), so these results are difficult to interpret accurately as it may be that the 

differential genotype effect may be artificially induced by anomalous control 

results.  
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6.5.7 Conclusions 

To summarise, we have shown that mice are capable of learning the reward-

punishment contingencies in the touchscreen rGT in a comparable way to humans. 

They show a pattern of responding that reflects the number of rewards per unit 

time, and are able to notice the differences when contingencies are switched and 

alter their responding accordingly. We also show that Map2k7+/- mice show signs 

of impairment in the length of time to adjust to negative feedback, in a similar 

way to patients with schizophrenia: they appear inflexible in their adaptive 

learning and appear to have altered sensitivity to reward/punishment (Turnbull 

et al., 2006; Waltz, 2017; Dunn et al., 2006). Finally, amphetamine had a similar 

effect on the pattern of choice preference as seen in previous studies in rats and 

there was a modest differential genotype effect. Overall, the current study shows 

MKK7 and/or other signalling components in its pathway have a role in risky, 

reward-based decision-making and further highlights the use of Map2k7+/- mice for 

dissecting the cognitive deficits of schizophrenia that could be targeted by novel 

compounds. 
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Chapter 7 Investigation of a gene x 

environment risk factor model using maternal 

immune activation 

7.1 Introduction 

There is a substantial body of research suggesting environmental risk factors that 

act during the pre-, peri- and early postnatal period are an important factor 

involved in the pathogenesis of schizophrenia in adult offspring (Brown & Derkits, 

2010; Murray & Lewis, 1987). Stressful events, such as psychological trauma, 

maternal malnutrition, gestational infection and other obstetric complications 

cause physiological changes in the developing fetal environment, disturbing the 

normal course of brain development and inducing structural and functional brain 

abnormalities which emerge later, in adult life (Meyer et al., 2009; Rees & Inder, 

2005). In particular, maternal infection and the associated inflammatory response 

in the mother and developing fetal brain have been a significant focus of 

investigation. Initially, these were epidemiological studies that had limitations, 

were mainly retrospective in nature, and did not confirm causality (Brown & 

Susser, 2002; Meyer et al., 2009). Increasingly prospective study designs led to 

human serologic evidence (Brown et al., 2004) and investigations into the effect 

of maternal immune activation (MIA) on offspring in preclinical rodent models 

(reviewed in Kneeland & Fatemi, 2013), which provided, and continue to provide, 

insight into the potential pathogenic mechanisms involved in prenatal infection 

and the neurodevelopmental hypothesis of schizophrenia (first proposed by 

Weinberger, 1986; Keshavan & Hogarty, 1999). 

Rodent maternal exposure to human influenza virus (e.g. Fatemi et al., 2002), the 

bacterial endotoxin lipopolysaccharide (LPS) (Urakubo et al., 2001), select 

inflammatory cytokines (Smith et al., 2007) or the viral mimetic polyriboinosinic-

polyribocytidylic acid (Poly I:C; Reisinger et al., 2015) have been widely studied, 

with subsequent examination of molecular, physiological, structural and 

behavioural changes in the offspring (Reviewed in Meyer et al., 2006; Meyer et 

al., 2005; Patterson, 2009). MIA using Poly I:C, a synthetic, commercially available 

analog of double-stranded RNA is particularly well-studied over alternative 

methods of immune activation. This is partially because of its relatively short-
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lived, well-characterised and specific immune response profile, so the point of 

impact is precise and cellular mechanisms can be identified relatively easily 

(Reisinger et al., 2015). Viruses create double stranded RNA (dsRNA) as part of 

replication or as a by-product, which, along with viral mimetics such as Poly I:C, 

are recognised by toll-like receptor 3 (TLR3; a pattern recognition receptor) as 

“foreign” (Alexopoulou et al., 2001). Once Poly I:C has been recognised by TLR3, 

specific intracellular adaptor proteins are recruited and a strong inflammatory 

response is initiated that brings cells to the site of infection in order to help kill 

the invading pathogen (Zhang et al., 2013). This has been shown to occur via the 

activation of MAPKs, nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB), and interferon regulatory factors (IRFs) (Kawai & Akira, 2008; Park 

et al., 2006) and subsequently upregulates genes coding for pro- and anti-

inflammatory mediators such as cytokines, chemokines and colony stimulating 

factors (CSFs) (Arrode-Brusés & Brusés, 2012b; Harvey & Boksa, 2012). 

Additionally, the signalling cascade downstream of Poly I:C’s recognition by TLR3 

interacts with the MKK7 pathway (see Fig. 7.1). When Poly I:C is recognised by 

TLR3, whose toll/interleukin 1 resistance/receptor protein (TIR) domain 

exclusively recruits the adaptor protein TIR domain-containing adaptor proteins 

inducing IFNβ (TRIF) (Oshiumi et al., 2003), the signalling pathway branches off 

and either activates IRF3, NF-κB or AP-1 (Kawasaki & Kawai, 2014; Reisinger et 

al., 2015; Zhang et al., 2013). The pathway that is reliant on JNK/MKK7, however, 

continues by TRIF subsequently interacting with TNF receptor-associated factor 6 

(TRAF6), which recruits receptor interacting protein 1 (RIP1) and, in turn, 

activates the MKKK7 (also known as TAK1) complex, which consists of MKKK7, TAB2 

and TAB3 (together referred to as TRIKA2; (Jiang et al., 2003; Kawasaki & Kawai, 

2014). This complex goes on to activate MKK7 and then JNK, which activates the 

AP-1 family of transcription factors that consequently translocate to the nucleus 

in order to have an effect on gene expression of cytokines, chemokines and colony 

stimulating factors, including IFN-β, TNF-α, IL-12, IL-13, IL-15, IL-7, IL-1β, IL-6, 

CXCL1, CXCL9, CXCL10, CCL5, IL-8, CCL2, CCL3, CCL5, GM-CSF and VEGF in 

maternal plasma and/or fetal brain (Fig. 7.1; Arrode-Brusés & Brusés, 2012; Park 

et al., 2006; Smith et al., 2007). In fact, JNK activation (by MKK4/7) is required 

for Poly I:C – TLR3 mediated increase in CXCL10 and IL-8 expression (Park et al., 

2006) and perhaps other immune molecules that were not measured. Thus, the 



200 
 

experiment described in this chapter is extremely appropriate when considering a 

potential gene x environment interaction model with mice deficient in the Map2k7 

gene. 

 

 

Figure 7.1 An overview of Poly I:C’s ability to interact with the MKK7 pathway. TLR3 

is localised to endosomes within cells. Recognition of Poly I:C or other double stranded 

RNA initiates an inflammatory response partially via MKK7/JNK. Not shown in this diagram 

are other pathways that lead to activation of the NF-κB and IRF3, which have further 

effects on other immune molecules. JNK activates AP1, which translocates to the nucleus 

and increases the expression of inflammatory cytokines, chemokines and colony 

stimulating factors (figure made using information from Arrode-Brusés & Brusés, 2012; 

Kawasaki & Kawai, 2014; Park et al., 2006; Reisinger et al., 2015; Smith et al., 2007; 

Zhang et al., 2013). TLR3 = Toll-like receptor 3; TRIF = TIR domain-containing adaptor 

proteins inducing IFNbeta; TIR = Toll/interleukin 1 resistance/receptor protein; TRAFs = 

TNF (tumor necrosis alpha) receptor-associated factors; AP1 = Adaptor protein 1; RIP1 = 

Receptor interacting protein 1; TAK1 aka MKKK7 (mitogen activated protein kinase kinase 
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kinase 7); TAB = TAK1 binding protein (aka MKKK7 binding protein); TRIKA2 = TRAF6-

regulated IKK activator 2; IKK – IκB Kinase. 

Poly I:C administration to gestating rodents has repeatedly been shown to induce 

molecular, structural, physiological and behavioural changes related to 

schizophrenia in adult offspring (Da Silveira et al., 2017; reviewed in Patterson, 

2009). Specifically, molecular changes in the offspring include: alterations in 

glutamic acid decarboxylase-67 (GAD67) expression, altered microglial staining, 

smaller, denser neurons in the hippocampus, altered dopamine metabolism in the 

striatum, reduced parvalbumin positive cells in the PFC, reduced expression of 

dopamine D1 receptors in the PFC and NMDAR subunit GluN1 in the hippocampus 

(Cassella et al., 2016; Meyer et al., 2009; Meyer et al., 2008; Patterson, 2009). 

Structural changes in the hippocampus have also been observed (Zuckerman & 

Weiner, 2003), as have enlarged ventricles (Piontkewitz et al., 2011). 

Physiological deficits include reduced frequency and amplitude of mEPSCs with an 

increased sensitivity to dopamine when a pregnant mouse was injected on 

embryonic day 12 (E12) with 20mg/kg Poly I:C (Smith et al., 2008). Many 

behavioural changes have been reported, including deficits in: PPI (Ozawa et al., 

2006), latent inhibition (Zuckerman et al., 2003), attentional set shifting (Zhang 

et al., 2012), social behaviour (Bitanihirwe et al., 2010), and spatial learning 

(Meyer et al., 2006). Offspring of Poly I:C exposed dams also experience 

alterations in glucose preference (Silveira et al., 2017), increased anxiety (Meyer 

et al., 2008) and enhanced responses to psychotomimetics such as ketamine 

(Silveira et al., 2017) and amphetamine (Vorhees et al., 2015). 

These findings have initiated research into a whole new level of animal modelling: 

combining models that confer genetic risk for schizophrenia with maternal 

infection and examining the effect this has on offspring. Several studies have 

investigated this so far: Abazyan et al. (2010) combined a mutation in the DISC1 

gene with prenatal infection of Poly I:C; Ibi et al. (2010) also used the DISC1 model 

but exposed the offspring to Poly I:C neonatally; O’Leary et al. (2014) combined 

mice with a genetic deletion in the Neuregulin (NRG1) gene with Poly I:C exposure, 

and Vuillermot et al. (2012) administered Poly I:C to gestating mice with a 

deletion in nuclear receptor related 1 (Nurr1). These studies highlighted the 

complexity of gene x environmental interactions as some results produced 

behavioural differences that are not observable with either genetic alteration or 
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MIA alone; some showed synergistic effects, and some showed additional 

behavioural deficits when MIA is combined with genetic disruption (Moran et al., 

2016). Creating a gene x environment risk factor model with Map2k7+/- mice would 

be highly relevant, especially because of Map2k7’s potential ability to interact 

with the downstream pathway of Poly I:C, and its role in the cellular stress 

response. However, carrying out an experiment like this would require large 

numbers of animals and would take a considerable period of time with no 

reassurance that dose and timings are correct. Firstly, it is important to verify 

that the fine details of the experiment are right, and to investigate at the 

molecular level whether Map2k7 heterozygosity does indeed interact with the 

response to Poly I:C exposure. 

7.2 Aims 

This chapter aims to explore the possibility of Map2k7+/- mice being an important 

gene x environment MIA model relevant to neurodevelopmental disorders such as 

schizophrenia. 20mg/kg Poly I:C will be exposed to gestating dams at E12.5 and 

the immune response profile determined in maternal plasma and brains of the 

developing embryos. It is hypothesised that, as the mechanism of Poly I:C 

administration has been shown to interact with the MKK7 pathway and Map2k7+/- 

mice have decreased MKK7 in the brain, the immune response profile following 

exposure to Poly I:C may be altered in Map2k7+/- mice compared to WTs when 

either: it is the mother that carries genetic risk for schizophrenia, the developing 

embryo that carries genetic risk, or both. If any of these possibilities are the case, 

it will be interesting to study the Map2k7+/- mice further as a model of relevance 

to schizophrenia that carries both genetic and environmental risk, as this provides 

infinitely more construct validity of the disorder than either alone. 
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7.3 Materials and Methods 

7.3.1 Mice  

8 WT male mice, 8 WT female mice, 8 Map2k7+/- male mice and 8 Map2k7+/-female 

mice were used in the experiment. Mice were time mated according to the 

combinations outlined in Table 7.1. Mouse pairs were put together at 5pm and 

separated in the morning the next day. If they had conceived, this was taken as 

embryonic day 0.5. Female mice were weighed and monitored for 12 days and any 

pregnant mice continued in the experiment; any females who had not conceived 

were put together with a different male mouse and the process was repeated until 

the combinations in Table 7.1 had been achieved. 

 Female WT Female Map2k7+/- 

Male WT   4 x Saline 

Male WT   4 x Poly I:C 

Male Map2k7+/- 4 x Saline   

Male Map2k7+/- 4 x Poly I:C   

Table 7.1 Mating combinations. 4 pairs in each group were successfully time mated, 

totalling 16 pairs. 

Female mice weighed 22.1 ± 0.34g on average at the start of the experiment and 

28.7 ± 0.77g on average when 12.5 days pregnant. All mice were aged 12.23 ± 0.47 

weeks at the point of conception. Mice were singularly housed (when not paired) 

in a temperature and humidity-controlled room with a 12-hour light/dark cycle 

(lights on at 07:00). All injections and dissections occurred between 08:00 and 

18:00 and in accordance with the Animals (Scientific Procedures) Act 1986.  

7.3.2 Drug Administration 

Pregnant dams were weighed and given either 20mg/kg at 2ml/kg Poly I:C 

(Invivogen, LMW) or 2ml/kg saline on embryonic day 12.5 (E12.5). This dose has 

previously been shown to induce long-lasting behavioural and pharmacological 

changes in mouse offspring (Shi et al., 2003) and was chosen because it is the 

optimal dose that causes MIA (Garay et al., 2013). All injections were given 

subcutaneously to avoid accidental injection into an embryo. With respect to brain 

development (Clancy et al., 2001) and brain gene expression (Liscovitch & 

Chechik, 2013), embryonic day 12.5 is equivalent to ~54th day (7.8th week) of 

gestation for humans. Therefore, embryonic day 12.5 is the murine equivalent of 
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three-quarters of the way through trimester 1 in humans, a period where the 

developing nervous system is particularly vulnerable to maternal infection and 

most associated with increased incidence of schizophrenia (Brown et al., 2004).   

7.3.3 Dissection Procedure 

6 hours following the Poly I:C or saline injection, the pregnant dam was injected 

with a lethal dose (0.1ml) of Pentobarbital sodium (Euthatal, Merial Animal Health 

Ltd.) and trunk blood was collected via cardiac puncture into an EDTA-coated 

syringe. The blood was injected into an EDTA-coated 1.5ml Eppendorf tube 

containing an additional 80µl EDTA and shaken to mix the blood with the EDTA. If 

more than 0.8ml of blood was collected, 10µl EDTA per 100µl extra blood was 

added to the tube to ensure sufficient prevention of blood clotting. The Eppendorf 

containing the maternal blood and EDTA was spun at 10,000g at 4°C for 10 

minutes. The supernatant (plasma) was then transferred into a new Eppendorf and 

frozen at -80°C until ELISA or Luminex were carried out. 

While the blood was spinning, the embryos were carefully removed from the 

mother and placed on a ceramic tile on ice. The brain and a small amount of tissue 

(for genotyping) were taken from each embryo, placed in separate Eppendorfs and 

kept at -80°C until required. The ceramic tile and dissection tools were cleaned 

with ethanol between each embryo to avoid contamination. 

The embryos were individually genotyped according to the Genotyping outlined 

in Section 2.2.  

7.3.4 Protein Extraction for ELISA and Luminex  

Embryonic brain samples were pooled for genotype for each group so that from 

one litter, all WT embryo’s brain tissue were placed in a 1.5ml Eppendorf and all 

the Map2k7+/- embryo’s brain tissue were placed in a separate 1.5ml Eppendorf. 

Pooled embryonic brain tissue was homogenised manually in 275µl lysis buffer (1 

x PBS with 0.1% w/v Triton X-100 (Sigma), 5µM EDTA (GIBCO) and 1% w/v 

proteinase inhibitors (Sigma, P8340) and then spun at 8,000g for 10 minutes at 

4°C.  

Supernatant was collected and total protein was quantified straight away using 

the BCA Assay as outlined below. The supernatant containing the protein was then 

halved (~110µl each) into two separate 0.5ml Eppendorfs, one for ELISA and one 
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for Luminex, so that multiple freeze-thaw cycles did not occur as this can affect 

protein composition. The samples were stored at -20°C for 1 or 2 days until ELISA 

or Luminex were carried out.  

7.3.5 BCA Assay 

Embryonic brain protein concentrations were determined by bicinchoninic acid 

(BCA) assay according to the manufacturer’s instructions provided (Merck) using 

bovine serum albumin (BSA) as a standard. Standards were diluted as appropriate 

in lysis buffer (see Protein Extraction above for lysis buffer details). The highest 

standard was 1000µg/ml and was serially diluted to give final known 

concentrations of 1000, 500, 250, 125 and 25µg/ml, and a 0µg/ml blank of lysis 

buffer was also added. Samples were diluted 1:250 in lysis buffer and 25µl of BSA 

standards or samples were added in duplicate to a 96-well plate. 200µl of BCA 

working reagent (BCA solution and 4% Cupric sulphate in a ratio of 50:1) was added 

to each well, then the plate was covered from light and incubated at 37°C for 40 

minutes. The optical density at wavelength 590nm was subtracted from the optical 

density at 540nm to correct for optical imperfections in the plate, duplicate 

readings were averaged, and then blank readings were subtracted from all other 

standard and protein samples to give corrected optical density. The samples were 

interpolated from the standard curve and multiplied by the dilution factor to give 

total protein concentrations of samples.  

7.3.6 ELISA 

CCL5 levels in maternal plasma and embryonic brain tissue supernatant were 

measured by an enzyme-linked immunosorbent assay (ELISA; Mouse/Rat 

CCL5/RANTES Quantikine® ELISA, R&D Systems: MMR00) according to the 

manufacturer’s instructions provided. This ELISA utilised a traditional quantitative 

sandwich technique: primary antibody – sample – secondary antibody – substrate 

(detection). 50µl of assay diluent (provided) and 50µl of the diluted standards and 

samples (undiluted) were loaded in duplicate into the wells onto which a 

monoclonal antibody for CCL5 had been pre-coated. The highest standard was 

500pg/ml and was serially diluted in calibrator diluent (provided) to give final 

known concentrations of 500, 250, 125, 62.5, 31.3, 15.6 and 7.8pg/ml, and a 

0pg/ml blank of lysis buffer was also added. Any CCL5 present in standards and 

samples bound to the antibody throughout a two-hour incubation at room 

temperature. The standards and samples were then washed five times with the 
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wash buffer provided, then the conjugate polyclonal antibody for CCL5 was added 

to the wells and incubated at room temperature for 2 hours. Another 5 wash steps 

were carried out and the substrate was added, which produced a colour reaction 

(blue) that was stopped after 40 minutes (and turned yellow). The optical density 

was then read by a plate reader (Multiskan Spectrum, Thermo Fisher, using 

SkanIt™ Software): absorbance readings at 540nm were subtracted from readings 

at 450nm to correct for optical imperfections in the plate. The duplicate readings 

were averaged, and the blank readings were subtracted from all other standards 

and samples in order to give corrected optical density. The sample readings were 

then interpolated from the standard curve and multiplied by the dilution factor 

(2, as it was necessary to include 1:1 assay diluent to sample) to give the 

concentration of CCL5 in maternal plasma and embryonic brain. Embryonic brain 

concentrations were then normalised to total protein as established by the BCA 

assay using the calculation: (concentration of CCL5 in pg/ml / concentration of 

total protein in mg/ml) to give normalised CCL5 concentration in pg/mg protein. 

7.3.7 Luminex Assay 

The concentration of 20 cytokines, chemokines and colony stimulating factors 

were simultaneously determined in maternal plasma and embryonic brain tissue 

supernatant using a mouse cytokine magnetic 20-plex assay according to the 

manufacturer’s instructions (Invitrogen: LMC0006M). The protein molecules 

measured and the concentration of the corresponding reconstituted standards are 

outlined in Table 7.2. These three groups of immune molecules are involved in 

the first steps following viral infection and initiate the movement, transcription 

and release of various immune cells, therefore giving a broad overview of the 

maternal and embryonic reaction to such an infection.  

Cytokines Chemokines CSFs 

GM-CSF 13,600 IL-10 32,600 CXCL10 14,500 VEGF 4,400 

IFN-γ 12,000 IL-12 5,450 CXCL1 50,500 FGF basic 25,700 

IL-1α 19,100 IL-13 18,200 CCL2 15,800   

IL-1β 16,700 IL-17 5,250 CXCL9 6,200   

IL-2 5,050 IL-5 15,100 CCL3 28,600   

IL-4 32,200 IL-6 21,200     

TNF-α 17,000       
Table 7.2. Cytokines, chemokines and colony stimulating factors measured using the 

Luminex assay and the concentrations of their reconstituted standard in pg/ml. CSFs 

= colony stimulating factors. 
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Two identical plates were required so that all samples could be analysed in 

duplicate, and were run in parallel. First, beads of defined spectral properties 

that are conjugated to protein specific antibodies for each of the proteins in Table 

7.2 were added to the wells. Antibody beads were vortexed for 30 seconds then 

sonicated for 30 seconds immediately before they were added into each well (25μl 

of antibody bead solution per well). Wells were then washed twice with 200μl of 

1x wash solution using the magnetic separator method: the wash solution was 

added, the plate was adhered to the hand-held magnet, left to settle for 1.5 

minutes, then inverted and tapped on paper towels several times. The plate was 

then removed from the magnet, 200μl of wash solution was re-added and the 

process repeated. Next, 50μl of incubation buffer was added into each well 

followed by the diluted standards in duplicate (100μl each). The highest standard 

was a different concentration for each antibody (see Table 7.2) and were serially 

diluted 1:3 6 times with 50% assay diluent (provided) and 50% lysis buffer, plus 

the undiluted standard and lysis buffer blank, to give 8 standards. The standard 

curve for each antibody are given in Appendix 2. Samples were diluted 1:1 with 

assay diluent and 100μl of this was added per well, along with 50μl incubation 

buffer. The plate was then protected from light and incubated on an orbital shaker 

at 600 rpm overnight at 4°C.  

The following morning, wells were washed twice in wash solution followed by the 

addition of 100μl 1x biotinylated detector antibody solution. The plate was then 

protected from light and incubated on an orbital shaker at 600 rpm for 1 hour at 

room temperature. Wells were then washed twice in wash solution and 100μl of 

1x streptavidin-RPE was added to each well, followed by shaking at 600 rpm for 

30 minutes at room temperature, protected from light. Liquid was then removed 

and each well washed 3 times in wash solution. Finally, 125μl of wash solution 

was added to each well and the plate was shaken for 3 minutes on an orbital 

shaker at 600 rpm at room temperature. The plates were then read on a recently 

calibrated and validated Bio-Plex® 200 MAGPIX multiplex reader (Bio-Rad, CA) 

using Bio-Plex Manager™ 5.0 software (Bio-Rad, CA). The appropriate bead region 

was assigned to each analyte, a detection target of 100 beads per region and the 

recommended doublet discriminator (DD) gates of 7,800 – 20,000 were used, and 

the median fluorescent intensity (MFI) was collected. The coefficient of variation 

(% CV) of duplicate wells was checked; a plate was acceptable if the mean 
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CV<15%, and if not more than 20% of duplicates have CV>25%. The mean CV for 

each plate was 5.25% and 6.74% and the percentage of duplicates which have a 

CV >25% was 1.35% and 3.12% for each plate, respectively, which was well within 

this range. Any points from the standard curve that had a % CV >25% and accuracy 

outside of 70-120% of expected were excluded. % accuracy was calculated by the 

formula: (observed value/expected value)*100. The analysis software was then 

used to fit a curve to this set of reliable standards data using 5-parameter logistic 

regression with default automated weighting (all fitted to ≥ 6 points; see 

Appendix 2). Lower and upper limits of quantification (LLOQ and ULOQ) were 

calculated as the highest and lowest measured reliable standards for each 

standard curve after assessment as above. Concentration values that fall outside 

of this curve range were not included in analysis because they are extrapolated 

values, unless they were out of range because of a group difference. For example, 

mice that had received Poly I:C were likely to have cytokine levels within range 

but mice that had saline were not. In this case, the cytokine levels out of range 

(OOR; too small) were given a value of 0. Embryonic brain concentrations were 

then normalised to total protein as established by the BCA assay using the 

calculation: (concentration of immune molecule in pg/ml)/(concentration of total 

protein in mg/ml) to give normalised immune molecule concentration in pg/mg 

protein. 

7.3.8 Statistical Analysis  

All statistical analyses were carried out using Minitab® 17 Statistical Software. For 

maternal plasma, each cytokine was analysed separately by a two-way ANOVA 

with maternal genotype (WT or Map2k7+/-) and drug (saline or Poly I:C) as between 

subjects factors. For embryonic brain, each cytokine was analysed separately by 

a three-way ANOVA with maternal genotype (WT or Map2k7+/-), embryonic 

genotype (WT or Map2k7+/-) and drug (saline or Poly I:C) as between subjects 

factor and each litter nested within maternal genotype and drug. 2-way pairwise 

comparisons were made between factors using Tukey’s method. Bar graphs were 

created using GraphPad Prism 7. Data are presented as mean ± standard error of 

the mean (SEM) and results were considered significant if p<0.05.  

Several of the cytokine levels measured contained a large number of zero’s 

because values that were completely OOR (too small) or extrapolated from the 

lower part of the standard curve within one experimental group were replaced 
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with a zero. Therefore, a large amount of data in this chapter were violating the 

assumptions of an ANOVA: equal variances and a normal distribution. Using 

Levene’s method to test for equal variances and the Anderson-Darling test for 

normality showed that the variances were unequal and the data was not normally 

distributed for several cytokines; however, data within each drug group (Saline or 

Poly I:C) had equal variances when tested separately. Additionally, visual 

inspection of the graphs from data which had shown a significant difference were 

noticeably very different. On this basis, and because there were equal numbers 

of genotypes in each of the treatment groups and genotype data grouped 

separately are normally distributed, it was decided that an ANOVA remained the 

most suitable statistical test to use. 
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7.4 Results 

Female WT and Map2k7+/- mice that were in their 12.5th day of pregnancy were 

subcutaneously injected with either Poly I:C or saline. Maternal plasma and 

embryonic brain tissue were taken 6 hours later and embryonic brains were pooled 

for genotype from each litter. The concentrations of 21 different cytokines, 

chemokines and colony stimulating factors were then analysed in maternal plasma 

and embryonic brain supernatant. For the maternal plasma measurements, 14 of 

the 21 immune molecules analysed were within a detectable range and met 

criteria for inclusion in analyses; for the embryonic brain cytokine measurements, 

5 were detectable. This is most likely due to the fact that the levels of immune 

molecules are naturally a lot lower in embryonic brain tissue than maternal blood 

plasma (Garay et al., 2013) and/or that they are not present in embryonic brain 

at detectable levels at this stage of development (Arrode-Brusés & Brusés, 2012b). 

7.4.1 Maternal plasma from mice injected with Poly I:C had increased levels 

of most immune molecules measured compared to those injected with 

saline  

Of the 21 cytokines tested, 14 were detectable in maternal plasma. 12 of these 

were elevated following Poly I:C administration compared to saline: CCL5, IL-1β, 

CXCL10, CCL2, IL-6, CXCL9, IL-10, IL-5, TNF-α, CXCL1, IL-2 and IL-12 (effect of 

drug; see Table 7.4, Fig. 7.2). FGF Basic and VEGF, the only two colony 

stimulating factors measured, were not elevated following Poly I:C (Fig. 7.2). 

Data and p-values for all immune molecules are shown in Table 7.3 and 7.4, 

respectively.  

7.4.2 Map2k7+/- mice showed an enhanced cytokine response in maternal 

plasma to Poly I:C  

The levels of VEGF, IL-10, TNF-α, CXCL1, IL-2, and IL-12 were higher in Map2k7+/- 

mice than WT mice overall (significant overall effect of genotype; see Table 7.4, 

Fig. 7.2). For the cytokines TNF-α, IL-2, IL-10 and IL-12, this was particularly 

striking, as post hoc analyses revealed they were significantly more elevated in 

Map2k7+/- mice than they were in WT mice following Poly I:C administration 

(significant genotype x drug interaction; see Table 7.4, Fig. 7.2). Data and p-
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values for all immune molecules in maternal plasma are shown in Table 7.3 and 

7.4, respectively. 
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Table 7.3. Immune molecule levels in maternal plasma. Data shown as mean ± SEM.                                

Cytokine/Chemokine WT with Saline (pg/ml) HZ with Saline (pg/ml) WT with Poly I:C (pg/ml) HZ with Poly I:C (pg/ml) 

CCL5 202.98 ± 51.62 202.57 ± 41.15 1907.11 ± 21.87 1844.67 ± 11.80 

GM-CSF <OOR <OOR <OOR <OOR 

IFN-γ <OOR <OOR <OOR <OOR 

IL-1α <OOR <OOR <OOR <OOR 

IL-1β 45.16 ± 16.04 65.07 ± 27.99 151.78 ± 16.66 261.19 ± 83.27 

IL-2 0.00 ± 0.00 5.80 ± 3.37 22.33 ± 3.85 50.42 ± 9.48 

IL-4 <OOR <OOR <OOR <OOR 

IL-5 154.93 ± 29.26 224.58 ± 46.25 507.73 ± 14.50 486.97 ± 63.11 

IL-6 0.00 ± 0.00 109.29 ± 109.29 514.55 ± 41.50 650.43 ± 91.93 

IL-10 73.15 ± 60.85 117.01 ± 54.62 164.85 ± 46.99 447.26 ± 44.59 

IL-12 115.65 ± 27.26 72.56 ± 29.72 713.84 ± 113.16 1198.62 ± 171.63 

IL-13 <OOR <OOR <OOR <OOR 

IL-17 <OOR <OOR <OOR <OOR 

TNF-α 10.49 ± 1.51 13.11 ± 1.64 117.92 ± 14.23 172.66 ± 17.37 

CXCL10 35.56 ± 4.56 49.04 ± 3.52 9638.78 ± 1932.09 11413.58 ± 2035.53 

CXCL1 356.44 ± 139.31 630.33 ± 121.37 5040.50 ± 553.58 7068.87 ± 880.44 

CCL2 107.45 ± 24.43 131.46 ± 24.06 16452.15 ± 5258.73 13278.52 ± 3323.51 

CXCL9 157.31 ± 40.27 463.66 ± 159.82 9527.16 ± 783.88 17360.52 ± 7296.51 

CCL3 <OOR <OOR <OOR <OOR 

VEGF 20.77 ± 2.72 24.49 ± 3.50 19.62 ± 0.82 34.82 ± 6.11 

FGF basic 410.77 ± 38.58 3048.48 ± 2252.39 859.62 ± 588.23 699.75 ± 236.63 
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Table 7.4. p-values from statistical tests showing significance between experimental groups of immune molecule levels in maternal plasma.    

Cytokine/Chemokine 
WT vs. HZ 

(Effect of Genotype) 
Poly I:C vs. Saline 

(Effect of Treatment) 
WT with Poly I:C vs. HZ with Poly I:C (Genotype x 

Treatment interaction) 

CCL5 0.391, ns <0.0001, F(1,12)=2249.70 0.397, ns 

GM-CSF NA NA NA 

IFN-γ NA NA NA 

IL-1α NA NA NA 

IL-1β 0.180, ns 0.006, F(1,12)=11.11 0.344, ns 

IL-2 0.008, F(1,12)=9.88 <0.0001, F(1,12)=38.57 0.061, ns * 

IL-4 NA NA NA 

IL-5 0.575, ns <0.0001, F(1,12)=52.64 0.307, ns 

IL-6 0.125, ns <0.0001, F(1,12)=50.39 0.861, ns 

IL-10 0.009, F(1,12)=9.78 0.002, F(1,12)=16.36 0.041, F(1,12)=5.23 

IL-12 0.057, F(1,12)=4.44 <0.0001, F(1,12)=67.74 0.027, F(1,12)=6.35 

IL-13 NA NA NA 

IL-17 NA NA NA 

TNF-α 0.026, F(1,12)=6.46 <0.0001, F(1,12)=139.97 0.040, F(1,12)=5.33 

CXCL10 0.536, ns <0.0001, F(1,12)=55.82 0.542, ns 

CXCL1 0.050, F(1,12)=4.75 <0.0001, F(1,12)=110.88 0.123, ns 

CCL2 0.622, ns <0.0001, F(1,12)=22.47 0.617, ns 

CXCL9 0.289, ns 0.004, F(1,12)=12.80 0.325, ns 

CCL3 NA NA NA 

VEGF 0.029, F(1,12)=6.19 0.251, ns 0.157, ns 

FGF basic 0.311, ns 0.433, ns 0.255, ns 
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Table 7.3 and 7.4. Immune molecule levels in maternal plasma (Table 7.3) of WT and Map2k7+/- mice that had either received Poly I:C or Saline 6 hours 

prior to collection of plasma, and the p-values showing significance (Table 7.4). Data collected using either an ELISA (for CCL5) or Luminex Multiplex 

Panel (for all other cytokines/chemokines/colony stimulating factors). Concentrations are expressed as the mean ± SEM pg/ml. <OOR = Out of range 

(too small). Data were analysed by 2-way ANOVAs with maternal genotype and drug as between subjects factors, and Tukey’s post hoc. All significant 

differences indicate elevated cytokine levels for Map2k7+/- mice compared to WT, for Poly I:C treated compared to Saline treated and for Map2k7+/- 

mothers that received Poly I:C compared to WT mothers that received Poly I:C. N= 4 per group (16 total). 

* Although the interaction term was not significant, Tukey’s post hoc analysis showed that there was a significant difference in IL-2 levels between 

Map2k7+/- mothers that received Poly I:C and WT mothers that received Poly I:C (see Fig. 7.2). 
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Figure 7.2 Cytokine levels in the maternal plasma as measured by a) ELISA and b-

n) Luminex multiplex panel. All cytokines/chemokines were elevated in plasma of 

the mothers that received Poly I:C compared to those that received saline (note that 

7 cytokines are not included in analysis because their levels were out of range (too 

small). FGF Basic and VEGF, the two colony stimulating factors measured, were not 

elevated in response to Poly I:C. IL-10, TNF-α, IL-2 and IL-12 were significantly more 

elevated in Map2k7+/- mice than they were in WT mice following Poly I:C 

administration compared to saline. Data analysed by a two-way ANOVA with maternal 

genotype (WT or Map2k7+/-) and drug (saline or Poly I:C) as between subjects factor. 



216 
 

2-way pairwise comparisons were made between factors using Tukey’s method. Lines 

between drug groups and between genotype groups indicate overall significant 

difference between those groups: *p<0.05, **P<0.01, ***p<0.001 (ANOVA); #p<0.05 

(Tukey’s). Map2k7+/-: n=8 (4 saline, 4 Poly I:C), WT: n= 8 (4 saline, 4 Poly I:C). 

 

7.4.3 CCL5 and CXCL10 were elevated in embryonic brain following Poly I:C 

Of the immune molecules analysed in embryonic brain, 5 were within a detectable 

range and met criteria for inclusion in analyses: CCL5, CXCL10, CCL2, VEGF and 

FGF Basic. CCL5 and CXCL10 levels were significantly increased in the brains of 

embryos whose mother had been exposed to Poly I:C compared to the brains of 

embryos whose mother had been given saline (significant effect of drug; see Table 

7.7). CCL2, VEGF and FGF Basic were not elevated in response to Poly I:C.  

7.4.4 Map2k7+/- embryos from WT mothers had a differential CCL5 brain 

response to Poly I:C than Map2k7+/- embryos from Map2k7+/- mothers  

Although modest, CCL5 levels were higher in embryos from maternal Map2k7+/- 

mice than those from maternal WT mice overall (significant overall effect of 

maternal genotype; see Table 7.6, Fig. 7.3a), which showed signs of being driven 

by an increase in CCL5 in Map2k7+/- embryonic brain as opposed to an increase in 

CCL5 in WT embryonic brain. Although there is no significant difference between 

CCL5 levels in WT and Map2k7+/- embryonic brain that had received Poly I:C via 

their mothers, there was a significant increase in Map2k7+/- embryonic brain CCL5 

when they had received Poly I:C via Map2k7+/- mothers compared to Map2k7+/- 

embryonic brain CCL5 when they had received Poly I:C via WT mothers. On the 

other hand, there was no significant increase in CCL5 in WT embryonic brain when 

they received Poly I:C from Map2k7+/- mothers, compared to WT embryonic brain 

when they received Poly I:C from WT mothers (see Table 7.7, Fig. 7.3). Maternal 

and embryonic genotype, and drug (saline or Poly I:C) did not have an effect on 

CCL2, VEGF and FGF Basic levels. Data and p-values for all immune molecules in 

embryonic brain are shown in Table 7.5, 7.6 and 7.7. 
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Cytokine/Chemokine 

WT Embryo from Maternal 

WT with Saline (pg/mg) 

WT Embryo from Maternal 

HZ with Saline (pg/mg) 

HZ Embryo from Maternal 

WT with Saline (pg/mg) 

HZ Embryo from Maternal 

HZ with Saline (pg/mg) 

CCL5 0.05 ± 0.03 0.27 ± 0.18 0.03 ± 0.03 0.08 ± 0.08 

CXCL10 0.38 ± 0.21 1.47 ± 0.51 0.26 ± 0.26 1.41 ± 0.71 

CCL2 4.74 ± 0.61 3.50 ± 0.68 4.81 ± 1.30 4.17 ± 1.08 

VEGF 1.39 ± 0.21 1.20 ± 0.24 1.27 ± 0.41 1.52 ± 0.39 

FGF basic 45.37 ± 9.17 54.95 ± 10.73 67.39 ± 21.24 76.52 ± 23.93 

         Table 7.5. Immune molecule levels in embryonic brain with maternal exposure to saline. Data shown as mean ± SEM.                       

 

Table 7.6. Immune molecule levels in embryonic brain with maternal exposure to Poly I:C. Data shown as mean ± SEM.                       

 

Cytokine/Chemokine 

WT Embryo from Maternal 

WT with Poly I:C (pg/mg) 

WT Embryo from Maternal 

HZ with Poly I:C (pg/mg) 

HZ Embryo from Maternal 

WT with Poly I:C (pg/mg) 

HZ Embryo from Maternal 

HZ with Poly I:C (pg/mg) 

CCL5 1.30 ± 0.26 1.40 ± 0.54 0.64 ± 0.31 2.06 ± 0.69 

CXCL10 3.88 ± 0.66 2.91 ± 0.47 2.84 ± 0.44 6.64 ± 2.16 

CCL2 4.44 ± 0.94 3.38 ± 0.62 3.65 ± 0.67 6.81 ± 2.06 

VEGF 1.27 ± 0.19 1.08 ± 0.22 1.36 ± 0.36 2.28 ± 0.96 

FGF basic 48.81 ± 11.92 37.91 ± 8.64 31.79 ± 3.48 72.77 ± 15.41 
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Table 7.7. p-values from statistical tests showing significance between experimental groups of immune molecule levels in maternal plasma.  

 

Table 7.5, 7.6 and 7.7. Cytokine and chemokine levels (Table 7.4 and 7.5) in embryonic brains of WT and Map2k7+/- mice that had either received Poly I:C or 

Saline via their WT or Map2k7+/- mother 6 hours prior to collection of tissue, and the p-values showing significance (Table 7.6). Data collected using either an 

ELISA (for CCL5) or Luminex Multiplex Panel (for all other cytokines/chemokines/colony stimulating factors). Concentrations are expressed as the mean ± SEM 

pg/ml. Data were analysed by 3-way ANOVA with Embryonic Genotype, Maternal Genotype and Drug as between subjects factors, and Tukey’s post hoc. n = 4 

WT and 4 Map2k7+/- pooled embryonic brain samples for each: Maternal WT Saline, Maternal WT Poly I:C, Maternal Map2k7+/- Saline, Maternal Map2k7+/- Poly 

I:C. For clarity, only interaction terms in the model that produced a significant result in at least one cytokine are shown; all other interaction terms were non-

significant. All cytokines not shown here but shown in Table 7.2 were OOR (too small). 

*Embryonic HZ produced by a WT Mother with Poly I:C vs. Embryonic HZ produced by a HZ Mother with Poly I:C. ** Although the interaction term was not 

significant, Tukey's Post Hoc analysis showed that a Map2k7+/- embryo from a Map2k7+/- mother that had received Poly I:C had increased levels of CCL5 compared 

to a Map2k7+/- embryo from a WT mother who had Poly I:C. 

 

     

Cytokine/Chemokine Embryonic WT vs. HZ Maternal WT vs. HZ Poly I:C vs. Saline 
*(Embryonic Genotype x Drug x Maternal 
Genotype interaction) 

CCL5 0.771, ns 0.031, F(1,12)=5.95 <0.0001, F(1,12)=46.20 0.063, ns ** 

CXCL10 0.366, ns 0.084, ns <0.0001, F(1,12)=22.58 0.105, ns 

CCL2 0.292, ns 0.944, ns 0.738, ns 0.262, ns 

VEGF 0.278, ns 0.565, ns 0.651, ns 0.616, ns 

FGF basic 0.123, ns 0.213, ns 0.178, ns 0.183, ns 
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Figure 7.3 Cytokine levels in the embryonic brain as measured by a) ELISA and b, c, d, e) Luminex 

Multiplex panel. Overall, CCL5 (a) and CXCL10 (b) levels were significantly increased in the brains 

of embryos whose mother had been exposed to Poly I:C, compared to embryonic brain levels whose 

mother had received saline. For CCL5 (a), this increase in Poly I:C in embryonic brain was 

attenuated in the Map2k7+/- embryos produced by a WT, compared to Map2k7+/- embryos produced 

by a Map2k7+/-mouse. CCL2 (c), VEGF (d) and FGF Basic (e) levels were unaffected by whether the 

mother had received Poly I:C or saline, or whether the mother was a WT or a Map2k7+/- mouse. All 

other cytokines measured in the Luminex assay were OOR (too small; data not shown). All embryos 

were genotyped and WT and Map2k7+/- embryos from each litter (n = 3-10) were pooled together 

for analysis. Data normalised to total protein levels as determined by BCA assay and analysed by 

a three-way ANOVA with embryonic genotype, maternal genotype and drug as between subjects 

factors with maternal genotype and treatment nested within litter. 2- and 3-way pairwise 

comparisons were made between all factors using Tukey’s method. N = 4 WT and 4 Map2k7+/- 

embryonic brain samples for each: Maternal WT Saline, Maternal WT Poly I:C, Maternal Map2k7+/- 

Saline, Maternal Map2k7+/- Poly I:C. Lines between drug groups and between genotype groups 

indicate overall significant difference between those groups. *p<0.05, ***p<0.001 (ANOVA); 
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#p<0.05 (Tukey’s). n = 4 WT and 4 Map2k7+/- pooled embryonic brain samples for each: Maternal 

WT Saline, Maternal WT Poly I:C, Maternal Map2k7+/- Saline, Maternal Map2k7+/- Poly I:C.
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7.5 Discussion 

In this chapter, it has been shown that the immune response of Map2k7+/- mice 

differs from that of WTs following maternal exposure to Poly I:C. 12 cytokines 

were increased in maternal plasma following Poly I:C exposure: IL-2, IL-5, IL-6, IL-

10, IL-12, TNF-α, IL-1β, CCL2, CCL5, CXCL1, CXCL9 and CXCL10. 4 of these: IL-2, 

IL-10, IL-12 and TNF-α, were all increased to a significantly higher extent in 

maternal plasma of Map2k7+/- mice compared to WT mice, suggesting that 

Map2k7+/- mice have a less well-controlled/regulated immune response to viral 

infection. Furthermore, CCL5 and CXCL10 were increased in the embryonic brain 

of the embryos whose mother had been exposed to Poly I:C. Although CCL5 levels 

increased following Poly I:C in maternal serum to the same extent in Map2k7+/- 

and WT mice, Map2k7+/- embryos from Map2k7+/- mothers had significantly 

increased CCL5 compared to Map2k7+/- embryos from WT mothers. On the other 

hand, WT embryos from Map2k7+/- mothers did not have significantly increased 

CCL5 levels compared to WT embryos from WT mothers in response to Poly I:C. 

This indicates that the immune response in the developing brains of Map2k7+/- 

mice functions differently to some aspects of viral infection to WTs, and may 

provide important information if they are studied further as a gene x environment 

interaction model with relevance to schizophrenia, and possibly other 

neurodevelopmental disorders. 

7.5.1 Cytokines activated 

MIA with Poly I:C in gestating rodents has been carried out many times (reviewed 

in Meyer, 2014; Reisinger et al., 2015; Scola & Duong, 2017). The immune 

molecule profile has been well documented in C57Bl/6 mice; a similar dose 

(20mg/kg) of Poly I:C increased levels of IL-6, IL-12, IL-10, IL-13, IL-15, TNF-α, 

IFN-γ, CCL2, CCL3, CCL5, CXCL1, CXCL9, CXCL10, VEGF AND GM-CSF in maternal 

serum 6 hours following exposure at E16 (Arrode-Brusés & Brusés, 2012b). 

Additionally, maternal 20mg/kg Poly I:C exposure at E12.5 induced chronic 

alterations in immune molecules in the fetal brain: IL-1β, IL-10, IL-12 and GM-CSF 

are increased in the frontal cortex at birth; IL-12 and CCL5 were increased, and 

CCL3 and GM-CSF were decreased in offspring blood at birth, and IL-6, IL-10 and 

IL1β were increased at adulthood in the frontal cortex and/or blood of offspring 

serum compared to controls (Garay et al., 2013). These results show a viral 
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mimetic challenge at a similar dose and point in embryonic development to that 

used in the current experiment has the ability to make long-lasting changes in 

immune molecule levels in the frontal cortex, an area of well-known disruption in 

schizophrenia (Callicott et al., 2003; Pratt et al., 2008). The study by Garay et al. 

(2013) also highlights the complexity of MIA mechanisms: even within the same 

mouse at the same point in development it is possible for the same cytokines to 

be increased in the blood but decreased in the brain (e.g. GM-CSF; Garay et al., 

2013).  

In the current study, our findings matched that of Arrode-Brusés & Brusés (2012) 

for the majority of immune molecules in maternal plasma (increased levels of 

CCL2, CCL5, CXCL1, CXCL9, CXCL10, IL-6, IL-10, IL-12 and TNF-α). We also found 

an increase in IL-1β, IL-5 and IL-2, which they did not test for, and we did not find 

an increase in VEGF where Arrode-Brusés & Brusés (2012) did. Also, the authors 

found IL-1β, CCL2, CXCL9, CXCL10 and VEGF to be increased in embryonic brain 

following maternal exposure to Poly I:C (Arrode-Brusés & Brusés, 2012). Of the 

cytokines that were in a detectable range in the embryonic brain, we found an 

overall increase only in CXCL10 and CCL5 but not in VEGF in response to Poly I:C 

exposure. Other studies that used 20mg/kg Poly I:C could either not detect CCL5 

or it was not contained within the set of cytokines that they measured. 

Interestingly, in the current study, CCL2 was increased following Poly I:C in 

maternal plasma and was detectable in embryonic brain but did not show an 

increase following maternal Poly I:C, in contrast to Arrode-Bruses & Bruses (2012), 

who found CCL2 to be increased in fetal brain 6 hours following Poly I:C exposure. 

Overall, however, our findings are closely matched and show that the levels of a 

broad spectrum of immune molecules are increased following administration of a 

viral mimetic. In fact, many of the cytokines altered in the offspring brain and 

maternal serum are also elevated in the blood of patients with schizophrenia, 

including IL-1β, IL-2, IL-6, IL-12 and TNF-α (Crespo-Facorro et al., 2008; Kim et 

al., 2009; Theodoropoulou et al., 2001) 

The differences seen in cytokine upregulation between the current study and 

Arrode-Brusés & Brusés (2012) may be because they exposed Poly I:C to pregnant 

mice on embryonic day 16 as opposed to our exposure on E12.5. This may 

represent a different level of immune reactivity in the mother and a more (or less) 

permeable period for the placenta and/or blood-brain barrier in the embryo at 
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the different periods of gestation. There are substantial fluctuations in the 

functioning of the maternal host’s immune system as pregnancy progresses, 

including in the placenta, the barrier between the mother and baby (Mor & 

Cardenas, 2010). Although this may at least partially explain the differences, 

E12.5 is relevant to the aims of the current study. Poly I:C was exposed at the 

murine equivalent of three quarters of the way through trimester 1 with respect 

to brain development (Clancy et al., 2001) and brain gene expression (Liscovitch 

& Chechik, 2013). This is a period where the developing nervous system is 

particularly vulnerable to maternal infection and most associated with increased 

incidence of schizophrenia following maternal infection (Brown et al., 2004). 

Neurogenesis and gliogenesis are well underway at this point, and neuronal 

migration and formation of blood and immune cells begins (Estes & Mcallister, 

2016; Knuesel et al., 2014). Hence, this is a crucial and vulnerable point in 

neurodevelopment because the exposed developing nervous system will 

incorporate environmental information and make permanent changes that 

influence the mature structure and function of the brain. On the other hand, 

environmental influences later in development will compensate to accommodate 

for changes, but these may not be permanent (Andersen, 2003) and therefore are 

not as relevant when considering a potential MIA model of neurodevelopmental 

disorders such as schizophrenia. Additionally, mice that have a full knockout of 

Map2k7 die between embryonic day 11.5 and 13.5, showing the importance of this 

gene at the developmental age at which the mice were exposed to Poly I:C in this 

experiment (E12.5; Wada et al., 2004) 

7.5.2 Differential upregulation of cytokines in Map2k7+/- and WT mice 

IL-10, TNF-α, IL-2 and IL-12 were significantly more elevated in maternal plasma 

of Map2k7+/- mice than they were in WT mice following Poly I:C administration 

compared to saline. Additionally, although it is a modest difference, Map2k7+/- 

embryos from Map2k7+/- mothers that had received Poly I:C had increased levels 

of CCL5 compared to Map2k7+/- embryos from WT mothers who had Poly I:C. This 

is interesting because CCL5 was one of the cytokines that was not increased in 

Map2k7+/- mothers compared to WT mothers plasma following Poly I:C. This 

suggests that it is the embryo’s genetic risk that causes pathological immune 

response in Map2k7+/- mice and not the genetics of the mother. This observation 

is based on just one cytokine, however, so would require further experiments to 
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confirm this. It is unfortunate that none of the cytokines that were upregulated 

in maternal Map2k7+/- mice compared to WT mice following Poly I:C were 

detectable in the embryonic brain. It would be interesting to see the effect that 

increased maternal immune response would have had on embryonic 

brain/cytokines and whether these would have been increased, too.  

Overall, these results suggest that gestating Map2k7+/- mice have a less well-

controlled/regulated immune response to viral infection. Without further 

molecular investigation, it is difficult to know the mechanisms behind this. The 

signalling pathway depicted in Figure 7.1 would suggest that as MKK7 levels are 

decreased from the beginning of development, following stimulation by Poly I:C, 

JNK and therefore AP1 activation would be decreased compared to WTs, and so 

the overall immune response would be decreased instead of increased; however, 

the opposite was observed. This may instead represent a general dysregulation 

rather than simple increases or decreases. 

The increase in cytokine response observed in Map2k7+/- mice is not completely 

unexpected, as different cytokines have been shown to be increased in response 

to decreased MKK7/JNK signalling. For example, in response to a decrease in JNK, 

an increase has been observed in IL-2 (Conze et al., 2002; Dong et al., 2000) and 

TNF-α (Stewart et al., 2006). A decrease of JNK1 specifically has also been shown 

to increase levels of TNF-α, IL-6 and IL-10 (Tran et al., 2006; Zhao et al., 2017). 

On the other hand, an increase in JNK has shown an accompanying decrease in 

cytokines (Mitchell & Olive, 2010). Overall, the dysregulation of the cytokine 

response following alterations in the MKK7/JNK pathway is complicated and 

warrants further investigation. 

7.5.3 Pro- and anti-inflammatory cytokines/chemokines need to be 

balanced 

The interaction between all cytokines and chemokines are very complex. In order 

to maintain homeostasis, some cytokines/chemokines are pro-inflammatory and 

some have anti-inflammatory properties. The immune system has a large role in 

normal development of the CNS (summarised in Ratnayake et al., 2013), and an 

increase or decrease in inflammation in itself is not thought to cause damage, so 

long as the anti- and pro-inflammatory cytokines and chemokines are upregulated 

in a controlled manner (Meyer et al., 2009). If either anti- or pro-inflammatory 
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cytokines are upregulated more than the other, this disrupts the intricate balance 

usually maintained throughout normal neurodevelopment and is what is thought 

to precipitate neuropathology related to schizophrenia following maternal 

infection. Of the immune molecules that were tested and were within range in 

maternal serum, two were anti-inflammatory (IL-5 and IL-10) and four were pro-

inflammatory (IL-1β, TNF-α, IL-2 and IL-12). IL-6 Is considered both anti- and pro-

inflammatory; five of these were chemokines that are all pro-inflammatory 

(CXCL1, CXCL9, CXCL10, CCL2 and CCL5), and two were colony stimulating factors 

(FGF Basic and VEGF). Of these, TNF-α, IL-2, IL-12 and IL-10 were increased to a 

significantly larger amount in Map2k7+/- mice compared to WTs, 3 of these being 

pro-inflammatory and 1 being anti-inflammatory. Therefore, it is conceivable for 

there to be an imbalance of pro- vs. anti-inflammatory cytokines in Map2k7+/- mice 

that have been exposed to viral infection (Meyer et al., 2009). Although in the 

current experiment many of the immune molecules were too low in embryonic 

brain to make any accurate conclusions, it is possible that an imbalance in pro- 

vs. anti-inflammatory immune molecules in the mother will have a knock-on effect 

in the developing embryonic brain and may produce an altered phenotype in 

Map2k7+/- mice compared to WTs. Therefore, Map2k7+/- mice should be 

investigated further as a gene x environment risk factor model by allowing the 

mice to grow to adult and carrying out further molecular and behavioural tests. 

7.5.4 How do immune molecules gain access to the developing embryonic 

brain? 

The precise way the immune molecules make their way into the embryonic brain 

is a current subject of debate (Meyer et al., 2009; Ratnayake et al., 2013). It is 

possible for maternal cytokines to pass through the placenta and then through the 

blood brain barrier into the CNS of embryos (Gilmore & Jarskog, 1997); for 

cytokines/chemokines to be produced by the placenta and released into the fetal 

circulation (Meyer et al., 2009) and for the developing fetus itself to produce 

cytokines/chemokines in response to infection (Meyer et al., 2009). However, MIA-

related immune activation in the developing embryo is facilitated by the Poly I:C 

exposure, because this produces the immune response summarised in Section 7.1 

which disrupts the integrity of the placental barrier, allowing it to let through 

immune components where it would not normally (Reisinger et al., 2015). This 

then compromises the molecular, structural and functional integrity of the 
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developing brain, potentially resulting in permanent changes and the development 

of schizophrenia later in life (Reisinger et al., 2015). This is supported by a study 

by Wang et al. (2004), who demonstrated that West Nile virus interacts with TLR3 

and causes a peripheral inflammatory response that disrupts the blood-brain 

barrier and enables the virus to enter the brain. Tlr3-/- mice are more resistant to 

lethal West Nile virus infection than WT mice, but were similarly affected when 

the virus was injected directly into their brain, suggesting that the blood-brain 

barrier breakdown is mediated by TLR3. It is possible that a similar mechanism is 

occurring here: disruption of the blood-brain barrier via activation of TLR3, 

enabling immune molecules to pass more freely from the periphery to the brain. 

7.5.5 Limitations of the study and potential future directions  

This experiment was carried out in order to investigate the idea of Map2k7+/- mice 

being a suitable potential gene x environment model relevant to schizophrenia by 

studying the initial cytokine response in maternal serum and embryonic brain. 

Therefore, there are many experiments which can follow this. Outlined below are 

some examples.  

7.5.5.1 Further investigation of the cytokine response 

If the other cytokines tested could be detected in the Luminex assay, it would 

have provided so much more information. Unfortunately, this was not the case 

and may be because the Luminex assay measures many molecules at once. The 

ELISA for CCL5 appeared to work particularly well, perhaps because of the ability 

to adjust concentrations of samples according to that particular standard curve. 

It would be beneficial to carry out separate ELISAs for each immune molecule, 

which in practice was not possible in the current experiment due to the volume 

of sample which would be required. However, the Luminex is excellent for 

deciding which molecules require confirmation or to be pursued further by ELISA. 

It would be of interest to investigate those cytokines/chemokines that were 

differentially upregulated in Map2k7+/- vs WT mice in maternal serum in the 

embryonic brain in order to see what effect this has. Additionally, it would be 

necessary to study cytokines such as IL-6 and IL-10 further, as IL-6 is considered a 

key cytokine in mediating the effects of MIA on fetal brain development (Smith et 

al., 2007) and participates in neurogenesis (Erta et al., 2012). IL-6 has been shown 

to be required for the neuropathology and behavioural changes following MIA in 

offspring, because injection of IL-6 produces these changes, and blocking IL-6 
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following Poly I:C in pregnant dams is sufficient to prevent the changes (Smith et 

al., 2007). IL-10, on the other hand, is strongly anti-inflammatory and Meyer et 

al. (2008) showed that when IL-10 is enhanced during prenatal development, 

behavioural and pharmacological abnormalities in the offspring were prevented, 

and enhanced levels of IL-10 without Poly I:C challenge actually caused the 

abnormalities to occur. The balance between IL-6 and IL-10 seems to be 

particularly well controlled (Kunz et al., 2011; Meyer et al., 2008), so both 

cytokines should be investigated more thoroughly in future experiments with MIA 

in Map2k7+/- mice, perhaps by carrying out specific ELISAs. Also, it would be 

particularly interesting to see the changes in IL-1β and TNF-α in embryonic brain 

as IL-1β can induce the conversion of rodent mesencephalic progenitor cells into 

a dopaminergic phenotype, and TNF-α either negatively or positively regulates the 

survival of fetal midbrain dopaminergic neurons depending on its concentration 

(Meyer et al., 2009), so both cytokines are highly relevant to the pathogenesis of 

schizophrenia.  

7.5.5.2 Sex differences 

It is not possible from the current experiment to see whether the embryos were 

male or female. A sex determination using PCR with primers that anneal to the X-

chromosome and Y-chromosome (Arrode-Brusés & Brusés, 2012) would be 

beneficial in order to see if there are any sex differences in cytokine release that 

have been missed. 

7.5.5.3 Placenta differences between mice and humans 

Rodents are frequently used for MIA experiments because the placenta of rodents 

and humans are both hemochorial and are suspected to be more similar to each 

other than other mammalian placentas (Schmidt et al., 2015). However, there are 

still large differences in the placenta in both structure and function, including 

with immunological functions and transfer of molecules over the placental barrier 

(Malassiné et al., 2003; Meyer et al., 2009). This could mean that any findings 

from the current experiment may not translate reliably into humans, thus, this 

should be considered when translating findings.  

7.5.6 Conclusions 

As hypothesised in Section 7.1, this chapter has shown that Map2k7+/- mice have 

a dysregulated immune response to Poly I:C exposure maternally and suggests this 
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may also occur in the developing embryonic brain. This further emphasises that 

Poly I:C interacts with the MKK7/JNK pathway, as Map2k7+/- mice have decreased 

MKK7 in the PFC and HC. These results do not show clearly whether embryonic 

genotype is important. This experiment would benefit from an increased number 

of animals and further molecular investigation; however, there is enough evidence 

to suggest that schizophrenia-related behavioural effects on offspring should also 

be pursued further. This could build on current findings on behaviour in offspring 

of rodents following exposure to infection, as well as providing information about 

how the schizophrenia risk gene, Map2k7, in combination with Poly I:C, will affect 

rodents’ cognitive abilities.  
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Chapter 8 General Discussion 

8.1 Summary of aims and results 

This thesis set out to examine mice heterozygous for the Map2k7 gene as a 

potential mouse model of relevance to schizophrenia. To achieve this, the face, 

construct and predictive validity was investigated by utilising translational 

behavioural tests and molecular techniques. These included: - 

Chapter 3: Western blotting to identify alterations in protein pathway 

components of the MKK7/JNK pathway. 

Chapter 4: investigation of Map2k7+/- mice in tasks that are thought to be sensitive 

to dopaminergic dysfunction and are strongly implicated with the positive 

symptoms of schizophrenia. 

Chapter 5: examination of the attentional aspect of cognition using a highly 

translational, operant-based task. 

Chapter 6: assessment of cognitive decision-making abilities of mice in the rodent 

version of the Iowa Gambling Task utilising the touchscreen operant equipment. 

Chapter 7: examination of suitability of Map2k7+/- mice for a gene x environment 

interaction model by administering the viral mimetic Poly I:C during a critical 

period of gestation, and investigation of the subsequent immune response in the 

mother’s serum and foetal brain.  

Throughout this General Discussion, results will be summarised and a further 

discussion given, with ideas for future directions. 

8.1.1 Summary of main findings 

Chapter 3 – MKK7 signalling pathway protein quantification in Map2k7+/- 

mice 

• MKK7γ was significantly decreased in the PFC of Map2k7+/- mice compared 

to their WT littermates 

• Protein levels of all other pathway components examined (MKK7α, JNK, 

MKK4, tcJun and pc-Jun) were not altered in the PFC 
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• Minocycline had no significant effect on protein levels in the PFC, including 

that of the decreased MKK7γ. 

Chapter 4 – Positive symptom-related tasks 

Map2k7+/- mice did not exhibit a deficit in sensorimotor gating 

• Acute injection (5mg/kg) amphetamine just prior to PPI testing decreased 

% PPI overall, which occurred less obviously in female and Map2k7+/- mice 

• Map2k7+/- mice were hyperactive in the open field, which presented in male 

Map2k7+/- mice at a younger age than it did in female Map2k7+/- mice 

• Treatment of minocycline for one week prior to open field testing 

decreased locomotor activity levels of all female WT and Map2k7+/- mice, 

but did not have a significant effect on males. 

Chapter 5 – The 5-choice serial reaction time task  

• Map2k7+/- mice presented with deficits in aspects of attentional function  

• All mice appeared to be using a temporal strategy throughout training in 

this experiment as evidenced using a fixed ITI, which was prevented post-

training by utilising a variable ITI 

• Map2k7+/- mice showed enhanced motivation as evidenced by quicker 

latencies to collect reward and more entries into the reward magazine than 

WT mice 

• Some aspects of attentional deficits showed signs of being alleviated by 

minocycline 

• Ketamine administration had a detrimental effect on 5-CSRTT 

performance, but did not disrupt attentional performance specifically, or 

exacerbate deficits seen in Map2k7+/- mice. 

Chapter 6 – The rodent gambling task 

• Map2k7+/- and WT mice can learn the different contingencies of reward and 

punishment in the touchscreen rGT, validating the touchscreen equipment 

for use with this task in mice for the first time 

• All mice initially exhibited a consistent pattern of optimal responding: they 

avoided high-risk, high-reward options more than the advantageous options 

of frequent, small rewards, with Map2k7+/- mice showing slightly less-risky 

choice behaviour than WT mice 
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• Map2k7+/- mice were hyperactive (increased number of beam breaks) 

compared to WTs when carrying out the task 

• In contrast to the 5-CSRTT, Map2k7+/- mice did not show enhanced 

motivation in this task. Instead, they showed decreased entries into the 

reward magazine and similar latencies to collect the reward than WT mice 

• Following a switch in subtle contingencies, all mice noticed the change and 

altered their pattern of responding accordingly and to the same extent in 

Map2k7+/- and WT mice  

• Following a switch in extreme contingencies plus a decrease in punishment 

length for the risky choices, Map2k7+/- mice showed huge difficulty in 

switching their responding compared to WT mice, probably reflecting a 

deficit in cognitive flexibility combined with altered sensitivity to 

punishment and/or reward 

• Administration of acute amphetamine prior to rGT testing altered choice 

preference for the different contingencies (with a modest differential 

effect between Map2k7+/- and WT mice), and altered overall performance 

measurements. 

Chapter 7 – Investigation of a gene x environment risk factor model using 

maternal immune activation 

• Gestating Map2k7+/- mice have a less well-controlled/regulated immune 

response to viral infection compared to gestating WT mice as evidenced by 

some elevated components of the immune response, suggesting they should 

be pursued further as a gene x environment interaction model 

• Following Poly I:C exposure during a critical period of gestation, four 

cytokines were upregulated to a significantly higher extent in maternal 

plasma of Map2k7+/- mice compared to WTs (IL-2, IL-10, IL-12 and TNF-α). 

• Despite the fact CCL5 and CXCL10 levels increased following Poly I:C in 

maternal serum to the same extent in Map2k7+/- and WT mice, levels of 

CCL5 (but not CXCL10) in the developing brain of embryos were 

differentially upregulated following maternal Poly I:C exposure in Map2k7+/- 

embryos from Map2k7+/- mothers compared to Map2k7+/-embryos from WT 

mothers  
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• On the other hand, WT embryos from Map2k7+/- mothers did not have 

significantly increased CCL5 levels compared to WT embryos from WT 

mothers in response to Poly I:C 

• Further experiments will be required to replicate and extend these 

findings. 

8.2 Methodological considerations 

Methodological considerations are primarily discussed in the relevant chapters; 

however, those which apply to all chapters are discussed below. 

8.2.1 How the lack of Map2k7 may have affected development  

It is important to consider the ways that lack of Map2k7 from the beginning of 

development may have affected different systems within the brain, and indeed 

elsewhere in the body. As Map2k7 was disrupted peripherally as well as within the 

CNS, and complete lack of Map2k7 is embryonically lethal because of liver failure, 

there may be aspects of Map2k7 heterozygous mice which do not match up with 

patients. Although patients with schizophrenia are 1.27 times more likely to suffer 

from chronic liver disease than the general population, this has been attributed 

to abuse of alcohol and other drugs, toxic increases in liver enzymes from atypical 

antipsychotics, and higher prevalence of diabetes in patients, rather than the 

underlying genetics (Hsu et al., 2014).These potential peripheral effects do not 

cause gross abnormalities in Map2k7+/- mice because this would have been 

revealed by the SHIRPA tests carried out (Section 1.11.1); however, it is 

important to be aware that some subtle peripheral effects may exist. 

In Section 3.5.2, the potential impact on the signalling pathway resulting from 

lack of MKK7 protein from the beginning of development was discussed. 

Additionally, in Section 4.5.1, the potential impact of Map2k7 heterozygosity on 

neurotransmitter systems was briefly discussed. Without further molecular 

analyses, it is impossible to say how alterations in the MKK7/JNK pathway 

throughout development may affect neurotransmitter systems that manifest 

behaviourally in some tasks but not others. As the MKK7/JNK pathway is known to 

interact with NMDARs (Centeno et al., 2007), deficiency in MKK7 is likely to affect 

activity levels of the glutamatergic system. Glutamate is the most abundant 

neurotransmitter in the mammalian brain and interacts closely with other major 

neurotransmitter systems, such as the dopaminergic, cholinergic, serotoninergic 
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and noradrenergic systems (Carlsson et al., 1999). These interactions occur in 

brain regions that are known to be dysfunctional in schizophrenia, including the 

striatum and thalamus (Carlsson et al., 1999). It is conceivable that mice lacking 

Map2k7 with subsequent effects on glutamatergic systems could affect multiple 

other neurotransmitter systems within the brain, particularly as the lack of 

Map2k7 has been present throughout the entirety of development. 

Section 1.5.1 describes how the GABAergic system and gamma oscillations 

between the PFC and hippocampus are disrupted in patients with schizophrenia. 

Several parts of this thesis point towards the possibility of Map2k7+/- mice also 

showing deficits in this system. Chapter 3 shows alteration of MKK7 protein the 

PFC, and we also showed that MKK7 is decreased in the hippocampus of Map2k7+/- 

mice (Openshaw et al., 2017). Finally, in Chapter 5, Map2k7+/- mice presented 

with various deficits in attention, a process that is made efficient by normal 

gamma oscillations between the PFC and the hippocampus (Fries et al., 2001; 

Williams & Boksa, 2010).  

The speculations described above have not been backed up by experimental 

findings, but may provide a good basis for future experiments. 

8.2.2 Sex differences 

Most of the studies carried out in this thesis presented with different results 

depending on the sex of the mouse. Females tended to be more hyperactive 

(Chapter 4), had decreased startle amplitude (Chapter 4), exhibited slightly 

altered % PPI responses following amphetamine (Chapter 4) and showed different 

performance and motivation in parameters in the touchscreen (Chapter 6) 

compared to male mice. Effects of sex were always initially investigated and were 

considered during statistical analyses where necessary (this was required most of 

the time), but nevertheless, the effects were still there. Examining every effect 

of sex would have been beyond the scope of this thesis, but it must be recognized 

and future experiments could investigate these sex differences further.  

The effects of sex observed here are not novel: it is well-established that female 

rodents are hyperactive compared to males (reviewed in Lightfoot, 2008); there 

is a well-known effect of sex on decision-making in humans (reviewed in van den 

Bos et al., 2013), startle amplitude in mice (Plappert et al., 2005) and PPI in 

humans (Swerdlow et al., 1999). The oestrous cycle in females is thought to be 
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the main driver of these sex differences. Some studies using male and female mice 

ensure that female oestrous cycles are synced by housing them together in a 

separate room to males and then testing at specific stages in their cycle (Kokras 

& Dalla, 2014). Although this would be an important consideration to make for 

future studies, for some experiments this is not feasible. These include those 

where mice are tested every day and where mice must be housed in small groups 

to monitor the extent of food restriction carefully (e.g. operant-based 

experiments).  

As there were so many sex differences, the need to use both sexes when carrying 

out behavioural experiments is reinforced. In fact, the importance of this has been 

the subject of reviews, as many studies continue to use males only in their 

behavioural studies to minimise variation caused by the oestrous cycle in females 

(Orsini & Setlow, 2017; Lightfoot, 2008; Kokras & Dalla, 2014). Unless experiments 

are for sex-specific disorders, this is unrepresentative of the population and 

important findings could be missed or misinterpreted.  

8.3 Further discussion 

8.3.1 Operant behaviour (Chapters 5 and 6) 

There were some differences in the behaviour of Map2k7+/- and WT mice in the 

operant-based tasks. One major difference was that in the rodent GT, the 

Map2k7+/- mice did not show increased motivation for reward as they did in the 5-

CSRTT. In the rGT they enter the reward magazine less on average than WT mice 

over the course of the session, and they are similar in their latencies to collect 

the reward to WT mice. In the 5-CSRTT on the other hand, Map2k7+/- mice were 

quicker to collect the rewards and made more entries into the reward magazine 

over the course of the session. This suggests that the Map2k7+/- mice may have 

enhanced motivation as suggested in Section 7.4.2.2, but that it is dependent on 

the circumstance, as the 9-hole operant box and the touchscreen exhibit key 

differences. For example, there are differences in the reward delivery process 

between the two types of operant boxes. In the rGT, there was an explicit tone 

paired with reward delivery, whereas this was not true for the 5-CSRTT. Although 

the 9-hole operant box makes a mechanical sound when the reward is being 

delivered, it is not as loud or much different in timbre to other noises that may 

be heard at the same time. Speculatively, it may be that when reward delivery is 
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less obvious, the WT mice are aware but Map2k7+/- mice may not be. However, in 

the touchscreen, all mice can establish a very clear distinction between when a 

reward is given and when it is not, so Map2k7+/- and WT mice know when reward 

is available to the same extent in this task and therefore show similar motivation. 

This could be why Map2k7+/- mice visit the reward magazine more frequently and 

are quicker to collect the reward in the 5-CSRTT: as there is not a reward there 

every time they visit the reward magazine, in their experience, if they are not 

very quick to collect the reward, it “disappears”. Additionally, the 5-CSRTT 

reward amount was significantly more than the rGT reward amount (20µl vs. 7µl, 

respectively). This was because the reward volume was optimised for satisfaction 

vs. satiation. In both tasks, the maximum number of trials that they could (and 

the vast majority of mice did) complete was 100. For the rGT, the volume of 

strawberry milkshake could be as much as 4 x the normal amount per trial and 

was therefore made to be less than in the 5-CSRTT to avoid the mice becoming 

satiated. This could also suggest that Map2k7+/- mice are more sensitive to the 

amount of reward given and may have worked faster and checked that reward had 

been delivered more often in the 5-CSRTT, especially because it was less obvious 

when a reward was there.  

Additionally, Map2k7+/- mice showed evidence of hyperactivity with both direct 

examination in the open field and secondary measures in the 5-CSRTT (faster 

response latencies and increased number of beam breaks), compared to WT mice. 

There is strong evidence that the mesolimbic dopaminergic system disruption 

produces hyperactivity in rodents and that this is attributed to the positive 

symptoms of schizophrenia (van den Buuse, 2010), so this could be a focus for 

future investigations. 

8.3.2 Minocycline shows signs of alleviating some deficits in Map2k7+/- mice 

Throughout this thesis, minocycline was administered in an attempt to reverse 

deficits seen in Map2k7+/- mice on three occasions. Minocycline did not cause a 

significant change in MKK7/JNK pathway components in the PFC, but it did show 

signs of decreasing locomotor activity levels in the open field of all mice (apart 

from males, who were not as hyperactive as females), and some aspects of 

attentional deficits. All effects caused by minocycline were subtle; however, the 

deficits seen in Map2k7+/- mice were relatively modest in the first place. 

Nevertheless, it would be interesting to find out whether longer-term treatment 
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of minocycline would be further beneficial to Map2k7+/- mice and what the time 

scale of its effects are following cessation of treatment.  

The effects and potential mechanism of minocycline in the individual experiments 

are discussed in the relevant chapters and summarised here. It is possible for 

minocycline to interact with the MKK7/JNK pathway as it has previously been 

shown to activate MKK7 in cultured neuronal cells (spoken communication with 

Prof. Brian Morris, unpublished data), and inhibit JNK1/2 in microglia following 

lipopolysaccharide stimulation (Nikodemova et al., 2006). However, in Chapter 3, 

the levels of MKK7/JNK pathway components were not significantly altered by 

minocycline, which may be because it was acting in a cell- and/or stimulus-

specific manner and might not have been strong enough to be identified via 

Western blotting. Alternatively, it has been shown that minocycline can act via 

alternative pathways; for example, by affecting a non-MKK7/JNK pathway (such 

as p38 MAPK) downstream of NMDA receptors (Chaves et al., 2009). In a case such 

as this, it is unlikely that an alteration in protein levels in the MKK7/JNK pathway 

would be detected. Finally, one week may not be a long-enough time scale for it 

to alter protein levels in this way, or as much as we can detect using Western 

blotting. After all, the Map2k7 heterozygosity has been present since the very 

beginning of development, so one week’s treatment of minocycline may not be 

enough to induce detectable differences in individual pathway components. It is 

arguably more likely that minocycline is working via some other mechanism rather 

than directly affecting the up- or down-regulation of MKK7/JNK pathway 

components. 

Minocycline has been shown to improve cognitive deficits in humans (Sofuoglu et 

al., 2011) and mice (Giovanoli et al., 2016; Fujita et al., 2008; Levkovitz et al. 

2007). Additionally, minocycline reduced open field locomotor activity levels in 

rats (Kofman et al., 1990) and mice (Dansie et al., 2013; Chen et al., 2009; Zhang 

et al., 2007). Despite understanding its behavioural effects, the exact and 

complete mechanism of action of minocycline is still unknown. Two main 

mechanisms have been proposed: inhibition of the proinflammatory function of 

microglia and/or enhancing glutamate release via NMDARs (Liu et al., 2014; 

Lisiecka et al., 2015). It is entirely conceivable that either, or a combination of 

both mechanisms are relevant here because of the potential for them both to 

interact with the MKK7/JNK pathway. The MKK7/JNK pathway is essential for the 
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pro-inflammatory function of microglia (Waetzig et al., 2005) and in Chapter 7, 

Map2k7+/- mice showed an altered cytokine response to Poly I:C. Additionally. 

NMDARs are located upstream of the MKK7/JNK pathway (Centeno et al., 2007), 

suggesting that altering the immune response and/or NMDAR activation states via 

minocycline have potential to affect indirect regulation of the MKK7/JNK pathway 

in order to produce a cognitive enhancing and locomotor (i.e. positive symptom) 

decreasing effect. This is backed up by a study by Zhang et al. (2007), who showed 

that administration of minocycline prior to the NMDAR antagonist dizocilpine 

decreased locomotor activity levels and improved PPI deficits in mice. This 

suggests that minocycline was acting via NMDARs in this case, and is conceivable 

that could be what is happening in Map2k7+/- mice, too. 

Overall, gaining knowledge of the mechanism of minocycline and how it has acted 

to show signs of improving attention and decreasing locomotor activity will benefit 

from more sensitive methods of protein quantification and longer-term studies. In 

general, more molecular and clinical evidence on minocycline’s potential as an 

agent to improve deficits relating to schizophrenia is needed. However, our data 

support the concept that this drug is effective in improving some aspects of 

attentional and mesolimbic dopaminergic function. 

8.3.3 Is MKK7 a feasible target for novel drugs?  

The gene knockout studies described in Section 1.9.1 reveal the potential 

physiological/pathophysiological roles of the MKK7/JNK pathway. This pathway 

has been identified as being a suitable drug target for several disorders, including 

arthritis, cardiac hypertrophy, asthma, Parkinson’s disease and Alzheimer’s 

disease (summarised in Kumar et al., 2015). JNK was originally viewed as the more 

obvious target, but it was soon realised that it causes toxicity easily and the 

inhibition of JNK1, 2 and 3 is not easy to control and does not occur in therapeutic 

ratios (Davies & Tournier, 2012). The MKK7/JNK pathway maintains its specificity 

by forming signalling modules with relevant pathway components and by their 

subcellular localisation (Coffey, 2014). Therefore, compounds that target MKK7 

may be more attractive in order to more selectively affect output of the MKK7/JNK 

pathway. Specific targeting of MKK7 has been achieved by Sogabe et al. (2015), 

which shows promise in altering output of the pathway selectively whilst sparing 

the many other crucial processes this pathway is involved with. As the MKK7γ 

isoform was the only isoform of MKK7 decreased in Map2k7+/- mice identified by 
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Western blotting, it would be interesting to target this specifically, to see if this 

improves the cognitive and positive phenotypes, and the differential immune 

response to Poly I:C these mice possess; although so far, such a compound has not 

been developed. 

8.4 Conclusions and future directions 

This thesis has shown that Map2k7+/- mice: have decreased MKK7 in the PFC, 

exhibit hyperactivity, attentional deficits, deficits in reversal learning-based 

decision-making and show an altered cytokine response to maternal immune 

activation, compared to their WT littermates. Overall, they show a pattern 

remarkably similar to some aspects of the symptoms of schizophrenia in humans, 

and they have the genetic basis for a model of relevance to schizophrenia with 

good construct validity, arguably the most important aspect of an animal model 

(discussed in Nestler & Hyman, 2010). This is because Map2k7+/- mice are a model 

relevant to a genetic variant that significantly increases disease risk (OR = 1.9) 

and is also moderately common in the population, where most other SNPs are less 

common and do not infer such a high risk (Winchester et al., 2012). Minocycline 

shows signs of improving deficits in Map2k7+/- mice in some tasks (the 5-CSRTT, 

and locomotor activity in the open field), and Map2k7+/- mice show promise for 

being utilised as a gene x environmental risk factor model, which will give a 

particularly relevant insight into the complex molecular and genetic interplay that 

occurs in schizophrenia in humans.  

As well as behaviourally, in the future it will be necessary to investigate 

molecularly and morphologically the effects of the Map2k7 deletion. These studies 

could focus on aspects that have been gleaned from mice with genetic 

manipulations in other members of the MAP kinase pathway, for example axonal 

growth and neuronal migration. Chapter 7 in particular opens up many new 

questions and possibilities for further study. For example, investigation into the 

role of the placenta in mechanisms of maternal immune activation in Map2k7+/- 

mice is ongoing, and future experiments will look at how Poly I:C administration 

during gestation will affect behaviour in offspring. It is hypothesised that the 

offspring will exhibit exacerbated phenotypes with relevance to schizophrenia.  

The mice studied throughout this thesis were based on findings from a 

schizophrenia genetic association study (Winchester et al., 2012), and therefore 
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show good construct validity for schizophrenia; however, components of the 

MKK7/JNK pathway have also been implicated in other 

neuropsychiatric/neurodegenerative disorders such as Alzheimer’s disease (Yarza 

et al., 2016) and autism (de Anda et al., 2012). Map2k7+/- mice show face validity 

for ADHD, too, with hyperactivity and deficits in attentional function. Approaching 

this as the RDoC initiative suggests (see Section 1.4), rather than attempting to 

replicate an entire complex disorder in one animal model, will provide relevant 

information that can span multiple disorders, assuming that the domains share 

similar underlying mechanisms across species and disorders (Young et al., 2010). 

Animal models are fundamental to the study of the neurobiology of 

neuropsychiatric disorders (McArthur, 2017). Map2k7+/- mice show utility for 

dissecting the cognitive deficits and positive symptoms of schizophrenia that could 

be targeted by novel compounds, which would be aimed at restoring the function 

of the MKK7/JNK pathway. Although no mouse model can recapitulate the full 

symptom spectrum of a human neuropsychiatric disorder, Map2k7+/- mice exhibit 

an interesting accumulation of phenotypic abnormalities relevant to schizophrenia 

and should be explored further. 
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Appendix 

A1: Chapter 4, Table of P Values 

  
p Values 

   
Parameter 

 
Genotype (WT/HZ) Sex (M/F) Age (Adolescent/Adult) Genotype x Sex 

Distance Travelled (cm) 
 

<0.001, f(1,688)=33.11 <0.001, f(1,688)=76.97 <0.001, f(1,688)=97.98 0.337, ns 

Velocity (cm/s) 
 

<0.001, f(1,688)=33.40 <0.001, f(1,688)=76.55 <0.001, f(1,688)=94.80 0.339, ns 

Duration Immobile (s) 
 

<0.001, f(1,688)=19.74 <0.001, f(1,688)=163.62 <0.001, f(1,688)=377.18 0.242, ns 

Duration Mobile (s) 
 

0.032, f(1,688)=4.59 0.096, ns <0.001, f(1,688)=252.16 0.192, ns 

Duration Highly Mobile (s) 
 

<0.001, f(1,688)=42.74 <0.001, f(1,688)=206.28 <0.001, f(1,688)=13.09 0.875, ns 

  
p Values cont. 

  
Parameter 

 
Genotype x Age Sex x Age Genotype x Sex x Age 

Distance Travelled (cm) 
 

0.026, f(1,688)=5.00 <0.001, f(1,688)=41.85 <0.001, f(1,688)=22.50 

Velocity (cm/s) 
 

0.01, f(1,688)=4.88 <0.001, f(1,688)=42.41 <0.001, f(1,688)=22.29 

Duration Immobile (s) 
 

0.479, ns 0.006, f(1,688)=7.60 0.245, ns 

Duration Mobile (s) 
 

0.118, ns <0.001, f(1,688)=33.40 <0.001, f(1,688)=20.54 

Duration Highly Mobile (s) 
 

0.397, ns <0.001, f(1,688)=71.72 <0.001, f(1,688)=32.20 

Table A1. P-values from Age analysis part of Open Field experiment. Data were analysed using a three-way ANOVA, with genotype and sex as between 

subjects factors, time bin (2 and 3; 15 minutes each; test phase only) and age as a within subjects factors and each individual mouse nested within 

genotype and sex.  
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p Values 

   
Parameter 

 
Genotype (WT/HZ) Sex (M/F) Treatment (Water/Mino) Genotype x Sex 

Distance Travelled (cm) 
 

<0.001, f(1,314)=16.84 <0.001, f(1,314)=199.26 0.001, f(1,314)=12.21 <0.001, f(1,314)=16.98 

Velocity (cm/s) 
 

<0.001, f(1,314)=16.97 <0.001, f(1,314)=200.12 0.001, f(1,314)=12.19 <0.001, f(1,314)=17.10 

Duration Immobile (s) 
 

0.048, f(1,314)=3.93 <0.001, f(1,314)=210.51 0.102, ns 0.634, ns 

Duration Mobile (s) 
 

<0.001, f(1,314)=16.96 <0.001, f(1,314)=135.94 0.006, f(1,314)=7.81 <0.001, f(1,314)=19.25 

Duration Highly Mobile (s) 
 

<0.001, f(1,314)=21.47 <0.001, f(1,314)=401.72 0.001, f(1,314)=11.37 <0.001, f(1,314)=13.41 

  
p Values cont. 

  
Parameter 

 
Genotype x Treatment Sex x Treatment Genotype x Sex x Treatment 

Distance Travelled (cm) 
 

0.549, ns <0.001, f(1,314)=45.04 <0.001, f(1,314)=13.66 

Velocity (cm/s) 
 

0.521, ns <0.001, f(1,314)=45.03 <0.001, f(1,314)=13.42 

Duration Immobile (s) 
 

0.037, f(1,314)=4.39 <0.001, f(1,314)=27.28 0.004, f(1,314)=8.30 

Duration Mobile (s) 
 

<0.001, f(1,314)=25.11 0.007, f(1,314)=7.26 0.267, ns 

Duration Highly Mobile (s) 
 

0.034, f(1,314)=4.53 <0.001, f(1,314)=37.06 0.002, f(1,314)=9.47 

 

Table A2. P-values from Treatment part of Open Field experiment. Data were analysed using a three-way ANOVA, with genotype, sex and treatment 

as within subjects factors, time bin (2 and 3; 15 minutes each; test phase only) as a between subjects factor and each individual mouse nested within 

genotype, sex and treatment.   
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A2: Chapter 7, Standard Curves from Luminex Assay 
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< Figure A1: The standard curves of each cytokine from the Luminex assay containing maternal 

plasma, including their lower and upper limit of quantification.  

 

 

Figure A2: The standard curves of each cytokine from the Luminex assay containing embryonic 

brain tissue supernatant, including their lower and upper limit of quantification.  
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