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Abstract 

Asteroids can be considered both a threat as well as a source of mineral resources. Either 

way, asteroids have become a point of interest for scientists, space enthusiasts and private 

industries. Whether it be for protecting Earth from an asteroid strike or to obtain an asteroid 

for the prospect of mining, it is essential that we understand and identify a method to 

manipulate the orbital trajectory of an asteroid. There are quite some numbers of proposed 

methods to achieve a change in the orbital trajectory of an asteroid; some of the notable ones 

are gravity tractors, low thrust propulsion devices, kinetic impactors, and tethers. 

In this thesis we will manipulate the orbital trajectory of an asteroid by transferring orbital 

energy between the asteroid in question and another closely-passing asteroid. The energy 

and momentum transfer are achieved by connecting the asteroids through a tether at their 

closest point of approach leading to the formation of a dumbbell system. The formation of 

the dumbbell system results in the transfer of some of the linear kinetic energy of both 

asteroids into rotational kinetic energy, which causes the dumbbell system to rotate about its 

centre of mass with an angular velocity leading to a rotational angular momentum. 

Disconnecting the tether at a point in time leads to the disruption of the dumbbell system 

and the asteroids gain or lose angular momentum and orbital energy from the system. The 

distribution of the orbital energy between the system and the asteroids determines the 

resulting orbit of the asteroids. A study on how parameters such as the length of the tether, 

the eccentricity of the asteroids at the time of tether connection and the mass of the asteroid 

affects the distribution of energy and angular momentum between the asteroids and the 

system is carried out. A detailed analysis with some selected combination of the above 

discussed parameters, such as how long to wait before tether disconnection to achieve 

maximum or minimum deflection from the initial orbit is carried out. This is done by 

modelling the dynamics of the asteroid-dumbbell system in MATLAB, where in the physics 

involving the orbital and attitude dynamics of the system are set up.  

Some of the main results showed that the model specific error in orbital energy reduced with 

the reduction of the tether length, a gradual change in orbital energy for increase in tether 

length w.r.t angular displacement can be noticed for the dumbbell system, compared to 

periodic change for individual asteroids, and that there exists multiple opportunities for 

orbital change of the asteroids in the dumbbell system for a single heliocentric orbital motion 

of the centre of mass and a more desired orbit change can be achieved with multiple 

heliocentric orbits of the centre of mass of the dumbbell system. 
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1. Introduction 

The purpose of this chapter is to form the basis of the argument put forward in this thesis, 

leading to the motivation, objectives and structure of the thesis. To do this we start by 

explaining what asteroids are, how our view of asteroids has evolved over time (making it 

an important factor affecting life on our planet), dynamics involved in their propagation, 

followed by explaining the need to gain control in manipulating their trajectory, and ending 

this section by setting the methods of achieving our objectives through this research. 

1.1 Asteroids  

1.1.1 Description, Etymology and History 

Asteroids are small, airless rocky bodies revolving around the Sun that are too small to be 

called planets[1]. The actual origin and meaning of the word “asteroid” comes from the Greek 

word “ἀστεροειδής (asteroeidḗs)” (meaning “Star like”), coined by the German astronomer 

William Herschel[2, 3]. They are also, sometimes, called as minor planets. 

After the discovery of Ceres (Fig 1.1), the largest and the first asteroid to be discovered on 

1st January 1801 by the Italian astronomer Giuseppe Piazzi, a new body of similar nature 

was discovered on 28 March 1802 by Heinrich Wilhelm Matthias Olbers, named as Pallas[2, 

3]. These bodies moved like planets yet were too small to be one, and they also looked like 

stars but moved fast in relation to the others. This discovery raised the possibility that they 

might be of a new category of bodies and that there could be more of them. After much 

deliberation, it was decided that they be named into a new category of celestial bodies called 

“asteroids” [2].  

“The bodies to be named are neither fixed stars, planets, nor comets, but 

have a great resemblance to all the three?” (Herschel, 1802c) 

Though the discovery of asteroids was accidental while in the search for the missing planet 

(predicted by the Titus-Bode law) between Mars and Jupiter, the early days of their 

discoveries were exciting to the whole scientific community [4]. During the latter part of the 

nineteenth century, dozens of asteroids were discovered, mainly due to the use of 

photography in astronomy. By the middle of the twentieth century hundreds were 

discovered, but now they were considered as “junk” or “vermin of the skies”[4], as after their 

discovery there was nothing to be done, the little trail they made in astronomical photographs 
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were a nuisance. After the advent of the space age, the interest in asteroids started to grow 

again, the launching of numerous space probes and the advances in the astronomical 

techniques such as photometry, spectrophotometry, radiometry and polarimetry, due to 

which approximate determination of the size, shape and mineralogical composition of these 

bodies were made possible, contributed to some theories on the origin of the solar system[4,5]. 

The way people viewed asteroids started to change as our understanding of these celestial 

bodies went deeper. 

 

Fig 1.1 Ceres, picture captured by NASA’s Dawn spacecraft on April 14, 2015  

[Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA]  

Though the meteorite impact at Tunguska in 1908 was a massive event, it was largely 

ignored by the public, due to fact that it happened in a remote uninhabited part of the Earth. 

Clearly the Tunguska object would have wiped out the population, if it had hit a city, as it is 

believed that the Tunguska object was tens of metres in diameter and had an explosive 

energy equivalent to 10 – 20 megatons of Trinitrotoluene (TNT) [5]. 

Space-probe photographs of the cratered surface of Mercury and Mars made it evident that 

asteroid bombardment had been an important process in the formation and development of 

many of the planets, including the Earth [5]. In fact, the publication of “Extraterrestrial cause 

for the Cretaceous–Tertiary extinction” by Luis Alvarez and others in 1980 provided some 

conclusive evidence to the asteroid impact theory for the mass extinction of dinosaurs and 

other species of the Cretaceous period[6].   
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This led to considerable interest among the scientific community on the dangers posed by 

the asteroids. Following this discovery, The National Aeronautics and Space Administration 

(NASA) convened a workshop, “Collision of Asteroids and Comets with the Earth: Physical 

and Human Consequences” in Snowmass, Colorado (July 13-16, 1981)[9, 10].  

Nine years later, on 23 March 1989, the close passage of a 300-meter-wide asteroid 1989 

FC prompted the American Institute of Aeronautics and Astronautics (AIAA, 1990) to 

recommend studies to increase the detection rate of Near-Earth Asteroids (NEAs), and how 

to prevent such objects from striking Earth. The AIAA brought these recommendations to 

the House Committee on Science, Space, and Technology, leading to the United States 

Congressional mandate for this workshop included in the NASA 1990 Authorization Bill. 

The United states House of Representatives in its NASA Multiyear Authorization Act of 

1990 [10] stated:  

“The Committee believes that it is imperative that the detection rate of Earth-

orbit-crossing asteroids must be increased substantially, and that the means 

to destroy or alter the orbits of asteroids when they threaten collision should 

be defined and agreed upon internationally.” 

“The chances of the Earth being struck by a large asteroid are extremely small, 

but since the consequences of such a collision are extremely large, the 

Committee believes it is only prudent to assess the nature of the threat and 

prepare to deal with it. We have the technology to detect such asteroids and 

to prevent their collision with the Earth.” 

“The Committee therefore directs that NASA undertake two workshop studies. 

The first would define a program for dramatically increasing the detection rate 

of Earth-orbit-crossing asteroids; this study would address the costs, schedule, 

technology, and equipment required for precise definition of the orbits of such 

bodies. The second study would define systems and technologies to alter the 

orbits of such asteroids or to destroy them if they should pose a danger to life 

on Earth. The Committee recommends international participation in these 

studies and suggests that they be conducted within a year of the passage of 

this legislation.”   

This resulted in the “Spaceguard survey”, which led to the Spaceguard goal of detecting 

90% of all the Near-Earth Objects (NEOs) larger than 1 km in 10 years.  
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The observation of the collision of Shoemaker-Levy 9 with Jupiter in 1994 heightened the 

public awareness about our vulnerabilities to NEOs[8]. The event, observed through almost 

all Earth-based observatories and many orbiting and interplanetary spacecraft, including the 

Hubble Space Telescope (HST), Galileo, Ulysses, and Voyager 2 was the first collision of 

two solar system bodies ever to be observed [7]. The collision was far more powerful (Fig 

1.2) than the disappearance of the dinosaurs 65 million years ago, but fortunately the Earth 

is smaller than Jupiter and hence does not attract objects like Jupiter does[5].  

 

Fig 1.2 Jupiter after Shoemaker-levy 9 collision  

(Credit: Planetary Resources Inc.) 

This incident and the Spaceguard survey report spread the focus internationally that the 

International Astronomical Union (IAU) working group on NEOs organized “The Vulcano 

workshop: Beginning the Spaceguard survey” in 1995 at Vulcano, Italy. In addition to this, 

the United Nations International Conference on Near-Earth Object was held at the United 

Nations (UN) Headquarters in New York, organized by the United Nations Office of NEOs, 

which sensitized member states to the potential threats due to NEOs and proposed an 

expansion of existing observation campaigns to detect and track NEOs [16].  

In 2003, a NASA study indicated that with the goal of discovering 90% of asteroids 1 km 

and larger almost attained, and with new survey and detection available the goal should be 

revised. In response to this, the NASA Authorization Act of 2005 was passed by the United 

States Congress to provide an analysis of alternatives to discover, track, catalogue, and 

determine the physical characteristics of NEOs equal to or greater than 140 meters in 

diameter to assess the threat of such objects to Earth, and to find 90% of the NEOs within 

fifteen years. In 2001, The United Nations’ Committee on the Peaceful Uses of Outer Space 

(COPUOS) established the Action Team on Near-Earth Objects (Action Team 14) and on 

the recommendations[16] of the working committee of Action Team 14, in 2013, International 

Asteroid Warning Network (IAWN) was established, to create an international group of 

organizations involved in detecting, tracking and characterizing NEOs. The IAWN is tasked 

with developing a strategy using well-defined communication plans and protocols to assist 

Image not to scale 
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Governments in the analysis of asteroid impact consequences and in the planning of 

mitigation responses. The combined effort of all these initiatives have given us an enormous 

amount of data on asteroids. While these data are being used to defend our planet, they have 

also shown us these asteroids have enormous amount of resources that can be harvested to 

replenish materials found in our planet. A bit more about asteroid mining and related topics 

will be covered at the end of this chapter. 

1.1.2 Detection and Classification 

Detection 

Detecting asteroids requires surveys with telescopes[35]. Well before the public and scientific 

awareness/concern on the threats posed by the NEOs, Eleanor F. Helin and Eugene M. 

Shoemaker initiated the Palomar Planet-Crossing Asteroid Survey (PCAS) in 1973, 

dedicated to the detection of Earth crossing NEOs. It detected 95 NEAs and 17 comets in 

addition to confirmation of previous discoveries until its discontinuation in June 1995 after 

23 years of operation[9].   

Fig 1.3 shows the comparison of the number of asteroids discovered between 1950 and 2015, 

where the green dots represent the non-Earth-crossing asteroids, and the red dots represent 

the Earth-crossing asteroids. 

 

 

Fig 1.3 Comparison on the number of asteroids discovered between 1950 and 2015 [19]  

[Credit: Armagh Observatory] 

1950 2015 
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One of the reasons for this huge increase in the observation and discovery rate has been due 

to the use of Charge-Coupled-Device (CCD) based search systems[17, 18]. It should be noted 

that the Minor Planet Center (MPC) is the official worldwide organization in charge of 

collecting observational data for minor planets (asteroids) and comets, calculating 

their orbits and publishing the information via the Minor Planet Circulars. Under the 

auspices of the IAU, it operates at the Smithsonian Astrophysical Observatory, which is part 

of the Centre for Astrophysics along with the Harvard College Observatory. Numerous 

surveys have been initiated since then and they could be classified based on the following 

two methods[36]: 

1) Ground-based surveys  – They are in the optical band 

2) Space-based surveys   – They are in the thermal infrared band 

Ground-Based Surveys 

They are practical only in the optical band, mainly due to the affordability of very large 

optical detector arrays, the high atmospheric transparency and low background in the optical 

band. Some of the ground-based surveys are [17]: 

1) Near Earth Asteroid Tracking (NEAT) program. 

2) Catalina Sky Survey 

3) Pan –STARRS 

4) LINEAR 

5) Spacewatch 

 

Space-Based Surveys 

One of the main advantages of a space-based survey is that they can be designed to work at 

any optimal wavelength for the task like X-ray, ultraviolet and far-infrared bands, which are 

absorbed by the atmosphere. There were two Hubble Space Telescope (HST) survey 

programs that have been used to image the illuminated portions of 10 asteroids[36]. Some of 

the space-based surveys are [36]: 

1) NEOWISE 

2) Sentinel (Proposed) 

3) NEOCam (Proposed) 
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Classification 

Asteroids are broadly classified by two criteria: 

1) Dynamical – based on their orbit 

2) Spectral – based in their surface composition 

Dynamical Classification 

Dynamical classification is based on the orbital characteristics of the asteroids. These are 

sub-classified into groups and families named mostly after the discovery of the first member 

in that category. The term “asteroid families” is historically associated with the Japanese 

researcher Kiyotsugu Hirayama, who was the first to use the concept of orbital elements to 

identify asteroid groups characterised by similar orbits. He made the hypothesis that the near 

identical orbits could not be due to chance and that could be due to common origin[17]. 

Groups are helpful in classifying asteroids that have broadly similar orbits, and families are 

used to classify asteroids that are usually fragments of past asteroid collisions. The following 

are broadly classified groups of asteroids: 

1) Inner Solar system asteroids 

a. Near-Earth Asteroids 

i. Atiras 

ii. Atens 

iii. Apollos 

iv. Amors 

b. Near-Mars Asteroids 

i. Hungarias 

ii. Phocaeas 

iii. Mars-crossers 

2) Mid Solar system asteroids 

a. Main Belt asteroids 

b. Hildas 

c. Jupiter Trojans 

3) Outer Solar system asteroids 

a. Centaurs 

b. TNOs 

c. Plutinos 

d. Kuiper Belt 

e. Scattered Disk 
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Near-Earth Asteroids 

Technically, NEAs are defined as asteroids that come closer than 0.3 AU (45 million km) of 

Earth. New objects are brought into the swarm of NEOs by gravitational perturbations out 

of their orbits in the Kuiper belt and/or Oort cloud. Some objects currently classed as NEAs 

may in fact be devolatilized comets. Planet-crossing objects are removed from the population 

wither through collision with a planet or by gravitational perturbations that eject them into 

hyperbolic orbits. Fig 1.4 and Fig 1.5 show the orbit types and distribution of dynamically 

classified asteroids. 

Atiras 

These are inner Earth asteroids, meaning asteroids whose orbits are entirely contained within 

the orbit of the Earth, i.e. they have their aphelion less than 1 AU and perihelion of less than 

0.983 AU. Asteroid 163693 Atira, discovered on the 11th of February 2003 by the LINEAR 

project, was the first asteroid of this class and hence the name to this group of asteroids.  

Atens 

These are asteroids which cross the orbit of the Earth at some point in their orbit and have 

an aphelion of less than 1 AU and a perihelion greater than 0.983 AU. 2062 Aten, discovered 

by E.F. Helin[4] under the PCAS program on the 7th of January 1976, was the first asteroid 

of this class and hence the name to this group of asteroids. As of 2nd October 2014, there are 

879 asteroids of this class[22]. 

Apollos 

These are asteroids which cross the orbit of the Earth at some point in their orbit and have 

an aphelion of greater than 1 AU and perihelion less than 1.017 AU. 1862 Apollo, discovered 

by Karl Reinmuth in 1932[4], was the first asteroid of this group of asteroids. As of 2nd 

October 2014, there are 5669 asteroids of this class [22]. 

Amors 

These are asteroids which never cross the orbit of the Earth and have an aphelion greater 

than 1 AU and perihelion greater than 1.017 AU but less than 1.3 AU. Even though 433 Eros 

a Mars-crossing asteroid, discovered on the 13th of August 1898 by Carl Gustav Witt, was 

the first discovered asteroid of this class, 1221 Amor, discovered on the 12th of March 1932 

by E. Delporte[4], was given the honour. As of 2nd October 2014, there are 4900 known 

asteroids of this class[22]. 
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Potentially Hazardous Asteroids 

These are asteroids whose minimum orbit intersection distance (MOID) to Earth are less 

than 0.05 AU and have an absolute magnitude greater[20] than 22.0. As of 2nd October 2014, 

there are 1505 potentially hazardous asteroids[21]. 

 

Fig 1.4 Asteroid classification based on dynamics  

[Credit: NASA JPL] 

 

Fig 1.5 Asteroid class distribution 

[Credit: Encyclopaedia Britannica, Inc.]  
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Asteroids that collide and disintegrate into smaller fragments make up most of these NEOs 

and these reach the Earth’s atmosphere at the rate of 100 tons a day[17] and the vast majority 

of those disintegrate upon entering the Earth’s atmosphere. The Chelyabinsk asteroid was 

said to be 19 m[58] in diameter and exploded 24-30 km altitude[58] with the energy of ~30 

atomic bombs equalling ½ megaton[58] of TNT damaging windows, partly destroying 

buildings and injuring more than 1000 people[17].  

1.1.3 Reference Frames and Coordinate Systems 

A reference frame along with a co-ordinate system and time provides a point of reference to 

standardise measurements in tracking an object in space. A reference frame can only be used 

to observe motion, but to quantify the motion and to perform algebra of vectors we need a 

coordinate system. 

Reference Frames 

A frame of reference is a structure of concepts, assumptions and values which helps in the 

observation of motion of a body from a point of reference. The following are some of the 

types of reference frames commonly used, 

Inertial Reference Frame 

A frame of reference fixed with respect to the fixed-stars, in which a point object subject to 

zero net external force moves in a straight-line with constant speed, is called as an inertial 

reference frame. Newton’s laws of motion are valid only in an inertial reference frame. 

𝑅𝑒𝑓 𝐴 in Fig 2.1 is an example of an inertial reference frame. 

Non-inertial Reference Frame 

A frame of reference that is rotating and/or accelerating with respect to the fixed-stars is 

called as a non-inertial reference frame. Newton’s laws of motion are not valid in a non-

inertial reference frame. 𝑅𝑒𝑓 𝐵 in Fig 2.1 is an example of a non-inertial reference frame. 

Body fixed and Space-fixed Reference Frame 

Body-fixed reference frames are a mostly in non-inertial state that has its origin usually fixed 

at the centre-point/centre of mass of a body. These can also be in a state of inertia in cases 

such as being fixed at the centre of mass of the Sun. It is convenient to express rotations in 

a coordinate system having its origin located at the centre-of-mass of the rigid body, and its 



11 
 

coordinate axes aligned along the principal directions for the body. This body-fixed frame 

then moves within a stationary space-fixed frame. 

Space-fixed reference frames are fixed at a point in space with respect to the fixed-stars and 

is usually in an inertial state. 

Coordinate Systems 

A coordinate system uses coordinates to determine the position of a body in space or to 

describe the magnitude and direction of target velocity with respect to a specified reference 

frame. Coordinate systems can be grouped into orthogonal, celestial and geographic. 

Without going much into detail about all the different types of coordinate systems, 

commonly used coordinate systems that are closely related to this thesis will be discussed. 

Orthogonal Coordinate System 

If the vectors that define the coordinate frame are locally perpendicular in a Euclidian space, 

the coordinate frame is said to be orthogonal. Cartesian and Polar coordinate systems are 

two of the most commonly used orthogonal coordinate system. 

Cartesian or rectangular Coordinate System 

Cartesian coordinates use the units of linear distance along the different axes to measure the 

position of an object from the origin of the coordinate system. 

Polar or Spherical coordinate system 

Polar coordinates use the units of linear distance measured from the origin and angular 

distance measured from an axis to determine the position of a body in space. 

Celestial or Astronomical Coordinate System 

Celestial coordinates are usually spherical coordinate systems with origin placed at a 

celestial body or at a point in space in the celestial sphere and the defining axis placed as 

part of chosen plane. The linear distance is measured from the origin and the angular distance 

is measured from the respective plane. The Ecliptic coordinate system is one of the most 

commonly used celestial coordinate system 

Ecliptic Coordinate System 

The ecliptic coordinate system is used largely for studies involving planets and asteroids, as 

their motion is confined to the zodiac. The defining plane of the coordinate system is the 

ecliptic plane. 
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1.1.4 Celestial Dynamics 

The dynamics of a celestial body involves translational (orbital) and rotational (spin) 

motions. An asteroid has six degrees of freedom [45] as shown in Fig 1.6, three degrees for 

translational (orbital) motion (∆𝑥, ∆𝑦 , ∆𝑧) and three degrees for rotational (spin-up) motion 

(𝛽𝑥, 𝛽𝑦, 𝛽𝑧). Spin-up dynamics is not within the scope of this research and hence we neglect 

the three degrees of freedom for rotational motion. While forces due to the solar radiation 

pressure, solar wind, Yarkovsky effect, Poynting-Robertson effect and YORP effect, 

contribute to the orbital motion of an asteroid, they are negligible compared to the force due 

to gravity and hence are not considered. 

 

Fig 1.6 Degrees of freedom of an Asteroid   

[Asteroid Credit: JAXA] 

With the considerations specified before, an asteroid moves in the celestial space with the 

three degrees of freedom for orbital motion. The equation of motion is governed by 

Newton’s law of motion and Newton’s law of gravitation, which may also be used to define 

the laws observed by Kepler on the motion of planets. 

 𝑓 = 𝑚
𝑑2𝑟

𝑑𝑡2
 

 

(1) 

 

 
𝑓 = −

𝐺𝑀𝑚

𝑟3
𝑟 

 

(2) 

 

∆𝑦 

∆𝑥 

∆𝑧 

𝛽𝑦 

𝛽𝑥 

𝛽𝑧 
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Where: 

 𝐺 = 6.673 x 10-20 𝑘𝑚3 𝑘𝑔−1𝑠−2 

Equating equations (1) and (2), we get the two body equation of motion for the asteroid,  

 
𝑑2𝑟

𝑑𝑡2
= −

𝐺𝑀

𝑟3
𝑟 

 

(3) 

 

Johannes Kepler was the first astronomer to correctly describe the motion of the planets in 

the solar system[48].  

Kepler’s Laws 

The motion of the planets was found by Kepler to follow the three laws [25]: 

1. The planetary orbits are all ellipses and the Sun lies at one of the foci of each ellipse 

2. The radius vectors connecting each planet to the Sun sweeps out equal areas in equal 

time intervals 

3. The square of the orbital periods of the planets are proportional to the cubes of their 

orbital major radii 

 𝑃2 ∝ 𝑎3 

 

(4) 

 

Energy and Momentum 

The transfer of orbital energy and momentum is discussed in the later chapters of this thesis, 

and hence it is better to look at these concepts related to the orbital motion of the asteroids 

or celestial bodies. An asteroid follows a heliocentric orbital motion and two of the most 

important quantities in the motion of a celestial body are energy and momentum. Assuming 

that the basic concepts of momentum and energy are well known, the fundamentals of these 

quantities are not discussed here. From the basic laws of physics, we know that an isolated 

two-body system is a conservative system, meaning both energy and momentum are 

conserved. Several fundamental properties of the different types of orbits are developed with 

the aid of the laws of conservation of momentum and energy. These properties include the 

period of elliptical orbits and the escape velocity associated with parabolic paths[14]. 

Lagrange and Hamilton showed that the laws of motion can be replaced completely with an 

alternate description for the motion of dynamic systems based on energy principles[46]. The 
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total orbital energy of an asteroid in a closed orbit in a central gravitational field is the sum 

of its potential energy per unit mass and kinetic energy per unit mass.  

 𝜀 =
𝑣2

2
−
𝜇

𝑟
 (5) 

Equation (5) is called as the visa viva equation. The specific orbital energies for different 

orbits are given in Table 1.1 

Circular Orbit 𝜀𝑐𝑖𝑟 = −
𝜇

2𝑟
 

Elliptical Orbit 𝜀𝑒𝑙𝑖 = −
𝜇

2𝑎
 

Parabolic Orbit 𝜀𝑝𝑎𝑟 = 0 

Hyperbolic Orbit 𝜀ℎ𝑦𝑝 =
𝜇

2𝑎
 

  Table 1.1 Orbital energies of different orbits 

Here, 

𝜇 = 𝜇𝑆 = 1.32712440018 x 1011 𝑘𝑚3𝑠−2 

The angular momentum of a body per unit mass is constant in time: 

 ℎ⃗⃗ = 𝑟 × 𝑣⃗ 

 

(6) 

 

From the scalar product of the orbital angular momentum ℎ⃗⃗ with the orbital radius vector  𝑟, 

we obtain the equation of the plane, which passes through the origin and whose normal is 

parallel to ℎ⃗⃗ 

 ℎ⃗⃗ · 𝑟 = 0 

 

(7) 

 

Since ℎ⃗⃗ is a constant vector, it always points in the same direction. Hence the motion of the 

bodies is confined to some fixed plans which pass through the origin[49]. 

Orbit Equation 

The orbit equation defines the path of a body around a central body in a two-body system 

derived by cross-multiplying equation for newton’s second law with the specific angular 
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momentum of the orbiting body[47]. This is the solution of the equation of motion expressed 

in polar coordinates (𝑟, 𝜃). 

 𝑟 =  
ℎ2

𝜇
 

1

1 + 𝑒 cos 𝜃
 

 

(8) 

 

Where, 𝜇 = 𝜇𝑆 = 1.32712440018×1011 𝑘𝑚3𝑠−2  

The orbit equation describes conic sections, including ellipses, and hence it is a mathematical 

statement of Kepler’s first law. The two-body problem deals with the motion of two bodies 

influenced solely by their mutual gravitational attraction. 

A conic section is a curve formed by the intersection of a plane passing through a right 

circular cone. The path taken by a body in an orbit relative to another body is a conic section 

such as a circle, ellipse, parabola, hyperbola, and the shape of the orbit is determined by the 

eccentricity. As Fig 1.7 shows, the angular orientation of the plane relative to the cone 

determines whether the conic section is a circle, ellipse, parabola, or hyperbola. The type of 

conic section is related to the eccentricity, the semimajor axis, and the specific mechanical 

energy. Table 1.1 shows the relationships between energy and the type of conic section, 

while Table 1.2 shows the relationship between eccentricity, semimajor axis and the type of 

conic section. 

 

Fig 1.7 Conic sections 

[credit: shmoop.com] 

Keplerian Orbits 

It is important to know that Keplerian motion is confined to the plane of orbit and all the 

celestial bodies in the solar system travel in an elliptical orbit around the Sun. In this thesis 

we will be dealing with circular and elliptical orbits and hence we would discuss these two 
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types of orbits. Table 1.2 shows the properties of eccentricity and semimajor axis of 

Keplerian orbits. 

Type of Keplerian Orbit Eccentricity Semimajor axis 

Circular Orbit 𝑒 = 0 𝑎 = 𝑟 

Elliptic Orbit 0 < 𝑒 < 1 𝑎 > 0 

Parabolic Orbit 𝑒 = 1 𝑎 ≈ ∞ 

Hyperbolic Orbit 𝑒 > 1 𝑎 < 1 

Table 1.2 Keplerian Orbits, their eccentricities and semimajor axis 

Circular Orbit 

As shown in Table 1.1, orbits with 𝑒 = 0 are circular and the orbit equation (8) for a 

circular orbit results to, 

 𝑟 =
ℎ2

𝜇
 (9) 

 Other parameters like velocity and period for a circular orbit are, 

 𝑣 = √
𝜇

𝑟
 (10) 

 

 𝑃 =
2𝜋

√𝜇
 𝑟
3
2 (11) 

 

Elliptical Orbit 

 

Fig 1.8 Representation of an Ellipse 

[Credit: Recreated from Orbital Mechanics for Engineers, Howard Curtis] 
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An elliptical orbit is one in which 0 < 𝑒 < 1, the magnitude of the radius vector is the 

smallest at the periapsis and has the maximum value at apoapsis. Without going much into 

details about the derivations, the following are some of the important expressions of an 

elliptical orbit, represented by Fig 1.8 

 𝑟𝑝 = 
ℎ2

𝜇
 
1

1 − 𝑒
 (12) 

 

 𝑎 =  
ℎ2

𝜇
 

1

1 − 𝑒2
 (13) 

 

 𝑟𝑝 = 𝑎(1 − 𝑒) (14) 

 

 𝑏 = 𝑎√1 − 𝑒2 (15) 

 

 𝑃 =
2𝜋

√𝜇
𝑎
3
2 (16) 

 

Orbital Trajectory 

The first step in defining the orbital trajectory of an asteroid is the preliminary determination 

of the orbital state vectors. The preliminary determination is done through various methods 

of subsequent observations such as radar, telescope, etc. The term trajectory refers to the 

path of a body in space [24] and the orbital state vectors are the Cartesian vectors of position 

(𝑟) and velocity (𝑣⃗) at an epoch. Going into the different methods of preliminary 

determination which falls under the stream of astrometry is not within the scope of this 

research and hence it is assumed that an orbital state vector is already obtained. The position 

and velocity vectors at one point in time can be calculated from the position and velocity at 

any other given point in time. The next step is to determine the size, shape and orientation 

of the orbit and one way to achieve this is to find the classical orbital elements. 

Classical Orbital Elements 

The Keplerian or classical orbital elements are the six constants obtained from the integration 

of the solutions to the scalar, second order, nonlinear coupled, ordinary differential equations 
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of motions. This set of orbital elements can be divided into two groups: the dimensional 

elements and the orientation elements. The semimajor axis, eccentricity and the true anomaly 

are the dimensional elements and they specify the size and shape of the orbit and relate the 

position in the orbit to time. The inclination of the orbit plane, the longitude of the ascending 

node and the argument of periapsis are the orientation elements, also called as Euler angles 

and they specify the orientation of the orbit in space[60]. Fig 1.9 shows the representation of 

classical orbital elements on an inertial reference frame. 

 

Fig 1.9 Representation of the Classical Orbital Elements  

[Credit: Recreated from Orbital Mechanics for Engineers, Howard Curtis] 

The classical orbital elements are listed and described as follows,  

1) Semimajor axis (𝑎) - defines the size of the orbit 

2) Eccentricity (𝑒) - defines the shape of the orbit 

3) Inclination of the orbital plane (𝑖) - defines the orientation of the orbital plane with 

respect to the reference plane 

4) Longitude of the ascending node (𝛺) - defines the shape of the orbit, and is the angle 

between the reference direction and the direction of the ascending node 

5) Argument of periapsis (𝜔) - defines the position of the body in the orbit, measured 

from the ascending node to periapsis 
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6) True anomaly (𝜃) - defines the position of the body in orbit, relating position and 

time.  

The classical orbital elements can be obtained from the orbital state vectors and the orbital 

state vectors can be calculated from the classical orbital elements[14]. 

Orbital Elements from State vectors 

The classical orbital elements could be used in defining an orbit to avoid the complications 

involved in keeping track of time in methods using state vectors. From Fig 1.9 it can be 

noted that that the inclination (𝑖), longitude of ascending node (Ω), argument of periapsis 

(𝜔), and the true anomaly (𝜃) depend on, and hence be calculated from, the three 

fundamental vectors of the orbit  ℎ⃗⃗, 𝑁⃗⃗⃗ and 𝑒. The angular momentum vector ℎ⃗⃗, is 

perpendicular to the plane of the orbit and we already have the expression for the angular 

momentum vector from (6). Hence, the next step is to find the node and eccentricity vector.  

Node vector 

The node vector extends from the origin of the celestial sphere through the ascending node 

and beyond. The vector falls on the node line, which is the line connecting the points at 

which the orbit of a celestial body intersects with the celestial equator. The point of 

intersection at which the celestial body, in its orbit, passes above the celestial equator is 

called the ascending node, and the point of intersection at which the celestial body, in its 

orbit, passes below the celestial equator is called as the descending node. It can be noted that 

the node vector is perpendicular to both the unit vector 𝐾̂ and angular momentum vector ℎ⃗⃗. 

By definition, that means 𝑁⃗⃗⃗ is the cross product of 𝐾̂ and ℎ⃗⃗. 

 𝑁⃗⃗⃗ =  𝐾̂ × ℎ⃗⃗ (17) 

 

Eccentricity Vector 

The eccentricity vector points from the centre of the celestial equatorial plane (focus of the 

orbit) to the periapsis with a magnitude equal to the eccentricity of the orbit. The expression 

for the eccentricity vector can be obtained by solving the trajectory equation and the general 

equation of a conic section, expressed in polar coordinates. Without going much into detail 

about the derivation, the expression can be expressed in (18). 

 𝑒 =
1

𝜇
[(𝑣2 − 

𝜇

𝑟
) 𝑟 − 𝑟𝑣𝑟𝑣⃗]  (18) 
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The radial velocity (𝑣𝑟) is the component of the body's velocity vector that points in the 

direction of the radius connecting the body and the focus point. It can be expressed as in 

equation (19) 

 𝑣𝑟 = (𝑟 . 𝑣⃗ )/ 𝑟 (19) 

 

Inclination of the orbital plane. 

From Fig 1.9 it can be seen that the inclination (𝑖) of the orbit is the dihedral angle between 

the orbital plane and the celestial equatorial plane, which is measured counter clockwise 

around the node line vector from the celestial equator to the orbit. This is also the angle 

between the positive 𝑧 axis and the normal to the plane of the orbit or the angular momentum 

vector (ℎ⃗⃗). The inclination is a positive number between 0 and 180 degrees.  

 𝑖 =  cos−1 (
ℎ𝑧
ℎ
) (20) 

 

Longitude of the ascending Node 

The angle between the positive side of the 𝑥 axis and the node line is called as the longitude 

of the ascending node. It is a positive number lying between 0 and 360 degrees. 

 Ω = cos−1 (
𝑁𝑥
𝑁
) (21) 

 

 Ω = {
cos−1 (

𝑁𝑥
𝑁
)               (𝑁𝑦 ≥ 0)

360° − cos−1 (
𝑁𝑥
𝑁
) (𝑁𝑦 < 0)

 (22) 

 

Argument of periapsis 

It is the angle between the node line vector and the eccentricity vector measured in the plane 

of the orbit. It is a positive number between 0 and 360 degrees. 

 𝜔 = cos−1 (
𝑁⃗⃗⃗ ∙ 𝑒

𝑁𝑒
) (23) 
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 𝜔 =

{
 
 

 
 cos−1 (

𝑁⃗⃗⃗ ∙ 𝑒

𝑁𝑒
)              (𝑒𝑧 ≥ 0)

360° − cos−1 (
𝑁⃗⃗⃗ ∙ 𝑒

𝑁𝑒
) (𝑒𝑧 < 0)

 (24) 

 

True anomaly 

The angle from the eccentricity vector to the position vector of the body, measured in the 

direction of body’s motion. Alternately, we could use time since perigee passage. 

 𝜃 = cos−1 (
𝑒 ∙ 𝑟

𝑒𝑟
) (25) 

 

 𝜃 =

{
 
 

 
 cos−1 (

𝑒 ∙ 𝑟

𝑒𝑟
)              (𝑣𝑟 ≥ 0)

360° − cos−1 (
𝑒 ∙ 𝑟

𝑒𝑟
) (𝑣𝑟 < 0)

 (26) 

 

The angular momentum and the true anomaly are frequently replaced by the semimajor axis 

and the mean anomaly. 

State Vectors as a Function of time 

If the position and velocity of an orbiting body are known at one instance of time, then the 

position and velocity of the orbiting body at any other instance of time can be calculated 

from the known initial values. Classical formulation and universal formulation are two of 

the most commonly used methods to achieve this. While classical formulation uses eccentric 

and hyperbolic anomalies, the universal formulation uses universal anomaly to find state 

vectors as a function of time. Without going much into detail about the merits and demerits 

of both the formulations, we use the universal formulation to obtain the state vectors at time 

t from the initial state vectors. 

The Keplerian motion of a body is confined to the plane of its orbit, hence we can assume 

that the initial state vectors of position and velocity and the final state vectors of position 

and velocity are all coplanar. According to the fundamental theorem of coplanar vectors, “If 

A, B & C are coplanar vectors, and A & B are not colinear, it is possible to express C as a 

linear combination of A and B”[64]. Unless the motion of the body is rectilinear the state 

vectors are linearly independent of each other and hence they can be represented in a linear 

combination shown in (27) and (28).  
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 𝑟𝑡 = (𝑓𝑙𝑎𝑔𝑟0) + (𝑔𝑙𝑎𝑔𝑣⃗0) (27) 

 

 𝑣⃗𝑡 = (𝑓𝑙̇𝑎𝑔𝑟0) + (𝑔̇𝑙𝑎𝑔𝑣⃗0) (28) 

 

The coefficients 𝑓𝑙𝑎𝑔, 𝑔𝑙𝑎𝑔, 𝑓𝑙̇𝑎𝑔, and 𝑔̇𝑙𝑎𝑔 in (27) and (28) are coefficients of the linear 

combination mentioned earlier. The coefficients were first derived by Joseph Louis 

Lagrange and hence are called as the Lagrange coefficients. The Lagrange coefficients are 

functions of time and the initial conditions through which we can find the radius and velocity 

vectors of the orbiting body at a time elapsed after the initial time. It is convenient to find 

the expressions for the Lagrange coefficients using a perifocal frame of reference, from 

which the Lagrange coefficients in terms of the general frame of reference can be obtained. 

Lagrange Coefficients in the Perifocal Frame of Reference 

A perifocal frame is the ‘natural frame’ of orbit and is used to describe orbits in three 

dimensions[65]. The frame is centred at the focus of the orbit. Here the fundamental plane is 

the orbital plane of the body. Fig 1.10 shows the representation of a perifocal frame. The 

coordinate axes are named 𝑥̅, 𝑦̅ and 𝑧̅, where the 𝑥̅ axis points towards the periapsis, the 𝑦̅ 

axis is rotated 90 degrees in the direction of orbital motion and lies in the orbital plane and 

the 𝑧̅ axis is perpendicular to the plane of the orbit in the direction of the angular momentum 

vector ℎ⃗⃗ completing a right-handed perifocal system. 𝑝̂, 𝑞̂ and 𝑤̂ are the unit vectors in the 

direction of  𝑥̅, 𝑦̅ and 𝑧̅ axis respectively. The coordinates of the perifocal frame are 

represented as, 

 𝑥̅ = 𝑟 cos 𝜃 (29) 

 

 𝑦̅ = 𝑟 sin 𝜃 (30) 
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Fig 1.10 Representation of a Perifocal frame 

[Credit: Recreated from Orbital Mechanics for Engineers, Howard Curtis] 

In the perifocal frame, the position vector 𝑟 and the velocity vector 𝑣⃗ are represented by 

(31) and (32) , 

 𝑟 = 𝑥̅ 𝑝̂ + 𝑦̅ 𝑞̂ (31) 

 

 𝑣⃗ = 𝑥̇̅ 𝑝̂ + 𝑦̇̅ 𝑞̂ (32) 

 

Expressing (31) and (32) at time 𝑡 = 0 we obtain the expression, 

 𝑟0 = 𝑥̅0 𝑝̂ + 𝑦̅0 𝑞̂ (33) 

 

 𝑣⃗0 = 𝑥̇̅0 𝑝̂ + 𝑦̇̅0 𝑞̂ (34) 

 

Without going much into the details of derivation, we obtain the values of the Lagrange 

coefficients in the perifocal reference from by solving (27), (28), (33) and (34) as done by 

bate et al[64], 

 𝑓𝑙𝑎𝑔 =
𝑥̅ 𝑦̇̅0 − 𝑦̅ 𝑥̇̅0

ℎ
 (35) 
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 𝑔𝑙𝑎𝑔 =
−𝑥̅ 𝑦̅0 + 𝑥̅ 𝑦̅0 

ℎ
 (36) 

 

And the derivative of the equation (35) and (36) gives, 

 𝑓𝑙̇𝑎𝑔 =
𝑥̇̅ 𝑦̇̅0 + 𝑦̇̅ 𝑥̇̅0

ℎ
 (37) 

 

 𝑔̇𝑙𝑎𝑔 =
−𝑥̇̅𝑦̅0 + 𝑦̇̅ 𝑥̅0

ℎ
 (38) 

 

The expression for the Lagrange coefficients obtained in (35), (36), (37) and (38) are in the 

perifocal frame of reference. To obtain their expressions in terms of the general frame of 

reference, we relate the perifocal coordinates to the general coordinates.  

Universal Anomaly 

To relate the perifocal coordinates to the general coordinates, the angular momentum and 

energy are related to the geometrical parameters 𝑝 and 𝑎 respectively. Here 𝑝 is compared 

to ℎ by equating the trajectory equation and general equation of a conic section in polar 

coordinates, the derivation of both are beyond the scope of this thesis. From (5) and Table 

1.1, we obtain the relationship between energy and 𝑎 in (40), 

 ℎ =  𝑟2𝜃̇ = √𝜇𝑝 (39) 

 

 𝜀 =
1

2
𝑣2 −

𝜇

𝑟
=
−𝜇

2𝑎
 (40) 

 

Resolving 𝑣 into its radial component, 𝑟̇, and its transverse component, 𝑟𝜃̇, the energy 

equation (40) can be written as,  

 
1

2
𝑟̇2 +

1

2
(𝑟𝜃̇)

2
−
𝜇

𝑟
=
−𝜇

2𝑎
 (41) 
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Solving for 𝑟̇2 and setting  (𝑟𝜃̇)
2
=

𝜇𝑝

𝑟2
, we get 

 𝑟̇2 =
−𝜇𝑝

𝑟2
+
2𝜇

𝑟
−
𝜇

𝑎
 (42) 

 

Since the solution is not obvious we introduce an independent variable, 𝑋 defined as 

 𝑋̇ =
√𝜇

𝑟
 (43) 

This independent variable 𝑋, is the universal anomaly. Solving (42) and (43) by dividing we 

can find the expression of 𝑟 and 𝑡 in terms of 𝑋. 

 𝑟 = 𝑎 (1 + 𝑒 sin
𝑋 + 𝑐0

√𝑎
) (44) 

 

 √𝜇 𝑡 = 𝑎𝑋 − 𝑎𝑒√𝑎 (cos
𝑋+ 𝑐0

√𝑎
− cos

𝑋+ 𝑐0

√𝑎
) (45) 

 

Here 𝑐0 is a constant of integration. Solving (44) and (45) introducing two more variables 

(46) and (47), while assuming 𝑋 = 0 and 𝑡 = 0, we obtain the expression for 𝑟 and 𝑡 omitting 

the constant of integration 𝑐0, 

 𝑧 = 𝛾 𝑋2 (46) 

 

 𝛾 =
1

𝑎
 (47) 

 

 √𝜇 𝑡 = [
√𝑧 − sin√𝑧

√𝑧3
] 𝑋3 + 

𝑟0𝑣𝑟,0

√𝜇
 𝑋2  [

1 − cos√𝑧

𝑧
]+ 

𝑟0𝑋sin 𝑧

√𝑧
 (48) 

 

 𝑟 =
𝑋2

2
+
𝑟0𝑣𝑟,0

√𝜇
 
𝑋

√𝑧
sin √𝑧 (49) 
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Stumpff Functions 

(48) and (49) are indeterminate for 𝑧 = 0, so we introduce two functions, substituting 

[
1−cos√𝑧

𝑧
]and [

√𝑧−sin√𝑧

√𝑧3
] in (48), called as the Stumpff functions (50) and (51) to remedy this. 

 𝐶(𝑧) =

{
  
 

  
 
(1 − cos√𝑧)

𝑧
              (𝑧 > 0)

(cosh√−𝑧 − 1)

−𝑧
        (𝑧 < 0)

1

2
                                    (𝑧 = 0)

 (50) 

 

 𝑆(𝑧) =

{
 
 
 

 
 
 
(√𝑧 − sin√𝑧)

√𝑧
3               (𝑧 > 0)

(sinh√−𝑧−√−𝑧)

√−𝑧
3         (𝑧 < 0)

1

6
                                    (𝑧 = 0)

 (51) 

 

Using (50) and (51), with (48) and (49) we get, 

 √𝜇 𝑡 =  𝑋
3𝑆(𝑧)+ 

𝑟0𝑣𝑟,0

√𝜇
 𝑋2 𝐶(𝑧)+ 𝑟0𝑋 (1 − 𝑧 𝑆(𝑧))  (52) 

 

 𝑟 = √𝜇 
𝑑𝑡

𝑑𝑥
= 𝑋2 𝐶(𝑧) +

𝑟0𝑣𝑟,0

√𝜇
 𝑋 (1 − 𝑧𝑆(𝑧)) + 𝑟0(1 − 𝑧 𝐶(𝑧))  (53) 

 

We solved for 𝑋 when time 𝑡 = 0, now we need to solve for 𝑋 when time is known, in order 

to find the radius and velocity vectors at a later time. From 𝑟0, 𝑣0 and the energy equation 

(40), you can obtain the semi-major axis, 𝑎 (as part of the expression for 𝑧 in (52)). But we 

cannot get 𝑋 from itself in (52), since (52) is transcendental for 𝑋, so an iterative trial and 

error solution is used to obtain the value of 𝑋 by using an initial value of 𝑋 denoted as 𝑋0 . 

Without going much into the details of obtaining the initial value of 𝑋, we can use initial 

value of  𝑋 as suggest by V. A. Chobotov[67], 

 𝑋0 = √𝜇|𝛾|𝑡 (54) 

 

We can use the Newton Raphson method (55) for the iteration. 
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 𝑋𝑛+1 = 𝑋𝑛 −
𝐹(𝑋)

𝐹′(𝑋)
 (55) 

 

If we let 𝑡 = 0 and choose a trial value for 𝑋, then rewriting (52) we get, 

 𝐹(𝑋) =
𝑟0𝑣𝑟,0

√𝜇
𝑋2𝐶(𝑧) + (1 − 𝛾 𝑟0)𝑋

3𝑆(𝑧) + 𝑟0𝑋 −√𝜇 𝑡 (56) 

 

And the derivation of (56) yields, 

 𝐹′(𝑋) =
𝑟0𝑣𝑟,0

√𝜇
𝑋(1 − 𝛾𝑋2𝑆(𝑧)) + (1 − 𝛾𝑟0)𝑋

2𝐶(𝑧) + 𝑟0 (57) 

 

Now using (56) and (57) in (55) we get, 

𝑋𝑛+1 = 𝑋𝑛 −

𝑟0𝑣𝑟,0

√𝜇
𝑋𝑛
2𝐶(𝑧𝑛) + (1 − 𝛾 𝑟0)𝑋𝑛

3𝑆(𝑧𝑛) + 𝑟0𝑋𝑛 − √𝜇 𝑡

𝑟𝐶𝑂𝑀,0𝑣𝑟,0

√𝜇
𝑋𝑛(1 − 𝛾𝑋𝑛2𝑆(𝑧𝑛)) + (1 − 𝛾𝑟𝐶𝑂𝑀,0)𝑋𝑛2𝐶(𝑧𝑛) + 𝑟𝐶𝑂𝑀,0

 

      (58) 

 

Where 𝑡 is the time corresponding to the given 𝑟0, 𝑣0, 𝑎 and 𝑋0, while 𝑧𝑛 = 𝛼 𝑋𝑛
2
 

Now with the value of 𝑋 obtained, we can get the expression for the coordinates of the 

perifocal frame in terms of 𝑋. To do this, we use an expression (59) obtained from the 

standard conic equation, 

 𝑟𝑒 cos 𝜃 = 𝑎(1 − 𝑒2) − 𝑟 (59) 

 

Combining equation (59) and (44) in (29), we get the expression for the coordinates of the 

perifocal frame in terms of 𝑋. 

 𝑥̅ = 𝑟 cos 𝜃 = −𝑎 (𝑒 + sin
𝑋 + 𝑐0

√𝑎
) (60) 

Since 𝑦̅2 = 𝑟2 − 𝑥̅2and solving it with (60), we get, 
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 𝑦̅ = 𝑎√1 − 𝑒2  cos
𝑋 + 𝑐0

√𝑎
 (61) 

Differentiating equations (60) and (61), and using the definition for the universal variable 𝑋, 

we get the coordinate 𝑥̇̅ and 𝑦̇̅, 

 𝑥̇̅ = −
√𝜇𝑎

𝑟
 cos

𝑋 + 𝑐0

√𝑎
 (62) 

 

 𝑦̇̅ = −
ℎ

𝑟
 sin

𝑋 + 𝑐0

√𝑎
 (63) 

Lagrange Coefficients Related to the General Frame of Reference 

Solving by substituting the values of  (60), (61), (62) and (63) in (35), (36), (37) and (38) 

and using the values for 𝑋, and through the expressions for 𝑧, 𝐶(𝑧) and 𝑆(𝑧) we get the 

expressions for the Lagrange coefficients in terms of  the general frame of reference. The Lagrange 

coefficients are not independent and knowing any three of the coefficients, the fourth 

coefficient can be found [63]. 

 𝑓𝑙𝑎𝑔 = 1 −
𝑋2

𝑟0 
𝐶(𝑧) (64) 

 

 𝑔𝑙𝑎𝑔 = 𝑡 −
1

√𝜇
𝑋3𝑆(𝑧) (65) 

 

 𝑓𝑙̇𝑎𝑔 = 
√𝜇

𝑟 𝑟0
(𝑧 𝑆(𝑧) − 1) 𝑋 (66) 

 

 𝑔̇𝑙𝑎𝑔 = 1 − 
𝑋2

𝑟
𝐶(𝑧) (67) 

Using (64),(65),(66) and (67) in (27) and (28), along with values of the initial state vectors 

[𝑟0 and 𝑣⃗0], the value of state vectors at a later time [𝑟 and 𝑣⃗] can be obtained. 

1.2 Asteroid Orbit Manipulation 

The physics of manipulating the orbital trajectory of an asteroid involves the application of 

force either perpendicular to, or along (speeding up or slowing down the orbital velocity of 
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the asteroid relative to the sun) the direction of motion of the asteroid[38]. Different methods 

of asteroid deflection have been proposed over the years, but they can be broadly classified 

into “impulsive” and “continuous (slow push or pull)” deflection. The impulsive method 

involves imparting an instantaneous amount of force to change the velocity vector of the 

asteroid. Slow push or pull method involves exerting a small but steady amount of force 

continuously to the object for a time interval causing small changes to the trajectory of the 

body relative to its nominal orbit[42].  

The trajectory manipulation of an asteroid could be carried out for various reasons, but two 

of the most prominent ones are to deflect them from impacting with earth and to shepherd 

them to a desirable orbit for accessing them.  

There are several means of inducing perturbations in the orbit of an asteroid, discussing all 

of them would be an enormous task and not in the scope of this thesis, and hence only a few 

methods would be discussed here. 

1.2.1 Nuclear Detonation 

This is one of the earliest and also one of the most well-known methods, and a nuclear device 

can be detonated in three ways to achieve a deflection:  

1. A nuclear standoff method where a nuclear explosive is detonated on flyby near the 

surface of an asteroid via proximity fuse 

2. A nuclear explosive is detonated on the surface of an asteroid via contact fuse 

3. A nuclear explosive is detonated beneath the surface of an asteroid by driving the 

explosive device into the asteroid 

A nuclear standoff detonation would cause a deflection through the influence of radiation, 

while a detonation on the surface or beneath the surface would have an additional cause 

deflection by the impulse imparted by ejecta from the explosion[38]. According to NASA 

analysts, nuclear explosions are assessed to be 10-100 times more effective than non-nuclear 

alternatives, but it should be noted that because of restrictions found in Article IV of the 

“Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer 

Space, including the Moon and Other Celestial Bodies”, use of a nuclear device would 

require prior international consideration[27]. 
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1.2.2 Kinetic Impactor 

A kinetic impactor is where a massive object, whether it is an asteroid, a rocket, a spacecraft, 

is made to impact the object to change its course. NASA calls this approach a most mature 

approach[27]. The European Space Agency’s AIDA and Don Quixote are two of the kinetic 

impactors designed for test around 2020. One of the major problems with this is 

fragmentation and hence increasing the threat if the fragments impact the Earth. This is 

where the composition of the asteroids comes into play, a dense metallic asteroid would not 

fragment easily but a less dense asteroid would[38]. 

1.2.3 Gravity Tractor 

A gravity tractor moves the asteroid by pulling it using gravitational force slowly over time, 

this could result in sufficient deflection depending on the scenario. A spacecraft with an ion 

thruster is one of the possibilities. Small but constant thrust would get the asteroid to move 

slightly which would result in a considerable distance over time. The spacecraft hovers near 

the asteroid with thrusters angled outward so the exhaust does not impinge on the surface. 

This deflection method is insensitive to the structure, surface properties and rotation state of 

the asteroid [39].  

 

Fig 1.11 Artist's depiction of a gravity tractor in action  

[Credit Dan Durda (FIAAA, B612 Foundation)] 

1.2.4 Focused Solar Energy 

Solar energy can be used for manipulating the orbit of an asteroid, by deploying a large, thin-

film mirror surface to collect sunlight and focusing that on to the surface of the asteroid, a 

small thrust can be created from the vaporization of the material over the surface of the 

object. This method requires a long-term planning, and development. This method can also 

be tried by using solar sails, as solar sails suffer from very low thrust (roughly 10−5 𝑁𝑚−2 
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of collector surface at 1 AU) and the mechanical difficulty of tethering the sail to a rotating 

asteroid, they could be used to focus sunlight onto the surface of the asteroid to generate 

thrust as the asteroid’s surface sublimates[41]. 

1.2.5 Mass Driver 

This method was originally developed in support of space settlement projects in the mid-

1970s. A mass driver, as the name suggests ejects the mass[37] on the surface of the asteroid 

into space in the right direction to apply a consistent acceleration along the asteroid’s orbital 

path.  

1.2.6 Tether Assisted Deflection 

The use of tethers to deflect an asteroid is not new in concept, multiple methods of tether 

assisted deflection have been proposed over the years. This thesis proposes a different 

method of tether assisted deflection, making use of asteroid-to-asteroid close encounters, 

connecting two closely passing asteroids with a tether.  

Space Tethers 

Space tethers are long cables that connect two bodies whether be it satellites or celestial 

bodies where the length of the space tethers exceed the size of the connected bodies. Space 

tethers are usually made up of thin strands of high strength conducting wires or fibres, the 

desired tether material properties depend upon the intended application. Some desirable 

properties for a tether include high tensile strength and low density. A protective coating 

may be necessary to avoid being affected by exposure to ultraviolet radiation. Some of the 

common materials used for building space tethers include Kevlar, ultra-high molecular 

weight polyethylene, carbon nanotubes, M5 fibre and diamond[50]. The idea of using space 

tethers was first proposed for the creation of artificial gravity from the centrifugal force of 

inertia, proposed by Tsiolkovsky[50].  

Types of Space Tethers 

Depending on the features, objective, etc. space tethers can be grouped into different types. 

Some of them are [50]: 

1) Static tethers – In which the quantity and lengths of tethers, the quantity and weights 

of objects, and their relative position and orientation remain constant during activity 

2) Dynamic tethers – Which can significantly change configurations and structures 



32 
 

3) Electrodynamic tethers – They include conductive materials which actively interact 

with Earth’s magnetic field and ionosphere, no matter whether the tether is static or 

dynamic 

4) Momentum exchange tethers – These can be either static or dynamic that capture an 

arriving body and then releases it at a later time into a different velocity. Momentum 

exchange tethers can be used for orbital manoeuvring, by transferring momentum or 

energy between connected bodies 

Momentum Exchange Tethers 

Momentum exchange tethers are highly suitable for applications involving orbital trajectory 

manipulation such as deflection. Inter-orbital manoeuvres can be carried out by the 

continuous action of a constraint force upon a system’s elements, and at the expense of 

constraint provided by a tether [51].  

Two bodies are coupled in such a way that there is momentum or energy transfer between 

them. This is achieved by taking advantage of the gravity gradient force that exists due to 

the differential gravitational force between the two ends of the tether. This force helps in 

keeping a high tether tension, by pulling the ends apart in opposite direction. Releasing one 

end of the tether will transfer momentum from one body to another. The body that is closer 

to the central body will experience more gravitational force and less centrifugal force while 

the body that is farther from the central body will experience more centrifugal force and less 

gravitational force comparatively. To simplify, this model could be considered, to be in a 

dumbbell configuration [50].  

The gravitational and centrifugal forces are equal and balanced only at the dumbbell 

system’s centre of mass. Equating the gravitational and centrifugal force at the centre of 

mass: 

 
𝐺𝑀𝑆𝑢𝑛𝑀𝐷

𝑟𝐷
2 = 𝑀𝐷𝑟𝐷𝜔𝐷

2  
 

(68) 

 

Since, 

 𝜔𝐷 = 
𝑣𝐷
𝑟𝐷

 
 

(69) 

 

 
𝜔𝐷 = 

2𝜋

𝑃𝐷
 

 

(70) 
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Substituting (69) in (68) and (70) in (68) we get (71) and (72) respectively, 

 𝑣𝐷
2 =

𝐺𝑀𝑆𝑢𝑛
𝑟𝐷

 

 

(71) 

 

 
𝑃𝐷
2 =

4𝜋2𝑟𝐷
3

𝐺𝑀𝑆𝑢𝑛
 

 

(72) 

 

 

Where, 

𝐺 = 6.673 x 10-20 𝑘𝑚3 𝑘𝑔−1𝑠−2 

From the above equations it can be noted that the orbital velocity, orbital period and angular 

velocity depend on the orbital radius and are independent of the system mass. 

Equations of motion  

In order to understand the dynamics of momentum exchange tethers, we derive the equation 

of motion for a system using momentum exchange tethers in two different operational 

contexts. The most common and widely studied system is the dumbbell system. So, let us 

base both the operational contexts on the dumbbell system. 

For simplification we can assume the tether to be massless and inelastic, the end masses as 

point masses and gravitational force of the central body as the only force acting on the 

system. 

Context 1 

In this context we use a dumbbell satellite system in an elliptical earth orbit, with only in-

plane motion for the attitude dynamics. 

The dumbbell satellite system is modelled with two reference frames, an inertial geocentric 

reference frame 𝑋, 𝑌, 𝑍 fixed to the centre of the earth 𝐸 and a non-inertial local reference 

frame 𝑥, 𝑦, 𝑧 fixed to the centre of mass of the dumbbell system 𝑂 with a generalised 

coordinate 𝜙, which is the angle between the tether and the z axis. 𝑅⃗⃗⃗  is the radius vector of 

the centre of mass of the dumbbell satellite system, 𝜃 is the true anomaly of the centre of 

mass, 𝑚1and 𝑚2 are the masses of the satellites, 𝑀𝐸 the mass of the earth and 𝐿 as the length 

of the tether, which is the distance between 𝑚1and 𝑚2 . 
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Fig 1.12 Dumbbell Satellite System with an in-plane motion  

From (3), the two body second order differential equation of relative motion between two 

bodies can be written as (73) for the centre of mass of the dumbbell system. 

 
𝑑2𝑅⃗⃗

𝑑𝑡2
= − 

𝜇𝐸 𝑅⃗⃗

𝑅3
 (73) 

 

In this context let us derive the equation of motion in relation to the rate of change of the 

true anomaly of the orbital motion. To obtain the expression for the orbital motion of the 

centre of mass of the dumbbell system in terms of the rate of change of true anomaly, we 

first relate the rate of change of the true anomaly, the radius of the centre of mass and the 

angular momentum. From the expression for the specific angular momentum (74), we obtain 

the relation. 

 ℎ⃗⃗ = 𝑅⃗⃗
𝑑𝑅⃗⃗

𝑑𝑡
 (74) 

 

 
𝑑𝑅⃗⃗

𝑑𝑡
= 𝑅

𝑑𝜃

𝑑𝑡
𝜃 +

𝑑𝑅

𝑑𝑡
𝑅̂ (75) 
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 ℎ⃗⃗ = 𝑅⃗⃗ (𝑅
𝑑𝜃

𝑑𝑡
𝜃 +

𝑑𝑅

𝑑𝑡
𝑅̂) = 𝑅2

𝑑𝜃

𝑑𝑡
ℎ̂ (76) 

 

 ℎ = 𝑅2
𝑑𝜃

𝑑𝑡
 (77) 

 

 
𝑑𝜃

𝑑𝑡
=
ℎ

𝑅2
 (78) 

 

Considering the dumbbell satellites to travel in an elliptical orbit, we obtain the expression 

for an elliptical orbit, and so, from (8) the orbit formula for the conic section can be expressed 

for the dumbbell system as, 

 𝑅 =
ℎ2

𝜇𝐸
 

1

1 + 𝑒 cos 𝜃
 (79) 

  

Without going much into the details of derivation, we obtain the following relation from the 

geometry of the ellipse,  

 𝑅 =
𝑎(1 − 𝑒2)

1 + 𝑒 cos 𝜃
 (80) 

 

 ℎ2 = 𝜇𝐸𝑎(1 − 𝑒
2) (81) 

 

 𝑣𝑟 =
𝜇𝐸
ℎ
𝑒 sin 𝜃 (82) 

 

 𝑣⊥ =
𝜇𝐸
ℎ
(1 + 𝑒 cos 𝜃) (83) 
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Substituting (80) and (81) in (78), we get 

 
𝑑𝜃

𝑑𝑡
=
√𝜇𝐸(𝑎(1 − 𝑒

2))
1
2

(𝑎(1 − 𝑒2))
2

(1 + 𝑒 cos 𝜃)2 (84) 

 

 
𝑑𝜃

𝑑𝑡
=

√𝜇𝐸

(𝑎(1 − 𝑒2))
3
2

(1 + 𝑒 cos 𝜃)2 (85) 

 

Equation (85) is the Keplerian motion of the centre of mass of the dumbbell system for an 

elliptical orbit in terms of the rate of change of true anomaly. Similarly, substituting (81) 

into the expression for the radial (82) and tangential (83) velocity components of the orbital 

velocity and solving, we find the expression for the orbital velocity (86) of the centre of mass 

of the dumbbell satellite system in the elliptical orbit. 

 (
𝑑𝑅

𝑑𝑡
)
2

=
𝜇𝐸

𝑎(1 − 𝑒2)
(1 + 𝑒2 + 2𝑒 cos 𝜃) (86) 

 

From the position vectors 𝑅1 and 𝑅2 of the satellites in the dumbbell system in the local 

reference frame and using the generalised coordinate 𝜙, we can obtain the coordinates of the 

satellites, 

 𝑥1 = (1 − 𝛿)𝐿 sin𝜙 (87) 

 

 𝑧1 = (1 − 𝛿)𝐿 cos 𝜙 (88) 

 

 𝑥2 = −𝛿 𝐿 sin𝜙 (89) 

 

 𝑧1 = −𝛿𝐿 cos𝜙 (90) 
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 𝛿 =
𝑚1

𝑚1 +𝑚2
 (91) 

 

The equation of motion can be obtained with the use of the Lagrange equation using 𝜙 as a 

generalised coordinate, where 𝐾 represents the kinetic energy and 𝑈 represents the potential 

energy of the dumbbell satellite system. 

 
𝑑

𝑑𝑡

𝜕𝐾

𝜕𝜙̇
−
𝜕𝐾

𝜕𝜙
+
𝜕𝑈

𝜕𝜙
= 0 (92) 

 

First, we find the kinetic energy of the dumbbell system from the kinetic energy of the center 

of mass of the dumbbell system added with the kinetic energy of each satellites, 

 𝐾 =
1

2
𝑚 (

𝑑𝑅

𝑑𝑡
)
2

+
1

2
(𝑚1

𝑑𝐿1
2

𝑑𝑡
+ 𝑚2

𝑑𝐿2
2

𝑑𝑡
) (93) 

 

Substituting (86) in (93), 

 

𝐾 =
1

2
𝑚(

𝜇𝐸
𝑎(1 − 𝑒2)

(1 + 𝑒2 + 2𝑒 cos 𝜃)

− (𝛿2 − 𝛿)𝐿2 (
𝑑𝜃

𝑑𝑡
−
𝑑𝜙

𝑑𝑡
)
2

) 

(94) 

And differentiating, 

 

𝑑

𝑑𝑡

𝜕𝐾

𝜕𝜙̇
−
𝜕𝐾

𝜕𝜙
= −(𝛿2 − 𝛿)𝐿2 (

𝑑2𝜙

𝑑𝑡2

+ 2𝑒
𝜇𝐸

𝑎3(1 − 𝑒2)3
(1 + 𝑒 cos 𝜃)3 sin 𝜃) 

(95) 

 

The potential energy of the dumbbell satellite system can be expressed as, 

 𝑈 = −𝜇𝐸 (
𝑚1

|𝑅 + 𝐿1|
+

𝑚2

|𝑅 + 𝐿2|
) (96) 

 

 

𝑅 + 𝐿1 = ((1 − 𝛿)
2𝐿2 +

𝑎2(1 − 𝑒2)2

(1 + 𝑒 cos 𝜃)2

− 2(1 − 𝛿)𝐿 cos𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
)

1
2

 

(97) 
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𝑅 + 𝐿2 = ((−𝛿)
2𝐿2 +

𝑎2(1 − 𝑒2)2

(1 + 𝑒 cos 𝜃)2

− 2(−𝛿)𝐿 cos𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
)

1
2

 

(98) 

 

Substituting (97) and (98) in (96) and differentiating w.r.t 𝜙, 

 

𝜕𝑈

𝜕𝜙
= 𝜇𝐸𝑚1(𝛿

2

− 𝛿)𝐿 sin𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
(((−𝛿)2𝐿2

+
𝑎2(1 − 𝑒2)2

(1 + 𝑒 cos 𝜃)2

− 2(−𝛿)𝐿 cos𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
)

−
3
2

− ((1 − 𝛿)2𝐿2 +
𝑎2(1 − 𝑒2)2

(1 + 𝑒 cos 𝜃)2

− 2(1 − 𝛿)𝐿 cos𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
)

−
3
2

) 

(99) 

Substituting (95) and (99) in (92), 

 

𝑑

𝑑𝑡

𝜕𝐾

𝜕𝜙̇
−
𝜕𝐾

𝜕𝜙
+
𝜕𝑈

𝜕𝜙

= −(1 − 𝛿)(−𝛿)𝑙2 (
𝑑2𝜙

𝑑𝑡2

+ 2𝑒
𝜇𝐸

𝑎3(1 − 𝑒2)3
(1 + 𝑒 cos 𝜃)3 sin 𝜃)

+ 𝜇𝐸𝑚1(1

− 𝛿)(−𝛿)𝐿 sin𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
(((−𝛿)2𝐿2

+
𝑎2(1 − 𝑒2)2

(1 + 𝑒 cos 𝜃)2

− 2(−𝛿)𝐿 cos𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
)

−
3
2

− ((1 − 𝛿)2𝐿2 +
𝑎2(1 − 𝑒2)2

(1 + 𝑒 cos 𝜃)2

− 2(1 − 𝛿)𝐿 cos𝜙
𝑎(1 − 𝑒2)

1 +  𝑒 cos 𝜃
)

−
3
2

) 

(100) 
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Equation (85) and (100) are the in-plane equations of motion of the dumbbell satellite system 

as a functions of time, where (85) defines the orbital motion of the centre of mass of the 

dumbbell satellite system and (100) defines the in-plane attitude motion of the dumbbell 

satellite system. 

Context 2  

In this context we use a dumbbell satellite system in an earth orbit with out-of-plane motion 

for attitude dynamics.  

The dumbbell satellite system is modelled with an inertial reference frame 𝑋, 𝑌, 𝑍 fixed to 

the centre of the earth 𝐸 and a non-inertial local reference frame 𝑥, 𝑦, 𝑧 fixed to the centre of 

mass of the dumbbell system 𝑂. 𝑅⃗⃗⃗  is the radius vector of the centre of mass of the dumbbell 

satellite system, 𝜃 is the true anomaly of the centre of mass, 𝑚1and 𝑚2 are the masses of the 

satellites, 𝑀𝐸 the mass of the earth, 𝐿1and 𝐿2 is the distance between the centre of mass of 

the dumbbell system and the satellites, ∅ is the angle the tether makes with the 𝑥 axis of the 

dumbbell satellite system, while rotating about the 𝑦 axis and 𝛼 is the angle between the 

tether and the 𝑦 axis while rotating about the 𝑥 axis. 

 

Fig 1.13 Dumbbell Satellite System with an out-of-plane motion 

Here 𝑅, 𝜃, 𝛼, ∅ are the generalised coordinates and are functions of time. The cartesian 

coordinates of the satellites in the dumbbell system about the centre of the earth 𝐸 are, 
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 𝑥1 = 𝑅 cos 𝜃 + 𝐿1 cos 𝛼 cos(∅ + 𝜃) (101) 

 

 𝑦1 = 𝑅 sin𝜃 + 𝐿1 cos 𝛼 sin(∅ + 𝜃) (102) 

 

 𝑧1 = 𝐿1 sin𝛼 (103) 

 

 𝑥2 = 𝑅 cos 𝜃 − 𝐿2 cos 𝛼 cos(∅ + 𝜃) (104) 

 

 𝑦2 = 𝑅 sin𝜃 − 𝐿2 cos 𝛼 sin(∅ + 𝜃) (105) 

 

 𝑧1 = −𝐿1 sin𝛼 (106) 

The general expression for finding the length of a vector (107) can be used to find the 

distance between the centre of the earth and the satellites (108) and (109), 

 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 (107) 

 

 𝑅1 = √𝐿1
2 + 𝑅2 + 2𝐿1𝑅 cos 𝛼 cos ∅ (108) 

 

 𝑅2 = √𝐿2
2 + 𝑅2 − 2𝐿2𝑅 cos 𝛼 cos ∅ (109) 

 

The equations of motion of the dumbbell system as a function of time can be obtained 

through the Lagrange Equation (110). 

 
𝑑

𝑑𝑡
[
𝜕𝐾

𝜕𝑞̇𝑖
] −

𝜕𝐾

𝜕𝑞𝑖
+
𝜕𝑈

𝜕𝑞𝑖
= 𝑄𝑖         𝑖 = 1,2, … . , 𝑛 (110) 
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Where 𝐾 and 𝑈 are the kinetic and potential energy of the dumbbell satellite system 

respectively. In this operational context, the Kinetic Energy of the dumbbell satellite system 

comprises only the translation of the end bodies and hence from the general expression for 

the kinetic energy of a system (111), we get the expression for the kinetic energy of the 

dumbbell satellite system, 

 𝐾 =
1

2
 𝑚 (

𝑑𝑟

𝑑𝑡
)
2

 (111) 

 

 

𝐾 =
1

2
𝑀1 ((

𝑑𝑥1
𝑑𝑡
)
2

+ (
𝑑𝑦1
𝑑𝑡
)
2

+ (
𝑑𝑧1
𝑑𝑡
)
2

)

+
1

2
𝑀2 ((

𝑑𝑥2
𝑑𝑡
)
2

+ (
𝑑𝑦2
𝑑𝑡
)
2

+ (
𝑑𝑧2
𝑑𝑡
)
2

) 

(112) 

 

Differentiating (101), (102), (103), (104), (105) and (106) with respect to time and 

substituting the results in (112) we get, 

 

𝐾 =
1

2
(𝑀1 +𝑀2) ((

𝑑𝑅

𝑑𝑡
)
2

+ 𝑅2 (
𝑑𝜃

𝑑𝑡
)
2

)

+
1

2
(𝑀1𝐿1

2 +𝑀2𝐿2
2) [(

𝑑𝛼

𝑑𝑡
)
2

+ (
𝑑∅

𝑑𝑡
+
𝑑𝜃

𝑑𝑡
)
2

cos2 𝛼] 

(113) 

 

From the general expression for potential energy (114) of a system, the Potential Energy of 

the dumbbell satellite system can be expressed, 

 𝑈 = −
𝜇

𝑟
𝑚 (114) 

 

 𝑈 = −
𝜇𝐸𝑀1
𝑅1

−
𝜇𝐸𝑀2

𝑅2
 (115) 
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𝑈 = −
𝜇𝐸𝑀1

√𝐿1
2 + 𝑅2 + 2𝐿1𝑅 cos 𝛼 cos ∅

−
𝜇𝑀2

√𝐿2
2 + 𝑅2 − 2𝐿2𝑅 cos𝛼 cos ∅

 

(116) 

 

Differentiating (113) and (115) for ∅, 𝛼, 𝜃, 𝑅 with respect to time, we get the following four 

equations of motion of the dumbbell system, 

 

𝑑2∅

𝑑𝑡2
+
𝑑2𝜃

𝑑𝑡2
− 2 tan𝛼

𝑑𝛼

𝑑𝑡
(
𝑑∅

𝑑𝑡
+
𝑑𝜃

𝑑𝑡
)

+
𝜇𝑅 sin∅ sec 𝛼

𝐿1 + 𝐿2
[(𝐿2

2 + 𝑅2

− 2𝐿2𝑅 cos 𝛼 cos ∅)
−
3
2

− (𝐿1
2 + 𝑅2 + 2𝐿1𝑅 cos 𝛼 cos∅)

−
3
2] = 0 

(117) 

 

 

𝑑2𝛼

𝑑𝑡2
+
1

2
sin 2𝛼 (

𝑑∅

𝑑𝑡
+
𝑑𝜃

𝑑𝑡
)

+
𝜇𝑅 cos ∅ sin 𝛼

𝐿1 + 𝐿2
[(𝐿2

2 + 𝑅2

− 2𝐿2𝑅 cos 𝛼 cos ∅)
−
3
2

− (𝐿1
2 + 𝑅2 + 2𝐿1𝑅 cos 𝛼 cos∅)

−
3
2] = 0 

(118) 

 

 

(𝑀1 +𝑀2) (𝑅
2
𝑑2𝜃

𝑑𝑡2
+ 2𝑅

𝑑𝑅

𝑑𝑡

𝑑𝜃

𝑑𝑡
)

+ (𝑀1𝐿1
2 +𝑀2𝐿2

2) [cos2 𝛼 (
𝑑2∅

𝑑𝑡2
+
𝑑2𝜃

𝑑𝑡2
)

−
𝑑𝛼

𝑑𝑡
sin 2𝛼 (

𝑑∅

𝑑𝑡
+
𝑑𝜃

𝑑𝑡
)] = 0 

(119) 

 

 

𝑑2𝑅

𝑑𝑡2
− (

𝑑𝜃

𝑑𝑡
)
2

𝑅

+
𝜇𝐸

𝑀1 +𝑀2
[𝑀1(𝑅

+ 𝐿1 cos 𝛼 cos∅)(𝐿1
2 + 𝑅2

+ 2𝐿1𝑅 cos 𝛼 cos∅)
−
3
2

+𝑀2(𝑅
− 𝐿2 cos 𝛼 cos ∅)(𝐿2

2 + 𝑅2

+ 2𝐿2𝑅 cos 𝛼 cos ∅)
−
3
2] = 0 

(120) 
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(117), (118), (119), (120) are the equations of motion of the dumbbell satellite system as a 

function of time. 

Effects of Potential Well Barriers 

A gravitational potential well is the region of local minimum of the gravitational potential 

energy of a spherical body surrounded by the local maximum of the gravitational potential 

energy of the same spherical body. A smaller body captured in the gravitational potential 

well of a massive body cannot escape the well without external energy added to the system.  

 

Fig 1.14 Earth’s Gravity well  

Credit: Nathan Bergey [PSU] 

The gravitational potential energy of two masses, 𝑚1 and 𝑚2, separated by a distance 𝑟 is, 

 𝑈 = −𝐺
𝑚1𝑚2

𝑟
 (121) 

 

In the operational contexts discussed earlier, the potential energy and the kinetic energy of 

the system are, 
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 𝑈 = −
𝜇𝐸𝑚𝑑𝑏

𝑅
 (122) 

 

 𝐾 =
1

2
𝑚𝑑𝑏 (

𝑑𝑅

𝑑𝑡
)
2

 (123) 

 

The total energy of the system can be expressed as, 

 𝐸 = 𝐾 + 𝑈 (124) 

 

Substituting (122) and (123) in (124), we get (125) and rearranging the equation, we get 

(126), which is also the expression for the escape velocity. 

 𝐸 =
1

2
𝑚𝑑𝑏 (

𝑑𝑅

𝑑𝑡
)
2

−
𝜇𝐸𝑚𝑑𝑏

𝑅
 (125) 

 

 
𝑑𝑅

𝑑𝑡
= √

2𝜇𝐸
𝑅

 (126) 

 

Both the operational contexts of the dumbbell satellite system discussed earlier, are inside 

the gravitational potential well of the earth, hence it orbits around the earth, and for it to 

leave the orbit of the earth it should leave the gravitational potential well of the earth. To 

achieve this, the dumbbell satellite system should have enough energy to surmount the 

maximum of the well to break free of the barrier, and this can be in the form of kinetic 

energy.  

This energy can be in the form of the kinetic energy and to increase the kinetic energy, the 

orbital velocity of the body should be increased. But the energy and momentum in a closed 

system is conserved and hence its energy cannot be increased internally. 

If using an external propulsion like motorised tether, which has a motor to spin the system 

faster, this would impart angular velocity, which would increase the dumbbell system’s 

existing angular velocity about its centre of mass, this in turn would increase the rotational 

velocities of the end satellites in the system, which would add to the orbital velocity of the 

centre of mass. 
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The increase in the orbital velocity of the centre of mass would increase the kinetic energy 

of the system, and with enough kinetic energy to surmount the maximum of the earth’s 

gravitational well, the dumbbell system would be able to escape the gravitational potential 

barrier of the earth. 

Modelling the system energies 

The system energies were modelled based on the approach taken in this thesis, the details of 

which will be discussed in the following chapters of this thesis. The overall energy of the 

system, which can be considered as the orbital energy of the dumbbell system can be 

expressed in (124). 

Substituting (94) and (96) in (124) we get the total energy of the system, 

 

𝐸 =
1

2
𝑚(

𝜇𝐸
𝑎(1 − 𝑒2)

(1 + 𝑒2 + 2𝑒 cos 𝜃)

− (𝛿2 − 𝛿)𝐿2 (
𝑑𝜃

𝑑𝑡
−
𝑑𝜙

𝑑𝑡
)
2

)

− 𝜇𝐸 (
𝑚1

|𝑅 + 𝐿1|
+

𝑚2

|𝑅 + 𝐿2|
) 

(127) 

 

Where, 𝜇𝐸 = 3.986004418 x 105 𝑘𝑚3𝑠−2 

Keeping the length of the tether and the radius of the centre of mass from the centre of the 

earth constant, the energy of the dumbbell satellite system can be obtained for each value of 

true anomaly and the angular displacements of both the in-plane and out-of-plane 

orientation. For simplification, only the orbital energies the satellites in context with in-plane 

attitude motion is discussed. 

The simulation was carried out for one full rotation of the dumbbell satellite system around 

its centre of mass and the satellites were assumed to be in a closely circular geostationary 

orbit around the earth and the values considered are as follows. 

The radius vector of Satellite1, 𝑅1 = 36000 km, 

The radius vector of Satellite2, 𝑅1 = 35800 km, 

The mass of Satellite1, 𝑚1 = 3500 kg, 

The mass of Satellite2, 𝑚1 = 3500 kg, 
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Fig 1.15 Legend for Fig 1.16 and Fig 1.17 

 

Fig 1.16 Angular displacement Vs Orbital energy of Satellite1 

 

 

Fig 1.17 Angular displacement Vs Orbital energy of Satellite2 



47 
 

From the obtained plots, it can be observed that the centre of mass of the dumbbell satellite 

system completed almost three orbits around the earth for one full rotation of the satellites, 

in the dumbbell system, about the centre of mass. 

The maximum and the minimum energy for Satellite1 occurs close to the perigee point than 

the apogee point for every orbit, and the occurrence of minimum and maximum energies can 

be observed to occur alternatively for each orbit. It also indicates that the value of the orbital 

energy at the perigee point is either of two constant values that occurs alternatively, while 

the orbital energy value at apogee is constant at every orbit. This indicates that the Satellite1 

returns to the initial orientation every time it reaches the apogee point, and it reaches the 

initial orientation at every alternative perigee point. This could be due to the change in the 

angular velocity of the dumbbell system as it approaches the perigee and apogee points. 

The maximum and the minimum energy for Satellite2 occurs at the point of perigee at every 

orbit, and like Satellite1, the value of for the orbital energies of Satellite2 at perigee is either 

of two constant values for every alternate orbit. The value of the orbital energy of the 

Satellite2 at the apogee point remains constant for every orbit.  

This similarity in the behaviour of both the satellites for every orbit could be because of the 

mass ratio, as both the asteroids weigh the same and the length of the tether is very small 

compared to the distance between the centre of mass and the earth. 

Methods of Tether Assisted Deflection 

Numerous proposals on tether assisted deflection of an asteroid have been put forward over 

the years. Not going much into the chronology of the events, it would be helpful to discuss 

one of these methods to understand the dynamics of such a proposal. 

Long Tether and a Ballast Mass 

French and Mazzoleni[52] proposed a method in which a long massless inelastic tether and 

ballast mass is attached to the asteroid to change its trajectory. This method would affect the 

trajectory of the asteroid in two ways. First, the connection of a tether and ballast mass would 

instantaneously change the centre of mass of the system and therefore the orbit. Second, the 

tether tension would add a perturbing force that would also change the NEO’s trajectory. 

A study undertaken to run the numerical simulation comparatively with the equation of 

motion derived through Cowell’s and Encke’s method proved the latter method 

convergences to the solution more rapidly. It was concluded with the following points: 
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1) The length of the tether and the mass ratio between the ballast and the asteroid both 

directly affect the location of the centre of mass after the tether and ballast mass 

connection 

2) It further concluded that the effect of orbit size and shape (semimajor axis and 

eccentricity) can be summarized as follows: smaller more elliptical orbits are more 

responsive to tether-ballast mitigation than larger, more circular orbits and for orbit 

size (specifically semimajor axis), this generalisation is limited 

3) The best point in the obit at which the tether should be connected to the asteroid is 

periapsis. This results in a maximum deviation for a given asteroid-tether-ballast 

configuration 

In a follow-up paper[53], French and Mazzoleni discussed the effect on the predicted motion 

caused by adding mass and tether flexibility to the tether-ballast model. Here, it was 

concluded that the most critical metric, the diversion distance resulting from the tether and 

ballast mass, remained qualitatively consistent with the results found using the massless, 

inelastic model. Other metrics such as the tether tension however were affected greatly, 

especially the addition of tether elasticity, and accounting for the case of a slack tether. It 

was found that the slack tether phenomenon could be mitigated by slightly varying the 

system initial conditions or design parameters. 

If a tether and ballast system were to be used for asteroid mitigation, a two-step procedure 

could be used to understand and develop a system. First, results obtained using a massless, 

inelastic simulation model could be used to determine an approximate configuration for the 

tether and ballast, as it was shown that the introduction of tether mass and elasticity into the 

modelling process does not greatly affect the diversion performance. Second, the tools 

presented in this study could then be used to determine an appropriate tether mass and initial 

condition. Mashayekhi and Misra[54] proposed an optimization for the above method to 

increase the diversion achieved by cutting the tether at an appropriate point in the orbit. In a 

follow-up paper[55] Mashayekshi and Misra propose a numerical optimisation scheme to 

determine the best point of tether severance. 

Application of Space Tethers 

Some of the applications of space tethers are as below: 

1) Orbit manipulation and manoeuvring 
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2) De-orbiting a satellite at the end of its use life 

3) Orbit stabilization 

4) Electrodynamic tethers could be used to generate considerable amount of power, by 

converting orbital energy into electric power 

5) Transfer of payloads 

6) Formation flying 

Missions using Space Tethers 

The first experiment in using space tethers were conducted in the mid-1960s, there have been 

numerous experiments since then. Some of the missions using space tethers are[50]: 

1) Tethered Satellite System (TSS) is a collaborative programme by NASA and Italian 

Space Agency (ASI) with the objective of reusable multi-disciplinary facility to 

conduct space experiments in Earth orbit with a 20-km longs electrically conductive 

tether. The first TSS mission, called TSS-1 was conducted from 31st July to 8th 

August 1992. Another TSS mission named TSS-1R was deployed on the 22nd of 

February 1996 

2) Small Expendable Deployer System (SEDS) was developed by NASA’s Marshall 

Space Flight Center (MSFC), which was primarily responsible for the development 

of transportation and propulsion technologies. Two SEDS mission named SEDS-1 

and SEDS-2 were carried out in 1993 and 1994 respectively 

3) Tether Physics and Survivability (TiPS) experimental payload was deployed on 20th 

June 1996. This was a free flying satellite comprising two end bodies separated by a 

4.0 km long non-conducting tether. The primary objective was to study the long-term 

dynamics and survivability if tether systems in space 

1.3 Motivation 

The current interest and enthusiasm in accessing NEAs either for research or for exploiting 

the resource has enormous potential for the future human space exploration and settlement, 

which is a dream, for at least a majority of engineers of the space industry. Though not 

everyone agrees to the possibility of this becoming a reality, it would be proper to bring to 

notice that a few decades ago people believed that reaching the moon was impossible. Every 
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scientific discovery or invention is a matter of time and that era of space transportation is 

not too far away. In fact, the current trends could be considered as the start of the space age.  

The rate of detection of NEAs has increased as shown in Fig 1.18 due to the advancement 

in the methods and technology being used to discover them, with this emerges a crowded 

picture of our solar system, which though raising concerns at times, when viewed 

optimistically could be considered as a treasure trove for the needs of the ever hungry human 

expansion. Whether to deflect a hazardous asteroid from earth impact or to exploit the 

resources in them accessing these celestial bodies is a question to which there has been a lot 

of contributions.  

 

Fig 1.18 NEA Discoveries by Survey (Credit: MPC) 

 

A number of missions being attempted to access these celestial bodies, and a lot of old and 

new methods have been proposed keeping in mind one important rule, efficiency. The ability 

to reach regions far away from the vicinity of Earth within a short time and to carryout 

complicated tasks utilising less resources is a key objective being tried for, and many of the 

technological advancements in the space industry are in this regard. 
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Reaching an asteroid is just the initial step, getting resources and transporting them to earth 

is another. Taking into account the time and efficiency as determining factors, achieving 

these objectives entirely through the reliance of conventional methods such as chemical 

propulsion, nuclear propulsion and solar propulsions is not an ideal solution. While these 

conventional methods could be used to reach an asteroid, using the existing orbital energy 

of a system to bring the asteroids closer to Earth for capture and exploitation should be given 

enough consideration. 

Considering that at any point in time two asteroids should pass close enough to be connected 

to each other, the energy from one asteroid could be transferred to the other asteroid, to 

manipulate and change the trajectory to a desirable one. One of the most practical way of 

connecting the asteroids is through a tether, which led to the motivation of using tether as a 

tool in this research. The following sections discuss some of the interesting topics related to 

the motivation of this thesis. 

1.3.1 Asteroid Mining 

While Near-Earth-Asteroids could be a threat to the existence of life in the planet, they are 

also said to contain a variety of resources that can be tapped with proper planning and 

approach. In fact, a British Broadcasting Corporation (BBC) news article said that platinum, 

the hypo-allergenic metal, will run out in 20 years if demand continues to increase[28]. The 

case is similar with rare Earth metals such as Indium and Dysprosium, and these materials 

would run out sometime in the near future, as the demand grows, especially to satisfy the 

needs of the electronics and the Medical industry. And when they do run out, not all of these 

metals can be artificially replenished, though recycling would help a little, the only 

permanent way is to prospect them elsewhere. Approximately 95% of the rare Earth 

materials mined are from China and the entire amount of platinum mined for global 

consumption comes from four mines and out of this, three are located in the continent of 

Africa[29]. The only other possible region that could be thought for replenishment of these 

precious minerals is out there in the vast spaces of the universe, the asteroids; especially in 

some NEAs to be specific. In fact, all the amount of these materials currently being mined 

from the Earth’s crust is said to have been brought through the constant bombardment by 

meteorites after the crust cooled[30]. In fact, the idea to exploit asteroids is older than the 

space program, when Konstantin Tsiolkovsky included in “The Exploration of Cosmic 

Space by Means of Reaction Motors”, published in 1903, the “exploration of asteroids” as 

one of his fourteen points for the conquest of space [31]. But only recently has this been seen 

as a commercially and technologically feasible plan.  The Apollo program returned 382 kg 
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of Moon rocks in six missions and with the current technological advancement in space 

exploration and transportation more could be achieved. To test the validity of this assertion, 

NASA sponsored the “Asteroid Return Mission Feasibility Study” in 2010 to investigate the 

feasibility if identifying, robotically capturing and returning to the International Space 

Station (ISS), an entire small Near-Earth Asteroid (NEA), approximately 2m diameter with 

a mass of order 10,000kg by 2025 and later the “Asteroid Retrieval Feasibility Study”, 

otherwise known as the KISS (Keck Institute of Space Studies) report, which eventually 

settled on the idea that a 7m diameter asteroid with a mass of order 500,000 kg could be put 

into a high lunar orbit by the year 2025[32].  

1.3.2 In-Situ Resource Utilization 

One of the major factors that could contribute to human space expansion would be to find, 

process and utilize the necessary resource in space. Apart from rare minerals, some of the 

asteroids, especially Trojans of Jupiter have extractable amounts of water in the form of Ice. 

Water is an important resource in the quest for space exploration. Before the entry of SpaceX 

into the launch market, it costed approximately $10,000 to put a pound of payload into Earth 

orbit and this cost increased with orbits further in space from Earth[33, 34, 59]. With the 

advancement in 3-D printing and moulding, finding resources in space could prove to be a 

great factor in reducing the cost of access to space, as well as building a new economy in 

space. Water as a resource in space can be used for: 

1) Consumption 

2) Radiation Shielding 

3) Fuel 

Materials for everything from shielding, solar power, storage, oxygen for breathing and 

propellant, etc. are found in space. It is just a matter of finding, extracting, processing and 

using these resources. 

1.3.3 Scientific Missions 

In recent years, a lot of private industries have shown interest in space exploration in general 

and some in particular on asteroid mining. While companies like Space X, Orbital Sciences 

Corporation, Blue Origin, and Virgin Galactic are bringing down the cost of accessing space, 

there are companies such as Planetary Resources, Inc. and Deep Space Industries that are 

investing in accessing space beyond the immediate vicinity. With powerful and wealthy 

investors backing these companies, the idea to access the minerals beyond Earth has got a 
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new life, moving from fiction and theory towards the path to making this a reality. The whole 

idea started as a way in taking steps to ensure the continuance of life on Earth, leading to a 

huge amount of data, on collaboration with institutions and organisations from around the 

world. This huge wealth of data has contributed to some innovative ideas in accessing the 

resources from space, especially that of Near-Earth Asteroids, which could possibly lead to 

the next stage in the expansion of human race into colonies in space.  

There have been lots of missions to study asteroids through flybys en route to other 

destinations, like Galileo’s flyby of 951 Gaspra in 1991 and 243 Ida in 1993 en route to 

Jupiter. In 2000, the spacecraft NEAR Shoemaker successfully orbited the S-Type asteroid 

433 Eros and impacted in 2001 and continued to operate until a month. This was followed 

by missions such as the Japanese Aerospace Exploration Agency (JAXA)’s Hayabusa, 

NASA’s Dawn. Currently missions such as the Hayabusa 2 orbiter along with multiple 

versions of landers are en route to asteroid 162173 1999 JU3. These missions prove the 

technological capability of accessing celestial bodies far away from Earth. Private 

companies such as Planetary Resources, Inc. are building their own prospecting 

satellites/space telescopes for launch in the near future. 

1.3.4 Economics 

Considering the fact that the concept of mining an asteroid is an ambitious and risky 

initiative, the economics of the whole endeavour is very important. Right from the cost of 

prospecting, through launching, mining, processing and transporting the obtained riches, 

economics plays an important part. In the years since the entry of SpaceX and other players, 

the cost of launching a pound of payload has come down from $10,000 to less than $2500 

per pound[59], especially for a launch of communication satellites to the Geostationary Orbit 

(GTO) with the introduction of the Falcon heavy launch vehicles of Space X. This cost is 

purported to come down further with the introduction of the highly re-useable launch 

vehicles like the Grasshopper. With the cost of accessing space coming down, it all comes 

down to the cost accessing the Near-Earth Asteroids and the profit that can be made. With 

the advent of powerful solar electric propulsion engines, the ability to transport a captured 

Near-Earth Asteroids has become feasible. This also means that it would cost less than the 

conventional chemical propulsion.  

J. S. Lewis, in his book “Mining the Sky: Untold Riches from the Asteroids, Comets, and 

Planets”, has estimated the amount of money that could be made if the claims from the data 

analysed from observing the asteroids were true. Taking the smallest known M asteroid, 
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3554 Amun, as an example of the magnitude and economic value of space resources, he 

estimates the value of riches waiting in space to be exploited. The asteroid is 2 km in 

diameter with a mass of 3 × 1010 tons. “Assuming a typical iron meteorite composition, 

the iron and nickel in Amun have a market value of about $8,000 billion. The cobalt content 

adds another $6,000 billion, and the platinum-group metals (platinum, osmium, iridium, 

palladium, etc.) add another $6000 billion.” The total market value is estimated to be 

$20,000 billion [30]. Because of it being already present in space, it represents an asset that 

would cost about $10 million per ton if launched from Earth. So, in total $300,000,000 

billion can be saved and held as asset in space. This is just from one 2 km sized M-type 

asteroid. The overall value of all the resource would be impossible to estimate. Of course, 

there are other factors that would put the value a bit lower, for example reducing the amount 

of tin that can be added to the terrestrial stockpile, to keep the market price stabilised, but 

this can be held as equity and borrowed for further expansion. 

1.4 Concept used in this research 

Two closely passing by asteroids are connected using a tether, resulting in the formation of 

a dumbbell system with a centre of mass at a point in the line of the tether connecting the 

asteroids. The position of the centre of mass depends on the mass ratio of the asteroids being 

connected. The dumbbell system rotates around the centre of mass, as the centre of mass 

follows a heliocentric orbit. When the tether is disconnected after a certain period of time, 

the dumbbell system ceases to exist, and each asteroid takes a trajectory, different from the 

trajectory followed by the asteroids before the connection of the tether. The characteristics 

of their trajectory depends on the orientation of the tether with the reference axis, the orbital 

position of the centre of mass and the amount of energy it has gained or lost from the system 

at the time of disconnection.  

1.5 Objectives 

Keeping in mind the various necessities or requirements for orbital trajectory manipulation 

such as the threat posed by the asteroids and reaching asteroid to access their resources, an 

objective to this research was formed.  

The objective of this research is as follows: 

1) To carry out an initial study, to understand how the orbital trajectory of an asteroid could 

be manipulated by connecting it with a closely-passing-by asteroid through the means 

of a tether and later disconnecting 
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2) To study the different parameters that plays an important part in the orbital dynamics of 

such a method 

3) To understand the relation between the orbital energy and time of tether cut 

Manipulation of the orbital trajectory involves understanding the physics/dynamics behind 

it and understanding the physics involves setting up of a model that resembles the physical 

environment to an extent, with acceptable limitations, within the nature and scope of this 

research. Finally, setting up of a model involves specifying the assumptions considered and 

defining a proper co-ordinate system for the dynamics, which will be discussed in Chapter 

2 

The valid model is evaluated using mathematical simulations, wherein multiple resultant 

orbits with sample cases or scenarios are verified. The physics behind this is to be simulated 

using a numerical computing environment like MATLAB[15]. These objectives will set the 

foundation for future work regarding this specific method of trajectory manipulation. 

1.5.1 Study on parameters 

Various parameters such as the mass ratio of the asteroids, the tether length between them 

and the orbital eccentricities of the asteroids before tether connection contribute to the 

formation of the initial dumbbell model. Although parameters such as the mass ratio of the 

asteroids and the orbital eccentricities of the initial orbit of the asteroids at tether connection 

are uncontrollable and are determined in nature, it is better to understand the various 

scenarios involving these quantities to develop a proper dynamical model. Therefore, 

different values of these parameters are used in creating multiple scenarios in the creation of 

the dynamical models for simulations. The relationships between these values are studied to 

understand how they affect the resulting orbits.  
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2. Model Description 

To understand the dynamics of manipulating the orbital trajectory of an asteroid by 

manipulating its orbital energy, a mathematical representation of the model has to be defined. 

This chapter defines a mathematical model by describing the assumptions considered in its 

definition and the dynamics involved.  

2.1 Assumption 

Understanding the physics behind any event requires an accurate definition of its 

environment. For the sake of initial study and analysis within the scope of this research, 

certain assumptions are considered to simplify the variables involved in the environment:  

1) Gravitational force is the only force acting on these bodies 

2) Since the whole scenario is modelled as two body system, the orbital motions of the 

asteroids are considered to be purely Keplerian 

3) Asteroids are aligned with the Sun, at the time of tether connection, forming an 

imaginary line representing the x-axis of the fixed frame of reference “𝑅𝑒𝑓 𝐴” (Fig 

2.1) as the heading 

4) At tether connection, the asteroids are assumed to be at the perihelion point in their 

respective orbit 

5) The connection of tether happens instantaneously 

6) The tether used is massless and inelastic 

7) Only the ecliptic in-plane motion of the system is considered, due to this being a 

preliminary study and is complex to predict the dynamics and hence not in the scope 

of this research. [The inclination of the asteroids is assumed to be zero (𝑖1 = 0, 𝑖2 =

0)] 

8) All masses are assumed to be point masses. This helps in avoiding motion such as 

spinning, caused due to structural criteria like micro-porosity, material composition, 

shape and size of the asteroid 
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2.2 Representation 

The model is represented by two frames of reference as depicted in Fig 2.1, where Asteroid1 

and Asteroid2 are depicted as A1 and A2 respectively and 𝑂𝐶𝑂𝑀 represents the position of 

the centre of mass. The centre of mass of a system is the point in a system where the 

components of weight for each point have a resultant of zero. Reference frame 𝑅𝑒𝑓 𝐴 is 

inertial with the Sun at the origin and is represented by the unit vectors 𝐼, 𝐽 and 𝐾̂. 𝑟1(0), 𝑟2(0) 

and 𝑟𝐶𝑂𝑀 are the position vectors of the first asteroid, the second asteroid and the centre of 

mass respectively. 𝜃𝐶𝑂𝑀 is the true anomaly of the centre of mass in reference frame 𝑅𝑒𝑓 𝐴. 

Reference frame 𝑅𝑒𝑓 𝐵 is a body fixed, non-rotating reference frame with its origin fixed to 

the centre of mass of the dumbbell system and moves only in a translational motion along 

with the centre of mass in a heliocentric orbit. 𝛩 is the angular displacement of the tether 

from the x-axis of frame 𝑅𝑒𝑓 𝐵. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X - Axis 

Y - Axis 

x - Axis 

y - Axis 

Sun 

𝑗̂ 

𝑖̂ 
𝛩 
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𝜃𝐶𝑂𝑀 

𝐼 
Ref A 

Ref B 
𝑟𝐶𝑂𝑀 

𝑟1(0) 

𝑟2(0) 

Note: Unit Vectors 𝐾̂ and 𝑘̂ are perpendicular to 

the plane of the paper and directed towards the 

reader. 

Fig 2.1 Representation of the model 
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2.3 Dumbbell System 

When an asteroid 𝐴1 of mass 𝑚1 with initial position vector 𝑟1(0) and initial velocity vector 

𝑣⃗1(0) is connected with another asteroid 𝐴2 of mass 𝑚2 with initial position vector 𝑟2(0) and 

initial velocity vector 𝑣⃗2(0), a dumbbell system with a centre of mass 𝑂𝐶𝑂𝑀 of mass 𝑚𝐶𝑂𝑀 

with radius vector 𝑟𝐶𝑂𝑀 (128) and velocity vector 𝑣⃗𝐶𝑂𝑀 (129) is formed: 

 𝑟𝐶𝑂𝑀 =
𝑚1𝑟1(0) +𝑚2𝑟2(0)

𝑚1 +𝑚2
 

 

(128) 

 

 𝑣⃗𝐶𝑂𝑀 =
𝑚1𝑣⃗1(0) +𝑚2𝑣⃗2(0)

𝑚1 +𝑚2
 

 

(129) 

 

Because the tether is inelastic, the length of tether 𝑙, which is actually the distance between 

the asteroids in the dumbbell system, is fixed throughout the period of tether connection. 𝑙1 

(130) (132) is the distance between Asteroid1 and the centre of mass.  𝑙2 (131) (133) is the 

distance between Asteroid2 and the centre of mass. As depicted in Fig 2.1 the 

naming/numbering of the asteroids here are not fixed because of the generalised nature of 

the representation, and hence could be changed depending on the nature of the objective. 

Either Asteroid1 or Asteroid2 can be the outer asteroid. In all the simulations carried out in 

this research, Asteroid1 was considered to be the outer asteroid at the time of tether 

connection and the appropriate equations for the dynamics were used: 

 𝑙1 = 𝑟1 − 𝑟𝐶𝑂𝑀 

 

(130) 

 

 𝑙2 = 𝑟𝐶𝑂𝑀 − 𝑟2 

 

(131) 

 

 𝑙1 = 𝑟𝐶𝑂𝑀 − 𝑟1 

 

(132) 

 

 𝑙2 = 𝑟2 − 𝑟𝐶𝑂𝑀 

 

(133) 

 

Here, there are two motions involved, one is heliocentric translational orbital motion 

followed by the centre of mass and the other is rotational motion of the asteroids in the 

dumbbell system about the centre of mass, each defined with their respective frames of 

reference in Fig 2.1. 

 

If 𝑟1>𝑟2 

If 𝑟2>𝑟1 
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2.3.1 Attitude Dynamics 

The only force acting on the asteroids before tether connection is the gravitational force of 

the Sun. At the point of tether connection, a centripetal force along the tether causes a 

moment about the centre of mass resulting in the dumbbell system rotating about its own 

axis at the centre of mass 𝑂𝐶𝑂𝑀 with an angular velocity 𝜔𝑣, by an angular displacement 𝛩 

and the rotational velocities 𝑣⃗1_𝑟𝑜𝑡 and 𝑣⃗2_𝑟𝑜𝑡 for Asteroid1 and Asteroid2 respectively, In order 

to consider a uniform rotation we neglect the gravity gradient. 

 𝑣⃗1_𝑟𝑜𝑡 = 𝑣⃗𝐶𝑂𝑀 − 𝑣⃗1 
 

(134) 

 

 𝑣⃗2_𝑟𝑜𝑡 = 𝑣⃗𝐶𝑂𝑀 − 𝑣⃗2 
 

(135) 

 

  𝛩 =  𝜔𝑣𝑡 
 

(137) 

 

Since we have neglected the gravity gradient force, the tension in the tether is only due to 

the centripetal force acting along the tether. Though the rotational motion of the dumbbell 

system influences the translational motion of the centre of mass’ heliocentric orbit, for 

simplicity, let us assume that the distance between the point masses (asteroids), i.e. the length 

of the tether, is much shorter than the distance between the Sun and the point masses, hence 

the force due to the attitude dynamics on the centre of mass is neglected[12, 13]. This also 

means that the orbital dynamics of the dumbbell system is predicted by assuming that the 

gravitational force acts only on the centre of mass and not on the asteroids during the 

dumbbell motion. 

2.3.2 Orbital Dynamics 

Since the state vectors of the centre of mass of the dumbbell system at the time of tether 

connection (at 𝑡 = 0), with respect to the reference frame 𝑅𝑒𝑓 𝐴, is already represented in 

the Cartesian co-ordinate system, its use is continued. The centre of mass’ heliocentric 

propagation is predicted at each of time 𝑡 seconds.  

  𝜔𝑣 =
𝑣⃗⃗1_𝑟𝑜𝑡

𝑙1
 or  𝜔𝑣 =

𝑣⃗⃗2_𝑟𝑜𝑡

𝑙2
 

 

(136) 
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Following Bate[14], as described in “Orbital Mechanics” by V. A. Chobotov [23], the Lagrange 

coefficients 𝑓𝑙𝑎𝑔,𝐶𝑂𝑀 (140) 𝑔𝑙𝑎𝑔,𝐶𝑂𝑀  (141) are used to calculate the position vector of the 

centre of mass after time 𝑡 seconds of propagation from the initial time of tether connection 

𝑡0 (𝑡 = 0) with respect to the Sun in reference frame 𝑅𝑒𝑓 𝐴. 

 

 

 𝑓𝑙𝑎𝑔,𝐶𝑂𝑀 = 1 −
𝑋𝐶𝑂𝑀
2

𝑟𝐶𝑂𝑀(0) 
𝐶(𝑧𝐶𝑂𝑀) 

 

(140) 

 

 

 
𝑔𝑙𝑎𝑔,𝐶𝑂𝑀 = 𝑡 −

1

√𝜇𝑆
𝑋𝐶𝑂𝑀
3 𝑆(𝑧𝐶𝑂𝑀) 

 

(141) 

 

 

The derivatives 𝑓𝑙̇𝑎𝑔,𝐶𝑂𝑀 (142),  𝑔̇𝑙𝑎𝑔,𝐶𝑂𝑀 (143) of the Lagrange coefficients are used to find 

the velocity vector after time 𝑡 seconds in propagation.  

 𝑓𝑙̇𝑎𝑔,𝐶𝑂𝑀 = 
√𝜇𝑆

𝑟𝐶𝑂𝑀(𝑡)  𝑟𝐶𝑂𝑀(0)
(𝑧𝐶𝑂𝑀 𝑆(𝑧𝐶𝑂𝑀) − 1) 𝑋𝐶𝑂𝑀 

 

(142) 

 

 

 𝑔̇𝑙𝑎𝑔,𝐶𝑂𝑀 = 1 − 
𝑋𝐶𝑂𝑀
2

𝑟𝐶𝑂𝑀(𝑡)
𝐶(𝑧𝐶𝑂𝑀) 

 

(143) 

 

As discussed earlier in Section 1.1.4, The Lagrange coefficients can be obtained from 

Stumpff functions 𝐶(𝑧𝐶𝑂𝑀) (144), 𝑆(𝑧𝐶𝑂𝑀) (145) and universal anomaly 𝑋𝐶𝑂𝑀. 

 𝐶(𝑧𝐶𝑂𝑀) =
(1 − cos√𝑧𝐶𝑂𝑀)

𝑧𝐶𝑂𝑀
   (144) 

 

 𝑟𝐶𝑂𝑀(𝑡) = (𝑓𝑙𝑎𝑔,𝐶𝑂𝑀 𝑟𝐶𝑂𝑀(0)) + (𝑔𝑙𝑎𝑔,𝐶𝑂𝑀 𝑣⃗𝐶𝑂𝑀(0)) 
 

(138) 

 

 𝑣⃗𝐶𝑂𝑀(𝑡) = (𝑓𝑙̇𝑎𝑔,𝐶𝑂𝑀 𝑟𝐶𝑂𝑀(0)) + (𝑔̇𝑙𝑎𝑔,𝐶𝑂𝑀 𝑣⃗𝐶𝑂𝑀(0)) 
 

(139) 
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 𝑆(𝑧𝐶𝑂𝑀) =
(√𝑧𝐶𝑂𝑀 − sin√𝑧𝐶𝑂𝑀)

√𝑧𝐶𝑂𝑀
3  (145) 

 

 𝑧𝐶𝑂𝑀 = 𝛾𝐶𝑂𝑀 𝑋𝐶𝑂𝑀
2  (146) 

 

 𝛾𝐶𝑂𝑀 =
1

𝑎𝐶𝑂𝑀
 (147) 

 

 
𝑎𝐶𝑂𝑀 = 

1

2
𝑟𝐶𝑂𝑀(0)

−
𝑣𝐶𝑂𝑀(0)2

𝜇𝑆

 
(148) 

While 𝑋𝐶𝑂𝑀 can be obtained through iteration of (149) with an initial value (𝑋𝐶𝑂𝑀(0)),  

 

𝐹(𝑋𝐶𝑂𝑀) =
𝑟𝐶𝑂𝑀(0)𝑣𝑟,𝐶𝑂𝑀(0)

√𝜇𝑆
𝑋𝐶𝑂𝑀
2 𝐶(𝑧𝐶𝑂𝑀)

+ (1 − 𝛾𝐶𝑂𝑀 𝑟𝐶𝑂𝑀(0))𝑋𝐶𝑂𝑀
3 𝑆(𝑧𝐶𝑂𝑀) + 𝑟𝐶𝑂𝑀(0)𝑋𝐶𝑂𝑀

−√𝜇𝑆 𝑡 

(149) 

 

We need to find the derivative of (149) in order to use it for iteration, and the derivative is 

(150) 

 
𝐹′(𝑋𝐶𝑂𝑀) =

𝑟𝐶𝑂𝑀(0)𝑣𝑟,𝐶𝑂𝑀(0)

√𝜇𝑆
𝑋𝐶𝑂𝑀(1 − 𝛾𝐶𝑂𝑀𝑋𝐶𝑂𝑀

2 𝑆(𝑧𝐶𝑂𝑀))

+ (1 − 𝛾𝐶𝑂𝑀 𝑟𝐶𝑂𝑀(0))𝑋𝐶𝑂𝑀
2 𝐶(𝑧𝐶𝑂𝑀) + 𝑟𝐶𝑂𝑀(0) 

(150) 

 

 𝑋𝐶𝑂𝑀(𝑛+1) = 𝑋𝐶𝑂𝑀(𝑛) −
𝐹(𝑋𝐶𝑂𝑀(𝑛))

𝐹′(𝑋𝐶𝑂𝑀(𝑛))
 (151) 

 

 

𝐹(𝑋𝐶𝑂𝑀(𝑛)) =
𝑟𝐶𝑂𝑀(0)𝑣𝑟,𝐶𝑂𝑀(0)

√𝜇𝑆
𝑋𝐶𝑂𝑀(𝑛)
2 𝐶(𝑧𝐶𝑂𝑀(𝑛))

+ (1 − 𝛾𝐶𝑂𝑀 𝑟𝐶𝑂𝑀(0))𝑋𝐶𝑂𝑀(𝑛)
3 𝑆(𝑧𝐶𝑂𝑀(𝑛))

+ 𝑟0𝑋𝐶𝑂𝑀(𝑛) − √𝜇𝑆 𝑡 

(152) 
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𝐹′(𝑋𝐶𝑂𝑀(𝑛)) =
𝑟𝐶𝑂𝑀(0)𝑣𝑟,𝐶𝑂𝑀(0)

√𝜇𝑆
𝑋𝐶𝑂𝑀(𝑛) (1

− 𝛾𝐶𝑂𝑀𝑋𝐶𝑂𝑀(𝑛)
2 𝑆(𝑧𝐶𝑂𝑀(𝑛)))

+ (1 − 𝛾𝐶𝑂𝑀 𝑟𝐶𝑂𝑀(0))𝑋𝐶𝑂𝑀(𝑛)
2 𝐶(𝑧𝐶𝑂𝑀(𝑛))

+ 𝑟𝐶𝑂𝑀(0) 

(153) 

 

Initial Value of 𝑋𝐶𝑂𝑀, 

 𝑋𝐶𝑂𝑀(0) = √𝜇𝑆|𝛾𝐶𝑂𝑀|𝑡 (154) 

 

2.3.3 Dumbbell Propagation 

Once the dumbbell system is formed, the dynamics of the asteroids are predicted from the 

motion of and about the centre of mass of the dumbbell system. The position vectors (155) 

of the asteroids with respect to the centre of mass of the dumbbell system, in the reference 

frame 𝑅𝑒𝑓 𝐵, are calculated from the known distance between the centre of mass of the 

dumbbell system and the respective asteroid and the angular displacement of the tether with 

respect to the local x-Axis of 𝑅𝑒𝑓 𝐵. 

The sum of the position vector (138) of the centre of mass of the dumbbell system relative 

to the Sun and the position vector of the respective asteroids relative to the centre of mass of 

the dumbbell system (155) gives the position vectors of the asteroids relative to the Sun 

(156), represented in the reference frame 𝑅𝑒𝑓 𝐴.  

 𝑟𝑖𝑜𝑟𝑏(𝑡) = 𝑟𝑖𝑑𝑏(𝑡) + 𝑟𝐶𝑂𝑀(𝑡) 
 

(156) 

 

The product of the magnitude of the velocity vector of the asteroids with respect to the centre 

of mass of the dumbbell system, in the reference frame 𝑅𝑒𝑓 𝐵, and the unit vector to the 

position vector 𝑟̂𝑖,𝑡 at time 𝑡 will give the rotational velocity vector (157) of the asteroid with 

respect to the centre of mass of the dumbbell system in the reference frame 𝑅𝑒𝑓 𝐵.  

 𝑣⃗𝑖𝑟𝑜𝑡(𝑡) = 𝑟̂𝑖(𝑡) 𝑣𝑖_𝑟𝑜𝑡 
(157)  

 

 𝑟𝑖𝑑𝑏(𝑡) = 𝑙𝑖 [cos 𝛩 sin𝛩  0] 
 

(155) 

 

 𝑣⃗𝑖𝑜𝑟𝑏(𝑡) = 𝑣⃗𝑖𝑟𝑜𝑡(𝑡) + 𝑣⃗𝐶𝑂𝑀(𝑡) 
 

(158) 
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The vector addition of the rotational velocity vector (157) of the respective asteroid with 

respect to the centre of mass of the dumbbell system and the velocity vector (139) of the 

centre of mass with respect to the Sun gives the orbital velocity vector (158) of the asteroids 

with respect to the Sun in the reference frame 𝑅𝑒𝑓 𝐴, after time 𝑡. 
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3. Parameters Affecting Orbit Manipulation 

This chapter discusses the various parameters involved in orbit manipulation, such as how 

energy and angular momentum play a part in the physics of the model. This is followed by 

a discussion on the parameters that affect the orbit manipulation leading to a case study of 

some orbital scenarios, where the dynamics involved in the respective cases are discussed. 

3.1 Energy and Angular Momentum 

Manipulating the orbital trajectory involves manipulating the transfer of orbital energy and 

orbital angular momentum between the asteroids in the dumbbell system. Before tether 

connection, it is assumed, that the asteroids were in a closed system with only the Sun as the 

influencing body. And with respect to each of this closed system, the orbital energy (161) 

and orbital angular momentum (162) were conserved quantities. The orbital energies of these 

asteroids are the sum of the potential energy (159) and kinetic energy (160): 

 𝜀𝑖
𝑝𝑜𝑡 = − 

𝜇

𝑟𝑖
  𝑚𝑖 

 

(159) 

 

 𝜀𝑖
𝑘𝑖𝑛 =

𝑣𝑖
2

2
 𝑚𝑖 

 

(160) 

 

 𝜀𝑖
𝑜𝑟𝑏 = (

𝑣𝑖
2

2
  𝑚𝑖) − (

𝜇

𝑟𝑖
  𝑚𝑖) 

 

(161) 

 

 ℎ⃗⃗𝑖
𝑜𝑟𝑏 = 𝑟𝑖  ×  𝑣⃗𝑖 

 

(162) 

 

Where 𝜀𝑖
𝑥 is the energy of the respective type and asteroid, and the subscript denotes the 

asteroid number and the superscript denotes the type of energy,  𝑟𝑖 represents the radius 

vector of the asteroid from the Sun and 𝑣⃗𝑖  denotes the orbital velocity of the asteroids with 

the subscript denoting the asteroid number, in both cases. After the formation of a dumbbell 

system the orbit of the asteroids are determined by the orbital motion of the centre of mass 

of the dumbbell system rather than the orbital motion of the asteroids as individual bodies, 

this is the assumed model towards the prediction of their dynamics. The orbital energy and 

the orbital angular momentum about the centre of mass of the dumbbell system are the sum 

of the orbital energies and orbital angular momentum of the asteroids respectively. The 

translational kinetic energy of the system transforms into rotational kinetic energy, due to 

the creation of a couple about the centre of mass of the dumbbell system. This rotational 
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kinetic energy contributes to an angular velocity (136) leading to the rotational motion of 

the dumbbell system, at an angular displacement 𝛩 =  𝜔𝑣. 𝑡, where 𝑡 is the time. Now the 

total energy of the dumbbell system is split into potential (163), kinetic (164) and rotational 

kinetic energy (165):  

 𝜀𝑑𝑏
𝑝𝑜𝑡 = − 

𝜇

𝑟𝑐𝑜𝑚
  𝑚𝑖 

 

(163) 

 

 𝜀𝑑𝑏
𝑘𝑖𝑛 =

𝜐𝑐𝑜𝑚
2

2
  𝑚𝑖 

 

(164) 

 

 𝜀𝑑𝑏
𝑟𝑜𝑡_𝐾𝑖𝑛 = 

1

2
 𝐼 𝜔𝑣

2 

 

(165) 

 

 𝜀𝑑𝑏
𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑑𝑏

𝑝𝑜𝑡 + 𝜀𝑑𝑏
𝑘𝑖𝑛 + 𝜀𝑑𝑏

𝑟𝑜𝑡 

 

(166) 

 

 𝜀𝑑𝑏
𝑡𝑜𝑡𝑎𝑙 = − 

𝜇

𝑟
 𝑚𝑖  +  

𝑣2

2
 𝑚𝑖 + 

1

2
 𝐼 𝜔𝑣

2 

 

(167) 

 

Where 𝐼 (168), the moment of inertia about the centre of mass of the dumbbell system is 

calculated as follows, 

 𝐼 = 𝑚1𝑙1
2 +𝑚2𝑙2

2 

 

(168) 

 

The rotational kinetic energy is actually equal to the sum of the rotational kinetic energy of 

both the asteroids in the dumbbell system and can also be calculated by:  

 

While the rotational kinetic energy (169) contributes to the rotational motion of the dumbbell 

system, the potential and kinetic energy contribute to the translational motion of the centre 

of mass of the dumbbell system, which follows a heliocentric orbit. At the instant when the 

tether is disconnected after a certain period from the time of tether connection, the dumbbell 

system ceases to exist, and hence the total energy and the total angular momentum of the 

dumbbell system gets split and transferred between the two asteroids. This transfer of 

 𝜀𝑑𝑏
𝑟𝑜𝑡_𝐾𝑖𝑛 = 

1

2
 𝑚1𝑣1_𝑟𝑜𝑡

2 + 
1

2
 𝑚2𝑣2_𝑟𝑜𝑡

2 

  

(169) 

 

Asteroid1        Asteroid2 
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angular momentum and orbital energy depends on the orbital position of the centre of mass 

relative to the Sun, the orientation of the tether with respect to the reference axis, i.e. the x-

axis of the reference frame 𝑅𝑒𝑓 𝐵 at the time of the tether disconnection, the mass ratio and 

the eccentricity of the original orbits of the asteroids. The angular momentum and the orbital 

energy determine the shape, size and orientation of the heliocentric orbit of these asteroids. 

3.2 Variation of parameters 

The nature of the transfer of orbital energy and orbital angular momentum between the 

asteroids, especially at tether disconnection, depends on a number of parameters. The 

amount of orbital energy and orbital angular momentum possessed by an asteroid determines 

its resulting orbits, i.e. their respective orbits after tether disconnection. Manipulation of 

these parameters could help in the manipulation of the orbital trajectory of the asteroids. 

These parameters are: 

1) Length of the tether 

2) Mass ratio 

3) Eccentricity of their initial orbits 

4) Time of tether disconnection 

The mass of the asteroids, the eccentricity of their initial orbits and the length of the tether 

which depends on the closest approach between the two asteroids, at the point of tether 

connection, are fixed in nature, at least in the case of using a rigid and inelastic tether. But 

to understand the extent of how these parameters affect the transfer of orbital energy between 

the asteroids and the dumbbell system, and hence affect the orbital trajectory manipulation, 

a parametric study is carried out.  

3.2.1 Length of the tether 

To understand how the length of the tether would affect the transfer of energy between the 

asteroids, a test case of fixing the tether for an initial length at about 5 × 107 km 

(approximately the closest distance between Earth and Mars), then to 3 ×  107 km (which 

is  60% of the initial distance) and finally to 1 × 107 km (which is 20% of the initial 

distance) was carried out. The following values were set for the test: 

1. 𝑒1   = 0  

2. 𝑒2   = 0 

3. 𝑚1  = 10
8 kg 
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4. 𝑚2  = 10
8kg 

Using the above values as inputs, the orbital energy of the asteroids before tether connection 

and after tether disconnection was calculated. By the law of conservation of energy, the sum 

of the orbital energies of Asteroid1 and Asteroid2 before tether connection and after tether 

disconnection should be equal, proving that the energy is conserved. But contrary to the law, 

in this case, the value of the sum of the orbital energies of the asteroids after tether 

disconnection was different to that of the values of the sum of the orbital energies of the 

asteroids at tether connection. An error percentage  was calculated to measure the amount of 

change in the orbital energy values at tether connection and after tether disconnection.  

 𝐸𝑝𝑒𝑟 = 
(𝜀𝑜𝑟𝑏,𝐴𝑇𝐷 − 𝜀𝑜𝑟𝑏,𝐵𝑇𝐶)

𝜀𝑜𝑟𝑏,𝐵𝑇𝐶
 𝑋 102 

 

(170) 

 

The results are shown in Table 3.1 and as it can be seen the difference in the orbital energy 

values were comparatively very small, but difference between the orbital energies decreased 

with the decrease in the length of the tether, thus leading to negligible error for shorter tether 

length. 

Tether    Length 

(km) 

                                     

 

𝟓 × 𝟏𝟎𝟕 km 𝟑 × 𝟏𝟎𝟕 km 𝟏 × 𝟏𝟎𝟕 km 

Orbital Energy 

BTC (J) 

- 9.432992 ×  1010  

 

-8.643037 ×  1010  

 

-8.050570 ×  1010 

 

Orbital Energy 

ATD (J) 

-9.369451 ×  1010 

 

-8.626124 ×  1010  

 

-8.049079 ×  1010  

 

Error Percentage 0.6 0.1 0.01 

Table 3.1 Error percentage comparison for various tether lengths 

The reason for the occurrence of this error is due to the nature of the model considered for 

the simulation. By Newton’s law of universal gravitation, the Sun’s gravitational field 

strength decreases as a body moves away from the Sun. So, the asteroids in the dumbbell 

system experience different gravitational accelerations, from which their dynamics are 

determined. But in the model that we have defined, we measure and predict the dynamics of 

both asteroids from the position and velocity of the centre of mass. This cannot be true, 

because the centre of mass is not a physical entity but assumed to be at a position where the 

overall mass of the system would be concentrated. However, for the sake of simplicity of 
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modelling and hence the calculated state vectors of the centre of mass are not accurate in 

reality. Since we predict the dynamics and the energy of the asteroids from the state vectors 

of a non-physical entity, the position and energy of the asteroids are affected by an error. 

As noticed in Fig 3.1, the error percentage decreases with a decrease in the tether length as 

the asteroids are practically closer to the position of the centre of mass and in a similar 

gravitational acceleration with short tethers. So, for shorter tether length the error obtained 

in the calculation of orbital energy is negligible, and for a longer tether length the error is 

considerably higher. The value of the angular velocity depends on the initial orbital velocity 

of the asteroids and the distance between the asteroids and the centre of mass. The orbital 

velocity of the asteroids varies in time with respect to their motion around the Sun but here 

we assume the asteroids to be in a locally uniform gravitational field, hence there is no 

external torque acting on the system and so the angular velocity remains constant.  

 

Fig 3.1 Error percentage plot for various tether lengths 

Energy Analysis 

To understand how the orbital energy varies with respect to the tether length and the angular 

displacement compared at different true anomalies of the centre of mass, a surface plot was 

plotted for each asteroid. Fig 3.2, Fig 3.3 and Fig 3.4 show the variations in the orbital 

energy plotted for different lengths of the tether against the angular displacement of the 

tether, for Asteroid1, Asteroid2 and the dumbbell system respectively. In Fig 3.2 and Fig 

3.3 it can be observed that there exists a broad alternating blue and green stripped pattern. 

The green and blue pattern represents higher and lower values of orbital energy respectively. 

The x-axis represents the tether length, the y-axis represents the angular displacement and 
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the z-axis represents the orbital energy with respect to the tether length. Different positions 

of the true anomaly of the centre of mass are represented as markers to understand the 

behavioural pattern in the orbital energy. Red markers represent a true anomaly of 90 

degrees, green markers represent a true anomaly of 180 degrees, saffron markers represent 

a true anomaly of 270 degrees and black markers represent a true anomaly of 360 degrees.  

As a measure of reference, the plotted distance between the x-axis and the black marker 

corresponding to the respective value of tether length is denoted as the height of the plotted 

surface. It could be noticed that height of the plotted surface indicates the relation between 

the numbers of times the asteroids rotate around the centre of mass of the dumbbell system 

for one orbit of the centre of mass’ motion around the Sun. This can be noted from the lower 

and higher values of angular displacement for longer and shorter tether respectively. As can 

be seen, the small height of the plotted surface for a tether length of 5 ×  107 km shows that 

the centre of mass completes one full orbit before the asteroids in the dumbbell system makes 

one full rotation around the centre of mass. Likewise, the comparatively taller height of the 

plotted surface for the shorter tether length of 1 ×  107 km shows that the dumbbell system 

makes multiple rotations about the centre of mass before the centre of mass of the dumbbell 

system completes one full orbit around the Sun.  

In Fig 3.4 it can be seen in the plotted surface that the variation in the orbital energy of the 

dumbbell system to be altering gradually rather than the alternating broad stripped pattern 

observed while plotting for individual asteroids of the dumbbell system. This is because the 

dumbbell system as a whole gets its orbital energy calculated from the position of the centre 

of mass with respect to the Sun and the centre of mass is a fixed point in 𝑅𝑒𝑓 𝐵, where as 

the orbital energy of the asteroids are calculated from the dynamics of the centre of mass 

and the position of the asteroids in 𝑅𝑒𝑓 𝐵 keeps changing. A change in the position in 𝑅𝑒𝑓 𝐵 

indicates a considerable change in the position of the asteroids in 𝑅𝑒𝑓 𝐴 as well and hence a 

considerable change in the orbital energy. This frequency of this change depends on the 

orbital and angular velocity of the dumbbell system. 
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Fig 3.2 Energy of Asteroid1 after tether disconnection for varying tether length and angular 

displacement 

 

 

Fig 3.3 Energy of Asteroid2 after tether disconnection for varying tether length and angular 

displacement 

𝜃𝑐𝑜𝑚 = 360 

𝜃𝑐𝑜𝑚 = 270 

𝜃𝑐𝑜𝑚 = 180 

𝜃𝑐𝑜𝑚 = 90 

𝜃𝑐𝑜𝑚 = 360 

𝜃𝑐𝑜𝑚 = 270 

𝜃𝑐𝑜𝑚 = 180 

𝜃𝑐𝑜𝑚 = 90 
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Fig 3.4 Energy of dumbbell system after tether disconnection for varying tether length and angular 

displacement 

In order to have a small error during the course of the simulations as observed earlier in 

subheading 3.2.1, the length of the tether was fixed to be 1 ×  107 km for all other parameter 

tests.  

3.2.2 Mass Ratio 

The mass ratio for the asteroids is the relative comparison of the mass of the asteroids in a 

closed system. It relates how massive one asteroid is with respect to the other and plays an 

important role in determining the position of the centre of mass of the dumbbell system, 

which forms the basis for the dynamics of the dumbbell system and the manipulation of the 

orbital trajectory of the asteroids. One of the parameters affecting the transfer of orbital 

energy and orbital momentum to and from the dumbbell system is the relative position of 

the asteroids with respect to the centre of mass. The centre of mass will be closer to the 

asteroid with a mass larger than the other asteroid. Fig 3.6, Fig 3.7 and Fig 3.8 show the 

difference in the position vector and orbital trajectory of an asteroid for different mass ratios 

and Fig 3.5 is the legend for Fig 3.6, Fig 3.7 and Fig 3.8 .  

The orbit was plotted with the following values for the variables: 

1. 𝑒1   = 0  

2. 𝑒2   = 0 

3. 𝑟𝑝,1 =  17 ×  10
7 km 

4. 𝑟𝑝,2 =  16 ×  10
7 km 

𝜃𝑐𝑜𝑚 = 360 

𝜃𝑐𝑜𝑚 = 270 

𝜃𝑐𝑜𝑚 = 180 

𝜃𝑐𝑜𝑚 = 90 



73 
 

 

 

 

 

 

 

 

 

 

Case 1: Mass ratio 1:1 

1. 𝑚1  = 1 × 10
8 kg 

2. 𝑚2  = 1 × 10
8kg 

 

Fig 3.6 Orbits at tether connection with mass ratio 1:1 

Fig 3.6 shows that for a mass ratio of 1:1, the position of the centre of mass of the 

dumbbell system is exactly at the middle of the length of the tether connected between the 

asteroids, while Fig 3.7 shows that for a mass ratio of 1:2, the position of the centre of 

mass of the dumbbell system is closer to Asteroid2 along the tether, as it has a bigger mass 

than Asteroid1 and Fig 3.8 shows that for a mass ratio of 2:1, the position of the centre of 

mass of the dumbbell system is closer to Asteroid1 along the tether, as Asteroid1 has a 

bigger mass than Asteroid2. 

 

𝜀1
𝑜𝑟𝑏 =  −3.90330 × 1010 𝐽 

𝜀2
𝑜𝑟𝑏 = −4.14726× 1010 𝐽 

𝜀𝑑𝑏
𝑜𝑟𝑏 =  −8.03763 × 1010 𝐽 

𝜔 =  8.5990 × 10−9 

Fig 3.5  Plot legend for initial orbits in Case1, 

Case2 and Case3 
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Case 2: Mass ratio 1:2 

1. 𝑚1  = 1 × 10
8 kg 

2. 𝑚2  = 2 × 10
8 kg 

 

Fig 3.7 Orbits at tether connection with mass ratio 1:2 

Case 3: Mass ratio 2:1 

1. 𝑚1  = 2 × 10
8 kg 

2. 𝑚2  = 1 × 10
8 kg 

 

Fig 3.8 Orbits at tether connection with mass ratio 2:1 

𝜀1
𝑜𝑟𝑏 = −3.90330 × 1010 𝐽 

𝜀2
𝑜𝑟𝑏 = −8.29452× 1010 𝐽 

𝜀𝑑𝑏
𝑜𝑟𝑏 = −12.1803× 1010 𝐽 

𝜀1
𝑜𝑟𝑏 = −7.80661 × 1010 𝐽 

𝜀2
𝑜𝑟𝑏 = −4.14726× 1010 𝐽 

𝜀𝑑𝑏
𝑜𝑟𝑏 = −11.9368× 1010 𝐽 

𝜔 =  8.5990 × 1010 

𝜔 =  8.5990 × 1010 



75 
 

The cases plotted in Fig 3.6, Fig 3.7 and Fig 3.8 show that for the same value of eccentricity 

of the orbit and a constant tether length, a difference in the mass ratio of the asteroids could 

lead to the formation of an entirely different orbital trajectory of the centre of mass. The 

orbital energy values for the centre of mass achieved in these orbits differs based on the 

relative distance of the centre of mass from the Sun and the moment of inertia. The orbital 

energy possessed by a celestial body is directly proportional to the orbital velocity of the 

asteroids and hence when the tether is cut the resulting orbital trajectory of each asteroid 

vary in each case. The orientation of the asteroids in the dumbbell system with respect to the 

sun at the time of tether disconnection and the magnitude and direction of the rotational 

velocity vector with respect to the centre of mass contribute to the resulting orbital trajectory 

after tether disconnection as well, but this will be discussed in a later section of the thesis. 

3.2.3 Eccentricity 

The eccentricity of an orbit determines how much the orbit deviates from a perfect circle. 

The value of eccentricity of an orbit is determined from parameters such as the orbital 

energy, orbital angular momentum, the inertial mass of the two-body system and the 

coefficient of gravity. The eccentricity for the orbit of the centre of mass of the dumbbell 

system is determined from the eccentricities of the initial orbits of the asteroids at the time 

of tether connection. In order to understand the influence of eccentricity of the initial orbit 

of the asteroids at tether connection, in the determination of the orbital eccentricity of the 

centre of mass, it is important to understand the energy variations due to the difference in 

the eccentricity of the orbit of the asteroids at tether connection. This also contributes to the 

determination of the resulting orbits after tether disconnection. Fig 3.9 and Fig 3.10 was 

plotted to understand this, where the red orbit plot line represents the orbit of Asteroid1, the 

blue orbit plot line represents the orbit of Asteroid2 and the black orbit plot line represents 

the orbit of the centre of mass. The arrows represent the orbital velocity of the asteroids at 

perihelion, where the red, blue and black arrows represent the red, blue and black orbits 

respectively. From  and Fig 3.10, it can be seen that the position of the centre of mass and 

the hence the orbit of the centre of mass does not change in shape and size, irrespective 

which asteroid among the two in the dumbbell system has that particular value of the 

eccentric for its orbit.  
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Fig 3.9 Orbits at tether connection with 𝐞𝟏 = 𝟎. 𝟓 and 𝐞𝟐 = 𝟎 

 

 

 

 

 

 

 

 

 

 

Fig 3.10 Orbits at tether connection with 𝒆𝟏 = 𝟎 and 𝒆𝟐 = 𝟎. 𝟓  
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4. Resulting Orbits and Wait Times 

The true anomaly of centre of mass, at which the tether is disconnected from the asteroids, 

determines the amount of orbital energy an asteroid has gained or lost from the asteroid-

tether-asteroid dumbbell system. This resulting orbital energy determines the magnitude of 

the velocity possessed by the asteroids, while the orientation of the tether with respect to the 

x-axis of 𝑅𝑒𝑓 𝐵 at the time of tether disconnection determines the direction of the velocity 

vector of the asteroids. All these parameters contribute towards determining the shape and 

size of the resulting orbit of the asteroids.  

4.1 Energy Distribution over an Orbit 

The orbital energy of the centre of mass is constant throughout its heliocentric motion, but 

the total orbital energy of the centre of mass gets transferred between the two asteroids once 

disconnected from the dumbbell system. Fig 4.1 shows this distribution in the orbital 

energies of the asteroids at tether disconnection, for various points in the centre of mass’ 

orbit at which the tether is cut. The points are represented as the true anomaly of the centre 

of mass’ heliocentric motion and this gives an idea on the energy distribution, the shape and 

size of the resulting orbit, which will be discussed in the next section. For initial analysis, 

the following data, chosen at random, was given as the input: 

1. 𝑒1   = 0.5  

2. 𝑒2   = 0 

3. 𝑚1  = 10
8 kg 

4. 𝑚2  = 10
8kg 

5. 𝑟𝑝,1 = 10
7 km 

6. 𝑟𝑝,2 = 10
6 km 

The red line represents the orbital energy of Asteroid1, while the blue line represents the 

orbital energy of Asteroid2, and the circular scatter points superimposed throughout the red 

and blue lines represents the position of the centre of mass in terms of the true anomaly at 

which this particular orbital energy value is obtained at the tether disconnection. Fig 4.1 

shows that for a single heliocentric orbital motion of the centre of mass, there exists multiple 

opportunities of orbit change for the asteroids in the dumbbell system.  
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Fig 4.1 Orbital energies of the asteroids with respect to the true anomaly of the centre of mass 

4.2 Wait Time 

The time to wait for disconnecting the tether depends on parameters such as the achievable 

resulting orbit and the amount of energy distributed between each asteroid. Determining the 

energy values for the asteroids at tether disconnection could help in identifying the true 

anomaly of the centre of mass at which the tether can be disconnected. The value of the 

orbital energies of the asteroid and the values of the state vectors at the time of tether 

disconnection determine the shape, size and orientation of the resulting orbit. 

Due to the complex nature of the dumbbell system, it is not common for the orbital period 

of the centre of mass’ heliocentric motion and the rotational period of the asteroids in the 

dumbbell system about the centre of mass to be equal. Due to this, the values of the orbital 

energies of the asteroids at tether disconnection varies even for the same value of the true 

anomaly of the centre of mass’ heliocentric motion at which the tether is disconnected, but 

for different number of orbits. This is explained in the flowing sections for shorter waiting 

time of one orbital revolution of the centre of mass’ heliocentric motion and longer waiting 

time of multiple orbital revolutions of the centre of mass’ heliocentric motion, to achieve the 

desirable resulting orbit with the desirable orbital energies of the asteroids. 

4.2.1 Single Orbit 

When a single orbit of the centre of mass is enough to cause the necessary diversion or to 

achieve a desired orbit, a plot like Fig 4.1 is useful. For the same initial conditions as 

described for Fig 4.1, the resulting orbits were plotted. Plots from Fig 4.3 to Fig 4.14 show 

the resulting orbit that can be achieved with respect to different position of true anomaly of 
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the centre of mass at which the tether is cut. Plots with continues red and blue line represent 

the initial orbit, i.e. the orbit before tether connection, of Asteroid1 and Asteroid2 

respectively, while plots with dashed red and blue lines represent the resulting orbits, i.e. the 

orbits after tether disconnection, of Asteroid1 and Asteroid2 respectively. The magenta and 

cyan dashed lines represent the orbit of the asteroids while in the dumbbell system. The red 

and blue arrow represent the orbital velocities of Asteroid1 and Asteroid2 respectively, while 

the magenta and cyan arrows represent the rotational velocities of the asteroids in the 

dumbbell system. The length of the orbital and rotational velocity vectors determines the 

magnitude of the respective velocity vectors. While the magnitude of the rotational velocity 

vectors remains constant, the magnitude of the orbital velocity vectors varies with respect to 

the centre of mass’ true anomaly at which the tether is cut. Fig 4.3 was plotted for a tether 

disconnection at the centre of mass’ true anomaly value of 30 degrees and it can be seen that 

at this point Asteroid1 has lost some energy while Asteroid2 has gained some energy and 

the resulting orbit for both the asteroids are elliptic. The resulting orbit of Asteroid1 has a 

shorter semimajor axis compared to its semimajor axis before tether connection. And the 

resulting orbit of Asteroid2 has longer semimajor axis compared to its semimajor axis before 

tether connection, but still Asteroid1 has a longer semimajor axis than Asteroid2. Fig 4.2 

shows the legend for all the resulting plots.  

    

Fig 4.2 Legend for the resulting orbit plots 
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Fig 4.3 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 30 degrees 

Fig 4.4 was plotted for a tether disconnection at the centre of mass’ true anomaly value of 

60 degrees and it can be seen that, here Asteroid1 has lost a lot of energy and Asteroid2 has 

gained a lot of energy and the resulting orbits for both the asteroids are elliptic. The resulting 

orbit of Asteroid1 has a shorter semimajor axis compared to that of its respective initial orbit, 

while the resulting orbit of Asteroid2 has a longer semimajor axis compared to that of its 

respective initial orbit. But the resulting orbit of Asteroid2 has a longer semimajor axis than 

the resulting orbit of Asteroid1. This indicates that the Asteroid2 has gained more energy in 

this scenario compared to cutting the tether at 30 degrees of the centre of mass’ true anomaly. 

 

Fig 4.4 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 60 degrees 

 



81 
 

Fig 4.5 was plotted for a tether disconnection at the centre of mass’ true anomaly value of 

90 degrees and it can be seen that Asteroid2 has gained considerably more energy compared 

to the tether disconnection at the centre of mass’ true anomaly value of 30 and 60 degrees 

and also the shape of Asteroid2 is more eccentric due to the huge gain in the orbital energy 

at tether disconnection, while the orbit of Asteroid1 is less eccentric and more towards a 

circular orbit due to the considerable amount of orbital energy lost. The semimajor axis of 

the resulting orbit of Asteroid2 is longer than its respective initial orbit while it is vice the 

versa for the resulting orbit of Asteroid1. 

 

Fig 4.5 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 90 degrees 

Fig 4.6 was plotted for a tether disconnection at the centre of mass’ true anomaly value of 

120 degrees and here it can be seen that the resulting orbits looks similar to that of the 

resulting orbits in Fig 4.5 when the tether was cut at the centre of mass’ true anomaly value 

of 90 degrees, but the only change is that size and shape of the resulting orbits of Asteroid1 

and Asteroid2 has interchanged. Within a span of 30 degrees of true anomaly the centre of 

mass has orbited from its previous position of 90 degrees, a complete reversal in orbital 

formation has occurred. This can be attributed to the orientation of the tether, which leads to 

the position of the asteroid with respect to the Sun, at the time of tether connection. The 

change in the orbital energy between the centre of mass’ true anomaly value of 90 degrees 

and 120 degrees is not considerable, but the change in the orbital velocity vector is, both in 

magnitude and direction, as can be noted in the respective plots of Fig 4.5 and Fig 4.6. The 

orbital velocity of Asteroid1 was lesser in magnitude, as shown by its shorter length and the 

orbital velocity of Asteroid2 is greater in magnitude, as shown by the its longer length in Fig 

4.5, While it was vice the versa in Fig 4.6. This shows the significance played by the 

direction and magnitude of the orbital velocity vectors. 
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Fig 4.6 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 120 degrees 

Fig 4.7, Fig 4.8 and Fig 4.9 was plotted for a tether disconnection at the centre of mass’ true 

anomaly value of 150, 180 and 210 degrees respectively and follows similar and alternative 

changes to the resulting orbits as that of tether cut at centre of mass’ true anomaly values of 

120. The slight variation in the orbits is due to the expected variation in its orbital energy 

and orbital velocity vectors. 

 

Fig 4.7 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 150 degrees 
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Fig 4.8 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 180 degrees 

 

 

Fig 4.9 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 210 degrees 

Fig 4.10 was plotted for a tether disconnection at the centre of mass’ true anomaly value of 

240 degrees and shows a considerable reduction in the value of the semimajor axis of 

Asteroid1’s orbit after tether disconnection, compared to the value of the semimajor axis 

before tether connection. The semimajor axis of the resulting orbit of Asteroid2 is longer 

than the semimajor axis of the orbit of Asteroid2 before tether connection. This follows a 

similar trend like that of the orbits of the asteroids after tether cut at true anomalies of 30, 

60, 90, 120, 150, 180, 210, except that here, the shape and position of the orbit has shifted 

to the right of x-axis of the plot, which indicates the part played by the direction of the 

velocity vectors. The resulting orbits of both the asteroids are closer to each other and have 
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near similar orbits, along with near similar values of the magnitude of the orbital velocity 

vectors. This indicates that the orbital energies at tether disconnection were closer to equal 

for both the asteroids. 

 

Fig 4.10 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 240 degrees 

Fig 4.11 and Fig 4.12 are plotted for a tether disconnection at the centre of mass’ true 

anomaly value of 270 and 300 degrees respectively and are similar, but with an interchange 

in one asteroid taking the orbit of the other. This is another case where the energy transfer is 

similar between these two scenarios, but for the orientation of the tether and the position of 

the asteroids with respect to the Sun 

 

 

Fig 4.11 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 270 degrees 
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Fig 4.12 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 300 degrees 

Finally, Fig 4.13 shows a scenario where Asteroid2’s resulting orbit takes the place of 

Asteroid1’s initial orbit and Asteroid1’s resulting orbit takes the place of Asteroid2’s initial 

orbit. This is the scenario where the orbital energies of Asteroid1 and Asteroid2 are 

interchanged. The orbits are not exactly an interchange, but this could be due to the errors 

discussed in the previous section. 

 

 

Fig 4.13 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 330 degrees 

Fig 4.14 was plotted for a tether disconnection at the centre of mass’ true anomaly value of 

360 degrees and shows that it is similar to that of the scenario where the tether was at the 

centre of mass’ true anomaly value of 30 degrees. Here the true anomaly of the centre of 

mass also indicates the position of 0 degrees, but as discussed before the chances that the 
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rotational period of the asteroid with respective to the centre of mass being equal to the 

orbital period of the centre of mass’ heliocentric orbit is very and this case shows it clearly. 

The asteroids are in a different orientation than at the time of tether connection, which is also 

the reason for the nature of the resulting orbits.  

 

Fig 4.14 Initial, dumbbell and final orbits of the asteroids for a tether cut at true anomaly 360 degrees 

In all these scenarios of resultant orbits involving tether disconnection, it can be noticed that 

Asteroid2 never lost energy and Asteroid1 never gained energy. This could be due to the 

assumption that at the time of tether connection, the asteroids are at their perihelion and also 

the fact that Asteroid1 is in an eccentric orbit and farther away from the Sun than Asteroid2 

which is in a circular orbit and closer to the Sun, at the tether connection. 

4.2.2 Multiple Orbits 

Sometimes the required orbital energy for a desirable diversion of an asteroid cannot be 

achieved in a single heliocentric orbit of the centre of mass. Waiting for multiple orbital 

revolutions of the centre of mass in a heliocentric orbit for orbital diversion could usually be 

used for cases where diverting hazardous asteroids away from earth is involved, especially 

when the threat is identified early enough to achieve the waiting time.  To understand the 

orbital energies obtained over multiple orbital revolutions of the centre of mass’ heliocentric 

motion a sample test case carried out with the following initial conditions were tested: 

1. The eccentricity of the Asteroid1, was varied from 0 to 0.9 at a step interval of 10−5 

(𝑒1 = {0,0.0001,0.0002,…… ,0.9}) 

2. The eccentricity of Asteroid2, was fixed to be zero (𝑒2 = 0) 
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3. The radius of perihelion of both the asteroids was fixed at  𝑟𝑝,1 =  17 ×  10
7 km and 

𝑟𝑝,2 = 16 × 107 km respectively 

4. The value of the rest of the orbital elements were, 

a. Argument of periapsis, 𝜔1, 𝜔2 = 0 

b. Longitude of ascending node 𝛺1, 𝛺2 = 0 

c. Initial true anomaly 𝜃1, 𝜃2 = 0 

For initial analysis, only the orbital energy of Asteroid1 was observed, and hence only the 

orbital energy of Asteroid1 was plotted against the angular displacement (the orientation of 

the tether) of the tether the dumbbell system makes with the x-axis of the reference 

frame 𝑅𝑒𝑓 𝐵 at the time of tether disconnection.  

In Fig 4.18, Fig 4.19, Fig 4.20 and Fig 4.21 the orbital energy of Asteroid1 is represented at 

the y-axis of the plot, while the angular displacement of the dumbbell system is represented 

at the x-axis of the plot. 

The simulation for the change in each value of Asteroid1’s eccentricity for the said range 

was carried out; wherein a limit was set for the maximum number of times the dumbbell 

system rotates around the centre of mass for one orbit of the centre of mass’ motion around 

the Sun, which was fixed to be 100 

This value was identified and fixed by running multiple analyses to understand the highest 

value of energy an asteroid could attain, on the basis of the orientation of the tether and the 

position in the orbit at the time of tether disconnection.  

The number of times the dumbbell system rotated around the centre of mass during the 

course of one orbital revolution of the centre of mass is affected by the angular velocity of 

the dumbbell system. The determination of this angular velocity depends on the initial orbital 

velocity of the asteroids at the time of tether connection, which in turn depends on the 

eccentricity of the orbit of these asteroids before and at the time of tether connection. At this 

point in time we should also remember that the tether connection between the asteroids is 

made instantaneously when the asteroids lay in-line with the Sun in the ecliptic plane and at 

the perihelion point. Here, the orbital velocity of Asteroid1 is the highest with respect to its 

initial orbit while the orbital velocity of Asteroid2 is the same at all point in its orbit around 

the Sun, as its eccentricity is fixed to be zero, and hence in a circular orbit. 

Fig 4.15 (Fig 4.16 is zoom of Fig 4.15 at the point of tether connection) is a simple 

representation of one of the case of the orbit of two asteroids at perihelion at tether 

connection, the plot shows the velocity vectors of each asteroids at that point. The length of 
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the velocity vectors directly corresponds to the magnitude of the orbital velocity vector and 

here it can be shown that the magnitude of the orbital velocity vector of the highly eccentric 

orbit is higher than the magnitude of the orbital velocity vector of the circular orbit. 

 

Fig 4.15 Initial orbit plots for the test case 

 

Fig 4.16 zoomed view of Fig 4.15 
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General Observations 

A serious of plots were obtained (some of which are shown in Fig 4.18, Fig 4.19, Fig 4.20 

and Fig 4.21) for a range of values of eccentricity of Asteroid1. So that the variation of the 

orbital energy attained with respect to the orientation of the tether at the time of the tether 

disconnection, for each value of eccentricity could be observed and understood. 

Approximately 6000 plots were obtained and keeping in mind the size restriction of the 

thesis, only a few of the important ones are discussed. Nevertheless, the general observations 

made from analysing all the plots are mentioned as follows: 

1. Variations in the rate at which the dumbbell system rotates for a corresponding 

number of heliocentric orbital revolutions of the centre of mass for the analysed 

eccentricity range were observed. The variations observed for the different 

eccentricity ranges are as follows:  

a. The rate at which the dumbbell system rotates around the centre of mass 

decreases from one full rotation for two complete orbits of the 

heliocentric motion of the centre of mass at an eccentricity of  𝑒1 = 0, to 

one full rotation of the dumbbell system for approximately two thousand 

complete orbits of the heliocentric motion of the centre of mass at an 

eccentricity of 𝑒1 = 0.0625 

b. After which it returns to one full rotation of the dumbbell system for two 

complete orbits of the heliocentric motion of the centre of mass at an 

eccentricity of 𝑒1 = 0.1212, 

c. Then keeps increasing until approximately twelve complete revolutions 

of the dumbbell system for approximately one heliocentric orbit of the 

centre of mass at an eccentricity 𝑒1 = 0.9 

2. The variation of energy depends on the initial energy possessed by the asteroid 

at the time of tether connection, and in this case, the energy input to the system 

keeps increasing throughout, since the velocity at tether connection which is the 

point of perihelion keeps increasing, which as explained earlier is due to the 

increasing eccentricity of the orbit 

3. The orbital energy of the asteroids varies more unevenly at the lower 

eccentricities and gets more even and periodic as the value of the eccentricity of 

Asteroid1 increases 

4. For every, one heliocentric orbit of the centre of mass, there exists a maximum 

and minimum orbital energy that could be attained after tether disconnection. 



90 
 

This value of maximum and minimum energy need not necessarily be equal for 

the next orbit 

5. During the course of the analysis it is found that there is an overall maximum and 

minimum energy that could be attained by Asteroid1, which is also true for 

Asteroid2, after tether disconnection. To achieve this overall maximum and 

minimum orbital energy, the time of tether disconnection has to be determined 

based on the number of the times the centre of mass orbits around the Sun 

Specific Observations  

Four eccentricities, namely  𝑒1 = 0;  𝑒1 = 0.0017; 𝑒1 = 0.0623; and 𝑒1 = 0.9 are discussed 

here to understand the behaviour in the energy variations of Asteroid1 in the dumbbell 

system. Eccentricities  𝑒1 = 0; 𝑎𝑛𝑑 𝑒1 = 0.9 are chosen because they represent the start and 

end points of the analysed range of eccentricities. Eccentricities  𝑒1 = 0.0017; and 𝑒1 =

0.0623 are chosen because of the noticeable change in the occurrence of the maximum and 

minimum energy in a different way compared to other observed eccentricities.  

The blue lines in Fig 4.18, Fig 4.19, Fig 4.20 and Fig 4.21 represent the orbital energy  

values of Asteroid1 plotted against the angular displacement of the tether. The yellow and 

green circle markers represent the maximum and minimum energies of Asteroid1 

respectively for each of the individual orbits. The red and black asterisks represent a true 

anomaly of 𝜃 = 0 and 𝜃 = 180 of the heliocentric orbit of the centre of mass respectively. 

Cycles and Repeating Blocks 

Local definitions, namely cycle and repeating blocks, are defined for each of the cases 

studied, and their definition vary with respect to their behavioural dynamics. In general, the 

definition of cycle is used to define the overall pattern of the case studied, the definition of 

repeating blocks is used to define repetitive nature of the orbital energy variations within the 

cycle. 

Eccentricity of Asteroid1 at 0 

The dumbbell system represented in Fig 4.18 is such that the asteroids have equal mass and 

zero eccentricity.  

𝑚1 = 𝑚2 = 10
8 kg 

𝑒1 = 𝑒1 = 0 
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Cycles and Repeating Blocks 

The number of orbital revolutions of the heliocentric motion of the centre of mass for this 

scenario was fixed at 400 to show the periodic nature of the pattern of energy occurrence, as 

after every 400 heliocentric orbital revolution of the centre of mass, the pattern of energy 

variations repeats. This periodicity for every 400 orbits is defined as a cycle for this case. 

Maximum and Minimum Orbital Energies 

The plot is split into expansion zones such as Fig 4.18a and Fig 4.18b apart from the main 

plot. Expansion Fig 4.18a shows the orbital energy values between Θ = 2.4 × 104 and  

Θ = 3 × 104 degrees of angular displacement of the orientation of the tether and expansion. 

Fig 4.18b shows the orbital energy values between Θ = 2.71 × 104 and Θ = 2.79 ×  104 

degrees of angular displacement of the orientation of the tether.  

This is to show the variations in the obtained energies and to observe the occurrence of 

maximum and minimum energies for each orbit with respect to the perihelion and aphelion 

position. The red and blue triangle represent the occurrence of the overall maximum and 

minimum orbital energies of the orbit of Asteroid1 respectively with each cycle. 

It can be observed that in Fig 4.18 the occurrence of the overall maximum and minimum 

orbital energy for the cycle occurs approximately at the midpoint of the cycle, showing that 

the maximum and minimum energies varies gradually between Θ = 0 and Θ = 8 × 104  

degrees of angular displacement. Here, Θ = 8 × 104  degrees indicate the number of 360-

degree tether rotations the dumbbell system has had in the cycle.  

Initially, the value of maximum energy for each individual orbit keeps increasing until about 

approximately Θ = 4 × 104  degrees of angular displacement, where it reaches the 

maximum orbit for the cycle and then it gradually reduces until about Θ = 7.8 × 104  

degrees of angular displacement of the tether after which a new cycle starts.  

It can also be noticed that there is an alternating pattern of maximum and minimum energies 

for every alternate orbit, with even numbered orbits having a higher local maximum energy 

value and higher minimum energy value than odd numbered orbits, this can be evident from 

the different directions taken by two lines of yellow markers.  

The line that goes up is for even number of orbits and the line that goes down is for odd 

number orbits. This alteration is due to the change in the orientation of the asteroids with 

respect to the Sun at every orbit. Initially at tether connection the position is aligned with the 

Sun, but after every orbit the orientation of the asteroids changes and is no longer aligned 

with the Sun when the centre of mass reaches the perihelion point in the next orbit.  
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It can be noted that the maximum and minimum orbital energy for odd orbits starts occurring 

at the perihelion point at about Θ = 2.8 × 104  degrees of angular displacement and it 

continues up until the next cycle, this is shown clearly in expansion Fig 4.18a and Fig 4.18b.  

In expansion Fig 4.18b, the convergence is shown in comparison of the previous alternate 

odd and even orbit. This indicates that at each point of maximum orbital energy in the odd 

orbits the asteroids are closer to the sun in terms of its orientation of the tether and the true 

anomaly of the centre of mass and when the closest point coincides with the perihelion of 

the centre of mass the maximum energies of that particular orbit coincides with the true 

anomaly of the centre of mass at perihelion.  

The achievement of the maximum and minimum energy for the orbit is very useful in terms 

of waiting for the opportune moment to cut the tether, so as to achieve the required deflection 

in the orbital trajectory of the asteroid in focus.  

For eccentricity  𝑒1 = 0 the occurrence of maximum energy happens in alternate orbits, 

thereby making it necessary to wait for every two orbits to achieve maximum or minimum 

deflection. Also, the overall maximum and minimum energy obtained is higher and lower 

respectively to the maximum and minimum energy of all other orbit. Fig 4.18 also shows 

that the motion is periodic for every 204 dumbbell rotations. 

 

 

Fig 4.17 Legends for Fig 4.18, Fig 4.19, Fig 

4.20 and Fig 4.21 
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Fig 4.18 Energy variation of Asteroid1 against angular displacement of the tether for an eccentricity 

value of 0 
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Eccentricity of Asteroid1 at 0.0017 

The dumbbell system represented in Fig 4.19 is such that the asteroids have equal mass and 

Asteroid1 is in an orbit with an eccentricity of  𝑒1 = 0.0017.  

𝑚1 = 𝑚2 = 10
8 kg 

𝑒1 = 0 

𝑒1 = 0.0017 

The dumbbell system makes approximately one dumbbell revolution for two orbital 

revolutions of the centre of mass’ heliocentric motion.  

Cycles and Repeating Blocks 

The number of orbital revolution of the centre of mass’ heliocentric motion was fixed at 154, 

which is defined as one orbit cycle in this case, to study the periodicity in the occurrence of 

the value of the orbital energy.  

It can be noticed that the overall maximum energy occurs early in the cycle and the overall 

minimum energy occurs later in the cycle. This value of overall maximum and minimum 

orbital energy is actually one of the maximum energy of a repeating block. Here a repeating 

block can be defined as a block containing 20 consecutive orbits.  

The block contains alternating pattern of orbital energy, where every odd orbit has less 

maximum energy than every even orbit and the maximum energy in odd orbits intersect with 

the perihelion point of the centre of mass between the 9th and 35th orbit spanning two 

repeating blocks, while the minimum energy point for every even orbit intersects with the 

perihelion point of the centre of mass between 8th and 34th orbit. This case is an example of 

the asteroids in the dumbbell system returning to the initial orientation when the centre of 

mass passes through the perihelion point for every 20 orbits. 

Maximum and Minimum Orbital Energies 

Cases like this lead to the overall maximum and minimum orbital energy to be periodic and 

of similar values, which could lead to a shorter wait time if the tether needs to be cut at the 

overall maximum or overall minimum orbital energy the asteroid could make with a 

considerable period of wait time at the least. 
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Eccentricity of Asteroid1 at 0.0623 

The dumbbell system represented in Fig 4.20 is such that the asteroids have equal mass and 

Asteroid1 is in an orbit with an eccentricity of 0.0623.  

𝑚1 = 𝑚2 = 10
8 kg 

𝑒1 = 0 

𝑒1 = 0.0623 

Cycles and Repeating Blocks 

In this case, one revolution of the dumbbell system leads to 527 heliocentric orbital motion 

of the centre of mass and this is due to the fact that the angular velocity of the dumbbell 

system is slower compared to other cases.  

Here one cycle is defined by one dumbbell revolution, in which there are 189,720 

heliocentric orbits of the centre of mass.  

Maximum and Minimum Orbital Energy 

The maximum orbital energy for individual orbit coincides with the point of perihelion at 

the start and end of the cycle, after which the perihelion point deviates, and the maximum 

orbital energy coincides with the aphelion of the centre of mass at 180 degree of angular 

displacement of the tether. Similarly, the minimum orbital energy for an orbit coincides with 

the aphelion of the centre of mass at the start and end of the cycle, after which the aphelion 

deviates, while the minimum energy of the orbit coincides with the perihelion of the centre 

of mass at 180 degree of the angular displacement of the tether. 

To wait for the maximum energy for tether connection, this case needs less wait time. Most 

of the orbits in this case have similar maximum and minimum orbital energy values because 

the rate at which the orientation of the tether changes with respect to the change in the true 

anomaly of the centre of mass is very less. 

Eccentricity of Asteroid1 at 0.9 

The dumbbell system represented in Fig 4.21 is such that the asteroids have equal mass and 

Asteroid1 is in an orbit with an eccentricity of 0.9.  

𝑚1 = 𝑚2 = 10
8 kg 

𝑒1 = 0 

𝑒1 = 0.0623 
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Because of the huge difference in the eccentricity of the orbits of Asteroid1 and Asteroid2, 

the angular velocity in this case is very high, which leads to multiple dumbbell revolution 

for one heliocentric orbital motion of the centre of mass. For one heliocentric orbit of the 

centre of mass, the dumbbell system rotates around 12.5 times about the centre of mass. This 

is in contrast to the cases in Fig 4.18, Fig 4.19 and Fig 4.20, where the number of dumbbell 

rotation about its centre of mass was slower than the motion of the centre of mass of the 

dumbbell system around the Sun. This is due to the very high eccentricity of Asteroid1, 

which leads to higher orbital velocities and hence higher angular velocities leading to the 

faster rotational motion of the dumbbell system about the centre of mass. 

Cycles and Repeating Blocks 

Here one cycle is defined as 7 heliocentric orbits of the centre of mass and one repeating 

block is defined with 4,500 degrees of angular displacement of the tether, which is 12.5 times 

the rotation of the dumbbell system. 

Maximum and Minimum Orbital Energies 

From Fig 4.21, it can be observed that the occurrence of maximum and minimum orbital 

energies of the cycles is not strictly regular, although we can consider it to be approximately 

or close to regular. But, with every single orbit, there are at least one occurrences each of 

maximum and minimum orbital energies that has a closer value to the overall maximum and 

minimum orbital energies for the cycle. The maximum and minimum orbital energies appear 

to be alternating in their occurrence close to periapsis and never near apoapsis. While the 

value of the overall maximum and minimum orbital energy and value of the maximum and 

minimum energy for each orbit is not much different, the change is negligible. This shows 

that the opportunity for tether disconnection for a desired orbit with corresponding orbital 

energy occurs repeatedly over a short period of time compared to the other cases observed 

earlier and hence contributes to shorter wait time. 
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Fig 4.19 Energy variation of Asteroid1 against the angular displacement of the tether for an 

eccentricity value of 0.0017 
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Fig 4.20 Energy variation of Asteroid1 against the angular displacement of the tether for an eccentricity 

value of 0.0623 

4.20a 

4.20b 

4.20a 

4.20b 

One Orbit 

Maximum energy 

at Perihelion 



99 
 

 

Fig 4.21 Energy variation of Asteroid1 against the angular displacement of the tether for an 

eccentricity value of 0.9 

The values and data in the above cases are not of significance and these are general imaginary 

cases used to study the behavioural dynamics of the asteroid-tether-asteroid dumbbell 

system.  
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5. Conclusion  

This thesis presented a study on manipulating the orbital trajectory of an asteroid by 

connecting the asteroid to a closely-passing-by asteroid through the means of a tether. The 

study included the analysis of the various parameters affecting such type of orbit 

manipulation and also analysed the different ways to achieve orbit diversion. The dynamics 

involved in the orbit manipulation was discussed, including how the manipulation of the 

orbital energy of the asteroids could lead to the manipulation of the orbital trajectory of the 

asteroid. 

5.1 Summary 

Chapter 1 discussed the historical view of the asteroids, starting from its first discovery, 

etymology and how the view on asteroid changed over time with a change in our 

understanding about them. Then the different ways to classify asteroids and their detailed 

classification leading to their composition and their relevance to humanity was discussed. 

Then the nature of asteroids from the perspective of them being a threat as well as important 

resource was discussed. A short description of the different methods of asteroid diversion 

was presented. A detailed analysis on tether assisted asteroid diversion was presented 

followed by the motivation involving the need for resources, asteroid mining, and 

economics, ending with the objectives for the research. 

Chapter 2 discussed the assumption involved in the creation of the model, and the 

representation of the model developed for the study to fulfil the objectives. The study of the 

orbital and attitude dynamics of the setup which involved discussing the physics involved in 

the trajectory manipulation was analysed and represented by the equation of motion. The 

overall concept of connecting two closely-passing-by asteroids by means of a tether to 

manipulate the transfer of the orbital energy between the asteroids in the dumbbell system, 

in order to manipulate the orbital trajectory of the asteroids were elaborated.  

Chapter 3 discussed about the different parameters that affected the trajectory manipulation 

through the asteroid-tether-asteroid dumbbell system. An analysis of how the various 

parameters such as the length of the tether, the mass ratio of the asteroids and the eccentricity 

of the initial orbits affected the orbital trajectory manipulation was carried out and the results 

presented along with a description about the dynamics of the energy pattern that is observed 

during the trajectory manipulation. 
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Chapter 4 dealt with describing in detail the part played by orbital energy of the asteroids 

in the orbital trajectory manipulation, the time needed to wait before a desirable orbital 

diversion can be achieved by cutting the tether at the correct orbital energy value. 

5.2 Objectives Achieved 

The following objectives were achieved: 

1) A mathematical model was developed with the help of MATLAB, with limitations 

made possible through assumptions input into the model 

2) The dynamics involved in changing the orbital trajectory of the asteroids through the 

formation of asteroid-tether-asteroid dumbbell system were studied, understood and 

explained 

3) The parameters that affect the formation of the dumbbell system and those involved 

in the dynamics of the dumbbell system were studied and important points were 

concluded 

4) Since orbital energy plays an important part in the whole idea, the relation between 

the orbital energy and the time of tether cut was studied in detail to understand how 

the system would behave to give out various resultant orbits could be achieved 

5.3 Remarks 

The following points are mentioned as observations made from carrying out the study and 

analysis involved in the orbit manipulation process using this method: 

1) Assumptions played an important part in making it easy for the model to be setup 

and the dynamics to be simple 

2) Though the time of tether cut is an important factor in the formation of the resultant 

orbits, the real quantities at play here are the orbital energy and orbital velocity. These 

quantities determine the size, shape and orientation of the resultant orbit 

3) It could be noticed that the change in the orbital trajectory of the asteroids is achieved 

not only by cutting the tether after a certain time since dumbbell formation, but also 

due to the formation of the dumbbell system itself. The tether connection creates a 

dumbbell system with a centre of mass, which sets the trajectory of the dumbbell 
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system and hence the asteroids are in the dumbbell system the asteroids follow the 

path of the dumbbell system 

4) It can be noticed from the resultant orbits achieved in the sample cases of single 

orbital tether disconnection scenario, that Asteroid2, which is closer to the Sun than 

Asteroid1 at tether connection and in a circular orbit does not seemed to lose energy 

5) The physics involving the scenarios, in which the awaiting time of tether cut spanned 

multiple orbital revolutions of either the centre of mass around the sun or the 

dumbbell rotations around the centre of mass, has patterns for every combination of 

eccentricity that could be helpful in determining the tether cut time 

5.4 Feasibility of the Idea 

On the question of feasibility, the whole concept could be divided into multiple streams, they 

are: 

1) The concept of connecting two closely-passing-by asteroids through the means of 

tether  

2) Controlling the dynamics of the tether 

3) Achieving the desired change  

While the concept is feasible in the sense of the physics behind it, this could be only made 

possible through various parameters involved. The parameters are explained below, and it is 

expected to be a while before tethers become stronger and dynamic to support concepts such 

as this. 

5.4.1 Asteroids 

The dynamics studied in this research involved a lot of limitations through mathematical 

assumptions to make the study simple. But in reality, the dynamics of the asteroids are more 

complex. One of the major processes involved would be to de-spin tumbling asteroids either 

about one axis or multiple axis. One of the methods proposed is angular momentum drain to 

de-spin an asteroid proposed by A. D. Dobrovolskis and J. A. Burns [56] another method is 

to use sun oriented tethers [51].  
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5.4.2 Tether  

Tethers are crucial to this concept and parameters such as the strength of the tethers, the 

different types of tethers that could be used to control the dynamics are important. While the 

research involving tethers has been on-going for several years, it is mostly confined to the 

realm within the vicinity of the earth and involving comparatively smaller masses such as 

satellites and probes. 

5.5 Future Work 

This research established that the physics in the concept of connecting two asteroids to 

manipulate the orbital trajectory could be a reality and the feasibility of the concept could be 

achieved after considerable research and development on tethers and dynamics involving 

asteroids are carried out.  

5.5.1 Orbital Energy Range 

This topic could be a concept for study for any follow up research conducted based on this 

thesis.  

For any scenario, the orientation of the tether over the course of the motion of the dumbbell 

system is determined by the initial conditions such as the mass of the asteroids, the orbital 

size, shape, orientation and the true anomaly of the two asteroids at the time of tether 

connection. For each value of true anomaly of the centre of mass’ heliocentric orbit, the 

tether can have different orientation and the orientation of the tether for every value of true 

anomaly of the centre of mass varies from orbit to orbit within a single case. The best result 

in diverting an asteroid could be achieved by getting the right combination of the tether 

orientation and true anomaly of the centre of mass. This is the wait time discussed 

previously, where waiting for the right time to disconnect the tether once the desirable orbital 

energy is achieved leads to the expected resultant orbit. This desirable orbital energy is 

achieved from the right combination of the orientation of the tether and the true anomaly of 

the centre of mass. 

Except in very few cases such as that of the one discussed in Fig 4.20, not all possible tether 

orientations are achieved in a dumbbell’s motion and hence not all possible orbital energies 

achieved, and these orientations and orbital energies could be called as missed or hidden 

orientations and missed or hidden orbital energies respectively. Each value of orbital energy 

in combination with the orbital velocity vectors help in the resulting orbit during tether 
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connection. So, to identify all possible resulting orbits from a particular scenario, a study on 

the different combinations of tether orientation for different value of true anomaly of the 

centre of mass’ heliocentric orbit that are hidden due to undisturbed dumbbell dynamics 

could be carried out, which would lead to the identification of right combinations of the 

missed tether orientations and energies. 

For a particular scenario, creating a surface plot by plotting all the orbital energy for all 

possible tether orientation for all possible true anomaly value of the dumbbell system gives 

an idea on the energy ranges for that particular case. This is just to study the possibility of 

the missed or hidden combinations and hence the method used to obtain these hidden 

orientations is not discussed.  

5.5.2 Other Future Research 

1) The first point in the course of any future work would first require refining the current 

research. To minimize the complexity of the model, so as to form the basis of the 

idea and carryout the base analysis. Restrictions such as fixing of orbit to in-plane 

orbits were assumed in this research, to remove such restrictions and considerations 

of other forces such as the solar radiation pressure, Yarkovsky effect, etc. could be 

added for further analysis 

2) To identify real cases of closely passing-by asteroids and use them as the basis of the 

research to get more realistic data 

3) Discuss different ways that can be used to capture asteroids 
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