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Summary 

Pulmonary hypertension is a disease characterised by progressive pulmonary 

vascular remodelling and obliteration with consequent development of right 

heart failure and ultimately death. First described many decades ago with a 

median survival of less than 3 years and no available treatments, the 

development of disease specific pulmonary vasodilator therapy has led to only 

modest improvements in survival and it remains an almost universally fatal 

disease.  

One of the key symptoms of pulmonary hypertension is exercise intolerance, 

primarily a consequence of the underlying right ventricular failure and an 

inability to augment stroke volume on exercise. The gold standard diagnostic 

test is right heart catheterisation but this is unattractive as a tool for ongoing 

monitoring as it is invasive and not without risk, albeit that risk is small. As a 

result most monitoring of disease progression and of treatment response is 

carried out using surrogate markers, often exercise based such as the 6 minute 

walk test.  

Increasing attention is focused on the role of exercise both in that monitoring of 

patients and also in helping to understand better the pathophysiology. The work 

presented in this thesis therefore aimed to explore novel exercise derived 

variables and noninvasive haemodynamic measurement as tools to improve our 

understanding of the disease limitation, to enhance our monitoring of treatment 

response and to give additional prognostic information. 

In Chapter 3 the role of peripheral muscle oxygen extraction and exercise 

limitation was explored by performing right heart catheterisation on exercise 

with measurement of mixed venous oxygen saturation. This demonstrated that 

patients with pulmonary hypertension demonstrate no evidence of impaired 

oxygen extraction and that they appear to extract at least as much oxygen on 

exercise as healthy individuals have been shown to in other studies. This 

indicates that impairment of oxygen extraction is not a cause of exercise 

limitation in pulmonary hypertension. 
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Chapter 4 describes a series of studies evaluating the potential role of the 

oxygen uptake efficiency slope in pulmonary hypertension. This variable derived 

from the oxygen consumption and ventilation across an incremental 

cardiopulmonary exercise test has demonstrated promise as a potential 

submaximal measure of exercise performance and predictor of survival in left 

heart failure. The studies conducted demonstrated that this variable is a 

measure of peak exercise performance in pulmonary hypertension, that it can be 

measure on submaximal levels of exercise and that it predicts survival in 

patients with Group 1 and Group 4 disease. 

The studies described in Chapter 5 investigated the rates of recovery of heart 

rate and oxygen consumption after exercise and found that both could predict 

survival. In particular the rate of recovery of heart rate after exercise was 

demonstrated to be a strong predictor of survival on multivariate analysis, thus 

providing a further method of assessing prognosis with exercise. 

Finally the ability of noninvasive measures of stroke volume to predict outcome 

was explored in the studies detailed in Chapter 6. The underlying haemodynamic 

abnormalities are not assessed when surrogate measures such as exercise testing 

are employed in patient follow up. Standard practice is to review patients 3 to 4 

months after any change in treatment and to assess them using these surrogate 

measures. Acute haemodynamic changes are able to be detected invasively 

immediately after administration of pulmonary vasodilator therapy. This study 

therefore investigated the ability of two noninvasive methods of measuring 

stroke volume, inert gas rebreathing and cardiac MRI, to detect treatment 

response after only 2 weeks and assess how this related to functional 

improvement at the standard 4 months. The study found that haemodynamic 

changes were able to be detected at 2 weeks and these appeared to relate to 

changes in 6 minute walk distance at the same time point but did not appear to 

relate to 6 minute walk distance at 4 months. This study however did not reach 

its recruitment target and therefore further work is needed in this area. 
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1 Introduction 
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1.1 Definition and background 

Pulmonary hypertension (PH) is defined as a resting mean pulmonary artery 

pressure (mPAP) ≥ 25mmHg1, 2. Although the upper limit of normal of mPAP is 

20mmHg3, the use of 25mmHg as the cut-off value to define PH has been used 

since the first World Symposium on Pulmonary Hypertension (WSPH) in 1973 and 

is now well established in both clinical guidelines1, 4, 5 and epidemiological6-8 and 

clinical trials9-12. The term PH refers not to a single disease but to this elevation 

in pulmonary artery pressure (PAP) when seen in association with a wide group 

of conditions, some of which affect the pulmonary vasculature directly and 

others which affect it indirectly. Key to the pathophysiology of PH is the 

development of progressive right ventricular (RV) failure which causes symptoms 

including increasing breathlessness, peripheral oedema and exertional 

presyncope and syncope. 

Ultimately, unchecked PH results in premature death. Prior to the advent of 

disease specific pharmacological therapy, survival with PH was very poor. In 

1991 in the United States of America a large multicentre registry study of 194 

patients diagnosed with what was then known as primary PH demonstrated a 

median survival of only 2.8 years with 5 year survival of 34%13. Since that work 

was published an increasing number of targeted therapeutic options have proven 

successful in clinical trials and thereafter been incorporated into routine patient 

management with a resultant increase in survival however PH remains associated 

with significant morbidity and mortality. Data from the 2015 United Kingdom 

National Audit of Pulmonary Hypertension indicates that for a patient population 

similar to that described in the 1991 registry study outlined above, median 

survival remains poor at 4 years and 104 days despite the advances made in 

treatment14. 

This chapter will describe the background to and rationale for the work 

presented in this thesis. It explains the current clinical classification of PH, the 

pathophysiology of the disease process and the diagnostic and management 

strategies employed in the management of patients with PH. The 

pathophysiology of exercise limitation and the role of exercise testing in PH is 

described and consideration is given to noninvasive methods of measuring 
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haemodynamic variables in PH. The aims and hypotheses of the work presented 

in this thesis are then defined. 

1.2 Clinical classification of pulmonary hypertension 

An accepted structure for the clinical classification of PH was first agreed in 

1998 at the second WSPH in Evian, France15, grouping subtypes of PH by common 

features of pathology, clinical and haemodynamic features, and treatment. This 

classification has been modified over the subsequent WSPH meetings in Venice, 

Italy in 200316, Dana Point, California in 200817 and most recently in Nice, France 

in 201318, although the overall structure has remained. The Dana Point 

classification was the contemporary classification at the time the studies 

described in this thesis were carried out and this is described in Table 1.1. 

Although some changes were made at the 2013 WSPH18 none of these would have 

affected the inclusion of the patients who participated in the studies. Patients 

with group 1 or group 4 PH were eligible for participation in the studies reported 

in this thesis while those with a diagnosis of group 2, 3 or 5 PH were excluded.  
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2008 Dana Point Clinical classification of PH 

Group 1 Pulmonary arterial hypertension 

 1.1 Idiopathic PH 

 1.2 Heritable 

  1.2.1 BMPR2 

  1.2.2 
ALK1, endoglin (with or without hereditary 
haemorrhagic telangiectasia) 

  1.2.3 Unknown 

 1.3 Drug- and toxin-induced 

 1.4 Associated with 

  1.4.1 Connective tissue diseases 

  1.4.2 HIV infection 

  1.4.3 Portal hypertension 

  1.4.4 Congenital heart diseases 

  1.4.5 Schistosomiasis 

  1.4.6 Chronic haemolytic anaemia 

 1.5 Persistent pulmonary hypertension of the newborn 

1’ 
Pulmonary veno-occlusive disease and/or pulmonary capillary 
haemangiomatosis 

Group 2 Pulmonary hypertension owing to left heart disease 

Group 3 Pulmonary hypertension owing to lung diseases and/or hypoxia 

Group 4 Chronic thromboembolic pulmonary hypertension 

Group 5 Pulmonary hypertension with unclear multifactorial mechanisms 

 
5.1 Haematological disorders: myeloproliferative disorders, 

splenectomy 

 
5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans 

cell histiocytosis, lymphangioleiomyomatosis, 
neurofibromatosis, vasculitis 

 
5.3 Metabolic disorders: glycogen storage disease, Gaucher 

disease, thyroid disorders 

 
5.4 Others: tumoural obstruction, fibrosing mediastinitis, 

chronic renal failure on dialysis 

Table 1.1 2008 Dana Point clinical classification of pulmonary hypertension. PH: pulmonary 
hypertension; BMPR2: bone morphogenetic protein receptor type 2; ALK1: activin receptor-
like kinase type 1; HIV: human immunodeficiency virus. 

  



20 
 

1.3 Pathogenesis of pulmonary hypertension 

The healthy pulmonary circulation consists of thin walled blood vessels in a low 

pressure, high flow system19 with significant vascular reserve20. The pathogenesis 

of pulmonary arterial hypertension (PAH) is multifactorial and not yet fully 

understood21 but at its core consists of pulmonary vascular proliferation and 

remodelling, thrombosis and vasoconstriction causing a progressive rise in 

pulmonary vascular resistance (PVR) and consequent RV failure4, 19, 20. Primarily 

affecting vessels less than 500µm diameter the pathological changes seen in PAH 

include the development of smooth muscle in the wall of distal, usually 

nonmuscular, pulmonary arteries; neointima formation in which a layer 

consisting of extracellular matrix and myofibroblasts forms between the 

endothelium and the internal elastic lamina; and endothelial cell proliferation 

leading to the formation of complex vascular lesions known as plexiform 

lesions20, 22. Pulmonary veins are generally felt to be unaffected by the disease 

process in PAH although this is an area of current research interest21. 

Several cellular and molecular processes contribute to these pathological 

changes including upregulation of matrix metalloproteinases, disordered 

inflammation in favour of proinflammatory cytokines, a prothrombotic state 

leading to in situ thrombosis, induction of growth factors stimulating vascular 

remodelling such as vascular endothelial growth factor (VEGF), and endothelial 

dysfunction with a fall in production of endogenous vasodilators including nitric 

oxide (NO) and prostacyclin, and an increase in vasoconstrictor compounds such 

as endothelin 1 (ET-1) and thromboxane A219-21, 23, 24. 

The pathogenesis of group 4 PH, i.e. chronic thromboembolic pulmonary 

hypertension (CTEPH) has a degree of overlap with that of group 1 PAH. 

Although as many as 50% of patients diagnosed with CTEPH have no identifiable 

prior episode of venous thromboembolism (VTE) it is widely accepted that the 

initial event in the pathogenesis is an episode of pulmonary embolism (PE)25. For 

reasons that have yet to be fully elucidated, there is aberrant thrombus 

resolution, resulting in pulmonary vascular narrowing and obliteration with the 

development of organised thrombus and vascular bands and webs4, 26, 27. This 

vascular obstruction diverts blood flow through unaffected pulmonary arteries, 

triggering the development of a similar vasculopathy to that seen in PAH with 



21 
 
increased shear stress, cytokine release and activation of proinflammatory 

pathways, and increased levels of ET-1, even in the absence of any further 

episode of PE25, 28, 29.  

While one prospective follow up single centre study suggested that CTEPH may 

develop in up to 3.8% of patients after an episode of PTE30 the true rate is 

believed to be lower with international guidelines suggesting a rate of 0.5 – 2%4. 

Other factors associated with an increased risk of developing CTEPH include 

previous splenectomy, the presence of a ventriculo-atrial shunt for 

hydrocephalus and a history of chronic inflammatory disease25, 26. Although 

thrombophilia per se has not been associated with the development of CTEPH 

studies have demonstrated increased levels of factor VIII, von Willebrand factor 

and antiphospholipid antibody26. 

 

1.4 Diagnosis of pulmonary hypertension 

Given the many possible causes for PH as described in Table 1.1 and that the 

treatment for each PH group is different, securing an accurate diagnosis is 

essential. Internationally recognised guidelines describing how best to achieve 

this have been published and were followed as standard practice in the Scottish 

Pulmonary Vascular Unit at the time of the studies described in this thesis. 

1.4.1 Clinical presentation 

Patients most commonly present with nonspecific symptoms of progressive 

exertional breathlessness and fatigue, having been symptomatic usually for 

several months or years before diagnosis, with a mean time from symptom onset 

to diagnosis in an early registry study of 2 years31. The gradual onset contributes 

to the long time to diagnosis as initial symptoms may be dismissed as a lack of 

fitness32. As the disease progresses and RV failure develops other symptoms of 

chest pain, peripheral oedema, presyncope and syncope may develop, with 

symptoms at rest indicating advanced disease4. There may be a history of illness 

with one of the conditions associated with Group I PH, e.g. connective tissue 



22 
 
disease, HIV infection or liver disease, or there may be a positive family history 

in a small number of cases.  

On examination the most common and potentially only feature in the earlier 

stages of the disease may be a loud second heart sound in the pulmonary region. 

A pansystolic murmur at the left lower sternal edge consistent with tricuspid 

regurgitation may be heard and in the presence of RV failure a right ventricular 

heave may be felt in the left parasternal area32. On examination of the jugular 

veins there may be a prominent “a” wave as the right atrium contracts in the 

presence of a non-compliant RV and “v” wave as a consequence of tricuspid 

regurgitation. With the development of RV failure, the jugular venous pressure 

(JVP) will rise and peripheral oedema will develop, detectable in the legs and 

possibly also the sacrum and, in the form of ascites, in the abdomen. A third 

heart sound may be heard in advanced disease and central cyanosis develops. 

Examination of the lungs is usually unremarkable. 

Clinical examination may reveal signs suggestive of an underlying cause of 

secondary PH, either in the form of left heart disease suggesting possible Group 

2 disease or lung disease in keeping with a possible diagnosis of Group 3 disease. 

There may be stigmata of liver disease such as spider naevi, hepatomegaly or 

gynaecomastia, or clinical evidence of connective tissue disease, e.g. 

telangiectasia, Raynaud’s, skin changes in the face and hands or digital 

ulceration.  

1.4.2 Initial investigations 

In PH the electrocardiogram (ECG) will frequently reveal evidence of RV 

hypertrophy and strain31 however a normal ECG cannot be used to exclude the 

disease as it has insufficient sensitivity and specificity (55% and 70% 

respectively)4. Most patients with PH will be sinus rhythm but the development 

of atrial fibrillation or other supraventricular tachycardias will in the vast 

majority of cases precipitate clinical deterioration and worsening right heart 

failure33, and such an event may trigger the initial assessment.  

The chest x-ray is abnormal in as many as 90% of patients at diagnosis31. It may 

demonstrate enlarged central pulmonary arteries with “pruning” of the more 
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peripheral vessels and in more advanced disease may show evidence of RV and 

right atrial (RA) enlargement. It may in addition suggest the presence of lung 

disease or, in the presence of cardiomegaly, pulmonary oedema and/or bilateral 

pleural effusions, left heart disease. 

1.4.3 Echocardiogram findings 

The standard screening test for PH is the echocardiogram, used to provide an 

estimate of PA pressure, and to assess left ventricular (LV) and RV function4. 

Using the modified Bernoulli equation the PA systolic pressure (PASP) can be 

estimated as 

𝑃𝐴𝑆𝑃 = 𝑇𝑅𝑃𝐺 + 𝑅𝐴𝑃 

 where  PASP =  pulmonary artery systolic pressure  

   TRPG =  tricuspid regurgitation pressure gradient 

   RAP =  right atrial pressure, estimated on the basis of 

     the diameter and variation with respiration of 

     the inferior vena cava 

and 

𝑇𝑅𝑃𝐺 = 4 ⋅ (𝑇𝑅𝑉)2 

 where  TRV = peak velocity of the tricuspid regurgitant jet34. 

The estimated PASP measure at echocardiogram can in theory be used to 

estimate the mPAP but it is not sufficiently accurate for this to be relied on in 

clinical practice due to the frequency of overestimation or underestimation of 

the PASP35. It is however useful as a screening tool except in the mildest cases of 

PH4. 

The echocardiogram provides information on left ventricular function which may 

suggest pulmonary venous hypertension (PVH), i.e. Group 2 disease as the cause 

of PH. Evidence of septal or other congenital defects may be seen and the use of 

bubble contrast may indicate the presence of a right to left shunt. 
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In addition to the diagnostic information provided, the echocardiogram also 

provides prognostic information. The tricuspid annular plane systolic excursion 

(TAPSE) is a measure of apex-to-base RV shortening in systole and correlates 

with RV ejection fraction36. It has also been shown to be a significant predictor 

of survival in PAH37, 38. Right atrial size and the presence and severity of 

pericardial effusion have also been shown to associate with disease severity and 

to predict survival39, 40. 

1.4.4 Further investigations 

If the clinical assessment and echocardiogram are suggestive of PH with no 

evidence of significant lung or left heart disease then further investigation is 

warranted. It is at this point that patients would usually be referred to the 

Scottish Pulmonary Vascular Unit (SPVU) (see Chapter 2.1) for more detailed 

assessment. The purpose of these further investigations is to confirm the 

pulmonary vascular haemodynamic measurements and to elucidate the cause if 

PH is confirmed. 

1.4.4.1 Blood investigation 

Routine haematological and biochemical blood investigations including 

assessment of liver and thyroid function, an autoimmune screen looking for 

evidence to suggest a diagnosis of connective tissue disease, and HIV and 

hepatitis C screening serology are checked in all patients. Although 

thrombophilia screening is recommended4, local guidelines are that this should 

not be checked unless there is a clear family history as in the event that a 

diagnosis of CTEPH is made, lifelong anticoagulation will be required regardless 

of the presence or absence of an underlying clotting disorder.  

1.4.4.2 Tests of respiratory function 

Pulmonary function tests (PFTs) are performed in all patients suspected of 

having PH. The primary reason for conducting PFTs is to look for evidence of 

interstitial lung disease or airways disease and therefore suggest a possible 

diagnosis of Group 3 PH. However it also provides useful information in patients 

without lung disease as a cause of PH. In cases of PAH, spirometry is usually 

normal or close to normal but the diffusing capacity of the lungs for carbon 
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monoxide (DLCO) may be markedly reduced and correlate inversely with 

survival41, 42. Although a severely reduced DLCO can occur in patients with 

idiopathic pulmonary arterial hypertension (IPAH)42, such a marked reduction 

should raise the possibility of connective tissue disease associated PH 

(CTDPH)43or pulmonary veno-occlusive disease (PVOD)44 in the absence of left 

ventricular lung disease or lung disease. 

Consideration should be given to whether obstructive sleep apnoea or obesity 

hypoventilation are present and if symptoms are suggestive, screening with 

overnight transcutaneous monitoring or polysomnography can be undertaken4. 

1.4.4.3 Ventilation/perfusion scanning 

Ventilation/perfusion (V/Q) scanning should be performed in all patients with 

suspected PH to screen for possible CTEPH. Although possessing similar 

specificity, the V/Q scan has considerably greater sensitivity for the detection of 

pulmonary thromboembolic disease than does multidetector computed 

tomography pulmonary angiography (CTPA) with sensitivity 96 - 97.4% for V/Q 

scanning compared with 51% for CTPA45. Specificity is over 90% for V/Q and 99% 

for CTPA. 

1.4.4.4 Cross sectional imaging 

Cross sectional imaging in the form of high resolution computed tomography 

(HRCT) scanning and CTPA are undertaken in all patients. The HRCT is optimised 

for assessment of the lung parenchyma and therefore is used to examine for 

evidence of lung disease which could be the cause of PH, i.e. Group 3 disease. 

However features of PVOD may be seen, namely septal lines and ground glass 

opacities in keeping with interstitial oedema46.  

CTPA may demonstrate dilatation of the main pulmonary artery (PA) and right 

sided cardiac chambers in all forms of PAH but of particular note are the findings 

seen in CTEPH. Bilateral pleural effusions and mediastinal lymphadenopathy may 

be seen in PVOD and in left heart disease. Although less sensitive than V/Q 

scanning CTPA can provide information on the structural abnormalities affecting 

the pulmonary vasculature. Complete obstruction, eccentric laminated 

thrombus, stenosis in the form of bands or webs, and other intimal irregularities 
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may be seen47. Peripheral wedge shaped opacities representing areas of previous 

pulmonary infarction and mosaic perfusion may also be seen. 

1.4.4.5 Cardiac magnetic resonance imaging 

Cardiac magnetic resonance imaging (MRI) provides a noninvasive mode of 

assessing RV structure and function and pulmonary vascular haemodynamics in 

the form of stroke volume (SV) and cardiac output (CO), and can add to the 

diagnostic assessment of patients with suspected PH, in terms of both the cause 

and the disease severity. Cardiac MRI is discussed in more detail in chapter 

1.8.1.  

1.4.4.6 Measurement of brain natriuretic peptide 

Cardiac wall stress stimulates the mycocardium to release atrial and brain 

natriuretic peptides. These molecules increase natriuresis and also vasodilation. 

In PH, most research into natriuretic peptides has focused on brain natriuretic 

peptide (BNP). The molecular precursor of BNP is proBNP. BNP is formed when 

the N-terminal of proBNP (NTproBNP) is cleaved from the larger molecule, 

producing BNP. Both BNP and NTproBNP can be quantified in blood and both 

have been shown to have prognostic significance. NTproBNP is more stable in 

blood and after sampling and has a longer half-life. As a consequence it is used 

in preference to BNP in the assessment of patients attending the SPVU. 

Work carried out in the SPVU demonstrated that NTproBNP at baseline 

correlated negatively with RV ejection fraction (RVEF) and was a highly sensitive 

and specific marker of RV systolic dysfunction (RVSD) 48. This relationship 

between NTproBNP and disease severity is now well established. Higher levels 

are associated with higher mortality49-51, increasing levels are associated with 

deteriorating RV systolic function52 and falling levels have been seen in patients 

with improved haemodynamics on treatment49.  

1.4.4.7 Assessment of functional capability 

With exercise limitation one of the key features of PH symptomatology, tests of 

exercise capacity have a role in the assessment of disease severity at baseline 

and on follow up. The most commonly used tests in PH re the 6 minute walk test 
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(6MWT) and the cardiopulmonary exercise test (CPET)4 and these are discussed 

in Chapter 1.7.3.  

The World Health Organisation Functional Class (WHO-FC) is a widely accepted 

method of stratifying patients with PH by the effect it has on their ability to 

perform activities. It is described in Chapter 2.2. Patients with poor WHO-FC 

have been demonstrated to have poorer survival than those in the best 

functional classes13. 

1.4.5 Right heart catheterisation 

To confirm the diagnosis all patients must undergo right heart catheterisation 

which remains the gold standard method of clarifying the presence of PH, 

quanitifying the severity of the haemodynamic impairment and testing the 

degree of vasoreactivity of the pulmonary circulation2, 4. RHC is performed and 

measurements made as described in Chapter 2.7.1. When conducted in 

experienced centres such as the SPVU the rate of complications of RHC is low. In 

one multicentre retrospective and prospective study evaluating serious adverse 

events (SAEs) related to RHC in patients with PH found a rate of SAEs of 1.1%, 

the most frequent of which related to the initial venous puncture, with cardiac 

arrhythmia and hypotension occurring less frequently53. The overall procedure 

related mortality in that series was 0.059%.  

The haemodynamic definition of different groups of PH is given in Table 1.2.  

Haemodynamic definitions of pulmonary hypertension 

Definition Haemodynamics PH Group 

Pulmonary hypertension mPAP ≥ 25 mmHg All 

Pre-capillary PH 
mPAP ≥ 25 mmHg 
PAWP ≤15 mmHg 

CO normal or reduced 

Group 1 
Group 3 
Group 4 
Group 5 

Post-capillary PH 
mPAP ≥ 25 mmHg 
PAWP > 15 mmHg 

CO normal or reduced 
Group 2 

Table 1.2 Haemodynamic definitions of pulmonary hypertension. mPAP: mean pulmonary 
artery pressure; PH: pulmonary hypertension; PAWP: pulmonary artery wedge pressure; 
CO: cardiac output. PH groups are as described in Table 1.1. 
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In some patients with suspected Group 2 PH, particularly those in whom LV 

diastolic dysfunction may be suspected on the basis of history and other 

investigations, a normal pulmonary artery wedge pressure (PAWP) may still be 

seen, suggesting a diagnosis of precapillary PH. In such cases of raised suspicion 

the PAWP may be “challenged”, either with a period of exercise on the cardiac 

catheterisation table or by giving a rapid fluid challenge of 0.9% saline and 

assessing for a disproportionate rise in the PAWP54.  

In cases of haemodynamically confirmed PAH, vasoreactivity testing should be 

undertaken4. In these patients an acute vasodilator is given following initial RHC 

measurements. As is the case in the SPVU, inhaled nitric oxide (NO) is the acute 

vasodilator used most often although intravenous epoprostenol may also be 

used. A positive response in defined as a reduction in mPAP of ≥ 10 mmHg to an 

absolute mPAP of ≤40 mmHg, with a stable or increased CO4, 55. The importance 

of this vasoreactivity testing is that patients who have a positive response are 

most likely to response to long term treatment with calcium channel blockers 

and have a better outlook than non-responders55, 56.  

1.4.6 Conventional pulmonary angiography 

In patients in whom a diagnosis of CTEPH is suspected, generally those patients 

with a suggestive V/Q scan and/or CTPA, conventional pulmonary angiography 

should be performed at the time of RHC4. This provides detailed imaging of the 

extent and distribution of vascular defects, confirming the diagnosis, and 

enables planning of the optimum therapeutic strategy.  
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1.5 Features of prognostic significance 

The various components of the assessment described in Chapter 1.4 should be 

taken together to give an overall view of prognosis. Those features which are of 

established prognostic significance are given in Table 1.3, adapted from 

McLauglin and McGoon, 200957 and Galié et al, 20094.  

Assessment of disease severity and prognosis 

Better prognosis 
Determinants of 

prognosis 
Worse prognosis 

No 
Clinical evidence of RV 

failure 
 

Slow 
Rate of symptom 

progression 
 

No Syncope  

I/II WHO-FC  

Longer, > 500m 6 minute walk distance Shorter, <300m 

Peak VO2 > 15ml/min/kg 
Cardiopulmonary 

exercise test 
Peak VO2 < 12ml/min/kg 

Normal/near-normal BNP/NTproBNP Very elevated and rising 

No pericardial effusion 
TAPSE > 2cm 

Echocardiographic 
findings 

Pericardial effusion 
TAPSE < 1.5cm 

RAP < 8mmHg and  
CI ≥ 2.5l/min/m2 Haemodynamics 

RAP > 15mmHg or 
CI ≤ 2.0l/min/m2 

Table 1.3 Features associated with better or worse prognosis in patients with pulmonary 
arterial hypertension, adapted from McLaughlin and McGoon, 200957 and Galié et al, 20094. 
RV: right ventricular; WHO-FC: World Health Organisation Functional Class; BNP: brain 
natriuretic peptide; NTproBNP: N terminal proBNP; TAPSE: tricuspid annular plane systolic 
excursion; CI: cardiac index. 
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1.6 Treatment of pulmonary arterial hypertension 

1.6.1 General measures 

1.6.1.1 The role of anticoagulation 

There is a longstanding recommendation that patients with IPAH be 

therapeutically anticoagulated, originally with warfarin and more recently with 

novel oral anticoagulant agents. Post mortem examination of lung tissue from 

patients with IPAH and other studies in wider groups of PAH have demonstrated 

a high prevalence of thrombotic lesions58 and in retrospective studies found 

anticoagulation to be associated with significantly better survival compared to 

those patients who were not anticoagulated58. A more recent study analysing 

data from the Comparative, Prospective Registry of Newly Initiated Therapies for 

Pulmonary Hypertension (COMPERA) has confirmed the beneficial effect of 

anticoagulation in Group 1 PH but only in those patients with IPAH and no 

beneficial effect of treatment with anticoagulants was seen in patients with 

other types of PAH59. Clearly patients with CTEPH should have lifelong 

anticoagulation4. 

1.6.1.2 Diuretics 

Patients with progressive RV failure are prone to becoming fluid overloaded with 

increasing right heart pressure and the accumulation of peripheral oedema and 

in some cases ascites. There are no randomised controlled trials (RCTs) of 

diuretic use in patients with PH but the symptomatic benefits of diuresis are 

widely accepted4. 

1.6.1.3 Oxygen 

There is some evidence from the study of PH secondary to lung disease that 

administration of long term oxygen therapy can lead to improvements in the 

pulmonary vascular component of that disease process60. This and other 

evidence has been extrapolated to the management of PH and it is 

recommended that patients with a partial pressure of oxygen in arterial blood of 

less than 8 kPa receive oxygen at rates to maintain a level greater than 8kPA for 

at least 16 hours a day4. 
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1.6.2 Specific pulmonary vasodilator therapy 

1.6.2.1 Calcium channel blockers 

As described in Chapter 1.4.5, patients with IPAH who have a significant 

response to an acute pulmonary vasodilator trial should be treated with calcium 

channel blockers55, 56. Patients meeting this criterion and who are started on 

calcium channel blockers should be monitored closely and if there is poor 

evidence of efficacy then additional or alternative PH therapy should be 

instituted4, 61. 

1.6.2.2 Phosphodiesterase type 5 inhibitors 

Phosphodiesterase type 5 (PDE5) inhibitors are often used as first line therapy in 

Group 1 PH. PDE5 is expressed in high concentrations in the pulmonary 

vasculature. It enzymatically degrades cyclic guanosine monophosphate and 

inhibition of this causes vascular smooth muscle relaxation through the NO/cGMP 

pathway and thus cause vasodilation. It has been suggested from in vitro work 

that there may be an additional beneficial effect on pulmonary vascular 

remodelling by reducing proliferation62, 63. 

The beneficial effects of the PDE5 inhibitors sildenafil and tadalafil in PAH have 

been demonstrated in RCTs. SUPER-1 showed sildenafil to have a beneficial 

impact on exercise capacity, WHO-FC and haemodynamics compared with 

placebo10 while SUPER-2, the long term uncontrolled extension study which 

followed SUPER-1, demonstrated the drug to be generally well tolerated64. The 

PHIRST study of tadalafil showed that compared with placebo, tadalafil 

increased 6 minute walk distance (6MWD), even in patients already on treatment 

with bosentan (see Chapter 1.5.2.3), and also improved time to clinical 

worsening and quality of life measures65. In a similar manner to SUPER-2, a 

tadalafil long term uncontrolled extension study was conducted, PHIRST-2, 

demonstrating that tadalafil was well tolerated and that the improvements seen 

in 6MWD in PHIRST appeared to be maintained after one year of treatment66. 
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1.6.2.3 Endothelin receptor antagonists 

Endothelin-1 is a powerful vasoconstrictor released primarily from vascular 

endothelium and as described in Chapter 1.3 plays a role in the pathogenesis of 

PH. It binds to both ETA and ETB receptors in the vasculature. ETA receptors are 

found in vascular smooth muscle cells with ETB receptors located on both 

vascular smooth muscle cells and vascular endothelial cells. When ET-1 binds to 

receptors of either type, vasoconstriction occurs. ET-1 binding to ETB receptors 

on endothelial cells however stimulates clearance of ET-1, stimulation of NO 

release and stimulation of prostacyclin release67, thus promoting vasodilation. 

Endothelin receptor antagonists (ERAs) were developed to counteract this 

increased expression of ET-1 in PAH. Bosentan is an oral dual ETA and ETB 

receptor antagonist. Its beneficial effects on 6MWD, WHO-FC, haemodynamic 

measurements and time to clinical worsening were demonstrated across a series 

of placebo controlled trials including the BREATHE series of studies and the 

EARLY trial9, 68-70. Longitudinal observational data has demonstrated that 

bosentan is safe and the improvements seen appear to be sustained long term71 

with improved survival72. Approximately 10% of patients develop raised liver 

aminotransferases. Although this is reversible on stopping the drug, patients on 

treatment with bosentan should have monthly liver function test monitoring4, 61.  

A second ERA, ambrisentan, has been accepted for use in patients with PAH. It is 

a selective ETA receptor antagonist and its efficacy was first demonstrated in 

two concurrent randomised double blinded placebo controlled studies, ARIES-1 

and ARIES-273. These trials found that therapy with ambrisentan was associated 

with improvements in 6MWD, WHO-FC, time to clinical worsening and BNP. 

Although increases in liver aminotransferases were less frequent and less marked 

than with bosentan treatment, patients on therapy with ambrisentan should also 

have monthly liver function test monitoring. 

A third ERA has more recently been developed for use in PAH. Macitentan is a 

dual ETA and ETB receptor antagonist and has been demonstrated to improve 

morbidity and mortality in patients with PAH when compared with placebo in the 

SERAPHIN study74. It was not yet available for use at the time of the studies 
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described in this thesis. A further ERA, sitaxentan, was withdrawn in December 

2010 due to associated liver toxicity75-77.  

1.6.2.4 Prostanoids 

Prostacyclin is a potent endogenous vasodilator and is downregulated in PAH78. 

Synthetic analogues have therefore been developed for use in PAH. Epoprostenol 

is administered as a continuous intravenous infusion, usually via a Hickman line. 

No randomised double-blinded controlled trials of epoprostenol have been 

conducted but it has long been accepted as the treatment of choice, in 

combination with oral therapies, for patients with the most severe disease. 

Evidence of its benefit in PAH comes from unblinded randomised controlled 

trials demonstrating a sustained reduction in mPAP and improvements in 

exercise capacity and survival79-81. Flushing, headache, gastrointestinal upset 

and jaw pain may occur with increasing doses but the most severe complications 

come from the delivery system, including the possibility of pump failure and line 

infection or blockage. Due to the short half life of the drug there is a risk of 

rebound PH, potentially fatal, if the drug infusion is stopped or interrupted 

suddenly4. 

Another prostacyclin analogue, treprostinil, can be given either intravenously or 

subcutaneously, although inhaled and oral preparations have also been 

produced. It is not used routinely in the care of patients attending the SPVU but 

has been shown to cause a significant improvement in 6MWD, WHO-FC and 

breathlessness82-84.  

Inhaled iloprost was shown in a multicentre double blinded RCT to increase the 

number of patients meeting the primary endpoint, a composite of improvements 

in 6MWD and WHO-FC, compared with placebo85. It requires to be taken 6 to 9 

times a day and has similar side effects to the other prostanoids of nausea, 

flushing and headache.  

1.6.2.5 Emerging therapies 

Patients have for several years been treated with PDE5 inhibitors, ERAs and 

prostanoids, either singly or in combination, and these were the drugs available 

for use at the time of the studies described in the following chapters. More 
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recently new drugs have become available which offer new approaches to PAH 

therapy. Briefly, riociguat, a stimulator of soluble guanylate cyclase works to 

increase cGMP in the NO/cGMP pathway and thus promote vasodilation. The 

PATENT and CHEST studies in patients with Group 1 and Group 5 PH respectively 

studied ricociguat in double blinded, placebo controlled trials and demonstrated 

a significant improvement in 6WMD, NTproBNP and WHO-FC with a longer time 

to clinical worsening and reduction in breathlessness also statistically significant 

in the Group 1 patients enrolled in PATENT11, 86. Riociguat is the first drug to be 

approved specifically for the medical management of patients with CTEPH. 

Selexipag is an oral selective IP prostacyclin receptor agonist. In a randomised 

double blinded placebo controlled trial it significantly reduced the risk of the 

primary endpoint, a composite of death or a PAH-related complication although 

there was no significant benefit on mortality alone12. 

1.6.2.6 Pulmonary endarterectomy 

If technically feasible, pulmonary endarterectomy (PEA) is the treatment of 

choice for patients with CTEPH as it is potentially curative therefore extensive 

assessment of the distribution and extent of organised thrombi, the functional 

and haemodynamic consequences of this and the general fitness and presence or 

absence of comorbid disease is undertaken prior to determining suitability for 

this surgery87. Consequently all patients with a diagnosis of CTEPH should be 

referred to an expert PEA centre for consideration of operability.  

The operation involves a median sternotomy before the patient is put on 

cardiopulmonary bypass. The pulmonary arteries on each side are dissected 

sequentially to remove the inner core of organised thromboembolic material, 

including the intima and superficial media88, 89.  

In hospital mortality at the time of PEA is less than 5%. Haemodynamic variables 

may return to normal or near normal with a consequent improvement in 

functional parameters. The long term prognosis is excellent with 1 year and 10 

year survival >90% and >70% respectively90, 91. 
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1.7 Exercise and pulmonary hypertension 

With exercise limitation a key symptom of PH, both at diagnosis and throughout 

the disease course, significant attention has focused on the role of exercise, 

both in helping to elucidate the pathophysiology and also as a mean of assessing 

disease severity and outcome. 

1.7.1 Exercise limitation 

It is reasonable to consider exercise the result of the process by which oxygen is 

transferred form the atmosphere, via the lungs and vasculature, to mitochondria 

in the peripheral muscle92. That oxygen consumption can be described by the 

Fick equation thus 

𝑉𝑂2 = 𝐶𝑂 ⋅ (𝐶𝑎𝑂2 − 𝐶𝑣𝑂2) 

where  VO2 = oxygen consumption     

  CO = cardiac output 

  CaO2 = arterial oxygen content 

  CvO2 = venous oxygen content. 

 

This equation can be expanded to highlight individual contributors to a given VO2 

as follows 

𝑉𝑂2 = 𝑆𝑉 ⋅ 𝐻𝑅 ⋅ 𝐻𝑏 ⋅ (𝑆𝑎𝑂2 − 𝑆𝑣𝑂2) 

where  SV = stroke volume      

  HR = heart rate       

  Hb = haemoglobin concentration    

  SaO2 = arterial oxygen saturation     

  SvO2 = venous oxygen saturation. 
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Therefore impairment of any one of stroke volume, heart rate, haemoglobin 

concentration, arterial oxygenation or oxygen extraction (and thus venous 

oxygen saturation) can cause a reduction in VO2 and thus exercise capacity. 

In PH the increased PA pressure and resultant RV failure lead to a reduction in 

the maximum achievable stroke volume93, 94, thus limiting the maximum VO2 

which can be reached. In addition, patients with PH exhibit a steeply climbing 

HR response to exercise and often fail to reach the predicted peak HR95 and iron 

deficiency anaemia is common96, 97. Furthermore a sharp decline in mixed venous 

oxygen saturation on exercise and ventilation-perfusion mismatch contribute to 

arterial desaturation on exercise98, 99. Thus, through several pathophysiological 

routes PH limits VO2 and therefore exercise capacity.  

The ventilatory response to exercise is also abnormal with markedly inefficient 

ventilation, most easily seen in the relationship between ventilation (VE) and 

carbon dioxide production (VCO2)100, 101. The VE for a given VCO2 on exercise is 

inversely related to the degree of physiological dead space and the “set point” 

at which CO2 is regulated102 as can be seen in the following equation 

(
𝑉𝐸

𝑉𝐶𝑂2
) =

𝑘

𝑃𝑎𝐶𝑂2 ⋅ (1 −
𝑉𝐷

𝑉𝑇
)
 

where  VE = ventilation 

  VCO2 = carbon dioxide production 

  PaCO2 = partial pressure of carbon dioxide 

  VD = dead space volume 

  VT = tidal volume. 

The increased ratio of VE to VCO2 seen on exercise in PAH is even greater in 

patients with CTEPH103, presumably due to the increased pulmonary vascular 

obstruction seen in that form of PH leading to an increased dead space fraction. 

It has been speculated that abnormalities of lung function may also contribute to 

an abnormal ventilatory response to exercise in patients with PAH. There is some 

evidence of peripheral airway obstruction in IPAH and a reduced inspiratory 
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capacity, which falls further with exercise, as a result of dynamic hyperinflation, 

has also been reported104, 105 however despite these findings and the more 

marked abnormalities seen in ventilatory efficiency, true ventilatory limitation is 

rare in PAH patients without comorbid lung disease106. 

It has been established that the peripheral muscle of patients with PH differs 

from that of healthy controls with reduced capillarity and alterations in 

mitochondrial function and muscle fibre type107-109. It has been suggested that 

these alterations in peripheral muscle function may limit exercise capacity by 

reducing oxygen extraction and thus limiting peak VO2 but evidence for this is 

limited in PAH110. 

1.7.2 The abnormal haemodynamic response to exercise 

In PAH there are marked abnormalities of the haemodynamic response which can 

be detected at RHC. Pressure measurements on exercise are complicated by a 

large respiratory swing, particularly in measurement of PAWP but also seen in 

measurement of PA pressures92, 111, 112. Pressure tracings from a patient with 

IPAH undergoing resting and exercise RHC are shown in Figure 1.1, 

demonstrating both the sharp rise in PA pressures and the marked respiratory 

swing.  

In health, mPAP and PAWP increase on exercise, with mPAP rising approximately 

0.5 – 3 mmHg per litre per minute increase in CO113 with a smaller rise seen in 

PAWP114. In PAH however there is a considerably steeper rise in mPAP with a 

smaller increment in CO than is seen in health, giving rise to a much steeper 

mPAP/CO relationship on exercise in PAH92, 115.  

The cardiac output response to exercise is blunted in PAH as a consequence of a 

failure to augment SV on exercise. In one study using cardiac MRI measurement 

of SV on submaximal exercise, healthy controls increased SV by approximately 

25% while no change was seen in SV in patients with IPAH93. In contrast to the 

control subjects in whom left ventricular (LV) and RV end diastolic volume (EDV) 

were both stable, in the patients with IPAH there was an increase in RVEDV and 

decrease in LVEDV. The total cardiac EDV was constant suggesting that on 

exercise there was progressive failure of the RV leading to the increase in 
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RVEDV, with consequent bowing of the interventricular septum into the LV, thus 

reducing the LVEDV. A reduction in RV ejection fraction (RVEF) was also seen 

suggesting that impaired forward flow from the RV on exercise was reducing LV 

filling. Together these mechanisms contributed to a failure to augment SV on 

exercise in the IPAH patients. Similar results were seen in an earlier study which 

also found evidence of increased RV filling and reduced LV filling, and saw a 

reduction in SV on exercise in patients with what was then known as primary 

pulmonary hypertension116.  

While RHC is required to confirm the diagnosis of PH, serial measurements over 

time are impractical due to the invasive nature of the test. It is though helpful 

in our understanding of exercise limitation in PH to understand the contribution 

of this abnormal haemodynamic response.  
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Figure 1.1 Right heart catheterisation pressure traces at rest and on exercise for a patient 
with idiopathic pulmonary arterial hypertension. PAP: pulmonary artery pressure; PAWP: 
pulmonary artery wedge pressure. 
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1.7.3 Noninvasive assessment of the exercise response 

1.7.3.1 Cardiopulmonary exercise test response profiles in pulmonary 
arterial hypertension 

Cardiopulmonary exercise testing (CPET) is the gold standard method of 

evaluating the cause of exercise limitation in patients with heart and lung 

disease117. It provides information not only on the degree of impairment but also 

on the relative contribution to that impairment of abnormalities of ventilation, 

gas exchange, and oxygen transport and delivery, enabling a more in depth 

diagnostic assessment. When performed in an experienced centre repeat testing 

demonstrates high reproducibility of measurements118. 

Pulmonary vascular disease is associated with a characteristic exercise response 

profile101, 119-124 and this is demonstrated in Figure 1.2 in a series of selected 

panels taken from the 9 panel plot output of a CPET carried out in a patient with 

IPAH at the time of diagnosis, prior to commencement on pulmonary vasodilator 

therapy. Patients demonstrate a shallower than normal VO2 / work rate (WR) 

slope and achieve significantly lower peak VO2 levels compared with healthy 

individuals.  A reduced peak oxygen pulse, i.e. VO2 / HR, is also seen. 

Considering again the Fick equation as shown in Chapter 1.7.1, 

𝑉𝑂2 = 𝐶𝑂 ⋅ (𝐶𝑎𝑂2 − 𝐶𝑣𝑂2) 

and that CO is the product of SV and HR, dividing both sides by HR gives 

𝑉𝑂2

𝐻𝑅
= 𝑆𝑉 ⋅ (𝐶𝑎𝑂2 − 𝐶𝑣𝑂2) 

and thus oxygen pulse is closely related to stroke volume. The low oxygen pulse 

seen on CPET in patients with PAH therefore represents the failure to augment 

SV described in Chapter 1.7.2. Patients also show an accelerated HR response, 

seen as a steep VO2 / HR slope. A high VE / VCO2 slope and high VE /VCO2 at 

anaerobic threshold are characteristic of the ventilatory inefficiency seen in PAH 

and a low end tidal CO2 (PETCO2) is also seen, indicative of the abnormal gas 

exchange occurring in PAH. 
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Figure 1.2 Typical CPET responses of a patient with PAH. The solid lines in A), B) and C) 
indicate the predicted peak values of the respective variables. The dashed line in A) 
represents a VO2/WR slope of 10 ml/min/Watt – a healthy response would parallel this line. 
Note the more shallow VO2/WR slope and reduced peak VO2 in PAH. Reduced peak oxygen 
pulse is seen in B). Steep heart rate response and VE/VCO2 slope are evident in C) and D) 
respectively with the predicted response corridors indicated by dashed lines. E) displays a 
markedly elevated ventilatory equivalent of CO2 while F) shows reduced end-tidal CO2, 
demonstrating key elements of the abnormal gas exchange response in PAH. 
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1.7.3.2 Cardiopulmonary exercise testing and prognosis 

CPET variables have in a number of studies been shown to predict outcome in 

patients with PAH. One study of incremental CPET in patients with PAH using 

either treadmill or cycle ergometer found that peak VO2, PETCO2, VE/VCO2 slope, 

peak systolic and diastolic blood pressure (BP) and peak HR were all predictive 

of survival on univariate analysis with peak VO2 and peak systolic BP remaining 

significant on multivariate analysis125. A similar study found peak VO2 and change 

in HR on exercise to be predictive of survival on multivariate analysis with those 

patients with lower peak VO2 and a smaller increase in HR on exercise having a 

poorer survival126. Peak HR was also found to be associated with survival in a 

further study of patients with IPAH, which also reported that the VE/VCO2 slope 

was predictive of survival127 

Patients with Group 1 PAH undergoing serial CPETs were assessed for survival in 

a prospective longitudinal study. The study authors found that the presence of a 

right to left shunt was predictive of mortality while in those patients without a 

right to left shunt, a higher VE/VCO2 ratio at anaerobic threshold (AT) was 

predictive of increased mortality128. A study of patients with IPAH and those with 

PAH associated with other conditions such as connective tissue disease, 

anorexigen use, liver cirrhosis and congenital left to right shunting found that 

although no clear predictor of survival was seen in the associated PAH group, 

peak VO2 was predictive of time to clinical worsening and VE/VCO2 at AT was 

predictive of survival on multivariate analysis129. A retrospective analysis of 

patients diagnosed with PAH or CTEPH who had undergone CPET at baseline 

found that patients with a lower VE/VCO2 slope, higher peak VO2 and greater 

increase in oxygen pulse from rest to peak exercise had significantly better 

survival on univariate analysis130. On multivariate analysis only the increase in 

oxygen pulse remained significant. 

1.7.3.3 Cardiopulmonary exercise testing and treatment response 

Studies of the use of CPET to detect a response to treatment have yielded mixed 

results. Small uncontrolled studies have shown an improvement in peak VO2 on 

long term therapy with intravenous prostacyclin131 and an increase in peak VO2 

and reduction in VE/VCO2 slope with nebulised iloprost132. A study of 28 patients 
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with PAH in which 14 continued on existing treatment and 14 were given 

additional treatment with sildenafil, found that there were improvements in 

VE/VCO2 at AT, PETCO2 at AT and peak oxygen pulse in the group treated with 

sildenafil. 

However in a considerably larger placebo controlled RCT of treatment with 

sitaxsentan, STRIDE-1, the ability of CPET to detect a treatment response was 

limited with only an increase in percent predicted peak VO2 in the higher 

treatment dose group reaching statistical significance133. No improvements were 

seen in either of the two treatment dose groups compared with placebo for 

other CPET variables studied, namely VO2 at AT and VE/VCO2 at AT. It has been 

suggested that these negative findings may be explained by the relatively 

complex nature of cardiopulmonary exercise testing and the multicentre nature 

of the study, perhaps leading to less accurate results when CPET was performed 

in centres with less experience134. 

1.7.3.4 The 6 minute walk test in pulmonary hypertension 

The most common exercise test used in the assessment and monitoring of 

patients with PH is the 6minute walk test (6MWT)92. In contrast to incremental 

CPET the 6MWT is a submaximal test which relies mainly on aerobic rather than 

anaerobic metabolism135. Its popularity stems partly from the lack of specialist 

equipment required, with the only significant requirement a straight and quiet 

30 metre corridor136, and partly from the significant correlations seen between 6 

minute walk distance (6MWD) and other measures of exercise performance, 

function and haemodynamic measurements. 

In patients with IPAH the 6MWD has been shown to correlate significantly with 

peak VO2, oxygen pulse and VE/VCO2 slope as measured on maximal CPET137. In 

the same study a modest but statistically significant correlation was also seen 

with baseline CO and total pulmonary resistance (TPR) but not with mPAP. The 

6MWD was also seen to decrease in proportion with the severity of the functional 

class. In a separate study measuring gas exchange variables during 6MWT a 

correlation was seen between the 6MWD and the measured VO2 achieved during 

the walk test135. Baseline 6MWD has been demonstrated to correlate with 

measures of quality of life and in addition the change in 6MWD on treatment has 
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been also been shown to correlate with change in quality of life138. The change 

in 6MWD has been shown separately to correlate significantly with cardiac index 

and PVR139. 

When measured at baseline, 6MWD has consistently been found to be predictive 

of survival in trials of pulmonary vasodilator treatment in PAH140. The strong 

predictive relationship with survival has also been seen in analyses of registry 

data and therefore baseline 6MWD has been included in risk scores from the 

French registry6 and the North American REVEAL registry141, and also in the 

Scottish Composite Score derived from UK data142. Although the prognostic 

strength is high in IPAH it is less strong and may be lost in patients with Group 1 

PAH associated with other conditions such as connective tissue disease129, 143.  

Interestingly, although 6MWD improves with pulmonary vasodilator treatment, 

hence its inclusion in multiple clinical trials140, and the change in 6MWD 

correlates with the change in haemodynamics as described above, the size of the 

change does not appear to have prognostic significance. Several studies have 

failed to demonstrate a prognostic effect of the change in 6MWD140, 144-146. It 

appears that the change in 6MWD accounts for only a minor part of the overall 

treatment effect147. The correlation between the change in 6MWD and the 

change in haemodynamics is stronger than that with change in RV function148 but 

it is the change in RV function which is most strongly linked to outcome149. 

A further drawback of using 6MWD as an outcome measure is the ceiling effect, 

whereby it is more difficult to see an improvement in subjects with a higher 

baseline 6MWD than in those with a lower baseline 6MWD150-153. 

Despite these drawbacks however the 6MWT remains an integral part of the 

assessment and monitoring of patients with PAH, both in routine practice and in 

clinical trials. 

  



45 
 

1.8 Noninvasive assessment of the pulmonary circulation 

The haemodynamic status of the RV and pulmonary circulation is key to the 

diagnosis and assessment of patients with PH. However while RHC is the gold 

standard method of this repeat procedures are unattractive due to the invasive 

nature of the test. Research is therefore ongoing into potential noninvasive 

modes of assessing the haemodynamic abnormalities. In addition to 

echocardiography as described in Chapter 1.4.3, cardiac MRI is increasingly being 

used in the noninvasive assessment of the pulmonary circulation of patients with 

PH. Inert gas rebreathing (IGR) has also provoked interest as a potentially useful 

measure of haemodynamic change which again can be measured noninvasively. 

1.8.1 Cardiac magnetic resonance imaging 

MRI is an attractive method of assessing the right heart as it is noninvasive, uses 

no ionising radiation and provides information on both the structure and the 

function of the heart. Despite being considerably more expensive than 

echocardiography and less widely available, cardiac MRI has evolved over recent 

years to become the gold standard method of assessing the structure and 

function of the heart in a range of diseases including pulmonary hypertension154-

159. While some patients find MRI difficult to tolerate due to long scan times, 

claustrophobia and the need to perform repeated breath hold manoeuvres, 

newer technology has enabled scans to be performed more quickly and with real 

time acquisition160, 161 thus improving patient tolerance.  

In PH cardiac MRI can allow assessment of RV structure, size and function, and 

provide information on flow form the RV into the pulmonary circulation with 

measurements including SV, CO and PA distensibility162. Studies in patients with 

PAH have described impairment of RV systolic function, quantifiable by 

measurement of RVEF, SV and CO, with increased RVEDV and RV end systolic 

volume (RVESV) compared with control subjects155, 163, 164. MRI however is not 

able to measure actual PA pressures and therefore cannot replace RHC as a 

diagnostic tool. Correlations between PA pressure and cardiac MRI derived 

variables including the average velocity of pulmonary blood flow (PBF), septal 

curvature, relative area change of the main PA and the ventricular mass index 

(the ratio of RV mass to LV mass) have been seen raising the possibility that with 
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refinement cardiac MRI may have a role to play in the noninvasive diagnostic 

assessment of patients with PAH165-168. 

1.8.2 Inert gas rebreathing 

Inert gas rebreathing (IGR) is a long established technique for the noninvasive 

measurement of CO. It is based on the principle that when rebreathing in a 

closed circuit, the rate at which a specified gas dissolves in blood is proportional 

to the blood flow through the pulmonary capillaries. The PBF is equal to the 

cardiac output in the absence of a significant intracardiac or intrapulmonary 

shunt. Initially studied using acetylene rebreathing169 it was shown to have good 

agreement with more traditional techniques of measuring CO, namely the Fick 

and thermodilution methods, including in patients with Group 1 PH170.  

A modern refinement of this technique using a gas mixture of sulphur 

hexafluoride and nitrous oxide coupled to a rapid photoacoustic gas analyser has 

been shown to have good limits of agreement for SV measured by this method 

when compared with SV measured by cardiac MRI and by thermodilution in 

patients with PAH171. This method compares favourably with the conventional 

mass spectrometers previously used with IGR as it is more user friendly, lighter 

and less expensive172. Furthermore it can be used in the presence of fibrotic lung 

disease while maintaining good agreement with CO measured invasively by the 

indirect Fick method173. 

This method of IGR has been studied successfully in patients with chronic heart 

failure. In one study measurement of CO was seen to agree closely with 

measurements made by the thermodilution and direct Fick methods174. A 

separate study in patients with heart failure showed that this method of IGR 

could be used to measure CO successfully at rest and on exercise175, while a 

further study demonstrated that such measurements of CO made at peak 

exercise can predict survival in patients with chronic heart failure176. In a study 

of 24 patients with Group 1 or Group 4 PH either starting treatment de novo or 

undergoing modification of existing treatment, PBF and SV were seen to increase 

significantly at 3 months150. The further role of IGR in the assessment and 

monitoring of patients with PAH remains to be explored. 
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1.9 Hypotheses and aims 

This thesis aims to investigate the extent to which novel exercise derived 

variables and noninvasive haemodynamic measurements can enhance the 

assessment and monitoring of patients with pulmonary hypertension. The 

following hypotheses were examined in clinical studies: 

1. that there is impairment of peripheral muscle oxygen extraction on 

exercise in patients with Group 1 and Group 4 pulmonary hypertension, 

2. that the oxygen uptake efficiency slope is strongly correlated with peak 

VO2 in PH, that it is valid as a submaximal measure of exercise 

performance in groups I and IV PH and that it predicts survival in patients 

within these disease groups, 

3. that prolonged rates of recovery of heart rate and VO2 after incremental 

CPET in patients with precapillary PH will be associated with poorer 

survival and 

4. that inert gas rebreathing may detect early changes in stroke volume 

after institution or alteration of pulmonary vasodilator therapy and that 

this change will be associated with later functional improvement.  
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2 Materials and methods 
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2.1 The Scottish Pulmonary Vascular Unit 

All patients recruited for the studies documented in this thesis were attending 

the Scottish Pulmonary Vascular Unit (SPVU) for diagnosis and treatment of PH. 

The SPVU was founded in 1990 and although based in Glasgow it is a tertiary 

referral centre for PH and is the sole centre in Scotland for managing adult 

patients with PH. Scotland has a population of 5.3 million of whom 

approximately 4.4 million are aged 16 years or over and therefore potentially 

served by the SPVU. The National Audit of Pulmonary Hypertension gathers data 

from all eight specialised pulmonary hypertension centres in the United 

Kingdom, seven of which treat adult patients and there is one paediatric centre. 

The most recent data from this audit, covering April 2014 to March 2015, 

demonstrates a referral rate to SPVU of 42 per million population, with a point 

prevalence of 82 cases of pulmonary hypertension per million population14.  

During the years 2012-2014 a total of 608 patients had referrals accepted to 

SPVU and 233 patients were diagnosed with group 1, 4 or 5 PH. At 31/12/14 

there were 341 patients diagnosed with group 1, 4 or 5 PH with active ongoing 

follow up within SPVU. Due to the structure of the service in Scotland, with only 

the SPVU permitted to prescribe pulmonary vasodilator therapies, it is 

reasonable to assume that all patients in Scotland with a known diagnosis of 

precapillary PH are treated under the auspices of the SPVU.  

 

2.2 World Health Organisation functional class 

The World Health Organisation functional class (WHO-FC) for pulmonary 

hypertension was modified from the New York Heart Association classification 

for describing the functional impact of heart failure. The WHO-FC has been used 

since 1998 and is now well established in the assessment of patients with PH4 

(Table 2.1). The timing of WHO-FC assessment is documented in the chapters 

detailing the specific methods for each study. 
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WHO functional class 

 
Class I Patients with pulmonary hypertension but without resulting 

limitation of physical activity. Ordinary physical activity does 

not cause undue dyspnoea or fatigue, chest pain, or near 

syncope 

Class II Patients with pulmonary hypertension resulting in slight 

limitation of physical activity. They are comfortable at rest. 

Ordinary physical activity causes undue dyspnoea or fatigue, 

chest pain, or near syncope. 

Class III Patients with pulmonary hypertension resulting in marked 

limitation of physical activity. They are comfortable at rest. 

Less than ordinary activity causes undue dyspnoea or fatigue, 

chest pain, or near syncope. 

Class IV Patients with pulmonary hypertension with inability to carry 

out any physical activity without symptoms. These patients 

manifest signs of right heart failure. Dyspnoea and/or fatigue 

may even be present at rest. Discomfort is increased by any 

physical activity. 

Table 2.1 WHO functional classification of pulmonary hypertension 

 

 

2.3 Cambridge Pulmonary Hypertension Outcome 
Review score 

The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) score is a 

pulmonary hypertension specific patient-completed questionnaire and was used 

to assess health related and general quality of life177 (Appendix 1). It asks 

questions across three domains: symptoms, activities and quality of life, with 

higher scores reflecting poorer quality of life. 
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2.4 N-terminal pro-brain natriuretic peptide 

N-terminal pro-brain natriuretic peptide (NT-proBNP) was measured on venous 

blood sampled by standard venepuncture and collected in vacuum tubes 

containing ethylenediaminetetraacetic acid (EDTA). In patients undergoing an 

exercise protocol as part of the studies blood for NT-proBNP analysis was 

sampled prior to the exercise component of the assessment. 

 

2.5 Six minute walk test 

Six minute walk tests (6MWT) were carried out by the respiratory physiologists at 

the Golden Jubilee National Hospital, by Ms Val Pollock, clinical trial nurse, or 

by Dr SD Thomson. All were conducted in accordance with American Thoracic 

Society guidelines136. 

 

2.6 Incremental cardiopulmonary exercise test 

Maximal incremental cardiopulmonary exercise tests (CPETs) were conducted in 

accordance with established guidelines178 using an electromagnetically braked 

cycle ergometer (ergoselect 200, ergoline GmbH, Bitz, Germany). CPETs were 

carried out by a trained respiratory physiologist with medical supervision (Dr SD 

Thomson). Patients wore a tight fitting face mask connected to a metabolic cart 

for breath by breath measurement of gas exchange variables (Medisoft, Sorinnes, 

Belgium; lovemedical, Manchester, United Kingdom). Oxygen saturations were 

measured transcutaneously by finger or ear probe and a continuous 12 lead 

electrocardiograph (ECG) was performed for cardiac monitoring. Systemic blood 

pressure was measured noninvasively by either an automated electronic or a 

manual sphygmomanometer.  

Predicted values were calculated using published equations179 and maximum 

voluntary ventilation (MVV) was estimated as 35 x forced expiratory volume in 1 

second (FEV1)180. CPET was contraindicated if the patients had a history of 
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exertional presyncope, syncope or arrhythmia, or the presence of a neurological 

or musculoskeletal deficit which would limit exercise performance.  

Patients sat at rest on the bicycle for an initial period of a few minutes after 

fitting of the mask and connecting the monitoring equipment. Recording was 

commenced and a formal rest period of two minutes undertaken. The subjects 

then began a 3 minute unloaded cycling phase at a cadence of 60 revolutions per 

minute which was maintained throughout the test. After 3 minutes the load was 

gradually applied to the ergometer. The rate of increase of work rate through 

the loaded cycling phase was estimated by the respiratory physiology team prior 

to the test on the basis of each patient’s description of their functional 

capabilities with the aim that the patient would be able to achieve 8 to 12 

minutes of loaded cycling before reaching their symptomatic limit. Recordings 

were made of cardiac, gas exchange and ventilation variables continuously 

throughout the test. Recording continued in the recovery phase, usually for at 

least 2 minutes. Patients were encouraged to continue to cycle at a reduced 

cadence and with no load applied during this recover period. 

 

2.7 Right heart catheterisation and exercise right heart 
catheterisation 

2.7.1 Resting right heart catheterisation 

Right heart catheterisation (RHC) is the gold standard method for diagnosing 

pulmonary hypertension and forms a routine part of each patient’s initial 

diagnostic assessment. All the resting RHCs included in these studies were 

performed as part of routine clinical care at the time of first diagnosis of PH. 

None of the patients were on pulmonary vasodilator therapy at the time of the 

RHC. All RHCs were performed with the patient awake. On occasion some mild 

intravenous sedation with midazolam was used to improve tolerance but patients 

remained alert throughout the procedure. All RHCs were conducted supine.  

To facilitate access to the central venous system an 8Fr venous introducer 

sheath was sited in the right internal jugular vein under direct ultrasound 
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visualisation with x-ray screening used to confirm the position. This was most 

often carried out the afternoon prior to the catheterisation session and the 

sheath was secured in place with a silk suture and an occlusive dressing. If it was 

not possible to site the sheath in the right internal jugular vein then it was 

placed instead in either the right femoral vein or left internal jugular vein, again 

using direct ultrasound visualisation and x-ray screening to confirm position.  

A balloon-tipped flow-directed pulmonary arterial (Swan-Ganz) catheter was 

inserted through the introducer sheath and into the venous system. Under 

fluoroscopy screening the catheter was passed into the right atrium, right 

ventricle and pulmonary artery181. Measurements of right atrial pressure (RAP), 

right ventricular systolic pressure (RVSP), pulmonary arterial systolic, diastolic 

and mean pressures (PASP, PADP and mPAP respectively), and pulmonary artery 

wedge pressure (PAWP) were made using a pressure transducer zeroed 

externally at the level of the left atrium. This level was estimated as the point 

in the midaxillary line at the midthoracic level. PAWP was obtained by inflation 

of the balloon with the catheter in a pulmonary artery branch and confirmed by 

assessment of the resulting pressure wave trace. Measurements were captured 

and recorded using commercially available equipment and software (GE 

Healthcare, Buckinghamshire, United Kingdom). Pulmonary vascular resistance 

(PVR) was measured in Wood units and calculated as transpulmonary gradient 

(TPG) divided by cardiac output (CO) in litres/minute where TPG is the 

difference between mean pulmonary artery pressure and pulmonary artery 

wedge pressure in mm Hg, i.e.  

𝑃𝑉𝑅 =
(𝑚𝑃𝐴𝑃 − 𝑃𝐴𝑊𝑃)

𝐶𝑂
 

Cardiac output was quantified by the thermodilution method182. Although the 

direct Fick method of cardiac output measurement is the gold standard the 

thermodilution method has long been accepted as a more practical alternative, 

is standard practice within the SPVU and has shown good agreement with the 

direct Fick method in patients with pulmonary hypertension, even in the context 

of low cardiac output or severe tricuspid regurgitation170. Cardiac output 

measurements were repeated until three readings were obtained with variability 

of ≤10% and the mean of these three readings was recorded as the CO. 
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Mixed venous oxygen saturations (SvO2) were measured by withdrawing 3ml of 

blood from the distal pulmonary arterial port of the catheter into a heparinised 

blood gas syringe (BD, Oxford, United Kingdom). This sample was immediately 

processed in a blood gas analyser (RAPIDLab 1265, Siemens Healthcare, 

Germany). 

In patients not undergoing subsequent exercise RHC (described in 2.7.2) the 

catheter was removed under fluoroscopy screening. The introducer sheath was 

removed and the wound closed with direct pressure and the application of an 

airtight dressing. 

 

2.7.2 Exercise right heart catheterisation 

Exercise right heart catheterisation was performed immediately following the 

completion of the resting RHC (described in Chapter 2.7.1). The introducer 

sheath and pulmonary arterial catheter were left in situ. Patients in whom the 

introducer sheath had had to be inserted into the femoral vein did not 

participate in the exercise RHC due to the difficulty of pedalling with a venous 

access point in the groin. An electromagnetically braked cycle ergometer 

(Corival Supine, Lode, Groningen, Netherlands) was placed on the cardiac 

catheterisation table and its position adjusted to allow comfortable supine 

cycling for each patient. The ergometer was secured to the table by bolts 

attaching it to the table’s side rails to maintain its position during cycling. The 

patient’s feet were then strapped to the pedals. This led to a slight elevation of 

the legs compared with the fully supine resting RHC. After five minutes of rest in 

this position repeat measurements were taken of RAP, RVSP, PASP, PADP, mPAP, 

PAWP and CO (described in 2.7.1) and these were taken as the resting 

measurements for comparison with the subsequent exercise results.  

In contrast to the upright CPET which used an incremental work rate protocol, 

the supine exercise test used a constant work rate protocol. Such protocols are 

ideally suited to measurements of gas exchange178 and arterial blood gas 

measurements made after five minutes of constant work rate cycling at 70% of 

the peak work rate achieved on a maximal incremental CPET approximate those 
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measured at the peak of the incremental test183. Furthermore it has been shown 

in several studies that exercise capacity is significantly reduced in the supine 

compared to upright position during moderate to high intensity cycling and that 

this is most marked during constant work rate exercise184-186. Therefore the 

supine constant work rate was calculated as 50% of the total work rate achieved 

in the maximal upright cardiopulmonary exercise test which each patient had 

performed two days earlier.  

The patients were asked to start cycling, initially with zero resistance, at a 

cadence of 60 revolutions per minute. The resistance was increased over 

approximately 30 seconds until the target work rate was reached. After 3 

minutes cycling at this work rate repeat measurements of PASP, mPAP, PADP 

and PAWP were made. Cardiac output was then measured but in contrast to the 

resting CO measurements, this was carried out in duplicate rather than triplicate 

given the time needed between each CO thermodilution procedure for the blood 

temperature to stabilise and the measurement system to reset. Pressure 

measurements were then repeated before finally a further pulmonary arterial 

blood sample was withdrawn for end exercise blood gas analysis (described in 

2.7.1).  

Following the withdrawal of this blood sample patients were instructed to slow 

and then stop pedalling. Feet were unstrapped from the pedals and legs lowered 

onto the catheterisation table. The ergometer was removed from the table and 

the catheter was withdrawn from the pulmonary arterial system under 

fluoroscopy screening. The introducer sheath was removed (described in 2.7.1). 

 

2.8 Oxygen uptake efficiency slope 

2.8.1 Calculation of oxygen uptake efficiency slope 

Oxygen uptake efficiency slope (OUES) is an index derived from breath by breath 

values of ventilation (VE) and oxygen uptake (VO2) measured over the course of 

an incremental cardiopulmonary exercise test187. CPETs were carried out as 

described in Chapter 2.6. For each subject the breath by breath measurements 
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of VE and VO2 from onset of loaded cycling until peak exercise were extracted 

from the CPET reporting software and entered into a spreadsheet (Excel, 

Microsoft, Redmond, Washington, USA). 

The relationship between VE and VO2 during an incremental CPET is not linear 

(Figure 2.1). 

 

Figure 2.1 Relationship between minute ventilation and oxygen consumption during a 
maximal incremental cardiopulmonary exercise test. VO2: oxygen consumption, VE: minute 
ventilation  

 

Logarithmic transformation of the minute ventilation data was therefore 

performed and the resulting values plotted against VO2, producing a linear 

relationship with VO2 where: 

𝑉𝑂2 = 𝑎 𝑙𝑜𝑔𝑉𝐸 + 𝑏 

and a is defined as the OUES (Figure 2.2). 



57 
 

 

Figure 2.2 Oxygen uptake efficiency slope calculation. VO2: oxygen consumption; logVE: log 
transformed minute ventilation; OUES is the gradient of the line formed 
 

2.8.2 Conversion of CPET plots into numerical data for OUES 
calculation 

The value of OUES as a predictor of survival in PH was assessed (Chapter 4.3.3). 

Some of the earlier cardiopulmonary exercise tests had no data table available 

and therefore no breath by breath minute ventilation and oxygen uptake values 

were available for calculation of OUES. The original plots of VE and VO2 versus 

time were therefore converted back into numerical data using digitising 

software (GetData Graph Digitizer v2.26, http://getdata-graph-digitizer.com/).  

The original paper plots were scanned then imported into PowerPoint 

(PowerPoint, Microsoft, Redmond, Washington, USA). An adjustable grid with 24 

vertical lines was created in Word (Word, Microsoft, Redmond, Washington, USA) 

then also imported into PowerPoint and overlaid on the plot to be digitised with 

the first and last lines positioned over the five and fifteen minute time points on 

the x axis (Figure 2.3). The five minute time point was chosen as it represents 

the onset of loaded cycling. The resulting image was saved as a TIF file. 
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Figure 2.3 Plot of minute ventilation versus time with digitising grid overlaid and positioned 
between the 5 and 15 minute time points on the x axis. VE: minute ventilation in 
litres/minute, Time: exercise time in minutes 

 

The TIF file was then opened in the digitising programme. Scales on the x and y 

axes were set by allocating minimum and maximum values along each axis. Using 

the manual digitising function the central point between each pair of gridlines 

was selected and its values on the x and y axes recorded in a table. The plot for 

the same patient as Figure 2.3 with digitising points selected is shown in Figure 

2.4.  
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Figure 2.4 Plot of minute ventilation versus time with digitising grid overlaid and points 
manually selected shown in pink. VE: minute ventilation in litres/minute, Time: exercise time 
in minutes 

 

The output table with values of the x (time) and y (minute ventilation) axes for 

each digitising point was then exported to Excel and OUES calculated as 

described in Chapter 2.8.1. 

Due to the nature of the technique it is possible for there to be small errors in 

the values obtained by digitising individual data points. However any such errors 

would be random rather than systematic. Furthermore their effect would be 

minimised by the subsequent calculation of the OUES as a slope constructed of 

multiple data points. It was therefore felt that this technique was a valid 

method for the extraction of exercise test data and OUES calculation. 
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2.9 Measurement of heart rate and oxygen consumption 
recovery following incremental cardiopulmonary 
exercise test 

Cardiopulmonary exercise tests for the patient group used for analysis of oxygen 

uptake efficiency slope and survival (Chapter 4.3.3) were reviewed and those 

with at least 60 seconds of technically acceptable recovery data recorded were 

selected. Only tests with available data tables were included. The values of both 

heart rate (HR) and oxygen consumption (VO2) at peak exercise and at 30 

seconds, 60 seconds and 120 seconds into recovery were recorded. The recovery 

was calculated as an absolute reduction from peak values and by taking the 

value at each time point as a percentage of the peak exercise value. Survival 

analysis was then undertaken as described in Chapter 2.10. 

 

2.10 Survival analysis 

2.10.1 Cox proportional hazards model 

To identify predictors of all-cause mortality a Cox proportional hazards model 

was employed (IBM SPSS Statistics, International Business Machines Corp, Armok, 

New York, USA). Right censoring was used with survival time calculated from the 

date of diagnosis to the date of death or date of censor. Patients were censored 

at the time of death, transplantation, pulmonary endarterectomy, or loss to 

follow up (taken as the last date of clinical contact), or at the time of data cut-

off (25th September 2013). Univariate analysis was performed on a series of 

candidate variables to determine which were predictors of mortality. These 

variables were then assessed for collinearity using either Pearson or Spearman 

correlation, depending on the distribution of each variable, and by calculation of 

the variance inflation factor (VIF). Those with a high correlation (r or ρ > 0.7) or 

a VIF > 3 were not included in the multivariate analysis.  

Remaining variables with a p value less than a predefined limit in the univariate 

analysis were analysed in the multivariate model with backwards selection. One 

variable for every ten events (deaths) was included in the model to avoid 
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overfitting. A p value < 0.05 by likelihood ratio test was considered statistically 

significant.  

2.10.2 Kaplan-Meier analysis 

Kaplan-Meier analysis was used to compare survival rates for different groups 

with all-cause mortality the endpoint (IBM SPSS Statistics). Survival time was 

calculated and censoring performed as described in Chapter 2.10.1. Log rank 

tests were used to compare the groups and Kaplan-Meier survival curves 

produced. A p value < 0.05 was considered statistically significant. 

 

2.11 Inert gas rebreathing in the assessment of treatment 
response in pulmonary hypertension 

2.11.1 Operation of inert gas rebreathing with Innocor 

Inert gas rebreathing (IGR) was used to determine pulmonary blood flow and 

therefore right ventricular stroke volume through rebreathing an oxygen 

enriched mix of nitrous oxide (N2O) and sulphur hexafluoride (SF6) (Innocor, 

Innovision A/S, Odense, Denmark). This is an established technique which has 

been validated for use in heart failure172, 174, 175 and pulmonary hypertension171, 

172. To perform the rebreathing manoeuvre patients wore a nose clip and 

breathed via a mouthpiece and filter connected to a valve either open to the 

ambient air or to a rebreathing Douglas bag containing a mix of oxygen, N2O, 

SF6, and room air (Figure 2.4).  
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Figure 2.5 Innocor set-up for inert gas rebreathing manoeuvre.  

 

Breath by breath respired gases were measured continuously at the mouthpiece 

via a sampling line connected to a rapid infrared photoacoustic gas analyser. 

Before each IGR test a 3 litre Douglas bag was filled with a mix of ambient air 

via an air pump and a bolus of gas from the Innocor gas cylinder. The cylinder 

contained 94% oxygen, 5% N2O and 1% SF6 and a bolus fraction of 10% was used 

routinely to give a final concentration in the Douglas bag of 28.3% oxygen, 0.5% 

N2O and 0.1% SF6. The volume of the gas mixture in the bag before each IGR 

measurement was 200ml less than the highest volume of: 44% of the predicted 

vital capacity188, the tidal volume during the preceding 5 breaths or the volume 

required to ensure the gas concentrations remained below the maximum CO2 

limit and above the minimum O2 limit. These limits were set by default to a CO2 

less than 8% and an O2 greater than 13%. A higher bolus fraction of 20% was used 

for IGR measurement on exercise to compensate for the increased ventilatory 

demand.  

Patients breathed via the mouthpiece with the valve open to the air supply until 

the appropriate time for each IGR measurement. At that point the operator (Dr 

SD Thomson) then started each measurement by priming the valve to open at 

the end of the next expiration. From the point at which the valve opened the 
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patients then breathed in a closed circuit with the rebreathing bag. The patient 

was instructed to breathe deeply enough to empty the bag with each inspiration 

then to exhale normally with a target respiratory rate of 20-30 breaths per 

minute. Usually fewer than 8 breaths were required to complete the rebreathing 

measurement. Given that N2O is highly soluble in blood it left the rebreathed gas 

mixture at a rate proportionate to the pulmonary blood flow (PBF). SF6 is 

insoluble in blood and therefore remained in the closed circuit between alveoli 

and rebreathing bag and was used to determine the total volume from which the 

N2O disappeared, known as the total systemic volume. Calculation of the total 

systemic volume and PBF was performed by the Innocor IGR machine by 

established methods189 which are described in Sections 2.11.1 and 2.11.3 

respectively. 

2.11.2 Calculation of total systemic volume  

The total systemic volume is the sum of the volumes of the lungs, the 

rebreathing bag and the deadspace of the mouthpiece and rebreathing valve. 

During each rebreathing manoeuvre the concentration of SF6 declined from the 

initial concentration in the rebreathing bag until fully mixed with the air in the 

lungs and an equilibrium reached. The difference between maximum and 

minimum SF6 concentrations within each breath was analysed continuously and a 

mixing level calculated as the difference between these maximum and minimum 

concentrations divided by their mean. When this level fell below a threshold 

value of 15% the gases were considered adequately mixed and estimation of 

pulmonary blood flow could begin (Chapter 2.11.3). This usually occurred within 

3-5 breaths. A maximum limit of 30 seconds was allowed for each IGR 

measurement to ensure there was no recirculation of dissolved N2O back into the 

pulmonary circulation as this would have created an error within the 

measurements. 

Given the volumes of the rebreathing bag and deadspace were known the total 

systemic volume could be determined from the dilution of insoluble SF6, i.e. 

from the ratio of the initial concentration of SF6 in the rebreathing bag, taken as 

the peak concentration measured during the first inspiration, to the 

concentration of SF6 at equilibrium.  
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The total systemic volume was subject to change throughout the rebreathing 

measurement due to changes in CO2 excretion while O2 uptake remained 

constant. The IGR manoeuvre required patients to breathe a little more deeply 

and with slightly increased respiratory rate compared with normal ventilation. 

This increased ventilation caused a lower alveolar partial pressure of CO2 as PBF 

remained constant. The resulting increased diffusion gradient between the 

capillaries and the alveoli led to increased CO2 excretion into the lungs and 

therefore an increase in the total systemic volume. However as the CO2 level 

rose, the gradient lessened and the rate of CO2 excretion fell causing the volume 

to shrink. For the purpose of calculation of PBF the total systemic volume was 

taken at time “zero”, actually the midpoint of the first inspiration. At this point 

the SF6 would not yet have adequately mixed and therefore the SF6 

concentration at time zero was calculated by back extrapolation from the point 

at which adequate mixing was achieved (Figure 2.6).  

The total systemic volume at time zero was calculated as 

𝑉𝑡𝑜𝑡 =
[𝑆𝐹6]𝑖

[𝑆𝐹6]𝑒𝑞
⋅ 𝑉𝑅𝐵 

where 

 Vtot  = the total systemic volume at time zero   

 [SF6]i  = the initial concentration of SF6 in the rebreathing bag

 [SF6]eq  = the concentration of SF6 once equilibrium achieved,  

    back extrapolated to time zero    

 VRB  = the volume of the rebreathing bag 
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Figure 2.6 Concentration of insoluble SF6 during rebreathing. The black line through the 
expiratory points once adequate mixing was achieved (represented by vertical blue bars) 
allowed back extrapolation to determine the SF6 concentration at time zero (t=0). 

 

2.11.3 Calculation of pulmonary blood flow 

Pulmonary blood flow is that which perfuses the ventilated parts of the alveoli. 

It was calculated during inert gas rebreathing by measuring the rate at which 

blood soluble N2O disappeared from the rebreathed gas mixture. An initial, 

almost instant, fall in N2O was attributed to dissolution of the gas in the tissue of 

the lung while a subsequent more gradual decline occured due to dissolution in 

the perfusing pulmonary blood flow. This rate of decline was proportional not 

only to the PBF but also to the alveolar concentration of N2O and therefore the 

disappearance of N2O was described by a monoexponentially decreasing function 

of time. As described in chapter 2.11.2 the actual total systemic volume 

changed during each IGR manoeuvre. To account for this and for any incomplete 

mixing the N2O concentrations were “normalised” by adjusting for changes in the 

SF6 concentration. Representing the decay of the normalised N2O concentration 

in a semilogarithmic plot produced a linear relationship, the slope of which was 

proportionate to the PBF (Figure 2.7).  
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Figure 2.7 Semilogarithmic plot of normalised N2O on the y axis and time on the x axis. The 
regression line through the end-expiratory points once adequate gas mixing was achieved 
(vertical blue bars) was proportionate to the pulmonary blood flow. 

 

PBF was then calculated using the formula: 

𝑃𝐵𝐹 =  −𝛽 ⋅
𝑉𝑡𝑜𝑡 ⋅ 𝐶1 + 𝐶2

𝛼𝑏
 

where 

 β = slope of the regression line through the expiratory   

   points of the semilogarithmic normalised N2O    

   concentrations      

 Vtot = total systemic volume (STPD) (Chapter 2.11.2)   

 C1 = 760/(ambient pressure in mmHg – 47)    

 C2 = αt·Vt, constant to account for the dissolution of N2O in lung 

   tissue         

 αt = Bunsen solubility coefficient in tissue of N2O = 0.407 (STPD) 

 Vt = lung tissue volume (default 600ml)    

 αb = Bunsen solubility coefficient in blood of N2O = 0.412 (STPD) 
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In the absence of a significant intracardiac or intrapulmonary shunt pulmonary 

blood flow is equivalent to the right ventricular cardiac output and therefore the 

stroke volume was calculated by dividing PBF by heart rate. The Innocor 

software does have the ability to estimate and correct for shunting using the 

following formula: 

𝐶𝑂 =
1

(
1

𝑃𝐵𝐹) +
𝐶𝑎𝑂2 − 𝐶𝑐𝑂2

𝑉𝑂2

 

where 

 CO = cardiac output       

 PBF = pulmonary blood flow      

 CaO2 = arterial blood oxygen content (0.000139 × haemoglobin  

   concentration (g/dL) × arterial oxygen saturation (%) by  

   pulse oximetry)       

 CcO2 = pulmonary end-capillary blood oxygen content (0.000139 × 

   haemoglobin concentration (g/dL) × pulmonary end-capillary

   oxygen saturation (%))     

 VO2 = oxygen uptake (L/min) 

The algorithm assumes a pulmonary end-capillary saturation of 98%. The validity 

of this assumption in pulmonary hypertension has been questioned due to the 

increased ventilation/perfusion mismatch and lower mixed venous oxygen 

saturations seen in PH with previous work using the Innocor equipment in PH 

advocating against use of the shunt correction algorithm190. Therefore PBF was 

used for the IGR work included in this thesis without application of the shunt 

correction algorithm. 

2.11.4 Resting inert gas rebreathing protocol 

The first set of resting IGR measurements were made with the patient lying 

supine. At the first visit the subjects were shown how to perform an IGR 

manoeuvre and practice attempts with only air in the rebreathing circuit were 

performed until the patient could perform the test with ease. For most patients 

only 2 or 3 practice attempts were required. Patients at future visits who had 
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previously performed the IGR test were given a brief verbal reminder and a 

practice attempt was undertaken to ensure the IGR test could still be performed 

without difficulty. 

Patients lay at rest in the supine position for 10 minutes to ensure the recorded 

measurements would be a true reflection of the resting supine state. The first 

IGR manoeuvre was performed and the data recorded. In undertaking serial 

measurements it is necessary to ensure that the SF6 and N2O have washed out of 

the lungs and circulating blood. The N2O concentration had to be less than 

0.002% and the SF6 concentration less than 0.001% prior to each test and in 

practice at least 5 minutes was used between tests to ensure washout occurred. 

The IGR manoeuvres were repeated in the supine position until 3 technically 

acceptable results were obtained. 

Patients were then asked to sit on an upright cycle ergometer (ergoselect 200, 

ergoline GmbH, Bitz, Germany) and feet were strapped into the pedals. The 

Innocor was repositioned to enable comfortable upright measurements at rest 

and on exercise and ECG leads were connected for the later exercise component 

of the test. A further 10 minute rest period was required before measurement of 

PBF by IGR was performed. As with the supine measurements the manoeuvres 

were repeated until 3 technically acceptable readings were obtained, ensuring 

adequate gas washout between each test. 

2.11.5 Exercise inert gas rebreathing protocol 

Following the resting supine and erect measurements described in chapter 

2.11.4 patients then undertook a period of constant load exercise on the upright 

cycle ergometer with measurement of PBF by IGR performed in the final 30 

seconds of exercise. Patients exercised at 40% of the peak work rate achieved 

during baseline cardiopulmonary exercise testing. The IGR test was always 

performed at least one day after the CPET to ensure full recovery from the 

maximal exercise test. After 5 minutes of exercise and while continuing to cycle 

at the same workload the IGR manoeuvre was performed. Due to the difficulties 

of sustaining exercise at that level for a longer period and the need for gas 

washout between tests only one measurement of PBF took place at end-

exercise. 
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2.12 Cardiac magnetic resonance imaging 

Cardiac MRI scanning was performed by specialist radiographers at the Golden 

Jubilee National Hospital, Clydebank, and interpreted by Dr Melanie Brewis, 

Scottish Pulmonary Vascular Unit. All scans were performed on a 1.5T MRI 

scanner (Sonata Magnetom, Siemens Healthcare, Germany) using an established 

protocol191. Fast cine imaging with steady state free precession (SSFP) sequences 

(TrueFISP Siemens) was used for functional imaging. All cine imaging was 

acquired during a 5-8 second breath hold and the total MRI scanning duration 

was approximately 45 minutes per scan. 

Analysis of CMR images was performed using Argus software (Siemens 

Healthcare, Germany). RV and LV volumes were determined by planimetry, 

manually determining the endocardial and epicardial borders of each ventricle 

on each slice of the end diastolic and end systolic images. From this the 

software was able to calculate the RV and LV end diastolic and end systolic 

volumes. Stroke volumes for each ventricle were calculated from the difference 

between the respective ESV and EDV.  Measurements could then be indexed to 

each patient’s body surface area. RV ejection fraction (RVEF) was calculated as 

RV SV / RVEDV * 100. LV ejection fraction (LVEF) was calculated in a similar 

manner with corresponding LV measurements. Flow mapping of the main 

pulmonary artery and aorta was used to provide additional measures of SV from 

the PA and aorta, with and without phase correction. LV SV and aortic SV have 

previously been shown to reflect more accurately than the corresponding right 

sided measurements the SV measured invasively at RHC in patients with PAH192. 
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3 Measurement of mixed venous oxygen 
saturation on exercise in pulmonary 

hypertension  
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3.1 Introduction 

The reduced exercise capacity seen in PH is predominantly a consequence of 

abnormalities in oxygen transport and delivery92 with a lower maximum stroke 

volume93, accelerated heart rate response95 and often a degree of anaemia96 

contributing. It has been postulated that abnormalities in the exercising 

peripheral muscle may also contribute to the reduction in exercise capacity.  

Compared with control subjects the skeletal muscle of patients with PAH has 

been demonstrated to have lower capillarity and an impaired in vitro angiogenic 

response108, 193. This reduced muscle capillarity has been shown to correlate with 

exercise capacity in patients with PAH108. In addition to these changes in the 

muscle microvasculature patients with PH have an alteration in muscle fibre 

type with a relative decrease in type I and increase in type II fibres when 

compared with controls107, 109, and abnormalities in mitochondrial morphology 

and number have also been demonstrated109. These structural changes are 

accompanied by functional abnormalities. An altered metabolic profile with 

differential enzyme expression favouring a more glycolytic metabolism has been 

demonstrated in patients with PAH107 and molecular changes suggestive of a 

switch in signalling toward muscle proteolysis and away from hypertrophy have 

been identified109. Furthermore a reduction in skeletal muscle strength and 

endurance has been identified in these and other studies107-109, 193, 194. Similarly, 

in patients with chronic obstructive pulmonary disease, a respiratory disease 

where the primary abnormality is within the lungs, limb muscle atrophy and 

weakness are well characterised and are known to play a role in exercise 

limitation195. 

Patients with mitochondrial myopathies have been demonstrated to have 

reduced oxygen extraction on exercise, manifesting as abnormally high venous 

oxygen saturation196, 197, lower peak systemic arteriovenous oxygen difference198 

and a smaller increase in deoxygenated haemoglobin and myoglobin during 

exercise199. Given the documented abnormalities of skeletal muscle in patients 

with PAH it is reasonable to consider whether these changes cause a similar 

impairment of oxygen extraction as that seen in patients with myopathies and in 

turn whether this limits exercise capacity in PAH. Evidence in support of this 

comes from a retrospective review of cardiopulmonary exercise tests carried out 
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in patients either undergoing assessment for heart or lung transplantation, or 

presenting with unexplained dyspnoea110. Each CPET was conducted with 

invasive monitoring in the form of radial and pulmonary arterial catheters. The 

study divided subjects into those with PAH, left ventricular systolic dysfunction 

(SD) and left ventricular diastolic dysfunction (DD) and found that those in the 

PAH group had reduced oxygen extraction compared with those in the DD and SD 

groups. However the PAH group included patients with normal resting pulmonary 

artery pressure who developed elevated PAP on exercise and therefore differs 

from the population of patients with resting PAH who suffer the greatest 

morbidity and mortality. 

In this study we performed right heart catheterisation on exercise in patients 

with true resting PAH to evaluate the hypothesis that there is impairment of 

oxygen extraction in the peripheral muscles on exercise in this patient group. 

 

3.2 Methods 

3.2.1 Study subjects 

Patients undergoing baseline diagnostic assessment (see Chapter 1.4) at the 

SPVU were invited to participate in this study. All subjects were treatment naïve 

and were undergoing routine right heart catheterisation as part of their 

diagnostic evaluation. All had performed a maximal CPET two days prior to the 

RHC. Patients were eligible to participate if they were able to give informed 

written consent, had no musculoskeletal or neurological impediment to exercise 

and had resting haemodynamic measurements at RHC compatible with a 

diagnosis of precapillary pulmonary hypertension by standard criteria as 

described in Chapter 1.4.5. All patients received a diagnosis of group 1 or group 

4 PH. This study was descriptive, aiming to explore whether there appeared to 

be a limit to oxygen extraction by demonstrating the absolute level of mixed 

venous oxygen saturation on maximal exercise in this patient group and 

therefore no power calculation was employed.  
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3.2.2 Study design 

Two days prior to exercise RHC patients all performed a maximal symptom-

limited incremental CPET on an upright cycle ergometer as described in Chapter 

2.6. Resting RHC was undertaken as described in Chapter 2.7.1 before 

proceeding to exercise RHC at a constant work rate of 50% the maximum work 

rate achieved in the preceding incremental CPET (see Chapter 2.7.2).  

3.2.3 Ethical approval 

The West of Scotland Research Ethics Committee (Glasgow, United Kingdom) 

approved the study. All subjects gave informed written consent. 

3.3 Results 

19 patients participated in the study of whom 16 produced acceptable results 

which were included in the analysis. Of the 3 patients excluded in the analysis, 

in one the pulmonary arterial catheter position was lost during exercise RHC and 

could not be repositioned within the pulmonary artery prior to cessation of 

exercise; one on review had performed a clearly submaximal incremental CPET 

and the workload selected for exercise RHC was therefore too low; and one 

patient was diagnosed at multidisciplinary team review with PH secondary to 

sarcoidosis and therefore was classified as having group 5 disease and thus no 

longer met the inclusion criteria.  Baseline characteristics of the 16 included 

patients are given in table 3.1. 
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Baseline characteristics 

Diagnosis (n) 
Group 1 

IPAH 
CTDPH 

PPH 
 

Group 4 

 
9 

 
 
 
 

  7 

 
 

6 
1 
2 
 

Gender (n) 
Female 
Male 

 
7 
9 

Age (years) 53 (20) 

WHO FC (n) 
II 
III 

 
9 
7 

6MWD (metres) 386 (103) 

Workload for 
exercise RHC (W) 

40 (13) 

Table 3.1 Baseline characteristics. IPAH: idiopathic pulmonary arterial hypertension; 
CTDPH: connective tissue disease associated pulmonary hypertension; PPH: 
portopulmonary hypertension; WHO FC: functional class; 6MWD: 6 minute walk distance; 
RHC: right heart catheterisation. Data given as number (n) or median (interquartile range). 

 

 

The resting and exercise RHC measurements are described for the whole group 

in table 3.2 and for individual patients in table 3.3. The relative change in 

haemodynamic measurements is demonstrated in figure 3.1. For almost all 

patients the PASP rose to a greater degree than the PADP, leading to an increase 

in pulmonary artery pulse pressure (PApp, the difference between PASP and 

PADP) on exercise. In only one patient did the PApp fall (patient 7 in table 3.3), 

a consequence of a more marked increase in PADP and a relatively more modest 

increase in PASP than seen in the other patients in the group. 
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Resting and exercise right heart catheterisation 

 Resting Exercise 

PASP (mmHg) 80 (18) 114 (37) 

PADP (mmHg) 32 (13) 41 (10) 

mPAP (mmHg) 50 (14) 77 (20) 

PAWP (mmHg) 6 (2) 10 (2) 

CO (l/min) 3.9 (1.3) 5.7 (2.8) 

PVR (Wood units) 11.1 (6.7) 10.8 (4.6) 

HR (beats/min) 74 (21) 126 (17) 

SV (ml) 46 (21) 49 (32) 

SvO2 (%) 62 (8) 22 (11) 

pO2 (kPa) 4.3 (0.3) 2.5 (0.5) 

Table 3.2 Resting and exercise right heart catheterisation. PASP: pulmonary arterial systolic 
pressure; PADP: pulmonary artery diastolic pressure; mPAP: mean pulmonary artery 
pressure; PAWP: pulmonary artery wedge pressure; CO: cardiac output; PVR: pulmonary 
vascular resistance; HR: heart rate; SV: stroke volume; SvO2: mixed venous oxygen 
saturation; pO2: partial pressure of oxygen in mixed venous blood. 
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  Individual haemodynamic responses to exercise 

Patient Age M/F Diag. 

 
Resting 

 
Exercise 

PASP PADP mPAP PAWP CO PVR HR SV PASP PADP mPAP PAWP CO PVR HR SV 

1 71 M IPAH 79 34 50 2 3.8 12.6 94 40 ** ** ** ** 4.8 ** 120 40 

2 43 M CTEPH 58 12 29 5 4.4 5.5 58 76 ** ** ** ** 11.3 ** 135 84 

3 29 F IPAH 94 54 70 5 2.5 26 111 23 ** ** ** ** 3.1 ** 141 22 

4 51 M CTEPH 90 40 63 * 3.2 * 71 45 170 50 100 * 4.6 * ** ** 

5 64 M IPAH 80 29 47 5 3.9 10.8 74 53 145 47 86 22 6.1 12 128 48 

6 55 F CTEPH 101 38 59 7 3.5 14.9 79 44 178 58 100 10 4.1 22 ** ** 

7 71 M CTEPH 66 13 51 7 4.5 5.3 62 73 83 41 63 * 7.6 * 75 101 

8 45 F IPAH 81 33 50 4 2.9 15.9 94 31 110 37 66 6 4.2 14.3 126 33 

 
 
 
 
 
 
 
 

             

 

Table 3.3, continued overleaf 
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  Individual haemodynamic responses to exercise 

Patient Age M/F Diag. 

 
Resting 

 
Exercise 

PASP PADP mPAP PAWP CO PVR HR SV PASP PADP mPAP PAWP CO PVR HR SV 

9 48 M CTEPH 74 30 47 6 3.2 12.8 69 46 113 40 70 9 5.0 12.3 141 35 

10 60 F CTDPH 80 23 43 3 4.3 9.3 74 58 114 32 68 3 6.0 10.8 120 50 

11 76 M CTEPH 74 20 40 6 4.9 6.9 87 56 102 38 66 8 7.5 7.7 125 60 

12 39 M PPH 92 34 55 6 6.4 7.7 83 77 137 45 84 10 9.8 7.6 137 72 

13 47 F PPH 58 23 36 6 2.7 11.1 66 41 98 28 60 9 5.3 9.7 126 42 

14 66 M CTEPH 77 34 55 7 3.2 13.1 73 44 108 52 77 11 6.3 10.6 120 53 

15 56 F IPAH 68 20 37 10 5.9 4.1 62 95 134 33 78 10 11.6 5.9 108 107 

16 45 F IPAH 129 44 75 9 4.2 15.2 108 39 155 47 86 14 4.8 15 140 34 

Table 3.3 Individual haemodynamic responses to exercise. M: male, F: female; Diag: diagnosis; IPAH: idiopathic pulmonary arterial hypertension; CTEPH: 
chronic thromboembolic pulmonary hypertension; CTDPH: connective tissues disease associated pulmonary hypertension; PPH: portopulmonary 
hypertension; PASP: pulmonary artery systolic pressure (mmHg); PADP: pulmonary artery diastolic pressure (mmHg); mPAP: mean pulmonary artery 
pressure (mmHg); PAWP: pulmonary artery wedge pressure (mmHg); CO: cardiac output (l/min); PVR: pulmonary vascular resistance (Wood units); HR: 
heart rate (beats/min); SV: stroke volume (ml). * unable to obtain reliable pressure trace to measure PAWP accurately; ** unrecorded data: peak pressures 
not recorded for patients 1-3; HR (and therefore SV) not recorded for patients 4 and 6. 
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Figure 3.1 Peak exercise haemodynamics as a proportion of their resting values, expressed 
here as the median ratio of peak exercise to resting measurements for all patients. PASP: 
pulmonary arterial systolic pressure; PADP: pulmonary artery diastolic pressure; mPAP: 
mean pulmonary artery pressure; PAWP: pulmonary artery wedge pressure; CO: cardiac 
output; PVR: pulmonary vascular resistance; HR: heart rate; SV: stroke volume. 

 

Comparing the increase in mPAP with the increase in CO demonstrates a range of 

values as shown in table 3.4, giving a median mPAP-CO slope on exercise of 12 

mmHg/l/min (IQR 9 mmHg/l/min). 

The median mixed venous oxygen saturation (SvO2) fell from 66% at rest to 22% 

at peak exercise. The measurements at rest and at peak exercise for each 

patient are shown in Figure 3.2. Patients with lower resting SvO2 had generally 

lower peak exercise SvO2 (Figure 3.3) although the reduction in SvO2 on exercise 

was greater in patients with higher resting SvO2 (Figure 3.4). 

For patient 6 the blood gas analyser was unable to calculate the oxygen 

saturation from pO2 using its standard equation due to the very low level 

achieved (pO2 = 1.84 kPa) and therefore a separate equation200 was used to 

estimate the SvO2 for this patient to facilitate comparison across the patient 

group as 5 of the 16 patients had only the SvO2 recorded and not the 

corresponding pO2 value. 
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Relative increases of mPAP and CO on exercise 

Patient Δ mPAP Δ CO mPAP-CO slope 

4 37 1.4 26.4 

5 39 2.2 17.7 

6 41 0.6 68.3 

7 12 3.1 3.9 

8 16 1.3 12.3 

9 23 1.8 12.8 

10 25 1.7 14.7 

11 26 2.6 10.0 

12 29 3.4 8.5 

13 24 2.6 9.2 

14 22 3.1 7.1 

15 41 5.7 7.2 

16 11 0.6 18.3 

Table 3.4 Increases of mean pulmonary artery pressure and cardiac output on exercise.       
Δ mPAP: change in mean pulmonary artery pressure on exercise (mmHg); Δ CO: change in 
cardiac output on exercise (l/min); mPAP-CO slope: Δ mPAP / Δ CO (mmHg/l/min). 

 

 

Figure 3.2 Mixed venous oxygen saturation at rest (SvO2 rest) and peak exercise (SvO2 ex) 
for each patient. 
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Figure 3.3 Peak exercise versus resting mixed venous oxygen saturations (SvO2).  

 

 

Figure 3.4 Change on mixed venous oxygen saturation (SvO2) on exercise versus resting 
SvO2. The change in SvO2 is given as the absolute reduction in percentage saturation from 
rest to peak exercise.  

 

To obtain an estimate of the relative oxygen extraction at peak exercise the 

difference between the arterial and mixed venous saturations was expressed as 

a proportion of the arterial saturation at peak exercise. As no systemic arterial 

blood sampling was undertaken as part of this study the peripheral arterial 
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oxygen saturation as measured by pulse oximetry was used. The results are given 

in Table 3.5. 

 

Oxygen extraction at peak exercise 

Patient SaO2 (%) SvO2 (%) (SaO2-SvO2)/SaO2 

4 79 19 0.76 

5 98 16 0.84 

6 93 17 0.82 

7 88 23 0.74 

8 99 25 0.74 

9 95 20 0.79 

10 79 31 0.61 

11 * 31 * 

12 96 37 0.61 

13 * 28 * 

14 79 16 0.80 

15 * 31 * 

16 96 20 0.79 

Table 3.5 Oxygen extraction at peak exercise. Quantification of oxygen extraction at peak 
exercise taken as the difference between arterial oxygen saturation measured by pulse 
oximeter and mixed venous oxygen saturation measured by blood gas analysis, divided by 
the arterial oxygen saturation. SaO2: arterial oxygen saturation; SvO2: mixed venous oxygen 
saturation. * no peak exercise arterial oxygen saturation recorded. 
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3.4 Discussion 

In this study the response to exercise in treatment naïve patients at the point of 

diagnosis with group I and IV pulmonary hypertension was studied at right heart 

catheterisation to determine the haemodynamic response profile and in 

particular to measure the mixed venous oxygen saturation at maximal exercise 

to investigate the hypothesis that there is impairment of peripheral muscle 

oxygen extraction in PH. All patients exhibited a rise in PA pressures and cardiac 

output with an essentially flat stroke volume response. The mPAP-CO slope was 

abnormal in all patients, reflecting the underlying pathophysiology. Mixed 

venous oxygen saturations fell markedly and suggest that there was no 

significant impairment of oxygen extraction limiting exercise capability in the 

studied patients. 

3.4.1 The haemodynamic response 

This study demonstrated a sharp increase in PA pressures on exercise with a 

more modest increase in CO. The relative increases in mPAP and CO are in 

keeping with data published in a study of similarly treatment naïve patients 

newly diagnosed with PAH or distal CTEPH also undergoing supine exercise201 

although the absolute rises in both measurements were less marked than seen in 

the results presented above. That study employed a stepwise incremental 

protocol and the median maximum work rate was lower at 30W compared to 

40W which will have contributed in part to the lower absolute rises seen in their 

work however the patients appear to have had less severe disease with lower 

resting median mPAP (34 mmHg versus 50 mmHg), higher median CO (5.2 l/min 

versus 3.9 l/min, lower median resting PVR (4.6 Wood units versus 11.1 Wood 

units) and higher median 6MWD (445m versus 386m) than in the study presented 

in this chapter. 

The steep mPAP-CO slope is a reflection of the abnormal nature of the 

pulmonary vasculature and its impaired ability to adapt to the stress of exercise. 

Several studies in healthy individuals have demonstrated the normal mPAP-CO 

slope to be less than 3 mmHg/l/min202-205 and this value has been accepted as 

the upper limit of normal111, 113. Resistance is considered the ratio of driving 
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pressure to flow and therefore the standard equation for PVR describes it in 

terms of mPAP, PAWP and CO thus111, 113 

𝑃𝑉𝑅 =
(𝑚𝑃𝐴𝑃 − 𝑃𝐴𝑊𝑃)

𝐶𝑂
 

which can be rewritten for mPAP as 

𝑚𝑃𝐴𝑃 = 𝑃𝑉𝑅 ⋅ 𝐶𝑂 + 𝑃𝐴𝑊𝑃 

In healthy subjects PVR is seen to decrease on exercise and although the fall is 

smaller in supine exercise it still occurs in the normal pulmonary circulation113, 

202. The reduction in PVR is primarily due to the distensibility of the pulmonary 

vasculature and in vitro modelling has demonstrated the profound difference in 

mPAP a small change in distensibility can cause at higher levels of cardiac 

output113 such as might be seen with exercise. This study demonstrates that in a 

group of patients with precapillary pulmonary hypertension there is minimal 

change in PVR in response to exercise and this occurs presumably largely due to 

a pathological loss of pulmonary vascular distensibility although there may be a 

contribution from exercise induced pulmonary vasoconstriction occurring 

secondary to sympathetic nervous system activation and a lower oxygen 

saturation in the returning venous blood206. The inability to reduce sufficiently 

the PVR in response to an increasing CO on exercise is the cause of the steep 

mPAP-CO slope seen in this study and in other groups of patients with PH115, 201, 

207, 208. 

In this study there was no significant change in stroke volume on exercise, 

adding to the evidence describing the stroke volume exercise response in 

patients with precapillary PH. There is a large body of evidence demonstrating 

that in healthy individuals stroke volume increases on exercise in the upright 

position209 but the evidence is mixed when exercise is undertaken supine with 

studies variously describing an increased210, decreased211 or unchanged212, 213 

stroke volume on exercise. Previous imaging studies in PAH have demonstrated a 

stable or falling SV on exercise with one study showing all but one subject with 

IPAH failing to augment SV on exercise93 and a separate study finding a fall in SV 

on exercise116. It is likely that the increased venous return at rest in the supine 
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compared with erect position due to elevation of the legs maximises right 

ventricular filling and, via the Frank-Starling mechanism, stroke volume. Given 

the RV is already under strain in PH due to its increased afterload it is likely that 

as mPAP increases rapidly on exercise the RV struggles to adapt and thus is 

unable to augment SV in the supine position.  

3.4.2 Oxygen extraction on exercise 

This study investigated the extent to which an impairment of peripheral muscle 

oxygen extraction might contribute to the exercise limitation in PH by measuring 

the mixed venous oxygen saturation at end exercise, demonstrating a median 

level of 22%. While those patients achieving the lowest exercise SvO2 tended to 

have the lowest resting SvO2, those patients with a higher resting SvO2 

demonstrated a greater absolute reduction in SvO2 than those with lower resting 

SvO2.  

If there were a significant myopathic type component causing exercise limitation 

then it would be expected that due to the impairment of oxygen extraction the 

mixed venous oxygen level would be higher than in healthy individuals. There 

were no comparator subjects included in this study, either healthy individuals or 

patients with myopathy. While acknowledging the difficulties of comparing 

studies performed with differing exercise protocols it may nevertheless be 

helpful to put the results of this study into context by considering the oxygen 

levels seen in other states of health and disease at maximal exercise as shown in 

Figure 3.5. This would suggest that the current results are not in keeping with a 

myopathic picture and that in patients in this study oxygen was extracted down 

to a similar level to that seen in healthy individuals. 

A further method of considering oxygen extraction is to use the systemic oxygen 

extraction ratio (SER).  

𝑆𝐸𝑅 =
𝐶𝑎 − �̃�𝑂2

𝐶𝑎𝑂2
 

 where  Ca - ṽO2 is arteriovenous oxygen content difference and 

   CaO2 is arterial oxygen content. 
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Figure 3.5 Peak exercise venous pO2 levels from different studies in health and disease: 
healthy individuals214; after endurance training215; in left heart failure216; in mitochondrial 
myopathy197 and patients from the current study with pulmonary hypertension. 

 

Calculation of SER would have required arterial sampling which was not included 

as part of this study. As a surrogate measure however extraction was estimated 

as (SaO2-SvO2)/SaO2. One study employing SER in healthy individuals undertaking 

leg exercise found a mean SER of approximately 0.7 in this group214. In 

comparison with that value for a normal SER the surrogate measure employed in 

this study and presented in Table 3.5 demonstrated a ratio of greater than 0.7 in 

all but 2 of the patients in whom it could be calculated.  

Together with the comparatively low peak exercise mixed venous oxygen levels 

achieved on exercise, these two elements of the analysis do not support the 

hypothesis that there is a myopathic component to exercise limitation in PH. 

While the abnormalities seen in peripheral muscle are well established107-109, 193, 

194 they do not appear to have had an impact on oxygen extraction in the patient 

group studied. There is a level below which further oxygen extraction is not 

possible, occurring as a combination of a reducing diffusion gradient and 

mitochondrial limit to oxygen uptake and usage217, 218 and the sigmoid shape of 



  86 
 
the oxyhaemoglobin dissociation curve, with high affinity for oxygen at low 

saturations94. The results of this study would suggest that the exercising 

peripheral muscle is extracting oxygen to a level approaching this limit and that 

the primary limiting factor is therefore the amount of oxygen which is being 

delivered to the muscle, i.e. limitation is central rather than peripheral. It is 

reasonable to consider given the known muscle abnormalities that an increase in 

oxygen delivery to the exercising muscle might “unmask” an impairment of 

oxygen extraction but in this group of treatment naïve patients with true 

pulmonary arterial disease there was no evidence of abnormal extraction 

limiting exercise performance. 

These results are in contrast to those seen in the study by Tolle et al which 

investigated a group of patients who developed PAH on exercise and found a 

reduction in SER110. The significance of patients with normal resting PA pressure 

who develop PH on exercise remains controversial113, 219 and the current 

consensus view is that there is insufficient evidence to define clinically 

significant exercise induced PH2. It may be that the patients in that study had 

early disease and that perhaps the muscle abnormalities manifest earlier than 

the central limitation. It is possible that as the disease process advances the 

progressive pulmonary vascular remodelling and consequent rise in PA pressure 

and onset of RV failure come to predominate and by the time of diagnosis with 

resting PH the central limitation is such that the peripheral muscle abnormalities 

have a minimal influence. Differences in the exercise protocol may also have 

played a role while their methodology has also been questioned220. 

There are limitations to this study. Firstly, there was no comparator group. The 

inclusion of a control group of healthy individuals and a further group of patients 

with mitochondrial myopathy would have allowed a clear comparison between 

their results and the results of the patients with PH. Secondly, the study 

protocol involved sampling of venous blood from the main pulmonary artery and 

thus by the time it was sampled, blood returning from the exercising muscles 

would have mixed with venous blood returning from the rest of the body. In 

order to isolate the exercising muscle and sample blood from just proximal to 

the confluence of the left and right common iliac veins while also taking central 

haemodynamic measurements the insertion of a second venous catheter would 
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have been required. This was not felt to be appropriate. Sampling from the main 

PA will have led to a venous saturation higher than would have been recorded if 

sampling solely the blood draining from the exercising legs and therefore the 

outcome of the study was not affected. Finally, it would ideally have been 

feasible to take muscle biopsy samples at baseline to demonstrate that the 

muscle abnormalities documented by other groups were present in the group 

studied but that they did not affect oxygen extraction. 

 

3.5 Conclusions  

This study has shown no evidence that there is an impairment of oxygen 

extraction in patients with PH which contributes to exercise limitation. Indeed it 

appears that the exercising muscles are extracting oxygen to a similar level seen 

in healthy individuals. The study provides further evidence that the cause of 

exercise limitation in PH is a central impairment of oxygen delivery to the 

muscles rather than a primary myopathic impairment. 
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4 Oxygen uptake efficiency slope in pulmonary 
hypertension  
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4.1 Introduction 

Interest in using CPET as part of the assessment and monitoring of patients with 

PH has increased in recent years92, 101. Maximal oxygen uptake is the gold 

standard measure of exercise performance with peak VO2 used as a more 

practical surrogate117, 178. Peak VO2 has been shown to predict survival in PAH125, 

126, 130 but requires patients to perform a maximal exercise test. It is therefore 

dependent on patient motivation221 and although CPET has a good safety record 

in cardiopulmonary disease including PH95, 118, 222, concerns have nevertheless 

been expressed regarding the performance of maximal exercise testing in 

patients with cardiopulmonary disease92, 223. Attention has therefore focused on 

measurements which can be made at submaximal levels of exercise. The most 

commonly studied of these in PH is the relationship between minute ventilation 

and CO2 output with both the slope of that relationship over the course of the 

exercise test100 and the value of the VE/VCO2 ratio at anaerobic threshold129 

being predictive of survival. However these variables are not measures of 

exercise performance. 

Oxygen uptake efficiency slope (OUES) is an index derived from breath by breath 

values of ventilation (VE) and oxygen uptake (VO2) measured over the course of 

an incremental cardiopulmonary exercise test187 (see Chapter 2.8.1). The OUES 

is recognised as describing the combined functional performance of the 

cardiovascular, pulmonary and peripheral skeletal muscle systems during 

exercise221. It was initially developed in a population of young healthy volunteers 

and patients with congenital or acquired cardiac disease (mean age 11.7 years, 

range 5.8 to 29 years)187 and was notable for two key reasons. Firstly, OUES was 

found to correlate strongly with peak VO2 and therefore it could be considered a 

surrogate measure of exercise performance. Secondly, the value of OUES 

determined from the first 90% of maximal exercise tests was not significantly 

different to the OUES value calculated from the full exercise tests. Although the 

value of OUES calculated from the first 75% of tests was on average 3.5% lower, 

OUES determined from both 90% and 75% of tests retained a strong correlation 

with peak VO2. It was therefore suggested that OUES could be used to provide a 

measure of exercise performance from submaximal exercise. This finding was 

replicated in a group of 998 healthy adults in a study which also demonstrated 

less variability in OUES on repeat testing than was seen with peak VO2
221. A 
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correlation between OUES calculated from 100% of test data and from tests 

truncated on the basis of respiratory exchange ratio rather than exercise time in 

a further group of healthy volunteers was also shown, particularly at higher 

exercise levels223. 

The role of OUES in the assessment of patients with cardiac disease has been 

investigated in several studies. It has been shown to be correlated with exercise 

capacity in older patients with ischaemic heart disease224, to be reduced in 

patients with left heart failure both with and without a reduced left ventricular 

ejection fraction225, and to correlate significantly with peak VO2 in a similar 

group of patients with cardiac disease regardless of the presence or absence of 

left ventricular impairment226. That study also demonstrated stability of OUES 

measured across the exercise period. A separate study demonstrated that in 

patients with clinical evidence of heart failure peak VO2 was significantly 

affected by changes in lung function whereas OUES was not, suggesting that 

perhaps OUES was isolating the cardiac component of exercise limitation227. 

OUES has also been shown to predict outcome in cardiac disease228. A study of 

cardiopulmonary exercise testing in patients with chronic heart failure 

demonstrated that not only did OUES predict survival on univariate analysis 

alongside peak VO2, VE/VCO2 slope and ventilatory anaerobic threshold but also 

it was the only exercise variable predictive of survival on multivariate 

analysis229. That study also demonstrated little change in OUES when it was 

calculated from only the first 50% of the exercise tests. A further study 

investigating the effect of both OUES and percentage predicted OUES in 

comparison to other exercise derived variables on survival in patients with left 

ventricular failure found that both expressions of OUES were retained in final 

multivariate models although VE/VCO2 slope was the strongest predictor230. 

The studies described in this chapter therefore assessed the potential role of 

OUES in PH, both in terms of assessment of function and as a predictor of 

survival, to investigate the hypotheses that OUES is strongly correlated with 

peak VO2 in PH, that it is valid as a submaximal measure of exercise 

performance in groups I and IV PH and that it predicts survival in patients within 

these disease groups. 
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4.2 Methods 

4.2.1 Comparison of OUES and peak VO2 

To assess the validity of using OUES as a measure of peak exercise performance 

the slope values were compared to the measured peak VO2 for a series of CPETs. 

Only CPETs meeting recognised criteria for a maximal test were included178. All 

patients were treatment naïve at the time of the test and all CPETs were 

conducted within 48 hours of confirmation of pulmonary hypertension at right 

heart catheterisation (Chapter 2.7.1). Patients diagnosed in accordance with 

international guidelines2, 4 with idiopathic pulmonary arterial hypertension 

(IPAH), connective tissue disease associated pulmonary hypertension (CTDPH), 

chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary venous 

hypertension (PVH) were included.   

The value of the OUES was calculated for each subject as described in Chapter 

2.8.1 and plotted against peak VO2. Linear regression analysis was performed to 

describe the relationship between peak VO2 and OUES for each group and tested 

for a statistically significant difference (IBM SPSS Statistics, International 

Business Machines Corp, Armok, New York, USA). 

4.2.2 Calculation and analysis of submaximal oxygen uptake 
efficiency slope 

To assess the validity of OUES as a submaximal measure of exercise 

performance, data from maximal incremental cardiopulmonary exercise tests 

was analysed from patients diagnosed with group I and group IV pulmonary 

hypertension, to calculate OUES as described in Chapter 2.8.2. The breath by 

breath exercise data was then truncated at 90%, 75% and 50% of the incremental 

exercise time and OUES calculated from the onset of loaded cycling to each 

truncated time point. The slope values obtained at each level were plotted 

against OUES calculated from the corresponding full test and the strength of the 

relationship between these was assessed by Pearson correlation (IBM SPSS 

Statistics, International Business Machines Corp, Armok, New York, USA). 
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4.2.3 Oxygen uptake efficiency survival analysis 

Data from all available cardiopulmonary exercise tests performed on treatment 

naïve patients at the time of initial diagnosis with group I and group IV PH and 

who were subsequently commenced on specific pulmonary vasodilator therapy 

was collected and used to calculate the OUES for each patient. Survival analysis 

was then undertaken as outlined in Chapter 2.10. 

For some of the older CPETs the original data tables were not available and 

therefore the breath by breath data for oxygen uptake and minute ventilation 

could not be extracted to calculate OUES directly. The original plots of VO2 and 

VE versus time were however available and graph digitising software was used to 

convert the plots back into numerical data to be used to calculate the OUES as 

described in Chapter 2.8.5. 

4.2.4 Ethical approval 

The studies described in this chapter were discussed with the West of Scotland 

Research Ethics Service who felt that as the core data was collected routinely as 

part of clinical practice in SPVU and that the data was fully anonymised prior to 

analysis, no research ethics approval was required. 

4.3 Results 

4.3.1 Oxygen uptake efficiency slope as a measure of peak 
exercise performance in pulmonary hypertension 

59 patients with groups I, II and IV PH had performed maximal CPETs and 

fulfilled the criteria described in Chapter 4.3.1. Their tests were therefore used 

in the assessment of OUES as a measure of peak exercise performance in PH. The 

group’s baseline demographics, haemodynamic results and peak VO2 and OUES 

are described in Table 4.1. Regression analyses for the prediction of peak VO2 

from OUES for each PH diagnosis group are shown in Figure 4.1 with R squared 

values given in Table 4.2. In addition to the OUES derived from maximal tests 

being a strong predictor of peak VO2 in each group of PH studied, the 

relationship between OUES and peak VO2 was not significantly affected by the 

diagnosis group (p = 0.13).   
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Baseline characteristics 

 IPAH CTDPH CTEPH PVH 

Gender (n) 
Male 

Female 

 
9 
13 

 
3 
4 

 
19 
1 

 
4 
6 

Age (years) 54 (23) 54 (16) 63 (13) 71 (13) 

WHO FC (n) 
II 
III 
IV 

 
13 
8 
1 

 
5 
2 
0 

 
11 
9 
0 

 
3 
7 
0 

6MWD (metres) 356 (79) 300 (87) 410 (122) 346 (134) 

mPAP (mmHg) 50 (17) 41 (6) 39 (11) 34 (12) 

PAWP (mmHg) 7 (5) 6 (6) 8 (4) 21 (7) 

CO (l/min) 3.7 (2.2) 4.3 (2.1) 4.3 (1.5) 5.2 (2.6) 

PVR (Wood units) 10.0 (10.0) 8.3 (4.1) 6.9 (3.9) 3.3 (2.3) 

Peak VO2 (l/min) 0.85 (0.32) 0.57 (0.30) 1.07 (0.40) 0.84 (0.52) 

OUES 0.88 (0.54) 0.66 (0.29) 1.23 (0.40) 1.06 (0.88) 

Table 4.1 Baseline characteristics. IPAH: idiopathic pulmonary arterial hypertension; 
CTDPH: connective tissue disease associated pulmonary hypertension; CTEPH: chronic 
thromboembolic pulmonary hypertension; PVH: pulmonary venous hypertension; WHO FC: 
functional class; 6MWD: 6 minute walk distance; mPAP: mean pulmonary artery pressure; 
PAWP: pulmonary artery wedge pressure; CO: cardiac output; PVR: pulmonary vascular 
resistance; VO2: oxygen uptake; OUES: oxygen uptake efficiency slope. Data given as 
number (n) or median (range). 

 

OUES as a predictor of peak VO2 for different groups of PH 

PH group R squared value p value 

IPAH 0.750 <0.001 

CTDPH 0.613 0.037 

CTEPH 0.887 <0.001 

PVH 0.945 <0.001 

Whole group 0.873 <0.001 

Table 4.2 Oxygen uptake efficiency slope (OUES) as a predictor of peak oxygen uptake (VO2) 
for different groups of PH. PH: pulmonary hypertension; IPAH: idiopathic pulmonary arterial 
hypertension; CTDPH: connective tissue disease associated pulmonary hypertension; 
CTEPH: chronic thromboembolic pulmonary hypertension; PVH: pulmonary venous 
hypertension. 
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Figure 4.1 Relationship between oxygen uptake efficiency slope (OUES) derived from 
complete maximal incremental cardiopulmonary exercise tests and peak oxygen uptake 
(VO2). Solid and broken lines are regression lines for each diagnostic group. PH: pulmonary 
hypertension; Diag_code: diagnosis group; IPAH: idiopathic pulmonary arterial 
hypertension; CTDPH: connective tissue disease associated pulmonary hypertension; 
CTEPH: chronic thromboembolic pulmonary hypertension; PVH: pulmonary venous 
hypertension. 

 

 

4.3.2 Oxygen uptake efficiency slope as a submaximal measure 
of exercise performance in pulmonary hypertension 

CPETs for the patient group described in Chapter 4.4.1, excluding those for 

patients with a diagnosis of PVH, were used to assess the use of OUES as a 

submaximal measure of exercise performance in PH. The correlations between 

OUES calculated from each truncated exercise test level and OUES calculated 

from the full test data are demonstrated in Figure 4.2 together with Bland-

Altman analyses of agreement. 
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ρ = 0.985 
n = 49 

p < 0.001 
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ρ = 0.907 
n = 49 

p < 0.001 
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Figure 4.2 Correlation and Bland-Altman plots for OUES calculated from 100% of maximal 
cardiopulmonary exercise tests and OUES calculated from a), b): 90%; c), d): 75%; and e), f): 
50% of test data. OUES: oxygen uptake efficiency slope, r: Pearson correlation coefficient. 

 

ρ = 0.739 
n = 49 

p < 0.001 
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The ability of OUES calculated from each truncated test level to predict peak 

VO2 and therefore exercise capacity was assessed by linear regression and the 

results presented in Table 4.3. There was a strong predictive relationship for 

OUES calculated from the first 90% and first 75% of test data (R2 = 0.845 and 

0.756 respectively) but this was weaker when OUES was calculated from the first 

50% of test data (R2 = 0.551). 

OUES from submaximal exercise levels as a predictor of peak VO2 

OUES exercise level R squared value p value 

90% 0.845 <0.001 

75% 0.756 <0.001 

50% 0.551 <0.001 

Table 4.3 Oxygen uptake efficiency slope (OUES) calculated from maximal cardiopulmonary 
exercise tests truncated to the first 90%, 75% and 50% of test data as a predictor of peak 
oxygen uptake (VO2).  

 
 

4.3.3 Oxygen uptake efficiency slope as a predictor of survival 

Data from 108 patients with group I and group IV PH was used for the assessment 

of OUES as a predictor of survival (4 with PAH secondary to congenital heart 

disease, 20 with CTDPH, 4 with familial PAH, 1 with HIV associated PAH, 37 with 

IPAH, 5 with portopulmonary hypertension and 37 with CTEPH). Their baseline 

characteristics are given in Table 4.4. The median duration of follow up was 580 

days with a range from 13 to 5942 days. During the follow up period there were 

33 deaths from all causes, 0 patients received a lung transplant, 17 patients 

underwent pulmonary endarterectomy and 3 patients were lost to follow up.  

OUES correlated weakly with other measures of disease severity, namely with 

RAP (ρ = -0.234, p = 0.015), CO (ρ = 0.512, p = <0.001), SvO2 (ρ = 0.47, p = 

<0.001), 6MWD (ρ = 0.263, p = 0.006) and log NTproBNP (ρ = -0.437, p = <0.001). 

It also correlated weakly with age (ρ = -0.192, p = 0.047). 
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Baseline characteristics 

Gender (n) 
Male 

Female 

 
55 
53 

Age (years) 56 (24) 

WHO FC (n)* 
I 
II 
III 
IV 

 
1 
44 
60 
2 

6MWD (metres) 332 (101) 

mPAP (mmHg) 46 (14) 

PAWP (mmHg) 8 (5) 

CO (l/min) 4.2 (1.8) 

PVR (Wood units) 8.4 (6.3) 

SvO2 (%) 64 (13) 

DLCO (% predicted) 57 (27) 

NTproBNP 807 (2146) 

Peak VO2 (l/min) 0.87 (0.46) 

OUES 0.99 (0.85) 

Table 4.4 Baseline characteristics. WHO FC: functional class; 6MWD: 6 minute walk 
distance; mPAP: mean pulmonary artery pressure; PAWP: pulmonary artery wedge 
pressure; CO: cardiac output; PVR: pulmonary vascular resistance; SvO2: mixed venous 
oxygen saturation; DLCO: diffusing capacity of the lungs for carbon monoxide; NTproBNP: 
N-terminal pro-brain natriuretic peptide; VO2: oxygen uptake; OUES: oxygen uptake 
efficiency slope. * WHO FC not recorded for one patient. 

 

4.3.3.1 Oxygen uptake efficiency slope Cox proportional hazards analysis 

On Cox proportional hazards analysis OUES, peak VO2, age, percent predicted 

diffusing capacity of the lungs for carbon monoxide (DLCO) and VE/VCO2 at 

anaerobic threshold were all demonstrated to predict all cause mortality (Table 

4.5).   
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Univariate Cox proportional hazards analysis 

Variable Hazard ratio p value 

OUES 0.401 (0.179 – 0.897) 0.026 

Peak VO2 0.259 (0.08 – 0.834) 0.024 

Age 1.047 (1.021 – 1.073) <0.001 

DLCO % predicted 0.967 (0.946 – 0.988) 0.002 

VE/VCO2 at AT 1.036 (1.003 – 1.070) 0.032 

Gender 
Male 

Female (reference) 

 
0.696 (0.348 – 1.393) 

-- 

 
0.306 

-- 
WHO FC 

I/II 
III/IV (reference) 

 
0.438 (0.057 – 3.378) 

-- 

 
0.428 

 

RAP 1.031 (0.96 – 1.106) 0.401 

mPAP 0.992 (0.967 – 1.017) 0.532 

CO 0.810 (0.606 – 1.081) 0.152 

PVR 0.994 (0.933 – 1.059) 0.857 

SvO2 0.972 (0.939 – 1.007) 0.115 

6MWD 0.997 (0.992 – 1.002) 0.205 

logNTproBNP 2.168 (0.957 – 4.915) 0.064 

Table 4.5 Univariate Cox proportional hazards analysis for prediction of all cause mortality. 
Hazard ratios expressed as hazard ratio (95% confidence interval). OUES: oxygen uptake 
efficiency slope; VO2: oxygen uptake; DLCO: diffusing capacity of the lungs for carbon 
monoxide; VE/VCO2 at AT: ventilatory equivalent for carbon dioxide at anaerobic threshold; 
WHO FC: functional class; RAP: right atrial pressure; mPAP: mean pulmonary artery 
pressure; CO: cardiac output; PVR: pulmonary vascular resistance; SvO2: mixed venous 
oxygen saturation; 6MWD: six minute walk distance; logNTproBNP: log transformed N-
terminal pro-brain natriuretic peptide. 

 

On multivariate analysis age was the sole remaining covariate in a model 

including OUES and percent predicted DLCO. Only three covariates were 

included due to the number of events occurring (30) to avoid overfitting (Table 

4.6).   
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Multivariate Cox proportional hazards analysis 

Variable Hazard ratio p value 

Age 1.040 (1.014 – 1.067) 0.002 

OUES 0.513 (0.222 – 1.184) 0.118 

DLCO % predicted 0.999 (0.998 – 1.001) 0.331 

Table 4.6 Multivariate Cox proportional hazards analysis for prediction of all cause 
mortality. Hazard ratios expressed as hazard ratio (95% confidence interval). OUES: oxygen 
uptake efficiency slope; DLCO: diffusing capacity of the lungs for carbon monoxide.  

 

4.3.3.2 Survival by oxygen uptake efficiency slope 

Subjects were stratified by OUES tertiles. Kaplan-Meier analysis was undertaken 

and the results for 3 and 4 year survival are presented in Figure 4.3  

 

 

 

p = 0.04 
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Figure 4.3 Kaplan-Meier survival plots for a) 3 year and b) 4 year survival by OUES tertile in 
the study cohort. Tertile 1 represents the subjects with the lowest tertile values and tertile 3 
the highest tertile values for OUES. 

 

4.4 Discussion 

The potential role of the oxygen uptake efficiency slope in the assessment of 

patients with precapillary pulmonary hypertension was investigated in this series 

of studies. OUES was shown to be a valid measure of exercise performance in 

patients with PH through its strong ability to predict peak VO2. The relationship 

between OUES and peak VO2 was the same across different groups of PH and in 

precapillary PH OUES calculated from submaximal levels of exercise was shown 

to predict peak VO2, thus demonstrating that it may be considered a submaximal 

measure of exercise performance in this patient group. OUES at diagnosis was 

also shown to predict all cause mortality in patients with precapillary PH. 

Taken together these results suggest that OUES has a role in the assessment of 

patients with PH, both as a submaximal measure of exercise performance and as 

a predictor of survival. 

p = 0.047 
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4.4.1 Oxygen uptake efficiency slope and peak exercise 
performance 

The potential role of OUES as a measure of exercise performance stems from its 

ability to predict peak VO2. The study results presented in Chapter 4.4.1 

demonstrates that this relationship is maintained in patients with PH and 

therefore OUES can be considered a surrogate measure of exercise performance 

in such patients. OUES was a strong predictor of peak VO2 in subjects with IPAH, 

CTEPH and PVH (R squared values of 0.75, 0.887 and 0.945 respectively) and 

although the strength of prediction seen was lower in patients with CTDPH (R 

squared value of 0.613) this is likely to reflect the small number of patients in 

this group (7 patients versus 22, 20 and 10 patients for the IPAH, CTEPH and PVH 

groups respectively).  

On exercise the minute ventilation (VE) for a given VCO2 is dependent on the 

arterial partial pressure of CO2 (PaCO2) and the physiological dead space fraction 

(VD/VT) as follows 

𝑉𝐸

𝑉𝐶𝑂2

=
1

𝑃𝑎𝐶𝑂2 (1 −
𝑉𝐷

𝑉𝑇
)
 

Patients with CTEPH have been shown to have a steeper VE/VCO2 slope than 

patients with IPAH, driven by an increase in physiological dead space103. Given 

this increased ventilatory inefficiency or “excess exercise ventilation”102 in 

CTEPH compared with IPAH it might have been expected that the OUES, as the 

relationship between VO2 and log transformed minute ventilation on exercise, 

would have been lower for a given VO2 in the CTEPH group compared with IPAH 

however no significant difference was seen. One possible explanation for this is 

that the number of patients in each group was too small to detect a difference 

and this could be explored by repeating the study in a larger cohort of patients, 

ideally alongside a control group of healthy individuals. 

The potential advantage of OUES over peak VO2 as a measure of exercise 

performance is that studies in healthy individuals and in patients with cardiac 

disease have shown that it can be calculated from submaximal levels of 

exercise187, 221, 223, 226, 231, 232 and therefore can be used as a submaximal measure 
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of exercise performance in such subjects. This study is the first to investigate 

this key aspect of the OUES in pulmonary hypertension. The results presented in 

Chapter 4.4.2 demonstrate that OUES calculated from the first 90% and first 75% 

of maximal cardiopulmonary exercise tests was strongly correlated with OUES 

calculated from the full test data, with strong agreement seen on Bland-Altman 

analyses. There remained a statistically significant correlation between OUES 

calculated from the first 50% of test data and the full test OUES but the strength 

of this correlation was weaker than that seen at the higher exercise test levels. 

Similarly, OUES measured at the 75% and 90% levels was a strong predictor of 

peak VO2 while OUES calculated from the 50% level was weaker. It is therefore 

appropriate to consider OUES valid as a submaximal measure of exercise 

performance in precapillary PH, at least as far as the 75% level.  

One weakness of this study is that it used only exercise time as a percentage of 

the maximal test to delineate the different submaximal exercise levels. Limited 

work has been carried out in healthy individuals using respiratory exchange ratio 

as a secondary criterion in the reporting of OUES223. Further work should explore 

the potential of RER and other markers of exercise intensity to characterise 

better the level of submaximal exercise beyond which OUES can be considered a 

valid measure of exercise performance. 

4.4.2 Oxygen uptake efficiency slope and survival 

The results presented in Chapter 4.4.3 demonstrate that in the studied cohort of 

patients OUES was significant predictor of all cause mortality both on univariate 

Cox proportional hazards analysis and on Kaplan-Meier analyses for three and 

four year survival. OUES did not remain in the model when multivariate analyses 

including age were conducted. Indeed, age was the only remaining variable in 

the models. One previous study in healthy individuals showed age, sex and body 

surface area to be statistically significant predictors of OUES and equations 

taking account of these factors were developed to give reference values for 

OUES233, raising the possibility of using percent predicted OUES as a candidate 

variable. However the subjects in that study were aged 20-60 years and given 

the median age of patients included in the presented survival analysis was 56 

years, extending the reference values to the older patient group studied was not 

felt to be appropriate. One study which developed reference equations for older 



  105 
 
healthy individuals used treadmill rather than cycle ergometer exercise221 and 

therefore could not be extrapolated to the current patient cohort. A subsequent 

study has also investigated the impact of OUES on survival in a group of patients 

with idiopathic and associated PAH234. That work showed that OUES was a 

significant predictor of poor outcome in the form of death or atrial septostomy 

on multivariate analysis. However, that model did not include age and the age of 

the patient cohort was not stated. 

Interestingly, some variables generally accepted as predictors of survival in PH 

were not seen to be significant predictors in this patient cohort and this could be 

considered a weakness of this study. RAP, CO, SvO2 and logNTproBNP were found 

to be non-significant. However other established predictors, namely peak VO2, 

percent predicted DLCO and VE/VCO2 at anaerobic threshold, were shown to be 

statistically significant predictors of survival in the study and this provides 

reassurance that the significant results for OUES could be replicated in other 

patient cohorts. Investigation of that is a clear next step in the further 

evaluation of OUES in PH. 

 

4.5 Conclusions 

The presented studies are the first to demonstrate that OUES is valid as a 

submaximal measure of exercise performance in precapillary pulmonary 

hypertension. Furthermore they have demonstrated that OUES is a significant 

predictor of survival in this patient group. Take together these results suggest 

that OUES offers potential benefits over the gold standard peak VO2 and these 

should be explored in future work. 
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5 Rates of recovery of heart rate and oxygen 
consumption after incremental exercise and 

survival in pulmonary hypertension 
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5.1 Introduction 

As described in Chapter 4.2 the role of exercise, and in particular CPET, in the 

assessment and risk stratification of patients with PH has been increasing. 

Attention has generally focused on variables derived from and measurements 

made during the active period of exercise, in the case of CPET from the onset of 

loaded cycling to peak exercise. Increasingly in chronic heart failure and other 

cardiovascular diseases the recovery period after exercise is providing insights 

into both the pathophysiology of these diseases and their associated morbidity 

and mortality235. Of greatest interest is the rate of recovery of heart rate (HR) 

following exercise, notable because it reflects the degree of underlying cardiac 

autonomic dysfunction which in turn is associated with morbidity and mortality.  

Recovery of HR following exercise demonstrates an exponential decay pattern 

governed by the balance of changes in sympathetic and parasympathetic 

activity235, 236. Parasympathetic vagal activity has been shown to increase 

gradually in recovery237 with parasympathetic activity predominating in the early 

phase238. One study in sedentary normal individuals measured heart rate 

recovery (HRR) and noradrenaline concentration during recovery from cycle 

ergometer exercise at three different levels of intensity, finding that restoration 

of vagal tone was responsible for the immediate decline in HR in the first minute 

following the cessation of exercise but that from the second minute after 

exercise noradrenaline concentrations, a marker of sympathetic activity, 

declined linearly with heart rate, suggesting that sympathetic withdrawal was 

responsible for this later period of HRR239. Similar results were seen in a group of 

normal subjects in whom sympathetic blockade with propranolol and 

parasympathetic blockade with atropine were used singly and together to 

elucidate the autonomic changes underlying HRR, demonstrating that the 

recovery in the first 30 seconds after exercise was a result of vagal reactivation 

while the recovery at 2 minutes was a consequence of both vagal reactivation 

and sympathetic withdrawal240. 

Lower cardiac vagal activity is associated with increased morbidity241 and all 

cause mortality241, 242. In a study of 605 subjects aged 50-75 years taken from the 

general population, autonomic dysfunction was demonstrated to be associated 

with all cause and cardiovascular mortality, an association which was strongest 
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in those with a history of diabetes mellitus, systemic hypertension or 

cardiovascular disease243. In studies of patients with recent myocardial 

infarction, increased autonomic dysfunction was associated with increased 

mortality244, 245 and, reflecting the underlying pathophysiology, was highest in 

those with inferior myocardial infarction, 3 vessel versus single vessel coronary 

artery disease and episodes of ventricular tachycardia244. In patients with PH, 

sympathetic hyperactivity246 and increased cardiac sympathetic activation247 

have been demonstrated compared with control subjects, and plasma 

noradrenaline concentrations have been shown to correlate with PAP, cardiac 

index (CI) and PVR248. Increased sympathetic nervous system activation in PAH 

has been shown to be associated with disease severity and to predict clinical 

deterioration on multivariate analysis249. 

Given the impact of autonomic dysfunction on morbidity and mortality in health 

and in a range of cardiopulmonary diseases, and that the rate of HRR is governed 

by alterations in the autonomic nervous system, HRR will reflect the degree of 

underlying autonomic dysfunction and may thus be a predictor of morbidity and 

mortality. Analysis of treadmill testing in approximately 3000 subjects from the 

Framingham Heart Study who were free of cardiovascular disease demonstrated 

that those individuals with the fastest HRR had a lower risk of coronary arterial 

and cardiovascular disease than those with slower HRR250. In healthy individuals 

slower HRR has been associated with an increased risk of sudden death251 and 

has been shown to predict all cause252, 253 and cardiovascular253 mortality. In a 

study comparing the HRR in the first 30 seconds after exercise in normal 

volunteers with patients with CHF and with endurance trained athletes, a faster 

decay was seen in the trained group and a slower decay noted in the CHF 

group240. Further studies in patients with CHF demonstrated a significantly 

attenuated HRR in this patient group254 and also that CHF patients with faster 

HRR had significantly better survival255.  

One study compared the exercise response of patients with CHF with those with 

PAH and found that in both groups there was a lower than expected HRR at 1 

minute123. In a small case control study in PAH, cases were noted to have a 

significantly lower absolute reduction in HR at 1 minute after exercise compared 

to controls, despite a significant proportion of patients being on active 
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treatment with pulmonary vasodilator therapy256. A further similar case control 

study comparing patients with PAH, 36% of whom were taking specific pulmonary 

vasodilator therapy, with age and gender matched controls found that HRR was 

significantly slower in patients compared with controls as far as the fifth minute 

after CPET257. 

The pattern of recovery of oxygen consumption after exercise is similar to that 

of heart rate in that there is a rapid early decline followed by a longer, more 

gradual return to resting values258-262. The initial rapid decline represents the 

period during which levels of the phosphagens adenosine triphosphate and 

creatine phosphate are replenished in the exercised muscle(s) and haemoglobin 

and myoglobin are reloaded with oxygen259, 263, 264. Most VO2 recovery research 

has tended to focus on the more prolonged, slower phase of excess postexercise 

oxygen consumption which lasts for periods up to several hours after exercise 

however there is evidence of detectable differences in the rate of early VO2 

decline between groups in health and disease. 

In a comparison of trained versus untrained healthy individuals, VO2 recovery 

after cycle ergometer exercise was faster in the trained group from 30 seconds 

post-exercise onwards265. VO2 recovery in the first 3 minutes after exercise has 

been demonstrated to be slower in severe heart failure compared with healthy 

individuals but not different in groups with less severe CHF266. Two further small 

studies both found evidence of slower early phase VO2 recovery in patients with 

CHF compared with normal subjects267, 268 while a separate larger study assessed 

the time taken for VO2 to fall to 50% of its peak value and showed that this early 

recovery was not only prolonged in CHF compared with healthy volunteers but 

also that it increased with increasing severity of CHF269. One study comparing 

the response to constant work rate cycle ergometer exercise of 9 patients with 

primary pulmonary hypertension, what would be termed IPAH under the current 

classification, with 9 matched normal control subjects, showed significantly 

slower VO2 recovery in patients compared with controls270. 

The study presented in this chapter sought to assess the rates of recovery of 

heart rate and VO2 after incremental CPET in patients with precapillary PH and 

to investigate how these relate to survival, to test the hypothesis that prolonged 

early phase recovery will predict survival in PH. 
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5.2 Methods 

5.2.1 Heart rate recovery 

Data from all available cardiopulmonary exercise tests performed in the SPVU on 

treatment naïve patients at the time of initial diagnosis with group I and group 

IV PH (Chapter 2.7.1) and who were subsequently commenced on specific 

pulmonary vasodilator therapy was collected. Tests which did not include at 

least 2 minutes of recorded recovery data were excluded. CPETs were 

performed as described in Chapter 2.6. None of the patients with PH secondary 

to CHD had had atrial or other cardiac surgery which could have affected their 

HR responses. 

HRR was described at 30 seconds, 60 seconds and 120 seconds from onset of 

recovery, both as the absolute reduction in beats per minute at each time point 

and as the heart rate at each time point as a percentage of the peak value. 

Given HRR was calculated from the values recorded at discrete time points it 

was felt that unlike for calculation of the OUES as described in Chapter 4.3.3, 

only tests with complete data tables should be included and therefore no 

digitising software was used to convert CPET plots back into numerical data 

(Chapter 2.8.5) to determine the HRR, minimising the potential for error in this 

measurement. 

5.2.2 Oxygen consumption recovery 

VO2 recovery was calculated in the same manner as that described for HRR in 

Chapter 5.3.1. 

5.2.3 Heart rate and oxygen consumption recovery survival 
analysis 

Survival analysis was undertaken as described in Chapter 2.10. 
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5.2.4 Ethical approval 

The studies described in this chapter were discussed with the West of Scotland 

Research Ethics Service who felt that as the core data was collected routinely as 

part of clinical practice in SPVU and that the data was fully anonymised prior to 

analysis, no research ethics approval was required. 

5.3 Results 

Data from 87 patients with group I and group IV PH was included in the 

assessment of HRR and VO2 recovery as predictors of survival (3 with PAH 

secondary to congenital heart disease, 13 with CTDPH, 3 with familial PAH, 1 

with HIV associated PAH, 32 with IPAH, 4 with portopulmonary hypertension and 

31 with CTEPH). Their baseline characteristics are given in Table 5.1. 
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Baseline characteristics 

Gender (n) 
Male 

Female 

 
44 
43 

Age (years) 56 (23) 

WHO FC (n)* 
I 
II 
III 
IV 

1 
41 
44 
1 

6MWD (metres) 340 (105) 

mPAP (mmHg) 45 (14) 

PAWP (mmHg) 8 (5) 

CO (l/min) 4.2 (1.9) 

PVR (Wood units) 8.4 (6.7) 

SvO2 (%) 64.5 (12.9) 

DLCO (% predicted) 57 (26) 

NTproBNP 809 (2224) 

Peak HR (1/min) 131 (30) 

Peak VO2 (l/min) 0.88 (0.47) 

Table 5.1 Baseline characteristics. WHO FC: functional class; 6MWD: 6 minute walk 
distance; mPAP: mean pulmonary artery pressure; PAWP: pulmonary artery wedge 
pressure; CO: cardiac output; PVR: pulmonary vascular resistance; SvO2: mixed venous 
oxygen saturation; DLCO: diffusing capacity of the lungs for carbon monoxide; NTproBNP: 
N-terminal pro-brain natriuretic peptide; HR: heart rate; VO2: oxygen uptake. 

 

The median duration of follow up was 531 days with a range from 13 to 1868 

days (interquartile range 941 days). During the follow up period there were 22 

deaths from all causes, 0 patients received a lung transplant, 14 patients 

underwent pulmonary endarterectomy and 0 patients were lost to follow up.  



  113 
 

5.3.1 Univariate Cox proportional hazards analysis 

The results of univariate Cox proportional hazards analysis for both heart rate 

and VO2 recovery are given in Table 5.2.  

Recovery univariate Cox proportional hazards analysis 

Variable Hazard ratio p value 

HRR 30 0.953 (0.869 – 1.045) 0.302 

HR 30 (% peak) 1.068 (0.944 – 1.208) 0.297 

HRR 60 0.957 (0.915 – 1.000) 0.048 

HR 60 (% peak) 1.058 (0.998 – 1.121) 0.056 

HRR 120 0.936 (0.893 – 0.981) 0.005 

HR 120 (% peak) 1.101 (1.035 – 1.171) 0.002 

   

VO2R 30 0.098 (0.001 – 16.669) 0.375 

VO2 30 (% peak) 0.995 (0.950 – 1.042) 0.822 

VO2R 60 0.066 (0.004 – 1.032) 0.053 

VO2 60 (% peak) 1.024 (0.997 – 1.052) 0.082 

VO2R 120 0.101 (0.010 – 0.995) 0.05 

VO2 120 (% peak) 1.031 (1.005 – 1.058) 0.021 

Table 5.2 Univariate Cox proportional hazards analysis of heart rate and VO2 recovery after 
CPET for prediction of all cause mortality. Hazard ratios expressed as hazard ratio (95% 
confidence interval). HRR 30, 60, 120: absolute reduction in heart rate at 30 seconds, 60 
seconds and 120 seconds of recovery; HR 30 (% peak), HR 60 (% peak), HR 120 (% peak): 
heart rate at 30 seconds, 60 seconds and 120 seconds of recovery expressed as a 
percentage of the peak heart rate achieved. VO2R 30, 60, 120: absolute reduction in VO2 at 
30 seconds, 60 seconds and 120 seconds of recovery; VO2 30 (% peak), VO2 60 (% peak), 
VO2 120 (% peak): VO2 at 30 seconds, 60 seconds and 120 seconds of recovery expressed 
as a percentage of the peak VO2 achieved.  

 

The absolute reduction in HR at 60 and 120 seconds, and the HR at 120 seconds 

expressed as a percentage of the peak HR, were significant predictors of all 

cause mortality on univariate analysis (p = 0.048, 0.005 and 0.002 respectively). 
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The absolute reduction in VO2 at 120 seconds was seen to predict mortality with 

p = 0.05 while the VO2 at 120 seconds expressed as a percentage of the peak VO2 

was also a significant predictor (p = 0.021).  

The results of univariate Cox proportional hazards analysis for other candidate 

variables in given in Table 5.3. 

Univariate Cox proportional hazards analysis 

Variable Hazard ratio p value 

OUES 0.446 (0.177 – 1.123) 0.087 

Peak VO2 0.240 (0.056 – 1.019) 0.053 

Age 1.041 (1.011 – 1.073) 0.008 

DLCO % predicted 0.990 (0.973 – 1.007) 0.267 

VE/VCO2 at AT 1.010 (0.989 – 1.031) 0.366 

Gender 
Male 

Female (reference) 

 
0.756 (0.323 – 1.770) 

-- 

 
0.520 

-- 
WHO FC 

I/II 
III/IV (reference) 

 
1.027 (0.675 – 1.561) 

-- 

 
0.902 

-- 

RAP 1.010 (0.932 – 1.095) 0.803 

mPAP 0.984 (0.949 – 1.020) 0.378 

CO 0.843 (0.624 – 1.139) 0.266 

PVR 0.978 (0.910 – 1.051) 0.543 

SvO2 0.991 (0.969 – 1.014) 0.461 

6MWD 0.996 (0.991 – 1.002) 0.166 

logNTproBNP 2.151 (0.952 – 4.860) 0.065 

Table 5.3 Univariate Cox proportional hazards analysis for prediction of all cause mortality 
by non recovery candidate variables. Hazard ratios expressed as hazard ratio (95% 
confidence interval). OUES: oxygen uptake efficiency slope; VO2: oxygen uptake; DLCO: 
diffusing capacity of the lungs for carbon monoxide; VE/VCO2 at AT: ventilatory equivalent 
for carbon dioxide at anaerobic threshold; WHO FC: functional class; RAP: right atrial 
pressure; mPAP: mean pulmonary artery pressure; CO: cardiac output; PVR: pulmonary 
vascular resistance; SvO2: mixed venous oxygen saturation; 6MWD: six minute walk 
distance; logNTproBNP: log transformed N-terminal pro-brain natriuretic peptide. 
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5.3.2 Multivariate Cox proportional hazards analysis 

On multivariate analysis the absolute reduction in heart rate at 120 seconds was 

the sole remaining covariate in a model including age and logNTproBNP (hazard 

ratio 0.918, 95% confidence interval 0.870 – 0.970, p = 0.002). Similar results 

were seen when HRR was expressed as the heart rate at 120 seconds as a 

percentage of the peak HR (hazard ratio 1.115, 95% confidence interval 1.041 – 

1.194, p = 0.002). However HRR at earlier time points and VO2 recovery at all 

time points were not significant predictors of mortality on multivariate analysis.  

5.3.3 Kaplan Meier analysis of heart rate and VO2 recovery 

Subjects were stratified by tertiles of HR and VO2 recovery. Kaplan-Meier 

analysis was performed for 3 and 4 year survival. The significant results are 

given in Figure 5.1.  

 

p = 0.043 
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Figure 5.1 Kaplan-Meier plots for a) 3 year and b) 4 year survival by tertile of percentage 
peak heart rate at 120 seconds recovery and c) 4 year survival by tertile of absolute heart 
rate recovery at 120 seconds. HRR: heart rate recovery. 

p = 0.043 

p = 0.033 
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5.4 Discussion 

These studies explored the rates of recovery of heart rate and VO2 in the first 

two minutes of recovery after incremental CPET to test the hypothesis that 

prolonged recovery would be associated with an increase in all cause mortality. 

The results demonstrate that the absolute reduction in HR at both 60 seconds 

and 120 seconds of recovery and the HR at 120 seconds expressed as a 

percentage of the peak HR were all significant predictors of mortality on 

univariate analysis, with slower HRR associated with an increased risk of death in 

the patient cohort studied. On multivariate analysis the absolute reduction in HR 

at 120 seconds remained a significant predictor of all cause mortality after 

controlling for age and logNTproBNP.  

These results add to the small body of emerging evidence linking delayed HRR 

with poor outcome in patients with PAH and is the first to do so in treatment 

naïve patients. One study employed a composite endpoint of clinical worsening, 

defined as any one of escalation of PH drug therapy, admission to hospital due to 

PH, lung transplantation or death, and studied the HRR at 60 seconds after 

6MWT271. In contrast to the treatment naïve patient cohort used in the recovery 

analysis presented in this chapter, all but 4 of the 75 subjects in that study were 

on treatment with specific pulmonary vasodilator therapy, including 47 receiving 

parenteral prostanoid therapy, either alone or in combination with oral 

treatment. The authors demonstrated that an absolute fall in HR of less than 16 

beats per minute at 60 seconds of recovery was associated with a higher 

likelihood of clinical worsening events and a shorter time to clinical worsening.  

The same group conducted a similar study of HRR after 6MWT in a cohort of 

patients with CTDPH and again found that an absolute reduction in HR of less 

than 16 beats per minute at 60 seconds of recovery was the strongest predictor 

of hospitalisation, death and time to clinical worsening272. A separate study in a 

cohort of 72 patients with PAH, 26 of whom were on treatment with pulmonary 

vasodilator therapy, found that an absolute reduction in HR of 18 beats per 

minute or less after the first 60 seconds of recovery was associated with poorer 

survival257. 
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In contrast to the results presented in this chapter which showed that HRR at 

120 seconds was a stronger predictor of mortality than HRR at 60 seconds, in the 

study of recovery after 6MWT in patients with CTDPH the HRR at 60 seconds was 

a better predictor than that seen at 120 seconds272. One possible explanation for 

this is that in that study the recovery was passive with the participants sitting at 

rest for the duration of recovery whereas in the presented work patients 

continued cycling at a reduced work rate for at least part of the recorded 

recovery period, providing an ongoing stimulus to subjects to maintain an 

elevated heart rate in the initial recovery period regardless of underlying disease 

severity. It has been shown that HRR is slower in active recovery compared to 

assisted recovery in which the subjects’ legs are moved by an assistant273 and 

that furthermore it is slower in assisted recovery than passive recovery, albeit 

over a timescale of several minutes274. These results have been taken as 

suggesting that the rate of the early phase of HRR is affected both by cessation 

of central drive and by feedback from mechanoreceptors in the exercising 

muscle.  

One weakness of the presented study is that no fixed work rate or duration of 

active recovery was set as part of the CPET protocol. It may be considered that 

patients with more severe disease might cease cycling earlier in recovery, 

leading to a faster rate of recovery and therefore to a potential source of 

systematic bias. That would be expected to reduce the difference between 

patients with more and less severe disease however despite that possible 

influence, in this study slower rates of recovery were still found to be significant 

predictors of survival. 

The study of VO2 recovery after exercise presented in this chapter is the first in 

PAH to study early phase VO2 recovery and its relationship to survival. While 

slower rates of VO2 recovery were associated with increased mortality when 

assessed at 120 seconds after exercise, VO2 recovery was not as strong a 

predictor as HRR and was not a significant predictor of mortality on multivariate 

analysis.  
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6 The use of inert gas rebreathing to measure 
early treatment response in pulmonary 

hypertension 
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6.1 Introduction 

As described in Chapter 1.1 PH is a disease defined by its haemodynamic 

abnormalities and while invasive RHC is required to make the initial diagnosis, 

most ongoing assessment of disease severity and treatment response is made by 

noninvasive surrogate measures such as 6MWD and NTproBNP. Exercise limitation 

is one of the most common features of PH and a large component of this 

limitation is attributable to a failure to augment SV on exercise93, 94, 116, 119. In 

considering the assessment of treatment response it would therefore be of value 

to measure the underlying haemodynamic change but serial measurements with 

RHC are unattractive due to the invasive nature of the test and associated 

potential for complications53.  

Cardiac MRI provides information on the structure and function of the right heart 

and the pulmonary circulation, and has been demonstrated to provide evidence 

of response to treatment. Relief of PH by either PEA or lung transplantation is 

associated with improvements in RV function and PBF275-277. The more subtle 

improvements seen with drug treatment can also be detected with cardiac MRI 

with improvements in RV SV, RV mass (RVM), RVEF and CI seen in a selection of 

trials of oral and intravenous pulmonary vasodilator therapy163, 278-280. However 

this improvement in cardiac MRI variables has not been universally seen with two 

studies of ERAs finding no benefit on either RVEF or RV volumes in response to 

treatment281, 282. 

With exercise limitation one of the key symptoms of PH it is important to 

consider how the underlying haemodynamic abnormalities change on exercise. 

While cardiac MRI has been used to assess changes on exercise the narrow bore 

of an MRI scanner makes exercise while scanning difficult to achieve and studies 

have tended to involve a period of exercise followed by movement into the MRI 

scanner for measurements to take place, thus not achieving the goal of assessing 

patients during exercise93, 283.  

Inert gas rebreathing (IGR) has been shown to allow noninvasive measurement of 

SV on exercise in both chronic heart failure and PH150, 175, 176, 284. In addition it 

has been demonstrated that in patients with Group 1 and Group 4 PH IGR can 

detect changes in SV in response to institution of treatment both at rest and on 
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exercise150. Patients underwent measurement of PBF and SV by IGR at rest in the 

supine and erect positions, and on erect exercise at 40% of the peak work rate 

(WR) achieved on a prior CPET, and in all 3 positions there was an increase in SV 

seen 3 months after commencing treatment. There was a trend to increase in 

6MWD but changes in WHO-FC, NTproBNP and CAMPHOR quality of life 

assessment were not seen. Interestingly that study suggested that measurements 

made by IGR may be more sensitive than 6MWD in detecting treatment change in 

patients with a higher baseline 6MWD. 

It is standard clinical practice to assess the impact of institution or alteration of 

specific pulmonary vasodilator therapy after 3-4 months, primarily by measures 

of function such as 6MWT, CPET and WHO-FC4. However it has been 

demonstrated that acute haemodynamic changes occur in response to treatment 

with each class of disease targeted therapy used in PH: PDE5 inhibitors285-288, 

ERAs289 and prostacyclin analogues81, 207, 287, 288, 290. It is not known if this early 

haemodynamic change predicts clinical response at 3-4 months. If such a 

relationship exists it may be possible to assess patients haemodynamically 

shortly after commencing disease targeted therapy and alter therapy at that 

point if a poor clinical response is predicted. 

This study therefore aimed to explore the feasibility of using IGR to assess the 

early haemodynamic change and explore how it relates to later functional 

improvement to investigate the hypotheses that haemodynamic improvement is 

detectable by IGR, that it is seen earlier that functional improvement and that 

this earlier response is predictive of later change in exercise capacity. 
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6.2 Methods 

6.2.1 Patient recruitment 

Potential subjects were identified by the clinical team at the SPVU with the 

following inclusion and exclusion criteria.  

6.2.1.1 Inclusion criteria 

Subjects with Group 1 or Group 4 PH 

Newly diagnosed patients being commenced on therapy de novo or patients 

already established on pulmonary vasodilator therapy undergoing a change in 

treatment as planned when undergoing routine review in the outpatient clinic. 

6.2.1.2 Exclusion criteria 

Subjects who were unable to perform the 6MWT due to comorbid neurological or 

musculoskeletal limitation 

Subjects with exercise-induced syncope, chest pain or cardiac arrhythmia 

Subjects who were pregnant 

Subjects who were unable to give informed consent 

Subjects who were unable to undergo MRI scanning 

6.2.2 Power calculation 

The study was powered to show a significant change in 6MWD at 4 months. On 

the basis of α of 0.05 and power of 0.8, the required sample size was calculated. 

The effect size of change in 6MWD was taken as 22 metres with a standard 

deviation of the change of 28 metres150. The required sample size was 13. 
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6.2.3 Study protocol 

Subjects were assessed at baseline and at 2 weeks, 4 months and 1 year after 

starting or changing disease targeted therapy. Each assessment involved two 

visits and, except for the 2 week assessment, coincided with routine clinical 

review. Visit 2 occurred 1 day after Visit 1 at all four assessments. At each time 

point the subjects underwent the assessment outlined in Figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All study procedures were performed as described in Chapter 2.  

Visit 1 
 

 Incremental cardiopulmonary exercise test 

 Cardiac MRI 

 NTproBNP blood assay* 

 CAMPHOR PH quality of life questionnaire 

 WHO functional class assessment 

Visit 2 
 

 Stroke volume measurement by IGR 

 6 minute walk test 

Figure 6.1 Protocol for assessment at each timepoint, baseline, 2 weeks, 4 months and 1 
year. MRI: magnetic resonance imaging, NTproBNP: N terminal pro-brain natriuretic 
peptide: CAMPHOR: Cambridge Pulmonary Hypertension Outcome Review; PH: pulmonary 
hypertension; WHO: World Health Organisation; IGR: inert gas rebreathing. *NTproBNP 
performed at baseline, 4 months and 1 year only. 
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6.2.4 Ethical approval 

Ethical approval for this study was granted by the West of Scotland research 

Ethics Committee. 

6.2.5 Analysis of results 

This study was largely exploratory to assess the feasibility of using IGR to detect 

changes in SV at 2 weeks and if present, to assess their relationship to later 

functional improvement. As described in Chapter 6.3 recruitment to this study 

was lower than expected, thus limiting the statistical analysis given the small 

number of subjects. Significance tests have therefore not been performed. 

 

6.3 Results 

A total of 8 patients were recruited to this study, short of the original 

recruitment target of 13 patients.  

The baseline characteristics for the 8 subjects are given in Table 6.1. The RHC 

data for 6 patients is from RHCs undertaken within a fortnight of study entry, 5 

of whom were at the point of diagnosis and one was undergoing invasive 

reassessment prior to treatment escalation. For one patient the RHC data was 

from 4 months earlier when the diagnosis was made and treatment first 

instituted. For another patient the RHC had last been performed as a child and 

therefore was not included in the figures used for Table 6.1. 
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Baseline characteristics 

Diagnosis (n) 
IPAH 

CTDPH 
CTEPH 

 
4 
3 
1 

Age (years) 54 (14) 

Gender 
Male 

Female 

 
4 
4 

WHO-FC 
I 
II 
III 

 
1 
5 
2 

mPAP (mmHg) 47 (5) 

PAWP (mmHg) 6 (6) 

CO at last RHC (l/min) 4.3 (0.4) 

SV at last RHC (ml) 50 (12) 

PVR at last RHC (Wood units) 9.3 (2.2) 

Table 6.1 Baseline characteristics of participants in early treatment response study. IPAH: 
idiopathic pulmonary arterial hypertension; CTDPH: connective tissue disease associated 
pulmonary hypertension; CTEPH: chronic thromboembolic pulmonary hypertension; WHO-
FC: WHO functional class; mPAP: mean pulmonary artery pressure; PAWP: pulmonary 
artery wedge pressure; CO: cardiac output; RHC: right heart catheterisation; SV: stroke 
volume; PVR: pulmonary vascular resistance. 

 

Absolute values of resting supine SV measured by cardiac MRI and IGR are given 

in Figure 6.2 and Figure 6.3. The comparison of the changes seen in supine SV at 

2 weeks when measured by both IGR and cardiac MRI is given in Figure 6.4. The 

aortic SV measured at MRI was used for the comparison. The direction and 

magnitude of change in SV was similar by both methods for all but one patient in 

whom the mean supine SV increased by 2ml measured by IGR but fell by 7ml 

measured by cardiac MRI. These results suggest that both IGR and cardiac MRI 

area able to detect early haemodynamic changes. 
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Figure 6.2 Absolute values of supine resting stroke volume measured by cardiac MRI (aortic 
SV) and inert gas rebreathing at baseline. SV: stroke volume (ml); MRI: magnetic resonance 
imaging; IGR: inert gas rebreathing. 

 

 

 

Figure 6.3 Absolute values of supine resting stroke volume measured by cardiac MRI (aortic 
SV) and inert gas rebreathing at 2 weeks. SV: stroke volume (ml); MRI: magnetic resonance 
imaging; IGR: inert gas rebreathing. 
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Figure 6.4 Comparison of change in supine stroke volume at 2 weeks as measured by 
cardiac MRI (aortic SV) and IGR. SV: stroke volume (ml); MRI: magnetic resonance imaging; 
IGR: inert gas rebreathing. 

 

The changes in SV by IGR in the supine and erect positions at 2 weeks are given 

in Figure 6.5. The direction of change in SV was the same for all patients 

whether measured supine or erect but the magnitude of the change for some 

patients appeared to be lower with the erect measurements suggesting that 

perhaps the erect measurement may be less responsive to treatment change. 

The relationship between the change in supine SV at 2 weeks and the change in 

6MWD at 2 weeks is given in Figure 6.6. It appears to show a positive relationship 

between the change in SV and the change in 6MWD with those patients with the 

largest increase in SV at 2 weeks also having the largest increase in 6MWD at 2 

weeks. 
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Figure 6.5 Relationship between the change in stroke volume measured by inert gas 
rebreathing at 2 weeks in the supine and erect positions. SV: stroke volume; IGR: inert gas 
rebreathing. 

 

 

Figure 6.6 Relationship between the change in supine stroke volume measured by inert gas 
rebreathing at 2 weeks and the change in 6 minute walk distance at 2 weeks. SV: stroke 
volume (ml); IGR: inert gas rebreathing; 6MWD: 6 minute walk distance (metres). 
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A less clear relationship is seen between by the change in supine SV by IGR at 2 

weeks and the change in 6MWD at 4 months as demonstrated in Figure 6.7. 

 

Figure 6.7 Relationship between the change in supine stroke volume measured by inert gas 
rebreathing at 2 weeks and the change in 6 minute walk distance at 4 months. SV: stroke 
volume (ml); IGR: inert gas rebreathing; 6MWD: 6 minute walk distance (metres). 

 

 

Similarly no clear relationship is seen between the change in supine SV by IGR at 

4 months and the change in 6MWD at 4 months as demonstrated in Figure 6.8. 
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Figure 6.8 Relationship between the change in supine stroke volume measured by inert gas 
rebreathing at 4 months and the change in 6 minute walk distance at 4 months. SV: stroke 
volume (ml); IGR: inert gas rebreathing; 6MWD: 6 minute walk distance (metres). 

 

 

6.4 Discussion 

Although a large volume of data was collected as part of this study, given the 

smaller than expected number of participants it was decided to concentrate on 

the main focus of the study, i.e. if haemodynamic changes can be detected at 2 

weeks after starting or altering disease targeted pulmonary vasodilator therapy 

and whether these changes relate to changes in function at the standard follow 

up time of 4 months.  

SV measured by IGR appears to be able to detect haemodynamic changes 2 

weeks after starting or altering treatment and these changes appear comparable 

to those seen by cardiac MRI. On the basis of the data obtained this change in 

supine SV measured by IGR relates to the change in 6MWD at the same time 

point. Interestingly however the change in 6MWD at 4 months does not appear to 

relate to the change in SV either at 2 weeks or at 4 months. Given the close 
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relationship between impaired stroke volume and exercise limitation it is 

perhaps surprising that the changes seen in 6MWD at 4 months do not appear to 

relate to changes in SV. It is possible however that this is a consequence of the 

small number of patients included in the study. 

The main weakness of this study is the small number of patients who 

participated. Difficulties encountered recruiting to the trial centred on two main 

issues. Firstly, the study protocol was relatively intense with repeated exercise 

testing occurring alongside the other investigations over two visits at each time 

point. Given the large geographical spread of patients attending the SPVU for 

assessment the protocol necessitated an overnight stay for the majority of 

patients and while this could be offered without charge it added to the 

perceived intensity of the visits. Secondly, the recruitment from prevalent 

patients undergoing a change of treatment after assessment in the outpatient 

clinic was less than anticipated. This again stemmed partly from the intensity of 

the study protocol and that in addition to their current clinic review they would 

need to return for a further four days of assessment over a two week period. 

 

6.5 Conclusions 

The limited data from this study appears to show that both IGR and cardiac MRI, 

noninvasive surrogate measures of the underlying haemodynamics, can detect 

changes as early as 2 weeks after a change in treatment. These changes seem to 

relate to changes in 6MWD seen at the 2 week time point but there does not 

appear to be any relationship between the SV changes and the changes observed 

in 6MWD at 4 months. This study was small and further assessment of the role of 

IGR and cardiac MRI in assessing early haemodynamic change and the 

relationship between that and future functional change should be assessed in a 

larger study with a more streamlined protocol to enhance recruitment and lend 

more certainty to these provisional results. 
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7 Major findings and conclusions 

The work in this thesis was undertaken to investigate the extent to which novel 

exercise derived variables and noninvasive haemodynamic measurements can 

enhance the assessment and monitoring of patients with pulmonary 

hypertension.  

Right heart catheterisation on exercise in patients with resting Group 1 and 

Group 4 PH was carried out to test the hypothesis that there is impairment of 

oxygen extraction in the peripheral muscles on exercise in these patient groups. 

The major findings were: 

 On exercise patients with PAH can achieve very low levels of mixed 

venous oxygen saturation, lower than has been previously suggested 

 Oxygen extraction does not appear to be reduced in patients with PH and 

may be higher than in healthy individuals 

 Impairment of oxygen extraction does not appear to be a limiting factor in 

the exercise capacity of patients with PH. 

 

The potential role of the oxygen uptake efficiency slope in the assessment and 

monitoring of patients with PH was investigated. The major findings were: 

 The relationship between OUES and peak VO2 is constant across different 

groups of PH 

 OUES calculated from submaximal levels predicts peak VO2 and therefore 

OUES can be considered a submaximal measure of exercise performance 

in PH 

 OUES is a significant predictor of survival in patients with Group 1 and 

Group 4 PH 
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The rates of recovery of heart rate and VO2 after incremental CPET were studied 

to investigate their relationship with survival in patients with Group 1 and Group 

4 PH. The major findings were: 

 The absolute reduction in HR at 60 and 120 seconds, and the HR at 120 

seconds expressed as a percentage of the peak HR, were significant 

predictors of all cause mortality on univariate analysis 

 The absolute reduction in heart rate at 120 seconds was the sole 

remaining covariate on multivariate analysis in a model including age and 

logNTproBNP. Similar results were seen when the HR at 120 seconds was 

expressed as a percentage of the peak HR 

 The absolute reduction in peak VO2 at 120 seconds and the VO2 at 120 

seconds expressed as a percentage of the peak VO2 were both significant 

predictors of survival on univariate analysis 

 

The ability of noninvasive measurement of stroke volume by inert gas 

rebreathing and by cardiac MRI to detect early haemodynamic changes and the 

relationship of these changes to later functional improvement was investigated. 

The study did not meet its recruitment target but did appear to show on the 

basis of the limited data: 

 Both IGR and cardiac MRI are able to detect haemodynamic changes 2 

weeks after starting or altering pulmonary vasodilator therapy 

 The change in SV at 2 weeks as measured supine by IGR appears to relate 

to changes in 6MWD seen at 2 weeks 

 The change in SV at 2 weeks does not appear to relate to the change in 

6MWD seen at 4 months and similarly the change in SV at 4 months does 

not appear to relate to the change in 6MWD at 4 months 
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In conclusion, the aims of this thesis, to investigate the role of novel exercise 

derived variables and noninvasive haemodynamic measurements in enhancing 

the assessment and monitoring of patients with PH has been achieved. The work 

on oxygen extraction has suggested that while pathological changes do occur in 

the muscles of patients with PH, these do not seem to cause impairment of 

oxygen extraction and consequent exercise limitation. This could be explored 

further through a rehabilitation trial involving exercise right heart 

catheterisation, muscle biopsies and cardiopulmonary exercise testing both 

before and after a course of rehabilitation to clarify in more detail the impact of 

the peripheral muscle abnormalities.  

OUES has demonstrated promise as a submaximal measure of exercise 

performance and predictor of survival in PH and further work on this measure 

and its role in assessing treatment response with serial measurements should be 

explored.  

The rates of heart rate and VO2 recovery after CPET have been shown to predict 

survival. In particular the rate of recovery of HR at 120 seconds after exercise 

has been demonstrated to be a powerful predictor of survival. Work investigating 

how this might combine with other exercise derived and haemodynamic 

variables may lead to enhanced prediction of patient outcome.  

Finally inert gas rebreathing and cardiac MRI both appear able to detect a 

haemodynamic response 2 weeks after treatment. The number of participants 

was too small to draw conclusions on how this change may or may not relate to 

later functional improvement. A larger more streamlined study focusing on this 

issue in isolation may yield interesting results which could change the current 

strategy for assessing treatment response in PH. 
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Appendix 1 CAMPHOR 
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Please read this carefully 
 
 

On the following pages you will find some statements that  

have been made by people who have Pulmonary Arterial Hypertension. 

 

Please read each statement carefully.   

We would like you to put a tick in the box  next to ‘Yes’  

if you feel it applies to you and a tick in the  

box  next to ‘No’ if it does not 

 

Please choose the response that applies best to you 

at the moment 

 
 

© Galen Research & Papworth Hospital, 2004 

 

CAMPHOR 
 

Cambridge Pulmonary Hypertension 
Outcome Review 
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Symptoms 

 

 Please read each statement carefully and decide whether it applies to you  

at the moment  

   

1.   My stamina levels are low   
Yes  

No  

 
  

2.   I have to rest during the day   
Yes  

No  

 
  

3.   I feel worn out 
Yes  

No  
   

4.   I get tired very quickly 
Yes  

No  

   

5.   I’m tired all the time 
Yes  

No  

 
  

6.   I feel very weak 
Yes  

No  
   

7.   I feel completely exhausted    Yes  

No  

   

8.   I want to sit down all the time Yes  

No  

 
  

9.   I soon run out of energy Yes  

No  
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10.   Everything is an effort 
Yes  

No  

   

11.   I get out of breath when I stand up 
Yes  

No  

 
  

12.   When I talk I get out of breath 
Yes  

No  
   

 

Please read each statement carefully and decide whether it applies to you  

at the moment 
 

   

13.   When I walk I get out of breath 
Yes  

No  

 
  

14.   I get breathless if I bend 
Yes  

No  

 
  

15.   I get breathless going up one step 
Yes  

No  
   

16.   I get breathless walking up a slight slope 
Yes  

No  

 
  

17.   I get breathless without doing anything 
Yes  

No  

 
  

18.   I get breathless climbing a flight of stairs 
Yes  

No  
 

 
  

19.   I have mood swings 
Yes  

No  

 
  

20.   I get very down Yes  
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No  

 
  

21.   I seldom feel happy 
Yes  

No  
   

 

 Please read each statement carefully and decide whether it applies to you  

at the moment  

 

   

22.   I’ve forgotten what it’s like to enjoy myself 
Yes  

No  

 
  

23.   I feel hopeless 
Yes  

No  

 
  

24.   It does get me down 
Yes  

No  

 
  

25.   I often feel anxious 
Yes  

No  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

please turn over 
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Activities 

 

Please put a tick in the box  under the response which best describes 

your abilities at the moment.  Please respond to all 15 statements. 
 
Please describe your ability without the use of aids or assistance.  
However, do describe your ability taking into account oxygen if you use 
it. 
 
 

Please mark only one box. 

 
Able to do 

on own 
without 
difficulty 

Able to do 
on own 
with 

difficulty 

Unable to 
do on own 

 

1.   Cut your toenails    
2.   Have an all over wash    

3.   Get dressed    
4. Walk around inside the house (not including 

climbing stairs) 
   

5.   Walk short distances on level ground    

6.   Walk longer distances on level ground    
7.   Walk up a slight incline    
8.   Climb a flight of stairs    

9.   Bend down to pick objects up from the floor    

10.   Stand for a short time    
11.   Stand for a long time    

12.   Lift heavy items    
13.   Carry heavy items    

14.   Do light jobs around the house or garden     
15.   Do heavy jobs around the house or garden    
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Quality of Life 

 

Please read each statement carefully and put a tick  next to the response 

that applies best to you  at the moment  

   

1.    I have to talk very quietly 
True 

Not True 

 

 
   

2.    I can't stay away from home 
True 

Not True 

 

 
   

3.  I've lost interest in food   
True 

Not True 

 

 
   

4.  I can't put energy into my close relationships 
True 

Not True 

 

 
   

5.  Walking for pleasure is out of the question     
True 

Not True 

 

 
   

6.  My condition puts a strain on my close relationships     
True 

Not True 

 

 

   

7.  I feel very isolated     
True 

Not True 

 

 
   

8.  I can’t do things on the spur of the moment      
True 

Not True 
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9.  I feel vulnerable when  I’m on my own     
True 

Not True 

 

 
 

   

10. It feels like my body has let me down     
True 

Not True 

 

 
   

11.  I feel as if I’m not in control of my life     
True 

Not True 

 

 
   

12. I feel dependent on other people     
True 

Not True 

 

 
   

Please remember to put a tick in only one of the alternative responses for 

each of the statements 

   

13. .Sometimes it’s too much effort to speak      
True 

Not True 

 

 
   

14. I feel as if I am a burden to people     
True 

Not True 

 

 
   

15.  Travelling distances is a problem       
True 

Not True 

 

 
   

16.    I don't like to be seen like this 
True 

Not True 

 

 
   

17.    I feel that I'm losing my role in life 
True 

Not True 
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18.    I worry that I neglect people close to me 
True 

Not True 

 

 
   

 

Please read each statement carefully and decide whether it applies to you  

at the moment 

   

19.    I feel guilty asking for help 
True 

Not True 

 

 
   

20.  My condition limits the places I can go     
True 

Not True 

 

 
   

21.    I dislike having to rely on other people    
True 

Not True 

 

 
   

22.  I don’t want to talk to anybody    
True 

Not True 

 

 
   

23. I feel as if I let people down     
True 

Not True 

 

 
   

24.  I am reluctant to leave the house 
True 

Not True 

 

 
   

25.   I’m unable to join in activities with my family and friends 
 

True 

Not True 

 

 
 

 

Thank you for taking the trouble to fill in this questionnaire. 
  

Please check all the pages to make sure that you have 

answered every stat__________  
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