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Abstract 

Despite being translationally null, erythrocytes contain miRNA at 

concentrations equal to nucleated cells, meaning that of the miRNA found in 

peripheral blood ~ 99 % is located in red cells. Despite this huge abundance, the 

literature currently regards erythrocytic miRNA (e-miRNA) as redundant. Data 

from Hamilton lab challenges this notion as it shows that e-miRNA are stable, 

maintain a catalytic potential, and have sequence profiles similar across species, 

indicating conservation. This thesis investigates what the potential function of e-

miRNA could be, both within erythrocytes and in other cells. To develop  

hypotheses, RISC-protein interactions were evaluated unearthing the appearance 

of an apparently post-translationally modified AGO2; what this modification is, 

remains to be defined. As part of a homeostatic hypothesis, the idea that e-miRNA 

may act as a molecular signal and regulate the transcriptome of phagocytosing 

cells was evaluated. However, it was discovered that e-miRNA are lost as RBCs 

age, potentially through vesicularisation. The differences between RBC vesicles 

that occur in vivo and those that occur when blood is stored ready for transfusion 

were evaluated. This highlighted a potential artefact within the literature with 

regards to what is termed as “microvesicles” (MVs). The clinical concern regarding 

storage MVs was evaluated through the generation of a phago/endocytosis model, 

and consistent with recent publications, no mal-effect was observed. This portion 

of the study highlighted a secondary structure within macrophages that is not a 

phagolysosome, but does process internalised RBC-MVs. 
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 Introduction 

 Preface 

“the life of a creature is in the blood”, Leviticus 17:11  

Blood, few biological substances appear to have as much cultural or scientific 

significance as blood. In ancient times, it is rumoured that the Egyptians bathed 

in blood due to its perceived regenerative properties, while Vikings supposedly 

drank the blood of their victims from skull cups to imbue them with the strength 

of the fallen. While these practices, if ever true, have fallen into antiquity, some 

beliefs have not - clearly shaping societies through the generations. For example, 

Melihah is the Jewish tradition of removing blood from fresh meat. This practice, 

carried out due to passages within Leviticus and Deuteronomy, is still performed 

today. Indeed, blood is central to the practices of other religions, with the same 

passages responsible for Jehovah’s Witnesses refusing blood transfusions. Out with 

religion, blood is still in societies general conscious with ancient phrases such as 

“blood is thicker than water”, “it’s in his/her blood”, “hot blooded”, “blood ran 

cold” still used. In fact, socially, blood has had somewhat of a renaissance, from 

the blood drinking vampires that appear in the Twilight saga, to the Blood Riders 

of the Khaleesi Daenerys Targaryen.  

Unsurprisingly, with the cultural significance that blood has, there has also 

been acute scientific interest. Possibly the earliest “report” of blood, that while 

misguided, may be anchored in fact, was by Hippocrates, a proponent of 

Humorism. He believed that bodily fluids were comprised of four humors: black 

bile, phlegm, yellow bile and blood; imbalances of which, lead to morbidity. 

Fähræus, discoverer of the erythrocyte sedimentation rate, noted that when 

blood was allowed to settle, diseased blood separated differently from healthy1. 

Healthy blood was observed to separate slowly, meaning that coagulation occurs 

when platelets are interspersed with erythrocytes. However, in certain conditions 

(different infectious diseases were evaluated, Westergen looked at tuberculosis 

infections) erythrocytes were found to sediment faster than normal and reach the 

bottom of the tube before clotting could occur2. This meant that the fibrin clot 

would agglutinate the slower sedimenting leukocytes (instead of erythrocytes) and 

the clot would appear grey / white, not red. He speculated that the black 
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sediment (deoxidised haemoglobin), blood (erythrocytes), anaemic clots (clotted 

leukocytes) and plasma were the origin of Hippocrates humors. Over time, 

Humorism waned, although the link between blood and life continued, with early 

haematological work focusing on transfusion. The earliest recorded human 

transfusion was performed by Jean-Baptiste Denis in the 16th century and 

amazingly involved lambs blood3. Xenotransfusions were soon banned, and though 

transfusion research continued over the centuries, it wasn’t before the discovery 

of blood groups in 1901 by Karl Landsteiner that they started to become safer4. 

In 1843, the first leukocytes were observed by microscope5. This led to our 

understanding that, at a cellular level, blood is heterogeneous, allowing research 

to focus on individual cell types. Possibly due to their abundance, red blood cells 

(RBCs) have been extensively studied throughout the years. Indeed, so extensive 

is the research, and limited their modus operandi, that one may be forgiven for 

thinking they no longer hold any secrets. So it was surprising, that in 2006 Rathjen 

et al. reported the presence of micro RNA (miRNA) within mature erythrocytes6. 

This was surprising as ostensibly miRNA regulate translation, something that does 

not occur within mature erythrocytes7. Further characterisation by the Hamilton 

Lab (unpublished) revealed that these miRNAs had catalytic potential, were highly 

abundant and were apparently conserved across vertebrata (discussed later in 

Figure 13). All of which suggested a function for these miRNA, and served as the 

foundation for this thesis. However, before the aims of this project are discussed, 

the main biological players found herein will be discussed.  

 Non-coding RNA (ncRNA) 

As the name indicates, non-coding (nc) RNA are a family of RNAs that are 

not translated, separating them from their coding counterparts: messenger RNA 

(mRNA). The ncRNA family is much larger than its coding counterpoint and is 

involved in a plethora of different functions. 

 Ribosomal RNA 

Ribosomal RNA (rRNA) is the most abundant RNA within a cell, comprising 

~80-90 % of its total RNA. Mammals have 4 main rRNA, the 28s, 18s and 5.8s rRNAs, 

which are transcribed by RNA polymerase I, while the 5s rRNA is transcribed by 
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RNA polymerase III; two mitochondrial rRNAs (12s and 16s) are also present8. The 

“s” stands for Svedberg, which is a measure of sedimentation speed, meaning 

rRNAs are named after their size. The 4 main rRNAs, together with ribosomal 

proteins, come together to form ribosomes within the cytoplasm. Ribosomes 

comprise of “large” and “small subunits”, with the large subunit containing the 

5s, 5.8s and 28s rRNAs, and the small subunit, the 18s species only8. In Mammalia, 

the main function of rRNA appears structural, while in prokaryotes the 16s rRNA 

recognises the Shine-Dalgarno sequence within mRNA and plays a role in 

translation initiation9. 

 tRNA 

Transport RNA (tRNA) is another species of abundant (4-10 %) ncRNA within 

a cell. There are ~ 513 nuclear tRNA genes within the human genome, which are 

responsible for binding amino acids (aa), and binding to triplet-codons within 

translating mRNA10. tRNA are transcribed as primary transcripts that undergo 

maturation before forming the classic cloverleaf configuration (Figure 1). While in 

the nucleus tRNA nucleotidyltransferases add a non-templated CCA motif to the 

3’ end11. The nucleotide immediately prior to this motif (N73), in addition to the 

anti-codon sequence, is recognised by one of 20 aminoacyl transferases, which 

covalently attach its specific aa to the terminal adenosine12. “Charged” tRNA, aa 

bound tRNA, then interact with Eukaryotic Elongation Factor 1 A-1 (EF1A), position 

themselves at the ribosomal entry site (A-site) and bind to the appropriate mRNA 

codon, allowing for translation to occur13.   
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Figure 1: Sequence and secondary structure of human alanine tRNA. 
Sequence ID from tRNA database (University of Leipzig) is tdbR00000017, structure was drawn by 
their software. Non-standard nucleotides represent the following modifications: “ = 1-
methyladenosine, P = pseudouridine, 7 = 7-methylguanosine, # = 2’0-methylguanosine, O = 1-
methylinosine, I = inosine, J = 2’0-methyluridine, R = N2.N2-dimethylguanosine, D = dihydrouridine, 
L = N2-methylguanosine 

 Long non-coding RNAs 

Long (l)ncRNAs are a family of RNAs that are similar to their messenger 

counterparts, but critically, due to lack of open reading frame (ORF), are not 

translated. They are arbitrarily classified as being > 200 nucleotides (nt) in length, 

which differentiates them from small ncRNAs14. They are mostly transcribed by 

RNA polymerase (pol) II, and as such share mRNA characteristics: 5’ 7-

methylguanylate cap, 3’ poly(A) tail, contain introns/exons and can undergo 

splicing15–17. Functionally, they are diverse and have been reported to be involved 

in epigenetic regulation, alternative splicing, transcriptional regulation, post 

transcriptional regulation, or, act as miRNA sponges18–22. This broad range of 

function make it difficult to ascertain what individual lncRNA do, which is the 

likely reason so few have been studied mechanistically, although this is changing.  

 Small non-coding RNAs 

Contrary to lncRNA, the small non-coding RNA (sRNA) family are < 200 nt in 

length and members include micro-RNA (miRNA), piwi-interacting-RNA (piRNA), 

Point of angiogenin cleavage 

creating tRNA halves 

Amino acid attachment site 

hsa-tRNA-Ala 
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small nucleolar RNA (snoRNA), small interfering RNA (siRNA), y-RNA (Y1, 2, 3 & 5) 

vault RNA (vtRNA) and small nuclear RNA (snRNA).  

snoRNA 

snoRNA are a class of sRNA that reside predominantly within the nucleoli of 

a cell and are involved in site-specific RNA modifications; classically this has been 

associated with rRNA, but mRNA and snRNA modifications have also been 

reported23. The snoRNA class is split into two types: C/D box snoRNAs, contain 

highly conserved C (UGAUGA) and D (GUCUGA) boxes at the 5’ and 3’ end of the 

RNA, while H/ACA snoRNAs contain a large hairpin structure (H) and a 3’ ACA 

motif24,25.  When bound as a ribonucleoprotein (RNP) complex, both snoRNAs act 

as guides to specific RNA positions, allowing for 2’O-methylation or 

pseudouridylation to occur26,27. As ever, there are oddities, with snoRNA U85 RNPs 

possessing both pseudouridylation and 2’O-methylation abilities due to them 

containing both C/D and H/ACA boxes23. RNAs targeted by snoRNAs are predicted 

based on sequence complementarity, although this has limitations, as so called 

“orphans” exist where no targets can be predicted, suggesting either novel targets 

or redundancy28.  

snRNA 

 snRNA are a class of sRNAs that, when bound to proteins to form snRNPs, 

constitute either the major or minor spliceosome, which mediates mRNA 

maturation within the nucleoplasm29. As with snoRNA, snRNA are divided into two 

categories: Sm-class (U1, U2, U4, U4atac, U5, U7 and U12) and Lsm-class (U6 and 

U6atac). The Sm-class has a 3’ stem loop, a 5’ trimethylguanosine cap, and 

conserved Sm sites (AAUUUUUGG) that bind Sm proteins, while the Lsm-class, has 

a 5’-monomethylphosphate cap and a 3’ uridyl tale that binds Lsm proteins30. Each 

snRNP is bound by 7 core Sm or Lsm proteins and is referred to as 

heteroheptameric; notably, U7 binds 5 of the core Sm proteins as well as 2 unique 

Sm members. snRNPs then bind together to form the major spliceosome, which is 

comprised of U1, U2, U4, U5 and U6 RNPs along with additional proteins (e.g. 

members of the PRPF family), or the minor spliceosome, which is comprised of 

U4atac, U5, U6atac, U11 and U1230. These large multiunit complexes facilitate 

splicing, with the RNA components of individual snRNPs either recognising 5’ (U1) 
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or 3’ (U2) splice sites, or recognising and binding other snRNPs (U2-U6)31,32. 

Greater than 95 % of splicing is carried out by the major spliceosome, which 

recognises so called “U2 introns”, mRNAs with 5’ intronic splice site GT/AG motifs, 

while the minor spliceosome, recognises U12 introns (5’ AGC/CA); U7 snRNPs act 

individually to process histone mRNA33–35.  

yRNA 

 In humans, there are four yRNAs (Y1, Y2, Y3 and Y5) that are ~100 nt in 

length, are structured as stem loops and bind both La and Ro60 proteins to form 

RNPs36. The exact function of yRNA or the yRNPs is unclear, however, the most 

accepted theory is that yRNAs act as molecular chaperones for Ro60 and La, or, 

aid in their localisation37,38. When not bound to yRNA, Ro60 and La have been 

reported to recognise and bind misfolded / erroneous RNA, leading to their 

turnover39,40. Additional reports suggest that yRNA themselves, and not Ro60, play 

a role in DNA replication, although the mechanism of this has not been revealed41–

43. Finally, in multiple studies, yRNA have been found to form fragments following 

stress44. At present there is no known function for these fragments, and while 

other small RNAs have been reported to enter the miRNA pathway (tRNA / snRNA), 

yRNA fragments do not associate with Argonaute (AGO) and are not capable of 

silencing luciferase constructs45,46.  

piRNA 

Of all the ncRNA discussed, piRNA are the most analogous to the subject of 

this thesis (miRNA) as they are small (26-31 nt), bind a member of the AGO family 

(PiWi clade), carry a 3 prime 2’O methyl modification (unlike miRNA) and are 

involved in silencing47,48.  However, unlike miRNA, piRNA are thought to be 

germline specific where they act to silence transposable elements; notably, at 

recent meetings, piRNA functioning within somatic tissues was discussed, but at 

the time of writing has not been published. Another difference between miRNA 

and piRNA is there genomic location. For example, hundreds of miRNA genes are 

dispersed throughout the genome, while in drosophila, piRNA map to only a few 

key locations. The largest of which (240 kb) is thought to be responsible for ~ 30 

% all piRNA and the 15 largest loci responsible for up to 70 %; this is all the more 

astounding as there are reported to be ~ 13,000 unique piRNA within drsophila49,50.  
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piRNA biogenesis has not been fully elucidated and review of the literature 

appears to show species-specific differences. However, consistently, there are 

two biogenesis pathways. In the primary pathway, large piRNA transcripts are 

fragmented by the endoribonuclease Zuchini, 5’ ends recognised by a PiWi protein 

(e.g. Aubergine), 3’ ends cleaved by Zuchini and / or trimmed before a terminal 

methyl group is added by the methyltransferase HEN151–54. The secondary pathway 

was described by Brennecke et al as “ping pong amplification”, in which specific 

piRNAs are amplified through interplay between sense and antisense transcripts 

loaded in AGO3 or PiWi proteins respectively; note that this pathway is commonly 

described in Drosophila and dmAGO3 is not analogous to human AGO350. With 

regards to Figure 2, when transposons are silenced (cleaved) by mature piRNA-

PiWi complexes (i), resulting cleavage products can be bound by AGO3(ii). These 

fragments are trimmed (iii) and modified (iv) to form piRNA like molecules that 

are derived from the silenced transposon. Processed-fragment-AGO3 RNPs can 

recognise complementary sequences within primary piRNA transcripts, which it 

cleaves to form new piRNA substrates (v). The net result is that when a transposon 

is silenced, its degradative products feedback into piRNA biogenesis, so that 

piRNAs similar in sequence to the active transposon are generated, thus amplifying 

silencing potential.  
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Figure 2: piRNA biogenesis. 
Figure was re-drawn from Luteijn and Ketting, description of the pathway can be found in text; AUB 
= aubergine, Me = methylation, AGO3 = argonaute 3, ZUC = Zucchini47.  

As with miRNA in an RNA induced silencing complex (RISC), piRNA act as 

guide molecules, facilitating target recognition for post-transcriptional gene 

silencing (PTGS), or, transcriptional gene silencing (TGS). The simplest mode of 

action occurs when a piRNP binds through complementary base pairing to a 

transposable element, which is in turn cleaved through the catalytic action of 

PiWi55,56; note that in these original studies, piRNA are referred to as rasiRNA 

(repeat associated small interfering RNA). The second mode does not employ 

endonucleolytic cleavage, and instead relies on transcriptional repression through 

two epigenetic mechanisms. First, piRNPs are indicated in the formation of 

heterochromatin, repressing transcription. Although not fully elucidated, PiWi 

knock outs in drosophila germ cells resulted in a loss of histone-3-lysine-9 tri-

methylation (HK39me3), resulting in increased RNA pol II activity at transposon 

promoters57,58. Secondly, in mammals only, piRNA loaded PiWi proteins play a role 

in the silencing of transposons through methylation of cytosine-glycosine (CpG) 
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islands located at promoters; the exact mechanism has not been elucidated, but 

is thought to involve members of the DNA methyltransferase (DNMT3) protein 

family59,60.   

Endo-siRNAs 

 Small interfering RNAs (siRNAs) can be split into two distinct classes, those 

that are endogenous to a cell, and those that are exogenous (shRNA etc). Both are 

derived from double stranded (ds)RNA, processed by DICER, then loaded into a 

member of the argonaute (AGO) clade61. Unlike miRNA and piRNA they have not 

been well studied in humans, with most research being performed in worm or 

fly62,63. Nonetheless, existing studies link endo-siRNA to transposon repression and 

alternative splicing. For example, Chen et al. reported that sequenced endo-

siRNAs had 100 % complementarity to the 5’ LINE-1 promoter and were somehow 

involved in its methylation, silencing this transposon64. In addition, in their model 

system Ameyar-zazoua et al. demonstrated recruitment of AGO complexes to 

CD44 stalled transcription allowing for alternative splicing to occur65. Intriguingly, 

these two papers demonstrate endo-siRNA functioning within the nucleus, an area 

where miRNA are also reported to function in a similar manner (Section 1.5.3).  

 micro-RNA (miRNA) 

MiRNAs are a species of 19 – 24 nucleotide (nt) ncRNA that are highly 

conserved in plants and Mammalia, playing a pivotal role in post transcriptional 

gene silencing1. Although miRNA were first discovered in the early noughties, 

effects mediated by their pathway had been observed a decade earlier:  

 The history of RNAi and miRNA 

RNA interference (RNAi) is a phenomenon whereby a short RNA (~22 nt), 

derived from dsRNA, can regulate a gene in a post-transcriptional manner via 

complementary base pairing. Early research involved a lot of overlap, but we now 

know that RNAi, as coined by Fire et al. in 1998, consists of two distinct species 

of RNA: siRNA and miRNA66. The main differences between siRNA and miRNA are 

summarised in Table 1 and it is thought that siRNA evolved as a means of 

combating exogenous RNA (viruses), while miRNA only regulate host cell genes67. 
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Despite being coined in 1998, RNAi had been observed in plants nearly a decade 

earlier68,69. Two groups were evaluating pigmentation in petunia and were trying 

to increase this through over expression of chalcone synthase. However, not only 

was no increase in pigmentation observed, 25-42 % of the transformed plants 

exhibited a complete abrogation of colour. No mechanism was given, but this 

phenomenon was observed in other studies also. Mechanistically, RNAi took off 

with three studies that were published close together. Fire et al. reported that 

RNAi was most efficient when dsRNA was introduced into a system, instead of 

longer complementary transcripts. This was followed by Hamilton and Baulcombe 

who demonstrated that it was the sRNAs (~25 nt), not the dsRNA substrate, that 

were responsible for effecting RNAi and finally by Zamore et al. who demonstrated 

the sRNAs were derived from the dsRNA substrate 66,70,71. All of which established 

RNAi as a topic of acute scientific interest. 

Table 1: Differences between siRNA and miRNA 

 siRNA miRNA 

Origin dsRNA Primary-miRNA 

Structure 21-23 nt 19-25 nt 

Complementarity Complete Seed sequence* 

No. of Targets One Multiple 

Mode of action Direct cleavage 
Translational repression, 

turnover, cleavage 

* in rare occurrences, complete complementarity results in AGO mediated cleavage. Relevance 
of the seed sequence is discussed in Section 1.5. 

The first, of what we now know to be miRNA, were reported in the same 

edition of Cell in 1993 by the labs of Ambrose and Ruvkun72,73. While working in C. 

elegans, they observed three things: (1) lin-4 was not translated but did form two 

sRNAs (lin-4L [61 nt] and lin-4S [22 nt]); (2) there was an inverse correlation 

between lin-4 and lin-14 protein levels, and (3) lin-4 RNAs had regions of 

complementarity within the 3’ UTR of the lin-14 mRNA. They both concluded that 

lin-4 negatively regulated lin-14 via an antisense RNA-RNA interaction. However, 

due to poor species conservation, this finding was thought to be worm-specific. It 

wasn’t until 7 years later that the Ruvkun lab reported on another miRNA, let-7, 

which was involved in developmental timing74. Unlike lin-4, other studies found 

let-7 to be well conserved, and in 2001, Lee and Ambrose first coined the term 

miRNA75. This lead to an explosion within the field, with studies being published 
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on miRNA function, miRNA biogenesis, miRNA in disease etc. So what are miRNA 

and how do they function? 

 miRNA nomenclature 

miRbase is a database that archives published sequences for miRNA from 

all species and serves as a means by which they are annotated; it is currently 

curated by the Griffiths-Jones lab at the University of Manchester. Unlike 

traditional genes, miRNAs are named according to a simple convention that was 

set out by Griffiths-Jones et al.76(Figure 3). In this, the miRNA refers to a mature 

micro-RNA sequence, while species within the biogenesis pathway are termed pri-

miRNA or pre-miRNA, for the primary miRNA transcript or pre-miRNA hairpin, 

respectively. miRNA are named sequentially in order of discovery, the “first” 

being miR-1 and the last (current) miR-2588. To differentiate between organisms, 

a species-specific prefix can be added to afford this specificity. For example, miR-

451 from humans is termed hsa-miR-451, while the murine homologue is referred 

to as mmu-miR-451; where hsa stands for Homo Sapiens and mmu for Mus 

Musculus. MiRNA that are from the same family have a letter suffix added, for 

example, miR-30a-c, while miRNA that are encoded at multiple genomic locations 

have a numerical suffix added, miR-30c-1 and miR-30c-2. As both strands of the 

miR-duplex can be loaded into AGO to form a functional RISC, a 3p or 5p suffix 

can be added to state if the miRNA is derived from the 3’ or 5’ arm: miR-92a-3p. 

As with everything in biology, there are exceptions: let-7 (lethal target 7) and lin 

(abnormal cell LINeage) miRNA families were named before the above convention, 

and are reflective of the phenotype being studied72,74.   
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Figure 3: Schematic describing miRNA nomenclature. 
The above format is required to gain the sequence for human miR-16 from miRbase.  

 An essential molecule 

Soon after their discovery it became apparent the miRNA, as a family, were 

vitally important, with knock outs of the miRNA biogenesis machinery (DROSHA, 

DiGeorge critical region 8 (DGCR8), DICER or AGO2) proving embryonically lethal77–

79. Future studies that used conditional knock outs fared little better, with severe 

defects being reported in all studies. For example, DICER or DROSHA knockouts in 

male testes resulted in mature mice being infertile, while DGCR8 knockouts within 

neurons or developing renal tubular system resulted in microencephaly or kidney 

failure, respectively80–82. Taken together, this highlights the critical role that 

miRNA play, both in development and somatic tissues; although this is perhaps not 

too surprising as these models knocked out the entire miRNA apparatus, not 

individual miRNA. 

With this in mind, specific miRNA(s) have been knocked down with differing 

phenotypes being observed. For example, loss of the heart specific miR-499 in 

mice resulted in no obvious phenotype being reported, while the loss of the miR-

15a/16-1 cluster resulted in mice developing chronic lymphocytic leukaemia83,84.  

With the number of miRNA within miRbase, there are unsurprisingly more studies 

than can be referenced in this thesis. Therefore, miRNAs specific to this thesis 

will be discussed when relevant.  
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 miRNA biogenesis 

 miRNA genes 

 MiRNA genes can be found intergenically, intronically or exonically, 

although most are found within the introns of coding mRNA85. MiRNAs are 

transcribed either as individual genes or as part of a cluster where much larger 

polycistronic transcripts that contain multiple miRNAs are transcribed86–88. The 

majority of miRNA genes are transcribed this way, although interestingly, non-

canonical pathways exist where small RNAs can be derived from other ncRNAs 

(tRNA) and function as miRNAs (discussed in Sections 1.3.3.2)89.  

  Canonical miRNA biogenesis 

miRNA biogenesis has been well studied within the last 17 years with a 

wealth of in depth mechanistic detail available90. Succinctly put, miRNA are 

transcribed as large primary transcripts (pri-miRNA) by RNA Pol II, before being 

cleaved into pre-miRNA by DROSHA. This is exported into the cytoplasm by EXP5, 

where it is processed into a miRNA duplex by DICER, loaded into a member of the 

AGO family where it forms a RISC (Figure 4). However, this is an overly simplified 

version of what occurs, and the process is far more complicated:
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Figure 4: The miRNA biogenesis pathway. 
miRNA are transcribed within the nucleus as a primary transcript (pri-miRNA) before being cleaved to form a pre-miRNA by DROSHA/DGCR8, this is then exported into 
the cytoplasm via EXP5. The pre-miRNA is cleaved by DICER/TRBP into a miR-duplex of which one strand is loaded into AGO forming an RNA induced silencing 
complex (RISC).
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 Pri-miRNA structure, recognition and cleavage 

 The primary miRNA transcript, as transcribed by RNA Pol II, adopts a 

distinctive secondary structure (Figure 5), whereby a stem loop is flanked by much 

longer 5’ and 3’ ssRNA. The loop portion of the hairpin is termed the apex, while 

the bottom portion the basal junction; the stem is subdivided into the upper (22 

bp long) and lower (11 bp long) regions, which equate to being above or below the 

site of DROSHA cleavage91. Recently, it has also been demonstrated that certain 

nucleotide motifs are present, with ~79% of human pri-miRNA containing either a 

5’ UG, a UGUG motif in the apex loop or a 3’ CNNC motif91. This, in addition to 

the adopted secondary structure, is the proposed reason for how the 

microprocessing unit recognises pri-miRNA specifically, and not all dsRNA.  

The microprocessing unit is comprised of the type III RNAase DROSHA and 

its co-factor DGCR8. While both proteins have two dsRNA binding domains, 

DROSHA’s binding capacity is insufficient in isolation for substrate recognition and 

requires DGCR892. The composition of the microprocessing unit is still unclear, 

with some studies favouring a cooperative DGCR8 complex comprised of three 

DGCR8 dimers binding throughout the pri-miRNA, and others suggesting either 4 

or 2 DGCR8 proteins being present81,93,94. The most recent model involves a DGCR8 

dimer interacting with the apical UGUG (Rhed domain) and the upper stem region 

(dsRNA binding domains), allowing for DGCR8s C-terminus to bind and activate 

DROSHA, which binds at the ssRNA-dsRNA junction93; other studies have also 

demonstrated that ferric haeme is essential for this process – note that this is in 

all cells, not just erythropoiesis95,96. DROSHA then cleaves the pri-miRNA 11 bp 

from its basal junction, resulting in a ~65 nt pre-miRNA with a 2 nt 3’ overhang97,98.

 

Figure 5: Schematic of a primary miRNA. 
The primary transcript comprises of a stem loop structure which is cleaved by DROSHA to give a 
hairpin of ~100 nt from which a miR-duplex is processed; one strand is then loaded into a member 
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of the AGO family. The motifs reported by Auyeung et al to be present in ~79% of human miRNA are 
depicted as a nucleotide sequence91.  

 Export from the nucleus 

 Post processing, pre-miRNA are exported from the nucleus by a combination 

of exportin 5 (EXP5) and Ran-GTP99. Interestingly, the 3’ overhang appears to be 

essential for EXP5 recognition as mutants containing 5’ overhangs interacted 

poorly with EXP5100. Okada et al. described EXP5-Ran-GTP complex forming a 

“baseball mitt” structure that binds the pre-miRNA structure that strongly bound 

the stem and 3’ overhang through ionic interactions and hydrogen bonding101. 

When in the cytoplasm, Ran-GTP is hydrolysed and the pre-miRNA released for 

further processing99,102. 

 Pre-miRNA processing 

 In mammals, DICER, another type III RNAase, can recognise either the 5’ 

end or the pre-miRNAs 3’ overhang, although the prevalence is for the 3’ 

overhang97,103. DICER then cuts 21-25 nt from either end, removing the apical loop, 

resulting in a short miRNA duplex97.  As with DROSHA, DICER has been shown to 

interact with two other dsRNA binding proteins: TAR RNA-binding protein (TRBP) 

and Protein activator of interferon induced protein kinase (PACT), although it’s 

not clear if these are essential as, unlike DROSHA, isolated DICER will cleave pre-

miRNA104,105. TRBP is thought to modulate DICER cleavage sites, resulting in miRNA 

duplexes of variable length, potentially playing a role in isomer generation 

(section 1.3.5) and while the role of PACT is unclear, in vivo knock downs do result 

in reduced amounts of mature miRNA105–107.  

 RISC assembly 

The most recently reported function for TRBP is in the aiding of loading 

the miRNA duplex into an AGO protein. In this study, Noland et al. report that 

following DICER cleavage, the miRNA duplex is released, then rebound by DICER 

at a different position108. In a manner similar to fly dsRNA binding protein R2D2,  

TRBP senses strand asymmetry (Figure 6) and orientates the miRNA duplex within 

DICER for loading109. In humans, a heat shock protein 90 (HSP90) dimer holds AGO 

proteins in an open conformation, allowing the miRNA duplex to be loaded in an 

ATP-dependent manner110. This is followed by duplex unwinding, whereby the 
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mature miRNA (guide strand) remains bound to AGO and its complement 

(passenger strand) is released and degraded; however, how this occurs is 

unknown. Strand selection is based on 5’ stability within the duplex, with the least 

stable end being chosen as the guide strand and the most stable being degraded 

(Figure 6)111. A RISC is then formed and is able to perform PTGS.  

 

Figure 6: Simplified schematic explaining miRNA asymmetry rule. 
The strand selected to be loaded into AGO and form RISC is dependent on the stability of the 5’ end, 
in this case a GC rich region is more thermodynamically stable than a UA (grey) region, meaning the 
5’ UUUU is loaded into AGO and the 5’ GGGG strand is degraded.  

 Drosha independent biogenesis 

In addition to the above, multiple studies have emerged regarding 

functional miRNAs that are generated out with the canonical pathway. These 

appear to be largely separated into two main groups, those that do not require 

DROSHA, and those that do not require DICER: so called DROSHA or DICER 

independent pathways. Of these two, DROSHA independent miRNA are the most 

heterogeneous in the way miRNA are formed.  

 mirtrons   

 The first DROSHA independent miRNA was reported by Ruby et al. in 2007, 

and were termed mirtrons112. While analysing their sequencing dataset, they 

observed 14 pre-miRNA-like transcripts. These transcripts were predicted to fold 

in the same way as pre-miRNA and were capable of being processed to form 

functional RISCs. However, these transcripts did not map to miRNA genes, but to 

small (~56 nt) annotated introns. Two reasons were given why DROSHA was not 

involved in this process: (1) DROSHA knock downs reduced levels of let-7 members 

without affecting mature mirtron levels; (2) mapping the short intron sequence 

past the sequenced 3’ and 5’ ends revealed sequences that were not 

complementary, something which is required for DROSHA to bind and cleave pri-
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miRNA98. Instead of following the canonical pathway, these excised introns are 

de-branched by a lariat de-branching enzyme, at which point they self-anneal to 

form pre-miRNA-like transcripts that are able to enter the remainder of the miRNA 

biogenesis pathway (Figure 7). The mirtrons reported in this study have 

subsequently been verified in mammals, chicken and rice113–115.  

Since Ruby et al’s. initial study, the mirtron family has expanded. The 

original pre-mirtrons were pre-miRNA-like due to their small size and abundant 

self-complementarity. However, more recently, it has been demonstrated that 

pre-mirtrons can be much longer. For example, dme-miR-1017 has a 100 nt 3’ tail 

which is trimmed by RRP6 to a canonical pre-miRNA size, before it enters the 

miRNA biogenesis pathway116. In addition, mmu-miR-342 is embedded within a 20 

kb intron and while the authors do not elaborate on how it is processed to pre-

miRNA size, they do show it is not caused by DROSHA117. 

 

Figure 7: Mirtrons entering the miRNA biogenesis pathway. 
Mirtrons are derived from the introns of mRNA. The excised introns, when unwound, have a 
secondary structure such that it can be recognised as a DICER substrate.  

 miRNA derived from other RNAs  

Although not as fully studied as mirtrons, miRNA have also been reported 

to be derived from other RNA species and not from pre-miRNA. The most 

commonly reported species from which miRNA-like molecules can be derived is 

tRNA. Babiarz et al. were the first to report of a small RNA derived from the 3’ 
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end of the isoleucine-tRNA (tRNA-ile)89. Similar to mirtrons, tRNA-ile could form a 

secondary structure that made it susceptible to cleavage into a pre-miRNA-like 

substrate. Multiple other studies have since reported on tRNA fragments (tfRNA) 

entering the miRNA biogenesis pathway118,119. However, the literature appears to 

be contradictory, Kumar et al. report tfRNA are preferentially loaded into 

AGO1,3,4, but are not generated by the miRNA biogenesis pathway120 . This 

contrasts with Hasler et al. that report tfRNA are not loaded into AGO at all, as 

they are prohibited by the Lupus Autoantigen (LA)121.  

Finally, in 2008, Ender et al. demonstrated that a ~22 nt RNA derived from 

the 5’ arm of the snoRNA ACA45, loaded into AGO2 and was catalytically active122. 

As with mirtrons, DROSHA was not involved in producing a DICER substrate, but 

DICER was required for the final stages of miRNA biogenesis. Multiple other studies 

have reported on the presence of snoRNA derived (sd)-RNA having miRNA 

similarities123,124. However, the abundancies of some of these sdRNAs are barely 

above background, and / or appear on blots with multiple other unexplained 

bands. In addition, some miRNA sequences (miR-664a) overlap at snoRNA loci 

(snoRNA-A36B), meaning it is difficult to ascertain if the mature miRNA was 

derived from a mature snoRNA, or simply processed from a pri-miRNA that happens 

to share a snoRNA sequence123.   

 Dicer independent biogenesis 

At present, only miR-451 is thought to be generated in the absence of 

DICER. Transcription and processing occur as per Section 1.3.2.1-2, but when pre-

miR-451 is transported into the cytoplasm it is not recognised by DICER125. 

Although this lack of recognition was not explained, it was noted that the mature 

miR-451 sequence extends through the pre-miRNA stem loop and folds back upon 

itself. This is unlike other miRNA species, and was postulated by Hannon et al. to 

be incompatible with DICER cleavage. Instead, pre-miR-451 is loaded directly into 

AGO2, which utilises its endonucleolytic capability to cleave the 3’ end, forming 

a 30 nt intermediary. This intermediary is then processed to mature miR-451 when 

the 3’ end is trimmed via Poly(A)-specific ribonuclease (PARN), although Tomari 

et al. also demonstrated that this trimming was not required for miR-451 

functionality126. Interestingly, miR-144, which is co-expressed with miR-451 as a 

bicistronic transcript, does not require AGO2 cleavage and is formed through 
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canonical miRNA biogenesis. Note, that while miR-451 biogenesis is unique, it isn’t 

merely an oddity as it is essential for erythropoiesis, with miR-451 knock outs 

causing severe anaemia127.   

 Isomirs 

miRNAs that have sequences different to their reported canonical sequence 

are termed isomirs. DICER or DROSHA misprocessing of pre-miRNAs can result in 

longer or shorter 5‘/3’ ends, with these types of isomirs referred to as templated 

(Figure 8)128. In addition, isomirs can also come from non-templated additions and 

/ or changes / edits. For example, poly(A) polymerases and terminyl uridyl 

transferase can add non-templated A’s and U’s to 5’/3’ ends, while exonucleases 

like NIBBLER can remove terminal nucleotides129,130. Finally, RNA editing, where 

an adenine deaminase enzyme (ADAR) catalyses the deamination of adenine to 

inosine - isomirs with this sequence variation are called polymorphic131.  

Sequence data reveals that the most abundant isomirs are 3’, both in terms 

of read number (mass) and variability (number of additions/deletions); 5’ and 

polymorphic isomirs are the next most common, respectively, although they 

represent a small proportion overall132,133. The main reason for this is thought to 

be due to the way in which miRNA interact with AGO. For example, studies have 

shown that a miRNAs 5’ end is bound deep within AGO’s structure, meaning it is 

unable to be recognised by modifying enzymes. The 3’ end however, is thought to 

be accessible, meaning that it is more susceptible to non-templated additions and 

/ or trimming, which is reflected by the higher amount of 3’-isomirs present in 

sequence data.  It is important to note, that although isomirs exist, within 

sequencing data sets, the canonical miRNA is usually the most abundant. 
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Figure 8: Schematic explaining the different types of isomirs. 
Isomirs can be templated, i.e. they have the same sequence +/- X of the pre-miRNA, non-templated, 
i.e. have a uridine or adenine added or polymorphic, which can arise from a single nucleotide 
polymorphism (SNP) or an A-I edit by ADAR.  

But what’s the point? 

 If isomirs make up such a small amount of the miRome, then are they 

relevant? The short answer is yes, but there are not enough studies at present to 

detail to what extent they are relevant, or, if all isomirs are. For example, as 

miRNAs work through their seed sequence, which is present at the 5’ end, 3’ edits 

of one or two nucleotides aren’t thought to affect this90,128. As 3’-isomirs are the 

most abundant, then it doesn’t appear that the bulk of isomirs bear an altered 

mRNA target repertoire132. It is important to note that non-templated additions at 

the 3’ end will affect miRNA activity. As non-templated Us or As promote miRNA 

turnover or stability, respectively; these modifications will stabilise or attenuate 

translational repression134,135. These are not thought to affect what a miRNA will 

target, and at present, no studies report a 3’-isomir having different mRNA targets 

to its canonical miRNA.  

Although much rarer than their 3’ counterpart, 5’ isomirs are often reported 

to have altered mRNA targets. Unlike a 3’-isomir, any addition/deletion at the 5’ 

end would change the way the miR binds AGO, ultimately shifting the seed 

sequence. For example, Dibb et al. demonstrated that a single 5’ nucleotide 

removal from miR-9 meant that it gained an ability to repress DNMT3B and NCAM2, 

although it lost the ability to regulate CDH1136. In another study, a 5’ U addition 

caused miR-34 / 449 to lose the ability to target ARHGDIB, ARHGAP1 and RRAS137. 

However, it is important to note that this phenomenon is not an ‘either-or’ event. 

In both studies, the canonical miR sequence was detected along with the 5’-
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isomir. Indeed, the canonical sequence was responsible for 80-90% of the sequence 

coverage, indicating that if genuinely biologically relevant, isomirs represent 

target augmentation, rather than a whole scale change. Indeed, computational 

analysis from both studies indicates that with the addition of isomirs, the 

candidate mRNA pool for a specific miRNA could grow by more than 100 targets; 

as these pools can already be quite large, validation of this will be challenging.  

 Argonaute proteins 

The second component of the RISC complex are argonaute proteins (AGO). 

AGOs belong to a larger family of proteins, also termed argonautes, which are 

split into two clades: Ago and Piwi. Both clades bind small RNAs, with the AGO 

clade restricted to miRNA/siRNA binding and the PIWI clade binding piRNAs138. In 

addition to small RNA binding, the argonaute family of proteins are defined as 

containing a PAZ (PIWI-ARGONAUTE-ZWILLE) and a PIWI (P-element Induced 

WImpy testis) domain (Figure 9). The PAZ domain is perhaps the most important, 

as along with the middle section (MID domain) of an AGO protein, acts to bind and 

keep small RNAs in place. The 3’ end of the small RNA inserts into a binding pocket 

within the PAZ domain, whereby it is stabilised by stacking against a phenylalanine 

(P292)139. The 5’ terminal phosphate is essential for miRNA loading within the MID 

domain, whereby it is stabilised by binding a magnesium ion140. In addition, a 

conserved tyrosine (Y529) within this pocket can undergo phosphorylation, and 

studies show that point mutation of this residue strongly reduces miRNA binding141. 

The PIWI domain is similar in structure to the endonuclease RNase H, but this 

function appears largely redundant in the AGO clade, as only AGO2 maintains any 

catalytic activity142. 

 

Figure 9: Cartoon of the domains within AGO proteins. 
The AGO family is split into two clades, PIWI and AGO – all of which contain the domains above. 
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 Argonaute 1 – 4 

As only the AGO clade bind miRNA, the subject of this study, the PIWI clade 

will not be discussed in further detail. In humans, the AGO clade comprises of 4 

members: AGO1-4138. Within mammalia, it is not immediately clear what the 

functional relevance of having four AGO proteins is. For example, although the 

study by Daub et al. showed a tendency for miR-222 and miR-223 to preferentially 

form a RISC with AGO1, the remaining miRNAs sequenced appeared to associate 

with all AGO members in roughly equal amounts143. On the other hand, although 

Yi et al. also reported that each AGO protein bound a near identical pool of miRNA 

(based on ID), the majority of miRNA present (as a mass) were found associated 

with AGO2144. Taken together, the idea that miRNA can be loaded into any AGO 

protein, but appear to prefer AGO2, over 1,3 and 4, would indicate some 

redundancy in the AGO clade. However, genetic studies of AGO3 and 4 

demonstrated that this was not the case, as they were required for Alu RNA-guided 

mRNA decay or spermatogenesis, respectively145,146. Furthermore, tissue 

expression analysis reveals that all four AGO members were present in each tissue 

tested147. Although clade member bias was reported intra-tissue, with AGO1-2 

being the most prevalent, AGO1-4 signatures were not that dramatically different 

between the tested tissues. Finally, as AGO2 appears to preferentially bind miRNA 

with 5’ terminal U or A, miRNAs with different termini are more likely to bind 

other members of the AGO clade, which also argues against redundancy148; how 

this fits with 5’-isomirs discussed in Section 1.3.5 is unclear.  

Put simply, in humans it is not clear why there are four AGOs; each AGO does 

not appear to have specific miRNA pools, AGO1-4 are present in all tissues and, 

with the exception of one AGO2 target mRNA, all appear to function in the same 

way, which is not the case for other organisms. In planta, the AGO clade consists 

of 10 members, many of which have specific binding partners and / or functions149. 

For example, heterchromatic siRNA, siRNA that are transcribed from 

pericentromeric chromatin, associate with A. Thaliana (at)AGO4 and 6150,151. 

These are responsible for RNA-directed DNA methylation (RdDM), whereby the 

RISC complex binds DNA in an RNA-dependent manner, recruits additional proteins 

(DNA [cystosine-5]-methyltransferases) and promotes cysteine methylation150. 

atAGO1 appears to bind all miRNA and is involved in traditional PTGS152. An 

exception to this is AGO10, which only binds miR-165 and miR-166153.  Finally, 
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siRNAs from intergenic regions containing a terminal 5’ C residue are 

preferentially loaded into AGO5154. At present, with the exception of miR-451, 

this preferential RNA binding isn’t seen within Mammalia, although this may 

change with more detailed studies.  

 miRNA mode of action 

Genes targeted by RISC undergo PTGS via translational repression, direct 

cleavage or sequential degradation90. However, while there are three main ways 

in which miRNA regulate mRNA, the overwhelming majority is through degradation 

(~66 - 90%), with only a small portion (~6 - 26%) thought to be through translational 

repression155,156. While there are large differences in the ways miRNA regulate 

mRNA, this still forms the function for which they are best known. Although more 

recently, as discussed below, other modes of action have been reported.   

 

 mRNA destabilisation and degradation  

As mentioned, the most abundant means of regulation by miRNA results in 

mRNA degradation; for this to occur, RISC must first recognise a specific mRNA. 

RISC, an RNA protein complex, binds mRNA through Watson-Crick base pairing via 

the “seed sequence”; nucleotides 2-7 at the 5’ end of the miRNA157. Degradation 

occurs when RISC binds to the 3’ untranslated region (UTR) of target mRNA and 

AGO recruits the scaffold protein glycine-tryptophan protein of 182 KDa 

(GW182)158 (Figure 10). This then interacts with poly(A) binding proteins and 

recruits the PAN2-PAN3 (Poly(A) specific Nuclease subunit) complex which 

performs the first stage of deadenylation159. PAN2 is the effector unit and it is 

guided to its poly(A) substrate through a PAN3-GW182 interaction160. The second 

stage of deadenylation takes place via a second complex which comprises of 3’-5’ 

exonuclease (carbon catabolite repression 4 protein (CCR4a)), and a scaffold 

protein (Negative regulator of transcription (NOT1)); why the removal of poly(A) 

tails requires two stages is unclear161. After this, GW182 acts to sequester mRNA 

within processing-bodies (sites of degradation), where the 5’ cap is removed by 

decapping protein 2 (DCP2) and the RNA degraded by exoribonuclease 1 

(XRN1)162,163 although interestingly, Bhattacharyya et al. showed that this is a 

dynamic phenomenon which can be reversed during stress, and previously 
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sequestered mRNA can be released from processing bodies (P-bodies) and 

subsequently translated164.  

Classical AGO2-mediated endonucleolytic cleavage occurs when there is a 

100% consensus match between the miRNA and mRNA target. However, there is 

only one instance (miR-196 / HOXB8) of this occurring in Humans and this 

phenomenon is primarily observed in Planta165,166. Note, the Rtl1/Peg11 locus is 

theorised to be regulated via miRNA mediated cleavage, however, while this has 

been observed in mice and sheep, it hasn’t been validates in humans167.  

 

Figure 10: miRNA mode of action. 
miRNA regulate translation in two ways 1) mRNA turnover: this occurs in two stages: (A) an initial 
deadenylation event is catalysed by PAN3-PAN2 which interacts with the RISC-GW182 complex, 
when the tail is ~ 25 As in length, the PAN complex is replaced by the CCR4-NOT complex which 
removes the remainder of the Poly(A) tail; (B) the 5’ cap is then removed; 2) translation repression: 
the RISC-GW182 complex interacts with eIF4G, preventing it forming a pre-initiation complex with a 
ribosome; PAN = PAB1P-Dependent Poly(A)-Nuclease, DDX6 = DEAD-Box Helicase 6, CAF1 = 
Chromatin Assembly Factor 1 Subunit A, eIF = Eukaryotic translation initiation factor, CCR4 = 
Chemokine (C-C Motif) Receptor 4. 

 Translational repression 

miRNA can also function through translational repression (TR), although 

as mentioned previously, this is not its dominant mode of action155. How this 

occurs has not been fully elucidated, but is believed to involve cap recognition. 

First, RISC interacts with both with poly(A) binding proteins (PABP) and the 

translation initiation factor eIF4e168,169. The RISC-eIF4E interaction blocks the 
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eIF4E-eIF4G interaction, which is required for the formation of the 43s pre-

initiation complex169–171. Interestingly, although there is no consensus, many 

publications evaluating TR appear to overlap. For example, Zdanowicz et al. 

suggest that miRNA function through a two-hit model, with TR forming an 

immediate stop of translation and destabilisation/degradation completing the 

silencing172. This fits well with Eichorn et als. study, where they report that not 

only is the TR effect weak, but it is only effective at the earliest stages of PTGS155. 

Indeed, some studies corroborate this temporal effect, suggesting a two-hit model 

may be accurate, while others suggest TR or destabilisation is AGO-specific; note, 

destabilisation or TR being specific to AGO1 or AGO2, respectively, has only been 

shown in the fly169,173.  

 Nuclear function 

The vast majority of studies state miRNA function within the cytoplasm, an 

emerging literature indicates nuclear functions, although these can be 

contradictory. Firstly, AGO loaded with miRNA have been detected within the 

nucleus and reported to form multiprotein complexes with typical RNAi members 

– however protein-complexes weren’t found in all studies174,175. Gagnon et al 

demonstrated that the profiles of cytoplasmic and nuclear miRNA were similar (75 

% overlap), although a separate study indicated that as a mass, the majority of 

each individual miRNA resided within the cytoplasm174,176. Nuclear miRNA are 

thought to be generated as per Section 1.3.2, but when a RISC is formed, can 

shuttle in and out of the nucleus via exportin-1 or importin-8177,178; an AGUGUU 

motif present on miR-29b has been linked to shuttling, but this is neither 

conserved across other nuclear-miRNA, nor is it clear how an AGO-loaded miRNA 

can be recognised by additional proteins179. 

Functionally, nuclear miRNA are reported to work in numerous ways, with 

the simplest involving AGO2-mediated cleavage of lncRNA or pri-miRNA180,181. 

Contrary to the situation in the cytoplasm, nuclear miRNA have also been reported 

to be involved in silencing pre-transcriptionally, not just post. For example, miR-

320 was shown to bind to the RNA Polymerase III Subunit D (POLR3D) promoter, 

while miR-10a bound the promoter of Homebox D4 (HOXD4)182,183. A complete 

understanding of this is lacking, but both studies report an increase in tri-methyl 

histone H3 lysine 27 (H3K27me3) at the gene’s promoter which was linked to 
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heterochromatin formation. Note that “proof of concept” studies exist that show 

a similar phenomenon, and while parities are drawn to these studies, it is worth 

remembering that they have been designed to the nucleus (siRNA targeting 

promoters), and not necessarily representative of endogenous miRNA184.  

 Heteroclitical modes of action 

Interestingly, a number of recent papers have shown miRNAs can have a 

completely novel function and act as agonists to toll-like receptors (TLR). The TLR 

family recognise specific exogenous stimuli such as CpG DNA, lipopolysaccharide 

(LPS) or ssRNA and induce an immune response185. In mice, TLR7 recognises viral 

ssRNA and Lehmann et al. showed that aberrantly high cerebrospinal fluid levels 

of the let-7b miRNA stimulated macrophages and microglia causing 

neurodegeneration186. A few months later, Fabbri et al. showed co-localisation of 

exogenous miRNA binding to TLR8, the human TLR7 homologue, and reported that 

cancer-derived endosomes containing miR-21/29a induce a pro-metastatic 

inflammatory response and cachexia187,188. Both labs suggested that TLR 

stimulation is sequence specific, but it was Lehman et al. that employed site-

directed mutagenesis of the GUUGUGU motif, shared between let-7b and HIV 

ssRNA40, to demonstrate that stimulation is due to high GU content186.  

 miRNA target prediction 

Currently there are 2585 mature miRNAs listed on miRBase V21 and it is 

thought that these regulate ~ 60% of all protein coding genes189, 190; although as 

isomirs can contain un-templated post-transcriptional modifications within the 

seed region, this number may well be higher191. Biologically, miRNA are involved 

in the normal function of cells and like protein coding genes can be cell-specific, 

deregulated in different malignancies or change expression in response to 

different stimuli. For example, miR-21 is classified as an oncogene and is over-

expressed in multiple cancers including acute myeloid leukaemia, glioblastomas 

and chronic lymphocytic leukaemia192–194. A number of studies have verified miR-

21 targets which are predominantly tumour suppressor genes such as phosphatase 

and tensin homolog (PTEN) or programmed cell death 4 (PCD4)195,196. It is one of 

the most widely dysregulated miRNAs in cancer and is associated with poor 

prognosis and metastasis197. However, as a single miRNA may target many genes 
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so may a single mRNA be targeted by multiple miRNAs, making target validation 

difficult198. Indeed, available software algorithms struggle to accurately predict 

targets and a study by Sethupathy et al. demonstrated that there was little 

consensus in the predicting powers of commonly used packages and that sensitivity 

of predicted targets could be as little as 1.3%199 

 Extracellular vesicles 

An emerging area of interest within miRNA biology, is their presence within 

extracellular vesicles (EVs) and their potential to silence genes inter-cellularly. 

EVs have been studied in a plethora of different cell types and disease models, 

too many to discuss here200,201. Therefore, the sections below will describe EVs in 

general and aspects of their biology (miRNA) that fit this project, the EVs specific 

to this project are described in context in Section 1.10. 

 What are extracellular vesicles? 

 EV is an umbrella term which encompasses, exosomes, microvesicles, 

apoptotic bodies and nanovesicles. There still isn’t an exact terminology / 

definition that is consistently used by all authors, but at present exosomes / 

nanovesicles are mostly thought of as being 50 – 100 nm in size, while 

microvesicles (MVs) and apoptotic bodies are ~100 – 1 µm202. Another key 

distinction between exosomes and MVs is their source of origin: exosomes are 

formed internally, fuse to make larger multivesicular bodies (MVBs), before these 

MVBs fuse with the cellular membrane, expelling its content (exosomes) out with 

the cell203. In contrast to this, MVs generally shed, bleb or are pinched off directly 

from the cell membrane204. As a result of this, the molecular makeup of these two 

types of EV can vary, with exosomes being enriched for tetraspanins, while MVs 

generally reflect the cell of origin205. EVs have been regarded as a means for a cell 

to get rid of waste, artefacts (red cell storage, apoptotic bodies) but also as 

vectors for intercellular communication. Classically EVs are isolated / enriched 

via differential centrifugation. Low speeds (up to 1000 x G) remove dead cells and 

debris before a “harder” spin of 18, 000 – 36, 000 x G separates the larger MVs 

from exosomes. Due to their small size, exosomes remain in suspension during this 

18 – 36, 000 spin, but can be subsequently isolated from media / serum via 

ultracentrifugation.  
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 EVs contain RNAs 

 The first report of RNA being laterally transferred between cells via MVs 

was in 2006 by Ratajczak et al.206. In this study, they observed that murine 

embryonic stem cell (ESC) MVs contained mRNA for several ESC transcription 

factors (Oct4, Nanog, stem cell ligand [Scl] and Gata-2). They found that these 

were transferred into recipient bone marrow Sca-1+/kit+/lin- cells (LSK), Oct4 was 

translated, and augmented stem cell expansion. This was closely followed by 

Valadi et al’s. study, which showed that mast cell exosomes contained multiple 

mRNAs, and when using a rabbit reticulocyte lysate, they were capable of being 

translated. A key difference between this and the previous studys is that this was 

the first to show the presence of miRNA in exosomes207. Since then, multiple other 

studies have reported the same phenomena, for example, miR-290, miR-291-3p, 

miR-292-3p, miR-294, and miR-295 were shown to be transferred from murine ESC 

into fibroblasts, although targets were not evaluated208. miR-223 was shown to be 

transferred between THP-1 (monocyte/macrophage cell line) whereby it 

negatively affected CCR5 and CD206 expression, although direct silencing was not 

shown209. Through use of a reporter construct, Montecalvo et al. demonstrated 

functional transfer of miR-451 between dendritic cells (DC), although perhaps 

more interestingly, this study also reported that exosome content changed during 

DC differentiation210. Furthermore, this doesn’t appear to be a “cramming” event, 

with multiple studies showing that exosomes aren’t simply a fac similie of their 

parental cell, but instead miRNA loading appears selective211,212. A potential 

reason for this was given recently, whereby sumoylated heterogeneous nuclear 

ribonucleoprotein A2/B1 (hnRNPA2B) was able to recognise a GGAG motif within 

the 3’ end of the miRNA and selectively package them into exosomes213. Finally, 

more recent studies that employed RNAseq as opposed to a microarray have 

reported the presence of other ncRNAs (piRNA, snRNA), although the function of 

these was not evaluated214. The idea that EVs can transfer miRNA between 

different cells and elicit a response forms a key hypothesis that is tested in 

Chapters 4 - 6. 

 RBC homeostasis  

A cell type that has recently been reported as containing abundant miRNA 

are mature erythrocytes6. Why these relatively simplistic cells require miRNA is 
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unknown. However, the function of miRNA within haematology, including 

erythropoiesis has been widely studied.  

 Erythropoiesis 

Erythropoiesis is the process in which mature, circulating red blood cells, 

also termed erythrocytes, are produced. Developmentally there are two modes of 

erythropoiesis: primitive erythropoiesis, which is detected approximately 16 days 

after gestation within the yolk sac (YS) and definitive erythropoiesis, which starts 

in the YS, but ends in the bone marrow where erythrocytes are terminally 

differentiated from haematopoietic stem cells (HSCs)215. Primitive and definitive 

erythrocytes are very different, with primitive erythrocytes containing different 

haemoglobins (so called foetal), a nucleus (for a limited time) and the ability for 

intravascular proliferation216. As this is not the case for definitive erythrocytes, 

the focus of this thesis, the remainder of this introduction will focus on definitive 

erythropoiesis only.  

 Definitive erythropoiesis  

Haematopoiesis is the mechanism by which all lineages of blood cells are 

produced. Pictorially this is classically represented as the haematopoietic tree 

(Figure 11a), in which all blood cells are derived from a common progenitor (HSC) 

following step-wise differentiation217; a specific time line of erythropoiesis is 

depicted in Figure 11b. The earliest cells at which specific erythrocyte progenitors 

can be identified is the burst forming unit erythroid (BFU-E)218. They exist at a 

concentration of ~ 20 – 40 per 105 cells within the bone marrow and rapid in vitro 

differentiation on methylcellulose shows they require thrombopoietin (TPO), stem 

cell factor (SCF), Fms-Like Tyrosine kinase (FLT3) ligand and interlukin 3 (IL-3)219. 

They differentiate to form colony forming unit erythroid (CFU-E) cells which are 

dependent on fibronectin220.  
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Figure 11: Schematic describing the haematopoietic tree and erythropoiesis. 
a) the haematopoietic tree as re-drawn from Foster et al.221, b) additional detail for erythropoiesis; 
MEP =megakaryocyte-erythroid progenitor, B/CFU = Blast/colony forming unit, RBC = red blood cell, 
HSC = haematopoietic stem cell, MLP = multi-lineage progenitor, CLP = common lymphoid 
progenitor, GMP = granulocyte-macrophage progenitor, CMP = common myeloid progenitor. 

Although not required for lineage commitment, erythropoietin (EPO) is 

required for complete RBC maturation222. First, CFU-E respond to EPO through 

JAK-STAT and PI3K-AKT signalling pathways; perturbation of either results in 

severe anaemia223,224. This results in an increase in proliferation, and expression 

of glycophorin A (Gly-A). In addition, the erythroid-specific transcription factor 

Kruppel Like Factor 1 (KLF1) stimulates haemoglobin production, which occurs in 
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conjunction with increased expression of CD71, the transferrin receptor, 

responsible for internalising iron225. At the same time, a molecular “switch” occurs 

in which the transcription factor GATA1 is expressed in place of GATA2226. 

Fibronectin is required for the final stages of differentiation, as it promotes 

shedding of the blast’s nucleus: a process termed enucleation220. During this time, 

the blast’s chromatin undergoes a histone deacetylase 2 (HDAC2)-mediated 

condensation227. The condensed nucleus then moves towards the cell membrane 

and a contractile actomyosin ring (CAR) comprised of f-actin and myosin forms 

between the nascent reticulocyte and condensed nuclei228. Then, in a Rac GTPase 

and Diapahnous Related Formin 3 (mDia2)-dependent manner, the CAR contracts 

and in a process reminiscent of cytokinesis, the nucleus is extruded229,230. 

 Interestingly, all of this takes place within the bone marrow in special 

units called erythroblastic islands. The centre of this island consists of a 

macrophage, or nurse cell, which is surrounded by erythroblasts undergoing 

differentiation231. The function of this centralised macrophage appears 

multifactorial with reports of it promoting enucleation, supplying iron and 

stimulating proliferation232,233,234. The idea that macrophages promote 

enucleation appears controversial, as multiple studies have shown retinoblastoma 

(Rb) knock out models result in anaemia, leading to the conclusion that 

erythroblasts require Rb to undergo enucleation235. However, the study by Ivarone 

et al. suggests a key macrophage function, as they rescued the Rb-/-phenotype 

when Rb-/- erythroblasts were co-cultured with Rb+/+ macrophages234. More 

definitive is the belief that macrophages phagocytose and destroy the nuclei once 

extruded236. Finally, GATA1 levels are regulated by direct erythroblast-

erythroblast interactions which are facilitated by the nurse cell, although this 

phenomenon is not fully understood237. Note that mature erythrocytes can be 

differentiated from isolated mononuclear cells (MNCs) in vitro without the 

presence of supporting macrophages, although this doesn’t appear efficient231.  

After enucleation, the anucleate cells (reticulocytes) undergo further 

maturation whereby organelles (mitochondria) are degraded via autophagy and 

superfluous membrane proteins (CD71) are removed through endo-

exocytosis238,239. At this stage, the reticulocyte moves into the circulation where 

over ~3 days it matures into an erythrocyte240. Surprisingly, during this time, 
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reticulocytes are still translationally active, although this does not persist into 

mature erythrocytes due to a widespread ribonucleolysis which removes nearly all 

the RNA241. This complex and highly regulated process results in a comparatively 

simple cell (total proteome of ~2000 in RBCs Vs >10,000 in HeLa cells) whose main 

purpose is the transport of oxygen; indeed, haemoglobin makes up an astounding 

90% of the dry weight of an erythrocyte242,243.  

 miRNA involved in erythropoiesis 

Although the potential function of miRNA within mature erythrocytes is 

enigmatic, their role in erythropoiesis, due to an abundance of mRNA, is more 

defined. Multiple studies have profiled miRNAs at different stage of development, 

compared primitive and definitive erythropoiesis and even looked at miRNA 

dysregulation in disease (e.g. polycythaemia vera)244,245. Functionally, the gross 

role of miRNA during erythropoiesis is to either prevent, or stimulate 

differentiation – Table 2 summarises all studies relating to miRNA function during 

normal, definitive erythropoiesis.  

Although the genes being repressed by miRNA are clearly key for 

erythropoiesis, their functions during differentiation vary. For example, miR-223 

negatively regulates LMO2, a key erythropoietic transcription factor246. MiR-

221/222 and miR-24 were shown to downregulate the expression of Tyrosine-

Protein Kinase Kit (KIT) and Activin Receptor-Like Kinase 4 (ALK4), two surface 

receptors that bind SCF and ACTIVIN, respectively247,248. Both of these receptors 

have been demonstrated as essential for the proliferation of blasts and their 

subsequent differentiation, so unsurprisingly, a downregulation of these receptors 

perturbs erythropoiesis249,250. Iron metabolism was disrupted via the silencing of 

ALAS2, an aminolevulinate synthase essential for the production of haem, by miR-

218251. Finally, miR-150 is reported to have multiple targets: firstly, it’s a key 

player in defining lineage commitment, with high miR-150 levels silencing MYB 

and promoting megakaryopoiesis at the expense of erythropoiesis252. Secondly, 

during terminal differentiation, over expression of miR-150 silenced Erythrocyte 

Membrane Portein 4.1 (EPB41), a key cytoskeletal interactor253; however, miR-150 

is downregulated during differentiation, so how relevant this study is remains to 

be seen.  
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Of the miRNAs that promote erythropoiesis, the miR-144/451 cluster is 

perhaps the best known. Expression of this cluster is promoted by GATA1. MiR-

451, in a feedback loop, then silences GATA2 augmenting the GATA1/2 switch that 

occurs during erythropoiesis254. MiR-451 also plays a role during terminal 

differentiation as it downregulates 14-3-3ζ, itself, an inhibitor of the transcription 

factor Forkhead Box O3 (FOXO3). Silencing of 14-3-3ζ, allows for the subsequent 

upregulation of anti-oxidant genes Catalase (CAT) and Glutathione Peroxidase 1 

(GPX1), protecting erythroblasts from oxidative stress255. In primitive 

erythropoiesis, miR-144 regulates embryonic α-haemoglobin expression through 

targeting Kruppel-like Factor D (KLFD), while in definitive erythropoiesis miR-144 

silences RAB14, itself a negative regulator of erythropoiesis254,256. GATA1 appears 

to be responsible for promoting the expression of several other miRNAs, indeed, 

the GATA1/2 switch findings above were also found by Wang et al. who also 

reported a silencing of GATA2 by miR-27/24a following GATA1 stimulation257. MiR-

199b-5p and miR-23a are also GATA1-dependent and downregulate Platelet 

Derived Growth Factor Receptor  (PDGFRA) and Protein-Tyrosine Phasphatase 1D 

(SHP2), respectively258,259. 

Finally, miRNA also play a role in regulating other processes during 

erythropoiesis. For example, Rivikin et al. demonstrated that miR-142 KO mice 

developed erythrocytes with abnormal shape (knizocytes, leptocytes)260. Although 

a direct miR-target was not elucidated, this distinct phenotype was thought to be 

due a perturbation of F-actin filament arrangement, potentially regulated through 

Wiskott-Aldrich Syndrome Like (WASL) and/or Cofilin 1 (CFL1). Enucleation is a 

distinctive hallmark of erythroid maturation, and it has also been shown to be 

regulated by miRNA. For example, Zhang et al. demonstrated that miRNA 

expression, for the majority of miRNA species, declined as the cells differentiate. 

To establish what role these declining miRNA had, they over expressed miR-191, 

which resulted in a decrease of cells undergoing successful enucleation (~19% Vs 

35%). Further work showed this was through inhibition of RIO Kinase 3 (RIOK3) and 

MAX Interactor 1 (MXI1), although how they mediate chromatin condensation / 

enucleation is unclear261. 
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Table 2: The function of different miRNA during erythropoiesis 

miRNA Target Effect model Reference 

miR-142 Not stated Regulates actin filament homeostasis In vivo (Murine) 260 

miR-144 KLFD Regulates α-globin expression In vivo (Fish) 
256 

miR-191 RIOK3 / MXI1 Regulates chromatin condensation and enucleation CD34+ 
261 

miR-451 14–3-3-ZETA Protection from ROS In vivo (Murine) 
255 

miR-125a-5p NIX Promotes mitophagy HEL 
262 

miR-486-3p MAF Lineage choice (megakaryocyte Vs erythrocyte) CD34 
263 

miR-150 c-MYB Lineage choice (megakaryocyte Vs erythrocyte) CD34+ 
252 

miR-23a KLF3 Promote β-globin expression K562 
264 

miR-27a SP1 Promote β-globin expression K562 
264 

miR-150 EPB41 Inhibits differentiation CD34 / K562 
253 

miR-218 ALAS2 Inhibits differentiation K562 
251 

miR-200a-3p PDCD4 + THRB Inhibits differentiation K562 / TF1 
265 

miR-124 TAL1 / c-MYB Inhibits differentiation CD34+ 
266 

miR-223 LMO2 Inhibits differentiation CD34+ 
246 

miR-221/222 KIT Inhibits differentiation CD34+ 
247 

miR-24 ALK4 Inhibits differentiation CD34+ 248 

miR-23a SHP2 Promotes differentiation K562 / CD34+ 259 

miR-27a Not stated Promotes differentiation CD34 257 

miR-24 Not stated Promotes differentiation CD34 257 

miR-199b-5p cKIT Promotes differentiation K562 258 

miR-156b-5p PDGFRA Promotes differentiation K562 / CD34+ 267 

miR-144 RAB14 Promotes differentiation CD34 254 

miR-451 RAB14 / GATA2 Promotes differentiation CD34 / TF1, In vivo (Fish) 268 
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 Mature RBC composition and function 

Mature erythrocytes are a model cell type for those wishing to study 

cellular deformability or membrane composition, as a result there are a plethora 

of studies characterising erythrocytes. Early electrophoretic work performed by 

Fairbanks et al. reported six major bands when erythrocyte ghosts (membranes 

devoid of haemoglobin) were resolved on acrylamide gels. In a move of stunning 

imagination, the bands were named in the order that they appeared on the gel, 

from top to bottom (bands 1-6) – names which have stuck to this day269. Over the 

years, the function of these proteins has been established in addition to them 

being given additional names i.e. band-2 is also known as ANKYRIN. More in depth 

analyses that Fairbanks et al. performed has also revealed that erythrocytes 

consist of ~1989 proteins270. However, the vast majority of this proteome consists 

of only a few key players, which are discussed below.  

 Cytoskeleton 

Perhaps one of the most important parts of an erythrocyte is its 

cytoskeleton, due to the flexibility it affords the cell. In a beautiful study, Liu et 

al. used transmission electron microscopy (TEM) to show the cytoskeletal lattice 

that forms under the membrane (Figure 12)271. Essentially, this image is comprised 

of repeating units that are made up of long spectrin molecules held together by 

actin junctions.  Spectrin exists as an α (220 kDa) and β (260 kDa) peptide, which 

coil around each other to form a long (100 nm) filamentous heterodimer (α,β)2 

(Figure 12-Sp)272. Two heterodimers bind head-to-head to form a longer (~200 nm) 

tetramer273. Six to seven of these spectrin chains bind a central actin-troposin-

band4.1 complex, forming a hex-heptamer motif, which repeats to create a 

cytoskeletal mesh (Figure 12-Ac)274. This cytoskeleton, observed as “floppy”, 

imbues the erythrocyte with elasticity/deformability273,275. For example, Joel 

Anne Chasis and Narla Mohandas reported a reversible uncoiling of spectrin dimers 

(becoming longer and linearised) in response to sheer stress, allowing erythrocytes 

to deform and “squeeze” through narrow capillaries – something essential for the 

oxygenation of distal tissues276.  The cytoskeletal mesh is then joined to the 

membrane at two key points: (1) ANKYRIN, a large adapter protein which 
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constitutes approximately 5% of the total protein of an erythrocytes membrane, 

interacts with β-SPECTRIN and the N-terminus of BAND3 (Figure 12-An)277; (2) The 

ACTIN junction, which binds to Gly-C278. 

 

Figure 12: Structure and constituents of the erythrocyte cytoskeleton 
TEM image was reprinted from the study Liu et al.; cartoons of spectrin fibres and actin junction are 
based on those from Bennet et al.271,279. 

 Membrane constituents 

The transmembrane BAND3 is an oligomeric protein that can form dimers 

or tetramers, interacting with additional proteins to form large multi-protein 

complexes280. It comprises approximately 15 % of the red cell membrane, is a 

member of the solute carrier family (SLC) and is responsible for processing carbon 

dioxide. Carbonic anhydrase, which binds BAND3’s C-terminus, converts CO2 into 

carbonic acid / bicarbonate ions as it diffuses into the cell, then back to CO2 when 

the erythrocyte reaches the lungs281. The main function of the N-terminus is to 

bind ANKYRIN, tethering the cell membrane to the cytoskeleton; it also interacts 

with glycolytic enzymes and denatured haemoglobin, which is discussed later282.  

Additional proteins that can complex with BAND3 are Rhesus (Rh) 

proteins, CD47, the glycophorins and P55. The glycophorins (A, B, C) are another 

highly abundant (2% of total membrane protein) transmembrane protein group, 

which has two distinct roles. First, Gly-A,B,C carry the MN, Ss and Gerbich blood 

groups respectively283; secondly, in stopping RBC-RBC interactions, which is 

mediated by the abundant, negatively charged sialic acid post-translational 
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modifications that they contain284. Rh proteins, more commonly known as Rh 

antigens, comprise the Rh blood group. Interestingly, although there are only two 

genes (RHD and RHCE) they are polymorphic which results in the expression of 49 

different antigens; absence or presence of RHD leads to blood being typed as 

positive (+) or negative (-) i.e. A+ / A-285. CD47 is an integrin binding protein whose 

role within erythrocyte biology appears to be as a “don’t eat me” signal to splenic 

macrophages, while P55 appears structural286,287. 

 Cytoplasmic contents 

Unsurprisingly, the number one constituent of the red cell cytoplasm is 

haemoglobin. A tetramer consisting of 2-α and 2-β peptides surrounding an iron-

containing porphyrin ring, whose main function is to bind oxygen243. So abundant 

is the HAEMOGLOBIN (Hb), that it consistently caused troubles in proteomic 

studies and so specific steps were taken to remove it288. Using these, proteomic 

studies have revealed that additional proteins present fall under the following 

main groups: protective, energy production and turn-over270. 

One of the main challenges faced by erythrocytes is damage caused by 

oxidative stress289. As a result, CATALASE, GLUTATHIONE PEROXIDASE and 

PEROXIREDOXIN are highly abundant within the cytoplasm and function in 

converting H202, a metabolic by-product, into water290–292. Although not 

translationally active, erythrocytes still contain an active proteosomal 

degradation system and, as a result, contain various ubiquitin ligases293. Due to its 

importance to the central hypotheses of this thesis the data from this study was 

reviewed extensively, however, AGO2 was not amongst the proteins undergoing 

proteosomal degradation. Finally, even though mature erythrocytes lose their 

mitochondria during terminal differentiation, the deformation of the erythrocyte 

membrane during sheer flow is ATP dependent294. As a result, ATP is generated 

via glycolysis and mature erythrocytes contain all enzymes within this pathway.  

 Discovery of e-miRNA 

The earliest paper to report the presence of erythrocytic-miRNA (e-miRNA), 

came from Tamas Dalmay’s lab who were investigating the presence of short RNAs 

from P. falciparum infected erythrocytes6. Although no malarial sRNAs were 



52 
 
observed, an abundant amount of e-miRNA was observed both in normal and 

infected cells. However, while this is the first mention of e-miRNA, an in-depth 

review of the literature reveals that AGO2 had been identified 2 years prior295. 

Indeed, while many subsequent proteomic studies have revealed the presence of 

eukaryotic initiation factor 2c2 (EIF2C2, i.e. AGO2), what is perhaps most 

interesting about these studies is how abundant AGO2 is in comparison to other 

erythrocyte proteins296,297. For example, none of the referenced studies detect 

AGO2 just above background, and the most recent, quantitative analysis by Bryk 

et al. put AGO2 within the top 1% of proteins detected at the erythrocyte 

membrane (28th of 2653 unique proteins detected, when ranked by 

abundance)298.   

It’s somewhat disappointing that these proteomic studies either dismiss the 

presence of AGO2, or simply ignore it299,297. All the more galling are studies that 

have expressly been set up to evaluate novel erythrocyte protein complexes, then 

apparently ignore the results. For example, when using blue native 2D 

electrophoresis, Van Getsel et al. identified a clear co-migration pattern between 

BAND3 and AGO2, but relegated this data to the supplementary and didn’t 

comment upon it299. Maybe the name “translation initiation factor”, admittedly 

incongruous in cells without a translational apparatus, deterred these authors. 

Even studies specifically looking at e-miRNA (not just AGO2), didn’t really address 

their presence as functional, but as an indicator of the translational regulation 

that occurs during the terminal differentiation300.   

Indeed at the commencement of this study, only one paper looked at the 

possibility that miRNA in mature erythrocytes were functional301. The authors 

reported that miR-451 is internalised by P. falciparum and through its 3’ end, 

covalently attaches to the 5’ end of the malarial transcript PKA-R – creating a miR-

451-PKA-R fusion. This prevents 5’ capping and subsequent translation, leading to 

malarial resistance in erythrocytes. Therefore, in their paradigm, the RISC 

internalised by the parasite uses neither miRNA complementarity, nor AGO-

mediated cleavage to elicit its anti-malarial effect. Even if you ignore this, i.e. an 

evolutionary conserved molecule acting outside of its conserved mode of action, 

I still have concerns regarding this study.  
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First and foremost, Lamonte et al. only observe this in an artificial system 

i.e. by adding “naked” oligos to P. falciparum in culture. By doing this they are 

adding non-AGO bound oligos (don’t exist) at high amounts (~1x106 oligos per cell) 

which does not represent what occurs naturally within these cells. Indeed, dose 

may be an issue, as when they add 2 oligos (miR-451 + miR-223) the phenotype 

measured increases by roughly 50 % i.e. observed parasitaemia of ~75 % (one oligo) 

vs ~55 % (two oligos). In the same figure, it becomes apparent that this isn’t a 

miR-451 specific phenomenon with other oligos having either the same effect, or 

none at all. 

 Although not directly tested, dose may well have an effect within the 

system of Lamonte et al. For example, when they attempt to detect the fusion 

transcript by sequencing RNA extracted from P. falciparum cultured in 

erythrocytes without additional oligos, the fusion transcript only represented 8 

out of 1.5 x 107 reads; indicating it occurs at very low levels. Furthermore, the 

databases in which they say the fusion transcript is also reported are also suspect. 

For example, they come from one extended group (Sugano & Watanabe), who use 

expressed sequenced tags (EST) to cap the 5’ end of malarial mRNA prior to cDNA 

synthesis302. There is no mention of how the RNA is extracted from P. falciparum 

other than “standard methods”. However, if RNA was extracted from infected 

erythrocytes, not purified parasites then their extracted RNA would contain e-

miRNA. An explanation for this fusion transcript may simply be that, the oligo-

ligation event they employ, actually ligates an e-miRNA to the 5’ end of a parasites 

mRNA303,304. If my suspicion is correct, then you would expect to obtain other 

parasite-emiRNA fusions out with of miR-451-PKA-R, and you do (Lamonte et al. 

supplementary); including rRNA fusions.   

 Characterisation of e-miRNA 

As there was little known about e-miRNA at the commencement of this 

study, the Hamilton lab set out to characterise them. During this characterisation, 

they discovered several surprising properties. (1) e-miRNA concentration: using 

UV spectroscopy, they calculated that e-miRNA is as concentrated as miRNA in 

nucleated cells, furthermore, short-term culture indicated that e-miRNA are 

stable despite widespread ribonucleolysis following terminal erythroid 

differentiation (Figure 13a, redrawn with permission). Due to the huge number of 
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erythrocytes in the circulation, they calculated that e-miRNA constitute >99% of 

total miRNA within whole blood (Figure 13b). (2) e-miRNA conservation: Illumina 

sequencing established an e-miRNAome of 470 different miRNAs, while initial 

phylogenetic analyses indicated conservation across Mammalia (Appendix 1 - 4). 

(3) Selective protein retention: western analysis showed that while erythroblasts 

express AGO1-4, mature erythrocytes contain only AGO2. Indeed, in vitro 

differentiation of CD34+ showed the concomitant decrease of AGO1, 3 and 4 while 

AGO2 showed only a modest decrease (Figure 13c/d). (4) Maintained RISC 

potential: AGO2 pull downs followed by Northen blots demonstrated that the e-

miRNA were present as RISCs. Catalytic potential was demonstrated by incubating 

radiolabelled bait RNAs (in vitro transcripts containing sequences complementary 

to e-miRNA) in erythrocyte lysates, resulting in predictable cleavage patterns 

(Figure 13e). This, and other data, was what this project was predicated on, the 

exact hypotheses of this project are discussed in Section 1.12.2.   
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Figure 13: Characterisation of e-miRNA. 
a) Total RNA extracted from erythrocytes cultured for 0, 1 and 2 days (to mature residual 
reticulocytes) then resolved via capillary electrophoresis to compare RNA profiles, miR-451 northern 
blot serves as loading control; b) small RNA profile of whole blood and leukoreduced blood when 

a) miRNA survive reticulocyte 
maturation while other RNAs do not 

b) The majority of miRNA within 
whole blood is in RBCs 
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stained with ethidium bromide; c) in vitro differentiation of CD34+ cells into erythrocytes and 
subsequent western blots of protein taken at different time points to investigate the retention of AGO 
proteins during erythropoiesis; d) western and northern blot of protein/RNA extracted from purified 
erythrocytes from different donors (N1-4); e) Catalytic potential of RISC was evaluated by P32 
labelling in vitro transcripts containing an e-miRNA reverse complement (or not), then incubating 
them with an erythrocyte lysate for 1 hour, then resolving samples on an agarose gel. 

 RBC senescence 

After reticulocyte maturation, adult erythrocytes course through the body 

delivering oxygen to tissues for approximately 120 days305. During this time, they 

age and undergo a number of distinctive changes in a process called senescence; 

notably, erythrocyte senescence is not the same as in other cells306. At the end of 

this process, senescent erythrocytes are recognised by specialist macrophages 

located within the red pulp of the spleen, turned over and the iron within the 

haemoglobin recycled307. Indeed, this process is essential, with greater than 80% 

of the iron required for daily erythropoiesis coming from recycled senescent 

erythrocytes308. However, before that can occur, senescing erythrocytes must 

undergo several biochemical and biophysical cues to be recognised by splenic 

macrophages.     

 Gradual deterioration  

First, as there are no definitive stages to erythrocyte ageing, rather a 

gradual senescence over 120 days, the experimental means by which researchers 

isolated “old” vs “young” erythrocytes must first be established. A common 

observation regarding senescent erythrocytes, is that they get denser as they age, 

although it’s not clear where this observation was first made. Nevertheless, the 

first study to evaluate this in vivo, compared the mean corpuscular volume (MCV) 

of erythrocytes from hypertransfused rats and noted a decrease in MCV between 

day 0 and day 48 samples309. They postulated that increased density of 

erythrocytes was initially due to water loss, followed by loss of haemoglobin. This 

observation, that increasing cellular density is proportional to age, has been used 

by multiple studies in a multitude of different medias (e.g. arabinogalactan, BSA) 

to separate erythrocytes; at present, Percoll separation appears the most 

common310–312. Concerns raised regarding density gradients (i.e. blood not 

separating properly, heterogenous fractions etc) appear to have been addressed 

through more technical studies, whose data corroborate that of the density 

gradients. In these studies, erythrocytes are biotinylated using a succinimidyl 
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ester in vivo/in vitro and then allowed to age in vivo313,314. Blood samples are 

taken at different time points, captured on a streptavidin matrix then analysed.  

In gross terms, these studies have revealed that the activity of key enzymes 

(superoxide dismutase, catalase etc) decrease with age, leading to an 

accumulation of oxidised proteins – all of which is thought to lead to macrophage 

recognition315,316. Normally haemoglobin cycles through an oxygenated and 

deoxygenated state, with the deoxygenated state preferentially associating with 

BAND3317. Furthermore, haemoglobin undergoes random autoxidation from the O2 

binding Fe2+, to the non-O2 binding form Fe3+ (methaemoglobin). This autoxidation 

is associated with the production of superoxide anions, although these are 

normally processed by superoxide dismutase318,319. Increased methaemoglobin 

membrane association occurs as cells age, which, when coupled with a decrease 

in enzymatic activity, leads to an increase of oxidised membrane proteins320,321. 

Oxidised haemoglobin covalently binds spectrin, leading to an increased 

membrane rigidity; while oxidisation of BAND3, or, oxidised-haemoglobin-BAND3 

interactions, cause BAND3 clustering322,323. BAND3 clustering is an essential part 

of erythrocyte senescence as it promotes the binding of autologous IgG, something 

that does not occur in younger erythrocytes324. This in turns leads to the deposition 

of the complement component C3b via the alternative complement cascade325. 

Finally, increased cellular rigidity attenuates a senescent cell’s ability to pass 

through the spleen, bringing it in longer contact with red-pulp macrophages, while 

an age-linked reduction of CD47 allows the cells to be cleared286.  

 Turnover and iron recycling  

Following recognition by splenic macrophages, erythrocytes are 

internalised and degraded within a phagolysosome326. On the face of it, this 

appears simple, in practice it is far more complex. For example, haem is not 

degraded within the lysosome, which one would assume to occur along with the 

rest of the erythrocyte, instead it is exported into the cytoplasm by 

HAEMRESPONSIVE GENE 1(HRG1)327. Here it is broken down into billirubin, Fe2+ and 

CO2 by HAEME OXYGENASE 1 (HO1)328. Following haem catabolisim, the majority 

of Fe2+ is exported into the plasma via the membrane protein ferrorportin, while 

the remaining Fe2+ is stored as ferritin; bilirubin is excreted and detoxified by the 

liver329,330. Although the mechanism is not fully understood, haem can also be 
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broken down within the phagolysosome, with NRAMP1 facilitating Fe2+ removal 

into the cytoplasm331,332. This is particularly important with regards to this 

project, as it demonstrates two means by which molecules (haem, Fe2+) can exit 

a phagolysosome, something that would have to occur for e-miRNA, if they were 

to leave a cell or vesicle and regulate a macrophages transcriptome.    

In addition to recognising senescent erythrocytes, splenic/hepatic 

macrophages also play key roles in quality control and processing extracellular Hb. 

For example, following intravascular haemoloysis, haptoglobin (Hp), a plasma 

expressed scavenger, complexes with haemoglobin (Hb-Hp) allowing its 

recognition and degradation by CD163+ macrophages333. Finally, the narrow nature 

of the cords of Billroth within the spleen, coupled with rapid circulation, means 

that erythrocytes are constantly in contact with red pulp macrophages – allowing 

for quality control. During maturation, incomplete nuclei expulsion can result in 

small parts of DNA remaining within an erythrocyte (Howell-Jolly body), or, due 

to oxidative damage/disease, Heinz bodies consisting of denatured haemoglobin 

can also form. However, in a process known as “pitting”, red pulp macrophages 

can “bite” out these inclusions, returning erythrocytes to the circulation334,335.   

 Blood transfusion 

The transfusion of RBCs within hospitals is common with approximately 6000 

units required daily in England alone336. Although blood transfusions are required 

by health services globally, the way they are prepared and stored can differ 

drastically from country to country. As part of this thesis deals with transfusion-

associated complications, how blood units are prepared in this country, and 

differences to other countries, will be discussed.  

 Blood processing and storage 

In the UK, blood units are prepared, stored and managed by the National 

Blood Transfusion (NBT) service. A blood donation of 450 mL (±10%) is collected 

from healthy donors into a plastic bag containing 63 mL of the anticoagulant 

citrate phosphate dextrose337. Donations are then passed through two filters: the 

first removes cellular clumps and fibrin clots, while the second, comprising of 

polyester or polyurethane, removes > 95% of the leukocytes and platelets. The 
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leuko-depleted, platelet ablated blood is then centrifuged, the plasma removed 

and the erythrocytes re-suspended in 50 mL of the additive solution Saline Adenine 

Glucose Mannitol (SAGM); it is then stored at 2-6 °C for a maximum of 42 days. 

The final specification for blood units within the UK are: volume of 280 – 420 mL, 

haematocrit of 55 – 75 % and leukocyte count of < 5x106 per unit. 

Differences between countries can be major, with leukoreduction not 

mandated in the US, or subtler, with different formulations or concentrations of 

additive solutions being used338. For example the US uses either AS-1, AS-3 or AS-

5, the Japanese use mannitol-adenine-phosphate (MAP), while phosphate-

adenine-glucose-guanosine-gluconate-mannitol (PAGGSM) is used in Germany 339. 

Although the functions of the individual reagents in these additive solutions is 

different, the main aim is to prevent eryptosis – i.e. erythrocyte cell death. The 

glucose is added in excess to what these cells require during storage (3 mmol), 

ATP improves post-transfusion viability, while mannitol was shown to increase 

storage by 1 week while also reducing haemolysis340–342. As can be seen by Table 

3, the formulations of these buffers aren’t drastically different and with regards 

to storage, the benefit of one formulation over the other isn’t strikingly clear - 

although one study has reported that erythrocytes stored in SAGM lose more 

membrane then those stored in AS-1343.  



 
 

Table 3: Composition of different additive solutions used across the globe, redrawn 
from Sparrow et al. 2012339. 

Constituents (mM) 

Licensed RBC additive solutions 

SAGM AS-1 AS-3 AS-5 MAP PAGGSM 

NaCl 150 154 70 150 85 72 

Na2HPO4 - - - - - 16 

NaH2PO4 - - 23 - 6 8 

Citric acid   2 - 1  

Na-citrate - - 23 - 5 - 

Adenine 1.25 2 2 2.2 1.5 1.4 

Guanosine - - - - - 1.4 

Dextrose (glucose) 45 111 55 45 40 47 

Mannitol 30 41 - 45.5 80 55 

pH 5.7 5.5 5.8 5.5 5.7 5.7 

Anti-coagulant CPD CPD CP2D CPD ACD CPD 

Countries used 

Europe 
UK 

Australia 
Canada 

New 
Zealand 

USA 

USA 
Canada 

 
 
 

USA Japan Germany 

 

 The storage lesion 

However, regardless of additive solution used, during storage, erythrocytes 

undergo a variety of morphological and biochemical changes. Biochemically, 

glycolytic components 2,3-diphosphoglycerate (DPG) and ATP decrease over 

time344, while the pH falls due to increased levels of lactic acid345. As DPG interacts 

with haemoglobin, and is critical in the release of oxygen in vivo, it was postulated 

that older blood may not transport oxygen efficiently, although studies have failed 

to find a clinical link346. These biochemical alterations induce morphological 

changes within RBCs and subsequent vesicularisation347. During this time, 

erythrocytes change from classical biconcave discoids to echinocytes and finally 

spherocytes. Echinocytes feature multiple membranous arms called spicules from 

which MVs are released as part of membrane inversion and contraction. 

Haemoglobin levels within the storage medium increase due to haemolysis, 

although studies indicate a significant proportion of free haemoglobin is contained 

within shed MVs348,349.  
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 miRNA and the storage lesion 

While miRNAs have been evaluated with regards to the platelet storage 

lesion as a method to evaluate apoptosis350,351, only one study has evaluated 

miRNA during RBC storage. Although miR-96, -150, -196a, and -197 showed an 

increase in concentration within the storage media, these miRNAs are not readily 

found within erythrocytes and changes in expression are likely due to 

contaminating leukocytes that were not depleted; therefore this study is not 

representative of a UK storage lesion and of limited use352. 

 RBC-MVs 

Review of the literature indicates that there are three types of extracellular 

vesicle associated with red cells. These can broadly be thought of as naturally-

occurring (i.e. in vivo), or, artificial (i.e. those generated through the storage 

lesion). Description of each are as follows: 

 Naturally occurring 

 Exosomes 

Erythrocytic exosomes (exRBC) are ~ 0.05 µm in size and are produced by 

reticulocytes during the final stages of maturation as a means of removing their 

transferrin receptor (CD71). While this was first reported by Pan et al. in 1983, it 

was their 1985 paper that visualised the mechanism behind this353,354. In a 

particularly elegant study, they probed sheep reticulocytes with anti-CD71 serum, 

allowed them to mature in vitro and analysed them at different time points using 

immuno-gold TEM. At early time points, CD71 can be seen both on the surface of 

reticulocytes as well as coating “pits” in the membrane. These pits are 

internalised, forming exosomes which are subsequently packaged into much larger 

multivesicular bodies (MVBs) (1 -1.5 µm). These MVBs then fuse with the cellular 

membrane allowing for EX expulsion (Figure 14). CD71 recycling is therefore a 

defined biological pathway, which is different to what occurs during the storage 

of RBCs. 
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Figure 14: RBC exosome exocytosis. 
Figure reprinted from Pan et al. dark 
shape is a maturing erythrocyte, while 
black dots represent CD71 being excreted 
on exosomes; earlier pictures in this study 
show CD71 being internalised and 
multivesicular bodies forming353. 

 Microvesicles 

The first RBC vesicles detected in vivo were reported in 1984, although, as 

the authors only used TEM and SDS-PAGE analysis of filtered plasma, and did not 

confirm them immunologically, it is impossible to say if these were truly RBC 

derived, or from leukocytes / platelets355. Nevertheless, Wilkelin et al. used this 

to investigate the possibility that vesicularisation was the means by which RBCs 

lose ~ 20% Hb as they age356,357. The presence of glycated Hb (Hb1c) was confirmed 

in these MVs and the overall Hb content found to be similar to that of aged RBCs, 

indicating these MVs came from aged erythrocytes. Later, they reported that MVs 

were positive for IgG and senescent erythrocyte antigen (clustered BAND3), 

leading them to hypothesise that the purpose for vesicularisation was to remove 

pro-phagocytic signals or damaged Hb from RBCs358.  

 Artificial 

The first erythrocyte vesicle was reported in Nature by Allan et al. when 

they used the calcium ionophore A23187 to produce ~100 nm vesicles359. This was 

repeated in multiple other studies before Lutz et al. reported the same 

phenomenon occurring in artificially aged erythrocytes i.e.  stored at 37 °C for > 

12 hours without glucose344. What is particularly interesting about this study is 

that vesicularisation was inhibited compared to control: storing erythrocytes in 

glucose, adenosine, inosine and saline – a very similar buffer to SAGM. It wasn’t 
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until 5 years later that these MVs were reported in stored blood units347. Multiple 

studies have characterised RBC-MVs, both ionophore and storage induced, 

revealing that they are: (1) spectrin free344; (2) have exposed 

phosphatidylserine360; (3) are enriched for stomatin361; (4) range from 100-200 nm 

in size360 (Figure 15); (5) contain blood group antigens362 and (6), increase in 

number when blood is stored363.  Indeed, as MVs were found to increase with blood 

storage, something of clinical interest, multiple studies have now evaluated the 

effect of these MVs in transfusion. Some of which are discussed below. 

Note: at the beginning of this study, there were no reports of miRNA within RBC-

MVs (natural or artificial), although supplementary data from a proteomic screen 

of storage MVs indicated AGO2 (EIF2C2) was not present296. 

 

Figure 15: Microvesicles “blebbing” from stored erythrocytes. 
Figure reprinted from Kriebardis et al. Dark shape represents a stored 
erythrocyte with a protruding spicule, MVs can be seen “blebbing” from 
the end; dark dots represent Hbb as visualised by immunogold 
labelling364; scale bar = 0.2 µm). 

 Transfusion associated complications 

Complications associated with the transfusion of aged RBCs is disputed 

within the literature - some studies indicate no deleterious effects of transfusion, 

while others correlate it to morbidity and mortality365,366,367. In both types of 

study, the study group involved trauma patients, ICU patients, and those 

undergoing coronary surgery. End points include increased mortality, development 

of deep vein thrombosis, multiple organ failure and increased length of hospital 

stay or nosocomial infections in patients transfused with “older” rather than 

“younger” blood. Interestingly some of these studies indicate a dose effect is 

present. However, while cohorts are generally large and statistically significant, 
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changes in these studies are modest. For example, Robinson et al. evaluated 30-

day survival in patients undergoing percutaneous coronary intervention and found 

that patients receiving high volumes of blood had a higher hazard ratio (HR) (1.26 

[95% CI 1.18-1.34], P < 0.001) than those receiving lower volumes368. Interestingly, 

when they evaluated blood > 28 days old in comparison to younger units, they 

observed a HR of 2.4 ± 1.8 versus 3.2 ± 2.4 (P < 0.001). Koch et al. compared 

sepsis, mortality, renal failure and intubation time in patients undergoing heart 

surgery and found that patients receiving old blood (>20 days) had an increased 

risk of complications than those receiving younger blood (25.9% vs 22.4% P = 

0.001)369. However, in a similar study, McKenny et al. found no correlation 

between blood age and the aforementioned end points; although they did notice 

a trend between higher transfusion volumes and adverse outcome370.  

It is difficult to compare the results from these studies due to the different 

statistical methods used, different definitions of “old” or “young” blood and RBC 

preparations (storage medium etc). In addition, they do not address mechanistic 

details and the few in vitro studies that exist are as conflicted as the clinical 

observations. For example, Baumgartner et al. released two studies in quick 

succession with different conclusions. In the first study, they demonstrated that 

RBC storage supernatant potentiated the release of pro-inflammatory cytokines 

(Interleukin (IL)-1β, IL-6 and tumour necrosis factor alpha (TNF-α)) from LPS-

primed peripheral blood (PB)-MNCs and the effect was magnified using the 

supernatant of older blood units (42 vs 1 day); interestingly leukoreduction 

attenuates IL-1β release only, indicating one agonist was of white cell origin371. 

Conversely, the following year they released a study that indicated that RBC 

supernatant had an anti-inflammatory effect and was effective through CD3-

primed Treg cells372. Something similar was observed by Sadallah et al, however, 

as they didn’t use cytokines to differentiate their monocytes, or, phenotype their 

“macrophages” the data is of dubious value373. An additional effect associated 

with older blood was indicated in a different study where by supernatant from 

older blood increased the speed of coagulation by 1.5 minutes (P < 0.01) compared 

to the control374. The authors speculated that this effect was mediated by RBC-

MVs and could be dose-dependent; unfortunately, as they did not quantify the MVs 

used, dose parity could not be confirmed between experimental arms. This is 

important as the authors observed different rates of storage lesion deformation 
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between samples which they suggest was the reason only half their samples 

exerted a procoagulant response within a 41 day storage period. The disparity in 

these studies is most likely due to the systems employed, more specifically, how 

the system is “primed”. For example, Baumgartners’ LPS model induced a pro-

inflammatory response while his CD3 activation induced an anti-inflammatory 

response. The response phenotype is likely therefore highly complicated, involves 

cross talk between multiple cell types and may change based on the underlying 

condition.   

 Predominantly, the in vivo studies identified during this literature review 

have focussed on transfusion-related acute lung injury (TRALI) and use a “two-

hit” murine or rat model375. The first hit occurs when animals are primed with 

LPS, activating pulmonary neutrophils – the second hit occurs with the addition of 

aged erythrocytes, storage supernatant or MVs. Hod et al. showed a marked pro-

inflammatory response, an increase in splenic, kidney and free iron levels when 

transfusing aged blood; mice were also described as moribund and displayed 

different behavioural characteristics compared to controls376. The authors 

assigned this to extravascular haemolysis by macrophages and the subsequent 

release of free iron; although IL-6, TNF-α and keratinocyte derived chemokine 

(KC) levels did not return to control levels following treatment with an iron 

chelator. Furthermore, they state that this effect is explicit to the RBC portion of 

a transfusion and not factors released into storage media during the storage 

legion. This is in contrast to other studies which highlight MVs and not erythrocytes 

per se as mediating transfusion associated complications. Different mechanistic 

reasons are also given, with one study citing complement activation via thrombin 

cleavage of C5377. The study by Vlaar et al. did not speculate on the cause, but 

rather demonstrated that the inflammation and coagulopathy seen within their 

experiments could be abrogated via the washing of the blood unit and the cause 

was not due to lysophosphatidylcholine378. This distinction was made as it differed 

to findings from Silliman et al., but as this group neither leukoreduced their blood 

and transfused human blood into rats their data is of uncertain relevance379. No 

studies definitively identify the cause of the TRALI, but they all demonstrate a 

pro-inflammatory response in primed hosts after the transfusion of aged RBC 

products. Of particular interest, is the mild inflammatory response observed 

within unprimed animals, as this lends credence to the idea that transfusion itself 
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might be deleterious. These studies sacrificed their animals within 24 hours, 

precluding the possibility of clinical symptoms (tissue damage) developing over 

time; to date, no study has evaluated the effect of multiple transfusions or the 

miRNA found in blood units. 

 But why does the effect of multiple transfusions have a clinical interest? A 

clinical condition in which patients are undergoing severe pro-inflammatory 

responses and can receive mulitple RBC transfusions is graft-versus-host disease 

(GVHD) which can occur following allogeneic stem cell transplantation (alloSCT). 

GVHD is a complication that arises when donor T-cells attack recipient tissue. 

Donor T-cells are responsible for another phenomenon called graft-versus-

leukaemia (GVL) effect, where by the graft removes residual cancerous cells380. 

While depleting graft T-cells abrogates GVHD, it also increases the risk of relapse 

and so, has limited utility. Therefore, a method which reduces GVHD whilst 

maintaining the GVL response is the holy grail of GVHD research. Grade II - IV 

acute (a)GVHD develops in approximately 70% of patients following an alloSCT for 

haematopoietic malignancies and is fatal in approximately 20% of cases381. The 

disease manifests as acute, with symptoms appearing 20 – 100 days post-

transplant, or chronic (c), with symptoms appearing after at least 100 days 

following alloSCT; however, these time frames are not exact and aGVHD can 

manifest more than 100 days post-transplant382. Predominantly, patients who 

develop cGVHD were previously diagnosed with aGVHD. According to the National 

Marrow Donor Program, 12% of non-sibling cGVHD patients did not previously have 

aGVHD (de novo), 69% had a gap between onset of cGVHD (interrupted or 

quiescent) and 19% progressed directly from aGVHD382.  

 Acute GVHD pathophysiology is more widely understood than that of cGVHD 

and it is thought to occur over 3 stages383. Host conditioning and inflammation – 

the first stage where by the patient (host) undergoes myeloblative chemotherapy 

or total body irradiation in preparation for the graft. This results in the release of 

the pro-inflammatory cytokines TNF-α, IL-1, IL-6 and damage to the 

gastrointestinal tract which perturbs the gut micro flora leading to increased 

exposure to LPS384. Host antigen presenting cells (APCs) are thus primed via the 

conditioning regime used and conditioning intensity has been linked to the severity 

of GVHD. The second stage occurs when donor T-cells are activated by host APCs, 
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causing them to differentiate. This stage is complicated by the fact that no 

individual APC has been identified as the de facto cell type and stage 2 is likely a 

balance involving multiple interactions, i.e. CD4 T-cells and host APCs within the 

gastrointestinal tract385 or CD8 T-cells and haematopoietic APCs386. Indeed, 

differentiation of T-cells is cytokine-specific and there is growing evidence that 

particular subsets of T-cells are associated with specific clinical manifestations. 

For example, differentiation into Th17 following IL-6 stimulation is associated with 

lung and skin GVHD387, while Th2 is associated with the skin and liver and is 

induced by IL-14388. The final stage is the effector stage, where by monocytes, 

natural killer (NK) cells, CD4 T-cells or CD8 cytotoxic T-cells migrate to a specific 

area and cause apoptosis of neighbouring cells in an antigen-dependent, or 

antigen-independent manner (CD8 T-cells). 

As part of an alloSCT, patients are likely to be transfused with varying 

amounts of blood. Mean transfusion is ~ 15 units at a rate of 0 – 4 units per week, 

but this is patient dependent, with some patients not requiring transfusion 

whereas others, in extreme cases, can reach up to 96 units (personal 

communication Mhairi Copland). There appear to be no studies investigating either 

the age of RBCs or the volume of transfused blood exacerbating or being involved 

in GVHD. A condition called transfusion associated GVHD (TA-GVHD)389 exists, but 

it is caused by leukocytes within transfused whole blood and can be stopped by 

irradiating blood prior to transfusion.  

 Project Aims 

 Summary 

When characterising e-miRNA, the Hamilton lab demonstrated that e-

miRNA are as concentrated as miRNA from nucleated cells, appear conserved 

across Mammalia, selectively retain their binding partner (AGO2) at the expense 

of AGO1, 3, 4, and that erythrocytic RISC complexes maintain a catalytic 

potential. Taken together, this data indicates a function for e-miRNA, although 

what this is, is currently unknown. Due to the importance of red cells, both 

biologically and clinically, we decided to investigate their presence in more detail. 

As a result, this project investigates questions of homeostasis and transfusion-

associated complications.  
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 Aims and hypotheses 

This project, as with many others, ended up evaluating a question different 

to what was posed at the beginning. Despite this change in direction, the project 

did not deviate from the idea that e-miRNA may be functional, it just changed 

where they may be functioning. With that in mind, even though the three main 

hypotheses evaluated during this project are summarised below, they were not 

raised at the beginning of the project and are summarised here for clarity. The 

reasons for these new hypotheses being raised is detailed in individual chapters 

after certain data has been generated and interpreted. The aims of the project 

were as follows: 

1. To determine if e-miRNA play a role within mature erythrocytes that is 

unrelated to translational regulation; 

2. To determine if e-miRNA lie dormant within erythrocytes but regain their 

roles as translational regulators in phagocytosing cells; 

3 To evaluate how Kupffer-like macrophages respond to an artefact of blood 

storage: RBC-MVs. 

The specific hypotheses behind these aims are: 

Hypothesis 1 

Establishing interactors with AGO2 using unbiased biochemical analyses 

The findings from the Hamilton lab that were elucidated when 

characterising e-miRNA (Section 1.8.2.5) lead us to believe that e-miRNA may 

have a function within erythrocytes. However, as these cells are translationally 

inert, for e-miRNA to function it must be out with canonical gene silencing. As it 

is impossible to logically predict what this function may be, an unbiased 

biochemical approach was used. The unbiased approach of this project involved 

the isolation of erythrocytic RISCs using biotinylated probes specific to individual 

e-miRNA. These probes hybridised with the miRNA portion of RISC, before RISC 

and any interacting proteins were sequestered via streptavidin magnetic beads. 
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Ideally, this would will allow us to establish what the AGO2 portion of RISC 

interacts with, allowing us to form hypotheses regarding e-miRNA function within 

erythrocytes.  

Hypothesis 2 

Evaluating the effect of RBCs or RBC-MVs on the transcriptome of macrophages 

Our specific hypothesis is based upon the endpoint of RBC senescence. The 

life span of a mature erythrocyte is approximately 120 days and during this time 

it undergoes a variety of morphological and biochemical changes390. Firstly, 

erythrocytes shed a proportion of their membrane through the production of 

microvesicles (MVs), resulting in cell shrinkage during senescence355. Secondly, 

the oxidative state of erythrocytes increases with age, resulting in the 

accumulation of oxidised proteins at the cytosolic side of the membrane. This 

plays a role in the oligomerisation of the membrane protein BAND-3, which in turn 

promotes the binding of naturally occurring antibodies (nAbs)322,391. These 

“naturally opsonised” RBCs are recognised by splenic macrophages and it is 

thought this is how macrophages distinguish between senescent and young 

erythrocytes. Following phagocytosis, the erythrocytes are destroyed and the iron 

recycled; RBC-MVs are also recycled by macrophages, but this takes place in the 

liver392. As there is no mRNA in RBCs for e-miRNA to regulate, we postulate that 

e-miRNA, either in erythrocytes or MVs, escape phagolysosomes following 

ingestion by macrophages and regulate their mRNA in order to maintain 

homeostasis. 

Hypothesis 3 

Evaluating the effect of RBC-MVs generated during storage on Kupffer-like 

macrophages 

At the beginning of this project the medical community were split with 

regards to the negative affect that aged transfusions have on patients369,370. In 

vitro studies were also conflicting with some reporting pro-inflammatory effects, 

and others, anti-inflammatory371,372. To date, no study had evaluated the effect 

of storage MVs on phenotypically relevant macrophages i.e. Kupffer-like cells. 
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Murine models exist, but these are always primed with LPS before 

MV/blood/storage supernatant addition. As miRNA have been shown to be 

transferred between cells in EVs, our hypothesis is any mal-effect that occurs upon 

transfusion of aged blood products is mediated, in part, by the miRNA-containing 

vesicles present in the storage lesion. 

 



 
 

 Materials and methods 

2.1 Buffer compositions 

Final concentrations of each reagent included in each solution along with the 

suppliers are described below: 

2.1.1 Protein solubilisation buffer 

50 mM Tris-HCL pH 7.5 (Sigma) 

150 mM NaCl (NP40, Sigma) 

1 % nonidet P40 (Sigma) 

10 % glycerol (Sigma) 

5 mM ethylenediaminetetraacetic acid (EDTA) (Sigma) 

Phosphatase and Protease inhibitor concentrations supplementing solubilisation 

buffer: 

1 mM sodium orthovanadate 

1 mM sodium molybdate 

1 mM sodium fluoride 

40 μg/mL phenylmethylsulphonyl fluoride 

0.7 μg/mL pepstatin A 

10 μg/mL aprotinin 

10 μg/mL leupeptin 

10 μg/mL soybean trypsin inhibitor 



72 
 

2.1.2 5 x sodium dodecyl sulphate (SDS) sample buffer 

10 % (w/v) SDS (Sigma) 

Milli-Q ultrapure water 

200 mM Tris-HCl pH 6.8 (Sigma) 

50 % (v/v) glycerol (Sigma) 

Bromophenol blue (Sigma) 

5 % (v/v) 2-mercaptoethanol (Sigma) 

2.1.3 1 x SDS-polyacrylamide gel electrophoresis (PAGE) running 
Buffer 

25 mM Trizma base (Sigma) 

192 mM glycine (Sigma) 

0.1 % (w/v) SDS (Sgima) 

2.1.4 Silver stain 

2.1.4.1 Fixing solution 

50 % ethanol (Thermo) (v/v) in Milli-Q water 

10 % acetic acid (Thermo) (v/v) in Milli-Q water 

2.1.4.2 Sensitiser solution 

1 % ProteoSilver Sensitiser (Sigma) (v/v) in Milli-Q water 

2.1.4.3 Silver solution 

1 % ProteoSilver Silver Solution (Sigma) (v/v) in Milli-Q water 
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2.1.4.4 Developer solution 

5 % ProteoSilver Developer 1 (Sigma) (v/v) in Milli-Q water 

0.1 % ProteoSilver Developer 2 (Sigma) (v/v) in Milli-Q water 

2.1.5 1 x Tris-buffered saline (TBS) pH 7.5 

 20 mM Tris-HCl pH7.5 (Sigma) 

150 mM NaCl (Sigma) 

2.1.6 1 x Tris-buffered saline NP40 (TBSN) 

20 mM Tris-HCl pH 7.5 (Sigma) 

150 mM NaCl (Sigma) 

0.05 % (v/v) NP40  

2.1.7 Blocking solutions 

2.1.7.1 BSA blocking solution 

1 % (w/v) bovine serum albumin fraction V (Roche) 

1 % (w/v) ovalbumin (Sigma)  

0.01 % (w/v) sodium azide (Sigma) 

Dissolved in 1 x TBS pH 7.5 

2.1.7.2 Milk blocking solution 

5 % (w/v) milk (Marvel)  

0.01 % (w/v) sodium azide (Sigma) 

Dissolved in 1 x TBS pH 7.5 
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2.1.7.3 Goat serum blocking solution 

5 % (v/v) goat serum (Sigma)  

0.01 % (w/v) Sodium Azide (Sigma) 

Dissolved in PBS pH 7.5 

2.1.8 FACS buffer 

1 x PBS w/o Ca2+ or Mg2+ (Thermo) 

2 % (v/v) BSA Fraction V (Roche) 

0.01 % (w/v) sodium azide (Sigma) 

2.1.9 Vesicularisation buffer 

1 x Hanks buffered saline solution (HBSS) pH 7.5 (Thermo) 

1 µM calcium ionophore A23187 (Sigma) 

2.1.10 RBC fixation buffer 

4 % (w/v) paraformaldehyde (PFA, Sigma) 

Dissolved in 1 x PBS pH 7.5 

0.2 % (v/v) glutaraldehyde (Sigma) 

2.1.11 General buffers 

2.1.11.1   Buffy coat wash buffer 

0.5 mM EDTA (Sigma) 

2 % human serum albumin (Roche) 

Dissolved in 1 x PBS pH 7.5 
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2.1.11.2   RBC lysis buffer 

150 mM NH4Cl (Sigma) 

 1 mM KHC03 (Sigma) 

.1 mM EDTA (Sigma) 

2.1.11.3   RBC wash buffer 

4 % BSA Fraction V in PBS w/v (Roche) 

2.2 Tissue culture 

2.2.1 Cell lines 

2.2.1.1 Suspension cells 

 K562393 (human CML blast crisis, passage 4) and Jurkat394 cells (human acute 

T cell leukaemia, passage 6) as purchased from Deutsche Sammlung von 

Mikroorganisem und Zellkulturen (DSMZ) were cultured in Roswell Park Memorial 

Institute medium (RPMI) supplemented with 10 % foetal bovine serum (FBS) 

(Gibco), 4500 mg / L-glutamine, 10 µg / mL streptomycin and 10 units / mL 

penicillin. Cells were passaged every 48 hours, maintained at 5 x 105 cells / mL 

and cultured at 37 °C in 5 % CO2.  

2.2.1.2 Adherent cells 

HeLa395 cells (human cervical adenocarcinoma, passage 15) as purchased 

from DMSZ were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen) supplemented with 10 % FBS, 4500 mg / L glutamine and 10 µg / mL 

streptomycin and 10 units / mL penicillin. At 90 % confluency cells were passaged 

by decanting spent media, washing cell mono-layer twice with PBS, incubating 

with 2 mL trypsin (Invitrogen) for 5 minutes, neutralising trypsin with 10 mL 

complete media, spinning at 300 x G for 5 minutes, decanting supernatant, 

resuspending cells in complete media and seeding in a fresh T25 flask; cells were 

cultured at 37 °C in 5 % CO2. 
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2.2.2 Human primary culture 

2.2.2.1 Primary samples (buffy coats) 

White cell concentrates (buffy coats) were purchased from the Scottish 

National Blood Transfusion Service (SNBTS). Details regarding donor age, sex etc 

are confidential and were with-held. All buffy coats were bought within 2 days of 

processing by SNBTS and MNCs isolated immediately or on the next day. 

NOTE:  If stored overnight as per SNBTS recommendations, buffy coats were kept 

at room temperature (RT) to prevent platelet apoptosis. 

2.2.2.2 Mononuclear cell isolation 

10 mL Histopaque 1077 (Sigma) was dispensed into 50 mL centrifuge tubes 

(Corning), brought to RT, overlaid with 40 mL buffy coat diluted 1:1 in wash buffer 

(0.5 mM EDTA, 2 % HSA in PBS), spun at 400 x G for 30 minutes (break off), 

interface (MNCs) removed, washed twice in wash buffer then enumerated via 

Hemavet MULTI-TROL™ blood analyser. 

2.2.2.3 CD14+ cell isolation 

Monocytes were isolated from MNCs using CD14 MicroBeads (Miltenyi 

Biotec). After Hemavet enumeration MNCs containing the desired amount of 

monocytes were decanted into a 15 mL falcon, spun at 300 x G for 10 minutes, 

supernatant removed, pellet resuspended with 80 µL wash buffer (WB; 0.5 % 

human serum albumin in PBS) per 107 total cells, probed with 20 µL of CD14 

MicroBeads per 107 total cells and incubated in the fridge for 15 minutes. Probed 

cells were then washed with 2 mL WB per 107 total cells, spun at 300 x G for 10 

minutes, supernatant decanted and pellet resuspended at a concentration of < 108 

total cells per 500 µL of WB. LS columns (Miltenyi Biotec) were placed in a MACS 

Separator, wetted with 3 mL WB, before adding labelled cells to the column 

reservoir and allowing them to flow through via gravity filtration. The column was 

washed three times with 3 mL WB to wash through any unattached cells. To elute 

the bound monocytes,5 mL of WB was added to the reservoir, plunger placed in 

the top and cells eluted into a fresh 15 mL falcon. Cells were enumerated via 

haemocytometer and used as required. 
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2.2.2.4 Monocyte derived macrophage (MDM) differentiation 

Isolated monocytes were resuspended in RPMI supplemented with 2 mM 

glutamine (Invitrogen) and 10 % FBS at a concentration of 1 x 106 monocytes per 

mL. Monocytes were supplemented with 100 ng / mL human granulocyte 

macrophage colony stimulating factor (h-GMCSF) or human macrophage colony 

stimulating factor (h-MCSF) (both Peprotech) for M1 or M2 macrophages 

respectively. Supplemented monocytes were seeded at a concentration of 1 mL / 

cm2 in Lab-Tek™ II Chamber Slides™ (Nunc) or Costar® cell culture plates (Corning) 

and cultured at 37 °C in 5 % CO2 for seven days; media was refreshed on days 3 

and 5. At day 7, media was removed and macrophages polarised using media 

supplemented with 50 ng / mL lipopolysaccharide (LPS [Invitrogen]) and 20 ng / 

mL human interferon gamma (h-IFN-γ) (Peprotech), 10-7 M dexamethasone (Sigma) 

or 20 ng / mL IL-4 (Peprotech) for 2 days to achieve a mature M1, M2a or M2c 

phenotype respectively - macrophages were phenotyped on day 7 and 9 via flow 

cytometry. 

Note: A schematic of macrophage generation can be found in Chapter 6 Figure 

38a, macrophages were phenotyped on day 7 and 9 according to Section 2.2.2.  

2.2.3 Murine primary culture 

All experiments were performed in accordance with the local ethical review 

panel, the UK Home Office Animals Scientific Procedures Act, 1986 and UKCCCR 

and NCRI guidelines. Animals were kept in regulated facilities, monitored daily, 

and all experiments were carried out in compliance with UK Home Office 

guidelines. Femurs, hips and tibias were collected from wild type C57BL/6 mice 

by Mrs Karen Dunn.  

Bone marrow cells were extracted using pestle and mortar, filtered through 

a cell strainer, washed with wash buffer (2 mM EDTA, 5 % FBS in PBS) three times, 

pelleted, incubated in RBC lysis buffer (150 mM NH4Cl, 1 mM KHC03, 0.1 mM EDTA) 

for 5 minutes (RT) to remove RBCs. 5 x 106 bone cells were seeded in 10 cm petri 

dishes in DMEM supplemented with 10 % FBS, 2 mM glutamine, 10 µg / mL penicillin 

/ streptomycin and 100 ng / mL mMCSF for 7 days; media was refreshed on day 5.  
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2.2.4 Phagocytosis 

2.2.4.1 Whole RBCs 

With ethical approval (Section 2.11), whole blood was drawn with consent 

from healthy volunteers as per Section 2.5.1 and processed as per Section 2.5.2 

to give purified erythrocytes. These were counted by haemocytometer and then 

added at a ratio of 10 erythrocytes per macrophage and left overnight. 

Note: In order to maintain sterility, all manipulations were performed in a class II 

hood and the cellulose / cotton wool used in leukodepletion (Section 2.5.2.2) was 

first sterilised with alcohol. 

2.2.4.2 RBC-MVs 

RBC-MVs were quantified as per Section 2.3.2 and 2.575 µg of MVs per 0.8 cm2 

were added directly to cultured macrophages and left for different periods of 

time. 

2.3 General 

2.3.1 Protein preparation 

3 x 106 cells were pelleted at 450 x g for 5 minutes, washed 3 times with ice 

cold PBS, suspended in 90 µL protein solubilisation, incubated on ice for 30 

minutes then spun at 12,000 x g (4 °C) for 5 minutes to remove cellular debris, 

supernatant decanted and retained in fresh plastic ware.  

2.3.2 Protein quantification 

Proteins were quantified using the Quick Start™ Bradford Protein Assay (Bio-

Rad) against a 7-point standard curve (0, 2.5,5, 7.5, 10, 15 and 20 µg / mL) 

prepared using a BSA standard (Bio-Rad) according to manufacturers instructions. 

Samples were measured using a Spectramax M5 plate reader (Molecular Devices). 
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2.3.3 Nucleic acid quantification 

1.5 µL of sample (RNA, DNA etc) was pipetted onto the lower pedestal of a 

NanoDrop 1000 spectrophotometer and quantified based on the samples 

absorbance at 260 nm.  

2.3.4 RNA extraction 

2.3.4.1 QIagen 

RNA was extracted from 2 x 106 cells using an RNeasy® Plus Micro Kit 

(Qiagen) according to manufacturers’ instructions.  

2.3.4.2 Trizol  

200 µL of packed RBCs, or RBC-MVs prepared as per Section 2.8.1, were 

homogenised in 1 mL or 500 µL of Trizol respectively. A tenth volume of 1-Bromo-

3-chloropropane (BCP, Sigma) was added, samples vortexed for 1 minute, spun for 

10 minutes at 12, 000 x G, upper phase (aqueous) decanted, 3 µg of tRNA was 

added as a carrier, then 1 volume of isopropanol (Sigma) was added and the RNA 

precipitated in the freezer over-night. The following day samples were spun at 

21, 000 x G for 30 minutes, supernatant decanted, pellet washed with 1 mL of 70 

% ethanol twice, then air dried and re-suspended in DEPC treated water.  

Note: carrier tRNA was not used when extracting nucleated cells.  

2.3.5 Nucleic acid precipitation 

A tenth volume of 3 M sodium citrate (pH 5.5, Sigma) was added to a sample 

along with 1 volume of isopropanol and the nucleic acid precipitated on ice for 30 

minutes. Samples were spun at 21, 000 x G for 30 minutes, supernatant decanted, 

pellet washed with 1 mL of 70 % ethanol twice, then air dried and re-suspended 

in DEPC treated water. 
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2.4 Molecular 

2.4.1 Reverse transcription 

2.4.1.1 Oligo dT reverse transcription 

cDNA was prepared by incubating 250 ng total RNA, 50 µM OligoDT (IDT) 

and 10 mM dNTPs (Bioline) at 65 °C for 5 minutes, cooling reactions on ice for 2 

minutes, adding 200 units of SuperScript® III reverse transcriptase (Invitrogen), 1 

x First Strand Buffer (Invitrogen), 1 mM dithiothreitol (Invitrogen), 40 units 

RNAseOUT™ (Invitrogen), then incubating at 50 °C for 60 minutes followed by an 

enzyme inactivation step (70 °C for 15 minutes).  

2.4.1.2 miRNA reverse transcription 

A reverse transcription primer pool was prepared by dispensing 5 µL of each 

TaqMan® MicroRNA Assays RT primer (Applied Biosystems) into a 1.5 mL eppendorf 

and making it up to 500 µL with TE buffer. cDNA was prepared by incubating 3 µL 

total RNA with 6 µL RT primer pool, 0.3 µL dNTP (100 mM) (Bioline), 150 units 

MultiScribe reverse transcriptase (Applied Biosystems), 1.5 µL RT buffer (Applied 

Biosystems) and 1.2 µL water, incubating samples on ice for 5 minutes, 16 °C for 

30 minutes, 42 °C for 30 minutes and 4 °C for 5 minutes.  

2.4.2 In vitro transcriptions (IVT) 

T7 oligo (5 µM, Sigma) and template oligo (5 µM, Sigma), containing reverse 

T7 promoter sequence, were allowed to hybridise at 37 °C for 5 minutes. For each 

10 µL reaction, 2 µL of 5 X buffer (ThermoFisher), 1 µL each of 1 mM ATP, GTP, 

UTP, 1 µL of 1 mM biotin-14-CTP (ThermoFisher), 1 µL T7 RNA polymerase 

(ThermoFisher), 1 µL annealed template oligo, 2 µL water, mixed and allowed to 

reverse transcribe at RT for 30 minutes. Template oligo was digested with 1 µL of 

TurboDNAse (ThermoFisher) for 10 minutes at RT, RNA probe was diluted with 40 

µL of 50 % deionised formamide (Sigma).  

2.4.3 PCR 

All primers used within this project are detailed in Appendix 5 & 6. 
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2.4.3.1 End point PCR  

End point PCR was performed using PCR Master Mix (2X) (ThermoFisher). To 

1 µL of cDNA, 1 µL of 1 µM forward and reverse primer mix, 12.5 µL PCR Master 

Mix (2X) and 10.5 µL water was added, dispensed into 8-tube PCR strips 

(ThermoFisher) then amplified using a Techne TC-412 with the conditions below:  

Step Time Temperature (°C) 

Initial denaturation 1 min 95 

Cycle (x 40) 

30 sec 95 

30 sec 60 

1 min 72 

Final extension 10 min 72 

Hold ∞ 4 

 

2.4.3.2 SYBR green qPCR  

qPCR was performed using SensiFAST™ SYBR® Hi-ROX (Bioline). To 1 µL 

cDNA, 1 µL of 0.4 µM forward and reverse primer mix, 5 µL 2x SensiFAST SYBR® Hi-

ROX Mix and 3 µL water was added, mixed and dispensed into a MicroAmp® Optical 

384-Well Reaction Plate (Applied Biosystems) then amplified using a 7900HT Fast 

Real-Time PCR system (Applied Biosystems) with the conditions below: 

Step Time Temperature (°C) 

Polymerase activation 2 min 95 

Cycle (x 40) 

5 sec 95 

10 sec 60 

5 sec 72 

Melt curve ∞ 4 - 95 
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2.4.3.3 miRNA qPCR 

miRNA were detected by probe based qPCR using TaqMan® MiRNA Assays 

(Applied Biosystems). To 1 µL of 1:10 diluted pre-amped material (Section 

2.4.4.1), 0.5 µL of a specific TaqMan® MicroRNA assay (Appendix 8), 5 µL TaqMan® 

Universal Master Mix II (no UNG) and 3.5 µL of water was added, mixed and 

dispensed into a MicroAmp® Optical 384-Well Reaction Plate (Applied Biosystems) 

then amplified using a 7900HT Fast Real-Time PCR system (Applied Biosystems) 

with the conditions below: 

Step Time Temperature (°C) 

Polymerase activation 10 min 95 

Cycle (x 40) 
15 sec 95 

60 sec 60 

 

2.4.3.4 Universal probe library qPCR 

qPCR was performed using FastStart Taqman Probe Master (Roche) 

mastermix. To 1 µL cDNA, 1 µL of 7.2 µM forward and reverse primer mix, 10 µL 2 

x FastStart Taqman Probe Master mastermix, 1 µL of 10 µM LNA probe and 7 µL 

water was added, mixed and dispensed into a LightCycler® 96 well-plate (Roche) 

and amplified using a LightCycler® 480 with the conditions below: 

Step Time Temperature (°C) 

Polymerase activation 10 min 95 

Cycle (x 40) 

10 sec 95 

30 sec 60 

1 sec 72 

Cooling 30 sec 4 
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2.4.4 Fluidigm analysis 

2.4.4.1 Pre-amplification 

To increase sensitivity, low abundance genes were “pre-amped”. First, a 

primer pool was prepared by adding 1 L of a forward / reverse primer (100 µM) 

for each gene of interest and making it up to 200 µL with TE buffer (Invitrogen). 

1.25 µL of cDNA was then pre-amped by adding 1 µL of Multiplex PCR MasterMix 

(Qiagen), 0.5 µL pooled primer and 2.25 µL water then amplified using a Techne 

TC-412 with the conditions below: 

Step Time Temperature (°C) 

Hot-start 15 min 95 

Cycle (x 40) 

30 sec 95 

90 sec 60 

90 sec 72 

Final extension 10 min 72 

Hold ∞ 4 

2.4.4.2 Exo I nuclease digest 

Unincorporated primers were removed by adding 1.4 µL water, 0.4 µL 

exonuclease I (NEB) and 0.2 µL exonuclease I reaction buffer to each sample and 

incubating them for 30 minutes at 37 °C then heat inactivation of the enzyme 

performed for 10 minutes at 80 °C. 

2.4.4.3 Flex Six IFC Gene Expression 

Samples underwent qPCR on Flex Six microfluidics chips (Fluidigm) using 

the Biomark HD™ (Fluidigm) system. 10 X assays were prepared by adding 0.15 µL 

of 50 µM forward and reverse primer mix for each gene of interest, 1.35 µL TE 

buffer and 1.5 µL of 2 X Assay Loading Reagent (Fluidigm) per inlet required. 

Sample pre-mixes were prepared by adding 1.5 µL SoFast EvaGreen® Supermix 

with low ROX (Bio-Rad), 0.15 µL Flex Six Delta Gene Sample Reagent (Fluidigm) 

and 1.35 µL of exo I treated pre-amp sample per inlet. 150 µL of control line fluid 

was added to both chips accumulators, then the chip was primed using an IFC HX 
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controller (Biomark). Post prime, 3 µL of 10 X Assay were added to the appropriate 

assay inlets and 3 µL Sample Pre-Mix was added in triplicate to the appropriate 

sample inlets. The chip was loaded using the IFC HX controller (Fluidigm) then 

analysed using a BioMark HD™ (Fluidigm) with the conditions below: 

Step Time Temperature (°C) 

Hot-start 10 min 95 

Cycle (x 35) 
15 sec 95 

60 sec 60 

Melt curve ∞ 4 - 95 

 

2.5 Blood processing 

2.5.1 Venepuncture 

With ethical approval (Section 2.11), peripheral blood was collected in 

K3EDTA, sodium heparin or buffered sodium citrate coated / containing 

Vacutainers® (Becton Dickonson) by a clinician and used within 1 day.  

2.5.2 RBC purification 

2.5.2.1 Platelet ablation 

1 mL whole blood was diluted in 9 mL wash buffer (4 % BSA (w/v) PBS), 

centrifuged at 150 x G for 10 minutes and platelet rich plasma removed; RBC 

pellet was resuspended in 10 mL WB and re-centrifuged to remove residual 

platelets. 

2.5.2.2 Leukodepletion 

Leukodepletion was performed using a modified protocol from Blume et al396: 

Cotton wool was packed into the barrel of a 20 mL syringe, overlaid with 0.5 g of 

α-cellulose (Sigma) and wetted by allowing 10 mL PBS to flow through via gravity. 

Platelet free blood was diluted 1:10 in WB, overlaid onto the wetted α-cellulose 

and allowed to pass through via gravity filtration, the column was then washed 

with 10 mL WB (Appendix 9). Flow through containing leukodepleted RBCs was 
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retained, spun at 1000 x G for 10 minutes, resuspended at normal concentration 

(3.6 - 6 million erythrocytes / µL) and analysed via Hemavet MULTI-TROL™ blood 

analyser (Drew Scientific) to confirm leukodepletion (Appendix 10); RBCs were 

processed this way throughout the duration of this project. 

2.5.3 Percoll gradients 

BSA and 20X HEPES buffered saline was added directly to Percoll to a final 

concentration of 133 mM NaCl, 4.5 mM KCL, 10 mM HEPES pH 7.4, 4 % (w/v) BSA. 

Buffered Percoll was diluted with dilution buffer (DB; 4 % BSA w/v in 1 X HEPES 

buffered saline, pH 7.4) to final densities of 1.06, 1.07, 1.08, 1.09 and 1.1 g /L, 

discontinuous gradients were prepared by carefully layering 2 mL of each 

preparation on top of each other in 15 mL centrifuge tubes. 5 x 108 RBCs from 

above were made up to 500 µL with DB, layered on the gradient, spun at 1000 x G 

(4 °C) for 30 minutes in a Sigma 4K15 with swing arm rotor (brake off). RBCs were 

separated into 5 distinct layers which were harvested, washed twice with DB then 

analysed as discussed in text. 

2.5.4 Erythrocyte membrane manipulations 

2.5.4.1 Preparing red cell membrane 

RBC membrane were prepared using a modified protocol from Dodge et 

al.397 Briefly, 5 mL of compact RBCs were lysed using 30 mL ice cold 20 mOsm 

sodium bicarbonate buffer (pH 7.4 [Sigma]), membrane pelleted at 21, 000 x G 

for 30 minutes (brake off), supernatant decanted and membrane washed with 30 

mL lysis buffer; this was repeated until the membrane were white. Membrane 

preparations were used at this point or processed as outlined in section 4.4.2. 

2.5.4.2 Preparing AGO2 concentrates 

RBC membranes were resuspended in PBS and incubated on ice for 5 minutes, 

pelleted at 21, 000 x G for 30 minutes (brake off), supernatant retained and 

concentrated using an Amicon® Ultra 3000 molecular weight pin column (Merck 

Millipore); concentrated samples were quantified as per Section 2.3.2 and used 

as discussed.  
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2.6 Electrophoresis 

2.6.1 SDS-PAGE 

2.6.1.1 Casting acrylamide gels 

All protein samples were resolved using the Mini-PROTEAN Tetra Cell gel 

system (Bio-Rad). Resolving gels were prepared according to Appendix 13, poured 

into a 0.75 mm gel cassette, overlaid with Milli-Q water and allowed to set for 15 

minutes. Stacking gels were prepared as per Appendix 13, water removed from 

the gel cassette, 2 mL of stacking gel added on top of the resolving gel, a 15 well 

comb placed in the cassette and the gel allowed to set for 15 minutes. 

2.6.1.2 Running acrylamide gels 

Protein samples were diluted in SDS sample buffer (final concentration 1 x 

with 5 % beta-mercaptoethanol [Sigma]) and denatured at 95 °C for 15 minutes. 

Cast gels were placed in a sandwich clamp assembly, then in a Mini PROTEAN 

electrophoresis cell, 200 mL of 1 x SDS running buffer was poured into the outer 

chamber and the inner chamber filled. Gel comb was removed, empty wells 

flushed with 1 x SDS running buffer using a 10 mL syringe. Up to 20 µL of sample 

was loaded per well, along with 5 µL of PageRuler™ Plus Prestained Protein Ladder 

(ThermoScientific); unused wells were filled with an equal volume of 1 x SDS 

sample buffer. Samples were run at 90 volts for 15 minutes then 180 volts for 35 

minutes, or until the bromophenol blue ran off the end of the gel.  

2.6.2 Western blot 

Post SDS-PAGE, proteins were transferred to a Protran® nitrocellulose 

membrane (Whatman) using a semi-dry method. Membranes were blocked (5 X 

block in TBS = 5 % (w/v) BSA Fraction V (Roche), 1 % (w/v) Ovalbumin (Sigma), 

0.01 % (w/v) Sodium Azide (Sigma)), probed with primary antibodies (Appendix 

11) overnight, washed 3 x TBSN, probed with HRP conjugated secondary 

antibodies (Appendix 12), washed 3 x in TBSN, 2 x in TBS and incubated with 

Immobilon™ Western Chemiluminescent HRP substrate (Millipore). CL-XPosure™ 

(ThermoFisher) film was exposed and developed using the SRX-10A developing 

system (Konica Minolta). 
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Note: For low abundance proteins signal was visualised using the SuperSignal™ 

West Femto Maximum Sensitivity Substrate kit (ThermoFisher) 

2.6.3 Staining 

2.6.3.1 Coomassie 

Post electrophoresis, acrylamide gels were rinsed in 50 mL of deionised 

water for 10 minutes three times. After the final wash, water was decanted and 

the gel immersed in 50 mL Coomassie Brilliant Blue R-250 Staining Solution (Bio-

Rad) and left to stain for 1 hour at RT with agitation. Post stain, Coomassie was 

decanted and the gel washed with deionised water until any background was 

removed.  

2.6.3.2 Silver stain 

Post electrophoresis acrylamide gels were fixed in 50 mL fixing solution for 

1 hour, washed with 50 mL of 30 % Ethanol for 10 minutes, washed with 100 mL 

deionised water for 10 minutes, sensitised in 50 mL of sensitising solution for 10 

minutes, washed twice in 100 mL of deionised water for 10 minutes, equilibrated 

in 50 mL of silver solution for 10 minutes then washed with 50 mL deionised water 

for 1 minute. Wash was removed and the gel developed in Developer solution until 

the bands were clearly visible at which point development was stopped by adding 

5 mL ProteoSilver Stop Solution and incubating for 5 minutes. Gels were then 

washed with 100 mL of water and dried according to Section 2.6.4. 

2.6.4 Gel drying 

Post stain, gels were rinsed with 50 mL deionised water, drained, then 

equilibrated in 35 mL Gel-Dry™ Drying Solution for 5 minutes. 1 cellophane sheet 

was wetted in Gel-Dry™ Drying Solution and placed on the DryEase® Gel Drying 

Frame, equilibriated gel placed on top, then covered with a final cellophane 

sheet. The remaining drying frame was placed on top, secured in place with plastic 

clamps, stood on its feet and the gel allowed to dry overnight. 
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2.6.5 Agarose gel electrophoresis 

0.5 – 2.5 % w/v agarose (Web Scientific) tris/borate/EDTA (TBE [Gibco]) gels 

were prepared by melting agarose in TBE using a microwave, then pouring the 

molten agarose into a casting tray (Bio-Rad). Samples were diluted in 5 x GoTaq® 

Reaction Buffer (Promega), resolved using a PowerPack™ (Bio-Rad), post stained 

in 0.5 µg / mL ethidium bromide / TBE solution then visualised using a Chemidoc 

XRS (Bio-Rad) or a FLA-5000 imaging system (FujiFilm). 

2.7 Flow cytometry 

2.7.1 Exosome calibration 

Megamix-Plus SSC beads (Biocytex) were used to calibrate a BD FACs Canto™ 

II before use. 50 µL of beads were dispensed into 200 µL of 0.2 µm double filtered 

HBSS, vortexed, and used to change instrument forward scatter (FSC) and side 

scatter (SSC) voltages; voltages were adjusted until all Megamix beads (0.16, 0.2, 

0.25 and 0.5 µm) were visible on a FITC-H Vs SSC-H dot plot. Signal height (H) was 

used for all parameters and parameter data was collected on a logarithmic scale.  

2.7.2 Staining 

2.7.2.1 Internal staining 

RBCs, Jurkat and K562 cells were processed as per Section 2.9.1.1, then 

analysed using a FACs Canto™ II (Becton Dickinson). 

2.7.2.2 Cell surface staining 

5 x 105 cells were pelleted, washed in 2 mL of FACs buffer (PBS with 2 % 

FCS and 0.02 % sodium azide) and resuspended in 100 µL of PBS. Cells were probed 

with conjugated antibodies (Appendix 12), incubated in the dark for 10 minutes, 

washed twice with PBS, resuspended in 200 µL PBS and analysed using a BD FACs 

Canto™ II (Becton Dickinson). 
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2.7.2.3 MV staining 

5 µL of cleared plasma, pelleted MVs or RBC-MVs were added to 100 µL of 

0.2 µm double filtered HBSS, probed with antibodies from Appendix 11, left to 

stain for 10 minutes in the dark, then analysed using a BD FACs Canto™ II. 

2.7.2.4 Cell viability  

5 x 105 cells were pelleted, washed in 2 mL of FACs buffer then resuspended 

in 100 µL HBSS. Cells were probed with 5 uL of Annexin-FITC in the dark for 15 

minutes, washed twice with HBSS, resuspended in 100 µL HBSS and analysed using 

a FACs Canto™ II (Becton Dickinson); 100 µL of 300 nM DAPI solution was added to 

cells 1 minute prior to analysis.   

All data analysis was performed using FlowJo® V10 (FlowJo LLC). 

2.8 MV isolation and preparation 

2.8.1 Artificial RBC-MV generation 

200 µl of leukodepleted compact RBC pellet was added to 1 mL of 

Vesicularisation Buffer (1 µM ionophore [A23187 – Sigma] in HBSS) and incubated 

at 37º C for 2 hours to induce vesicularisation; samples were inverted to mix every 

30 minutes. Samples were spun at 1000 x G to pellet RBCs, supernatant removed 

and re-spun at 3000 x G for 15 minutes to pellet debris. Cleared supernatant was 

spun at 21,000 x G for 15 minutes, supernatant removed and MV pellet washed 

twice with 0.2 µm HBSS then resuspended in 0.2 µm filtered HBSS for further 

analysis.  

2.8.2 Ex vivo RBC MV isolation 

Blood taken as per Section 2.5.1, or from buffy coats purchased from the 

SNBTS, was spun at 500 x G for 15 minutes to pellet cells, plasma harvested, spun 

twice at 1000 x G for 20 minutes, then observed under light microscopy to ensure 

it was clear of cells or debris. Cleared plasma was then spun at 21, 000 x G for 30 

minutes, supernatant discarded, pellet washed with 1 mL of HBSS then 

resuspended in 100 µL of HBSS. 
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2.8.3 Fluorescent sorting of MVs 

50 µL of cleared plasma was probed with 1 µL of 1/10 diluted Gly-A APC 

conjugate for 10 minutes in the dark on ice, diluted with 300 µL double filtered 

HBSS and sorted by Miss Jennifer Cassels using a FACSAria™ IIu (Becton Dickinson); 

instrument was calibrated using Megamix-Plus SSC beads (Biocytex).  

2.9 Microscopy 

2.9.1 Immunofluorescence 

2.9.1.1 RBCs, Jurkat and K562 cells 

1 µL of leukodepleted RBCs, or 1 x 106 Jurkat / K562 cells, were fixed in 

0.2 % glutaraldehyde / 4 % paraformaldehyde [PFA] (v/v) at RT for 10 minutes, 

washed in 0.1 M glycine twice, then incubated in 0.1 M glycine for 30 minutes (RT) 

to block unreacted aldehyde groups. Fixed cells were permeabilised for 10 

minutes with 0.1 % Triton, blocked in 10 % goat serum for 10 minutes, probed with 

primary antibodies from (Appendix 11) overnight at 2-8 °C, washed 5 times with 

0.1 % Triton, probed with secondary antibody (Appendix 12)for 1 hour at 2-8 °C 

then washed 5 times with 0.1 % Triton. Probed cells were allowed to adhere to 

poly-L lysine (Sigma) coated slides for 1 hour at 2 – 8 °C, washed twice with water 

to remove non-adherent cells then visualised by fluorescent microscope or FACs. 

2.9.1.2 HeLa cells and bone marrow-derived macrophages (BMDM) 

HeLa cells and BMDM were fixed in 4 % PFA for 10 minutes (RT), washed 

three times with PBS, permeabilised with 0.1 % Triton, blocked with 10 % goat 

serum for 1 hour, probed with primary antibodies from (Appendix 11) overnight 

at 2-8 °C, washed 3 times with 0.1 % Triton, probed with secondary antibodies 

from (Appendix 12) for 1 hour, washed 3 times with 0.1 % Triton, stained with 

DAPI (1:10,000 dilution) for 1 minute, washed twice with water, then visualised 

by fluorescent microscopy. 

2.9.1.3 Monocyte derived macrophages 

Macrophages grown on Lab-Tek® II 8 well chamber slides (Nunc) were 

permeabilised pre-fixation with 0.15 % digitonin (Sigma [v/v PBS]) for 1 minute at 
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RT, digitonin carefully removed and cells fixed in 4 % PFA (w/v PBS) for 10 

minutes. Fixed cells were washed 3 times with PBS, further permeabilised with 

0.15 % digitonin for 10 minutes, blocked for 1 hour with 5 % goat serum (v/v PBS), 

probed with antibodies from (Appendix 11) overnight at 2-8 °C, washed 5 times 

with PBS, probed with secondary antibodies (Appendix 12) for 1 hour at 2-8 °C 

then washed 5 times with PBS. When specified in text, cells were stained with 165 

nM phalloidin-TRITC (Invitrogen) for 30 minutes at RT and washed twice with PBS. 

All cells were stained for 1 minute with 200 µL of 300 nM DAPI solution at RT, 8 

well chamber removed, slide air dried, 1 drop of mounting media (10 % w/v 

Mowiol® 4-88 [Polysciences Inc] in 4 % glycerol v/v 0.1 M Tris pH 8.5) added to 

slide surface and a coverslip added and sealed with nail varnish. Cells were 

visualised as below.  

2.9.2 Light microscopy  

All light microscopy images were taken using an Olympus CKX41 microscope 

with a U-CMAD3 ColorView camera (Olympus). 

2.9.3 Image acquisition and editing 

All images were taken using an inverted fluorescence microscope (Olympus 

IX51) with an F-view II 12-bit digital camera (Olympus UK Ltd) at the stated 

exposures; images were processed using Image J software (National Institute of 

Health). 

2.9.4 TEM 

MVs were prepared as per Section 2.8.1, pellet resuspended in 50 µL of 4 % 

paraformaldehyde then analysed by Miss Margaret Mullin from the University of 

Glasgow using an Tecnai T20 (ThermoFisher). 

2.10  Pull downs 

2.10.1 Antibody mediated 

100 µg of RBC membranes prepared as per Section 2.5.4.1 were cross linked 

with (dithiobis(succinimidyl-propionate)) (DSP, Thermo) for 30 minutes at RT; 
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crosslinking was stopped by incubating reactions with Tris (final concentration 50 

mM) at RT for 15 minutes. 3 µg of appropriate primary antibody (Appendix 11) was 

added to crosslinked samples and incubated overnight with inversion at 4°C. 50 

µL protein G sepheraose (GE healthcare) was washed with PBS, resuspended in 50 

µL PBS, added to reactions and incubated with inversion for 3 hours at 4°C. 

Reactions were pelleted at 14, 000 x G for 10 minutes, supernatant removed, 

slurry resuspended with 1 mL of 0.1 % (v/v) Triton x-100 PBS then pelleted at 14, 

000 x G for 10 minutes; washing was repeated 5 times. Slurry was resuspended in 

100 µL of 1 x SDS buffer (with 5 % 2-mercaptoethanol), heated to 95°C for 5 

minutes, pelleted at 14, 000 x G for 10 minutes, supernatant retained and 

analysed as per Section 2.6.1. 

2.10.2 RNA dependent  

Streptavidin paramagnetic beads (NEB) were decanted into a 1.5 mL 

Eppendorf, sequestered using a magnet and washed twice with PBS-T (1 % (v/v) 

Tween 20). 100 pmol of biotinylated 2’-O-methylated (2-OM) oligos (sequences 

detailed in Appendix 1) were added per 10 µL of beads and allowed to capture 

with inversion for 10 minutes at RT. Bead-oligo complex was sequestered, washed 

3 times with PBS-T, resuspended in 1 volume of PBS, blocked with 40 pM free 

biotin (Sigma) per 10 µL beads before being sequestered again, washed 3 times 

and resuspended in 1 volume of PBS. 100 µL bead-oligo complex, or blocked bead 

only, was added to 7 mL of membrane eluate and incubated at 37 ºC with rotation 

for 1 hour. Beads were sequestered, supernatant discarded, beads washed 5 times 

with PBS-T, resuspended in 40 µL 5 X SDS loading buffer and eluted at 95 ºC for 5 

minutes. Samples were analysed by gel electrophoresis.  

2.11 Ethics 

Informed consent, in accordance with the declaration of Helsinki and with 

Greater Glasgow and Clyde NHS Trust Ethics Committee approval, was granted 

from healthy donors before peripheral blood was taken. 

NHS Greater Glasgow & Clyde. West of Scotland Research Ethics Service REC No: 

15/WS/0077. 



 
 

 Approaches to identify novel 
functions of e-miRNA 

 Introduction 

Erythrocytes are highly specialised cells that have one major function: the 

constant delivery of oxygen to body tissues and removal of CO2. Their bi-concave 

shape has evolved to increase cell surface area, while their distinctive red hue is 

caused by abundant haemoglobin, the metalloprotein responsible for binding 

oxygen. Erythropoiesis itself is an inexorable drive to create cells that are as 

efficient in their primary function as possible, with cellular contents extraneous 

to this function being removed. For example, during terminal differentiation, 

erythrocyte precursors eject their nucleus and organelles, and undergo 

widespread ribonucleolysis238,241. Although this maximises the amount of 

haemoglobin present, it also means that no further translation occurs. It is 

therefore surprising to discover that mature erythrocytes contain an abundant 

amount of key translational regulators: micro-RNA (miRNA)6.  

However, the data discussed in depth in Section 1.8.2.5 that was generated 

from the Hamilton lab appears to challenge this notion. Briefly, it was 

demonstrated that erythrocytic miRNA (e-miRNA) are as concentrated as miRNA 

from nucleated cells, appear conserved across Mammalia, selectively retain their 

binding partner (AGO2) at the expense of AGO1, 3, and 4 during erythropoiesis, 

and that erythrocytic RISC complexes maintain a catalytic activity. Taken 

together, this data indicates a function for e-miRNA, although what that might be 

is currently unknown.  

While miRNA are widely reported within the literature to modulate multiple 

different pathways, mechanistically this is all achieved in the same way: 

translational repression. Therefore, as RBCs contain no mRNA, establishing a 

function for e-miRNA within erythrocytes requires one to consider possibilities 

outside of the canonical miRNA-mRNA paradigm. At this stage, specific hypothesis 

testing is challenging as it is not clear how e-miRNA relate to the routine function 

of an erythrocyte. For example, how could an RNA guided ribonuclease affect 

oxygen transport, or play a role in glycolysis? 
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In the absence of an obvious cellular role, a reasonable approach is to 

identify proteins with which AGO2s interact in erythrocytes, then form hypotheses 

based on those interactions. Therefore, the Hamilton lab performed AGO2 pull-

downs to establish what interacts with AGO2. As a result, the first portion of this 

PhD focused on testing the validity of this pull-down/proteomic data to identify 

genuine AGO2 interactors.  

 Results 

 Validation of previous proteomic data 

The Hamilton lab had previously performed proteomic analysis of AGO2 pull-

downs to establish candidate interactions (Table 4). Positive pull-downs were 

performed using αAGO2 (4G8) and analysed by mass spectrometry; αAGO4 was used 

as a negative control as AGO4 is not present within erythrocytes (Figure 13). All 

candidates reported have a P-value < 0.05, are enriched in the AGO2 Vs AGO4 pull-

down at a ratio > 1:70 (control Vs specific); typical contaminants (IgG subclasses, 

keratin) have been removed. 

Table 4: Protein candidates from the Hamilton Lab proteomics studies.  

Protein ID 
No. of peptides  

per pull-down 
 

Name Gene AGO2 AGO4 Ratio 

Argonaute 2 AGO2 70 1 1:70 

Fibrinogen-beta FIB-B 8 0 0:1 

Host cell factor HCFC1 6 0 0:1 

Fibrinogen-gamma FIB-G 5 0 0:1 

Zinc alpha glycoprotein AZGP1 5 0 0:1 

Coiled-coil and C2 domain 
containing protein 

CC2D1A 4 0 0:1 

BAND3 SLC4A1 2 0 0:1 

Heat shock protein 40 DNAJB4 2 0 0:1 

Thioredoxin TXN 1 0 0:1 

Bone morphogenetic protein BMP2 1 0 0:1 

Galectin-7 LGALS7 1 0 0:1 
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BAND3 was chosen as the first candidate AGO2 interactor for two reasons: (1) it 

is a membrane protein and initial work demonstrated AGO2 associates with the 

erythrocyte membrane (personal communication Andrew Hamilton); (2) proteomic 

data reported by Van Wijk et al. also suggested a BAND3-AGO2 interaction299. To test 

this interaction, reciprocal pull-downs using antibodies to either AGO2 or BAND3 were 

performed. Initial data had indicated that the AGO2-membrane interaction was 

unstable in diluted protein solutions in PBS (personal communication Andrew 

Hamilton). Therefore, to stabilise protein-protein interactions, RBC lysates were 

cross-linked with dithiobis-succinimidyl propionate (DSP). As DSP cross-linking is 

reversible in the presence of a reducing agent (β-mercaptoethanol), it is possible to 

evaluate cross-linking efficiency via non-reducing SDS-PAGE (Figure 16a). Cross-linked 

lysates were unable to penetrate a 7.5 % acrylamide gel when not reduced (lane 2), 

but retained the profile of fresh lysate (lane 1) when β-mercaptoethanol was added 

(lane 3), indicating samples had undergone crosslinlinking. Western blot analysis of 

pull-downs indicated that the correct protein was isolated with each specific antibody 

above IgG controls (Figure 1b). However, probing each blot with the reciprocal 

antibody failed to indicate any AGO2-BAND3 interactions; although weak AGO2 signal 

is present within the BAND3 pull-down, its intensity is that of the IgG control, 

indicating a non-specific interaction. The signal for BAND3 in Figure 16 is very weak, 

although in my opinion it does appear as though there is a faint band present – a 

longer exposure time should have been used to establish this.  

The next candidate AGO2 interactor chosen was fibrinogen. Although fibrinogen 

is a plasma protein, it was highly represented in the proteomic data. It was also 

reasonable to propose AGO2 might have a plasma-based target. Firstly, because there 

is no obvious intracellular function for AGO2s; and secondly, intravascular haemolysis 

is a feature of normal vascular physiology which increases due to exercise, mechanical 

trauma and infectious disease398. Thus, the contents of erythrocytes are normally 

found circulating extracellularly to some extent. It was possible that the AGO2-

FIBRINOGEN interaction suggested by the pull-down/proteomic data reflected a 

normal interaction of AGO2 released from erythrocytes with FIBRINOGEN (FIB) that 

had adsorbed to the outside of the RBCs used in lysate preparation. Due to how critical 

the coagulation cascade is, which involves FIB, this interaction was explored.   

To evaluate any potential AGO2-FIB interaction, a sample enriched for AGO2 

was prepared as per Section 2.5.4.2. As FIB is a plasma protein, 100 µL of human 

plasma was spiked with different amounts of AGO2 concentrate and allowed to 






96 
 
interact for 1 Hr on ice; FIB pull-downs were then performed and eluates probed with 

αAGO2/αFIB (Figure 1c). From this experiment, it was impossible to evaluate how 

much FIB was isolated as FIB is ~ 55 kDa in size and resolves at the same location as 

an IgG heavy chain (IgH) on a gel. The observed band on the FIB blot is most likely IgH 

as the bead only control (αFIB absorbed) contained this band.  Note the two middle 

controls appear to only have a faint IgH presence, this is an artefact caused by high 

IgH presence. High IgH presence recruits a high amount of secondary-HRP, as HRPs 

turn brown when oxidised (visibly present on membrane), a likely explanation for the 

lack of ECL signal is due to the HRP becoming inactive (oxidised). Probing these 

samples with αAGO2 did not result in any AGO2 being observed; note that the 

AGO2+ve is a western blot control. This shows that the western blot worked, but no 

AGO2 was present in the samples.  

Closer analysis of the proteomic data indicated that identified FIB was of mouse 

origin rather than human. As the antibodies used in these pull-downs were raised in 

mouse and were not purified, but crude ascites preps, it was thought that FIB was a 

contaminant present in the Ab stock - even though pull-downs were performed with 

protein-G conjugated magnetic beads, which should have removed FIB. To test this, 

the stock Abs were resolved on a gel, blotted and probed with αFIB, which detects 

both murine and human FIB. Note, all AGO Ab stocks, kindly donated by Mikiko Siomi 

were resolved, in addition to a commercially available, purified mAGO2 Ab. Figure 1d 

shows that FIB is present in the stock AGO2 Ab used for the pull-downs in addition to 

the F6 AGO3 clone; no FIB was observed in the commercial mAGO2 stock. As the Ab 

stocks are contaminated, it means the previously generated proteomic data is not 

reliable; therefore, pull-downs using a different method were pursued to identify an 

AGO2 interactor. 
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Figure 16: Proteomic candidate interactors with AGO2 are confounded by impure antibody 
solutions.  
a) Lysates were prepared from erythrocytes cross-linked in the presence of DSP and resolved on a 
7.5 % acrylamide gel in the presence or absence of 2-Mercaptoethanol then stained with coomassie 
blue; b) cross-linked erythrocyte lysates from (b) were immunoprecipitated with α-AGO2 / α-BAND3 
then probed with the reciprocal antibody via immunoblot; c) Plasma was spiked with low (5 µL) or 
high (50 µL) AGO2 concentrate, incubated for 30 minutes then pulled down with α-AGO2 or α-FIB 
then probed with the reciprocal antibody via immunoblot; d) All non-purified stock Abs were diluted 
1:100 with PBS and probed with α-FIB via immunoblot. Note, Ab +ves = concentrated eluate (AGO2) 
or 1:100 diluted plasma (FIB) and are technical controls. 

 Investigating AGO2-protein interactions via 2-O-methyl pull-
downs 

Before AGO2-protein interactions were evaluated it was decided to 

optimise certain areas that could increase the sensitivity of future methodologies. 

For example, ensuring the starting sample was enriched for AGO2, and/or 

reducing the amount of haemoglobin.  
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 Method for enriching AGO2 

Previous data from the Hamilton lab demonstrated that AGO2, unlike in 

nuclear cells, associates with the erythrocyte membrane. This interaction is 

maintained despite hypotonic lysis with 1 mM HEPES and subsequent washing, but 

can be interrupted by PBS in dilute solutions of the lysate. To reduce potential 

background, this finding was used to prepare a protein sample enriched for AGO2 

and depleted for haemoglobin (Hb), the most abundant erythrocyte protein. 

Figure 17a-i details the methodology of producing an AGO2-enriched solution. To 

increase concentration, but minimise disruption of interactions, samples taken at 

each stage were concentrated through a 3 kDa centrifugal filter column (Amicon). 

To determine the degree of loss of AGO2 at each step, an equal volume of each 

sample was analysed by immunoblot using αAGO2. The vast majority of AGO2 

remained in association with the membrane fraction through several washes, and 

was found within the final eluate (Figure 17b-ii); note that some AGO2 is found 

within the lysis and wash 1 sample, but none is observed in washes 2 -5, indicating 

that this interaction is robust.   

 Method for depleting Hb 

 While hypotonic lysis with 1 mM HEPES greatly reduced the amount of Hb 

present in the membrane eluate, a substantial amount remained bound as the 

pellet retained a pinkish hue. This also appeared to bind to streptavidin beads 

used in subsequent pull-downs (data not shown). As a high degree of Hb-bead 

binding would manifest as a false positive, in addition to obscuring genuine strep-

bio interactions, an improved method of Hb depletion was developed. Packed 

RBCs were lysed with 1 mM HEPES (comparator), 20 mOsm sodium bicarbonate, 

20 mOsm monosodium phosphate buffer with or without 1 mM EDTA and washed 

until no further Hb was visually being removed. Membranes lysed with HEPES, 

sodium bicarbonate-EDTA and phosphate buffer-EDTA all visually retained Hb 

following washing, while those lysed with sodium bicarbonate and phosphate 

buffer without EDTA did not (Figure 17b). These new buffers did not affect the 

AGO2-membrane interaction as membrane samples analysed by western blot 

showed the presence of AGO2 pre-elution, but not post (Figure 17c). Comparing 

the protein profiles of the membrane eluate to RBC lysis indicated the preparation 

of a sample containing numerous membrane and cytoskeletal proteins (Figure 
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17d); this sample, termed AGO2-eluate from here, was used in pull-downs to 

evaluate proteins interacting with AGO2.   
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Figure 17: AGO2 associates with the red cell membrane.  
a) (i) Schematic detailing how to prepare RBC ghosts; (ii) 5 mL lysis (L), wash (W) and eluate (E) 
samples concentrated to 300 μL using a 3 kDa MWt spin column and probed with α-AGO2 via 
immunoblot (5 µL loaded); b) RBC ghost pellets following five washes with 1 mM HEPES (H), 20 
mOsm Sodium Bicarbonate (NaBi) or 20 mOsm Phosphate (Pho) buffer; Ghosts were also prepared 
with 20 mOsm NaBi / Pho in the presence of 1 mM EDTA (E); c) membrane samples lysed using 
different methods and probed with α-AGO2 pre- and post-PBS elution; d) protein profiles for AGO2-
eluate and lysis concentrate as visualised by silver stain; 5 µL AGO2 eluate and 5 µL 1:100 diluted 
lysis loaded. 

As the antibodies used in pull-downs had previously been shown to be 

contaminated, pull-downs using an alternative method were employed on the 

AGO2-eluate sample. This methodology was adapted from the protocol generated 

by Simard et al.399 Briefly, RNA probes in vitro transcribed (IVT) in the presence 

of biotin-16-UTP, or, 2’O-methylated RNA oligos (2’OM) containing a 5’ biotin 

motif that are complementary to specific e-miRNA are allowed to hybridise to the 

miRNA component of RISC, before being isolated using streptavidin magnetic 

beads; probe sequences are detailed in Appendix 7 (Figure 18a). Note that in the 

beginning both IVT and commercially synthesised probes were used. However, due 

to the comparative ease of using 2’OM, these were pursued in further work  

 Initial optimisation was performed to reduce the considerable background 

of the bead-only control (Figure 18b). Surprisingly, it was discovered that high 

background was due to the nature of the agitation used when incubating bead-

only controls in AGO2-eluate. Agitation that resulted in continuous sample 

inversion (rotator) caused the beads to clump, presumably due to proteins 

becoming denatured and precipitating. This was quite surprising, but it is believed 

to be analogous to the thickening of an egg white post whisking (i.e. protein 

denaturation caused by mechanical stress). On the other hand, gentle agitation 

(roller) resulted in no clumping and significantly less background. Although 

comparatively lower, pull-downs using IVT probes still resulted in high 

background, with an e-miRNA specific probe (miR-451) having less signal than the 

bead-only control (Figure 18c). Blocking beads with free biotin abrogated residual 

background, indicating non-specific interactions were via streptavidin (Figure 

18d).  
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Figure 18: Optimising a RISC pull-down strategy using 2’O-methyl probes.  
a) Schematic detailing how 2’O-methyl pull-downs work, the sequences of all probes used are 
detailed in Appendix 7; b) Immunoblot detailing high background due to sample agitation strategy 
causing bead clumping (RO = rotary agitator with inversion, RL = roller, note two different types of 
RO were used; c) 2’O-methyl pull-downs of AGO2 concentrate using positive (miR-451), negative 
(miR-34C) and bead only controls; d) Blocking beads with 40 pM free biotin prior to sample incubation 
removes background, temperature was also investigated but had no discernible effect. Note, Ab +ve 
= concentrated AGO2 eluate and is a technical control. Note, IVT probes were allowed to hybridise 
to RISC, then pulled down with beads, or, probe coupled beads pulled down RISC directly (*). 

 
Pull-downs using e-miRNA-specific oligos resulted in similar high molecular 

weight protein profiles (6 % gel) with two protein bands visible at ~ 100 kDa and 

~120 kDa (Figure 19a – red brackets); an oligo complimentary to EBER3, a small 

ncRNA found in cells infected with Epstein-Barr virus (EBV), was used as a non-

specific oligo control. Interestingly, low molecular weight profiles (15 % gel) differ 

between capture oligos, with miR-16 having a doublet band at ~ 18 kDa; profiles 

are consistent between experiments (N=5). Transferring these samples to a 

membrane and probing with αAGO2 indicate the band seen at ~100 kDa is AGO2, 

which matches the predicted size of 97 kDa (Figure 4b (i). Note that AGO2 is 

observed in the EB3 negative control. With the data provided here it is unclear 

whether this is a non-specific interaction between the EB3 probe and e-miRNA due 
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to high GC content (52%), or, whether unloaded AGO2 is recognising and binding 

the probe as per a small RNA. Note that this would most likely have to be through 

the 3’ end of the probe, via the PAZ domain, as the 5’ end of the probe contains 

a biotin motif (not a terminal phosphate) and is bound to magnetic beads, making 

it unlikely to be recognised by the mid/PIWI domain.   

Although the proteomic data mentioned previously is suspect, the AGO2-

BAND3 interaction it suggested was also reported by Van Wijk et al.299 Even though 

the reciprocal pull-downs in Figure 16c suggested no AGO2-BAND3 interaction, as 

a final test the 2’OM samples were probed with αBAND3 as the observed higher 

molecular weight band in Figure 19a is similar to the predicted size of BAND3. 

However, probing with αBAND3 indicated that this was not the higher molecular 

weight band observed by silver stain (Figure 19b(ii)). Failure to detect this band 

by western blot was not believed to be a sensitivity issue as the doublet band 

observed in Figure 19a is visible when stained via Coomassie, a method less 

sensitive than immunoblot. The low molecular weight doublet observed when 

pulling down with miR-16 (Figure 19a – red circle) is not Hb-beta (Figure 19b(iii)), 

or likely to be the alpha Hb chain, as the alpha and beta chains are the same size. 

A potential explanation for why this doublet band is seen with miR-16 pull-downs 

only is that AGO2 interacts with different proteins, depending on the miRNA cargo 

it is carrying.  

 To ensure that the high molecular weight band in Figure 19a was a robust 

interaction, the stringency of the pull-down washes was increased. Increasing the 

NaCl concentration of the wash buffer (0.25 - 1 M) to reduce non-specific protein 

interactions did not affect the high molecular weight band (Figure 19c), indicating 

this interaction was robust. Probing these samples for AGO2 confirmed that AGO2 

was still present and undiminished in intensity, demonstrating, as expected, the 

stringent washes did not affect AGO2 pull-downs.  Interestingly, a secondary band 

sometimes observed when probing with αAGO2 was reduced in signal following the 

higher stringency washes (Figure 19c – black arrow). This was taken as evidence 

that the stringency washes were working and removing non-specific interactions. 

Samples were re-run, stained with Coomassie and the band in Figure 19c marked 

with a star was excised and sent for mass spectrometry (MS) analysis. Note, that 

only the top band was sequenced as it was the only consistent, prominent, band 
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visible when performing these pull downs. As we were looking for what AGO2 

interacts with, and Figure 19b identified the bottom band as AGO2, only the top 

band was sequenced.  
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Figure 19: Analysis of 2’O-methyl based pull-downs results in a reproducible protein profile.  
a) Protein profiles for RISC pull-downs using 2’O-methyl probes that are e-miRNA specific (miR-16, 
let-7b, let-7f), not present (EB3) or bead only controls, an equal volume of each sample was loaded; 
b) Analysis of pull-down samples via immunoblot using α-AGO2, α-BAND3 or α-Hbb antibodies; c) 
Western and silver stain analysis of samples pulled down and washed using 0.25. 0.5, 0.75 or 1 M 
NaCl in PBS-T (1% (v/v) Tween-20), an equal volume of each sample was loaded. Note, Ab +ve = 
concentrated eluate (AGO2), RBC membrane (BAND3) or 1:100 RBC lysis (Hbb) and are technical 
controls; profiles generated in 4a were performed more than 4 times. Red brackets and circle are 
discussed in text. 
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The higher molecular weight band was identified as AGO2, with a Mascot 

probability score of 494 (Table 1); additional sequencing results were either not 

significant, keratin, a known MS contaminant or significantly below the size of 

band excised (Appendix 14).  

Table 5: Top 7 hits for the high molecular weight band as reported by MS.  

Name Score Mass 

protein argonaute-2 isoform 1 [Homo sapiens] 494 97146 
keratin 1 [Homo sapiens] 307 66027 
type II keratin subunit protein, partial [Homo sapiens] 259 52757 
unnamed protein product [Homo sapiens] 197 59492 
keratin 6B, isoform CRA_a [Homo sapiens] 107 59874 
Chain B, Crystal Structure Of S-Nitroso-Nitrosyl Human 
Hemoglobin A 

105 15865 

epidermal cytokeratin 2 [Homo sapiens] 103 65825 
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 Discussion 

The overarching hypothesis of this project is that e-miRNA have a function 

and are not just artefacts of maturation. This chapter focused on the hypothesis 

that within erythrocytes e-miRNA have a novel function out with canonical miRNA 

silencing. To elucidate what this function could be, proteins interacting with the 

AGO2 portion of RISC were investigated.  

 Proteomic validation 

 Two candidate AGO2 interactors highlighted by previously generated 

proteomic data were evaluated, neither were verified. An AGO2-FIB interaction 

appears to be an artefact caused by an impure Ab preparation as murine FIB was 

found within the stock Abs used for the AGO2 IPs (Figure 16e). Although an AG02-

BAND3 interaction was suggested by Van Wijk et al. this was also not verified 

(Figure 16c)299. It is not believed that any potential AGO2-BAND3 interaction is 

being perturbed due to the IP procedure (cell lysis), as samples were successfully 

cross-linked with DSP prior to isolation (Figure 16b). In addition, DSP cross-linking 

was not used on the samples sent for MS by the Hamilton lab, indicating this 

precaution wasn’t required. Furthermore, the AGO2-BAND3 interaction was also 

not reported by Speer et al., the only published study to have performed an AGO2-

IP in erythrocytes, indicating that the AGO2-BAND3 interaction is not genuine400. 

Comparing the data generated in Speer’s study to that generated by the Hamilton 

lab reveals only one protein in common: Phosphofructokinase (PFK). As this was 

reported by two independent sources it is entirely possible that this is a genuine 

interaction. The reason why this was not evaluated at the same time as FIB / 

BAND3 interactions was that this study had not yet been published. As this project 

had already moved onto a different hypothesis by the time of publication of the 

Speer paper, and as it’s not clear how e-miRNA would play a role within glycolysis, 

this avenue was not pursued / revisited. 

 Generating a miRNA pull-down protocol 

 2’O-methyl based RISC pull-downs have successfully been employed by 

Sonenberg et al. when studying the recruitment of CAF1/CCR4 by RISC401. As there 

are few nucleic acids within mature erythrocytes, using a probe-based pull-down 
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should theoretically result in low background due to a lack of material to cross-

react with. Indeed, using this method routinely isolated AGO2 above the non-

specific probe controls (Figure 19a, b). The protein profiles of RISCs isolated with 

different miRNA are very similar, with a band ~ 20 kDa larger than AGO2 

consistently being detected. Although it was possible to sequence the entire 2’O-

methyl pull-down (specific Vs nonsense probe) and establish which proteins were 

enriched, due to the reproducibility and robustness (Figure 19c) of the observed 

high molecular weight protein, this band was excised and sequenced. This resulted 

in the excised band being identified as AGO2 (Table 5) and not an interacting 

protein. Note that AGO1 was also identified within the mass spec data, although 

the predicted size of 97 kDa is smaller than the band excised at ~ 120 kDa making 

it impossible for it to be the identified band. In addition, western blots in Figure 

13d demonstrate that AGO1 is not present in mature erythrocytes, meaning that 

the mass spec data in this instance is incorrect. 

 AGO2 doublet and modifications 

This high molecular weight AGO2 (hmwAGO2) band runs ~ 20 kDa higher 

than predicted, indicating a modification, or, a splice variant. Two splice variants 

of AGO2 are reported on NCBI and uniprot: the major isoform, which has a mass 

of 97 kDa and is detected by the 4G8 Ab (Figure 19b) and a second isoform which 

has a predicted molecular mass of 93 kDa. This second isoform is not what is 

observed in Figure 19a for two reasons: (1) hmwAGO2 band has an estimated size 

of 125 kDa and runs above the major isoform, not below, as it would have to if it 

had a mass of 93 kDa; (2) Uniprot notes that there is no experimental evidence of 

this second isoform existing. While this doesn’t preclude the possibility of an 

unreported splice variant, a more likely explanation is that hmwAGO2 has been 

post-translationally modified in some way.  

001  MYSGAGPALA PPAPPPPIQG YAFKPPPRPD FGTSGRTIKL QANFFEMDIP KIDIYHYELD 

061  IKPEKCPRRV NREIVEHMVQ HFKTQIFGDR KPVFDGRKNL YTAMPLPIGR DKVELEVTLP 

121  GEGKDRIFKV SIKWVSCVSL QALHDALSGR LPSVPFETIQ ALDVVMRHLP SMRYTPVGRS 

181  FFTASEGCSN PLGGGREVWF GFHQSVRPSL WKMMLNIDVS ATAFYKAQPV IEFVCEVLDF 

241  KSIEEQQKPL TDSQ RVKFTK EIKGLKVEIT HCGQMKRKYR VCNVTRRPAS HQTFPLQQES 
301  GQTVECTVAQ YFKDRHKLVL RYPHLPCLQV GQEQKHTYLP LEVCNIVAGQ RCIKKLTDNQ 

361  TSTMIRATAR SAPDRQEEIS KLMRSASFNT DPYVREFGIM VKDEMTDVTG RVLQPPSILY 

421  GGRNKAIATP VQGVWDMRNK QFHTGIEIKV WAIACFAPQR QCTEVHLKSF TEQLRKISRD 

481  AGMPIQGQPC FCKYAQGADS VEPMFRHLKN TYAGLQLVVV ILPGKTPVYA EVKRVGDTVL 

541  GMATQCVQMK NVQRTTPQTL SNLCLKINVK LGGVNNILLP QGRPPVFQQP VIFLGADVTH 

601  PPAGDGKKPS IAAVVGSMDA HPNRYCATVR VQQHRQEIIQ DLAAMVRELL IQFYKSTRFK 

661  PTRIIFYRDG VSEGQFQQVL HHELLAIREA CIKLEKDYQP GITFIVVQKR HHTRLFCTDK 

721  NERVGKSGNI PAGTTVDTKI THPTEFDFYL CSHAGIQGTS RPSHYHVLWD DNRFSSDELQ 
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781  ILTYQLCHTY VRCTRSVSIP APAYYAHLVA FRARYHLVDK EHDSAEGSHT SGQSNGRDHQ 

841  ALAKAVQVHQ DTLRTMYFA 

Figure 20: Mass spec coverage of the AGO2 sequence is low (23%).  
The amino acid sequence of AGO2 (NP_036286.2) with the peptides sequenced by mass spec 
mapped to it and highlighted in red. P = hydroxylation site, S + Y = phosphorylation site, K = 
sumoylation site, dashed box = 4G8 Ab immunising peptide.  

As hmwAGO2 was not detected by the 4G8 AGO2 Ab it suggests that any 

post-translational modification must be in the region of the immunising peptide 

(amino acid 1 – 148, n-terminus). Although the identification of AGO2 is 

statistically significant, MS data (highlighted in red) only covers 23 % of the 

reference AGO2 amino acid sequence (black, [Figure 20]). In addition, MS data 

only correlates to 22 % of the 4G8 immunising peptide, meaning the likelihood 

that the modification lies on a sequenced peptide is low. Indeed, although cursory, 

analysis performed by Glasgow Polyomics indicates that these three peptides bear 

no modification. What this modification is, or, its relevance to e-miRNA function, 

is unclear. That said, the modifications AGO2 is reported to undergo and the 

relevance of that to this project are discussed below. 

 Sumoylation 

 Small Ubiquitin-like Modifier (SUMO) proteins are a form of post-

translational modification whereby a SUMO protein (SUMO 1 – 4) is ligated to an 

amino acid motif: KXE402. The effect of this modification is protein dependent, 

but has been reported to fall into three main categories: (1) prohibiting protein 

function; (2) stimulating protein-protein interactions; and (3) affecting a protein’s 

3D conformation403. Dejean et al. demonstrate that AGO2 can undergo 

sumoylation (Sumo 1, 2/3) at L402 and report that it promotes AGO2 turnover. 

Analysis of this paper shows that an AGO2-SUMO1 modification, when visualised 

by western blot, bears a striking resemblance to the profile observed in Figure 

19a404.  

 However, there are multiple reasons for suggesting that this is not the cause 

of hmwAGO2. First, the key effectors in sumoylation are RANBP2, UBC9 and SAE2 

– none of which are present within erythrocytes270. Therefore, if hmwAGO2 was 

due to sumoylation, it would have had to occur prior to terminal differentiation. 

So, even if this was sumoylation, and the observed AGO2 was being turned over, 

only a proportion of the total AGO2 observed in erythrocytes is hmwAGO2, 

meaning the remaining AGO2 wasn’t being turned over. Second, although Dejean 
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et al. investigated, they were unable to detect AGO2-sumoylation in vivo, even in 

conditions that are known to promote this modification (i.e. γ-irradiation, 

arsenic); Indeed, all AGO2-SUMO data shown in their paper is from an induced 

system. For example, recombinant AGO2 was isolated and incubated in a mixture 

containing all sumoylation key effectors, or, these key effectors were over-

expressed in a cell line. Although this proves that AGO2 can indeed undergo 

sumoylation, due to their difficulty detecting this modification in vivo one must 

ask if it is biologically relevant. With this in mind, it is not apparent how this 

report is relevant to the function of e-miRNA. Note that 2’O methyl pull-down 

samples were probed for SUMO1, 2/3 via western blot, and while the result was 

negative, it was not possible to generate a suitable SUMO positive control. As there 

are insufficient technical controls for this western, it is not shown.  

 Hydroxylation & Poly(ADP-ribose) 

 Another two AGO2 modifications are hydroxylation, at P700, and poly-ADP-

ribosylation, which are linked to AGO2 stability and stress, respectively405,406. 

However, neither of these modifications could cause the mobility shift responsible 

for hmwAGO2; poly-ADP-ribosylation results in a protein smear when observed by 

western and hydroxylation doesn’t have enough mass to shift a protein 20 kDa. 

Therefore, these modifications are not the cause of hmwAGO2.   

 Ubiquitination 

A common post-translational modification that AGO2 undergoes, and which 

has been widely studied, is ubiquitination407. So far, AGO2 ubiquitination is 

associated with turnover, although if this was true for e-miRNA, we would expect 

an “AGO2-ladder” caused by poly-ubiquitination to be visible – this is not 

observed. Furthermore, a study by Goodman et al. investigated proteosomal 

degradation in mature erythrocytes. While they found active 20S proteasomes 

within mature RBCs, none of the identified proteins degraded was AGO2293. Taken 

together this indicates that the hmwAGO2 modification is not poly-ubiquitination. 

 Phosphorylation 

Mobility shifts of proteins are commonly caused by phosphorylation, 

personal communication Dr Richard Burchmore (Head of Glasgow University 
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Proteomics). However, why a protein becoming phosphorylated could cause an 

apparent mobility shift of ~20 kDa is unclear. Nevertheless, consulting the 

literature reveals multiple reports of AGO2 being phosphorylated. For example, it 

is reported by Weaver et al. that AGO2s S387 phosphorylation plays a role in RISC 

being sorted into exosomes408. However, S387 (Figure 20, red S highlighted in 

blue) is present on a peptide sequenced by MS and analysis of the data shows that 

our sample was not phosphorylated.  

Meister et al. report that phosphorylation of Y529 plays a role in miRNA 

binding. However, review of this paper shows no indication of any mobility shift 

on western blots they performed141. Two reports studying AGO2 phosphorylation 

do contain western blots that have AGO2 profiles similar to the silver stains in 

Figure 19a; although the study Mendell et al. can be discounted as the size shift 

observed is induced via the use of a phospho-tag assay409. The study that reported 

S387 phosphorylation was published in 2008, where Graves et al. showed that 

phosphorylation at this site was required for p-body sequestration. Analysis of this 

paper reveals the presence of an AGO2 doublet similar to that in Figure 19a. This 

wasn’t the cause of the mobility shift however, as inducing phosphorylation only 

increased the amount of WT AGO2 observed by western blot, not hmwAGO2; this 

doublet was not remarked upon by the authors410. Although phosphorylation 

doesn’t appear responsible for hmwAGO2, it is interesting that this doublet is 

observed within the literature. Indeed, in-depth analysis of the literature 

demonstrates that this doublet has been observed multiple times, even 

sequenced, but has not readily been explained411. 

 hmwAGO2 summary 

 The post-translational modifications that AGO2 is known to undergo have 

been discussed above and are unlikely to be responsible for hmwAGO2. Therefore, 

hmwAGO2s modification is either completely novel, or, at a residue hitherto 

unreported. As hmwAGO2 is only a proportion of the total AGO2 observed within 

an erythrocyte it raises certain questions: Is this observation relevant to the 

question at hand? Why is only a proportion of AGO2 modified? Is this a dynamic 

interaction, and if so what causes it? To further confound this issue, even though 

hmwAGO2 was never observed by either the 4G8 or 11A9 antibodies during the 

first 15 months of this studentship, the first western blot performed on density 
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gradient erythrocytes revealed the presence of hmwAGO2 (Figure 28a)! While this 

apparent contradiction was frustrating, it did rule out the possibility that 

hmwAGO2 was caused by the 2’O methyl probe remaining bound to e-miRNA as 

the samples analysed in Figure 28a had no probe present. As there was no 

discernible pattern for when hmwAGO2 would be observed, and it was not 

believed to be relevant to the question of e-miRNA function, establishing the 

hmwAGO2 modification was not pursued.  

 Conclusion 

 The aim of this chapter was to establish what AGO2 interacts with in an 

erythrocyte, in order to glean information regarding its potential function. 

However, while two methods of pull-down were performed, no interaction was 

verified / discovered. This data does not preclude a potential of e-miRNA retaining 

a function within erythrocytes, but it is difficult to speculate, and thus test, what 

this could be. Due to the difficulty in evaluating novel functions of e-miRNA within 

erythrocytes, and the time spent, this hypothesis was no longer pursued. Instead, 

a second hypothesis, the results of which are reported in Chapter 4, was 

generated. 
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 Do e-miRNA function within different 
cells? 

 Introduction 

New hypothesis: 

e-miRNA lie dormant within red cells, but regain their functionality as 

translational regulators when senescent RBCs are removed from circulation by 

splenic macrophages. 

This specific hypothesis is based upon the endpoint of RBC senescence. The 

life span of a mature erythrocyte is approximately 120 days and during this time 

it undergoes a variety of morphological and biochemical changes. Firstly, 

erythrocytes shed a proportion of their membrane through the production of MVs, 

resulting in cell shrinkage during senescence356. Secondly, the ability of 

erythrocytes to deal with free radicals decreases with age, resulting in the 

accumulation of oxidised proteins at the cytosolic side of the membrane. This 

plays a role in the oligomerisation of the membrane protein BAND3, which in turn 

promotes the binding of natural occurring antibodies (nAbs)317,391. This “natural 

opsonisation”, coupled with a loss of the “don’t eat me signal” CD47, is how it is 

thought macrophages distinguish between senescent and young erythrocytes, 

allowing the phagocytosis of old or damaged cells only. 

Following phagocytosis, internalised erythrocytes are consumed by 

phagolysosomes, although surprisingly, not everything that is internalised 

undergoes degradation. For example, haem, the porphyrin ring bound by globin, 

is exported into the cytoplasm where it is degraded by HO1 releasing iron. The 

iron is then stored within the cell, or, exported by FER into the plasma where it 

can be internalised via CD71+ erythroblasts in the bone marrow, forming new 

haemoglobin. While this allows for the massive recycling of cellular iron, it is also 

a means by which cellular components exit a phagolysosome – something that must 

occur if e-miRNA are to function within a macrophage.  
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So, why would a macrophage export e-miRNA from a lysosome and not 

simply transcribe new miRNA? Our hypothesis is that e-miRNA act as a molecular 

signal, regulating a macrophages transcriptome to maintain homeostasis. With this 

in mind, the continual delivery of e-miRNA from erythrophagocytosis would allow 

the host cell’s transcriptome to be regulated dynamically; the more material 

phagocytosed, the more “X” is dampened, while a lack of material being 

phagocytosed allows a cell to return to its basal phenotype. In order for this 

dynamic regulation to occur, de novo transcription of miRNA would not be 

required. However, before candidate genes are identified, the idea that e-miRNA 

escape phagolysosomes, like haem, must first be tested.  

In order to test this hypothesis a xenomodel, where by human erythrocytes 

where incubated with murine macrophages was developed. A xenomodel model 

was chosen due to the 4G8 Ab only detecting human AGO2. This meant that murine 

AGO2 (endogenous in macrophages) would not be detected, potentially allowing 

the detection of human AGO2 egressing from RBC to macrophage. However, a 

potential weakness to this model is that it’s impossible to verify if murine 

macrophages are recognising human RBCs in a manner similar to that of senescent 

murine RBCs, or are simply recognising them as foreign material. That said, 

xenomodels are routinely used within the literature to evaluate the phago / 

endocytosing of RBCs by macrophages. For example, Wellek et al. used a cross 

species model to examine the impact of different immunoglobin subclasses on 

phagocytosis, while Knutson et al. used rat RBCs and murine macrophages to 

evaluate the effect of ferroportin on iron release412,329. Finally, Steinberg’s group 

co-cultured human erythrocytes with murine peritoneal macrophages when 

evaluating binding mechanisms413,414. As these models had been used successfully 

to evaluate erythrocyte biology, they were pursued here. 

The data during the first part of this chapter was generated while testing 

this hypothesis. However, the majority of the data herein, was generated from a 

second hypothesis (detailed later) that was formed due to observations from the 

initial testing.  
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 Results 

To test this hypothesis, a cross species model was established; where 

murine bone marrow derived macrophages (BMDM) were incubated with human 

RBCs (hRBCs) and IF for AGO2 performed. This methodology took advantage of an 

AGO2 Ab that is specific to the human isoform only. As all cells contain AGO2 and 

miRNA, any AGO2 detected by this Ab following phagocytosis could only come from 

the hRBC; this could then be co-localised with other markers. First, BMDM were 

generated from wild type C57BL/6 mice in the presence of m-MCSF. After 7 days, 

macrophages were phenotyped by FACs (CD14+ / F4/80+ - Figure 21a), then co-

cultured with human erythrocytes for 1 hour. To discriminate whether 

erythrocytes were internalised, or bound to the cell surface, BMDM were treated 

with a hypotonic wash for 5 minutes; those not internalised were lysed, while 

those phagocytosed were not (Figure 21b). To allow the BMDM to recover from 

the cold hypotonic shock, they were placed back in the incubator for 1 hour prior 

to performing IF. To ensure that IF is possible on internalised material, BMDM were 

probed for the presence of hRBCs using the presence of αBAND3 (Figure 21c). 

Although a ‘no RBC control’ is missing (i.e. macrophages only probed with αBAND3) 

no cross-reactivity of the BAND3 Ab can be seen i.e. BAND3 signal coincides with 

the RBCs visible by white light and is not present in macrophages. As biconcave 

RBCs can readily be detected within BMDM, this indicates the suitability of this 

methodology to detect internalised material; note that these macrophages were 

not polarised at day 7 and are therefore M0 in character. The next stage was to 

see if hAGO2 could be detected with this system.  
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Figure 21: Phenotyping murine bone marrow derived macrophages and using them to 
phagocytose human erythrocytes.  
a) After seven days of culture in 100 ng / mL mMCSF mature macrophages are dual positive for 
CD11b and F4/80; b) macrophages are incubated with erythrocytes for 1 hour then treated with a 
hypotonic lysis buffer (150 mM NH4Cl, 1 mM KHC03, 0.1 mM EDTA), non-internalised cells are lysed 
while internalised cells are not; c) immunofluorescence of phagocytosed erythrocytes using α-
hBAND3 merged with a white light image. Scale bar = 20 µm. 

Using the above cross species model, RBC phagocytosing BMDM were probed 

for hAGO2 with the 4G8-AGO2 Ab. Figure 22a shows that while the BAND3 Ab does 

not cross react with BDMD, the AGO2 Ab does, as indicated by the large degree of 

green staining observed in the no RBC control (red arrow). Although the 4G8 Ab 

highlights the presence of RBCs in the experimental arm, the background in the 

negative control is too high, meaning no conclusions about hAGO2 could be drawn. 

This background was not improved with different blocking methodologies (i.e. 
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increased blocking time, block concentration, or block type (serum, BSA etc), so 

a second AGO2 Ab was purchased: the 11A9 clone, which has also been shown to 

be human specific415. However, although the background was greatly reduced 

when using this Ab, no hAGO2 was detected either within RBCs, or, being released 

into the cytoplasm of BMDM (Figure 22b). The 11A9 clone is suitable for IF, as in 

HeLa cells it co-localises with GW182 (a known AGO2 interactor), highlighting 

presumed p-bodies (Figure 22c). During BMDM / RBC incubation, it was observed 

that only a small proportion of RBCs were internalised. Physiologically, only 

senescent RBCs (sRBCs) are phagocytosed by splenic macrophages416. Considering 

this, the following questions were raised: If the internalised RBCs are senescent, 

is it possible they simply no longer contain AGO2, or, is the IF protocol not optimal? 

 



118 
 

 
 

Figure 22: hAGO2 cannot be detected in erythrocytes but can be detected in HeLa cells.  
a) BMDM incubated with 6 RBCs per macrophage for 1 hour, washed with hypotonic lysis buffer then 
probed for α-hBAND3 or α-hAGO2 (4G8); b) Repeat of experiment from (a) but using a different 
hAGO2 Ab (11A9 clone); c) HeLa cells are probed with α-hAGO2 (11A9) or α-GW182 to detect 
putative p-bodies. Scale bar, a), b) = 20 µm, c) = 10 µm. 
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Previous work by the Hamilton lab has shown that e-miRNA levels are stable 

following 3 days of culture ex vivo, while tRNAs and rRNAs are not (Figure 13). 

However, this does not preclude the possibility that e-miRNA are lost during the 

120 day lifespan of an erythrocyte. IF on bulk erythrocytes would allow this 

question to be addressed, as if AGO2 levels are variable, then one would expect 

to see varying degrees of AGO2 positivity in a single field of vision. Conversely, if 

AGO2 is maintained, then all erythrocytes should demonstrate the same level of 

positivity. In addition, pursuing this question would allow the optimisation of an 

AGO2 IF protocol that could be used with the BMDM assay, and, would be a means 

to verify the AGO2-membrane interaction reported in Chapter 3 Figure 17a. 

Protocol development was problematic due to the fragility of erythrocytes 

- cells lysed in ethanol, methanol, acetone, 2 – 4 % PFA; blood smears were also 

evaluated, but erythrocyte morphology was lost post fixation (data not shown). 

Cells incubated in 0.5 % PFA survived fixation but lysed upon the addition of any 

permeabilising agent (triton, NP-40 etc); increased fixation times did not reverse 

this trend. Note that acrolein, which has been reported as suitable for RBC 

fixation, caused mild lysis; although this was not as high as the complete lysis 

observed with PFA or solvents. There was no way to ascertain if this was a 

selective lysis of the most aged / fragile cells, or, a lysis of all RBCs, regardless of 

age. As the main experiment was to evaluate the potential of differing AGO2 

abundancies based on cell age, this method of fixation was not suitable as it was 

not clear which cells were being lysed. Erythrocytes were successfully fixed using 

a 0.2 % glutaraldehyde / 4 % PFA mix; no cell loss or morphological change were 

observed.  

To ensure that this protocol was suitable for IF, cells were probed for both 

membranous (BAND3) and cytoplasmic (Hbb) proteins – BAND3 was exclusively 

membranous, while Hbb was largely cytoplasmic (Figure 23a). However, when 

probed with either the 4G8 or 11A9 antibody, AGO2 was not detected (even at a 

1:50 primary Ab dilution). Changing the permeabilisation agent from 0.1 % Triton, 

to NP-40, SDS, methanol or saponin had no effect on the detection of AGO2 (data 

not shown). To increase the sensitivity of the AGO2 IF, signal amplification was 

attempted. This is an enzyme-mediated reaction, whereby horseradish 

peroxidase, in the presence of H2O2, catalyses the reduction of a flurophore-
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tyramide conjugate into a highly reactive radical that labels proteins in the 

immediate vicinity (Figure 23b). However, the background in controls without 

primary or secondary Ab were very high (Figure 23c). This is presumably due to 

haemoglobin acting as a pseudo-peroxidase, making this technology incompatible 

with erythrocytes417.  
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Figure 23: AGO2 cannot be detected in erythrocytes via IF.  
a) Erythrocytes fixed in 0.2 % glutaraldehyde / 4 % PFA (v/v), permeabilised with 0.5 % triton and 
probed for membrane proteins (α-BAND3), cytoplasmic proteins (α-Hbb) or α-hAGO2 (clone 11A9); 
b) Schematic depicting how tyramide signal amplification works; c) Tyramide signal amplification of 
erythrocytes in the presence or absence of HRP conjugates.  
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A reason for not detecting AGO2 by IF may still be one of sensitivity. Due 

to having photo multiplier tubes, which amplifies detected signal, flow cytometry 

is more sensitive than epifluoresence-based IF. The protocol developed above was 

therefore used to evaluate the levels of AGO2 in erythrocytes by FACs. To ensure 

that the 11A9 antibody, and the above protocol, were suitable for FACs, AGO2 was 

first detected in KCL22 and Jurkat cell lines (Figure 24a). Probing erythrocytes for 

AGO2 resulted in a modest fluorescent shift (Figure 24b). Fluorescence peak 

analysis indicated a mean fluorescence of 137.3 RFU in unstained compared to a 

stained fluorescence of 199.7 (P = 0.039) (Figure 24c). However, based on this 

shift, AGO2 could only be detected in 3.1 % (± 0.7) of erythrocytes, unlike the 100 

% of KCL22 or Jurkat cells. Ostensibly, this data suggests that AGO2 levels in 

erythrocytes are low. Indeed, evaluation of AGO2 levels by western in erythrocyte 

membranes and KCL22 / K562 cells showed that AGO2 was more readily detected 

in the nucleated cells (Figure 24d). While the numbers of cells analysed in Figure 

24d indicate a 100-fold increase in abundance of AGO2 in nucleated cells versus 

erythrocytes, one has to take into consideration cell volume. For example, the 

mean volume of a K562 cell is 2030 µm3, while the volume of a red cell is ~ 60 

µm3, 33 times smaller than the nucleated cell. This suggests that the levels of 

AGO2 are more comparable than the western in Figure 4d suggests418,419. As AGO2 

is readily detectable by immunoblot, this method was used to evaluate levels of 

AGO2 in erythrocytes that had been separated by age using a density gradient. 
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Figure 24: Investigating if erythrocytes maintain e-miRNA using FACs.  
a) Establishing the 11A9 Ab can be used to detect AGO2 by FACs by probing the nucleated Jurkat 
and KCL22 cell lines; b) Detecting low levels of AGO2 in fixed and permeabilised erythrocytes using 
the 11A9 Ab (N=3); c) two tailed students T-test reveals the fluorescent shift in 11A9 probed cells 
compared to FITC conjugated secondary only control is significant; d) Cells counted by 
haemocytometer were blotted and probed for α-AGO2 to establish relative levels of AGO2 between 
nucleated cells and cell lines; note, for RBCs, the cell number indicates the number of cells ghosts 
were prepared from.  
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different ages of erythrocytes using percoll density gradients310

 (Figure 25a). 

Separating 5 x 108
 purified erythrocytes on a 5-point density gradient (1.06 – 1.1 

g/L) results in a distinct banding pattern (Figure 25b). To assess purity, each 

fraction was harvested, washed, and re-purified on a separate gradient. As can be 

seen in Figure 25c, fraction 1 (F1) and F5 both re-separate to form distinct bands, 

indicating that each fraction is an enrichment of cells at a specific density (age), 

rather than an absolute population. From three separate experiments, 

representing the number of cells from each fraction as a percentage of total 

number of cells, shows that the majority of cells are within F3-4 (Figure 25d). 

Based on these numbers, the least dense (0.42 %) and densest (4.75 %) fractions 

make up the minority of erythrocytes; as these should represent the reticulocyte 

(~0.5 % of peripheral RBCs) and senescent population (low due to constant splenic 

attrition), this indicates that the gradient is working and that most RBCs are 

“middle aged”. However, before AGO2 levels are analysed, age-based 

fractionation needs to be verified. 
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Figure 25: Establishing a density gradient methodology to separate erythrocytes based on 
their age.  
a) Reticulocytes exist in peripheral blood as CD71+ cells for 3 days before maturing into erythrocytes. 
As they age, they grow smaller due to loss in membrane caused by vesicularisation, before 
autologous IgG binds to clustered BAND3 and acts as a recognition signal to splenic macrophages; 
b) Typical profile of erythrocytes separated on a five point percoll density gradient; c) Re-fractionation 
of F1 and F5 to assess purity; d) Each fraction was isolated, counted by haemocytometer, and plotted 
as a proportion of the total number of cells recovered (percentage of overall yield [N=3]). 
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Although it is possible to separate RBCs using a 5-point density gradient, it 

is not practical. This is caused by the gradient’s sensitivity to any disturbance 

caused by the operator or centrifuge. Therefore, different gradients were tested 

to see if they separated blood as previously observed. A 3-point gradient of 1.06, 

1.08 and 1.1 g/L was found to produce a similar profile as per Figure 25d with one 

less band i.e. very young, middle aged and very old fractions. In addition, a 

gradient difference of 0.2 g/L between gradient points instead of the 0.1 g/L in 

Figure 25b made the gradients easier to pour and more resistant to disturbance. 

Therefore, this gradient was used in further experiments as it was believed 

sufficient to answer the question of whether RBCs maintain AGO2 as they age.  

Using these improved gradients, FACs was employed to analyse each 

fraction for different markers to see if these fractions represented differentially 

aged cells. Analysis of F1-4 scatter profiles indicated that the cells were getting 

smaller (as measured by FSC) as they got denser (Figure 26a). Overlaying the 

scatter profiles of F1 and F4 (ringed red and blue) show that there is a clear shift 

to the left, indicating F4 (oldest) cells are smaller than F1 (youngest) (Figure 26b); 

this is consistent with the idea that erythrocytes get smaller as they age347. As old 

and young populations of erythrocytes bear different markers, it should also be 

possible to use FACs to confirm these populations are enriched for different ages 

of cells.  
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Figure 26: Verifying that blood fractionation reflects cell age; part 1.  
a) Representative scatter profile of F1-4 and whole blood, red (F1) and blue (F4) bordered plots 
represent the youngest and oldest cells respectively; b) Overlaying the highlighted scatter profiles 
from (a) demonstrates that F1 cells (purple) are larger (FSC-A) than F4 cells while granularity (SSC-
A) is unchanged.  
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analysis of three independent experiments is displayed in Figure 27b. A students 

T-test revealed that only F1 had a statistically significant increase of 

reticulocytes, when all fractions were compared to unfractionated blood. 

Different probes were used unsuccessfully to verify the presence of membrane-

associated IgG in F4. This included two different anti-human IgG clones (BD – G18-

145, Sigma – F4512) and a protein-A-FITC conjugate; the BD clone, caused a 

significant change in erythrocyte scatter profile and was not suitable, while the 

protein-G conjugate displayed low specificity. To ensure that the negative signal 

wasn’t a technical issue due to IgG being lost during processing, F4 was exposed 

to h-IgG by incubating it in autologous serum for 30 mins, then probing for bound 

IgG; none was detected (data not shown). As leukodepletion involves the filtration 

of RBCs through a cellulose column, it is possible that the most senescent RBCs 

are remaining on the filter, either due to being physically stuck, or, interacting 

with Fc receptor-expressing immobile leukocytes. However, analysis of cells 

eluted from the membrane indicated that this was not the case (data not shown). 

However, the distinct banding patterns seen in Figure 25b, coupled with F1 being 

enriched in reticulocytes and F4 cells being smaller than F1 cells indicate this 

method is enriching erythrocytes of different ages. 
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Figure 27: Verifying that blood fractionation reflects cell age; part 2.  
a) Establishing CD71+ reticulocyte levels in whole blood (basal) and fraction 1 – 4 via FACs; b) 
Amount (%) of CD71+ cells present in each fraction from three independent experiments, one tailed 
students T-test was used to test for significance. 
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sample 2 had 1.3 x 106 and sample 3 had 0.62 x 106 analysed. RBC ghosts were 

prepared for each fraction and probed with αAGO2 (11A9) as displayed in Figure 

28a. As F2 and F3 represented the majority of cells present (equivalent of F3+4 in 

Figure 25d), which have been classed as “middle aged”, only F3 was analysed as 

the samples of interest were F1 and F4; i.e. the youngest and oldest cells. Note, 

the high molecular weight band observed in Chapter One is present in samples 1 

and 2, but not sample 3. This experiment was the first time that the AGO2 doublet 

was detected by western, and there is no obvious indication why this is the case. 

Densitometry of all three samples indicates that AGO2 is decreasing as RBCs age, 

with an average of 54.6 % (± 22.4 %) AGO2 lost from cells between F1 and F4; note 

as the larger band had been identified as AGO2, where present, both bands were 

quantified.  

 

 

Figure 28: AGO2 is lost as RBCs age.  
a) Ghosts from an equal number of erythrocytes (as counted by haemocytometer) from each fraction 
are probed with α-AGO2, blots are from three independent experiments b) Densitometry for each 
blot in a) as calculated using ImageJ, percentages represent decrease in signal intensity from fraction 
1 to fraction 4, 54.6 % loss of AGO2 is an average from three experiments while ± 22.4 % is the 
standard deviation. 

a) 

1 3 4 

α-AGO2 

Fraction number 

Western blot analysis of fractionated RBCs 

b) Densitometry reveals 54.6 % (± 22.4 %) of AGO2 is lost as RBCs age 

1 3 4 1 3 4 

Sample 1 Sample 2 Sample 3 

AGO2 

hmwAGO2 

10, 000 
20, 000 

30, 000 
40, 000 
50, 000 
60, 000 
70, 000 

P
ix

e
l 
in

te
n
si

ty
 (

D
P
I)

 

Sample 1 

Sample 2 

Sample 3 

80% 45% 

37% 



131 
 

 Discussion 

 
 The aim of this chapter was to investigate the ability of e-miRNA to 

modulate the transcriptome of a phagocytosing cell. However, difficulties in 

detecting AGO2 in endo/phagocytosed cells led this research question changing to 

a more simple: do erythrocytes maintain AGO2 as they age?  

 Failure to detect AGO2 by IF 

 AGO2 was not detected in erythrocytes by IF (Figure 22a), and the positive 

fluorescent shift detected by FACs, although significant, was modest (Figure 24b). 

The fix and perm strategy used during this study detected both cytoplasmic and 

membranous proteins, suggesting its suitability for AGO2 detection (Figure 22a). 

Furthermore, it was demonstrated in Figure 22b and by Siomi et al. that the 11A9 

or 4G8 Ab, respectively, is suitable for the detection of AGO2 by IF415,420, while 

Figure 24a demonstrates that the 11A9 Ab is suitable for AGO2 detection via FACs. 

AGO2 is readily detectable by immunoblot and the relative sensitivities between 

nucleated cells and erythrocytes are similar, when taking into account cell volume 

(Figure 24d), indicating abundance isn’t an issue. 

Indeed, abundance isn’t the problem as during this study, two other 

studies, using primary Abs different to those used here, published IF images of 

AGO2 in erythrocytes421,422. Intriguingly, both studies show AGO2 to be membrane 

associated as suggested in Chapter 3 and not cytoplasmic. Fix and perm strategies 

between these two studies and that reported in Section 2.9.1 are similar. Both 

employ aldehyde fixation, but at slightly different concentrations – 4 % PFA with 

0.007% glutaraldehyde421 or 0.5 % acrolein422. Acrolein wasn’t used in this study 

due to the small amount of lysis it caused, nevertheless, in light of this study, this 

fixation method was evaluated coupled with the 11A9 Ab, but no AGO2 was 

detected (data not shown). As the methodologies between the studies are similar 

it suggests something else is occurring. As the 11A9 and 4G8 Ab can detect AGO2 

in nucleated cells, it suggests that in erythrocytes the epitope recognised by these 

Abs is being masked. It is not clear what is causing this occlusion, but, as AGO2 is 

membrane associated in erythrocytes, it can be speculated that it is either this 

proximity to, or interaction with, the membrane that is responsible. 
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Analysis of the data sheets / publications for all 4 AGO2 antibodies suggests 

where this interaction / occlusion is taking place (Figure 29)415,420. The immunising 

peptide for the 4G8 Ab is the first 148 amino acids (aa) from the N-terminus of 

AGO2. However, as it is published as not detecting mAGO2 and is instead hAGO2 

specific, the epitope recognised by this Ab must be within the first 35 aa, as this 

is the only region with sequence variability between human and mouse; this is the 

same region the 11A9 Ab is raised against415. The 2E12-1C9 Ab from Abnova was 

raised against an epitope 378 aa long from the C-terminus, while the C34C6 Ab 

(Cell Signalling Technologies [CST]) peptide is not specified. CST have been 

contacted regarding the sequence of the immunising peptide, but are unwilling to 

disclose it. However, considering C34C6 cross reacts with human, murine, rabbit 

and monkey AGO2, the immunising peptide cannot be within the first 47 aa of the 

N-terminus as this is not conserved in rabbit. As it appears there is no epitope 

overlap between the two studies successfully detecting AGO2 and this one, it 

suggests epitope masking / occlusion is why AGO2 was not successfully detected 

above, and this occlusion is at the N-terminus.  

 

Figure 29: Schematic of the immunising peptides used to raise AGO2 Abs.  
hAGO2 is 859 aa in length, immunising peptide regions for the CST and Abnova Abs are shown. 
m/hAGO2 are highly conserved. Highlighted in purple is the heterogeneous region the 11A9 or 4G8 
Ab must bind in order to be human specific. 
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this wasn’t performed, firstly, budgetary constraints. Secondly, the aim of the 

experiment was to evaluate AGO2 levels throughout the 120-day life span of an 

erythrocyte. As this was successfully answered via density gradients and western 

blots, either of these additional Abs were not purchased. 

 Reduction of AGO2 as cells age 

Percoll gradients have been successfully used to fractionate erythrocytes 

based on their density. It has been shown that F1 is representative of the youngest 

population (increase in CD71+ reticulocytes) and that in F4 the cells are 

comparatively smaller. However, it has not been possible to verify the presence 

of senescent markers the literature states are present within F4 – specifically, 

surface bound IgG. Although two different Abs have failed to detect autologous 

IgG in a variety of samples (whole blood, fraction 4, filter retained blood), a 

weakness of this experiment is that no positive controls have been used to show 

these Abs are working as reported. Nevertheless, reticulocyte enrichment and 

reduction in size is consistent with the literature322, indicating this methodology 

is suitable for isolating populations of erythrocytes of different ages.  

Analysis of this fractionated blood via western blot indicates that AGO2 is 

lost as erythrocytes age (Figure 28a). However, there are caveats to this that must 

be discussed. Loading control: as RBCs lose membrane and haemoglobin as they 

age, it is not clear which protein can serve as a loading control. The only protein 

the literature suggests is not lost as RBCs age is spectrin – a part of the 

cytoskeleton which is resistant to detergent solubility344,423. While a loading 

control is not included in these blots, to address this issue, equal numbers of cells, 

as counted by haemocytometer, were analysed. AGO2 perturbation: whole RBCs 

cannot be resolved directly by acrylamide gel, due to poor resolution (Appendix 

16). RBCs must first undergo hypotonic lysis to prepare membranes, a process in 

which AGO2 could be lost. However, Figure 17a-ii Chapter 3 indicates that very 

little AGO2 is lost during lysis and the vast majority remains membrane associated. 

In addition, there is nothing to suggest that AGO2 would be lost in higher amounts 

in older versus younger cells, meaning that this consideration is unlikely to affect 

the blots in Figure 28a. 
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It’s important to note that AGO2 levels are diminished by 52.4 %, not 

completely abrogated as cells age. This raises the possibility that e-miRNA are not 

completely lost during ageing. However, a more likely explanation is that the 

AGO2 observed in F4 is from younger cells carried through during the gradient, 

especially as Figure 25c, demonstrates that the isolated fractions correspond to 

cellular enrichment, not absolute populations. Furthermore, Speer et al. used 

qPCR to also report that e-miRNA are lost as RBCs age, which is in agreement with 

the findings in Figure 28b400. Taken together, we believe that e-miRNA are not 

maintained during the entire 120-day life span of an erythrocyte, meaning that 

the original hypothesis of e-miRNA functioning within RBCs is false.  

Conclusion 

 It is important to note that none of the data presented above show e-miRNA 

being turned over, and what occurs to them is unclear. This is interesting as 

although the paper discussed in Chapter 3, Section 3.3.3.3 detected 20s 

proteasome-mediated proteolytic degradation within RBCs, AGO2 was not one of 

the targets identified as being turned over293. Unlike any other cell in the body, 

AGO2 is membrane associated in erythrocytes (Figure 17a-ii); a membrane that is 

reported to be lost as RBCs age through vesicularisation358. Extracellular vesicles 

are widely reported within the literature to act inter cellular communicators. To 

do this they are released by cell A, taken up by a recipient cell (B) and the miRNA 

they contain modulates the hosts transcriptome. A central hypothesis to this 

studentship, which is detailed in the introduction to this chapter, is that e-miRNA 

modulate a phagocytosing cell’s transcriptome. As it appears that e-miRNA are 

lost as erythrocytes age, it is unlikely that this occurs during the phagocytosis of 

senescent RBCs by splenic macrophages. However, it is possible that an RBC-MV 

could act as a vector, transferring e-miRNA to distant cells, where they can regain 

their function as translational regulators; this hypothesis is pursued in Chapter 3. 

. 
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 Do RBC-MVs contain e-miRNA? 

 Introduction 

It is widely accepted within the literature that erythrocytes get smaller as 

they age, partly due to membrane lost through vesicularisation357,424. The density 

gradients in Chapter 4 demonstrate that AGO2 is lost as erythrocytes age. As AGO2 

has been shown to be membrane associated, it is tempting to speculate that as 

the erythrocyte membrane undergoes vesicularisation, AGO2 is lost 

concomitantly. Extracellular vesicles (EVs), either exosomes (EXs) or MVs, have 

been shown by multiple studies to be able to transfer their cargo to recipient 

cells, where importantly, it has elicited a function425. For example O’Connell et 

al. demonstrated that dendritic cells (DCs) could transfer miR-155 via EXs to 

neighbouring DCs, where it repressed BACH1 & SHIP1 expression resulting in a pro-

inflammatory response (IL-6 production) when the cells were challenged with 

LPS425.  

 Review of the literature reveals that there are three types of erythrocyte 

EV: (1) EXs that are shed from reticulocytes as part of CD71 removal; (2) MVs 

containing oxidised Hbb that are lost as RBCs age; and (3) MVs found within the 

“storage lesion” which are shed into the storage media (SAGM) of RBC units stored 

by the transfusion service. Due to the clinical interest regarding transfusion 

products, the majority of functional studies have been performed on MVs from the 

storage lesion. A consistent area of research regarding these MVs is their 

interaction with thrombin and subsequent effect. For example, two individual 

studies report that RBC-MVs from storage initiate thrombin generation, while a 

study from Kurtis et al. reported that RBC-MVs caused clotting to occur faster 

when they measured thrombus formation374,426,427. Although this means 

hypercoagulability could be an unintentional side effect of transfusion, Yeon et 

al. identified this as a potential clinical opportunity428. They prepared large 

quantities of RBC-MVs using high pressure extrusion, then demonstrated a 

dramatic reduction in both bleeding time and blood loss when transfused into their 

rat model. Although these MVs are not the same as those found within the storage 

lesion (they are induced and range from 50 – 2000 nm), the authors suggest that 

this methodology could be translational, specifically in patients with coagulation 

disorders.  
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The exact mode of action regarding how RBC-MVs promote coagulation is 

unclear, however, the most common factor appears to be exposed 

phosphatidylserine. This has lead multiple studies to demonstrating that it is 

responsible for the binding of tissue factor or clotting factors (FXII & FVII) to the 

outside of an MV, increasing the amount of clotting factors at a thromboses426,429. 

Interestingly it was also reported to decrease thrombin activity by binding protein-

S, the co-factor of protein-C, resulting in a anti-coagulatory effect430. Although 

stating conclusions, both studies suggest a roll in the regulation of coagulation by 

RBC-MVs. 

There are also a large number of studies evaluating naturally-occurring 

RBC-MVs (noRBC-MVs), but by-in-large these are restricted to characterisation and 

enumeration. For example, noRBC-MVs have been characterised by FACs in 

multiple studies to reveal that they are GLY-A, CD55, and CD59 positive, expose 

PS and can carry autologous IgG358,431. The first three markers are hallmarks of the 

noRBC-MV’s erythrocytic origin, while PS exposure reflects membrane inversion 

and the autologous IgG has been suggested as a means by which erythrocytes shed 

pro-apoptotic markers. Other studies take a different approach and instead 

compare the levels of noRBC-MVs in healthy individuals, to different disease 

states. For example, Webster et al. estimate there is an almost 10-fold increase 

in circulating noRBC-MVs in thalassemia patients compared to normal432.  

However, despite a large amount of literature on RBC-MVs, when embarking 

on this work, no study had evaluated the transfer of e-miRNA, or its potential 

function. Although e-miRNA functionality is the raison d'être of this studentship, 

before any functional studies could be performed, protocols for RBC-MV isolation 

first needed to be established. With consideration to published studies and the 

guidelines set out by Hochberg et al., protocols suitable for the evaluation of RBC-

MVs were established433.  
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 Results 

Before establishing if e-miRNA is present in noRBC-MVs, artificial RBC-MVs 

(aRBC-MVs) were first generated to be tested as a proof-of-concept. In addition, 

generation of aRBC-MVs allowed the generation of protocols to isolate and analyse 

MVs; work that had not previously been carried out at the Paul O’Gorman 

Leukaemia Research Centre. The calcium ionophore A23187 has widely been 

shown to induce vesicularisation, therefore an adapted method from Limbrick et 

al. was used434. Using established methodologies enabled the data we generated 

to be compared with published data, ensuring that the methodologies used herein 

were suitable.  

Incubating purified RBCs with 1 µM A23187 and 1 mM CaCl2 promotes a 

morphological change, with cells becoming echinocytic (Figure 30a). aRBC-MVs 

are released into the incubating medium and need to be purified from remaining 

RBCs and extracellular Hbb before analysis. To do this, different strategies of 

isolating aRBC-MVs were evaluated, including different centrifugation speeds, or 

the type of precipitation reagent used. The most effective method of isolating 

aRBC-MVs, as judged by MV pellet size, was through differential centrifugation. A 

final spin of 21,000 x G was sufficient to form a compact red pellet. As analysis of 

this pellet by light microscopy revealed no contaminating erythrocytes, it was 

considered an aRBC-MV pellet. 

Flow cytometry has been widely used to characterise EVs358,431, giving 

information both on their size, relative to known bead controls, and surface 

composition. However, due to the small size of EVs, analysis by FACs can be 

problematic due to the instruments not having the resolution to distinguish 

between EVs and noise. Therefore, Megamix-Plus SSC FITC conjugated beads were 

used to ensure the BD FACs Canto II could resolve sub-micron particles. Double 

filtered (0.2 μm) HBSS was used to establish background (Figure 30b-i) and its 

scatter profile was qualitatively different to that that of the bead standard (Figure 

30b-ii). This bead mix, contains 4 different sizes of beads, which resolve as 

individual FITC+ populations, demonstrating the Canto’s ability to resolve sub-

micron particles. MV samples are qualitatively different to HBSS control, as 

demonstrated in Figure 30b-i and Figure 30c-i, indicating MVs had been isolated. 

In addition, they appear positive when probed with an Annexin-FITC conjugate 
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(Figure 30c-ii), demonstrating that the putative aRBC-MVs have exposed PS on 

their surface. Probing MVs with an Annexin-FITC conjugate demonstrated that 

approximately 60 % of the MVs are positive for PS (Figure 30d); this is caused by 

membrane inversion during MV formation and the above data are consistent with 

the literature regarding RBC-MVs364,427. 

 

Figure 30: Generation and analysis of RBC-MVs via FACs.  
a) Morphology change of erythrocyte to echinocyte following incubation with 1 µM A23187; b) 
Calibration of a FACs Canto II using MegaMix™ SSC beads (i) scatter profile of 0.2 µm filtered HBSS 
(instrument background) (ii) scatter profile of MegaMix™ SSC beads in HBSS; c) (i) unstained RBC-
MVs in HBSS, or, (ii) stained for 20 minutes with 1:100 Annexin-FITC conjugate; d) Histogram 
overlaying the FITC (phosphatidylserine positivity) signal of the unstained and stained MVs from (c). 
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Further validation that these putative aRBC-MVs were genuine was sought 

by verifying their size. Analysing the scatter profile of the MegaMix beads allowed 

each individual population to be gated then plotted as a SSC-H histogram. Note 

that while SSC-H is usually a measure of granularity, due to the way the Canto II 

is designed, and the small size of EVs, it is the parameter recommended by the 

manufacturer for estimating size. Using FlowJo software, it is possible to overlay 

these SSC-H histograms in order to produce a “ruler”, by which aRBC-MV size can 

be estimated (Figure 31a). Using this approach, aRBC-MVs appear to be slightly 

smaller than 0.2 µm in size (Figure 31b), however, this is an estimate based on a 

visual comparison to beads and was therefore verified by transmission electron 

microscopy (TEM) (Mrs Margaret Mullen, University of Glasgow). The first TEM 

analysis performed resulted in an “amorphous mass”, with what appeared to be 

aggregated aRBC-MVs (Figure 31c-i). This was caused by particulates in the 4 % 

PFA used to fix the MVs. Filtering the PFA removed all particulates (as observed 

by FACs) and resulted in the observation of individual vesicles (Figure 31c-ii, iii). 

TEM revealed that the vesicles were largely uniform in size (~0.2 µm) and shape 

(circular), verifying the sizes estimated by FACs in Figure 31b. Some discrepancies 

in shape and size were observed (Figure 31c-ii white arrow), however the overall 

distribution appears homogenous.  
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Figure 31: Ionophore induction of vesicularisation results in a homogenous population of 
RBC-MVs that are ~0.2 µm in size.  
a) Individual bead populations are gated, plotted as SSC-H histograms then overlain in FlowJo® to 
create a “size-ruler” which RBC-MVs can be compared; b) The SSC-H histogram of RBC-MVs in 
HBSS are plotted against the “ruler” from (a), RBC-MVs have an approximate size of ~0.18 µm as 
compared to beads; c) TEM of RBC-MVs in unfiltered 4 % PFA (i), TEM of RBC-MVs in 0.2 µm 
filtered 4 % PFA. Note (ii, iii), all TEM images were captures using an FEI Tecnai T20 by Mrs Margaret 
Mullin (University of Glasgow). 
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As aRBC-MVs are derived from erythrocyte membranes, it is possible, using 

SDS-PAGE, to establish any selective loss/gain of protein within MVs by resolving 

erythrocyte membranes pre- and post-vesicularisation and comparing their 

protein profile to aRBC-MVs (Figure 32a). There are few differences between the 

erythrocyte membrane pre- or post-vesicularisation, although the profile of the 

MVs is qualitatively different. As the MVs are self-contained they contain more 

Hbb than the membranes which have been prepared through hypotonic lysis (white 

dashed box). In addition, MVs appear enriched for a protein (red circle) in 

comparison to the membrane preps; this may be stomatin, which has been shown 

to be enriched on aRBC-MVs361. In addition, there are protein bands that are lost 

upon vesicularisation (black arrows), although these do not appear on the MVs. As 

Hbb appears to make up the majority of an RBC-MV proteome a different strategy 

was used to evaluate its protein composition. Although silver stain is a more 

sensitive stain than Coomassie, just changing the staining method would result in 

a disproportionate staining in favour of Hbb. Therefore, to get a better estimation 

of protein profile, aRBC-MVs were re-run, allowing the Hbb to run off the end of 

the gel. The lower abundant proteins were then visualised via silver stain (Figure 

32b). Blotting 20 µg of the same samples, then probing with specific Abs, reveals 

that unsurprisingly, aRBC-MVs contain erythrocyte markers BAND3 and GLY-A; in 

addition, probing with αAGO2 indicates the presence of e-miRNA (Figure 32c). 
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Figure 32: RBC-MVs contain AGO2 and have a protein profile different to RBC membranes.  
a) Resolving 20 µg of RBC ghosts pre- and post-vesicularisation compared to 20 µg of aRBC-MVs 
on a 12 % acrylamide gel and staining with Coomassie; b) Silver stain of 40 µg aRBC-MVs as 
resolved on a 12 % acrylamide gel; c) Immunoblot of 20 µg aRBC-MVs.  

Although AGO2 is present within aRBC-MVs, a western blot doesn’t detail 

which e-miRNA are present. Therefore, qPCR was used to evaluate the 

presence/absence of three e-miRNA, previously reported to be abundant within 

RBCs (FIGURE 13, Appendix 1). As mature miRNA are small and lack a poly(A) tail 

it is not possible to use oligo DT or random hexamers to prepare cDNA. A stem 

loop primer (Applied Biosystems), specific to a single e-miRNA (Figure 4a) was 

used along with the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) to reverse transcribe mature e-miRNA species. Note, this 
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methodology was used instead of the poly(A) tailing methodology employed by 

Qiagen, as the Applied Biosystems method has a higher degree of specificity 

afforded to it through the use of Taqman probes. Representative amplification 

plots observed for e-miRNA extracted from whole erythrocytes and aRBC-MVs are 

detailed in Figure 33b, while Figure 33c confirms the presence of mir92a, mir451 

and mir486 in aRBC-MVs. Note, it is unclear what can be used as a control within 

aRBC-MV, therefore the results reported are the mean raw CT values from three 

independent experiments run in technical triplicate. 

 

Figure 33: RBC-MVs contain miRNA.  
a) Schematic representation of the miRNA luciferase assay; b) Schematic for the Applied Biosystems 
methodology of miRNA RT-qPCR that utilises a stem loop primer and Taqman probe; c) 
Representative qPCR sigmoidal curves for miRNA isolated from whole RBCs and RBC-MVs; d) 
Quantification of miR-451, miR-486 and miR-92a in whole RBCs and RBC-MVs, N=3 with all samples 
analysed in technical triplicate.  

As a proof of concept, aRBC-MVs have been shown to contain e-miRNA, the 
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consensus regarding how blood is to be taken, with the guidelines stated by 
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venepuncture into BD vacutainers containing different anticoagulants (citrate, 

heparin, and EDTA) or into a pro-coagulation vacutainers to generate serum 

(Serum Tubes [BD]). Cells were separated from the plasma via low speed 

centrifugation until the isolated plasma was clear of any contaminating cells when 

observed by light microscopy. As a protocol for MV isolation had not been 

optimised, plasma was analysed directly to see whether it contained a population 

of RBC-MVs and where they lay in relation to the size markers. 5 µL of each sample 

was probed directly with αGLY-A/Annexin and analysed by FACs for the presence 

of noRBC-MVs (Figure 34a). Only blood collected in EDTA tubes contained a 

distinct population that was dual positive for GLY-A and PS, (Figure 34a – red 

boxes). Back gating on this dual positive population and overlaying it with MegaMix 

beads to estimate size, revealed that putative noRBC-MVs are larger than aRBA-

MVs (Figure 34b). To ensure that this population was genuine, and not an EDTA 

artefact, EDTA was spiked into 1 mL of citrate/heparin blood and serum, at a final 

concentration of 10 mM and incubated for 5 minutes at RT. This time point and 

EDTA concentration was chosen to mimic the final EDTA concentration in a 

vacutainer and the duration that samples were kept at RT before processing i.e. 

how the blood was handled that gave the results in Figure 5a. The addition of 

EDTA had no effect on blood anticoagulated with citrate, heparin or serum 

prepared with Serum Tubes, indicating that the GLY-A peak observed is not 

induced by EDTA (Figure 34c). As blood collected in EDTA vacutainers contains a 

distinct population of GLY-A+ submicron vesicles, this was decided as the optimal 

means of collecting blood for the study of noRBC-MVs. 
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Figure 34: Use of EDTA as an anticoagulant when collecting blood results in a distinct 
population of small GLY-A positive particles.  
a) 5 mL venous blood was collected from the same volunteer in K3EDTA, 0.105 M sodium citrate, 
sodium heparin or clot activation BD vacutainers, MV-containing plasma was isolated, stained for 
CD41a and Gly-A then analysed via FACs; b) Using the same voltages as (a) scatter profiles of 
MegaMix™ beads and RBC-MVs are overlain using FlowJo® to estimate size; c) EDTA was spiked 
into 1 mL of blood collected in citrate or heparin vacutainers or non-treated blood (phlebotomy 
performed using a 21-gauge needle and syringe), incubated for 5 minutes at room temperature, and 
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then MVs were isolated and analysed as per (a). Note, final concentration of spiked EDTA was 10 
mM. 

Before noRBC-MVs can be evaluated by western blot or qPCR for the 

presence of e-miRNA, they must first be separated from EXs, or, plasma borne 

miRNA. As exosomes (50 – 100 nm) are smaller than MVs (100 – 1000 nm) 

differential centrifugation is widely used to separate one from the other435. 

However, it became apparent when using this approach, that unlike aRBC-MVs, 

putative noRBC-MVs are highly resistant to centrifugation and remain in plasma, 

even after being centrifuged at 21,000 x G for 30 minutes (Figure 6a). Some 

noRBC-MVs are observed in the pellet (5.8 % of total events), but more than double 

(14.4 %) remain in suspension (Figure 35a – highlighted). However, as there were 

no platelet-MVs (CD41a+) in the plasma post centrifugation, it was considered 

possible to separate noRBC-MVs from exosomes based on size exclusion. To 

achieve this, plasma from EDTA blood was spun through a 0.45 µm spin column, 

then analysed by FACs. Figure 35b demonstrates that the noRBC-MVs are not only 

retained in the spin column, but are enriched ~20 fold from that observed in 

plasma. In addition, the process appears efficient, as no noRBC-MVs are present 

in the flow through. 
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Figure 35: Ex vivo RBC-MVs are resistant to centrifugation and can be collected in a 0.45 µm 
spin column.  
a) 500 µL EDTA plasma was centrifuged for 30 minutes at 21,000 x G, supernatant, pellet and plasma 
pre-centrifugation was stained with CD41a, GLY-A and analysed via FACs; b) 500 µL of EDTA-
plasma, prepared as per Section 2.8.2, was spun through a 0.45 µm cellulose acetate spin column 
(Costar®), reconstituted in 100 µL of HBSS, stained for GLY-A then analysed via FACs – an equal 
volume of column flow through was analysed with samples pre- and post-enrichment. 
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TEM, therefore, noRBC-MVs were isolated as per Figure 35b and sent for TEM 

analysis. While waiting for the results of the TEM analysis, additional work was 

undertaken. Although noRBC-MVs can be concentrated via a spin column, the 

number of events recorded by FACs was low. While AGO2 can be seen by western 

blot in aRBC-MVs, the bands observed are weak and require a 20 µg of protein 

(Figure 32c). Due to this poor sensitivity, functional assays were investigated 

instead.  

With the aim of visualising noRBC-MV phagocytosis in real-time, MVs were 

labelled with CFSE (Figure 36a); note the FACs data shows a single population of 

CFSE positive events that co-stain with GLY-A, verifying erythrocyte origin. These 

putative noRBC-MVs were then co-cultured with macrophages for 24 hours. Next 

day, analysis using live fluorescent microscopy unexpectedly revealed the 

presence of ~4.5 μm CFSE +ve particles in each well. Analysis of the original 

noRBC-MV sample used to inoculate these macrophages revealed the presence of 

similar sized fluorescent particles, indicating they were present when originally 

added to the macrophages (Appendix 17). The presence of these particles was 

unexpected as all MV preparations were visually observed by light microscopy to 

ensure there were no contaminating cells or debris. These particles have now been 

observed multiple times, and in order to illustrate the point made above, a 

specific experiment was performed. Isolated RBCs or noRBC-MVs were probed with 

GLY-A-PE, or stained with CFSE respectively; this separately labelled both 

population red or green. Both populations were spiked together in approximate 

1:1 ratios, then observed by fluorescent and white light microscopy (Figure 36b). 

Using this approach, both populations were visible by fluorescence, but only the 

RBCs were visible by white light. Note that the debris visible in Figure 36b was 

kept, as this acted as a means to immobilise noRBC-MVs. This was important, as 

unlike RBCs, noRBC-MVs do not sediment, making visualisation challenging. 

Although these CFSE particles are not visible by white light, there still may be two 

populations present: a noRBC-MV population that was observed by FACs, in 

addition to a larger population observed by fluorescent microscopy.  

To evaluate if two GLY-A+ populations exist, the original MV prep was re-

analysed by FACs. To ensure a second, larger population wasn’t missed by previous 

FACs analysis, the sample was re-analysed using the original, MV optimised 
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settings, along with those specific for erythrocytes. Analysis of RBCs using voltages 

optimised for erythrocyte analysis resulted in an expected scatter profile (Figure 

36c-i); this profile is the same as observed in Chapter 4 when analysing density 

gradients. However, analysis of the noRBC-MV preparation co-cultured with 

macrophages reveals no large population present (Figure 36c-ii). The only events 

observed are particles too small for analysis at these voltages (Figure 36c – red 

circle). To date, all size estimations have been made in comparison to MegaMix 

beads, while accurate for aRBC-MVs (Figure 31), the same might not be true for 

noRBC-MVs. Therefore, voltages were changed so that whole erythrocytes, 

platelets and noRBC-MVs could be analysed in the same window. Purified RBCs and 

platelets were probed for GLY-A (erythrocytes) or CD41a (platelets), positive 

events gated via histogram and the scatter profiles for each overlain using FlowJo 

to estimate size (Figure 36d). This allows the comparison of putative noRBC-MVs 

to whole cells, including their cell of origin. Comparison reveals, as expected, 

whole erythrocytes are larger than platelets, while the noRBC-MVs are smaller 

than both, which is in concordance with the size estimate when compared to 

MegaMix beads (Figure 34b).  

Why a second, larger population, is visible by fluorescent microscopy is 

unclear. This is not explained with the TEM analysis, as the results failed to detect 

either noRBC-MVs or large particles (Figure 36e). Instead, a high amount of 

filamentous and clumped material was observed. Circular shapes were observed, 

but these were not like the aRBC-MVs observed in Figure 31c-ii. It is unclear what 

these images represent, but they do not appear to represent MV profiles. 
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Figure 36: Ex vivo RBC-MVs are larger than they appear when analysed via FACs.  
a) Ex vivo RBC-MVs were stained with 5 µM CFSE for 30 minutes, co-stained for GLY-A and 
analysed via FACs; b) Isolated RBCs and noRBC-MVs were stained with GLY-A-PE (red) or CFSE 
(green), mixed together in equimolar concentrations and visualised via fluorescent and white light 
microscopy; c) Using voltages suitable for whole cell analysis, RBCs and ex vivo RBC-MVs were 
analysed via FACs; d) Using the same voltages, RBC-MVs, RBCs and platelets were gated via 
histogram using GLY-A or CD41a positivity and overlain using FlowJo®; e) TEM analysis of RBC-
MVs as analysed in panels a-d. Note, all TEM images were captures using an FEI Tecnai T20 by 
Mrs Margaret Mullin (University of Glasgow). Arrow in b) highlights debris. 

In case an artefact had been introduced via the handling described in Figure 

35b, a different methodology of noRBC-MV isolation was employed – FACS. NoRBC-

MVs were sorted based on GLY-A positivity using an Aria cell sorter (BD), resulting 

in a highly concentrated and pure population of noRBC-MVs (Figure 37a). Isolated 
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noRBC-MVs were compared to MegaMix beads, demonstrating the sorted 

population was approximately 0.5 µm in size (Figure 37b). However, analysis of 

this sorted population by fluorescent microscopy again revealed particles that 

were much larger than indicated by FACs (Figure 37c). In addition, TEM analysis 

of this sorted population failed to verify the presence of noRBC-MVs (Figure 37d). 

These results are discussed in depth below.  

 
Figure 37: Ex vivo RBC-MVs are not MVs but instead damaged membrane.  
a) EDTA plasma was stained for GLY-A, and RBC-MVs sorted using a BD FACs Aria III by Miss 
Jennifer Cassells; scatter profiles and Gly-A histograms of samples pre and post sorting are shown; 
b) Using the same voltages, profiles for sorted RBC-MVs and MegaMix beads are generated and 
overlain using FlowJo®; c) GLY-A+ events sorted from (b) visualised via fluorescent microscope; d) 
TEM analysis of GLY-A+ events from (b). Note, all TEM images were captured using an FEI Tecnai 
T20 by Mrs Margaret Mullin (University of Glasgow). 
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 Discussion 

The aim of this chapter was to evaluate if the vesicles produced during 

erythrocyte senescence contain e-miRNA – allowing us to test the hypothesis that 

vesicularisation is the method by which erythrocytes lose AGO2 as they age, 

Chapter 4 (Figure 28). If proven correct, it would raise the possibility that RBC-

MVs could act as vectors, and transfer e-miRNA between different cells; allowing 

us to test a central hypothesis of this study: 

e-miRNA lie dormant within red cells, but regain their functionality as 

translational regulators when they are removed from circulation by splenic 

macrophages. 

 aRBC-MVs 

 As EVs are challenging to work with due to their small size and no 

established EV protocols exist at the Paul O’Gorman Leukaemia Research Centre, 

initial work was carried out using induced RBC-MVs. This allowed EV protocols to 

be developed and, as a proof-of-concept, establish if RBC-MVs can contain e-

miRNA. Widely published protocols for MV induction were used and resulted in a 

population of vesicles that bore all the hallmarks of aRBC-MVs – sub-micron size 

(Figure 31b, Figure 31c) and exposed PS (Figure 30c). Analysis by western blot 

demonstrated the presence of red cell markers (BAND3, GLY-A), while AGO2 was 

also found (Figure 32c). The presence of e-miRNA was confirmed for three 

individual miRNAs (miR92a, miR451, miR486) by qPCR (Figure 33b), proving the 

concept that RBC-MVs can contain miRNA. The next stage was to establish if the 

findings of this artificial system are relevant to what occurs in vivo. 

 NoRBC-MVs 

 As per the guidance published by Hochberg et al., different methods of 

collecting blood were evaluated and revealed EDTA to be the optimal anti-

coagulant for the study of noRBC-MVs (Figure 34a)433. This conclusion was drawn 

as it was the only methodology that revealed particles that were not only of GLY-

A/Annexin positive, but also appeared as a distinct and tight population when 

analysed by FACs. Indeed, comparison of the data generated in Figure 34a is 
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consistent with multiple studies also evaluating noRBC-MVs, suggesting that what 

we were looking at was genuine358,431.  

Discrepancies, between this study and the literature, became apparent 

when methods for isolating noRBC-MVs from plasma were being optimised. This 

optimisation resulted in the finding that the majority of noRBC-MVs remained in 

suspension, despite extended centrifugation at high G-forces (Figure 35a). This 

was incongruous for two reasons: (1) aRBC-MVs, which are at least half the size of 

noRBC-MVs, are readily pelleted at these forces (Figure 31); (2) there is no 

mention of this within the literature. A potential explanation for the latter is that, 

in all the studies evaluating isolated noRBC-MVs, none look at the efficiency of 

the isolation i.e. no study evaluated the plasma pre- and post-centrifugation. It 

was only by performing this analysis in Figure 35a that it became apparent that 

noRBC-MVs are centrifugation-resistant, and the majority remain in suspension. 

Note that although a small amount of noRBC-MVs were present in the pellet, 

increased centrifugation times, or re-spinning depleted plasma did not remove the 

centrifugation-resistant population. The degree of centrifugal resistance was not 

established, for example, ultracentrifugation at higher speeds may pellet the 

population of noRBC-MVs. However, the purpose of this experiment was to 

establish a technique which only purifies noRBC-MVs and ultracentrifugation would 

also isolate EX, therefore it was not pursued. 

The main discrepancy came with the revelation that putative noRBC-MVs 

were much larger than they appeared by FACs (Figure 36a/b). This observation 

was not an artefact of isolation as “noRBC-MVs” were prepared by two different 

methods which yielded the same phenomenon (Figure 37c/d). Indeed, the sorting 

experiment confirms the small “noRBC-MVs” observed by FACs are one and the 

same as the large particles observed via fluorescent microscopy. To date, this 

observation has not been reported by any study; what they are, the cause of the 

size discrepancy and its relevance to the literature is discussed below. 

 What are these particles?  

Although it is not known definitively what these particles are, it is not 

thought that they are experimental artefacts. For example, it is not possible for 

this to be an artefact induced by FACs, as analysis of unsorted stocks, or samples 
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not analysed by FACs, show the same large particles to be present. It is unlikely 

that these large particles are MV aggregates, as if so, they would be visible by 

FACs (Figure 36c) and TEM (Figure 36e and 37d), which they are not. 

Furthermore, if aggregates, one would expect particles to exhibit heterogeneity 

in size, morphology and complexity. However, the images in Figures 36e and 37d 

do not display this and instead show these particles to be relatively homogenous 

in size, regular in shape (circular), smooth (not complex) and singular (not 

discontinuous or “grape” like). Although conjecture, at present, there appears 

only one explanation that accounts for what is being observed: these large 

particles are erythrocyte ghosts, or, damaged erythrocyte membranes. Ghosts are 

RBCs that have undergone lysis but have reformed, retaining some of the original 

morphology of erythrocytes436,437. They are so called due to their ethereal (ghost-

like) nature when visualised i.e. translucent, not red. Indeed, evaluation of 

multiple papers demonstrates, that while visible, RBC ghosts are not easy to 

detect by white light and are usually highlighted in various publications, or have 

been visualised using special conditions. This is similar with Figure 36b where the 

large particles observed in this study are not readily detectable via white light but 

only following fluorescent staining.  

 Why is there a discrepancy between methods? 

If these particles are ghosts, or ghost-like particles, this would explain the 

morphology observed in Figure 36b and the GLY-A positivity in Figure 36a. It was 

observed in Chapter 4 that PFA fixation causes erythrocytes to lyse, if a ghost, 

they may also have a sensitivity to PFA fixation, which may be a reason the TEM 

images in Figure 36e are so “messy” and do not detect them. Part of an 

erythrocyte’s characteristics is its ability to deform in order to “squeeze” through 

small capillaries. For example, Branemark et al. demonstrated that RBCs 

(measured at 7 µm) were able deform in order to fit through a capillary with a 

diameter of 4 µm438. This deformability is a potential explanation for the 

discrepancy observed between the fluorescence microscopy and the FACs. When 

observed by microscopy there is no force exerted on these particles, so they adopt 

their natural “relaxed” conformation. When analysed by FACs they are under flow 

conditions, where a force is being exerted this may cause them to deform and 

contract.  
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This is not an unreasonable suggestion as intact erythrocytes have been 

shown to dramatically change morphology depending on the conditions they are 

in. For example, by changing the shear force, Schonbein et al. demonstrated that 

erythrocytes could adopt multiple different morphologies, specifically, elongation 

as they “tank treaded”439,440. This and other morphological changes have been 

observed in multiple studies, and the effect cell deformation has on scatter 

detection by FACs is unclear. Work was performed to establish if flow rates could 

affect the “size” of these particles by changing the flow rate of the cytometer 

(data not shown). Although the particles did not appear to change in size, the 

experiment was crude. For example, it is only possible to change the flow rate 

between low, medium and high, which corresponds to a flow rate range of 10 – 

120 µL / min. The forces exerted at these rates are not stated and low flow may 

already be causing these particles to deform/contract. Indeed, as referenced 

above, RBC deformation/contraction has been observed both in vivo and in vitro 

under flow conditions, that ghosts are more susceptible to external forces than 

intact RBCs is not unreasonable. Although this idea has not been proven, this 

observation by itself raises multiple questions: 

 Why has this not been seen before? 

 There are currently 21 studies evaluating noRBC-MVs - why has this 

phenomenon not been reported before? The most likely reason for this is that the 

scope of most studies is one of characterisation. This study was to evaluate 

function, which is why these noRBC-MVs were CFSE labelled and this size 

discrepancy identified. Most studies rely on FACs to characterise their noRBC-MVs 

and there is no reason for them to perform fluorescent microscopy – meaning this 

observation has simply been missed. Indeed, on the face of it, when it comes to 

the distribution and FACs profiles, these studies largely agree with each other and 

the data in Figure 34a/36c360,441–443. This means it is easy to draw parity to other 

studies and overlook any discrepancies. In addition, a lot of studies, especially 

earlier ones, are missing critical controls. For example, the FACs study by Larson 

et al. omitted their gating strategies, while the study by Sewify et al., despite 

being based on FACs, showed no gating strategies, dot plots or histograms, just 

tabulated counts444,445. In addition, the vast majority of noRBC-MVs studies do not 

use a non-FACs based technique to verify the population of interest are indeed 

MV446. This is surprising as TEM is the gold standard in EV research and is routinely 
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used to verify EV presence. One of the few studies to perform TEM on noRBC-MVs 

was performed by Willekens et al. however, as they pelleted whole plasma, which 

does not discriminate from other MVs present, the verification is of limited use357.  

 Is this discrepancy genuine and is it relevant? 

 Although the combined evidence in this chapter indicates that this observed 

discrepancy is genuine, it has not definitively been proven that the small particles 

observed by FACs are the same as the large ones observed by microscopy. 

However, due to the relevance of this observation to so many studies, it warrants 

further investigation. The idea that the shear force exerted on these particles 

during FACs causes deformability is plausible, but untestable. A collaboration with 

Prof Thomas Franke from the School of Engineering (University of Glasgow) has 

been established, but work has not been completed. The Franke group combines 

microfluidics and microscopy to observe the deformation of erythrocytes under 

different flow conditions. Applying their technology with the question at hand 

would allow a subtler manipulation of flow parameters than afforded by the Canto 

II and discussed above. If the hypothesis is correct, then it should be possible to 

detect any particle deformation in real-time simply by changing the flow rate. 

Unfortunately, erythrocyte deformation is observed by microscopy, which is not 

compatible with these particles due to difficulty in observing them by this method 

(Figure 36b). At present the microscope in this Franke laboratory is not 

fluorescent, but is in the process of being upgraded/replaced, meaning that this 

is a viable option to pursue with future experiments. 

 For absolute clarity, it is not the position of this author that all functional 

“noRBC-MV” studies are erroneous. For example, “noRBC-MVs” are generally 

associated with pro-coagulation properties374,426. This may well be accurate, as 

the artificial particles prepared by Ahn et al., which are more similar in size to 

the “noRBC-MVs” observed above (range of 50 nm – 3000 nm), do positively affect 

coagulation428. These ghost-like particles may well be relevant in different 

conditions as suggested by multiple studies. However, as this study was to 

evaluate noRBC-MVs, and ultimately compare their properties to aRBC-MVs, then 

this phenomena is not applicable to this study. 
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 What does it mean for this project 

 As it was not possible to purify noRBC-MVs, they were no longer pursued. 

Instead, as aRBC-MVs have been verified (Figure 30 & 31) and shown to contain 

miRNA (Figure 32 & 33) they were used as an alternative source. In the context 

of the original question, ionophore induced MVs were termed artificial, however, 

these MVs have been shown to be almost identical to the MVs produced when blood 

units are stored by the transfusion service447, making them an ideal source for the 

rest of this study. Although an artefact caused by prolonged storage, they are 

genuine and there is a clinical interest in the reports that link aged blood products 

to  side effects post RBC transfusion. Therefore, using an aRBC-MV model not only 

allows the transfer of e-miRNA to be established as a proof-of-concept, it also 

allows a clinical angle to be pursued. The next stage of this investigation was to 

establish an aRBC-MV endo-phagocytosis model to pursue this aim, which is 

detailed in Chapter 4.
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 Generation of an RBC-MV endo-
phagocytic model  

 Introduction 

The main purpose of this project was to explore the possibility that 

erythrocytic microRNA (e-miRNA) had a novel function within mature 

erythrocytes. To evaluate this, work in Chapter 3 attempted to establish what 

AGO2 interacts with in RBCs. However, candidate interactors suggested by 

previous proteomics (BAND3, FIB) could not be verified, while AGO2 pull-downs 

performed by this student identified only a higher molecular weight AGO2, not 

any interacting proteins. Through the use of density gradients in Chapter 4, it was 

demonstrated that AGO2 was lost as erythrocytes age. As e-miRNA are membrane-

associated, and RBCs are postulated to lose membrane via vesicularisation during 

aging, it was hypothesised that e-miRNA loss coincided with vesicularisation. 

Although e-miRNA were detected in induced MVs, proving the concept, noRBC-MVs 

could not be detected in plasma, precluding our ability to verify our initial 

hypothesis (Chapter 3). As it is possible to use the clinically relevant aRBC-MVs as 

a proof-of-concept for e-miRNA transfer, it was decided to pursue both the e-

miRNA and a clinical angle at the same time. The clinical relevance of aRBC-MVs 

is as follows: 

The transfusion of RBCs within hospitals is common with approximately 6000 

units required daily in England alone336. However, during storage, erythrocytes 

undergo a variety of morphological and biochemical changes. Biochemically, 

glycolytic components 2,3-DPG and ATP decrease over time, while the pH falls 

due to increased levels of lactic acid344,345. During these biochemical changes, 

erythrocytes change from classical biconcave discoids to echinocytes and finally 

spherocytes. Echinocytes feature multiple membranous arms called spicules from 

which MVs are released into the storage medium347. These MVs are transfused 

along with the blood unit and are reported to increase in number the longer a unit 

is stored448. 

Complications relating to the age of transfused RBC units, or the breakdown 

products they contain, have been hotly debated within the literature for decades. 

Some studies indicate these factors have no deleterious effects on patients, while 
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others correlate it to increased morbidity and mortality369,370. The most recent 

meta-analysis used a Grading of Recommendations, Assessment, Development and 

Evaluations (GRADE) approach to score multiple different studies based on the 

validity and strength of the data449. They report, with moderate degrees of 

certainty, that transfusion of aged cells is not linked to mortality450. However, 

they were less confident with the link between transfusion and nosocomial 

infection or adverse events e.g. acute transfusion reactions, seizures, renal or 

urinary events. While they report that aged cells do not cause adverse events, this 

is reported with only low degrees of certainty. Furthermore, a limitation/concern 

the authors raised in this study, is that it does not address the number of 

transfusions received. This is especially important as multiple studies, even those 

that report no  side effect regarding the transfusion of aged cells, suggest a dose 

effect may exist370.  

A confounding factor for all meta-analyses are the multiple different 

variables that exist between studies, e.g. enrolment criteria (age, disease), blood 

processing (whole blood versus leuko-depleted), blood storage media (SAGM, MAP) 

etc. In addition, these clinical trials usually have particularly binary end points 

e.g. death. While undoubtedly important, this can make studies black and white, 

when transfusion effects may be more nuanced. On the other hand, using adverse 

events as end points i.e., increased hospital stay, inflammation, risk of nosocomial 

infection etc. is very broad, meaning any subtle side effect caused by transfusion 

may be lost. 

A different, and less biased methodology, is to remove the pre-set end points 

and objectively observe what occurs upon transfusion. As it is known what occurs 

to RBCs during storage, it is possible to isolate a storage artefact of interest and 

evaluate how “x” cell/patient responds. MVs were chosen as they have been 

shown to accumulate during storage and in other models have been shown to cause 

or be associated with symptoms of disease/inflammation421; in addition, work 

detailed within Chapter 3 has already enabled us to fully characterise erythrocyte-

derived MVs. As it has been reported that RBC-MVs localise within Kupffer cells 

following transfusion392 – we asked the relatively simple and unbiased question: 

How do macrophages respond to RBC-MVs? 
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 Results  

To evaluate the response of macrophages to RBC-MVs, macrophages were 

first generated through the in vitro differentiation of CD14+ peripheral blood 

monocytes. As detailed in Figure 38a, CD14+ monocytes from peripheral blood 

(small scale) or buffy coats purchased from the SNBTS (large scale) were isolated 

using magnetic microbeads (Miltenyi). With a media change at day 3 (D3) and D5, 

isolated monocytes were differentiated in the presence of recombinant human 

(rh)GM-CSF or, rhM-CSF for seven days to generate M0 macrophages; different 

cytokines were used at this stage as it was reported that differentiation with GM-

CSF resulted in a stronger M1 phenotype, while M-CSF produced a stronger M2 

phenotype451. M0 macrophages, generated with either GM-CSF-M0 (gM0) or M-CSF-

M0 (mM0), were phenotyped via FACs for the presence of M1 (CD80, CD86) and M2 

(CD206, CD163) markers to get a baseline reading (Figure 38b). gM0 macrophages 

are chimeric and possess M1 and M2 markers, while mM0 markers appear more 

phenotypically distinct with most cells being dual positive for M2 markers with 

only a low expression of M1 markers.  
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a)  Macrophage generation schematic 
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Figure 38: Generation of macrophages from isolated CD14+ monocytes.  
a) Purified CD14+ monocytes are incubated with rhGM-CSF or rhM-CSF (100 ng/mL) for 7 days then 
polarised towards an M1, M2a or M2c phenotype for two days using IFN-γ (20 ng/mL) + LPS (50 
ng/mL), IL-4 (20 ng/mL) or dexamethasone (2 x 10-7 M) respectively; b) Representative FACs results 
when phenotyping macrophages for M1 (CD80/CD86) or M2 (CD163/CD206) markers at D7. 

 

Macrophages were polarised towards an M1 (inflammatory) or M2 (tissue 

repair) phenotype to mimic the transfusion of patients with, or without an 

underlying inflammatory condition i.e. graft versus host disease (GVHD) or 

surgery. These broad phenotypes were chosen because, as macrophage phenotype 

corresponds to function, it is possible that these two phenotypes may respond 

differently to RBC-MVs; as both are clinically relevant, both were evaluated. M1 

macrophages were generated through polarisation of gM0 macrophages with IFN-

γ and LPS to achieve macrophages with a pro-inflammatory phenotype. 

“Alternatively” activated macrophages (M2) were generated through the 

polarisation of mM0 macrophages with IL-4 or dexamethasone (DEX) to generate 

macrophages with a tissue repair phenotype. Following 2 days polarisation, 

macrophages were again phenotyped for M1 and M2 markers via FACs – 

representative FACs plots for macrophages polarised with IFN-γ + LPS, IL-4 or DEX 

are detailed in Figures 39a-c. gM0 polarised macrophages have a strong M1 

phenotype, with all cells dual positive for CD80 + CD86 (M1 markers), but only ~12 

% dual positive for CD206 + CD163 (M2 markers). Interestingly, IL-4 polarised 

macrophages resulted in ~ 40 % macrophages being chimeric (dual positive for M1 

and M2 markers), while DEX dampened this M1 response and maintained the M2 

phenotype (Figure 39d). As IFN-γ + LPS or DEX polarised macrophages appear to 

be phenotypically distinct, they were used in the following sections. 
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Figure 39: IL-4 treatment generates chimeric macrophages while DEX treatment stimulates a 
pure M2 phenotype.  
a - c) Representative FACs results when phenotyping polarised macrophages (D9) for M1 or M2 
markers; d) Average number of macrophages dual positive for M1 or M2 markers after 2 days 
polarisation (D9). 
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In addition to generating a strong M2 phenotype, DEX treatment has been 

reported to induce the expression of HO1 and FER in monocytes. These two 

proteins are responsible for the breakdown of haem and export of recycled iron 

respectively; two essential components of erythrocyte turnover. Comparison of 

gene expression levels between mM0 and DEX treated macrophages revealed that 

HO1 was not induced, while FER showed a ~ 150-fold increase (Figure 40b); note, 

although DEX did not induce HO1, it was highly expressed (CT = 19). This data, 

coupled with Figure 39c, demonstrates that not only does DEX polarisation result 

in a strong M2 phenotype, but this phenotype appears primed for erythrocyte 

turnover and matches the profile of hepatic/splenic macrophages452. A caveat of 

DEX treatment is its potential toxicity with one report indicating it  being toxic to 

macrophages453. However, 48 Hr treatment of macrophages with DEX did not 

appear to cause cell death (Figure 40c). This conclusion was drawn, as while there 

was a low amount of cell death (10 % ± 9 %; N=3), there was no shift in Annexin 

staining (3.83 % ± 0.5 %; N=3) which would be indicative of DEX inducing cell death. 

The profile displayed in Figure 40c is binary, the cells are either dead (dual 

positive for DAPI and Annexin) or alive (negative for both).  

Additionally, DEX treatment results in macrophages that are 

morphologically distinct from M1 macrophages (Figure 40d). At D7 gM0 

macrophages are amoeboid in shape while mM0 cells are more fibroblastic. 

Following polarisation, the morphology for both phenotypes changes, M1 cells 

become fibroblastic and M2 cells become amoeboid; this morphological distinction 

is consistent with what was observed by Porcheray et al.454. Having established 

the differentiation of monocytes to cells resembling features of Kupffer-like 

macrophages (klM) and macrophages (M1) bearing an inflammatory phenotype, 

the next step was to evaluate if they interacted with RBC-MVs. 
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Figure 40: DEX polarisation generates macrophages that are Kupffer-like and does not 
cause cell death.  
a) Agarose electrophoresis of PCR products generated using haem oxygenase-1 (HO1) and 
ferroportin (FER) primers reported by Vallelian. F et al455 – BLAST predicted amplicon sizes are in 
white; b) Fold enrichment of HO1 and FER of D9 macrophages (DEX polarised) versus unpolarised 
macrophages – expression normalised against B2M and fold change calculated using 2^-ΔΔCt 
(N=2); c) Apoptosis analysis of macrophages polarised with DEX (D9) using Annexin-V FITC and 
DAPI – average number of live (dual negative), early apoptotic (Annexin-V+) and apoptotic cells 
(DAPI+ and Annexin-V+) plotted on a bar graph; d) Representative white light images of live M1 and 
M2 macrophages at D7 and D9. 
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A common method of evaluating the interaction of EVs with “X” cell of 

interest is to stain EVs with a lipophilic dye e.g. PKH26456. However, labelling with 

this method was highly degrading to RBC-MVs, and thus not suitable for future 

applications (Appendix 16). Therefore, a different method to determine RBC-MV 

macrophage interactions was employed: immunofluorescence for Hbb. Although 

this method is comparatively longer than using PKH26, it has two advantages over 

the previous technique: (1) Specificity; Hbb is not expressed in macrophages, 

meaning that any Hbb signal detected by IF could only come from internalised 

RBC-MVs. (2) A concern of lipophilic dyes such as PKH26 is that they may be 

released during phagic processing, where they may non-specifically stain a cellular 

organelle, resulting in false positives. An additional concern raised regarding the 

PKH26 method of labelling is that it introduces foreign matter into the vesicle of 

interest and there is no way of controlling how this affects vesicle 

recognition/internalisation/processing. As IF detects RBC-MVs post any RBC-MV 

macrophage interaction, this concern is eliminated.  

To mimic blood being transfused into a patient with either underlying 

inflammation (GVHD), or those with no underlying inflammation (e.g. surgery 

patients), RBC-MVs were added to M1 and klM macrophages and allowed to 

interact overnight. The Hbb antibody (Santa Cruz) was first tested for non-specific 

staining and results indicate that it does not react with the no RBC-MV control, 

demonstrating its suitability to detect RBC-MVs (Figure 41a-i). With the addition 

of RBC-MVs, M1 macrophages do not appear to interact with RBC-MVs (Figure 41a-

iii). mM0 macrophages appear to interact with RBC-MVs in a non-specific manner, 

as indicated in the diffuse appearance of Hbb within these cells (Figure 41a-ii). 

This contrasts with the klM macrophages which contain a large amount of 

internalised Hbb that appears highly concentrated within a more defined area of 

the cytoplasm (Figure 41a-iv). This is particularly interesting as the FACs profile 

of mM0 and klM macrophages are very similar – with high expression of CD163, 

CD206 and low expression of CD80, CD86 (Figure 38b Vs Figure 39c); why this may 

affect RBC-MV internalisation is unclear, but is discussed later.  
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Figure 41: RBC-MVs are preferentially internalised by klM.  
a) M0, M1 or hl macrophages were incubated with 2.5 µg of RBC-MVs overnight, fixed and permed, 
then probed for actin (phalloidin) haemoglobin-β (α-Hbb) or DNA (DAPI) then visualised via 
epifluorescence; b) Sections highlighted in (a) were digitally enlarged to see the distribution of signal 
more clearly; Scale bar = 50 µm.  
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The inability of M1 macrophages to internalise RBC-MVs is not due to these 

cells being defective as they readily internalise fluorescently labelled E. coli 

BioParticles® (Invitrogen, Figure 42a). Conversely, the presence of Hbb within klM 

is an active endo-phagocytic process and not RBC-MVs fusing with macrophages 

membranes. This can be concluded as the inhibition of actin-rearrangement with 

cytochalasin-D abrogates Hbb signal, meaning that RBC-MVs are actively taken up 

by the cell (Figure 42b). Furthermore, the likelihood that the Hbb signal is an 

artefact and not from genuine RBC-MVs is low, as the Hbb signal co-localises with 

BAND3 – another RBC-MV marker that is not present within macrophages (Figure 

42c).  



169 
 

 

Figure 42: Failure of M1 macrophages to internalise RBC-MVs is not due to a functionality 
defect while klM actively endocytose RBC-MVs.  
a) M1 macrophages where incubated with 9 x 106 K12 BioParticles overnight then visualised via 
epifluorescence; b) klM were incubated with 2.5 µg of RBC-MVs overnight in the presence or 
absence of 0.2 µg / mL cytochalasin-D then probed with α-Hbb and visualised via epifluorescence; 
c) klM were incubated with 2.5 µg of RBC-MVs overnight then probed with α-Hbb and α-BAND3 then 
visualised via epifluorescence. Scale bar = 20 µm. 
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While RBC-MVs can readily be detected within klM macrophages after an 

overnight incubation, this does not detail how quickly they are recognised and 

internalised. To establish the dynamics of this process, a time course was carried 

out where IF was performed on macrophages that had interacted with RBC-MVs 

for 0.5, 1, 2, 5, 6 and 24 Hrs (Figure 43). To enable comparison, all images were 

taken at the same exposure as the overnight control – 2 seconds; in addition, the 

brightness and contrast settings between the images were kept the same. 

Furthermore, as all macrophages were grown on LabTek II 8-well chambered 

slides, imaging bias was avoided by imaging each condition via several fields of 

view in the same approximate well area – i.e. images taken randomly in the top 

left, top right corner, bottom left, bottom right corner and the well centre. 

Qualitatively, the signal distribution between 6 Hrs and overnight is similar: both 

show concentrated Hbb within the cytoplasm, although the concentration appears 

more intense in the overnight sample. Quantitatively, there is more Hbb present 

within the overnight sample than there is in the 6 Hr incubation, little 

internalisation is observed at 4 Hrs and none is observed with the shorter 

incubation times (0.5, 1 and 2 Hrs).  
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Figure 43: RBC-MVs are visually internalised within macrophages after 6 hours as depicted 
by Hbb staining.  
klM were incubated with 2.5 µg of RBC-MVs overnight, for 0.5, 1, 2, 4 and 6hours, probed with α-
Hbb and visualised via epifluorescence. Exposure time settings between samples were kept 
constant. ON; overnight. White arrows highlight RBC-MVs. Scale bar = 20 µm. 

To establish what occurs to the Hbb distribution following longer incubation 

periods, the incubation time was extended to 48 and 72 Hrs (Figure 44a). There 

appears little difference either qualitatively or quantitatively regarding the Hbb 

distribution or intensity in macrophages at the longer time points. Hbb signal 

continues to be visible within the cytoplasm, but there is no apparent increase at 

later time points. As it is not clear if the Hbb seen at 24 Hrs is the same as the 

Hbb observed 72 Hrs, i.e. RBC-MVs were internalised but not processed, a chase 

experiment was performed (Figure 44b). During this experiment, macrophages 

were pulsed for 24 Hrs with RBC-MVs; a time point where Hbb could easily be 

detected by IF. The media and residual RBC-MVs were removed and macrophages 

washed thoroughly, given fresh media and allowed to process/respond to the 
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internalised MVs for a further 24 to 48 Hrs. After a 24 Hr chase, nearly all 

previously detectable Hbb signal was lost – indicating that the macrophages were 

either digesting, processing, or excreting these RBC-MVs. As these macrophages 

appear to have an erythrocyte turnover phenotype (splenic-like), it was concluded 

that the most likely explanation was that the RBC-MVs were being degraded.  

 

Figure 44: Increasing incubation times does not result in an increase in internalised RBC-
MVs.  

a)  Signal intensity does not increase over time 
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a) klM were incubated with 2.5 µg of RBC-MVs for 24, 48 or 72 Hrs, probed with α-Hbb then 
visualised via epifluorescence – exposure times between experiments were identical. b) klM were 
incubated with 2.5 µg of RBC-MVs for 24 Hrs, washed, refreshed with new media and incubated for 
a further 24 hours before being probed with α-Hbb and visualised via epifluorescence. ON; overnight. 
Scale bar a) = 20 µm, b) = 50 µm. 

One of the key points of interest for transfusion-related problems is that of 

dose: does an increase in transfusion number, or amount of transfusion artefacts, 

positively correlate with adverse events? With that in mind, an experiment was 

performed where differing amounts of RBC-MVs, as quantified by Bradford, were 

incubated with a set number of macrophages. Doubling the dose of RBC-MVs from 

2.5 to 5 µg results in a modest increase in Hbb signal observed by IF (Figure 45). 

However, increasing dose again by 5-fold (25 µg) does not result in a further 

increase of Hbb signal (Figure 45). Although there is a slight increase in signal 

observed when doubling the dose, there does not appear to be a linear relationship 

between dose and signal. Further increasing this dose does not affect signal, 

indicating equilibrium between uptake and processing has been reached; 

macrophages were incubated with lower amounts of MVs, but they were not 

readily detected, suggesting the 2.5 µg dose is the limit of detection for this 

system.  
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Figure 45: RBC-MV internalisation has a maximum MV dose 
klM were incubated with 2.5, 5 or 25 µg of RBC-MVs for 24 Hrs, probed with α-Hbb then visualised 
via epifluorescence – exposure times between experiments were identical. Scale bar = 50 µm. 

To evaluate if MVs were being degraded, different endocytic and 

phagocytic markers were evaluated to see if they co-localised with the Hbb signal. 

LC3, a marker of autophagic vacuoles, is reported to be involved not only with 

canonical autophagy, but also in the turnover of various bacteria457. While RBC-

MVs are not pathogens, they are still extracellular and how a macrophage responds 

to them is unknown; therefore, an RBC-MV/autophagosome interaction was 

evaluated. Although LC3b was readily detected within the cytoplasm, it did not 

co-localise with RBC-MVs (Figure 46a). In addition, basal levels of LC3 did not 

increase, or change localisation (form distinct autophagosomes) when RBC-MVs 

were present. 

When recycled during homeostasis, haemoglobin is broken down into haem 

(porphyrin ring) and the globin peptides in a phagolysosome. The haem is exported 
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to the cytoplasm and broken down into biliverdin by HO1, releasing ferrous iron, 

which is exported and recycled327,458. Perls’ Prussian blue stain is used to detect 

iron stores (haemosiderin) in bone marrow trephines and was therefore used to 

detect haemosiderin in macrophages incubated with RBC-MVs (Figure 46b). We 

therefore made use of the expertise of the NHS as this test is routinely performed 

by the Haematology Department of Gartnaval General Hospital. However, no 

haemosiderin was detected in macrophages that had been incubated with RBC-

MVs. A potential explanation for this is that the haemosiderin present is below the 

limit of sensitivity of the assay, or, the iron is present as ferritin, which is 

undetectable by Perl’s stain. 

 

Figure 46: RBC-MVs does not appear to be degraded via autophagy and free iron cannot be 
detected via Perl’s stain.  
a) klM were incubated with 2.5 µg of RBC-MVs for 24 hours, probed with α-Hbb and α-LC3, then 
visualised via epifluorescence; b) klM were incubated with 2.5 µg of RBC-MVs for 24 fixed for 10 
minutes with ice cold methanol and probed for free iron using Perl’s Prussian blue stain. Perl’s 
staining was performed by the Haemotology Department of Gartnaval General Hospital. Scale bar  
= 10 µm 

An additional method of evaluating degradation was performed through the 

detection of lysosomes. If a macrophage was responding to RBC-MVs by degrading 
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them, then it might be possible to visualise an increase in lysosome number, or, a 

distribution similar to RBC-MVs would be observed. Acridine orange (AO) is a live 

stain that passively diffuses into cells and emits green fluorescence at neutral pH 

(cytoplasm) and red fluorescence in acidic vacuoles (lysosomes); an advantage to 

this compound is that it also stains nuclei (Figure 47a). Overlaying green and red 

exposures reveals the location of lysosomes and, although there is no difference 

in number or location of lysosomes in macrophages with or without RBC-MVs, a 

large vacuole was detected (Figure 47a, arrow). In addition, the vacuole 

fluoresces neither green nor red indicating an AO penetration issue. Cells appear 

to mostly have one vacuole, although some cells do contain two smaller vacuoles. 

Although this vacuole is present in macrophages with or without RBC-MVs, 

demonstrating it’s not induced, the pattern that RBC-MVs adopt following 

internalisation (Figure 44a) suggests they may be present within this vacuole. 

However, AO is not compatible with IF as it does not persist through fixation or 

permeabilisation. Therefore, it is not possible to evaluate this hypothesis by 

combining IF and AO. A potential explanation for this vacuole is that it is a sorting 

endosome - an endosome that acts as triage before internalised cargo are 

recycled, degraded or sent to the Golgi459. As RAB5 is a marker of sorting 

endosomes, IF was performed to see if this secondary structure could be observed, 

and, if it co-localised with RBC-MVs (Figure 47b). Although RAB5 was readily 

detected within the cytoplasm, no secondary structure was detected, indicating 

that this vacuole is unlikely to be a sorting endosome.  
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Figure 47: klM contain a large non-acidic vacuole that does not co-localise with sorting 
endosome markers.  
a) klM without RBC-MVs were live stained with 1 µM acridine orange for 15 minutes, washed twice, 
resuspended in warm PBS and visualised via epifluorescence; klM were incubated with 2.5 µg of 
RBC-MVs for 24 Hrs then probed with α-Hbb and the sorting endosome marker α-RAB5 and 
visualised via epifluorescence. Note, the acridine orange fluoresces at different wavelengths 
dependent on pH so the reported images were acquired by visualising acridine orange with different 
filters. Scale bar = 20 µm 

While intriguing, the main question to be answered from these experiments 

was: how do klM respond to RBC-MVs? Therefore, the experiments used to develop 

an RBC-MV endocytosis model (Figure 38 – 44) were used to prepare samples ready 

for unbiased analyses: RNAseq and cytokine profiling. Figure 48a details the 

experimental outline, in which macrophages are incubated with RBC-MVs 

overnight, washed and allowed to process internalised MVs for a further 24 Hrs 

(Dig). Control time points collected samples from cells without MVs at the same 

time RBC-MVs were added to macrophages overnight (D0), or, when the overnight 
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(D1) and Dig (D2) samples were processed. This allowed the comparison of 

macrophages unexposed to RBC-MVs to macrophages with internalised MVs and 

those that had processed them – theoretically allowing us to establish how 

macrophages respond to RBC-MVs (Figure 48a).  

RNA was extracted at each time point as depicted in Figure 48a. The quality 

of these samples was assessed by Glasgow Polyomics via the calculation of an RNA 

integrity number (RIN) using an Agilent Bioanalyzer. All samples processed for 

RNAseq had a RIN of > 9.5 (Figure 48b-i); note one set of samples exhibited 

degradation (Figure 48b-ii), so an additional set was prepared. In addition to RIN 

calculation, RNA quality was tested via qPCR of macrophage markers. Although 

one sample set exhibited low RIN scores (Figure 48b-ii), when analysed by qPCR 

there was little difference in the CT value of ENOX, TYW1 or B2M housekeeping 

genes (Figure 48c), indicating that while the discarded sample set was not suitable 

for RNAseq, it was suitable for qPCR analysis. All markers tested by qPCR were 

present with little variability in expression observed (Figure 48d). This data 

indicated the generation of samples suitable for RNAseq, so they were submitted 

to Glasgow Polyomics for single end sequencing (75 bp).  
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Figure 48: RNAseq experimental design and QC.  
a) Schematic detailing the experimental design when generating RNA, protein and media samples 
to be used for RNAseq, immunoblots and cytokine profiing respectively; b) Representative “good” 
and “bad” electrograms generated by a Bioanalyser for RNA extracted from macrophages – all 
samples that had a RIN of > 9.5 were sent for RNAseq, those with values < 8 were not; c) CT values 
for three housekeeping genes as generated by qPCR from macrophages plotted as a box plot; d) 
Heat map generated by the Biomark HD when analysing macrophage samples via qPCR; e) Average 
delta CT values for 8 macrophage markers for each sample from each sample set -NAB2 = NGFI-A 
binding protein 2, CATD = cathepsin D, IL-7R = interleukin 7 receptor, EGR1 = early growth response 
1, FER = ferroportin, HO = haem oxygenase 1, EGR2 = early growth response 2, G-CSFR = 
granulocyte-colony stimulating factor receptor, IRF8 = interferon regulatory factor 8. Note, each 
sample was run in technical triplicate.   

Now that an endocytosis /phagocytosis model had been developed, it was 

possible to revisit the possibility of e-miRNA functioning within a different cell. 

Three experimental approaches were taken, luciferase assay, qPCR and IF. 

pmirGlo is a dual luciferase reporter that contains a sequence complementary to 

a miRNA of choice within the 3’ UTR of firefly luciferase (fLUC); the second 

luciferase (renilla) is used as a normaliser. Cells that contain miRNA whose 

sequence is present in fLUC’s 3’UTR silence its expression, while cells that don’t 

express that miRNA emit light. Using this methodology, it is possible to establish 

the functionality of individual miRNA. However, although 5 constructs were 

successfully cloned and sequenced, it was not possible to perform the assay as all 

transfection methodologies used (electroporation, lipofection, calcium phosphate 

or polyethylenimine) resulted in either complete cell death, or failed to transfect 

klM.  

The second methodology utilised qPCR analysis of genes predicted to be 

targeted by miR-451. This e-miRNA was chosen due to its high abundance, while 

TargetScan and DIANA were the algorithms used to predict targets460,461. To ensure 

a robust candidate prediction, only target genes predicted by both algorithms (13) 

were chosen (Figure 49a); of these, 8 were expressed in the red pulp of the spleen 

(Tissue Atlas), an area enriched for macrophages with a red cell turnover 

phenotype. Note that 14-3-3-ζ is a validated target of miR-451, but was predicted 

by neither algorithm255. As silencing of 14-3-3-ζ is reported to lead to erythroid 

blasts being protected from oxidative stress, a potential benefit to klM 

internalising material likely containing ROS, this target was also chosen. Target 

expression and primer specificity were tested by amplifying cDNA from klM and 

resolving the products on a 2 % agarose gel (Figure 49b); PSMB8 and LYSMD4 were 

either not expressed, or the primers didn’t work, so were not analysed by qPCR. 

RNA was extracted from klM that had been treated with aRBC-MVs for 48 Hrs (i.e. 
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digest time point), cDNA prepared and analysed by qPCR. All genes amplified but 

there was no difference in expression between treated and non-treated cells 

(Figure 49c).  

 

Figure 49: Predicted targets of miR-451 are not downregulated in macrophages that have 
processed RBC-MVs.  
a) mRNA targets of miR-451 were predicted through TargetScan (15) and DIANA (54), targets 
predicted by both algorithms (13) were assessed for tissue expression via Tissue Atlas, targets that 
are expressed in the spleen (8) were used as candidate genes + 14-3-3-ζ as reported by Yu et al.255; 
b) Primers were checked for specificity and gene expression through the amplification of M2 RNA 
and gel electrophoresis; c) Candidate genes were detected via qPCR (universal probe library) and 
fold change (DIG Vs D2 Figure 48) calculated using ∆∆Ct – genes were normalised against 18s 
rRNA, TSC1 = tuberous sclerosis 1, SAMD4 = sterile alpha motif domain containing 4A, MIF = 
macrophage migration inhibitory factor, CAB39 = calcium binding protein 39, ATF2 = activating 
transcription factor 2, EMSY = BRCA2 interacting transcriptional repressor; error bars represent 
standard deviation. 
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The final approach employed was to establish if e-miRNA escaped the 

processing body post internalisation by evaluating AGO2 distribution via IF. 

However, after 24 Hrs, AGO2 was neither more abundant within the cytoplasm of 

recipient klM, nor visible in the RBC-MVs that had been internalised (Figure 50a, 

b).  

 

Figure 50: via IF it is not clear if AGO2 from RBC-MVs moves into the cytoplasm of klM 
following endocytosis / phagocytosis. 
a) klM were incubated with 2.5 µg of RBC-MVs for 24 hours, probed with α-Hbb and α-AGO2 (11A9), 
then visualised via epifluorescence; b) Selected regions from (a) digitally enlarged, (i), (ii) are the 
same cell, Hbb signal was not displayed in (i) to allow fair comparison of the AGO2 signal between -
/+ MV arms. Scale bar = 20 µm 
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 Discussion 

The aim of this chapter was to generate an RBC-MV endocytic-phagocytic 

model, in order to evaluate how macrophages respond to RBC-MV exposure.  

 Macrophage generation 

The first stage was to generate macrophages with distinct and relevant 

phenotypes. As patients require transfusions for a variety of reasons, two main 

phenotypes were chosen: M1 and M2. As M1 macrophages exhibit an inflammatory 

phenotype, incubation with RBC-MVs would mimic the transfusion of RBC break 

down products on patients with underlying inflammation e.g. infection, GVHD etc. 

While M2 macrophages are more homeostatic, therefore representing patients 

without underlying inflammation, e.g. surgery patients. Classically activated (M1) 

macrophages, with a distinct M1 phenotype (Figure 39a), were generated using 

widely reported methodologies451.  

The method of generating M2 macrophages within Wheadon lab is to 

polarise with IL-4. However, this resulted in macrophages that were chimeric 

(Figure 39b). In addition, it is reported that IL-4 downregulates CD163, a protein 

that plays a vital role within red cell biology462. For example, within the bone 

marrow, CD163+ macrophages form blood islands with erythroblasts, allowing RBC 

maturation, while in splenic/hepatic macrophages, CD163 scavenges extracellular 

haemoglobin by binding and internalising the haemoglobin-haptoglobin 

complex463,464. Therefore, instead of adhering to an “M2X” system, a polarisation 

strategy that induced genes essential to erythrocyte biology was pursued. DEX 

treatment appears to stimulate this phenotype as CD163 is highly expressed 

(Figure 39c) and FER is ~150-fold upregulated (Figure 40b) post polarisation. In 

addition, functional assays within the literature demonstrated that DEX stimulated 

haemoglobin turnover in monocytes455, and, increased erythropoiesis when CD34+ 

stem cells were co-cultured with macrophages465. On the other hand, different 

studies reported deleterious effects of DEX on macrophages, with Gras et al. and 

Haim et al. both reporting ~ 40 % cell death453,454. However, as an MTT assay (which 

measures dehydrogenase [NADPH] activity) was used in both studies, it was 

incorrect by these authors to interpret a loss of metabolic activity as cell death; 

especially as the phenotype of the macrophage is changing and the metabolic 
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activity between mM0 and klM macrophages may be different. Indeed, apoptosis 

assays performed during this studentship showed no indication of DEX-mediated 

death (Figure 40c). 

Although there is limited information available within the literature, the 

phenotype described above (CD163+, CD206+, haemoglobin turnover) represents 

previous information regarding hepatic/splenic macrophages452. As hepatic 

macrophages are reported to scavenge RBC-MVs, the culture methodology 

described above appears conducive to evaluating how macrophages respond to 

MVs post transfusion.  

 Endocytosis assay 

As mentioned, the main object of this chapter was to develop an 

endocytosis model to evaluate how macrophages respond to RBC-MVs. That said, 

through the generation of this model, additional points of interest/questions were 

highlighted. While this does not directly affect the question posed above, they are 

discussed below.  

 How are RBC-MVs internalised? 

2.5 µg of RBC-MVs are readily internalised by klM, but do not appear to 

enter M1 cells and only somewhat into mM0 cells (Figure 41b). Figure 42a 

demonstrates that M1 macrophages are phagocytic and so their inability to 

internalise RBC-MVs is not due to the cells being defective. In klM, it takes 

approximately 6 Hrs for MVs to be visually detected (Figure 43a), while extending 

incubation periods (24 -72 Hrs) reveals internalisation reaches a maximum at 24 

Hrs (Figure 44a). Taken together, these results suggest a controlled means by 

which RBC-MVs are internalised and processed. This therefore raises the question, 

how do klM readily internalise RBC-MVs? Figure 42b demonstrates that RBC-MV 

uptake is an active process, suggesting RBC-MVs are internalised via receptor-

mediated endocytosis. This receptor would have to be absent on M1 macrophages 

and in low abundance in mM0 as both show limited if any internalisation of RBC-

MVs. A candidate receptor is Mer Tyrosine Kinase (MerTK), which has been shown 

on klM to bind apoptotic cells and apoptotic bodies through recognition of exposed 

PS466. PS exposure is a hallmark of EVs and was demonstrated to be present on the 
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RBC-MVs used during this project (Chapter 3). Furthermore, Cohen et al. also 

demonstrated that DEX treatment not only upregulated macrophage MerTK 

expression, but GM-CSF and IL-4, two cytokines used to polarise cells in this study 

(Figure 38,39), downregulated MerTK expression466. This potentially explains the 

differential internalisation pattern observed in Figure 41b and is discussed below. 

A means to test this theory would be to block MerTK with a blocking Ab prior to 

RBC-MV incubation, then evaluate changes in internalisation.  

A less specific means of evaluating RBC-MV internalisation is through 

blocking exposed PS. This has been reported to be a major pathway of EV 

phagocytosis and blocking PS with Annexin-V has been used successfully by 

multiple studies to demonstrate this467,468. However, this is a candidate based 

approach, and a pan, unbiased experimental methodology may be more 

appropriate. For example, the recognition and method of EV internalisation is a 

topic of interest within the literature and additional compounds (listed in Table 

6) could be used and their effect on internalisation established. 

Table 6: Commonly used compounds used to evaluate EV internalisation. 

Pathway Compound Target References 

Endocytosis Cytochalasin D Actin 469 

CM endocytosis Dynasore Dynamin-2 470 

LRM endocytosis Flippin Cholesterol 469 

Macropinocytosis EIPA Sodium / proton exchanger 471 

Phagocytosis Annexin-V Phosphatidylserine 467,468 

 CM, clathrin mediated, LRM, lipid raft mediated, EIPA, 5-(N-ethyl-N-isopropyl)amiloride 

 During an inflammatory state where do RBC-MVs go? 

 As mentioned previously, RBC-MVs are not readily internalised by M1 

macrophages. While the differences between klM and M1 macrophages can be used 

to evaluate how RBC-MVs are internalised, it also raises a clinical question. If a 

blood unit is transfused to a patient with an underlying inflammatory condition, 

where do these MVs go? For example, symptoms of aGVHD are varied, but include 

inflammation and hepatic toxicity382. This hepatic toxicity/inflammation may well 

inhibit the hepatic scavenging of RBC-MVs observed by Willekens et al.392 During 

this experiment, although most MVs were detected in Kupffer cells (45 %), they 
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were also detected in other tissues, bone (22.5 %), skin (9.7 %), muscle (5.8 %), 

spleen (3.4 %), kidney (2.7 %), lung (1.8 %); and 9.1 % remained in the circulation 

at the time point tested (30 minutes)392. Therefore, most RBC-MVs would be free 

to enter these additional tissues. However, it is important to note that this study 

offers no concrete evidence that the material being transfused was RBC-MVs. No 

size markers are offered on the FACs plots, and the method employed by this study 

to isolate MVs was shown to contain RBC membrane artefacts (Chapter 3). In 

addition, the means of labelling “RBC-MVs” is not specific as 51Cr-chromate also 

labels platelets. This means the observed radioactive signal may well be a mix of 

RBC artefacts and platelet MVs. This is an important consideration as platelet-

derived MVs are reported to be the most numerous, by up to 100-fold, in 

peripheral blood431,472.  

Only one study, to my knowledge, has looked at the cellular uptake of RBC-

MVs and were using endothelial cells as a model. However, this study was 

researching malaria and as the RBCs used were infected with P. falciparum, 

making comparisons to transfusion, at first glance, debatable. Never the less, 

Marti et al. reported a pro-inflammatory response of endothelial cells to RBC-

MVs421. Interestingly, this was speculated to be mediated by miR-451 silencing of 

CAV-1 or ATF2, and this downregulation of ATF2 was linked to the apoptosis 

observed in their system. It is important to note, that while this is a malarial 

system, miR-451 originates from the RBC and not from the parasite. Also, due to 

their anucleate nature, miR-451 cannot be induced by the parasite, indicating that 

this is an RBC-MV effect, not a parasite one. As no malarial RBC-MVs were used as 

controls, it is unclear how much of their observed phenotype is due to P. 

falciparum and how much to RBC-MVs; therefore, some of their findings may well 

be relevant to the transfusion setting.  

 What is the purpose of the observed vacuole? 

Comparing the internalisation pattern of RBC-MVs in mM0 and klM reveals 

a different distribution. In mM0 macrophages, the distribution is diffuse 

throughout the cytoplasm with no apparent pattern, while in klM, RBC-MVs appear 

to concentrate at a more defined location within the cytoplasm. Surprisingly, RBC-

MVs are not detected at the cell periphery; only at the concentrated areas 

described above (Figure 41). As RBC-MVs appear so distinctly localised, one would 
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expect a gradient to be present: RBC-MVs present at the membrane, recognised 

by “X” receptor, followed by RBC-MVs found diffusely within the cytoplasm moving 

towards this area of concentration. Why this is not observed is unclear. It is 

unlikely that the Hbb positive puncta observed are not RBC-MVs, as they co-

localise with BAND3, another RBC-specific marker (Figure 42c). Uptake via 

micropinocytosis would result in a macropinosome, although this is unlikely to be 

what occurs here as no lamelliapodia-like projections have been observed at the 

cell membrane. A potential explanation for the lack of membrane associated RBC-

MVs is that they were not surviving the fix and perm methodology. During this 

studentship, it was noted that macrophages are quite sensitive to external stimuli 

such as mechanical stress, temperature and buffer tonicity. Therefore, it is 

entirely possible that the fixation/permeabilisation strategy affected RBC-

MV/macrophage interaction.  

Interestingly, live staining of macrophages using AO (Figure 47a) reveals 

the presence of a large vacuole. Due to the distribution of RBC-MVs observed 

(Figure 41b), it is tempting to speculate that they are contained within this 

vacuole; although the techniques used in this study are not suited to test this 

hypothesis as they are not compatible with each other. The purpose of this vacuole 

is unclear as there is no mention within the literature of a single large vacuole 

being present within macrophages. However, this has been observed by other 

groups (personal communication Dr Amy Buck, University of Edinburgh); this is 

important, as it suggests what is being observed is not a peculiarity of our system, 

but a genuine phenomenon. Note also that this vacuole is visible due to an absence 

of AO signal, not AO stain (Figure 47a). As AO passively diffuses and fluoresces 

regardless of location (pH only affects emission colour), it suggests a penetration 

issue. However, AO penetration of lysosomes and nuclear membrane is not an 

issue as AO forms tight red puncta, indicative of lysosomal staining, in addition to 

staining the nucleus. Consulting the literature does not reveal any explanations 

for this, AO negative sections can be observed in some figures, but are not 

discussed by the authors473. The only cell type null for AO staining are 

erythrocytes, although how this is relevant to this vacuole is unclear; especially 

as the vacuole is present in macrophages not exposed to RBC-MVs. It is unlikely to 

be a staining time or concentration issue as those used here are widely used within 

the literature473,474.  
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Attempts to characterise this vacuole were unsuccessful. For example, 

LysoTracker®, a dye similar to AO, failed to stain lysosomes, not just the vacuole. 

With the thought that RBC-MVs are being turned over in this vacuole, additional 

markers associated with lysosomes were evaluated. While lysosomal associated 

membrane protein-1 (LAMP1), lysosomal proteins - cathepsin D and K failed to 

stain the vacuole, they also did not stain lysosomes. Lysosomes were observed via 

the use of AO (Figure 47a), so the failure to co-localise these markers with the 

vacuole is likely to be a technical fault, rather than them being absent. 

Furthermore, LC3 and RAB5 did not stain this vacuole, indicating that it is neither 

autophagic or a sorting endosome. Although the reason RBC-MVs disappear after 

incubation (following wash off) is unclear, it isn’t unreasonable to suggest they 

are being degraded, just not by a classic lysosomal pathway. We investigated 

whether the RBC-MVs were being degraded by staining for iron deposits. Although 

Perl’s stain failed to detect stored iron (Figure 46b), additional markers that may 

be informative would be HO1 or ferroportin. Due to budgetary issues, neither of 

these markers were evaluated via IF.  

Another explanation for the loss of Hbb signal following wash off, is that 

the RBC-MVs are being exported. While this is certainly possible, it seems unlikely 

that these macrophages would actively take up RBC-MVs, only to excrete them 

shortly thereafter. Never the less, this hypothesis was examined via western blot, 

where culture media was concentrated using a 100 kDa vivapsin, resolved and 

probed for Hbb. However, due to the amount of serum present in the media, the 

blot had too much background to be informative (data not shown). Furthermore, 

additional data generated (not shown), demonstrated that artificial RBC-MVs were 

“nude” for RBC markers when analysed by FACs. Meaning that it wasn’t possible 

to evaluate the presence of excreted RBC-MVs within the culture media.  

 How dynamic are RBC-MV interactions? 

 At present, the means of establishing MV internalisation time was IF. Figure 

43 demonstrates that it takes approximately 6 Hrs for RBC-MVs to be internalised 

by klM, however, Willekens et al. demonstrated that 90 % of radio-labelled 

material (purported RBC-MVs) disappeared from circulation 30 minutes post 

murine transfusion392. Why there is a discrepancy is unclear, but there are a couple 

of considerations: (1) Radioactivity is simply more sensitive than IF, meaning that 
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Willekens can detect internalisation sooner than 6 Hrs. However, as semi-

quantification reveals only ~ 10 % material remains in circulation at 30 minutes, a 

more likely explanation is that the MVs are simply being internalised faster in vivo 

than in vitro. Personal observations of MV stocks reveal that they do not sediment, 

indicating they are colloidal in nature. Note, although small, as RBC-MVs contain 

Hbb, they visibly stain the PBS they are stored in pink. The pellet becomes clear 

after centrifugation, meaning that it is possible to establish RBC-MV sedimentation 

by eye. In culture, this colloidal suspension means klM interact with MVs as they 

diffuse to the bottom of a culture plate, in vivo one must consider flow. For 

example, in a human it takes approximately 1 minute for a blood cell to travel 

around the body. This, coupled with the comparatively narrow diameter of the 

sinusoidal space, makes it more likely for an MV to interact with a macrophage 

than in suspension.  

One of the most common ways of establishing EV uptake within the 

literature is to stain them with a membrane dye456. As this was not suitable for 

RBC-MVs (Appendix 17), real-time internalisation/processing using live imaging 

could not be performed. Although short time points were used to establish 

internalisation (Figure 43a), periods shorter than an overnight incubation 

following wash off (Figure 8b) were not performed. While this can be performed 

using IF, live imaging would be a preferable way of establishing RBC-MV processing 

time as dynamic interactions could be evaluated, rather than static time points. 

In addition, as noted above, RBC-MVs are not seen at the cell periphery when 

analysed via IF. If the inability to see RBC-MVs at the membrane is a technical 

artefact, i.e. MVs are fix and perm labile, then this would be circumnavigated via 

a live imaging system. In addition to trying two different membrane markers 

(PKH26, CellView Jade), CFSE was also used to stain RBC-MVs, although this was 

found to be inconsistent: sometimes MVs were labelled strongly, others, not at all 

(data not shown). As these MVs are induced, a potential work around would be to 

label whole RBCs prior to vesicularisation. However, as discussed previously, a 

major limitation of labelling MVs prior to uptake is that it may affect how they 

interact with macrophages.    
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 Why wasn’t dose investigated? 

 The possibility that transfusion number (dose) positively correlates with any 

side effects suffered by patients is of clinical interest, however, this has proven 

difficult to evaluate. It is possible that the experiments described above could be 

used to evaluate dose, but it is either not possible to definitively prove that a dose 

effect is occurring, or, establish to what degree. For example, while the 

experiment in Figure 44a details no increase in observed signal when extending 

incubation past 24 Hrs, it does not reveal the mass of MVs internalised/processed. 

Does the number of MVs internalised respond linearly with time, or does it plateau? 

A post 24 Hr plateau is what the IF indicates, but it’s not unreasonable to suggest 

that a flux exists between MV internalisation and processing i.e. MVs are 

processed, as indicated by Figure 44b, concurrent to uptake and that the signal 

observed at 24 Hrs is not the same as at 72 Hrs. Establishing the amount of MVs 

remaining in the media would be the simplest way to infer the amount of MVs 

internalised, allowing relative uptake across the time points detailed in Figure 

43a-44b to be established. However, means of establishing the amount of MVs 

remaining in the media have not yet been established at our centre.  

 With regards to the clinical question, it is possible to add fresh MVs on a 

daily basis, mimicking multiple transfusions. However, the experiments in Figure 

44a show that increasing the amount of MVs past a certain point has no apparent 

effect on internalisation, suggesting that daily additions of MVs would not affect 

uptake. In future, the effect of dose could be pursued by either establishing the 

amount of MVs internalised, or, performing consecutive wash off experiments.  

 Nevertheless, while there remains a plethora of questions regarding this 

endocytic model, a means to evaluate how macrophages respond to RBC-MVs has 

been generated.   

 Assay summary 

 In this assay, time points where klM have internalised and processed RBC-

MVs has been assessed. Generation of samples at these time points allows the 

comparison to untreated macrophages, meaning it should be possible to establish 

early and late responses to MVs. RBC-MVs were generated from the erythrocytes 
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of an “O-negative” blood donor, meaning these MVs are representative of a 

transfusion from a “universal donor”. Any potential modulation observed is 

therefore due to an RBC-MV interaction and not an immune response.  

Generation of RNA and media samples allows unbiased analyses to be 

performed to determine how klM respond to a storage artefacts i.e RBC-MVs. 

Media samples have been snap frozen and stored at -80 °C waiting for cytokine 

profiling. RNA samples were qualitatively shown to be of high quality by Glasgow 

Polyomics (Figure 47) and have been analysed by Illumina sequencing; the results 

of which discussed in Chapter 7.  

 e-miRNA functioning within klM 

The final experiments within this chapter evaluated whether e-miRNA 

functioned within klM post-internalisation. However, neither IF nor qPCR indicated 

that either e-miRNA were entering the cytoplasm (Figure 50b), or, silencing 

predictive targets (Figure 49c). Note, for the qPCR experiment, earlier time points 

were considered, but the IF failed to show any accumulation of AGO2 over time. 

Furthermore, future scrutiny of the RNAseq data failed to reveal any of these 

predictive targets of miR-451 being downregulated. For the IF experiment, a later 

time point (i.e. digest) may reveal an increase of AGO2 within the cytoplasm, but 

this was not performed during this study. Failure to detect AGO2 within RBC-MVs 

is likely due to the same epitope masking encountered in Chapter 4 when trying 

to evaluate AGO2 in mature erythrocytes 
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 RNAseq results 

 Introduction 

Microvesicles have been shown in multiple studies to not only interact  with 

neighbouring or distal cells, but also transfer miRNA. Transferred miRNA can 

modulate a host cell’s transcriptome, which was of interest to this project as e-

miRNA are found within RBC-MVs and could potentially impact on macrophage 

response when ingested. However, Figure 49 in Chapter 6 demonstrated that the 

genes predicted to be targeted by selective e-miRNA were not modulated, and, 

AGO2 did not accumulate in klM following RBC-MV internalisation. Although not 

conclusive, together, these data indicate the hypothesis of e-miRNA functioning 

in klM post MV internalisation to be null. Nevertheless, a working RBC-MV 

endocytosis/phagocytosis model was developed during this study.  

This model, in addition to being used to evaluate the transfer of e-miRNA, is 

also of interest clinically. For example, the RBC-MVs used within this model are 

very similar to those found within blood units that have undergone long storage 

periods. These MVs are found within the storage medium of the blood unit and are 

transfused to a recipient along with the RBCs. The number of MVs present within 

the blood unit increases the longer the blood is stored, and the effects of 

transfusing aged blood have been debated within the literature for decades 

especially in the context of transfusion reactions and why they occur. To simply 

recapitulate the clinical studies that have been performed, the model generated 

in Chapter 6 was used to assess the effect of RBC-MVs on klM.  

Chapter 6 characterised the macrophages generated in vitro as Kupffer-like, 

the cell type responsible for scavenging transfused MVs in the liver. In addition, 

data in Chapter 6 also demonstrated that klM were capable of not only 

internalising, but also processing RBC-MVs. Generating RNA samples from this 

model allowed a means by which the following unbiased question could be 

answered: 

How do klM respond to RBC-MVs? 
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This chapter will therefore focus entirely on the analysis of the RNAseq data 

generated from the samples prepared at the end of Chapter 6.  
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 Results 

RNA samples from Chapter 4 were sent for sequencing to Glasgow Polyomics 

(University of Glasgow). Libraries were prepared from poly(A) purified RNA by 

polyomics and analysed using Illumina NextSeq 500 sequencers. Alignment and 

initial analysis was performed by Miss Ana-Maria Nastase (Glasgow Polyomics). 

RNAseq reads were aligned using Kallisto V0.43 as per Bray et al. while 

downstream analysis of the Kallisto processed data was performed with DESeq2 as 

per Love et al.475,476. Variation between and within data sets was visualised using 

principle component analysis (PCA). A principal component (PC) can be any factor, 

e.g. weight, height, patient, treatment etc. The PCA algorithm cycles through all 

conditions, establishing which PC (factor) causes the most variance within a data 

set, and which causes the least. For example, PC1 is always the factor causing the 

most variability within a data set, PC2 causes the second most variability and so 

forth. Therefore, this methodology allows for any undesirable factors causing data 

variability to be identified and corrected.  

For example, in this project’s data set, the most amount of variability comes 

from a donor effect, as there is 42% variability between samples (Figure 51a). 

Although variation between sample set 1 and 2 is low, with most data points 

clustering together, data set 3 is further right on the x-axis, indicating a higher 

degree of variation compared to the other sample sets. PC3 analysis, based on 

sample type rather than sets (donors), is lower than PC1 at 18 % (Figure 51b). This 

is presumably caused by a similar distribution of data points on the Y-axis, even 

between donors. Interestingly, further analysis of Figure 51b reveals that the 

control and digest samples are polar opposites on the y-axis, i.e. they are very 

different to each other. Indeed, using ClustVis to cluster all significantly 

modulated genes (p=0.04) reveals that control day 0 (CD0) and digest samples 

(DIG), from all sets, cluster together (Figure 51c)477. PC3 and cluster analysis 

suggest the time points of interest are CD0 and DIG i.e. macrophages with no MVs 

compared to macrophages that have processed MVs. Furthermore, PC3 analysis 

identified a donor effect causing variability, which was controlled using batch 

correction, allowing data analysis to focus on CD0 Vs DIG; batch correction was 

performed by Miss Ana-Maria Nastase (Glasgow Polyomics).  
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Figure 51: PCA and clustering highlight Control D0 and Digest to be timepoints of interest. 
a) PC1 Vs PC3 based on data sets; b) PC1 Vs PC3 based on individual samples; c) clustering analysis of all significantly modulated genes as drawn using ClustVis. 
Note, PCA was performed by Miss Ana-Maria Nastase at Glasgow Polyomics; P = patient (volunteer), DIG = digest, MV.ON = microvesicles overnight. 
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To calculate differential expression results, the three individual datasets in 

Figure 51c were first averaged to give control day 0, 1 and 2 (CD0-2), macrophages 

left with microvesicles overnight only (MV-ON) and macrophages that had digested 

RBC-MVs (DIG). The following data sets were then contrasted for each volunteer: 

CD0 Vs CD1, CD0 Vs CD2, CD1 Vs CD2, CD0 Vs MV-ON, CD0 Vs DIG, MV-ON Vs DIG, 

CD1 Vs MV-ON, CD2 Vs DIG and CD2 Vs MV-ON. Differentially expressed genes were 

filtered against a p-adjusted value of 0.05, leaving only significantly modulated 

genes (Figure 52a). For example, comparing CD1 to CD2 reveals no modulation in 

gene expression. As time is the only difference between these samples, it 

indicates that there is no drift between 24 and 48 Hrs as gene expression remains 

the same. Differential expression between CD0/CD1 and CD0/MV-ON was 

compared, resulting in both comparators sharing the same 56 deregulated genes. 

Experimentally, at this time point (time nought), media containing the 

polarisation agent DEX is removed and cells are given fresh media; this occurs in 

both arms. These shared genes were interpreted as a DEX removal effect, and 

therefore subtracted from the modulated gene number displayed in Figure 52a. 

This indicates that, when comparing between CD0 and CD1, there are 46 

differentially expressed genes (102 total genes – 56 shared genes), while there are 

149 between CD0 and MV-ON (205-56).  

The comparisons with the greatest number of differentially expressed genes 

are MV-ON versus DIG (477 genes), CD2 versus DIG (391 genes) and CD0 versus DIG 

(1310 genes). Comparing these genes indicates that there is significant overlap, 

as indicated by the Venn diagram in Figure 52b. Due to this overlap, and that both 

the clustering and PCA indicated the biggest differences were between CD0 versus 

DIG, these genes were further analysed. Of the 1310 modulated genes, 613 were 

increased and 584 reduced. The overwhelming majority of genes were protein 

coding (94%), with the remaining 6% shared between ncRNAs, pseudogenes and 

“other” (Figure 52c). Of the 1310 differentially expressed genes, cytoscape 

analysis revealed 132 genes with poor or no annotation, which corresponds to 10% 

of the data set. The distribution of gene biotype for un-annotated genes is 

different to Figure 52c, with a roughly 50:50 split between protein coding and 

ncRNA genes (Figure 52d). 
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Figure 52: PCA and clustering highlight CD0 and DIG to be timepoints of interest. 
a) Differentially expressed genes with a p adjusted value of < 0.0.5 were compared between 
conditions (arrows), number of genes for each comparison is recorded next to each arrow; b) Venn 
diagram of three different comparitors from a), coloured boxes correspond to the boxes in a), where 
the gene numbers used in the Venn are taken from; c) Number of genes differentially expressed 
between CD0 and DIG are counted by biotype then expressed as a proportion of the total number of 
modulated genes; d) Number of genes differentially expressed between CD0 and DIG that are not 
annotated, counted by biotype and expressed as a proportion of the total number of modulated genes 
(i), exact number of expression pattern of these modulated genes (ii).  

d) Distribution of modulated genes that aren’t annotated 

Proportion 

47% 43% 

8% 

2% 

N
u
m

b
e
r 

o
f 

g
e
n
e
s 

Significant gene changes between conditions a) 

CD0 CD1 CD2 

ON1 DIG 

46 

149 

477 

391 

0 

5 

1310 

b) Modulated gene Venn diagram 

ONDIG 
CD0DIG 

CD2DIG 

c) 

Pseudogene 
        1% 

lncRNA 
    2% 

Antisense 
      2% 

Other 
   1% 

Coding 
94% 

Distribution of gene biotype 
(CD0ED2) 

Number 

RNA gene 

Protein coding 

Pseudogene 

Uncategorised 

Upregulated 

Down regulated 50 

40 

30 

20 

10 

0 

i) ii) 



198 
 

In order to address the question of how do klM respond to RBC-MVs, gene set 

enrichment analysis (GSEA) using a generally applicable gene set enrichment 

(GAGE) methodology was performed478. This method was used due to its ability to 

analyse gene data bi-directionally, that is, its ability to analyse up/down 

regulated genes simultaneously in the context of a pathway; other GSEA methods 

do not allow this. GAGE analysis generated gene ontologies (GO) which were 

depicted as pathways using the Pathview Bioconductor package as per Luo et al.479 

In the interest of space, only the top five most significantly deregulated pathways 

are reported (Figures 53-57); their relevance are considered in the discussion 

section.  

 



199 
 

 
Figure 53: P53 signalling pathway. 
Pathway was drawn using the Pathview Bioconductor package by Miss Ana-Maria Nastase of Glasgow Polyomics. 
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Figure 54: Insulin signalling pathway. 
Pathway was drawn using the Pathview Bioconductor package by Miss Ana-Maria Nastase of Glasgow Polyomics. 
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Figure 55: Protein processing in the endoplasmic reticulum pathway. 
Pathway was drawn using the Pathview Bioconductor package by Miss Ana-Maria Nastase of Glasgow Polyomics. 
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Figure 56: Protein export pathway. 
Pathway was drawn using the Pathview Bioconductor package by Miss Ana-Maria Nastase of Glasgow Polyomics. 
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Figure 57: Structure of the ribosome. 
Structure was drawn using the Pathview Bioconductor package by Miss Ana-Maria Nastase of Glasgow Polyomics. 
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Although pathway analysis gives a global indication of how klM are responding 

to RBC-MVs, it is not perfect. For example, the most dysregulated genes (up- or 

down-regulated) are not present in the pathways identified above. Arbitrarily 

using a log2 fold change of ±2, results in 14 genes being up-regulated, 11 down- 

regulated; of which only CCND3 is present in the pathways listed above (Figure 

58a). This is discussed in depth in Section 8.3.  

With the remaining time available, a small amount of data set validation was 

performed. As CD163 scavenges extracellular Hbb and is a marker of klM, this 

target was evaluated further as it was the 9th most upregulated gene in klM480. IF 

reveals that in untreated klM, CD163 appears to form a secondary structure (Figure 

58b). These structures appear limited one per cell and while RBC-MVs do not 

induce them, they do appear within this structure (Figure 58c). Indeed, this CD163 

pattern appears very similar to what was observed in Chapter 4 when live staining 

macrophages with acridine orange (AO). AO staining does not persist through fix 

and perm methodologies meaning it is impossible to co-stain klM with AO and 

CD163. How CD163 interacts with RBC-MVs is unclear, and unfortunately, due to 

time constraints, no further investigation was possible. 
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Figure 58: RBC-MVs co-localise with CD163. 
a) Genes with a log2 fold change of > 2 or < -2, which represent the most up- and down- regulated 
genes, are plotted in order of expression on a bar graph, gene highlighted with a + represents the 
only gene highlighted by GAGE analysis; b) klM were incubated with or with out 2.5 µg of RBC-MVs 
for 24 hours then probed with αCD163 and αBAND3; broken white boxes indicate areas that were 
digitally enlarged in c). Scale bar represents 20 µm.  
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 Discussion 

The data generated via RNAseq can be used for two purposes. Firstly, to 

evaluate how klM respond to RBC-MVs; and secondly, to evaluate the possibility 

that e-miRNA from RBC-MVs are regulating the klM transcriptome. First, the 

question posed during the introduction of this chapter, will be discussed. 

How do klM respond to RBC-MVs? 

Performing RNAseq enables a more global view of how klM respond to RBC-

MVs to be evaluated. From our analysis, we were able to identify key changes in 

the klM and identify pathways affected for future analyses. One of the key 

questions we set out to investigate was: Do RBC-MVs (storage breakdown 

products), have side effects on patients post-transfusion? However, within the 

confines of this model, there appears little evidence that this is the case. For 

example, no inflammatory or apoptotic pathways were highlighted through GAGE 

analysis, indicating there is no immediate negative response to MV exposure 

(Figures 53-57). Indeed, the pathways highlighted appear to be more regulatory 

and important for cellular homeostasis and protein processing, with endoplasmic 

reticulum protein processing (ERPP)/ protein export two of the most highly 

modulated pathways. Note, while it is unlikely that RBC-MVs are involved directly 

in ERPP, a large portion of this pathway that is upregulated is the ubiquitin ligase 

complex and protein recognition. These are not unique to ERPP, and may well play 

a role in the disappearance of RBC-MV signal following internalisation and 

processing.  

Cluster of differentiation (CD) markers 

The data set was mined further to evaluate, at a mRNA level, any modulation 

of cluster of differentiation (CD) markers (Figure 59). CD markers are used 

extensively in the immunology field to characterise cells with variations in 

expression and used as a marker for lineage priming and phenotypical changes 

within cells. Although our profiling indicated that resting klM represent a more M2 

phenotype, we first evaluated whether internalisation and processing of RBC-MV 

induced any M1 inflammatory type responses. CD80/CD86 are classic markers of 

inflammation, but were undetected within the above data set, indicating no 
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classic inflammation response. Analysis of the differentially expressed CD markers 

is challenging as a lot are not classically associated with macrophages and thus 

are not well studied in this cell type. For example, CD83 although present on 

macrophages, is classically a DC marker, with most of the functional studies being 

performed on DCs481. The relevance of these studies to macrophages is unclear, 

but within DCs, it is reportedly induced through TLR signalling and promotes both 

the pro-inflammatory marker CD86, and the increase of major histocompatability 

class II proteins482. If its function in klM is similar to that within DCs, then its down-

regulation in this data set again argues away from an inflammatory response. In 

addition, CD40, CD274 and CD300c are all reported by the literature to be up-

regulated by the bacterial mimic lipopolysaccharide (LPS), suggesting a pro-

inflammatory role483–485. However, they are down-regulated in the above data set 

(Figure 59). LPS, as well as pro-inflammatory cytokines, don’t change CD276 

expression at a gene level, but are thought to augment pro-inflammatory 

responses486,487; again CD276 is downregulated in this data set (Figure 59). Taken 

together, these markers indicate a dampening of any immune response. Indeed, 

this is borne out by the upregulation of CD72 and CD55, known negative regulators 

of B and T cells, respectively488,489. klM do appear to be responding to RBC-MVs, 

as indicated by an upregulation of CD70, a marker that positively correlates with 

macrophage metabolic activity490. With such a large upregulation of CD163, klM 

appear to be entrenching within their klM phenotype, rather than changing it.  

 

Figure 59: Expression values of all cluster of differentiation (CD) genes.  
All modulated CD genes with a p-adjusted value of 0.05 plotted from highest to lowest expression. 
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Cytokine modulation 

As per CD markers, it is also possible to look through the data to see which 

cytokines are modulated (Figure 60). However, while a large number of 

interleukin receptors are modulated, there is little modulation of actual 

cytokines. In addition, it is difficult to determine what is occurring as cytokines 

with the same overall effect can have opposite expression patterns. For example, 

IL-18 is a pro-inflammatory cytokine, which is upregulated, while the two other 

pro-inflammatory interleukins present, IL-1b/IL-1a, are down-regulated (Figure 

60). No interferons were detected within the data set, but the receptors for class 

II IFN receptors (IFGR) are, but confusingly, are again contradictory. For example, 

IFN-γ binds to a membrane receptor comprised of IFNGR1 and IFGR2 subunits491. 

However, IFNGR1 and IFGR2 are up/down-regulated, respectively, in this data set 

(Figure 60) meaning that a definitive interpretation regarding a pro or anti-

inflammatory effect is impossible. Finally, TNF is present, which is a strong pro-

inflammatory cytokine, but this is also down-regulated (Figure 60). Taken 

together, this data does not suggest any large-scale induction of a pro-

inflammatory response. There are pro-inflammatory cytokines increasing, but this 

could be tempered with the parallel down-regulation of other pro-inflammatory 

cytokines. Interestingly, several of the receptors were up-regulated, indicative 

that the cells may have increased ability to respond to lower concentrations of 

the respective cytokines. At the end of culturing the cells for the RNA preparation 

and RNAseq, the media was collected and snap frozen;  these could be used for 

cytokine profiling in the future. This would allow the establishment of exactly 

which cytokines are being released, and their concentrations; allowing for a true 

gauge of inflammatory profile. Due to time and monetary constraints, these 

samples were not analysed during this project.  



209 
 

 

Figure 60: Expression values of cytokine and cytokine receptor genes.  
All modulated cytokine or cytokine receptor genes with a p-adjusted value of 0.05 plotted from highest 
to lowest expression. 

Other interesting genes  

Simply looking at the most modulated genes to try and establish klM response 

is also possible (Figure 58a). DAAM2 is the most modulated gene with a log2 fold 

up-regulation of 7.39. Interestingly, DAAM2 is a formin, which bind actin and play 

a role in cytoskeletal re-arrangement; something that is required for RBC-MV 

uptake (Chapter 4, Figure 42b)492. Within macrophages, it has also been reported 

by multiple studies to play a role in the phagocytosis of Borrelia, an interpretation 

of this is that klM are up-regulating their endo/phagocytic potential493. Other than 

CD163, discussed separately, the remaining genes that are highly modulated do 

not suggest any additional macrophage response/phenotype that has not already 

been discussed. For example, FKBP5 and TSC22D3 are associated with anti-

inflammatory responses within macrophages and are up-regulated within this data 

set (Figure 58a)494. While OLR1 and CLEC5A are associated with a pro-

inflammatory response and are down-regulated (Figure 8a)495,496. These genes 

reinforce the interpretation that there is no pro-inflammatory response present 

and that klM are more akin to M2 cells than M1, with RBC-MV internalisation and 

processing not eliciting any M1-like responses. Indeed, the upregulation of FLT3 

in this data set has been associated with enhancing macrophage survival497, 

further suggesting no adverse effect of RBC-MV.  
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CD163 

CD163 is one of the most up-regulated genes within this data set. While it 

has been studied, most papers simply use it as an “M2” marker. DDIT4 is a 

suppressor of mTOR activity, which within macrophages, prohibits 

polarisation498,499. In this data set, it is upregulated suggesting polarisation is being 

inhibited. This, coupled with increased CD163 expression, strongly suggests that 

treated macrophages are remaining Kupffer-like. Again, suggesting that RBC-MVs 

are not causing any major changes to the phenotype of the cells, i.e. by adjusting 

polarisation or inducing inflammation. Indeed, all data discussed so far indicates 

that this is the case. It is tempting to suggest that any potential pro-inflammatory 

effects associated with transfusion are not caused by RBC-MVs. However, this is 

premature, as these conclusions can only be suggested within the context of this 

in vitro model and the scenario in vivo may be different due to the complexity 

and the interplay between different components of the immune system.  

While not addressing the initial question, this data set may be suitable for 

establishing CD163 functionality. IF within Figure 58b shows that CD163 forms a 

structure within klM which is independent of RBC-MVs. The distribution of this 

signal is very similar to that observed by AO staining within Chapter 4, and as 

discussed previously, has not been reported within macrophages. This raises 

multiple questions. First, why has this not been reported before, even though IHC 

analysis has previously been used to detect CD163 successfully in macrophages500; 

note the referenced paper demonstrates CD163 staining for splenic and hepatic 

macrophages, which is an appropriate comparator to klM. However, detection 

utilises 3,3'-Diaminobenzidine (DAB) deposition, which is a crude method of 

staining and masks any subtleties, such as structure, reported by IF. Additional 

studies have performed CD163 IF, but the signal observed was similar to that by 

DAB501,502. A potential explanation for the discrepancy between Figure 58b and 

these studies is the fix and perm methodology utilised. For example, my 

preliminary work indicates that macrophages are sensitive to fix and perm 

methodologies. Traditional PFA fixation followed by Triton-X permeabilisation 

abrogates CD163 structure. It is only maintained when using digitonin, a much 

milder detergent503. The three referenced studies all use paraffin embedded 



211 
 
tissue that is subjected to ethanol rehydration and antigen retrieval, a particularly 

harsh combination that may have eliminated any nuance.  

Interestingly, there is one paper that appears to record CD163 localisation in 

a similar conformation to that which we demonstrate in Figure 58a504. However, 

this study was performed by stably expressing different CD163 isoforms in Chinese 

hamster ovary (CHO) cells, not macrophages. Nonetheless, Moestrup et al. 

demonstrated an apparent cytoplasmic structure that is very similar to that 

observed in Figure 58b. To my knowledge, this distribution has not been reported 

within macrophages, the cell type CD163 is a marker of.  

If this structure is not an artefact, what is its purpose? Although it appears 

to be RBC-MV independent (present in no MV controls), RBC-MVs do appear to 

localise within this structure, suggesting it plays a role in MV processing. Moestrup 

et al. were the first to report CD163’s Hbb scavenging role, although this does not 

appear to be happening here, as in their study, CD163 is membranous whereas in 

klM it appears to be localised in the cytoplasmic vacuole333. Note that the lack of 

CD163 at the membrane maybe an artefact as these macrophages were 

phenotyped as CD163+ via FACs (Figure 39b).  

Consulting the literature for CD163 reveals no reports of it forming any 

secondary structure in macrophages, meaning what is reported in Figure 58b is 

novel. CD163 is part of a scavenging receptor cysteine rich (SRCR) superfamily of 

scavenging receptors, more specifically, type II. There are 9 members within this 

family, which are categorised by having multiple SRCR domains; CD163 contains 

9. Reviewing the literature for the other type II members reveals they are 

unsurprisingly similar to CD163 in that they are external receptors that recognise 

specific signals505. They are capable of being internalised and forming endosomes, 

but this always occurs following treatment, and there is no report of any other 

member forming the secondary structure observed in Figure 58b natively. Simply 

comparing to other members within the group has not shed any light on its 

localisation. If this is genuine, as it appears, then it seems to be a completely 

novel phenomenon. Although not related to the transfusion question, this does 

appear interesting and may well be of interest to the wider scientific community. 

Further work would include establishing what CD163 interacts with via pull-downs, 

establishing which transcript variants (CD163 has 2) are present etc.  
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Transcriptional regulation by e-miRNA 

A hypothesis evaluated during this project was the possibility that e-miRNA 

could modulate the transcriptome of a recipient cell: in this case, klM. As a first 

pass, it is possible to mine the RNAseq data to see which down-regulated genes 

are either predicted to be, or validated targets of, known e-miRNA. To perform 

this analysis, all genes down-regulated by a log2 value of < -2 were compared 

against the most abundant e-miRNA. Most abundant e-miRNA were defined as, any 

e-miRNA from the Hamilton lab’s erythrocyte sequencing data having a read count 

of > 1x104. This resulted in 11 genes (Figure 58a) being scrutinised by 23 e-miRNA 

(Figure 61). First, a prediction methodology using miRDB was performed, but no 

candidate e-miRNA-gene interactions were identified. As miRNA prediction is 

poor, a second option was used: miRTarBase V2.0. This is more stringent than 

miRDB, as all results generated are validated with links to the appropriate study 

within the literature. This analysis resulted in 2 genes being targeted by 2 e-

miRNA: Matrix metaloprotein 2 (MMP2) and oxidised low density lipoprotein 

receptor 1(OLR1).  

 

Figure 61: Most abundant e-miRNA.  
All e-miRNA with an expression value of > 1 x 104 counts from the Hamilton lab’s sequencing 
experiment and used to scruitinse the most down-regulated genes from this chapter’s data set.  

MMP2 has been reported to be regulated by both miR-21 and miR-451506,507. 
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be direct targets of these miRs. Indeed, the study by Tanaka et al. demonstrated 

that miR-21 expression positively correlated with MMP2, something that is unlikely 

in our model as MMP2 is down-regulated506. Kang et al. did note a reduction in 

MMP2 when over-expressing miR-451, but this was in conjunction with three other 

members of the AKT signalling cascade, leading them to believe that MMP2 

downregulation was downstream of Akt and not a direct miR-451 target507. A 

suggestion given by the authors was based on Godlewski et al’s. study that showed 

CAB39 to be a direct target of miR-451508. However, this target was predicted and 

tested for in Chapter 4 Figure 49 and was not shown to be modulated upon MV 

treatment, making it unlikely to be the reason for MMP2 regulation in this data 

set. OLR1 was shown by microarray to be down-regulated by miR-21, but this 

target was not of interest to the authors so was not further investigated, so its 

role in regulating MMP2 remains undefined509. Interestingly, the fact that none of 

these three studies showed direct interactions might be the reason for the 

discrepancy between miRDB and miRTarBas. miRBD predicts direct targets of 

miRNAs, while miRTarBase allows for downstream effects to be counted as direct 

regulation.  

Conclusion 

Two questions were addressed by this RNAseq data, firstly, the potential 

transcriptional regulation by e-miRNA, and secondly, how klM respond to RBC-MVs. 

KlM response is of clinical interest, due to their involvement in transfusion, but 

there appears to be no adverse effect caused by RBC-MVs. Instead, klM appear to 

recognise and process them. This lack of inflammatory effect correlates with a 

recently published paper510.  

Initial work regarding e-miRNA gene regulation did highlight potential 

candidates. However, upon deeper scrutiny, two of the three targets do not 

appear relevant to this system. The final gene (OLR1) may well be a target for 

miR-21, but there was insufficient time to test this hypothesis.  

In conclusion, the most interesting aspect of this data set is the upregulation 

of CD163 and the subsequent localisation observed by IF. How it relates to the 

other modulated genes within this data set may well result in a novel function for 

CD163. However, this is just one gene, and there are multiple genes highlighted 
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by this study. For example, MS4A4A was not picked up by GAGE analysis but was 

reported as a novel marker for M2 macrophages only two weeks before this 

chapter was written511. Interestingly, only two years prior Cruse et al. 

demonstrated that in mast cells MS4A4A played a role in endocytic recycling, a 

potential explanation for what is occurring to RBC-MVs512.  
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Final discussion 

The initial aim of this project was to investigate the possibility that e-miRNA 

may have a non-canonical role within erythrocytes. However, due to the results 

in Chapter 2, in addition to studies published during this project, this hypothesis 

was changed and others formulated. Each chapter contains an in-depth discussion 

of the results, the reasons for my interpretations, the limits to my interpretations 

and how it relates to other published work. Therefore, this discussion will act as 

an executive summary for the overall project and what further work could be 

performed if desired. 

8.1 Function of e-miRNA within erythrocytes 

Due to the obvious difficulty in predicting non-canonical miRNA functions, 

pull downs were performed to see if interacting partners could shed light on any 

potential function for e-miRNA. However, this methodology failed to identify any 

proteins, other than a modified AGO2, meaning that the formulation of new 

hypotheses was not possible. Data generated in Chapter 4 suggests that e-miRNA 

are lost as cells age – something that was also reported as this work was being 

performed400. This would indicate that e-miRNA having a non-canonical function 

within erythrocytes was incorrect.  

That said, this work did highlight that on occasion (not always seen), AGO2 

runs at a higher molecular weight than predicted and none of the published AGO2 

post translational modifications readily explain what this modification could 

be411,415. Interestingly, this AGO2 doublet has been observed in other studies, 

although what causes it is still to be determined. That this is observed in multiple 

studies demonstrates that this is not a phenomenon specific to erythrocytes, or, 

a technical abnormality caused in this lab. That one group sequenced it (Meister 

lab), also indicates that there is an interest in what it could be411. However, the 

Meister lab only managed a sequence coverage of ~6 %, which is a lot less than 

the ~23 % generated during this study, suggesting it is difficult to sequence this 

protein. Therefore, different sequencing strategies could be attempted, for 

example, Edman degradation could be used on trypsinised hmwAGO2, which may 

enable more complete coverage513. Although this modification is not specific to 

erythrocytes, RBCs could still be used as a model due to the abundance of AGO2 
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within these cells and the amount that can be easily/cheaply harvested. The 

relevance of this to the wider scientific community is entirely dependent on what 

the modification is, and what it signifies. However, in my opinion, this avenue of 

research would be of interest to the wider scientific community. 

8.2 Function of e-miRNA modulating a different cells 
transcriptome 

A specific hypothesis that was tested, was that e-miRNA could regulate the 

transcriptome of a different cell i.e. macrophages. Although modulation was not 

seen in macrophages treated with RBC-MVs, this hypothesis was not tested in 

macrophages that had internalised senescent erythrocytes. However, how much 

e-miRNA is left within a senescent RBCs? The data in Chapter 4 suggests that while 

reduced, some e-miRNA are still present; although this presence maybe due to 

impure fractionation of RBCs. Certainly, it is unlikely that all e-miRNA are lost due 

to membrane-associated vesicularisation, as Basu et al. report some AGO2 

associates with the cytoskeleton, something RBC-MVs do not contain344,422. 

Therefore, it is certainly possible that residual e-miRNA persist in senescent RBCs. 

Is this enriched for a specific e-miRNA, or is it simply an amalgam of all e-miRNA? 

The hypothesis of e-miRNA acting as a molecular signal is certainly attractive, 

however, I am undecided on whether I would continue this work. There is no 

evidence to suggest so far that this hypothesis is valid and using Occam’s razor, 

the most facile explanation for e-miRNA is that they are simply an artefact of 

maturation.  

8.3 Possible side effects of RBC-MVs on transfusion 
patients 

The final area that was investigated during this PhD was the effect of a 

storage artefact (RBC-MVs) on an appropriate cell type: klM. However, the RNA-

seq indicated no inflammatory (pro- or anti-) effect on these cells. It is entirely 

possible that the model generated simply isn’t suitable, although the most recent 

publications within the medical field report no adverse effects regarding the 

transfusion of aged blood products, which is in agreement with my data510,514. 

Media samples were taken for cytokine profiling, which is still possible as they are 
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frozen, although in light of these aforementioned studies it doesn’t seem a fruitful 

avenue to pursue at present.  

More interesting are the RNAseq results, both the poorly annotated data and 

CD163. That CD163 appears to form secondary structures within macrophages and 

is involved in MV processing is very interesting. A potential method that could be 

informative would be to express a GFP-CD163 fusion within THP-1 or RAW264.7 

cells. While not primary cells, as observed in Chapter 6, creating a stable cell line 

would allow the live cell imaging of macrophages, which would be interesting to 

evaluate in context of phagocytosis. Macrophage biology is clearly an area of 

interest to the scientific / medical community, so this work would certainly have 

an audience if more detail could be gained515. 

8.4 Final words 

Although I believe there is some genuinely interesting and novel data within 

this thesis (hmwAGO2, CD163), the majority of this PhD has tested hypotheses 

that proved to be incorrect. Indeed, one could be mistaken for believing that this 

thesis represents an elegy to Huxley, who once so aptly said: 

“The great tragedy of science – the slaying of a beautiful hypothesis by an 

ugly fact” – Thomas Huxley 

 

 



 
 

Appendices 

Appendix 1: 20 most abundant human e-miRNA 

 

Appendix 2: 20 most abundant bovine e-miRNA 
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Appendix 3: 20 most abundant murine e-miRNA 

 

Scored out are not in top 20 human e-miRNA 

Appendix 4: 20 most abundant ovine e-miRNA 

 

Scored out are not in top 20 human e-miRNA 

23%

17%

6%

NP: mir-185

3%

1%

7%

5%

2%
NP: mir-

101 NP: mir-16

2%

9%

NP: mir-192

NP: mir-144 6%

15%

2%
NP: mir-191

3%

let-7f
mir-451
mir-103
mir-185
mir-320a
mir-107
mir-25
let-7g
mir-423
mir-101
mir-16
mir-92a
let-7i
mir-144
mir-192
mir-486
let-7a
mir-21
mir-191

35%

7%

7%
18%

1%

2%

10%

3%

4%

NP: mir-101

3%

3% 1%

3%
1% 2%

1%

NP: mir-21
1%

NP: let-7b
let-7f
mir-451
mir-103
mir-185
mir-320a
mir-107
mir-25
let-7g
mir-423
mir-101
mir-16
mir-92a
let-7i
mir-144
mir-192
mir-486
let-7a
mir-21



220 
 

Appendix 5: Sequences of housekeeping primers 

 

Gene Forward primer Reverse primer 
Amplicon 
size (bp) 

B2M TTG TCT TTC AGC AAG GAC TGG ATG CGG CAT CTT CAA ACC TCC 172 
ENOX GAG CTC GAG GGA ACC TGA TTT CAC TGG CAC TAC CAA ACT GCA 123 
TYW1 ATT GTC ATC AAG ACG CAG GGC GTT GCG AAT CCC TTC GCT GTT 170 
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Appendix 6: Primer sequences  

Gene Forward primer Reverse primer 
Amplicon 
size (bp) 

UPL* 
probe ID 

ATF2 TTT GGT CCA GCA CGT AAT GA CAA ACC CAC TTC TTC ACA GTT TT 90 5 
EMSY CTA AAC TGG TAA CCA CTC CTA CTG G TGC TAC CAC TCG TAG TTT TCA CAT 126 1 
CAB39 GAG TCT TGA AGG CCT GAT GG CTC CGC CTG TGC TAC CTC 63 55 

LYSMD4 AGA AGG GAC TTG GAG GGA AG ACA ATT CCT CGT GCC TCA TT 129 1 
MIF ACC GCT CCT ACA GCA AGC CGC GTT CAT GTC GTA ATA GTT G 95 40 

PSMB8 CCC TAC CCA CCC CTG TTT CAC CCA GGG ACT GGA AGA 69 1 
SAMD4B GTC ACT TCT GAA ACG GGT CAC GGA CTC CTG CTG CCA CTG 145 1 

TSC1 ACT GAA GTA CCA GTT GTC GCT AGA GCC ATT CTC TCG CTC GAA 113 1 
14-3-3-ζ TCC AGG GAC AGA GTC TCA GC AGC TCA TTT TTA TCC ATG ACT GG 126 74 

HO1Δ AGG GTG ATA GAA GAG GCC AAG ACT TTC CAC CGG ACA AAG TTC ATG GC 322 NA 
FERΔ ACA TAA ACA TGA GCT TCT GAC C CAA CAA CAA CAA TCC AAT CCC 143 NA 
NAB2 TGG GCT CAA GAA TCT GAA CCT ATT GCC AAC ATC GTC CCA GA 145 NA 
Cat-D GGT GCT CAA GAA CTA CAT GG ATT CTT CAC GTA GGT GCT GG 195 NA 
IL7R CAA TAT GAG AGT GTT CTA ATG GTC AGC CCT CAA CTT GCG AGC AGC 162 NA 
EGR1 TGA CCG CAG AGT CTT TTC CT TGG GTT GGT CAT GCT CAC TA 201 NA 
EGR2 CTG ACA CTC CAG GTA GCG AG GTT GAT CAT GCC ATC TCC GGC 235 NA 
GCSFR AAG CAT GTC CCC ACA ACT GTG TC  TGA TTA TGT GCA GGC CTG G  158 NA 
IRF8 CCA GGA CTG ATT TGG GAG AA  AGT GGC TGG TTC AGC TTT GT  162 NA 

* UPL = universal probe library, Δ primers designed by Vallelian et al.455  
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Appendix 7: Capture probes used within this project 

Target Sequence Oligo origin 

miR-16 Bi* - AAA ACG CCA AUA UUU ACG UGC UGC UAA AAA Synthetic 

Let-7b 
Bi - AAC AUG GAG AAA UCC AUG UUA ACC ACA CAA CCU ACU 

ACC UCA UUG UAC CUU UCG AGG UAC AA 
Synthetic 

Let-7f Bi - AAA AAA CUA UAC AAU CUA CUA CCU CAA AAA Synthetic 
EB3 Bi - AAA ACA UGC GGA CCA CCA GCU GGU ACU UG Synthetic 

miR-451 UUU GGC AAU GGU AAU GAC UCA A IVT* 
miR-34c CGU UAG UCG AUU GAU GUG ACG GA IVT 

* IVT = in vitro transcription, Bi = biotin 

Appendix 8: TaqMan® Assays used within this project 

Target Assay ID 

miR-92a 000431 
miR-451 001105 
miR-486 001278 
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Appendix 9: Removal of leukocytes from platelet free 
blood using in-house cellulose columns 

 
Figure 62: Leukodepletion of platelet ablated / washed RBCs.  
(a) A small portion cotton wool pad is placed at the bottom of a 15 mL syringe barrel and 2 g of 1:1 
mixed (w/w) α-cellulose / Sigma cellulose is layered on top then wetted with RBC wash; (b) 1 mL of 
platelet ablated compact RBCs is mixed with 10 mL of RBC diluting buffer, layered on top of the 
packed column and allowed to pass through by gravity filtration; (c) RBCs retained in the filter are 
removed by passing 15 mL of RBC wash through; (d) some residual RBCs are left within the filter, 
but the majority are eluted.  

 

Appendix 10: Typical results when analysing processed 
blood via the Hemavet MULTI-TROL™ blood analyser 

Cell type Normal range Before After 

Neutrophil1 1.5 – 8.1 2.27 - 

Lymphocyte1 1.0 – 4.4 1.80 - 

Monocyte1 0.1 – 1.0 0.42 - 

Eosinophil1 0.0 – 0.6 0.32 - 

Basophil1 0.01 – 0.3 0.01 - 

Platelets1 150 – 400 209 12 

Erythrocytes2 3.6 – 6.0 4.16 3.77 

1 – thousand cells / µL 
2 – million cells / µL 
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Appendix 11: Antibodies used within this project 

  Experiment type and dilution factor    

Antibody Company WB IF FACs** Conjugate Raised in Catalogue # 

25F9 eBioscience NA NA 1:50 eFluor 660 Mouse 50-0115-41 

Actin Sigma 1:1000 NA NA NA Mouse A2228 

AGO1 Keio University NA NA NA NA Rat NA 

AGO2* (4G8) Keio University 1:10, 000 NA NA NA Mouse NA 

AGO2 (11A9) Millipore 1:1000 1:100 1:100 NA Rat MABE253 

AGO3 A5 Keio University NA NA NA NA Rat NA 

AG03 F6 Keio University NA NA NA NA Rat NA 

AGO4 Keio University NA NA NA NA Rat NA 

mAGO4 WAKO NA NA NA NA Rat 014-22023 

Band 3 Santa Cruz 1:250 1:100 NA NA Rabbit SC-20657 

CD11b BD Biosciences NA NA 1:50 FITC Rat 553310 

CD41a BD Biosciences NA NA 1:100 APC-Cy7 Mouse 561422 

CD80 BD Biosciences NA NA 1:50 PE-Cy7 Mouse 561135 

CD86 BD Biosciences NA NA 1:50 BV421 Mouse 562432 

CD163 BD Biosciences NA NA 1:50 PerCP-Cy 5.5 Mouse 563887 

CD206 BD Biosciences NA NA 1:5 PE Mouse 555954 

F4/80 BD Biosciences NA NA 1:50 PE Rat 552958 

Gly-A Sigma 1:1000 NA NA NA Mouse G7650 

Gly-A BD Biosciences NA 1:10, 000 1:10, 000 PE Mouse 340947 

GW-182 Santa cruz NA 1:100 NA NA Mouse SC-56314 

Hbb Santa Cruz 1:500 1:200 NA NA Mouse SC-130320 

Human IgG Sigma NA NA 1:1000 FITC Goat F9512 

Human IgG BD Bioscience NA NA 1:20 V450 Mouse  561299 

Rab5 Cell signalling 1:500 NA NA NA Rabbit #3547 

LC3 Cell signalling 1:500 NA NA NA Rabbit #3868 

* anti-AGO1-4 was a kind gift from Mikiko C. Siomi. 
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Appendix 12: Secondary antibodies and probes used within this project 

Probe Company Dilution factor Conjugate Catalogue # 

Annexin BD biosciences 1:100 FITC 550457 
Goat anti-mouse Dako 1:10,000 HRP P0447 
Goat anti-rabbit Dako 1:10,000 HRP P0448 

Protein-A Sigma 1:10, 000 FITC P5145 
Annexin BD biosciences 1:100 FITC 550457 

Goat anti-mouse Invitrogen 1:2000 Alexa Fluor 594 A-11032 
Goat anti-mouse Invitrogen 1:2000 Alexa Fluor 488 A-11001 
Goat anti-rabbit Invitrogen 1:2000 Alexa Fluor 594 A-11072 
Goat anti-rabbit Invitrogen 1:2000 Alexa Fluor 488 A-11034 

Phalloidin Invitrogen NA TRITC R415 

 

Appendix 13: Acrylamide gel recipes 

 Final concentration of resolving gel Stacking gel 

 6 (%) 6.5 (%) 7 (%) 7.5 (%) 8 (%) 10 (%) 12 (%) 15 (%) 5 (%) 

30 % bis-Acrylamide 3 mL 3.25 mL 3.5 mL 3.75 mL 4 mL 5 mL 6 mL 7.5 mL 1.67 mL 

Milli Q water 6.35 mL 6.1 mL 5.85 mL 5.6 mL 5.35 mL 4.35 mL 3.35 mL 1.85 mL 6 mL 

1 M Tris_HCl pH 8.8 5.6 mL 5.6 mL 5.6 mL 5.6 mL 5.6 mL 5.6 mL 5.6 mL 5.6 mL - 

1 M Tris_HCl pH 6.8 - - - - - - - - 1.25 mL 

10 % (w/v) SDS 0.25 mL 0.25 mL 0.25 mL 0.25 mL 0.25 mL 0.25 mL 0.25 mL 0.25 mL 0.15 mL 

10 % (w/v) ammonium 
persulphate 

100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 50 µL 

TEMED 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 

Resolving gel volumes sufficient for 3 x 1 mm gels, stacking gel volumes sufficient for 4 x gels 
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Appendix 14: Sequencing data for excised top band 

Accession # Name Score Mass 

gi|29171734 protein argonaute-2 isoform 1 [Homo sapiens] 494 97146 
gi|11935049 keratin 1 [Homo sapiens] 307 66027 
gi|386854 type II keratin subunit protein, partial [Homo sapiens] 259 52757 
gi|28317 unnamed protein product [Homo sapiens] 197 59492 
gi|119617032 keratin 6B, isoform CRA_a [Homo sapiens] 107 59874 
gi|3660145 Chain B, Crystal Structure Of S-Nitroso-Nitrosyl Human Hemoglobin A 105 15865 

gi|181402 epidermal cytokeratin 2 [Homo sapiens] 103 65825 
gi|6005942 transitional endoplasmic reticulum ATPase [Homo sapiens] 81 89266 
gi|4557701 keratin, type I cytoskeletal 17 [Homo sapiens] 78 48076 
gi|194387942 unnamed protein product [Homo sapiens] 75 56193 
gi|6912352 protein argonaute-1 [Homo sapiens] 74 97152 
gi|553734 putative [Homo sapiens] 67 2212 
gi|34412 unnamed protein product [Homo sapiens] 66 78029 
gi|4929993 Chain A, Module-Substituted Chimera Hemoglobin Beta-Alpha (F133v) 64 15780 

gi|193244921 beta globin [Homo sapiens] 64 11477 
gi|296863564 Chain A, Crystal Structure Of Mid Domain From Hago2 63 15216 
gi|392311616 Chain B, Heterocomplex Of Coil 2b Domains Of Human Intermediate 

Filament Proteins, Keratin 5 (Krt5) And Keratin 14 (Krt14) 
60 15040 

gi|435476 cytokeratin 9 [Homo sapiens] 59 62092 
gi|386850 keratin K5, partial [Homo sapiens] 58 54478 
gi|131412225 keratin, type I cytoskeletal 13 isoform a [Homo sapiens] 50 49527 
gi|440575811 alternative protein CSF2RB [Homo sapiens] 47 11638 
gi|119567960 hCG1643231, isoform CRA_a [Homo sapiens] 46 18891 

gi|186685 keratin type 16 [Homo sapiens] 43 50668 
gi|158261511 unnamed protein product [Homo sapiens] 41 49486 
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Appendix 14 continued  

 

Accession # Name Score Mass 

gi|17530177 N-methyl-D-aspartate receptor 3A [Homo sapiens] 37 125538 
gi|21758244 unnamed protein product [Homo sapiens] 37 18753 
gi|38051823 Plasminogen [Homo sapiens] 32 90526 
gi|3183214 RecName: Full=Uncharacterized protein KIAA0087 [Homo sapiens] 26 14928 

gi|461397 alpha-1 type XV collagen [Homo sapiens] 20 141842 
gi|374095517 RecName: Full=Collagen alpha-2(XI) chain; Flags: Precursor [Homo 

sapiens] 
20 171686 

gi|119627102 mitochondrial ribosomal protein L37, isoform CRA_d [Homo sapiens] 17 45548 
gi|14164613 sialic acid binding immunoglobulin-like lectin 10 [Homo sapiens] 16 76572 
gi|7959353 KIAA1543 protein [Homo sapiens] 15 98004 
gi|401664560 hydrocephalus-inducing protein homolog isoform a [Homo sapiens] 14 575528 
gi|791002 ARSD [Homo sapiens] 14 65029 
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Appendix 15: Optimising erythrocyte analysis by SDS-
PAGE 

 

Figure 63: Electrophoretic profiles of whole RBC and RBC membranes.  
Filtered RBCs are pelleted, RBCs washed and enumerated by a Mascot™ Hemavet 950FS, 
specified cell numbers are either lysed in 1X LDS running buffer, or, membranes prepared as per 
Section 2.5.4.1 and resolved on a 7.5% acrylamide gel as per Section 2.6.1. Gels were stained with 
Coomassie blue as per Section 2.6.3.1.  
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Appendix 16: Lipophilic dyes are detrimental to RBC-MVs 

 

Figure 64: Lipophylic dyes lyse RBC-MVs.  
a) Histograms detailing the side scatter (SSC-H) profiles of SSC beads, unstained MVs kit buffer 
(Diluent C) and MVs stained at different concentrations for 30 minutes; b) Overlay of all histograms 
from a) to allow ease of comparison.  
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Appendix 17: Original green “blobs” observed post 
phagocytosis 

  

Figure 65: Original “blobs” observed in no RBC-MV prep 
stained with CFSE.  
CFSE labelled “no RBC-MV” in PBS spotted onto a microscope 
slide and observed under a 40X objective lens. 
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