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Abstract 

Measurements of volatile abundances at the martian surface (e.g. H2O, Cl, 

CO2, CH4) are a priority for the latest generation of martian rovers (Curiosity and 

ExoMars) due to the astrobiological importance of these compounds. Mars is a prime 

candidate to find water as recent Mars orbiter and lander missions have revealed 

evidence for the presence of liquid water early in Mars’s history (e.g., Nochian ~3.9 

to 4.5 Ga). Geomorphological features (e.g., fluvial valleys), water rich sediments 

and minerals (e.g. clays) and evaporates (e.g. gypsum) all indicate hydrological 

activity has occurred on Mars. However, rovers are limited to surface exploration 

and therefore are unable to provide insight to the volatile content of the martian  

interior. Martian  meteorites identified on Earth consist largely of volcanic basaltic 

material. Therefore, the volatile contents of primary igneous minerals within these 

martian basalts can indicate the volatile content of the source regions at depth in the 

martian interior. 

The discovery of Northwest Africa (NWA) 7034 (and pairings) and NWA 

8159 has expanded the diversity of the martian meteorites from the common 

Shergottite, Nakhlite, Chassignite (SNC) types observed. NWA 7034 is a polymict 

basaltic breccia, whereas NWA 8159 is an augite basalt. This study investigates the 

apatite volatile content of these two unique martian meteorites. 

The apatite volatile content in NWA 8159 relates to the volatile abundances of 

the parental melt, hence providing insight into a previously unstudied martian 

volcanic province. The discovery of F-rich apatites in NWA 8159 in this study is a 

particularly important find since F-rich apatites, are not characteristic of martian 

meteorites, which typically have Cl-rich apatite compositions. This rare finding 

along with previous F-rich apatite discoveries (Slaby et al., 2016, 2017) highlights 

that a F-rich source region for martian magma is present. This F-rich parental source 

region has, until recently, been unstudied due to the sample bias in the martian 

meteorite suite. 

Results from this study confirm the presence of more Mars typical Cl-rich 

apatites within NWA 7034 and reveal a significant OH component within individual 

apatite grains. The volatile content of NWA 7034 is in fact uncharacteristically 

uniform for a polymict breccia (i.e., no groupings of apatite can be seen in terms of 
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their volatile abundances (Cl: F: OH)), indicating post-crystallisation processes- 

possibly a thermal event have overprinted the original Cl, F and OH contents of 

these apatite grains. 

Three distinct groupings of apatites can be noted on the basis of hydrogen 

isotope composition, water content and texture of NWA 7034 apatite. This implies 

that there are at least two different apatite histories that have been recorded. Group 1 

is characterised by high δD values paired with low water contents, and inferred to be 

the result of devolatilisation during shock and/or thermal heating. Group 2 consists 

of intermediate δD values and high water contents, which could be controlled by 

hydrothermal alteration. Group 3 is characterised by low δD values and high water 

contents, probably caused by terrestrial contamination, but possibly representative 

of a martian mantle signature. 
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Definitions and Abbreviations  
 

Al Aluminium 

ALH Alan Hills 

An Anorthite 

Ar Argon 

BSE Backscatter electron 

Ca Calcium 

Ca5(PO4)3(F, Cl, OH) Calcium phosphate apatite chemical formula 

Cl Chlorine 

cps Counts per second 

Cs Caesium 

EDS Energy-dispersive X-ray Analysis 

EET Elephant Moraine  

D Deuterium 

D/H Deuterium/Hydrogen ratio (hydrogen isotope composition) 

F Fluorine 

Fa Fayalite 

Fe Iron 

ƒO2 Oxygen fugacity 

Fs Ferrosilite 

g Grams 

Ga Billion years ago 

GPa Gigapascals 

H Hydrogen 

In Indium 

ISAAC Imaging Spectroscopy and Analysis Centre 

K Potassium 

kbar Kilobar 

kV Kilovolts 

HED’s Howardites, Eucrites and Diogenites meteorites 
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H2O 

 
Water 

Ma Million years ago 

Mg Magnesium 

Mn Manganese 

nA Nano amps 

Na Sodium 

N/A Not applicable 

Nd Neodymium 

nM 

NWA 

Nanometres 

Northwest Africa 

NWA 7034(Epoxy) Northwest Africa 7034 mounted in epoxy 

NWA 7034(In) Northwest Africa 7034 mounted in indium 

O Oxygen 

OH Hydroxyl 

-O=F Oxygen equivalent for fluorine 

-O=Cl Oxygen equivalent for chlorine 

P Phosphorous 

Pb Lead 

ppm (‰) Parts per million 

ROI Region of interest 

Rb Rubidium 

REE Rare Earth Elements 

RVA Relative Volatile Abundance 

s Seconds 

S Sulphur 

SEM Scanning Electron Microscopy 

SHRIMP Sensitive High Resolution Ion Microprobe 

Si Silicon 

SiC Silicon Carbide 

SIMS Secondary Ion Mass Spectrometer 

Sm Samarium 

SNC Shergottite, Nakhlite, Chassignite martian meteorites 
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 Sr    Strontium 

 Std run    Standard run 

 Ti    Titanium  

 U    Uranium 

 UH    University of Hawaii 

 UoG    University of Glasgow 

 VSMOW   Vienna Standard Mean Ocean Water 

 WD    Working distance  

 wt. %    Weight percent  

 Z    Atomic number 

 

 𝛿/ Δ    Delta 

 µm    Microns  
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Chapter 1 Introduction  
 

1.1  Introduction to the Project  

 

Until recently, Alan Hills (ALH) 84001 (martian orthopyroxenite) was the only 

martian meteorite that did not fit within one of the three groups- shergottite, nakhlite or 

chassignite (SNC). However, the discovery of Northwest Africa (NWA) 7034 (along with 

paired stones: NWA 7533, NWA 7475, NWA 7906, NWA 7907, NWA 8114, NWA 

8171)(Santos et al., 2015), as well as NWA 8159 has expanded the diversity of the martian     

meteorite inventory on Earth beyond the SNC groups (Wright et al., 2011; Agee et al., 

2013; Cartwright et al., 2014; Simon et al., 2014; Shearer et al., 2015). 

NWA 7034 was found in Morocco in 2011. It is a fresh find that was nicknamed 

‘Black Beauty’ on account of its fresh black, glassy, fusion crust (a sign of minimal 

terrestrial weathering). NWA 7034 is a polymict basaltic breccia- reportedly formed via 

impact melting and welding of an area of martian regolithic soil (Agee et., 2013; Muttik et 

al., 2014; Goderis et al., 2016). This unique meteorite is water-rich compared to the other 

known martianmeteorites, with ~600 ppm of extraterrestrial H2O released during stepped 

heating (Agee et al., 2013). The high water content may be partly due to the presence of 

hydrous apatite, as NWA 7034 contains numerous apatite grains within various lithological 

clasts, as well as free apatite grains within the groundmass (Muttik et al., 2014). As NWA 

7034 is a polymict breccia it has yielded a range of dates between ~1.5 Ga to 4.4 Ga, 

representative of various crystallisation and resetting events (Agee et al., 2013; Lin et al., 

2016; McCubbin et al., 2016). U-Pb dating of apatite, zircon and phosphates record ages of 

~1.5 Ga which indicate a resetting event (McCubbin et al., 2016). Rb-Sr whole rock data 

gives an age of 2.089 ± 0.081 Ga (Agee et al., 2013), but in-situ zircon grain U-Pb ages of 

4.42-4.46 Ga have been recorded (Lin et al., 2016).  

NWA 8159 was discovered in Morocco, 2013. It contains evidence of terrestrial 

weathering- calcite veins (Agee et al., 2014a; Agee et al., 2014b). This meteorite is classed 

as an augite basalt, with small (<20 µm) apatite grains in the mesostasis. It is reported to 

have formed as either an eruptive flow or shallow intrusion on Mars (Agee, 2014). NWA 

8159 has a Sm-Nd crystallisation age of 2.37 ± 0.25 Ga (Herd et al., 2017), which 

represents the early Amazonian period of Mars’ history. This period is not represented by 

any other martian meteorite. As NWA 8159 is newly discovered there are currently no peer 
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reviewed publications focused on the petrology and mineralogy of this meteorite. 

However, there are several non peer-reviewed conference abstracts that do provide some 

data. 

Apatite (Ca5(PO4)3(F, Cl, OH) is the main volatile bearing phase in most martian     

meteorites (Greenwood et al., 2003; McCubbin et al., 2015b; Howarth et al., 2015), being a 

major sink for fluorine (F), chlorine (Cl) and water (OH). Therefore, the ratio of these three 

elements in meteorite apatite can indicate their abundance in martian parental melts. In 

planetary science apatite is commonly used as a tool for the quantification of H2O within 

planetary bodies (e.g., the Moon and Mars) (Santos et al., 2013; McCubbin and Jones, 

2015). 

The aim of this project was to determine the apatite volatile content for both NWA 

7034 and NWA 8159. For the latter, apatite volatile content should relate to the volatile 

content of the parental melt, hence providing information about a previously unstudied 

martian volcanic province. For NWA 7034, apatite volatile data could provide information 

about various clast parental melts, or the event that welded this breccia together. NWA 

7034 apatite grains are large enough for the collection of in-situ hydrogen isotope (D/H) 

data, which will indicate the source of water in each grain (e.g., parental melt water 

sourced from the martian interior, crustal water sourced from the cryosphere, or 

atmospheric water). Unfortunately, apatites in NWA 8159 are too small (<25µm) for this 

type of analysis 

 

1.2 Introduction to Martian Meteorites  

 

Currently there are ~ 85 known martian meteorites (National Geographic, 2017; 

Martian Meteorite Compendium, 2017), which appear to show mineralogical and textural 

similarities with terrestrial ultramafic and basaltic rocks (McSween, 1984; Hutchinson, 

2004), providing a record of martian volcanism (Papike et al., 2009). The shergottites, 

nakhlites and chassignites (SNC’s) make up the three main groups, with the addition of the 

three ungrouped meteorites ALH 84001 (orthopyroxenite), NWA 7034 (breccia), and 

NWA 8159 (basalt). The SNC’s fall into two age groups (figure 1). The shergottites 

crystallised at ~165- 475 Ma, whereas the nakhlites and chassignites crystallised at ~1300 

Ma (Papike et al., 2009). The orthopyroxenite, ALH 84001 is the oldest martian meteorite 
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having crystallised at ~4.5 Ga (Papike et al., 2009). The polymict breccia, NWA 7034 has 

yielded a range of dates between ~1.5 Ga to 4.4 Ga, representative of various 

crystallisation and resetting events (Agee et al., 2013; Lin et al., 2016; McCubbin et al., 

2016). NWA 8159 crystallised at ~2.3 Ga (Kayzar, 2015; Herd et al., 2017), representing 

the early Amazonian period of Mars, which no previous martian meteorite has recorded 

(figure 1). Each one of these distinctive age groupings likely represents a distinct volcanic 

episode on Mars. However, NWA 7034 is a breccia, therefore can represent much more 

than one area/age/volcanic episode on Mars. Mars is likely to have experienced more than 

four individual volcanic episodes and therefore figure 1 reflects the bias of our sample 

suite of martian meteorites and that they may not be representative samples of the surficial 

igneous rocks on Mars. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Ages of selected SNC martian   meteorites and ungrouped martian  meteorites. Shergottites in 

red, nakhlites in blue, Chassigny in green, ALH 84001 in black, NWA 7034 in purple and NWA 8159 

in yellow (adapted from Papike et al., 2009). 

 

1.2.1 Martian Origin  

 

Initially, the notion that the SNC meteorites were of martian origin was founded on 

their young crystallisation ages, which range from ~1.3 Ga to 180 Ma (McSween, 1994; 

Papike et al., 2009). Young crystallisation ages imply geologically recent igneous activity 

has occurred which therefore, rule out a lunar origin as the Moon was “dead” by ~2.5 Ga 
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(Bogard and Johnson, 1983; Hutchinson, 2004). Young crystallisation ages also rule out an 

asteroidal origin, as igneous activity on an asteroid body late in solar system history is 

highly unlikely. Asteroids are also too small to have undergone the required fractionation 

needed to produce the petrological and geochemical properties that are observed within 

these meteorites (McSween, 1984; McSween 1994; Treiman et al., 2000). Alteration 

minerals and carbonate phases in the nakhlites and in ALH 84001 also rule out a lunar 

origin (Papike et al., 2009). Despite evidence for aqueous alteration among asteroids, SNC 

meteorites indicate geologically recent alteration, which matches with Mars as a parent 

body due to the presence of an atmosphere, polar caps and surface evidence of relatively 

recent fluvial activity (Treiman et al., 2000). 

Further definitive evidence of a martian origin comes from the analysis of the 

martian atmosphere conducted by NASA’s Viking landers (Viking 1 and Viking 2) in 

1976. This atmospheric composition was compared, to trapped pockets of gas, contained in 

shocked glass within the suspected martian meteorites. Research conducted by Bogard and 

Johnson (1983) on the Shergottite Elephant Moraine (EET) 79001 deduced that isotopic 

measurements of Argon (Ar) trapped within the shocked glass of this meteorite matched 

the atmospheric data for noble gases from the Viking landers. The composition of the 

martian     atmosphere is unique in the solar system and therefore the evidence (chemical 

and isotopic signatures) of its presence within the SNC meteorites strongly links them to 

Mars (McSween, 1994; Treiman et al., 2000; Hutchinson, 2004; Day et al., 2006; 

Aoudjehane et al., 2012). 

Additional evidence for a martian origin for these meteorites is their ∆17O isotopic 

ratio (Clayton and Mayeda, 1996; Lodders and Fegley, 1997; Franchi et al., 1999). All 

bodies within the solar system have a distinctive ∆17O isotopic ratio as indicated by figure 

2. Oxides and anhydrous silicates within the SNC meteorites all contain similar Δ
17

O 

isotopic ratios and are therefore inferred to have been formed by the same parent body (i.e. 

known to be Mars from Viking and more recent missions) (Clayton and Mayeda, 

1996;Treiman at el., 2000). 
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Figure 2: Oxygen isotope values for the Earth-Moon system (indicated by the green circle), chondrites 

and the SNC meteorites (highlighted by red outline). The insert enlarges the region associated with the 

differentiated meteorites such as the HEDs (howardites, eucrites and diogenites) and the SNC 

meteorites (adapted from Lodders and Fegley, 1997). 

 

1.2.2 Shergottite, Nakhlite, Chassignite Martian Meteorites  

 

Shergotty, Nakhla and Chassigny were the first martian meteorites discovered. All 

of which were observed falls occurring in 1865, 1911 and 1815, respectively (Hutchinson, 

2004; Papike et al., 2009). These findings led to the categorisation (SNC grouping) of 

martian meteorites; shergottites (basalts and Iherzolites), nakhlites (clinopyroxenes), 

chassignites (dunites). Until recently – before the hugely successful martian oribter and 

rover missions of the past ~15 years- the SNC’s and and ALH 84001 (orthopyroxenite, 

discover in 1984) formed the bases of our understanding of the geology of Mars 

(McSween, 1994; Treiman et al., 2000; Hutchinson, 2004; Day et al., 2006; Papike et al., 

2009; McCubbin et al., 2012). The SNC meteorites are essentially a group of unbrecciated 

ultramafic and mafic achondrites, which display igneous textures (Treiman et al., 2000). 

The SNC meteorites differ from other differentiated achondrites in terms of their 

petrological, chemical and isotopic similarities (McSween, 1994; Treiman et al., 2000 

Hutchinson, 2004; Day et al., 2006). 
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1.2.2.1 Shergottites  

 

The shergottites are the youngest and most common type of martian meteorite; 

accounting for ~70% of all finds (Borg and Drake, 2005; Day et al., 2006). These 

meteorites are pyroxene, plagioclase (±) olivine basalts and basaltic cumulates which can 

be separated into three subgroups: pyroxene-phyric basalts, olivine-phyric basalts and 

Iherzolites (Papike et al., 2009). Shergottites are reportedly the result of partial melting in 

the martian     mantle, and, therefore, contain a record of the mantle chemistry of Mars 

(Smith et al., 1984; Borg and Draper, 2003; McCubbin et al., 2012). Geochemical 

differences, including rare Earth element (REEs) contents, within the group result in a 

range from depleted to enriched (Borg et al., 1997; Herd et al., 2002; Borg and Draper, 

2003; Herd, 2003; Symes et al., 2008; McCubbin et al., 2012). Depleted shergottites, 

characterised by low light REEs contents, represent the martian mantle with no partial 

melting or alteration occurring since the differentiation of Mars (Borg et al., 1997; 

McCubbin et al., 2012). Enriched shergottites, characterised by flat REE patterns, are the 

result of assimilation or mixing with either a geochemically enriched crustal or mantle 

source (i.e., Borg and Draper, 2003; Borg et al., 1997; Herd et al., 2002; Sarbadhikari et 

al., 2009, 2011; McCubbin et al., 2012). There is evidence of impact shock in all 

shergottites, resulting in maskelynized plagioclase, indicating that they experienced ~300 

kbar of shock (Wood and Ashwal, 1981; Bogard and Johnson, 1983; Hutchinson, 2004). 

Cosmic ray exposure ages of the shergottites (~0.7±0.3 Ma) indicate that they were all 

ejected during the same impact event (Aoudjehane et al., 2012), suggesting a common site 

on Mars. 

1.2.2.2 Nakhlites 

 

The nakhlite group all show textural and chemical similarities. Nakhlites are 

calcium-rich clinopyroxene cumulates composed predominantly of augite with minor 

olivine in a fine-grained mesostasis (Lentz et al., 1999; Papike et al., 2009). Augites 

present within the nakhlites preserve an orientation, which is interpreted to have formed 

during an extrusive lava flow or shallow intrusion (Lentz et al., 1999; Hutchinson 2004). 

Aqueous alteration within the nakhlites is interpreted to have occurred on the martian 

surface, based on isotopic and textural evidence (Lentz et al., 1999; Hutchinson 2004). For 

example, magmatic inclusions within olivines contain products of alteration indicating the 

presence of water (Wood and Ashwal, 1981; Hutchinson, 2004), and alteration veins are 
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vesiculated and cross cut by the fusion crust (Gooding et al., 1991; Hallis, 2013). The 

nakhlites differ from other martian meteorites in that there is little to no evidence of shock 

within them. Unlike the shergottites, the plagioclase in the nakhlites has not been 

converted into maskelynite and there is no shock-produced glass present (Hutchinson, 

2004; Papike et al., 2009) 

1.2.2.3 Chassignites  

 

The chassignites are olivine-rich dunites, which are petrologically similar to the 

nakhlites. Feldspar compositions in particular, are nearly identical to nakhlites (Wood and 

Ashwall, 1981; Treiman et al., 2000; Papike et al., 2009). Olivine crystals within these 

meteorites are typically euhedral-anheadral, characteristically meeting at 120º triple 

junctions. Chassignites display poikilitic textures where calcium rich pyroxene encloses 

olivine (McSween, 1994; Hutchinson, 2004). Crystal settling in a magma chamber is 

inferred to be the formation mechanism of the chassignites due to the olivine rich cumulate 

texture of these meteorites (Wood and Ashwal, 1981; Hutchinson, 2004). The chassignites 

show evidence of experiencing moderate shock through the deformation of minerals such 

as fractured olivine, recrystallisation of pyroxene and olivine undulatory extinction (Wood 

and Ashwal, 1981; Hutchinson, 2004). The common age (~1.3 Ga) represented by the 

chassignites and nakhlites, as well as a similar cosmic ray exposure age for Chassigny and 

Nahkla (8.5±0.5×10
6
 years, 8±0.8×10

6
 years, respectively) (Lancet and Lancet, 1971; 

Podosek, 1973; Wood and Ashwall, 1981) suggests that chassignites come from the 

nakhlite impact site. 

1.2.3 Martian Orthopyroxenite ALH 84001 

 

Alan Hills (ALH) 84001 is a unique meteorite among the martian meteorite suite as 

it is the only orthopyroxenite from Mars (Papike et al., 2009). Currently, it is the oldest 

known martian meteorite, with a crystallisation age of ~4.5 Ga (figure 1), and represents 

igneous activity early in Mars’ history. ALH 84001 is predominantly composed of highly 

shocked orthopyroxenes displaying a triple junction texture with interstitial maskelynite 

(Romanek et al., 1994; Hutchinson, 2004; Papike et al., 2009). ALH 84001 is a highly 

shocked meteorite with possibly five separate deformation events occurring in its history, 

which are characterised by crush zones, fractures, shearing, replacement of plagioclase, 

melt veins, and impact related shock (Treiman, 1998; Hutchinson, 2004). Carbonate clasts 
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are also present as globules, suggesting this meteorite was exposed to a shallow water 

environment after crystallisation (Hutchinson, 2004). 

1.2.4 Northwest Africa (NWA) 7034 

 

NWA 7034 (nicknamed Black Beauty) is a single stone, ~320g martian meteorite 

discovered in Morocco in 2011 (Agee et al, 2013). This meteorite was not an observed fall 

and therefore terrestrial contamination may have occurred, the full extent of this is 

unknown. However, the presence of a fresh black, glassy fusion crust indicates minimal 

terrestrial contamination has occurred. Noble gas measurements and Fe/Mn ratios of 

pyroxenes confirm that NWA 7034 is of martian origin (Santos et al., 2015; see Agee et 

al., 2013 and Cartwright et al., 2014). Oxygen isotopes are a critical tool used to 

characterise different meteorite groups. Martian meteorites display their own unique 

oxygen Δ
17

O =0.15- 0.35‰ as previously described in section 1.2.1. However, analysis of 

oxygen isotope systematics of NWA 7034 reveal that it has an anonymously higher Δ
17

O 

than the other martian meteorites, Δ
17

O= 0.58±0.05‰ (Agee et al., 2013). Bulk 

composition analysis of NWA 7034 has linked this meteorite with composition of the 

martian crust as well as the rocks and soils measured from the Gusev Crater (via Curiosity) 

(McSween et al., 2009; Taylor and McLennan, 2009; Agee et al, 2013; Tartèse et al., 2014; 

Santos et al., 2015). This unique meteorite is also water-rich compared to the other known 

martian meteorites, with ~600 ppm of extraterrestrial H2O released during stepped heating 

(Agee et al., 2013). The high water content may be partly due to the presence of hydrous 

apatite, as NWA 7034 contains numerous apatite grains within various lithological clasts, 

as well as free apatite grains within the groundmass (Muttik et al., 2014). 

The texture of NWA 7034 makes it unique, as it is texturally dissimilar to any of 

the SNC meteorites. Basaltic breccias originating from the Moon and HED meteorites are 

common but not represented in our martian sample suite until now (Wright et al., 2011; 

Agee et al., 2013). The clastic nature of NWA 7034 means it contains a range of 

crystallisation ages up to 4 Ga, with a Rb-Sr whole rock age of 2.089 ± 0.081 Ga (Agee et 

al., 2013) and U-Pb zircon grain ages of 4.42-4.46 Ga which record the formation of 

crustal rock early in Mars history (Lin et al., 2016). 

NWA 7034 can be described as a polymict basaltic breccia dominated by 

phenocryst fragments of low-calcium pyroxene, plagioclase, and pigeonite set in a very 

fine-grained groundmass (Agee et al., 2013). Agee et al. (2013) stated that the most 
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abundant phase is plagioclase (~40%) followed by low Ca-pyroxene (~25%), 

clinopyroxene (~18%), iron oxides (~9%), alkali feldspars (~5%), and apatite (~3%), 

which is consistent with EDS images (chapter 3). Cl-rich apatite is present within various 

lithological clasts as well as free apatite grains within the matrix (Muttik et al., 2014). A 

diverse set of lithologies (igneous, sedimentary and impact origin) are contained within 

NWA 7034 resulting is numerous clast types such as: igneous clasts, protobreccia clasts 

and melt clasts (table 1). The igneous clasts present in NWA 7034 vary in compositions, 

indicating that either: they are not related, originating from separate igneous sources or 

there was compositional variation within a shared parent source during formation (Santos 

et al., 2015). Protobreccia clasts are interpreted to have formed prior to the formation of 

NWA 7034 within a pre-existing regolith (Santos et al., 2015; McCubbin et al., 2016). 

 

Table 1: A summary of the main clast types (igneous, sedimentary, impact origin) present in NWA 7034 

as described by Santos et al. (2015). 

 

The assembly of NWA 7034 is poorly understood as its petrogenesis is hard to 

synthesise due to the many different components it contains. However, it is evident that the 

formation of this breccia was not a single stage process (Santos et al., 2015). McCubbin et 

al. (2016) conducted the most recent study on the formation of NWA 7034, focusing on the 

clast types, as well as zircon and apatite dating. Their study provided evidence of a breccia 

wide thermal event at 1.5 ± 0.1 Ga. Evidence for a thermal event was presented by 
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submicron textural evidence within the bulk matrix where partial equilibration had 

occurred (Muttik et al., 2014), resulting in crystals (e.g., pyroxene, plagioclase, apatite) 

meeting at 120º triple junctions. Further evidence for a breccia wide thermal event was 

discovered using U-Pb dating on apatite. All of the apatite grains within their sample 

recorded a date of 1.49 ± 0.09 Ga (figure 3) which was inferred to coincide with the 

heating that would have accompanied lithification of the breccia (Muttik et al., 2014). 

McCubbin et al. (2016) constrained this heating event to 500-800ºC.  

 

 

 

 

 

 

 

 

Figure 3: Apatites were analysed by SHRIMP-RG for U-Pb dating on Cl-rich apatite in NWA 7034. 

The results are plotted on a Tera-Wasserburg Concordia diagram and give a date of 1.49 ± 0.09 Ga. 

Ellipses are 1 sigma errors on the measurements (dashed ellipses are not date measurements) 

(McCubbin et al., 2016). 

 

The components of NWA 7034 are inferred to have been deposited during a 

volcanic (pyroclastic eruption) and/or impact event(s) due to clast size and distribution 

(Humayun, 2013; Agee et al., 2013; McCubbin et al., 2016). However, impact processes 

are the favoured mechanism of formation due to the ancient components (4.42-4.46 Ga 

zircon grains) and the disturbance of Osmium isotope systematics at ~1.4 Ga within NWA 

7034 (Goderis et al., 2016; McCubbin et al., 2016). It is also important to note that it is 

possible that this impact event resulted in the formation of a hydrothermal system (Goderis 

et al., 2016). 

Strong evidence of hydrothermal activity was investigated in one of the 

protobreccia clasts by McCubbin et al. (2016). The evidence they provided showed veining 
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of magnetite, intergrowths of pyrite and pyroxene and secondary Fe-oxides present in both 

the matrix and groundmass. The timing of the hydrothermal alteration was interpreted by 

the magnetite veins, as they are contained within the protobreccia and crosscut existing 

clasts within the protobreccia. McCubbin et al. (2016) uses this evidence to claim that the 

hydrothermal alteration occurred before the protobreccia clasts where incorporated into the 

matrix of NWA 7034 and therefore occurred when the protobreccia was lithified. 

Characteristics of the hydrothermal fluid could have been overprinted by the thermal event 

(McCubbin et al., 2016). Other studies of NWA 7034 also indicate that secondary fluids 

may have altered this meteorite, thus primary information could be obscured (Filiberto et 

al., 2016). 

1.2.5 Northwest Africa (NWA) 8159 

 

NWA 8159 is a unique, newly classified, fine-grained augite basalt, which further 

expands the diversity of the martian     meteorites. This non-SNC type martian meteorite 

has oxygen isotopes and Fe/Mn ratios which geochemically link it to the SNCs 

(particularly the nakhlites) yet, its mineralogy and texture uniquely separates it from the 

SNCs (Simon et al., 2014; Shearer et al., 2015). Terrestrial contamination has affected this 

meteorite, as it was not a fresh find and veins of terrestrial carbonate are present. NWA 

8159’s sole pyroxene phase is augite, which has not previously been noted in the other 

martian meteorites (Agee et al., 2014a; Agee et al., 2014b). Agee et al. (2014) described 

the dominant mineralogy in NWA 8195 as ~50% augite, ~40% plagioclase (An50-65), ~5% 

olivine (Fa61-76), ~3% magnetite and ~2% orthopyroxene (Fs56-80) (Sharp et al., 2015). 

Minor phases present in NWA 8159 include merrlilite, ilmenite, Cr-spinel (Agee et al., 

2014a), and minor apatite grains (<20 µm). Shock pressures experienced by this meteorite 

are estimated to be > 15 GPa and<23 GPa, which converted approximately half of the 

plagioclase to maskelynite (Agee et al., 2014b). NWA 8159 is reported to have formed as 

either an eruptive flow or shallow intrusion on Mars (Agee et al., 2014b). NWA 8159 has a 

unique Sm-Nd crystallisation age of 2.37 ± 0.25 Ga (Herd et al., 2017) which represents 

the early Amazonian period of Mars’ history, which no other martian meteorite has 

previously represented. 

NWA 8159 is a newly classified martian meteorite and therefore a broad range of 

research has not been conducted thus far. The majority of current studies focus on the 
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alteration present in the cores of olivine grains, which are interpreted to be martian     

alteration (Shearer et al., 2015; Hallis et al., 2016; Vaci et al., 2016). 

 

1.3 Introduction to Apatite  

 

The mineral apatite (Ca5(PO4)3(F, Cl, OH) is a common accessory mineral in 

extraterrestrial rocks (McCubbin and Jones, 2015, and references therein). Meteorites 

containing apatite are vital to understand the volatile (e.g. Cl, F and OH) distribution 

throughout the Solar System. The robust structure of apatite has allowed it to be used as a 

tool to study and quantify the amount of H2O present in numerous planetary bodies (e.g., 

the Moon and Mars) as well as examining magmatic volatile contents and 

alteration/hydrothermal fluids in these planetary bodies (McCubbin and Jones, 2015; 

Harlov, 2015; Santos et al., 2013). 

1.3.1 Structure of Apatite  

 

The apatite mineral group shares a common structure, however the most common 

of the apatites (the calcium phosphate apatite ((Ca5(PO4)3(F, Cl, OH))) has an additional 

structural site (the X-crystallographic site), which accommodates the volatile elements F, 

Cl and OH. The dominant volatile species result in three possible end members: 

Chlorapatite, fluorapatite and hydroxylapatite (McConnell, 1973). In order to determine 

the volatile content of parental melts or alteration fluids within apatite, it is necessary to 

understand how anions behave within the structure of the mineral. The atomic arrangement 

of apatite (figure 4) consists of three cation sites: tetrahedral (T), M1, and M2. The M2 site 

is particularly significant as it aides in the accommodation of F, Cl and OH. These three 

anions are termed the “column anions” as they exist along the edges of the apatite structure 

(Hughes and Rakovan, 2015). It is also important to note that REEs have the capability to 

occupy the X-site within apatites along with Cl, F and OH (Hughes and Rakovan, 2015).  
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Figure 4: The atomic structure of apatite. T sites are indicated in yellow; M1 in red; M2 in orange. 

Column anions (F, Cl and OH) are displayed in green (Hughes and Rakovan, 2015). 

 

1.3.2 Volatile Content within Martian Apatite  

 

Martian magmas are ~2.5 × enriched in Cl compared to terrestrial magmas; 

therefore, Cl is thought to be the dominant volatile in martian magmatics (Filiberto and 

Treiman, 2009). Orbiter and lander analysis of the martian surface indicate a Cl enrichment 

at the planet’s surface. Furthermore, Cl-rich apatites are common in the majority of the 

martian meteorites that have been studied (Greenwood, 2005; Patino Douce and Roden, 

2006; McCubbin and Nekvasil, 2008; Patino Douce et al., 2011; McCubbin et al., 2013). 

Terrestrial apatites tend to be F and/or OH-rich and any Cl enrichment is attributed to 

hydrothermal fluids. As a result of this, Greenwood (2005) has claimed that secondary 

alteration at the martian surface is responsible for Cl-rich martian meteorites. However, 

Filiberto and Trieman (2009) attribute the Cl enrichment as a result of a Cl-rich mantle on 

Mars. Therefore, it is undetermined whether Cl enrichment is a mantle property or from a 

non-mantle source (McCubbin et al., 2013). However, since Mars has a distinct 

geochemical signature from other planetary bodies it is likely that Cl enrichment is 

diagnostic of martian apatite. This assumption is consistent with geochemical models of 

Mars (McCubbin and Jones, 2015). However it is important to note that more recent 

studies on martian meteorites (NWA 2975 (shergottite)) conducted by Slaby et al. (2016; 

2017), have suggested that primary apatite in martian magmas could also be F-rich.  
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Apatite is the major volatile bearing phase in martian meteorites (McCubbin et al., 

2015c; Howarth et al., 2015; Greenwood et al., 2003). Martian apatites typically contain 

little OH and on average have a Cl: F: OH ratio of ~5:3:2 (figure 5) (McCubbin and 

Nekvasil, 2008; Filiberto and Treiman, 2009). However, there are outliers within the 

martian     apatite compositions, which are more enriched in F (figure 5). The high halogen 

and low water content of the martian basalts indicates that either: parental martian magmas 

degassed during eruption resulting in a loss of magmatic water but retention in halogens, or 

the martian mantle is depleted in water (Gross et al., 2013). When these apatites are 

compared to terrestrial apatites from basaltic rocks (figure 5) it is evident that terrestrial 

apatites are depleted in Cl and have fluctuating F: OH ratios (Filiberto and Treiman, 2009). 

 

 

 

 

 

 

 

 

 

 

Figure 5: Volatile abundances of Cl, F and OH from martian  and terrestrial apatites. Martian apatites 

tend to be Cl-rich and OH-poor. Outliers represent more fluorine rich apatites (Filiberto and Treiman, 

2009). 

 

1.3.3 Volatile Content within Apatite in NWA 7034  

 

Santos et al. (2013) conducted a study on the volatile content of apatites within 

NWA 7034. They classified apatites based on whether they were found in clasts or in the 

matrix of NWA 7034 and identified three main clast types, with two containing apatite. 

The main classifications Santos et al. (2013) devised were gabbroic clast apatite, phosphate 

clast apatite and matrix grain apatite. Using a JEOL 8200-electron microprobe the volatile 

content within apatites from each group were analysed, their results are displayed below in 
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figure 6. Santos et al. (2013), divided their triplot into 4 distinct areas representing 

different abundances of F, Cl and OH. The green area indicates apatites which have formed 

from avolatile abundance ratio where Cl>OH>F. The blue area comprises of apatites which 

have formed from a OH rich melt, with a volatile abundance ratio of OH>Cl>F. The light 

purple area indicates apatites have formed from an OH rich melt, but contain more F 

compared to Cl. Finally, the dark purple area indicates apatites which have formed from a 

volatile abundance ratio where F>Cl>OH. The Santos et al. (2013) data is well spread 

between the green and blue areas of the triplot, indicating that apatites either formed from 

two distinct melts (one Cl-rich and one OH-rich) or that apatites formed from the same 

parental melt that underwent changes resulting in a difference of volatile dominance. 

McCubbin et al. (2016) also conducted volatile abundance work on apatites within NWA 

7034. Their results indicate Cl ranging from 3.42 to 5.31 wt. % and F ranging from 0.51 to 

1.42 wt %. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Volatile abundances from apatite from clasts and the matrix of NWA 7034. Different coloured 

regions indicate different relative abundances of Cl, F and OH in the melt in which the apatites 

crystallised from. Green: Cl rich melt (Cl>OH>F), Blue: OH rich melt (OH>Cl>F), Light purple: OH 

rich melt (OH>F>Cl) and dark purple: F rich melt (F>Cl>OH) (Santos et al., 2013). 
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1.3.4 Determining Volatile Abundances of Parental Magma from Apatite 

 

Apatite records F, Cl and OH during martian volcanism. The ratios of these three 

elements can be used to determine the pre-eruptive abundance of volatile content in 

magmas and hence their source regions (Filiberto et al., 2016; Gross et al., 2013; Patiño 

Douce et al., 2011; Filiberto and Treiman, 2009; Patiño Douce and Roden, 2006; Mathez 

and Webster2005). Differentiation and eruptive characteristics of martian magmas is 

strongly influenced by the volatile elements within the melt making their abundances vital 

in the understanding of martian magmatic systematics (McCubbin and Nekvasil, 2008; 

Usui et al., 2012). 

However, there are difficulties with constraining the volatile abundances in apatites 

because of secondary processes (i.e. degassing, assimilation, martian surface processes, 

terrestrial contamination), which can disturb the pre-eruptive volatile content preceding the 

crystallization of apatite (Gross et al 2013; McCubbin et al, 2011). Since F and Cl are both 

incompatible elements, their concentrations tend to fluctuate with magmatic fractionation 

(Aoki et al., 1981; Jambon et al., 1995; Patino Douce and Roden, 2006). However, during 

more simple igneous processes, the Cl: F ratio should not be adversely effected (Filiberto 

et al., 2016). However, degassing will affect the Cl: F ratio as F is more compatible with 

melts whereas Cl will readily degas. Fluorine tends to partition into silicate melts whereas 

Cl partitions into more hydrous fluids, which can again effect the Cl: F: OH ratio (Patino 

Douce and Roden, 2006). The systematics of mineral formation can also effect the volatile 

abundances within minerals. Apatite, that has formed via fractional crystallisation, can 

overestimate the water content of the source region, therefore effecting the overall Cl: F: 

OH ratio (Boyce et al., 2014). Martian surface processes (e.g., hydrothermal fluids, 

alteration) can obscure the original Cl: F: OH due to overprinting thus obscuring parental 

magma information but instead yielding information relating to alteration fluids at the 

surface of Mars (Filiberto et al., 2016). 
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1.4 Introduction to Hydrogen Isotopes (Deuterium/Hydrogen Ratios)  

 

Deuterium/Hydrogen (D/H) ratios are measured and standardised relative to the 

Vienna Standard Mean Ocean Water (VSMOW). VSMOW is represented by the following 

equation: 

𝛿𝐷 (͡‰) = [((𝐷/𝐻)𝑆𝑎𝑚𝑝𝑙𝑒/ (𝐷/𝐻)𝑉𝑆𝑀𝑂𝑊)]  − 1] 𝑥 1000 

 

Equation 1: The calculation for the Vienna Standard Mean Ocean Water (VSMOW), given in parts per 

million (‰) (Hallis et al., 2017). 

 

VSMOW has a δD = 0‰ (Usui et al., 2012; Hallis et al., 2017). This notation will 

be used throughout this Chapter when referencing the D/H ratios of martian meteorites. 

Mars and Earth may have had similar D/H ratios during their formation. However, as a 

result of the preferential loss of hydrogen in space via Jeans escape (relative to the heavier 

hydrogen isotope deuterium) in the upper martian atmosphere, the current martian     

atmosphere is deuterium enriched (Watson et al., 1994; Villanueva et al., 2015). Current 

martian ratios range from a low δD (0-2000‰) in Polar Regions to high δD (7000‰) in 

Equatorial Regions (Villanueva et al., 2015). Hydrogen isotope ratios can trace surface 

water evolution and atmospheric interactions as well as track the source of water (e.g., 

martian     mantle, crustal sedimentary contamination, atmospheric, or groundwater/ice) 

within meteorites (Hallis et al., 2012; Usui et al., 2015). Due to the capacity for apatite to 

contain water and for its abundance within martian meteorites, it is commonly used for 

hydrogen isotope studies. 

1.4.1 Martian Water Reservoirs  

 

The presence of water within our Solar System, is a primary focus in planetary 

science due to the astrobiological significance of this compound. Mars is a prime candidate 

to find water as recent Mars orbiter and lander missions have revealed evidence for the 

presence of liquid water early in Mars’s history (e.g., Nochian ~3.9 to 4.5 Ga). 

Geomorphological features (e.g., fluvial valleys), water rich sediments and minerals (e.g. 

clays) and evaporates (e.g. gypsum) all indicate hydrological activity has occurred on Mars 

(McCubbin et al., 2012; Kurokawa et al., 2014; Usui et al., 2015). The physical state of 

water currently present on Mars has been studied by orbiters (e.g. European Mars Express 
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mission) which have discovered deposits of subsurface ice. Understanding the physical 

state of surficial water on Mars throughout its history will aid in the interpretation of how 

this planets climate evolved as well as if life had the potential to flourish in these climates 

(McCubbin et al., 2012). 

Mars has at least two separate hydrogen isotope reservoirs (figure 7), possibly three 

(Usui et al., 2015). The first is contained within the martian mantle and displays a δD value 

<275‰, which is similar to Earth surface values and chondrites (primitive meteorites) with 

δD values between -230 to 340‰ (Alexander et al., 2012; Usui et al., 2015). The second is 

near surface water/ice which exhibits δD values between 3000-5880‰ (Greenwood et al., 

2008; Usui et al., 2012). Although near surface water/ice deposits have not directly been 

measured until recently, the values are thought to be comparable with atmospheric values 

because over a geologically short period, the atmosphere and surface water can interact, 

therefore reservoirs can be mixed. (Leshin et al., 1996; Jakosky and Jones, 1997; Usui et 

al., 2015). This hypothesis is supported by recent hydrogen isotope measurements of the 

atmosphere (δD = 4950±1080‰) and near surface (δD = 5880±60‰) which were 

conducted by the Curiosity rover (Webster et al., 2013). Unlike the Earth, Mars has no 

plate tectonics and therefore recycling of atmospherically equilibrated material into the 

mantle does not occur. This means that both the atmospheric reservoir and the mantle 

reservoir have remained completely separated over geological time. 

 

 

 

 

 

 

 

 

Figure 7: The hydrogen  isotope (δD) values of solar system bodies and water reservoirs on Mars. It can 

be noted that the δD composition of chondrite bodies and the martian mantle is similar. Three distinct 

martian  water reservoirs are displayed in this diagram: martian  mantle, near surface water/ice and 

ground ice/hydrated crust (i.e., the intermediate reservoir) (Usui et al., 2015).  



37 

_________________________________________________________________________ 

 

_________________________________________________________________________ 

Aimee Smith                                                                                                                                    October 2017 

However, Usui et al. (2015) proposed that a third, intermediate reservoir, 

(δD=1000- 2000‰) exists based on the study of certain meteorites. It was originally 

unclear whether these studies had directly sampled an intermediate reservoir or whether 

terrestrial contamination occurred. However, new data from shergottites (Usui et al., 2015) 

indicates that an intermediate D/H reservoir is required. 

Usui et al. (2015) proposed two possible models for the existence of an 

intermediate δD reservoir: the Hydrated Crust Model and the Ground Ice Model (figure 8). 

The Hydrated Crust Model is proposed based on the observations from Mars orbiters and 

rovers of hydrous sediments and minerals on the martian surface. This combined with 

hydrous minerals discovered in martian meteorites implies that weathering and 

hydrothermal activity/alteration has occurred. An intermediate δD composition for 

hydrated crust could have possibly resulted in these crustal materials interacting with an 

intermediate source or from interacting with ancient surface water that have a differing δD 

composition to the current high D/H ratio of Mars. Sediments, interbedded with ground ice 

(i.e., The Ground Ice Model) could be another possible source for an intermediate 

reservoir. 
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Figure 8: Proposed model from Usui et al., 2015 showing the location of the proposed intermediate 

water reservoir on Mars through cross sections. (a) Hydrated crust model and (b) Ground ice model. 

The hydrated crust model suggests that the intermediate reservoir is contained within hydrous sediments 

and minerals on the martian surface. Whereas, the ground ice model implies that the intermediate 

reservoir is contained within sediments interbedded with ground ice. 

 

 

1.5 Project Aims and Objectives 

 

The aim of this project was to determine the apatite volatile content for both NWA 

7034 and NWA 8159. The apatite volatile content in NWA 8159 should relate to the 

volatile abundances of the parental melt, hence providing insight into a previously 

unstudied martian volcanic province. Since igneous clasts present in NWA 7034 vary in 

compositions, indicating that either: they are not related and therefore are from separate 

igneous sources or there was compositional variation within a shared parent source during 

formation (Santos et al., 2015), the volatile content from apatites in NWA 7034 could 

possibly yield information on the parental melts from the various clasts. Alternatively, 



39 

_________________________________________________________________________ 

 

_________________________________________________________________________ 

Aimee Smith                                                                                                                                    October 2017 

since NWA 7034 is reported to have been formed as a result of an impact event (Goderis et 

al., 2016; McCubbin et al., 2016), thermal and hydrothermal alteration may have occurred. 

A thermal event is confirmed to have occurred in NWA 7034 at ~1.5Ga (McCubbin et al., 

2016), therefore, it is possible that original volatile contents within apatite will be 

overprinted. This should result in all the apatites having closely related Cl: F: OH ratios 

(which would be uncharacteristic for a polymict breccia). McCubbin et al. (2016) provided 

previous evidence of hydrothermal alteration, however it was only recorded in protobreccia 

clasts within NWA 7034 as hydrothermal alteration of apatite was not studied. If it is 

discovered that hydrothermal alteration of apatite has occurred, then this will also result in 

the original volatile content within the apatite being overprinted. Previous studies of NWA 

7034 report that martian secondary processes may have also effected this meteorite 

(Filiberto et al., 2016), therefore primary information on the parental source of various 

clasts may also be obscured. 

NWA 7034 apatite grains are large enough for the collection of in-situ hydrogen 

isotope (D/H) data, which will indicate the source of water in each grain (e.g., parental 

melt water sourced from the martian interior, crustal water sourced from the cryosphere or 

atmospheric water). However, due to the thermal event at ~1.5 G, reported by McCubbin et 

al. (2016) reported, it is important to investigate if all apatites yield the same D/H ratio. If 

all the apatites do produce similar δD values then it is likely that the thermal event has 

overprinted their original δD values (as suggested by McCubbin et al. (2016)), meaning it 

will not be possible to track the source of water within them. Alternatively, if evidence of 

hydrothermal alteration can be found and similar D/H values are recorded, it may indicate 

hydrothermal alteration has effected all of the apatites. This would allow for a δD value of 

surface hydrothermal fluid on Mars at 1.5 Ga to be constrained. Currently there are no 

hydrogen isotope measurements conducted for this time period. This information 

combined with measurements of the current D/H ratio of Mars (Curiosity data) and other 

meteorites can collate a picture of the D/H ratio of the martian atmosphere over time. This 

information in turn will allow for calculations of martian atmospheric stripping. 

Furthermore, comparing results of the D/H of near surface hydrothermal activity at ~1.5 

Ga could also help constrain the D/H ratio of the nakhlite alteration fluid on Mars 

(estimated to be ~700 Ma (Swindle and Olson, 2004)). Nakhlites contain phyllosilicates, 

which are notoriously difficult to analyse accurately and are often terrestrial contamination. 

However, if a nakhlite D/H ratio could be determined accurately in an un-terrestrially 
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altered sample and if it was found that it was similar to the D/H ratios from NWA 7034 in 

this study, it may suggest that the nakhlite alteration occurred earlier than 700 Ma and 

closer to the nakhlite crystallisation age at 1.3 Ga (Swindle and Olson, 2004). However, if 

the apatites show different δD values then it is possible that the thermal event has not fully 

effected either all or some of the apatites, which means it will be possible that they will 

contain their original D/H and thus an apatite mantle source region could be preserved. 

Any very high D/H values will probably be shock related processes after apatite 

crystallisation (Hallis et al., 2016). Unfortunately, apatites in NWA 8159 are too small 

(<25µm) for this type of analysis. 
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Chapter 2 Methodology  
 

2.1  Preparation of Samples 

 

Three samples were studied for this research- two samples of NWA 7034 and one 

sample of NWA 8159. The first NWA 7034 sample had previously been prepared by 

mounting in an epoxy block, which was then polished using 0.3µm aluminium oxide paste 

mixed with water. Methanol was used to clean the sample after polishing. A second sample 

of NWA 7034 had been mounted in pure indium and placed in a steel bullet. This sample 

was polished using dry silicon carbide (SiC) paper down to 6µm followed by diamond 

paste to finish the polishing. Methanol was used to clean the sample after polishing. This 

sample was selected to be mounted in indium to protect against terrestrial water 

contamination, in anticipation of future hydrogen isotope (D/H) analysis. One sample of 

NWA 8159 was prepared. This sample was mounted in an epoxy block, which was 

subsequently polished using 0.3µm aluminium oxide paste mixed with water. Methanol 

was then used once again to clean the sample after polishing. 

 

2.2  Scanning Electron Microscopy (SEM) 

 

Apatite within the two samples of NWA 7034 and the one sample of NWA 8159 

was analysed using the Carl Zeiss Sigma Variable Pressure Analytical Scanning Electron 

Microscope (SEM) at the Imaging Spectroscopy and Analysis Centre (ISAAC) Facility, 

University of Glasgow (UoG) (Figure 9). Prior to SEM analyses, the samples were carbon 

coated (~15nm) to increase conductivity across the sample. Carbon coating is used as it 

does not have a great effect on the intensity of X-rays and therefore does not interfere with 

X-ray spectrum measurements. To enhance the conductivity of the samples once they are 

placed in the sample holder, aluminium tape was attached to link the edge of the sample 

and the sample holder. The SEM was used to locate, characterise and image apatite in all 

samples, as well as providing insight into their lithological context. Energy-dispersive X-

ray Spectroscopy (EDS) point and map analysis was conducted on all samples, using both 

Aztec 2.2 software and INCA software to determine the major and minor (including F and 

Cl) element concentrations of apatite. Elemental distribution maps of all samples were also 

produced to aide in the location of individual apatite grains. 
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2.2.1 Scanning Electron Microscopy- Backscatter Imaging  

 

The Scanning Electron Microscopy (SEM) technique requires a focused electron 

beam to hit the surface of the sample. Interaction between the sample and electrons from 

the beam produces secondary electrons, which through elastic scattering are reflected (i.e. 

backscattered). Back scattered electrons (BSE) are detected by the backscatter detector 

which displays the data as a greyscale BSE image. BSE images show compositional 

differences in the sample. Atomic number (Z) has a strong influence on the quantity of 

electrons that are backscattered. Since the BSE detector is sensitive to high Z values, more 

electrons with high Z’s will be backscattered compared to those with a lower Z. Therefore 

if an area of the sample contains elements with a high Z (e.g., Fe (Z=~26)) it will appear 

brighter on the BSE image and elements with a lower Z (e.g., Si=~14)) will appear darker 

(Reed, 2010). 

 

 

 

 

 

 

 

 

Figure 9: The Carl Zeiss Sigma Variable Pressure Analytical Scanning Electron Microscope at the 

Imaging Spectroscopy and Analysis Centre (ISAAC) Facility, University of Glasgow. 

 

2.2.2 Energy-Dispersive X0ray Analysis (EDS) - Imaging  

 

Elemental compositions of samples can be determined by using an Energy-

dispersive X-Ray spectrometer (EDS). The EDS at the ISAAC Facility at the University of 

Glasgow is an 80mm silicon-drift detector. 

The EDS allows for the emission of characteristic X-rays from a sample by 

bombarding the sample with high energy electrons via the electron beam. Prior to electron 

bombardment, an atom within the sample will contain unexcited electrons in distinct 
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energy levels/shells (electron orbitals) around the nucleus. An electron beam hitting the 

sample will result in electron excitation and may cause an electron to be knocked out of its 

orbital around the nucleus, thus producing a ‘hole’ at the electrons former position. An 

electron from an outer orbital (higher energy level) will fall into this hole to re-establish 

equilibrium (e.g., an electron in an inner shell (K shell) is ejected and an electron in a 

higher energy level (L shell) fills the vacancy, as illustrated in figure 10) (Brownlow; 

1996; Oxford Labs, 2017; Robinson, 2000). This difference in energy is emitted in the 

form of an X-ray. The EDS then measures the number and energy of emitted X-rays from 

the sample and since X-ray energies are characteristic of certain elements, elemental 

compositions of the sample can thus be determined by assigning false colours to elements 

measured (Reed, 2005). Elemental maps for a whole sample can be built up, therefore 

identifying the relative abundance of selected elements within the whole sample or a 

selected area. Elemental mapping of both NWA 7034 and NWA 8159 was conducted to 

highlight apatites and mineralogical/lithological context of both meteorites, EDS images 

were produced at 250× magnification with 1024 resolution (this data can be viewed in 

chapter 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: A schematic of the structure of an atom, indicating the nucleus and electron orbitals (K, L 

and M). Each orbital has a distinct energy level (i.e., K is an electron in ground state, which when 

excited by a beam, will become excited and move to a higher energy level (L or M)). Electrons from a 
higher energy level can fill in a vacancy when an electron from a lower energy level has been knocked 

from its orbital, which releases a characteristic X-ray. Adapted from Oxford labs (2017) and Robinson 

(2000). 
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2.2.3 Energy-Dispersive X-ray Analysis (EDS)- Quantitative Chemical Analysis  

 

The largest and most pristine apatite grains were selected for EDS spot analysis to 

produce quantitative major and minor element data (Si, Al, P, K, Na Ca, Fe, Mg, S, Ti, 

Mn, Cl and F), with uncertainties of 0.1 wt. % (calculated from the background spectra for 

each analysed element). 

Geo MK II Block standard materials were utilised to ensure the precision of these 

analyses (table 2). Conditions in the SEM during these quantitative analyses were as 

follows: 15kV voltage, 8.5mm working distance (WD), 60µm aperture. During SEM-EDS 

point analysis the beam current was ~ 2.22 nA and a spot size of ~10µm was used. 

 

 

 

 

 

 

 

 

Table 2: Geo MK II Block standards used during SEM-EDS analysis to achieve quantitative results at 

the ISAAC Facility, University of Glasgow. The table lists which standard was used for each element. 

 

2.3 Problems with Measuring Volatiles  

 

Apatite proves to be a problematic mineral to obtain quantitative analysis from as a 

result of F sensitivity to the electron beam and problems arising from crystal orientation 

properties. F is especially difficult to analyse accurately due to migration effects (Stormer 

et al., 1993; Pyle et al., 2002; Henderson, 2011). 

2.3.1 Fluorine Migration  

 

Quantitative analysis of F concentrations within apatite are primarily problematic 

due to the mobility of F under electron bombardment from the primary beam (Henderson, 

2011). Previous studies conducted by Stormer et al. (1993) noted increased F X-ray 

Element Standard 

F Fluorite 

Cl Tugtupite 

Mn Rhodonite 

K Orthoclase 

Na and Al Jadeite 

Ti Rutile 

Cr Chromite 

P Apatite 

Ca and Si Wollastonite 

Fe Haematite 

Mg Periclase 

S Pyrite 
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emissions with exposure time. They accounted these variations to be an effect of beam 

current and spot size but also confirmed that the crystallographic orientation of apatite has 

an effect on F analysis. The relationship between increased F X-ray counts and beam 

voltage was also studied and it was determined that low voltages (7-15 kV) has less of an 

effect of F migration compared to increased voltages (Henderson, 2011; Stormer et al., 

1993). 

Stormer et al. (1993), suggested that to obtain an accurate analysis of F 

concentrations within apatite, multiple timed analysis on the same spot with a note of the 

beam value at the start of the analysis is favoured rather than a single analyses. This then 

allows a correction to be applied to your data. McCubbin et al. (2011) modified their data 

for the variations of F X-ray counts by using a correction in PFE software. The 

crystallographic orientation of apatite is a more difficult aspect to control. However, 

McCubbin et al. (2011) determined that changes in the F X-ray count rate did not correlate 

with the orientation of selected apatites during their analysis. Therefore, it is possible that 

crystallographic orientation is less of a controlling factor in F migration. 

2.3.2 Scanning Electron Microscopy at the Natural History Museum  

 

To attempt to account for F migration (previously discussed) during analysis, 

collaboration with Dr. Tobias Salge at the Natural History Museum (NHM) was 

undertaken. A new technique using EDS is being developed at the NHM to try to resolve 

the F migration problem. Both NWA 7034 samples were analysed using Bruker (Quantax 

Quad) Esprit 2.1 software via SEM-EDS to collect Cl and F data. Astimex standards were 

used prior to analysis (listed in table 3). The sample was analysed over small timescales 

(10 seconds measurement time) with a low beam voltage (6kV). However, the results 

produced exceptionally high totals (105 wt. %) for both samples of NWA 7034. Previously 

when the standards had been analysed they had produced totals <100 wt. %. The reason for 

this difference in total wt. % between the standards and samples was a result of a sample 

preparation error. The carbon coats on the samples were of a different thickness compared 

to the standards carbon coating (15nm on samples and 25nm on standards). Therefore, 

more X-rays from the samples were able to get to the detector compared to the standards, 

thus resulting in totals that were artificially high. Unfortunately, there was no time to return 

to the NHM to conduct another study using Dr. Tobias Salges’ technique. Therefore, F 
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migration in the final results could only be accounted for through stoichiometry, described 

below. 

 

 

 

Table 3: Astimex standards used during SEM-EDS analysis at the Natural History Museum, London. 

The table lists which standard was used for each element. 

 

2.3.3 Stoichiometry Calculations of Volatile Abundances  

 

SEM-EDS analysis cannot directly measure OH. However, by measuring F and Cl 

accurately, the missing component (assumed to be OH) can be inferred via stoichiometry 

(McCubbin et al., 2011). Using guidance from Deer et al. (1992) and McCubbin et al. 

(2013) stoichiometry from the conducted analysis with wt. % totals ranging from 98.5% -

101% was calculated. Four main steps were used to determine stoichiometry accurately. In 

apatite, F, Cl and OH are present as anions, as well as the more common O anion. This 

adds an extra step (step 1) to the stoichiometry calculations, which is to calculate the 

oxygen equivalent. Since Cl and F are both anions, the amount equivalent to O needs to be 

calculated (equation 2). Step 2 involves calculating the molecular proportion of oxides for 

each analysed element (equation 3) followed by Step 3 - which involves calculating the 

atomic proportion of O from each molecule (equation 4) and the structural formula based 

on 13 anions (equations 5). The final step (Step 4) involves calculating the structural 

formula for F and Cl based on 13 anions is required. To do this the true total is needed 

(equation 6) and the normalisation factor for 13 anions (equation 7) before Step 4 can be 

applied (equation 8). Once the structural formula for F and Cl based on 13 anions is 

calculated, a column can be made to add up all the cations and anions for each analysis. 

For apatite, the total number of cations should equal 8, with Ca and P cations being equal 

to 5 and 3 respectively. The total number of anions calculated should equal 1. Any value 

less than 1 will indicate that there is a missing component (i.e., OH). For more insight into 

this stoichiometry, method refer to Deer et al. (1992) and McCubbin et al. (2013). 

 

 

Element Standard 

F Topaz 

Cl Tugtupite 

Si and Mg Diopside 

Ca Calcite  
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Step 1:  

−𝑂 = 𝐹 = 16 ÷ 2 × 𝐴𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐹 × 𝐹 𝑜𝑥𝑖𝑑𝑒 𝑤𝑡. % 𝑓𝑟𝑜𝑚 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

−𝑂 = 𝐹 = 16 ÷ 2 × 𝐴𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐶𝑙 × 𝐶𝑙 𝑜𝑥𝑖𝑑𝑒 𝑤𝑡. % 𝑓𝑟𝑜𝑚 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

Equation 2: Oxygen equivalent calculations for Cl and F based on work by Deer et al. (1992) and 

McCubbin et al. (2013) where: –O=F and –O=Cl is the oxygen equivalent for F and Cl, respectively; 

and 16 is the atomic mass of O. Since O has a charge of -2 and Cl and F have a charge of -1, the 

calculation involves two times the atomic mass of F and Cl, and only 1 times the atomic mass of O 

(which is 16). 

 

Step 2:  

𝑂𝑥𝑖𝑑𝑒 𝑤𝑡. % 𝑖𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 ÷ 𝑁𝑜. 𝑜𝑓 𝑜𝑥𝑦𝑔𝑒𝑛 𝑖𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 𝑜𝑥𝑖𝑑𝑒  

× 𝐴𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 + 𝑁𝑜. 𝑜𝑓 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑥𝑖𝑑𝑒 × 𝐴𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑐𝑎𝑡𝑖𝑜𝑛 

Equation 3: The molecular proportion of oxides calculation (Deer et al., 1992; McCubbin et al., 2013). 

This calculation should be applied to all elements analysed.  

 

Step 3:  

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑥𝑖𝑑𝑒 𝑓𝑟𝑜𝑚 𝑎𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑜𝑥𝑖𝑑𝑒 

Equation 4: Calculation for the atomic proportion of O from each molecule (Deer et al., 1992; 

McCubbin et al., 2013). 

 

𝐴𝑡𝑜𝑚𝑖𝑐 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 13 𝑎𝑛𝑖𝑜𝑛𝑠

× (𝑁𝑜. 𝑜𝑓 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ÷ 𝑁𝑜. 𝑜𝑓 𝑜𝑥𝑦𝑔𝑒𝑛 𝑖𝑛 𝑜𝑥𝑖𝑑𝑒) 

Equation 5: The calculation for the structural formula based on 13 anions(Deer et al., 1992; McCubbin 

et al., 2013). 

 

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑖𝑐 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑂 − 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑥𝑖𝑑𝑒 𝐶𝑙

+ 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑥𝑖𝑑𝑒 𝐹 ÷ 2 

Equation 6: The calculation for the true total (Deer et al., 1992; McCubbin et al., 2013). 
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13 ÷ 𝑇𝑟𝑢𝑒 𝑡𝑜𝑡𝑎𝑙 

Equation 7: Normalisation factor for 13 anions calculation (Deer et al., 1992; McCubbin et al., 2013) 

This is required as the apatite chemical formula contains 13 oxygens. 

 

Step 4:  

𝐹 = 𝐴𝑡𝑜𝑚𝑖𝑐 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

𝐶𝑙 = 𝐴𝑡𝑜𝑚𝑖𝑐 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

Equation 8: The calculation of the structural formula based on 13 anions (Deer et al., 1992; McCubbin 

et al., 2013). By adding the results from this calculation a total number of anions in the X-site of the 

apatite can be determined (it should equal 1). A value <1 indicates a missing component (i.e., OH). 

 

 

2.4 Cameca ims 1280 Ion Microprobe  

 

Apatites >25µm from NWA 7034(In) and NWA 7034(Epoxy) were analysed for 

hydrogen isotope compositions using the Cameca ims 1280 Ion Microprobe at the W.M. 

Keck Cosmochemistry Laboratory, University of Hawaii (UH). Prior to analysis, the two 

samples of NWA 7034 were placed at 60ºC in a vacuum oven for 48 hours. This method of 

analysis was selected based on its high accuracy, low contamination, spatial resolution and 

capability to measure isotopic compositions in situ with a precision and reproducibility of 

±0.5‰ (Hallis et al., 2012a; HIGP, 2017). 

2.4.1 Secondary Ion Mass Spectrometry- Analytical Protocol  

 

An ion microprobe (also known as a Secondary Ion Mass Spectrometer (SIMS)) 

produces a focused primary Cs+ beam, which sputters atoms from the sample. During the 

sputtering process, some of the atoms are ionised, thus producing secondary ions. These 

secondary ions are then transferred from the sample chamber through an electromagnetic 

field and to the mass spectrometer, where they are identified at the detector based on their 

mass/charge ratio (Peres et al., 2008). The sputtering process produces ions of every 

element and therefore the SIMS must have a high mass resolving power to cope with this 

as it must be sufficient enough to be able to separate interfering molecules to yield high 

precision data (Hallis et al., 2012b; HIGP, 2017). The Cameca ims 1280, at UH (figure 11) 

has a mass resolving power of 6000, therefore is ideal for high precision measurements. 
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Collection of high precision isotopic analysis on the Cameca ims 1280 is conducted in 

microprobe mode. When conducting hydrogen isotope (D/H) analyses, the primary ion 

column generates the Cs+ beam, which is used to measure elements that have negative ions 

(negative ions are measured as they are the resultant of the ionisation from a positively 

charged beam) (SERC, 2017). There are 3 main detectors of ions on the Cameca ims 1280: 

a Faraday Cup, a multicollector and the SCAPS detector (HIGP, 2017). 
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Figure 11: Schematic of the Cameca ims 1280 ion microprobe at the University of Hawaii. The main 

features of this ion microprobe are the sample chamber and air lock (purple); primary ion column 

(yellow); Secondary Ion Mass Spectrometer (green); detectors (blue) (HGIP, 2017). The sample 

chamber operates with a vacuum of ~1 x 10-9 torr and allows for one sample in the chamber at a time, 

and a reserve sample in the airlock. The SIMS detector is double focussing, with an electrostatic and 
magnetic sector in a forward geometry (i.e., the electrostatic sector is before the magnetic sector). This 

geometry allows for the reduction of energy of the secondary ions (via the electrostatic sector) prior to 

separation to single ion beams in the maganetic sector (Shimizu, 1997). 
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In-situ H isotopic compositions of apatite were analysed using the Cameca ims 

1280 Ion Microprobe at the W.M. Keck Cosmochemistry Laboratory, UH. A focused Cs+ 

primary ion beam with a current of 4nA produced ions of H, D and 
18

O. The measurement 

protocol involved the primary ion beam being rastered over an area of 25 × 25µm for 200s. 

This process ensured the removal of surface contamination on the sample as well as 

removing the 15nm carbon coat covering the apatite. The raster area was then reduced to 

an analysis area of 15 × 15µm. The final spot size that data was collected from was 8 × 

8µm, due to the presence of an egate excluding ions from the outer regions of the 15µm 

analysis raster (Hallis et al., 2015). This rastering and sputtering process is illustrated in 

figure 12. The collection of data occurred over a period of 40 cycles with element 

measurement times displayed in table 4. H is more abundant than D and therefore H was 

measured over a shorter time and D measured over a longer time to ensure D counts were 

above the detection limits. The 40 cycles were separated into background data and real 

data. In cycles 1-9 and 36-40, the beam was blanked and therefore during these cycles the 

background H and D was measured. In cycles 10-35 the beam was turned on and collected 

data from the sample. 

 

 

 

Table 4: Measurement times for selected elements for analysis. Since Deuterium (
2
H or D) is less 

abundant than Hydrogen (
1
H) it is measured over a longer period of time (e.g., 40 seconds) compared to 

hydrogen, which is measured for a shorter time (3 seconds). Since 
18

O is abundant it was measured over 

a short time (2 seconds) similar to 
1
H. 

 

 

 

 

 

 

 

 

 

Element Measurement Time 
1
H 3 seconds 

2
H (D) 40 seconds  

18
O 2 seconds  
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Figure 12: A simplified schematic of the sputtering and rastering process, which occurs during analysis. 

The primary ion beam is rastered over a 25 × 25µm area for 200s to remove the carbon coating over the 

apatite and surface contamination (b), the raster area is then reduced to an area of 15 × 15µm (c) and 

then to an 8 × 8µm area for analysis (d). 
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Ion probe data is recorded in counts per second (cps). This raw data is corrected for 

both deadtime and background. Background was measured during the first 10 and last 5 

cycles of each measurement as previously stated, which was subtracted from the isotopic 

data, measured during cycles 10 and 35. To correct for instrumental mass fraction, three 

terrestrial standards were used. Two of which were apatite standards: Crystal Lode ap005 

and Russia ap018 and the other standard used was San Carlos olivine. The San Carlos 

olivine standard contains no H (olivine is an anhydrous mineral) therefore by measuring 

the H content of the standard the level of H in the vacuum can be estimated. Standards 

were re-measured after analysis to ensure the conditions in the vacuum were constant 

during data collection. McCubbin et al. (2010, 2012) previously measured the δD value 

and water content of these standards as shown in table 10. Since each of these standards 

have varying water contents, a calibration line can be produced (figure 13), which was 

used to estimate the water content of the unknowns based on the unknowns 1H-/18O- ratio, 

and the slope of the relevant 1H/18O vs. H2O wt.% standard calibration line, using the 

following equation: 

𝐻₂𝑂 𝑤𝑡. % = ( 1H
−

/18O
− 

) × line slope 

Equation 9: The water content of the unknown apatites where 1H-/18O- ratio and the slope of the 

1H/18O vs. H2O wt. % standard calibration line estimated the unknown water content (Hallis et al., 

2012). 

 

The reproducibility of apatite water content analysis, determined through the 

uncertainty associated with the standard calibration line, was ±19.5%(2σ).  

Following this, 2σ errors for H2O and δD of each apatite were calculated using the 

equation: 

𝐸𝑟𝑟𝑜𝑟 = 2 × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑡𝑟𝑢𝑒) 

Equation 10: Reproducibility of apatite water content and δD values, where estimated is the estimated 

H2O or δD value of each apatite standard and true is the H2O or δD value of each apatite standard 

(Hallis et al., 2012). 

 

2𝜎𝑒𝑟𝑟𝑜𝑟 = 2 × √𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟² + 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠² 

Equation 11: The 2σ error for H2O and δD of each apatite (Hallis et al., 2012). 
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The H2O detection limit was calculated using the 
1
H

-
/
18

O
-
 ratios from anhydrous 

minerals. The detection limit for NWA 7034(In) was ~465 ppm and ~190ppm for NWA 

7034(Epoxy). 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Calibration line for apatite in NWA 7034. The line is based on analysis of terrestrial 

standards with known water contents (table 11). 
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Chapter 3 Volatile Abundance Apatite Data 
 

3.1  Volatile Content within Apatite in NWA 7034  

 

EDS false colour X-ray images indicate the various minerals and clasts present 

within two samples of NWA 7034 (figure 14 and 15). Figure 14 highlights the lithological 

context of NWA 7034 (Indium mounted sample), showing its clastic nature with 

protobreccia clasts, melt clasts and mineralogical clasts present. Figure 15 also highlights 

this for NWA 7034 (Epoxy mounted sample). From Energy dispersive false colour X-ray 

images (figures 14 and 15), it is clear that there is abundant phenocrysts of plagioclase 

(~200- 500µm) and pyroxene (~100-600µm) present within NWA 7034 (plagioclase 

indicated blue in figure 14 and indicated by dark green in figure 15). 

The location and lithological context of the apatites in NWA 7034 was determined 

using EDS mapping. Figure 16 indicates the location of apatites within NWA 7034(In) and 

figure 17 indicates the location of apatites within NWA 7034(Epoxy). 

Further EDS mapping was conducted on an individual apatite grain (ROI_1a) of 

interest (figures 18 and 19) from NWA 7034 (Epoxy). This apatite displayed white veining 

on its surface on a BSE image so EDS mapping was conducted to determine the 

composition of the veins. EDS maps indicated the veining present was Fe-rich, which has 

not been previously noted by other studies (figure 18 and 19). It is possible that this 

veining is a result of hydrothermal alteration. Some of the Fe-rich veins are offset by the 

fracture in ROI_1a, indicating that hydrothermal alteration occurred prior to the formation 

and/or ejection of NWA 7034. Hydrothermal alteration prior to incorporation into NWA 

7034 is consistent with McCubbin et al. (2016), and implies that the whole rock of NWA 

7034 may have experienced hydrothermal alteration. However, a more likely explanation 

for the Fe-rich veins is shock blackening (Baziotis et al., 2013; Summerson et al., 2013). 
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Figure 14: Energy-dispersive X-ray analysis compositional map of NWA 7034 (indium mounted 

sample). Composition: Silica: blue, Magnesium: green and Iron: red. Bright green areas correspond to 

pyroxene, mostly present as large (~100-600µm) mono-mineralic clasts. Red areas represent magnetite, 

and blue areas are either plagioclase (~200-500µm) or silica rich glass produced via shock. Some of the 

various clast types present in NWA 7034 are displayed in the above figure: protobreccia clasts (yellow 

dashed line), melt clast (pink dashed line) and mineral clasts (plagioclase in the white dashed line and 

pyroxene in the light blue dashed line). 
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Figure 15: Energy-dispersive X-ray analysis compositional map of NWA 7034 (epoxy mounted 

sample). Composition: Calcium: blue, Aluminium: green and Phosphorus: red. Bright blue areas 

correspond to pyroxene, present as ~100-500µm mono-mineralic clasts. Dark green areas are 

predominantly plagioclase, with large phenocrysts ranging from ~200-300 µm. Dark pink areas 

represent small apatite grains (~25 µm).Various clast types present can be noted in the above figure: 

protobreccia clasts (yellow dashed line), a coarse igneous clast (red dashed line) and mineral clasts 

(Pigeonite in the black dashed line, plagioclase in the white dashed line and pyroxene in the light blue 

dashed line). 
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Figure 16: Energy-dispersive X-ray analysis compositional map of NWA 7034 (In). Composition: 

Phosphorous: red and chlorine: green. Apatite grains are highlighted in yellow due to the false colour 

overlay of phosphorus (red) and chlorine (green), two diagnostic elements that make up apatite. 
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Figure 17: Energy-dispersive X-ray analysis compositional map of NWA 7034 (Epoxy). Composition: 

Phosphorous: red. Thus, red grains indicated in the EDS map are apatite. 
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Figure 18: Energy-dispersive X-ray analysis compositional map of an apatite (ROI_1a) within NWA 

7034 (Epoxy) showing signs of shock blackening (see black arrow). Composition: Chlorine: green, 

Phosphorous: purple, Iron: red, Calcium: orange, Silica: blue and Magnesium: yellow. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Energy-dispersive X-ray analysis compositional Fe map of an apatite (ROI_1a) within NWA 

7034 (Epoxy) showing signs of shock blackening. Lines of interest are iron rich. 
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3.1.1 Targeted Apatites for Volatile Abundance Analysis  

 

The apatites selected for SEM-EDS analysis are displayed in figures 20 to 22 (with 

the exception of ROI_2 and ROI_8 in figure 20- these apatite grains were selected for 

hydrogen isotope analysis (see Chapter 4)). Figure 20 shows the apatites selected from 

NWA 7034 (In). The texture of these apatites varies from spongey (ROI_1 and 2), anhedral 

(ROI_4, Std run 10, and 12) and euhedral (ROI_8 and Std run 11) ROI_1 and 2 appear to 

be included in a pyroxene mineral clast. Both of these apatites display a spongey texture 

and seem to have grown from the matrix around the pyroxene. The rest of the apatites 

analysed in the NWA 7034(In) sample were free grains within the matrix. Figures 21 and 

22 show apatites selected from NWA 7034 (Epoxy). Texturally, the apatites in this sample 

are predominately euhedral (ROI_1a, 3, 5, 8a, 11, 12 and 13) with some anhedral (ROI_2a, 

4a, 6a, and 7). In this sample all apatites analysed were in the matrix on the sample, with 

exception to ROI_8a which was contained within a rim of a pigeonite mineral clast. All 

targeted apatites were >25µm to avoid matrix incorporation during analysis. 
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Figure 20: BSE images of apatites of interest in NWA 7034 (In). Yellow dashes outline the grain 

boundary of the apatite to surrounding minerals and matrix material. Each apatite was selected as a 

“region of interest” (ROI). Spectrum labels indicate where previous SEM-EDS point analysis was 

conducted. (A) Highlights ROI_1 and 2 apatites contained within a pyroxene clast. The results of SEM-

EDS analysis of ROI_2 are not displayed in the triplot below due to low overall totals (< 96%), however 

this apatite was selected for hydrogen isotope analysis.(B) Shows ROI_4, which is a free apatite grain 

within the matrix. (C) Highlights ROI_8, a euhedral, free apatite grain within the matrix. A prominent 

fracture is shown through the apatite, however the surface on either side is relatively clean. The results 

of SEM-EDS analysis of this apatite are not displayed in the triplot below due to low overall totals (< 

96%), however this apatite was selected for hydrogen isotope analysis. (D) Indicates Std run 10, an 
anhedral free apatite grain. (E) Highlights Std run 11, a euhedral apatite positioned at the sample edge. 

(F) Shows Std run 12, an anhedral free apatite grain. 
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Figure 21: BSE images of apatites of interest in NWA 7034 (Epoxy). Yellow dashes outline the grain 

boundary of the apatite to surrounding minerals and matrix material. Each apatite was selected as a 

“region of interest” (ROI). Spectrum labels indicate where previous SEM-EDS point analysis was 

conducted. (G) Highlights ROI_1a, a euhedral apatite grain with a prominent crack along the surface. 

Thin white veins can be seen on the surface of the apatites (previously explained in section 1.2.4). (H) 

shows ROI_2a, an anhedral free apatite grain within the matrix. (I) Highlights ROI_3, a promeint 

feature of this apatite is the fracture across the surface. White inclusions (possibly silicates) are present 

to the left side of the fracture, whereas the surface to the right side of the fracture appears relatively 

clean. (J) Shows ROI_4a, an anhedral apatite that appears to have been broken up. (K) Highlights 

ROI_5, again this apatite as a dominant fracture, with silica inclusions present on both sides of the 

fracture. (L) Displays ROI_6a, an anhedral apatite grain within the matrix of NWA 7034. 
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Figure 22: BSE images of apatites of interest in NWA 7034 (Epoxy). Yellow dashes outline the grain 

boundary of the apatite to surrounding minerals and matrix material. Each apatite was selected as a 

“region of interest” (ROI). Spectrum labels indicate where previous SEM-EDS point analysis was 

conducted. (M) Highlights ROI_7, a fractured anhedral apatite grain within the matrix. (N) Shows 

ROI_8a, a euhedral apatite located in the rim of a pigeonite mineral clast. (O)- (Q) Highlights ROI_11, 

12 and 13. All euhedral free apatite grains within the matrix. 
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3.1.2 Plotted Volatile Abundances for Stoichiometry Calculated OH Component  

 

The volatile abundance results from analysis via SEM-EDS are displayed in figure 

23. The data presented in the triplot has been calculated using stoichiometry (previously 

discussed in section 2.3.3) and therefore represents a proportional ratio of the Cl: F: OH 

components within the apatite. The data used in the triplot is highlighted in yellow in tables 

5, 6 and 7. 

Since NWA 7034 is a breccia it was expected that different populations of apatite 

would exist however, NWA 7034 is uncharacteristically uniform for a polymict breccia 

(i.e., no groupings of apatite can be seen in terms of their volatile abundances (Cl: F: OH)). 

NWA 7034 apatites dominantly occupy the Cl-rich region of the triplot, which is consistent 

with the literature (Santos et al., 2013). A variation can be noted in the OH component of 

the apatites (highlighted yellow in tables 5, 6 and 7) which has resulted in the spread of 

data in figure 23. When these results are compared to the results from Santos et al. (2013) 

the data fits reasonably well (figure 24), with some apatites from this study plotting just 

outside of the spread of Santos et al. (2013) data. Apatites from this study predominantly 

plot in the green area of the Santos et al. (2013) triplot. This implies that these apatites 

formed from a melt which had a volatile abundance of Cl>OH>F. The apatites, which plot 

in the blue area of the triplot, are inferred to have crystallised from an OH rich melt 

(OH>Cl>F). McCubbin et al. (2016) previously recorded values of Cl and F abundances 

within apatite in NWA 7034. Their values indicated Cl ranging from 3.42 to 5.31 wt. % 

and F ranging from 0.51 to 1.42 wt. %. Values of Cl and F wt. % abundances from this 

study are highlighted in blue in tables 5, 6 and 7 and are consistent with McCubbin et al. 

(2016) analysis. 

Although electron microprobe analyses are typically performed to determine apatite 

Cl and F abundances, UoG SEM-EDS data is consistent with Santos et al. (2013) and 

McCubbin et al. (2016)  indicating that SEM-EDS analysis of Cl and F measurements are 

valid and can yield accurate stoichiometry.  
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Figure 23: Plotted volatile abundances on a relative volatile abundance (RVA) diagram form apatites in 

NWA 7034. The values used in this plot (tables 5, 6 and 7) were calculated using stoichiometry 

methods previously discussed in section 2.3.3. The spreadsheet for this triplot can be viewed on the 

supplementary disk. 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

_________________________________________________________________________ 

 

_________________________________________________________________________ 

Aimee Smith                                                                                                                                    October 2017 

Table 5: Stoichiometry calculations from SEM-EDS data from apatites within NWA 7034(In). (A) 

Displays the oxide wt. % of each element analysed, along with the oxygen equivalent (-O=F and –

O=Cl, previously discussed in section 2.3.3). Values of Cl and F wt. % abundances from each analysis 

are highlighted in blue. (B) Displays the structural formula based on 13 anions for each analysed 

element. The Cl, F and OH values, calculated from stoichiometry, are highlight in yellow. These values 

are plotted in figure 23. 
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Table 6: Stoichiometry calculations from SEM-EDS data from apatites within NWA 7034(Epoxy). (A) 

Displays the oxide wt. % of each element analysed, along with the oxygen equivalent (-O=F and –

O=Cl, previously discussed in section 2.3.3). Values of Cl and F wt. % abundances from each analysis 

are highlighted in blue. (B) Displays the structural formula based on 13 anions for each analysed 

element. The Cl, F and OH values, calculated from stoichiometry, are highlight in yellow. These values 

are plotted in figure 23. 
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Table 7: Stoichiometry calculations from SEM-EDS data from apatites within NWA 7034(Epoxy). (A) 

Displays the oxide wt. % of each element analysed, along with the oxygen equivalent (-O=F and –

O=Cl, previously discussed in section 2.3.3). Values of Cl and F wt. % abundances from each analysis 

are highlighted in blue. (B) Displays the structural formula based on 13 anions for each analysed 

element. The Cl, F and OH values, calculated from stoichiometry, are highlight in yellow. These values 

are plotted in figure 23. 
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Figure 24: RVA diagram showing NWA 7034 apatite data overlain with the spread of apatite data from 

Santos et al. (2013). The data from this study fits relatively well with Santos et al. (2013) data. 

However, apatites from this study plot predominantly in the green area of the triplot (Cl>OH>F), with a 

few minor apatites plotting in the blue area (OH>Cl>F melt). 

 

3.2 Volatile Content within Apatite in NWA 8159  

 

NWA 8159 is a newly classified martian meteorite and therefore no previous work 

has been conducted on the volatile content within apatite. Apatites within this meteorite are 

very small (<20µm) and therefore quantitative analysis via the SEM-EDS is difficult. 

3.2.1 Apatites in NWA 8159  

 

Apatites were located in NWA 8159 via EDS mapping of the whole sample. Figure 

25 highlights the main cluster of apatites that can be seen in the sample. The SEM was 

used to identify locations of interest, which are displayed in figure 26. All the selected 

apatites appear to be granular and anhedral with an “unclean” surface, possibly due to 

terrestrial contamination or alteration. Some of the apatites also have associated sulphides 
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(bright surrounding minerals in figure 26). The apatites appear to be locked in around large 

pyroxene, olivine and sulphide crystals, with minor matrix material present. EDS point 

analysis was then conducted on individual apatite grains to yield their major and minor 

element wt. % compositions. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Energy-dispersive X-ray analysis compositional map of NWA 8159. Composition: 

Phosphorous: red. The red grains indicated in the EDS map are apatite. Because this meteorite contains 

very small apatite (<20µm) it is hard to detect them. The red box in the figure indicates the area 

containing the larger apatites within this sample. 
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Figure 26: BSE image of apatites of interest in NWA 8159. Yellow dashes outline the grain boundary of 

the apatite to surrounding minerals and matrix material. Each apatite was selected as a “region of 

interest” (ROI). (A)-(H) Highlight the anhedral and altered appearance of apatites within NWA 8159. 
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3.2.2 Volatile Abundances from Triplot Data  

 

The volatile abundance results from analysis via SEM-EDS is displayed in figure 

27. As previously mentioned the data presented in the triplot (table 8) has been calculated 

using stoichiometry (section 2.3.3) and therefore represents a proportional ratio of the Cl: 

F: OH components within the apatite. 

NWA 8159 apatites dominantly occupy the F-rich region of the triplot, something 

not typical of martian apatite. Values of F and Cl abundances are highlighted in blue in 

table 8. F values range from 2.79-4.83 wt. % and Cl values range from 0.03- 0.44 wt. %. 

Highlighted yellow in table 8 are the values that were plotted in figure 27. The calculated F 

values are considerably higher than Cl values, with little to no OH calculated. F enrichment 

at this level is predominately associated with terrestrial apatites (figure 5). The total wt. % 

for all apatite analysis exceeds 101% (table 8). It is important to note that high totals and F 

enrichment could be a result of F migration towards the beam (section 2.3.1). However, 

since SEM-EDS apatite analysis was conducted on NWA 7034 and yielded valid 

measurements, it is unlikely that F migration has largely effected the data since both NWA 

7034 and NWA 8159 were analysed under the same SEM-EDS conditions. 

The matrix chemistry of NWA 8159 was also analysed in ROI_5 (table 9). These 

analyses yielded Si values between 24.93-25.81 wt. % and P values between 0.33-0.46 wt. 

% and indicated that the matrix of NWA 8159 is F poor. 
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Figure 27: Plotted volatile abundances on a relative volatile abundance (RVA) diagram form apatites in 

NWA 8159. The values used in this plot were calculated using stoichiometry methods previously 

discussed in section 2.3.3 and displayed in table 8. The spreadsheet for this triplot can be viewed on the 

supplementary disk. 
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Table 8: Stoichiometry calculations from SEM-EDS data from apatites within NWA 8159. (A) Displays 

the oxide wt. % of each element analysed, along with the oxygen equivalent (-O=F and –O=Cl, 

previously discussed in section 2.3.3). Values of Cl and F wt. % abundances from each analysis are 

highlighted in blue. (B) Displays the structural formula based on 13 anions for each analysed element. 

The Cl, F and OH values, calculated from stoichiometry, are highlight in yellow. These values are 

plotted in figure 27. 
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Table 9: Elemental abundances of NWA 8159 matrix material in ROI_5 from SEM-EDS analysis. 

Spectrum (Spec) 2 and 3 where two separate spot analyses on the matrix. No F was measured in the 

these analyses indicating a F-poor matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weight % ROI_5 Spec 2 ROI_5 Spec 3 

Si 24.94 25.81 

Ti 0 0.03 

Al 0.51 0.54 

Cr 0 0 

Fe 27.16 22.59 

Mn 1.34 0.93 

Mg 8.11 10.69 

Ca 0.70 0.61 

Na 0.21 0.22 

K 0.03 0.03 

P 0.33 0.46 

S 0.09 0.04 

O 43.28 44.66 

Cl 0.04 0.34 

F 0 0 

Total wt.% 106.75 106.95 



77 

_________________________________________________________________________ 

 

_________________________________________________________________________ 

Aimee Smith                                                                                                                                    October 2017 

Chapter 4 Hydrogen Isotope Data 
 

4.1  Deuterium/Hydrogen Ratios from NWA 8159 

 

Unfortunately collection of hydrogen isotope data within this study was not 

possible from apatites within NWA 8159 as they are <20µm and therefore too small for 

analysis using the ion microprobe technique. Analyses of hydrogen isotopes using the 

Nano SIMS technique may be possible, but again the size of these apatites make it difficult 

to collect accurate and valid results from them. 

 

4.2 NWA 7034 Targets for Hydrogen Isotope Analysis  

 

Apatites were selected for hydrogen isotope analysis if they were >25µm to try to 

ensure that matrix material would not be incorporated into the data. The least fractured and 

most pristine (i.e. no inclusions) apatites were prioritised. However, since this is a 

meteorite that has experienced impact/ejection forces and secondary alteration on the 

martian     surface it was difficult to find “perfect” apatites. Unfortunately, not all of the 

pre-selected apatites were analysed using the SIMS as some were too close to the edge of 

the sample and many contained too many fractures for an accurate measurement to be 

taken. Therefore, eight apatites in total were analysed, four from NWA 7034 (In) 

(ROI_1,2,4,8) and four from NWA 7034 (Epoxy) (ROI_3, 5, 7,8a). The targeted apatites 

come from different regions within the both samples (indicated by the red boxes present in 

figure 28 and 29), with area 1 apatites: ROI_1, 2 and 4, area 2 apatite: ROI_8, area 3 

apatites: ROI_7 and 8a, area 4 apatite: ROI_3 and area 5 apatite: ROI_5. A lithological 

mix (i.e. matrix and clast) of apatites was attempted, but only three of the apatites analysed 

(ROI_1,2 and 8a) were contained in a clast due to size constraints. All apatites selected for 

analysis are displayed previously in figures 18A, 18B, 18C, 19I, 19K, 20M and 20N. 

Anhydrous minerals were analysed to determine if degassing from the samples 

surfaces or terrestrial contamination was a significant component within the data. Two 

pyroxenes were analysed for D/H from both samples of NWA 7034. 
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Figure 28: BSE image of NWA 7034 (Indium mounted sample) taken by the SEM @ ISAAC Facility, 

University of Glasgow. The red boxes indicated the regions containing the targeted apatites for 

hydrogen isotope analysis at the University of Hawaii. 
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Figure 29: BSE image of NWA 7034 (epoxy mounted sample) taken by the SEM @ ISAAC Facility, 

University of Glasgow. The red boxes indicated the regions containing the targeted apatites for 

hydrogen isotope analysis at the University of Hawaii. 
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4.2.1 Pit Images from Targeted Apatites 

 

To ensure that hydrogen isotope analysis was successful in measuring the targeted 

apatites, SEM imaging of the apatites was conducted to collect pit images from each 

analysed apatite. Figure 30 shows the pit produced in ROI_1. The pit indicates that the 

apatite was targeted successfully. Figures 31, 32 and 33 highlight the pits produced in 

ROI_2, ROI_4 and ROI_8. These pits were successful and did not include matrix in the 

analysis. Figure 34 displays the pit produced in ROI_3. The apatite was successfully 

targeted however, a hole can be observed in the bottom of the pit, indicating that matrix 

material may have been incorporated at the end of the analysis as the beam penetrated 

further into the apatite. Figure 35 indicates the pit produced in ROI_5. Two pits can be 

seen in this figure 35 as it was discovered during analysis that the matrix (pit 5a) had been 

targeted instead of the apatite and therefore a second pit was made (pit 5b). Figure 36 

shows the pit produced in ROI_7. The selected apatite was targeted however; it is possible 

that some of the matrix was incorporated into this analysis as the pit edge on the right hand 

side is slightly off the apatite. Figure 37 highlights the pit produced in ROI_8a. This pit did 

not include matrix into the analysis. 
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Figure 30: A Secondary Electron image (A) and a BSE image (B) of pit produced in apatite ROI_1 

NWA 7034 (In). The edge of the pit may have incorporated matrix material into the analysis. 
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Figure 31: A Secondary Electron image (A) and a BSE image (B) of the pit produced in apatite ROI_ 2 

NWA 7034 (In). 
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Figure 32: A Secondary Electron image (A) and a BSE image (B) of the pit produced in apatite ROI_4 

NWA 7034 (In). 

 

 

 

 



84 

_________________________________________________________________________ 

 

_________________________________________________________________________ 

Aimee Smith                                                                                                                                    October 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: A Secondary Electron image (A) and a BSE image (B) of the pit produced in apatite ROI_ 8 

NWA 7034 (In). 
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Figure 34: A Secondary Electron image (A) and a BSE image (B) of the pit produced in apatite ROI_3 

NWA 7034 (Epoxy). A hole can be observed in the bottom of the pit (indicated by the red arrow), 

indicating that matrix material may have been incorporated at the end of the analysis as the beam 

penetrated further into the apatite. 
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Figure 35: A Secondary Electron image (A) and a BSE image (B) of the pits produced in apatite ROI_5 

NWA 7034 (Epoxy). Two pits can be seen in this figure as during analysis it was discovered that the 

matrix (pit 5a) had been targeted instead of the apatite and therefore a second pit was made (pit 5b). 
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Figure 36: A Secondary Electron image (A) and a BSE image (B) of the pit produced in apatite ROI_7 

NWA 7034 (Epoxy). 
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Figure 37: A Secondary Electron image (A) and a BSE image (B) of a pit produced in apatite ROI_8a 
NWA 7034 (Epoxy). 
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4.2.2 Pit Images from Anhydrous Minerals  

 

To ensure that hydrogen isotope analysis was successful in measuring the targeted 

pyroxenes, SEM imaging of the pyroxenes was conducted to collect pit images. Two 

pyroxenes were selected for hydrogen analysis, one from both samples of NWA 7034. 

After data collection, SEM imaging was conducted to ensure the beam had made a clean 

pit in the pyroxene and therefore an accurate analysis was acquired. Figure 38 displays the 

pit produced in the pyroxene from NWA 7034 (In). This analyses hit the target and did not 

incorporate any matrix material into the analysis. Figure 39 indicates the pit produced in 

the pyroxene from NWA 7034 (Epoxy). On the right hand side of the pit it appears that the 

beam may have penetrated into the matrix. The loose fragment that can be viewed in the 

pit was not present during hydrogen isotope analysis. The sample underwent re-polishing 

after hydrogen isotope analysis was conducted and this is likely to be a piece of debris 

from the sample that fell into the pit during polishing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: BSE image of the pyroxene pit from NWA 7034 (In). 
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Figure 39: A Secondary Electron image (A and B) and a BSE image (C) of the pyroxene pit from NWA 

7034 (Epoxy). The loose fragment on the right of the pit is a result of re-polishing after hydrogen 

isotope analysis. On the right hand side of the pit it appears that the beam may have penetrated the 

matrix (indicated by red dashed line). 
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4.3 NWA 7034 Hydrogen Isotope Results 

 

There are possibly three distinct hydrogen reservoirs on Mars (atmosphere, 

intermediate and mantle reservoirs) which all exhibit characteristic δD values. The martian     

atmosphere displays high δD values between 2500‰-6000‰ (Webster et al., 2013; Usui et 

al., 2015). The martian mantle displays low δD values <275‰ (Usui et al., 2012) and the 

proposed intermediate reservoir has δD values 1000‰-2000‰ (Usui et al., 2015) The data 

collected in this study from NWA 7034 exhibits δD values between 52±82‰ to 782±83‰  

(table 11) and are therefore are not a martian atmospheric values or values representing the 

intermediate reservoir. However, it is possible that the data in this study contains low δD 

values that are representative of the martian mantle (table 12); however, this will be fully 

discussed in Chapter 5. 

4.3.1 Measured OH Component for Volatile Abundance Triplot 

 

Hydrogen isotope analysis allowed for direct measurement of the OH component 

within selected apatites, and confirmed that apatites within NWA 7034 do contain water. 

This OH component could then be matched with the specific apatite Cl and F weight % to 

produce a relative volatile abundance triplot (blue in figure 40). NWA 7034 apatites were 

previously seen to occupy the Cl-rich region of the triplot based on stoichiometry (red in 

figure 40). A direct comparison cannot be made between these data sets as red diamonds 

represent proportional Cl: F: OH components via stoichiometry whereas blue diamonds 

represent the wt. % of Cl, F and OH (table 10). Despite this, the fact that they plot in 

similar regions in the triplot confirms that Cl-rich apatites are present in NWA 7034, with 

some more Cl-rich (RO1_2, 3, 5, 7, 8a), and some more Cl-poor (ROI_1 and 4). Despite 

hydrogen isotope analysis conducted on ROI_8 (NWA 7034(In)), it could not be 

represented in the triplot below due to wt. % totals < 96%. 
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Figure 40: Plotted volatile abundances on a relative volatile abundance (RVA) diagram form apatites in 

NWA 7034. Blue diamonds represent apatites which OH components were measured by SIMS analysis. 

Red diamonds (previously shown in figure 21) represent apatites where the OH component was 

calculated using stoichiometry methods previously discussed in section 2.3.3. 

 

 

  

 

 

 

Table 10: The wt. % abundances of Cl, F and H2O for each analysed apatite in NWA 7034. The wt. % 

values for Cl and F were measured using SEM-EDS analysis. The H2O wt. % values was directly 

measured using the SIMS at UH. These values are plotted as blue diamonds in figure 40 above. 

 

 

 

 

Apatite Cl (wt.%) H2O wt. % F (wt.%) 

ROI_1 4.75 0.44 0.53 

ROI_2 5.18 0.51 0.68 

ROI_3 5.05 0.43 0.73 

ROI_4 4.67 0.18 0.25 

ROI_5 5.38 0.47 0.62 

ROI_7 5.11 0.41 0.75 

ROI_8a 5.21 0.14 0.60 
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4.3.2 Cameca ims 1280 Hydrogen Isotope Analyses 

 

Apatite grains in NWA 7034 show δD values between 51.72‰ and 782.47‰ and 

water content values between 1379.85±30ppm and 5097.68±100ppm (table 11). Hydrogen 

isotope analysis was conducted on two pyroxene grains in NWA 7034. One from NWA 

7034(In) and the other NWA 7034 (Epoxy). The pyroxene grain from NWA 7034 (In) 

displays a δD value of-136.14±88‰ and water content of 465.62±30ppm whereas the 

pyroxene grain from NWA 7034 (Epoxy) displays a δD value of -98.02±88‰ and water 

content of 190.20±10ppm. It is unusual that a pyroxene mounted in In displays a much 

higher δD and water content than a pyroxene mounted in epoxy as you would expect the 

epoxy sample to have degassed and likely increased the values. However, as NWA 7034 is 

a polymict breccia it may be expected that different pyroxene grains have different water 

contents- especially because NWA 7034 contains evidence of aqueous alteration in certain 

clasts (McCubbin et al., 2016). 

 

Table 11: Hydrogen isotope data from all analysed standards, apatites and anhydrous minerals. δD is 

represented in ‰. H2O is represented in both wt. % and ppm(‰). The 2σ uncertainties for δD and H2O 

values are also displayed. All numbers have been rounded to 2 decimal places, with the exception of the 

H2O wt. % column which has been rounded to 3 decimal places. The calculations involved in this table 

can be viewed in the supplementary disk provided. 
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Three distinct groupings of apatites can be inferred through δD, water content and 

texture of apatite (table 12). Group 1 consists of ROI_4, 8 and 8a, highlighted green in 

table12. This group is characterised by high δD values (782.47±83‰, 631.48±85‰ and 

556.89±84‰ respectively) paired with low water contents (1842.28±40ppm, 

1718.29±30ppm and 1379.85±30ppm respectively). Group 2 consists of ROI_1, 2 and 

7(highlighted blue in table 12), with intermediate δD values (512.50±82‰, 264.04±82‰ 

and 390.8582±‰ respectively) and high water contents (4358.89±90ppm, 

5097.68±100ppm and 4083.15±80ppm respectively). It should be noted here that there 

appears to be a correlation with spongey texture and high water content. Group 3 consists 

of ROI_3 and 5, highlighted in orange in table 11. Group 3 is characterised by low δD 

values (51.72±82‰ and 52.10±82‰) and high water contents similar to Group 2 

(4307.96±80ppm and 4677.33±90ppm). 

These groupings are even more prominent when the δD versus the water content is 

plotted (figure 41). The apatites in NWA 7034 show a slight trend of increasing δD with 

decreasing water content (previously discovered for SNCs and ALH 84001 by Hallis et al., 

2016). 
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Table 12: Groupings of apatite within NWA 7034 based on δD, water content (H2O) and texture. Group 

1 is highlighted in green, Group 2 is highlighted in blue and Group 3 is highlighted in orange. For 

uncertainty values refer to table 11. 

 

 

 

Figure 41: Groupings of apatite based on δD versus water content (H2O wt.%). Group 1 (ROI_4,8 and 

8a) is contained within the green region, Group 2 (ROI_1, 2 and 7) in the blue region and Group 3 

(ROI_3 and 5) in the orange region. These colours relate to the information from table 12. 2σ 

uncertainties are shown as error bars in the graph above, these errors can be viewed in table 11 and in 

the supplementary disk provided. 
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Chapter 5 Discussion  
 

5.1  Volatile Abundances in NWA 7034 

 

Apatites from NWA 7034 are Cl-rich, which is consistent with the martian     

geochemical model of Cl enrichment (Filiberto and Treiman, 2009; McCubbin and Jones, 

2015) and with previous studies on martian apatite (Greenwood, 2005; Patino Douce and 

Roden, 2006; McCubbin and Nekvasil, 2008; Filiberto and Trieman, 2009; Patino Douce 

et al., 2011;Santos et al., 2013; McCubbin et al., 2013; McCubbin and Jones, 2015). The 

volatile content of NWA 7034 is in fact uncharacteristically uniform for a polymict breccia 

(i.e., no groupings of apatite can be seen in terms of their volatile abundances (Cl: F: OH)), 

indicating post-crystallisation processes- possibly a thermal event (McCubbin et al., 2016)- 

have overprinted the original Cl, F and OH contents of these apatites. However, this could 

also be the result of the uncertainties on measurements from SEM analysis compared to 

uncertainties from SIMS analysis. The uncertainty on each SEM-EDS analysis is 0.1 wt. % 

(i.e., 1000ppm), therefore it is possible that the SEM is not precise enough to detect small 

differences in apatite volatile abundances. 

The most obvious component, which separates the volatile abundance of NWA 

7034 apatites, is their varying OH content. When the data from this study were compared 

to the data of Santos et al. (2013) it was noted that apatites from this study predominately 

plotted in the Cl dominated melt region, with a few apatites plotting in the OH dominated 

melt region. Because of the spread of apatite across these two regions of the triplot, it is 

possible that there are two distinct groups of apatite that formed from different melts (i.e., a 

Cl>OH>F melt and a OH>Cl>F melt) or that all the apatites came from the same melt in 

which the dominant volatile of the melt varied (Santos et al., 2013). 

The OH component of apatites from NWA 7034 was further investigated by in-situ 

measurement using an ion microprobe. A direct comparison between stoichiometrically 

calculated OH and SIMS measured OH cannot be made as the former is based on 

proportions (the number of anions) whereas the latter is based on wt. %. However, Cl-rich 

apatites, with a confirmed water content was provided from both stoichiometry and SIMS.  
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5.2 Volatile Abundances in NWA 8159 

 

Apatites from NWA 8159 are F-rich, unlike those reported in many previous 

martian apatite study, as martian apatites are dominantly Cl-rich (Greenwood, 2005; Patino 

Douce and Roden, 2006; McCubbin and Nekvasil, 2008; Filiberto and Trieman, 2009; 

Patino Douce et al., 2011; McCubbin et al., 2013). However, as previously mentioned, 

recent studies conducted by Slaby et al. (2016; 2017) have found that primary F-rich 

apatites in martian meteorites is possible yet currently rare. The lack of F-rich apatites 

within our martian sample suite can possibly be attributed to the sample bias of martian 

meteorites. F values in NWA 8159 range from 2.79-4.83 wt.%. However, the maximum F 

content in apatite allowed by stoichiometry is ~3.7 wt.% (Rruff, 2018). This indicates that 

an analytical error may have occurred during SEM-EDS analysis. This high F content 

combined with the high totals (in excess of 101%, table 8) of the conducted analysis can be 

explained by the small size of the apatites (<20µm). SEM-EDS analysis is difficult to 

conduct on small grains, as there is a higher likelihood that matrix material will be 

incorporated into your data.  

However it is possible that the observed F enrichment could be explained by 

terrestrial contamination, which has occurred in NWA 8159 (Agee et al., 2014a; Agee et 

al., 2014b). Since SEM-EDS analysis is difficult to conduct on small grains, as previously 

mentioned, the resulting analysis will not accurately represent the chemistry of the apatite. 

Since matrix material is more prone to terrestrial contamination it is possible the matrix of 

NWA 8159 has been altered. The matrix of NWA 8159 was analysed using SEM- EDS 

(table 9). The analyses indicated the matrix was F-poor. However, since only two 

measurements of the matrix were conducted, an F-rich matrix source cannot be completely 

ruled out as a factor in F-enrichment of apatite. Fluorite formation, associated with some 

evaporates, can occur in the Northwest Africa desert environment, which could produce a 

F-rich matrix (Deer et al., 1966; Glennie, 1987). If terrestrial alteration has occurred then it 

will have overprinted any original chemical information preserved within NWA 8159 

apatites and therefore cannot provide insight into the volatile abundances of the parental 

source region for this meteorite, resulting in F-rich apatites that are not representative of 

Mars. However, if NWA 8159 apatites had been terrestrially altered, the associated 

sulphides would have shown signs of alteration also as sulphides are more susceptible to 

alteration than apatite (Hallis and Taylor, 2011). From the data, it is difficult to determine 

whether the F-enrichment is martian or terrestrial. 
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5.3 Hydrogen Isotope Results from NWA 7034 

5.3.1 Factors Affecting Deuterium/Hydrogen Ratios  

 

Multiple factors such as; crustal material assimilation; terrestrial 

contamination/weathering; hydrogen degassing; spallation by cosmic rays; and shock 

pressures have been found to effect the D/H ratio within minerals (Hallis et al., 2012). 

These factors can all affect the interpretation of D/H ratios in martian meteorites, meaning 

most martian meteorites do not record a martian  mantle signal (δD < 275‰) and instead 

tend to containcrustal/atmospheric values (Hallis et al., 2012; Usui et al., 2012). 

   Martian meteorites experience high shock pressures when they are ejected from 

Mars, which can disturb their natural D/H ratio. Shock devolatilization (loss of H due to it 

being the lighter isotope and therefore preferentially lost) has been proven to decrease the 

water content and thus increasing the D/H ratio of a given mineral. Hallis (2017) 

highlighted a trend between increasing δD and decreasing water content within apatites in 

the Shergottites and ALH 84001, which implies hydrogen degassing. Whereas apatite 

within the nakhlites contain highly varied water contents with consistently low δD values, 

which likely represent a martian mantle signature. 

5.3.2 Apatite Groupings  

 

The hydrogen isotope data indicates three distinct groups of apatite in NWA 7034: 

Group 1 (high δD and low water content); Group 2 (intermediate δD and high water 

content); Group 3 (low δD and high water content). 

Group 1, characterised by a high δD and a low water content (table 12), could be 

the result of shock effects. During shock, H is lost as a result of devolatilisation (Hallis et 

al., 2012, 2017). Therefore, loss of H would decrease the water content. It would also 

increase the D/H ratio of the apatites, due to the preferential loss of the lighter hydrogen 

isotope, resulting in the high δD values recorded in this study. Alternatively, 

devolatilisation may have occurred as a result of thermal alteration (possibly the thermal 

event inferred by McCubbin et al. (2016) at ~1.5 Ga. Evidently, devolatilisation has 

occurred in Group 1. The mechanism that caused this devolatilisation is hard to constrain 

since NWA 7034 has experienced both shock and thermal heating. A combination of both 

shock and thermal heating is also possible. 
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Group 2 is characterised by intermediate δD values and high water contents. 

Despite the pit in ROI_ 7 possibly incorporating matrix into the analysis, the other pits 

from this group (ROI_1 and 2) are uncontaminated. Therefore, since ROI_7 displays 

similar values to those from ROI_1 and 2 (table 12) it is likely that the analysis from 

ROI_7 is not significantly affected by matrix contamination, and is thus a representative 

measurement of Group 2 apatite. By comparing the δD and water contents values of each 

group (figure 41), it can be concluded that despite the fact that Group 2 have intermediate 

δD values, it is not a mix of Group 1 and Group 3. If Group 2 were a mix of Group 1 and 

Group 3, these apatites would exhibit an intermediate water content, which is not the case. 

The values exhibited by this group are unlikely to have resulted from thermal alteration as 

devolatilisation typically lowers water content. 

A likely explanation for the intermediate δD values and high water contents 

displayed by this group is hydrothermal alteration. The dominant textural type in Group 2 

is spongey (with the exception of ROI_7 having an anhedral texture), whereas the texture 

of apatite in Groups 1 and 3 is predominantly euhedral. Therefore, the spongey texture of 

Group 2 apatites may be a direct result of hydrothermal alteration or deposition by a fluid 

with, an intermediate δD value. McCubbin et al. (2016) previously provided evidence for 

hydrothermal alteration from a protobreccia clast within NWA 7034. The timing of the 

hydrothermal alteration was inferred to have occurred before the protobreccia clasts were 

incorporated into the matrix of NWA 7034. 

Group 3 is dominated by low δD values and high water contents. It is important to 

note that both apatite grains within this grouping are from the epoxy mounted sample. 

Therefore, possible epoxy contamination to this group has to be evaluated. The pit image 

collected from ROI_3 (figure 34) indicates that the beam penetrated the matrix during 

hydrogen isotope analysis. However, the pit of ROI_3 did not visibly include matrix 

material, and yields δD values and water contents very similar to ROI_5. Hydrogen isotope 

measurements from a pyroxene in NWA 7034(Epoxy) display a δD value of -98.02±88‰ 

and a low water content of 190.20±10ppm, suggesting that degassing of hydrogen from 

epoxy did not have a significant effect on the analysis of apatites within Group 3. High 

water contents and low δD values are diagnostic of terrestrial contamination. However, this 

hypothesis is difficult to fully determine due to the extent of terrestrial contamination in 

NWA 7034 being unknown and with no D/H datasets available for other hydrous minerals 

or glass within the sample to compare with. 
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Alternatively, the low δD values and high water contents observed in the group are 

possibly a martian mantle signal, as the martian mantle displays low δD <275‰ values 

(Hallis et al., 2012; Usui et al., 2012). If this is the case, the high water content from this 

group implies that the parental melt in which the apatites came from had a high water 

content. 

Both of these interpretations can be backed up by comparing the δD content with 

water content (figure 42) with conclusions based from Hallis (2017). When the data range 

of Group 3(ROI_3: δD = 51. 72±82‰, water content = 4307.96±80ppm and ROI_5: δD = 

52.10±82‰, water content= 4677.33±90ppm) is compared with apatites measured from 

Hallis et al. (2017), they plot within the orange region. The orange region on the plot 

indicates δD values similar to the martian mantle and terrestrial signatures (<275‰). 

Therefore, it is difficult to determine whether the δD values observed in Group 3 are 

martian mantle or an effect of terrestrial alteration. 

The three distinct groupings of apatite grains within the two NWA 7034 samples 

implies that the thermal event at ~1.5 Ga (McCubbin et al.,2016) did not completely 

overprint the volatile signatures within these apatites. 
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Figure 42: (A) The water content (H2O wt. %) versus δD for apatites from Hallis et al. (2016) (see paper 

for the range of martian  meteorites measured) and (B) apatite data from this study of NWA 7034. The 

orange region represents martian  mantle and terrestrial values (i.e., <275‰). Group 3 apatites all plot 

within this orange region, indicating that they record either martian  mantle or terrestrial signatures. 

Group 1 apatites all plot above the orange region, indicating shock implantation of hydrogen. Most of 

Group 2 apatites plot above the orange region, however ROI_2 partially falls into it. This may suggest 

some terrestrial contamination in this apatite. 
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5.3.3 Effect of Terrestrial Contamination  

 

Terrestrial lowering of originally high δD values from all apatites in NWA 7034 is 

unlikely to be an influencing factor for this data. Despite NWA 7034 experiencing 

terrestrial alteration, apatite is a structurally robust mineral and therefore, is less effected 

by terrestrial alteration compared to matrix material. If all the values had been terrestrially 

lowered, groupings of apatites with similar δD values would not be expected, as the 

terrestrial environment would have lowered them at differing rates creating highly varied 

results with no distinct correlation. Therefore, it is likely that the δD values collected in 

this study are martian signatures. 

However, high water contents and low δD values are diagnostic of terrestrial 

contamination, thus in Group 3 terrestrial contamination may have been an influencing 

factor. This hypothesis is difficult to fully determine due to the extent of terrestrial 

contamination in NWA 7034 being unknown and with no D/H datasets available from 

other hydrous minerals or glass within the sample to compare with. 

5.3.4 Deuterium/Hydrogen Values from Anhydrous Minerals in NWA 7034 

 

Hydrogen isotope analysis conducted on two pyroxene grains from NWA 7034(In 

and Epoxy) yielded δD values of -136.14‰ and -98.02‰ and water contents of 465.62 

ppm and 190.20 ppm respectively (table 11). It is unusual that a pyroxene mounted in 

indium displays a higher water content than a pyroxene mounted in epoxy as indium 

mounts usually restrict water contamination to the sample. Generally, epoxy mounted 

samples tend to yield higher water contents for anhydrous minerals, as epoxy degassing 

can be a problem in the high vacuum sample chamber of the SIMS. 

The pit image from NWA 7034(In) (figure 38) indicates that no matrix material 

was incorporated into the analysis. Therefore, the elevated water content cannot be 

attributed to a contaminated analysis. The indium mounted pyroxene was loaded and 

analysed at the end of a day, thus the high vacuum in the ion microprobe may have not 

reached similar levels as the vacuum that the epoxy mounted pyroxene was measured 

under. This could explain the higher water content of the indium mounted pyroxene. 

Alternatively, as mentioned in section 4.3.2 the two pyroxenes within this polymict breccia 

could actually have two different water contents. 
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Chapter 6 Conclusions  

6.1  Summary 

 

The presence of water within our Solar System, is a primary focus in planetary 

science due to the astrobiological significance of this compound. Mars is a prime candidate 

to find water as recent Mars orbiter and lander missions have revealed evidence for the 

presence of liquid water early in Mars’s history in the form of geomorphological features 

(e.g., fluvial valleys), water rich sediments and minerals (e.g. clays) and evaporates (e.g. 

gypsum). Studying water rich martian meteorites such as NWA 7034, via hydrogen isotope 

analysis, helps determine how much water was on the surface of Mars in the past and the 

source of that water (e.g., parental melt water sourced from the Martian interior, crustal 

water sourced from the cryosphere or atmospheric water). Understanding the physical state 

of surficial water on Mars throughout its history is crucial in interpreting how Mars’s 

climate evolved and whether life had the potential to flourish in these climates (McCubbin 

et al., 2012). Furthermore, investigating water rich martian meteorites aids in the 

understanding of the role of water during the formation of the Solar System- late accreted 

veneer versus wet planetary building blocks.  

The discovery of both NWA 7034 and NWA 8159 has undoubtedly expanded the 

diversity of the martian meteorites beyond the common SNC types. Studying these unique 

meteorites gives great insight into previously unseen rock types present at the martian 

surface and allows for a more detailed understanding of martian geology to be determined.  

 

Cl-rich apatites, with a significant OH component were found in NWA 7034, both 

through stoichiometry and in situ hydrogen isotope analysis. Hydrogen isotope data 

collected for this study exhibits δD values between 51.72‰-782.47‰ (table 11). Three 

distinct groupings of apatites can be noted on the basis of δD, water content and texture of 

apatite. This implies that there are at least two different apatite histories that have been 

recorded. Group 1 is characterised by high δD values paired with low water contents, and 

inferred to be the result of devolatilisation during shock and/or thermal heating. Group 2 

consists of intermediate δD values and high water contents, which could be controlled by 

hydrothermal alteration. Group 3 is characterised by low δD values and high water 

contents, probably caused by terrestrial contamination, but possibly representative of a 

martian mantle signature. 
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The discovery of F-rich apatites in NWA 8159 in this study is a particularly 

important find since F-rich apatites, are not characteristic of martian meteorites. This rare 

finding along with previous F-rich apatite discoveries (Slaby et al., 2016, 2017) highlights 

that a F-rich source region for martian magma is present. This F-rich parental source 

region has, until recently, been unstudied due to the sample bias in the martian meteorite 

suite. However, this finding is significant and highlights that Mars is more geochemically 

complex than previously thought.  

The observed F-enrichment of apatites in NWA 8159 could be either martian or an 

effect of terrestrial contamination. More high-resolution data needs to be collected to 

determine the origin of the F-enrichment in NWA 8159. 

 

6.2 Future Work  

6.2.1 Northwest Africa 7034 

 

Additional hydrogen isotope analysis should be conducted on NWA 7034 apatites 

to see if the 3 groupings discovered in this study are consistent throughout the whole 

meteorite or if more groups/variations exist. 

Group 2 apatites need to be further investigated to see if they contain signs of 

hydrothermal alteration at a submicron level. The only textural evidence for these apatites 

experiencing hydrothermal alteration is their spongey appearance compared to other 

apatites within NWA 7034. Definitive submicron evidence of hydrothermal alteration 

would strengthen the notion that Group 2 apatites experienced hydrothermal alteration 

prior to incorporation into NWA 7034. 

The full extent of terrestrial contamination in Group 3 is difficult to fully determine 

due to the extent of terrestrial contamination in NWA 7034 being unknown and with no 

D/H datasets available to compare with. Studies should aim to attain δD values from other 

hydrous phases in NWA 7034 to determine if any show terrestrial contamination values 

(i.e., low δD and high water content) as if they do it may explain the values exhibited by 

Group 3. 
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All of the above would strengthen the interpretation of NWA 7034’s petrogenesis 

and give a more valuable insight into the histories of apatites prior to incorporation into the 

NWA 7034 breccia. 

6.2.2 Northwest Africa 8159 

 

It would be beneficial for future work to be conducted on NWA 8159, as little is 

known about this unique martian meteorite. An Amazonian age of NWA 8159 2.37 ± 0.25 

Ga (Herd et al., 2017) has not been previously represented in other martian meteorites 

therefore this meteorite contains valuable information on processes occurring late in Mars’ 

history. 

From the data, it is difficult to determine whether the F-enrichment present with 

apatite grains is martian or terrestrial and therefore high-resolution studies such as 

transmission electron microscopy are needed to confirm the origin of the enrichment. 

Gaining hydrogen isotope compositions of NWA 8159 apatites has the potential to 

yield information on the water content of this meteorite, as it is currently unknown. 

Hydrogen isotope analysis could also possibly confirm the extent of terrestrial 

contamination in this meteorite. 
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