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Summary 

In recent years, there is renewed interest in the potential of bacteria as an 

alternative cancer therapeutic strategy. Salmonella enterica serovar 

Typhimurium is arguably the most well studied strain of bacteria for cancer 

therapy, examined in both pre-clinical and clinical settings. Many of the studies 

which have demonstrated a role for S. Typhimurium in tumour growth inhibition 

or regression have focused on increasing the tumour-specific localisation of the 

bacteria, or enhancing the efficacy of the treatment modality. However, the 

exact mechanisms underlying S. Typhimurium-mediated tumour growth 

inhibition are incompletely elucidated, particularly with respect to the myeloid-

derived immune cells, such as monocytes and macrophages.  

The current study intended to address the dearth of information in the literature 

pertaining to the overall tumour-local immune response to systemically 

administered S. Typhimurium. This was achieved through the development of an 

in vivo tumour model and the optimisation of the S. Typhimurium administration 

protocol to maximise therapeutic effect. This allowed for the investigation of 

changes in multiple immune cell types in the tumour, both in number and 

functional phenotype, following infection. It was found that following systemic 

SL7207 infection, there was an increase in the secretion of pro-inflammatory 

mediators in the tumour milieu. This was accompanied by the activation of both 

neutrophils and monocytes, and possibly increased migration of tumour-

associated dendritic cells. Interestingly, we found evidence to suggest that 

resident tumour-associated macrophages (TAMs) do not participate in mediating 

the pro-inflammatory tumour microenvironment following infection, which is 

suggested in some published reports. We were also interested in the types of T 

cell responses stimulated in the tumour following infection. This investigation 

revealed increases in the frequency of tumour-associated T helper (TH)1, but 

also TH17 cells following  infection. There was also a concomitant decrease in 

the frequency of the tumour-promoting, T regulatory (Treg), cells in the tumour 

mass. To our knowledge, this is the first report to suggest a role for either TH17 

or Tregs in playing a role in bacterial-mediated cancer therapy.  

Given the phenotypic changes in the tumour-associated monocytes following 

infection, we chose to assess the contribution of this cell population to S. 
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Typhimurium-mediated tumour growth inhibition. This was attempted though 

the employment of transgenic mice lacking circulating monocytes and 

clodronate liposome-mediated depletion of monocytes/macrophages. Both of 

these approaches were proficient in depleting tumour monocytes in the 

uninfected state, with TAMs also affected by clodronate liposome-treatment. 

However, we found that neither of these approaches was sufficient to mediate 

the depletion of tumour-recruited monocytes following systemic S. Typhimurium 

infection. Interestingly, clodronate liposome treatment abrogated the S. 

Typhimurium-induced tumour growth inhibitory effects anyway. Upon further 

investigation, it was observed that the spleens of clodronate liposome-treated 

mice that were systemically infected with S. Typhimurium did not experience 

splenomegaly like their control PBS liposome-treated counterparts. As the spleen 

is a source of systemic inflammatory mediators following infection and splenic 

monocytes contribute to the tumour monocyte/macrophage population, the 

current hypothesis is that the splenic monocytes mediate tumour-growth 

inhibition in S. Typhimurium infected mice. This concept antagonises the 

prevailing ideology in the literature that tumour-local immune cells are the 

effectors of bacterial-mediated tumour growth arrest. 

This study also sought to enhance the tumour arrest effects of S. Typhimurium 

through transformation of the bacteria with a eukaryotic expression vector 

encoding tumour inhibitory genes, destined for transfer to the tumour cells. 

However, through this investigation, it was discovered that the bacteria 

transformed with such a plasmid exhibited an aberrant morphology and 

phenotype, which we subsequently discovered was due to a phage origin of 

replication encoded in the plasmid. 

The data generated in this thesis provides valuable information pertaining to the 

general immune response in the tumour following systemically administered S. 

Typhimurium. Furthermore, we propose a role for monocytes, possibly of splenic 

origin, in mediating the effects of S. Typhimurium-induced tumour growth 

inhibition. Finally, we identified a feature of eukaryotic expression plasmid, a 

phage origin of replication, which is not compatible with S. Typhimurium and 

should be avoided for bactofection, and other bacteriological, studies. 
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1 Introduction 

1.1 Salmonella enterica serovar Typhimurium 

1.1.1 Incidence and pathology 

Salmonella is a Gram-negative facultative anaerobe belonging to the 

Enterobacteriaceae family. Non-typhoidal Salmonella serotypes are a common 

cause of food poisoning worldwide (Rabsch et al., 2001). It is estimated that 

there are 93.8 million cases of gastroenteritis annually for which non-typhoidal 

Salmonella is responsible, resulting in an estimated 155,000 deaths (Majowicz et 

al., 2010). Non-typhoidal Salmonella causes a local enteric disease characterised 

by diarrheoa, intestinal cramping, fever and the presence of neutrophils in stool 

samples (Harris et al., 1972). Salmonella enterica serovar Typhimurium (S. 

Typhimurium) is one of more than 2,500 serovars of the Salmonella enterica 

species, and has been determined to be the leading cause of human non-

typhoidal gastroenteritis in the United States (Scallan et al., 2011). As well as 

being an enteric pathogen, attenuated strains of S. Typhimurium have also been 

investigated for their potential in mediating tumour growth inhibition and 

regression in pre-clinical and clinical trial settings (Clairmont et al., 2000; Crull 

et al., 2011a; Toso et al., 2002; Zhang et al., 2015; Zheng et al., 2017a). 

1.1.2 S. Typhimurium epithelial cell invasion and persistence 

Much of the evidence available describing the invasion of S. Typhimurium into 

host cells comes from studies involving infection via the mucosal route. 

Following oral infection, the major route of S. Typhimurium mucosal barrier 

breach is thought to be across the Microfold (M) cells, which overlie the gut-

associated lymphoid tissue (Clark et al., 1996; Jones et al., 1994). S. 

Typhimurium can also gain access to the epithelium by type three secretion 

system 1 (T3SS-1)-mediated entry, which is under the control of the Salmonella 

pathogenicity island-1 (SPI-1) (Galán & Curtiss, 1989). The T3SS is a needle-like 

complex which traverses the bacterial cell envelope, to deliver effector proteins 

directly into the host cell cytoplasm (Ginocchio et al., 1994). SPI-1 is a 40-

kilobase segment at centisome 63 of the bacterial chromosome, which contains 

more than 25 genes encoding structural components and effector proteins of 

T3SS-1 (Galán & Ginocchio, 1994; Mills et al., 1995). 
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Upon contact with enterocytes, S. Typhimurium can translocate secreted 

effector proteins into host cells. The effector proteins SopE, SopE2 and Sop2 

initiate the process of bacterial cell invasion by promoting the activation of host 

Rho-Guanosine triphosphate phosphohydrolases (GTPases) priming entry (Friebel 

et al., 2001; Stender et al., 2000). These activities also result in the activation 

of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and 

the associated inflammatory response (Henry et al., 2006). Salmonella invasion 

protein C (SipC) plays a role in interacting with the host cell cytoskeleton, while 

SipA also interacts with the host cell cytokskeleton by promoting actin 

polymerization (McGhie et al., 2001). The combined efforts of SipA and SipC 

result in actin filament bundling which leads to the formation of membrane 

ruffles that allow for the engulfment of the associated bacterium.  

Following invasion, intracellular phagosomes, known as Salmonella-containing 

vacuoles (SCVs) are formed from early endosomes, to allow for intracellular 

bacterial replication (Richter-Dahlfors et al., 1997; Salcedo et al., 2001). There 

are at least 30 known effector proteins that are translocated by a second T3SS, 

T3SS-2, across the SCV membrane into the host cell cytoplasm (Figueira & 

Holden, 2012). During SCV maturation, Salmonella-induced filaments (Sifs) play 

an important role in the proper positioning of the compartment within the host 

cell (Beuzón et al., 2000). Sifs are long filamentous glycoprotein-containing 

membrane tubules which extend from the SCV surface along microtubules at 

around 4-6 hours post host cell invasion. The appearance of Sifs coincides with 

bacterial replication in the SCV, although Salmonella replication can also occur 

in the cytoplasm (Beuzón et al., 2002). 

S. Typhimurium has evolved a number of mechanisms to modulate the host 

immune response following invasion. Another effector protein, SptP antagonises 

SopE and SopE2 function and reverses the host-cell membrane perturbations as 

early as three hours post Salmonella host cell infection (Fu & Galán, 1998). SptP, 

along with SspH1, downregulates interleukin (IL)-8 and inhibits NF-κB-dependent 

gene expression, which suggests that down-regulation of pro-inflammatory 

responses might be important in establishing the intracellular Salmonella niche 

(Figueira and Holden, 2012). S. Typhimurium effector proteins employ a strategy 

of molecular mimicry to antagonise host cell functions (Haraga & Miller, 2003). 
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SseL, a de-ubiquitinating enzyme similar to those found in the host, inhibits the 

degradation of the inhibitor of NF-κB, IκBα (Rytkönen et al., 2007), a negative 

regulator of the NF-κB pathway, thus limiting inflammation. AvrA also performs 

this function as well as de-ubiquitinating β-catenin to further modulate 

inflammation (Collier-Hyams et al., 2002).  

1.1.3 Stress responses of S. Typhimurium 

S. Typhimurium is predisposed to stress responses following multiple stimuli such 

as nutrient deprivation, acidification, temperature fluctuations, plasmid 

carriage and the presence of single stranded (ss) DNA in the cytosol (Humphrey, 

2004). The general stress response reacts to stimuli such as osmotic stress, 

carbon starvation, hyperosmotic stress and heat shock, amongst others (Lee et 

al., 1995; McMeechan et al., 2007). RpoS (σE) is the master regulator which 

coordinates these responses (Erickson & Gross, 1989; Humphreys et al., 1999). 

The SOS stress response is induced in reaction to genomic instability, notably the 

generation of ssDNA. This can be as a consequence of genotoxic damage from UV 

irradiation (Quillardet et al., 2003) but also from phage-induced ssDNA 

generation (Campoy et al., 2006; Higashitani et al., 1995). The activation of the 

SOS response results in the expression of at least 30 genes. The SOS response is 

negatively regulated by the LexA protein which binds to the promoter sequence 

of the SOS-response genes (Brent & Ptashne, 1981). DNA damage causes stalling 

of the DNA replication fork, exposing ssDNA fragments, to which the SOS-related 

protein RecA binds (Roca & Singleton, 2003). Activated RecA-ssDNA triggers the 

self-catalytic properties of LexA, relieving the SOS promoter, and transcriptional 

operon, of the LexA-inhibitory effects (Little, 1984). One of the consequences of 

SOS response activation is the sequestration of the FtsZ cell division protein by 

SulA, which subsequently results in the inhibition of cell septation (Cordell et 

al., 2003; Justice et al., 2000; Trusca et al., 1998). Notably, bacterial growth 

can continue in the absence of septation, with the formation of elongated cells, 

characteristic of SOS-induction (Justice et al., 2008). When the DNA insult is 

resolved, SulA is degraded by Lon protease, LexA-mediated suppression of SOS 

gene expression is restored and septation resumes (Ishi et al., 2000; Justice et 

al., 2008; Mizusawa & Gottesman, 1983). Interestingly, the SOS response has 

been implicated in the virulence of uropathogenic Escherichia coli (E. Coli) in a 
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murine model of cystitis (Li et al., 2010) and in macrophage-residing Salmonella 

in vitro (Eriksson et al., 2003). 

1.1.4 Innate Immune Response to S. Typhimurium 

The innate immune system provides the host’s immediate defence against 

invading pathogens. This comprises a collection of molecules and cells, which 

are activated upon recognition of the insult, and creates an environment non-

permissive to pathogen propagation as well as activating the adaptive arm of the 

immune response. The innate immune system recognises and responds to 

pathogens in a non-specific way that does not provide long-lasting immunity to 

the host. S. Typhimurium infection is a highly immunostimulatory process, and 

as such, has profound effects on the innate immune system  

1.1.4.1 Recognition and inflammation 

S. Typhimurium contains an array of detectable molecules that the host immune 

system has evolved to recognise. Many immune cells, most notably antigen 

presenting cells (APCs), express a collection of germ-line encoded pathogen 

recognition receptors (PRRs) to detect pathogen-associated molecular patterns 

(PAMPs) (Figure 1.1) (Vance et al., 2010). The Toll-like receptor (TLR) family 

plays a major role as PAMPs with both extracellular (TLR1, 2, 4, 5, 6 and 10) and 

intracellular vesicular members (TLR3, 7, 8, 9, 11 and 13). TLRs can detect 

specific extracellular and endosomal PAMPs such as lipopolysaccharide by TLR4 

(Chow et al., 1999), flagellin protein, FliC by TLR5 (Hayashi, 2001) or the CpG-

rich repetitive elements in bacterial DNA by TLR9 (Chuang et al., 2002). The 

absence of one or more of these TLRs can lead to severely compromised 

bacterial clearance. For example, TLR4-/- mice demonstrate increased 

susceptibility to S. Typhimurium infection (Arpaia et al., 2011) and this is even 

more severe in TLR4-/-TLR5-/- mice (Feuillet et al., 2006).  

TLR signalling mostly occurs through the adaptor molecule Myeloid 

Differentiation primary response 88 (MyD88) which activates NF-κB signalling, 

controlling an array of pro-inflammatory cytokine genes, including IL-1β and IL-

18 (Figure 1.1). There are however, MyD88-independent signalling cascades 

following TLR activation. TLR3 and sometimes TLR4 can signal through 
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toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon-

β (TRIF), in a MyD88-independent manner which leads to the production of Type 

I interferons (Yamamoto et al., 2003). 

 

Figure 1.1 PRR signaling in response to PAMPs 
S. Typhimurium mediates the activation of a number of TLRs, both extracellular and endocytic, 
which mostly signal via the adaptor protein MyD88 to activate the NF-κB transcriptional 
programme. This includes the production of pro-IL-1β and pro-IL-18 which are cleaved via 
caspase-1 following cytosolic NLRC4 activation in response to cytosolic bacterial products. NOD1 
and NOD2 can be activated via cytosolic bacterial products to induce NF-κB signaling. TLR4 can 
also signal in a MyD88-independent signaling pathway through TRIF, which leads to the production 
of Type I interferons. IL, interleukin; IRF, interferon response element; LPS, lipopolysaccharide; 
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells; NLRC4, NOD-like receptor 
complex 4; NOD, nucleoside oligomerisation domain; TLR, Toll-like receptor; TRIF, toll/interleukin-
1 receptor -domain-containing adapter-inducing interferon-β. 
 
Although Salmonella residing in the SCV are somewhat protected from these 

PRRs, immune cells have evolved other mechanisms to recognise PAMPs in the 

cytosol. The nucleotide-binding oligomerisation domain (NOD)-like receptor 

(NLR) family of proteins can recognise cytosolic PAMPs and stimulate a 

responsive signalling cascade (Fritz et al., 2006). NLRs contain multiple protein 

domains, which can stimulate multimerisation and subsequent transcriptional 

activation. For example, NOD1/2 can recognise bacterial products such as 
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muramyl dipeptide (Inohara et al., 2003) and peptidoglycan (Girardin et al., 

2003), interact with receptor-interacting serine/threonine-protein (RIP)2 kinase 

and lead to NF-κB activation (Figure 1.1), which is an important activator of 

innate immune defence against invading pathogens (Ogura et al., 2001). In fact, 

mice deficient in NOD1/2 or RIP2 displayed attenuated inflammatory responses 

and increased colonisation of mucosal tissue when orally challenged with S. 

Typhimurium (Geddes et al., 2010). NLRs also form complexes, NLRCs, which can 

lead to the cleavage and activation of caspase-1 (Franchi et al., 2009) (Figure 

1.1). 

1.1.4.2 Polymorphonuclear neutrophils control bacterial dissemination 

Neutrophils are highly phagocytic cells and often reported to be one of the first 

cell types to migrate to sites of infection, and arrive en masse (Barthel et al., 

2003; Rydström & Wick, 2009). Following phagocytosis, neutrophils can kill the 

pathogen using anti-bacterial proteins such as cathepsins and lysozyme, or 

utilise reactive oxygen species (Segal, 2005). Neutrophils are granulocytes, 

meaning they can release cytotoxic-molecule containing granules to kill invading 

pathogens. Neutrophils can also produce neutrophil extracellular traps (NETs) 

which are detrimental to invading bacteria (Brinkmann et al., 2004). These are 

composed of chromatin DNA to which histones and cytotoxic granule proteins 

attach (Delgado-Rizo et al., 2017). These web-like structures function to trap 

pathogens, and can mediate direct killing of the entrapped cargo. NETs were 

found to be four times more efficient at trapping bacteria in the circulation than 

Kupffer cells, the liver-resident macrophage (McDonald et al., 2012). 

Furthermore, blockade of NET formation resulted in greater bacterial 

dissemination in vivo. The importance of neutrophils in controlling S. 

Typhimurium infection is evident as mice exhibiting neutropenia had an 

increased systemic S. Typhimurium infection following oral application 

(Cheminay et al., 2004). 

Neutrophil recruitment is induced via the IL-23/IL-17 axis (Wu et al., 2007). 

These cytokines lead to the stimulation of granulopoiesis in the bone marrow by 

inducing the production of granulocyte colony-stimulating factor, G-CSF (Lord et 

al., 1989; Smith et al., 2007). The S. Typhimurium effector proteins SopE, SopE2 

and SopB induce Cdc42 activation which in turn triggers multiple mitogen-
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activated protein kinase (MAPK) pathways (Henry et al., 2006). The initiation of 

these pathways culminates in the activation of NF-κB which induces IL-8 

secretion. Neutrophil recruitment to the infected intestine is dependent on 

basolateral IL-8 secretion (McCormick et al., 1995), as well MyD88 signalling 

(Rydström & Wick, 2009). SipA is another effector protein which contributes to 

neutrophil recruitment (Wall et al., 2007). SipA regulates arachidonic acid 

metabolism in host epithelial cells which leads to the apical release of hepoxilin 

A3 (HXA3) (Mrsny et al., 2004). HXA3 establishes a gradient along intercellular 

epithelial junctions which functions as a signal for neutrophil recruitment at the 

apical surface.  

1.1.4.3 Monocytes and macrophages phagocytose S. Typhimurium and 
produce inflammatory cytokines 

Macrophages are phagocytic cells, which engulf apoptotic cellular debris as well 

as invading organisms. Their derivation is tissue dependent (Epelman et al., 

2014), with some seeding during developmental processes, and others derived 

from circulating monocytes (Bain et al., 2014). They are important for 

containing bacterial spread through phagocytosis. Macrophages are adept at 

producing cytokines following bacterial infection, including IL-6, IL-12, IL-23, IL-

1β and tumour necrosis factor (TNF)-α (Yrlid et al., 2000). 

Phagocytosis is a critical element for the containment of bacterial spread 

(Kaufmann and Dorhoi, 2016). Following phagocytosis, S. Typhimurium develop 

the SCV in macrophages. However, there are other members of the NLR family 

which are capable of responding to S. Typhimurium infection through the 

formation of a large multi-protein signalling complex known as the 

inflammasome, such as NLRC4 (Fritz et al., 2006) (Figure 1.1). NLRC4 detects 

flagellin and effector proteins in the cytosol of the host cell (Franchi et al., 

2006; Miao & Warren, 2010). Assembly of the complex leads to the recruitment 

of pro-caspase-1, which is auto-cleaved and activated following dimerization 

(Franchi et al., 2009). Mature activated caspase-1 cleaves the inactive, pro-

forms of IL-1β and IL-18, which creates a positive feedback loop for the 

continual production of these pro-inflammatory cytokines (Sansonetti, 2001). 

Furthermore, Salmonella-induced caspase-1 initiates a pro-inflammatory form of 

controlled cell death in macrophages called pyroptosis (Brennan & Cookson, 
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2000; Hersh et al., 1999; Monack et al., 1996). Pyroptosis is dependent on 

caspase-1 as Casp1-/- mice employ alternative mechanisms of cell death 

(Jesenberger et al., 2000). During pyroptosis, pores form in the pyroptotic 

macrophage, which release cytosolic pro-inflammatory cytokines into the 

vicinity, amplifying the inflammatory response (Fink & Cookson, 2006). Caspase-

1 activation is an important event in S. Typhimurium host response. Casp1-/- 

mice exhibit higher bacterial burdens than wild type mice and succumb to S. 

Typhimurium infection more quickly (Lara-Tejero et al., 2006; Raupach et al., 

2006). These defects are due, at least in part, to the loss of IL-1β and IL-18 as 

mice deficient in either cytokine are also more susceptible to S. Typhimurium 

infection than wild type mice. NLRC4 is not required for inflammasome 

activation as NLRC3 can also activate caspase-1. Only ablation of both NLRP3 

and NLRC4 lead to higher bacterial loads in the mesenteric lymph node, spleen 

and liver similar to caspase-1 deficient mice, suggesting that NLRP3 and NLRC4 

play redundant roles in host defence (Broz et al., 2010). Following pyroptosis, 

the majority of the phagocytosed bacteria remain within pyroptotic bodies 

where they are subject to efferocytosis by recruited neutrophils (Jorgensen et 

al., 2016). 

Monocyte recruitment is characteristic of S. Typhimurium and is believed to be 

heavily reliant on the C-C chemokine receptor (CCR)2-CCL2 axis (Rydstrom & 

Wick, 2007; Rydström & Wick, 2009). In steady state, in tissues such as the 

intestine and tumour, monocytes with high expression of the monocyte marker, 

Ly6C, termed Ly6Chi monocytes constantly replenish resident tissue macrophages 

(Bain et al., 2014; Franklin et al., 2014; Movahedi & Van Ginderachter, 2016). 

This has been described to involve a differentiation process where Ly6Chi 

monocytes acquire the expression of the antigen presenting complex, major 

histocompatibility complex (MHC)II, and downregulate Ly6C expression (Bain et 

al., 2013; Bain et al., 2014) (Figure 1.2).  

This acquisition of Ly6Chi monocytes is amplified following inflammation (Bain et 

al., 2013; Zigmond et al., 2012). CCL2 is rapidly up-regulated in the Peyer’s 

Patches and mesenteric lymph nodes of orally S. Typhimurium-infected mice 

(Rydström & Wick, 2009). It has been demonstrated that CCR2 is required for the 

recruitment of Ly6Chi monocytes into tissues during persistent S.  
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Figure 1.2 Development of mature tissue macrophages from bone marrow precursors 
In steady state, pro-monocytes from the bone marrow give rise to blood monocytes, characterised 
by Ly6ChiMHCII-F4/80lo cell surface expression. These cells subsequently migrate into tissues, 
such as colon or tumour, and through a differentiation process, give rise to mature Ly6C-

MHCII+F4/80hi macrophages. During inflammation, there is an expansion of the 
Ly6ChiMHCII+F4/80lo population, termed ‘inflammatory monocytes’. 
 
Typhimurium infection (Van der Velden et al., 2015). Furthermore, this report 

demonstrated that CCR2- and CCL2-deficient mice were more susceptible to S. 

Typhimurium infection than wild type. In certain contexts, such as 

inflammation, Ly6Chi monocytes do not differentiate into macrophages, but 

instead seem to stall at the Ly6C+MHCII+ phenotype (Bain et al., 2013) (Figure 

1.2). These cells appeared to have greater TNF-α production than resident 

macrophages and are more responsive to TLR stimulation, suggesting that they 

are the major contributors to inflammation in this setting (Bain et al., 2013). 

The removal of the pro-inflammatory function of monocytes using a TLR2-

peptide resulted in a significant decrease in inflammation associated pathology 

in a colitis model further evidencing their role in inducing a pro-inflammatory 

environment (Shmuel-Galia et al., 2016).  

The role of macrophages and monocytes in antigen presentation is debated 

(Jakubzick et al., 2017). It is generally accepted that macrophages are tissue 

resident, and do not migrate to the lymph (Yrlid et al., 2006). However, they 

can stimulate the secondary activation of antigen-specific T cells in the lamina 
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propria (Rossini et al., 2014). Ly6C+MHCII+ cells which accumulate in tissues 

following inflammation have alternatively been ascribed as TNF- and inducible 

nitric oxide synthase producing DCs (TIP-DCs) on account of their CD11c 

expression in the absence of CD14 and F4/80 as well as their ability to prime 

naïve alloreactive T cells in vivo (Hohl et al., 2010; Serbina et al., 2003). 

However, the factors which underlie the accumulation of either inflammatory 

monocytes or TIP-DCs are unknown.  

1.1.4.4 Dendritic cells activate T cell responses following S. Typhimurium 
infection 

Dendritic cells (DCs) are a population of myeloid immune cells which are capable 

of capturing, processing and presenting antigens to T cells, earning them the 

title of professional APCs (Banchereau & Steinman, 1998). DCs constantly traffic 

to tissue-draining lymph nodes, but migration is increased in response to 

microbial stimuli (MacPherson et al., 1995; Turnbull et al., 2005). DCs are 

separated into classical DCs (cDC) and non-classical DCs (Merad et al., 2013). 

Within the cDCs, there are two subsets and both are important for the host’s 

response to S. Typhimurium infection: cDC1, characterised by the expression of 

CD8+/CD103+ and cDC2s, which are CD11b+ (Merad et al., 2013).  

DCs are recruited to S. Typhimurium-infected tissue (Johansson et al., 2006). 

DCs express an array of endocytic and phagocytic receptors (Platt et al., 2010) 

and are proficient at capturing antigen from infected dying cells, such as 

pyroptotic macrophages (Tam et al., 2008). Furthermore, they can capture and 

present pathogen-derived antigens from viable infected or tumour cells by 

acquiring preformed MHCI in a process known as trogocytosis (Joly & Hudrisier, 

2003; Zhang et al., 2008). It has also been reported that DCs can capture 

bacterial antigen from the lumen (Niess, 2005).  

DC maturation can be achieved by direct bacterial interaction and activation of 

PRRs but also through inflammatory signals from the environment (Tam et al., 

2008). Maturation is accompanied by acidification of the lysosomal compartment 

for optimised antigen processing, up-regulation of co-stimulatory molecules for T 

cell activation and cell surface expression of MHCII for antigen presentation 

(Cella et al., 1997; Platt et al., 2010). Following maturation, which is also 
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accompanied by cytokine production, the DC migrates to the lymph node in a 

CCR7-dependent fashion (Jang et al., 2006), where in the T cell zone it can 

encounter and activate cognate T cells. In order to activate T cells, T cells 

require at least three distinct stimuli: cognate MHC-antigen encounter, co-

stimulatory signals provided by B7 family members and instructing cytokines 

(Bousso, 2008). After antigen presentation, DCs are thought to undergo apoptosis 

(Chen et al., 2006), as thoracic duct lymph nodes does not contain DCs under 

steady state (Pugh et al., 1983). 

‘Cross-presentation’ is the term given when a cell presents antigen via MHCI to a 

CD8+ T cell. Although various MHCI-expressing cells, including macrophages, are 

capable of cross presenting model antigens in vitro, it is evident that cDC1s are 

the most proficient cross-presenting APC in vivo (den Haan et al., 2000). cDC1s 

are also known to be a critical source of IL-12 following acute parasitic infection 

or lipopolysaccharide (LPS) stimulation (Mashayekhi et al., 2011; Reis e Sousa et 

al., 1997). 

Early after oral S. Typhimurium infection cDC2s are found associated with 

bacteria in the sub-epithelial dome of the lamina propria (Tam et al., 2008). 

cDC2s express high levels of TLR2 and TLR4 and are proficient at producing IL-12 

and IL-23 upon activation, as well as stimulation TH17 responses (Schlitzer et al., 

2013). cDC2s are known to be inefficient at cross presentation, but are superior 

to cDC1s in activating TH cells which are critical for host immunity to S. 

Typhimurium (Dudziak et al., 2007). 

Within the non-conventional DC subset are plasmacytoid DCs (pDCs) and 

monocyte-derived DCs (moDCs). There is high levels of expression of TLR7 and 

TLR9 on pDCs and these cells play an important role in anti-viral responses 

through type I interferon production (Ito et al., 2005; Kato et al., 2005). 

Monocyte-derived DCs, also known as TIP-DCs are derived from inflammatory 

monocytes, which are recruited to inflamed tissue (Hohl et al., 2010; Serbina et 

al., 2003). 
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1.1.5 Adaptive immune response to S. Typhimurium 

DCs bridge the gap between the innate and adaptive immune responses by 

stimulating T cell activation in the secondary lymph organs. The adaptive 

immune response also consists of antibody-producing B cells. T cells, also called 

T lymphocytes, recognise foreign antigens through surface expressed T cell 

receptors (TCR). The majority of T cells express the αβ TCR, with a small 

percentage expressing the γδ TCR. There are two major types of T cells; T helper 

cells (TH cells) and cytotoxic T cells (CTLs), both of which are implicated in the 

resolution of S. Typhimurium infection. It is generally understood that the initial 

CD4+ T cell-priming step in the lymph node drives the phenotypic skewing of the 

TH cells to one of four main lineage subsets (Figure 1.3). The phenotypic skewing 

is largely dependent on the signals received from the DC in the form of cytokines 

or other mediators. Naive CD8+ T cells are also activated in the lymph node 

(Mempel et al., 2004).  

1.1.5.1 TH1 and TH2 CD4+ T cells 

The TH1 CD4+ T cell lineage is induced by IL-12 (Macatonia et al., 1995). Tbet is 

the central transcription factor responsible for driving the function of these 

cells, of which interferon (IFN)-γ production is a hallmark (Szabo et al., 2000). 

Other cytokines associated with TH1 responses are TNF-α and IL-6. Although TH1 

cells have homeostatic functions, they are better known for being major 

responders to viral and bacterial infection. For example, following S. 

Typhimurium infection, IFN-γ is necessary for the expansion of both CD4+ and 

CD8+ T cells which are required for pathogen clearance (Bao et al., 2000). Tbet 

expression in CD4+ T cells is necessary for resistance to systemic S. Typhimurium 

infection (Ravindran et al., 2005). In this study the absence of CD4+Tbet+ cells in 

S. Typhimurium-infected hosts severely attenuated the production of IFN-γ and 

bacterial clearance. IFN-γ plays an important role in the killing of intracellular 

bacteria which have been phagocytosed by macrophages (MacMicking, 2012). 

IFN-γ also has a role in stimulating the transcription of GTPases that are involved 

in inflammasome assembly (Kim et al., 2011). 

TH2 CD4+ T cells are characterised by the transcription factor G-A-T-A binding 

protein 3 (GATA3) (Zheng & Flavell, 1997). These cells are associated with the 
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production of IL-4 and IL-13. TH2 cells play an important role in directing an 

immune response against helminth infections (McSorley & Maizels, 2012). 

 

 

Figure 1.3 Polarized CD4+ TH subsets 
Each CD4+ T cell subset can be defined by the cytokines which induce their lineage-specific 
differentiation phenotype, the transcription factors which drive their transcriptional programme and 
the effector cytokines they secrete. APC, antigen presenting cell; FoxP3, forkhead box protein 3; 
GATA3, G-A-T-A binding protein 3; IFN-γ, interferon-γ; IL, interleukin; RORγt, retinoic acid receptor-
related orphan receptor-related; TGF-β, transforming growth factor-β; TH, T helper.  
 
1.1.5.2 TH17 CD4+ T cells 

TH1 and TH2 cells were long thought to be the quintessential T cell types, readily 

inducible in vitro through the exposure of naïve T cells to either IL-12 or IL-4, 

respectively. However, it was demonstrated that the stimulation of isolated TH 

cells with Borrelia burgdorferi, the spirochete that causes Lyme disease, 

resulted in the significant production of IL-17 from the cells in the absence of 

either IFN-γ or IL-4 (Infante-Duarte et al., 2000). Therefore, these cells did not 

fit the prototypical TH1 or TH2 lineage-specific profile, and a new area of T cell 

biology was spawned. These cells, now termed TH17 cells, are characterised by 
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the transcription factor retinoic acid receptor-related orphan receptor-related 

(ROR)γt and the production of IL-17 (Ivanov et al., 2006).  

TH17 cells have been found to be critical immune mediators to bacterial 

infection. Oral inoculation with Citrobacter rodentium (C. rodentium) induces a 

robust TH17 response in the mucosa (Symonds et al., 2009). TH17 cells are also 

induced following oral S. Typhimurium infection. In an ileal loop model in rhesus 

macaques, TH17-associated cytokines dominated the early gene expression 

profiles of S. Typhimurium-infected samples compared to uninfected controls, 

with significant increases in IL-17, Lipocalin-2, and CXC chemokine ligand 

(CXCL)10 (Raffatellu et al., 2008). IL-22 and GM-CSF are also associated with 

TH17 responses, with important roles in granulopoiesis and neutrophil 

recruitment (Ye et al., 2001). IL-22 is vital for bacterial clearance as it was seen 

that IL-22-deficient mice succumbed to oral C. rodentium infection whilst wild 

type mice did not (Zheng et al., 2008). This is possibly explained by the finding 

that IL-22 plays an important role in maintaining the integrity of the intestinal 

epithelia barrier and mediating antimicrobial production in the epithelial cells 

(Sonnenberg et al., 2010).  

There have been multiple reports describing the cytokine requirements for the 

differentiation of TH17 cells from naïve T cells. Transforming Growth Factor 

(TGF)-β and IL-6 have been found to be capable of driving TH17 differentiation 

(Bettelli et al., 2006; Veldhoen et al., 2006). However, another study found that 

in the absence of TGF-β, IL-6 and IL-1β were sufficient to induce TH17 

differentiation (Ghoreschi et al., 2010). TH17 cell maintenance has been found 

to be due to IL-23 (Stritesky et al., 2008).  

1.1.5.3 T regulatory cells 

Another type of T cell is the T regulatory cell (Treg), the role of which is more in 

keeping with immunoregulation, supporting oral tolerance to food antigens and 

the commensal microbiota. The removal of CD4+CD25+ T cells (which are now 

appreciated as Tregs) from a CD4+ preparation adoptively transferred into an 

athymic mice resulted in multiple spontaneous autoimmune pathologies 

(Sakaguchi et al., 1995). In contrast, the early reconstitution of the CD4+CD25+ 

cells into the same mice prevented the development of autoimmune symptoms. 
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Similar results were found in thymectomised mice (Asano, 1996), with both 

studies concluding that the CD4+CD25+ T cells had an immunosuppressive role. 

Tregs are characterised by the expression of the transcription factor forkhead 

box protein 3 (FoxP)3, and can also be defined by the expression of cytotoxic T 

lymphocyte antigen (CTLA)-4 and IL-10 and TGF-β production (Fontenot et al., 

2003; Jago et al., 2004; Uhlig et al., 2006).  

There are two distinct populations of Tregs dependent on tissue origin for 

differentiation. Most FoxP3+ cells differentiate in the thymus from immature 

CD4+CD8+ precursor cells, termed natural Tregs (nTreg) (Fontenot et al., 2003). 

Induced Tregs (iTreg) differentiate in the periphery from conventional CD4+ T 

cells into FoxP3+ Tregs via APC-expressed B7 (Liang et al., 2005) and TGF- β 

signalling (Chen et al., 2003). Many factors can induce this ‘conversion’ including 

commensal bacteria and antigenic tolerance (Apostolou & von Boehmer, 2004; 

Atarashi et al., 2011; Lathrop et al., 2011).   

Mice with increased Treg cells are more susceptible to S. enterica infection 

(Pejcic-Karapetrovic et al., 2007; Rowe et al., 2011). The immunosuppressive 

potency of Tregs changes during the course of infection and has been found to 

be mediated by the expression of CTLA4 which suppresses activated T cell 

proliferation (Johanns et al., 2010). APCs are also inhibited by Treg expression 

of CTLA4 and programmed death ligand (PD-L)1/2, as well Treg-mediated IL-10 

production (Uhlig et al., 2006). Granzyme B, a serine protease that can induce 

mitochondrial pathway-dependent apoptosis in target cells via proteolysis of the 

anti-apoptosis protein Bid (Pinkoski et al., 2001), is produced by Tregs and can 

induce apoptosis in conventional T cells. Tregs also express CD25 highly, which 

sequesters local IL-2, depleting reserves for other T cells (Benoist & Mathis, 

2012; Sakaguchi et al., 2010). FoxP3 antagonises TH17 cell cytokine induction by 

antagonising RORγt function (Yang et al., 2008). 

1.1.5.4 CD4+ TH cell plasticity 

CD4+ cells are highly plastic, and multiple reports have demonstrated that 

differentiated CD4+ T cells can alter their phenotype to become more similar to 

other lineages. This has been shown for TH17 cells, which can become TH1-like in 

a IL-17-induced colitis model through the Tbet transcription factor and IFN-γ 
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production (Harbour et al., 2015). Another study also showed this same TH17-to-

TH1 phenomenon by fate mapping TH17 cells in a model of experimental 

autoimmune encephalomyelitis (Hirota et al., 2011). Newly polarized TH1 cells 

have been demonstrated to transform their phenotype similar to that of a TH2 

cell in vivo following IL-4 administration or helminth infection (Panzer et al., 

2012). Conversely, stably committed GATA3+ TH2 cells have been forced to adopt 

a GATA3+Tbet+ and IL4+IFN-γ+ phenotype in vivo following infection with 

lymphocytic choriomeningitis virus (Hegazy et al., 2010). 

Of all the TH cells, Tregs are possibly the most often associated with plastic 

potential. FoxP3+ expression in Tregs has been found to be unstable (DuPage & 

Bluestone, 2016). Through the employment of FoxP3+YFP+ reporter mice, there 

was a significant portion of the FoxP3+ cells, which had down-regulated or 

completely lost FoxP3 expression (Zhou et al., 2010). These ‘ex-FoxP3’ cells 

were mostly activated-memory phenotype and produced inflammatory 

cytokines. Their conversion to ‘exFoxP3’ cells was enhanced in an autoimmune 

setting. Human Tregs have been shown to convert to TH17 cells when stimulated 

with allogenic antigen in the presence of exogenous IL-2 and IL-15, ex vivo 

(Koenen et al., 2008). Another report demonstrated that in vitro stimulated 

iTregs could be converted to IL-17-producing T cells when treated with IL-6 and 

TGF-β, and this was enhanced with the addition of IL-1 and IL-23 (Yang et al., 

2008). Thymus-derived nTreg-to-TH17 cell conversion has also been reported 

following IL-6 treatment in vitro (Xu et al., 2007). It is worth noting that some 

studies have demonstrated that Tregs can also remain constant as evidenced by 

FoxP3 stability in adoptively transferred Tregs, in vivo (Gavin et al., 2007; 

Williams & Rudensky, 2007). 

1.1.5.5 CD8+ T cells 

CD8+ T cells are important for killing infected and malignant cells. CD8+ T cells 

are capable of clearing many different parasitic, viral, fungal and bacterial 

infections (Perry et al., 1997; Rothstein et al., 1978). This can be achieved by 

killing infected host cells but also through direct killing of extracellular 

microbes.  
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CTL-mediating killing requires the direct interaction between the CTL-TCR and 

the peptide-MHCI complex on the target cell, for the formation of the cytolytic 

immune synapse (de la Roche et al., 2016). CTLs have a number of cytotoxic 

mediators for their cell-killing functions. Granulysin is a CTL product which is 

capable of directly killing a broad spectrum of pathogens by mediating 

membrane permeability of targets (Ernst et al., 2000). Perforin creates pores in 

the target cell membrane (Keefe et al., 2005) and can be endocytosed into the 

target cell along with the potent cytotoxic mediator granzyme B (Shi et al., 

2005). CTLs are very effective at killing target cells. Single CD8+ T cells can kill 

many target cells in a process identified in vitro as ‘serial killing’ (Halle et al., 

2017; Rothstein et al., 1978).  

CTLs are important for bacterial clearance. CTLs produce the TH1 cytokine, IFN-

γ, in response to intracellular infection (Perry et al., 1997). The production of 

IFN-γ is critical for bacterial clearance as evidenced when IFN-γ-deficient mice 

were unable to resolve Chlamydia trachmatis infection (Lampe et al., 1998). It 

has also been shown that mice lacking the Class-Ia molecule or 

perforin/granzyme B were unable to resolve primary infection of S. Typhimurium 

as effectively as wild type mice (Lee et al., 2012). 

1.2 Cancer  

Cancer is a disease in which normal body cells develop the ability to grow 

uncontrollably. In their seminal review, Hanahan and Weinberg (2000) built on 

the prevailing ideology that the transition of a normal cell to a malignant cell 

was a multistep process. They argue that this process was analogous to 

Darwinian evolution, in which successive steps conferred growth advantages and 

culminated in this transformation. They identified six traits which a cell must 

acquire in this transformation process to become malignant: sustained 

proliferative signalling, insensitivity to growth suppression, limitless replicative 

potential, sustained angiogenesis, evasion of apoptosis and finally, tissue 

invasion and metastatic potential. Hanahan and Weinberg updated this review in 

2011, in light of advances in cancer biology to include emerging and enabling 

traits such as dysregulation of cellular energetics, genome instability, immune 

evasion and tumour-promoting inflammation (Hanahan & Weinberg, 2011). 
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According to the most up-to-date statistics at the time of writing, Cancer 

Research UK reported that there were 356,860 cases of cancer in the United 

Kingdom in 2014, of which 163,444 patients died. 

(http://www.cancerresearchuk.org/health-professional/cancer-statistics). It is 

predicted that 1 in 2 people in the United Kingdom born after 1960 will be 

diagnosed with cancer in their lifetime. The main types of cancer treatment 

available are surgery, radiation and chemotherapy. The suitability and efficacy 

of these treatments differ depending on multiple factors including tumour 

origin, type and accessibility. A new type of cancer therapy, immunotherapy, 

has recently prevailed in the clinical context (Phan et al., 1993; van Elsas et al., 

1999), with the advances in our understanding of the role the immune system 

plays in the prevention, progression or rejection of tumours.  

1.3 The role of the immune system in preventing and 
promoting cancer 

The immune system plays many roles in a cancer setting. Sir McFarlane Burnet 

and Lewis Thomas first put the role of the immune system in cancer prevention 

forth in 1957, with their ‘cancer immunosurveillance’ hypothesis (Burnet, 1957). 

They postulated that neoplasias may develop spontaneously throughout a 

lifetime, but that emerging tumours could possess tumour-specific antigens, 

provoking a protective immune response thus preventing clinical presentation of 

a tumour. Although this is indeed true in some cases, the removal of neo-

antigen-expressing tumour cells allows for the selection of antigen-lacking 

tumour cells which subsequently escape immune clearance (Dunn et al., 2004). 

1.3.1 Inflammation and cancer initiation 

Evidence for an association between inflammation and tumourigenesis comes 

from epidemiological data showing that chronic inflammation predisposes 

individuals to various types of cancer (Balkwill & Mantanovi, 2001). Inflammatory 

cells and mediators are present in most, if not all tumours irrespective of the 

factors that led to cellular transformation (Mantovani et al., 2008). Myeloid-

derived pro-inflammatory cytokines, such as IL-6, induce the activation of the 

transcription factor NF- κB in tumour cells, leading to the promotion of 

proliferation and suppression of apoptosis (Greten et al., 2004). TNF-α has been 
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associated with the initiation and progression of multiple cancer types (Greten 

et al., 2004; Popivanova et al., 2008). Several cytokines, including TNF-α, IL-1β, 

IL-13 and TGF-β can lead to genome destabilisation by the induction of 

activation-induced cytidine deaminase (AID) which has been demonstrated to 

mutate tumour suppressor genes such as TP53 and MYC, promoting oncogenesis 

(Endo et al., 2008). 

1.3.2 The immunosuppressive microenvironment 

The progression of tumourigenesis is accompanied by an immunosuppressive 

microenvironment, which limits the ability of the immune system to reject the 

tumour (Rodriguez et al., 2004). Chief amongst the mechanisms which allow this 

is the production of anti-inflammatory cytokines to inhibit the functions of 

tumour-infiltrating lymphocytes (Boehmer et al., 2005). These cytokines also 

lead to the accumulation of immunosuppressive immune cells such as Tregs 

(Strauss et al., 2007). Stromal cells are also implicated in perpetuating the anti-

inflammatory environment. In a model of non-small cell lung carcinoma (NSCLC) 

a subset of isolated fibroblasts constitutively expressed the immune checkpoint 

molecules, PD-L1 and PD-L2 (Nazareth et al., 2007). The deletion of fibroblasts 

attenuated tumour growth significantly in a model of Lewis Lung Carcinoma, 

even though the fibroblast-associated protein-α+ cells comprised only 2% of the 

tumour mass (Kraman et al., 2010).  

1.3.2.1 Neutrophils promote many features of tumourigenesis  

The role of neutrophils in cancer is becoming of increasing interest, as this 

innate immune cell type is expanding its repertoire of reported functions. 

Neutrophils have tumour-promoting characteristics. Neutrophil elastase is able 

to enter tumour cells and liberate phosphatidylinositol-3-kinase, which can drive 

cancer cell proliferation (Houghton et al., 2010). Neutrophil elastase can also 

promote angiogenesis via the production of matrix metallopeptidase (MMP)-9 

and vascular endothelial growth factor (VEGF) (Deryugina et al., 2014; Wada et 

al., 2007). Blocking neutrophil elastase using a small molecule inhibitor, 

Sivelestat, attenuated tumour cell proliferation in vitro and reduced the growth 

of human tumour xenografts in vivo (Wada et al., 2006, 2007). A recent study 

described how c-Kit+ neutrophils were associated with the promotion of 
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metastasis (Coffelt et al., 2015). These neutrophils were induced by IL-17 

production from γδT cells and suppressed CTL activity in vivo. These findings are 

somewhat contradictory to a study by Andzinski and colleagues, whereby 

activated, IFN-β-stimulated, pro-inflammatory neutrophils had a greater 

capacity to kill tumour cells directly in vitro, and the removal of these pro-

inflammatory neutrophils resulted in reduced tumour killing capacity by the 

neutrophil population (Andzinski et al., 2016). These data suggest that the 

phenotype of the neutrophils may be dictating the contribution of neutrophils to 

either tumour development or protection (Coffelt et al., 2016). 

1.3.2.2 TAMs stimulate multiple stages of tumourigenesis  

It has been demonstrated that in up to 80% of clinical studies of cancer 

progression, macrophage density was associated with poor prognosis (Bingle et 

al., 2002). TAMs are associated with defective expression of inflammatory 

cytokines, and a pre-disposition to produce immunosuppressive cytokines such as 

IL-10 (Saccani et al., 2006). Macrophages play functionally diverse roles at 

multiple stages of cancer progression as well as adopting distinct roles in 

different tumour microenvironments (Qian & Pollard, 2010). 

TAMs are derived from circulating CCR2+ bone marrow-derived monocytes 

(Franklin et al., 2014) (Figure 1.4). It has also been reported that TAMs can arise 

from splenic progenitors (Cortez-Retamozo et al., 2012), but the mechanisms 

underlying the requirements for monocyte egress from the spleen are 

incompletely elucidated. However, there is some evidence to suggest a role for 

CCR2 and Angiostatin-2 in mediating splenic monocyte egress (Cortez-Retamozo 

et al., 2012; Swirski et al., 2009). 

TAMs are capable of directly stimulating tumour cell proliferation through the 

production of epidermal growth factor (EGF) (Sullivan et al., 1993). TAMs can 

also stimulate neo-vascularisation in the growing tumour. Tie2+ macrophages 

have been directly implicated in stimulating angiogenesis in tumours (De Palma 

et al., 2005). These macrophages are found aligned with the endothelial cells 

through interaction with Angiostatin-2, the Tie2 ligand. In humans, these cells 

express higher levels of pro-angiogenic genes including Vegf-a, Mmp9 and 

Cyclooxygenase (Cox)2 than Tie2- monocytes/macrophages (Coffelt et al., 2010). 
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Specific targeting of Tie2 interrupts the macrophage-endothelial interaction and 

inhibits  

 

angiogenesis in various cancer models (Coffelt et al., 2011; Mazzieri et al., 

2011). It has been found that Colony Stimulating Factor (CSF)-1, most likely from 

tumour cells, can promote Tie2 expression on TAMs (Coffelt et al., 2011). 

Furthermore, the Tie2+ TAMs have been found to express increased levels of IL-

10 and stimulate Treg cell expansion. 

TAMs can also promote tumourigenesis by secreting an array of cytokines and 

chemokines, which promote immunosuppressive cell recruitment. One such 

example is TAM-mediated CCL22 secretion which has been shown to recruit 

Tregs in an ovarian carcinoma model (Curiel et al., 2004; Facciabene et al., 

2011). Furthermore, it has been shown that macrophages can induce iTregs by 

the production of IL-10 and TGF-β (Murai et al., 2009; Schmidt et al., 2016). IL-

10 inhibits TH1 cytokine production (Del Prete et al., 1993; Fiorentino et al., 

1989; Fiorentino et al., 1991). TGF-β inhibits the expression of CTL effector 

function-associated gene products perforin, granzyme A, granzyme B, Fas ligand 

Figure 1.4 Origin of tumour-associated macrophages 
Ly6Chi monocytes egress from the bone marrow in a manner dependent on CCR2. The spleen can 
also be a source for TAMs, and egress may be dependent on CCR2 and Angiostatin-2 (Ang2). 
Ly6Chi monocytes can migrate into the tissue and differentiate into mature TAMs which lose Ly6C 
expression, and exhibit variable MHCII expression. TAMs are capable of secreting many cytokines 
and chemokines to propagate the immunosuppressive tumour microenvironment. 
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and IFN-γ (Thomas & Massagué, 2005), as well as inhibits TH1 cell differentiation 

and proliferation (Gorelik, 2002). 

TAMs can also express molecules which arrest infiltrating effector T cells, such 

as PD-1 and PD-L1 (Belai et al., 2014). The immunomodulatory cytokines CSF-1 

and IL-4 induce the expression of PD-L2 in macrophages (Loke & Allison, 2003). 

Furthermore, TAMs in hypoxic regions of a tumour up-regulate PD-L1 due to 

hypoxia inducible factor 1α (HIF-1α) signalling (Noman et al., 2014). TAM PD-1 

expression increases over time in mouse models and has been found to increase 

with increasing disease stage in human cancers (Gordon et al., 2017). It has been 

shown that TAM PD-1 expression negatively correlates with tumour phagocytic 

potential, and blockade of PD-1/PD-L1 axis abrogated this functional deficiency 

and led to increased survival of mice bearing subcutaneous tumours (Gordon et 

al., 2017). 

The CTLA-4 ligands are the B7 family members. The expression of B7-H4 on TAMs 

correlates with the clinical stage of lung carcinoma and gastric cancer (Chen et 

al., 2012; Matsunaga et al., 2011). B7-H4 expression on TAMs in human ovarian 

cancer suppressed antigen-specific T cell activation (Kryczek et al., 2006). 

Furthermore, the inhibition of B7-H4 resulted in tumour regression, further 

proving the immunosuppressive function of this ligand and TAMs (Kryczek et al., 

2006). 

TAMs can also suppress T cell activity through the depletion of L-arginine in the 

tumour microenvironment, which is required for T cell function (Rodriguez et 

al., 2004). The depletion of L-arginine inhibits the re-expression of CD3 after 

internalisation caused by antigen stimulation and T cell receptor signalling (Zea 

et al., 2004). Pro-tumoural TAMs secrete arginase-1 which is an enzyme which 

metabolises, and depletes, L-arginine in the tumour microenvironment, leading 

to T cell suppression (Bak et al., 2008; Sica et al., 2008). 

As well as promoting tumour growth at the original site, TAMs are also complicit 

in promoting tumour cell extravasation and metastasis. Tie2+ TAMs have been 

directly implicated in assisting tumour cells to escape from the original site of 
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tumourigenesis (De Palma et al., 2005, 2008). TGF-β is also implicated in 

promoting metastasis (Padua et al., 2008).  

Beyond extravasation, macrophages can promote metastasis by enhancing 

tumour cell seeding at distal sites. TAMs are capable of migrating with invasive 

carcinoma cells in vivo (Dovas et al., 2013; Ojalvo et al., 2009). In fact, the 

migration of these invasive carcinoma cells is dependent upon the co-migration 

of TAMs. Metastasis-associated macrophages (MAMs) are critical in the formation 

of the pre-metastatic niche (Ojalvo et al., 2009). VEGF and CCL2 production by 

MAMs increases vascular permeability at the metastatic site, which promotes 

tumour cell extravasation from the circulatory system (Qian et al., 2012). 

Furthermore, MAMs expressing VEGFR promote tumour cell survival following 

metastatic seeding. In a spontaneous model of mammary epithelial cancer, 

genetic or chemical ablation of VEGFR in MAMs decreased metastatic tumour cell 

seeding and growth (Qian et al., 2015). 

Macrophages have been reported to be highly plastic cells, which can alter their 

phenotype depending on specific immunological stimuli (Sica et al., 2008). This 

was first demonstrated in vitro where macrophages could be skewed towards a 

TH1 or TH2 phenotype through the addition of exogenous IFN-γ or IL-4 

respectively (Mantovani et al., 2002; Mosser & Edwards, 2008). As such, ‘M1’ and 

‘M2’ were employed as a categorisation of macrophages based on their 

production of either TH1-associated or TH2-associated cytokines, respectively. 

However, based on limited phenotypic information which does not encompass 

the complex transcriptional profile of the multiple different types of TAMs, this 

nomenclature is superseded by phenotypic descriptions of the cells including cell 

surface and intracellular markers (Murray et al., 2014). However, there is some 

suggestion that this switch from one phenotype to another also occurs in vivo 

(Guiducci et al., 2005). In the report, it was unclear if this process was actually 

resident macrophages experiencing re-polarisation from the TH2-like phenotype 

to the TH1-like phenotype, or simply if inflammatory monocytes (Ly6C+MHCII+) 

were populating the tissue as TH1 macrophages. Another, more convincing, study 

demonstrated that differentiated macrophages can be reprogrammed when 

transferred into a new environment (Lavin et al., 2014). This was evidenced 

when adoptively transferred peritoneal macrophages into lung tissue resulted in 
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these cells adopting an alveolar macrophage-like chromatin landscape, distinct 

from their original phenotype. These data demonstrate that the environmental 

niche can influence macrophage behaviour, but this plasticity has not yet been 

demonstrated in the tumour microenvironment.  

1.3.2.3 Tumour-associated DCs exhibit attenuated maturation and T cell 
activation  

DCs play an important role in anti-tumour responses. The CD103+ cDC1 

population are responsible for transporting tumour antigen to the draining 

lymph, for both spontaneous and implantable tumour models (Fuertes et al., 

2011; Roberts et al., 2016). cDC2s fail to present tumour antigen in tumour 

draining lymph nodes but the reason for this is unknown, in spite of the fact that 

cDC1 and cDC2s appear to migrate in equal numbers (Roberts et al., 2016). It is 

speculated that one contributing factor might be their decreased expression of 

endocytic receptors such as Clec9a, which would reduce their ability to take up 

antigen from apoptotic or necrotic cells (Gardner & Ruffell, 2016). 

Tumour-associated DCs are attenuated in their ability to activate T cells (Flies et 

al., 2016) and were unable to stimulate tumour antigen-specific T cells ex vivo 

(Stoitzner et al., 2008). Tumour-associated molecules are largely responsible for 

the inhibition of DC maturation and activation. VEGF inhibits DC maturation in 

vitro and in vivo, in part through blocking NF-κB function in hemopoietic 

progenitor cells (Gabrilovich et al., 1998; Gabrilovich et al., 1996). The 

blockade of VEGF-R2 resulted in increased tumour-associated DCs in a pre-

clinical model of breast cancer (Roland et al., 2009). Tumour-derived TGF-β has 

been shown to down-regulate DC maturation markers CD86, CD80 and MHCII (Kel 

et al., 2010) and suppress the production of pro-inflammatory cytokines 

associated with DC maturation (Lievens et al., 2013). IL-10 is also suppressive of 

tumour DC function, e.g. inhibiting the expression of co-stimulatory molecules 

such as CD40 (Shurin et al., 2002). Systemic IL-10 blockade in tumour-bearing 

mice resulted in an increase of CD103+ cDC1 and CD11b+ cDC2 in tumours (Ruffell 

et al., 2014). IL-10 produced by TAMs can also inhibit IL-12 production by CD103+ 

cDC1s (Ruffell et al., 2014). It is also possible that the degree of metabolic 

dysfunction within the tumour impacts upon DC function. Both lactic acid and 

hypoxia have been reported to suppress DC activation in vitro (Doedens et al., 
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2010; Gottfried et al., 2013). This immunosuppressive DC phenotype can be 

characterised by decreased expression of co-activation markers and increased 

expression of regulatory markers such as PD-L1 (Harimoto et al., 2013; Krempski 

et al., 2011). DCs are also complicit in perpetuating the immunosuppressive 

immune environment through further secretion of IL-10 (Llopiz et al., 2016). 

1.3.2.4 Effector T cells are critical for tumour clearance but are suppressed 
in the tumour microenvironment 

Tregs have also been implicated in tumourigenesis, with IL-10 and TGF-β 

production particularly permissive to tumour development. High infiltration of 

Tregs is associated with poor prognosis for breast cancer patients (Bates et al., 

2006; Gobert et al., 2009). The removal of peripheral CD4+CD25+ T cells from a 

transplantable tumour model resulted in tumour eradication (Shimizu et al., 

1999). Tregs are attracted to the tumour microenvironment through the 

secretion of chemoattractants. The systematic blockade of the tumour-

associated chemokine, CCR5, resulted in a significant attenuation of Treg 

migration into tumours in a model of pancreatic cancer and tumourigenesis was 

compromised (Tan et al., 2009). Furthermore, tumour hypoxia has been 

reported to drive Treg recruitment through the production of CCL22 in ovarian 

cancer (Curiel et al., 2004). Effector T cells, those with anti-tumour function, 

are suppressed in the tumour microenvironment. Tregs produce TGF-β which can 

suppress CTL functional molecules and T cell expansion ( Chen et al., 2005; 

Gorelik, 2002; Thomas & Massagué, 2005). Tregs express immune checkpoint 

molecules such as PD-1 and CTLA-4, which serve to arrest infiltrating effector T 

cells, particularly CTLs (Han et al., 2014; Wang et al., 2009).  

TH1 cells and TH1-associated cytokines are strongly associated with good clinical 

outcome for nearly all cancer types. In a study of colorectal cancer patient 

samples, it was found that patients with high TH1 cytokine production 

experienced prolonged survival (Tosolini et al., 2011). In a study of epithelial 

ovarian cancer, high levels of T cell-mediated IFN-γ production was correlated 

with longer overall survival of patients (Marth et al., 2004). Furthermore, it has 

been found that the relative levels of TH1:TH2 cytokine expression in favour of 

the former was a predictor of prognosis in multiple stages of human epithelial 

ovarian cancer (Kusuda et al., 2005). IFN-γ is an important TH1-associated 
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cytokine and plays an important role in tumour immunity. Ifngr1-/- mice develop 

spontaneous and MCA-induced tumours more readily than wild type (Kaplan et 

al., 1998; Shankaran et al., 2001). IFN-γ can inhibit cancer cell proliferation 

(Bromberg et al., 1996) as well as induce cancer cells to undergo apoptosis both 

in vitro and in vivo (Burke et al., 1999; Wall et al., 2003). TH1-derived IFN-γ was 

shown to induce macrophages to directly kill cancer cells in vivo and produce 

angiostatic chemokines CXCL9 and CXCL10 (Haabeth et al., 2011). 

TH2 cells have been implicated in supporting tumourigenesis in pancreatic 

cancers, resulting in reduced patient survival (De Monte et al., 2011; Tassi et 

al., 2008). Furthermore, this TH2 phenotype is propagated through a complex 

crosstalk involving TH2 cells, thymostromal lympoietin protein, cancer associated 

fibroblasts and DCs (De Monte et al., 2011). IL-4 has been reported to increase 

the proliferative capacity of multiple prostate cancer cell lines in vitro (Roca et 

al., 2012). However, there is also evidence to suggest an anti-tumour role for 

TH2 cells. In one study, the expression of the TH2-associated transcription factor, 

GATA3, correlated positively with breast cancer patient survival and 

responsiveness to therapy (Parikh et al., 2005). 

There have been mixed reports pertaining to the contributions of TH17 to 

tumourigenesis. TH17 cells have been found to correlate with increased patient 

survival in esophageal squamous cell carcinoma (Lv et al., 2011) whereas in a 

study of ovarian cancer, TH17 cell density correlated with poor prognosis 

(Tosolini et al., 2011). In melanoma studies, TH17 cells have demonstrated 

significant anti-tumour immunity, in part through the generation of tumour-

specific CTLs (Martin-Orozco et al., 2010; Muranski et al., 2008). These data 

suggest that the role of TH17 cells in cancer is cancer type-dependent.  

As there are many roles for the multiple cell types discussed both during cancer 

and in response to S. Typhimurium, the major contributions of specified cell 

types are summarised in Table 1.1. 
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Table 1.1 Summary of the roles of multiple cell types in cancer and S. 
Typhimurium infection 
Immune cell type Key 

marker(s) 
Role in cancer Role in responding to 

S. Typhimurium 
infection 

Neutrophil Ly6G Promotion: Angiogenesis, tumour 
cell proliferation, metastasis, 
suppress CTLs 

Rejection: ROS production, H2O2 
production, T cell recruitment 

Phagocytosis of 
extracellular bacteria 
and cellular debris, 
NET production, 
degranulation, pro-
inflammatory cytokine 
secretion, 
granulopoeisis 

Monocyte/macrophage F4/80, 
Ly6C 

Promotion: tumour cell 
proliferation, angiogenesis, 
metastasis, immunosuppressive 
molecule production, Treg 
recruitment, effector T cell 
suppression 

Rejection: T cell recruitment  

Phagocytosis of 
extracellular bacteria 
and cellular debris, 
pyroptosis, pro-
inflammatory cytokine 
secretion, immune cell 
recruitment, antigen 
presentation  

DC CD11c 
MHCII 

Promotion: Immunosuppressive 
cytokine secretion, abrogated T 
cell activation 

Rejection: Phagocytosis, tumour 
antigen presentation, lymph node 
migration, T cell activation, pro-
inflammatory cytokine secretion 

Phagocytosis, 
trogocytosis, antigen 
presentation, lymph 
node migration, T cell 
activation, pro-
inflammatory cytokine 
secretion. 

TH1 cells CD3  

CD4 

Tbet 

Promotion: not well defined  

Rejection: Tumour cell killing, 
pro-inflammatory cytokine 
secretion 

Pro-inflammatory 
cytokine secretion, T 
cell expansion, CTL 
stimulation, 
inflammasome 
assembly 

TH2 cells CD3  

CD4 

GATA3 

Promotion: tumour cell 
proliferation, immunosuppression 

Rejection: not well defined 

Not well defined 

TH17 cells CD3  

CD4 

RORγt 

Promotion: Angiogenesis 

Rejection: pro-inflammatory 
cytokine secretion, recruitment 
of anti-tumour cells 

Pro-inflammatory 
cytokine secretion, 
granulopoeisis, 
neutrophil recruitment 

Tregs CD3  Promotion: Effector T cell arrest, Antagonise S. 
Typhimurium immune 
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CD4 

FoxP3 

APC arrest,  

Rejection: pro-inflammatory 
cytokine secretion, recruitment 
of anti-tumour 

response 

CTL CD3 

CD8 

Promotion: Not well defined  

Rejection: pro-inflammatory 
cytokine secretion, direct tumour 
cell killing 

Infected-cell killing, 
directly bacteria 
killing 

 

1.3.3 Cancer immunotherapy: enhancing anti-tumour immunity 

Cancer immunotherapy, the modulation of the immune system to eradicate 

cancer, has become a clinically relevant therapeutic modality in light of the 

cancer immunology research generated over the last two decades. 

DCs are a promising target for cancer therapy (Gardner & Ruffell, 2016). 

Therapeutic vaccination for cancer depends on the ability of DCs to present 

tumour antigen to T cells. This can be achieved by loading DCs with tumour-

specific antigens ex vivo, increasing tumour-specific lymphocyte response and 

reducing tumour development (Palucka & Banchereau, 2013). Another strategy 

for enhancing tumour immunity via DCs is to use agonists to activate the DCs 

directly. This approach has been investigated using a variety of TLR agonists to 

stimulate DCs, which have resulted in tumour growth arrest in vivo associated 

with increased DC maturation and an enhanced CD8+ T cells response (Ohkuri et 

al., 2014; Vicari et al., 2002).  

Tregs are also a target of immunotherapies. CTLA-4 was the first immune-

checkpoint receptor to be clinically targeted. CTLA-4 is expressed exclusively on 

T cells and counteracts the activity of the co-stimulatory receptor CD28 (Pardoll, 

2012; Schwartz, 1992). CTLA-4 is constitutively expressed on Tregs (Jago et al., 

2004) and seems to inhibit T cell activation and APCs through binding to the B7 

ligands, CD80 and CD86, arresting effector functions (Linsley et al., 1991; Linsley 

et al., 1995). Treg-specific knockdown of CTLA-4 significantly inhibits their 

ability to antagonise tumour immunity (Peggs et al., 2009). Preclinical studies 

demonstrated the significant efficacy of CTLA4 antibodies on partially 
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immunogenic tumours, whereas combination therapy with GM-CSF was required 

to mediate rejection of poorly immunogenic tumours (van Elsas et al., 1999). 

Ipilimumab, a humanized CTLA-4 antibody, began clinical testing in 2000. It was 

found that 21% of melanoma patients produced objective cancer regression, but 

with autoimmune clinical manifestations including colitis and dermatitis in 35% 

of patients (Phan et al., 2003). Another study demonstrated an objective tumour 

response of 14% but was accompanied by similar autoimmune side effects (Beck 

et al., 2006). 

PD-1 is another promising target for immunotherapy. PD-1 is induced when T 

cells become activated (Keir et al., 2006) and limits T cell activity in peripheral 

tissues following inflammation to limit autoimmunity through ligand engagement 

(Freeman et al., 2000; Keir et al., 2006). PD-1 is also expressed on other 

immune cells such as NK cells and macrophages (Gordon et al., 2017; Terme et 

al., 2011). There are two ligands for PD-1: PD-L1 and PD-L2. PD-L1 has been 

shown to be up-regulated on cancer cells (Dong et al., 2002; Konishi et al., 

2004), as well as myeloid cells in the tumour environment (Brown et al., 2003; 

Kuang et al., 2009). PD-L1 overexpression correlates poorly with prognosis for 

multiple cancer types (Nakanishi et al., 2007; Nomi et al., 2007; Ohigashi et al., 

2005; Thompson et al., 2004). In vivo studies have demonstrated increased anti-

tumour immunity following PD-L1 blockade (Blank et al., 2004; Iwai et al., 

2002). The first clinical study employing the humanised monoclonal antibody 

against PD-1 saw objective tumour responses of 28% for melanoma, 27% for renal 

carcinoma and 18% for NSCLC, with 14% of patients suffering autoimmune side 

effects (Topalian et al., 2012). Another study demonstrated a survival rate of 

one year with 42% of patients with advanced squamous-cell NSCLC treated with 

nivolumab compared to 24% of patients treated with docetaxel. In this study, 

only 7% of patients suffered grade 3 or 4 treatment-related adverse effects 

(Brahmer et al., 2015). The US Food and Drug Administration (FDA) has approved 

nivolumab for patients with metastatic melanoma, NSCLC, renal cell carcinoma 

and non-Hodgkins lymphoma. However, there are more PD-1 signal inhibitors 

besides nivolumab. At the time of writing, according to the clinical trials 

database managed by the U.S. National Institute for Health, there are 636 

clinical trials recruiting patients for studies utilising an intervention of the PD-1-

PD-L1/2 axis (clinicaltrials.gov).  
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1.4 Bacterial-mediated cancer therapy 

The link between bacterial infection and anti-cancer effects was employed for 

clinical use at the end of the 19th century by the head of the Bone Tumour 

Service at the Memorial Hospital in New York (McCarthy, 2006). Dr William 

Coley’s interest in bacterial mediated cancer therapy was stimulated when a 

sarcoma patient with an inoperable tumour experienced tumour regression 

following ‘a severe attack of erysipelas’ (Coley, 1883). Erysipelas is 

characteristic of an upper dermal infection, most commonly caused by 

Streptoccus pyogenes infection (Bonnetblanc & Bédane, 2003). Intense 

investigation of the literature provided Coley with several references to a 

relationship between infection and tumour regression (Starnes, 1992). Coley 

went on to conclude: 

‘If erysipelas, a disease produced by a specific organism, could cure a case of 

undoubted sarcoma when occurring accidentally, it seemed fair to presume that 

the same benign action would be exerted in a similar case if erysipelas could be 

artificially produced.’ 

It was not long after that Coley had an opportunity to induce erysipelas in a 

hopeless case of sarcoma. When this patient, who was treated with 

Streptococcus, experienced tumour free survival, Coley endeavoured a career in 

bacterial-mediated cancer therapy, unknowing that he had founded the field of 

immunotherapy. From reports which have retrospectively analysed the 

progression of Coley’s career, there is a consensus that Coley’s treatment 

modality was overshadowed by the emerging modalities of chemotherapy and 

radiation therapy treatment, as well as a general scepticism in the credibility of 

his studies (Coley Nauts et al., 1946; McCarthy, 2006). The combination of these 

resulted in bacterial cancer therapy being a neglected area of research interest 

for decades.  

In the last two decades, research into the potential of bacteria as a legitimate 

cancer treatment option has grown exponentially (Forbes, 2010). Many genera of 

bacteria have been investigated for their anti-cancer effects such as Escherichia, 

Clostridium, Bifidobacterium, Listeria, Streptococcus and Salmonella (Clairmont 

et al., 2000; Cronin et al., 2010; Dang et al., 2001; Kasinskas & Forbes, 2007; 
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Maletzki et al., 2008; Pijkeren et al., 2010; Stern et al., 2015). This resurrection 

may be in part from the success of an attenuated bacterial strain in clinical 

trials, Bacillus Calmette-Guerin (BCG). BCG is a strain of Mycobacterium and is 

the first line of post-operative therapy for high-risk non-muscle invasive 

urothelial carcinoma (Babjuk et al., 2011). This therapeutic strategy was first 

published in 1976 when it was found that nine patients suffering from recurrent 

superficial bladder tumour responded favourably (Ingersoll & Albert, 2013; 

Morales et al., 1992). BCG has proven to very effective therapy in this setting, 

succeeding in >50% of patients in reducing recurrence and diminishing disease 

progression (Babjuk et al., 2011). Given the success of BCG in the clinic, it is 

surprising that the mechanisms governing the anti-tumour effects of BCG, and 

other strains, have only come to be appreciated in the last decade. 

 

This resurrection of interest in bacterial-mediated cancer therapy has largely 

focused on improving bacterial localisation to the tumour to maximize 

therapeutic potential (Clairemont et al., 2000; Low et al., 1999) or to use the 

bacteria as a vehicle for therapeutic molecules (Loeffler et al., 2008, Zheng et 

al., 2017b). However, there is a sense that these studies are somewhat removed 

from Coley’s original understanding of the underlying mechanism behind the 

success of bacteria or bacterial products in cancer therapy: the immune 

response (Coley, 1883).  

 

1.4.1 Tumour specific localisation and proliferation of 
systemically administered bacteria 

Systemically administered bacteria often exhibit tumour specific colonisation 

and proliferation but the mechanisms underpinning these are incompletely 

elucidated (Forbes, 2010). It has been speculated that the most prominent 

contributing factors include abhorrent vasculature, chemotaxis towards chemical 

gradients in the tumour, tumour-specific nutrients, oxygenation and immune 

evasion (Figure 1.5).  

During tumourigenesis, tumours need to synthesise new blood vessels to support 

tumour cell proliferation and survival. The resulting vessels are often chaotic 

and differ substantially from vessels in other tissues and are characterised by 

aberrant, disorganised and leaky blood vessels, resulting in tumour-specific 
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decreases in blood flow rates (Azzi et al., 2013). It has been observed that S. 

Typhimurium are capable of attaching to the tumour vasculature in vitro, which 

was more prominent with lower flow rates (Forbes et al., 2003). Therefore, 

there is greater opportunity for the bacteria to adhere and invade in the tumour 

vasculature compared to other tissues. Systemic S. Typhimurium administration 

has been reported to be accompanied by a spike in levels of TNF-α in the blood 

(Leschner et al., 2009). This increase in TNF-α led to a large influx of blood into 

the tumour, which contributed to tumour colonisation. 

The tumour microenvironment has been reported to contain physiologically 

distinct regions characterised by differential nutrient accumulation (Kasinskas & 

Forbes, 2006). Bacteria, including S. Typhimurium, contain multiple receptors 

for some of these nutrients, which include aspartate, serine and glucose. The 

loss of the aspartate receptor, Tar, inhibited tumour cylindroid accumulation of 

the Δtar strain whereas the wild type strain consistently colonised the periphery 

of the cylindroid (Kasinskas & Forbes, 2007). These data suggest a specific 

nutrient repertoire playing a role in mediating tumour-specific colonisation of 

bacteria. However, parallel studies in vivo have not been carried out. Motility is 

argued to be a significant advantage of bacteria compared to chemotherapeutic 

molecules which are limited by diffusional gradients. Motility was essential for 

bacterial accumulation within in vitro tumour cylindroids as the loss of flagella 

machinery reduced bacterial accumulation in the cylindroid model (Kasinskas & 

Forbes, 2007). This is in contrast to another study which demonstrated that 

strains lacking critical motility machinery, ΔcheY and ΔfliGH, were equally 

competent at bacterial colonisation as the wild type strain (Crull et al., 2011a). 

The discrepancy between these findings may due to the fact that Kasinskas et 

al., (2007) looked at distribution within the tumour whereas Crull and colleagues 

only looked at total colonisation. Therefore, although motility might not be 

necessary for initial tumour invasion, it likely plays a role in tumour penetration 

which may in turn affect anti-tumour effects and long-term survival therein. 

Glycoprotein expression has also been identified as a potential mechanism for 

tumour-specific localisation, as Salmonella preferentially bound to neoplastic-

associated glycoproteins in vitro (Wang et al., 2016). 
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Figure 1.5 Proposed mechanisms contributing to tumour-specific localisation and 
proliferation of bacteria following systemic infection 
Tumour specific bacterial localization and colonization has been reported in the literature. The 
proposed mechanisms for these phenomena are: 1. Aberrant tumour-specific vasculature, 
including altered blood flow and leaky vessels, are conducive to bacterial migration out of the blood 
stream. 2. Tumour-specific nutrients induce bacterial chemotaxis out of the vasculature. 3. Tumour-
specific nutrients promote bacterial replication. 4. Tumour hypoxia allows for the proliferation of 
anaerobic and facultatively anaerobic bacterial strains. 5. The immunosuppressive tumour 
environment allows for bacterial immune evasion 
 
Tumour-specific growth has been reported for multiple bacterial strains 

following systemic administration in vivo (Low et al., 1999; Pijkeren et al., 

2010; Stern et al., 2015). Furthermore, these tumour-specific nutrients have 

been suggested to support tumour-specific bacterial growth. Many strains 

employed for the purposes of bacterial cancer therapy are attenuated strains, 

commonly auxotrophic for certain nutrients. The S. Typhimurium cancer therapy 

strain, VNP20009, is an example whereby a purI deletion renders this strain 

auxotrophic for purines, which can be found in abundance in the necrotic regions 

of the tumour (Low et al., 1999).  

Tumours often exhibit various states of oxygenation: normoxia (normal), hypoxia 

(low) and anoxia (oxygen depleted) (Hockel & Vaupel, 2001). These features of 

the tumour allow for the tumour-specific colonisation of certain bacterial strains 

which employ anaerobic respiration, such as Clostridia strains. This has proved a 



Chapter 1 Introduction 
  

34 
 

successful strategy whereby the administration of Clostridium novyi spores were 

demonstrated to germinate specifically within avascular regions of in vivo 

tumours and mediate tumour cell death (Dang et al., 2001). In this study, there 

were no germinating spores recovered from the spleen, kidney, lung or liver of 

inoculated mice. Other bacterial species, such as Salmonella, are facultative 

anaerobes which means they can survive in other normoxic and hypoxic 

conditions. This feature increases the range of tumour environments the 

bacteria can reside in, but also negatively affects the tumour-specific 

localisation of the systemically administered bacteria. This limitation was 

addressed with the creation of an anaerobic S. Typhimurium strain, YB1 (Yu et 

al., 2012). This SL7207-derivative had the essential gene, asd, under the control 

of the anaerobic promoter, pepT. This strategy increased tumour-specific 

localisation compared to wild type SL7207 and other S. Typhimurium cancer 

strains, demonstrating that hypoxia is a potent feature for bacterial tumour 

specific targeting. 

The final feature credited with playing a role in tumour-specific colonisation of 

systemically administered bacteria is immune evasion. Tumours are widely 

regarded as immune privileged environments (Streilein, 1995). This phenomenon 

means that bacteria which localise therein are able to replicate and disseminate 

in the absence of the immune clearance mechanisms which exist to eliminate 

them (Westphal et al., 2008). However, as discussed below, it is widely 

hypothesised that the tumour microenvironment can be transformed following 

bacterial accumulation, which may serve to alert the immune system to the 

presence of the tumour, leading to anti-cancer effects. 

Tumour-specific localisation of bacteria, as well as serving as a therapeutic 

intervention, can also be employed for diagnostic purposes. Multiple studies 

have generated bacterial strains which can be imaged in vivo using relatively 

non-invasive techniques (Baban et al., 2012; Cronin et al., 2010). These 

technologies also enable the tracking of bacterial localisation in vivo in tumour 

models, possibly for the detection of metastases (Panteli et al., 2015). 
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1.4.2 Native and enhancement of bacterial tumour toxicity 

Multiple studies have reported that systemically administered bacteria are 

capable of direct anti-tumour behaviour and that native bacterial toxicity is 

sufficient to regress tumours (Dang et al., 2001; Low et al., 1999; Stern et al., 

2015).  

S. Typhimurium mediates invasion of epithelial cells through the concerted 

action of the T3SS-1 (Galán & Curtiss, 1989; Galán & Ginocchio, 1994). One of 

the proteins which is passed through the injectisome into the host cell is SipA 

(Kaniga et al., 1995). This protein has a caspase-3 cleavage site, which when 

cleaved, can produce two functional proteins (Srikanth et al., 2010), providing 

scope to potentially overexpress and enhance the caspase-3 activation of cancer 

cells (McIntosh et al., 2017). VNP20009 was demonstrated to directly kill B16F10 

tumour cells in vitro (Jia et al., 2007). SL3261, an attenuated derivative of 

SL1344 was also seen to be capable of mediating tumour cell death of Lewis 

Lung Carcinoma and mammary carcinoma 4T1 cells in vitro (Fu et al., 2008). 

These results were similarly seen in vivo where systemically administered 

VNP20009 co-localised with apoptotic tumour cells (Chen et al., 2012). Other 

bacterial species are also capable of mediating tumour cell death. An attenuated 

strain of C. novyi has been demonstrated to directly kill tumour cells at the 

interface between the viable rim and necrotic regions of subcutaneous B16 

tumours (Dang et al., 2001). 

Although bacteria alone exhibit native anti-tumour effects, multiple strategies 

have been employed to enhance the tumour inhibitory effects of bacterial 

cancer therapies. These strategies generally employ the bacteria as a vehicle for 

the delivery of chemotherapeutic drugs, cytotoxic proteins, cytokines or genetic 

material to the tumour tissue.  

Bacteria have been employed to mediate the conversion of systemically 

administered pro-drugs into their active cytotoxic forms in the tumour-specific 

locale. This has been demonstrated whereby tumour-targeting S. Typhimurium, 

expressing the E. coli cytosine deaminase enzyme (SL-CD), were capable of 

converting non-toxic 5-fluorocytosine into the active chemotherapeutic 5-

fluorouracil (King et al., 2002). The combinatorial administration of SL-CD and 
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pro-drug 5-fluorocytosine to tumour-bearing mice in vivo, resulted in greater 

tumour specificity of 5-fluorouracil as well as significantly reduced tumour 

growth compared to the bacteria or the pro-drug alone.  

Multiple studies have employed the use of bacteria to deliver apoptosis-inducing 

products to cancer cells (Guan et al., 2013; Jeong et al., 2014; Zigmond et al., 

2012). One of these studies engineered VNP20009 to secrete tumour necrosis 

factor-related apoptosis-inducing ligand (TRAIL) using a plasmid-based system 

(Chen et al., 2012). The study employed the use of a hypoxia promoter, nirB, to 

restrict TRAIL expression to regions of hypoxia, resulting in tumour-specific 

production of the cytotoxic protein. The therapeutic effect of VNP2009-pTRAIL 

was greater than VNP20009 transformed with a control plasmid and induced 

significantly greater tumour cell death in vitro. 

Bacteria have also been employed as a means to perpetuate their native 

immunostimulatory potential via the production of eukaryotic cytokines or the 

overproduction of immunostimulatory bacterial proteins. VNP20009, transformed 

with a prokaryotic plasmid encoding the mammalian cytokine LIGHT, was 

demonstrated to significantly impair tumour progression and lung metastasis in 

an in vivo model of colon carcinoma (Loeffler et al., 2007). LIGHT has been 

demonstrated to be capable of stimulating activation and lymph node-migration 

of DCs (Morel et al., 2001; Schneider et al., 2004). Another strategy is to 

overexpress prokaryotic proteins that stimulate the immune system. This process 

was employed by Zheng et al. (2017) in which the attenuated S. Typhimurium 

strain, SHJ2037, was engineered to overexpress flagellin B (FlaB) from Vibrio 

vulnificus (SL-pFlaB). The therapeutic consequence of this strategy in a 

transplantable tumour model was highly significant: SL-FlaB-infected tumours 

were prevented from growing up to 45 days post tumour challenge. This was in 

contrast to the SL-pEmpty-treated mice whose tumours seemed to have reached 

clinical endpoint 20 days previous. More than half of the SL-pFLaB infected mice 

were alive at 120 days following tumour challenge whereas all of the SL-pEmpty 

mice reached clinical endpoint before day 40 (Zheng et al., 2017b). This report, 

and others, demonstrated the potency of enhancing the therapeutic effects of 

bacteria through immunostimulation. 
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It is also possible to couple the native toxicity of bacteria to other treatment 

modalities, such as chemotherapy. In a screen of more than 30 

chemotherapeutic drugs, it was found that combination with E. coli (Nissle 1917) 

increased the efficacy of six of the drugs in vitro (Lehouritis et al., 2015). In a 

transplantable in vivo model, co-administration of E. coli and the alkylating 

agent CB1954 produced more potent anti-tumour effects than either treatment 

modality alone. This same study also demonstrated that certain bacteria can 

decrease the efficacy of common cancer chemotherapeutics which is important 

to consider for future studies (Lehouritis et al., 2015). Another study 

demonstrated that the combination of S. choleraesuis and the chemotherapeutic 

drug cisplatin resulted in greater tumour inhibitory effects and enhanced 

survival compared to either bacterial or cisplatin treatment alone (Lee et al., 

2005). S. Typhimurium has also been coupled to radiation as a synergistic 

treatment option (Avogadri et al., 2008; Ganai et al., 2009). Radiation 

treatment coupled to intra-tumoural S. Typhimurium treatment exhibited 

greater therapeutic potential than either modality alone, generating an anti-

tumour CD8+ T cell response (Avogadri et al., 2008). This is possibly explained by 

radiation-induced increased expression of MHCI on tumour cells, which was 

demonstrated in vitro. Radiation treatment was also coupled to S. Typhimurium 

in another study of bacterial mediated therapy (Ganai et al., 2009). Here, S. 

Typhimurium was transformed with radiation-inducible prokaryotic promoter 

upstream of TRAIL, limiting the expression of this cytotoxic protein to the area 

treated with radiation. 

S. Typhimurium has also emerged as an attractive combinatorial therapy for 

multiple immune therapy treatment strategies. Adoptive T cell therapy has 

emerged as a promising treatment option for multiple cancers (Fesnak et al., 

2016). This treatment involves a combination of the isolation, genetic alteration 

and propagation ex vivo of tumour-specific T cells for re-introduction into the 

donor, but instances of tumour relapse following treatment have been reported 

(Thomas et al., 2009). In one study, it was found that adoptive T cell transfer 

effectively prevented tumour relapse, but only when A1-R was co-administered 

(Binder et al., 2016). This group also demonstrated that the combination of S. 

Typhimurium strain A1-R expressing tumour antigen plus the checkpoint inhibitor 
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antibody against PD-L1 resulted in 80% long-established melanomas being 

rejected in vivo up to 240 days post tumour challenge (Binder et al., 2013). 

1.4.3 Bactofection 

‘Bactofection’ is the term used to describe the use of bacteria to transfer 

eukaryotic nucleic acids to eukaryotic cells for expression therein (Powell et al., 

1999; Schaffner, 1980). This strategy has been employed in a number of studies 

to enhance the anti-tumour effects of therapeutic strains (Guan et al., 2013; 

Yuhua et al., 2001). 

1.4.3.1 Proposed mechanisms of bactofection 

The exact molecular mechanism of bactofection are incompletely elucidated. 

For some bacteria such as Listeria, it was believed that plasmids were liberated 

from the bacteria following bacterial lysis in the cytosol (Weiss, 2003). The 

bacterial lysis was believed to be due to metabolic auxotrophy, a suicide system 

or compromised cell wall integrity due to antibiotic treatment (Dietrich et al., 

1998; Hense et al., 2001; Sizemore et al., 1995; Weiss, 2003). However, this 

explanation does not suffice to describe how vacuole-residing species such as 

Salmonella were capable of bactofection (Darji et al., 1997). Furthermore, 

intracellular invasion is not strictly a pre-requisite for mediating inter-kingdom 

DNA transfer, as the soil pathogen Agrobacterium tumefaciens was reported to 

transfer DNA to HeLa cells in vitro (Kunik et al., 2001). Interestingly, the 

Agrobacterium attached to the HeLa cells, but did not invade them.  

There have been multiple strategies employed to increase the degree of 

bactofection in bacterial DNA delivery vectors. One such strategy was the use of 

antibiotics to compromise the integrity of the bacterial cell wall, such as 

ampicillin or polymyxin B (Jones et al., 2013; Pijkeren et al., 2010). An 

alternative approach has been to induce the expression of a lysis phage or lysis 

gene upon cellular entry to facilitate plasmid expulsion into the cytosol (Chung 

et al., 2015). This was achieved through the employment of a heterologous 

protein expression of listeriolysin and LyE to weaken the bacterial membrane 

(Chung et al., 2015). These strategies are presumed to involve the liberation of 
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the plasmid from the bacterium, providing circumstantial evidence that plasmid 

cytosolic-residency is required for nuclear uptake and transgene expression. 

Although the mechanisms resulting in exogenous DNA reaching the cytosol are 

incompletely understood, once the DNA is in the cytosol, the mechanisms 

underpinning DNA uptake to the nucleus have been heavily studied. It has been 

demonstrated that certain DNA sequences are required for cytosolic DNA entry 

into the nucleus (Dean, 1997). The most important of these was shown to be the 

Simian Virus 40 (SV40) sequence. The absence of the SV40 sequence was shown 

to arrest microinjected DNA in the cytosol, even 12 hours after injection, 

whereas all SV40 sequence-containing DNA localised to the nucleus within eight 

hours. Further inspection into the SV40 sequence demonstrated that the 72-base 

pair repeat promoter/enhancer region provided the majority of the nuclear 

import function (Dean et al., 1999). Another study reported that a repetitive NF-

κB binding sites cloned into a reporter plasmid enhanced transfection up to 12-

fold in multiple cell types in vitro (Mesika et al., 2001). To get to the nucleus, 

the plasmid DNA migrates to the nucleus along microtubules, most likely dynein, 

through adaptor molecules which recognise specific sequences on the plasmid 

(Vaughan & Dean, 2006). In particular, cytoplasmic transcription factors which 

recognise the consensus sequence on the plasmid DNA can bind and facilitate 

nuclear import through the nuclear pore in concert with importins such as 

Importin β1 and Importin 7, as well as histone H2B and NM23-H2 supported 

plasmid nuclear entry (Miller et al., 2009; Munkonge et al., 2009). Interestingly, 

it is possible to restrict plasmid transfer to specific cell types (Miller & Dean, 

2009; Vacik et al., 1999). This strategy would be particularly beneficial to 

employ in the context of cancer therapy to limit the efficacy of a given gene 

therapy to cancer cells alone, whilst leaving other non-cancerous cells 

unaffected by the treatment. There are reports which claim to have identified 

tumour-specific promoters (Kim et al., 1994; Lu et al., 2005), opening the 

possibility to exploit this system to limit the effects of gene therapy to cancer 

cells alone.  

1.4.3.2 Applications, efficiency and efficacy 

Bactofection can be employed in multiple tissues to replace silenced or mutated 

genes. A preliminary in vitro study demonstrated that Listeria monocytogenes 
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can mediate the bactofection of the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene in eukaryotic cells (Krusch et al., 2002). An in vivo model 

looked specifically at bactofection of lung epithelial cells, and found that E. coli 

transformed with a eukaryotic expression plasmid could mediate transgene 

expression in murine lung tissue (Larsen et al., 2013). 

Bactofection is increasingly becoming an attractive therapeutic option for cancer 

treatment. Bactofection studies for the purposes of enhancing bacterial 

mediated cancer therapy has been investigated using multiple bacterial species 

including S. enterica, E. coli, and L. monocytogenes (Byrne et al., 2014; Guan et 

al., 2013; Pijkeren et al., 2010; Pilgrim et al., 2003; Yuhua et al., 2001). It was 

demonstrated that the S. Typhimurium strain, SL7207, was most proficient at 

DNA vaccine delivery in a mouse model for neuroblastoma, when compared to 

gene gun application and viral-mediated delivery (Berger et al., 2013). 

There have been variable frequencies of bactofection reported. In one study, 

intratumoural injection of E. coli strain K12, transformed with a eukaryotic FLAG 

reporter plasmid, resulted in 17.2% of total live tumour cells being FLAG+ 48 

hours post infection (hpi) (Byrne et al., 2014). Another study found that in vitro, 

infection with L. monocytogenes at a multiplicity of infection (MOI) of 50:1 

yielded a proportion of macrophages expressing the fluorescent reporter plasmid 

gene was in the region of 10-2, which is much less than that observed by Byrne 

and colleagues (Dietrich et al., 1998). Even with this low efficiency, the 

macrophages which delivered the antigen protein-encoded plasmid had 

detectable levels of T cell activation, in vitro. In contrast to Dietrich and 

colleagues, up to 30% of primary peritoneal macrophages infected with S. 

Typhimurium were successfully transfected with a eukaryotic expression plasmid 

(Darji et al., 1997). The employment of bactofection to transfer GM-CSF on a 

eukaryotic expression plasmid from Salmonella to cancer cells enhanced the 

anti-tumour effects of the bacteria as more than 70% of tumour-bearing mice to 

60 days post tumour cell inoculation (Yuhua et al., 2001). The control group with 

a GFP-encoding plasmid did not survive past day 35. Taken together, these 

studies and others have provided evidence that bactofection is an effective 

strategy in transferring eukaryotic genes to eukaryotic cells and can also 

enhance the native anti-tumour effects of bacteria. 
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1.4.4 Salmonella strains for bacterial mediated cancer treatment 

There are many bacterial genera and strains which have been investigated for 

bacterial-mediated cancer therapy. The most commonly employed genus is 

Salmonella, with many attributes lending to its suitability as a bacterial cancer 

therapy (Forbes, 2010) (Figure 1.6).  

Salmonella has been demonstrated to exhibit tumour specific colonisation and 

growth (Crull et al., 2011a; Zhao et al., 2005). Although multiple strains of 

Salmonella have been demonstrated to induce tumour growth arrest when 

administered alone, Salmonella is also capable of delivering therapeutic 

molecules, such as chemotherapeutics, DNA and RNA to tumours. Furthermore, 

Salmonella has been shown to be able to express anti-cancer agents such as 

immunostimulatory cytokines (Loeffler et al., 2007, 2009) or non-native 

tumouricidal bacterial products (Zheng et al., 2017b). Although this enhanced 

tumouricidal bacteria could potentially lead to greater systemic toxicity, this 

eventuality has been circumvented in multiple studies by the employment of 

tumour-specific promoter systems (Leschner et al., 2012; Yu et al., 2012). S. 

Typhimurium has also been demonstrated to increase the efficacy of some 

chemotherapeutics when co-administered (Lehouritis et al., 2015). This effect 

might be due in part to the fact that S. Typhimurium functionally down-

regulates P-glycoprotein, a multidrug resistance protein responsible for the 

efflux of many cancer drugs, in intestinal cancer epithelial cells (Siccardi et al., 

2008). 
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Figure 1.6 S. Typhimurium have multiple features which make them amenable for bacterial-
mediated cancer therapy 
S. Typhimurium is an attractive strain for bacterial mediated cancer therapy. 1. S. Typhimurium is a 
facultative anaerobe so can survive in multiple states of oxygenation. 2. S. Typhimurium is motile, 
and can receive signals from the environment to chemotax towards defined areas of the tumour. 3. 
S. Typhimurium can carry plasmids encoding cytotoxic or immunostimulatory molecules which it 
can deliver to the eukaryotic cell via the Type 3 Secretion System-1 (T3SS-1). 4. S. Typhimurium 
can carry eukaryotic DNA and shRNA encoding anti-tumour genes which can be delivered to the 
eukaryotic cell, most likely upon spontaneous lysis. 5. S. Typhimurium can be engineered to be 
visualised to enable in vivo tracking. 6. S. Typhimurium is highly immunostimulatory so can elicit an 
immune response which is not conducive to tumour growth. 
 
There are multiple cancer therapy strains of S. Typhimurium, most notably 

VNP20009 (ΔmsbB, ΔpurI), SL7207 (ΔaroA) and A1-R (Leucine-arginine auxotroph) 

(Hoiseth & Stocker, 1981; Low et al., 1999; Zhao et al., 2006). Each of these 

strains is attenuated in some way which reduces their systemic toxicity in the 

host. In employing a strain for bacterial cancer therapy, it is pivotal to balance 

between an attenuated strain which is not toxic to the host with maintaining 

sufficient virulence to infect and antagonise the tumour. VNP20009 was highly 

successful in mediating anti-tumour effects in mouse models of cancer, but 

when it was taken to Phase I clinical trials, there was tumour colonisation but no 

effect on tumour growth (Low et al., 1999; Toso et al., 2002). It was concluded 

that the strain, which is auxotrophic for purines and has an attenuated LPS 

component, was overly attenuated and thus ineffective. Another report 

compared the tumour specific colonisation, anti-tumour effects and survival of 

tumour-bearing mice following infection with VNP20009 or A1-R, and found the 

latter to be more beneficial in every parameter investigated (Zhang et al., 

2015). However, the A1-R strain is not widely available.  
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SL7207 is a highly effective anti-cancer agent. It has a full LPS (in comparison to 

VNP20009) so is suitably virulent but has a 1,194-bp deletion in the aroA gene 

rendering the strain auxotrophic for ρ-aminobenzoic acid and 2,3-

dihydroxybenzoate (Hoiseth & Stocker, 1981; Johnson et al., 2017). Neither of 

these molecules is available in mammalian tissue, which means that in theory, 

the bacteria can only survive a finite number of replications, in vivo (Hoiseth & 

Stocker, 1981). AroA mutants have been demonstrated to be more 

immunostimulatory, susceptible to penicillin and sensitive to phagocytosis 

compared to aroA-competent controls, in vivo (Felgner et al., 2016). All of these 

attributes are beneficial for bacterial mediated cancer therapy.  

1.4.5 Bacterial-mediated cancer therapy: immune cell activation 

As is evident from Sections 1.1.4 and 1.1.5, S. Typhimurium is highly 

immunostimulatory. Therefore, there has been intense investigation into the 

immune activation status of models subjected to bacterial mediated cancer 

therapy. However, it is pertinent to note that not all bacterial agents might act 

as immunotherapy agents. For example, some strains are highly effective in 

inhibiting tumour growth in immunocompromised mice (Zhao et al., 2005; Zhao 

et al., 2006). Furthermore, some strains might only be effective anti-cancer 

agents when carrying appropriate cargo to be delivered to the tumour (Forbes, 

2010) 

Direct evidence for immune involvement in bacterial mediated cancer therapy 

comes from the studies which have demonstrated the failure of tumours to 

establish upon secondary challenge following bacterial-mediated clearance of a 

primary tumour (Agrawal et al., 2004; Stern et al., 2015). These studies suggest 

a role for immune memory in blocking the establishment of the secondary 

tumour. 

For the first well studied bacterial immunotherapy, BCG, a number of reports 

have evidenced an increase in immune cells following therapy (Bisiaux et al., 

2009; De Boer et al., 1991; Suttmann et al., 2006b). Many studies have pointed 

towards a TH1-biased immune response following BCG therapy in bladder cancer 

patients and mouse models. Urine analyte analysis of superficial bladder cancer 

patients found that following BCG treatment, there was a significant increase in 
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the production of pro-inflammatory cytokines such as TNF-α, IL-8, IL-6, IL-1β 

(Bisiaux et al., 2009). Another study found similar results where there was 

increased secretion of IL-1β, IL-6, IL-8, TNF-α and IFN-γ into the urine of 

carcinoma in situ bladder cancer patients following repeated BCG treatments 

(Jackson et al., 1999). In fact, IL-12 and IFN-γ are essential for BCG anti-tumour 

efficacy in an orthotopic murine bladder cancer model (Riemensberger et al., 

2002). The BCG cell wall skeleton (BCG-CWS), a non-infectious material 

consisting of peptidoglycan, arabinogalactan and mycolic acids, has been 

investigated in other cancer types such as lung and ovarian cancers (Hayashi, 

1998; Yamamura et al., 1979). It was reported that BCG-CWS treatment might 

stimulate DCs to mature and promote the secretion of TNF-α and IL-1β in a 

manner dependent on TLR2 and TLR4 (Tsuji et al., 2000).  

Looking at the immune infiltrates into the tumour following BCG treatment, 

there was found to be an increased number of granulocytes, monocytes, 

macrophages and lymphocytes in the urine of patients 24 hours after BCG 

instillation (De Boer et al., 1991). Another study of 17 patients of superficial 

bladder cancer found that there was an increase in granulocytes, monocytes and 

lymphocytes four hours following a patient’s first BCG instillation, and this 

increase was further enhanced following the third treatment (Bisiaux et al., 

2009). In these studies granulocytes were found to heavily infiltrate following 

treatment, and in fact, this was required for the mediation of BCG anti-tumour 

effects (Suttmann et al., 2006a). 

Interestingly, the blockade of neutrophils in a S. Typhimurium-treated cancer 

model enhanced the therapeutic effect of the bacteria by propagating the 

spread of the bacteria within the tumour (Westphal et al., 2008). Neutrophils 

have been reported to accumulate in tumours following bacterial mediated 

tumour therapy in a number of transplantable tumour models (Lee et al., 2008; 

Lizotte et al., 2014). Neutrophils were also found to be essential for S. 

Typhimurium biofilm formation on tumours, in vivo (Crull et al., 2011b). 

DCs are arguably the most well characterised myeloid derived immune cell in the 

context of bacterial mediated immunity. DCs are recruited to the tumour as 

soon as two days post S. Typhimurium infection in vivo (Avogadri et al., 2005). 
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DCs from infected tumours had enhanced cross presentation of tumour antigen 

to CD8+ T cells ex vivo compared to uninfected. In a follow up study, it was 

demonstrated that DCs from the tumour-draining lymph node of intratumourally 

S. Typhimurium injected mice could produce more IL-6, IL-1β and TNF-α than 

DCs harvested from control mice (Avogadri et al., 2008). These DCs also 

expressed a more activated phenotype evidenced by increased MHCI, Fas and 

CD86 expression compared to control DCs. Another study demonstrated that S. 

Typhimurium treatment of tumour-bearing mice resulted in the increased 

expression of connexin 43 (Cx43), a gap junction pore-forming protein which 

facilitated the movement of tumour associated antigen from tumour cells to DCs 

(Saccheri et al., 2010). In fact, the silencing of Cx43 resulted in severely 

attenuated anti-tumour efficacy of S. Typhimurium, demonstrating the 

importance of DC-mediated antigen loading for the anti-tumour effects.  

Many studies which have examined the cytokine profiles of Salmonella- and E. 

coli-infected tumour-bearing mice, either in the blood or the tumour itself, have 

evidence for the increase in the production of TH1-associated cytokines or 

factors such as TNF-α, IFN-γ, inducible nitric oxide synthase (iNOS), IL-6, (Lee et 

al., 2008; Leschner et al., 2009; Lizotte et al., 2014; Stern et al., 2015). This 

has also been seen following treatment with C. novyi NT spores (Agrawal et al., 

2004). Interestingly, there has been little or no evidence to suggest the 

involvement of the TH17 response in bacterial mediated tumour therapy.  

Looking at lymphocyte involvement, many studies have also demonstrated the 

tumour infiltration of CD4+ and CD8+ T cells following bacterial infection of 

tumour-bearing mice (Cronin et al., 2010; Kuan & Lee, 2016; Lee et al., 2011, 

2008), but the reports have provided somewhat contradictory evidence for the 

roles of these cells. In one study, the blockade of CD4 with an anti-CD4 antibody 

did not significantly affect the tumour growth inhibitory effects of E. coli, whilst 

the blockade of CD8 completely abolished the anti-tumour efficacy (Stern et al., 

2015). Furthermore, the adoptive transfer of tumour-educated CD8+ T cells 

resulted in tumour rescue in uninfected, tumour-bearing mice. In another study, 

either CD4 or CD8 blockade only mildly abrogated the anti-tumour effects of S. 

choleraesuis (Lee et al., 2011). Furthermore, CD4, as opposed to CD8, was 

credited with being the major producer of IFN-γ in this study. Given the number 
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of reports which support a role for T cells in mediating the anti-tumour effects 

of Salmonella, it was therefore surprising that there are also reports in which S. 

Typhimurium has been effective in treatment of athymic nude mice (Zhang et 

al., 2015; Zhao et al., 2005; Zhao et al., 2006). Therefore, other immune cells 

may be the effectors of bacterial-mediated tumour growth inhibition. 

Furthermore, tumour-specific bacterial colonisation was demonstrated to be 

greater in athymic mice than immunocompetent mice in a Bifidobacterium 

breve infected transplantable tumour model (Cronin et al., 2010). 

It is apparent that TLRs play an important role in bacterial mediated cancer 

treatment. Tlr4-/- resulted in decreased anti-tumour efficacy of S. choleraesuis 

in a transplantable tumour model (Lee et al., 2008). Tlr4 depletion also 

decreased the recruitment of immune cell types including neutrophils, 

macrophages, CD4 and CD8 T cells, as well as decreasing the production of 

intratumoural IFN-γ. Some of these results were also seen in S. Typhimurium-

treated tumour models (Zheng et al., 2017b). In addition, the loss of the adaptor 

molecule MyD88 had detrimental effects to anti-tumour efficacy of S. 

Typhimurium, supporting a critical role for these pathways in S. Typhimurium-

mediated tumour immunity (Kaimala et al., 2014; Zheng et al., 2017b).  

Macrophages have not been significantly considered in the bacterial mediated 

cancer therapy literature. This is surprising given the central role these cells 

play in mediating the innate immune response to oral S. Typhimurium infection 

(Rydstrom & Wick, 2007; Rydström & Wick, 2009; Yrlid et al., 2000). A number 

of studies have reported an increase in the number or proportion of 

macrophages in the tumour following systemic bacterial infection (Lee et al., 

2008; Lizotte et al., 2014). One report suggested a macrophage expansion within 

the tumour following systemic L. monocytogenes infection, but given that the 

only obvious marker for these ‘macrophages’ was CD11b, it is difficult to 

conclude with confidence that these were indeed macrophages alone (Lizotte et 

al., 2014). The activation of TAMs following systemic S. Typhimurium infection 

was evidenced by the up-regulation of the co-activation marker CD86 following 

infection (Zheng et al., 2017b). There was also the suggestion that the TAMs 

were moving away from the ‘M2’ phenotype due to the decreased expression of 

the scavenger receptor CD206. These data suggest a transformation in the 
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immune signature of the tumour microenvironment following bacterial 

administration to a phenotype not compatible with tumour progression.  

1.4.6 The contributions of local versus systemic tumour-
inflammation in anti-tumour effects of bacteria 

It is apparent that there are many immune cells which may play a role in 

bacterial-mediated anti-tumour effects. However, it is unclear if this immune 

response is driven by tumour-local or systemic inflammation.  

Many studies have attributed the anti-tumour effects of intravenously injected 

bacteria to the tumour-specific localisation and proliferation of the bacteria 

(Low et al., 1999; Zhao et al., 2005). Another study has demonstrated that 

increased tumour-specific S. Typhimurium localisation was associated with 

greater anti-tumour effects (Zhao et al., 2006). Multiple studies which have 

attested to the fact that bacteria can kill tumour cells directly in vitro and in 

vivo, further provide evidence that the bacteria have a local anti-tumour effect 

(Fu et al., 2008; Kuan & Lee, 2016; Lee et al., 2008). Furthermore, direct 

intratumoural injection of S. Typhimurium leads to tumour growth inhibition and 

regression (Avogadri et al., 2008; Din et al., 2016; Roberts et al., 2014). 

However, it was found that in some cases, direct intratumoural injection can 

result in systemic inflammation (Avogadri et al., 2008), but whether this was 

due to bacterial dissemination of tumour-propagated immune mediators was not 

reported.  

It is likely that both systemic and local responses play a role in mediating 

bacterial tumour-growth inhibition. It was demonstrated that systemic infection 

with pro-inflammatory mediators LPS and TNF-α, was sufficient to inhibit the 

tumour growth of certain cancer types, but not all (Kocijancic et al., 2017). This 

evidence suggests that the contribution of tumour localisation of the bacteria 

versus the systemic inflammatory effects might be cancer type dependent.  

1.4.7 Limitations of bacteria for the purposes of cancer therapy 

Although multiple bacteria have been promising in various in vivo settings, 

several considerations must be addressed prior to further human clinical trials. 
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The most implicit limitations of bacteria as a cancer therapy are treatment 

related adverse effects and antibiotic resistance.  

In Phase I clinical trials with systemically administered VNP20009 on patients 

with metastatic melanoma, tumour localisation was reported, however there 

were no anti-tumour effects (Heimann & Rosenberg, 2003; Toso et al., 2002). In 

another study, VNP20009 capable of expressing the E. coli cytosine deaminase 

gene was administered intratumourally in combination with the cytosine 

deaminase substrate, 5-fluorocytosine (Cunningham & Nemunaitis, 2001). In two 

out of the three patients, there was an objective response at the tumour site. In 

all of these studies, adverse effects were reported. According to the National 

Cancer Institute’s Cancer Therapy Evaluation Programme, Grade 3 adverse 

effects are ‘severe and undesirable adverse events; and Grade 4 are ‘life-

threatening or disabling adverse events’ (www.fda.gov). The most consistent 

symptoms reported following bacterial administration included fever, nausea 

and vomiting (Cunningham & Nemunaitis, 2001; Heimann & Rosenberg, 2003; 

Toso et al., 2002). In the initial study, 8% of the 25 patients exhibited Grade 3 

toxicity which included fever and anaemia (Toso et al., 2002). There were no 

Grade 4 toxicities observed. It could be speculated that the adverse effects 

reported following bacterial-treatment in cancer patients is less severe than 

those following chemotherapy regimens. In a study of patients receiving the 

chemotherapeutic 5-hydroxytryptamine 3 and corticosteroid, severe nausea 

occurred in 23.8% of patients and vomiting occurred in 20.8% of the 240 patients 

(Escobar et al., 2015). Another study of 1,008 patients with various carcinomas 

found that 25.5% of patients experienced both nausea and vomiting following 

treatment with various chemotherapeutics (Chopra et al., 2016). In 12.9% of 

cases, the adverse effects required patient hospitalisation. However, the studies 

regarding bacterial-mediated cancer therapy have employed small sample sizes 

and relatively short-term treatment regimens so further studies are warranted to 

provide convincing data pertaining to the long-term effects following this 

treatment modality.  

As these studies have touched on, but what is also evident in many pre-clinical 

trials is the immune-stimulatory potential of multiple bacterial strains, 

particularly when administered systemically (Lizotte et al 2014; Stern et al., 
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2015; Zheng et al., 2017b). This is a great cause for concern going forward, as 

cytokine storm and the related sepsis might not be well tolerated by the host, 

removing the therapeutic potential of the treatment modality.  

A more general concern associated with bacterial-mediated cancer therapy is 

antibiotic resistance. Although the bacteria may be beneficial for tumour growth 

inhibition, antibiotic-resistant bacteria are a major safety concern, particularly 

when cancer patients are often immune-compromised (Hübel et al., 1999; 

Klastersky & Aoun, 2004; Viscoli et al., 2005). Evidence in favour of the safety 

profile of bacteria comes from multiple studies. In a Phase I clinical trial, 

systemically administered VNP20009 was completely cleared from the 

bloodstream within six hours of treatment (Cunningham & Nemunaitis, 2001). It 

was also demonstrated that SL7207 could be almost completely cleared from 

tumour-bearing mice with administration of ciprofloxacin immediately following 

infection (Crull & Weiss, 2011). Furthermore, ΔaroA mutants are more sensitive 

to penicillin and phagocytosis (Felgner et al., 2016). However, there is currently 

no data to predict the emergence of resistant strains in these models. This is 

potentially the greatest hurdle bacteria have to overcome to be taken further 

into human clinical trials. 

 

However, there are strategies that can remove these limitations whilst 

maintaining the anti-tumour effects of the bacteria, or bacterial products. It has 

been demonstrated that in some cases, heat-killed bacteria are equally capable 

of mediating tumour growth inhibition as viable bacteria (Kocijancic et al., 

2017; Mathé et al., 1977). Binder et al. (2013) demonstrated that administration 

of heat killed bacteria in conjunction with adoptive T cell therapy mediated 

sustained tumour cell rejection. These findings provide an incentive to isolate 

the anti-tumour effectors of the bacteria to examine if they can be used in 

isolation to mediate tumour growth inhibition. One study employed the use of 

the effector protein SipA, which has been demonstrated to activate the 

apoptosis-inducing enzyme caspase-3 and down-regulate the multidrug 

resistance protein, P-glycoprotein (Siccardi et al., 2008; Srikanth et al., 2010; 

Wall et al., 2007). This effector protein was isolated and used for cancer 

therapy in the absence of its bacterial shell (Mercado-Lubo et al., 2016). 

Another study has compared the efficacy of the pro-inflammatory mediators 
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(responsible for many of the immunogenic features of S. Typhimurium infection) 

LPS and TNF-α to SL7207 in a similar quest to remove the toxicity of the bacteria 

in vivo (Kocijancic et al., 2017). The inflammatory mediators alone were 

comparably as efficacious as the bacteria in some tumour models. They were, 

however, ineffective for certain tumour types, suggesting alternative 

mechanisms of bacterial-mediated tumour growth inhibition other than those 

induced by LPS and TNF-α. These studies support the possibility for other 

bacterial cell products to have anti-cancer effects without the detrimental 

systemic effects such as weight loss and the risk of antibiotic resistance.  

1.5 In vitro and in vivo models to study bacterial 
mediated cancer therapy  

Studies employing bacterial mediated cancer therapies often use a combination 

of both in vitro cell culture and in vivo tumour models. 

1.5.1 In vitro tumour spheroid models 

The mainstay of in vitro studies for cancer therapy and bacterial infection is to 

employ two dimensional (2D) monolayer culture. However, these cultures do not 

exhibit many features of tumours in vivo, such as region-specific molecular 

gradients and differential oxygen tension (Sutherland et al., 1996). This 

limitation can be addressed by the employment of in vitro tumour spheroid 

cultures. Tumour spheroids exhibit multiple features of in vivo tumours, and the 

in vivo tumour microenvironment. Tumour spheroids exhibit regions of hypoxia, 

which plays an important role in promoting angiogenesis and tumour-permissive 

macrophages (Movahedi & Van Ginderachter, 2016; Sutherland et al., 1986). 

Tumour spheroids exhibit pseudo-glandular structures reminiscent of in vivo 

carcinoma tissue (Sutherland et al., 1986). In tumour spheroids greater than 

500-600 µm in diameter, central necrosis can develop surrounded by a viable rim 

of actively proliferating cells. Necrosis is believed to be induced by metabolic 

cell death due to the attenuated transport of oxygen, nutrients and waste 

(Carlsson & Acker, 1998). Necrosis is a feature of tumours in vivo which 

correlates with poor prognosis and plays a role in propagating chronic 

inflammation that drives tumourigenesis (Edwards et al., 2003; Freyer, 1988). 
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Tumour spheroids also demonstrate atypical mitochondrial function compared to 

2D monolayers (Bredel-Geissler et al., 1992). 

1.5.2 In vivo cancer models 

There are many different cancer mouse models available, which would be 

suitable to investigate the effects of bacteria on the tumour immune response. 

Mouse models can be characterised into at least three groups: transplantable, 

genetically engineered and carcinogen-induced (Zitvogel et al., 2016). 

Arguably, the most commonly employed model in cancer immunology is the 

inoculation of histocompatible tumour cell lines into mice; the transplantable 

tumour model (Suggit & Bibby, 2005). Most often, this technique consists of 

subcutaneous injection of a defined number of syngeneic tumour cells into the 

back flank of the mouse. Orthotopic and intravenous application are also 

routinely carried out. These models are highly attractive as tumour development 

is easily monitored, either by palpation or using in vivo imaging technologies. 

This approach yields highly reproducible tumour growth dynamics. However, 

utilisation of clonal tumour cells grown in vitro is not reflective of the diversity 

of tumour cells found in human cancer (Ngiow et al., 2016). Furthermore, these 

tumour cells, and the associated leukocytes, have not experienced the chronic 

inflammatory processes, which select tumour and stromal cells during tumour 

development in humans (Mantovani et al., 2008). However, these tumours have 

played an important role in multiple discoveries in cancer research such as the 

identification of immune checkpoint inhibitors to inhibit tumour development 

and metastasis, which have been hailed as a major breakthrough in cancer 

treatment (Iwai et al., 2002). 

An alternative strategy to transplantable tumours is the use of genetically 

engineered mouse models (Zitvogel et al., 2015). These most often utilise the 

transgenic overexpression of oncogenes or the inactivation of tumour suppressor 

genes to drive spontaneous oncogenesis. This model overcomes many of the 

limitations of the transplantable model, as the tumour cells are highly 

heterogeneous with respect to their development, progression and antigenic 

makeup. However, these models often take months for the mice to develop 

tumours, which may not be possible to monitor by eye. Furthermore, germ-line 
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mutations of certain potent oncogenes can result in widespread transformations 

occurring at multiple sites, thus overwhelming the immune system, a 

phenomenon which may or may not be occurring in humans. This limitation can 

be overcome by designing the genetic alteration to be tissue specific, such as 

Polyoma-middle T antigen oncoprotein (PyMT) under the control of mouse 

mammary tumour virus long terminal repeat (MMTV-LTR) which is restricted to 

expression in mammary epithelial cells (Guy et al., 1992; Muller et al., 1988). 

Genetically engineered mouse models have contributed substantially to our 

understanding of tumour development, as well as the role certain immune 

effectors have in this process. For example, the PFP-/- mouse strain, which lacks 

perforin, has been shown to experience accelerated progression of multiple 

cancers demonstrating an important role for perforin-producing immune cells in 

anti-tumour immunity (Smyth et al., 2000). 

Carcinogen-induced mouse models involve the use of a carcinogen, such as 

ultraviolet light or methylcholanthrene (MCA), to induce transformation of 

healthy cells (Abel et al., 2009). These neoplasias often offer genetically diverse 

tumours, which is reflective of the human cancer environment. However, a 

limitation of these models is the absence of defined genetic transformations as 

well as long treatment protocols in some cases (Zitvogel et al., 2016).  

1.5.3 In vivo cancer models employed for bacterial mediated 
cancer therapy studies 

Most studies that have investigated the effects of bacteria on tumours have 

employed the use of transplantable tumour models in either the C57BL/6 or 

BALB/c backgrounds (Suggit & Bibby, 2005) (Table 1.2).  

C57BL/6 and BALB/c strains differ greatly in their immune responses to different 

stimuli. These strains have been reported to be prototypical TH1- and TH2-type 

mouse strains, respectively (Mills et al., 2000; Santos et al., 2006). When 

macrophages from each mouse strain were challenged with bacterial products, 

macrophages from C57BL/6 were more potent producers of TNF-α and IL-12, 

both pro-inflammatory TH1 cytokines, than the cells from BALB/c mice. BALB/c 

mice also failed to facilitate bacterial clearance in vivo (Watanabe et al., 2004). 

In one study, systemic infections of tumour-bearing mice in both C57BL/6 and 
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BALB/c strains were carried out with S. choleraesuis. The bacteria significantly 

inhibited tumour growth compared to the uninfected controls in both models, 

but the therapeutic effects of the bacteria were more apparent in the BALB/c 

model (Kuan & Lee, 2016). Given that there are such robust differences in the 

ability of these mice to respond to bacterial infection, it is tempting to 

speculate that the differential responsiveness observed in bacterial-mediated 

tumour inhibition is due to immune mediators. Therefore, in choosing just one of 

the strains for a study, it is possible to bias the results in favour of the strain’s 

phenotype, possibly masking other phenotypic responses explaining a given 

outcome. This was seen in a model of chemical induced asthma, where the 

mouse strain had considerable and variable impacts on a wide range of 

parameters pertaining to the asthma phenotype under evaluation (de Vooght et 

al., 2010). 

 

For experiments involving genetically manipulated mice, there are few available 

on the BALB/c background, whereas there is an abundance of genetically 

modified C57BL/6 mice. Therefore, the selection of the BALB/c strain would 

require the use of blocking antibodies alone to ablate specific cell types or 

functions, whereas the employment of the C57BL/6 mice allows for both this 

approach as well as genetic ablation. Furthermore, Kaede mice, whose green 

fluorescent cells can be photoconverted to Kaede red using UV light to enable 

tracking of cellular movement in vivo, are only available on the C57BL/6 

background (Ando et al., 2002; Torcellan et al., 2017).  

The most commonly employed cell line in the transplantable tumour model in 

C57BL/6 mice is the B16 cell line. This is a murine melanoma line which was 

created following the chemical induction of cancer in C567BL/6 mice (Fidler, 

1973). The most popular clones from this line are B16F1 and B16F10 (Fidler & 

Nicolson, 1976). The latter is characterised by high metastatic potential and 

aggressive growth. However, given the speed of cell growth in vivo with mice 

surviving only 2-4 weeks following tumour cell induction, there is limited scope 

for long-term analysis following therapeutic intervention (Sharma et al., 2015). 

B16F10 cells are highly immunogenic, with high levels of targetable epitopes 

associated with melanoma such as tyrosinase related protein 2 (TRP2) and gp100 

(Bloom et al., 1997). 
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Table 1.2 In vivo models employed in published bacterial-mediated cancer 
therapy studies 
Mouse strain Tumour cell 

type 
Bacterial species Bacterial 

strain 
 Reference 

BALB/c 
 

CT26 
 

S. Typhimurium 
 

SL7207 (Stern et al., 
2015; 
Crull et al., 
2010; Crull et 
al., 2011a; 
Crull et al., 
2011b; 
Leschner et 
al., 2009; 
Leschner et 
al., 2012;  

ATCC 14028 Jeong et al., 
2014) 

SF200 (Kocijancic et 
al., 2017) 

SL3261 
LB500 

(Yuhua et al., 
2001) 

E. coli 
 

Nissle 1917 (Lehourtis et 
al., 2015) 

TOP10 (Stern et al., 
2015) 
 

D2F2 S. Typhimurium VNP20009 (Loeffler et 
al., 2007; 
Loeffler et al., 
2009) 

4T1 
 

S. Choleraesuis ATCC 15480 (Kuan & Lee 
2015) 

RenCA 

 

S. Typhimurium SF200 
UK-1 

(Kocijancic et 
al., 2017) 

F1A11 S. Typhimurium SF200 
UK-1 

Kocijancic et 
al., 2017 

HepG2 S. Typhimurium SL7207 
 

(Li et al., 
2012) 

MC38 S. Typhimurium SHJ2037 (Zheng et al., 
2017) 

4T1 S. Typhimurium VNP20009 Ganai et al., 
2009) 

C57BL6 
 

B16F1 S. Typhimurium BRD509E (Kaimala et 
al., 2014) 

B16F10 
 

S. Typhimurium  VNP20009 (Loeffler et 
al., 2009; 
Chen et al., 
2012) 

SL3261AT (Avogadri et 
al., 2005, 
2008; Saccheri 
et al., 2010) 

BRD509E (Yoon et al., 
2011) 

SHJ2037 (Zheng et al., 
2017b) 

Clostridium noyvi C. novyi NT (Dang et al., 
2001) 
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Bifidobacterium 
breve 

UCC2003 (Cronin et al., 
2010) 

S. Choleraesuis Not specified (Lee et al., 
2011) 

LLC S. Typhimurium Sl1344 ΔinvA 
SL3261AT 
SL3261AT 
ΔinvA 

(Avogadri et 
al., 2005) 

EG7 L. monocytogenes 10403S (Lizotte et al., 
2014) 

ID8-
Defb29/Vegf-A  

S. Typhimurium A1 (Zhao et al., 
2005) 

Nude 
 

PC3 S. Typhimurium A1 
A1-R 

(Zhao et 
al.,2006) 

MARY-X  S. Typhimurium SL7207 
VNP20009 
YB1 

(Yu et al., 
2012) 

MDA-MB-231 S. Typhimurium A1-R 
VNP20009 

(Zhang et al., 
2015) 

LLC Clostria noyvi C. novyi NT (Dang et al., 
2001) 

HCT116 S. Choleraesuis Not declared (Lee et al., 
2008) 

C3H/HeN K175 S. Typhimurium SL1344 
ΔphoPQ 
SL1344 
ΔphoPQ ΔaroA 

(Danino et al., 
2012) 

A/J NXS2 S. Typhimurium SL7207 (Berger et al., 
2013) 
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1.6 Hypotheses and aims 

The intention of this thesis was to provide a more comprehensive overview of 

the changes in the tumour immune environment and cellular composition 

following systemic S. Typhimurium infection, with a specific focus on the 

monocyte/macrophage compartment. Furthermore, it was intended to enhance 

the anti-tumour effects of S. Typhimurium through transformation of the 

bacteria with a eukaryotic expression vector (tumour-associated antigen or 

immunostimulatory genes) destined for transfer to and expression in the tumour 

cells.  

As the development of a tumour model was novel to the laboratory group, it was 

first pertinent to develop a reproducible in vivo tumour mouse model. Following 

this, it was important to optimise the infection protocol which would allow for 

bacterial-mediated tumour growth inhibition, whilst preserving the welfare of 

the mice. It was hypothesised that S. Typhimurium would exhibit differential 

efficacy at different stages of tumour growth, so it was desired to characterise 

the time point at which the tumour growth inhibitory effects were maximal. It 

was believed that in doing so, we would increase the likelihood of identifying 

critical cellular and molecular mediators in the process of bacterial-mediated 

tumour growth inhibition.  

As the tumour is generally characterised as an immunosuppressive environment, 

and S. Typhimurium is highly immunostimulatory, it was hypothesised that 

systemic administration of the bacteria in a tumour-bearing mouse model would 

lead to a change in the inflammatory status in the tumour microenvironment, 

with a pro-inflammatory phenotype which is non-permissive to tumour 

progression (Bromberg et al., 1996; Wall et al., 2003). It was sought to 

investigate the cellular components of the innate and adaptive immune system 

which may be complicit in this phenotype. The innate immune responders of 

particular interest were neutrophils, macrophages and dendritic cells as these 

are implicated as critical players in response to oral S. Typhimurium infection 

(Wick, 2011). It was hypothesised that there would be a massive immune cell 

influx into the tumour following infection, as has been reported following oral 

infection and inflammatory settings (Barthel et al., 2003; Johansson et al., 

2006; Rydstrom & Wick, 2007; Rydström & Wick, 2009). Furthermore, it was 



Chapter 1 Introduction 
  

57 
 

hypothesised that the recruited cells would produce pro-inflammatory cytokines 

which would contribute to the inflammatory immune environment.  

The adaptive immune response was also an area of interest for this study. 

Various studies have suggested a role for TH1 cytokines in mediating anti-tumour 

immunity following bacterial infection (Lee et al., 2008; Stern et al., 2015). 

However, S. Typhimurium are also competent at inducing TH17 responses in the 

mucosa (Raffatellu et al., 2008) which have proven to be highly tumour 

protective in melanoma studies (Martin-Orozco et al., 2010; Muranski et al., 

2008). Furthermore, Tregs are associated with poor prognostic outcome for 

multiple cancer types, but can be stimulated to adapt TH1 and TH17 phenotypes 

following stimulation with pro-inflammatory cytokines such as IL-6 (Bettelli et 

al., 2006; Ghoreschi et al., 2010; Veldhoen et al., 2006). Therefore, it was 

hypothesised that TH17 responses, as well as TH1 responses, would be associated 

with S. Typhimurium-mediated tumour growth inhibition, which would coincide 

with decreased frequency of Tregs in the tumour.  

Tumour-associated macrophages (TAMs) are capable of stimulating multiple 

stages of tumour development (Qian & Pollard, 2010). They are also implicated 

in being critical for host defence to S. Typhimurium infection (Wick, 2011). 

Given this dual role, it was hypothesised that the TAMs would experience 

phenotypic changes following S. Typhimurium infection, resulting in cells that 

were no longer conducive to tumour growth and propagated anti-tumour immune 

responses. The TAM progenitors, monocytes, were suspected to play a role in 

these processes also. It was postulated that these cells were critical for the 

mediation of bacterial immune response. To test this hypothesis, it was 

endeavoured to remove the monocyte cellular compartment from the tumour 

microenvironment. 

The final aim of this thesis was to investigate the ability of multiple strains of S. 

Typhimurium to mediate bactofection. It was hypothesised that the 

transformation of the bacteria with eukaryotic expression plasmids encoding 

immunostimulatory or apoptotic genes would enhance the therapeutic outcome 

of S. Typhimurium as a bacterial mediated cancer treatment both in vitro and in 

vivo.



  

 

2 Methods and Materials 

2.1 Animals 

Animals were maintained at the Central Research Facility (CRF) and the Joint 

Research Facility in the University of Glasgow, except for initial training which 

was undertaken in the Animal Facility in the Beatson Institute for Cancer 

Research. Female, 7-9 week old C57BL/6 mice were obtained from Charles 

River. Ccr2-/- mice, bred in the CRF, were kindly provided by Prof Simon Milling, 

having been originally purchased from Jackson Laboratories (Maine, USA). Kaede 

mice, bred in the CRF, were also kindly provided by Prof Simon Milling. All 

animal procedures were carried out in keeping with Home Office regulations 

(Project License No. 70/8584). Animal welfare was in keeping with guidelines 

laid out by the NC3Rs and in Workman et al, (2010). 

2.2 Bacterial strains, plasmids and cancer cell lines 

Full details of bacterial strains used in this study are listed in Table 2.1. 

Bacterial cultures were maintained on Luria broth (LB) agar, supplemented with 

antibiotics as appropriate at the following concentrations: kanamycin, 50 µg/ml; 

ampicillin, 100 µg/ml; chloramphenicol, 500 µg/ml or erythromycin, 50 µg/ml. 

 

Table 2.1 Details of bacterial strains used in this study 
S. Typhimurium Relevant genotype Source/Reference 

VNP20009  S. Typhimurium ΔpurI 

Δmsb 

Kindly provided by Dr John 

Pawelek (Yale University) 

SL7207  S. Typhimurium ΔaroA  Kindly provided by Dr Siegfried 

Weiss (Helmholtz Centre for 

Infection Research) 

LT2  Laboratory S. 

Typhimurium strain 

Kindly provided by Dr Gillian 

Douce (University of Glasgow) 

SL1344  hisG mutant of 4/74 Kindly provided by Dr Gillian 

Douce (University of Glasgow)  

(Hoiseth & Stocker, 1981) 

JH3010  SL1344 prgH’-gfp Kindly provided by Prof Jay 
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JH3016  SL1344-rpsM’gfp Hinton (University of Liverpool). 

(Hautefort et al., 2003) 

Escherichia coli    

K12  Laboratory E. Coli strain Kindly provided by Dr Andrew Roe 

(University of Glasgow) 

LF82  Adherent Invasive E. Coli Kindly provided by Prof Daniel 

Walker (University of Glasgow) 

F18  Commensal E. coli Kindly provided by Prof Beth 

McCormick (Ormsby et al., 2016) 

DH5α See manufacturer’s 

instructions 

NEB C2987 

StrataClone 

SoloPack 

competent cells 

See manufacturer’s 

instructions 

Agilent 

 

Plasmids are detailed in the Table 2.2. Electrocompetent cells were transformed 

by electroporation with Eppendorf Eporator® at 1.75 kilovolts with a discharge 

time of 5.0 milliseconds. Chemically competent cells were transformed by heat 

shock at 42˚C for 30 seconds. Following transformation, samples were recovered 

on ice for two minutes. Samples were then supplemented with 950 µl of warmed 

LB and incubated at 37˚C (unless otherwise stated) for 1 hour, before being 

plated out on antibiotic-containing LB agar. 

 

MDA-MB-231 cells were obtained from American Type Culture Collection and 

were maintained in Roswell Park Memorial Institute (RPMI)-1640 (Gibco®, 12633) 

supplemented with 10% foetal calf serum (FCS), 1 mM L-glutamine, 2 mM sodium 

pyruvate and 100 I.U/ml penicillin/streptomycin (all Sigma) at 37°C and 5% CO2. 

B16F10 and B16F10-mCherry cells were kind gifts from Prof Gerry Graham 

(University of Glasgow) and were maintained in Dulbecco’s Modified Eagle Serum 

(DMEM; Gibco®, 12491) supplemented with 10% FCS, 1 mM L-glutamine, 2 mM 

sodium pyruvate and 100 I.U/ml penicillin/streptomycin at 37°C and 5% CO2. 

The B16F10-mCherry cells also required the addition of blasticidin (ThermoFisher 

Scientific, R21001) at a final concentration of 6 µg/ml and Geneticin® G418 

sulphate (ThermoFisher Scientific, 10131035) at a final concentration of 0.25 

mg/ml. 
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Table 2.2 Details of plasmids used in this study 
Plasmid Function Features Source 

pEGFP Eukaryotic expression 

vector 

Enhanced green 

fluorescent protein 

under the control of 

eukaryotic 

promoter, 

cytomegalovirus 

Addgene 17700 

pUC19 High copy number 

plasmid 

Source of lacZ gene 

pUC19 origin of 

replication 

LacZ gene 

New England 

Bioscience 

pLuc Eukaryotic expression 

vector similar to pEGFP  

Ampicillin 

resistance, 

luciferase 

transgene 

Addgene, 45968 

pCP25 Prokaryotic GFP 

reporter plasmid 

Constitutive 

prokaryotic GFP 

expression 

(Jensen & 

Hammer, 1998) 

rpsmGFP Prokaryotic GFP 

reporter plasmid 

Constitutive 

prokaryotic GFP 

expression 

(Roe et al., 

2004) 

pEGFPLacZ Test if removal of f1 ori 

from pEGFP abrogates 

filamentous phenotype 

pEGFP lacking f1 ori This study 

pACYC-EGFP Test if EGFP can drive 

filamentation in 

pACYC184 

rpsmGFP plasmid 

plus EGFP transgene 

from pEGFP 

This study 

 

2.3 Bacterial growth, cell culture and infection  

2.3.1 Bacterial growth curves 

Bacteria were grown overnight in LB, 37˚C at 180 revolutions per minute (rpm) 

in a shaking incubator (IKA, KS 4000). In the morning, bacteria were back diluted 

to an OD600 of 0.05 in 50 ml of LB culture, supplemented with antibiotics where 
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appropriate. Cultures were allowed to grow as before with OD600 readings taken 

at regular intervals. 

2.3.2 In vitro monolayer infection and harvest 

B16F10 cells were seeded at a concentration of 5x105 cells/well of a 6-well plate 

(Corning®) in RPMI supplemented with 3% FCS and 1% L-glutamine (3% media) 24 

hours prior to infection. Bacterial cultures were prepared similarly to the in 

vitro growth curve, except 90-120 minutes following back dilution, when 

cultures were at an OD600 of 0.6, 100 µl of the culture was added to 3 ml of 3% 

media. For the uninfected control, 100 µl of LB culture was added to another 

bijou of 3 ml 3% media. At the time of infection, wells were removed of media 

and washed twice with PBS to remove debris. Each well received 900 µl of 3%, 

plus 100 µl of bacterial culture or control culture. Cells remained infected for 

one hour at which point wells were washed three times with 3% media 

supplemented with 50 µg/ml of gentamycin. Following these washes, cells were 

incubated with 1 ml of the gentamycin 3% media until harvest.  

For colony forming unit (CFU) counts, cells were washed three times with PBS 

before 200 µl of 3% TritonTM X-100 (Sigma) in PBS was added to each well to lyse 

the cells. Cells remained at room temperature for 10 minutes, with lysates being 

pipetted up and down to improve cell lysis before being removed to ice. From 

the lysate, 20 µl was transferred to 180 µl of PBS in a 96-well plate (Corning®), 

which was serially diluted in PBS seven times. Each dilution was plated out twice 

in two 10 µl spots on LB agar plates with an appropriate antibiotic. LB agar 

plates were incubated overnight and colonies were counted the next morning.  

2.4 Gram staining and bacterial cell length measurement 

For Gram stains, all cultures were grown to mid-late log phase before being heat 

fixed on glass slides (VWR) and gram stained using Fluka Analytical Gram Stain 

Kit (77730). Briefly, smears of bacteria on glass slides were flooded with Gram’s 

crystal violet solution for one minute, one minute with Gram’s iodine solution, 

five seconds with Gram’s decolourizer solution and counterstained with Gram’s 

safranin solution for one minute. Between each of these steps, the slides were 

gently washed with tap water to remove excess solution, before slides were 
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allowed to dry overnight. Slides were imaged on a Leica DM2000 microscope. 

Three biological replicates were imaged, with at least 10 images per slide being 

taken. Cell length calculation was performed using the Measurement PlugIn on 

ImageJ (National Institutes of Health).  

 

2.5 Harvesting bacteria for fluorescent imaging 

Bacterial strains were grown overnight as before. In the morning, cultures were 

back diluted and grown to an OD600 of ~0.6. At this time, 1 ml of culture was 

centrifuged at 8,000 g for 3 minutes, washed twice in PBS before being fixed in 

4% paraformaldehyde (PFA) at room temperature for 15 minutes. Samples were 

washed twice more in PBS before being dried onto coverslips and mounted onto 

glass slides with DAPI-containing mounting media (VWR). Images were taken 

using a Leica DMi8 fluorescent microscope.  

At least three biological replicates were imaged for each strain, with at least 10 

images per coverslip. Images were analysed using the CellCounter PlugIn on 

ImageJ.  

 

2.6 In vitro cell death analysis 

Bacteria and B16F10 cells were prepared as in Section 2.3.2. As a positive 

control for B16F10 cell death, staurosporine (final concentration 1 µM, Sigma) 

was added to a well. At the time of harvest, B16F10 cell supernatants were 

transferred to labelled 15 ml centrifuge tubes. Wells were washed with PBS 

twice. B16F10 cells were treated with 200 µl Tryspin-ethylenediaminetetraacetic 

acid (EDTA; 0.25%) (Gibco®) and incubated at 37˚C for 5 minutes to ensure 

dissociation. The Trypsin-EDTA was neutralised with 2 ml of 3% media and the 

cells were transferred to their respective tubes. B16F10 cells were centrifuged 

at 500 g for 5 minutes. B16F10 cells were then resuspended in Fixable Viability 

Dye eFluor® 780 (eBioscience, 65-0865-14) in PBS (dilutes 1:1000) for 20 minutes 

on ice in the dark. Viability was then measured using a LSRII flow cytometry 

analyser (BD Bioscience). 
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2.7 Tumour spheroid generation in vitro and infection 

Tumour spheroids were generated by seeding 5 x 105 MDA-MB-231 cells per well 

in 200 µl of cell media supplemented with 2.5% Matrigel® (Corning®, 354230; 

Ivascu & Kubbies, 2006) in Corning® 96-well clear bottom ultra-low attachment 

microplates (Corning®, 7007). Plates were centrifuged at 1,000 g for 5 minutes 

to promote cellular aggregation. After 9 days in culture, with media changes 

every other day, tumour spheroids of approximate diameter 500 µm were 

formed. Single colonies of S. Typhimurium were grown as described previously. 

Cultures were diluted appropriately and 100 µl was added per tumour for an MOI 

of 100:1. Spheroids were incubated with bacteria for 1 hour before 100 µl of 100 

µg/ml gentamycin (2X) was added to each well to kill extracellular bacteria. 

Tumour spheroids were incubated at 37°C for 24 or 48 hours before being 

subject to further processing. 

 

2.8 Harvesting tumour spheroids  

At the time of harvest, tumour spheroids were carefully removed from the well 

using a Pasteur pipette and passed through two washes of PBS. 

2.8.1 Fluorescent imaging to investigate bacterial invasion and 
bactofection 

For cryofixation, spheroids were placed in cryomoulds filled with Optimal 

Cutting TemperatureTM (OCT) solution and frozen on dry ice. Samples were 

stored at -80˚C until further processing.  

Samples were placed in the cryotome (ThermoScientific) and were brought to -

16˚C for 30 minutes before being cut into 8 µm sections. Samples were allowed 

to come to room temperature. Samples were fixed on the coverslip in 4% PFA for 

15 minutes, washed twice with PBS. Slides were then incubated with rhodamine 

phalloidin stain (diluted 1:20) for 5 minutes at room temperature. 

(ThermoScientific, R415) before being washed in PBS twice and mounted in 

DAPI-containing mounting media (VectaShieldTM). Images were taken using a 

Leica DMi8 fluorescent microscope.  
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2.8.2 Scanning electron microscopy to investigate bacterial 
localisation 

Following the PBS washes, samples were incubated in 4% PFA for 30 minutes at 

room temperature before being washed in two changes of PBS. Transmission 

electron microscopy (SEM) sample preparation and imaging was carried out by 

Mrs Margaret Mullin. The spheroids were fixed for one hour in 2.5% 

glutaraldehyde/2% PFA in 0.1 M sodium cacodylate buffer before being washed 

three times in 0.1 M sodium cacodylate buffer alone (Sigma G5882, C0250). 

Following fixation, cells were rinsed in 1% osmium tetroxide buffer (Sigma, 

75633), then rinsed three times in distilled water and stained with 0.5% uranyl 

acetate (TAAB, U001) for one hour in the dark. Spheroids were dehydrated 

through an ethanol series of 30%, 50%, 70%, 90% (10 minutes each), 100% (5 

minutes, four times) followed by dried 100% ethanol (5 minutes, four times). 

Spheroids then underwent critical point drying from liquid CO2 using a Polaron 

E3000 Critical Point Dryer to preserve the structure of the samples. Spheroids 

were mounted onto aluminium pin stubs, gold/palladium coated (20 nm thick) 

using a Q150T high vacuum Sputter coater (Quorum Technologies). The SEM 

samples were viewed on a Jeol6400 SEM, running at 10 kV and images were 

captured using Olympus Scandium software. 

2.8.3 Transmission electron microscopy to investigate biofilm 
formation 

Tumour spheroids were prepared as above. Scanning electron microscopy (SEM) 

sample preparation and imaging were carried out by Mrs Margaret Mullin. The 

spheroids were processed as in Section 2.8.3 to the end of the ethanol series. At 

this time, the samples were changed in propylene oxide (five minutes, three 

times). Spheroids were left in 1:1 propylene oxide:araldite/Epon (TAAB 812) 

resin overnight. The following morning, spheroids were changed through the 

resin twice and left rotating for five hours. Samples were then embedded in 

fresh resin in moulds and polymerised at 60˚C for 14 hours. Semi-thin sections 

(350 nm) were cut using a Leica Ultacut UCT Ultramicrotome with a diamond 

Histo-knife (Leica). Sections were dried on a glass sile on a hot plate (80˚C) 

before being stained with Toluidine Blue (Sigma, 89640) for 15-30 seconds and 

washed in distilled water. Ultrathin sections (60-70 nm) were also cut, using a 

diamond Ultramictrotome knife (Leica) and collected on 100 mesh Formvar-
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coated copper grids (Agar Scientific) before being contrast stained with 2% 

methanolic uranyl acetate for five minutes and Reynolds lead citrate for five 

minutes (Agar Scientific, AGR1210). The TEM samples were viewed on a FEI 

Tecnai TF20 TEM running at 300 kV. Images were captured using Gatan Digital 

Micrograph software and a Gatan Multiscan 794 camera. 

2.9 Generation of bioluminescent SL7207 strain  

The bioluminescent strain of SL7207, termed SL-Lux, was generated according to 

the protocol described previously (Riedel et al., 2007). SL7207 was made 

competent by five washes with 10 ml ice cold distilled H20. SL7207 was then 

transformed with p16Slux and transformants were obtained by plating on agar 

plates containing 500 µg/ml erythromycin at 30˚C (permissive temperature for 

plasmid replication) for 24-48 hours. Colonies were checked for light emission 

using the In vivo Imaging System (IVIS) Spectrum (Caliper Life Sciences). Positive 

clones were grown overnight in LB containing 500 µg /ml erythromycin at 30˚C. 

The next morning, cultures were back diluted and incubated overnight at 42˚C 

(non-permissive temperature to force 16Slux to integrate into the chromosome 

by homologous recombination). Samples were plated out on LB agar 

supplemented with 500 µg /ml erythromycin, and left to grow at 42˚C overnight. 

Colonies positive for light emission using the IVIS were subjected to colony 

polymerase chain reaction using the primers listed in Table 2.4. 

2.10 B16F10 transplantable model and SL7207 infection 
protocol 

B16F10 cells were split 1:4 24 hours pre tumour induction to ensure consistent 

cell confluency. Cells were washed in PBS before being incubated at 37˚C for 3 

minutes in 0.05% Trypsin-EDTA to ensure complete cell dissociation. This was 

neutralised with 5 ml of cell culture media (DMEM supplemented with 10% FCS 1 

mM L-glutamine, 2 mM sodium pyruvate and 100 I.U/ml penicillin/streptomycin). 

Cells were centrifuged at 1,000 g for 3 minutes at room temperature before 

being suspended in PBS. Cells were counted using a Bright-LineTM hemocytometer 

(Sigma), and cell solutions of defined cell density were made up in cold PBS. 

Cells were transferred on ice for transport to the relevant animal facility.  
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Mice were shaved along their right flank. The cell solution was drawn into a 1 ml 

syringe (BD PlastipakTM) with a 25 gauge needle (Medisave, Teruno AGANI, AN-

2516R). From this, 200 µl of cell suspension was injected subcutaneously in the 

back right flank of the mouse, where a bolus temporarily formed. Tumours were 

allowed to develop over a set number of days. Mice were monitored regularly 

and tumour diameters were measured using Fisher Science Education 

TraceableTM Digital Carbon Fiber Calipers. Tumour volumes were calculated 

using the formula: 4/3π(hxw2/8) where ‘h’ was height and ‘w’ was width (Crull 

et al., 10).  

For in vivo infection, SL7207 was prepared as per the in vitro infection 

protocols. When the OD600 reached ~0.6, the appropriate volume of culture was 

added to ice cold PBS to generate a defined concentration of either 5x105 

CFUs/100 µl or 5x106 CFU/100 µl. Cultures were incubated on ice for transport 

to the relevant animal facility. Mice were warmed in a heating chamber for 30 

minutes at 38˚C prior to infection. Mice were infected with 100 µl of bacterial 

culture via their tail vein. Mice were weighed daily. 

2.11 In vivo imaging of SL-Lux 

Mice were anaesthetised using 4% isofluorane in 100% oxygen in an anaesthetic 

chamber. Mice were placed in the IVIS and images were acquired for 10-120 

second exposures, small or large binning depending on the amount of light 

produced, 1 f/stop and an open filter. The amount of time mice spent under 

anaesthesia did not surpass 20 minutes. 

2.12 In vivo tissue harvest following infection for CFU 
counts 

Mice were sacrificed using cervical dislocation. Tissues, tumour, spleen and 

liver, were carefully resected and placed in ice cold PBS. Tissues were weighed. 

Tissues were then placed in 1-2 ml of PBS in 5 ml bijoux and homogenised (OMNI 

International Inc., TM125-220). Homogenates were subject to serial dilution in 

PBS as above. These dilutions were plated out on LB agar. The volume of the 

homogenate was assessed using pipettes. Plates were checked for 

bioluminescent light emission to ensure SL-Lux isolation. 
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2.13 Hematoxylin and eosin staining of tumour sections 

Mice were sacrificed using cervical dislocation. Tumours were carefully resected 

and placed in cryomoulds containing 2.5% carboxymethylcellulose in water 

(Sigma). Tumours were frozen in a slurry of crushed dry ice and ethanol. 

Samples were stored at -80˚C until processing. Slides were fixed in ice cold 75% 

acetone, 25% ethanol for 10 minutes. Slides were stained in Harris Hematoxylin 

Solution (Sigma, HHS16) for two minutes followed by three minutes in running 

water. The samples were differentiated in 1% acid/alcohol briefly, running 

water, Scotts Tap Water Substitute (Atom Scientific, RRSP192-D) and running 

water again. Slides then counterstained with 1% Eosin Solution Y (Sigma, 

HT110132) for two minutes followed by a brief wash in running water. Sections 

were dehydrated by three-minute changes in 70% ethanol, 90% ethanol, 100% 

ethanol (x 2) and xylene (x 2). Sections were mounted with coverslips from 

xylene (Sigma) with DPX mountant (Sigma). Slides were left to dry overnight 

before being imaged using a Leica DM2000 microscope. The processing of 

samples for hematoxylin and eosin staining was performed with Heather Hulme. 

2.13.1 Tissue harvest and digest 

Mice were sacrificed using cervical dislocation. Tissues were carefully resected, 

weighed if necessary and placed in ice cold PBS. Tumours were then transferred 

to digestion media composed of 3 mg/ml Collagenase A (Sigma, 10103586001) 

and 25 µg/ml DNAse I (Sigma, 10104159001) in DMEM as in (Coffelt et al., 2015). 

Lymph nodes and spleens were transferred to digestion media composed of 

Liberase TM (Sigma, 5401119001) and 50 µg/ml DNAseI in RPMI supplemented 

with 1% v/v L-glutamine and 0.1% v/v β-mercaptoethanol (Sigma, M6250). All 

tissue was digested at 37°C for 30 minutes before being passed through a 70 µm 

strainer (VWR, 734-0003) and neutralized with 8% FCS-DMEM buffer. 

Alternatively, for T cell specific analysis, tissues were directly minced through 

100 µm strainers. Tumour and spleen cells were treated with 1 ml red blood cell 

lysis buffer (Sigma, 11814389001) for 5 minutes at room temperature, 

neutralised with 10 ml of 8% FCS-DMEM and were centrifuged. Cells were 

resuspended in flow cytometry buffer (FB): 2% FCS, 3 nM EDTA (Sigma, E9884) in 

PBS. A portion of the cells were counted using Trypan Blue exclusion dye (Sigma, 

T8154).  
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2.13.2 Intracellular cell stimulation 

Single cell suspensions were washed and resuspended in FB. For intracellular 

cytokine analysis, cells were resuspended in 500 µl of eBioscienceTM Cell 

Stimulation Cocktail (plus protein transport inhibitors) (00-4975-93) in RPMI 

media supplemented with 10% FCS, 1% L-glutamine and 0.01% β-

mercaptoethanol. These cells remained at 37˚C, 5% CO2 for four hours before 

being washed in FB, centrifuged and subjected to surface and intracellular 

staining protocols described below. 

 

2.13.3 Surface staining 

Single cell suspensions were washed and resuspended in FB. Cells were first 

stained in Fixable Viability Dye eFluor® 780 in PBS for 15-20 minutes on ice (note 

that all steps involving fluorophores were carried out protected from light). 

Following this incubation, cells were washed in 5 ml of FB and centrifuged. Cells 

were resuspended in their residual buffer before being incubated with anti-

CD16/CD32 (‘Fc Block’) to reduce non-specific binding to Fc receptors 

(Biolegend). After 5 minutes, 100 µl of extracellular antibody mixes (final 

dilution of 1:200 for each) were added to the cells 20 minutes on ice before 

being washed with PBS and pelleted. If cells were required for intracellular 

staining, they were resuspended in 500 µl of Fix/Perm Buffer (eBioscience, 

Foxp3/Transcription Factor staining buffer set, 00-5523-00) overnight at 4°C. If 

they were not, they could be analysed using the FACS AriaIII, LSRII analyser or 

Fortessa analyser (all BD Biosciences). All data generated was analysed using 

FlowJo software (Tree Star Inc, Oregon, USA). 

 

2.13.4 Intracellular staining 

Following overnight incubation in Fix/Perm buffer, cells were washed twice with 

2 ml Perm Buffer (eBioscience, Foxp3/Transcription Factor staining buffer set, 

00-5523-00). Cells were then resuspended in 200 µl of Perm Buffer supplemented 

with intracellular antibodies (1:200) for 1 hour in the dark. Appropriate isotype 

controls for intracellular stains were included in all experiments. 
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2.13.5 Assessment of phagocytosis 

To measure the phagocytic capacity of myeloid cells, in a 1.5 ml microcentrifuge 

tube, 80 µl of whole tumour single cell suspensions were co-incubated with 20 µl 

of pHrodoTM Red E. coli BioparticlesTM (ThermoFisher Scientific, P35361) for 15 

minutes at 37˚C. For each sample, a duplicate tube was incubated on ice as a 

negative control for phagocytosis. Cells that had phagocytosed the particles 

were positive for phycoerythrin (PE) when analysed by flow cytometry. 

Table 2.3 Antibodies used for flow cytometry 
 

Marker Cell type Clone Company 

Extracellular stains 

CD11b Myeloid cells HK1.4 Biolegend 

CD11c Primarily DCs N4/18 Biolegend 

F4/80 Primarily 

Monocytes/macroph

ages 

BM8 Biolegend 

CD206 ‘Resident’ 

macrophages or 

‘M2-like’ 

macrophages 

C068C2 Biolegend 

Ly6G Primarily 

neutrophils 

1A8 Biolegend 

MHCII Antigen presenting 

cells 

M5/114.15.2 Biolegend 

CD45 Common leukocyte 

marker 

30-F11 Biolegend 

CD3 T cells 17A2 Biolegend 

CD4 CD4+ T cells GK1.5 Biolegend 

CD8 CD8+ T cells 53_6.7 Biolegend 

CD25 Activated T cells PC61 Biolegend 

CD44 Activated T cells IM7 Biolegend 

CD69 Activated T cells H1.2F3 Biolegend 

Ly6C Monocytes HK1.4 eBioscience 
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SiglecF Eosinophils E50-2440 (Ruo) BD Biosciences 

Intracellular stains 

Ki67 Recently replicated 

cells 

16A8 Biolegend 

FoxP3 Treg transcription 

factor 

FJK-16S eBioscience 

RORγT TH17 transcription 

factor 

AFKJS-9 eBioscience 

Tbet TH1 transcription 

factor 

eBio4B10 eBioscience 

γδTCR γδT cells eBIOGL3 eBioscience 

IL17A TH17 cytokine BD_TCII-18H10 BD Biosciences 

IFNγ TH1 cytokine 554413 BD Biosciences 

IL-6 TH1 cytokine MP520F3 BD Biosciences 

TNF-α TH1 cytokine MP6-XT22 Biolegend 

IL-22 TH1/TH17 cytokine Poly5164 Biolegend 

IL-12/23 TH1 cytokine C15.6 Biolegend 

Pro-IL-1β TH1 zymogen NJTEN-3 eBioscience 

 

2.14 Immunoblot analysis  

2.14.1 Immunoblot analysis of prokaryotic cells 

For prokaryotic immunoblot assays, bacterial strains were grown as described. 

Some were treated with Mitomycin-C (Sigma, M4287) at a concentration of 5 

µg/ml for 4 hours at 30°C, 120 rpm. Cells were harvested at mid-late log phase 

and washed twice in PBS, before being centrifuged and frozen at -80˚C 

overnight. The next morning, cells were resuspended in bacterial lysis buffer (50 

mM Tris pH 8.0, 10% v/v glycerol, 0.1% Triton X-100, 100 µg/ml lysozyme, DNAseI 

(3 U/ml), 2 mM MgCl2, cOmpleteTM Mini (EDTA-free) Protease Inhibitor Cocktail 

(Sigma 11836170001), sonicated at 10 mAmps for 30 seconds three times, 

syringed five times using a 26G needle to shred DNA and centrifuged at 16,000 g 

to harvest the protein-containing supernatant. Protein concentrations were 

determined using a PierceTM BCA Protein Assay Kit (ThermoFisher Scientific). 
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Briefly, 25 µl of lysate was added to a well of a 96-well plate in triplicate 

including the provided protein standards (ranging from 0 to 2000 µg/ml). To 

each well, 200 µl of Working Reagent (50:1, Reagent A: B) was added and the 

96-well plate was incubated at 37°C for up to 1 hour. Absorbance was measured 

at 562 nm on a FLUOstar OPTIMA Microplate reader (BMG Labtech). Using the 

protein standards to create a standard curve, protein concentrations of samples 

were determined. Equal amounts of protein were resolved on a 4-12% Bis-Tris 

SDS Page gel (Life Technologies) before being transferred to a nitrocellulose 

membrane using a ThermoScientific PierceTM Powerblot Cassette. Membranes 

were blocked in 5% milk in PBS-Tween (PBS-T) (0.05%) for 1 hour prior to 

incubation with a primary antibody against either RpoS (Biolegend, Clone 1RS1, 

663703), RecA (Abcam, ab63797) or GroEL (Abcam, ab90522) overnight at 4°C. 

Membranes were washed using PBS-T three times before being incubated with a 

rabbit-horse radish peroxidase (HRP) secondary antibody (ThermoFisher 

Scientific, 31460) for 1 hour at room temperature. Membranes were again 

washed three times using PBS-T before being developed using a Licor C-DiGit® 

Blot Scanner.  

2.14.2 Immunoblot analysis of eukaryotic cells 

For eukaryotic immunoblot assays, MDA-MB-231 cells were infected with SL7207 

wild type or SL7207-pEGFP for 24 hours as described above. At harvesting, cells 

were washed with PBS three times before being lysed by 200 µl of eukaryotic 

lysis buffer (2% Triton in PBS supplemented with cOmpleteTM Mini (EDTA-free) 

Protease Inhibitor Cocktail, syringed five times using a 26G needle to shred DNA 

and centrifuged at 16,000 g to harvest the protein-containing supernatant. 

Protein concentrations were determined using a PierceTM BCA Protein Assay Kit, 

ThermoFisher Scientific. Samples were resolved on a 4-12% Bis-Tris SDS Page gel 

as described above. Membranes were processed as described above using a GFP 

(Abcam, ab13970) primary antibody and an anti-chicken-HRP secondary antibody 

(Abcam, ab6753). 

 

2.15 Enzyme-linked immunosorbent assay (ELISA) 

For the sandwich ELISA protocol, supernatants were harvested from tumour cell 

suspensions which were stimulated in vitro with eBioscienceTM Cell Stimulation 
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Cocktail (00-4970-93) in RPMI media supplemented with 10% FCS, 1% L-glutamine 

and 0.01% β-mercaptoethanol for four hours. Supernatants were normalised to 

protein concentration before being subject to an ELISA protocol or TNF-

α (Biolegend, 430901), IL-17 (Biolegend, 432501) or IFN-γ (Biolegend, 430801), 

according to the manufacturer’s instructions. Briefly, ELISA plates (NuncTM 

MaxisorpTM, 442404) were coated overnight with 100 µl of the relevant capture 

antibody at 4˚C. Plates were washed three times with 0.05% PBS-T and 

incubated with 200 µl of Blocking Solution for one hour at room temperature 

before being washed three times. Samples were then added to the plates, 100 µl 

of each in duplicate, as well as the dilute standards. Plates were incubated for 

two hours at room temperature before being washed three times with PBS-T. 

Following these washes, Avidin-Horseradish peroxidase conjugate in Blocking 

Buffer (1:500 dilution) was added to each well and incubated at room 

temperature for 30 minutes, before plates were stringently washed five times 

with PBS-T. TMB Substrate Reagent (1:1 mixture of Reagent A and Reagent B) 

was added to each well in 100 µl for up to 60 minutes for colour development. 

The optical density of the plates was read at 450 nm on FLUOstar OPTIMA 

Microplate reader (BMG Labtech). 

2.16 Photoconversion of immune cells in Kaede mice 

Kaede mice cells constitutively express a green fluorescent protein from a stony 

coral, Trachyphyllia geoffroyi, and can be photoconverted to a red fluorescent 

protein following exposure to light in the range of 350-405 nm (Ando et al., 

2002). Kaede mice were inoculated with B16F10 tumours as described above. 

Photo-conversion of the Kaede mouse tumours was performed using a small 

mains operated 123xS06J bluray diode with a 405-G-2-glass lens (DTR’s Laser 

Shop). The 405 nm laser diode operated at 600-650 mW. The emission spectrum 

lies at 405 nm and the diode was not run for more than 10 seconds to protect 

the tissue. There were two exposure protocols examined in the current study. 

The first involved the exposure of the tissue to a UV light source for three 

seconds, three times with five-second breaks between exposures (termed 

Protocol 1). The second involved one ten second exposure, followed by four five-

second exposures with five-second breaks between exposures (termed Protocol 
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2). For the infection protocol, Protocol 2 was employed one day prior to 

infection. Tumours were then harvested at three dpi. 

2.17 Clodronate-mediated depletion of monocytes and 
macrophages 

C57BL/6 mice were inoculated with B16F10 tumour cells as described above. At 

four days prior to infection, mice were administered 100 µl of Clodronate 

Liposomes (Clod Lipo; Liposoma) via tail vein (Rooijen & Sanders, 1994; Weisser 

et al., 2012). This transpires to an approximate concentration of 0.5 mg/20 g 

mouse weight. At 1 day prior to infection, 1 dpi, 3 dpi and 5 dpi, mice received 

200 µl Clod Lipo. At these time points, control PBS Lipo was also administered to 

control PBS Lipo mice. At 7 dpi, tissues were harvested and processed as 

described. 

2.18 Generation of the pACYC-EGFP plasmid 

2.18.1 Plasmid isolation (Miniprep) 

In order to perform molecular cloning, template plasmids first had to be isolated 

from bacteria, using QIAprep® Spin Miniprep Kit (Qiagen). Briefly, bacterial 

strains containing the plasmid of interest, pACYC184, had to be grown up 

overnight in 10 ml LB culture. Bacterial cultures were pelleted following 

centrifugation at 6,800 g for 3 minutes. Pellets were resuspended in 250 µl of 

Buffer P1 (resuspension buffer) before being transferred to a microcentrifuge 

tube and 250 µl of Buffer P2 was added to lyse bacteria and release plasmid 

DNA. Lysates were neutralised by adding 350 µl of Buffer N3 before being 

centrifuged in a table top microcentrifuge (ThermoScientific, Heraeus Fresco 21) 

at 17,900 g for 10 minutes. The DNA-containing supernatant was poured into a 

QIAprep spin column for a 1 minute centrifugation to bind plasmid DNA to the 

column. The column was washed by adding 500 µl of Buffer PB, centrifuged as 

before, washed with 700 µl of Buffer PE and again, centrifuged as before. The 

column was then inserted into a fresh collection tube before being centrifuged 

for 5 minutes at 17,900 g to remove any residual liquid. Finally, 50 µl of distilled 

water was added to the column, the column was placed in a fresh 1.5 ml 
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microcentrifuge tube and incubated at room temperature for 10 minutes before 

being centrifuged to elute the plasmid DNA in distilled water. DNA quantification 

was carried out using a NanoDropTM 2000/2000c.  

 

2.18.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) was carried out under standard conditions using 

the Q5® High-Fidelity DNA Polymerase kit (NEB, M0491L). The primers employed 

for the amplification of the EGFP transgene are listed in Table 2.4. Reaction 

mixtures comprised a final concentration 1X reaction buffer, of 0.5 µM of each 

primer, 0.2 mM of each deoxyribonucleoside triphosphate (dNTP), contained 20-

50 ng template DNA, 0.2 units/µl polymerase and nuclease-free water. The 

reaction cycle was carried out in a thermocycler (Techne, TC-412) and is 

outlined in Table 2.5. 

Table 2.4 Primers used in this study 
Primer name Purpose Sequence 

16S_rev_XhoI 

16S_fwd_int 

Check 

primers for 

16Slux 

chromoso

mal 

integration 

CTGATCTCGAGGGC GGTGTGTACAAGG  

CTGATGAATTCCAGGTGTAGCGGTGAAATG  

Plasmid: 

pEGFPLacZ 

  

pEGFP (w/o f1 

ori) F 

Amplificati

on of 

vector 

backbone 

CTGGGGTGCCTAATGAGTGATTTTATGTTTCAGGTT

CAGGGG 

pEGFP (w/o f1 

ori) R 

Amplificati

on of 

vector 

backbone 

GGTTTTCACCGTCATCACCGCAATTAGTCAGCAACCA

GGTG 

LacZ F Amplificati

on of 

TCACTCATTAGGCACCCCAG 
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insert 

LacZ R Amplificati

on of 

vector 

backbone 

CGGTGATGACGGTGAAAAC 

Plasmid: 

pACYC-EGFP 

  

EGFP F Amplificati

on of CMV-

EGFP 

CTGCATTAATGCGTTACATAACTTACGGTAAATGG 

EGFP R Amplificati

on of CMV-

EGFP 

CGACGCATGCACGCGTTAAGATACATTGATGAGTT 

 

Table 2.5 PCR programme for DNA amplification 
PCR Step Temperature (˚C) Time (minute) No. Cycles 

Initial 

denaturation 

95 5 1 

Denaturation 95 1 30 

Annealing 55 1 30 

Elongation 72 1 30 

Final elongation 72 7 1 

2.18.3 Restriction digest 

pACYC184 was digested with AseI and SphI to generate a 1.5 kilo base (kb) 

fragments for a new plasmid (pACYC-EGFP). DNA was digested with the 

FastDigest Green Buffer system (ThermoFisher Scientific). Reaction mixtures 

composed of 1X FastDigest Green Buffer, one unit of each restriction 

endonuclease, 100 ng of template DNA and dH20. Samples were incubated in a 

37˚C water bath for 15 minutes before being removed to ice.  
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2.18.4 Agarose gel electrophoresis 

Agarose gel electrophoresis was employed for the visualisation of DNA following 

PCR or restriction digest. A working solution of buffer containing Tris, acetic 

acid, EDTA (TAE) was prepared by dilution of 50x TAE (242 g Tris base, 57.1 ml 

acetic acid, 100 ml 0.5 M EDTA pH 8.0 made up to 1 L in dH20) 1:20 v/v in dH20. 

The 1% w/v agarose gel was prepared by adding 0.5 g agarose (Sigma, A9539)to 

50 ml of TAE buffer in a conical flask, which was heated until all of the agarose 

was dissolved. The molten solution was slightly cooled before the addition of 

GelRedTM (Biotium,41003) to enhance DNA visualisation. The solution was poured 

into a gel cast, a multi-well comb was added and the gel was allowed to set at 

room temperature. When the gel was set, the cast was submerged in a Bio-Rad 

tank and the comb was removed. Samples were added to the wells, including a 1 

kb DNA ladder (NEB, N3232). Following sample loading, the lid was fitted and 

the gel tank was connected to a Bio-Rad PowerPac300 (Bio-Rad, Hercules, CA, 

USA). The gel was run at 100 V for 30 minutes to allow the band of interest, 1.5 

kb, to resolve.  

2.18.5 Gel purification of DNA bands 

DNA bands were purified using a QIAquick® Gel Extraction Kit (Qiagen). Bands 

were excised with a scalpel and added to 3x volume of Buffer QG in a 1.5 ml 

microcentrifuge tube. Tubes were incubated at 50˚C until the gel melted (10-15 

minutes), vortexing occasionally, to which 1x volume of isopropanol was added 

to the mixture. Samples were then placed in a QIAquick spin column in a 

collection tube and centrifuged for 1 minute at 17,900 g, with flow through 

being discarded after every centrifugation step. The DNA bound to the column 

was washed with 500 µl of QG buffer and centrifuged as before to remove any 

remaining agarose. The column was then washed with 750 µl of Buffer PE and 

centrifuged twice. The column was placed in a fresh 1.5 ml microcentrifuge tube 

and 30 µl of nuclease free H20 was added to the column and incubated at room 

temperature for 5 minutes. DNA was collected following a 2 minute 

centrifugation at 17,900 g. 
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2.18.6 Ligation 

In the present study, to generate the pACYC-EGFP plasmid, the pACYC184 

restriction digest product was ligated into a StrataClone Vector (Agilent 

technologies). pACYC184 is a low copy number plasmid. The StrataClone vector 

is a high copy number plasmid which is capable of ligating with DNA inserts via 

topoisomerase I-mediated DNA strand joining. This therefore allows for the 

amplification of the pACYC184 backbone in the high copy number plasmid to 

increase the amount of vector DNA recovered for the final ligation reaction. 

Briefly, following the gel purification of the pACY184 digested product, 2 µl (~50 

ng) of this mixture was co-incubated with 3 µl StrataClone Cloning buffer and 1 

µl StrataClone Vector Mix for five minutes at room temperature to allow for 

ligation. The ligated product was then cloned into StrataClone SoloPack 

competent cells via heat shock and plated on antibiotic selection LB agar. 

Recovered colonies were grown up, plasmids extracted and digested using AseI 

and SphI to generate the 1.5 kb pACYC184 backbone as before, but in greater 

quantity. The pEGFP PCR product was also digested under the same conditions. 

The digestion reactions were resolved on a 1% TAE agarose gel, the bands of 

interest were excised and subject to ligation using New England Biolabs (NEB) T4 

Ligase (M0202). The final reaction consisted of the EGFP insert (500 ng), 

pACYC184 backbone (100 ng), 1x T4 DNA Ligase Buffer, 1 µl T4 DNA-Ligase. This 

reaction was incubated over night at 16˚C before the ligase was heat inactivated 

at 65˚C for 10 minutes. The samples were recovered on ice before being 

transformed into competent DH5α cells. Confirmation of the creation of the 

pACYC-EGFP plasmid was enabled through restriction digest using HindIII 

generating a defined banding pattern according to the generated plasmid map. 

2.19 Generation of the pEGFPLacZ plasmid using 
NEBuilder® Hifi DNA Cloning 

The NEBuilder® Hifi DNA Cloning Assembly Kit system (New England Biosciences, 

E5520S) was employed to generate the pEGFPLacZ plasmid. Fragments were 

amplified from pEGFP (vector) and pUC19 (insert) using PCR as described above. 

Primers are listed in Table 2.3. The primers were designed to provide 

overlapping sequences between the amplified products to promote homologous 
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recombination upon ligation. PCR products were resolved on a 1% agarose gel in 

TAE buffer and products were extracted. The two fragments (0.03-0.2 pmol at a 

vector: insert ratio of 1:2) were coincubated in the presence of 1x NEBuilder® 

HiFi DNA Assembly Master Mix buffer and dH20 in a thermocycler at 50˚C for 15 

minutes to allow for plasmid assembly. Samples were then removed to ice and 

electroporated into competent BL21 E. coli cells. Transformants were plated on 

antibiotic-containing LB agar plates to select bacteria containing the assembled 

plasmid. Sequencing analysis was employed to confirm successful assembly. 



  

 

3 Development of the B16F10 tumour model and 
S. Typhimurium infection protocol 

3.1 Introduction 

In order to assess the role of S. Typhimurium in mediating a tumour immune 

response, it was first necessary to establish an appropriate tumour mouse 

model, as well as a S. Typhimurium infection protocol. 

As evident in Table 1.2, there are many different mouse models of cancer. For 

the present study, the primary criteria were reproducibility and speed. For these 

reasons, the transplantable tumour model was selected. There are two primary 

murine background strains employed for these studies: C57BL/6 and BALB/c. As 

outlined in Chapter 1, Section 1.5.2, in terms of immunological response, these 

strains differ in their ability to launch a strong TH1 response (Mills et al., 2000; 

Santos et al., 2006). The C57BL/6 strain was also reported to be capable of 

clearing bacterial infection whereas BALB/c did was not, making the C57BL/6 

background more attractive for an S. Typhimurium infection protocol (Watanabe 

et al., 2004). Furthermore, there are many genetically manipulated strains 

available on the C57BL/6 background, which is not the case for BALB/c mice. For 

these reasons, the C57BL/6 strain was chosen for the present study.  

It was also pertinent to decide which strain of S. Typhimurium to select for the 

study. As outlined in Chapter 1, Table 1.2, there are multiple S. Typhimurium 

strains which have been employed for cancer studies. These strains vary in their 

lipopolysaccharide (LPS) immunostimulatory potency and genetic attenuation. 

The criteria for a bacterial strain for the present study included tumour-specific 

localisation, immune activation and host tolerance. SL7207 has been reported to 

exhibit tumour localisation and tumour-specific growth (Crull et al., 2011a; 

Leschner et al., 2012). SL7207 also has a fully functional LPS, meaning it is 

capable of activating TLR signalling which results in potent immunostimulation. 

This strain has also been demonstrated to be the most efficient DNA delivery 

vehicle for therapeutic DNA delivery in an in vivo glioblastoma model (Berger et 

al., 2013). This characteristic enables the employment of ‘bactofection’ to 
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enhance the immunostimulatory properties of the bacteria in the future. For 

these reasons, SL7207 was selected. 

The routes of bacterial administration vary from oral, intraperitoneal, 

intratumoral and intravenous (Avogadri et al., 2008; Jia et al., 2007; Lee et al., 

2008; Lehouritis et al., 2015; Zhao et al., 2005). In one study, the methods of 

administration were compared and it was found that intraperitoneal and 

intravenous administration resulted in the greatest bacterial tumour localisation 

and therapeutic efficacy (Crull et al., 2011a). For the present study, intravenous 

administration was selected as the optimal route of delivery as this was deemed 

to be the most clinically relevant method.  

The protocols that have been described in bacterial-mediated cancer therapy 

reports have generally allowed the tumour cells to develop into a tumour for a 

set number of days, or to a predefined size, at which point bacteria are 

administered (Crull et al., 2011a; Fu et al., 2008; Kuan & Lee, 2016). However, 

data has not been provided pertaining to the optimisation process involved in 

selecting these criteria, warranting optimisation of the protocol in the present 

study. Therefore, it was essential for the current study to ensure consistency 

and reproducibility between experiments as well as to maximise the therapeutic 

potential of the bacterial treatment for subsequent experimental investigations. 

3.1.1 Aims 

1. To develop the B16F10 C57BL/6 tumour model 

2. To optimise the SL7207 infection protocol of the tumour model 

3. To assess the effects of SL7207 on tumour growth dynamics and host 

survival 
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3.2 Results 

3.2.1 Optimisation of tumour cell seeding density for 
subcutaneous tumour growth 

In employing any tumour model, it is critical to have reproducible tumour 

growth, to minimise variation between experiments. As the B16F10 melanoma 

cell line in C57BL/6 was not established in our group, it was important to 

optimise the cell seeding density, and establish the optimal time point after 

seeding for S. Typhimurium inoculation. 

 

Based on the literature, two different cell densities were investigated (Chen et 

al., 2012; Kuan & Lee, 2016; Zheng et al., 2017b).These were 2 x 105 cells and 5 

x 105 cells, each in 200 µl of cold phosphate buffered saline (PBS). Mice were 

monitored daily for weight loss (a surrogate marker for the health status of the 

mice) and tumour growth. The mice did not lose any weight during the tumour 

growth period, suggesting there was minimal systemic insult to the animals 

(Figure 3.1A). For both cell densities, tumours became visible about seven days 

post seeding and were palpable by eight to nine days. The growth dynamics of 

the tumours for both groups were similar (Figure 3.1B). In this initial 

experiment, it was noted that the degree of variation (as assessed by the 

standard deviation) in tumour size at eight days post inoculation was 182.9 µm3 

for 5x105 cells and 88.67 µm3 for 2x105 cells (Figure 3.1C). A similar trend was 

seen at 12 days post inoculation with standard deviations of 478.5 µm3 and 337.5 

µm3 for 5x105 and 2x105 respectively (Figure 3.1D). As the tumour sizes of the 

mice inoculated with 2x105 B16F10 cells had less variation, this was the cell 

density chosen to proceed with for subsequent S. Typhimurium infections. 
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Figure 3.1 Optimisation of the tumour cell seeding density for tumour development 
B16F10 tumour cells were injected subcutaneously into the back flank of C57BL/6 mice and weight 
and tumour size were measured over time. A. Weight of mice after tumour cell inoculation 
expressed as a percentage of weight at Day 0. B. Tumour size following tumour cell inoculation as 
measured by Vernier calipers. C. Tumour size at eight days post tumour cell inoculation. D. 
Tumour size at 12 days post tumour cell inoculation. Error bars SD. 

3.2.2 Optimisation of S. Typhimurium SL7207 infectious dose 

Although SL7207 is an attenuated strain of S. Typhimurium, with in vivo 

bacterial administration, it is pertinent to characterise the optimal infectious 

dose to preserve the welfare of the animals whilst enabling tumour localisation 

and tumour growth inhibition (Low et al., 1999). Following consultation with the 

literature, two infectious doses, 5 x 105 colony forming units (CFUs) and 5 x 106 

CFUs of SL7207 were investigated (Crull et al., 2011a; Li et al., 2012). SL7207 

was administered systemically via tail vein injection in 100 µl of cold PBS. The 

mice were monitored daily for changes in weight and tumour size. Mice that 

were infected with 5 x 106 CFUs SL7207 had significant weight loss compared to 

the uninfected as soon as one day post infection (dpi; p < 0.0001****), whereas it 

took two days for mice infected with 5 x 105 CFUs to significantly lose weight 

compared to uninfected controls (p = 0.021**) (Figure 3.2A). At this time point 

the weight of mice infected with 5 x 106 CFUs and 5 x 105 CFUs was also 

significantly different, and the significant differences in weight loss between all 

three groups continued until the end of the experiment at 7 dpi.  
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There was a significant difference in tumour size between mice infected with 5 x 

106 CFUs at 7 dpi versus uninfected mice (p < 0.043*) (Figure 3.2B). There was no 

significant difference in tumour sizes between the two infected groups at 7 dpi 

(p = 0.09) (Figure 3.2B). There was no significant difference in tumour size 

between uninfected and mice infected with 5 x 105 at any time. Therefore, mice 

infected with 5 x 106 CFU SL7207 experienced tumour growth inhibition whilst 

their wellbeing remained within acceptable guidelines for the duration of the 

experiment so this was the protocol employed for subsequent experiments. 

 

Figure 3.2 Optimisation of the infectious dose to induce tumour growth inhibition 

Tumour-bearing mice were intravenously inoculated with SL7207 or PBS and weight and tumour 
sizes were measured over time. A. Weight of mice after SL7207 infection at the indicated dose 
expressed as a percentage of weight at Day 0, when SL7207 was administered. B. Tumour size of 
uninfected mice, and those infected at the indicated dose of SL7207, as measured by Vernier 
calipers. Purple arrow indicates time point of SL7207 administration. Error bars SEM. Statistical 
analyses performed using Tukey’s multiple comparison test. Stars of significance are omitted due 
to the high number required, but comparisons of note are detailed in the main text.  
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3.2.3 Understanding the dynamics of SL7207 tumour infection 

To understand the infection characteristics of SL7207, it was appealing to 

construct a strain which could be easily detected in vivo. Previous studies have 

employed the use of bioluminescent reporter strains to identify the in vivo 

localisation of bacteria (Baban et al., 2012; Cronin et al., 2012). Therefore, the 

16SLux plasmid-based system to mediate site-directed chromosomal integration 

of the luxABCDE operon derived from Photorhabdus luminescens into the 16S 

region of SL7207 was employed (Riedel et al., 2007). Using the In vivo Imaging 

System (IVIS), which is capable of detecting luminescent signal in vivo, 

bioluminescent colonies could be selected. Following the construction of the SL-

Lux strain, it was important to verify there were no growth or invasion defects. 

SL-Lux exhibited a slight lag in growth in comparison to wild type (Figure 3.3A). 

However, more importantly, the tumour cell invasion of SL-Lux and wild type 

SL7207 in vitro were comparable (Figure 3.3B).  

 

Figure 3.3 Growth and invasion characteristics of SL-Lux compared to wild type 
Cultures were grown in vitro, with regular OD600 measurements or incubated with B16F10 cells for 
2 hours in vitro before being subject to CFU counts. A. Growth curve of both strains as measured 
by OD600 B. CFUs of bacteria recovered from B16F10 tumour cells infected with equal inocula of 
SL-Lux or wild type SL7207. Error bars SEM. Statistical analysis for B performed using a Student’s 
t test where p* < 0.01. 
 
To investigate bacterial localisation in vivo, tumour-bearing mice with palpable 

tumours were infected with 5 x 106 CFU SL-Lux via their tail vein. Thereafter, 

the bioluminescent signal from the tumour as well as the spleen, which is a 

commonly infected site of systemically administered S. Typhimurium, were 

monitored. According to the IVIS, SL-Lux exhibited high tumour specificity, with 
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SL-Lux detected in most tumours (Figure 3.4A), whilst there was little or no 

bioluminescent signal from the spleens (Figure 3.4B). 

 

Figure 3.4 In vivo localisation of SL-Lux 

Tumour-bearing mice were infected intravenously with SL-Lux and imaged daily using the IVIS to 
investigate bioluminescent bacterial localization. A. Image of the dorsal view of tumour-bearing 
mice and bioluminescent bacteria. Red arrow indicates the location of the tumour. B. Image of the 
left lateral view of tumour-bearing mice using the IVIS. Green arrow indicates the location of the 
spleen.  

 
To further investigate the tumour-specific localisation of SL-Lux, the tumour, 

spleen and liver of infected tumour-bearing mice were harvested at multiple 

time points, homogenised and serially diluted to acquire the CFU counts of each 

organ. SL-Lux was capable of infecting all three organs at each time point 

indicated (Figure 3.5A). There was a significant increase in the CFU/g of SL-Lux 

in the tumour at 9 dpi compared to either the liver or the spleen. In the tumour, 

the CFU/g at 9 dpi was also significantly greater compared to 3 and 11 dpi. 

There were also changes in the CFU/g in the spleen, with an increase at 3 dpi 

relative to 1 dpi, with subsequent decreases from 3 dpi to both 9 and 11 dpi. 

The total CFUs for each organ was also assessed (Figure 3.5B). In the tumour, 

SL7207 infection peaked at 9 dpi and was significantly higher than 1, 3 or 11 dpi. 

SL7207 infection in the tumour at 9 dpi was also significantly greater than 

bacterial infection in either the spleen or liver. For the spleen and liver, there 

was no significant difference in total bacteria recovered between time points. 

 

 



Chapter 3 In vivo tumour model and infection protocol 
 

86 
 

 

Figure 3.5 Colony forming unit (CFU) counts from multiple organs following SL-Lux 
infection 
Tumour-bearing mice were infected intravenously with SL-Lux and specified organs were 
harvested at the indicated time points and subjected to CFU counts. A. Colony forming units 
(CFUs) of SL-Lux at multiple time points in tumour, liver and spleen, expressed per unit weight, 
gram (g). B. Total CFUs of SL-Lux at multiple time points in tumour, liver and spleen. Statistical 
analyses performed using Tukey’s multiple comparisons tests where p < 0.05*, p < 0.01**, p < 
0.001***, p < 0.0001****.  
 
There was a degree of variation in the number of CFUs recovered from individual 

tumours, and it was speculated that there may be a tumour range optimal for 

tumour colonisation. As such, the tumour size was investigated as a function of 

tumour colonisation. By comparing the CFUs recovered from a tumour at 1 dpi to 

the weight of the tumour, there was a positive correlation between tumour 

weight and CFUs recovered at 1 dpi (Figure 3.6A: R squared value: 0.93, p = 

0.0001***). SL-Lux was not recovered from tumours weighing less than 

approximately 100 mg at 1 dpi. This might lead one to hypothesise that as bigger 

tumours have higher infection burdens, they may be more susceptible to the 

anti-tumour effects of SL7207. To test this hypothesis, the fold growth of 

uninfected and infected tumours after 7 days was examined, stratifying the 

results to tumours in the range of 100-200 µm3 and > 200 µm3 at the time of 

infection. For this analysis, tumours less than 100 µm3 were excluded as they 

were deemed to be less than 100 mg at the time of infection (deduced from 

interpolation of Figure 3.6B: R squared value: 0.91, p < 0.0001****). There was a 
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significant difference in the fold growth of tumours which were 100-200 µm3 at 

the time of infection versus uninfected tumours in the same tumour size range 

(Figure 3.6C). Interestingly, there was no significant difference in fold growth of 

tumours which were greater than 200 µm3 at the time of infection versus 

uninfected tumours (Figure 3.6D). The tumour sizes of infected mice were 

significantly smaller than uninfected mice at 7 dpi, for the tumours within the 

range of 100-200 µm3 at the time of infection (Figure 3.6E). This is in contrast to 

the tumours which were > 200 µm3 at the time of infection, whereby there was 

no significant difference in the tumour sizes between infected and uninfected 

samples (Figure 3.6 F). Therefore, although larger tumours were colonised to a 

greater degree, tumours >200 µm3 were also less susceptible to the growth 

arrest effects of SL7207. With this data, it was decided that tumours in the 

range of 100-200 µm3 at the time of infection were optimal to identify 

mechanisms for differential growth characteristics of infected and uninfected 

tumours.  
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Figure 3.6 Optimisation of tumour size for SL-Lux infection 
Tumour growth inhibitory effect of SL-Lux was post-hoc analysed by stratifying the tumours into 
different size categories. A. Correlation between CFU recovered at 1 dpi and tumour weight. B. 
Correlation between tumour size and tumour weight. C. Fold growth of tumours in the range of 100-
200 µm3 (Size at day 7 dpi/Size at day 0) infected with 5x106 SL-Lux or uninfected. D. Fold growth 
of tumours > 200 µm3, infected or uninfected. E. Tumour size of infected and uninfected tumours 
which were of 100-200 µm3 at the time of infection. F. Tumour size of infected and uninfected 
tumours which were of > 200 µm3 at the time of infection.  Error bars SEM (C, D). Statistical 
analyses performed using a nonparametric Spearman correlation tests (A, B) or Student’s t test, 
(C, D) where p < 0.05*.  
 
3.2.4 Effects of SL-Lux on tumour growth  

After initial analysis of the tumour growth characteristics, the optimal SL-Lux 

infectious dose and the optimal tumour size for infection to maximise the 

therapeutic potential, it was appropriate to characterise the therapeutic 

potential of SL7207. Tumour-bearing mice were infected with 5x106 CFU SL-Lux 

at nine days post tumour cell seeding and tumour size was monitored over 7 

days. At 5 dpi, there was a significant difference in the tumour size of infected 

versus uninfected mice (p = 0.004***) which continued to 7 dpi (p = 0.0032**) 
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(Figure 3.7A). The infected mice also exhibited greater survival (p = 0.0004***) 

than the uninfected group (Figure 3.9B). In fact, it was found that almost half of 

the infected mice could survive 32 days post tumour cell inoculation, whereas no 

uninfected mouse was able to survive beyond 17 days. Unsurprisingly, infected 

mice exhibited splenomegaly (Figure 3.7C). Infected mice significantly lost 

weight following infection, but their weight began to recover at 3 dpi, and 

reached pre-infection weight at about 17 dpi (Figure 3.7D).  

 

 

Figure 3.7 Effects of SL-Lux on tumour growth and survival of tumour-bearing mice 
Tumour-bearing mice were intravenously inoculated with SL-Lux of PBS and tumour size and 
survival were measured over time. A. Tumour sizes of infected and uninfected mice as measured 
by Vernier calipers. B. Kaplein Meier survival curve of tumour-bearing mice infected with SL7207 
versus uninfected (purple arrows indicated time point of SL-Lux administration). C. Weight of 
spleens recovered from infected and uninfected mice at 3 dpi. D. Weight of mice expressed as a 
percentage of weight at Day 0 of infection. Error bars SEM . Analysis of A performed using a 
Sidak’s multiple comparisons test. Analysis of B performed using a Log Rank (Mantel-Cox) test. 
Analysis of (C) performed using a Students t test. P < 0.05*, p < 0.01**, p, 0.001***, p < 0.0001****.  
 

Furthermore, there was a decrease in tumour fold growth in infected versus 

uninfected tumours, at 5 and 7 dpi (Figure 3.8A, B). Tumours harvested for 

analysis at 5 dpi and 7 dpi weighed less for infected tumours than uninfected 

tumours (Figure 3.8C, D). The differences in tumour size between uninfected 

tumours and tumours infected for 5 days was also apparent from hematoxylin 

and eosin staining (Figure 3.8E). 
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Figure 3.8 Effects of SL-Lux on tumour fold growth and weight 

Tumour-bearing mice were intravenously inoculated with SL-Lux or PBS and tumour size and 
weight were analysed. A. Fold growth of tumours at the time of harvest 5 dpi compared to tumour 
size at the time of infection. B. Fold growth of tumours at the time of harvest 7 dpi compared to 
tumour size at the time of infection. C. Tumour weight at 5 dpi. D. Tumour weight at 7 dpi. E. 
Representative image of hematoxylin and eosin-stained tumours infected (left) and uninfected 
(right) harvested at 5 dpi (scale bar 1 mm). Statistical analyses performed using Students t test 
where p < 0.05*, p < 0.01**.  
 

3.2.5 Effects of SL-Lux on tumour cell death and tumour cell 
replicative capacity 

Following SL-Lux administration, tumours did not grow significantly at the time 

points examined. This could have been due to B16F10 tumour cell death, B16F10 

tumour cell replication inhibition or a combination of the two. Both have been 

reported in the literature (Kuan & Lee, 2016; Yano et al., 2014). In order to 

investigate the degree of cell viability within the tumour, whole tumours were 

digested and stained using a viability dye to ascertain the proportion of viable 
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cells. The samples were then analysed by flow cytometry (gating strategy, 

Figure 3.9).  

 

Figure 3.9 While tumour viability and tumour cell gating strategy 

Whole tumours were harvested and analysed flow cytometry. Whole tumour viability (black arrows) 
was determined by gating on single, live. Live tumour cells (red arrows) gated as single, CD45-, 
FSC-Ahi, mCherry+/- and live. Ki67+ tumour cells (red and purple arrows) gated as single, CD45-, 
FSC-Ahi, mCherry+/-, live, Ki67+. 
 

Whole tumours had decreased cell viability at 5 and 7 dpi, but not at 3 dpi 

(Figure 3.10).  
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Figure 3.10 Effects of SL-Lux on whole tumour viability 

Tumour-bearing mice were intravenously inoculated with SL-Lux or PBS and tumours were 
harvested at defined time points for flow cytometry analysis. A. Representative flow cytometry plots 
show viability tumours from infected and uninfected mice at 5 dpi. B. Data are shown as 
percentage of viable (Live/Dead-) cells among total cells at the indicated time points for infected 
and uninfected samples. Error bars SEM. Statistical analysis performed using Students t test where 
p < 0.05*, p < 0.01**, p < 0.001***.  
 

To investigate if the B16F10 tumour cells were dying, mCherry-expressing 

B16F10 cells were employed to accurately gate on the cancer cells according to 

forward and side scatter characteristics (gating strategy, Figure 3.9). There was 

a significant decrease in the absolute number of viable B16F10 tumour cells in 

the infected samples compared to the uninfected at 5 dpi (Figure 3.11A, B). 

There was also a decrease in the proportion of B16F10 tumour cells among total 

live cells in the tumour following infection (Figure 3.11C). 
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Figure 3.11 Effects of SL-Lux on tumour cell viability 
Tumour-bearing mice were intravenously inoculated with SL-Lux or PBS and tumours were 
harvested at 5 dpi for flow cytometry analysis. A. Representative flow cytometry plots show viability 
of infected and uninfected tumour cells. Cells were gated as CD45-, FSC-Ahi. B. Quantification of 
absolute number of tumour cells from infected and uninfected tumours 5 dpi. C. Data are shown as 
percentage of viable (Live/Dead-) tumour cells among total tumour cells for infected and uninfected 
samples. Error bars SEM. Statistical analyses performed using Students t test where p < 0.01**, p 
< 0.0001****).  

B16F10 tumour cell replication was also investigated by staining for Ki67, an 

intracellular marker which stains recently proliferated cells. By analysing the 

B16F10 tumour cells staining positive for Ki67, it was apparent that there was no 

difference in the number of Ki67+ tumour cells from infected and uninfected 

samples (Figure 3.12A, B) or the proportion of tumour cells which were Ki67+ 

between uninfected and infected samples (Figure 3.12C).  
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Figure 3.12 Effects of SL-Lux on tumour cell proliferation 
Tumour-bearing mice were intravenously inoculated with SL-Lux or PBS and tumours were 
harvested at 5 dpi for flow cytometry analysis. A. Representative flow cytometry plots show Ki67+ 
tumour cells from infected and uninfected tumours. Cells were gated as single, live, CD45-, FSC-
Ahi. B. Quantification of the absolute number of Ki67+ tumour cells from infected and uninfected 
samples 5 dpi. C. Data are shown as percentage of Ki67+ tumour cells among total live tumour 
cells from infected and uninfected tumours. Error bars SEM. Statistical analyses performed using 
Students t test where p < 0.05*.  
 
3.2.6 In vitro tumour cell killing capacity of SL-Lux 

Bacteria can directly kill tumour cells in vitro and in vivo (Chen et al., 2012; Fu 

et al., 2008). Therefore, it was possible that systemic SL7207 administration 

could be leading to tumour cell death similarly. To investigate if SL7207 was 

capable of inducing apoptosis, SL-Lux was co-incubated with B16F10 cells at a 

multiplicity of infection (MOI) of 100:1 for 24 hours. At this time point, cells 

were harvested and stained using a viability stain, similar to that described 

above. There was no significant increase in the proportion of cells which stained 

positive for the viability dye in the samples infected with either SL7207 or the 

virulent ancestor SL1344 compared to uninfected control (Figure 3.13). 
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Figure 3.13 Effects of SL-Lux on tumour cell viability in vitro 
B16F10 tumour cells were incubated in vitro with SL7207 at an MOI of 100:1 for 24 hours before 
being harvest for flow cytometry analysis. A. Representative histograms displaying the expression 
of Live/Dead viability dye in the indicated samples at 24 hpi. B. Data are shown as percentage of 
dead cells among total cells in each sample. Error bars SEM. Statistical analysis performed using a 
One Way Anova with multiple comparisons where p < 0.05*, p < 0.01**.  
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3.3 Discussion 

The development of a consistent in vivo experimental model is central to testing 

hypotheses about bacterial-mediated immune responses in cancer. Herein, an in 

vivo tumour model using B16F10 melanoma cells in a C57BL/6 background was 

developed. Furthermore, the S. Typhimurium strain SL7207 was shown to be 

capable of mediating tumour growth arrest in this model. The optimal bacterial 

dose and tumour size for infection to maximise the therapeutic effect of the 

bacteria were identified. 

 

3.3.1 Why is the choice of tumour mouse model important for 
understanding and interpreting the data? 

There are many different tumour mouse models (Zitvogel et al., 2016). It was 

pertinent that the model chosen for these studies was timely and reproducible. 

Therefore, it was decided that a transplantable model would be more suitable 

than a spontaneous model, as with the former, defined time points for 

experimental manipulation are more apparent and consistent. The two most 

commonly employed mouse strains for transplantable tumour models are BALB/c 

and C57BL/6. The latter was chosen for this study for reasons outlined in Section 

3.1. However, these mice are skewed towards a TH1 phenotype which is not 

directly comparable to humans (Mills et al., 2000; Santos et al., 2006). Humans 

are extremely heterogeneous in their response to immunological stimuli. 

Therefore, it is pertinent to note that a single model is rarely sufficient to 

definitively prove a behaviour or efficacy of a therapeutic intervention. The 

employment of the C57BL/6 for the present study would likely lead to a bias 

towards a TH1 response, which may mask other important immune features of 

bacterial-mediated tumour growth arrest. This is important to bear in mind in 

the data described up until now, and for the remainder of the thesis. 

 

Although the transplantable tumour model was highly attractive for the current 

study, if time had allowed, a spontaneous tumour model would arguably have 

been more conclusive. The goal of the present study is to identify immune cell 

responses to the bacteria in the tumour. In human cancer, there is a period of 

chronic inflammation which can drive transformation and tumourigenesis 

(Mantovani et al., 2008). Following this period, there is believed to be a 
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selection process which results in the enrichment of immunosuppressive immune 

cells dominating the immune landscape of the tumour. These phenomena are 

reflected in the spontaneous tumour model, but not in the transplantable 

tumour model (Zitvogel et al., 2016). Therefore, the immune cell infiltrate of 

the spontaneous tumour model is educated in these processes but the long term 

effects are uncertain. Furthermore, immune cells of the transplantable tumour 

model might not reflect the true immune cell infiltrate of a human cancer. 

Therefore, the data generated from a transplantable tumour model cannot be 

conclusive without first establishing whether or not there are long term effects 

on the tumourigenesis-promoting inflammatory process on tumour-resident 

immune cells. Although interesting, this line of enquiry was outside the remit of 

the current investigation. 

 

For the present study, these limitations are not apparent as the line of 

investigation to hand involves determining the change in tumour immune cell 

phenotype following SL7207 infection, as opposed to characterising these cells in 

the uninfected state. The hypothesis for the entire study is that the immune 

cells in the tumour will alter their phenotype from an immunosuppressive 

phenotype to exhibit pro-inflammatory characteristics. As S. Typhimurium is a 

potent stimulus, it is likely that the immune cells will adopt this phenotype in 

spite of previous immunological experience. Indeed, it has been demonstrated 

that both resting and TH2-polarised macrophages can adopt a pro-inflammatory, 

TH1 phenotype following LPS treatment in vitro (Liu et al., 2013). 

 

3.3.2 Implications of colonisation represented as CFU/g  

It was next pertinent to decide upon the dose of bacterial infection. The route 

of infection was determined to be via intravenous injection, as this is most 

commonly employed in other bacterial-mediated cancer therapy studies, most 

likely due to the fact that it is the prospective route of administration in the 

clinic (Forbes, 2010). 

 

Bacterial dissemination in vivo is an important parameter to track to 

characterise the infection strategy of the bacteria. It was hoped that bacterial 

dissemination in vivo could be monitored through the creation of a 
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bioluminescent strain of SL7207 (Baban et al., 2012; Riedel et al., 2007). It was 

possible to visualise the bacteria in vivo using the IVIS. There appeared to be 

tumour-specific localisation in these mice, with little or no bioluminescent signal 

in the spleen. Furthermore, the degree of colonisation appeared to be variable 

between mice. However, upon taking these organs, and calculating the CFUs 

from homogenisation and serial dilutions, it was apparent that the IVIS was 

unable to definitively determine the location of the bacteria in vivo, in contrast 

to other reports which seemed to be more conclusive (Cronin et al., 2010). All of 

the organs examined in the present study exhibited bacterial localisation when 

CFU counts were performed, whether or not there was evident signal from the 

IVIS. Furthermore, for the tumours, the degree of colonisation reported from the 

bioluminescent signal using the IVIS was not consistent with the CFU data. 

Organs were also imaged ex vivo (data not shown) but there was no clear 

correlation between tumour colonisation in terms of CFU and the bioluminescent 

signal. It was speculated that the most likely explanation for the inaccurate IVIS 

analyses was the light absorption by the dark B16F10 melanoma cells and the 

dark skin of the C57BL/6 mice. The combination of these made it more difficult 

for the light to penetrate the organs and that the bioluminescent signal detected 

was from bacteria near the surface of the mouse, or at a minimal bacterial 

density. Therefore, the IVIS data was not used for subsequent analysis.  

 

The CFU counts data was more convincing than the IVIS data as it was evident 

that the IVIS was not sensitive enough to detect bioluminescent signal in the 

spleens, in spite of the fact that these were infected. From analysing the CFUs/g 

isolated from different organs at defined time points following SL-Lux 

administration, it appeared that the bacteria were capable of replicating in the 

tumour as well as the spleen. Furthermore, particularly for the liver and spleen, 

at later time points there appeared to be decreases in the numbers of viable 

bacteria. However, as it was evident that the infected mice exhibit 

splenomegaly, this analysis did not control for the possibility that the apparent 

decreases in bacterial burden may be in fact due to the increasing size of the 

organ as opposed to the decreasing number of bacteria. To test this hypothesis, 

the total CFUs of each organ were analysed. This data revealed that there is no 

significant change in the absolute number of bacteria at any time point in either 

the liver or spleen. This suggests that the bacteria are not in fact replicating in 
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the spleen which the CFU/g data would suggest. It also suggests that the 

bacterial burden in these organs is not decreasing as is often presented in 

publications as evidence of tumour-specific bacterial localisation and 

proliferation (Crull et al., 2011a; Low et al., 1999; Stern et al., 2015). By 

depicting the data as total CFUs, the true bacterial burden of each organ can be 

seen which clearly depicts the tumour-specific proliferation of SL-Lux.  

 

The investigation of CFU in the tumour was carried out under the assumption 

that a great degree of tumour-specific localisation is causative of an overall anti-

tumour effect. However, this might not necessarily be the case. In Figure 3.2, 

there looked to be a relationship between the tumour growth inhibitory effects 

of SL7207 and total body weight loss (suggestive of systemic inflammation). 

Therefore, possibly tumour localisation is not as important as we initially 

thought. This is of course assuming that there was still colonisation of the 

tumour at the lower dose. It would have been informative to measure the CFUs 

in the tumours of the mice treated with the lower infective dose, to confirm 

this. 

 

3.3.3 Why investigate the optimal conditions for SL7207 infection 
of tumour-bearing mice? 

In many publications, the principal tumour size for infection is often reported to 

be within the range of 50-100 µm3 (Crull et al., 2011a; Fu et al., 2008; Kuan & 

Lee, 2016). However, when analysing the CFUs at 1 dpi, the two smallest 

tumours (62 and 85 g) did not exhibit bacterial colonisation and the biggest 

tumour, 467 g, exhibited the greatest. Correlative analysis revealed, 

unsurprisingly, that there was a strong relationship between the weight of the 

tumour and the degree of tumour colonisation at 1 dpi (R squared: 0.91). As 

there was a correlation between tumour size and weight (R squared: 0.91) it was 

possible to interpolate to identify the minimum size a tumour should be for 

tumour colonisation by employing a minimum tumour weight of 100 mg. 

Therefore, only tumours greater than about 100 µm3 were to be used for 

analysis, refining the previously reported criterion of 50-100 µm3.  
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It was tempting to speculate that as the bigger tumours were more susceptible 

to colonisation, they would also be more susceptible to the tumour growth 

inhibition effects of the bacteria compared to uninfected controls. Although 

larger tumours were more colonised, tumours > 200 µm3 were also less 

susceptible to the growth arrest effects of SL7207. However, within the tumour 

size range of 100-200 µm3, there was a significant difference in the fold growth 

between infected and uninfected at 7 dpi. This data informed the infection 

protocol as, henceforth, the optimal range of tumour size for infection was 100-

200 µm3 to maximise the differences between infected and uninfected samples 

so as to easily identify the mechanisms underpinning bacterial-mediated tumour 

growth inhibition.  

 

These optimal conditions were assessed with a view to keep the parameters 

within a strict range so as to limit the variability between experiments. 

Furthermore, by identifying the optimal conditions to maximise SL7207-

mediated tumour growth inhibition, it was believed that the therapeutic 

potential of SL7207 could be more easily identified. The identification of these 

conditions provided evidence regarding the optimal conditions for treatment in 

the clinical setting. From the data herein, SL7207 is not effective against larger 

tumours in the model which suggests that SL7207 might not be a suitable 

therapeutic option for late-stage tumours. This analysis also alternatively 

suggests that there were differences in the response of the tumour cells to the 

bacterial stimulus at different stages of tumour growth. Or possibly represents 

the possibility that more advanced tumours are more resistant to treatment in 

general. However, the efficacy of the treatment might be dependent on the cell 

type, as B16F10 is known to be particularly aggressive. To definitively argue this 

point, investigations of the tumour growth arrest effects of SL7207 would need 

to be carried out in other tumour models.  

 

3.3.4 How does the tumour growth inhibition of SL7207 compare 
with other studies? 

 

With the improved criteria, it was appropriate to fully investigate the effects of 

SL-Lux on tumour growth in the model. There was a significant difference in the 
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tumour size of infected and uninfected tumours at 5 and 7 dpi, confirming that 

SL7207 was capable of inhibiting tumour growth. Furthermore, there was no 

significant increase in the tumour volume of the infected tumours at 7 dpi from 

the time of infection, suggesting that the bacteria were mediating tumour 

growth arrest. In another study which employed the B16F10 model, following 

systemic infection with a strain of S. Choleraesuis, there was a significant 

difference in the tumour size at 8 dpi, but the difference is not as drastic as it is 

with the SL-Lux treatment seen herein (Kuan & Lee, 2016). Another study 

employed the tumour-targeting S. Typhimurium strain, VNP20009, and 

demonstrated that tumour growth was arrested up to 13 days post infection in 

B16F10 tumour-bearing mice (Luo et al., 2001). The extent of tumour growth 

inhibition herein was comparable to tumour growth inhibition mediated by other 

Salmonella cancer strains in this, and other mouse models of cancer (Crull et 

al., 2011a; Luo et al., 2001; Zhang et al., 2015; Zhao et al., 2005). Furthermore, 

in the present study the infected mice exhibited greater survival than the 

uninfected mice, with equal or better survival than bacterial therapies reported 

elsewhere (Yu et al., 2012; Zhang et al., 2015; Zhao et al., 2005; Zhao et al., 

2006). 

 

It was also apparent that the major time point of divergence in tumour growth 

was around 5 dpi, whereas the growth rate of tumours at 5 to 7 dpi were similar 

between infected and uninfected. This is most likely due to the exponential 

growth phase of the tumours once they reach a certain size, which was 

estimated to be 300-500 µm3. At this phase, the bacteria are capable of having 

the most therapeutic effect, which is in keeping with the data in Figure 3.6. It is 

also possible that this is the phase in which the effector cells mediating tumour 

growth arrest are most active, and points towards these time points as being 

possibly highly informative for subsequent immune cell analysis. 

 

3.3.5 Host welfare: is it safe to use S. Typhimurium on cancer 
patients? 

S. Typhimurium is a virulent pathogen. Therefore, there are obviously concerns 

associated with the safety profile of such a therapeutic treatment. For the 

present study, the only observable symptoms of SL7207 administration were 

weight loss and splenomegaly. Splenic cellular infiltration and splenomegaly are 
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reported to occur following systemic bacterial infection (Johansson et al., 2006), 

but the possibility that the splenic immune cells, and the pro-inflammatory 

cytokines they might be secreting systemically has not been considered in any 

published reports on bacterial-mediated cancer therapy. 

 

Similar to other studies, the infected mice lost weight initially after infection 

but they appeared to put weight back on 3 dpi, and recover their pre-infection 

weight at 17 dpi. This recovery in weight is a promising sign for the potential of 

this strain to be used in the clinic in the future. However, the weight gain of the 

infected mice seemed to occur at a time when the tumour inhibitory effects of 

SL7207 were diminished (Appendix, Figure 9.1). Therefore, to maintain the anti-

tumour effects of SL7207, it might have be necessary to re-administer, which 

would mean further weight loss for the subjects. Weight loss in the infected 

mice the present study could be mitigated by feeding with treats such as apple 

flavoured baby food (personal observation). Depending on the type and stage of 

cancer in question, weight loss can be extremely common with the most cited 

reason for the weight loss often inappetence 

(http://www.cancerresearchuk.org/about-cancer/coping/physically/ diet-

problems/ about/types-of-diet-problems). In the present study, the most likely 

explanation for the weight loss observed is systemic inflammation via TNF-α (Di 

Francia et al., 1994). This therefore raises the possibility that treatment with S. 

Typhimurium could exacerbate the weight loss in cancer patients. Although this 

hasn’t been demonstrated, it is surely an important consideration going forward.  

 

3.3.6  SL7207-mediated tumour growth arrest: tumour cell death 
or cell cycle inhibition? 

The data presented thus far established that SL7207 was capable of mediating 

tumour growth arrest. However, whether this was due to cell death or 

attenuation of cell replication remained to be seen. Anecdotally, tumour cell 

death allows for tumour regression. 

 

Previous reports have shown that different cancer therapy Salmonella strains are 

capable of killing tumour cells (Fu et al., 2008; Kuan & Lee, 2016). In the 

present study, viability staining of the whole tumour revealed that there was a 

decrease in viability of the cells in the tumour at 5 and 7 dpi in the infected 
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samples. However, the tumour is made up of many different cell types including 

tumour cells, immune cells and stromal cells, which could all be contributing to 

the decreases viability observed. In order to assess the degree of tumour cell 

death, it was necessary to be able to identify the tumour cells specifically using 

flow cytometry. As there are few commercially available antibodies against 

B16F10 cells for flow cytometry, mCherry-expressing B16F10 tumour cells were 

acquired. These cells contain a mCherry-expressing plasmid with a resistance 

cassette ensuring the expression of mCherry in all cells in the population in 

culture. These cells were seeded into C57BL/6 mice to form tumours, before 

being infected with SL-Lux for five days. At this time point, (14 days post 

inoculation), it was likely that in the absence of the antibiotic selection coupled 

with exponential tumour cell replication, many of the cells would have lost the 

mCherry expression. Nonetheless, only a small population of mCherry-expressing 

tumour cells was required to be able to set the gate for in vivo tumour cells. It 

was not possible to use tumour cells directly from in vitro culture to determine 

the gate for in vivo tumour cells as the shape and size of cells within the tumour 

in vivo differ from the shape and size in vitro (personal observation). Therefore, 

there was confidence that this gate was of B16F10 tumour cells. However, in 

order to control for the possibility that there were contaminating CD45- stromal 

cells, there should have been a dump channel for CD31+ endothelial cells and 

Vimentin+desmin+ fibroblasts which were possibly contaminating this gate. It is 

unlikely that these cells were in the gate, as they are much smaller than the 

large tumour cells and the FSC-Ahi gating strategy likely excluded them.  

 

It was also of interest whether the bacteria were inhibiting tumour cell 

replication in this model, as Salmonella-mediated tumour cell cycle arrest was 

previously reported (Yano et al., 2014). To investigate the replication potential 

of the tumour cells after infection, single cell suspensions were gated for tumour 

cells as before and the proportion of Ki67+ replicating cells was analysed. There 

was no change in the proportion of tumour cells Ki67+, suggesting that SL7207 

were not affecting the ability of the tumour cells to replicate, either directly or 

indirectly. This was surprising, as changes in the tumour microenvironment have 

been reported to have an effect on tumour replication. For example, 

macrophages are key providers of growth factors which stimulate tumour cell 

proliferation (Sullivan et al., 1993). Furthermore, it has been postulated that 
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bacteria in the tumour can compete with tumour cells for nutrients, which 

should decrease the proliferation capacity of tumour cells (Forbes, 2010).  

 

Multiple Salmonella strains have been reported to directly kill tumour cells in 

vitro and in vivo (Fu et al., 2008; Kuan & Lee, 2016). The ability of SL7207 to 

induce tumour cell death in B16F10 melanoma cells was investigated but there 

was no increase in cell death after 24 hours in vitro. As the bacteria are not 

killing the cells directly, it is possible that other factors are mediating tumour 

growth inhibition, such as the immune system.  

 

3.3.7 Concluding remarks 

The data presented herein provides evidence for a reproducible protocol for an 

in vivo B16F10 tumour model in C57BL/6 mice, which is arrested in growth 

following systemic SL-Lux infection. Therefore, this was a suitable model to 

investigate the changes in the hypothesised inflammatory microenvironment of 

the tumour following infection, and the cell types which might be contributing 

to, and necessary for this process. 



  

 

4 Characterisation of the local immune response 
in the tumour following systemic administration 
of SL7207 

4.1 Introduction 

Multiple reports have provided evidence for the involvement of the immune 

system in bacterial-mediated cancer therapy (Lee et al., 2008; Saccheri et al., 

2010; Stern et al., 2015). There is evidence to support a role for neutrophils and 

dendritic cells (DCs) in impeding and promoting bacterial-mediated cancer 

therapy, respectively (Saccheri et al., 2010; Westphal et al., 2008). 

Macrophages have also been implicated in playing a role in bacterial-mediated 

cancer therapy, but these will be discussed in detail in Chapter 5. Other studies 

have focused on the T cell response, providing evidence for the importance of 

CD4+ and CD8+ T cell responses in the tumour for mediating tumour inhibition 

following infection (Kaimala et al., 2014; Stern et al., 2015). Perhaps the most 

convincing evidence for immune involvement in bacterial mediated cancer 

therapy is the finding that CT26 tumour-bearing mice whose tumour was cleared 

following bacterial treatment are protected from subsequent tumour formation 

following a second inoculation with CT26 cells, but not control F1A11 tumour 

cells (Stern et al., 2015). This finding suggests immune memory involvement in 

the protection against tumour formation.  

It has been well documented that the immune system plays an important role in 

driving and shaping tumourigenesis (Coffelt et al., 2016; Qian & Pollard, 2010). 

It has also been well documented that the tumour microenvironment develops 

an immunosuppressive setting which can be highly effective at protecting the 

tumour from immune detection (Zou, 2005). However, information on the exact 

nature of the local and systemic overall immune responses to systemically 

administered S. Typhimurium in tumour-bearing mice is currently lacking. Given 

that the tumour microenvironment is generally regarded as immunosuppressive, 

and that S. Typhimurium is a potent immune activator, it was hypothesised that 

the tumour microenvironment would become pro-inflammatory following SL7207 

administration, which is not permissive to tumour cell growth (Andzinski et al., 

2016; Bromberg et al., 1996; Wall et al., 2003). It was also hypothesised that 
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the tumour would experience increased immune cell infiltration and activated T 

cell responses following SL7207 infection.  

4.1.1  Aims 

1. To characterise the changes in the inflammatory status of the tumour 

following SL7207 infection 

2. To understand immune cell infiltration and the activation of neutrophils 

and DCs following SL7207 infection 

3. To understand the type of T cell response in the tumour following SL7207 

infection
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4.2 Results 

4.2.1 Leukocyte content of B16F10 tumour 

Tumour infiltrating leukocytes play an important role in tumour establishment, 

development, metastasis of tumour cells, as well as metastatic cell seeding at 

distal sites (Qian & Pollard, 2010; Zou, 2005). Previous reports have 

characterised the presence of immune cell infiltrates in the B16F10 melanoma 

tumour model, including neutrophils, macrophages, dendritic cells, T cells and B 

cells (Kobayashi et al., 2014; Laoui et al., 2016; Nakahara et al., 2016; Torcellan 

et al., 2017). It was important to verify that the immune infiltration profile of 

the tumours in our model corresponded to published data. To do this, mice were 

allowed to develop tumours for various lengths of time before tumours were 

excised, enzymatically digested and subjected to flow cytometry analysis of 

major immune cell constituents of the tumour including eosinophils, neutrophils, 

DCs, macrophages, monocytes, T cells and B cells (Gating strategy Figure 4.1).  

 

Figure 4.1 continued on the next page 
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Figure 4.1 Gating strategies for immune cells in the tumour and tdLN 
A. Tumour eosinophils (eos; black arrows) were gated as single, live, CD45+, CD11b+, SiglecF+. 
Tumour neutrophils (black and green arrows) were gated as single, live, CD45+, CD11b+, SiglecF- 
(to exclude eosinophils), CD11c- (to exclude DCs), F4/80- (to exclude monocytes/macrophages), 
Ly6G+. Tumour DCs (black and blue) were gated as single, live CD45+, CD11b+, SiglecF- (to 
exclude eosinophils), F4/80- (to exclude monocytes/macrophages), CD11c+, MHCII+. Tumour 
macrophages and monocytes (black, green and pink arrows) were gated as single, live CD45+, 
CD11b+, SiglecF- (to exclude eosinophils), F4/80+ and distinguished between monocytes (Ly6C+) 
and macrophages (Ly6C-). B. Tumour and lymph node T cells (black and red arrows) were gated 
as single, live, CD45+, CD11b+, CD3+, SSClo and CD4+ or CD8+. Tumour B cells (black and orange 
arrows) were gated as single, live, CD45+, B220+. 
 

Each of these immune cells has been implicated as being permissive to tumour 

growth, as well as being targets for therapeutic intervention to inhibit tumour 

growth. At 12 days post B16F10 tumour cell seeding in C57BL/6 mice, immune 

cells (CD45+ cells) made up approximately one-third of all live cells (33.43% ± 

5.49%) (Figure 4.2A). Consistent with previous reports (O’Sullivan & Lewis, 1994; 

Williams et al., 2016), CD11b+ SiglecF- F4/80+ Ly6G- Ly6C- tumour-associated 

macrophages (Mφ)  were the predominant immune cell population present in the 

tumour (16.4% ± 5.6%) followed by CD11b+SiglecF-F4/80+Ly6G-Ly6C+ monocytes 

(Mo; 11.28% ± 2.61%) and CD11b+SiglecF+ eosinophils (Eos; 9.81% ± 1.57%) (Figure 

4.2B). CD11b+SiglecF-F4/80-Ly6G+ neutrophils (NT; 7.87% ± 5.13%) and 

CD11b+SiglecF-F4/80-CD11c+MHCII+ DCs (2.30% ± 0.318%) were also quantified. 

There was also a population of immune cells (52.38% ± 9.99%) which were not 

identified using the antibody panel employed, but were most likely to be made 

up of B cells, natural killer cells, innate lymphoid cells amongst others. Four 

days subsequently, at 16 days post tumour cell inoculation, CD45+ immune cells 

made up a smaller proportion of the tumour (16.8% ±13.19%), but this was highly 

variable (Figure 4.2C). Once again, the predominant immune cell population 
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analysed was the TAMs making up about one-quarter of the immune cell 

infiltrate (26.26% ± 2.829%) (Figure 4.2D). This was followed by T cells (T; 

12.48% ± 8.99%), monocytes (9.05% ± 4.06%) and neutrophils (7.146% ± 6.25%). 

Eosinophils (5.35% ± 3.26%), B cells (B; 3.26% ± 2.60%) and DCs (1.41% ± 1.02%) 

were also accounted for in the tumour mass. There was approximately 35.03% of 

CD45+ immune cells which were not accounted for with this panel. 

 

Figure 4.2 Tumour immune cells at indicated time points 
Tumours were harvested at 12 and 16 days post B16F10 tumour cell seeding in C57BL6 mice for 
flow cytometry analysis of immune cell populations. A. Data are shown as percentage of total live 
cells at 12 days post tumour cell seeding. B. Data are shown as percentage CD45+ cells for each 
population. C. Data are shown as percentage of total live cells at 16 days post tumour cell seeding. 
D. Data are shown as percentage CD45+ cells for each population. Error bars SEM. 
 
4.2.2 Changes in the production of pro-inflammatory mediators in 

the tumour following systemic SL7207 infection 

In order to ascertain the changes in the inflammatory status of the tumour 

following infection, tumours from infected and uninfected mice were harvested 

at 5 dpi. Whole tumour suspensions were harvested and stimulated in vitro for 

four hours, before the supernatant was collected for enzyme-linked 

immunosorbent assay (ELISA) analysis. The infected tumours secreted greater 

quantities of the pro-inflammatory mediator interferon (IFN)-γ at 5 days post 

infection (dpi) than the uninfected, and appeared to at 7 dpi, but this was not 

statistically significant (Figure 4.3A). There was also a significant increase in the 

secretion of tumour necrosis factor (TNF)-α from the infected tumours compared 
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to the uninfected at both 5 and 7 dpi (Figure 4.3B). For intracellular cytokine 

analysis, some of the cells harvested for ELISAs were separately incubated with a 

protein transport inhibitor to sequester cytokines intracellularly to allow for 

antibody staining. This analysis revealed an increase in the amount of IL-12p40 

in the infected samples compared to the uninfected, but this was not 

statistically significant (p = 0.0506, Figure 4.3C, D). IL-12p40 is a subunit of both 

IL-12 and IL-23, both of which are pro-inflammatory cytokines. However, there 

was a significant increase in the expression of IL-6 in the infected tumours at 

this time point (Figure 4.3E, F). These data suggest that the tumour 

microenvironment adopted an inflammatory phenotype following infection. 

Unfortunately, neither spleens nor serum samples were harvested at this time 

for similar analysis. 

 

Figure 4.3 Effects of SL7207 on the production of pro-inflammatory cytokines in the tumour 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi, 
stimulated in vitro and the cytokine production analysed by ELISA or flow cytometry. A. Whole 
tumour IFN-γ production from infected (red) and uninfected (black) tumours. B. Whole tumour TNF-
α production from infected (red) and uninfected (black) tumours. C. Representative histogram plot 
of whole tumour IL-12p40 expression from infected and uninfected tumours. Cells were gated on 
single, live.  D. MFI of IL-12p40 expression from  infected (red) and uninfected (black) tumours. E. 
Representative histogram plot of whole tumour IL-6 expression from infected and uninfected 
tumours. Cells were gated on single, live.  F. MFI of IL-6 expression from infected (red) and 
uninfected (black) tumours. Error bars SEM. Statistical analyses performed using Student’s t test 
were p < 0.05*, p < 0.01**. 
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4.2.3 Changes in the total number of leukocytic cell infiltrates in 
tumours infected with SL7207 

Given the changes in the production of pro-inflammatory mediators in the 

tumour, it was hypothesised that infiltrating leukocytes might be contributing to 

the inflammatory environment established following infection. Therefore, at 

multiple time points post infection, tumours were harvested and subjected to 

flow cytometry analysis of immune cell populations. Following SL7207 infection, 

there was no significant change in the number of CD45+ immune cells in the 

tumour at 3, 5 or 7 dpi (Figure 4.4A, B). The number of cells recovered from 

tumours was variable so this data was transformed (Y = Log(Y)) and represented 

as such throughout. However, there was an increase in CD45+ cells as a 

proportion of live cells at 5 and 7 dpi (Figure 4.4C). 

 

Figure 4.4 Effects of SL7207 on the tumour CD45+ immune cell content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. A. Representative flow 
cytometry plots of CD45+ cells from infected and uninfected tumours at 5 dpi. Cells were gated on 
single, live. B. Quantification of absolute number of CD45+ immune cells from infected and 
uninfected tumours at the indicated time points. C. Data shown as percentage CD45+ of total live 
cells from infected and uninfected tumours at the indicated time points. Error bars SEM. Statistical 
analyses performed using Students t test between infected and uninfected samples at the same 
time point where p < 0.05*, p < 0.01**. 
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4.2.4 Effects of systemic SL7207 infection of tumour-associated 
neutrophils  

Neutrophils are one of the first immune cells to respond to S. Typhimurium 

infection (Barthel et al., 2003; Rydström & Wick, 2009). In the present study, 

following SL7207 infection, there was no change in the total number of 

neutrophils in the tumour (Figure 4.5A, B). However, given that the tumours 

from the infected mice were much smaller than those in the uninfected, 

absolute numbers might not be reflective of the expansion of a given cell type 

following infection. Therefore, to examine if there was an expansion of 

neutrophils within the total immune cell population, the number of neutrophils 

amongst total CD45+ cells was also evaluated. There was not an expansion of the 

neutrophil population within the leukocyte compartment (Figure 4.5C).  

 

Figure 4.5 Effects of SL7207 on tumour neutrophil content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. A. Representative flow 
cytometry plots of Ly6G+ neutrophils from infected and uninfected tumours at 5 dpi. Cells were 
gated on single, live, CD45+, F4/80-. B. Quantification of absolute number of neutrophils from 
infected and uninfected tumours at the indicated time points. C. Data shown as percentage Ly6G+ 
neutrophils of total CD45+ cells from infected and uninfected tumours at the indicated time points 
Error bars SEM. Statistical analyses performed using Students t test between infected and 
uninfected samples at the same time point where p < 0.05*. 
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There was, however, a significantly increased frequency of Ki67+ neutrophils at 5 

dpi in the infected tumours compared to uninfected (Figure 4.6A, B). At this 

time point, there was also an increase in the proportion of neutrophils producing 

pro-IL-1β (Figure 4.6C, D) and TNF-α (Figure 4.6E, F). These data are 

represented as the percentage of neutrophils (% Neutrophils) that were positive 

for the indicated marker.  There was also an up-regulation of IL-22 in the 

neutrophil population (Figure 4.6G, H). Changes in the phagocytic capacity of 

the neutrophils was examined through the employment of pHrodoTM Red E. coli 

BioparticlesTM, which can be taken up by phagocytic cells and assessed through 

flow cytometry. There was an increase in the phagocytic capacity of tumour-

associated neutrophils following infection, as evidenced by the increase in 

proportion of pHrodo-PE+ neutrophils in the SL7207 samples compared to 

uninfected (Figure 4.5I, J). 
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Figure 4.6 Effects of SL7207 on the activation of tumour neutrophils 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for in vitro stimulation and flow cytometry analysis of activation markers in neutrophils. Cells were 
gated on . Cells were gated on single, live, CD45+, F4/80-, Ly6G+. A. Representative flow cytometry 
plots showing Ki67+ Ly6G+ neutrophils for infected and uninfected samples, including an IgG 
isotype control. B. Data shown as percentage Ki67+ cells of total Ly6G+ neutrophils from infected 
and uninfected samples. C. Representative flow cytometry plots showing pro-IL-1β+ Ly6G+ 
neutrophils for infected and uninfected samples including an IgG isotype control. D. Data shown as 
percentage pro-IL-1β+ cells of total Ly6G+ neutrophils from infected and uninfected samples. E. 
Representative flow cytometry plots showing TNF-α+ Ly6G+ neutrophils for infected and uninfected 
samples including an IgG isotype control. F. Data shown as percentage TNF-α+ cells of total Ly6G+ 
neutrophils from infected and uninfected samples. G. Representative histogram plot of Ly6G+ 
neutrophil IL-22 production from infected and uninfected samples including an IgG isotype control. 
H. MFI of IL-22 production from Ly6G+ neutrophils from infected and uninfected samples. I. 
Representative flow cytometry plots showing pHrodo-PE+ Ly6G+ neutrophils for infected and 
uninfected samples, with a 4˚C Control,. J. Data shown as percentage pHrodo-PE+ cells of total 
Ly6G+ neutrophils from infected and uninfected samples. Error bars SEM. Statistical analyses 
performed using Students t test where p < 0.05*, p < 0.01**. 
 
4.2.5 Tumour-associated DC number and activation following 

systemic SL7207 infection 

Tumour-associated DCs can play an important role in mediating tumour growth 

inhibition, mostly through presenting tumour antigens to T cells in the lymph 

node, which can then recognise and kill the antigen-bearing tumour cells (Liu & 

Cao, 2015). DCs also play an important role following S. Typhimurium infection 

in the mucosa and spleen, where they are heavily recruited (Johansson et al., 

2006) and also perform antigen presentation and T cell activation roles (Tam et 

al., 2008). Therefore, the number of DCs in the tumour following SL7207 

administration was investigated. There was no significant change in the total 
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number of DCs in the tumour at any time point after infection (Figure 4.7A, B). 

There was also no change in the proportion of DCs in the CD45+ immune cell 

compartment (Figure 4.7C).  

 

Figure 4.7 Effects of SL7207 on tumour DC content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. A. Representative flow 
cytometry plots of MHCII+ DCs from infected and uninfected tumours at 5 dpi. Cells were gated on 
single, live, CD45+, F4/80-, CD11c+. B. Quantification of absolute number of CD11c+MHCII+ DCs 
from infected and uninfected tumours at the indicated time points. C. Data shown as percentage 
CD11c+ MHCII+ DCs of total CD45+ cells from infected and uninfected tumours at the indicated 
time points. Error bars SEM. Statistical analyses performed using Students t test between infected 
and uninfected samples at the same time point where p < 0.05*. 
 
There was however a change in the phenotype of the DCs. DCs recovered from 

infected tumours at multiple time points had decreased expression of MHCII 

(Figure 4.8A, B). Furthermore, there appeared to be a decrease in the frequency 

of DCs which expressed the co-stimulatory molecule CD80 in the infected 

compared to uninfected samples at 5 dpi (Figure 4.8C, D).  
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Figure 4.8 Effects of SL7207 on tumour DC MHCII and CD80 expression 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. A. Representative histogram 
plot of MHCII+ expression on DCs from infected and uninfected tumours at 5 dpi. Cells were gated 
on single, live, CD45+, F4/80-, CD11c+. B. MFI of MHCII expression on CD11c+MHCII+ DCs from 
infected and uninfected samples at indicated time points. C. Representative flow cytometry plots 
showing CD80+ CD11c+MHCII+ DCs from infected and uninfected tumours at 5 dpi. Cells were 
gated on single, live, CD45+, F4/80-, CD11c+, MHCII+. D. Data shown as percentage CD80+ of 
CD11c+MHCII+ DCs from infected and uninfected samples at 5 dpi. Error bars SEM. Statistical 
analyses performed using Students t test where p < 0.05*, p < 0.01**, p < 0.001***. 
 
Upon reflection, the gating strategy outlined in Figure 4.1 was insufficient to 

conclusively analyse classical DCs (cDCs) in the tumour. Firstly, it was possible 

that there were CD11c+ B cells included in the ‘DC’ population. Secondly, this 

strategy did not include CD103+/CD8+, cDC1s. Therefore, a revised staining panel 

and gating strategy was devised (Figure 4.9). The cDC population could be 

differentiated into cDC1s and cDC2s based on their expression of CD8 or CD11b 

respectively.  
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Figure 4.9 Revised gating strategy for tumour and tdLN cDCs 
Tumour and lymph node cDCs (black and purple arrows) were gated as single, live, CD45+, 
SiglecF-Ly6C- (removal of eosinophils and monocytes), F4/80- (removal of macrophages), Ly6G- 
(removal of neutrophils), CD11c+MHCII+, B220- (removal of CD11c+ B cells and pDCs) and then 
differentiated on the basis of CD8 or CD11b expression as cDC1s and cDC2s respectively. To 
assess the proportion of cDCs which were migratory, B220- cDCS were gated on MHCIIhi (green 
arrow). 
 
The revised DC subset analysis revealed that there was no significant change in 

the number of cDC1s (CD8+) between infected and uninfected tumours at 5 dpi 

(Figure 4.10A-C). There was, however, a significant decrease in the number of 

tumour-associated cDC2s (CD11b+) at 5 dpi following infection (Figure 4.10D). 

This decrease was also reflected within these cells as a proportion of total 

tumour-associated CD45+ immune cells (Figure 4.10E). 
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Figure 4.10 Effects of SL7207 on tumour cDC1 and cDC2 content 

Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for flow cytometry analysis of cDC1 and cDC2 content. A. Representative flow cytometry plots of 
cDC1s (CD8+, orange boxes) and cDC2s (CD11b+, blue boxes) from infected and uninfected 
tumours. Cells were gated on single, live, CD45+, SiglecF-, Ly6C-, F4/80-, Ly6G-, CD11c+, MHCII+, 
B220-. B. Quantification of absolute number of CD8+ DCs from infected and uninfected tumours. C. 
Data shown as percentage CD8+ DCs of total CD45+ cells from infected and uninfected tumours. D. 
Quantification of absolute number of CD11b+ DCs from infected and uninfected tumours. E. Data 
shown as percentage CD11b+ DCs of total CD45+ cells from infected and uninfected tumours. Error 
bars SEM. Statistical analyses performed using Students t test where p < 0.05*, p < 0.01**, p < 
0.001***. 
 

It was possible that the observed decreases in frequency and number of tumour-

associated cDCs was due to enhanced migration to the draining lymph node. 

Therefore, the tumour draining lymph nodes (tdLN) were also harvested and the 

cDC populations therein were analysed to ascertain if there was a concomitant 
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increase in the number of cDC2s following infection. There was no significant 

difference between infected and uninfected samples in terms of absolute 

numbers of cDC1s (Figure 4.11A, B). There was however an increase in cDC1s 

within the CD45+ compartment (Figure 4.11C). There was also no significant 

difference in the number of cDC2s in the tdLN between infected and uninfected 

samples (Figure 4.11D). There was, however, a highly significant increase in the 

cDC2 cells amongst total CD45+ cells (Figure 4.11E).  

 

 

Figure 4.11 Effects of SL7207 on tdLN cDC1 and cDC2 content 

Tumour-bearing mice were inoculated with SL7207 or and tdLNs were harvested at 5 dpi for flow 
cytometry analysis of cDC1 and cDC2 content. A. Representative flow cytometry plots of cDC1s 
(CD8+, orange boxes) and cDC2s (CD11b+, blue boxes) in tdLNs of infected and uninfected 
tumour-bearing mice. Cells were gated on single, live, CD45+, SiglecF-, Ly6C-, F4/80-, Ly6G-, 
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CD11c+, MHCII+, B220-. B. Quantification of absolute number of CD8+ DCs in cells in tdLNs of 
infected and uninfected tumour-bearing mice. C. Data shown as percentage CD8+ DCs of total 
CD45+ cells in tdLNs of infected and uninfected tumour-bearing mice. D. Quantification of absolute 
number of CD11b+ DCs in tdLNs of infected and uninfected tumour-bearing mice. E. Data shown 
as percentage CD11b+ DCs of total CD45+ cells in tdLNs of infected and uninfected tumour-bearing 
mice. Error bars SEM. Statistical analyses performed using Students t test where p < 0.05*, p < 
0.01**, p < 0.001***. 
 

It was also possible to enumerate the number of ‘migratory DCs’ in the tdLN, as 

these cells are characterised by MHCIIhi expression (Ohl et al., 2004). If there 

was an increase in DC migration from the tumour to the tdLN, this would be 

reflected by an increase in the number of MHCIIhi DCs. However, there was no 

difference in the proportion of tdLN cDCs which were migratory between 

infected and uninfected samples (Figure 4.12).  

 

Figure 4.12 Effects of SL7207 on migratory cDCs in tdLN 

Tumour-bearing mice were inoculated with SL7207 or PBS and tdLNs were harvested at 5 dpi for 
flow cytometry analysis of cDC1 and cDC2 content. A. Representative flow cytometry plots 
showing MHCIIhi migratory cDCs in the tdLNs of infected and uninfected tumour-bearing mice. 
Cells were gated on single, live, CD45+, SiglecF-, Ly6C-, F4/80-, Ly6G-, CD11c+, MHCII+, B220-. B. 
Quantification of the absolute number of MHCIIhi cDCs in tdLNs of infected and uninfected tumour-
bearing mice. C. Data shown as percentage MHCIIhi migratory cDCs of total CD45+ cells in tdLNs 
of infected and uninfected tumour-bearing mice. Error bars SEM. Statistical analyses performed 
using Students t test where p < 0.05*. 
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4.2.6 Changes in the T cell infiltrate into the tumour and tdLN 
following infection 

It has been suggested that there is an influx of CD3+ T cells into the tumour 

following infection (Avogadri et al., 2005; Cronin et al., 2010; Lee et al., 2011; 

Lizotte et al., 2014). To investigate this in the present model, infected and 

uninfected tumours were harvested at indicated time points and analysed by 

flow cytometry for analysis of T cell populations. The gating strategy is depicted 

in Figure 4.1. There was a significant decrease in the total number of CD4+ T 

cells in the infected tumours compared with the uninfected tumours at 5 dpi, 

which appeared to be reversed at 7 dpi, but this was not statistically significant 

(p = 0.053; Figure 4.13A,B). There was no change in the number of CD8+ T cells 

at either time point between infected and uninfected samples (Figure 4.13C).  

 

Figure 4.13 Effects of SL7207 on tumour T cell content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 and 7 
dpi for flow cytometry analysis of tumour T cell content. A. Representative flow cytometry plots 
showing CD4+ and CD8+ T cells from infected and uninfected tumours. Cells were gated as CD45+, 
CD3+, SSClo. B. Quantification of absolute number of CD4+ T cells from infected and uninfected 
tumours at the indicated time points. C. Quantification of absolute number of CD8+ T cells from 
infected and uninfected tumours at the indicated time points. Error bars SEM. Statistical analyses 
performed using Students t test between infected and uninfected samples at the same time point 
where p < 0.05*, p < 0.01**, p < 0.001***. 
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Looking in the tdLN, there were no significant differences in the number of CD4+ 

T cells at either 5 or 7 dpi for infected and uninfected samples (Figure 4.14A, B). 

There were also no significant differences in the number of CD8+ T cells between 

infected and uninfected samples (Figure 4.14C). 

 

Figure 4.14 Effects of SL7297 on tdLN T cell content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tdLNs were harvested at 5 and 7 
dpi for flow cytometry analysis of tumour T cell content. A. Representative flow cytometry plots 
showing CD4+ and CD8+ T cells in tdLNs of infected and uninfected tumour-bearing mice. Cells 
were gated as CD45+, CD3+, SSClo. B. Quantification of absolute number of CD4+ T cells in tdLNs 
of infected and uninfected tumour-bearing mice at the indicated time points. C. Quantification of 
absolute number of CD8+ T cells in tdLNs of infected and uninfected tumour-bearing mice at the 
indicated time points. Error bars SEM. Statistical analyses performed using Students t test between 
infected and uninfected samples at the same time point where p < 0.05*. 
 
4.2.7 TH1 responses detected in the tumour and tdLN following 

SL7207 infection 

S. Typhimurium has been documented to induce a TH1 response in the intestine 

following oral infection (Bao et al., 2000; Ravindran et al., 2005). Furthermore, 

TH1 T cells have been implicated in bacterial-mediated cancer therapy for 

multiple bacterial genera (Lizotte et al., 2014; Loeffler et al., 2009; Stern et 

al., 2015). The expression of the TH1 lineage-specific transcription factor, Tbet, 

was examined in CD4+ T cells. There was an increase in the proportion of tumour 
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CD4+ T cells expressing Tbet at 5 dpi (Figure 4.15A, B). There was also an 

increase in the proportion of CD8+ T cells producing IFN-γ, a TH1-associated 

cytokine, in the infected samples compared with the uninfected at both 5 and 7 

dpi (Figure 4.15C, D).  

 

Figure 4.15 Effects of SL7207 on TH1 response in the tumour 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 and 7 
dpi for flow cytometry analysis of tumour T cell content. A. Representative flow cytometry plots 
showing Tbet+ CD4+ T cells from infected and uninfected tumours, including an IgG isotype control. 
Cells were gated as CD45+, CD3+, SSClo, CD4+. B. Data shown as percentage Tbet+ of total CD4+ 
T cells from infected and uninfected tumours. C. Representative flow cytometry plots showing IFN-
γ+ C84+ T cells from infected and uninfected tumours, including an IgG isotype control. Cells were 
gated as CD45+, CD3+, SSClo, CD8+. D. Data shown as percentage IFN-γ+ of total CD8+ T cells 
from infected and uninfected tumours. Error bars SEM. Statistical analyses performed using 
Students t test between infected and uninfected samples at the same time point where p < 0.05*, p 
< 0.01**, p < 0.001***. 
 
These TH1 T cells were also evident in the tdLN following infection. There was a 

significant increase in the frequency of CD4+Tbet+ T cells amongst total CD4+ 

cells in the infected samples at 5 and 7 dpi (Figure 4.16A, B). There was possibly 

an increase in the proportion of CD8+ cells which were IFN-γ+, at 5 dpi but the 

low sample size was insufficient to perform statistical analysis (Figure 4.16C, D).  
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Figure 4.16 Effects of SL7207 on TH1 response in tdLN 
Tumour-bearing mice were inoculated with SL7207 or PBS and tdLNs were harvested at 5 and 7 
dpi for flow cytometry analysis of tumour T cell content. A. Representative flow cytometry plots 
showing Tbet+ CD4+ T cells in tdLNs of infected and uninfected tumour-bearing mice, including an 
IgG isotype control. Cells were gated as CD45+, CD3+, SSClo, CD4+. B. Data shown as percentage 
Tbet+ of total CD4+ T cells in tdLNs from infected and uninfected tumour-bearing mice. C. 
Representative flow cytometry plots showing IFN-γ+ CD8+ T cells in tdLNs of infected and 
uninfected tumour-bearing mice, including an IgG isotype control. Cells were gated as CD45+, 
CD3+, SSClo, CD8+. D. Data shown as percentage IFN-γ+ of total CD8+ T cells in tdLNs from 
infected and uninfected tumour-bearing mice. Error bars SEM. Statistical analyses performed using 
Students t test between infected and uninfected samples at the same time point where p < 0.05*, p 
< 0.01**, p < 0.001***. 
 

4.2.8 TH17 responses in the tumour following SL7207 infection 

There have been reports that S. Typhimurium induces a TH17 response in the 

intestine following oral infection (Raffatellu et al., 2008). Therefore, the 

expression of the TH17 cytokine, IL-17, was examined in the infected and 

uninfected tumours. There was an increase in the proportion of CD4+ T cells 

producing IL-17 in the infected samples compared with the uninfected samples 

at 5 dpi (Figure 4.17A,B). There was also an increase in the amount of tumour-

produced IL-17 secreted by immune cells present in the infected tumour 

compared to uninfected following in vitro stimulation (Figure 4.17C). These data 

suggest a TH17 response in the tumour associated with SL7207 infection.  



Chapter 4 Local tumour response to systemic SL7207 infection 
 

125 
 

 

Figure 4.17 Effects of SL7207 on TH17 response in the tumour 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for flow cytometry analysis of tumour T cell content or ELISA analysis. A. Representative flow 
cytometry plots showing IL-17+ CD4+ T cells from infected and uninfected tumours, including an 
IgG isotype control. Cells were gated as CD45+, CD3+, SSClo, CD4+. B. Data shown as percentage 
IL-17+ of total CD4+ T cells from infected and uninfected tumours. C. Whole tumour IL-17 
production from infected and uninfected tumours. Error bars SEM. Statistical analyses performed 
using Students t test between infected and uninfected samples where p < 0.05*, p < 0.01**. 
 
4.2.9 Changes in the frequency of CD4+Foxp3+ Tregs in the 

tumour following SL7207 infection 

A number of studies have demonstrated a role for Tregs in propagating the 

immunosuppressive environment of the tumour (Cederbom et al., 2000; Strauss 

et al., 2007). Therefore, it was interesting to investigate if there was a change 

in the tumour Treg population following SL7207 infection. There was a decrease 

in the frequency of CD4+ T cells which were FoxP3+ at 5 dpi in the infected 

samples compared with uninfected control (Figure 5.18A, B). There was also a 

trend towards a decrease at 7 dpi, but this was highly variable and not 

statistically significant (p = 0.08; Figure 5.18B). There were no differences in the 

proportion of FoxP3+CD4+ T cells in the tdLN between the treatment groups at 

either time point post infection (Figure 5.18C, D). 
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Figure 4.18 Effects of SL7207 on Treg response in the tumour and tdLN 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumour and tdLNs were harvested 
at 5 and 7 dpi for flow cytometry analysis of tumour T cell content. A. Representative flow 
cytometry plots showing FoxP3+ CD4+ T cells from infected and uninfected tumours, including an 
IgG isotype control. Cells were gated as CD45+, CD3+, SSClo, CD4+. B. Data shown as percentage 
FoxP3+ of total CD4+ T cells from infected and uninfected tumours. C. Representative flow 
cytometry plots showing FoxP3+ CD4+ T cells in tdLNs of infected and uninfected tumour-bearing 
mice, including an IgG isotype control. Cells were gated as CD45+, CD3+, SSClo, CD4+. D. Data 
shown as percentage FoxP3+ of total CD4+ T cells in tdLNs from infected and uninfected tumour-
bearing mice. Error bars SEM. Statistical analyses performed using Students t test between 
infected and uninfected samples at the same time point where p < 0.05*, p < 0.01**. 
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4.3 Discussion 

There have been multiple reports which have provided evidence for the 

implication of tumour-associated immune cells in mediating bacterial-mediated 

anti-tumour effects (Lee et al., 2011; Stern et al., 2015; Westphal et al., 2008). 

The focus here was on particular myeloid-derived cells implicated in S. 

Typhimurium infection; neutrophils (Barthel et al., 2003; Rydström & Wick, 

2009) and DCs (Tam et al., 2008; Yrlid et al., 2000). There was also an interest 

in the types of adaptive immune response elicited following infection, given 

previous findings involving a TH1 response in bacterial mediated cancer therapy 

(Lee et al., 2011; Stern et al., 2015). The current study has indeed 

demonstrated that the tumour immune repertoire is perturbed following 

systemic S. Typhimurium infection, characterised by neutrophil activation and 

TH1 and TH17 responses, with a decrease in the frequency of tumour-associated 

Tregs following infection. 

4.3.1 Why was there no change in the number of tumour-
associated leukocytes following infection? 

It has been reported that there is an influx of immune cells into the gut 

following oral administration of S. Typhimurium to streptomycin-treated mice 

(Barthel et al., 2003; Johansson et al., 2006; Rydström & Wick, 2009). 

Therefore, it was hypothesised that there would be a similar influx of CD45+ 

immune cells into the tumour following systemic SL7207 infection of tumour-

bearing mice. In this report, there was no significant difference in the number of 

CD45+ immune cells recovered from infected and uninfected tumours. There 

was, however, an increase in CD45+ cells as a proportion of live cells in the 

infected samples, which is most likely explained by the fact that there is a 

concomitant decrease in the number of tumour cells. Taken at face value, these 

data suggest an abrogation in immune recruitment in the tumour following 

infection. 

There are tissue-specific factors which may be underlying the perceived 

abrogated immune infiltration into the tumour following SL7207 infection. For 

example, the microbiota in the mucosa play a pivotal role in host response to 

mucosal infection. Germ-free mice display reduced antigen-specific systemic 
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immune responses to S. Typhimurium (Nardi et al., 1991). As the tumours in this 

study were taken to be sterile, it is unlikely that local microbiota-host 

interactions shaped the tumour immune response to systemic SL7207 infection.  

Another factor that may play a role in determining the immune infiltration of an 

infected organ is the stromal cell repertoire. Stromal cells in the gut play an 

important role in attracting immune cells by propagating inflammation in 

response to oral S. Typhimurium infection (Müller et al., 2009). However, 

stromal cells in the tumour have been programmed to prevent immune cell 

infiltration to the tumour. For example, endothelial cells in the tumour often 

exhibit reduced expression of E-cadherin and multiple integrins such as 

intercellular-adhesion molecule (ICAM)1 and ICAM2 which lead to impaired 

lymphocyte recruitment (Griffioen et al., 1996a; Griffioen et al., 1996b). 

Furthermore, tumour-associated fibroblasts have been demonstrated to promote 

a tumour-promoting immune landscape (Kraman et al., 2010). Therefore, it 

might be interesting to investigate if the phenotype of the tumour stroma can 

play a role in attenuating bacterial-mediated tumour growth inhibition.  

Perhaps the most likely explanation for the absence of a CD45+ cell influx is the 

immunosuppressive tumour microenvironment. The tumour microenvironment 

harbours immunosuppressive immune cells such as TAMs that express 

Programmed Death Ligand-1 (PD-L1) (Gordon et al., 2017) and Tregs (Cederbom 

et al., 2000; Strauss et al., 2007). Therefore, this environment may not be as 

responsive to bacterial insult as other tissues, which might be appetising if there 

wasn’t a significant increase in the secretion of pro-inflammatory cytokines in 

the tumour following infection. However, a limitation of our analysis is that we 

did not analyse the amount of tumour suppressive cytokines in the tumour 

following infection, such as IL-10 and TGF-β, which may still be present and 

inhibiting effector cell recruitment.  

Given that there is no overall increase in immune cells but still an anti-tumour 

effect possibly demonstrates that tumour-resident cells are capable of mediating 

the anti-tumour effects of the bacteria. This is interesting from a clinical point 

of view because it suggests that patients, who often have a reduced capacity to 

launch an immune response (Hübel et al., 1999; Klastersky & Aoun, 2004; Viscoli 
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et al., 2005) may not have to depend on circulating immune cells to mediate the 

anti-tumour effects of this therapy. Instead, they can rely on the tumour-

associated immune cells, which up to the point of treatment have likely played a 

role in promoting tumourigenesis. Furthermore, it is tempting to speculate that 

the effects of the immune cells become more potent as the immune cell:cancer 

cell ratio increases due to tumour cell death. Therefore, if an immune cell is 

producing anti-tumourigenic molecules such as TNF-α or IFN-γ, the remaining 

tumour cells are being flooded with increasing doses as other tumour cells die. 

Although this seems intuitive, there is no evidence provided herein to suggest 

this is the case. 

It is also possible that there is indeed immune cell infiltration, but this hasn’t 

been accounted for in the present experimental design. Following S. 

Typhimurium infection, there is immune cell death; for example, macrophages 

undergo pyroptosis to limit bacterial spread (Monack et al., 1996). If the number 

of dying immune cells in the tumour environment equals the infiltration 

following infection, there would be no significant difference in the total number 

of CD45+ leukocytes in the tumour following infection, similar to what is seen 

here. However, this has also been demonstrated to be the case in the intestine 

following infection, (Barthel et al., 2003; Rydström & Wick, 2009) so does not 

suffice to explain the absence of a significant immune cell infiltrate inhere. 

Therefore, it would be imperative to investigate the degree of immune cell 

death before major conclusions pertaining to the perceived abrogation of 

immune cell infiltration can be drawn. 

4.3.2 What role might tumour-associated neutrophils be playing 
in SL7207-mediated tumour growth inhibition? 

One of the innate immune cell types which has been extensively documented for 

its tissue infiltration following oral S. Typhimurium infection are 

polymorphonuclear neutrophils (Barthel et al., 2003; Rydström & Wick, 2009). 

Previous studies have demonstrated that S. Typhimurium promotes the migration 

of neutrophils to the site of infection by the N-terminus domain of the effector 

protein SipA (Lee et al., 2000; Wall et al., 2007). Bacterial-epithelial 

interactions subsequently elicit the production of chemoattractants secreted by 

enterocytes, in the form of chemokines such as IL-8 (Lee et al., 2000). 
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In the present study, there was no difference in the number of neutrophils or 

the proportion of neutrophils within the CD45+ immune cell compartment of the 

tumour following systemic SL7207 infection compared to uninfected. However, 

the neutrophils in the tumour displayed increased proliferative capacity and 

increased production of pro-inflammatory cytokines pro-IL1β, TNF-α and IL-22. It 

is interesting that the neutrophils increase the expression of Ki67, a marker for 

replication, yet there is no increase in the overall number of these cells even 

though they are very likely to be infiltrating the infected tissue. This suggests 

they may by undergoing cell death.  

Given the pro-inflammatory functional phenotype of the neutrophils, it is 

possible that they are mediating the anti-tumour effects of SL7207. To 

investigate this, it would be necessary to employ the use of transgenic mice 

lacking neutrophils or utilise an antibody against neutrophils, such as α-Ly6G, to 

inhibit their function and investigate if the local tumour immune response to 

systemic SL7207 infection is affected. This approach has already been employed 

in the context of bacterial-mediated cancer therapy, but the major parameter 

being investigated in that study was the dissemination of Salmonella in the 

tumour (Westphal et al., 2008). The removal of neutrophils allowed for greater 

bacterial dissemination within the tumour and subsequently a more positive 

clinical outcome. This therefore suggests that the neutrophils, although they 

may be contributing to the pro-inflammatory environment, overall are 

antagonising the effects of the bacteria and therefore may not be the immune 

cell responsible for the tumour growth inhibitory effects of S. Typhimurium. It 

was for this reason that the role of neutrophils in SL7207-mediated tumour 

growth inhibition was not further investigated. 

4.3.3 What role might the DCs be playing following SL7207 
infection? 

DCs are critical innate immune responders to mucosal S. Typhimurium infection, 

as well as playing an important role in mediating anti-tumour immunity (Liu & 

Cao, 2015; Yrlid et al., 2000). There have been many reports regarding the role 

of DCs in bacterial-mediated tumour growth inhibition (Avogadri et al., 2005, 

2008; Saccheri et al., 2010). TdLN DCs have been implicated in playing an 

important role in mediating anti-tumour immunity following S. Typhimurium 
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(SL3261AT) in the B16F10 tumour-bearing mice by increasing cross-presentation 

of tumour specific model antigen and stimulating both CD4+ and CD8+ T cell 

proliferation ex vivo (Avogadri et al., 2008). The formation of Cx43-dependent 

gap junctions assisted the delivery of pre-processed antigen from tumour cells to 

DCs resulting in a cytotoxic T cell response (Saccheri et al. 2010). However, in 

these studies, changes in the DC content of the tumour, or the necessity of DCs 

were not investigated.  

Herein, we analysed the numbers of DCs in the tumour directly. Similar to the 

neutrophils, there was no difference in the number of total DCs recovered from 

tumours at any time point after infection. Further probing into the subsets of 

DCs revealed that there was a decrease in the number of CD11b+ cDC2s but there 

was no significant change in the number of CD8+ cDC1s, though a trend towards 

decreased numbers was observed. However, as CD103+ cDCs are the non-

lymphoid counterparts of CD8+ cDC1 (del Rio et al., 2010; Helft et al., 2010), it 

may have been more informative to stain for CD103 instead of CD8 in the tumour 

to identify cDC1s. This may also account for why such low numbers of CD8+ DCs 

were identified in the tumour (in the range of 12 cells to 221).  

There was an increase in CD11b+ DCs as a proportion of CD45+ immune cells in 

the tumour-draining lymph node as well as an increase in CD8+ DCs, suggesting 

an increase in DC migration, but these increases were not reflected in terms of 

absolute numbers. There was no significant change in the number of ‘migratory 

DCs’ (MHCIIhi) in the lymph node. However, as the total number of cells 

recovered from the infected lymph nodes was significantly less than that 

recovered from the uninfected samples, (Appendix, Figure 9.2), this might 

account for the fact that any changes in the increase of migratory cells was not 

reflected in the quantification of absolute number. Interestingly, this trend of 

decreased cellular number was also evident in other experiments, which is 

surprising given that it has been reported that lymph nodes increase in size 

following systemic infection (Avogadri et al., 2008). 

CD11b+ cDC2s are adept at activating CD4+ T cells via MHCII presentation 

(Dudziak et al., 2007). Therefore, an increase in the activation of CD4+ T cells, 

discussed below, in the lymph node might be accounted for by an increased 
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migration of cDC2s. The data herein tentatively points towards that being the 

case. It would have been interesting to stain for C-C chemokine receptor type 7 

(CCR7) in the tumour, which marks DCs ready for migration from the tissue to 

the lymph node (Jang et al., 2006) to investigate if there was in fact stimulation 

of DC migration following infection.  

The migration of DCs from the tumour to the tdLN might also account for the 

reported decrease in expression of CD80 and MHCII; it might not necessarily be 

that S. Typhimurium are interfering with the expression of these molecules, but 

the DCs with the greatest expression of them have already left the tumour to 

travel to the lymph node. There are mixed reports in the literature about the 

effects of S. Typhimurium on MHCII expression on DCs. The data reported herein 

contradicts that of Kalupahana and colleagues which looked at monocyte-

derived DCs in vitro, and demonstrated that 2 hours of infection led to increased 

MHCII expression as well as increased expression of co-activation molecules CD80 

and CD86 compared to control (Kalupahana et al., 2005). Furthermore, systemic 

administration with S. Typhimurium resulted in increased MHCII and CD86 

expression of splenic CD11c+MHCII+ splenic DCs in vivo (Yrlid et al., 2000). In 

contrast, other studies have reported Salmonella interferes with HLA-DR (the 

human equivalent of MHCII) cell surface expression on human APCs (Lapaque et 

al., 2009; Mitchell et al., 2004). This process has been attributed to a type three 

secretion system (T3SS)-2-mediated poly-ubiquitination of the HLA-DR molecule, 

resulting in the degradation of the antigen presenting molecule, thus 

downregulating HLA-DR on infected cells. Other work in our research group has 

observed a decrease in MHCII on mucosal-associated DCs following oral S. 

Typhimurium infection (unpublished data). This, combined with the consistency 

of the data presented herein, provides strong evidence that S. Typhimurium-

mediated decrease in tumour-associated DC MHCII expression is a true 

phenomenon. The reduction of MHCII and/or CD80 on DCs would benefit S. 

Typhimurium by reducing the APCs’ ability to present antigen, thus delaying or 

dampening the anti-bacterial T cell response.  

To assess the true contribution of the DCs to bacterial-mediated tumour 

immunity, it would be necessary to either block or deplete DCs. This could be 

achieved through the employment of α-CD11c antibody or use of a transgenic 
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mouse, such as the CD11c-DTR system, which allows expression of the diphtheria 

toxin receptor (DTR) under control of a CD11c-Cre and can be used to selectively 

deplete CD11c+ cells upon diphtheria toxin administration (Jung et al., 2002). 

With both of these methods, CD11c+ macrophages and monocytes would also be 

depleted, so it would be necessary to determine if these cells change 

functionally or quantitatively in a wild type background in tumour-bearing mice 

following infection so as to limit the interpretation of the effects in the CD11c-

abrogated mice to that of DCs.  

4.3.4 Why is it important to understand the type of T cell 
response in the infected tumour? 

Much of the focus on bacterial cancer therapy and the immune response has 

focused on the contribution of TH1-associated T cell response (Kaimala et al., 

2014; Lee et al., 2011; Loeffler et al., 2009; Stern et al., 2015). The data 

presented herein is in keeping with a possible role for TH1 cells with an increase 

in CD4+Tbet+ cells in the tumour and tdLN. CTLs have also been implicated in 

mediating the tumour growth inhibition effects of E. coli and Salmonella 

(Loeffler et al., 2009; Stern et al., 2015). The data presented in this report is 

consistent with published data in showing a role for CD8+ T cells evidenced by 

the increase in CTLs, CD8+IFN-γ+ T cells, in the tumour and tdLN following 

infection. S. Typhimurium is adept at initiating both TH1 and TH17 responses in 

the gut (Raffatellu et al., 2008; Ravindran et al., 2005; Ye et al., 2001). Both 

play important roles in protective immunity to oral S. Typhimurium infection. 

TH1 T cells migrate to infected tissue and produce IFN-γ which activate 

macrophages and DCs to carry out their respective anti-microbial functions, as 

well as inducing oxidative burst of infected macrophages (Kalupahana et al., 

2005; MacMicking, 2012). TH17 T cells have recently become appreciated as 

players in T-cell mediated immunity through IL-17 production which stimulates 

neutrophil recruitment (Ye et al., 2001) and the production of pro-inflammatory 

cytokines such as TNF-α and IL-1β in macrophages (Jovanovic et al., 1998). 

Therefore, it was interesting to see an increase in the production of IL-17 in the 

tumour following infection. To our knowledge, this is the first report to suggest a 

role for TH17 cells in bacterial-mediated tumour therapy. This finding is 

interesting in the clinical context, as IL-17 is particularly beneficial for 

mediating tumour growth inhibition in certain cancer cell types such as 
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melanoma (Martin-Orozco et al., 2010; Muranski et al., 2008). On the contrary, 

IL-17 is particularly adept at stimulating tumourigenesis on other cancer types 

such as lymphoma and gastric cancers (He et al., 2011; Liu et al., 2011), 

suggesting that if TH17 cells are critical for the anti-tumour effects of S. 

Typhimurium, these cancer types might be unlikely to respond favourably.  

It would be informative to look for CD4+ T cells which stained positive for the 

TH17-associated transcription factor, RORγt. However, the staining for RORγt in 

the CD3+CD4+ T cell compartment wasn’t very strong which made it difficult to 

assess RORγt+ populations. It was possible that this was due to technical issues, 

but there was evident RORγt staining within the CD45+ compartment of the 

lymph node, which were not CD3+ T cells.  

Interestingly, there was also a decrease in the frequency of CD4+Foxp3+ T cells in 

the infected tumours compared to the uninfected, which was not reflected in 

the T cell data from the lymph node. Given the reports regarding the plasticity 

of Tregs towards TH17 cells, it is tempting to speculate that S. Typhimurium is 

mediating the conversion of Tregs into TH17 cells. The conversion of Tregs into 

TH17 cells has been reported to be stimulated by IL-6 with the absence of TGF-β 

signalling (Xu et al., 2007). IL-6 is induced following S. Typhimurium infection by 

monocytes (Galdiero et al., 1993) and also by DCs (Valdez et al., 2008). 

Although TGF-β has some pro-inflammatory effects, following on from the initial 

smouldering inflammation, it is generally an anti-inflammatory cytokine which 

can be produced by a range of tumour cell types and Tregs (Li et al., 2007). As 

there is a severe reduction in the number of tumour cells and frequency of 

CD4+Foxp3+ cells in the tumour following SL7207 infection, it is possible that 

there is a decrease in TGF-β also. It would have been interesting to investigate 

the change in TGF-β in the tumour microenvironment following SL7207 

administration as this may have provided more evidence to address the 

hypothesis of tumour-local Treg to TH17 transformation.  

However, although it is interesting to find increases in both TH1 and TH17 T cell 

responses in the tumour, as well as a decrease in the frequency of CD4+FoxP3+ 

cells, it is important to point out that the frequency of detected CD4+ and CD8+ 

T cells in the tumour was very low. Although the data was consistent between 
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samples, the robustness of the data might be called in to question. In an 

attempt to overcome this limitation, the use of a Percoll density gradient was 

employed to remove large tumour and immune cells from the T cell 

compartment, but this was unsuccessful. A more effective approach might be to 

isolate CD3+ T cells using MACS® Miltenyi Biotech Anti-CD3ε Microbead magnetic 

beads, which would be the next logical step in trying to enrich for the CD4+ and 

CD8+ T cells in the tumour preparations. 

There was one final interesting observation about the CD3+ T cells which seemed 

to be unique to the tumour: the existence of CD4+CD8+ T cells. It is irregular to 

find such a population in the body except in the thymus during T cell 

development (Parel & Chizzolini, 2004). This population was found to be present 

in most, but not all, of the T cell analysis experiments. However, one report 

demonstrated that this population is overrepresented in human melanoma 

metastases compared to tissue from healthy controls (Desfrançois et al., 2010). 

These cells were reported to be as competent as CD4+ and CD8+ T cells at 

producing multiple cytokines but are attenuated in their proliferative capacity 

compared to the single positive cells in vitro. In the present study, these cells 

were not subjected to investigation due to time constraints, but it might be 

interesting to retrospectively analyse the transcription factor activation and 

cytokine production of these cells with the data sets already generated for 

examining CD4+ and C8+ T cells in the tumour. 

4.3.5 Concluding Remarks 

In summary, the tumour-growth inhibitory effect of systemically administered 

SL7207 in tumour-bearing mice was associated with increased production of pro-

inflammatory mediators in the tumour microenvironment and changes in immune 

cell activation. However, this did not appear to be associated with an infiltration 

of CD45+ leukocytes. Neutrophils adopted a pro-inflammatory phenotype 

following infection and cDC2s possibly increased migration to the tdLN. The most 

interesting finding was the discovery of a TH17 response in the tumour following 

infection, as well as the concomitant decrease in the frequency of CD4+FoxP3+ T 

cells in tumour. Given that TH17 responses have been demonstrated to be more 

potently anti-tumourigenic than TH1 cells in some cancer settings, this potential 

TH17 response should be further investigated.  



  

 

5 The role of the monocyte/macrophage 
compartment in SL7207-mediated tumour 
growth inhibition 

5.1 Introduction 

Monocytes and macrophages play critical roles in tumourigenesis (Qian & Pollard, 

2010). Tumour-associated macrophages (TAMs) have been implicated in 

promoting an immunosuppressive immune environment, stimulating angiogenesis 

as well as promoting metastasis at distant sites. It has been reported that in 

over 80% of clinical studies evaluating multiple tumour types, there was a 

negative relationship between TAM density and patient prognosis (Bingle et al., 

2002).  

Monocytes are important components of innate immune defence in S. 

Typhimurium infection (Rydstrom & Wick, 2007). Inflammatory monocytes are 

rapidly recruited to the Peyer’s patches and mesenteric lymph nodes following 

oral S. Typhimurium infection (Rydström & Wick, 2009). Although a subset of 

monocytes which highly express the monocyte marker Ly6C, termed Ly6Chi 

monocytes, can give rise to tissue-resident macrophages, there are certain 

physiological conditions where this differentiation process is interfered with, 

such as during inflammation (Bain et al., 2013; Serbina et al., 2003; Zigmond et 

al., 2012). Numerous reports have described that following the induction of 

inflammation, infiltrating monocytes which are recruited to the inflamed tissue, 

retain their monocyte phenotype and do not differentiate in to tissue-resident 

macrophages (Bain et al., 2013; Zigmond et al., 2012). These 

monocyte/macrophage intermediates (Ly6C+MHCII+ cells) are highly pro-

inflammatory and are critical mediators of inflammation in the tissue. These 

cells might prove particularly adept at transforming the tumour 

microenvironment from immunosuppressive to immunostimulatory. However, the 

role of monocytes in the tumour growth inhibitory effects of S. Typhimurium has 

not been investigated. 

TAMs are generally immunosuppressive and, characterised by low expression of 

MHCII, and PD-1, and the production of TGF- β and IL-10 (Gordon et al., 2017; 

Movahedi et al., 2010; Movahedi & Van Ginderachter, 2016). The removal or 
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ablation of TAMs has resulted in a beneficial outcome in a number of 

experimental cancer models (Gazzaniga et al., 2007; Kimura et al., 2007; Lin et 

al., 2001). Macrophages are highly plastic cells and have been reported to 

change their phenotype depending on environmental signals (Guidicci et al., 

2005; Lavin et al., 2014; Saccani et al., 2006). Therefore, it would be beneficial 

for the purposes of cancer treatment if immunosuppressive TAMs could be 

stimulated to become pro-inflammatory TAMs, whose secreted cytokines and 

immune cell recruitment would not be conducive to tumour growth. For this to 

occur, the TAMs would have to encounter a potent immunostimulatory stimulus 

capable of modifying their phenotype. Tissue-resident macrophages are 

reportedly activated following S. Typhimurium infection to enhance phagocytosis 

and produce pro-inflammatory cytokines (Mastroeni et al., 1995; Yrlid et al., 

2000). In the present study, it was hypothesised that the systemic administration 

of S. Typhimurium would achieve this, and that this process would be largely 

responsible for the anti-tumour effects of systemic bacterial administration. 

To explore the role of tumour monocyte/macrophages in S. Typhimurium 

mediated tumour inhibition, Ccr2-/- mice that lack circulating Ly6Chi monocytes 

and liposomes containing clodronate can be employed (Franklin et al., 2014; 

Gazzaniga et al., 2007). Clodronate is a molecule which can be converted to a 

non-hydrolysable ATP-analogue in the cytosol of a cell (Rooijen & Sanders, 1994; 

Weisser et al., 2012). This blocks the ATP translocase in the outer mitochondrial 

membrane and leads to mitochondrial-mediated cell death within cells that take 

up the liposomes via phagocytosis, such as monocytes and macrophages. 

5.1.1 Aims 

1. To identify the monocyte and macrophage populations in the B16F10 

tumour 

2. To understand the changes in tumour monocytes and macrophages 

following SL7207 infection 

3. To investigate the relative contributions of MHCIIlo TAMs and infiltrating 

monocytes in the generation of MHCII+ TAMs following SL7207 infection 
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4. To investigate the tumour growth inhibitory effects of SL7207 in the 

absence of monocytes 
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5.2 Results 

5.2.1 Tumour-associated monocyte/macrophage subsets in the 
B16F10 tumours in the uninfected state 

From the literature, it is apparent that there are multiple gating strategies to 

look at monocytes and macrophages in a tumour (Franklin et al., 2014; Movahedi 

et al., 2010). The strategy employed in the present study was adapted from a 

protocol which is used extensively in our laboratory to look at colonic 

macrophages (Bain et al., 2014) and was consistent with published reports 

(Cortez-Retamozo et al., 2012; Movahedi et al., 2010). The gating strategy for 

the identification of the monocyte and macrophage subsets is presented in 

Chapter 4, Figure 4.1. The subsets of monocytes and macrophages found to be 

present in the B16F10 tumour were Ly6C+MHCII- monocytes (Q1), Ly6C+MHCII+ 

monocytes (Q2), mature Ly6C-MHCII+ TAMs (Q3) and mature Ly6C-MHCII- TAMs 

(Q4) (Figure 5.1A). As well as Ly6C expression, monocytes were distinguishable 

from TAMs due to lower side scatter and lower expression of the resident 

macrophage marker F4/80, a marker for macrophage residency (Gundra et al., 

2017), which was found at high levels on both TAM populations (Figure 5.1B-D).  
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Figure 5.1 Monocyte/macrophage populations in uninfected B16F10 tumours 
B16F10 tumour cells were seeded in C57BL6 mice and 14 days later, tumours were harvested for 
flow cytometry analysis of the macrophage/monocyte compartment. A. Representative flow 
cytometry plot of the monocyte/macrophage compartment in B16F10 tumours. Cells were gated as 
single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-. B. Representative histogram plot showing 
side scatter (SSC-A) for the populations shown in A. C. Representative histogram plot showing 
F4/80 expression on each of the populations shown in A. D. MFI of F4/80 expression on each of 
the populations represented in A Error bars SEM. Statistical analyses performed using One Way 
Anova; p < 0.05*, p < 0.01**, p < 0.001***. 
 
There appears to a number of different functional characterisations of TAMs 

based on MHCII expression profiles (Gabrilovich et al., 2012). In one report, 

TAMs were assigned to be either MHCII+ or MHCIIlo, each exhibiting differential 

tumour-promoting characteristics (Movahedi et al., 2010). Therefore, in the 

current study, the functional differences in the TAM populations identified, 

MHCII- and MHCII+ TAMs were investigated in the uninfected state. At 13 days 

post tumour cell inoculation, the two subsets of MHCII- and MHCII+ mature TAMs 

had proliferated to the same extent, as evidenced by comparable proportions of 

cells expressing Ki67 (Figure 5.2A, B). The data are presented as the proportion 

of cells which were Ki67+ in the indicated TAM population. In order to assess the 

functional capacity of TAMs, single cell suspensions of tumour cells were 

stimulate in vitro in the presence of a protein transport inhibitor cocktail before 

assessing the intracellular expression of cytokines by TAMs using flow cytometry. 

There was a greater frequency of mature MHCII+ TAMS which were TNF-α+ 
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compared with the MHCII- population (Figure 5.2C, D), but there was no 

statistically significant difference in the expression levels of either IL-12p40 

(Figure 5.2E, F) or IL-6 (Figure 5.2G, H) between the populations, although there 

was a trend towards a decrease in IL-6 expression in the MHCII+ TAMs (p = 

0.0506). 

 

Figure 5.2 Functional features of MHCII- and MHCII+ TAMs in B16F10 tumours 
B16F10 tumour cells were seeded in C57BL6 mice and 14 days later, tumours were harvested for 
in vitro stimulation and flow cytometry analysis of TAMs. Cells were gated as single, live, CD45+, 
CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-. A. Representative flow cytometry plots showing Ki67+ 
MHCII- and MHCII+ TAMs, including an IgG isotype control for all TAMs. B. Data shown as 
percentage Ki67+ cells of total MHCII- or MHCII+ TAMs. C. Representative flow cytometry plots 
showing TNF-α+ MHCII- and MHCII+ TAMs, including an IgG isotype control for all TAMs. D. Data 
shown as percentage TNF-α+ cells of total MHCII- and MHCII+ TAMs samples. E. Representative 
histogram plot of MHCII- and MHCII+ TAMs IL-12p40 expression, including an IgG isotype control 
for all TAMs. F. MFI of IL-12p40 expression in MHCII- and MHCII+ TAMs. G. Representative 
histogram plot of MHCII- and MHCII+ TAMs IL-6 expression, including an IgG isotype control for all 
TAMs. H. MFI of IL-6 expression in MHCII- and MHCII+ TAMs. Statistical analyses performed using 
paired Student’s t test where p < 0.05*, p < 0.01**. 
 
The phagocytic capacity of the TAMs was investigated following the co-

incubation of tumour cells with pHrodoTM Red E. coli BioparticlesTM. This 
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revealed that the MHCII+ mature TAMs had a significantly greater phagocytic 

capacity than the MHCII- mature TAMs (Figure 5.3). 

 

Figure 5.3 Phagocytic capacities of MHCII- and MHCII+ TAMs 
B16F10 tumour cells were seeded in C57BL6 mice and 14 days later, tumours were harvested for 
co-incubation with pHrodo-PE BioparticlesTM to assess phagocytic capacity. A. Representative flow 
cytometry plots showing uptake of pHrodo-PE by MHCII+ and MHCII- TAMs, including a 4˚C 
control. Cells were gated as single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-, B. Data 
shown is percentage pHrodo-PE+ cells among total MHCII+ and MHCII- TAMs. Statistical analysis 
performed using paired Student’s t test where p < 0.05*.  
 
5.2.2 Effects of systemic SL7207 infection on tumour-associated 

monocytes  

Classical Ly6Chi MHCII- monocytes are thought to be the precursors of TAMs and 

accumulation of monocytes and their immediate progeny Ly6ChiMHCII+ cells 

(Franklin et al., 2014), are a characteristic feature of S. Typhimurium infection 

and other forms of inflammation (Bain et al., 2013; Bain et al., 2014; Rydstrom 

& Wick, 2007). To examine changes in the monocyte/macrophage populations, 

tumour-bearing mice were inoculated with SL7207 or PBS and tumours were 

harvested at multiple time points for flow cytometry analysis.  

There were significant decreases in the number of Ly6C+MHCII- cells following 

infection at 3 and 7 dpi (Figure 5.4A, B). However, given that the tumours from 

the infected mice were much smaller than those in the uninfected, absolute 

numbers might not be reflective of the expansion of a given cell type following 

infection. Therefore, to establish if there was a reduction of Ly6C+MHCII- cells 

within the leukocyte compartment, the number of Ly6C+MHCII- cells amongst 

total CD45+ cells was also evaluated. There was a significant decrease in the 

Ly6C+MHCII- cells as a proportion of total CD45+ cells at 3 dpi (Figure 5.4C).  
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Figure 5.4 Effects of SL7207 infection on tumour Ly6C+MHCII- monocyte content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. A. Representative flow 
cytometry plots of Ly6C+MHCII- monocytes cells from infected and uninfected tumours at 5 dpi. 
Cells were gated on single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-. B. Quantification of 
absolute number of Ly6C+MHCII- monocytes from infected and uninfected tumours at the indicated 
time points. C. Data shown as percentage Ly6C+MHCII- monocytes of total CD45+ cells from 
infected and uninfected tumours at the indicated time points. Error bars SEM. Statistical analyses 
performed using Students t test between infected and uninfected samples at the same time point 
where p < 0.05*. 
 
Within the Ly6C+MHCII- population, there was an increase in the proportion of 

cells which were Ki67+ following infection (Figure 5.5A, B). There was also an 

increase in the frequency of cells that expressed the pro-inflammatory cytokines 

TNF-α (Figure 5.5C, D) and pro-IL-1β (Figure 5.5E,F) as well as the population 

expression of IL-12p40 from infected samples (Figure 5.5G,H). IL-6 expression 

was unchanged (Figure 5.5I, J). There was no significant difference in the 

phagocytic capacity of the Ly6C+MHCII- cells between infected and uninfected 

samples (Figure 5.6) 
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Figure 5.5 Effects of SL7207 infection on the functional phenotype of tumour Ly6C-MHCII+ 

monocytes 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for in vitro stimulation and flow cytometry analysis of Ly6C+MHCII- monocytes. Cells were gated on 
single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C+, MHCII-. A. Representative flow 
cytometry plots showing Ki67+ Ly6C+MHCII- monocytes for infected and uninfected tumours, 
including an IgG isotype control. B. Data shown as percentage Ki67+ cells of total Ly6C+MHCII- 
monocytes from infected and uninfected tumours. C. Representative flow cytometry plots showing 
TNF-α+ Ly6C+MHCII- monocytes for infected and uninfected samples including an IgG isotype 
control. D. Data shown as percentage TNF-α+ cells of total Ly6C+MHCII- monocytes from infected 
and uninfected samples. E. Representative flow cytometry plots showing pro-IL-1β+ Ly6C+MHCII- 
monocytes for infected and uninfected samples including an IgG isotype control. F. Data shown as 
percentage pro-IL-1β+ cells of total Ly6C+MHCII- monocytes from infected and uninfected samples. 
G. Representative histogram plot of Ly6C+MHCII- monocytes IL-12p40 expression from infected 
and uninfected samples including an IgG isotype control. H. MFI of IL-12p40 expression from 
Ly6C+MHCII- monocytes from infected and uninfected samples. I. Representative histogram plot of 
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Ly6C+MHCII- monocytes IL-6 expression from infected and uninfected samples including an IgG 
isotype control. J. MFI of IL-6 expression from Ly6C+MHCII- monocytes from infected and 
uninfected samples. Error bars SEM. Statistical analyses performed using Students t test between 
infected and uninfected samples at the same time point where p < 0.05*. 
 

 

Figure 5.6 Effect of SL7207 infection on the phagocytic capacity of tumour Ly6C-MHCII+ 
monocytes 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for co-incubation with pHrodo-PE BioparticlesTM to assess phagocytic capacity. Cells were gated 
on single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C+, MHCII-. A. Representative flow 
cytometry plots showing uptake of pHrodo-PE by Ly6C+MHCII- monocytes from infected and 
uninfected tumours. B. Data shown as percentage pHrodo-PE+ cells among total Ly6C+MHCII- 
monocytes from infected and uninfected tumours. Error bars SEM. Statistical analysis performed 
using Student’s t test where p < 0.05*. 
 
There was no significant difference in the number of Ly6C+MHCII+ cells between 

infected and uninfected tumours (Figure 5.7A). However, there were highly 

significant increases in Ly6C+MHCII+ cells as a proportion of the CD45+ immune 

cell compartment at 5 and 7 dpi (Figure 5.7B).  
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Figure 5.7 Effects of SL7207 infection on tumour Ly6C+MHCII+ monocyte content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. Cells were gated on single, 
live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C+, MHCII-. A. Quantification of absolute number 
of Ly6C+MHCII+ monocytes from infected and uninfected tumours at the indicated time points. C. 
Data shown as percentage Ly6C+MHCII+ monocytes of total CD45+ cells from infected and 
uninfected tumours at the indicated time points. Error bars SEM. Statistical analyses performed 
using Students t test between infected and uninfected samples at the same time point where p < 
0.05*, p < 0.01**, p < 0.001***. 
 

There was an increase in the proportion of Ly6C+MHCII+ cells which expressed 

Ki67 at 5 dpi (Figure 5.8A, B). Following infection, there were no significant 

differences in the frequency of Ly6C+MHCII+ cells positive the pro-inflammatory 

markers, TNF-α (Figure 5.8C, D) or pro-IL-1β (Figure 5.8E,F). There were also no 

differences in the expression of IL-12p40 (Figure 5.8G,H) between Ly6C+MHCII+ 

cells from infected and uninfected samples. However, there was a significant 

increase in the expression of IL-6 in the Ly6C+MHCII- cells in samples which were 

infected compared to uninfected controls (Figure 5.8I, J).  
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Figure 5.8 Effects of SL7207 infection functional phenotype of tumour Ly6C+MHCII+ 
monocytes 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for in vitro stimulation and flow cytometry analysis of Ly6C+MHCII+ monocytes. Cells were gated on 
single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C+, MHCII+. A. Representative flow 
cytometry plots showing Ki67+ Ly6C+MHCII+ monocytes for infected and uninfected tumours, 
including an IgG isotype control. B. Data shown as percentage Ki67+ cells of total Ly6C+MHCII+ 
monocytes from infected and uninfected tumours. C. Representative flow cytometry plots showing 
TNF-α+ Ly6C+MHCII+ monocytes for infected and uninfected samples including an IgG isotype 
control. D. Data shown as percentage TNF-α+ cells of total Ly6C+MHCII+ monocytes from infected 
and uninfected samples. E. Representative flow cytometry plots showing pro-IL-1β+ Ly6C+MHCII+ 
monocytes for infected and uninfected samples including an IgG isotype control. F. Data shown as 
percentage pro-IL-1β+ cells of total Ly6C+MHCII+ monocytes from infected and uninfected samples. 
G. Representative histogram plot of Ly6C+MHCII+ monocytes IL-12p40 expression from infected 
and uninfected samples including an IgG isotype control. H. MFI of IL-12p40 expression from 
Ly6C+MHCII+ monocytes from infected and uninfected samples. I. Representative histogram plot of 
Ly6C+MHCII+ monocytes IL-6 expression from infected and uninfected samples including an IgG 
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isotype control. J. MFI of IL-6 expression from Ly6C+MHCII+ monocytes from infected and 
uninfected samples. Error bars SEM. Statistical analyses performed using Students test t between 
infected and uninfected samples at the same time point where p < 0.05*. 
 
There was also a significant increase in the phagocytic capacity of the 

Ly6C+MHCII+ monocyte cells following infection (Figure 5.9).  

 

Figure 5.9 Effect of SL7207 on the phagocytic capacity of tumour Ly6C-MHCII+ monocytes 
Tumour-bearing mice were inoculated with SL7207 of PBS and tumours were harvested at 5 dpi for 
co-incubation with pHrodo-PE BioparticlesTM to assess phagocytic capacity. Cells were gated on 
single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C+, MHCII+. A. Representative flow 
cytometry plots showing uptake of pHrodo-PE by Ly6C+MHCII+ monocytes from infected and 
uninfected tumours. B. Data shown as percentage pHrodo-PE+ cells among total Ly6C+MHCII+ 
monocytes from infected and uninfected tumours. Error bars SEM. Statistical analysis performed 
using Student’s t test where p < 0.05*. 
 
These data suggest that the Ly6C+ tumour monocytes, particularly the 

Ly6C+MHCII+ cells, become activated following infection and contribute to the 

inflammatory tumour environment. 

 
5.2.3 Effects of systemic SL7207 infection on TAMs 

There was no significant difference in the number of MHCII- TAMs at any time 

post infection compared to uninfected controls (Figure 5.10A). There was, 

however, a significant decrease in these cells as a proportion of CD45+ 

leukocytes at 5 and 7 dpi (Figure 5.10B). For the MHCII+ TAMs, there were no 

significant differences in the absolute number of cells recovered from infected 

and uninfected samples (Figure 5.10C), nor was there a difference in these cells 

as a proportion of CD45+ cells, although there appeared to be a trend towards an 

increase in the infected samples, particularly at 5 dpi (Figure 5.10D).  
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Figure 5.10 Effects of SL7207 infection on TAM content 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. Cells were gated on single, 
live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-. A. Quantification of absolute number of 
MHCII- TAMs from infected and uninfected tumours at the indicated time points. B. Data shown as 
percentage MHCII- TAMs of total CD45+ cells from infected and uninfected tumours at the indicated 
time points. C. Quantification of absolute number of MHCII+ TAMs from infected and uninfected 
tumours at the indicated time points. D. Data shown as percentage MHCII+ TAMs of total CD45+ 
cells from infected and uninfected tumours at the indicated time points. Error bars SEM. Statistical 
analyses performed using Students t test between infected and uninfected samples at the same 
time point where p < 0.05*, p < 0.01**. 
 
Despite this, within the TAM population as whole, there was a shift towards 

increased expression of MHCII following infection (Figure 5.11).  
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Figure 5.11 Effect of SL7207 infection on total TAM MHCII expression 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3, 5 
and 7 dpi for flow cytometry analysis of tumour immune cell content. A. Representative flow 
cytometry plots showing MHCII expression on total TAMs from infected and uninfected tumours at 
5 dpi. Cells were gated on single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-. B. Data 
shown as percentage MHCII+ cells of total TAMs from infected and uninfected tumours at the 
indicated time points. Error bars SEM. Statistical analyses performed using Students t test between 
infected and uninfected samples at the same time point where p < 0.05*, p < 0.01**, p < 0.001***. 
 
Virtually all MHCII- and MHCII+ TAMs expressed the resident macrophage marker, 

CD206 in tumours from uninfected mice and this was reduced in both 

populations after infection, although this was more pronounced in the MHCII- 

population (Figure 5.12).  
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Figure 5.12 Effects of SL7207 infection on CD206 expression on TAM populations 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 3 dpi 
for flow cytometry analysis of tumour immune cell content. Cells were gated on single, live, CD45+, 
CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-. A. Representative flow cytometry plots showing CD206 
expression on MHCII- TAMs from infected and uninfected tumours at 3 dpi. B. Data shown as 
percentage CD206+ cells of total MHCII- TAMs from infected and uninfected tumours. A. 
Representative flow cytometry plots showing CD206 expression on MHCII+ TAMs from infected and 
uninfected tumours at 3 dpi. D. Data shown as percentage CD206+ cells of total MHCII+ TAMs from 
infected and uninfected tumours. Error bars SEM. Statistical analyses performed using Students t 
test where p < 0.05*, p < 0.01**.  
 
Both TAM populations also seemed to increase their proliferative capacity 

following infection (Figure 5.13).  
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Figure 5.13 Effects of SL7207 infection on the replicative potential of TAM populations 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for flow cytometry analysis of TAM populations. Cells were gated on single, live, CD45+, CD11b+, 
SiglecF-, F4/80+, Ly6G-, Ly6C-. A. Representative flow cytometry plot of an IgG isotype control for 
Ki67 on TAMs. B. Representative flow cytometry plots showing Ki67+ MHCII- TAMs for infected and 
uninfected tumours. C. Representative flow cytometry plots showing Ki67+ MHCII+ TAMs for 
infected and uninfected tumours. D. Data shown as percentage Ki67+ cells of total MHCII- and 
MHCII+ TAMs from infected (red) and uninfected tumours (black). Error bars SEM. Statistical 
analyses performed using Students t test where p < 0.05*, p < 0.01**, p < 0.001***. 
 
Intracellular cytokine staining revealed that there were no significant changes in 

the production of the pro-inflammatory mediators TNF-α (Figure 5.14A-D), pro-

IL-1β (Figure 5.14E-H), IL-12p40 (Figure 5.14I,J) or IL-6 (Figure 5.14K,L) by either 

population of mature macrophages following infection.  
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Figure 5.14 Effects of SL7207 infection on functional phenotype of TAM populations 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for in vitro stimulation and flow cytometry analysis of TAM populations. Cells were gated on single, 
live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-. A. Representative flow cytometry plot of an 
IgG isotype control for TNF-α on TAMs. B. Representative flow cytometry plots showing TNF-α+ 
MHCII- TAMs for infected and uninfected tumours. C. Representative flow cytometry plots showing 
TNF-α+ MHCII+ TAMs for infected and uninfected tumours. D. Data shown as percentage TNF-α+ 
cells of total MHCII- and MHCII+ TAMs from infected (red) and uninfected tumours (black). E. 
Representative flow cytometry plot of an IgG isotype control for pro-IL-1β on TAMs. F. 
Representative flow cytometry plots showing pro-IL-1β+ MHCII- TAMs for infected and uninfected 
tumours. G. Representative flow cytometry plots showing pro-IL-1β+ MHCII+ TAMs for infected 
(red) and uninfected (black) tumours. H. Data shown as percentage pro-IL-1β+ cells of total MHCII- 
and MHCII+ TAMs from infected (red) and uninfected tumours (black). I. Representative histogram 
plots of MHCII- and MHCII+ TAM IL-12p40 expression from infected and uninfected samples 
including an IgG isotype control. J. MFI of IL-12p40 expression from MHCII- and MHCII+ TAMs 
from infected (red) and uninfected (black) samples. K. Representative histogram plots of MHCII- 
and MHCII+ TAM IL-6 expression from infected and uninfected samples including an IgG isotype 
control. L. MFI of IL-6 expression from MHCII- and MHCII+ TAMs from infected (red) and uninfected 
(black) samples. Error bars SEM. Statistical analyses performed using Students t test where p < 
0.05*. 
 
There were also no differences between the phagocytic capacity of MHCII- TAMs 

from infected and uninfected tumours, but MHCII+ TAMs from infected tumours 

showed a marked increase in phagocytic activity compared with those from 

uninfected mice (Figure 5.15).  
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Figure 5.15 Effects of SL7207 on phagocytic capacities of TAM populations 
Tumour-bearing mice were inoculated with SL7207 or PBS and tumours were harvested at 5 dpi 
for co-incubation with pHrodo-PE BioparticlesTM to assess phagocytic capacity. Cells were gated 
on single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C-. A. Representative flow cytometry 
plot of a 4˚C control. B. Representative flow cytometry plots showing uptake of pHrodo-PE by 
MHCII- TAMs from infected and uninfected tumours. C. Representative flow cytometry plots 
showing uptake of pHrodo-PE by MHCII+ TAMs from infected and uninfected tumours. D. Data 
shown as percentage pHrodo-PE+ cells among total MHCII- and MHCII+ TAMs from infected (red) 
and uninfected (black) tumours. Error bars SEM. Statistical analysis performed using Student’s t 
test where p < 0.05*. 
 
These data suggest that the mature TAMs do not adopt a pro-inflammatory 

phenotype following systemic SL7207 infection, but may play a role in 

phagocytosis of cellular debris and bacteria. 

 
5.2.4 Contributions of resident and recruited precursors to MHCII+ 

TAMs  

Within the TAM population, there was an increase in MHCII expression which 

conferred to greater phagocytic potential of these cells. It seemed possible that 

these might be derived either from newly recruited monocytes (Bain et al., 

2013) or from local pre-existing MHCII- macrophages (Mueller et al., 2005). As 

there was no increase in the total number of TAMs following infection, it was 

hypothesised that the Ly6C+MHCII+ cells were not differentiating into MHCII+ 

TAMs, but that the MHCII- TAMs were instead increasing MHCII expression. To test 

if this was the case, photoconvertible Kaede transgenic mice were employed 
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(Ando et al., 2002). In these mice, the cells constitutively express the Kaede 

green protein, which photoswitches to Kaede red upon stimulation with 

ultraviolet (UV) light. This allows for the monitoring of cellular movement 

between organs in vivo, as well as local and infiltrating cells to be discriminated 

in a specific tissue (Mackley et al., 2015; Torcellan et al., 2017). Using this 

approach, it was hypothesised that photoconversion of the tumour immediately 

prior to infection would enable the discrimination between cells that were 

derived from the tumour at the time of photoswitching and so became Kaede red 

and those which had been recruited after the infection, which would not be 

photoswitched (Kaede green). We were particularly interested in the 

monocyte/macrophage (F4/80+) cell compartment. 

As this system had not been used previously for examination of tumours in the 

group, it was first necessary to optimise the protocol. The most commonly 

employed local protocol involves the photoconversion of the ear pinnae (Gibson 

et al., 2012). This protocol involves the exposure of the tissue to a UV light 

source for three seconds, three times with five-second breaks between 

exposures (Protocol 1). The gating strategy for this experiment is depicted in 

Figure 5.16.  
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Figure 5.16 Gating strategy for tumour monocyte/macrophages in tumour-bearing Kaede 
mice 
The degree of photoconversion amongst the tumour F4/80+ cell population (black and blue arrows) 
was assessed by gating on single, live, CD45+CD11b+, SiglecF- (removal of eosinophils), F4/80+ 
and then separating the population according to Kaede green or Kaede red expression. To assess 
the monocyte and macrophage populations in the tumour, (black and orange arrows), cells were 
gated as single, live, CD45+CD11b+, SiglecF- (removal of eosinophils), F4/80+ and then separated 
into monocytes and macrophage populations by Ly6C and MHCII expression. To assess the 
populations of monocytes and macrophages which were Kaede red+ (black and green arrows), 
cells were gated on single, live, CD45+CD11b+, SiglecF- (removal of eosinophils), F4/80+, Kaede 
red+ and separated into monocytes and macrophage populations by Ly6C and MHCII expression 
 

Kaede mice were seeded with B16F10 cells and tumours were allowed to develop 

for eight days, at which point the mice were anaesthetised and the tumours 

were subject to UV exposure according to either Protocol 1 or Protocol 2. The 

employment of this protocol in the present tumour model allowed for the 

expression of Kaede red in 22.3% of F4/80+ cells (Figure 5.17). A second 

protocol, with one ten second exposure, followed by four five-second exposures 

with five-second breaks between exposures was employed to try and increase 

the proportion of Kaede red cells in the tumour (Protocol 2). This resulted in 

39.4% of the F4/80+ cells expressed Kaede red. Although this meant it would not 

be possible to credit specific function to the infiltrating Kaede green monocytes 
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(as approximately 60% of the tumour-resident F4/80+ cells remained Kaede 

green), the protocol would suffice to ascertain if the tumour-resident MHCII- 

TAMs were increasing MHCII expression following infection.  

 

Figure 5.17 Optimisation of photoconversion protocol 
B16F10 tumours were exposed to UV light using two different protocols, and tumours were 
harvested for assessment using flow cytometry to determine the proportion of Kaede red+ cells in 
the F4/80 compartment. Representative flow cytometry plots from each protocol showing the 
proportion of total F4/80 cells which expressed Kaede red+. Cells were gated on single, live, 
CD45+CD11b+, SiglecF-, F4/80+. 
 
B16F10 tumour cells were injected into Kaede mice and allowed to develop into 

tumours for nine days before SL7270 was administered intravenously. One day 

prior to infection, the subcutaneous tumours were exposed to UV light using 

Protocol 2 (Figure 5.18A; Day 0 is when SL7207 was administered). Three days 

post infection, mice were culled and their tumours were harvested for flow 

cytometry analysis of the Kaede green+ and Kaede red+ cells. As before, the 

infected tumours had decreased cellular viability compared with the uninfected 

tumours (Figure 5.18B,C) and were slightly smaller in size (Figure 5.18D).  
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Figure 5.18 Effects of SL7207 infection on tumour-bearing Kaede mice 
Tumour-bearing Kaede mice were inoculated with SL7207 or PBS and tumours were harvested 3 
dpi to assess the effects of SL7207 compared to control mice. A. Timeline of experiment. B. 
Representative flow cytometry plots showing viability of whole tumours from infected and 
uninfected tumours. C. Data are shown as percentage of viable (Live/Dead-) cells among total cells 
for infected and uninfected samples. D. Tumour size of infected and uninfected tumours at 3 dpi.  
 
Following infection, there was a significant proportion of tumour Ly6C+MHCII+ 

cells, as expected (Figure 5.19A). Unexpectedly, this pattern was also apparent 

in the uninfected compartment. There was a greater proportion of F4/80 cells 

which were Kaede red+ in the uninfected tumour compared to infected (Figure 

5.19B). Surprisingly, the only cells in the monocyte/macrophage compartment 

that were Kaede red+ were the Ly6C+MHCII+. As there was an absence of TAMs 

which were Kaede red+, it was not possible to ascertain if the MHCII- TAMs were 

giving rise to the MHCII+ TAMs. Therefore, this model was no longer employed as 

it was apparent that further characteriation and optimisation might be required 

to address the question we wanted to ask.  
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Figure 5.19 Effects of SL7207 infection on Kaede red+ monocytes/macrophages in the 
tumour 
Tumour-bearing Kaede mice were inoculated with SL7207 or and tumours were harvested 3 dpi to 
assess the effects of SL7207 on the Kaede red+ cells in the F4/80 compartment. A. Representative 
flow cytometry plots of the monocyte/macrophage compartment of infected and uninfected 
tumours. Cells were gated on single, live, CD45+CD11b+, SiglecF-, F4/80+. B. Representative flow 
cytometry plots showing the proportion of F4/80+ cells which were Kaede red+ from infected and 
uninfected tumours. . Cells were gated on single, live, CD45+CD11b+, SiglecF-, F4/80+. C. 
Representative flow cytometry plots showing where the Kaede red+ cells from infected and 
uninfected tumours lay in the monocyte/macrophage compartment. Cells were gated on single, 
live, CD45+CD11b+, SiglecF-, F4/80+, Kaede red+. 
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5.2.5 Effects of SL7207 in monocyte deficient Ccr2-/- mice  

Both the Ly6C+MHCII- and Ly6C+MHCII+ monocyte populations were activated 

following infection. Therefore, the role of recruited monocytes in the anti-

tumour effects of SL7207 was examined using mice lacking the CCR2 chemokine 

receptor that have a defect in egress of Ly6Chi monocytes from the bone marrow 

(Serbina & Pamer, 2006).  

As this myeloid compartment is known to play a role in mediating tumour growth 

(Qian & Pollard, 2010) it was first important to establish that the Ccr2-/- mice 

did not have significantly different tumour growth dynamics. To investigate this, 

Ccr2-/- mice were injected with 2 x 105 B16F10 cells and their tumour growth 

was monitored over time. As a comparison, the growth dynamics of tumours in 

the wild type mice, as presented in Chapter 3, Figure 3.7, were included to 

assess any Ccr2-/--specific differences. There was no significant difference 

between the tumour growth dynamics of the Ccr2-/- tumour-bearing mice 

compared with wild type (Figure 5.20A). There were also no significant 

differences in the numbers of total cells in the tumour at 16 days post tumour 

induction between Ccr2-/- and wild type tumours (Figure 5.20B).  

 

Figure 5.20 B16F10 tumour growth in Ccr2-/- mice 
B16F10 tumour cells were seeded in Ccr2-/- mice and monitored over time, and compared to 
uninfected wild type mice depicted in Chapter 3, Figure 3.7. A. Tumour size of wild type and Ccr2-

/- mice over time, as measured using Vernier calipers. B. Quantification of the absolute number 
of live cells in wild type and Ccr2-/- tumours. Error bars SEM. Statistical analysis performed using 
Student’s t test where p < 0.05*. 
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Next, it was pertinent to examine the monocyte compartment. As expected, 

there was a significant decrease in the tumour Ly6C+MHCII- monocytes in the 

Ccr2-/- mice compared to wild type (Figure 5.21A-C), which was also the case for 

the Ly6C+MHCII+ monocytes (Figure 5.21D, E). As Ly6C+ monocytes give rise to 

mature TAMs (Franklin et al., 2014), the change in the number of TAMS in the 

Ccr2-/- mice was examined in comparison to wild type. There were no significant 

differences in the numbers of the MHCII- TAMs (Figure 5.21F) or the proportion of 

MHCII- TAMs amongst total CD45+ leukocytes in the Ccr2-/- mice compared with 

wild type (Figure 5.21G) There was also no significant difference in the numbers 

of MHCII+ TAMs between Ccr2-/- and wild type mice (Figure 5.21H), but there was 

a significant decrease in the MHCII- TAMs as a proportion of CD45+ cells, 

suggesting these may derive from Ly6C+ monocytes (Figure 5.21I). These results 

indicated that Ccr2-/- mice would be a suitable and specific model for 

investigating the contribution of monocytes, and their derivatives, to SL7207-

mediated tumour growth inhibition. 

 

Figure 5.21 continued on the next page 
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Figure 5.21 Monocyte and macrophage populations in the Ccr2-/- mice 
B16F10 tumour cells were seeded in Ccr2-/- mice and the tumours were harvested at 7 dpi to 
assess the monocyte and macrophage content, and compared to wild type tumours described in 
Figures 5.4, 5.7 and 5.10. Cells were gated on single, live, CD45+, CD11b+, SiglecF-, F4/80+ and 
Ly6G-. A. Representative flow cytometry plots showing the monocyte/macrophage compartment of 
wild type and Ccr2-/- tumours. B. Quantification of absolute number of Ly6C+MHCII- monocytes in 
wild type and Ccr2-/- tumours. C. Data shown as percentage Ly6C+MHCII- monocytes of total 
CD45+ cells in wild type and Ccr2-/- tumours. D. Quantification of absolute number of Ly6C+MHCII+ 
monocytes in wild type and Ccr2-/- tumours. E. Data shown as percentage Ly6C+MHCII+ monocytes 
of total CD45+ cells in wild type and Ccr2-/- tumours. F. Quantification of absolute number of MHCII- 
TAMs in wild type and Ccr2-/- tumours. G. Data shown as percentage MHCII- TAMs of total CD45+ 
cells in wild type and Ccr2-/- tumours. H. Quantification of absolute number of MHCII+ TAMs in wild 
type and Ccr2-/- tumours. I. Data shown as percentage MHCII+ TAMs of total CD45+ cells in wild 
type and Ccr2-/- tumours. 
 
When Ccr2-/- tumour-bearing mice were infected with 5x106 CFU SL7207 

intravenously on day nine after tumour induction, they showed the same 

inhibition of tumour growth as infected wild type mice (Figure 5.22A). Again, the 

wild type mice used as a comparison come from the data shown in Chapter 3, 

Figure 3.7. Ccr2-/- mice also lost body weight in a similar manner to their wild 
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type counterparts, although this was significantly less from infected Ccr2-/- mice 

on 7 dpi (Figure 5.22B).  

 

Figure 5.22 Effects of SL7207 on tumour growth and body weight in tumour-bearing Ccr2-/- 

mice 
Tumour-bearing Ccr2-/- mice were inoculated with SL7207 or PBS control, with tumour growth and 
weight being measured over time, and compared to wild type tumour-bearing mice depicted in 
Chapter 3, Figure 3.7. A. Tumour sizes of were measured over 7 days using Vernier calipers. B. 
Weight of mice expressed as a percentage of weight at Day 0 of infection. Error bars SEM. 
Statistical analyses performed using Tukey’s multiple comparison test where p < 0.05*, p < 0.01**, 
p < 0.001***, p < 0.0001****. 
 
In parallel with the normal tumour inhibition, there was no significant change in 

the number of Ly6C+MHCII- monocytes in the infected Ccr2-/- mice compared with 

uninfected, similar to wild type (Figure 5.23A-D). Tumours from infected Ccr2-/- 

mice recovered the number of Ly6C+MHCII+ cells comparable to those from the 

wild type on 7 dpi, with a substantial proportional expansion over the very low 

numbers of this population in uninfected Ccr2-/- tumours (Figure 5.23E). There 

was also an increase in the proportion of Ly6C+MHCII+ amongst CD45+ cells in the 

infected Ccr2-/- mice, in a manner not dissimilar to wild type (Figure 5.23F). As 

these data indicate that the recruitment of monocytes to the tumour following 

infection occurs in a CCR2-independent manner, the Ccr2-/- model was 

unsuitable to examine the contribution of monocytes to S. Typhimurium-

mediated tumour growth inhibition. 
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Figure 5.23 Effects of SL7207 on the tumour monocytes in Ccr2-/- mice 
Tumour-bearing Ccr2-/- mice were inoculated with SL7207 or PBS control, and harvested on 7 dpi 
for flow cytometric analysis of the tumour monocyte/macrophage populations. There were 
compared to wild type tumour-bearing mice depicted in Figure 5.4 and 5.7. A. Representative flow 
cytometry plots showing the tumour monocyte/macrophage compartment of wild type, Ccr2-/-, 
infected and uninfected mice as in Figure 5.2. Cells were gated on single, live, CD45+, CD11b+, 
SiglecF-, F4/80+, Ly6G-. B. Representative flow cytometry plots showing the tumour 
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monocyte/macrophage compartment of Ccr2-/- mice, infected and uninfected. Cells were gated on 
single, live, CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-.C. Quantification of absolute number of 
Ly6C+MHCII- monocytes in wild type and Ccr2-/- tumour, infected (red) and uninfected (black). D. 
Data shown as percentage Ly6C+MHCII- monocytes of total CD45+ cells in wild type and Ccr2-/- 
tumour, infected (red) and uninfected (black). E. Quantification of absolute number of Ly6C+MHCII+ 
monocytes in wild type and Ccr2-/- tumour, infected (red) and uninfected (black). F. Data shown as 
percentage Ly6C+MHCII+ monocytes of total CD45+ cells in wild type and Ccr2-/- tumour, infected 
(red) and uninfected (black). Error bars SEM. Statistical analyses performed using One Way Anova 
where p < 0.05*, p < 0.01**, p < 0.001***, p < 0.0001****. 
 

5.2.6 The effects of clodronate liposome-mediated 
monocyte/macrophage depletion on tumour inhibition by 
SL7207 

As an alternative strategy for depleting the monocytes/macrophage 

compartment, clodronate liposomes (Rooijen & Sanders, 1994) were employed 

to delete monocytes and macrophages (Gazzaniga et al., 2007; Griesmann et al., 

2016; Zeisberger et al., 2006). Note that any depletion in the 

monocyte/macrophage compartments would not be specific to the tumour, but 

all organs would likely be affected. First, it was important to verify that the 

clodronate liposomes (Clod Lipo) abrogated the number of monocytes and 

macrophages compared to the PBS liposome control. To do this, Clod Lipo or PBS 

liposomes (PBS Lipo) were intravenously injected on days 5 and 8 post tumour 

cell inoculation (Figure 5.24A). Tumours were harvested on 9 dpi and subjected 

to flow cytometry analysis for the Ly6C+ monocyte and macrophage populations. 

There was a reduction in both the monocytes and Ly6C- mature TAMs in the Clod 

Lipo samples compared to PBS Lipo controls (Figure 5.24B-D). Thus clodronate-

containing liposomes depleted tumour infiltrating monocytes and macrophages 

under normal tumour conditions. 
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Figure 5.24 Effects of Clod Lipo on tumour monocyte/macrophage population 
Tumour-bearing mice were intravenously injected with either PBS Liposomes (PBS Lipo) or Clod 
Liposomes (Clod Lipo) and tumours were harvested for flow cytometry analysis of monocyte and 
macrophage populations. A. Timeline of experiment. B. Flow cytometry plots of tumours from PBS 
Lipo-treated or Clod Lipo-treated tumour-bearing mice. Cells were gated on single, live, CD45+, 
CD11b+, SiglecF-, F4/80+, Ly6G-. C. Data shown as percentage F4/80+Ly6C+ of total live cells in 
PBS Lipo and Clod Lipo tumours. D. Data shown as percentage F4/80+Ly6C- of total live cells in 
PBS Lipo and Clod Lipo tumours. 
 
For the infection study, which would last seven days longer than the pilot, the 

liposome treatment regime was continued following SL7207 or PBS 

administration (Figure 5.25A: Day 0 is when SL7207 or PBS was administered). 

The tumour growth dynamics in mice treated with Clod Lipo or PBS Lipo was 

compared with untreated mice depicted in Chapter 3, Figure 3.7 (Figure 5.25B). 

It was not possible to perform statistical analysis on these parameters due to the 

small sample size of the PBS Lipo group (n=2), but there did not appear to be an 

obvious difference in the tumour growth dynamics between groups following 

liposome treatment. Furthermore, there did not appear to be any differences in 

the weight changes in the PBS Lipo and Clod Lipo-treated mice, except at one 

time point, but this resolved by the next day (Figure 5.25C).  
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Figure 5.25 Effects of Clod Lipo on B16F10 tumour growth and body weight 
Tumour-bearing mice were intravenously injected with either PBS Lipo or Clod Lipo with tumour 
size and body weight tracked over time and compared to no lipo treated samples as depicted in 
Chapter 3, Figure 3.7. A. Timeline of experiment. B. Tumour size of wild type and Ccr2-/- mice 
over time, as measured using Vernier calipers. Blue arrows indicate time of liposome 
administration. C. Weight of mice expressed as a percentage of weight at Day 0 of infection. 
 
With the PBS Lipo and Clod Lipo treatment deemed to be sufficiently 

comparable to the No Lipo mice in terms of tumour growth dynamics and host 

welfare, it was appropriate to compare the infected samples to assess the 

effects of Clod Lipo treatment on the tumour growth inhibitory effects of 

SL7207. Infection with SL7207 led to reduced tumour growth compared with PBS 

Lipo infected mice compared to PBS Lipo uninfected mice (Figure 5.26A). The 

anti-tumour effects of SL7207 were abrogated by the administration of Clod Lipo 

and the tumour growth kinetics were more similar to the uninfected samples 

(Figure 5.26A, B). There was a significant difference in the tumour size of the 

PBS Lipo infected tumours and Clod Lipo infected tumours at 7 dpi. As in 

previous experiments, the anti-tumour effect of SL7207 was associated with 

weight loss in the infected mice, but the Clod Lipo-infected mice were 
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significantly protected compared to the PBS Lipo infected mice at 7 dpi (Figure 

5.26C). There was no difference in the colonisation capacity of SL7207 between 

the PBS Lipo and Clod Lipo samples in the spleen, liver or tumour (Figure 5.26D). 

 

Figure 5.26 Effects of Clod Lipo on SL7207 infection tumour-bearing mice 
Tumour-bearing mice, intravenously injected with either PBS Lipo or Clod Lipo were also 
inoculated with SL7207 or PBS control, and tumour size was monitored over time. A. Tumour sizes 
as measured using Vernier calipers. Purple arrow indicates time of SL7207 administration. Blue 
arrows indicate time of liposome administration. B. Infected PBS Lipo and infected Clod Lipo 
tumours at 7 dpi. Scale bar 5 mm. C. Weight of mice expressed as a percentage of weight at Day 0 
of infection. D. Organs were harvested on 7 dpi and subject to homogenization to generate CFU 
counts. Statistical analyses performed using Student’s t test between tumour sizes body weights 
and CFU/organ between infected PBS Lipo and infected Clod Lipo samples at 7 dpi where p < 
0.05*, p < 0.01**. NS: not statistically significant. 
 
Tumours were harvested on day 16, 7 dpi, and the infiltrating cells assessed by 

flow cytometry. In both the PBS Lipo and Clod Lipo, there was an increase in the 

number of Ly6C+MHCII- monocytes in the infected samples compared to the 

uninfected controls but this could not be analysed statistically due to the small 

size of the uninfected PBS Lipo group (Figure 5.27A, B). There were no real 

changes in the proportion of these cells amongst the CD45+ immune cell 

population (Figure 5.27C). The number and proportion of Ly6C+MHCII+ cells 

increased following infection in both PBS Lipo and Clod Lipo compared to 
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uninfected controls (Figure 5.27D, E). For the MHCII- TAMs, there appeared to be 

increases in the number of cells, and a decrease in their proportion amongst 

CD45+ leukocytes from infected compared to uninfected samples for both PBS 

Lipo and Clod Lipo (Figure 5.27F,G). This pattern was also evident in the MHCII+ 

TAMs (Figure 5.29H,I). Thus although Clod Lipo treatment inhibited the anti-

tumour effects of SL7207, this is not associated with prevention of monocyte-

macrophage infiltration into the tumour.  
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Figure 5.27 Effects of SL7207 on the tumour monocyte/macrophage compartment in Clod 
Lipo treated, SL7207-infected mice 
Tumour-bearing mice, intravenously injected with either PBS Lipo or Clod Lipo were also 
inoculated with SL7207 or PBS control, and tumours were harvested at 7 dpi for flow cytometry 
analysis of tumour monocyte/macrophage compartment. Cells were gated on single, live, CD45+, 
CD11b+, SiglecF-, F4/80+, Ly6G-. A. Representative flow cytometry plots of tumour 
monocyte/macrophage compartment from PBS Lipo and Clod Lipo-treated mice, infected and 
uninfected. B. Quantification of absolute number of Ly6C+MHCII- monocytes in PBS Lipo and Clod 
Lipo, infected (red) and uninfected (black). C. Data shown as percentage Ly6C+MHCII- monocytes 
of total CD45+ cells in PBS Lipo and Clod Lipo, infected (red) and uninfected (black). D. 
Quantification of absolute number of Ly6C+MHCII+ monocytes in PBS Lipo and Clod Lipo, infected 
(red) and uninfected (black). E. Data shown as percentage Ly6C+MHCII+ monocytes of total CD45+ 
cells in PBS Lipo and Clod Lipo, infected (red) and uninfected (black). F. Quantification of absolute 
number MHCII- TAMs in PBS Lipo and Clod Lipo, infected (red) and uninfected (black). G. Data 
shown as percentage MHCII- TAMs of total CD45+ cells in PBS Lipo and Clod Lipo, infected (red) 
and uninfected (black). H. Quantification of absolute number MHCII+ TAMs in PBS Lipo and Clod 
Lipo, infected (red) and uninfected (black). I. Data shown as percentage MHCII+ TAMs of total 
CD45+ cells in PBS Lipo and Clod Lipo, infected (red) and uninfected (black). Statistical analysis 
performed using Student’s t test between infected PBS Lipo and infected Clod Lipo samples where 
p < 0.05*. 
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5.3 Discussion 

It has been reported that the monocyte/macrophage compartment plays an 

important role in stimulating the host pro-inflammatory immune response to S. 

Typhimurium (Wick, 2011). Cancer has also presented a role for the 

monocytes/macrophages in driving multiple features of tumourigenesis (Qian & 

Pollard, 2010). Given the dual potential of these cells, it was pertinent to 

investigate if SL7207 administration could transform the pro-tumour 

monocyte/macrophages into pro-inflammatory, anti-tumour cells. It was found 

that the Ly6C+MHCII- monocytes and Ly6C+MHCII+ monocytes were activated 

following SL7207 infection, pointing towards the possibility that these were the 

major anti-tumour effector cell types in the tumour following SL7207 infection. 

The removal of these cells using clodronate liposomes, reported to selectively 

target monocytes and macrophages, was investigated. Clodronate liposome 

treatment abrogated the anti-tumour effects of SL7207 compared to PBS 

liposome treated and untreated controls, potentially providing a mechanism for 

S. Typhimurium-mediated tumour growth inhibition. However, although the 

phenotype following Clod Lipo treatment was evident from the experiment, the 

contribution of the tumour monocyte/macrophage compartment to the anti-

tumour effect was not definitive and needs to be repeated to generate 

informative data pertaining to the changes in immune cell types in the tumours 

for each condition.  

5.3.1 Why is it important to define and characterise immune cell 
subsets in the tumour? 

When dealing with any cells, it is imperative to be confident that cell types 

identified in the study are similarly defined in the literature. This is important as 

it allows the researcher to draw conclusions about the role of their cell type of 

interest in their present experimental conditions, as well as others. Immune cell 

definitions are often attributed to the subset of cell surface markers which they 

display. As these markers can overlap with other cell types, there is an 

associated risk of ill-defining an immune cell population, and associating 

functions to the wrong cell type. The importance of the correct identification of 

immune cell types for the purposes of cancer therapy lie in the fact that 

different cancer subtypes often have distinct immune cell signatures (Chifman et 
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al., 2016). This signature might define a patient’s suitability to an 

immunotherapy based on the effector cell type (correctly identified) of the 

therapy. 

For this study, the gating strategy outlined in Chapter 4, Figure 4.1 was 

concluded to be most suitable. This strategy is used extensively in the laboratory 

group for the investigation of colonic macrophages, and was also in keeping with 

previous reports (Bain et al., 2013; Bain et al., 2014; Cortez-Retamozo et al., 

2012; Movahedi et al., 2010). However, the present study employs a more 

rigorous gating strategy than these reports by ensuring the removal of SiglecF+ 

eosinophils, CD11c+F4/80- dendritic cells (DCs) and Ly6G+ neutrophils. One 

published gating strategy has defined TAMs from total CD11b+ cells according to 

expression of Ly6C and MHCII, in spite of the fact DCs are MHCII+ (Chapter 4, 

Figure 4.7) (Movahedi et al., 2010). In a study by Franklin and colleagues, TAMs 

in a Polyoma Middle-T Oncogene driven mammary tumour model were defined 

within the total CD11b+ cell population as CD11bintMHCIIhi and resident mammary 

tissue macrophages as CD11bhiMHCIIhi. The rationale for this was due to the fact 

that following transformation of the mammary cells, there was a decrease in the 

proportion of CD11bhiMHCIIhi and an increase in the proportion of CD11bintMHCIIhi 

in the tumour myeloid population (Franklin et al., 2014). However, these do not 

take in to consideration the finding that TAMs are also MHCII-/lo (Movahedi et al., 

2010). Therefore, it was decided that the gating strategy employed in the 

present study would be sufficient to rigorously define monocyte and macrophage 

populations within the tumour.  

The given gating strategy produced four populations in the 

monocyte/macrophage compartment: Ly6C+MHCII- monocytes Ly6C+MHCII+ 

monocytes, MHCII- TAMs and MHCII+ TAMs. Ly6C+MHCII- monocytes are possibly 

blood-borne cells within the vasculature of the tumour, but likely represent 

newly arrived tissue monocytes (Bain et al., 2013). With the present gating 

strategy it is not possible to differentiate the contribution of blood contaminants 

and tissue-resident cells within the Ly6C+MHCII- compartment. Furthermore, 

studies that have investigated the contributions of various immune cells to 

bacterial-mediated tumour growth inhibition have also failed to control for the 

possibility that the immune cell population in question was also made up of 



Chapter 5 Tumour monocyte/macrophage compartment following infection 
 

174 
 

blood-borne cells. These considerations are more applicable for some cell types 

than for others. For example, macrophages do not circulate in the bloodstream 

so macrophages recovered from a tissue can be thought of as tissue resident. 

However, neutrophils make up the largest proportion of leukocytes in the 

circulation, which means it is difficult to discriminate the contribution of blood-

borne neutrophils from tissue resident in digested tissue. This is critical, as cells 

of the immune system continuously recirculate through the vasculature, which 

permeates every organ, including tumours. These circulatory immune cells 

exhibit very different phenotypes to tissue-resident cells, and are most often not 

associated with shaping local immunological responses. Therefore, the 

contamination of tumour-associated immune cells with blood-borne cells 

confounds data pertaining to the number and activation of the tissue-resident 

cells participating in the immune response. This consideration is particularly 

relevant during systemic inflammation, as there is an increase in the number of 

circulatory immune cells. This limitation of our study was only made apparent 

following the conclusion of these experiments. Therefore, a post-hoc 

examination of the contribution of blood monocytes was performed according to 

(Anderson et al., 2014). The contribution of blood monocytes was very low, 

which gave confidence that changes seen in the monocyte populations were due 

to tissue-resident cells, not blood contaminants (Appendix, Figure 9.3).  

In the present study, two populations of monocytes were defined: Ly6C+MHCII- 

and Ly6C+MHCII+ cells. However, another population of monocytes, F4/80+Ly6C-

MHCII- monocytes have also been reported (Misharin et al., 2014). Ly6Clo 

monocytes in the blood are patrolling monocytes which can crawl along 

endothelial cells, and thus could possibly be blood contaminants of the tumour 

preparation (Jakubzick et al., 2017). If this were the case in the present study, 

these cells would appear in the MHCII- TAM population. By analysing the size 

(side scatter) and F4/80 characteristics of the Ly6C-MHCII- population within the 

monocyte/macrophage compartment, these features aligned closely with the 

MHCII+ population and not with the Ly6C+ monocytes providing evidence that 

these were in fact macrophages as opposed to monocytes. Although these 

analyses are somewhat definitive, perhaps the most conclusive evidence would 

be to isolate each cell type for cytospin analysis to enable the morphological 

characterisation of the different cell types.  
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5.3.2 Why is there an accumulation of Ly6C+MHCII+ cells, and why 
might this promote anti-tumour effects? 

It has been demonstrated that Ly6C+MHCII- cells can give rise to Ly6C+MHCII+ 

monocytes which can in turn give rise to tissue-resident Ly6C-MHCII+ 

macrophages (Bain et al., 2013). This has been demonstrated in both cancer and 

colonic settings (Bain et al., 2014; Franklin et al., 2014; Movahedi et al., 2010). 

In the present study, there is an accumulation of the Ly6C+MHCII+ population in 

the tumour following systemic SL7207 infection. The absence of a statistically 

significant difference in the number of these cells between infected and 

uninfected samples is possibly due to the fact that the uninfected tumours are 

much bigger than the infected tumours as can be seen from Chapter 3, Figure 

3.8E. As there does not appear to be an increase in the number of TAMs, it is 

possible that the differentiation process from Ly6C+MHCII+ to TAM is stalled. This 

has been reported during inflammatory conditions. It has been demonstrated 

that in the inflamed colon, a significant proportion of the infiltrating monocytes 

retain a Ly6C+MHCII+ phenotype (Bain et al., 2013). Furthermore, these cells 

appear to have greater TNF-α production than resident macrophages and are 

more responsive to toll like receptor (TLR) stimuli, suggesting that they are the 

major contributors to inflammation in this setting. The attenuation in this 

differentiation of Ly6Chi monocytes into resident macrophages following DSS-

colitis resulted in the accumulation of inflammatory monocytes which had 

comparatively greater expression for pro-inflammatory mediators such as IL-6, 

IL-23α, Nitric Oxide Synthase (NOS) 2 and IL-1β than controls (Zigmond et al., 

2012). The removal of these cells using antibody-mediated depletion resulted in 

the significant decrease in colitis score and weight loss of DSS-induced colitis 

mice compared to control, further evidencing their role in inducing a pro-

inflammatory environment (Shmuel-Galia et al., 2016). We also hypothesise that 

the differentiation process from Ly6C+MHCII- monocytes to Ly6C+MHCII+ 

monocytes is accelerated. The evidence suggesting this comes from a decrease 

in the number of the former following infection. Although it was interesting to 

understand the changes in the monocyte to macrophage differentiation process 

in the tumour following infection, this line of enquiry was not followed up due to 

time constraints. 
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The data in the present study also seemed to suggest the monocytes are potent 

pro-inflammatory mediators which may be responsible for transforming the 

tumour microenvironment from immunosuppressive to immunostimulatory. 

Although due to the small sample size, the quantification analysis of the 

inflammatory mediators was not statistically significant for the Ly6C+MHCII+ 

monocytes, they all trended towards an increased production of pro-

inflammatory mediators following infection. Therefore, these experiments need 

to be repeated to determine if the Ly6C+MHCII+ monocytes are pro-

inflammatory, as they have been credited in other reports. However, this is the 

first report to suggest tumour monocytes as the effector cells underlying tumour 

growth inhibition.  

There are, however, other reports which demonstrated that Ly6+MHCII+ 

monocytes can give rise to monocyte-derived DCs under inflammatory conditions 

(Rivollier et al., 2012; Serbina et al., 2003). In a model of T cell transfer-

induced colitis, monocytes digressed from developing into macrophages to 

developing into two DC populations following inflammation. This was not 

believed to be the case in the present study as inflammatory monocytes cells 

were F4/80+, which is not expressed on DCs and following infection the 

proportion of CD11c+ Ly6C+MHCII+ cells actually decreased (Appendix, Figure 

9.4). 

These findings have important consequences for the employment of 

immunotherapies, not just bacterial-mediated therapy, in the clinical context. 

These data highlight that the monocyte to macrophage differentiation process is 

a potential node of therapeutic intervention. A recent study demonstrated that 

Vitamin A is required for the differentiation of monocytes into peritoneal 

macrophages, but other than this, there is relatively little known about the 

factors which drive this differentiation process (Gundra et al., 2017). If the 

factors underlying the differentiation process in the tumour could be interfered 

with, this would decrease the number of TAMs in the tumour which would 

subsequently decrease the ability of the TAMs to contribute to tumourigenesis. If 

it is found to be the case that infiltrating monocytes are critical mediators of 

bacterial-mediated tumour growth inhibition, this has important ramifications 

for the use of bacteria in the clinic. Monocytopenia is a clinically-relevant 
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symptom of myelodysplastic syndromes, which are a group of blood cancers 

(Gagnat et al., 2015). Therefore, this group of cancers would be unlikely to 

respond to bacterial-mediated cancer therapy if monocytes were found to be the 

major effector cell type.  

5.3.3 What do the changes in TAM phenotype following infection 
mean, and why is this important? 

MHCIIlo and MHCIIhi TAMs have been reported and have gene expression profiles 

(Movahedi et al., 10). Multiple studies have reported macrophages to be highly 

plastic cells capable of changing phenotype based on the environment (Guidicci 

et al., 2005; Lavin et al., 2014; Saccani et al., 2006). In the present study there 

was a shift towards MHCII+ TAMs in the tumour following infection. If these 

MHCII+ TAMs exhibited pro-inflammatory properties similar those from S. 

Typhimurium infection studies (Mastroeni et al., 1995; Yrlid et al., 2000), it 

would suggest that tumours with high densities of MHCII- TAMs could be rescued 

from their anti-inflammatory, pro-tumoural phenotype to a pro-inflammatory, 

anti-tumourigenic one with SL7207 treatment. However, in the present study, 

the only cytokine increased in MHCII+ TAMs in the tumour appeared to be TNF-α, 

but this was a less than 1.5-fold increase. In fact, the IL-6 expression was 

actually less in the MHCII+ TAMs compared to the MHCII- TAMs but this was not 

statistically significant with such low sample size (p = 0.0506). Furthermore, 

following infection there appeared to be no difference in the ability of the 

MHCII- and MHCII+ TAMs to produce pro-inflammatory mediators following 

infection. As the data suggests that there is no difference in the ability of either 

TAM population to generate pro-inflammatory cytokines following infection, it is 

unlikely that the primary outcome of the increased proportion of MHCII+ TAMs is 

increased cytokine production in the tumour. However, it is important to note 

that there may be other changes in the functional phenotype of the TAMS 

outwith the parameters investigated in this study, so further characterisation 

would be necessary before a definitive conclusion can be reached. That being 

said, a similar phenomenon has been reported in a model of colitis, whereby the 

resident macrophages did not increase their production of pro-inflammatory 

mediators compared to control (Bain et al., 2013). In the present study, the 

MHCII+ TAMs are more competent at phagocytosis ex vivo than the MHCII- TAMs in 

the uninfected state, and this ability was heightened following infection. 
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Therefore, it is likely that the primary role of the MHCII+ TAMs in the tumour, 

particularly following infection, might be phagocytosis of both invading bacteria 

as well as cellular debris. 

The pro-inflammatory effects of TAMs following Listeria monocytogenes 

infection in a murine ovarian carcinoma model were suggested by large increases 

in pro-inflammatory cytokines in TAMs following infection compared to 

uninfected controls (Lizotte et al., 2014). However, this study seemed to 

identify TAMs based solely on CD11b expression, and failed to use macrophage 

associated markers such as F4/80 or CD64 so it is difficult to assess if these cells 

were actually macrophages or from another myeloid compartment. Zheng and 

colleagues asserted an increase in the activation of TAMs following systemic 

infection with the S. Typhimurium strain SHJ2037 (Zheng et al., 2017b). 

However, the accreditation of macrophages in this study was due to F4/80 

expression, which would also include monocytes and possibly F4/80+ eosinophils 

(McGarry & Stewart, 1991).  

The discrepancy in TAM functions between this study and others could be 

explained by a number of factors. For (Movahedi et al., 2010), it is possibly 

explained by contaminating DCs in the MHCII+ TAM population accounting for the 

IL-6-producing functions of this population (as cDC2s were not excluded and are 

similarly LY6C-MHCII+). Alternatively, the differences might be attributable to 

the mouse strain. C57BL/6 mice are regarded as a ‘TH1’ type strain whilst 

BALB/c mice are a ‘TH2’ strain which may result in differing cytokine expression 

profiles in multiple cell types (Mills et al., 2000; Santos et al., 2006). 

Furthermore, different tumour cell types have different immunogenic properties 

(Lechner et al., 2013), so it is likely that there would be differences in the 

phenotype of the tumour infiltrating immune cells. It is interesting however that 

such a discrepancy should exist. It might mean that different tumours, such as 

the model used in (Movahedi et al., 2010), might actually respond better to 

SL7207 treatment if the shift in MHCII- to MHCII+ is accompanied by increased 

pro-inflammatory capacities of the latter. However, pinpointing the 

discrepancies associated with immune cell type function between models was 

outside the scope of the present study, as the real point of interest was the 

change in phenotypes following SL7207 administration. 
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5.3.4 Why was the Kaede data not informative and how could this 
experiment be improved? 

The data so far seemed to point to the monocytes as being the primary cell 

types driving the inflammatory response in the tumour. However, as there were 

still some changes in the TAMs, and possibly changes we hadn’t investigated, it 

was attractive to investigate the source of these cells. The main focus was to 

distinguish which of the MHCII- TAMs or the Ly6C+MHCII+ monocytes were giving 

rise to the MHCII+ TAMs. To do this, the photoconvertible Kaede model was 

suitable to investigate the changes in the photoswitched TAM populations 

following infection. Following optimisation of the protocol, it was disappointing 

that the uninfected photoswitched Kaede tumours seemed to display an 

inflammatory phenotype, similar to the infected tumours. This was characterised 

by the accumulation of Ly6C+MHCII+ cells in the tumour. It is unclear why this 

was the case. It was hypothesised that the UV light might have activated the 

cells in the tumour. In fact, a recent study has demonstrated that the exposure 

of THP-1 monocytes to UV light affected the phenotype of these cells (Trotter et 

al., 2017). Given that the sample size for the present experiment was so small, 

it might be best to run a pilot experiment to compare UV-treated tumours to 

untreated to control for the possibility that the UV light might be affecting the 

phenotype of the immune cells. However, if it was found that the cells were 

indeed becoming activated by UV light, the Kaede model would be discarded.  

It was interesting to see that in all of the tumours, irrespective of infection 

status, the photoswitched Kaede red F4/80+ cells mostly appeared in the 

Ly6C+MHCII+ population. Looking at the pilot experiment, within the F4/80 

compartment, the majority of the Kaede red cells were F4/80lo, characteristic of 

Ly6C+MHCII+ cells. It was possible that these cells were activated following UV 

light exposure and as such, remained in the Ly6C+MHCII+ population, as opposed 

to differentiating into TAMs. It was unexpected that there were no Kaede red 

TAMs recovered from either the infected or uninfected samples. It is possible 

that if they became activated, there may have been increased replication, as 

shown to occur following infection. There was also far fewer Kaede red+ cells in 

the infected tumours in comparison to the uninfected tumours, possibly 

explained by the fact that there is an increase in Ki67+ Ly6C+MHCII+ cells in the 

infected tumour, and cell replication dilutes the intracellular Kaede red protein. 
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In conclusion, the Kaede transgenic mouse model did not produce informative 

data about the resident macrophage response to SL7207, but steps have been 

identified which could optimise the experimental procedure for future work. 

5.3.5 Why was the Ccr2-/- murine strain not effective at removing 
monocytes during SL7207 infection? 

CCR2 is necessary for bone marrow monocytes to egress into the circulation, but 

not necessarily for uptake into the tissue (Serbina & Pamer, 2006). It was found 

that there was a decrease in the number of Ly6Chi monocytes in the blood of 

Ccr2-/- mice compared to wild type, with a concomitant increase in the bone 

marrow, suggesting these cells were trapped therein (Fujimura et al., 2015; 

Serbina & Pamer, 2006). However, bone monocytes adoptively transferred from 

a Ccr2-/- mouse were capable of migrating out of circulation into tissues in the 

host in equal measure to bone marrow monocytes from CCR2-competent mice 

(Serbina & Pamer, 2006). CCL2 has been considered the most important tumour-

derived factor to attract circulating monocytes into tumours and metastatic sites 

in multiple mouse and human models of cancer (Huang et al., 2007; Kitamura et 

al., 2015; Lin et al., 2006; Qian et al., 2012). As well as tumour cells, CCL2 

produced from tumour-associated fibroblasts can recruit monocytes (Silzle et 

al., 2003). Given that circulating monocytes give rise to TAMs, it was interesting 

in the present study that there was no difference in the number of TAMs in the 

wild type and Ccr2-/- tumour-bearing mice. This was similarly seen by Franklin 

and colleagues where there was no difference in the proportion of TAMs in 

tumours derived from Ccr2-/- mice and wild type mice (Franklin et al., 2014). 

However, the diphtheria toxin-mediated removal of CCR2+ cells (CCR2DTR) 

resulted in an approximate 4-fold decrease in TAMs in the tumours of tumour-

bearing mice. The discrepancy is likely explained by the increased proliferative 

capacity of TAMs compared to resident macrophage cells, which compensates for 

reduced recruitment. 

The CCR2-CCL2 axis has also proved important for the recruitment of monocytes 

to inflamed tissue. This was shown where uptake of Ccr2-/- monocytes was 

deficient in comparison to CCR2-competent mice in DSS-induced colitis (Zigmond 

et al., 2012). Furthermore, a mixed Ly6C+ monocyte graft consisting of 50:50 

Cx3cr1gfp/+CD45.1 and Cx3cr1gfp/+Ccr2-/-CD45.2 demonstrated that there was 
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almost exclusive recruitment of the CCR2-competent cells in the CX3CR1-GFP 

compartment in the lamina propria at four days post DSS challenge. However, 

another study with a conceptually similar experimental protocol and question (is 

CCR2 required for monocyte recruitment to inflamed tissue?) demonstrated that 

CCR2+ monocytes from wild type more readily recruited to inflamed tissue than 

Ccr2-/- monocytes when adoptive transfer was carried out at the same time as 

inflammation, but not when the cells were transferred 60 hours after 

inflammation (Tsou et al., 2007). Therefore, CCR2-dependent uptake might be 

time-dependent. 

Given that there was a significant decrease in the number of monocytes in the 

Ccr2-/- strain compared to wild type, this was seen as an appropriate model to 

specifically remove the contribution of the infiltrating monocytes to S. 

Typhimurium treated tumours. Therefore, it was surprising that there was a 

Ly6C+MHCII+ population in the infected Ccr2-/-tumour-bearing mice, suggesting a 

CCR2-independent mechanism of monocyte recruitment. In a model of 

experimental autoimmune uveitis, CCR2 is not required for the recruitment of 

monocytes in the inflamed retina (Dagkalis et al., 2009). Furthermore, another 

study has shown that CCR5 depletion can significantly reduce Ly6Clo monocytes 

in atherosclerotic plaques (Tacke et al., 2007). In the present study, the 

Ly6C+MHCII+ cells in the Ccr2-/-infected mouse are both Ly6Clo and Ly6Chi, so 

CCR5-mediated redundant function does not explain the maintenance of the 

Ly6C+MHCII+ population in the Ccr2-/-infected strains.  

It has been demonstrated that CCR2-mediated depletion-sensitive cells were 

highly responsive to LPS (TLR4 ligand), PAM3CSK4 (TLR2 ligand) and MDP (NOD2 

ligand) (Zigmond et al., 2012). The severity of colitis was reduced in chimeras 

where wild type Ly6Chi cells were replaced with TLR2-/-, NOD2-/- or MyD88-/-

TICAM1-/- Ly6Chi monocytes, suggesting a dependence on MyD88-associate 

pathways to induce the inflammatory phenotype. In mouse models of infection, 

S. Typhimurium can also activated TLR4 in a MyD88-independent manner (Kawai 

et al., 2001), proposing there may be alternative pathways activated to attract 

monocytes independent of the CCR2-CCL2 axis. Investigating the factors 

responsible for CCR2-independent monocyte recruitment to the S. Typhimurium-

infected tumour might provide novel insights into mechanisms of monocyte 
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recruitment in a unique physiological environment. However, although this is 

interesting, it was outside the remit of the current study. 

It has been suggested that during cancer progression, the bone marrow 

outsources monocyte production to other organs such as the spleen to 

participate in extra-medullary hemopoiesis. This resulted in increased 

monocyte-precursors in the spleen of tumour-bearing mice compared to control 

(Cortez-Retamozo et al., 2012). A splenectomy of the tumour-bearing mice 

revealed a decreased number of TAMs in lung adenocarcinomas. Furthermore, 

labelled monocyte-derived splenocytes were recovered with a TAM phenotype in 

the tumours. The contribution of the CCR2-CCL2 axis to this process is 

insufficiently understood. CCR2 did not play a role in monocyte egress from the 

spleen during myocardial infarction (Swirski et al., 2009) . In this instance, 

Angiostatin-II on monocytes was responsible for monocyte egress from the spleen 

following myocardial infarction. However, in the other study, the silencing of 

CCR2 using a siRNA (siCCR2) which ‘selectively targets’ splenic monocytes 

resulted in decreased TAMs in model of lung adenocarcinoma (Cortez-Retamozo 

et al., 2012). However, looking at the article which detailed the characteristics 

and effectiveness on the siCCR2, bone marrow localisation of siCCR2 was 

reported following systemic administration (Leuschner et al., 2011). Therefore, 

it is difficult to rule out the possibility of the bone marrow-derived monocytes 

being responsible for the drop in TAM which Cortez-Retamozo and colleagues 

credited to the splenic reservoir of monocytes It is also possible that the 

decrease in splenic monocytes following siCCR2 administration is because there 

is a disruption in the trafficking of monocyte precursors from the bone marrow 

to the spleen, if that is indeed their source. 

It would be interesting to assess the contribution of the spleen to the TAM and 

monocyte populations in the tumour following infection. Such an investigation 

would further identify patients suitable for certain for this therapeutic strategy 

as reduced splenic function in cancer models has been reported (Bronte et al., 

2000; Marigo et al., 2010). In the first instance, it would be attractive to 

characterise how the splenic monocyte pool changes between steady state 

physiological conditions and cancer or infection. Another attractive 

experimental protocol would be to perform splenectomies on tumour-bearing 

mice prior to SL7207 or PBS administration to assess the monocyte and 
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macrophage populations in the infected and uninfected tumours. Unfortunately, 

the technical assistance for this procedure was not readily available in the local 

animal facilities and it was not timely to establish this procedure externally.  

5.3.6 What can be concluded from the clodronate liposome 
infected mice? 

As the Ccr2-/- model was insufficient to remove the monocyte populations, an 

alternative strategy was to employ clodronate liposomes which have been 

reported to selectively mediate the cell death of monocyte and macrophage 

populations (Gazzaniga et al., 2007; Griesmann et al., 2016; Zeisberger et al., 

2006). The phenotype of the clodronate liposome-treated tumours was very 

clear: administration of clodronate liposomes abrogated the tumour growth 

inhibitory effects of SL7207. Unfortunately, the effect of the clodronate 

liposomes on the monocyte and macrophage populations was not so apparent. It 

was interesting that there appeared to be an increase in the number of 

monocytes in the Clod Lipo infected mouse compared to uninfected, potentially 

demonstrating that the monocytes were not being negatively affected by the 

clodronate. A likely explanation for this is that the infiltration is so robust, that 

the Clod Lipo was overwhelmed, in spite of the frequent doses of Clod Lipo 

which was administered, relative to other studies (Gazzaniga et al., 2007; 

Griesmann et al., 2016). 

However, it is difficult to come to any conclusions when the dynamics of the 

immune cell infiltrate into the tumour during the course of infection are not 

known. From the data in the uninfected mice, it is evident that the clodronate is 

mediating a decrease in the monocyte/macrophage compartment. This is not in 

keeping with the infected samples, potentially suggesting the bacteria are either 

interfering with the Clod Lipo, or perhaps the SL7207 cells are adapting to the 

environment in the absence of monocytes/macrophages. In any case, it casts 

great doubt on the conclusion that the monocyte/macrophage compartment in 

the tumour mediates growth inhibition in S. Typhimurium treated tumour-

bearing mice with the present data. However, it is also important to note that 

the data displayed herein is representative of 7 dpi, and might not necessarily 

reflect the distribution of the immune populations throughout the course of 

infection. 
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One point of interest is that following Clod Lipo treatment, but not PBS Lipo 

treatment, there was a drastic decrease in the size of the spleen (Appendix, 

Figure 9.5). This could be due to monocyte and macrophage depletion in the 

spleen of Clod Lipo treated mice. Monocytes have been demonstrated to expand 

in the spleen following systemic infection. Therefore, it is tempting to speculate 

that the change observed in the spleen following Clod Lipo treatment in the 

infected mice might be the underlying reason for the abrogation of SL7207-

mediated tumour growth inhibition. It is even more tempting to speculate, with 

the inability of the Ccr2-/- mice to inhibit monocyte recruitment to the infected 

cells, and the conjecture of the spleen being the source of these recruited 

monocytes, that the absence of the splenic monocyte contribution explains how 

Clod Lipo treatment mitigated the tumour inhibitory effects of SL7207. This 

would also explain why the Clod Lipo infected mice were protected from 

excessive weight loss, through the absence of TNF-α-producing splenic 

macrophages (Di Francia et al., 1994). However, in order to assess this it would 

first be necessary to confirm that the reduced spleens from the Clod Lipo 

infected mice indeed lack monocytes, and that these monocytes can play a role 

in inhibiting tumour growth. The latter could be achieved by adoptively 

transferring splenic monocytes from an infected tumour-bearing mouse into an 

uninfected tumour-bearing mouse and investigating the tumour growth inhibitory 

effects which might accompany this procedure.  

In any case, it would be more attractive to employ a system which definitively 

and selectively depletes tumour monocytes, preferably in an inducible manner. 

In the first instance, it would be idyllic to repeat the clodronate liposome-

mediated depletion study to investigate if the phenotypic readout is 

reproducible. If this was the case, an expanded antibody staining panel to 

investigate the effects on other cell types, such as T cell, might enable the 

identification of the cell type involved. Furthermore, it would be preferable to 

analyse the immune cell repertoire of the tumour at different time points during 

the infection. It might also be informative to carry out the liposome-mediated 

depletion protocol in Ccr2-/- to enhance the effectiveness of monocyte 

depletion. 

An alternative model to use would be the LysmCre/mCherryCsf1rDTR strain which 
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seems to specifically ablate monocytes in  the blood and tissue but not other 

mononuclear phagocytes, when diphtheria toxin is administered (Schreiber et 

al., 2013). In comparison to the methods employed thus far to remove 

monocyte/macrophage contributions, this strategy targets only the Ly6C+CSF1R+ 

double positive cells thus limiting abrogation to the monocyte/macrophage 

compartment, although it is possible that Ly6C+ neutrophils would also be 

affected. Furthermore, the two pronged approach increases the likelihood of 

successfully removing monocyte/macrophages as it compensates for functional 

redundancy in removing either Ly6C+ or CSF1R+ cells alone. A limitation of this 

model might be the failure to delineate between the contribution of the 

monocytes and macrophages to the effects of S. Typhimurium-induced tumour 

growth inhibition. However, this limitation could be overcome by the adoptive 

transfer of specific monocyte/macrophage populations to tumour-bearing 

LysmCre/mCherryCsf1rDTR mice to assess their specific contribution to S. 

Typhimurium-induced tumour growth inhibition. 

5.3.7 Concluding remarks 

In conclusion, this chapter has suggested a role for tumour monocytes in 

contributing to the pro-inflammatory phenotype of the tumour 

microenvironment following infection. We have also shown that TAMs did not 

drastically change in phenotype following SL7207 infection. Treatment with 

clodronate liposomes resulted in the abrogation of SL7207-mediated tumour 

growth inhibition. However, looking at the cell types affected by clodronate 

treatment in the infected tumours did not demonstrate tumour monocytes 

and/or TAMs being affected by the clodronate liposomes in comparsion to PBS 

liposome-treated controls. There was, however, a significant difference in the 

size of the spleen in the clodronate liposome infected mice compared to PBS 

liposome, highlighting a new avenue of investigation for subsequent 

experiments; splenic monocytes and their role in mediating tumour growth 

inhibition following S. Typhimurium infection. 
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6 S. Typhimurium transformed with an eukaryotic 
expression plasmid to mediate bactofection in 
tumour spheroid cells in vitro 

6.1 Introduction  

It is apparent, from this report and others, that S. Typhimurium is capable of 

tumour growth arrest in an in vivo tumour model (Crull et al., 2011a; Low et al., 

1999). However, some research studies have sought to couple this innate anti-

tumour behaviour of S. Typhimurium to other strategies to enhance the 

tumouricidal capabilities of the bacteria. This can be achieved in a number of 

ways. For example, (Ganai et al., 2009) demonstrated that S. Typhimurium 

strain VNP20009 can specifically deliver apoptotic proteins to tumour cells, 

whilst another report employed a system where the S. Typhimurium (SHJ2037) 

overexpressed plasmid-encoded FlaB from Vibrio vulnificus to further slow 

tumour growth compared to treatment with the bacteria alone (Zheng et al., 

2017b). It has also been reported that bacteria can be utilized for the delivery of 

small hairpin RNA (shRNA) and eukaryotic expression plasmids to cancer cells (Fu 

et al., 2008; Zheng & Min, 2016). The latter strategy is termed ‘bactofection’.  

 

Bactofection is the utilization of bacteria to deliver genetic material to a target 

cell or tissue (Powell et al., 1999; Schaffner, 1980). Multiple bacterial strains 

have been reported to have bactofection capabilities such as Escherichia, 

Listeria and also Salmonella (Ahmad et al., 2011; Byrne et al., 2014; Paglia et 

al., 1998; Pijkeren et al., 2010; Pilgrim et al., 2003). Previous studies utilizing 

Salmonella to deliver therapeutic genes to cancer cells have employed host 

apoptotic, as well as immunogenic, genes to enhance the tumouricidal effects of 

the bacteria (Fu et al., 2008; Lee et al., 2005; Loeffler et al., 2007; Yuhua et 

al., 2001). Many cancer cells produce cancer cell-specific de novo antigens, and 

thus act as cancer-specific signals for immune cells to target these cells. For 

example, both prostate and melanoma cancers have well established tumour-

associated antigens which can be detected for diagnostic purposes, as well as 

being targeted for therapy (Buonaguro et al., 2011). Bacteria can be used to 

deliver eukaryotic expression vectors encoding tumour antigens to eukaryotic 
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cells (Dietrich et al., 1998), which has also been employed for the purposes of 

vaccination against tumour cell challenge (Ahmad et al., 2011). 

 

It was hypothesised that S. Typhimurium, transformed with a eukaryotic 

expression reporter plasmid, pEGFP (Michael et al., 2004), would lead to the 

production of GFP in the tumour cells. This would be a proof of principle for the 

ability of the bacteria to bactofect in our in vitro model, and would merit the 

progression of the study to in vivo models involving the use therapeutic plasmids 

encoding apoptotic or immunostimulatory genes.  

 

6.1.1 Aims 

1. To develop a three-dimensional tumour spheroid model in vitro using 

MDA-MD-231 cells 

2. To investigate the invasion properties of S. Typhimurium in the tumour 

spheroid model 

3. To investigate if S. Typhimurium strains transformed with the eukaryotic 

expression plasmid pEGFP can mediate the production of GFP in tumour 

spheroid cells 

 

Furthermore, as it was seen that the S. Typhimurium transformed with pEGFP 

displayed a filamentous phenotype, a subsequent aim included: 

 

4. To identify the feature of the plasmid responsible for inducing 

filamentation in S. Typhimurium-pEGFP 
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6.2 Results 

6.2.1 The generation of three dimensional tumour spheroids in 
vitro 

The ability of MDA-MB-231 cells to form reliable tumour spheroids in vitro was 

investigated to validate the suitability of this model for the subsequent 

bactofection study. Cells were seeded at multiple cell densities in ultra-low 

attachment plates in the presence of 2% Matrigel to encourage compact tumour 

spheroid formation (Ivascu & Kubbies, 2006; Vinci et al., 2015). Tumour growth 

was observed over a period of 14 days. Light microscopy and scanning electron 

microscopy (SEM) demonstrated that the tumours which were seeded with 5 x 

106 MDA-MB-231 cells consistently formed compact structures at 11 days post 

seeding, with an approximate diameter of 500 µm (Figure 6.1A,B). From 

histological analysis of tumour slices, it was determined that the tumours 

displayed similar traits to in vivo tumours, particularly with the necrotic core 

and the viable margin at the circumference of the tumour (Carlsson & Acker, 

1998; Sutherland et al., 1986) (Figure 6.1C). The necrotic core was further 

investigated by scanning electron microscopy (SEM) imaging, with cell debris 

characteristic of necrosis present in the centre of the spheroids (Figure 6.1D). 

 

 

Figure 6.1 In vitro tumour 
spheroids 
MDA-MB-231 tumour cells 
were seeded at 5 x 106 for 11 
days in ultralow attachment 
pates. A. Phase contrast 
image of tumour spheroid in 
well. Scale bar 100 µm. B. 
Scanning electron 
microscopy image of a 
tumour spheroid. Scale bar 
100 µm C. Toludine blue 
stained section of a 3D 
tumour spheroid with viable 
margin (black arrow head) 
and suspected necrotic core 
(red arrow heads). Scale bar 
100 µm. D. High 
magnification transmission 
electron microscopy image of 
the necrotic core of an 
uninfected tumour spheroid. 
Scale bar 1 µm.  
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6.2.2 Invasion and biofilm forming capacities of VNP20009 with 
tumour spheroids 

A further step to validate the in vitro tumour model for the purposes of 

bactofection was to verify S. Typhimurium could invade tumour cells and 

penetrate the tumour spheroid as in vivo. To do this, tumour spheroids were co-

incubated with another cancer therapy S. Typhimurium strain VNP20009 (Low et 

al., 1999) at an approximate multiplicity of infection of 100:1 for 48 hours. After 

one hour of co-incubation, cultures were treated with gentamycin to kill 

extracellular bacteria. At 48 hours post infection (hpi), viable bacteria were 

recovered from the tumour spheroid (Figure 6.2A). From immunofluorescence 

staining of tumour spheroid slices of tumours infected with VNP20009 carrying 

pCP25, a prokaryotic GFP-reporter plasmid to enable bacterial visualisation, it 

was clear that there were bacteria penetrating the outer margin of the tumour 

up to 150 µm from the periphery (Figure 6.2B, left panel). As a control, wild 

type VNP20009 infected tumours were also imaged (Figure 6.2B, right panel). 

However, in the absence of a eukaryotic cell marker, it was not possible to 

discriminate intracellular bacteria from bacteria present in the interstitial 

space. Subsequent SEM analysis demonstrated that VNP20009 was capable of 

invasion of the tumour cells, but the majority localized to the interstitial space 

(Figure 6.2C, D).  
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Figure 6.2 VNP20009 invasion of tumour spheroids 
Tumour spheroids were co-incubated with VNP20009 at an MOI of 100:1 for 48 hours. A. Colony 
forming unit (CFU) counts from MDA-MB-231 tumour spheroids, infected with VNP-pCP25, or 
uninfected. B. Confocal microscopy images of tumour spheroid slices which were infected with 
either the VNP-pCP25 or wild type VNP20009. Scale bar 50 µm. C. Transmission electron 
microscopy (TEM) image of tumour spheroid slice with VNP20009 localised intracellularly (red 
arrow; scale bar 1 µm) D. TEM image of tumour spheroid slice with VNP20009 located 
extracellularly (red arrow, scale bar 1 µm). Error bars SEM. 
 

From the immunofluorescence images, it appeared as if VNP20009 was forming 

biofilms on the surface of the tumour, which has also been reported in vivo 

(Crull et. al., 2011a). TEM imaging confirmed the presence of an extensive 

biofilm network on the surface of the tumour spheroid (Figure 6.3). Taken 

together, these data suggest that S. Typhimurium infection in the in vitro 

tumour spheroids model resembles in vivo tumour invasion, thus meriting the 

use of the model for bactofection studies. 

 

Figure 6.3 VNP20009 biofilm formation on tumour 
spheroids 
Tumour spheroids were co-incubated with VNP20009 at 
an MOI of 100:1 for 48 hours. Scanning electron 
microscopy image of VNP20009 in a biofilm on the 
surface of an infected tumour spheroid (scale bar 5 µm). 
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6.2.3 Selection of VNP20009 through serial reisolations to 
increase tumour invasion capacity in vitro 

 

In order to maximize the potential of the therapeutic effects of S. Typhimurium, 

it was sought to increase the invasion ability of VNP20009 in the in vitro models. 

From the SEM images, it appeared that many of the bacteria resided within the 

interstitial space. It has been speculated that cellular invasion is a prerequisite 

for bactofection to take place (Weiss, 2003), so it was pertinent to maximize the 

cellular invasion capacity of the bacteria in the present study. A previous study 

demonstrated that the re-isolation of the cancer therapy strain A1 from an in 

vivo tumour resulted in the re-isolated strain, A1-R, exhibited greater tumour-

specific localization as well as therapeutic effect than the original A1 strain 

(Zhao et al., 2006). This principle was applied to the in vitro culture by 

developing a serial screening process to isolate highly infective, intracellular 

VNP20009. This was achieved by infecting standard monolayer cultures of MDA-

MB-231 with the parent stock of VNP20009, followed by reisolating viable 

bacteria 24 hpi. These reisolated colonies were subsequently used to infect 

another monolayer. Following multiple reisolations of a given strain, each 

reisolated strain (Once, Twice, Thrice) was used to infect tumour spheroids at 

an MOI of 100:1 for 24 hours, with a colony from the parental stock as a baseline 

control (Zero). It was hypothesized that enriching for highly infective bacteria in 

the population would lead to greater tumour spheroid infection. For the 

monolayer-reisolated colonies, there appeared to be a gradual increase in the 

infection capabilities of the more highly reisolated strains, but this was not 

statistically significant (Figure 6.4A). With the tumour spheroid-reisolated strain, 

however, there was a significant increase in the infection competence of the 

once reisolated colony compared to the parent stock (Figure 6.4B). Therefore, 

this highly infective strain was used for subsequent experiments. 
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Figure 6.4 Serial reisolation of infective VNP20009 colonies to increase cumulative infective 
capacity 
VNP20009 was serially reisolated from 2D monolayer or 3D tumour spheroid in vitro cultures 
before infecting tumor spheroids at equal MOIs for 24 hours. A. Colony forming unit (CFU) counts 
of VNP20009 harvested tumour spheroids infected with the parent stock (Zero), and colonies 
reisolated from monolayers for Once, Twice and Thrice isolated. B. CFU counts of VNP20009 
harvested from tumour spheroids from the parent stock (Zero) and colonies reisolated from tumour 
spheroid (Once). Error bars SEM. Statistical analyses performed using a One Way Anova (A) or a 
Student’s t test (B) where p < 0.05*. 
 

6.2.4 Bactofection capacities of S. Typhimurium-pEGFP 

In order to assess if VNP20009 was capable of mediating bactofection, VNP20009 

was transformed with a eukaryotic reporter plasmid, pEGFP, which encodes 

EGFP under a eukaryotic promoter, cytomegalovirus (CMV) (Michael et al., 

2004). The transcription of the EGFP gene is restricted to eukaryotic cells, so the 

GFP signal should only be evident following bactofection. This protocol was 

developed during my Masters of Research degree in Dr Wall’s group. During the 

course of the Master’s project, many parameters for this protocol were 

optimised such as infectious dose, density of cells prior to infection, length of 

incubation etc.  

For the present study, cells were infected for 24 hours with VNP20009-pEGFP, 

with wild type VNP20009 infection serving as a negative control for GFP 

production in the eukaryotic cells. As a positive control, cell cultures were 

transfected with pEGFP using Lipofectamine® R 2000. A subpopulation of the 

cells expressed EGFP with GFP signal detected in the cytoplasm (Figure 6.5A). 

GFP signal was not detected in wild type VNP20009-infected cells as expected 

(Figure 6.5B), but there was also no clear GFP signal in cells infected with 

VNP20009-pEGFP (Figure 6.5C). This was also the result when cells were infected 

with SL7207-pEGFP (Figure 6.5D).  
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Figure 6.5 Bactofection capacity of S. Typhimurium-pEGFP 
Tumour spheroid cells were co-incubated with S.Typhimurium transformed with pEGFP, or wild 
type at an MOI of 100:1. A. Confocal microscopy images of tumour cells transfected with pEGFP 
for 24 hours as a positive control for GFP production. B. Wild-type VNP20009-infected tumour cells 
C. VNP20009-pEGFP (VNP-pEGFP) infected tumour cells. D. SL7207-pEGFP (SL-pEGFP)-
infected tumour cells. Scale bars 20 µm.  

However, it was possible that the GFP florescence was below the threshold of 

detection on the fluorescence microscope, so cell cultures were infected as 

above, lysed and subjected to immunoblot analysis for the GFP protein. At this 

point of the study, the focus was switched to SL7207 as this had been 

demonstrated to be highly competent of eukaryotic DNA delivery to eukaryotic 

systems (Berger et al., 2013). The immunoblot analysis again demonstrated that 

there was no GFP present in the cells infected with SL7207-pEGFP (Figure 6.6A). 

To control for the possibility that the pEGFP was negatively affecting the 

bacteria, another reporter plasmid system was employed: a eukaryotic 

expression plasmid encoding luciferase (Darji et al., 1997) which can be 

detected using the IVIS. This plasmid is very similar to the pEGFP plasmid except 

it has luciferase in place of EGFP and an ampicillin resistance cassette in place 

of kanamycin. The infection protocol of tumour cells was similar to the pEGFP 

infection protocol outlined above, except cultures were analysed on the IVIS for 
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bioluminescence signal (Figure 6.6B, C). The transfected sample exhibited a high 

bioluminescent signal whereas tumour cells infected with SL7207-pLuc did not 

have any. 

 

Figure 6.6 Bactofection capacity of SL7207-pEGFP and SL7207-pLuc 
MDA-MB-231 cells were coincubated with SL-pEGFP or SL-pLuc for 24 hours at an MOI of 
100:1.A. Immunoblot analysis of wild type SL7207 and SL7207-pEGFP (SL-pEGFP) for GFP 
protein in tumour cell lysates with pEGFP-transfected tumour cells as a positive control for GFP. 
Green arrow indicates GFP band. B. Bioluminescent signal from wild type SL7207, SL7207-pLuc 
(SL-pLuc) and pLuc-transfected tumour cells as a positive control for bioluminescence. C. 
Quantification of the bioluminescent signal from the samples in (B). Error bars SEM. Statistical 
analyses performed using a One Way Anova where p < 0.05*, p < 0.01**, p < 0.001***, p < 
0.0001***. 

6.2.5 Morphological characterisation of S. Typhimurium 
transformed with pEGFP 

Bactofection into multiple tissues has been reported, which was frustrating for 

the current study in which neither VNP2009 nor SL7207 were able to replicate 

the data produced in these reports (Ahmad et al., 2011; Berger et al., 2013; 

Darji et al., 1997). The absence of bactofection warranted greater investigation 

into the phenotype of the pEGFP-transformed bacteria. High magnification light 

microscopy of Gram stained SL7207-pEGFP demonstrated that these cultures 

displayed a filamentous phenotype compared to the untransformed, wild type 

cultures (Figure 6.7A). Quantification of the cell lengths of the bacteria revealed 

that the mean cell length of SL7207-pEGFP was significantly greater than the 
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wild type cultures (Figure 6.7B). Interestingly, only some of the cells of the 

culture displayed a filamentous phenotype, which was defined as a cell length of 

more than 6 µm (Humphrey et al., 2011). The proportion of cells in a 

transformed culture which was filamentous was 39.58% (±10.82%), whereas there 

was less than 0.01% of untransformed cells which were filamentous (Figure 

6.7C).  

 

Figure 6.7 Morphology of SL7207-pEGFP 
Wild type SL7207 and SL-pEGFP were grown in culture to mid-log phage and subject to Gram 
staining and light microscopy. A. Representative light microscopy images of Gram stained SL7207 
cultures, wild type and SL-pEGFP. Scale bars 10 µm. B. The mean length of individual SL7207 
bacteria, wild type and –pEGFP. C. Quantification of the proportion of SL7207 in culture which 
were filamentous (> 6 µm) for wild type and -pEGFP. Error bars SEM. Statistical analyses 
performed using a Students t test where p < 0.05*, p < 0.01**. 

The filamentous phenotype induced by the transformation of pEGFP into S. 

Typhimurium was not restricted to SL7207, but multiple S. Typhimurium strains 

tested also displayed filamentous phenotypes following transformation with 

pEGFP such as the original preferred strain, VNP20009 (Figure 6.8A, B) and the 

common lab strain LT2 (Figure 6.8C, D). The differences between pEGFP-

transformed S. Typhimurium strains and their wild type counterparts were 

comparable to that seen with the SL7207 cultures.  
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Figure 6.8 Morphology of other S. Typhimurium strains transformed with pEGFP 
VNP20009 and LT2 strains were transformed with pEGFP and subject to analysis as in Figure 6.7. 
A. Representative light microscopy images of Gram stained VNP2009, wild type and transformed 
with pEGFP (VNP-pEGFP). B. Quantification of the mean cell lengths of cultures represented in 
(A). C. Representative light microscopy images of Gram stained LT2, wild type and transformed 
with pEGFP (LT2-pEGFP). D. Quantification of the mean cell lengths of cultures represented in (C). 
Scale bars 10 µm. Error bars SEM. Statistical analyses performed using a Students t test where p 
< 0.05*, p < 0.01**, p < 0.001***, p < 0.0001****. 

6.2.6 Effects of pEGFP transformation on E. coli strains 

It was questioned whether this was a S. Typhimurium-specific phenomenon. To 

investigate this, E. coli strains were transformed with pEGFP and the mean cell 

lengths were compared to untransformed, wild type cultures as before. Although 

there was a slight increase in the average mean cell lengths of the transformed 

cultures, there was no statistically significant difference between pEGFP-

transformed cultures and non-transformed wild-type cultures for K12 (Figure 

6.9A, B; p = 0.2269), F18 (Figure 6.9C, D; p = 0.2070) or LF82 (Figure 6.9 E, F; p 

= 0.2715) (Figure 6.9). This data suggested that pEGFP-induced filamentation 

was S. Typhimurium-specific. 
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Figure 6.9 Morphology of E. coli strains transformed with pEGFP 

Multiple E. coli strains were transformed with pEGFP and subject to analysis as in 6.7. A. 
Representative light microscopy images of Gram stained K12, wild type and transformed with 
pEGFP (K12-pEGFP). B. Quantification of the mean cell lengths of cultures represented in (A). C. 
Representative light microscopy images of Gram stained F18, wild type and transformed with 
pEGFP (F18-pEGFP). D. Quantification of the mean cell lengths of cultures represented in (C). E. 
Representative light microscopy images of Gram stained LF82, wild type and transformed with 
pEGFP (LF82-pEGFP). F. Quantification of the mean cell lengths of cultures represented in (E). 
Scale bars 10 µm Error bars SEM. Statistical analyses performed using a Students t test where p < 
0.05*. 
 

There was a great degree of variation in the cell lengths of individuals within a 

given SL7207-pEGFP culture samples. This was evidenced by the large spread in 

the standard deviation values of the mean cell lengths in SL-pEGFP cultures 

(Figure 6.10A). The high standard deviation values and the spread were not 

present in wild type, untransformed cultures. The cell size variation within a 

culture was also apparent in the distribution of individual cells between 

different cell size categories for SL7207-pEGFP but not for wild type SL7207 

(Figure 6.10B). The degree of variation was a concern as it highlighted the 

difficulty in controlling for the proportion of cells in the culture which were 

filamentous. This could prove challenging in a given experimental setting if 

there were phenotypic changes associated with the filamentous cultures. 
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Figure 6.10 Variability in cell length of SL-pEGFP compared to wild type 
The mean cell length data from wild type and SL-pEGFP cultures were compared for differences in 
standard deviation and size distribution. A. Standard deviations of cell length in individual 
experiments for wild type and SL-pEGFP cultures. B. Distribution of wild type and SL-pEGFP 
cultures between multiple size categories. Statistical analysis was performed using a Student’s t 
test where p < 0.05*. 

6.2.7 Effects of filamentation on growth and invasion of SL-
pEGFP 

In order to assess the effects that pEGFP-induced filamentation had on the 

behaviour of S. Typhimurium, multiple phenotypic characteristics of SL7207 

transformed with pEGFP were compared to wild type. SL7207-pEGFP displayed 

slowed cell growth in vitro compared to wild type (Figure 6.11A). Furthermore, 

SL7207-pEGFP had decreased in vitro intracellular replication when invading 

MDA-MB-231 cells, compared to wild type (Figure 6.11B) as well as a decreased 

capacity to invade cancer cells (Figure 6.11C).  

 

The decreased infection capacity of SL7207-pEGFP was further investigated by 

investigating the degree of SPI-1 activation in these cells compared to control. 

SPI-1 activation is critical for mediating invasion of eukaryotic epithelial cells, 

and prgH encodes a type III needle apparatus protein required for this process. 

JH3010 is a derivative of S. Typhimurium strain SL1344 (the ancestral strain of 

SL7207), with a Salmonella pathogenicity island-1 (SPI-1) green fluorescent 

reporter (prgH-gfp+) (Hautefort et al., 2003). These cells fluoresce green when 

prgH is switched on and the cells are capable of invading epithelial cells. This 

therefore acts as a surrogate readout for SPI-1 activation. SL1344-pEGFP was 

used as a negative control for green fluorescent signal to control for the 

possibility of bactofected GFP creating a background signal. It was found that 

JH3010-pEGFP had decreased prgH-gfp expression compared to wild type 

JH3010, as evidenced by a greater proportion of bacteria fluorescing green 
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(Figure 6.11D, E). Decreased SPI-1 expression may account for the attenuated 

invasion capacity of S. Typhimurium-pEGFP (Figure 6.11D, E). Note that the GFP 

signal in this experiment is from prgH-gfp, and not from the pEGFP eukaryotic 

expression plasmid. 

 

Figure 6.11 Growth and invasion characteristics of SL-pEGFP 
Wild type and SL-pEGFP cultures were compared for multiple growth and invasion characteristics. 
A. Representative growth curves of wild-type and SL-pEGFP. B. Colony forming unit (CFU) counts 
of wild type and SL-pEGFP recovered from MDA-MB-231 cells at 2, 8 and 24 hours post infection. 
C. CFU counts of wild type and pEGFP-transformed SL7207 recovered from MDA-MB-231 2 hours 
post infection. D. Quantification of the proportion of bacteria in culture expressing SPI-1 at mid-log 
phase using a SPI-1 reporter SL1344 strain, JH3010. JH3016 served as a positive control as it is a 
constitutively expressing GFP strain. SL-pEGFP served as a negative control for GFP expression 
E. Representative images of JH3010 wildtype and transformed with pEGFP (JH-pEGFP). Top row 
are DAPI-stained images pseudocoloured to aid visualization. Bottom row shows green 
fluorescence is from prgH-gfp expression. Scale bars 5 µm. Error bars SEM. Statistical analyses 
performed using a Students t test (C) or One Way Anova (D) where p < 0.05*, p < 0.01**. P < 
0.001***, p < 0.0001****. 

6.2.8 Stress responses induced in pEGFP-transformed S. 
Typhimurium cultures 

As filamentation has been associated with cell stress, it was investigated which 

stress response, if any, was upregulated in the filamentous cultures (Humphrey 

et al., 2011; Mattick et al., 2000; Stackhouse et al., 2012). Both the general 

stress response and the SOS DNA damage stress response have been investigated 
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in filamentation studies. RpoS, the ribosomal sigma factor whose upregulation is 

indicative of general stress response activation, was found to be unchanged in 

expression levels between multiple pEGFP-transformed S. Typhimurium strains 

and wild type (Figure 6.12A). However, the SOS stress response protein, RecA 

was seen to be upregulated in SL7207 cultures transformed with pEGFP, 

suggesting that the SOS response is increased in SL7207-pEGFP cultures (Figure 

6.12B).  

 

The induction of the SOS response inhibits septation of replicating bacteria 

(Justice et al., 2008; Justice et al., 2000). This phenotype was investigated in 

the filamentous cultures by staining fixed cultures with the nuclear stain DAPI. 

Fluorescence microscopy images of filamentous bacteria demonstrated multiple 

nuclei aligned along a filamentous bacterium, which was not evident in the wild 

type cultures. This data further suggested a role for the SOS response in the SL-

pEGFP cultures, which may be driving the filamentous phenotype (Figure 6.12C). 

 

Figure 6.12 Stress response activation in S. Typhimurium-pEGFP 
Cultures were grown to mid-log phage and harvested for western blot analysis for stress response 
proteins or immunofluorescence staining. A. Immunoblot analysis for Rpos, of different S. 
Typhimurium strains, wild type or transformed with pEGFP. GroEL served as a loading control. B. 
Immunoblot analysis for RecA, of multiple wildtype of pEGFP-transformed SL7207 colonies with 
Mitomycin C-treated (Mito) untransformed cultures serving as a positive control for RecA 
production. C. Representative DAPI-stained wild type and SL-pEGFP cultures. Images were 
pseudo-coloured to aid visualization of segmented phenotype of SL-pEGFP. Scale bars 5 µm. 
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6.2.9 The contribution of the f1 ori in pEGFP to the filamentous 
phenotype of SL-pEGFP 

 

As multiple S. Typhimurium strains were induced to become filamentous when 

transformed with pEGFP, it was hypothesized that there was a feature of pEGFP 

which was responsible for inducing the filamentous phenotype (Figure 6.13A). 

The SOS response is triggered in S. Typhimurium in response to the presence of 

single stranded DNA (ssDNA) in the bacterium. Investigation of the pEGFP 

plasmid revealed that the filamentous phage 1 origin of replication (f1 ori), a 

phagemid capable of phage-directed ssDNA production (Russel & Model, 1989). 

Furthermore, other phages have been reported to induce the SOS response in 

Salmonella enterica (Campoy et al., 2006). Therefore, it was hypothesized that 

the f1 ori may be responsible for inducing the filamentous phenotype in S. 

Typhimurium-pEGFP. To test this hypothesis, the f1 ori sequence in pEGFP was 

replaced with lacZ from pUC19 to give rise to pEGFPLacZ, which no longer 

contained the f1 ori but contains the functional elements to enable 

bactofection. This plasmid was then transformed into SL7207 and the 

morphology of the bacteria was assessed. Light microscopy imaging of Gram 

stained SL7207-pEGFPLacZ demonstrated that this plasmid did not induce a 

filamentous phenotype in the bacteria (Figure 6.13B, bottom panel). The mean 

cell lengths of the wild type and SL-pEGFPLacZ cultures were not significantly 

different from each other, but both were significantly different from the mean 

cell length of SL-pEGFP cultures (Figure 6.13C). This data suggested that the f1 

ori was responsible for inducing the filamentous phenotype in the S. 

Typhimurium cultures. 
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Figure 6.13 Effect of the removal of f1 from pEGFP on cell length with resultant plasmid, 
pEGFPLacZ 
Cultures were transformed with the indicated plasmid, grown to mid log phase and Gram stained. 
A. Plasmid map of pEGFP. B. Representative light microscopy images of Gram stained SL7207, 
wild type, or transformed with pEGFP or pEGFPLacZ. C. Quantification of the mean cell lengths of 
the cultures in (B). Scale bars 10 µm. Statistical analysis was performed using a One Way ANOVA 
with p < 0.05*. 

However, other features of the plasmid were also investigated to ensure that the 

f1 ori was the only feature driving filamentation. Three additional features were 

examined: the EGFP transgene, the plasmid ori and the antibiotic resistance 

cassette.  

 

There has been a report which suggested that there were prokaryotic promoters 

and promoter elements located within the CMV promoter (Goussard et al., 

2003). Therefore it was possible that the bacteria transformed with pEGFP were 

producing the EGFP protein, which could be inducing stress. To investigate this, 

fluorescence readings of S. Typhimurium strains transformed with pEGFP were 

taken, with wild type VNP20009 and VNP20009 transformed with a prokaryotic 

GFP reporter plasmid, rpsM-GFP, serving as negative and positive controls for 

GFP signal respectively (Figure 6.14A). According to this data, the levels of GFP 

fluorescence in transformed cultures was no different to untransformed, wild 
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type VNP2009, suggesting there was no GFP protein produced in the bacteria. To 

definitively rule out the possibility that the transgene may be having a 

filamentation-inducing effect on the bacteria, the portion of the pEGFP plasmid 

containing the CMV promoter and the EGFP transgene was cloned into the 

pACYC184 backbone, which itself does not drive filamentation in S. Typhimurium 

cultures. When this plasmid, pACYC-EGFP, was transformed into SL7207, the 

bacteria did not display a filamentous phenotype, further providing evidence 

that the transgene was not driving the filamentous phenotype (Figure 6.14B). In 

fact, the mean length of the cultures transformed with pACYC-EGFP were not 

significantly different from wild type SL7207 (Figure 6.14C). 

 

pEGFP has a high copy number origin of replication, pUC19 ori, so it was 

questioned if a high copy number plasmid might lend to stress, as discussed in 

the literature (Wegrzyn & Wegrzyn, 2002). However, transformation of SL7207 

with a commercially available pUC19 plasmid failed to induce a filamentous 

phenotype compared to the wild type control (Figure 6.14.B). The mean cell 

length of SL-pUC19 was not significantly different from wild type SL7207 (Figure 

6.14C). 

 

The choice of antibiotic resistance cassette has also been associated with 

inducing a filamentous phenotype in S. Typhimurium (Clark et al., 2009). To 

investigate the possibility that the kanamycin cassette was playing a role in 

mediating the filamentous phenotype, a similar plasmid to pEGFP, pLuc was 

employed. This plasmid has an ampicillin cassette but also differs from pEGFP in 

its transgene, which is the luciferase gene. It has already been demonstrated 

that the EGFP transgene was not responsible for inducing the filamentous 

phenotype observed in the S. Typhimurium cultures, so there was confidence 

that the pLuc plasmid could isolate the possible effects of the antibiotic 

resistance cassette on filamentation. pLuc was transformed into SL7207 and light 

microscopy was employed to investigate the morphology of SL7207-pLuc. The 

presence of this plasmid was sufficient to induce filamentation similar to pEGFP, 

suggesting that the kanamycin cassette in pEGFP was not driving the filamentous 

phenotype. Of course, it was possible that luciferase was inducing filamentation, 

but this would not explain the filamentous phenotype in pEGFP-transformed 

cultures.  
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Figure 6.14 Effects of other plasmid features on the pEGFP-induced filamentous phenotype 
Multiple features of pEGFP were investigated for their ability to induce filamentation in pEGFP-
transformed S. Typhimurium. A. Relative fluorescence units (RFU) readings of S. Typhimurium 
cultures transformed with pEGFP. Wild type VNP20009 served as a negative control for GFP 
signal and SL7207-rpsmGFP served as a positive control (GFP +ve). B. Representative light 
microscopy images of Gram stained SL7207, transformed with pACYC-EGFP, pUC19 or pLuc. C. 
Quantification of the mean cell lengths of the cultures in plus wild type SL7207 and SL-pEGFP. 
Scale bars 10 µm. Statistical analysis was performed using a One Way ANOVA with p < 0.05*, p < 
0.01**. P < 0.001***, p < 0.0001****. 
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6.3 Discussion 

 

The use of bacteria as a vehicle for gene delivery is an ever-growing field, with 

the number of publications pertaining to this topic increasing, with Salmonella 

as a delivery vector driving this upward trend (Forbes, 2010). The utilization of 

bacteria to deliver genetic material to eukaryotic systems has been 

demonstrated in vivo in multiple pathologies including cystic fibrosis and cancer. 

Of all of the bacterial species reported in the literature, Salmonella is arguably 

the most studied and well characterized. Salmonella has been employed to 

deliver multiple eukaryotic genes to cancer cells in vivo including apoptosis-

associated genes Smac and TNF-α related apoptosis inducing ligand (TRAIL) as 

well as for cytokine gene therapy in subcutaneous tumour mouse models (Fu et 

al., 2008; Loeffler et al., 2007; Yuhua et al., 2001). However, before 

undertaking in vivo work, it was necessary to investigate the bactofection 

capacity of S. Typhimurium in vitro. Here, an in vitro tumour spheroid culture 

system which recapitulates many features of the in vivo tumour architecture was 

developed. It was determined that S. Typhimurium transformed with a 

eukaryotic expression plasmid, pEGFP, induced a filamentous phenotype and was 

associated with the induction of the bacterial SOS DNA damage response and as 

a consequence of the f1 ori present on the plasmid. This phenotype may explain 

why there was no detectable bactofection carried out in our culture system, 

contrary to published reports. 

 

6.3.1 Why employ tumour spheroids for the preliminary in vitro 
study? 

It is well known that bacteria behave differently in various environments. The 

tumour microenvironment is distinct from other non-tumorous tissues in the 

body with heterogeneous cell populations distributed throughout and gradients 

of nutrients present in distinct regions of the tumours. It has been demonstrated 

that within distinct regions, bacteria behave differently (Kasinskas & Forbes, 

2006, 2007). Therefore, in designing the bactofection experiment, it was 

important to employ an in vitro system that best represented the dynamics of 

bacterial tumour invasion and behaviour in vivo. A three dimensional (3D) 

tumour spheroid system was employed, which had been reported to mimic the in 
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vivo environment with a necrotic core, nutrient gradients and an outer viable 

rim being some of the most prominent features (Freyer, 1988; Sutherland et al., 

1986). Of particular interest to us was the presence of the necrotic core has 

been demonstrated to be a region of hypoxia in vitro (Carlsson & Acker, 1998). 

S. Typhimurium is a facultative anaerobe, so it can survive in both oxygenated 

and hypoxic environments. This is an important consideration for downstream 

refinement of a bactofection protocol as limiting the production of the 

transgene to a tumour-specific location would allow for maximal anti-tumour 

result with minimal off-target effects. In the case of the hypoxic environment, 

this could be achieved with a hypoxia-associated promoter, such as the pepT 

promoter (Yu et al., 2012). First, however, it would be important to determine 

whether the tumour spheroids contained hypoxic regions. This could have been 

achieved by immunofluorescence staining of tumour spheroid section using 

HypoxyprobeTM-1 antibody as performed by Yu and colleagues. However, in light 

of the filamentous phenotype of the pEGFP-transformed bacteria, further 

experiments to characterise the tumour spheroids were abandoned to focus on 

elucidating the underlying mechanism of filamentation in the transformed 

cultures. 

 

6.3.2 Why were there still VNP20009 cells on the surface of the 
tumour spheroid following gentamycin treatment, and why 
is this a concern? 

From the confocal microscopy images of VNP20009 infecting the tumour 

spheroids, it appeared that there was S. Typhimurium surrounding the tumour 

spheroid following gentamycin antibiotic treatment. This suggested that the 

bacteria were resistant to the antibiotic. Closer inspection with TEM confirmed 

the existence of a biofilm surrounding the tumour spheroid, which might account 

for the antibiotic resistant cells. 

 

Biofilm formation on tumours by S. Typhimurium has been reported in vivo, 

which is interesting as S. Typhimurium is not normally associated with being a 

potent biofilm former (Crull et al., 2011b). It would be interesting to generate 

mutant strains incapable of forming biofilms to see if this would abrogate the 

antibiotic-resistant cells, however this has been shown to reduce tumour 

colonisation (Crull et al., 2011b). Although the bacteria may be beneficial for 
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tumour growth inhibition, antibiotic-resistant bacteria are a major safety 

concern, particularly in cancer patients who are often immunocompromised 

(Hübel et al., 1999; Viscoli et al., 2005). In a subsequent study, Crull and 

colleagues demonstrated that systemically administered bacteria in tumour-

bearing mice were almost completely cleared from the liver, spleen and tumour 

14 days post ciprofloxacin treatment (Crull & Weiss, 2011). However, it is 

difficult to be satisfied with this as the outcome in a clinical setting, as 

complete bacterial clearance was not achieved. Furthermore, there is the ever-

present concern of antibiotic resistance, which was discussed in Chapter 3. 

 

6.3.3 Why increase the tumour cell invasion potential of S. 
Typhimurium? 

At present, it is unknown if the anti-tumour effects of bacterial-mediated cancer 

therapy is primarily due to tumour-specific bacterial localization or to the 

systemic inflammation associated with intravenous bacterial administration. 

Numerous reports, although focused on other research questions, have 

inadvertently provided evidence for one phenomenon or the other (Binder et al., 

2013; Kocijancic et al., 2017; Thornlow et al., 2015; Zhao et al., 2006). One 

such study has suggested that increased tumour specific bacterial localization 

improves the anti-tumour effects of the bacteria when administered systemically 

(Zhao et al., 2006). This data points towards bacterial colonization of the 

tumour being an important factor for a successful bacterial cancer therapy.  

 

In the present study, scanning electron microscopy demonstrated that bacteria 

which had penetrated the tumour spheroid were present both within the tumour 

cells, as well as in the interstitial space. From these images, it was observed 

that there was a greater proportion in the interstitial space. For bacteria to 

mediate bactofection, it is believed to be necessary to gain entry to the cytosol 

so as to transfer the plasmid to the eukaryotic cell (Weiss, 2003). Therefore, it 

was pertinent to increase the cell invasion capacity of the bacteria to maximize 

both colonization as well as bactofection rates. The aforementioned study by 

Zhao and colleagues intensified the tumour invasion capacity of the cancer 

therapy strain A1 by reisolating the bacteria from tumours in an in vivo tumour 

model, termed A1-R, therefore selecting the colonies most capable of tumour 

colonization (Zhao et al., 2006). Herein, this phenomenon was recapitulated in 
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vitro, using both monolayers and tumour spheroid cultures as instruments to 

select for the most infective individuals in the population. Even after three 

serial reisolations, the colonies reisolated for a third time from the monolayers 

were not significantly more infective than the parent stock. The tumour 

spheroid reisolation process was more selective, as the colonies isolated for the 

first time were significantly more infective than the parent stock. However, with 

the knowledge of the biofilm formation ability of the VNP20009 on the surface of 

the tumour, this data must be interpreted with caution as it is possible that the 

selection process is actually selecting for biofilm formers, as opposed to bacteria 

more able to invade and penetrate the tumour.  

 

It is interesting to speculate what may be accountable for the differences in 

infection ability between individuals in a population. Previous reports have 

demonstrated that only a proportion of Salmonella in a population activate SPI-

1, even in SPI-1 priming conditions (Humphrey et al., 2011). It is possible that 

the serial reisolation protocol was selecting SPI-1-expressing individuals in this 

category. However, as there was a linear relationship between the number of 

reisolations and the number of bacteria infecting the tumour spheroids, this 

suggests that there is a permanency in the features which enabled these 

bacteria to invade. This could be loss-of-function gene mutations in genes which 

should turn off SPI-1, or alternatively could be gain-of-function mutations which 

amplify or sustain SPI-1 activation. One report sequentially selected for 

hypermotile bacteria in a bacterial cultures subjected to in vitro swarm plate 

assay (Thornlow et al., 2015). By doing so, they increased the cumulative 

swimming velocity of a given population within a tumour-on-chip in vitro. They 

also demonstrated that this phenotype was maintained for over 30 passages, 

suggesting that these bacteria have a genetic, or epigenetic advantage over 

their former colony colleagues. Therefore, it is possible that the changes in the 

cumulative invasion capacity of the bacteria reisolated in the present study are 

due to permanent changes pertaining to epigenetic or genetic factors. RNA 

sequencing, genomic sequencing and bisulfite sequencing analyses would help 

discriminate which factors are playing a role, but these technologies are 

expensive and were outside the remit of the present study. 
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Obtaining information pertaining to the factors dictating tumour-specific 

colonization would illuminate strategies that could further promote therapeutic 

effect. This is very much dependent on dissecting the contributions of systemic 

inflammation and bacterial localization in the tumour to the anti-tumour effects 

of the bacteria. It has been suggested that the requirement for bacterial tumour 

localization for anti-tumour efficacy is tumour type-specific (Kocijancic et al., 

2017). In the instances where bacterial localization is important to the anti-

tumour effects, strategies such as the one described herein for increasing 

tumour cell invasion, may be critical for maximizing the potential of bacterial 

mediated tumour therapy.  

 

6.3.4 What is the relevance of the attenuated replication and 
invasion features of the filamentous cultures? 

In order to enable the bacteria to bactofect, they must first be transformed with 

a eukaryotic expression vector. For this study, S. Typhimurium strains were 

transformed with the eukaryotic expression vector, pEGFP. This plasmid was 

chosen as it can transferred to eukaryotic cells from S. Typhimurium (Michael et 

al., 2004). Furthermore, this plasmid, and its derivatives, have been employed 

in mammalian expression studies (Song et al., 2015; Ying et al., 2012). Using 

multiple experimental platforms, it was found that the bacteria were incapable 

of bactofection which is contrary to numerous reports in the literature. It was at 

this point a closer look at the phenotype of the S. Typhimurium transformed 

with pEGFP revealed that these cultures displayed a filamentous phenotype that 

was only really apparent at high magnification. To my knowledge, there are no 

reports of a eukaryotic expression vector inducing filamentation in bacteria, in 

the bactofection literature or elsewhere. It has been reported that certain 

mutations in a pBR332 plasmid can induce invasion defects in S. Typhimurium, 

but this was attributed to plasmid architecture (Clark et al., 2009). The degree 

of filamentation was quite striking; the mean length of the transformed SL7207 

cultures was more than three times that of the wild type and 39.58% (±10.82% 

standard deviation) of each culture was classed as filamentous. The 

classification of ‘filamentous’ was based on a previous study attributing bacteria 

greater than three cell lengths (6 µm) as being filamentous (Humphrey et al., 

2011).  

 



Chapter 6 Bactofection and Filamentation 
 

210 
 

The filamentous cultures had significantly decreased propensities to replicate 

and invade eukaryotic cells. One of the striking features of these cultures was 

that there were both filamentous and non-filamentous cells in the same culture. 

A previous study elegantly demonstrated a correlation between the increased 

length and decreased propensity to invade epithelial cells (Humphrey et al., 

2011). There was a great degree of variation between SL-pEGFP cultures in 

terms of the mean cell length of the culture, as well as the distribution of cells 

in a given cell size category. This demonstrates the difficulty in controlling for 

the variation between cultures, thus making the variability between experiments 

more challenging. Such variability can mask true experimental results, and lead 

to incorrect conclusions being drawn from a given experiment. To our 

knowledge, this phenotype has not been reported in f1 ori-containing plasmids, 

which also include commonly employed plasmids such as pBluescript- and 

pcDNA3.1. Therefore, it is possible that researches employing the use of these 

plasmids (or their derivatives) in S. Typhimurium strains are unaware of the 

potentially confounding factor that is the filamentous phenotype. Upon the 

discovery of the f1 ori as being the factor in pEGFP driving the filamentous 

phenotype, it would have been interesting to see if the SL-pEGFPLacZ (the 

plasmid which lacks f1 ori) could mediate bactofection. Unfortunately, time 

constraints did not allow for this investigation. 

 

6.3.5 What is the role of the f1 ori in eukaryotic expression 
plasmids and how might it be inducing filamentation? 

The data presented herein suggests that the f1 origin of replication is capable of 

inducing filamentation in S. Typhimurium. The purpose of the f1 ori in the 

pEGFP plasmid is uncertain and unreported. The f1 ori is capable of ssDNA 

replication and phage packaging (Horiuchi, 1980; Russel & Model, 1989). It is 

speculated that the f1 ori was previously employed in eukaryotic expression 

vectors to introduce mutations into genes on the plasmid when induced with the 

appropriate phage (José Penades, personal communication). To activate the f1 

ori, it must first be nicked by an endonuclease, Gp2 protein of the filamentous 

phage which recognizes a consensus sequence in the origin sequence and cleaves 

a single strand to allow the initiation of ssDNA packaging by the phage 

(Higashitani et al., 1992). The presence of the f1 ori may lead to the generation 

of ssDNA by the Gp2 protein associated with the filamentous phage elements in 
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S. Typhimurium, or some other mechanism. The production of ssDNA is sufficient 

to activate the SOS stress response. This stress response involved the cleavage of 

the LexA repressor, which then allows for the SOS transcriptional programme to 

be activated (Little, 1984). The culmination of this transcriptional programme is 

the SulA-mediated arrest of FtsZ oligomerisation, the protein responsible for 

daughter cell septation during replication (Trusca et al., 1998). Septational 

arrest subsequently results in filamentation, with nuclear staining clearly 

depicting multiple nuclei along a single filamentous bacterium, as seen in the 

present study. 

 

However, to definitively appoint the f1 ori as feature inducing filamentation, it 

is necessary to clone the f1 ori into another plasmid backbone which does not 

induce filamentation in S. Typhimurium, such as pACYC184. The ability of this 

plasmid to induce filamentation in transformed S. Typhimurium would provide 

definitive that it is indeed the f1 ori which is responsible for the filamentous 

phenotype. 

 

6.3.6  Concluding remarks 

The data presented herein provides evidence for the f1 ori inducing a 

filamentous phenotype in pEGFP-transformed S. Typhimurium cultures. The 

model we propose is one in which the f1 ori of the pEGFP plasmid induces ssDNA 

production in the cell, activating the SOS response and inducing filamentation. 

The induction of filamentation attenuates invasion and intracellular replication, 

which we believe affects the bactofection capacity of S. Typhimurium.  

These findings are relevant as the f1 ori is present in commonly employed 

plasmids such as pcDNA3.1 and pBluescript. This information is important for 

researchers employing these plasmids in studies involving S. Typhimurium as the 

filamentation may confound the experimental readout. This is particularly 

pertinent given the decreased growth and invasion characteristics exhibited by 

the pEGFP-transformed cultures, and the variation between cultures. However, 

the effects of the f1 ori on other bacterial species, Escherichia coli excepted, 

and how it might affect experimental readouts is still unknown and requires 

further investigation. Therefore, those coupling f1 ori-containing plasmids to S. 
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Typhimurium for the purposes of scientific investigation should exhibit extreme 

caution. 



Chapter 7 Conclusions and future perspectives 

 

7 Conclusions and future perspectives 

The outstanding aim of this thesis was t to examine changes in the tumour 

immune environment following infection, with a particular interest in the 

contribution of the monocyte/macrophage compartment to mediating bacterial-

mediated tumour growth inhibition.  

The tumour model that was developed, the B16F10 melanoma model, was found 

to be highly reproducible and time-efficient, so was considered suitable to 

investigate changes in the tumour milieu following infection. However, it is 

critical to bear in mind the TH1 response-bias of this mouse strain (Mills et al., 

2000; Santos et al., 2006) before generating definitive conclusions on any 

aspects of the changes in immune cell repertoire and function. In order to 

definitively ascertain the contribution of a given immune cell type to S. 

Typhimurium-induced tumour growth inhibition, it would be important to repeat 

these experiments in a different mouse strain, such as BALB/c. However, such a 

line of enquiry would not address the outstanding limitation of transplantable 

tumour models which is the absence of tumour cell selection through early 

tumour development, resulting in clonogenic cells making up the tumour mass 

(Zitvogel et al., 2016). Therefore, it would be optimal to repeat these studies in 

a spontaneous tumour model, which although time-consuming and expensive, 

provides a more human-like tumour environment than transplantable models. 

However, in the present study, we were primarily interested in the change in 

tumour immune-phenotype following infection, so the transplantable tumour 

model sufficed.   

It was hypothesised that there would be change in the tumour immune cell 

composition and phenotype following infection. Evidence in favour of this 

hypothesis comes from the fact that there were increased levels of multiple pro-

inflammatory cytokines, IFN-γ, TNF-α, IL-6, and IL-12p40 in the tumour following 

infection. These cytokines are associated with a non-permissive environment to 

tumourigenesis (Bromberg et al., 1996; Burke et al., 1999; Wall et al., 2003). 

Neutrophils, monocytes and T cells were, in part, responsible for the production 

of these cytokines and possibly DCs, although the latter was not investigated in 

detail. It was very interesting that there was not a mass influx of immune cells 

into the tumour following S. Typhimurium infection as is seen in the mucosa 
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(Barthel et al., 2003; Rydström & Wick, 2009) and spleen (Johansson et al., 

2006). Therefore, one might conclude that the pro-inflammatory environment 

was achieved without a notable leukocyte influx, providing evidence for the 

tumour-resident immune cells being sufficient to propagate this phenotype. 

There are many caveats to this conclusion though: macrophages undergo 

pyroptosis following S. Typhimurium infection (Monack et al., 1996), so the 

degree of cell death might just equal the degree of infiltration masking the true 

dynamics of leukocyte influx into the tumour following infection. Furthermore, 

looking at the flow cytometry plots alone, there is obvious recruitment of 

monocytes to the tumour, in spite of the fact that this is not reflected in the 

absolute number of Ly6C+MHCII+ monocytes in the infected tumour compared to 

uninfected. The most likely explanation for this is the size difference between 

the large uninfected tumour and the much smaller infected tumours. This would 

mean there was a greater density of Ly6C+MHCII+ monocytes in the tumour in the 

infected compared to the uninfected samples, which may be an important 

factor. Another piece of evidence which might suggest leukocyte recruitment is 

the fact that all of the myeloid cell types investigated exhibited increased 

expression of Ki67, a marker for replication, which might be reflective of 

inflammation-induced myeloid progenitor growth in the bone marrow or spleen, 

as opposed to tissue-resident proliferation (Ueda et al., 2009; Zhang et al., 

2010).  

This study also focused on the T cell repertoire in the tumour following 

infection. There was an increase in the frequency of TH1 cells and CTLs 

corresponding to bacterial-mediated tumour growth inhibition, but it was 

exciting to see changes in the frequency of TH17 and Treg cells. To our 

knowledge, this is the first report to suggest a link between bacterial-mediated 

cancer therapy and TH17 or Treg cells. TH17 cells are particularly adept at 

mediating tumour immunity in melanomas (Martin-Orozco et al., 2010; Muranski 

et al., 2008), so we would be interested to investigate the contribution of TH17 

cells to bacterial-mediated tumour growth inhibition, through the antibody 

blockage of IL-17. We would also like to investigate the possibility that Tregs are 

induced to adopt a TH17-phenotype. This would involve the adoptive transfer of 

CD4+FoxP3+/gfp Tregs into tumour-bearing mice prior to systemic S. Typhimurium 

infection and subsequent phenotypic analysis of the CD4+GFP+ cells from infected 
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tumours. This line of inquiry could reveal a role for Treg-TH17 cells in mediating 

the anti-tumour effects of S. Typhimurium. This would be important, as IL-17 is 

associated with tumour-promoting activities in certain cancer types, such as 

lymphoma and gastric cancers (He et al., 2011; Liu et al., 2011). Therefore 

these cancer types might not be suitable for the application of S. Typhimurium 

as a cancer therapy. 

At the outset of this study, we were particularly interested in the phenotypic 

changes afforded by the resident TAMs in response to S. Typhimurium infection. 

However, in this study, we report that the only differences in the TAM functional 

phenotype following infection were an up-regulation of MHCII within the entire 

TAM population and an increased phagocytic capacity of MHCII+ TAMs. Of note, 

there were no statistically significant changes in the cytokine production 

following infection, which we hypothesised would be a reliable readout to assess 

changes in the functional phenotype of these cells (Bain et al., 2013; Yrlid et 

al., 2000). Of course, it is possible that there were other changes in the TAM 

populations following infection that our study did not investigate, so it is remiss 

to suggest that the TAMs do not change in phenotype following infection.  

In contrast, the tumour monocyte population was highly responsive to systemic 

S. Typhimurium infection. The Ly6C+MHCII- monocytes increased the expression 

of many inflammatory mediators. To our knowledge, this is the first report to 

specifically indicate a role for monocytes in playing a role in bacterial-mediated 

tumour growth inhibition. The reason for this is most likely due to the fact that 

many studies do not differentiate monocytes and designate all F4/80 cells as 

‘TAMs’ (Lee et al., 2011, 2008; Zheng et al., 2017b), which is reductionist given 

the emerging roles of monocytes in multiple physiological settings, particularly 

inflammation (Bain et al., 2013; Jakubzick et al., 2017). We hypothesised that 

these monocytes were mediating the anti-tumoural effects of SL7207. We tried 

to test this hypothesis through the use of Ccr2-/- mice, but these were 

insufficient to reduce monocyte infiltration into the tumour following infection. 

However, the employment of clodronate liposomes (Clod Lipo), which can 

reduce the monocyte and macrophage tumour content (Gazzaniga et al., 2007; 

Griesmann et al., 2016), resulted in an abrogation in the anti-tumour effects of 

SL7207. Upon investigation of the tumour monocyte/macrophage compartment 
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following infection, it was clear that Clod Lipo treatment, similar to the Ccr2-/- 

mice, was an insufficient experimental approach to deplete tumour monocytes 

and macrophages following infection. It was, however, of great interest that the 

spleens of the infected Clod Lipo-treated mice were much smaller than the 

infected PBS Lipo mice. This finding was made subsequent to the discovery that 

there was no significant change in the number of tumour-associated monocytes 

and macrophages between infected PBS Lipo and Clod Lipo tumours, and there 

was insufficient time to carry out further experiments to investigate this 

outcome. Splenic monocytic cells are an important site for pro-inflammatory 

cytokine production following infection (Serbina et al., 2003; Serbina & Pamer, 

2006), and splenic monocytes can be directed to tumour mass (Cortez-Retamozo 

et al., 2012). Whether these monocytes are bone-marrow derived or propagated 

exclusively from splenic progenitors is unclear.  

This information contributes to the formation of our current hypothesis: the pro-

inflammatory splenic monocytes from infected tumour-bearing mice are 

responsible for driving the anti-tumour effects of S. Typhimurium. We propose 

that the abrogation of tumour growth inhibition following SL7207 infection 

following Clod Lipo administration was due to the absence of splenic-derived 

pro-inflammatory monocytes (Figure 7.1). Evidence in favour of this hypothesis 

from this study comes from the protective effects of Clod Lipo treatment on the 

body weight of the mice, which were likely lacking systemic TNF-α due to the 

(presumed) abrogation of splenic monocytes. Current efforts in the group are 

focused on testing this hypothesis. This will involve the characterisation of the 

splenic monocyte pool in tumour-bearing mice, both infected and uninfected as 

well as following treatment with either PBS Lipo and Clod Lipo. The 

identification of pro-inflammatory monocytes in the infected spleens, but not in 

the uninfected or infected Clod Lipo spleen would provide evidence in favour of 

the current hypothesis. It would have been highly informative to administer the 

bacteria intra-tumourally, as this would largely reduce the systemic response, 

and allowed us to examine the role tumour-specific colonisation plays in the 

anti-tumour effects of the bacteria in isolation from the systemic immune 

response. It would also be informative to perform splenectomies on tumour-

bearing mice, and assess the subsequent tumour response to systemic S. 

Typhimurium infection. Finally, it would be pertinent to perform adoptive 
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transfer experiments with splenic monocytes isolated from infected and 

uninfected tumour-bearing mice to untreated tumour-bearing mice to assess the 

changes in tumour growth dynamics in the latter. Throughout these 

experiments, it would also be informative to investigate the functional 

phenotype of the monocytes recruited to the tumour, as the absence of pro-

inflammatory monocytes from infected tumour from Clod Lipo-treated and 

splenectomised mice would provide evidence in favour of pro-inflammatory 

monocytes of splenic origin contributing to bacterial-mediated tumour growth 

inhibition. These findings would provide evidence for the mechanism to describe 

how systemically administered bacteria can mediate anti-tumour effects, and as 

such would inform future studies, both in this lab group and others.  

 

Figure 7.1 Proposed mechanism for Clod Lipo abrogating SL7207 tumour growth inhibition 
In steady state, tumour associated macrophages (TAMs) are derived from both splenic and bone 
marrow (BM) monocytes. Following systemic SL7207 infection, there is an expansion of pro-
inflammatory monocytes in the spleen, which are subsequently recruited to the tumour and mediate 
tumour growth inhibition. Following Clod Lipo treatment, these cells are depleted and tumour 
growth is unaffected by SL7207. 

A final line of investigation from this report was to enhance the anti-tumour 

effects of SL7207 by bactofection. Although we were unable to recapitulate 
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bactofection as reported in the literature (Berger et al., 2013; Byrne et al., 

2014; Michael et al., 2004), we believe that we identified a feature of 

eukaryotic expression vectors, the f1 ori, which might be antagonising the 

bactofection potential of S. Typhimurium strains. This information is important 

to bear in mind when designing bactofection studies, as coupling S. Typhimurium 

f1 ori-containing plasmids would induce filamentation undermining the invasion 

and probably bactofection of the bacteria. 
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9 Appendix 

 

Figure 9.1 Long term SL7207 infection in tumour-bearing mice 

Tumour-bearing mice were infected with SL7207 or PBS, and tumour size and body weights were 
measured over time. A. Tumour size of infected and uninfected mice as measured by Vernier 
calipers. B. Weight of mice expressed as a percentage of weight at Day 0 of infection. Purple 
arrows indicate time point at which SL7207 was administered. Green arrows indicate time point 
from which tumour size (top, 20 days post tumour cell inoculation, 11 dpi) and body weight (bottom, 
12 dpi) started to increase. 
 

 

Figure 9.2 Effects of SL7207 infection on size of tdLN 
Tumour-bearing mice were infected with SL7207 or PBS, and tdLNs were harvested 5 dpi for flow 
cytometry analysis of cell populations. Absolute cell number recovered from infected and 
uninfected tdLNs. Error bars SEM. Statistical analysis performed using Student’s t test where p < 
0.05*. 
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Figure 9.3 Contribution of blood-borne monocyte/macrophages to total 
monocyte/macrophage population in tumour preparation 
Tumour-bearing mice were infected with SL7207. At 7 dpi, mice were intravenously injected with 6 
µg α-CD45 FITC to assess the contribution of blood-borne cells to the populations designated as 
tumour resident cells. A. Representative flow cytometry plot with total monocyte/macrophage cells 
(grey) overlayed with CD45FITC+ monocyte/macrophages. Cells were gated on single, live, CD45+, 
CD11b+, SiglecF-, F4/80+, Ly6G-. B. Data shown as the percentage of blood borne cells of total 
cells in a given population.  
 

 

Figure 9.4 CD11c expression in the Ly6C+MHCII+ monocyte population following SL7207 
infection 
Tumour-bearing mice were infected with SL7207 or PBS, and tumours were harvested at 7 dpi for 
flow cytometry analysis of immune cell populations. A. Representative flow cytometry plots 
showing the CD11c expression on Ly6C+MHCII+ monocytes. Cells were gated on single, live, 
CD45+, CD11b+, SiglecF-, F4/80+, Ly6G-, Ly6C+, MHCII+. B. Data shown as CD11c+ cells as a 
percentage of total Ly6C+MHCII+ monocytes. Error bars SEM. Statistical analysis performed using 
Student’s t test where p < 0.05*. 
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Figure 9.5 Effects of Clod Lipo on spleens from infected tumour-bearing mice 
Tumour-bearing mice, intravenously injected with either PBS Lipo or Clod Lipo were also infected 
with SL7207. At 7 dpi, spleens were harvested. A. Representative images of tumours at 7 dpi 
following either PBS Lipo or Clod Lipo treatment. Scale bars 1 cm. B. Weights of spleens 
recovered from infected PBS Lipo and Clod Lipo-treated mice. Error bars SEM. Statistical analysis 
performed using Student’s t test where p < 0.05*, p < 0.01**, p < 0.001***, p < 0.0001****. 
 




