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Abstract 

Organic soils play an important role in the fluvial carbon cycle through production and 

export of dissolved organic carbon (DOC) from the breakdown of plant material. However 

little is known about the changes in organic soil-derived fluvial DOC composition and its 

potential impacts on in-stream DOC breakdown dynamics. This research explores how 

aquatic DOC composition is influenced by land use, and how the biological utilisation of 

DOC may be influenced by its composition. Specifically, this research focusses on peat-

rich catchments, subject to disturbance for wind farm construction to: 

1. explore for how long the disturbance from wind farm development affects water 

chemistry in peaty catchments through analysing the long-term trends in fluvial DOC and 

nutrient concentrations in the draining streams; 

2. assess if different wind farm-associated land uses, (construction and deforestation), 

exert different influences on fluvial DOC quantity and composition in peatland 

catchments; 

3. investigate relationships between total dissolved iron (Fe) concentration [Fe] and 

concentrations of DOC and nutrients (phosphorus and nitrate), as this interaction may 

ultimately shape the DOC biodegradability during fluvial transport.  

4. quantify how much DOC is biodegraded in peatland streams and what controls this. 

To examine the wind farm disturbance on fluvial DOC concentration, [DOC], and 

spectrophotometric composition, streamwater samples from five peatland catchments 

draining the south of the Whitelee wind farm in Scotland were analysed monthly from 

2014 to 2016. To further understand the impacts of wind farm-associated land uses, 

spatial and temporal variation of DOC concentration and composition were assessed 

between sub-catchments D-WF and D-FF within a small catchment, Drumtee. D-WF was 

draining the wind farm construction areas and D-FF draining the felled forestry. The 

concentrations of soluble reactive phosphorus, [SRP], and total oxidised nitrogen, [TON], 

were also measured. 

Using existing and data new to this study, a long-term [DOC] increase (2006 - 2016) was 

observed in the Whitelee catchments since the start of wind farm development (October 

2006, with the associated felling activities starting in November 2006). The increase may 

be a result of wind farm long-term disturbance, by generating more DOC which could be 

exported when discharge increases. Immediate impacts from wind farm were observed, 

with [DOC] and [SRP] increasing quickly after the construction began at the catchments 

most affected by the original wind farm development and its extension. Within Drumtee 

catchment (WL13), greater mean [DOC] was observed in D-FF than D-WF. This may suggest 
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that wind farm-related deforestation led to more peat decomposition and greater DOC 

release than the construction activities. 

DOC is dominated by humic substances (HS), which generally can be further divided into 

humic acids (HAs) and fulvic acids (FAs). In WL13, DOC was less aromatic and humic than 

the other Whitelee catchments, with smaller SUVA410 (an indicator for more-complex 

aromatic C) and larger E2/E4 (an indicator for proportion of humic substances) (p < 0.05 

for both parameters). This could be a result of shorter water retention time and smaller 

[TON] in WL13 leading to less DOC biodegradation. Moreover, within-catchment 

difference of DOC composition was observed in WL13, with smaller SUVA410 and larger 

E2/E4 indicating less DOC humification in the felled catchment (p < 0.05 for both 

parameters). This is interpreted related to different land use effects, as ‘younger’ DOC 

was produced from the decomposition of residual forest branch and leaves in the felled 

area, or ‘older’ DOC was released from the deeper peat in the wind farm areas. In addition, 

DOC in the two sub-catchments showed inverse changes during the dry periods, and one 

possible reason could be the different DOC sources from soil with low flow due to land 

use differences. 

Total dissolved [Fe] measured in the fluvial samples allowed analysis of the interaction 

between dissolved Fe and DOC, and nutrients in fluvial systems. A positive significant 

relationship was found between dissolved [Fe] and [DOC], supporting interpretation that 

humic substances (HS) maintain Fe3+ in soluble state during transport. Fe-DOC 

complexation may be particularly facilitated by fulvic acids (FAs) than humic acids (HAs), 

supported by the relationships between Fe/DOC (Fe and C-DOC molar ratio) and E2/E4, 

and E4/E6 (FAs:HAs). 

However, high [Fe] and occurrence of Fe oxides may limit DOC export by co-precipitation. 

This interaction is important as it may limit DOC export, impact terrestrial DOC 

characteristics and thus aquatic bioavailability. In addition, Fe-DOC complexation may 

increase P export and the Fe2+-Fe3+ oxidation mediate TON reduction. 

The in-stream breakdown dynamics of compositionally-different DOC were considered 

through incubations with water samples from Drumtee tributaries in autumn and early 

winter of 2015, and late winter and summer of 2016. Although [DOC] was higher in 

Drumtee than many other aquatic systems, only 2.9 – 12.1 % of the total DOC was 

biodegradable during 21 days. However, when normalized by the incubation length 

breakdown rates were comparable to other studies. A general seasonal variation of 

biodegradable DOC (BDOC) was observed across the sites, with more lost in late winter 
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and summer and less in autumn and early winter. Spatially, in autumn and early winter 

similar BDOC % loss was observed across sites, while in late winter and summer larger 

BDOC % removal was found in D-WF1 and WL13.  

Weekly measurement of DOC composition and nutrient concentrations during the 

incubation revealed the dynamic process of DOC biodegradation. Protein-like 

fluorescence component C6 and TON changed actively with BDOC removal, suggesting C6 

may be an important BDOC pool, and TON may provide substrate for the labile DOM to 

form. Initial DOC composition (SUVAs and C6) and nutrient availability seem important 

controls on BDOC loss. SUVAs showed negative correlations with BDOC which may because 

SUVAs represented the humic and refractory DOC pools. C6 and nutrients were all 

positively related to BDOC loss, and is likely due to their support for DOC consumption in 

different ways. The relationships help to understand the observed seasonal and spatial 

variation of Drumtee BDOC loss. The inter-stream difference of DOC composition may 

reflect the influence of wind farm-associated land use differences on in-stream DOC 

reprocessing and fate.  

The understanding generated by this research advances knowledge of connecting the 

terrestrial and fluvial C cycle subject to land use changes. It reveals that wind farm 

development may have caused [DOC] increase. Particularly, deforestation can lead to 

larger fluvial [DOC] but with less refractory fractions than construction activities. DOC 

concentrations and composition can vary over space and time and in response to land use, 

and in turn this ‘inherited’ composition can influence the fate of DOC in aquatic systems.  
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1  Introduction 

1.1 Thesis aims 

The concentration of terrestrial-derived dissolved organic carbon (DOC) has been steadily 

increasing in many catchment drainage systems in Europe and North America (e.g., 

Lapierre et al., 2013; Larsen et al., 2011; Monteith et al., 2007). Land use is recognised 

to influence carbon’s functioning in freshwater biogeochemical cycles (Noacco et al., 

2017; Williams et al., 2010; Worrall et al., 2012), but the focus has generally been on 

DOC concentration and not composition, despite the links between DOC composition and 

degradation processes (Hosen et al., 2014; Kalbitz et al., 2003a). Fewer studies have 

explored how DOC quality changes over time and spatially, and if the increased aquatic 

DOC exported is resistant to in-stream degradation processes, or labile and used easily. 

A recent land use change important in the UK is the use of carbon-rich soils, peatlands, 

for wind farm renewable energy generation (Smith, 2016). How the amount of C exported 

from these sites in catchment drainage changes in response to the disturbance associated 

with development is still not well understood, and the composition of that C has rarely 

been considered.  

Surface waters integrate extrinsic and intrinsic factors (such as DOC sources and quality, 

land use, nutrient and key element availability) which can affect DOC properties, and 

play a potentially important role in the global carbon cycle (Cole et al., 2007; Wollheim 

et al., 2015). The fate of DOC in aquatic systems is still poorly constrained, although there 

is an increasing recognition that some terrestrial DOC can be quite bio-reactive (e.g. 

McCallister and del Giorgio, 2012). Exploring this further, particularly in peatland 

drainage systems - globally important terrestrial C reservoirs that export C to drainage 

systems - is needed to improve knowledge of how much DOC exported may reach the 

oceans, and so refine models of global carbon budgets.    

Considering DOC export dynamics is not just important for understanding its fate and the 

wider C cycle. The C cycle interacts with other biogeochemical cycles, some well-known, 

such as nitrogen and phosphorus (Coble et al., 2016; Oviedo-Vargas et al., 2013; van 

Groenigen et al., 2006), and others of growing interest. For example, recently it has been 

observed that iron (Fe) concentration increased with increasing DOC concentration ([DOC]) 

in some boreal freshwaters (Knorr, 2013; Oni et al., 2013), and in turn Fe may impact on 

carbon and nutrient mobility and biodegradability (Emsens et al., 2016; Xiao et al., 2016). 

Humic substances (HS) are an important pool quantitatively in dissolved organic matter 

(DOM), and are strong chelate ligands for Fe binding (Krachler et al., 2010). The analysis 
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of Fe-DOC interaction (e.g. complexation and co-precipitation) in response to different 

DOC composition, could improve understanding of the quantity of DOC export.    

The over-arching aim of this PhD is to fill some of the gaps in our understanding identified 

above, of the importance of dissolved organic carbon composition in the fluvial C cycle. 

This aim has two major components:  

1. To understand if land use imparts a control of fluvial DOC and if so whether this is 

maintained over time. Specifically, this research focuses on catchments draining wind 

farm constructed areas as there is little understanding of this new land use. 

2. To understand how that DOC may be biologically degraded with the river system, and 

if land use-induced composition is a control on these breakdown dynamics.  

Specific research objectives in the PhD aligned with these components were to: 

1. Explore how long disturbance by wind farm development affects water chemistry in 

peaty catchments, by analysing the long-term trends in fluvial DOC and nutrient 

concentrations in streams draining the wind farm. 

2. Assess if different wind farm-associated land uses, that is wind farm construction and 

deforestation, are another control on spatial variation of fluvial DOC quantity, and 

importantly, DOC composition. 

3. Investigate relationships between total dissolved Fe concentration and concentrations 

of DOC and nutrients (phosphorus and nitrate), as this interaction may ultimately shape 

the DOC biodegradability during fluvial transport.   

4. Quantify how much DOC is biodegraded in peatland streams and what controls this. 

To address these aims, it is crucial to first understand the significance of this area of 

research and general knowledge about DOC chemical composition. Thus in this chapter, 

an overview will be given of the key components of important aspects of DOC production 

and export relevant to the PhD research, variation of DOC composition and the methods 

to characterise it. The detailed literature for each aspect of research will be further 

introduced within the relevant chapter. 
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1.2 The significance of dissolved organic carbon to 
global carbon cycling and aquatic ecosystems 

Dissolved organic matter is a central component of biogeochemical cycles and one of the 

largest sources of biological available organic carbon (Battin et al., 2009; Evans et al., 

2005). Dissolved organic carbon (DOC) is a dominant fraction of DOM, which is generated 

from the partial decomposition and subsequent leaching of living organisms including 

plants, animals and soil microbes (Evans et al., 2005). Being a major form of terrestrial 

organic carbon transported by river systems (Wollheim et al., 2015), therefore there are 

two main sources of aquatic DOC: (1) allochthonous terrigenous origin transported 

laterally from land (Fig. 1-1), with the export rate determined by production and sorption 

rate as well the availability of water pathways through the landscape (Ledesma et al., 

2015; Roulet and Moore, 2006); (2) autochthonous substances resulting from biological 

activities within the water body such as the breakdown of bacteria, algae and/or higher 

plants (Frimmel, 2005; Kowalczuk et al., 2009). These two aquatic DOC sources differ in 

properties such as spectrofluoremetric characteristics (Mcknight et al., 2001) and 

bioavailability to in-stream microbial communities (Graeber et al., 2012).  

 

Fig. 1-1. Pathways for DOC transport through landscape (Roulet and Moore, 2006).  

DOC is the most important intermediate in global carbon cycling, with the flux of 

terrestrial DOC (an estimate of 0.17 – 0.25 Pg C yr-1 from the major world rivers, Cai, 

2011; Cauwet, 2002; Dai et al., 2012) being the largest transfer of reduced carbon from 

land to aquatic and ultimately marine ecosystems (Battin et al., 2009; Bauer et al., 2013; 

Roulet and Moore, 2006). Aquatic DOC can influence the functioning of freshwater 
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ecosystems in several ways. With a direct effect on availability and spectral quality of 

light in the water column, DOC largely determines optical properties of natural waters 

(Kowalczuk et al., 2009). By attenuating UV light, DOC shields in-stream organisms from 

harmful UV light (Schindler et al., 1997). The mediated changes in light regime further 

initiates photoreactions, which are suggested to control primary production and related 

trophic processes (Hansson et al., 2012; Karlsson et al., 2009). DOC is also linked with 

trace metal transport through complexation reactions in aquatic systems and then 

releasing metals to the marine environment during DOC remineralization (Kowalczuk et 

al., 2009; Lawlor and Tipping, 2003; Nierop et al., 2002). In addition, DOC also provides 

essential energy and nutrients for microbial and plant community (Wetzel, 1992), and 

contributes measurably to surface water acidification (Eshleman and Hemond, 1985).  

1.3 The increasing trend of aquatic [DOC]  

Compared to the magnitude of soil carbon loss in gaseous form e.g. carbon dioxide (CO2) 

or methane (CH4), terrestrial DOC delivery to surface waters is small, and thus was 

generally neglected (Billett et al., 2006). However, in recent decades it has been 

observed that [DOC] in surface waters has increased in much of northern and central 

Europe and eastern North America, with the most frequently significant increasing trends 

(> 0.15 mg l-1 yr-1) observed in the Southern Nordic region and the UK (Monteith et al., 

2007). But it is noted that not all waters showed the [DOC] increase. For example, 

significant annual [DOC] decreases were also observed in Sweden and Finland (dark blue 

dots in Fig. 1-2). 

 

Fig. 1-2. Annual trends in DOC concentration (mg l-1 yr-1) on acid-sensitive landscape in 
Europe during 1990 – 2004 (Monteith et al., 2007).  
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In UK, of 198 stream and lake monitoring sites with varying record lengths as far back as 

1961, the average annual [DOC] increase was observed to be 0.17 mg l-1 yr-1 (Worrall et 

al., 2004). Further, an average 91 % increase was observed for [DOC] measured from lakes 

and streams in the Acid Waters Monitoring Network of the UK over the period 1988-2003 

(Evans et al., 2006). This observation has since been updated for between 1988 – 2008, 

and significant increasing trends for [DOC] are still observed for most of the sites 

(Monteith et al., 2014). In 2002, a DOC flux from the UK of 0.86 Mt C was suggested, 

increasing at 0.02 Mt C yr-1 (Worrall et al., 2004). Between 2001 and 2007 an increased 

annual DOC flux of 0.91 Mt was estimated for 194 British catchments (Worrall et al., 2012).   

Several hypotheses have been suggested to explain this widespread increase, including 1) 

rising temperatures as a result of global warming, increases the export of DOC from 

peatlands by stimulating more microbe-related DOC production (Freeman et al., 2001); 

2) increased precipitation and river discharge, which are typical of the northern 

hemisphere where more peat carbon globally exists, leads to shorter water retention time 

and thus less in-lake DOC removal processes (dominated by photochemical and microbial 

decomposition) (Tranvik and Jansson, 2002); 3) elevated atmospheric CO2 concentrations 

stimulates more primary production and DOC exudation from plants, so increasing the soil 

carbon pool size (Freeman et al., 2004); 4) reduced acid deposition no longer suppresses 

DOC production (Monteith et al., 2007), but supports increased DOC mobility and thus 

export (Clark et al., 2005). In addition an enzymatic ‘latch’ is proposed to be triggered 

by lowered water table and increased peat aeration during drier periods, which may 

release more DOC (Freeman et al., 2001). Further, this ‘enzymatic latch’ effect may be 

accentuated by local factors such as land use. Indeed, land use such as peat drainage 

(Worrall et al., 2003), agriculture (Graeber et al., 2012; Shang et al., 2018) and 

deforestation (Gandois et al., 2013)  have been observed to increase [DOC] in draining 

waters and alter DOC export, possibly via soil erosion and decomposition, reduced soil 

organic matter retention and increased nutrient inputs. Heather burning is another 

common land use management on upland peatlands which can also increase the local 

fluvial [DOC]. This is suggested to be caused by increasing aerobic microbial activity in 

the exposed bare peat surface after burning (Yallop et al., 2010; Yallop and Clutterbuck, 

2009). The increase in fluvial [DOC] highlights the importance of understanding the 

transfer of carbon between soil and fluvial systems, and the impacts of climatic and 

anthropogenic changes. 

Yet agreement has not been universally accepted for the key driver of long-term [DOC] 

increase. However, it is also suggested that data behind these hypotheses can support 

each other in some way, and concluded that acid deposition may contribute to the 
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apparent [DOC] difference between those studies, while climate factors are more related 

to the seasonality (Clark et al., 2010). The impacts of sulfate deposition were further 

tested more recently, both in the long-term-monitored acid-sensitive surface waters and 

soil waters in UK (Monteith et al., 2014; Sawicka et al., 2016). It was concluded that the 

recovery in acidified surface water and enhanced DOC mobilization in surficial organic 

soil due to reductions in atmospheric sulfate deposition were the major reason leading to 

[DOC] increase. 

1.4 Peatlands as important source for DOC and peatland 
degradation 

Peatlands are a significant form of wetland with an organic soil layer greater than 30 cm, 

and may extend to 15 – 20 m depth, although the estimated mean peat depth in northern 

peatlands is between 1.3 – 2.3 m (Turunen et al. 2002). Peatlands are sensitive systems 

requiring specific climate conditions, and poor drainage to grow, develop and stabilise. 

Peatlands cover approximately 3 % of the Earth’s land surface, 80 % of which are in the 

northern hemisphere, especially in America, Canada, Northern Europe and Russia, and 

were typically formed at 10 ka BP (10000 years ago) (Limpens et al., 2008; Yu et al., 

2010).  

 

Fig. 1-3. Global peatland regions with basal peat ages where available. Large open triangles 
represent sites where detailed carbon accumulation rates were measured (Yu et al., 2010). 

Peatlands are a vast store of terrestrial carbon, holding approximately 612 Gt soil carbon 

stock (approximately 40 % of global soil organic carbon) (Bridgham et al., 2006; 

Scharlemann et al., 2014; Yu, 2011). Among the major peatland regions, northern 



  Chapter 1 

7 
 

peatlands are the best studied region by far. It is estimated that northern peatlands have 

accumulated 270 – 547 Gt peat carbon (Gorham, 1991; Turunen et al., 2002; Yu et al., 

2010), representing about 90 % of the total peatland carbon pool and 30 % of the world’s 

soil carbon stock (Gorham, 1991; Pastor et al., 2003; Yu, 2011). The estimates of C stored 

in tropical peatlands range from 50 – 70 Gt (Page et al., 2004; Yu et al., 2010). In the UK, 

an estimated 5.1 Gt carbon is stored in peatlands, of which the majority is in Scotland 

(4.5 Gt carbon) (Ostle et al., 2009; Smith et al., 2007). Peatlands also undertake 

significant gaseous carbon exchange with the atmosphere (Frolking and Roulet, 2007; 

Korhola et al., 2010; Roulet et al., 2007; Yu, 2011), and are a principal DOC source to the 

fluvial environment (Worrall et al. 2006; Roulet et al., 2007). Mean annual DOC export in 

local catchment-scale was estimated to range from about 7 to 60 g m−2 yr−1 in the northern 

peatlands, e.g. Norway(de Wit et al., 2016) Sweden (Leach et al., 2016; Ledesma et al., 

2015), Ireland (Koehler et al., 2011), Canada (Roulet et al., 2007) and UK (Dinsmore et 

al., 2010; Evans and Maria, 2016; Niekerk, 2012).  

During the last several decades, anthropogenic activities have caused peatland 

degradation through drainage, burning, and peat extraction for afforestation or to 

improve agricultural productivity (Clay et al., 2009; Holden et al., 2004; Peacock et al., 

2013). Among these, artificial drainage is a significant threat to peatland sustainability 

(Wallage et al., 2006). In the UK, during the middle of 20th Century, around 0.5 million 

ha of peatlands were drained artificially and extensively for afforestation in response to 

government grants (Hargreaves et al., 2003; Wilson et al., 2011), and now great concern 

has arisen about the drainage compromising peatland functioning (Lamers et al., 2015). 

In recent years, an anthropogenic land use prevalent for the British peatlands (especially 

in Scotland) is the hosting of renewable energy developments in the form of commercial 

onshore wind farm (Scottish Natural Heritage, 2013). The potential impacts of such land 

use change on DOC quality in the drainage water is one of research aims in this PhD 

project. Wind farm construction and operation is associated with deforestation and road 

building. During construction, carbon can be lost from peat excavation (required for 

borrow pits, access tracks and turbine foundations), and from tree biomass due to 

deforestation (to ensure yield of wind energy) (Drew et al., 2013; Ostle et al., 2009). 

Further, preliminary research shows establishment of wind farm turbines can lead to 

losses of terrestrial carbon and nutrients, influencing water biogeochemistry and the 

ecology of the receiving streams (Grieve and Gilvear, 2008; Millidine et al., 2015; Waldron 

et al., 2009).  

Peatlands act as a carbon sink due to the greater rate of biomass production than 

decomposition (Turunen et al., 2002). However, with these growing concerns about 
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peatland damage, and the observations of increasing [DOC] in rivers draining peatlands 

(Evans et al., 2002; Freeman et al., 2001), there is concern that the large amount of 

stored carbon is beginning to destabilize (Freeman et al., 2004; Koehler et al., 2011), 

with the peatlands susceptible to changing release of carbon to atmosphere or aquatic 

systems, further compounded by response to global warming (Limpens et al., 2008; Wu 

and Roulet, 2014). Indeed, totally about 30 – 50 % of the peatland annual net carbon 

accumulation has been found to be lost through runoff (Koehler et al., 2011; Leach et al., 

2016; Nilsson et al., 2008; Olefeldt et al., 2012).  

Consequently, corresponding peatland restoration activities have been carried out to 

preserve and re-establish peatland functions and ecosystems with some positive 

feedbacks (Lamers et al., 2015). For example, drain-blocking is a commonly-used 

peatland restoration action, suggested to reduce peat erosion, water colour and aquatic 

organic carbon flux (Armstrong et al., 2010; Wallage et al., 2006; Wilson et al., 2011). In 

the UK afforestation on land with peat over one metre deep has now been discouraged 

by the government (Holden et al., 2004).   

1.5 The fate of DOC within river systems 

While the magnitude and regulation of the increased terrestrial-derived [DOC] in inland 

waters has been the focus of research (e.g. Couture et al., 2012; Erlandsson et al., 2008; 

Noacco et al., 2017), the fate of such increased carbon input within river systems and 

potential implications for the aquatic ecology and carbon budgets has been insufficiently 

understood. Annually the worldwide river networks receive about 3 Pg of total carbon 

from lands (Tranvik et al., 2009), however, little terrestrial organic carbon is found in the 

global ocean (Bianchi, 2011), with about two thirds of land-derived carbon loss during the 

transport to oceans (Tranvik et al., 2009). River and stream ecosystems are considered 

to re-process and recycle aquatic carbon to the atmosphere as CO2 (an estimate of 1.4 Pg 

yr-1) and CH4 (0.65 Pg yr-1) (Bastviken et al., 2011; Battin et al., 2009). The loss of organic 

carbon during this passage is significant in order to better constrain carbon loss as DOC 

and gaseous carbon, a critical component of the global carbon cycle (Catalán et al., 2016; 

F Worrall et al., 2006). Therefore it is crucial to understand the stream ecosystem 

metabolism, which integrates production and respiration of organic matter (Fuß et al., 

2017).  

When terrestrial DOC is mobilized into fluvial systems, the lack of in-soil constraints on 

degradation (such as sorption to mineral surfaces and absence of light) reduces DOC 

persistence (Kellerman et al., 2015). Multiple DOC processing pathways exist in aquatic 
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systems, including photo- and biodegradation, sedimentation and burial within 

freshwaters (Cole et al., 2007; Weiser and Robarts, 2004). Among these processes, photo- 

and biodegradation are simultaneously active and suggested to account for the most of 

organic carbon loss in gaseous form (CO2 and CH4) from surface waters (Catalán et al., 

2016). In addition, the mineralization and removal of DOC can further affect in-stream 

food webs as terrestrial organic matter predominantly fuels the primary and bacterial 

production in waters, and support higher trophic level biomass together with 

autochthonous organic matter (Karlsson et al., 2012).   

Landscape and climate controls on fluvial DOC quality and in-stream fate have been 

explored. The results from a 560 boreal lake survey suggest land cover, especially the 

percentage of water in the catchment (thus duration of time taken to pass through the 

landscape), is a more important factor than mean annual temperature in influencing the 

variability in DOM composition (indicated by fluorescent components) (Kothawala et al., 

2014). More persistent DOC remains after fluvial transport. This is consistent with the 

observation of a negative relationship between water retention time and organic carbon 

degradation rate across a wide range of aquatic systems (Catalán et al., 2016), with longer 

time providing more chance for in-stream organic carbon processing.  

Further, as land is the major source for aquatic DOC, land use has been increasingly 

recognised as a significant influencing factor mediating the composition and thus 

degradability of DOM via biogeochemical and biodegradation processes in aquatic 

networks (e.g. Butman et al., 2014; Lu et al., 2013; Williams et al., 2010). For example, 

human land uses (including agriculture, pasture and urban area) have been suggested to 

decrease the proportion of terrestrially-derived humic organic matter and increase the 

proportion of autochthonous sources in the draining water (Hosen et al., 2014; Lu et al., 

2014; Shang et al., 2018; Williams et al., 2010). This may be caused by the modification 

of terrestrial landscape (e.g. anthropogenic land use-induced erosion and oxidation), 

leading to the increased microbial activity in human-affected streams (Lu et al., 2014; 

Williams et al., 2010).       

The diversity of DOC molecules can lead to the considerable temporal and spatial 

variation in estimates of carbon removal rates (Wollheim et al., 2015). Intrinsic molecular 

structure has been suggested to be a more important control on DOC stability in streams 

than extrinsic factors (such as environmental conditions), with the decomposition 

(biodegradation and photoreaction) occurring along a gradient from aromatic to aliphatic 

compounds (Kellerman et al., 2015). Further, compositional difference has also been 

considered to influence the varied responses of autochthonous and allochthonous fluvial 
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DOC to biodegradation and photoreaction. Autochthonous DOC typically contains smaller 

molecular weight compounds and few aromatic ring structures, and thus is suggested to 

be highly biodegradable (Barrón et al., 2012; Wickland et al., 2007), while allochthonous 

DOC is generally more recalcitrant (Graeber et al., 2012). Therefore the estimate of 

carbon loss via biodegradation of terrestrial DOC is modest (Lapierre et al., 2013).  

However this suggestion is being challenged as more evidence shows terrigenous humic 

DOC can be quickly respired by microorganisms in fluvial ecosystems (Berggren et al., 

2010; Fasching et al., 2014; McCallister and del Giorgio, 2012). This emphasizes the need 

to better explore this pathway of carbon loss and the importance of considering inherent 

DOC properties in this process. While fresh and less-humic DOC is commonly considered 

to be labile to microbes, photo-degradation is mainly considered to affect coloured, 

photo-reactive carbon with high aromaticity and oxidation state (Kellerman et al., 2015; 

Lu et al., 2013; Stubbins et al., 2010). This is possibly because the formation of complexes 

between humic acids and fulvic acids (main fractions of DOC) and extracellular enzymes 

inhibits enzyme activity and prevents biological DOC degradation, but can be decoupled 

by mild ultraviolet photolysis (Wetzel, 1992).     

1.6 Variation of DOC composition and its significance 

As the reactivity, decomposition, and thus fate of DOC is closely and inherently linked to 

its chemical composition and molecular properties (Kellerman et al., 2015; Kothawala et 

al., 2014; Sun et al., 1997), it is crucial to characterise and understand DOC composition. 

However it is difficult to provide a chemical description of DOC in waters, as it changes 

as a function of hydrology and climate (Kothawala et al., 2014). In general DOC consists 

of a variety of molecules considered to range in size and structure, from simple 

identifiable, low-molecular weight compounds such as acids and sugars, to complex, high-

molecular weight humic substances (HS) (Thurman, 1985).  

Non-humic substances are more easily consumed by microorganisms and invertebrates, 

and thus have a shorter survival rate compared to the more biologically-resistant HS (Khan 

and Schnitzer, 1972; Kulovaara et al., 1996; Thurman, 1985). In addition peat soil 

organisms, principally fungi and bacteria, metabolize the non-coloured, small molecular 

mass non-humic substances in preference to the larger coloured HS (Thurman 1985; Hope 

et al. 1994; Dawson et al. 2001).  

Traditionally, HS are thought to comprise the dominant fractions of DOC, and are 

heterogeneous mixtures formed by humification, the biochemical and chemical reactions 
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that occur during the decay and transformation of plant and microbial remains (Muscolo 

et al., 2013). HS are a complex mixture of aromatic and aliphatic hydrocarbon structures 

with attached amide, carboxyl, ketone and other functional groups (Leenheer and Croue, 

2003). HS have never been separated into pure components (Hautala et al., 2000; Muscolo 

et al., 2013), but can be generally divided into two main fractions based on chemical 

extraction processes: humic acids (HAs) and fulvic acids (FAs) (International Humic 

Substances Society; Frimmel, 2005; Muscolo et al., 2013). HAs are categorized as the 

fraction that is not soluble in water under acidic conditions (pH < 2) but are soluble at 

higher pH values. Generally HAs have a larger molecular weight, contain more carbon 

with less oxygen-containing functional groups (Stevenson, 1994; Weng et al., 2006; 

Gungor and Bekbolet, 2010; Tang et al., 2014). They have a greater proportion of 

hydrophobic (mainly aromatic) moieties (Piccolo, 2001; Šmejkalová and Piccolo, 2008), 

are more stable as they have more conjugated bond systems (formed by several multiple 

bonds, each separated by single bonds). Therefore, HAs are more complex and 

microbially-resistant than FAs. The structural difference suggests HAs to be more 

humified and aromatic than FAs.  

Clearly the composition of DOC will influence how easily it can be degraded biologically 

and so methods are required that allow compositional controls to be understood. The 

bond structure and molecular size properties allow the use of spectrophotometric 

methods to consider structural characteristics: aquatic DOM strongly absorbs light in the 

UV-visible wavelength range, with compositional differences influencing absorbance at 

specific wavelengths (Korshin et al., 1997; Helms et al., 2008; Selberg et al., 2011; 

Peacock et al., 2014).  

1.7 Characterising DOM quality through UV-visible and 
fluorescence spectroscopy 

UV-visible spectroscopy 

Chromophoric dissolved organic matter (CDOM) is the fraction of DOM which is optically 

active and absorbs both visible and UV light (Helms et al., 2008). With the compositional 

differences between DOC fractions influencing absorbance at specific wavelengths, these 

DOM properties allow the use of spectrophotometric methods to consider structural 

characteristics (Korshin et al., 1997; Helms et al., 2008; Selberg et al., 2011; Peacock et 

al., 2014).  
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Specific UV absorbance at 254 nm (SUVA254) is one of the commonly used optical 

parameters, measured by dividing the absorbance of a water sample at 254 nm by its DOC 

concentration. SUVA254 is considered to be strongly related to DOC aromaticity (Weishaar 

et al. 2003), especially the proportion of the total carbon in aromatic rings (Zbytniewski 

and Buszewski, 2005). Although non-humic substances are generally not aromatic, the 

amino acids phenylalanine, tryptophan and tyrosine do have aromatic rings and UV 

absorption peaks in the region 200 - 300 nm. Therefore SUVA254 represents all aromatic 

carbon. In addition, HS with the more-complex aromatic structure absorb visible light 

mainly at the end of blue spectrum (about 400 nm) (Evans et al., 2005). As a result, 

SUVA410 (absorbance at 410 nm divided by [DOC]) has been used to reveal the changes in 

proportion of HS which contain complex aromatic structure.  

 

Fig. 1-4. The relationship between total aromatic C, simple aromatic C, HS, HAs and FAs. The 
four optical parameters can be used to indicate the composition of DOC. 

The ratios between absorbance at different wavelengths can also provide qualitative 

information about DOC composition. The ratio between absorbance at 254 nm and 410 

nm (E2/E4) is related to UV-absorbing aromatic rings to HS colour (Graham et al., 2012; 

Selberg et al., 2011; Zepp and Schlotzhauer, 1981). Thus waters which contain a greater 

proportion of HS have lower E2/E4 values (Graham et al., 2012). In addition, as HAs and 

FAs absorb light in different amounts at 465nm and 665nm, the ratio between absorbance 

at 465 nm and 665 nm, E4/E6, is used to reveal differences in the proportion of humic and 

fulvic acids (Thurman 1985; Hautala et al., 2000; Spencer et al. 2007; Moody et al. 2013). 

A lower E4/E6 reflects a larger proportion of HAs, a higher degree of aromatic 

condensation and indicates a higher level of organic material humification (Zbytniewski 

and Buszewski, 2005). Between aquatic humic and fulvic acid samples, E4/E6 has been 

observed to be higher for fulvic acids and lower for humic acids (Thurman, 1985).  

Fluorescence spectroscopy 
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A sub-fraction of CDOM fluoresces and is termed FDOM (Coble et al., 1990; Stubbins et 

al., 2014). In recent years there has been a growing interest in the use of fluorescence 

spectroscopy to characterise the complex DOM chemical composition (e.g. Coble et al., 

1990; Cory and Mcknight, 2005; Fellman et al., 2010). The fluorescence excitation-

emission matrix (EEM) analysis, in which repeated emission scans are collected at 

numerous excitation wavelengths, and Parallel Factor Analysis (PARAFAC), a three-way 

statistical modelling technique, have been combined and developed to decompose the 

overlapped fluorescent signal of DOM into broadly identified individual components (Bro, 

1997; Cory and Mcknight, 2005; Stedmon et al., 2003). The most-commonly observed 

fluorophores consist of several humic-like (carbon associated with HS) and protein-like 

components (carbon associated with fluorescent amino acids), ranging in molecular 

weight and derived from autochthonous production, microbial processing and terrestrial 

systems (Cory and Kaplan, 2012; Fellman et al., 2010; Maie et al., 2007).  

PARAFAC has been used to characterize DOM and assess its dynamics in fluvial systems, 

providing insights into the different biological lability of these various types of organic 

carbon pools. Among these fluorophores, protein-like DOM fluorophore is suggested to 

represent a product of bacterial activity and a bioavailable substrate (Cammack et al., 

2004), with the proportion of protein-like components often being linked to DOM 

biodegradability across different environments (e.g. Balcarczyk et al., 2009; Fellman et 

al., 2009). However, a recent study further suggests the protein-like fluorophore 

comprises not only labile DOM, but also semi-labile and more recalcitrant moieties (Cory 

and Kaplan, 2012). In addition, the humic-like fluorophores are generally considered to 

be aromatic with hydrophobic components, and used as a proxy for slowly cycling and 

recalcitrant DOM to biodegradation (Fellman et al., 2010). With such understanding, 

PARAFAC modelling has been used to characterize aquatic DOM quality in different 

environments (e.g. Beggs and Summers, 2011; Osburn et al., 2012; Zhang et al., 2011), 

and to explore the relevant biogeochemical significance, including landscape and land 

use influence on DOM biodegradability. For example, catchment urbanization were found 

to be associated with increased protein-like DOM and decreased amount of terrestrial 

humic-like DOM (Hosen et al., 2014), indicating a likely increased in-stream DOM 

biodegradation.  

1.8 Summary of the literature review 

From the above literature review, key understanding can be summarised as follows: 
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DOC is an essential component of the global carbon cycling and can have important 

ecological impacts on aquatic systems and surface water quality. Peatlands, as a 

significant terrestrial DOC source, are associated with the widely-observed [DOC] increase 

in surface waters. Anthropogenic land use change in peatlands is suggested to be an 

influential factor, along with climatic change, discharge increase, and acid deposition 

decrease. After export from soils, DOC undergoes multiple in-stream processes, including 

biodegradation, and this influences variation in both DOC quantity and quality that 

reaches in the oceans. The difference in DOC quality in turn is closely linked to its 

reactivity, degradability and fate. Yet there is still a knowledge gap in understanding of 

DOC quality and what controls this. With the availability of UV-visible and fluorescence 

spectroscopy to characterise DOM quality, produced better understanding can be 

generated to explore the link between fluvial DOC compositional changes and peatland 

land uses.  

1.9 Thesis contents 

This thesis comprises the following research, which address the thesis aims in Section 1.1:   

Chapter 4, ‘Impacts of wind farm development on spatial and temporal variation of 

DOC quantity and quality’, examines the spatial and temporal variation in fluvial DOC 

concentration and optical properties in short- and long-term monitoring sites, to assess 

disturbance of wind farm-associated land uses to peat and adjacent water quality, and 

potential controls on DOC composition (Objectives 1 and 2).  

Chapter 5, ‘Dissolved [Fe] in peatland catchments and its effect on the 

biogeochemical cycles of carbon and nutrients’, analyses relationships between 

concentrations of DOC, nutrients and total dissolved Fe in peatland catchments. The DOC 

composition is considered to assess if there are controls on the variation of Fe 

concentration in streams (Objective 3).  

Chapter 6, ‘Biodegradation of compositionally-different DOC from Drumtee’, presents 

the results of DOC incubations with stream water collected over one year, to 

comprehensively consider the potential of DOC loss by biodegradation in peaty waters. 

DOC composition changes are analysed during incubation to understand DOC dynamics 

(Aim 4). Controlling factors on DOC biodegradation loss are explored between DOC 

composition and nutrients availability (Objective 4). 
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To support this, a general method chapter, Chapter 2, ‘Methods’, introduces the field 

sites and documents field and laboratory methods, and data processing common to all 

sub-projects in this research. Methods specific to a chapter are introduced in the chapter 

methodology. Chapter 3, ‘Method developments’, offers methodological information but 

is given separately to chapter 3 as this is primary research documenting method 

development for better spectrophotometric measurements and undertaken to general the 

best protocols to quantify DOC biodegradation in laboratory incubations. Finally, Chapter 

7, ‘Conclusions’, returns to the over-arching objective, and brings together the key 

findings of this research, from which research gaps can also be identified.
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2 Methods 

This chapter presents a description of field sites studied in this research, comprising a 

small catchment as the main and intensive study field to explore DOM composition and 

dynamics in peaty catchment waters, and five adjacent catchments as part of a long-

term-conducted water chemistry monitoring programme. The chapter also outlines the 

methods applied to the subsequent chapters, comprising most field methods, laboratory 

analysis and data processing. Significant method development is detailed in chapter 3 to 

differentiate it from methods already developed that I used routinely.     

2.1 Field sites 

2.1.1 Whitelee Wind Farm 

Whitelee wind farm, in central Scotland, approximately 16 km south of Glasgow, is 

Europe’s second largest and the UK’s largest onshore wind farm. Whitelee is located 

mostly on peat-rich soils, with an average peat depth of 190 cm ± 134 cm (ranging from 

5 cm to over 8 m, Fig. 2-1 shows the soil map for the south of the Whitelee Catchment). 

Peat is defined as soil where the uppermost soil horizon has more than 60 % organic matter 

and exceeds 50 cm in thickness (Soil Survey in Scotland, 1984; SNH 2014). Apart from 

peat, the area is covered by poorly drained non-calcareous gleys, peaty podzols which 

are freely draining below the iron pan, freely draining brown earth forest soils, 

imperfectly draining brown forest soils, very poorly drained humic gleys and poorly 

drained peaty gleys (Murray, 2012).  

Wind farm construction activities took place from October 2006 and the original 140 

turbines became fully operational in May 2009. In Nov. 2010, the site was extended with 

a further 75 turbines, completed in Feb. 2013. The wind farm is built largely in the 

Whitelee Forest of Sitka spruce, which was planted during the1960s – 1980s. Felling was 

carried out in the Whitelee Forest to facilitate wind farm construction of the tracks, 

turbine bases, substation, and cable installation, and to create open ground areas and 

thereby reduce wind turbulence for the windfarm operation. For the wind farm 

construction, a total of 1200 ha forest had been felled (Phin, 2015). In addition, peat 

excavation was required for access road construction (thus drainage), turbine bases and 

associated infrastructure erection as part of the wind farm development.  
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Table 2-1 Information about each long-term-monitored catchment draining the Whitelee Wind 
Farm. Information is gathered and modified from Murray (2012), Phin (2015) and Digimap® 
Land Cover Map 2015.   

Catchment 
Catchment 
size (km2) 

Flow 
Length 

Upstream 
(km) 

Peat-
related 
soils (%) 

Deforested 
area (%) 

No. of 
Turbines 

Turbine 
density 

(per km2) 

WL13 
(Drumtee) 

5.7 5.3 88.0 30.3 7 1.2 

WL14 15.1 8.1 78.6 10.3 38 2.5 
WL15 11.3 6.0 90.0 33.6 38 3.4 
WL16 30.5 10.8 82.0 13.2 52 1.7 
WL1 31.1 11.4 62.0 10.7 54 1.7 

 

Since July 2006 stream water chemistry monitoring had been conducted at the outlets of 

five catchments draining the south of the original and the most of expanded wind farm 

areas: WL13 which was also named Drumtee, WL14, WL15, WL16 and WL1 (Fig. 2-1). These 

catchments differ in size, with Drumtee being the smallest (5.7 km2) and WL1 the largest 

(31.1 km2) (Table 2-1, Fig. 2-1). All catchments are largely covered by peat-related soils 

(including peat, peaty gley and peaty podzol), ranging from 62 % in WL1 to 90 % in WL15. 

189 of the 215 turbines are within these 5 catchments and 15.4 % of total catchment area 

was felled during wind farm development periods. Drumtee and WL15 are the two 

catchments with the greatest percentage of deforestation area (30.3 and 33.6 % 

respectively). During the long-term water monitoring, chemical analysis has been 

focussed on the concentration and export dynamics of organic carbon in dissolved and 

particulate form (DOC and POC), nitrate and phosphorus (SRP and total P) (Murray, 2012; 

Phin, 2015; Waldron et al., 2009). The long-term sampling points are shown in Fig. 2-1. 
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Fig. 2-1. The five long-term monitoring sites and their catchment areas. Turbines located in the catchments are shown, constructed during the original (Oct. 
2006 – May 2009) wind farm development and the extension (Nov. 2010 – Feb. 2013). The soils covering these catchments are largely peat or peat-related. 
Soil data courtesy of Macaulay Land Use Research Institute. Turbine locations were positioned from Digimap® Land Cover Map 2015.  
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2.1.2 Drumtee Catchment 

Drumtee (55°41’16’’N, 4°23’37’’W), is a third order 5.7 km2 catchment, draining part of 

the western edge of Whitelee wind farm. It was chosen as a short-term field site for the 

studying DOC compositional changes due to its manageable size and land use difference. 

It has also been a site of previous research to build on (Murray, 2012; Phin, 2015; Waldron 

et al., 2009). The maximum elevation within the catchment is 260 m above sea level, and 

the catchment gently slopes downwards from the northeast to the southwest, with slopes 

mainly between 0 to 6 degree (Fig. 2-2). The bedrock is largely sandstone and lava, with 

no carbonates. The meteorological information about Drumtee is summarized in Table 2-

2, indicating that the climate of the field site is normally cool and moist.  

 

Fig. 2-2. Slope of Drumtee catchment. Data was from Digimap® OS Terrain 5 DTM. 

Table 2-2 The meteorological information about Drumtee catchment (Met office, 2016) 

Meteorological Data  

Climate Temperate 
Mean annual rainfall 1250 – 1500 mm 
Mean annual temperature 8 – 9 °C 
Mean days of snow lying (1981 – 2010) 10 - 20 

 

There are two sub-catchments in Drumtee: D-WF in the north (3.9 km2) and D-FF in the 

south (1.8 km2). The soils in Drumtee Catchment are mainly blanket peat (Fig. 2-3A), 

comprising 73.5 % of the area of D-WF and 87.7 % of D-FF (Table 2-3). A further 8 % of 

each catchment is peaty gley area, and the remainder is composed of humic gleys, 

mineral alluvial soils, non-calcareous gleys and peaty podzols.  
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Fig. 2-3. Map of Drumtee catchment indicating different soil types (A) and land uses (B). 
Drumtee is draining part of the western edge of Whitelee Wind Farm, and consists of two sub-
catchments. Each sub-catchment contains one main stream (D-WF in the north and D-FF in 
the south). There is a similar dominance of peat coverage in each catchment, but land uses 
differ, with D-FF dominated by deforestation whilst D-WF hosts more turbines. There are six 
turbines in D-WF (another one very close so could have impacted the drainage), whilst two in 
D-FF. One small tributary from Stream D-WF originates in felled forestry. Land use data was 
from Digimap® Land Cover Map 2015. 

Table 2-3 Types of soils in Drumtee sub-catchments. There is a similar dominance of peat 
coverage in both D-WF and D-FF.  

Land use Peat 
Peaty 
gley 

Peaty 
podzol 

Humic 
gley 

Non-calcareous 
gley 

Mineral 
alluvial 

D-WF 73.5 % 8.4 % 2.6 % 7.4 % 6.2 % 1.9 % 

D-FF 87.7 % 8.2 % 0 3.1 % 0.8 % 0.2 % 

 

The vegetation in Drumtee catchment observed during field trips was mainly grass and in 

the more boggy areas rushes and Sphagnum moss. The land use is rough grazing of sheep 
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and cattle, and commercial forestry. The stream D-WF in the north sub-catchment mainly 

drains an area with six turbines in the headwater and intact commercial forestry, although 

one tributary originates in the felled area and another transits through it (Fig. 2-3B). The 

stream D-FF in the south sub-catchment mainly drains felled forest with only two turbines 

(Fig. 2-3B).  

 

Fig. 2-4. Satellite images of Drumtee catchment on 31/12/2005 (upper) and 22/08/2017 (lower), 

indicating wind farm-related land use changes. Areas ① and ② were both covered with 

commercial forest in 2005, and due to wind farm development area ② was felled afterwards. 

Dark green area with slightly black lines represents commercial forest (upper), while the grey 
colour with lines is the felled area. Road tracks are shown by white lines. Turbines are located 

at the end of roads. Images were downloaded from Google Earth. 

The original commercial forestry in both sub-catchments was planted during the 1960s – 

1980s, as a part of government’s afforestation plan across the country. The deforestation 

in Drumtee occurred during Nov. 2006 – July 2008, which was required to improve airflow 

and reduce wind turbulence for wind farm operation (Murray, 2012). This resulted in 70.9 % 
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felled area in D-FF and 12.2 % in D-WF. Road tracks and wind farm turbines were built in 

the upland bog area, which was not afforested historically. Two Google Earth images 

taken over Drumtee clearly showed the land use changes before and after the wind farm 

development (Fig. 2-4). Taken all together, the similar soil types and topography, but 

different land uses between the two sub-catchments provides the potential to compare 

impacts on water chemistry derived from land use difference within the small area. 

2.2 Field methods 

2.2.1 Stream water sampling procedure 

As Drumtee catchment was the core field site for this research, more frequent stream 

water sampling was carried out here for the following three chapters: investigations in 

peatland catchment water for land use impacts on DOC concentration and composition 

(presented in Chapter 4), in-stream total dissolved Fe concentration (Chapter 5), and 

biodegradation of compositionally-different DOC (Chapter 6). In addition, at the outlet 

sites of the five south-draining Whitelee catchments (including Drumtee which was also 

named WL13), water was sampled and measured for concentrations of DOC, total oxidised 

nitrogen (TON) and soluble reactive phosphorus (SRP). This was to continue the long-term 

water chemistry survey which started in July 2006, from before wind farm development 

commenced. In this study, the long-term survey was expanded to include analysis for DOC 

composition and total dissolved Fe concentration. Water sampling strategy for these 

projects is presented as below: 

Table 2-4 Sampling strategy for different projects in this study. Projects are listed according 
to their order in the thesis. 

Project Chapter 
Sampling 

site 
Sampling length 

Sampling 
frequency 

Continuance of long-
term water chemistry 
monitoring (DOC, SRP, 
TON) 

4 
Whitelee 

catchments 
Apr. 2014 - Sept. 

2016 
Monthly 

land use impacts on 
DOC concentration and 
composition  

4 

Drumtee Feb. 2014 - Feb. 2015 

Monthly 
Whitelee 

catchments 
Apr. 2014 - Sept. 

2016 

Total dissolved [Fe] in 
water and how it 
impacts peatland DOC 
fate 

5 

Drumtee Feb. 2014 - Feb. 2015 

Monthly 
Whitelee 

catchments 
Apr. 2014 - Sept. 

2016 
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Biodegradation of 
compositionally-
different DOC 

6 Drumtee 
Sept., Nov. 2015, 
Jan., May 2016 

Once in 
each 

sampling 
month 

 

The sampling sites for different projects are indicated in Fig. 2-5. In D-WF, no sampling 

sites were chosen further in the bog area for two reasons: 1) the downstream sites (D-WF 

5, 6, 7 and 8) received water from the upstream and integrated the potential impacts 

from the bog area; 2) workload and access to the bog (which hosted the turbines) were 

considered for a more logical sampling plan. For the short-term water chemistry 

investigation in Drumtee catchment during Feb. 2014 – Feb. 2015 (including analysis of 

DOC concentration and composition, and total dissolved Fe concentration), eight sites 

were sampled along Stream D-WF and seven sites along Stream D-FF approximately every 

four weeks (Fig. 2-5, upper). The yearly sampling allowed the annual analysis for water 

chemistry. For DOC biodegradation experiments, water was collected from sites D-WF1, 

D-FF1 and Drumtee confluence in Sept. (autumn), Nov. (early winter) 2015 and Jan. (late 

winter), May (summer) 2016 respectively (Fig. 2-5, upper) to analyse the seasonal and 

spatial variation in DOC biodegradation.  

For long-term water monitoring project, stream water samples were collected from the 

outlet of each Whitelee catchment for a longer period: from April 2014 to September 

2016 at around four-week intervals. In Drumtee, the confluence water was collected for 

the outlet sample WL13.  
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Fig. 2-5. Sampling sites in both Drumtee (upper) and other Whitelee catchments (lower right). 
In Drumtee, the confluence water was collected as the outlet sample for the long-term survey. 
D-WF represents the stream draining the wind farm area in Drumtee, and D-FF the felled forest. 

Water samples for DOC and Fe analysis were collected using 330 ml drinking water bottles 

(PETE), which of many bottles tested had negligible release of UV-absorbance material 

(details demonstrated in Chapter 3 Method development). Additionally 50 ml 

polypropylene tubs were filled with water samples from each of long term sites for [SRP] 

and [TON] measurements. To remove potential contaminants all containers were pre-

rinsed with deionized (DI) water in the lab and with stream water in the field three times 

respectively before using. Water was collected from about 5 – 10 cm beneath the stream 

surface and samples kept in a cool box until return to the laboratory, where after they 

were stored in the cold room at 4 °C until further processing. 
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2.2.2 Discharge measurement 

Stream discharge data for Drumtee catchment provides important information to 1) 

analyse if there is any hydrological impact on DOC composition and concentration; and 2) 

estimate DOC and Fe exports (flux per year or month for each catchment area).  

At the Drumtee confluence site, discharge was measured from the beginning of sampling 

in this project (Feb. 2014) to April 2016 using three different sensors, including a Teledyne 

ISCO flow logger, an In-situ Inc pressure transducer (PT) and an In-situ Inc TROLL® , which 

were capable of measuring water pressure and/or stream velocity, but at different time 

periods (Fig. 2-6). The ISCO flow logger estimated directly discharge, while both PT and 

the TROLL recorded stage height in the steam and discharge was calculated from the 

relationship with the ISCO. All sensors operated measurements at 15 minute intervals. 

Field trips were arranged every 2 – 3 weeks to download data, and check the battery, 

spectrum and signal strength to make sure the sensors were functioning properly.  

The sensors were first operated and maintained by another PhD project (Coleman, 2017), 

and it is from his work the stage-discharge profiles (Table 2-5) have been calculated. I 

supplemented the discharge time series by maintaining the sensors from July 2015 to April 

2016. The measurements had to be stopped to avoid potential damage to discharge 

sensors from a newly started construction programme at the site. In addition to the 

Drumtee flow data, discharge on the River Irvine was monitored at the Newmilns gauging 

station (station reference: NS 53252 37188) by the Scottish Environment Protection 

Agency (SEPA), which is the nearest gauging station to Drumtee. The accessed SEPA data 

was measured at 15 minute intervals and available from Aug. 2011 to Mar. 2015.    

 

Fig. 2-6. The data sources with which Drumtee discharge can be estimated, and the different 
time periods when these data were available. PT and TROLL measured the stage height, while 
ISCO sensor and SEPA monitoring station provided direct discharge data. The dashed line 
shows the beginning of sampling in this PhD study (Feb. 2014). 
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The direct discharge data from the ISCO flow logger did not cover the full period of this 

study due to equipment failure in some months. When this happened, discharge was 

calculated with data from other sensors or the SEPA gauging data, according to their 

relationships with the ISCO data. The relationship between the ISCO discharge and the PT 

stage height data was the strongest (R2 = 0.92) compared to those between the ISCO 

discharge and SEPA gauging data (R2 = 0.89), and the TROLL®  stage height data (R2 = 0.50) 

(Coleman, 2017). Therefore, the time series of estimated discharge in Drumtee was 

constructed for 2011 – 2016. The ISCO logger data was used where available, and the 

second and third choices would be calculating the discharge from the PT stage height and 

the SEPA gauging data at Newmilns according to the equations as below (Table 2-5). The 

TROLL®  stage height showed the weakest relationship with the ISCO discharge data, and 

thus was not utilized for discharge reconstruction.  

Table 2-5 Equations used to calculate Drumtee discharge according to the relationships 
created between the ISCO discharge and the PT stage height data, and the SEPA gauging 
data at Newmilns. Equations are obtained from Coleman (2017). ST is short for stage height.  

Relationship Equation 

ISCO-PT 𝑄𝐼𝑆𝐶𝑂 = 3.19𝑃𝑇𝑆𝑇
2 − 1.32𝑃𝑇𝑆𝑇 + 0.087 (p < 0.001, R2 = 0.92) 

ISCO-SEPA 𝑄𝐼𝑆𝐶𝑂 = 0.075𝑄𝑆𝐸𝑃𝐴 + 0.032 (p < 0.001, R2 = 0.89) 

 

 

2.3 Laboratory methods 

The following section outlines the measurement protocols for water samples after 

collection from the field. This comprises analysis for DOM, nutrients (SRP and TON), total 

dissolved Fe and dissolved oxygen (DO).  

2.3.1 DOM analysis 

2.3.1.1 Preliminary preparation 

Prior to any DOC analysis preliminary blank analysis was undertaken to assess the 

appropriate preparation for samples, including decisions of water sample containers, 

filter paper rinsing procedure and potential impacts of filter pore size on UV-visible 

absorbance. The full details are described in Chapter 3 as a part of method developments 

in this study. The following preparation work was conducted according to the developed 

protocols.    
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Particulate material was removed from DOM water samples through the use of GF/F filter 

paper (Whatman, glass microfiber, 0.7 µm) in a vacuumed system. Commonly-used filters 

for DOC preparation range between 0.22 – 0.7 µm. In my research group the 0.7 µm GF/F 

filter has been always used, largely because often radiocarbon analysis of samples are 

carried out and the GF/F filter is used routinely in the national lab that carries out such 

analysis. This choice of the filter was maintained in this study to keep the protocol 

consistent with previous DOC analysis in the group and be able to compare results.  

To minimise contamination, filter papers were pre-combusted at 480 °C for 8 hours and 

rinsed using DI water five times (around 25 ml each time) before filtration (see Chapter 

3, Section 3.1.3 for details). The last rinse was measured by UV-visible spectrophotometer 

at 254 nm to check the absorbance was less than 0.005 cm-1 and so small enough to 

proceed with sample filtration. If the suspended matter load was high, sometimes more 

than one filter paper was needed. Filtered samples were kept in the cold room (4 °C) in 

the dark to prevent DOM biodegradation during storage, but were allowed to adjust to 

room temperature before any measurement was made. These filtered samples were 

shared for [DOC] measurement, optical analysis (UV-visible and fluorescence analysis) and 

[Fe] measurement.   

2.3.1.2 [DOC] measurement 

For measurement of [DOC], it is necessary to remove dissolved inorganic carbon (DIC). 

This was achieved by titrating the filtered water samples to pH 3.9 by using 0.01 M H2SO4 

with a Mettler DL20 compact auto-titrator. The exact volume of each titrated sample 

(normally around 50 ml) and volume of H2SO4 used, were recorded for volume correction 

of sample dilution, which reduced [DOC] as a result of adding acid. Following the titration, 

samples were degassed in an ultrasonic water bath for 30 minutes to remove existing CO2 

and remaining trace sources of DIC.  

[DOC] of prepared water samples was measured using a ThermaloxTM TOC Analyser. 30 μl 

of the degassed water sample was injected into a furnace which was at a high 

temperature (680 °C) and saturated with oxygen. All DOC in the water sample was 

oxidised to CO2 and subsequently detected by a built-in non-dispersive infrared detector. 

The quantity of CO2 was converted into [DOC] by using a standard calibration line. Prior 

to each measurement, standard carbon solutions (normally five for each analysis run) 

were prepared automatically by the analyser by dilution of a 1000 mg l-1 TOC stock 

solution of potassium hydrogen phthalate to a series of concentrations. The 

concentrations of standard solutions were determined according to approximate [DOC] 

estimation of water samples, which generally ranged from 5 – 80 mg l-1. Standard solutions 
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were included in each run as samples to assess the linearity of instrument. Furthermore 

an ~ 20 mg l-1 check standard prepared from TOC stock solution manually, together with 

DI water blank were analysed every ten samples throughout the run, which allowed a 

check of instrument stability and corrections for drift during the analysis to be made if 

needed (this was rare). Up to three replicated measurements of each sample were made 

and data was acceptable if the relative standard deviation was smaller than 2%. The limit 

of detection of the TOC analyser is 1 mg C l-1.   

2.3.1.3 UV-visible measurement 

For an initial overview of the UV-visible spectra, filtered field water samples were 

scanned from 200 nm to 800 nm using a Shimadzu UV-2010 PC. Another 

spectrophotometer, the Hitachi U-1100, was used to measure light absorbance at specific 

wavelengths (254, 410, 465 and 665 nm), as it was determined to be more stable and 

accurate than the Shimadzu. For both systems, water samples were placed in a quartz 

cuvette with 10 mm path length, with another paired cuvette filled with DI water as 

reference. Cuvettes were rinsed three times using DI water before each measurement. 

All absorbance data was expressed as per centimetre (cm-1) automatically. DI water was 

measured as a blank control and subtracted from field sample absorbance.  

The UV-visible absorbance at different wavelengths was used to generate the following 

optical parameters: SUVA254, SUVA410, E2/E4 and E4/E6. SUVA254 and SUVA410 were 

calculated by dividing the absorbance of a DOM sample at 254 nm or 410 nm respectively 

by its [DOC], and used to assess DOM aromaticity (Weishaar et al., 2003)  and the changes 

in HS which contain complex aromatic structure (chapter 1). E2/E4 was calculated as the 

UV ratio between absorbance at 254 nm and 410 nm, considered to reflect the intensity 

of UV-absorbing aromatic rings to HS colour (Zepp and Schlotzhauer, 1981; Selberg et al., 

2011; Graham et al., 2012). E4/E6 is the ratio between absorbance at 465 nm and 665 nm, 

and used as considered to identify differences in the proportion of humic and fulvic acids 

between samples (Thurman, 1985; Spencer et al., 2007; Moody et al., 2013).  

2.3.1.4 Fluorescence EEM  

Fluorescence measurements of the filtered samples were performed using a Shimadzu RF-

5301-PC Spectrofluorophotometer, with samples placed in a 10 mm quartz cuvette with 

four transparent windows. Spectral correction for the fluorescence spectrometer was 

carried out using standard solutions (certified by BAM Federal Institute for Materials 

Research and Testing) prior to measurement. Samples were excited by a light source 

(Xenon lamp) from 230 nm to 455 nm at 5 nm increments, and the emitted light was 
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measured at each excitation wavelength from 280 nm to 630 nm at 1 nm increments, to 

generate 3D EEMs for each individual sample.  

The range of emission/excitation wavelength was chosen to eliminate primary and 

secondary Raman and Rayleigh-Tyndall scatter, which have more scatter than the signal 

or may be noisy and/or likely to exert disproportionate leverage on the subsequent 

PARAFAC modelling for data analysis. An EEM of a blank control with DI water was 

generated on each day of measurement, and subtracted from the EEMs of water samples. 

Further, Raman scans of blank DI water at 350 nm excitation wavelength, from 370 nm to 

428 nm emission wavelengths were collected and the integrated area under the Raman 

scatter peak was used to normalise blank subtracted EEMs during modelling. Fluorescence 

intensities were therefore reported in Raman units (RU).  

Fluorescence intensity normally increases linearly with [DOC] for very dilute samples, 

however when there is high [DOC], the increase may not be linear and fluorescence 

quenching can happen. This occurs when the emitted radiation is re-absorbed by the 

sample on its way in or/and out of the cuvette, leading to the reduction of the detected 

amount of excitation/emission light. In order to minimise this so-called ‘inner-filter 

effects (IFE)’, water samples with high [DOC] were diluted before fluorescence 

measurement if the UV absorbance at 254 nm was larger than 1.5 cm-1. The absorbance 

spectrum was used to calculate a matrix of correction factors for EEMs. The dilution factor 

was accounted for the final fluorescence intensity in the PARAFAC modelling.  

By doing these steps, system stability and bias correction were accommodated, and EEMs 

were ready to use for further data analysis using the PARAFAC model (see section 2.4.1).  

2.3.2 SRP and TON analysis 

2.3.2.1 Filtration procedure  

Water samples to be measured for the concentrations of SRP ([SRP]) and TON ([TON]) 

were normally filtered within four hours after sampling. 50 ml of water sample was 

filtered using a Whatman nylon membrane filter paper (0.2 μm) in a vacuum system. 

There is no strict definition of the pore size used for SRP and TON concentrations and the 

decision was made in this project to follow the same filter size as used by Murray (2012) 

who also worked in these catchments. To reduce contamination during filtration, filter 

papers were first rinsed with about 50 ml DI water, followed by 25 ml field water sample 

to soak and condition the filter paper. Finally 50 ml water sample was filtered and 

collected in a PETE centrifuge tube. Five filtrates of DI water were collected as blank 
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controls, so that background contamination could be corrected from the final results. All 

filtrates were stored in the cold room at 4 °C before analysis which normally took place 

within next two days. 

2.3.2.2 [SRP] and [TON] measurement   

SRP and TON concentrations were determined by colorimetric methods using a Technicon 

Autoanalyser II, where reagents reacted to produce a coloured product whose absorbance 

was then measured. The concentration was then calculated by reference to the 

absorbance of a standard solution. Additionally, in order to avoid the background 

interference of naturally highly-coloured samples (e.g. dark water samples with high [DOC] 

in this study), which may absorb light at the same wavelength to SRP/TON, background 

colour correction was required, as described in detail in Murray (2012). The limits of 

detection for [SRP] and [TON] analysis were 0.15 μg l-1 and 0.33 μg l-1 respectively (Bazeley, 

2013).     

Methods for [SRP] analysis 

SRP analysis was conducted using the ammonium molybdate-ascorbic acid method 

(Murphy and Riley, 1962) suitable for the low level analysis of SRP in this project. The 

ammonium molybdate reacts with orthophosphate ion in acidic solution to form 

phosphomolybdic acid, which gives a lightly yellow coloured product. This product is then 

reduced by reacting with ascorbic acid to generate an intensive blue colour. The 

absorbance of this coloured product was measured at 690 nm light wavelength, and the 

non-colour corrected [SRP] was calculated referring to the absorbance of standard 

solutions automatically by the analyser.  

Methods for [TON] analysis 

Total oxidised nitrogen (TON) includes both nitrate (NO3
-) and nitrite (NO2

-) in the sample. 

Normally there are only trace amounts of nitrites in natural waters therefore [TON] can 

be interpreted to represent the maximum [NO3
-].    

For TON analysis, a method based on the reaction in Mullin and Riley (1955), and the 

automated methods of Henriksen (1965) and Best (1976), was used. NO3
- was reduced to 

NO2
- by hydrazine under alkaline conditions and copper (II) is used as the catalyst. 

Subsequently the total NO2
- sample was treated with sulphanilamide and N-1-

napthylenediamine dihydrochloride under acidic conditions to form a pink colour. The 
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absorbance of the pink colour was measured and recorded at 530 nm wavelength, and 

calculated with the reference to the absorbance of standard nitrate-N solutions.  

Standard procedure for non-colour corrected concentrations 

The standard solution and the series of filtered water samples were run in duplicate, 

together with five blank control solutions (to obtain potential background contamination 

from filtration process) in a same run. For SRP analysis, a 0.1 mg l-1 standard solution was 

prepared by the appropriate dilution of a 1000 mg l-1 phosphate-P standard stock solution, 

whilst a standard solution for TON (1 mg l-1) was prepared from the dilution of a 1000 mg 

l-1 nitrate-N stock solution. 

Background colour correction 

The measurement of nutrient concentration by colorimetry is based on the colour 

produced at a certain wavelength when reagents react with the analysed samples. 

However, when analysing naturally highly-coloured water samples, the background colour 

may interfere at the same wavelength, resulting in an increased absorbance and thus an 

overestimation of the nutrient concentration. Therefore background colour correction 

was required, and carried out using the method of  Murray (2012) whereby the samples 

were rerun in the absence of the colour producing reagents. No coloured product was 

formed and only the background colour detected. The true sample concentration can be 

quantified by subtracting the background colour signal from the non-colour corrected 

sample signal. This correction is based on the assumption that the signals produced by 

the reaction colour and background colour are additive.  

2.3.3 Total dissolved Fe concentration 

A Perkin-Elmer AAnalyst 100 Atomic Absorption Spectrophotometer (AAS) was used to 

quantify the total dissolved Fe concentration [Fe] in the stream water samples filtered 

through 0.7 µm GF/F filter papers (glass microfiber). The total dissolved Fe comprises 

free Fe2+ and Fe3+ ions and organic-bound Fe. The absorption wavelength was set to 248.3 

nm as Fe atom absorbs light precisely at this wavelength. The absorption is proportional 

to the concentration. Therefore, Fe standard solutions with concentrations from 1 – 6 mg 

l-1 were prepared using 1000 mg l-1 Fe stock solution and applied to create the calibration 

line for Fe absorption measurement according to the linear relationship between 

absorbance and concentration. DI water and the 5 mg l-1 Fe standard solution were 

measured every five samples to check the stability of AAS and any potential 

contamination carried on from previous samples. Three replicate measurements were 
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made for each sample and the mean value was taken when the standard deviation was 

smaller than 0.005 mg l-1.  

2.3.4 DO concentration 

DO concentration [DO] was measured using a dissolved oxygen (DO) meter (HQ10 Hach 

Portable LDOTM) with a luminescent sensor. Collected stream water samples or incubated 

samples were poured into a 100 ml baker to allow insertion of the DO sensor. As directed 

by the manufacturer, seven replicate readings were taken for each sample when the 

meter reading was stable, and the mean values were taken as representative. The 

observed [DO] change was used to calculate biodegradable DOC loss using the equation: 

degraded C (mg l-1) = [DO]/32*12 (mg l-1).  

2.4 Data processing 

2.4.1 PARAFAC fluorescence model   

Instead of conventional ‘Peak Picking’ (Coble et al., 1993), a parallel factor analysis 

PARAFAC model (Bro 1997; Stedmon et al. 2003; Fellman et al. 2010) in the DOM Fluor 

Toolbox (version 1.7; Stedmon & Bro 2008) in Matlab was used to examine the complete 

EEM data and identify discrete independent fluorophores of the EEMs. 

 

Fig. 2-7. EEM dataset arranged in a threeway structure and decomposed into five PARAFAC 
components. The i, j and k correspond to the sample, emission and excitation modes (Murphy 
et al., 2013). 

EEMs are typical three-way arrays which consists of sample × excitation wavelength × 

emission wavelength (Fig. 2-7). PARAFAC analysis is a generalization of principle 
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component analysis (PCA) to higher order arrays, which statistically decompose EEMs into 

different independent groups of fluorescent components (Cory and Mcknight, 2005; 

Stedmon and Markager, 2005a). The following description of PARAFAC algorithm is 

referred from Bro (1997) and Stedmon et al. (2003). PARAFAC analysis of a three-way 

dataset decomposes the data signal into a set of trilinear terms and a residual array:  

𝒙𝒊𝒋𝒌 =  ∑ 𝒂𝒊𝒇𝒃𝒋𝒇

𝑭

𝒇=𝟏

𝒄𝒌𝒇 + 𝒆𝒊𝒋𝒌 

Where 𝒊 = 1, …, I; 𝒋 = 1, …, J; 𝒌 = 1, …, K  

In the equation, 𝒙𝒊𝒋𝒌 is the data point corresponding to the 𝒊th sample at the 𝒋th variable 

on mode 2 and at the 𝒌th variable on mode 3, and 𝒆𝒊𝒋𝒌 is the residual representing the 

variability not accounted for by the model. In the case of a fluorescence excitation-

emission matrix, the 𝒊, 𝒋 and 𝒌 correspond to the sample, emission and excitation modes, 

respectively (Fig. 2-7). 𝒙𝒊𝒋𝒌 is the intensity of fluorescence for the 𝒊th sample at emission 

wavelength 𝒋  and excitation wavelength 𝒌 . 𝒂𝒊𝒇  is directly proportional to the 

concentration of the 𝒇 th analyte in the 𝒊 th sample. 𝒃𝒋𝒇  is linearly related to the 

fluorescence quantum efficiency (fraction of absorbed energy emitted as fluorescence) 

of the 𝒇th analyte at emission wavelength 𝒋. Likewise, 𝒄𝒌𝒇 is linearly proportional to the 

specific absorption coefficient at excitation wavelength 𝒌 . The residual matrix 𝒆𝒊𝒋𝒌 

represents the variability not explained by the model.  

When conducting PARAFAC analysis (using Matlab software), an initial preliminary analysis 

was performed to identify and remove outliers from the database (Stedmon et al., 2003). 

A sample would be considered as an outlier if it contained any instrument error, or if it 

was properly measured but the result behaved rather different from other samples, which 

could be determined by calculating its loading leverage using the DOM Fluor Toolbox 

(Murphy et al., 2013). Then a series of PARAFAC models consisting of 3 – 7 components 

were produced by the DOM Fluor Toolbox based on the remaining samples, and tested for 

validation by performing half-split analysis (a built-in function in the Fluor Toolbox) to 

confirm that a PARAFAC model is appropriate to produce identical models from 

independent subsamples of the dataset (Murphy et al., 2013). 

The verified model generated a maximum fluorescence loading (Fmax) for each 

component, which was normalized in Raman unit (RU), corresponding to their position. 

For analysis to correct for [DOC] impact on model loadings, the relative distribution of 
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each component Fmax as the percentage of total fluorescence loading (%Fmax) was also 

calculated (i.e., [FmaxCi/𝛴FmaxC1-6] × 100%).     

2.4.2 DOC and Fe fluxes 

Scaling discharge to catchment area 

All catchments sampled in this study were adjacent in a west-east array such that it was 

considered that specific discharge would be similar in each sub-catchment. Thus, 

discharge in the Drumtee sub-catchments (D-WF and D-FF) and other Whitelee 

catchments (WL14, 15, 16 and 1) can be derived by scaling Drumtee discharge to 

catchment area, using the below Equation 2-1: 

𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆 =
𝑨𝒓𝒆𝒂𝒄𝒂𝒕𝒄𝒉𝒎𝒆𝒏𝒕 

𝟓. 𝟕 𝒌𝒎𝟐
× 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆𝑫𝑻 Equation 2-1 

In the equation, 𝑨𝒓𝒆𝒂𝒄𝒂𝒕𝒄𝒉𝒎𝒆𝒏𝒕 is the catchment area corresponding to where discharge 

is scaling for, while 5.7 km2 is the Drumtee area. 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆𝑫𝑻 is the measured discharge 

at Drumtee confluence site. This equation is established upon the assumption that 

changes between catchment area and discharge is linear, which is supported by the linear 

relationship observed between Drumtee and SEPA gauging discharge data (Table 2-5). An 

example is shown here for sub-catchment D-WF (3.9 km2): 

𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆𝑫−𝑾𝑭 =
𝟑. 𝟗 𝒌𝒎𝟐

𝟓. 𝟕 𝒌𝒎𝟐
× 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆𝑫𝑻 

Specific DOC flux 

Downstream annual DOC exports from the long-term sites were calculated using ‘Method 

5’ described in Equation 2-2, which utilises flow weighted mean concentrations and mean 

annual discharge (Dinsmore et al., 2013; Walling and Webb, 1985) and has become a 

popular and most recommended interpolation method for calculating river load fluxes 

(Johnes, 2007; Pawson et al., 2012). In the equation, 𝑪𝒊  is the instantaneous [DOC] 

associated with 𝑸𝒊, the instantaneous discharge, 𝑸𝒓 is the annual mean discharge and 𝒏 

is the number of samples analysed. 

𝑳𝒐𝒂𝒅 = 𝑸𝒓  ×  
∑ [𝑪𝒊  × 𝑸𝒊]𝒏

𝒊=𝟏

∑ 𝑸𝒊
𝒏
𝒊=𝟏

 Equation 2-2 
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Specific annual DOC flux (g m-2 year-1) was further calculated by dividing annual DOC 

export by the corresponding catchment area, and estimated for each hydrological year 

from October 2011 – April 2016 (noting that the 2016 year did not comprise 12 months of 

observations as the discharge recording was stopped in April 2016). 

Specific Fe flux 

As [Fe] was only measured for the short-term across all sites (Drumtee sub-catchments: 

2014 – 2015; Whitelee long-term sites: 2014- 2016), it was considered more appropriate 

to compare Fe flux for each month. In this case ‘Method 5’ would not be suitable for 

monthly Fe flux estimation, as there was only one [Fe] measurement every month. 

Therefore, specific monthly Fe fluxes (g m2 month-1) at all sites were estimated by 

multiplying the instantaneous concentration on sampling days by corresponding specific 

monthly discharge. Concentration of Fe was assumed to be constant for the time period 

before the next sample was taken. 
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3 Method development 

This section outlines the method developments carried out in order to have the best UV-

visible measurement, and to determine the best approach to quantify DOC biodegradation 

in the laboratory incubation experiments.  

3.1 UV-visible measurement 

3.1.1 Sample containers examined for UV-absorbing 

UV-absorbing chemical leakage from sample containers is undesirable as contaminates 

the sample. Therefore before sampling a set of experiments were carried out with some 

commonly used water containers (polypropylene centrifuge tubes, polypropylene wide 

mouth 100 ml containers, unused milk bottles and 300 ml PETE drinking water bottles), 

to assess if they released UV-absorbing substances. These were chosen because they were 

cheap to buy (many field samples were needed) and some had been used before in the 

time series generation. 

 

Fig. 3-1. Typical UV-visible spectra (200 – 700 nm) of DI water stored in different containers 
for 24 hours. Three replicates of stored water in each container were measured and mean 
values are presented. The negative value is considered to relate to the baseline setting. 

 

All containers were rinsed with tap water and deionized water 3 times respectively and 

kept for 24 hours filled with deionized water. Absorbance measurement from 200 – 700 

nm was conducted on three replicates of stored water from each single container, using 

a Shimadzu UV-2010 PC spectrophotometer.  
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The results revealed that all these containers showed negligible absorbance at longer 

wavelengths from 350 – 700 nm, but leached traces of substances which absorbed UV light 

mainly at from 200 to 350 nm. The absorbance value of water stored in the wide mouth 

container was much higher (the max > 0.015 cm-1) at lower wavelengths than the other 

containers. The spectrum had a shoulder at about 250 nm which would interfere the 

measurement of absorbance by DOC (e.g. SUVA254). The water from the centrifuge tube 

and milk bottle showed UV absorbance smaller than 0.005 cm-1. The smallest UV 

absorbance was produced by water from the PETE drinking water bottle (ranging from -

0.012 to 0.000 cm-1), indicating it had the least leakage of UV-absorbing materials during 

the 24-hours storage. The negative value is considered to be related to drift in the 

instrument baseline. Therefore, the PETE drinking water bottles was chosen as containers 

for sampling and storage of those water samples which would be measured for UV-visible 

absorbance.  

3.1.2 Filter material and pore size 

The effect of the filter material and pore size on UV-visible absorbance was investigated. 

Filter papers tested included the commonly used Supor membrane filters (Sigma-Aldrich, 

0.2 μm), GF/F filters (Whatman glass microfiber, 0.7 μm, ashed) and GF/C filters 

(Whatman glass microfiber, 1.2 μm, ashed). Water samples were collected from the 

Drumtee confluence, D-WF1 and D-FF1 sites on November 5th, 2013. Each filter paper 

was rinsed five times (around 25 ml for each rinsing) with DI water, before being used for 

filtration. Three replicates of filtrates were made of each filter paper type and measured 

for UV-visible absorbance at from 200 – 800 nm. Unfiltered water samples were also 

measured. 

Across the sites, the spectra of unfiltered samples were above those of the filtered ones, 

which would be expected as particles and larger DOM also absorb or reflect UV light. 

However for each site, the spectra of filtered samples with different filters overlapped 

each other. For each site, the absorbance difference was small (ranging from 0 to 0.010 

cm-1) across the wavelengths of interest (254 nm, 465 nm, 665 nm) between pore size of 

1.2 μm (GF/C) and 0.7 μm (GF/F) (Table 3-1). Although samples treated with Supor (0.2 

μm) produced less absorbance (except for D-FF1), the difference across wavelengths 

between GF/F and Supor was negligible (0.001 – 0.03 cm-1 for D-WF1 and confluence site; 

-0.003 - -0.002 cm-1 for D-FF1). The small difference might occur because the 0.2 μm 

filtration screened out bacteria and colloidal particulate materials relatively more 

thoroughly than the other two (Murray, 2012).  
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Fig. 3-2. Spectra of water samples collected from (A) confluence, (B) D-FF1 and (C) D-WF1. 
Mean values of the replicated filtrates (n = 3) were presented. Spectra of filtered samples 
much overlapped each other.  

Table 3-1 UV-visible absorbance of samples from the confluence, D-FF1 and D-WF1 sites in 
Drumtee. The interested wavelengths (254 nm, 465 nm and 665 nm) are shown for comparison 
as examples. Average values were calculated for each filtrate (n = 3 replicates of filtrate for 
each filter paper were generated). The pore sizes for GF/C, GF/F and Supor are 1.2 μm, 0.7 μm 
and 0.2 μm respectively.  

 

These results suggested there was little impact of filter material or pore size on UV-visible 

absorbance. Apart from GF/C with 1.2 μm pore size, the other two filters are both 

commonly used in research for aquatic DOM analysis. However Supor membrane filters 

Absorbance 
(cm-1) 

Confluence D-FF1 D-WF1 

GF/C GF/F Supor GF/C GF/F Supor GF/C GF/F Supor 

Abs254 0.248 0.238 0.218 0.346 0.348 0.350 0.180 0.181 0.170 

Abs465 0.015 0.015 0.012 0.020 0.017 0.020 0.011 0.012 0.010 

Abs665 0.002 0.003 0.001 0.003 0.001 0.004 0.002 0.002 0.001 
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cannot be combusted to get rid of potential contamination. Therefore, the GF/F filter 

(0.7 μm) was considered a better choice for filtration.   

3.1.3 Filter paper rinsing 

As UV-visible measurement is very sensitive to potential contamination, a thorough rinsing 

procedure is required to ensure the analysis quality. Here tests were undertaken to 

explore the effective rinsing method for the filter paper (GF/F, Whatman glass 

microfiber, 0.7 μm, ashed) used for UV-visible measurement. The GF/F filter paper was 

rinsed with 25 ml deionized water sequentially five times, making 125 ml in total. Each 

filtrate from rinsing was analyzed with the Shimadzu UV-2010 PC spectrophotometer from 

200 – 800 nm.  

 

Fig. 3-3. UV-visible absorbance spectra of filtrates from filter rinsing. The filter paper was 
rinsed with 25 ml deionized water sequentially five times, and 125 ml in total.  

All filtrates showed similar spectra trends and rinsing results (Fig. 3-3), which is that the 

general spectra at short wavelengths (about 200 – 350 nm) had much larger UV absorbance 

values in the first two rinses, but decreased noticeably with more rinsing. For the last 

three rinsing with 75 ml, 100 ml and 125 ml respectively, the absorbance spectra of 

filtrates were very close, and the one from the last rinsing was almost close to the 

baseline. This supports the idea that filter papers need thorough rinsing before being used 

for sample filtration. As the spectra showed obvious absorbance mainly at around 200 – 

350 nm, and 254 nm is a wavelength that is widely used in research for DOM analysis, the 

absorbance at 254 nm was chosen to check the rinsing results of filter papers for all UV-

visible measurements in this study. It was considered acceptable if the absorbance was 

smaller than 0.005 cm-1. 
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3.1.4 Sources of variability of E2/E4 and E4/E6 

Variation of the UV absorbance and calculated parameters can be produced from several 

experimental processes including field sampling, sample storage, preparation (e.g. 

filtration) and UV measurement. In the preliminary evaluation of UV parameters, E ratios 

(E2/E4 and E4/E6) showed greater intra-stream variation (indicated by larger standard 

deviation) than the SUVAs. Therefore the total possible variation for UV absorbance and 

E ratios potentially arising from the whole field and laboratory process was examined.  

Methods: Ten replicate water samples were collected from site D-WF1 and D-FF1 during 

one hour at five-minute intervals on November 18th, 2014. Each sample was collected 

randomly from depth within 10 cm to the water surface. Water samples were filtered 

with rinsed GF/F filter paper (0.7 μm, ashed) immediately after being returned to the lab 

and filtrates were stored in the cold room at 4°C. Samples were warmed up to 25°C using 

the incubator before measurement to reduce the impact caused by temperature 

differences. Sample absorbance was measured using Hitachi UV spectrophotometer at 

specific wavelengths (254 nm, 410 nm, 465 nm and 665 nm), and hereafter referred to 

Abs254, Abs410, Abs465 and Abs665. Samples with absorbance at 254 nm higher than 2.0 cm-1 

were diluted 1:1 with DI water.  

Standard deviation (SD) and relative standard deviation (RSD%) were calculated to 

quantify the amount of variation for absorbance at each wavelength and measurement 

repeatability. For E2/E4 and E4/E6, RSD% and maximum probable error (MPE) were used to 

analyze the repeatability and combined variation. SD was calculated using the following 

formula: 

𝑺𝑫 =  √
𝟏

𝑵 − 𝟏
∑(𝒙𝒊 −  �̅�)𝟐

𝑵

𝒊=𝟏

 

where 𝑵 is the number of measurement, 𝒙𝒊 stands for the individual measurements made, 

�̅� is the average of 𝒙. RSD% was calculated by dividing the SD by the mean value.  

MPE of ratios E2/E4 and E4/E6 were calculated using the following formula: 

𝚫𝐙

𝐙
=  √(

𝚫𝑿

𝐗
)

𝟐

+ (
𝚫𝒀

𝐘
)

𝟐
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Δ stands for the SD of 𝑿, 𝒀, 𝒁.  

In this way variations of each absorbance as well as the parameters used for data analysis 

caused by sampling, storage, filtration, dilution and measurement were all included and 

considered in the analysis. 

Results: For D-WF1 samples, SDs of absorbance for these interested wavelengths were 

less than 0.001 cm-1 except for Abs254 (0.0014 cm-1) (Table 3-2). However at 254 nm, 

absorbance difference between sites were normally ≥ 0.01 cm-1. The small SDs indicated 

D-WF1 absorbance had very small absolute variations. All RSD% of D-WF1 absorbance was 

small (≤ 0.5 %) apart from that for Abs665 (2.9 %). The greater Abs665 RSD% (but still smaller 

than 5.0 % and thus acceptable) was because this absorbance was always so small that 

little difference can make the SD relatively larger to the mean Abs665. Small SDs and RSD% 

for different wavelengths suggest a good repeatability of D-WF1 samples at these 

interested wavelengths. 

Table 3-2 Mean absorbance, SD and RSD% at wavelengths 665 nm, 465 nm, 410 nm and 254 
nm of the D-WF1 and D-FF1 sample replicates (n = 10) respectively. 

 D-WF1 D-FF1 

Absorbance 
Mean 
(cm-1) 

SD (cm-1) RSD (%) 
Mean 
(cm-1) 

SD (cm-1) RSD (%) 

Abs665 0.011 0.0003 2.9 0.022 0.0005 2.4 

Abs465 0.083 0.0003 0.4 0.145 0.0006 0.4 

Abs410 0.173 0.0005 0.3 0.296 0.0010 0.3 

Abs254 1.291 0.0014 0.1 2.326 0.0060 0.3 

 

The SDs of D-FF1 absorbance at different wavelengths ranged from 0.0005 to 0.0060 cm-

1 (Table 3-2). Only Abs254 SD was greater than 0.001 cm-1 but was smaller than the 

commonly observed Abs254 difference between sites. Similarly the absorbance of D-FF1 

replicates at most wavelengths showed negligible RSD% (0.3 – 0.4 %). Although a greater 

RSD% (2.4 %) was shown for Abs665, it was still small enough (< 5%) not to interfere the 

analysis of real absorbance difference between sites. 

Table 3-3 Mean values, MPEs and RSD% of E2/E4 and E4/E6 for the D-WF1 and D-FF1 sample 
replicates (n = 10) respectively. 

 D-WF1 D-FF1 

Ratio Mean MPE RSD (%) Mean MPE RSD 

E2/E4 7.4 0.02 0.3 7.8 0.03 0.3 

E4/E6 7.6 0.22 3.2 6.7 0.16 2.2 
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MPEs and RSD% of sample ratios E2/E4 and E4/E6 from both sites are shown in Table 3-3. 

MPE of E2/E4 was 0.02 for D-WF1 and 0.03 for D-FF1. The observed E2/E4 differences 

between sites were usually ≥ 0.1. Additionally a small RSD% existed for both sites (0.3 % 

for D-WF1, 0.3 % for D-FF1). These results indicate there was a good repeatability in the 

measurement, and the estimated error would not have much interference on intra-stream 

E2/E4 interpretation. 

However, there were larger MPEs for E4/E6 in both sites (D-WF1: 0.22, D-FF1: 0.16). Thus 

differences in E4/E6 of < 0.5 could be considered as experimental variability. The RSD% in 

D-WF1 and D-FF1 was relatively large (3.2 % and 2.2 % respectively) but still suggests a 

good repeatability of E4/E6 measurement at each site. 

3.1.5 Interference of inorganic species on UV-visible absorbance 

The presence of Fe has long been suggested as a potential interference in measuring UV-

visible absorbance of DOM (Doane and Horwáth, 2010), with the characteristic of 

absorbing light from 200 – 400 nm (Stefánsson, 2007). Apart from Fe, inorganic species 

such as N and Mn can also absorb light (Weishaar et al., 2003; Xiao et al., 2013). As UV 

absorbance and relevant UV parameters were used as important approaches in this 

research, the potential interference of Fe, N and Mn on UV-visible light absorption was 

tested for correction. The following correction method was adapted from that used in 

Weishaar et al. (2003). 

Methods: To assess whether the presence of Fe2+, Fe3+, NO2
-, NO3

- and Mn2+ interfere with 

UV-visible absorbance of DOC, responses in the 200 – 800 nm UV-visible spectra 

wavelength were measured in pure solutions (5 mg l-1) using a Shimadzu UV-2010 PC. Fe2+, 

Fe3+, NO2
-, NO3

- and Mn2+ solutions were made of Fe(NH4)2(SO4)26H2O, NH4Fe(SO4)212H2O, 

NaNO2, NaNO3, MnSO44H2O with blank DI water respectively. In order to not introduce 

extra interference, solutions were measured within five minutes before any precipitation 

occurred.     

A series of Fe3+ addition experiments were further conducted to investigate the detailed 

impact of Fe3+ on UV-visible absorbance. The inorganic salt NH4Fe(SO4)2
.12H2O was 

dissolved in DI water to prepare 100 mg l-1 Fe3+ solution. Filtered water samples (40 ml) 

from Drumtee sub-catchments (D-WF and D-FF), and the five long-term sites (WL13, 14, 

15, 16 and 1) were mixed with sufficient sample from the 100 mg l-1 Fe3+ solution and 5 

ml 0.01M HCl to make up 50 ml solutions with a background 0.001 M HCl and additional 0 

mg l-1, 1 mg l-1, 2 mg l-1, 3 mg l-1, 4 mg l-1 and 5 mg l-1 Fe3+ amendment. HCl was used to 

prevent Fe3+ precipitation potentially caused by the interactions between Fe3+ and field 
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water samples, which was observed in preliminary trials. Although HCl produces a major 

peak below 210 nm, it is not the wavelength of interest in this study thus it is fine to use. 

DI water with the same Fe3+ (0 – 5 mg l-1) and HCl (0.001M) amendment was made and 

regarded as a blank. Two replicates were made for each Fe3+ solution. Samples were 

measured for Fe3+ concentration using a Perkin-Elmer AAnalyst 100 Atomic Absorption 

Spectrophotometer, and for UV absorbance at 254 nm and 410 nm using a 1 cm quartz 

cuvette in a Hitachi U-1100 spectrophotometer, both as described earlier in Chapter 2.  

Results: The UV-visible spectra of each inorganic solution showed that, among the 

analysed inorganic species, negligible absorbance was produced by both Fe2+ and Mn2+ 

across the wavelength range of interest (200 – 800 nm) (Fig. 3-4). NO2
- and NO3

- absorbed 

UV from 200 nm to about 250 nm and produced a peak at 210 nm (Fig. 3-4). Since no 

absorbance occurred at the wavelengths of interest (including 254 nm, 410 nm, 465 nm 

and 665 nm), the absorbance produced by NO2
- and NO3

- was not of concern in this study. 
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Fig. 3-4. The UV-visible spectra of solutions with Fe2+, Mn2+, NO3
- and NO2

- respectively from 
200 – 800 nm. The absorbance for NO3

- and NO2
-  was much higher than other two species, so 

for equivalent scaling of the four graphs, 1 mg l-1 NO3
- and NO2

- solutions were used while 5 
mg l-1 for others. 

 

Fig. 3-5. The UV-visible spectrum of Fe3+ solution (5 mg l-1) from 200 – 800 nm (A). Impacts of 
different Fe3+ concentrations on UV-visible absorbance at 254 and 410 nm of blank control 
waters (B).   
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However, absorbance by Fe3+ increased from around 400 nm towards shorter wavelengths 

and showed peaks at 295 and 205 nm respectively (Fig. 3-5A). Therefore, it was necessary 

to examine the interference of Fe3+ on absorbance at 254 nm and 410 nm, which were 

wavelengths used in this project in the range potentially impacted by Fe3+. Fig. 3-5B 

illustrates the absorbance of Fe3+ solution at 254 nm and 410 nm, with higher absorbance 

at shorter wavelength for each concentration analysed (0 – 5 mg l-1). The absorbance at 

254 nm ranged from 0 – 0.26 cm-1 with [Fe3+] increasing from 0 – 5 mg l-1. The impact was 

much reduced at 410 nm which is the lower end of visible range, with negligible 

absorbance (0 – 0.002 cm-1) in all DI water with [Fe3+] up to 5 mg l-1. Therefore, the 

correction of Fe3+-induced impact on UV absorbance for field water samples was only 

needed at 254 nm.     

The positive linear effect of Fe3+ concentration on Abs254 evident in the control samples 

(Fig. 3-5B) was also observed in the amended field water solutions from both Drumtee 

sub-catchments and long-term monitoring sites (Fig. 3-6). The absorbance difference 

between streams reflected different starting [DOC], but the slopes of these relationships 

were very similar across all sites. The coefficient of each [Fe3+]-Abs254 equation was then 

used to correct Abs254 for each site respectively, using the measured sample [Fe3+] to guide 

the correction. Equations listed in Table 3-4 were used for corrections of Fe3+ interference 

on Abs254 across all sites. 

 

Fig. 3-6. The effect of increasing [Fe3+] on UV absorbance at 254 nm for amended water 
samples from Drumtee sub-catchments (A) and long-term monitoring sites (B).  
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Table 3-4 Equations used for corrections of Fe3+ interference on UV absorbance at 254 nm. 
Coefficients slightly varied among different sites.    

Site Correction equation 

D-WF Corrected Abs254 = Measured Abs254 – 0.054 * [Fe3+] 

D-FF Corrected Abs254 = Measured Abs254 – 0.064 * [Fe3+] 

WL13 Corrected Abs254 = Measured Abs254 – 0.056 * [Fe3+] 

WL14 Corrected Abs254 = Measured Abs254 – 0.052 * [Fe3+] 

WL15 Corrected Abs254 = Measured Abs254 – 0.046 * [Fe3+] 

WL16 Corrected Abs254 = Measured Abs254 – 0.043 * [Fe3+] 

WL1 Corrected Abs254 = Measured Abs254 – 0.058 * [Fe3+] 

 

3.2 DOC biodegradation during laboratory incubation 

3.2.1 Introduction 

It is essential and fundamental to achieve a reliable and accurate method to assess DOC 

breakdown during biodegradation incubation, based on which further analysis can be 

combined to explore the relationships between DOC composition and its biodegradability. 

There are no standard approaches to quantify the biodegradable DOC (BDOC) 

concentration in soils yet (Marschner & Kalbitz, 2003) and neither are there in aquatic 

system to the best of my knowledge. Various parameters have been used as promising 

proxies for BDOC such as nutrient concentration, amino acid concentration, optical 

properties and molecular characteristics (Balcarczyk et al. 2009; Wickland et al. 2012; 

Abbott et al. 2014; Shen et al. 2015; Vonk et al. 2015). For example amino acids are 

bioactive components of DOM and have been used as molecular indicators of bioavailable 

DOM in groundwater (Chapelle et al., 2009) and marine environments (Davis et al., 2009).  

However more typically, BDOC has been assessed through laboratory bioassay incubation 

experiments (Vonk et al., 2015). Commonly-used methods in incubation to quantify 

microbial DOC degradation include DOC consumption (the most widely used method), CO2 

production and dissolved O2 consumption (McDowell et al., 2006). The design of 

incubation experiments in different fields are quite diverse including variation in 

incubation duration, nutrient additions, inoculum, light exposure, temperature and the 

measure of biodegradation (Table 3-5), and these may affect BDOC quantification. For 

example the source of inoculum was found not to affect measured BDOC rate (Yano et 

al., 1998), but biodegradation can be greater when using an inoculum with attached 

rather than suspended microbes (Trulleyova and Rulik, 2004). From the literature review 

of previous research, it is found to be more often that incubation is carried out in dark at 
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15 – 20 °C, with no additional nutrient, and no aeration, but with an inoculum. The water 

sample is filtered before incubation (mostly with 0.2 or 0.45 um pore size filter). However 

it is still variable between different researchers, as are incubation duration and the 

approach to quantify BDOC loss. Thus a suitable incubation approach and conditions 

needed to be determined before conducting the DOC biodegradation incubation in this 

research. 
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Table 3-5 Summary of methods used in BDOC incubation with samples from various environment. As this project is aiming at biodegradation process of 
DOC in stream waters, more examples are considered that are from aquatic systems. 

Samples Measured 
Light & 

temperature 
Additives 

Filter 

(m) 
Aeration 

Sampling 
frequency 

Duration 
(day) 

Reference 

Subarctic river water CO2 15 °C 
No nutrient, 
inoculated 

0.45 No Every 7 days 28 
Wickland et al. 

2012 

Soil leachates CO2 Dark, 20 °C 
No nutrient, 
inoculated 

0.2 Yes 
Firstly 3-day 

intervals then 
14-day 

90 Kalbitz et al. 2003 

Soil water (bog, forested, 
wetland and fen) 

[DOC] Dark, 25 °C Inoculated 0.2 Yes 
Before and 

after 
incubation 

30 
Fellman et al. 

2008 

Reconstituted moorland 
headwater DOM 

[DOC] Dark, 15 °C 
Varied 

nutrients/inocu
lums 

0.7 - 
On 0, 2, 5, 

13, 22 and 41 
days 

41 Stutter et al. 2013 

Boreal lake water 
[DOC], CO2 
and [DIC] 

Dark, 17.5 °C 
No nutrient, 
inoculated 

0.45 No 
On 1, 3, 6 

and 11 days 
11 

Olefeldt et al. 
2013 

Boreal peatland well 
waters 

[DOC], CO2 
and [DIC] 

Dark, 17.5 °C 
No nutrient, 
inoculated 

0.45 No 
On 1, 3, 6 

and 11 days 
11 

Olefeldt et al. 
2013 

Forested coastal 
headwater stream water 

[DOC] Dark, 20 °C 
No nutrient, 
inoculated 

0.2 Yes 
Before and 

after 
incubation 

28 Hosen et al. 2014 
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3.2.2 Methods development 

The main aims of this method development were to determine 1) the most suitable and 

reliable BDOC measure, 2) the best incubation length for the samples in this project and 

3) the general level of DOC biodegradability in the studied stream water. The following 

specific objectives were also to be achieved: whether to add in additional nutrients and 

inoculums, and if to use aerated systems (this would be decided according to the BDOC 

approach used, e.g. aeration would be required for CO2 production and DO consumption 

measurements). Temperature was controlled at 20 °C as similar to that in other research. 

Unfiltered water samples were incubated as to better mimic the original water ecosystem, 

and to include production from and absorption by particle organic carbon (POC). Overall, 

there were three phases in this method development, and the following sections will 

present each phase and relevant results and discussion in a linear manner.  

3.2.2.1 Phase 1  

Objectives: At Phase 1, two commonly-used BDOC approaches ([DOC] reduction and CO2 

production) were tested for the same incubated samples. This allowed the comparison of 

the estimated values for decomposed DOC, to determine if the approaches were sensitive 

and precise enough to quantify BDOC loss. As CO2 production was measured, a foil-sealed 

system was used with no aeration in order to avoid potential interference from outside 

environment. O2 may be depleted in sealed flasks, and thus a three-week incubation 

length (which was similar to other incubation research) was tried out to test if O2 

depletion occurred in the time-frame. Different additive conditions for nutrients and 

inoculum were applied to explore if these options were necessary for my peaty catchment 

water samples.  

Methods: A total of 400 g river bed sediment and soil from different sites (Stream D-WF1, 

D-WF7, D-FF1 and D-FF5) were collected on May 25th, 2015 and well mixed together to 

represent a microbial inoculum from the sources that may be found in the river. After 

removal of large material such as rock fragments, 100 g mixed sediment was re-suspended 

in 300 ml river water in triplicate, and incubated in open flasks for 3 days at 20 °C with 

stirring. After 3 days, the replicates were mixed again in a 2 l flask and then left 

undisturbed for five minutes. This allowed sediments and silt to settle down to the flask 

bottom, but left the clay suspended in the solution. This solution was used as an inoculum 

and added to DOC water samples in the required volume when needed. 

Sixteen litres of bulk stream water were collected from confluence site using a 16 litre 

carboy on May 25th, 2015. On return to the lab 110 ml of bulk water was filtered (0.7 µm 
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ushed Whatman GF/F) immediately for initial [DOC] measurement. Twelve litres of bulk 

water was divided into four groups (A, B, C and D) with three replicates of each (namely 

1 l river water per set) and added to twelve 2 l foil-sealed incubation flasks A1-A3, B1-B3, 

C1-C3 and D1-D3 (Fig. 3-7). Four different treatments were applied to the DOM solution 

groups to explore if additional nutrients would be needed: (A) no inoculum added; (B) 

adding 2.5 ml microbial inoculum; (C) adding 7.3 ml nutrient stock (4.5 ml 100 mg N l-1 

NaNO3, 2.8 ml 100 mg P l-1 KH2PO4 to provide 4.5 mg l-1 N and 0.28 mg l-1 P, calculation 

according to Redfield ratio); (D) adding both 2.5 ml microbial inoculum and 7.3 ml 

nutrient stock. Another group of three 2 l sealed flasks with 1 l DI water only was used as 

blank control for incubation. All incubations were carried out in a dark room (to prevent 

photosynthesis) at 20 °C (stably maintained by a programmed thermometer) for three 

weeks. A temperature logger was used to monitor the average room temperature profile. 

Stirring was carried out continuously during the incubation using a magnetic stirrer to 

facilitate O2 dissolution in incubated sample waters. 

 

Fig. 3-7. A 2 litre foil-sealed flask used for the incubation. A small glass jar was hung in the 
headspace to capture CO2 produced. Totally 15 flasks were used: three replicates in each 
treatment and one blank control.  

For CO2 detection, a small jar with NaOH solution (10 ml, 1 M) was hung in the headspace 

of each flask to capture CO2 produced during incubation (Fig. 3-7). At either 3- or 4-day 

intervals, 110 ml aliquot of sub-sample was collected from each flask for [DOC] 

measurement using ThermaloxTM TOC analyser. The Jars of NaOH were removed and 

rinsed with DI water throughout into titration cups quickly, which was then titrated by 1 

M HCl to calculate CO2 production during incubation. The values of CO2 mass were 
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converted to the decomposed DOC according to the equation below, where 𝒎 is the mass 

of CO2 or C, and 𝑴 is the molar mass: 

𝒎𝑪 =
𝒎𝑪𝑶𝟐

𝑴𝑪𝑶𝟐

× 𝑴𝑪 

Three 10 ml 1 M NaOH aliquots were used as blanks for titration, and the mean value was 

subtracted from the values for incubated samples. The sampling interval was designed as 

3 or 4 days to avoid practical work at weekends for health and safety reasons. 

Results: Fig. 3-8 shows the results for DOC degradation in the different treatment groups 

estimated from detecting CO2 production. Biodegradation was fastest in the first two 

weeks with similar rate across the groups, and slower thereafter. This may suggest the 

labile BDOC was decomposed quickly in the first two weeks with little degradation 

occurred in the last week. During this 3-week incubation 5.62 – 9.24 mg C (20.4 – 33.6 % 

of total [DOC)) was decomposed in total. Group A, with no additional treatment, had the 

least amount of biodegraded C (5.62 ± 3.29 mg), while Group B, which had an inoculum, 

had the most (9.24 ± 1.52 mg). Group C with addition of nutrients degraded more C 

degradation than the Group D which had both inoculum and nutrients, and group with no 

treatment (Group A).  Larger standard deviations for treatment replicates were observed 

in Group A in the last two weeks.   

 

Fig. 3-8. Weekly BDOC loss in each treatment converted from CO2 production. Mean values 
of treatment replicates are presented with error bar representing SD. A: no inoculum added; 
B: microbial inoculum added; C: nutrient stock added; D: microbial inoculum and nutrient 
stock added.  
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Fig. 3-9. Weekly BDOC loss in each treatment converted from [DOC] changes. Mean values of 
treatment replicates are presented with error bar representing SD. A: no inoculum added; B: 
microbial inoculum added; C: nutrient stock added; D: microbial inoculum and nutrient stock 
added. The initial [DOC] was 27.5 mg l-1. 

However different results for DOC biodegradation were generated for the same incubation 

from the measurement of change in [DOC]. In total there was much less C degraded after 

three-week incubation, ranging from 0.30 to 2.26 mg (Fig. 3-9). The largest amount of C 

degradation occurred in Group C with nutrients added, and the smallest in Group B with 

inoculum added (Group B appeared to have the most C degradation by the CO2 detection). 

Different and more variable decomposition trends across groups were indicated from 

changes in [DOC]. In Groups C and D, the trends were more consistent, with the fastest 

degradation rate in the first week, and decreasing afterwards. In Group A, a negative 

value of C biodegradation was shown after the first week incubation.  

Discussion: For the measurements of CO2 production, a relatively large proportion of DOC 

was degraded during the 21-day incubation. This fast decomposition rate could be too 

optimistic, as DOC from peaty catchment water is normally more humic and persistent 

than that in general fresh water (more information shown in Chapter 4). For example 

there was a small percentage of biodegraded DOC for headwater draining forest and peat 

(1.63 – 9.30 %) during 20-day incubation (Fasching et al., 2014). It could be possible that 

dissolved inorganic carbon (DIC) in the forms of HCO3
- and CO3

2- and free CO2 also 

contributed to the relatively large amount of CO2 captured in the incubation. This amount 

of DIC needed to be quantified and corrected before continue using CO2 detection for 

BDOC measurement as it was a potential interference. This exploration was undertaken 

at Phase 2. 
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For the [DOC] measurements, small weekly changes (-0.48 - 1.98 mg l-1) in [DOC] were 

observed, and within the TOC analyser variation limits (2 mg l-1). The large SD of each 

[DOC] measurement across four treatments may further support that it was out of the 

ability of TOC analyser to detect the small changes accurately in the incubation. As a 

result, [DOC] measurement was not sensitive enough to detect this small amount of C 

biodegradation, and thus cannot be applied in the incubation experiment for the Drumtee 

water samples. 

Biodegradation of 27.5 mg l-1 DOC in 1 l solution theoretically required 73.3 mg O2, which 

was much less than the O2 presented in 1 l headspace (calculations according to ideal gas 

law at 20 °C). Thus, O2 limitation may not happen in this incubation system during the 21 

days. Further, it was observed that the incubation length of 21-day was long enough to 

capture the fast and slow DOC decomposition periods. In addition, the literature review 

shows much biodegradation incubation last for 20-40 days. Therefore, at this stage it was 

suggested to carry out incubation experiments for 21 days in this research. 

Further, no consistent trends in DOC biodegradation changes were observed across 

different treatments between the two sets of results. However it was observed that 

addition of nutrients and/or inoculum did not necessarily contribute to more DOC 

biodegradation. One possible reason for the less clear impacts from nutrient stock could 

be that whilst microbes consumed nutrients for DOC degradation, some nutrient materials 

were released from the decomposed DOC at the same time. Thus in order to simplify the 

experiment design, in the following experiments at Phase 2 and 3, and in Chapter 6, raw 

water samples were incubated with no nutrients or inoculum addition. 

3.2.2.2 Phase 2 

Objectives: When measuring CO2 production to estimate BDOC loss at Phase 1, concerns 

arose as what source of carbon (DOC or DIC) contributed to the NaOH-captured CO2. Thus, 

at this phase, experiments were carried out to analyse if the CO2 captured during the 

incubation was partially produced by different forms of DIC (HCO3
- and CO3

2- and free CO2) 

existing in the water samples, and if so to explore the effective correction for this DIC 

interference. 

Methods: The DIC interference was taken into account when using CO2 measurement for 

BDOC concentration in previous research (Wickland et al., 2012), by measuring headspace 

CO2 concentration immediately after acidifying samples before and after incubation. 

However, CO2 in the headspace cannot be directly related to CO2 in the liquid phase in 
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the stream, as CO2 outgassing from water causes the equilibria of the carbonate fractions 

(CO2, HCO3
- and CO3

2-) to shift (Fasching et al., 2014).  

Here, DIC interference can be minimized by quantifying the total DIC loss in water samples 

during incubation (Fig. 3-10). Generally, concentration of different DIC forms (CO2, HCO3
- 

and CO3
2-) can be calculated from the sample pH and total alkalinity according to the 

equations below: 

a. Bicarbonate alkalinity: 

HCO3
- as mg CaCO3 l

-1 = (T - 5.0 × 10(pH-10)) / (1 + 0.94 × 10(pH-10)) 

Where: T=total alkalinity, mg CaCO3 l
-1. 

b. Carbonate alkalinity: 

CO3
2- as mg CaCO3 l

-1 = 0.94 × B × 10(pH-10) 

Where: B = bicarbonate alkalinity, from a. 

c. Free carbon dioxide: 

mg CO2 l
-1 = 2.0 × B × 10(6-pH)  

Where: B = bicarbonate alkalinity, from a. 

d. Potential total carbon dioxide: 

mg total CO2 l
-1 = 0.44 × (2A + B) + C 

Where: A = bicarbonate alkalinity from a, and 

            B = carbonate alkalinity from b  

            C = mg free CO2 l
-1.  

Alkalinity measurement is a measure of the HCO3
- and CO3

2- in a water sample obtained 

by titrating the sample to pH 4.5 with standard acid (0.02 M HCl) and is expressed as mg 

CaCO3 per liter. 1 ml of 0.02 M acid is equivalent to 1 mg CaCO3. If there is DIC loss in the 

water samples during incubation, it would suggest the captured C may be partly or even 

largely derived from the DIC source. An approach would be needed to identify the true 

amount of CO2 released from DOC respiration during the incubation. 
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Fig. 3-10. Procedures examine and correct the potential DIC interference to measured CO2 
production during the incubation.  

Bulk stream water from the confluence site was collected on August 5th, 2015. Six 50 ml 

screw-top wide mouth tubs were fully filled with sub-samples from the bulk water without 

headspace for initial alkalinity measurement. The rest of bulk sample was dispensed into 

six 2l flasks with equal volumes (1 l) and stirred for three hours with flasks open to expel 

existing free CO2. Alkalinity was measured again for six replicates of subsamples of the 

stirred water just before incubation. This was undertaken to examine if stirring could 

effectively reduce the existing DIC (including HCO3
- , CO3

2- and dissolved CO2).  

Afterwards the rest stirred samples were incubated in the sealed flaks (2 l) in dark at 

20°C for one week. As the incubation length had already been determined at Phase 1, 

here this one-week incubation was used only to examine if there was DIC interference. A 

plastic titration cup with 10 ml 1 M NaOH was hung in each flask to capture CO2 produced. 

The titration cup can be removed after incubation and solution be titrated directly 

without rinsing in order to avoid any solution spills (which may have happened in the 

Phase 1 titration). The flask was sealed with rubber bungs covered by aluminium foil and 

Vaseline gel to provide a better sealed system. No extra inoculum or nutrient was added 

as unnecessary (see discussion at Phase 1). After one-week incubation, NaOH titration 

was conducted immediately. Six 50 ml replicates of incubated samples were stored in 

Initial alkalinity 

and pH of samples

Alkalinity and pH 

after stirring

Alkalinity and pH 

after incubation

If stirring 

reduces existing 

DIC in samples

Degassing by stirring

Incubation with 
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CO2 captured 
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tubs without headspace until alkalinity measurement, which was carried out soon after 

NaOH titration.  

Results: The titration results indicated 4.1 ± 0.13 mg C (in the form of CO2) was captured 

by NaOH in the one-week incubation of 1 l stream water samples. The results in Table 3-6 

showed the three-hour degassing by stirring removed 4.3 mg C l-1 free CO2, with increasing 

sample pH and alkalinity. However as pH increased after degassing, the calculation 

predicted an increase in HCO3
- content (from 27.9 ± 3.52 to 35.1 ± 0.37 mg CO2 l

-1), with 

only little changes in CO3
2-. Consequently, the degassing process led to only small amount 

of total DIC lost (2.6 ± 3.13 mg C l-1). 

Table 3-6 Total DIC loss after degassing and incubation.  Concentrations of different forms of 
DIC were calculated using pH, alkalinity. Mean values (n = 6) are presented in the table. 
Numbers in brackets indicate the standard deviation.  

 Parameters 
Before 
degassing 

After 
degassing 

After 
incubation 

pH 6.2 (0.03) 6.5 (0.06) 6.8 (0.09) 

Alkalinity (mg CO2 l
-1) 27.9 (3.52) 35.1 (0.37) 34.2 (0.34) 

Free dissolved CO2 (mg C l-1) 10.7 (1.84) 6.4 (0.83) 3.2 (0.6) 

HCO3
- (mg CO2 l

-1) 27.9 (3.52) 35.1 (0.37) 34.2 (0.35) 

CO3
2- (mg CO2 l

-1) 0.004 (0) 0.010 (0.001) 0.020 (0.004) 

Total DIC loss (mg C l-1) / 2.6 (3.13) 3.4 (0.79) 

**Total DIC = free dissolved C-CO2 + C-HCO3
- + C-CO3

2- 

In total 3.4 ± 0.79 mg C l-1 of DIC was lost during this one-week incubation (mainly 

comprising loss from dissolved CO2, 3.2 mg C l-1). This loss from DIC pool likely contributed 

to the CO2 captured by NaOH (4.1 ± 0.13 mg C l-1), suggesting only a small BDOC 

decomposition (0.7 ± 0.99 mg l-1) in these stream samples during the incubation.  

In addition, a slight increase in pH occurred during incubation (from 6.5 ± 0.06 increased 

to 6.8 ± 0.09), and alkalinity slightly decreased (from 35.1 ± 0.37 to 34.2 ± 0.34 mg CaCO3 

l-1). This contrasted with the observed changes during degassing before incubation, 

namely alkalinity increased with increasing pH. 

Discussion: It was revealed that a large part of CO2 dissolved in the NaOH solution was 

from DIC pool in water samples and not CO2 generated by DOC respiration. Theoretically 

from the alkalinity and pH measurements with time, it should be possible to correct this 

DIC interference. However, the DIC measurement results were variable among replicates, 

which consequently led to large variation in BDOC, and so this approach of making a 

correction was not considered precise enough.  
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Another major concern was that pH increased in both occasions (degassing: from 6.2 to 

6.5; incubation: from 6.5 to 6.8) which should theoretically lead to larger proportion of 

HCO3
- fraction (Fig. 3-11). This only occurred in the degassing process, and not in the 

incubation period. This could not be explained exactly at this stage. One possibility might 

be that alkalinity was influenced by organic anions from humic materials (Cantrell et al., 

1990; Barry et al., 2016).  

 

Fig. 3-11. Relative amounts of DIC fractions in water as a function of pH at 20 °C. The figure 
is adapted from (Pedersen et al., 2013). 

Taken all together, CO2 production measurement may overestimate BDOC loss, and it was 

not reliable to use alkalinity and pH measurements for the DIC interference correction. 

Thus CO2 detection for estimating BDOC was not suitable for water incubation in this 

research. 

3.2.2.3 Phase 3 

Objectives: Phases 1 and 3 indicated that measurements of [DOC] changes and CO2 

production were both not precise enough to quantify the BDOC loss in Drumtee water 

samples. Therefore at Phase 3 another approach, measuring DO consumption (a common 

measurement for DOC biodegradation used by, e.g. Guillemette and del Giorgio, 2011; 

Moran et al., 1999), was tested to find out if it was a more precise method. In natural 

waters at dark, DO is only consumed by microorganisms to degrade DOC and not produced 

by photosynthesis, thus DOC consumption can be calculated from DO reduction. 

Methods: In order to avoid interference of O2 from atmosphere, the incubation has to be 

conducted in a properly sealed system without any headspace. As a result, smaller scale 

incubations systems were used to allow sacrificial sampling for frequent analysis. 
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Although this sealed system did not mimic the real aquatic system, it still provided 

significant information about potential biodegradability and DOC decomposition process 

and was the only way possible to stop DO exchange with the atmosphere. Thus it is 

commonly-used. 

Bulk river water (2 l) was collected from the confluence site on August 26, 2015 and 

dispensed into six 250 ml brown reagent bottles without filtration once arrived in the lab. 

It was important to ensure that the bottles were fully filled with water and sealed 

completely. [DO] was measured in six sub-samples before incubation using a HQ10 Hach 

Portable LDOTM DO meter with luminescent sensor (a YSI DO meter with a membrane 

sensor based Clark electrode was also tested but showed less stability than the LDO one, 

thus was not used). The accuracy and resolution for the Hach DO meter were 0.1 mg l-1 

and 0.01 mg l-1 respectively. According to the DO meter introduction, seven readings were 

taken for each sample and mean values were used in later calculation. DI water saturated 

in DO was used as standards before and in between [DO] measurements, to check the 

stability of DO meter.  

The incubation was carried out without stirring in the dark room at 20 °C for one week. 

This time length was decided as just to examine if [DO] measurement was precise to 

detect BDOC loss. No extra inoculum or nutrient was added as unnecessary (see discussion 

at Phase 1). [DO] was measured again on the Day 7. 

Results: Using changes in [DO] to estimate DOC degradation gave much more consistency 

between replicates and similar rates of loss compared to the other two approaches used 

earlier. Weekly BDOC decomposition was estimated as 0.77 ± 0.05 mg l-1 (Table 3-7).  

Table 3-7 Biodegraded DOC loss in a one-week incubation indicated by DO consumption. 
Calculation is based on the equation C = 12*[DO]/32, according to which one mole of C 
mineralisation requires one mole of O2. [DO] is the DO difference before and after incubation. 

 Replicate 
DO (mg l-1) DO 

consumption 
(mg l-1) 

DOC 
biodegradation 

(mg l-1) 
Before 

incubation 
After 

incubation 

WL13 1 9.05 6.99 2.06 0.77 

WL13 2 9.06 6.84 2.22 0.83 

WL13 3 9.06 7.19 1.87 0.70 

WL13 4 9.06 7.03 2.03 0.76 

WL13 5 9.07 6.91 2.16 0.81 

WL13 6 9.06 7.06 2.00 0.75 

Mean 9.06 7.00 2.06 0.77 

SD 0.01 0.12 0.12 0.05 
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Discussion: The DO meter was sensitive enough (resolution as 0.01 mg l-1 O2, namely 0.004 

mg l-1 C) to detect the typically small changes in C degradation of this peaty water samples. 

A good stability and consistency was shown in this approach. In addition, it was also easier 

to have incubation conducted by using reagent bottles, without concerns about errors 

introduced from complicated procedures (e.g. titration and replacing NaOH containers) 

and the DO concentration was straight forward to measure.  

Thus, considering the characteristics of my water samples (namely slow in 

biodegradation), and stability and reliability of all three methods tested, the [DO] 

measurement was chosen to be applied in the following incubation experiments to explore 

DOC biodegradation. 

3.2.3 Summary of method development for biodegradation 
incubation experiment 

This method development provided an overview of the slow BDOC decomposition in the 

Drumtee waters. Three commonly used measures for BDOC estimation were tested in this 

period. These experiments showed that the Thermalox TOC analyser was not precise 

enough to detect small changes in DOC in these humic water samples. Contribution from 

the existing DIC pool to CO2 undermined estimating DOC degradation from CO2 produced, 

and the interference cannot be properly corrected by measurements of alkalinity and pH. 

However DO consumption turned out to be an easy and stable method to quantify BDOC, 

detecting small measurement changes during the incubation, and thus was the approach 

chosen for the incubation experiments (Chapter 6).  

Thus the protocol used was that untreated water samples would be incubated in individual 

reagent bottles with no headspace to avoid extra O2. No nutrients or inoculum would be 

added (results from Phase 1). Samples would be measured sacrificially for [DO] at 3- or 

4-day intervals to estimate BDOC loss. Although it was suggested at Phase 1 to carry out 

the incubation for 21 days. Due to the limited amount of DO in the 250 ml reagent bottles, 

there may be insufficient oxygen to support DOC respiration for up to 21 days. Exploration 

of the incubation length was undertaken in the first incubation experiment (Chapter 6). 
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4 Impacts of wind farm development on spatial 
and temporal variation of DOC quantity and 
quality 

4.1 Abstract 

This chapter considers a ten-year fluvial DOC concentration (2006 – 2016) time series and 

a two-year spectrophotometric composition (2014 – 2016) time series for the Whitelee 

catchments draining the south of Whitelee wind farm, to explore how wind farm 

disturbance influences DOC composition of the streams draining a peat-rich catchment. 

[DOC] across the Whitelee catchments showed an increasing trend during the ten years 

since the original wind farm development began and has not yet returned to the baseline 

level. [DOC] at sites WL13 and WL15, which were most affected by wind farm 

development, increased shortly after construction started, suggesting this activity causes 

increases in [DOC]. This interpretation of wind farm-related land use changes is further 

supported by the observed spatial and temporal variation of [DOC] between two 

tributaries within a small catchment Drumtee (5.7 km2). The two tributaries are draining 

turbine-covered areas and felled forestry respectively. Similarly [SRP] increased at 

catchments WL13 and WL15 after construction, but no year-on-year increase was found. 

The macronutrient increase associated with wind farm construction is likely from the 

breakdown of organic matter e.g. from felled forestry. However, DOC export during the 

hydrological years 2011 – 2016 did not show a response concomitant with the increasing 

[DOC] trend indicating that controls on export of this macronutrient are more complex, 

and strongly influenced by climatic conditions (annual discharge).  

Changes in DOC composition of receiving waters was also assessed at different scales: 

across the Whitelee catchments as well as between the two tributaries within Drumtee. 

The [Fe3+]-corrected SUVA254 and E4/E6 indicated broadly similar DOC aromaticity and 

FA:HA in HS pool across all Whitelee catchments. However the smaller SUVA410 and larger 

E2/E4 in WL13 (Drumtee confluence) suggest there was a smaller HS proportion in WL13 

DOC. While some climatic conditions would not differ much across the catchments, 

smaller [TON] and shorter water retention time in WL13 may contribute to the DOC 

composition difference.  

In addition, land use may also influence the DOC composition. Within the Drumtee 

catchment the tributary draining the wind farm area exported more HS than the one 

draining felled forestry, indicated by greater SUVA410 and smaller E2/E4. The results in the 

Drumtee catchment may be due to young DOC from the breakdown of residual branches 
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and roots in the felled area, or release of more humified organic matter from soils in the 

wind farm area as more deep peat was exposed due to peat excavation.  

Furthermore hydrological conditions were observed to affect DOC composition both across 

the Whitelee catchments and between the tributaries. However in the Drumtee 

catchment, during the dry months DOC composition showed inverse changes between 

tributaries. This may be caused by the different terrestrial DOC sources from soil due to 

land use changes more obvious as the catchment became drier.   

4.2 Introduction 

It is estimated that a third of soil carbon in the world is stored in peatlands, which 

amounts to two-thirds of the atmospheric carbon pool (Limpens et al., 2008). The large 

amount of carbon stored may also be susceptible to changes in its release of gaseous 

carbon to atmosphere, or dissolved carbon to aquatic systems in response to global 

warming and changes in land use (Limpens et al., 2008). Land use change including 

deforestation, drainage and peatland burning, has been reported to facilitate releasing 

CO2 to atmosphere (Hirano et al., 2009; Jauhiainen et al., 2005; van der Werf et al., 

2009), and DOC from peat soils to stream water (Neal et al., 2004; Waldron et al., 2009), 

and it has been suggested C losses in peatlands should be associated with land use change 

(Hergoualc'H and Verchot, 2011). Land use is one of the factors contributing to significant 

vegetation change in terrestrial ecosystems, which can affect the carbon balance through 

its impacts on net primary productivity, the amount and ratio of CO2:CH4 emitted to the 

atmosphere (Limpens et al., 2008), and influence soil decomposition rates by altering the 

quantity and quality of litter inputs (Bardgett, 2005; Ward et al., 2015). Plant functional 

group removal, which happens in deforestation, has strong effects on soil biota and 

nutrient cycling associated with soil organic matter decomposition (Ward et al., 2015).  

In Europe large areas of peat have been drained to improve grazing, lowering the water 

tables and stimulating DOC production (Worrall and Burt, 2004). [DOC] was observed to 

increase immediately during peat bog harvesting as a result of the ecosystem disturbance, 

but decrease afterwards, which might be due to a low content of stored DOM in the soil 

(Glatzel et al., 2003). Afforestation can lead to higher [DOC] for peat-covered catchments 

and forestry effects on [DOC] appear most significant following felling (Neal et al., 1998). 

Deforestation has both direct and indirect influences on C stocks and fluxes in terrestrial 

ecosystems (Bala et al., 2007). Timber-felling on peaty-mineral soils generally leads to 

an increase in stream water [DOC] which may persist for a few years, especially at a local 

scale (e.g. Neal et al. 2004). Forest clear-cutting has showed to significantly increase 
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[DOC] in boreal first-order streams (Schelker et al., 2014). Research on Asian tropical 

peat forests also measured significantly larger [DOC] for pore water in the deforested site 

than the pristine site, even without intentional drainage (Gandois et al. 2013).   

However, whilst DOC concentration and fluxes associated with land use changes have 

been widely considered, not enough is known about how the composition of DOC responds 

to different land use management and how constant DOC composition will be. DOC 

composition and properties are significant in determining decomposition rate, which is 

responsible for the carbon release into atmosphere and determinative in terrestrial 

carbon storage potential (Jauhiainen et al., 2005; Ward et al., 2015). Compositional 

differences also indicates the origin of DOC (vegetation and soil leaching, microbial 

production) and reveal carbon cycling processes occurring in the peatland (Glatzel et al., 

2003; Fellman et al., 2008; Gandois et al., 2013), and thus can also be affected by changes 

in balance during these processes. This understanding can inform further consideration 

of the fate of DOC in streams during transport, a key process in the global carbon cycle: 

terrestrial C moves laterally and is exported to the ocean or transformed to carbon 

dioxide where it can be degassed to the atmosphere (Long et al., 2015). As such it is 

important I consider the processes that control fluvial DOC composition and seek to 

understand if fluvial DOC composition varies in space and time.  

Land use changes can be a key driver of DOC composition. As most fluvial DOC comes from 

the catchment soils, differences in fluvial DOC composition may reflect differences in the 

catchment soil reservoir, including how the land is managed. For example, afforestation 

in headwater streams can enrich the fulvic acid-like and protein-like DOC, which may be 

caused by the different plant litter qualities leading to different decomposition rates in 

the organic soil layer (Yamashita et al., 2011). Agriculture has been suggested to have 

changed the fluvial DOC to less terrestrial but more microbial-derived composition, and 

this may be due to the intensive usage of fertilizer, soil tillage and drainage changing 

microbial processing of DOC (Graeber et al., 2015).  

A land use change challenge prevalent today is the disturbance of peatland soils for the 

construction of wind farms (Drew et al., 2013). Soil disturbance to bedrock and extensive 

deforestation can be required for wind farm construction and these activities may be 

expected to increase [DOC]. Indeed, short-term increases have been observed (e.g. 

Grieve & Gilvear 2008; Waldron et al. 2009 ). However only a few studies have considered 

the impact of wind power development on carbon cycling and export (Table 4-1). At the 

sub-catchment scale, ‘hot spots’ of high [DOC] (maximum of 113 mg C l-1) were observed 

during construction in headwater streams draining a peatland in south west Scotland 
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(Niekerk, 2012). In Central Scotland [DOC] in streams draining wind farm site located in 

a blanket peat catchment was always larger than those in undisturbed stream in the 

period immediately after construction (Grieve and Gilvear, 2008). The additional DOC loss 

related to wind farm-induced disturbance was estimated at 5 g m-2. Not only DOC, but 

also water chemistry, were found to be impacted by wind farm disturbance (Waldron et 

al., 2009). Consequently in receiving water, the changes in nutrient exports were 

suggested to support aquatic respiration rather than to increase microbial biomass, and 

thus greater CO2 efflux could prevail. 

Table 4-1 Key findings from existing research in the UK that has investigated the impacts on 
fluvial DOC from wind farm development on peatland.  

Study site 
Study 
period 

Wind farm impacts on DOC Source 

Peat headwater 
hosting 
Whiteelee Wind 
Farm in south 
west Scotland 

2006-
2007 

Wind farm -related disturbance resulted in 
temporal and spatial changes in 
stoichiometry between C, N and P of 
receiving waters. 

(Waldron et 
al., 2009) 

Blanket peat 
catchment in 
central Scotland 

2006-
2008 

Greater [DOC] observed in wind farm-
disturbed tributaries, with additional DOC 
loss. 

(Grieve and 
Gilvear, 

2008) 

Peatland forest 
hosting 
Arecleoch Wind 
Farm in south 
Ayrshire, 
Scotland 

2008-
2010 

The most disturbed catchment showed 
greatest [DOC]. Wind farm and/or forestry 
activities may result in extra DOC flux, 
increasing DOC concentration and 
humification. 'Hot spots' of high [DOC] was 
found inside the developed area. 

(Niekerk, 
2012) 

Peat catchments 
hosting Whitelee 
Wind Farm in 
south west 
Scotland 

2007-
2010 

Percentage of peat-based soil has 
influence on streamwater C, and wind 
farm-related disturbances were found to 
control streamwater dynamics. Forestry 
operations most likely resulted in 
additional C and P in stream. 

(Murray, 
2012) 

Peat catchment 
hosting 
Gordonbush 
Wind Farm in 
North East 
Scotland 

2010-
2014 

Wind farm-related forest felling and peat 
coverage may contribute to greater [DOC]. 
Construction activities may result in an 
increase in aquatic C export. 

(Smith, 
2016) 

Peat catchments 
hosting Whitelee 
Wind Farm 
extension in 
south west 
Scotland 

2011-
2013 

Forest felling was found to be significantly 
positively correlated with DOC 
concentration and export, while tracks, 
cable trenches and turbines exerted 
negative control. [DOC] increased during 
wind farm development and took five 
years to recover. 

(Phin 2015) 
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Long-term monitoring is suggested for assessments of wind farm development. In 

Whitelee, UK’s largest onshore wind farm, a ten-year monitoring has been conducted 

through a series of research projects since the original construction. An increase in [DOC] 

was measured during the windfarm construction in the catchment closest to the Whitelee 

wind farm, with the highest DOC export in the year after construction started (Murray, 

2012). Furthermore this increasing impact was continuously monitored and approximately 

five years following development [DOC] was suggested to return to pre-construction levels 

(Phin 2015). Consistent in several studies was that wind farm-related forestry operations 

e.g. clear-felling, was considered most likely to impact aquatic carbon concentration 

and/or export (Table 4-1). 

Within the limited research, the impacts of wind farm development on terrestrial C loss 

to aquatic systems has mainly focused on quantifying DOC loss, with only one study 

assessing DOC composition, specifically humification using E4/E6 (Niekerk, 2012). Thus 

little is known about whether the increased DOC exported to streams becomes more 

resistant or susceptible to decomposition, yet this information could be useful to 

understand the source of released DOC and what controls this. Here in addition to 

understand the wind farm impacts on water chemistry and quality by continuing the long-

term in-stream [DOC] monitoring, DOC composition was measured not only at the 

catchment-scale, but also within one catchment previously most impacted by wind farm 

development. Further, drawing on the compositional characteristics of different DOC 

pools (HS, HAs and FAs) described earlier (Chapter 1), UV spectrophotometric methods 

and parameters were used to assess DOC composition and to explore:  

1) how long wind farm-associated disturbance can influence water chemistry in peaty 

catchments, by analysing mainly the trends of DOC concentration and export before 

and after wind farm development started; variations of [TON] and [SRP] were also 

considered; 

2) if wind farm-related land use differences (mainly wind farm construction and 

deforestation) caused any spatial difference in [DOC] between catchments 

experienced wind farm disturbance, as well as two tributaries in a small catchment;  

3) whether this released DOC differed in composition and how is the variation related to 

the two specific land uses. 
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4.3 Methods and materials 

4.3.1 Water sampling strategy  

In order to understand the long-term impacts of wind farm-related disturbance on 

peatland catchment water, stream samples for DOC, SRP and TON were collected from 

the outlets of the five Whitelee catchments (WL13, 14, 15, 1 and 16), which drain the 

south of the Whitelee windfarm, approximately every four weeks from April 2014 – 

September 2016. This continued a sampling programme which started in July 2006, but 

augmented it by considering also DOC composition. Additionally, on the same day as long-

term water sampling in 2014 – 2015, water samples were collected from the Drumtee 

Catchment (WL13) in order to investigate over one year the DOC concentration and 

composition: eight sites on the stream draining the wind farm area (Stream D-WF) and 

seven sites on the other draining the felled forestry (Stream D-FF) (Fig. 4-1, modified and 

reproduced from Fig. 2-5 for ease of reading). Full information about the field sites and 

sampling procedures can be found in Chapter 2.   

 

Fig. 4-1. Sampling points for short-term DOC analysis (February 2014 – February 2015) in the 
Drumtee Catchment. Land use data was from Digimap® Land Cover Map 2015. 
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4.3.2 Water sample quantity and quality analysis 

Both long-term and short-term water samples were analysed for [DOC] and UV-visible 

absorbance. Optical parameters (SUVA254, SUVA410, E2/E4 and E4/E6) were calculated after 

absorbance at 254 nm was corrected for Fe3+ interference. For long-term samples, [SRP] 

and [TON] were also measured. The procedures for sample collection, treatment, 

measurement and calculation of the above parameters are detailed in Chapters 2 and 3. 

4.3.3 Annual specific DOC flux calculation 

Stream water discharge at Drumtee confluence site during 2011 - 2016 was scaled to 

catchment area for other Whitelee catchments (WL14, 15, 16 and 1) upon the assumption 

that specific discharge was similar in these adjacent catchments. Annual DOC flux was 

estimated according to ‘Method 5’ for each hydrological year from Oct. 2011 – Sept. 2016, 

and divided by the catchment area to generate specific annual DOC flux. Details are 

described in Chapter 2, Section 2.4.2.   

4.3.4 Data analysis  

In Drumtee, temporal variation of sub-catchment was characterised by the mean values 

and the standard deviation of all sampling points for each sampling trip. This was 

undertaken to provide more confidence that the variation in each sub-catchment 

composition was captured in the single monthly average. This approach has a degree of 

pseudoreplication. However, around 50 % of the sampling points receive no water from 

upstream and thus were independent of one another, and all sites received new water.  

For Drumtee samples, one way analysis of variance (ANOVA) of the pooled data was 

undertaken to explore if there were significant inter-stream differences for all DOM 

optical parameters. Among the five long-term-monitored Whitlee catchments, ANOVA 

was also used to examine inter-catchment variation during 2014 – 2016 for the DOM 

monthly optical parameters. Before any ANOVA analysis, the Anderson-Darling method 

was applied to examine the normality of each dataset and all datasets in this study 

(including both long- and short-term data) were normally distributed. A Tukey Test in 

ANOVA was used. All normality and ANOVA analyses were conducted using Minitab®  17 

statistical software. A p value < 0.05 was considered as significantly different. 

The Seasonal Kendall test (Hirsch et al., 1982; Hirsch and Slack, 1984) was used to analyse 

nonparametric seasonal changing patterns in [DOC], [SRP] and [TON]. This test for trend 

was further developed by the U.S. Geological Survey for a computer programme and has 
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become the most frequently used test for trend in the environmental sciences (Helsel et 

al., 2006). In this research, the Seasonal Kendall test (Type 2) was applied and where the 

slope value > 0 means an increasing trend (and vice versa), and p < 0.05 means the change 

is significant. Based on the windfarm activities, the time series (July 2006 – September 

2016) can be divided into periods: July 2006 – October 2010 for the first windfarm 

development and following two years afterwards, and November 2010 – September 2016 

for the extension activities and four years afterwards. The Seasonal Kendall test were 

applied for the complete time series and the two divided groups. 

4.4 Results 

4.4.1 Stream [DOC] time series (2006 – 2016) in the Whitelee 
catchments 

A seasonal cycle for [DOC] was observed in all sites and for the duration of the 10-year 

time series (Fig. 4-2), with the largest concentration in the summer periods (July – 

October) and the smallest in the winter and spring (November – April). The maximum 

[DOC] was 66.8 mg C l-1 in WL15 (July 2016) and the minimum was 5.2 mg C l-1 in WL1 

(February 2007). WL15 had the greatest median [DOC] (30.7 mg C l-1) during these years, 

followed by WL13 (26.9 mg C l-1) (Table 4-2). The concentrations were similar between 

sites in most months through all the years, but in the summer period there were relatively 

higher [DOC] in WL13 and WL15, which are sites closest to the original and extension wind 

farm development respectively.  

The maximum and median [DOC] at WL13 showed the greatest increase from HY2006-07 

to HY2007-08 (maximum: from 40.9 to 57.1 mg C l-1, median: 18.1 to 29.8 mg C l-1), but 

for the same time period only slight increases were shown at most of other sites (Fig. 4-2 

and Fig. 4-3).  During the first phase of windfarm development (October 2006 – May 2009), 

the highest [DOC] of the five sites was constantly observed in WL13 (Fig. 4-2). At all sites 

a higher [DOC] (maximum, median and minimum) than the value during HY2006 – 2007 

was found in HY2009-10, one year after the original development was finished (Fig. 4-3). 

Furthermore, during July 2006 – Oct. 2010 (the original development and two years 

afterwards), significant increases were found for all site (p < 0.05, Table 4-2). 
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Fig. 4-2. Long-term time series (July 2006 – Sept. 2016) of [DOC] for catchments WL13, 14, 15, 16, 1 draining the south of the Whitelee wind farm (Fig. 2-1). 
Dash boxes indicate time periods of original windfarm development (all catchments affected, Oct. 2006 – May 2009), and extension (WL15 affected most, Nov. 
2010 – Feb. 2013). Data prior to Aug. 2011 was collected by Murray (2012) and Waldron et al. (2009), and between Sept. 2011 – Mar. 2013 by Phin (2015).  
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Fig. 4-3. Box-plots showing Long-term time series (Oct. 2006 – Sept. 2016) of [DOC] for catchments WL13, 14, 15, 16, 1 draining the south of the Whitelee 
wind farm (Fig. 2-1). Each coloured bin is pooled data for a hydrological year and it is noted that 2015-2016 is not a full year. The boxed area shows interquartile 
range, the median is the horizontal line within the box, and the vertical lines extending from the boxes show the minimum and maximum. Data point outliers 
are shown as asterisks. Data prior to Aug. 2011 was collected by Murray (2012) and Waldron et al. (2009), and between Sept. 2011 – Mar. 2013 by Phin (2015). 
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Table 4-2 Median values, p values, significance and trend slope for [DOC] in catchments WL13, 
14, 15, 16, 1 draining the south of the Whitelee wind farm (Fig. 2-1). Data was grouped into 
three: the total 10 years, July 2006 – Oct. 2010 for the original wind farm development and two 
years afterwards, and Nov. 2010 – Sept. 2016 for the extension and three years afterwards. 
Numbers in bold red are indicating the largest trend slopes for significant changes. * p < 0.05, 
** p < 0.01, *** p < 0.001. 

Years Sites 
Median [DOC] 

(mg l-1) 
p Significance Slope 

July 2006 – Sept. 2016 

WL13 26.9 0.022 * 1.12 

WL14 22.2 0.011 * 1.17 

WL15 30.7 0.003 ** 1.91 

WL16 22.8 0.003 ** 1.30 

WL1 20.6 0.004 ** 1.26 

July 2006 – Oct. 2010  

WL13 26.0 0.008 ** 2.63 

WL14 20.9 0.032 * 2.54 

WL15 25.5 0.000 *** 2.58 

WL16 19.8 0.005 ** 2.04 

WL1 17.9 0.000 *** 2.63 

Nov. 2010 – Sept. 2016 

WL13 27.3 0.001 *** 1.71 

WL14 24.3 0.006 ** 2.13 

WL15 34.9 0.004 ** 2.38 

WL16 25.3 0.007 ** 1.98 

WL1 21.5 0.018 * 1.47 

 

However, from 2011 the greatest [DOC] of the five sites was observed in WL15 (Fig. 4-2), 

which was the catchment most affected by the extension. Noticeably, during HY2010 - 11 

(the extension year), when maximum and median [DOC] were constant or decreased for 

most sites compared to HY2009 - 10, increases of both values were observed at WL15 

(maximum: from 47.2 to 50.7 mg C l-1, median: 27.0 to 32.2 mg C l-1, Fig. 4-3). The high 

[DOC] in WL15 did not reduce after the windfarm extension was completed.  Furthermore, 

over the extension period and the following years (Nov. 2010 – Sept. 2016), significant 

increasing trends of [DOC] were observed at all sites (although a decrease occurred during 

2012 – 2013) (p < 0.05, Table 4-2, Fig. 4-3). WL15 presented the largest increasing slope 

compared to other sites (Table 4-2). Over the 10 years significant increasing trends were 

suggested for all five sites (p < 0.05, Table 4-2), with the largest slope at WL15, indicating 

[DOC] has been increasing the fastest.  

Taken all together, greater [DOC] and the greatest increase were observed in WL13 during 

the original wind farm development. However, [DOC] in WL15, which hosted most of the 

extended turbines, showed the greatest [DOC] since the extension began. 
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4.4.2 Annual specific DOC export from the Whitelee catchments  

The annual specific DOC exports from the Whitelee catchments were calculated for 

hydrological years 2011 – 2016, when the stream discharge data at WL13 is available. As 

in 2016 the discharge monitoring was stopped in April and low discharge in the drier 

periods were not recorded, there may be an overestimate of the annual discharge in this 

year.  

Table 4-3 Annual specific DOC export (g m-2 yr-1) from the Whitelee catchments during Oct. 
2011 – Apr. 2016. It should be noted 2016 did not have data for a complete hydrological year 
(recording stopped in April 2016).  

Hydrological year WL13 WL14 WL15 WL1 WL16 

2011-2012 36.3 27.3 39.2 29.5 31.8 

2012-2013 26.0 20.8 33.4 22.4 17.3 

2013-2014 47.1 37.2 51.9 36.6 41.0 

2014-2015 22.4 17.6 23.4 16.6 13.6 

2015-2016 25.5 23.1 34.9 25.1 26.5 
  

 

Fig. 4-4. Annual specific DOC export from the Whitelee catchments from Oct. 2011 – Apr. 2016. 
It should be noted 2016 did not have data for a complete hydrological year. The hydrological 
year total discharge measured at WL13 is represented by the orange line.  

The annual DOC exports ranged from 13.6 g m-1 yr-1 (at WL16 during 2014 – 2015) to 51.9 

g m-2 yr-1 (at WL15 during HY2013-14) (Table 4-3 and Fig. 4-4). There was a similar 
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temporal trend of DOC export in each of the catchment, with the greatest fluxes occurring 

in HY2013 - 14 (36.6 – 51.9 g m-2 yr-1 across catchments), followed by those during HY2011 

- 12 (27.3 – 39.2 g m-2 yr-1). The smallest fluxes were observed in HY2014 – 15 (13.6 – 23.4 

g m-2 yr-1), about one year after the extension activities finished. This temporal trend in 

DOC flux is broadly similar to the variation in annual stream water discharge.  

In all years WL15 (23.4 – 51.9 g m-2 yr-1) had the greatest DOC export between catchments, 

followed by WL13 (22.4 – 47.1 g m-2 yr-1). Both had WL13 and WL15 had larger [DOC] than 

the other catchments (Fig. 4-2). 

4.4.3 Seasonal [DOC] (2014 – 2015) in Drumtee Catchment 

Drumtee represents the long-term site WL13 of more intense monitoring (e.g. Coleman, 

2017) and so this site was chosen for one year to consider also the sub-catchment spatial 

variation in DOC concentration and composition, related to the land use. Across the two 

tributaries and confluence in the Drumtee Catchment, [DOC] ranged from 5.2 to 89.3 mg 

C l-1 from February 2014 – February 2015, with the largest [DOC] for D-FF6 in August 2014 

and the smallest for D-WF6 in January 2015(Fig. 4-5 upper).  

All tributary [DOC] exhibited little intra-stream variation, apart from site D-WF4 

(represented by the green line in Fig. 4-5 upper), which had concentrations more similar 

to D-FF group. This site, unlike others in D-WF, had its source within the felled area. As 

this section focuses on the comparison between the two sub-catchments, to explore if 

land-use affects DOM composition, it was considered more appropriate to pool this data 

with the D-FF samples. Doing this reduces intra-stream variation and the more similar 

tributary group composition facilitates consideration of inter-stream difference. The 

clarification for this decision (moving D-WF4 to D-FF group) is further detailed in Appendix 

A – Drumtee data treatment. This re-grouping method is therefore applied to the 

consideration of both DOC concentration and composition in Drumtee, and the primary 

data are provided in the sections 4.4.3 and 4.4.5 to allow the comparison between D-WF 

and D-FF groups. 



Chapter 4 

73 
 

 

Fig. 4-5. [DOC] of all sampling sites along the Drumtee tributaries (Fig. 2-1) for each month 
from February 2014 to February 2015 were shown in the upper panel. The mean values of 
each tributary and the confluence water are shown in the lower panel, where each sample 
point is the mean ± SD of all intra-stream points sampled on the same day. D-WF4 was pooled 
with D-FF. The grey area shows the range of [DOC] in the five Whitelee catchments.  

After re-grouping, more obvious differences were observed between streams (Fig. 4-5 

lower). The range in [DOC] in both streams was large, with D-FF having greater monthly 

mean [DOC], ranging from 13.5 ± 1.4 – 81.6 ± 9.5 mg C l-1 across the year, compared to 

from 6.6 ± 0.7 – 49.0 ± 4.0 mg l-1 for D-WF. Monthly [DOC] in the confluence water was in 

between the two tributaries, but closer to D-WF, ranging from 8.6 – 60.4 mg l-1. In addition, 

monthly D-WF [DOC] was similar to Whitelee long-term sites and towards the lower end 
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of the range, whilst D-FF showed [DOC] towards the higher end of the range (Fig. 4-5 

lower).  

Generally, [DOC] in the Drumtee tributaries showed similar seasonal patterns to that 

observed in long-term sites, with the lowest concentrations in winter and highest in 

summer. However, there were [DOC] decreases across Drumtee in both July and 

September, which were the dry periods in 2014 (Fig. 4-5 lower). Similar decreases were 

observed for [DOC] in the long-term sites as well. There were smaller decreases in D-FF 

in September (of 14.6 mg C l-1 in July and 14.0 mg C l-1) than in D-WF (of 27.1 mg C l-1 in 

July and 20.3 mg C l-1). 

4.4.4 DOC composition in the Whitelee catchments 

SUVA254 in all long-term sites ranged from 2.2 – 4.2 l mg-1 m-1 between April 2014 to 

September 2016, with the smallest in WL1 (October 2015), and the largest in WL15 

(January 2015) (Fig. 4-6). The mean values of monthly SUVA254 for all sites had a small 

range from 3.4 ± 0.4 – 3.5 ± 0.4 l mg-1 m-1 (Table 4-4). The range of SUVA254 for Whitelee 

was within the range observed from other samples from different aquatic systems, with 

the mean values towards the higher end of range (Table 4-5). Mean SUVA254 for long-term 

sites was similar to that in other peaty waters, such as a Canadian peatland well water 

(Olefeldt et al., 2013). No significant difference was measured for SUVA254 among sites 

(p > 0.05, Table 4-4). All SUVA254 varied throughout the observation period (Fig. 4-6). 

There was no seasonal pattern in SUVA254, but a decrease was observed in October 2015 

and then a gradual increase towards the summer months, although variable.  

SUVA410 in all Whitelee sites ranged from 0.32 – 0.63 l mg-1 m-1, with the largest in WL16 

in September 2014 and the smallest in WL13 in October 2015 (Fig. 4-6). WL13 also had 

the smallest monthly mean SUVA410 (0.47 ± 0.05 l mg-1 m-1) compared to other sites (Table 

4-4). ANOVA analysis indicates monthly mean SUVA410 in WL13 was significantly different 

from that in all the other sites bar WL14. Smaller SUVA410 for WL13 indicates less complex 

aromatic carbon in the DOC. No seasonal pattern was observed for SUVA410 but it showed 

a similar temporal trend to that of SUVA254, with an obvious decrease in October 2015. It 

was also noticed in January 2016 (a cold and wet period) SUVA254 and SUVA410 increased 

in WL13 but decreased in the other catchments.  

Although both SUVA parameters varied throughout the years, in summer and autumn DOC 

seemed to be less aromatic after a dry period. For example, both SUVA decreased in 

August 2014 and October 2015, Fig. 4-6). 
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Table 4-4 Mean values of monthly optical parameters (SUVA254, SUVA410, E2/E4 and E4/E6) of 

the long-term sites (Fig. 2-1) from 2014 - 2016. The difference was examined using ANOVA, 

and p < 0.05 suggests there was significant difference within the group. Where one site is 

different to the others this is indicated in bold. 

 
SUVA254 

(l mg-1 m-1,  
p = 0.739) 

SUVA410 

(l mg-1 m-1, 
p = 0.007) 

E2/E4 

(p = 0.000) 
E4/E6 

(p = 0.128) 

WL13 3.4 ± 0.4 0.47 ± 0.05* 7.3 ± 0.5 7.3 ± 1.1 

WL14 3.4 ± 0.4 0.49 ± 0.05 7.0 ± 0.3 6.8 ± 0.5 

WL15 3.5 ± 0.4 0.51 ± 0.05 6.9 ± 0.4 7.1 ± 0.7 

WL16 3.5 ± 0.3 0.52 ± 0.05 6.7 ± 0.5 7.4 ± 1.2 

WL1 3.4 ± 0.4 0.50 ± 0.05 6.7 ± 0.4 7.3 ± 1.1 

Implication 
Similar DOC 
aromaticity 

Less contents of 
more complex 

aromatic C in WL13 

Smaller proportion 
of HS in WL13 DOC 

Similar 
FA:HA 

*WL13 SUVA410 was significantly smaller than all the other sites bar WL14. 
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Fig. 4-6. SUVA254 (upper) and SUVA410 (lower) for DOC in the five long-term sites (Fig. 2-1), 
from April 2014 – September 2016. DOC composition of the long-term sites was only 
measured since April 2014. No UV data was measured during March to May 2015 due to 
indecisive research plan. All UV absorbance was corrected for Fe3+ interference. Discharge 
recorded in WL13 was used to indicate flow conditions in all sites. Due to construction in the 
site, discharge recording stopped after 22 April 2016. 
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Fig. 4-7. E2/E4 (upper) and E4/E6 (lower) for DOC in the five long-term sites (Fig. 2-1), from April 
2014 – September 2016. DOC composition of the long-term sites was only measured since 
April 2014. No UV data was measured during March to May 2015 due to indecisive research 
plan. All UV absorbance was corrected for Fe3+ interference. Discharge recorded in WL13 was 
used to indicate flow conditions in all sites. Due to construction in the site, discharge 
recording was stopped after 22 April 2016.   
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E2/E4 in all Whitelee sites ranged from 5.8 – 8.4 across the years. E2/E4 of WL13 was 

constantly higher than the rest sites all through the years (Fig. 4-7), and the average 

monthly value was measured to be significantly different from others (Table 4-4). A larger 

E2/E4 represents either greater total aromatic C content (Abs254), or less of the complex 

aromatic C (Abs410). Here E2/E4 indicates proportionally less complex aromatic C (HS) in 

WL13, as SUVA254 was not significantly different among sites. E2/E4 in all sites varied 

temporally but showed a similar seasonal trend. The increase in E2/E4 in all sites 

respectively in 2014 winter (cold and wet) and 2016 summer (warm and dry) suggests 

proportionally less HS in DOC.  

E4/E6 ranged from 4.8 (WL13, January 2015) to 10.8 (WL16, July 2014) through the period 

but was more spatially variable than E2/E4 (Fig. 4-7). The mean monthly E4/E6 ranged from 

6.8 ± 0.5 – 7.4 ± 1.2 between the five sites, but no statistically significant difference was 

suggested across sites (p > 0.05, Table 4-4). No seasonal pattern was found for any site. 

However, it was noted that in January 2015 E4/E6 decreased for all sites, and at the same 

time E2/E4 increased. Together these may indicate the DOC in that month had 

proportionally less HS than non-humic materials than earlier (shown by the increased 

E2/E4). However the HS became more humified (smaller FA:HA, shown by the decreased 

E4/E6) and thus resistant. An increase of E4/E6 in October 2015 was observed for most 

sites, indicating DOC became less humic. This was in the agreement with decreased SUVA 

and increased E2/E4 in the same month (Fig. 4-6 and Fig. 4-7).   

 

Fig. 4-8. Schematics showing the different proportions of HS in DOC produced from WL13 
and the other four Whitelee catchments, with the relative areas hypothesised to represent. 
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The differences in DOC composition between WL13 and the other catchments as indicated 

by the spectrophotometric composition can be summarised (Fig. 4-8), driven primarily by 

differences in SUVA410 and E2/E4 (Table 4-4). In summary these indicate that WL13 was 

less humified, and contained a greater proportion of non-humic materials, but similar 

FA:HA of humic substance pool. 

4.4.5 DOC composition in the Drumtee Catchment  

Monthly mean SUVA254 in the Drumtee catchment along two streams ranged from 2.8 ± 

0.3 to 4.5 ± 0.3 l mg-1 m-1. For most months SUVA254 in Drumtee was close to the range of 

Whitelee long-term sites (Fig. 4-9). The annual mean value of SUVA254 across Drumtee 

(3.7 ± 0.32 l mg-1 m-1) was within the range of diverse surface freshwater (Table 4-5), but 

towards the higher end, indicating the fluvial DOC in Drumtee catchment was rich in 

aromatic carbon. Generally, throughout the year DOC in the two tributaries had similar 

aromaticity with small variation (Fig. 4-9). The annual mean SUVA254 between two streams 

was suggested to be not significantly different (p > 0.05, Table 4-5). However different 

responses in streams were recognized in summer and winter respectively. The D-WF DOC 

aromaticity decreased clearly from 3.9 ± 0.0 to 2.8 ± 0.3 l mg-1 m-1 in July 2014 (the dry 

month) when there was a slight increase in D-FF (from 3.7 ± 0.1 up to 3.8 ± 0.3 l mg-1 m-

1). Moreover, during the wet winter period, D-WF DOC aromaticity increased in January 

2015 (from 3.6 ± 0.1 up to 4.5 ± 0.3 l mg-1 m-1), before decreasing in the following month 

(Fig. 4-9), while it was less variable in the other stream.  

Most months, SUVA410 was higher in D-WF (0.39 ± 0.07 – 0.56 ± 0.03 lmg-1m-1) than D-FF 

(0.38 ± 0.04 – 0.50 ± 0.01 lmg-1m-1) (Fig. 4-10), and all the values are close to those of 

peatland waters (Lou et al., 2014, Table 4-5). In most months, SUVA410 of D-WF was close 

to the lower end of the Whitelee range. The significantly larger mean annual SUVA410 in 

D-WF DOC (0.50 ± 0.05 lmg-1m-1) than D-FF (0.45 ± 0.04 lmg-1m-1) (p < 0.05) indicates the 

greater amount of complex aromatic materials in D-WF DOC. Both tributaries had SUVA410 

smaller than that in long-term sites, and SUVA410 for D-WF was close to the lower edge of 

long-term range. Generally, there is no clear seasonal pattern in both streams. However, 

similar to changes in SUVA254, there was a decrease for D-WF SUVA410 in July (from 0.53 ± 

0.01 to 0.39 ± 0.07 l mg-1 m-1) and an increase for D-FF (from 0.45 ± 0.03 to 0.49 ± 0.06 l 

mg-1 m-1). The standard deviations of the data in this month overlapped between D-WF 

and D-FF. In January 2015, while SUVA410 in D-FF remained relatively stable, it increased 

clearly in D-WF, similar changing pattern to that of SUVA254. 
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Fig. 4-9. SUVA254 values of all sampling sites along the Drumtee tributaries (Fig. 4-1) for each 
month from February 2014 to February 2015 are shown in the upper panel. The mean values 
of each tributary and the confluence water are shown in the lower panel, where each sample 
point is the mean ± SD of all intra-stream points sampled on the same day. D-WF4 was pooled 
with D-FF. The grey area shows the range of SUVA254 in the five Whitelee catchments. 
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Fig. 4-10. SUVA410 values of all sampling sites along the Drumtee tributaries (Fig. 4-1) for each 
month from February 2014 to February 2015 are shown in the upper panel. The mean values 
of each tributary and the confluence water are shown in the lower panel, where each sample 
point is the mean ± SD of all intra-stream points sampled on the same day. D-WF4 was pooled 
with D-FF. The grey area shows the range of SUVA410 in the five Whitelee catchments. 
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Fig. 4-11. E2/E4 values of all sampling sites along the Drumtee tributaries (Fig. 4-1) for each 
month from February 2014 to February 2015 are shown in the upper panel. The mean values 
of each tributary and the confluence water are shown in the lower panel, where each sample 
point is the mean ± SD of all intra-stream points sampled on the same day. D-WF4 was pooled 
with D-FF. The grey area shows the range of E2/E4 in the five Whitelee catchments. 
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Fig. 4-12. E4/E6 values of all sampling sites along the Drumtee tributaries (Fig. 4-1) for each 
month from February 2014 to February 2015 are shown in the upper panel. The mean values 
of each tributary and the confluence water are shown in the lower panel, where each sample 
point is the mean ± SD of all intra-stream points sampled on the same day. D-WF4 was pooled 
with D-FF. The grey area shows the range of E4/E6 in the five Whitelee catchments. 
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Monthly E2/E4 ranged from 6.7 ± 0.5 – 9.5 ± 1.0 in Drumtee with an annual average of 7.4 

± 0.5 in D-WF and 8.2 ± 0.6 in D-FF (Fig. 4-11, Table 4-5). Both mean values were 

bracketed by the range of E2/E4 for terrestrial DOM (Table 4-5), indicating HS in Drumtee 

water were mainly derived from terrestrial sources. D-FF E2/E4 was larger than those in 

long-term sites, whilst D-WF was at the higher end of the range (Fig. 4-11). This suggests 

DOC in Drumtee may contain proportionally less HS compared to long-term sites. Within 

the Drumtee Catchment, the significant and constantly larger E2/E4 in D-FF (p < 0.05, 

Table 4-5) reveals the D-FF DOC had a smaller proportion of HS in aromatic C pool. E2/E4 

in the confluence water overlapped with D-WF at most of the time. Seasonally E2/E4 in 

both streams showed similar and constant patterns from Feb. – Nov. 2014, which 

increased from November to January, when it was cold and with more intensive rainfall. 

This increase was also widely observed in the Whitelee long-term sites (Fig. 4-11). 

A larger annual mean E4/E6 was measured in D-WF (7.4 ± 1.0) than that in D-FF (7.0 ± 0.2) 

(p > 0.05) over the year (Table 4-5). The ratios were not significantly different between 

the streams, indicating at most time, FA:HA was similar in the HS pools. Both E4/E6 

generally fitted with the range in long-term sites and those found in other research as 

well (Fig. 4-12, Table 4-5). Drumtee E4/E6 was closer to those for streams with more FAs, 

suggesting HS pool was dominant with less humified materials. FA:HA was more variable 

in D-WF over the year, with the smallest as 5.3 ± 0.8 in January 2015, and the largest as 

9.4 ± 0.6 in September 2014, whilst it remained constant in D-FF, ranging from 6.7 ± 0.5 

– 7.3 ± 0.6 (Fig. 4-12). The changes in E4/E6 of D-WF also seemed to be more sensitive to 

hydrological conditions, as the ratio increased clearly in the dry months (July and 

September), and decreased in the wet winter month (January 2015). 

The model in Fig. 4-13 illustrates the difference of DOC composition between Stream D-

WF and D-FF. Due to the greater proportion of HS, but similar FA:HA in HS pool, the DOC 

in D-WF was more humified than D-FF. 
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Fig. 4-13. Schematics showing the different proportions of HS in DOC produced from the two 
streams with the relative areas hypothesised to represent. 
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Table 4-5 A summary of the application of the spectrophotometric characterization used in this study, interpretation of each parameter, field ranges in other 
research and the key findings of two Drumtee streams comparison. ANOVA was applied for testing the significance of variance between two streams and it 
shows the mean values of SUVA254 and E4/E6 were not statistically different between D-WF and D-FF with a p > 0.05. 

Measurements Other studied DOM Field ranges Authors Drumtee 

SUVA254 (lmg-1m-1) 
Positively related 
to DOC aromaticity  

OM isolates from ocean to dark water 0.6 – 5.3 

(Weishaar et al., 2003) 

D-WF: 3.7 ± 0.4 
D-FF: 3.6 ± 0.2 

(p > 0.05) 
 

Similar aromaticity 

Aquatic isolated FAs 0.6 – 3.9 

Aquatic isolated HAs 5.1 – 5.3 

New Zealand peat pore water 1.9 – 3.5 (Moore and Clarkson, 2007) 

Yukon river 2.2 – 3.6 (Wickland et al., 2012) 

SUVA285 deforested peatland pore water 3.5 – 6.1 (Gandois et al. 2013) 

Peatland well water 3.65 ± 0.04 
(Olefeldt et al., 2013) 

Peatland ditch water 4.58 ± 0.89 

Pore water from blanket bog 4.00 ± 0.47 (Peacock et al., 2014) 

Bog lake 4.58 ± 1.16 (Selberg et al., 2011) 

Stream water from a peatland headwater  4.6 (Goulsbra et al., 2016) 

SUVA410 (lmg-1m-1) 
Positively related 
to more complex 
aromatic C 

Discharge from surface soil in peat ~0.35 

(Lou et al., 2014) 
D-WF: 0.50 ± 0.05 
D-FF: 0.45 ± 0.04 

(p < 0.05) 
 

D-WF DOC contains more 
complex aromatic C 

Discharge from -10 cm water depth in peat ~0.39 

Discharge from -20 cm water depth in peat ~0.5 

Streams and drains before peat drain-blocking 0.54 
(Worrall et al., 2007) 

Streams and drains after peat drain-blocking 0.67 

   

E2/E4 
Inversely related to 
HS proportion 

Terrestrial DOM 4 – 11 (Selberg et al., 2011) D-WF: 7.4 ± 0.5 
D-FF: 8.2 ± 0.6 

(p < 0.05) 
 

D-WF DOC contains more HS 
than D-FF 

Ditch water from blanket bog 6.42 ± 0.73 
(Peacock et al., 2014) 

Pore water from blanket bog 6.77 ± 0.45 

Downstream water from a peaty catchment 15.5 (Graham et al., 2012) 

   

E4/E6  
Positively related 

HAs extracted from soils  ≤ 5 
(Kononova, 1966) 

D-WF: 7.4 ± 1.0 
D-FF: 7.0 ± 0.2 FAs extracted from soils 6.0 – 8.5 
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to FA:HA HAs extracted from soils 2 – 5 
(Thurman, 1985) 

(p > 0.05) 
 

Similar HA:FA between 
streams 

FAs extracted from soils 8 – 10 

Blanket peat headwater in England 2.8 – 7.3 
(Worrall et al., 2002) Blanket peat headwater in England excluding 

storm events  
~5 – 6 

Stream water from a peatland headwater 6.5 (Goulsbra et al., 2016) 

Ditch water from blanket bog 5.99 ± 3.76 
(Peacock et al., 2014) 

Pore water from blanket bog 7.37 ± 4.04 

 

  



Chapter 4 

88 
 

4.4.6 Stream [SRP] and [TON] time series (2006 – 2016) in the 
Whitelee catchments 

During the last ten years, [SRP] in the south of the Whitelee wind farm ranged from 1.0 – 

164.3 μg l-1 (noting that extreme high values could represent contamination from a point 

source), with the largest at WL13 in August 2008 and the smallest at WL15 in March 2007 

(Fig. 4-14).  

The time series of [SRP] showed clear increases at WL13 and 14 during the original wind 

farm development. WL13 had the greatest increase in the first phase of development, 

with the median [SRP] increasing from 17.3 μg l-1 in HY2006 - 07 to 75.2 μg l-1 in HY2007 

– 08 (Fig. 4-15). The median value started to reduce from HY2008 – 09 (72.5 μg l-1), the 

later period of the original development. The similar temporal changing pattern was 

observed in WL14 median [SRP] over the ten years, which largely increased from 16.0 to 

62.1 μg l-1 in the early development period and decreased afterwards. However the 

median [SRP] at both sites were still greater than those in the first year (HY2006 – 07) 

(Fig. 4-15).  

During July 2006 – October 2010, median [SRP] at WL13 and 14 was greater than 40 μg l-1 

(the limit of [SRP] less than which water quality is ‘good’), while the concentrations at 

other sites ranged from 20 – 30 μg l-1 (Table 4-6).  
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Fig. 4-14. Long-term time series (July 2006 – Sept. 2016) of [SRP] for catchments WL13, 14, 15, 16, 1 draining the south of the Whitelee wind farm (Fig. 2-1). 
The black dashed line is the limit [SRP] less than which water quality is ‘good’. Dash boxes indicate time periods of origina l windfarm development (all 
catchments affected, Oct. 2006 – May 2009), and extension (WL15 affected most, Nov. 2010 – Feb. 2013). Data prior to Aug. 2011 was collected by Murray 
(2012) and Waldron et al. (2009), and between Sept. 2011 – Mar. 2013 by Phin (2015).  
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Fig. 4-15. Box-plots showing long-term time series (Oct. 2006 – Sept. 2016) of [SRP] for catchments WL13, 14, 15, 16, 1 draining the south of the Whitelee 
wind farm (Fig. 2-1). Each coloured bin is pooled data for a hydrological year. The boxed area shows interquartile range, the median is the horizontal line 
within the box, and the vertical lines extending from the boxes show the minimum and maximum. Data point outliers are shown as asterisks. Data prior to 
Aug. 2011 was collected by Murray (2012) and Waldron et al. (2009), and between Sept. 2011 – Mar. 2013 by Phin (2015). 
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Table 4-6 Median values, p values, significance and trend slope for [SRP] in catchments WL13, 
14, 15, 16, 1 draining the south of the Whitelee wind farm (Fig. 2-1). Data was grouped into 
three: the total 10 years, July 2006 – Oct. 2010 for the first wind farm development and one 
year afterwards, and Nov. 2010 – Sept. 2016 for the extension and three years afterwards. 
Numbers in bold red are indicating the largest trend slopes for significant changes. * p < 0.05, 
** p < 0.01, *** p < 0.001. 

Years Sites 
Median [SRP] 

(μg l-1) 
p Significance Slope 

July 2006 – Sept. 2016 

WL13 42.84 0.000 *** -3.73 

WL14 36.48 0.081  -0.95 

WL15 34.24 0.000 *** 1.41 

WL16 22.31 0.352  0.27 

WL1 23.66 0.802  0.09 

July 2006 – Oct. 2010 

WL13 58.62 0.694  -3.65 

WL14 48.22 0.325  2.90 

WL15 26.89 0.000 *** 2.57 

WL16 23.23 0.431  0.40 

WL1 21.81 0.168  1.60 

Nov. 2010 – Sept. 2016 

WL13 28.64 0.811  0.20 

WL14 25.76 0.953  0.09 

WL15 40.85 0.003 ** -2.35 

WL16 21.39 0.583  0.29 

WL1 25.33 0.004 ** -2.06 

 

Further during the extension activities, a clear increase in [SRP] was observed at WL15, 

while it remained relatively constant or increased slightly at other sites (Fig. 4-14). The 

maximum and median [SRP] of WL15 increased rapidly from HY2009 – 10 to HY2011 - 12 

(maximum: from 43.3 to 102.0 μg l-1; median: from 23.5 to 47.5 μg l-1, the first two year 

of extension activities. The high [SRP] at WL15 was maintained afterwards although a 

decrease was observed (p < 0.01, Table 4-6, Fig. 4-15). During Nov. 2010 – Sept. 2016, 

WL15 was the only site having median [SRP] greater than 40 μg l-1 (Table 4-6), while it 

was stable and smaller at other sites (except WL1).   

Overall, there was a significant decrease of [SRP] at WL13 after the observed increase in 

2008, and a significant increase at WL15 during the ten years (Table 4-6).  
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Fig. 4-16. Long-term time series (July 2006 – Sept. 2016) of [TON] for catchments WL13, 14, 15, 16, 1 draining the south of the Whitelee wind farm (Fig. 2-1). 
Dash boxes indicate time periods of original windfarm development (all catchments affected, Oct. 2006 – May 2009), and extension (WL15 affected most, Nov. 
2010 – Feb. 2013). Data prior to Aug. 2011 was collected by Murray (2012) and Waldron et al. (2009), and between Sept. 2011 – Mar. 2013 by Phin (2015). 
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Fig. 4-17. Box-plots showing long-term time series (Oct. 2006 – Sept. 2016) of [TON] for catchments WL13, 14, 15, 16, 1 draining the south of Whitelee wind 
farm (Fig. 2-1). Each coloured bin is pooled data for a hydrological year. The boxed area shows interquartile range, the median is the horizontal line within 
the box, and the vertical lines extending from the boxes show the minimum and maximum. Data point outliers are shown as asterisks. Data prior to August 
2011 is from (Murray, 2012; Waldron et al., 2009), between September 2011 – March 2013 from (Phin, 2015). 



Chapter 4 

94 
 

Table 4-7 Median values, p values, significance and trend slope for [TON] in catchments WL13, 
14, 15, 16, 1 draining the south of the Whitelee wind farm (Fig. 2-1). Data was grouped into 
three: the total 10 years, July 2006 – Oct. 2010 for the first wind farm development and one 
year afterwards, and Nov. 2010 – Sept. 2016 for the extension and three years afterwards. 
Numbers in bold red are indicating the largest trend slopes for significant changes. * p < 0.05, 
** p < 0.01, *** p < 0.001. 

Years Sites 
Median [TON] 

(mg l-1) 
p Significance Slope 

July 2006 – Sept. 2016 

WL13 0.07 0.000 *** -0.01 

WL14 0.15 0.000 *** -0.01 

WL15 0.08 0.241  0.00 

WL16 0.15 0.000 *** -0.01 

WL1 0.24 0.001 *** -0.01 

July 2006 – Oct. 2010 

WL13 0.10 0.166  0.01 

WL14 0.20 0.849  0.00 

WL15 0.07 0.318  -0.01 

WL16 0.19 0.637  -0.01 

WL1 0.27 1.000  0.00 

Nov. 2010 – Sept. 2016 

WL13 0.05 1.000  0.00 

WL14 0.11 0.480  -0.01 

WL15 0.09 0.211  0.00 

WL16 0.10 0.127  -0.01 

WL1 0.23 0.155  -0.01 

 

[TON] in the Whitelee catchments ranged from 0 – 0.90 mg l-1 from Jul. 2006 – Sept. 2016, 

with the greatest in WL16 in August 2008, and [TON] below detection limit in some of the 

streams, often in summer (Fig. 4-16). [TON] appears to have a seasonal trend with usually 

highest concentrations in the winter and lowest concentrations in the in summer. 

Generally, there were greater [TON] in WL1 than other sites throughout the ten years 

(Fig. 4-16 and Fig. 4-17), with the WL1 median [TON] of 0.24 mg l-1 and ≤ 0.15 mg l-1 in 

the other catchments (Table 4-7).  

During the ten years since wind farm commenced, there were small but significant 

decreases in all long-term sites except for WL15, which showed an increase of the 

maximum [TON] in 2011 (few months after the extension started) (Fig. 4-17, Table 4-7). 

However, there were no significant changes observed either during the first wind farm 

development and two years afterwards (2006 – 2010), or the following six years since the 

extension activities commenced (2010 – 2016). 
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4.5 Discussion 

4.5.1 Long-term monitoring: influence of wind farm disturbance 
on [DOC]   

The seasonal pattern of changing [DOC] is consistent with that observed in Whitelee in 

previous research (Waldron et al. 2009; Murray 2012; Phin 2015) and in other temperate 

peatland systems (e.g. Worrall et al. 2006; Dawson et al. 2011), with the greatest [DOC] 

in late summer and the smallest in winter and spring. The concentration maximum in 

summer is likely caused by most terrestrial productivity and lower water table promoting 

DOC production (Freeman et al., 2001), with pore water DOC flushed into streams when 

the catchment wets up (Tipping et al., 2007). The [DOC] range across Whitelee (including 

long- and short-term sites) was large from 5.2 – 89.3 mg l-1, which is comparable to other 

peatland catchments in UK but the Whitelee catchments are at the higher end of this 

range. For example, peatland sites across Scotland were observed to have [DOC] up to 88 

mg l-1 (Billett et al., 2006; Dawson et al., 2011, 2004; Grieve and Gilvear, 2008), and in 

England and Wales up to 60 mg l-1 (Goulsbra et al., 2016; Jones et al., 2016; Moody and 

Worrall, 2016; Pawson et al., 2012; Worrall et al., 2007).  

Median [DOC] and seasonal trend analysis showed there were significant increases in all 

long-term sites across last ten years. The last time when part of this data set was 

considered, it was suggested that [DOC] recovered to its original concentration after five 

years following development (Phin 2015). However, in this research, with a longer 

observation period, [DOC] was found to decrease during HY2010 – 11 and HY2012 – 13 in 

some of the sites, but in general to show an increasing trend since wind farm construction 

started in 2006 (Fig. 4-3). In WL15 there was no decreasing trend of [DOC] four years after 

the extension finished. Thus the decrease observed by Phin (2015) could be an annual 

variation of [DOC] with time. However, there was no control site in this long-term 

monitoring programme, and no other [DOC] data from comparable systems is available 

from locations close to Whitelee. Therefore, it cannot be assessed fully whether wind 

farm development is the controlling factor on the long-term [DOC] increase in Whitelee, 

as the effect of a climatic regional driver can be ascertained. Thus, the parsimonious 

interpretation here is that, as the most intensive land use change in Whitelee during the 

past ten years, wind farm development may exert local impacts on the observed [DOC] 

increase. 

The wind farm development may also cause pulse of [DOC] in the draining waters. At 

WL13 and WL15, which were the catchments most affected by the original and extension 
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to wind farm development, an increase in [DOC] is observed which is consistent with 

disturbance from wind farm construction. During the period of original development WL13 

[DOC] increased rapidly, and showed the greatest [DOC] of all catchments during 

construction and for two years after construction finished. However, when extension 

activities were commissioned, the greatest [DOC] occurred in WL15 and was maintained 

for subsequent years. Disturbance direct link between increased [DOC] as a result of wind 

farm construction is difficult as there is not a tracer. However, for two sites to respond 

to construction in the catchment with increased [DOC], independent of other sites that 

would have experienced similar climatic conditions and so rainfall and likely discharge, is 

strong supporting evidence that the construction is a more important driver of this [DOC] 

increase.  

It is likely that the increasing [DOC] is due to wind farm-related peat disturbance (as the 

other macronutrients also evidence this, see section 4.5.2), but other drivers unrelated 

to the windfarm may also be important, for example, [DOC] may simply increase as less 

rainfall to dilute the soil water [DOC]. Indeed, there is a weak trend for decreasing 

discharge during HY2011 – 16 (Fig. 4-4). Further, the lack of continued increase in DOC 

export year-on-year shows factors other than land use change control within-stream 

loading. The export load will depend on i) the availability of pre-formed [DOC] in the 

porewater; ii) within season production rates of [DOC] and iii) flushing of the system (i.e. 

how wet it is, which will also influence water table depth and so [DOC] production. 

Additionally, the concentration measured in the fluvial system, and so the export 

calculated, will reflect net DOC processing within the stream e.g. in low flow, residence 

time is longer and there is more capacity for DOC removal by in-stream processes (Tranvik 

and Jansson, 2002). These mixed responses of [DOC] to discharge suggest other factors 

may exert more controls on the observed [DOC] increase. It is very difficult to unpick the 

controls on this without some additional field-based experiments, for example using soil 

lysimeters to sample and monitor porewater [DOC] over time and under different flow 

regimes to assess the interaction of production and export (e.g. Camino-Serrano et al., 

2016). 

The one-year detailed survey 

There are mainly two aspects of wind farm-related peat disturbance: deforestation and 

construction activities (e.g. building turbines and access tracks). In one of the Whitelee 

catchments, Drumtee, the influence of these two different land uses on exported DOC 

was further revealed. Stream D-FF draining the felled forestry had constant greater [DOC] 

during the one-year survey, while the smaller [DOC] in D-WF was in the lower end of 
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Whitelee [DOC] range. The two streams drain from mainly dystrophic blanket peat with 

similar peat coverage (around 70 – 80%), thus it is maybe not likely that the [DOC] 

difference was a major result of soil difference. Both land use changes (turbines 

emplacement vs. felled forestry) cause disturbance to soil (Mitchell et al., 2010; Schelker 

et al., 2014; Zerva and Mencuccini, 2005). Both peat excavation in the turbine-covered 

area and tree felling in the felled area can leave an exposed surface more susceptible to 

C losses (Glatzel et al., 2003). However, clear-felling and mulching results leave large 

residues of tree litter and dying tree roots, which are easily decomposed (Zerva and 

Mencuccini, 2005). Meanwhile the removal of forest canopy can increase soil and surface 

temperatures (Hoffmann et al., 2003; Jauhiainen et al., 2012), and the decomposition of 

branches and litter often releases nutrients to the soils (Kreutzweiser et al., 2008), both 

of which can enhance peat and wood litter decomposition (Gandois et al., 2013). Thus, 

in this dystrophic blanket peat dominated area, these conditions very likely stimulate 

microbial activity, thereby altering rates of peat decomposition and generation of new 

DOC from felled material. Therefore, it is likely that the high [DOC] in D-FF is a result of 

historical drainage for commercial forestry and now residue breakdown from 

deforestation. This result further supports the previous suggestion that deforestation can 

have greater influence on [DOC] than the excavation disturbance associated with the wind 

farm turbine, cabling and road emplacement.  

In previous research about wind farm and C cycling, deforestation has been suggested to 

be most likely control on carbon concentration and/or export (Murray 2012; Phin 2015; 

Smith 2016). With two different landscapes (turbines emplacement vs. felled forestry) in 

one small catchment Drumtee, how different components of wind farm construction 

causing different land use changes may influence exported DOC concentration has been 

now further examined and more clearly demonstrated in this research.   

4.5.2 Long-term monitoring: influence of wind farm disturbance 
on [SRP] and [TON] 

Phosphorus is an important element for building biomass and normally is presented in 

surface water in low concentrations (McMahon and Read, 2013). In most Whitelee long-

term sites, [SRP] did not show a significant increasing/decreasing change across the ten 

years. Instead, in WL13 and 14, increases were observed following the start of original 

wind farm development (during 2007 – 2008, Fig. 4-15). A similar [SRP] increase occurred 

again in WL15 after the extension development started. According to standards for [SRP] 

by the Water Framework Directive (2000) UK Technical Advisory Group, which defines 

water quality as ‘good’ when [SRP] < 40 ug l-1, a negative impact on WL13 and 14 stream 

water quality was apparent in the period after wind farm construction started.  
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Runoff from surfaces of forestry, cultivated lands and pasture (Withers and Jarvie, 2008) 

can be one of the major P sources entering streams, and forest harvesting has been 

suggested to increase nutrient concentrations in adjacent streams (Feller, 2005). WL13 

and 14 experienced 30.3 % and 10.3 % deforestation due to the original wind farm 

development and were closer to the original felled area than the other sites, and WL15 

hosted most of the extension construction and deforestation, which makes the [SRP] pulse 

in these catchments less surprising. [SRP] was also higher in WL15 upper catchment 

drainage hosting felled areas (Phin 2015). The timescale of [SRP] recovery to baseline 

levels described in this project is similar to the response to deforestation observed in 

other peatland catchments (Cummins and Farrell, 2003a, 2003b; Rodgers et al., 2010), 

and the subsequent four-year trend of [SRP] no longer increasing after the extension 

development further supports the interpretation the increase was a response to the 

impacts of tree-felling.  

Since a large area of deforestation occurred in Whitelee, an increase of [TON] may have 

been expected, as it has been reported in other catchments subjected to extensive clear-

felling (Neal et al., 2003; Tetzlaff et al., 2007). The export of N has normally been 

analysed in the context of forest management, and leftover leaves and branch are 

suggested to be the main source for N (Kaila et al., 2012). An increase was recognized in 

WL13 and WL14 during the original development and one year afterwards (2007 – 2010), 

but was not so in WL15 during the extension period (Fig. 4-17). Further no significant 

increase of [TON] was observed in any period of development, and instead decreasing 

trends were observed for most of the long-term sites. This general decrease may be within 

the degree of TON natural variation in the Whitelee system. However, another possibility 

could be that the continuously released P from felled debris facilitated more microbial 

activity, which consumed larger amount of N than before deforestation.  

Cycling of micronutrients, particularly carbon, nitrogen and phosphorus are known to be 

related via microbial activities and stoichiometric composition across various ecosystems 

(Coble et al., 2016; Schlesinger et al., 2011). Ecological stoichiometric theory (Sterner 

and Elser, 2002) suggests the decomposition of DOC into CO2 is strongly related to 

availability of N and P. As a result, the potential may exist in the years of wind farm 

development that decomposition of DOC in streams could be influenced significantly when 

exported [TON] and/or [SRP] from the Whitelee catchments also changed (although there 

was no way to track back now). Additionally, the converse is true, with DOC composition, 

in addition to concentration, influencing the uptake of ammonium and SRP in forested 

streams (Coble et al., 2016).  
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4.5.3 Short-term observation of spatial variation of DOC 
composition in the Whitelee and Drumtee catchments 

4.5.3.1 DOC is more resistant in Whitelee than many other aquatic systems 

DOC from the Whitelee catchments had SUVA254 (2.2 – 4.5 l mg-1 m-1) in the range of other 

fluvial environments (0.6 – 5.3 for organic matter isolates ranged from ocean to dark 

water) and towards the higher end. Whitelee SUVA254 was greater than FAs (2.9 – 3.9 for 

most aquatic isolated FAs) but smaller than HAs (5.1 – 5.3, Weishaar et al. 2003; Table 

4-5). This suggests DOC in all Whitelee catchments was rich in complex heterogeneous 

aromatic OM (Selberg et al., 2011) and more humic than many of other aquatic DOC. The 

result was not surprising as all these five catchments are peat-dominated (62 % - 90 % of 

each catchment area was covered by peat-related soils, see Chapter 2 Section 2.1.1). The 

annual mean SUVA254 across sites, was close to those of peatland well water (3.65 ± 

0.04,Olefeldt et al., 2013; Table 4-5) or blanket bog pore water (4.00 ± 0.47, Peacock et 

al., 2014; Table 4-5), but less than that of water from peatland ditch (4.58 ± 0.89, 

Olefeldt et al., 2013; Table 4-5) or a bog lake (4.58 ± 1.16, Selberg et al., 2011; Table 

4-5). This may suggest the source of DOC was largely derived from soil pore water and/or 

groundwater/baseflow. Peatland is an important carbon sink, and ‘old’ DOC would be 

expected in the peatland soil and stream waters (Kalbitz et al., 2003), particularly that 

derived from the deeper peat layer or groundwater (Tipping et al., 2010). Moreover, older 

and thus more resistant DOC was detected in disturbed systems than intact ones (e.g. 

Moore et al., 2013), which is consistent with that Whitelee was undergoing disturbance 

from wind farm development on peat. 

No clear seasonal pattern was observed for the changes in DOC composition across the 

Whitelee catchments (Fig. 4-6 and Fig. 4-7). This lack of apparent seasonal pattern in 

DOC composition has been observed elsewhere in both soil and stream waters (Seifert et 

al., 2016). Spatially, SUVA254 and E4/E6 varied little between the Whitelee catchments 

during 2014 – 2016 (p > 0.05), indicating that DOC aromaticity and HA:FA in HS pool were 

broadly similar across the catchments. This understanding is refined by the SUVA410, which 

SUVA410 reflects the amount of complex aromatic carbon (mainly HS consisting of HAs and 

FAs, which are produced from humification process). Significantly smaller SUVA410 was 

measured in the DOC of Drumtee confluence water (WL13) compared to the other 

Whitelee catchments, except for WL14 (p < 0.05, Table 4-4), suggesting in the Drumtee 

Catchment less DOC was formed of complex aromatic materials. The larger E2/E4 

composition in Drumtee is consistent with less DOC humification and thus a smaller 

proportion of HS (HAs and FAs) (Kalbitz et al., 1999). As a result of proportionally less HS 
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but similar FA:HA within HS pool, DOC in Drumtee was less humic, and thus likely to be 

less resistant than other sites (Fig. 4-8).     

4.5.3.2 Fewer nutrients and shorter water residence time may contribute to the 
less resistant DOC in Drumtee than other Whitelee catchments 

There are both biotic (e.g. microbial activity) and abiotic factors (e.g. soil properties, 

temperature and hydrological regimes) which have impacts on the in-stream DOC 

dynamics and composition changes (Kellerman et al., 2014; Seifert et al., 2016). Among 

different environmental variables interacting with DOM, water residence time is one of 

the major controls shaping the molecular composition of DOM (Kellerman et al., 2014). 

The rate of organic carbon decay decreases with the increasing water retention time 

across different systems, leading to a decrease in organic carbon reactivity along the 

water continuum (Catalán et al., 2016), reflecting the more recalcitrant organic carbon 

pool. This may explain partially the less aromatic and humic DOC composition in Drumtee 

(WL13) than other Whitelee catchments. Drumtee had a much smaller catchment area 

(5.7 km2) than other catchments (11.3 – 31.1 km2), and the shortest flow length from 

outlet sampling site upstream to the nearest disturbance (around 2.5 km, Fig. 2-1) 

compared to others. In Drumtee the water retention time before reaching to sampling 

site perhaps would be shorter, and thus a smaller chance of organic carbon decomposition, 

leading to the less compositional shift from labile to recalcitrant C pool (indicated by 

smaller SUVA410 in WL13, Table 4-4). 

Furthermore, nutrient, especially nitrate concentration has been reported to influence 

organic matter composition, and is positively related to organic matter aromaticity 

(Seifert et al., 2016). Generally, nutrients including N and P can stimulate microbial DOC 

consumption, and the observed abundance of more aromatic compounds might be due to 

the depletion of low-molecular-weight compounds by active microbial degradation 

processes (Seifert et al., 2016). Here smaller [TON] in Drumtee (WL13) was measured 

during 2014 – 2016, while it was clearly larger in WL14, 16 and 1 (Fig. 4-16), but similar 

in [SRP] between sites. As N is important limiting element in the Whitelee catchments, 

the difference in N availability may closely change microbial activities and further act as 

another reason contributing to the less aromatic DOC in the Drumtee Catchment.            

4.5.3.3 Wind farm disturbance can also affect DOC composition: example from 
Drumtee Catchment  

Land use influences soil properties, such as pH, moisture, temperature and nutrient 

availability, and so has been suggested to affect DOC composition ultimately. From the 

comparison of Drumtee DOC optical properties between streams D-WF and D-FF, it is 
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possible to assess how the two specific wind farm-related land uses (turbines 

emplacement vs. felled forestry) affect DOC composition. As with Drumtee and the other 

Whitelee catchments, spatial variation in DOC composition also existed between 

tributaries D-WF and D-FF. The similar SUVA254 and E4/E6 at most times of year, but 

smaller SUVA410 and larger E2/E4 in D-FF, suggest less HS in D-FF, although a similar 

proportion of HAs. Thus DOC was more humic, and likely more resistant in D-WF than D-

FF (Fig. 4-13). 

Increased humification in D-WF is suggested by the constantly greater SUVA410 (only apart 

from the dry months) and smaller E2/E4. The larger proportion of HS in D-WF suggests the 

DOC to be more humified. This difference can arise as either D-FF has inflow from a source 

of less humic material, or there is more HS delivery to D-WF. There are two mechanisms 

for this. Firstly, more non-HS were produced in D-FF catchment as a result of 

deforestation. Leachates from fresh litter are usually dominated by low-molecular-weight 

carbohydrates and easily decomposed by microbial (Marschner and Kalbitz, 2003), while 

highly aromatic high-molecular-weight (HMW) humic and fulvic acids have significant 

contribution to those from humified organic soils, such as peat (Kalbitz et al., 2003b; 

Olefeldt et al., 2013; Wickland et al., 2007). Young DOC consisting of more non-humic 

substances may be produced from the decomposition of tree litter in the felled area. 

There are no measurements of water table changes in this study, but due to the cessation 

of evapotranspiration, the depth to water tables beneath clear-felled stands is likely 

comparatively higher and the soil could have had a higher water content (Adams et al., 

1991; Smethurst and Sadanandan Nambiar, 1995; Zerva and Mencuccini, 2005). Therefore, 

younger DOC with more non-humic substances from the upper soil layer may have been 

an important source of stream DOM. Secondly, the windfarm construction disturbance 

(mainly peat excavation and drainage) may have lowered the water table and exposed 

deeper DOC to an aerobic environment, more susceptible to DOC export when flushed 

during rainfall. The lowered water table can result in the reduction of phenolic 

compounds in response to oxygenation and thus trigger an ‘enzymic-latch’ mechanism, 

which accelerates further DOC humification, and produces ‘older’ and more resistant DOC, 

even after water table rose afterwards (Freeman et al., 2001; Worrall and Burt, 2005). It 

is difficult to tell which mechanism is more likely at this stage, or if both happened 

simultaneously. 
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4.5.4 Hydrological impacts on DOC composition in the Whitelee 
and Drumtee catchments 

4.5.4.1 Hydrological impacts on DOC composition in the Whitelee catchments 

While no consistent seasonal pattern in DOC composition was observed between either 

the Whitelee catchments or Drumtee tributaries, clear responses to climatic condition 

changes (e.g. hydrological condition) were seen in some of the months. The hydrological 

condition changes reflect modifications in flow paths, with subsequent DOC 

transportation from surface organic rich soil, via runoff or flow through soil macropores 

(Hinton et al., 1998; Vidon et al., 2008), and has been suggested to regulate DOM quality 

in headwater streams (Guarch-Ribot and Butturini, 2016).  

Here, some ‘sharp’ increases or decreases in optical parameters of the Whitelee long-

term sites were noticed when discharge changed. Generally in the Whitelee catchments, 

increased DOM humification was observed during the intensive high flow, e.g. January 

and November 2015, increased SUVA and decreased E4/E6 occurred across the catchments 

(Fig. 4-6 and Fig. 4-7 lower). Conversely DOC aromaticity and humification reduced during 

dry periods, for example, in the dry October in 2015 lower SUVA and higher E ratios were 

observed in all long-term sites (Fig. 4-6 and Fig. 4-7). These suggest exported DOC 

composition is sensitive to the changes of hydrological conditions.  

Similar observations were recorded elsewhere (Clark et al., 2012; Fellman et al., 2009; 

Guarch-Ribot and Butturini, 2016; Nguyen et al., 2013). Hydrological conditions can exert 

indirect impacts on DOC dynamics and qualities via regulating microbial activities in soil, 

which increase when water table drops and contribute to more inputs of labile and less 

complex carbon compounds (Clark et al., 2012; Grand-Clement et al., 2014). Futhermore, 

the reduced solubility of the larger complex HS due to drought-induced acidification in 

soil water could also account for the observed decrease of DOC humification degree (Clark 

et al., 2012). Conversely when there are larger water flows, dissolution of more complex 

humic carbon could be favoured following decreases in acidity and solute strength. The 

observed increases in humic-like content, aromaticity, and humification degree during 

stormflows in this and other research (Fellman et al., 2009; Nguyen et al., 2013) may also 

be due to the progressively exhaustion of labile DOC stock available for export due to 

rainfall flush (Worrall, 2002). It should be noted, that there may be a contribution of 

authochthonous microbial production, normally less humic than terrestrial DOC, to the 

fluvial DOC pool, a process which can happen due to longer water residence time and 

potential fragmentation of river continuum (Vazquez et al., 2011). 
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4.5.4.2 Opposite responses of DOC composition to hydrological condition in 
Drumtee 

The responses of DOC composition to hydrological change varied between the two 

tributaries in the Drumtee Catchment. The fluctuation of spectrophotometric 

characteristics of D-WF DOC and the consistency in D-FF shows that fluvial DOC in D-WF 

is more sensitive to rainfall and soil water depth. In July 2014, one of the dry months, D-

WF DOC became less aromatic (decreased SUVA254 and SUVA410, Fig. 4-9 and Fig. 4-10) and 

had proportionally less HAs in HS (increased E4/E6, Fig. 4-12), which is consistent with the 

general observations in the Whitelee catchments (namely decreased DOC humification in 

the drier periods). However an increase in HS content was shown in D-FF DOC pool in July 

and September 2014 which were both dry months (Fig. 4-10 and Fig. 4-11).  

Considering the similar soil types and climatic conditions within this small catchment, the 

different land uses may be linked to the opposite DOC composition changes when stream 

water flow was lower. As discussed earlier, the depth to water tables beneath the felled 

area can be comparatively higher than the directly exposed wind farm construction land 

as the tree mulch and lack of vegetation acted to reduce evaporation, and this may 

explain the less sensitivity of optical characteristics of D-FF to rainfall. In Drumtee 

Catchment, smaller stream water discharge implied less contribution from soil water, 

especially upper peat soils, therefore deeper soil water may contribute more to stream 

DOM. Deeper peat is more recalcitrant due to the residual accumulation of lignin, 

phenolic compounds and HS after labile carbon has been decomposed by microbial 

(Glatzel et al., 2006; Hogg et al., 1992). But meanwhile in a tropical deforested peatland, 

aromaticity of pore water DOC increased from the surface to 30 cm depth, then decreased 

to 180 cm, suggesting that aromatic molecules accumulated around 30 cm depth (Gandois 

et al., 2013). Based on the assumption that there could be less water table reduction in 

D-FF (the felled area), the increased DOC aromaticity in D-FF during dry months may be 

explained by the dominant DOC source from the more degraded deeper peat. Similarly 

more coloured and aromatic DOC in peatland soil water with the reduced water tables 

was also observed elsewhere (Lou et al., 2014). However in D-WF the water table might 

have dropped below the maximum accumulation of aromatic materials in the dry period. 

Drainage from mineral soil, groundwater and/or the production by microbial activities in 

soil and water may become dominant. 

4.6 Conclusions   

The purpose of this chapter was to:  
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1. assess if there are differences between catchments that have been subject to 

different amount of disturbance and are of different catchment scales  

2. consider how land use changes (specifically wind turbine emplacement vs 

deforestation) have affected DOC concentration and composition by comparing 

within a site 

3. consider from a 10 year time series if bulk DOC and nutrient concentrations have 

responded to an original windfarm construction and its extension.  

From the long-term monitoring for water chemistry (July 2006 to September 2016), it is 

found in this wind farm-hosting peaty catchment, [DOC] and [SRP] increased during 

construction periods at the sites most affected by the wind farm development. A long-

term increase was observed in [DOC] and this has not declined to original values after ten 

years. However, there was no control site during this 10-year monitoring, and no [DOC] 

available from the nearest comparable monitoring site to Whitelee to check background 

information. With noting this, a parsimonious interpretation may be that land use change 

by wind farm development was more responsible for the local [DOC] increase in Whitelee 

as a local factor. However, no increasing trend in DOC export was found in the Whitelee 

catchments, and so this must be influenced by other factors that control DOC delivery to 

the stream and fate within the stream. However, wind farm long-term disturbance may 

still result in increased DOC export by providing more available DOC at source, and 

increased DOC loss when discharge was large. Further, wind farm development may result 

in the inter-catchment differences in DOC export if there are difference in land 

development, as here WL15 exported more terrestrial DOC than WL13, but both were 

affected by the extension and original development respectively. The increasing impact 

on [SRP] was existing temporally for about one year. There was a small decreasing trend 

in [TON] across the Whitelee catchments, which may be due to the net N consumption, 

facilitated by the increased [SRP] after felling activities and/or increasing water 

residence time.  

Generally, [DOC] in all sites showed similar range and seasonal pattern, with the 

maximum in summer/autumn and minimum in winter, reflecting the integration of 

catchment production and export. However, spatial differences were observed in 

Drumtee, namely the felled catchment had greater mean [DOC], 53.3 ± 24.4 mg l-1, than 

the wind farm catchment, 27.1 ± 13.2 mg l-1. This is attributed to differences in historic 

and recent land management. The soil disturbance e.g. peat excavation and track 

construction would release more DOC from peat to streams, but the greater [DOC] in D-
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FF showed deforestation which resulted in the decomposition of mulched tree brunch and 

leave litters may have produced more DOC to export to streams than construction 

activities.  

Spatial differences in DOC composition existed between WL13 and the other long-term 

sites, with DOC in WL13 being less humic and resistant, suggesting the significance of 

environmental factors including nutrient availability and water residence time. The larger 

[TON] and longer water retention time in other catchments could stimulate more active 

microbial activities and consumption of labile DOC pool, and hence more recalcitrant C 

would be retained for the down streams. The impact of land use on DOC composition was 

suggested by showing the difference between D-WF and D-FF in Drumtee. The constantly 

smaller SUVA410 and greater E2/E4 in D-FF indicating ‘fresher’ DOC produced from the 

felled forestry, whilst preparation of land for turbine emplacement may alter the 

exported DOC to be more resistant. Although the sub-catchment hosting the wind farm 

(D-WF) is subject to disturbance there is not the residue of younger C in the catchment 

and so the DOC released here is ‘older’ and when from deeper peat has a composition of 

material that has already undergone decomposition. Due to their low nutrient content 

and sensitivity to water table changing (Nieminen, 2004) organic-rich soils such as peat 

can be more sensitive to forest activities (e.g. clearfelling) than mineral soils. Further, 

for many years after the roots can still act as a source of DOC (Hansson et al., 2010). 

Whilst concentration varied seasonally, this was not synchronous with pronounced 

seasonal changes in DOC composition across the Whitelee catchments or within the 

Drumtee Catchment (WL13). However it was observed that hydrological conditions 

influenced DOC composition changes, as clear changes were examined in DOC optical 

properties during dry and wet periods across the Whitelee and within the Drumtee 

Catchments. The changes that occurred may reflect the solubility of different DOC pools 

(HAs and FAs) due to the fluctuating water table and the consequent peat soil 

acidification would change the exported DOC characteristics. Additionally different 

carbon sources would be transported when water flows through varied soil layers. In 

Drumtee opposite responses to discharge were apparent in DOC composition between the 

two streams in July, the dry month, namely the DOC of stream D-WF became less aromatic 

and humic (smaller SUVA254 and SUVA410). Moreover, the larger E4/E6 for D-WF provided 

further insight of relatively more FAs than HAs within humic substances pool.  

Land use may bring together different key environmental factors as drivers of DOC 

composition changes that itself may become an overriding factor. Wind farm development 

(both turbine emplacement and deforestation) on peatlands may lead to long-term [DOC] 
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increase locally in the draining water. Specifically, deforestation causes greater increases 

than turbine emplacement, evidenced from the comparison within Drumtee, a small 

catchment. In addition, wind farm development may also cause spatial difference in DOC 

composition in Drumtee, with soil disturbance from turbine emplacement releasing more 

refractory DOC into the stream. An interesting next step would be to consider if these 

compositional differences affect the fate of C and macronutrients in the fluvial system. 

In order to understand these potential interactions between DOC and macronutrients (N 

and P), and key controls on DOC decomposition in a peat-dominated catchment, a further 

experiment involving biodegradation incubations was designed and is described in Chapter 

6.  
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5 Dissolved [Fe] in peatland catchments and its 
effect on the biogeochemical cycles of carbon 
and nutrients 

5.1 Abstract 

While increased [DOC] in surface water has become a research focus, the links between 

carbon and other key elements in biogeochemical cycles is still poorly understood. The 

importance of iron (Fe) in global carbon cycling was overlooked until recently where it 

was noticed Fe concentration, [Fe], was increasing as was [DOC] in boreal rivers and 

streams. Fe may alter the mobility and biodegradability of DOM via several biotic and 

abiotic interactions. The redox reactions of Fe are also suggested to strongly affect the 

solubility of some nutrients, e.g. phosphate (P), which can have further impacts on DOM 

biogeochemical cycles in waters. Thus consideration of Fe is needed to understand the 

potential role of Fe in C and nutrients dynamic cycling in peatland catchments. 

This chapter presents the assessment of the dissolved [Fe] in the large Whitelee 

catchments and the small Drumtee sub-catchments, and reveals there is a significant 

correlation between [Fe] and [DOC]. Here, relatively greater Whitelee [Fe] was measured 

compared to other peaty catchments, and similar seasonal trends were observed across 

all sites. A positive and significant correlation was obtained between [Fe] and [DOC] in 

all catchments which may emphasise the importance of peat-rich catchments to Fe export 

to oceans. However, in the driest months, high Fe and C-DOC molar ratio (Fe/DOC) were 

observed with the potential of DOC precipitation via Fe. This interaction is significant for 

1) the consideration of [DOC] export from Fe-rich catchments, 2) the preservation of 

terrestrial character of peat-derived carbon in fluvial network and 3) the effects on DOC 

bioavailability in freshwater ecosystems. DOC optical composition was examined to 

further understand the Fe-DOC interactions in peaty catchments. In all sites, E2/E4 (which 

is inversely related to DOC humification), was found to be significantly negatively 

correlated with Fe/DOC, suggesting Fe export per DOC was favoured by larger HS 

proportion. A significant but weak correlation between Fe/DOC and E4/E6 (which 

represents FA:HA) was reported in the Whitelee long-term catchments, suggesting Fe-

DOC complexation may be favoured by greater FAs proportion. 

Spatial variation of [Fe] and Fe/DOC were observed in this research, with catchment 

characters including peat cover, land use difference and water retention time acting as 

the potential controlling factors. In addition, in the Whitelee catchments, [SRP] and [Fe] 

showed a significant positive relationship (p = 0.000, R2 = 32 %), while [TON] and [Fe] 
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were negatively and weakly-correlated (p = 0.000, R2 = 23 %). Thus more [Fe] in stream 

may indicate greater P but smaller N exports, which can further influence DOC 

biodegradation.  

5.2 Introduction 

Iron is a key element, essential for all living organisms due to its involvement in a wide 

variety of significant metabolic processes (Cornelis and Andrews, 2010). Fe plays an 

essential role in photosynthetic and respiratory electron transport, nitrate reduction and 

chlorophyll synthesis during plant metabolism (Sunda and Huntsman, 1995), thus the Fe 

biogeochemical cycle interacts with biogeochemical cycles of elements such as N and C. 

Fe is a micronutrient in the oceans which directly supports life in marine systems and 

subsequently influences the  global carbon cycle (Blazevic et al., 2016). Despite Fe being 

the most abundant element on Earth’s crust, Fe concentration, [Fe], is limited in some 

certain environments such as the open ocean (Turner and Hunter, 2001).  

Fe may exist in natural waters such as soil solutions and surface water either as a free 

(un-complexed) ion or as complexes with both inorganic and organic ligands (Evans, 1989). 

The level of Fe concentration in surface freshwaters is relatively low, and the European 

Commission Drinking Water Directive (CEC, 1980) has set the mandatory maximum 

admissible [Fe] in drinking water at 200 μg l-1 (Abesser et al., 2006). However in the last 

decade an [Fe] increase in surface waters has commonly being observed in upland regions, 

making Fe concentration and its biogeochemical cycle become a research interest. For 

example in UK, research has shown that [Fe] in upland waters which were used for 

drinking water source can be high as up to 1160 μg l-1 (Abesser et al., 2006). Positive 

trends for increasing [Fe] were observed in 27 of 30 rivers draining into the Swedish coast 

from 1972 to 2010 (Kritzberg and Ekström, 2012), and in the main streams in mid-Wales 

upland forested catchments [Fe] almost doubled over 23 years (from 1983 to 2006), from 

around 70 to 120 μg l-1 (Neal et al., 2008).  

The presence of Fe can increase UV absorption in lake water directly or by interactions 

with DOC (Maloney et al., 2005). The prevalence of increasing [Fe] has been pointed out 

as a potential driver of water colour increase and proposed to contribute to the inland 

waters brownification over large parts of the Northern hemisphere (Kritzberg and Ekström, 

2012; Weyhenmeyer et al., 2014), which was previously often considered related to 

increasing terrestrially derived DOM concentration (Kritzberg and Ekström, 2012). While 

the DOC biogeochemical cycle has been a research interest over the last decades, its link 

with other key elements, e.g. Fe, remains poorly understood (Xiao et al., 2016).  
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Fe is predominantly in solution or in mineral forms in states of Fe2+ and Fe3+. It can shift 

between the two states in fluctuating redox environments, affecting DOM and carbon 

cycling via biotic/abiotic process. DOM decomposition can be facilitated via microbe-

mediated Fe reductive dissolution: 1) labile DOM acts as a source of energy (electrons) 

for Fe- and HS-reducing bacteria; 2) Fe reduction and DOM are linked through the 

electron-shuttling ability of HS (Mladenov et al., 2010). To decompose labile DOM, 

bacteria can transfer electrons from DOM to Fe3+, which works as an electron accepter 

(Islam et al., 2004). This process allows organic matter oxidation under anaerobic 

conditions (Li et al., 2012), and the presence of labile DOM can in turn fuel Fe-reduction 

and subsequent dissolution (McArthur et al., 2004; Mladenov et al., 2010). In addition, 

DOM decomposition can also be stimulated by abiotic oxidation-reduction reactions, with 

Fe binding with quinone moieties of DOM. The oxidation of quinone can produce reactive 

oxygen species and cause breakage of DOM aromatic rings, together leading to facilitate 

DOM decomposition and produce substrates for microorganisms (Comba et al., 2015; Xiao 

et al., 2016; Yuan et al., 2016).  

Despite the positive effects of Fe on DOM decomposition, Fe may also reduce DOM 

availability and biodegradability. While Fe and DOM can form dissolved complexes, the 

reported maximum potential binding capacity for Fe is around 2 umol Fe mg-1 C-1 

(Neubauer et al., 2013). The excess of Fe in solutions can form DOM-Fe precipitates and 

thus reduce DOM mobility in soil and waters (Nierop et al., 2002). Particularly, the high 

molar mass organic C coagulates actively with Fe-based coagulants, which are often used 

in the drinking water treatment research and process (Matilainen et al., 2005; Ritson et 

al., 2014). Organic C precipitates increased in DOC samples extracted from soils in the 

Netherlands when the molar ratio between Fe3+ and C-DOC (Fe/DOC) was between 0.014 

and 0.08 (Nierop et al., 2002). Further, excessive [Fe] can cause decreased bacterial 

growth and consumption of DOM by formation of insoluble Fe precipitates on bacterial 

surfaces (Xiao et al., 2016).    

In addition to the influence of Fe presence on DOM, DOM can also increase Fe3+ solubility 

by acting as the organic ligand and form stable soluble complexation with Fe  (Mladenov 

et al. 2010; Weyhenmeyer et al. 2014). Water solubility of Fe3+ is several orders of 

magnitude lower than Fe2+, but in surface water the functional groups of DOC e.g. 

aliphatic and aromatic carboxyl and hydroxyl can readily bind Fe3+, maintaining Fe3+ in 

dissolved state (Maranger et al. 2006; Weyhenmeyer et al. 2014). It has been widely-

observed that Fe-DOM complexes are the dominate dissolved Fe speciation exported in 

fluvial networks (Krachler et al., 2010; Nagai et al., 2007; Neubauer et al., 2013). 
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HS play a significant role in the transport of Fe in freshwaters with HAs and FAs being 

strong chelate ligands, and peatland-draining rivers are suggested to be important sources 

of dissolved Fe to the ocean margins (Krachler et al., 2010), where [Fe] is limited. For 

example, [Fe] in surface water from Finnish peatland-dominated catchments was 1.92 ± 

0.52 mg l-1, but only 0.29 ± 0.12 mg l-1 in mineral soil-dominated catchments (Sarkkola et 

al., 2013). Peat-draining rivers in north Scotland were estimated to contribute about 

0.185 mg l-1 dissolved iron to the oceans, considerably higher than the dissolved iron 

concentration of the ‘average world’ river contribution of only 0.002 mg l-1 (Krachler et 

al., 2010).  

Fe is also considered associated with nutrient biogeochemical cycles in soil and aquatic 

systems, including phosphorus (P) and nitrate (N) (Baken et al., 2015). In Fe-rich systems, 

reduction and oxidation of Fe determine the mobility and fate of P at the sediment-water 

interface (Baken et al., 2015). In oxic environments, hydrous Fe oxides readily precipitate 

and prevent mass mobilization of P into pore water and/or aquatic systems by providing 

sorption surfaces, yielding a highly efficient P sink (Baken et al., 2013, 2015; Emsens et 

al., 2016). However high concentrations of organic matter and stable Fe-OM complexes 

can prevent Fe interactions with P and influent aqueous P concentrations (Sundman et 

al., 2016). Additionally, P(V)-Fe(III)-OM complexes have been suggested to be an 

important P pool in soils and are more bioavailable than P in precipitates or bound to 

inorganic surfaces (Gerke, 2010; Sundman et al., 2016). Associated P can also be released 

upon reductive dissolution of Fe oxides at the interface between anoxic and oxic 

environment (Liu, 2010). All these tight associations between Fe, P and organic matter 

can alter the availability of P to microbial communities and thus potentially influent DOM 

biogeochemical cycles (Xiao et al., 2016).  

The Fe2+-Fe3+ reduction/oxidation occurs with/is important to N cycling (Li et al., 2012), 

and wetland sediments contain microbial communities which are capable of oxidation of 

Fe2+ with reduction of NO3
- to NH4

+ (Weber et al., 2006). Nitrate was suggested to interact 

with Fe biogeochemistry in the subsoil of wetlands, and furthermore immobilizes Fe in 

the subsoil by oxidizing Fe2+ (Li et al., 2012; Smolders et al., 2010). 

High [Fe] has been reported commonly in draining systems which are rich in fluvial DOC, 

e.g. peatland catchments. Given the capacity for Fe to influence and be influenced by 

other biogeochemical cycles, it is valuable to explore the range of Fe concentrations and 

flux in the Whitelee peatland catchment, which is rich in strong chelate ligands DOC but 

limited in nutrients. The main aims of this chapter are to: 
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1. Assess the temporal and spatial variation in total dissolved Fe concentration ([Fe]) 

in the small Drumtee sub-catchments and the adjacent larger Whitelee 

catchments (WL13, 14, 15, 16 and 1). [Fe] time series and estimated specific Fe 

exports were constructed to quantify Fe transport in small and large carbon-rich 

peatland catchments.    

2. Explore the interaction between Fe and DOC in peatland catchments, by analysing 

the [Fe]-[DOC] relationship, and the seasonal and spatial variations of Fe-DOC 

binding ability. DOC composition impacts on these interactions were examined. 

The obtained information can improve the understanding of Fe and DOC 

mobilization and biogeochemical cycles. Proper management to improve water 

quality can also be suggested accordingly in the future. 

3. Investigate the association between [Fe] and [SRP], and [TON], to analyse if and 

how Fe is spatially and temporally related to nutrient biogeochemical cycles in 

peat-rich catchments. This is important in order to assess the exports and 

bioavailability of these elements.    

5.3 Methods and materials 

5.3.1 Measurement of dissolved Fe concentration 

The dissolved Fe concentration [Fe], comprising Fe2+, Fe3+ and organic-bound Fe, was 

measured in the water samples collected monthly from April 2014 to February 2016 from 

five long-term monitoring sites (WL13, 14, 15, 16 and 1) draining the peaty soils of 

Whitelee wind farm. In sub-catchment Drumtee, monthly [Fe] was also measured in 

sampling sites along the two tributaries (D-WF and D-FF) during February 2014 to February 

2015. Sampling sites were the same as described in Chapter 4, Section 4.3.1).   

Samples were filtered according to the same protocol as for [DOC] measurement (Chapter 

2, Section 2.3.1.1) and kept in the cold room until measurement. The dissolved [Fe] was 

measured for filtered samples using the Perkin-Elmer AAnalyst 100 Atomic Absorption 

Spectrophotometer (AAS). The procedure details are described in the method chapter 

(Chapter 2, Section 2.3.3).   
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5.3.2 Estimating monthly Fe flux 

Specific monthly Fe fluxes (g m-2 month-1) for the Drumtee sub-catchments (Feb. 2014 – 

Feb. 2015) and the Whitelee catchments (Apr. 2014 – Apr. 2016) were estimated by 

multiplying the instantaneous concentration on sampling days by specific monthly 

discharge. Discharge in WL13 confluence site was scaled up for the other sites. See 

Chapter 2 Section 2.4.2 for the details of calculation method.    

5.3.3 Data analysis 

For Drumtee samples, in order to analyse the spatial variation of [Fe] between the two 

sub-catchments, sites along each tributary were pooled together in the same protocol as 

[DOC] analysis (see Chapter 4, Section 4.4.3) to produce a monthly value. This also allows 

the examination and comparison of any relation between [Fe] and DOC-related 

parameters. Significant difference between the Whitelee long-term sites, or between 

Drumtee sub-catchments were examined by the Tukey Test in ANOVA (p < 0.05 was 

considered as significantly different).   

Stream [DOC], [SRP], [TON] and UV-visible optical characteristics of DOC, discussed 

previously in Chapter 4, were investigated for their relationships with [Fe]. The molar 

ratios between dissolved Fe and C-DOC, and SRP (hereafter referred as Fe/DOC and Fe/P 

respectively) were calculated. Fe/DOC was used as a predictor for the likelihood of DOC 

complexation of Fe, and DOC precipitates would be expected when Fe/DOC was greater 

than 0.014 (Nierop et al., 2002). Simple linear regressions were examined between [Fe] 

and [DOC], [SRP] and [TON] (noting nutrients were only measured at long-term sites). UV-

visible optical characteristics were analysed for correlation with Fe/DOC molar ratio. 

However only E2/E4 and E4/E6 were considered because SUVA data would be potentially 

correlated with Fe/DOC, as it is indicating absorbance per unit of DOC. Relationships were 

considered significant when p < 0.05.   

5.4 Results 

In the following sections (5.4.1 and 5.4.2), Drumtee sub-catchments are considered first 

and then the Whitelee catchments. 
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5.4.1 [Fe] and its correlation with [DOC] 

5.4.1.1 Drumtee sub-catchments 

Drumtee [Fe] showed little variation within tributary sites on each sampling date (intra-

site SD ranged from 0.06 to 0.58 in D-WF, 0.08 to 1.27 in D-FF) (Fig. 5-1), indicating the 

approach to pooling data was appropriate. However, differences in [Fe] were observed 

between the two tributaries. [Fe] in D-WF over the year ranged from 0.19 ± 0.07 – 2.98 ± 

0.58 mg l-1, and in D-FF from 0.35 ± 0.08 – 3.99 ± 1.27 mg l-1 (Fig. 5-1); the yearly average 

concentration in D-FF (2.10 ± 1.13 mg l-1) was almost twice high as that in D-WF (1.22 ± 

0.78 mg l-1). ANOVA analysis indicated the difference in [Fe] between D-WF and D-FF was 

significant (P < 0.05). Strong and similar seasonal trends were observed in both streams, 

with higher concentrations in the summer period, and a maximum in September, before 

decreasing in late autumn and winter, with the smallest concentration both in January.  

 

Fig. 5-1. The dissolved [Fe] and [DOC] in Drumtee streams from February 2014 to February 
2015. Mean values of sampling sites along each stream are presented with the standard 
deviation showing the intra-stream variation. Concentrations in D-WF are indicated in solid 
lines and D-FF in dash lines. 

[DOC] and [Fe] co-varied in most months (Fig. 5-1), and shared a similar seasonal pattern, 

exhibiting higher concentrations in the summer period whilst the smallest in winter time. 

However, it is noticeable that in July and September 2014, the drier months, there were 

decreases in [DOC] in both streams while [Fe] remained stable in July and increased in 

September.  
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Fig. 5-2. Specific monthly Fe fluxes in Drumtee streams from February 2014 to February 2015. 
Both showed a similar autumn flush. Fe and DOC fluxes in D-WF are indicated in solid lines 
and those in D-FF are in dashed lines. 

 

Fig. 5-3. Relationships between [DOC] and [Fe] of samples from all 15 sites in Drumtee from 
February 2014 to February 2015. The dataset was divided into four groups according to the 
sampling period (the driest months or the other months) and streams (D-WF and D-FF). The 
black solid line is the trend line for both D-WF and D-FF excluding samples from the driest 
periods (July and September 2014). Samples in the driest months are represented by empty 
symbols, while the rest by full symbols. The two green triangle symbols represent the outliers 
from the dry-FF group, and are not considered for any relationship.  

Each month more Fe was exported from D-FF (0.11 ± 0.07 g m-2 month-1) than from D-WF 

(0.06 ± 0.04 g m-2 month-1) (p < 0.05) (Fig. 5-2). The fluxes in both streams shared the 

same seasonal pattern, showing a decrease from spring to summer (March to July), 
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regardless of the generally increasing trend of [Fe] during the same period. Fe fluxes of 

both streams showed a large autumn flush in November resulting in a maximum flux in 

both D-WF and D-FF (D-WF: increased to 0.18 g m-2 month-1; D-FF: to 0.31 g m-2 month-1) 

and a gradual decrease into winter.   

Correlations between [DOC] and [Fe] were examined for all Drumtee samples. In general, 

[Fe] was positively-correlated with the whole sample [DOC] population (Fig. 5-3). 

However, samples collected during the driest months of the monitoring (July and 

September 2014) were separated from the samples in the other months (see Chapter 4 

Fig. 4-6 for hydrograph). Positive trends were seen in the driest months, but with higher 

[Fe]. When all samples in the driest periods were excluded, the rest of samples from both 

streams showed a significant and stronger relationship between [Fe] and [DOC]:  

[𝐹𝑒] = 0.040 ∗ [𝐷𝑂𝐶] − 0.036 (𝑅2 = 0.80, 𝑝 = 0.000) 

Significant correlations were also observed for the driest months’ samples: in D-WF p = 

0.000, R2 = 0.75; in D-FF p = 0.003, R2 = 0.53. 

5.4.1.2 Whitelee catchments  

[Fe] was also measured for a longer period, in the five long-term sites of the Whitelee 

catchments, from 10/04/2014 to 19/09/2016. A similar seasonal trend to that in Drumtee 

was observed in all five sites: the smallest [Fe] occurred in winter and the greatest in 

late summer or early autumn (Fig. 5-4 upper). [Fe] ranged from 0.15 – 3.57 mg l-1, with 

the smallest concentration in WL1 in January 2015 and the greatest in WL15 in September 

2014. Spatially the average [Fe] among the sites followed this order: WL15 (1.70 ± 0.86 

mg l-1) > WL16 (1.49 ± 0.79 mg l-1) > WL13 (1.33 ± 0.70 mg l-1) > WL1 (1.17 ± 0.59 mg l-1) > 

WL14 (0.88 ± 0.38 mg l-1). Inter-site variation was greatest in summer and early autumn 

and least in winter. In the summer of 2014, the changes in [Fe] lost synchronicity: in July 

[Fe] in both WL15 and 16 increased, whilst the other sites all showed a decrease, and it 

was the other way round in August.  

With the assumption that specific water discharge was similar among different Whitelee 

catchments, specific monthly Fe flux in each long-term site was estimated according to 

discharge monitored at WL13 (Fig. 5-4 lower). Mean values of specific monthly Fe exports 

ranged from 0.07 ± 0.05 g m-2 month-1 in WL14 to 0.13 ± 0.07 g m-2 month-1 in WL15. The 

exports were similar among most sites, but significantly different between WL14 and 

WL15 (p < 0.05). Similar changing patterns were seen among all sites, while variations 

were observed among years (Fig. 5-4 lower). In 2014 the specific fluxes were relatively 
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constant and small in spring and summer periods, before a large increase in late autumn 

(November) which gradually decreased into the following spring. The similar large 

increases in Fe exports in the late autumn also occurred in 2015, while fluxes also showed 

peaks during the summer periods.  
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Fig. 5-4. The dissolved [Fe] (upper) and specific monthly Fe fluxes (lower) of long-term sites in the Whitelee catchments from April 2014 to April 2016. WL13 
is the confluence site located in Drumtee. In Aug. 2015, there was no data for WL16 as the sampling site was inaccessible due to road construction. It was 
assumed when calculating export that the concentration of the last sample carried for longer. 
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The significant correlations between [Fe] and [DOC], observed in Drumtee tributaries, 

also existed in the large catchments (p = 0.000), with the driest months (July, Sept. 2014 

and Sept. 2015, see Chapter 4 Fig. 4-6 for hydrograph) having a different, but still 

significant relationship (p = 0.009) (Fig. 5-5). However it was also shown that driest-period 

samples plot off the bulk sample trend line, along with a few other samples from the rest 

periods, for example WL16 in October 2014 and March 2015.  

 

Fig. 5-5. Relationships between [DOC] and [Fe] of samples from all Whitelee long term sites 
(WL13, 14, 15, 16, 1) from April 2014 to April 2016. The driest months are July, September 2014 
and September 2015. 

Table 5-1 Relationships between [DOC] and [Fe] in sub-catchments D-WF, D-FF in Drumtee, 
and in the Whitelee catchments (WL).  

Hydrological 
condition Sites Relationships 

Other months 
D-WF y = 0.035x + 0.046 (R

2
 = 0.77, p = 0.000) 

D-FF y = 0.040x - 0.041 (R
2
 = 0.74, p = 0.000) 

WL y = 0.034x + 0.096 (R
2
 = 0.56, p = 0.000) 

Driest months 
D-WF y = 0.148x - 1.331 (R

2
 = 0.75, p = 0.000) 

D-FF y = 0.117x - 4.554 (R
2
 = 0.53, p = 0.003) 

WL y = 0.071x + 0.018 (R
2
 = 0.42, p = 0.009) 

 

The [Fe]-[DOC] relationships for sub-catchments (D-WF and D-FF) and large Whitelee 

catchments are more similar in the non-driest periods (‘Other months’ is Table 5-1). Fe 

and DOC were more strongly correlated in the tributaries during the driest months, but 
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not in the large catchments. For the consideration of Whitelee catchments, the 

relationship was weaker in the driest months (R2 < 0.50) than the rest of the time (R2 > 

0.50).  

5.4.2 DOC composition impacts on Fe-DOC binding 

5.4.2.1 Drumtee sub-catchments  

For most months, Fe/DOC in both streams were similar, and smaller than 0.014. Generally 

there were larger Fe/DOC values in summer/autumn than spring/winter for two Drumtee 

streams during 2014 – 2015, apart from a large Fe/DOC in February 2014 (a wet month: 

D-WF: 0.013 ± 0.001; D-FF: 0.016 ± 0.002) (Fig. 5-6). In July and September 2014 (the dry 

months), Fe/DOC in D-WF increased to be much larger than 0.014 (July: 0.018 ± 0.004; 

September: 0.022 ± 0.003). This was not observed with D-FF Fe/DOC bar a small increase 

in September, and this ratio remained smaller than 0.014.  

 

Fig. 5-6. Molar ratio Fe/DOC and E2/E4 in Drumtee streams from February 2014 to February 
2015. Ratios in D-WF are indicated in solid lines and those in D-FF are in dashed lines. The 
black dashed line represents Fe/DOC of 0.014 as a point when DOC precipitates may be 
observed (Nierop et al., 2002).  

During this time period, E2/E4 showed temporal changes broadly opposite to Fe/DOC (Fig. 

5-6). This interaction was less clear with E4/E6 (so the plot of contemporaneous temporal 

changes is not given but the interaction plot is Fig. 5-7 lower). Correlation results for all 

Drumtee sites revealed E2/E4 was significantly correlated with Fe/DOC, showing a 

negative relationship in both sub-catchments regardless the climatic differentiation (Fig. 
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5-7 upper). The relationship between Fe/DOC and E2/E4 was for ‘Other months-WF’, 

‘Other months-FF’ and ‘Driest months-FF’, while ‘Driest months-WF’ samples fell off the 

main trend having a higher Fe/DOC ratio. The relationship between Fe/DOC and E2/E4 

overlapping samples (all groups except ‘Driest months-WF’) was generally weak, 

explaining only 13 % of variations in Fe/DOC changes, but for D-WF during the driest 

periods the relationship was stronger with R2 = 0.85.  

 

Fig. 5-7. Relationships between E2/E4 and Fe/DOC (upper), E4/E6 and Fe/DOC (lower) of 
samples from February 2014 to February 2015 for all 15 sites in Drumtee. The dataset was 
divided into four groups according to the sampling period (the driest months or other months) 
and streams (D-WF and D-FF). The black solid line in upper graph represents the linear trend 
line of Other months-WF, Other months-FF and Driest months-FF. No significant correlation 
was generated for the relationships between E4/E6 and Fe/DOC.  

Correlations between E4/E6 and Fe/DOC were not statistically significant in all cases (p > 

0.05), therefore these interactions are not shown. However once again it was observed 
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that D-WF samples from the driest months were generally separated from the rest 

overlapping samples (Fig. 5-7 lower). 

5.4.2.2 Whitelee catchments  

Fe/DOC molar ratio in the Whitelee catchments ranged from 0.002 to 0.023 during 2014 

– 2016, and for most of the time was smaller than 0.014 (Fig. 5-8). A more constant and 

smaller Fe/DOC was observed in WL14 than the other sites which were variable and larger. 

The averaged Fe/DOC among sites followed this order: WL16 (0.011 ± 0.006) > WL1 (0.009 

± 0.004) > WL15 (0.009 ± 0.003) > WL13 (0.008 ± 0.003) > WL14 (0.006 ± 0.002). Fe/DOC 

in WL14 was significantly smaller than that in WL16 and WL1 (p < 0.05), while the 

difference between WL13 and WL16 was also significant (p < 0.05).  

 

Fig. 5-8. Molar ratio Fe/DOC in Whitelee long-term sites from April 2014 to April 2016. The 
black dashed line represents Fe/DOC of 0.014 as a point when DOC precipitates may be 
observed (Nierop et al., 2002). In Aug. 2015, there was no data for WL16 as the sampling site 
was inaccessible due to road construction. 

Generally Fe/DOC values across Whitelee were smaller in early spring and higher in 

summer/autumn (Fig. 5-8), consistent with the observation in Drumtee sub-catchments 

(Fig. 5-6). The ratios in the driest months being greater than or larger to 0.014, which 

occurred in Drumtee D-WF, also existed in Whitelee (July and September 2014 and 

September 2015) for all except WL14 (July 2014: 0.008; September 2014: 0.009; 

September 2015: 0.008). Fe/DOC also increased in April and June 2015, and March 2016, 

which were wet months, but only WL16 had a ratio greater than 0.014.   
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Fig. 5-9. Relationships between E2/E4 (upper), E4/E6 (lower) and Fe/DOC of samples from all 
Whitelee long term sites from April 2014 to April 2016. The dataset was divided into two 
groups according to the climatic conditions (the driest months or other months). The driest 
periods are July, September 2014 and September 2015. The red dashed line is the trend line 
for ‘Driest months’ samples, blue for ‘Other months’ ones and black for all samples regardless 
of the climatic differentiation. 

Relationships between E2/E4, E4/E6 and Fe/DOC were also considered for all Whitelee 

samples. E2/E4 and Fe/DOC were significantly and negatively correlated for samples from 

both the driest (p = 0.005) and the other months (p = 0.000), and such so for all samples 

regardless of climatic differentiation (p = 0.000, Fig. 5-9 upper). Stronger relationships 

were shown in large Whitelee catchments than that in small sub-catchments in Drumtee 

(Fig. 5-7 upper, excluding Driest months-WF), with E2/E4 explaining similar and larger 

variance in Fe per unit DOC (R2 ranged from 0.40 to 0.47). The slope of trend line in the 

driest period was steeper than the remainder of the time.  
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Significant and positive relationships were observed in E4/E6 and Fe/DOC for all samples 

in Whitelee, and those in the driest and the other periods (Fig. 5-9 lower). However these 

relationships were weak, explaining around 25 – 34 % of variation of Fe/DOC changes in 

different groups. Once again, the driest-period samples were outside the main group with 

a few samples from the other period, similar to the observations in E2/E4 and Fe/DOC 

relationship. 

5.4.3 Interaction between Fe and nutrients: Whitelee catchments  

Similar to the [DOC]-[Fe] relationship, [SRP] and [Fe] were also positively-correlated 

across the five Whitelee sites and different climatic conditions (the driest and the other 

months) (Fig. 5-10). The relationship for all sites was significant (p = 0.000) although [Fe] 

alone only explained 32 % of the variations in [SRP] changes. A negative and curvilinear 

relationship with [Fe] was observed for [TON] (Fig. 5-11). As with [SRP], no obvious 

difference seemed to exist for different climatic conditions, and the correlation between 

[Fe] and [TON] was weaker (R2 = 24 %) than that in the [Fe]-[SRP] relationship.     

 

Fig. 5-10. The relationship between [Fe] and [SRP] of samples from the Whitelee long-term 
sites (WL13, 14, 15, 16, 1) from April 2014 to April 2016. The driest months are July, September 
2014 and September 2015. The solid black line is the relationship for all samples. 
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Fig. 5-11. The relationship between [Fe] and [TON] of samples from all Whitelee long term 
sites (WL13, 14, 15, 16, 1) from April 2014 to April 2016. The driest months are July, September 
2014 and September 2015, but no [TON] measured for July 2014 as a practical mistake. The 
solid black line is the relationship for all samples. 

 

Fig. 5-12. Molar ratio Fe/P in Whitelee long-term sites from April 2014 to April 2016. No Fe/P 
data for July 2014 as nutrient was not measured on that sampling date.  

The molar ratio Fe/P across the Whitelee catchments ranged from 5.9 (WL1 in January 

2015) to 58.4 (WL16 in October 2015) (Fig. 5-12) during April 2014 – April 2016. A general 

seasonal pattern in Fe/P was exhibited, with the greater ratios in the summer and 

decreasing through autumn to winter. The averaged Fe/P was largest in WL16 (32.3 ± 

13.8), followed by WL1 (30.3 ± 11.3), WL13 (25.5 ± 13.8) and WL15 (24.2 ± 8.14). Fe/P in 

WL14 was the smallest (18.4 ± 7.33) and significantly smaller than WL16 and WL1 (p < 

0.05). 
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5.5 Discussion 

5.5.1 High [Fe] in peatland catchment and interaction with DOC 

Soils and waters in peat-dominated catchments tend to deliver higher [Fe] than 

catchments with mineral and gley soils (Table 5-2). The [Fe] in streams in this study was 

all in excess of 200 ug l-1 across the years (only apart from January 2015), which is the 

maximum admissible [Fe] in drinking water (Abesser et al., 2006). Whitelee [Fe] was 

similar to peatland-dominated catchments in Finland and relatively higher than those 

from other peaty catchments (including some in the North Scotland), but not as high as 

some soil water and groundwater sites that seem to have the highest [Fe] (Table 5-2). 

The dissolved [Fe] in all Whitelee sites showed seasonal patterns with highest 

concentrations normally in summer with lower stream flow (Fig. 5-1 and Fig. 5-4). High 

discharge-induced anaerobic conditions in the catchment was suggested to likely increase 

Fe transport to fluvial systems (Ekström et al., 2016), which however did not happen here. 

This may suggest other catchment characters may control [Fe] seasonality in peaty waters.  

In addition to the rocky parts of Earth being the initial and main source for Fe in 

catchments (Rauch and Pacyna, 2009), in streams and rivers, both deep soil 

water/groundwater and organic soil water are found to be the major source for Fe. The 

Fe mobilisation from organic-rich soil is generally related to the binding with organic 

ligand (e.g. DOC) (Mladenov et al. 2010; Weyhenmeyer et al. 2014). The strong and 

positive correlation between total Fe and DOC concentrations in Drumtee and Whitelee 

stream water is similar to that observed previously elsewhere, including stream surface 

water, pore water and sediments (e.g. Knorr, 2013; Oni et al., 2013). Indeed, the high 

concentration and seasonality of dissolved Fe in the aerobic streams and rivers in this 

research may be influenced by the high [DOC] exported from peat-dominated soils. The 

correlation analysis may indicate that between 42 – 80 % of the dissolved Fe across sites 

was with DOC-chelates, with this range reflecting different hydrological flow pathways 

that are climatically responsive (Fig. 5-3 and Fig. 5-5). The availability of DOC may be 

particularly important in supporting Fe3+. Increased DOM-Fe complexation has been 

reported to be the mechanism behind increasing Fe trends (Sarkkola et al., 2013). As Fe3+ 

is of several orders of magnitude lower water solubility than Fe2+, the binding with DOM 

and formation of organometallic complexes significantly increase Fe3+ stability and 

dissolved [Fe] in water, and is important for Fe mobilization (Ekström et al., 2016; 

Krachler et al., 2010).  
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Table 5-2 Summary of dissolved [Fe] in different environments including river water, stream 
water, groundwater and soil water. The range of [Fe] in Whitelee Catchment includes 
concentrations observed in both long-term and short-term sites. The referred examples are 
listed according to highest [Fe] in each sample (maximum [Fe] was considered).  

Samples [Fe] (mg l-1) Reference 

Mainstreams in forested catchments in 
mid-Wales 

0.09 – 0.12 (Neal et al., 2008) 

Peat and podzolic soil dominated 
catchments in mid-Wales 

0.01 – 0.14 (Neal et al., 2008) 

Deep groundwater from Germany 
wetland 

0.24 (max) (Knorr, 2013) 

Surface water from mineral soil-
dominated catchments in Finland 

0.29 ± 0.12 (Sarkkola et al., 2013) 

Gley soil dominated catchments in 
mid-Wales 

~ 0.90 (Neal et al., 2008) 

River water from peat-draining rivers 
in North Scotland 

0.73 – 1.07 (Krachler et al., 2010) 

Stream water from a Swedish 
headwater catchment draining forest 
and mire 

1.24 (Oni et al., 2013) 

Surface water from black rivers and 
peat bogs in Siberia 

0.03 – 1.40 
(Pokrovsky et al., 

2006) 

Surface water from Germany wetlands 0.00 – 1.50 (Knorr, 2013) 

Surface water from 30 Swedish rivers 
with different soil types 

0.08 – 1.72 
(Kritzberg and 

Ekström, 2012) 

Surface water from peatland-
dominated catchments in Finland 

1.92 ± 0.52 (Sarkkola et al., 2013) 

Surface water from forested Swedish 
catchment with < 10 % peatland 

0.21 – 1.98 (Ekström et al., 2016) 

Stream water from peatland-
dominated Whitelee catchments in 
Scotland 

0.15 – 4.27 This study 

Stream water from peatland-
dominated Drumtee sub-catchments in 
Scotland 

0.19 ± 0.07 – 4.27 ± 
1.08 

This study 

Soil water from post-fell peaty gley in 
mid-Wales 

0.12 – 5.03 (Neal et al., 2008) 

Wetland groundwater in German 0.20 – 5.90 (Knorr, 2013) 

Groundwater in upland catchments in 
mid-Wales 

0.00 – 7.18 (Neal et al., 2008) 

Wetland pore water from a Germany 
minerotrophic fen site 

0.10 – 20.40 (Goldberg et al., 2010) 
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There are two areas of significance to further consider in relation to the Fe-DOC 

interaction. The first is that DOC composition may enhance Fe export. The second is that 

Fe may limit DOC export. Both may occur at the same time and interact and the evidence 

for this at Whitelee is explored in the discussion that follows. 

DOC composition may enhance Fe export: Changes in DOC composition may also 

influence the association between Fe and DOC. The negative relationship between E2/E4 

and Fe/DOC molar ratio (Fig. 5-7 and Fig. 5-9) reveals more Fe was mobilized per unit 

DOC when DOC had larger proportion of HS. This is consistent with the previous suggestion 

that complexation bindings occurred between Fe and organic ligands particularly with 

aromatic structure, and adsorptive processes with Fe oxyhydroxides strongly favour the 

accumulation of the more recalcitrant DOM (Kaiser and Guggenberger, 2000; Kritzberg et 

al., 2014; Riedel et al., 2013). This may be one potential mechanism contributing to the 

larger Fe/DOC during low flow phase. While [DOC] decreased in the driest months, [Fe] 

maintained stable or increased in the streams (Fig. 5-1), which may due to Fe-rich deep 

soil water/groundwater becoming dominant during low flow periods and supplying more 

dissolved Fe (Abesser et al., 2006). In addition, the greater DOC binding ability would be 

expected when DOC with a larger proportion of HS was exported from deeper organic soil 

(indicated by decreased E2/E4, Fig. 5-6), and support the Fe3+ in dissolved state, which 

would otherwise precipitate at the oxic surface.  

However, in Whitelee catchment samples, a positive relationship was observed between 

Fe/DOC and E4/E6 (the FA:HA indicator) (Fig. 5-9). The higher the value of E4/E6 the 

greater the proportion of FAs, suggesting that here more Fe was mobilized per unit DOC 

when it contained less HAs. The results seem to contradict one another. However HAs 

have larger molecular weight and aromaticity, which could make them more prone to 

aggregate (Kritzberg et al., 2014) with Fe. Thus in Whitelee FAs might accelerate more 

close complexation interaction with Fe.  

High [Fe] may limit DOC export: It has been suggested that instead of DOC being a 

regulator of Fe concentration, DOC exports are mediated by co-precipitation with Fe 

oxides (Knorr, 2013). For example, at the redox interfaces in peatlands, a large portion 

of DOM (27 %) was removed via coagulation when precipitation of more than 90 % of iron 

hydroxides happened at the oxic surface (Riedel et al., 2013). It is possible this too occurs 

in the Whitelee catchments. In some months, particularly in the summer periods, while 

DOC showed greater binding ability, the Fe/DOC (of filtered water samples) was close to 

or larger than 0.014 (Fig. 5-1), which may suggest a reduced potential binding sites for 

Fe3+ and thus a greater potential for DOC to precipitate with Fe3+ oxides during transport. 
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Consequently, when humic DOC increased Fe export during low flow phase, greater Fe 

source from deep peat water/groundwater may cause particle organic carbon to form and 

DOC to be removed from flow. Thus, the decreased [DOC] in the driest months may be 

regulated not only by the reduced flush of DOC due to low hydrological flow, but also by 

the C precipitates with more Fe from deeper peat.  

This is significant for three reasons. Firstly, if such precipitation had taken place, then it 

may provide another mechanism behind organic carbon loss in fluvial networks before 

reaching oceans (Chapter 1). Secondly, this coagulation of Fe with DOM has been 

suggested to shelter and preserve organic carbon (Kaiser and Guggenberger, 2000; 

Lalonde et al., 2012), and so Fe may play an important role in carbon cycles and the 

export of POM to marine systems that preserves a terrestrial character. Thirdly, this 

precipitation can reduce DOC availability to in-stream biodegradation.  

5.5.2 Potential factors leading to the spatial variation of [Fe] 

Hydrological response may influence inter-catchment/sub-catchment homogeneity and 

Fe export seasonality, however given the catchments are small and close together this is 

unlikely to differ much across catchments and so cannot explain inter-

catchment/tributary differences. Thus other catchment characteristics may be important 

controls here.  

Peat soil cover in the catchment: As peat produces strong ligands (HS) which forms Fe-

DOC complexes, the difference of peat coverage (%) in each catchment would be 

expected to influence the spatial variation of [Fe] across Whitelee. Indeed, the larger 

averaged [Fe] during 2014 – 2016 was observed in WL15 (1.70 ± 0.86 mg l-1), WL16 (1.49 

± 0.79 mg l-1) and WL13 (1.33 ± 0.70 mg l-1), which had the similar and greater peat cover 

(90.0 %, 82.0 % and 88.0 % respectively, c). When smaller area of WL14 and WL1 was 

covered by peat-related soil (78.6 % and 62.0 % respectively), correspondingly there was 

lower averaged [Fe] in both catchments (WL1: 1.17 ± 0.59 mg l-1; WL14: 0.88 ± 0.38 mg l-

1).   

Land use difference: However, peat cover cannot fully explain the spatial variation of 

[Fe], e.g. in Drumtee, there was similar peat cover between the sub-catchments. Land 

use has been suggested to change the source for DOC and Fe to fluvial systems (e.g. Muller 

et al., 2015). Turbine installation and the relevant construction were one of the direct 

land uses in Whitelee. However, little Fe release would be expected from this process 

into the system, as it would only happen when the turbine foundation was weathered, 
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and this was not the case in this field. Instead, impacts of wind farm development and 

the associated felling activities on DOC concentration in the Whitelee catchments and the 

Drumtee tributaries are apparent (see discussion in Chapter 4). Thus indirectly land use 

change may alter the Fe export via the effects on DOC concentration. 

Between the Whitelee catchments, WL15 experienced recent deforestation due to the 

windfarm extension activity during 2010 – 2013 (Phin, 2015). The higher [DOC] in WL15 

than other catchments occurred after extension started and was maintained during the 

sampling in this research. Thus, in addition to the largest peat cover, wind farm-

associated [DOC] increase in WL15 may partially contribute to the larger [Fe] than others. 

Specifically, deforestation may increase more [DOC] than wind farm construction (see 

discussion in Chapter 4), and thus enhance larger Fe export in the draining waters (Fig. 

5-1 and Fig. 5-2). A similar increased [Fe] after deforestation has also been reported 

elsewhere, e.g. in mid-Wales [Fe3+] in upland waters increased over the past 20 years 

whose catchments had gradual/phased felling and clear felling, and total [Fe] increased 

within the soil following felling (Neal et al., 2008). Apart from changing DOM export, 

hydroecological water use and run-off patterns, felling operations can also cause 

disturbance and partial mineralization of top soil which then releases Fe into soil and 

pore water, contributing to an increased Fe concentration (Muller et al. 2015).  

Water retention time: Further, DOC binding ability with Fe (indicated by Fe/DOC) also 

differed between the Whitelee catchments, and was positively related with HS proportion. 

Spatial variations of DOC composition were exhibited in Whitelee. With the samples being 

collected at the outlets of catchments with different areas, this allows the consideration 

of potential influence of water retention time on DOC composition changes. DOC 

decomposition rate was suggested to reduce with increasing water retention time 

(Catalán et al., 2016), and thus more humic and resistant DOC composition would be 

expected. In Whitelee, the longer flow length and thus water retention time in WL1 and 

WL16 (11.4 and 10.8 km, Chapter 2 Table 2-1) provided more chance for labile DOC 

decomposition, and likely contributed to the larger proportion of HS (indicated by the 

smaller E2/E4 in WL16 and WL1, Chapter 4 Fig. 4-7) than other catchments which all had 

flow length ranged from 5.3 – 8.1 km. As a result, greater DOC binding ability in WL16 

and WL1 may be favoured by the greater HS proportion. 

However, although WL14 flow length was longer than WL13 and 15, Fe/DOC in WL14 was 

clearly different from and constantly smaller than those in other catchments (Fig. 5-8). 

WL14 E2/E4 was not significantly larger than others, however an often smaller and more 

stable E4/E6 was shown in WL14 (Chapter 4 Fig. 4-7), indicating in the pool of HS, there 
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may be a greater proportion of large molecular weight HAs, contributing to the chance of 

DOC-Fe to aggregate (Kritzberg et al., 2014). Although WL14 flow length was not the 

longest, it is noticed there was a reservoir upstream in WL14 catchment (Chapter 2 Fig. 

2-1) where more labile and FAs may be degraded, resulting in the greater HAs proportion 

in the carbon pool.  

The understanding of potential impacts of different catchment characters on [Fe] and 

Fe/DOC molar ratio has important implications to water supply and land use management 

in peat-covered catchments. In this study, the deforestation-associated [Fe] increase, 

and the greater possibility of C precipitation in WL16 due to longer flow length should be 

taken into consideration when modelling catchment behaviour, for example if water 

treatment in these catchment is required. 

5.5.3 Interaction between Fe and nutrients 

Considering Fe interaction with nutrient dynamics may also reveal key biogeochemical 

process, with iron considered as a predictor of nutrient mobilization in some environments 

(Emsens et al., 2016). A weak and negative relationship (R2 = 23 %) was observed between 

Fe and TON in the Whitelee catchments, which may arise due to the oxidation of Fe2+ via 

reduction of NO3
- to NH4

+ (Weber et al., 2006). Thus, when more Fe2+ were oxidised to 

Fe3+ and formed complexations with DOC contributing to high dissolved [Fe], more NO3
- 

may be reduced, producing a gas not measured in [TON].  

A relatively stronger and positive relationship was shown between Fe and SRP in peat-rich 

catchments, in agreement with other aquatic systems. Iron may enhance phosphorus 

complexation with DOC and thus facilitate total phosphorus export in catchment fluxes 

(Dillon and Molot, 1997), Experimentally it was observed that OM-Fe complexes can 

sufficiently suppress the formation of solid FePO4 to result in increased dissolved P 

concentrations (Sundman et al., 2016), and so increased Fe may result in increased P 

export and bioavailability. Here, the complexation of Fe with DOC is suggested to 

contribute to high total dissolved [Fe] in the aerobic stream surface water and it may be 

this complexation facilitates great P export: when there were more DOC-Fe complexes, 

both soluble [SRP] and [Fe] increased as less interactions between Fe3+ and PO4
3-. 32 % of 

variation in [SRP] may be explained by this organic complexation-related [Fe] (Fig. 5-10), 

and this DOC-mediated link between P and Fe may also explain some of co-varying [DOC] 

and [SRP] observed in this research (Chapter 4) and other studies.  
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However the changes in concentration increase/decrease were not the same for Fe and 

P, resulting in variable Fe/P ranging from 6 – 60 in the Whitelee catchments (Fig. 5-12). 

Fe/P in Whitelee is smaller than that in the ditch water of a catchment characterized by 

sandy soils with Fe-rich groundwater, which ranged from 16 – 1010 (Baken et al., 2015). 

However, it is larger than some other aquatic systems, e.g. Fe/P ranged from around 1 – 

6 for Swedish lake fresh water and seawater samples (Gunnars et al., 2002). This may be 

mainly caused by organic complexation-associated higher [Fe] and typically lower 

nutrient concentrations in peat soils than those in lake water and seawater. In addition, 

the absorption of P to residual Fe (hydro)oxides was suggested as a mechanism for less 

efficient solubilisation of P than Fe (Baken et al., 2015). Thus in Whitelee, the higher 

Fe/P in summer may suggest a greater P sink via sorption to Fe oxides from land to fluvial 

systems. Similarly, the Fe/P molar ratio was used as a tool to estimate the P mobility in 

soil elsewhere. For example in a highly-degraded peat soil, high P exports would be 

expected when Fe/P in extractions of sediment was higher than 10 (Zak et al., 2010).  

Taken all together, the increased [Fe] in Whitelee waters may contribute to the decrease 

in TON but increase in SRP availability, although in summer a greater P sink would be 

possible during export from land. These changes may further influence N and P and 

ultimately C biogeochemical cycles in fluvial networks.    

5.6 Conclusion 

The [Fe] in the Whitelee organic soil rich catchments was at the higher end of 

concentrations found in many peaty aquatic environments, but lower than that observed 

in soil pore water and groundwater. The similar seasonal pattern of [Fe] to [DOC], and 

the statistically significant covariance indicates a close interaction between Fe and DOC 

in the oxic surface waters. This is not surprising as the formation of stable complexes 

with DOC can help to maintain Fe3+ against aggregation and enable the transport of 

dissolved Fe3+, and so coupled changes observed in Fe and DOC concentration are also 

likely, and observed here. Further Fe and DOC interactions were explored, that is, larger 

HS proportion can facilitate Fe export, while high [Fe] may however limit DOC export via 

co-precipitation.    

Spatial variation in [Fe] was apparent among Whitelee long-term monitoring sites, which 

may be attributed to three reasons: peat soil cover, land use difference and water 

retention time. Large peat cover and wind farm development (particularly deforestation) 

can both favour Fe export by producing strong organic ligands (HS) for Fe-DOC complexes 

(e.g. greater [Fe] in WL15). In addition, water retention time may also play an important 
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role affecting spatial variation of [Fe], by changing FAs:HAs in the DOC pool. The 

significant and positive relationship with E4/E6 and Fe/DOC suggests FAs may be more 

favoured than HAs by Fe for the binding. This helps to explain the smallest Fe/DOC in 

WL14.  

Additionally, the formation of DOC-Fe, may be sufficient to suppress FePO4(s) to some 

extent and increase SRP export. The significant positive correlation between [Fe] and 

[SRP] may indicate this mechanism is important in the Whitelee catchments: the high 

concentration and humic composition of DOC in Whitelee may not only increase dissolved 

and mobilised [Fe], but facilitate the availability of P. [TON] was negatively related to 

[Fe], and the Fe2+-Fe3+ reduction/oxidation may be involved in N cycling in peatland.  

Taken all together, these findings can help to better understand the potential but 

important role of Fe in C, P and N biogeochemical cycles in aquatic systems, which will 

have further influence on DOC decomposition in peatland catchments. The records of 

spatial variation in Whitelee [Fe] partially due to deforestation, and the greater DOC 

binding ability to Fe in dry periods are helpful for peatland and water quality management 

in the future. The understanding of interactions generated also offers some insight into 

thinking about the organic carbon loss in fluvial systems (e.g. DOC removal by co-

precipitation with Fe oxides), particularly considering the peatland is a principal DOC 

source to the fluvial environment (Worrall et al. 2006).   
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6 Biodegradation of compositionally-different 
DOC from Drumtee 

This chapter presents results from four batch incubations of stream water samples. The 

last incubation experiment was kindly carried out by Pauline Weihmann, an internship 

from the University of Strasbourg. However, she has not contributed to the interpretation 

of this data nor has seen this chapter. The data was integrated with the other three 

incubation results to consider the wider seasonality in DOC biodegradation from Drumtee.   

6.1 Abstract 

The breakdown of fluvial DOM from a peaty catchment is examined by conducting 

biodegradation incubations, to understand if there are seasonal and spatial differences in 

the biodegradability of DOM. Four 21-day stream water dark batch incubation 

experiments were carried out, with stream water collected in autumn (September 2015), 

early winter (November 2015), late winter (January 2016) and summer (May 2016). Stream 

samples from the Drumtee tributaries and the confluence were incubated. The results 

showed, compared to the findings from other aquatic environments, biodegradation of 

Drumtee water DOC was smaller: BDOC: from 0.60 – 2.74 mg l-1 C; BDOC %: from 2.9 – 

12.1 %. This may be attributed to the shorter length of the incubation. However, the 

Drumtee BDOC loss was comparable with others when normalised for the length of 

incubation. Thus other factors are different measures of BDOC estimation and DOC 

compositional characteristics.  

Weekly measurements of DOC composition and changes in nutrient concentration allowed 

the fluvial DOC biodegradation dynamic to be explored. Both UV-visible measurements 

and fluorescence excitation-emission matrices with parallel factor analysis (PARAFAC) 

were used to identify different carbon groups in DOC that were being degraded. Protein-

like PARAFAC component 6 (C6) and TON showed clear responses to BDOC degradation, 

suggesting C6 may be an important BDOC pool with a likely close metabolic interaction 

with TON.  

The analysis of compositional influence on fluvial DOC biodegradation showed that initial 

nutrient concentrations, SUVAs and C6 (and its relative contribution) were good as single 

predictors for BDOC (or percent BDOC). A multiple linear regression model was built to 

estimate BDOC (and percent BDOC), which further confirmed the importance of these 

characteristics as significant in an interaction. SUVAs and C6 have likely come out because 

they reflect the refractory/labile DOC pools, while SRP and TON may exert the influence 
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on BDOC by supporting bacteria growth or providing materials for the labile component 

to form.  

It appears there was seasonality in Drumtee in-stream BDOC loss, with more DOC loss in 

late winter and summer, and less in autumn and early winter. Further, spatial variation 

in BDOC loss was also observed. In autumn and early winter more BDOC was lost in D-FF 

than D-WF, but BDOC % was similar. In late winter and summer more BDOC (and BDOC %) 

loss occurred in D-WF. This may be linked to the relative changes in nutrient 

concentrations and DOC composition between sampling and between sites. In January and 

May, the greater nutrient concentrations, smaller DOC aromaticity and more labile DOM 

materials in D-WF likely support more DOC biodegradation (both BDOC and BDOC %).  

6.2 Introduction 

Part of the DOC pool consists of small molecular weight compounds that can be directly 

transported across microbial cell membranes (Battin et al., 2008) and thus in both 

terrestrial and aquatic ecosystems, carbon mineralization of dissolved material occurs. 

DOC is a potential source of energy to aquatic organisms and can be consumed either in 

the water column (Bernhardt and Mcdowell, 2008) or in stream beds or the hyporheic 

zone (Fiebig et al., 1991). Therefore biodegradable DOC (BDOC) is a key regulator of 

ecosystem metabolism (Vonk et al., 2015). However the breakdown of DOC also influences 

the wider fluvial C cycle, by producing DIC, which can be degassed to the atmosphere as 

CO2 (e.g. Long et al., 2015). Small streams can be major sources of CO2 to the atmosphere 

(Fasching et al., 2014), however it is not yet well understood to what extent this is fuelled 

by the biological decomposition of terrestrially-released carbon (Fasching et al., 2014; 

Stutter et al., 2013). 

The bioavailability of DOM is closely related to its origins and microbial processing but is 

not reflected in DOC concentrations (Chapelle et al., 2009; Shen et al., 2015). There is 

considerable variation in the extent to which DOC can be biodegraded, varying across 

environments and substrates. For example, during a 7-week incubation of DOM in 

precipitation water percolated through various forest litters, DOM from deciduous leaf 

litter was more biodegradable (up to about 75 %) while that from spruce needles was 

scarcely degraded (Hongve et al., 2000). In contrast, during a longer incubation (70 days) 

but of DOM from different soils, less proportion of DOM (5 – 39 %) was degraded, with the 

smallest utilisation of biodegradable DOM from soils from a raised peat bog and the largest 

from the blanket peat (Bowen et al., 2009). A similar range of soil DOM biodegradation (7 

– 38 %) was observed with DOM collected along a soil-stream continuum of bog, forest 
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wetland and upland forest (Fellman et al., 2009). Furthermore, the biodegradation in 

DOM from soil was significantly greater compared to from stream water in the bog and 

forested wetland.  

This soil composition control has been observed elsewhere. For example, more C was 

biodegraded (146 – 309 μg C l-1 day-1) in storm flow runoff from a peat mire than from a 

forest (30 – 151 μg C l-1 day-1) (Berggren et al., 2009). Further DOM from waters percolating 

through different soil profiles showed varying decomposition rates (Qualls & Haines, 1992). 

The biodegradability of DOM declined vertically with profile depth, with highest rates 

(48.7 %) in the throughfall and lowest in the soil A horizon (highly-decayed organic matter 

in mineral matrix, 13.9 % decomposed). However the biodegradability then increased with 

depth from the soil A horizon into mineral soil (26.1 %).  

Variation in BDOC occurs across different aquatic systems: 11 – 27 % for stream DOC, 19 % 

for rivers and seawater DOC, and 14 % for lake DOC (Qualls and Haines, 1992; Søndergaard 

and Middelboe, 1995; Stutter et al., 2013; Volk et al., 1997). Groundwater appears low 

in BDOC (8 %) compared to other aquatic systems (Shen et al. 2015) and BDOC in coastal 

estuaries is more variable (8 – 29 %) (Moran and Hodson 1999; Raymond and Bauer 2000; 

Lønborg et al. 2009; Lønborg and Søndergaard 2009). Big rivers and lakes, which have 

longer water retention time, tend to have lower biodegradation rates (Catalán et al., 

2016). The DOC will be more refractory having been in the fluvial network for a longer 

time (Moody, 2016). Furthermore, the extent of BDOC processing within one system can 

vary e.g., the fraction of BDOC in DOM decreased downstream the fluvial network in 

continuous permafrost regions, suggesting highly biodegradable DOC is lost in headwater 

streams (Vonk et al. 2015).  

There are many environmental factors that can affect BDOC presence and differences in 

terrestrial and aquatic systems (Palmer et al., 2016). Regional characteristics including 

climate, surface geology and lake morphometry, regulate the lake removal of terrestrial 

DOC (Olefeldt et al. 2013), such that any environmental change that destabilizes the 

terrestrial C source has consequential impacts on in-stream C quality and hence shapes 

DOC biodegradability (Billett et al., 2006). Hydrological connectivity appears influential 

e.g. more DOC is biodegraded immediately after precipitation events and low 

biodegradation occurred in drier periods, suggesting high DOC biodegradability is 

supported by active recharge to the aquifer (Shen et al. 2015). Meanwhile DOM 

biodegradation is also strongly dependent on availability of nutrients such as nitrate and 

phosphorus. Amino acids, together with other low molecular weight, labile compounds 

(such as carbohydrates and carboxylic acids), are increasingly recognised as important 
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drivers of bacterial productivity in surface waters (Berggren et al., 2010; Stutter et al., 

2013). Fresh plant-derived C and ammonium concentrations are found to be strongly and 

positively correlated with biological removal of DOC (Mann et al., 2012). In aquatic 

systems where nutrient levels are normally low, for example, peatland drainage, the 

biological processing may be slow relative to in-stream residence times (Palmer et al., 

2016). Phosphorus has been described to play a central role in regulating the balance 

between catabolism and anabolism in aquatic systems like lakes, with great dissolved P 

shifting the balance to anabolism (Guillemette and Giorgio, 2012). Therefore phosphorus 

can accelerate the bacterial growth rate and efficiency (Smith and Prairie, 2004), which 

can lead to more BDOC degradation due to larger size of bacterial community.   

Significant improvements in DOM characterization techniques have led to the 

understanding that DOM is a complex mixture of soluble organic compounds that vary in 

their reactivity and biochemical composition (Fellman et al., 2010), and more and more 

studies have proved a metabolic link between DOC composition and biodegradability 

(Fellman et al., 2010; Mann et al., 2012). UV-visible absorbance and fluorescence, 

commonly used to analyse DOM composition (as described earlier in Chapter 1, Section 

1.7), can help understand processes of degradation. For example, in dark incubations of 

peatland porewater and lake water samples, there were weak but significant negative 

relationship between sample SUVA254 and DOC loss during dark incubations (Olefeldt et al. 

2013), indicating more biodegradation occurred with less proportion of aromatic DOC.  

However, SUVA254 may not alone significantly explain the BDOC variance, suggesting 

several factors may interact regulating DOC biodecomposition. For example, in the 

incubation of UK moorland DOC, SUVA254, the sum of rainfall and δ15N value of the DOM 

isolate, can together significantly describe BDOC (R2 = 0.66, p = 0.03) (Stutter et al. 2013). 

Similarly, changes in DOM fluorescent characteristics have been suggested to reveal 

various BDOC changes in different systems. Humification index (HIX) (Fasching et al., 2014; 

Gabor et al., 2015), DOM freshness (β/α) (Fasching et al., 2014; Schiller et al., 2015) and 

the fluorescence index (FI) (Mann et al., 2012; Mcknight et al., 2001) derived from 

fluorescence are often used as a proxy for the extent of DOC humification, DOC freshness 

and source (i.e., terrigenous or microbially produced) respectively. For example, the use 

of HIX indicated a higher degree of humification as one of characteristics for terrigenous 

DOM delivery to various Austrian streams (than the DOM being autochthonous), and the 

decrease of HIX with a concurrent increase of β/α revealed that microbial degradation 

led to the changes of the optical properties of DOM and an enhanced autochthonous DOM 

signature (Fasching et al., 2014).  
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Additionally parallel factors analysis (PARAFAC) modelling of EEMs spectroscopy has been 

widely used in DOC biodegradation research to characterize different C pools. PARAFAC 

identified components have been linked to humic-like, fulvic-like and protein-like 

(including tyrosine- and tryptophan-like) fluorophores (as discussed in Chapter 1 Section 

1.7), and suggested to be good predictors of BDOC. For example, it was revealed in 

Alaskan peatland soil water samples, the presence of protein-like fluorescence was 

significantly and positively correlated (p < 0.001; R2 = 0.82) with BDOC turnover for soil 

waters taken together from bog, forested wetland, fen and upland forest (Fellman et al., 

2008), which is consistent with laboratory results showing amino acids to be a readily 

available source of C, N and energy for heterotrophic microbes (Ellis et al., 1999).  

Given the observed differences in DOM composition within the Drumtee catchments 

(chapter 4), to understand how in-stream respiration may contribute to the DIC pool (and 

so to the capacity for the river to degas CO2 to the atmosphere) and how this may vary 

seasonally, seasonal batch incubations of DOM from the two tributaries and the 

confluence in the Drumtee catchment to assess the rate of BDOC uptake were undertaken. 

Measurements of UV-visible and fluorescence composition, and nutrient concentration 

were undertaken to characterise the DOM pool and how this changed as BDOC was 

mineralised. The specific aims of this research were to: 

1. Quantify the BDOC component in Drumtee stream water from different seasons 

and sites, using 21 – day incubation, and examine if there is spatial and/or 

temporal variation in BDOC contents.  

2. Characterize fluvial DOC in samples from Drumtee stream water during its 

biodegradation, using UV and fluorescence spectroscopy, and assess if there are 

changes in the composition of DOC, and nutrient (N and P) concentration. 

3. Explore the relationship between fluvial BDOC loss, and nutrient availability and 

spectrophotometric composition in this peaty catchment to establish how these 

influence BDOC.  

6.3 Materials and methods 

6.3.1 Sampling and incubation strategy  

Water samples were collected from Drumtee catchment using five litre PETE drinking 

water bottles on 07/09/2015, 17/11/2015, 19/01/2016 and 31/05/2016. These dates 

were chosen to span a seasonal range: autumn, early winter, late winter (surface frozen), 
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and summer respectively. The bottles were pre-cleaned before sample collection using 

the same protocol described in the method chapter.  

 

Fig. 6-1. Drumtee catchment and sampling sites (indicated by black dots) in the sub-
catchments D-WF and D-FF, and the confluence WL13. Land use data was from Digimap® 
Land Cover Map 2015.  

In the September incubation, water samples were collected from two sites in Stream D-

WF (D-WF1, 5), two sites in Stream D-FF (D-FF1, 5) and one from the confluence WL13. 

However due to logistical reasons it was difficult to manage all sample analysis during 

short incubation sampling interval, thereafter only one site for each stream (D-WF1, D-

FF1) and the confluence, WL13, were sampled for incubation in Nov. 2015, Jan. 2016 and 

May 2016 respectively (Fig. 6-1). Due to the lack of temporal comparison, the data for D-

WF5 and D-FF5 are not discussed in the following sections.  

Water samples were returned to the lab within four hours and stirred overnight in 

temperature controlled (20 °C) dark room to expel oxygen in excess of atmospheric 

equilibrium. As the result of method development, a large amount of small reagent 

bottles were used as sealed individual incubation systems (Chapter 3, Section 3.2). 

Therefore on the next day, the well-mixed five litre sample was dispensed into 90 brown, 

250 ml, air-tight glass reagent bottles, with no headspace, except for September when 

60 bottles were filled. This number of sub-samples allowed five replicates per site in the 
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November, January and May incubations, and two replicates per site in the September 

incubation to be sacrificially sampled six times. In order to consider the net fate of DOC 

and include production from and absorption by POC, which can happen in streams (Moody 

et al., 2013), samples were not filtered before incubation. No nutrient supplement was 

provided (see discussion in Chapter 3, Section 3.2). Once in the reagent bottles, samples 

were incubated for three weeks in the dark at 20 °C, without further treatment. 

6.3.2 BDOC loss analysis  

Changes in [DO] were chosen to quantify BDOC degradation (Chapter 3, Section 3.2). Using 

a DO meter (HQ10 Hach Portable LDOTM), [DO] was measured from the 250 ml sub-samples 

every 3 or 4 days (Table 6-1). Collected samples had been kept in the temperature-

controlled incubation room before the incubation started, so they were allowed to adjust 

to room temperature (also ~ 20 °C) when being measured. Seven replicate readings were 

taken for each sample when the meter was stable, and the mean values were taken as 

representatives. The sub-sample was thereafter used for further chemical analysis, or 

discarded (Table 6-1).  

The observed [DO] change was converted to BDOC loss using the equation: degraded C 

(mg l-1) = [DO]/32*12 (mg l-1). However, the absolute BDOC loss variation may be 

influenced by availability of BDOC and so DOC starting concentration, thus to better 

compare the decomposition rate independent of [DOC], the BDOC % loss as a proportion 

of starting [DOC] was calculated. The preliminary trials showed the ThermaloxTM TOC 

analyser was not precise enough to detect the small changes of sample [DOC] during 

incubations (Chapter 3). Therefore, only the initial [DOC] on Day 0 was measured for 

other relevant calculations of parameters.  

Table 6-1 The lab work schedule during each incubation. [DO] was measured more frequently 
than the weekly DOC compositional analysis using UV-visible absorbance and fluorescence 
measurements, and nutrient measurements. [DOC] was only analysed at the beginning of 
incubations. Incubations were conducted in dark at 20 °C for 21 days. 

Measurement Day 0 Day 3 Day 7 Day 10 Day 14 Day 17 Day 21 

[DO] √ √ √ √ √ √ √ 

[DOC] √       

[TON] √  √  √  √ 

[SRP] √  √  √  √ 

UV absorbance √  √  √  √ 

Fluorescence √  √  √  √ 
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6.3.3 Water nutrient and DOC composition analysis 

The 250 ml sample was used to characterise weekly sample chemical composition: [SRP], 

[TON], spectrophotometric UV and fluorescence EEM measurements (Table 6-1). PARAFAC 

fluorescence model was further applied to examine the complete EEM dataset and 

identify fluorophores of incubation DOC. All the sample preparation and analysis were 

undertaken as described in Chapters 2 and 3.  

6.3.4 Data analysis 

One-way ANOVA was carried out in Minitab 17 using Tukey pairwise comparisons, to 

identify if a significant difference of mean values occurred among sites or dates (p < 0.05). 

Correlations were tested using Pearson correlation in Minitab 17, between BDOC (or 

BDOC %) loss and initial [TON], [SRP], and other parameters of sample composition as 

characterised by, for example, UV-absorbance characteristics, fluorophore component 

intensity. Mean values of replicates for each site on Day 0 were used for analysis, and 

relationships were considered significant when p < 0.05. Simple linear regression was used 

to test variation explained by each of the parameters, and multiple linear regression 

model was explored to identify which characteristics co-explained the greatest variation 

in BDOC (or BDOC %) across sites and dates. 

6.4 Results 

6.4.1 Intra-sample variation of initial [DOC], [SRP] and [TON] 

For all three sites sampled (confluence, D-FF1 and D-WF1), [DOC] ranged from 20.0 – 78.2 

mg l-1 C, with all sites sharing the same seasonal pattern of the greatest [DOC] 

concentrations in summer/autumn (September 2015, 47.0 ± 22.2 mg l-1 C), and smallest 

in winter (January 2016, 22.3 ± 3.4 mg l-1 C) (Fig. 6-2A). D-FF1 always had higher [DOC] 

than D-WF1, and the confluence WL13 had a [DOC] intermediate to these sites. The [DOC] 

in spring and summer was more variable between D-WF1 and D-FF1, but became less so 

in the winter months.  

[SRP] ranged from 15.8 ± 0.2 μg l-1 (D-WF1 in November) to 62.1 ± 2.2 μg l-1 (D-WF1 in 

January, Fig. 6-2B). The intra-sample variation in September and November was similar 

to initial [DOC], with [SRP] greatest in D-FF and smallest in D-WF. However, when [SRP] 

of D-FF decreased in January and May, D-WF and the confluence site WL13 did not share 

this trend but increased in concentration.  
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In September and November, [TON] was similar among sites during each month (although 

no TON was detectable in D-FF in September, limit of detection is 0.3 μg l-1), with 

concentrations ranging from 11.9 ± 0.0 μg l-1 (D-WF1 in September) to 38.2 ± 1.7 μg l-1 (D-

FF1 in November) (Fig. 6-2C). There was a clear increase in [TON] in January 2016 for all 

three sites, with the concentration ranging from 109.3 ± 2.0 μg l-1 (D-WF1) to 117.9 ± 1.8 

μg l-1 (D-FF1). In May the D-WF1 and WL13 [TON] was greater at 158.3 ± 1.7 μg l-1 and 

149.1 ± 15.1 μg l-1 respectively. However, a large decrease in [TON] was measured in D-

FF1, with 24.9 ± 9.7 μg l-1. 

 

Fig. 6-2. The average concentrations of (A) DOC, (B) SRP and (C) TON measured at the 
beginning of the incubations. Nutrient concentrations of D-WF and WL13 were highest in 
January 2015 and May 2016. There was no detectable [TON] for September D-FF. Error bars 
(± 1SD) are showing the standard deviation among replicates in each site. 
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6.4.2 Total BDOC loss in 3-week incubation   

The calculated loss in [DOC] across all incubations ranged from 0.63 ± 0.08 – 2.74 ± 0.03 

mg l-1. The largest loss was observed in the May incubation and smallest in November (Fig. 

6-3A). Between all sites, in September and November DOC samples from D-FF1 showed 

the largest loss of BDOC (1.78 ± 0.00 and 1.12 ± 0.16 mg l-1 respectively), while in those 

months, D-WF1 incubations had the lowest BDOC loss (1.04 ± 0.13 and 0.63 ± 0.08 mg l-1 

respectively). However in the January and May incubation, the largest BDOC losses were 

observed in D-WF1 (2.43 ± 0.03 and 2.74 ± 0.03 mg l-1 respectively) and the smallest losses 

in D-FF1 (1.22 ± 0.09 and 1.91 ± 0.18 mg l-1 respectively), which previously had the highest 

losses.  

 

Fig. 6-3. The total loss of biodegraded DOC (BDOC) over the three-week incubation (A), and 
the percentage loss of the BDOC (B) as a function of initial DOC concentration. Error bars (± 
1SD) indicates the standard deviation among replicates in each site. 

The pattern is a little different when BDOC loss is considered as a function of starting 

concentration. BDOC loss (%) ranged from 2.9 – 12.1 % over the three-week incubation 
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(Fig. 6-3B). For all site taken together, BDOC % in the September (3.2 ± 0.5 %) and 

November (3.0 ± 0.2 %) incubations were very similar, with small inter-site variations. 

However in the January and May incubations a greater proportion of the BDOC was lost 

(8.9 ± 3.8 and 8.2 ± 4.0 % respectively) with more obvious inter-site differences. D-FF1 % 

DOC loss was the same in September and November, but slightly increased by 1.7 % in 

January, and decreased by 0.5 % in May. In January and May, the total % DOC loss was 

much great for D-WF1 (12.0 ± 0.17 and 12.1 ± 0.32 % respectively) and WL13 (10.1 ± 0.52 

and 8.6 ± 0.25 % respectively) than for September and November (Fig. 6-3B). Although 

total D-FF1 BDOC loss was largest of all three incubations in September and November, 

the % DOC loss was consistently the smallest of all three sites.  

6.4.3 UV character of initial samples 

The initial SUVA254 ranged from 2.9 ± 0.1 (D-WF1 in May) to 4.1 ± 0.0 l mg-1 m-1 (D-WF1 in 

November), and SUVA410 from 0.41 ± 0.01 (D-WF1 in May) to 0.58 ± 0.00 l mg-1 m-1 (D-WF1 

in November). Most of the values for both SUVAs were within the range across all Drumtee 

sites during 2014 – 2015 (SUVA254: 2.8 ± 0.3 to 4.5 ± 0.3 l mg-1 m-1; SUVA410: 0.38 ± 0.04 to 

0.56 ± 0.03 l mg-1m-1). There was little variation in initial D-FF1 SUVA254 and SUVA410 

composition across incubations (SUVA254: 3.7 ± 0.1 lmg-1m-1, SUVA410: 0.49 ± 0.02 lmg-1m-

1, Fig. 6-4, Table 6-2). In contrast, the SUVA composition of D-WF1 and WL13 did vary, to 

be greater in November than September in 2015, and then lower in January and May 2016, 

more so in D-WF1 (SUVA254: down to 2.9 ± 0.1 lmg-1m-1, SUVA410: down to 0.41 ± 0.01 l mg-

1 m-1). 
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Fig. 6-4. The (A) SUVA254, (B) SUVA410, (C) E2/E4 and (D) E4/E6 values of each site starting 
composition for the three sampling months. Error bars indicates the standard deviation 
among the replicates in each site, and if not apparent they are smaller than the symbol. 

E2/E4 of all sites showed more consistent temporal variation, with the values greater by 

about 0.5 units in November 2015 than September but lower in January 2016 to have a 

composition more similar to September 2015 (Fig. 6-4C). E2/E4 increased slightly in May 

2016. E2/E4 had larger values in D-FF1 (7.4 ± 0.3) throughout the four incubations 

compared to the other two sites (D-WF1: 6.9 ± 0.3; WL13: 7.0 ± 0.3).  

E4/E6 in D-FF1 (6.9 ± 0.03 – 8.1 ± 0.15) and D-WF1 (5.5 ± 0.0 – 9.2 ± 0.9) was variable in 

these four incubations, and they usually had opposite time series trend to each other (Fig. 

6-4D). E4/E6 in D-WF1 may be increasing across the four sampling periods, but it is difficult 

to conclude this as the variation between sampling is unknown, and there were larger 

replicate variations in November and May. E4/E6 in WL13 was consistent over the four 

months (7.2 ± 0.1).   

The values of both E ratios were within the range across all Drumtee sites during 2014 – 

2015 (E2E4: 6.7 ± 0.5 to 9.5 ± 1.0; E4/E6: 5.3 ± 0.8 to 9.4 ± 0.6) except D-WF1 in September 

2015 (6.5 ± 0.0).  
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Table 6-2 Initial [DOC] and total BDOC losses during 3-week incubation over the four sampling months are shown in the table. Initial [TON], [SRP], and optical 
parameter values for each site starting composition are also presented. The mean and standard deviation for each site for the four incubations are given. 
The initial [TON] of D-FF1 in September 2015 was below detection limit (0.3 ug l-1). 

Site Month 
[DOC]  
(mg l-1) 

BDOC  
(mg l-1) 

BDOC  
(%) 

[TON]  
(ug l-1) 

[SRP]  
(ug l-1) 

SUVA254 

(l mg-1 m-1) 
SUVA410 

(l mg-1 m-1) 
E2/E4 E4/E6 

D-FF1 

Sept. 62.0 1.78 2.9 / 48.5 3.8 0.52 7.3 7.3 

Nov. 38.4 1.12 2.9 38.2 49.0 3.7 0.48 7.8 6.9 

Jan. 26.3 1.22 4.6 117.9 34.8 3.5 0.49 7.2 8.1 

May 46.9 1.91 4.1 24.9 36.8 3.5 0.48 7.3 7.0 

Mean 43.4 1.51 3.6 45.3 42.3 3.7 0.49 7.4 7.4 

SD 15.0 0.39 0.9 51.0 7.5 0.1 0.02 0.3 0.6 

D-WF1 

Sept. 27.1 1.04 3.8 11.9 26.1 3.4 0.52 6.6 5.5 

Nov. 22.0 0.63 2.9 36.3 15.8 4.1 0.58 7.1 8.1 

Jan. 20.0 2.43 12.0 109.3 62.1 3.0 0.43 6.9 7.3 

May 22.7 2.74 12.1 158.3 59.5 2.9 0.41 7.1 9.2 

Mean 23.0 1.71 7.7 78.9 40.9 3.5 0.51 6.9 7.0 

SD 3.0 1.03 5.0 67.2 23.4 0.6 0.08 0.3 1.3 

WL13 

Sept. 37.2 1.16 3.1 18.7 34.5 3.3 0.49 6.8 7.0 

Nov. 26.5 0.85 3.2 37.0 24.8 4.0 0.55 7.4 7.3 

Jan. 20.7 2.10 10.1 111.3 55.6 3.3 0.49 6.8 7.2 

May 26.7 2.29 8.6 149.1 54.6 3.1 0.44 7.0 7.6 

Mean 27.8 1.60 6.2 79.0 42.2 3.6 0.51 7.0 7.2 

SD 6.9 0.70 3.6 61.5 15.2 0.4 0.03 0.3 0.1 
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6.4.4 Fluorescence spectroscopic character of initial samples 

Only the six-component PARAFAC model was verified with split-half analysis. This means 

the six corresponding components in each sample had equal excitation and emission 

loadings as verified by the Tucker’s congruence coefficients being greater than 0.95, 

between split halves, as well as between the complete dataset and a split half.  

Table 6-3 The six components validated by half split analysis, with positions of each 
fluorescence maximum. The appearance of these components in other studies and their 
interpretation are listed. The component names in each reference column are the names 
identified in each referenced study. 

1 (Coble, 1996); 2 (Cory & Mcknight 2005); 3 (Stedmon and Markager, 2005b); 4 (Yamashita et al., 
2008); 5 (Williams et al., 2010); 6 (Osburn et al., 2012); 7 (Hosen et al., 2014) 

 

 

 

Component 
Excitation 
maxima 

(nm) 

Emission 
maxima 

(nm) 

Classic peak 
identification1 

Description corresponding to 
previous studies 

C1 315 (260) 418 
A (humic-like); 

M (marine 
humic-like) 

Humic-like, terrestrial3, 5, 
common to a wide range of 
freshwater environments3 

C2 
340 (260, 

440) 
513 / 

Fulvic acid-like, microbial-
transformed5, associated 
with higher plant origin2 

C3 390 (260) 472 
A, C (humic-

like) 

Humic-like, terrestrial4, 7, 
recalcitrant and aromatic7, 
biogeochemical processing of 
terrestrial POM4 

C4 <260 427 A (humic-like) 
Humic-like, terrestrial3, 4, 
dominated DOM in warmer 
months3. 

C5 340 (260) 444 C (humic-like) 

Humic-like, 
terrestrial/anthropogenic3, 4, 

6, exported from agricultural 
catchments3, components of 
lignin and tannins6 

C6 285 
300 

(350, 
450) 

T (tyrosine- 
and 

tryptophan-
like) 

Derived from autochthonous 
processes2, 3, recent 
biological production6, 
degradation may be 
important for dynamics4 
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The six components, C1 – C6 have all been previously observed by other researchers either 

using a PARAFAC modelling or classic visual EEMs peak picking (Table 6-3), and are 

presented in Fig. 6-5. Comparison with components identified previously (Table 6-3) 

suggests DOC in Drumtee water samples contains humic-like, fulvic-like and protein-like 

fluorophores. Humic-like fluorophores are mainly terrestrial-derived, with fulvic-like and 

protein-like ones from microbial processing. C1 consists of two major peaks, which have 

been ascribed to humic-like (peak A) and marine humic-like (peak M) respectively (Coble, 

1996). C2 has been identified in research using PARAFAC modelling, and ascribed to 

microbial-transformed fulvic-acid like fluorophore (Williams et al., 2010). C3, C4 and C5 

had humic-like fluorophores with single or multiple peaks, which were identified as peak 

A/C in classic peak identification. C6 is identified as protein-like, a mix of tyrosine-like 

(ex = 285 nm/em = 305 nm) and tryptophan-like (ex = 305 nm/em = 350 nm) fluorophores. 

 



Chapter 6 

148 
 

 



Chapter 6 

149 
 

 

Fig. 6-5. Contour plots (left) of the six components C1 – 6 verified by the PARAFAC modelling 
with 203 incubation sub-samples. The line plots (right) show the loadings for the excitation 
(solid black) and emission (dotted black) in each component.  
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Fig. 6-6 shows the incubation starting spectrophotometric composition for the four 

seasons, represented by fluorescence intensity for PARAFAC-identified EEM fluorophore 

components (top), and contribution of each component to the total intensity (bottom). 

The different sampling locations showed a similar inter-season trend, with total DOM 

fluorescence intensity being consistently smaller in all sites in autumn to spring (0.43 ± 

0.01 – 0.97 ± 0.03 R.U. across sites), and increasing in the summer (1.92 ± 0.01 – 4.95 ± 

0.48 R.U.).  

 

Fig. 6-6. The seasonal changes of the six PARAFAC component intensities (upper) and 
relative contribution (lower) for initial samples collected from September (autumn), November 
(early winter) 2015, January (late spring) and May (summer) 2016 across the three sites.  
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The spatial difference of total fluorescence intensity was clear with D-WF1 and WL13 

samples having similar and larger amount of fluorescence intensity than D-FF (p < 0.01). 

This spatial difference was much more obvious in the summer, with the intensity of D-

WF1 and WL13 (4.84 ± 0.18 and 4.95 ± 0.48 R.U. respectively) being more than twice that 

of D-FF1 (1.92 ± 0.01 R.U.). It seemed to be C1 (increased from 0.10 – 0.22 R.U. in spring 

to 0.50 – 1.43 R.U. in summer) and C4 (0.10 – 0.23 R.U. in winter to 0.56 – 1.60 R.U. in 

summer) that were increasing most. C5, showed least variation across seasons and sites, 

staying from 0.05 ± 0.00 (D-FF1 in spring) to 0.21 ± 0.00 R.U. (D-FF1 in summer). It is 

summer, the C6 intensity (produced from recent microbial process) of D-WF1 and WL13 

was clearly greater than that of D-FF1.  

The contribution of each PARAFAC component to total intensity was considered to allow 

comparison without dependent of [DOC]. C1 and C4 dominated the incubated DOM in 

these sites, comprising about 25 ± 2 % and 28 ± 4 % of the total intensities respectively 

for all data taken together. C2 and C3 were next in relative contribution, consistently 

comprising 12 ± 2 % and 14 ± 1% of the total intensities. C5 and C6 varied spatially and 

temporally in the percentage, and generally contributed the less than other components. 

While C1 – C4 remained similar in their contributions across changes in total intensity, 

this was not so with C5 and C6. C5 relative contribution decreased clearly in summer for 

D-WF1 and WL13 whereas remained similar for D-FF1. Relative contribution of C6 

increased in spring and summer for all sites except D-FF1 in summer, which decreased to 

the similar percentage in autumn and winter. 

6.4.5 Intra-incubation variation 

6.4.5.1 BDOC loss 

The respiration of BDOC for Drumtee did not occur linearly, but exhibited a trend more 

logarithmic in curve with an often-steeper slope in the first three days, a decrease in this 

slope between days to 14 and then the shallowest gradient in days 14 onwards (Fig. 6-7). 

This pattern is weak and not all responses were found in each incubation, but those that 

are can be summarised in Table 6-4. However, the logarithmic response apparent in 

considering BDOC loss in mg l-1 C sometimes disappeared when considering it as BDOC % 

loss. For example, D-FF1 % in all four incubations showed a more linear trend, whereas 

that in BDOC loss was more logarithmic, especially in September (autumn) and June 

(summer).  BDOC % loss in D-WF1 and WL13 changed logarithmically only in January (late 

winter) and June (summer), while the corresponding BDOC loss was more in most months 

except November (early winter).
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Fig. 6-7. BDOC loss (A – D) and BDOC (%) (a – d) changes during each incubation of samples from all sites in different months. The error bars (± 1SD) 
indicate the variation of sampling replicates.  
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Table 6-4 Rates of DOC biodegradation during the four incubations. The rates were calculated 
for three phases: fastest, slower and slowest, ascribed according to the BDOC loss (Fig. 6-7). 
Numbers in the brackets represents which days the rates were calculated for. The resolution 
for the Hach DO meter was 0.01 mg l-1, equivalent to 0.004 mg l-1 C.  

 Phase D-FF1 (mg l-1 day-1) D-WF1 (mg l-1 day-1) WL13 (mg l-1 day-1) 

Sept. 
(autumn) 

Fastest 
0.17 ± 0.01 

(Day 0-3) 

0.11 ± 0.00 

(Day 0-3) 

0.12 ± 0.01 

(Day 0-3) 

Slower 
0.09 ± 0.01 

(Day 4-14) 

0.05 ± 0.01 

(Day 4-14) 

0.07 ± 0.00 

(Day 4-10) 

Slowest 
0.05 ± 0.00 

(Day 15-21) 

0.03 ± 0.02 

(Day 15-21) 

0.03 ± 0.00 

(Day 11-21) 

Nov. 
(early 

winter) 

Fastest 
0.08 ± 0.01 

(Day 0-3) 

0.05 ± 0.01 

(Day 0-7) 

0.05 ± 0.01 

(Day 0-7) 

Slower 
0.05 ± 0.02 

(Day 4-21) 

0.02 ±0.02 

(Day 8-21) 

0.04 ± 0.02 

(Day 8-21) 

Slowest / / / 

Jan. 
(late 

winter) 

Fastest 
0.09 ± 0.01 

(Day 0-3) 

0.17 ± 0.00 

(Day 0-3) 

0.13 ± 0.01 

(Day 0-3) 

Slower 
0.05 ± 0.01 

(Day 4-14) 

0.14 ± 0.05 

(Day 4-14) 

0.10 ± 0.02 

(Day 4-14) 

Slowest 
0.03 ± 0.01 

(Day 15-21) 

0.08 ± 0.01 

(Day 15-21) 

0.06 ± 0.03 

(Day 15-21) 

May 
(summer) 

Fastest 
0.19 ± 0.05 

(Day 0-3) 

0.19 ± 0.02 

(Day 0-7) 

0.16 ± 0.03 

(Day 0-7) 

Slower 
0.08 ± 0.02 

(Day 4-21) 

0.10 ± 0.02 

(Day 4-21) 

0.08 ± 0.03 

(Day 4-21) 

Slowest / / / 

 

6.4.5.2 [SRP] and [TON] 

There was little temporal variation in [SRP] of each site during the incubation (p > 0.05; 

Fig. 6-8). However in January a slight decrease was observed in both D-FF1 and WL13 in 

the first week (from 34.8 ± 2.0 to 27.9 ± 0.5 ug l-1, and from 55.6 ± 1.0 to 47.7 ± 0.6 ug l-

1 respectively).  
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Fig. 6-8. [SRP] changes of samples during each incubation from all sites. The error bars (± 
1SD) indicate the variation of sampling replicates. The detection limit for [SRP] analysis was 
0.15 μg l-1. 

Both spatial and temporal changes were observed in [TON] during each incubation (Fig. 

6-9). The concentrations either stayed the same or increased in all bar the November 

incubation. In September, there was no [TON] detected in D-FF in the first two weeks, 

but the concentrations increased to 9.9 ± 1.1 ug l-1 in the last week. [TON] of D-WF 

increased from 12.2 ± 6.1 to 29.5 ± 9.9 ug l-1 after a slight decrease in the first week. 

[TON] in the November incubation decreased in all sites, most apparent in D-FF (although 

there was no data after the first week due to a practice mistake). 

In both January and May incubations, [TON] of D-WF increased (Jan.: from 109.3 ± 2.0 to 

677.7 ± 23.8 ug l-1, May: from 158.3 ± 1.7 to 581.1 ± 52.3 ug l-1). However the pattern of 

increase was not the same. In January [TON] remained the same in the first week and 

then increased rapidly in the second week. In May the [TON] increased most in the first 

week and slowed down afterwards. D-FF1 showed a different response, with only small 

increases from 117.9 ± 1.8 to 196.1 ± 7.4 ug l-1 in January, and 24.9 ± 9.7 to 115.7 ± 25.7 

ug l-1 in May. Greater [TON] was measured in D-WF than D-FF for all incubations after 

three weeks.  
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Fig. 6-9. [TON] changes of samples during each incubation from all sites. The error bars (± 
1SD) indicate the variation of sampling replicates. Limit of detection for [TON] analysis was 
0.33 μg l-1. 

6.4.5.3 UV-visible spectrophotometric composition 

Although there were intra-site differences and seasonal variation in starting composition, 

most UV-visible parameters (SUVAs and E ratios) showed little change during the 

incubations (Fig. 6-10 and Fig. 6-11). SUVA254 and SUVA410 remained constant over the 21-

day incubation in all months bar May. In the May incubation, decreases in D-WF1 and WL13 

SUVA values were observed on day 14 before returning to similar previous values. A similar 

pattern but with a smaller decrease was apparent in the May D-FF1 SUVAs.  

E2/E4 of all sites was also constant in most incubations (Fig. 6-11 upper). However in the 

September incubations, an increase was observed for all sites, and more obviously in D-

WF1 and WL13 samples (D-WF1: 6.5 ± 0.1 to 6.9 ± 0.0, p < 0.05; WL13: 6.7 ± 0.0 to 7.0 ± 

0.0, p < 0.05). In November, although E2/E4 of D-WF1 was stable, a decrease of E2/E4 

occurred in D-FF1 samples, from 7.8 ± 0.01 to 7.5 ± 0.02 (p < 0.05).  
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Fig. 6-10. Mean SUVA254 (A, B, C and D) and SUVA410 (a, b, c and d) changes during the incubations of Drumtee streamwater collected in Sept. and Nov. 
2015, and Jan. and May 2016. The error bars (± 1SD) represent the intra-replicate variation. 
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Fig. 6-11. Mean E2/E4 (A, B, C and D) and E4/E6 (a, b, c and d) changes during the incubations of Drumtee streamwater collected in Sept. and Nov. 2015, and 
Jan. and May 2016. The error bars (± 1SD) represent the intra-replicate variation. 
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D-WF1 E4/E6 showed variable patterns during the incubations across months but was more 

constant in the other two sites. Generally D-FF1 E4/E6 decreased slightly in Nov. (from 

6.9 ± 0.03 to 6.3 ± 0.29, p < 0.05), Jan. (from 8.1 ± 0.15 to 7.1 ± 0.00, p < 0.05) and May 

incubations (from 7.2 ± 0.03 to 6.6 ± 0.06, p < 0.05). But in September, D-FF1 E4/E6 

decreased first before increasing from day 14 (increasing from 5.2 ± 0.19 to 6.7 ± 0.16). 

Meanwhile in the D-WF1 incubation a larger E4/E6 increase was observed (from 4.9 ± 0.0 

to 11.4 ± 0.0, p < 0.05). 

6.4.5.4 Fluorescence spectrophotometric composition 

In the autumn (September) incubations, all six components showed little variation during 

the 21 days, except C4 in D-FF1 increased in the first week from 0.20 ± 0.00 to 0.25 ± 

0.00 R.U. (Fig. 6-12A, B and C). C1 and C4 remained dominant at the end, and C6 still had 

the smallest fluorescence intensities.  

The November (winter) incubations of three sites showed more variation in the C1-6 

component fluorescence intensities. The humic-like components C1, 2, 3 and 5 exhibited 

a similar change where the intensity at the end of the incubation was less than the start. 

However, it was not a linear decrease, rather all sites tended to show a similar increase 

in mid-incubation. C4 responded differently to the other humic-like fluorophores, 

decreasing from the second week after the increase in the first week. The C4 decrease 

was most obvious in WL13 samples, from 0.32 ± 0.00 – 0.17 ± 0.01 R.U. A constant but 

slight decrease was observed in C6 in all sites.  

Component fluorescence was more variable in the January (spring) and May (summer) 

incubations. In January incubations, C1-5 exhibited a similar changing trend in all sites, 

increasing in the first week but decreasing afterwards, before a slight increase in the last 

week, most obvious in C1 and C4. In D-WF1 and WL13, C2, C3 and C5 exhibited less 

variation during incubation. Only C6 decreased continuously during all incubations. This 

was most apparent in D-WF1 (from 0.17 ± 0.00 to 0.07 ± 0.00 R.U.), then WL13 (from 0.14 

± 0.00 to 0.07 ± 0.00 R.U.) and the least in D-FF1 (from 0.06 ± 0.01 to 0.03 ± 0.00 R.U.). 

Little variation in C1-C5 % was observed during incubation. A clear change occurred in 

C6 %, but the trend was similar to C6, the absolute value. Therefore the relative 

contribution of each component is not shown. 
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Fig. 6-12.  Changes of the six fluorescent components in all sites during each incubation. In the summer incubations, the fluorescence intensity of C1 and 
C4 were much higher than other components, and are presented on the secondary axis. The error bars (± 1SD) indicate the variation of sampling replicates. 
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Different patterns and greater variation were observed in the May (summer) incubations. 

C1, C2 and C3 showed a similar change for each site during the biodegradation process 

(noting C1 had much higher intensity and was shown on the secondary y-axis), and 

generally in both D-FF1 and D-WF1 the intensities at the end were slightly larger than the 

initials.  C5 behaved differently to C2 and C3 in May whereas they were similar in other 

months. C5 of D-FF1 showed a mild decrease along the incubation (from 0.21 ± 0.00 down 

to 0.17 ± 0.01 R.U.). However in the D-WF1 samples, after a slight increase in the second 

week, C5 had disappeared by the third week, and in WL13 it approached nearly to zero 

from the third week onwards. The dominant C4 had varied with no consistent patterns 

among sites. However, in D-WF1 and WL13, C4 generally increased when C5 decreased. 

In D-FF1 C6 hardly changed during the incubation (decreased from 0.13 ± 0.00 to 0.11 ± 

0.00 R.U., and increased to 0.12 ± 0.01 R.U. at the end). In D-WF1 and WL13 C6 showed 

large and continuous decreases (from 0.59 ± 0.01 to 0.42 ± 0.01, and 0.62 ± 0.02 to 0.40 

± 0.01 R.U. respectively). 

6.4.6 BDOC indicators 

When all samples were considered together, some of the characteristics of the fluvial 

DOM composition showed significant correlations with both the final BDOC/BDOC % (Fig. 

6-13 and Fig. 6-14, Table 6-5).  

Initial [SRP] was a strong predictor of BDOC loss, with a positive relationship (Fig. 6-13A), 

explaining 78.4 % of the variation. A similar positive relationship was observed between 

[SRP] and BDOC %, although less significant (p < 0.01, Fig. 6-14A and Table 6-5). [TON] 

also exhibited a positive correlation, but more significantly with final BDOC % (p < 0.001; 

Fig. 6-14B) and less so with BDOC (p < 0.05, Table 6-5).   

Both initial SUVA410 and SUVA254 showed negative significant relationships with absolute 

BDOC loss (p < 0001; Fig. 6-13B and C), but SUVA410 had more explanatory power (SUVA410: 

R2 = 0.740; SUVA254: R
2 = 0.677). The situation differed with BDOC %, and although still 

negatively related, the relationship for SUVA254 was better described by an exponential 

curve whereas linear for SUVA410. Further, SUVA254 explained more of variation in BDOC % 

than SUVA410, with greater p and R2 values (Fig. 6-14C and D, Table 6-5).  

Initial C6 was positively and logarithmically related to final BDOC loss (Fig. 6-13D), 

showing a significant correlation (p < 0.01). C6 had relatively less explanatory power for 

BDOC variation (R2 = 0.621), compared to [SRP], SUVA410 and SUVA254. The relationship 

between C6 % with final BDOC% loss became more significant and with greater explanatory 

power with C6 % (p < 0.001, R2 = 0.662, Fig. 6-14E, Table 6-5). 
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Fig. 6-13. The relationships between initial (A) [SRP], (B) SUVA254, (C) SUVA410 and (D) C6 
fluorescence intensity and final BDOC loss after 21-day incubation, with A, B and C showing 
relationships more linear, and D being better described by a logarithmic curve. The data has 
been pooled here to consider if there is a generic response across sites and over time. Each 
sample point represents the mean composition of the replicates. Only relationships with p < 
0.01 were presented in the graph. **: p < 0.01, ***: p < 0.001. 
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Fig. 6-14. The relationships between initial (A) [SRP], (B) [TON], (C) SUVA254, (D) SUVA410 and 
(E) C6 %, and the total BDOC % at the end incubations, with A, B, D and E showing 
relationships more linear, and C being better described by an exponential curve. The data has 
been pooled here to consider if there is a generic response across sites and over time. Only 
relationships with p < 0.01 were presented in the graph. **: p < 0.01, ***: p < 0.001. 
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Table 6-5 The correlation between the final BDOC/BDOC % and initial [SRP], [TON], and all 
optical parameters. All initial incubated samples have been pooled here. Absolute 
fluorescence intensities of C1 – C6 were correlated with BDOC, and percentage C1% - C6% 
with BDOC %. The R2 value is not given if the relationship is not considered significant. *: p < 
0.05, **: p < 0.01, ***: p < 0.001. 

 Final BDOC (mg l-1) Final BDOC % 

 p R2 p R2 

SRP *** 0.784 ** 0.601 

TON * 0.457 *** 0.678 

SUVA254 *** 0.677 *** 0.700 

SUVA410 *** 0.740 ** 0.618 

E2/E4 0.651 / 0.336 / 

E4/E6 0.26 / 0.192 / 

C1 (C1%) * 0.417 0.183 / 

C2 (C2%) * 0.383 * 0.339 

C3 (C3%) * 0.415 0.575 / 

C4 (C4%) * 0.415 0.842 / 

C5 (C5%) 0.981 / * 0.483 

C6 (C6%) ** 0.621 *** 0.662 

 

Among the rest of the parameters (including E ratios, C1 – C5 and C1% - C5%), neither 

E2/E4 nor E4/E6 were significantly correlated with BDOC or BDOC %. Significant correlations 

were exhibited between initial C1 – C4 with BDOC, and only initial C2 % and C5 % with 

BDOC %, but all with smaller significance (p < 0.05). 

None of the above initial water chemistry parameters could alone fully explain the 

variance of BDOC/BDOC %. Hence the interaction between water chemistry 

characteristics and BDOC/BDOC % was further explored using multiple linear regression 

of the pooled data which are significantly correlated with final BDOC or BDOC as described 

above. For BDOC, the characteristics [SRP], SUVA254, SUVA410 and C6 were examined in 

the multiple linear regression model, and [SRP] and C6 merged as final explanatory 

variables and were suggested to explain 86 % of the variance of BDOC changes. The 

residuals were randomly distributed: 

𝐵𝐷𝑂𝐶 = 0.031 ∗ [𝑆𝑅𝑃] + 1.174 ∗ 𝐶6 + 0.087 (𝑅2 = 0.86, 𝑝 = 0.000)        Equation 6-1 
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For BDOC %, [SRP], [TON], SUVA254, SUVA410 and C6 % were examined in the multiple linear 

regression model, and [SRP] and SUVA254 merged as final explanatory variables to together 

explain 80 % of BDOC % variance. The residuals were randomly distributed: 

𝐵𝐷𝑂𝐶 % = 0.032 ∗ [𝑇𝑂𝑁] − 4.57 ∗ 𝑆𝑈𝑉𝐴254 + 19.46 (𝑅2 = 0.80, 𝑝 = 0.001) Equation 6-2 

 

6.5 Discussion 

6.5.1 BDOC loss in Drumtee catchment  

The incubations of seasonally-collected and compositionally different stream samples 

showed variability in BDOC loss, from 0.60 – 2.74 mg l
-1
 C (1.57 ± 0.68 mg l

-1
 C). In the 

September and November incubations, more BDOC loss occurred in D-FF1 than D-WF1 and 

WL13, but BDOC % was similar across sites (Fig. 6-3). However this inter-site variation 

changed in the January and May incubations, with more BDOC being degraded in D-WF1 

and WL13 than D-FF1. In these two months a larger proportion of D-WF1 and WL13 DOC 

was biodegradable than was D-FF1 DOC, although [DOC] was smaller in these two sites.  

This absolute C loss in Drumtee water was smaller than incubated samples from 

soil/stream water in bog and forested wetland, and waste water effluent, which ranged 

from ~3 to 7.6 mg l-1 C (Table 6-6). However, this loss was of a similar magnitude to some 

other sites sampled and incubated under different conditions, such as the incubation with 

water from Yukon River (0.2 – 2.8 mg l-1 C, incubated for 28 days at 15 °C), and stream 

water in Alaska upland forest (1.4 mg l-1 C, incubated for 30 days at 25 °C). It was also 

close to BDOC of the incubated headwater DOM from a Scottish moorland (1.9 mg l-1 C, 

incubated for 41 days at 15 °C).  

The samples from Drumtee had much greater [DOC] (28.1 – 42.2 mg l
-1
 C) than most of 

other sites (< 20 ml l
-1
 C), and in turn a smaller proportion of DOC is biodegradable, 

represented by the lower BDOC %. Drumtee BDOC % ranged from 2.9 – 12.1 % (5.8 ± 3.6 %), 

while most of other site incubations were from ~ 10 % - ~ 40 % (Table 6-6). The BDOC % in 

this study is similar to those laboratory incubations with headwater draining Austrian 

catchments with various peat cover (1.63 – 9.30 %), groundwater from Canadian mineral 

wells and headwater from an American forested coastal plain (Hosen et al., 2014) (Table 

6-6).  
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Table 6-6 The summary of C flux from DOC biodegradation incubations with water collected from various aquatic environments. The summary is presented 
from the smallest initial [DOC] to the largest. All incubations were conducted in the dark. T represents temperature. 

Sampling location Initial [DOC] 
(mg l-1) 

BDOC 
(mg l-1)  

BDOC  
(%) 

Duration 
(day) 

T  
(°C) 

Reference 

Groundwater in forested areas, Carolina 1.1 0.2 14 42  23 – 26 Shen et al., 2015 

Headwater streams draining catchments with 
different peat cover, Austria 

1.41 – 24.31 / 1.63 –9.30 20  18 Fasching et al., 2014 

Water from the Yukon River  2.1 – 10.0 0.2-2.8 3-51 28  15 Wickland et al., 2012 

Stream water from discontinuous permafrost in 
Alaska 

3 0.5 16 40  25 
Balcarczyk et al., 
2009 

Catchment stream water in upland forest, Alaska 5.8 1.4 23 30  25 Fellman et al., 2009 

Stream water from a small lowland stream 6.36 2.2 34 42  20 ± 0.5 
Trulleyová and Rulík, 
2004 

Surface water in forested areas, Carolina 7.3 2.1 29 42  23 – 26 Shen et al., 2015 

Reconstituted moorland headwater DOM isolates in 
Scotland 

10 1.9 19 41  15 Stutter et al., 2013 

Catchment stream water in bog, Alaska 17.5 3.2 18 30  25 Fellman et al., 2009 

Catchment stream water in forested wetland, 
Alaska 

18.7 3.1 13 30  25 Fellman et al., 2009 

Waste water effluent 19.5 7.6 39 60  25 Saadi et al., 2006 

Drumtee catchment stream water, Scotland  
20.0 – 62.0 

(31.4 ± 12.6) 
0.60 – 2.74 

(1.57 ± 0.68) 
2.9 – 12.1 
(5.8 ± 3.6) 

21  20 this study 

Bog soil water from coastal catchments, Alaska 27.1 7.3 27 30  25 Fellman et al., 2008 

Mineral wells with groundwater input, Canada 28.3 / 4.8 ± 4.2 11 17.5 Olefeldt et al., 2013 

Forested wetland soil water from coastal 
catchments, Alaska 

32.1 7.4 23 30  25 Fellman et al., 2008 

Lake waters with catchment rich in peat, Canada 35.7 
/ 

0.1 ± 2.7 
11  17.5 Olefeldt et al., 2013 

Peatland wells with groundwater input, Canada 71.3 -0.5 ± 2.5  

Forested coastal plain headwater streams, America / / ~ 5 28 20 Hosen et al., 2014 
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The difference in BDOC/BDOC % estimated between this study and others may be 

attributed to the length of DOC incubation (and possibly the way of estimating BDOC), 

and different DOC biodegradation dynamics (which is discussed in detail in section 6.5.2).  

Incubation duration: Drumtee water samples were incubated for 21 days as after this no 

obvious biodegradation was observed in preliminary trial experiments (Method 

development, Section 3.2), and there was little dissolved oxygen left in these four 

incubations (often for D-WF1 incubations, sometimes [DO] was < 1 mg l-1). In other studies, 

this has ranged from 11 – 60 days (Table 6-6). There is a positive relationship between 

incubation duration and final BDOC % (produced using data from Table 6-6, BDOC % was 

chosen as more data was available to boost the relationship) (Fig. 6-15), suggesting that 

in general BDOC % in dark incubations tends to increase with longer incubation days. The 

mean BDOC % of Drumtee water is similar to other research of a similar incubation 

duration and fits with the general pattern. In the Drumtee incubations after 21 days the 

daily DOC biodegradation rate was not approaching zero on Day 21 (Table 6-4), which 

suggests that if the samples were incubated for longer and without [DO] limitations, BDOC % 

would increase. 

 

Fig. 6-15. The relationship between incubation length and total BDOC % in dark incubations, 
according to data from literature review (Table 6-6). Mean values of BDOC % were used. 
Medium values were implied where the range of BDOC % was given. The red spot represents 
the mean (± 1SD) from this study. The filled symbols represent incubations where inoculum 
was applied and BDOC % was estimated from [DOC] change.  

BDOC measurement: In the studies listed above, some measured [DOC] changes during 

incubation for BDOC loss estimation. This may give rise to a concern about overestimation 

of BDOC loss, as DOC loss caused by absorption to particle surface or incorporation into 

microbial biomass (if samples are not filtered before incubation, or inoculum was applied), 

would also be in the estimate of microbial consumption (Trulleyova and Rulik, 2004). In 
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the Drumtee water incubation, only initial [DOC] was measured. In Fig. 6-15, most 

incubations having greater BDOC % used [DOC] change for BDOC estimation, when 

inoculum with soil, sediment or microbial community was added into incubation samples. 

This may also explain why my experiments have less DOC loss than most of the research 

listed in Table 6-6.    

6.5.2 Biodegradation dynamic during incubation 

To understand BDOC loss in Drumtee the influence of DOC quality (form optical properties) 

and nutrient availability changes can be explored.  

6.5.2.1 BDOC and protein-like C6 

The three-stage pattern of BDOC loss during the 21 days (fastest, slower, slowest), can 

be compared to changes in the other parameters that showed most change (Fig. 6-16).  

 

Fig. 6-16. A model exhibiting biodegradation dynamic of DOM during incubation in dark and 

sealed environment. Both Line ③ and ④ represent the dynamic change of [TON], but two 

possibilities respectively. [SRP] is not presented as no significant changes were observed 
during the incubations. 

Initial fastest period of BDOC loss: All Drumtee samples had the fastest degradation 

phase in the first three days, a response also observed elsewhere (e.g. Stutter & Cains 

2016). The fast degradation may suggest utilisation of more labile DOC (e.g. amino acids) 

at beginning than later on, perhaps limited by a reduced labile pool size. The uptake of 

labile materials in the early part of the incubation is supported by the fluorescence 

PARAFAC results, where component C6, considered to represent protein-like DOM (Table 

6-3), showed a decrease in intensity in the first one or two weeks for all incubations 

except autumn one (Fig. 6-12). This decrease in C6 intensity slowed down in the later 

stage of incubation for most sites. The positive and strong relationship between final 
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BDOC loss and initial C6 was also statistically significant (p < 0.01, R2 = 62 %), suggesting 

C6 availability influences C loss. The relationships between BDOC and humic-like 

components (C1 – 4) were of less significance (p < 0.05) and smaller explanatory power 

(R2 = ~ 40 %). Tryptophan-like DOM fluorescence (TFDOM), which likely is a main 

component of C6, was found to be a good descriptor of rates of heterotrophic bacterial 

metabolism, and represents a product of bacterial activity as well as a bioavailable 

substrate (Cammack et al., 2004). This incubation result is consistent with reports that 

protein-like fluorescent material represents the most bio-labile fraction of fluorescent 

DOC and likely has significant contribution to a large proportion of BDOC (Lapierre and 

Del Giorgio, 2014; Stedmon and Markager, 2005). 

However, in the September incubations, C6 showed little variation while 0.6 – 1.8 mg l-1 

final BDOC was processed and the fastest phase was observed for all sites (Fig. 6-7). As a 

single predictor, C6 (or C6 %) only explained 62 % (or 66 %) of total absolute (or relative) 

BDOC loss. However, other labile DOC components with simple composition, e.g. sugars 

and peptides, do not absorb light or fluorescent and so will not be  identified by PARAFAC 

(Stubbins et al., 2014). Indeed, a proportion of DOC has been found to be non-

chromophoric, non-humic and thus optically invisible to UV-visible spectroscopy, and can 

range up to 89 % of total DOC (Pereira et al., 2014). Further, the labile low-molecular-

weight (LMW) compounds such as carbohydrates and carboxylic acids are increasingly 

recognised as important drivers of bacterial productivity in surface waters. For example, 

acetate was identified as responsible for 45 % of bacterial respiration of LMW carbon in 

northern Sweden (Berggren et al., 2010). Therefore it is likely that proteins (as identified 

by C6) and other non-fluorescent lower molecular weight molecules account for 

significant parts of the faster BDOC loss.  

Furthermore, the decreasing C6 intensity in the fastest phase of incubations (mainly in 

November and January ones) was accompanied by a concurrent increase in intensity of 

most humic-like components (Fig. 6-12). The protein-like peak has been observed to 

consist of a mixture of proteinaceous materials and phenolic moieties in humic-like 

substances (Maie et al., 2007). Therefore, the corresponding inverse relationship between 

humic-like components and C6 may suggest that a) the breakdown of C6 released the 

fractions such as phenolic moieties, which directly contributed to the humic-like increase, 

or b) some humic-like components may be derived from microbial decomposition and 

transformation of dissolved protein materials during the incubation, to form the humic 

substances at the early stage of DOC humification (e.g. C2 was reported to be microbial-

transformed (Cory and Mcknight, 2005). This latter interpretation supports the perception 

of the dual role of microorganisms as consumers and producers of DOM (Guillemette and 
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Giorgio, 2012), and that bacteria utilise primarily aliphatic molecules (Trulleyova and 

Rulik, 2004). 

Middle slower and later slowest DOC loss: The initial faster stage may deplete the 

biodegradable DOC and other semi-labile components become the major BDOC source. 

This can be seen in the continuous albeit slow decrease in C6 from Day 7, and a decrease 

in some humic-like terrestrial components (e.g. C4 and C5 in most incubations) from later 

of incubations (Fig. 6-12). In the November incubations, when all BDOC loss occurred at 

the slower rate from days 14 – 21 (Fig. 6-7), all humic-like components (apart from C4) 

showed decreased in intensity, while little change was detected in C6. This supports an 

interpretation that semi-labile DOC was used during this period. Although the final 

slowest stage was not reached in my incubations when stopped by Day 21, in the 

hypothesized model, BDOC loss rate decreases at this phase, influenced by reduced 

availability of DO and/or lack of biodegradable DOC.       

6.5.2.2 Nutrients   

SRP: For every 1 mg l-1 C consumed, microbes need 40 ug l-1 N and 8 ug l-1 P to satisfy 

growth requirements, when assuming a bacterial growth efficiency of 0.4 and a bacterial 

molar ratio for C:N of 10 and C:P of 50 (Fellman et al. 2008). The range of BDOC lost 

across the incubations (0.60 – 2.74 mg l
-1
 C) would require about 5 to 22 ug l-1 [P] in total. 

The initial [SRP] was greater than the maximum [P] required (except D-WF1 in winter, 

Table 6-2), and thus was sufficient to support this C consumption during the 21 days 

without other P inputs. However, no obvious change was observed in [SRP] during the 21-

day incubation (therefore is not described in the model) (Fig. 6-8). This may either 

indicate that SRP production offset uptake, or that bacteria were using a different source 

of P, possibly dissolved organic P which was made available as DOC was processed.  

TON: As a major form of dissolved organic N, the protein-like components (tyrosine-like 

and tryptophan-like) are thought to be both produced and consumed by microorganisms 

(Maie et al., 2007; Williams et al., 2010). Thus it may be expected that as DOC is 

consumed there may be changes in [TON], and considering these can help understand 

further key processes in the incubations. Two patterns in [TON] changes with time were 

observed (Fig. 6-9) and described by lines ③ and ④ (Fig. 6-16), which are thought to arise 

depending on whether N is available or limited.  

N is not limited: At beginning of incubations where N is not limited, the release of more 

N from DOC (mainly C6) decomposition than is used by bacteria contributes to an increase 
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in [TON]. The [TON] increase slows as less C6 becomes available and/or there is more 

microbial respiration. Finally, this concentration increase almost stops as N uptake equals 

release, due to limited DO for respiration and little microbial production and consumption 

(Fig. 6-16, line ③). This pattern is typical of D-WF1 and WL13 incubations in summer (Fig. 

6-9D), where the large [TON] increase in the first week (D-WF1: from 158.3 up to 481.6 

ug l-1, WL13: 149.1 up to 393.6 ug l-1) might be a result of more N release than consumption.  

N is limited: Here the microbial uptake of N is larger than the release from DOC, and 

leads to a decreasing [TON] in the first stage of the incubation (described as line ④), for 

example in the September (apart from D-FF1) and November incubations (Fig. 6-9). Here 

initial [TON] was small and ranged only from 11.9 – 38.2 ug l-1. [TON] of D-FF1 in 

September was below limit of detection and this likely also reflects more N consumption 

than production. The decrease in [TON] slows down to stabilise at a lower but sustained 

concentration as microbial processes release fresh N (e.g. the November incubation), or 

an increase in [TON] can happen if more N is released than being consumed (e.g. the 

September incubation).  

6.5.3 Controls on BDOC loss in Drumtee catchment: nutrients 
and DOC composition  

The loss in BDOC appears to be potentially influenced by initial nutrient dynamics and 

DOC chemical composition. Both BDOC and BDOC % were correlated with SRP, SUVAs and 

C6 respectively, with the greater significance (p < 0.01) than other parameters, whereas 

BDOC % was also significantly related to TON with p < 0.001 (Table 6-5). When taken all 

parameters into account, [SRP] and C6 together explained 86 % of BDOC variance 

(Equation 6-1), while [TON] and SUVA254 explained 80 % of BDOC % changes (Equation 6-

2).  

6.5.3.1 Nutrients  

SRP: Although [SRP] stayed constant during incubations, a significant and positive 

relationship between initial [SRP] and total BDOC (or BDOC %) loss was observed (Fig. 6-13, 

Fig. 6-14), suggesting that phosphorus availability may be linked to DOC biodegradation. 

This makes sense as P is recognised to accelerate bacterial growth rate and efficiencies 

(Smith and Prairie, 2004), and so a bigger community may be able to process more DOM. 

Therefore when more initial [SRP] was available, this likely supported more bacterial 

production, and so more DOC could be degraded. For example, in D-WF and WL13 more 

BDOC (and BDOC %) was processed in January and May than September and November 
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(Fig. 6-3) and this is also when starting [SRP] were 2-3 times higher (Table 6-2, Fig. 6-2B). 

There was little variation in [SRP] in D-FF1 across the year and similarly there was little 

variation in BDOC processing.  

TON: A significant relationship between N and BDOC has been observed elsewhere (e.g. 

Wickland et al., 2012). In Drumtee catchment, a positive relationship was observed for 

initial [TON], but more significantly with BDOC % (p < 0.001) although less so with absolute 

BDOC (p < 0.05, Table 6-5). The dynamic changes of TON during incubations further 

support this close link between TON and DOC biodegradation. TON may have less 

influence on absolute BDOC loss than other parameters mentioned above (including [SRP], 

SUVA and C6). This was witnessed in the incubations. For example, in November, although 

the initial [TON] across all sites was greater than that in September, less DOC was 

degraded, and this was concurrent with the decrease in initial [SRP] in D-WF and WL13, 

although not D-FF (Table 6-2). The less impact from [TON] than [SRP] on BDOC was further 

supported in the multiple linear regression analysis, where [TON] was not chosen. With 

these observations, it is possible to suggest in Drumtee catchment, where nutrients 

concentrations are low, phosphorus seems to be a more important macronutrient linked 

to absolute BDOC loss than nitrogen. 

6.5.3.2 DOC composition 

Among all spectroscopic parameters considered for DOC composition (SUVAs, E ratios and 

PARAFAC components), SUVAs and C6 were more significantly correlated with BDOC (and 

BDOC %). It is not surprising that C6 influenced BDOC degradation, either individually or 

with [SRP], with the close dynamic links during incubation as discussed earlier (section 

6.5.2). Thus the following section presents mainly the possible controlling impacts from 

SUVAs. 

Both initial SUVA254 and SUVA410 showed significant but negative relationships with BDOC 

(and BDOC %) consumption for all sites (Fig. 6-13 and Fig. 6-14), suggesting DOC is more 

biodegradable when it is less aromatic. In January when there was similar [DOC] in all 

sites, the greater starting aromaticity with lower [SRP] in D-FF than the other two sites, 

may account for the lower consumption of DOC (Table 6-2). The impact of DOC 

aromaticity has been observed elsewhere. For example, in the 90-day incubation of soil-

derived DOM extraction from Norway, samples with low SUVA280 (around 0.7 – 1.6 l mg m-

1) showed high mineralization with the maximum around 90 %, but those with high SUVA280 

(around 3.1 – 4.4 l mg m-1) showed only approximately 5 % degradation (Kalbitz et al. 

2003). In-stream DOC mineralization decreased with increasing residence time and 
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SUVA400 (a proxy for more-complex aromatic C, Chapter 4) in a UK peat catchment 

(Worrall et al., 2006) indicating DOC aromaticity limited C biodegradation.  

However in most Drumtee incubations, all SUVAs were observed as stable during the 

incubation indicating the fraction of humic substances did not change much (Fig. 6-10). 

Only in the summer incubation was a decrease observed in SUVA254 and SUVA410 across 

sites, and more so in D-WF and WL13. SUVA has been observed to change little in other 

incubations (e.g. Kalbitz et al., 2003; Olefeldt et al., 2013). Microbial degradation is 

considered to preferentially target molecules with low molecular weight and low 

aromaticity (Wickland et al., 2007), while coloured, photoreactive molecules with high 

molecular weight and aromaticity are mainly decomposed by photochemical degradation 

(Stubbins et al., 2010). It could be possible that SUVA of Drumtee water changed little as 

the less-labile aromatic molecules were not the major fraction of BDOC degraded during 

the 21-day dark incubations, where photodegradation was not happening. Instead, clear 

changes were observed in C6, which may suggest fluorescence PARAFAC is a sensitive 

method to detect the small changes of BDOC for the humic water samples.  

The potential control of DOC composition on BDOC loss helps to understand the spatial 

variation of DOC biodegradation between the two Drumtee tributaries. In January and 

May, the greater DOC biodegradability in D-WF1 may be influenced by the larger 

proportion of C6 and smaller aromaticity than that in D-FF1. The often smaller starting 

SUVA of D-WF DOC (thus likely more biodegradable) than D-FF was the opposite to DOC 

composition in Drumtee observed during 2014 – 2015, where SUVA410 was constantly larger 

in D-WF (Chapter 4, Fig. 4-11). This seems contradictory, but there are two possible 

reasons for this. Firstly, in the time series of the annual observations (see discussion in 

Chapter 4, Section 4.5.4), the greater value in SUVA410 for D-FF, more similar to this 

incubation study, are generally coincident with drier periods. Stream water for the 

incubations was collected in January (frozen ground) and May (approaching summer) 

when flow was reduced and so groundwater was also likely proportionally more important, 

and DOC in D-WF was more labile than D-FF due to the different carbon sources. Secondly, 

as Drumtee Water is still receiving run-off impacted by wind farm-related land use 

changes, DOC compositional characteristics may differ with time, for example as less 

forest brash exists to be degraded. DOC SUVAs during the incubations from 2015 – 2016 

effectively extend the time series of DOC spectrophotometric composition, and suggest 

longer monitoring may be needed to allow the consideration of land use impacts on DOC 

composition. 
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6.5.3.3 Additional: water residence time 

Although the impacts of water residence time on BDOC loss was not examined in this 

study, it is necessary in the future research to take this into account, as the longer 

residence time may increase the possibility of DOM photodegradation. It has been 

suggested that photodegradation can modify DOM function, selectively degrading 

aromatic and phenolic groups (Spencer et al., 2009), and photo-oxidation and photo-

cleavage can decrease OM lability considerably (Barry et al., 2016; Bertilsson, 2000). For 

example, in incubations using water from a UK peatland, but in ambient light conditions, 

[DOC] declined by 64 % (from 42 to 17 mg l-1 C) over 70 hours compared with 6 % decline 

(from 42 to 36 mg l-1 C) for the sample incubated in the dark (Moody 2016). Although the 

Drumtee BDOC % fits the pattern showed in Fig. 6-15, and is similar to other peaty water 

incubation results, to some extent the small Drumtee BDOC in this study may be due to 

the absence of DOM photodegradation and there is potential that this study 

underestimates the biodegraded C loss in real aquatic systems. This could be an idea for 

next stage of this DOC biodegradation experiment.  

6.5.4 Seasonality of Drumtee BDOC loss  

With water samples collected in autumn, early winter and late winter in 2015, and 

summer in 2016, the four incubation results in this study provide a preliminary 

understanding of the potential for BDOC consumption in Drumtee water, that is 

dependent on the source DOM and macronutrient composition: there was more BDOC (and 

BDOC %) loss from Drumtee in late winter and summer but less in autumn and early winter 

(Fig. 6-3). However it should be noted that this observation was from incubations carried 

out at 20 °C, while the fluvial temperature varies with season and can be considerably 

lower in the winter. 

However, the greater BDOC (and BDOC %) loss in January and May incubations, has been 

observed elsewhere across different aquatic environments. For example, a larger BDOC % 

in incubated UK moorland stream water was observed in February (Stutter et al. 2013). 

In the bog and forested wetland in Alaska, the greatest BDOC % loss happened with stream 

water DOC in the May runoff (Fellman et al., 2009). Further, the greatest BDOC % uptake 

from a Yukon River water incubation was also measured in January, followed by early 

spring freshet in May (the spring thaw and flood event) (Wickland et al. 2012). All these 

incubations were carried out at different temperatures. This suggests that the seasonality 

of BDOC loss in Drumtee water is similar to other aquatic systems, and that apart, from 

temperature, there are other controlling factors that have more influence on this 

seasonality.  
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From the discussion in section 6.5.3, it is suggested nutrient concentration is one of the 

main factors affecting DOC biodegradability in Drumtee water. According to the long-

term survey, [TON] showed a general seasonal pattern with the greatest concentration 

around from December to February (Chapter 4, Fig. 4-16). This may support the more 

BDOC degradation in the January incubation. Moreover, at the time of sampling in January 

the surface ground was frozen and covered by snow. So the samples were more 

groundwater-dominated and thus maybe more nutrient-rich and less aromatic (supported 

by the decreased SUVA254 in D-WF1 and WL13). The low temperature in the field would 

limit microbial processing and nutrient uptake in stream. Thus when this more labile and 

nutrient-rich DOC samples was moved to lab and incubated at 20 °C, the bacteria might 

become more active and had resources to respond. This was reflected by enrichment in 

initial TON and the protein-like component C6 % (Fig. 6-2 and Fig. 6-6). Therefore in 

January, the greater amount of BDOC loss can be partly attributed to the greater 

abundance of more easily accessible C fractions (substrates) and SRP and TON (nutrient). 

Furthermore, it has been suggested that DOC recently flushed from catchment during 

storm events has more labile and semi-labile BDOC pools than that from baseflow (Stutter 

and Cains, 2016), as more fresh terrestrial DOC inputs. In Drumtee, more storm events 

were observed in winter/spring. Although DOC aromaticity and thus resistance 

(represented by SUVAs) did not show clear seasonal variations during annual survey, it is 

worth trying to analyse temporal variation of the labile DOC pool (represented by C6) in 

Drumtee in the future research.    

6.6 Conclusion 

Inland aquatic systems receive great amount of terrestrial-derived DOM, which is 

traditionally thought to be largely resistant to microbial metabolism (Fasching et al., 2014; 

Ward et al., 2013). However this traditional perception is changing, and this study 

together with other research support those ideas that terrestrial DOM might represent an 

important component of bioavailable C pool that respired in rivers (Fellman et al., 2008; 

Mann et al., 2012). In January and May, with decreasing [DOC] and increasing nutrients 

at most sites in Drumtee, there was an increase in BDOC loss. Although DOC in Drumtee 

was observed to be more humic and aromatic than many other aquatic systems, the higher 

[DOC] in Drumtee streams (Chapter 4) contributed to the in-stream C loss similar to many 

other systems when normalised for the length of the incubation.  

In Drumtee, nutrient availability, especially phosphorus, and DOM composition (as 

characterised by protein-like C6 and SUVAs, appeared to be the characteristics most 

importantly related to the rate of DOC biodegradation. Greater P concentrations initially 
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allowed bacterial growth, and thus larger composer community, but the lack of change 

in [SRP] may suggest organic P also have been important. Nitrogen was less significantly 

related to BDOC but more so to BDOC % loss, mainly as contributing to the nutrient 

supplement. However, there does seem to be a metabolic link between TON and DOC 

(especially protein-like fluorescent component and a certain humic-like components) 

during DOM biodegradation. When more TON was available, more protein-like materials 

were likely formed, which is suggested to be microbial-labile. The decomposition of this 

protein-like component may have released or be transformed to humic-like components, 

produced during the early stage of DOM humification. Thus increases were observed in 

some humic-like components during incubations. This process further shaped DOM to 

become more refractory. Protein-like C6 was significantly and negatively correlated with 

BDOC loss, and showed a clear decrease during most incubation, suggesting protein-like 

materials are important BDOC pools. SUVA254 and SUVA410 appeared to have had significant 

and negative impacts on biodegradation, with more biodecomposition when DOM was less 

aromatic and humified.  

Land use impacts on DOC biodegradation via changing DOC composition were less clear in 

this sub-project. From the earlier study in Chapter 4, it is known that land use differences 

from windfarm construction and deforestation in the Drumtee catchment likely affected 

DOC composition in the draining water, with the larger HS content and more resistant 

DOC thought prevalent for D-WF (indicated by larger SUVA410 and smaller E2/E4, Chapter 

4). However, the inter-stream difference of DOC SUVA410 in the incubations was different 

to that observed before in the spatial composition study (however the patterns for [DOC] 

and other UV-parameters were broadly the same). This may be a result of 1) the incubated 

DOC samples were from one site of each tributary and showed variation of composition 

to the averaged DOC composition in Chapter 4; 2) the DOC sources became different in 

the two streams when the water table may be low in January and May indicating reduced 

surface run-off.    

The multiple regression models based on the incubation results can help to reconstruct 

the time series of BDOC loss in Drumtee catchment. However it is not possible to do this 

at this stage, as 1) C6 was not routinely measured at any site in Drumtee, and 2) nutrients 

had only been monitored at confluence site and so these are not considered further in 

the discussion. However, these equations indicate the more likely controlling factors on 

BDOC degradation in this catchment, which is helpful for conducting future research to 

further explore how land use difference exerts impacts on the in-stream BDOC 

degradation.   
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7 Conclusion 

7.1 Introduction 

More commonly research in the terrestrial-aquatic carbon cycle has focused on 

quantifying DOC export from peatland to surface waters, considering controlling factors 

such as land use disturbance (e.g. Hergoualc’H and Verchot, 2011), and the composition 

of exported DOC has been less explored. Yet, DOC composition influences its reactivity 

and interactions with other stream components (e.g. nutrients and key micronutrient), 

and the decomposition processes in surface waters. The overall objective of this research 

was to understand the importance of aquatic DOC composition to the fluvial carbon cycle, 

and how land use influenced this. This research consists of three sub-projects 

investigating:  

1) wind farm-related disturbance to peatland water and impacts on DOC concentration 

and composition (Chapter 4); 

2) total dissolved [Fe] in peatland water and the interactions with DOC and nutrients 

(Chapter 5);  

3) biodegradability of compositionally-different peatland DOC (Chapter 6).  

This concluding chapter first addresses how the specific objectives of this research (more 

detail in Chapter 1) were fulfilled (7.2). Subsequently how these research findings have 

elicited future research needs is identified (7.3), and the key contributions this research 

has made to the wider-knowledge base is considered (7.4). 

7.2 Summary of key findings 

Objective 1. Explore how long disturbance by wind farm development affects water 

chemistry in peaty catchments, by analysing the long-term trends in fluvial DOC and 

nutrient concentrations in streams draining the wind farm. 

This was addressed mainly by considering the ten-year long-term monitoring time series 

(July 2006 to September 2016) of DOC concentration and export in the five peatland 

catchments draining the south part of the UK’s largest onshore wind farm, Whitelee wind 

farm. [SRP] and [TON] were also considered as changes in these nutrients can indicate 

disturbance to macronutrient cycles.  

Significant increases were observed in [DOC] in all catchments across the ten years (p < 

0.05 in Kendall Seasonal analysis, Table 4-2), which is different to previous conclusions 

that [DOC] could return to the original value five years after development (Phin, 2015) 
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One possibility may be the observed decrease by Phin (2015) could be the annual variation 

of [DOC] with time. [DOC] increases show greatest variation within year at WL13 and 15 

during construction periods and with patterns independent from other Whitelee 

catchments (Fig. 4-2). WL13 and Wl15 were most affected by the original and extension 

developments respectively. This suggests that wind farm construction disturbance may 

be an important driver of [DOC] increase pulse in the Whitelee catchments during the 

construction periods. Without a control site in this long-term monitoring to measure the 

background changes (e.g. climate impacts, acid deposition), it is difficult to interpret if 

land use change is the main reason for the increased [DOC]. However, as wind farm wind 

development (both deforestation and construction) was the most intensive land use 

management in Whitelee during the monitored period, it is still reasonable to suggest 

land use change, apart from the potential background change impacts, may have 

contributed to the increased [DOC]. This suggestion is further supported by observed 

spatial and temporal variation in [DOC] within the Drumtee catchment (see key findings 

in the discussion here of Objective 2), and the rapid [SRP] increase at WL13 and 15 during 

the original and extension development periods respectively (Fig. 4-14).  

However, no year-on-year increasing trend was observed in the DOC export during the 

hydrological years 2011 – 2016. Instead, there was a broadly similar trend of DOC export 

to annual discharge, indicating controls on DOC export to streams and fate within the 

water body are more complex, and closely linked to climatic conditions. The wind farm 

development may still exert long-term impacts on C loss, by land responses which 

generate more DOC in terrestrial stores for export - but how much is transferred to the 

fluvial system depends on run-off patterns.  

No consistent long-term impact on [SRP] was found. Concentrations did increase 

immediately after disturbance, but recovered approximately one year after the 

development finished, indicating limited temporal influence of wind farm construction. 

Small but significant decreases in [TON] across years were observed in all catchments bar 

WL15, which showed an increase in 2011 (one of the extension years) (Fig. 4-16 and Table 

4-7). The net nitrate consumption within the catchment after deforestation may be one 

of the reasons contributing to the general but small [TON] decrease in Whitelee.  

Taken all together, the above results suggest wind farm-associated disturbance may be 

long-lasting in the perspective of increasing in-stream [DOC]. Therefore, with the 

sensitivity of peatland to climate changes and anthropogenic disturbance, and the large 

amount of carbon stored in peat, careful consideration should be made for wind farm 

development in peatlands.  
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Objective 2. Assess if different wind farm-associated land uses, that is wind farm 

construction and deforestation, are another control on the spatial variation of fluvial 

DOC quantity, and importantly, DOC composition. 

DOC quantity: The impacts of different wind farm-related land uses on DOC 

concentration and composition were analysed by considering two sub-catchments, D-WF 

and D-FF, in the Drumtee catchment (WL13) during 2014 - 2015. The Drumtee catchment 

had [DOC] (5.2 to 89.3 mg C l-1) comparable to peatland catchments in UK (e.g. Jones et 

al., 2016; Moody and Worrall, 2016; Pawson et al., 2012; Worrall et al., 2007), but at the 

higher end of the range. Spatial variation was found within Drumtee. D-WF, the stream 

draining the wind farm area, had consistently smaller [DOC] (6.6 ± 0.7 – 49.0 ± 4.0 mg l-

1) than D-FF, the felled sub-catchment (13.5 ± 1.4 – 81.6 ± 9.5 mg C l-1) (Fig. 4-5). With 

the similar peat coverage, topography and vegetation across the Drumtee catchment 

(Chapter 2, Section 2.1.2), it is likely the [DOC] variation was linked to different land 

uses. Disturbance caused by road construction, peat excavation and turbine installation 

may expose deeper peat soil and release more ‘aged’ DOC. However the spatial variation 

suggests deforestation contributed to a greater [DOC] increase in the adjacent streams, 

which may be related to the decomposition of tree litter and dying tree roots after felling 

activities (Zerva and Mencuccini, 2005). In addition, the inorganic nutrients released from 

tree litter (Kreutzweiser et al., 2008) and possible higher soil temperature without tree 

canopy (Jauhiainen et al., 2012) may facilitate organic matter decomposition. Further, 

migration of DOC from peat soil to draining water in this Fe-rich catchment (Table 5-2) 

could be affected by oxidation of Fe with changed soil aeration. If there was more 

aeration of the deeper peat (rich in soluble Fe2+), through installing the turbines, there 

could be DOC co-precipitation with Fe oxyhydroxides at redox interface (see discussion in 

Chapter 5) and thus smaller D-WF [DOC] in streams. 

DOC quality: While no clear seasonal pattern of DOC composition variation was observed 

at large Whitelee catchments and small Drumtee sub-catchments, DOC composition 

varied between sites. Between Whitelee catchments, DOC from the Drumtee confluence 

water (WL13) was less humic (indicated by smaller SUVA410 and larger E2/E4, p < 0.05) 

than the other catchments (Table 4-4). As WL13 is the smallest catchment sampled, this 

difference may reflect less in-stream DOC degradation (both photoreaction and 

biodegradation) due to shorter water residence times, and less nutrients (particularly 

nitrate) in Drumtee. However, water samples were collected from the outlets of each 

catchment and here more than windfarm construction may influence the DOC pool. Thus 

it was difficult to unpick the potential influence of wind farm-related land uses on inter-

catchment DOC composition variation. Therefore, this was further explored within WL13 



Chapter 7 

180 
 

Drumtee, the smallest catchment with sampling close to the areas of disturbance by 

considering two sub-catchments, one dominated by felling, D-FF, and one without felling 

and more turbines, D-WF.      

Fluvial DOC composition differences were observed between the Drumtee sub-catchments. 

DOC aromaticity and HA:FA were similar between two sub-catchments, indicated by the 

similar SUVA254 and E4/E6 (Fig. 4-9, Fig. 4-12 and Table 4-5). However, D-FF DOC seems to 

have less HS (smaller SUVA410; larger E2/E4) than D-WF (Fig. 4-10, Fig. 4-11 and Table 4-5). 

It appears that DOC exported from D-FF was ‘fresher’ and less humified than D-WF. 

Leachates from freshly-decomposed tree litter are commonly of low molecular weight 

(Marschner and Kalbitz, 2003), and thus likely ‘younger’ and less humified DOC in D-FF, 

whereas DOC released from deeper peat would generally considered to be more resistant 

due to the accumulation of more-complex HS after labile carbon has been decomposed 

by microbial (Glatzel et al., 2006; Hogg et al., 1992). Further, drainage may create a 

more aerobic environment in D-WF deeper peat, and trigger the ‘enzymic-latch’ which 

can accelerate further DOC humification (Freeman et al., 2001; Worrall and Burt, 2005). 

It is less clear which mechanism led to the DOC composition difference between two sub-

catchments, or all may happen simultaneously, but in D-WF wind farm construction 

activities may cause the exported DOC to be more resistant. 

DOC composition showed different responses to dry conditions between the Drumtee sub-

catchments, with D-WF DOC being less aromatic (indicated by smaller SUVA254, Fig. 4-9) 

and humic (larger E4/E6, Fig. 4-12) than D-FF in the dry months. These different responses 

may be mediated by the different land uses. A relatively higher water table in D-FF than 

D-WF may be likely due to less drainage and the cessation of evapotranspiration. 

Aromaticity of pore water DOC first increased then decreased with peat soil depth 

(Gandois et al., 2013), thus it may be possible that in the drier months, more degraded 

DOC was exported from deeper peat in D-FF, whereas if water table in D-WF dropped 

below the zone of maximum accumulation of aromatic carbon, less aromatic DOC may 

have been exported. The different responses to the drier condition has implications for 

DOC biodegradation. For example, in water samples collected in ground-frozen and 

summer periods SUVAs were smaller and more DOC from D-WF was biodegraded than D-

FF (Chapter 6). The greater importance of groundwater with less aromatic DOC in D-WF 

under low flow condition may explain this response. 

Overall the above observations suggest land use differences, namely wind farm 

construction and deforestation, exert influence not only on the DOC concentration in the 
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draining waters, but also on DOC composition. Felled areas likely produced more DOC, 

but of smaller aromaticity than DOC in land affected by turbine construction.  

Objective 3. Investigate relationships between total dissolved Fe concentration and 

concentrations of DOC and nutrients (phosphorus and nitrate), as this interaction may 

ultimately shape the DOC biodegradability during fluvial transport. 

The total dissolved [Fe], and its interactions with [DOC], [TON] and [SRP] were assessed 

both between the five Whitelee catchments, as well as between the sub-catchments (D-

WF and D-FF) in Drumtee.  

The total dissolved [Fe] was high in these organic soil rich catchments (0.15 – 4.27 mg l-1 

across all sites), which was comparable with the observations in other peaty waters but 

towards the higher end of the range (Table 5-2). Statistically significant and positive 

relationships were found between [DOC] and total dissolved [Fe] for all sites (Fig. 5-3, 

Fig. 5-5 and Table 5-1) regardless of climatic conditions (the driest and the rest periods), 

indicating a close interaction between DOC and Fe in the peaty waters. This coupled 

variation was suggested due to the formation of stable Fe-DOC complexes that stopped 

Fe3+ from precipitation and thus increased Fe export (Sarkkola et al., 2013). The higher 

[DOC] in the Whitelee peaty catchments than many other peatland waters (Chapter 4), 

makes this an interesting site to explore the interactions between Fe and DOC.  

Land use (deforestation), together with peat cover and water retention time, may 

contribute to the spatial variation in [Fe]. Among these factors, deforestation can lead 

to [Fe] increase by producing and releasing more [DOC] into the waters (e.g. WL15). 

However, [DOC] at all sites only explained 42 – 77 % of variance in the total dissolved [Fe], 

and the correlation strength varied with hydrological changes (the driest sampling periods 

were different to the other periods) and sites (Table 5-1). Further analysis shows Fe 

binding ability with DOC (indicated by Fe/DOC molar ratio) significantly increased with 

decreasing E2/E4, and with increasing E4/E6 (although this relationship was weaker and 

only clear in the Whitelee catchments and not observed in D-WF or D-FF) (Fig. 5-7 and 

Fig. 5-9). This suggests in addition to the spatial variation of [DOC] in this study (Chapter 

4), the different DOC composition (Chapter 4), which may be partially attributed by water 

retention time, also influenced Fe export in the fluvial systems. Indeed, this Fe-DOC 

interaction goes two-ways.  

First, humic DOC may enhance Fe in-stream transport. It was found at all sites more Fe 

was mobilized per unit DOC when there was a larger proportion of HS in the DOC (Fig. 5-7 
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and Fig. 5-9). This is because Fe binds with organic ligands, particularly with aromatic 

structures (Kaiser and Guggenberger, 2000; Kritzberg et al., 2014; Riedel et al., 2013). 

However Fe may preferentially bind with FAs than HAs as indicated by the positive 

although weaker relationship between Fe/DOC and E4/E6 (Fig. 5-9). This may be because 

the HAs have larger molecular weight and more complex aromatic structure, which could 

be less reactive and easy to aggregate with Fe (Kritzberg et al., 2014). Given the observed 

spatial variation of DOC composition between the Whitelee catchments (Fig. 4-6 and Fig. 

4-7, Chapter 4), this may explain the largest Fe/DOC being in WL16 and the smallest in 

WL13 (Fig. 5-8). Thus it can be suggested that DOC with larger proportion of HS may 

enhance Fe export from peatlands to fluvial systems, which puts an additional pressure 

of drinking water treatment works where Fe must also be removed to produce water with 

and this can a potential threat to drinking water quality as [Fe] in drinking water must be 

< 0.2 mg l-1. 

Second, the high dissolved [Fe] in freshwaters may however limit DOC export. In the 

oxidising environment, DOM can be removed by coagulation with Fe hydroxides (Riedel et 

al., 2013). Here, in the driest months Fe/DOC was larger than the suggested precipitation 

ratio (0.014) in D-WF (Fig. 5-6), and in some Whitelee catchments (e.g. WL16 in July and 

September 2014, Fig. 5-8). The greater Fe2+ supply in deeper soil water/groundwater 

(Abesser et al., 2006) likely contributed to the larger Fe/DOC. Although DOC may increase 

the binding ability with a larger proportion of HS in the driest months, with the Fe/DOC 

close to or larger than 0.14, there may be fewer binding sites and thus a greater chance 

for Fe and DOC to co-precipitate. This is significant as: 1) the co-precipitation of Fe with 

DOC may help to explain the smaller [DOC] in the driest months (Chapter 4), and improve 

current knowledge about DOC loss during fluvial systems; 2) Fe may preserve the 

terrestrial character of peat-derived organic carbon which would have further 

biogeochemical implications in oceanic ecosystems; 3) the precipitation may limit DOC 

biodegradability in waters.  

In addition, while only a weak relationship was found between Fe and TON, the significant 

correlation between Fe and SRP in the Whitelee catchments suggests that that Fe-DOC 

complex may increase SRP export, as Fe-DOC complexes suppress the formation of solid 

FePO4 (Sundman et al., 2016). Thus, in peat-rich catchments, the biogeochemical cycles 

of C, P and Fe are closely-related, as the high concentration and humic composition of 

DOC exported may not only increase [Fe], but also indirectly increase P availability. 

However, too much Fe, particularly in the dry periods, may reduce both C and P exports.       
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Objective 4. Quantify how much DOC is biodegraded in peatland streams and what 

controls this. 

This objective was met by carrying out dark biodegradation incubations of Drumtee water 

samples collected from D-WF, D-FF and the confluence site in four seasons, to consider 

possible seasonality and spatial variation, and influencing factors.  

While Drumtee [DOC] was higher than many other fluvial systems during the annual survey 

(Chapter 4), and in these four incubations (28.1 – 42.2 mg l
-1
 C), BDOC in Drumtee water 

only ranged from 0.60 – 2.74 mg l
-1
 C (1.57 ± 0.68 mg l

-1
 C), with the consequently small 

BDOC % of 2.9 – 12.1 % (5.8 ± 3.6 %). While the absolute BDOC loss is similar to incubated 

samples from some other systems, e.g. water from Yukon River and from upland forest, 

the proportion of biodegraded DOC was smaller than many other aquatic systems, which 

commonly ranged from ~ 10 % - ~ 40 % (Table 6-6). BDOC % was similar to samples from 

peat-covered headwater, and underground water from forested coastal plain (Table 6-6). 

However, this may not be a site-specific response. Different incubation conditions (mainly 

temperature and incubation length) were applied between different incubation 

experiments and normalised for the incubation length, Drumtee BDOC % loss was 

comparable with others (Fig. 6-15). This observation supports the idea that aromatic and 

humic terrestrial DOC can be reactive to biodegradation (Berggren et al., 2010; Fasching 

et al., 2014; McCallister and del Giorgio, 2012).  

Seasonal variation was observed in Drumtee BDOC, with greater DOC biodegradability 

(indicated by BDOC %) in late winter (January 2016) and early summer (May 2016) and 

less in autumn (September 2015) and early winter (November 2015) (Fig. 6-3). More DOC 

was lost via biodegradation in the latter two months, but this was not apparent in D-FF. 

Spatial variation occurred between sites, but changed in different seasons. In autumn and 

early winter, more BDOC was lost in D-FF1 than D-WF1 and the confluence site, although 

BDOC % was similar between sites.  Conversely, in late winter and early summer, more 

BDOC (and BDOC %) loss happened in D-WF1 and the confluence site.  

The UV-visible and fluorescence analysis, and nutrient measurements, helped to 

understand the DOC dynamic during biodegradation. A three-stage pattern of BDOC 

(fastest, slower and slowest) describes the dynamic changes (Fig. 6-16), with most of the 

DOC biodegradation in this study similar to the stages one/two. The protein-like 

component C6 decreased during DOC biodegradation, while other PARAFAC components 

and UV parameters remained relatively constant (Fig. 6-10, Fig. 6-11 and Fig. 6-12), 

indicating that C6 may be a significant factor to DOC biodegradability. However semi-
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labile components may be used when the most biodegradable DOC (e.g. C6) was less 

available, supported by the decrease in some humic-like terrestrial components (e.g. C4 

and C5) during the later stages of incubation (Fig. 6-12).        

While SRP showed no clear change during incubation, TON responded in two different 

ways to DOC biodegradation, depending on if N was or not limiting in the incubation 

environment. If N was not limited, the release of more N from DOC (e.g. C6 decomposition) 

than the consumption by bacteria led to a TON increase. This increase would slow down 

before reaching a balance due to less availability of C6 and/or more microbial activity 

leading to less organic N release. Incubations of D-WF1 and WL13 in summer (Fig. 6-9D) 

typically show this pattern. However, if N was limited at the beginning of incubation, 

more N may be consumed by bacteria and less released from DOC decomposition. As a 

result, a decreasing [TON] was observed (e.g. the November incubations, Fig. 6-9B). The 

decrease would slow down and stabilise at a lower [TON], possibly due to the more N 

release as a result of more microbial activities (e.g. the November incubations, Fig. 6-9B). 

These observations during incubations suggest the protein-like component may be an 

important source for DOC biodegradation, with N materials closely interacting with BDOC 

during this dynamic process.      

The starting composition of incubated DOC and nutrient concentrations were analysed to 

understand BDOC loss. Nutrient availability (particularly SRP) and DOC composition 

(represented by protein-like C6 and SUVAs) are the most important to Drumtee BDOC loss. 

A significant and positive correlation between initial [SRP] and total BDOC (and BDOC %) 

loss was found (Table 6-5), with SRP alone explaining 78 % (60 %) of BDOC (and BDOC %) 

variance. This may be linked to the more DOM decomposition by the bigger bacteria 

community, which can be supported by the more availability of [SRP]. [TON] was more 

significantly and positively correlated with BDOC % with a stronger relationship (p < 0.001, 

R2 = 68 %), but less so with BDOC (p < 0.05, R2 = 46 %). C6 had a positive correlation with 

BDOC and BDOC %. This is not surprising as the close interaction between BDOC and C6 

was observed during incubation. Both SUVAs showed significant and negative impacts, 

explaining about 60 – 75 % of variation in BDOC (and BDOC %) loss (Table 6-5). This supports 

the idea that aromatic and humic DOC is less available to bacteria. 

These parameters can thus be used as indicators for Drumtee BDOC loss, and help to 

better explain the BDOC seasonality and spatial variation. For example, in the late winter 

(January) incubation, less microbial uptake of both nutrients and protein-like C6 at low 

temperature likely contributed to the greater DOC biodegradability than in autumn and 

early winter. Further, DOC aromaticity and the proportion of HS in D-WF and WL13 
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decreased in the January and May compared to November (Fig. 6-4), and this may also 

lead to the larger BDOC loss. In these two months, groundwater may become dominant 

supplying less aromatic DOC into draining water (see discussion in Chapter 4). Further, 

between the two sub-catchments, the greater nutrient concentrations, smaller DOC 

aromaticity and more labile C6 in D-WF supported the greater DOC biodegradability than 

D-FF in January and May.  

Wind farm-related disturbance (wind farm construction and deforestation) in Drumtee 

was suggested to influence in-stream DOC reprocessing via impacts on DOC composition 

(Chapter 4), which however was less evidenced here. However, it is noticed that in three 

out of four incubations, D-WF DOC had smaller SUVA410 than D-FF, which was not typical 

of the annual DOC composition observed during 2014 – 2015 in Drumtee (Chapter 4), but 

still within the range. Two possible reasons may be responsible to this. First, as discussed 

earlier (in Objective 2 section), different responses of DOC composition changes to the 

decreased water table (namely decreased aromaticity in D-WF and increased in D-FF) 

were observed in the annual survey, which may be caused by the different carbon sources. 

This may also happen in January (frozen ground) and May (summer month) incubations, 

when the flow was reduced and groundwater likely became more dominant. Second, this 

may reflect the variation of DOC composition from one site of each tributary (D-WF1 and 

D-FF1) to the averaged value for each sub-catchment. More sampling sites and more 

frequent incubations are recommended for future research to comprehensively consider 

land use impacts on BDOC related to spatial and temporal DOC composition variation.   

From the incubations, nutrients, C6 and SUVA254 were significant parameters of multiple 

regression models developed for reconstruction time series of BDOC loss in Drumtee. 

Future research with more frequent analysis of these parameters will be helpful to further 

examine the influence of land use on in-stream DOC reprocessing.    

7.3 Ideas for future research 

7.3.1 Direction 1: Land use impacts on DOC export and 
composition variation  

Annual discharge showed an overriding impact on DOC export from the Whitelee 

catchments, which makes it difficult to unpick the land use disturbance on DOC loss. The 

hydrological and so climatic controls on aquatic DOC export in peat-dominated 

catchments are observed elsewhere (e.g. Leach et al., 2016; Olefeldt et al., 2013). To 

further explore if wind farm development controls DOC export from the catchments, 

predictive models of DOC dynamics in soil and stream can be applied to simulate DOC 
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export. Recent model development, such as the process-based catchment model 

Integrated Catchments model for Carbon (INCA-C) with routine climatic parameter 

monitoring (de Wit et al., 2016; Futter et al., 2007), and a coupled hydrological-

biogeochemical model capable of predicting DOC fluxes through considering both near-

surface runoff and baseflow contribution (Dick et al., 2015), allows the simulation of DOC 

concentration and export with consideration of climatic conditions including precipitation, 

temperature and hydrological connectivity in the major landscape units. With the 

simulated DOC exports from the Whitelee catchments, meteorological and landscape 

drivers (including annual precipitation, temperature, soil pore water [DOC] and different 

land uses) of annual DOC loss can be evaluated with statistical analysis, and this approach 

may be helpful to examine the long-term impacts of wind farm development on 

catchment carbon budget.    

Further, limited research has explored the impacts of wind farm development on peatland 

on DOC quantity, and even less on DOC composition (Chapter 4, Table 4-1). Here given 

the observed spatial variation of DOC composition in Drumtee likely caused by the land 

use differences (wind farm construction and deforestation), it is worth further analysis to 

target understanding of the mechanism behind such land use impacts.  

The close connection between terrestrial and fluvial systems is suggested to be dominated 

by organic-rich riparian zone, which provides the major DOC source entering streams 

(Ledesma et al., 2015; Strohmeier et al., 2013). However, groundwater source becomes 

important in the low flow condition. Therefore, DOC composition characterization along 

the vertical profile of Drumtee riparian zone and mineral soil could be conducted and 

compared with stream DOC properties. This allows 1) testing of the earlier assumption 

that changes of DOC aromaticity with soil depth which have been observed in other 

research also exists in Drumtee peatland; 2) the generation of important information to 

consider if and what different terrestrial DOC sources (top/deep peat soil water or 

groundwater) contribute to the streams draining different land uses.  

In addition to the UV-visible spectroscopic measurement, fluorescence PARAFAC analysis 

could also be applied to characterize terrestrial and fluvial DOC. Humic-like components 

may be used as a tracer for terrestrial DOC, with the knowledge that most humic-like 

components in this study are land-derived (Table 6-3). Furthermore, radiocarbon and 

stable carbon isotopes have been used as a powerful tracer to explore and differentiate 

carbon sources from adjacent environments (Chasar and Chanton, 2000; Lozanovska et 

al., 2016). A profile of δ 13C values of peat organic matter along the soil depth shows the 

vertical changes in stable carbon isotope signature (Krohn et al., 2017). Δ14C has also been 
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used to differentiate the ages and sources of aquatic organic carbon mobilized from land 

in e.g. forested and agricultural catchments (Longworth et al., 2007; Lu et al., 2014). 

These tracing methods can be both used to further explore the carbon source responsible 

for the terrestrial characters of aquatic DOC in receiving waters with different land uses 

and under varied flow conditions.  

Environmental parameters, specifically pH in peat soil, could also be surveyed, as this has 

been indicated to significantly affect DOM composition and result in higher-molecular-

weight DOC(Roth et al., 2015; Seifert et al., 2016). With a better knowledge of the 

exported DOC source into streams, and environment changes indicated, for example by 

pH, the full extent to which land use influences the aquatic C cycle can be understood.  

7.3.2 Direction 2: Refine of understanding of DOC 
biodegradability  

Seasonality was observed in the Drumtee BDOC loss. However, only four months were 

sampled for incubations, leaving the changes of BDOC during the interval periods unknown. 

Moreover, as discussed in Chapter 6, the incubation temperature was higher than that in 

the field, especially in winter months. The constant and higher temperature in the 

laboratory condition could yield differential responses to field BDOC breakdown and its 

seasonality. Since the approach for BDOC loss analysis developed in this study is simple 

and sensitive for measuring small breakdown, it may be worthwhile to further:  

1) carry out continuous monthly incubations for a year, but with less frequent incubation 

measurements (e.g. only at the start and end of each incubation) to support this 

logistically, and generate a more comprehensive knowledge of temporal and spatial 

variation of BDOC loss. The incubation protocol would be the same to that used in this 

study. With the more frequent sampling, the developed multiple regression models can 

be tested and refined, which allows a better prediction of BDOC time series. 

2) considerate the temperature influence on DOC biodegradation by conducting 

incubations at a series of temperatures (e.g. 5, 10, 15 and 20 °C). The other incubations 

conditions would be the same between different temperature groups.         

In addition, Fe impacts on BDOC loss could be further considered. In Drumtee, Fe-DOC 

complexes likely increase P bioavailability by suppressing the formation of FePO4(s). 

However if Fe/DOC is large enough, Fe can also precipitate DOC via coagulation and 

reduce P availability (see Chapter 5). Both processes could influence DOC biodegradation 

in the fluvial systems. Indeed, brown precipitation was observed during the incubation. 
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Thus, apart from the influencing parameters discussed earlier in Chapter 5, the dissolved 

[Fe] should be measured during the incubation. Further, to refine the understanding of 

these impacts from Fe, it would be valuable to examine the exact Fe-DOC and Fe-P co-

precipitation points for Drumtee water, by adding a series of [Fe] into water samples with 

the same [DOC] and [SRP]. The understanding obtained can help to explain [Fe] impacts 

on DOC biodegradation during the annual BDOC survey.     

7.3.3 Direction 3: DOC degradation along a river continuum  

A decrease in organic carbon reactivity along the continuum of inland waters has been 

observed, with the suggestion that water retention time controls organic carbon 

decomposition (Catalán et al., 2016). According to this, a more resistant carbon pool, 

possibly linked to aromatic and humic materials, would be suggested downstream of the 

draining streams and rivers. However, the controlling process shaping DOC composition 

during transport remains less understood. 

During the DOC transport along the continuum of freshwater networks, several factors 

can together shape the compositional characters of DOC. In addition to the 

biodegradation process, photoreaction is another key process removing in-stream DOC 

(Stubbins et al., 2010), selectively decomposes coloured, aromatic DOC (Spencer et al., 

2009), resulting in a residual pool with smaller proportion of CDOM. However the 

production of photodegradation would likely fuel autotrophic microbial activities, 

producing autochthonous and small molecular weight DOC (Jones et al., 2016). With 

downstream catchments receiving more terrestrial DOC inputs, a mixture of different 

DOC sources (autochthonous and allochthonous), as well as dynamic decomposition 

processes of both resistant and labile DOC, making it less clear how DOC composition 

character changes during transport and what the relevant controls are. Some research 

has considered DOC reactivity along aquatic systems, but limited attention has been paid 

to the peatland catchments affected by wind farm development.  

Thus assessment of dynamic DOC composition, combined with the measurement of DOC 

degradability and relative significance of different aquatic DOC sources along a river 

continuum, would help to understand the science behind the changing DOC reactivity with 

long water retention time and potential land use impacts. First, DOC degradability can 

be assessed by considering both biodegradation and photoreaction at multiple sites along 

the Drumtee mainstream. As the examination of DOC biodegradability is time-consuming, 

BDOC indicators such as protein-like component C6 (results from Chapter 6) or an 

improved multiple predictive model from Direction 3 could be used to estimate aquatic 
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DOC biodegradation by multiple sampling along the river. The same water samples would 

be analysed for DOC photoreactivity by conducting irradiation incubations in the ambient 

environment.  

Second, DOC spectrophotometric composition of both DOC in the riparian zone, 

groundwater and river could be analysed and represented by UV-visible parameters and 

PARAFAC components used in this research. The comparison of DOC composition between 

different sources would help to indicate the dominant terrestrial DOC source in water, 

and how the relative importance of terrestrial/autochthonous DOC sources are changing 

during the water transport, with the integrated influence on aquatic DOC property. 

Potential controls of land use differences (e.g. turbines and deforestation near headwater, 

pasture and urbanization downstream) can be analysed for the changing DOC composition.  

Third, relationships between DOC degradability and composition parameters could be 

explored to further consider the impacts of DOC inherent characteristics (photo-reactive 

and microbial labile) on its in-stream reprocessing over gradients of increasing terrestrial 

influence.    

The in-stream DOC process is complex with changing environment influencing DOC 

dynamics with other stream components. With the above proposed analysis of DOC 

reactivity during water transport and potentially changing DOC sources, a better 

understanding of DOC in-stream dynamics can be generated.  

7.4 Research contributions to the wider-knowledge base 

This research has focused on the impacts of land use disturbance to peatland, particularly 

wind farm construction and associated deforestation, on aquatic DOC composition and 

relevant implications to the fluvial system. The environmental impact assessments on 

wind farm development on peatlands are still rare, thus this research helps to fill the 

knowledge gap, especially in the perspective of carbon budget, which can be potentially 

helpful in future studies. To finish, the main contributions are summarized below: 

1. Assessment of wind farm long-term impacts on water quality is lacking, but 

commercial wind farm construction is still occurring, to meets targets of the lower C 

emissions in the UK. This research presents ten-years of monitoring of changes in 

micronutrients concentration in peat-draining fluvial systems, and this is of significant 

length, so makes a valuable contribution to the existing knowledge base of wind farm 

development on peatland. The observation of no clear increasing trend in carbon 
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export from these catchments boosts the current data set of DOC concentration and 

export changes in the northern peatland regions, which can help to consider the role 

of peatland in the global carbon cycling. 

2. This is only the second study (the other being (Niekerk, 2012)) to show the temporal 

and spatial variation of aquatic DOC composition with the consideration of impacts 

from wind farm-associated land uses, suggesting the wind farm disturbance may have 

changed the quality of  the exported DOC. This approach expands biogeochemical 

understanding of the fluvial ecosystem, particularly the interaction between carbon 

and trace elements and the DOC reactivity and reprocessing dynamic, both of which 

were evidenced in this study. The understanding of inter-catchment differences of 

DOC quality, and the close Fe-DOC interaction also informs our need to assess 

treatability of both DOC and Fe for drinking water purposes, particularly in peat-rich 

areas such as the Northern Scotland.  

3. This is the first study to explore the impacts of wind farm-associated land uses on DOC 

in-stream metabolism, by providing a unique comparison of DOC biodegradation from 

streams draining the turbine-installed and felled sub-catchments. This research and 

the data collected have provided useful information about in-stream carbon loss which 

could better inform the comprehensive assessment of net carbon exchange and 

environment impact of wind farm construction.   

4. Estimates of small BDOC loss in the peaty water was calculated by combining 

incubation using small tightly-sealed reagent bottles and measurement of [DO] 

consumption. This convenient and parsimonious technique allows the assessment of 

the biodegradation of humic and recalcitrant peat-derived DOC, and can be applied 

to other aquatic environments where similar resistant DOC would be expected. In 

addition, the observed DOC breakdown which was comparable to that in other aquatic 

systems when normalized by the incubation length, which has not been considered 

before, rather across site variation was interpreted. This increases understanding of 

the biodegradability of land-derived DOC, which is still a little fragmented.                 

5. The weekly observation of DOC breakdown in this research provides more detailed 

understanding about carbon and nutrients responses to microbial activities, adding 

the knowledge of specific mechanisms by which nutrients and labile carbon pool are 

closely linked to gaseous carbon loss from the waters. This frequent BDOC analysis 

during incubation is not often seen in other research, therefore the collected data 

could provide a good basis for additional work to be undertaken to better understand 



Chapter 7 

191 
 

the dynamics and mutual interaction of carbon and nutrients before BDOC depletion 

occurs. 

With so many future research directions the research field of understanding better DOC 

composition, as well as concentration in fluvial systems, offers many opportunities. 
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Appendices 

Appendix A – Drumtee data treatment 

This section contains the time series (Feb. 2014 – Feb. 2015) of DOC concentration and 

composition for all sites in Drumtee catchment, and the comparison for mean values of 

the two streams (D-WF and D-FF) when D-WF4 was re-grouped with other D-WF sampling 

sites (group 1) or with the D-FF sites (group 2). By presenting the primary data, it is 

demonstrated why D-WF4 was treated as part of D-FF group in the data analysis. 

Fig. A-1 shows that for all sampling occasions, both the DOC concentration and 

composition (represented by SUVAs and E ratios) for D-WF4 are more similar to D-FF site 

profiles. Fig. A-2 shows that when D-WF4 is considered within the population of other D-

WF sites, there is a clear increase of the variation for most parameters (compare the SD 

errors bars between group 1 and group 2 for D-WF). However, its addition to D-FF hardly 

changes the population variation. The exact SD changes for D-WF sites with applying group 

1 and 2 are presented in Table A-1. From this it can be concluded that the D-WF4 DOM 

pool is more similar to that of D-FF group, and not the D-WF group.  

Further, the catchment land use map (Fig. 2-3) clearly shows that D-WF4 tributary is 

draining mostly the deforested land. To allow most insight into how DOM compositional 

changes may be impacted by different land uses, it is considered appropriate to re-

grouped D-WF4 with D-FF as these sites are mainly dominated by deforestation. 
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Fig. A-1. DOC concentration, SUVAs and E ratios of all Drumtee samples from both streams 
during Feb. 2014 – Feb. 2015. The D-FF group is coloured in red and D-WF group in blue. Site 
D-WF4 is represented by the green empty symbol, and is clearly more similar to D-FF. 

 

 



Appendices 

195 
 

 

 

 

Fig. A-2. The comparisons between different grouping methods. Grouping_1 means no 
change is applied to the data division. Grouping_2 represents the method used in the data 
analysis: pooling D-WF4 with D-FF sites. By applying grouping_2, the SDs decreased in [DOC] 
for the year, and were similar or decreased in different UV-vis parameters for most months. 
No clear change is observed in D-FF after emerging with D-WF4. 
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Table A-1 Standard deviations of all parameters measured for D-WF samples. The grouping methods 1 and 2 are the same as described in Fig. A-2. Similar 

or smaller SDs are coloured in red. By applying method 2, the SDs decreased in [DOC] for the year, and were similar or decreased in UV-vis parameters for 

most months. SDs for D-FF samples are not presented, as no clear change is observed between different grouping methods. 

Parameter 
Grouping 
Method 

17/02/
14 

18/03/
14 

10/04/
14 

12/05/
14 

11/06/
14 

14/07/
14 

18/08/
14 

08/09/
14 

14/10/
14 

12/11/
14 

16/12/
14 

13/01/
15 

10/02/
15 

[DOC] 
1 2.5 4.1 5.3 5.7 8.0 16.2 8.7 11.9 9.7 6.0 4.8 2.3 2.3 

2 0.8 2.1 2.4 2.3 2.8 3.0 4.0 3.1 3.7 2.8 3.2 0.7 1.0 

SUVA254 
1 0.1 0.1 0.2 0.1 0.1 0.5 0.1 0.2 0.3 0.1 0.2 0.6 0.4 

2 0.1 0.1 0.2 0.1 0.0 0.3 0.1 0.2 0.3 0.1 0.1 0.3 0.1 

SUVA410 
1 0.03 0.04 0.04 0.03 0.03 0.07 0.03 0.05 0.06 0.03 0.07 0.05 0.03 

2 0.03 0.04 0.03 0.02 0.01 0.07 0.02 0.05 0.04 0.02 0.08 0.02 0.02 

E2/E4 
1 0.36 0.52 0.37 0.34 0.27 0.55 0.50 0.57 0.36 0.33 0.28 0.54 0.51 

2 0.32 0.52 0.24 0.22 0.15 0.39 0.24 0.46 0.24 0.18 0.29 0.39 0.22 

E4/E6 
1 0.98 1.04 0.39 0.76 0.26 1.25 0.32 0.93 0.51 0.49 1.07 0.84 0.70 

2 1.07 1.01 0.41 0.81 0.28 1.22 0.35 0.64 0.54 0.51 1.15 0.78 0.76 
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