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Abstract 

 
CD4 T cells play an important role in the initiation and maintenance of 

inflammation in numerous inflammatory diseases. Rheumatoid arthritis (RA) is 

one such autoimmune inflammatory condition where inflammation of the joint 

occurs. CD4 T cells are one of the key cells in RA pathogenesis due to their 

ability to activate or influence other cells in the joint including B cells, 

macrophages and osteoclasts, which collectively lead to joint destruction. The 

recruitment and function of CD4 T cells at inflamed tissues has been studied 

extensively. However, the signals that regulate CD4 T cell accumulation and 

persistence at peripheral inflamed sites are poorly understood.  

In this study, a novel in vivo model of inflammation was designed in the murine 

ear pinnae to study the signals which regulate CD4 T helper 1 (Th1) cell 

persistence at inflamed tissues. Congenically marked, in vitro polarised CD4 Th1 

cells were adoptively transferred directly into inflamed or non-inflamed ear 

pinnae and their persistence and survival were studied using flow cytometry. 

Higher numbers of CD4 Th1 cells were found at the inflamed as compared to the 

non-inflamed site.  

Intravital microscopy was used to further study the behaviour of these cells. Th1 

cells were found to be more mobile in inflamed compared to non-inflamed ear 

pinna. To investigate the molecular mechanism of this, either the ear pinnae or 

the T cells themselves were manipulated.  Introducing cognate antigen at the 

inflamed site did not alter the number of recovered T cells, nor did the T cells 

proliferate at the site.  

Next, the survival of persistent CD4 Th1 cells was examined by investigating 

their expression of active caspases. Lower proportion of Th1 cells recovered 

from inflamed tissues were found to express active caspases compared to those 

from a non-inflamed site. Together these data suggest that local T cell 

activation is not required for persistence but rather, the increase in T cells at 

inflamed sites may be due to a combination of persistence and survival signals. 
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The sphingolipid sphingosine-1-phosphate (S1P) has been implicated in driving 

both egress of T cells out of secondary lymphoid organs and their survival. To 

investigate whether S1P affects Th1 cell persistence and/or survival at inflamed 

tissues, Th1 cells were treated with S1PR agonists or antagonists, prior to 

transfer. Fewer Th1 cells were recovered from the inflammatory site of mice 

injected with antagonist treated cells. Additionally, S1PR agonism was sufficient 

to induce Th1 cell persistence at non-inflamed tissues.  

A trend towards increased expression of active caspases was also found in S1PR 

antagonist treated T cells recovered from inflamed ear pinnae compared to 

untreated controls. Finally, elevated levels of the S1P metabolising enzyme, 

SPHK1, was found in human RA joints compared to OA joints.  

In sum, I propose a novel function for S1P and its receptors in regulating the 

persistence of activated CD4 Th1 cells at inflamed tissue sites. Moreover, 

targeting S1P and its receptors at peripheral inflamed tissues could provide a 

novel target for the development of more effective anti-inflammatory 

therapeutics. 
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Abbreviations 

7TM    Seven transmembrane 

ABC    ATP-binding cassette 

ACAD    Activated cell autonomous death 

ACPA    Anti-citrullinated peptide antibody 

AIA    Antigen induced arthritis 

AICD    Activation induced cell death 

AMP    Anti-microbial peptides 

ANOVA   Analysis of variance 
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 17 

CAM    Cell adhesion molecule 

CD    Cluster of differentiation 

CFA    Complete freund’s adjuvant 

CIA    Collagen induced arthritis 

CKR    Chemokine receptor 

CLA    Cutaneous leukocyte antigen 

CLP    Common lymphoid progenitor 

CMP    Common myeloid progenitor 

COX    Cyclooxygenase 

cPLA2    Cytosolic phospholipase A2 

CTLA-4   Cytotoxic-T-lymphocyte associated protein-4 

DAB    3,3’ – Diaminobenzidine 

DAMP    Danger associated molecular pattern 

DC    Dendritic cell 

DISC    Death-inducing signaling complex 

DNA    Deoxyribonucleic acid 

DR    Death receptor 
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DTH    Delayed type hypersensitivity 
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ECM    Extra-cellular matrix 

ELISA    Enzyme-linked immunosorbent assay 

ER    Endoplasmic reticulum 

ESL    E-selectin ligand 

FACS    Fluorescence-activated cell sorting 

FASL    FAS ligand 

FLICA    Fluorescent inhibitor of caspases 

Fox    Forkhead box  

G-CSF    Granulocyte-colony stimulating factor 

GFP    Green fluorescent protein 

GlyCAM   Glycosylation-dependent cell adhesion molecule 

GM-CSF   Granulocyte macrophage-colony stimulating factor 

GPCR    G-protein coupled receptor 

HDL    High-densty lipoprotein 

HEV    High endothelial venule 

HIV    Human immuno-deficiency virus 

HLA    Human leukocyte antigen 

HMGB1   High mobility group box 1 

HSV    Herpes simplex virus 
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IBD    Inflammatory bowel disease 

ICAM    Intercellular adhesion molecule 

ID    Intradermal 

IFN    Interferon 

Ig    Immunoglobulin 

IL    Interleukin 

ILC    Innate lymphoid cell 

IMID    Immune-mediated inflammatory diseases 

KLF    Kruppel-like factor 

LEC    Lymphatic endothelial cell 

LFA-1    Lymphocyte function-associated antigen 1 

LN    Lymph node 

LPS     Lipopolysaccharide 

M-CSF    Macrophage-colony stimulating factor 

MACS    Magnetic-activated cell sorting 

MADCAM   Mucosal vascular addressin cell-adhesion molecule 

MEST    Mouse ear swelling test 

MHC    Major histocompatibility class 

MS    Multiple sclerosis 



 
 

 20 

MTX    Methotrexate 

NET    Neutrophil extracellular trap 

NF-kB    Nuclear factor-kB 

NK    Natural killer 

NLR    NOD-like receptor 

NOD    Nucleotide oligomerisation domain 

NOS    Nitric oxide synthase 

OA    Osteoarthritis 

Ova    Ovalbumin 

PAF    Platelet activating factor 

PAMP    Pathogen associated molecular pattern  

PBS    Phosphate buffered saline 

PCD    Programmed cell death 

PCR    Polymerase chain reaction 

PDGF    Platelet-derived growth factor 

PG    Prostaglandin 

PKC    Protein kinase C 

PMA    Phopbol-myristate acetate 

PMN    Polymorphonuclear leukocyte 
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PRR    Pattern recognition receptor 

PSGL    P-selectin glycoprotein ligand 

PTX    Pertussis toxin 

PUMA    p53-upregulated modulator of apoptosis 

PUVA    Psolarin and ultraviolet A 

qRT-PCR   Quantitative-reverse transcription PCR 

RA    Rheumatoid arthritis 

RBC    Red blood cell 

RF    Rheumatoid factor 

RIPK    Receptor-interacting protein kinase 

RLR    RIG-I like receptor 

RNA    Ribonucleic acid 

RORg    RAR-related orphan receptor gamma 

ROS    Reactive oxygen species 

RPMI    Rosswell park memorial institute medium 

RT    Room temperature 

S1P    Sphingosine-1-phosphate 

SD    Standard deviation 

SEM    Standard error of mean 
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siRNA    Small-interfering RNA 

SLE    Systemic lupus erythematosus 

SLO    Secondary lymphoid organ 

SMase    Sphingomyelinase 

SPHK    Sphingosine kinase 

SPNS    Spinster homolog 

STAT    Signal transducer and activator of transcription 

T-PER    Tissue-protein extraction reagent 

T1D    Type-1-diabetes 

TBST    Tris-buffered saline+tween 

TCR    T cell receptor 

Tg    Transgenic 

TGF-b    Transforming growth factor-b 

TLO    Tertiary lymphoid organ 

TLR    Toll-like receptor 

TNF    Tumour necrosis factor 

TRAIL    TNF-related apoptosis inducing ligand 

VEGF    Vascular-endothelial growth factor 

YFP    Yellow fluorescent protein 
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1.1 Overview 

Immune-mediated inflammatory diseases (IMID) are one of the primary causes of 

significant morbidity and mortality in the western world. The term IMID is used 

to describe a group of diseases that share common inflammatory pathways. They 

include diseases such as rheumatoid arthritis (RA), psoriasis and multiple 

sclerosis (MS) amongst others (1).  

IMIDs affect 5-7% of the population (2). They exhibit linked genetic 

susceptibilities which play a crucial role in disease development. Moreover, 

environmental precipitants such as smoking, infection and trauma are also 

shared. Commonly, individual patients present with multiple IMIDs (3).  

The aetiology of most IMIDs is unknown, however, dysregulated cytokine 

networks have been identified as central to disease pathogenesis (4). CD4 T 

lymphocytes, often considered the orchestrator of immune responses play 

essential roles in the regulation of these cytokine networks at inflamed sites (5). 

These T cells accumulate in large numbers at effected tissues. Indeed, T cell 

accumulation is considered a molecular hallmark of multiple IMIDs (6-8). 

Recent studies have investigated CD4 T cell activation, function, migration and 

death at peripheral inflamed tissues in an effort to understand their roles in 

disease pathogenesis (9-11). Processes involved in the trafficking of CD4 T cells 

to and from diseased tissues offers an attractive avenue for the development of 

novel anti-inflammatory therapeutics.  

As part of this, recruitment of T cells to inflamed tissues has been extensively 

studied (12-17). Tissue persistence of these cells, however, remains a critical 

but poorly studied area of research. Considering the destructive influence of 

persistent CD4 T cells at tissues, targeting them remains a prime candidate for 

the development of new therapies.  

This research project was undertaken with the aim to identify novel signals 

regulating pathogenic CD4 T cell persistence at inflamed tissues. This 

introduction will review the fundamental scientific knowledge which underlies 

the immunological basis of CD4 T cell persistence at peripheral inflamed tissues.  
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1.2 Inflammation 

Inflammation is a complex and protective biological response of tissues to 

infection, injury or other harmful stimuli (18). Upon stimulation, tissues 

commence a cascade of events including vascular alteration, inflammatory 

mediator release and immune cell activation/infiltration. Through these 

mechanisms, inflammation aids in the clearance of the initial stimulus and 

restores homeostasis (19). 

1.2.1 History of inflammation research 

Aspects of inflammation were discovered as far back as 5th century BC. The 

Greek philosopher Hippocrates described inflammation as an essential 

component of wound healing. He also introduced the term edema or swelling, 

which is commonly associated with inflammation. Around 30 BC, Celsus, a 

Roman encyclopaedist described four of the five cardinal signs of inflammation. 

The Latin terms calor (heat), dolor (pain), rubor (redness) and tumor (swelling) 

are still in use today to describe inflammation. Virchow, a German pathologist, 

later added the fifth, loss of function (20). 

The 18th and 19th centuries saw the advent of empirical research and with that 

the cellular and molecular details of inflammation began to emerge. Hunter, 

first described angiogenesis in wound healing in the late 18th century. Dutrochet 

described white blood cell adhesion and Cohnheim demonstrated changes in 

blood vessels including vascular leakage. Metchnikoff and Ehrlich, often 

considered the founders of immunology, demonstrated white blood cell 

(leukocyte) accumulation in inflamed tissues. Metchnikoff also described 

phagocytes and phagocytosis (21). 

Technological advancements in the 20th and 21st centuries allowed for rapid 

progress in inflammation research. The application of genetic and molecular 

biology approaches in immunology led to the discovery of inflammatory 

mediators. Cytokines, chemokines, cell adhesion molecules and some of their in 

vivo functions were elucidated using these powerful tools (18). Despite such 

progress, treatments for many inflammatory diseases remain mostly disease 

modifying rather than curative. Moreover, molecular mechanisms underlying 
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multiple inflammatory diseases are as yet unclear. Hence there exists an unmet 

need for fundamental inflammation research. In the following sections, the 

current understanding of inflammation is reviewed.  

1.2.2 Acute inflammation 

Acute inflammation is triggered by infection or tissue damage. Pathogen 

associated molecular patterns (PAMPs) or danger associated molecular patterns 

(DAMPs) released by pathogens or damaged cells respectively are then 

recognised by innate immune cells (22). PAMPs are a set of conserved molecular 

patterns expressed on microbes (23, 24). One of the best known PAMPs is 

bacterial lipopolysaccharide (LPS) found on gram-negative bacteria. DAMPs are 

signals released by cells upon breakdown of homeostasis such as cell death (25-

27). Some of the best-known DAMPs include nucleic acids (DNA/RNA) and high 

mobility group box 1 (HMGB1) proteins (28). These molecules carry out crucial 

functions in intact cells, but act as danger signals upon release from necrotic 

cells (28).  

PAMPs and DAMPs are recognised by pattern recognition receptors (PRRs) on 

tissue resident innate immune cells (29). PRRs include Toll-like receptors (TLRs), 

NOD (nucleotide-binding oligomerisation-domain binding protein)-like receptors 

(NLRs) and RIG-I like receptors (RLRs) (29). LPS and HMGB1 both trigger TLR4 

and TLR2 respectively whereas RLRs recognise various nucleic acids (29-31). The 

recognition of PAMPs/DAMPs by PRRs leads to the production of inflammatory 

mediators such as cytokines, chemokines, adhesion molecules and lipid 

mediators (29).  

Inflammatory mediators elicit local inflammatory exudates. Vascular 

permeability is increased, allowing selective entry of leukocytes, red blood cells 

(RBCs) and plasma proteins into inflamed tissues (32). Selectivity is conferred by 

modulation of gap junction space and adhesion molecule expression on vascular 

endothelial cells (33). Adhesion molecules interact with their receptors on 

leukocytes leading to extravasation (34, 35). Chemokines released at inflamed 

tissues, also aid tissue entry of vascular leukocytes by engaging their chemokine 

receptors (35, 36).  
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Neutrophils, which are polymorphonuclear leukocytes (PMNs), make up the 

majority of early leukocyte populations in inflamed tissues (37). Upon entry, 

neutrophils undergo activation either by direct interaction with the pathogen or 

by the local inflammatory cytokine milieu produced by tissue resident cells. 

Neutrophils engage targets by releasing toxic molecules such as reactive oxygen 

and nitrogen species (ROS), (NOS), proteinases, elastases and cathepsins (38). 

While highly potent, these molecules also cause significant off-target damage, 

often leading to the general pain associated with inflammation (39).  

At the end of a neutrophil response, monocytes and macrophages are recruited 

(40). This is marked by a change of lipid mediator composition at the inflamed 

tissue. Pro-inflammatory prostaglandins are replaced by anti-inflammatory 

lipoxins. This drives the resolution phase of inflammation mediated by 

monocytes and macrophages (41). Monocytes remove apoptotic/necrotic cell 

debris and begin the tissue remodelling process (42). Macrophages carry out 

further tissue repairs and produce amongst others, two potent anti-inflammatory 

mediators transforming growth factor-b (TGF-b) and interleukin -10 (IL-10) (43, 

44). Together these processes reduce inflammation and restore tissue 

homeostasis (45, 46). 

1.2.3 Acute inflammatory diseases 

The most common form of acute inflammation is resolving bacterial/viral 

infection or local tissue damage/wounds. In these cases, the process of acute 

inflammation restores tissue homeostasis (47). However, acute respiratory 

distress syndrome (ARDS) and sepsis are examples of non-resolving acute 

inflammatory diseases. 

1.2.3.1 Acute respiratory distress syndrome 

ARDS is characterised by the sustained accumulation of PMNs within alveolar 

compartments of the lung (48). ARDS occurs in adults usually after traumatic 

injury or bacterial pneumonia (49, 50). In infants, ARDS is most common 

following premature birth (51). Although mechanisms for ARDS development is 

poorly understood, fluids from ARDS lungs demonstrate hallmarks of aberrant 

acute inflammation (52). Bronchoalveolar fluids from ARDS patients contain 
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large numbers of PMNs, fibrin and complement components which are discussed 

in the “mediators of inflammation” section of this introduction. Collectively, 

this causes severely restricted gas exchange in the lungs. The majority of ARDS 

patients die of acute respiratory failure. Some patients resolve disease 

completely, while others suffer from pulmonary fibrosis (53). No effective 

therapy for ARDS exists. Patients are only provided with mechanical ventilation 

and fluids to help them recover (54). 

1.2.3.2 Sepsis 

Sepsis occurs primarily in immunocompromised individuals. It is most commonly 

triggered by bacterial infection of the lungs, although infections of other organs, 

both viral and bacterial can also cause sepsis (55). Like ARDS, mortality rates 

following sepsis are high. In sepsis, patient blood plasma contains large amounts 

of pro-inflammatory mediators such as tumour necrosis factor a (TNFa), 

interleukin-1 (IL-1) and IL-6 (56, 57). Cytokines are discussed in the “cytokines” 

section of this chapter.  

Moreover, vascular endothelium express high levels of adhesion molecules as do 

infiltrating leukocytes (58). The complement and coagulation cascades are 

activated and tissue macrophages show excessively activated phenotypes (59). 

Overall, sepsis is a systemically dysregulated acute immune response. Like ARDS, 

causes of sepsis are unknown and no effective therapy exists.  

1.2.4 Chronic inflammation 

Chronic inflammation ensues once acute inflammation fails to eliminate 

pathogenesis (60). Lymphocytes, plasma cells and macrophages replace the 

primarily monocytic/neutrophilic infiltrates at acutely inflamed tissues (61). If 

these cells fail to control pathogenesis, persistent, long term, inflammation 

develops, potentially leading to the formation of tertiary lymphoid organs (TLOs) 

or granulomas (62). Triggers for chronic inflammation include persistent 

bacterial/viral infections, autoimmunity and foreign bodies (63-65).  

The chronic inflammatory response to each individual trigger can be diverse. 

Whereas an anti-bacterial response in the lung might attract a certain subset of 
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leukocytes and lymphocytes, an autoimmune inflammatory skin lesion could be 

targeted by an entirely different subset of immune cells (66). Finally, foreign 

bodies as well as some pathogens often trigger granulomatous inflammation due 

to unsuccessful phagocytosis by macrophages (67). 

1.2.5 Chronic inflammatory diseases 

1.2.5.1 Psoriasis 

Psoriasis is an autoimmune inflammatory skin disease characterised by epidermal 

keratinocyte hyperplasia (68). This aberrant proliferation of skin cells is 

mediated by accumulation of specific subtypes of inflammatory T helper 17 cells 

(Th17), macrophages and dendritic cells (DCs) (69-71). These cells produce pro-

inflammatory cytokines such as IL-1, IL-6, TNFa, IL-17 and IL-22 which 

perpetuate disease pathogenesis (72).  

Causes of psoriasis remain incompletely understood. However, there is a genetic 

association of psoriasis with T cells and MHC-II expressing cells (73). Treatments 

for psoriasis include immunosuppressants such as methotrexate (74). More 

severe psoriasis is often treated with biologics such as anti-TNFa (infliximab) 

(75). However, as with most chronic inflammatory disease, there are currently 

no drugs that cure the disease. 

1.2.5.2 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic systemic autoimmune inflammatory 

disease. It primarily manifests in the small joints of the hands and feet. In RA, 

synovial membranes of the joint are inflamed. Persistent inflammation leads to 

significant bone and cartilage damage which is mediated in part by dysregulated 

osteoclast proliferation (76).  

Like psoriasis, the aetiology of RA is yet to be established. However, certain 

human leukocyte antigen (HLA) genes are negatively implicated (77, 78). These 

genes are critical in regulating antigen presentation to T cells (79). Moreover, 

co-stimulation molecules such as CD28 and CD40 as well as lymphocyte 

activation associated gene PTPN22 are also negatively implicated (80). Hence, 
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activated adaptive immune cells and their products play a key role in RA 

pathophysiology.  

One of the hallmarks of RA is the presence of autoantibodies against the Fc 

portion of IgG known as rheumatoid factor (RF) in patient blood plasma (81, 82). 

Autoantibodies against citrullinated peptides (ACPAs) are another diagnostic 

marker for RA (83). While RF and ACPA implicate B/plasma cells in RA 

pathogenesis, aberrant accumulation of subsets of CD4 T cells such as Th1 and 

Th17 cells are also observed at RA synovia (84). Moreover, therapies targeted 

against T cell co-stimulation are effective in diminishing synovial inflammation 

(85, 86). Evidence suggests that synovial T cells contribute to disease by 

producing pro-inflammatory cytokines IFNg and IL-17 (87-89). 

Pro-inflammatory cytokines in general contribute significantly to RA 

pathophysiology. IL-1, IL-6 and TNFa produced by innate immune cells play 

major roles in disease progression (90). This is highlighted by the fact that the 

most effective therapy for RA targets TNFa (91). Despite its efficacy, not all 

patients respond to TNFa therapies.  

Hence, there exists an unmet need for the development of novel anti-

inflammatory therapeutics. Targeting master regulatory cells of cytokine 

networks, such as the CD4 T cell could provide new avenues for drug 

development. 

Relevance of this section to thesis aims: 

• Accumulation of leukocytes, and in particular T cells, is central to the 

pathogenesis of multiple inflammatory diseases as discussed in this 

section 

• Our knowledge of the signals regulating T cell accumulation in inflamed 

tissues remains incomplete 

• Discovery of novel signals of T cell accumulation at inflamed tissues 

could aid in the development of novel and more effective therapies for 

IMIDs 
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1.3 Mediators of inflammation 

PAMPs and DAMPs are inducers of inflammation. Recognition of PAMPs and DAMPs 

by cells results in complex signalling cascades leading to the production of 

diverse classes of inflammatory mediators (92). These mediators have numerous 

effects including increasing vascular permeability. Furthermore, many regulate 

leukocyte recruitment (93, 94). Inflammatory mediators can be divided into 

seven groups based on their function: Vasoactive amines and peptides, 

complement components, proteolytic enzymes, cytokines, chemokines, cell 

adhesion molecules (CAMs) and lipid mediators (61, 95). A brief overview of 

inflammatory mediators will be provided in this section with emphasis on 

cytokines, chemokines and lipid mediators. 

1.3.1 Vasoactive amines and peptides 

Histamine and serotonin are vasoactive amines. They are the products of 

platelet and mast cell degranulation (96, 97). Vasoactive amines regulate 

vascular permeability (98). This is mediated by context dependent dilation or 

constriction of blood vessels by histamine and serotonin (99). 

In addition, vasoactive peptides also play a critical role in controlling 

vasodilation. This family of small peptides is strongly regulated by the 

coagulation cascade protein Factor XII also known as Hageman factor (100-102). 

Factor XII processes and activates inactive compounds in extracellular fluids such 

as kinin and other fibrin degradation products (103, 104). These activated 

peptides then either act directly on the vasculature or trigger histamine and 

serotonin release by mast cells and platelets (105, 106). Factor XII importantly, 

controls the production of another peptide, Bradikynin (107). Bradikynin on top 

of being a vasodilator is a potent pro-algesic (108).  

1.3.2 Complement components 

Complement proteins C3a, C4a and C5a are produced in response to 

inflammatory stimuli (109, 110). This group of proteins are together known as 

anaphylotoxins (110). They are potent inducers of mast cell degranulation. 

Furthermore, anaphylotoxins promote granulocyte recruitment to inflamed 

tissues (111). 



 
 

 32 

1.3.3  Proteolytic enzymes 

Matrix metalloproteinases, elastin and cathepsins form a few of the multitude of 

proteolytic enzymes that mediate inflammation. These proteins function at all 

stages of inflammation. They facilitate leukocyte migration at inflamed tissues 

as well as aid in tissue remodelling and repair at the end of an inflammatory 

response (112, 113). 

1.3.4  Cytokines 

Cytokines are a family of small proteins important in cell-cell communication. 

They are key mediators of both acute and chronic inflammation. At inflamed 

tissues, cytokines are produced by a host of cells including endothelial cells, 

macrophages and neutrophils (114). At chronic sites of inflammation, such as RA 

joints, cytokines produced by osteoclasts and T cells also have critical 

implications for disease pathogenesis (90). Cytokines can be divided into three 

groups based on their function: Growth/survival factors, inflammatory cytokines 

and regulatory cytokines. These have been summarised in Table 1. 

Group Members Target Cell(s) Effect(s) 

 

Growth Factors 

IL-2 B and T cells 
Proliferation 

and activation 

IL-3 Stem cells 

Haematopoietic 

precursor 

proliferation 

and 

differentiation 

IL-4 
B, T cells and 

macrophages 

B, T cell 

proliferation 

and enhances 

MHC II 

expression  
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IL-5 Eosinophils, B cells 

Proliferation 

and 

maturation, 

stimulates IgA 

and IgM 

production 

IL-7 B and T cells 

B, T cell 

growth and 

survival factor 

IL-9 T cells 

Differentiation 

and 

proliferation 

IL-13 
B cells and 

monocytes 

IgE class 

switching and 

MHC class II 

expression 

IL-15 NK and T cells 

NK cell 

development 

and 

maturation, 

memory T cell 

maintenance 

IL-21 NK and T cells 

NK cell 

proliferation 

and T cell 

differentiation 

G-CSF 
Bone marrow stem 

cells 

Granulocyte 

production 
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GM-CSF Stem cells 

Granulocyte, 

monocyte, 

eosinophil 

differentiation 

M-CSF Stem cells 

Monocyte 

activation and 

differentiation 

 

Inflammatory 

Cytokines 

IL-1a Various cell types 

Pyrogenic, 

proliferation 

and 

differentiation 

of cells 

IL-1b Various cell types 

Cell 

proliferation, 

differentiation 

and apoptosis 

IL-6 
B cells and plasma 

cells 

Differentiation, 

IgG production 

IL-11 B cells 

Differentiation, 

induction of 

acute phase 

proteins 

IL-17 

Keratinocytes, 

fibroblasts and 

macrophages 

Pro-

inflammatory 

cytokine 

production and 

cell 

proliferation 
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IL-18 NK and T cells 

T and NK cell 

differentiation 

and 

proliferation 

IL-25 
Eosinophils and T 

cells 

Eosinophil 

proliferation 

and regulation 

of T helper 17 

cell cytokine 

production 

IL-23 T cells 

Pro-

inflammatory T 

cell 

differentiation 

IL-31 Various cell types 

Cell 

proliferation 

and 

homeostasis, 

recruitment of 

leukocytes to 

inflamed sites 

IL-33 
Mast cells, ILCs and 

T cells 

Stimulates pro-

inflammatory 

type 2 cytokine 

secretion 

IL-36 DCs and T cells 

DC, T cell 

activation and 

pro-

inflammatory 

cytokine 



 
 

 36 

production 

TNFa Macrophages 

Phagocytosis, 

endotoxic 

shock 

Type I IFNs Various cell types Anti-viral 

IFNg Various cell types 

Macrophage 

activation, 

phagocytosis, 

increased MHC 

I and II 

expression 

 

Regulatory 

Cytokines 

IL-10 B cells, macrophages 

Inhibits 

cytokine 

production and 

cellular 

activation, 

anti-

inflammatory 

IL-12 NK and T cells 

T and NK cell 

activation and 

regulation 

IL-19 Various cell types 
Anti-

inflammatory 

IL-20 Various cell types 
Anti-

inflammatory 

IL-22 Epithelial cells, 

hepatocytes and 

Host defence 

at mucosal 

surfaces and 
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keratinocytes tissue repair 

IL-24 Various cell types 

Wound healing, 

cell survival 

and 

proliferation 

IL-26 Various cell types 

Anti-

inflammatory, 

bactericidal 

IL-27 T cells 

Promotes 

regulatory cell 

type 

differentiation 

and IL-10 

production 

IL-28 
Keratinocytes and 

melanocytes 
Anti-viral 

IL-29 
Keratinocytes and 

melanocytes 
Anti-viral 

IL-35 Various cell types 
Anti-

inflammatory 

TGF-b Various cell types 

Inhibit cell 

proliferation, 

promote wound 

healing 

Table 1 Cytokines, their Targets and Effects 
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Cytokines can have distinct and often antagonistic effects on cells. This is in part 

due to the diverse nature of cytokine receptors and their overlapping 

intracellular signalling pathways (114). The most targeted pro-inflammatory 

cytokines in inflammatory diseases include tumour necrosis factor a (TNFa), 

interleukin-1 (IL-1) family and interleukin-6 (IL-6) (114). Interestingly, these 

cytokines signal through structurally conserved type I cytokine receptors unlike 

most other cytokine receptors, which are structurally divergent (114, 115).  

1.3.4.1 TNFa 

TNFa is one of the most important cytokines in inflammation and immune 

regulation. Primary producers of TNFa are macrophages, although various other 

cell types also produce it at different stages of an inflammatory response (115). 

TNFa activates the production of other cytokines and acute phase proteins by 

various cells (115). It also promotes expression and activation of adhesion 

molecules which allow cell trafficking into inflamed tissues (116, 117). TNFa has 

roles in promoting cell survival, proliferation and apoptosis at inflamed tissues 

(115). Moreover, TNFa has roles in maintaining endothelial function and lipid 

metabolism (118, 119). Inhibiting TNFa using monoclonal antibodies has proven 

efficacious in multiple inflammatory diseases such as RA and psoriasis (1). This 

further signifies the central role of TNFa in mediating inflammation. 

1.3.4.2 IL-1 family 

The IL-1 family of cytokines includes 11 members (120). The most potent pro-

inflammatory cytokines of this family are IL-1a and IL-1b (121). Production of 

these cytokines occurs downstream of PRRs triggered by PAMPs/DAMPs (122, 

123). IL-1 is produced by numerous cells including, but not limited to, 

macrophages, monocytes and DCs (124). IL-1 is an endogenous pyrogen and is 

potently anti-viral (123, 125). Like TNFa, IL-1 promotes production of other 

cytokines and acute phase proteins (126). Likewise, IL-1 receptor antagonists 

such as anakinra and canakinumab are used therapeutically in multiple 

inflammatory disorders including RA and Muckle-Wells syndrome respectively 

(127-130).  
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1.3.4.3 IL-6   

IL-6 is another potent inflammatory cytokine. Unlike TNF and IL-1, IL-6 is 

produced by a wider variety of cells including endothelial cells, bone marrow 

cells and fibroblasts as well as monocytes and macrophages (131). IL-6 is 

important in regulating haematopoiesis (132). IL-6 also controls adaptive 

immune responses by skewing T cell activation towards T helper 17 and 

inhibiting T regulatory cell phenotypes (133, 134). Similar to IL-1 and TNF, IL-6 

plays an important role in the acute phase response (135, 136). Finally, 

monoclonal antibodies targeting IL-6 are also in use to treat RA and juvenile 

idiopathic arthritis (137, 138). Efficacy in other inflammatory diseases is 

currently being evaluated (139). 

1.3.4.4 Cytokines in inflammatory diseases 

Aberrant cytokine signalling contributes to disease pathogenesis in many 

inflammatory disorders (140). IL-1, IL-6 and TNFa levels are elevated in RA, type 

1 diabetes (T1D), psoriasis and systemic lupus erythematosus (SLE) (141-145). In 

RA, TNFa plays a key role in triggering local inflammation and chemokine 

expression (146, 147). Downstream of TNFa, lipid mediators and adhesion 

molecule expression is dysregulated. This leads to tissue oedema and immune 

cell infiltration (148). Although, understood to a lesser extent, IL-1 and IL-6 play 

similar roles in inflammatory disorders. The efficacy of targeting these 

inflammatory cytokines as therapeutics provides strong evidence for their role in 

inflammatory disease pathogenesis (1).   

1.3.5 Chemokines 

Chemokines, also known as chemotactic cytokines, are primary regulators of 

cellular migration. Pro-inflammatory chemokines produced at inflamed tissues 

attract leukocytes (149). An elegant example of this is the chemokine induced 

expression of b2 integrin-lymphocyte function-associated antigen (LFA-1) in 

leukocytes. This promotes the arrest, rolling, diapedesis and extravasation of 

leukocytes from the vasculature into inflamed tissues (150). Although, 

chemokines are named and described for their chemotactic functions, they also 
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carry out a myriad of other functions. Chemokines have been noted for their role 

in haematopoiesis, angiogenesis and cell survival (151). 

1.3.5.1 Chemokine characterisation 

Chemokines are characterised by the presence of three or four conserved 

cysteine residues. They are subdivided into four groups based on their N-

terminal cysteine group positioning. The four groups are called C-C, C-X-C, C, 

and C-X3-C chemokines (152). The majority of chemokines belong to the C-X-C 

and C-C groups of chemokines (153). Chemokines can also be functionally 

divided into inflammatory or homeostatic, although a few perform dual roles 

(150). Table 2 contains a list of the chemokines, their receptors and their main 

function. 

1.3.5.2 Chemokine receptors 

Chemokines signal by binding to a family of seven transmembrane helix family of 

receptors (7TM) known as G-protein coupled receptors (GPCRs) (154, 155). 

Expression of chemokine receptors (CKRs) is temporally and spatially variable on 

a wide variety of cell types (155). Tissue specific leukocyte entry and exit is in 

part controlled by this variability in chemokine and CKR expression. Moreover, 

chemokines play a critical role in adhesion molecule expression which also 

regulate selective tissue entry/exit of leukocytes (36).  

To complicate matters further, CKRs bind their ligands with promiscuity (156). 

Promiscuity amongst CKRs is thought to be an evolutionary adaptation to allow 

redundancy in the system (157). In contrast, knocking out certain CKRs in 

animals leads to embryonic lethality. This demonstrates the fundamental 

importance of some chemokines in the developmental process (158). To date, 20 

signalling CKRs have been described (159). Interestingly, four atypical 

chemokine receptors (ACKRs) have also been described. These receptors are 

incapable of binding to GPCRs and are therefore considered chemokine 

scavengers (160). ACKRs are important in dampening immune responses by 

removing chemokines from the surrounding environment (114). 
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1.3.5.3 Chemokines in inflammatory diseases 

Like cytokines, elevated chemokine and CKR levels contribute to pathogenesis of 

many inflammatory disorders. CXCL8, the prototypical inflammatory chemokine, 

is elevated in RA synovial fluid as well as in the colons of ulcerative colitis 

patients (161, 162). T cell recruitment into inflamed RA synovia is also 

associated with elevated levels of CCL2,3 and 5 (10). In psoriasis, the CKR CXCR3 

is responsible for the infiltration of pathogenic T cells into psoriatic lesions and 

contributing to disease pathogenesis (163). Despite strong evidence of the role 

of chemokines in perpetuating inflammatory disorders, no chemokine mediated 

anti-inflammatory therapeutics currently exist. In part, this is due to the 

difficulty in targeting individual chemokines/CKRs due to their promiscuity 

(164). Multiple chemokine/CKR targeted therapeutics are, however, currently in 

clinical trials (164).               

Group Chemokine Receptor Main Function 

CC CCL1 CCR8,11 Th2 cell and Treg 

trafficking 

CCL2 CCR2 Inflammatory 

monocyte 

trafficking 

CCL3 CCR1,5 Macrophage and 

NK cell migration 

T cell–DC 

interactions 

CCL4 CCR5 

CCL5 CCR1,3,4,5 

CCL6 CCR1,2,3 Myeloid cell 

differentiation, 

CNS homeostasis 

CCL7 CCR1,2,3 Monocyte 
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mobilization 

CCL8 CCR1,2,5,8,11 Th2 response, skin 

homing 

CCL9 CCR1 DC migration, 

Osteoclast 

activation CCL10 CCR1 

CCL11 CCR3 Eosinophil and 

basophil migration 

CCL12 CCR2 Inflammatory 

monocyte 

trafficking 

CCL13 CCR1,2,3,11 Th2 response 

CCL14 CCR1 Monocyte 

activation, 

Monocyte and 

Neutrophil 

chemotaxis 

CCL15 CCR1,3 

CCL16 CCR1 

CCL17 CCR4 Th2 responses, 

Th2 cell 

migration, Treg 

lung and skin 

homing 

CCL18 CCR6,8 Th2 response, 

marker of 

alternatively 

activated 

macrophages, skin 
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homing 

CCL19 CCR7,11 T cell and DC 

homing to LN 

CCL20 CCR6 Th17 responses, B 

cell and DC 

homing to gut-

associated 

lymphoid tissue 

CCL21 CCR7,11 T cell and DC 

homing to LN 

CCL22 CCR4 Th2 response, Th2 

cell migration, 

Treg migration 

CCL23 CCR1 Unknown 

CCL24 CCR3 Eosinophil and 

basophil migration 

CCL25 CCR9,11 T cell homing to 

gut, thymocyte 

migration 

CCL26 CCR3 Eosinophil and 

basophil migration 

CCL27 CCR2,3,1 T cell homing to 

skin 

CCL28 CCR3,10 T cell and IgA 

plasma cell 
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homing to mucosa 

CXC CXCL1 CXCR2 Neutrophil 

trafficking 

CXCL2 CXCR2 

CXCL3 CXCR2 

CXCL4 CXCR3 Procoagulant 

 

CXCL5 CXCR1,2 Neutrophil 

trafficking 

CXCL6 CXCR1,2 

CXCL7 CXCR2 

CXCL8 CXCR1,2 

CXCL9 CXCR3 Th1 response, 

Th1, CD8, NK cell 

trafficking 

 

CXCL10 CXCR3 

CXCL11 CXCR3 

CXCL12 CXCR4,7 Bone marrow 

homing 

CXCL13 CXCR3,5 B cell and Tfh 

positioning LN 

CXCL14 CXCR4 Macrophage skin 

homing (human) 

CXCL15 Unknown Unknown 
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CXCL16 CXCR6 NKT and ILC 

migration and 

survival 

CXCL17 CXCR8 Monocyte/DC 

chemoattractant 

C XCL1 XCR1 Cross-presentation 

by CD8+ DCs 

XCL2 XCR1 

CX3C CX3CL1 CX3CR1 NK, monocyte, 

and T cell 

migration 

Table 2 Chemokines, Receptors and Functions 
 

1.3.6 Cell adhesion molecules (CAMs) 

Cell adhesion molecules are cell surface proteins that allow cells to “adhere” to 

other cells or extracellular matrix (ECM). CAMs further enable entry and exit of 

leukocytes to/from circulation into tissues. There are four families of CAMs. 

They include the Immunoglobulin (Ig) superfamily CAMs, cadherins, integrins and 

selectins (165). 

Inflammatory insult leads to the upregulation of CAMs such as intercellular 

adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-

selectin and P-selectin on vascular endothelial cells (166, 167). Likewise, 

activated leukocytes express ligands such as the integrins aLb2 (LFA-1) and a4b1 

(VLA-4) which bind to ICAM-1 and VCAM-1 respectively (168). Leukocytes also 

express E-selectin ligand-1 (ESL-1) and P-selectin glycoprotein ligand-1 (PSGL-1) 

which interact with E and P-selectins respectively (169). 

Expression of CAMs are temporally and spatially co-ordinated during 

inflammation to enable leukocyte rolling, adhesion and diapedesis into tissues. 

Moreover, specific CAMs such as the integrins aEb7 (CD103), a1b1 (VLA-1) and 
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a2b1 (VLA-2) enable leukocyte retention at inflamed tissues (170). Clinically 

efficacious anti-inflammatory drugs such as Natalizumab currently target 

integrins a4b1 and a4b7 in multiple sclerosis and Chron’s disease. Moreover, 

drugs targeting the integrin aEb7 are also undergoing trials in MS and IBD, 

further highlighting the importance of CAMs in regulating inflammation (171).  

1.3.7 Lipid mediators 

Historically, two classes of lipid mediators have been described: eicosanoids and 

platelet activating factors (PAFs) (172). Both mediators are generated by the 

degradation of cell membrane phospholipids. The enzyme phospholipase A2 

breaks down phosphatidylcholine on cell membranes into two components: 

arachidonic acid and lysophosphatidic acid. These form the precursors of the 

two classes of lipid mediators respectively (172). 

1.3.7.1 Eicosanoids 

Eicosanoids are generated when arachidonic acid is metabolised either by 

cyclooxygenase enzymes to form thromboxanes and prostaglandins. 

Alternatively, arachidonic acid can also be metabolised by lipoxygenase enzymes 

to generate leukotrienes and lipoxins. Interestingly, the two subgroups of 

eicosanoids have opposing effects. Prostaglandins and thromboxanes are 

pyrogenic, hyperalgesic and cause vasodilation. Hence, they are potently pro-

inflammatory. In contrast, leukotrienes and lipoxins promote tissue repair and 

resolution of inflammation. Therefore, they are anti-inflammatory (173). 

1.3.7.2 Platelet activating factors 

PAFs on the other hand are generated from the other component of 

phosphatidylcholine metabolism: lysophosphatidic acid. Lysophosphatidic acid is 

acetylated to generate PAFs. PAF was originally described as a single 

phosphoglycerylether molecule. More recently however, PAFs are seen as a 

family of ether like molecules that carry out similar functions. PAFs bind to and 

signal through PAF receptors (PAFRs) which are GPCRs, like CKRs. It is 

unsurprising, therefore, that PAFs contribute to vascular permeability 

regulation, leukocyte recruitment and platelet activation, functions that 

chemokines are also accredited with (173). 
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1.3.8 Sphingolipids: A new family of lipid mediators 

While Eicosanoids and PAFs are classical lipid mediators, sphingolipids have 

recently been identified as a new class of inflammatory lipid mediators. 

Sphingolipids are a class of lipids that are characterised by their eighteen-carbon 

amino-alcohol backbones (174). This backbone is shared amongst all members of 

the family and modification to this structure gives rise to the diverse family of 

sphingolipids.  Sphingolipids are generated by the metabolism of sphingomyelin 

which is another component of the cell membrane (175). 

1.3.8.1 Sphingolipid metabolism: the sphingomyelin cycle 

The breakdown of sphingomyelin is regulated by enzymes known as 

sphingomyelinase (SMase), this pathway is summarised in Figure 1.3.1 (176). 

There are three different isoforms of SMase: Acid SMase, neutral SMase and 

secretory SMase. Acid SMase are found in acidic intracellular lysosomes. Neutral 

SMase are cell membrane bound and are ubiquitously expressed in mammalian 

cells. Secretory SMase is found in the Golgi secretory pathway (174, 177).  

SMase isoforms are activated by a variety of stimuli including growth factors, 

inflammatory cytokines and cell stress (178-180). Activated SMase breakdown 

sphingomyelin to ceramide (177, 181). Ceramide is then either phosphorylated 

to make ceramide 1-phosphate (C1P) or broken down by ceramidase to make 

sphingosine (182, 183). Sphingosine itself can then be phosphorylated by either 

of two sphingosine kinases (SPHK1 or SPHK2) to make sphingosine 1-phosphate 

(S1P) (184, 185). S1P is then dephosphorylated by sphingosine phosphatase or 

degraded completely by S1P lyase (186, 187). Finally, sphingomyelin is re-

synthesised from sphingosine to ceramide by ceramide synthase and then 

ceramide to sphingomyelin by sphingomyelin synthase (188, 189). 

Sphingolipid formation and degradation are intimately connected as 

demonstrated in Figure 1.3.1. It is therefore unsurprising that their functions can 

also be reciprocal. For example, increased ceramide results in a concomitant 

decrease in S1P and is associated with increased cellular apoptosis. In contrast 

increased S1P and a concomitant decrease in ceramide is associated with 

increased survival  (190). Hence, ceramide is considered a pro-apoptotic 
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molecule whereas S1P is considered anti-apoptotic (191). Despite this intimate 

connection, sphingolipids are produced at varied locations in different cell 

types. They can also be functionally distinct. In this section, the three best 

studied sphingolipids ceramide, C1P and S1P will be explored with a detailed 

assessment of S1P. 

 

Figure 1.3.1 The sphingomyelin cycle 
Diagram adapted from (192) 

1.3.8.2 Ceramide 

Ceramide typically forms 16-24 carbon long fatty acid chains that are strongly 

hydrophobic physiologically (193). It is usually synthesised at mitochondrial 

membranes due to the activity of the SMase breaking down sphingomyelin at 

such locations (194). Ceramide regulates a wide variety of signalling pathways 

via interaction with protein kinases and phosphatases (193). Studies have shown 

that ceramide forms lipid raft like structures at the cell membrane to promote 

signalling complex formation (195). Moreover, some proteins have ceramide 
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binding domains such as protein kinase C (PKC) (196). Ceramide is thought to 

regulate PKC mediated signalling by directly binding to PKC (196). 

1.3.8.3 Ceramide in inflammation  

Ceramide production is often regulated by TNF in inflammatory tissues (197). 

TNF mediated ceramide can activate the pleiotropic transcription factor nuclear 

factor-kB (NF-kB) (198, 199). NF-kB are a family of transcription factors that 

control the expression of many inflammatory cytokines, chemokines and lipid 

mediators (199, 200). These include the classical pro-inflammatory cytokines IL-

1b, IL-6 and IL-8 (199). NF-kB also induces the expression of inflammatory lipid 

mediator cyclooxygenase 2 (COX-2) enzyme which subsequently triggers the 

expression of prostaglandin E2 (PGE-2) (201). Ceramide can also upregulate the 

transcription factor CCAAT/enhancer binding proteins (c/EBP) (202). Like NF-kB, 

c/EBP can also induce the production of inflammatory cytokines such as TNF and 

IL-1b (203).    

1.3.8.4 Ceramide 1-phosphate 

C1P is primarily found in the cytoplasm or localised in the perinuclear space 

(204). The intracellular localisation allows C1P to play important roles in 

regulating intracellular signalling pathways. C1P has been shown to regulate the 

eicosanoid metabolism pathway (204). 

1.3.8.5 C1P in inflammation 

C1P is the least studied member of the sphingolipid family. Indeed, since the 

discovery of the ceramide kinase enzyme, many functions ascribed to ceramide 

have been re-assigned as functions of C1P (205). C1P was found to directly 

interact with Ca2+ dependent phospholipid binding domain on cytosolic 

phospholipase A2 (cPLA2) (206). This resulted in the production of PGE-2 and its 

downstream effects (207). Moreover, C1P was found to cause mast cell 

degranulation in a Ca2+ dependent manner (208). Inhibiting ceramide kinase was 

found to reverse this effect (209).  
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1.3.8.6 Sphingosine 1-phosphate  

S1P is the most widely studied member of the sphingolipid family. S1P is 

produced by one of two enzymes SPHK1 or SPHK2 (210). Both enzymes are either 

found in the cytosol or bound to the nuclear membrane (211). S1P can have both 

autocrine and paracrine effects on cells (205). Intracellular S1P can regulate 

calcium response pathways via modulation of phospholipase C/inositol 1,4,5 tri-

phosphate pathways (212). S1P also affects cell proliferation and survival by 

regulating B cell lymphoma-2 (Bcl-2) family members (213, 214).  

Paracrine effects are possible due to the extracellular export of S1P by ATP-

binding cassette (ABC) or spinster homolog 2 (Spns2) transporters (215, 216). 

Blood plasma constitutively carries high levels of S1P (217). This S1P is produced 

by vascular endothelial cells, RBCs or platelets which are the most potent 

producers of S1P (217). S1P concentrations are typically very low in interstitial 

fluids. Therefore, S1P forms a strictly regulated gradient in mammalian systems 

(217). This gradient is critical for the regulation of leukocyte migration and will 

be explored in further detail in the “T cell trafficking” section of this thesis 

(218). 

Paracrine functions of S1P is mediated via five S1P receptors (S1PR1-S1PR5) 

(219-221). These are all 7TM GPCRs. The S1P GPCRs can couple to multiple 

different heterotrimeric G proteins and thus they can signal through multiple 

signalling pathways (212). Once S1PRs are ligand bound and signalling has 

occurred, S1PRs are internalised. Internalised S1PRs either undergo lysosomal 

degradation or are recycled back to the cell surface (212, 222, 223). Like 

chemokines, temporal and spatial expression of S1PRs are critical in determining 

the responses the ligand elicits on the target cell (205, 224). In homeostatic 

conditions, S1PR1-S1PR3 are widely expressed in various tissues and cell types 

(225). S1PR4 expression is restricted primarily to lymphoid and haematopoietic 

cells while S1PR5 is mainly found in the brain and the skin (226-229). 

S1P is constitutively expressed in almost all mammalian cell types as part of the 

plasma membrane turnover (230). However, under inflammatory conditions, 

multiple stimuli upregulate S1P production. TNF-a, TGF-b and growth factors 

including platelet derived growth factor (PDGF) and vascular endothelial growth 
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factor (VEGF) have so far been identified to positively regulate S1P production 

(231). All of these factors increase S1P production by regulating SPHK1 

expression levels (231).  

In contrast, very little is known about external factors that downregulate S1P 

levels at the end of inflammatory events. It is known that phosphatases and 

ceramidases play an important role in regulating levels of S1P (174). However, 

external regulation of phosphatase and ceramidase enzymes in the sphingolipid 

metabolism pathway (Figure 1.3.1) has not been yet been demonstrated (232).  

Known negative regulators of S1P include DNA damage detection, high-density 

lipoproteins (HDLs) and ceramide (231, 233-235). DNA damage downregulates 

SPHK1 expression, thus directly abrogating S1P production (235). In contrast, 

HDL regulates plasma S1P concentrations by controlling the extracellular 

transport and bioavailability of S1P to other cells (236). Ceramide is a well-

known negative regulator of S1P (177, 190). Increased levels of intracellular 

ceramide, itself regulated by exogenous stimuli such as FAS ligand and oxidative 

stress, leads to increased S1P degradation and ceramide production (237).  

Regulators of S1P and its functions are succinctly summarised in  

Figure 1.3.2. 

 

Figure 1.3.2 Regulation of S1P 
S1P levels are regulated by a variety of factors. Inflammatory cytokines and growth factors such as 
TNF-a, TGF-b, VEGF and PDGF promote the production of S1P. In contrast, DNA damage, high-
density lipoproteins (HDLs) and ceramide negatively regulate S1P levels. 

Growth 
Factors TGF-β

TNF- ⍺

CeramideDNA 
Damage

S1P

S1P

HDL
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1.3.8.7 S1P receptor modulators 

Functional aspects of S1P signalling were elucidated in large parts by studying 

the effect of S1PR modulators. These include S1PR pan agonists and S1PR pan 

antagonists as well as selective agonists and antagonists for individual S1P 

receptors. Here three S1PR modulators will be described very briefly. 

The best known S1PR modulator is FTY720. It is derived from a fungal protein 

and is a functional antagonist of S1PR1,3,4 and 5 (238). FTY720 binding with 

S1PRs causes receptor internalisation and their subsequent degradation (222). 

Essentially this makes the cell insensitive to S1P signals mediated via any of the 

aforementioned receptors. FTY720 has also been clinically approved for use in 

MS which is an autoimmune neuro-inflammatory disease (238). S1PR1 antagonism 

is believed to cause the arrest of auto-reactive T cells at SLOs (239). This results 

in a reduction of pathogenic T cell migration to the central nervous system, 

leading to disease abrogation (238).   

W146 is an S1PR1 selective antagonist. It is a synthetically derived small 

molecule inhibitor. W146 binds to and blocks S1PR1 mediated signalling (240). 

Finally, SEW2871 is an S1PR1 selective agonist. It is also a synthetically derived 

small molecule inhibitor. SEW2871 binding to S1PR1 causes receptor 

internalisation and signalling followed by receptor recycling to the cell surface 

(223, 241). Unlike FTY720, neither of these drugs have been approved in the 

clinic. They have primarily been used as research tools to elucidate functions of 

S1P and S1PRs (240, 241). 

S1PR modulators were primarily used in lymphocyte migration studies. T cell 

trafficking section of this thesis describes some of these studies.          

1.3.8.8 S1P in inflammation  

S1P is rapidly emerging as a critical mediator of inflammation. The primary role 

of S1P in inflammation control is to regulate the trafficking of immune cells to 

and from inflamed tissues (242). S1P controls the dwell time and egress of 

activated lymphocytes from SLOs (243). Modulating S1PR signalling via FTY720 

was found to induce tissue retention of CD4 T cells in mice (244). The same 

study reported that increased S1P levels at inflamed tissues reduce T cell egress 
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from such sites (244). Impaired T cell egress from inflamed peripheral tissues has 

been associated with exacerbation of inflammation (245). Thus, S1P controls the 

adaptive immune response to an inflammatory insult.  

Likewise, S1P regulates migration and endocytosis of DCs as well as the 

recruitment and chemotaxis of macrophages to inflamed tissues (246, 247). S1P 

further effects monocyte activation and monocyte mediated TNFa production 

(248). S1P, therefore also plays a key role in innate immune responses to 

inflammatory insults.     

S1P also regulates mast cell mediated inflammatory responses. Ligand binding to 

mast cell IgE receptors leads to S1P production in a SPHK2 mediated manner 

(249, 250). Animals with abrogated SPHK2 expression have reduced mast cell 

degranulation, cytokine and eicosanoid production (251, 252). S1P produced by 

mast cells is also transported out of the cell to elicit autocrine and paracrine 

effects (253). Mast cells express both S1PR1 and S1PR2. S1P binding to mast cell 

S1PR1 leads to mast cell migration. In contrast, S1P binding to mast cell S1PR2 

leads to mast cell degranulation (224).  

1.3.8.9 S1P in airway inflammation 

Mast cells are key contributors to airway inflammation (254). Therefore, it is 

unsurprising that S1P levels were found to be elevated in the bronchoalveolar 

lavage of asthmatics, which is an airway inflammatory disease (255). In mouse 

models of airway inflammation, FTY720 administration was found to reduce Th1 

and Th2 cell infiltration in the airway and the animals had abrogated disease 

pathogenesis (256, 257). Inhibition of SPHK1 was also shown to reduce airway 

inflammation as well as S1P concentration in bronchoalveolar lavage (258).   

S1P is involved in regulating TNF mediated responses in L929 fibroblasts and 

A549 lung epithelial cells. In these cell lines, SPHK1 was found to regulate TNF 

mediated COX-2 and PGE2 production (259). Similarly, in LPS stimulated 

macrophages, SPHK1 was found to regulate COX-2 production (260). S1P was also 

found to directly stimulate arachidonic acid production in A549 lung epithelial 

cells (261). 
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1.3.8.10 S1P in autoimmune inflammatory diseases 

Inflammatory bowel diseases (IBD) incorporate ulcerative colitis and Crohn’s 

diseases. These are both inflammatory diseases of the intestinal mucosa (262). 

Disease pathogenesis is usually mediated by dysregulated production of 

inflammatory cytokines and dysregulated T cell infiltration (262, 263). In animal 

models of colitis, FTY720 administration was found to significantly dampen 

intestinal inflammation. This was associated with an FTY720 mediated decrease 

in inflammatory cytokine production and a concomitant increase in regulatory 

cytokine production (264). In another study with SPHK1-/- animals, intestinal 

inflammation was found to be significantly reduced compared to wild type 

animals treated with an inflammatory chemical (DSS) (265). Finally, animals with 

colitis treated with oral SPHK1 inhibitors showed substantially reduced intestinal 

inflammation and inflammatory cytokine production (266).   

A role for S1P has also been suggested in RA pathophysiology. S1P levels were 

elevated in RA joints compared to osteoarthritic (OA) joints (267). Moreover, 

SPHK1 and SPHK2 expression was found to be increased in RA synovial tissues 

(268, 269). Most interestingly, in a mouse model of joint inflammation, inhibiting 

SPHK1 was found to reduce disease severity, articular inflammation and joint 

damage (270, 271). 

On top of this, S1P plays a key role in lymphocyte trafficking (272). Many 

inflammatory diseases have dysregulated lymphocyte trafficking patterns (273-

276). Therefore, one of the primary mechanism of S1P action in inflammatory 

diseases is by regulating lymphocyte trafficking (277). This will be explored in 

greater detail in the “T cell trafficking” section.  

Relevance of this section to thesis aims: 

• T cell activation, trafficking and function is regulated by inflammatory 

mediators 

• S1P and chemokines in particular, are critical for T cell trafficking 
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• Are there novel chemokine pathways that influence T cell persistence at 

inflamed tissues? 

• Does S1P also control egress or persistence of T cells at peripheral 

inflamed tissues? 

• S1P targeted drugs (FTY720) are already approved for use in MS. Could 

targeting S1P prove an effective therapeutic in other inflammatory 

diseases? 
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1.4 Innate and adaptive immunity in inflammation control 

The inflammatory response is initiated once host cells are activated by infection 

or injury. A specialised family of innate immune cells known as antigen 

presenting cells (APCs) such as DCs pick up fragments of pathogen or damaged 

tissue and migrate to downstream draining lymph nodes. Present in the lymph 

nodes are naïve cells of the adaptive immune system (T lymphocytes). 

Professional APCs process and present these epitopes known as antigens on MHC 

II to these T cells (278, 279).  

T and B cells (another adaptive lymphocyte), express unique receptors which are 

specific for a single antigen. Once, an APC carrying that antigen, encounters a T 

cell, the lymphocyte undergoes activation and clonal proliferation (279). In 

contrast, B cells primarily sense soluble antigen directly using their B cell 

receptor (BCR) (280). B cells can also however, be activated by APCs carrying 

antigen (281). 

Activated or effector T cells exit the lymph node and home to inflamed tissues 

to carry out effector functions (276, 282). Effector B cells in contrast, produce 

class switched and affinity matured antibodies which are carried in blood plasma 

to inflamed tissue sites (283). The majority of effector T/B cells undergo 

apoptotic cell death at the end of a response (284). A few of these cells 

however, become memory T/B cells and persist long term in the host (285). 

These long-lasting memory cells remain primed for rapid response in the case of 

a secondary infection by the same pathogen (285). 

While the functions of these cells are strictly regulated, in many inflammatory 

diseases functional regulation is altered or lost leading to pathogenesis (279). In 

this section, the contribution of some of these innate and adaptive immune cells 

at inflamed tissues will be explored. 

1.4.1 Neutrophils 

Neutrophils form the immune system’s primary line of defence. They constitute 

the largest proportion of leukocytes in the mammalian immune system (286). In 
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homeostatic conditions, neutrophils circulate in a resting state which ensures 

that toxic neutrophilic granules are locked away (287). Pathogenic insult or 

injury, leads to rapid neutrophil priming, recruitment and activation (288).  

Neutrophil priming occurs either by encountering PAMPs/DAMPs directly or via 

cytokine mediated manner. This leads to rapid upregulation of cell surface 

adhesion molecules which allows neutrophils to extravasate into tissues (288). 

Once in tissue, neutrophils migrate towards the pathogenic insult by sensing 

chemokine gradients such as CXCL8 (289).  

At an infected site, neutrophils can release antimicrobial peptides (AMPs), 

phagocytose or form neutrophil extracellular traps (NETs) to kill the pathogen 

(290-292). AMPs are small proteins that kill pathogens by forming pores in their 

membranes (293). Phagocytosed pathogens are killed by ROS found inside 

neutrophil intracellular phagosomes (294). NETs consist of a meshwork of 

chromatin fibres that are dotted with immobilised microbicidal molecules 

derived from neutrophil granules. NETs function by trapping and immobilising 

pathogens followed by their degradation by the microbicidal granules (295). 

Neutrophils are also adept at producing pro-inflammatory cytokines including 

TNFa, IL-1b, IL-6 and lipid mediators (296, 297). This stimulates other cells such 

as endothelial cells and macrophages to carry out their effector function (298, 

299). 

1.4.1.1 Role of neutrophils in inflammatory disease 

Neutrophils play a critical and positive role in acute infectious inflammation. 

Indeed, in human diseases of reduced blood neutrophils (severe congenital 

neutropenia), a lack of neutrophil recruitment to infected tissues leads to severe 

immunodeficiency (300). Likewise, in animal models of acute infection, systemic 

neutrophil depletion increased disease severity (301). However, the role of 

neutrophils in chronic inflammatory diseases remains controversial. 

1.4.1.2 Neutrophils in psoriasis 

One of the hallmarks of psoriasis is neutrophil accumulation in inflamed dermis 

and epidermis of the skin (302). This leads to the formation of psoriatic lesions 

(302).  Here, neutrophils get stuck in a positive feedback loop. Activated 
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neutrophils produce inflammatory cytokines, chemokines and other mediators 

which activate local macrophages and keratinocytes (303, 304). These cells 

produce more neutrophil chemoattractants and activators or undergo hyper 

proliferation (303, 305).  

The importance of neutrophils in maintaining psoriasis has been highlighted in 

animal studies where neutrophil depletion was found to alleviate symptoms in 

flaky skin mice (306). Moreover, pan selectin inhibitors, which reduced 

neutrophil recruitment to inflamed skin were found to be efficacious in murine 

models of psoriatic skin inflammation as well as in human psoriasis (307, 308). 

Finally, current anti-psoriatic therapies exert their effects, at least in part, 

through neutrophils (309). 

1.4.1.3 Neutrophils in RA 

The most abundant immune cell found in RA synovial fluid are neutrophils (310). 

Moreover, neutrophils are found in large numbers in the pannus/cartilage 

interface where most joint destruction occurs (311). Here, aggregated 

immunoglobulins activate neutrophil degranulation which leads to the 

production of ROS (311). Increased ROS production mediated oxidative stress and 

inflammatory cytokine production is directly implicated in RA pathogenesis 

(312).  

Mouse models of joint inflammation implicate neutrophils in disease further. 

K/BxN mice develop symmetrical joint swelling, pannus formation, synovial 

hyperplasia and cartilage destruction. Serum transfer from K/BxN mice to other 

mice leads to similar joint inflammation. Neutrophil depleted mice however, 

develop no diseases pathogenesis upon serum transfer. In this model, the 

inflammatory lipid mediator leukotriene B4 (LTB4) has been identified as the key 

arthritogenic molecule (313). 

In Antigen induced arthritis (AIA) and collagen induced arthritis (CIA), blocking 

neutrophil recruitment via CXCR1/2 or complement C5a receptor blockade 

abrogated joint pathology respectively (314). Lastly, as in psoriasis, first line RA 

therapy methotrexate (MTX) reduces neutrophil chemotaxis and ROS production. 

MTX also increases neutrophil apoptosis (315).   
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1.4.2 Macrophages 

The term macrophage translates as “big eaters” in Greek. Metchnikoff was the 

first person to describe the macrophage based on its primary function: eating or 

phagocytosis (316). Since discovery, macrophages were found to be much more 

heterogeneous with functions as diverse as metabolism control, wound healing, 

infection control and bone remodelling (317). Macrophages are found in almost 

all tissues of an adult mammal (318). Mouse macrophages are usually identified 

by their cell surface expression of CD64 and/or F4-80 along with CD11b in mice 

and CD11b and CD68 in humans (317, 319, 320). 

Despite significant research, macrophage development remains a topic of 

debate. The most accepted system of macrophage ontogeny defines 

macrophages as the most mature form of mononuclear phagocytes (monocytes) 

(321). Monocytes originate in the bone marrow and circulate in the vascular 

system. Some migrate into tissues and mature into tissue resident macrophages. 

Others are recruited rapidly upon tissue damage and mature into activated “M1” 

or alternatively activated “M2” macrophages based on the type of insult and 

local cytokine environment (321, 322).  

Inflammatory M1 macrophages are best known for their role in 

pathogen/apoptotic cell uptake and killing through nitric oxides. These 

macrophages also activate adaptive immune responses by presenting antigen to 

naïve T and B cells after migration to SLOs. In contrast, M2 macrophages are 

accredited with anti-parasitic and regulatory functions (323). A third group of 

macrophages have recently been identified as wound healing macrophages. They 

promote tissue repair (324). 

M1 Macrophages are the primary producers of pro-inflammatory cytokines TNFa, 

IL-1b and IL-6 amongst a myriad of other pro-inflammatory cytokines. Through 

these mechanisms macrophages control acute inflammatory insults. In contrast, 

M2 macrophages are potent producers of the anti-inflammatory cytokines TGFb 

and IL-10 which dampen immune responses (325). Dysregulation of macrophage 

activation and their mediators play key roles in development and persistence of 

many inflammatory diseases (326). 
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1.4.2.1 Macrophages in psoriasis 

The role of monocytes and macrophages in psoriatic inflammation is not well 

characterised. However, enrichment of inflammatory M1 macrophages have been 

identified in human psoriatic lesions (327). These macrophages were also found 

in other human inflammatory skin diseases such as atopic dermatitis (328). In 

two different mouse models of psoriasis-like disease, depletion of macrophages 

expressing F4-80 and CD11b were found to resolve skin inflammation (70, 329). 

In another model, polarisation of inflammatory macrophages to an M2 phenotype 

was found to abrogate allergic skin inflammation. In the absence of M2 

macrophages however, inflammation persisted (330). Interestingly, despite 

psoriasis being a disease of non-resolving skin inflammation, to date, no studies 

have investigated a role for wound healing macrophages in regulating psoriasis. 

These studies suggest that a skewed macrophage phenotype at inflamed skin 

contributes to disease pathogenesis.      

1.4.2.2 Macrophages in RA 

Macrophages play a very important role in RA pathogenesis. They are the 

primary producers of joint destructive pro-inflammatory cytokines (331). These 

cytokines activate chondrocytes and osteoclasts leading to cartilage damage and 

bone erosion (332). Macrophage numbers in the synovial lining can be used as a 

predictive biomarker for disease severity (333). Indeed, the hallmark of early RA 

is macrophage accumulation at synovial lining (334).  

Disease flares in RA strongly correlate with increased M1 macrophage 

enrichment in the joint. In contrast, quiescent phases of disease display an 

increase in M2 macrophages in the synovium (335). At an inflamed joint, 

macrophages have been shown to induce angiogenesis and hypoxia (336, 337). 

Macrophage growth factors granulocyte colony stimulating factor (G-CSF), 

macrophage colony stimulating factor (M-CSF) and granulocyte/macrophage 

colony stimulating factor (GM-CSF) are also found abundantly in inflamed joint 

tissues (335).  

Critically, most clinically effective biologics were shown to reduce macrophage 

trafficking to joints (338). Finally, in multiple models of inflammatory joint 
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diseases in mice as well as human trials, systemic depletion of macrophages 

using agents such as liposomal clodronate abrogated joint inflammation (339). 

These studies suggest that macrophages play a key role in mediating local joint 

pathology in RA.      

1.4.3 Dendritic cells 

Dendritic cells (DCs) are professional antigen presenting cells of the innate 

immune system. Their primary role is to shape adaptive immune responses by 

the activation of T and B cells (340, 341). DCs were first described by Steinman 

and Cohn as cells possessing dendritic morphology (342, 343). Like macrophages, 

DCs are found in almost all mammalian tissues. DCs are identified by their cell 

surface expression of CD11c and MHC II molecules (340).  

Subsets of DCs are often defined by combinations of additional cell surface 

receptor expression including CD11b, CD103, CD207 and CD8a. CD103 DCs are 

often described as migratory tissue DCs. They are the primary cell type that 

activate T and B cells in the SLOs. In contrast, CD8a DCs are known for their 

ability to cross present antigen to CD8 T cells. CD207 expressing DCs are also 

known as Langerhans cells. One of their specialised functions include the 

induction of regulatory T cell differentiation. Functional differences between 

subsets remain controversial however, primarily due to the plastic nature of 

DCs. Dendritic cell ontogeny and function is exhaustively reviewed by Merad et 

al. and should be read for more in depth information (340). 

DCs develop in the bone marrow from either the common myeloid progenitor 

(CMP) or the common lymphoid progenitor (CLP) (344). These differentiated but 

immature, DCs constantly sense their surroundings and either rest at tissue sites 

or circulate in the vasculature (340). Once DCs encounter pathogenic stimuli, 

usually through their PRRs, they undergo maturation which includes both 

phenotypic and morphological changes. Mature DCs process and present antigen 

on peptide:MHC complexes (341). They also express co-stimulatory molecules 

CD80/CD86 and CKR CCR7 (345, 346). They further produce pro-inflammatory 

cytokines which direct T cell polarisation (347, 348). These combined changes 

allow DCs to migrate to SLOs and present antigen to T and B cells.       
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DCs play a critical role in inflammation control by selectively driving T cell 

responses. DC activating stimuli as well as location allow DCs to imprint tissue 

homing signature on T cells (349). Furthermore, DC mediated co-stimulation and 

cytokines are the primary regulators of Th1/Th2/Th17/Treg differentiation 

(350). It is therefore unsurprising that DCs have a central role in inflammatory 

disease pathogenesis. 

1.4.3.1 Dendritic cells in psoriasis 

DC mediated activation of adaptive immune responses occur at very early stages 

of psoriasis (351). Since this breach of tolerance phase occurs prior to clinical 

manifestations, it is difficult to study and thus poorly understood in all human 

inflammatory diseases. Nonetheless, roles for skin resident dermal DCs and 

recruited plasmacytoid DCs (pDCs) have been described in maintaining psoriatic 

inflammation (351, 352). Psoriatic lesions display the presence of both Th1 and 

Th17 cells at different phases of disease (353, 354). This is believed to be 

mediated by the local cytokine environment in which DCs are activated prior to 

T cell activation (71). Moreover, the local inflammatory environment favours the 

skewing of Th17 responses with abundant presence of IL-23, IL-12 and TNF (72).   

DCs in psoriatic lesions also contribute to inflammation by their cytokine 

production. pDCs are primary producers of type I IFNs in psoriasis which acts on 

dermal DCs to stimulate their production of IL-12 (355). Moreover, DCs produce 

TNF and IL-1b to add to the local inflammatory microenvironment (356). Local 

DC-T cell interactions in ectopic lymphoid tissue like aggregates further support 

T cell activation and persistence in psoriatic plaques (357). This is particularly 

important since studies in mice have suggested that local populations of tissue 

resident DCs and memory T cells alone can initiate disease (358).  

Lastly, multiple effective therapeutics in psoriasis are found to disrupt DC-T cell 

interactions. Psolarin and ultraviolet A (PUVA) treatment reduces chronic plaque 

psoriasis by depleting lesional DCs and epidermal T cells (359). Efalizumab is a 

monoclonal antibody targeting LFA-1 on DCs. Efalizumab disrupts interaction of 

DCs with intercellular adhesion molecule-1 (ICAM-1) expressing T cells. This 

results in disease abrogation via decreased numbers of CD11c+ DCs in lesions 
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(360). Finally, alefacept, a fusion protein that depletes CD2 expressing DCs and 

T cells, is also effective in psoriasis (361).      

1.4.3.2 Dendritic cells in RA  

DCs play a very similar role in RA as in psoriasis. DCs are important in breach of 

tolerance and disease initiation as demonstrated in multiple animal studies (362-

364). Inflamed synovial microenvironment allows activated DCs to constantly 

prime polarised and inflammatory Th1/Th17 cells which maintain pathogenesis 

(365, 366). DCs themselves contribute to joint destruction by producing pro-

inflammatory cytokines in synovial tissue (367). Finally, as in psoriasis, DCs play 

a key role in the formation of ectopic lymphoid aggregates near the synovium 

which maintains chronic disease (368). 

RA therapies reduce disease severity rather than cure disease. Anti-TNF and 

abatacept are two examples that act by inhibiting DC and T cell functions (369, 

370). One avenue of research being explored in RA include engineering DCs to 

tolerise activated T cells or drive regulatory instead of inflammatory T cell 

polarisation pathways. If successful, this avenue has the potential to yield a cure 

for multiple inflammatory diseases (371, 372).      

1.4.4 B cells 

B cells are adaptive immune cells of the lymphoid lineage whose primary 

function is the production of antibodies. B cells develop and mature in the bone 

marrow. Here, they undergo selection and training processes which allow them 

to discriminate self-antigen from foreign antigen. B cells express cell surface 

receptors called the B cell receptor (BCR). They use this receptor to detect 

antigen both during maturation and during a pathogenic insult (373). 

Once mature, B cells travel to SLOs where they remain until they encounter 

their cognate antigen. Antigen recognition through the BCR activates B cells to 

undergo clonal proliferation and produce antibodies. B cells are also professional 

APCs and potent cytokine producers. Certain types of antigens known as T-cell 

dependent antigens, require help from T cells to activate B cells. In these cases, 

T and B cells specific for the same antigen meet in designated areas of SLOs. In 

this area, known as the germinal centre, specialised CD4 T cells known as 
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follicular T helper cells (Tfh) provide co-stimulation and cytokine mediated 

signals to B cells (373). 

These signals allow B cells to undergo proliferation, affinity maturation and 

somatic hypermutation to produce affinity matured and class switched 

antibodies. Some B cells become long lived plasma cells which constantly 

produce low levels of antibodies. Memory B cells are also produced. These cells 

enter circulation and constantly survey the periphery to provide a rapid response 

to secondary insult from the same pathogen (373). 

B cells and their products are involved in the initiation and maintenance of 

multiple inflammatory diseases. The function of B cells in psoriasis and RA are 

briefly explored in the next sections:    

1.4.4.1 B cells in psoriasis 

The role of B cells in psoriatic inflammation remains controversial. In human 

studies, CD19+ B cell levels were found to be elevated in human psoriatic lesions 

(374). Moreover, increased levels of the cytokine IL-21 was found in psoriatic 

lesions. IL-21 is produced by Tfh cells to activate B cells in the germinal centre. 

This suggests a role for B cells in the formation of ectopic lymphoid tissues (375, 

376). Interestingly, B cells were found to produce IL-10 in psoriatic lesions, 

suggesting they may play an anti-inflammatory role (377). 

This was supported when depletion of CD20+ B cells by Rituximab therapy in RA 

or SLE patients was found to cause psoriatic inflammation in genetically non-

susceptible people (378). Animal studies further support this finding. CD19 

deficient animals were found to have increased skin inflammation in an 

imiquimod-driven model of psoriatic inflammation (377). This was directly 

associated with the depletion of IL-10 producing B10 B cells. Adoptive transfer of 

these cells ameliorated disease (377). However, no antibody mediated pathways 

have been investigated in the pathogenesis of psoriasis. Hence, while B cells may 

play a role in psoriasis, they do not seem to be a major contributor to disease 

pathogenesis.  
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1.4.4.2 B cells in RA 

B cells play a more prominent role in RA disease pathogenesis. In animal models 

of RA, B cell deficiency was found to abrogate disease (379, 380). B cells are 

thought to contribute to RA pathogenesis primarily by the production of 

autoantibodies. Autoantibodies against citrullinated peptides (ACPA), type II 

collagen (CII) and Fc portion of IgG known as rheumatoid factor (RF) are all 

major indicators of RA (381). Moreover, antibodies to CII has a direct effect on 

joint pathology by modifying collagen fibril synthesis (382, 383). Antibodies 

recognising CII also form immune complexes in the joint activating multiple pro-

inflammatory pathways including complement activation and cytokine 

production by innate cells (384). 

Evidence indicates that B cells may play a role in antigen presentation to T cells 

in the synovium. ACPA specific B cells have recently been found to be enriched 

in RA joints (385). Likewise, large presence of citrullinated peptides in RA joints 

has also been reported (386). This leads to the possibility that B cells might be 

interacting with ACPA specific T cells in the synovial environment, contributing 

to pathology (368). Rituximab therapy was also found to be efficacious in RA 

suggesting a prominent role for B cells in disease pathogenesis (387).   

1.4.5 T cells  

T cells are adaptive immune cells of the lymphoid lineage. T cells develop in the 

bone marrow and later migrate and mature in the thymus. Here they diverge 

into two separate lineages, CD4 and CD8. T cells express unique receptors on 

their cell surface named the T cell receptor (TCR). The TCR comprises of an a 

and a b chain. T cells also express CD3 and either CD4 or CD8 co-receptors (388).  

During thymic development, random gene rearrangement events allows each T 

cell to express a unique TCR. The TCR recognises a single peptide antigen in the 

context of self MHC molecules. This system allows for T cells to recognise up to 

1018 unique antigen specificities. T cells also undergo selection processes in the 

thymus which eliminate highly self-reactive cells. Despite this, some self-

reactive T cells remain and in many cases, are partly responsible for the onset of 

autoimmunity (388). 
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Once educated, naïve T cells circulate through the blood and lymphatics and 

SLOs (389). This process only stops once the T cell encounters its cognate 

antigen. Upon recognition of antigen, and co-stimulation signals from the APC, T 

cells undergo clonal proliferation and maturation (390). These effector T cells 

then migrate to inflamed or infected tissues where they carry out their effector 

functions (12, 391-393).  

Finally, upon pathogen clearance, the majority of effector T cells undergo 

apoptosis (284). A small minority of cells however, undergo transcriptional 

changes and become long lived memory cells (5).  

In this section, the various cell types will be briefly explored with a focus on CD4 

T cells and their role in mediating inflammatory diseases. 

1.4.5.1 CD8 T cells 

CD8 T cells are known as cytotoxic T cells. They regulate immune responses by 

killing damaged, infected or cancerous cells. Naïve CD8 T cells recognise antigen 

in the context of MHC I presentation by APCs. This recognition leads to clonal 

proliferation of CD8 T cells. These cells then migrate to tissue sites where they 

recognise their cognate antigen again on MHC I molecules which are expressed 

on all nucleated cells. Recognition triggers CD8 T cells to kill by forming pores 

using perforin and releasing toxic granzyme molecules inside the target cell 

(388).    

1.4.5.2 CD4 T cells 

CD4 T cells are often known as master regulators of the immune system. They 

primarily regulate immune responses via cytokine production (394). Upon 

antigen recognition via MHCII presentation by APCs, naïve CD4 T cells 

differentiate into one of five major subsets (395-399). The differentiation of T 

cells into subsets is regulated by cytokines in the immediate environment, 

usually produced by the APC (400). Table 3 below summarises the T cell subsets, 

cytokines needed for their differentiation, key transcription factors, CKR 

expression and effector cytokines. Proliferated CD4 T cells migrate to infected 

or inflamed tissues where they produce their effector cytokines. Subsets of 
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effector T cells also preferentially express sets of CKRs which allow them to 

home to specific tissue sites (14, 393, 401). 

  
T cell 
subset 

Key cytokines 
required for 

differentiation 

Transcription 
factor required 

for differentiation 

Cytokine 
profile 

Chemokine 
receptor 

expression 

Th1 IL-18 
IL-12 

T-bet 
STAT4 

IFNγ 
TNFa 

 CCR5, CXCR3 

Th2 IL-4 
IL-2 

GATA3 
STAT6 

IL-4 
IL-5 
IL-13 

 CCR4, CCR3 

Th17 TGF-β 
IL-6 
IL-21 

RORγT 
STAT3 

IL-17 
IL-22 

 CCR6 

Tfh IL-6 
IL-21 

Bcl6 
STAT3 

IL-21  CXCR5 

Treg TGF-β Foxp3 TGF-β 
IL-10 

 CCR4,5,6,8 

Table 3 CD4 T cell subsets 
 

1.4.5.3 Memory T cells 

Memory T cells (CD4 or CD8) either remain at tissue sites or circulate through 

the vasculature, tissues and SLOs (5). This allows memory cells to come into 

rapid contact with recurring pathogens (402). However, unlike naïve T cells 

which require multiple signals for activation and proliferation, memory T cells 

have a much lower threshold of activation (403). Upon activation, memory T 

cells carry out their effector functions both more quickly and with a greater 

magnitude (404). In the case of CD8 memory T cells, this usually leads to faster 

and more effective cytotoxicity (405). CD4 memory T cells rapidly produce large 

quantities of their effector cytokines (404).   

Like CD4 T cells, subclasses of memory T cells also exist (5). Memory T cells are 

subdivided based on their migration patterns. Tissue resting memory cells are 
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aptly termed tissue resident memory cells (Trm cells) while, circulating memory 

cells in SLOs or tissues are known as central memory T cells (Tcm cells) or 

effector memory T cells respectively (Tem cells). These cells are defined by 

their cell surface receptor expression (5). Table 4 summarises the memory cell 

subsets, their transcriptional profile and cell surface marker expression. 

  
Memory cell subset 

Cell surface marker 
expression 

Tissue location 

Tissue resident 
memory T-cells 

(Trm) 

CD103+, CD69+ Non-circulating, resident in 

peripheral tissues 

Effector memory T-
cells (Tem) 

CD62L lo, CCR7 lo Circulating and found in both 

SLOs and in peripheral tissues 

Central memory T-
cells (Tcm) 

CD62L hi, CCR7+ Found primarily at SLOs, 

mobilised upon infection 

Table 4 Memory T cell subsets 
 

1.4.5.4 Role of CD4 T cells in infection and inflammatory disease 

CD4 T cells carry out critical functions in the control of infection and 

inflammation. Tfh cells provide help to B cells to produce class switched 

antibodies which directly aid in infection control (399). Th1 cell production of 

IFNg primes macrophages for increased phagocytosis, increased pathogen killing 

and increased antigen presentation (325). IFNg also has anti-viral effects by 

reducing viral replication and activating NK cells which are potent killers of 

virally infected cells (406).  

Th2 cells on the other hand help in parasitic infection control. Th2 cytokines, IL-

4, IL-5 and IL-13 activate basophils, eosinophils and mast cells. They carry out 

multiple functions such as degranulation which are anti-parasitic. Finally, Tregs 

are potent producers of the anti-inflammatory cytokines IL-10 and TGFb. These 



 
 

 69 

cytokines dampen immune responses by reducing inflammatory mediator 

production as well as activating pro-resolving pathways (407).  

While CD4 T cells are crucial in controlling infection and inflammation, 

dysregulation of CD4 T cell function causes some of the most debilitating and 

difficult to treat inflammatory conditions. Various functions of CD4 T cell subsets 

have been implicated in chronic inflammatory diseases. 

1.4.5.5 CD4 T cells in Psoriasis 

Psoriasis is an autoimmune inflammatory disease of the skin. Psoriatic lesions 

demonstrate significant hyperplasia of keratinocytes (68). For this reason, 

psoriasis was initially considered a disease of skin cell dysfunction. However, 

genetic analysis of psoriatic patients soon implicated adaptive immune cells and 

specifically CD4 T cells (73).  

Subsequently, subsets of CD4 T cells were found to accumulate in psoriatic skin 

lesions (7, 408). Moreover, Th1 and Th17 cell cytokines IFNg and IL-17 levels 

were found to be elevated in both psoriatic lesions as well as in peripheral blood 

of psoriasis patients (353, 354). Interestingly, IFNg was shown to increase Th17 

cell migration into murine inflamed skin lesions (409). Th17 cell cytokines IL-23 

and IL-21 were found to directly cause keratinocyte hyperplasia (410). This 

provided key evidence that psoriasis was mediated by a combination of Th1 and 

Th17 cells. 

Further evidence in the role of CD4 T cells in psoriasis pathogenesis comes from 

studying the efficacy of psoriasis therapeutics. T cell co-stimulation blocker 

anti-CTLA4 Ig is efficacious in psoriasis (411). Recently developed monoclonal 

antibody against the adhesion molecule LFA-1 was also highly successful. This 

antibody interferes with T cell-DC interactions but also stops effector T cell 

migration into psoriatic lesions (1, 360).   

1.4.5.6 CD4 T cells in RA      

RA is an autoimmune disease characterised by articular destruction. However, 

joint destruction occurs months or even years downstream of the breakdown of 

immunological tolerance. It is this critical event, that leads to the development 
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of auto-reactive CD4 T cells which ultimately orchestrate RA pathogenesis (363) 

. Large numbers of CD4 T cells accumulate at RA synovial tissues throughout 

disease (84).  

Moreover, in multiple mouse inflammatory joint disease models, CD4 T cells are 

essential for disease initiation, progression and pathogenesis (412, 413). 

Likewise, CD4 T cell depletion using multiple mechanisms abrogated joint 

pathology in mice (414, 415). In humans, CD4 T cell co-stimulation blockade was 

also found to be efficacious (370). Therefore, evidence strongly implicates CD4 T 

cells in RA pathology. 

Unlike infectious diseases where homogeneous CD4 T cell subsets often regulate 

disease; multiple T cell subsets are implicated in RA pathophysiology at different 

disease stages (416). Analysis of early RA joints demonstrates an abundance of 

Th2 and Th17 cytokines. Established disease joints however demonstrate 

aggregates of IFNg producing Th1 cells (417). These T cell cytokines enable 

constant activation of tissue resident macrophages, stromal cells, osteoblasts 

and chondrocytes leading ultimately to joint destruction (90). 

While accumulation of T cells at inflamed tissues is not unusual, RA joints 

exhibit large numbers of non-joint specific T cells such as influenza specific T 

cells (418). Moreover, a joint homing chemokine profile has not been identified. 

Some studies have implicated type I IFNs in aiding T cell persistence via 

decreased apoptosis at RA joints (419, 420). Others have identified the 

chemokines CXCL12/CXCR4 as important in T cell retention (84, 421). 

Psoriasis and RA are two examples of inflammatory diseases where trafficking of 

T cells remains a critical but poorly studied area. Considering the destructive 

influence of effector T cells in these tissues, targeting T cell trafficking 

pathways remains an attractive area for anti-inflammatory therapeutics. This 

project aims to use reductionist models to elucidate mechanisms of T cell 

persistence at inflamed tissues. In the next section, an overview of current 

understanding of T cell trafficking will be explored. 
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Relevance of this section to thesis aims: 

• CD4 T cells play critical regulatory role in inflammatory disease 

pathogenesis 

• Do innate immune cells at inflamed sites directly or indirectly influence 

the persistence of activated CD4 T cells? 

• Do APCs influence the persistence of CD4 T cells at inflamed sites? 

• Does the activation status of the T cell influence its persistence at 

inflamed sites? 
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1.5 T cell trafficking 

In a naïve host, only a few thousand T cells are specific for a given antigen 

(422). Naïve T cells therefore, constantly circulate through SLOs using blood and 

lymphatic vasculature to encounter its cognate antigen (389). Upon antigen 

encounter, effector T cells proliferate and migrate out of SLOs and enter 

inflamed tissues (390). Here, they carry out their effector function and either 

egress back into circulation or undergo apoptosis. In the long term, some cells 

also develop into memory cells (403).  

The processes of naïve circulation, activation, effector cell LN egress, tissue 

entry, apoptosis and tissue egress are strictly controlled. In this section, these 

aspects of T cell trafficking will be explored in the context of inflammation. 

1.5.1 Naïve T cell circulation 

Naïve lymphocyte recirculation between blood and SLOs was first demonstrated 

as far back as the 1960s (423). Circulating naïve T cells express CD62L, a lymph 

node homing molecule (424). CD62L interacts with glycosylation-dependent cell 

adhesion molecule-1 (GlyCAM-1) expressed by cells of the high endothelial 

venules of SLOs (424). This interaction enables T cells to enter LNs through high 

endothelial venules (HEVs). Naïve T cells express high levels of the CKR CCR7, 

which is often considered a LN homing CKR (424). Upon LN entry, CCL19/21 

levels guide T cell motility, migration and positioning (425, 426). These naïve T 

cells spend 6-12 hours surveying a LN for antigen. If no antigen is detected, 

naïve T cells migrate through cortical or medullary sinuses of the LN and exit 

through efferent lymphatic vessels (427, 428).  

T cell exit from LNs is regulated by S1PR1 and its ligand S1P (239, 243). 

Lymphatic endothelial cells (LECs) produce S1P in efferent lymphatic vessels 

(429). T cells expressing S1PR1 migrate towards increased S1P gradients in LECs 

which guides them out of the LN (430). In most cases, these T cells travel to the 

downstream draining lymph node and carry out the same process, eventually 

exiting back into the bloodstream. 
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1.5.2 T cell activation and effector cell LN egress 

Along with CCR7, naïve T cells also express high levels of S1PR1 (431). Upon LN 

entry and survey, if a T cell detects their cognate antigen, some immediate 

changes take effect to alter its migration pattern. T cells upregulate CD69, a 

cell surface C-type lectin protein (432). CD69 is a negative regulator of S1PR1 

(433). Therefore, activated T cells rapidly downmodulate their S1PR1 expression 

(434). This ensures increased T cell dwell time in LNs to allow them to undergo 

clonal proliferation. These T cells also express increased levels of CCR7 to 

further aid LN retention (243). Sustained CCR7 signals however, desensitise the 

CKR (435).  

At this stage, the now effector T cells are ready for LN exit. They rapidly 

upregulate S1PR1 on their cell surface and downregulate CCR7 (243). This 

releases T cells from a retention phenotype to an egress phenotype. These T 

cells start randomly moving in the LN until they encounter a lymphatic sinus 

where they can sense S1P (436, 437). This promotes egress of effector T cells 

from LNs. Studies using the S1PR1 functional antagonist FTY720, demonstrated 

that T cells “log jam” at lymphatic sinuses and fail to exit LNs in the absence of 

S1P signals (272, 438, 439). S1P concentration is low in LNs, gradually increases 

in lymphatic vessels and is greatest in blood vessels (430, 440). Effector T cells 

use this gradient to circulate between SLOs and vasculature (430).  

1.5.3  Effector T cell tissue entry 

Effector T cells display tissue tropism (441). Tropism refers to the tendency of a 

T cell to preferentially migrate to a particular tissue site for example, the skin 

over others such as the gut. This tissue tropism is determined by selective 

expression of tissue homing receptors upon T cell activation (13, 15, 349). Which 

tissue-homing receptors are expressed on T cells are determined by the 

environment of the lymph node where they were activated. Moreover, the 

location of the migratory DCs which activates the T cell also plays a role in 

determining T cell tissue tropism (441). 

Tissue homing receptors primarily include cell adhesion molecules and CKRs 

(441). In humans, two such adhesion molecules, integrin a4b7 and cutaneous 
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leukocyte antigen (CLA), have been found to direct effector T cells to the gut 

and the skin respectively (13, 15, 16, 442). Inflamed vascular endothelium 

adjacent to these tissue sites express elevated levels of mucosal vascular 

addressin cell-adhesion molecule 1 (MADCAM-1) and E-selectin or P-selectin 

which are ligands for a4b7 and CLA respectively (13, 15, 16, 442).  

Chemokines and CKRs are likewise necessary for T cell tissue tropism to the gut 

and skin. a4b7 expressing T cells also selectively express the CKR CCR9 (443). 

CCL25, the ligand for CCR9 is expressed almost exclusively in the small intestinal 

lamina propria (17). Similarly, CKRs CCR4 and CCR10 are considered skin homing 

(444, 445). Most CLA expressing CD4 T cells also express CCR4 (445). Moreover, 

CCR4 ligand CCL27 is exclusively expressed by skin resident keratinocytes (14, 

444). Similar to adhesion molecules, chemokines are upregulated at inflamed 

tissues, allowing tissue specific effector T cell entry into the affected tissue. 

Therefore, adhesion molecules and CKRs synergistically regulate effector T cell 

tissue entry at inflamed sites. 

It is however, important to note, that many tissue specific effector T cells can 

be found at other tissue locations such as the lung or the brain (446). The tissue 

“post-code” system is therefore not absolute. Additionally, inflamed tissues are 

generally a permeable environment for circulating leukocytes (149). As such, 

many non-specific effector and even naïve T cells can be found at profoundly 

inflamed tissues (447, 448). 

1.5.4 Tissue egress  

Effector and memory CD4 and CD8 T cells produce cytokines and kill infected 

cells at inflamed tissues respectively (449). At the end of an effector response, T 

cells leave inflamed tissues via afferent lymphatics into tissue draining LNs (450, 

451). Failed exit of effector T cells has been associated with persistent tissue 

inflammation (245). A couple of studies have identified CCR7/CCL21 as well as 

S1PR1/S1P as regulators of T cell tissue exit (244, 452).  

Brown et al. demonstrated that fewer CCR7-/- T cells exited tissues compared to 

wild type cells in acute but not chronic inflammation (453). Additionally, CCR7-/- 
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T cells persisted at acutely inflamed lungs, epithelial tissues and skin (452, 454, 

455).  

Overexpression of S1PR1 on CD8 T cells was found to increase their tissue exit 

from multiple tissues including lungs, kidney, skin and salivary gland (456). 

Furthermore, CD69 deficient CD8 T cells failed to persist at HSV infected skin 

tissue. When these same cells were treated with an S1PR1 agonist however, 

their skin retention was restored (433). In contrast, two studies on CD4 T cells 

demonstrated that at acutely inflamed tissues, S1PR1 signals were responsible 

for reduced T cell egress from tissue sites (244). At chronically inflamed tissues 

however, S1PR1 and S1P was found to once again promote T cell tissue egress 

(453).              

1.5.5 T cell death 

Following tissue egress or indeed while still in tissue, most effector T cells 

undergo programmed cell death (PCD) (284). PCD can be triggered via one of 

three mechanisms: Autophagy, necroptosis or apoptosis. 

1.5.5.1 Autophagy 

Macroautophagy (referred to as autophagy) is a catabolic cellular process that is 

important in protein and intracellular organelle turnover as well as cytoplasmic 

renewal (457). Autophagy occurs in autophagosomes which are double 

membraned vesicles with cytoplasmic material inside. Autophagy is regulated by 

a host of autophagy related genes (ATG) (457).  

In T cells, autophagy has been reported to promote both apoptosis and survival 

(458). Two recent studies have demonstrated that effector CD4 T cells undergo 

cell death via autophagy in the absence of FADD, caspase-8 or Irgm-1 proteins 

(459, 460). In contrast, decreased number of thymocytes and peripheral T cells 

were found in ATG5-/- mice. Furthermore, increased numbers of ATG5-/- T cells 

underwent apoptosis on TCR stimulation than WT T cells (461). Inhibition of 

autophagy in effector Th2 cells was also found to increase T cell death (462).  
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1.5.5.2 Necroptosis 

Necroptosis is a programmed form of necrosis (463). It shares characteristics 

with both necrosis (unprogrammed cell death) and apoptosis. Necroptotic cells 

undergo nuclear condensation and organelle swelling like necrotic cells. 

However, the programmable nature of this death makes it similar to apoptosis. 

Molecular characterisation of necroptosis identified the use of two proteins 

receptor-interacting protein kinase 1 and 3 (RIPK1, RIPK3) as the hallmark of 

necroptotic cell death (464).  

Evidence for necroptosis in T cells is minimal. One study by Ch’en et al. 

demonstrated that caspase-8 deficient effector T cells undergo cell death using 

RIPK1 and RIPK3 mediated pathways. Moreover, they displayed typical 

necroptotic morphology (465). More recently, another study by Kesarwani et al. 

found that tumour specific CD8 T cells undergo TCR stimulation mediated 

necroptosis. Pre-treating T cells with necroptosis inhibitors increased CD8 T cell 

tumour persistence (466).       

1.5.5.3 Apoptosis 

Apoptotic cell death is the best studied and most common form of effector T cell 

death. Apoptotic cell death can occur using multiple mechanisms which can be 

largely divided between extrinsic apoptotic pathways and intrinsic apoptotic 

pathways (284). T cells undergo activated cell autonomous death (ACAD) which 

occurs in the absence of survival signals by the intrinsic apoptotic pathway 

(467). Activation induced cell death (AICD) may also be triggered in effector 

cells with TCR restimultation in the absence of secondary signals (468). This is 

mediated by the extrinsic apoptotic pathway. 

A set of proteins, often termed “the executioners of death” are caspases. 

Caspases are produced by cells as inactive zymogens that must be activated for 

effector function (469). There are two classes of caspases: initiator caspases 

(caspases 1,2,4,5,8,9,10, 11 and 12) and effector caspases (caspases 3,6,7 and 

14) (470, 471). Initiator caspases undergo activation by external stimuli and form 

large multi-protein complexes where effector caspases are activated. Effector 

caspases disrupt various cellular processes such as actin polymerization and 
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nuclear lamin formation. This causes the characteristic chromatin condensation 

and nuclear shrinkage (470, 471). Figure 1.5.1 provides a simple overview of 

both the intrinsic death pathway. 

1.5.5.3.1 Extrinsic apoptotic pathway 

Extrinsic pathway signals emanate from extracellular signals. These include TNF, 

CD95L or FAS ligand (FASL) and TNF-related apoptosis inducing ligand (TRAIL). 

They interact with their respective death receptors which include TNFR1, CD95 

or FAS, TRAILR1 and TRAILR2 (468, 472, 473). Death receptor triggering results 

in the formation of death-inducing signalling complex (DISC). In the case of 

FASL-FAS pathway, complex molecular interactions in the DISC results in the 

activation of initiator caspases 8 and 10 (474, 475). These caspases then activate 

effector caspases 3,6 and 7 which initiate apoptosis (284, 476). 

Alternatively, caspase 8 can also activate the pro-apoptotic functions of the 

mitochondria by cleaving the BCL-2 (B cell melanoma-2) family protein BID (BH3 

interacting domain-death agonist) to tBID (truncated BID). tBID causes the 

aggregation of pro-apoptotic proteins BAX (BCL-2 associated X protein) or BAK 

(BCL-2 antagonist/killer) to the mitochondria. This causes the release of 

cytochrome c from the mitochondria. Cytochrome c directs the formation of 

another death complex known as the apoptosome. In this complex, molecular 

interactions result in the activation of caspase 9. Caspase 9 then activates 

effector caspases 3,6 and 7 which initiates apoptosis (284, 476, 477).  

AICD is an example of extrinsic cell death in T cells. AICD is triggered in T cells 

by the ligation of FASL, TNFR1 and TRAILR. Most activated T cells express these 

receptors after undergoing several rounds of clonal proliferation (284). 

Interestingly however, T regulatory cells are resistant to FASL mediated 

apoptosis (478).   

1.5.5.3.2 Intrinsic apoptotic pathway 

The intrinsic pathway of apoptosis is triggered by a myriad of stimuli including 

TCR stimulation, DNA damage and cytokine deprivation. These stimuli instigate 

the permeabilisation of the mitochondrial membrane which results in the release 

of cytochrome c (479). Cytochrome c, in conjunction with APAF1, (apoptotic-
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protease-activating factor 1) found in the cytoplasm, form the apoptosome. 

Apoptosome formation results in activation of caspase 9 and the downstream 

activation of caspases 3,6 and 7 as stated previously (471). 

ACAD is an example of intrinsic cell death in T cells. Activated T cells deprived 

of cytokines, produce BCL-2 family members BIM (BCL-2 interacting mediator of 

cell death) and PUMA (p53-upregulated modulator of apoptosis). These are both 

pro-apoptotic molecules that bind to, and inhibit anti-apoptotic molecules BCL-2 

and BCL-XL. BCL-2 and BCL-XL themselves inhibit accumulation of pro-apoptotic 

BAX or BAK to the mitochondria, thus maintaining mitochondrial membrane 

integrity. Once BCL-2 and BCL-XL are inhibited however, BAX or BAK actively 

accumulate at the mitochondria and induce the release of cytochrome c and its 

downstream effects (284, 476). 

 

Figure 1.5.1 The intrinsic apoptotic pathway 
Diagram adapted from Life and death in peripheral T cells (284) 

1.5.6 T cell retention 

To enable effector T cells to carry out their functions, they must persist at 

tissue sites following their recruitment and prior to their egress or death. This 

phenomenon is referred to as their retention. Retention of T cells remains, 

arguably, the least understood area of the T cell trafficking pathway. Current 
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models suggest that retention of T cells at tissue sites is mediated by a 

combination of three factors. T cells respond to positive cues which keep them 

at inflamed tissues (9, 170, 421, 480, 481). In addition, T cells downregulate 

egress receptors slowing down their exit (244, 245, 432, 433, 453). Finally, T 

cells alter their metabolic programming to enable prolonged survival (482, 483). 

One of the earliest identified retention signals for T cells was the TCR-Peptide 

MHC interaction. APCs at sites of infection/inflammation interact with effector T 

cells with cognate antigen/TCR, forcing their arrest and accumulation at 

peripheral tissues (392).  

Another positive retention cue is the cytokine TGF-b. TGF-b stimulates the 

expression of the integrin aEb7, also known as CD103, on CD8 and CD4 T cells 

(484). This enables CD8 and CD4 Trm cells to bind to E-cadherin expressed by 

epithelial cells, leading to their retention in peripheral tissues including skin, 

small intestine and brain (485-488). Likewise, CD25+ FoxP3+ regulatory CD4 T 

cells also express CD103 for their retention at peripheral tissues (481).  

Multiple chemokine-chemokine receptor pairings have also been found to 

provide tissue retention signals to T cells.  CX3CL1 was found to be necessary for 

the retention of effector CD4 T cells in the skin in a model of atopic dermatitis 

(480). In human rheumatoid synovium, CXCL12 and CXCR4 interactions have 

been described as crucial for the retention and accumulation of T cells (421). 

Chemokines have also been found to increase the survival of T cells at peripheral 

inflamed tissues. Indeed, CXCL12 was found to increase the survival of tumour 

infiltrating T cells as well as increase their chemotaxis (489, 490). Likewise, IL-

15 is necessary for the survival and retention of CD8 Trm cells at peripheral 

tissues (491). Expression of the aryl hydrocarbon receptor (AHR) has also been 

implicated in aiding survival mediated persistence of T cells at tissue sites (492). 

Recently, TRM cells have also been found to alter their metabolic programming 

and depend on fatty acid uptake and metabolism for their survival and 

persistence in tissues (483). 

Egress of T cells out of tissues is regulated by the receptors CCR7 and S1PR1 as 

discussed previously (239, 451, 452). The expression of both S1PR1 and CCR7 is 
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under the regulation of the transcription factor KLF2 (450, 456, 485). Moreover, 

CD69 is another molecule which regulates the expression of S1PR1 (433, 434). 

Both CD8 TRM cells and CD4 TRM cells have been found to express high levels of 

CD69 and low levels of KLF2 (456, 493). Indeed, while long term tissue resident 

cells may need increased chemotactic cues as well as decreased egress cues, a 

reduction in egress cues alone could be enough to increase the dwell time of 

early effector T cell populations. This would enable pathogen elimination 

without causing long term inflammation induced tissue damage. The dynamic 

regulation of S1PR1 and CCR7 expression makes them the perfect molecules to 

facilitate early retention of T cells in tissues. 

 

Figure 1.5.2 Regulation of T cell retention at peripheral tissues 
T cell retention is regulated by positive retention cues which include TCR-pMHC, CD103 and 
chemokines. T cells also receive specialised survival signals such as IL-15, AhR ligands and fatty 
acids which enables their prolonged survival in tissues. Finally, T cells downregulate egress 
receptors CCR7 and S1PR1. S1PR1 and CCR7 expression is regulated by KLF2. CD69 is also a 
negative regulator of S1PR1 expression. 

Relevance of this section to thesis aims:  

• T cell persistence at inflamed tissues could be regulated at multiple 

checkpoints of the T cell trafficking pathway 
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• Is activated T cell persistence due to decreased egress or increased 

retention signals at inflamed tissues? 

• Could increased activated T cell persistence be linked with their improved 

survival at inflamed tissues?  

• Could the behavioural patterns of activated T cells at inflamed sites 

influence their persistence? i.e. their interaction with other immune cells 

or the availability of localised soluble mediators. 
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1.6 Aims of the project 

Effector CD4 T cells accumulate at inflamed tissues in large numbers. As 

demonstrated in psoriasis and RA, accumulated CD4 T cells contribute to disease 

pathology. Moreover, removal of these cells from such sites abrogates disease. 

Increased T cell accumulation can be controlled at multiple points of the T cell 

trafficking pathway. Most studies have targeted T cell activation, inhibiting LN 

egress as well as inhibiting tissue entry of effector CD4 T cells. 

In contrast, little is known about effector T cells after entry at inflamed 

peripheral tissues. Signals that allow CD4 T cells to persist at inflamed tissues 

are poorly understood. Likewise, few studies have investigated regulation of 

effector T cell egress from inflamed tissue sites.       

This study aims to identify novel mechanisms of CD4 T cell persistence at 

inflamed tissues. Understanding these mechanisms will permit improved 

targeting of CD4 T cell mediated therapies at inflamed tissues. To achieve these 

goals, the aims in the project were set out as follows: 

1. Establish a model inflamed tissue where effector CD4 T cells persist. 

2. Identify which signals promote CD4 T cell persistence at inflamed tissue. 

3. Identify the effect these signals have on CD4 T cell behaviour. 

4. Identify whether similar control mechanisms exist in established human 

inflammatory disease.



 
 

2 Materials and Methods 
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2.1 Animals 

All animals were housed at the University of Glasgow central research facility in 

accordance with UK home office guidelines. Animals were caged appropriately 

and allowed food and water ad libitum. All procedures undertaken were 

approved under Prof. Paul Garside’s home office project license (60/4368). 

During this project, five different strains of animals were used:  

2.1.1 C57BL/6 

Male C57BL/6 mice were purchased from Harlan laboratories UK (currently 

ENVIGO) at 6 weeks of age. Mice were rested for 7 days upon arrival prior to 

commencement of any procedures. All C57BL/6 mice were used within the ages 

of 6-10 weeks as recipients in adoptive transfer experiments. 

2.1.2 CD45.1 OT-II 

CD45.1 OT-II T cell receptor (TCR) transgenic (Tg) mice (494) were bred in 

house. Most T cells in OT-II mice express a TCR which exclusively recognises 

ovalbumin (OVA) peptide 323-339. OT-II mice in my lab also express CD45.1 on 

all leukocytes. CD45 is a pan-leukocyte tyrosine phosphatase. There are two 

alleles of CD45, CD45.1 and CD45.2 They are both functionally identical. This 

enables the identification of cells transferred from a donor to a host with 

different congenic backgrounds (i.e. transfer cells from an OT-II CD45.1 host to a 

C57BL/6 CD45.2 donor) by flow cytometry. T cells from male OT-II mice were 

used between 6-10 weeks of age as donors for polarisation and adoptive transfer 

experiments. 

2.1.3 hCD2DsRed x CD45.1 OT-II (OT-II DsRed) 

hCD2DsRed mice were originally gifted by D Kioussis and A Patel, National 

Institute of Medical Research, London and bred in house at the University of 

Glasgow (495). hCD2DsRed mice have a DsRed fluorescent reporter tag attached 

to the CD2 promoter. This allows T cells to fluoresce red when excited with 

554nm wavelength of light. Some NK cells and lymphoid tissue inducer (LTi) cells 

also express DsRed in these animals. hCD2DsRed mice were crossed with CD45.1 
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OT-II mice to make OT-II DsRed mice. This ensured that most DsRed T cells also 

expressed a TCR specific for ovalbumin peptide 323-339 as described above.    

2.1.4 LysMGFP 

LysMGFP mice (496) were originally gifted by Sussan Noursargh, William Harvey 

Research Institute, London, and bred in house at the University of Glasgow. 

LysMGFP mice have a green fluorescent protein (GFP) tag attached to mouse 

lysozyme M protein. Monocytes, neutrophils and some macrophages in these 

mice express GFP. LysMGFP mice were used as recipients for some intravital 

microscopy experiments.    

2.1.5 CD11cYFP   

CD11cYFP mice (497) were bred in house and used as recipients for intravital 

microscopy experiments. These mice have a yellow fluorescent protein (YFP) tag 

attached to the CD11c protein. This enables most dendritic cells and some 

macrophages and monocytes to fluoresce yellow when excited with 500nm 

wavelength of light. CD11cYFP mice were used as recipients for some intravital 

microscopy experiments.   

2.2 Induction of inflammation 

2.2.1 LPS model 

Animals were first anaesthetised by isoflurane inhalation prior to LPS injection. 

Inflammation was then induced by intradermal injection of 10µg of bacterial 

lipopolysaccharide (LPS) from Escherichia coli (E.coli) strain 0111:B4 (Sigma-

Aldrich) in a final volume of 10µl in sterile phosphate buffered saline 

(PBS)(Gibco). Intradermal injection was carried out in the ear pinnae of mice to 

allow the development of an inflamed tissue site in the mouse skin.   

2.2.2 Chronic inflammatory model – using inert polybeads 

The beads model is akin to a delayed type (DTH) inflammation in mouse ear 

pinnae. To achieve this, mice were injected subcutaneously with OVA emulsified 

in complete Freund’s adjuvant (CFA). 100µg of a OVA/CFA was injected 
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subcutaneously into the scruff of mice in a final volume of 100µl in PBS. 

Following a rest period of 7-9 days, 25µg of OVA conjugated to polystyrene 

beads was injected intradermally into the ear pinnae of anaesthetised mice in a 

final volume of 10µl in PBS. 

2.2.3 Preparation of Beads 

Polybeads (Polysciences Inc.) were made up using the standard manufacturers 

guidelines. Briefly, 500µl of beads (2.6% w/v) (12.5mg) were washed twice in 

polylink wash buffer then resuspended in 0.17ml polylink coupling buffer. 20µl of 

a 200mg/ml EDAC solution was then added to the coupling buffer and beads mix. 

Subsequently, 2mg of OVA made up in 1ml of PBS was added to the same tube 

incubated overnight at room temperature (RT) in a shaker. The next day, the 

beads were washed twice, making sure to collect and store the supernatant for 

free protein measurement. The beads were finally resuspended in 0.4ml of 

storage buffer and stored at 4º C until required. The supernatant was measured 

for free protein using a nanodrop and the total protein bound to the beads was 

calculated accordingly.   

2.3 T cell polarisation 

2.3.1 Tissue harvesting 

OT-II and C57BL/6 mice were euthanised by cervical dislocation or CO2 

administration. Lymph nodes (OT-II) and spleen (OT-II and C57BL/6) were 

collected in PBS and stored on ice at all times. Tissues from OT-II mice and 

C57BL/6 mice were used for T cell isolation and antigen presenting cell (APC) 

fraction preparation respectively.   

2.3.2 Tissue processing 

Collected tissue was prepared into a single cell suspension by disrupting them 

through a 40µm sieve (Greiner Bio-One) using the rubbery side of the plunger of 

a 3ml syringe (BD Biosciences) in 1ml of PBS. The cells were washed through 

using sterile PBS and collected in a 50ml falcon tube (Corning). Cells were then 

centrifuged at 400x G for 5 minutes at 4°C to form a pellet. The supernatant was 

poured off and the pellet resuspended in either 1ml/10 LNs MACS buffer (1% FCS, 
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2mM EDTA in HBSS) or 0.5ml/spleen red blood cell (RBC) lysis buffer 

(eBioscience).  

Splenocytes were incubated at 4°C for 2 mins before washing thoroughly with 

PBS. The splenocytes were then resuspended in 5ml of complete RPMI (cRPMI) 

(10% FCS, 5% Pen/Strep, 5% L-glutamine) and stored at 4ºC for later use. 

2.3.3 CD4 T cell isolation 

CD4 T cells were isolated by negative selection from single cell suspension of the 

LNs and spleens from OT-II mice. To do this, a CD4 isolation kit was used from 

STEMCELL technologies (Vancouver, Canada) according to their guidelines. 

Briefly, cells were transferred from 50ml falcon to a 5ml polystyrene tube 

(Corning). 50µl of rat serum (STEMCELL technologies) was added to the tube per 

ml of cell suspension. Subsequently, 50µl of the isolation antibody cocktail was 

added to the tube per ml of cell suspension and incubated for 10 minutes at RT.  

Next, 75µl of RapidSphere beads were added per ml of cell suspension and mixed 

thoroughly before incubating at RT for 2.5 mins. These magnetic beads bind to 

all cells with antibody bound to them. The tube was then topped up to 2.5, 5 or 

10ml based on the number of LNs harvested with MACS buffer. The tube was 

then inserted into a Big Easy magnet and incubated at RT for 2.5 minutes 

allowing beads bound cells to separate from untouched CD4 T cells. Finally, the 

magnet was inverted rapidly with the tube inside to allow the unbound CD4 T 

cells to flow out into a 50ml falcon tube. 

2.3.4 APC fraction preparation 

The beads bound cells from the CD4 T cell isolation were washed and mixed in 

with the splenocytes prepared earlier in cRPMI and centrifuged and resuspended 

in 10mls of cRPMI (APC fraction). 500µl of Mitomycin C (Sigma-Aldrich) prepared 

at 1mg/ml with sterile PBS was then added to the APC fraction and all cells 

incubated for 1hr at 37°C with intermittent mixing. Mitomycin C interferes with 

DNA, RNA and protein synthesis and therefore restricts APC proliferation or 

cytokine production. Mitomycin C treated APCs were then washed 3 times in 

cRPMI before using them for T cell polarisation.    
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2.3.5 CD4 T cell polarisation 

Isolated T cells were cultured with mitomycin C treated APCs at a ratio of 

0.5x106 T cells:2.5x106 APC ratio in cRPMI. These cells were cultured in Th1 

polarising conditions. For Th1 polarisation, cultured cells were supplemented 

with 1µg/ml Ova Peptide323-339 (Sigma-Aldrich), 2-4µg/ml anti-IL4 (BioXcell) and 

10ng/ml IL-12 (R&D systems). Cells were cultured in a T25 flask in 50ml volume 

for 3 days at 37°C and 5% CO2.  

2.4 T cell treatments 

For some experiments, CD4 T cells were treated with certain compounds before 

their adoptive transfer. Polarised CD4 T cells were treated with Pertussis Toxin 

(100ng/ml) (Sigma-Aldrich), FTY720 (Sigma-Aldrich) (0.5µg/ml), SEW2871 (R&D 

Systems) (5µg/ml), W146 (R&D Systems) (5µg/ml) or vehicle for 60 mins 

(Pertussis Toxin) or 90 mins in cRPMI at 37°C and 5% CO2. Once treated, T cells 

were washed thoroughly in PBS three times. The cells were then resuspended in 

PBS in preparation for adoptive transfer. 

2.5 T cell fluorescent labelling 

For proliferation experiments, T cells were fluorescently labelled before 

adoptive transfer. After polarisation, T cells were incubated with cell tracker 

blue (Thermo-Fischer scientific) at 5µM for 15 mins at 37° C in PBS. The cells 

were shaken at 5 min intervals. Following staining, the dye was quenched by 

mixing with 1/5 volume of FCS and incubating for 5 mins. The cells were then 

washed in cRPMI twice to remove any excess dye and resuspended in PBS for 

adoptive transfer.  

2.6 T cell adoptive transfer 

T cells were adoptively transferred intradermally into inflamed or non-inflamed 

ear pinnae. This transfer was carried out for subsequent enumeration of cells by 

flow cytometry or imaging by intravital microscopy. 

For flow cytometry enumeration, polarised cell culture was washed and 

resuspended in MACS buffer in a 5ml polystyrene tube in a total volume of 5-
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10ml. The tube was then placed in the Big Easy magnet for 2.5 mins to remove 

all beads. The beads free cell suspension was poured into a 50ml falcon and 

resuspended in a known volume of sterile PBS and counted. 2-3x106 cells were 

then adoptively transferred into mouse ears. 

For intravital microscopy, similar steps were carried out, however, a much lower 

number of cells, 2-300x103 were transferred in very small volume (2-4µl) at 

shallow depths in the ear pinnae. This facilitated the visualisation of cells with 

an intravital microscope.  

2.7 Tissue digestion for flow cytometry 

Mouse ears and superficial cervical draining lymph nodes were harvested into 

empty 6 well plates or submerged in PBS respectively. The ears were then cut 

into small pieces and digested using 2mg/ml Collagenase IV (Sigma-Aldrich), 

2mg/ml hyaluronidase (Sigma-Aldrich) and 100 Units/ml DNase I (Invitrogen) 

prepared in PBS (Gibco) and incubated at 37ºC for 40 min at 180 RPM in a 

rotating incubator in a total volume of 2 ml. Following incubation, a single cell 

suspension of the ears was prepared with a gentleMACS dissociator (Miltenyi 

Biotec) using a gentleMACS C tube (Miltenyi Biotec). The cells were then counted 

using a haemocytometer and dead cells were excluded via trypan blue staining. 

Samples were stained for flow cytometry as described in section 2.8.  

Draining lymph nodes and spleens were disrupted into a single cell suspension in 

a petri dish between two pieces of 40µm nitex. The cells were then counted and 

stained for flow cytometry using antibodies as described in section 2.8. 

2.8 Flow cytometry 

Multiple types of flow cytometry staining were undertaken as part of this 

project. These included extracellular, intracellular and FLICA staining: 

2.8.1 Extracellular staining 

Single cell suspensions of cells were added to a 96 well round bottomed plate. 

The cells were incubated with a fixable viability dye (eBioscience) diluted in PBS 

for 20 mins at 4ºC. The cells were subsequently incubated with FC block (24G2 
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grown in house and mouse serum) for 20 mins at RT. Flow cytometry antibodies 

were then added at the appropriate concentration (section 2.8.6) and the cells 

were incubated for a further 20 mins at RT. Finally, cells were washed in FACS 

buffer and transferred through 40µm nitex into polystyrene FACS tubes. The 

samples were acquired on a Macsquant analyser (Miltenyi Biotec). 

2.8.2 Intracellular staining 

Intracellular staining was carried out following staining with extracellular 

antibodies using the BD bioscience intracellular staining kit. Samples were fixed 

and permeabilised using the fixation/permeabilisation buffer, incubated at RT 

for 30 mins, then washed using a perm/wash buffer.  Intracellular antibodies 

were diluted in perm/wash buffer and then added to the samples. Samples were 

incubated at RT for 45 mins. The cells were then washed, transferred through 

nitex and acquired as stated previously. 

2.8.3 FLICA staining 

Cell death was assayed using a fluorescent inhibitor of caspase assay kit (FLICA) 

(Life technologies). After extracellular staining, samples were resuspended in 

100µl cRPMI, then incubated with FLICA reagent diluted in PBS. Cells were 

cultured for 60 mins at 37°C with 5% CO2. The cells were then washed, 

transferred through nitex and acquired as stated previously.    

2.8.4 Data analysis 

Flow cytometry data was analysed using Flowjo (Treestar) version 10.0 and 

graphs were plotted on Graphpad PRISM for statistical analysis. 

2.8.5 Gating strategy 

Representative flow cytometry gating strategies are outlined below for mouse 

ear tissue and lymph nodes. All subsequent analyses were carried out on the 

gated transferred OT-II CD4 T cells. 
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2.8.5.1 Ear pinnae 

 

Figure 2.8.1 Gating strategy for the analysis of transferred CD4 T cells in ear pinnae 
Cells were first selected based on their forward and side scatter. Doublets were excluded by using 
FSC-A and FSC-H. Dead cells were then excluded and immune cells were identified based on their 
expression of CD45. Finally, transferred OT-II T cells were identified by selecting for the cells 
expressing both CD45.1, Va2 and CD4. Total cell numbers were determined by back calculating 
from these plots. 

2.8.5.2 Selection of transferred OT-II T cells 

 

Figure 2.8.2 Gating strategy for the selection of transferred OT-II T cells 
Transferred cells were identified by their expression of CD45.1, CD4 and/or Va2. Gates for 
transferred cells were set on samples from animal tissue where no OT-II T cells were transferred. 
This enabled the clear identification of transferred OT-II T cells. 
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2.8.5.3 Lymph nodes 

 

Figure 2.8.3 Gating strategy for the analysis of transferred CD4 T cells in lymph nodes 
Cells were first selected based on their forward and side scatter. Doublets were excluded by using 
FSC-A and FSC-H. Dead cells were then excluded and immune cells were identified based on their 
expression of CD45. Finally, transferred OT-II T cells were identified by selecting for the cells 
expressing both CD45.1, Va2 and CD4. Total cell numbers were determined by back calculating 
from these plots. 

 

2.8.6 Antibody list 

Cells analysed using flow cytometry studies were co-stained with the following 

antibodies in various combinations and conjugated to various fluorophores: 

Antibody Clone Dilution Company 

CD45.1 A20 1/200 eBioscience 

CD4 RM4-5 1/400 eBioscience 

Va2 B20.1 1/200 BD bioscience 

MHC II M5/114.15.2 1/800 eBioscience 

CD64 X54-5/7.1 1/200 Biolegend 

SS
C
-A

FSC-A

FS
C
-A

FSC-H

SS
C
-A

Viability

SS
C
-A

CD45
C
D
45
.1

V⍺2

C
D
45
.1

CD4



 
 

 93 

CD8a 53-6.7 1/200 eBioscience 

CD103 M290 1/200 BD horizon 

Ly6G 1A8 1/200 BD bioscience 

CD69 H1.2F3 1/200 BD bioscience 

S1PR1 713412 5µl/sample RnD systems 

IFNg XMG1.2 1/200 Biolegend 

CD44 IM7 1/200 eBioscience 

CCR4 2G12 2µl/sample Biolegend 

CCR5 HM-CCR5 1/200 Biolegend 

CX3CR1 SA011F11 1/400 Biolegend 

Table 5 List of antibodies used for flow cytometry 
Table details information about the antibody target proteins, clones, dilutions used at and the 
companies from which they were purchased. 

2.9 Chemokine array 

The chemokine array was carried out using a chemokine profiler kit (RnD 

systems). Mouse ear tissue was digested according to section 2.7 and then 

counted. Cells were lysed in recommended lysis buffer with complete ultra mini 

protease inhibitors (Roche). Once added, cells were lysed for 30 mins in a 

shaking incubator at 4ºC. After lysis, cells were centrifuged and the supernatants 

were extracted for further processing. 

Blots from the kit were activated and blocked and cell lysate samples were 

prepared with buffers from the kit as described in the manual. A detection 

antibody cocktail was added to the samples and incubated for 1 hour at RT. 
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The activation/blocking buffer was aspirated from the blots and 

antibody+sample mix were added to 2 separate blots on the plate provided in 

the kit. The blots were then incubated overnight on a rocking shaker at 4ºC. 

Next, membranes were washed 3 times in the wash buffer provided for 10 mins 

each on a rocking platform at RT. Streptavidin-HRP was prepared according to 

the manual and added to the blots and incubated for 30mins at RT in a rocker. 

The membranes were then washed 3x as before and then carefully blot dried. 

They were then placed on plastic sheets and 1 ml of chemi reagent mix was 

added per blot as described in the manual. Another piece of plastic was placed 

on top and air bubbles ironed out. The blots were then incubated with the chemi 

reagent mix for 1 min. The blots were dried by very gently blotting blue roll on 

them. The top was then covered with another plastic sheet and imaged on a C-

Digit blot scanner (LI-COR bioscience) machine. Different exposure times were 

used to get the optimum image. 

The blot images were subsequently analysed using HLImage++ software. This 

software can differentiate the intensity of the dots and normalise it to give 

value for each chemokine assayed. 

2.10 Intravital microscopy 

2.10.1 Animal preparation 

Animals were anaesthetised using 10mg/kg ketaset mix administered intra-

peritoneally and maintained with low volume isoflurane inhalation using a gas 

mask. The ear was immobilised on a stand using veterinary grade glue and the 

core temperature of the animal maintained at 37ºC using a heat mat.  

2.10.2 Imaging 

Microscopy was carried out using a Zeiss LSM 7MP system equipped with 20×/1.0 

NA water-immersion objective lens (Zeiss UK, Cambridge, UK) and a tunable 

Titanium: sapphire solid- state two-photon excitation source (Chameleon Ultra 

II; Coherent Laser Group, Glasgow, UK) and optical parametric oscillator (OPO; 
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Coherent Laser Group). Videos were acquired in 15-30 min intervals at an X-Y 

pixel resolution of 512x512 with 1.5µm increments in Z stack. 

2.10.3 Image analysis 

Videos were analysed in Volocity version 6 after correction for tissue drift using 

second harmonic as the anchor. Individual cells were defined as objects and 

tracked manually in 3D. The generated values were used to calculate the 

velocity, meandering index and displacement of T cells. 

2.11 Enzyme Linked Immunosorbent Assay (ELISA) 

ELISAs were performed on excised mouse ear tissue to determine the 

concentration of cytokines and chemokines. Prior to performing the ELISA, tissue 

was processed and protein concentration was measured via the bicinchoninic 

acid (BCA) assay. 

2.11.1 Tissue processing 

Mouse ears were collected and cut into small pieces in a 1.5ml eppendorf in 200-

500µl of tissue protein extraction reagent (T-PER) (Thermo Fisher scientific) in 

the presence of protease inhibitors complete ultra mini (Roche). Once cut, the 

tissue was homogenised by a motorised mortar and pestle into a fine mix. The 

eppendorfs were then centrifuged at 10,000x G for 5 mins. The supernatants 

were then collected and stored at -80ºC for further analysis. 

2.11.2 BCA assay 

BCA assays were performed to determine protein concentration of ear 

homogenates. This enabled normalisation of ELISAs by loading the same amount 

of protein sample in each well for ELISA measurement. To perform the BCA assay 

an assay kit was used from BIO-RAD laboratories following the manufacturer’s 

guidelines. Briefly, a 1mg/ml BSA was prepared in water as a stock solution. The 

BCA solution was diluted 1 in 5 as instructed in distilled water (BCA mix). A 6 

point, 1:2 serial dilution of the BSA stock solution was made using the BCA mix, 

ranging from 12µg/ml to 2µg/ml in a 96 well plate in duplicate. These samples 

are used to generate a standard curve. 1µl of each homogenate sample was then 
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added to 1ml of the BCA mix. Duplicates of this sample was added to wells in the 

96 well plate. The plate was then read in sunrise ELISA reader (Tecan) to 

determine the optical density of the samples. 

Using the standard curve, the protein concentration of each homogenate sample 

was determined and normalised appropriately for future ELISAs.  

2.11.3 CCL5 ELISA 

The CCL5 ELISA kit was purchased from RnD technologies as a duoset ELISA kit. 

Manufacturer’s guidelines were followed to perform the ELISA. Briefly, diluted 

capture antibody was coated on a 96 well microtiter plate and incubated 

overnight at RT. The plates were then washed 3 times and blot dried thoroughly. 

The plates were then blocked for non-specific binding by incubating with 

reagent diluent for 1 hour at RT. Plates were washed and dried again and 

appropriately diluted samples or standards were added to the appropriate wells. 

The plates were sealed with a plate sealer and incubated at RT for 2 hours.  

The plates were once again washed and dried before adding appropriately 

diluted detection antibody. The plates were then sealed again and incubated at 

RT for 2 hours. The plates were once again washed and dried and appropriately 

diluted streptavidin-HRP was added to each well and incubated in the dark for 

20 mins at RT. Following a further washing and drying step, substrate solution 

was added to each well and the plate incubated in the dark for 20mins at RT. 

Finally, the reaction was stopped by adding a stop solution to each well. 

The colour development was quantified using a sunrise ELISA reader (Tecan) at 

450nm with wavelength correction at 540nm. 

2.11.4 IL-7 and FASL ELISA 

IL-7 and FASL ELISAs were carried out using quantikine ELISA kits from RnD 

technologies. Manufacturer’s guidelines were followed to perform the ELISA. 

Briefly, 50µl of assay diluent was added to each well along with 50µl of 

appropriately diluted sample, standard or control. The plate was sealed and 

incubated for 2 hours at RT on a plate shaker. Wells were washed using the 
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provided wash buffer 5 times and the plate thoroughly blot dried. 100µl of 

provided conjugate was added to each well. The plates were sealed and 

incubated for 2 hours at RT on a plate shaker. The plate was washed and dried 

as before and 100µl of substrate solution was added to each well and incubated 

at RT for 30 mins in the dark. Finally, 100µl of stop solution was added to each 

well. 

Colour development was quantified using a sunrise ELISA reader (Tecan) at 

450nm with wavelength correction at 540nm. 

2.11.5 TNF ELISA 

Mouse TNF OptELA ELISA kit was purchased from BD bioscience. Manufacturer’s 

guidelines were followed to perform the ELISA. Briefly, a 96 well microtiter 

plate was coated with 100µl of capture antibody, sealed and incubated overnight 

at 4ºC. Wells were washed 3 times with recommended wash buffer and blot 

dried thoroughly the next morning. The plates were then blocked with 200µl of 

assay diluent and incubated at RT for 1 hour. After another round of washing and 

drying, 100µl of appropriately diluted standard, sample or control was added 

into appropriate wells. The plate was sealed and incubated at RT for 1 hour. The 

plates were washed and dried again and 100µl of working detector reagent 

(detection antibody + streptavidin-HRP) was added to each well. The plate was 

sealed and incubated in the dark for 1 hour at RT. The plates were washed and 

dried as before and 100µl of substrate solution was added to each well and 

incubated at RT for 30 mins in the dark. 50µl of stop solution was added to each 

well to stop the reaction. 

The colour development was quantified using a sunrise ELISA reader (Tecan) at 

450nm with wavelength correction at 570nm.  
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2.12 Mouse tissue histology and fluorescence 
microscopy 

2.12.1 Tissue harvesting and processing 

Mouse ears were collected and fixed in neutral buffered formalin between two 

pieces of filter paper ensuring the tissue remained flat to keep its structure. The 

tissue was then embedded in paraffin and cut using a cryotome at 10µm thick 

sections and embedded on superfrost plus glass slides. The slides were stored at 

4ºC until further processing.  

2.12.2 Staining for fluorescence microscopy 

Stored tissue was first deparaffinised by submerging in xylene and then hydrated 

through decreasing grades of alcohol and into water. After washing twice in Tris-

buffered saline + 0.05% tween (TBST), peroxidase activity was blocked by 

submerging slides in 0.5% hydrogen peroxide in methanol for 30 mins at RT. The 

antigens were then retrieved by boiling the slides in antigen retrieval buffer 

(abcam) for 8 mins. The sections were washed twice in TBST and blocked with 

2.5% horse serum for 30 mins at RT.  The tissue was further blocked with an 

avidin/biotin kit (Vector Labs) for 30 mins at RT. Rabbit polyclonal anti-SPHK1 

(2.5ug/ml) (abcam) or rabbit IgG (2.5ug/ml) (abcam) was then added to the 

sections and incubated overnight in a dehumidified chamber at 4ºC. The sections 

were subsequently washed and stained with anti-rabbit biotin (1-200) (Vector 

Labs) for 30 mins. The sections were finally stained with Streptavidin-PE (1-200) 

(Vector Labs) and mounted with prolong gold anti-fade mountant with DAPI. 

2.12.3 Imaging and analysis 

Slides were imaged using cell observer SD (Zeiss). Ear sections from individual 

animals were imaged using a tile scan and analysed using Imagej software (NIH). 

Three equally sized areas were randomly selected per section and the number of 

total and SPHK1+ cells manually counted, and percentages determined.  
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2.12.4 Histology staining 

For histology staining, ear section slides were deparaffinised and hydrated as 

before. The sections were then dipped in haematoxylin and washed in running 

water. The sections were then dipped in eosin, dehydrated through graded 

alcohols and xylene and mounted with DPX mounting media. The slides were 

then allowed to dry overnight. 

2.12.5 Imaging of histology sections 

Stained sections were imaged using an Olympus BX 41 microscope attached with 

a DP 25 camera with axiovision software at 10X or 20X. 

2.13 Human tissue immunohistochemistry 

2.13.1 Patient samples 

Synovial tissue specimens were obtained from RA and OA patients at the time of 

arthroscopic biopsy or total joint replacement surgeries at Glasgow Royal 

Infirmary (Glasgow, U.K.).  All RA and OA patients fulfilled the diagnostic 

criteria for RA and OA classification respectively, and written consent form was 

obtained from all subjects. All procedures received Ethics Approval (West of 

Scotland Research Ethical Committee Approval: 11/S0704/7). Collected tissue 

was preserved in 10% formalin, embedded in paraffin and cut using a cryotome 

at 5µm thick sections. 

2.13.2 Immunohistochemical staining 

Collected tissue was deparaffinised by xylene submersion and hydrated through 

decreasing grades of alcohol and into water. The sections were washed twice in 

TBST and the peroxidase activity was blocked by submerging in 0.5% hydrogen 

peroxide in methanol for 30 mins. The antigens were then retrieved by boiling 

the slides in antigen retrieval buffer (abcam) for 8 mins. The sections were then 

blocked with 2.5% horse serum for 30mins at RT. The tissue was then further 

blocked with an avidin/biotin kit (Vector Labs) for 30 mins at RT. 200µl of Rabbit 

polyclonal anti-SPHK1 (2.5ug/ml) (abcam) or Rabbit IgG (2.5ug/ml) (abcam) was 

then added to the sections and incubated overnight in a dehumidified chamber 
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at 4oC. The sections were subsequently washed and stained with anti-rabbit 

biotin (1:200) (Vector Labs) in 2.5% horse and human serum for 30 mins at RT. 

Sections were washed again and avidin/biotin complex (Vector Labs) was added 

and incubated for 30 mins. Finally, the sections were washed and dried before 

3,3’ – diaminobenzidine (DAB) (Vector Labs) was added to the sections. The 

sections were allowed to develop for 2 mins before washing, dehydration and 

mounting in DPX mountant solution. 

2.14 Statistical analysis 

All data shown were analysed using Graphpad Prism version 6. Error bars 

represent standard error of mean (SEM). One-way ANOVA statistical analysis 

tests (more than 2 groups), Mann-Whitney test (2 groups) or Student’s T-test (2 

groups) were carried out for all the data shown with Tukey’s multiple 

comparison tests (ANOVA only) to compare the differences between groups. * 

Denotes p values of <0.05, ** p<0.01 *** p<0.001. **** p<0.0001. Blank or n.s. 

denotes not significant. 

 



 
 

3 Establishment of a model inflamed site to test 
CD4 T cell persistence in mouse ear pinnae 
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3.1 Introduction 

CD4 T cells play a critical role in the initiation, maintenance and resolution of 

inflammation in numerous diseases. Immunological dogma dictates that antigen 

specific CD4 T cells proliferate and migrate to inflamed tissues. These T cells 

then carry out their effector function. Most effector T cells subsequently 

undergo apoptosis, while some turn into memory cells (284). 

Evidence from several inflammatory conditions demonstrate that activated T 

cells may also accumulate at inflamed tissues (7, 9, 84, 421, 498). Accumulation 

of CD4 T cells at inflamed tissues is associated with increased disease 

pathogenesis (245). The migration, persistence, survival, proliferation, retention 

and egress of T cells are therefore key checkpoints in controlling T cell numbers 

at inflamed tissues. A loss of regulation of these signals may lead to aberrant 

and long-term accumulation of T cells at such sites.  

3.1.1 Migration and Accumulation 

There have been numerous studies, using various models to identify and 

understand migration and accumulation signals of T cells at non-lymphoid 

tissues. Some of the earlier studies identified a critical role for selectins in 

effector T cell entry into inflamed tissues (499). Analysis of endothelial cells on 

inflamed skin has revealed abundant expression of P- and E-selectin. 

Furthermore, Th1 cells were found to express their ligands P-selectin 

glycoprotein ligand 1 (PSGL-1). These discoveries together suggested that 

selectin mediated mechanisms were critical for migration of T cells to inflamed 

skin (12).  

Later, a plethora of chemokines were identified that guided migration of specific 

subsets of CD4 T cells (Th1 vs. Th2) to home to particular tissues (393). Analysis 

of Th1 associated diseases such as RA and MS revealed an important role for the 

Th1 chemokine receptors CCR5, CXCR3 and their ligands in effector T cell 

accumulation in affected tissues (401, 500). In contrast, Th2 cells were found to 

preferentially express a different set of chemokine receptors. CCR3, CCR4, CCR8 

and CXCR4 were all identified as Th2 guiding chemokines (393, 501, 502). The 

interaction between CCR3 on Th2 cells and its ligand Eotaxin (CCL11) was 
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further identified as crucial in the migration and accumulation of these cells in 

the allergic airway (503, 504). 

Teleologically, the idea that the migration and accumulation of antigen specific 

T cells to inflamed tissues is initiated and maintained by cognate antigen and 

local tissue signature was attractive to many in the field. Hence their 

importance was investigated in several studies. Using a localised subcutaneous 

IFA injection and antigen specific T cell adoptive transfer model, Reinhardt et 

al. demonstrated that effector CD4 T cells preferentially home to, and 

accumulate in, antigen depot sites (392).  

Other studies identified that T cells primed in skin draining lymph nodes were 

preferentially recalled to the infected skin site. In contrast, T cells that were 

primed in the Peyer’s patches returned to the gut to carry out their effector 

function (505, 506). More recently, there has been a focus on the role of 

integrins in tissue homing of T cells. Conrad et al. elegantly demonstrated that 

the integrin a1b1 was crucial for the accumulation of Th1 cells in a psoriasis 

model of skin inflammation (7). Furthermore, another study found a critical role 

for aV integrins in mediating CD4 T cell motility at inflamed tissues by multi-

photon microscopy (391). Finally, the integrin CD11a was shown to be critical in 

regulating CD8 T cell accumulation in an adipose tissue inflammation model 

(507).  

3.1.2 Survival, Proliferation and Egress 

On top of increased migration and accumulation in inflamed tissues, studies have 

also suggested that inflamed tissues may provide local survival, proliferation and 

reduced egress signals to activated T cells (9, 244, 508). This increases their 

tissue dwell time, effector response time and perhaps their likelihood to develop 

into Tissue resident memory T cells (Trm).  

One study found that T cells in the RA synovium were less susceptible to 

apoptotic cell death and this increased survival was mediated by T cell 

interaction with fibroblasts in an integrin-ligand mediated manner (419). Piling 

et al. also demonstrated that T cells at chronically inflamed tissues receive 

survival cues from stromal cells via interferon b (420).  
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The local proliferation of effector CD4 T cells was demonstrated in a DTH model 

of inflammation. Here effector T cell accumulation was largely associated with 

tissue proliferation and decreased egress from local inflamed tissue which was 

mediated by CCR7 (9). Gomez et al. demonstrated in another study that 

disrupting CCR7 mediated egress of T cells from inflamed tissues led to 

aggravated local tissue inflammation (245). Lastly, the signalling sphingolipid 

S1P was found to cause tissue retention of naïve T cells at inflamed tissue sites 

in an integrin mediated manner (244). 

3.1.3 Aims of this chapter 

These elegant studies clearly demonstrate that accumulation of T cells at 

inflamed tissues is a multi-step process, regulated by several redundant factors. 

The studies also however, highlight the difficulty in separating one factor from 

another. For instance, do the chemokine receptors that signal migration of T 

cells into inflamed tissues also cause their long-term retention? Additionally, 

chemokines such as CCR7, that are responsible for tissue egress may further act 

as retention signals by desensitizing or downregulating their receptors.  

The activation and polarisation state of the T cell likewise, may have a major 

role in their mechanism of retention. Chemokine receptors are differentially 

expressed on distinctive T cell subsets. Thus, one may expect early inflamed 

tissues to recruit and retain Th1 or Th2 cells but later on attract regulatory T 

cells to help resolve the inflammation.  

In this chapter, a novel tissue adoptive transfer model was established to 

differentiate migration, persistence, retention and egress signals of CD4 Th1 

cells at inflamed tissue sites. This model was utilised in subsequent chapters, to 

specifically identify new signals which cause prolonged persistence of CD4 Th1 

cells. 
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3.2 Results 

3.2.1 Cellular profile of inflamed vs. non-inflamed ear pinnae 

An easily manipulatable inflamed tissue was required to study the fundamental 

mechanisms of CD4 T cell persistence. Requirements for such a site included 

non-invasive access to the tissue, allowing simple manipulations of the site such 

as the application of inflammatory stimuli and adoptive transfer of cells. For 

enumeration purposes, the tissue had to be relatively simple to process for both 

flow cytometric analysis and intravital microscopy. 

Furthermore, the model had to be relatively short to negate both the 

recirculation of transferred cells and the effects of endogenous T cell 

recruitment to such sites. Acknowledging this, LPS, an endotoxin from the gram-

negative bacteria E.coli was injected intradermally (ID) in the ear pinnae of 

mice to elicit acute inflammation.  

ID LPS administration in the skin leads to rapid oedematous lesion formation, 

increased vascular permeability followed by haemorrhagic necrosis within the 

space of 24 hours (509). LPS also activates TLR 4 which induces transcription of 

MyD88. This leads to production of inflammatory mediators such as TNFa and IL-

1b (510).  

To establish that LPS administration induced skin inflammation in mouse ear 

pinnae, LPS or saline was injected ID into the ear pinnae of mice. 24 hours later 

the animals were euthanised and their ears were assessed for inflammatory 

changes (Figure 3.2.1A). LPS challenged ear pinnae underwent significantly 

increased swelling compared to PBS challenged ears, suggesting oedema 

formation (Figure 3.2.1B). Visually, LPS inflamed ears developed red 

colouration, signifying an increase in local vascular permeability and perhaps 

haemorrhage of blood vessels and red blood cell infiltration (Figure 3.2.1C).  

Finally, histology was performed on LPS inflamed and saline mouse ears by 

sectioning them and staining them with haematoxylin and eosin. Haematoxylin 

typically stains cell nuclei with a blue colouration. Eosin is a non-specific protein 

stain, and it often stains red blood cells pink or red (511). LPS inflamed ears 



 
 

 106 

displayed substantial infiltration of red blood cells and an overall increase in 

cellularity. The increase in ear pinnae thickness was also evident in LPS 

administered ears (Figure 3.2.1C). 

While histology and morphology are important in determining the state of a 

tissue, flow cytometry allows for a more rigorous approach in understanding the 

cellular changes that take place at the inflamed mouse skin. Moreover, it was 

important to determine the cellular composition of the inflamed skin to 

speculate and target potential signals that may influence CD4 T cell persistence.  

Hence, to determine the cellular changes that take place at LPS inflamed skin, 

mice were injected with LPS or saline ID as before. 24 hours later, the animals 

were euthanised and their ears collected and processed for flow cytometry. 

Inflamed ears were found to contain significantly reduced percentage of 

macrophages and CD8a DCs without affecting their total number (Figure 

3.2.2A,B). This decrease in percentage could be due to the influx of other cells 

such as CD103 DCs and neutrophils. Significant increases were found in both the 

percentage and total numbers of these cells at inflamed tissues (Figure 

3.2.2B,C).  

In summary, the data demonstrates that 24 hours post LPS administration, the 

mouse ear has undergone significant changes in its morphology and cellular 

content, suggesting the tissue has undergone a profound inflammatory response. 

The data also suggests that using LPS as an inflammatory stimulus in the mouse 

skin may be suitable to model an inflamed site to study molecular signals 

provided to T cells at inflamed tissues to cause their persistence. 
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Figure 3.2.1 Inflamed tissues undergo substantial cellular and morphological changes 
Ear thickness of age matched C57BL/6 mice at 6 weeks of age were measured prior to challenge 
with LPS (10µg/10µl) or PBS in their right ear pinnae. 24 hours later, the ears were measured 
again. Animals were then, euthanised and their ears harvested, photographed and processed for 
histology. The tissue was then stained with haematoxylin and eosin and mounted in DPX medium 
before imaging using a standard light microscope. Images shown are representative of 1 
experiment with 5 animals per group. Image magnification: 20x. Scale bar in image shows 200µm. 
Error bars in graph represent SEM. Statistical differences between groups were determined by 
carrying out an unpaired Student’s T-test in Graphpad PRISM. * denotes a p value of <0.05, ** 
<0.01. *** <0.001 and **** <0.0001 (A) Schematic of inflamed ear pinnae model. (B) Graph 
demonstrates change in ear thickness 24h after LPS or PBS administration compared with 
thickness measured prior to substance administration (time zero). (C) Representative photograph 
and H&E stained sections of LPS and PBS challenged ear pinnae.   

LPS

LPS$$(10μg/
10μl)$or$PBS$

Res3ng$for$24$
hours$

Sacrifice$

Harvest$ears$and$
cervical$lymph$nodes,$
Digest,$Stain$and$FACS$

CD4$T$cells$

Res3ng$for$24$
hours$

LPS$$(10μg/
10μl)$or$PBS$

Res3ng$for$24$
hours$

Sacrifice$

Harvest$ears$and$
cervical$lymph$nodes,$
Digest,$Stain$and$FACS$

CD4$T$cells$

Res3ng$for$24$
hours$

0 10 20 30
0.00

0.05

0.10

0.15

C
ha

ng
e 

in
 e

ar
 

th
ic

kn
es

s (
m

m
)

Hours post injection

PBS

LPS
****

PBS

A

B

C



 
 

 108 

 

Figure 3.2.2 Increased numbers of APCs and neutrophils are found at inflamed tissue sites 
Age matched C57BL/6 mice were challenged with 10µg/10µl of LPS or 10ul of PBS in their right 
ear pinnae. 24 hours later, animals were euthanised and their ears were harvested, processed and 
stained for FACS. Data is representative of 2 independent experiments with 4 animals in each 
group. FACS plots were pre-gated on live CD45+ lymphocytes. Error bars represent standard error 
of mean. Statistical differences were determined by carrying out an unpaired Student’s T test in 
Graphpad prism. * denotes a p value of <0.05, ** <0.01. *** <0.001 and **** <0.0001 

3.2.2 Detectable populations of T cells can be recovered from 
mouse ears and dLNs following adoptive transfer 

Upon establishing the potent inflammatory environment created by the 

administration of LPS in mouse ear pinnae, it was necessary to optimise both the 

dose of LPS as well as the number of T cells to transfer into the tissue. This was 

critical to reduce the use of reagents, animals and severity of the procedure. 

To test the recovery of T cells from ear skin and draining lymph nodes, 0.5, 1 or 

3 million in vitro polarised CD4 Th1 cells were adoptively transferred ID in the 

ear pinnae of mice. 24 hours later, the animals were euthanised and their ears 

and draining lymph nodes were harvested and the proportion of transferred cells 

recovered were enumerated by flow cytometry (Figure 3.2.3).  

Populations of transferred T cells, signified by their co-expression of CD45.1 and 

Va2 were observed in all three groups (Figure 3.2.3A). The best recovery of cells 

18.0 3.6

CD64

M
H

C
 I

I

12.2 34.5

2.1 2.7

CD103

C
D

8α

Ly6G

M
H

C
 I

I

1.7 53.9

PBS LPS

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5

0

5000

10000

15000

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0

100

200

300

400

500

0
5
10
15
20
25
30
35

0

1000

2000

3000

4000

5000

PBS LPS PBS LPS

PBS LPS PBS LPS

PBS LPS PBS LPS

PBS LPS PBS LPS

N
u

m
b

e
r o

f 
m

a
cr

o
p

h
a

g
e

s
N

u
m

b
e

r o
f 

C
D

8
α

+
 D

C
s 

N
u

m
b

e
r o

f 
C

D
1

0
3

+
 D

C
s 

N
u

m
b

e
r o

f 
n

e
u

tr
o

p
h

ils

P
e

rc
e

n
ta

g
e

 o
f 

m
a

cr
o

p
h

a
g

e
s

P
e

rc
e

n
ta

g
e

 o
f 

C
D

8
α

+
 D

C
s 

P
e

rc
e

n
ta

g
e

 o
f 

C
D

1
0

3
+

 D
C

s 
P

e
rc

e
n

ta
g

e
 o

f 
n

e
u

tr
o

p
h

ils

n.s.

n.s.

***

*

****

****

***

****

A

B

C

0

10

20

30

40

50

60

0

20000

40000

60000

80000

100000



 
 

 109 

was observed in the 3 million cell group with up to 44.5% of CD4 T cells 

representing transferred cells from the ear pinnae and up to 0.30% in the 

draining lymph node. Likewise, there was a lower, but modest recovery of 

transferred cells in the 1 million group with up to 10.8% of CD4 T cells 

representing transferred cells from the ear pinnae and 0.11% in the dLN. The 

populations recovered from the 0.5 million group however was quite modest 

from both the ear pinnae and dLN (4.41% and 0.078% respectively) (Figure 

3.2.3A).  

Next, it was important to check whether higher doses of LPS improved recovery 

of T cells from the ear tissue or dLN. To test this, mouse ear pinnae were 

challenged with either 10µg or 20µg of LPS. 24 hours later, 3 million CD4 Th1 

cells were adoptively transferred ID into the ear pinnae. 24 hours after that, the 

animals were euthanised and their ear pinnae and dLN were harvested and the 

number of T cells recovered from the tissues enumerated by flow cytometry. 

No significant differences were observed in the recovery of transferred CD4 Th1 

cells from mouse ears treated with either 10µg or 20µg of LPS. Moreover, the 

recovery of transferred cells from the draining lymph node was also not affected 

(Figure 3.2.3B) 

Hence, 10µg of LPS and greater than 1 million T cells per animal was chosen as 

the optimal conditions to test CD4 Th1 cell persistence. These values are used 

henceforth in all experiments in this thesis. 
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Figure 3.2.3 Transferring between 1 and 3.0e6 cells allows recovery of detectable population 
of CD4 Th1 cells from tissues and no difference in T cell recovery is observed between 10 
and 20ug LPS administration 
A: 0, 0.5, 1 or 3.0e6 polarised CD4 Th1 cells were adoptively transferred into the ear pinnae of age 
matched C57BL/6 mice. 24 hours later, animals were euthanised and their ears and dLN were 
harvested, processed and stained for FACS. Cells were stained with a viability dye followed by 
fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were initially 
gated on live CD45+, CD4+ cells and subsequently analysed for their expression of CD45.1 and 
Va2. FACS plots show representative examples from one experiment with 3 animals in each group. 

B: Age matched C57BL/6 mice were challenged with 10 or 20µg of LPS in their ear pinnae. 24 
hours later 3.0e6 CD4 Th1 cells were adoptively transferred into their right ear pinnae. 24 hours 
later, animals were euthanised and their ears and draining lymph nodes were harvested, 
processed and stained for FACS as above. Graphs show combined data from 1 experiment with 4 
(LPS 20µG) or 5 (LPS 10µG) animals in each group. Statistical differences were determined by 
carrying out an unpaired student’s T-test. N.s. denotes not significant. 
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3.2.3 Greater number of CD4 Th1 cells are recovered from 
inflamed tissue sites 

Accumulation of CD4 T cells at inflamed tissues has been documented in 

numerous inflammatory diseases (84, 408, 498, 512-514). However, 

accumulation of T cells comprises of distinct steps including recruitment, 

persistence, retention and egress of cells to/from inflamed sites. While studies 

have been undertaken to address each of these steps, persistence specific 

signals for CD4 T cells at inflamed tissues are poorly studied.  

Hence, an intradermal tissue adoptive transfer model was designed to 

specifically address the question of T cell persistence at inflamed tissues. To do 

this, animals were injected with LPS intradermally in their ear pinnae. Following 

the development of inflammation, activated CD4 Th1 cells were adoptively 

transferred directly into the inflamed tissue. Direct injection of T cells negated 

confounding recruitment signals. 

Th1 cells were used since activated rather than naïve T cells are usually found at 

inflamed tissues (515). Moreover, Th1 rather than Th2 or 17 cells have been 

documented to persist at inflamed RA tissues (417). Therefore, OT-II CD4 T cells 

were polarised to Th1 phenotype by culturing them in the presence of ovalbumin 

peptide (323-339), IL-12 and anti-IL-4 antibody in the presence of mitomycin C 

treated splenocytes to act as antigen presenting cells. 

OT-II mice have a transgenic TCR which specifically recognises ovalbumin at 

peptides 323-339 (494). The majority of the CD4 T cells in OT-II mice carry this 

transgenic TCR. Mitomycin C cross links DNA and causes cell cycle arrest of 

splenocytes (516). While this allows antigen presentation, it stops splenocytes 

from proliferating. IL-12 promotes naïve CD4 T cells to polarise to a Th1 

phenotype. Finally, anti-IL-4 antibody was used to ensure a pure population of 

Th1 cells were present post culture. 

Activated T cells were assessed for their polarisation into a Th1 phenotype prior 

to adoptive transfer. Th1 cells were treated with phorbol-myristate acetate 

(PMA) and Ionomycin in the presence of brefeldin A. PMA is an activator of 
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protein kinase C (PKC) and Ionomycin is a calcium ionophore (517). Brefeldin A is 

a Golgi transport inhibitor (518). Together, these compounds increase the 

production of cytokines (PMA/Ionomycin) and allows their intracellular detection 

(brefeldin A) by flow cytometry (519). 

Expression of CD44 and IFNg by polarised T cells was assessed to ensure that CD4 

T cells were of the Th1 phenotype. CD44 is a cell surface glycoprotein and cell 

adhesion molecule that is often associated with antigen experienced and 

activated CD4 T cells (520). IFNg is a cytokine that is classically associated with 

Th1 cell polarisation (521). T cells in the presence or absence of stimulation 

were universally found to express CD44. However as expected, only 

PMA/Ionomycin treated cells demonstrated a substantial production of IFNg 

(Figure 3.2.4). The data therefore demonstrates, that the polarisation protocol 

has produced a pool of activated and antigen specific CD4 Th1 cells.  

 

Figure 3.2.4 Most polarised Th1 cells express CD44 and produce IFNg 
CD4 T cells were isolated from the lymph nodes and spleens of CD45.1 OT-II mice using a 
STEMCELL technologies CD4 T cell isolation kit. The cells were then cultured with IL-12, anti-IL-4 
and ovalbumin peptide323-339 in the presence of mitomycin C treated splenocytes for 72 hours at 
37°C with 5% CO2. Thereafter, cells were stimulated with or without PMA and Ionomycin with 
brefeldin A for 4 hours. The cells were subsequently stained with fluorescently labelled antibodies 
against CD4, CD44 and intracellular IFNγ for FACS. Cells were initially gated on live CD4+ 
lymphocytes and subsequently analysed for their expression of IFNγ and CD44. Number shows the 
percentage of plotted cells in top right-hand quadrant. The plots shown are representative of 3 
independent experiments.  
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Next, these polarised Th1 cells were adoptively transferred intradermally into an 

LPS inflamed or saline treated ear pinnae. The animals were allowed to rest for 

12 or 24 hours before they were euthanised and their ear tissue and draining 

lymph nodes were harvested, assessed and enumerated at both of these time 

points.  

Significantly greater proportions and numbers of transferred Th1 cells were 

recovered from inflamed ear pinnae when compared to non-inflamed ear pinnae, 

12 hours after their transfer (Figure 3.2.5A). However, no significant differences 

were found in the transferred T cell numbers between the ear draining lymph 

nodes of inflamed or resting ears 12 hours after CD4 Th1 cell transfer (Figure 

3.2.5B). Although a trend towards decreased number of Th1 cells in the draining 

lymph nodes of inflamed ears was observed, this did not reach significance 

(Figure 3.2.5).  
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Figure 3.2.5 Greater Numbers of CD4 Th1 cells are recovered from inflamed tissues 12 
hours after adoptive transfer 
Age matched C57BL/6 mice were challenged with LPS (10µg/10µl) or PBS (10µl) in their right ear 
pinnae. 24 hours later 2.0e6 polarised CD4 Th1 cells were transferred into the same ear pinna. 12 
hours after that animals were euthanised and their right ear pinna (A) and draining lymph nodes (B) 
were harvested, processed and stained for FACS. Cells were stained with a viability dye followed 
by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were 
initially gated on live CD45+, CD4+ cells and subsequently analysed for their expression of CD45.1 
and Va2. Percentages are representative of 2 independent experiments with 11 (PBS) or 7 (LPS) 
animals in each group. Number graphs are combined data from 2 independent experiments with 11 
(PBS) or 7 (LPS) animals per group. Error bars represent standard error of mean. Statistical 
differences were determined by carrying out a Mann-Whitney test in Graphpad prism. * denotes a p 
value of <0.05, ** <0.01. n.s. denotes not significant. 

At 24 hours post transfer, significantly greater proportions and numbers of 

transferred T cells were again recovered from inflamed ears compared to resting 

ears (Figure 3.2.6A). Likewise, mimicking the 12 hour results, no differences 

were observed in the number of transferred T cells recovered from the draining 

lymph nodes of inflamed ear pinnae compared to resting ear pinnae (Figure 

3.2.6B). A similar trend of decreased transferred T cell recovery from inflamed 

ear draining lymph nodes was observed.  
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In all, the data indicates that LPS inflammation generates signals which cause 

persistence of CD4 Th1 cells early after insult in mouse skin tissues. Increased T 

cell persistence however, is not due to reduced egress of cells to ear draining 

lymph nodes. 

 

Figure 3.2.6 Greater Numbers of CD4 Th1 cells are recovered from inflamed tissues 24 
hours after adoptive transfer 
Age matched C57BL/6 mice were challenged with LPS (10µg/10µl) or PBS (10µl) in their right ear 
pinnae. 24 hours later 5.0e6 polarised CD4 Th1 cells were transferred into the same ear pinna. 24 
hours after that animals were euthanised and their right ear pinna (A) and draining lymph nodes (B) 
were harvested, processed and stained for FACS. Cells were stained with a viability dye followed 
by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were 
initially gated on live CD45+, CD4+ cells and subsequently analysed for their expression of CD45.1 
and Va2. FACS plots and percentage plots are representative of 3 independent experiments with 
12 animals in each group. Number graphs are combined data from 3 independent experiments with 
12 animals per group. Error bars represent standard error of mean. Statistical differences were 
determined by carrying out a Mann-Whitney test in Graphpad prism. ** <0.01. n.s. denotes not 
significant.  
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3.2.4 Transferred T cells do not circulate within 24 hours 

Earlier in this chapter it was stated that one of the requirements for a model to 

study T cell persistence was to minimise T cell circulation. This was important 

because systemic circulation of ID transferred T cells would complicate the 

enumeration of persistent T cells. The number of T cells recovered from the 

inflamed tissue, in that case, may represent cells that had left the tissue and 

returned prior to their enumeration. 

To investigate whether circulation of T cells occurred in this model, mice were 

challenged with PBS or LPS in their right ear pinnae. 24 hours later 2 million CD4 

Th1 cells were transferred into the same ear pinnae. 24 hours following the 

transfer, the animals were euthanised and their left ear pinnae (contra-lateral 

to the injected ear) as well as their spleen were harvested and enumerated by 

flow cytometry.  

No transferred cells were recovered from the contralateral ear of either the PBS 

or LPS challenged ear pinnae (Figure 3.2.7A). Likewise, no transferred T cells 

were detectable in the spleen of either PBS or LPS challenged ear pinnae (Figure 

3.2.7B). These data indicate that 24 hours after ID adoptive transfer of T cells in 

the ear pinnae, cells do not undergo systemic circulation. 

 

Figure 3.2.7 Few transferred T cells are recovered from peripheral tissues of mice within 24 
hours of adoptive transfer 
Age matched C57BL/6 mice were challenged with LPS (10µg/10µl) or PBS (10µl) in their right ear 
pinnae. 24 hours later 2.0e6 polarised CD4 Th1 cells were transferred into the same ear pinna. 24 
hours after that animals were euthanised and their right ear pinna (A) and draining lymph nodes (B) 
were harvested, processed and stained for FACS. Cells were stained with a viability dye followed 
by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were 
initially gated on live CD45+, CD4+ cells and subsequently analysed for their expression of CD45.1 
and Va2. FACS plots are representative of 1 experiment with 4 animals in each group. 
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3.2.5 T cells recovered from inflamed tissues are functionally 
distinct from those at resting sites 

Following the finding that activated CD4 T cells persist at LPS inflamed ear 

pinnae, it was necessary to perform some functional and phenotypic analysis of 

the recovered cells. One of the primary functions of activated CD4 T cells at 

inflamed tissues is to produce effector cytokines (449). As discussed previously, 

Th1 cells produce IFNg. Therefore, to assess the function of persisting CD4 T 

cells, their IFNg production was measured.  

Polarised Th1 cells were transferred into LPS or saline treated ear pinnae. 24 

hours later animals were euthanised and their ears and draining lymph nodes 

were harvested. After tissue processing, single cell suspensions were cultured in 

the presence of a cell stimulation cocktail containing PMA/Ionomycin and 

brefeldin A for 4 hours, following which cells were stained for extra and 

intracellular flow cytometry. A very small percentage of transferred Th1 cells 

recovered from inflamed tissues produced IFNg when compared to those 

recovered from non-inflamed tissues (Figure 3.2.8A). In the draining lymph 

nodes however, no differences were observed between the two groups (Figure 

3.2.8B). 
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Figure 3.2.8 Significantly lower proportion of CD4 Th1 cells produce IFNg at inflamed tissue 
site 
Age matched C57BL/6 mice were challenged with LPS or PBS in their right ear pinnae. 24 hours 
later 2.0e6 polarised CD4 Th1 cells were transferred into the same ear pinna. 24 hours after that 
animals were euthanised and their right ear pinna (A) and draining lymph nodes (B) were 
harvested, processed and stained for extra and intracellular FACS. Cells were stained with a 
viability dye followed by fluorescently labelled antibodies against CD45, CD4, CD45.1 and IFNg. 
Lymphocytes were initially gated on live CD45+, CD4+, CD45.1+ cells and subsequently analysed 
for their expression of IFNg. Data shown is from one experiment with 5 animals in each group. 
Error bars represent standard error of mean. Statistical differences were determined by carrying 
out an unpaired Student’s T-test in Graphpad prism. * denotes a p value of <0.05, n.s. denotes not 
significant. 

Additionally, activated T cells express CD69. CD69 is a C-Type lectin receptor 

which has often been associated with early lymphocyte activation (522). CD69 

expression is also associated with Trm cells (523). Thus, expression of CD69 by 

Th1 cells was assessed both before and after transfer.  

Before transfer, typically greater than 95% of the CD4 T cells in culture were 

found to express CD69 (Figure 3.2.9A). However, 24 hours after transfer, only 

around half the cells were expressing CD69 (Figure 3.2.9A). No differences were 

observed in CD69 expression between inflamed and non-inflamed ears (Figure 

3.2.9B).  

In contrast, significantly lower proportion of Th1 cells recovered from lymph 

nodes draining inflamed ears expressed CD69 when compared to cells recovered 

from resting draining lymph nodes (Figure 3.2.9B). Altogether, the data indicates 
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that persisting Th1 cells differ in their cytokine potential at inflamed vs. resting 

tissue sites. Furthermore, differences in CD69 expression may also play a role in 

the persistence or drainage of T cells to/from inflamed tissues. 

 

Figure 3.2.9 CD4 Th1 cells express CD69 in vitro but no difference was observed in T cell 
CD69 expression ex vivo between inflamed and resting tissues 
A: CD4 T cells were isolated from the lymph nodes and spleens of CD45.1 OT-II mice using a 
STEMCELL technologies CD4 T cell isolation kit. The cells were then cultured with IL-12, anti-IL-4 
and ovalbumin peptide323-339 in the presence of mitomycin C treated splenocytes for 72 hours at 
37°C with 5% CO2. The cells were subsequently stained with fluorescently labelled antibodies 
against CD4 and CD69 for FACS. Cells were initially gated on single, lymphocytes and 
subsequently gated for their expression of CD69 and CD4. The plot shown is representative of 3 
independent experiments.  

B,C: Age matched C57BL/6 mice were challenged with LPS or PBS in their right ear pinnae. 24 
hours later 2.0e6 polarised CD4 Th1 cells were transferred into the same ear pinna. 24 hours after 
that animals were euthanised and their right ear pinna (B) and draining lymph nodes (C) were 
harvested, processed and stained for FACS. Cells were stained with a viability dye followed by 
fluorescently labelled antibodies against CD45, CD4, CD45.1 and CD69. Lymphocytes were 
initially gated on live CD45+, CD4+, CD45.1+ cells and subsequently analysed for their expression 
of CD69. Data shown is combined from 4 experiments with 22 animals in each group. Error bars 
represent standard error of mean. Statistical differences were determined by carrying out a Mann-
Whitney test in Graphpad prism. ** denotes a p value of <0.01, n.s. denotes not significant. 
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3.2.6 Naïve CD4 T cells are retained at inflamed tissue sites 

T cells differ significantly in their form and function based on their activation 

and polarisation status. This allows naïve T cells to traffic through secondary 

lymphoid organs and re-circulate in the blood stream (389). It also allows 

effector T cells to traffic to target tissues (12, 14). Therefore, testing whether 

naïve T cells also persist at inflamed skin could provide clues as to the 

mechanism of effector T cell persistence.    

To test this, congenically labelled naïve T cells were transferred into ear pinnae 

treated with LPS or saline 24 hours previously. 24 hours after the transfer of 

cells, animals were euthanised and their ears and draining lymph nodes, which 

drain the ear, were analysed to enumerate the persistence and drainage of 

transferred cells. 

Significantly greater proportion and number of transferred CD4 T cells were 

recovered from inflamed ear pinnae compared to non-inflamed ear pinnae 

(Figure 3.2.10A). Additionally, the draining lymph nodes of inflamed ear pinnae 

contained significantly lower number of transferred T cells than the draining 

lymph node of the resting ear (Figure 3.2.10B).  

Together these data indicate that LPS inflamed skin tissues cause the retention 

rather than persistence of naïve T cells.    
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Figure 3.2.10 Greater Number of naïve CD4 T cells are recovered from inflamed tissues 24 
hours after adoptive transfer 
Age matched C57BL/6 mice were challenged with LPS or PBS in their right ear pinnae. 24 hours 
later 2.0e6 freshly isolated CD4 T cells from OT-II mice were transferred into the same ear pinna. 
24 hours after that animals were euthanised and their right ear pinna (A) and draining lymph nodes 
(B) were harvested, processed and stained for FACS. Cells were stained with a viability dye 
followed by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes 
were initially gated on live CD45+, CD4+ cells and subsequently analysed for their expression of 
CD45.1 and Va2. Data is representative of 1 independent experiment with 5 animals in each 
group. Error bars represent standard error of mean. Statistical differences were determined by 
carrying out a Mann-Whitney test in Graphpad prism. * denotes a p value of <0.05, ** <0.01. 
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3.2.7 Polarisation state of CD4 T cells does not alter their 
persistence at inflamed tissues 

The migration and retention of T cells at peripheral tissues is often dictated by 

their specific expression profile of chemokines and cell adhesion molecules (14, 

36, 393, 502). Th1 cells are known to express chemokines such as CCR5 and 9 

while Th2 cells predominantly express CCR3 and 4, guiding them to peripheral 

tissue sites (393, 502). Moreover, polarisation of T cells also influences their 

death and survival mechanisms (483, 524, 525). Hence, understanding whether 

the polarisation state of the cell contributes to their persistence in the tissue 

could enlighten a path towards understanding the mechanism of Th1 cell 

persistence at inflamed tissues. 

To investigate this, OT-II T cells were activated with ovalbumin peptide in the 

absence of an IL-12 polarising signal to generate non-polarised but activated T 

cells (referred to as Th0 cells henceforth). These cells were then adoptively 

transferred ID into LPS or PBS challenged ear pinnae as before. 24 hours later, 

the animals were euthanised and their tissues were harvested and enumerated 

by flow cytometry.  

Greater numbers of CD4 Th0 cells were recovered from LPS inflamed ear pinnae 

compared to resting tissues (Figure 3.2.11A). However, there were no 

differences observed in the proportion of transferred cells recovered from the 

tissue. Furthermore, no differences were observed in either the proportion or 

the number of transferred cells in the ear draining lymph nodes (Figure 3.2.11B). 

It is important to note that the total number transferred cells recovered from 

peripheral tissues and draining lymph nodes were far lower than the ones 

recovered from experiments where either Th1 or naïve cells were transferred. 

Altogether, the data indicates that polarisation state of the T cell may play a 

role in the persistence of T cells at inflamed tissues.  
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Figure 3.2.11 Greater number, but not proportion of Th0 cells are recovered from inflamed 
peripheral tissues 
Age matched C57BL/6 mice were challenged with LPS (10µg/10µl) or PBS (10µl) in their right ear 
pinnae. 24 hours later 3.0e6 polarised CD4 Th0 cells were transferred into the same ear pinna. 24 
hours after that animals were euthanised and their right ear pinna (A) and draining lymph nodes (B) 
were harvested, processed and stained for FACS. Cells were stained with a viability dye followed 
by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were 
initially gated on live CD45+, CD4+ cells and subsequently analysed for their expression of CD45.1 
and Va2. FACS plots and percentage plots are representative of 2 independent experiments with 9 
animals in each group. Number graphs are combined data from 2 independent experiments with 9 
animals per group. Error bars represent standard error of mean. Statistical differences were 
determined by carrying out a Mann-Whitney test in Graphpad prism. ** <0.01. n.s. denotes not 
significant.  
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3.2.8 Type of inflammation plays a role in T cell persistence 

Chronically inflamed tissues often differ from acute sites of inflammation. 

Chronic inflammation is not only defined by its period of persistence but also by 

the involvement of adaptive immune cells (61). Crucially, most human 

inflammatory diseases are examples of chronically inflamed tissues such as an RA 

joint and a psoriatic skin lesion (1).  

Previous studies have demonstrated differential regulation of cellular 

accumulation based on the inflammatory stimuli (244, 453). Thus, a model of 

persistent T cell mediated skin inflammation was designed to investigate this 

question. In this model, animals were immunised subcutaneously with ovalbumin 

emulsified in CFA. CFA consists of heat killed mycobacterial particles. It is a 

potent activator of immune responses. The emulsified solution forms a 

granulomatous depot at the site of challenge which drives persistent antigen 

presentation and antigen specific T/B cell activation in the draining lymph nodes 

(526).  

7 days post immunisation, animals were challenged with PBS, inert polybeads or 

polybeads conjugated with ovalbumin intra-dermally in the ear pinnae. The 

beads were designed to persist at the site of injection for a prolonged period of 

time. Persistent antigen at peripheral tissues is known to elicit delayed type 

hypersensitivity responses in previously immunised hosts (9). 

Ear inflammation was allowed to persist for 9 days. Inflammation was measured 

by a mouse ear swelling test (MEST) throughout the period of inflammation. 

Mouse ear thickness was found to be significantly increased in animals 

challenged with ovalbumin conjugated beads compared to beads alone or PBS 

challenged animals (Figure 3.2.12A).  

CD4 Th1 cells were then adoptively transferred ID in the previously challenged 

ear pinnae. 24 hours after transfer, animals were euthanised and their ear 

pinnae and draining lymph nodes were harvested and stained for flow cytometric 

analysis. No significant differences were observed in the proportion or number of 

transferred cells recovered from either the resting compared to the inflamed ear 

pinnae (Figure 3.2.12B).  
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Interestingly however, significantly greater proportion and number of 

transferred T cells were recovered from the draining lymph node of mice 

challenged in the ear pinnae with ovalbumin conjugated beads compared with 

either beads alone or PBS (Figure 3.2.12C).   

Finally, differences in the number of endogenous CD4 T cells were enumerated 

to determine whether T cell mediated inflammation had taken place. 

Significantly greater numbers of endogenous CD4 T cells were recovered from 

the ear pinnae of animals challenged with ovalbumin conjugated beads 

compared to either beads alone or PBS. No significant differences were observed 

in the number of endogenous CD4 T cells between the groups in the draining 

lymph nodes (Figure 3.2.12D). 

These data demonstrate that T cell persistence at inflamed tissues is dependent 

on the type of inflammation. While acute bacterial inflammation promotes 

persistence of Th1 cells, chronic hypersensitive inflammation does not. 
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Figure 3.2.12 CD4 Th1 cells do not persist at chronically inflamed tissues 
Age matched C57BL/6 mice were challenged with Ovalbumin emulsified in CFA (100µg/100µl) 
subcutaneously. 7 days later, PBS, beads alone or ovalbumin conjugated beads were injected 
intradermally in their right ear pinna. Ear swelling was measured using digital callipers over the 
next 9 days (A). 2.0e6 CD4 Th1 cells were then adoptively transferred into the same ear pinnae. 24 
hours later, animals were euthanised and their ear pinnae or draining lymph nodes were harvested, 
analysed by flow cytometry and the number of transferred (B,C) or endogenous (D) CD4 T cells 
enumerated. Cells were stained with a viability dye followed by fluorescently labelled antibodies 
against CD45, CD4, CD45.1 and Va2. Lymphocytes were initially gated on live CD45+, CD4+ cells 
and subsequently analysed for their expression of CD45.1 and Va2. Representative FACS plots 
are shown from 1 of 2 independent experiments. Graphs show combined data from 2 independent 
experiments with 10 animals per group. Error bars represent standard deviation. Statistical 
differences were determined by carrying out a One-way ANOVA and Tukey’s multiple comparisons 
test in Graphpad PRISM. * denotes a p value of <0.05. 
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3.2.9 Cellular profile of chronically inflamed tissues 

The interesting finding that Th1 cells did not persist in antigen mediated delayed 

type hypersensitivity inflamed tissue led to the hypothesis that LPS inflamed and 

DTH inflamed tissues were different from each other. Thus, the myeloid cell 

profile of the chronically inflamed tissue was also characterised. 

Mice were challenged subcutaneously with Ova emulsified in CFA. 7 days later, 

PBS or ovalbumin conjugated beads were injected intradermally to induce 

inflammation. 9 days later, OT-II Th1 cells were transferred into these same 

ears. 

Mice injected with Ova-beads had significantly greater numbers of macrophages, 

CD103 DCs, CD11b DCs, CD8a DCs and neutrophils compared to PBS challenged 

mice. No differences were observed in the proportions of macrophages or CD8a 

DCs but reduced proportions of CD103 and CD11b DCs were found at ova-beads 

challenged ears compared to PBS challenged ears. The proportion of neutrophils 

were also substantially increased in Ova-beads challenged ears. These data 

indicate that antigen-mediated chronic DTH inflammation causes significant 

infiltration of multiple myeloid cell populations (Figure 3.2.13). 
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Figure 3.2.13 Chronically inflamed tissues have increased proportions and numbers of 
APCs and neutrophils compared to non-inflamed tissues 
Age matched C57BL/6 mice were challenged with Ovalbumin emulsified in CFA (100µg/100µl) 
subcutaneously. 7 days later, PBS or ovalbumin conjugated beads (Ova-beads) were injected 
intradermally in their right ear pinna. 9 days later, animals were euthanised and their ears were 
harvested, processed and stained for FACS. Data is representative of 2 independent experiments 
with 4 animals in each group. FACS plots were pre-gated on live CD45+ lymphocytes. Error bars 
represent standard error of mean. Statistical differences were determined by carrying out an 
unpaired Student’s T test in Graphpad prism. * denotes a p value of <0.05, ** <0.01. *** <0.001 and 
**** <0.0001. n.s. denotes not significant. 
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3.3 Discussion 

Immune cell trafficking to and from inflamed tissues is a critical process for the 

mammalian immune system. It enables CD4 T cells to be at the right place at the 

right time. Naïve T cells circulate through SLOs until they encounter their 

cognate antigen (389). In contrast, effector T cells migrate from SLOs to 

inflamed peripheral tissues, upon activation (276). Once at inflamed tissues, CD4 

T cells can help clear pathogen and resolve inflammation. However, in chronic 

inflammatory diseases, CD4 T cells can accumulate at affected tissues (7, 84, 

421). This can prolong and exacerbate inflammation, leading to tissue damage. 

In this chapter, an inflamed tissue model was developed to study effector CD4 T 

cell persistence. Understanding T cell persistence may allow us to develop 

therapies which reduce inflammation in chronic diseases or increase persistence 

in vaccine settings.   

3.3.1 LPS elicits substantial tissue inflammation 

To set up a short-term tissue inflammation model, LPS was administered 

intradermally in the ear pinnae of mice. LPS was chosen as an inflammatory 

stimuli due to its ability to induce rapid acute inflammation (527). Rapid 

inflammation was necessary to enable the study of early stages of inflammatory 

responses. 

LPS injection in the ear pinnae caused significant ear swelling 24 hours after 

administration. In addition, histology showed that inflamed ear pinnae had 

significant RBC extravasation into the tissue. Both of these findings are 

supported by previous studies and confirmed that LPS caused early and 

significant inflammation in mouse skin. 

LPS administration also caused substantial cellular changes. Significantly greater 

numbers of neutrophils and CD103+ DCs were found in inflamed ear pinnae. 

Neutrophil influx into early inflamed tissues is well documented (527). Early 

neutrophil influx is guided by the chemokine CXCL8 (528, 529). LPS mediated 

upregulation of CXCL8 production has been reported in multiple studies (530, 

531). Likewise, the recruitment of CD103+ DCs into inflamed or damaged tissues 

at early time points is well documented in the literature (532). 
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In sum, injection of LPS in the mouse ear pinnae caused a significant 

development of inflammation, 24 hours post administration. This model tissue 

site may form a suitable site to study the persistence of CD4 T cell persistence. 

3.3.2 Tissue inflammation promotes T cell persistence 

To develop a model of T cell persistence at the newly designed inflamed tissue, 

polarised CD4 Th1 cells were adoptively transferred intradermally into the pre-

treated ear pinnae. Direct transfer of cells into the inflamed tissue was a key 

point in the design of the model and played a significant role in the choice of 

tissue site. Direct transfer enabled me to exclude compounding recruitment 

signals. Hence, any effects observed would be as a direct result of signals which 

the cells received following their artificial recruitment into the tissue. The ear 

pinnae was a suitable site for such adoptive transfers (244). Likewise, Th1 cells 

were chosen due to their reported accumulation at, and role in, early stages of 

tissue inflammatory diseases such as RA and psoriasis (7, 66, 69, 413). 

A greater proportion and number of transferred cells were recovered from 

inflamed ear pinnae compared to resting ear pinnae, 12 and 24 hours after T cell 

transfer. In contrast, no differences were observed in the numbers of 

transferred cells at lymph nodes draining the inflamed or resting ear pinnae. 

While these results established that greater numbers of T cells remained at 

inflamed tissues, they also confirmed that this was not due to decreased T cell 

egress to draining lymph nodes. This is a key point as previous studies have 

demonstrated a role for CCR7 in controlling T cell accumulation at inflamed 

tissues by regulating their tissue egress (451, 452). Hence, my model indicates 

that mechanisms other than CCR7 mediated retention also play a role in the 

regulation of peripheral T cell accumulation. 

3.3.3 T cells at inflamed tissues are functionally distinct 

Transferred T cells recovered from resting or inflamed tissues were analysed for 

their production of IFNg. A significantly greater proportion of T cells recovered 

from resting tissues were found to produce IFNg, compared to T cells from 

inflamed tissues. This finding was surprising since effector T cells normally carry 

out their function at inflamed tissues (441). IFNg plays a critical role in 
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activating macrophages to induce pathogen killing (533, 534). In contrast, IFNg 

can increase pathogenesis in chronic inflammatory diseases by aberrant and 

prolonged activation of innate immune cells which in turn causes tissue damage 

(535).  

One explanation for this could be, that Th1 cells were artificially placed in a 

tissue site where they did not receive the correct signals. Therefore, their 

production of IFNg was not a directed response. Studies have previously shown 

that CD4 T cells undergoing AICD often produce large amounts of IFNg. Moreover, 

studies have also reported the necessity of IFNg for the induction of apoptosis 

(536, 537). This suggests that IFNg producing Th1 cells at non-inflamed tissues 

may be undergoing apoptosis. 

T cell expression of CD69, an early lymphocyte activation marker was also 

analysed prior to transfer and after recovery from tissues. CD69 has previously 

been described as a lectin that promotes memory T cell persistence and 

retention in peripheral tissues (523). Almost all Th1 cells were found to be CD69 

positive prior to transfer. Following recovery from tissue however, no 

differences were observed in the proportion of T cells expressing CD69. This 

result suggests that the activation state of the T cell may dictate the mechanism 

of its persistence. I.e. effector T cells use a different signal for tissue 

persistence than naïve or memory T cells. 

3.3.4 Activation state of T cell and inflammatory stimuli affects T 
cell persistence 

T cells differ significantly in their function and receptor expression based on 

their state of activation (538, 539). Naïve T cells express high levels of CCR7 to 

enable them to home to SLOs (345). Effector T cells in contrast express tissue 

specific CKRs such as CCR5 (Th1) or CCR4 (Th2) (393, 401, 504). This enables 

them to traffic to inflamed or infected tissues. To understand whether 

persistence of T cells at LPS inflamed tissue was subtype specific, naïve T cells 

or T cells stimulated with peptide alone (Th0) were transferred into inflamed or 

resting ear pinnae. Greater numbers of naïve and Th0 T cells were recovered 

from inflamed tissues compared to resting tissues, phenocopying the Th1 

experiments. In contrast to the Th1 experiments, reduced number of transferred 
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naïve T cells were recovered from inflamed dLNs compared to resting ones. No 

differences were observed in the recovery of Th0 cells between resting and 

inflamed dLNs. This result indicated that naïve T cell persistence at inflamed 

tissues was due to decreased egress to draining lymph nodes, unlike Th1 and Th0 

cell persistence. Studies by Debes et al. and Bromley et al. have previously 

indicated a role for CCR7 in controlling T cell retention at peripheral tissues 

(451, 452). Naïve and effector T cells have different CCR7 expression profiles. 

Thus, changes in CCR7 ligand CCL19/21 at inflamed tissues could differentially 

regulate naïve and effector T cell retention. 

Inflamed tissues also differ significantly in terms of their morphology and 

cellular content. Whereas acute inflammation is driven primarily by innate 

immune cells and their cytokines, chronic inflammation is often driven by 

adaptive immune cells (61). Hence, I tested whether Th1 cells persist in a 

longer-term inflammation mediated by adaptive immune cells. No differences 

were found in the tissue persistence of Th1 cells at inflamed or resting tissues.  

Intriguingly, however, a greater proportion and number of OT-II cells were 

recovered from draining lymph nodes of chronically inflamed ears. This could be 

due to one of two reasons: Inflammation was induced using ova attached to 

polybeads, hence it was an antigen mediated system. Antigen could have 

drained to the local draining lymph node where ova specific transferred OT-II 

Th1 cells accumulated in response to antigen. Antigen specific T cell 

accumulation is well documented (9).  

Alternatively, T cell egress at chronically inflamed tissues could be controlled 

differently to that of acutely inflamed tissues. This idea was explored by Brown 

et al. who demonstrated that T cell exit from acute and chronically inflamed 

tissues are differentially regulated (453). The study demonstrated that CCR7 

plays an important role in T cell egress from acute but not chronically inflamed 

tissues. Thus, the authors suggested that other mechanisms may play a role in 

regulating T cell egress at chronic tissues. Investigating whether Th1 cells persist 

at chronically inflamed sites with a non-antigen specific inflammation, i.e. BSA-

specific T cells or inflammation induced by non-ova antigen, may reveal which 

mechanism might be at play here.  
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I also investigated the myeloid cell population in the Ova-beads inflamed tissue 

to check whether differences in myeloid cells could explain the lack of T cell 

persistence in this model. Despite a significantly prolonged inflammatory time 

point and a different type of insult, the myeloid compartment looked similar 

between LPS injected and Ova-beads injected tissues. The only difference 

observed was the increased number of CD64+ macrophages in the ova-beads 

tissues. Further investigations with a macrophage depleted ova-beads inflamed 

tissue could reveal whether they have a role in reducing T cell numbers at 

inflamed tissues.        

In conclusion, a model inflamed tissue site was developed in this chapter where 

CD4 Th1 cells persist. In the next chapter, both the tissue site and the cells are 

manipulated to dissect the signals which cause Th1 cell persistence at LPS 

inflamed tissue sites. 



 
 

4 Investigating the signals which cause CD4 T cell 
persistence at inflamed tissues 
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4.1 Introduction 

T cell entry into tissue sites is predominantly controlled by the varied expression 

of chemokines and cell adhesion molecules (CAMs) such as selectins and integrins 

(540). Once at a tissue site however, the signals which result in T cell 

persistence is not only regulated by the varied expression of chemokines and 

CAMs, but also antigen bearing APCs (541-545). Together, these molecules 

regulate the entry, movement and exit of leukocytes to, within and from 

inflamed tissues (149). 

Inflamed tissues further differ in their expression of survival and apoptotic 

signals. These include varied expression of death signals as well as cytokines and 

chemokines which promote and/or suppress cell survival and proliferation (525, 

546). Naturally, survival, proliferation and death signals also have an impact on 

tissue behaviour and exit of persistent leukocytes. 

In this introduction, these distinctive yet complementary processes are briefly 

explored as potential mechanisms of T cell persistence. Evidence in the 

literature is explored in context of the observed phenotype of T cell persistence 

at inflamed tissues as described in the previous chapter. 

4.1.1 Antigen mediated T cell persistence 

Naïve T cells circulate through secondary lymphoid organs. Here, they encounter 

antigen bearing APCs. The interaction between an antigen bearing APC and its 

cognate T cell results in arrest and persistence of the T cell in the SLO (545, 

547). It is believed this reduction in T cell velocity enables appropriate scanning 

and subsequent activation of T cells (548). 

At inflamed peripheral tissues, effector T cells likewise interact with antigen 

bearing APCs (549). A study by Reinhardt et al. demonstrated that this 

interaction also results in the increase of T cell persistence at the inflamed 

tissue site. However, unlike in the SLO, where antigen encounter results in T cell 

proliferation, no such proliferation was observed following antigen encounter at 

tissue site (392).  
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The exact mechanism of antigen mediated peripheral T cell persistence is not 

well understood. One possibility is that MHC-TCR interactions are sufficient to 

retain T cells, however, due to the low affinity of this interaction, it is unlikely 

to be true (550). The more attractive idea is that antigen encounter induces 

increased adhesion molecule expression on T cells, resulting in their increased 

persistence. Two studies by Andreasen et al. and Ray et al. report high 

expression of integrins on T cells at peripherally inflamed tissues, suggesting 

that this could be true (551-553).      

4.1.2 Control of T cell apoptosis   

Naïve T cells encounter antigen followed by their activation and clonal 

proliferation at SLOs (390). Effector T cells subsequently migrate to inflamed 

tissues to carry out their effector function (441). The final stage of an immune 

response is the contraction and memory phase. Here, the majority of activated 

and effector T cells undergo apoptotic cell death at tissue sites or develop into 

long lasting memory cells (403).  

Apoptotic cell death occurs via one of two pathways. Cell extrinsic pathways 

such as AICD or cell intrinsic pathways including, ACAD (284). Cellular apoptosis 

in both cases is primarily executed by proteolytic enzymes known as caspases 

(469). Caspases are initially produced as inactive zymogens. Later, these 

caspases undergo proteolytic processing leading to their activation and 

ultimately, to cell death (469). 

Caspase activation is a complex and multi-step process. Essentially, receptor 

triggering leads to a signalling cascade followed by the formation of a caspase 

initiation complex (554). In this complex, precursor initiator caspases are 

activated. These initiator caspases then activate effector caspases including, 

caspase-3, caspase-6 and caspase-7 (554).  

Effector caspases interfere with actin and nuclear lamins which maintain cell 

and nuclear morphology respectively. This leads to nuclear shrinkage, blebbing, 

cell fragmentation and the formation of apoptotic bodies (470, 471). Apoptotic 

cells further express extracellular phosphatidyl serine which triggers their 

phagocytosis by professional phagocytes (555). 
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4.1.3 Extrinsic and intrinsic executioners of death at inflamed 
tissues 

AICD on activated T cells is triggered by ligation of cell surface death receptors. 

Ligands include TNF, FASL and TRAIL. Activated T cells express TNFR1, FAS, 

TRAILR1/TRAILR2 and death receptors (DR) 3 and 6 to interact with these ligands 

(284). Some, or all of these ligands have been found across multiple inflamed 

tissues (546).  

Controversially, some of these death signals also generate pro-survival effects on 

T cells. TNF-a was found to interfere with FAS signalling and increase T cell 

survival (508). Moreover, DR3 signalling directly increased T cell accumulation 

and resistance to apoptosis (556, 557)  

ACAD, in contrast is initiated by TCR stimulation, DNA damage, ER stress and 

cytokine deprivation (467). Previous studies have demonstrated that TCR 

stimulation of activated T cells, without co-stimulatory signals, leads to 

increased apoptosis (524). Moreover, lack of cytokines such as IL-2, IL-4 and IL-7 

substantially increased T cell apoptosis (525).  

Interestingly, increased levels of IL-7 has been reported in multiple inflamed 

tissues including RA joints (558, 559). This suggests that T cell accumulation at 

inflamed sites might in part be regulated by decreased T cell apoptosis. 

4.1.4 Chemokines as regulators of T cell survival, apoptosis and 
chemotaxis 

Chemokines are chemotactic cytokines whose main function is controlling 

cellular migration (151). Chemokines also regulate cell proliferation, apoptosis 

and survival (560, 561). Chemokines signal through a multitude of G-protein 

coupled receptors known as chemokine receptors (154, 155). The differential 

effects of chemokines on cells is a consequence of distinct temporal and spatial 

expression of chemokine receptors (155). Moreover, chemokines display 

promiscuity for their receptors. This further enhances their functional repertoire 

(157). 
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Effector T cells home to inflamed tissues, guided by chemokines (36). 

Additionally, differentially polarised T cells display distinct chemokine receptor 

expression (393, 502). Migration of Th1 cells to inflamed tissues is mediated by a 

myriad of inflammatory chemokines. CCR4, CCR5, CCR9, CXCR3, CXCR4 and 

CX3CR1 are but a few of the Th1 chemokine receptors responsible for migration 

to inflamed tissues (393, 502).  

Additionally, signalling through some of these chemokine receptors has aided 

cell survival or apoptosis. CCL5-CCR5 interactions were found to increase 

apoptosis of human T cell lines via the ACAD pathway (562). CCL5 was found to 

aid survival of human macrophages (563, 564). In contrast, CXCL12-CXCR4 signals 

were initially described as anti-apoptotic in neurons but were later found to be 

pro-apoptotic in effector CD4 T cells (565, 566).  

CCL19/21 binding to CCR7 can also trigger effector T cell apoptosis in SLOs 

(567). In contrast, in vitro studies, revealed that CCR7 signals can aid survival of 

CD4 T cells (568). Exact mechanisms of antagonistic effects of chemokine ligands 

and receptors have not been elucidated. Receptor promiscuity and specific 

inflammatory settings may explain some of the observed discrepancies.   

4.1.5 Aims of this chapter 

This introduction highlights that T cell accumulation at tissue sites is regulated 

by multiple overlapping factors. Cytokines, chemokines, survival and apoptotic 

factors are intricately intertwined in this process.  

Greater numbers of transferred CD4 Th1 cells were recovered from the inflamed 

skin model established in the previous chapter. The aim for this chapter was to 

identify the signals which enable Th1 cells to persist at inflamed tissues 

compared to non-inflamed tissues.  

As part of this, cytokine, chemokine and pro-apoptotic factor production at 

tissue sites were compared. Furthermore, chemokine receptor and pro-apoptotic 

molecule expression on Th1 cells were investigated. Together, the data in this 

chapter aims to identify novel signals which cause CD4 T cell persistence at 

inflamed tissue sites. 
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4.2 Results 

4.2.1 Cognate antigen does not alter the persistence of CD4 Th1 
cells at inflamed tissues 

Migrational arrest and prolonged persistence of antigen specific T cells in 

response to cognate antigen on APCs is well documented. Studies have 

demonstrated that both naïve and effector T cells undergo antigen mediated 

arrest at SLOs and peripheral tissues (541-545).  

Hence, investigations were undertaken to determine whether cognate antigen 

mediated interactions altered the persistence of Th1 cells at LPS inflamed 

peripheral tissues. Mouse ears were inflamed by the administration of LPS in the 

presence or absence of heat-aggregated ovalbumin (HAO). HAO rather than 

soluble ovalbumin was used to ensure prolonged localised persistence of 

ovalbumin at the tissue site. 

In vitro polarised OT-II Th1 cells specific for ovalbumin were then transferred ID 

into the inflamed or resting ear pinnae, 24 hours after induction of 

inflammation. The animals were then allowed to rest for a further 24 hours prior 

to their euthanasia. Treated ear pinnae and their downstream draining lymph 

nodes were harvested and processed for flow cytometric analysis.  

Significantly greater numbers, but not proportion of transferred cells were 

recovered from LPS inflamed ear pinnae compared to resting ear pinnae as seen 

in previous experiments. HAO administration at inflamed ears did not further 

increase Th1 cell persistence. However, number of cells recovered from 

inflamed, HAO treated ear pinnae were not significantly higher than those 

recovered from resting ear pinnae. HAO administration at non-inflamed ear 

pinnae resulted in no significant changes in transferred T cell recovery (Figure 

4.2.1A). 

Likewise, HAO administration did not alter the recovery of T cells from draining 

lymph nodes draining either inflamed or resting ear pinnae. No significant 

differences were observed in either the proportions or numbers of recovered OT-

II T cells from draining lymph nodes between any groups (Figure 4.2.1B). In 
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summary, these data suggest that at acute LPS inflamed peripheral tissues, 

presence of cognate antigen does not alter T cell persistence. 

 

Figure 4.2.1 Cognate antigen does not alter the persistence of CD4 Th1 cells at LPS 
inflamed peripheral tissues 
Age matched C57BL/6 mice were challenged with LPS (10µg/10µl) or PBS (10µl) in their right ear 
pinnae with or without HAO (20µg/10µl). 24 hours later 5.0e6 polarised CD4 Th1 cells were 
transferred into the same ear pinna. 24 hours after that animals were euthanised and their right ear 
pinna (A) and draining lymph nodes (B) were harvested, processed and stained for FACS. Cells 
were stained with a viability dye followed by fluorescently labelled antibodies against CD45, CD4  
and CD45.1. Lymphocytes were initially gated on live CD45 cells and subsequently analysed for 
their expression of CD4 and CD45.1. FACS plots are representative of 2 independent experiments 
with ³ 3 animals in each group. Percentage and number graphs are combined data from 2 
independent experiments with 8 animals per group. Error bars represent standard error of mean. 
Statistical differences were determined by carrying out a One-way ANOVA and Tukey’s multiple 
comparison’s test in Graphpad prism. * <0.05.  
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4.2.2 CD4 Th1 cells exhibit altered behaviour at inflamed tissues 

Intravital multiphoton microscopy allows for imaging and analysis of cellular 

behaviour deep within tissues of living animals (569). Analysing parameters such 

as velocity, displacement and interaction of cells within tissue can illuminate 

novel behavioural mechanisms of T cell persistence at inflamed sites.  

To study such behaviours, fluorescent reporter animals were necessary. Th1 cells 

were polarised from OT-II mice that expressed an endogenous DsRed fluorescent 

protein within their T cells. These T cells were then transferred into LPS or 

saline treated ears of CD11cYFP mice. CD11cYFP mice endogenously express the 

fluorescent protein YFP within CD11c+ cells, which is classically expressed on 

dendritic cells (497).  

The second harmonic signal (blue) demarcates tissue structural complexes, such 

as collagen. It is often useful for the identification of landmarks within tissues 

such as lymphatic or blood vessels which are hollow and do not generate second 

harmonic signals.     

To understand the initial behaviours that may result in T cell persistence 24-

hours post transfer, animals were imaged for 4-5 hours after T cell transfer. 

Animals were anaesthetised and restrained on a temperature-controlled stage 

and time-series movies of cells in the ear were acquired.  

OT-II T cells displayed limited motility in resting ear pinnae with low velocity 

and displacement. In contrast, OT-II T cells in inflamed ears demonstrated 

higher motility as well as increased displacement rate (Figure 4.2.2A-D). Movies 

and still images further confirm that T cells were localised in similar locations 

either within or near collagen fibres in tissues (Figure 4.2.2E,F)(Video 1,2). The 

increased motility and displacement of T cells at inflamed ears are similar to 

that of T cells in LNs (570). This suggests that T cells at inflamed tissues are not 

restricted by tissue matrix. Highly motile behaviour also indicates the lack of 

cellular interactions. Consequently, no direct and prolonged interactions were 

observed with DCs. In contrast, the immobile Th1 cells at the saline treated ear 

pinnae looked similar to cells undergoing apoptosis (571). This suggested that 

the T cells were undergoing apoptotic death at non-inflamed sites.  
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Figure 4.2.2 CD4 Th1 cells travel greater distances at a greater velocity in inflamed tissues 
compared to resting sites 
CD11cYFP mice were challenged with either PBS or LPS. 24 hours later, ~2.0e3 polarised Th1 
cells expressing DsRed were transferred into the injection site at a shallow depth, in a small 
volume. The animals were allowed to rest for 4-5 hours before the ears were imaged using a Zeiss 
LSM 7MP microscope. Images were acquired using a 20x/1.0NA water immersion objective lens. 
Images were then analysed using volocity software and DsRed positive cells were individually 
tracked manually, generating their velocity and displacement rates. (A,B) X-Y plots show the 
distance of T cell tracks and are representative plots from 1 of 3 individual mice per treatment 
group. (C,D) Velocity and displacement graphs show combined values from 3 individual mice per 
group. (E,F) Representative stills from 1 of 3 individual mice per treatment group, illustrating 
distance travelled by T cells from time zero, indicated by arrows. Each data point represents a 
DsRed T cell and bars represent mean. In the movies, green cells = CD11c+ cells, blue = second 
harmonic signal and red cells = CD4 Th1 cells. Arrows demarcate the position of the same T cell at 
different time points, indicating their movement or lack thereof. Statistical differences between 
groups were assessed by carrying out a Mann-Whtiney test using Graphpad Prism *** denotes p 
value of < 0.001 and **** < 0.0001.  
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4.2.3 CD4 Th1 cells survive better at inflamed tissues 

My observation of greater Th1 cell recovery from inflamed ear tissue, without a 

concomitant decrease in the dLN, suggested that T cell proliferation or survival 

might be taking place at inflamed tissues. At non-inflamed tissues however, T 

cells were immobile and produced increased IFNg. Decreased motility as well as 

increased IFNg production have both been previously associated with apoptotic T 

cells (536, 571). Therefore, the survival and proliferation of Th1 cells in ear 

tissue was evaluated. 

To assess cellular proliferation, T cells were labelled with cell tracker blue. Cell 

tracker blue is a fluorescent dye that is equally divided into daughter cells upon 

cell division. Subsequent enumeration of cells within each fluorescent peak 

determined the proportion of proliferating cells.  

To evaluate apoptosis, T cells recovered ex vivo from ear tissue were cultured in 

the presence of a fluorescent inhibitor of caspases (FLICA) molecule. The FLICA 

molecule undergoes an enzymatic reaction when it is covalently bound to any 

active caspase 3 or 7. Apoptotic cells express caspases 3 and 7, accordingly 

FLICA labels apoptotic cells with a green colour (fluorescein) (572, 573). 

Assessment of the proportion of FLICA bound cells enabled the enumeration of 

cells at early stages of apoptosis. 

Polarised OT-II Th1 cells labelled with cell tracker blue were thus transferred 

into LPS inflamed or saline treated mouse ears. 24 hours later, the animals were 

euthanised and their ears were harvested and processed. Single cell suspensions 

of cells were stained with flow cytometry antibodies and then cultured with the 

FLICA reagent for 1 hour. Subsequently, cell survival and proliferation were 

assessed.  

A significantly greater proportion of Th1 cells recovered from non-inflamed 

tissues were found to express FLICA compared to cells recovered from inflamed 

tissues (Figure 4.2.3A,B). In contrast, Th1 cells did not undergo any proliferation 

at either the inflamed or non-inflamed tissue site (Figure 4.2.3C). Together, 

these data suggest that increased survival signals at inflamed tissues regulate 

the persistence of Th1 cells.  
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Figure 4.2.3 Fewer CD4 Th1 cells undergo apoptotic death at inflamed tissues but no 
differences are observed in T cell proliferation at tissue sites 
Age matched C57BL/6 mice at 6 weeks of age were challenged with LPS (1µg/10µl) or PBS in their 
right ear pinnae. 24 hours later 2.0e6 OT-II TH1 cells were labelled with cell tracker blue and 
transferred into the animals’ same ear pinnae. 24 hours after the transfer, mice were euthanised 
and their ears were harvested, processed and stained for FACS. Cells were stained with a viability 
dye followed by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. 
Lymphocytes were initially gated on live CD45+, CD4+, CD45.1+, Va2+ cells and the expression of 
active caspase 3 and 7 was analysed by measuring their expression of FLICA by incubating cells 
using a FLICA kit (life technologies). FLICA FACS plots are representative of 3 independent 
experiments, Cell tracker blue is representative of 2 experiments. FLICA graph shows combined 
data from 3 independent experiments with 10 animals in PBS and 11 animals in LPS groups. Error 
bars represent SEM. Statistical differences between groups were assessed by carrying out an 
unpaired Student’s T test using Graphpad Prism ** denotes p value of <0.001. 
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4.2.4 Increased survival of Th1 cells is not mediated by 
differences in IL-7, TNFa or FAS-Ligand expression at tissue 
site 

Greater recovery of T cells at tissue sites might be regulated by increased 

survival signals or decreased apoptotic signals. TNFa and IL-7 are pro-

inflammatory cytokines abundantly present at inflamed tissues (558, 574). 

Studies have suggested a role for TNFa in rescuing T cells from apoptotic death 

at inflamed tissues (508). Likewise, studies have reported IL-7 as a survival 

signal for T cells at inflamed sites (525).  

In contrast, FASL is a transmembrane protein of the TNF family that induces 

caspase mediated apoptosis. FASL is found in both transmembrane and soluble 

forms. Interaction of FASL with its receptor FAS on T cells leads to cell death 

(575). Previous reports have suggested increased FASL expression at TLR 4-

agonist mediated inflamed tissues (576).  

To assess whether TNFa, IL-7 or FASL expression is differentially regulated at 

inflamed tissues, LPS or saline treated mouse ears were harvested 24 hours post 

challenge. The ear tissue was homogenised, proteins extracted and 

concentration measured. Enzyme-linked immunosorbent assays (ELISA) were 

carried out by loading equal amount of protein for each animal and determining 

expression levels of the cytokines and FASL.  

No significant differences were observed in the production of IL-7 or TNFa 

between inflamed or resting tissues (Figure 4.2.4A,B). Likewise, no difference 

was observed in FASL expression between tissues (Figure 4.2.4C). In summary, 

these data suggest that survival of Th1 cells at inflamed tissues is not directly 

mediated by differences in TNFa, IL-7 or FASL expression. However, this does 

not rule out the possibility that signals at inflamed tissues makes cells more 

sensitive to signals from these proteins. 
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Figure 4.2.4 Survival of Th1 cells is not mediated by differences in IL-7, FASL or TNFa 
Age matched C57BL/6 mice were treated with LPS or PBS in their right ear pinnae. 24 hours later, 
animals were euthanised and their ears were harvested. The tissue was then homogenised in 
tissue protein extraction buffer (T-PER) using a tissue homogeniser. The protein concentration was 
measured using a standard BCA assay. Equal amounts of protein were then loaded into wells in 
duplicate. Concentration of cytokines and FASL was measured against a standard curve by 
following manufacturers’ guidelines as described in materials and methods. IL-7 and FASL ELISAs 
were quantikine ELISA kits from R&D systems and TNF ELISA was a Mouse TNF ELISA set from 
BD Biosciences. Graphs show data from one experiment with 4 (TNF) or 5 (IL-7 &FAS-L) animals 
per group. Error bars represent SEM. Statistical differences between groups were assessed by 
carrying out an unpaired Student’s T test in Graphpad PRISM. n.s. denotes not significant. 
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4.2.5 CCL5 is upregulated at inflamed tissues    

Another potential source of T cell survival signals are chemokines. As discussed 

in section 4.1.4, multiple chemokines have been reported to function in 

promoting T cell survival. Since no direct differences were found in cell 

survival/apoptotic signals, chemokine expression at tissues and chemokine 

receptor expression on Th1 cells were examined.  

To evaluate chemokine expression levels, a proteome profiler array was 

undertaken. This is a multiplex antibody based protein array that simultaneously 

detects the expression of 25 different chemokines. They included CCL21, 

CX3CL1, CXCL12, CCL4 and CCL5 among others. For chemokine receptor 

expression on T cells, polarised OT-II Th1 cells were stained with anti- CCR4, 

CCR5 and CX3CR1 antibodies. These chemokine receptors and ligands have been 

associated with Th1 cell migration and survival in various studies (14, 393, 502, 

513). 

To assess chemokine expression at tissue sites, mouse ear pinnae were injected 

with PBS or saline. 24 hours later, animals were euthanised and their ears were 

harvested, processed and tissue lysates extracted. The lysates were then mixed 

with detection antibodies and incubated with a membrane pre-coated with 

capture antibodies.  

Finally, the blot was developed using a chemiluminescent reagent to give spots 

in duplicate for each chemokine assayed. Mean pixel density of these spots were 

evaluated and relative differences between inflamed and resting ears was 

established. The graph displays fold change in mean pixel density of Inflamed 

ears compared to resting ears. Overall, 13 chemokines were upregulated and 12 

downregulated at LPS inflamed mouse ears (Figure 4.2.5A). Only CCL5 

underwent a greater than 1-fold increase and was therefore considered 

substantial (Figure 4.2.5A). 

Polarised OT-II Th1 cells were also assessed for their expression of CCR4, CCR5 

and CX3CR1. Almost all Th1 cells were found to express CCR5 (Figure 4.2.5B). A 

large majority of Th1 cells were also found to express CCR4 (Figure 4.2.5B). In 
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contrast, only a small population of polarised Th1 cells were found to express 

CX3CR1 (Figure 4.2.5B).  

Since CCL5 was substantially upregulated and its cognate receptor CCR5 was 

expressed in all polarised T cells, a further CCL5 ELISA was carried out. This was 

to confirm whether CCL5 upregulation was statistically significant. CCL5 was 

found to be significantly upregulated at inflamed tissues (Figure 4.2.5C). In 

combination, the data suggests that CCL5-CCR5 interactions may play a role in 

regulating Th1 cell persistence at inflamed tissue sites. 

 

Figure 4.2.5 CCL5 is increased at inflamed tissues 
Age matched C57BL/6 mice at 6 weeks of age were challenged with LPS or PBS in their right ear 
pinnae. 24 hours later, animals were euthanised and their ears harvested and tissue lysates 
prepared. The lysates were then blotted using a proteome profiler mouse chemokine array kit (A). 
Fold change was calculated by normalising the pixel density according to proteome profiler array kit 
instructions and then subtracting pixel density of PBS group values from LPS group values and 
dividing by the PBS value ((PBS-LPS)/PBS). For flow cytometry, polarised and negatively selected 
Th1 cells were stained with or without anti-mouse CCR5, CCR4 and CX3CR1 antibodies. Cells are 
pre-gated on CD4+ Lymphocytes. (B). CCL5 ELISA was carried out on protein extracted from LPS 
or PBS treated ear pinnae. The protein concentration was measured using a standard BCA assay. 
Equal amounts of protein were loaded into wells in duplicate and concentration of CCL5 was 
measured against a standard curve using standard manufacturers’ guidelines as described in 
materials and methods. CCL5 ELISA was a duoset ELISA kit from R&D systems (C). Proteome 
profiler data shown is from 1 experiment with 5 animals per group. CCL5 ELISA is data from 1 
experiment with 5 animals per group and the FACS plots are representative data from 2 
independent experiments. Error bars represent SEM. Statistical differences between groups were 
assessed by carrying out an unpaired Student’s T test using Graphpad Prism * denotes p value of 
<0.05 
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4.2.6 G-protein coupled receptor signalling mediates Th1 cell 
persistence at inflamed sites 

G-protein coupled receptors (GPCRs) are a family of seven transmembrane helix 

proteins that are critical in cell signalling. Chemokine receptors are GPCRs. 

Chemokines, signalling through GPCRs have been shown to upregulate both pro-

apoptotic and anti-apoptotic factors in cells (562-564). Chemokines are also 

more classically known for their role in cellular trafficking (155).  

To disrupt GPCR signalling, polarised Th1 cells were treated with pertussis toxin 

prior to transfer. Pertussis toxin (PTX) is an exotoxin produced by Bordetella 

pertussis (577). Upon binding the GPCR, PTX is internalised where it catalyses 

the ADP-rybosylation of the ai subunits of the G protein. This rybosylation 

prevents G-proteins from associating with GPCRs at the cell surface, disrupting 

intracellular signalling (578).  

PTX or vehicle treated Th1 cells were transferred into LPS or saline treated 

mouse ear pinnae. 24 hours after transfer, the animals were euthanised and 

their ears and dLNs were harvested, stained for flow cytometry and numbers of 

transferred cells enumerated (Figure 4.2.6A). 

PTX treatment did not alter the number of T cells recovered from resting tissue 

sites. In contrast, PTX treatment significantly reduced the number of cells 

recovered from inflamed tissues (Figure 4.2.6B). PTX treatment however, did 

not alter the number of transferred cells recovered from the draining lymph 

nodes of either inflamed or resting ear pinnae (Figure 4.2.6C). These data 

suggest that GPCR signalling is essential for Th1 cell persistence at inflamed 

tissues. 
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Figure 4.2.6 Fewer Th1 cells are recovered from inflamed sites after PTX treatment 
Age matched C57BL/6 mice at 6 weeks of age were challenged with LPS or PBS in their right ear 
pinnae. 24 hours later 2.0e6 pertussis toxin (100ng/ml) or vehicle treated OT-II TH1 cells were 
transferred into the same ear pinnae of animals. 24 hours after the transfer, mice were euthanised 
and their ears and dLN were harvested, processed and stained for FACS. Cells were stained with a 
viability dye followed by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. 
Lymphocytes were initially gated on live CD45+, CD4+ cells and subsequently analysed for their 
expression of CD45.1 and Va2. FACS plots are representative of 3 independent experiments. 
Graphs show combined data from 3 independent experiments with 9 ( PBS and PBS+PTx) or 7 
(LPS and LPS+FTY720) animals per group. Error bars represent SEM. Statistical differences 
between groups were assessed by carrying out a One-way ANOVA and Tukey’s multiple 
comparisons test using Graphpad Prism **** denotes p value <0.0001. 
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4.3 Discussion 

Effector T cell death is a critical step in the regulation of an immune response. 

It enables the dampening of inflammation and restoration of tissue homeostasis 

(579). At inflamed tissues several factors including cytokines, lipid mediators 

and chemokines regulate the decision for T cell survival or death (580-582). In 

chronically inflamed tissues however, these factors are dysregulated. This leads 

to prolonged persistence of T cells which drives local inflammation and tissue 

destruction (419, 583). In this chapter, the factors that maintain the persistence 

of Th1 cells at inflamed tissues were investigated. 

4.3.1 T cell persistence is not antigen mediated 

Previous studies have suggested that antigen-bearing APC and cognate T cell 

interactions play a role in central and peripheral T cell persistence (541-545). 

Hence, whether the presence of cognate antigen altered T cell persistence in 

the LPS inflamed tissue model was investigated. The results suggested that 

presence of cognate antigen at the tissue site does not alter T cell persistence. 

While this result contradicts previous studies, it is in some ways unsurprising. In 

my model system, animals were not previously primed for a specific antigen as 

done by Reinhardt et al. and Rosenbaum et al (392, 549). Moreover, while HAO 

was injected intradermally, its persistence in tissue for 24 hours was not 

determined. Therefore, whether cognate antigen was present at the tissue site 

at the time of T cell transfer and beyond cannot be confirmed.  

To overcome these technical limitations and address this question more 

comprehensively, animals could be primed with OVA in the presence of an 

adjuvant 7 days prior to induction of localised ear inflammation by LPS and HAO 

followed by intradermal T cell transfer. Presence of OVA at the tissue site should 

also be confirmed by fluorescent labelling.            

4.3.2 T cell motility is mediated by soluble factors 

Intravital microscopy of adoptively transferred Th1 cells demonstrated that they 

were more motile at inflamed tissues compared to resting tissues. This finding is 

supported by studies which demonstrate that T cells have increased motility at 
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inflamed tissues (391). This pattern of motility is known as a Lévy walk (584). A 

Lévy walk allows effector T cells to efficiently scan a peripheral tissue site to 

find their target cell/area (584, 585).  

Multiple factors are responsible for regulating T cell behaviour at tissues 

including intrinsic programming, physical and chemical guidance cues (391, 585). 

Intriguingly, soluble mediators have been shown to increase T cell motility 

rather than provide directional movement in vivo (425). This could suggest that 

the increased motility observed in our studies are due to increased soluble 

mediators at inflamed tissues. This hypothesis is further explored in the next 

chapter. 

Finally, a study by the Bousso group demonstrated that apoptotic T cells lose 

their motility prior to caspase 3 expression and death (571). This finding strongly 

suggests that the non-motile Th1 cells observed in resting tissues were 

undergoing apoptotic death. Ultimately though, it is difficult to conclude that 

Th1 cells at the non-inflamed tissues are apoptotic without in vivo reporter of 

apoptosis. 

4.3.3 Th1 cell persistence is regulated by inhibition of apoptosis 
at inflamed tissues 

Decreased motility of T cells at non-inflamed tissues was an indication that they 

were undergoing apoptotic death. To confirm this, an ex vivo caspase assay was 

carried out. The assay demonstrated that greater number of transferred T cells 

at resting tissues were indeed expressing active caspases compared to T cells at 

inflamed tissues.   

Effector T cells are pre-programmed to undergo apoptosis (586). However, at 

inflamed tissues several anti-apoptotic signals have been shown to prolong 

effector T cell survival (587). Elevated levels of the cytokine IL-7 has been 

reported in RA synovial fluid (581, 588). Moreover, TNF, a cytokine commonly 

elevated in multiple inflammatory disorders can have both pro and anti-

apoptotic effects on T cells (508, 589). FASL ligation to FAS is a common 

mechanism for induction of T cell death at peripheral tissues (590).  
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Levels of these death/survival cytokines were assayed to determine whether 

they were responsible for T cell persistence at LPS inflamed tissues. No 

differences were observed in the levels of any of these cytokines 24hours after 

LPS administration. The 24-hour time point investigated may account for the 

discrepancies between my findings and previous studies. 

Copeland et al. demonstrated that TNFa levels peaked in mouse blood plasma 4 

hours after systemic endotoxin administration (527). In another study by Calil et 

al., TNFa levels peaked in mouse paws 3 hours after local LPS administration 

(510). In contrast, induction of acute inflammation in mouse lungs was found to 

cause a peak in TNFa levels 24 hours post local carrageenan administration 

(591). These studies demonstrate that TNFa levels at inflamed tissues is 

regulated by both the inflammatory stimuli as well as the tissue location. LPS 

mediated TNFa production most likely peaks very early following stimuli (510, 

527). 

Similarly, FASL levels were found to be elevated 3 days after a virus induced 

acute inflammatory response in murine vaginal tissue (592). Analyses targeting 

the expression of IL-7 at acutely inflamed tissues have not been undertaken. 

However, IL-7 is believed to be an early mediator of inflammation in RA (593).       

4.3.4  Chemokines as potential regulators of T cell death 

Chemokines are another class of mediators that have roles in cell survival and 

migration. CXCL12-CXCR4 interactions have previously been reported to 

modulate T cell survival (84, 566). CCL5 has also been reported in promoting and 

inhibiting cellular apoptosis (562-564). Moreover, spatial and temporal changes 

in chemokine ligand expression is well documented during inflammatory 

responses (155). A chemokine array was performed to analyse relative 

differences in chemokine ligand expression. Surprisingly, only CCL5 levels were 

substantially altered 24 hours after LPS administration. 

Similar to the cytokine levels, chemokine expression found was a snapshot of the 

24-hour time point. Multiple studies reveal a substantial increase in CXCL8 levels 

after LPS challenge which was not observed in our case (594). Analysing 
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chemokine expression by other methods such as RNA-seq might provide more 

robust results.   

4.3.5 GPCR signals are necessary for Th1 cell persistence 

Chemokine receptors are GPCRs (154, 155). To analyse whether T cell 

persistence was mediated via chemokines, Th1 cells were treated with pertussis 

toxin prior to their adoptive transfer. Pertussis toxin inhibits GPCR signalling 

(577, 578, 595). Lower numbers of PTX treated cells were recovered from 

inflamed tissues than untreated cells from inflamed tissues. This result clearly 

demonstrated that T cell persistence was directly mediated by GPCR signals.  

This finding contradicts with multiple studies which have demonstrated that PTX 

treatment of T cells resulted in their accumulation at peripheral tissues rather 

than their disappearance (448, 596). This phenomenon is thought to be CCR7 

mediated as CCL19/21 guide T cell egress from peripheral tissues (451, 452). The 

inflammation state as well as T cell polarisation differs in my experiments from 

these studies and this may account for the observed discrepancy. 

The Bromley et al. study examined the egress of Th2 cells from lungs with the 

use of CCR7 overexpression transgenic model system. Using this system they 

demonstrated that Th2 cells require CCR7 to leave the lungs and accumulate in 

the mediastinal lymph nodes, 36 hours after intratracheal instillation. In 

contrast, Debes et al. adoptively transferred naïve T cells treated with or 

without pertussis toxin intradermally into mouse footpad. They demonstrated 

that PTX inhibited naïve T cell egress from the footpad and that this egress was 

CCR7 mediated. My studies investigated the migration of Th1 cells from an 

acutely inflamed mouse skin tissue. Hence, both my cell polarisation state and 

tissue site and state were different from these two studies (451, 452). 

Other studies have suggested roles for S1PRs in regulating T cell accumulation 

and egress from peripheral tissues (244). S1PRs are also GPCRs which are PTX 

sensitive. In the next chapter, the role S1P plays in T cell persistence is 

investigated.   

 



 
 

5 Sphingosine-1-Phosphate regulates Th1 cell 
persistence at inflamed tissues 
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5.1 Introduction 

Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid. Sphingosine, the 

precursor to S1P is produced by the sequential degradation of cell membrane 

glycosphingolipids and sphingomyelin to make ceramide (176, 597). Ceramide is 

then hydrolysed to sphingosine which is phosphorylated by one of two kinases 

SPHK1 and SPHK2 to produce S1P (598). Studies have shown that SPHK-/- leads to 

embryonic lethality in mice emphasising the physiological importance of S1P 

(599). 

S1P is primarily produced in intracellular lysosomes of RBCs, platelets and 

endothelial cells (600-603). Subsequently, it is either used/degraded 

intracellularly or transported out of the cell (604-607). Five S1P receptors have 

been identified to date (S1PR1-5) (226). These are all high-affinity GPCRs (226). 

The varied cellular expression and signalling of each individual receptor yields 

the pleiotropic and antagonistic effects of S1P (226). 

5.1.1 Heterogeneous roles of S1P 

S1P plays an important role in vascular maintenance. Signalling via S1P receptors 

1-3 co-operatively regulates vascular angiogenesis during embryogenesis (608, 

609). The intra-extracellular S1P transporter spns2 is also critical in this process 

(608). Postnatally, S1P regulates vascular integrity. This was demonstrated when 

mice lacking plasma S1P exhibited vascular leakage under homeostatic 

conditions (610).  

Interestingly, systemic pertussis toxin administration in wild type mice induced 

similar vascular leakage. Treatment with S1PR1 agonists restored vascular 

integrity (610). Finally, S1P regulates vascular smooth muscle tone. Signalling via 

S1PR2 was found to be crucial in maintaining smooth muscle contractility (611, 

612).  

S1P is likewise crucial in embryonic neurogenesis. It was found that defects in 

either S1P biosynthesis or S1PR1 led to neural tube closure and thus embryonic 

lethality (599). In adult nervous systems, multiple S1PRs are expressed across 

several cell types including neurons and microglia. Roles for S1P has been 
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described in neurotransmitter release, microglial proliferation and pain 

pathophysiology (613-616).  

In contrast S1P plays a negative role in cancer. S1P metabolism is dysregulated 

in several tumours (617). Furthermore, S1P was found to promote tumour 

angiogenesis, proliferation, aid in metastasis and invasion as well as resist 

tumour cell death (617-622). Cancer therefore, is a hallmark of the pleiotropic 

and antagonistic effects of S1P on its targets. 

5.1.2 S1P in cell survival and apoptosis 

Many studies have investigated the role S1P plays in regulating cellular survival 

and apoptosis. One study in human hepatic fibroblasts found that S1P induced 

apoptosis in a receptor independent manner while increasing survival in a 

receptor dependent manner (623). Likewise, a few studies have suggested that 

ceramide, an intracellular pre-cursor to S1P induces pro-apoptotic signals. 

In contrast, S1P itself is pro-survival (624). The mechanism for S1P mediated 

survival remained elusive until recently, when Rutherford et al. demonstrated 

that S1P suppresses the pro-apoptotic molecule bim and promotes upregulation 

of pro-survival Mcl-1 in lung fibroblasts to aid in cell survival (625). 

Very recently, Mendoza et al. demonstrated for the first time, a role for S1P in 

regulating T cell survival. They found that knocking out the intra-extracellular 

S1P transporter SPNS2 led to increased death of naïve T cells. They further 

demonstrated that S1PR1 KO animals also had an increased number of apoptotic 

naïve T cells in LNs. Finally, they elegantly demonstrated that S1PR1 is essential 

for the maintenance of mitochondrial integrity in naïve T cells (626).   

Whether these varying mechanisms of S1P mediated cell survival are spatially 

and temporally conserved across cell types remains to be determined.  

5.1.3 S1P is a key regulator of cellular trafficking 

S1P levels across organ systems is strictly regulated in homeostatic conditions. 

Micromolar and nanomolar levels of S1P are found in the blood and lymphatic 

vasculature respectively. In contrast, interstitial fluid has either undetectable or 
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sub-nanomolar levels of S1P (217). The maintenance of this gradient is critical, 

as cells vary their S1PR expression to traffic between organs and vasculature 

(205, 224). T and B cells sense the S1P gradient via S1PR1 to traffic between 

SLOs and circulation (218). Likewise, S1P gradients regulate NK cell and 

haematopoietic stem cell mobilisation via S1PR5 and S1PR1 respectively, 

between the bone marrow and the circulation (627).   

T cell trafficking is an elegant example of how S1P, S1PR1 and its regulators are 

critical in inflammatory conditions. Naïve T cells in SLOs express high levels of 

S1PR1 and high levels of CCR7 (424, 431). This leads to T cell retention due to 

increased gradients of CCL19/21 interacting with CCR7 in SLOs (425, 426).  

Antigen exposure increases CD69 expression on T cells (432). CD69 is a negative 

regulator of S1PR1. Multiple studies have shown that CD69 directly interacts 

with, and downregulates S1PR1 expression on cell surface. This downregulation 

of S1PR1 allows T cells to dwell in SLOs while undergoing clonal expansion (432-

434).  

Once fully activated, effector T cells downregulate CCR7 and upregulate S1PR1 

(243). T cells expressing S1PR1 migrate towards higher S1P gradients in efferent 

lymphatic vessels, eventually leading to their egress to peripheral tissues (436, 

437). The S1PR1 expression profile of T cells in tissues is not well defined.  

KLF2 is a transcription factor that regulates S1PR1 expression on T cells (628). 

High levels of KLF2 has been associated with high S1PR1 expression (456). 

Studies have found that early effector cells at tissue sites are KLF2 high, but 

over time KLF2 expression is lost (629). 

Furthermore, several studies have suggested that inflamed tissues have elevated 

S1P levels. Ledgerwood et al. found that S1P levels were significantly increased 

at alloantigen or adenovirus inflamed mouse skin (244). Increased S1P levels 

were reported in joints of CIA mice as well as in the synovial fluid of RA patients 

(271, 630).  

Interestingly, Ledgerwood et al. demonstrated that migration of CD4 T cells 

across lymphatic, but not blood endothelium was inhibited from inflamed mouse 
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skin, regulated by S1PR1 (244). Thus, S1P-S1PR1 signalling regulates lymphocyte 

trafficking in homeostatic and inflammatory conditions. 

5.1.4 S1P in cytoskeletal rearrangement 

Cells use cytoskeletal machinery such as actin and myosin to migrate (631). It is 

therefore unsurprising that S1P elicits most of its physiological effects via 

regulation of the cytoskeleton. S1PR signalling directly activates the RHO family 

of GTPases which regulate actin and myosin assembly (632). This has been shown 

to have varying effects on distinct cell types.  

In endothelial cells, S1P was found to enhance chemotaxis and regulate vascular 

barrier integrity mediated via cytoskeletal rearrangements (633, 634). S1P 

mediated control of vascular smooth muscle tone is also facilitated via Rho-

kinase activation (611, 635). 

In neuronal cells, S1P modulates neuronal outgrowth by controlling RAC 

activation and thus neuron morphology (636). In contrast, S1P potently inhibits 

melanoma cell migration by preventing actin nucleation and pseudopod 

formation (637). In glioblastoma cells however, S1P promotes tumour cell 

migration and metastasis mediated via distinct S1PR and Rho GTPase activation 

(638).  

Finally, the molecular mechanisms of S1P mediated immune cell migration is 

poorly understood (632). In human DCs, S1P was found to enhance chemotaxis by 

increasing actin polymerisation (639). S1P robustly stimulates NK cell motility in 

a PI3-kinase dependent manner (640). In contrast, S1P was found to inhibit mast 

cell migration (641).             

5.1.5 Modulators of S1PRs 

S1P is difficult to detect in vivo (430). Moreover, a S1P blocking antibody was 

only made available recently (642). Therefore, functions of S1P have primarily 

been elucidated by studying the effects pharmacological modulators elicit on 

S1PRs. FTY720 was the first described S1PR modulator (438). It was later 

discovered that FTY720 was a functional antagonist of S1PR1,3,4 and 5 but had 

no effect on S1PR2 (222).  
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Later, receptor selective agonists and antagonists were synthesised. These 

included FTY720-P, an S1PR1,3,4 and 5 agonist, SEW2871, an S1PR1 selective 

agonist and W146, an S1PR1 selective antagonist (223, 240, 643). All of these 

S1PR modulators have played key roles in the current understanding of S1P 

biology. 

5.1.6 Aims of this chapter 

Greater recovery of CD4 Th1 cells from inflamed tissues was found to be GPCR 

sensitive (chapter 4). S1PRs are members of the GPCR family and regulators of T 

cell survival and trafficking. The aims for this chapter were to investigate 

whether S1PR signalling was responsible for the observed T cell persistence 

phenotype at inflamed tissues.  

S1P signalling also modulates cell survival and behaviour. Therefore, whether 

S1PR signalling modulated Th1 cell behaviour and survival was also investigated. 

Finally, a human inflammatory disease was investigated for the presence of 

elevated S1P levels, which may contribute to T cell persistence at inflamed 

tissues. 
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5.2      Results 

5.2.1 S1PR signalling is critical for Th1 cell persistence 

S1P is a pleiotropic signalling sphingolipid (644). It plays diverse roles in cellular 

communication. Studies have reported a role for S1P in regulating T cell 

trafficking and survival (243, 626). Interestingly, S1P receptors are also GPCRs, 

and sensitive to pertussis toxin mediated signalling disruption (219-221). Hence, 

to identify whether S1PR signalling contributes to the persistence of effector 

Th1 cells at inflamed tissues, T cells were treated with an S1PR pan functional 

antagonist, FTY720.   

FTY720 or vehicle treated Th1 cells were transferred into inflamed or resting ear 

pinnae. 24 hours later, animals were euthanised and their ears and dLNs were 

harvested, stained for flow cytometry and the transferred cells enumerated. 

Just like PTX treatment, significantly lower numbers of cells were recovered 

from inflamed tissues following pre-treatment with FTY720 (Figure 5.2.1A).  

FTY720 treatment did not alter the number of cells recovered from non-inflamed 

tissues (Figure 5.2.1A). No differences were observed between the draining 

lymph nodes of inflamed or resting ear pinnae irrespective of FTY720 treatment 

(Figure 5.2.1B). In sum, these data suggest that persistence of Th1 cells at 

inflamed tissues is mediated by PTX sensitive S1PR signalling. 
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Figure 5.2.1 Fewer Th1 cells are found at inflamed sites after FTY720 treatment 
Age matched C57BL/6 mice at 6 weeks of age were challenged with LPS or PBS in their right ear 
pinnae. 24 hours later 2.0e6 FTY720 or vehicle treated OT-II Th1 cells were transferred into the 
same ear pinnae of animals. 24 hours after the transfer, mice were euthanised and their ears (A,B) 
and dLN (C) were harvested, processed and stained for FACS. Cells were stained with a viability 
dye followed by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. 
Lymphocytes were initially gated on live CD45+, CD4+ cells and subsequently analysed for their 
expression of CD45.1 and Va2. FACS plots are representative of 3 independent experiments.  
Graphs show combined data from 2 independent experiments of 11 or 9 (LPS) animals per group. 
Error bars represent SEM. Statistical differences between groups were assessed by carrying out a 
One-way ANOVA and Tukey’s multiple comparisons test using Graphpad Prism *** denotes p 
value of < 0.001 and **** < 0.0001. n.s. denotes not significant. 
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5.2.2 S1PR signalling regulates T cell behaviour at inflamed 
tissues 

S1P has roles in cytoskeletal rearrangement in various cell types including 

immune cells (632). S1P regulates RHO GTPases via S1PR signalling (632). RHO 

GTPases are critical in actin and myosin assembly which regulates cellular 

motility (631). In the previous chapter Th1 cells were found to be more motile at 

inflamed tissues.  

To investigate whether S1PR signalling was regulating this behaviour, FTY720 or 

vehicle treated Th1 cells were transferred into LPS inflamed ear pinnae of 

LysMGFP mice. Similar to the experiments in (Figure 4.2.2) Th1 cells were 

transferred in a small volume at shallow depths to keep tissue localisation of the 

T cells as consistent as possible. LysMGFP mice have a GFP tag associated with 

the lysozyme gene (496). This labels neutrophils in these mice, bright green in 

colour. Monocytes and macrophages also express a lower intensity of GFP.  

4-5 hours later, animals were anaesthetised and restrained on a temperature 

controlled stage. The ear of the animal was then imaged and time-series movies 

were captured (video 3, 4).  

The movies were analysed and CD4 T cells tracked to assess their velocity and 

displacement (Figure 5.2.2A, B). FTY720 treated Th1 cells had substantially 

reduced velocity compared to vehicle treated cells at inflamed sites (Figure 

5.2.2C). Arrows in the still images and videos demonstrate reduced movement of 

T cells when treated with FTY720 compared to vehicle treatment. The videos 

and still images also demonstrate T cells travelling within or near collagen fibre 

networks (Figure 5.2.2 E,F)(video 3,4), suggesting similar tissue localisation of T 

cells compared to T cells in (Figure 4.2.2). Hence, the behaviour of FTY720 

treated T cells was similar to T cells at resting tissues. FTY720 treated Th1 cells 

also exhibited decreased displacement (Figure 5.2.2D), however this was to a 

lesser extent than cells at resting tissues (Figure 4.2.2). This suggests that 

factors other than an S1P signal may also contribute to the overall behaviour of 

T cells leading to their persistence. 
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Figure 5.2.2 FTY720 treated Th1 cells travel reduced distances and at a lower velocity 
compared to untreated cells at inflamed tissues 
LysMGFP mice were challenged with either PBS or LPS. 24 hours later, ~2.0e3 polarised Th1 cells 
treated with or without FTY720 expressing DsRed were transferred into the injection site at a 
shallow depth, in a small volume. The animals were rested for 4-5 hours before the ears were 
imaged by a Zeiss LSM 7MP microscope. Images were acquired using a 20x/1.0NA water 
immersion objective lens. Images were then analysed using volocity software and DsRed positive 
cells were manually tracked individually, generating their velocity and displacement rates. (A,B) X-
Y plots show distance of T cell tracks and are representative plots from 1 of 3 individual mice per 
treatment group. (C,D) Velocity and displacement graphs show combined values from 3 individual 
mice. (E,F) Representative stills from 1 of 3 individual mice per treatment group, illustrating 
distance travelled by T cells from time zero, indicated by arrows. Each data point on graphs (C,D) 
represents a DsRed T cell and bars represent mean. In the movies, green cells = LysM+ cells 
(neutrophils/monocytes), blue = second harmonic signal and red cells = CD4 Th1 cells. Arrows 
demarcate the position of the same T cell at different time points, indicating their movement or lack 
thereof. Statistical differences between groups were assessed by carrying out a Mann-Whtiney test 
using Graphpad Prism * denotes p value of <0.05 and **** < 0.0001. 

  

0

50

100

150

200

250

Ve
lo

ci
ty

 
(μ

m
/m

in
)

0

5

10

15

LPS + 
FTY720

LPS

****

D
is

pl
ac

em
en

t
(μ

m
)

LPS + 
FTY720

LPS

*C D

A

LPS+FTY720LPS

Distance (µm)

D
is

ta
nc

e 
(µ

m
)

-10

-30

-50

50

30

10

-10-30-50 503010

-10

-30

-50

50

30

10

-10-30-50 503010

Distance (µm)

D
is

ta
nc

e 
(µ

m
)

B

E LPS zero minutes F LPS + FTY720 zero minutesLPS 26 minutes LPS + FTY720 22 minutes



 
 

 165 

5.2.3 S1P mediated Th1 cell survival at inflamed tissues remains 
inconclusive 

The effect of S1P on naïve T cell survival at SLOs has only very recently been 

determined by Mendoza et al. as discussed in section 5.1.2. However, a role for 

S1P in supporting effector T cell survival at inflamed tissues has not been 

studied.  

Hence, to assess whether S1P was increasing Th1 cell survival at inflamed 

tissues, S1PR signalling was disrupted via FTY720 and Th1 cell survival assayed. 

FTY720 or vehicle treated Th1 cells were transferred into inflamed or resting ear 

pinnae. 24 hours later, animals were euthanised and their ears and dLNs were 

harvested, stained with flow cytometry antibodies and incubated with the FLICA 

reagent for an hour. The cells were then analysed and the proportion of OT-II 

cells that expressed active caspases 3 and 7 was determined via positive FLICA 

staining (Figure 5.2.3A). 

A trend to fewer apoptotic cells were found in T cells recovered from inflamed 

compared with non-inflamed tissues (Figure 5.2.3B), contradicting the results in 

Figure 4.2.3. Furthermore, FTY720 treatment somewhat reversed Th1 cell 

survival at inflamed tissues without reaching statistical significance (Figure 

5.2.3B). Taken together, this data remains inconclusive, due to it directly 

contradicting the results of section 4.2.3 which will be discussed further in the 

discussion of this chapter below.      
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Figure 5.2.3 Increased number of T cells at inflamed tissues is not due to increased survival 
mediated via S1P receptors 
Age matched C57BL/6 mice at 6 weeks of age were challenged with LPS or PBS in their right ear 
pinnae. 24 hours later 2.0e6 OT-II Th1 cells treated with or without FTY720 were transferred into 
the same ear pinnae of animals. 24 hours later, mice were euthanised and their ears were 
harvested, processed and stained for FACS. Cells were stained with a viability dye followed by 
fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were initially 
gated on live CD45+, CD4+, CD45.1+, Va2+ cells and the expression of active caspase 3 and 7 
was analysed by measuring their expression of FLICA by incubating cells using a FLICA kit (life 
technologies). FACS plots are representative of 3 independent experiments. Graphs show 
combined data from 2 independent experiments of 7 or 6 (LPS+FTY720) animals per group. Error 
bars represent SEM. Statistical differences between groups were assessed by carrying out a One-
way ANOVA and Tukey’s multiple comparisons test using Graphpad Prism. n.s. denotes not 
significant. 
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5.2.4 S1P signal is necessary and sufficient for CD4 Th1 cell 
persistence at inflamed tissues 

To date, five S1P receptors have been identified (S1PR1-5) (226). The specific 

role of S1P is determined by the cellular and temporal expression of these S1PRs 

(205, 224). S1PR signalling has resulted in effects as distinct as cellular 

proliferation, death, migration, retention and egress (644). These effects have 

been observed in diverse cell types including immune cells, neurons, tumour 

cells and endothelial cells (644). Likewise, the S1P analogue FTY720, used in 

previous studies has distinct effects on multiple S1PRs (438).  

To determine whether S1PR1 specific agonism was responsible for Th1 cell 

persistence at inflamed tissues, S1PR1 selective agonist or antagonist were used. 

Prior to transfer, Th1 polarised OT-II T cells were treated with either W146, 

SEW2871 or vehicle. W146 is a S1PR1 selective antagonist (240). SEW2871 is a 

S1PR1 selective agonist (223). Treated cells were transferred into inflamed or 

resting ear pinnae. 24 hours later, the animals were euthanised and their ears 

and dLNs were harvested, stained for flow cytometry and the transferred cells 

enumerated (Figure 5.2.4A). 

Significantly lower numbers of Th1 cells were recovered from inflamed tissues 

when pre-treated with W146 just as with FTY720 (Figure 5.2.4B). W146 

treatment however, did not affect Th1 cell recovery from non-inflamed tissues 

(Figure 5.2.4B). In contrast, agonism of S1PR1 via SEW2871 treatment resulted in 

a significant increase of Th1 cell recovery from non-inflamed tissues compared 

to vehicle treated cells (Figure 5.2.4B).  

Surprisingly however, no significant increase was observed at inflamed tissues 

when T cells were pre-treated with SEW2871 compared with vehicle treated 

cells at resting sites (Figure 5.2.4B). As in previous experiments, no significant 

differences were observed between the lymph nodes draining either inflamed or 

resting ears, irrespective of T cell pre-treatment (Figure 5.2.4C). In sum, these 

data demonstrate that S1PR1 specific signals were responsible for T cell 

persistence at inflamed tissues. Moreover, they suggest that FTY720 was acting 

as an antagonist of S1PR1 in previous experiments.  
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Figure 5.2.4 S1PR1 selective agonism results in increased CD4 Th1 cell recovery from 
tissue sites 
Age matched C57BL/6 mice at 6 weeks of age were challenged with LPS or PBS in their right ear 
pinnae. 24 hours later 2.0e6 SEW2871, W146 or vehicle treated OT-II Th1 cells were transferred 
into the same ear pinnae of animals. 24 hours later, mice were euthanised and their ears and dLN 
were harvested, processed and stained for FACS. Cells were stained with a viability dye followed 
by fluorescently labelled antibodies against CD45, CD4, CD45.1 and Va2. Lymphocytes were 
initially gated on live CD45+, CD4+ cells and subsequently analysed for their expression of CD45.1 
and Va2.  FACS plots are representative of 3 independent experiments. Graphs show combined 
data from 2 independent experiments of 6 (LPS, LPS+ SEW2871, PBS+ SEW2871, PBS+W146) 
or 7 (PBS, LPS+ W146) animals per group. Statistical differences between groups were assessed 
by carrying out a One-way ANOVA and Tukey’s multiple comparisons test using Graphpad Prism 
*** denotes p value of <0.001, ** and **** < 0.0001. n.s. denotes not significant. 

5.2.5 Th1 cells express S1PR1 prior to transfer but downregulate 
it at inflamed tissues 

S1PR1 expression on T cells is dynamic and temporally regulated. Naïve T cells in 

circulation express little surface S1PR1, but are S1PR1hi once in SLOs (389).  

Early effector T cells are S1PR1hi but down modulate its expression once at 

tissue sites for a few days (629). Measuring surface S1PR1 expression is 

challenging. Sub nano molar levels of S1P causes receptor internalisation and 

degradation of S1PR1 (212, 222, 223).  

Indeed, local S1P gradient dynamics have been elucidated by measuring cell 

surface expression of S1PR1 (431, 440, 602). Previous data suggested that signals 

through S1PR1 were responsible for Th1 cell persistence at inflamed tissues. 

Thus, it was important to examine the relative expression of S1PR1 on Th1 cells 

both in vitro and ex vivo. 
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To determine whether Th1 cells expressed S1PR1 in vitro, polarised OT-II T cells 

were stained with anti-S1PR1 antibody and analysed on a flow cytometer. 

Roughly a quarter of Th1 cells were found to express surface S1PR1 (Figure 

5.2.5A). Intracellular staining with the same S1PR1 antibody revealed that a 

large majority of cells expressed S1PR1 intracellularly (Figure 5.2.5B).  

Next, ex vivo surface and intracellular expression of S1PR1 by Th1 cells 

recovered from ear tissue was assessed. Polarised OT-II Th1 cells were 

transferred into inflamed or resting mouse ear pinnae. 24 hours later, ear tissue 

was harvested, stained for flow cytometry and cell surface and intracellular 

S1PR1 expression determined. No surface S1PR1 expression was detected from 

tissue recovered Th1 cells, possibly due to digestion (Figure 5.2.5C). Intriguingly 

however, Th1 cells were found to have reduced intracellular S1PR1 expression at 

inflamed ear tissues compared to T cells at resting tissues (Figure 5.2.5D,E). In 

sum these data suggest that Th1 cells express S1PR1 at transfer and are 

therefore responsive to S1P signals. Moreover, a reduced intracellular expression 

at inflamed ears may be attributed to increased S1P and thus increased S1PR1 

degradation at the site. 
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Figure 5.2.5 Th1 cells express S1PR1 before transfer but downregulate it at inflamed tissues 
CD4 T cells were isolated from the lymph nodes and spleens of CD45.1 OT-II mice using a 
STEMCELL technologies CD4 T cell isolation kit. The cells were then cultured with IL-12, anti-IL-4 
and ovalbumin peptide323-339 in the presence of mitomycin C treated splenocytes for 72 hours at 
37°C with 5% CO2. Thereafter, cells were stained with anti-CD4 with or without anti-S1PR1 
antibodies (A). Cells were then fixed and permeabilised with a BD cytofix/perm kit and stained with 
or without anti-S1PR1 antibody (B). Animals were treated with LPS or saline in their ear pinnae 
before 2.0e6 CD4 Th1 cells were transferred into the ear pinnae. 24 hours later animals were 
euthanised and their ears harvested and stained for flow cytometry with a cocktail of antibodies 
including anti-CD4 and anti-S1PR1 extracellularly (C). In another experiment, cells were fixed and 
permeabilised using a BD cytofix/perm kit and stained with anti-S1PR1 antibody intracellularly 
(D,E). In vitro experiments were pre-gated on live, single lymphocytes and are representative of 2 
independent experiments. Ex vivo plots are pre-gated on live, single CD45+ lymphocytes and are 
representative of two (C) or one experiment (D,E) respectively with 5 animals in each group. 
Statistical differences were determined by carrying out an unpaired Student’s T test. Error bars 
represent SEM. * denotes P value of <0.05. 
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5.2.6 Inflamed tissues express increased levels of SPHK1, the 
enzyme that generates S1P 

Sphingolipids are difficult to measure reliably. Due to a critical role for S1P in 

membrane sphingolipid metabolism, intracellular S1P is abundantly produced by 

various cell types. This makes even mass spectrometry results difficult to 

interpret (430). Instead, kinases that either help produce or degrade S1P are 

often used to measure tissue S1P levels (645). Sphingosine kinase 1 (SPHK1) and 

sphingosine kinase 2 (SPHK2) are the final two kinases responsible for 

metabolising sphingosine into sphingosine-1-phosphate (210).  

To measure S1P levels at inflamed tissues, animals were treated with LPS or 

saline in their ear pinnae to induce inflammation. 24 hours later, animals were 

euthanised and their ears harvested and fixed in neutral buffered formalin. The 

tissue was subsequently sectioned into 10µm thick sections and stained with 

human and mouse cross reactive anti-SPHK1 or isotype control antibodies. 

Secondary and tertiary antibodies were used to add fluorescent tags to the 

tissues to allow visualisation on a fluorescent microscope.  

The images were then analysed and the number of total cells and cells 

expressing SPHK1 manually counted in three randomly selected areas per section 

using ImageJ software. The percentages of cells expressing SPHK1 were then 

calculated. A significantly greater proportion of cells at inflamed tissues were 

found to express SPHK1 (Figure 5.2.6A, B). These data suggest that increased 

S1P may be produced at inflamed ear pinnae. Taken together with the T cell 

persistence data, there is strong evidence suggesting that dysregulated S1P 

production at inflamed tissues contributes to increased CD4 Th1 cell persistence 

at such sites.   
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Figure 5.2.6 Inflamed mouse ears contain a significantly greater number of cells expressing 
SPHK1 
Age matched C57BL/6 animals were injected with LPS or saline in their ear pinnae. 24 hours later, 
animals were euthanised, ears harvested and fixed in neutral buffered formalin. Ear tissue was 
mounted in paraffin and cut into 10um thick sections. The cut sections were mounted on a slide 
and stained with rabbit anti human/mouse-SPHK1 or rabbit IgG (Isotype control). Sections were 
then stained with anti-rabbit biotin, followed by streptavidin-PE. Sections were mounted in prolong 
gold with DAPI and imaged on a spinning disk confocal microscope. Images were acquired using 
uniform settings at similar locations. Images were acquired at 20x magnification. Error bar shows 
20um. Three uniform areas were randomly selected in each tile section for quantification. Number 
of SPHK1 positive dots were manually counted using imagej software. Images are representative 
from one experiment with 5 animals per group. 2 randomly selected sections were quantified from 
serially sectioned mouse ears. Error bars represent SEM. Statistical differences were analysed by 
carrying out an unpaired Student’s T test. **** denotes P value of <0.0001.                 
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Molecular pathways are difficult to study in human disease settings. Therefore, 

aspects from animal models of inflammation need to be tested in humans to 

elucidate whether similar mechanisms may be present in human disease 

settings. Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory 

condition where human joint synovia are inflamed (76). One of the hallmarks of 

RA is the accumulation of large numbers of CD4 T cells in synovial tissues (84). 

The role of S1P in regulating accumulation of T cells at human RA joints remains 

unexplored.  

To assess whether S1P is increased at RA joints, a collaborative project was 

undertaken with Dr. Aziza Elmesmari and Prof. Iain McInnes, rheumatologists at 

Gartnavel hospital, Glasgow. SPHK1 levels were measured in biopsies from RA 

patients or OA patients. OA is a form of less-inflammatory arthritis, often 

associated with age related degeneration of joint cartilage. Furthermore, 

minimal accumulation of CD4 T cells have been observed in primary OA (646).  

Biopsy sections were fixed in formalin and cut into 5µm thick sections before 

staining with the same anti-SPHK1 antibody. Using appropriate secondary, 

tertiary antibodies and Diaminobenzidine (DAB), colour was developed in 

positively stained areas for visualisation on a light microscope fitted with a 

camera module.  

The images were then semi-quantified by Dr. Aziza Elmesmari. Three 

representative fields per slide were selected and graded on a scale of 0-4 by two 

blinded observers on two independent occasions. The scores were later 

combined and statistical analysis performed to determine differences between 

groups. Blinded observers consistently scored RA tissues higher for their 

expression of SPHK1 compared to OA tissues (Figure 5.2.7A,B). These data 

indicate that inflamed RA synovial tissues may produce increased S1P. Keeping 

previous conclusions in mind, increased S1P levels in synovial tissues may 

contribute to CD4 T cell accumulation in RA. 
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Figure 5.2.7 Human RA joints express increased SPHK1 
Human RA or OA biopsy samples were fixed and embedded in paraffin. 5µm thick sections were 
cut and mounted on slides. The slides were then stained with anti-human/mouse SPHK1 or rabbit 
IgG (Isotype control). Appropriate biotinylated secondary antibody and an ABC kit were used for 
colour development before DAB was used to form positive brown deposits. Sections were imaged 
on a light microscope with a camera attachment. Images were scored on a scale of 0-4 by two 
blinded observers on two independent occasions. 0 = no staining, 1 = 0-25%, 2 = 25-50%, 3 = 50-
75%, 4= 75%-100% staining. Image is representative of 4 independent biopsy samples. Synovial 
lining layer (SLL), sub lining layer (SUL) and vascular endothelial layers (VEL) of tissue were 
scored individually and a kruskal wallis test was used to calculate statistical differences between 
OA and RA in each layer. The data was then combined in graph above. Error bars represent SEM. 
* denotes P value <0.05. 
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5.3 Discussion 

Sphingosine-1-phosphate is a pleiotropic sphingolipid responsible for numerous 

cellular processes including survival, proliferation and migration (176). S1PRs are 

GPCRs and sensitive to PTX mediated inhibition of signalling (647). In this 

chapter, the role of S1PR signals in the persistence of CD4 Th1 cells was 

investigated.   

5.3.1 S1PR1 signals are necessary and sufficient for Th1 cell 
persistence at inflamed tissues  

Following on from the last chapter where T cell persistence was found to be 

pertussis toxin sensitive, the role of S1PRs, another PTX sensitive GPCR was 

examined. Th1 cells were treated with either FTY720, W146 or SEW2871 prior to 

their adoptive transfer into inflamed or resting tissue sites. These are S1PR pan 

antagonist, S1PR1 specific antagonist and agonist respectively.  

Lower numbers of Th1 cells were recovered from inflamed tissues when treated 

with S1PR antagonists, phenocopying the pertussis toxin treatment experiments. 

These results suggested that the pertussis toxin sensitive persistence of T cells is 

mediated via S1PR1 signals. These results contradict a study by Ledgerwood et 

al. where naïve T cells treated with FTY720 were found to undergo reduced 

egress to draining lymph nodes from peripheral tissue sites (244). The authors 

suggested that the lower number of T cell recovery from draining lymph nodes 

suggested tissue retention mediated via FTY720. Ledgerwood et al. also 

demonstrate that S1P treated T cells failed to migrate to lymph nodes but rather 

are retained at tissue sites.   

The difference in the polarisation state of my T cells (activated Th1 in my 

experiments versus naïve T cells in Ledgerwood et al. experiments) as well as 

their trafficking from inflamed rather than resting tissues could explain the 

differences observed. It is also important to note that Ledgerwood et al. did not 

enumerate the number of T cells at the tissue site but rather inferred their 

presence by enumerating the draining lymph nodes. In contrast, I have 

enumerated both the tissue site and the draining lymph nodes. I believe that this 

demonstrates a more robust experimental approach. Finally, FTY720 is a 
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functional antagonist of S1PRs. The Ledgerwood study in contrast, suggests it 

may be functioning as an agonist. This makes their results difficult to interpret, 

since FTY720s function as an S1PR pan functional antagonist is well documented 

(222, 438, 439, 643). 

Another study by Brown et al. demonstrated that Th1 cell egress from 

chronically inflamed tissues is mediated via S1P signals (453). Systemic FTY720 

treatment of animals prior to adoptive transfer of T cells at tissue sites reduced 

the subsequent recovery from tissue draining lymph nodes 12 hours after 

adoptive transfer. This study once again differs from my experiments in several 

key methods. Systemic FTY720 treatment of animals can have effects on 

multiple cell types and therefore the effect on T cell egress could be indirect. 

Moreover, chronically inflamed tissues may differ significantly from acutely 

inflamed tissues, both in their cellular and molecular contents (61). Thus, S1P 

levels may be different depending on the type of inflammatory stimulus used. 

Indeed, as shown in chapter 1, my investigations using a DTH inflammatory 

model failed to demonstrate Th1 cell persistence. This may suggest that S1P 

mediated T cell persistence is inflammation specific. Thus, it would be 

informative to identify the mechanism(s) of S1P gradient dysregulation at 

inflamed tissues.          

5.3.2 S1PR1 signals may regulate T cell survival 

Since LPS inflammation mediated T cell persistence was found to increase cell 

survival at the tissue, similar investigations were undertaken to determine 

whether S1PR1 signals were regulating T cell survival directly. Intravital 

microscopy revealed a marked decrease in T cell motility at inflamed tissue 

following FTY720 treatment, indicating that they may be undergoing apoptosis. 

S1P mediated cellular motility has been explored in some studies. As mentioned 

previously, S1P was found to increase NK cell motility as well as DC chemotaxis 

(639, 640). In contrast S1P signals were found to inhibit mast cell migration 

(641). In contrast, S1PR1 deficiency was found to reduce CD8 T cell velocity in 

lymph nodes (648). S1PR agonism via FTY720-P was also found to reduce CD4 T 

cell motility in explanted lymph nodes (645). Due to the conflicting nature of 

these studies, it remains uncertain whether S1P’s effects on cellular motility is 
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differential based on the tissue type and/or the cell polarisation state. These 

results are confounded by the fact that S1P acts both as a survival and migration 

signal (239, 626). Dissecting these two pathways may indeed reveal the role 

differential cellular motility plays in regulating survival or migration. 

Active caspase expression was also measured on FTY720 treated T cells. 

However, the results proved inconclusive due to no survival phenotype observed 

in vehicle treated T cells at inflamed tissues as found previously. One reason for 

this could be the prolonged tissue processing necessary for the FTY720 treated 

set of experiments due to the increased number of experimental groups.  

A role for S1P in regulating cell survival has been widely studied in various cell 

types (623-626). Studies into the molecular mechanisms revealed that inhibition 

of caspase activation played a key role (625, 626). Hence it was rational to 

undertake a caspase assay.  

Despite my inconclusive results, a very recent study by Mendoza et al. elegantly 

demonstrated for the first time that naïve T cells require S1PR1 signals to 

maintain mitochondrial integrity and thus survival (626). They measured levels 

of several mitochondrial proteins in S1PR1 deficient T cells and found them to be 

lower than their S1PR1 sufficient controls. Moreover, Mendoza et al. performed 

RNA-seq analysis on the T cells to demonstrate differential expression of survival 

and apoptotic genes in S1PR1 deficient T cells. The differences observed in this 

study were small and thus suggest that a different assay for Th1 cell survival at 

tissues such as RNA-seq may have revealed significant differences in my case. 

5.3.3 S1P levels are dysregulated at inflamed tissues 

S1P levels are low in peripheral tissue fluids and high in blood and lymphatic 

vessels (217). Therefore, increased levels of S1P in my inflamed tissue model 

may further indicate its role in supporting early Th1 cell survival in tissues. S1P 

however is difficult to measure. S1P mRNA is constitutively expressed due to its 

role in membrane sphingolipid synthesis pathway. Intracellular S1P is also made 

by almost all cells making mass spec results difficult to interpret (430). 
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The final step of the S1P synthesis pathway involves the phosphorylation of 

sphingosine to S1P by either SPHK1 or SPHK2 (210). Multiple studies have 

demonstrated that SPHK1 regulates inflammatory S1P production whereas SPHK2 

seems to control homeostatic S1P production (649). Hence, SPHK1 expression 

was analysed by immunofluorescent microscopy in LPS inflamed mouse ears. The 

results demonstrated that a significantly greater proportion of cells expressed 

SPHK1 in inflamed mouse tissues compared to resting ones. 

Interestingly, a lot of the SPHK1 expressing cells were not nucleated. Paired 

with histology results, where large regions of blood vessel haemorrhage and 

blood components were found in tissue, this result strongly suggests that 

increased SPHK1 expression was due to blood borne cellular infiltration. Red 

blood cells and platelets are the most potent producers of S1P (217). Likewise, 

increased vascular leakage at inflamed tissues is well documented (61). Thus, I 

propose that LPS inflammation causes increased vascular leakage resulting in 

increased local S1P levels. This increased local S1P regulates the survival and/or 

migration of T cells at inflamed tissues. Future studies, either inhibiting vascular 

leakage or transferring activated platelets to produce S1P at local tissue could 

be used in lieu of LPS to confirm this hypothesis. 

Another way to enumerate relative differences in S1P levels is measuring the 

expression levels of S1PR1 on T cells (431, 440, 602). This method relies on the 

exquisite sub-nanomolar sensitivity of S1P to S1PR1. T cells exposed to very low 

concentrations of S1P potently downmodulate their receptor expression (440). 

One caveat to this method however, is that the differentiation state of the cell 

may also alter the S1PR1 expression (430). Nonetheless, relative differences 

between S1PR1 expression levels were investigated in transferred Th1 cells at 

inflamed versus resting tissues. Ex vivo staining of extracellular S1PR1 expression 

proved inconclusive possibly due to tissue digestion processes. However, 

intracellular staining demonstrated Th1 cells at inflamed tissues expressed lower 

S1PR1 levels, suggesting a relative increase in local tissue S1P level.     

Finally, studies by various groups have demonstrated that acutely inflamed 

mouse skin and gut have increased local S1P levels (244, 645). S1P levels were 

also elevated in human inflammatory diseases. Examination of bronchoalveolar 

lavages from asthma patients revealed increased S1P concentrations compared 
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to healthy controls (650). Synovial fluids of RA joints also contain elevated levels 

of S1P compared to OA joints (267). These studies correlate well with my data 

which demonstrates that human RA joints express elevated levels of SPHK1 

compared to OA joints. Interestingly, most of these human inflamed tissues also 

promote prolonged persistence of T cells. Inhibiting local T cell persistence by 

local administration of S1PR1 antagonists may provide an interesting new 

therapeutic approach in tissue inflammatory disease.



 
 

6 General Discussion and Future Directions  
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6.1 General Discussion 

Timely and efficient trafficking of T cells to and from inflamed tissues is a key 

step in controlling an inflammatory response. It enables the movement of the 

appropriate subsets of effector cells to inflamed tissues. Here, effector CD4 T 

cells participate in pathogen clearance, tissue repair and memory formation 

(276, 403). However, in chronic diseases multiple steps of the trafficking 

pathway may be dysregulated. This causes pathogenic accumulation of CD4 T 

cells at inflamed peripheral tissues (7, 84, 421, 513, 514).  

In this thesis, the signals that affect the persistence of CD4 T cells at inflamed 

tissues were investigated. A reductionist inflamed tissue model was designed to 

study signals which cause tissue persistence rather than recruitment of CD4 T 

cells. Increased understanding of these signals may allow novel therapeutic 

intervention to diminish T cell accumulation in inflammatory peripheral tissue 

diseases such as RA and psoriasis. In contrast, enhancing T cell persistence may 

aid in the development of novel vaccine candidates by enhancing memory cell 

formation for infectious diseases at the site of infection, such as in HIV (651). 

My studies have identified that LPS inflammation in mouse ear tissue increases 

local persistence of CD4 Th1 cells. Accumulation of T cells at inflamed tissues is 

a well-documented phenomenon (7, 84, 421, 498, 513, 514, 553). A myriad of 

studies have identified specific chemokines, CAMs, survival factors and lipid 

mediators as regulators of T cell accumulation at peripheral tissues (84, 244, 

421, 481, 525). 

Some of the early studies identified a role for chemokines in the attraction and 

accumulation of effector T cells at peripheral inflamed tissues. Campbell et al. 

first described the role of CCR4 in the chemoattraction of T cells to cutaneous 

sites of inflammation (14, 445). Likewise, Zabel et al. discovered the crucial role 

of CCR9 in T cell trafficking to the intestine (652). 

Chemokines however, not only act as migration cues but often have other 

functions. For example, the chemokine receptor CXCR4 has been reported to 

cause T cell accumulation in the rheumatoid synovium by both increased survival 

and chemotaxis mechanisms (6, 84, 421). Th1 cells were found to chemotax 
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towards RA synovial fluid. In addition, Vlahakis et al. found, in a separate study, 

that CXCR4 signalling confers CD4 T cells resistant to apoptosis (561). Similarly, 

CX3CL1-CX3CR1 interactions have been reported to induce both T cell survival 

and retention in models of atopic dermatitis (480).  Thus, accumulation of T 

cells at inflamed tissues could be a combination of multiple factors such as 

increased migration and increased survival, perhaps delivered by the same 

molecule.  

I further demonstrated that Th1 cells that persisted in the tissue neither 

proliferated in situ nor migrated to the dLN at greater numbers than from 

resting tissues. Interestingly, intravital microscopy revealed that T cells at 

inflamed tissues remained highly motile while those at the resting tissue were 

immotile. These findings led me to hypothesise that persistent T cells received 

signals at inflamed tissues that rendered them resistant to apoptosis. 

Caspase assays demonstrated that a lower proportion of T cells expressed active 

caspases at inflamed tissues compared to T cells at resting tissues, supporting 

my hypothesis. Akkoc et al. reported that IFNg high T cells from atopic 

dermatitis patients expressed increased caspases and underwent apoptotic cell 

death (536). They further found that these cells expressed increased FAS and 

TNF receptors and that T cell death was mediated via FAS (536). In light of this 

study as well as my caspase and microscopy results, the increased production of 

IFNg by T cells at resting tissues found in (Figure 3.2.8) may suggest that T cells 

were undergoing activation induced cell death.  

Hence, levels of FAS ligand, TNF and IL-7 were measured at inflamed and resting 

tissues. These molecules have all been identified to play a role in promoting T 

cell death or survival (525, 527, 575, 589). However, no differences were 

observed in their levels. This does not, however, rule out a role for these 

compounds in T cell survival. It is plausible that T cells at inflamed tissues alter 

their expression of FAS, TNF or IL-7 receptors, rendering them more or less 

sensitive to the same level of signal. It would, therefore be important to 

measure levels of receptor expression on T cells to definitively rule out a role 

for these compounds in T cell survival at inflamed tissues. 
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As discussed previously, chemokines could also mediate T cell survival at 

inflamed tissues. Moreover, a recent study by Mendoza et al. demonstrated a 

novel role for the lipid mediator S1P in supporting naïve T cell survival (626). 

Since both chemokines and S1PRs signal through GPCRs, I inhibited GPCR 

signalling by treating T cells with either pertussis toxin or FTY720 which are a 

pan GPCR and a pan S1PR inhibitor respectively. 

Treatment with either compound led to the disappearance of T cells from 

inflamed tissues without affecting their numbers at resting tissues or dLNs. This 

provided the first piece of evidence that S1P signalling was critical for Th1 cell 

persistence at inflamed tissues. This result however, could be interpreted in 

multiple ways.  

Studies have demonstrated a role for CCR7 and S1PR1 in controlling the egress of 

T cells from both SLOs and peripheral tissues (282). In SLOs, CCR7 and S1PR1 

were found to have linked but antagonistic roles in controlling T cell egress. 

Pham et al. demonstrated that CCR7 signals favour retention of naïve T cells 

while S1PR1 signals favoured their egress via efferent lymphatics, in SLOs (243). 

In peripheral tissues, both S1PR1 and CCR7 signals promote the egress of naïve T 

cells via afferent lymphatics (453).  

This suggests that disruption of pan GPCR signalling should lead to T cell 

retention at peripheral tissues, whereas disruption of S1PR specific signalling 

should be compensated by the presence of CCR7 signalling to enable T cell 

egress. Indeed Brown et al. demonstrate these results when they found that 

pertussis toxin treated splenocytes were retained at peripheral tissues following 

adoptive transfer (453). 

However, the balance of signals alters significantly during inflammation due to 

changes in both receptor and ligand availability. Activated T cells downregulate 

CCR7 and upregulate S1PR1 to allow their egress from SLOs (243). At inflamed 

tissues, little is known about changes in receptor expression, however, increased 

levels of S1P as well as CCL19/21 has been reported (244). This would suggest a 

possible levelling of the S1P and chemokine gradient between inflamed tissues 

and afferent lymphatics, enabling these signals to act as a temporary tissue 

retention signal. 
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Supporting this theory, Ledgerwood et al. demonstrated that S1P acts as a 

retention signal for naïve T cells at acutely inflamed tissues (244). Likewise, 

Brown et al. found T cell egress to be CCR7 dependent at acute but not 

chronically inflamed tissues (453). Interestingly, they also found that S1P signals 

promote T cell egress from chronically inflamed tissues, somewhat contradicting 

the Ledgerwood study. The differential responses of T cells to S1P signals from 

tissues suggests that expression of either S1PRs and/or S1P are dynamically 

regulated based on the length and type of inflammation.  

It is also plausible, that S1PR and S1P expression is spatially regulated. Studies 

by Skon et al. found that S1PR1 signals were less important in tissue retention of 

CD8 TRM cells in the intestinal epithelium compared to other non-lymphoid 

tissues (456). Other studies highlighted the importance of the integrin CD103 in 

the retention of these cells in the intestine (488). Thus, it is possible that CD103 

also contributes to effector/memory T cell retention at peripheral tissues in 

conjunction with CCR7 and S1PR1. 

Ledgerwood et al. and Brown et al. interpret their data with the assumption that 

S1P works as a chemotactic signal for T cells and that T cells migrate from an 

area of low S1P concentration (peripheral tissues and LN) to an area of high S1P 

concentration (blood and lymphatics). My studies find that signals through S1PR1 

are necessary and sufficient to promote Th1 cell persistence at LPS inflamed 

peripheral tissues. Some key experimental differences between my studies and 

those by Ledgerwood et al. and Brown et al. could explain the discrepancies 

observed. My experiments utilise Th1 cells and an LPS mediated inflamed tissue 

while they use naïve T cells in adenovirus (Ledgerwood) or CFA (Brown) 

inflammation.  

In addition, both the studies only quantified the number of transferred cells that 

migrate to the draining lymph node to elucidate what might be happening in the 

tissue. I believe, this limits the interpretation of their data. However, in light of 

these studies, it is difficult to definitively rule out a role for either chemokines 

or S1P in having a role in retention of Th1 cells in my model, despite not 

observing a difference in Th1 cell numbers in tissue draining lymph nodes.  
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In addition to its chemotactic properties, S1P is well known for its anti-apoptotic 

properties across multiple cell types but this has not been investigated for 

effector T cells (190, 213, 268, 623, 625{Mendoza, 2017 #740, 626). Hence, I 

hypothesised that increased effector T cell persistence at inflamed tissues was 

due to an anti-apoptotic role played by S1P. While intravital microscopy data 

supported my hypothesis, Th1 cells treated with FTY720 had demonstrably 

reduced motility at inflamed tissues akin to apoptotic cells (571), caspase assays 

did not reach significance, despite a strong trend towards increased apoptosis in 

FTY720 treated group (Figure 5.2.3).  

This result however, remains inconclusive, since the difference observed in 

caspase expression between T cells transferred into resting or inflamed tissues in 

previous experiments were not present in these experiments. As demonstrated 

by Mendoza et al. measuring apoptosis of T cells can be tricky. They used 

markers of mitochondrial integrity to identify a role for S1P in T cell survival 

(626). Perhaps using an assay similar to this would generate more replicable 

results. 

Interestingly, while Mendoza et al. speculate the effect of S1P on naïve T cell 

survival is direct, they do not rule out an indirect mechanism of S1P mediated T 

cell survival. S1PR signalling has been shown to activate STAT3 which has roles in 

the expression of Bcl-2 and Bcl-xl, both anti-apoptotic molecules (619, 653). 

Moreover, IL-7/IL-7R signalling, the quintessential T cell survival signal, also 

activates the Akt signalling pathway used by S1P signalling (654). This suggests a 

potential synergy between IL-7 and S1P signals in facilitating T cell survival. This 

may also be applicable to effector T cells which are somewhat sensitive to IL-7 

signalling and in some cases use oxidative phosphorylation and the mitochondrial 

pathway for their energy generation (482). 

Another important factor to consider is the recent body of evidence that 

suggests a role for FTY720 in inducing cellular apoptosis in a caspase 

independent manner in multiple cell types (655). Although this has not yet been 

investigated specifically in T cells, it is possible that FTY720 treatment is 

working in a similar manner to induce apoptosis of T cells in my experiments. 
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Finally, for S1P to elicit its effects on T cells at peripheral tissues, be that to 

induce survival or chemotaxis or both, it has to be present at the tissue. 

Measurement of S1P remains a challenge due to its constitutive intracellular 

expression and role in cell membrane formation (430). Therefore, I measured 

the expression of one of the enzymes that phosphorylates sphingosine to S1P, 

SPHK1. Substantially increased SPHK1 expression at LPS inflamed mouse tissues 

as well as human rheumatoid synovial tissues suggested that S1P levels may be 

elevated at such sites. This is supported by mounting evidence that indicate S1P 

levels are elevated at inflamed tissues.  

Raised levels of S1P was found in the synovial fluid of RA patients (267). 

Likewise, BAL fluid from asthma patients, intestinal IBD samples, and animal 

models of intestinal inflammation all demonstrated increased S1P (255, 645). 

Despite the growing evidence for a critical role for S1P in regulating inflamed 

tissue immunopathology, little is known about how S1P levels are elevated at 

peripheral tissues.  

Studies have identified lymphatic and blood vessel endothelial cells as producers 

of S1P. Moreover, RBCs and platelets also produce large quantities of S1P (236). 

H&E staining of inflamed and resting mouse ears demonstrated significant 

infiltration of blood derived products into inflamed tissues (Figure 3.2.1). 

Moreover, SPHK1 staining was primarily found in anucleated cells at tissue sites, 

with very little staining at resting tissues. This leads me to hypothesise that 

increased S1P levels at acutely inflamed tissues could be a side effect of 

vascular endothelial leakage. Interestingly, inflammation and in particular LPS is 

a known inducer of vascular endothelial leakage and could suggest that the 

effects observed in my model are applicable in other forms of tissue 

inflammation. 

To summarise, I believe my data suggest a novel role for S1P in regulating the 

persistence of CD4 Th1 cells at peripheral inflamed tissues. The increase in 

tissue S1P is derived from blood products which leak into LPS inflamed tissue 

sites. Furthermore, S1P may regulate Th1 cell persistence by having a dual 

effect of decreased egress as well as increased local survival. Finally, the effect 

of S1P on Th1 cell survival may not be direct but mediated via secondary survival 
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signals such as IL-7 or chemokines. This working hypothesis is summarised in 

Figure 6.1.1 below. 

 

Figure 6.1.1 Working hypothesis on how S1P regulates Th1 cell persistence at inflamed 
peripheral tissues 
1. Inflammation induces vascular damage and leakage of blood products, including RBCs and 
platelets. 2. Inflammatory stimuli such as LPS also induces activation of SPHKs in these cells, 
generating large amounts of S1P. 3. RBCs and platelets express S1P transporters allowing 
extracellular release of S1P. 4. This allows effector T cells to sense increased tissue S1P, 
increasing their survival. 5. Elevated tissue S1P also eliminates the S1P gradient between tissue 
sites and lymphatic and blood vasculature, reducing T cell egress. Together, these two factors 
increase the persistence of effector T cells at acutely inflamed tissues. 
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6.2 Future studies 

6.2.1 Targeting chemokines and integrins in T cell persistence 

The key finding of this thesis demonstrates that S1P plays a crucial role in the 

persistence of CD4 Th1 cells at inflamed tissue sites. However, my studies in 

section 4 suggest that chemokines could also play a role in T cell persistence. As 

such, experiments modulating specific chemokine receptors on T cells or their 

ligands at tissue sites could identify novel chemokine pathways that promote T 

cell persistence at inflamed tissues.   

Indeed, previous studies have demonstrated a role for CCR7 in promoting Th1 

cell egress from tissues sites (451, 452). In contrast, APC derived CCL5 was 

implicated in the retention of memory CD4 T cells at tissue sites (500). The 

integrin CD103 was directly found to promote regulatory T cell retention in 

inflamed skin tissue (450). Finally, the integrin VLA-1 was also found to promote 

CD8 T cell retention in peripheral tissue sites (7, 552).   

These studies highlight the multitude of signals which regulate T cell trafficking 

at tissue sites. Moreover, they demonstrate that the tissue state and 

differentiation status of the T cell dictates the mechanism of trafficking utilised 

i.e. inflammatory chemokines, S1P, integrins and others. Developing a 

comprehensive understanding of how these signals temporally and spatially 

regulate T cell trafficking may allow for the development of timely and targeted 

therapies to abrogate tissue inflammation. 

6.2.2 Determining S1P mediated T cell survival 

While my studies demonstrate that S1P promotes T cell persistence at inflamed 

tissues, whether this persistence is due to retention or survival is difficult to 

pinpoint. No differences were found in the numbers of transferred cells in 

downstream draining lymph nodes or other peripheral organs. Furthermore, T 

cells were not proliferating at inflamed tissues. This led me to hypothesise that 

S1P promotes increased T cell survival at the tissue site. Flow cytometry based 

caspase assays were inconclusive. However, the experiments were compounded 

by the fact that prolonged processing of the cells ex vivo might affect cell 

viability. 
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One method to overcome this problem would be to use cells from a transgenic 

caspase reporter mouse as used by Garrod et al. or by using recently developed 

caspase probes as demonstrated by Qian et al. (571, 656). This would allow for 

imaging of T cells in vivo and quantifying the number of apoptotic cells in S1P 

receptor modulated animals (FTY720 treated) versus control animals (vehicle 

treated). However, this could be difficult to accurately quantify as dead cells 

may be cleared from the tissue site prior to imaging. Moreover, T cells may be 

dying in lymphatic vessels while draining from tissue sites, making these cells 

difficult to image. 

Similarly, whole mounted or serially sectioned tissues could be stained with 

antibodies against active caspases. This method has similar limitations to 

studying apoptosis in vivo as mentioned previously. 

Another way to test whether T cell disappearance at tissue sites was due to 

apoptosis would be to transfer Bcl-2 transgenic T cells. These cells are resistant 

to apoptosis (657). Thus, any differences in the number of T cells recovered 

from inflamed vs resting tissue would not be due to apoptosis. This experiment 

would definitively rule out a role for survival or death in regulating T cell 

persistence. 

Finally, apoptosis could also be assayed by studying the mitochondrial apoptotic 

pathways. Mendoza et al. very recently discovered that S1P signals are 

important for naïve T cell survival by studying mitochondrial proteins in S1PR1-/- 

T cells in secondary lymphoid organs (626). Investigating similar mitochondrial 

protein expression in my system could potentially illuminate whether S1P signals 

aid activated Th1 cell survival at inflamed tissues in a similar manner.  

6.2.3 Utilising S1PR1-/- T cells 

In my experiments, pharmacological agents that target S1PRs were used to 

modulate S1P signals in T cells. This was achieved by pre-treating activated T 

cells in vitro with S1PR agonists/antagonists prior to their adoptive transfer. This 

method allowed me to target T cell specific S1P signals and to further study the 

effects of S1P on T cells specifically at peripheral tissue sites.  
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The use of pharmacological agents, has some drawbacks. The effect of most of 

these drugs have been studied in vivo and thus how they function in vitro is not 

well known. The length of treatment time and dosage used in my experiments 

were kept consistent with other published in vivo studies where these 

pharmacological drugs were found to have an effect on T cells (244, 453). 

However, no studies directly demonstrate how these treatment protocols 

actually affect S1PR function. Thus, the mechanism of drug action is 

inconclusive.  

Moreover, the mode of action of FTY720 remains controversial. FTY720 has been 

reported to have both agonistic and antagonistic effects on S1PRs (658-660). 

Additionally, carryover of drugs cannot be ruled out, despite extensive washing 

of cells post-treatment. Therefore, the effects observed in my experiments may 

be due to indirect effects of pharmacological agents on tissue cells following 

transfer.  

Using S1PR1-/- T cells may provide a more robust system to address these 

questions. However, using such methods poses further challenges for my system. 

Animals with S1PR1-/- T cells have peripheral lymphopenia (661). Most T cells 

accumulate in the thymus while some are found in peripheral lymph nodes. 

While studies suggest that these T cells mature normally, a role for S1P has been 

described in T cell activation and polarisation (662). Thus, it would be difficult 

to differentiate whether effects observed in such a system would be due to 

differences in T cell activation or due to S1PR1 mediated effects at tissue sites. 

Small interfering RNA (siRNA) knockdown of S1PR1 following OT-II cell 

polarisation could be used to address these issues (663).               

6.2.4 Measuring S1P levels  

SPHK1 levels were measured in this thesis as an analogue for S1P. However, S1P 

levels are regulated not only via SPHKs but also via S1P lyases and phosphatases 

(430). Additionally, S1P transporters play an important role in regulating levels 

of extracellular tissue S1P (215, 216, 253, 607). Hence, direct measurement of 

S1P remains a critical piece of missing evidence in this study.  
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Substantially elevated levels of S1P has been reported in multiple inflamed 

peripheral tissues including RA joints (synovial fluid), allergic and asthmatic 

lungs (BAL), inflamed mouse peritoneum and skin (244, 246, 267, 650). Likewise, 

SPHK levels were found to be elevated in multiple cancers (664). These studies 

lend support to my hypothesis that increased S1P at locally inflamed tissue is 

responsible for T cell persistence.   

Measuring tissue S1P directly poses many challenges. Firstly, S1P is produced 

abundantly intracellularly in almost all cell types due to its role in maintaining 

cell membranes (430). Thus, mass spectrometry data, the gold standard in S1P 

measurement, is unlikely to prove a reliable measurement of extracellular S1P. 

A single S1P ELISA kit is available from echelon biosciences. However, the ELISA 

sensitivity does not allow for detection at low levels at tissue sites.  

Perhaps the best way to measure S1P levels at tissues with any confidence would 

be to analyse mRNA levels of all the SPHKs, S1P lyases, phosphatases and 

transporters by qRT-PCR. This analysis would develop a comprehensive picture of 

S1P regulating proteins at tissue sites. Similar studies have been performed by 

Karuppuchamy et al. with promising results in murine gut tissues (645). 

6.2.5 Who produces S1P at inflamed tissues? 

Once elevated levels of S1P can be confirmed, it would be interesting to 

investigate what cell types are responsible for S1P production at inflamed 

tissues. Platelets, RBCs and mast cells are potent producers of extracellular S1P 

(217). Tissue histology of LPS inflamed mouse ears revealed significant blood 

exudate in inflamed skin tissue (Figure 3.2.1A). This in itself could elevate levels 

of tissue S1P, due to increased S1P levels in blood (665). Moreover, RBCs and 

platelets in tissue could undergo further activation by their inflammatory 

surroundings, elevating levels of tissue S1P. 

Studies involving the transfer of activated platelets or RBCs into mouse ear 

pinnae followed by transfer of T cells to investigate their persistence, could 

confirm whether platelet or RBC mediated S1P is responsible for T cell 

persistence. Likewise, challenging platelet depleted animals with LPS and then 

transferring T cells into their ear pinnae could answer similar questions.      
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6.3 Concluding remarks 

In this study, persistence of CD4 T cells at inflamed tissues was demonstrated 

using an LPS mediated skin inflammation and tissue adoptive transfer model. 

Using this system, S1P was found to be responsible for the persistence of 

activated Th1 cells at inflamed tissues. Moreover, signals through the S1PR1 

were found to be both necessary and sufficient for persistence of CD4 T cells at 

inflamed tissues. 

Blocking S1PR signals significantly reduced T cell motility in vivo at inflamed 

tissues. Finally, elevated levels of the S1P producing enzyme SPHK1 was found at 

inflamed peripheral tissues. Together, my data suggests that increased T cell 

persistence and motility is due to increased survival of T cells mediated via S1PR 

signals.  

This novel finding that S1P aids effector T cell persistence and, potentially, 

survival at peripheral inflamed tissues could lead to the development of new 

therapeutic interventions targeting peripheral tissue inflammatory diseases such 

as RA and psoriasis.
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