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Abstract 

Tissue engineering and regenerative medicine is a constantly evolving field of science that 

directs the use of cells to repair damaged or diseased tissue. Currently, stem cells are the 

most widely used source of cells due to their inherent characteristics of self-renewal and 

differentiation. However, stem cell regenerative therapies are still lacking, upon removal 

from the body, stem cell grow dysplastically towards unwanted lineages, compounded by 

their limited number makes the therapeutic potential of these cells difficult to obtain. These 

problems are due to the lack of knowledge of the underlying systems and mechanisms of 

phenotypical commitment through differentiation.  

In an attempt to circumvent these problems, scientists have begun the construction of 

dynamic surfaces, that is, surfaces that mimic the constantly evolving and changing 

environment in which stem cells reside in the body, known as the niche. These biomimetic 

strategies aim to reproduce the physical architecture, chemical composition and plasticity of 

the in vivo environment in vitro. This physical architecture can provide the cells with 

behavioural cues, mainly through transmembrane receptors known as integrins which link 

the extracellular matrix to the cytoskeleton; and therefore convey physical architecture of 

the environment to the cell. Scientists consciously design biomimetic systems to incorporate 

integrin binding ligands such as the adhesive tripeptide arginine-glycine-aspartic acid 

(RGD). The chemical composition of the niche depends on the in vivo milieu, and the needs 

of the body at this specified time. More specifically, mesenchymal stem cells reside in a 

variety of niches, with the bone marrow being a prime example. Upon osteogenesis, many 

chemical signals are delivered to this niche, with arguably the strongest osteogenic signal 

from bone morphogenetic protein 2 (BMP-2). This growth factor can activate osteogenic 

genes within the mesenchymal stem cell and predetermine differentiation of the cell towards 

an osteoblastic fate.  

In this work, we have developed a genetically engineered non-pathogenic bacteria, 

Lactococcus lactis to display the III7-10 fragment of fibronectin to allow mammalian cell 

integrin adhesion. This fragment contains two important sequences, the RGD adhesive 

tripeptide and the synergy sequence proline-histidine-serine-arginine-asparagine (PHSRN). 

RGD allows the mammalian cells to interact with the bacteria through promiscuous integrin 

attachment. The PHSRN sequence binds synergistically with RGD to some integrins, such 

as α5β1. These bacteria have also been modified to express the osteogenic growth factor, 

BMP-2 to direct mesenchymal stem cell differentiation towards an osteoblastic fate.  
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These bacteria readily form spontaneous two-dimensional biofilms on a variety of surfaces, 

and can therefore act as a living interface between the synthetic surface below and the 

mammalian cells seeded above. The results of this thesis demonstrate that Lactococcus lactis 

can be used as a successful dynamic surface to control the adhesion, proliferation and 

differentiation of mesenchymal stem cells.  

Mesenchymal stem cells seeded over BMP-2 secreting Lactococcus lactis demonstrate 

decreased cell proliferation at short time points and increased osteoblastic markers at longer 

time points. Further to this, the interface has been made dynamic by making the bacteria 

inducible, that is, BMP-2 can be expressed in a temporal manner, and at different 

concentrations to finely tailor specific protein production.  

In the future, this system can be further exploited to express or deliver almost any protein or 

small molecule that can aid in the development of new tissues from their progenitor cells. 

As demonstrated, these proteins can both be secreted into the medium or displayed as cell 

wall bound proteins; and can also be constitutively or inducibly expressed. This interface, 

based on non-pathogenic bacteria establishes a new paradigm in surface functionalisation 

for regenerative medicine applications. 
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1. Introduction 

1.1 Tissue Engineering and Implantable Devices 
 

Tissue engineering (TE) combines the methods and practises of the life sciences and 

engineering to overcome the problems understanding the structure-function relationship of 

tissues and their disease states. The answers aid in the assembly of materials and techniques 

to begin the construction of artificial organs and/or tissues. Irrespective of clinical feasibility, 

the potential of TE is innumerable; its uses can range from ex vivo construction, to 

autologous grafts or complete organ replacements (Bianco and Robey 2001). Cells must be 

isolated and cultured in order to synthetically grow new tissues where biomaterials play a 

crucial role. Biomaterials aim to recapitulate the critical aspects of the extracellular matrix 

(ECM), which is to facilitate the interaction of the cells with the material and the surrounding 

microenvironment. These materials must display some kind of biocompatibility, usually 

characterised by the material’s ability to coexist in the body without causing harm (Williams 

2008). However, there are many issues that must be overcome to ensure the creation of a 

successful biomaterial. Biomimetic synthetic polymers and naturally occurring polymers 

have been fashioned to overcome initial problems with biocompatibility, yet issues with 

biomimicry still exist. Artificial scaffolds are still designed on the macroscale to support cell 

growth and these do not recapitulate the nanoscale detail observed in real organs (Ratner and 

Bryant 2004, Lenas, Luyten et al. 2011, Ding, Fan et al. 2016, Yousefi, James et al. 2016). 

All approaches to TE require a source of cells. Stem cells are typically used as they possess 

inherent differentiation capabilities and can thus have myriad uses (Duscher, Barrera et al. 

2016, Muzzarelli, El Mehtedi et al. 2016). Furthermore, many appropriate sources of stem 

cells as well as culture techniques have been established. The potential of stem cell therapies 

is however, limited. Upon removal from the body uncontrollable differentiation to undesired 

lineages occurs and thus, the creation of a synthetic tissue is severely hindered. This issue 

also poses clinical complications, for example, this can lead to the improper formation of 

tissue surrounding implantable devices, a leading cause of implant failure. Figure 1.1 

highlights the current workflow for tissue engineering organs. 

To combat this problem, the use of dynamic surfaces, which aim to better emulate the 

extracellular matrix have come to the forefront of TE (Dhowre, Rajput et al. 2015, Anderson, 

Sahoo et al. 2016). These surfaces react to externally derived stimuli and ultimately alter the 

phenotype of the cells through alterations in the ECM. Fundamentally, these surfaces 
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presently provide the best user controlled mechanism for studying spatiotemporal alterations 

to the niche in a reductionist manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Dynamic Surfaces and the Extracellular Matrix 

 

Cells are innately sensitive to their extracellular environment on the macro, micro and 

nanoscale and thus, both chemistry and topography play a vital role in cellular development 

and behaviour (Dalby, Gadegaard et al. 2007, McMurray, Gadegaard et al. 2011, Nikukar, 

Reid et al. 2013). Understanding how cells interact with materials is of utmost importance 

Figure 1.1 Cells in tissue engineering. Cells are isolated from the body before expansion in culture. The 

cells are usually then cultured on a scaffold to aid in the generation of organs before being implanted. Jake 

Hay unpublished work. 
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to engineer microenvironments. Genes must be activated in the correct sequence and 

synchrony in order to express the numerous proteins needed for proliferation and 

differentiation to hierarchical organisation within organs; extrinsic signals from the ECM 

are mandatory to direct distinct development (Stevens and George 2005). In vivo, the ECM 

is a heterogeneous setting and comprises an elaborate natural web of proteins and growth 

factors; this instructive background ultimately guides cell behaviour (Scott 1995, Aumailley 

and Gayraud 1998, Wallner, Yang et al. 1998). This complex array of nanofibers, proteins, 

growth factors and chemicals reveals a level of detail unmatched outside the biological 

world. However, the ability to synthesise these materials is rapidly becoming a reality 

(Hench and Polak 2002, Shin, Jo et al. 2003, Zhang 2003, Ratner and Bryant 2004, Lutolf 

and Hubbell 2005, Rosso, Marino et al. 2006, Zisch, Ehrbar et al. 2006, Chen and Hunt 2007, 

Ma 2008, Liu, Smith et al. 2009, Zheng, Zhang et al. 2010, Cordonnier, Sohier et al. 2011, 

Lendlein 2011, Ebara, Kotsuchibashi et al. 2014). There have been many attempts at 

synthetic replication of the niche, and recently, dynamic user controlled surfaces have been 

developed in which the surface is spatially and temporally controlled. These surfaces react 

to externally derived stimuli and ultimately alter the phenotype of the cells through 

alterations in the ECM. Previously, different types of triggering mechanisms have been 

utilised including light (Wirkner, Weis et al. 2011, Lee, Garcia et al. 2015), temperature 

(Ebara, Yamato et al. 2004) and enzymes (Todd, Scurr et al. 2009, Zelzer, Scurr et al. 2012). 

The requirement for synthetic materials that mimic the characteristics of the ECM is essential 

in biomedical engineering to comprehend the complex and dynamic behaviour of cells. 

Recent studies have advanced the theory that inherent material properties can encourage, or 

even induce lineage specific cell differentiation through innate characteristics such as 

stiffness (Engler, Sen et al. 2006, Lee, Abdeen et al. 2013), nanotopograhy (Dalby, 

Gadegaard et al. 2007, Yim, Darling et al. 2010, McMurray, Gadegaard et al. 2011) chemical 

functionality (Benoit, Schwartz et al. 2008, Saha, Mei et al. 2011) and enzyme responsive 

surfaces (Roberts, Sahoo et al. 2016). These studies clearly show that these synthetic 

materials can produce a milieu from which stem cell fate can be user controlled. The addition 

of other co-factors or biochemical supplements further compounds the results. To ensure 

increased control over stem cell behaviour, it is necessary to ascertain a deeper understanding 

of how inherent material properties under defined chemical conditions influence stem cell 

fate. For effective control of stem cells, litanies of material properties that influence cell fate 

will have to be produced. Presently, for control of cells through biochemical means, specific 

and time controlled addition of supplements are added in a particular sequence; the same will 

be needed for exact material control. The availability of the material to change therefore 
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directly affects cellular behaviour, compounded with biochemical cocktails can create a 

synthetic surface with the potential to mimic the stem cell niche (Murphy, McDevitt et al. 

2014). In the future, we can expect a material which can be altered upon external demand in 

a temporal sequence that relates material properties to gene activation. 

We hypothesise that biofilms formed by non-pathogenic bacteria can be utilised to 

accomplish a successful dynamic surface. They can be genetically modified to express or 

secrete different proteins which can be used to direct cell behaviour and ultimately control 

stem cell fate. In that case, bacterial cell to mammalian cell communication can be facilitated 

on the level of the bacterial biofilm interface due to bacterial capability to colonise many 

different biomaterials to form a monolayer. 

1.3 Cell Adhesion and integrins 
 

Many molecules are involved in ECM construction. The organisation and assembled 

structure of collagens, proteoglycans, laminins and fibronectin (FN) all play a crucial role in 

the finalised ECM. Furthermore, different cells require different behavioural cues and thus 

all ECMs vary from each other, this multiplicity arises from the amalgamation of 

unambiguous molecular interactions and countless number of protein isoforms. In addition, 

the ratios, geometrical arrangements, intercellular interactions, nanotopography and 

molecular mechanisms create an environment with abounding informational cues (Stevens 

and George 2005). Individually, ECM components have evolved specific biological 

functions and together form highly particular hierarchical structures. A major constituent of 

the ECM is the protein FN. FN size ranges from 230-270 kDa and binds into dimers via two 

disulfide bonds at the C-termini of the proteins. The structure of FN is composed of three 

types of repeating modules, I, II and III. Both type I and II contain intramolecular disulfide 

bonds to stabilize the folded structure, while type III lacks these disulfide bonds. Type I and 

II modules are structured in beta-sheets enclosing a hydrophobic core that contains highly 

conserved aromatic amino acids (Mao and Schwarzbauer 2005, Singh, Carraher et al. 2010). 

The type III repeats hold the well characterised arginine-glycine-aspartic acid tri-peptide 

(RGD) in the III10 repeat and the proline-histidine-serine-arginine-asparagine (PHSRN) in 

the III9 repeat which are required for interactions with mammalian cell surface receptors 

known as integrins (Mouw 2014). In this thesis, we use the FN repeats III7-10 (FNIII7-10) as 

it houses the RGD domain and has been previously shown to induce mammalian cell integrin 

attachment (Saadeddin, Rodrigo-Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 2014). 

The rationale for using FNIII7-10 as opposed to the whole FN molecule is based mainly on 
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the size of the protein. FN is 220-270 kDa and the largest protein known to be able to be 

synthesised using the bacterial secretion system is 160 kDa (Le Loir, Azevedo et al. 2005). 

It would therefore be impossible to synthesise the whole FN molecule. Moreover, it has been 

previously shown that short RGD containing peptides can induce a similar level of 

mammalian cell attachment as native FN through mammalian transmembrane receptors 

known as integrins (Pierschbacher and Ruoslahti 1984, Dsouza, Ginsberg et al. 1991, Rico, 

Gonzalez-Garcia et al. 2010).  

 

Integrins are a diverse family of heterodimeric integral membrane glycoproteins comprised 

of an  and  subunit which anchor cells to the ECM through focal adhesions.  In humans 

there are 18 α subunits and 8 β subunits that can combine to form 24 αβ combinations. 

Integrins are the principal mediators of cell-ECM focal adhesions and recognise integrin 

binding motifs, such as the RGD sequence. Focal adhesion formation serves to both anchor 

cells to their surrounding matrix, and to transmit signals between the ECM and the cell.  

Integrins are associated with focal adhesions via cytoplasmic anchor proteins talin, tensin, 

paxillin and vinculin, amongst others which can then alter tension on the actin cytoskeleton 

(Hynes 2009) resulting in biochemical signaling cascades utilising various signal 

transduction molecules including focal adhesion kinase (FAK) (Hanks and Polte 1997, Sieg, 

Hauck et al. 1999, Mitra, Hanson et al. 2005). Focal adhesions form in protrusive parts of 

cells, such as filopodia and lamellipodia and during this initial stage of attachment, transient 

focal complexes (<1 µm in length) begin to establish allowing primary migration (Nobes 

and Hall 1995).  Focal complexes (1-5 µm in length) quickly form and dissociate as the 

leading edge of the cell advances (Ridley and Hall 1992). Maturation of focal complexes 

into fully developed focal adhesions corresponds to their recruitment of additional proteins 

such as RhoA and α actinin (Ridley and Hall 1992). Focal adhesions can in turn, further 

mature into fibrillary adhesions, which are large collectives of integrin rich focal complexes 

(Friedland, Lee et al. 2009).  

The loss of integrin mediated cell contact leads to apoptosis through anoikis (cell 

‘homelessness’) (Frisch and Francis 1994)  in a majority of cell types, this includes 

mesenchymal stem cells (MSCs) (Benoit, Tripodi et al. 2007). Anoikis is triggered by 

inappropriate or inadequate cell-matrix contacts and demonstrates an evolutionary safeguard 

mechanism in vivo as it prevents detached cells from reattaching to a new matrix and 

growing dysplastically (Frisch and Ruoslahti 1997). It has been proven that integrins play a 

vital role in anoikis inhibition as demonstrated by many authors (Giancotti and Ruoslahti 
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1999, Giancotti 2000, Bissell and Radisky 2001, Alahari, Reddig et al. 2002, Guo and 

Giancotti 2004, Ramsay, Marshall et al. 2007).  The detachment of integrins from ECM 

proteins leads to the absence of apoptotic inhibitory signals ultimately resulting in caspase 

activity and cell anoikis (Frisch and Screaton 2001). This proves that adhesion is of utmost 

importance for cell survival and that integrin attachment leads to the synthesis of a diverse 

array of genetic products to ensure cell survival. Moreover, this validates the importance of 

integrins ability to influence cellular fate and thus, cell-ECM interactions are tightly 

regulated as misguided adhesion often result in pathological conditions which can vary from 

wound healing deficiencies to tumourigenesis  (Hynes 2002, Kumar and Weaver 2009, 

Schiller and Fassler 2013, Wolfenson, Lavelin et al. 2013). 

Integrin-ligand binding is regulated through their interaction with divalent metal cations 

(Mg2+, Mn2+ and Ca2+) (Valdramidou, Humphries et al. 2008, Raborn and Luo 2012). 

Crystallography and electron microscopy have highlighted the regions of cation binding to 

specific areas on the β subunit known as the metal ion dependent adhesion site. Cation 

occupancy then directs the coupling of the subunits followed by the subsequent unfolding of 

the integrins during their transition from inactive to an active confirmation, highlighted in 

Figure 1.2 (Luo and Springer 2006). 

Further studies into integrin structure have highlighted three divergent conformations, which 

directly relate to their function and activation state shown in Figure 1.2. In the ‘closed’ 

configuration, integrins exist in a bent shape with the head directed towards the membrane; 

but can adopt an ‘open’ state to bind a ligand. This rearrangement occurs when divalent metal 

ions bind and cause a change in the tertiary and quaternary structure. For example, studies 

involving the binding of the RGD tripeptide highlighted the importance of this structural 

change where the arginine residue coordinates into a cleft within the α subunit while the 

aspartic acid is drawn toward the Mg2+ ion within the β subunit (Xiong, Stehle et al. 2002, 

Takagi 2007, Wang, Fu et al. 2010, Nagae, Re et al. 2012).  
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In addition to their roles in anchorage to the ECM, integrins play a fundamental role in 

dictating cellular behaviour, by transmitting chemical signals into the cell (outside-in 

signalling) (Hynes 2002). These signals detail location, local environment, adhesive state 

and the surrounding matrix which in turn determines the cellular response (Miranti and 

Brugge 2002). Behaviours such as migration, differentiation and motility are all partially 

controlled through integrin signalling. Integrins can also regulate their affinity for ECM 

ligands by enduring conformational changes. Their extracellular domain is modified in 

response to signals that alter their cytoplasmic tail, a process termed inside-out signalling 

(Calderwood 2004).  

Upon cellular migration, focal adhesions are recycled and transported to the leading edge of 

the cell. This disassembly is of significant importance for cells, as it assures their mobility 

and recycling of integrin receptors and adapter proteins. This turnover of focal adhesions is 

primarily controlled from within the cell by intracellular signalling (Bretscher 1984, 

Bretscher 1992). 

 

1.4 Stem cells 
  

Stem cells are widely regarded as the future of regenerative medicine due to their inherent 

capability to differentiate into a variety of cell types; as well as their ability to self-renew 

(Duscher, Barrera et al. 2016). This sets them apart from other cell types in that they can 

Figure 1.2. Integrin conformation. In their low affinity state integrins adopt a bent conformation 

concealing the ligand binding site. Extension of the subunits reveals the ligand binding domain resulting 

in a ‘primed’ state. Further changes to the structure enable ligand binding. Figure shows the low-affinity, 

high-affinity and ligand-bound structures for "I-less integrins (Luo and Springer, 2006). 
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replenish their reserves, and then commit to a specific cell type on demand. There are three 

widely accepted varieties of stem cells, embryonic stem cells (ESCs), somatic stem cells 

(SSCs) and induced-pluripotent stem cells (iPSCs). ESCs are derived from the inner cell 

mass of blastocyst stage embryos and are pluripotent, that is, they can form any cell type. 

They were first made accessible from mice in 1981 by Evans and Kaufman (Evans and 

Kaufman 1981), and 17 years later in 1998, human ESCs were isolated by Thomson 

(Thomson, Itskovitz-Eldor et al. 1998).  The use of ESCs in research is complex due to the 

nature of their isolation; from fertilised human embryos and therefore ethical approval is 

needed before use.  

In context, SSCs are present in adult tissues, within dedicated niches. These niches exist in 

order to control the proliferative and differentiation potential of the stem cells and include 

tissues such as brain tissue, adipose tissue and bone marrow, amongst many others 

(Gronthos, Graves et al. 1994, Watt and Hogan 2000, Alvarez-Buylla, Seri et al. 2002, Zuk, 

Zhu et al. 2002, Mendez-Ferrer, Michurina et al. 2010). Their main purpose is to serve as a 

bank of readily available cells to replenish dead cells or to help in would healing and 

remodelling. SSCs are multipotent, and can only form a specific set of cell types. SSCs do 

not have the same ability as ESCs to form every cell type.  

There are many types of SSCs and each can be found in specific areas in the body. For 

example, MSCs were first identified in 1963 in the bone marrow (Becker, Mc et al. 1963) 

but have been found in other niches since (Campagnoli, Roberts et al. 2001, Tan, Zheng et 

al. 2017). They strongly resemble fibroblasts in morphology but can become very large well 

spread cells if space is available. Since their discovery, they have become a very popular cell 

type to work with due to their ease of use and relatively simple isolation from the body. As 

they are taken from adult patients, the ethical dispute surrounding ESCs is avoided and MSCs 

are not subject to the same constrictions of use (de Wert and Mummery 2003). 

iPSCs are somatic cells that have been reprogrammed to display ESC like qualities. The 

original method for the generation of iPSCs was developed by Yamanaka in 2006 and utilised 

the retroviral transduction of the four key transcription factors Oct4, Sox2, Klf4, and c-myc 

into the nucleus of a mouse cell (Takahashi and Yamanaka 2006). iPSCs display a higher 

plasticity than SSCs and are not surrounded by the same ethical disputes as ESCs. However, 

a major drawback in iPSC work is the fact that they tend to cause tumour growth due to the 

oncogenetic nature of some of the transcription factors (Knoepfler 2009, Kooreman and Wu 

2010). 
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More specifically, MSCs, a subset of SSCs will be used in this thesis, due to their 

comparative ease of use and their differentiation characteristics fit the work to be completed. 

MSCs are stromal cells that are capable of differentiating into and replenishing cells of the 

mesenchymal germ layer, such as bone, cartilage, muscle, adipose, ligaments and tendons. 

They have the ability to expand in culture whilst maintaining their multipotency and were 

first described as a subpopulation of bone marrow cells which were found to be plastic 

adherent. Friedenstein and colleagues placed whole bone marrow in plastic dishes and 

removed the non-adherent fraction after 4 hours, thus discarding most of the hematopoietic 

stem cells. The adherent cells were found to be fibroblast like, and had a high capacity for 

proliferation after 2-4 days of culture (Friedenstein, Petrakova et al. 1968, Friedenstein, 

Deriglasova et al. 1974). Further studies demonstrated the potential for these cells to begin 

differentiation towards cellular deposits that resembled bone or cartilage (Owen and 

Friedenstein 1988, Benayahu, Kletter et al. 1989). Friedenstein’s observations were further 

tested by other groups throughout the 80s; and it was concluded that the cells isolated by his 

methods were multipotent and could differentiate into cells of the mesenchymal germ layer 

(Osdoby and Caplan 1981, Sparks and Scott 1986, Filipak, Estervig et al. 1989). Newer, 

faster methods for MSC isolation have been implemented and these rely on the expression 

of specific molecules; such as STRO-1, CD29, CD73, CD105 and CD146 amongst many 

others, and are negative for CD14, CD34 and CD45 (Arvidson, Abdallah et al. 2011).  

1.5 Bone Morphogenetic Protein 2 (BMP-2) 
 

Bone Morphogenetic proteins (BMPs) were discovered in 1965 and are multifunctional 

cytokines belonging to the larger transforming growth factor-beta (TGF-β) family (Urist 

1965, Urist 1997). As well as being a regulator in bone induction, maintenance and repair, 

BMPs play a vital role in mammalian embryonic development with defects in BMP 

production leading to various diseases including cancer and cardiovascular diseases. More 

than 20 homo and heterodimeric BMP ligands are encoded in the human genome and these 

can be divided into four discrete groups based primarily on their function, amino acid 

homology and structures: (i) BMP-2 and 4; (ii) BMP-5, 6, 7, 8a and 8b; (iii) BMP-8 and 10; 

and (iv) BMP12, 13 and 14. Of these, only BMP-2, BMP-4 through to 7 and BMP-9 have 

shown the potential to induce bone formation whereas the others have not displayed 

osteogenic capability (Carreira, Lojudice et al. 2014). Table 1.1 displays BMP subtypes and 

their biological functions (Rahman, Akhtar et al. 2015).  
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BMPs are synthesised by osteoblasts as a mature 400-500 amino acid preprotein before 

cleavage reveals the biologically active protein. The preprotein consists of a hydrophobic N-

terminal secretory leader signal and a non-conserved domain attached to the biologically 

active mature C-terminal. This active C-terminal comprises 100-140 amino acids and has a 

region of conserved cysteine amino acids which form part of a cysteine knot with two finger 

like double stranded sheets (Bessa, Casal et al. 2008). Generally, the C-terminal is cleaved  

at a consensus sequence Arg-x-x-Arg site and is released from the preprotein to form dimers 

by means of a disulphide bond, a precondition for bone induction (Sopory, Nelsen et al. 

2006). More specifically, BMP-2 shown in Figure 1.3 is a multifunctional growth factor 

comprising two 114 amino acid subunits. Two receptor binding sites have been identified in 

the dimer, a wrist epitope which utilises motifs from both subunits and has a high affinity 

for the receptor BMPRIA while the knuckle epitope consists of one subunit and binds weakly 

to the receptor BMPRII (Miyazono, Kamiya et al. 2010). BMPs have sites for N and O 

glycosylation which has been shown to increase the stability of the protein, however, it has 

been proven that this modification has no effect on the osteogenic capability of the growth 

factor (Bessho, Konishi et al. 2000, Schmoekel, Schense et al. 2004, Lee, Kim et al. 2010, 

Kim, Lee et al. 2011, van de Watering, van den Beucken et al. 2012). 

 

BMPs react with BMPRs (bone morphogenetic protein receptors) which comprise three 

parts: a short extracellular domain, a membrane spanning membrane domain and an 

intracellular domain which houses the active serine/threonine kinase region (Rao, Ugale et 

al. 2013). There are many different BMPRs, but they can be categorised into two families. 

Three BMPRI (BMPRIA or ALK3, BMPRIB or ALK6 and ALK2: IA activin receptors) and 

three BMPRII (BMPRIIB, ACTRIIA and ACTRIIB) are known to bind BMP. Of the three 

BMPRI, BMPRIA and B are highly similar with ALK2 showing some sequence divergence. 

However, they all possess a highly conserved TTSGSGSG motif which is necessary for 

kinase activity (Lin and Hankenson 2011). BMPRIIs have a constitutively active kinase 

domain which when brought into contact with BMPRI leads to the activation of downstream 

effectors and ultimately leads to an alteration of phenotype. Normally, signalling is initiated 

by the binding of BMP-2 to a BMPRI which begins the recruitment of the other receptors. 

Once two of each type of receptor has been recruited to form a ternary holocomplex 

signalling can occur (Allendorph, Vale et al. 2006). From the current understanding, 

heteromeric complexes of BMPRI and BMPRII are essential for signal propagation. It is 

believed that the specificity of signals and binding is largely determined by BMPRI whereas 

BMPRII is used to stabilise the complex and initiate downstream signalling.  
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Table 1.1. Biological functions of the BMPs (Rahman, Akhtar et al. 2015). 

 

Figure 1.3 (created with PyMol (DeLano 2009) using data from the Protein Data Bank 

(PDB)) shows how BMP-2 monomers dimerise to form the biologically active molecule; 

and how this osteogenic factor binds to its receptors in the membrane. BMP binding to the 

membrane leads to the recruitment of the pathway restricted SMADs (R-SMADs 1, 5 and 8) 

shown in Figure 1.4 (Itoh, Itoh et al. 2000, Moustakas, Souchelnytskyi et al. 2001, Derynck 

and Zhang 2003). These are then released from the receptor and recruit the common mediator 

SMAD (SMAD 4) and then this complex migrates to the nucleus and induces expression of 

osteogenic transcription factors (Watanabe, Masuyama et al. 2000, Xiao, Watson et al. 2001, 

Inman, Nicolas et al. 2002). Two main routes for osteogenic induction have been discovered 

after BMP extracellular binding. Either through activating the transcription factors RUNX2 

(runt- related transcription factor 2) and/or osterix (OSX) through the SMAD proteins 

(canonical BMP signalling) (Shi and Massague 2003, Afzal, Pratap et al. 2005, Massague, 

Seoane et al. 2005). Or through p38MAPK (mitogen-activated protein kinase) and JNK (c-

Jun N-terminal kinase) cascades (non-canonical BMP signalling) which is similar to the 

Subtype(s) Biological Function(s) 

BMP1 

Cleaves procollagens to produce fragments that self-associate for 

cartilage formation 

BMP2/BMP2a Induced bone morphogenesis and involved in heart formation 

BMP3A/Osteogenin 

Negative regulator of bone morphogenesis, induces synthesis and 

secretion of TGF-β1 

BMP3B 

Negative regulator of bone morphogenesis in embryonic stage, 

with opposite effect in mature animals 

BMP4/BMP2B 

Involved in bone induction, cartilage, limb and kidney formation, 

tooth development and fracture repair 

BMP5 

Role in early developmental skeleton patterning, limb 

development and bone morphogenesis 

BMP6 Active role in osteoblast lineage specific differentiation 

BMP7 Role in bone homeostasis and calcium regulation 

BMP8A Role in bone morphogenesis 

BMP8B Found only in mice spermatogenesis 

BMP9 Active role in osteogenesis and in mature osteoblasts 

BMP10 Heart morphogenesis 

BMP11 Role during embryogenesis and skeletal patterning 

BMP12 Involved in tendon and ligament formation 

BMP13 Involved in chondrogenesis and hypertrophy 

BMP14 

Survival promoting molecule for neurons and enhances tendon 

healing and bone formation 

BMP15 Role in ovarian development and function 

BMP16 Embryonic patterning 

BMP17 Embryonic patterning 

BMP18 Embryonic patterning 
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pathways induced by integrin binding (Guicheux, Lemonnier et al. 2003). There are strict 

genetic commitments necessary to predispose MSCs to the osteoblastic phenotype, these 

genes are activated by numerous transcription factors which are ultimately guided by 

regulatory pathways governed by cell receptors such as those for growth hormones and 

integrins (Chamberlain, Fox et al. 2007, Shih, Tseng et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. BMP-2 and its receptors. Images constructed in PyMol using structures from the Protein 

Data Bank (PDB). Red and blue show BMP-2 monomers (PDB reference 3BMP), yellow and green show 

BMPRI and white and pink show BMPRII (PDB reference 3EVS). It is believed that a ternary 

homocomplex of two of each receptor is needed to bind BMP-2 in order to propagate osteogenic 

signalling. Accessed December 2016 using PyMol 1.7.x. 
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1.6 MAPK signalling pathway 
 

The transmission of extracellular events into the cell are largely mediated by a network of 

interacting proteins that propagate a diverse range of intracellular changes. Many efforts 

have led to the discovery of a highly complex signalling mechanism, collectively involving 

the activation of many membrane signalling molecules, and their subsequent intracellular 

induction. This is known as the MAPK signalling cascade (Seger and Krebs 1995). Classical 

MAPK pathways utilise the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun 

N-terminal kinases 1-3 (JNK 1-3) and p38 (α, β, γ and δ) amongst many others (Cargnello 

and Roux 2011). Extracellular signals are amplified and transmitted along a series of 

regulatory molecules in the cytoplasm towards the nucleus, where cellular processes such as 

proliferation and differentiation are controlled. 

MAPK signalling can be initiated in a variety of ways, from stress (Aikawa, Komuro et al. 

1997, Xia, Makris et al. 2000, Xu, Wang et al. 2013), growth factors (such as BMP-2) (Kao, 

Jaiswal et al. 2001, von Kriegsheim, Baiocchi et al. 2009), G protein coupled receptors 

(Crespo, Xu et al. 1994, Koch, Hawes et al. 1994) and integrins (Aplin and Juliano 1999, 

Figure 1.4. BMP-2 dependent osteogenesis. BMP-2 signalling begins with the binding of BMP-2 to its 

receptors in the membrane. Then the phosphorylation of the recruiter Smad leads to the recruitment of Co-

Smads and subsequent translocation to the nucleus. Here, the induction of osteogenic genes take place. 
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Fincham, James et al. 2000). Activation by these means leads to stimulation of MAP3Ks, a 

group of kinases which in turn phosphorylate and activate MAP2Ks, which again, activate 

MAPKs (Plotnikov, Zehorai et al. 2011, Humphreys, Piala et al. 2013). MAPKs can then 

either translocate to the nucleus or activate additional kinases (Roux et al., 2007), this 

cascade can be viewed in Figure 1.5  (Escos, Risco et al. 2016) (Nagai, Urushihara et al. 

2016).  

 

 

The main pathways contain few constituents, with the core mediators being used in most 

pathways. However, the number of proteins that feed in and out of the network exponentially 

increase as you extend out of the pathways. Computational analysis was used to ascertain 

the amount of proteins with a direct physical link to the MAPK pathway and assembled a 

list of 2000 proteins (Bandyopadhyay, Tsuji et al. 2006). Figure 1.6 summarises the effect 

of BMP-2 through both canonical (smad 1/5/8) and non-canonical (p38, ERK1/2 and 

JNK1/2). 

Two decades ago, MAPK pathways were identified as major components in skeletal 

development and bone homeostasis. Although the MAPK pathways are vast with far reaching 

effects, the activities of p38 and ERK are predominantly involved in shaping osteoblast 

commitment and differentiation. Many hundreds of publications detail both in vivo and in 

Figure 1.5. MAPK signalling cascades. Classical MAPK signalling pathways can be divided into 

four cascades (ERK1/2, p38, JNK and ERK5). The MAP3Ks are activated in response to 

numerous extracellular stimuli and propagate via MAP2Ks and MAPKs. MAPKs can engage with 

target transcription factors within the nucleus altering gene expression and functional output. 
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vitro analysis of p38 and ERK through the osteoblastic differentiation process, from a 

mesenchymal progenitor into a fully functional anabolic bone cell (Ehrlich and Lanyon 2002, 

Bai, Lu et al. 2004). Most work completed highlights the use of genetic knockouts and 

inhibitors on MAPK activity which aid in the determination of ERK and p38 on specific 

processes within the cell (Aouadi, Binetruy et al. 2006, Chang, Sonoyama et al. 2007).  

 

ERK induction in terms of MSC differentiation occurs primarily through integrin signalling 

through tension and mechanical stress (Kanno, Takahashi et al. 2007, Ward, Salasznyk et al. 

2007, Zhang, Wu et al. 2012). It has been shown that tensile stress plays a vital role in 

osteoblastic differentiation, in that externally applied tension alone can induce differentiation 

(Engler, Sen et al. 2006, Kilian, Bugarija et al. 2010). Integrin signalling through ERK leads 

to the activation of RUNX2, a transcription factor that is essential for bone growth in vivo. It 

has been proved that RUNX2 knockouts develop many skeletal irregularities with death the 

Figure 1.6. BMP-2 can activate MAPK. MAPK cascades can be activated by growth factors. They 

can activate additional downstream kinases and also interact with transcription factors within the 

nucleus altering gene expression. 
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final outcome due to a lack of ossification (Komori, Yagi et al. 1997). Similarly, RUNX2 

inhibits the adipogenic transcription factor PPARγ (Hu, Kim et al. 1996).  

p38 can be activated through the methods listed above, but again, is primarily through 

integrin binding and BMP-2 activation. The osteogenic potential of p38 is due to its ability 

to phosphorylate and activate key transcription factors, like ERK, p38 can activate RUNX2 

(Ge, Xiao et al. 2009, Greenblatt, Shim et al. 2010). BMP-2 signalling and p38 work together 

to induce osteogenesis, BMP-2 can increase DLX5 activation of the osterix promoter, but 

first DLX5 must be phosphorylated by p38 (Ulsamer, Ortuno et al. 2008). Additionally, 

DLX3, another DLX member is induced by BMP-2 by cooperation through SMAD5 and p38 

which ultimately leads to osterix activation (Yang, Yuan et al. 2014). These pathways are 

simplified in Figure 1.7 (Rodriguez-Carballo, Gamez et al. 2016). MAPK pathways play vital 

roles in many aspects of osteoblastic differentiation. These have been proven by both ERK 

and p38 deletion hampering osteoblast differentiation in vivo.  

It is apparent that BMP-2 can directly affect osteogenic differentiation of MSCs, through 

both smad (canonical) and p38/ERK1/2 (non-canonical) mechanisms. The MAPK pathways 

are thus important in healthy bone development and are a necessary constituent of 

differentiation.  

 

Figure 1.7. p38 implication in osteoblast differentiation. p38-mediated phosphorylation promotes 

progression in osteogenesis by the enhancement of the activity or expression of osteoblast-specific 

transcription factors genes such as RUNX2, DLX5 and osterix. Direct arrows indicate direct phosphorylation 

whole dashed arrows indicate indirect action of p38. Image courtesy of (Rodriguez-Carballo, Gamez et al. 

2016). 
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1.7 Genetic Engineering 
 

The field of genetic engineering (GE) utilises techniques to directly manipulate an 

organism’s genome. These techniques involve insertion, deletion or modification of the 

existing genetic material. IUPAC defines GE as ‘the process of inserting new genetic 

information into existing cells to modify a specific organism for the purpose of changing its 

characteristics’ (Vert, Doi et al. 2012). There are many examples and types of manipulation 

possible, the most common being the insertion of a foreign gene from one species into 

another. Others involve altering a specific gene (mutagenesis), activating, silencing or 

changing the expression levels of one or more multiple genes. These can be accomplished 

through multiple techniques, such as RNA interference, antisense oligonucleotides, 

ribozymes, catalytic RNA molecules that possess the ability cut RNA strands at desired 

locations amongst many more (Tollefsbol 2007, Kole, Krainer et al. 2012, Wilson and 

Doudna 2013). In this thesis, we are using the technique known as Gibson Assembly 

(Gibson, Young et al. 2009) which will be covered in more detail later. Genetic engineering 

encompasses the use of recombinant nucleic acid techniques, either DNA or RNA, to 

synthesise new genetic sequences. These are then inserted into living organisms, transiently 

or permanently, via direct modification of the genome using vectors.  

Many strains of bacteria have undergone serious research as a host of genetic manipulation, 

the most important of these is the gram negative bacteria Escherichia coli (E. coli) (Boyer 

and Roulland-Dussoix 1969, Chong 2001, Sawitzke, Thomason et al. 2007). This strain has 

been extensively studied and used in plasmid engineering, however, there are also many 

other bacteria with commercially available tools for genetic manipulation, including gram 

positive strains. The choice of bacteria will be explained in the next section. Of these 

bacteria, the lactic acid bacteria clade, especially Lactococcus lactis (L. lactis) displayed the 

greatest amount of potential due to the current availability of genetic manipulation tools, 

combined with its ability to form 2D biofilms. 

Once a suitable host organism has been chosen, it is also important to select an appropriate 

genetic vector. These can range from plasmids to artificial chromosomes. Plasmids usually 

contain promoters, either constitutive or inducible, several selectable genetic markers and 

multiple cloning sites where restriction sites are readily available. The use of promoters 

depends on the outcome of the application, e.g., bacterial kill-switches cannot be 

constitutively expressed and must be controlled by an inducer. In contrast, constitutive 

promoters are always ‘on’. Inducible promoters can be controlled in a stimulus derived 

fashion, with the use of chemicals, pH, temperature and light, among many others (de Vos 
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1999, Mierau and Kleerebezem 2005, Siren, Salonen et al. 2009). Upon choosing the correct 

organism and vector, the sequence of DNA to be cloned needs to be obtained and amplified 

using the polymerase chain reaction (PCR). This allows biologists to obtain more than 

suitable amounts of DNA. PCR is a highly specific and extremely versatile technique that 

can add specific DNA sequences to either 5’ or 3’ ends of sequences, induce single 

nucleotide polymorphisms, create deletions and mutate DNA.  Upon the completion of a 

PCR reaction, the mixture comprises many proteins, including the polymerase, nucleic acids 

including the sequence and primers and dNTPs. Usually, this mixture needs purifying before 

further steps can be completed. 

Next, the chosen DNA and vector need to be ligated. Conventional cloning techniques utilise 

restriction enzymes in order to linearise the destination vector generating blunt or sticky ends 

where the foreign DNA fragment can be inserted. DNA ligase is also added to the mixture 

which leads to the ligation of the vector and the chosen DNA sequence. DNA ligase works 

by creating a phosphodiester bond in the sugar backbone between the two DNA sequences 

resulting in the insertion of the chosen DNA sequence at the exact desired point.  

More recently, the use of restriction endonucleases have been made more redundant. 

Techniques such as TOPO, Gateway, overlap extension PCR or Gibson assembly use the 

power of PCR to generate fragments with overlapping sequences that can be partially 

digested with exonuclease, repaired and joined together again (Xu and Li 2008, Gibson, 

Young et al. 2009, Bryksin and Matsumura 2010, Petersen and Stowers 2011). Once the 

DNA is constructed, it must be inserted into the host cell. In bacterial cells, electroporation 

and heat-shock transformation are most widely used.  

For gram positive cells, such as L. lactis, electroporation is used due to the structure of the 

cell wall. Firstly, the bacteria of choice need to be made electrocompetent, usually by 

growing the cells in a glycine rich medium which leads to the weakening of the cell wall. 

Upon the addition of an electric pulse to the system, the bacteria becomes porous and if 

plasmid has been added to the mixture, DNA can enter the cells. Heat-shock works by 

altering the bacterial membrane fluidity creating a number of small pores. Cells are kept at 

0 °C with calcium chloride as this creates a positive charge on the bacterial membrane 

allowing the negatively charged DNA to stick to the bacteria. By increasing the temperature 

to 42 °C, the membrane fluidity changes creating pores allowing the plasmid to enter the 

cell. The temperature is then decreased to 0 °C again returning the membrane fluidity to 

normal.  
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After the transformation step, the transformed cell, that is the ones with the new plasmid 

inside needs to be separated from the wild type cells. Generally, engineered plasmid vectors 

contain at least one antibiotic resistance gene, so that if a cell has been transformed with the 

plasmid, it will be able to grow on an agar plate supplemented with that antibiotic. This is 

not only limited to bacteria, for instance, mammalian cell vectors usually contain a geneticin-

resistance gene. Geneticin is largely toxic to all cell types and therefore correctly 

transformed cells will display a resistance. A further method to screen for positively 

transformed cells is to look for marker proteins, such as GFP (Tsien 1998). GFP is 

fluorescent under normal conditions; that is room temperature and a neutral pH and can 

therefore be detected non-destructively in real time with UV light excitation (395 nm). 

Correctly transformed cells would display GFP fluorescence at 509 nm once excited with 

light of 395 nm.   

Genetic engineering has evolved over the last few decades and has given rise to synthetic 

biology. Genetic engineering approaches are usually ad hoc, whereas synthetic biology aims 

to apply engineering principles such as standardisation, modularisation, and reusability. This 

allows the creation of new genes, and in the long term, the potential to tailor new organisms 

for a desired application. For example, pT1NX, one of the plasmids used in this thesis which 

will be described later is comprised of DNA from different species including phage T7, 

Enterococcus faecalis and Staphylococcus aureus. These convey specific functionality, and 

have been joined together to create a useful tool for both cell wall bound and secreted 

heterologous protein expression in Lactococcus.  

 

1.8 Gibson assembly 
 

In 2009, Dr Gibson at the J. Craig Venter Institute developed an easy method to enable the 

assembly of multiple linear fragments of DNA (Gibson, Young et al. 2009). Multiple 

overlapping fragments can be joined in a single isothermal reaction utilising the power of 

three different enzymes, T5 exonuclease, Phusion polymerase and Taq ligase. This can result 

in the creation of a fully ligated double stranded DNA molecule. It is primarily used by 

molecular biologists in the creation of synthetic plasmids and has rapidly overtaken more 

conventional cloning techniques due to its ease of use, ability to join almost any two 

fragments regardless of sequence (due to lack of restriction sites). There are no ‘scars’ 

between ligated sites and the technique has been shown to combine up to six fragments at a 

time in a single tube. A simple schematic of the system can be visualised in Figure 1.8. 



20 

 

 

 

Figure 1.8. Gibson Assembly. Gibson Assembly details a method for the easy assembly of multiple linear 

DNA fragments in a single isothermal reaction. By using overlapping primers, the enzymes T5 exonuclease, 

Phusion DNA polymerase and TAQ DNA ligase can form a fully ligated double-stranded DNA molecule. 

Image courtesy of Addgene (https://www.addgene.org/protocols/gibson-assembly/).  

 

Complementary termini of PCR products determine the order in which the fragments will be 

assembled and can be seen in Figure 1.9. In order for these PCR products to assemble, the 

three enzymes mentioned above play a pivotal role. 

T5 exonuclease creates single stranded 3’ overhangs by chewing back from the 5’ end. This 

allows the complementary DNA fragments to subsequently anneal to each other.  

Phusion DNA polymerase integrates new nucleotides to fill in the gaps in the annealed DNA 

fragments.  

Taq DNA ligase covalently links the newly annealed DNA fragments, removing any nicks 

and creating a continuous DNA fragment, thus eliminating any scars left in the construct. 

Upon designing primers with overlapping complimentary regions (see coloured regions in 

Figure 1.9), the PCR products are added to a Gibson Master Mix which contains the 3 

enzymes and dNTPs. This single tube is left at 50 °C for 15-60 minutes and the resulting 

plasmid is then to be transformed into a host bacteria. 
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1.9 Why Lactococcus lactis? 
 

Lactic acid bacteria (LAB) have a long history of safe use in humans, being used for 

hundreds of years in the food industry and more recently, use as probiotics in human health. 

Of late, there has been an increased effort to use LAB as microbial cell factories for the 

production of proteins of interest. So far, these bacteria have been used as vectors for the 

delivery of functional proteins to mucosal tissues amongst others shown in Table 1.2 (Cano-

Garrido, Seras-Franzoso et al. 2015).  L. lactis, amongst other LAB have GRAS (Generally 

Regarded As Safe) status by the US Food and Drug Administration (FDA) and fulfil criteria 

of the qualified presumption of safety (QPS) according to the European Food Safety 

Authority (EFSA) (Cano-Garrido, Seras-Franzoso et al. 2015). 

This bacteria was chosen as LAB are gram-positive, in contrast to gram negative bacteria 

such as E. coli, and therefore do not contain lipopolysaccharide (LPS). LPS is known to 

cause anaphylactic shock in humans and so the use of gram positive bacteria is of utmost 

importance when trying to create synergistic environments for mammalian cells and bacteria 

(Rueda, Cano-Garrido et al. 2014).  

Furthermore, this strain features a very low production of exopolysaccharide (EPS) (Le Loir, 

Azevedo et al. 2005), a mandatory requirement to ensure the interaction of the mammalian 

cell integrins with the exposed fibronectin fragment in the cell wall and allowing ease of 

secretion of BMP-2.  

Figure 1.9. Gibson Assembly primer overlap. By creating primers with overlapping regions (yellow, 

purple, green and orange regions), a fully ligated DNA molecule can be assembled in a single reaction vessel. 
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Another important characteristic of this strain is it has the ability to spontaneously develop 

biofilms (Mercier, Durrieu et al. 2002, Habimana, Le Goff et al. 2007). Despite its low EPS 

production, L. lactis has the potential to colonise a vast array of surfaces, including the 

widely used tissue culture substrates. These biofilms have been shown to remain stable for 

at least four weeks (Hay, Rodrigo-Navarro et al. 2016) and support MSC adhesion and 

differentiation.  

Lastly, L. lactis has been widely used and has been deeply characterised, being the first LAB 

to have its genome sequenced. In addition, it is an expression system that can be easily 

manipulated and has a vast array of commercial cloning and expression systems already in 

place. 

In this work we are using the pT1NX plasmid designed by Dr L Steidler which features the 

P1 lactococcal promoter and erythromycin resistance gene (Waterfield, Lepage et al. 1995, 

Steidler, Viaene et al. 1998). mRNA synthesis is controlled by the T7g10 terminator from 

phage T7 (Schotte, Steidler et al. 2000). The replicon is from the Enterococcus faecalis 

plasmid pAMβ1 origin and the plasmid also includes repD and repE. It has been used for the 

constitutive expression of both anchored and secreted proteins and is commercially available 

with the tools to accomplish these protein types. pT1NX has many features and the important 

sections will be will be discussed, a basic map can be seen in Figure 1.10.  

 

 

 

Figure 1.10. L. lactis plasmids. pT1NX and pNZ8123 vector maps showing the P1 lactococcal promoter 

(pT1NX), PnisA nisin A promoter (pNZ8123), usp45 secretion signal, spaX protein A anchor (pT1NX), the 

ermAM erythromycin resistance gene (pT1NX) and chloramphenicol resistance gene (pNZ123). 
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A further plasmid designed by Mobitec known as pNZ8123 also features in this work. This 

harbours the PnisA promoter which is under the control of the inducer nisin controlled by 

the terminator T. It also contains a chloramphenicol resistance gene as well as repC and repA 

and pSH71 origin of replication. A basic map can be seen in Figure 1.10. 

Table 1.2. Recombinant proteins produced by L. lactis for biomedical purposes (Cano-Garrido, 

Seras-Franzoso et al. 2015).  

 

 

Bacteria Application 

Recombinant 

protein 

Expression 

vector Protein display 

Lactococcus 

lactis 

Intestinal 

disease 

Anti TNF alpha 

antibodies pTREX Secreted 

Lactococcus 

lactis 

Intestinal 

disease Trefoil factors pTREX Secreted 

Lactococcus 

lactis 

Intestinal 

disease 

Low calcium 

response pNZYR Secreted 

Lactococcus 

lactis 

Intestinal 

disease 

Superoxide 

dismutase pSodA Secreted 

Lactococcus 

lactis 

Intestinal 

disease IL-10 

Chromosome 

integrated Secreted 

Lactococcus 

lactis 

Intestinal 

disease IL-27 pT1NX Secreted 

Lactococcus 

lactis 

Intestinal 

disease Murine IL-10 pLB263 Cytoplasmic 

Lactococcus 

lactis 

Colorectal 

cancer Catalase pSEC:KatE Secreted 

Lactococcus 

lactis 

Type 1 

diabetes Pro-insulin pT1NX Secreted/cytoplasmic 

Lactococcus 

lactis 

Type 1 

diabetes HSP65 pCYT:HSP65 Secreted 

Lactococcus 

lactis 

Type 1 

diabetes GAD65 pCYT:HSP66 Secreted 

Lactococcus 

lactis Diabetes 

Single chain 

insulin pNZPnisA Secreted 

Lactococcus 

lactis 

Type 2 

diabetes 

Glucagon like 

peptide 1 pUBGLP Secreted 

Lactococcus 

lactis Cancer 

HPV-16 E7 

antigen pLB263 Cytoplasmic 

Lactococcus 

lactis 

Cervical 

cancer HPV-16 E7 pMG36e Anchored 

Lactococcus 

lactis 

Cervical 

cancer HPV-16 E7 pMG36e Cytoplasmic 

Lactococcus 

lactis 

Cervical 

cancer HPV-16 E7 pMG36e Anchored 

Lactococcus 

lactis 

Staphylococal 

infection 

Staphylococal 

nuclease pLB263 Secreted 
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The genes found in pT1NX and pNZ8123 can be utilised in the creation of either cell wall 

bound or secreted proteins. Protein A (SpA) is a 42 kDa protein found in the cell wall of 

Staphylococcus aureus (known as spaX) (Steidler, Viaene et al. 1998). To allow anchorage, 

a C-terminal 35 residue sorting sequence is essential, which contains the conserved peptide 

LPXTG followed by a tail mainly composed of positively charged amino acids which 

prevents the full secretion of the protein. The C–terminal is cleaved by a signal peptidase 

which leads to the translocation of the protein. After translocation, a sortase with proteolytic 

activity (Mazmanian, Hung et al. 2001, Mercier, Durrieu et al. 2002) that modifies surface 

proteins by recognising the LPETF motif in the C-terminal cleaves between a threonine and 

glycine residue and leaves the C-terminal end anchored to the cell wall. The C-terminal of 

the threonine is covalently linked to the free amino groups of the peptidoglycan cross bridge 

via an amide bond which allows the final crosslinking to be completed. This mechanism is 

not always 100 % accurate and sometimes these molecules can be found in the extracellular 

space, mainly due to the physical turnover and release of peptidoglycan fragments linked 

with surface proteins. Figure 1.11 displays a schematic of the anchoring mechanism. 
 

The Usp45 signal peptide used is part of Usp45 (unknown secreted protein 45) found in 

many LAB (Vanasseldonk, Rutten et al. 1990). This protein has no known biological activity 

but can be exploited by biologists to allow the secretion of desired proteins. This secretion 

peptide comprises the first 27 residues of the native N-terminal region of Usp45 

(Vanasseldonk, Rutten et al. 1990). The largest protein known to be secreted using this 

protein is 160 kDa and therefore, will not affect the proteins planned to be secreted in this 

thesis.  

The use of the Usp45 secretion peptide is mandatory for both cell wall bound and secreted 

proteins as this protein tells the bacteria to transport the cargo to the outside of the cell, 

however, spaX is only necessary for cell wall bound expression. By utilising the powers of 

these proteins, we can tailor specific protein design and their localisation. 
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In contrast to the constitutive expression of pT1NX, many inducible plasmids have been 

constructed for effective secretion in L. lactis. pNZ8123 provides the Usp45 secretion 

peptide under control of the PnisA promoter. The most commonly used regulated expression 

system in L. lactis is the Nisin Controlled Gene Expression System (NICE) (deRuyter, 

Kuipers et al. 1996). This utilises sub-toxic amounts of the bacteriocin nisin (ng/mL) which 

is enough to fully activate the normally tightly controlled promoter (Kuipers, de Ruyter et 

al. 1998). Naturally, extracellular nisin can bind to the nisin receptor NisK, which activates 

NisR by phosphorylation. This in turn induces the nisin operon at the PnisA promoter. This 

system and operon have been exploited by synthetic biologists in order to create a gram 

positive inducible protein expression system. The genes of the receptor (NisK) and response 

regulator (NisR) have been isolated and placed on the chromosome of a suitable host strain 

(NZ9000 and NZ9020 in this work). In addition to this, PnisA has been isolated and placed 

on many plasmids, including pNZ8123. Upon downstream gene placement at PnisA, and 

insertion of this plasmid into a nisRK strain, expression of this protein can be controlled by 

the addition of nisin (deRuyter, Kuipers et al. 1996). Localisation of the protein is determined 

by the presence of Usp45 and spaX (discussed above). Figure 1.12 displays a schematic of 

the NICE system (Mierau, Olieman et al. 2005)  

Figure 1.11. L. lactis anchoring mechanism. Anchoring mechanism of the LPETG motif onto the 

peptidoglycan layer. A signal peptidase cleaves near the N-termini of the protein, which is translocated to 

the outer part of the cell wall. Then, a sortase cleaves the polypeptide chain between the threonine and 

glycine and anchors the threonine to the tetrapeptide motif that crosslinks the peptidoglycan layer. 
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1.10 L. lactis phylogeny 
 

LAB are classified using a variety of characteristics, which have evolved over time.  

Traditionally, mode of glucose metabolism, morphology, growth rates (both temperature, 

pH and salt concentrations), type of lactic acid produced, cell wall constituents and alkaline 

tolerance. However, due to the advent of DNA sequencing, the 16S and 23S ribosomal RNA 

(rRNA) as well as G + C content (percentage moles of guanosine and cytosine content in the 

genomic DNA) are used to classify the organism. Eubacteria are subdivided into gram 

negative and gram positive phyla. LAB can be found in the gram positive low G + C content 

tree of eubacteria.  

Based on 16S and 23S rRNA data, gram positive bacteria form two major lines of descent 

shown in Figure 1.13 (Schleifer and Ludwig 1996). One phylum consists of bacteria with a 

high G + C content (actinomyces) and one with a low G + C content (clostridium). LAB are 

considered as a super cluster, located between the facultative aerobic species staphylococci 

and bacilli and the anaerobic species clostridia. As such, Lactococcus has its own cluster 

within the clostridium branch. It is difficult to form an exact definition of what a typical 

LAB should be. However, they could be described as gram positive, catalase deficient (some 

have catalase activity), largely anaerobic (can tolerate oxygen), acid tolerant, no 

cytochromes, non-spore forming and having lactic acid as the end product of metabolism. 

Figure 1.12. L. lactis nisin-controlled gene expression system. After binding of nisin to the specific 

receptor NisK autophosphorylates and transfers the phosphate group to NisR. Activated NisR induces 

transcription from the target gene placed under the control of the promoter. Depending on the 

presence of the spaX anchor, proteins are either secreted or cell wall bound. 
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1.11 L. lactis metabolism 
 

L. lactis, as well as other bacteria in the LAB clade primarily metabolise glucose to lactic 

acid (Cocaign-Bousquet, Garrigues et al. 1996, Bolotin, Wincker et al. 2001, Rezaiki, 

Cesselin et al. 2004). This high carbohydrate fermentation coupled with substrate level 

phosphorylation activity is used for the synthesis of ATP. ATPase is membrane bound and 

utilises a H+ gradient to generate a proton motive force that drives the transport of ions and 

metabolites into the cell. L. lactis uses the glycolytic Embden-Meyerhor-Parnas pathway, 

which is also known as homolactic fermentation to produce ATP from glucose. This pathway 

is almost exclusively used and results in almost all of the glucose available to the bacteria 

transformed into L-(+)-lactic acid, through the formation of fructose 1,6-diphosphate, which 

is then converted into dihydroxyacetonephosphate and glyceraldehyde-3-phosphate which 

are then both further transformed into pyruvate. Under laboratory conditions, that is cell 

culture medium where oxygen access is restricted and glucose is in high excess, the pyruvate 

is reduced to lactic acid by a NAD+- lactate dehydrogenase, reoxidising the NADH to NAD+. 

Usually, the only product of this reaction is lactic acid, however, in some cases where more 

complex ingredients are found in the growth medium, the formation of other molecules such 

as acetic acid can be found (Stahl, Molin et al. 1990). Pyruvate can be utilised in many 

different ways by L. lactis. Pyruvate can be converted by pyruvate formate lyase, giving 

acetyl-CoA and formate. Pyruvate dehydrogenase can also produce acetyl-CoA, and results 

Figure 1.12. Phylogenetic tree of the lactic acid bacteria (LAB) clade. 
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in the production of NADH and CO2 when oxygen is present. Moreover, acetyl-CoA can 

either be converted into ethanol via alcohol dehydrogenase, resulting in the generation of two 

molecules of NAD+, or into acetate via phosphotransacetylase and acetylkinase with a net 

gain of one ATP molecule. These pathways are used less frequently but there are other routes 

for ATP genesis such as when pyruvate is converted into 2,3-butanediol. One ATP molecule 

and two CO2 molecules are formed from one 2,3-butanediol molecule. Although this pathway 

is very rarely used in normal laboratory conditions, improved production of 2,3-butanediol 

can be easily achieved by metabolic and genetic engineering strategies (Gaspar, Neves et al. 

2011). The production of 2,3-butanediol, acetate, ethanol and formate is called mixed-acid 

fermentation, mainly taking place under sub-optimal conditions of growth, which is not 

usually found in the high glucose rich laboratory growth conditions (Thomas, Ellwood et al. 

1979). L. lactis almost exclusively grows homofermentatively, meaning that most of the 

pyruvate formed in glycolysis is converted into lactate with recovery of NAD+.  Figure 1.14 

highlights the homolactic fermentation process in L. lactis. The glycolytic pathway can be 

explained best by carbon catabolite repression (CCR). When extracellular glucose is present, 

the uptake and metabolic pathways of less favoured sugars are downregulated (Warner and 

Lolkema 2003). CCR is caused by an array of proteins that systematically phosphorylate 

specific protein products. A complex of the proteins CcpA and HPr phosphorylate at its 

serine on position 46 (Gunnewijk and Poolman 2000, Bolotin, Wincker et al. 2001). This 

complex then binds to CcpA binding motifs (cre-sites) which are located upstream of many 

central metabolism genes (Zomer, Buist et al. 2007). The phosphorylation state of HPr is 

completely reliant on a phosphotransferase system which allows phosphorylation transfer 

between different enzymes (EI, EIIA, EIIB and HPr). A glycolytic intermediate molecule 

PEP donates its phosphoryl group to EI, transfers it to HPr, which phosphorylates EIIA and 

EIIB. EIIB then phosphorylates intracellular glucose, forming glucose-6-phosphate. At low 

extracellular glucose concentrations the cell accumulates phosphorylated EII and HPr His-

15 (Deutscher 2008). Conversely, at high glucose concentrations, HPr His-15P gets 

dephosphorylated and then HprK/P, HPr can be phosphorylated at Ser-46 (Reizer, Hoischen 

et al. 1998). HPr Ser46-P can form a complex with CcpA that results in CCR. Additionally, 

as well as acting as a repressor, CcpA-HPr Ser46-P is also capable of binding to cre-sites 

upstream of the las-operon, which results in the activation of thee highly important glycolytic 

enzymes, namely pfk, pyk and ldh (Luesink, van Herpen et al. 1998). 
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In addition to glucose, L. lactis can metabolise other sugars such as mannose, fructose and 

galactose. For mannose and fructose, a permease transport system allows these sugars to 

enter the cell cytoplasm. Galactose metabolism depends on the strain and the presence of a 

sugar phosphotransferase system (PTS). If the galactose PTS is present in the cell, galactose 

is converted into galactose-6-P entering the glycolytic pathway at the glyceraldehyde-3-P 

level (Figure 1.14 left) (White and Kennedy 1979). In the absence of such a system, galactose 

follows a different pathway, the Leloir pathway (Figure 1.14 right) (White and Kennedy 

1979).  

How L. lactis controls its carbohydrate metabolism has been a major driver of investigation 

into the bacterium due to its industrial applications and all the answers are still not present.  

Figure 1.14. Homolactic fermentation process in L. lactis. Glycolytic pathway of L. lactis, 

yielding lactate as final product. 
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1.12 Aims of the project 
 

Current strategies for controlled stem cell differentiation are limited and provide a major 

challenge to stem cell based regenerative medicine. In vivo, stem cells reside in an area 

defined as a niche, which is a specialised milieu of cells, ECM and growth factors that 

maintains stem cells in a quiescent state and also plays a role in their activation.  

One way of implementing existing technology to mimic this niche, is to use genetically 

modified, non-pathogenic bacteria to control cell behaviour. These bacteria can be tailored 

to synthesise proteins in a constitutive or inducible manner and thus, creating a living, 

dynamic interface for stem cell differentiation.  

It had been shown by this laboratory that FN null fibroblasts (FN -/-) adhered to our modified 

L. lactis monolayer displaying the FN fragment FNIII7-10 leads to the development of focal 

adhesions and promoted FAK based signaling (Rodrigo-Navarro, Rico et al. 2014). This 

FNIII7-10 fragment comprises the RGD adhesion motif (FNIII10) and the PHSRN synergy site 

(FNIII9). The RGD and PHSRN sequence are both essential to promote α5β1 integrin 

mediated adhesion as well as promiscuous integrin adhesion (Aumailley, Gurrath et al. 

1991). It has been shown that short RGD containing peptides can mimic a number of the 

properties of cell adhesive proteins and allow integrin attachment, therefore promoting 

adhesion of cells to the surface (Pierschbacher and Ruoslahti 1984, Dsouza, Ginsberg et al. 

1991).  

The goal of this thesis is to utilise this platform of bacteria harnessing the FNIII7-10 fragment 

to sustain long-term MSC adhesion, whilst simultaneously, the induced production of BMP-

2 can begin to initiate the differentiation of MSCs to osteoblasts. It has also been shown that 

α5β1 integrins and BMP-2 can act synergistically to create strong osteogenic differentiation 

(Salmeron-Sanchez and Dalby 2016).  

The specific aims have been broken down and are thus: 

1. Explore the effect of the FNIII7-10 fragment coupled with the addition of exogenous 

BMP-2 on MSCs. 

 

2. Engineer the secretion and cell wall bound expression of BMP-2 into L. lactis in a 

constitutive and inducible manner. 

 

3. Deduce MSC behaviour in response to bacterially expressed BMP-2 in vitro and in 

vivo. 
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2. Materials and methods 
 

This chapter details a general methods section with specific details highlighted in the 

individual results chapters.  

2.1 Bacterial culture 
 

L. lactis was cultured in M17 medium (Oxoid Microbiology Products) to allow growth in 

standing cultures. The composition of M17 is (Terzaghi and Sandine 1975):  

 Typtone (5 g/L) 

 Soya-peptone (5 g/L) 

 “Lab-lemco” (5 g/L) 

 Yeast extract (2.5 g/L) 

 Ascorbic acid (0.5 g/L) 

 Magnesium sulphate (250 mg/L) 

 Di-sodium glycerophosphate (19 g/L)  

When dissolved, the media has a pH of 6.9 ± 0.2 at 25 °C. The medium is bought as a powder 

that has to be reconstituted at 37.25 g/L in ultrapure water before sterilisation at 126 °C for 

20 minutes. Upon cooling, 0.5 % v/v sterile glucose and any appropriate antibiotic was 

added. This prevents the caramelisation of the glucose and degradation of the antibiotic. L. 

lactis was then grown at 30 °C in anaerobic conditions (unless stated otherwise) in standing 

cultures. The stationary phase of growth is usually met within 8 hours and the bacteria slowly 

begin to form a pellet at the bottom of the culture.  

To allow for unimpeded protein expression and characterisation, bacteria were grown in M9 

minimal medium. This again allows growth but does not include as many ingredients as M17 

and therefore allows much easier downstream experimentation. The composition of M9 is 

(Steidler, Wells et al. 1995):  

 25.6 g/L Na2H2PO4 

 6  g/L KH2PO4 

 1 g/L NaCl 

 2 g/L NH4Cl 

The following was added to complete the media for L. lactis: 
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 20 mM MgSO4 

 2 mM CaCl2 

 50 nM NaHCo3 / Na2CO3  

 0.5 % w/v glucose 

 

2.2 L. lactis biofilm production 
 

The method to develop an L. lactis biofilm was adapted from other authors (Burmolle, Webb 

et al. 2006). A frozen stock of L. lactis was kept at -80 °C and used to streak a fresh M17 1 

% agar plate supplemented with 0.5 % glucose and appropriate antibiotic. The plate was kept 

at 30 °C for 24 hours until 1-2 mm colonies had grown. A single colony was picked and 

inoculated in 10 mL fresh M17 with 0.5 % glucose v/v until an optical density of 0.3-0.5 at 

600 nm was measured. The bacterial culture was then poured over an appropriate surface in 

a multiwall plate and sealed with parafilm and grown at 30 °C for 24 hours.  

After 24 hours, the media was removed along with the planktonic phase, and the adhered 

portion of the bacteria were washed 3 times with sterile ultrapure water. These wash steps 

ensure that all planktonic phase bacteria are removed and the only bacteria that remain are 

those attached to the surface. This results in a bacterial monolayer adhered to the material 

surface and are ready for further experimentation.  

 

2.3 Sample preparation 
 

Glass coverslips were spin coated with 4% w/v poly (ethyl acrylate) (PEA) in toluene prior 

to coating with fibronectin (FN) or L. lactis. PEA sheets were dissolved in toluene to a final 

4 % w/v concentration. The solution was stirred for two days until all the polymer was 

properly dissolved, obtaining a viscous solution as a result. Spin-coating was performed over 

12 or 25 mm glass coverslips at 2000 rpm for 30 seconds. Samples were dried in vacuum at 

60 °C to remove solvent traces before biofilm preparation. For FN functionalisation, 200 µL 

of a solution of 20 µg/mL FN was used to coat the PEA surface for an hour at room 

temperature. The methods used to develop a biofilm on surfaces has been previously 

published (Burmolle, Webb et al. 2006, Zaidi, Bakkes et al. 2011). In these experiments L. 

lactis were grown as standing cultures in M17 broth with the appropriate antibiotic at 30 °C 
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for 24 hours. The cells were then harvested at 3000 g for 10 minutes and resuspended in 500 

µL of the same medium and streaked on M17 agar plates supplemented with 0.5 % w/v 

glucose and the appropriate antibiotic and left to grow at 30 °C overnight. Colonies were 

taken from the plates and transferred into sterile M17 broth until OD 660 was 0.3. 4.8 mL 

of suspension was used for the glass coverslips in the 6 well plates and 1 mL for 24 well 

plates. These were then sealed and left at 30 °C for 24 hours. After 24 hours the non-adherent 

planktonic phase bacteria were removed by shaking and washing. The wells were shaken by 

hand and the planktonic phase bacteria were removed via pipette followed by 3 washes with 

sterile water. 

PEA coated coverslips were only used for long term cell culture (more than 4 days) as it was 

found that the bacteria were able to adhere to this surface for longer periods than on glass 

alone.  

 

2.4 Mammalian cell culture 
 

Two cell types have been used in this work, human bone marrow-derived mesenchymal stem 

cells (MSCs) and murine C2C12 myoblasts. The first experiments were completed with the 

C2C12s as these are a well-documented model for osteogenic differentiation. These were 

used in preliminary studies to ensure both the interaction of the cells with the FNIII7-10 

subunit and the differentiation capabilities of BMP-2 in short term cultures. Finally, MSCs 

were used to assess the differentiation capabilities of BMP-2 in long term cultures.  

 

 

2.4.1 C2C12 murine myoblasts 

 

This is a murine myoblastic cell line that can be used a model system for osteoblastic 

differentiation. The cells were purchased from ATCC (USA) and a stock was created. Cells 

were used before passage 10. This cell type can differentiate into myotubes and under the 

correct circumstances, be induced down the osteogenic pathway. It is not advised to allow 

this cell type to reach confluence as the myoblastic population rapidly depletes due to 

paracrine interactions (Katagiri, Yamaguchi et al. 1995, Watt, Judson et al. 2010, Velica and 

Bunce 2011). These cells were grown in DMEM (Dulbecco’s modified eagle medium) with 

4.5 g/L glucose, 20 % FBS (foetal bovine serum) and 1 % P/S (penicillin-streptomycin).  
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2.4.2 Human bone marrow derived mesenchymal stem cells (MSCs) 

 

These cells were obtained from PromoCell and show great therapeutic potential due to their 

inherent differentiation capabilities. The PromoCells used in this thesis are harvested from 

normal human bone marrow and are vigorously tested for their ability to differentiate in vitro 

into adipocytes, chondrocytes, osteoblasts and neuronal cells (Pittenger, Mackay et al. 1999). 

These cells are verified through marker selection CD73+/CD90+/CD105+ and CD14-/CD19-

/CD34-/CD45-/HLA-DR- and adhere to the expression profile compiled by the International 

Society for Cellular Therapy (Dominici, Le Blanc et al. 2006). Under the right conditions, 

these cells can differentiate to osteoblasts, adipose cells, nerve cells and reticular sub types. 

These cells were grown in DMEM supplemented with 100 µM pyruvate (Sigma), 1.1 mM 

L-glutamine (Sigma), 10 % FBS and 1 % P/S.  

 

2.5 Immunofluorescence assays 
 

2.5.1 Cell adhesion 

 

Cell adhesion was either studied through vinculin or integrin immunostaining. After selected 

culture times (described in the results chapter), cells were washed with phosphate buffered 

saline (PBS, Invitrogen) and fixed in 4 % formaldehyde at 37 °C for 15 minutes. This fixative 

was washed 3 times with PBS before incubating the samples with permeabilisation buffer 

(10.3 g of sucrose, 0.292 g of NaCl, 0.06 g of MgCl2, 0.476 g of HEPES buffer in 100 ml of 

water, pH 7.2 followed by the addition of 0.5 ml Triton X) at 4 °C for 5 minutes. Then, the 

samples were incubated in 1 % bovine serum albumin (BSA) in PBS at room temperature 

for 30 minutes to block reactive sites and therefore decrease background fluorescence. For 

vinculin staining, samples were then treated with a mouse monoclonal anti-vinculin (Sigma, 

V9131, UK) diluted to 1:400 in 1 % BSA / PBS for 1 hour at room temperature. For integrin 

staining, samples were treated with monoclonal antibodies against α5 (Millipore, AB1928, 

USA, anti rabbit), β1 (BD Pharmingen, (EG7, USA, anti rat) and αVβ3 (Millipore, LM609, 

USA, anti mouse). These were then washed 3 times for 5 minutes (last wash on a shaker) in 

0.5 % Tween 20 / PBS. For vinculin detection, a Cy-3-conjugated polyclonal rabbit anti-

mouse secondary antibody (Jackson Immunoresearch, UK), diluted 1:200 in 1 % BSA / PBS, 

with 1:200 BODIPY FL-conjugated phallacidin (Invitrogen, UK) was added and incubated 
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for 1 hour at room temperature in the absence of light. For the integrins, secondary antibodies 

against rabbit for α5 (FITC 1:2000), rat for β1 (RFP 1:2000) and mouse for αVβ3 (Cy5 

1:2000) (Jackson Immunoresearch, UK) were used.  Samples were again washed 3 times for 

5 minutes in 0.5 % Tween 20 / PBS and mounted using Vectashield containing DAPI (Vector 

Laboratories, UK). Samples were then viewed under a fluorescence microscope (Zeiss 

AxioObserver- Z1). 

 

2.5.2 Osteogenic differentiation 

 

After 3 weeks, cells were fixed using 4 % formaldehyde in PBS at 37 °C for 15 minutes. 

Fixative was removed and washed with PBS before the addition of permeabilising buffer 

(10.3 g of sucrose, 0.292 g of NaCl, 0.06 g of MgCl2, 0.476 g of HEPES buffer in 100 ml 

of water, pH 7.2 followed by the addition of 0.5ml Triton X) for 5 minutes at 4 °C. 

Permeabilising buffer was removed and PBS/BSA 1 % was added for 5 minutes at 37 °C to 

block reactive sites. This was followed by the addition of the primary antibody (1:50 in 

PBS/BSA 1 %) osteocalcin (OCN, mouse monoclonal, sc-365797, UK) and osteopontin 

(OPN, mouse monoclonal, sc-21742, UK) (Santa Cruz Biotechnology, UK) for 1 and a half 

hours at 37 °C. 100 µL was added to ensure the coverslips were submerged.  The samples 

were next washed with 0.5 % Tween 20 in 100 mL PBS 3 times for 5 minutes. A secondary, 

biotin-conjugated antibody (1:50 in PBS/BSA, monoclonal horse antimouse (IgG), (Vector 

Laboratories) was added for 1 hour at 37 °C followed by washing with 0.5 % Tween 20 in 

100 mL PBS 3 times for 5 minutes.  Simultaneously, rhodamine-conjugated phalloidin was 

added for the duration of this incubation (1:50 in PBS/BSA 1 %, Life Technologies).  A 

FITC-conjugated streptavidin third layer was added (1:50 in PBS/BSA 1 %, Vector 

Laboratories) at 4 °C for 30 minutes, and given a final wash with 0.5 % Tween 20 in 100 

mL PBS 3 times for 5 minutes. The coverslips were then inverted onto glass slides with 

DAPI stain (Vector Laboratories, UK). Samples were then viewed under a fluorescence 

microscope (Zeiss AxioObserver- Z1). 
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Table 2.1. Antibodies and suppliers used in this thesis. 

 

 

 

 

 

 

 

 

 

 

2.6 von Kossa staining 
 

MSCs were seeded at 5,000 cells/cm2 and cultured on freshly prepared FN coated glass and 

L. lactis-FN biofilms for 28 days. Cells were fixed with 4 % formaldehyde in ultrapure water 

for 5 minutes and then a 5 % silver nitrate solution in H2O was added to ensure the coverslips 

were fully submerged and exposed to UV light for 30 minutes. After washing in deionised 

water, 5 % sodium thiosulphate was added to the samples for 10 minutes and then samples 

were washed with warm tap water for 10 minutes. After another wash with deionised water, 

the samples were counterstained with nuclear fast red for 10 minutes and washed again with 

deionised water. Finally the samples were rinsed with 70 % ethanol and observed in a phase-

contrast optical microscope (Zeiss Axio Observer-Z1). 

 

2.7 Bacterial viability 
 

To study viability of the bacteria, the BacLight LIVE/DEAD kit (Life Technologies, UK) 

was used. Biofilms were grown as mentioned previously and transferred to DMEM, DMEM 

was supplemented with either 1 % penicillin-streptomycin (P/S), DMEM with 10 µg/mL 

tetracycline (TC)  or DMEM with 5 and 10 µg/mL sulfamethoxazole and viability was tested 

at 1, 2, 3 and 4 weeks. The biofilm was washed once with sterile NaCl 0.85 % w/v solution 
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and incubated for 30 minutes using SYTO9 (5 µM) and propidium iodide (30 µM) in NaCl 

0.85 % w/v. After this, the samples were washed with PBS and mounted using Vectashield 

without DAPI (Vector Laboratories, UK) and imaged immediately on a Zeiss AxioObserver- 

Z1. The viability was determined as the ratio between the viable and total number of bacteria. 

ImageJ was used to analyse the pictures taken.  

 

 

2.8 Image analysis 
 

Image analysis was completed using the Fiji-ImageJ software (Schindelin, Arganda-Carreras 

et al. 2012). Images were acquired using a Zeiss AxioObserver Z1 (unless stated otherwise) 

fitted with an Andor camera. 10, 20, 40 and 63 x objectives were used and images were 

saved in 8-bit per channel RGB BMP format.  

2.9 Statistical analysis 
 

All statistical analysis was performed with GraphPad Prism 6. One way or two way 

ANOVAs (analysis of variance) were completed depending on the data present (two way 

ANOVAs were completed when grouped data was tested against two independent variables). 

A one way ANOVA was used when there were more than two independent groups (not 

grouped data). A two way ANOVA was used for group data as its purpose is to test if there 

is an interaction between the two independent variables on the dependent variable. Firstly, 

data was checked for normality to determine the type of post-hoc test used. If data were 

normally distributed, a Tukey post-hoc test was used. Conversely, for data that were not 

normally distributed, a Bonferroni post-hoc test was used. Statistical significance levels are 

indicated by a number of one to four asterisks that indicate the following levels of 

significance: *p < 0.05, **p < 0.01, ***P < 0.001 and ****p < 0.0001.  
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3. Cell-bacteria co-cultures and initial 

differentiation studies 
 

 

 

 

Summary 

This chapter focusses on the effect of the fibronectin (FN) fragment (FNIII7-10) on cell 

adhesion and the ability of the interface to sustain mesenchymal stem cell (MSC) 

differentiation in response to externally added bone morphogenetic protein-2 (BMP-2). 

C2C12 murine myoblasts and MSCs were cultured on FNIII7-10 and non-FN expressing 

bacteria (from here on denoted L. lactis-FN and L. lactis-empty respectively) and their 

behaviour was assessed. BMP-2 was added to the medium to induce osteogenic 

differentiation and compared to a control surface of FN coated glass. The results demonstrate 

that differentiation on the biofilm is approximately equal to that of a FN coated surface.  

 

 

 

*Results in this chapter are partially published in: Hay, J. J., Rodrigo-Navarro, A., Hassi, K., 

Moulisova, V., Dalby, M. J., & Salmeron-Sanchez, M. (2016). Living biointerfaces based 

on non-pathogenic bacteria support stem cell differentiation. Scientific reports, 6. 

10.1038/srep21809 
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3.1 Introduction 
 

The requirement for synthetic materials that mimic the characteristics of the extracellular 

matrix (ECM) is essential in biomedical engineering to comprehend the complex and 

dynamic behaviour of cells. Cells interact with different structures of the ECM, namely via 

physical interactions such as cell geometry and topography at the micro and nanoscale, these 

micro or nanoenvironments can be used to ultimately control cell behaviour or direct cell 

fate (Pittenger 2008, Guilak, Cohen et al. 2009). Previously, samples have been coated with 

a layer of adhesive proteins such as fibronectin (FN), peptides or growth factors as cells are 

incapable of direct interaction with biomaterials (Grinnell 1986, Dsouza, Ginsberg et al. 

1991, Aumailley and Gayraud 1998, Hench and Polak 2002, Shin, Jo et al. 2003). These 

surfaces are static and provide cells with only one behavioural cue, therefore engineering 

dynamic surfaces that allow controlled regulation is now at the forefront of biomedical 

engineering. These surfaces have the potential to provide spatiotemporal triggers that can 

recapitulate critical characteristics of the ECM and can therefore be used in myriad 

biomedical fields, ranging from tissue engineering to molecular biology. There have been 

many recent attempts at synthetic replication of the ECM, a large percentage of which use 

an extracellular trigger to alter the surrounding environment  which can direct cellular 

behaviour, these include light (Wirkner, Weis et al. 2011, Lee, Garcia et al. 2015), 

temperature (Ebara, Yamato et al. 2004) and enzymes (Todd, Scurr et al. 2009, Zelzer, Scurr 

et al. 2012). Significant efforts have been directed toward utilising the adhesive peptide 

arginine-glycine-aspartic acid (RGD), found in many extracellular matrix proteins such as 

FN, vitronectin and laminin allowing the user to control cell adhesion (Pierschbacher et al, 

1983). We hypothesise that biofilms formed by non-pathogenic bacteria can be utilised to 

accomplish a successful dynamic surface. They can be genetically modified to express or 

secrete different proteins which can be used to direct cell behaviour and ultimately control 

stem cell fate. In that case, bacterial cell to mammalian cell communication can be facilitated 

on the level of the bacterial biofilm interface due to bacterial capability to colonise many 

different biomaterials to form a monolayer.  

This chapter focuses on highlighting the dynamic interaction between bacterial and 

mammalian cells by using different microscopic techniques, such as scanning electron 

microscopy and immunofluorescence, compounded with molecular techniques. This chapter 
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also shows the ability of the interface to sustain mesenchymal stem cell (MSC) 

differentiation.  

We use the previously characterised L. lactis strain that constitutively expresses, via the P1 

lactococcal promoter, a fusion protein made of the FNIII7-10 fragment of the human 

fibronectin with GFP fused upstream, as a reporter protein (Saadeddin, Rodrigo-Navarro et 

al. 2013, Rodrigo-Navarro, Rico et al. 2014, Hay, Rodrigo-Navarro et al. 2016). This protein 

is efficiently located in the bacterial cell wall by using a secretion peptide and an anchoring 

signal. The expressed FNIII7-10 fragment contains the RGD adhesion motif on the III9 repeat 

and the PHSRN synergy motif on the III10 repeat. These two motifs interact with the α5β1 

integrin, amongst others (Giancotti and Ruoslahti 1999).  

 

In this chapter, we show C2C12 murine myoblast and MSC behaviour in response to the 

FNIII7-10 exposed on the bacterial cell wall shown in Figure 3.1A. In addition to the adhesive 

cue from the FNIII7-10 fragment, the osteogenic growth factor, bone morphogenetic protein 

2 (BMP-2) (mechanism shown in Figure 3.1B) can induce the differentiation of MSCs 

towards osteoblasts.  

 

BMP-2 binds to cells via BMPRs (bone morphogenetic protein receptors), of which there 

are many. BMP-2 signalling is initiated upon BMP-2 binding to BMPRI and the subsequent 

recruitment of other BMRPs is essential for proper signal propagation. Normally, two of 

each type of BMPRI and BMPRII are needed to form a ternary homocomplex which leads 

to the activation of SMADs. SMADs are a group of intracellular proteins that transduce 

extracellular signals into downstream gene activation. In terms of BMP-2, BMPR activation 

leads to the recruitment of the pathway restricted SMADs 1 5 and 8 which recruit the 

common mediator SMAD 4 (Itoh, Itoh et al. 2000, Moustakas, Souchelnytskyi et al. 2001, 

Derynck and Zhang 2003). This complex migrates to the nucleus and induces expression of 

osteogenic genes in the nucleus, represented in Figure 3.1 B (Hay, Rodrigo-Navarro et al. 

2016).   
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Figure 3.1. Conceptual overview of the system. (A) L. lactis biofilm expressing the III7–10 fragment of 

the human fibronectin on its cell wall, fused to green fluorescent protein (GFP) as a reporter, acting as a 

biointerface for bone marrow-derived human mesenchymal stem cells. (B) Recombinant human BMP-2 

(rhBMP-2) was added in the cell culture medium at 100 ng/mL to induce osteogenic differentiation. 

BMPR1/2 signalling through the Smad pathway leads to activation of the transcription factors Osterix, 

RunX2 and Dlx5 which induces expression of proteins involved in osteogenic differentiation (Hay, 

Rodrigo-Navarro et al. 2016). 
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3.2 Materials and methods 
 

3.2.1 Scanning electron microscopy (SEM) 

 

MSCs and C2C12s were seeded at 5,000 cells/cm2 and were fixed in either 2 % 

glutaraldehyde / 2 % paraformaldehyde / 0.15 M sodium cacodylate buffer / 0.15 % alcian 

blue for 2 hours at 4 °C or in 1.5% glutaraldehyde/0.1 M sodium cacodylate buffer fix for 1 

hour at 4 °C. After fixation, these were then washed with 0.15 M sodium cacodylate buffer 

5 times before 1 hour incubation in 1 % osmium tetroxide/0.1 M sodium cacodylate buffer. 

Samples were then washed 3 times in distilled water and stained with 0.5 % uranyl 

acetate/distilled water for 1 hour in the dark. Samples were washed again with distilled water 

before dehydration through an ethanol gradient (30 %, 50 %, 70 % and 90 % for 10 minutes 

each) with 100 % ethanol used 4 times 5 minutes to fully dry the sample. Samples were then 

loaded onto a POLARON E3000 Critical Point Dryer (Liquid CO2) for 1 hour 20 minutes 

and then given a gold/palladium coat using a POLARON SC515 SEM COATER and viewed 

on a JEOL6400 SEM running at 10 kilovolts. 

 

3.2.2 Quantitative real-time PCR (qPCR) 

 

qPCR protocol is split into 3 sections: 

1. RNA extraction 

A cell density of 20,000 cells/cm2 were used for qPCR experiments. Cells were grown for 

14 days in the same conditions as stated previously on fibronectin coated and L. lactis-FN 

coated PEA coverslips. RNA extraction was performed using the Qiagen RNA extraction 

kit, briefly: cells were lysed with RLT buffer and homogenised prior to the addition of 70 % 

ethanol. Samples were then transferred to an RNeasy MinElute spin column and centrifuged 

for 30 seconds at 8000 g and the flow through was discarded. Buffer RW1 was added to the 

column and centrifuged for 30 seconds at 8000 g and the flow through was discarded. DNase 

stock solution was added to buffer RDD and mixed. This was then added to the columns and 

left for 15 minutes at room temperature. Buffer RW1 was added to the columns and 

centrifuged for 30 seconds at 8000 g and the collection tube was discarded. A new collection 

tube was added and buffer RPE was added to the column and spun for 30 seconds at 8000 g 

and flow through was discarded. Next, 80 % ethanol was added and centrifuged for 2 minutes 

at 8000 g and collection tube discarded. A new collection tube was added and the column 

was spun at full speed for 5 minutes to dry the membrane and the collection tube was 
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discarded. A new collection tube was added and RNase free water was added to the column 

and centrifuged for 1 minute at 16,000 g and the collection tube was kept.  

 

2. Reverse transcription 

200 ng of template RNA (when possible) was added to a tube containing reverse 

transcriptase master mix (Qiagen) and incubated for 15 mins at 42 °C before raising the 

temperature to 92 °C for 3 minutes. 

 

3. Quantification 

qPCR was performed on an ABi7500 thermal cycler using the SYBR Green relative standard 

method. The SYBR Green master mix was bought from Applied Biosystems, which 

comprises SYBR Green I dye, AmpliTaq DNA polymerase, dNTPs with dUTP, and a PCR 

reaction buffer. SYBR Green I dye detects double-stranded DNA, AmpliTaq DNA 

polymerase synthesises new DNA, and the dUTP reduces carryover contamination. qPCR 

was started with the cDNAs for each sample and each sample was scaled down to its 

corresponding RNA concentration of 5 ng/µL. SYBR Green master mix, 2 µL of primer pair 

(forward and reverse primer) and 1 µL of cDNA sample were mixed up to a final volume of 

20 µL for each well (cells isolated from six well plate). Negative controls (samples without 

reverse transcriptase) and blanks (reactions without cDNA samples) were made to ensure 

the correct functionality through the monitoring of genomic DNA contamination and 

substrate fluorescence background respectively. Three technical replicates were run for each 

experiment. The samples were initially treated with heat activation for 5 minutes at 95 °C, 

that was followed by a 2 step cycle of 10 seconds at 95 °C and 30 seconds at 60 °C for 40 

cycles to allow for elongation. Gene expression was normalised against the house keeping 

gene, GAPDH (primers shown in Table 3.1).  
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Primers were synthesised using the Roche universal probe library assay design centre. 

 

 

      Table 3.2. Primers used in the qPCR gene expression analysis. 

Gene Pair Sequence (5' - 3') 

Alcam Forward ACG ATG AGG CAG AGA TAA CT 

Self Renewal Reverse CAG CAA GGA GAC CAA C 

CD63 Forward GCT GTG GGG CTG CTA ACT AC 

Self Renewal Reverse ATC CCA CAG CCC ACA GTA AC 

Osteocalcin Forward CAG CGA GGT AGT GAA GAG ACC 

Osteogenic Reverse TCT GGA GTT TAT TTG GGA GCA G 

Osteopontin Forward AGC TGG ATG ACC AGA GTG CT 

Osteogenic Reverse TGA AAT TCA TGG CTG TGG AA 

GAPDH Forward TCA AGG CTG AGA ACG GGA A 

Housekeeping Reverse TGG GTG GCA GTG ATG GCA 
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3.3 Results 
 

It is important to note that the strain of bacteria used in this chapter is the previously 

characterised MG1363. This strain and the FNIII7-10 have been characterised in previous 

publications (Saadeddin, Rodrigo-Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 2014, 

Hay, Rodrigo-Navarro et al. 2016) and a thesis and have been used in this chapter to highlight 

MSC behavior at longer time points.  The future chapters highlight the use of different 

strains, namely NZ9000 and NZ9020.  

 

3.3.1 Bacterial viability and metabolism 

MSCs require four weeks for terminal differentiation to osteoblasts (Stein, Lian et al. 1990, 

Pittenger, Mackay et al. 1999, Agarwal, Gonzalez-Garcia et al. 2015) and thus it was 

imperative to deduce bacterial viability up to this time point as the stability of the biofilm 

modulates cell adhesion. Previous to this work, the biofilms were seeded over glass 

coverslips as the maximum culture time used was four days (Rodrigo-Navarro, Rico et al. 

2014). However, upon culturing the biofilm for longer time points, it became apparent that 

a new surface was needed as large areas of the biofilm began to detach from the surface after 

seven days. Glass is a hydrophilic surface, and whilst keeping viability values high (~60 %), 

the relatively weak adhesion was insufficient to allow long term biofilm formation.  

To overcome this obstacle, we used the synthetic polymer poly (ethyl acrylate) (PEA). This 

has previously been used in mammalian cell culture (Salmeron-Sanchez, Rico et al. 2011) 

and was found to be particularly well suited for bacterial adhesion (An and Friedman 1998, 

van Oss, Wu et al. 1998, Van Oss 2002). PEA is a hydrophobic, non-biodegradable polymer 

and thus, is a good choice for bacterial adhesion. The strain of L. lactis used in these 

experiments was MG1363, a derivative of L. lactis subsp. cremoris TIL672, which features 

a hydrophobic surface. The extended Derjaguin-Landau-Verwey-Overbeek model 

(XDLVO) (Bayoudh, Othmane et al. 2009) states that hydrophobicity plays an important 

role in surface interaction. This model explains the interaction in terms of surface free energy 

of the interacting surfaces, and considers the solid-bacteria, solid-liquid and bacteria-liquid 

interfaces when calculating the free energy. A practical explanation at the molecular level is 

that the interaction between two apolar moieties immersed in water is the consequence of 

hydrogen-bonding energy of cohesion of the water molecules surrounding them, and 

therefore, a hydrophobic surface is a stronger candidate for bacterial adhesion and biofilm 

creation, at least with this strain.  Nevertheless, L. lactis proliferate continuously if nutrients 

are available and convert any suitable carbon source into lactic acid (De Vuyst and 
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Vandamme 1992). The build-up of this organic acid unavoidably leads to a decrease in pH 

of the medium, which is detrimental to mammalian cell viability. It has been previously 

outlined that tetracycline (TC) used at 10 µg/mL is sufficient to impede bacterial metabolism 

without affecting mammalian cells for up to four days (Rodrigo-Navarro, Rico et al. 2014).  

TC is a bacteriostatic antibiotic that inhibits bacterial protein synthesis by binding to the 30S 

subunit of bacterial ribosomes, which hinders the attachment of charged aminoacyl tRNA 

(transfer Ribonucleic acid) to the A site (Geigenmuller and Nierhaus 1986). Due to the 

differentiation characteristics of MSCs, it was essential to increase this time course up to 

four weeks. To increase the efficiency of lactic acid retardation, a mixture of 

penicillin/streptomycin (P/S) at 100 U/mL was also tested.  P/S is a bactericidal antibiotic 

and interferes with the synthesis of the peptidoglycan cell wall, leading to cell lysis (Park 

and Strominger 1957). These approaches were chosen in an attempt to control the biofilm in 

a bacteriostatic manner by preventing initial cell death and avoiding acidification of the 

medium. Figure 3.2 shows L. lactis-FN viability at 1, 2, 3 and 4 weeks. 

 

 

 

 

Figure 3.2. L. lactis biofilm viability. Biofilms of L. lactis-FN were produced on a poly (ethyl acrylate) (PEA) 

surface and cultured for one to four weeks with DMEM, DMEM supplemented with 100 U/mL of 

penicillinstreptomycin (DMEM+ P/S) and DMEM supplemented with 10 μg/mL tetracycline (DMEM+ TC). (A) 

After the selected time points, biofilms were washed and their viability assessed using the commercial BacLight 

viability kit (Life Technologies). This kit stains viable cells in green and non-viable cells in red. Viability was 

calculated by analysing the total amount of cells stained in green versus the amount of cells stained in red and 

green. (B) After three weeks, viability values were found to be higher in biofilms cultured with DMEM or 

DMEM+ TC than in biofilms cultured with DMEM+ P/S. This result might be attributed to the fact that P/S is 

bacteriolytic in comparison to TC, which is bacteriostatic. There is an increase in viability values of the four week 

biofilms that can be attributed to the detachment of non-viable cells. Scale bar size is 50 μ m. 10 images were 

taken per condition from three technical replicates. Data is presented as mean ±  SD, and was analysed with a one 

way ANOVA test with a Tukey post-hoc test. Statistical significance levels are *p <  0.05 and ***p <  0.001. 
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 L. lactis-empty was not investigated as this strain has been proven to be unable to bind 

integrins and thus mammalian cells cannot attach due to the lack of adhesive cues from the 

FNIII7-10 fragment (Saadeddin, Rodrigo-Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 

2014, Hay, Rodrigo-Navarro et al. 2016). L. lactis could be seen to have formed stable 

biofilms at all-time points on the material surface (Figure 3.2A). Figure 3.2B shows the 

percentage of living bacteria calculated by analysing the total number of living cells (green) 

versus the total cell number, stated as living cells (green) plus dead cells (red) from Figure 

3.2A. Bacterial viability was constant at approximately 50 % after one week with the highest 

viability value found in the antibiotic free samples. After two weeks, viability was again 

seen to be similar between the sample sets, and had increased to approximately 55 %. After 

three weeks the viability for DMEM + P/S (44 %) was found to be significantly lower than 

in DMEM (63 %) and DMEM + TC (63 %). This difference was further confirmed by the 

four week result, again, the viability for bacteria grown in DMEM + P/S (47 %) was 

significantly lower than both the DMEM (81 %) and DMEM + TC (85 %) conditions. The 

data shown in Figure 3.2 initially suggests that viability increases as a function of time. It is 

apparent from Figure 3.3 that as time increases, the surface density of the biofilm decreases.  

Figure 3.3 shows the surface coverage of the biofilm in colony forming units. These graphs 

confirm what can be inferred from Figure 3.2A. After two weeks of culture, large portions 

of the biofilm begin to detach from the surface. Non-viable cells would detach from the 

surface, and the presence of antibiotic prevents further proliferation of the populations, thus 

increasing the ratio of viable to non-viable bacteria. However, it can be seen that after four 

weeks, bacteria are still present on the substrate surface with a similar morphology to those 

observed at shorter time points.  

 

 

 

Figure 3.3. Biofilm coverage after one, two, three and four weeks. Biofilm coverage was calculated as the 

percentage of the surface covered by bacteria, expressed as cfu (colony forming units) per square milimeter. We 

found that a large proportion of the biofilm had detached as the culture time increased, explaining the rise in 

viability found in Figure 3.2. This results suggests that biofilms produced on PEA, a hydrophobic polymer, can 

serve as a substrate for long-term stem cell culture. 10 images were quantified per condition from three technical 

replicates. Data is presented as mean ±  SD, and was analysed with a one way ANOVA test with a Tukey post-

hoc test. Statistical significance levels are *p < 0.05, **p < 0.01  and ***p < 0.001.   
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3.3.2 Cell adhesion and morphology 

Cell adhesion was assessed through scanning electron microscopy (SEM) and vinculin 

immunostaining. Firstly, C2C12 murine myoblast cells were seeded over L. lactis-empty, L. 

lactis-FN and FN coated glass for three hours. These experiments were completed in the 

absence of FBS (unless stated otherwise), to rule out the presence of any FN deposition from 

serum influencing the material surface, except for that displayed by L. lactis-FN or the FN 

coat. Figure 3.4 shows SEM images of C2C12s seeded over L. lactis-empty biofilms after 

three hours. It can be seen from this that cells remain in a rounded morphology, and show 

no protrusions or lamellipodia to attach to the surface.  

 

 

Figure 3.5 shows SEM images of C2C12 cells seeded over L. lactis-FN biofilms. It is 

instantly apparent from Figure 3.5A that cell morphology is drastically affected by the 

presence of the FNIII7-10 fragment in the bacterial cell wall. Cells can be seen to spread and 

form filopodia. Figure 3.5B is a magnified portion of 3.5A shown by the red square and 

shows a cellular protrusion over four bacteria. Figure 3.5C and 3.5D clearly show a filopodia 

like projection from the cell straight to the cell wall of a bacteria. This evidence suggests 

that the FNIII7-10 fragment available in the bacterial cell wall is able to induce cell adhesion.  

Figure 3.6 shows SEM images of C2C12 cells seeded over a FN coated glass coverslip after 

three hours. Again, the difference in morphology between these cells and the cells on the L. 

lactis-empty is clear (Figure 3.4). Cell morphology is similar between the FN coat and L. 

lactis-FN. These results support the work completed previously (Saadeddin, Rodrigo-

Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 2014). On the L. lactis-empty, no adhesion 

Figure 3.4. High magnification SEM images of C2C12 murine myoblasts seeded over L. lactis-empty after 

three hours. The mammalian cells can be seen as the larger spherical shapes, whereas the bacteria can be seen 

as clusters of smaller spheres. The mammalian cells can be seen as rounded forming no protrusions to the 

bacteria. Scale bar = 2 µm. 
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can occur as there are no proteins present that allow integrin interaction and thus the cells 

remain in a rounded morphology. On both the L. lactis-FN and FN coated surface, 

mammalian cell integrins can associate with the RGD domains of FN and spread.  

 

These images shown (Figures 3.4, 3.5 and 3.6) were taken after fixing the cells with 1.5 % 

glutaraldehyde/0.1 M sodium cacodylate buffer mix. It was noted that there was a major 

difference between these images and when the sample was viewed under the microscope 

before the fixation process, an extremely large proportion of bacteria had dissociated from 

the sample. The experiment was repeated and the fixation process was altered with the 

addition of 0.15 % alcian blue, a cationic fixative that allows for a higher degree of bacterial 

fixation (Erlandsen, Kristich et al. 2004). This allows us to have a more accurate 

representation of what was occurring on the coverslip. Figure 3.7 shows SEM images of 

C2C12 cells seeded over L. lactis-empty (A and B) and L. lactis-FN (C and D) after three 

hours. Figure 3.7A and 3.7C show low magnification images of the cellular interaction with 

Figure 3.5. Low (A and C) and high magnification (B and D)  SEM images of C2C12 murine 

myoblasts interacting with L. lactis-FN after three hours. (A). C2C12 cells are spread with a magnified 

region (red square) shown in B. This magnified image shows an extension of the cell on top of  four 

bacteria. (C). A region of a C2C12 cell with a filopodia like projection contacting the cell wall of a 

bacterial cell with a magnified region shown in D (red sqaure). These images confirm the presence of 

FNIII7-10 in the cell wall of the bacteria induce mammalian cell spreading and adhesion. Scale bar = 10 and 

2 µm for A and C respectively. 
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L. lactis-empty and L. lactis-FN respectively. Many more bacteria can be seen utilising this 

fixation method when compared with the previous method, even with the same seeding 

density. Figure 3.7B and 3.7D (larger image seen in Annex Figure 8.1) show high resolution 

images of the cellular interaction with L. lactis-empty and L. lactis-FN respectively. Figure 

3.7B shows four rounded C2C12 cells surrounded by bacteria, which is in stark contrast to 

the images shown in Figure 3.4. Figure 3.7D shows two spread C2C12 cells, again, 

surrounded by bacteria. The C2C12s fixed with this method can be seen to interact 

(highlighted with the red arrows, larger image found in Annex Fig 8.1) with many more 

bacteria than seen in Figure 3.5. Fixation with this method allows for a more representative 

image of what is occurring on the coverslip.  

MSCs ability to interact with L. lactis-FN compared to FN coated surface and L. lactis-empty 

were next assessed. MSC spreading after three hours was found to be directly related to the 

availability of FN to the MSCs. Figure 3.8 shows SEM images after three hours (without 

FBS) and 1 week (with FBS) of MSC culture. From these images, it became apparent that 

the FNIII7-10 fragment in the bacterial cell wall is essential to develop adhesion structures 

after three hours, since MSCs cultured on top of L. lactis-empty biofilms kept a rounded 

shape, with no sign of adhesion. The morphology of the MSCs on the FN coated surface and 

L. lactis-FN appear similar. It is clear that the initial cell interaction determines cell 

morphology and it is distinctly affected by the availability of the FNIII7-10 fragment on the 

bacterial cell wall. After one week, cell morphology on all surfaces becomes more similar. 

This is likely due to the addition of 1 % foetal bovine serum (FBS) to the culture media, 

which is necessary to ensure the viability of the MSCs in the long-term. 

Figure 3.6. Low magnification SEM images of C2C12 murine myoblasts seeded over FN coated glass 

after 3 hours. The cells can be seen to form a spread morphology, adhered to the surface. These cells 

strognly resemble the shape of the mammalian cells on the L. lactis-FN sample. Scale bar = 20 µm. 
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Figure 3.7. Low and high magnification SEM images of C2C12 murine myoblasts under alcian blue fixitive 

after 3 hours. Many more bacteria can be seen utilising this fixative when compared with the previous method 

giving a much more accurate representation of what is occuring on the coverslip. A and B represent cells on the L. 

lactis-empty(low and high magnification respectively) samples. C and D represent cells on the L. lactis-FN (low 

and high magnification respectively) samples. A larger picture of D can be seen in the Annex Figure 8.1. It can be 

seen in D that the cells have many more protrusion structures to bacteria (highlighted by the red arrows). Scale bar 

= 50 µm for A and C  and 10 µm for B and D. 
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After initial SEM studies, MSC adhesion was explored through vinculin immunostaining, a 

protein present in focal adhesion complexes (Humphries, Wang et al. 2007, del Rio, Perez-

Jimenez et al. 2009, Kanchanawong, Shtengel et al. 2010, Case, Baird et al. 2015). This 

experiment was completed to ascertain if there were any changes in focal adhesion 

complexes across the surfaces. Figure 3.9 shows vinculin staining on the surfaces after three 

hours and one day. After three hours, MSCs cultured on L. lactis-empty display a rounded 

morphology with no signs of adhesion, a result similar to SEM. Whereas MSCs cultured on 

the FN coated surface and L. lactis-FN display evidence of spreading and adhesion; the 

nascent focal adhesions could be seen at the edges of the cell lamellae (see arrows Figure 

3.9). After one day, cells on all surfaces have spread and adhered to the surfaces. The 

presence of vinculin on the L. lactis-empty is likely due to the addition of FBS to the media. 

FBS contains many proteins and molecules essential for long term cell culture such as, 

albumin, antichymotrpsin, apolipoproteins, biotin, and growth supporting factors, however, 

it also comprises many cell adhesive glycoproteins which become adsorbed to the sample 

surface (Hayman and Ruoslahti 1979, Zheng, Baker et al. 2006). Nevertheless, and more 

Figure 3.8. Morphological study of the hMSCs by SEM. MSC behaviour on the L. lactis-FN and L. 

lactis-empty biofilms, and FN-coated surface was assessed by scanning electron microscopy. Cells were 

cultured for three hours in absence of FBS and for one week with 1 % FBS, in this case to ensure cell 

viability. MSCs cultured for three hours on the L. lactis-empty biofilm kept a round shape, while in the 

L. lactis-FN and in the FN-coated surface showed adherence and spreading. On the other hand, in the 

one week cultures, due to the need to use FBS to ensure viability, cells showed an elongated shape with 

evidences of adhesion behaviour. Nevertheless, MSCs showed different features in the L. lactis-FN 

compared to the L. lactis-empty biofilm, this behaviour can be attributed to the presence of the III7–10  

fragment exposed on the L. lactis cell wall. Cells cultured on the FN-coated surface displayed higher 

proliferation ratios. Scale bar = 20 μm. 
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critically, MSCs cultured on the FN coat and L. lactis-FN displayed many more and more 

developed focal adhesions, which is highlighted by the larger dash morphology when 

compared against L. lactis-empty, where the adhesions are strictly punctate, dot shaped focal 

complexes.  

Focal adhesions were again explored after three and seven days (Figure 3.10A). All cells 

display adhesion complexes and a spread morphology, regardless of the sample surface. This 

may again be due to the presence of FN, amongst other adhesive proteins in the FBS (Taub 

1990). After cells become attached to a surface, they begin to secrete their own matrix, 

allowing other cells to migrate and grow. After three days, it can inferred from the graphs 

(Figure 3.10B) that the FBS, combined with the matrix secreted by the cells has allowed cell 

adhesion to become uniform across all sample sets. 

 

 

Figure 3.9. Adhesion assessment of hMSCs cultured on L. lactis-empty, L. lactis-FN and FN-coated 

surface. Cells were cultured for three hours in absence of FBS and one day with 1 % FBS with an initial 

density of 5,000 cells/ cm2. After selected times, cells were fixed and immunostained against vinculin (red) 

and DAPI (blue). MSCs cultured for three hours in the L. lactis-empty biofilm showed no sign of adhesion, 

keeping a round shape, while in the L. lactis-FN and FN surfaces there is evidence of spreading and 

adhesion, although focal adhesion complexes are not fully developed. After one day, there are focal 

adhesion (FA) complexes in the three different conditions; the presence of FA in cells cultured on L. lactis-

empty biofilm is most probably due to the presence of FBS in the medium. Cells cultured on the L. lactis-

FN biofilm and FN-coated surface displayed more developed FA complexes compared to L. lactis-empty 

biofilm, suggesting that the already present fibronectin in the surface (either on the L. lactis cell wall or 

grafted on the surface) enhances the development of this FA complexes. Scale bar = 50 μm. 
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Figure 3.10. Long term focal adhesion analysis. Image A shows focal adhesion analysis performed on 

MSCs after three and seven days of culture on L. lactis-empty, L. lactis-FN and FN coated glass. MSCs 

were cultured in DMEM supplemented with 10 µg/mL tetracycline and 1 % FBS and after the selected time 

points, fixed and immunostained for vinculin (red), while nuclei were stained with DAPI (blue). A 

minimum of 12 individual, isolated cells per condition were analysed to check area and number of focal 

adhesion complexes. The graphs in B show that there is no difference between focal adhesion distribution 

between time, nor surfaces, probably due to the fact that the FBS added to the cell culture medium is 

helping in the initial adhesion steps, via fibronectin, vitronectin and collagen present in the serum. After 

this initial adhesion, MSCs start to secrete their own ECM proteins, leading to a very similar behavioural 

profile across the sample sets. A minimum of 24 cells were used per condition from three technical 

replicates. Data was analysed with a one way ANOVA test with a Tukey post-hoc test. No statistical 

differences were seen.  Scale bar = 50 μm. 



55 

 

After vinculin staining, a more specific staining for integrins was completed. Figure 3.11 

shows integrin (α5, β1 and αvβ3) staining of MSCs on differently functionalised glass 

coverslips after 75 minutes. 75 minutes was chosen as a time point as after this time, the 

cells begin to secrete their own matrix and integrin binding begins to become more uniform 

(Sternlicht and Werb 2001). This experiment was set up to highlight if the FNIII7-10 

expressing strain engages α5β1 compared to αvβ3. This is due to the fact that our FNIII7-10 

fragment houses PHSRN and RGD, which is thought to be essential for α5β1 binding (Ebara, 

Yamato et al. 2008). 

As can be seen from Figure 3.11 the samples that display no FN (no FN coat and L. lactis-

empty) show rounded cells, indicative of no adhesion. Cells seeded upon coverslips 

functionalised with either a FN coat or FNIII7-10 expressing L. lactis are spread, with good 

integrin staining in all channels. It is apparent that αvβ3 staining is higher on the FN coat 

than in L. lactis-FN as can be seen in the graphs in Figure 3.12. The α5 and β1 channels on 

the L. lactis-FN confirm good co-localisation of these integrin subunits, which can be seen 

in the composite images. Focal adhesion structure can be seen to be distinctly different in 

the FN positive and negative samples. In the FN positive samples, integrin structures are 

seen to be much larger and more numerous as can be seen by the dashed morphology. 

Conversely, the samples without FN display structures that are dot shaped and more 

punctate. These results are highly similar to the three hour vinculin staining shown 

previously (Figures 3.9 and 3.10).  

The number of unique focal adhesions, integrin area per cell and average integrin cluster size 

in MSCs was calculated from the images analysing 16 cells per condition. The samples on 

surfaces with no FN are not shown for average integrin cluster size as upon quantifying the 

samples, it became apparent that the low number of focal adhesions relative to integrin area 

per cell resulted in an extremely high average integrin size per cell. As can be seen from 

Figure 3.12A, the number of unique focal adhesions per cell is greatly increased on the FN 

coated surfaces when compared against surfaces without FN. In the L. lactis-FN sample, α5 

shows the highest number of unique adhesion structures, whereas on the FN coat, αvβ3 

shows the highest number of adhesions. Figure 3.12B displays the average integrin area per 

cell and shows that cells on surfaces without FN have a much lower total integrin area than 

FN functionalised surfaces with α5 having the highest area per cell in L. lactis-FN. 

Conversely, integrin area is almost uniform across α5, β1 and αvβ3 on the FN coat. Most 

interestingly, L. lactis-FN displays a similar integrin area per cell for αvβ3 to the non-FN 

expressing cells. Figure 3.12C displays the average integrin size. It can be noted that average 
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integrin cluster size was highest on the FN coat. Integrin cluster size on the FN coat is fairly 

uniform with α5, β1 and αvβ3 all displaying similar areas with no statistically significantly 

different focal adhesion sizes. Contrariwise, on the L. lactis-FN samples, αvβ3 shows the 

smallest integrin size with α5 and β1 being roughly equivalent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Immunofluorescent images of MSCs stained for integrin α5, β1 and αVβ3. Cells 

were fixed 75 minutes after seeding. Images were taken at 63x, from top to bottom, no FN coat, L. 

lactis empty, FN coat and L. lactis-FN and from left to right, composite image, α5, β1 and αVβ3. 

Cell spreading was seen in all FN samples. Scale bar = 50 µm. 
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The differences in integrin binding between the FN coat and L. lactis-FN may be explained 

by the structure of FN and how integrins interact with FN. L. lactis-FN only displays FNIII7-

10 which houses the RGD and PHSRN motifs whereas the FN coat displays the whole 

molecule. On the FN coat, average focal adhesion area is seen to be higher for all integrins 

than for L. lactis-FN showing that the natural protein is able to induce a better cell response. 

There is a statistically significant difference between αvβ3 and α5 on the L. lactis-FN 

whereas there is no difference on the FN coat. This difference in integrin binding on L. lactis-

FN could be due to the binding of α5β1 to RGD in the presence of PHSRN when there is an 

absence of the whole FN protein. This data describes a preferential binding of α5β1 over 

αvβ3 for MSCs seeded over L. lactis-FN. 

 

3.3.3 Mesenchymal stem cell differentiation 

 

Immunohistochemistry 

 

BMP-2 was used to determine the ability of the biofilm to sustain MSC differentiation 

towards an osteoblastic phenotype. The bone specific proteins osteocalcin (OCN), 

osteopontin (OPN) as well as phosphate deposition (von Kossa) as part of matrix 

mineralisation were used to determine the reaction of MSCs to the addition of 100 ng/mL 

BMP-2. Figure 3.13 shows OCN staining after 21 days. Cells were cultured on FN coated 

glass as a control, and L. lactis-FN. Samples treated with 100 ng/mL BMP-2 show 

statistically significantly more OCN than non-treated samples by factors of 7.6 and 3 on the 

Figure 3.12. Graphs detailing integrin adhesion after 75 minutes. Graphs were constructed from 16 

pictures per sample. A = Number of unique focal adhesions, B = integrin area per cell and C = Average 

integrin size. Cells seeded over non-FN samples show low adhesion number and integrin area, conversely, 

cells on FN samples show more and larger adhesion structures. Cells on L. lactis samples do not use αvβ3 as 

regularly as on a FN coated surface. A minimum of 16 cells were analysed per condition from three technical 

replicates. Data is presented as mean ± SD, and was analysed with a one way ANOVA test with a Tukey 

post-hoc test. * p < 0.05, ** p < 0.01 and **** p < 0.0001. 
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FN coated surface and the L. lactis-FN surfaces respectively as can be seen in Figure 3.13A.  

Moreover, both samples with added BMP-2 were found to be statistically similar (p < 0.05). 

Both samples with added BMP-2 showed high variance in the data as seen by the large error 

bars. Upon viewing the cells under fluorescence microscopy, it became apparent that some 

cells showed high amounts of OCN whereas some cells showed very little or no stain 

whatsoever (as shown in Figure 3.13A), this is the cause of the high standard deviation 

shown in Figure 3.13B. This could also be caused by undesired differentiation of the MSCs 

as well as ‘stemness’ retention as these cells would not produce any OCN. Standard 

deviation was low across the samples with no BMP-2 addition showing similar results were 

found in all replicates. These results demonstrate that the biofilm can sustain MSC 

differentiation.  Figure 3.13C shows the number of cells per coverslip. Samples without 

added BMP-2 showed higher cell numbers in both sample sets. The cell count on the biofilm 

was found to be higher than on the FN in both the BMP-2 positive (statistically significant 

p < 0.05) and negative media (p < 0.001). This is likely caused by cell cycle inhibition. In 

terminal somatic cell culture models, inhibition of the cell cycle is usually a requisite for 

differentiation, and vice versa (Lathrop, Thomas et al. 1985, Budirahardja and Gonczy 2009, 

Hindley and Philpott 2012). By adding a growth factor to the medium, we can pull the cells 

from the cell cycle and hence proliferation, and force them to enter terminal differentiation.  

Figure 3.14 shows OPN staining after 21 days. Cells were cultured on FN coated glass and 

L. lactis-FN, both with and without 100 ng/mL BMP-2. More OPN was found in the BMP-

2 positive samples on both substrates, by a factor of 1.6 (statistically significant p < 0.01) 

and 1.1 (not statistically significant) for the FN coated glass and L. lactis-FN respectively as 

can be seen in Figure 3.14B. The differences in expression of OPN compared to OCN are 

not as striking, but do give a positive result. The fact that all cells are seen to express OPN 

(green area surrounding the nucleus) shows that all cells have begun differentiation towards 

an osteoblastic phenotype, this may be a phenomenon of the surface characteristics, and 

stiffer surfaces favour osteoblastic differentiation (Engler, Sen et al. 2006). The fact that 

BMP-2 addition only increases differentiation levels leads us to the conclusion that the 

growth factor is indeed responsible for the additional differentiation. 
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Figure 3.13. Osteocalcin and cell count after three weeks of culture. A. Cells stained for osteocalcin 

(green), actin (red) and DNA (blue) from left to right: FN 0 ng/mL BMP-2, FN 100ng/mL BMP-2, L. 

lactis-FN 0 ng/mL BMP-2 and L. lactis-FN  100 ng/mL BMP-2. B. Graph shows OCN area per cell ± 

standard deviation of the sample sets (460, 269, 452 and 386 cells respectively). Total integrated density 

corresponding to the green channel (osteocalcin) was quantified using ImageJ. C. Graph shows MSCs 

per coverslip ± standard deviation of the sample sets (2226, 1684, 2639 and 2295 cells respectively) 

from three technical replicates. OCN expression was much higher on the samples with added BMP-2. 

Data is presented as mean ± SD and analysed with a one way ANOVA with a Tukey post-hoc test, * p < 

0.05, ** p < 0.01 and *** p < 0.001. Scale bar = 50 µm. 
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Figure 3.14. Osteopontin production by cells. A. Cells were grown for three weeks and stained for 

OPN (green), actin (red) and the nucleus (blue), the top row shows MSCs grown on FN coated PEA 

glass coverslips, the bottom row shows MSCs grown on L. lactis-FN PEA glass coverslips. The first 

column denotes 0 ng/mL BMP-2 and the second with 100 ng/mL BMP-2. B. Graph shows OPN area per 

cell ± standard deviation of the sample sets (572, 347, 562 and 402 cells respectively) from three 

technical replicates. OPN expression was roughly equivalent across sample sets, with the exception of 

FN + 100 ng/mL BMP-2 where more OPN was observed. Data is presented as mean ± SD and was 

analysed with a one way ANOVA test with a Tukey post-hoc test. Statistical significance levels are *p <  

0.05, **p < 0.01.  Scale bar = 100 µm. 
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In addition to differentiation, it was important to check whether the bacteria were still present 

after three weeks of co-culture. Figure 3.15 shows that the biofilm is still visible and marked 

as purple dots, with the MSC nuclei in blue. It is abundantly clear that the bacterial density 

is lower than at the beginning, where the coverage can be as high as 27%, but in this case in 

particular, where L. lactis is providing only the adhesion cue, the importance of the biofilm 

is less essential than the differentiation cues provided by the BMP-2 supplemented in the 

medium. Further to this, the sample preparation involved in immunohistochemistry staining 

washes out a large proportion of the bacteria.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Matrix mineralisation 
 

 

A third population of MSCs were grown for 28 days before analysing phosphate deposition 

shown in Figure 3.16. Matrix mineralisation was assessed via a von Kossa stain. Active 

osteoblasts deposit phosphate as a primary step of bone development and is therefore 

suggestive of terminal osteogenic differentiation. As can be seen from Figure 3.16, little 

phosphate deposition has been observed in the BMP-2 negative samples. In comparison, 

distinctly more phosphate (black deposits highlighted by red arrows) could be found in the 

BMP-2 positive samples thus showing that mineralisation of the ECM has occurred, a 

prerequisite for successful bone formation.  

Together, the results confirm the ability of the living interface to support long-term MSC 

viability and trigger functionality, including mature differentiation with deposition of 

mineralised matrix.  

 
 

Figure 3.15. Cell and bacterial coverage after 3 weeks. Reconstructed DAPI images from left to right, 

cells were cultured on a FN-coated surface with and without BMP-2 at 100 ng/mL and on L. lactis-FN 

biofilm, again with and without BMP-2 at 100 ng/mL. Mammalian cell nuclei are seen in blue and bacterial 

DNA are seen in purple. Mammalian cells can still be seen after 3 weeks in co-culture with bacterial cells.  

Scale bar = 50 µm. 
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Gene expression analysis 

A fourth population of MSCs were grown at 20,000 cells per cm2 for 14 days on FN and L. 

lactis-FN with and without 100 ng/mL BMP-2. Cells were grown in the same medium as 

previous experiments; however, the number of cells was increased to aid in the harvesting 

of enough RNA for qPCR analysis.  The gene expression profiles of MSCs after two weeks 

of culture are shown in Figure 3.17 (normalised to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH)). The most notable difference can be seen between the BMP-2 

A B 

C D 

Figure 3.16. Extracellular matrix mineralisation. Mineralisation (phosphate deposition) was 

assessed with a von Kossa stain. MSCs were cultured for 28 days on a surface coated with FN (top 

row) and on L. lactis-FN biofilms (bottom row). After staining, cells were imaged in a Zeiss 

AxioObserver Z1 microscope using phase contrast. Cultures treated with BMP-2 showed black areas 

corresponding to phosphate deposits produced by the MSCs, while in the untreated cultures there is no 

evidence of mineralization. Scale bar size is 300 μm. 
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positive and BMP-2 negative samples in which the expression of the ‘stemness’ markers 

ALCAM and CD63 are down-regulated in comparison with the BMP-2 negative samples. 

This illustrates the reduction in the expression of ‘stemness’ related mRNA and thus a 

decrease in protein expression therefore altering the cells behaviour and consequently, 

phenotype.  

However, the expression of the osteogenic markers OPN and OCN display a similar 

expression level. After two weeks of culture, these markers are expected to be upregulated 

in an osteogenic culture (Yang, McNamara et al. 2014). Lian and Stein et al. described 

different markers of osteogenesis at differing time points, and OCN and OPN are shown as 

later markers (three or four weeks as opposed to two used in the experiment) (Stein, Lian et 

al. 1990). However, compounded with the previous histological and matrix mineralisation 

results, showing a large increase in OCN levels after three weeks and phosphate deposition 

after four weeks under the same conditions, it seems sensible to assume osteogenic 

differentiation has occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Gene expression analysis of MSCs after 14 days. From left to right, cells were cultured on 

a FN-coated surface with and without BMP-2 at 100 ng/mL and on L. lactis-FN biofilm, again with and 

without BMP-2 at 100 ng/mL. The gene expression has been normalised to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH).The most notable difference can be seen in the self-renewal genes, ALCAM 

and CD63 where their expression is downregulated in the BMP-2 positive samples. Three technical 

replicates were used per condition. Data is presented as mean ± SD and was analysed with a two way 

ANOVA with a Tukey post-hoc test. No statistical differences were found. 
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3.4 Discussion 
 

In vivo, adult stem cells survive within a specialised environment known as the niche (Yin 

and Li 2006, Li and Clevers 2010). The niche is made up of both cellular and non-cellular 

components, including resident stem cells, support cells, and the ECM that, together, 

regulate stem cell self-renewal (Engelhardt 2001, Yin and Li 2006, Xie 2008, Li and Clevers 

2010, Mendez-Ferrer, Michurina et al. 2010). Once these cells are removed from their 

natural environment and placed on tissue culture plastics, which are distinctly different from 

the in vivo niche, MSCs begin to spontaneously differentiate into a heterogeneous population 

of mainly fibroblasts (Papadimitropoulos, Piccinini et al. 2014). This is undesirable for tissue 

engineering and provides a large obstacle in regenerative medicine.  

Previous attempts at synthesising a dynamic niche for MSC proliferation and differentiation 

include the functionalisation of material surfaces with cell adhesive motifs, or incorporating 

protease degradable fragments in polymer hydrogels that allow changes in the material 

structure as cells secrete proteases to remodel the ECM (Garcia, Vega et al. 1999, Todd, 

Scurr et al. 2009, Khetan, Guvendiren et al. 2013). Dynamic surfaces have also been 

engineered to present cell adhesive RGD domains on demand (Todd, Scurr et al. 2009, 

Zelzer, Scurr et al. 2012, Weis, Lee et al. 2013, Roberts, Sahoo et al. 2016). In addition to 

adhesion, the dynamic release of growth factors in a controlled way to support cell 

differentiation have been tested (Lutolf and Hubbell 2005, Ma 2008, Makarenkova, Hoffman 

et al. 2009, Moon, Hahn et al. 2009, Silva, Richard et al. 2009, Phelps, Landazuri et al. 

2010).  

As seen in previous publications (Rodrigo-Navarro, Rico et al. 2014, Hay, Rodrigo-Navarro 

et al. 2016), a system has been proposed where mammalian cells can survive and 

differentiate on engineered non-pathogenic bacteria. This genetically engineered strain of L. 

lactis, a food grade, gram-positive bacterium with very low production of lipopolysaccharide 

(LPS) has been modified to present a fibronectin fragment (III7-10) tethered to its 

peptidoglycan layer by the Staphylococcus aureus protein A, making it available for 

mammalian cell integrins. This fragment houses the RGD and PHSRN synergy sequences 

which promotes cell adhesion and differentiation (Aumailley, Gurrath et al. 1991, Dsouza, 

Ginsberg et al. 1991, Salmeron-Sanchez and Dalby 2016). We have shown that this FNIII7-

10 fragment can induce adhesion in a variety of cell lines including NIH3T3, C2C12 and 

MSCs, and that the intracellular cascades activated are the same as when the cells are seeded 
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over FN coated glass (Saadeddin, Rodrigo-Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 

2014).  

The FNIII7-10 fragment contains the RGD adhesion and the PHSRN synergy motifs. RGD 

interacts with a wide variety of integrins, however, when combined with the synergy motif, 

a specific interaction with integrin α5β1 is able to occur. Signalling initiated with this 

specific integrin has been linked to enhanced osteogenic differentiation in MSCs (Agarwal, 

Gonzalez-Garcia et al. 2015). In addition to FNIII7-10, the known osteoinducer BMP-2 has 

also been used. The combination of FNIII7-10 expressed in the bacterial cell wall and BMP-

2 added to the culture media has proven an effective means of inducing osteoblastic 

differentiation in MSCs.  

This bacterial strain produces stable biofilms that allow us to co-culture mammalian cells. 

The formation of the biofilm begins when individual bacteria begin to adhere to the surface. 

This process is governed by weak non-specific forces such as Van der Waals and polar Lewis 

acid-base interactions (Nishiyama, Sugiyama et al. 2016). This is an initial adherence, and 

can easily be reversed. Bacterial cells can increase their adherence through the use of cell-

wall anchored proteins (CWAPs), these are also known as adhesins. L. lactis has several 

prominent anchor proteins, the most notable being CluA (Godon, Jury et al. 1994, Stentz, 

Jury et al. 2004) sex factor and the PrtP and NisP proteinases (Godon, Jury et al. 1994, 

Habimana, Le Goff et al. 2007, Giaouris, Chapot-Chartier et al. 2009). The required force to 

detach the bacteria from the surface is increased and allows for more bacteria to co-aggregate 

to the existing ones. The adhesins act by actively remodelling the bacterial surface and lead 

to the irreversible attachment to the surface. A bacterial community is now established and 

the bacteria can proliferate and develop the biofilm. L. lactis is a bacterial species that 

produces a low amount of exopolysaccharide and therefore their biofilms usually show a 

monolayered morphology, lacking the stratified structure found in many other species 

(Gulot, Georges et al. 2002, Habimana, Meyrand et al. 2009, Saadeddin, Rodrigo-Navarro 

et al. 2013). 

Previously, L. lactis biofilms were developed on glass, a hydrophilic surface, and were found 

to be stable for at least four days in co-culture with mammalian cells (Pittenger 2008). As 

our experiments were running for four weeks (28 days), it was essential to select an 

appropriate surface to allow stable bacterial attachment for the time course. A stronger 

interaction was needed between the biofilm and the underlying surface. To allow for this, a 

change in material was needed. Surface hydrophobicity plays a role, as is explained by the 

XDLVO theory (Bayoudh, Othmane et al. 2009) and therefore a switch to a more 
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hydrophobic surface was chosen, more specifically,  poly (ethyl acrylate) (PEA), spin coated 

onto glass coverslips to form a thin layer. PEA is a hydrophobic, non-biodegradable 

synthetic polymer that showed excellent adhesive properties for L. lactis. Glass covered with 

this polymer were found to support good bacterial viability, similar to those found on glass 

at shorter time points. Moreover, these biofilms were found to be stable for at least 28 days, 

even in the presence of the bacteriostatic antibiotic TC. TC was used to impede bacterial 

metabolism and prevent acidification of the medium, enabling survival of the mammalian 

cells. The basis of using PEA as an alternative to glass is due to the interaction between the 

bacterial cell wall and the surface. Our L. lactis strain MG1363 and NZ9000 are derivatives 

of the subspecies cremoris TIL672 which feature hydrophobic surfaces (Giaouris, Chapot-

Chartier et al. 2009). Observations had been made on many occasions, that when this strain 

is grown in M17 media, they tend to aggregate together to form chains, indicative of its 

hydrophobicity. The XDLVO theory describes the interaction in terms of free energy of the 

interacting surfaces (Bayoudh, Othmane et al. 2009). The interaction is not distant dependent 

and hydrophobic surfaces interact better together than hydrophobic-hydrophilic. A practical 

explanation at the molecular level is that the interaction between two apolar moieties 

immersed in water is the consequence of the hydrogen bonding energy of cohesion of the 

water molecules surrounding them. Therefore, the use of a hydrophobic surface is better 

suited to support biofilm development, at least with this strain. For other strains, an 

evaluation of their hydrophobicity should be completed to optimise and improve biofilm 

development.  

The combination of these factors, that is, improved biofilm stability, the bacterially 

expressed FNIII7-10 compounded by its integrin related signalling and BMP-2 induced 

phenotypical change lead to improved osteogenic differentiation in MSCs when compared 

to FNIII7-10 signalling alone.  
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3.5 Conclusion 
 

This chapter has shown that engineered bacteria can be used as an interface between a 

synthetic surface and mammalian cells to control adhesion and sustain differentiation. 

Firstly, conditions were optimised to maintain stable biofilms for up to four weeks to allow 

terminal MSC differentiation. More specifically, there is very little difference between a 

fibronectin coated surface and our modified bacteria in terms of adhesion and differentiation 

and that the bacteria holds an advantage over a simple fibronectin coat, in that it can be 

further modified to produce a superfluity of proteins or growth factors that can be used to 

alter and direct cell fate. This is advantageous over current systems in that the bacteria can 

be controlled to express proteins in a spatiotemporal manner; something that is currently 

unavailable in the literature. We aim to control the interface to allow MSC self-renewal and 

differentiation, which can then be applied to aid in many strategies to promote tissue repair 

and regeneration.  
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4. Lactococcus lactis cloning and 

characterisation 
 

 

 

 

Summary 

This chapter focusses on the cloning of bone morphogenetic protein 2 (BMP-2) into the 

relevant plasmids and their transformation into Lactococcus lactis.  Both constitutive and 

inducible expression of BMP-2 was completed and characterised by fusing the biologically 

active protein to GFP or a hexahistidine tag. The well characterised nisin controlled gene 

expression system was used to control temporal induction of BMP-2 and FNIII7-10 fragments. 

The results demonstrate that the new L. lactis is viable and can display BMP-2 and FNIII7-

10 in an inducible fashion. 
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4.1 Introduction 
 

Microbes are ever present in the surrounding environment and are postulated to have been 

present on earth for 2 billion years before any other living organism (Corliss 1975). They 

are as such, ubiquitous and have colonised a vast array of environments including the living 

bodies of most, if not all living organisms (Sagan 1967), have formed colonies on land and 

in the deepest oceans, can be found in arctic ice and hot springs, and even in the stratosphere 

(Ferris, Muyzer et al. 1996, Huston, Krieger-Brockett et al. 2000, Wainwright, 

Wickramasinghe et al. 2004, Hazen, Dubinsky et al. 2010). Bacteria were first witnessed by 

Anton van Leeuwenhoek in the mid-17th century and since, have become extensively studied 

(Lane 2015).  

Since their discovery, it has been proven that microbes play a significant role in the lifestyle 

and industry of humans. Some cause disease in humans and animals, initiating an economic 

burden as well as affecting health. On the contrary, some bacteria have proved very useful 

in industry, particularly in the petroleum, agriculture and food industries. These ‘useful’ 

bacteria, that is, the ones that are not pathogenic, can be exploited to provide beneficial 

outcomes, both in health and in industry. This idea of exploitation is not new, some of the 

earliest biotechnology used prokaryotes in the production of cheese, bread and yoghurt. 

Cheese production is thought to have originated sometime between 4000-7000 years ago, 

and thus biotechnology was being used long before the term was coined (Campbellplatt 

1994).  

The arrival of molecular and synthetic biology has rapidly revolutionised microbiology, 

through the use of recombinant strains and has opened new possibilities for industry and 

medicine. The first documented experiments using foreign DNA was in 1944, where DNA 

from the bacterium Streptococcus pneumonia was found to transfer to a genetically different 

bacterium and its subsequent recombination into the host-cell genome (Avery, Macleod et 

al. 1944). Ensuing studies substantiated that genetic alteration of a recipient cell can be due 

to the uptake of exogenous extrachromosomal DNA such as plasmids.  

Plasmids are defined as extrachromosomal genetic elements capable of stable autonomous 

replication in a cell and were first introduced by the molecular biologist Joshua Lederberg 

in 1952 (Lederberg and Lederberg 1952). Usually, bacterial plasmids are initially recognised 

by the phenotypic properties they confer on a cell, for example, the ability to promote genetic 

transfer by conjugation, resistance to drugs and some metal ions, and production of antibiotic 

proteins and toxins. They are typically smaller in size compared to the genome, but a 
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bacterium can contain hundreds or thousands of copies of the plasmid (copy number). Many 

beneficial characteristics have been engineered into plasmids, which allow the user to 

convey wanted phenotypes to the cell (Debruijn and Lupski 1984). Microbiologists can 

insert genes, operons or cassettes that give a selective advantage to the host bacterium, often 

an antibiotic resistance, which allows the selection of the bacterium harbouring the 

favourable plasmid against the wild type species (Laddy and Weiner 2006). Many positive 

uses of bacteria have originated through plasmid engineering, such as lactose fermentation 

(Efstathiou and McKay 1977), proteinase activity (Efstathiou and Mckay 1976) and 

bacteriophage resistance (Labrie, Samson et al. 2010), amongst many others. Conversely, 

numerous pathogenic and toxin producing strains harbour their virulence factors on plasmids 

(Evans, Silver et al. 1975). Scientists can exploit the genetic machinery of bacteria as 

plasmid vectors allow the delivery of foreign DNA into a cell, to be replicated and 

maintained in the new host. As such, recombinant DNA technology relies on the alteration 

of plasmids. We can design plasmids that produce therapeutically advantageous or 

industrially relevant proteins to combat their associated problems.  

More specifically, lactic acid bacteria (LAB), such as Lactococcus lactis have a long history 

of benevolent use by humans. They have been used in food production and as probiotics 

agents to promote human wellbeing (Cano-Garrido, Seras-Franzoso et al. 2015). Some 

species of LAB, including L. lactis are generally regarded as safe (GRAS) by the US Food 

and Drug Administration (FDA) and fulfil criteria of the qualified presumption of safety 

(QPS) according to the European Food Safety Authority (EFSA). Besides their characteristic 

safety, a great effort has been put toward developing effective molecular tools to use LAB 

as cell factories for the production of proteins of interest. The lack of effective approaches 

for regenerative medicine has driven the way for LAB to become an appealing option for 

biologists to deliver therapeutic molecules to sites of interest. These bacteria have already 

been used as vectors for delivering functionally active proteins to mucosal tissues for the 

treatment of gastrointestinal diseases, diabetes, cancer and viral infections (Steidler, Wells 

et al. 1995, Steidler, Viaene et al. 1998, Schotte, Steidler et al. 2000). A distinctive advantage 

of LAB over current technologies is the significant decrease in the cost of treatment. These 

are living organisms and as such would be able to autonomously replicate and synthesise the 

proteins of interest at the site of delivery.  

A novel system has been created where mammalian cells directly interact with L. lactis 

through a fragment of fibronectin (FNIII7-10) (Saadeddin, Rodrigo-Navarro et al. 2013, 

Rodrigo-Navarro, Rico et al. 2014, Hay, Rodrigo-Navarro et al. 2016). Further to this, these 
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bacteria can be further modified to allow the production of a potent osteogenic growth factor, 

bone morphogenetic protein 2 (BMP-2) in a variety of forms. The direct contact of 

mesenchymal stem cells (MSCs) with L. lactis through the FNIII7-10 fragment will allow the 

precise delivery of BMP-2 directly to the cells. This combination of cell adhesion and growth 

factor delivery is hypothesised to allow a currently unmet differentiation platform for MSCs. 

This, compounded by the presence of inducible plasmids allows the user to control the exact 

amount of growth factor delivery and adhesion to tailor exact MSC differentiation.  
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4.2 Materials and Methods 
 

4.2.1 Cloning 

 

A summary of the cloning procedure is as follows: 

The plasmid pGEM-T-BMP2, shown in Figure 4.1 was purchased from Sino Biological and 

transformed into E. coli. The biologically active part of the BMP-2 preprotein was isolated 

and amplified by PCR from the plasmid after miniprep and cloned into pT1NX, between the 

usp45 secretion peptide and spaX anchor protein. Depending on whether we wanted cell wall 

bound or secreted expression, the spaX was either made part of the open reading frame or a 

stop codon was placed before the spaX gene. The plasmids were created using Gibson 

Assembly and were transformed into electrocompetent L. lactis with exact methods 

described below.  

The primers used to isolate the biologically active form of BMP-2 from pGEM-T-BMP2 

(Figure 4.1) are shown below:  

 

Table 4.1. Isolation of BMP-2 from pGEM-T-BMP2. 

 

 

 

 

 

 

 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

BMP-2 Forward ‘GTCAGGTGTTTACGCCCAAGCCAAACACAAA

CAGC’ 

 62.4 °C 

BMP-2 Reverse ‘TCTTCCTCTTTTGGATCCTAGCGACACCCACA

ACC’ 

 62.4 °C 
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4.2.2 Transformation of chemically competent Escherichia coli (E.coli) 

 

Firstly, agar plates and media were prepared for E.coli from Luria-Bertani (LB) media which 

contains: 10 g/L tryptone, 10 g/L NaCl and 5 g/L yeast extract, for plates, 1.5 % agar was 

added (Sambrook 2001). After sterilisation by autoclaving, 100 µg/mL ampicillin for 

pGEM-T (Sino Biological) was added. 100 ng of the plasmid pGEM-T-BMP2 was 

transferred into NEB 5-alpha competent E. coli (high efficiency) cells and incubated on ice 

for 30 minutes. These were then heat shocked at 42 °C for 30 seconds then placed on ice for 

5 minutes. 950 µL of Super Optimal broth with Catabolite repression (SOC) was added and 

the cells were incubated at 37 °C for 1 hour at 250 rpm before being spread on agar plates 

and incubated overnight at 37 °C. These transformed cells were then inoculated in LB media 

and left to grow overnight at 37 °C.  A glycerinate was prepared by adding 15% v/v of sterile 

glycerol to the bacterial culture and then stored at -80 °C for further work.  

Figure 4.1. Schematic representation of the commercially available pGEM-T-BMP-2 used in this 

thesis. 

http://en.wikipedia.org/wiki/Catabolite_repression
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4.2.3 E. coli culture 

 

Escherichia coli is a gram-negative aerobic strain which grows in Luria Broth, composed of 

10 g/L tryptone, 5 g/L NaCl and 10 g/L yeast extract. This media is then sterilised at 126 °C 

for 30 minutes. E. coli has an optimal growth temperature of 37 °C with shaking, in aerobic 

conditions (open container). The agar plates were prepared by adding 1 % w/v of agar, 

sterilising at 126 °C for 20 minutes and pouring into Petri dishes supplemented with the 

appropriate amounts of antibiotic when needed. Freshly prepared LB agar plates can be 

stored at 4 °C for several weeks in closed containers. 

 

4.2.4 Plasmid isolation from E.coli 

 

Bacteria were lysed using the manufacturer’s guidelines (GenElute HP Five-Minute Plasmid 

Miniprep Kit, Sigma Aldrich). Briefly, 40 µL lysis reagent was added to 400 µL of overnight 

culture in a collection tube and mixed thoroughly before a 2 minute incubation at room 

temperature. 500 µL of column preparation solution were centrifuged at maximum speed for 

15 seconds to prepare the columns, discarding the flow-through. 400 µL of binding solution 

was added to the lysate and mixed by inverting at least 15 times. This mixture was then 

transferred to a prewashed binding column and centrifuged for 20 seconds, the flow through 

was discarded. The column was twice washed using 700 and 200 µL of washing buffer and 

centrifuged for 20 and 30 seconds respectively, also discarding the flow-through. Finally, 40 

µL of water was used to recover the plasmid DNA, by centrifugation at maximum speed for 

30 seconds and the plasmid was stored at -20 °C. All centrifugation steps were completed at 

maximum speed, usually 20,000 g.  

4.2.5 Plasmid purification 

 

Post miniprep and PCR, plasmid purification is necessary to remove salts and left over 

nucleotides and leave pure plasmid for downstream experiments. The PureLink Quick Gel 

Extraction and PCR Purification Combo Kit from ThermoFisher was used following the 

manufacturer’s guidelines.  Briefly, columns were prepared by incubating 500 µL 10 % HCl 

for 5 minutes before 3 washes with 650 µL of nuclease-free water being centrifuged through 

the column at 16,000 g for 30 seconds. Four volumes of binding buffer was added to the 

PCR mix and loaded into the spin columns and centrifuged for 1 minute at 10,000 g. The 

flow through was discarded and 650 µL of wash buffer was added to the column before 

spinning for 1 minute at 10,000 g. The flow through was discarded and the column was then 
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centrifuged at maximum speed for 3 minutes. The column was then placed in a new 

collection tube and 40 µL of nuclease-free water was added to the column and left to incubate 

for 2 minutes. This was then centrifuged at maximum speed for 1 minute and the DNA 

product collected and stored at -20 °C until use.  

4.2.6 Preparation of L. lactis electrocompetent cells 

 

2 mL culture of L. lactis was grown overnight in M17 medium supplemented with 1 % 

glycine and inoculated into 200 mL of fresh M17 with 1 % glycine and grown at 30 °C. Once 

the culture had reached an optical density (OD) of 0.6-0.8 at 660 nm the cells were harvested 

by centrifugation at 3000 g for 10 minutes at 4 °C. This pellet was then washed 3 times in a 

sterile ice-cold solution of 10 % v/v glycerol and 0.5 M sucrose in ultrapure water. The cells 

were then resuspended in 1 % of the same wash solution and aliquoted at volumes of 50 µL, 

flash-frozen in liquid nitrogen and stored at -80 °C. Cells stored at this temperature are able 

to keep their electrocompetency for approximately 6 months.  

4.2.7 Polymerase chain reaction (PCR)  

 

PCR reactions were carried out on a ThermoFisher ProFlex PCR System (ThermoFisher) 

using Q5 High-Fidelity DNA Polymerase (New England Biolabs). 

PCR programs were set up as shown: 

1. 1st denaturation step: 2 minutes at 95 °C 

2. 35 amplification steps: 

Denaturation, 30 seconds at 95 °C 

Annealing, 30 seconds at the annealing temperature of each pair of primers 

Extension, 30 seconds per kilobase of DNA at 72 °C 

3. Final extension step: 72 °C for 2 minutes 

Specific primers are annealing temperatures are shown below:  

Primers were designed using New England Biolab’s NEBuilder assembly tool and purchased 

from ThermoFisher. 
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Table 4.2. Primers for constitutively secreted biologically active BMP-2 (Usp45-BMP-2). 

 

Table 4.3. Primers for constitutively secreted BMP-2-GFP (Usp45-BMP-2-GFP). 

 

Table 4.4. Primers for constitutively cell wall bound BMP-2 (Usp45-BMP-2-spaX). 

 

 

 

 

 

 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward BMP-2  ‘GTCAGGTGTTTACGCCCAAGCCAAACACAAA

CAGCG’ 

66.4 °C 

Reverse BMP-2  ‘TCTTCCTCTTTTGGATCTTAGCGACACCCACA

ACCCTC’ 

66.4 °C 

pT1NX Forward ‘TAAGATCCAAAAGAGGAAGACAAC’ 61.6 °C 

pT1NX Reverse ‘TGATCCACCTCCACCTGATCCTCCACCACCGG

CGTAAACACCTGACAAC’ 

61.6 °C 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward GFP ‘CGTTGTCAGGTGTTTACGCCATGGGTAAAGG

AGAAGAAC’ 

59 °C 

Reverse GFP ‘CTCCACCACCGTATAGTTCATCCATGCCATG’ 59 °C 

pT1NX Forward ‘CTAGTAGATCCGGCTGCTAAC’ 64.7 °C 

pT1NX Reverse ‘GGCGTAAACACCTGACAAC’ 64.7 °C 

Linker-BMP-2 

Forward 

‘TGAACTATACGGTGGTGGAGGATCAGGT’ 65.8 °C 

Linker-BMP-2 

Reverse 

‘TTAGCAGCCGGATCTACTAGTTAGCGACACC

CACAACC’ 

65.8 °C 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward BMP-2  ‘GTCAGGTGTTTACGCCCAAGCCAAACACAAA

CAGCG’ 

66.4 °C 

Reverse BMP-2  ‘TCTTCCTCTTTTGGATCGCGACACCCACAACC

CTC’ 

66.4 °C 

pT1NX Forward ‘ GATCCAAAAGAGGAAGACAATAAC’ 62.1 °C 

pT1NX Reverse ‘ GGCGTAAACACCTGACAAC’ 62.1 °C 
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Table 4.5. Primers for constitutively cell wall bound BMP-2-GFP (Usp45-GFP-BMP-2-spaX). 

 

Table 4.6. Primers for inducible secreted bound BMP-2-6xHis (Usp45-6xHis-BMP-2). 

 

Table 4.7. Primers for inducible cell wall bound BMP-2-6xHis (Usp45-6xHis-BMP-2-spaX). 

 

 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward GFP ‘CGTTGTCAGGTGTTTACGCCATGGGTAAAGG

AGAAGAAC’ 

59 °C 

Reverse GFP ‘CGCTGTTTGTGTTTGGCTTGGTATAGTTCATC

CATGCCATG’ 

59 °C 

pT1NX -BMP-

2-spaX Forward 

‘CAAGCCAAACACAAACAG’ 64.7 °C 

pT1NX-BMP-2-

spaX Reverse 

‘GGCGTAAACACCTGACAAC’ 64.7 °C 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward BMP-2 ‘CGTTGTCAGGTGTTTACGCCCATCACCATCA

CCACCATCAAGCCAAACACAAACAGCG’ 

66 °C 

Reverse BMP-2 ‘GCAGTACCCATGGCCGTGCCTTAGCGACACC

CACAACCCTC’ 

66 °C 

pNZ8123-BMP-

2- Forward 

‘TAAGGCACGGCCATGGGTACT’ 

 

70 °C 

pNZ8123-BMP-

2- Reverse 

‘ATGGTGGTGATGGTGATGGGCGTAAACACC

TGACAAC’ 

 

70 °C 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward BMP-2 ‘CGTTGTCAGGTGTTTACGCCCATCACCATCA

CCACCATCAAGCCAAACACAAACAG’ 

 

60 °C 

Reverse BMP-2 ‘GCAGTACCCATGGCCGTGCCTTATAGTTCGC

GACGACG’ 

 

60 °C 

pNZ8123 -

BMP-2-spaX 

Forward 

‘’GGCACGGCCATGGGTACT’ 

 

 

65 °C 

pNz8123-BMP-

2-spaX Reverse 

‘ATGGTGGTGATGGTGATGGGCGTAAACACC

TGACAAC’ 
 

65 °C 
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Table 4.8. Primers for inducible cell wall FNIII7-10-GFP (Usp45-GFP-FNIII7-10-spaX). 

 

Table 4.9. Primers for inserting chloramphenicol into pT1NX for the creation of pT2NX. 

 

4.2.8 Gibson Assembly 

 

To join PCR products together to form new plasmids, the Gibson Assembly Master Mix 

(New England Biolabs) was used. The workflow for a reaction is as follows: 

The fragment and vector were mixed in a 2:1 ratio (between 0.03 – 0.2 pmol) in a 0.2 mL 

microtube before adding the equivalent volume of Gibson Master Mix. This was then 

incubated for 15 minutes at 50 °C before diluting the volume four times with water. The 

assembled construct was then transformed into electrocompetent L. lactis. 

 

 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward GFP ‘CGTTGTCAGGTGTTTACGCCATGGGTAAAGG

AGAAGAACTTTT’ 

62 °C 

Reverse GFP ‘GCAGTACCCATGGCCGTGCCTTATAGTTCGC

GACGACG’ 

62 °C 

pNZ8123 -FN-

spaX Forward 

‘GGCACGGCCATGGGTACT’ 

 

 

70 °C 

pNZ8123-FN-

spaX Reverse 

‘GGCGTAAACACCTGACAACGG’ 

 

 

70 °C 

Primer Sequence 5’-3’ 3’ Annealing 

Temperature 

Forward 

chloramphenicol 

‘TTCTATGAGTCGCTTTTG’ 56.9 °C 

Reverse 

chloramphenicol 

‘GTAATCACTCCTTCTTAATTACAAATTTTTA

G’ 

56.9 °C 

pT1NX Forward ‘AATTAAGAAGGAGTGATTACATGAACTTTA

ATAAAATTGATTTAGACAATTG’ 

 

57.3 °C 

pT1NX Reverse ‘TACAAAAGCGACTCATAGAATTATAAAAGC

CAGTCATTAGG’ 

 

57.3 °C 
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4.2.9 Electroporation of L. lactis 

 

50 µL of frozen competent L. lactis and sterile electroporation cuvettes (VWR) were chilled 

on ice for 10 minutes. Then, 1 µL (100-500 ng) of the Gibson reaction product was added to 

the competent cells. This solution was added to pre-chilled electroporation cuvettes and 

electroporated at 2000 V (Eppendorf Eporator). The cells were then immediately transferred 

to a recovery medium of 5 mL M17 + 0.5 % glucose + 20 mM MgCl2 + 2 mM CaCl2 and 

incubated at 30 °C for 2 hours. The cells were then harvested at 3000 g for 10 minutes and 

resuspended in 50 µL of the same medium and streaked on M17 agar plates supplemented 

with 0.5 % w/v glucose and erythromycin at 10 µg/mL and left to grow at 30 °C overnight.  

4.2.10 Plasmid isolation from L. lactis 

 

Plasmid isolation was carried out using a combination  of an alkaline lysis protocol 

(O'Sullivan D and Klaenhammer 1993) and the GenElute five minute plasmid miniprep kit 

(Sigma). To lyse the bacteria, they were grown until the stationary phase in M17 media 

supplemented with 0.5 % v/v glucose and appropriate antibiotic and harvested by 

centrifugation at 3000 g for 10 minutes. The pellet was then resuspended in 200 µL 25 % 

sucrose containing 1 mg/mL RNase and 30 mg/mL lysozyme and incubated at 37 °C for 15 

minutes. Then 400 µL of 0.2 N NaOH and 3 % sodium dodecyl sulphate (SDS) solution was 

added followed by immediate mixing by inversion and left for 7 minutes. Then, 300 µL of 

ice cold 3 M sodium acetate (pH 4.8) was added and the solution was vortexed. This solution 

was then centrifuged at 18,000 g for 15 minutes at 4 °C. The supernatant was recovered and 

the plasmid was isolated using the GenElute miniprep kit detailed above. 

4.2.11 Sequencing 

 

Samples were sent to Source Bioscience using the SpeedREADTM service. 100 ng/µL of 

plasmid DNA and 3.2 pmol/µL of primers were sent to the service and these were sequenced 

using standard Sanger sequencing. The chromatograms were analysed using the SnapGene 

software.  

The primers used for sequencing are shown below: 
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Table 4.10. Primers for sequencing. 

 

4.2.12 Agarose gel preparation 

 

0.8 % agarose gels were used to visualise plasmids. Briefly 1 µg of plasmid was added to 

the agarose gel stained with SYBR safe. 2-Log DNA Ladder (0.1-10 KB) (New England 

Biolabs) was added as a marker and gels were run until the bands of the ladder could be seen 

separately. Prior to running the gel, plasmids were linearised using either EcoRI or NgoMIV. 

4.2.13 Preparation of the nisin stock 

 

Nisin was purchased from Sigma (N5764) and a stock of 1 mg/mL in 0.05 % acetic acid was 

prepared. The nisin was left to dissolve for 10 minutes at room temperature before 

centrifugation at 20,000 RPM for 1 minute to pellet the insoluble material. The supernatant 

was removed and stored at -20 °C. This stock was diluted to the desired concentration in 

water prior to use as less concentrated solutions of nisin are unstable (Mierau and 

Kleerebezem 2005).  

4.2.14 GFP Assay 

 

Bacteria were grown in GM17 with appropriate antibiotic in standing cultures for 24 hours 

before harvesting at 7000 g for 5 minutes and washing with M9 before resuspension in GM9 

for 24 hours. The cells were then harvested at 7000 g for 5 minutes before the supernatant 

was neutralised with NaOH and left for 1 hour. The supernatant was then transferred to a 

black 96 well plate for fluorescence reading. The excitation wavelength was set to 395 nm 

and emission was set to 508 nm using an Infinite 200 PRO NanoQuant Plate Reader from 

Tecan.  

Primer  Sequence 5’-3’ 

pT1NX  ‘AGTTCTTGTGGTTACGTGGT’ 

BMP-2 ‘CGGAAACGCCTTAAGTCCA’ 

GFP ‘ACGTGCTGAAGTCAAGTTTGA’ 

pNZ8123 Forward ‘CGAGCATAATAAACGGCTCTG’ 

pNZ8123 Reverse ‘CTATCAATCAAACGAACACGTGC’ 
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4.2.15 Western blot 
 

 Constitutive cell wall expression 

1 mL of standing culture was taken and lysed with the addition of 200 µL of 25% sucrose 

and 30 mg/mL lysozyme for 30 minutes at 37 °C. Then, 400 µL of 3 % SDS was added and 

incubated for 7 minutes at room temperature and then immediately placed on ice. 60 µL of 

the lysate was mixed with 20 µL of 4x Laemmli buffer and boiled at 95 °C for 5 minutes 

and then 30 µL was loaded into a 4-20 % gel (New England Biolabs).  

The gels were then run at 50 V for 2 hours. The proteins were then transferred to a 0.45 µm 

pore size polyvinylidene fluoride (PVDF) membrane at 25 V for 45 minutes. The membrane 

was then blocked with 5 % milk in PBS for 1 hour on a shaker. The primary antibody (anti 

GFP (Clonetech) 1:7500 in 5 % milk-TBS-0.1 % Tween-20) was then added and left 

overnight at 4 °C. The sample was then washed 4 times for 5 minutes each in PBS-0.5 % 

Tween. The secondary antibody (Rabbit antimouse 1:20,000 with HRP in 2 % milk with 

PBS-0.5 % Tween, General Electric Healthcare) was then added for 1 hour on a shaker. The 

sample was then washed 6 times for 5 minutes with TBS-0.1 % Tween. The substrate ECL 

Prime WB Detection Agent (GE Healthcare) was then added and incubated for 5 minutes. 

Chemiluminescence was then imaged using the Syngene PXi 5 gel documentation system.  

Inducible cell wall expression.  

Cultures were grown in GM17 overnight before a 1 % inoculation into fresh GM17. After 1 

hour, nisin was added at desired concentrations (see results section) and left for 5 hours 

before lysis and western blotting using the method described above.   The primary antibodies 

(anti 6x HisTag (His.H8, ThermoFisher, UK) 1:2500 in 5 % milk-TBS-0.1 % Tween-20 for 

BMP-2W and HFN7.1 (Developmental Studies Hybridoma Bank, University of Iowa, USA) 

1:1000 in 5 % milk-TBS-0.1 % Tween-20. 

4.2.16 Enzyme Linked Immunosorbent Assay (ELISA) 

 

Bacteria were grown overnight before fresh GM17 was inoculated with 1 % bacterial culture. 

After 1 hour, nisin was added at desired concentrations (0, 0.1, 0.5, 1 and 10 ng/mL) and left 

for 5 hours. A competitive ELISA (His-Tag Protein ELISA Kit, Cell Biolabs Inc, UK) was 

completed. Briefly, the plate was coated with polyhistidine and left overnight and samples 

and standards were added for 10 minutes on an orbital shaker. Standards were obtained from 

the kit. Anti-6xHis antibody was added to the wells for 2 hours before washing with wash 

buffer 5 times. Secondary antibody was added for 1 hour on an orbital shaker before washing 
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5 times. Then, substrate solution was added for 8 minutes before stopping and absorbance 

was read on an Infinite 200 PRO NanoQuant Plate Reader from Tecan at 450 nm.  
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4.3 Results 
 

In order to utilise the power of L. lactis inducible systems, we had to change strain from 

MG1363 (used in the previous chapter) to NZ9000 and its derivatives. This is due to the fact 

that MG1363 does not harbour the nisin receptor needed for intracellular signalling and 

promoter activation. This chapter will focus on the cloning procedures and basic mammalian 

cellular response to these new clones.  

 

4.3.1 NZ9000 FNIII7-10-GFP and BMP-2 strains 

 

As there are no commercially available kits for the detection and quantification of bacterially 

expressed BMP-2, the synthesised proteins were tagged with either GFP or a 6x HisTag. The 

epitope of antibodies against BMP-2 bind to the glycosylated region of BMP-2 (information 

obtained from PeproTech). Bacteria do not possess the machinery to complete the same post-

translational modifications as mammalian cells (Caina, Solis et al. 2014) and therefore a tag 

was needed.  

For the constitutive clones, GFP was cloned into both cell wall and secreted clones for 

detection. This allowed the direct measurement of GFP by both western blot and 

fluorescence to detect the protein. Four clones were completed, cell wall expressing BMP-2 

with and without GFP and secreted BMP-2 with and without GFP. 

For the inducible clones, FNIII7-10-GFP and BMP-2 with a 6x HisTag were used. This 

allowed the direct measurement by western blot and ELISA. Two clones were completed, 

cell wall bound BMP-2 and secreted BMP-2.  

To quantify FNIII7-10 production, either antiGFP (constitutive) or antiFN (inducible) 

antibodies were used. 

Constitutive expression 

Cell wall expressing BMP-2 in NZ9000 

Expression and localisation of cell wall bound BMP-2 was confirmed utilising a variety of 

methods. Firstly, sequencing an isolated plasmid from the clones highlighted an in-frame 

insertion of a 1.7 kb fragment, corresponding to GFP-BMP-2 and an insertion of 1 kb for 

BMP-2 without GFP. 
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Further confirmation was ascertained by western blot as shown in Figure 4.2. As described 

in the Materials and Methods section, L. lactis was lysed and the lysate was run on a gel and 

transferred for western blotting. The blot displayed bands at 60 kDa which is equivalent to 

that of GFP-BMP-2-SpA whereas control GFP which has a molecular weight of 26.9 kDa 

was found at 27 kDa. The bacterially expressed GFP band was found to be at a higher 

molecular weight as it is also fused to spaX and BMP-2. GFP was also used to make a 

standard curve to determine the concentration of BMP-2 per bacteria. Band densitometry 

analysis was used, finding a linear relationship between band density and protein amount. 

Based on this, it was determined that 37.5 and 18.7 µL of standing culture contains 

approximately 1.2 ± 0.2 and 0.44 ± 0.04 µg of GFP-BMP-2 respectively. Using these 

estimations, the approximate density of BMP-2 molecules that a mammalian cell can interact 

with is roughly 55,000 per bacterial cell, assuming a molecular weight of 60 kDa and fully 

saturated media containing 2.2 x 109 bacteria per mL. This is equal to 6.65 ng/cm2 of cell 

wall bound BMP-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Western blot against constitutive NZ9000 cell wall bound GFP-BMP-2. From left to 

right colour prestained protein ladder (NEB), GFP standards at 100, 80, 60, 40 and 20 ng and 37.5 

and 18.75 µL cell wall fractions of standing culture and colour prestained protein ladder (NEB). 

GFP has a molecular weight of 26.9 kDa and can be seen at approximately 28 kDa and GFP-BMP-

2-spaX has a molecular weight of 60 kDa and can be seen at 60 kDa. Three western blots were 

completed to allow quantification. 
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These results suggest that the anchoring of the protein by spaX and the fusion of BMP-2 and 

GFP can be easily expressed and are not detrimental to bacterial viability. L. lactis-BMP-2 

cell wall and L. lactis-BMP-2 fused to GFP cell wall will now be known as L. lactis-BMP-

2W and L. lactis-BMP-2WGFP respectively.  

 

Expression of secreted BMP-2 in NZ9000 

Expression of secreted BMP-2 was confirmed in a different manner to cell wall expression. 

Again, sequencing the isolated plasmid from bacterial cells revealed the inclusion of an in-

frame 1.7 kb fragment comprising GFP and BMP-2 with a stop codon between BMP-2 and 

spaX, preventing the synthesis of the spaX anchor, allowing protein secretion and another 1 

kb insertion for BMP-2 without GFP. 

A fluorescence assay was used to verify the presence of GFP from the clones. GFP shows 

fluorescence when it is excited with light at 395 nm and emits at 508 nm. Bacterial 

supernatant was loaded into 96 well plates and the fluorescence was measured. Figure 4.3A 

shows the GFP fluorescence of the bacterial supernatant under differing conditions. It has 

been proven that increasing the pH of the solution over 10 further increases the fluorescence 

which would further support the presence of GFP. In addition to pH, the presence of oxygen 

is essential for the maturation of the chromophore, and therefore, the bacteria had to be 

grown aerobically (Landete, Langa et al. 2015). As can be seen from Figure 4.3A, GFP 

fluorescence is statistically significantly higher in the aerobically grown samples, and the 

highest in the pH 12 samples. A standard curve was created using GFP at known 

concentrations allowing us to ascertain the amount of GFP in the L. lactis samples shown in 

Figure 4.3B. As GFP and BMP-2 are at a 1:1 ratio the total amount of GFP will be the same 

as BMP-2. Using the standard curve, it was found that we had 970 ng/mL of BMP-2 

monomers, to be biologically active, BMP-2 needs to dimerise, and therefore we 

theoretically have 485 ng/mL of BMP-2 in a fully saturated culture of L. lactis after 1 day.  

L. lactis-BMP-2 secreted and L. lactis-BMP-2 fused to GFP secreted will now be known as 

L. lactis-BMP-2S and L. lactis-BMP-2SGFP respectively.  
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Figure 4.3. GFP fluorescence assay to confirm the presence of constitutive BMP-2-GFP 

from NZ9000. (A) GFP fluoresce is higher at higher pH so fluorescence at pH 7 and 12 were 

tested. (B) GFP at known concentrations was used for linear regression analysis in the 

quantification of L. lactis-BMP-2-GFP. Significance levels are *p < 0.05 and ****p < 0.0001. 

Three technical replicates were completed to allow quantification. Data is presented as the 

mean ± SD and analysed with a one way ANOVA with a Tukey post-hoc test. 
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FNIII7-10 fragment expression in NZ9000 

The FNIII7-10 expressing plasmid from MG1363 was purified and transformed into 

electrocompetent NZ9000 using methods described previously. This was again isolated and 

sent for sequencing. The sequencing data showed an insert corresponding to FNIII7-10-GFP 

of 2.3 kb. Further to sequencing, a western blot shown in Figure 4.4 was completed showing 

the presence of GFP at approximately 85 kDa. GFP-FNIII7-10-SpA has a molecular weight 

of 87.4 kDa and therefore the weight is slightly off.  However, the sequence data shows the 

correct insertion and the presence of GFP is confirmed. GFP was used as a standard to create 

a standard curve for the accurate quantification of GFP in the bacterial cell wall fragments 

and it was found that there were approximately 6.36 ng/cm2 of FNIII7-10 for mammalian cells 

to interact with.  

 

 

 

 

 

 

 

 

 

 

Inducible expression 

Cell wall expressing BMP-2 in NZ9000 

Plasmids were isolated and sent for sequencing. An insertion of 999 bp was found 

corresponding to Usp45, 6x HisTag, BMP-2 and spaX. Further to sequencing, a western blot 

against the HisTag was completed. Nisin was added at differing concentrations (0, 0.5, 1, 5 

and 10 ng/mL) one hour after fresh M17 was inoculated with 1 % of saturated bacterial 

culture and left to grow for five hours before a western blot was completed against the 6x 

Histag sequence. FNIII7-10-Histag was used to make a standard curve and band densitometry 

analysis was used to calculate protein expression. Figure 4.5A shows that upon increasing 
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Figure 4.4. Western Blot against constitutive NZ9000 cell wall bound FNIII7-10-GFP. From left 

to right colour prestained protein ladder (NEB), GFP standards at 20, 40, 60, 80 and 100 ng and  20 

µL cell wall fractions of standing culture. GFP has a molecular weight of 26.9 kDa and can be seen 

at approximately 28 kDa and GFP-FNIII7-10-spaX has a molecular weight of 87 kDa and can be 

seen at 80 kDa. Three western blots were completed to allow quantification. 
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amounts of nisin, more BMP-2W was found in the blot. Figure 4.5B highlights that 

production of protein increases as a function of nisin addition. At 10 ng/mL of nisin, BMP-

2W was found at 8.79ng/cm2. The dotted line on the graph represents the amount of BMP-

2W-GFP present in the constitutive clone (6.65 ng/cm2). The blot also shows that the nisA 

promoter is not leaky as there is no protein found in the 0 ng/mL channel. Protein expression 

was seen to be highest in the 10 ng/mL sample, being marginally higher than protein 

expression in the constitutive samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FN Standards (ng) Nisin induction (ng/mL) 

0 0.5 1 5 10 5 10 20 30 

11 

17 

22 
25 

32 

46 

58 

A 

B 

BMP-2W production in response 
to nisin 

Figure 4.5. Western blot against inducible NZ9000 cell wall bound BMP-2. (A) From left to right colour 

prestained protein ladder (NEB), FN standards at 5, 10, 20 and 30 ng and  20 µL cell wall fractions of standing 

culture under different nisin induction profiles. FN standard has a molecular weight of 44 kDa and can be seen at 

approximately 46 kDa and BMP-2W-spaX has a molecular weight of 32 kDa and but can be seen above 32 kDa. (B) 

A plot of BMP-2W concentration at different levels of inducer shows protein expression at 10 ng/mL is slightly 

higher than in the constitutive clone. The plotted line follows the equation Y = Bmax*X/(Kd + X), R2 = 0.9765. The 

dotted line represents protein expression in the constitutive clone. Three western blots were completed to allow 

quantification. 
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Secreted expression of BMP-2 in NZ9000 

Plasmids were isolated and sequenced in the same manner as described previously. An 

inframe insertion of 442 bp corresponding to Usp45, 6x HisTag, BMP-2 followed by a stop 

codon was found. Further to sequencing, an ELISA for the 6x HisTag was completed (Figure 

4.6). Nisin was added at differing concentrations (0, 0.1, 0.5, 1 and 10 ng/mL) one hour after 

fresh M17 was inoculated with 1 % of saturated bacterial culture and left to grow for five 

hours before completing a competitive ELISA. It was found that at 10 ng/mL (plateau 

reached at approximately 2 ng/mL of nisin) BMP-2 was secreted at 18.6 µg/mL, a value 46 

times greater than that from the constitutive clone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FNIII7-10 fragment expression in NZ9000 

Sequencing the isolated plasmid revealed an insert corresponding to FNIII7-10-GFP of 2.3 

kb. A western blot against FNIII7-10 was completed to further ascertain protein expression. 

Nisin was added at differing concentrations (0, 0.1, 0.5, 1 and 10 ng/mL) one hour after fresh 

M17 was inoculated with 1 % of saturated bacterial culture and left to grow for five hours. 

Figure 4.6. ELISA data for inducible NZ9000 secreted BMP-2. Protein production 

was seen to increase upon additive amounts of nisin up to 2 ng/mL where a plateau in 

protein production was seen. Maximal expression was found to be 18.6 µg/mL. The 

plotted line follows the equation Y = Bmax*X/(Kd + X), R2 = 0.8389. Three technical 

replicates were completed to allow quantification. 
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Figure 4.7A shows a western blot against FNIII7-10 and the corresponding amounts of FNIII7-

10-GFP produced. Figure 4.7B illustrates a plateau of FNIII7-10-GFP production at 

approximately 2 ng/mL of nisin in the media. The dotted line on the graph represents the 

amount of FNIII7-10 present in the constitutive clone. This shows that when the nisA promoter 

of pNZ8123 is activated, it is roughly 120 (853 ng/cm2 vs 6.36ng/cm2) times stronger than 

the P1 promoter found in pT1NX, at least for FNIII7-10 production. The blot also shows no 

induction in the 0 ng/mL channel showing that the promoter is not leaky. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Western blot against inducible NZ9000 cell wall bound FNIII7-10-GFP under different 

concentrations of nisin. (A) From left to right colour prestained protein ladder (NEB), FN standards at 10, 

40, 70 and 100 ng, FNIII7-10-GFP at 0, 0.1, 0.5, 1 and 10 ng/mL nisin. FNIII7-10-HisTag standard has a 

molecular weight of 44 kDa and can be seen at approximately 46 kDa and GFP-FN-spaX has a molecular 

weight of 87 kDa and can be seen at a this approximate molecular weight. (B) Below, a plot of FNIII7-10 

concentration at different levels of inducer shows a plateau of production at approximately 2 ng/mL. The 

plotted line follows the equation Y = Bmax*X/(Kd + X), R2 = 0.9998. The dotted line represents protein 

expression in the constitutive clone. One replicate was used to quantify protein expression. 
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4.3.2 Bacterial viability 

 

As discussed in the previous chapter, MSCs must be cultured for 3-4 weeks before late 

markers of osteogenesis are expressed. Therefore, bacterial viability up to this time point 

must also be studied to allow for continuous ligand (FNIII7-10) and growth factor delivery 

(BMP-2). The use of antibiotic is also essential to prevent overgrowth of bacteria. 

Previously, the use of tetracycline (TC) was used as it is bacteriostatic in its nature and 

retards the metabolism of the biofilm. We found that adding TC at 10 µg/mL was sufficient 

to prevent bacterial cell growth but not potent enough to kill the bacteria (Saadeddin, 

Rodrigo-Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 2014, Hay, Rodrigo-Navarro et 

al. 2016). However, as TC acts by blocking protein synthesis (Geigenmuller and Nierhaus 

1986), a new antibiotic needed to be chosen. The use of TC would block the synthesis of 

BMP-2 and thus prevent osteogenesis of MSCs. Sulfamethoxazole (SMX) acts as an 

analogue to a prime precursor in the folate synthesis pathway in both gram positive and 

negative bacteria. Folate is an essential metabolite for bacterial growth and replication as it 

is used for both DNA synthesis of thymidylate and purine bases and amino acid synthesis. 

Therefore, blocking folate production leads to the obstruction of bacterial cell growth and 

therefore SMX is considered a bacteriostatic antibiotic (Burchall 1973, Hitchings 1973). 

SMX’s capability to impede bacterial cell growth was tested at different concentrations and 

can be seen in Figure 4.8A. It can be seen that bacterial viability in DMEM without antibiotic 

is good, as was shown in the previous chapter. Two different concentrations of SMX were 

studied, 5 and 10 µg/mL. Bacteria in the 10 µg/mL samples were seen to be less viable than 

in the 5 µg/mL samples. Moreover, the 5 µg/mL samples also managed to impede bacterial 

cell growth. This can also be seen in the graphs seen in Figure 4.8B. For future experiments, 

the use of 5 µg/mL SMX was chosen as it is concentrated enough to prevent bacterial growth 

whilst also keeping the biofilm healthy. This is essential as the preservation of the biofilm is 

of utmost importance for the continuous signalling of the FNIII7-10 fragment and BMP-2. 
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4.3.3 Mammalian cell viability on NZ9000 

 

Cell viability was explored using the constitutive expression clones only. MSCs were seeded 

over different BMP-2 clones with L. lactis-FN, L. lactis-empty and FN-coated samples as 

controls for 4 weeks as this is the time required for terminal MSC differentiation.  

As can be seen in Figure 4.9, MSC viability on all bacterial samples is seen to decrease over 

four weeks. MSCs seeded onto the FN coat show approximately 100 % viability at all time 

points. After one day, MSCs on all surfaces, have 100 % viability, but after this time point, 

cell viability begins to decrease. MSCs on the L. lactis-BMP-2S bacteria began to die after 

one day as is seen by the steep decrease on the chart after one day. There were no cells left 

on the samples after four days. Conversely, MSCs on all other bacterial types showed good 

viability up to day 14, but were severely diminished by day 21. 

  

Figure 4.8. Bacterial viability. (A) Biofilms of L. lactis-FN were produced on a poly (ethyl acrylate) (PEA) 

surface and cultured for 1 to 4 weeks with DMEM, DMEM supplemented with 5 µg/mL sulfamethoxazole 

(DMEM + SMX 5). After selected time points, biofilms were washed and their viability assessed using the 

commercial BacLight viability kit (Life Technologies). This kit stains viable cells in green and non-viable cells 

in red. Viability was calculated by analysing the total amount of cells stained in green versus the amount of 

cells stained in red and green. Scale bar is 100 µm. (B) Bacteria were seen to be less viable on DMEM SMX 

10 µg/mL at all time points. Viability results were similar between DMEM and DMEM SMX 5 µg/mL. 10 

images were taken from three technical replicates. Data is presented as mean ± SD and was analysed by a one 

way ANOVA test with a Tukey post-hoc test. Significance levels are *p < 0.05, **p < 0.01 and ***p < 0.001. 
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This decrease in cell viability may be due to the acidification of the medium, even in the 

presence of tetracycline, as the DMEM was seen to become yellow in colour. NZ9000 is a 

much more metabolically active strain than MG1363 (used in the previous chapter) and thus 

produces lactic acid at much higher rates. Loss of viability may also be compounded by the 

fact that the media had to be changed at least once a day due to the acidification of the media, 

and therefore, any growth factors secreted by the cells would be removed, thus altering their 

behaviour further. The most striking result from this experiment is the complete death of 

cells after one day on the L. lactis-BMP-2S clones. The L. lactis-BMP-2S-GFP did not 

display this result. MSC death may be due to a toxic concentration of BMP-2 in the media. 

However, upon searching the literature, there were no reports of BMP-2 toxicity to MSCs at 

this concentration.  

To deduce L. lactis derived BMP-2 toxicity to the cells, co-cultures of L. lactis-FN and L. 

lactis-BMP-2S clones were made, therefore, theoretically halving the amount of BMP-2 that 

the cells can interact with. Figure 4.10 shows MSC and C2C12 viability after five days on 

L. lactis-FN, L. lactis-BMP-2S and 50:50 co-cultures of L. lactis-FN and L. lactis-BMP-2S. 

As is seen in Figure 4.10, cell viability is drastically decreased in the L. lactis-BMP-2S 

samples, albeit, not complete cell death after four days as was shown in Figure 4.9. 

Interestingly, cell death is seen to be statistically significantly higher in MSCs when 

compared against C2C12s on L. lactis-BMP-2S. Cell viability in both MSCs and C2C12s on 

Figure 4.9. Mesenchymal stem cell viability on NZ9000 L. lactis clones. MSC viability was seen to 

decrease over 4 weeks on all NZ9000 L. lactis clones whilst viability on the FN coat was seen to stay high. 

10 images were taken per condition from three technical replicates. 
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L. lactis-FN was seen to be close to 100 % whilst the co-cultures of L. lactis-FN and L. 

lactis-BMP-2S display an intermediate cell viability, approximately 77 % for both MSCs 

and C2C12s. This result demonstrates that either the presence of the FNIII7-10 fragment in 

the L. lactis cell wall or the decreased amount of BMP-2 produced by decreasing the amount 

of L. lactis-BMP-2S bacteria positively affects cell viability. 

 

 

 

It was thus decided to use a metabolically different strain of NZ9000, NZ9020. In NZ9020, 

both known lactate dehydrogenase genes are knocked out and it is therefore unable to 

produce as much lactate as a fermentation end product, therefore decreasing the acidity of 

the media, keeping the pH neutral (Bongers, Hoefnagel et al. 2003). The lactate 

dehydrogenase genes were replaced with an erythromycin and tetracycline resistance and 

therefore the clones could be screened for. If NZ9020 is grown under aerobic conditions, it 

displays an almost complete loss of lactate production, and acetoin is found to be the main 

end product of fermentation, complete data can be found in Table 4.11. The presence of O2 

allows the cells to maintain their redox balance through the activity of endogenous NADH 

Figure 4.10. MSC and C2C12 viability on L. lactis. Viability values of co-cultures are seen to be 

higher than L. lactis-BMP-2S in both MSCs and C2C12s after 5 days. 10 images were taken per 

condition from three technical replicates. Data is presented as mean ± SD and analysed with a two 

way ANOVA test with a Tueky post-hoc test. Significance levels are *p < 0.05, ***p < 0.001 and 

****p < 0.0001. 
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oxidase. This sustains sugar fermentation without the production of lactic acid. However, 

under aerobic conditions, the rate of sugar fermentation is decreased, and the metabolic end 

products are also shifted to ethanol. This suggests that these pathways are using ethanol as 

an alternative electron sink, since the enzymatic conversions involved include reducing steps 

that use NADH as a cofactor. To combat the use of ethanol as an electron sink, many authors 

have described the use of heme in L. lactis aerobic respiration (Sijpesteijn 1970, Ritchey and 

Seely 1976, Arioli, Zambelli et al. 2013). By inhibiting fermentative metabolism (anaerobic 

respiration) under respiration permissive conditions (heme plus oxygen), oxidation of 

NADH is shifted toward the electron transport chain via cytochrome bd oxidase. This would 

enable the successful culture of L. lactis without the inevitable decrease in pH that is so 

detrimental to mammalian cell culture. Figure 4.11 highlights the use of hemin in aerobic 

respiration in L. lactis. 

 Figure 4.12 shows the final pH of bacterial cell supernatant using different strains. As can 

be seen, the pH in NZ9020 cell supernatant is higher than NZ9000 due to the lack of lactic 

acid being produced. The use of hemin further increases the pH. These results suggest that 

using NZ9020 aerobically with hemin at 5 µg/mL will be best for mammalian cell culture. 

All long term mammalian cell co-culture with NZ9020 used hemin from hereon.  

 

Table 4.11. L. lactis metabolism under different conditions (Bongers, Hoefnagel et al. 2003). 
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Figure 4.12. pH of M17 after 1 day of L. lactis growth. The pH of cultures after 1 day of growth were 

measured in both NZ9000 and NZ9020 when grown aerobically and anaerobically. In addition, NZ9020 

grown aerobically with 5 µg/mL hemin was also tested. The dotted line represents pH 7.4, the closest 

growth conditions to that preferred by mammalian cells. The closest L. lactis to this was reached by 

aerobic NZ9020 with the use of hemin at 5 µg/mL. Three technical replicates were completed per 

sample and data is presented as mean ± SD.  

Figure 4.11. Simplified representation of glycolysis, homolactic, and mixed-acid fermentations and heme-

dependent respiration in L. lactis. 
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4.3.4 NZ9020 FNIII7-10 fragment and BMP-2 expressing bacteria 

 

As discussed, NZ9020 is a less metabolically active strain of NZ9000 designed by Bongers 

et al.(Bongers, Hoefnagel et al. 2003) at Nizo Food Research in the Netherlands. It has had 

both its known lactate dehydrogenase enzymes removed and therefore its metabolism has 

been disrupted. This leads to a general decrease in growth and protein expression when 

compared with NZ9000. Further to this, in order to be able to screen for successful lactate 

dehydrogenase knockouts, the genes were replaced with tetracycline and erythromycin 

resistances. This posed problems for the constitutive clones as pT1NX has an erythromycin 

resistance gene.  Therefore screening successful clones with erythromycin would be 

impossible, so pT1NX had to be altered. The chloramphenicol resistance gene from 

pNZ8123 was isolated and used to replace the erythromycin resistance gene in pT1NX, 

effectively creating a new plasmid that could be screened for. This new plasmid has been 

denoted pT2NX, and it has been used for all the constitutive protein production in NZ9020. 

This section shows the characterisation of constitutive and inducible expression of cell wall 

anchored FNIII7-10 and both cell wall bound and secreted versions of BMP-2. 

Constitutive expression 

Cell wall expressing BMP-2 in NZ9020 

Again, sequencing an isolated plasmid from the transformed bacteria highlighted an inframe 

insertion of a 1.7 kb fragment, corresponding to GFP-BMP-2 and an insertion of 1 kb for 

BMP-2 without GFP. 

Further confirmation was ascertained by western blot as shown in Figure 4.13. Cell wall 

fragments were isolated as before and were run on a gel and transferred for western blotting. 

The blot displayed bands in the cell wall fraction at 60 kDa which is equal to that of GFP-

BMP-2-SpaX. GFP was again added as a control and standard and was found at 27 kDa; 

GFP has a molecular weight of 26.9 kDa. The GFP standard curve was used to determine 

the concentration of BMP-2 per bacteria. Band densitometry analysis found a linear 

relationship between band density and protein amount. Based on this, it was determined that 

20 µL of standing culture contains approximately 0.8 ± 0.14 µg of GFP-BMP-2. Using these 

estimations, the approximate density of BMP-2 molecules that a mammalian cell can interact 

with is approximately 40,000 per bacterial cell, assuming a molecular weight of 60 kDa and 

fully saturated media containing 2.2 x 109 bacteria per mL. This is equivalent to 4.84 ng/cm2 

of cell wall bound BMP-2. This is a lower amount of BMP-2W than was found for NZ9000 

but this is expected due to the lower metabolic activity of NZ9020.  
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These results also suggest that the presence of BMP-2W and BMP-2W-GFP are not 

detrimental for bacterial viability of the NZ9020 strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Secreted expression of BMP-2 in NZ9020 

Expression of constitutive secreted BMP-2 in NZ9020 was completed in the same manner 

as for NZ9000. Plasmids were isolated and sequenced, the plasmid revealed the inclusion of 

an inframe 1.7 kb fragment comprising GFP and BMP-2 with a stop codon between BMP-2 

and spaX allowing protein secretion. A fluorescence assay was again completed showing the 

presence of GFP in the bacterial supernatant shown in Figure 4.14A. As was seen with 

NZ9000, GFP fluorescence was seen to be highest in the aerobically grown L. lactis BMP-

2S-GFP samples. A standard curve shown in Figure 4.14B was made and highlighted that 

NZ9020 secretes 598 ng/mL of BMP-2S-GFP, which due to the need for dimerisation 

translates to a working concentration of 299 ng/mL of biologically active BMP-2. This is 

again, lower than the amount found from NZ9000. 
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Figure 4.13. Western blot against constitutive NZ9020 cell wall bound GFP-BMP-2. From left to right 

colour prestained protein ladder (NEB), GFP standards at 100, 80, 60, 40 and 20 ng and 20 µL cell wall 

fractions of standing culture and colour prestained protein ladder (NEB). GFP has a molecular weight of 26.9 

kDa and can be seen at approximately 28 kDa and GFP-BMP-2-spaX has a molecular weight of 60 kDa and 

can be seen at 60 kDa. Three western blots were completed to allow quantification. 
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Figure 4.14. GFP fluorescence assay to confirm the presence of constitutive NZ9020 BMP-2-

GFP. (A) GFP at known concentrations was used for linear regression analysis (B) in the 

quantification of L. lactis-BMP-2-GFP. Data is presented as mean ± SD and was analysed by a one 

way ANOVA test with a Tukey post-hoc test. Significance levels are *p < 0.05 and ****p < 0.0001. 

Three technical replicates were used for quantification. 
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FNIII7-10 fragment expression in NZ9020 

Insertion of the gene was again seen via sequencing data showing an insert of 2.3 kb, 

corresponding to Usp45, GFP, FNIII7-10 and the spaX anchor. Figure 4.15 shows a western 

blot against GFP for quantitation of FNIII7-10. GFP was once again used to make a standard 

curve to ascertain the concentration of FNIII7-10 per bacteria. Band densitometry analysis 

was used, finding a linear relationship between band density and protein amount. Based on 

this, the approximate density of FNIII7-10 in 1 mL of saturated culture contained 5.84 ng/cm2 

of protein, a similar result to that found for FNIII7-10 when synthesised in MG1363 and 

NZ9000 (6.36 ng) (Saadeddin, Rodrigo-Navarro et al. 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

Inducible expression 

Cell wall expressing BMP-2 in NZ9020 

Plasmids were isolated and sent for sequencing. An insertion of 999 bp was found 

corresponding to Usp45, 6x HisTag, BMP-2 and spaX. Further to sequencing, a western blot 

against the HisTag was completed. Nisin was added at differing concentrations (0, 0.5, 1, 5 

and 10 ng/mL) one hour after fresh M17 was inoculated with 1 % of saturated bacterial 

culture and left to grow for five hours before a western blot (Figure 4.16A) was completed 

against the 6x Histag sequence. FNIII7-10-Histag was used to make a standard curve and band 
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Figure 4.15. Western blot against constitutive NZ9020 cell wall bound FNIII7-10-GFP. From left to 

right colour prestained protein ladder (NEB), GFP standards at 5, 10, 50 and 100 ng and  20 µL cell wall 

fractions of standing culture. GFP has a molecular weight of 26.9 kDa and can be seen at approximately 

28 kDa and GFP-FNIII7-10-spaX has a molecular weight of 87 kDa and but can be seen above 100 kDa. 

Three western blots were completed to allow quantification. 
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densitometry analysis was used to calculate protein expression. It is apparent from Figure 

4.16A that nisin induction at different concentrations induces different protein expression, 

which has been quantified in Figure 4.16B. Interestingly, protein expression is seen to be 

higher in NZ9020 than in NZ9000 (Figure 4.5), however, this is only at the 10 ng/mL sample. 

NZ9000 protein expression was seen to be higher at the other nisin induction concentrations. 

The dotted line represents the amount of BMP-2W-GFP synthesised in the constitutive 

samples. Protein expression under the nisA promoter (pNZ8123) is seen to be much higher 

than under the P1 promoter (pT1/2NX). No protein expression was found in the 0 ng/mL 

nisin sample showing that the promoter is not leaky. 
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BMP-2W production in response 
to nisin 

Figure 4.16. Western blot against inducible NZ9020 cell wall bound BMP-2. (A) From left to right 

colour prestained protein ladder (NEB), FN standards at 5, 10, 20 and 30 ng and  20 µL cell wall fractions 

of standing culture under different nisin induction profiles. FN standard has a molecular weight of 44 kDa 

and can be seen at approximately 46 kDa and BMP-2W-spaX has a molecular weight of 32 kDa and but can 

be seen above 32 kDa. (B) A plot of BMP-2W concentration at different levels of inducer shows protein 

expression at 10 ng/mL is approximately double to that found in the constitutive clone. The dotted line 

represents protein expression in the constitutive clone. The plotted line follows the equation 

Y = Bmax*X/(Kd + X), R2 = 0.9475. Three western blots were completed to allow quantification. 
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Secreted expression of BMP-2 in NZ9020 

Plasmids were isolated and sequenced. An inframe addition 442 bp corresponding to Usp45, 

6x HisTag, BMP-2 followed by a stop codon was found. An ELISA for 6x HisTag was also 

completed (Figure 4.17) to deduce BMP-2 concentration. Nisin was added at differing 

concentrations (0, 0.1, 0.5, 1 and 10 ng/mL) one hour after fresh M17 was inoculated with 1 

% of saturated bacterial culture and left to grow for five hours before completing a 

competitive ELISA. It was found that protein expression was highest at 10 ng/mL of nisin 

(plateau was reached at approximately 2 ng/mL nisin) at 183 ng/mL, a value that is less than 

that observed in the constitutive clone (299 ng/mL).  

 

 

 

 

 

 

 

 

 

 

 

 

FNIII7-10 fragment expression in NZ9020 

Sequencing isolated plasmid revealed an insert corresponding to FNIII7-10-GFP of 2.3 kb. A 

western blot against FNIII7-10 was also completed to ascertain protein expression. Nisin was 

added at differing concentrations (0.1, 1, 5 and 10 ng/mL) one hour after fresh M17 was 

inoculated with 1 % of saturated bacterial culture and left to grow for five hours. Figure 

4.18A shows a western blot against GFP and the corresponding amounts of FNIII7-10 

produced. Figure 4.18B shows a graphical representation of FNIII7-10 production under nisin 

and shows a different result to that of NZ9000, there is less protein expression in NZ9020 

Figure 4.17. ELISA data for inducible NZ9020 secreted BMP-2. Protein production 

was seen to increase upon additive amounts of nisin up to 2 ng/mL where a plateau in 

protein production was seen. Maximal expression was found to be 183 ng/mL. The 

plotted line follows the equation Y = Bmax*X/(Kd + X), R2 = -3.958.Three technical 

replicates were used to quantify BMP-2 secretion. 
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(359 ng/cm2 against 853 ng/cm2).  The dotted line represents the amount of FNIII7-10 found 

in the NZ9020 constitutive plasmid, protein expression under the nisin promoter is 62 times 

higher than under P1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Western blot against inducible NZ9020 cell wall bound FNIII7-10-GFP under different 

concentrations of inducer. (A) From left to right colour prestained protein ladder (NEB), FN standards at 

10, 40, 70 and 100 ng, FNIII7-10-GFP at 0, 0.1, 0.6, 1 and 10 ng/mL nisin. FN standard has a molecular weight 

of 44 kDa and can be seen at approximately 46 kDa and GFP-FNIII7-10-spaX has a molecular weight of 87 

kDa and can be seen at this approximate weight. (B) A plot of FNIII7-10 concentration at different levels of 

inducer shows a plateau of production, at approximately 2 ng/mL. The dotted line represents protein 

expression in the constitutive clone. The plotted line follows the equation Y = Bmax*X/(Kd + X), R2 = 

0.9942.One replicate was used to quantify protein expression. 
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4.3.5 Mammalian cell viability on NZ9020 

 

As can be seen from Figure 4.19, mammalian cell viability on NZ9020 grown with hemin is 

drastically different compared to NZ9000 (Figure 4.9). MSCs are seen to be at 99 % viability 

up until 21 days on all sample substrates. Unlike NZ9000, there is no rapid viability decrease 

on L. lactis-BMP-2S after one day, and there is also no slight viability decrease on the other 

L. lactis samples after 14 days. This is due to the lack of lactic acid production in NZ9020 

when compared with NZ9000. Also, the presence of hemin allows this bacterium to utilise 

aerobic respiration more effectively. Viability on the FN coat is seen to be 99 % for the 

whole four weeks with no statistical differences at any time point, whereas, viability drops 

to approximately 95 % after 21 days on all bacterial substrates. The exact reason for this is 

not known, but the small increase in acetoin in the medium may cause the small increase in 

cell death. Overall, mammalian cells cultured over NZ9020 show a much higher cell viability 

than on NZ9000 (Figure 4.9).  

 

  

Figure 4.19. Mesenchymal stem cell viability on NZ9020 L. lactis clones. MSC viability was seen to be more 

stable on all NZ9020 L. lactis clones. Viability on the FN coat was also seen to stay high. 10 images were taken per 

condition from three technical replicates. 
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4.4 Discussion 
 

L. lactis is a gram positive lactic acid bacterium that has been used for centuries in food 

fermentation. However, within the last 35 years, great progress has been made in using this 

organism in genetic engineering for the therapeutic delivery of proteins. More specifically, 

the HPV-16 E7 antigen was cloned and synthesised in a secreted form to aid in the fight 

against cancer (Benbouziane, Ribelles et al. 2013). Interleukin 27 has also been engineered 

to be secreted using the same plasmid used in this thesis (pT1NX) to alleviate the symptoms 

of colitis in mice (Hanson, Hixon et al. 2014). This organism can be used to produce proteins 

in a constitutive and inducible fashion which has been described in this chapter. The use of 

gram positive bacteria for heterologous protein production proves to be a useful choice due 

to easy protein secretion.  

Furthermore, the gold standard for bacterially produced recombinant proteins has been E. 

coli. However, the most commonly used production strategies for E. coli utilise intracellular 

or periplasmic expression and involve expensive and potentially problematic downstream 

purification processes. Moreover, LPS should be removed from proteins needed to be 

administered to humans. The presence of LPS makes protein use in humans impossible. 

Moreover, expressed proteins are likely to be hidden in a mesh of bacterial ECM (Froon, 

Dentener et al. 1995, Maestroni 2001).  

In addition to previous publications where FNIII7-10 was produced in L. lactis MG1363 

(Saadeddin, Rodrigo-Navarro et al. 2013, Rodrigo-Navarro, Rico et al. 2014, Hay, Rodrigo-

Navarro et al. 2016), we have demonstrated the completion of BMP-2 expressing L. lactis 

NZ9000 and NZ9020. This known osteoinducer has the capability to induce the 

differentiation of MSCs to osteoblasts as was shown in the previous chapter.  

The genetic modification of this strain has been completed using the versatile Gibson 

assembly technique (Gibson, Young et al. 2009) whereby primer overlaps are designed to 

allow the quick and efficient annealing of multiple fragments. With the correct primer 

design, facilitated by easy design software and commercial availability, Gibson assembly 

has fast become an extremely powerful and highly used technique. Overlaps can be designed 

in a single primer and PCR allows the elongation of large plasmid backbones which can be 

modified with the addition of other DNA sequences by the overhanging primers. 

The data has demonstrated that FNIII7-10 can be produced in both NZ9000 and NZ9020 with 

both pT1NX for constitutive expression and pNZ8123 for inducible expression and that 
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protein production under the nisin promoter is directly controlled by nisin concentration in 

the media.  

Furthermore, it can be concluded from the results that BMP-2 has been synthesised in both 

cell wall bound and secreted forms by the inducible and secreted plasmids. This was 

confirmed by the addition of a fusion GFP or His-tag reporter protein. GFP is a widely used 

expression reporter originally cloned from the jellyfish Aequorea Victoria and displays a 

bright green fluorescence when illuminated under ultraviolet light (Tsien 1998).   

Another widely used reporter protein is the polyhistidine tag (Hochuli, Bannwarth et al. 

1988). Histidine clusters of a minimum of four repeats interact with divalent cations that, 

when immobilised with metal ion matrices, electron donor groups on the histidine imidazole 

ring readily form coordination bonds with the immobilised transition metal (Block, Maertens 

et al. 2009). Peptides containing sequences of consecutive histidine residues are efficiently 

retained on immobilised metal-affinity chromatography (IMAC) columns. Following 

washing of the matrix material, peptides containing polyhistidine sequences can be easily 

eluted by either adjusting the pH of the column buffer or by adding free imidazole (Terpe 

2003, Block, Maertens et al. 2009). The proteins were expressed with the Usp45 secretion 

peptide and SpaX anchoring protein allowing either cell wall bound or secreted expression. 

Western blots, ELISAs and fluorescence assays were used to ascertain protein production 

levels in NZ9000 and NZ9020. 

Interestingly, it was mostly found that protein production was slightly higher in NZ9000 

than NZ9020 due to the discrepancies in the metabolic activity of the strains. For all proteins 

except BMP-2W, NZ9000 was found to synthesise more protein than NZ9020.  

A large disparity in protein concertation under the nisin promoter was found between FNIII7-

10 and BMP-2W. Under the P1 promoter, protein expression was seen to be highly similar 

for BMP-2W and FNIII7-10 in both NZ9000 and NZ9020. However, under nisin expression, 

FNIII7-10 was seen to be expressed at much higher amounts. Reasons for this could vary from 

simple steric hindrance (FNIII7-10 fragment is much further from the bacterial cell wall and 

can therefore be more easily accessed) to codon optimisation (Gold 1988, deRuyter, Kuipers 

et al. 1996). Further to this, the size and conformation of the protein can often have an effect 

on the efficiency of synthesis (Francis and Page 2010, Sabate, de Groot et al. 2010, Bonde, 

Pedersen et al. 2016). BMP-2S under the nisin promoter was also seen to have a large protein 

expression increase compared to P1 in NZ9000. However, BMP-2S under the nisin promoter 

in NZ9020 was seen to decrease in protein expression compared to P1. The increase in 
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NZ9000 BMP-2S under the nisin promoter compared to P1 and decrease in BMP-2S 

expression in NZ9020 under the same conditions is difficult to explain. It is well known that 

the nisin promoter is stronger than P1 (deRuyter, Kuipers et al. 1996) and this explains why 

expression is higher in the inducible plasmid for most cases. It is important to note that the 

constitutive bacteria for BMP-2S were grown in M9 media, not M17 and this could have an 

effect on protein expression. We do not have a satisfactory explanation, and this would have 

to be tested further to ascertain a firmer conclusion. It is apparent from the results that the 

protein is present, and at high enough levels (>100 ng/mL) to induce the differentiation of 

MSCs. Table 4.12 shows the amount of protein expression for all L. lactis clones. 

  Table 4.12. Quantitation of L. lactis protein expression  

 

 

 

 

 

 

 

 

 

The use of the NZ9020 strain was due to the high metabolic activity of NZ9000 as it was 

found that the high production of lactic acid resulted in the death of MSCs in the co-culture. 

To overcome this, the double lactate dehydrogenase knockout NZ9020 was genetically 

engineered and MSCs were seeded onto these bacteria instead. It was found that MSC 

viability was found to stay high, similar to that of a FN coated glass coverslip.  

 

The creation of genetically engineered L. lactis NZ9020 expressing BMP-2 and FNIII7-10 

fragments has been shown to keep MSCs viable and that these proteins are expressed at high 

levels in both constitutive and inducible fashions.  

 NZ9000 NZ9020 

Constitutive 
FNIII7-10 6.36 ng/cm2 5.84 ng/cm2 

Inducible 
FNIII7-10 853 ng/cm2 359 ng/cm2 

Constitutive 
BMP-2W 6.65 ng/cm2 4.84 ng/cm2 

Inducible 
BMP-2W 8.79 ng/cm2 11.16 ng/cm2 

Constitutive 
BMP-2S 485 ng/mL 299 ng/mL 

Inducible 
BMP-2S 18.6 µg/mL 183 ng/mL 
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4.5 Conclusion 
 

This chapter has shown that L. lactis NZ9000 and NZ9020 can be engineered to display and 

express FNIII7-10 and BMP-2. Furthermore, the use of SMX at 5 µg/mL has a similar effect 

to that of TC at 10µg/mL in terms of bacterial viability. SMX however, does not prevent 

bacterial protein expression like TC and can therefore be used in conjunction with BMP-2 

expressing clones.  

Regrettably, the use of NZ9000 was deemed detrimental to mammalian cell viability and a 

lactate dehydrogenase knockout was used to combat this problem. This NZ9020 has had 

both its known lactate dehydrogenase genes knocked out and has therefore had its 

metabolism sufficiently altered to produce less lactic acid and allow for longer term cell 

culture. However, the use of this bacteria leads to a general decrease in protein expression 

when compared with NZ9000.  

Most interestingly, the system was transformed to allow for the inducible expression of 

proteins through the well characterised NICE system (Kuipers, de Ruyter et al. 1998, Mierau 

and Kleerebezem 2005, Mierau, Olieman et al. 2005). It was found that protein production 

was reliant on nisin addition to the media and that the amount of protein production was 

concentration dependent. Furthermore, the promoter in not leaky, which is demonstrated by 

the absence of protein in cultures where no nisin was added.  

We aim to establish a surface whereby MSCs are adhered to the surface by the FNIII7-10 

fragment and the expression of BMP-2, either cell wall bound or secreted can induce the 

differentiation of these cells into osteoblasts.  
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5. Cell-bacteria interaction dynamics 
 

 

 

 

Summary 

This chapter focusses on how L. lactis and mammalian cells interact with one another and 

how this co-culture can affect bacterial and mammalian cell behaviour. Basic cell attachment 

to constitutive and inducible L. lactis was investigated for the FNIII7-10 expressing bacteria. 

Proliferation of MSCs on FNIII7-10 and BMP-2 expressing clones was also investigated to 

ascertain the health and differentiation capabilities of the bacterial strains in the short term. 

Lastly, bacterial internalisation by mammalian cells was explored as previous studies 

showed potential for the mammalian cells to engulf the bacteria. The results in this chapter 

demonstrate that L. lactis NZ9000 and NZ9020 can sustain cell adhesion on both the 

constitutive and inducible clones and that cell size is proportional to the amount of inducer. 

Also, mammalian cells are able to proliferate on all clones of L. lactis and proliferation is 

lowest on the BMP-2 secreting clones. Murine C2C12 cells as well as murine RAW 

macrophages are also able to engulf all strains of L. lactis but rate of uptake is limited by the 

presence of a protein in the bacterial cell wall.  
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5.1 Introduction 
 

It is thought that mitochondria are the progeny of bacteria, initially kept by higher cells in 

symbiosis due to their capacity to consume atmospheric oxygen and produce energy (Sagan 

1967, Margulis and Bermudes 1985). If this is true, this shows a long standing interaction 

between bacteria and eukaryotic cells. However, not all prokaryotic-eukaryotic interactions 

end so well. Some bacteria are pathogenic and can cause a disease state in their host. 

Similarly, some eukaryotic cells prey on prokaryotic cells. Microbial phagocytic defence 

may have evolved in response to these pathogenic bacteria. However, the usual outcome 

between a microbe and its host does not lead to a disease state. To test bacterial-mammalian 

cell dynamics, an internalisation assay was developed to establish whether C2C12 cells were 

able to engulf bacteria. RAW macrophage-like cells were also included to test whether the 

internalisation of bacteria was unique to immune cells only.  

We can exploit these non-pathogenic bacteria to become cell factories for the production of 

probiotics, through cell adhesion and differentiation.  

Cell adhesion is crucial for the survival, proliferation and differentiation of cells to form 

higher structures such as tissues and organs. The architecture of organs is therefore 

modulated by cell adhesion and adhesion systems should be regarded as mechanisms that 

translate basic genetic information into complex phenotypes. Upon attachment to a 

functionalised surface, cells begin to proliferate. There is evidence that signals arising from 

focal adhesions directly communicate with pathways that regulate proliferation (Giancotti 

and Ruoslahti 1999).  

However, proliferation and differentiation are closely coupled, and are intricately linked. 

Self-renewal and differentiation are associated with the cell-cycle and this enables tissue 

specification, organ homeostasis and potentially tumourigenesis. Tissue differentiation and 

maintenance is guided by the coordination between differentiation and proliferation of 

specific progenitor cells. The importance of these mechanisms has been displayed by many 

authors for many different organs such as the brain, gut and skin (Fuchs 2009, Lange and 

Calegari 2010, Li and Clevers 2010).  

In the established model of mammalian cell cycle control, the retinoblastoma protein 

functions to direct cell fate. The retinoblastoma protein functions to restrict cells from 

entering S phase by binding and sequestering the E2f activators E2f1, E2f2 and E2f3. These 

are largely regarded as the ultimate effectors that commit cells to enter and progress through 
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S phase towards self-renewal. In differentiating cells, such as MSCs, E2f1-3 function as a 

complex with retinoblastoma proteins allowing the silencing of E2f targets and assist in the 

exit from the cell cycle (Chong, Wenzel et al. 2009). The E2f1 transcription factor acts a 

molecular switch between proliferation and differentiation and can bind to phosphorylated 

retinoblastoma protein. Unbound, E2f1 promotes G1 to S phase transition. However, upon 

complex formation between retinoblastoma protein and E2f1, G1 to S phase is inhibited 

(Johnson, Schwarz et al. 1993). Accumulation of phosphorylated retinoblastoma protein 

allows the switch from proliferation to differentiation as it has been reported to interact with 

transcription factors that are specific to osteogenesis and adipogenesis (RUNX2 and PPARγ) 

(Docheva, Padula et al. 2008). Figure 5.1 shows a schematic detailing the stages of MSC 

differentiation and proliferation.  

 

 

 

 

 

 

 

  

Figure 5.1. MSC cell cycle schematic. Quiescent MSCs in G0 phase can either self-renew or 

differentiate. 
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5.2 Materials and methods 

 

5.2.1 Nisin induction for cell adhesion 

 

Biofilm production and cell seeding was the same as detailed for previous cell adhesion 

experiments. However, nisin was added to the cultures at the same time as the mammalian 

cells at 0, 0.5, 5 and 10 ng/mL. Cells were left to attach for five hours and stained for actin, 

vinculin and nuclei using antibodies and methods detailed previously.  

 

5.2.2 Cell proliferation 

 

MSCs were seeded over L. lactis clones at 5,000 cells/cm2 for one and three days to measure 

cell proliferation at these time points. 6 hours prior to fixation, 1 mM BrdU (5-bromo-2-

deoxyuridine) was added to each well in DMEM. Cells were fixed and permeabilised using 

standard methods described previously. These were then blocked with 1 % BSA in PBS at 

37 °C for 10 minutes. The GE Healthcare Cell Proliferation Kit was used from this point to 

stain the cells. The mouse monoclonal anti BrdU was added with DNase to ensure the 

primary antibody was able to reach the DNA and incubated at 37 °C for 2 hours. Samples 

were washed using the standard protocol and the addition of phallacidin (Life Technologies, 

UK) and a Cy3 conjugated anti mouse secondary antibody (Jackson Immunoresearch, UK) 

was added for 1 hour at 37 °C. Cells were washed and mounted using Vectashield with Dapi 

(Vector Laboratories, UK) and viewed under a Zeiss AxioObserver.Z1 fluorescence 

microscope. 

 

5.2.3 Bacterial internalisation 

 

Biofilms were established using the methods as described previously. Both C2C12 and RAW 

macrophages were seeded over the biofilms at 5,000 cells/cm2 and left to grow for 16 hours. 

The cells were trypsinised for five minutes at 37 °C before centrifugation at 1300 RPM for 

five minutes. This addition of trypsinisation for five minutes was found to remove most 

mammalian cells but left a majority of bacterial cells attached to the coverslip. To further 

separate the cell types, the centrifugation step allowed the pellet of the mammalian cells 

whilst leaving the bacteria in the supernatant to be discarded. This cell pellet was 
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resuspended and seeded over FN coated coverslips (using the same methods as described 

previously) for five hours to allow cell attachment. Any bacteria present should either be 

inside or stuck to the outside of the bacteria. A Nikon Eclipse Ti Confocal microscope fitted 

with a Scmos camera using the Volocity software (Piltti, Haus et al. 2011) was used to 

visualise the samples. To establish the localisation of the bacteria, the co-localisation plugin 

was used whereby the software can evaluate the overlap of two dyes and thus be highly 

specific to bacteria that are inside the mammalian cells. 
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5.3 Results 
 

5.3.1 Cell adhesion 

 

Cell adhesion to constitutive and inducible FNIII7-10 in NZ9000 and NZ9020 was tested 

using different amounts of nisin, ranging through 0, 0.5, 5 and 10 ng/mL which can be seen 

in Figure 5.2. NZ9000 was used as well as NZ9020 as the short time point used is not 

detrimental to cell viability and gives us insight into how protein expression differs between 

the strains. It can be seen in the constitutive samples that the presence of the FNIII7-10 

fragment in both NZ9000 and NZ9020 L. lactis induces cell spreading, similar to the FN 

coated sample with very comparable values; NZ9000 and NZ9020 both show cell areas of 

2527 and 2672 µm2 respectively. The cells on the FN coat show cell areas of 3125 µm2 

which is higher than either NZ9000 or NZ9020 under the constitutive promoter. These 

results have been demonstrated before using a different strain of L. lactis known as MG1363 

(see Chapter 3).  

Most interestingly, the nisin controlled FNIII7-10 protein expression samples show striking 

results. Upon additive amounts of nisin, cell spreading increases.  These results have been 

quantified and can be seen in Figure 5.3  

The empty samples, that is, the ones displaying no FN, show the smallest cell area being 

comparable between sample sets, all the cells found on these surfaces show similar cell areas. 

Cells seeded onto the constitutive FNIII7-10 samples show similar results to that of a FN coat 

and are higher than their respective empty samples. Interestingly, cell area is seen to increase 

in both the NZ9000 and NZ9020 samples upon higher amounts of nisin added to the system. 

This also agrees with the results from the western blot, as more nisin is added, more GFP-

FNIII7-10 is found (see Chapter 4, Figures 4.7 and 4.17). This increased amount of FNIII7-10 

presented to the mammalian cells would allow for more cell spreading. Further to this, cell 

spreading on NZ9020 is seen to be lower than in NZ9000. This is likely due to the fact that 

this strain is much more metabolically slower than NZ9000 and therefore the five hours may 

not be enough time for the bacteria to synthesise enough FNIII7-10 to give a similar response 

to that seen in NZ9000. It can be seen that cell spreading on NZ9000 FNIII7-10 expressing 

clones when stimulated with 10 ng/mL of nisin is the highest, albeit, only slightly higher 

than the FN coated surface. It is most likely higher than the constitutive expression as the 

nisA promoter is stronger than P1; and therefore, more FNIII7-10 can be produced.  
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Figure 5.2. MSC adhesion to inducibly expressed FNIII7-10 from L. lactis. Top images show cell 

adhesion in response to FNIII7-10 production under nisin induction in inducible L. lactis-FN clones for both 

NZ9000 (top) and NZ9020 (bottom). Middle images show cell adhesion to L. lactis-FN constitutive clones 

for both NZ9000 (top) and NZ9020 (bottom). Bottom images show cell adhesion to FN coated and non-FN 

coated glass. All images taken after five hours. Upon increasing nisin addition, cell area is seen to increase. 

This is due to more FNIII7-10 being available in the bacterial cell wall. Green is actin, blue is DNA. Scale 

bar = 100 µm. 
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5.3.2 Cell proliferation 

 

Cell proliferation was studied on NZ9020 only as the long-term cultures will only be 

completed on this strain due to detrimental effect NZ9000 has on the long-term cell viability 

of MSCs. Figure 5.4 shows the percentage of new cells formed within six hours after the 

addition of 5-bromo-2’-deoxyuridine (BrdU) after one day (orange) and three days (blue) on 

constitutively expressed protein. BrdU is a brominated analogue of thymidine and is 

incorporated into cell DNA at the S phase of the cell cycle. Upon addition to the media, 

BrdU can replace thymidine in the cell’s DNA and be stained for with an anti-BrdU antibody 

Figure 5.3. Graphical representation of cell area after nisin induction. Increasing amounts 

of nisin are seen to lead to an increase in cell area in both NZ9000 and NZ9020 (statistically 

significant). Cell area in NZ9000 with 5 and 10 ng of nisin shows higher cell area than on 

constitutive clones. Conversely, cell area on NZ9020is lower than the constitutive clones, likely 

due to the slower metabolism rates. A minimum of 27 cells were used. Data is displayed as 

mean ± SD and was analysed with a one way ANOVA test with a Tukey post-hoc test. 

Statistical significance levels are *p < 0.05, **p < 0.01  and ***p < 0.001.   
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(Zhang, Zhi et al. 2010). MSCs were seeded over different L. lactis strains and the percentage 

of BrdU positive cells was calculated. At day one, cell proliferation on glass, FN coat, L. 

lactis-BMP-2W, L. lactis-BMP-2WGFP and L. lactis-BMP-2SGFP are all roughly 

equivalent. Proliferation on L. lactis-empty and L. lactis-FN are much higher with 20 % of 

the total cell count being BrdU positive. Conversely, cell proliferation was seen to be lowest 

on the FN coat with 100 ng/mL of BMP-2 added and L. lactis-BMP-2S with less than 5 % 

of cells being BrdU positive. A similar trend was seen for the three day experiment. Again, 

the lowest cell proliferation was seen on the FN coat with 100 ng/mL of BMP-2 added and 

L. lactis-BMP-2S at about 3 % of total cells being BrdU positive. All other samples show 

similar values with approximately 10 % of cells being BrdU positive. At three days L. lactis-

empty and L. lactis-FN show similar results to the other samples as opposed to being higher 

at one day.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Cell proliferation on differing constitutive L. lactis clones. The cells were culutred 

for one and three days and quantified according to BrdU incorporation into the nucleus.. Cell 

proliferation on most samples is approximately 10 % new cells over a six hour period where as 

cells culutred in the BMP-2 positive control and L. lactis-BMP-2S show much lower proliferation 

rates. A minimum of five images were analysed from three technical eplicates. Data are reported 

as the mean ± SD and was analysed by a two way ANOVA with a  Bonferroni post-hoc test (data 

not normally distributed). Statistical significance levels are *p < 0.05, **p < 0.01. 
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Figure 5.5 shows cell proliferation in response to the inducible clones. In this experiment, 

only L. lactis-BMP-2S and L. lactis-FN were used as the L. lactis-BMP-2W and both BMP-

2-GFP expressing clones showed no change in cell proliferation compared to on the FN coat. 

Further to this, a co-culture of L. lactis-FN and L. lactis-BMP-2S was also tested. Nisin was 

added at 10 ng/mL to allow maximal protein synthesis. A similar trend to that observed on 

the constitutive clones can be seen where the lowest cell proliferation was found on the FN 

coat with 100 ng/mL BMP-2 and the L. lactis-BMP-2S at both day one and day three. Cell 

proliferation on the FN coat, L. lactis-empty and L. lactis-FN are also very similar to those 

seen on the constitutive clones at around 10 % on day one with lower proliferation rates by 

day three. The co-culture of L. lactis-FN and L. lactis-BMP-2S shows an intermediate 

proliferation rate, between that of single L. lactis-FN and L. lactis-BMP-2S. This result, 

although not statistically significantly different from either single clone culture could be due 

to the lower levels of BMP-2 secreted; due to there being half the amount of L. lactis-BMP-

2S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Cell proliferation on inducible L. lactis clones.. Nisin was used at 10 ng/mL in 

all samples. Results are similar to those of the constituve clones whereby L. lactis-BMP-2S 

shows similar results to that of the FN coat + BMP-2. A minimum of six images were 

analysed with three technical replicates per sample.  Data is reported as the mean ± SD and 

analysed with a two way ANOVA using a Bonferroni post-hoc test (data not normally 

distributed). Statistical significance levels are *p < 0.05, **p < 0.01. 
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The difference in cell proliferation could be explained by cell cycle dynamics. As described 

in the introduction of this chapter, differentiating cells must make a choice whether to self-

renew or differentiate. Self-renewing cells will proceed through G1 to S phase, dictated by 

E2f proteins. On the contrary, differentiating cells will not leave G1as retinoblastoma protein 

phosphorylation blocks S phase entry. Therefore, differentiating cells are unable to 

proliferate which may explain the lower proliferation rate on the FN-coated surface with 100 

ng/mL BMP-2 added. L. lactis-BMP-2S also demonstrates a low proliferation rate, similar 

to that of the FN coat with added BMP-2. This could be due to the BMP-2 secreted by the 

bacteria effecting the mammalian cell population (Wen, Miyake et al. 2004, Xu, Peck et al. 

2005).  

5.3.3 Cell-bacteria dynamics 

 

The ability of a microbe to establish a niche within its host is an important parameter of its 

pathogenesis. Some pathogens can enter normally non-phagocytic host cells as this may be 

a requirement for their replication. Indeed, L. lactis are not pathogenic and therefore do not 

possess the mechanisms for invasion into non-phagocytic mammalian cells such as C2C12s 

and MSCs. However, the internalisation of particles is a constitutive property of most, if not 

all mammalian cells (Poussard, Decossas et al. 2015). Therefore, the potential of mammalian 

cells to internalise bacterial cells was studied. We postulated that the presence of FNIII7-10 

would lead to the internalisation of the bacteria due to the integrin endocytosis-exocytosis 

cycle. Integrins holding the cell to the surface will move rearwards as the cell migrates over 

a matrix. This means that the leading edge of the cell requires new receptors to anchor the 

cell to the surface; this is achieved by cycling integrins from the rear regions of the cell, and 

their subsequent transport in vesicular form to the leading edge of the cell for re-use 

(Bretscher 1984, Bretscher 1992).  

To assess the localisation of bacteria, it was necessary to use a confocal microscope as this 

allows the user to isolate specific z-planes through a 3D structure. As the density of bacteria 

on normal co-cultured surfaces was high and made analysis of internalised bacteria 

extremely difficult, a new method to study internalisation was developed. Mammalian cells 

were first cultured on L. lactis using the same methods as reported previously, before 

trypsinisation and centrifugation; and then reseeding onto FN coated glass coverslips. The 

trypsinisation followed by centrifugation resulted in the removal of the bacteria from the 

mammalian cells. Reseeding these cells on a FN coat ensures that any bacteria present would 
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either be inside or stuck to the outside of the mammalian cell. The presence and localisation 

of these bacteria was determined by confocal microscopy.  

Figure 5.6 highlights C2C12 cells imaged after being seeded on L. lactis-empty, FNIII7-10, 

BMP-2W and BMP-2S bacterial biofilms. To deduce their localisation, the co-localisation 

plugin on Volocity was used. Graphs detailing localisation can be seen in Figure 5.8. 

A complementary experiment with macrophages was also set up using the same method as 

described above. Figure 5.7 shows that all strains of bacteria were also engulfed. This is 

unsurprising as it is macrophages primary role in the body to engulf any foreign particles, 

including bacteria. Graphs detailing localisation can be seen in Figure 5.8. 

Figure 5.6. Bacterial internalisation by C2C12 murine myoblasts. All mammalian cells were seen to 

engulf bacterial cells. L. lactis displaying a cell wall bound protein show a higher uptake than empty and 

secreted protein clones. Red = actin, blue = mammalian nuclei and green = bacterial cells. Scale bar is 100 

µm. 
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Figure 5.8 shows quantitative data for the internalisation study. A direct trend can be 

observed whereby bacteria with cell wall bound proteins are internalised at higher rates. This 

trend can be seen in both the C2C12s (Figure 5.8 A) and macrophages (Figure 5.8 C). L. 

lactis-BMP-2W seem to be engulfed at a higher rate than that of L. lactis-FN. Furthermore, 

bacteria without cell wall bound proteins are still internalised, but at a much lower frequency. 

The number of bacteria internalised per cell in C2C12s is lower than that observed in 

macrophages. Additionally, all macrophages observed had internalised bacteria (Figure 

5.8D) whereas C2C12s were seen to engulf bacteria with varying success rates. C2C12s 

were most likely to internalise L. lactis-BMP-2W, followed by L. lactis-FN at as they were 

found in 75 % and 53 % of cells respectively. L. lactis-empty and L. lactis-BMP-2S showed 

very similar results to that of L. lactis-FN as 51 % of cells were found with bacteria 

internalised. However, the total number of L. lactis-FN and L. lactis-BMP-2S found in 

Figure 5.7. Bacterial internalisation by RAW macrophages. All mammalian cells were seen to engulf 

bacterial cells. Red = actin, blue = nuclei and green = bacterial cells. Scale bar is 50 µm. 
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C2C12 cells is drastically different with 20 and eight bacteria per cell respectively. This 

parameter explains that although the total amount of C2C12s with at least one bacteria is 

very similar, L. lactis-FN is more likely to be engulfed at higher rates. L. lactis-empty was 

found in the least amount of cells at 45 %.  

Figure 5.8. Graphs detailing bacterial internalisation. Graphs were constructed from 20 pictures per 

sample. A = number of bacterial cells internalised per C2C12, B = number of bacterial cells internalised per 

macrophage, C = the percentage of C2C12 cells with internalised bacteria and D = the percentage of 

macrophage cells with internalised bacteria. More bacteria were internalised in macrophages than C2C12s 

with bacteria displaying a cell wall bound protein being more likely to be internalised. All macrophages 

imaged had internalised bacteria whereas C2C12s displayed differing results. A minimum of 15 cells were 

tested and quantified per sample with three technical replicates completed. Data is presented as the mean ± 

SD and analysed with a one way ANOVA using a Bonferroni post-hoc test (data not normally distributed). 

Statistical significance levels are *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 
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5.4 Discussion 
 

Cell adhesion and proliferation is essential for the construction of organs in vitro. Usually, a 

scaffold is functionalised with proteins to allow cell attachment which can direct cellular 

behaviour (Lendlein 2011, Ebara, Kotsuchibashi et al. 2014, Murphy, McDevitt et al. 2014). 

This material-cell interface is designed by the user and can be used to alter cells phenotype 

(Friess 1998, Hench and Polak 2002, Rosso, Marino et al. 2006, Oh, Brammer et al. 2009, 

Lendlein 2011). For example, the scaffolds used in our experiments are glass coverslips that 

are functionalised with genetically engineered bacteria expressing FNIII7-10 and BMP-2 to 

control cell adhesion and differentiation.  

It was found that this surface of L. lactis comprising the strains NZ9000 and NZ9020 can 

induce cell attachment through the FNIII7-10 fragment in both a constitutive and inducible 

manner. Further to this, cell area is proportional to the amount of available protein which 

can be altered by the addition of different concentrations of inducer.  

In terms of the BMP-2 clones, for both constitutive and inducible BMP-2, L. lactis-BMP-2S 

seems to show similar results to that of a FN-coated surface with 100 ng/mL BMP-2 added 

to the culture. Cell proliferation was studied in response to the addition of differentiation 

factors as differentiating cells do not proliferate at the same rate as those on normal FN coats 

(Wen, Miyake et al. 2004, Xu, Peck et al. 2005). The data shows that L. lactis-BMP-2S in 

both the constitutive and inducible forms inhibits higher cell proliferation rates showing that 

the BMP-2 from L. lactis could potentially be used as a long term successful dynamic 

differentiation platform for MSCs.  

In addition to basic cell response, bacteria-mammalian cell dynamics were also evaluated. 

Mammalian cells have the machinery to internalise particles and is an inherent property of 

most, if not all mammalian cell types (Vannhieu and Isberg 1993, Poussard, Decossas et al. 

2015). We found that C2C12 cells, as well as RAW macrophages internalise all forms of L. 

lactis. However, the rate of uptake is determined by whether the bacteria is displaying a cell 

wall bound protein. Interestingly, L. lactis-BMP-2W was internalised at higher rates than L. 

lactis-FN. We hypothesised that L. lactis-FN would be internalised at the highest rates due 

to the integrin endocytosis-exocytosis cycle. Furthermore, although L. lactis-BMP-2W was 

internalised at a higher rate, it does not alter the cells ability to proliferate like L. lactis-BMP-

2S. This shows that although the cells are clearly interacting with L. lactis-BMP-2W, the 

BMP-2 does not stimulate the same cell response as L. lactis-BMP-2S.  
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The proteins displayed and expressed by L. lactis show biological function. L. lactis-FN can 

induce cell attachment whereas L. lactis-BMP-2S shows biological activity by preventing 

MSC proliferation at early time points (one and three days).  
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5.5 Conclusion 

 
This chapter assessed the short-term interaction dynamics between constitutive and 

inducible L. lactis clones and mammalian cells. The results of this chapter suggest that the 

inducible system for both L. lactis-FN and L. lactis-BMP-2S are biologically active. This is 

in agreement with the western blot and fluorescence data shown in Chapter 4. In terms of 

the FNIII7-10 expressing clones, the amount of nisin added to the system directly affects 

protein expression and that this in turn effects cell area. This is likely due to the fact that 

more RGD is available to the cells in the higher nisin cultures, and that this protein 

availability allows the cells to stretch further.  

In terms of the BMP-2 expressing clones, L. lactis-BMP-2S shows osteogenic activity 

whereas L. lactis-BMP-2W seems to show no activity. Longer term cell differentiation 

studies will be shown in the next chapter.  
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6. Mammalian cell differentiation on 

BMP-2 expressing bacteria 
 

 

 

Summary 

This chapter focusses on L. lactis clones and their ability to induce differentiation of MSCs. 

Mid (ALP activity) and long (OCN and von Kossa) term osteogenic markers were evaluated 

to ascertain the differentiation dynamics of different L. lactis clones. Both constitutive and 

inducible BMP-2 expressing clones were investigated in vitro. Lastly, constitutive NZ9000 

BMP-2 producing clones were used in an in vivo mouse model to explore bone growth. L. 

lactis were incorporated into collagen sponges and the clone demonstrating the best 

osteogenic results in vitro were chosen for further experimentation in vivo. The results in 

this chapter demonstrate that L. lactis-BMP-2S can induce the differentiation of MSCs in 

vitro in both a constitutive and inducible fashion.  
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6.1 Introduction 
 

MSCs are able to differentiate along the stromal lineages to give rise to osteoblasts, 

chondrocytes and adipocytes, typically through the application of chemical and physical 

cues (Pittenger, Mackay et al. 1999). More specifically, MSCs are sensitive to stiffness 

(Engler, Sen et al. 2006), cell tension through mechanotransduction (McBeath, Pirone et al. 

2004), surface topography (Dalby, Gadegaard et al. 2007) and dimensionality (2D or 3D) 

(Oh, Brammer et al. 2009), these physical characteristics have the power to direct cellular 

fate. On the other hand, chemical stimuli, such as that of BMP-2 also have the ability to 

induce differentiation (Rahman, Akhtar et al. 2015).  

Bone is a specialised form of connective tissue and is the main element of the skeletal 

system. The formation of bone is highly complex and a finely orchestrated process involving 

many of the physical and chemical stimuli mentioned above. BMPs play a major role in the 

regulation of osteoblast lineage specific differentiation, which later translates to bone 

formation. Since the discovery of BMPs in 1965, many authors have sought to find the 

importance of BMPs in vivo using transgenic animals. These loss-of-function experiments 

demonstrated a variety of bone related abnormalities during development (Urist 1997, 

Lechleider, Ryan et al. 2001, Zhao 2003). BMPs are therefore hugely important in vivo and 

demonstrate great therapeutic potential in vitro (Tamaki, Souchelnytskyi et al. 1998, Itoh, 

Itoh et al. 2000, Guicheux, Lemonnier et al. 2003, Afzal, Pratap et al. 2005, Ryoo, Lee et al. 

2006, Bessa, Casal et al. 2008, Ulsamer, Ortuno et al. 2008).  

The bone microenvironment mainly comprises MSCs, derived osteoblasts, osteoclasts, 

mineralised bone matrix and osteocytes (Chen, Deng et al. 2012). Osteogenesis can be 

separated into three distinct stages, migration and mitosis of MSCs, differentiation of MSCs 

and lastly, deposition of matrix (Gilbert 2000, Hoshiba, Kawazoe et al. 2009). During the 

differentiation stage, MSCs are the target of BMPs (Rahman, Akhtar et al. 2015). MSCs are 

therefore an important source of bone in vivo and show the greatest potential for recreating 

the bone microenvironment in vitro.  

MSCs have been used for decades in the attempt to imitate the bone microenvironment with 

varying success (Osdoby and Caplan 1981, Sparks and Scott 1986, Anderson, Sahoo et al. 

2016, Llopis-Hernandez, Cantini et al. 2016). It is currently postulated that the use of 

dynamic surfaces show the greatest potential to overcome problems with MSC culture 

(Ebara, Yamato et al. 2004, Todd, Scurr et al. 2009, Wirkner, Weis et al. 2011, Weis, Lee et 

al. 2013, Murphy, McDevitt et al. 2014, Roberts, Sahoo et al. 2016). The bone 
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microenvironment is constantly changing; therefore any synthetic material aiming to 

recapitulate this niche would need to be able to display a variety of behavioural cues. In 

terms of biochemical induced differentiation, the specific addition of supplements in a 

particular sequence is needed; the same will be needed for exact material control. We can 

expect to see a material that can be altered upon user defined conditions that relates material 

properties to gene activation, and thus has the power to control phenotype.  

This work aims to demonstrate that bacterial biofilms formed by non-pathogenic L. lactis 

can be exploited to create an effective dynamic surface. They have the potential to be 

modified with a superfluity of proteins, displaying them either through cell wall bound or 

secreted expression that can influence cell behaviour. The use of constitutive and inducible 

plasmids with differing strength promoters allows for a variety of clones to be easily 

synthesised and tested. The user can tailor these microbial factories to express their protein 

of interest at desired concentrations in a spatiotemporal manner. 
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6.2 Materials and Methods 
 

6.2.1 Collagen sponges 

 

Collagen sponges with a 5 mm diameter were sterilised overnight in ethylene oxide and used 

in 96 well plates. Bacteria were grown on these using the same method as described for glass 

coverslips (section 2.2). MSCs were then seeded at 5000 cells/cm2 under the same conditions 

used on glass coverslips (Section 2.5) and left to culture until the desired time point (one day 

for cell adhesion, 10 and 15 for ALP activity). For the positive control (100 ng BMP-2), 

BMP-2 was added after one day.  

6.2.2 Cell adhesion to collagen sponges 

 

Sponges were fixed with 4 % formaldehyde for 15 minutes at 37 °C and then stained for 

actin with phalloidin (Invitrogen, UK) for one hour at 37 °C before mounting with DAPI 

(Vectashield, UK). These were viewed under a Nikon Eclipse Ti Confocal microscope fitted 

with a Scmos camera. 

6.2.3 Alkaline phosphatase (ALP) assay 

 

Firstly, protein had to be extracted from the samples, cells were lysed by the addition of 50 

mM Tris-HCl and sonicated for 20 seconds at 5 watts. To obtain protein content, a 

bicinchoninic acid (BCA) (Life Technologies, UK) was completed. For ALP activity, 

MUP (4-methylumbelliferyl phosphate) substrate was added. MUP substrate comprises: 

500 µL 1M NaHCO3, 2 mL 5x Diethenolamine buffer, 7.5 mL water and 24 µL MUP 

stock. 5x diethenolamine buffer is 50 mM diethanolamine, 2.5 mg MgCl2 in water, pH 9.5 

and MUP stock is 83.3 mM MUP in 1x diethanolamine buffer.  

 

The BCA was completed using the manufacturer’s guidelines. Briefly, samples were 

incubated with the BCA working reagent at 37 °C for one hour. Then, the absorbance of the 

samples was measured at 562 nm using Infinite 200 PRO NanoQuant Plate Reader from 

Tecan. ALP concentration was measured through MUP fluorescence. Fluorescent readings 

were obtained by exciting the fluorophore at 360 nm and recording the fluorescence at 465 

nm. mU ALP/mg protein was obtained by dividing ALP mU/µL by the protein content 

obtained in the BCA.  
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6.2.4 Animals 

 

10 male mice (species Balb/c from Jackson Labs, USA) were used in the study, with two 

implants per mouse, to minimise animal usage. They were maintained in plastic cages in a 

room with a 12 h-day/night cycle and an ambient temperature of 21 °C, and were allowed 

ad libitum access to water and standard laboratory pellets. Animal selection and 

management, surgical protocol, and preparation followed the routines approved by the 

Georgia Tech Institutional Animal Care and Use Committee (IACUC).  

6.2.5 Surgical protocol 

 

The animals were generally anaesthetised with isoflurane anaesthesia. The surgical site was 

shaved and scrubbed with iodine. A vertical incision was made in the skin of the back. After 

flap reflection, a subcutaneous pocket was prepared by blunt dissection. Samples were 

implanted subcutaneously mid torso at the level of the panniculus carnosus. The incisions 

were closed with wound clips and mice were monitored daily until the wound clips were 

removed. 

6.2.6 Sponge implantation 

 

8 mm diameter sponges were sterilised in ethylene oxide overnight before the addition of 

bacteria. Bacteria were grown using the same method as used on glass coverslips. These 

were washed 2x in PBS before being implanted into the backs of mice. A small incision was 

made in the skin of the mice and the sponges, 1 on the left and 1 on the right were implanted 

subcutaneously, between the skin and muscle.  

 

6.2.7 Micro computed tomography (μCT) 

 

For μCT scanning, the region of implantation was scanned in anesthetised, live mice using 

a VivaCT system (Scanco Medical, Wayne, PA, USA) at 145 mA intensity, 55 kVp energy, 

376 ms integration time, and 12.5 μm resolution). Bone structure was evaluated by 

contouring 2D slices to include only the collagen sponge. 3D μCT reconstructions were 

rendered and the ratio of bone volume to total volume was computed. 
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6.2.8 Implant removal and histology 

 

The implants were used for histological analysis. Sponges were removed from the mice after 

CO2 asphyxiation and fixed in 4 % formalin overnight.  All samples were then decalcified 

in 10 % (vol/vol) formic acid for two days, embedded in paraffin, and sectioned transversely 

at the top, middle and bottom of the sponge at a thickness of 5 µm. These were then 

rehydrated through a graded series of alcohol solutions. The sections were then stained with 

haematoxylin and eosin.  
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6.3 Results 

 

6.3.1 Mesenchymal stem cell differentiation 

 

Alkaline phosphatase activity 

Alkaline phosphatase (ALP) catalyses the hydrolysis of phosphate esters (Sabokbar, Millett 

et al. 1994). Changes in ALP level and activity are associated with many biological states, 

including osteoblast activity. The precise mechanism of function is not understood, although 

it is believed to play a role in skeletal mineralisation and is therefore a marker of bone 

development (Siffert 1951, Orimo 2010). 

Figures 6.1 and 6.2 show ALP activity of MSCs after 10 and 12 days respectively. High 

ALP activity can be seen in the positive controls (FN coat + osteogenic media and FN coat 

+ 100 ng/mL BMP-2) when compared with the negative control (FN coat). ALP activity, 

was interestingly mostly equivalent to the FN coat in all L. lactis samples except L. lactis-

BMP-2S, which was seen to be higher than the FN coat, with results very similar to that of 

a FN coat with the addition of BMP-2 at 100 ng/mL. This is true at both time points.  

 

  

Figure 6.1. ALP activity of MSCs after 10 days. Cells were seeded over different L. 

lactis clones. ALP activity is highest in L. lactis-BMP-2S when compared with controls. 

Three technical replicates were completed per sample. Data is presented as the mean ± 

SD and analysed with a one way ANOVA with a Tukey post hoc test. Statistical 

significance levels are *p < 0.05, **p < 0.01, ***p < 0.001 and **** p < 0.0001. 
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This higher ALP activity could be due to the osteogenic potential of the secreted BMP-2 

from L. lactis-BMP-2S. These results, compounded by the BrdU results from the previous 

chapter (Figures 5.4 and 5.5), show that out of our L. lactis clones, L. lactis-BMP-2S displays 

the highest potential for MSC osteoblastic differentiation. 

For the long term experiments, only the differentiation characteristics of L. lactis-BMP-2S 

were explored as the other clones seem to show no osteoblastic potential.  

Three different nisin induction profiles were designed to test the effectiveness of the 

inducible L. lactis-BMP-2S at different strengths. Figure 6.3A highlights the daily addition 

of nisin to the cultures and when the OCN and von Kossa experiments were completed. 

Figure 6.3B shows the amount of BMP-2 produced by NZ9020 in response to the nisin added 

shown in Figure 6.3A. 

 

 

 

Figure 6.2. ALP activity of MSCs after 12 days. Cells were seeded over different L. lactis clones. 

ALP activity is highest in L. lactis-BMP-2S when compared with controls. Three technical 

replicates were completed per sample. Data is presented as the mean ± SD and analysed with a one 

way ANOVA with a Tukey post-hoc test. Statistical significance levels are **** p < 0.0001. 
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Osteocalcin expression 

The bone specific ECM protein OCN was used to determine MSC response to BMP-2 after 

21 days. OCN is regularly used as a positive indicator of the onset of osteogenic commitment 

as it is expressed post-proliferatively by osteoblasts (Lian, Stewart et al. 1989, Rickard, 

Figure 6.3. Nisin and BMP-2 induction profiles. (A) The inducible cultures were tailored 

to express BMP-2 and FNIII7-10 at different rates throughout the course of the experiment to 

test the longevity and time dependency of BMP-2 towards osteogenic differentiation. Nisin 

was added daily to the cultures. (B) BMP-2 production in NZ9020 in response to nisin 

addition. Graph was completed using data taken from the ELISA (Figure 4.16). A 

continuous (green), high to low (red) and low to high (blue) induction profile was chosen to 

test BMP-2s osteogenic activity. 

A 

B 
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Kassem et al. 1996, Malaval, Liu et al. 1999, Kim, Yoo et al. 2005). OCN expression was 

seen to be present in all samples as shown in Figure 6.4, albeit, with varying amounts at day 

21. Quantification of OCN (Figure 6.5) determined that their expression was higher in BMP-

2 positive samples (added at 100 ng/mL and in the L. lactis-BMP-2S samples). OCN levels 

are consistently high between the FN coat +100 ng/mL BMP-2, constitutive L. lactis-BMP-

2S and inducible L. lactis-BMP-2S at constant and high to low addition of nisin whilst OCN 

levels on the FN coat and constitutive L. lactis-FN are low.  

Importantly, OCN expression was seen to be similar between the constitutive and inducible 

clones when nisin was added at a constant and high to low amount.  

The results of OCN quantitation show clear differences in expression between a number of 

samples. For example, L. lactis-BMP-2S, in both its constitutive and inducible form shows 

a higher OCN expression than constitutive L. lactis-FN.    

 

 

Figure 6.4. Osteogenic differentiation of MSCs through osteocalcin. MSCs were cultured for 21 days and 

immunostained for actin (red), osteocalcin (green) and nuclei (blue). The top row represents MSCs seeded on 

FN coats, the second row shows constitutive L. lactis clones. The third and fourth row represent MSCs seeded 

on L. lactis-BMP-2S with differing amounts of inducer and MSCs seeded over co-cultures of L. lactis-FN and 

L. lactis-BMP-2S with differing amounts of inducer respectively. Scale bar is 100 μm. 
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von Kossa staining 

Osteoblasts deposit phosphate as a primary step of bone development and therefore this 

process is suggestive of terminal osteogenic differentiation. As can be seen from Figure 

6.6A, phosphate deposition is distinctly higher (black deposits) in the samples with BMP-2 

when compared to the negative control samples. Figure 6.6B shows a full coverslip as an 

example of the stain (L. latis-BMP-2S high to low).  

Quantification of phosphate deposition shown in Figure 6.7 again showed higher osteogenic 

markers in the BMP-2 positive samples. The positive control showed the highest 

differentiation with very comparable results between the BMP-2 positive sample sets. These 

results are complementary to the OCN results demonstrated above (Figures 6.4 and 6.5) with 

high OCN and von Kossa staining in the same samples.  

 

Figure 6.5. Osteocalcin quantitation. Graph shows integrated density corresponding to osteocalcin. 

OCN was found to be significantly higher in the samples with BMP-2 than in the samples without 

BMP-2. For the inducible clones, osteocalcin was seen to be higher in the sample sets where the 

inducer was highest at the start of the culture. A minimum of 400 cells from three technical replicates 

were used to analyse the samples. Data is presented at the mean ± SD and analysed with a one way 

ANOVA with a Tukey post-hoc test. Significance levels are **p < 0.01 and ***p < 0.001. 
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A 

B 

Figure 6.6. Osteogenic differentiation of MSCs through von Kossa. (A) Mineralisation (phosphate 

deposition) was assessed with a von Kossa staining on MSCs cultured after 28 days. Samples with BMP-2 

showed much higher phosphate deposition than without BMP-2, as can be seen by the black deposits. The 

top row represents MSCs seeded on FN coats, the second row shows constitutive L. lactis clones. The third 

and fourth row represent MSCs seeded on L. lactis-BMP-2S with differing amounts of inducer and MSCs 

seeded over co-cultures of L. lactis-FN and L. lactis-BMP-2S with differing amounts of inducer 

respectively. Scale bar is 300 µm. (B) Representative whole coverslip after von Kossa staining. 
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Figure 6.8 shows OCN expression and phosphate deposition relative to the FN coated glass 

which is given value of ‘1’. On the constitutive clones, both L. lactis-FN + 100 ng/mL BMP-

2 and L. lactis-BMP-2S show statistically significantly higher OCN and phosphate 

deposition with a mean fold change increase of 9 and 7 respectively in OCN and 10 and 9 in 

phosphate deposition. L. lactis-FN shows no difference and fold change remains close to ‘1’. 

Moreover, L. lactis-FN + 100 ng/mL BMP-2 and L. lactis-BMP-2S are not statistically 

different from each other, showing similar levels of differentiation.  

In the inducible clones, constant and high to low addition of nisin showed statistically 

significantly more OCN and phosphate deposition than FN coated glass with very 

comparable fold change levels to those seen in the constitutive clones. On the contrary, low 

to high nisin addition resulted in statistically similar results to that of FN coated glass.  

These results clearly show the differentiation potential of our L. lactis-BMP-2S in both a 

constitutive and inducible manner. 

Figure 6.7. Phosphate deposition quantitation. Graph shows integrated density corresponding to 

phosphate deposition. von Kossa stains were found to be significantly higher in the samples with 

BMP-2 than in the samples without BMP-2. For the inducible clones, phosphate was seen to be higher 

in the sample sets where the inducer was highest at the start of the culture. A minimum of nine images 

were taken from three technical replicates. Data is presented as the mean ± SD and analysed with a 

one way ANOVA with a Tukey post-hoc test. Significance levels are **** p < 0.0001. 
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Altogether, the cell proliferation (Figures 5.4 and 5.5.), ALP (Figures 6.1 and 6.2.), OCN 

(Figures 6.4, 6.5 and 6.7.) and von Kossa (Figures 6.6, 6.7 and 6.8) confirm the ability of the 

living interface to induce MSC differentiation.  

Figure 6.8. Overall osteogenic differentiation. Graphs detail fold changes for constitutive (top) and 

inducible L. lactis (bottom). Expression of OCN (above) and deposition of phosphate (below) was 

compared to that on FN coated glass (dotted line) and representative images are shown to the right. Data 

used here are the same as from Figures 6.5 and 6.7. Data is presented as the mean ± SD and analysed with a 

one way ANOVA with a Tukey post-hoc test. Scale bar is 100 µm for OCN and 300 µm for von Kossa. 

Significance levels are **** p < 0.0001. 
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6.3.2 In vivo mouse study 

 

The objective of this work was to evaluate the ability of biomaterial (collagen) scaffolds 

containing BMP-2 producing L. lactis to promote bone formation in vivo in an ectopic site. 

The model chosen was subcutaneous implantation as it is commonly used and an appropriate 

model to evaluate host responses to implanted biomaterials as well as the mineralisation 

capabilities of the therapy. The subcutaneous model also allows examination of the 

bacteria’s capability to direct bone formation in an in vivo environment without contributions 

from host osteogenic cells. This implantation site provides a stringent, non-osseous 

environment to examine the inherent capacity of these bacteria to form bone tissue in vivo 

and gives important information on the inflammatory and immune response to these 

constructs (Friess 1998, Geiger, Li et al. 2003, Carstens, Chin et al. 2005, Lee, Kim et al. 

2010). 

Prior to the completion of the in vivo work, it was imperative to establish a sensible scaffold 

for the bacteria as the use of a glass coverslip would be detrimental to animal health. We 

chose to use the well characterised, absorbable collagen sponge (ACS) as it has high 

biocompatibility, is degradable and shows a suitable interaction with cells and other 

macromolecules (Friess 1998, Geiger, Li et al. 2003). Further to this, it has been used in 

conjunction with the delivery of BMP-2 to in vivo test sites (Carstens, Chin et al. 2005). ACS 

is used with BMP-2 as the protein acts optimally when combined with an adequate matrix. 

This matrix acts to prolong the residence time of the protein as well as acting as support for 

invading osteoprogenitor cells; the favourable influence of collagen on cellular infiltration 

in would healing is well known (Kim, Lee et al. 2011). The efficacy and safety of the 

combination of the ACS and BMP-2 has been clearly proven in both animal and human trials 

(Nevins, Kirker-Head et al. 1996, Boyne, Marx et al. 1997, d'Aquino, De Rosa et al. 2009).  

Cell adhesion to sponges was first explored. MSCs were seeded (5000 cells/cm3) over 

collagens sponges that had been pre-cultured with different strains of L. lactis. MSCs were 

cultured for one day before fixation and staining with DAPI and phalloidin. It is apparent 

from Figure 6.9 that cells have attached to all sponges with varying success. Scaffolds 

functionalised with bacteria seem to show a much higher cell attachment than without 

bacteria. Even scaffolds with L. lactis-empty were seen to harbour more cells than the non-

bacterial samples. This is surprising as the collagen should induce cell adhesion. All cells 

display a stretched elongated morphology, indicative of their health and viability. 

Surprisingly, DAPI seemed to stain the collagen sponge as well as nuclei. This can be 
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concluded by the fact that the sponge can be seen as green in the scaffolds without bacteria. 

Bacteria were present in the sponges as the medium (DMEM) could be seen to turn yellow, 

an indication of acidification by L. lactis NZ9000.  

 

Figures 6.10 and 6.11 show activity of ALP in mU of ALP/mg protein on different 

functionalised collagen scaffolds. Cells were left to culture for 10 and 15 days before lysing 

and assaying for protein content and ALP activity.  

Figure 6.9. MSC adhesion to functionalised collagen sponges after 1 day. Cells were seeded over differently 

functionalised collagen sponges and MSCs can be seen to adhere all surfaces. Green = DAPI and red = actin. Scale 

bar = 100 µm. 

 



142 

 

Figure 6.10 shows ALP activity at day 10 in collagen sponges. It is clear that the samples 

with 100 ng/mL of BMP-2 added to the media (positive control) induced the highest amount 

of ALP activity, however, the negative control (no BMP-2), displayed a similar amount of 

ALP activity to that of our L. lactis displaying BMP-2 bacteria (albeit, slightly less than the 

secreted BMP-2). Further to this, our BMP-2 strains, both the membrane and secreted 

versions, produced higher amounts of ALP than our non BMP-2 expressing strains (not 

statistically different). The only statistically significantly difference in the samples was 

between 100 ng/mL BMP-2 and L. lactis-FN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 highlights ALP activity at day 15 and shows that 100 ng/mL of BMP-2 (positive 

control) induced the highest amount of ALP activity. The next highest result is that of L. 

lactis-BMP-2S, which is the same result as for on glass coverslips shown in Figures 6.1 and 

6.2. This confirms that the bacteria and mammalian cells behave in a similar way as to on 

the glass coverslips. This results demonstrates that L. lactis-BMP-2S has the ability to induce 

osteogenesis in a collagen sponge and was chosen as the L. lactis strain to continue the in 

vivo trial.  

 

Figure 6.10. ALP activity of MSCs after 10 days on collagen sponges. Cells were seeded 

over differently functionalised collagen sponges. ALP activity is highest in L. lactis-BMP-

2S, however, is similar to the negative control. Three technical replicates were completed 

per sample. Data is presented as the mean ± SD and analysed with a one way ANOVA with 

a Tukey post-hoc test.  Statistical significance level is *p <  0.05. 
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In vivo study 

The preliminary in vitro study was used to ascertain which strain of L. lactis should be used 

in vivo. From the cell attachment and ALP studies, it was concluded that L. lactis-BMP-2S 

showed the best potential for bone production in vivo.  

µCT 

Mice were anaesthetised and imaged. Annex Figures 8.1 (two weeks) and 8.2 (four weeks) 

show reconstructed 2D images of the areas housing the collagen sponges and Tables 6.1 

(two weeks) and 6.2 (four weeks) show the calculated bone volume (mm3). No mineralised 

bone was seen in any sample, including the positive control. Conventionally, a large amount 

of BMP-2 is used in these studies, with more than 1 µg/mL being the normality. We used 

100 ng/mL and are therefore at least at a 10 fold reduction in BMP-2 levels. This low dosage 

could explain the lack of bone formation in the sponges. This amount was chosen as it was 

the amount used in the in vitro controls. If the experiment were to be done again, a higher 

concentration positive control would be needed. 

Figure 6.11 ALP activity of MSCs after 15 days on collagen sponges. Cells were 

seeded over differently functionalised collagen sponges. ALP activity is highest in L. 

lactis-BMP-2S. Three technical replicates were completed per sample. Data is 

presented as the mean ± SD and analysed with a one way ANOVA with a Tukey post-

hoc test.  Statistical significance level is *p <  0.05. 
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Table 6.1. Calculated bone volume (mm3) in collagen sponges after two weeks. 

Scaffold Empty  

scaffold 

100 ng/mL 

BMP-2 

L. lactis-

empty 

L. lactis-BMP-

2S 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5  0 0 0 

6    0 

 

 

Table 6.2. Calculated bone volume (mm3) in collagen sponges after four weeks. 

 

 

Histology 

The sponges were explanted from the mice and were stained with haematoxylin and eosin 

(H&E). Figure 6.14 shows H&E staining of 5 µm slices of the sponges. The light pink 

(detailed by the blue arrows) corresponds to regions of the sponge, the dark purple spots are 

cell nuclei and the lighter purple colour are the cell cytoplasm. It is apparent from the images 

that the sponges have been invaded by cells, including the middle of the sponge. The sponges 

have been vascularised as can be seen by the presence of a vein holding red blood cells 

(shown by green arrow). We expected an immune response from the animals due to the 

addition of the bacteria, with more white blood cells present in the bacterial samples, 

however, no differences in H&E staining were seen between the samples.  

 

Scaffold Empty  

scaffold 

100 ng/mL 

BMP-2 

L. lactis-

empty 

L. lactis-BMP-

2S 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5  0 0 0 

6    0 
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Empty sponge 

L. lactis Secreted BMP-2  
2

Empty L. lactis 

100 ng/mL BMP-2 

Empty sponge 100 ng/mL BMP-2 

20x 

40x 

Figure 6.12. Haematoxylin and eosin staining of sliced collagen sponges after four weeks. Images were 

taken at 20x (top) and 40x (bottom) on empty sponge, sponges with 100 ng/mL BMP-2, sponges with L. 

lactis-empty and sponges with L. lactis-BMP-2S. Blue arrows show areas of collagens sponge and the green 

arrow shows a vascularised area. 

L. lactis Secreted BMP-2  
2 

Empty L. lactis 
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6.4 Discussion 
 

Engineering the cellular microenvironment to direct stem cell behaviour is of fundamental 

importance to biomedical applications. It is known that that cells interact with their 

environment, the ECM, through integrins and growth factor receptors resulting in 

biochemical signalling cascades. Collectively, these different signals dictate a plethora of 

responses already hardwired into the genes of the cell which control many cellular 

phenotypes, including differentiation.  

This chapter highlights the osteogenic potential of L. lactis-BMP-2S at varying time points 

(10, 12, 21 and 28 days) and on different surfaces (PEA coated glass and ACS).  

ALP activity of MSCs after 10 and 12 days (Figures 6.1 and 6.2) on differing constitutive L. 

lactis clones showed that L. lactis-BMP-2S demonstrated the best osteogenic potential as 

MSC ALP activity was almost identical to that of MSCs cultured on a FN coat with 100 

ng/mL BMP-2 added to the medium. This was true at both 10 and 12 days. Therefore, L. 

lactis-BMP-2S shows the lowest proliferation rates at one and three days (Figures 5.4 and 

5.5) on both constitutive and inducible clones, and highest ALP activity at day 10 and 12. 

The results for L. lactis-BMP-2S were most similar to our positive control, a FN coat with 

100 ng/mL BMP-2 added to the medium. In contrast, L. lactis-FN, L. lactis-BMP-2W and 

L. lactis-BMP-2S and M-GFP showed high proliferation rates and low ALP activity, similar 

to that of a FN coat without BMP-2 added. These results suggested that L. lactis-BMP-2S 

showed the highest osteogenic potential which allowed us to select this clone for further 

study.  

Upon selection of L. lactis-BMP-2S for long term differentiation studies, a 21 day OCN and 

28 day von Kossa stain were completed. This was tested on both the constitutive and 

inducible clones. The OCN and von Kossa data validated L. lactis-BMP-2S’ ability to induce 

differentiation of MSCs in both its constitutive and inducible forms. In its constitutive form, 

differentiation from both the OCN and von Kossa showed similar results to that of the 

positive control. The inducible form was tested at different strengths of inducer (profiles 

shown in Figure 6.3). Unsurprisingly, the constant expression with 10 ng/mL nisin showed 

high differentiation and low to high showing negligible differentiation. Surprisingly, high to 

low addition of nisin resulted in similar differentiation to that of constant addition. This data 

explains that nisin addition is needed at early time points in the experiment, as by day 19 

nisin addition was at its maximum (10 ng/mL) in the low to high samples and insignificant 

differentiation was seen by 21 and 28 days. This details the importance the initial 
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cell/material interaction. This data supports the existing paradigm that cells react strongly to 

the initial stimuli. In the high to low sample, BMP-2 expression was relatively low by day 

10 and the same level of differentiation was seen between this and the constantly high 

expressed BMP-2 samples. 

These long-term (OCN and von Kossa), compounded by mid-term (ALP) and short-term 

(BrdU) differentiation results show that L. lactis-BMP-2S has strong osteogenic potential to 

direct the differentiation of MSCs to osteoblasts in vitro.  

Next, the differentiation capabilities were examined in 3D collagen sponges before being 

trialled in an in vivo subcutaneous mouse model. NZ9000 bacteria were used in this model 

as they are capable of producing higher amounts of protein, and the mouse’s vascular system 

would be able to remove any lactic acid produced by the bacteria, thus removing the biggest 

in vitro problem with the system (Eggleton and Evans 1930, Davies, Knibbs et al. 1970).   

MSCs were found to adhere to all sponges as collagen proteins hold multiple cell adhesion 

motifs (Heino 2007, Taubenberger, Woodruff et al. 2010) , regardless of L. lactis present. 

Interestingly, the presence of bacteria increased the adhesion of MSCs to the sponge when 

compared to the empty sponges. This was true of all L. lactis subtypes, and not only L. lactis-

FN. A mid-term ALP activity assay was again utilised to ascertain the differentiation 

aptitude of L. lactis in these sponges. Once again, ALP activity was seen to be highest in the 

L. lactis-BMP-2S samples, however, the differences were not statistically significant. 

Nonetheless, the osteogenic capabilities shown in 2D and the fact that L. lactis-BMP-2S 

showed highest osteogenesis in the 3D model shows that it has some osteogenic potential 

and therefore this bacteria was chosen for in vivo tests.  

A subcutaneous model was chosen to highlight the bacteria’s capacity to direct ectopic bone 

formation in an in vivo environment, devoid of the host’s osteogenic cells. In vivo µCT at 

two and four weeks showed no bone growth in any of our samples, including the positive 

control. This is likely due to the low amount of BMP-2 used in these samples. We decided 

to use BMP-2 at 100 ng/mL in the implanted sponges, the same as in the ALP experiment 

previous and in the in vitro models. However, it is reported that BMP-2 in collagen sponges 

is often up at the µg range, and is therefore at least a tenfold higher concentration than in our 

samples. However, the bacteria did not induce bone formation either and from the 

characterisation experiments, we expect 485 ng/mL of BMP-2 (Figure 4.3). This is clearly 

not the case in the 2D experiments as the bacteria samples are not fully saturated in the 

culture. For the 3D collagen sponge experiments, the bacteria are present in the sponge and 
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it is difficult to ascertain the number of bacteria present. In order to reach the µg range of 

secretion from our bacteria, we would need approximately 2 mL of saturated culture and 

would need a distinctly larger collagen sponge, however, it is difficult to directly assess the 

exact size of collagen sponge needed as it is impossible to measure the number of bacteria 

present in the sponge. The collagen sponges that were implanted were submersed in 1 mL 

of bacterial culture, however, it was apparent that there were considerable amounts of 

bacteria outside the sponge and therefore, there would not be 485 ng/mL BMP-2 present.  

In addition to the µCT, a H&E stain was used to determine the presence of cellular 

differences between the functionalised sponges, however, no differences could be seen. We 

were looking for signs of osteoblasts and osteoclasts, as well as host immune cells to see if 

the bacteria were destroyed. After four weeks, no osteogenic cells, or host immune cells 

could be seen. However, it was apparent from the backs of the mice that sponges implanted 

with bacteria led to increased swelling of the area, when compared with the mice with 

sponges without bacteria. This was seen for the first week of the experiment, and soon 

dissipated. If repeated, blood tests would be taken from the mice within the first week to 

check for increased signs of infection. This could mean that the bacteria were engulfed and 

destroyed by the host’s immune system within the first week of the trial, thus losing the 

source of the BMP-2, explaining the lack of differentiation. Although the 2D OCN and von 

Kossa inducible results (Figures 6.5, 6.7 and 6.8) detail the requirement for high BMP-2 

concentrations needed at the beginning of the culture only, the lower amount of BMP-2 (< 

1 µg) may result in decreased differentiation in a non-osseous site. The high amount of BMP-

2 needed, coupled with the likeliness of L. lactis death; could lead to the lack of bone growth 

in vivo. 

Although the in vivo experiment did not proceed as planned, it is apparent that genetically 

engineered L. lactis secreting BMP-2 can indeed induce the osteogenic differentiation of 

MSCs, to a similar level to that of a FN coated coverslip with BMP-2 added to the media at 

100 ng/mL in vitro. This result demonstrates that L. lactis can not only direct the attachment 

of MSCs through cell wall bound FNIII7-10, they also have the ability to change the 

phenotypical state of the cells seeded above through the osteogenic growth factor, BMP-2.  
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6.5 Conclusion 
 

This chapter shows that L. lactis-BMP-2S can be used as a successful interface between a 

synthetic surface and MSCs to control their differentiation towards an osteoblastic fate to a 

similar extent as an FN coated substrate with 100 ng/mL BMP-2 added to the media. L. lactis 

can be modified to produce BMP-2 in a constitutive and inducible fashion, and that the BMP-

2 is biologically active. Furthermore, differences in nisin addition emphasised the need for 

higher concentrations of BMP-2 towards the start of the experiment to allow for terminal 

differentiation of MSCs by 28 days. This result also demonstrates the power of our inducible 

system, in that we can allow cell growth to continue and upon user defined time points and 

concentrations, BMP-2 can be added to the system to induce the differentiation of the 

mammalian cells.  

In addition, L. lactis-BMP-2S was used in an in vivo mouse model to explore subcutaneous 

ectopic bone formation. However, no bone growth was seen over four weeks. This is likely 

due to the fact that the bacteria were removed by the host’s immune system and the low level 

of BMP-2 used.  

This chapter has shown that genetically engineered L. lactis can be used to colonise a surface 

and that the differentiation cues supplied by growth factors can influence phenotypical 

decisions of stem cells. 
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7. Discussion and conclusion 
 

7.1 Summary 
 

The main findings from this work show that in vitro, genetically engineered L. lactis can 

direct the attachment and differentiation of MSCs. A schematic representation of the system 

can be seen in Figure 7.1. Both short and long term experimentation highlight that L. lactis 

secreted BMP-2 is biologically active and can induce the differentiation of MSCs to a similar 

level as achieved when exogenous BMP-2 is added to the culture. In addition, the system 

has also been made inducible, whereby the user can define the time and amount of protein 

to be expressed. The well characterised nisin controlled gene expression system (NICE) 

(Mierau and Kleerebezem 2005) was used with differing levels of inducer; protein 

expression and the level of MSC differentiation was seen to directly correlate with amount 

of inducer added.  

However, findings from the in vivo model suggested that the system needs more 

development in order to transition to animal trials. A more robust positive control will need 

to be developed to allow for more accurate conclusions. A collagen sponge was implanted 

subcutaneously in the backs of mice, and ectopic bone formation was measured with micro-

CT. No bone growth was seen over four weeks as we believe the bacteria were destroyed by 

the host’s immune system. Moreover, this was only a pilot study and would needed to be 

tested more vigorously in the future.  

In summary, this thesis highlights the potential for non-pathogenic bacteria to be used as a 

substrate in the creation of dynamic surfaces for their use in regenerative medicine. 

Additionally, this system can be further modified, either in the production of other proteins 

or by the creation of other plasmids for controlled release in response to other inducers.  

 

 

 

 

 

 



151 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. 3D schematic representation of the interaction between L. lactis and MSCs. (A) shows 

MSCs seeded on top of a monolayer of bacteria. (B) Shows a zoomed in representation of the area of 

interaction. (C) Shows from left to right, BMP receptors I and II, integrin subunits, FNIII7-10 and BMP-2. 

A 

B 

C 
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7.2 General discussion 
 

Bacteria based therapeutics is a rapidly growing field, with non-pathogenic strains being 

used to fight an array of biomedical problems. Bacteria are already being used to fight cancer 

(Wang, Vuletic et al. 2017, Zheng, Nguyen et al. 2017), obesity (Chen, Guo et al. 2014) and 

various gastrointestinal diseases (Steidler, Wells et al. 1995, Schotte, Steidler et al. 2000). 

This thesis paves the way for advanced biofilm based therapeutics, as L. lactis secreting 

BMP-2 was found to be biologically active and can control the differentiation of MSCs. L. 

lactis has been modified to present and express FNIII7-10 in a cell wall bound form and BMP-

2 in a cell wall bound and secreted form. It was found that the cell wall bound FNIII7-10 

fragment could prompt cell adhesion in a variety of cell types including MSCs and C2C12s. 

The osteogenic growth factor BMP-2 was expressed in a cell wall bound and secreted form. 

The cell wall bound BMP-2 monomer did not show any biological activity. This is likely 

due to BMP-2 dimerisation being essential to bind to the BMP-2 receptor, in addition, it has 

been proven that modifying the C-terminal of BMP-2 (with SpaX in this work) renders the 

molecule inactive (Kashiwagi, Tsuji et al. 2009). In contrast, secreted BMP-2 showed good 

levels of biological activity with comparable levels of late term osteogenic markers to the 

positive control (FN coat with 100 ng/mL BMP-2 added to the medium).  

This new work paves the way for advanced biofilm-driven cell therapies. Current stem cell 

culture systems fall far short of desired outcomes of enhanced growth and enhanced 

proliferation that can work in a bioreactor-like manner (Celiz, Smith et al. 2014). 

Furthermore, these culture systems are not dynamic and might be good either for growth 

(McMurray, Gadegaard et al. 2011) or for differentiation (McBeath, Pirone et al. 2004, 

Engler, Sen et al. 2006, Dalby, Gadegaard et al. 2007), but not for both. Dynamic culture 

systems have been developed but are limited typically to simple on/off states (Ebara, Yamato 

et al. 2004, Todd, Scurr et al. 2009, Wirkner, Weis et al. 2011, Lee, Garcia et al. 2015, 

Chaudhuri, Gu et al. 2016, Das, Gocheva et al. 2016). This work shows how simple 

biological cells such as L. lactis can be engineered to allow temporal expression of cell wall 

bound or secreted biologicals that can control MSC growth (FNIII7-10) and differentiation 

(BMP-2). It is easy to see how the complexity of this system can be tuned to express other 

proteins that could e.g. drive other phenotypes. Further, it is easy to see that as the system is 

compatible with 3D materials, adherent stem cell cultures, such as MSCs, can be scaled to 

3D ‘fermentation’ type bioreactors for mass production of cells. 
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This thesis focuses on BMP-2 and osteogenic MSC differentiation as bone is the second 

most transplanted tissue after blood (Shegarfi and Reikeras 2009) and thus, there is a 

growing need for lab grown osteoblasts for cellular therapies. The ageing populations of 

many countries only exacerbates the problem as diseases such as osteoporosis are becoming 

more prevalent (Manolagas 2010). This work shows the osteogenic capabilities of 

genetically engineered bacteria in both 2D and 3D. Users can coat surfaces with or 

incorporate BMP-2 secreting L. lactis to induce highly efficient differentiation of MSCs to 

osteoblasts in vitro, with 3D systems such as hydrogels allowing bioreactor scale cell 

production. These cells can then be harvested for a variety of downstream applications, 

ranging from autologous or allogenic cell transplants or for the creation of lab grown bone 

(Burchardt 1983, Deans and Moseley 2000, Aggarwal and Pittenger 2005).  

Using these simple biological cells, the system could be improved by creating an 

environment whereby BMP-2 compounded with other growth factors would assist in the 

creation of a bacterially expressed osteogenic ‘cocktail’. Bone morphogenetic protein-7 

(BMP-7), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF-2) are 

all known osteogenic factors that in addition to BMP-2 could be engineered into the system 

to provide temporal controlled release and hence more efficient differentiation of MSCs 

(Mohan and Baylink 1991) in a manner that would be extremely different to using 

biomaterials approaches. It is exactly this flexibility that is the real benefit of this concept. 

There are already a wide variety of constitutive and inducible expression systems available 

for L. lactis and with these tools, one can create a plethora of on-off controlled systems to 

deliver the protein of interest at a desired time point and dose (Sanders, Venema et al. 1997, 

Siren, Salonen et al. 2009, Douillard, O'Connell-Motherway et al. 2011, Benbouziane, 

Ribelles et al. 2013, Mu, Montalban-Lopez et al. 2013). This would allow the creation of a 

highly dynamic interface with a wide range of temporal information delivered to stem cells. 

 

7.3 Cell adhesion and proof of concept 
 

L. lactis MG1363 (it was later found that NZ9000 harbours roughly the equivalent amount 

of FNIII7-10) functionalised with the FN fragment FNIII7-10 showed high viability counts at 

four weeks with different antibiotics and that bacteria displaying this FNIII7-10 fragment can 

induce cell adhesion of a variety of cell types including MSCs. SEM, vinculin and integrin 

staining confirmed cell adhesion to L. lactis-FN. Most importantly, it was found that this 

interface of L. lactis-FN was able to sustain MSC differentiation for up to four weeks with 
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the addition of BMP-2 at 100 ng/mL to the samples. Bacteria were seen to be present in the 

mammalian-bacterial co-cultures at three weeks and are therefore still able to direct cell 

behaviour through the FNIII7-10 fragment. OCN, OPN and von Kossa signalling was 

increased in the BMP-2 positive samples.  

7.4 L. lactis characterisation 
 

The strain of L. lactis used was changed as MG1363 does not harbour the necessary genes 

(NisK and NisR) for inducible expression. The well characterised NZ9000 and its derivatives 

were used for the remainder of the work conducted in this thesis. L. lactis was modified to 

express cell wall bound and secreted forms of the osteogenic factor BMP-2. It was found 

that there are no commercial kits available for the detection of bacterially expressed BMP-2 

(no glycosylation) and therefore the marker protein GFP was used as a reporter. Sequencing, 

western blot and fluorescence assays demonstrated the presence of BMP-2-GFP in the 

constitutive clones. For the inducible clones, a 6xHisTag was used and the cloning and 

presence of protein was confirmed by sequencing and western blots and ELISAs. Upon 

completion of the constitutive cloning, it was found that NZ9000 was detrimental to MSC 

viability after two weeks as the acidic conditions through lactic acid production began to kill 

the mammalian cells. Therefore, the lactate dehydrogenase knockout NZ9020 was used to 

complete long term mammalian cell culture. Plasmids harbouring BMP-2 and FNIII7-10 were 

transferred to NZ9020 and mammalian cell viability was seen to be good at four weeks.  

 

7.5 Initial mammalian cell studies 
 

MSC behaviour on the constitutive and inducible L. lactis clones was tested. It was found 

that the FNIII7-10 fragment in both its constitutive and inducible forms were able to 

encourage MSC adhesion. It was also found that upon increased concentrations of nisin, cell 

spreading was seen to increase. This directly confirms the western blot data. Cell 

proliferation was also tested to see if the BMP-2 present could control cell cycle dynamics. 

It was found that the presence of BMP-2 slowed cell proliferation rates in both the positive 

control and in L. lactis-BMP-2S. This was the first sign that BMP-2 from L. lactis-BMP-2S 

was biologically active. Lastly, direct mammalian-bacterial cell dynamics were investigated. 

C2C12 murine myoblasts readily uptake all forms of L. lactis, albeit with different uptake 

rates. The presence of either protein, FNIII7-10 or BMP-2W was shown to increase bacterial 

cell uptake.   
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7.6 L. lactis derived osteogenesis 
 

The osteogenic potential of the L. lactis clones was first tested by their ability to induce ALP 

activity in MSCs. It was found that L. lactis-BMP-2S stimulated similar ALP levels to that 

found in the positive control. Moreover, ALP activity in L. lactis-FN and L. lactis-BMP-2W 

showed negligible ALP activity. This result, compounded by the low proliferation results 

highlighted L. lactis-BMP-2S as the best candidate for long term osteogenic differentiation. 

Next, long-term differentiation of MSCs on L. lactis-BMP-2S was tested. OCN and von 

Kossa staining showed higher osteogenic markers in the L. lactis-BMP-2S samples when 

compared with the negative controls. Additionally, the differentiation rates were seen to be 

similar to that of the positive control showing that L. lactis-BMP-2S can regulate MSC 

differentiation. In addition, the inducible results demonstrated the necessity of high nisin and 

therefore BMP-2 addition at the start of the experiment. This was concluded as 

differentiation rates as seen in the low to high nisin addition showed very little differentiation 

being similar to that of the negative control. Most interestingly, the high to low samples 

showed similar levels of differentiation as to that of constant addition. This shows that the 

behavioural cues driven by L. lactis are needed at the very beginning of the experiment and 

can begin to be decreased around day four.  

The potential for L. lactis derived osteogenic differentiation was next tested in an in vivo 

subcutaneous mouse model, whereby ectopic bone formation was studied in absorbable 

collagen sponges implanted into the backs of mice. No bone formation was seen after four 

weeks in any sample, including the positive controls. This experiment will have to be 

modified in the future in order to come to more accurate conclusions for the potential of this 

technology.  

 

7.7 Future work 
 

Many aspects of this work would be interesting to extend and could provide many more 

insights into how L. lactis could be utilised to realise its therapeutic potential.  

It would be exciting to investigate the in vivo models again as the pilot study did not achieve 

the desired results. The experiment would have to house a more adequate positive control to 

ascertain more accurate conclusions. In addition, many more variables would have to be 

tested. For example, blood tests at specified days after implantation would need to be 
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completed to determine the host’s immune response to bacteria based implantation. It would 

also be interesting to remove the implants at different time points and explore cell types 

present to see if there was an increased immune response at early time points. This would 

also aid in the data to see if the bacteria were destroyed by the immune system.  

Additionally, the use of other growth factors could assist in the creation of a bacterially 

expressed osteogenic ‘cocktail’. Bone morphogenetic protein-7 (BMP-7), platelet-derived 

growth factor (PDGF), and fibroblast growth factor (FGF-2) are all known osteogenic 

factors that in addition to BMP-2 could provide unmet, efficient osteogenic differentiation 

of MSCs. These could be controlled in an inducible fashion, to tailor the dose and time 

dependency of the growth factors to maximise osteogenic potential. There are already a wide 

variety of constitutive and inducible expression systems available for L. lactis, the acid-

inducible P170 promoter (Jorgensen, Vrang et al. 2014), a chloride inducible system 

(Sanders, Venema et al. 1997), a zinc regulated expression system (Mu, Montalban-Lopez 

et al. 2013), agmatine controlled expression (Linares, Alvarez-Sieiro et al. 2015) and 

thioredoxin gene fusion systems (Douillard, O'Connell-Motherway et al. 2011) amongst 

others. With these tools, the researcher can create a plethora of on-off controlled systems to 

deliver the protein of interest at a desired time point and dose. This would allow the creation 

of a highly dynamic interface with abounding informational cues for the cells seeded above.  

In addition to osteogenesis, many other therapeutic areas could be explored. For example, 

vascular endothelial growth factors (VEGFs) are diffusible mitogens with angiogenic 

properties. These growth factors support the development of blood vessels and wound 

healing and therefore, a bacteria expressing this growth factor would have a variety of 

properties.  

7.8 General conclusion 
 

This thesis shows the regenerative potential of genetically engineered bacteria. The non-

pathogenic bacteria, Lactococcus lactis has been modified to express a fragment of the 

mammalian cell adhesion peptide fibronectin as a cell wall bound protein. This has been 

shown to control cell adhesion. In addition, the system has been further modified to express, 

under dynamic temporal control, bone morphogenetic protein 2, a known osteoinducer to 

mesenchymal stem cells in a cell wall bound and secreted form. Whilst the cell wall bound 

BMP-2 exhibited no osteogenic effect, secreted BMP-2 showed good signs of biological 

activity, being comparable to 100 ng/mL of BMP-2. Short, mid and long-term tests all 
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showed the biological activity of secreted BMP-2, creating a new paradigm in surface 

engineering for regenerative medicine. The system can be further modified to produce a 

myriad of proteins in order to control a number of different therapeutic problems. Overall, 

this thesis has shown that genetically engineered bacteria can control the differentiation of 

mesenchymal stem cells.  
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8. Annex 
 

  

Figure 8.1. C2C12 murine myoblasts seeded over L. lactis-FN under alcian blue fixative for three hours 
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Annex Figure 8.2. µCT images of functionalised collagen sponges after 2 weeks. Live mice 

were imaged and regions containing the sponge were reconstructed in 3D. A = empty collagen 

sponges, B = sponges with 100 ng/mL BMP-2, C = sponges with L. lactis-empty and D = sponges 

with L. lactis-BMP-2S. No bone growth could be seen in any sample. 
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Annex Figure 8.3. µCT images of functionalised collagen sponges after 4 weeks. Live mice 

were imaged and regions containing the sponge were reconstructed in 3D. A = empty collagen 

sponges, B = sponges with 100 ng/mL BMP-2, C = sponges with L. lactis-empty and D = sponges 

with L. lactis-BMP-2S. No bone growth could be seen in any sample. 
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