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Abstract 

Competing risks analysis is more appropriate than standard survival analysis 

when there are two or more mutually exclusive possible events, and investigates 

which one of the events occurs first. Competing risks analysis constitutes the 

simplest form of multi-state modelling. Multi-state modelling more generally 

extends the competing risks approach to consider events of interest that can 

occur after the first event. However, competing risks and multi-state modelling 

have not been used to their full potential in health research. The aim of this 

thesis is to demonstrate the potential of multi-state modelling in an 

epidemiological and health economics context, in areas where it is not widely 

applied. Focus is on two case studies – one in epidemiology and one in health 

economics. 

The first case study is in stroke epidemiology and investigates the outcomes 

stroke recurrence and death. The research is thought to be the first to 

comprehensively examine the competing risks stroke recurrence and death 

without recurrence. It demonstrates the clinical insights that can be gained by 

decomposing a composite outcome and by studying the cumulative incidence of 

each event alongside the hazards that drive them. Furthermore, an illustration 

of the flexibility in predictions of multi-state modelling is given. Predictions at 

the start of the study and as time progresses are demonstrated. 

The second study is in health economics and is based on a technology appraisal 

submitted to the National Institute for Health and Care Excellence in the UK. An 

objective of this thesis is to compare multi-state modelling with the two 

common approaches of Markov decision-analytic modelling and partitioned 

survival. This comparison shows that the conventional decision-analytic 

modelling and multi-state modelling differ substantially when the assumptions 

vary between the approaches, but produce equivalent results when they make 

the same transition assumptions. Therefore, the greatest influence on the 

clinical and cost-effectiveness results is the choice of assumptions rather than 

the modelling approach used itself. The research highlights it is imperative to 

check that any assumptions made are realistic. The comparison of the 

approaches shows any output required from the conventional approaches can 

just as easily be produced using multi-state modelling. It is hoped this research 

will encourage further adoption of multi-state modelling, in the many areas 

where it has not yet reached its full potential. 
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 Introduction 

 Background  

Survival analysis is a well-established technique in the fields of 

epidemiology/medical statistics and health economics. It is widely applied in the 

form of standard survival analysis which involves only one event of interest. This 

typically involves investigating all-cause mortality as an outcome or a composite 

outcome comprising of a non-fatal event(s) and death. These outcomes are often 

studied as part of a randomised clinical trial in both medical statistics and health 

economics. In the former, the efficacy/effectiveness of an intervention is of 

interest while in the latter the cost-effectiveness of an intervention is of overall 

interest. However, a major component in the analysis of cost-effectiveness is 

effectiveness and, in health economic modelling that involves the outcomes 

described above, survival analysis is often used to investigate the (quality-

adjusted) life years gained from an intervention. 

Frequently however, standard survival analysis may be too restrictive to answer 

the research question of interest because more specific events are of interest. 

For instance, interest may be in specific causes of death rather than all-cause 

mortality, or in a non-fatal outcome specifically rather than a composite one. 

These scenarios are termed “competing risks” and require a different approach 

to analysis than standard survival analysis. Competing risks analysis focuses on 

identifying which of two or more mutually exclusive events occur first, and in 

that sense the risks are competing with one another to be the first to occur and 

hence the event. The competing risk that occurs precludes the other competing 

risk(s) from being the event to occur first. For example, a specific cause of 

death would be considered a competing risk for another cause of death.  An 

alternative definition of a competing risk is an event that precludes an event of 

interest, or otherwise affects the risk of it occurring. Consequently, competing 

risks scenarios need not just involve death. Non-fatal outcomes can also act as 

competing risks. For instance, hospital discharge should be treated as a 

competing risk when interest is in in-hospital infection. In another common 

scenario that arises, death should be treated as a competing risk when analysing 
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a non-fatal outcome. However, Koller et al. (2012) performed a literature 

review that found that competing risks, and the issues that require consideration 

when faced with such a scenario, were not widely recognised in the clinical 

literature. This was particularly the case in high impact clinical journals. 

Standard and competing risks survival analysis constitute the simplest forms of 

modelling under the more general multi-state modelling survival analysis 

framework. Multi-state modelling more generally extends the competing risks 

approach to also consider events of interest that can happen after the first 

event. It is therefore applicable when at least one of the events is non-fatal. In 

a multi-state modelling situation, a first event(s) that is studied as part of a 

competing risks analysis is considered to be an intermediate state(s) between 

the initial and final states, all of which are of interest. This is the case 

particularly when studying the course of a chronic and/or progressive disease. 

For instance, a competing risks analysis might involve following patients in an 

initial healthy state to see which one of the two events/states of interest non-

fatal illness or death they experience first. In a multi-state model, the non-fatal 

illness state would act as an intermediate state between the initial healthy state 

and final death state. 

One of the main advantages of multi-state modelling over standard and 

competing risks survival analysis is the flexibility in predictions it can 

accommodate. Predictions of being in different health states over time can be 

estimated as patients enter the initial health state. Furthermore, dynamic 

predictions can be carried out, that is to say predictions as time progresses, 

especially as patients progress to other health states. These latter predictions 

are particularly applicable in an epidemiological/medical statistics context, but 

do not appear to be widely applied. In a health economics context, multi-state 

modelling falls under the umbrella of state-transition modelling, a common 

approach in health economic modelling. However, as this thesis will show, multi-

state modelling is under-used in the field of health economics. Multi-state 

modelling for cost-effectiveness analysis has great potential as an alternative to 

conventional spreadsheet-based approaches. It is syntax-based providing a 

transparent record of the analysis and it makes errors easier to spot. 
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Furthermore, it explicitly allows testing of the Markov property by simply adding 

a relevant covariate and semi-Markov modelling does not require tunnel states. 

In addition, the building of Markov multi-state models is less cumbersome and 

time-consuming; such models can be created in seconds.  

 Overall aim and objectives 

The overall aim of this thesis is to demonstrate the potential of multi-state 

modelling in an epidemiological and health economics context, in areas where it 

is not widely applied. Two case studies are used to provide focus – one in 

epidemiology and one in health economics. The first case study is in stroke 

epidemiology with the outcomes recurrence and death.  

Objectives in this stroke epidemiology context are: 

 to investigate the up-to-date use in the literature of competing risks and 

multi-state modelling for analysing the outcomes recurrence and death 

 to demonstrate the added insight gained from using competing risks 

analysis and multi-state modelling over and above standard survival 

analysis. 

The second case study, which is in health economics, is based on a technology 

appraisal (TA) submitted to the National Institute for Health and Care Excellence 

(NICE) in the UK. This particular TA involved evaluating the cost-effectiveness of 

rituximab in combination with fludarabine and cyclophosphamide, compared to 

fludarabine and cyclophosphamide alone, for the first-line treatment of chronic 

lymphocytic leukaemia. The Evidence Review Group working on behalf of NICE 

had some concerns about the economic model submitted by the manufacturer 

and instigated some sensitivity analyses of their own. However, there was scope 

to show how multi-state modelling could provide an alternative to the common 

approaches adopted by modellers performing economic evaluations. 

 Objectives in the health economics context are: 
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 to explore the use of multi-state modelling in the health economics 

literature 

 to compare multi-state modelling with two common approaches applied in 

health economic modelling, namely Markov decision-analytic modelling 

and partitioned survival. 

In recent methodology guidance issued by the NICE Decision Support Unit [Woods 

et al. (2017)], the two publications that accompany this thesis have been cited 

to help raise awareness that multi-state modelling can provide an alternative to, 

or complement, cost-effectiveness analyses conducted using partitioned survival 

and more conventional Markov decision-analytic state-transition modelling. The 

guidance also outlines some of the advantages, compared to partitioned 

survival, of the conventional discrete-time approach to decision-analytic state-

transition modelling and that of continuous-time multi-state modelling. In 

particular, it highlights some benefits pertaining to conceptualising the model, 

for a decision problem involving patients who experience distinct health states 

and possible transitions  between them, as a discrete or continuous-time state 

transition model. These include, for intermediate states, incorporating 

sensitivity analyses of the effect of treatment and extrapolations that can be 

based on external data focused specifically on those health states, allowing 

assessment of clinical plausibility.  

The “cognitive dissonance” of using the partitioned survival approach when 

health states and transitions are involved also means there is not a formal 

structural link between morality and earlier intermediate events. For example, 

in an illness-death model of progression-free, progression and death, mortality 

depends on all three individual transitions, with the rate of death reflecting the 

evolving proportion of patients in the progressed state and the differences in 

mortality between progression-free and progressed patients [Woods et al. 

(2017)]. 
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Additional contributions of continuous-time multi-state modelling to the 

methodology and application of cost-effectiveness analysis emphasised in this 

thesis include: 

• The ability to test the Markov property in a straightforward manner simply 

by including in the model a covariate that represents time in a previous state, or 

a function thereof. If evidence is found that the Markov property does not hold, 

or it is not thought to hold, then analysis can progress using a semi-Markov 

approach. This explicit assessment of whether the Markov property holds can 

often be overlooked in more conventional state-transition modelling. That 

possible violations of the property can be investigated with such ease, adds 

another tool for modellers to help them decide whether a Markov or semi-

Markov is more appropriate therefore improving face validity of models. 

• The implementation of semi-Markov modelling, under the continuous-time 

approach demonstrated in this thesis, avoids the need for some of the aspects 

that make the approach more complex under the more conventional discrete-

time framework. For example, there is no need for tunnel states, matrix algebra 

involving discrete cycles or complicated microsimulation. In addition, if a 

modeller wants transitions to be based on trial data, unlike a Markov approach, 

the semi-Markov approach can be implemented without the individual patient 

level data. It only requires access to Kaplan-Meier curves that can be digitized if 

necessary. 

• The analysis only involves one software package and as such is 

streamlined while the use of coding provides transparency. All the calculations 

performed on the data can be viewed together in a file that provides a 

traceable, annotated written record of the analysis. This can make it easier to 

keep track of what aspects of the code have been updated, and avoid the 

accidental changes that can occur if a cell is inadvertently amended when using 

spreadsheet-based approaches. The model building process is quick; all aspects 

of implementation such as estimation and prediction can be run in seconds.  
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The transparency of the annotated coding also better facilitates model sharing in 

an open-source environment. This can help with reproducibility, validation and 

standardisation of models and ensure that those working in a similar area do not 

need to start from scratch. It can also satisfy the growing culture amongst 

journals of requiring syntax with submissions and the increasing popularity of 

sharing code on websites such as Github. This thesis will demonstrate that multi-

state modelling, an approach better known in other disciplines such as medical 

statistics, can easily be adapted for use in health economic modelling. It will 

illustrate that anything that can be built using the more conventional 

spreadsheet-based approach can also be similarly transparent, and it has 

provided a foundation to extend this to other health economic models in the 

future. 

 Structure of the thesis  

Chapter 2 emphasises that the presence of competing risks requires a different 

approach to analysis than standard survival analysis, and proceeds to describe 

approaches to competing risks survival analysis. Intertwined with this, it also 

highlights key issues that should be considered when faced with a competing 

risks scenario. In addition, a review of the extent to which competing risks are 

recognised is given, both in the broad clinical literature and for stroke 

recurrence and death without recurrence specifically. The latter identifies gaps 

in the research that motivates the empirical analysis of my stroke epidemiology 

case study in the next chapter. 

Chapter 3 presents competing risks analyses of the outcomes recurrence and 

death without recurrence in stroke patients. In particular, it highlights the extra 

insight that can be gained from decomposing a composite outcome into 

competing risks. Furthermore, both the cause-specific hazard and Fine and Gray 

(1999)’s proportional subdistribution hazard approaches to modelling are 

demonstrated. The greater understanding that can be gained when both the 

hazards and cumulative incidences/subdistribution hazards are investigated for 

each of the competing risks is then outlined. In addition, the bias that can be 

introduced when competing risks are not taken into account is highlighted. 
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In Chapter 4 the multi-state modelling survival analysis framework is described. 

In addition, a review is undertaken of multi-state modelling of stroke, 

recurrence and death which provides the scope for the empirical analysis in the 

following chapter.  

Chapter 5 presents illness-death modelling of stroke, recurrence and death; a 

particular type of multi-state model. The results of the effects of covariates on 

all relevant transitions between health states are shown and interpreted. 

Furthermore, illustrations are given of predictions at the time of the index 

stroke, and dynamically taking into account the time elapsed and any 

subsequent events since the stroke. In addition, the extra insight gained from 

this multi-state modelling approach over and above the competing risks analysis 

in Chapter 3 is highlighted. 

Chapter 6 summarises partitioned survival and Markov decision-analytic 

modelling, two common approaches in health economic modelling. This overview 

of the methods provides fundamental background prior to an analysis comparing 

them with multi-state modelling in the next chapter. Furthermore, a review is 

given of the contributions in the literature involving multi-state modelling in a 

health economics context. Important methodological issues and barriers to 

adoption of the approach are highlighted. Chapter 6 then discusses the 

assessment of fit of models over the observed period of a study. Finally, the 

important concept in health economic modelling of extrapolation of outcomes 

beyond the observed data in order to take a lifetime perspective is described. 

This will be taken into account in the comparison presented in the next chapter. 

In Chapter 7 a case study in a health economics context is used to illustrate and 

compare the Markov decision-analytic modelling, partitioned survival and multi-

state modelling approaches. Furthermore for the multi-state modelling, the 

primary focus of this thesis, one-way and probabilistic sensitivity analyses will be 

presented to explore any uncertainty in the conclusions with regards to cost-

effectiveness. 
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Finally, Chapter 8 summarises the main insights revealed by the analyses in the 

empirical chapters. In addition, limitations of this thesis are discussed and 

possible scope for developing this research further is outlined. 
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 Background to competing risks method 

 Introduction 

This chapter provides an overview of the competing risks methodology under the 

survival analysis framework, giving the background to the empirical analysis in 

the next chapter. As well as describing the technique, this chapter highlights key 

issues that need to be considered when faced with competing risks. Section 2.2 

emphasises that standard survival analysis is only applicable with one event of 

interest. It then proceeds to point out that if patients are at risk of two or more 

events, that affect the risk of the other(s) occurring first, then an approach that 

takes into account such competing risks is required. Since the need for a 

competing risks approach is not always recognised, section 2.2 continues by 

stressing the definition of a competing risks problem and outlines common 

scenarios when an approach that takes into account competing risks is required. 

Section 2.3 then explains why the Kaplan-Meier approach in standard survival 

analysis is not appropriate when competing risks are present. In sub-section 

2.3.1 the more appropriate competing risks cumulative incidence approach is 

introduced. Section 2.4 concentrates on describing modelling approaches with 

competing risks data. Its main focus is on the two most widely-applied methods 

of cause-specific hazards modelling and Fine and Gray’s proportional 

subdistribution hazards model. Then, section 2.5 discusses the issue that the 

effect of a covariate on the cause-specific hazard is not necessarily the same as 

its effect on the cumulative incidence. Section 2.6 is devoted to highlighting 

that the cumulative incidence can be derived from cause-specific hazard 

modelling. Next, section 2.7 considers issues related to variable selection with 

competing risks approaches. In section 2.8, two schools of thought with regard 

to the use of the two common approaches to modelling competing risks are 

outlined. The first is that the research question should drive the modelling 

approach used. The second strategy is that both the cause-specific hazard and 

cumulative incidence should be considered for each competing risk, to gain a full 

understanding of the competing risks scenario under consideration. Next, section 

2.9 emphasises the extra insight that could be gained by decomposing a 

composite outcome into each of its competing risks component parts.  
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Contributions from the literature are used in the aforementioned sections of this 

chapter to help describe the competing risks method and highlight issues that 

arise over and above standard survival analysis. Because these sections are 

discussing the key methodological issues that repeatedly appear in the 

literature, a robust search strategy was not developed to review all such 

contributions to the literature. However, for the final section of this chapter 

section 2.10, a search strategy was developed in order to review the extent of 

use of competing risks in the literature. This had a particular focus on stroke 

epidemiology to identify gaps in the existing research to motivate the empirical 

analysis of the stroke case study in the next chapter. Furthermore, throughout 

this current chapter – i.e. the background to the method, the methodological 

issues raised and the review of the extent of use in the literature – 

misconceptions and misunderstandings relating to some of the methodological 

issues are highlighted. The purpose of this is to alleviate the confusion that can 

arise from some of the conflicting messages in the literature.    

This chapter is concerned with competing risks in the standard case when all 

event times are observed exactly or are right-censored. Readers interested in 

competing risks involving interval-censored and truncated data may find the 

contributions by Hudgens et al. (2001), Hudgens et al. (2014) or Li (2016) useful.  

 Competing risks: definitions and common scenarios 

Survival analysis is a commonly-applied statistical method in medical research. It 

is used for time-to-event analysis where patients are followed up to see 

whether, and when, they experience an event of interest. In the standard (non-

competing risks) survival analysis setting there is one event of interest, such as 

any-cause mortality or a composite outcome combining a non-fatal event and 

death. Typical approaches used for analysis include the Kaplan-Meier survival 

estimator and Cox proportional hazard regression modelling. However, often 

there are situations where patients are at risk of two or more mutually exclusive 

events, which affect the risk of each other, and this requires a different 

approach. In such situations there is a competing risks scenario. The risks are 

said to be “competing” with each other to be the first event. For instance, two 
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different causes of death act as competing risks because only one of them can 

occur. Another example of competing risks are hospital discharge and in-hospital 

infection, in that discharge affects the risk of in-hospital infection by preventing 

it occurring first. 

There has been a wealth of literature that provides an overview of the 

competing risks method in both the medical statistics/clinical epidemiology field 

[e.g. Fine and Gray (1999), Putter et al. (2007), Pintilie (2007a), Lau et al. 

(2009), Varadhan et al. (2010), Allignol et al. (2011), Tai et al. (2011), Andersen 

et al. (2012), Bakoyannis and Touloumi (2012), Koller et al. (2012), Latouche et 

al. (2013)] and in the wider general clinical literature [e.g. Satagopan et al. 

(2004), Kim (2007), Dignam and Kocherginsky (2008), Pfirrmann et al. (2011), 

Dignam et al. (2012), Austin et al. (2016)]. Most of the contributions giving such 

an overview provide a formal definition of a competing risk. A commonly used 

definition of a competing risk is that it is an event that precludes an event of 

interest. This is the sole definition used in the work by Lau et al. (2009) and 

Koller et al. (2012). However, this definition does not convey every scenario in 

which competing risks can be present. It implies only deaths can be competing 

risks. Gooley et al. (1999), Satagopan et al. (2004), Mell and Jeong (2010), 

Chappell (2012) and Wolbers et al. (2014) use the more comprehensive definition 

that a competing risk is an event that precludes the event of interest, or 

otherwise modifies the probability of experiencing the event of interest. 

Therefore, they recognise that competing risks need not be limited to deaths, 

and that non-fatal events can also act as competing risks. Similarly, Bakoyannis 

and Touloumi (2012) and Austin et al. (2016) use the definition that a competing 

risk prevents the event of interest occurring first, acknowledging that competing 

risks consist of non-fatal events and/or deaths. 

To help fully understand the definition of a competing risk, common competing 

risks scenarios are illustrated in Figure 2.1. The scenarios outlined are primarily 

based on the scenarios described in the tutorial by Putter et al. (2007).  



 

Chapter 2    Background to competing risks method    12                                                                                                                                                                                                  

 

 

Figure 2.1 Common competing risks scenarios  

 

Figure 2.1 (a) shows a diagram of the standard (non-competing risks) survival 

analysis model for comparison purposes. The typical model has every patient in 

an alive/healthy state at the beginning of a study. A sole transition is of interest 

and this is often to death, also known as all-cause or any-cause mortality. More 

generally, the event in standard survival analysis need not be death but could be 

a composite outcome comprising of a non-fatal event(s) or death.  
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In contrast, competing risks scenarios involve two or more mutually exclusive 

events. Figure 2.1 (b) depicts the situation when any-cause mortality is split into 

specific causes of death. This could form the basis for two different competing 

risks scenarios. Firstly, interest might be in disease-specific mortality and other 

causes of death act as competing risks. Secondly, each specific cause of death 

may be of interest in its own right. In that situation, each cause could be seen to 

be competing with the others to become the event. It might be that interest is 

in how frequently each cause occurred, or in assessing the influence of risk 

factors for each cause separately allowing them to be compared.  

Figure 2.1 (c) shows another scenario that requires taking competing risks into 

consideration. It may be that a non-fatal outcome is the event of interest. 

Deaths would then need to be taken into account as a competing risk, because 

they would preclude the event of interest. (The only exception to this would be 

if no, or very few, deaths were observed. Then the situation could be thought of 

as involving a composite outcome of a non-fatal outcome and death, albeit with 

the number of deaths being zero. As an analysis of a composite outcome, 

standard survival analysis techniques could be employed). However, a competing 

risk can arise even without preclusion. For instance, as Putter et al. (2007) point 

out, hospital discharge can act as a competing risk when interest is in in-hospital 

infection (Figure 2.1 (d)). Hence, in that example, the competing risk is 

preventing the event of interest from occurring first. 

It is important to recognise a competing risks scenario, when one exists, as this 

requires a different approach to standard survival analysis, as explained in the 

rest of this chapter. Before leaving this section it should be noted that, while 

there are many useful contributions that define and illustrate competing risks 

scenarios, there are other articles in the literature that portray competing risks 

in a confusing and often misleading way. For example, Tai et al. (2011) state 

that “the occurrence of a specific event would preclude the competing risks 

from being observed”. This is not inaccurate in itself because a specific event is 

considered a competing risk when in fact the competing risk is treated as the 

event of interest. However, it does not follow the usual convention that it is the 

competing risk that precludes, or otherwise alters the probability of, the event 
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of interest and not the other way round. Another piece, a commentary by 

Chappell (2012), emphasises that administrative censoring can be a competing 

risk. However, reaching the end of a study does not typically involve an event 

that precludes, or otherwise alters the probability of occurrence of, an outcome 

of interest. Therefore, this is a misleading statement. In other work, Varadhan 

et al. (2010) include the semi-competing risks approach in their review of 

statistical methods for competing risks. This introduces confusion as the semi-

competing risks approach they present is not used for competing risks scenarios. 

It does not just consider the first event to occur from two or more mutually 

exclusive events. Instead, this approach also considers subsequent events. It is 

often known as an “illness-death model”, part of the more general multi-state 

modelling framework. This method is the focus of Chapter 4 (methodological 

aspects) and Chapter 5 (empirical analysis).  

 Kaplan-Meier not appropriate for competing risks: 
introduction to competing risks cumulative incidence  

The previous section highlighted that there is a need to recognise competing 

risks, when they exist, because a different approach to analysis is required. 

There is a fundamental difference between standard and competing risks 

survival analysis that gives rise to this. With standard survival analysis, there is a 

one-to-one correspondence between the hazard and survival functions. This 

means that when the hazard increases so does the probability (1-survival) of the 

event occurring. Similarly, a decrease in the hazard leads to a decrease in the 

probability of the event occurring. However, this one-to-one relationship does 

not necessarily hold in the presence of competing risks. One of the consequences 

of this is that the standard Kaplan-Meier analysis is no longer appropriate with 

competing risks, as this section will explain. 

A contentious issue with competing risks is whether survival is an appropriate 

quantity to estimate. A few authors stipulate that the ideal estimand is marginal 

or net survival [e.g. (Dignam and Kocherginsky, 2008)]. Lambert et al. (2010)    

mention that net survival is a “measure of patient survival corrected for the 

effect of other causes”. The authors also explain that, in the context of cancer, 

the net probability of death due to cancer allows comparisons to be made over 
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time or between places; which is of particular relevance because deaths due to 

other causes can also vary over time or between places and it is important that 

survival/death estimates are not influenced by these changes in mortality due to 

other causes. However the authors also mention that the net probability of 

death due to cancer (1- net survival) is not a true measure of the probability of 

death due to cancer as it assumes that deaths due to other causes do not exist. 

Therefore, in a competing risks setting, the term survival (from any one of the 

competing events) is said to only apply in a hypothetical situation. It does not 

have a meaningful interpretation in the real world scenarios that medicine 

presents, and therefore there is a general consensus that survival is not an 

appropriate term to use for any specific competing risk e.g. Bakoyannis and 

Touloumi (2012).  

The marginal or net survival alluded to above could be estimated using the 

Kaplan-Meier method commonly applied in standard survival analysis. However, 

as well as only being appropriate in a hypothetical scenario, it is widely 

recognised in the literature that the Kaplan-Meier approach is not appropriate in 

the competing risks context for the reasons explained below [e.g.  Gooley et al. 

(1999); Fine and Gray (1999), Satagopan et al. (2004), Kim (2007), Putter et al. 

(2007), Dignam and Kocherginsky (2008), Lau et al. (2009), Varadhan et al. 

(2010), Pfirrmann et al. (2011), Tai et al. (2011), Andersen et al. (2012), 

Bakoyannis and Touloumi (2012), Chappell (2012), Dignam et al. (2012), Koller et 

al. (2012), Latouche et al. (2013), Wolbers et al. (2014), Austin et al. (2016)]. 

Andersen et al. (2012) emphasise that this is one of the consequences of the 

one-to-one correspondence between the hazard and survival not holding for 

competing risks. 

In standard survival analysis, because there is only one possible event, patients 

either experience the event or are censored at the time they were last known 

not to have the event. In a competing risks scenario, analysis is undertaken for 

each specific event by treating it as the event of interest. Competing events are 

censored because they are not the event of interest. The Kaplan-Meier approach 

relies on an assumption of non-informative censoring. That is to say, at the time 

of censoring, for patients who are censored the risk of the event should not be 
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any different than that for the patients who are at risk but are still in the study 

(i.e. uncensored). In other words, the censoring mechanism should not provide 

any information that influences the distribution of event times. However, by 

censoring any competing risks, informative censoring is introduced by the very 

definition of a competing risk. This is particularly evident when death is a 

competing risk as patients censored for this reason categorically cannot 

experience the event of interest, and therefore their risk is different from the 

uncensored patients. More specifically, if the Kaplan-Meier method is used, bias 

will be introduced that inflates the probability of the event of interest. This is 

because the uncensored individuals left in the dataset are not representative of 

all those who have not experienced the event. Those not at risk of experiencing 

the event first have been removed from the risk set through censoring. Hence 

the risk set contains more patients at risk of the event than it should and 

therefore the probability of the event of interest is inflated. 

However, just like standard survival analysis, the probability at any given time of 

a specific event occurring is of interest when competing risks are present. An 

appropriate estimand for this is the cumulative incidence that takes into account 

competing risks. Briefly, the calculation of this involves not only the hazard of 

the specific event but also the hazard of each competing risk. It is explained in 

more detail in the next sub-section. There are many contributions in the 

literature that demonstrate the bias in the Kaplan-Meier approach by contrasting 

(the complement of) a Kaplan-Meier curve with a corresponding cumulative 

incidence curve that takes into account competing risks [e.g. Gooley et al. 

(1999), Kim (2007), Varadhan et al. (2010), Andersen et al. (2012), Bakoyannis 

and Touloumi (2012), Austin et al. (2016)]. By comparing the two curves, each of 

these authors illustrate the inflation of the cumulative incidence of the specific 

event that can arise if the competing risks are not taken into account 

appropriately. 

This section has emphasised that the Kaplan-Meier (KM) approach is 

inappropriate in the presence of competing risks. While there is a wealth of 

useful contributions to the literature that raise awareness of this, there are also 

articles that contain misleading statements. The papers by Kim (2007) and 
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Satagopan et al. (2004) contain statements which are representative of the 

typical errors that are made. These were educational papers and have received 

much attention, having being cited 172 (257) and 311 (431) times respectively up 

to the end of 2016 according to Web of Science (Google Scholar).  

The work by Kim (2007) begins by explaining that the Kaplan-Meier method is 

inappropriate when competing risks are present. Furthermore, it recognises that 

relapse and transplant-related mortality are two competing risks when studying 

allogeneic hematopoietic stem cell transplantation. However, the paper then 

makes the contradictory statement that “The KM estimate of cumulative 

incidence function is simple and useful for a single end point such as relapse”. 

This is however later refuted by clarifying that the cumulative incidence of 

relapse is overestimated using the KM method because there are also transplant-

related deaths. However, the contradictory statement could still lead to 

confusion. It does acknowledge that the Kaplan-Meier approach is useful for 

single end points. However, crucially, it fails to note that in a Kaplan-Meier 

analysis non-fatal outcomes such as relapse need to be combined with deaths if 

they occur. Related to this, the paper uses the term “relapse-free survival” 

when referring to the estimate using the Kaplan-Meier approach. This is an 

inaccurate description when the event of interest is relapse alone as the term 

should only be used with the composite outcome relapse or death. In addition, 

the illustration of the Kaplan-Meier method is that of the “naïve” Kaplan-Meier 

method but it is not labelled as such. Naïve Kaplan-Meier method is well-

recognised terminology in the competing risks literature when demonstrating 

Kaplan-Meier analysis in the presence of competing risks. Therefore this 

contribution by Kim (2007) is inconsistent with other research. Another piece 

that does not use the term naïve with their illustration of the Kaplan-Meier 

method is the work by Satagopan et al. (2004). The paper does however 

explicitly convey that the analysis is not taking into account the competing risk. 

In a similar manner to Kim (2007) mentioned above, this work uses the term 

haematologic malignancy-free survival when in fact the event of interest is  

haematologic malignancy alone. 
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  Cumulative incidence for competing risks 

Earlier in this section it was highlighted that there is a need to appropriately 

take into account any competing risks when calculating the cumulative incidence 

of an event of interest. It alluded to the fact that the cumulative incidence of a 

specific event must take into account the hazards of each competing event, as 

well as that for the event of interest. They are many contributions that describe 

how to calculate the cumulative incidence function (e.g. Putter et al. (2007), 

Dignam and Kocherginsky (2008), Varadhan et al. (2010), Allignol et al. (2011), 

Pfirrmann et al. (2011), Andersen et al. (2012), Bakoyannis and Touloumi (2012), 

Dignam et al. (2012)). The formal equation to calculate the cumulative 

incidence, 𝐹𝑘(𝑡), i.e. the cumulative probability of event 𝑘 having occurred in 

the presence of other competing events,  is: 

𝐹𝑘(𝑡) = Pr(failure time T ≤ 𝑡, cause= 𝑘) = ∫ 𝑆(𝑢)𝜆𝑘(𝑢)𝑑𝑢 
𝑡

𝑜
  

where 𝑆(𝑡) =survival free from any of the events up to time t 

and 𝜆𝑘(𝑡) = cause-specific hazard for the event of interest  

 (Dignam and Kocherginsky, 2008). 

The cause-specific hazard is the key driving force behind the cumulative 

incidence in the presence of competing risks. Dignam et al. (2012) describe it as 

representing the probability of failure due to cause 𝑘 at a moment in time, given 

that no failure of any kind has occurred thus far. More formally it is 

𝜆𝑘 (𝑡) = lim
Δ𝑡↓0

Prob(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘|𝑇 ≥ 𝑡)

∆𝑡
 

                           

where 𝑇 is the time of failure and  
          𝐷 is the cause of failure                                      (Putter et al., 2007) 
 
It is the instantaneous rate of failing from cause 𝑘 in the small time interval        

[𝑡, 𝑡 + ∆ 𝑡), given that no failure of any kind occurred prior to time 𝑡.  
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The 𝑆(𝑡) element of the cumulative incidence also involves the cause-specific 

hazards. As outlined by Putter et al. (2007), 𝑆(𝑡) =exp(- ∑ Λ𝑘
𝐾
𝑘=1 (𝑡))  where 

Λ𝑘 (𝑡) = ∫ 𝜆𝑘
𝑡

0
(𝑠)𝑑𝑠.  

Therefore, 𝑆(𝑡) incorporates the cause-specific hazard of each event i.e. the 

event of interest and any competing events.  

For estimation purposes, the following non-parametric plug-in estimators can be 

used (Bakoyannis and Touloumi, 2012): 

𝐹̂𝑘(𝑡) = ∑ 𝜆̂𝑘

𝑚: 𝑡𝑚≤𝑡

(𝑡𝑚)𝑆̂(𝑡𝑚−1), where 𝜆̂𝑘(𝑡𝑚) =
𝑑𝑘𝑚

𝑛𝑚
 , 𝑆̂(𝑡𝑚−1) = ∏ (1 −

𝑑𝑖

𝑛𝑖
) ,

𝑚−1

𝑖=1

 

tm is the mth-ordered failure time     

dkm is the number of failures from cause k at tm 

dm is the total number of failures (from any cause) and  

nm is the number of subjects at risk at tm. 

Therefore, 𝑆(𝑡) can be estimated with the widely-applied Kaplan-Meier 

estimator. 

Furthermore, as Pfirrmann et al. (2011) emphasise, the cumulative incidence 

estimator above can be expressed as  

𝐹𝑘(𝑡𝑚) = 𝐹𝑘(𝑡𝑚−1) + 𝑝̂𝑘(𝑡𝑚) = 𝐹𝑘(𝑡𝑚−1) +  𝜆̂𝑘(𝑡𝑚) × 𝑆̂(𝑡𝑚−1)          

explicitly emphasising its cumulative nature. 

Many of the authors that outline how to calculate the cumulative incidence also 

offer a step-by-step demonstration of such a calculation [e.g. Kim (2007), Putter 

et al. (2007), Pfirrmann et al. (2011), Tai et al. (2011), Andersen et al. (2012)]. 

Each of these contributions provide a useful insight into how the cumulative 

incidence is influenced by the cause-specific hazard of each event. Satagopan et 

al. (2004) also provide a step-by-step illustration of the cumulative incidence 
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calculation. In their discussion, the authors state: “One minus the cumulative 

incidence is the probability of surviving the event of interest up to a specific 

time”. However, as previously mentioned on page 14, survival is not an 

appropriate term to use for a specific event in a competing risks context. 

Instead, focus should be on the cumulative incidence, i.e. probability of having 

the event taking into account any competing risks, such as that described in this 

sub-section.     

Interest is often in comparing cumulative incidence curves between different 

groups. Gray (1988) developed a K-test for this purpose, analogous to the log-

rank text for comparing Kaplan-Meier survival curves.    

 Competing risks modelling approaches 

  Introduction 

The previous section described a non-parametric estimator of the cumulative 

incidence under the competing risks framework. It was non-parametric in the 

sense that no covariates were considered. This section describes approaches to 

modelling competing risks that can accommodate covariates. It begins by briefly 

summarising the classical latent failure times competing risks framework and 

some of its problems. This approach has largely been superseded by approaches 

based on observable quantities, a framework which is now widely considered to 

be the most acceptable way to carry out competing risks analysis. The section 

then continues by summarising the two most commonly used approaches under 

this framework, namely the cause-specific hazard Cox approach and Fine and 

Gray (1999)’s proportional subdistribution hazards model. Finally, some of the 

alternative approaches that can be taken are emphasised.     

  Latent failure times competing risk framework 

With the latent failure times approach to competing risks, each patient is 

assumed to have a potential failure time for each type of failure. Only the 

failure that occurs first is actually observed, with the other failure times 

deemed to be latent. More formally, under the latent failure times framework, 
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it is assumed there are latent or potential failure times Y1, . . . , Ym for each of m 

failure types and that only T=min(Y1, . . . , Ym)  is observed.     

A fundamental concept in the latent failure times approach is that of the joint 

survivor function Q(y1, . . . , ym : z) = P(Y1 >  y1, . . . , Ym > ym ; z) where z is a 

covariate vector and Yi is as defined above.  A related concept is the marginal 

“survival” distribution Qj(yj: z) = Q(0, . . . , 0, yj, . . . , 0 : z). 

However, both the joint survivor function and the marginal distribution suffer 

from the problem of identifiability. They cannot be identified from the observed 

data without additional assumptions (Bakoyannis and Touloumi, 2012). One such 

assumption is independence of the different latent failure times. Furthermore, 

the assumptions are not testable. Further details of the problems with the latent 

failure times approach are detailed in the contributions by Tsiatis (1975),  Gail 

(1975) and Prentice et al. (1978).  

 

Therefore, owing to such problems with the latent failure times approach, it has 

been largely superseded by approaches based on observable quantities. Two 

such approaches are described in the following two parts of this section.   

  Cause-specific hazards Cox approach to modelling 
competing risks 

Cox proportional hazards regression modelling is a well-recognised method in 

standard survival analysis. It involves modelling, for a patient with covariate 

values Z =(Z1, …, Zp), the hazard λ(t|Z) =λ0(t)exp(βT Z)  

where β is a vector of regression coefficients and  λ0(t) is the baseline hazard. 

βTZ is shorthand for ∑ 𝛽𝑘 × 𝑍𝑘
𝑝
𝑘=1  where 𝑝 = number of parameters in the model. 

An analogous Cox regression approach can also be applied when competing risks 

are present. The approach is then called cause-specific hazards Cox regression. 

It involves fitting a separate Cox regression model of the hazard for each of the 

competing events (causes). The cause-specific hazard of cause k, for a patient 

with covariate vector Z, is  
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λk(t|Z) =λk,0(t)exp(βkT Z) 

where λk,0(t) is the baseline cause-specific hazard of cause k 

and βk  represents the covariate effects on cause k. 

The cause-specific hazard is the instantaneous rate of experiencing cause 𝑘 

amongst those who are event-free (i.e. not yet had cause 𝑘  or any of the 

competing events). A straightforward way of applying this cause-specific hazards 

approach is to fit a separate Cox model for each cause, censoring any competing 

events at their time of occurrence. An alternative way to implement cause-

specific hazard modelling is to use a “data-augmentation” method. This offers 

more flexibility and may help to overcome problems of overfitting. It allows 

inclusion of an interaction between a covariate and the cause, thereby enabling 

direct evaluation of the difference in the (relative) effect of a covariate 

between the causes. In particular, it allows for hypothesis testing of an effect of 

an interaction, aiding a decision of the modeller as to whether a common effect 

of the covariate across all causes may suffice. It also allows the effect of a 

covariate on one cause to be proportional to the effect on another cause, 

providing another solution to overfitting. The data-augmentation approach 

involves setting up the data in long format, with each patient having as many 

rows as the number of causes. Since patients can only experience one cause in a 

competing risks scenario, any competing causes are censored at the time of 

occurrence of the cause experienced. Any patients who do not experience any of 

the events have censored times in each of their rows, with the censoring 

occurring at the end of their follow-up. Covariate information is recorded for 

each cause. The original covariate values in the data are used for the cause that 

is actually experienced. For competing causes, all covariate values are set to 

zero. These cause-specific covariates allow for cause-specific modelling to be 

undertaken using one model rather than separate modelling for each cause. The 

modelling also has the flexibility to consider different covariates for each cause-

specific hazard. More details of the implementation and flexibility offered by 

the data-augmentation/cause-specific hazards approach is available in the work 

by Lunn and Mcneil (1995) and Putter et al. (2007).  
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  Fine and Gray’s subdistribution proportional hazard 
modelling approach to competing risks 

As previously mentioned in section 2.3, the one-to-one correspondence between 

the hazard and survival that exists with standard survival analysis does not 

necessarily hold when competing risks are present. As a consequence, the effect 

of a covariate on the cause-specific hazard for a particular cause may be 

different from its corresponding effect on the probability of the event occurring. 

To overcome the related problems with interpretation with the cause-specific 

hazards approach, Fine and Gray (1999) developed an alternative method that 

retains a one-to-one link. Instead of the hazard, they introduce the concept of a 

subdistribution hazard that has a one-to-one correspondence with the 

cumulative incidence of the event. The subdistribution hazard of cause k is 

defined as:  

𝜆𝑘(𝑡; 𝐙) =  lim
Δ𝑡→0

1

Δ𝑡
Pr{𝑡 ≤ 𝑇 ≤ 𝑡 +  ∆𝑡, 𝜀 = 𝑘 | 𝑇 ≥ 𝑡 ∪ (𝑇 ≤ 𝑡 ∩  𝜀 ≠ 𝑘), 𝐙} 

                     = d𝐹𝑘(𝑡; 𝐙)/d𝑡 } /{1 − 𝐹𝑘(𝑡; 𝐙)} 

                            =  −dlog {1 − 𝐹𝑘(𝑡; 𝐙)}/dt  

where T is the failure time  

              𝜀 𝜖 (1, …  , 𝐾) is the cause of failure  
             𝐙 is the 𝑝 × 1 bounded time − independent covariate vector 
    and 𝐹𝑘(𝑡; 𝐙) = Pr{𝑡 ≤ 𝑇 , 𝜀 = 𝑘 | 𝐙)   
 
The risk set associated with this subdistribution hazard is somewhat counter-

intuitive. Patients who experience a competing event are retained in the risk 

set, even though the occurrence of their event results in zero, or otherwise 

altered, probability of the event under consideration. This is in contrast to the 

cause-specific hazards approach which censors such patients at the time of 

occurrence of the competing event. However, just like standard survival analysis 

and the cause-specific hazard approach, the subdistribution hazard can be 

modelled in a proportional hazards framework via: 

λk(t; Z) =λk0(t)exp(ZT β), where λk0(t) is completely unspecified. 
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It can also be extended to time-varying covariates Z(t), using  

λk(t; Z) =λk0(t)exp(ZT(t) β)   

with 𝐹𝑘(𝑡; 𝐙) = 1 − exp[− ∫ λ𝑘0(s) exp{𝐙𝐓(𝑠)𝛃} ds ]
𝑡

0
       

In practical terms, the method of implementation of the modelling of the 

subdistribution hazard for a particular cause depends on the reason for any 

censoring that occurs. If the censoring is purely administrative, then the 

modelling can be carried out using Cox proportional hazards regression. Any 

competing events are censored at a time just after the last observed event of 

the type under consideration. This way the competing events are retained in the 

risk set with a time for the event under consideration that is essentially infinity. 

This corresponds to the representation that the subdistribution hazard 𝜆𝑘 can be 

thought of as acting on the improper random variable T* = Ι (ε = k) × T + 

{1 − I(ε = k)} × ∞ . The cumulative incidence function 𝐹𝑘(𝑡; 𝐙)  is itself an 

improper probability distribution in that 𝐹𝑘(∞; 𝐙) < 1 i.e. it never reaches 1.  

When the censoring is instead right-censoring due to loss of follow-up, weighting 

of the censoring is used. Fine and Gray (1999) adapt inverse probability of 

censoring weighting (IPCW) techniques and incorporate them into their 

modelling of the subdistribution hazard. An estimate of the survivor function of 

the censoring distribution is used to reweight contributions to the risk set for 

events due to competing causes.  

  Other approaches to modelling competing risks 

This thesis applies the two main approaches to competing risks regression 

described above. Alternative approaches and extensions to modelling of cause-

specific hazards and of cumulative incidences are described elsewhere. 

Contributions that may be of interest include those involving extending the 

standard case, when all event times are observed exactly or right-censored, to 

interval-censored and possibly truncated data [Hudgens et al. (2001), Hudgens et 

al. (2014) and Li (2016)]. In addition, alternative approaches proposed include 

vertical modelling (Nicolaie et al., 2010) and mixture models (Lau et al., 2008). 
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Furthermore, methods that can be used when the proportional hazards 

assumption is not met include those involving flexible modelling of competing 

risks [Scheike and Zhang (2008) and Belot et al. (2010)], stratified competing 

risks regression (Zhou et al., 2011) and modelling of time-varying cause-specific 

hazard ratios (Sun et al., 2008). Lastly, extensions to modelling of the 

cumulative incidence function include using pseudo values (Klein and Andersen, 

2005) and addressing missing causes of failure (Bakoyannis et al., 2010). 

  The effect of a covariate on the cause-specific hazard 
is not necessarily the same as its effect on the 
cumulative incidence   

As previously mentioned, the one-to-one correspondence between the hazard 

and survival that exists with standard survival analysis may no longer hold when 

competing risks are present. This is a fundamental difference that affects the 

analysis and interpretation of competing risks, and it has two main 

consequences. Section 2.3 focused on the first consequence that Kaplan-Meier 

analysis is inappropriate with competing risks. This section focuses on the second 

consequence, that the effect of a covariate on the cause-specific hazard may be 

different from the corresponding effect on the cumulative incidence. There are 

many contributions in the literature that illustrate this important aspect of 

competing risks, e.g. (Putter et al., 2007, Lau et al., 2009, Allignol et al., 2011, 

Latouche et al., 2013, Wolbers et al., 2014, Austin et al., 2016). 

Table 2.1 summarises, for two competing events, the probable effects of a 

covariate on the cumulative incidences, under different scenarios of effects of 

the same covariate on the cause-specific hazards. 

 

 

 



 

Chapter 2    Background to competing risks method    26                                                                                                                                                                                                  

 

scenarios 

effect of covariate on             
cause-specific hazard 

(csh) of:  
 

probable impact on 
cumulative incidence of:  

 

event of 
interest  

competing 
event 

 

event of 
interest  

competing 
event 

covariate has no 
effect on csh of 

either event 

A1 0 0 
 

0 0 

covariate has an 
effect on csh of 
one event only 

B1 () 0 
 

() 

B2 () 0 
 

() 

B3 0 ()


 ()

B4 0 ()


 ()

covariate affects 
csh of each event 

but in opposite 
directions 

C1  ()


 ()

C2  ()


 ()

C3  ()


 ()

C4  ()


 ()

covariate affects 
csh of each event 
but in the same 

direction 

D1  



 

D2  



 

D3  



 

D4  



 

D5  



 

D6  



 

D7  



 

D8  



 

Abbreviations used:  
csh = cause-specific hazard 

     0    =  covariate has no effect 
        =  covariate associated with an increased effect 

    =  covariate associated with a more pronounced increase 
     =  covariate associated with a reduced effect 

    =  covariate associated with a more pronounced reduction 
  

Table 2.1  Effect on the cause-specific hazard versus that on the cumulative incidence: 

different scenarios     

Throughout this thesis, the hazard ratio is the effect that is being represented 

by any mention of the phrase “the effect of a covariate on the cause-specific 

hazard”. That is to say that phrase, and similar wording, is being used as 

shorthand for the effect on the cause-specific hazard of a particular level of 

covariate relative to the reference level of that covariate. 
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The scenarios can be classified as follows: 

  the covariate does not affect the cause-specific hazard 
of either event (scenario A1) 

In a situation where a covariate has no effect on either the cause-specific hazard 

of the event of interest or the competing event then, obviously, the covariate 

will not have any effect on the cumulative incidence of either event (Dignam et 

al. (2012)). However, this scenario is rarely encountered because a covariate 

that has no effect on either event is unlikely to be included in any modelling. 

  the covariate has an effect on one event only 
 (scenarios B1-B4) 

The ‘B’ section of Table 2.1 outlines scenarios where a covariate affects the 

cause-specific hazard of one event but not the other. Each row in the B section 

condenses together two different scenarios for brevity, distinguishable by 

whether the bracketed or unbracketed term is considered in those cells which 

contain both. For instance in row B1, ignoring the bracketed terms outlines the 

following scenario: the covariate decreases the hazard of the event of interest 

and has no effect on the hazard of the competing event, which in turn results in 

that covariate being associated with a probable decrease in the cumulative 

incidence of the event of interest and a probable increase in the cumulative 

incidence of the competing event. Considering the bracketed term instead of 

the unbracketed term results in the aforementioned effects on the event of 

interest being replaced by those that are more pronounced.  

When a covariate has no effect on the cause-specific hazard of a competing 

event, Allignol et al. (2011) stress that the interpretation is straightforward of 

how the effect of the covariate on the cause-specific hazard of an event of 

interest translates to a corresponding effect on its cumulative incidence  

(scenarios B1 and B2). When outlining this aspect in their simulations, the 

authors state that the direction of the effect on the cause-specific hazard 

determines the direction of the effect on the cumulative incidence. When the 

effect on the hazard is more pronounced, the impact of the effect on the 
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cumulative incidence is also larger (bracketed B1 and B2 scenarios in Table 2.1). 

However this ease of interpretation only applies to the event of interest.  

Wolbers et al. (2014) emphasise that, even though there is no effect on the 

cause-specific hazard of the competing event, the covariate can have an effect 

on the cumulative incidence of the competing event. The authors provide a 

useful clinical illustration to help explain scenarios B1 in Table 2.1. Wolbers et 

al. (2014) present an example concerned with the effect of the binary treatment 

covariate (intervention versus control) on two events. Coronary heart disease 

(CHD) death is the event of interest and non-CHD death is the competing event. 

The intervention is found to reduce the cause-specific hazard of CHD death but 

to have no effect on the cause-specific hazard of non-CHD death. The authors 

explain that the reduction seen in the cause-specific hazard of CHD death for 

those with the intervention leaves more patients vulnerable to the force that 

draws them towards non-CHD death. Therefore, even though the intervention 

does not affect the cause-specific hazard of non–CHD death, it is expected to 

increase the cumulative incidence (absolute risk) of non-CHD death. 

A similar argument explains scenarios B2 ((Lau et al., 2009, Dignam et al., 2012). 

Dignam et al. (2012) present the results of a prostate cancer trial focused on the 

effect of treatment, age and tumour grade on death due to prostate cancer and 

death due to other causes. Compared to a grade 1 tumour, having a grade 3 

tumour appears at first to have a protective effect on the cumulative incidence 

of death due to other causes. This effect is seen even though tumour grade is 

not found to have an association with the cause-specific hazard of death due to 

other causes. However, a grade 3 tumour is associated with an increase in the 

cause-specific hazard of prostate cancer death. Therefore, the lack of increase 

in the absolute risk of death due to other causes is actually due to there being 

fewer patients surviving prostate cancer to be at risk of death due to other 

causes.  

There are analogous arguments when a covariate has no effect on the cause-

specific hazard on the event of interest but does affect the cause-specific 

hazard of the competing event (scenarios B3 and B4). Specifically, the direction 
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of the effect on the cause-specific hazard of the competing event is mirrored in 

the corresponding effect on the cumulative incidence of the competing event. 

Furthermore, the covariate can have an effect on the cumulative incidence of 

the event of interest, even when it has no effect on its cause-specific hazard. 

This is typically in the opposite direction to that seen on the cumulative 

incidence of the competing event. 

Andersen et al. (2012) present an example that aids understanding by providing 

an explanation in terms of risk sets. Their example involved patients with 

chronic myeloid leukaemia who had an allogeneic stem cell transplant and 

originated from European Group for Blood and Marrow Transplantation (EBMT) 

data. The illustration investigated the effect of EBMT risk score on the events 

relapse and non-relapse mortality (NRM). It was found that there was no 

evidence of a difference between those with score 0-1 and 2 in the cause-

specific hazard of relapse, while there was an increased cause-specific hazard of 

NRM for those with score 2 compared to those with score 0-1. Of note, while 

there was no effect on the cause-specific hazard of relapse, there was a lower 

cumulative incidence of relapse for those with score 2 compared to those with 

score 0-1. The authors point out that the cause-specific hazard acts on those 

patients still in the risk set. Their explanation continues by outlining that 

because more with score 2 experience NRM, over time, the risk set of those with 

score 2 decreases faster than the risk set of those with score 0-1. Consequently, 

in absolute terms, there are fewer with score 2 having relapse and therefore the 

cumulative incidence of relapse is lower in that group. 

  the covariate affects the cause-specific hazard of each 
event but in opposite directions (scenarios C1-C4)   

Allignol et al. (2011) stress that the interpretation of how the effect of a 

covariate on the cause-specific hazards translates to effects on the cumulative 

incidences is again straightforward when the former have opposing effects for 

the two events. For each of the two events, the direction of the effect on the 

cause-specific hazard is mirrored in the direction of the effect on the cumulative 

incidence (Allignol et al., 2011, Latouche et al., 2013). Latouche et al. (2013) 

present an example involving patients aged at least 50 years old with acute 
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myeloblastic leukemia who received hematopoietic stem cell transplantation. 

The two treatment regimes investigated were reduced intensity conditioning 

(RIC) and myeloablative conditioning (MAC) and the two events of interest were 

relapse and treatment-related mortality (TRM). Treatment regime had similar 

sized effects on the two events, but in opposite directions. RIC was found to 

increase the cause-specific hazard of relapse but decrease the cause-specific 

hazard of TRM. These effects were mirrored in the corresponding results for the 

cumulative incidence of each event. Because the analyses based on the cause-

specific hazard and cumulative incidence gave consistent results, the authors 

concluded that the effect of treatment regime on the cumulative incidence of 

relapse was an actual effect and not due to an indirect effect on the competing 

event TRM. 

  the covariate affects the cause-specific hazard of each 
event in the same direction (scenarios D1-D8)      

Allignol et al. (2011) highlight that unidirectional covariate effects on cause-

specific hazards constitute the most challenging scenario in terms of 

understanding the corresponding effects on the cumulative incidences. In 

particular, they outline the situation when having a specific covariate level 

reduces the cause-specific hazard of both the event of interest and the 

competing event, but the effect for the competing event is more pronounced 

(scenario D1 in Table 2.1). Allignol et al. (2011) and Wolbers et al. (2014)  

emphasis a difficulty in interpretation that may arise from this. Wolbers et al. 

(2014) discuss an example involving the effect of an intervention on CHD death 

and non-CHD death. The intervention reduces both the cause-specific hazard of 

CHD death and non-CHD death, but that decrease is more pronounced for non-

CHD death. They highlight that the intervention may be associated with an 

increase in the cumulative incidence of CHD death, even though it was 

associated with a reduction in the cause-specific hazard of the event. This would 

likely be due to the more dramatic decrease in the hazard of non-CHD death 

meaning there would be more patients surviving to be at risk of a CHD death. 

When the more pronounced reduction in cause-specific hazard is seen for the 

event of interest (scenario D2), the analysis may indicate an increase in the 
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cumulative incidence of the competing event associated with the specified level 

of the covariate.  

Bakoyannis and Touloumi (2012) use a synthetic example to demonstrate that 

cumulative incidence curves can cross in scenario D3. They outline an 

investigation into the effect of gender on the event of interest treatment 

interruption (TI) and the competing event switching to a new regime (NH) among 

HIV seropositive patients. The authors fix the coefficient of gender (female 

versus male) at 0.531 for TI and vary the corresponding coefficient for NH 

between -0.018 and 1.75. It is shown that, as the coefficient of gender on NH 

increases, the gap between the curves narrows, and when the coefficient for NH 

becomes more and more pronounced (1.5 and 1.75) the curves actually cross. 

While the cumulative incidence of TI is initially higher for women, it is higher for 

men as time progresses. This more pronounced effect of the competing risk NH 

means more women experience NH – therefore precluding TI as the first event 

for women – leading to the crossing of the curves and the eventual higher 

cumulative incidence of TI in men.  

The crossing of curves may also be apparent when a specified level of a 

covariate is associated with a more pronounced increase in the cause-specific 

hazard of a competing event (scenario D4).  

In another illustration, Dignam and Kocherginsky (2008) describe a trial involving 

early stage breast cancer patients comparing the effect of tamoxifen versus 

placebo on the four events breast cancer recurrence, contralateral breast 

tumours, endometrial cancer and other events. It was found that the cumulative 

incidence of other events was lower in the tamoxifen arm initially, before 

becoming higher as time passed, and hence the curves crossed. The authors 

explain that this is likely due to more of those in the placebo arm having a 

recurrence or contralateral breast tumour first, whereas in the tamoxifen arm 

there are relatively more patients remaining at risk of experiencing an other 

event first. The number of susceptible patients in each group to each event, 

over time, is the likely reason for the eventual crossing of the curves. 
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When the effects of a covariate on the cause-specific hazard of each event are 

in the same direction and of similar size (scenarios D5-D8), then the effects on 

the cumulative incidences of each event are likely to be in this same direction. 

However, the effect on each cumulative incidence is likely to be attenuated 

compared to the corresponding effect on the cause-specific hazard. This is due 

to the covariate having an effect on the other event, and the stronger this 

association the more the effect on the cumulative incidence of the event of 

interest lessens. 

This section has emphasised that, when competing risks are present, the effect 

of a covariate on the cumulative incidence for a particular event is influenced 

not only by the effect on the cause-specific hazard of the event, but also by the 

effect on the cause-specific hazard of any competing events. An aspect that is 

not always highlighted in the literature is that the baseline hazard of the event 

of interest, and any competing events, can also affect the cumulative incidence 

of an event. This is not immediately apparent from an analysis of data from a 

trial or study. However, many contributions show simulations where the baseline 

hazards are varied to illustrate the impact this can have on the cumulative 

incidence, e.g. Putter et al. (2007). 

 Derivation of the cumulative incidence using cause-
specific hazard modelling 

Section 2.4.4 described Fine and Gray’s subdistribution proportional hazards 

model. In particular, it emphasised that the subdistribution hazard has a one-to-

one correspondence with the cumulative incidence function. However, there is 

some confusion in the literature as to whether the cause-specific hazard 

approach to modelling competing risks can also be used to calculate the 

cumulative incidence. The previous section highlighted that, when the cause-

specific hazard for a particular competing risk is considered in isolation, the 

effect of a covariate on that cause-specific hazard may not be reflected in the 

corresponding effect on the cumulative incidence for the same competing risk. 

However, as previously explained in sub-section 2.3.1, if the cause-specific 

hazards of each of the competing risks are considered, the cumulative incidence 

for a particular competing risk can be estimated. Even so, many of the 
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contributions fail to recognise that the cumulative incidence can be derived 

from cause-specific hazard modelling [e.g. Kim (2007), Latouche et al. (2013) 

and Austin et al. (2016)].  Kim (2007) stipulates that cause-specific hazards Cox 

modelling is not suitable for competing risks analysis due to the censoring of 

competing risks. It is implied that this is the case for the calculation of the 

cumulative incidence. However, the argument is not conveyed explicitly as 

relating to a “naïve” cause-specific hazard approach, i.e. when the cumulative 

incidence is inappropriately estimated using the cause-specific hazard of one 

event in isolation. The paper just categorically states that cause-specific hazard 

modelling is inadequate, rather than explaining how the cumulative incidence 

could be calculated using the modelling from each of the events. The article 

does not provide this information, even though it is illustrated earlier in the 

paper that the non-parametric estimation of the cumulative incidence involves 

the hazards of each of the competing risks. Other work (Latouche et al., 2013, 

Austin et al., 2016) does acknowledge that the “naïve” cause-specific approach 

is inappropriate for calculating the cumulative incidence. However the papers do 

not expand on this and outline how the cumulative incidence can be 

appropriately estimated from the cause-specific hazards. 

As part of their contributions, other authors do recognise that the cumulative 

incidence can be derived from cause-specific hazard modelling [e.g. Putter et 

al. (2007), Lau et al. (2009), Varadhan et al. (2010), Allignol et al. (2011) and 

Andersen et al. (2012)]. Putter et al. (2007) point out that the confusion has 

arisen because analysts have become accustomed to the one-to-one 

correspondence between the hazard and survival in standard survival analysis. 

While this may no longer hold with competing risks, the authors maintain there 

is nothing fundamentally wrong with using the cause-specific hazards approach. 

It is just that the interpretation of the results requires more care.  

Another contentious issue with cause-specific hazards modelling is whether it 

requires the competing risks to be independent of each other, in the sense that 

the occurrence of one does not affect the probability of others occurring. 

Pintilie (2007a) asserts that it does. However, Andersen et al. (2012) explain 

that the concept of independence in competing risks analysis is a throw-back to 
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the classical latent failure time approach which was discussed in sub-section 

2.4.2. This approach is now widely thought to be outdated and has been 

superseded with approaches based on observable quantities such as cause-

specific hazards and cumulative incidences.  

Several authors criticise aspects of Pintilie’s work, including that it is based 

around a latent failure time approach (Pintilie, 2007b, Pintilie, 2007c). In their 

letter to the editor Latouche et al. (Pintilie, 2007c) in particular object to 

Pintilie’s use of the term “cause specific hazard” with the latent failure time 

approach. They highlight that the article adds confusion because cause-specific 

hazard is terminology that is normally reserved for transition intensities in the 

more accepted approaches based on observable quantities. Related to this, they 

take issue with Pintilie’s statement that “When modelling the cause specific 

hazard, one performs the analysis under the assumption that competing risks do 

not exist”. This assumes independent latent failure times, which is untestable.  

On the contrary, Andersen et al. (2012) argue that inference in the conventional 

cause-specific hazard analysis makes no assumption about the independence of 

competing risks. Instead, the authors reiterate that the cumulative incidence 

can be estimated by taking into account the cause-specific hazard of each 

event. They then emphasise that the cause-specific hazard for a particular event 

can be calculated by censoring competing events. Furthermore, they stress that 

this censoring of competing events works because cause-specific hazards are 

time-local rates of occurrence of events that are mutually exclusive, and hence 

the likelihood factorises. 

 Variable selection strategies with competing risks 

While there are other variable selection strategies, likelihood-based approaches 

such as likelihood-ratio tests and information criteria, e.g. Akaike information 

criterion (AIC) and Bayesian information criterion (BIC), are popular due to being 

intuitive and easy to use. They are widely used in standard survival analysis, just 

as they are in other common modelling techniques in statistics. However, 

variable selection is less straightforward with competing risks survival analysis. 

This section discusses variable selection in the context of two common 
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approaches to modelling competing risks. Sub-section 2.7.1 focuses on Fine and 

Gray’s proportional subdistribution hazards model and sub-section 2.7.2 outlines 

considerations when using the cause-specific hazards approach. 

  Variable selection and Fine and Gray’s proportional 
subdistribution hazard approach  

Fine and Gray’s proportional subdistribution hazards model was previously 

described in sub-section 2.4.4. Motivated by the importance of parsimonious and 

accurate models to predict risk in medical research, and the lack of methods for 

covariate selection with Fine and Gray’s model, Kuk and Varadhan (2013) 

developed an approach to address this issue. The approach is that of an 

information criteria-based stepwise regression procedure for use with Fine and 

Gray’s model. The authors developed a version of their technique based on the 

well-recognised AIC and BIC and a new criteria that they propose called the 

BICcr. The BICcr is similar to the BIC, and differs only in the term used for 

penalisation. The penalisation term in the BIC is the familiar p + log n, where p 

is the number of parameters in the model and n is the number of observations. 

In contrast, the penalisation term in the newly proposed BICcr is p + log n* 

where p is as before and n* is the number with the event of interest. Therefore 

the penalty is more lenient with BICcr than it is with BIC.  

Kuk and Varadhan’s approach is used to decide which covariates to include in 

the Fine and Gray models presented later in this thesis in section 3.3. However, 

while their approach is one of stepwise variable selection it does not operate 

like a standard likelihood-ratio test. This is because it does not produce a 

statistic that follows a (asymptotic) chi-square distribution, or indeed that 

assumes any particular distribution. Therefore the standard likelihood-ratio test 

based approach for obtaining an overall p-value for a covariate with more than 

two levels is not applicable. Therefore, in the presentation in section 3.3, no 

overall p-values are shown for such covariates. 
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  Methodological issues relating to variable selection with 
the cause-specific hazards approach 

Kuk and Varadhan’s approach outlined in the previous sub-section was made 

possible because of the one-to-one correspondence between the subdistribution 

hazard and the cumulative incidence. However, as mentioned previously in this 

thesis, such a correspondence may no longer exist between the hazard and 

probability/cumulative incidence in the presence of competing risks. Section 2.5 

described in detail a consequence of this, namely that the effect of a covariate 

on the cause-specific hazard may not necessarily translate into the same effect 

on the cumulative incidence. This is due to the cumulative incidence for an 

event of interest not only being affected by the cause-specific hazard of the 

event, but also by the cause-specific hazard of any competing events. 

Therefore, I would argue that considering the cause-specific hazard of one event 

in isolation from those of the competing events is not to be recommended. 

Consequently, likelihood-ratio tests and information criteria focused solely on 

one cause-specific hazard should be treated with caution in the presence of 

competing risks. The results are liable to mis-interpretation and misleading 

conclusions. Considering one cause-specific hazard in isolation is analogous to 

naïve Kaplan-Meier/Cox predictions. Such naïve predictions introduce inflated 

probabilities of the event of interest due to not taking into account the 

competing risks. Therefore for the cause-specific hazard modelling approach to 

competing risks presented in Chapter 3, no formal variable selection method is 

used to choose between the models for prediction. Instead, the variables 

selected are based upon those chosen for the two approaches involved in the 

comparison, namely the composite outcome and Fine and Gray’s proportional 

subdistribution hazards model.    

  Two schools of thought on the use of two common 
approaches to competing risks 

This section outlines the two schools of thought in the literature on the use of 

cause-specific hazard modelling and Fine and Gray’s proportional subdistribution 

hazard model. The first school of thought is that the research question should 

drive the modelling approach used. Alternative thinking is that the cause-
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specific hazard and cumulative incidence of each competing risk should be 

considered together in order to gain a full understanding of the competing risk 

process. The idea behind each is discussed in this section. 

  the research question should drive the modelling 
approach used 

Several contributions advocate that the research question should drive the 

approach to analysis, e.g. Dignam and Kocherginsky (2008), Lau et al. (2009), 

Dignam et al. (2012), Koller et al. (2012), Wolbers et al. (2014) and Austin et al. 

(2016). The premise of this argument is that the cause-specific hazard and 

subdistribution hazard/cumulative incidence estimate different quantities. The 

cause-specific hazard is the instantaneous rate of experiencing the event of 

interest among those who are still at risk of the event i.e. among those who 

have survived free of any of the events. However, as previously outlined in 

section 2.5 of this thesis, the effect of a covariate on the cause-specific hazard 

of a specific event may not translate into the same effect on its cumulative 

incidence. This is due to the one-to-one correspondence between the hazard and 

probability seen in standard survival analysis, not necessarily holding when 

competing risks are present. This problem with the cause-specific hazard 

motivated an approach that modelled subdistribution hazards, with such a 

quantity having a one-to-one link with the cumulative incidence. However, the 

subdistribution hazard for an event of interest involves a somewhat 

counterintuitive risk set. This is because those who experience a competing 

event are retained in the risk set, even though they cannot then possibly 

experience the event of interest as their first event. 

Because the cause-specific hazard and subdistribution hazard/cumulative 

incidence illustrate different aspects of a competing risks process, it naturally 

follows that the specific research question of interest can motivate the approach 

to analysis. In particular, due to the nature of the cause-specific hazard 

described above, etiology-based questions are most appropriately addressed by 

modelling cause-specific hazards. In other words, the cause-specific hazard 

approach can be useful if interest is in investigating whether there is a relative 

effect of a covariate on event rates (hazards) of a specific event of interest. In 
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contrast, modelling the cumulative incidence facilitates the estimation on the 

absolute scale of the effect of a covariate over time. An effect on the 

cumulative incidence for an event of interest could be due to a direct effect of 

that covariate on its cause-specific hazard, and/or due to an indirect effect that 

acts on the cause-specific hazard of a competing event. Therefore, as 

highlighted by Wolbers et al. (2014), modelling of the cumulative incidence 

seems the more pertinent approach for clinical decision making because it refers 

to absolute risks in the real-world where competing events do occur. 

Consequently, modelling of the subdistribution hazard/cumulative incidence is 

deemed the most appropriate approach to address questions of evaluating 

treatment policy in populations, for example risk/benefit trade-off in a health 

economics context, (Dignam and Kocherginsky, 2008) and for clinical predictions 

and risk-scoring systems (Austin et al., 2016). 

The contribution by Lau et al. (2009) provides a useful illustration with example 

research questions that can be posed, and suggestions of the most appropriate 

approach to take to address them. The authors’ example is that of the use of the 

antiretroviral drug abacavir which has been found to be associated with an 

increased risk of myocardial infarction (MI). They outline two competing 

research questions that can be posed: 

1) Is the use of abacavir directly associated with MI? 

2) Regardless of the direct association, are individuals taking abacavir more 

likely to experience an MI? 

The authors then continue by suggesting that the first question might be most 

appropriately answered by modelling the cause-specific hazards. They emphasise 

that the cause-specific hazard approach to modelling allows assessment of 

whether, at any given time, patients taking the drug have an increased 

instantaneous hazard rate for MI among all patients who have survived up to that 

point event-free. Conversely, for the second question, their article suggests that 

modelling subdistribution hazards would be more appropriate. They illustrate a 

related possible situation and emphasise that it may help decide policy. The 

situation is that when taking the drug has no effect on the cause-specific hazard 
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of an MI, but that the subdistribution hazard of MI for those taking the drug is 

increased. They go on to explain that this is due to a reduced hazard of the 

competing event death without MI in those taking the drug, which means more 

of such patients are available to experience an MI. 

  both the cause-specific hazard and subdistribution 
hazard/ cumulative incidence should be modelled for 
each competing risk   

Another school of thought is that both the cause-specific hazard and 

subdistribution hazard/cumulative incidence should be modelled for each 

competing risk [e.g., Andersen et al. (2012), and Bakoyannis and Touloumi 

(2012), Latouche et al. (2013) and Austin et al. (2016)]. This is advocated as a 

way of gaining a fuller understanding of the competing risks process. This is 

because, as mentioned previously, the cause-specific hazard is a key driving 

force in analysis that takes into account competing risks. The calculation of the 

cumulative incidence for a specific event involves the cause-specific hazard of 

each event (i.e. that of interest and any that compete). Considering both the 

cause-specific hazard and cumulative incidence together for every event can aid 

interpretation in competing risks analysis. It can provide a better appreciation of 

the results and the insights they give because the two outcomes complement 

each other. They each relay a related but different aspect of the competing 

risks process and together give a comprehensive picture of it. As mentioned 

previously in this section, an effect on the cumulative incidence of an event of 

interest could be due to a direct effect of that covariate on its cause-specific 

hazard, and/or due to an indirect effect that acts on the cause-specific hazard 

of a competing event. Furthermore, the effect of a covariate on the cause-

specific hazard of an event may not translate into the same effect on the 

corresponding cumulative incidence. This phenomenon was explored more fully 

in section 2.5 of this chapter. It will also be demonstrated empirically later in 

this thesis in chapter 3.   
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 Composite outcomes vs decomposition into competing 
risks 

Combining endpoints into composite outcomes is popular in randomised trials 

and other studies. This amalgamation of multiple events to maximise event rates 

has many advantages. These include the related concerns of greater precision in 

estimates of effects and increased statistical power, which both improve 

efficiency of the study. They can also be useful when it is unclear which specific 

outcome to focus on, and in particular when the combination of potentially 

important outcomes is thought to describe a disease process. However, as 

Allignol et al. (2011) emphasise, medical problems are typically too complex to 

be addressed by the analysis of one combined event. 

Furthermore, it is well-recognised in the literature that analysis of composite 

outcomes may only be advantageous when a covariate affects each of the 

individual components in the same direction (e.g. Varadhan et al. (2010)). When 

this is not the case, analysis that splits the outcome into its component 

competing risks is generally considered the most appropriate approach to take.  

Mell and Jeong (2010) explain how, in a competing risks scenario, using a 

composite outcome may actually reduce the efficiency of a trial. They highlight 

that patients at high risk of a competing event may be less likely to benefit from 

the treatment. Furthermore, they use the term “deadweight” in relation to such 

patients because including them in a trial may reduce efficiency of a trial and 

make it more costly, if the treatment being studied in the trial does not reduce 

the incidence of the competing outcome.  

Decomposing a composite outcome into its component parts may provide further 

insight into the effect of a covariate on the separate events. For instance, it 

may help identify which of the particular events a covariate affects and in which 

direction. Separating an outcome into several cause-specific ones may help to 

assess the effect of a covariate on each cause, and therefore not attribute an 

effect to the wrong cause as could be the case with a composite outcome. In a 

paper by Mell et al. (2012), the authors discuss the issue of decomposing all-

cause mortality into cancer- and non-cancer mortality. They highlight that it can 
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be beneficial to analyse each outcome specifically in order to ascertain the 

effectiveness of a treatment against cancer.  

Another potential insight of competing risks analysis becomes apparent when it 

is evident that an analysis of a composite outcome alone would mask the effects 

on its component parts. That is to say, a covariate might have opposing effects 

on two component parts of a composite outcome, and as a consequence there 

may be no effect on the composite outcome due to the opposing effects 

cancelling each other out. In other instances, using a composite outcome may 

mask an effect on a specific event of interest if it is in the opposite direction to 

the effect on the composite outcome. This is particularly likely to be the case 

when the incidence of a competing event is high and therefore dominates the 

composite outcome, but the effect on the competing outcome is in the opposite 

direction to the event of interest.  

The empirical analysis presented in chapter 3 will demonstrate the extra insight 

that can be gained by decomposing a composite outcome into its competing risks 

components. 

 

  Need for better recognition of competing risks in the 
clinical community 

This chapter so far has emphasised the need to use an analysis approach that 

takes into account competing risks, if such a scenario exists. It has also 

highlighted the key issues that need to be considered when faced with 

competing risks. Sub-section 2.10.1 will demonstrate that there has been an 

emergence of competing risks in the literature, particularly in the last 10-15 

years. Sub-sections 2.10.2 and 2.10.3 will then focus on a review of the 

contributions in the specific area of stroke epidemiology, and the competing 

risks of recurrence and death. The purpose of this is to identify gaps and issues 

in the literature that the empirical analysis in the next chapter will try to 

address.  
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 Review of recognition of the need for competing risks 
analyses, where appropriate 

A search was carried out to find literature that reviewed the extent of use of 

competing risks analyses (Appendix I). Two contributions were found (Mell et al. 

(2012) and Koller et al. (2012)). With their reviews, these authors have raised 

awareness of the need to recognise competing risks and analyse them 

appropriately. It was previously mentioned in section 2.9 that Mell et al. (2012) 

emphasised the need to decompose a composite outcome, when the treatment 

had differing effects on the component parts of the outcome. The authors’ 

review focused specifically on cancer trials, and whether effects on the 

component parts of cancer events and non-cancer related mortality were 

analysed separately. The authors found this only to be the case in 40% (47/118) 

of studies. 

The work by Koller et al. (2012) was a useful contribution that provided a more 

comprehensive review into the use of competing risks analyses. Their research 

began by emphasising that aging populations in particular necessitate 

considering competing risks analyses. The authors explained that an aging 

population is susceptible to competing risks due to a high level of comorbidities. 

As life expectancy continues to improve, this is only likely to increase further. 

Furthermore, the article included a literature search carried out to see how 

frequently competing risks were mentioned in biostatistical, core clinical and 

general high impact clinical journals. Their search strategy is detailed in 

Appendix II. I reproduced their search based on the criteria specified in 

Appendix II, and updated it by extending the dates of publication to 31 

December 2015. Figure 2.2(a), (b) and (c) summarise the findings by year for 

biostatistical, core clinical and general high impact clinical journals 

respectively.  It should be noted that the vertical axis of each of the Figures has 

a different scale. 
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Figure 2.2  original and updated search of competing risks literature based on the criteria of 

Koller et al. (2012)  

The original search found that, for the biostatistical and core clinical journals, 

there was generally a steady rise in the number of contributions over the decade 

starting 2000. In the updated search, this trend was continued in the core 

clinical journals while for the biostatistical journals there was a suggestion of 

levelling off. However, the appearance of competing risks in general high impact 

clinical journals was low. The original search only found between 0 and 3 
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articles published per year in such journals. The updated outlook also found 

small numbers, only achieving at most 10 articles per year.  

As part of their original research, Koller et al. (2012) also explored how 

competing risks issues were treated in high impact clinical journals. The authors 

searched for articles focusing on diseases that are prevalent or typical in aging 

or multimorbid patients, and that would have follow-up that could potentially 

raise competing risks issues. They then concentrated on critically appraising 50 

articles, paying particular attention to the following: 

 the use of the naïve Kaplan-Meier approach to estimate cumulative 

incidence when competing risks were actually present 

 neglecting competing risks either by not reporting competing events, or 

by reporting them but not analysing them 

They found that at least one of the issues was apparent in 70% (35/50) of the 

studied articles.   

 Review of competing risks analyses of stroke 
recurrence and death in the literature 

This sub-section describes a review of the literature that focused on the analysis 

of the competing risks recurrence and death in stroke. The purpose of this was 

to explore the existing use of, and in particular the approach used for, 

competing risks in this area. It provides the motivation for the empirical analysis 

of the stroke case study in the next chapter. A search strategy was developed to 

allow the review to take place. When this research began in 2011 an OvidSP 

search of titles, abstracts and keywords of contributions using relevant search 

terms was performed. However, this search has been an ongoing process. Email 

alerts of new articles were set up using Ovid and Web of Knowledge. A final 

OvidSP search was conducted to search contributions up to 31 August 2016. The 

entire search found 17 contributions and is summarised in Appendix III. Appendix 

IV contains an evidence table summarising what was found, which will be 

discussed in this sub-section.  
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In their study protocol, Wollenweber et al. (2014) state that they intend 

investigating post-stroke dementia as a primary endpoint. However stroke 

recurrence is also stipulated as a secondary endpoint. Unfortunately the paper 

does not provide any detail of a plan of analysis for stroke recurrence and only 

maintains that a very vague “competing risks analysis” will be carried out.  

Some of the contributions have studies with endpoints of all-cause mortality and 

stroke recurrence (Sun et al., 2013, Arntz et al., 2014, Dhamoon et al., 2016a, 

Dhamoon et al., 2016b). These authors use a standard Kaplan-Meier and/or Cox 

regression to analyse all-cause mortality and a Fine and Gray proportional 

subdistribution hazards model to analyse stroke recurrence. In the latter, death 

is treated as a competing risk when modelling the subdistribution hazards of 

recurrence. However, these papers do not present a corresponding Fine and 

Gray model for death without recurrence, with recurrence treated as a 

competing risk. Therefore, the contributions have missed the opportunity to 

convey the extra insight that may have been gained from the analysis of the 

other competing risk. For example, in the research by Dhamoon et al. (2016a), 

modelling the other competing risk may have clarified and provided further 

explanation for the result that South Asians had a higher cumulative incidence of 

recurrence than non-South Asians. Given that ethnicity had no effect on 

recurrence-free survival, modelling of death without recurrence (treating 

recurrence as a competing risk) is likely to have shown that South Asians had a 

lower cumulative incidence of death without recurrence. This is not explicitly 

evident from the modelling of all-cause mortality because this shows death 

overall. The modelling of death without recurrence as a competing risk could 

have helped explain the higher cumulative incidence of recurrence in that less 

patients were dying in such a manner and so more were alive to be at risk of 

recurrence.   

The analyses of all-cause mortality and those for just one competing risk in the 

four aforementioned contributions, fail to recognise that recurrence and death 

without recurrence act as competing risks and should be analysed separately and 

compared. Furthermore, the analysis of all-cause mortality does not distinguish 

between deaths with and without recurrence. Analysis involving the three events 
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recurrence, death after recurrence and death without recurrence simultaneously 

is the focus of Chapter 4. Instead of the analyses carried out, or ideally 

alongside them, it would have been preferable to also show the analysis of death 

without recurrence, with recurrence treated as a competing risk.  

Only three of the contributions used Fine and Gray’s model for both the 

outcomes recurrence treating death without recurrence as a competing risk and 

death without recurrence treating recurrence as a competing risk (Lewsey et al., 

2010, Andersen et al., 2011, He et al., 2015). The research by Lewsey et al. 

(2010) was the only contribution found from this literature search to explicitly 

acknowledge that results should be shown for each competing risk. 

Several of the contributions use a Cox (cause-specific hazards), rather than a 

Fine and Gray, model for their competing risks analysis (Ovbiagele, 2012, 

Stamplecoski et al., 2012, Ovbiagele, 2013, Castilloux et al., 2015, Choi et al., 

2016). Choi et al. (2016) use the test devised by Gray (1988) to compare 

competing risks cumulative incidence curves at a univariable level and take a 

Cox approach to multivariable modelling. The methods section of the paper 

states that deaths are treated as a competing risk. However, the paper also 

states that Fine and Gray’s proportional subdistribution hazards model was used, 

and then proceeds to show Cox regressions in the results. Therefore, this could 

cause confusion. 

Ovbiagele (2013) uses backwards stepwise variable selection to decide which 

covariates to include in the competing risks Cox regression. However, likelihood 

ratio tests need to be treated with caution in competing risks scenarios, as 

explained in section 2.7.2, especially when only considering the results from one 

competing risk in isolation. Furthermore, the paper appears to show “naïve” Cox 

predictions, because they are described as cumulative incidence curves derived 

using the Cox regression previously presented. 

The work by Rutten-Jacobs et al. (2013) uses the test devised by Gray (1988) to 

compare competing risks cumulative incidence curves for at most one covariate, 

and then Fine and Gray’s model at a multivariable level. The authors present 

separate results for recurrent strokes and for other arterial events alongside 
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those for the composite of the two. It would have been preferable to display 

results separately for recurrent strokes, for arterial events and for deaths. This 

is especially the case as death was a strong competing risk with 172 (23.8%) of 

the 724 patients dying. Furthermore, a more appropriate composite outcome 

would have combined all three events rather than excluding the deaths. 

 Review of the possibility of decomposing recurrence-
free survival after stroke in the literature that uses that 
outcome 

The previous sub-section reviewed the approach used for competing risks 

analysis of stroke recurrence and death in contributions that included such 

terminology. This sub-section will describe a review of the literature that 

included the outcome recurrence-free survival. In particular, for each 

contribution, the number of stroke recurrence and death events will be 

identified. Then a discussion will follow on whether decomposition of the 

composite outcome recurrence-free survival could have been an option, if it was 

not carried out. A search strategy was developed to allow the review to take 

place. In a similar manner to the search described in sub-section 2.10.2, the 

search was an ongoing process after an initial search when this research first 

began in 2011. A final OvidSP search of titles, abstracts and keywords of 

contributions to 31 August 2016 using the search terms  

(stroke AND recurrence-free survival).ab,ti,kw. 

was carried out. The entire search found 20 contributions and is summarised in 

Appendix V. Appendix VI contains an evidence table summarising what was 

found. 

 Contributions that may have benefited from decomposition of   
        the outcomes  

In the study by Elneihoum et al. (1998), the Kaplan-Meier and Cox regression 

approaches were used for all-cause mortality. Furthermore, a Cox regression was 

also presented for non-fatal recurrences, but it was not clear whether death was 

treated as a competing risk in the modelling. The 959 (43.4%) deaths would have 
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been a strong competing risk for the 137 (6%) of recurrences. In addition, a plot 

of the probability of recurrence is shown. However, the paper does not mention 

any appropriate competing risks approach and therefore it was probably based 

on the naïve Kaplan-Meier method. Finally the label RR, for relative risk, was 

used in the Cox results table. This is technically incorrect for recurrence because 

it was the hazard which was modelled, not the risk (i.e. not the probability). 

In the research by Ogasawara et al. (2002b), the authors use the Kaplan-Meier 

method for recurrence-free survival and a Cox regression for recurrence. 

However, in the latter the model included 10 covariates when there were only 

11 recurrences. There were too few events to warrant this number of covariates 

given the standard rule of thumb of 10 events per covariate (Peduzzi et al., 

1995). Furthermore, no details were provided of how deaths were treated in the 

Cox regression. The Kaplan-Meier plots presented suggest there were as many 

deaths as recurrences and therefore these would need to be treated as a 

competing risk. It is likely that the authors would have censored deaths when 

analysing recurrences. However clarification of this would have been beneficial 

due to the competing risks scenario. 

The contribution by Hillen et al. (2003a) used Kaplan-Meier analysis for 

recurrence-free survival. However, it also used a Kaplan-Meier approach for 

stroke recurrence, which is inappropriate with the paper failing to recognise 

that a more suitable method that takes into account competing risks should be 

used. This was particularly applicable to this study because death without 

recurrence was a strong competing risk, at 48.7% by 5 years, for the 153 (16.6%) 

of recurrences by 5 years. However, the authors do specify that deaths are 

censored in their parametric proportional hazards model for recurrence, which is 

the appropriate approach. That said, the paper also states that likelihoods were 

used to decide between parametric distributions and likelihood ratio tests to 

select covariates, both of which can be dubious in a competing risk scenario. 

The article by Hillen et al. (2003b) used a Cox regression for recurrence-free 

survival. However among the 561 patients in their study there were 66 

recurrences and 146 deaths. This number of events warrants decomposing the 
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composite outcome into the two competing risks recurrence and death without 

recurrence. It could provide more insight in the study, especially as stroke 

severity may have had opposing effects on recurrence and death, which might 

have been cancelling each other out.  

In their research Yokota et al. (2004) use Kaplan-Meier and Cox regression for 

recurrence-free survival. In a similar manner to Elneihoum et al. (1998) above, 

the label RR is used in the Cox results table, which is the wrong terminology in a 

competing risks context as previously explained. The patients in this study had 

198 recurrences and 286 deaths within 3 years. Therefore, there were enough of 

each event to consider decomposition of recurrence-free survival, which may 

have provided more insight. 

In the contribution by Lee et al. (2010), the methods section states that a 

Kaplan-Meier analysis and Cox regression was used for recurrence specifically. 

However, the Kaplan-Meier curve shown in the results is actually for recurrence-

free survival. If the article wished to present the cumulative incidence of 

recurrence specifically an appropriate method to take into account competing 

risks should have been used. Furthermore, it was not clear how deaths were 

treated in the Cox regression, and the number of deaths was not mentioned. 

However the Kaplan-Meier curve of recurrence-free survival appeared to be at 

around 80% by 5 years, and given that 14(7.7%) of the 181 patients had a 

recurrence, this left around 12% of the patients that died. Therefore, deaths 

were a strong competing risk for recurrence and the approach to analysis should 

reflect this. It would have been preferable to have clarification that this was the 

case. 

The work by Toschke et al. (2011) used a Cox regression for all-cause mortality 

and for recurrence. However, it was not clear whether death was treated as a 

competing risk in the modelling of the hazard of recurrence. The paper includes 

curves for the estimated probability of survival and for the estimated probability 

of stroke recurrence. It would appear from the survival curve, that among the 

3690 patients who survived 90 days, the probability of death within 5 years was 

around 15-30% depending on use of antihypertensive treatment. From the 
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recurrence curve, it would appear that the probability of recurrence within 6 

years was around 35-38% for the 3121 patients surviving 1 year. However, this 

recurrence curve presents naïve Cox predictions and as such is likely to have 

introduced inflation bias. It would have been more appropriate to also present 

Cox modelling of the hazards of the other competing risk, and then combine the 

hazards appropriately to create the predictions.  Alternatively, the Fine and 

Gray approach could have been used to present the cumulative incidence of 

recurrence taking into account competing risks. Even with the inflation bias, 

there was still likely to have been enough patients with recurrence and death 

without recurrence to analyse these two competing risks appropriately. A further 

limitation of this study was that only recurrences that occurred after 1-year post 

stroke were considered, ensuring it was a recurrence that was captured rather 

than just a repeat recording of the index stroke, but this wasted valuable 

information on recurrences in the intervening period. 

Chan et al. (2012)’s work used the Kaplan-Meier method for the two outcomes 

recurrence-free survival and major adverse cardiovascular events (MACE)-free 

survival. A Cox regression was used for the outcomes stroke recurrence and 

MACE. Among the patients in their study there were 10 recurrences, 12 MACEs 

and 8 deaths. Therefore deaths acted as a strong competing risk for recurrence 

and needed to be addressed appropriately. However, it was not clear whether 

competing risks were censored in their Cox models.  

 Contributions not likely to benefit from decomposition of the  
        outcomes  

Nadeau et al. (1992) used an unconventional way to present one of their 

outcomes. Overall survival was presented in the usual way by showing a Kaplan-

Meier curve. However for the other outcome the “percentage of patients free of 

non-stroke death who were free of stroke recurrence” is presented, which is 

somewhat confusing. This would appear to be a round-about way of expressing 

recurrence-free survival. However the paper also states “In the recurrence 

studies, non-stroke deaths were treated in the same-way as withdrawals.” This 

implies deaths were censored in the analysis of recurrence instead of included to 
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make a composite outcome. Regardless, there were too few events in the study 

to consider anything beyond a Kaplan-Meier analysis. 

In their contribution, Yokota et al. (1998) use a Kaplan-Meier analysis for 

recurrence-free survival and a Cox regression for recurrence specifically. 

However the authors were limited in the number of covariates they could 

consider due to only having 13 recurrences and 11 deaths in their study. 

The Kaplan-Meier and Cox regression approaches were used for recurrence-free 

survival in the research by Ogasawara et al. (2002a). Their study had 70 patients 

and 13 recurrences and 4 deaths. Given the small number of events, 

decomposition of recurrence-free survival was unlikely to provide any additional 

insight. 

In other research, Marnane et al. (2010) also used a Kaplan-Meier to analyse 

recurrence-free survival. Cox regression was again mentioned but it was unclear 

whether this was for recurrence alone or the composite outcome, because the 

abstract contained contradictory statements. With only 10 recurrences, there 

were not enough events to benefit from decomposition of the outcome. In 

addition, the use of 9 covariates in the Cox regression with such a small number 

of events was inappropriate.  

Kuwashiro et al. (2012) used a Kaplan-Meier approach for recurrence-free 

survival and logistic regression for the outcome recurrence by 12 months. The 

authors aimed to investigate factors associated with recurrence specifically. 

Their logistic regression approach was not unreasonable because there were not 

many deaths. Given the low number of deaths, obviously decomposition was not 

worth considering. However, the study only had 25 recurrences but 6 covariates 

in the model. The use of 6 covariates with 25 events was inappropriate given the 

standard rule of thumb of Peduzzi et al. (1996) that also applies to logistic 

regression. 

The contribution by Kim et al. (2014) used a Kaplan-Meier approach for 

recurrence-free survival and a Cox regression for stroke recurrence. The paper 

emphasises throughout the objective is to assess the risk of recurrence. In doing 
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so it fails to recognise that a Cox regression assesses the hazard which is 

different from the risk. In addition, the article does not mention whether there 

were any deaths in the study. If there were no or very few deaths then a logistic 

regression would have been a more sensible approach given that their outcome 

was at 90 days, a fixed point in time. That said, a Cox and logistic regression are 

unlikely to provide results with substantive differences, provided there are 

no/very few deaths and there is (near) complete follow-up of all patients. 

In another piece,  Fujimoto et al. (2015) used Kaplan-Meier and a Cox regression 

for recurrence-free survival. The authors were unlikely to gain any additional 

insight by decomposing this outcome due to relatively few deaths.  

 Summary of the review 

This section focused on an area where competing risks are not widely applied, 

specifically recurrence and death in stroke patients. The review in sub-section 

2.10.2 of contributions that involved competing risks analyses found that either 

Fine and Gray’s proportional subdistribution hazard model or cause-specific 

hazard Cox modelling was adopted. However, the presentation of analysis of 

both competing risks was very limited among the contributions using Fine and 

Gray’s model. Furthermore, none of the authors that used the cause-specific 

hazard Cox approach showed analysis for each competing risk, opting instead to 

just show modelling of recurrence. However, earlier in this chapter it was 

emphasised that the cause-specific hazard is a key driving force in the 

calculation of the cumulative incidence. Furthermore it was stressed that, to 

fully understand the effects on the outcomes of interest, the cause-specific 

hazard and cumulative incidence for each of the competing risks should be 

analysed. Therefore, Chapter 3 of this thesis will add to the existing research 

and present such a fully comprehensive analysis of the competing risks stroke 

recurrence and death. 

Sub-section 2.10.3 which focused on contributions that involved recurrence-free 

survival also found that, when authors used Cox regression for recurrence 

specifically, they neglected to present a corresponding analysis for death 

without recurrence. However, when modelling hazards of recurrence analysts 
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are likely to be censoring deaths, and therefore inadvertently taking into 

account competing risks appropriately even if they are unaware that such a 

scenario exists. What could cause a problem however is when analysts try to 

derive cumulative incidences/probabilities from this and present naïve Cox 

predictions. Chapter 3 will also include a section highlighting the bias that can 

occur by inappropriately using a naïve Kaplan-Meier or naïve Cox approach. Sub-

section 2.10.3 also highlighted some instances when the opportunity was missed 

to decompose recurrence-free survival into the two competing risks recurrence 

and death without recurrence. Since some covariates are likely to have effects 

in opposite directions for the two competing risks, Chapter 3 will also compare 

analysis of the composite outcome with those of decomposition into the two 

competing risks. 
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 Competing risk analysis with the 
Edinburgh Stroke Study 

The previous chapter described the background to the competing risks approach, 

highlighted methodological issues that need to be considered and reviewed the 

literature into the extent of its use. In particular, the review focused on stroke 

recurrence and death, an area where the technique has not been used to its full 

potential. All of this motivated this current chapter which demonstrates 

empirical competing risks analyses with a stroke case study. This chapter 

presents various different aspects of competing risks analysis to illustrate the 

insights that can be gained over using standard survival analysis.   

The chapter begins by providing an overview of the case study, the Edinburgh 

Stroke Study, in section 3.1. Next, section 3.2 compares analyses of the 

composite outcome recurrence or death with those of the separate components 

recurrence and death without recurrence. The purpose of this is to illustrate the 

extra insight that can be gained by decomposing a composite outcome into its 

component competing risks. The focus of this section is Cox regression for the 

composite outcome and cause-specific hazards Cox regression for each of the 

two competing risks recurrence and death without recurrence. Then, section 3.3 

presents the Fine and Gray subdistribution hazards modelling approach to 

competing risks. The results are presented alongside those using the cause-

specific hazards approach demonstrated earlier in section 3.2. In particular, 

section 3.3 also includes cumulative hazard and cumulative incidence plots. The 

purpose of section 3.3 is to illustrate the greater understanding that can be 

gained of a competing risks process by considering both the hazard and 

cumulative incidence of each competing risk. Next, section 3.4 illustrates the 

consequences of not taking into account competing risks. Specifically, this 

section compares naïve Kaplan-Meier/Cox predictions to those that appropriately 

address that competing risks are present. Finally, section 3.5 summarises the 

analysis presented in this chapter and the extra insight gained over standard 

survival analysis.  
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 Overview of the Edinburgh Stroke Study 

All analysis in this chapter and chapter 5 was carried out using data from the 

Edinburgh Stroke Study (ESS), a case study used to demonstrate the potential in 

stroke epidemiology of the methods described in this thesis. ESS was a 

prospective, hospital-based cohort study of stroke patients followed-up with 

multiple overlapping methods for recurrent stroke, myocardial infarction, and 

death. The methods and process of data collection are described elsewhere 

(Jackson et al., 2009). 1237 patients who presented with a definite or probable 

stroke (excluding a subarachnoid haemorrhage) between the years 2002 and 

2005 were included in the analysis. These patients were followed-up for 

between 1 and 4 years, and details of any stroke recurrence and/or death were 

obtained. Table 3.1 on the next page shows the patient characteristics used in 

the analysis.  

The second column in Table 3.1 shows the distribution of covariates among the 

stroke patients. The remaining columns show, for each event of interest, the 

frequency of the event in patients with a particular covariate level, with the 

information with and without the characteristic shown for the binary covariates. 

While not the focus of this chapter, death after recurrence is considered in 

chapter 5 and is shown in Table 3.1 for completeness. To guide the reader, the 

third row shows that 621 of the patients were male. It also shows that 11.8% of 

males and 15.3% of females had recurrences, 18.7% of males and 23.4% of 

females died without recurrence and 42.5% of males and 34.0% of females died 

after a recurrence. Information on other rows of the table can be read similarly. 

The frequencies are shown as an indication of the (unadjusted) covariate effects 

on the events and should not be thought of as incidence in the usual sense due 

to censoring. However, they do show the effect of each of the covariates in 

absolute terms, ahead of the modelling of hazards later in the chapter which 

will be in relative terms. 

 

Previous cerebrovascular event was defined as previous stroke or transient 

ischaemic attack. Previous other occlusive vascular disease consisted of previous 

ischaemic heart disease or peripheral arterial disease. Previous hypertension was  
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Table 3.1  Patient characteristics involved in analyses of Edinburgh Stroke Study 

 

defined as a history of treated hypertension. High blood pressure was defined as 

a systolic blood pressure in excess of 160mmHg or a diastolic blood pressure in 

excess of 80mmHg at the time of initial assessment.  Symptomatic carotid 

disease was defined as the percentage stenosis in the internal carotid artery 

(ICA) on the same side as the brain lesion. If the lesion was not specific to one 

side, or the side was unknown, the largest stenosis was used. A patient was 

    n (%) 
% experiencing event amongst those with(without) 
characteristic2 

    
 

recurrence 
death without 

recurrence 
death after 
recurrence 

Total 1 1237 (100%) 167 (13.5%) 260 (21.0%) 63 (37.7%) 

age at stroke - mean(s.d.) 71 (12) 72 (10) 78 (10) 76 (9) 

male 621 (50.2%) 11.8% (15.3%) 18.7% (23.4%) 42.5% (34.0%) 

independent before stroke 1147 (92.7%) 13.9% (8.9%) 18.2% (56.7%) 36.5% (62.5%) 

previous cerebrovascular event 373 (30.2%) 16.4% (12.3%) 22.8% (20.3%) 37.7% (37.7%) 

previous other occlusive vascular 
disease 864 (69.8%) 16.4% (12.2%) 27.8% (18.0%) 53.2% (28.6%) 

previous hypertension  378 (30.6%) 15.1% (11.8%) 20.0% (22.1%) 37.8% (37.7%) 

diabetes  150 (12.1%) 15.3% (13.2%) 22.7% (20.8%) 47.8% (36.1%) 

non-smoker 436 (35.2%) 12.4% (14.1%) 25.0% (18.9%) 35.2% (38.9%) 

lift both arms off bed  1041 (84.2%) 15.0% (5.6%) 14.2% (57.1%) 35.9% (63.6%) 

walk independently 876 (70.8%) 14.4% (11.4%) 12.2% (42.4%) 29.4% (63.4%) 

orientated speech 1038 (83.9%) 14.0% (11.1%) 14.6% (54.3%) 33.1% (68.2%) 

stroke syndrome 
      Cortical 655 (53.0%) 14.0% 26.6% 44.6% 

  Lacunar 324 (26.2%) 12.7% 11.4% 34.1% 

  Other  258 (20.9%) 13.2% 19.0% 23.5% 

high blood pressure  444 (35.9%) 12.8% (13.9%) 21.4% (20.8%) 28.1% (42.7%) 

delay in assessment 
      0-1 days 282 (22.8%) 13.5% 34.4% 47.4% 

  2-6 days 300 (24.3%) 14.3% 25.3% 48.8% 

  7 days or more 655 (53.0%) 13.1% 13.3% 27.9% 

symptomatic carotid stenosis 
      <70% ICA 904 (73.1%) 12.7% 15.2% 31.3% 

  70-100% ICA 144 (11.6%) 22.2% 20.1% 50.0% 

  Unknown  189 (15.3%) 10.6% 49.7% 55.0% 

in atrial fibrillation 257 (20.8%) 16.7% (12.7%) 36.2% (17.0%) 53.5% (32.3%) 

visible infarct on scan 714 (57.7%) 13.7% (13.2%) 22.5% (18.9%) 43.9% (29.0%) 

haemorrhage on scan 88 (7.1%) 17.0% (13.2%) 35.2% (19.9%) 53.3% (36.2%) 

1 When symptomatic carotid disease was not recorded it was treated as a separate ‘Unknown’ category. This was because 
the information was not thought to be missing at random; instead the patients concerned were thought to be more likely to 
be too ill to have this assessed. When stroke syndrome was not recorded (55 patients) it was included in the category 
'Other', which also consisted of patients with posterior circulation syndrome (POCS). For all other variables, patients without 
a value recorded were included in the category of the variable that was most common. The latter was the case for 
independent before stroke (6), previous cerebrovascular event (3), previous other occlusive vascular disease (2), previous 
hypertension (1), smoking status (24), lift both arms off bed (4), walk (7), orientated speech (6), high blood pressure (11), in 
atrial fibrillation (74), visible infarct on scan (26) and haemorrhage on scan (26) . There were no unrecorded values for age, 
gender, diabetes and delay in assessment. 
2 with (without) characteristic shown for binary variables, and each level shown on separate rows for variables with 3 levels. 
mean (s.d.) are shown for the continuous variable age 
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considered to be in atrial fibrillation if they had a history of atrial fibrillation or 

it was present on ECG. Orientated speech was defined as able to talk and 

orientated in time, place and person.  The date of initial assessment was chosen 

as the starting date rather than the date of stroke onset to exclude recurrences 

before baseline information could be collected. If patients had more than one 

stroke before initial assessment the stroke immediately before initial assessment 

was selected as the index stroke. This was the case for two patients. The illness-

death modelling presented in Chapter 5 did not allow entry to different health 

states at the same time. Therefore patients with a recurrence on the same day 

as death were assumed to have died 0.5 days later than their recurrence. This 

was the case for four patients. 

 Analyses of the composite outcome versus 
decomposition of the outcome: cause-specific hazards 
approach to competing risks 

It could be seen in the previous section that there were 167 recurrences and 260 

deaths without recurrence among the 1237 patients. It is common in studies - 

and trials in particular - to study composite outcomes such as recurrence-free 

survival i.e. the composite event recurrence or death. However, decomposing a 

composite outcome into its component competing risks can often provide 

additional insight. This is particularly true when a covariate affects two 

different competing risks, but the effects are in opposing directions. In addition, 

it can be the case that one particular event is of interest but a competing event 

occurs more often. When this happens the analysis of the composite outcome 

may be dominated by factors associated with the competing event, and 

associations with the event of interest may become masked. In the Edinburgh 

Stroke Study, recurrences were of primary interest. Given that there were only 

167 recurrences but 260 deaths without recurrence, there was potential to gain 

insight from an analysis that decomposed the composite outcome into these two 

competing risks. In addition, it was thought that there may be some covariates 

that would affect each competing risk differently. This provided the motivation 

for the analysis in this section that compares analyses of the composite outcome 

recurrence or death with those of the separate components recurrence and 

death without recurrence. 
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Table 3.2 shows the effects of the covariates on the hazard of each of the events 

at the univariable (unadjusted) level.  

   

Cox regression of                                   
recurrence or death cause-specific hazard competing risks Cox modelling  

  
Baseline 

hazard ratio for 
recurrence or death 
without recurrence  

(95% CI) p-value  

hazard ratio for 
recurrence     

(95% CI) 
p-

value  

hazard ratio for 
death without 

recurrence 
      (95% CI) p-value  

age - centred 
on mean of 71 

 
1.05 (1.04, 1.06) <0.001 1.02 (1.00, 1.03) 0.012 1.08 (1.06, 1.09) <0.001 

male Female 0.74 (0.61, 0.90) 0.002 0.72 (0.53, 0.98) 0.038 0.76 (0.59, 0.97) 0.025 

independent 
before stroke No 0.36 (0.27, 0.48) <0.001 1.12 (0.55, 2.27) 0.763 0.24 (0.18, 0.33) <0.001 

previous 
cerebrovascular 
event  No 1.22 (1.00, 1.49) 0.055 1.34 (0.98, 1.84) 0.066 1.14 (0.88, 1.47) 0.329 

previous other 
occlusive 
vascular 
disease No 1.65 (1.36, 2.01) <0.001 1.53 (1.12, 2.09) 0.008 1.74 (1.36, 2.23) <0.001 

previous 
hypertension No 1.07 (0.88, 1.29) 0.504 1.33 (0.98, 1.81) 0.069 0.93 (0.73, 1.18) 0.543 

diabetes No 1.19 (0.90, 1.57) 0.223 1.23 (0.79, 1.91) 0.352 1.16 (0.81, 1.67) 0.417 

current smoker 
and ex-smoker 
<12 months 

Non-
smoker 0.85 (0.70, 1.03) 0.097 1.09 (0.79, 1.51) 0.602 0.73 (0.57, 0.93) 0.011 

lift both arms 
off bed  

No 
0.30 (0.24, 0.37) <0.001 1.70 (0.92, 3.14) 0.089 0.16 (0.13, 0.21) <0.001 

walk 
independently 

No 
0.37 (0.31, 0.45) <0.001 0.94 (0.66, 1.33) 0.714 0.22 (0.17, 0.28) <0.001 

orientated 
speech No 0.27 (0.22, 0.33) <0.001 0.77 (0.49, 1.20) 0.245 0.17 (0.13, 0.22) <0.001 

stroke 
syndrome 

  
<0.001 

 
0.448 

 
<0.001 

 
Lacunar Cortical 0.52 (0.40, 0.67) <0.001 0.79 (0.55, 1.15) 0.218 0.38 (0.26, 0.54) <0.001 

 
Other Cortical 0.75 (0.59, 0.96) 0.021 0.89 (0.60, 1.31) 0.551 0.68 (0.49, 0.93) 0.015 

high blood 
pressure  No 1.04 (0.85, 1.26) 0.728 0.98 (0.71, 1.34) 0.881 1.08 (0.84, 1.38) 0.573 

delay in 
assessment 

  
<0.001 

 
0.267 

 
<0.001 

 
2 - 6  d a y s 0-1 days 0.70 (0.55, 0.90) 0.005 0.90 (0.58, 1.39) 0.634 0.63 (0.46, 0.85) 0.002 

 

7 days or 
more 0-1 days 0.42 (0.34, 0.53) <0.001 0.74 (0.51, 1.09) 0.125 0.30 (0.22, 0.40) <0.001 

symptomatic 
carotid stenosis 

  
<0.001 

 
0.013 

 
<0.001 

 
70-100% ICA <70% ICA 1.63 (1.23, 2.15) 0.001 1.86 (1.26, 2.75) 0.002 1.43 (0.96, 2.13) 0.082 

 
Unknown <70% ICA 3.11 (2.49, 3.88) <0.001 1.21 (0.75, 1.94) 0.435 4.68 (3.59, 6.09) <0.001 

in atrial 
fibrillation No 2.20 (1.79, 2.70) <0.001 1.65 (1.17, 2.34) 0.005 2.60 (2.01, 3.35) <0.001 

visible infarct 
on scan No 1.20 (0.99, 1.46) 0.068 1.10 (0.81, 1.50) 0.527 1.26 (0.98, 1.62) 0.067 

haemorrhage 
on scan No 1.99 (1.46, 2.70) <0.001 1.64 (0.96, 2.78) 0.069 2.21 (1.52, 3.22) <0.001 

Table 3.2 Univariable Cox composite vs cause-specific hazard competing risks Cox modelling 
results 

 

The first section of Table 3.2 shows the results of Cox regression modelling of 

the composite outcome regression or death without recurrence. The rest of 
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Table 3.2 displays the results of the Cox cause-specific hazard approach to 

modelling the competing risks recurrence and death without recurrence. 

Covariates found to be statistically significant at the 5% level are shown in bold. 

Those covariates found to be statistically significant at the 10% level (marginally 

significant) are shown in italics. Alternate shading of the rows is used to help 

distinguish between the rows. The usual appropriate checks for violations of 

proportional hazards were carried out, although they are not shown for reasons 

of brevity. 

It can be seen in Table 3.2 that advancing age, being female, having other 

occlusive vascular disease, having high symptomatic carotid stenosis and having 

atrial fibrillation were each found to be associated with a higher hazard of the 

composite outcome recurrence or death and its components recurrence and 

death without recurrence. It can also be seen from Table 3.2 that there was a 

higher hazard of the composite outcome associated with not being independent 

before stroke, not being able to walk independently, not having orientated 

speech, having cortical syndrome, having the shortest delay in assessment and 

having a haemorrhage on scan. However, it could be seen from the competing 

risks analysis that these covariate levels were each all associated with a higher 

hazard of death without recurrence but were not found to have an association 

with recurrence (although having a haemorrhage on scan was associated with a 

higher hazard of recurrence at the 10% level). Therefore, these associations 

found with the composite outcome were primarily due to death without 

recurrence. There was also a higher hazard of the composite outcome associated 

with not being able to lift both arms off the bed and this too was primarily due 

to an increased hazard of death without recurrence. However, there was also a 

marginal association with the ability to lift both arms off the bed and recurrence 

but in the opposite direction. Importantly, this was only detectable from the 

competing risk analysis because associations with recurrence were masked in the 

composite outcome analysis, due to the dominance of death without recurrence. 

In terms of recurrence specifically, advancing age, being female, having other 

occlusive vascular disease, having high symptomatic carotid stenosis and having 

atrial fibrillation were each found to be associated with a higher hazard of the 
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event. However, as previously mentioned above, each of these covariate levels 

were also associated with an increased hazard of the competing risk death 

without recurrence. Therefore, this was something to bear in mind as this could 

influence the predictions of recurrence, particularly as in many instances the 

effect of the covariate was more strongly associated with death without 

recurrence than recurrence. 

Multivariable analysis was then carried out considering the variables together in 

a model, allowing the effect of each covariate to be adjusted by other relevant 

variables. Parsimony was used for ease of subsequent prediction. For the 

modelling of the composite outcome, likelihood-ratio tests using the 5% 

significance level were used to select variables. This was carried out using 

backward selection and then repeated using forward stepwise selection and 

then, for stability, the selections were checked to ensure they matched. A 

similar approach was not used for the competing risks cause-specific hazards 

modelling for the reasons raised in the section 2.7.2 of chapter 2. Instead, the 

cause-specific hazards modelling included the same variables that were included 

in the Fine and Gray subdistribution hazards approach presented in the following 

section of this chapter. The variable selection for the Fine and Gray model was 

based on the approach proposed by Kuk and Varadhan (2013). This provided a 

solution that was needed anyway to help aid the comparison of the two 

approaches in the next section. However, because the purpose of this section 

was to compare the effect of the covariates on each event, any covariate found 

to have a significant effect on any of the events was included in the models for 

each event. For each event, covariates found to be statistically significant at the 

5% and 10% level, are shown in bold and italics, respectively. Consequently, any 

covariate without such highlighting was only included for comparison purposes.  

This variable selection approach produced a sensible result in the sense that it 

included all those covariates found to be significant at the 10% level for either of 

the two events in the corresponding unparsimonious multivariable models. Table 

3.3 shows the final modelling results.  
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Cox regression of         
recurrence or death  cause-specific hazard competing risks Cox modelling 

  
Baseline 

hazard ratio for 
recurrence or 
death without 

recurrence 
(95% CI) 

p-
value  

hazard ratio for 
recurrence    

(95% CI) 
p-

value  

hazard ratio for 
death without 

recurrence    
(95% CI) 

p-
value  

age - centred on 
mean of 71 

 
1.04 (1.03, 1.05) <0.001 1.01 (0.99, 1.02) 0.240 1.06 (1.05, 1.07) <0.001 

male Female 0.90 (0.74, 1.09) 0.274 0.69 (0.50, 0.94) 0.021 1.01 (0.79, 1.30) 0.909 

independent 
before stroke No 0.70 (0.52, 0.94) 0.018 1.22 (0.59, 2.51) 0.589 0.66 (0.47, 0.91) 0.013 

previous other 
occlusive 
vascular disease No 1.30 (1.07, 1.59) 0.010 1.41 (1.02, 1.95) 0.037 1.21 (0.93, 1.56) 0.154 

lift both arms off 
bed  

No 
0.55 (0.43, 0.70) <0.001 2.37 (1.25, 4.49) 0.008 0.34 (0.26, 0.46) <0.001 

orientated 
speech No 0.52 (0.41, 0.66) <0.001 0.79 (0.48, 1.28) 0.340 0.43 (0.32, 0.58) <0.001 

symptomatic 
carotid stenosis 

  
<0.001 

 
0.004 

 
<0.001 

 
70-100% ICA <70% ICA 1.50 (1.13, 2.00) 0.005 2.06 (1.38, 3.07) <0.001 1.26 (0.84, 1.89) 0.271 

 
Unknown <70% ICA 2.15 (1.66, 2.79) <0.001 0.99 (0.57, 1.71) 0.970 2.85 (2.08, 3.89) <0.001 

in atrial 
fibrillation No 1.43 (1.15, 1.77) 0.001 1.67 (1.16, 2.40) 0.006 1.31 (1.00, 1.72) 0.052 

haemorrhage on 
scan No 0.91 (0.64, 1.29) 0.603 1.94 (1.05, 3.58) 0.036 0.68 (0.45, 1.04) 0.075 

 

Table 3.3  Multivariable Cox composite vs cause-specific hazard Cox modelling results 

 

It can be seen from Table 3.3 that the ability to lift both arms off the bed was 

associated with the composite outcome and each of the two competing risks. 

However, while being able to lift both arms off the bed was associated with a 

reduced hazard of the composite outcome and of death without recurrence, it 

was associated with an increased hazard of recurrence. Therefore, the increased 

hazard of recurrence was undetectable from the composite outcome analysis 

alone due to the dominance of deaths without recurrence. Hence, extra insight 

was gained from the analysis of the competing risks. It has helped to reveal that 

those who were able to lift both arms off the bed were more likely to have a 

recurrence rather than die before doing so. It has hence identified a group of 

patients who may benefit from prevention strategies for recurrence. 

Symptomatic carotid stenosis was also associated with the composite outcome 

and each of the two competing risks. Having 70-100% ICA stenosis, compared to 

<70% ICA, was associated with an increased hazard of the composite outcome 

and recurrence. Having unknown stenosis, compared to <70% ICA, was associated 
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with an increased hazard of the composite outcome and death without 

recurrence. Having atrial fibrillation was associated with an increased hazard of 

the composite outcome and recurrence, and such an association with death 

without recurrence only just failed to reach the 5% significance level. Advancing 

age, not being independent before stroke and not having orientated speech were 

found to be associated with an increased hazard of the composite outcome and 

death without recurrence. Having other occlusive vascular disease was also 

found to be associated with an increased hazard of the composite outcome and 

recurrence. Therefore, the decomposition of the composite outcome into the 

two competing risks highlighted which of the particular events had an 

association with the covariate. Consequently, the competing risks analyses 

provided added benefit over the analysis of the composite outcome alone. 

Being female was only found to be associated with an increased hazard of 

recurrence, with sex having a very negligible effect on death without 

recurrence. Therefore, this was something that was not evident from the 

analysis of the composite outcome alone. Having a haemorrhage on scan was 

found to have an association with an increased hazard of recurrence and a 

(marginally) reduced hazard of death without recurrence. This resulted in a lack 

of association with the composite outcome, with the opposing effects on each of 

the competing risks effectively cancelling each other out. Therefore, another 

added benefit of the analysis of each of the two competing risks was 

demonstrated. It unmasked associations not evident from the composite 

outcome analysis, highlighting information could be lost if a composite outcome 

is comprised of two events on which there are opposing effects. 

With regards to recurrence specifically, being female, having other occlusive 

vascular disease, being able to lift both arms off the bed, having high carotid 

stenosis, being in atrial fibrillation and having a haemorrhage on scan were 

associated with an increased hazard of recurrence. As mentioned above, the 

ability to lift both arms off the bed and symptomatic carotid stenosis were also 

associated with death without recurrence, although the effects were in the 

opposite direction. This emphasises again the analysis of recurrence, separate 

from that for death without recurrence and the composite outcome, provided 
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insights that were not evident from the other two analyses. It identified 

characteristics in patients that could help clinicians deciding on a strategy to 

improve the lives of the patients under their care. 

 Cause-specific hazards vs Fine and Gray 
subdistribution modelling approaches 

In section 2.5 of chapter 2, it was emphasised that a greater understanding of a 

competing risks scenario can be gained when the hazards and cumulative 

incidence functions for each of the competing risks are investigated. In 

particular, Latouche et al. (2013) recommend considering both cumulative 

hazard plots and cumulative incidence plots to assess the effects of covariates. 

This section aims to demonstrate the extra insight that such a comprehensive 

analysis can provide to help interpretation in the presence of competing risks. 

This would appear to be the first study to demonstrate the potential of such 

analysis of recurrence and death without recurrence in stroke patients.  

The section begins by showing, in Table 3.4 for each of the competing risks, the 

effects of the covariates on the cause-specific hazard alongside those on the 

subdistribution hazard. As indicated previously in chapter 2, the subdistribution 

hazard has a one-to-one correspondence with the cumulative incidence.  

Broadly speaking, for each event, the two approaches produced similar results in 

terms of the covariate effects being in the same direction. The rest of this 

section will discuss the effect of the covariates on the hazard of each event and 

how this translated into the corresponding effect on the subdistribution 

hazard/cumulative incidence of each event. Covariates that had similar effects 

on the hazard in terms of direction are discussed together.  

The section also includes Figures 3.1 – 3.5 that show, for each covariate in turn, 

cumulative hazard and cumulative incidence plots. Each of the Figures are based 

on the following reference patient: male, aged 71, who was independent before 

stroke, had previous other occlusive vascular disease, could lift both arms off  
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Baseline 

hazard ratio for 
recurrence        

(95% CI) 
p-

value  

subdistribution 
hazard ratio for 

recurrence 
 (95% CI) p-value  

age - centred on mean of 71 
 

1.01 (0.99, 1.02) 0.240 1.00 (0.99, 1.02) 0.600 

male Female 0.69 (0.50, 0.94) 0.021 0.68 (0.50, 0.93) 0.016 

independent before stroke No 1.22 (0.59, 2.51) 0.589 1.43 (0.69, 2.96) 0.340 

previous other occlusive vascular 
disease No 1.41 (1.02, 1.95) 0.037 1.35 (0.97, 1.89) 0.078 

lift both arms off bed  No 2.37 (1.25, 4.49) 0.008 3.55 (1.71, 7.37) 0.001 

orientated speech No 0.79 (0.48, 1.28) 0.340 0.94 (0.53, 1.65) 0.820 

symptomatic carotid stenosis 
  

0.004 
  

 
70-100% ICA <70% ICA 2.06 (1.38, 3.07) <0.001 2.10 (1.40, 3.15) <0.001 

 
Unknown <70% ICA 0.99 (0.57, 1.71) 0.970 0.81 (0.46, 1.42) 0.450 

in atrial fibrillation No 1.67 (1.16, 2.40) 0.006 1.62 (1.11, 2.36) 0.012 

haemorrhage on scan No 1.94 (1.05, 3.58) 0.036 2.13 (1.15, 3.95) 0.016 

       

  
Baseline 

hazard ratio for 
death without 

recurrence 
 (95% CI) 

p-
value  

subdistribution 
hazard ratio for 

death without 
recurrence  

(95% CI) p-value  

age - centred on mean of 71 
 

1.06 (1.05, 1.07) <0.001 1.06 (1.04, 1.07) <0.001 

male Female 1.01 (0.79, 1.30) 0.909 1.04 (0.80, 1.36) 0.750 

independent before stroke No 0.66 (0.47, 0.91) 0.013 0.67 (0.46, 0.98) 0.039 

previous other occlusive vascular 
disease No 1.21 (0.93, 1.56) 0.154 1.16 (0.89, 1.53) 0.270 

lift both arms off bed  No 0.34 (0.26, 0.46) <0.001 0.31 (0.23, 0.41) <0.001 

orientated speech No 0.43 (0.32, 0.58) <0.001 0.45 (0.33, 0.60) <0.001 

symptomatic carotid stenosis 
  

<0.001 
  

 
70-100% ICA <70% ICA 1.26 (0.84, 1.89) 0.271 1.10 (0.72, 1.67) 0.680 

 
Unknown <70% ICA 2.85 (2.08, 3.89) <0.001 2.81 (2.07, 3.81) <0.001 

in atrial fibrillation No 1.31 (1.00, 1.72) 0.052 1.19 (0.89, 1.59) 0.230 

haemorrhage on scan No 0.68 (0.45, 1.04) 0.075 0.62 (0.39, 1.00) 0.048 

 
 

Table 3.4  cause-specific hazards vs Fine and Gray’s subdistribution hazards multivariable 
modelling   

 

the bed, did not have orientated speech, had <70% ICA stenosis, did not have 

atrial fibrillation and did not have a haemorrhage on scan. For each covariate in 

turn, every level of that covariate is shown with the other covariates held at the 

reference level specified. 

The cumulative hazard plots are based on the Cox cause-specific hazard 

modelling. The cumulative incidence curves are based on Fine and Gray’s 

subdistribution hazard model. The latter were calculated using the default 

weighted equation approach in cmprsk from R.  
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A crucial point regarding the results presented in Table 3.4 is that the effects of 

the covariates are displayed as (subdistribution) hazard ratios, and as such are 

relative effects. In contrast, the results presented in Figures 3.1 – 3.5 show 

absolute difference in cumulative incidence between the levels of a given 

covariate. When the underlying prevalence of an event is low, then even a large 

relative effect will not impact greatly on the difference in cumulative incidences 

displayed on the absolute scale. This is particularly pertinent in this case study 

because the frequency of deaths without recurrence greatly exceeded the 

frequency of recurrences. 

  covariates that affect the hazard of each event but in 
opposite directions 

It can be seen that the ability to lift both arms off the bed, having a 

haemorrhage on scan and being independent before stroke were each associated 

with a higher hazard of recurrence and a reduced hazard of death without 

recurrence (Table 3.4). Alternatively, those without those characteristics were 

at a reduced hazard of recurrence and an increased hazard of death without 

recurrence. There were also corresponding effects on the cumulative incidences 

(Figure 3.1 and Figure 3.2).  

For each competing risk, the effect on the subdistribution hazard was more 

pronounced than the effect on the hazard (lift arms off bed and haemorrhage on 

scan). This would normally suggest that the hazard of the other event may be 

having an influence on the cumulative incidence of the event. However, when 

there are opposing effects on the hazards, as in this case, the influence of the 

competing hazard is not such an issue. This is because any influence of the 

competing hazard will not alter the conclusions from the effect from the hazard 

of the event of interest. For instance, being able to lift both arms off the bed 

was found to be associated with an increase in the hazard of recurrence and this 

contributed to a relative increase in the cumulative incidence of recurrence 

seen in Figure 3.1(b). That there was a decreased hazard of death without 

recurrence may mean there would be more available to be at risk of recurrence. 

However this would only result in an increase in the cumulative incidence of 
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recurrence and therefore not contrast with the conclusion from the effect on 

the hazard of recurrence. 

In Figure 3.1(a) and (b) it can be seen, as expected from Table 3.4, that the 

cumulative hazard and incidence of recurrence was higher for those who could 

lift both arms off the bed compared to those who could not, and that for death 

without recurrence the opposite was true. However, the relative effects found 

in Table 3.4 were not always apparent in Figure 3.1(b) and 3.1(d) due to the 

dominance of the absolute effect of death without recurrence over the absolute 

effect of recurrence. For example, Figure 3.1(b) did not reflect that the relative 

effect of lift arms was more pronounced for the subdistribution/incidence of 

recurrence than it was for the subdistribution/incidence of death without 

recurrence. Nor did it reflect that the effect on the subdistribution/incidence of 

recurrence was more pronounced than the effect on the hazard of recurrence in 

relative terms. Therefore it is imperative to consider both the relative effects 

(Table 3.4) and the absolute effects (Figure 3.1 and Figure 3.2) to fully 

appreciate the effects of the covariates on both the hazard and incidence of 

each of the competing events. This is also true of the effects of covariates that 

follow. 
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Figure 3.1 Cumulative hazard vs cumulative incidence: lift both arms and 

haemorrhage on scan 
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3.3.2   covariates that only affected the hazard of one event 

It could be seen that age had no effect on the hazard of recurrence but that 

advancing age increased the hazard of death without recurrence (Table 3.4). 

The corresponding effects on the cumulative incidences were consistent with 

this (Figure 3.2(d)). Therefore, in particular, the increased hazard of the 

competing event death without recurrence was not strong enough to materially 

affect the cumulative incidence of recurrence. Specifically, the heightened 

hazard of death before recurrence could occur, as age increased, did not have 

any discernible reduction on the risk of recurrence, as age increased, even 

though there would be less patients alive to experience it. 

It could also be seen that sex had no effect on the hazard of death without 

recurrence but being male decreased the hazard of recurrence (Table 3.4). 

Again, this was consistent with the corresponding effects on the cumulative 

incidences (Figure 3.3 (a) and (b)). This implies that the relative effect of being 

male on the cumulative incidence of recurrence was directly related to the 

hazard of recurrence without any indirect influence from the competing risk 

death without recurrence. Similarly, the cumulative incidence of death without 

recurrence was a direct effect which was not influenced by the effect of sex on 

recurrence.   

Analogous conclusions could be drawn for those with unknown carotid stenosis 

compared to those with 70-100% ICA, except it was unknown stenosis that had no 

effect on the hazard of recurrence while it was associated with an increase in 

the hazard of death without recurrence (Figure 3.3 (c) and (d)). 
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Figure 3.2 Cumulative hazard vs cumulative incidence: independence before stroke and age 
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Figure 3.3 Cumulative hazard vs cumulative incidence: sex and stenosis 
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3.3.3 covariates that affected the hazards of each event in 
the same direction 

It could be seen that having atrial fibrillation and other occlusive vascular 

disease each increased the hazard of both competing risks (Table 3.4 and Figure 

3.4(a) and (c)). These effects were also seen in the cumulative incidences 

although the effects were slightly attenuated. This suggests that there may have 

been a degree of influence of the competing risk on each of the events. 

Specifically, the attenuation in the effect on the cumulative incidence of 

recurrence may have been due to the increased hazard of death without 

recurrence, meaning there were less at risk to be susceptible to recurrence. A 

similar argument may explain the attenuation in the cumulative incidence of 

death without recurrence. 

Again, with reference to atrial fibrillation and other occlusive vascular disease, 

Table 3.4 shows that the relative effect in hazard/subdistribution hazard is 

actually higher for recurrence than for death without recurrence, but Figure 3.4 

seems to suggest the opposite. For instance, for those with other occlusive 

vascular disease, the increase in relative hazard of recurrence of 41% only 

equated to a difference in cumulative incidences at 3 years of 3.1%; specifically 

12.5% versus 9.4% respectively for those with and without other occlusive 

vascular disease. In contrast, the increase in relative hazard of death without 

recurrence of only 21% equated to a larger difference in cumulative incidence at 

3 years of 5.3%; specifically 54.4% versus 49.1% respectively for those with and 

without other occlusive vascular disease. Therefore, it helps to use both Table 

3.4 and the Figures to gauge the underlying prevalences that hazards are acting 

on to produce the cumulative incidences, especially when the occurrence of one 

event is so much higher than the other.  

There was a relative reduction in hazard of each competing risk for those with 

orientated speech, with a more pronounced effect for death without recurrence 

(Table 3.4). However on the absolute scale, there was no effect of orientated 

speech on the cumulative incidence of recurrence, even though there was a 

trend towards a reduced hazard (Figure 3.5).  
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Figure 3.4 Cumulative hazard vs cumulative incidence: atrial fibrillation and other occlusive 
vascular disease 
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Figure 3.5 Cumulative hazard vs cumulative incidence: orientated speech 

 

This may be explained by more of those with orientated speech having a 

recurrence than was perhaps expected, due to the decreased hazard of death 

without recurrence meaning there was more left to be at risk of recurrence. As 

such, the (non-significant) increase in the hazard of recurrence was masked from 

the cumulative incidence of recurrence, due to the more pronounced decrease 

in the hazard of death without recurrence.  

Finally, there was a relative increase in the hazard of each competing risk for 

those with 70-100% ICA symptomatic carotid stenosis compared to those for 

whom it was unknown/unassessable, with a more pronounced effect for 

recurrence (Table 3.4). Even though there was a (trend towards a) relative 

increase in the hazard of death without recurrence, on the absolute scale, there 

was no effect on the corresponding cumulative incidence (Figure 3.3 (d)). An 

inspection of the plots helps interpret this finding.  It can be seen in Figure 3.3 

(c) and (d), in those with 70-100% symptomatic carotid stenosis, that the 

cumulative hazard and incidence of recurrence was higher than for death 
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without recurrence. The stronger increase in the hazard of recurrence could 

explain why the cumulative incidence of death without recurrence for those 

with 70-100% ICA stenosis rose more gradually, and therefore was more in line 

with that for <70% ICA stenosis. 

 Consequences of not taking into account competing 
risks 

This section demonstrates some of the bias that can be introduced if an 

inappropriate approach that does not take into account competing risks is used. 

Two different illustrations are used. Firstly, the non-parametric naïve Kaplan-

Meier approach is compared to the competing risks cumulative incidence 

approach. Secondly, the estimates are based on modelling that considers the 

effects of covariates. The naïve cause-specific hazard Cox approach to modelling 

is compared to the more appropriate calculation of the cumulative incidence, 

which is based on combining the cause-specific hazard of each of the competing 

risks. The effects of selected covariates on death without recurrence are used 

for illustration. 

  Non-parametric naïve Kaplan-Meier versus competing 
risks cumulative incidence   

Figure 3.6 on the next page shows, for each of the competing risks, the non-

parametric naive Kaplan-Meier estimate of cumulative incidence, alongside that 

of the more appropriate estimate that takes into account competing risks.  

It can be seen in Figure 3.6 that, for death without recurrence (dashed lines), 

bias starts to be introduced from about 1 year onwards. The bias results in 

progressively more inflation of the cumulative incidence. By 3.5 years the biased 

cumulative incidence estimate is 29.2%, compared to the more appropriate 

estimate of 26.4%. Therefore, inflation of around 11% has resulted. With regards 

to recurrence (solid lines), the bias begins from as early as 6 months. By 4 years 

the biased estimate is 20.2%, compared to the more appropriate estimate of 

17.1%, an inflation of 18%. 
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Figure 3.6 non-parametric naïve KM vs competing risks cumulative incidence 

 

  Naïve cause-specific hazard-based cumulative  
incidence  versus that derived appropriately using the 
cause-specific hazards of each of the competing risks  

Figure 3.7 on the next page shows the effect of four different covariates in turn 

on the cumulative incidence of death without recurrence. Cumulative incidences 

based on the naïve cause-specific hazard approach and those based on the 

appropriate derivation using all cause-specific hazards are shown for each level 

of the covariate. Each plot shows the outcomes for the reference patient 

described in section 3.3 on page 63, alongside that when the level of the specific 

covariate is changed. 
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Figure 3.7 Cumulative incidences derived using the naïve cause-specific hazard approach 

versus those using the more appropriate cause-specific hazard approach. Abbreviations: 

CSH=cause-specific hazard, CIF=cumulative incidence function 

The reference patient had a biased 3.5 year cumulative incidence of 67.1% and a 

more appropriate cumulative incidence of 60.3%, an inflation bias of 11%. Each 
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of the changed covariate levels will now by commented on in turn. Figure 3.7(a) 

shows, that for not independent before stroke, the biased cumulative incidence 

was 81.6% by 3.5 years compared to the corresponding more appropriate 

estimate of 75.6%. Therefore not taking into account the competing risk inflated 

the estimate by 8%. The corresponding information for those with atrial 

fibrillation (Figure 3.7(b)) was a biased cumulative incidence of 76.7% and an 

appropriate cumulative incidence of 65.1% resulting in an inflation of 18%. 

Furthermore, the three corresponding percentages of interest were 53.1%, 42.7% 

and 24% for having a haemorrhage on scan (Figure 3.7(c)). Figure 3.7(d) 

demonstrates the effect of not using an appropriate competing risks method 

with regards to symptomatic carotid stenosis. It can be seen in Figure 3.7(d) that 

the most dramatic bias was introduced for 70-100% ICA stenosis. By 3.5 years, 

the biased and more appropriate cumulative incidences were 38.8% and 30.4% 

respectively, inflation of 28%. There was also prominent bias by 3.5 years with 

<70% ICA stenosis, with biased and more appropriate cumulative incidences of 

32.3% and 28.6% respectively, inflation of 13%.       

 Discussion/summary of results 

This chapter presented competing risks analyses of the Edinburgh Stroke Study 

(ESS), with ESS described in section 3.1. Each of the remaining sections 

presented various different aspects of competing risks analysis to illustrate the 

insights that can be gained over standard survival analysis. Section 3.2 

demonstrated the extra insight that can be gained from decomposing a 

composite outcome into its component competing risks. In particular, it was 

found that being able to lift both arms off the bed had opposing effects on the 

two competing risks. Those able to lift their arms off the bed were found to be 

at a reduced hazard of death without recurrence but at an increased hazard of 

recurrence. It may seem counterintuitive at first that the positive outlook of 

being able to lift arms could result in the negative outcome of recurrence. 

However, when considering this in the context of the competing risk death 

without recurrence, it becomes clear that recurrence, while still negative, is the 

least negative outcome. Those able to lift their arms off the bed were more 

susceptible to recurrence because they were more likely not to die before 



 

Chapter 3    Competing risk analysis with the Edinburgh Stroke Study    78                                                                                                                                                                                                  

 

having a recurrence. Not being able to lift both arms off the bed was found to be 

associated with the worse prognosis of death before even experiencing a 

recurrence. Importantly, the increased hazard of recurrence found to be 

associated with being able to lift both arms off the bed was undetectable from 

the analysis of the composite outcome alone, due to the dominance of death 

without recurrence. Therefore, the insightfulness of the competing risks analysis 

was demonstrated. It identified a group of patients who might benefit from 

targeted strategies to prevent recurrence. 

Having a haemorrhage was also found to have opposing effects on the two 

competing risks. Specifically, having a haemorrhage was associated with a higher 

hazard of recurrence, and not having one indicated a reduced hazard of death 

without recurrence, although the latter failed to reach significance at the 5% 

level. The analysis of the composite outcome did not find any evidence of an 

effect and therefore masked both of these effects on the competing risks. A lack 

of effect resulted because the opposing effects on each of the two competing 

risks were cancelling each other out. Therefore, this again demonstrated the 

added benefit of the competing risks analysis over that of the composite 

outcome alone. 

The effect of sex on the hazard of recurrence also highlighted the value of the 

competing risks analysis. The analysis of the composite outcome did not find any 

evidence of an effect of sex, and therefore masked that being female was 

associated with a higher hazard of recurrence. 

Section 3.3 demonstrated that a greater understanding of a competing risks 

scenario can be gained by considering both the hazard and cumulative incidence 

of each competing risk. In particular, it illustrated the effects of covariates on 

the (subdistribution) hazard ratios of each competing risk alongside presenting 

cumulative hazard and cumulative incidence plots. Furthermore, it emphasised 

how these aided interpretation of the effects found in the competing risks 

scenario. It showed that the effect of a covariate on the cause-specific hazard of 

an outcome may not necessarily translate into the same effect on the 

cumulative incidence. It would appear to be the first time such a comprehensive 
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competing risks analysis had been carried out for stroke recurrence and death 

without recurrence.  

For example, the cumulative hazard plot for orientated speech showed that the 

hazard of recurrence was lower for those with orientated speech, but the 

cumulative incidence plot showed no effect of orientated speech. This could be 

explained by the fact that those with orientated speech also had a lower hazard 

of death without recurrence, but that this reduced hazard was more pronounced 

than that for recurrence. This meant that there were more of those with 

orientated speech having a recurrence than was perhaps expected, due to there 

being more of them left to be at risk of recurrence owing to the decreased 

hazard of death without recurrence. Therefore, the cumulative incidence of 

recurrence for this group was in line with that for those without orientated 

speech, instead of being lower than it. 

In another example, the cumulative hazard plot for symptomatic carotid stenosis 

showed there to be no difference between the hazard of recurrence between 

those with <70% ICA and unknown/unassessable stenosis. However the 

corresponding cumulative incidence plot showed that the risk of recurrence was 

lower in those with unknown/unassessable stenosis. This could be explained by 

the increased hazard of death without recurrence for those with 

unknown/unassessable stenosis compared to <70% ICA. 

In another similar example, the cumulative hazard plot of symptomatic carotid 

stenosis showed that the hazard of death without recurrence was higher for 

those with 70-100% ICA than those with <70% ICA. However the corresponding 

cumulative incidence plot showed very little difference between the two groups. 

This could be explained by there being an even more pronounced effect of an 

increased hazard for recurrence than that for death without recurrence. This 

meant there were less of those with 70-100% ICA available to die without 

recurrence and therefore the corresponding cumulative incidence for this group 

was lower than expected and more in line with that for <70% ICA. 

In this research, none of the cumulative incidence curves for the two competing 

risks for a particular covariate level crossed as more time passed. This might 
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have been seen, however, in a study where the occurrence of the competing 

risks was more evenly balanced. It would also be more likely in such a situation 

if the competing risks had a stronger competing effect on each other or the 

study had a longer follow-up period. Furthermore, because the prevalence of 

death without recurrence was so much higher than that for recurrence, it was 

especially beneficial to consider both the relative effects (hazards) and absolute 

effects (cumulative incidences) for each competing risk. 

The chapter then proceeded to illustrate the consequences of not taking into 

account competing risks in section 3.4. To do this, naïve Kaplan-Meier/Cox 

predictions were compared to those that appropriately took competing risks into 

account. For instance, it was shown that inflation of 18% arose in the estimate of 

the 4-year cumulative incidence of recurrence when using the biased Kaplan-

Meier method compared to the more appropriate competing risks approach  

(sub-section 3.4.1). Furthermore, when the effects of covariates were taken into 

consideration, there was inflation in the estimate of the 3.5-year cumulative 

incidence of death without recurrence of 11% for the reference patient (sub-

section 3.4.2). In addition, inflation bias of 8%, 17% and 24% were evident when 

the values of independent before stroke, atrial fibrillation and haemorrhage on 

scan respectively were changed from that of the reference patient. Also, when 

the level of symptomatic carotid stenosis was changed to <70% and 70-100% ICA 

respectively, inflation biases of 27% and 13% were introduced. Therefore, it is 

imperative to use an approach that appropriately takes into account competing 

risks to avoid introducing such bias. 

The research in this study found that being female, having previous other 

occlusive vascular disease, being able to lift both arms off the bed, having 70-

100% ICA symptomatic carotid disease, having atrial fibrillation and having a 

haemorrhage on scan were each associated with a higher hazard of recurrence. 

It was also found that the above characteristics, with the exception of previous 

other occlusive vascular disease which was only significant at the 10% level, 

were associated with a higher cumulative incidence of recurrence.  
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However, the finding that females were more likely to have a recurrence is in 

contrast to the results from some of the studies summarised in Appendix III, the 

evidence table discussed in sub-section 2.10.2. While Rutten-Jacobs et al. (2013) 

(Netherlands) and Castilloux et al. (2015) (Canada) did not find any effect of 

gender on recurrence, Sun et al. (2013) (Singapore), Andersen et al. (2011) 

(Denmark) and Lewsey et al. (2010) (Scotland) did find being male to be 

associated with an increased risk of recurrence. This contrast with the study by 

Lewsey et al. (2010) in particular is worth exploring further because both studies 

used similar Scottish populations. In this current research, patients were 

followed-up from their index stroke and a limitation of this was that it was not 

possible to determine whether the stroke was a first-ever or a recurrent stroke. 

Therefore, for patients with recurrences, it was not known whether this was 

their first such event or a subsequent one. Time to recurrence and time to death 

are both likely to be very different between patients with a first-ever stroke and 

those who have already had a recurrence. However, the finding in the current 

research with regards to previous other occlusive vascular disease was similar to 

the results found by Castilloux et al. (2015) who found past medical conditions 

to be associated with a higher hazard of recurrence. In addition, the research in 

this chapter confirmed the results for stroke severity found by Andersen et al. 

(2011) and Rutten-Jacobs et al. (2013) and those for atrial fibrillation found by 

Lewsey et al. (2010). 

In the case study used in this chapter, the incidence of death without recurrence 

far exceeded that of recurrence. In situations such as this when the number of 

events are not well balanced, or the strength of competition between the events 

differs, it is imperative to consider both relative and absolute effects because 

otherwise inferences from competing risks analyses can be problematic. For 

example, this research showed that, compared to those with <70% ICA 

symptomatic carotid stenosis, those with 70-100% ICA symptomatic carotid 

stenosis were 26% more likely to die without recurrence. However, there was 

only a marginal difference between the two groups in terms of the absolute 

probabilities of death without recurrence, with 3-year probabilities of 26.4% 

versus 24.4%. Therefore, looking at either the relative or absolute effect in 
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isolation could be misleading because it does not give the whole picture of the 

competing risk process. 

On the other hand, it could be that the event that is not primarily of interest is 

so rare as to not affect the probability of an event of interest occurring. This 

would not constitute a competing risk process and therefore the rare event 

would not need to be included in the modelling. 

However, if the event of interest is rare then an alternative to the competing 

risk analysis in this chapter would need to be applied. This is because the 

competing risks analysis is based on studying the course of the disease by 

prospectively following up a cohort to see which subsequent outcomes they 

experience. In common with other investigations of rare outcomes, there are 

other study designs which are more efficient such as retrospective-based 

designs. 
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Chapter 4 Background to multi-state modelling 

4.1 Introduction 

The competing risks survival analysis framework was the focus of the previous 

two chapters. Chapter 2 provided the background to the approach, highlighted 

methodological issues that need to be considered and reviewed the literature 

into the extent of its use. Motivated by this, Chapter 3 presented empirical 

competing risks analyses with a stroke case study, an area where the technique 

has not been used to its full potential. Competing risks analyses are concerned 

with investigating which of two or more mutually exclusive events occur first 

and in that sense the risks are competing with one another. However, with the 

exception of when all the competing risks are specific causes of death, interest 

can be in the subsequent events experienced. Competing risks analysis is a 

simple form of modelling under the more general multi-state modelling survival 

analysis framework. This chapter focuses on multi-state modelling, which 

extends the competing risks approach to also consider events of interest that 

can happen after the first event.   

Multi-state modelling is of particular use when studying the course of a chronic 

and/or progressive disease. It allows each of the relevant stages (health states) 

across the disease pathway to be investigated. Therefore factors associated with 

an initial health state, a final health state (normally death) and all relevant 

states in between can be assessed. In particular, transitions involving different 

pathways can be compared. For example, in the stroke case study used in the 

previous chapter, the hazard of death in stroke patients could be compared 

between those who did and did not experience a recurrence. In addition, one of 

the main advantages of multi-state modelling over standard and competing risks 

survival analysis is the flexibility in predictions it can accommodate. Predictions 

of being in different health states over time can be estimated as patients enter 

the initial health state. Furthermore, dynamic predictions can be calculated, 

that is to say predictions as time progresses, especially as patients progress to 

other health states. Dynamic predictions have particular potential in an 

epidemiological/medical statistics context, but as yet that potential does not 

seem to be fully realised. In a health economics context, multi-state modelling 
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can be seen as an alternative form of state-transition modelling; a common 

approach in health economic modelling. Multi-state modelling has much to offer 

in that field, however as section 6.3 of chapter 6 will show it is not widely-

applied in that area. The continuous-time multi-state modelling framework is 

the specific focus of this current chapter. Discrete time decision-analytic state-

transition modelling is described in section 6.2 of chapter 6.  

This current chapter describes the multi-state modelling method, providing the 

background to the remaining empirical chapters of this thesis. Section 4.2 

introduces some important concepts relating to multi-state modelling, which is 

needed to fully understand the rest of the sections in this chapter. In particular, 

section 4.2 describes the illness-death model, a specific type of multi-state 

modelling that is later demonstrated empirically in Chapter 5 (stroke 

epidemiology) and Chapter 7 (health economics case study). Then, section 4.3 

provides an overview of Markov multi-state models. These models assume the 

Markov “memoryless” property. This is the condition that the next state to be 

visited, and the time that that occurs, only depends on the present state and not 

on any of the previous states visited or the time spent in previous states. Non-

parametric, semi-parametric and parametric approaches to fitting Markov multi-

state models are outlined separately. Next, section 4.4 describes semi-Markov 

multi-state models. These models relax the Markov property by assuming the 

process depends not only on the present state but also on the time since entry 

into the present state. The focus of section 4.5 is the flexibility in predictions 

that multi-state modelling can accommodate. Specifically, overviews are given 

of predictions at the start of the study for different health states and dynamic 

predictions that update prognosis as time progresses, and especially as patients 

progress to other health states.  

Contributions from the literature are used in the aforementioned sections of this 

chapter to help describe the multi-state modelling framework. Because these 

sections are discussing the methodological aspects of the approach, a robust 

search strategy was not developed to review all such contributions. However, for 

the final two sections of this chapter, section 4.6 and 4.7, search strategies 

were developed in order to review the extent of use of multi-state modelling. 
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Section 4.6 explores the use of multi-state modelling in a broad sense without 

concentrating on any particular area of medicine. Finally, section 4.7 discusses 

applied uses in the medical literature, with a particular focus on stroke 

epidemiology. This identifies gaps in existing research and motivates the 

empirical analysis of the stroke case study in the next chapter.  

4.2 Preliminary concepts 

The purpose of this section is to introduce important concepts related to multi-

state modelling necessary to fully understand the rest of the sections in the 

chapter. There has been a rapid emergence of literature in the medical 

statistics/general medical fields describing multi-state modelling in the last 10-

15 years. Contributions that provide succinct and useful introductions to multi-

state modelling include those by Putter et al. (2007) Commenges (1999), 

Hougaard (1999), Andersen et al. (2002), Andersen and Keiding (2002), Andersen 

and Perme (2008), Meira-Machado et al. (2009). Much of this chapter is largely 

based on these contributions. Multi-state modelling is also being increasingly 

recognised in the health economics field. Section 6.3 of chapter 6 provides a 

review in this area. 

Firstly, the illness-death model is introduced. The illness-death model, also 

known as the disability model, is one of the most straightforward and widely 

used models in multi-state modelling. The states and transitions involved in this 

model can be seen in Figure 4.1. 

Figure 4.1  State transition diagram for an illness-death model 
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There is an initial healthy state, an intermediate illness state and an absorbing 

death state. The death state is absorbing in the sense that once it is reached, it 

is not possible to move from it. (Generally, any state is said to be absorbing if 

there is no interest in what happens after it is reached).  The three transitions 

healthy  illness, healthy  death and illness  death are modelled. Therefore, 

patients in the healthy state can either move to the illness state, direct to the 

death state without entering the illness state or remain in the healthy state. 

Patients who reach the illness state can either move to the death state or 

remain in the illness state. One of the particular advantages of this modelling 

framework is that the risk of death with and without entering the intermediate 

state can be studied and compared.  

The model depicted in Figure 4.1 is said to be an “irreversible” or “uni-

directional” illness-death model. This is because once a patient reaches a new 

state, they cannot later revert to a previous one.  However, it is also possible for 

an illness-death model to be “reversible” or “bi-directional” by adding a 

transition for illness  healthy. This is particularly applicable to conditions that 

have a cure/remission phase. This chapter will focus on irreversible illness-death 

models for ease of illustration. However all the concepts discussed can be 

generalised to more complex models with more states and transitions. It will 

also be assumed that the times of transition are known exactly. Considerations 

for interval-censored data (Commenges, 2002) with missing or misclassification 

of states (van den Hout et al., 2014) are described elsewhere. Topics closely 

related to multi-state modelling including frailty (Putter and van Houwelingen, 

2015) and modelling of recurrences (Amorim and Cai, 2015) may also be of 

interest.  

As described in Andersen and Perme (2008), the formal definition of a multi-

state process is “a (continuous-time) stochastic process (X(t), t ∈  𝒯 ) with a 

finite state space 𝒮= { 0, 1, …, p} with right-continuous sample paths: X(t+) = 

X(t).” In the process, time is defined on 𝒯=[0, τ] or [0, τ) with τ ≤ + ∞. A multi-

state process X(.) also generates a history 𝒳𝑡 (an σ – algebra) which contains the 

history of the process in the interval [0, t]. This history consists of information 

relating to the previous states visited, and the time spent in previous states. 



 

Chapter 4    Background to multi-state modelling    87                                                                                                                                                                                                  

 

A fundamental concept in multi-state modelling is the transition probability.  For 

a state h and a state j the probability of h  j, the transition from h to j, is 

defined as: 

Phj (s,t) = Prob (X(t) = j | X(s) = h, 𝒳𝑠−) for h, j ∈ 𝒮,   s, t ∈ 𝒯,  s≤ t . 

Transition probabilities can also be represented in a matrix. The transition 

probability matrix for the illness-death model is 

𝑷(𝑠, 𝑡) = (

𝑝11(𝑠, 𝑡) 𝑝12(𝑠, 𝑡)   𝑝13(𝑠, 𝑡)

0 𝑝22(𝑠, 𝑡)   𝑝23(𝑠, 𝑡)

0                 0         𝑝33(𝑠, 𝑡) = 1

) 

Because the entries are probabilities, each row of 𝑷(𝑠, 𝑡) must sum to 1. 𝑝33(𝑠, 𝑡) 

is always one because the third state death is absorbing. 

Another related important concept is the transition intensity. This is defined as  

𝑞ℎ𝑗 (𝑡) =  lim
∆𝑡→0

𝑃ℎ𝑗(𝑡 ,𝑡+ ∆𝑡)

∆𝑡
  and as such is a derivative. 

It is usually known as the instantaneous hazard (rate) of moving from state h to j 

in the small time interval (t, t + ∆t). 

The transition intensities are often expressed in a transition intensity (hazard) 

matrix. All relevant transitions in a model are represented by non-zero entries, 

with zero entries otherwise. For example, for the illness-death model described 

previously, the transition intensity matrix would be: 

 

𝑸(𝑡) = (
𝑞11(𝑡) 𝑞12(𝑡)   𝑞13(𝑡)

0 𝑞22(𝑡)   𝑞23(𝑡)
0 0            0

) 

The matrix has as many rows and columns as there are states i.e. three. The 

intensities (hazard rates) for transitions 1  2 (healthy  illness),  1  3 
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(healthy  death) and   2  3 (illness  death) are represented by 

𝑞12(𝑡),    𝑞13(𝑡) and 𝑞23(𝑡) respectively. Each of the rows in 𝑸(𝑡) must add up to 

zero.  Therefore, 𝑞11(𝑡) =  −(𝑞12(𝑡) + 𝑞13(𝑡)) and 𝑞22(𝑡) =  −𝑞23(𝑡).  𝑞33(𝑡)  = 0 

because the third state death is absorbing. All other entries in 𝑸(𝑡) are zero 

because they do not represent a transition of interest in the model. 

A further important and related quantity is the cumulative hazard for the 

transition h  j, which is defined as: 

Hℎ𝑗(𝑡) = ∫ 𝑞ℎ𝑗(𝑠)
𝑡

0

 𝑑𝑠 

These all lead to the state occupation probability which is the quantity most of 

interest in multi-state modelling. It involves combining the hazards and 

probabilities of relevant transitions and its estimation will be described in 

subsequent sections of this chapter. It is defined as  

𝜋h(t) = Prob (X(t) = h) for h ∈ 𝒮 . The initial distribution, 𝜋h(0), is defined as  

𝜋h(0) = Prob (X(0) = h) for h ∈ 𝒮 leading to 𝜋h(t) = ∑  𝑗∈𝒮 𝜋j(0) Pjh(0,t). 

Another important consideration in multi-state modelling is the scale used to 

measure time. Two common approaches are “clock-forward” and “clock-reset”. 

With the clock-forward approach, time is measured from entry into the initial 

state, regardless of the state in the multi-state model. In contrast, with the 

clock-reset approach each time a patient enters a new state their clock is set 

back to zero. More details are available in the tutorial by Putter et al. (2007). 

A related concept is the Markov property.  The Markov property is the condition 

that the next state to be visited, and the time that that occurs, only depends on 

the present state, and not on any of the previous states visited or the time spent 

in previous states. Only clock-forward models can be Markov. The Markov 

property does not hold in clock-reset models because in that approach it is 

intrinsic that the time scale depends on the time spent in the previous state. 

However, if with the clock-reset approach, the sojourn time only depends on the 
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present state and the time since entry into that state, then the process is said to 

be semi-Markov. Markov and semi-Markov multi-state models are described in 

sections 4.3 and 4.4 respectively. 

4.3 Markov multi-state models 

This section describes estimation and prediction in Markov models. In Markov 

models, the Markov property described previously holds. Mathematically this is: 

Phj (s,t) = Prob (X(t) = j | X(s) = h, 𝒳𝑠−) 

            = Prob (X(t) = j | X(s) = h, X (tn-1)=in-1, …, X(t1)=i1) 

            = Prob (X(t) = j | X(s) = h) 

where 0 ≤ t1 ≤ … ≤ tn-1 ≤ s ≤ t ∈ 𝒯 is any non-decreasing sequence of n + 1 state 

occupation times and i1, …, in-1, i, j ∈ 𝒮.  

In other words, the state of the process at time t depends only on the most 

recent state occupied prior to time t. 

Non – parametric, semi – parametric and parametric methods will now be 

described separately. 

4.3.1 Non-parametric Markov multi-state models 

This section describes estimation for non-parametric Markov multi-state models. 

The models are non-parametric in the sense there are no covariates to be 

modelled. The standard non-parametric estimator of the cumulative transition 

intensity (hazard) is the Nelson-Aalen estimator. This is defined, for the 

transition h  j, as  
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𝐴̂ℎ𝑗(𝑡) =  ∑
𝑑𝑁ℎ𝑗(𝑡𝑖)

𝑌ℎ(𝑡𝑖)
𝑡𝑖 ≤𝑡

 

where   𝑡𝑖 indicates the event times,  𝑑𝑁ℎ𝑗(𝑡𝑖)  is the observed number of 

transitions from state h to state j at time 𝑡𝑖 and 𝑌ℎ(𝑡𝑖) is the number of subjects 

at risk of the h  j transition at time 𝑡𝑖 . 

At event times 𝑡𝑖 , the Nelson-Aalen estimator, 𝐴̂ℎ𝑗(𝑡)  , makes jumps of 

magnitude ∆𝐴̂ℎ𝑗(𝑡𝑖). 

The cumulative hazards can be expressed in a matrix 𝑨(𝑡) with dimensions S × S, 

where S is the number of states.  The Nelson-Aalen estimator can be used to 

estimate the off-diagonal entries of the matrix 𝐴ℎ𝑗(𝑡𝑖)  (h ≠ j). The diagonal 

entries  𝐴ℎℎ(𝑡𝑖) =  − ∑ 𝐴̂ℎ𝑗(𝑡)𝑗≠ℎ  . Therefore, each row of the cumulative hazard 

matrix 𝑨(𝑡) sums to 0.  

The transition probability matrix can also be estimated using the  

Aalen– Johansen estimator, which is a product integral approach. 

The Aalen – Johansen estimator of the transition probabilities is defined as  

𝑷̂(𝑠, 𝑡) = ∏ 𝐈

𝑢 ∈(𝑠,𝑡]

+ ∆ 𝑨̂(𝑢) 

where u indicates the event time, 𝐈 is the identity matrix and ∆ 𝑨̂(𝑢)can be 

estimated using the Nelson-Aalen estimator. 

Alternative approaches for estimating transition probabilities include those that 

solve the Komogorov forward equation using either matrix exponentials or by 

calculating eigenvalues [Appendix A of  Aalen et al. (2008)]. 

4.3.2  Semi-parametric Markov multi-state models 

In the previous section, non-parametric estimators were described in the sense 

no covariates were involved. This section describes semi-parametric estimation 
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that allows for covariates to be included. The standard semi-parametric 

approach is Cox proportional hazard regression modelling for each transition. It 

is essentially the same as the cause-specific hazard approach to competing risks, 

with causes now replaced with the more broad transitions. The transition 

intensity (hazard) for transition h → j under a Cox model is defined as: 

αhj (t) = αhj,0 (t) exp (𝛽T Zhj ) 

where Z is the vector of covariates at baseline 

αh,j0 (t) is the baseline hazard for transition h → j 
Zhj is a vector of transition-specific covariates 
and 𝛽 is the vector of coefficients for the covariates. 
 
It is semi-parametric in that the covariates introduce parameters but the 

distribution of the baseline hazard is unspecified. 

The model specified above is the most general “full” model in that every 

transition has its own baseline hazard and each different transition has its own 

covariate effects. It is also possible for baseline hazards for relevant transitions 

to be related. For example, the baseline hazard for a transition that involves 

movement into the absorbing state death may have a proportional effect on the 

baseline hazard of another transition, that also involves movement into that 

state. 

Just as in the previous sub-section, estimation of transition probabilities can be 

carried out using the Aalen-Johansen estimator. Strictly speaking, however, the 

Aalen-Johansen estimator does not involve any covariates, and therefore 

estimation in the semi-parametric approach is said to be by the Aalen-Johansen 

type estimator. However, in practice, estimation is for a particular patient with 

covariates evaluated for a specific combination of values. The cumulative hazard 

of each transition for the covariate combination of interest is all that is needed 

to calculate the transition probabilities. Estimation of a cumulative hazard for a 

particular covariate combination under Cox models is available in standard 

software packages. This can then be used as input in the Aalen-Johansen 

estimator.   
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4.3.3 Parametric Markov multi-state models 

So far in this section, estimators have either been non-parametric or semi-

parametric and as such no distributions have been specified for the (baseline) 

hazards. This part introduces parametric estimators whereby hazards follow a 

specified distribution. First, the time-homogeneous Markov model is outlined 

that uses constant hazards over time. Next, the piecewise constant model with 

hazards that are constant over fixed timed intervals is described. Finally, the 

concept of more general time-inhomogeneous models is introduced, where 

distributions are used that allow hazards to vary over time. Parametric models in 

particular facilitate extrapolation of survival, and other relevant outcomes, 

beyond the observation period of a study. Therefore, parametric models are also 

a particular focus of the extrapolation of survival section 6.5 of Chapter 6. 

4.3.3.1 Time-homogeneous Markov model/constant hazard 

It has just been mentioned that it can be beneficial to assume a specific 

parametric distribution for a transition hazard. The simplest and most 

commonly-applied parametric approach is the time-homogeneous Markov model 

where the hazard is assumed to be constant over time. 

Mathematically, the transition intensity (hazard) for transition h → j is defined 

as: 

αhj (t) =λ     ∀ t, t=[0, τ] 
where λ is a constant and  τ is the end of the observation period.   

The time-homogeneous Markov process follows an exponential distribution with 

the hazard = λ, hazard rate= λt, and the transition probability phj (t) =1-exp(-λt). 

4.3.3.2 Markov piecewise constant hazard model 

It may not always be appropriate to assume that the hazard is constant 

(homogeneous) throughout the whole time-frame of interest. A widely-used 

approach that is used when the homogeneity assumption is not satisfied is the 
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piecewise constant hazard method. This is the simplest non-homogeneous 

approach. With this approach transition intensities (hazards) are defined by: 

αhj (t) = αhj
l  , θl-1 < t ≤ θl,        l = 1,2,3, …., q 

where θ =( θ1, … , θq-1) is a vector of cut-points for time intervals with 

0 = θ0 < θ1 < θ2 < … < θq-1 < θq =∞  . 

In other words, hazards are constant within fixed time intervals. It therefore 

offers the flexibility for hazards to be different across different time intervals. 

4.3.3.3 More general Markov time-inhomogeneous parametric models 

The assumption of constant hazards over the whole time period, or over time 

intervals, may be too stringent in practice. An alternative approach is to model 

the hazards with a parametric distribution that allows hazards to vary over time. 

For example, the Weibull and Gompertz distributions both have an additional 

parameter, compared to the exponential distribution, called a “shape” 

parameter. This parameter shapes the rate of change of the hazard over time. A 

Weibull distribution with a shape parameter of 1 and a Gompertz distribution 

with a shape parameter of 0 will each be equivalent to the exponential 

distribution. However, Weibull and Gompertz shape parameters >1 (<1) and >0 

(<0) respectively indicate hazards that increase (decrease) over time. 

Distributions with the flexibility for varying hazards over time are detailed in the 

extrapolation of survival section, section 6.5, of Chapter 6. 

4.3.3.4 Test of Markov property 

There are several ways of overcoming violations, or relaxing, the Markov 

property. For example, extra states can be added to reflect the possible order of 

transitions (Putter et al., 2007). Another option is to use the state arrival 

extended (semi-) Markov approach. This involves including a covariate that 

depends on the time since entry into a previous state in a Markov model. As 

such, the state arrival extended approach could act as a useful tool in which to 

test the appropriateness of the Markov property. The significance, both 
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statistically and clinically, of the covariate could help aid the decision as to 

whether the Markov assumption was reasonable. However, as with any covariate 

included in a model, any relevant assumptions such as linearity or proportional 

hazards must be met. Alternative tests that are more appropriate when 

violations of such assumptions are evident have also been proposed e.g. 

Rodríguez-Girondo and Uña-Álvarez (2016). 

4.4 Semi-Markov multi-state models 

The Markov assumption can be relaxed by fitting a semi-Markov model, also 

known as embedded Markov or Markov renewal models. With the semi-Markov 

approach, the process depends not only on the present state but also the time 

since entry into the present state. However, the Aalen- Johansen estimator (and 

eigenvector/matrix exponential equivalent) presented in section 4.3 relies on 

the Markov property holding.  This section describes a simulation-based 

approach to estimation of predictions that can be used with a semi-Markov 

model. It is the approach used in the mssample function in the mstate R 

package (de Wreede et al., 2010).  

Given a cumulative hazard for each transition evaluated for a specified set of 

covariate values, i.e. for a specific patient, state occupancy probabilities can be 

estimated by simulation by repeatedly sampling complete paths through the 

multi-state model.  

An algorithm to generate such paths is described in Fiocco et al. (2008) and 

repeated here. It is based on the ideas of Dabrowska (1995) for simulation in 

competing risks blocks. The algorithm makes use of the fact that a multi-state 

model can be separated into a series of (linked) competing risks blocks. It 

involves simulating transition times and states for each block. The algorithm is 

as follows: 

Let i be the starting state and ti = s the starting time. Repeat the following 

steps: 
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1. Let I be the set of states that can be reached from i. If I =∅, stop. 

Otherwise, let, for j ∈ I, Λ𝑖𝑗(𝑡) be the cumulative hazard function for transition 

i → j . 

2. Compute Λ𝑖(𝑡) = ∑ Λ𝑖𝑗(𝑡)𝑗 ∈ 𝓙  

3. Sample t∗(>ti) from Λ𝑖(𝑡) −  Λ𝑖(𝑡𝑖). If Λ𝑖(∞)is finite, t∗=∞ may be sampled with 

positive probability. 

4. If t∗=∞, stop. Otherwise, select state j as the next state with probability 

dΛ𝑖𝑗(𝑡∗)/ dΛ𝑖(𝑡∗). 

5. Set i = j and ti =t∗. 

This process should then be replicated M times, where M is a large number, to 

generate complete paths through the multi-state model. The probability of a 

future event E given the patient’s history Hs, P(E|Hs), can then be estimated 

with Hs as specified by the starting state and starting time in the algorithm. An 

estimate of P(E|Hs) is given by the proportion of the M paths in which the event 

of interest E occurred. 

Alternative kernel-based and landmark approaches are detailed in Spitoni et al. 

(2012) and Putter and Spitoni (2016) respectively.  

As with Markov models, semi-Markov models can also be non-parametric, semi-

parametric or parametric. 

4.5 Flexibility of predictions at different times over the 
course of the disease 

This section highlights one of the main advantages of multi-state modelling, that 

of the flexibility in predictions the approach can accommodate. Like standard 

survival analysis, multi-state modelling allows the calculation of predictions, at 

the start of a study, of having an event (health state) of interest at any given 

time over the period of observation of the study. Furthermore, because multi-
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state modelling considers several different health states of interest 

simultaneously, it allows predictions of being in any given state at any given 

time, i.e. state occupancy probabilities. Just as above, the approach facilitates 

such predictions at the start of a study. 

However, one of the additional benefits of multi-state modelling involving 

several health states of interest is that dynamic predictions can be carried out. 

That is to say, predictions can be updated as time elapses and especially as 

patients progress to other health states. This then allows, for example, 

predictions at the start of a study to be compared with those starting further 

along a disease process. In particular, predictions starting from a given health 

state at a specific time can be compared with those starting from a different 

health state at the same time. 

In the multi-state modelling framework, the procedure used to calculate the 

state occupancy probabilities is depend on whether a Markov or semi-Markov 

model is built. In particular, obtaining dynamic predictions is more 

straightforward with a Markov than a semi-Markov model. In a paper by de 

Wreede et al. (2011) the authors explain that, as a patient moves to different 

states, the state occupancy probabilities obtained from a Markov model can be 

used to reflect these transitions. There are as many sets of state occupancy 

probabilities as there are states in the model, with each set corresponding to a 

different starting state. All these probabilities can be obtained automatically 

from just a single Markov model. An appropriate dynamic prediction can be 

obtained for a patient by changing the set of predictions that are used when 

entering a new state, with the prediction time updating to the time of 

transition. For example, say, an objective is to predict the probability of being 

in a health state representing the composite outcome relapse or death. 

Specifically, the prediction is for patient A who is in the initial state in the time 

interval [0, a), intermediate state from [a,b) and the relapse/death state from 

time b. Up until time a, the set of predictions with the initial state as a starting 

state would be used. However in [a,b) the predictions used would change to 

those with the intermediate state as the starting state.  
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The approach to (dynamic) prediction with Markov modelling relies heavily on 

the properties of the Aalen-Johansen estimator, which was outlined previously in 

section 4.3 on page 90. However this is not applicable to semi-Markov modelling, 

and therefore for such models an alternative approach to dynamic prediction is 

required. One such approach involves subsetting the data such that, for each 

starting state/time of prediction combination of interest, a dataset of patients 

who were in the given state at the given time is created. Modelling is then 

carried out with each different dataset to obtain the required dynamic 

predictions. 

4.6 Broad review of multi-state models in the medical 
literature 

Section 4.2 began by emphasising that there has been a rapid emergence of 

literature in medical journals providing a review of the multi-state modelling 

framework. This section investigates the extent to which the term multi-state 

modelling or related items has appeared in selected biostatistical, core clinical 

and general high impact clinical journals in a broad sense i.e. any mention of the 

terms from a methodology aspect or an application of the technique that is not 

specific to any particular area of medicine. The search strategy is detailed in 

Appendix VII. Figure 4.2(a) and (b) summarise the findings by year for the 

selected biostatistical and core clinical journals, respectively. 
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Figure 4.2  Broad search of multi-state modelling in the medical literature 

 

The search found that, in the biostatistical journals, there was a steady 

emergence of between 11 and 21 articles in each year from 2007 onwards. 

However, the appearance of multi-state modelling in the core clinical journals 

was not as pronounced, only reaching 7 articles at most in any one year. In the 

general high impact clinical journals, there was only 3 articles in total over the 

16-year period (one each in 2004, 2007 and 2015). 
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4.7 Review of illness-death modelling of stroke, 
recurrence and death in the literature 

This section describes a review of the literature that focuses on illness-death 

modelling of stroke, recurrence and death. The purpose of this is to identify 

gaps in the research and provide the context for the empirical illness-death 

modelling of stroke, recurrence and death in the next chapter. An illness-death 

model is also known as a disability model and is a commonly-used multi-state 

model. A search strategy was developed to allow the review to take place. An 

OvidSP search of titles, abstracts and keywords of contributions to 29/09/2016 

was performed using the following search terms: 

("multi-state model" OR "multistate model" OR "multi state model" OR "illness-

death model" OR "illness death model" OR "multi-state models" OR "multistate 

models" OR "multi state models" OR "illness-death models" OR "illness death 

models" OR "multi-state modelling" OR "multistate modelling" OR "multi state 

modelling" OR "illness-death modelling" OR "illness death modelling" OR "multi-

state modeling" OR "multistate modeling" OR "multi state modeling" OR "illness-

death modeling" OR "illness death modeling" OR "disability model*"  OR ("multi-

state" AND "Markov") OR ("multistate" AND "Markov") OR ("multi state" AND 

"Markov") OR ("illness-death" AND "Markov") OR ("illness death" AND "Markov") OR 

("disability AND "Markov") OR ("multi-state" AND "semi-Markov") OR ("multistate" 

AND "semi-Markov") OR ("multi state" AND "semi-Markov") OR ("illness-death" AND 

"semi-Markov") OR ("illness death" AND "semi-Markov") OR ("disability AND "semi-

Markov") OR ("multi-state" AND "model") OR ("multistate" AND "model") OR ("multi 

state" AND "model") OR ("illness-death" AND "model") OR ("illness death" AND 

"model") OR ("multi-state" AND "models") OR ("multistate" AND "models") OR 

("multi state" AND "models") OR ("illness-death" AND "models") OR ("illness death" 

AND "models") OR ("multi-state" AND "modelling") OR ("multistate" AND 

"modelling") OR ("multi state" AND "modelling") OR ("illness-death" AND 

"modelling") OR ("illness death" AND "modelling") OR ("multi-state" AND 

"modeling") OR ("multistate" AND "modeling") OR ("multi state" AND "modeling") 

OR ("illness-death" AND "modeling") OR ("illness death" AND "modeling") AND 

(stroke OR ischemic OR ischaemic OR "intracerebral hemorrhage" OR 
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"intracerebral haemorrhage" OR "subarachnoid hemorrhage" OR "subarachnoid 

haemorrhage" OR ICH OR SAH) AND (recur* OR multiple)).ab,ti,kw.  

The entire search found 15 contributions. After disregarding 8 duplicates, 3 that 

did not involve stroke patients, 1 that did not involve recurrence of stroke and 1 

which did not involve multi-state modelling, this left only 2 contributions. Each 

of these contributions were published very recently. The first contribution was 

an abstract by Penn et al. (2016) for a conference held in February 2016. The 

second was a journal article by Wetmore et al. (2016) published in September 

2016. The work by Penn et al. (2016) aimed to investigate whether referral to a 

transient ischaemic attack (TIA) unit reduced the risk of recurrent stroke. To do 

this, the authors used a multi-state model with the states symptom onset, 

referral, arrival at the unit, recurrent stroke and death. They found associations 

between age, ABCDD, gender and unit intervention and the transitions in the 

model. The main finding stated in the abstract was that referrals to TIA units 

reduced the risk of recurrent stroke within 90 days. The information was 

somewhat limited because only the abstract was available. However, this 

contribution did highlight, as well as being useful to study the clinical pathway 

of a disease (especially chronic or progressive), multi-state models can be used 

to see how patients flow through the health care system, what factors influence 

the transitions and possible critical points for intervention. 

The article by Wetmore et al. (2016) reported on a study of hemodialysis 

patients who had experienced an ischemic stroke. The authors used a classic 

“illness-death” multi-state model to explore factors associated with stroke  

recurrence, stroke  death and recurrence  death, with Cox regressions used 

to model each transition. However there was no clarification of whether a 

Markov or semi-Markov approach was used. The paper stated that age was 

treated as a time-dependent variable by assessing it at first stroke and then 

again at the recurrent stroke. This treatment of age suggests a “clock-reset” 

approach to time was adopted and a semi-Markov approach was used. However, 

the probability plots presented appear to be those that can be created after 

using the probtrans function in mstate, which is only applicable to Markov 

models. Updating the value of age on entering a new state does not seem 



 

Chapter 4    Background to multi-state modelling    101                                                                                                                                                                                                  

 

appropriate with a Markov model. This is because a Markov model measures time 

using the “clock-forward” approach which means time is measured from the 

initial state, even in states that are further along the clinical pathway of the 

disease.  

Furthermore, on a number of occasions throughout the article, a parsimonious 

model is mentioned. However, while an AIC-based method has been devised by 

Kuk and Varadhan (2013) for the Fine and Gray proportional subdistribution 

hazards modelling approach to competing risks, no equivalent has yet been 

suggested for the cause-specific hazards modelling approach to competing risks 

used in multi-state modelling. Using AICs/likelihoods for variable selection could 

be inappropriate and needs to be treated with caution. This was discussed 

further in section 2.7.2 of chapter 2.  

In addition, the  explanation of transition probabilities is misguided (Wetmore et 

al. (2016)). The paper appears to be confusing state occupancy probabilities 

with transition probabilities. For instance, it uses the example of the transition 

probability for stroke  death but then outlines that this involves patients who 

could die directly after their first stroke, or die after experiencing a recurrent 

stroke. This latter explanation in fact relates to the state occupancy probability 

for the death state. In the multi-state modelling framework, the only 

probabilities it is appropriate to estimate is state occupancy probabilities. 

Because of the presence of competing risks, probabilities for a particular 

transition are not an appropriate quantity to estimate. This is analogous to 

estimating survival in a competing risks scenario, the inappropriateness of which 

is detailed in 2.3 of chapter 2.  

In another statement that relates to the confusion between state occupancy and 

transition probabilities the paper states “the Cox proportional hazards 

framework facilitates calculates [sic] probabilities of transition from the current 

state to the next state within a given time interval” (Wetmore et al. (2016)). 

This is misleading because by using the term transition probability, rather than 

state occupancy probability, a naïve Cox approach to prediction is being 

advocated. 
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Wetmore et al. (2016) then proceed to show plots of predicted probabilities. The 

first plot shows the stacked predictions of being in a given state over time, i.e. 

the state occupancy probabilities. Nonetheless, the paper continues to cause 

confusion by describing the plot as a “stacked transition probability graph”. The 

predictions in this first plot were predictions from time zero and do not update 

to reflect any states patients may progress to as time elapses. In the second 

plot, the paper does attempt to plot such dynamic predictions. However, the 

approach to this is unconventional and misguided. The article aims to 

demonstrate “the impact on survival of a subsequent stroke”. It does this by 

showing what survival drops to should a patient experience a recurrent stroke at 

1, 2 or 3 years. At the time of the recurrent stroke however, survival 

immediately drops 10-20% depending on when the recurrence occurred. This 

approach is not suitable because it fails to recognise that patients who have a 

recurrence are still alive at that point and so their survival is 100% at the time of 

recurrence. The article appears to have misinterpreted how to calculate 

dynamic predictions. 

The review in this section has shown that there was very little in the way of 

literature that focused on illness-death modelling of stroke, recurrence and 

death. The two contributions that emerged were only published in 2016. One of 

these pieces was a conference abstract and as such was limited in the 

information it provided about the multi-state model. The other contribution was 

a journal article but misled readers on some aspects of multi-state modelling. 

Therefore, while it is encouraging to see the start of multi-state modelling 

involving stroke, recurrence and death in the clinical literature, there is much 

scope to raise awareness of the technique in this disease area. This illness-death 

model will be the focus of the next chapter of this thesis. The chapter will 

include Cox cause-specific hazard modelling of each transition to assess the 

effects of covariates. It will also present predictions both at the time of the 

index stroke and dynamically as patients enter new states. Furthermore, it will 

highlight the extra insight gained from the multi-state modelling approach over 

and above that of competing risks analysis. 
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Chapter 5 Multi-state modelling with the 

Edinburgh Stroke Study data 

Chapter 3 presented competing risks analyses of the Edinburgh Stroke Study. 

These involved following patients to determine which one of the two events 

recurrence or death without recurrence they experienced first, if any. It did not 

consider any subsequent events experienced by those who had a recurrence. 

However, as explained in the previous chapter, the multi-state modelling 

approach can be used as an extension to competing risks to also consider events 

of interest that can happen after the first event. This chapter builds on the 

competing risks analysis of chapter 3 and presents a multi-state modelling 

approach.  

Section 5.1 begins by describing the illness-death model used, a particular type 

of multi-state model,  with the transitions stroke  recurrence, stroke  death 

and recurrence  death. The covariate effects on each of the transitions, at a 

univariable (unadjusted) and multivariable level are then presented. Predictions 

are then the focus of section 5.2, with both predictions at the time of index 

stroke and dynamic predictions illustrated. The dynamic predictions update the 

patient’s prognosis taking into account the time elapsed and any subsequent 

events since the initial stroke. Next, section 5.3 highlights the extra insight 

gained from the multi-state modelling approach over and above the competing 

risk analysis in Chapter 3. Finally, section 5.4 summarises the analysis presented 

in this chapter. 

5.1 Description of the multi-state model and results for 
covariate effects 

This section begins by describing the specific multi-state model used in terms of 

the health states, and transitions between them, that were considered. The 

section then continues by demonstrating the effect of the covariates on each of 

the transitions. 
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Figure 5.1 displays the state-transition diagram for the illness-death model used 

throughout this chapter. The purpose of showing Figure 5.1 is to provide the 

context for all the analysis that follows. When introducing the model, particular 

emphasis is given to how it builds on from the previous competing risks analysis. 

Figure 5.1  State-transition diagram for the illness-death model 

 

It can be seen in Figure 5.1 that the three health states stroke, recurrence and 

death are of interest, together with the three transitions stroke  recurrence, 

stroke  death and recurrence  death. 

While the competing risks analysis in chapter 3 also considered  

stroke  recurrence and stroke  death, the addition of recurrence  death in 

the multi-state modelling allows for different predictions. Now, recurrence acts 

as an intermediate state between the initial stroke state and final death stroke. 

Therefore, the multi-state modelling demonstrated in this chapter will build on 

the competing risks analysis and, in particular, allows comparison of the risk of 

death with and without recurrence. 

The patient characteristics used in the Edinburgh Stroke Study were previously 

described, overall and by state in the model, in Table 3.1 within section 3.1 on 

page 56.   
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The effects of the characteristics, or covariates, on each transition were then 

assessed more formally using Cox proportional hazard regression models. All the 

modelling in this chapter was Cox proportional hazards regression. As such, the 

usual appropriate checks for violations of proportional hazards were carried out, 

although they are not shown for reasons of brevity. 

Table 5.1 shows the effects of the covariates on the hazard of each of the 

transitions at the univariable (unadjusted) level.  

The results for stroke  recurrence and stroke  death were previously 

presented in the competing risk analysis in section 3.2 of chapter 3. They are 

repeated in this chapter to allow comparison of the results between all three 

transitions in the multi-state model. However focus will be primarily on the 

effects of the covariates on recurrence  death, as the addition of this 

transition is what distinguishes the multi-state modelling from the previous 

competing risks analysis. Covariates found to be statistically significant at the 5% 

level are shown in bold and those found to be statistically significant at the 10% 

level are shown in italics. 

Before carrying out the analysis for the recurrence  death transition, a Markov 

model was built to investigate the effect of time in the stroke state on post-

recurrence death. The covariate for time in the stroke state was found to have a 

statistically significant effect on post-recurrence death (p-value <0.001). In 

addition, its coefficient (s.e) of 1.709 (0.314) was likely to be of a size of 

practical importance. That positive coefficient indicated that the longer patients 

spent in the recurrence-free state before reaching recurrence, the more likely 

they were to die following recurrence. It is unclear why this was the case. 

Because the stroke state was a previous state, its statistical and practical 

significance indicates that the future did depend on patient history and 

therefore that the Markov property did not hold. Therefore a semi-Markov, 

rather than Markov, approach was taken for the modelling of the recurrence  

death transition. 
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stroke -> recurrence stroke -> death recurrence-> death 

  
Baseline 

hazard ratio 
 (95% CI) 

p-
value  

hazard ratio 
 (95% CI) p-value  

hazard ratio  
(95% CI) p-value  

age - centred 
on mean of 71  

1.02 (1.00, 1.03) 0.012 1.08 (1.06, 1.09) <0.001 1.06 (1.03, 1.09) <0.001 

male Female 0.72 (0.53, 0.98) 0.038 0.76 (0.59, 0.97) 0.025 1.26 (0.77, 2.06) 0.360 

independent 
before stroke 

No 1.12 (0.55, 2.27) 0.763 0.24 (0.18, 0.33) <0.001 0.59 (0.24, 1.49) 0.267 

previous 
cerebrovascular 
event  

No 1.34 (0.98, 1.84) 0.066 1.14 (0.88, 1.47) 0.329 1.09 (0.65, 1.82) 0.754 

previous other 
occlusive 
vascular 
disease 

No 1.53 (1.12, 2.09) 0.008 1.74 (1.36, 2.23) <0.001 2.03 (1.24, 3.34) 0.005 

previous 
hypertension 

No 1.33 (0.98, 1.81) 0.069 0.93 (0.73, 1.18) 0.543 0.99 (0.60, 1.64) 0.972 

diabetes No 1.23 (0.79, 1.91) 0.352 1.16 (0.81, 1.67) 0.417 1.53 (0.80, 2.93) 0.202 

current smoker 
and ex-smoker 
<12 months 

Non-
smoker 

1.09 (0.79, 1.51) 0.602 0.73 (0.57, 0.93) 0.011 1.16 (0.68, 1.99) 0.588 

lift both arms 
off bed  

No 1.70 (0.92, 3.14) 0.089 0.16 (0.13, 0.21) <0.001 0.44 (0.20, 0.97) 0.043 

walk 
independently 

No 0.94 (0.66, 1.33) 0.714 0.22 (0.17, 0.28) <0.001 0.40 (0.24, 0.66) <0.001 

orientated 
speech 

No 0.77 (0.49, 1.20) 0.245 0.17 (0.13, 0.22) <0.001 0.36 (0.20, 0.64) 0.001 

stroke 
syndrome   

0.448 
 

<0.001 
 

0.042 

 
Lacunar Cortical 0.79 (0.55, 1.15) 0.218 0.38 (0.26, 0.54) <0.001 0.64 (0.35, 1.18) 0.151 

 
Other Cortical 0.89 (0.60, 1.31) 0.551 0.68 (0.49, 0.93) 0.015 0.43 (0.20, 0.92) 0.030 

high blood 
pressure  

No 0.98 (0.71, 1.34) 0.881 1.08 (0.84, 1.38) 0.573 0.57 (0.32, 1.00) 0.051 

delay in 
assessment   

0.267 
 

<0.001 
 

0.018 

 
2-6 days 0-1 days 0.90 (0.58, 1.39) 0.634 0.63 (0.46, 0.85) 0.002 1.00 (0.53, 1.88) 1.000 

 
7 days or 
more 

0-1 days 0.74 (0.51, 1.09) 0.125 0.30 (0.22, 0.40) <0.001 0.49 (0.26, 0.90) 0.021 

symptomatic 
carotid stenosis   

0.013 
 

<0.001 
 

0.026 

 
70-100% 
ICA 

<70% ICA 1.86 (1.26, 2.75) 0.002 1.43 (0.96, 2.13) 0.082 1.79 (0.99, 3.23) 0.053 

 
Unknown <70% ICA 1.21 (0.75, 1.94) 0.435 4.68 (3.59, 6.09) <0.001 2.35 (1.20, 4.64) 0.013 

in atrial 
fibrillation 

No 1.65 (1.17, 2.34) 0.005 2.60 (2.01, 3.35) <0.001 1.99 (1.19, 3.33) 0.008 

visible infarct 
on scan 

No 1.10 (0.81, 1.50) 0.527 1.26 (0.98, 1.62) 0.067 1.58 (0.93, 2.70) 0.090 

haemorrhage on 
scan 

No 1.64 (0.96, 2.78) 0.069 2.21 (1.52, 3.22) <0.001 1.83 (0.87, 3.85) 0.110 

Table 5.1 Univariable Cox Regression for each of the transitions in the ESS multi-state model 

 

It can be seen in Table 5.1 that aging, having previous other occlusive vascular 

disease, not being able to walk independently, not having orientated speech, 

having a cortical stroke, having the shortest delay in assessment, having high 

symptomatic carotid stenosis and having atrial fibrillation were each associated 

with a higher hazard of death after recurrence. For each of these effects, there 

were corresponding effects in the same direction for stroke  recurrence and 
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stroke  death.  Not being able to lift both arms off the bed was also associated 

with a higher hazard of death after recurrence. However, it was associated with 

a reduced hazard of recurrence, albeit at the 10% significance level, with such 

patients having a higher hazard of death without recurrence. Furthermore, there 

was a reduced hazard of death after recurrence, albeit at the 10% significance 

level, for those with high blood pressure. This probably reflects that those with 

known high blood pressure were more likely to be receiving anti-hypertensive 

treatment. In addition, there was a higher hazard of death after recurrence, 

albeit at the 10% significance level, for those with a visible infarct on scanning.  

An unparsimonious multivariable analysis was then carried out considering the 

variables together in a model, allowing the effect of each covariate to be 

adjusted by other relevant variables (confounders). Table 5.2 on the next page 

shows the resultant model. 

It can be seen in Table 5.2 that aging, having previous other occlusive vascular 

disease, having the shortest delay in assessment and having high symptomatic 

carotid stenosis were still associated with a higher hazard of death after 

recurrence.  In addition, having a visible infarct on scan was also now found to 

be associated with a higher hazard of death after recurrence. 

A parsimonious multivariable model was then built for ease of subsequent 

prediction (Table 5.3). For the recurrence → death transition, backward 

selection using likelihood ratio tests were used to select variables for inclusion, 

with significance at the 5% level used as the criteria. The resultant model 

contained age, previous other occlusive vascular disease, symptomatic carotid 

stenosis and visible infarct on scan. The directions of the associations of each of 

these covariates with death after recurrence were as previously described for 

Table 5.2.  
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stroke -> recurrence stroke -> death recurrence-> death 

  
Baseline 

hazard ratio 
(95% CI) 

p-
value  

hazard ratio (95% 
CI) p-value  

hazard ratio 
(95% CI) 

p-
value  

age - centred 
on mean of 71  

1.01 (0.99, 1.02) 0.233 1.06 (1.05, 1.07) <0.001 1.07 (1.03, 1.11) 0.001 

male Female 0.67 (0.49, 0.92) 0.014 1.01 (0.78, 1.30) 0.950 1.71 (0.95, 3.07) 0.071 

independent 
before stroke 

No 1.19 (0.57, 2.46) 0.648 0.66 (0.47, 0.93) 0.019 2.58 (0.73, 9.18) 0.143 

previous 
cerebrovascular 
event  

No 1.17 (0.84, 1.63) 0.344 0.93 (0.71, 1.23) 0.624 1.44 (0.80, 2.61) 0.225 

previous other 
occlusive 
vascular 
disease 

No 1.33 (0.95, 1.85) 0.094 1.19 (0.91, 1.54) 0.203 2.66 (1.50, 4.72) 0.001 

previous 
hypertension 

No 1.12 (0.81, 1.56) 0.480 0.86 (0.66, 1.12) 0.263 0.95 (0.54, 1.68) 0.859 

diabetes No 1.16 (0.74, 1.82) 0.525 1.20 (0.82, 1.74) 0.353 1.83 (0.85, 3.93) 0.121 

current smoker 
and ex-smoker 
<12 months 

Non-
smoker 

1.14 (0.82, 1.60) 0.434 1.09 (0.84, 1.42) 0.506 0.90 (0.48, 1.68) 0.742 

lift both arms off 
bed  

No 2.56 (1.27, 5.13) 0.008 0.37 (0.26, 0.53) <0.001 0.79 (0.28, 2.19) 0.647 

walk 
independently 

No 1.03 (0.66, 1.62) 0.887 0.80 (0.55, 1.15) 0.232 0.92 (0.41, 2.06) 0.833 

orientated 
speech 

No 0.88 (0.53, 1.46) 0.616 0.46 (0.33, 0.64) <0.001 0.58 (0.25, 1.33) 0.197 

stroke 
syndrome   

0.981 
 

0.240 
 

0.074 

 
Lacunar Cortical 0.98 (0.66, 1.45) 0.925 0.73 (0.49, 1.07) 0.104 0.99 (0.48, 2.03) 0.973 

 
Other Cortical 1.03 (0.68, 1.56) 0.897 0.97 (0.69, 1.37) 0.868 0.39 (0.16, 0.95) 0.037 

high blood 
pressure  

No 1.06 (0.76, 1.48) 0.726 0.81 (0.61, 1.07) 0.137 0.73 (0.39, 1.36) 0.323 

delay in 
assessment   

0.307 
 

0.718 
 

0.016 

 
2-6 days 0-1 days 0.80 (0.51, 1.26) 0.342 0.88 (0.64, 1.21) 0.424 2.00 (0.89, 4.49) 0.092 

 
7 days or 
more 

0-1 days 0.70 (0.45, 1.09) 0.118 0.95 (0.66, 1.37) 0.773 0.68 (0.29, 1.61) 0.381 

symptomatic 
carotid stenosis   

0.012 
 

<0.001 
 

0.107 

 
70-100% 
ICA 

<70% ICA 1.94 (1.28, 2.96) 0.002 1.15 (0.76, 1.75) 0.499 1.43 (0.72, 2.85) 0.303 

 
Unknown <70% ICA 0.96 (0.55, 1.67) 0.887 2.67 (1.93, 3.70) <0.001 2.82 (1.06, 7.45) 0.037 

in atrial 
fibrillation 

No 1.60 (1.10, 2.33) 0.014 1.27 (0.96, 1.68) 0.093 1.11 (0.58, 2.13) 0.752 

visible infarct 
on scan 

No 1.13 (0.81, 1.57) 0.484 0.98 (0.74, 1.32) 0.915 3.01 (1.48, 6.12) 0.002 

haemorrhage 
on scan 

No 2.06 (1.09, 3.91) 0.027 0.69 (0.43, 1.11) 0.130 1.94 (0.64, 5.85) 0.239 

 

Table 5.2  Unparsimonious multivariable Cox regression for each of the transitions in the ESS 
multi-state model 
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stroke -> recurrence stroke -> death recurrence-> death 

  
Baseline 

hazard ratio 
(95% CI) 

p-
value  

hazard ratio 
(95% CI) 

p-
value  

hazard ratio 
(95% CI) 

p-
value  

age - centred on 
mean of 71  

1.01 (0.99, 1.02) 0.240 1.06 (1.05, 1.07) <0.001 1.08 (1.05, 1.11) <0.001 

male Female 0.69 (0.50, 0.94) 0.021 1.01 (0.79, 1.30) 0.909 
  

independent 
before stroke 

No 1.22 (0.59, 2.51) 0.589 0.66 (0.47, 0.91) 0.013 
  

previous other 
occlusive vascular 
disease 

No 1.41 (1.02, 1.95) 0.037 1.21 (0.93, 1.56) 0.154 2.42 (1.46, 4.03) 0.001 

lift both arms off 
bed  

No 2.37 (1.25, 4.49) 0.008 0.34 (0.26, 0.46) <0.001 
  

orientated speech No 0.79 (0.48, 1.28) 0.340 0.43 (0.32, 0.58) <0.001 
  

symptomatic 
carotid stenosis   

0.004 
 

<0.001 
 

0.003 

 
70-100% ICA <70% ICA 2.06 (1.38, 3.07) <0.001 1.26 (0.84, 1.89) 0.271 1.91 (1.06, 3.47) 0.032 

 
Unknown <70% ICA 0.99 (0.57, 1.71) 0.970 2.85 (2.08, 3.89) <0.001 3.33 (1.65, 6.71) 0.001 

in atrial fibrillation No 1.67 (1.16, 2.40) 0.006 1.31 (1.00, 1.72) 0.052 
  

visible infarct on 
scan 

No 
    

2.11 (1.21, 3.66) 0.008 

haemorrhage on 
scan 

No 1.94 (1.05, 3.58) 0.036 0.68 (0.45, 1.04) 0.075 
  

 

Table 5.3  Parsimonious multivariable Cox Regression for each of the transitions in the ESS 
multi-state model 

 

The modelling shown in Table 5.3 for each of the three transitions formed the 

basis of the predictions at the time of the index stroke displayed in the next 

section. Modelling was also carried out in preparation for dynamic predictions. 

 

Such predictions took place after a specified time point and accounted for the 

time that had elapsed and any transitions experienced by the patients up to that 

time point. Time points of 6 months and 1 year on from the index stroke were 

used. Therefore modelling was undertaken using just those patients who had 

managed to survive for 6 months after their stroke, and then again with those 

who were still alive 1 year on from their stroke.  Separate modelling was carried 

out for those who managed to stay in the initial stroke state to the specified 

time and for those who had experienced a recurrence by that time. For the 

modelling for those still in the initial stroke state, multi-state modelling of the 

three transitions was carried out. A similar approach was used for variable 

selection as for the predictions at the time of the index stroke. For those who 

experienced a recurrence, modelling of death after recurrence was carried out.  
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Table 5.4 shows the results of modelling for those who were still in the initial 

stroke state 6 months on from their stroke. This involved 1037 patients amongst 

whom there were subsequently 92 recurrences, 135 deaths without recurrence 

and 32 deaths after recurrence. Due to the modelling using a different cohort of 

patients – smaller in number but having survived 6 months free of recurrence – 

than at the time of the index stroke, the covariates included were slightly 

different. However, the effects of the covariates that were included were 

generally similar and in the same direction as in the previous modelling. 

 

Table 5.4  Parsimonious multivariable Cox Regression for each of the transitions in the ESS 

multi-state model: in initial stroke state 6 months on from stroke 

 

Table 5.5 shows the corresponding results for those who were still in the initial 

stroke state 1 year on from their stroke. This involved 960 patients amongst 

whom there were subsequently 64 recurrences, 88 deaths without recurrence 

and 23 deaths after recurrence. 

   
stroke -> recurrence stroke -> death recurrence-> death 

  
Baseline 

hazard ratio 
(95% CI) 

p-
value  

hazard ratio  
(95% CI) 

p-
value  

hazard ratio 
 (95% CI) 

p-value  

age - centred 
on mean of 71  

1.02 (1.00, 1.04) 0.029 1.07 (1.05, 1.09) <0.001 
  

male Female 0.68 (0.44, 1.04) 0.073 0.95 (0.67, 1.35) 0.785 
  

independent 
before stroke 

No 1.29 (0.47, 3.55) 0.624 0.51 (0.31, 0.84) 0.008 
  

previous other 
occlusive 
vascular 
disease 

No 
    

4.09 (1.91, 8.79) <0.001 

lift both arms 
off bed  

No 1.76 (0.79, 3.90) 0.167 0.66 (0.42, 1.05) 0.081 
  

orientated 
speech 

No 0.73 (0.38, 1.41) 0.353 0.55 (0.35, 0.87) 0.010 
  

symptomatic 
carotid 
stenosis 

  
0.059 

 
0.004 

 
0.008 

 
70-100% 
ICA 

<70% ICA 2.03 (1.18, 3.50) 0.011 1.55 (0.94, 2.56) 0.086 2.85 (1.20, 6.78) 0.018 

 
Unknown <70% ICA 1.07 (0.52, 2.19) 0.851 2.24 (1.39, 3.61) 0.001 3.87 (1.48, 10.17) 0.006 

in atrial 
fibrillation 

No 1.28 (0.76, 2.16) 0.361 1.56 (1.06, 2.29) 0.024 3.53 (1.58, 7.89) 0.002 

haemorrhage 
on scan 

No 2.12 (0.98, 4.57) 0.055 0.51 (0.23, 1.11) 0.088 
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stroke -> recurrence stroke -> death recurrence-> death 

  
Baseline 

hazard ratio 
(95% CI) 

p-
value  

hazard ratio (95% 
CI) 

p-
value  

hazard ratio (95% 
CI) p-value  

age  
 

1.03 (1.00, 1.05) 0.031 1.06 (1.03, 1.08) <0.001 
  

independent 
before stroke 

No 1.61 (0.39, 6.64) 0.511 0.43 (0.23, 0.78) 0.006 
  

previous other 
occlusive 
vascular 
disease 

No 1.04 (0.61, 1.79) 0.873 1.44 (0.94, 2.23) 0.097 4.01 (1.59, 10.10) 0.003 

lift both arms 
off bed  

No 1.49 (0.59, 3.78) 0.400 0.52 (0.30, 0.91) 0.021 
  

stroke 
syndrome   

0.346 
 

0.111 
  

 
Lacunar Cortical 0.74 (0.40, 1.36) 0.325 0.56 (0.32, 0.99) 0.047 

  

 
Other Cortical 0.63 (0.30, 1.29) 0.205 0.77 (0.43, 1.39) 0.388 

  
symptomatic 
carotid 
stenosis 

  
0.041 

 
0.230 

 
0.010 

 
70-100% 
ICA 

<70% ICA 2.24 (1.20, 4.17) 0.011 1.37 (0.74, 2.54) 0.311 3.66 (1.38, 9.69) 0.009 

 
Unknown <70% ICA 1.62 (0.74, 3.53) 0.225 1.64 (0.90, 3.01) 0.108 5.09 (1.39, 18.66) 0.014 

in atrial 
fibrillation 

No 0.94 (0.47, 1.87) 0.853 1.68 (1.05, 2.70) 0.031 
  

 

Table 5.5 Parsimonious multivariable Cox Regression for each of the transitions in the ESS 

multi-state model: in initial stroke state 1 year on from stroke 

 

Age was the only predictor included in the modelling of death after recurrence 

for the 56 patients (with 12 subsequent deaths) who were in the recurrence 

state 6 months on from their stroke. Age, centred on the mean of 71, had a 

coefficient (s.e) of 0.0533 (0.0265) and p-value of 0.044 in the resultant Cox 

model. The null model was used to model death after recurrence in the 70 

patients who were in the recurrence state 1 year on from their stroke, 7 of 

whom experienced death. 

5.2 Results of multi-state modelling: predictions 

This section highlights some of the possibilities in prediction with multi-state 

modelling. Two different prediction procedures are illustrated: prediction from 

the start of the study and dynamic prediction. The dynamic aspect of the latter 

is two-fold, taking into account changes in prediction as time elapses and also as 
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patients move to different health states. For each type of prediction, four 

patient profiles of differing risk are used for illustration. The patient profiles 

used can be seen in Table 5.6. 

 

(a) high 
risk 

(b) low risk (c) mid 
risk 1 

(d) mid 
risk 2 

age at stroke 61 61 71 71 

sex female male male male 

independent before stroke    

previous cardiovascular or peripheral 
vascular disease    

lift both arms off bed     

orientated speech    

symptomatic carotid stenosis Unknown <70% ICA 
70-100% 

ICA 
70-100% 

ICA 

in atrial fibrillation    

visible infarct on scan    

haemorrhage on scan    

stroke syndrome cortical lacunar cortical cortical 

 

Table 5.6 Risk profiles used for prediction 

 

5.2.1 Predictions from the start of the study 

Figure 5.2 on the next page shows, for each of the different risk profiles, 

predictions of being in each of the health states in the model with death divided 

into pre- and post- recurrence deaths. Predictions were at the time of the index 

stroke. 

It can be seen in Figure 5.2(a) that the probability of high-risk patients 

remaining in the initial stroke state (Alive, no recurrence) was essentially zero 

by the end of the 4 years of observation. This was primarily due to the very high 

risk of death without recurrence at 97% by 4 years. It could also be seen that the 

risk of death without recurrence was particularly severe within the first year 

post stroke. The risk of such a death was already 50% by 0.1 years post-stroke, 

rising to 88% by 1 year. In addition, the percentage of patients with recurrence 

at any one time did not exceed 1.1%. However this risk was only prevented from 

increasing by the risk of post-recurrence deaths, which was 3.2% by 4 years. 



 

Chapter 5    Multi-state modelling with the Edinburgh Stroke Study data    113                                                                                                                                                                                                  

 

 

Figure 5.2  Predictions, at the time of the index stroke, of being in each health state over 
time 

 

In contrast, 73% of those with the specified low-risk profile were predicted to 

still be in the initial stroke state 4 years post stroke (Figure 5.2(b)). Patients 

who did move from the stroke state were most likely to be alive with a 

recurrence. The percentage of patients with a recurrence had generally rose 

over the 4 years to 20% by 4 years. This was because there was a minimal risk of 

post-recurrence deaths. The risk of such deaths was only at 1% by 4 years. Even 

the risk of pre-recurrence deaths, prominent in the other risk groups, was only 

5% by 4 years.  
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For those with the mid-risk1 profile (Figure 5.2(c)), the probability of remaining 

alive without a recurrence, i.e. in the initial stroke state, was 46% 4 years post 

stroke. By far the most likely reason to move from the initial stroke state was 

pre-recurrence death with the percentage of patients doing so having reached 

45% by 4 years. The risk of being in recurrence at any one time and of post-

recurrence death was minimal at 7% and 2% respectively at 4 years. 

Figure 5.2(d), (mid-risk2 profile), is shown to demonstrate the effect of being 

able to lift both arms off the bed. The only difference between patients with 

mid-risk1 (Figure 5.2(c)) and mid-risk2 (Figure 5.2(d)) was that the latter were 

able to lift both arms off the bed and the former were not. Comparing Figure 

5.2(c) and Figure 5.2(d) it can be seen that those who were able to lift both 

arms off the bed were more likely to be alive with no recurrence, 16% versus 7% 

of patients, respectively, 4 years post stroke. In addition, the risk of death 

without recurrence was much lower in those who could lift both arms off the 

bed, compared to those who could not, at 17% versus 45% 4 years post stroke.  A 

higher percentage of those who could lift both arms off the bed were predicted 

to die after recurrence at 5% versus 2% in those who could not lift both arms off 

the bed. This is expected as there was a higher percentage of recurrences 

amongst those who could lift both arms off the bed compared to those who 

could not do so. 

5.2.2 Dynamic predictions 

The remainder of this section now focuses on dynamic predictions. These 

predictions provide an update to the predictions from the start of the study, 

that takes into account the time that has elapsed and whether any states of 

interest in the model have been experienced.  

Figure 5.3 shows, for patients who were still in the stroke state at the time of 

prediction, dynamic predictions of being in each of the health states in the 

model with death divided into pre- and post-recurrence deaths. Each of the four 

plots represent a different risk profile. Different health states are distinguished 

by colour and different starting times of prediction are distinguished by line 

style. 
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Figure 5.3 Dynamic predictions of each event 

 

Figure 5.3(a) demonstrates, for those at high risk, the predictions of being alive 

with no recurrence from the later starting times showed substantial 

improvement, albeit with convergence resulting in similar predictions by 4 years. 

For instance, the 1-year prediction of being alive with no recurrence at the time 

of stroke of 9% improved to 61% for those who managed to stay in that state 6 

months on from the index stroke. In addition, the corresponding 2-year 

prediction improved from the 3% at the time of the stroke to 34% and 55%, 

respectively, 6 months and 1 year on from the stroke. However, there was a lot 

less discrepancy in the 4-year predictions of 0%, 2% and 3% at the time of stroke, 

6 months on and 1 year on respectively. It can also be seen in Figure 5.3(a) that, 
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for predictions from each of the starting points, the probability of being in 

recurrence was virtually zero over time. This was due to the post-recurrence 

deaths which prevented this probability from increasing. The percentage of post-

recurrence deaths was also relatively low, and therefore the dramatic drops 

seen in the percentage of being alive with no recurrence were predominately 

due to the sharp increases in the percentage of pre-recurrence deaths.  

For those at low risk, the 4-year predictions of being alive with no recurrence 

improved from the 73% at the time of the index stroke to 80% starting 6 months 

on, and improved further still to 88% when the prediction started 1 year on 

(Figure 5.3(b)). Figure 5.3(b) also exhibits a reduction in the 4-year probability 

of being in recurrence, at 0.20, 0.14 and 0.06 for the predictions starting at the 

index stroke, 6 months on and 1 year on respectively.  

It can be seen in Figure 5.3(c) that, for those at mid-risk, the 4-year prediction 

of staying alive with no recurrence 6 months on from the index stroke was 60%. 

This was a marked improvement on the corresponding prediction at the time of 

the index stroke of 46%. It can be clearly seen that this was due to a 

corresponding reduction in pre-recurrence deaths. It can also be seen in Figure 

5.3(c) that the probability of being alive with no recurrence at 4 years was lower 

when the prediction started 1 year on, compared to 6 months on, from the index 

stroke. It was evident that this was due to a higher percentage of post-

recurrence deaths by 4 years when prediction started 1 year on, compared to 6 

months on, from the index stroke.  

The most marked difference between those at mid-risk who could not lift both 

arms off the bed (Figure 5.3(c)) and those who could (Figure 5.3(d)) was in the 

percentage of pre-recurrence deaths. In the latter, the percentage of pre-

recurrence deaths at 4 years was only 17% when predicting from the time of the 

index stroke, with similar predictions when starting 6 months on and 1 year on 

from the index stroke. Consequently, Figure 5.3(d) did not demonstrate the 

improvement in the prediction of being alive with no recurrence seen in Figure 

5.3(c) between the predictions that started at the index stroke and 6 months on 

from then. Instead, in Figure 5.3(d), the predictions of being alive with no 
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recurrence starting from progressively later times showed initial improvement 

before converging to a similar point by 4 years. The convergence of the 

predictions at the time of the index stroke and 6 months on was due to a 

combination of, in the predictions starting 6 months on, a steady relatively 

smaller frequency of recurrences over time together with the percentage of pre-

recurrence deaths rising more sharply. In addition to this, a rise in the 

percentage of post-recurrence deaths also contributed to the convergence of the 

predictions that started at 1 year. 

5.3 Comparison with competing risks analysis 

This section demonstrates the differences in predictions that can occur when 

using multi-state modelling compared to competing risks analysis. The risk 

profile mid-risk 1 previously outlined in Table 5.6 on page 112 is used for 

illustration.  

Figure 5.4 shows the competing risks cumulative incidence of recurrence 

alongside the probability of being in recurrence from the multi-state model. The 

probability of death after recurrence from the multi-state model is also shown 

because it aids interpretation of the difference in predictions as explained 

below. 

 

Figure 5.4  comparison of predictions of recurrence: multi-state modelling vs competing risks 
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It can be seen in Figure 5.4 that there was a marked discrepancy between the 

competing risks cumulative incidence of recurrence (dashed line) and the 

probability of being in recurrence from the multi-state model (solid line). Due to 

the estimate from the competing risks analysis being a cumulative incidence, it 

increased monotonically. It reflected the proportion of patients who had 

experienced a recurrence by a certain point in time. However, it did not take 

into account that patients will not be in the recurrence state indefinitely; 

patients will all inevitably die and therefore leave the recurrence state and 

enter the death state. The inclusion on the plot of the probability of death after 

recurrence from the multi-state model (dotted line) helps emphasise this. The 

competing risks analysis considered the flow from the stroke state into the 

recurrence state. However the predictions from the multi-state modelling gave a 

fuller picture by reflecting the flow both in and out of the recurrence state.  

5.4 Discussion 

This chapter presented analysis demonstrating the effects of covariates on each 

of the hazards for each relevant transition in a multi-state model of stroke, 

recurrence and death. Furthermore, it illustrated how these effects translated 

into state occupancy probabilities, with predictions at the time of the index 

stroke, and dynamically as time elapsed with any transitions experienced taken 

into account. In addition, it demonstrated the extra insight that can be gained 

from predictions from a multi-state model over and above that from a competing 

risks analysis. In particular, it emphasised that because cumulative incidences 

are the way predictions are presented from a competing risk analysis, the effect 

is one of monotonic increases. However, predictions in multi-state modelling 

consider the flow in and out of a health state and therefore provide additional 

insight to inform clinical decision making. That is to say, for a patient with a 

given set of risk factors, the modelling can give a prediction of being alive with 

recurrence over time, rather than just a prediction of the time that a recurrence 

is likely to happen. In doing so, it can help in identifying those likely to benefit 

from interventions to prolong their life after recurrence, or perhaps a group for 

inclusion in a trial investigating strategies to prevent subsequent recurrences. 

From another perspective, it may help with resource allocation by 
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differentiating those patients unlikely to benefit from such strategies because 

they have been severely debilitated and show no sign of improvement, and it 

may be more appropriate not to prolong their suffering.  

Multi-state modelling could provide a useful tool for clinicians to predict 

outcomes for their patients and to aid discussions with them. In particular, 

dynamic predictions could be used to communicate any improvements in 

prognosis as time has elapsed. For example, the concept of overcoming a 

“critical risk period” could be emphasised as positive news for a patient. That is 

to say, explaining that now they have survived through a particular period when 

the risk of death (or recurrence) is high, highlight the improvement in prognosis 

compared to earlier. Another use for the predictions that multi-state modelling 

can accommodate could be to encourage patients to change an aspect of an 

unhealthy lifestyle to improve their health. This is discussed further in  

Chapter 8. 

A consideration with dynamic prediction can be whether the values for 

covariates, where appropriate, should be updated to reflect the transitions 

experienced. This is particularly applicable to models involving recurrence, as 

often updated information on covariates is available at the time of recurrence, 

such as severity of disease. Even when predicting at the time of the initial state, 

it can be tempting to use covariates measured at the time of recurrence in the 

modelling of the recurrence  death transition. However, this would not be of 

any practical use for prediction for those in the initial state, at time 0 or 

dynamically, because this information would not be known at the time of 

prediction. Furthermore, in particular, all covariates included in any transition 

in a Markov model would need to start at the initial state value, as this is the 

way time is measured in Markov modelling.  

However, the landmarking approach does offer more flexibility when the 

predictions are for patients in the recurrence state at the time of prediction. 

Therefore, covariates measured at the time of recurrence can be considered. 

The data used for the analysis in this chapter was originally extracted for a 

competing risks analysis and did not contain covariate information at the time of 
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recurrence. However, because the study formed a register of stroke patients, all 

covariate information collected at the time of stroke would have also been 

available at the time of recurrence of strokes, because recurrences would have 

been included as separate strokes. That the analysis did not include covariates 

measured at the time of recurrence was also a limitation due to the omission of 

potential confounders. It is quite possible/likely that age at recurrence and 

severity of recurrence account for some of the association found between having 

a recurrence and subsequent mortality after recurrence. Furthermore, the 

recording of such information at post-stroke assessments could help to inform 

dynamic predictions, for both those still in the initial stroke state and those who 

had experienced a recurrence by the time of prediction. Therefore, it is worth 

bearing in mind the flexibility offered by the approach to accommodate updated 

covariate information and to exploit this in future research.  Doing so would 

enhance the insights such as those outlined at the end of the first paragraph of 

this discussion section. 

 



     

 121 

Chapter 6 Health economic modelling: 

two common approaches, review of the use of multi-state 

modelling, the assessment of model fit and extrapolation 

This chapter begins by summarising two common approaches in health economic 

modelling: partitioned survival (section 6.1) and Markov decision-analytic 

modelling (section 6.2). The purpose of this is to provide background and 

context for the next chapter which presents empirical analysis that compares 

these two methods with multi-state modelling. In order to put into context the 

use of multi-state modelling for health economic modelling, section 6.3 contains 

a review of multi-state modelling in the health economics literature. The 

chapter then discusses the assessment of fit of models over the observed period 

of a study in section 6.4. Finally, section 6.5 focuses on extrapolation of 

outcomes beyond the observed period, which is a particularly important issue 

and has been a prominent topic in the health economics literature in recent 

years. After some initial background to the need for extrapolation, section 6.5 

describes the conventional approach to extrapolation of parametric regression 

and some alternative approaches. The topic of extrapolation is then revisited at 

the end of this thesis in Chapter 8, where further developments in contributions 

to the literature in this fast-moving area are discussed.  

This thesis does not describe the following standard concepts in health economic 

modelling for which references are provided for the interested reader: 

calculating cost-effectiveness (Drummond et al., 2005), assessing robustness of 

results with one-way and probabilistic sensitivity analyses [Drummond et al. 

(2005) and Briggs et al. (2006)] and discounting of costs and benefits (Drummond 

et al., 2005). 

These concepts are not specific to any one approach to modelling. In particular, 

they are applicable when using the two approaches described in this chapter and 

the multi-state modelling described in chapter 4. 
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6.1 Partitioned survival 

 
One common approach in health economic modelling is partitioned survival. 

Partitioned survival involves splitting overall survival into partitions that 

represent different health states experienced while alive. Typically, each health 

state differs in terms of the quality of life it provides. The method was proposed 

by Glasziou et al. (1990) and is often called the Q-TWiST (Quality-adjusted Time 

Without Symptoms of disease and Toxicity of treatment) method. It is also 

described in Gelber et al. (1991) and Gelber et al. (1995), with the latter 

forming the basis for the description presented in this section.  

There are three steps to the partitioned survival method: 

1. define relevant outcomes that will determine the health states of 

interest 

2. partition the overall survival 

3. compare the treatments 

 
Step 1: Define the relevant outcomes/health states of interest 
 
Illustration of The Q-TWiST method normally involves the outcomes toxicity, 

disease-free survival and overall survival. It gets its name because time without 

either symptoms of disease or toxicity of treatment is one of the health states of 

interest. This description of the method, however, uses the outcomes 

progression-free survival and overall survival. This is a common approach in the 

oncology setting and chapter 7 of this thesis, the empirical chapter that includes 

an application of this method, is based on a clinical trial with these outcomes. 

Given that the relevant outcomes are progression-free survival and overall 

survival, the health states while alive that can be considered are progression-

free and progression. Figure 6.1 illustrates these different health states across 

time to eventual death for an individual patient. Utility weights are often 

assigned to health states to represent the quality of life experienced while in 

them. For illustration, Figure 6.1 assumes utilities of 0.8 and 0.6 for the 

progression-free and progression states respectively. 



 

Chapter 6    Health economic modelling:     123                                                                                                                                                                                                  

 

Figure 6.1 Illustration of quality-adjusted survival  

 

The two extremes for utility weights are 1 representing perfect health and 0 for 

death or states as bad as death. The utilities of 0.6 for progression and 0.8 for 

progression-free reflect the quality of life experienced relative to these two 

extremes. An estimate of quality-adjusted survival can then be obtained, for an 

individual patient, from: 

Q-SURV = UPROGFREE × PROGFREE + UPROG × PROG  

where PROGFREE = time spent progression-free, 

          PROG = time spent in the progression state, 

          UPROGFREE = utility while progression free, 

          UPROG = utility while in the progression state. 

 
However, interest is in comparing treatment groups rather than individual 

patients. For this, PROGFREE and PROG need to represent the mean time spent 

in these states in a particular treatment group. Their derivation is explained in 

Steps 2 and 3 below. 
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Step 2: Partition overall survival 

The next step is to partition the overall survival Kaplan-Meier curve into the 

health states defined in Step 1. Partitioning overall survival into progression-free 

and progression requires the progression-free survival Kaplan-Meier curve. Each  

treatment group should be considered separately.  

Figure 6.2 shows an example of the partitioning of overall survival (OS) using 

progression-free survival (PFS).  

 
Figure 6.2  Illustration of partitioned survival  

 
 
The area between the curves provide estimates of the mean duration in the 

relevant health state. Therefore, the mean duration in the progression state can 

be estimated from the area between the overall survival (OS) and progression-

free survival (PFS) curves. Similarly, an estimate of the mean duration 

progression-free can be obtained from the area under the progression-free 

survival curve. 

However, not every patient in the study in this illustration was observed long 

enough to reach progression and/or die. Therefore the progression-free survival 

and overall survival curves did not represent the entire lifetime of patients. 
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When the follow-up in a study stops before every patient has experienced the 

relevant outcomes, the estimates of mean duration in relevant states are said to 

be restricted means. In order to obtain estimates of the mean time in relevant 

states, instead of restricted means, parametric survival regression is one 

approach that can be used to extrapolate survival curves until the whole lifetime 

is represented. This is described later in this chapter in section 6.5. 

Step 3: Comparison of treatments 
 
The final step in the partitioned survival approach is to compare treatments in 

terms of the Q-SURV outcome described at the end of Step 1. Estimates of Q-

SURV are obtained for each treatment separately. The mean durations in the 

relevant states required for Q-SURV are calculated from the areas under the 

curves as detailed in Step 2. The treatment effect is then estimated from the 

difference between Q-SURV in the treatment group and that in the control 

group. 

6.2 Markov decision-analytic modelling 

Another common approach in health economic modelling is Markov decision-

analytic modelling. Instead of deriving mean times in relevant states from 

survival outcomes, as in partitioned survival, Markov decision-analytic modelling 

models the transitions between states directly [Sonnenberg and Beck (1993), 

Briggs and Sculpher (1998), Briggs et al. (2006) and Sun and Faunce (2008)]. It 

being a form of state transition modelling means it shares many similarities with 

the multi-state modelling which was the focus of the previous two chapters. 

Alongside describing the Markov decision-analytic approach this section will 

emphasis key differences between it and multi-state modelling. 

6.2.1 Define the relevant health states  

As with partitioned survival, the first step in Markov decision-analytic modelling 

is to define the health states of interest. Continuing with the illustrative 

example, Figure 6.3 shows the transition diagram for the Markov decision-

analytic model. 
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Figure 6.3 Markov decision-analytic model transition diagram 

 
 
The three states of interest are progression-free, progression and death. 

Initially, all patients are in the progression-free state. The three transitions 

progression-free  progression, progression-free  death and progression  

death are modelled. Therefore the composite event outcome progression or 

death, from the progression-free survival outcome used in the partitioned 

survival approach, is split into the two transitions of progression-free  

progression and progression-free  death. There are now two routes to death – 

either directly or via progression. 

In general, there is a decision to be made about which transitions are to be 

included in the model. This is also the case for multi-state modelling. However, 

all the transitions that are possible mathematically may not be of interest or 

make practical sense. For example, as already mentioned in section 4.2 for 

multi-state models, it is possible for models to have reversible transitions. That 

is to say once a patient reaches a state it is possible to revert to a previous one. 

This could be particularly useful for illnesses with a cure/remission phase. 

However, for instance, it would not make sense for a model to include a 

transition that involved movement from the death state.  
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The time horizon, i.e. the finite time frame over which to model, is split into 

discrete cycles. These cycles need to be sufficiently short to capture changes in 

clinical outcomes and costs. In practice, models typically use monthly or annual 

cycles. The circular arrows in Figure 6.3 next to the progression-free and 

progression states represent patients that stayed within that state for the length 

of a cycle.  

Therefore patients in the progression-free state could either move to the 

progression state, move direct to the death state without entering the 

progression state or remain in the progression-free state. Patients in the 

progression state could either move to the death state or remain in the 

progression state. Obviously patients who reach the death state cannot move 

from that state once there, hence the name “absorbing state” given to death. 

Patients must be in only one of the states at the end of each cycle. 

However, the notion of cycles is specific to Markov decision-analytic modelling 

because it measures time discretely. The use of cycles is not an issue for multi-

state modelling because it measures time continuously. That is to say, it uses 

the individual patient level data and therefore the exact time of transition is 

known, rather than the typical cohort simulation of Markov decision-analytic 

modelling over a series of cycles. Therefore, the circular arrows in Figure 6.3 

that represent staying in a state within a cycle are only a feature of transition 

diagrams for Markov-decision analytic modelling and not multi-state modelling. 

6.2.2 (Relaxation of) the Markov property 

The Markov property – often called the “memoryless property” - is assumed to 

hold in Markov models. This is the condition that movement from the present 

state is not dependent on the previous states visited or the length of the visits. 

Therefore Markov models are said to have no memory of the previous history of 

patients. (This was previously mentioned in chapter 4 because multi-state 

models can also be Markov).  

However, the Markov property can be relaxed by including tunnel states in the 

modelling. Figure 6.4 illustrates the use of tunnel states. 



 

Chapter 6    Health economic modelling:     128                                                                                                                                                                                                  

 

 

Figure 6.4 Illustration of tunnel states in Markov decision-analytic modelling 

 

A tunnel state is a temporary state that is only occupied for one cycle. The 

“tunnel” the patients pass through indicates both the state occupied and the 

number of previous cycles spent in that state. Modelling incorporating tunnel 

states is known as “semi-Markov”, reflecting the relaxation of the Markov 

property. 

In contrast, tunnels states are not needed to build semi-Markov multi-state 

models. Semi-Markov models in multi-state modelling were described in section 

4.4 of chapter 4. 

6.2.3 Assignment of transition probabilities/obtaining results 

Probabilities of occurrence are assigned to each of the transitions before 

modelling commences. These can be obtained from several sources including 
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published literature, empirical modelling and expert opinion. Published 

literature could include clinical trials, meta-analyses or observational studies. 

The transition probabilities are stored in an n × n matrix, with n being the 

number of states. However, only the entries of the matrix representing 

transitions will be non-zero because, as previously mentioned in sub-section 

6.2.1, not all transitions between states will be relevant. In contrast, with multi-

state modelling as previously mentioned in chapter 4, transition probabilities are 

calculated by appropriately combining hazards of individual transitions. 

Typically, this is after fitting survival regression models for the transition 

hazards using individual patient level data.  

Transition probabilities (Markov decision-analytic modelling) /transition hazards 

(multi-state modelling) can be constant over time (time homogeneous) or be 

time-dependent (time inhomogeneous).  

Standard approaches for obtaining results from Markov decision-analytic 

modelling are covered extensively elsewhere and are not described in this 

thesis. For example, the contribution by Sonnenberg and Beck (1993) provides a 

succinct summary of the matrix algebra solution, cohort simulation and Monte 

Carlo simulation. 

6.3 Review of multi-state models for health economic 
modelling in the literature 

In recent years, there has been an increase in contributions involving the 

continuous-time multi-state modelling framework in the health economics 

literature, and in a health economics context in the more general medical 

literature. This section summarises and critiques such contributions. The purpose 

of this review was to explore to what extent the methodology and applications 

were illustrated and to identify any barriers to adoption of the approach. It also 

sought to identify areas where multi-state modelling had not been used to its 

full potential. Due to it being a form of state-transition modelling, multi-state 

modelling has huge potential as an alternative to conventional spreadsheet-

based approaches for cost-effectiveness modelling but it is not widely applied. It 

is syntax-based providing a transparent record of the analysis and it makes errors 
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easier to spot. Furthermore, it explicitly allows testing of the Markov property 

by simply adding a relevant covariate and semi-Markov modelling does not 

require tunnel states. Of particular note, Markov models can be built in seconds 

and therefore their creation is a lot less cumbersome and time-consuming. 

A search strategy was developed to allow the review to take place. An initial 

search took place when this research began in 2011. OvidSP was searched for 

titles, abstracts and keywords with the terms:  

(("multi-state" AND "?Markov" AND cost*) OR ("multistate" AND "?Markov" AND 

cost*) OR ("multi state" AND "?Markov" AND cost*) OR ("illness-death" AND 

"?Markov" AND cost*) OR ("illness death" AND "?Markov" AND cost*) OR 

("disability model*" AND "?Markov" AND cost*) OR (continuous-time AND 

?Markov AND cost*) OR (continuous AND time AND ?Markov AND cost*) OR 

("multi-state model*" AND cost*) OR ("multistate model*" AND cost*) OR ("multi 

state model*" AND cost*) OR ("illness-death model*" AND cost*) OR ("illness 

death model*" AND cost*) OR ("disability model*" AND cost*)).ti,ab,kw.  

However, this search has been an ongoing process. Email alerts of new articles 

were set up using OvidSP and Web of Knowledge. A final OvidSP search using the 

strategy above was then conducted to search for contributions up to 

05/10/2016. Three health economic journals known to have relevant 

contributions were also specifically targeted – Medical Decision Making, Value in 

Health and Health Economics.  These journals were searched again for “multi-

state model*” OR “multistate model*” OR “multi state model*” OR “continuous-

time” OR "continuous time" 

in titles/abstracts/keywords to capture those contributions that were not found 

from the other searches.  

In addition, email notifications of new content alerts were also set up for these 

three journals at the beginning of my research period and any relevant 

contributions were included. I also checked the reference lists of articles I had 

already reviewed and articles that cited papers that I already knew had 

contributed to this area of research.  
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In addition the NICE website (www.nice.org.uk) was searched on 05/10/2016 

using the terms:  

"multi-state" OR "multi-state Markov" OR "multi-state semi-Markov” OR 

"multistate" OR "multistate Markov" OR "multistate semi-Markov” OR 

"multi state" OR "multi state Markov" OR "multi state semi-Markov” OR 

multi-state OR multistate OR "continuous-time" OR "continuous time" 

 

and found 6 technology appraisals (TAs). However, each of these 6 TAs did not 

involve continuous-time multi-state modelling, and were excluded for that 

reason. Furthermore, a search was performed on the National Institute for 

Health Research (NIHR) Journals Library website www.journalslibrary.nihr.ac.uk 

on 05/10/2016 within the journal Health Technology Assessment specifically, 

and using the NICE website’s NICE Evidence Search facility with source set to   

NIHR Journals Library, using the search terms: 

multi-state OR multistate OR “multi state” OR “multi-state” OR “multistate” OR 

"continuous-time" OR "continuous time" 

and found 7 NIHR Health Technology Assessment Reports. However, 4 of these 

did not involve multi-state modelling. The other 3 were found in the main 

OvidSP search but did not involve the continuous-time multi-state modelling 

framework and were excluded for that reason. 

Each of the above search strategies collectively found 27 contributions relevant 

to continuous-time multi-state modelling (Appendix VIII), which will be discussed 

in the commentary in the rest of this section.  Of note though, the rejection of 

the contributions from the two sources of health technology assessments 

highlights there seems to be some inconsistences in terminology with regards to 

multi-state modelling between the fields of medical statistics/epidemiology and 

health economics. In the former, the term appears to be used exclusively in the 

context of continuous-time, unless otherwise explicitly stated, whereas there is 

a lot more ambiguity in the latter where it appears to be used both in a 

continuous-time and discrete-time context. 

http://www.nice.org.uk/
http://www.journalslibrary.nihr.ac.uk/
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6.3.1 Methodological issues: continuous-time multi-state 
modelling contrasted with Markov decision-analytic models 

It is recognised that, in health economics, the vast majority of state-transition 

modelling is carried out using Markov decision-analytic models within a discrete-

time framework, instead of a continuous-time multi-state modelling approach 

[e.g. van Rosmalen et al. (2013)]. Section 6.2 described Markov decision-analytic 

modelling. Briefly, it typically involves following a cohort of patients from an 

initial health state over a series of discrete cycles, with movement between 

states based on pre-assigned transition probabilities. van Rosmalen et al. (2013) 

and Cao et al. (2016) highlight that a half-cycle correction is often undertaken 

to reduce measurement bias due to the assumption that transitions only occur at 

discrete times. van Rosmalen et al. (2013) stress that bias can be particularly 

apparent with long cycles but that the shorter cycle lengths required to 

overcome the bias can be computationally intensive. However, the continuous-

time multi-state modelling framework uses the exact time of transitions and 

therefore, as stated by Cao et al. (2016), there is no such bias and therefore no 

need for a half-cycle correction.  

Begun et al. (2013) discuss the point that continuous-time models are preferable 

to discrete-time models, because the former allow for transitions that may have 

a small probability and therefore cannot be observed during a small time unit. 

They also emphasise that continuous-time models are more realistic as they 

allow for state transitions to occur at any moment.  A conference proceeding by 

Tichy (2014) also highlights that a continuous-time framework can be preferable 

due to overcoming the need for cycles.  

In Markov modelling, the Markov “memoryless” property is assumed to hold. This 

is the condition that movement from the current state does not depend on the 

previous states visited or the time spent in any previous states. In the discrete- 

time framework, one way of relaxing the Markov assumption is to incorporate 

tunnel states, that represent previous cycles spent in a state, into the model. 

Hawkins et al. (2005) developed an alternative way of representing tunnel states 

using multi-dimensional transition matrices to incorporate dependency on the 

previous cycles spent in states. While it was still in the discrete-time framework, 
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it was however an important contribution demonstrating how to conduct the 

analysis in the open-source language R, and hence a departure from the reliance 

on spreadsheet-based packages.  

For the calculation of transition probabilities, many of the contributions have 

commented that, transition probabilities are used as inputs in the discrete-time 

framework, whilst in the continuous-time framework transition hazards (rates) 

are used (Welton and Ades (2005), Begun et al. (2013) and van Rosmalen et al. 

(2013)).  Welton and Ades (2005) emphasise that transition rates are commonly 

used for combining information from different studies. Therefore, the use of 

transition rates, rather than transition probabilities, provides a natural 

mechanism to conduct evidence synthesis. Price et al. (2011) stress the need to 

synthesize evidence from all available trials to assess which is the most effective 

treatment. In their article, Price et al. (2011) describe how to conduct a meta-

analysis to compare different treatments across several trials in a multi-state 

modelling context. They show how to estimate the treatment effects needed for 

each of the transitions in the modelling. 

6.3.2 Approaches to calculating transition probabilities in 
continuous-time multi-state modelling 

The research describing the methodology of the continuous-time multi-state 

modelling approach mainly focuses on calculating transition probabilities by 

solving Kolmogorov’s forward differential equations using matrix algebra based 

around matrix exponentials [Welton and Ades (2005), Begun et al. (2013) and 

van Rosmalen et al. (2013)]. Welton and Ades (2005) and Begun et al. (2013) 

each provide worthwhile contributions that demonstrate how the continuous-

time multi-state modelling framework can be used with both fully and partially-

observable data. Begun et al. (2013) illustrate an approach based on Cox semi-

parametric regression. The contribution provides a useful introduction to the 

concept. However, it does not include code or details of a software package to 

allow others to adopt the approach. Extending the Cox regression to fully 

parametric regression would have allowed for extrapolation of survival outcomes 

that were not observed in all patients. Welton and Ades (2005) present a 

Bayesian approach to solving the forward equations which has the benefit of 
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being able to propagate uncertainty through the model, and include WinBUGs 

code in an appendix. When proposing the continuous-time approach, van 

Rosmalen et al. (2013) also provide code as an appendix that is based around 

matrix exponentials. They distinguish multi-state modelling from discrete-event 

simulation in that, whilst both use a continuous-time framework, the former is 

deterministic (exact) and the latter is stochastic and therefore subject to 

simulation errors. Furthermore, van Rosmalen et al. (2013) offer multi-state 

modelling as an alternative to discrete-event simulation or microsimulation. In 

particular, they emphasise its advantages over simulation approaches of not 

requiring dedicated software, needing less computation time and not being 

subject to simulation error. However, they also acknowledge that the required 

programming of matrix exponentials for their proposed approach is a drawback 

compared to the more user-friendly spreadsheets used in the discrete-time 

Markov decision-analytic modelling.  

6.3.3 Some applied uses of multi-state modelling in the  
health economics literature 

The applied use of multi-state modelling for lung cancer by Bongers et al. (2016) 

adds value to the existing contributions in that it helps to highlight multi-state 

modelling as an alternative to microsimulation models, albeit in a roundabout 

way.  The article makes use of the mstate package in R to undertake multi-

state modelling.  However, rather than using the facility in mstate to calculate 

transition probabilities, it only goes so far as to calculate transition hazards 

which are then used to inform assumptions in a microsimulation model. Another 

very recent contribution also carried out multi-state modelling in R, but then 

proceeded to build a conventional Markov decision-analytic model informed in 

part from the transition probabilities of the multi-state model (Scotland et al. 

(2016)). Therefore, the implementation in these two contributions fell short of 

showcasing the full capabilities of mstate for carrying out multi-state 

modelling.  Anything that can be built in Excel can be coded in statistics 

software. Therefore, there is scope to avoid the two-step process and perform 

all the health economic modelling using the same software.  
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Another contribution that made partial use of mstate was the piece by Egger et 

al. (2016). They created a multi-state model to investigate the effect of 

adherence to clinical guidelines on outcomes for elderly patients admitted to 

hospital with community-acquired pneumonia. The model had 14 cycles. 

However, since each cycle represented a day, it could be considered to be using 

a continuous-time framework. The authors used mstate to derive transition 

probabilities, for a given covariate profile, from Cox cause-specific hazard 

modelling. These transition probabilities were then transformed into beta 

distributions in the model using the estimates and standard errors from the Cox 

modelling. However, it was not clear how this transformation occurred. An 

alternative approach could have been to carry out regressions assuming the 

hazards followed parametric distributions, and using the hazards from these in 

conjunction with mstate to calculate state occupancy probabilities. The 

research in this thesis will involve an adaption of mstate to allow such 

parametric regressions instead of Cox modelling. 

Other applied uses of continuous-time multi-state modelling have also emerged 

in the literature in the areas of heart failure (Cao et al., 2013), coronary artery 

disease (Asaria et al., 2016), diabetes (Jensen et al., 2014), kidney disease 

(Begun et al., 2013), mRSA (De Angelis et al., 2011), HIV (Le Pen et al. (2001)) 

and colorectal cancer (Castelli et al., 2007). 

Cao et al. (2013) provide a useful illustration of how continuous-time multi-state 

modelling can be used for cost-effectiveness analysis. Their contribution is from 

the perspective of producers of health technology as decision makers, rather 

than a societal perspective. As such, instead of focusing on Cost per quality-

adjusted life year, their analysis concentrated on “commerical headroom”. This 

is identical to the net monetary benefit which is a standard concept described in 

(Drummond et al., 2005). They use the msm package in R alongside 

bootstrapping. Furthermore, their contribution also includes probability 

sensitivity analysis. 

Asaria et al. (2016) illustrate an applied use of a state-transition model which is 

more akin to the continuous-time multi-state modelling framework, than a 
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discrete-time Markov decision-analytical approach. However, the paper did not 

model the transitions simultaneously using the individual patient level data in 

the usual manner of multi-state modelling. Instead, they developed risk 

equations for each of the transitions separately and then later incorporated 

them into a competing risks framework. Therefore, it was not clear whether 

their post-equation competing risk adjustment appropriately took account of the 

competing risks scenario which was present. 

The demonstration of an applied use of multi-state modelling by Jensen et al. 

(2014) was a quite complex illustration. The authors built a multi-state model of 

adherence to long term medication in those with Type 2 diabetes. The 

assignment of states and transitions between states involved an algorithm which 

was not easy to follow. While the authors state they used SAS for their analysis, 

they did not provide any code in an appendix to allow others to adopt a similar 

approach. This was unfortunate especially considering its complexity. 

6.3.4  Multi-state modelling applied to infections 

Several authors provide helpful demonstrations that showcase how multi-state 

modelling can be used to estimate the mean length of stay in various health 

states, which could then be used in the calculation of costs for hospital-acquired 

infections in particular [De Angelis et al. (2011), Stewardson et al. (2012) 

Stewardson et al. (2013), Stewardson et al. (2015), Stevens et al. (2015), Ndir et 

al. (2016a) and Ndir et al. (2016b)]. This is in contrast to the more typical use of 

calculating mean (quality-adjusted) life years in relevant health states, which is 

particularly relevant for chronic and/or progressive diseases. They are a useful 

addition to the literature, because as De Angelis et al. (2011) highlight, the 

mean length of stay approach has potential for acute, non-recurrable diseases.  

In a follow-up to the work of De Angelis et al. (2011), some of the same authors 

[Macedo-Vinas et al. (2011) and Macedo-Vinas et al. (2013)] use the excess 

length of stay calculated to derive excess bed-days which were then used to 

estimate attributable costs.  The work by De Angelis et al. (2011) and Macedo-

Vinas et al. (2013) studied MRSA. In other research, which included De Angelis as 

an author, a similar approach was used to investigate excess length of stay with 
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bloodstream infections in adults in a Swiss hospital by Stewardson et al. (2012) 

and Stewardson et al. (2013) and in wider Europe by Stewardson et al. (2015). A 

different group of authors also used the approach to investigate bloodstream 

infections, but in a paediatric setting in Senegal (Ndir et al. (2016a)). 

Furthermore, Ndir et al. (2016b) used the approach to investigate infections 

caused by extended-spectrum beta-lactamases producing Enterobacteriaceae. 

In other research, Stevens et al. (2015) used the approach to investigate excess 

length of stay attributable to Clostridium difficile infection and Arefian et al. 

(2016) used it to investigate excess length of stay and costs due to health care-

associated infections in general. All of the contributions in this section have 

advocated the use of multi-state modelling because it explicitly takes into 

account the time of infection by including infection as a state. Furthermore, 

Mitchell and Gardner (2012) carried out a review of methods used to investigate 

length of stay for Clostridium difficile infection. However, the methods used 

were prior to the uptake of multi-state modelling and therefore introduced bias 

due to not taking into account the timing of the infection. The authors 

concluded that multi-state modelling was a more appropriate method, and 

encouraged collection of the timing of the events that would constitute states in 

the model. In a related review, Nelson et al. (2015) investigated the magnitude 

of bias introduced by failing to take into account the timing of the infection. 

Again these authors recommended using an appropriate method such as multi-

state modelling or matching. In another related piece, Barnett et al. ((2016) 

demonstrated the time-dependency bias when not using multi-state modelling by 

comparing such a model to a generalised linear model. Shi et al. (2014) 

investigated the time-dependency bias still further. The authors took into 

account patient heterogeneity using an approach based on centred residuals 

from a generalised linear model which were incorporated into a multi-state 

model. These contributions have been useful in that they have highlighted an 

aspect of bias that can occur and demonstrated how multi-state modelling can 

provide a solution. 
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6.3.5 Multi-state modelling applied to HIV 

Le Pen et al. ((2001) ‘s research is concerned with the effect of highly active 

antiretroviral therapy in HIV patients. It is an interesting contribution because it 

raises awareness of the inclusion of irreversible states in multi-state modelling 

i.e. that patients can revert back to states they have been in previously. 

Therefore it highlights an alternative approach to the more standard model that 

normally follows the natural progression of a disease. The states are based on all 

possible combinations of CD4 cell count and viral load, each of which are 

grouped into three categories, plus a death state. Therefore there are ten states 

in the model. The paper makes a valiant attempt to model both progression of 

disease and improvement in prognosis by modelling transitions between these 

nine + one health states. However the model is arguably too complex because 

the model starts with the nine states as initial states. There are too few patients 

in many of the states even at the initial stage, never mind to follow through to 

the end of their study. Several other papers used a similar model for HIV based 

on CD4 cell count and HIV RNA levels (Chaudhary et al. (2010) and Erdesz et al. 

(2010)) and CD4 cell count and HIV-I viral load (Athanasakis et al., 2014) and 

therefore also have the same complexity issues. 

6.3.6 Multi-state modelling contrasted with partitioned survival 

During a conference, Rael et al. ((2016) raised awareness of the advantages of 

multi-state modelling/state-transition modelling over partitioned survival. They 

emphasised that modelling the transitions between the states progression-free, 

post-progression and death can answer more research questions than separate 

analyses of progression-free survival and overall survival. In particular, they 

highlighted that treatment effects on pre- and post-progression survival, and 

whether the observed overall survival benefit is driven solely by the progression-

free survival can both by investigated with such models. However, the 

contribution advocated using patient-level simulations to calculate state 

occupancy probabilities alongside the multi-state modelling. It failed to 

recognise that all analysis can be incorporated under the one multi-state 

modelling framework without the need for a separate simulation model. In 

addition, it states that a limitation of multi-state modelling is that the data 
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must be mature enough to estimate the transitions. They could have also noted 

that maturity is also a requirement of analysis using separate modelling of 

progression-free survival and overall survival. Lastly, it maintains that software 

for multi-state modelling is less well developed. A major component of the 

research carried out during this PhD will address this final point. 

6.3.7 Misunderstandings in the literature 

van Rosmalen et al. (2013) mention that multi-state modelling is Markov when 

an exponential distribution is used to model the transition hazards and semi-

Markov otherwise. This is a different interpretation to Putter et al. (2007), as 

explained in section 4.2 of chapter 4, which differentiate Markov from semi-

Markov by using the way time is measured: from first entering the initial state 

for the Markov approach and by resetting the clock back to zero when patients 

enter a new state with the semi-Markov approach. The contribution by van 

Rosmalen et al. (2013) fails to recognise that it is possible for the process in 

both a Markov and semi-Markov model to be time-homogeneous or time-

inhomogeneous. Time homogeneous processes involve the use of the exponential 

distribution with a hazard that is constant over time. In contrast, in a time-

inhomogeneous process the hazard varies over time. Parametric distributions 

other than exponential can be used in these situations. However this does not 

appear to be well known in the literature, and some incorrect use of terminology 

has resulted. There are instances where papers describe time-homogeneous 

processes but then proceed to use distributions other than the exponential; for 

example, Cao et al. (2016) and Castelli et al. (2007) using log-normal and 

Weibull distributions respectively.    

Another issue that is not always recognised relates to competing risks which 

often occur in state-transition models. When faced with competing risks and the 

modelling of hazards, it is not always appropriate to use AICs for model 

selection. This was discussed previously in section 2.7.2 of chapter 2. However 

some of the research has used AICs to decide between parametric distributions 

for the hazard (Cao et al. (2016) and Asaria et al. (2016)). Another important 

point related to competing risks is apparent in the work by Clarke et al. (2014). 

The article uses Kaplan-Meier curves as a basis for the transition probabilities 
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used in their model. It acknowledges that this is likely to introduce bias although 

it does not specifically attribute it to the censoring of competing risks. Instead, 

the article acknowledges they may be informative censoring resulting in inflated 

survival, and therefore it would appear that it states the bias in the wrong 

direction. 

6.3.8 Alternative approaches 

Cao et al. (2016) propose an alternative approach to continuous-time multi-state 

modelling called vertical modelling. However, it does appear to be overly 

complex. The simulation is difficult to understand and follow, for which no code 

is provided. It requires separate models to be built for the sojourn times and the 

future state probabilities. In addition, possible nonlinearity between the two 

needs to be checked, with fractional polynomials used for that purpose in the 

illustration given in the paper. The article argues that the vertical modelling 

approach has advantages over the pattern mixture formulation and cause-

specific hazards approaches. From the description of the pattern mixture 

formulation, the approach suffers from interpretation problems and seems to be 

unrealistic as it involves conditioning on the future. The paper also argues that 

the cause-specific hazards approach has interpretation problems as it cannot be 

directly expressed as probabilities, and therefore would make discussions with 

clinicians difficult. However I counter this argument as the complexity of the 

vertical modelling approach would make the communication of results with 

clinicians problematic. The perceived difficulty with the cause-specific approach 

can be easily overcome. The facility to calculate state occupancy probabilities 

using that approach exists in procedures such as those in the mstate package 

in R. 

Kim and Thompson (2011) ‘s contribution focuses on competing risks specifically 

rather than multi-state modelling in general. The method proposed in the paper 

is a continuous-time type approach as the calculations were restricted to 6-

month intervals, rather than measuring time continuously. The justification 

given for this is that it makes it compatible with methods for costs and 

discounting. However, these methods seem to be just as compatible in a 

continuous sense. The method involves estimating Life Years gained and cost-
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effectiveness using cause-specific, rather than all-cause, mortality. The 

motivation for this is that it is not always useful to use all-cause mortality for 

Life Years gained, because only a few causes of death may affect the 

interventions studied. The paper illustrates, perhaps counter-intuitively, that 

greater power can be achieved to detect differences in cause-specific mortality 

than in all-cause mortality. It also finds greater precision, in terms of smaller 

standard errors, with its estimator compared to using all-cause mortality. 

However, upon extrapolating the results over a life-time horizon it is found that 

results using cause-specific and all-cause mortality are similar. In addition, the  

loss of precision over the period of the study for all-cause mortality is not 

evident upon extrapolation. The paper concludes that a long-term all-cause 

mortality outcome can be used, but only when it is appropriate to assume that 

rates of other-cause mortality are the same across groups. Otherwise, it 

stipulates a cause-specific approach should be used. It cautions against using the 

usual competing risks cumulative incidence approach when it is calculated 

separately for each group. The proposed approach is interesting but it is not 

likely to be widely-applied in practice. This is because it involves naïve Kaplan-

Meier estimates, which is in contrast to all the established competing risks 

literature that caution against this due to the bias it can introduce.   

6.3.9 Summary of the review  

This review of the literature has shown limited, but growing, awareness of the 

continuous-time multi-state modelling framework in the literature for health 

economics where it has huge potential. However it has highlighted that 

applications of the approach are scarce, with the field acknowledging that use of 

the continuous-time framework greatly lags behind its discrete-time 

counterpart. To my knowledge, there has been no articles illustrating 

continuous-time multi-state modelling as an alternative by comparing it to 

commonly-used approaches in cost-effectiveness analysis. Therefore, Chapter 7 

of this thesis, and its accompanying publication (Williams et al., 2017b), 

presents an empirical analysis comparing multi-state modelling to the two more 

widely-used approaches of partitioned survival and Markov decision-analytic 

modelling.  
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6.3.9.1 Code to encourage adoption of the approach 

Some of the research has provided code and/or references to software packages 

(Cao et al. (2013), Welton and Ades (2005), van Rosmalen et al. (2013), Bongers 

et al. (2016) and Asaria et al. (2016)), overcoming a barrier that previously 

prevented modellers easily adopting similar approaches. This should help 

encourage the consideration of the continuous-time multi-state modelling 

approach, where individual patient level data is available. Such data was 

available to Clarke et al. (2014) and Hettle et al. (2012), but they opted for a 

discrete-time approach instead.  

However, it was also apparent from the literature that one of the main 

perceived barriers to adopting the continuous-time multi-state modelling 

approach was the implementation of the algebra involved together with a lack of 

readily available software. In order to fill this gap, I created a webpage with 

customisable R functions to allow users to carry out full cost-effectiveness 

analyses. I also published an accompanying tutorial paper in the Medical Decision 

Making journal, a journal popular in the health economics field (Williams et al., 

2017a). This paper guides the users through the steps involved in a cost-

effectiveness analysis using multi-state modelling and encourages adoption of 

the approach.  It demonstrates how to use multi-state modelling to calculate 

mean (quality-adjusted) life years gained and incremental cost-effectiveness 

ratios. It also illustrates how the approach can be used in deterministic and 

probabilistic sensitivity analyses. In using a syntax-based approach, it benefits 

from the transparency of the code used and analysis that is all contained in one 

file. Therefore, errors are arguably easier to spot than in spreadsheet packages, 

where cells can be accidentally changed without the analyst’s knowledge. The 

calculation of the transition probabilities for Markov multi-state modelling was 

not implemented using matrix exponentials. Instead, an equivalent 

representation using product integrals, described in more detail in section 4.3 of 

chapter 4 was used which is less computationally intensive and more intuitive 

than matrix exponentials. The simulation approach used for semi-Markov multi-

state modelling was covered in section 4.4. 
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6.4 Assessment of fit over the observed period of a study 

This section discusses issues worth consideration when assessing the fit to the 

data observed in a trial or other study. The need to test the proportional hazards 

(PH) assumption, when considering fitting such models is emphasised [Grieve et 

al. (2013), Latimer (2013), Bagust and Beale (2014), Latimer (2014)]. One 

method recommended for this purpose by Latimer (2013) is to plot the log-

cumulative hazards versus log time, also known as a log-log plot, for each 

treatment group. If the lines are reasonably parallel there is no suggestion of a 

violation of the proportional hazards assumption. Data that follows an 

exponential distribution will produce a plot that has a straight line with slope 1, 

whereas data from a Weibull distribution will be represented as a straight line 

with a slope other than 1. The plot is useful for assessing the hazards at the 

earlier times rather than the later times when there are fewer events anyway 

(Latimer, 2014).  

Bagust and Beale (2014) prefer a plot of the cumulative hazards versus time to 

assess whether the proportional hazard assumption holds or not. It is useful for 

visualising the hazards long-term, rather than in the initial time period during 

which there can often be a higher hazard which takes this initial period to settle 

down. Bagust and Beale (2014) argue it is easier to distinguish an exponential 

distribution from a Weibull distribution with this plot because, rather than both 

being represented as straight lines as they are in the log-log plot, the cumulative 

hazard plot can show non-linear trends indicating hazards that either increase or 

decrease. This can also be seen as a weakness of this plot however because, as 

Latimer (2014) points out, they are more difficult to assess visually because 

proportional hazards are represented by lines that diverge at a constant rate 

rather than parallel lines.  

When considering fitting models in the accelerated failure time (AFT) framework 

(described later in section 6.5), it is recommended to test whether AFT is an 

appropriate fit by plotting Q-Q plots (Bradburn et al. (2003)). This plots the 

percentiles/quantiles of the survival times in one treatment group versus the 

corresponding information in the other treatment group. They should show as a 
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straight line that passes through the origin with slope equal to the acceleration 

factor of the model. An alternative approach for assessing whether AFT and/or 

PH models provide appropriate fits are Cox-Snell residual plots. These check that 

the survival times follow an exponential distribution with hazard equal to 1, 

which is indicative of a good-fitting model. The plots show the observed and 

fitted cumulative hazard and should show a straight line through the origin with 

a slope equal to one. Cox-Snell residual plots can be used for both AFT and PH 

models, allowing a direct comparison of such models.  

If there is evidence from the plots described above to suggest a violation of the 

PH or AFT assumption, as appropriate, for the treatment covariate, or indeed 

any covariate, then such models should not be fitted. Instead, separate fits can 

be used for each treatment (Bagust and Beale, 2014), although this no longer 

allows direct estimation of a treatment effect. When the PH/AFT assumption is 

assumed to hold, separate fits for each treatment can also be carried out as a 

sensitivity analysis – to check there are no major discrepancies in results 

between them and the PH/AFT model with treatment as a covariate. It is worth 

noting however that (Cox) PH models are reasonably robust to minor deviations 

from the PH assumption. If an inspection of the Kaplan-Meier curves does not 

show evidence of obvious divergence, convergence or crossing of the curves, 

then one could assume that hazards are proportional. The hazard ratio can be 

thought of as the “average” effect across the period of observation. 

Visual assessments of the fit to the observed data, such as comparing the 

predicted survival with the Kaplan-Meier survival estimate and the plots 

described above, are useful for comparing fits with different distributional 

assumptions, such as those described later in section 6.5. It can also be 

worthwhile calculating AICs (Akaike, 1974) or BICs  (Schwarz, 1978) because they 

do not have the subjectivity of the visual inspection of plots. However, 

assessment of fit should not be based solely on one of these but rather they 

should both be considered. In addition, the fit to the observed data is only one 

consideration if extrapolation beyond the observed period is required 

(extrapolation will be discussed in the next section). In that situation, AICs/BICs 

can be of limited value because they are only concerned with the fit over the 
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observed period and not on how reasonable the extrapolation looks. 

Furthermore, caution is advised when using AICs/BICs with a competing risks 

scenario (common in state-transition modelling) and the modelling of hazards, as 

previously discussed in section 2.7.2.  

6.5 Extrapolation of outcomes for use in economic 
evaluations  

6.5.1 Motivation for extrapolation 

It is often the case that a study does not have sufficient follow-up to observe the 

outcomes in every patient, e.g. in the example illustrated in  

Figure 6.2  not every patient was observed long enough to reach progression 

and/or die. However, in health economics, a lifetime perspective is often 

needed because an estimate of the mean time in relevant states is needed, to 

be used with the mean costs, in the calculation of cost-effectiveness measures. 

Therefore extrapolation of survival beyond the observed period is often 

necessary. This has received much attention in the literature recently, e.g. 

Tappenden et al. (2006), Connock et al. (2011) ,Grieve et al. (2013), Latimer 

(2013), Stevens and Longson (2013), Bagust and Beale (2014) and Latimer (2014). 

Several of these papers have commented on the need to achieve a balance of 

both a good fit to the observed data and a sensible and clinically plausible 

extrapolation.  

A useful first step is to use a parametric fit to the observed (Kaplan-Meier) 

survival curve and extrapolate it until it reaches the desired time horizon. There 

is a general consensus to consider all the “standard” distributions – i.e. 

exponential, Weibull, Gompertz, log normal, log-logistic and generalised 

gamma. Focus should be on trying to achieve sensible extrapolation, in the sense 

that it should be clinically plausible and/or compatible with external data. If the 

extended predictions do not adequately represent zero, i.e a lifetime 

perspective, at the end of the time horizon, then an alternative is to start the 

extrapolation from the tail of the observed Kaplan-Meier curve. Tappenden et 

al. (2006) outline an approach based on fitting a linear regression to the Kaplan-

Meier curve and then back-transforming to the equivalent using parametric 
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regression. It involves rearranging the survival function (or function thereof) into 

a linear function of time that can be used to fit a linear regression. The 

resultant coefficients are that used in the original parametric survival function 

after transformation into that scale. This approach could be used to start 

extrapolation from the tail of the observed curve. However the choice of 

suitable points will be somewhat arbitrary and therefore sensitivity analysis for 

this choice should be undertaken. In addition, the tail of the observed curve is 

where estimates will be least precise. The fact that the confidence interval 

around the Kaplan-Meier survival estimates demonstrate their precision can be 

used as an aid to help decide when to start extrapolation. Another sensitivity 

analysis that is recommended by Grieve et al. (2013) is considering different 

treatment effects long-term. Specifically, the authors advocate considering no 

treatment effect in the unobserved period, a reduction in the treatment effect 

over time and a treatment effect from the observed period that persists over the 

unobserved period. 

6.5.2 Conventional approach: parametric regression 

This section summarises some considerations with regards to parametric survival 

regression as it pertains to extrapolation. The conventional approach for 

extrapolation of survival is to use parametric survival regression – either fitting a 

model to all the observed data, or starting the fit from some point on the tail of 

the Kaplan-Meier curve. Two common ways to fit such models are proportional 

hazards and accelerated failure time models. In a proportional hazards model, 

the hazard function can be written as 

  
h(t) = h0(t) exp(βx) 

 
where x is the vector of covariates and β is the vector of regression coefficients. 

h0(t) is the baseline hazard and is assumed to be parametric. Common 

parametric distributions used for proportional hazards models are Weibull, 

exponential and Gompertz. 

In an accelerated failure time model, the natural logarithm of the survival time 

is modelled as a linear function of the covariates i.e. 
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 log(t)= βx +ε 

where ε is the error term and β and x are as for the proportional hazards model. 

The distribution used for the error term determines the type of model. Common 

accelerated failure time models are log normal, log-logistic and generalised 

gamma. The Weibull can also be expressed as an accelerated failure time model. 

Table 6.1 shows the survival and hazard functions for six standard distributions 

used in health economic modelling. An exponential model is time homogeneous, 

(i.e. the hazard rate is constant), whereas the other distributions are time 

inhomogeneous.    

For each distribution there is an equation for the survival and hazard functions, 

allowing survival to be extended to the desired time horizon. 
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Table 6.1 Common parametric distributions 

Distribution Survival Hazard ℎ(𝑡) or density 𝑓(𝑡), where appropriate 

Weibull 𝑆(𝑡) = exp(−𝜆𝑡𝛾) ℎ(𝑡) = 𝛾𝜆𝑡𝛾−1 

where λj = 𝑒𝑥𝑝(𝑥𝑗  𝛽) and 𝛾 is estimated from the data 

exponential 𝑆(𝑡) = 𝑒𝑥𝑝(−𝜆𝑡) ℎ(𝑡) = 𝜆 

where λj = 𝑒𝑥𝑝(𝑥𝑗  𝛽) 

Gompertz 𝑆(𝑡) = 𝑒𝑥𝑝{−𝜆𝛾−1(𝑒λ𝑡 − 1)} ℎ(𝑡) = 𝜆 𝑒𝑥𝑝(𝛾𝑡) 

where λj = 𝑒𝑥𝑝(𝑥𝑗  𝛽) and 𝛾 is estimated from the data 

log normal 
𝑆(𝑡) = 1 − 𝜙 {

𝑙𝑜𝑔( 𝑡) −  µ

𝜎
}  𝑓(𝑡) =

1

𝑡𝜎√2𝜋
𝑒𝑥𝑝 [

−1

2𝜎2  {𝑙𝑜𝑔(𝑡) − µ}2] 

Where 𝜙(𝑧)  is the standard normal cumulative distribution function, µ𝑗 = 𝑥𝑗𝛽 

and 𝜎 is estimated from the data 

log-logistic 
𝑆(𝑡) =

1

1 + (𝜆𝑡1 𝛾⁄ )
 𝑓(𝑡) =

𝜆1⁄𝛾𝑡1 𝛾−1⁄

𝛾 {1 + (𝜆𝑡)1 𝛾⁄ }2
  

where λj = 𝑒𝑥𝑝(−𝑥𝑗  𝛽) and 𝛾 is estimated from the data 

generalised 

gamma 

𝑆(𝑡) = 1 − 𝐼(𝛾, 𝑢) if к > 0 

𝑆(𝑡) = 1 − 𝜙(𝑧) if к = 0 

𝑆(𝑡) = 𝐼(𝛾, 𝑢) if к < 0 

𝑓(𝑡) =
𝛾𝛾

𝜎𝑡√𝛾 𝛤(𝛾)
   𝑒𝑥𝑝(𝑧√𝛾 − 𝑢) if к ≠ 0 

𝑓(𝑡) =
1

𝜎𝑡√2𝜋
𝑒𝑥𝑝 [

−𝑧2

2
 ] if к = 0 

 

where 𝐼(𝛾, 𝑢)  is the incomplete gamma function, 𝛾 = |к|−2 , 𝑢 =  𝛾 𝑒𝑥𝑝(|к|𝑧), 

z = sign(к){log(t)-  µ }/  𝜎 , µj = 𝑥𝑗  𝛽 , 𝜙(𝑧)  is the standard normal cumulative 

distribution function and к and 𝜎 are estimated from the data 
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6.5.3 Alternative approaches to extrapolation  

As previously mentioned, it is recommended to consider a range of different 

distributions. Several alternative, more complex, approaches can also be 

explored; particularly if the standard distributions do not provide an adequate 

fit, either to the complete observed data or starting from a point on the tail of 

the Kaplan-Meier curve. Examples include flexible parametric methods involving 

splines (Andersson et al., 2013), using less standard distributions such as the 

generalised F (Jackson et al., 2010) or poly-Weibull (Demiris et al., 2015) and 

using a Bayesian semi-parametric approach with piecewise-constant hazards 

(Jackson et al., 2010). 
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Chapter 7 Comparing Markov decision-analytic 

modelling, partitioned survival and multi-state 

modelling 

 

7.1 Introduction 

This chapter presents an analysis comparing three different approaches to 

estimating benefit (survival) in a health economics context. It was motivated by 

an existing Markov decision-analytic model which was created for a 

manufacturer’s submission to NICE for a technology appraisal. However the 

Evidence Review Group (ERG), working on behalf of NICE, had some concerns 

about the model and initiated their own sensitivity analysis. Both the original 

model and the additional analysis to address the ERG’s concerns highlighted that 

there was scope to consider other approaches. Therefore, this chapter uses the 

manufacturer’s economic model as a basis for a case study that compared it to 

two alternative approaches. These used the individual patient level trial data 

that was the main source underlying the model. Specifically, the two approaches 

compared to the existing Markov-decision analytic model were partitioned 

survival and multi-state modelling. As such, this chapter provides an empirical 

analysis that complements earlier parts of this thesis that provided a more 

methodology background to Markov decision-analytic modelling (section 6.2), 

partitioned survival (section 6.1) and multi-state modelling (chapter 4). 

The extrapolations and choice of time horizon used in the comparison of the 

approaches did not benefit substantially from being informed by external data. 

This was primarily because the approaches were contrasted with a 

manufacturer’s existing decision-analytic model, and used the same time 

horizon as that model for comparison purposes. There was no attempt to vary 

the time horizon, or the extrapolation to this target horizon, and assess their 

clinical plausibility. This limitation was due to the model building process being 

carried out by another party, and therefore having no access to the resources 

and clinical expertise that team would have had. The extrapolations were 
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instead carried out by making use of parametric survival regressions using six 

standard distributions. Using external data to strengthen the clinical plausibility 

of extrapolations, particularly combining randomised clinical trial data with 

longer-term follow-up in observational routine data, is discussed in chapter 8.  

Section 7.2 introduces the decision problem the manufacturer’s economic model 

was designed to address alongside summarising the structure of the model itself. 

It then continues with outlining some concerns the Evidence Review Group had 

with the model. This highlighted that there was scope to consider alternative 

approaches and hence provided the motivation for the rest of this chapter. Since 

the alternative approaches considered used the individual patient level data 

from a trial, section 7.3 briefly describes this trial data to put the analysis that 

follows into context. Next, section 7.4 demonstrates the partitioned survival 

approach. The chapter then continues with section 7.5 that presents an analysis 

of the trial data using the multi-state modelling approach. The results of the 

three approaches are then compared in section 7.6. Sensitivity analyses, for the 

multi-state modelling specifically, are presented in section 7.7. Then, section 

7.8 provides a direct comparison of the Markov decision-analytic modelling with 

the multi-state modelling. The purpose of this is to demonstrate that multi-state 

modelling can provide an alternative way of implementing a decision-analytic 

model, because when the same assumptions are made with each, the results 

compare well.  Finally, the chapter ends with a summary of the results and a 

discussion in section 7.9. 

7.2 Description of the decision problem and the 
existing Markov decision-analytic model  

This chapter presents an empirical analysis using a case study in a health 

economics context. The case study was based around the economic model 

created by a manufacturer (Roche, 2008) in their submission to NICE for the 

specific technology appraisal TA174 (NICE, 2009). This section briefly describes 

the decision problem that model was designed to address, the structure of the 

model and the assumptions made by the manufacturer with regards to the 

transition probabilities. 
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7.2.1 The decision problem 

The decision problem focused on evaluating the clinical and cost-effectiveness 

of rituximab in combination with chemotherapy for the first-line treatment of 

chronic lymphocytic leukaemia. As such, the population under consideration was 

patients with previously untreated chronic lymphocytic leukaemia. Furthermore, 

the intervention studied was rituximab combined with fludarabine and 

cyclophosphamide and the comparator was fludarabine and cyclophosphamide 

alone. In addition, the main outcome to be evaluated by the economic model 

was the incremental cost per quality-adjusted life year, a standard approach in 

health economic modelling. Costs and benefits were discounted at a rate of 3.5% 

annually. Finally, the model took a lifetime perspective with a time horizon of 

15 years. The manufacturer’s justification for this length of horizon was that 

only 1.3% of the cohort were estimated to survive beyond 15 years 

[Roche (2008): p109]. Also, the report by the Evidence Review Group stated that 

advice given to them thought this to be an appropriate time frame (PenTAG, 

2009). 

7.2.2 Structure of the model   

The main source of data for the model was the CLL-8 trial (Hallek et al., 2010). 

This trial reported on the outcomes progression-free survival and overall survival 

for each patient. Data on post-progression survival was also available. This 

allowed focus to be on the three states progression-free, progression and death 

& the transitions between them. Specifically, the three transitions that were 

modelled were progression-free  progression, progression-free  death and 

progression  death.  A state transition diagram for this model was previously 

presented in Figure 6.3 on page 126. Furthermore, time was measured in 

monthly cycles.  

The manufacturers took the usual approach in Markov decision-analytic 

modelling of assigning probabilities of occurrence to each of the transitions 

before modelling started. The assumptions made by the manufacturer for each 

of the transitions were as follows: 
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 progression  death 

A monthly probability of 0.0405 was used, the same for each arm. It was based 

on an assumption of a constant death rate that was derived from the inverse of 

the mean of 24.1791 months from the Kaplan-Meier estimate of post-progression 

survival. 

 progression-free  death 

the observed rate of death whilst progression-free, or an age-specific 

background mortality rate, whichever was largest. The observed monthly 

probability of death whilst progression-free was 0.0012 and 0.00139 in the RFC 

and FC arms respectively. 

 progression-free  progression 

This was calculated by adding together the probability for progression-free  

death and the probability of staying in the progression-free state, and then 

subtracting the result from one. The probability of staying in the progression-

free state was based on a Weibull regression fitted to the observed progression-

free survival data that was then extrapolated to 15 years.  

Of particular note was the assumption for the probability of progression  death  

  ̶  specifically because it was the same for each treatment arm.  

7.2.3 Sensitivity analysis initiated by the Evidence Review 
Group 

The three leftmost columns of numbers in Table 7.1 [adapted from PenTAG 

(2009)] show the original Mean Life Years and QALY results submitted by the 

manufacturer. However the Evidence Review Group (ERG), working on behalf of 

NICE, had some concerns about the model presented by the manufacturer 

(PenTAG, 2009). In particular, the ERG were concerned about the overall 

survival gain that resulted from the model because this was not demonstrated 

empirically. Consequently, the ERG asked the manufacturer to carry out two 

sensitivity analyses to remove the benefit in overall survival. Table 7.1 also 

shows these two sensitivity analyses initiated by the ERG. The first sensitivity 

analysis removed the overall survival benefit by increasing the probability of 
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death in the progressed state in the RFC arm only by 315%. The second 

sensitivity analysis removed the benefit by decreasing the probability of death in 

the progressed state in the FC arm only to 57.4% of what it was originally. 

With both sensitivity analyses, the mean QALYs gained reduced to 0.24 from the 

0.88 in the manufacturer’s original submission. 

 

Manufacturer's 

Original Submission 
Sensitivity Analysis 1 Sensitivity Analysis 2 

  RFC FC  

Incre-

mental RFC FC  

Incre-

mental RFC FC  

Incre-

mental 

Mean Life Years 5.73 4.65 1.07 4.66 4.65 0.00 5.73 5.72 0.00 

Mean Life Years in PFS 4.11 2.93 1.18 4.11 2.93 1.18 4.11 2.93 1.18 

Mean Life Years in 

Progression 1.62 1.73 -0.11 0.55 1.73 -1.18 1.62 2.80 -1.18 

          Mean QALYs 4.26 3.38 0.88 3.62 3.38 0.24 4.26 4.02 0.24 

Mean QALY in PFS 3.29 2.34 0.95 3.29 2.34 0.95 3.29 2.34 0.95 

Mean QALY in 

Progression 0.97 1.04 -0.07 0.33 1.04 -0.71 0.97 1.68 -0.71 

 

Table 7.1   Mean Life Years/QALYs for time horizon of 15 years:  

                  Sensitivity analyses initiated by the ERG to remove the benefit in overall    

                  survival [adapted from PenTAG (2009)] 

 

Table 7.2 shows the Costs per Life Years/QALYs gained from the manufacturer’s 

submission and the two sensitivity analyses initiated by the ERG (PenTAG, 2009). 

It can be seen that, due to the reductions in QALY gained in the sensitivity 

analyses, the cost per QALYs had increased to just above the £30,000 per QALY 

gained willingness-to-pay threshold. 
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Manufacturer's Original 

Submission 
Sensitivity Analysis 1 Sensitivity Analysis 2 

  RFC FC  

Incre-

mental RFC FC  

Incre-

mental RFC FC  

Incre-

mental 

Mean Life 

Years 5.73 4.65 1.07 4.66 4.65 0.00 5.73 5.72 0.00 

Mean 

QALYs 4.26 3.38 0.88 

           

3.62 3.38 0.24 4.26 

 

4.02 0.24 

Mean 

Total Cost 

 

£25,595  

 

£13,978  

 

£11,617  

 

£21,204  

 

£13,978   £7,226  

 

£25,595  

 

£18,367   £ 7,228  

Cost per 

Life Year 

Gained 

 

£10,825  

 

£ 3,473,529  

 

£2,756,887  

Cost per 

QALY 

Gained   £13,189    £30,336    £30,304  

 

Table 7.2   Cost per Life Year gained & Cost per QALY gained: manufacturers submission    

                  and ERG sensitivity analyses [adapted from PenTAG (2009)] 

 

Table 7.3 shows what the changes in the probability of death after progression in 

the two sensitivity analyses initiated by the ERG equate to in terms of hazard 

ratios (before discounting). 

  

Sensitivity 

analysis 1 

Sensitivity 

analysis 2 

Change to probability of death in progression in RFC arm 315% increase no change 

Change to probability of death in progression in FC arm 
no change 

57.4% of 

original 

   Probability of death in progression in RFC arm 0.168 0.041 

Probability of death in progression in FC arm 0.041 0.023 

   Probability of death in progression in RFC arm expressed as a rate 0.184 0.041 

Probability of death in progression in FC arm expressed as a rate 0.041 0.024 

   Hazard ratio  4.451 1.758 

 

Table 7.3  ERG sensitivity analyses expressed as hazard ratios 
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However, fitting a Cox regression to the observed data resulted in a hazard ratio 

of 1.364. Therefore, the assumptions made in the sensitivity analyses initiated 

by the ERG resulted in larger effects than were observed in the data, especially 

so in sensitivity analysis 2. It was the sensitivity analyses initiated by the ERG 

that motivated the exploration of the alternative approaches presented in the 

rest of this chapter.  

 

7.3 Description of Rituximab clinical trial dataset 

So far in this chapter, the analyses discussed were carried out by the 

manufacturer or the ERG (with the exception of those presented in Table 7.3). 

The rest of this chapter will focus on modelling approaches, wholly carried out 

by myself as part of the research conducted for this PhD, that used the 

individual patient level data. Consequently, this section summarises this trial 

data to provide background.  

As mentioned earlier in this chapter, the basis for the case study used for 

illustration was an economic model in a manufacturer’s submission 

(Roche, 2008) to NICE for the specific technology appraisal TA174 (NICE, 2009). 

The CLL-8 trial (Hallek et al., 2010) was the main source of data used to 

populate the model. For comparison, the partitioned survival approach (section 

7.4) and multi-state modelling (section 7.5) presented later in this chapter used 

the data from this trial directly. 

Table 7.4 summarises the number of events of relevance for the 408 patients in 

the RFC arm and the 409 patients in the FC arm. 

Patients were in the trial for up to 4 years and not all of them were observed to 

the end of their life. This meant extrapolation of survival was necessary to gain 

a lifetime perspective. As already explained in section 7.2, a time horizon of 15 

years was used in the manufacturer’s economic model. To help with the 

comparison with the two approaches wholly using the individual patient level 

data from the trial, a time horizon of 15 years was also used with each of them.  
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 RFC  FC  

 (n=408) (n=409) 

progression 106 148 

death after progression 23 27 

death without progression 21 26 

 

Table 7.4   Summary of number of events in the CLL-8 trial  

 

7.4 Partitioned survival 

This section presents analysis using the partitioned survival method, the first 

approach considered as an alternative to the manufacturer’s economic model. It 

can be thought of as simpler to implement than the state-transition approaches 

it will be compared to in this chapter, as it only involves Kaplan-Meier curves of 

the survival outcomes of interest. A background to the approach was given in 

section 6.1 of the previous chapter. For this illustration of it using the case 

study, it involved the trial outcomes progression-free survival and overall 

survival, which are considered in turn in sections 7.4.1 and 7.4.2.  For all the 

approaches compared in this chapter, an objective was to achieve a balance of a 

good fit to the data over the observed period of the trial and a suitable 

extrapolation to the time horizon of 15 years. For each of the survival outcomes 

involved in the partitioned survival, the fit over the observed period of the trial 

and that over the extrapolated period were initially considered separately.  

7.4.1  Progression-free survival 

7.4.1.1 Assessment of fit over the observation period of the trial 

This section assesses the fit (of survival regressions) over the observed period of 

the trial for progression-free survival. Some methodological background to this 

was given in section 6.4 of the previous chapter. Before carrying out survival 

regression, a standard first step is to check for violations of the proportional 

hazards assumption. Therefore, initially plots were created to visualise the data 

and to check for such violations. Figure 7.1 shows the Kaplan-Meier estimates of 
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progression-free survival, together with 95% confidence intervals, for the 

treatment groups RFC and FC. 

 

Figure 7.1  Kaplan-Meier estimates of progression-free survival for RFC and FC 

 

While progression-free survival did drop slightly quicker in the initial 1 year 

period, it settled down after this and the lines were still roughly parallel 

throughout with no severe convergence or divergence or crossing of the lines. 

A log-log plot, including a dashed reference line with slope 1, can be seen in 

Figure 7.2. 

The lines were roughly parallel and appeared to have a slope greater than 1. 

This indicated the underlying data followed a distribution with hazards that 

increased with time, suggesting that a Weibull or Gompertz fit (rather than an 

exponential) was worth consideration.   
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Figure 7.2 log-log plot of progression-free survival 

 
Figure 7.3 shows a cumulative hazard plot. 

Figure 7.3  Cumulative hazard plot of progression-free survival 

  
The lines appeared to diverge at a constant rate – indicative of hazards that 

increase over time - suggesting again that a Weibull or Gompertz fit (rather than 

an exponential) was worth consideration.  
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Since there was nothing to suggest any severe violations of the proportional 

hazards assumption for treatment from Figures 7.1 – 7.3, it was worthwhile 

considering such models. (The appropriateness of accelerated failure time 

models was assessed at a later stage using the Cox-Snell residuals plot on page 

161, thereby allowing a comparison of all accelerated failure time and 

proportional hazards models at the same time).  

Parametric regression models were then fitted to the data over the whole 

observation period of the trial using each of the standard distributions. Due to 

no evidence of severe violations of the proportional hazards assumption, models 

with treatment as a covariate were fitted rather than fitting a separate model 

for each treatment. Figure 7.4 (a) and (b) show, for RFC and FC respectively, the 

Kaplan-Meier estimates of progression-free survival and that predicted from 

each of the models. 

 

Figure 7.4  Kaplan-Meier and prediction estimates of progression-free survival:  

                  (a) RFC (b) FC 
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Figure 7.4(a) shows the exponential and log normal fitted the RFC data least 

well. The other distributions all provided a reasonable (similar) fit up to 3 years 

after which they started to diverge. The Weibull, generalised gamma and 

Gompertz distributions appeared to provide relatively good fits from year 3 to 4. 

However it was difficult to choose between distributions over this period due to 

the greater uncertainty in the Kaplan-Meier estimates. It can be seen in Figure 

7.4(b) that again the Weibull, generalised gamma and Gompertz distributions 

provided the better fits to the FC data, although there was little to choose 

between them. 

Figure 7.5 displays the Cox-Snell residuals following each of the model fits. 

Figure 7.5    Cox-Snell residuals following the parametric regression of progression-free 
                    survival  

 
Again, it indicated the fits from Weibull, generalised gamma and Gompertz were 

more suitable.  

 
Table 7.5 shows the AICs for each of the model fits.  
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Distribution AIC 

exponential 1575.9 

Weibull 1545.7 

Gompertz 1548.9 

log-logistic 1551.5 

log normal 1572.6 

generalised gamma 1547.4 

 

Table 7.5  AICs from parametric regressions models for progression-free survival 

 

It suggested that the Weibull provided the best fit of all the distributions 

considered as it had the lowest AIC. 

 

7.4.1.2 Extrapolation of progression-free survival 

The assessment of fit then moved on to considering the unobserved 

extrapolation period from 4 years to the time horizon of 15 years. The 

conventional approach to extrapolation of fitting parametric regressions using 

standard distributions to the whole Kaplan-Meier curve, and then extending the 

fit out to the desired time horizon was used. Extrapolations that represented 

zero by 15 years were considered reasonable. As with the assessment of the 

observed fit presently previously, the models had treatment as a covariate 

rather than fitting separate models for each treatment.  

In Figure 7.6(a) and (b) the extrapolation of progression-free survival to 15 years 

can be seen, for RFC and FC respectively, based on the model fits using each 

distribution.  

It is evident that the Weibull, generalised gamma and Gompertz extrapolations 

most adequately represented the time horizon of 15 years, although the 

Gompertz survival reaches zero somewhat earlier than that time point. 
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Figure 7.6  Extrapolated progression-free survival to 15 years: (a) RFC  (b) FC  

  

 
7.4.1.3 Choice of base-case model 

This part takes into consideration all the results presented in this section so far 

to decide on a base-case model for progression-free survival. The Weibull, 

generalised gamma and Gompertz models with treatment as a covariate all 

seemed to provide a reasonable fit over the observed period of the trial. The AIC 

indicated the Weibull provided the best fit. Taking into account both these 

assessments of fit, the Weibull model was considered the best fit to the 

observed data. 

The Weibull also provided a sensible extrapolation in terms of representing a 

lifetime of 15 years. Sensitivity analysis considering separate Weibull fits for 

each treatment showed there was very little difference between them and the 

Weibull model with treatment as a covariate (see below). Therefore the Weibull 

fit with treatment as a covariate, and then extrapolated to 15 years, was chosen 

as the base case model for progression-free survival. A summary of the model is 

shown in Table 7.6. 
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  coefficient s.e.  HR (95% CI) p-value 

treatment (RFC vs FC)  -0.519 0.117 0.595 (0.473, 0.748) <0.001 

log(scale) 1.237 0.060   

log(shape) 0.310 0.051   

 

Table 7.6  Weibull model for progression-free survival 

 

7.4.1.4 Selected sensitivity analyses 

Sensitivity analyses were carried out to check there were no substantive 

differences between the model fits with treatment as a covariate and separate 

fits for each of the treatments. The fit over the observed period of the trial and 

that over the extrapolated period were considered separately. 

Sensitivity analysis with fit for each treatment – observed period 

The black solid line in Figure 7.7 and Figure 7.8 show the Kaplan-Meier estimate 

of progression-free survival for RFC and FC respectively. All other solid lines in 

Figure 7.7 and Figure 7.8 show, for RFC and FC respectively, the progression-

free survival predicted by models fitted with treatment as a covariate, with 

colour used to distinguish between different distributions. For each colour, the 

corresponding dashed line shows the prediction when only the data from the 

specified treatment were fitted with the same distribution.  

Figure 7.7 and Figure 7.8 show there was very little difference between the 

model types for a given distribution for either of the treatments, with some of 

the lines being indistinguishable. Please note, the y-axis of Figure 7.7 starts at 

0.4, rather than 0, for clarity. 

 



Chapter 7  165 

Comparing Markov decision-analytic modelling, partitioned survival and multi-state modelling 

                                                                                                                                                                                                       

 

Figure 7.7    Predicted progression-free survival: treatment as a covariate vs separate fit for  

                  RFC. 

 

Figure 7.8   Predicted progression-free survival: treatment as a covariate vs separate fit for  

                  FC. 

Table 7.7 and Table 7.8 show, for RFC and FC respectively, the area under the 

predicted progression-free survival curve for each of the two types of fits for 

each distribution. There was very little difference between the two types of fit, 
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with the exception of log normal for FC which was found to be one of the least 

reasonable fits anyway.  

 

  

with treatment as a covariate in the 

model 

 

separate fit for each 

treatment 

exponential 3.120 

 

3.120 

Weibull 3.109 

 

3.107 

Gompertz 3.084 

 

3.079 

log-logistic 3.134 

 

3.134 

log normal 3.143 

 

3.156 

generalised gamma 3.102 

 

3.088 

 

Table 7.7  Progression-free survival (years) AUCs from model with treatment as a covariate 

vs separate fit for RFC 

 

 

  

with treatment as a covariate in the 

model 

 

separate fit for each 

treatment 

exponential 2.586 

 

2.586 

Weibull 2.567 

 

2.568 

Gompertz 2.543 

 

2.548 

log-logistic 2.607 

 

2.607 

log normal 2.635 

 

2.621 

generalised gamma 2.562 

 

2.567 

 

Table 7.8   Progression-free survival (years) AUCs from model with treatment as a covariate 

vs separate fit for FC 

 
 

Sensitivity analysis with fit for each treatment – extrapolation period 

Figure 7.9 and Figure 7.10 show, for RFC and FC respectively, the results of a 

sensitivity analysis carried out to assess whether there were any substantive 

differences between the extrapolation based on the models with treatment as a 

covariate and those with separate fits for each of the treatments.  
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Figure 7.9  Extrapolated progression-free survival: treatment as a covariate vs separate fit 

for RFC. 

 
Only one red curve is shown in Figure 7.9 for the exponential distribution 

because both types of model produced identical fits. The curves from the two 

types of log-logistic model were indistinguishable by eye, and therefore again 

only one orange curve is evident.  The two types of model for the log normal, 

Weibull and Gompertz produced very similar fits. The generalised gamma was 

the only distribution for which there was a more marked difference: its separate 

fit for RFC was indistinguishable from the fit for the Gompertz with treatment as 

a covariate. 

Figure 7.10 displays only one curve for the exponential and log-logistic for the 

same reason as in Figure 7.9. 

The two fits for the Weibull and the separate generalised gamma fit for FC were 

indistinguishable. Furthermore, the two fits for the log-normal and Gompertz 

were very similar.  
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Figure 7.10  Extrapolated progression-free survival: treatment as a covariate vs separate fit 

for FC. 

 
Table 7.9 and Table 7.10 show, for RFC and FC respectively, the area under 

progression-free survival curves extrapolated to 15 years for each of the two 

types of fit for a given distribution.  

There was very little difference between the two types of fit for a given 

distribution, with the exception of log normal - which did not adequately 

represent the time horizon of 15 years anyway – and generalised gamma.  
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with treatment as a 

covariate in the model 

 

separate fit for RFC 

exponential 5.939 

 

5.939 

Weibull 4.590 

 

4.473 

Gompertz 3.701 

 

3.598 

log-logistic 5.706 

 

5.703 

log normal 6.322 

 

6.535 

generalised gamma 4.363 

 

3.689 

 

Table 7.9  Extrapolated progression-free survival AUCs from model with treatment as a 

covariate vs separate fit for RFC 

 
 

  

with treatment as a 

covariate in the model 

 

separate fit for FC 

exponential 3.978 

 

3.978 

Weibull 3.154 

 

3.196 

Gompertz 2.796 

 

2.845 

log-logistic 4.210 

 

4.214 

log normal 4.704 

 

4.560 

generalised gamma 3.023 

 

3.175 

 

Table 7.10   Extrapolated progression-free survival AUCs from model with treatment as a 

covariate vs separate fit for FC 

 

7.4.2  Overall survival 

The focus of the analysis then changed to overall survival, the other survival 

outcome involved in this illustration of partitioned survival. 

7.4.2.1 Assessment of fit over the observation period of the trial 

In a similar manner to the beginning of the previous sub-section that focused on 

progression-free survival, this sub-section focuses on a corresponding assessment 

of fit over the observed period of the trial for overall survival. As such, initially 

plots were created to visualise the data and to check for violations of the 
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proportional hazards assumption. Figure 7.11 shows the Kaplan-Meier estimates 

of overall survival, together with 95% confidence intervals, for the treatment 

groups RFC and FC.  

Figure 7.11  Kaplan-Meier estimates of overall survival for RFC and FC 

 
The lines were roughly parallel in the first three years indicating no obvious 

violation of the proportional hazards assumption over this period. After three 

years there was more divergence as there was a greater drop in survival in the 

FC group. However there was a greater degree of uncertainty in the data over 

this period. 

A log-log plot including a dashed reference line with slope 1 can be seen in 

Figure 7.12. 

The lines were roughly parallel and appeared to have a slope of 1. This would 

suggest the underlying data follow an exponential distribution.  The lines did 

cross over for a short period – however this was not unexpected given the 

closeness of the lines. 
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Figure 7.12  Log-log plot of all-cause mortality (1-overall survival) 

 

Figure 7.13 shows a cumulative hazard plot. 

 

Figure 7.13  Cumulative hazard plot of all-cause mortality (1-overall survival) 
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The lines appeared roughly parallel (up until 3 years anyway, after which there 

was greater uncertainty in the estimates) suggestive of a constant hazard of 

dying.  Therefore the exponential was an appropriate distribution for initial 

consideration. Since there was nothing to suggest any severe violations of the 

proportional hazards assumption for treatment from Figures 7.11 - 7.13, it was 

worthwhile considering such models, and in particular the exponential. Again, 

assessment of the accelerated failure time models was carried out using the 

Cox-Snell residuals plot (page 173). 

Parametric regression models were then fitted over the whole observation 

period of the trial for each treatment using each of the standard distributions. 

As with the analysis presented previously for progression-free survival, models 

were fitted with treatment as a covariate, rather than fitting a separate model 

for each treatment. Figure 7.14(a) and (b) show, for RFC and FC respectively, 

the Kaplan-Meier estimate of survival with the 95% confidence interval and the 

predicted survival from each of the models. Please note, the y-axes of both 

Figures do not reach zero for clarity. 

Figure 7.14  Kaplan-Meier and prediction estimates of overall survival: (a) RFC (b) FC  
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Figure 7.14(a) and (b) show that the fits from each of the six distributions were 

very similar up to 2.5 years, after which there was some divergence. However, 

In this latter period there was greater uncertainty in the data over this period, 

especially for FC. 

The Cox-Snell residuals following each of the model fits are presented in Figure 

7.15. 

 

Figure 7.15 Cox-Snell residuals following the parametric regression of overall survival 

 
 
Again, it demonstrated the fits were, until divergence in the later period, all 

reasonable as well as being very similar. 

Table 7.11 shows the AICs from each of the model fits.  

It suggested that the exponential provided the best fit of the distributions 

considered as it had the lowest AIC value. 
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Distribution AIC 

exponential 756.940 

Weibull  758.936 

Gompertz 758.939 

log-logistic 758.978 

log normal 759.930 

generalised gamma 760.812 

 

Table 7.11  AICs from parametric regressions models for overall survival 

   

7.4.2.2 Extrapolation of overall survival 

The assessment of fit then moved on to considering the unobserved 

extrapolation period from 4 years to the time horizon of 15 years. The 

conventional approach to extrapolation of fitting parametric regressions using 

standard distributions to the whole Kaplan-Meier curve, and then extending the 

fit out to the desired time horizon was considered initially. Extrapolations that 

represented zero by 15 years were considered reasonable. As with the 

assessment of the observed fit presently previously, the models had treatment 

as a covariate rather than fitting separate models for each treatment.  

Figure 7.16 (a) and (b) show, for RFC and FC respectively, the predicted overall 

survival from each of the models, together with the corresponding observed 

Kaplan-Meier estimate. It can be seen that each of the models were far from 

producing overall survival of zero at 15 years. 
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Figure 7.16   Extrapolated overall survival to 15 years: (a) RFC (b) FC 

 
 
Therefore focus changed to starting the extrapolation from the tail of the 

Kaplan-Meier curve. Each of the observed time points were considered in turn as 

the starting point for extrapolation. Weibull models were fitted following the 

approach of Tappenden et al. (2006) mentioned previously in section 6.5.  

Each of the treatment groups were considered separately.  

Exponential models were considered but were not fitted. This was due to the 

intercept in the linear regression acting as a nuisance parameter that caused 

problems in transforming the fitted line to an exponential survival function. 

Gompertz models were also considered using the approach of Tappenden et al. 

(2006) but an assumption of these models, namely that the logarithm of the 

hazard was linear with time, was not met and therefore they were not fitted to 

the data. Tappenden et al. (2006)’s article did not include corresponding details 

for the accelerated failure time framework and were not derived for this thesis. 
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Extrapolation from the tail of the overall survival Kaplan-Meier curve: FC 

Table 7.12 and Figure 7.17 summarise the results of fitting Weibull extrapolation 

models for FC, showing the results based on a wide range of starting points for 

extrapolation – those closest to 0, 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 years & the one 

that best represented a time horizon of 15 years, namely a starting point of 

3.663 years.  

Starting point of 
extrapolation (years) 

n at risk at starting 
point of extrapolation 

survival at 15 years 

0 409 36.9% 

0.498 372 42.4% 

0.999 351 40.2% 

1.487 319 39.2% 

1.996 201 32.5% 

2.489 120 10.6% 

2.773 95 4.7% 

2.995 73 11.0% 

3.491 32 2.0% 

3.663 23 0.3% 

Table 7.12   Extrapolation of overall survival for FC using Weibull models 
                     - Summary using a selection of starting points 

 

Figure 7.17    Extrapolation of overall survival for FC using Weibull models 

                   - Summary using a selection of starting points 
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Starting time points in the ranges 2.727 – 2.828 and 3.455 - 3.762 years achieved 

survival of less than 5% upon extrapolation to 15 years. While there was less 

uncertainty in the Kaplan-Meier estimate in the time points over the range 

2.727 – 2.828, the survival they achieved was as high as 4.7% at best upon 

extrapolation to 15 years.  

However, time points over the range 3.455 - 3.762 provided better 

representation of the time horizon, with the smallest survival estimate at 15 

years being 0.3% when the extrapolation started at 3.663 years. Therefore, a 

Weibull fit to the Kaplan-Meier tail beginning at 3.663 years was the basis for 

the extrapolated section of the base case model of overall survival for FC. 

Extrapolation from the tail of the overall survival Kaplan-Meier curve: RFC 

Table 7.13 and Figure 7.18 summarise the results of fitting Weibull models for 

RFC.  

Starting point of 
extrapolation 

(years) 

n at risk at 
starting point of 

extrapolation survival at 15 years  

0 408 52.2% 

0.479 389 56.6% 

0.983 375 61.3% 

1.495 356 63.9% 

1.993 240 66.7% 

2.486 147 70.0% 

2.998 85 70.2% 

3.493 44 85.4% 

3.973 10 85.4% 

 

Table 7.13   Extrapolation of overall survival for RFC using Weibull  

                  models - Summary using a selection of starting points 
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Figure 7.18  Extrapolation of overall survival for RFC using Weibull models  

                  - Summary using a selection of starting points 

 
It can be seen that none of the models provided any fits that came anywhere 

close to reaching zero at 15 years, and that there was no improvement on the 

original fit to the whole Kaplan curve (i.e. the red line representing the 

extrapolation that started at 0 years) with any of the distributions. 

Since neither a parametric fit to the whole – or a tail of any length of the – 

Kaplan-Meier curve adequately represented survival of zero upon extrapolation 

to 15 years, it was decided to derive the extrapolated survival probabilities for 

RFC by applying a hazard ratio to the survival probabilities already predicted for 

FC. 

As a starting point, the hazard ratio of 0.753 from the exponential model over 

the observed period (the model found to be the most reasonable fit to the 

observed data) was applied to the extrapolated survival probabilities already 
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predicted for FC. Figure 7.19 shows the predicted overall survival for both RFC 

and FC. Using a hazard ratio of 0.753 resulted in a reasonable representation of 

the time horizon with survival of 1.4% at 15 years for RFC.   

 

Figure 7.19 Overall survival to 15 years for RFC and FC 

 

7.4.2.3 Base-case models used for overall survival 

Table 7.14 shows a summary of the models used for overall survival. 

  parameter  

exponential fit over observed period (0 - 3.663 years) 

lambdaFC 0.064 

lambdaRFC 0.048 

  Weibull fit used for extrapolation (3.663 - 15 years) 

gamma 2.257 

lambdaFC 0.013 

 

Table 7.14   Base case models for overall survival 
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An exponential regression with treatment as a covariate was used for predictions 

over the observed period of 0-3.663 years. Therefore, the predictions for both 

treatment arms were derived using the same model. 

Over the extrapolated period, a Weibull fit was derived for the FC arm, using the 

aforementioned approach of Tappenden et al. (2006) based on linear regression. 

The extrapolation for the RFC arm was derived by applying a hazard ratio of 

0.753 to the extrapolated survival probabilities for the FC arm. 

7.4.2.4 Selected sensitivity analyses 

Sensitivity analyses were carried out to check there were no substantive 

differences between the model fits with treatment as a covariate and separate 

fits for each of the treatments. Only the fit over the observed period of the trial 

was considered. Such a sensitivity analysis over the extrapolated period was not 

required because the base-case extrapolation was already based on separate fits 

for each treatment.  

The results of the aforementioned sensitivity analyses are shown in Figure 7.20 

(RFC) and  Figure 7.21 (FC). Please note, the y-axes of both Figures do not reach 

zero for clarity. 

Figure 7.20  Predicted overall survival: treatment as a covariate vs separate fit for RFC. 

 



Chapter 7  181 

Comparing Markov decision-analytic modelling, partitioned survival and multi-state modelling 

                                                                                                                                                                                                       

The exponential, log-logistic, Weibull, generalised gamma and Gompertz curves 

in Figure 7.20 from the two types of model were very similar to the extent they 

were difficult to distinguish by eye.  The two types of model using the log 

normal distribution also produced very similar fits. 

Figure 7.21   Predicted overall survival: treatment as a covariate vs separate fit for FC. 

 

As in Figure 7.20, it was difficult to distinguish between the exponential, log-

logistic, Weibull, generalised gamma and Gompertz curves from the two types of 

model (Figure 7.21). The two fits using the log-normal distribution were again 

very similar. 

 
Table 7.15 and Table 7.16 show, for RFC and FC respectively, the area under the 

overall survival curves for each of the two types of fits for each distribution. 

There was very little difference between the two types of fit. 
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Table 7.15   Overall survival AUCs from model with treatment as a covariate vs separate fit 

for RFC 

  

with treatment as a 

covariate in the model 

 

separate fit for 

each treatment 

exponential 3.631 

 

3.631 

Weibull 3.634 

 

3.625 

Gompertz 3.633 

 

3.618 

log-logistic 3.617 

 

3.607 

log normal 3.550 

 

3.541 

generalised gamma 3.607 

 

3.607 

 
 
 

Table 7.16  Overall survival AUCs from model with treatment as a covariate vs separate fit 

for FC 

 

  

with treatment as a 

covariate in the model 

 

separate fit for 

each treatment 

exponential 3.037 

 

3.037 

Weibull 3.041 

 

3.052 

Gompertz 3.039 

 

3.056 

log-logistic 3.007 

 

3.019 

log normal 2.912 

 

2.926 

generalised gamma 2.995 

 

2.985 

 
 
 

7.4.3  Compatibility of fits for progression-free and overall 
survival 

While carrying out the partitioned survival approach, each of the health states 

that overall survival was partitioned into were modelled separately. Figure 

7.22(a) and (b) show the resulting base case progression-free survival curve and 

overall survival curve (section 7.4.1 and 7.4.2) for FC and RFC respectively.  
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Figure 7.22  Base case partitioned survival for (a) FC  and (b) RFC   

 

They provide a visual check that each of the fits were compatible, which may 

not always be the case because they were modelled separately. It can be seen 

that the fits were compatible for each of the treatment arms, in the sense that 

overall survival was greater than or equal to progression-free survival throughout 

the 15 years.   
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7.4.3.1 Sensitivity analysis for treatment effect in extrapolated period 

A sensitivity analysis was then carried out, reducing the treatment effect upon 

extrapolation (Table 7.17). There was a slight improvement in the 

representation of the whole lifetime upon reduction of the treatment effect, in 

the sense of overall survival reaching zero. However, none of the reductions 

provided a sensible extrapolation to 15 years, with regards to the compatibility 

specified above, as they all resulted in survival at 15 years which was less than 

the 1.2% survival for progression-free survival.   

hazard ratio overall survival at 15 years 

0.753 1.4% 

0.8 1.1% 

0.85 0.8% 

0.9 0.6% 

0.95 0.5% 

 

Table 7.17  Effect of reducing the treatment effect on extrapolated overall survival to 15 

years for RFC. 

 
It was not thought appropriate to consider increasing the treatment effect upon 

extrapolation.  

7.5 Multi-state modelling 

7.5.1  Introduction 

This section presents analysis of the health economics case study using the 

multi-state modelling approach. It was the second approach considered as an 

alternative to the manufacturer’s economic model, and the main focus of the 

research in this thesis. It shares many similarities with the original 

manufacturer’s economic modelling due to them both being state-transition 

modelling approaches. The structure of the model is the same in the sense the 

health states and the transitions between them that are modelled are identical. 

However, there are also some important differences. In particular, in this 

illustration of multi-state modelling each of the transitions between states were 

based on regression modelling using the individual patient level trial data. This 



Chapter 7  185 

Comparing Markov decision-analytic modelling, partitioned survival and multi-state modelling 

                                                                                                                                                                                                       

use of multi-state modelling as an alternative approach was motivated by the 

ERG’s concern with the original manufacturer’s model that the overall survival 

gain it demonstrated was not seen empirically.  

This section, and those that follow, will demonstrate that anything that can be 

produced using conventional Markov-decision analytic modelling can just as 

easily be performed using multi-state modelling. The implementation of multi-

state modelling for cost-effectiveness in R is described elsewhere in one of my 

accompanying publications to this chapter (Williams et al., 2017a). This paper 

also outlines the advantages of using a syntax-based approach with statistical 

software instead of the spreadsheet-based approaches that are more commonly 

employed for state-transition modelling.  

In sub-section 7.5.2, just as with the partitioned survival demonstrated in the 

previous section, the appropriateness of the proportional hazards assumption 

was considered before building any models. Then, whether the Markov property 

held was investigated in sub-section 7.5.3. Next, the distribution to use for each 

of the transitions was explored in sub-section 7.5.4. Following on from this, in 

sub-section 7.5.5, the model used for the base-case analysis is summarised.  

7.5.2  Consideration of the appropriateness of the 
proportional hazards assumption 

This section assesses, prior to carrying out any modelling, the suitability of the 

proportional hazards assumption. In Figure 7.23(a), (b) and (c) a log-log plot for 

treatment is shown for each of the respective transitions. A log-log plot is also 

shown for time in previous state for the progression  death transition (Figure 

7.23(d)). This was because this covariate was to be included in this transition in 

the modelling carried out in the next section, section 7.5.3. For Figure 7.23(d), 

the median time progression-free in those who experienced death after 

progression was used as a cut-off to provide two groups that were balanced in 

terms of the number of events. 
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Figure 7.23  Log-log plots for the transitions in the multi-state model 

 

It can be seen from Figure 7.23 (a), (b) and (c) that the lines in the treatment 

plots for each transition were roughly parallel, with any crossing of the lines due 

to the lack of a treatment effect rather than any major violation of the 

proportional hazards assumption. Figure 7.23(d) showed lines that were again 

roughly parallel for time in the previous state for progression  death, with no 

suggestion of any major violation of the proportional hazards assumption.   
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Figure 7.24 shows cumulative hazard versus time plots for treatment for each of 

the transitions. Again, a corresponding plot is also shown for time in the previous 

state for the progression  death transition. 

 

Figure 7.24  Cumulative hazard versus time plots for the transitions in the multi-state model 

 
In Figure 7.24 (a), (b) and (d) the lines diverged suggesting that it would be 

worthwhile considering a distribution that allows increasing hazards over time.  

Figure 7.24 (c) was indicative of the lack of a treatment effect rather than any 

major violation of the proportional hazards assumption.  
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7.5.3  Deciding on the appropriateness of the Markov 
property 

To help decide whether the Markov property held, a Cox Markov state-arrival 

extended model for progression  death was initially fitted. Table 7.18 shows 

the results of fitting this model.  

 
 hazard ratio (95% CI) p-value 

treatment (RFC vs FC) 1.555 (0.874, 2.766) 0.133 

time spent progression-free 0.413 (0.215, 0.794) 0.008 

 

Table 7.18  Results of a Cox Markov state-arrival extended model for  

progression  death 

 
As previously mentioned in Williams et al. (2017a), the time spent progression-

free was found to have a statistically significant association with death after 

progression (p-value = 0.008). The hazard ratio point estimate and 95% 

confidence interval were below one, indicating that the longer the time spent 

progression-free, the lower the risk of death after reaching the progression 

state. For each increase of one year in the progression-free state the hazard of 

death reduced by 58.7%. The point estimate of 58.7% equates to, for those in 

the FC treatment arm who spent one year in the progression-free state, an 

absolute risk of death of 72.9% 4 years after reaching the progression state. The 

corresponding figure for those in the FC arm who spend two years in the 

progression-free state was 41.7%. The equivalent figures for the RFC arm were 

86.9% and 56.8%. The effect of time in the previous state was of a size likely to 

be of practical importance, both in relative and absolute terms. Therefore there 

was evidence to suggest the Markov property did not hold, indicating that a 

semi-Markov model was more appropriate than a Markov approach.  

7.5.4  Choice of distribution for each transition 

This section assesses the fit to each of the states and relevant transitions using 

six standard distributions with a semi-Markov multi-state modelling approach. In 
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a similar manner to the partitioned survival approach presented earlier in this 

chapter, fits were assessed over both the observed period of the trial and the 

period of extrapolation.  Also, similar to the previous analyses, models with 

treatment as a covariate were used rather than models for each treatment 

separately. This was thought appropriate due to the lack of any severe violation 

of the proportional hazards assumption presenting in section 7.5.2. 

For each of the transitions in the multi-state model, the fit over the observed 

period of the trial and that over the extrapolated period were considered 

separately. 

7.5.4.1 Progression   death 

The fit to the progression  death transition was considered initially as this was 

the simplest transition to assess in the sense that the observed data could be 

expressed as a (standard) Kaplan-Meier survival curve.  

Assessment of fit over the observed period 

Figure 7.25 (a) and (b) show, for RFC and FC respectively over the observed 

period of the trial, the cumulative incidence (1-Kaplan-Meier) estimate of death 

after progression, its 95% confidence interval (CI) and estimates predicted by 

parametric survival regressions using standard distributions. 

It can be seen from Figure 7.25 (a) and (b) that there was little to choose 

between the distributions for either RFC or FC, especially as they only started to 

diverge at the tail of the cumulative incidence curve where there was the most 

uncertainty. 
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Figure 7.25  Progression  death for over trial observation period: (a) RFC and (b) FC  

 
Figure 7.26 on the next page displays the Cox-Snell residuals following each of 

the model fits. 

There was very little to choose between the distributions in terms of the Cox-

Snell residuals. 
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Figure 7.26  Progression  death : Cox-Snell residuals 

 
Table 7.19 shows the AICs from each of the model fits.  
 
 
  AIC 

Weibull 240.2 

exponential 239.0 

Gompertz 240.5 

log-logistic 240.8 

log normal 243.1 

generalised gamma 242.2 

 

Table 7.19  AICs from parametric regression models for progression -> death 

 

It suggests the exponential provided the best fit over the observed period of the 

trial as it had the lowest AIC value, although there was little to choose between 

the distributions. 
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Assessment of fit over the period of extrapolation 

The assessment of fit then moved on to considering the unobserved 

extrapolation period from 4 years to the time horizon of 15 years. The 

conventional approach to extrapolation of fitting parametric regressions using 

standard distributions and then extending the fit out to the desired time horizon 

was used. Extrapolations that represented zero by 15 years were considered 

reasonable. As with the assessment of the observed fit presently previously, the 

models had treatment as a covariate rather than fitting separate models for 

each treatment.  

Figure 7.27 (a) and (b) show, for RFC and FC respectively, the cumulative 

incidence (1-Kaplan-Meier) estimate of death after progression and that 

predicted by parametric survival regressions using standard distributions with 

extrapolation to 15 years.  

  

Figure 7.27  Progression death extrapolated to 15 years: (a) RFC and (b) FC 

 

The Gompertz, generalised gamma and Weibull distributions each provided the 

required extrapolation by 15 years for both treatment arms. The exponential 
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distribution also provided a sensible extrapolation for the RFC arm. Given that 

this plot was based on death since progression, rather than from the start of the 

study, the Gompertz fits were probably most plausible. That was because 

everyone seemed to have died by 10 years, rather than taking the whole time 

horizon of 15 years to do so, thereby still leaving some time to be attributed to 

the time they would spent progression-free before reaching progression. 

Choice of base-case model 

Consequently, for the base-case analysis of the progression  death transition, 

the Gompertz distribution was chosen as it seemed to provide the best balance 

between the observed data and extrapolation to 15 years. 

7.5.4.2 Progression-free   progression 

The second transition for which the fit was assessed was progression-free  

progression. This was carried out by examining the fit for the probability of 

being in the progression state at any given time. However this state was an 

intermediate state and as such had flow in (progression-free  progression) and 

out (progression  death) of it. To focus on comparing distributions for the 

transition progression-free  progression specifically, a Gompertz fit was used 

for progression  death throughout. Other parametric distributions for 

progression  death were considered in the sensitivity analyses in section 7.7.1.  

The fit over the observed period of the trial and that over the extrapolated 

period were considered separately.  

Assessment of fit over the observation period of the trial 

In Figure 7.28 (a) and (b) the probability of being in progression at any given 

time over the observed period of the trial can be seen for RFC and FC 

respectively. The coloured lines each show a different distribution fitted to the 

progression-free  progression transition. Furthermore, each of the different 

shades of a colour show when a different distribution was used for progression-

free  death. Therefore, given that 6 distributions were used for each 
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transition, each line in a particular shade of a particular colour represents one 

of the 36 possible ways of using the distributions for modelling the transitions. 

 

Figure 7.28  Probability of progression over trial observation period for (a) RFC and (b) FC    
    Different distributions for progression-free progression are distinguished by colour    
    Shades of each colour represent a different distribution used for progression-free  death 

 

Each of the different shades of a particular colour gave similar fits. Therefore 

the fit to progression-free  progression did not seem to be affected by the 

distribution used for progression-free  death.  

Figure 7.28(a) indicates that, over the observed period of the trial, the 

Gompertz fit for progression-free  progression provided the best fit for the 

probability of progression for the RFC treatment arm. It can be seen in Figure 

7.28(b) that a reasonable fit for the probability of progression for the FC arm 

was achieved when the Gompertz, generalised gamma and Weibull distributions 

were used for progression-free  progression. 
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Assessment of fit over the extrapolated period 

 

Figure 7.29  Probability of progression extrapolated to 15 years: (a) RFC and (b) FC          
    Different distributions for progression-free progression are distinguished by colour    
    Shades of each colour represent a different distribution used for progression-free  death 

 
Figure 7.29 (a) and (b) indicate the Gompertz fit for progression-free  

progression provided the most reasonable extrapolation for each treatment arm. 

It can be seen in Figure 7.29 (b) that the fit for FC was also reasonable upon 

extrapolation with the Weibull and generalised gamma models. 

Choice of base-case model 

For the base-case analysis of the progression-free  progression transition, the 

Gompertz distribution was chosen as it seemed to provide the best balance 

between the fit to the observed data and the extrapolation to 15 years. 
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7.5.4.3 Progression-free  death (without progression) 

The third and final transition that was assessed was progression-free  death. 

To focus on comparing the fits of different distributions for this transition 

specifically, the progression  death and progression-free  progression 

transitions were fitted using a Gompertz distribution throughout. Alternative fits 

for each of the transitions are considered in the sensitivity analysis presented in 

section 7.7.1. 

Figure 7.30 (a) and (b) show, for RFC and FC respectively over the observed 

period of the trial, the competing risks (CR) cumulative incidence estimate of 

progression-free  death and that predicted by parametric survival regressions 

using standard distributions. It can be seen in Figure 7.30 (a) the generalised 

gamma fit probably provided the best fit over the observed period for RFC, 

although the Gompertz provided a very similar fit over the first 2 years. Figure 

7.30 (b) shows the Gompertz and log normal fits seemed to be the most suitable 

over the observed period for FC. 
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Figure 7.30  Progression-free  death without progression over the trial observation period: 

                  Gompertz used for progression  death and progression-free  progression 

                  abbreviation used: CR=competing risks 

 

Figure 7.31 shows the same information as Figure 7.30, only this time the 

estimates have been extrapolated to 15 years.  

Figure 7.31 (a) and (b) show that the fits over the extrapolated period all 

seemed to be flat. Whilst this does not seem very realistic, indicating that the 

vast majority of patients had reached progression and possibly died after 

progression over the period, the generalised gamma and Gompertz were 

probably the best fit of all the distributions considered for RFC as they also 

provided the best fits over the observed period. Similarly, the Gompertz and log 

normal fits probably provided the best extrapolations for FC. Taking all this into 

account, the Gompertz was chosen for the base-case analysis for progression-

free  death with progression, with alternative distributions considered in the 

sensitivity analysis in section 7.7.1. 
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Figure 7.31   Progression-free  death without progression extrapolated to 15 years 

(a) RFC (b) FC 

Gompertz used for progression  death and progression-free  progression 

abbreviation used: CR=competing risks 

 
 

7.5.5  Summary of base-case model for each transition 

Table 7.20 shows, for each transition, a summary of the Gompertz models used 

for the base case analysis. 

Alternative distributions for each transition are considered in the sensitivity 

analysis presented in section 7.7.1. 
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  coefficient s.e.  HR (95% CI) p-value 

progression-free  

progression 

  

 

 treatment (RFC vs FC) -0.558 0.128 0.572 (0.446, 0.735) <0.001 

constant -2.187 0.130  
 

gamma 0.474 0.068  
 

   
 

 
progression-free   death 

  
 

 
treatment (RFC vs FC) -0.343 0.294 0.710 (0.399, 1.262) 0.243 

constant -2.825 0.265  
 

gamma -0.487 0.207  
 

   
 

 
progression   death 

  
 

 
treatment (RFC vs FC) 0.342 0.285 1.408 (0.806, 2.461) 0.229 

constant -1.627 0.267  
 

gamma 0.174 0.244  
 

 

Table 7.20  Base case models (all Gompertz) for the three transitions using the multi-state   

                  modelling approach 

 

7.6 Comparison of the three approaches 

In this section the results using the Markov decision-analytic model, partitioned 

survival and multi-state modelling are compared. It is based largely on a 

previous version of a similar comparison that was presented in Williams et al. 

(2017b).  

Firstly, sub-section 7.6.1 visually assesses the fits using each of the approaches.  

Secondly, the survival estimates in terms of mean Life Years and QALYs are 

compared (sub-section 7.6.2). Thirdly, the costs used in each approach are 

described in sub-section 7.6.3. Finally, sub-section 7.6.4 summarises and 

compares the incremental cost-effectiveness ratios.  

7.6.1  Visual assessment of the fits 

In this sub-section each of the modelling approaches are compared by informally 

visually assessing the fits. The assessment was based on a balance of achieving a 

good fit to the observed data and extrapolation that represented a lifetime since 

entry into the trial of 15 years.  
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7.6.1.1 progression-free state 

Figure 7.32 shows the predictions of being in the progression-free state using 

each of the approaches.   

 

Figure 7.32 Probability of being in the progression-free state using each approach 

 
The partitioned survival approach and the Markov decision-analytic modelling 

were based on the same fit to progression-free survival. For both treatment 

arms, each of the three approaches appeared to be well-fitting to the Kaplan-

Meier estimate. However, the extrapolation using the multi-state modelling 

approach reached zero somewhat earlier than the other approaches. This seems 

plausible as it allows those patients who reach the progression state to spend 

some time there before reaching the end of their lives. 

7.6.1.2 progression state 

Figure 7.33 (a) and (b) show, for the RFC and FC arm respectively, the 

predictions of being in the progression state with each of the approaches. 
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Figure 7.33  Probability of being in the progression state using each approach 

                 (a) RFC (b) FC 

 
The vertical solid lines on Figure 7.33 (a) and (b) are positioned where there 

were less than 20 patients at risk of death after progression, an indication of 

more uncertainty in the observed proportion estimates. They therefore provide a 

dividing line between the periods of observation and extrapolation. To further 

emphasise the uncertainty, the shaded areas show the 95% confidence intervals 

for the observed proportions. They were created using 5000 bootstrapped 

samples. 

For the RFC arm, the fit to the observed data was good from all approaches up 

until the vertical line (Figure 7.33 (a)). Subsequently however, there was a 

marked difference between the approaches in where and when the predictions 

of being in progression peaked. Furthermore, the partitioned survival approach 

and the multi-state modelling were the only methods to reach zero by 15 years. 
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For the FC arm, the fit to the observed data from the partitioned survival 

approach and multi-state modelling was good fit up until the vertical line (Figure 

7.33 (b)). However, this could only be said of the Markov decision-analytic 

modelling up to 2.3 years. Again, there was a marked difference between the 

approaches in the peaks. Furthermore, all approaches reached zero by 15 years 

as required. 

7.6.1.3 death state 

 

Figure 7.34 (a) and (b) show the Kaplan-Meier estimates of being in the death 

state, together with the predictions from each of the modelling approaches, for 

the RFC and FC arms respectively.   

 
Figure 7.34   Probability of being in the death state using each approach 
                     (a) RFC (b) FC 

 

The multi-state modelling and partitioned survival approach fitted the observed 

data over the first 4 years reasonably well. However, the Markov decision-

analytic modelling underestimated death over the first 2 years. All approaches 
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reached a probability of one by 15 years for FC (Figure 7.34 (b)). However the 

multi-state modelling was the only approach to do so for RFC (Figure 7.34 (a)). 

7.6.1.4 death without progression 

Figure 7.35 shows, for each treatment arm, the competing risk cumulative 

incidence estimate of death without progression together with the predictions 

from the multi-state modelling.  

 

Figure 7.35   death without progression 

 
It can be seen that the multi-state modelling fitted the observed data fairly 

well. These predictions were possible because the multi-state modelling allowed 

the state occupancy probabilities of death to be split into death without 

progression and death after progression. An equivalent Figure from the Markov 

decision-analytic model was not available.  

Furthermore, the partitioned survival approach did not model death without 

progression. 
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7.6.1.5 death after progression 

Figure 7.36 shows, for each treatment arm, the Kaplan-Meier estimate of  

death once in the progression state, together with the predictions from the 

multi-state modelling and the manufacturer’s assumption. 

 

Figure 7.36  post-progression death 

 
Each of the predictions from the multi-state modelling were close to their 

corresponding Kaplan-Meier estimate. It can be seen that the extrapolation for 

both methods was fairly good at reaching one by 15 years. However, the 

manufacturer’s assumption was less well-fitting to each of the treatment arms.  

The partitioned survival approach did not model death after reaching the 

progression state. 

7.6.2  Mean Life Years/QALYs 

Table 7.21 shows the mean Life Years and QALYs results for each relevant health 

state using each of the three approaches.  Mean QALYs were calculated by 

assuming a utility of 0.8 for the time spent progression-free and 0.6 for the time 
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spent in progression, the approach used by the manufacturer in the Markov 

decision-analytic model. All of the information in the table was discounted at 

3.5%.   

 

Markov decision –

analytic modelling Partitioned survival Multi-state modelling 

  RFC FC  

Incre-

mental RFC FC  

Incre-

mental RFC FC  

Incre-

mental 

Mean Life Years 5.73 4.65 1.07 5.96 5.31 0.65 5.24 4.96 0.28 

Mean Life Years 

Progression-free 
4.11 2.93 1.18 4.10 2.92 1.18 3.35 2.55 0.81 

Mean Life Years in 

Progression 
1.62 1.73 -0.11 1.86 2.39 -0.53 1.89 2.42 -0.53 

          
Mean QALYs 4.26 3.38 0.88 4.40 3.77 0.63 3.82 3.49 0.33 

Mean QALYs Progression-

free 
3.29 2.34 0.94 3.28 2.34 0.95 2.68 2.04 0.65 

Mean QALYs in Progression 0.97 1.04 -0.07 1.11 1.43 -0.32 1.13 1.45 -0.32 

 

Table 7.21  Mean Life Years and QALYs results: all three approaches 

 
It can be seen in Table 7.21 that the mean Life Years/QALYs Progression-free 

results were similar for the partitioned survival and Markov decision-analytic 

modelling approaches, with the multi-state modelling having a smaller benefit.   

 

Furthermore, each approach found a decrement in mean Life Years/QALYs in 

Progression. The decrements were largest with the partitioned survival and 

multi-state modelling approaches with mean Life Years (QALYs) of -0.53 (-0.32). 

The corresponding decrement in mean Life Years (QALYs) of -0.11 (-0.07) with 

the Markov decision-analytic modelling was somewhat smaller. This was due to 

the assumption of no treatment effect used for the progression  death 

transition in that model.  

In terms of mean Life Years/QALYs overall, the largest benefit was seen with the 

Markov decision-analytic modelling due to the smallest decrement in time in 

progression with that approach. In contrast, the benefits were far smaller with 
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the multi-state modelling approach due to the combination of having the 

smallest benefit Progression-free and the largest decrement whilst in 

Progression. 

7.6.3   Description of the costs 

Table 7.22 shows a breakdown of the mean costs used with each of the three 

approaches.  Most of the mean costs were not related to the time spent in 

relevant health states. However, cost of supportive care whilst in PFS, cost of 

supportive care whilst in progression and cost of 2nd line and subsequent 

therapy whilst in progression were all associated with time spent in relevant 

states. Therefore, the mean life years in the appropriate states were used in the 

calculation of these costs.  All other costs were taken from the original 

manufacturer’s submission [Roche (2008), pp127-131]. 
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Markov decision-analytic 

modelling Partitioned survival Multi-state modelling 

 

RFC  FC Incremental RFC  FC Incremental RFC  FC Incremental 

Mean cost of PFS  18965 6891 12074 18963 6890 12074 18711 6764 11947 

Costs of Rituximab  10113 0 10113 10113 0 10113 10113 0 10113 

Administration costs of Rituximab  1224 0 1224 1224 0 1224 1224 0 1224 

Cost of Fludarabine  2776 2790 -14 2776 2790 -14 2776 2790 -14 

Administration costs of Fludarabine  1109 1115 -6 1109 1115 -6 1109 1115 -6 

Costs of Cyclophosphamide  21 22 0 21 22 0 21 22 0 

Administration costs of Cyclophosphamide  1109 1115 -6 1109 1115 -6 1109 1115 -6 

Cost of supportive care in PFS  1381 983 398 1379 982 397 1127 855 272 

Cost of Bone Marrow Transplantation  592 360 231 592 360 231 592 360 231 

Cost of Blood Transfusions  640 507 133 640 507 133 640 507 133 

Mean cost of Progression  6630 7088 -458 6406 8233 -1827 6450 8248 -1798 

Cost of supportive care in progression 1630 1742 -111 1873 2407 -534 1905 2436 -531 

Cost of 2nd line and subsequent therapy 5001 5344 -340 4533 5825 -1293 4546 5812 -1267 

Mean Total Cost 25595 13978 11617 25369 15122 10247 25161 15012 10149 

 
 

Table 7.22  Costs breakdown: all three approaches
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7.6.4  Incremental cost-effectiveness ratios with each 
approach 

Table 7.23 shows the incremental cost-effectiveness ratio that resulted with 

each approach. It can be seen in Table 7.23 that the partitioned survival and 

Markov decision-analytic modelling deemed the RFC treatment cost-effective. 

However when the multi-state modelling approach was used, the Cost per QALY 

gained was £30,702, in excess of the commonly used willingness to pay threshold 

of £20,000 - £30,000 per QALY gained. 

  

Markov decision-analytic 

modelling 
Partitioned survival Multi-state modelling 

 

RFC  FC 

Incre-

mental RFC  FC 

Incre-

mental RFC  FC 

Incre-

mental 

Mean Life 

Years 
5.73 4.65 1.07 5.96 5.31 0.65 5.24 4.96 0.28 

Mean QALYs 4.26 3.38 0.88 4.40 3.77 0.63 3.82 3.49 0.33 

Mean Total 

Cost 
£25,595 £13,978 £11,617 £25,369 £15,122 £10,247 £25,161 £15,012 £10,149 

Cost per Life 

Year Gained   
£10,825 

  
£15,696 

  
£36,049 

Cost per 

QALY gained 
    £13,189     £16,310     £30,702 

 

Table 7.23  Incremental cost effectiveness ratios: all three approaches 

 
To provide more insight into how the approaches compared, the mean Life 

Years/QALYs results in Table 7.23 were split into those over the observed period 

(Table 7.24) and those over the unobserved extrapolation period (Table 7.25). 

It can be seen in Table 7.24 that the approaches were reasonably comparable 

over the observed period of the trial. However, in the unobserved extrapolation 

period (Table 7.25) there was an increment in mean Life Years/QALYs gained 

while in progression with the Markov decision-analytic modelling. This was in 

contrast to the rest of the approaches which found decrements. 
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Markov decision –

analytic modelling Partitioned survival Multi-state modelling 

  
RFC FC 

Incre-

mental 
RFC FC 

Incre-

mental 
RFC FC 

Incre-

mental 

Mean Life Years 3.42 3.27 0.16 3.42 3.32 0.10 3.40 3.28 0.12 

Mean Life Years 

Progression-free 
2.85 2.44 0.41 2.85 2.42 0.43 2.86 2.37 0.49 

Mean Life Years in 

Progression 
0.57 0.82 -0.25 0.57 0.90 -0.33 0.53 0.91 -0.37 

          
Mean QALYs 2.62 2.45 0.18 2.62 2.48 0.15 2.61 2.44 0.17 

Mean QALYs Progression-

free 
2.28 1.95 0.33 2.28 1.94 0.34 2.29 1.90 0.39 

Mean QALYs in Progression 0.34 0.49 -0.15 0.34 0.54 -0.20 0.32 0.54 -0.22 

 

Table 7.24  Mean Life Years and QALYs: trial observation period of 0-4 years 

 

 

 

Markov decision–

analytic modelling Partitioned survival Multi-state modelling 

  
RFC FC 

Incre-

mental 
RFC FC 

Incre-

mental 
RFC FC 

Incre-

mental 

Mean Life Years 2.30 1.39 0.92 2.54 1.99 0.55 1.85 1.68 0.16 

Mean Life Years 

Progression-free 
1.26 0.48 0.78 1.26 0.50 0.75 0.49 0.17 0.32 

Mean Life Years in 

Progression 
1.05 0.90 0.14 1.29 1.49 -0.20 1.36 1.51 -0.15 

          
Mean QALYs 1.63 0.93 0.71 1.78 1.29 0.48 1.21 1.04 0.16 

Mean QALYs Progression-

free 
1.01 0.39 0.62 1.00 0.40 0.60 0.39 0.14 0.25 

Mean QALYs in Progression 0.63 0.54 0.08 0.77 0.89 -0.12 0.81 0.91 -0.09 

 

Table 7.25   Mean Life Years and QALYs: extrapolation over 4-15 years 
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7.7 Sensitivity analyses for the multi-state modelling  
approach 

In this section, results of sensitivity analyses are presented to check the 

robustness of the multi-state model from deviations from the base-case 

assumptions. Only sensitivity analyses for the multi-state modelling are 

considered, it being the main focus of this thesis. The section is based largely on 

the sensitivity analyses presented in Williams et al. (2017a). However, the data 

underlying the analyses were different. This was because the published tutorial 

paper was not based on the actual trial data but on data digitised from 

published curves.  

Three sub-sections of sensitivity analyses are shown. In sub-section 7.7.1 

alternative distributions for each of the transitions are considered. Sub-section 

7.7.2 explores other one-way sensitivity analyses and sub-section 7.7.3 presents 

the results of probabilistic sensitivity analyses. 

7.7.1  Using alternative distributions for each of the 
transitions in the multi-state modelling 

When building the multi-state models, six parametric distributions were 

considered for each of the three transitions resulting in 63 = 216 combinations of 

distributional fits to assess. Table A1 in the Appendix IX shows the results – in 

terms of incremental QALYs, incremental costs and Cost per QALYs gained – for 

each of these combinations. The results are shown sorted by Cost per QALYs 

gained, with the exception of the base case model which is shown first. 

It can be seen in Table A1 that the Cost per QALYs gained ranged from £11,393 

to £344,585. However, many of the combinations did not provide a reasonable 

fit to at least one transition for at least one treatment arm. When this was the 

case, the Cost per QALYs were shaded in grey. The scenario each particular 

shade represents are described in the remaining part of this section. In common 

with earlier sections of this chapter, fits were evaluated by considering both the 

observed fit to the data and whether a reasonable extrapolation of survival was 

achieved in terms of reaching zero by 15 years.  
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Figure 7.25 (a) and (b) on page 190 showed, for the RFC and FC treatment arms 

respectively, that there was little to choose between the distributions for 

progression  death over the observed period of the trial. However Figure 7.27 

(a) and (b) on page 192 showed that the log-logistic and log normal fits did not 

provide sensible extrapolations for either arm. Therefore the Costs per QALYs 

gained in Table A1 for each combination that used either a log-logistic or log 

normal distribution for progression  death were shaded in grey. 

Only the remaining four distributions were considered any further for 

progression  death. Figure 7.37, focusing on the RFC arm, shows the 

probability of being in the progression state at any given time, with  

progression   death fitted using (a) Gompertz, (b) exponential, (c) Weibull and 

(d) generalised gamma. 

Figure 7.38 shows the equivalent information for the FC arm. 
 
 
Figure 7.37 and Figure 7.38 show that fitting progression-free  progression 

using the Gompertz distribution provided the best fit for the probability of 

progression upon extrapolation, for the RFC and FC arm respectively, regardless 

of the distribution used for progression  death. Furthermore, the Gompertz 

was the only distribution that, when fitted to progression  death, resulted in 

an extrapolation to zero by 15 years for the probability of being in the 

progression state. When a Gompertz was used for progression  death, the 

Weibull and generalised gamma also provided sensible extrapolations for the 

probability of being in the progression state, but only for the FC arm. In 

addition, the distribution used for progression-free  death had very little 

influence on the fits, as indicated by the very similar curves for the different 

shades of a particular colour. 

Consequently, the Cost per QALYs gained in Table A1 for each combination that 

did not use a Gompertz for progression-free  progression or a Gompertz for 

progression  death - that was not already highlighted in grey – was highlighted 

in light grey. 
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Figure 7.37       Probability of progression for RFC: extrapolation to 15 years 

                   Progression  death fitted using: (a) Gompertz, (b) exponential (c) Weibull   

                   and (d) generalised gamma           

Different distributions for progression-free progression are distinguished by colour 

Shades of each colour represent a different distribution used for progression-free  death  
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Figure 7.38      Probability of progression for FC: extrapolation to 15 years 

                  Progression  death fitted using: (a) Gompertz, (b) exponential (c)      

                  Weibull and (d) generalised gamma                    

Different distributions for progression-free progression are distinguished by colour 

Shades of each colour represent a different distribution used for progression-free  death  

   

The only Costs per QALYs gained in Table A1 that were not highlighted either in 

grey or light grey were those that involved a Gompertz fit for progression-free  

progression and progression  death. For this scenario, the effect of the 
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distribution used to fit progression-free  death on the probability of being in 

the progression-free and progression states – the two states relevant for the 

calculation of the Cost per QALYs gained - was considered.       

Figure 7.39 shows the aforementioned effect on the probability of remaining in 

the progression-free state (a) over the observed period of the trial and (b) upon 

extrapolation to 15 years. Figure 7.39 (c) and (d) show the corresponding 

information for the effect on the probability of being in the progression state. 

Each of the coloured lines in the plots represent a different parametric 

distribution used to fit progression-free  death. 

It can be seen from each of the four plots in Figure 7.39 that reasonable 

(similar) fits for the probability of being in the aforementioned states were 

achieved regardless of the distribution used for progression-free  death. 

Because the non-highlighted Cost per QALYs gained in Table A1 could not be 

disregarded, in the sense they did not result from unreasonable fits for the 

transitions/states, the robustness of the fit for progression-free  death was 

considered as part of the one-way sensitivity analyses in the following sub-

section.  
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Figure 7.39    Effect of fit to progression-free  death on probability of being in the:  

(a) progression-free state over the observed period of the trial 

(b) progression-free state extrapolated to 15 years 

(c) progression state over the observed period of the trial 

(d) progression state extrapolated to 15 years 
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7.7.2  One-way sensitivity analyses in multi-state modelling 

In this sub-section results of one-way sensitivity analyses are presented in a 

tornado plot. The sensitivity analyses carried out are described below: 

1) To allow computation of the Gompertz cumulative hazards, the time points 

used in the base-case calculation (measured in years) were in 1/12 

increments until 7.5 years, followed by 1/144 increments until 12 years and 

then 1/600 to 15 years. The one-way sensitivity analyses included varying the 

number of time points. An increase, equivalent to using a shorter cycle 

length, was considered by using 1/144 increments between 7.5 and 11 years 

and then 1/600 to 15 years. Less time points were also considered by using 

1/12 increments up to 118/12 (9.83 years) followed by the same increments 

as the base-case analysis. 

2) In the base-case analysis it was assumed that the treatment effect observed 

during the trial persisted to the time horizon. Two sensitivity analyses are 

presented where the treatment effect no longer persists in the extrapolation 

period. Firstly, the probability in the extrapolation period for one treatment 

was calculated by applying a hazard ratio of 1 to the probability for the other 

treatment. Alternatively, the model used in the extrapolation period did not 

include treatment as a covariate. 

3) The previous sub-section found there were combinations of distributions that 

could not be disregarded due to a poor fit for a state or a transition. This was 

the case when Gompertz distributions were used for the progression-free  

progression and progression  death transitions. Therefore, the sensitivity 

analyses include varying the distribution used for progression-free  death 

when the other two transitions were fitted using Gompertz distributions.  

4) The base-case analysis had a 15-year time horizon. An analysis was carried 

out with a 20-year time horizon. 

5) The remaining sensitivity analyses were based on the one-way sensitivity 

analyses carried out by the manufacturer as part of their economic modelling          

[Roche (2008),p145] 
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Figure 7.40   Tornado plot: one-way sensitivity analyses 

 

Figure 7.40 shows that varying the utility conveyed the most uncertainty with an 

incremental cost-effectiveness ratio (ICER) £7768 higher and £8832 lower than 

the base-case, when the gap between the utilities for the health states 

narrowed and widened respectively. Furthermore, only seven of the eighteen 

one-way sensitivity analyses lead to decreases from the base-case ICER. In 

particular, only four of those led to ICERs that did not exceed the commonly 

used threshold of £30,000 per QALY gained.   

7.7.3  Probabilistic sensitivity analysis for multi-state 
modelling 

A probabilistic sensitivity analysis was carried out for clinical effectiveness 

resulting in state occupancy probabilities for each draw. In addition, each of the 

cost parameters were assumed to follow Beta Pert distribution in line with the 
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economic modelling carried out by the manufacturer. Table 7.26 shows the 

mean base-case estimates together with the ranges used to generate the 

distributions. The particular Beta Pert distribution chosen for the cost of 

monthly supportive care and 2nd line and subsequent therapy whilst in 

progression was dependent on the mean life years in progression. All other 

distribution parameters values were as presented by the manufacturer [Roche 

(2008), pp137-138]. 

Costs Base case Minimum Maximum 

Monthly supportive care cost whilst in PFS  £28 £14 £42 

Monthly supportive care and 2nd line and 
subsequent therapy cost whilst in 
progression  

£259.89 £129.94 £389.83  

Administration - Deliver exclusively Oral 
Chemotherapy  

£280 £174 £482 

Administration - Deliver complex 
Chemotherapy, including prolonged 
infusional treatment at first attendance  

£430 £210 £795 

Bone marrow transplant  £47,565.05 £34,318.25 £54,646.47 

Blood transfusion  £289.73 £173.84 £405.62 

1 Unit of blood  £161.11 £96.67 £225.26 

 

Table 7.26   Beta Pert distributions used in probabilistic sensitivity analysis for cost   

                    parameters 

In Figure 7.41 the cost-effectiveness plane can be seen. The probabilistic 

sensitivity analysis involved 1000 draws with 10% excluded due to computational 

difficulties. All draws resulted in the RFC treatment being more costly than FC, 

therefore only the NW and NE quadrants are shown.  
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Figure 7.41   Cost-effectiveness plane 

 
A cost-effectiveness acceptability curve is shown in Figure 7.42. 

Figure 7.42   Cost-effectiveness acceptability curve 

 

It can be seen in Figure 7.42 that, given the common range in the UK of a 

willingness to pay of £20,000 - £30,000 per QALY gained, RFC only had a 
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probability of 0.27-0.40 of being cost-effective. Even at a willingness to pay of 

£100,000 the probability that RFC was cost-effective compared to FC was only 

0.65. 

7.8 Direct comparison of the manufacturer’s Markov 
decision-analytic model with multi-state modelling 

In the analysis in this chapter up to now, different assumptions were used with 

regards to transition probabilities/hazards with each of the approaches. The 

purpose of this section is to show that multi-state modelling can produce 

equivalent results to Markov decision-analytic modelling, if the same 

assumptions are used for each approach. Much of this section is based on an 

appendix in one of my accompanying publications to this chapter (Williams et 

al., 2017b).  

In order to facilitate the direct comparison, the assumptions used for the 

transition probabilities in the manufacturer’s Markov decision-analytic modelling 

were converted to transition hazards for use with the multi-state modelling. For 

comparison purposes transition probabilities, rather than the transition hazards 

on which multi-state modelling is based, were also used.  However, the Markov 

decision-analytic modelling did not assign probabilities to the progression–free  

progression transition/progression state directly. Instead the probability for the 

progression state was derived from the probabilities for progression  death, 

progression-free  death and the probability of staying in the progression-free 

state. The transition hazards and probabilities for use with the multi-state 

modelling were obtained in a similar manner. 

Figure 7.43 shows the predictions of staying in the progression-free state for 

each of the treatment arms.  

It can be seen in Figure 7.43 that the predictions from each approach were very 

similar for both treatments.  
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Figure 7.43   Probability of staying in the progression-free state: equivalent assumptions 

 

Figure 7.44 (a) and (b) show the predictions of being in the progression state for 

RFC and FC respectively. 

 
It can be seen in Figure 7.44 (a) and (b) that the predictions from the 

manufacturer’s Markov decision-analytic modelling and the multi-state 

modelling using transition probabilities were similar. They had a higher peak 

than with the multi-state modelling using transition hazards. 
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Figure 7.44   Probability of being in the progression state: equivalent assumptions 

                  (a) RFC (b) FC 

 
In Figure 7.45 the predictions of being in the death state can be seen for RFC 

and FC.  

Figure 7.45 shows that the predictions from the manufacturer’s Markov decision-

analytic modelling and multi-state modelling using transition probabilities were 

reasonably comparable, with slightly higher predictions with the multi-state 

modelling using transition hazards. 



Chapter 7  223                  223 

Comparing Markov decision-analytic modelling, partitioned survival and multi-state modelling 

                                                                                                                                                                                                    

 

Figure 7.45   Probability of being in the death state: equivalent assumptions 

 
 
Table 7.27 shows the incremental mean Life Years in each of the relevant health 

states using each of the approaches. Two methods of calculating the mean Life 

Years are shown. Firstly, the trapezoidal rule is used to calculate the area under 

the curve, the approach used throughout in this chapter for the multi-state 

modelling. Secondly, the probabilities at each time point were summed 

together, the approach used by the manufacturer in their Markov decision –

analytic model. The actual results presented by the manufacturer are shown in 

bold. 

It can be seen in Table 7.27 that the results for the incremental mean Life Years 

in Progression were not overly sensitive to the method used to calculate the 

means for any of the approaches. Furthermore, it can be seen that the results 

for the individual treatments from the multi-state modelling with transition 

probabilities were closer to that for the Markov decision-analytic model than the 

corresponding results using transition hazards. However, in terms of incremental  
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mean Life Years calculated using: 

  

area under the curve with 

trapezoidal rule 

sum of transition 

probabilities over time 

  RFC FC Incremental 
 

RFC FC Incremental 

Mean Life Years Progression-free        

multi-state modelling using transition 

hazards 
4.07 2.89 1.18 

 
4.11 2.93 1.18 

multi-state modelling using transition 

probabilities 
4.11 2.87 1.24 

 
4.15 2.92 1.24 

Markov decision modelling without a 

half-cycle correction 
4.10 2.92 1.18 

 
4.15 2.96 1.18 

Markov decision modelling with a half-

cycle correction 
4.07 2.88 1.18 

 
4.11 2.93 1.18 

 
       

 
       

Mean Life Years in Progression        

multi-state modelling using transition 

hazards 
1.45 1.58 -0.13 

 
1.45 1.58 -0.13 

multi-state modelling using transition 

probabilities 
1.58 1.73 -0.15 

 
1.59 1.73 -0.15 

Markov decision modelling without a 

half-cycle correction 
1.61 1.73 -0.11 

 
1.62 1.73 -0.11 

Markov decision modelling with a half-

cycle correction 
1.62 1.73 -0.11 

 
1.62 1.73 -0.11 

 
  

Table 7.27  Incremental mean Life Years in each health state: equivalent assumptions 

 

results, the transition hazards approach produced means that were nearer the 

Markov decision-analytic modelling results. This was because, whilst there was 

more discrepancy between the individual treatment means, the differences were 

comparable for each treatment resulting in a similar incremental effect. 

 

Table 7.27 also shows that the results for the incremental mean Life Years 

Progression-free were sensitive to the method used to calculate the means. 

Regardless of the method used, the multi-state modelling approach using 
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transition probabilities produced incremental results which were higher than any 

of the (similar) corresponding results from the other approaches. Furthermore, it 

can be seen that the transition hazards approach was most comparable to the 

actual Markov decision-analytic modelling when the summing of probabilities 

method was used. When the trapezoidal rule was used, the results using the 

multi-state modelling with transition hazards and the Markov decision-analytic 

modelling were similar. However it was the Markov decision-analytic modelling 

without the half-cycle correction that most represented the actual Markov 

decision-analytic modelling when the trapezoidal rule was used.  This suggests 

that using the trapezoidal rule for calculating the means (based on probabilities 

without a half-cycle correction) may be equivalent to the summing of 

probabilities for which there was a half-cycle correction.  

7.9 Summary of the results and Discussion 

This chapter demonstrated and compared three different approaches to 

estimating benefit (survival) for use in economic evaluations – Markov decision-

analytic modelling, partitioned survival and multi-state modelling. An existing 

Markov decision-analytic model created by a manufacturer in a submission to 

NICE for a technology appraisal acted as motivation for the comparison. The 

model, and the trial data that was the main source underlying it, acted as a case 

study with a health economics context for this thesis.  

The manufacturer’s Markov decision-analytic model found the treatment to be 

cost-effective with a Cost per QALY gained of £13,189. The mean Life Years 

(QALYs) gained in the model was 1.07 (0.88) for the treatment RFC compared to 

FC. However, the Evidence Review Group (ERG) who reviewed the submission 

thought that an overall survival benefit of such a magnitude was inappropriate 

(PenTAG, 2009). This was mainly because the manufacturer assumed no 

treatment effect while in progression, which meant most of the benefit was 

found whilst progression-free. The ERG initiated two sensitivity analyses that 

completely removed the overall survival benefit. These resulted in Costs per 

QALY gained of £30,336 and £30,304, just above a willingness-to-pay threshold 

of £30,000 per QALY gained. After further investigation as part of the research in 
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this thesis, these analyses were equivalent to hazard ratios of death after 

progression of 4.451 and 1.758. However when a Cox regression was fitted to the 

observed data the hazard ratio was 1.364, and therefore a discrepancy was 

apparent. This motivated the exploration of alternative approaches to analysis – 

namely partitioned survival and multi-state modelling. 

Unlike the Markov decision-analytic modelling and multi-state modelling that 

modelled transitions between all relevant health states, the partitioned survival 

approach was based on calculating area under the curves of survival outcomes in 

the trial. As such, progression  death was not modelled directly. It was instead 

derived from the area under the overall survival and progression-free survival 

curves, the outcomes in the trial. Parametric regressions were fitted to these 

curves to allow extrapolation. A Weibull regression fitted to progression-free 

survival observed over the trial period was extrapolated to 15 years. However 

this approach was not adequate for overall survival as there was no parametric 

fit that led to survival of zero upon extrapolation to 15 years. Therefore the 

predictions for overall survival were based on different fits during the observed 

and extrapolation periods. The partitioned survival approach resulted in a Cost 

per QALY gained of £16,308, and therefore deemed the treatment of interest 

cost-effective. 

With the multi-state modelling approach, the Markov property was formally 

tested by using a state arrival-extended model. This involved including a 

covariate for the time in the previous state when modelling progression  

death. Evidence of a violation of the Markov property was found and this led to 

modelling using a semi-Markov approach. It resulted in a Cost per QALY gained of 

£30,702. This exceeded the willingness-to-pay threshold of £30,000 per QALY 

gained and therefore the treatment was found not to be cost-effective. 

Therefore, a discrepancy in results was evident between the three approaches. 

An analysis was carried out using identical assumptions with the Markov decision-

analytic modelling and the multi-state modelling. This produced very similar 

results demonstrating that multi-state modelling can be used as an alternative to 

conventional Markov decision-analytic modelling. Furthermore, an accompanying 
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publication to this chapter provided a tutorial to encourage others to adopt the 

approach, with elegant implementation using the statistical software R rather 

than having to rely on spreadsheets (Williams et al., 2017a). The analysis with 

the identical assumptions confirmed that the disparity seen in the main analysis 

was due to the different assumptions used with the different approaches. 

Furthermore, the main analysis, where each approach used different 

assumptions, demonstrated that the approaches compared well over the 

observed period of the trial, with most of the discrepancy apparent in the 

extrapolated period. Consequently, the comparison highlighted that it is 

imperative to rigorously check any assumptions used to ensure they are realistic. 

It is these in particular that can influence clinical and cost-effectiveness results, 

much more than the approach used for the modelling itself.  

Liaising with clinicians and/or using external data sources such as registry data 

are recommended ways of gathering evidence to help ensure assumptions are 

realistic. In the comparison illustrated in this chapter, the main discrepancy in 

mean benefits gained overall stemmed from the differences between the 

approaches in mean Life Years gained whilst in progression. It could be seen in 

Figure 7.33 that this was primarily due to differences in the magnitude, and 

timing, of the peak for the probability of being in the progression state. 

Therefore, it would be worthwhile for any modellers faced with a similar 

situation to gather information to reduce uncertainty surrounding this peak and 

the predictions over time generally. 

With the Markov decision-analytic modelling, the probability for the progression-

free  death transition was based on the maximum of the observed death rate 

and an age-related background mortality rate in the general population. 

However, the progression-free  death transition had the competing risk of the 

progression-free  progression transition. Therefore, the observed death rate 

used to inform the transition may have been inflated if the competing risk was 

not taken into account, analogous to naïve Kaplan-Meier estimates. Hence, it 

would also be worthwhile checking that any inflation of the observed death rate 

while progression-free did not bias the predicted probability of  



Chapter 7  228                  228 

Comparing Markov decision-analytic modelling, partitioned survival and multi-state modelling 

                                                                                                                                                                                                    

progression-free  progression and the related prediction over time of being in 

the progression  state.  

The extrapolation for progression-free  death appeared to be unrealistically 

flat as mortality would be expected to increase as patients aged. While it was 

not the case in this illustration, it may be worth investigating whether the 

extrapolations are sensitive to the order in which transitions are considered 

when choosing distributions. In this research, the plateau over the extrapolation 

period was most likely due to the relatively few pre-progression deaths, with the 

vast majority of patients having a progression and then having a post-progression 

death sometime before the end of the time horizon.  

In addition, it would be beneficial to verify that any assumption used for a 

treatment effect post-progression is clinically plausible. It would also be 

advantageous, for each transition, to use appropriate available information to 

help inform assumptions with regards to continuation of treatment effects in the 

extrapolation period. Finally, it is worth taking a common sense approach, in 

conjunction with clinical opinion and external data such as registry data, to 

decide on a time horizon and extrapolation to that point that is realistic in a 

clinical sense.  

The visual assessment of fits from each of the approaches suggested the 

partitioned survival approach provided the most reasonable fit. At first, this 

might appear a surprising result as one might expect an approach that models 

each of the transitions between health states of interest to provide the most 

sensible predictions. However in this example, partitioned survival was the only 

approach in which the regressions were fitted directly to the observed (Kaplan-

Meier) curves for the initial and absorbing states. In addition, the predictions for 

the intermediate state – the only other one that required prediction – were 

derived from the predictions for these two other (directly fitted) states. 

Therefore, partitioned survival would provide the best fit to the observed data. 

Furthermore, it was the only approach that had observed data (Kaplan-Meier 

curves) to check the fit to every transition/state.  
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It may be that a state-transition approach, such as Markov decision-analytic 

modelling or multi-state modelling, is only advantageous in more complicated 

models where more states/transitions are of interest. However, more complex 

models have the drawback of being more difficult to check against observed 

data. This is because more intermediate states will mean more states with flow 

in and out of them. A model with several of such states will be more difficult to 

check against observed data because this will not just involve Kaplan-Meier 

curves, but will have to take account of the fact that patients can enter such 

states but also subsequently leave them. That said, prior knowledge of, or 

relevant external data to inform, the expected shape of such curves should help. 

It is also worth noting that in the illustration in this research, when the situation 

arose that a survival outcome over the observed period did not reach zero upon 

extrapolation, it was reasonably straightforward to use separate fits for the 

observed and extrapolated periods with the partitioned survival approach. It 

would be more complicated to use a similar technique with a state-transition 

approach. This is because some of the transitions would be interlinked and 

therefore it would not just be survival outcomes in isolation that would need to 

be considered.  

An important consideration should be the number of covariates used in the 

modelling. In this illustration, treatment was the only covariate used in the 

modelling for each of the transitions. When data for other possible predictors 

and confounders are available from the trial/study, it would be worthwhile 

considering them in the modelling as they should result in more accurate 

predictions of the states/transitions of interest. However there can no longer be  

the same reliance on visual assessment of fits, by comparing observed data with 

model predictions, as they become impractical. That said, a  workaround might 

be comparing predictions from parametric regressions with those from a Cox 

regression as a surrogate for the observed data.  

Multi-state modelling has huge potential as an alternative elegant way of 

estimating transition probabilities in health economic modelling.  The multi-

state modelling approach uses the individual patient data directly to model the 

transitions and negates deciding on transition probabilities a priori. It uses the 
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exact times of transition and as such does not require modelling over (arbitrary) 

discrete cycles, nor does it require the use of tunnel states. Additionally, this 

particular multi-state modelling approach incorporates parametric distributions 

for hazards, which as well as allowing extrapolation of survival, can permit 

hazards that vary over time if required. Given the modelling at the individual 

patient level, multi-state modelling also provides an alternative to 

microsimulation (Davis et al., 2014). 

Using a statistical package to build multi-state models is less time consuming 

than building a model using a series of spreadsheets, the approach frequently 

used in Markov decision-analytic modelling.  The creation of a model in R, the 

calculation of the associated transition probabilities, the areas under the curves 

to obtain the mean life years/ QALYs and the discounting each only require one 

line of R code. The syntax-based approach of statistical software also means 

that it is easily reproducible. It is somewhat easier to understand and perform 

all the required modelling and other calculations when the syntax is all 

contained in one document rather than in a series of spreadsheets. The functions 

available in my published tutorial paper (Williams et al., 2017a) contain 

modifiable arguments that can be changed to suit the requirements of the user. 

This provides a valuable resource to health economic modellers as it overcomes 

the lack of available software that was a barrier to adopting the approach.  
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Chapter 8 Main insights, limitations and potential 

areas of future research 

8.1 Introduction 

The overall aim of this thesis was to explore the potential of competing risks 

analysis and multi-state modelling in an epidemiological and health economics 

context, in areas where they were not widely used. The thesis described the 

background to each of the methods. This included emphasising the importance 

of recognising a competing risks scenario when it exists, methodological issues 

that might need to be considered and the extra insight that can be gained from 

using each of the methods over standard survival analysis. The research was 

centred around two different case studies – one in epidemiology and one in 

health economics. The epidemiological one focused on stroke and the specific 

outcomes recurrence and death. The health economics case study was motivated 

by the economic model included in a technical appraisal submitted to NICE. This 

evaluated the cost-effectiveness of a chemotherapy regime for the first-line 

treatment of chronic lymphocytic leukaemia.  

The background chapters also included reviews of the extent of use of 

competing risks (section 2.10.2) and multi-state modelling (section 4.7) in stroke 

epidemiology, thereby achieving the first of the stated objectives on page 3 of 

this thesis. These reviews found this was an area where the full potential of the 

methods was not demonstrated and motivated the empirical chapters in stroke 

epidemiology. This thesis appears to include the first study to demonstrate the 

greater understanding that can be achieved by examining both the cause-

specific hazards and the subdistribution hazards/cumulative incidences of each 

of the two competing risks recurrence and death without recurrence in stroke 

patients. Furthermore, it appears to be the first research to showcase the 

potential of dynamic predictions in a multi-state model of stroke, recurrence 

and death. 

Multi-state modelling was the focus for the health economics context. In 

particular, this thesis aimed to illustrate that multi-state modelling can provide 
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an alternative to common approaches in health economic modelling. The review 

of the use of multi-state modelling in health economics found that a barrier to 

implementation was a lack of readily available software. This motivated a 

tutorial paper I have subsequently published with accompanying R code and 

customisable functions to allow analysts to adopt the approach with their own 

data (Williams et al., 2017a).  

Importantly throughout the chapters that described the methods, including the 

reviews of the literature into the extent of their use specific to the two case 

studies, misconceptions and misunderstandings related to some of the 

methodological issues were highlighted. The purpose of this was to alleviate the 

confusion that could arise from some of the conflicting messages in the 

literature.  

Section 8.2 of this final chapter summarises the main insights from the empirical 

chapters of this thesis, demonstrating where appropriate some of the issues and 

considerations emphasised in the background chapters. Specifically, sub-section 

8.2.1 focuses on how an aspect of the second objective for the stroke study was 

met, namely demonstrating the extra insight gained from competing risks 

analysis over standard survival analysis. Next, sub-section 8.2.2 provides an 

overview of how the last aspect of that objective, that of demonstrating the 

insight from multi-state modelling in a stroke epidemiology context, was 

achieved. Then, sub-section 8.2.3 outlines how meeting the two objectives in 

the health economics context provided extra insight.  In section 8.3 limitations 

of the analysis in this thesis are discussed alongside solutions to overcoming 

them. Finally, the thesis concludes with section 8.4 that discusses future 

potential directions for the research that would help encourage adoption of the 

multi-state modelling framework beyond the illustrated case studies. 

8.2 Main insights  

8.2.1   Insights gained from the competing risks analysis over 
and above standard survival analysis 

Chapter 3 met the objective of demonstrating the extra insight gained from 

competing risks analysis of the stroke case study, with particular emphasis on  
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three different comparisons involving its use.  These were: 

(i) composite outcome versus decomposition of the outcome into the competing 

risks 

(ii) cause-specific hazard and Fine and Gray subdistribution hazard modelling 

approaches 

(iii) naïve Kaplan-Meier/Cox estimates versus the competing risks cumulative 

incidence. 

The insights found from each of these will be summarised in turn. 

8.2.1.1 Composite outcome versus decomposition of the outcome 
into the competing risks 

Decomposing a composite outcome into its component competing risks can 

provide useful insight. This is especially the case when a covariate affects two 

competing risks but in opposite directions. The decomposition of a non-fatal 

outcome from death can be particularly useful because it could help distinguish 

those patients that are likely to die from those that may still benefit from a 

targeted intervention. In the analysis presented in section 3.2 of this thesis, 

extra insights were gained from the decomposition for the effects of the ability 

to lift both arms off the bed, haemorrhage on scan and gender. It was found that 

being able to lift both arms off the bed was associated with a higher hazard of 

recurrence and a reduced hazard of death without recurrence. However, this 

association with recurrence was undetectable from the analysis of the composite 

outcome. This was due to it being in a different direction from that for death 

without recurrence, together with the composite outcome being dominated with 

death without recurrence. Therefore the competing risks analysis was crucial in 

identifying the association between the ability to lift both arms and recurrence. 

Another covariate that had opposing effects on each of the two competing risks 

was haemorrhage on scan. Similar to the ability to lift both arms, having a 

haemorrhage was associated with an increased hazard of recurrence and a 

marginally reduced hazard of death without recurrence. However, no evidence 

was found of an association with haemorrhage and the composite outcome, and 
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therefore the composite analysis masked both of the effects found for the 

competing risks. The opposing effects on the competing risks were effectively 

cancelling each other out in the analysis of the composite outcome. Therefore, 

this again demonstrated the extra insight gained from the competing risks 

analysis over that of the standard composite outcome survival analysis. In 

particular, it revealed that haemorrhage was in fact a risk factor for recurrence 

and therefore identified a subset of patients likely to benefit from strategies to 

prevent recurrence. 

The analysis of the composite outcome also did not find any evidence of an 

effect of sex. However the competing risks analysis found that being female was 

associated with a higher hazard of recurrence. Therefore this illustrated another 

effect that was masked from the analysis of the composite outcome, again 

highlighting the value of the competing risks analyses. 

8.2.1.2 Cause-specific hazard and Fine and Gray subdistribution 
hazard modelling 

In section 2.5 of this thesis, it was emphasised that a greater understanding of a 

competing risks scenario can be gained when both the hazards and cumulative 

incidence functions for each of the competing risks are considered. In particular, 

Latouche et al. (2013) recommended displaying both cumulative hazard plots 

and cumulative incidence plots to assess the effects of covariates. With this in 

mind, section 3.3 of this thesis showed such plots for each covariate. This 

appeared to be the first research to consider both cumulative hazards and 

cumulative incidences for the outcomes recurrence and death without 

recurrence in stroke patients. These helped to demonstrate the methodological 

issue emphasised in section 2.5 that the effects of a covariate on the cause-

specific hazard and cumulative incidence of an outcome may differ. For 

instance, the cumulative hazard plot for orientated speech in section 3.3 showed 

that the hazard of recurrence was lower for those with orientated speech than 

those without it. However the cumulative incidence plot demonstrated that 

orientated speech had no effect on the cumulative incidence of recurrence. 

While this might seem surprising at first, this could be explained by knowing that 

those with orientated speech also had a lower hazard of death without 

recurrence, but that importantly this reduced hazard was more pronounced than 
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that for recurrence. This meant that there was more of those with orientated 

speech having a recurrence than was perhaps expected, due to there being more 

of them left to be at risk of recurrence owing to the decreased hazard of death 

without recurrence. Consequently, the cumulative incidence of recurrence for 

this group was in line with that for those without orientated speech, instead of 

being lower than it. Many similar examples were also illustrated in section 3.5 of 

this thesis. They demonstrated that exploring both the hazards and cumulative 

incidences of each of the two competing risks can help in the interpretation of 

such outcomes, which would not be possible if considering only the hazard or 

cumulative incidence in isolation.     

8.2.1.3 naïve Kaplan-Meier/Cox estimates versus the competing risks 
cumulative incidences 

Section 2.3 of this thesis emphasised that the naïve Kaplan/Cox approach is 

inappropriate in the presence of competing risks. Estimates using this approach 

introduce bias in the form of inflated cumulative incidences, with the extent of 

the bias relating to the strength of the effect of the competing outcome. Section 

3.4 of this thesis illustrated the bias that can be introduced by not appropriately 

taking into account the competing risks in the stroke epidemiology case study. 

For example, it was found that inflation of 18% resulted in the estimate of the 4-

year cumulative incidence of recurrence when using the biased Kaplan-Meier 

method instead of the more appropriate competing risks cumulative incidence 

approach. Furthermore, when the effects of covariates were taken into account, 

the naïve Cox prediction introduced 11% inflation in the 3.5-year cumulative 

incidence of death without recurrence for the reference patient. Therefore, the 

illustration in section 3.4 demonstrated it is imperative to use an approach that 

appropriately takes into account competing risks to avoid introducing such 

inflation bias. Over-estimating the incidence of an event could lead to misguided 

clinical decisions.     

This piece of empirical analysis has reiterated the bias that can be introduced by 

using a naïve Kaplan-Meier approach when competing risks are present. Before 

conducting any of the analysis in this thesis, a literature search was conducted 

to find reviews that raised awareness of the need to recognise competing risks 

and analyse them appropriately (section 2.10.1). Two such reviews were found. 
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Mell et al. (2012) found that only 40% of the cancer studies they reviewed 

analysed cancer events and non-cancer mortality separately. Koller et al. (2012) 

found that 70% of studies they reviewed in high impact clinical journals either 

used a naïve Kaplan-Meier approach, neglected to report competing risks or 

failed to analyse them.  

More recent contributions have also found that the naïve Kaplan-Meier approach 

has continued to be used [van Walraven and McAlister (2016) and Schumacher et 

al. (2016)]. In the studies reviewed in each contribution, 46% (van Walraven and 

McAlister, 2016) and 49% (Schumacher et al., 2016) were found to be susceptible 

to such competing risks bias. It is apparent that there is some delay in 

recognising the message regarding the need to analyse competing risks 

appropriately. However, the suggestion by van Walraven and McAlister (2016) to 

explicitly include the number of competing outcomes in the CONSORT/STROBE 

guidelines is a step in the right direction. In addition, as van Walraven and 

McAlister (2016) point out, there has quite recently been a move towards the 

base packages of popular software packages including the facility to create 

cumulative incidence curves for competing risks, rather than just Kaplan-Meier 

analyses. SAS, Stata and R all now have readily available procedures to create 

these and therefore there is some cause for optimism that more appropriate 

analysis will be more widely adopted. 

8.2.2  Insights gained from the multi-state modelling of stroke, 
recurrence and death  

Section 4.5 of this thesis highlighted that one of the main advantages of multi-

state modelling is the flexibility of predictions it can offer. The usual predictions 

at time zero of being in a health state by some future time point can be 

accommodated. However, dynamic predictions are also possible with multi-state 

modelling. These dynamic predictions update a patient’s prognosis taking into 

account the time elapsed and any subsequent events experienced.  

Chapter 5 illustrated both types of prediction from a model of stroke, 

recurrence and death. In particular, it demonstrated dynamic predictions that 

could be used by clinicians as a communication tool to update their patients on 

their risk of relevant outcomes given their current stage in their illness. 
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The illustration of the flexibility of predictions offered by multi-state modelling 

in section 5.2 met the second objective in a stroke epidemiology context on 

page 3 of this thesis, that is to say to demonstrate the added insight of multi-

state modelling over standard survival analysis. In addition, section 5.3 

demonstrated that predictions from multi-state modelling reflect that 

intermediate states have flow in and out of them, in contrast to the competing 

risks cumulative incidence predictions that are monotonic. In doing so, it 

highlighted the extra insight gained from multi-state modelling compared to 

competing risks analysis.   

8.2.3 Insights gained from exploring multi-state modelling in a 
health economics context 

8.2.3.1  Publishing a tutorial paper to help encourage adoption of    

             multi-state modelling for cost-effectiveness analysis in R  

Section 6.3 of this thesis met the objective of exploring the extent of use of 

multi-state modelling in the health economics literature. It identified that a 

barrier to its use was the lack of readily available software. Motivated by this, a 

large component of this PhD research involved creating a series of customisable 

R functions for use by others to perform multi-state modelling for the purposes 

of cost-effectiveness analysis. All the coding now accompanies a tutorial paper I 

published providing a step-by-step guide to using the approach (Williams et al., 

2017a). The paper demonstrates how to use multi-state modelling to calculate 

mean (quality-adjusted) life years gained and incremental cost-effectiveness 

ratios. It also illustrates how to carry out deterministic and probabilistic 

sensitivity analyses with the approach. It is based on adaptions to the existing R 

package mstate to accommodate parametric multi-state modelling, thereby 

facilitating extrapolation of survival curves. All functions have arguments that 

can be changed to suit the data and context of the user e.g. the number of 

transitions, covariates included, the discount rate and the time horizon. 

Furthermore, in using a syntax-based approach, it benefits from the 

transparency of the code used and analysis that is all contained in one file.  
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8.2.3.2 Illustration of multi-state modelling as an alternative to 
partitioned survival and Markov decision-analytic modelling 

Chapter 7 achieved the objective of demonstrating, with the help of the 

aforementioned tutorial paper, a comparison of multi-state modelling with two 

common approaches in health economic modelling. An existing Markov decision-

analytic model developed by a manufacturer in a submission to NICE for a 

technology appraisal was used as a basis for the comparison. That economic 

model sought to evaluate the clinical and cost-effectiveness of rituximab in 

combination with fludarabine and cyclophosphamide compared to fludarabine 

and cyclophosphamide alone for the first-line treatment of chronic lymphocytic 

leukaemia. The model had the three health states progression-free, progression 

and death & the transitions progression-free → progression, progression-free → 

death and progression → death. The manufacturers took the usual approach in 

state-transition decision-analytic modelling of making a prior assumptions about 

the transition probabilities before the modelling commenced.  

By way of comparison, Chapter 7 used the trial data on which that economic 

model was based to carry out analyses using the partitioned survival and multi-

state modelling approaches. The partitioned survival approach involved fitting 

parametric regression to the overall survival and progression-free survival curves 

to allow extrapolation to the desired time horizon. The mean time spent in 

progression was then derived from the area between the two survival curves. 

The multi-state modelling used the individual patient level data directly to build 

parametric regression models for the hazard of each of the transitions in the 

model. These hazards for each transition were then appropriately combined to 

calculate the state occupancy probabilities.  

For each of the three approaches, the (incremental) mean (quality-adjusted) 

time in each state was presented along with the incremental cost-effectiveness 

ratio. Furthermore, for the multi-state modelling that was the main focus of this 

thesis, sensitivity analyses were presented. A tornado diagram was shown to 

summarise the results of one-way sensitivity analyses and a cost-effectiveness 

plane and cost-effectiveness acceptability curve were presented to summarise 

the extent of the uncertainty from the probabilistic sensitivity analyses. The 

chapter helped to demonstrate that any output required from a conventional 
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decision-analytic model can just as easily be produced using the multi-state 

modelling framework. 

Chapter 7 showed that the conventional state-transition decision-analytic 

modelling approach and multi-state modelling produced equivalent results when 

they made the same assumptions with regards to the transition 

probabilities/hazards. Furthermore, when the comparison of the approaches 

each using different assumptions were split into the results in the observed and 

extrapolated period, it was found that the approaches mainly differed over the 

period of extrapolation. Therefore, the research demonstrated that it is 

imperative to check whether the assumptions used are realistic. It is the choice 

of assumptions that can influence the clinical and cost-effectiveness results, 

much more than the approach to the modelling itself. 

8.3 Limitations 

The purpose of this thesis was to showcase multi-state modelling in an 

epidemiological and health economics context, in areas where their potential 

had not been fully realised. However the research did have some limitations. 

This section highlights some of the limitations and outlines, where possible, 

some solutions that could overcome them in future. 

8.3.1 Limited follow-up with covariates versus extended 
follow-up with limited covariates 

As is often the case with studies/trials of health outcomes, the case studies used 

as examples in this thesis had relatively short follow-up. However the studies did 

have a wealth of covariate information to help explain which factors were 

associated with the outcomes of interest. This was particularly the case for the 

stroke epidemiology study. This would have also been the case in the trial data 

used for the health economics example. However this was less evident because 

only the covariate treatment was used in the analysis, for comparison purposes 

with the existing economic model. On the other hand, external data that could 

help inform extrapolation of the outcomes to the time horizon, e.g. life tables 

or hospital episode data, tend to be limited in terms of covariate information. 

Therefore, some trade-off is necessary between study data with limited follow-
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up but covariates, and routine administrative data with longer follow-up but a 

lack of covariates. However, the lack of covariates in the longer term data may 

be mitigated if the datasets are linked at individual patient level, and longer 

follow-up is only required to identify occurrence of outcomes. Furthermore, the 

use of longitudinal cohort studies may alleviate some of the limitations. In 

addition, such studies offer the opportunity to benefit from the emergence of 

joint modelling of longitudinal and competing risks/multi-state modelling 

survival data [e.g. Williamson et al. (2008) and Ferrer et al. (2016)]. 

8.3.2 Variable selection with competing risks and multi-
state modelling 

Prognostic models are used to predict outcomes for individual patients with a 

given set of risk factors. When developing such models, careful consideration 

should be given to the predictor variables (i.e. risk factors) selected for inclusion 

in the model. Parsimonious models are deemed to be the most practical because 

they are easier to use for predicting outcomes for new patients and more likely 

to generalise to different populations. Recognised strategies for curtailing the 

number of variables include choosing only those that are clinically relevant, 

removing obvious collinearity and ignoring those with data quality issues. 

Examples of the latter include measurement error or a high level of missing 

data. However, even after following such strategies to disregard variables of 

obvious limited value, the number of variables can still exceed Peduzzi et al. 

(1995)’s standard rule of thumb of 10 events per variable. Therefore, modelling-

based variable selection procedures are often required. This section outlines 

some of the challenges and limitations of variable selection in the context of 

competing risks and multi-state modelling and describes very recent advances 

that could help overcome them. 

8.3.2.1 Variable selection with Fine and Gray’s proportional 
subdistribution hazard modelling 

It was previously highlighted in section 2.7.1 of this thesis that Kuk and 

Varadhan (2013) have developed an information criterion-based test to help 

select variables for Fine and Gray’s proportional subdistribution hazards 

modelling. The approach incorporated stepwise regression techniques. Such 

techniques are popular due to being easy to use. However, they have also been 
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heavily criticised for stability problems and their automation process, the latter 

meaning that analysts unaccustomed to prognostic modelling may not make 

appropriate considerations such as ensuring all variables are clinically relevant. 

Fu et al. (2017) have proposed an alternative approach using penalised 

regression with Fine and Gray’s model. As well as providing an alternative to 

stepwise techniques, penalised regression is a shrinkage method and as such can 

overcome difficulties due to overfitting. In particular, many penalised regression 

techniques can be used for variable selection as they facilitate removal of 

variables, with lasso-based regression being perhaps the most well-known 

example of this. 

Kuk and Varadhan (2013)’s aforementioned stepwise information-criteria based 

approach appears to be the first article to address variable selection using Fine 

and Gray’s model. Consequently, it was a useful contribution in that it 

highlighted the issue and provided a starting point to build on. Furthermore, Fu 

et al. (2017)’s development to a penalised regression approach is a valuable 

addition to the literature on variable selection for competing risks model for the 

reasons described above. 

8.3.2.2 Variable selection with cause-specific hazard modelling 

It was previously mentioned in section 2.6 of this thesis that prediction is 

possible with the cause-specific hazard approach to competing risks modelling. 

However, variable selection is much more challenging with this approach. This is 

because of the phenomenon that the effect of a covariate on the cause-specific 

hazard will not necessarily translate into the same effect on the corresponding 

cumulative incidence. The cumulative incidence may also be affected by the 

cause-specific hazards of any competing events (section 2.5). Consequently, 

when selecting covariates to include in modelling, it is not recommended to 

focus on the cause-specific hazard for one event in isolation. While the two 

aforementioned methods with Fine and Gray’s model can result in models for 

each event that differ in the covariates they contain, a different approach is 

required for cause-specific hazard modelling. 

Instead, each of the events could be considered simultaneously and the effects 

of a given covariate on each event taken together as a group when deciding on 
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selection of that covariate. As Most et al. (2016) point out, in multiple response 

models such as competing risks, a distinction can be made between variable 

selection and parameter selection. This is because in multiple response models 

the effect of one covariate can be represented by several parameters e.g. a 

parameter for the effect on each event. 

When aiming for parsimonious modelling using the cause-specific hazard 

approach with a view to using it for prediction, Most et al. (2016) emphasis on 

selecting variables instead of selecting individual parameters is a very useful 

recommendation. It means that all coefficients that correspond to the same 

covariate can enter or leave the model jointly (Tutz et al., 2015) i.e. even if a 

covariate only has an association with one event, that covariate will be kept in 

the models for the competing events. However, the work by Most et al. (2016) is 

from the perspective of the discrete-time, rather than the continuous-time, 

competing risks framework. There does not appear to be any contributions in the 

literature detailing an equivalent for the latter as yet, and unfortunately Most et 

al. (2016)’s piece does not include any code that could be adapted for 

continuous-time. 

Some may question why prediction using cause-specific hazard modelling is 

considered, when variable selection is a more challenging process than it is with 

Fine and Gray’s subdistribution hazard modelling. While there is the option of 

Fine and Gray’s approach for modelling competing risks, this is not the case in 

multi-state modelling. In addition, Fine and Gray’s model and cause-specific 

hazard modelling may not both simultaneously meet the proportional hazards 

(PH) assumption for the covariates. Therefore, in instances when the PH 

assumption is met with the cause-specific hazard modelling approach but not 

with Fine and Gray’s model, analysts may favour the former for calculating 

predictions. 

Therefore, in the (continuous-time) cause-specific hazard modelling approach to 

competing risks and multi-state modelling, a notable limitation is the lack of a 

recognised appropriate variable selection method in preparation for calculating 

predictions. This is also true in general for any state transition model, including 

the commonly used Markov decision-analytic model in health economics, 

because the presence of competing risks means the transition-specific covariate 
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effects may not necessarily translate into the same effect on the state 

occupancy probability that is ultimately of interest. 

However, it may be possible to overcome the lack of a suitable variable 

selection method. Adapting the aforementioned work by Most et al. (2016) from 

a discrete-time to a continuous-time framework may solve the problem for 

competing risks. With regards to multi-state modelling, Reulen and Kneib (2016) 

proposes a boosting  method using penalisation of the (partial) likelihood as a 

way of selecting a parsimonious model. However, this is a variable selection 

approach tailored to modelling for etiological reasons, rather than for 

subsequent prognostic modelling, because it results in models for transition-

specific hazards that do not all contain the same variables. On the other hand, 

Turlach et al. (2005), Simon et al. (2013) and Tutz et al. (2015) have developed 

variable selection methods using lasso-based penalisation for multinomial logit 

models. While not formulated for a survival analysis framework, their 

contributions may provide some insight into a solution for competing risks/multi-

state modelling because multinomial logit models share with them the feature of 

being multi-response. In particular, the approaches use grouped penalisation 

with groups that contain all the coefficients belonging to the same variable in 

the context previously mentioned in the piece by Most et al. (2016). Of 

particular note, the original lasso (Tibshirani, 1996) is adapted to accommodate 

grouping so that all coefficients that correspond to the same covariate enter or 

level the model jointly.  

It is encouraging that variable selection methods have already been developed 

for multivariate modelling, and therefore it is hoped that an adaption to cause-

specific hazard modelling will appear in the literature in the near feature. The 

resultant parsimonious modelling for each cause-specific hazard could then be 

used to calculate predictions as detailed previously in section 2.6. 

8.3.2.3 Limitation for analysis in the wider health economics context   

Some health economic modellers may be reluctant to adopt a multi-state 

modelling approach using syntax with statistical software. They may see R, and 

other software packages that allow users to write their own code, as less user-

friendly than spreadsheet packages such as Excel. However this might be due to 
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fear of the unknown rather than a barrier that cannot be overcome. The next 

section of this thesis includes details of anticipated developments of the R code, 

including incorporating a more user-friendly interface. 

8.4  Areas of future research 

This section gives an overview of some potential directions this research could 

take in future. 

8.4.1 Enhancing health economic multi-state modelling by 
combining trial data with longer-term routine 
administrative data 

8.4.1.1 Reform of the Cancer Drugs Fund 

The Cancer Drugs Fund was introduced in 2010/2011 to fund cancer treatments 

not recommended by NICE for routine use in the NHS. In a news piece in the 

British Medical Journal, Mayor (2016) explains that reasons for such non-approval 

include that the drug was new and not yet assessed, or that it was for a rare 

cancer not being appraised by NICE. Mayor (2016) also emphasises that another 

reason why drugs have not been recommended for routine use is the uncertainty 

regarding their clinical-effectiveness and cost-effectiveness. It was envisaged 

that the Cancer Drugs Fund would address this. However it has been 

acknowledged that the fund needs reform, because as the Mayor (2016) piece 

highlights, it did not collect data on outcomes of use of the drugs it funded even 

though it had spent £1.27 billion. 

A reform of the Cancer Drugs Fund was implemented in July 2016 that entails 

that drugs be funded for up to 2 years in order for further evidence to be 

collected. After this a short NICE appraisal will take place that considers this 

additional evidence. If approved, the drug will be licenced for routine use in the 

NHS. If it is rejected, it will only be considered for use on a case-by-case basis. 

That a reform of the Cancer Drugs Fund was required, highlights that more 

attention needs to be given to evaluating the clinical-effectiveness and cost-

effectiveness of such drugs and the uncertainty in the results. Indeed a recent 

article by Aggarwal A. (2017) found that only 38% (18/47) of drugs funded by the 
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Cancer Drugs Fund in 2015 were found to be effective. This need for more 

evidence means that there will be a greater demand for modelling in health 

economic evaluations. 

However, because the reform does not stipulate exactly how the evidence 

should be collected, there is some debate over whether this reform will address 

the uncertainty in effectiveness. Grieve et al. (2016) have concerns that, while 

the reform encourages early access to drugs, it is at a high cost and still does not 

address uncertainty surrounding the clinical benefits. The article argues that the 

reform does not encourage manufacturers to conduct randomised clinical trials 

(RCTs), and does not advocate the sole use of observational data due to the 

biased estimates of effectiveness that can result. The authors point out that, 

once the drugs are widely used, if real world data is used alone to assess 

treatments randomisation will be impossible weakening the evidence base. A 

solution is proposed by Grieve et al. (2016) involving assessing treatment 

effectiveness using timely and pragmatic low-cost RCTs in conjunction with 

follow-up from routine collected data. Furthermore, if there is an ongoing trial 

it may be more efficient to wait and make decisions based on assessing the long-

term outcomes from that trial, because a new trial may not provide sufficient 

evidence to justify the expense. The authors also argue that when RCTs are 

deemed unethical or impractical, then the non-randomised studies that are 

conducted should minimise confounding. These studies should collect 

longitudinal data on all relevant prognostic characteristics for those with and 

without the drug. Recent developments in strategies to minimise the selection 

bias from confounding include flexible regression incorporating machine learning 

for model selection Kreif et al. (2015), propensity score matching (PSM) with 

regression adjustment Kreif et al. (2013) and an extension of PSM called Genetic 

Matching Radice et al. (2012). Incorporating such methods into state-transition 

approaches, such as multi-state modelling, is an area of further research worth 

exploring. 

In a rapid reply to Grieve et al. (2016)’s article, Hatswell (2016) stresses that the 

current Cancer Drugs Fund reform does not address the most pertinent issue in 

terms of uncertainty, that of effectiveness in the long-term. He agrees with  

Grieve et al. (2016) that collection of evidence on long-term outcomes would be 

more effective in studies that complement and extend the original clinical trials.  
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In a rapid reply from Longson et al. (2016) of NICE to Grieve et al. (2016)’s 

article, the authors refute the implication that the reform will rely heavily on 

observational data. The authors emphasise that the reform will include a data 

collection plan that will outline the key areas of uncertainty and how these will 

be addressed. On an optimistic note, they highlight that there is scope to use 

RCTs alongside observational data. Furthermore, they mention that ongoing 

RCTs can be used to help evaluate long-term effects and reduce uncertainty in 

extrapolated estimates. This renewed focus on addressing uncertainty, and not 

just relying on trials or observational data alone but instead combining them to 

obtain evidence long-term, should mean that the use of modelling that can 

facilitate this will increase. In particular, it could provide a window of 

opportunity for increasing adoption of multi-state modelling. 

8.4.1.2 GetReal project on methods for real word evidence collection 
and synthesis 

Combining trial data with the real world evidence from observational data is also 

being investigated by the GetReal consortium (www.imi-getreal.eu), with a 

specific aim of improving estimates of real word effectiveness. In particular, 

Workpackage 4 of the GetReal project is concerned with identifying and sharing 

best practice in synthesis and prediction modelling to estimate the real world 

effectiveness of treatments, beyond the efficacy estimated in the controlled 

environment of an RCT. An article by this group concerned with mathematical 

modelling to predict drug effectiveness from trials has already identified multi-

state modelling as a method that has potential, but that has scope to be more 

widely-applied (Panayidou et al., 2016). However, the multi-state models found 

in the review described in that paper were under the discrete-time  framework, 

i.e. they were typically what this thesis has termed conventional (Markov) 

decision-analytic models. The authors acknowledge that building such models 

can be cumbersome and time-consuming. However, the continuous-time multi-

state modelling approach that has been the focus of this thesis overcomes such 

problems. In particular, continuous-time Markov multi-state models can be build 

in seconds (Williams et al., 2017a) and are therefore much less time-consuming 

than their discrete-time counterparts. This is mainly due to the modelling not 

requiring any form of simulation, such as cohort simulation. It is hoped that this 

http://www.imi-getreal.eu/
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will help encourage the adoption of continuous-time multi-state modelling for 

cost-effectiveness analysis.  

8.4.1.3 Extrapolation 

Increasingly in the literature, more importance is being placed on assessing the 

suitability of extrapolations in terms of being clinically plausible, and in 

particular using external data to help inform the extrapolation. In the UK, NICE 

(2013) recommend that any extrapolation is assessed for “both clinical and 

biological plausibility of the inferred outcome as well as its coherence with 

external data sources”.  

Bayesian evidence synthesis that incorporates external information is 

demonstrated in the work by Demiris and Sharples (2006). In another article, 

Nelson et al. (2008) show how internal and external data could be used to inform 

the extrapolation in conjunction with time-metric and age-metric survival 

analysis. That is to say, in particular, the time to event was measured using time 

since initiation of treatment in the initial period when there was a high risk of 

death. Then, when the hazard of death could be assumed to be more stable, 

time was measured using age to facilitate extrapolation. Hwang and Wang (1999) 

proposed a method that utilises general population life table estimates to 

simulate a reference population to help inform the extrapolation. Specifically, 

their method involved a linear extrapolation of a logit-transformation of the 

survival ratio between the reference and specific population of interest, 

assuming a constant excess hazard. This approach has been applied by many 

authors including Chu et al. (2008a), Chu et al. (2008b), Lee et al. (2012), Yang 

et al. (2012), Chen et al. (2013) and Ho et al. (2006).  

A very recent special issue of the journal Medical Decision Making specifically 

focused on methods for extrapolation in cost-effectiveness analyses was 

published in 2017. The contributions outlined how analysts could incorporate 

external data into their models [e.g. Jackson et al. (2017), Guyot et al. (2017), 

Negrín et al. (2017) and Meacock et al. (2017)]. 

The contribution by Jackson et al. (2017) is a valuable addition to the literature 

that starts by stating that the conventional approach to extrapolation is 
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parametric regression. However, the authors include the caveat that the 

observed follow-up should represent a large enough proportion of the whole 

lifetime when using this approach. In addition, they emphasise that this assumes 

that the observed hazards and trends will continue long term, but that this 

becomes more implausible as the proportion of the unobserved lifetime 

increases. They also stress that the extent of uncertainty in the extrapolation 

needs quantified, which can be difficult if observed data is immature. Jackson et 

al. (2017) reiterate the NICE recommendation that extrapolation be evaluated as 

to its clinical and biological plausibility and also coherence with external data. 

The article then proceeds to review methods of extrapolation involving external 

data, discuss the required assumptions and the circumstances under which 

method can be appropriate. In particular, the paper provides guidance on what 

to do when the disease and external (or treatment and control) populations have 

the same mortality all the time, the same mortality after some time and 

different mortalities in the short and long term. For the latter, the authors give 

an overview of how the external data could be adjusted to represent the 

population of interest. This included making assumptions about the 

proportionality of the all-cause or cause-specific hazards or about the additive 

excess hazard. The authors then discuss possible forms the survival function 

could take.  

Guyot et al. (2017) detail how Bayesian multi-parameter evidence synthesis 

incorporating splines can be used to combine the observed trial data with 

external data sources to inform the extrapolation. In doing so, the authors 

demonstrate a useful approach encouraging analysts to explicitly use all 

available information outwith the trial to obtain extrapolations that are sensible 

and clinically plausible.  

The work by Negrín et al. (2017) adds value in that it raises awareness of the 

need to consider the uncertainty in the estimates of extrapolated outcomes. The 

authors caution against the use of relying on “best-fit” models based on 

information criteria because they fail to address two areas of model uncertainty. 

Specifically, the two areas are uncertainty surrounding the true distribution and 

that related to the stability over time of the model parameters. Instead, their 

article demonstrates the use of Bayesian model averaging which can take into 

account both. The authors use two different approaches to this: one based on 
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selection using Bayesian information criterion (BIC), and an alternative 

incorporating optimistic and pessimistic scenarios. Negrín et al. (2017) include 

the alternative because they acknowledge that information criteria can only 

assess the goodness of fit of observed data, and cannot help decide how 

reasonable the extrapolation looks.  

The premise of the paper by Meacock et al. (2017) is the authors’ position that 

the usual binary outcome of 30-day mortality used to evaluate policy evaluations 

has room for improvement. The authors explain that this dichotomy assumes 

that those that die do so instantly, and therefore any time spent alive is ignored. 

In addition, those that do remain alive beyond 30 days are given a life 

expectancy based on that of the general population. However, those that the 

policy or program has an influence on are likely to be different from the general 

population. Furthermore, it is often possible to observe patients for more than 

30 days but this longer term follow-up is not always utilised. The authors point 

out that trials often use all the follow-up data available and use parametric 

survival analysis to extrapolate the desired outcome over the lifetime. The aim 

of Meacock et al. (2017)’s article was to illustrate how this approach could be of 

use as a method of extrapolation in the evaluation of health policies. They did 

this by comparing the crude 30-day mortality outcome with parametric survival 

regression, both of which were coupled with general population life expectancy 

estimates to assess differences in remaining life years in the short term i.e. over 

1 year. Furthermore, they also utilised the observed survival data over 1 year to 

carry out parametric survival regression, therefore basing the estimates on the 

population of interest rather than the general population. They performed 

extrapolation to a lifetime horizon and external validation using 3-year observed 

survival data they had available. Because of the initial very high risk of survival 

they fitted two separate models. The first was for short-term survival and was 

based on the observed 1-year data. The second was for long-term extrapolation, 

but excluded the high risk period, instead of being based on the data from 30 

days onwards. After demonstrating the improved estimation with parametric 

survival regression, they then proceeded to use a difference-in-differences 

design to evaluate the effect on life expectancy of a policy. 

Meacock et al. (2017) demonstrate the added value of using the observed data 

to estimate remaining life expectancy over the 30-day mortality estimates, 
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especially when with the latter the life expectancy estimates were from the 

general population rather than the population of interest. This was to be 

expected because in their example the life expectancy estimates for their 

population of interest differed quite considerably from that of the general 

population. However, the external validity of the extrapolation demonstrated in 

the paper was somewhat limited because it was only based on 3-years follow-up 

of mortality. Given their population had a mean age of 72 it would have been 

preferable if at least 10-years follow-up of mortality was obtained for a more 

comprehensive external validation to the lifetime horizon. Estimates of 

mortality at more points over the lifecourse would ideally have been available to 

check that the extrapolation was sensible and clinically plausible, especially as 

their population were aged from 18 years onwards. 

In the analysis presented in Chapter 7 of this thesis the extrapolation and choice 

of time horizon did not benefit substantially from being informed by external 

data. This was primarily because the approaches were contrasted with an 

existing decision-analytic model already created by a manufacturer, and used 

the same time horizon as that model for comparison purposes. This constraint on 

the time horizon is likely only to be specific to this illustration due to it being 

based on a comparison with an existing model. It is not a limitation to the future 

use of multi-state modelling. Indeed, the R functions already created as part of 

this research (Williams et al., 2017a) facilitate choosing a different fit in the 

observed period from that in the period that requires extrapolation. Their scope 

could be easily widened to incorporate external data. 

Another point worthy of consideration related to extrapolation in health 

economic modelling, but true of the whole time-frame of interest, is the impact 

of discounting on the predictions of being in relevant states. Given that after 

discounting the corresponding prediction curves will be lower and possibly 

somewhat different in shape, raises the issue as to whether it should be the fit 

to the curves after discounting that are evaluated instead. 

While it is encouraging that guidance on extrapolation is increasing in the 

literature, its primary focus has been on the extrapolation of individual 

outcomes in isolation. Research into adaptions to existing methods of 

extrapolation for state-transition modelling would be a welcome addition. The 
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next section outlines how extrapolation can be more complex when multiple 

outcomes are considered simultaneously. 

8.4.1.4 Implications for the choice of modelling approach 

The previous sub-sections on the Cancer Drug Funds reform, the GetReal project 

and the use of external data for extrapolation have highlighted that there is 

huge scope to improve the evaluation of effectiveness and cost-effectiveness; 

specifically, by making use of the mechanisms that are available to combine 

study data with routine administrative data for longer-term follow-up. Within 

medical research there is an increasing ethos of data sharing. Indeed, public-

funded research grant bodies are stipulating that data generated from research 

is shared with the wider research community, where possible. Furthermore, 

initiatives are emerging that allow trial data to be assessed by researchers e.g.   

https://clinicalstudydatarequest.com/. In addition, linkages with data from 

studies and routine administrative data are become more readily available, 

especially as the latter matures and new linkages become increasingly possible. 

Data such as hospital episode statistics and disease-specific (e.g. cancer) and 

death registries are among the sources of information that are likely to be 

useful. 

With health economic modelling, interest is often on modelling several health 

states relevant to a (disease) process simultaneously. This allows for each of the 

different health states to be assigned a utility value representing quality of life, 

facilitating the calculation of cost-effectiveness measures such as cost per 

quality of life year gained. Multi-state modelling is a natural choice for this, 

especially when all the different data sources are linked at individual patient 

level. It also has the flexibility to incorporate aggregated data as sources of 

information to inform assumptions about transitions. However, analysts should 

consider carefully where to source the information required before embarking on 

any modelling to ensure that sensible and clinically relevant results emerge. This 

is particularly true of any extrapolation required as this is often the aspect with 

the greatest uncertainty.  

While external data on death is likely to be available from death registries, 

information for other outcomes/health states in an intended model may be more 

https://clinicalstudydatarequest.com/
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difficult to access. Furthermore, because with state-transition modelling the 

transitions can be interlinked, it can be problematic to achieve sensible results 

for each of the health states simultaneously. A less complex model may provide 

a solution when there is difficulty obtaining data to inform/check the plausibility 

of the results for the transitions and states. This could involve combining states 

so that a state-transition model consists of less transitions. In a competing risks 

scenario, it could involve combining the competing risks into composite 

outcomes and conducting standard survival analysis or taking the partitioned 

survival approach instead. The use of less complex models may also overcome 

problems that may arise when there is sparse information on covariates for an 

outcome. Combining events into composite health states may support allowing 

more covariates to be assessed. 

8.4.2 Consideration of multiple comparators 

In the health economics case study illustrated in this thesis, there was one 

comparator for the treatment and the two treatments were compared head-to-

head in a single trial. However a full economic evaluation can involve multiple 

comparator treatments, the data for which can come from several different 

sources, particularly if multiple clinical trials and/or manufacturers are 

involved. The multi-state modelling approach can still be used in this context if 

an estimate of effect, either direct or indirect, between the different 

comparators can be found. Further research in this area would be worthwhile. 

8.4.3  Simulation exercise to dissect the differences in the 
approaches compared 

While multi-state modelling and decision-analytic modelling – the two state-

transition modelling approaches – were compared when the assumptions used 

differed and when they were equivalent, this was not extended to the 

partitioned survival approach. A worthwhile area of future research would be a 

simulation exercise to fully understand the mechanisms that differ between each 

of the three approaches. This could focus on varying specific aspects to help 

dissect what was driving the discrepancies between the approaches e.g. hazard 

ratios used including assumed distributions, effects of treatment across 

transitions/events, level of censoring, extrapolation and time horizon. 
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8.4.4 Validation of models  

The stroke epidemiology case study used in this thesis is part of a wider Stroke 

Complications and Outcomes Prediction Engine (SCOPE) study. SCOPE is a 

collaboration that brings together individual patient level data from various 

studies and trials for the purpose of developing and validating prognostic 

models. Therefore this is a valuable resource in which to internally and 

externally validate the competing risks and multi-state models for stroke 

developed in Chapter 3 and Chapter 5 of this thesis. In particular, both the 

calibration and discrimination of the models could be evaluated. However, an 

important consideration for external validation in particular, of competing risks 

analyses and multi-state modelling, is that the proportion of events due to a 

specific competing risk/health state is comparable to that in the data used to 

develop the model.  It would also be worthwhile to validate the modelling in the 

health economics context.  

8.4.5 Predictions and modifiable lifestyle factors 

Chapter 5 illustrated survival predictions both from the start of the study and 

dynamically. These predictions could provide a useful communication tool for 

clinicians to discuss prognosis with their patients. However mortality may be a 

difficult subject for patients to engage with, especially if they feel they do not 

have control over their future. In the models demonstrated in this thesis, no 

modifiable lifestyle factors were included as covariates. However there are 

many areas where modifiable lifestyle factors are predictors, such as diabetes 

and heart disease. The flexibility of predictions that multi-state modelling 

facilitates has huge potential in chronic disease where changes in lifestyle could 

result in improvements in outcomes for patients. The predictions from multi-

state modelling could aid clinicians when trying to encourage patients to take 

control of aspects of their lifestyle that could improve their health. For 

example, tobacco and alcohol consumption, body mass index, diet, exercise, 

cholesterol and blood pressure. Clinicians could discuss with patients the 

predictions of being in each of the relevant health states applicable to their 

disease if they continue with their current lifestyle. They then could try and 

motivate their patients to change by discussing how the predictions could 

improve with a change in lifestyle. The dynamic predictions in particular could 
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help the discussions in routine follow-up clinics because they would reflect the 

time that has elapsed since diagnosis and any health states experienced by the 

patient.  

8.4.6  Widening the functionality of the coding for cost-

effectiveness analysis in R using multi-state modelling   

The R functions and accompanying code in the tutorial paper developed as part 

of this research has provided health economic modellers with the tools to start 

adopting multi-state modelling with their own data. It acts as a strong 

foundation to build on, with there being much scope to develop it further. A few 

examples of intended developments will now be outlined.  

 It is anticipated that the existing facility within mstate to produce 

standard errors for predictions will be extended to the parametric 

approach. In particular, the current bootstrapping procedure in mstate 

for the semi-Markov model would benefit from adaption.  

 Another area that could be developed within this multi-state modelling 

framework is Value of Information analysis. This would be a worthwhile 

extension to the existing functionality that carries out probabilistic 

sensitivity analysis. It would allow evaluation of whether future research, 

and what aspects in particular, would be value for money and worthwhile 

doing. Specifically, aspects where more information would be of benefit 

to help reduce uncertainty could be investigated, while at the same time 

considering the cost of a proposed study to assess whether the outlay 

would be justified.  

 One barrier that may make analysts reluctant to adopt multi-state 

modelling is that conventionally it requires data at individual patient level 

data. However, health economists do not always have access to this and 

anyway economic evaluations are often strengthened by synthesising 

evidence from various different sources to inform the assumptions with 

regards to transitions. Consequently, the functions developed as part of 

this research include those that can be used when individual patient level 

data are not available or when several different sources are used. 
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However there is scope to widen the contexts in which they could be 

used. 

 In the case studies used in this research missing covariate information was 

not such an issue. However missing information is very common in medical 

research. Therefore, it is intended that the coding will incorporate the 

option to perform multiple imputation for those users who require it. 

To widen the exposure and accessibility of the existing code and intended 

developments above, it is envisaged that I will bring them all together into a 

comprehensive R package available through CRAN (https://cran.r-project.org/) 

This would be the ideal platform for those interested in using the code to keep 

abreast of any developments in this ongoing work. The package would also 

include vignettes with step-by-step guides on various aspects of the multi-state 

modelling framework in a cost-effectiveness analysis context. It may also 

encourage users to suggest developments and improvements of their own to help 

widen the adoption of the approach among health economic modellers.  

Alongside the R package it is also my intention to use the shiny application 

(http://shiny.rstudio.com/) within R studio (https://www.rstudio.com/) to 

create a more user-friendly web-based front-end to the package of functions and 

related code. Finally, to raise awareness of the approach and engage with those 

that could benefit from using it, I intend running courses on using R for cost-

effectiveness analysis at conferences aimed at health economic modellers.  

The research conducted as part of this thesis has demonstrated the usefulness of 

competing risks and multi-state modelling, in areas where they are not widely 

applied. It has also provided motivation for the future directions detailed above. 

It is hoped this will encourage further adoption of the multi-state modelling 

framework, in the many areas where it has not yet reached its full potential.  
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Appendices 

Appendix I Literature search of reviews of extent 
of use of competing risks 

 
A search was conducted using OvidSP (All Resources – including MEDLINE and 

Embase) of titles, abstracts and keywords to 31/08/2016 using the following 

search terms: 

("competing risks" and review and (liter* or stud* or systematic)).ab,ti,kw. 

 

The following diagram summaries the search leading to 2 contributions. 

 
 

 

 

 

 

 

 

 

 

 
 
 
 

Records identified  
(n = 250) 

Records after duplicates removed 
(n = 129) 

Records included 
(n = 2) 

Records excluded due to 
not reviewing the extent 
of use of competing risks  

(n = 127) 
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Appendix II Koller et al. (2012)’s search strategy  

 
Pubmed search for studies on competing risks that used the following search 
terms: 
 

(a)  involving selected biostatistical journals 
 
(“competing cause” OR “competing causes” OR “competing risk” OR “competing risks” OR 

“competing outcome” OR “competing outcomes” OR “competing endpoints”) AND (Biom J[Jour] 

OR Biometrics[Jour] OR Biostatistics[Jour] OR Lifetime Data Anal[Jour] OR Stat Methods Med 

Res[Jour] OR Stat Med[Jour])  

 
Limits activated: English, Field: Title/Abstract 

Searched time period: 1 January 2000 until 28 October 2010 

 
(b)  involving high-impact medical journals 

 
(“competing cause” OR “competing causes” OR “competing risk” OR “competing risks” OR 

“competing outcome” OR “competing outcomes” OR “competing endpoints”) AND (N Engl J 

Med[Jour] OR JAMA[Jour] OR bmj[Jour] OR Ann Intern Med[Jour] OR Lancet[Jour] OR PLoS 

Med[Jour]) 

 
Limits activated: English, Field: Title/Abstract 

Searched time period: 1 January 2000 until 28 October 2010 

 
and (c) involving core clinical journals 
 
 
(“competing cause” OR “competing causes” OR “competing risk” OR “competing risks” OR 
“competing outcome” OR “competing outcomes” OR “competing endpoints”) 
 
Limits activated: English, Field: Title/Abstract, core clinical journals 
Searched time period: 1 January 2000 until 28 October 2010 
 
 
I replicated each of these searches and then also updated them by revising the 

searched time period to 1 January 2000 until 31 December 2015. 
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Appendix III Literature search of competing risks 
analyses of stroke recurrence and death 

 
A search was conducted using OvidSP of titles, abstracts and keywords to 

31/08/2016 using the following search terms: 

competing cause OR competing causes OR competing risk OR competing risks OR 

competing outcome OR competing outcomes OR competing endpoints AND stroke 

AND recur* 

The following diagram summaries the search leading to 17 contributions. 

 

 

 

 

 

 

 

Records included 
(n = 17) 

Records excluded due to: 
not stroke patients at start of study (n=3) 

not adults (n=1) 
pregnancy-specific intervention (n=1) 

not competing risks analysis of recurrence 
and death (n=4) 

  

Records identified  
(n = 52) 

Records after duplicates removed 
(n = 26) 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Appendix IV Evidence from the literature of competing risks analyses of stroke 
recurrence and death 

Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Wollenweber et al. 
(2014) 
 
 
 
 

ischemic infarct 
or ICH within 3 
days and no 
prior dementia 

Study time period not 
specified 

vague mention of 
competing risks 
analysis 

n/a - protocol, no 
modelling presented 

post-stroke 
dementia but 
stroke 
recurrence 
included as a 
secondary end 
point 

n/a - protocol only 

Germany 
 

proposed follow-up of 5 
years    

 ≥ 18 years 
plan to include n=600 
 

      

Sun et al. (2013) 
index ischemic 
stroke, ICH or 
SAH 

2000 - 2004 
standard Cox for 
death and F&G 
model for 
recurrence (but not 
death without 
recurrence) 

admitting year, age, 
gender, ethnicity, 
stroke subtype 

all-cause 
mortality 
(41.7%) and 
stroke 
recurrence 
(15.7%) 

recurrence more likely 
with haemorrhages and 
with aging 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5 year follow-up 

ethnicity, gender and 
admitting year had no 
effect on recurrence 
after haemorrhagic (ICH 
or SAH) strokes 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Singapore 
age-range not 
specified 

n=12,559   

earlier year, male and 
being Malay or other 
was associated with a 
high risk of recurrence 
after ischemic stroke 

Arntz et al (2014)   

first-ever TIA, 
ischemic stroke 
or intracerebral 
hamorrhage 

Study time period not 
specified 

intention to use KM 
primariliy, F&G 
model only as 
secondary 

n/a - protocol, no 
modelling presented 

all-cause 
mortality and 
risk of 
recurrent 
vascular events 

n/a - protocol only 

 
 
 
 
 
 
 
 
 

 
proposed follow-up of 3 
years     

Netherlands aged 18-49 
plan to recruit 1500 
patients over 3-4 years 

      
 

Dhamoon et al. 
(2016a) + 
Conference 
abstract by 
Dhamoon et al. 
(2016b)  
 
 

diabetics with 
first ischemic 
stroke 

1 Apr 2002 - 31 Mar 
2012 

F&G model for 
recurrence with 
death as competing 
risk, but no 
corresponding model 
for death with 
recurrence as 
competing risk 

ethnicity, age, sex, 
income, hypertension, 
atrial fibrillation, 
stroke or TIA, MI, CAD, 
PVD and Charlson 
score 

death, all-cause 
readmission. 
Readmission for 
stroke/TIA, 
readmission for 
CAD, composite 
endpoint of all 
of the above 
combined  

South Asian diabetic 
stroke patients aged 
65+ have a higher 
recurrent stroke rate 
than their non- South 
Asian counterparts 

 

maximum follow-up to 
31 Mar 2013 with 
median follow-up of 
3.18 years 
 
 
 
 
 

Canada ≥ 18 years n= 25,495 
Instead, KM and Cox 
are used for death 

Also medication use in 
those aged ≥ 65 years 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 

 
Appendix IV page 3 of 8 
 
 

Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Lewsey et al. 
(2010) + 
Conference 
abstract by Inglis et 
al. (2009) 

strokes based 
on ICD9/10 
codes 

1986 - 2001 
acknowledge should 
show results for 
each competing risk 

age, sex, 
socioeconomic status 
and comorbidity 

recurrent 
stroke within 5 
years (10.8%) 

Adjusted risk of 
recurrent stroke 
decreased by 27% 
between 1986 and 
2001. Adjusted risk of 
death being first event 
decreased by 28% 
between 1986 and 
2001.  

  
5 year follow-up 

F&G model for 
recurrence with 
death as competing 
risk 

 

death without 
recurrence 
within 5 years 
(57.8%) 

recurrences more likely 
in males, the most 
deprived and those with 
depression, 
hypertension, diabetes 
and atrial fibrillation 
 
 

Scotland 
 

n=128, 511 
F&G model for death 
with recurrence as 
competing risk 

  
 

death without 
recurrence was 
associated with aging, 
being female, and 
having heart failure, 
cancer, renal failure, 
Parkinsonism, dementia 
and falls and fractures. 
Having hypertension 
was associated with a 
reduced risk of death 
without recurrence 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Andersen et al. 
(2011) 

hospitalized 
stroke patients 

2002-2010 

F&G model with 
recurrent stroke and 
death treated as 
competing risks 

age, stroke severity 
score, gender, 
cardiovascular risk 
factors 

recurrent 
stroke (10%), 
death (26%) 

men at higher risk of 
dying after stroke 
(probable typo) 

Conference 
abstract  

median follow-up of 2.6 
years  

stroke recurrence not 
found to be related to 
age 

Denmark   n=29, 599   

higher risk of stroke 
recurrence in males and 
with an initial mild 
stroke 

He et al (2015) 

First-ever  
hamorrhagic, 
ischemic or 
other strokes: 
based on 
ICD9/10 codes 

1996 - 2011 

F&G model for 
recurrence with 
death as competing 
risk 

indigenous status, 
age, gender, stroke 
subtype, year of 
diagnosis, remoteness 
of residence, atrial 
fibrillation, 
hypercholesterolemia, 
modified Charlson 
Comorbidity Index and 
age*indigenous 
interaction 

recurrent 
stroke (13.5%),  
 
long-term 
death, 
 
 case fatality 

comorbidities did not 
explain the disparity in 
stroke recurrence 
between the indigenous 
and non-indigenous 
populations, whereas 
comorbidities did partly 
explain the disparity in 
case fatality and long-
term survival 

  
follow-up to 30 Jun 
2013 

F&G model for death 
with recurrence as 
competing risk 

 

Australia 

age range not 
specified but 
 ≤ 44, 45-64 and 
≥ 65 used in 
analysis 

n=2,105 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Ovbiagele (2012) 
index ischemic 
stroke 

Sep 1996 - May 2003 
Cox models with 
competing risks 

low eGFR + others not 
specified 

primary -time 
to first 
(recurrent) 
stroke, MI or 
vascular death 

low eGFR (CKD) found 
to be associated with 
primary outcome in 
adjusted model 

Conference 
abstract  

2 year follow-up 
  

secondary - 
time to first 
(recurrent) 
stroke 

no evidence of 
significant association 
of CKD with first 
(recurrent) stroke alone 

Country not 
specified  

n=3,673 
 

  
  

Stamplecoski et al. 
(2012) 

ischemic stroke, 
TIA or ICH 

July 1 2003 -Mar 31 2008 

competing risks Cox 
modelling with 
death and 
readmission as 
competing risks 

age, sex, initial stroke 
severity, 
comorbidities, type of 
stroke, discharge 
medications 

readmission 
(any reason) 
within 30d, 1yr 
and 2yr 
respectively: 
9.6%, 31.4%, 
42.3% 

no association results 
given in abstract for 
recurrent stroke 
readmission specifically 

Conference 
abstract  

30day, 1year and 2year 
follow-up   

death: 2.9%, 
13.2% and 
19.6% 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Ovbiagele (2013) 
non-disabling 
cerebral 
infarction 

Sep 1996 - May 2003 
competing risk Cox 
regression but used 
LRTs 

age, sex , race, 
history of previous 
stroke, severity of 
stroke, history of 
congestive heart 
failure, history of 
CAD, history of 
diabetes, history of 
carotid 
endarterectomy 
, body mass index, 
alcohol use in the 
previous 
year, current smoking, 
lipid modifier drug 
use, baseline 
antithrombotic use, 
total cholesterol, and 
low density 
lipoproteincholesterol 

primary - 
recurrence of 
stroke 

U-shape for association 
with systolic blood 
pressure for both 
primary and secondary 
outcomes. Low-normal 
and high have greater 
hazard of recurrence 
than normal-high 

  
2 year follow-up 

appear to show 
"naïve" Cox 
predictions 

secondary - 
composite 
outcome of 
stroke, MI or 
vascular death 

 
≥ 35 years n=3,680     

Castilloux et al. 
(2015) 

acute ischemic 
stroke (AIS) 

2011-2012 
competing risk 
model due to high 
death rate 

age, gender, past 
medical conditions, 
patient's region 

AIS recurrence , 
death 

aging and past medical 
conditions associated 
with higher hazard of 
death 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Conference 
abstract  

1 year follow-up Cox model specified 
  

past medical conditions 
associated with higher 
hazard of recurrence 

Canada 
age range not 
specified but 
85% are 65+ 

n=6,609 
 

  
 

Age not predictor of AIS 
recurrence. Gender and 
patient's region not 
predictive of death or 
AIS recurrence 

Choi et al. (2016) 

First-ever stroke 
patients with 
atrial 
fibrillation (AF) 

2008 -2012 
competing risk Cox 
model free-fatty acid, fasting 

blood sugar, diabetes, 
previous coronary 
artery disease, high-
density lipoprotein 
cholesterol, CHADS2 
score, CHA2DS2 - VASC 
score 

(1) any 
recurrent 
stroke after 3 
years (14.8%) 
i.e. ischemic or 
hemorrhagic  

free-fatty acid is a 
predictor for recurrent 
stroke in AF patients, 
even after adjusting for 
covariates in 
established models. It is 
associated with a higher 
hazard 

  
median follow-up of 
17.5 months  

(2) ischemic 
stroke or 
systemic 
embolism (ISSE) 
and 

Korea 
age-range not 
specified 

n=279 
Gray's test to 
compare cumulative 
incidence curves  

(3) ischemic 
stroke 
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Abbreviations used in Table: CAD=coronary artery disease, CKD=chronic kidney disease, ICH= intracerebral hemorrhage, eGRF=estimated Glomerular Filtration Rate, F&G model=Fine and 
Gray's proportional subdistribution hazards model, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MI=myocardial infarction, PVD=peripheral vascular disease, SAH=subarachnoid 
hemorrhage, TIA=transient ischemic attack 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                  
length of follow-up/                     
sample size 

Approaches to 
analysis 

covariates used 
Primary 
outcome 

Main findings 

Rutten-Jacobs et 
al. (2013) 

first-ever TIA, 
ischemic stroke 
or intracerebral 
hamorrhage 

1 Jan 1980 - 1 Nov 2010 

Gray's test to 
compare cumulative 
incidence curves and 
F&G model  

age, sex and decade 
which index event 
occurred 

any vascular 
event with 
separate 
analyses for 
fatal or non-
fatal stroke and 
other arterial 
events 

no effect of age or sex 
on recurrent stroke 

  
follow-up mean (range):                    
9.1 (0-31) years     

Netherlands aged 18-50 n=724     
 

type of stroke and 
stroke severity found to 
be associated with 
recurrent stroke 

Wolinsky et al. 
(2009) 

≥ 70 years 1993 - 2005 
didn't have stroke recurrence specifically as an outcome, it was combined with first-ever 
strokes 

USA 
 

n=5,511     
 

  

Zhan et al. (2015) 
first incidence 
of stroke 

Time period of study 
and follow-up not 
specified 

F&G model as SHRs 
specified 

smoking + others that 
are not specified 

ischemic stroke 
recurrence 
(108/594) 

trend association was 
found between smoking 
and stroke recurrence 
but did not reach 
significance 
  

English abstract for 
article that is not 
written in English 

 
n=594 

recurrence as 
outcome, competing 
events are 
unspecified but 
frequency of 
occurrence is 
provided 
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Appendix V PRISMA diagram for literature search 
for use of recurrence-free survival as an 
outcome in stroke 

 
 The following diagram summaries the search leading to 20 contributions. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

Records identified  
(n = 115) 

Records after duplicates removed 
(n = 71) 

Records excluded due to: 
not stroke patients at start of study (n=50) 

not adults (n=1) 
 

Records included 
(n = 20) 
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Abbreviations used in Tables: IQR=interquartile range, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MACE=major adverse cardiovascular event, 
PH=proportional hazards, WHO=World Health Organisation 
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Appendix VI Evidence of contributions to the literature using recurrence-free survival 
after stroke 

 

Contributions that may have benefited from decomposition of the outcomes  

Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Elneihoum et al. 
(1998) 

WHO definition used for 
stroke 

1989 - 1992 
all-cause mortality and 
recurrence 

KM for survival, Cox for all-cause mortality, Cox for 
non-fatal recurrences 

  3 year follow-up 137 (6%) recurrences 
show probability of recurrence figure by age, can 
only assume it must be naïve KM as paper does not 
mention any appropriate competing risks approach 

Sweden  n=2,290 959 (43.4%) deaths 
not clear whether death was treated as a 
competing risk (i.e. censored) in the modelling of 
the hazard of recurrence 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Ogasawara et al. 
(2002b) 

unilateral carotid artery 
or middle cerebral artery 
occlusion  

Jan 1993-Mar 1996 stroke recurrence or death KM for recurrence-free survival 

  
2 year follow-up 11 recurrences  Cox for recurrence 

Japan 
mean (range) age of  57 
(38-69) 

n=70 8/23 + 3/47 recurrences 
 

Hillen et al. (2003a) First-ever strokes Jan 1995-Aug 2000 
recurrence-free survival, 
recurrence 

Use KM for both recurrence-free survival and 
stroke recurrence 

  3 year follow-up 
153 (16.6%) recurrences by 5 
years 

Parametric PH model for recurrence or death. Also 
parametric PH for recurrence and specify that 
deaths are censored 

UK  n=1,626 recurrence or death, 65.3% 
Use likelihood to decide between parametric 
distributions. Use LRTs to select covariates 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Hillen et al. (2003b) 
patients surviving 3 
months after first ever 
stroke 

1995-1998 
disability + recurrence-free 
survival over 5 years 

Cox for recurrence-free survival 

  3 year follow-up 212 recurrences or death  

UK  n=561 66 recurrences,    146 deaths  

Yokota et al. (2004) first-ever acute strokes 
1 Apr 1978 - 31 
Mar 1997 

recurrence-free survival but 

KM for recurrence-free survival,                                                           
Cox for recurrence-free survival   

min 3 year follow-
up,     
follow-up to 31 
Mar 2000 unless 
had an event 

198 recurrences and 286 deaths 
within 3 years 

Japan 
 

n=1,565 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Lee et al. (2010) 
cryptogenic stroke with 
patent foramen ovale 

Jan 2000 - Apr 
2007 

recurrent ischemic stroke  KM for recurrence in methods 

+ conference 
abstract by Lee et al. 
(2009) 

 

median follow-up 
of                                        
3.5 years,                                 
follow-up to Aug 
2008 

14 (7.7%) recurrences Cox for recurrence 

South Korea  n=181  KM for recurrence-free survival 

Toschke et al. (2011) 

Diagnosed with index 
stroke between 1997-
2006 with no stroke for at 
least 2yrs prior 

1997-2006 
effects of antihypertensive use 
on: survival after 1yr, recurrence 
after 1yr 

Cox for all-cause mortality, Cox also for recurrence 

   
survival,                                
recurrence-free survival 

Not clear whether death was treated as a 
competing risk in modelling of hazard of recurrence 

UK   n=44,244 

 
~30% deaths by 5years among 
3690 patients surviving 90 days                
35-40% recurrences by 6 years 
among 3121 patients surviving 
1year 

A naïve Cox probability of recurrence is presented 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Chan et al. (2012) 
prior history of 
atherothrombotic/            
hemorrhagic stroke 

  recurrence free survival KM for recurrence-free survival 

  
30 months follow-
up 

10 recurrences, 12 MACEs, 8 
deaths 

KM for MACE-free survival 

Hong Kong mean(sd) age of 67(11) n=127  Cox for stroke recurrence and MACE 

Abbreviations used: IQR=interquartile range, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MACE=major adverse cardiovascular event, 
PH=proportional hazards, WHO=World Health Organisation 
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Contributions not likely to benefit from decomposition of the outcomes  

Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Nadeau et al. 
(1992) 

vertebrobasilar 
stroke  

  30 day and 3 year survival KM used for survival and recurrences 

 
all male 3 year follow-up stroke recurrence 

KM curves shown for overall survival and recurrence-free 
survival 

 
mean age of 63 n=57 13 recurrences  

 

Yokota et al. 
(1998) 

ischemic stroke 1987-1995 stroke recurrence KM for recurrence-free survival 

  

median follow-up 
of  2.7 years,                                                                                              
range 2 days - 7.8 
years 

13 recurrences Cox for recurrence 

Japan 
mean (range) age 
of  63 (28-81) 

n=105 11 deaths 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Ogasawara et 
al. (2002a) 

symptomatic 
internal carotid 
artery or middle 
cerebral artery 
occlusion  

Jan 1993-Mar 
1996 

5 year risk of recurrent stroke KM and Cox for recurrence-free survival 

  
5 year follow-up stroke recurrence or death 

 

Japan 
mean (range) age 
of  57 (38-69) 

n=70 13 recurrences and 4 deaths 
 

Marnane et al. 
(2010) 

ischemic stroke   
stroke recurrence,          
functional outcome (modified 
Rankin score) 

KM and Cox for recurrence-free survival 

Conference 
abstract   

1 year follow-up 
6 and 10 recurrences by 7 and 
14 days respectively  

Ireland 
 

n=365 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Kuwashiro et 
al. (2012) 

ischemic stroke 
Jun 2007 - Apr 
2008 

recurrence-free survival KM for recurrence-free survival 

  
1year follow-up 25 (9.6%) recurrences 

mentions KM to compare recurrence vs non-recurrence groups 
in methods but not results 

Japan mean age 67 n=256 8 deaths used logistic regression with recurrence by 1year as outcome 

Kim et al. 
(2014) 

acute ishaemic 
strokes 

Mar 2003 - Apr 
2011 

recurrence-free survival KM for recurrence-free survival 

  
90 days follow-up 

recurrent ischemic stroke within 
90 days 

KM for recurrence 

USA 
median (IQR) age 
of  70 (58-80) 

n=2,378 
106 (5.9%) recurrences by 90 
days 

Cox for recurrence 
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Author/                                        
Country 

Cohort/                                     
age range 

Time period/                                 
length of follow-
up/                     
sample size 

Primary outcome + 
decomposition (n) 

Comments on approaches to analysis 

Fujimoto et al. 
(2015) 

acute ishaemic 
strokes 

  stroke recurrence and death KM for recurrence-free survival 

Conference 
abstract   

median follow-up 
of                                      
3.2 years 

recurrence 12%, 11.8%, 18.2% 
and 6.7% when split by embolic 
source 

Cox for recurrence and death 

+ another 
conference 
abstract by 
Mezuki et al 
(2013) 

 
n=542 

recurrence and death 14.4%, 
15.1%, 21.6% and 6.7% when 
split by embolic source 

 

Abbreviations used: IQR=interquartile range, KM=Kaplan-Meier estimate, LRTs= likelihood ratio tests, MACE=major adverse cardiovascular event, 
PH=proportional hazards, WHO=World Health Organisation 
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Appendix VII Literature search of broad use of 
multi-state modelling in medical literature 

 
Pubmed search for multi-state modelling that used the following search terms: 
 

(a)  involving selected biostatistical journals 
 
"multi-state model" OR "multistate model" OR "multi state model" OR "illness-
death model" OR "illness death model" OR "multi-state models" OR "multistate 
models" OR "multi state models" OR "illness-death models" OR "illness death 
models" OR "multi-state modelling" OR "multistate modelling" OR "multi state 
modelling" OR "illness-death modelling" OR "illness death modelling" OR "multi-
state modeling" OR "multistate modeling" OR "multi state modeling" OR "illness-
death modeling" OR "illness death modeling" OR "disability model*" OR ("multi-
state" AND "Markov") OR ("multistate" AND "Markov") OR ("multi state" AND 
"Markov") OR ("illness-death" AND "Markov") OR ("illness death" AND "Markov") OR 
("disability AND "Markov") OR ("multi-state" AND "semi-Markov") OR ("multistate" 
AND "semi-Markov") OR ("multi state" AND "semi-Markov") OR ("illness-death" AND 
"semi-Markov") OR ("illness death" AND "semi-Markov") OR ("disability AND "semi-
Markov") OR ("multi-state" AND "model") OR ("multistate" AND "model") OR ("multi 
state" AND "model") OR ("illness-death" AND "model") OR ("illness death" AND 
"model") OR ("multi-state" AND "models") OR ("multistate" AND "models") OR 
("multi state" AND "models") OR ("illness-death" AND "models") OR ("illness death" 
AND "models")OR ("multi-state" AND "modelling") OR ("multistate" AND 
"modelling") OR ("multi state" AND "modelling") OR ("illness-death" AND 
"modelling") OR ("illness death" AND "modelling") OR ("multi-state" AND 
"modeling") OR ("multistate" AND "modeling") OR ("multi state" AND "modeling") 
OR ("illness-death" AND "modeling") OR ("illness death" AND "modeling")  
AND (Biom J[Jour] OR Biometrics[Jour] OR Biostatistics[Jour] OR Lifetime Data 
Anal[Jour] OR Stat Methods Med Res[Jour] OR Stat Med[Jour])  

Limits activated: Title/Abstract 

Searched time period: 1 January 2000 until 31 December 2015 

 
(b)  involving high-impact medical journals 

 
"multi-state model" OR "multistate model" OR "multi state model" OR "illness-
death model" OR "illness death model" OR "multi-state models" OR "multistate 
models" OR "multi state models" OR "illness-death models" OR "illness death 
models" OR "multi-state modelling" OR "multistate modelling" OR "multi state 
modelling" OR "illness-death modelling" OR "illness death modelling" OR "multi-
state modeling" OR "multistate modeling" OR "multi state modeling" OR "illness-
death modeling" OR "illness death modeling" OR "disability model*" OR ("multi-
state" AND "Markov") OR ("multistate" AND "Markov") OR ("multi state" AND 
"Markov") OR ("illness-death" AND "Markov") OR ("illness death" AND "Markov") OR 
("disability AND "Markov") OR ("multi-state" AND "semi-Markov") OR ("multistate" 
AND "semi-Markov") OR ("multi state" AND "semi-Markov") OR ("illness-death" AND 
"semi-Markov") OR ("illness death" AND "semi-Markov") OR ("disability AND "semi-
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Markov") OR ("multi-state" AND "model") OR ("multistate" AND "model") OR ("multi 
state" AND "model") OR ("illness-death" AND "model") OR ("illness death" AND 
"model") OR ("multi-state" AND "models") OR ("multistate" AND "models") OR 
("multi state" AND "models") OR ("illness-death" AND "models") OR ("illness death" 
AND "models")OR ("multi-state" AND "modelling") OR ("multistate" AND 
"modelling") OR ("multi state" AND "modelling") OR ("illness-death" AND 
"modelling") OR ("illness death" AND "modelling") OR ("multi-state" AND 
"modeling") OR ("multistate" AND "modeling") OR ("multi state" AND "modeling") 
OR ("illness-death" AND "modeling") OR ("illness death" AND "modeling")  
 AND (N Engl J Med[Jour] OR JAMA[Jour] OR bmj[Jour] OR Ann Intern Med[Jour] 
OR Lancet[Jour] OR PLoS Med[Jour]) 
 
Limits activated: Title/Abstract 

Searched time period: 1 January 2000 until 31 December 2015 

 
and (c) involving core clinical journals 
 
 
"multi-state model" OR "multistate model" OR "multi state model" OR "illness-
death model" OR "illness death model" OR "multi-state models" OR "multistate 
models" OR "multi state models" OR "illness-death models" OR "illness death 
models" OR "multi-state modelling" OR "multistate modelling" OR "multi state 
modelling" OR "illness-death modelling" OR "illness death modelling" OR "multi-
state modeling" OR "multistate modeling" OR "multi state modeling" OR "illness-
death modeling" OR "illness death modeling" OR "disability model*" OR ("multi-
state" AND "Markov") OR ("multistate" AND "Markov") OR ("multi state" AND 
"Markov") OR ("illness-death" AND "Markov") OR ("illness death" AND "Markov") OR 
("disability AND "Markov") OR ("multi-state" AND "semi-Markov") OR ("multistate" 
AND "semi-Markov") OR ("multi state" AND "semi-Markov") OR ("illness-death" AND 
"semi-Markov") OR ("illness death" AND "semi-Markov") OR ("disability AND "semi-
Markov") OR ("multi-state" AND "model") OR ("multistate" AND "model") OR ("multi 
state" AND "model") OR ("illness-death" AND "model") OR ("illness death" AND 
"model") OR ("multi-state" AND "models") OR ("multistate" AND "models") OR 
("multi state" AND "models") OR ("illness-death" AND "models") OR ("illness death" 
AND "models")OR ("multi-state" AND "modelling") OR ("multistate" AND 
"modelling") OR ("multi state" AND "modelling") OR ("illness-death" AND 
"modelling") OR ("illness death" AND "modelling") OR ("multi-state" AND 
"modeling") OR ("multistate" AND "modeling") OR ("multi state" AND "modeling") 
OR ("illness-death" AND "modeling") OR ("illness death" AND "modeling")  
 

Limits activated: Title/Abstract, core clinical journals 
Searched time period: 1 January 2000 until 31 December 2015 

 

In addition, for each of the three searches above, the term “cost*” was added to 

help identify studies involving cost-effectiveness analysis. If found, these were 

removed. This was the case for 1, 1 and 4 articles in biostatistical, high-impact 

medical and core clinical journals respectively.
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Appendix VIII PRISMA diagram for literature search 
of use of multi-state modelling in health economics 
literature 

 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Records identified from  
OvidSP search 

 
(n = 403) 

Records after duplicates removed 
(n = 225) 

Additional records included through 
other sources: 

 
Medical Decision Making journal (n= 2) 
Value in Health journal (n= 3) 
Health Economics journal (n= 1) 
NICE TA submissions (n = 6) 
NIHR Health Technology Assessment 
journal (n=4) 

 
 

Records included 
(n = 21) 

Records excluded due to: 
not continuous-time multi-state modelling/not health 

economics context (n=167) 
not humans (n=11) 

conference abstract with limited information (n=18) 
not accessible (n=6) 

publications that accompany this thesis (n=2) 

Total contributions 
(n = 27) 

Records excluded due to  
not being continuous-time multi-
state modelling: 
NICE TA submissions (n = 6) 
NIHR Health Technology 
Assessment journal (n=4) 
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Appendix IX 

 

Table A1 Cost per QALYs results in all 216 combinations 

Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

Gompertz Gompertz Gompertz 0.331 10149 30702 

exponential Gompertz Gompertz 0.844 9620 11393 

exponential exponential Gompertz 0.841 9613 11424 

exponential Log-logistic Gompertz 0.829 9548 11515 

exponential Log normal Gompertz 0.829 9570 11543 

exponential Gompertz generalised 
gamma 

0.797 9324 11699 

exponential generalised 
gamma 

Gompertz 0.805 9534 11839 

exponential Weibull Gompertz 0.807 9557 11844 

exponential exponential generalised 
gamma 

0.791 9372 11848 

exponential Log-logistic generalised 
gamma 

0.782 9261 11849 

exponential Log normal generalised 
gamma 

0.783 9293 11867 

exponential Gompertz exponential 0.756 9160 12117 

exponential Weibull generalised 
gamma 

0.760 9275 12205 

exponential generalised 
gamma 

generalised 
gamma 

0.752 9215 12249 

exponential exponential Weibull 0.753 9241 12272 

exponential Log-logistic Weibull 0.750 9217 12294 

exponential Gompertz Log-logistic 0.777 9585 12343 

exponential Weibull Weibull 0.735 9215 12539 

exponential Gompertz Weibull 0.728 9221 12667 

exponential generalised 
gamma 

Log-logistic 0.729 9359 12841 

exponential Log normal Weibull 0.714 9175 12850 

exponential Log normal Log-logistic 0.713 9466 13279 

exponential generalised 
gamma 

exponential 0.676 9019 13336 

exponential generalised 
gamma 

Weibull 0.683 9138 13384 

exponential Log-logistic Log-logistic 0.705 9480 13450 

exponential exponential exponential 0.665 9048 13597 

exponential Log normal exponential 0.664 9044 13611 

exponential Weibull Log-logistic 0.697 9503 13643 

exponential Log-logistic exponential 0.654 9095 13907 

exponential Weibull Log normal 0.664 9239 13913 

exponential Log-logistic Log normal 0.659 9215 13993 

exponential Weibull exponential 0.651 9134 14040 

exponential Gompertz Log normal 0.650 9170 14096 

Log normal Gompertz Gompertz 0.691 9847 14245 

exponential exponential Log-logistic 0.659 9503 14427 
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Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

Log normal Log normal Gompertz 0.675 9780 14481 

Log-logistic Gompertz Gompertz 0.687 9992 14535 

Log normal Gompertz generalised 
gamma 

0.645 9518 14760 

exponential generalised 
gamma 

Log normal 0.609 9028 14828 

exponential Log normal Log normal 0.617 9163 14848 

Log normal Weibull Gompertz 0.666 9893 14860 

Log normal Log normal generalised 
gamma 

0.630 9459 15010 

Log normal exponential Gompertz 0.654 9848 15050 

Log-logistic Log normal Gompertz 0.652 9820 15061 

Log normal Log-logistic Gompertz 0.649 9835 15162 

Log-logistic Gompertz generalised 
gamma 

0.639 9696 15171 

Log normal generalised 
gamma 

Gompertz 0.631 9726 15405 

Log normal Weibull generalised 
gamma 

0.616 9595 15587 

exponential exponential Log normal 0.595 9325 15685 

Log normal Gompertz Weibull 0.601 9488 15796 

Log normal exponential generalised 
gamma 

0.604 9577 15843 

Log-logistic Log normal generalised 
gamma 

0.598 9552 15972 

Log normal Log-logistic generalised 
gamma 

0.596 9534 16007 

Log-logistic exponential Gompertz 0.612 9863 16111 

Log normal generalised 
gamma 

generalised 
gamma 

0.579 9398 16228 

Log normal Weibull Weibull 0.577 9527 16508 

Log normal Log normal Weibull 0.571 9420 16510 

Log normal Log normal Log-logistic 0.591 9783 16565 

Log normal exponential Weibull 0.573 9510 16602 

Log-logistic Gompertz Weibull 0.579 9741 16822 

Log-logistic generalised 
gamma 

Gompertz 0.581 9775 16836 

Log normal Log-logistic Log-logistic 0.577 9750 16910 

Log normal Log-logistic Weibull 0.551 9425 17118 

Log-logistic Gompertz exponential 0.557 9556 17144 

Log normal Weibull Log-logistic 0.568 9781 17214 

Log-logistic Log normal Weibull 0.546 9467 17344 

Log-logistic exponential generalised 
gamma 

0.547 9611 17556 

Log normal Log normal exponential 0.536 9435 17587 

Log-logistic exponential Weibull 0.539 9495 17604 

Log normal exponential Log-logistic 0.550 9703 17633 

Log normal exponential exponential 0.528 9352 17717 

Log normal generalised 
gamma 

Weibull 0.532 9426 17725 

Weibull Log normal Gompertz 0.569 10111 17781 
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Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

Log normal Gompertz exponential 0.521 9342 17917 

Log normal Log normal Log normal 0.529 9515 17993 

Log-logistic Gompertz Log-logistic 0.557 10080 18084 

Weibull Weibull Gompertz 0.551 10000 18157 

Log normal Gompertz Log-logistic 0.543 9876 18192 

Log-logistic Weibull Gompertz 0.546 9946 18219 

generalised 
gamma 

Gompertz Gompertz 0.558 10186 18270 

Log-logistic Log-logistic Gompertz 0.548 10033 18316 

Log normal Weibull Log normal 0.525 9633 18353 

Log-logistic generalised 
gamma 

generalised 
gamma 

0.512 9433 18424 

Log-logistic Log normal Log-logistic 0.524 9703 18514 

Weibull Gompertz Gompertz 0.542 10084 18615 

Log-logistic generalised 
gamma 

Log-logistic 0.528 9890 18741 

Log normal generalised 
gamma 

Log-logistic 0.524 9909 18897 

Log normal Log-logistic Log normal 0.502 9519 18948 

Log normal Log-logistic exponential 0.496 9416 18997 

Log normal exponential Log normal 0.498 9502 19095 

Weibull exponential Gompertz 0.530 10143 19127 

Log-logistic exponential exponential 0.491 9421 19200 

Weibull Log normal generalised 
gamma 

0.505 9713 19219 

Log normal Weibull exponential 0.489 9392 19219 

Log-logistic Weibull generalised 
gamma 

0.505 9726 19244 

generalised 
gamma 

generalised 
gamma 

Gompertz 0.523 10068 19250 

Log-logistic generalised 
gamma 

Weibull 0.480 9333 19442 

Log normal generalised 
gamma 

exponential 0.480 9350 19483 

Log-logistic Log normal exponential 0.483 9410 19489 

Weibull generalised 
gamma 

Gompertz 0.508 9983 19652 

Log-logistic Log-logistic generalised 
gamma 

0.495 9734 19658 

generalised 
gamma 

Gompertz generalised 
gamma 

0.501 9872 19693 

generalised 
gamma 

Log normal Gompertz 0.509 10029 19721 

Log-logistic Log-logistic Log-logistic 0.502 9899 19735 

Log-logistic generalised 
gamma 

exponential 0.471 9353 19862 

generalised 
gamma 

Gompertz Weibull 0.489 9753 19933 

Log-logistic Log-logistic exponential 0.481 9682 20125 
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Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

generalised 
gamma 

Weibull Gompertz 0.491 9908 20161 

Weibull Log normal Log-logistic 0.508 10285 20233 

generalised 
gamma 

Gompertz Log-logistic 0.508 10288 20244 

Weibull Log normal Weibull 0.477 9667 20256 

Log normal generalised 
gamma 

Log normal 0.470 9551 20303 

generalised 
gamma 

Log-logistic Gompertz 0.492 9989 20320 

Log normal Gompertz Log normal 0.472 9590 20330 

Log-logistic exponential Log-logistic 0.487 9911 20352 

Log-logistic Weibull Log-logistic 0.478 9747 20396 

generalised 
gamma 

exponential Gompertz 0.489 9983 20413 

Weibull Gompertz Log-logistic 0.502 10267 20470 

Weibull Weibull generalised 
gamma 

0.472 9693 20515 

Log-logistic Log-logistic Weibull 0.470 9721 20664 

Log-logistic Gompertz Log normal 0.476 9851 20686 

Weibull Gompertz generalised 
gamma 

0.468 9724 20788 

Weibull exponential Weibull 0.468 9774 20879 

Log-logistic Weibull Weibull 0.462 9653 20880 

Weibull Weibull Weibull 0.460 9642 20964 

Log-logistic Weibull exponential 0.456 9568 20969 

Weibull Gompertz Weibull 0.456 9733 21334 

Weibull generalised 
gamma 

generalised 
gamma 

0.448 9578 21364 

generalised 
gamma 

Log normal Log-logistic 0.477 10286 21555 

Weibull generalised 
gamma 

Log-logistic 0.465 10060 21636 

Weibull Log-logistic Gompertz 0.458 9986 21801 

Log-logistic Log normal Log normal 0.440 9625 21871 

Weibull exponential generalised 
gamma 

0.445 9759 21926 

Weibull exponential Log-logistic 0.466 10289 22065 

generalised 
gamma 

generalised 
gamma 

generalised 
gamma 

0.436 9648 22146 

generalised 
gamma 

Weibull Log-logistic 0.449 9990 22248 

Log-logistic exponential Log normal 0.439 9779 22289 

generalised 
gamma 

Log normal generalised 
gamma 

0.433 9649 22294 

Weibull Gompertz exponential 0.437 9754 22336 

generalised 
gamma 

generalised 
gamma 

exponential 0.433 9744 22479 

Weibull generalised 
gamma 

Weibull 0.435 9802 22513 

Weibull Log normal exponential 0.417 9440 22617 
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Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

generalised 
gamma 

Gompertz exponential 0.422 9575 22674 

generalised 
gamma 

Log-logistic Log-logistic 0.439 10002 22800 

Log-logistic Log-logistic Log normal 0.423 9664 22872 

generalised 
gamma 

Weibull generalised 
gamma 

0.421 9654 22956 

generalised 
gamma 

exponential Weibull 0.416 9612 23131 

Weibull exponential exponential 0.418 9740 23281 

generalised 
gamma 

exponential generalised 
gamma 

0.416 9693 23307 

Weibull Weibull Log-logistic 0.438 10203 23321 

generalised 
gamma 

Log normal Weibull 0.416 9740 23389 

Weibull Log normal Log normal 0.425 9988 23516 

Log-logistic Weibull Log normal 0.408 9630 23622 

generalised 
gamma 

generalised 
gamma 

Log-logistic 0.421 9941 23626 

generalised 
gamma 

Log-logistic generalised 
gamma 

0.407 9707 23869 

Weibull Log-logistic generalised 
gamma 

0.408 9746 23916 

Log-logistic generalised 
gamma 

Log normal 0.403 9635 23926 

Weibull Weibull exponential 0.393 9420 23949 

Weibull Log-logistic Log-logistic 0.422 10125 23985 

generalised 
gamma 

Weibull Weibull 0.394 9539 24237 

Weibull Gompertz Log normal 0.412 9995 24289 

generalised 
gamma 

generalised 
gamma 

Weibull 0.396 9633 24354 

Weibull Log-logistic exponential 0.394 9599 24377 

generalised 
gamma 

exponential Log-logistic 0.413 10106 24463 

Weibull exponential Log normal 0.404 9960 24676 

generalised 
gamma 

generalised 
gamma 

Log normal 0.394 9864 25031 

generalised 
gamma 

Log-logistic Weibull 0.379 9592 25281 

Weibull Log-logistic Weibull 0.380 9624 25342 

generalised 
gamma 

Log normal exponential 0.376 9624 25567 

generalised 
gamma 

Weibull exponential 0.370 9585 25896 

generalised 
gamma 

Log-logistic exponential 0.370 9621 26027 

generalised 
gamma 

Weibull Log normal 0.376 9833 26135 
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Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

generalised 
gamma 

Log normal Log normal 0.376 9882 26250 

Weibull generalised 
gamma 

exponential 0.360 9509 26402 

generalised 
gamma 

Gompertz Log normal 0.375 9913 26420 

Weibull generalised 
gamma 

Log normal 0.367 9702 26443 

Weibull Weibull Log normal 0.376 9955 26509 

generalised 
gamma 

exponential exponential 0.341 9481 27813 

generalised 
gamma 

Log-logistic Log normal 0.340 9686 28504 

generalised 
gamma 

exponential Log normal 0.349 9966 28583 

Gompertz Weibull Gompertz 0.340 10218 30056 

Weibull Log-logistic Log normal 0.318 9799 30769 

Gompertz Log-logistic Gompertz 0.316 10202 32299 

Gompertz Log normal Gompertz 0.314 10159 32353 

Gompertz exponential Gompertz 0.287 10097 35230 

Gompertz Weibull generalised 
gamma 

0.258 9860 38175 

Gompertz Gompertz generalised 
gamma 

0.251 9801 39043 

Gompertz generalised 
gamma 

Gompertz 0.252 10011 39781 

Gompertz Log-logistic generalised 
gamma 

0.230 9799 42651 

Gompertz Log normal generalised 
gamma 

0.219 9775 44704 

Gompertz Weibull Log-logistic 0.226 10279 45570 

Gompertz generalised 
gamma 

Log-logistic 0.220 10235 46418 

Gompertz Log-logistic Log-logistic 0.217 10244 47134 

Gompertz Gompertz Log-logistic 0.208 10191 48889 

Gompertz Weibull Weibull 0.194 9686 49907 

Gompertz Gompertz Weibull 0.188 9676 51582 

Gompertz exponential Log-logistic 0.197 10179 51781 

Gompertz exponential generalised 
gamma 

0.179 9666 53957 

Gompertz Log normal Log-logistic 0.180 10181 56610 

Gompertz Log-logistic Weibull 0.165 9707 58659 

Gompertz Log normal Weibull 0.164 9692 59199 

Gompertz Log-logistic exponential 0.159 9865 62101 

Gompertz Weibull exponential 0.156 9744 62327 

Gompertz Gompertz exponential 0.147 9686 65697 
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Distribution used for:         

progression-
free -> 
progression 

progression-
free -> 
death 

progression-> 
death 

incremental 
QALYs 

incremental 
Costs (£) 

Cost per 
QALY 

gained 
(£) 

Gompertz exponential Weibull 0.146 9668 66291 

Gompertz generalised 
gamma 

Weibull 0.144 9567 66552 

Gompertz generalised 
gamma 

generalised 
gamma 

0.143 9516 66668 

Gompertz Log normal exponential 0.128 9780 76128 

Gompertz generalised 
gamma 

exponential 0.120 9671 80492 

Gompertz exponential exponential 0.114 9635 84734 

Gompertz Gompertz Log normal 0.108 9938 92303 

Gompertz generalised 
gamma 

Log normal 0.091 9873 108802 

Gompertz Weibull Log normal 0.090 9882 109412 

Gompertz Log-logistic Log normal 0.087 9892 113980 

Gompertz exponential Log normal 0.079 9824 124952 

Gompertz Log normal Log normal 0.028 9781 344585 
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